UNIVERSIDADE FEDERAL DO PARANÁ

OTACÍLIO LOPES DE SOUZA DA PAZ

DIFERENÇAS GEOMORFOMÉTRICAS DO RELEVO EM BACIAS HIDROGRÁFICAS DE PRIMEIRA ORDEM PERENES E INTERMITENTES

CURITIBA

2019

OTACÍLIO LOPES DE SOUZA DA PAZ

DIFERENÇAS GEOMORFOMÉTRICAS DO RELEVO EM BACIAS HIDROGRÁFICAS DE PRIMEIRA ORDEM PERENES E INTERMITENTES

Dissertação apresentada ao curso de Pós-Graduação em Geografia, Setor de Ciências da Terra, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Mestre em Geografia.

Orientador: Prof. Dr. Tony Vinicius Moreira Sampaio

CURITIBA 2019

Catalogação na Fonte: Sistema de Bibliotecas, UFPR Biblioteca de Ciência e Tecnologia

P348d Paz, Otacílio Lopes de Souza da Diferenças geomorfométricas do relevo em bacias hidrográficas de primeira ordem perenes e intermitentes / Otacílio Lopes de Souza da Paz – Curitiba, 2019.

> Dissertação - Universidade Federal do Paraná, Setor de Ciências da Terra, Programa de Pós-graduação em Geografia. Orientador: Tony Vinicius Moreira Sampaio

1. Cartografia digital. 2. Análise digital do relevo. 3. Estatística inferencial. I. Universidade Federal do Paraná. II. Sampaio, Tony Vinicius Moreira. III. Título.

CDD: 526.98

Bibliotecária: Roseny Rivelini Morciani CRB-9/1585

Dedico este trabalho a todos aqueles que estiveram e estão próximos de mim, fazendo esta vida valer cada vez mais a pena.

À minha companheira, à minha família, aos meus amigos e amigas. Obrigado!

AGRADECIMENTOS

À Universidade Federal do Paraná (UFPR), pela estrutura e pelas oportunidades disponibilizadas ao meu aprendizado durante a graduação e o mestrado.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela verba disponibilizada no projeto de pesquisa "Mapeamento da rede de drenagem: avaliação da acurácia da representação cartográfica da rede de drenagem no estado do Paraná" no processo n.º 421960/2016-7.

Ao professor Tony Vinicius Moreira Sampaio, pela orientação, encaminhamentos, amizade e convivência nos últimos seis anos. Agradeço por compartilhar comigo sua visão de mundo sobre a Geografia e por me ensinar a sempre questionar o que me é apresentado. Sinto-me honrado em ter sido seu orientando.

Ao Programa de Pós-Graduação em Geografia da UFPR, em especial a Sra. Alexandra Aparecida Gama e Sr. Luiz Carlos Zem, pela paciência e toda ajuda.

À Prof.^a Dr.^a Silvana Philippi Camboim e ao Prof. Dr. Claudinei Taborda da Silveira pela participação na banca de defesa desta dissertação.

À geógrafa Ivandra Alves Ribeiro pelo auxílio nos planejamentos da pesquisa, no processamento de dados, na produção do material gráfico e na redação dos resultados.

Ao Prof. Dr. Edenilson Roberto do Nascimento (UFPR) pelas inúmeras sugestões para otimização dos processamentos executados neste trabalho e pelas oportunidades a mim concedidas durante o mestrado. Ao Prof. Dr. Carlos Henrique Sopchaki (UFC) pelas inúmeras contribuições na modelagem digital do relevo e pelas palavras de motivação em momentos difíceis.

À Prof.^a Dr.^a Paola Passalacqua (*University of Texas*) pela contribuição no entendimento de parâmetros para processamento dos dados. Ao Prof. Dr. Everton Passos (UFPR) pelas várias aulas de geomorfologia fluvial nos corredores da UFPR. Ao Prof. Dr. Antônio Paulo de Faria (UFRJ) pelo envio de material sobre dinâmicas das bacias de hidrográficas de primeira ordem perenes e intermitentes.

Ao Prof. Msc. Fabiano André Marion (UNICENTRO) pelo auxílio nos levantamentos de campo e pela amizade ao longo do mestrado. A Prof.^a Msc.^a Elaine de Cacia de Lima Frick (UFPR) pela amizade e inúmeras sugestões.

Aos amigos de laboratório por todo auxílio durante a jornada: Monyra Guttervill Cubas, Elaine de Cacia de Lima Frick, Maria Julia Carissimi Fernandes e Jhenifer Priscila Borges do Couto. Agradecimento especial aos "guerreiros" do mapeamento da rede de drenagem: Fabiano André Marion, Mayara Soares de Sousa, Huriel Ruan Reichel e Utaro Borges.

Aos amigos da pós-graduação pela amizade e inúmeras conversas e conselhos durante a jornada: Aline Martinhago, Elaiz Aparecida Mensch Buffon, Eduardo Liberti, Luciano Mysczak, Renata Garbossa, Cyntia Thais da Silva e Juliana Landolfi de Carvalho.

Um salve para os meus consagrados, pelo companheirismo em momentos difíceis, não me deixando cair em desânimo: Ivandra Alves Ribeiro, Tamires Maria Rodrigues, Suyan Roberta Isaka, Leticia Nunes da Costa, Larissa Silva, Allan Michel Albuquerque, Robert de Almeida Marques, Andréia Alves, Maíra Oneda Dal Pai, Danilo Akio Hiraoka e Anderson Chcrobut.

Aos queridos amigos e amigas que revisaram este trabalho: Ivandra Alves Ribeiro, Juliana Landolfi de Carvalho, Elaine de Cacia de Lima Frick e Robert de Almeida Marques.

Aos heróis anônimos desta dissertação: ao sr. motorista do trator de Medianeira que avistou onde o drone "P4" caiu no milharal; a sra. moradora de Medianeira que nos emprestou ferramentas para roçar e encontrar os drones "P4" e "P3" perdidos no milharal.

À minha parceira Ivandra, que com seu amor, carinho e bom humor me ajudou a superar os diversos obstáculos que encontrei durante a jornada. À minha família, que sempre me respeitou e me apoiou ao longo dessa jornada.

"There are no limits when you are surrounded by people who believe in you, or by people whose expectations are not set by the short-sighted attitudes of society, or by people who help to open doors of opportunity, not close them"

(Neil deGrasse Tyson – The Sky Is Not the Limit: Adventures of an Urban Astrophysicist)

RESUMO

A representação espacial da rede de drenagem é utilizada em análises de diversas áreas do conhecimento. Mapeamentos da rede de drenagem podem ser obtidos pela fotointerpretação ou extração automática a partir de modelos digitais do terreno (MDT), sendo que ambos apresentam inconsistências. Visando solucionar estas inconsistências, surgem propostas que exploram técnicas de regressão estatística, árvores de decisão ou redes neurais para automatizar o mapeamento da rede de drenagem. Estas propostas utilizam elementos fisiográficos como relevo, embasamento rochoso, tipos de solos, volume precipitado, dentre outros, para extrair a rede de drenagem. Para tanto, se faz necessário conhecer a relação quantitativa entre a rede de drenagem e elementos fisiográficos, servindo isto como parâmetro para calibracão dos modelos de extracão. Inconsistências nos mapeamentos da rede de drenagem são frequentemente encontrados nos rios de primeira ordem. Com foco no relevo, a presente pesquisa tem por objetivo comparar parâmetros geomorfométricos do relevo entre bacias de primeira ordem com rio perene e bacias de primeira ordem com rio intermitente. A área de estudo selecionada é um recorte que abrange a folha topográfica Medianeira, código MI 2832-4, parcialmente inserida nos municípios de Medianeira, São Miguel do Iguaçu e Serranópolis do Iguacu (oeste do Paraná, sul do Brasil). Foram validadas em campo bacias de primeira ordem com rio perene e rio intermitente. Para análise do relevo, realizou-se aerolevantamentos com aeronaves remotamente pilotadas visando a geração de MDT. A partir dos MDT, extraiu-se 10 parâmetros geomorfométricos: área, perímetro, volume e índice de vazio, acumulação de fluxo (D8), declividade, plano de curvatura, perfil de curvatura, índice de concentração de rugosidade e índice topográfico de umidade. Aplicaram-se testes estatísticos de hipóteses calibrados com intervalo de 95% e 99% de confiança para verificar se existem diferenças estatisticamente significativas nos parâmetros geomorfométricos entre os grupos de bacias de primeira ordem. Foram coletados em campo 91 pontos, sendo 50 de rios de primeira ordem perenes e 41 de rios de primeira ordem intermitentes. Destes 91 pontos realizou-se aerolevantamentos em 32 bacias de primeira ordem, sendo 16 com rio perene e 16 com rio intermitente. O setor norte da área de estudo apresentou maior densidade de drenagem em relação ao setor sul. Os rios de primeira ordem do setor sul apresentaram maior extensão quando comparados com o setor norte. Tais diferencas entre o setor norte e sul podem estar associadas ao embasamento rochoso. Os parâmetros de área, índice de concentração de rugosidade, plano de curvatura, índice topográfico de umidade e índice de vazio foram os mais sensíveis para diferenciar bacias de primeira ordem perenes e intermitentes. Os resultados obtidos a partir da análise dos parâmetros podem contribuir para diversas finalidades, como o desenvolvimento de métodos para mapeamento automatizado da rede de drenagem.

Palavras-chave: Análise digital do relevo; Correlação espacial; Estatística inferencial; Aeronaves Remotamente Pilotadas.

ABSTRACT

The spatial representation of the drainage network is used in analyzes of several areas of knowledge. Drainage network mappings can be obtained by photointerpretation or automatic extraction from digital terrain models (DTM), both of which present inconsistencies. There are proposals that explore statistical regression, decision trees or neural networks to automate the mapping of the drainage network. These proposals use physiographic elements such as relief, rocky basement, types of soils, precipitated volume, among others, to extract the drainage network. Therefore, it is necessary to know the quantitative relationship between drainage network and physiographic elements, serving as a parameter for calibration of extraction models. Inconsistencies in drainage network mappings are often found in first order rivers. With the focus on relief, the present research aims to compare geomorphometric parameters of the relief between first order basins with perennial river and first order basins with intermittent river. The study area selected is the Medianeira topographic sheet, code MI 2832-4, partially inserted in the municipalities of Medianeira, São Miguel do Iguaçu and Serranópolis do Iguaçu (western Paraná, southern Brazil). First - order basins with perennial river and intermittent river were validated in the field. To analyze the relief, aerial surveys were performed with Remotely Piloted Aircraft to generate DTM. 10 geomorphometric parameters were extracted: area, perimeter, volume and void index, flow accumulation (D8), slope, curvature plan, curvature profile, roughness concentration index and Wetness topographic index. Statistical tests of calibrated hypotheses with a 95% and 99% confidence interval were applied to verify if there are statistically significant differences in the geomorphometric parameters between the groups of first order basins. 91 points were collected in the field, 50 of first - order perennial rivers and 41 of first - order intermittent rivers. Of these 91 points, aero-surveys were carried out in 32 first-order basins, 16 with perennial river and 16 with intermittent river. The northern sector of the study area presented higher drainage density in relation to the southern sector. The first-order rivers of the southern sector presented greater extension when compared to the northern sector. Such differences between the north and south sectors may be associated with the rocky basement. The area parameters, roughness concentration index, curvature plane, topographic moisture index and void index were the most sensitive to differentiate perennial and intermittent first - order basins. The results obtained from the analysis of the parameters can contribute to several purposes, such as the development of methods for automated mapping of the drainage network.

Keywords: Digital relief analysis; Spatial correlation; Inferential statistics; Remotely Piloted Aircraft.

LISTA DE FIGURAS

- FIGURA 2 Recorte da folha topográfica Estrada da Graciosa, código MI 2843-3 SE da articulação 1:25.000, município de Morretes/Paraná. Os rios menores são ilustrados como linhas, não representados em escala. Os rios maiores, no caso o rio Nhundiaquara, podem ser representados em escala. Nota-se a presença da classificação dos rios quanto ao regime. Rios permanentes (perene) em linha azul contínua e rios temporários (intermitente) em linhas tracejadas.25

- FIGURA 6 Redes hidrográficas de folhas topográficas em diversas escalas......29

FIGURA 10 – Rede de drenagem no estado do Paraná declaradas ao SICAR......35 FIGURA 11 – A variação da densidade de drenagem no centro da figura indica alteração litológica. Alinhamento de elementos de nascentes (A), ligamentos (B) e cotovelos (C) pode indicar controle estrutural.......37 FIGURA 12 – Exemplo de modelos matriciais de representação da superfície FIGURA 13 – Alinhamento das imagens coletadas pela RPA carregadas no software Agisoft PhotoScan......42 FIGURA 14 – A: Nuvem de pontos gerada no software Agisoft PhotoScan. B: Foco no retângulo vermelho em A para visualização dos pontos da nuvem. FIGURA 15 – Exemplo de filtragem da nuvem de pontos no Agisoft PhotoScan.....43 FIGURA 16 – Síntese dos procedimentos metodológicos......48 FIGURA 17 – Localização da área de estudo no Paraná......49 FIGURA 19 – Exemplo de vetorização das BPO nas folhas topográficas......53 FIGURA 20 – A figura A indica ponto de campo onde não é possível determinar a perenidade do rio mapeado. Na figura B, o regime do rio é mais facilmente identificado, tendo em vista a proximidade do cruzamento FIGURA 21 – Volume precipitado (mm) registrado na estação de monitoramento de Serranópolis do Iguaçu/PR do INAPAR. Destaque ao período de realização do campo (retângulo vermelho): 07/05/2018 e 12/05/2018. FIGURA 22 – Informações técnicas das RPA utilizadas nos aerolevantamentos.57 FIGURA 23 – Equipamentos para execução dos aerolevantamentos e planejamento FIGURA 24 – Exemplos da filtragem da nuvem de pontos após o processamento dos dados coletados. A: pontos com a cor que foram registrados durante o aerolevantamento (RBG). B: pontos filtrados, marcados em marrom como pontos de solo e em branco como pontos de objetos na FIGURA 25 – Histograma do *software* ArcGIS da nuvem de pontos gerada pelo

FIGURA 26 – Gráfico Normal QQPlot do software ArcGIS de uma nuvem de pontos
gerada59
FIGURA 27 – Polígonos de Voronoi para identificação de outliers locais60
FIGURA 28 – Exemplo de aplicação da krigagem simples61
FIGURA 29 – Concepção do parâmetro volume e índice de vazio. A: MDT da bacia
de primeira ordem. B: MDT da bacia de primeira ordem com a
"tampa". A subtração de uma pela outra gera o volume de vazio62
FIGURA 30 - Passos para extração do volume e índice de vazio no ArcGIS 10.162
FIGURA 31 – Geração do ITU63
FIGURA 32 – Geração do parâmetro ICR63
FIGURA 33 – Síntese dos testes estatísticos aplicados
FIGURA 34 – Equação e Hipótese do teste de Shapiro-Wilk65
FIGURA 35 – Equação e Hipótese do teste de Levene
FIGURA 36 – Equação e Hipótese do teste t independente
FIGURA 37 – Equação e Hipótese do teste Kruskal-Wallis
FIGURA 38 – Bacias hidrográficas e hierarquização da rede de drenagem
FIGURA 39 – Declividade da folha Medianeira70
FIGURA 40 – Densidade de drenagem da folha Medianeira71
FIGURA 41 – Pontos coletados em campo. Rios perenes e intermitentes72
FIGURA 42 – Canais de BPO com rios perenes amostrados
FIGURA 43 – Canais de BPO com rios intermitentes amostrados74
FIGURA 44 – Exemplo de pontos de campo desconsiderados74
FIGURA 45 – A: Bacia de primeira ordem perene número 14 em comparação com o
rio mapeado na Base hidrográfica oficial do Paraná. Note diferenças
de extensão se considerar que o rio perene está na vegetação linear
da bacia. B: Bacia de primeira ordem intermitente número 04 com rio
mapeado na Base hidrográfica oficial do Paraná
FIGURA 46 – Exemplo de como as inconsistências no mapeamento da rede de
drenagem afetam sua aplicação76
FIGURA 47 – A) Comparação entre as redes de drenagem 1:50.000, 1:25.000 e
SICAR. B) rio de primeira ordem visitado em campo não mapeado nas
bases 1:50:000 e 1:25.000, apenas no SICAR. C) Visão horizontal do
rio de primeira ordem referido em B77
FIGURA 48 – Rios mapeados com extensão menor que 0,6 km

FIGURA 49 – Nascentes declaradas ao SICAR na Folha Medianeira......79 FIGURA 50 – A) Comparação entre os pontos coletados em campo e as nascentes declaradas ao SICAR. Pontos de campo (em laranja) e nascentes declaradas ao SICAR (em azul). B) Mais de uma declaração ao SICAR relatando a existência da mesma nascente. Pontos de campo (em laranja) e nascentes declaradas ao SICAR (em azul) na área de estudo......80 FIGURA 51 – BPO perenes e intermitentes onde foram realizados aerolevantamentos com as RPA......81 FIGURA 52 – Destaque para parâmetros geomorfométricos com médias diferentes entre as BPO perenes (PER) e intermitentes (INT).83 FIGURA 53 – BPO perenes e intermitentes localizadas em áreas as quais foram realizados aerolevantamentos com as RPA. A elipse roxo se refere ao FIGURA 54 – Relevo suave ondulado de uma bacia de primeira ordem no setor sul FIGURA 55 – Vista de uma bacia de primeira ordem na porção norte da Folha Medianeira. Destaque para o relevo ondulado-forte ondulado...........86 FIGURA 56 – Comparação da extensão dos rios de primeira ordem nos dois setores da área de estudo. A e C se referem a rios de primeira ordem no setor sul. B se refere a rios de primeira ordem no setor norte, afluentes do córrego Tigre, defronte a BR 277, há cerca de 3km a oeste da cidade de Medianeira......87 FIGURA 57 – Perfil longitudinal da bacia de primeira ordem intermitente 7 FIGURA 58 – Perfil longitudinal da bacia de primeira ordem intermitente 8 FIGURA 59 – Unidades litoestratigráficas identificadas na área da Folha Medianeira. FIGURA 60 – Parâmetros geomorfométricos com diferenças estatisticamente significativas (95% de intervalo de confiança) no teste Kruskal-Wallis de amostras independentes......94

FIGURA 61 – Parâmetros geomorfométricos com diferenças estatisticamente		
:	significativas (99% de intervalo de confiança) no teste Kruskal-Wallis	\$
(de amostras independentes	95
FIGURA 62 – 0	Gráfico de dispersão dos dois primeiros grupos gerado pela aplicaçã	0
(da ACP nas variáveis das BPO amostrais	98
FIGURA 63 – 0	Gráfico de dispersão dos dois primeiros grupos gerado pela aplicaçã	0
(da ACP nas variáveis das BPO intermitentes	99
FIGURA 64 – F	Parâmetros geomorfométricos diferentes nas BPO amostrais -	
(Componente principal 1 e 21	00

LISTA DE QUADROS

QUADRO 1 –	Conceitos de nascentes encontrados na literatura	21
QUADRO 2 –	Principais interpoladores para geração de MDT	44
QUADRO 3 –	Parâmetros geomorfométricos básicos	45
QUADRO 4 –	Paisagens encontradas na área de estudo	51
QUADRO 5 –	Paisagens encontradas na área de estudo	52
QUADRO 6 –	Dados geoespaciais utilizados na pesquisa	52
QUADRO 7 –	Softwares utilizados na pesquisa	53
QUADRO 8 –	Codificação dos pontos de campo coletados no aplicativo OruxMaps	se
	na caderneta de campo	56
QUADRO 9 –	Bacias hidrográficas na área de estudo	68
QUADRO 10	 Hierarquização da rede de drenagem. 	72
QUADRO 11	 – Estatística descritiva dos parâmetros geomorfométricos extraídos o 	las
	BPO amostrais	82
QUADRO 12	 Estatística descritiva dos parâmetros geomorfométricos por tipo e 	
	bacia de primeira ordem amostral	84
QUADRO 13	 Análise da normalidade das amostras pelo teste Kolmogorov- 	
	Smirnov	90
QUADRO 14	 Análise da homogeneidade das amostras pelo teste Levene 	91
QUADRO 15	 Parâmetros geomorfométricos com diferenças estatisticamente 	
	significativas (95% de intervalo de confiança) entre as BPO perenes	е
	intermitentes pela aplicação do teste <i>t</i> independente	92
QUADRO 16	 Parâmetros geomorfométricos com diferenças estatisticamente 	
	significativas (99% de intervalo de confiança) entre as BPO perenes	е
	intermitentes pela aplicação do teste <i>t</i> independente	92
QUADRO 17	 Parâmetros geomorfométricos com diferenças significativas entre a 	IS
	bacias amostrais pelos testes estatísticos aplicados. Kruskal-Wallis	
	considerando a significância estatística em 95%	95
QUADRO 18	– Resultado da correlação Ρρ de Spearman nos parâmetros	
	geomorfométricos identificados. Cor verde representa as correlaçõe	S
	positivas. Cor vermelha representa as correlações negativas	96
QUADRO 19	 Resultado da correlação Pp de Spearman nos parâmetros 	
	geomorfométricos identificados nas BPO perenes. Cor verde	

	representa as correlações positivas. Cor vermelha representa as	
	correlações negativas.	97
QUADRO 20 -	– Resultado da correlação Ρρ de Spearman nos parâmetros	
	geomorfométricos identificados nas BPO intermitentes. Cor verde	
	representa as correlações positivas. Cor vermelha representa as	
	correlações negativas	97
QUADRO 21 -	 Componentes principais gerados pela aplicação da ACP nas 	
	variáveis das BPO amostrais	99
QUADRO 22 -	 Compilação de valores de área para BPO perenes em outros 	
	estudos. Descaque para áreas no Terceiro Planalto Paranaense1	01

LISTA DE ABREVIATURAS OU SIGLAS

ACF	- Acumulação de fluxo			
ACP	- Análise de Componentes Principais			
ALOS	- Advanced Land Observing Satellite			
Alt	- Altimetria			
ANA	- Agência Nacional de Águas			
ANOVA	- Análise de Variância			
APP	- Área de Preservação Permanente			
ASTER	- Advanced Spaceborne Thermal Emission			
BPO	- Bacia de Primeira Ordem			
CAR	- Cadastro Ambiental Rural			
D8	- Deterministic 8			
D∞	- Deterministic Infinity			
Decl	- Declividade			
DEM	- Digital Elevation Model			
DH	- Densidade Hidrográfica			
DLR	- Deutschen Zentrums für Luft- und Raumfahrt			
DSG	- Diretoria de Serviço Geográfico do Exército			
ET-PCDG	- Especificação Técnica para Produtos Conjuntos Dados Geoespaciais			
GIS	- Geographic Information System			
GLONAS	- Globalnaya navigatsionnaya sputnikovaya sistema			
GNSS	- Global Navigation Satellite System			
IBGE	- Instituto Brasileiro de Geografia e Estatística			
ICMF	- Índice Corrente de Máximo Fluxo			
ICR	 - Índice de Concentração de Rugosidade 			
IDW	- Inverse distance weighted			
INAPAR	- Instituto das Águas do Paraná			
Ind	- Índice de Vazio			
ITU	- Índice Topográfico de Umidade			
JAXA	- Japan Aerospace Exploration Agency			
KML	- Keyhole Markup Language			
LAPE-CT	- Laboratório de Análise de Padrões Espaciais e Cartografia Temática			
LIDAR	- Light Detection And Ranging			

Max	- Máximo				
MDA	- Modelo Digital Altimétrico				
MDE	- Modelo Digital de Elevação				
MDS	- Modelo Digital de Superfície				
MDT	- Modelo Digital do Terreno				
MDT	- Modelo Numérico do Terreno				
Mean	- Média				
Median	- Mediana				
Min	- Mínimo				
NASA	- National Aeronautics and Space Administration				
NGA	- National Geospatial-Intelligence Agency				
PALSAR	- Phased Array L-band Synthetic Aperture Radar				
PCA	- Principal Component Analysis				
PDI	- Processamento Digital de Imagens				
Perf	- Perfl de curvatura				
Plan	- Plano de curvatura				
RADAR	- Radio Detection And Ranging				
Range	- Amplitude				
RD	- Rede de drenagem				
RGB	- Red, Green and Blue				
RL	- Reserva Legal				
RPA	- Remotely Piloted Aircraft/Aeronave Remotamente Pilotada				
SAR	- Synthetic Aperture Radar				
SfM	- Structure From Motion				
SICAR	- Sistema Nacional de Cadastro Ambiental Rural				
SIG	 Sistema de Informação Geográfica 				
SRTM	- Shuttle Radar Topography Mission				
Std	- Desvio Padrão				
TIN	- Triangular Irregular Network				
UFPR	- Universidade Federal do Paraná				
USGS	- United States Geological Survey				
Var	- Variância				
Vol	- Volume de vazio				
WMS	- Web Map Server				

SUMÁRIO

1 INTRODUÇÃO	16
1.1 OBJETIVOS	18
1.1.1 Objetivo geral	18
1.1.2 Objetivos específicos	19
2 TÉCNICAS DE MAPEAMENTO DA REDE DE DRENAGEM E LIMITAÇÕES	
ASSOCIADAS	20
2.1 CONCEITOS DE NASCENTE	20
2.2 CONCEITOS DE RIO	23
2.3 CONCEITOS DE REDE DE DRENAGEM	26
2.4 TÉCNICAS DE MAPEAMENTO	27
2.5 APLICAÇÕES DO MAPEAMENTO DA REDE DE DRENAGEM	36
3 ANÁLISE DIGITAL DO RELEVO	37
3.1 DEFINIÇÕES	38
3.2 FONTE DE DADOS E PROCESSAMENTO	39
3.3 CÁLCULOS DE PARÂMETROS GEOMORFOMÉTRICOS DO RELEVO	44
3.4 MÉTODOS ESTATÍSTICOS ENVOLVENDO ANÁLISE DIGITAL DO RELEVO	.46
4 PROCEDIMENTOS METODOLÓGICOS	48
4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 48
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO 4.2 ORGANIZAÇÃO DA BASE DE DADOS 	48 48 52
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 48 52 53
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 48 52 53 56
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 52 53 56 56
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 52 53 56 56
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO. 4.2 ORGANIZAÇÃO DA BASE DE DADOS. 4.3 LEVANTAMENTO DE CAMPO . 4.4 CARACTERIZAÇÃO DA REDE DE DRENAGEM . 4.5 GERAÇÃO DE MDT COM RPA . 4.6 EXTRAÇÃO DE PARÂMETROS GEOMORFOMÉTRICOS. 4.7 APLICAÇÃO DOS TESTES ESTATÍSTICOS 	48 52 53 56 56 61
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO. 4.2 ORGANIZAÇÃO DA BASE DE DADOS. 4.3 LEVANTAMENTO DE CAMPO. 4.4 CARACTERIZAÇÃO DA REDE DE DRENAGEM. 4.5 GERAÇÃO DE MDT COM RPA. 4.6 EXTRAÇÃO DE PARÂMETROS GEOMORFOMÉTRICOS. 4.7 APLICAÇÃO DOS TESTES ESTATÍSTICOS . 5 RESULTADOS E DISCUSSÃO . 	48 52 53 56 61 64 6 8
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 52 53 56 61 64 68
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO	48 52 53 56 61 64 68
 4 PROCEDIMENTOS METODOLÓGICOS	48 52 53 56 61 64 68 68
 4 PROCEDIMENTOS METODOLÓGICOS	48 52 53 56 61 64 68 80
 4 PROCEDIMENTOS METODOLÓGICOS. 4.1 SELEÇÃO DA ÁREA DE ESTUDO. 4.2 ORGANIZAÇÃO DA BASE DE DADOS. 4.3 LEVANTAMENTO DE CAMPO 4.4 CARACTERIZAÇÃO DA REDE DE DRENAGEM. 4.5 GERAÇÃO DE MDT COM RPA. 4.6 EXTRAÇÃO DE PARÂMETROS GEOMORFOMÉTRICOS. 4.7 APLICAÇÃO DOS TESTES ESTATÍSTICOS 5 RESULTADOS E DISCUSSÃO 5.1 REDE DE DRENAGEM DA FOLHA MEDIANEIRA – MI 2832-4. 5.2 CARACTERÍSTICAS GEOMORFOMÉTRICAS DE BACIAS DE PRIMEIRA ORDEM NA FOLHA MEDIANEIRA – MI 2832-4. 5.3 ANÁLISE ESTATÍSTICA DE PARÂMETROS GEOMORFOMÉTRICOS DE BACIAS DE PRIMEIRA ORDEM NA FOLHA MEDIANEIRA – MI 2832-4. 	48 52 53 56 61 64 68 80
 4 PROCEDIMENTOS METODOLÓGICOS	48 52 53 56 61 64 68 80 80

REFERÊNCIAS	.105
APÊNDICE 1 – LISTA PONTOS DE CAMPO COLETADOS	.120
APÊNDICE 2 – LISTA DE COORDENADAS DAS BACIAS AMOSTRAIS	.123
APÊNDICE 3 – ORTOMOSAICOS GERADOS DAS BACIAS AMOSTRAIS	.124
APÊNDICE 4 – VALORES DOS PARÂMETROS GEOMORFOMÉTRICOS	
EXTRAÍDOS PARA CADA BACIA AMOSTRAL	.126
APÊNDICE 5 – PARÂMETROS PARA PROCESSAMENTO DOS MODELOS	
DIGITAIS DO TERRENO A PARTIR DE AEROLEVANTAMENTO COM RPA	.135
APÊNDICE 6 – SCRIPT EM PYTHON UTILIZADOS PARA AUTOMATIZAR	
PROCEDIMENTOS DE ANÁLISE ESPACIAL NO QGIS QGIS 2.18.19	.143
APÊNDICE 7 – PERFIS LONGITUDINAIS DOS RIOS DE PRIMEIRA ORDEM	
PERENES DO SETOR NORTE	.144
APÊNDICE 8 – PERFIS LONGITUDINAIS DOS RIOS DE PRIMEIRA ORDEM	
PERENES DO SETOR SUL	.145

1 INTRODUÇÃO

A rede de drenagem é um elemento presente nos mapeamentos topográficos. Procedimentos metodológicos foram desenvolvidos para elaboração destes produtos. Em um primeiro momento, exclusivamente a partir de levantamentos topográficos/geodésicos e, posteriormente com os avanços tecnológicos, passou a contar também com levantamentos aerofotogramétricos e/ou dados oriundos de sensores orbitais.

A representação espacial da rede de drenagem é utilizada em estudos ambientais, pesquisas científicas ou relatórios técnicos. Essa informação cartográfica subsidia análises como demarcação de terras, estudos de evolução do relevo, propagação de poluentes ou monitoramento ambiental.

A maior parte dos mapeamentos da rede de drenagem do Brasil estão em cartas topográficas elaboradas pelo Instituto Brasileiro de Geografia e Estatística (IBGE) ou pela Diretoria do Serviço Geográfico do Exército (DSG) (SAMPAIO, 2008). Até a década de 1990 predominava a restituição aerofotogramétrica como técnica de mapeamento da rede de drenagem. Resumidamente, esta técnica consistia em observar em imagens orbitais ou suborbitais elementos como a água, vegetação linear ou o relevo, com auxílio de estereoscópio, visando identificar e delinear os rios.

A partir dos anos 2000, crescem as propostas de aplicações de modelos digitais do terreno (MDT) com algoritmos de análise hidrológica no mapeamento automatizado da rede de drenagem. Fato que contribuiu para isto foi a disponibilidade de MDT globais como os da missão *Shuttle Radar Topography Mission* (SRTM) ou da missão *Advanced Spaceborne Thermal Emission And Reflection Radiometer* (ASTER).

No entanto, autores como Chorley e Dale (1972), Band (1993), Sampaio (2008), Bueno, (2016) e Sousa e Sampaio (2018) afirmam que os produtos cartográficos resultantes dos métodos citados apresentam inconsistências, o que pode dificultar ou mesmo inviabilizar a aplicação destes mapeamentos em pesquisas científicas ou na tomadas de decisão.

Visando solucionar este problema, surgem propostas que exploram técnicas de regressão estatística, árvores de decisão ou redes neurais para automatizar o mapeamento da rede de drenagem (BANON, 2013; BUENO, 2016; SAMPAIO,

2008). Estas propostas utilizam elementos fisiográficos como relevo, embasamento rochoso, tipos de solos, volume precipitado, dentre outros, para extrair a rede de drenagem. Assim, se faz necessário conhecer a relação quantitativa entre a rede de drenagem e os elementos fisiográficos, servindo isto como parâmetro para calibração dos modelos de extração.

Tais propostas estão em consonância com trabalhos que discutem a espacialização e a evolução da rede de drenagem, que apontam para a influência de fatores geológicos, geomorfológicos, pedológicos e climáticos (CHRISTOFOLETTI, 1980; CUNHA; GUERRA, 1995; MONTGOMERY; DIETRICH, 1989; SAMPAIO; AUGUSTIN, 2014a; SANGIREDDY *et al.*, 2016). No entanto, a relação apontada por estes autores é qualitativa, não sendo fornecidos parâmetros quantitativos sobre a mesma. Portanto, visando gerar mapas da rede de drenagem com maior acurácia (temática e completude) a partir de novas propostas de extração automática, são necessários estudos preliminares que quantifiquem a relação entre a rede de drenagem e elementos fisiográficos.

Observando os mapeamentos da rede de drenagem, Sampaio (2008), Bueno, (2016) e Sousa e Sampaio (2018) indicam que as inconsistências encontradas estão principalmente atreladas a erros de omissão (rios não mapeados) ou comissão (rios mapeados e não encontrados em campo) nos rios de primeira ordem (da nascente até a primeira bifurcação).

Em campanhas de campo relatadas por autores como Faria (1996), Sampaio (2008), Bueno (2016) e Sousa e Sampaio (2018), foram encontradas bacias de primeira ordem (áreas de drenagem compostas exclusivamente por canais de primeira ordem) que possuíam rio perene e bacias de primeira ordem com rio intermitente.

Com foco na geomorfologia e visando uma investigação quantitativa sobre sua relação com bacias e rios de primeira ordem, podem-se aplicar técnicas de análise digital do relevo a partir de MDT. Diversos trabalhos abordaram o potencial da parametrização de atributos geomorfométricos do relevo extraídos de MDT, como declividade, curvatura, índices, entre outros (MARION; MELLO FILHO; SILVA, 2010; SAMPAIO, 2008; SILVA; OKA-FIORI; SILVEIRA, 2017; SILVEIRA *et al.*, 2012).

Ao analisar quantitativamente o papel dos parâmetros geomorfométricos do relevo com a existência de rio perene ou rio intermitente, pode-se subsidiar a aplicação de técnicas de regressão estatística, árvores de decisão ou redes neurais

para automatizar a extração da rede de drenagem e/ou classificar rios de primeira ordem em perenes ou intermitentes.

Assim, este trabalho tem início na seguinte questão: existem diferenças estatisticamente significativas nos parâmetros geomorfométricos do relevo entre bacias de primeira ordem com rio perene e com rio intermitente? Visando responder tal questão, a presente pesquisa se estrutura em cinco seções.

Na primeira seção será apresentada uma revisão não sistematizada sobre as definições conceituais de nascentes, rios e rede de drenagem, seguido da apresentação das principais técnicas de mapeamento dos mesmos e suas limitações. São apresentados então, exemplos de aplicação do mapeamento da rede de drenagem afetados ou mesmo inviabilizados pelas inconsistências encontradas.

Na segunda seção será apresentada uma revisão não sistematizada sobre análise digital do relevo, apresentando definições conceituais, fontes de dados, formas de processamento e algoritmos empregados. São apresentados métodos estatísticos aplicados com a análise digital do relevo com objetivo de identificar padrões espaciais.

A terceira seção, por sua vez, apresentada a sequência de procedimentos metodológicos adotados nesta pesquisa, relatando itens como levantamento de campo, sistematização de dados e processamentos e métodos de análise empregados. Na quarta seção, são apresentados os resultados alcançados e o seu significado frente ao questionamento levantado nesta introdução. Na quinta seção, por fim, são apresentadas as conclusões e são elencadas perguntas geradas pela pesquisa, apresentando novas possibilidades de abordagem em trabalhos futuros.

1.1 OBJETIVOS

1.1.1 Objetivo geral

 Analisar diferenças geomorfométricas do relevo entre bacias de primeira ordem perenes e intermitentes.

1.1.2 Objetivos específicos

- Gerar base de dados com bacias de primeira ordem amostrais perenes e intermitentes validadas em campo;
- Elaborar MDT das bacias de primeira ordem amostrais a partir de aerolevantamentos com aeronaves remotamente pilotadas e extrair parâmetros geomorfométricos;
- Realizar testes estatísticos de hipóteses a fim de comparar parâmetros geomorfométricos das bacias de primeira ordem perenes e intermitentes.

2 TÉCNICAS DE MAPEAMENTO DA REDE DE DRENAGEM E LIMITAÇÕES ASSOCIADAS

A água é um recurso natural que possui papel fundamental ao ambiente, sendo essencial a vida (DONADIO; GALBIATTI; PAULA, 2005). A espacialização dos recursos hídricos subsidia diversas atividades humanas (MARENGO, 2008). Na América do Sul, as reservas de água para uso antrópico estão em aquíferos, lagos e rios (TUNDISI, 2013).

Os rios têm início nas nascentes e podem estar conectados a outros rios, formando as redes de drenagem, que estarão dispostas em bacias hidrográficas (CHRISTOFOLETTI, 1974). Os termos citados: nascentes, rios e rede hidrográfica, são utilizados em diversas áreas do conhecimento.

Atendendo o foco deste trabalho, serão apresentadas definições para os temos citados e como ocorre a representação espacial dos mesmos, bem como a apresentação das técnicas utilizadas. Ao final, serão apresentados exemplos de estudos que podem ser afetados ou inviabilizados em função com as inconsistências encontrados nos mapeamentos da rede de drenagem.

2.1 CONCEITOS DE NASCENTE

As conceituações de nascente encontradas na literatura apresentam . Felippe e Magalhães Junior (2013) apontam que isso se deve às particularidades na formação acadêmica de cada pesquisador e às diferentes finalidades dos estudos científicos realizados.

Uma compilação de conceitos para o termo nascente é apresentada no QUADRO 1. Estes apresentam algumas características em comum, como: gênese da nascente relacionado ao nível freático (descrito como lençol freático), associação da nascente como o início dos rios, a naturalidade do surgimento das nascentes e o seu regime de vazão. Um ponto em comum entre as definições apresentadas é a surgência de água. Não há consenso sobre a naturalidade da gênese do fluxo, regime de vazão, ou mesmo surgimento de rio a jusante. Ora conceitos são mais simples e diretos, ora os conceitos apontam vários critérios.

	Autoria	Conceito
Gênese da nascente relacionado ao nível freático	(DAVIS; DEWIEST, 1966)	Qualquer descarga de água natural na superfície grande o suficiente para fluir em um pequeno riacho pode ser chamada de uma nascente. Descarga menor do que essa é chamada de superfície de infiltração.
	(TODD; MAYS, 2005)	A spring is a concentrated discharge of groundwater appearing at the ground surface as a current of flowing water.
Naturalidade no surgimento das nascentes	(IBGE, 2004)	Surgência natural de água, em superfície, a partir de uma camada aquífera.
	(BRYAN, 1919)	A spring is a place where water issues from the ground and flows or where it lies in pools that are continually replenished from below, except that wholly artificial openings, such as artesian wells, are not regarded as springs.
	(FIELD, 2002)	Ponto em que a água subterrânea emerge para a superfície. Qualquer descarga natural da água da rocha ou solo para a superfície da terra ou em um corpo de água superficial.
Associação da nascente como início dos rios	(GOMES; MELO; VALE, 2005)	A nascente do rio ou riacho é a fonte situada no limite do afloramento do aquífero. A cabeceira é o ponto onde nasce o curso d'água, não possuindo lugar bem definido, pode ser formada por uma área.
	(CASTRO; LIMA; LOPES, 2007)	As nascentes são fontes de água que surgem em determinados locais da superfície do solo e são facilmente encontradas no meio rural. Elas correspondem ao local onde se inicia um curso de água (rio, ribeirão, córrego), seja grande ou pequeno.
	(VALENTE; GOMES, 2005)	Nascentes são manifestações superficiais de lençóis subterrâneos, dando origem a curso d'água.
Regime de vazão	(BRASIL, 2012)	Afloramento natural do lençol freático que apresenta perenidade e dá início a um curso d'água.
	(BRASIL, 2002)	Nascente ou olho d'água: local onde aflora naturalmente, mesmo que de forma intermitente, a água subterrânea.
	(FELIPPE, 2009)	Nascente é um sistema ambiental marcado por uma feição geomorfológica ou estrutura geológica em que ocorre a exfiltração da água de modo temporário ou perene, formando canais de drenagem a jusante.

QUADRO 1 – Conceitos de nascentes encontrados na literatura.

FONTE: O autor (2019).

O conceito mais antigo encontrado foi apresentando em 1919 pelo pesquisador Kirk Bryan, que afirma que nascentes são lugares onde a água emana do solo (BRYAN, 1919). Mais recentemente, Menezes (2017, p. 10) afirma que nascentes são "pontos de descarga de um sistema de fluxo que transporta água subterrânea a partir de áreas de descarga, descarregando no solo sob influência da gravidade".

No texto do novo código florestal brasileiro (BRASIL, 2012), é determinante a perenidade do fluxo para ser considerado nascente. Isto contraria a definição apresentada por Felippe (2009), que admite a surgência intermitente de água como nascente.

A associação da nascente como o início de rios (cursos d'água, córregos, entre outros nomes atribuídos) está presente nos conceitos de Gomes, Melo, e Vale (2005), Castro, Lima e Lopes (2007) e Valente e Gomes (2005). Essa definição exclui a possibilidade de nascentes isoladas, onde apenas são formados ambientes brejosos sem rios a jusante. Outra divergência está no sentido espacial das nascentes. Field (2002) e Gomes, Melo, e Vale (2005) afirmam que as nascentes ocorrem de forma pontual, contrariando autores como Guerra e Guerra (1997), que, por sua vez, afirmam que as nascentes são áreas.

Assim, para o mapeamento da rede de drenagem, foco deste trabalho, a característica conceitual mais relevante é a nascente como início dos rios. A representação espacial das nascentes é feita com a primitiva gráfica ponto, pois sua reduzida manifestação espacial implica na utilização de simbologias. Trabalhos como de Felippe (2013) e Marmontel e Rodrigues (2015) apresentam mapas de nascentes elaborados com levantamento de campo, auxiliados por coleta de coordenadas em aparelhos receptores *Global Navigation Satellite System* (GNSS).

Outros estudos inferem a localização das nascentes em folhas topográficas oriundas de mapeamentos sistemáticos feitos pelo Instituto Brasileiro de Geografia e Estatística (IBGE) ou pela Diretoria de Serviço Geográfico do Exército (DSG) (GOMES; MELO; VALE, 2005; NOWATZKI; PAULA; SANTOS, 2009; SILVA, 2011). Christofoletti (1974, p. 85) afirma que a "nascente de um rio [...] nos mapas é representada pelo começo da linha azul" (FIGURA 1). Autores como Soares e Fiori (1978), Arcanjo (2011) e DSG (2016) corroboram com essa afirmação. Além das folhas topográficas, outra forma de inferir a localização de nascentes é a fotointerpretação de imagens orbitais e suborbitais de alta resolução espacial (FAN *et al.*, 2013).

FIGURA 1 – A: Recorte da folha topográfica Santa Isabel do Ivaí, código MI 2754-2 (SF-22-Y-C-II-2), no limite dos municípios de Santa Mônica e Loanda no Paraná. O início dos rios (linhas azuis) pode indicar a localização das nascentes. B: Recorte localizado a leste da cidade de Cascavel/Paraná. O início da mata ciliar é o local mais provável para a localização da nascente.

FONTE: DSG (2000) e Acervo Google Earth (2016). Org.: O autor (2019). Coordenada em B: 24°56'10.43"S - 53°20'15.57"O.

2.2 CONCEITOS DE RIO

Além de rio, são encontrados na literatura os termos córrego, canal, curso d'água, ribeirão, arroio, riacho, drenagem, entre outros. Christofoletti (1974) define rio como "qualquer fluxo canalizado". Esta definição é generalista, podendo ser aplicada outros fluxos canalizados que não envolvem água, como fluxo de sedimentos. Chorley, Schumm e Sugden (1984) definem rio como corpo de água fluindo por um canal aberto. Ao analisar esta definição, Sampaio (2008) afirma que os rios subterrâneos, típicos de ambientes cársticos, não se enquadram neste conceito.

Fortunato Neto (2010) considera rio como curso d'água natural (superficial ou subterrâneo) com extensão mais ou menos considerável e que deságua no mar, lago ou outro rio. Para Escobar (2003), um rio é um fluxo de água contínuo ou não, perene ou intermitente, que flui para o mar, para outro rio ou para um lago. Este conceito apresenta como ponto determinante apenas a presença do fluxo de água, sem maiores restrições.

Guerra e Guerra (1997, p. 544) definem rio como uma "corrente líquida resultante da concentração do lençol de água em um vale". De forma complementar, Florenzano (2016) define rio como "canais de escoamento concentrado da água que permitem sua transferência, por gravidade, das regiões mais altas para as mais baixas". Em ambas as definições apresentadas há uma relação entre o escoamento da água e o canal.

Horton (1945) e Strahler (1952) afirmam que os canais são linhas onde ocorrem os processos fluviais, transportando água e sedimentos. No mesmo sentido, Guerra e Guerra (1997, p. 107) afirmam que o canal fluvial é o local de escoamento das águas fluviais. Ou seja, o canal não é o rio, mas o local por onde o rio flui.

Fortunato Neto (2010) afirma que drenagem é a "retirada do excesso de água do solo". Aqui o termo é entendido como o verbo drenar. A definição da ANA (2014) é semelhante, acrescentando a drenagem de água subterrânea. Um sentido diferente é encontrado em IBGE (2004), onde drenagem é uma "feição linear negativa, produzida por água superficial de escorrência, e que modela a topografia de uma região". A definição de IBGE (2004) aproxima o termo drenagem com o termo canal, no sentido de ser a feição por onde a água flui. Corroborando com essa

afirmação, Guerra e Guerra (1997, p. 214) afirmam que drenagem "é o traçado produzido pelas águas fluviais, que modelam a topografia".

Suguio e Bigarella (1990) apresentam um sentido geomorfológico, definindo drenagem como uma corrente canalizada ou confinada, incluindo canais sem água em regiões secas. Lima (2002) apresenta um conceito ligado a geologia, afirmando que drenagem é uma "feição linear negativa relacionada às zonas de fraqueza dos terrenos (litologias) geológicos". Com ênfase no mapeamento, Vergara (1971) apresenta uma definição mais abrangente, onde drenagem é o conjunto de rios, calhas e demais elementos do terreno relacionados com água (perene ou intermitente). Assim, interpreta-se neste trabalho que a drenagem é a relação entre o canal (estrutura) e o rio (fluido).

Existem termos regionais, como igarapé e arroio. Igarapé é o termo utilizado no norte do Brasil para rios secundários (afluentes) enquanto que no sul do Brasil, esses rios recebem o nome de arroio (LIMA, 2002). Outros termos como córrego, curso d'água, ribeirão, ou riacho são entendidos como sinônimos de rio (ANA, 2014; ESCOBAR, 2003; FORTUNATO NETO, 2010).

Em banco de dados geoespaciais, as legendas apresentam os termos rios e cursos d'água. Esses termos condizem com as expectativas do usuário que esperam que as linhas azuis dos mapas representem fluxo de água perene ou intermitente. Assim, adota-se neste trabalho o termo rio, de acordo com os conceitos apresentados por Guerra e Guerra (1997, p. 544) e Escobar (2003).

Os rios podem ser classificados de acordo com a sazonalidade. Os rios perenes são rios cujo fluxo de água é contínuo durante todo o ano (CHRISTOFOLETTI, 1974; IBGE, 2004). O canal dos rios perenes possui uma estrutura bem definida, em função da constante ação da água Faria (1996).

Os rios intermitentes são rios cujo fluxo de água é interrompido em certas épocas do ano (CHRISTOFOLETTI, 1974; IBGE, 2004). O fluxo nestes rios apenas ocorre em períodos úmidos ou após fortes tempestades em períodos de estiagem (FARIA, 1996). A posição das nascentes dos rios intermitentes varia ao longo do canal, condicionado pelo nível freático (FARIA, 1996). Os rios efêmeros, por sua vez, ocorrem apenas durante ou imediatamente após eventos de precipitação, escoando apenas o volume de água proveniente do escoamento superficial, pois estes rios não são alimentados pelo nível freático (CHRISTOFOLETTI, 1974; FARIA, 1996). Este tipo de rio ocorre em grande parte em regiões semi-áridas (NOUH,

1988), sendo encontrados também em regiões tropicais úmidas, com surgimento em ambientes florestados e em áreas degradadas (FARIA, 1996, 1997). Em produtos cartográficos, os rios são representados por linhas, quando não representável em escala, e polígonos, representável em escala, azuis. A FIGURA 2 ilustra um exemplo da representação cartográfica de rios em folhas topográficas.

 FIGURA 2 – Recorte da folha topográfica Estrada da Graciosa, código MI 2843-3 SE da articulação 1:25.000, município de Morretes/Paraná. Os rios menores são ilustrados como linhas, não representados em escala. Os rios maiores, no caso o rio Nhundiaquara, podem ser representados em escala. Nota-se a presença da classificação dos rios quanto ao regime. Rios permanentes (perene) em linha azul contínua e rios temporários (intermitente) em linhas tracejadas.

FONTE: DSG (2002). Org.: O autor (2019).

Considerando o mapeamento de rios, o processo de fotointerpretação em imagens orbitais e suborbitais pode ser afetado pelas características da área analisada. Sampaio (2008) aponta que os rios de primeira ordem, da nascente até a primeira bifurcação, são os que apresentam os maiores erros de omissão e comissão. Rios de terceira, quarta ou maior ordem são menos afetados.

Como no exemplo "A" da FIGURA 3, a rede de drenagem é facilmente inferida pela presença de vegetação ou pela diferença de cor. Porém, a aplicação desse procedimento é difícil em áreas com grande densidade de vegetação, como exemplos nas regiões da Serra do Mar Paranaense (FIGURA 3 – B).

FIGURA 3 – A: área próxima à cidade de Arapoti/Paraná. Note que a presença de vegetação de forma linear e alteração da cor da superfície indicam a presença de rios. B: área localizada no município de Antonina/Paraná. A densidade da vegetação dificulta a aplicação.

FONTE: Acervo Google Earth (2016). Org.: O autor (2019). Coordenadas: A – 24°13'38.76"S - 49°52'47.98"O. B – 25°30'28.88"S - 48°52'54.03"O.

2.3 CONCEITOS DE REDE DE DRENAGEM

Outros termos que, em um primeiro olhar, se assemelham a rede de drenagem são: rede fluvial, rede hidrográfica, rede de canais ou rede de rios. Estes termos têm sentido comum: a disposição dos rios (ou outros termos referentes a este) de forma conectada em uma área.

Pierre (1993, p. 502) define a rede hidrográfica como "conjunto de correntes, tronco axial, afluentes e sub-tributários que drenam uma área mais ou menos vasta". Neste conceito, o autor atribui como característica da rede hidrográfica a presença de afluentes e subafluentes. Ainda, o mesmo apresenta a noção de dimensão da rede hidrográfica e afirma que está inserida numa bacia. Lacoste (2005) define rede hidrográfica como "[...] conjunto de cursos de água, afluentes e subafluentes de um rio que forma uma bacia hidrográfica [...]".

Guerra e Guerra (1997) afirmam que rede hidrográfica e rede de drenagem são sinônimos. Os autores a definem como "maneira como se dispõe o traçado dos rios e dos vales [...]". Esses autores consideram os rios e os vales como integrantes da rede de drenagem/rede hidrográfica. Fortunato Neto (2010) afirma que a rede de drenagem é o "conjunto de canais responsáveis pelas drenagens das águas superficiais".

A ANA (2014) traz uma diferenciação para os termos rede de drenagem e rede hidrográfica. A rede de drenagem é um "sistema formado pelo curso d'água principal e seus afluentes, todos internos a uma determinada bacia hidrográfica"

(ANA, 2014). Já o termo rede hidrográfica engloba outras feições relacionados a água superficial: "conjunto de cursos d'água permanentes ou temporários, assim como de lagos e de reservatórios de uma dada região" (ANA, 2014; BRASIL, 1976).

Beven e Kirkby (1993) e Goudie (2004) definem rede de drenagem (*drainage network*) como uma coleção de rios unidos. Em outros termos, mas com o mesmo sentido semelhante, Christofoletti (1980 p. 109) afirma que rede fluvial ou rede de canais é o "padrão inter-relacionado de drenagem formado por um conjunto de rios em determinada área, a partir de qualquer número de fontes até a desembocadura da referida rede". Esse conceito apresenta a noção de conectividade dos rios e comenta sobre sua estrutura (o autor considera fonte sinônimo de nascente). Os conceitos apresentados convergem para o mesmo sentido: rios e afluentes conectados em uma área de drenagem.

A representação das redes de drenagem em produtos cartográficos corrobora estes conceitos (FIGURA 2). Assim, considerando a interpretação de que a drenagem é a relação entre o canal e o rio, adota-se o termo rede de drenagem neste trabalho conforme os conceitos apresentados por Beven e Kirkby (1993), Goudie (2004) e ANA, (2014).

2.4 TÉCNICAS DE MAPEAMENTO

Em síntese, existem dois procedimentos para o mapeamento da rede de drenagem: a fotointerpretação e a extração automática. A fotointerpretação é a técnica tradicional já sendo aplicada desde o formato analógico (EPIPHANIO; FORMAGGIO; VALÉRIO FILHO, 1982). Ambas apresentam resultados com inconsistências decorrentes de limitações e subjetividades presentes nas técnicas empregadas (CHORLEY; DALE, 1972; DELAZARI, 1996).

Até meados da década de 1990, predominava a técnica de fotointerpretação no mapeamento da rede de drenagem a partir de restituição aerofotogramétrica baseada em princípios da estereoscopia (COUTINHO; PETRY; CARDOSO, 2007). Esta técnica permite reconstituir através dos raios de luz capturados em dois momentos diferentes as feições tridimensionais no terreno, que possibilitam a percepção das dimensões de altura, largura e profundidade, auxiliando na delineação da rede de drenagem (COUTINHO; PETRY; CARDOSO, 2007; MIKHAIL; BETHEL; MCGLONE, 2001). Em produtos cartográficos advindos da técnica de fotointerpretação é comum encontrar variações na densidade hidrográfica entre as folhas topográficas. Essas mudanças ocorrem sem a justificativa de alteração na paisagem, sendo isso atribuído à subjetividade no procedimento de fotointerpretação. A FIGURA 4 apresenta o exemplo do mapeamento hidrográfico oficial do Paraná na escala 1:50.000.

FIGURA 4 – Mapeamento oficial do estado do Paraná na escala 1:50.000. Escala aproximada: 1:6.000.000.

FONTE: Souza et al. (2011). Org.: O autor (2019).

No interior do retângulo vermelho na FIGURA 5, notam-se as mudanças súbitas na densidade de drenagem entre as folhas topográficas. Essa variação na densidade de drenagem já foi apontada em outros estudos (MARION; HENDGES; SAMPAIO, 2013; PAZ, 2015; SAMPAIO, 2008; SOUSA; SAMPAIO, 2015), sendo também encontrada em mapeamentos oficiais de outros estados brasileiros (FIGURA 5) elaborados e/ou editados por instituições públicas e privadas.

FIGURA 5 – Redes hidrográficas de folhas topográficas 1:50.000 no Rio Grande do Sul (1) e Rio de Janeiro (2).

FONTE: DSG (1974a, 1974b, 1976a, 1978, 1980a, 1980b, 1980c, 1980d). Org.: O autor (2019).

Embora existam técnicas de restituição aerofotogramétrica que permitam ampliar voos em até 8 vezes (JUBANSKI; ALIXANDRINI; BÄHR, 2009), o ganho de escala não implica num ganho de acurácia para o mapeamento da RD, fato evidenciado na FIGURA 6. Esse problema persiste mesmo com o emprego de imagens orbitais e suborbitais de alta resolução espacial (SAMPAIO, 2008).

FIGURA 6 – Redes hidrográficas de folhas topográficas em diversas escalas.

FONTE: DSG (1976a, 1976b, 1976c, 1976d, 2001, 2003a, 2003b, 2003c), IBGE (1971, 1973, 1976a, 1976b). Org.: O autor (2019).

Segundo Chorley; e Dale (1972), os erros de mapeamento da RD decorrentes da subjetividade do método, independe da experiência do fotointérprete. Para os autores, alguns erros de mapeamento decrescem conforme a experiência do técnico se amplia, já outros persistem mesmo em técnicos com larga experiência.

Outros elementos que podem influenciar o resultado do mapeamento são: diferentes faixas de recobrimento aéreo, coleta de imagens em época de regime
pluviométrico não representativo (muito chuvoso ou muito seco), presença de nuvens, qualidade das imagens, sombreamentos, resolução espacial e densidade da vegetação (FIGURA 7).

FIGURA 7 – Elementos que interferem no mapeamento da rede de drenagem pela fotointerpretação.

FONTE: O autor (2019).

Marion, Hendges e Sampaio (2013) analisaram a acurácia da RD mapeada na escala 1:25.000 para a bacia hidrográfica do Rio Santa Rosa (Francisco Beltrão – PR), por meio de trabalho de campo. Os resultados indicam a completude em torno de 86% na representação dos rios de 1ª ordem. Com método semelhante, Sousa e Sampaio (2015) analisaram a acurácia da RD na escala 1:50.000 da folha topográfica MI 2818-4. Os resultados indicam uma acurácia de 85% nos rios de primeira ordem.

O método mais presente na literatura para extração automática da rede de drenagem é a partir de MDT. O estudo de O'Callaghan e Mark (1984) foi um dos pioneiros nas propostas metodológicas para extração da RD. Esse estudo apresenta a técnica de extração automática a partir da análise digital do relevo com algoritmos de análises hidrológicas.

Na proposta de O'Callaghan e Mark (1984), é definido um limiar a partir do cálculo das áreas de contribuição de fluxo. Assim, todas as células do MDT

(estrutura matricial) que possuírem valores de contribuição acima do limiar, são classificadas como drenagens.

A partir do MDT, é calculado o modelo de direção de fluxo. A partir do modelo de direção de fluxo, é calculado o modelo de acumulação de fluxo. Neste modelo, todas as células recebem um valor correspondente a soma de todas as células que contribuíram para célula analisada (JENSON; DOMINGUE, 1988). O limiar é o valor de acumulação de fluxo mínimo para a classificação dos rios. Por exemplo, se o limiar foi estabelecido em 50, todos os *pixels* que receberam a contribuição de 50 *pixels* ou mais são classificados como drenagens.

Autores como Martz e Garbrecht (1992) e Tribe (1992) levantaram críticas a proposta de O'Callaghan e Mark (1984). Martz e Garbrecht (1992) afirmam que as depressões dos MDT e a aplicação do método em áreas planas podem resultar em RD incoerentes. Tribe (1992) afirma que o método possui várias suposições, sendo a principal que a RD é resultado de uma chuva homogênea em áreas impermeáveis e sem vegetação, o que é incompatível com a realidade.

Quanto às características do método, a primeira questão é a atribuição de um limiar para classificação da RD. Qual a forma de definir esse limiar? As soluções propostas na literatura giram em torno da calibração do limiar a partir de RD já mapeadas pelo processo de fotointerpretação (MORAIS; SALES, 2016). Ou seja, são testados diversos valores de limiar e aquele que mais se aproxima da RD já mapeada, é escolhido.

Um baixo limiar resulta em uma RD mais densa (menos células acumuladas para formar rios), enquanto um alto limiar resulta numa RD menos densa (maior número de células acumuladas para gerar rios), ou seja, o limiar e a densidade de drenagem são inversamente proporcionais.

Para o cálculo da direção de fluxo existem diferentes algoritmos tais como o *Deterministic* 8 - D8 (O'CALLAGHAN; MARK, 1984) e o *Deterministic infinity* - D ∞ ou D Infinito (TARBOTON, 1997). No algoritmo D8, o fluxo da célula é determinado pela direção de declive para um de seus 8 vizinhos. O algoritmo D ∞ determina o fluxo proporcionalmente para as 8 direções a partir do declive, utilizando janela 3x3. Assim, surge o questionamento: qual o algoritmo mais indicado para a extração da RD?

Outra indagação é em relação ao MDT utilizado (BOSQUILIA *et al.*, 2015; DELAZARI, 1996; FERNÁNDEZ, 2011; MARQUES *et al.*, 2011). Considerando que

os MDT podem ter diferentes resoluções espaciais e diversas fontes e formas de processamento (sensores ativos, estereoscopia e interpolação), qual MDT é o mais indicado para extração da RD? A forma de processamento do MDT afeta a RD extraída? A qualidade do MDT afeta a RD extraída?

Como principais problemas associados a técnica de extração automática a partir de MDT, citam-se: diferenças de extensão e comprimento dos rios, sub ou superestimação da quantidade de rios e localização divergente quando comparado uma imagem orbital (FERNÁNDEZ *et al.*, 2013; VALENTE; GOMES, 2005).

A técnica de extração automática a partir de MDT é amplamente utilizada no mapeamento de grandes áreas (bacias, estados, países ou continentes). Entre 2016 e 2017 foi gerada para parte do litoral do estado do Paraná uma nova base cartográfica com a rede de drenagem na escala 1:10.000, disponibilizada pelo então Instituto de Terras, Cartográfia e Geociências do Paraná (ITCG). A partir de MDT gerado por interferometria RADAR e utilizado ferramentas do *software* ArcGIS para extração da rede de drenagem (FIGURA 8).

FIGURA 8 – Comparação de duas redes de drenagem mapeadas na em distintas escalas. A rede de drenagem 1:25.000 obtida pelo processo de restituição aerofotogrametria apresenta maior números de rios que a rede de drenagem na escala 1:10.000, obtida pela extração automática a partir de MDT.

FONTE: ITCG (2016). Org.: O autor (2019). Coordenada: 25°36'7.80"S - 48°46'20.16"O.

A avaliação da qualidade neste projeto (FIGURA 8) foi feita apenas para o MDT e não houve justificativa para o limiar de acumulação de fluxo escolhido.

Quando se compara a nova RD com os mapeamentos existentes na escala 1:25.000, são encontradas divergências. Por análise visual, nota-se que a RD de 1:25.000 possui mais rios mapeados que a RD 1:10.000 (FIGURA 8).

Projetos semelhantes são encontrados na Turquia (OZDEMIR; BIRD, 2009), Itália (COLOMBO *et al.*, 2007), Espanha (GARCIA; CAMARASA, 1999), Índia (KALAIVANAN; GURUGNANAM; ISAI, 2018), China (CHEN *et al.*, 2018), entre outros. No entanto, não se aborda a forma de validação ou verificação da qualidade do mapeamento gerado.

Outra discussão encontrada em trabalhos sobre e extração automática da rede de drenagem a partir de MDT é a utilização de apenas um valor de limiar. Colombo *et al.* (2007) realizou mapeamento da rede de drenagem por extração automática de MDT para a Europa. Para tanto, os autores definiram que o limiar para extração da RD estava relacionado com a paisagem. Assim, foram classificadas unidades de paisagem homogêneas considerando precipitação anual, relevo, embasamento rochoso e solos. Estudo similar foi realizado por Fan *et al.* (2013), ao atribuir diferentes limiares de acumulação de fluxo a diferentes regiões do Brasil considerando características geológicas, declividade média, precipitação média anual e vazões.

Estudos indicaram que a extração da rede de drenagem a partir de dados do projeto SRTM resultaram em valores de acurácia inferiores aos resultados oriundos do processo de fotointerpretação (SAMPAIO, 2008; TOMAZONI *et al.,* 2011).

Segundo a literatura, outros fatores influenciam na gênese e estruturação da rede de drenagem, a citar: relevo, embasamento rochoso, o contexto climático, a vegetação, e fatores antrópicos. Neste sentido, Sampaio (2008), Banon (2013) e Bueno (2016) recomendam que outros fatores participem do processo de extração automática da rede de drenagem, utilizando novas técnicas como árvores de decisão, redes neurais e inteligência artificial.

Relacionados a essa premissa, autores utilizaram características do relevo, porosidade das rochas, volume precipitado e combinações destes fatores em modelos de regressão, árvores de decisão, redes neurais associadas à inteligências artificiais, visando uma extração automática da RD com maior acurácia.

Na tentativa de associar fatores ambientais e suas características a RD enquanto possíveis variáveis auxiliares para o mapeamento da rede de drenagem, cabe destacar o estudo de Sampaio (2008). O autor analisou atributos morfométricos do relevo a partir de MDT interpolado (1:50.000), identificando que a área da bacia, o recuo das curvas de nível e a abertura máxima da bacia foram os parâmetros mais sensíveis a ocorrência de nascentes em bacias de primeira ordem situadas na bacia do rio Benevente (ES).

Banon (2013) apresenta o uso de árvore de decisão e mineração de dados na extração automática da RD. Partindo da problemática de que diferentes padrões geomorfológicos afetam os métodos tradicionais de extração automática, Banon (2013) utiliza árvore de decisão com o algoritmo J48 para extração da RD numa região da Floresta Amazônica. A árvore de decisão foi calibrada com a RD gerada pelo método tradicional a partir do MDT do projeto *Shuttle Radar Topography Mission* (SRTM) com resolução espacial de 90 metros.

O estudo de Bueno (2016) utilizou técnicas de inteligência artificial no processo de extração automática de RD e constatou que quando gerada a partir de análise de atributos morfométricos, geologia, geomorfologia, hidrogeologia e solo apresentou completudede 68%.

Existe também a técnica para mapeamento por morfologia matemática. A partir da análise dos níveis de cinza de uma imagem orbital é identificada a assinatura espectral do elemento água. A partir de classificadores como o *nearest neighbor* ou *máxima verossimilhança* os rios são espacializados. As limitações deste método são pautadas na resolução das imagens orbitais, uma vez que apenas os rios de maior ordem são identificados e representados (FIGURA 9).

FIGURA 9 – Resultado da aplicação de técnicas de morfologia matemática para mapeamento da rede de drenagem. Note que apenas os rios de maior porte são identificados.

FONTE: Silva et al. (2006).

Outra fonte de dados de mapeamentos da rede de drenagem surge nos dados declarados ao Sistema Nacional de Cadastro Ambiental Rural (SICAR). Esse sistema foi criado visando atender a Lei nº 12.651/12, (Novo Código Florestal brasileiro) e consistiu na declaração por parte dos proprietários rurais das áreas de preservação permanentes (APP), reserva legal (RL), remanescente de vegetação nativa, área de uso restrito e limites de propriedade.

Esta declaração pode ser feita pelo proprietário ou por técnico especializado, não havendo padronizado do método para produção dos dados. Na FIGURA 10 é apresentada a rede de drenagem declarada no SICAR referente ao estado do Paraná. Estudos podem ser elaborados visando analisar a qualidade dos dados declarados.

FIGURA 10 – Rede de drenagem no estado do Paraná declaradas ao SICAR.

FONTE: SICAR (2018). Org.: O autor (2019).

2.5 APLICAÇÕES DO MAPEAMENTO DA REDE DE DRENAGEM

Estudos envolvendo a rede hidrográfica contribuem para elucidações de inúmeras questões geomorfológicas, pois a atuação da rede hidrográfica na esculturação da paisagem é um dos processos morfogenéticos mais ativos na terra (CHRISTOFOLETTI, 1969). Assim, Christofoletti (1969) compilou índices e parâmetros morfométricos para análise do relevo, onde 15 destes utilizam a rede de drenagem, por exemplo: Densidade hidrográfica, Densidade de drenagem, Relação de Bifurcação e Textura da topografia.

Estes índices ou parâmetros são largamente utilizados por pesquisadores. Como exemplo, a Densidade hidrográfica (Dh) pode indica a resposta da bacia aos processos de escoamento superficial e a capacidade de surgimento de novos canais (SOUZA, 2005). Reckziegel e Robaina (2006) afirmam que a rede de drenagem e os índices morfométricos do relevo contribuem tanto para estudos ambientais (compreensão de processos naturais) quanto para a elaboração de planos de gestão (uso racional do meio ambiente).

Dados da rede de drenagem também são utilizados para delimitação das Áreas de Preservação Permanentes (APP). Em ambiente de Sistemas de Informações Geográficas (SIG), são delimitadas as APP conforme a lei nº 12.651, de 25 de maio de 2012 (BRASIL, 2012).

Hiruma e Ponçano (1994), em aplicações da RD, analisaram os padrões na identificação de latossolos e rupturas de declive numa área entre o nordeste de São Paulo e sul de Minas Gerais. Demattê e Demétrio (1998) realizam um estudo semelhante no Paraná, analisando o potencial da densidade da RD na diferenciação de solos oriundos de rochas eruptivas básicas e ácidas.

Os padrões de drenagem também são utilizados pela Geologia na identificação de unidades litológicas. A Fotogeologia é um ramo da Geologia que se dedica a análise e extração de informações geológicas de imagens orbitais e suborbitais (ARCANJO, 2011). Na Fotogeologia a alteração de padrões e densidade de drenagem indica mudança de substrato (FIGURA 11 – lado esquerdo). Além disso, o alinhamento de elementos da RD (nascentes, cotovelo, ligamento e seguimento) pode indicar controles estruturais (FIGURA 11 – lado direito) (ARCANJO, 2011; SOARES; FIORI, 1978).

FIGURA 11 – A variação da densidade de drenagem no centro da figura indica alteração litológica. Alinhamento de elementos de nascentes (A), ligamentos (B) e cotovelos (C) pode indicar controle estrutural.

FONTE: Arcanjo (2011). Org.: O autor (2019).

Estudos voltados a neotectônica também fazem uso dos mapas de RD. Anomalias nos padrões de drenagem como a desproporcionalidade nos rios em uma vertente, capturas de drenagem e basculamentos de bacias hidrográficas indicam fenômenos ligados a neotectônica (HOWARD, 1967; JAIN, 1984).

A mensuração dos efeitos das mudanças climáticas sobre os recursos hídricos também utiliza de mapas de RD para análises têmporo-espaciais. Extrapolando para as ciências biológicas, a localização dos rios de primeira ordem é importante para o monitoramento de assembleias de invertebrados.

Diversas são as aplicações dos mapas da RD em pesquisas científicas e trabalhos técnicos. Assim, fica evidente que a precisão dos resultados encontrados nestas análises fica condicionada a qualidade do mapeamento, conforme já apontado por Chorley e Dale (1972) e Sampaio (2008). No próximo tópico serão discutidas as formas de mapeamento da rede de drenagem e quais as limitações associadas.

3 ANÁLISE DIGITAL DO RELEVO

Entre as formas de análise do relevo, a geomorfometria se dedica a quantificar e parametrizar a superfície terrestre (CHORLEY, 1957; PIKE, 2000). Com o emprego de técnicas de SIG em modelos matriciais de representação da superfície terrestre é possível a extração de informações quantitativas do relevo

(atributos e parâmetros) que subsidiam análises dentro das ciências da terra (SILVA; OKA-FIORI; SILVEIRA, 2017).

Atendendo ao foco deste trabalho, serão apresentados e discutidos termos e conceituações para modelos matriciais de representação da superfície terrestre, formas de obtenção e processamento de dados para geração desses produtos, parâmetros geomorfométricos que podem ser extraídos desses modelos e métodos estatísticos para sua análise.

3.1 DEFINIÇÕES

No modelo de dados espaciais apresentado por Borges, Davis Júnior; Laender (2005) e DSG (2015), os modelos digitais de representação do terreno se encaixam na categoria de geo-campos, uma vez que representam fenômeno que ocorre de forma contínua (terreno).

São encontrados diversos termos para se referir a esses modelos: modelo digital do terreno (MDT), modelo digital de elevação (MDE), *Digital Elevation Model* (DEM), modelo digital altimétrico (MDA), modelo numérico do terreno (MNT), modelo digital de superfície (MDS) dentre outros (SOPCHAKI, 2016). Embora esses modelos possam apresentar estrutura vetorial, a maior parte deles se refere a matrizes com valores de altitude (Z) em coordenadas (X e Y) (FIGURA 12).

FIGURA 12 – Exemplo de modelos matriciais de representação da superfície terrestre.

Para Reichel *et al.* (2007), MDA é "representação digital da superfície do terreno, legível em computador". O termo MDT é definido por Chaplot (2005) como a

FONTE: O autor (2019).

representação numérica da topografia com matrizes de células de igual tamanho contendo valores de elevação. Corroborando com esta definição, Raaflaub e Collins (2006) afirmam que MDT é a representação em formato digitais da topografia da terra.

A Especificação Técnica para Produtos de Conjunto de Dados Geoespaciais (ET-PCDG) (DSG, 2014) apresenta como definição para modelo digital de elevação (MDE): "produto cartográfico obtido a partir de um modelo matemático que representa um fenômeno, de forma contínua, a partir de dados adequadamente estruturados e amostrados do mundo real. Ainda, a norma divide o termo MDE em duas formas de representação: MDT (representação solo exposto) e MDS (representação solo exposto + acidentes naturais e artificiais).

Sopchaki (2016) afirma que há incongruências nos termos/definições para modelos digitais de representação do terreno no meio acadêmico. Contudo, o autor afirma que termos e conceitos apresentados por Mikhail *et al.* (1978), Collins e Moon (1981), Assad e Sano (1998), Wise (2000) e Podobnikar (2005) convergem para o sentido que o MDE se refere a modelo de altitude do terreno e todos os objetos nele presente (árvores, casas, carros, entre outros), enquanto que o MDT é um modelo com valores de elevação do terreno.

No meio comercial, Sopchaki (2016) afirma que, após consultar portfólio de empresas, há concordância entre os termos: MDT é o produto gerado após aplicação de técnicas de filtragem de pontos referentes a vegetação e/ou edificações do MDE. Assim, na discussão a seguir, será utilizado o termo MDT para se referir a modelos digitais que representam a superfície terrestre, visando representar valores de elevação da superfície topográfica terrestre.

3.2 FONTE DE DADOS E PROCESSAMENTO

Os MDT podem ser gerados pela interpolação dados altimétricos obtidos por métodos geodésicos ou topográficos utilizando algoritmos como *Inverse Distance Weighting* (IDW), *Kriging, Nearest Neighbor* (vizinho mais próximo) ou ANUDEM. MDT também podem ser gerados por dados coletados por sensores passivos e ativos.

Com o advento do satélite SPOT 1 em 1985, teve início a obtenção de pares estereoscópios de imagens orbitais, sendo possível a geração de MDT (COURTOIS;

TRAIZET, 1986; SANTOS; FRANCISCO, 2011). Outro exemplo largamente difundido são os dados da missão ASTER, em funcionamento desde 1999 a bordo do satélite Terra (EOSAM1) (ABRAMS, 2000). Os MDT gerados pelo sensor ASTER foram disponibilizados com resolução espacial de 30 metros (TACHIKAWA *et al.*, 2011).

A interferometria de radar utiliza o Radar de Abertura Sintética (*Synthetic Aperture Radar* - SAR), onde o imageamento é ativo, emitindo ondas *Radio Detection And Ranging* (RADAR) e registra as características de retorno, a partir disso pode-se obter informações do terreno (MELGAÇO; FILHO; STEINMAYER, 2005; ROSA; FERNANDES, 2011; VIOLANTE-CARVALHO et al., 2010).

O Projeto Shuttle Radar Topography Mission (SRTM) utilizou técnicas de interferometria de radar (FARR *et al.*, 2007). O projeto foi liderado pela National Aeronautics and Space Administration (NASA) e a National Geospatial Intelligence Agency (NGA). O projeto foi executado em 2000 e teve como objetivo imagear grande parte da superfície terrestre em alto nível de detalhamento, através do radar Shuttle acoplado no ônibus espacial Endeavour (FARR *et al.*, 2007).

Inicialmente, os MDT disponibilizados para o território brasileiro tinham a resolução espacial de 3 segundos de arco (aproximadamente 90 m) (JARVIS *et al.,* 2008; YANG; MENG; ZHANG, 2011). Com o projeto TOPODATA foram disponibilizados para o Brasil MDT com 30 metros de resolução espacial. Estes MDT foram elaborados com dados SRTM de 90 metros de resolução espacial sendo aplicados processamentos com algoritmos de *Kriging* (VALERIANO; ROSSETTI, 2010, 2012). A partir de 2014, foi disponibilizado pela NASA dados do projeto SRTM da banda X, na resolução espacial de 1 segundo de arco (aproximadamente 30 m).

Outros MDT globais surgiram e foram disponibilizados gratuitamente, como o ASTER GDEM, o *Phased Array type L-band Synthetic Aperture Radar* (PALSAR) do sensor *Advanced Land Observing Satellite* (ALOS) e mais recentemente o *TerraSAR-X add-on for Digital Elevation Measurement* (TanDEM-X).

O MDT ASTER GDEM foi gerado a partir de dados de elevação obtidos por estereoscopia de imagens do infravermelho próximo de sensores a bordo do satélite terra (TACHIKAWA *et al.,* 2011). Possui resolução espacial de aproximadamente 30 m e é disponibilizado no portal da *EarthExplorer*, vinculado a *United States Geological Survey* (USGS).

O MDT ALOS PALSAR foi gerado a partir de dados coletados pela tecnologia SAR através da banda L. Possui resolução espacial de aproximadamente 12,5 m e é disponibilizado no portal da *Japan Aerospace Exploration Agency* (JAXA).

O MDT TanDEM-X foi gerado por interferometria SAR na banda X, obtido por dois satélites com órbita próxima. O MDT disponibilizado gratuitamente possui resolução espacial de 3 segundos de arco (aproximadamente 90 m) no geoportal do Centro Aeroespacial Alemão (DLR - *Deutschen Zentrums für Luft- und Raumfahrt*).

Além dos MDT globais, houve crescimento dos sistemas de aquisição de dados altimétricos de alta resolução espacial, como nos levantamentos *Light Detection And Ranging* (LIDAR). Exemplos de MDT de alta resolução espacial são distribuídos gratuitamente em serviços *web* como em https://opentopography.org/. Há também MDT de alta resolução espacial gerados por aerolevantamentos com aeronaves remotamente pilotadas (RPA, do inglês *Remotely Piloted Aircraft*), ou conhecido pelo termo popular: Drones.

Os aerolevantamentos com RPA, utilizando câmeras RBG, geram MDT a partir de técnicas de estereoscopia. Para o processamento de dados coletados com RPA, são utilizados *softwares* proprietários como o *Agisoft PhotoScan* (http://www.agisoft.com/) ou *Pix4D* (https://pix4d.com/) ou *softwares* gratuitos como *Opendronemap* (http://opendronemap.github.io/odm/), *DroneMapper RAPID* (https://dronemapper.com), Ecosynth (http://ecosynth.org/) e *VisualSFM* (http://ccwu.me/vSfM/).

São utilizados nos processamentos desses dados algoritmos de "estrutura a partir de movimento" (do inglês, *Structure-from-Motion* – SfM), que permitem a reconstrução tridimensional da área de estudo em alta resolução espacial (centímetros), gerando nuvens de pontos (WESTOBY *et al.*, 2012). A nuvem de pontos contém o sistema de coordenadas X e Y (latitude e longitude) e Z (altitude).

O processamento se inicia com o alinhamento das imagens adquiridas com a RPA (FIGURA 13). Os algoritmos SfM auxiliam no alinhamento e permitem a extração de pontos correlatos (homólogos – FIGURA 14) mas imagens coletadas, gerando a nuvem de pontos, cuja densidade varia conforme parâmetros definidos pelo usuário ou pelas limitações de *hardware* (podendo ser minimizado com processamento em nuvem como o ofertado pelo *Pix4D*). A partir dos pontos, que possuem informação de coordenadas e elevação, são geradas ortofotos e MDT.

FIGURA 13 – Alinhamento das imagens coletadas pela RPA carregadas no *software* Agisoft PhotoScan.

FONTE: O autor (2019). Coordenada: 25°18'34.94"S - 54° 9'14.83"O.

FIGURA 14 – A: Nuvem de pontos gerada no *software* Agisoft PhotoScan. B: Foco no retângulo vermelho em A para visualização dos pontos da nuvem.

FONTE: O autor (2019).: 25°18'34.94"S - 54° 9'14.83"O.

Para geração do MDT, a nuvem de pontos passar por processos de filtragem, visando retirar pontos com valores de elevação referentes a copa de árvores, casas, carros, entre outros elementos sobre o terreno (FIGURA 15). Os algoritmos de filtragem utilizam critérios como distância, amplitude, curvatura e declividade, e podem aplicados diretamente na nuvem de pontos ou converterem a mesma em estruturas matriciais (SITHOLE; VOSSELMAN, 2004).

FIGURA 15 - Exemplo de filtragem da nuvem de pontos no Agisoft PhotoScan.

FONTE: O autor (2019).

Decorrida esta etapa, a nuvem de pontos pode apresentar lacunas ("buracos" ou vazios amostrais). Na geração do MDT são aplicados métodos para estimar valores para essas áreas, os interpoladores (HERITAGE *et al.*, 2009). São exemplos o *Triangular Irregular Network* (TIN), Kriging e *Inverse Distance Weighted* (IDW - Ponderação do Inverso da Distância, *Spline* (Superfície de mínima curvatura).

Hengl; Evan (2009), com foco na geomorfometria, classificam os interpoladores de acordo com efeito de suavização, efeito de proximidade (global – função para toda área de estudo; local – aplicação em subconjuntos amostrais) e pressupostos (determinísticos – certeza de ocorrência; estocástico – probabilidade de ocorrência). Silva; Oka-Fiori; Silveira (2017) compilaram um quadro com os principais interpoladores utilizados, com base nos estudos de Valeriano (2008), Hengl; Evan (2009) e ESRI (2010), sendo apresentado alguns no QUADRO 2.

interpolação	Suavização	Proximidade	Pressupostos	Entrada	Forma interpolação
Vizinho mais próximo	Baixo	Local	Determinístico	Raio de pesquisa	Atribui valor a um nó desconhecido a partir do valor do ponto mais próximo
Inverso ponderado da distância (IDW)	Baixo	Local	Determinístico	Ponderação e raio de pesquisa	Baseia-se em coeficientes de ponderação que controlam a influência de pontos amostrais sobre pontos desconhecidos
Rede Irregular de triangulação (TIN)	Baixo	Local	Determinístico	Raio de pesquisa	São inseridos círculos entorno de pontos amostrais, cujas intersecções são conectadas por rede de triângulos
ANUDEM	Alto	Local/Global	Determinístico	Fator de suavização, direção de fluxo e raio de pesquisa	Agrega dados de elevação com os da rede de drenagem para produzir superfícies hidrologicamente consistentes
Krigagem	Médio	Local/Global	Estocástico	Variograma e raio de pesquisa	Analisa pontos de elevação dispersos para determinar dependência espacial, escala de variação e grau de aleatoriedade das amostras

QUADRO 2 – Principais interpoladores para geração de MDT.

FONTE: ESRI (2010), Hengl e Evans (2009), Valeriano (2008). Org.: Silva, Oka-Fiori e Silveira (2017).

3.3 CÁLCULOS DE PARÂMETROS GEOMORFOMÉTRICOS DO RELEVO

Olaya (2009) classifica parâmetros geomorfométricos do relevo em dois grupos: locais e regionais. O grupo dos parâmetros locais pode ser geométrico, baseando-se nas propriedades matemáticas do terreno calculadas em primeira ou segunda derivada, ou estatísticos, envolvendo análise de vizinhança (janelas amostrais fixa ou móveis) com operações matemáticas como média, mediana, amplitude e fractais. O grupo dos parâmetros regionais se refere a análise conectividade de fluxos (relação de *pixels*) na investigação de propriedades hidrológicas da área de estudo. Silva; Oka-Fiori; Silveira (2017) compilaram um quadro com parâmetros geomorfométricos básicos citados nos estudos de Wilson; Gallant (2000) Valeriano (2008) e Olaya (2009) (QUADRO 3).

	1	
Parâmetro	Тіро	Características principais
Declividade	Local/Primário	Indica o ângulo formado entre o plano horizontal e à tangente de uma superfície.
Relevo	Local/Primário	Modelagem tridimensional da topografia que melhora a aparência visual do relevo,
Sombreado	Loodan minuno	tornando-o mais claro e intuitivo à percepção humana
Perfil de	Local/Drimário	Refere-se à variação convexo-côncava das formas de vertentes quando analisadas
curvatura	Local/Filliano	em perfil.
Plano de	Local/Primário	Refere-se à divergência ou convergência de fluxos de matéria sobre as vertentes,
curvatura	Local/Filliano	quando analisadas horizontalmente.
Hinsometria	Local/Primário	Representam as variações de altitude de uma superfície mediante classes ou
ripsometria	Localit minano	intervalos, diferenciados por gradação de cores.
Comprimento	Regional/Secundário	Determina a velocidade do fluxo e grau de confluência do escoamento superficial
de rampa	regional/decundant	Determina a velocidade do nuxo e grad de comucineia do escoamento superierai.
Acumulação	Regional/Secundário	Considera toda área capaz de fornecer escoamento a um determinado ponto do
de fluxo	Regional/Securidano	terreno.
Canais de		l Itilizados como baso para delimitação do basias hidrográficas o discretização dos
drenagem e	Regional/Secundário	
divisores		

QUADRO 3 – Parâmetros geomorfométricos básicos.

FONTE: Olaya (2009), Valeriano (2008), Wilson e Gallant (2000). Adaptador de: Silva, Oka-Fiori e Silveira (2017).

Além de tais parâmetros, com o MDT podem ser calculadas estatísticas descritivas, como, por exemplo, cota máxima, média e mínima, amplitude altimétrica e desvio padrão. Demais parâmetros contam com propostas da literatura acadêmica e são implementadas em *softwares* de SIG como *ArcGIS*[®], *QGIS e SAGA GIS*. Horn (1981) e Berry (1993) apresentam propostas para cálculo da declividade. Zevenbergen; Thorne (1987) e Shary (1991) apresentam propostas para o cálculo do plano e perfil de curvatura de vertentes. O'Callaghan; Mark (1984) e Tarboton (1997) apresentam propostas para cálculo da direção de fluxo.

Também foram desenvolvidos parâmetros baseados em índices, que são aplicados em várias finalidades. São exemplos o Índice de Posição Topográfica (IPT) (WEISS, 2001), Índice Topográfico de Umidade (ITU) (KIRKBY; BEVEN, 1979; TARBOTON, 1997), Índice de Corrente de Máximo Fluxo (ICMF) (MOORE; GRAYSON; LADSON, 1991) e Índice de Concentração de Rugosidade (ICR) (SAMPAIO; AUGUSTIN, 2014b).

A extração de parâmetros pode ser aplicada em diversas áreas do conhecimento, a citar: estudos de fragilidade ambiental (MARION; MELLO FILHO; SILVA, 2010), estudos pedológicos (SIRTOLI *et al.*, 2008), mapeamentos de solos (ARRUDA; DEMATTÊ; SILVA CHAGAS, 2013), mapeamentos geomorfológicos (SILVEIRA et al., 2012), oceanografia (PEREIRA; BONETTI FILHO, 2018), análises de paisagem e ecossistemas (FLORINSKY, 1998), desastres naturais (SAHA; GUPTA; ARORA, 2002) e exploração espacial (DORRER; ZHOU, 1998).

3.4 MÉTODOS ESTATÍSTICOS ENVOLVENDO ANÁLISE DIGITAL DO RELEVO

Com a extração de parâmetros geomorfométricos, métodos estatísticos podem ser aplicados visando análises espaciais de correlação, agrupamentos, ou diferenciação de grupos. Rogerson (2012) afirma que métodos estatísticos permitem análises de fenômenos geográficos e possibilitam a produção de novas compreensões.

As análises estatísticas podem ser divididas em estatística descritiva e estatística inferencial. A estatística descritiva envolve a organização, resumo e apresentação dos dados, utilizando tabelas, gráficos, médias, percentuais, desvio padrão, entre outros. A estatística inferencial utiliza amostras para descrever e fazer inferências sobre uma população.

Na estatística inferencial são utilizados testes de hipótese, os quais testam suposições ou afirmações. Os testes de hipótese paramétricos baseiam-se em medidas intervalares da variável dependente (grupo) e demandam três pré-requisitos: distribuição normal, homogeneidade dos dados e variáveis intervalares e contínuas. Quando não atendidos os pré-requisitos, podem ser aplicados testes não paramétricos.

A distribuição normal (ou distribuição Gaussiana) é observada quando a disposição dos dados em um histograma apresenta a forma de um sino. Os valores se concentram próximos a média, com dispersão simetricamente a partir desse ponto central. A análise da normalidade pode ser feita com a aplicação do teste Shapiro-Wilk (SHAPIRO; WILK, 1965).

As amostras a serem aplicadas em testes paramétrico devem possuir variância ou variabilidade dos dados homogênea, permitindo a comparação entre grupos. A análise da homogeneidade das amostras pode ser analisada pelo teste de Levene (GLASS, 1966).

Métodos de correlação são utilizados para mensurar a relação entre duas variáveis contínuas. São exemplos os testes de correlação linear de *Pearson*, correlação Pp (Rô) *Spearman* e correlação Tau-B de Kendall. Thompson; Bell; Butler (2001) utilizaram o teste não paramétrico de correlação Pp *Spearman* para analisar o efeito da resolução do MDT na extração de parâmetros geomorfométricos do relevo na porção oeste de Minnesota (EUA). Sousa *et al.* (2016) utilizaram o teste paramétrico de correlação para verificar a relação entre o relevo

(representado pelo índice de concentração de rugosidade global) e a precipitação no estado do Paraná.

O teste *t* e o teste de Análise de Variância de uma via (ANOVA) são testes paramétricos utilizados quando se deseja verificar se há diferenças entre as médias de determinada variável em dois grupos (teste *t*) ou dois ou mais grupos (teste ANOVA). Brardinoni; Slaymaker; Hassan (2003) utilizaram o teste de ANOVA de uma via para comparar inventários de deslizamento de terra elaborados com levantamentos de campo e análise de fotografias aéreas na região oeste de Vancouver (Canadá). Molotch *et al.* (2005) utilizam teste ANOVA de uma via para comparar a distribuição espacial de neve em bacias hidrográficas alpinas em Sierra Nevada (Califórnia – EUA).

Quando os requisitos do teste *t* ou ANOVA não são atendidos, é possível aplicar testes não-paramétricos como o teste de Wilcoxon-Mann-Whitney ou o teste de Kruskal-Wallis. O primeiro é utilizado em duas populações enquanto que o segundo pode comparar três ou mais. São usados para testar hipóteses nulas considerando que as funções de distribuição são iguais contra a hipótese alternativa.

Sliva; Williams (2001) utilizaram o teste de Kruskal – Wallis para análise de correlação entre a qualidade da água e características da paisagem em bacias hidrográficas no sul de Ontário (Canadá). Naud *et al.* (2003) utilizam teste Kruskal – Wallis para verificar a relação da distribuição da baleia-anã (*Balaenoptera acutorostrata*) com características do fundo do mar (profundidade máxima, topografia e geomorfologia) nas Ilhas Mingan (Canadá).

Com grande volume de dados, podem ser aplicadas técnicas de análise estatística multivariada, que permitem simplificar e organizar o montante de dados. Testes como a Análise de Componentes Principais (ACP) (MATHER; DOORNKAMP, 1970) são aplicadas para a diminuição da redundância de dados, concentrando as principais informações em poucos componentes (SODRÉ *et al.*, 2007).

Sodré *et al.* (2007) utilizaram análise multivariada de ACP para classificar grupos de bacias hidrográficas de primeira, segunda e terceira quanto a parâmetros geomorfométricos do relevo, ordem na margem direita do alto São Francisco (Minas Gerais). Oliveira *et al.* (2007) aplicaram análise multivariada de ACP em bacias de hidrográficas de primeira, segunda e terceira ordem na região serrana do Rio de Janeiro, visando agrupar bacias com padrões morfológicos semelhantes.

4 PROCEDIMENTOS METODOLÓGICOS

A sequência dos procedimentos metodológicos foi dividida em duas etapas principais. A fim de sintetizar graficamente os procedimentos metodológicos adotados, elaborou-se a FIGURA 16, que permite visualizar a sequência de passos que foram seguidos na execução desta pesquisa.

FIGURA 16 - Síntese dos procedimentos metodológicos.

4.1 SELEÇÃO DA ÁREA DE ESTUDO

A presente dissertação se desenvolveu no contexto do projeto de pesquisa "Mapeamento da rede de drenagem: avaliação da acurácia da representação cartográfica da rede de drenagem no estado do Paraná" no processo n.º 421960/2016-7, fomentado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e executado pelo Laboratório de Análise de Padrões Espaciais e Cartografia Temática (LAPE-CT).

As características do projeto de pesquisa influenciaram na seleção da área de estudo desta dissertação, sendo: área de estudo no Paraná, área abrangida por uma folha topográfica na articulação 1:50.000, área inserida em um dos contextos morfoesculturais do Paraná, área que, do ponto de vista regional, possua

FONTE: O autor (2019).

características fisiográficas homogêneas e área com intersecções de vias de acesso rurais com rios de primeira ordem para realização de trabalho de campo.

Neste sentido, para conciliar as demandas de amostragem do projeto de pesquisa com a presente dissertação, a seleção da área de estudo foi focada no oeste paranaense. O oeste paranaense está inserido no Terceiro Planalto Paranaense (MAACK, 1981). A região possui clima do tipo Cfa (Clima Subtropical) (CAVIGLIONE *et al.,* 2000). O período mais úmido ocorre nos meses de novembro, dezembro, janeiro e fevereiro, enquanto que o período mais seco ocorre nos meses de maio, junho e julho (MELLO; SAMPAIO, 2017).

A partir do recorte regional e de cruzamentos entre a Base hidrográfica oficial do Paraná (INAPAR, 2011) e as vias de acesso disponibilizadas pelo *Open Street Maps* e pela camada hibrida (imagem orbital + *basemap*) do acervo *Google Earth*, foi selecionada a área abrangida pela folha topográfica Medianeira, código MI 2832-4 e SG-21-X-D-III-4.

A área está inserida parcialmente nos municípios de Medianeira, São Miguel do Iguaçu, Matelândia e Serranópolis do Iguaçu, todos no Paraná (FIGURA 17 e FIGURA 18). O acesso à área se dá pela BR 277, PR 495 e PR 497, pelas cidades de Medianeira, São Miguel do Iguaçu e Serranópolis do Iguaçu. Ao sul da área de estudo, localiza-se parte do Parque Nacional do Iguaçu e rio Iguaçu.

FIGURA 17 – Localização da área de estudo no Paraná.

FONTE: O autor (2019).

FIGURA 18 – Área de estudo abrangida pela Folha Medianeira.

FONTE: O autor (2019).

De acordo com o modelo de precipitação elaborado pelo LAPE-CT, a área de estudo apresenta uma média de precipitação anual de 1820 mm (MELLO; SAMPAIO, 2017). A área da folha Medianeira está inserida no Grupo São Bento – Formação Serra Geral. Este grupo é composto por derrames basálticos, representados por basaltos amigdaloidais, basaltos compactos e basaltos

vesiculares (MINEROPAR, 2001). Ainda, na intercalação entre dois derrames podese encontrar material sedimentar (arenitos e siltitos) (MINEROPAR, 2001).

Segundo outro levantamento publicado pela MINEROPAR (2013), na escala 1:250.000, as unidades litoestratigráficas da área de estudo se dividem em duas formações: Formação Barração e Formação Cascavel. Nas proximidades da cidade de Medianeira, encontra-se a Formação Barração, com o membro Flor da Serra do Sul, descrito como Derrames tabulares de ferro-basalto roxo-esverdeado com entablamento em cunha (MINEROPAR, 2013).

Além da Formação Barracão, a porção norte conta com membros da Formação Cascavel: Membro Toledo e Membro Santa Quitéria. A primeira é marcada por derrames tabulares de ferro-basalto cinza-arroxeado com entablamento em cunha enquanto que a segunda é composta por intercalação de derrames lobados de basalto vesicular (MINEROPAR, 2013). Na porção sul da área de estudo encontra-se o Membro Foz do Iguaçu que apresenta lobos tabulares de basalto cinza intercalados a níveis de hidrotufo (MINEROPAR, 2013).

Quanto as formas de relevo, são encontrados topos aplainados, vertentes convexas e vales em "V" abertos (SANTOS *et al.*, 2006). Observando o uso e cobertura da terra, a paisagem é marcada por áreas de atividades agrícolas, agropecuárias e fragmentos de vegetação restritos às matas ciliares e áreas de reserva legal (QUADRO 4 e QUADRO 5).

QUADRO 4 – Paisagens encontradas na área de estudo.

FONTE: O autor (2019).

QUADRO 5 - Paisagens encontradas na área de estudo.

FONTE: O autor (2019).

4.2 ORGANIZAÇÃO DA BASE DE DADOS

Foram adquiridos dados secundários geoespaciais vetoriais em formato *shapefile* e dados geoespaciais matriciais em formato *geotiff* referentes à área de estudo selecionada. A lista dos dados geoespaciais se encontra descrita no QUADRO 6. Os *softwares* utilizados, por sua vez, são apresentados no QUADRO 7. Os dados geoespaciais coletados foram recortados para a área de estudo pela ferramenta recortar do QGIS 2.18.19. O sistema projetivo foi padronizado na projeção UTM – Fuso 21S (EPSG: 31981).

	Dados geoespaciais	Resolução/Escala	Fonte
	Folha topográfica área de estudo	1:50.000	IBGE (1995)
Matricial	Imagens acervo Google Earth via WMS	-	Google
	Imagens acervo Bing via WMS	-	Bing
	Dados SRTM X	30 metros	USGS
	Base hidrográfica oficial do Paraná	1:50.000	INAPAR (2011)
	Vias de acesso rodoviário	-	Open Street Maps
Vetorial	Curvas de nível	1:50.000	ITCG
	Pontos cotados	1:50.000	ITCG
	Dados SICAR	-	SICAR

QUADRO 6 – Dados geoespaciais utilizados na pesquisa.

FONTE: O autor (2019).

Software	Versão	Aplicação
ArcGIS – módulo	10.1	Criação de layouts e geração dos MDT a partir dos
ArcMap e ArcScene		aerolevantamentos via krigagem
SAGA GIS	2.3.2	Extração de parâmetros geomorfométricos a partir dos MDT
		gerados
OGIS	2.18.19	Automação da compilação dos parâmetros geomorfométricos para
0010		planilhas eletrônicas
Global Manner	18.0	Aquisição de dados via web map server (WMS) e conversão do
		formato de arquivos vetoriais e matriciais
		Processamento de imagens coletadas pela Aeronave
Agisoft PhotoScan	1.2.4	Remotamente Pilotada (RPA) durante os levantamentos de campo
		para geração de ortofotos e modelos digitais do terreno
		Operações de estatística descritiva e estatística inferencial com o
IBM SPSS Statistics	25	pacote de dados dos parâmetros geomorfométricos das bacias de
		primeira ordem amostrais
PAleontological	3 22	Operações de estatística
STatistics – PAST	3.22	Operações de estatística

QUADRO 7 - Softwares utilizados na pesquisa.

FONTE: O autor (2019).

4.3 LEVANTAMENTO DE CAMPO

Para o planejamento do trabalho de campo foram consultadas pelo *plugin OpenLayers* no *software* QGIS 2.18.19 imagens do acervo *Google Earth* e do acervo *Bing Imagens*, de diversas datas. Com as folhas topográficas, curvas de nível, pontos cotados e rede de drenagem (hierarquizada pelo método de Strahler (1957)) foi realizado o inventário das bacias de primeira ordem (FIGURA 19).

FONTE: O autor (2019).

A nomenclatura utilizada, bacia de primeira ordem, se refere a classificação proposta por Strahler (1952). O modelo de Strahler descreve a hierarquização dos canais de drenagem. O canal de primeira ordem de Strahler se refere a uma única calha, onde o fluxo de origina de uma nascente. Assim, este conceito é extrapolado para a área de drenagem onde o referido canal se insere, sendo classificada como bacia de primeira ordem. Como existem canais com fluxo perene e fluxo intermitente, classifica-se neste trabalho as bacias de drenagem como de bacia de primeira ordem perene e bacia de primeira ordem intermitente. Extrapolações semelhantes são utilizadas em diversos estudos (BUENO, 2016; FARIA, 1996; PAZ, 2015; SAMPAIO, 2008; SODRÉ *et al.*, 2007; SOUSA; SAMPAIO, 2018, 2015). Durante o texto, o termo bacia de primeira ordem será referido pela sigla BPO.

Com o objetivo de otimizar o trabalho de campo, foram selecionadas apenas as bacias de primeira ordem com interceptação de acessos viários (rodovias, ruas, estradas vicinais, entre outros) o mais próximo possível de sua foz (FIGURA 20). Esse procedimento permitiu a geração da camada de pontos a serem visitados em campo.

FIGURA 20 – A figura A indica ponto de campo onde não é possível determinar a perenidade do rio mapeado. Na figura B, o regime do rio é mais facilmente identificado, tendo em vista a proximidade do cruzamento da via de acesso com a foz do rio(ponto indicado em verde).

FONTE: Acervo Google Earth (2016). Org.: O autor (2019). Coordenada: A – 22°48'45.69"S - 52°36'5.38"O. B – 22°45'52.09"S - 52°33'49.93"O.

A FIGURA 21 se refere ao gráfico de volume precipitado entre 16/04/2018 e 14/05/2018, sendo os dados obtidos no sistema de informações hidrológicos do Instituto das Águas do Paraná (INAPAR). Não foram registrados eventos de

precipitação em 18 dias antes no início do campo, sendo que na véspera (06/05/2018) foi registrado 1,9 mm e no último dia de campo, 16,8 mm.

FONTE: INAPAR (2018). Org.: O autor (2019).

O levantamento de campo contribuiu para identificação das BPO de rios perenes e rios intermitentes. Quando visitado o ponto pré-definido, se o rio apresentasse vazão, este era registrado como perene. Se fosse encontrado apenas o canal de drenagem seco, este era marcado como intermitente.

Durante o trabalho de campo (agosto de 2018), foram visitados os pontos de campo com auxílio do aplicativo *OruxMaps*. O aplicativo permite carregar camadas em formato *Keyhole Markup Language* (KML), visualizar posição por meio do *Global Navigation Satellite System* (GNSS) GPS e GLONASS e efetuar o *download* de imagens orbitais híbridas do acervo *Google Earth* (imagem orbital + *basemap*) para uso em modo *off-line*.

Em campo foi verificada a existência ou não de rios perenes. Tal registo foi realizado no aplicativo *OruxMaps* e em cadernetas de campo com auxílio de aparelho de navegação *Garmin Etrex* 10. Além deste levantamento, foram realizados aerolevantamentos com RPA para geração de ortomosaicos e MDT. A codificação dos pontos de campo seguiu a proposta de (SAMPAIO, 2008), é ilustrada no QUADRO 8.

Código	Significado
00	Rio 1ª ordem não existente em campo e não mapeado
01	Rio 1ª ordem não existente em campo e mapeado
10	Rio 1ª ordem existente em campo e não mapeado
11	Rio 1ª ordem existente em campo e mapeado

QUADRO 8 – Codificação dos pontos de campo coletados no aplicativo *OruxMaps* e na caderneta de campo.

FONTE: Sampaio (2008). Adaptação: O autor (2019).

4.4 CARACTERIZAÇÃO DA REDE DE DRENAGEM

Foram consultadas as bacias hidrográficas na Base hidrográfica oficial do Paraná, por meio das ottobacias de nível 6. A rede de drenagem da na Base hidrográfica oficial do Paraná foi hierarquizada pelo método de Strahler (1952).

A declividade foi gerada a partir do MDT SRTM X, com 30 metros de resolução espacial, pela ferramenta *slope* do ArcGIS. A densidade de drenagem foi obtida pela ferramenta *Line Density* do ArcGIS, considerando a distância média de 330 metros da rede de drenagem, obtida pela ferramenta *Average Nearest Neighbor* do ArcGIS.

Os dados coletados em campo foram comparados com a rede de drenagem da Base hidrográfica oficial do Paraná, com a rede de drenagem das folhas topográfica 1:25.000 e com dados do SICAR. Também foram gerados perfis longitudinais dos rios de primeira ordem validados em campo a com MDT gerado a partir de aerolevantamento com as RPA, pela ferramenta *Profile Graph* do ArcGIS.

4.5 GERAÇÃO DE MDT COM RPA

Durante o trabalho de campo, foram realizados aerolevantamentos para obtenção de MDT. Foram utilizadas duas RPAs: modelos *Phantom 3 Advanced e Phantom 4 Pro* (FIGURA 22). Ambos os aparelhos foram cedidos pelo Laboratório de Análises de Padrões Espaciais e Cartografia Temática (LAPE-CT), vinculado ao departamento de Geografia da Universidade Federal do Paraná (UFPR). Os aerolevantamentos foram realizados com base nos limites das BPO inventariadas a partir da folha topográfica 1:50.000, acrescido *buffer* de 10 metros para evitar efeito de borda nos MDT e diferenças entre o relevo mapeando e o relevo observado em campo.

Modelo	Phantom 3	ARP
Camera a bordo Peso Velocidade máx. Velocidade máx. de descida Velocidade máx. de ascen são Tempo máximo de voo Posicionamento por satélite Tamanho máx. imagem	Padrão RGB 1280 g 16 m/s (modo ATTI, sem vento) 3 m/s 5 m/s Aprox. 23 minutos GPS/GLONASS 4000 x 3000	
88	D /s = m/s = m /	400
INIOdelo	Phantom 4	ARP
Camera a bordo	Padrão RGB	
Peso	1368 g	
Velocidade máx.	72 km/h (modo S)	
	58 km/h (modo A)	
	50 km/h (modo P)	
Velocidade máx, de descida	modo S: 4 m/s	L 2
	modo P: 3 m	
Velocidade máx, de ascensão	modo S: 6 m/s	
folooladdo max. do doconiodo	modo P: 5 m	
Tempo máximo de voo	Aprox 30 minutos	
Posicionamento por satélite	GPS/GLONASS	
Tamanho máx imagem	Proporção de imagem	
rama.me.max.magem	3.2.5472×3648	
	4:3: 4864×3648	

FIGURA 22 – Informações técnicas das RPA utilizadas nos aerolevantamentos.

FONTE: DJI (2015, 2016).

O conjunto de equipamentos para execução dos aerolevantamentos envolve a RPA, controladora, *tablet* ou *smartphone* e *notebook* para processamento dos dados coletados (FIGURA 23). As RPA integram dados inerciais e dados GNSS para navegação. As essas informações são gravadas nos metadados das imagens captadas (GUJJAR *et al.,* 2017; MOHAMMAD *et al.,* 2017). Os planos de voo foram elaborados no aplicativo Pixel4Dcapture (FIGURA 23). Os parâmetros de voo definidos foram: 70% de recobrimento lateral e velocidade de 10 m/s.

FIGURA 23 – Equipamentos para execução dos aerolevantamentos e planejamento do plano de voo no aplicativo Pix4D.

FONTE: O autor (2019).

As imagens coletadas foram processadas no *Agisoft PhotoScan* 1.2.4, utilizando a licença de teste. Seguiu-se a rotina de processamento sugerida pelo *software*, envolvendo alinhamento das imagens, extração da nuvem de pontos e geração de MDS e ortofotos. As etapas foram processadas na qualidade média (*médium*) devido a limitações de *hardware*. Para geração do MDT, a nuvem de pontos foi filtrada manualmente, visando retirar pontos em vegetação, edificações, torres de energia ou carros (FIGURA 24).

FIGURA 24 – Exemplos da filtragem da nuvem de pontos após o processamento dos dados coletados. A: pontos com a cor que foram registrados durante o aerolevantamento (RBG). B: pontos filtrados, marcados em marrom como pontos de solo e em branco como pontos de objetos na superfície.

FONTE: O autor (2019). Coordenada: 25°18'34.94"S - 54° 9'14.83"O.

A partir da nuvem de pontos filtrada, foram utilizadas técnicas do pacote geoestatístico do ArcGIS 10.1. A análise do histograma (FIGURA 25) permitiu verificar se há tendência de normalidade na distribuição dos dados, observando se a média e mediana são próximas. Também foi consultado o gráfico Normal QQPlot (

FIGURA 26), onde verificaram-se indícios de distribuição normal no conjunto de dados uma vez que os valores orbitam em torno do eixo.

FIGURA 25 – Histograma do *software* ArcGIS da nuvem de pontos gerada pelo processamento das imagens coletadas pela RPA.

FONTE: O autor (2019).

FIGURA 26 – Gráfico Normal QQPlot do software ArcGIS de uma nuvem de pontos gerada.

FONTE: O autor (2019).

Antes da interpolação foram analisadas as nuvens de pontos nos gráficos *boxplot* e nos polígonos de Voronoi visando identificar *outliers* globais e locais, respectivamente, conforme ilustrado nas FIGURA 27. Os pontos *outliers* identificados foram retirados do processo de interpolação. Também foram analisados nos polígonos de Voronoi se os dados apresentavam dependência espacial das amostras.

FIGURA 27 - Polígonos de Voronoi para identificação de outliers locais.

FONTE: O autor (2019).

Foi utilizada a krigagem simples para interpolar as nuvens de pontos. O tamanho do passo foi definido com base na distância média entre os pontos. O número de passos foi definido dividindo a maior extensão da bacia pelo tamanho do passo. O modelo geoestatístico utilizado foi o Gaussiano, sendo o alcance (major range) e o partial sill calibrados até que o modelo apresentasse melhor "encaixe" no semivariograma (FIGURA 28). Os raios de busca foram definidos com base na distância do primeiro valor negativo do variograma, em função de que a partir deste ponto a covariância é negativa, ou seja, não é mais representativo e o espaço não descreve mais o fenômeno.

FIGURA 28 – Exemplo de aplicação da krigagem simples.

FONTE: O autor (2019).

Os parâmetros atribuídos a cada MDT estão descritos no apêndice 05. Os MDT foram gerados com resolução espacial de 1 metro. Com os MDT gerados, os limites das bacias de primeira ordem foram refeitos, e, a partir destes, foram extraídos os parâmetros geomorfométricos para análise, os quais estão descritos no item a seguir.

4.6 EXTRAÇÃO DE PARÂMETROS GEOMORFOMÉTRICOS

Foram extraídos os seguintes parâmetros geomorfométricos dos MDT: área, perímetro, volume e índice de vazio, acumulação de fluxo, declividade, plano de curvatura, perfil de curvatura, índice de concentração de rugosidade e índice topográfico de umidade.

Área e perímetro foram calculados no *software* QGIS 2.18.19 através da calculadora de campo. O volume e índice de vazio, desenvolvido por Sampaio (2019), objetiva mensurar o volume de material retirado da bacia de primeira ordem por processos de denudação (FIGURA 29). Para o cálculo, consideram-se as cotas dos divisores de água interpoladas pelo método *triangular irregular network* (TIN), formando uma "tampa" na bacia. Pela ferramenta *cut fill* do ArcGIS 10.1, é mensurado em m³ o volume entre a "tampa" e o MDT da bacia. Volume de vazio é o valor bruto extraído e índice de vazio é o volume bruto normalizado pela área da

bacia. Para facilitar a extração do parâmetro, foi organizada uma ferramenta por meio do ModelBuilder do ArcGIS 10.1 (FIGURA 30).

Canal

FIGURA 29 - Concepção do parâmetro volume e índice de vazio. A: MDT da bacia de primeira

FONTE: Sampaio (2019). Diagramação: O autor (2019).

As demais parâmetros geomorfométricos foram calculados por algoritmos que envolvem análise de vizinhança, sendo definida uma janela móvel 3x3 pixels em estrutura grid. A declividade foi calculada a partir das variáveis direcionais de Horn (1981), executada no software QGIS 2.18.19 na ferramenta slope (declividade). O plano e perfil de curvatura foram calculados a partir das variáveis direcionais de Zevenbergen e Thorne (1987), pela ferramenta curvature (curvatura) no software QGIS 2.18.19.

Canal

A acumulação de fluxo foi calculada pelo algoritmo D8 na ferramenta *FlowDirection* do *software* QGIS 2.18.19. O Índice de Topográfico de Umidade (ITU) representa área de saturação superficial de acordo com a topografia. Gerado pela acumulação de fluxo dividido pela tangente da declividade (MOORE *et al.*, 1993) (FIGURA 31).

FIGURA 31 – Geração do ITU.

$$ITU = \ln(\frac{A_c}{tan\beta})$$

Onde: *Ln:* logaritmo natural / $A_{c:}$ área de contribuição (acumulação de fluxo) / $tan\beta$: tangente da declividade mensurada em graus

FONTE: Moore et al. (1993).

O Índice de Concentração de Rugosidade quantifica o grau de rugosidade do relevo. Este parâmetro é gerado através da aplicação do estimador de densidade *Kernel* em uma nuvem de pontos da declividade em porcentagem da área de interesse, seguindo a proposta de Sampaio; Augustin (2014b) (FIGURA 32).

FIGURA 32 – Geração do parâmetro ICR.

FONTE: Sampaio e Augustin (2014b).

Após extrair os parâmetros geomorfométricos que envolvem análise de vizinhança, foi aplicada a ferramenta *zonal statistics* do QGIS 2.18.19 para calcular os valores mínimo, máximo, médio, bem como desvio padrão, amplitude, variância e mediana de cada parâmetro extraído. Para otimizar, tais ferramentas foram compiladas para o modelador de processos do QGIS 2.18.19 e exportadas na forma de *script* em linguagem *python* (apêndice 06).

4.7 APLICAÇÃO DOS TESTES ESTATÍSTICOS

Para comparar os parâmetros geomorfométricos entre as bacias de primeira ordem perenes e intermitentes, foram utilizados o teste *t* independente e o teste Kruskal-Wallis. Estes testes de hipótese foram executados no *software* SPSS. A síntese dos testes estatísticos é apresentada na FIGURA 33.

Foi separado para cada bacia de primeira ordem amostral os valores de área, perímetro, volume de vazio e valores de mínima, máxima, média, desvio padrão, amplitude, variância e mediana dos demais parâmetros geomorfométricos selecionados. Os dados foram extraídos dos arquivos em formato *shapefile* e das matrizes no QGIS 2.18.19., convertidos para o formado *xls* (*software Microsoft office excel*) e importados nos *softwares* SPSS e Past 3.22.

FONTE: O autor (2019).

Após compilar as medidas dos parâmetros geomorfométricos de todas as bacias amostrais (perenes e intermitentes), foi utilizado o teste de Shapiro-Wilk para verificar se as amostras provêm de uma população Normal ou não. Também foi aplicado o teste de Levene para verificação da homogeneidade das amostras. A significância destes testes foi atribuída em 95%. A equação e hipóteses do teste Shapiro-Wilk são apresentadas na FIGURA 34 e as hipóteses do teste de Levene são apresentadas na FIGURA 35.

FIGURA 34 – Equação e Hipótese do teste de Shapiro-Wilk.

Equação do teste de Shapiro-Wilk			
b^2			
$W = \frac{1}{\sum_{i=1}^{k} (\mathbf{x}_{(i)} - \overline{\mathbf{x}})^2}$			
Onde:			
W = A estatística teste W; b ² = Representa os dados originais; $\bar{x_i}$ = Valor das			
amostras			
Hipóteses do teste de Shapiro-Wilk			
H _{0:} A amostra provém de uma população Normal	p < 0,05		
H₁: A amostra não provém de uma população Normal	p > 0,05		

FONTE: Agresti e Finlay (2012), Glass (1966), Rogerson (2012) e Shapiro e Wilk (1965).

FIGURA 35 – Equação e Hipótese do teste de Levene.

Equação do teste de Levene			
$Z_{ij} = x_{ij} - \bar{x_i} , i = 1,, k, e j = 1,, n_i$			
Onde:			
Z_{ij} = Representa os dados após transformação; x_{ij} = Representa os dado	os		
originais; $\overline{x_i}$ = Representa a média do nível; i = Valores dados originais			
Hipóteses do teste de Levene			
H _{0:} A amostra provém de uma população homogênea	р		
< 0,05			
H ₁ : A amostra não provém de uma população homogênea	p > 0,05		

FONTE: Agresti e Finlay (2012), Glass (1966), Rogerson (2012) e Shapiro e Wilk (1965).

O teste *t* independente foi escolhido por permitir a comparação das médias entre os parâmetros geomorfométricos das BPO perenes e intermitentes. O teste *t* independente é um teste paramétrico, exigindo a normalidade e homogeneidade das amostras. A equação do teste *t* independente e as hipóteses testadas para intervalos de confiança em 95% e 99% são apresentadas na FIGURA 36.
FIGURA 36 – Equação e Hipótese do teste *t* independente.

Equação teste <i>t</i> independente $t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\text{Estimativa do erro padrão}}$							
Onde: t = A estatística teste de Student; $\bar{x} = A$ média de uma amostra;							
μ = A média de uma população de valores Hipóteses do teste <i>t</i> indepe	ndente						
	95%	99%					
H _{0:} as médias dos grupos são iguais	p > 0,05	p > 0,01					
H ₁ : há diferença entre as médias dos grupos	p < 0,05	p < 0,01					

FONTE: Agresti e Finlay (2012), Mckight e Najab (2010) e Rogerson (2012).

Caso houvessem parâmetros geomorfométricos que não atendessem os pré-requisitos do teste *t* independente, estes seriam submetidos ao teste não paramétrico Kruskal-Wallis (MCKIGHT; NAJAB, 2010). Os testes não paramétricos são indicados quando não atendem os pré-requisitos e/ou em amostras pequenas (inferior a 30). A equação do teste Kruskal-Wallis e as hipóteses testadas para intervalos de confiança em 95% e 99% são apresentadas na FIGURA 37.

FONTE: Agresti e Finlay (2012), Mckight e Najab (2010) e Rogerson (2012).

Com a identificação dos parâmetros geomorfométricos, foi aplicado um teste de correlação bivariado. Foi utilizado o teste de correlação não paramétrico Pp (Rô) *Spearman*. Este teste contribuiu para identificação de parâmetros geomorfométricos com alta correlação entre si.

Após a identificação de diferenças nos parâmetros geomorfométricos entre as BPO amostrais e os testes de correlação, foi aplicado o teste de análise de componentes principais (ACP) ou *Principal Components Analysis* (PCA) (EVERITT; DUNN, 2001). Esta análise foi aplicada no *software* Past com o objetivo de diminuir o número de variáveis por meio de agrupamento, gerando componentes principais que melhor descrevem a variância dentro de grupos.

5 RESULTADOS E DISCUSSÃO

Os resultados alcançados e as discussões serão apresentados em 3 tópicos: a) caracterização da rede de drenagem da Folha Medianeira e comparação com dados coletados em campo e dados do SICAR; b) análise dos parâmetros geomorfométricos de BPO; c) aplicação de testes estatísticos nos parâmetros geomorfométricos de BPO.

5.1 REDE DE DRENAGEM DA FOLHA MEDIANEIRA - MI 2832-4

Para analise das áreas de drenagem no recorte da Folha Medianeira – 2832-4 foram consultadas as ottobacias nível 6, estas geradas pela Base Hidrográfica Oficial do Paraná (SOUZA *et al.,* 2011). A área de estudo possui 7 bacias hidrográficas, das quais 3 drenam para o rio Iguaçu (sul da área de estudo) e 4 para o reservatório de Itaipu (oeste da área de estudo) (QUADRO 13 e FIGURA 38).

Unidade Hidrográfica (U.H.)	Área (km²)	Porcent (%)	Para onde drena
Bacia Hidrográfica Rio Represa Grande	311,92	44,69	Rio Iguaçu
Bacia Hidrográfica Rio Ocoí	206,54	29,59	Reservatório de Itaipu
Bacia Hidrográfica Rio Capaco	90,03	12,89	Rio Iguaçu
Bacia Hidrográfica Silva Jardim	49,99	7,16	Rio Iguaçu
Bacia Hidrográfica Foz Do Iguaçu	27,66	3,96	Reservatório de Itaipu
Bacia Hidrográfica Córrego Cruzinha	8,48	1,24	Rio Iguaçu
Bacia Hidrográfica Jusante Itaipu	3,30	0,47	Reservatório de Itaipu
TOTAL	697,92	100	-

QUADRO 9 - Bacias hidrográficas na área de estudo.

FONTE: O autor (2019).

Foram visitadas em campo as bacia hidrográfica do rio Represa Grande, do rio Ocoí e do rio Capaco. A bacia hidrográfica Rio Represa Grande apresenta a maior área, abrangendo aproximadamente 45% do recorte de estudo. Dentro da bacia hidrográfica Rio Represa Grande encontram-se a cidade de Serranópolis do Iguaçu e os distritos de Aurora do Iguaçu e São Jorge, destaca-se que está bacia drena para o rio Iguaçu.

A bacia hidrográfica Rio Ocoí abrange aproximadamente 30% da área de estudo localiza-se na porção norte, onde estão as cidades de Medianeira e São Miguel do Iguaçu. A bacia hidrográfica Rio Capaco, na porção sul-leste, abrange

aproximadamente 13% da área de estudo e também drena para o rio Iguaçu. Nesta bacia hidrográfica se localiza o distrito de Jardinópolis.

FONTE: O autor (2019).

Análisando toda a folha Medianeira, notam-se diferenças na densidade da rede de drenagem, consonantes com as declividades encontradas (FIGURA 39 e

FIGURA 40). No quadrante norte estão as áreas onde o relevo varia do ondulado ao forte ondulado, com declividades entre 15 e 27 graus, observando uma maior densidade da rede de drenagem. No sentido oposto, o quadrante sul apresenta relevo suave ondulado, relacionado com uma menor densidade de drenagem.

FONTE: O autor (2019).

FIGURA 40 – Densidade de drenagem da folha Medianeira.

Pela classificação de Christofoletti (1981) a rede de drenagem apresenta padrão dendrítico. A hierarquização da rede de drenagem pelo método de Strahler (1952) (QUADRO 14), quando desconsiderado o rio Iguaçu, possui rios de 5ª ordem, na bacia hidrográfica Rio Represa Grande. As demais bacias hidrográficas possuem rios até a 4ª ordem. Há um crescimento do comprimento médio dos rios conforme a hierarquia, sendo interrompido na 5ª ordem. Assim que a parte de 5ª ordem do rio Represa Grande se forma, em 2,87 km, ela deságua no rio Iguaçu.

FONTE: O autor (2019).

Ordem	Quantidade	Comprimento médio (km)	Comprimento total (km)							
1ª ordem	403	1,1	444,45							
2ª ordem	87	1,82	158,82							
3ª ordem	24	3,65	87,83							
4 ^ª ordem	7	8,3	58,10							
5ª ordem	1	2,87 2,87								
	TOTAL 752,10									

QUADRO 10 – Hierarquização da rede de drenagem.

FONTE: O autor (2019).

Com foco nos rios de primeira ordem, durante o trabalho de campo, foram coletados 91 pontos na rede de drenagem (FIGURA 41 – apêndice 01). Sendo que 50 correspondem a rios de primeira ordem perenes e 41 correspondem a rios de primeira ordem intermitentes.

FIGURA 41 – Pontos coletados em campo. Rios perenes e intermitentes.

FONTE: O autor (2019).

Dos 91 pontos de campo coletados em 32 BPO, sendo 16 perenes e 16 intermitentes, foram realizados aerolevantamentos com RPA. Este grupo de bacias foram denominadas BPO amostrais. As BPO amostrais estão distribuídas entre as bacia hidrográfica do rio Represa Grande, do rio Ocoí e do rio Capaco. As coordenadas dos centroides das BPO amostrais são apresentadas no apêndice 02. Os ortomosaicos gerados a partir dos aerolevantamentos são apresentados no apêndice 03.

Exemplos de canais de primeira ordem perenes e intermitentes visitados em campo são apresentados na FIGURA 42 e FIGURA 43, respectivamente. Em 4 pontos visitados em campo não se pôde confirmar se a bacia de primeira ordem possuía rio perene ou intermitente. Durante os 4 primeiros dias de trabalho de campo (07/05/2018 a 11/05/2018) o tempo se manteve estável. Na madrugada de 11/05/2018 para o dia 12/05/2018 foram registrados eventos de precipitação, como anteriormente citado (FIGURA 21). Assim, após esse dia, pontos visitados em campo (FIGURA 44) que apresentassem baixa vazão no canal de drenagem foram desconsiderados.

FIGURA 42 – Canais de BPO com rios perenes amostrados.

FONTE: O autor (2019). Coordenada: A - 25°20'4.75"S - 54° 7'14.34"O. B - 25°15'8.66"S - 54° 8'56.54"O.

FIGURA 43 – Canais de BPO com rios intermitentes amostrados.

FONTE: O autor (2019). Coordenada: A - 25°20'49.91"S - 54° 7'7.73"O. B - 25°15'3.92"S - 54°10'54.26"O.

FIGURA 44 – Exemplo de pontos de campo desconsiderados.

FONTE: O autor (2019). Coordenada: A – 25°20'57.81"S - 54° 7'46.49"O. B – 25°18'9.00"S - 54°14'18.01"O.

A partir do trabalho de campo, observa-se que na área de estudo os canais com rios perenes e com rios intermitentes se enquadram nos os conceitos apresentados por Guerra e Guerra (1997) e Escobar (2003) para o termo rio, que foram adotados na presente pesquisa. O mesmo ocorreu com a rede de drenagem observada em campo, que se enquadrou nos conceitos de Beven e Kirkby (1993), Goudie (2004) e a ANA (2014), também adotados na pesquisa.

Ao comparar o mapeamento da rede de drenagem da base hidrográfica oficial do Paraná com as ortofotos geradas para as bacias amostrais perenes, observaram incompatibilidades entre o rio mapeado e as características observadas na fotointerpretação, com destaque para as cabeceiras de drenagem que estão mais a montante que a vegetação linear, indicando possivelmente superestimação da extensão do rio (FIGURA 45 – A).

FIGURA 45 – A: Bacia de primeira ordem perene número 14 em comparação com o rio mapeado na Base hidrográfica oficial do Paraná. Note diferenças de extensão se considerar que o rio perene está na vegetação linear da bacia. B: Bacia de primeira ordem intermitente número 04 com rio mapeado na Base hidrográfica oficial do Paraná.

FONTE: O autor (2019). Escala aproximada: 1/20.000. Exagero vertical de 3,5 utilizado no ArcScene. Coordenada: A - 25°26'46.26"S - 54° 4'40.96"O. B - 25°23'11.84"S - 54° 6'19.39"O.

Em BPO classificadas como intermitentes, havia sido mapeado rio na Base hidrográfica oficial do Paraná, o que pode indicar erros de comissão, visto que durante o trabalho de campo e ao se observar as ortofotos geradas, não há elemento que indique a presença de um rio perene (FIGURA 45 – B).

Para exemplificar a influência da diferença da extensão real e mapeada da rede de drenagem, realizou-se um teste no córrego Cadeado, afluente do córrego

Palmital, na bacia hidrográfica rio Represa Grande. Foi gerada a APP do córrego Cadeado e de sua nascente com a espacialização original da folha Medianeira e com a espacialização ajustada pela imagem orbital do acervo *Google Earth* e com dados coletados em campo (FIGURA 46). Há uma diferença de aproximadamente 2,5ha de APP entre o rio mapeado e o rio ajustado.

FIGURA 46 – Exemplo de como as inconsistências no mapeamento da rede de drenagem afetam sua aplicação.

FONTE: Acervo Google Earth (2016). Organização: O autor (2019). Coordenada: 25°25'28.68"S - 54°10'5.94"O.

Esta diferença na delimitação das APP já foi constatada pelo estudo de Sousa e Sampaio (2018). No caso do córrego Cadeado, é delimitada cerca de 15% a mais de APP, isto para um rio de primeira ordem. Sousa e Sampaio (2018) identificaram acréscimos de APP delimitada de até 40%, analisando duas bacias no centro-sul paranaense.

O estudo de Sousa e Sampaio (2018) também identificou APP não mapeadas em rios existentes. Durante o levantamento de campo, foram

encontrados 3 rios de primeira ordem perene que não constavam na base hidrográfica oficial do Paraná (1:50.000). Onde 2 desses rios (FIGURA 47 - A) estavam mapeados na folha São Miguel do Iguaçu (MI 2832-4-NO), na escala 1:25.000, e também constavam dos dados do SICAR. E 1 rio de primeira ordem (FIGURA 47 – B e C) não estava mapeado na base 1:50.000 e na base 1:25.000, constando apenas nos dados do SICAR.

FIGURA 47 – A) Comparação entre as redes de drenagem 1:50.000, 1:25.000 e SICAR. B) rio de primeira ordem visitado em campo não mapeado nas bases 1:50:000 e 1:25.000, apenas no SICAR. C) Visão horizontal do rio de primeira ordem referido em B.

FONTE: Acervo Google Earth (2016) e SICAR (2018). Organização: O autor (2019). Coordenada: A) 25°18'33.36"S - 54° 9'1.93"O. B) e C) 25°16'57.46"S - 54° 7'53.84"O.

As diferenças entre os mapeamentos de distintas escalas podem ser explicadas pelo critério de generalização cartográfica da omissão seletiva (SAMPAIO; BRANDALIZE, 2018), onde rios de primeira ordem de determinada extensão são omitidos propositalmente do mapeamento. No entanto, os 3 rios de primeira ordem perenes que não constavam na base 1:50.000 possuíam em média 0,6 km, e são encontrados pelo menos 50 outros rios de primeira ordem mapeados com extensão inferior a 0,6 km.

FIGURA 48 - Rios mapeados com extensão menor que 0,6 km.

FONTE: Acervo Google Earth (2016) e SICAR (2018). Organização: O autor (2019). Coordenada: A) 25°18'33.36"S - 54° 9'1.93"O. B) e C) 25°16'57.46"S - 54° 7'53.84"O.

Analisando dados do SICAR, a área de estudo possui 356 nascentes declaradas (FIGURA 49). Comparando com os dados coletados em campo, observase que 20 pontos marcados como BPO perenes possuíam nascente declarada ao SICAR (FIGURA 50 – A). Em alguns casos, a mesma nascente era declarada mais de uma vez quando estava próxima ao limite de propriedades (FIGURA 50 – B). Nenhuma nascente foi declarada nas BPO intermitentes validadas em campo. Assim, verifica-se que apesar de os dados declarados ao SICAR apresentarem ausências de nascentes em áreas confirmadas em campo, as nascentes declaradas estão de acordo com as BPO perenes validadas em campo.

FONTE: O autor (2019).

FIGURA 50 – A) Comparação entre os pontos coletados em campo e as nascentes declaradas ao SICAR. Pontos de campo (em laranja) e nascentes declaradas ao SICAR (em azul). B) Mais de uma declaração ao SICAR relatando a existência da mesma nascente. Pontos de campo (em laranja) e nascentes declaradas ao SICAR (em azul) na área de estudo.

FONTE: Acervo Google Earth (2016) e SICAR (2018). Organização: O autor (2019). Coordenada: A) 25°18'31.50"S - 54° 9'2.58"O. B) 25°16'59.05"S - 54° 7'56.28"O.

A presença de rios mapeados na base hidrográfica oficial do Paraná que não existiam em campo e possíveis diferenças na extensão dos rios mapeados (quando comparado com a realidade em campo) corrobora com a literatura consultada sobre as limitações presentes nos mapeamentos da rede de drenagem existentes, indicando que estas limitações também são encontradas na área de estudo analisada (BAND, 1993; BUENO, 2016; CHORLEY; DALE, 1972; MARION; HENDGES; SAMPAIO, 2013; PAZ, 2015; SAMPAIO, 2008; SOUSA; SAMPAIO, 2018, 2015). Assim, reforça-se a necessidade de análises pretéritas dos mapeamentos da rede de drenagem, em função da existência de inconsistência, conforme a aplicação (*fitness for use* - adequação ao uso).

5.2 CARACTERÍSTICAS GEOMORFOMÉTRICAS DE BACIAS DE PRIMEIRA ORDEM NA FOLHA MEDIANEIRA – MI 2832-4

Para analisar as características geomorfométricas das BPO amostrais da Folha Medianeira foram realizados aerolevantamentos com auxílio de RPA. Como já citado, os aerolevantamentos foram realizados em 32 bacias amostrais, sendo 16 perenes e 16 intermitentes (FIGURA 51). A geração dos MDT não contou com pontos de controle e nem pontos de validação. Considerando o estudo realizado por Hung *et al.* (2018), espera-se que os MDT gerados nas BPO amostrais apresentem enquadramento na classe A – 1:5.000 (DSG, 2016).

FIGURA 51 – BPO perenes e intermitentes onde foram realizados aerolevantamentos com as RPA.

FONTE: O autor (2019).

Foram gerados 32 MDT para BPO amostrais amostrais e a partir deles foram extraídos 10 parâmetros geomorfométricos e calculadas as medidas de máximo, mínimo, média, desvio padrão, amplitude, variância e mediana, totalizando 53 variáveis para análise estatística. O objetivo foi identificar diferenças significativas entre o grupo das BPO perenes e BPO intermitentes (apêndice 04).

Ao observar as médias dos parâmetros geomorfométricos das bacias de primeira ordem perenes e intermitentes, notam-se diferenças especialmente nos parâmetros área, perímetro, plano de curvatura, acumulação de fluxo e índice de vazio (FIGURA 10 e FIGURA 52). Menores diferenças são observadas na média da declividade, ITU e altimetria.

Todas as bacias de primeira ordem amostrais											
Parâmetro	Estatíst	icas descritivas	Parâmetro	Estatísticas	s descritivas						
	Média	Desvio padrão		Média	Desvio padrão						
AREA	47,26	37,83	Perf_range	0,10	0,11						
PERIMETRO	2707,42	973,87	Perf_var	0,00000856	0,00001132						
Alt_min	238,42	43,41	Perf_media	0,00000256	0,00015031						
Alt_max	313,17	56,15	ACF_min	12,42	9,28						
Alt_mean	276,25	45,11	ACF_max	275099,96	355706,12						
Alt_std	17,48	6,86	ACF_mean	1869,33	771,66						
Alt_range	74,75	27,05	ACF_std	8955,70	6810,85						
Alt_var	351,11	291,58	ACF_range	275087,54	355707,77						
Alt_median	276,60	44,33	ACF_var	125142585,18	201125704,36						
Decli_min	0,13	0,20	ACF_median	451,26	98,90						
Decli_max	33,66	23,51	ITU_min	3,73	1,43						
Decli_mean	9,34	3,47	ITU_max	15,73	2,63						
Decli_std	4,94	2,64	ITU_mean	7,17	0,49						
Decli_rang	33,53	23,51	ITU_std	1,28	0,29						
Decli_var	31,14	32,44	ITU_range	12,00	3,33						
Decli_medi	8,22	2,81	ITU_var	1,72	0,73						
Plan_min	-1,54	1,37	ITU_median	7,00	0,51						
Plan_max	2,41	2,76	Vol_vazio	2515786,34	3130723,18						
Plan_mean	0,00	0,00	Ind_Vazio	4,22	3,22						
Plan_std	0,03	0,02	ICR_min	4,40	1,66						
Plan_range	3,96	3,49	ICR_max	7,77	2,85						
Plan_var	0,00	0,00	ICR_mean	6,74	2,46						
Plan_media	0,00	0,00	ICR_std	0,77	0,53						
Perf_min	-0,05	0,05	ICR_range	3,37	2,16						
Perf_max	0,05	0,07	ICR_var	0,87	1,15						
Perf_mean	0,00	0,00	ICR_median	6,92	2,60						
Perf_std	0,00	0,00									

QUADRO 11 – Estatística descritiva dos parâmetros geomorfométricos extraídos das BPO amostrais.

FONTE: O autor (2019).

FIGURA 52 – Destaque para parâmetros geomorfométricos com médias diferentes entre as BPO perenes (PER) e intermitentes (INT).

As unidades de medida dos valores das médias se referem a unidade em que o parâmetro geomorfométrico foi extraído. hectare para área, quilômetros para perímetro, metros para altimetria, valores positivos e negativos para plano de curvatura, números de *pixels* para acumulação de fluxo, metros cúbicos para volume de vazio e valores gerados pelos índices (ITU e ICR). Conforme consta no QUADRO 12, as BPO perenes apresentam maiores valores de médias em 46 dos parâmetros extraídos. As BPO intermitentes apresentam maiores valores de média em medidas do plano de curvatura.

		Estatísticas	descritiv	/as		Estatísticas descritivas				
Parametro		PER	INT		Parametro	Р	ER	INT		
	Média	Desvio padrão	Média	Desvio padrão		Média	Desvio padrão	Média	Desvio padrão	
AREA	66,17	45,34	28,35	11,81	Perf_range	0,12	0,14	0,08	0,08	
PERIMETRO	3303,48	992,26	2111,35	466,40	Perf_var	0,000009	0,000013	0,00008	0,000010	
Alt_min	240,33	51,34	236,50	35,36	Perf_media	-0,000001	0,000140	0,000006	0,000164	
Alt_max	326,56	59,20	299,77	51,26	ACF_min	11,69	6,74	13,14	11,47	
Alt_mean	284,00	51,20	268,51	38,15	ACF_max	445161,93	439685,34	105037,99	80419,67	
Alt_std	19,44	7,26	15,52	6,03	ACF_mean	2332,63	742,14	1406,03	471,11	
Alt_range	86,23	27,57	63,27	21,70	ACF_std	12820,56	7385,57	5090,83	3074,96	
Alt_var	427,40	348,95	274,81	203,76	ACF_range	445150,24	439687,32	105024,85	80420,71	
Alt_median	284,31	51,14	268,89	36,33	ACF_var	215504179,80	254166836,76	34780990,57	39748656,10	
Decli_min	0,11	0,13	0,14	0,25	ACF_median	465,34	112,49	437,19	84,49	
Decli_max	36,85	29,17	30,47	16,44	ITU_min	3,48	1,54	3,98	1,31	
Decli_mean	8,99	3,73	9,69	3,28	ITU_max	16,92	2,57	14,54	2,16	
Decli_std	5,08	2,76	4,79	2,60	ITU_mean	7,28	0,57	7,05	0,39	
Decli_rang	36,74	29,17	30,32	16,42	ITU_std	1,29	0,23	1,27	0,34	
Decli_var	32,96	36,95	29,32	28,33	ITU_range	13,44	3,21	10,56	2,86	
Decli_medi	7,79	3,06	8,65	2,57	ITU_var	1,73	0,57	1,71	0,88	
Plan_min	-2,03	1,61	-1,05	0,89	ITU_median	7,11	0,57	6,90	0,44	
Plan_max	2,48	2,17	2,35	3,32	Vol_vazio	4065096,50	3681902,95	966476,18	1256623,36	
Plan_mean	0,00	0,00	0,00	0,00	Ind_Vazio	5,48	3,04	2,96	2,97	
Plan_std	0,03	0,01	0,03	0,02	ICR_min	4,08	1,84	4,71	1,45	
Plan_range	4,51	3,50	3,40	3,49	ICR_max	8,62	3,09	6,91	2,39	
Plan_var	0,00	0,00	0,00	0,00	ICR_mean	7,17	2,74	6,32	2,15	
Plan_media	0,00	0,00	0,00	0,00	ICR_std	1,08	0,54	0,46	0,29	
Perf_min	-0,06	0,06	-0,04	0,03	ICR_range	4,54	2,12	2,20	1,49	
Perf_max	0,07	0,08	0,04	0,04	ICR_var	1,44	1,38	0,29	0,35	
Perf_mean	0,00	0,00	0,00	0,00	ICR_median	7,41	2,92	6,42	2,21	
Perf_std	0,00	0,00	0,00	0,00						

QUADRO 12 – Estatística descritiva dos parâmetros geomorfométricos por tipo e bacia de primeira ordem amostral.

FONTE: O autor (2019).

Por análise visual e com dados de área, identificam-se dois grupos de BPO na área de estudo (FIGURA 53). No setor norte, as BPO apresentam em média 45ha e desvio padrão de 18,89ha. Conforme apresentado na FIGURA 39 (pg. 70), o setor norte é caracterizado pela alta declividade associada ao relevo ondulado a forte ondulado e a alta densidade de rede de drenagem.

FIGURA 53 – BPO perenes e intermitentes localizadas em áreas as quais foram realizados aerolevantamentos com as RPA. A elipse roxo se refere ao setor norte. O elipse rosa se refere ao setor sul.

No setor sul as BPO apresentam em média 52ha e desvio padrão de 48,60ha. Nesse setor as BPO apresentam maior dispersão dos valores de área em

FONTE: O autor (2019).

relação ao setor norte, uma vez que o desvio padrão corresponde a aproximadamente 90% do valor da média da área das bacias, este setor apresenta declividade de até 5 graus, marcado por relevo suave ondulado (FIGURA 54), configuração distinta do setor norte (FIGURA 55).

FIGURA 54 – Relevo suave ondulado de uma bacia de primeira ordem no setor sul da Folha Medianeira.

FONTE: O autor (2019). Coordenada: A – 25°24'11.43"S - 54° 8'38.66"O.

FIGURA 55 – Vista de uma bacia de primeira ordem na porção norte da Folha Medianeira. Destaque para o relevo ondulado-forte ondulado.

FONTE: O autor (2019). Coordenada: A - 25°21'7.60"S - 54° 4'4.15"O.

Ao analisar a extensão dos rios de primeira ordem no setor sul constata-se que estes apresentam em média 2,5 km, já no setor norte, os rios de primeira ordem apresentam em média 0,85 km. Na parte B da FIGURA 56, são apresentados dois rios de primeira ordem com extensão aproximada de 6,5 km, no setor norte. Nas partes A e C da FIGURA 56, são ilustrados dois rios de primeira ordem, sendo que o córrego cadeado (A) apresenta aproximadamente 2,4 km e o córrego Junqueira (C) apresenta 2,85 km, ambos estão no setor sul da área de estudo.

FIGURA 56 – Comparação da extensão dos rios de primeira ordem nos dois setores da área de estudo. A e C se referem a rios de primeira ordem no setor sul. B se refere a rios de primeira ordem no setor norte, afluentes do córrego Tigre, defronte a BR 277, há cerca de 3km a oeste da cidade de Medianeira.

FONTE: O autor (2019). Coordenada: A) 25°25'28.68"S - 54°10'5.94"O. B) 25°18'33.36"S - 54° 9'1.93"O. C) 25°27'19.68"S - 54°14'1.91"O.

Também foram observadas diferenças no perfil longitudinal dos rios de primeira ordem perenes entre o setor norte e o setor sul (apêndice 7 e apêndice 8). No setor norte, o perfil longitudinal dos rios de primeira ordem apresentou formato côncavo em relação a um perfil longitudinal em equilíbrio. Exemplos de perfis

longitudinais no setor norte são apresentados na FIGURA 57. No setor sul, o perfil longitudinal dos rios de primeira ordem apresentou maior relação com perfil em equilíbrio. Na FIGURA 58 são apresentados exemplos de perfis longitudinais no setor sul.

FIGURA 57 – Perfil longitudinal da bacia de primeira ordem intermitente 7 (esquerda) e perene 1 (direita), no setor sul.

FONTE: O autor (2019).

FIGURA 58 – Perfil longitudinal da bacia de primeira ordem intermitente 8 (esquerda) e perene 15 (direita), no setor sul.

FONTE: O autor (2019).

As análises da estatística descritiva dos parâmetros germorfométricos e da dimensão das bacias, extensão e perfil longitudinal dos rios de primeira ordem levaram ao encontro de diferenças no relevo entre os setores norte e sul. Essa diferenciação pode estar associada ao embasamento rochoso, visto que no levantamento publicado pela MINEROPAR, a área da folha Medianeira se divide em 2 formações: Formação Barração e Formação Cascavel.

FIGURA 59 – Unidades litoestratigráficas identificadas na área da Folha Medianeira.

FONTE: O autor (2019).

Entretanto, é necessário verificar se essas diferenças observadas possuem significância estatística, analisada por meio de testes paramétricos e não paramétricos. A aplicação destes testes estatísticos nos parâmetros geomorfométricos extraídos das bacias de primeira amostrais são apresentadas no item a seguir.

5.3 ANÁLISE ESTATÍSTICA DE PARÂMETROS GEOMORFOMÉTRICOS DE BACIAS DE PRIMEIRA ORDEM NA FOLHA MEDIANEIRA – MI 2832-4

Para aplicação do teste *t* independente, foi analisado se as variáveis das bacias amostrais apresentam distribuição normal. O QUADRO 13 aponta os parâmetros geomorfométricos que atenderam (marcados em verde) ou não (marcados em vermelho) o pré-requisito da normalidade na distribuição das amostras de acordo com o teste de Kolmogorov-Smirnov. 23 variáveis atenderam esse pré-requisito, 30 não.

	Testes de Normalidade										
		Kolmogorov-Smirnov ^a									
	Estatística df Sig. Estatística df Sig.						Estatística	df	Sig.		
AREA	0,272	32	0,000	Plan_mean	0,107	32	,200 [*]	ACF_median	0,139	32	0,117
PERIMETRO	0,216	32	0,001	Plan_std	0,177	32	0,012	ITU_min	0,144	32	0,091
Alt_min	0,086	32	,200 [*]	Plan_range	0,176	32	0,013	ITU_max	0,149	32	0,069
Alt_max	0,154	32	0,053	Plan_var	0,240	32	0,000	ITU_mean	0,104	32	,200 [*]
Alt_mean	0,110	32	,200 [*]	Plan_media	0,105	32	,200 [*]	ITU_std	0,096	32	,200 [*]
Alt_std	0,166	32	0,025	Perf_min	0,212	32	0,001	ITU_range	0,129	32	0,193
Alt_range	0,115	32	,200 [*]	Perf_max	0,227	32	0,000	ITU_var	0,131	32	0,175
Alt_var	0,203	32	0,002	Perf_mean	0,104	32	,200 [*]	ITU_median	0,084	32	,200 [*]
Alt_median	0,094	32	,200 [*]	Perf_std	0,221	32	0,000	Vol_vazio	0,222	32	0,000
Decli_min	0,260	32	0,000	Perf_range	0,232	32	0,000	Ind_Vazio	0,185	32	0,007
Decli_max	0,207	32	0,001	Perf_var	0,251	32	0,000	ICR_min	0,278	32	,200 [*]
Decli_mean	0,125	32	,200 [*]	Perf_media	0,121	32	,200 [*]	ICR_max	0,290	32	0,008
Decli_std	0,190	32	0,005	ACF_min	0,388	32	0,000	ICR_mean	0,288	32	0,003
Decli_rang	0,208	32	0,001	ACF_max	0,256	32	0,000	ICR_std	0,249	32	,200 [*]
Decli_var	0,200	32	0,002	ACF_mean	0,130	32	0,182	ICR_range	0,260	32	,200 [*]
Decli_medi 0,129 32 0,191 ACF_std		0,169	32	0,020	ICR_var	0,274	32	0,000			
Plan_min	Plan_min 0,177 32 0,012 ACF_range 0,256 32 0,000 ICR_median 0,287 32 0,002									0,002	
Plan_max	0,254	32	0,000	ACF_var	0,292	32	0,000				
		*.	Este é	um limite infe	rior da signif	icân	cia ver	dadeira.			
			a. (Correlação de	Significância	a de	Lilliefo	ors			

QUADRO 13 – Análise da normalidade das amostras pelo teste Kolmogorov-Smirnov.

FONTE: O autor (2019).

A análise da homogeneidade de variância, verificada pelo teste de Levene, é apresentada no QUADRO 14. 43 variáveis atenderam este pré-requisito (marcadas em verde), 10 variáveis não (marcada em vermelho). Cruzando as análises de normalidade e homogeneidade, observa-se que 9 variáveis não atenderam aos dois pré-requisitos do teste *t* independente, sendo: área, perímetro, mínimo e mediana do plano de curvatura, desvio padrão, amplitude e variância da acumulação de fluxo, volume de vazio e variância do ICR. Estes parâmetros foram, posteriormente, analisados no teste *t* independente e também no teste Kruskal-Wallis.

	Teste de Levene para igualdade de variâncias												
	Ζ	Sig.		Z	Sig.		Z	Sig.		Z	Sig.		
AREA	11,780	0,002	Decli_var	0,267	0,609	Perf_var	0,081	0,778	ITU_var	2,190	0,149		
PERIMETRO	6,726	0,015	Decli_medi	0,119	0,733	Perf_media	0,672	0,419	ITU_median	0,448	0,509		
Alt_min	1,605	0,215	Plan_min	7,226	0,012	ACF_min	0,830	0,370	Vol_vazio	10,706	0,003		
Alt_max	0,609	0,441	Plan_max	0,443	0,511	ACF_max	17,117	0,000	Ind_Vazio	0,028	0,868		
Alt_mean	1,250	0,272	Plan_mean	0,598	0,445	ACF_mean	1,534	0,225	ICR_min	17,052	0,550		
Alt_std	0,209	0,651	Plan_std	0,558	0,461	ACF_std	6,985	0,013	ICR_max	32,416	0,386		
Alt_range	0,831	0,369	Plan_range	0,155	0,696	ACF_range	17,117	0,000	ICR_mean	37,817	0,333		
Alt_var	1,159	0,290	Plan_var	0,805	0,377	ACF_var	13,278	0,001	ICR_std	22,908	0,051		
Alt_median	2,012	0,166	Plan_media	8,913	0,006	ACF_median	0,323	0,574	ICR_range	26,498	0,204		
Decli_min	0,689	0,413	Perf_min	2,720	0,110	ITU_min	0,518	0,477	ICR_var	26,181	0,001		
Decli_max	2,442	0,129	Perf_max	2,357	0,135	ITU_max	0,693	0,412	ICR_median	37,787	0,272		
Decli_mean	0,057	0,813	Perf_mean	0,699	0,410	ITU_mean	1,268	0,269					
Decli_std	0,111	0,741	Perf_std	0,034	0,854	ITU_std	1,910	0,177					
Decli_rang	2,492	0,125	Perf_range	2,786	0,105	ITU_range	0,002	0,967					

QUADRO 14 – Análise da homogeneidade das amostras pelo teste Levene.

No teste *t* independente de significância estatística de 95%, 15 variáveis apresentaram diferenças nas médias entre as BPO perenes e intermitentes (QUADRO 15). Com significância estatística em 99%, as mesmas 15 variáveis apresentam diferenças estatisticamente significativas nas médias (QUADRO 16).

Os parâmetros com diferenças significativas entre as BPO perenes e intermitentes tanto no intervalo de confiança de 95% como em 99%, foram: área, perímetro, amplitude da altimetria, mínimo do plano de curvatura, máximo, média, desvio padrão e variância da acumulação de fluxo, máximo e amplitude do ITU, volume e índice de vazio e desvio padrão, amplitude e variância do ICR.

FONTE: O autor (2019).

Teste-t para Igualdade de Médias										
	Teste de levene***	+	df	Sig *	Diference média	95%**				
	Teste de levelle	L	ui	Sig.	Dileieliça media	Inferior	Superior			
AREA	não assumidas	-3,23	17,03	0,005	37,82	13,11	105,52			
PERIMETRO	não assumidas	-4,35	21,32	0,000	1,19	0,62	1,76			
Alt_range	assumidas	-2,62	30,00	0,001	22,97	5,05	40,88			
Plan_min	não assumidas	2,12	23,45	0,005	-0,97	-1,93	-0,02			
ACF_max	não assumidas	-3,04	16,00	0,008	340123,94	103238,46	577009,41			
ACF_mean	assumidas	-4,22	30,00	0,000	926,60	477,79	1375,41			
ACF_std	não assumidas	-3,86	20,05	0,001	7729,72	3558,38	11901,07			
ACF_var	não assumidas	-2,81	15,73	0,001	180723189,23	44195420,77	317250957,69			
ITU_max	assumidas	-2,84	30,00	0,008	2,39	0,67	4,10			
ITU_range	assumidas	-2,69	30,00	0,001	2,89	0,69	5,08			
Vol_vazio	não assumidas	-3,19	18,45	0,005	3098620,33	1058792,39	5138448,26			
Ind_Vazio	assumidas	-2,37	30,00	0,002	2,51	0,34	4,68			
ICR_std	assumidas	-4,11	30,00	0,000	0,62	0,31	0,93			
ICR_range	assumidas	-3,62	30,00	0,001	2,34	1,02	3,67			
ICR_var	não assumidas	-3,25	16,95	0,005	1,15	0,41	1,90			
* (2 extremid	ades) - **Intervalo (de Conf	fianca (da Dife	renca - *** Variânc	ias iquais				

QUADRO 15 – Parâmetros geomorfométricos com diferenças estatisticamente significativas (95% de intervalo de confiança) entre as BPO perenes e intermitentes pela aplicação do teste *t* independente.

FONTE: O autor (2019).

QUADRO 16 – Parâmetros geomorfométricos com diferenças estatisticamente significativas (99% de intervalo de confiança) entre as BPO perenes e intermitentes pela aplicação do teste *t* independente.

Teste-t para Igualdade de Médias										
	Teste de levene***	+	df	Sig *	Diferenca média	99%**				
	Teste de levelle	ι	ui	Sig.	Dilerença media	Inferior	Superior			
AREA	não assumidas	-3,23	17,03	0,005	37,82	3,88	114,76			
PERIMETRO	não assumidas	-4,35	21,32	0,000	1,19	0,42	1,97			
Alt_range	assumidas	-2,62	30,00	0,001	22,97	-1,16	47,09			
Plan_min	não assumidas	2,12	23,45	0,005	-0,97	-2,27	0,32			
ACF_max	não assumidas	-3,04	16,00	0,008	340123,94	13748,37	666499,50			
ACF_mean	assumidas	-4,22	30,00	0,000	926,60	322,26	1530,94			
ACF_std	não assumidas	-3,86	20,05	0,001	7729,72	2040,38	13419,06			
ACF_var	não assumidas	-2,81	15,73	0,001	180723189,23	-7545741,23	368992119,69			
ITU_max	assumidas	-2,84	30,00	0,008	2,39	0,08	4,70			
ITU_range	assumidas	-2,69	30,00	0,001	2,89	-0,07	5,84			
Vol_vazio	não assumidas	-3,19	18,45	0,005	3098620,33	306895,73	5890344,92			
Ind_Vazio	assumidas	-2,37	30,00	0,002	2,51	-0,41	5,43			
ICR_std	assumidas	-4,11	30,00	0,000	0,62	0,21	1,04			
ICR_range	assumidas	-3,62	30,00	0,001	2,34	0,56	4,13			
ICR_var	não assumidas	-3,25	16,95	0,005	1,15	0,13	2,18			
* (2 extremid	ades) - **Intervalo (de Cont	fianca	da Dife	renca - *** Variânc	ias iquais				

FONTE: O autor (2019).

O QUADRO 15 e QUADRO 16 apresentam resultados da aplicação da estatística *t* (coluna *t*). A coluna "df" indica os graus de liberdade que foram usados para calcular a probabilidade exata de que um valor de *t* tão grande quanto o obtido

possa ocorrer por acaso (FIELD, 2009). Essa probabilidade está apresentada na coluna "Sig".

A coluna "Sig." no QUADRO 15 e QUADRO 16 é o resultado a ser relacionado com as hipóteses do teste *t* independente (FIGURA 36). Sig. menor do que 0,05 ou 0,01 (95% e 99% de confiança, respectivamente), significa que as médias dos dois grupos (BPO perenes e intermitentes) são significativamente diferentes.

O valor positivo da diferença média significa que os maiores valores nas médias de determinado parâmetro geomorfométricos é maior nas BPO perenes. Caso a diferença média seja negativa, os maiores valores se concentram no grupo das BPO intermitentes. Portanto, verifica-se que todos os parâmetros geomorfométricos analisados possuem maiores valores nas BPO perenes, com exceção do mínimo do plano de curvatura, que apresenta seus maiores valores nas BPO.

Os QUADRO 15 e QUADRO 16 também apresentam o intervalo de confiança para a média populacional, respectivamente de acordo com o nível de significância (95% e 99%). Cada parâmetro geomorfométrico apresenta um intervalo de confiança próprio. Esse dado nos permite interpretar, por exemplo, que o intervalo entre 13,11 ha a 105,52 ha tem probabilidade de 95% de conter a média da área das bacias amostrais analisadas na realidade.

Em síntese, os parâmetros de área, perímetro, amplitude da altimetria, máximo, média, desvio padrão e variância da acumulação de fluxo, máximo e amplitude do ITU, volume e índice de vazio e desvio padrão, amplitude e variância do ICR apresentaram maiores valores nas BPO perenes do que nas BPO intermitentes. Esta diferença foi significativa de acordo com a aplicação do teste t independente, tanto em 95% como em 99% do nível de significância. O mínimo do plano de curvatura apresentou maiores valores nas BPO intermitentes do que nas BPO perenes. Esta diferença também foi significativa de com a aplicação do teste t independente, tanto em 95% como em 99% do nível de significância.

Conforme previsto nos procedimentos metodológicos, foi aplicado o teste não paramétrico Kruskal-Wallis de amostras independentes devido a presença de parâmetros geomorfométricos que não atenderam os pré-requisitos do teste *t* (um teste paramétrico). Além das 9 variáveis (medidas de parâmetros geomorfométricos) que não atenderam os pré-requisitos do teste paramétrico, o teste não paramétrico Kruskal-Wallis de amostras independentes foi aplicado também nas demais variáveis com objetivo de comparar com os resultados obtidos com o teste *t* independente.

Com a aplicação do teste Kruskal-Wallis de amostras independentes, foram identificadas 15 variáveis com diferenças estatisticamente significativas (95% de confiança) entre as BPO perenes e intermitentes (FIGURA 60). Variáveis que não atenderam os pressupostos do teste *t* independente, tais como área, perímetro, volume de vazio, índice de vazio e medidas do ICR, apresentam diferenças entre as medias das BPO perenes e intermitentes na aplicação do teste de Kruskal-Wallis (95% de confiança).

FIGURA 60 – Parâmetros geomorfométricos com diferenças estatisticamente significativas (95% de intervalo de confiança) no teste Kruskal-Wallis de amostras independentes.

	Hipótese nula	Sig.	Decisão
1	A distribuição de "Área" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
2	A distribuição de "Perímetro" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
3	A distribuição de "Alt_range" é a mesma entre as categorias de "tipo bacia"	0,024	Rejeitar a hipótese nula
4	A distribuição de "ACF_max" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
5	A distribuição de "ACF_mean" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
6	A distribuição de "ACF_std" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
7	A distribuição de "ACF_range" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
8	A distribuição de "ACF_var" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
9	A distribuição de "ITU_max" é a mesma entre as categorias de "tipo bacia"	0,008	Rejeitar a hipótese nula
10	A distribuição de "ITU_range" é a mesma entre as categorias de "tipo bacia"	0,038	Rejeitar a hipótese nula
11	A distribuição de "Vol_vazio" é a mesma entre as categorias de "tipo bacia"	0,001	Rejeitar a hipótese nula
12	A distribuição de "Ind_Vazio" é a mesma entre as categorias de "tipo bacia"	0,010	Rejeitar a hipótese nula
13	A distribuição de "ICR_std" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
14	A distribuição de "ICR_range" é a mesma entre as categorias de "tipo bacia"	0,002	Rejeitar a hipótese nula
15	A distribuição de "ICR_var" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula

FONTE: O autor (2019).

Na aplicação do teste de Kruskal-Wallis com intervalo de confiança em 99%, amplitude da altimetria, amplitude do ITU e índice de vazio deixaram de apresentar diferenças estatisticamente significativas nas médias entre as BPO perenes e intermitentes (FIGURA 61).

FIGURA 61 – Parâmetros geomorfométricos com diferenças estatisticamente significativas (99% de intervalo de confiança) no teste Kruskal-Wallis de amostras independentes.

	Hipótese nula	Sig.	Decisão
1	A distribuição de "Área" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
2	A distribuição de "Perímetro" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
3	A distribuição de "ACF_max" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
4	A distribuição de "ACF_mean" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
5	A distribuição de "ACF_std" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
6	A distribuição de "ACF_range" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
7	A distribuição de "ACF_var" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
8	A distribuição de "ITU_max" é a mesma entre as categorias de "tipo bacia"	0,008	Rejeitar a hipótese nula
9	A distribuição de "Vol_vazio" é a mesma entre as categorias de "tipo bacia"	0,001	Rejeitar a hipótese nula
10	A distribuição de "ICR_std" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula
11	A distribuição de "ICR_range" é a mesma entre as categorias de "tipo bacia"	0,002	Rejeitar a hipótese nula
12	A distribuição de "ICR_var" é a mesma entre as categorias de "tipo bacia"	0,000	Rejeitar a hipótese nula

Os parâmetros geomorfométricos com diferenças significativas entre as BPO amostrais estão sintetizados no QUADRO 17. Considerando o nível de significância em 95%, o teste *t* independente e o teste Kruskal-Wallis de amostras independentes indicaram os mesmos 15 parâmetros geomorfométricos com diferenças significativas entre o grupo das bacias de primeira perenes e o grupo das BPO intermitentes.

QUADRO 17 – Parâmetros geomorfométricos com diferenças significativas entre as bacias amostrais pelos testes estatísticos aplicados. Kruskal-Wallis considerando a significância estatística em 95%.

	VARIÁVEIS COM DIFERENÇA AS BPO PERENES E INTERMITENTES										
	Teste t independente e Teste Kruskal-Wallis										
1.	Área	9. Máximo do índice topográfico de umidade									
2.	Perímetro	10. Amplitude do índice topográfico de umidade									
3.	Amplitude da altimetria	11. Volume de vazio									
4.	Mínimo do plano de curvatura*	12. Índice de vazio									
5.	Máximo da acumulação de fluxo	13. Desvio padrão do índice de concentração de									
6.	Média da acumulação de fluxo	rugosidade									
7.	Desvio padrão da acumulação de fluxo	14. Amplitude do índice de concentração de rugosidade									
8.	Variância da acumulação de fluxo	15. Variância do índice de concentração de rugosidade									
	-										

FONTE: O autor (2019).

Para mensurar as relações entre variáveis com diferenças estatísicas foi aplicado o teste de correlação Pp de Spearman (QUADRO 18). Foi verificado que a área, o perímetro e o volume de vazio apresentam forte correlação positiva entre si. Ou seja, a medida que a área aumenta, tanto o perímetro como o volume de vazio também aumentam. A relação da área da bacia com o perímetro foi relatada em estudos anteriores (BUENO, 2016; PAZ, 2015; SAMPAIO, 2008).

Correlação rô de Spearman															
	AREA	PERIMETRO	Alt_range	Plan_min	ACF_max	ACF_mean	ACF_std	ACF_var	ITU_max	ITU_range	Vol_vazio	Ind_Vazio	ICR_std	ICR_range	ICR_var
AREA		0,959	0,496	-0,657	0,804	0,859	0,865	0,865	0,576	0,615	0,808	0,621	0,727	0,687	0,727
PERIMETRO	0,959		0,515	-0,552	0,78	0,911	0,868	0,868	0,598	0,613	0,787	0,592	0,768	0,717	0,768
Alt_range	0,496	0,515		-0,299	0,516	0,576	0,575	0,575	0,387	0,603	0,677	0,687	0,784	0,821	0,784
Plan_min	-0,66	-0,552	-0,299		-0,522	-0,537	-0,594	-0,594	-0,341	-0,486	-0,556	-0,449	-0,333	-0,302	-0,333
ACF_max	0,804	0,78	0,516	-0,522		0,853	0,92	0,92	0,831	0,819	0,862	0,728	0,731	0,708	0,731
ACF_mean	0,859	0,911	0,576	-0,537	0,853		0,955	0,955	0,75	0,769	0,873	0,716	0,76	0,734	0,76
ACF_std	0,865	0,868	0,575	-0,594	0,92	0,955		0,953	0,772	0,8	0,944	0,822	0,752	0,746	0,752
ACF_range	0,804	0,78	0,516	-0,522	0,953	0,853	0,92	0,92	0,831	0,819	0,862	0,728	0,731	0,708	0,731
ACF_var	0,865	0,868	0,575	-0,594	0,92	0,955	0,953		0,772	0,8	0,944	0,822	0,752	0,746	0,752
ITU_max	0,576	0,598	0,387	-0,341	0,831	0,75	0,772	0,772		0,88	0,724	0,61	0,608	0,629	0,608
ITU_range	0,615	0,613	0,603	-0,486	0,819	0,769	0,8	0,8	0,88		0,791	0,718	0,645	0,676	0,645
Vol_vazio	0,808	0,787	0,677	-0,556	0,862	0,873	0,944	0,944	0,724	0,791		0,93	0,754	0,772	0,754
Ind_Vazio	0,621	0,592	0,687	-0,449	0,728	0,716	0,822	0,822	0,61	0,718	0,93		0,646	0,705	0,646
ICR_std	0,727	0,768	0,784	-0,333	0,731	0,76	0,752	0,752	0,608	0,645	0,754	0,646		0,978	0,958
ICR_range	0,687	0,717	0,821	-0,302	0,708	0,734	0,746	0,746	0,629	0,676	0,772	0,705	0,978		0,978
ICR_var	0,727	0,768	0,784	-0,333	0,731	0,76	0,752	0,752	0,608	0,645	0,754	0,646	0,958	0,978	
**. A correlação é significativa no nível 0,01 (2 extremidades).															
*. A correlação	A correlação é significativa no nível 0.05 (2 extremidades)														

QUADRO 18 – Resultado da correlação Pp de Spearman nos parâmetros geomorfométricos identificados. Cor verde representa as correlações positivas. Cor vermelha representa as correlações negativas.

A medida que a área da bacia de primeira ordem aumenta, as medidas de acumulação de fluxo (máximo, média, desvio padrão e variância) também aumentam. Isso pode ser explicado pela relação da área com a quantidade de *pixels* computada na acumulação de fluxo.

Acumulação de fluxo, do ITU e do ICR também apresentaram alta correlação positiva entre si. O mínimo do plano de curvatura apresentou correlação negativa com todas as outras variáveis, apresento maiores valores negativos para área, perímetro e medidas da acumulação de fluxo.

Para detalhar as correlações dos parâmetros, também foram analisados os grupos das bacias perenes e intermitentes separadamente. A análise da correlação das variáveis apenas das BPO perenes também evidencia forte correlação positiva entre área, perímetro e volume de vazio (QUADRO 19). Medidas da acumulação de fluxo, ITU e ICR também apresentam alta correlação positiva entre si. Medidas da acumulação de fluxo e do ITU apresentam de moderada a alta correlação com área e perímetro. As medidas do ICR apresentam fraca correlação com medidas da acumulação de fluxo.

FONTE: O autor (2019).

Correlação rô de Spearman - Bacias perenes															
	AREA	PERIMETRO	Alt_range	Plan_min	ACF_max	ACF_mean	ACF_std	ACF_var	ITU_max	ITU_range	Vol_vazio	Ind_Vazio	ICR_std	ICR_range	ICR_var
AREA	1,000	0,932	0,291	-0,612	0,894	0,885	0,926	0,926	0,747	0,688	0,868	0,535	0,397	0,391	0,397
PERIMETRO	0,932	1,000	0,174	-0,447	0,826	0,956	0,909	0,909	0,715	0,621	0,744	0,376	0,400	0,350	0,400
Alt_range	0,291	0,174	1,000	-0,135	0,256	0,088	0,171	0,171	0,126	0,400	0,426	0,588	0,647	0,732	0,647
Plan_min	-0,612	-0,447	-0,135	1,000	-0,524	-0,488	-0,618	-0,618	-0,318	-0,526	-0,565	-0,435	0,147	0,115	0,147
ACF_max	0,894	0,826	0,256	-0,524	1,000	0,818	0,918	0,918	0,853	0,779	0,815	0,535	0,291	0,297	0,291
ACF_mean	0,885	0,956	0,088	-0,488	0,818	1,000	0,929	0,929	0,635	0,582	0,65	0,326	0,235	0,182	0,235
ACF_std	0,926	0,909	0,171	-0,618	0,918	0,929	1,000	1	0,712	0,662	0,826	0,553	0,206	0,206	0,206
ACF_var	0,926	0,909	0,171	-0,618	0,918	0,929	1	1,000	0,712	0,662	0,826	0,553	0,206	0,206	0,206
ITU_max	0,747	0,715	0,126	-0,318	0,853	0,635	0,712	0,712	1,000	0,835	0,624	0,247	0,388	0,385	0,388
ITU_range	0,688	0,621	0,400	-0,526	0,779	0,582	0,662	0,662	0,835	1,000	0,594	0,382	0,338	0,356	0,338
Vol_vazio	0,868	0,744	0,426	-0,565	0,815	0,65	0,826	0,826	0,624	0,594	1,000	0,835	0,379	0,426	0,379
Ind_Vazio	0,535	0,376	0,588	-0,435	0,535	0,326	0,553	0,553	0,247	0,382	0,835	1,000	0,279	0,365	0,279
ICR_std	0,397	0,400	0,647	0,147	0,291	0,235	0,206	0,206	0,388	0,338	0,379	0,279	1,000	0,974	1
ICR_range	0,391	0,350	0,732	0,115	0,297	0,182	0,206	0,206	0,385	0,356	0,426	0,365	0,974	1,000	0,974
ICR_var	0,397	0,400	0,647	0,147	0,291	0,235	0,206	0,206	0,388	0,338	0,379	0,279	1	0,974	1,000
**. A correlação é significativa no nível 0,01 (2 extremidades).															
*. A correlação	o é signi	ficativa no níve	l 0,05 (2 ex	tremidades	s).										

QUADRO 19 – Resultado da correlação Pp de Spearman nos parâmetros geomorfométricos identificados nas BPO perenes. Cor verde representa as correlações positivas. Cor vermelha representa as correlações negativas.

FONTE: O autor (2019).

Alta correlação entre área e perímetro, medidas da acumulação de fluxo, ITU e ICR também são observadas nas variáveis das BPO intermitentes (QUADRO 20). As diferenças encontradas foram que o volume e índice de vazio, medidas do ITU e acumulação de fluxo apresentam fraca correlação positiva com área e perímetro. As medidas do ICR apresentam alta correlação com medidas da acumulação de fluxo.

QUADRO 20 – Resultado da correlação Pp de Spearman nos parâmetros geomorfométricos identificados nas BPO intermitentes. Cor verde representa as correlações positivas. Cor vermelha representa as correlações negativas.

	Correlação rô de Spearman - Bacias intermitentes														
	AREA	PERIMETRO	Alt_range	Plan_min	ACF_max	ACF_mean	ACF_std	ACF_var	ITU_max	ITU_range	Vol_vazio	Ind_Vazio	ICR_std	ICR_range	ICR_var
AREA	1,000	0,974	0,397	-0,588	0,512	0,624	0,641	0,641	0,097	0,394	0,459	0,326	0,682	0,668	0,682
PERIMETRO	0,974	1,000	0,462	-0,612	0,503	0,729	0,682	0,682	0,212	0,479	0,515	0,385	0,715	0,697	0,715
Alt_range	0,397	0,462	1,000	-0,226	0,471	0,682	0,679	0,679	0,382	0,647	0,724	0,706	0,782	0,812	0,782
Plan_min	-0,588	-0,612	-0,226	1,000	-0,309	-0,335	-0,350	-0,350	-0,115	-0,259	-0,200	-0,094	-0,491	-0,385	-0,491
ACF_max	0,512	0,503	0,471	-0,309	1,000	0,694	0,9	0,9	0,691	0,774	0,812	0,726	0,715	0,75	0,715
ACF_mean	0,624	0,729	0,682	-0,335	0,694	1,000	0,915	0,915	0,682	0,859	0,868	0,774	0,7	0,756	0,7
ACF_std	0,641	0,682	0,679	-0,350	0,9	0,915	1,000	1	0,718	0,903	0,932	0,856	0,806	0,862	0,806
ACF_var	0,641	0,682	0,679	-0,350	0,9	0,915	1	1,000	0,718	0,903	0,932	0,856	0,806	0,862	0,806
ITU_max	0,097	0,212	0,382	-0,115	0,691	0,682	0,718	0,718	1,000	0,882	0,712	0,765	0,397	0,497	0,397
ITU_range	0,394	0,479	0,647	-0,259	0,774	0,859	0,903	0,903	0,882	1,000	0,912	0,921	0,621	0,712	0,621
Vol_vazio	0,459	0,515	0,724	-0,200	0,812	0,868	0,932	0,932	0,712	0,912	1,000	0,959	0,691	0,75	0,691
Ind_Vazio	0,326	0,385	0,706	-0,094	0,726	0,774	0,856	0,856	0,765	0,921	0,959	1,000	0,606	0,688	0,606
ICR_std	0,682	0,715	0,782	-0,491	0,715	0,7	0,806	0,806	0,397	0,621	0,691	0,606	1,000	0,959	0,921
ICR_range	0,668	0,697	0,812	-0,385	0,75	0,756	0,862	0,862	0,497	0,712	0,75	0,688	0,959	1,000	0,959
ICR_var	0,682	0,715	0,782	-0,491	0,715	0,7	0,806	0,806	0,397	0,621	0,691	0,606	0,921	0,959	1,000
**. A correlaçã	io é sign	ificativa no nív	el 0,01 (2 e	xtremidade	es).										
*. A correlação	*. A correlação é significativa no nível 0,05 (2 extremidades).														

FONTE: O autor (2019).

Estes grupos de variáveis com alta correlação entre si ficam evidentes quando se aplica a ACP. A FIGURA 62 ilustra a dispersão das variáveis nos dois primeiros componentes identificados na ACP aplicada no grupo das bacias amostrais. Variáveis como as medidas da acumulação de fluxo se apresentam sobrepostas no gráfico de dispersão.

FIGURA 62 – Gráfico de dispersão dos dois primeiros grupos gerado pela aplicação da ACP nas variáveis das BPO amostrais.

O primeiro componente principal identificado (explica aproximadamente 66% da variância total) está relacionado com as dimensões das BPO amostrais, envolvendo área, perímetro, volume de vazio e medidas acumulação de fluxo. O segundo componente principal apresenta maior influência das variáveis relacionadas a altimetria e ICR das bacias amostrais (explicando aproximadamente 18% da variância total).

O terceiro componente principal demonstra influência dos valores mínimos do plano de curvatura (explicando aproximadamente 5% da variância total). O quarto componente principal teve maior influência das medidas do ITU (explicando aproximadamente 4% da variância total). O último componente principal teve maior influência do índice de vazio (explicando aproximadamente 3% da variância total).

FONTE: O autor (2019).

Componentes principais									
Variavois	1 Vari	Variavois	2	Variavaia	3	Variavois	4		5
vallavels	Cargas	vallavels	Cargas	vallavels	Cargas	Vallavels	Cargas	vallavels	Cargas
AREA	0,957	ICR_std	0,756	Plan_min	0,594	ITU_max	0,543	Ind_Vazio	0,431
ACF_mean	0,943	ICR_var	0,701			ITU_range	0,464		
Vol_vazio	0,93	ICR_range	0,658						
PERIMETRO	0,928	Alt_range	0,632						
ACF_max	0,892								
ACF_std	0,88								
ACF_var	0,87								
Variância total explicada									
	Comp	onente	Tot	al	% de variância		% cumulativa		
		1	9,8	89	65,	,926	65,		
		2	2,7	69	18,	,463	84,		
3			0,7	98	5,	318	89,		
4		0,6	43	4,2	284	93,			
		5	0,4	42	2,9	946	96,	938	
Matriz de componentea									
Método de Extração: análise de Componente Principal.									
a 5 componentes extraídos.									

QUADRO 21 – Componentes principais gerados pela aplicação da ACP nas variáveis das BPO amostrais.

As primeiras variáveis de cada componente principal foram aplicadas na ACP. A FIGURA 63 mostra que o desvio padrão do ICR, índice de vazio, máximo do ITU e área são variáveis mais relacionadas com as bacias amostrais perenes e mínimo do plano de curvatura está mais relacionado com as bacias amostrais intermitentes.

FONTE: O autor (2019).

A FIGURA 64 ilustra o primeiro componente principal. A área das bacias das BPO perenes é, em média, 65% maior que as BPO perenes. Isto implica diretamente nos valores de acumulação de fluxo, onde os maiores valores estão nas BPO perenes.

FIGURA 64 – Parâmetros geomorfométricos diferentes nas BPO amostrais - Componente principal 1 e 2.

FONTE: O autor (2019).

Compilando valores de área de BPO perenes na literatura, observa-se que os valores de área se aproximam dos valores encontrados na pesquisa (QUADRO 22). A área das BPO já havia sido citada na literatura como parâmetro sensível a existência de rio de primeira ordem perene, em regiões como bacia hidrográfica do rio Benevente no Espirito Santo (SAMPAIO, 2008), Alto Jequititaí em Minas Gerais (SODRÉ *et al.*, 2007), vale da Ribeira em São Paulo (PAZ, 2015) e em folhas topográficas no sudoeste paranaense (SOUSA; SAMPAIO, 2014).

Fonte	Área	Localização	Contexto						
	(ha)		geomorfológico						
(SANDER; SANTOS; FERNANDEZ,	79	Marechal Candido Rondon	Planalto						
2006)		– PR							
(GRAMANI <i>et al.,</i> 2018)	18,7	Caraguatatuba - SP	Serra do mar						
(MAGALHÃES; DA CUNHA; DE	400	Marechal Candido Rondon	Planalto						
NÓBREGA, 2014)		– PR							
(FERNANDEZ, 1989)	65	Irati – PR	Planalto						
(MACHADO, 2013)	38	Gaspar, SC	Planalto						
(UEMA, 2018)	370	Maringá, PR	Planalto						
(OLIVEIRA <i>et al.,</i> 2018)	411	Toledo – PR	Planalto						
(FERNANDEZ; SANDER, 1998)	36	Marechal Candido Rondon	Planalto						
		– PR							

QUADRO 22 – Compilação de valores de área para BPO perenes em outros estudos. Descaque para áreas no Terceiro Planalto Paranaense.

FONTE: O autor (2019).

Sander, Santos e Fernandez (2006) analisaram a bacia de primeira ordem perene córrego Guavirá (oeste paranaense, Marechal Candido Rondon – PR), que apresenta 79 ha, valor compatível com a médias das BPO perenes encontradas na área de estudo.

O ICR já foi citado na literatura como parâmetro com papel na diferenciação das BPO perenes e intermitentes, como na bacia hidrográfica do rio Benevente no Espirito Santo (SAMPAIO, 2008) e na bacia Hidrográfica do Rio Mutum-Paraná em Rondônia (BUENO, 2016). O estudo de Banon (2013), que analisou a relação da morfometria do relevo com a rede de drenagem no Estado do amazonas, também identificou a acumulação de fluxo como parâmetro geomorfométrico importante para ocorrência e mapeamento ou não de rio de primeira ordem perene (início da rede de drenagem), embora não realizasse validação de campo.

Neste trabalho, foram identificados o plano de curvatura e o ITU como parâmetros geomorfométricos diferentes em BPO perenes e intermitentes. O índice de volume de vazio, embora apresentasse diferenças significativas entre os grupos de bacias amostrais, apresentando a menor variância explicada (aproximadamente 3%).

Para concluir, apresenta-se a resposta obtida para a pergunta central da presente pesquisa (existem diferenças estatisticamente significativas nos parâmetros geomorfométricos do relevo em bacias de primeira ordem com rio perene e com rio intermitente?): No contexto da área abrangida pela folha topográfica SG-21-X-D-III-4 – MI 2832-4, no oeste paranaense, conclui-se que sim, existem 15 parâmetros geomorfométricos com diferenças estatisticamente significativas entre as bacias amostrais de primeira ordem perenes e intermitentes.
6 CONSIDERAÇÕES FINAIS

Esta pesquisa teve foco na representação espacial da rede de drenagem, propondo-se a investigar quantitativamente, por meio de ferramentas em SIG, a relação entre o relevo e a rede de drenagem, relação esta apontada na literatura por evidências empíricas.

A pesquisa teve como norte a busca de uma alternativa para o mapeamento da rede drenagem, no entanto, restringindo-se a responder uma questão elementar sobre bacias de primeira ordem com rio perene e com rio intermitente que antecedem a proposição de um novo método: existem diferenças estatisticamente significativas nos parâmetros geomorfométricos do relevo em bacias de primeira ordem com rio perene e com rio intermitente? O destaque é dado as bacias dos rios de primeira ordem, pois são os mais afetadas por erros de omissão e comissão.

Verificou-se que tais limitações na representação espacial da rede de drenagem podem afetar ou até inviabilizar a execução de pesquisas científicas e estudos técnicos. Esses mapeamentos são empregados para diversos fins na área das geociências, sendo necessárias análises pretéritas para verificar se aa informações cartográficaa tem qualidade adequada para a finalidade.

Visando responder à questão central da pesquisa e tendo como recorte a área abrangida pela folha topográfica SG-21-X-D-III-4 – MI 2832-4 (oeste paranaense), foram empregadas técnicas de SIG, aerolevantamentos com RPA para geração de MDT e desenvolvimento de um algorítmo para automatizar a extração de medidas de estatística descritiva dos parâmetros geomorfométricos selecionados. A partir disso, foram aplicadas técnicas de estatística inferencial para responder se as médias nos valores dos parâmetros geomorfométricos nas bacias de primeira ordem perenes são significativamente diferentes nas encontradas nas intermitentes.

Destaca-se o emprego de RPA para geração de MDT com alto nível de detalhamento, que se caracteriza como procedimento com custo inferior em comparação com procedimentos como aerolevantamentos LIDAR e RADAR. Salienta-se a necessidade de avaliação da qualidade altimétrica dos MDT gerados por esta técnica.

Embora tenham sido identificadas diferenças geomorfométricas do relevo entre bacias de primeira ordem perenes e intermitentes, são necessárias outras pesquisas visando incorporar os resultados aqui obtidos em propostas com regressão estatística, árvores de decisão ou redes neurais para automatizar o mapeamento da rede de drenagem. Demais recomendações para pesquisas futuras são apresentadas no item a seguir.

6.1 RECOMENDAÇÕES PARA TRABALHOS FUTUROS

Conforme a conclusão da pesquisa, novas perguntas e itens para discussão surgem e aqui são apresentados como recomendações para trabalhos futuros. Destaca-se:

- Ampliar o número de bacias de primeira ordem amostrais perenes e intermitentes e analisar se as diferenças nos parâmetros geomorfométricos se mantém na área de estudo desta pesquisa;
- Comparar parâmetros geomorfométricos do relevo entre bacias de primeira ordem perenes e intermitentes em outros recortes espaciais com diferentes caraterísticas fisiograficas;
- Empregar MDT de outras fontes como oriundos de levantamentos LIDAR e verificar se as diferenças nos parâmetros geomorfométricos se mantém na área de estudo desta pesquisa ou em outro recorte espacial;
- Verificar se a alteração da resolução espacial do MDT (oriundo de aerolevantamento com RPA ou não) altera as diferenças nos parâmetros geomorfométricos identificados na área de estudo desta pesquisa ou em outro recorte espacial;
- Realizar testes neste ou em outro recorte espacial com outros parâmetros geomorfométricos disponíveis na literatura e em *softwares* de SIG como o QGIS, a citar: curvatura máxima e mínima, acumulação de fluxo pelo método D-Infinito, índice de posição topográfica ou o índice de corrente de máximo fluxo.
- Analisar se existem diferenças em outros atributos fisiográficos neste ou em outro recorte espacial nas bacias de primeira ordem perenes e intermitentes, como volume precipitado, embasamento rochoso, contexto pedológico, presença/tipo de vegetação, uso da terra, entre outros.

- Analisar diferenças nos resultados alcançados neste ou outro recorte espacial conforme alteração da significância estatística (90%, 85%...) ou com emprego de outros testes de estatística inferencial paramétricos ou não paramétricos como teste ANOVA de uma via ou teste de Wilcoxon-Mann-Whitney;
- Verificar a qualidade dos mapeamentos da rede de drenagem obtidos a partir das declarações dos dados do Cadastro Ambiental Rural, quanto a erros de omissão e comissão em rios de primeira ordem.

REFERÊNCIAS

ABRAMS, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform. **International Journal of Remote Sensing**, v. 21, n. 5, p. 847–859, 2000. Disponível em:

https://www.tandfonline.com/doi/abs/10.1080/014311600210326>.

AGRESTI, A.; FINLAY, B. **Métodos estatísticos para as ciências sociais**. Porto Alegre: Penso Editora, 2012.

ANA. Lista de Termos para o Thesaurus de Recursos Hídricos da Agência Nacional de Águas., 2014. Brasilia: Agência Nacional de Águas - ANA. Disponível em: https://www.cbhparanaiba.org.br/_download.php?file=aHR0cDovL2NiaHBhcmFu WliYS5vcmcuYnIvdXBsb2Fkcy9kb2N1bWVudG9zL2RpY2lvbmFyaW9fYW5hL2RpY 2lvbmFyaW9fcmVjdXJzb3NfaGlkcmljb3NfYW5hLnBkZg==>.

ARCANJO, J. B. Á. Fotogeologia: conceitos, métodos e aplicações. Salvador: CPRM/SGB, 2011.

06832013000200004&script=sci_abstract&tlng=pt>.

ASSAD, E. D.; SANO, E. E. Sistema de informações geográficas: aplicações na agricultura., 1998. EMBRAPA-CPAC Brasília.

BAND, L. E. Extraction of channel networks and topographic parameters from digital elevation data. **Channel network hydrology**, p. 13–42, 1993. Chichester, New York: John Wiley & Sons. Disponível em:

http://solim.geography.wisc.edu/axing/teaching/geog579/lectures/references/Beven _Kirkby_ch02_Band.PDF>.

BANON, L. C. Árvores de decisão aplicadas à extração automática de redes de drenagem, 2013. 115 f. Dissertação (Mestrado em Computação Aplicada) –

Departamento de Computação Aplicada, Instituto Nacional de Pesquisas Espaciais, São José dos Campos. Disponível em: http://mtc-

m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2013/12.04.03.56/doc/publicacao.pdf>. BERRY, J. K. **Beyond mapping: concepts, algorithms, and issues in GIS**. Fort. Collins: GIS World Books Fort Collins[^] eColorado Colorado, 1993.

BEVEN, K. J.; KIRKBY, M. J. **Channel network hydrology**. New York: John Wiley & Sons, 1993.

BORGES, K. A. V; DAVIS JR, C. A.; LAENDER, A. H. F. Modelagem conceitual de dados geográficos. In: M. A. CASANOVA; G. CÂMARA; C. A. D. JUNIOR; G. R.

QUEIROZ (Orgs.); **Banco de Dados Geográficos**. p.83–136, 2005. Curitiba: Editora MundoGEO. Disponível em: http://www.dpi.inpe.br/livros/bdados/cap3.pdf>.

BOSQUILIA, R. W. D.; FIORIO, P. R.; DUARTE, S. N.; MINGOTI, R. Comparação entre métodos de mapeamento automático de rede de drenagem utilizando SIG. **IRRIGA**, v. 20, n. 3, p. 445–457, 2015. Disponível em:

<http://irriga.fca.unesp.br/index.php/irriga/article/view/879>.

BOW, S.-T. **Pattern recognition and image preprocessing**. New York: Marcel Dekker, 2002.

BRARDINONI, F.; SLAYMAKER, O.; HASSAN, M. A. Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data.

Geomorphology, v. 54, n. 3–4, p. 179–196, 2003. Elsevier. Disponível em: https://www.sciencedirect.com/science/article/pii/S0169555X02003550. BRASIL. Glossário de termos hidrológicos. , 1976. Brasilia: Departamento Nacional de Águas e Energia Elétrica - DNAEE.

BRASIL. Resolução CONAMA nº 303, de 20 de março de 2002. Dispõe sobre parâmetros, definições e limites de Áreas de Preservação Permanente. **Diário Oficial da União**, 2002. Brasília.

BRASIL. Lei n° 12.651, de 25 de maio de 2012. **Diário Oficial da União**, p. 1–32, 2012. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/L12651compilado.htm.

BRYAN, K. Classification of springs. **The Journal of Geology**, v. 27, n. 7, p. 522–561, 1919. University Press of Chicago. Disponível em:

http://www.journals.uchicago.edu/doi/pdfplus/10.1086/622677>

BUENO, L. F. Inteligência artificial aplicada à melhoria da acurácia do mapeamento de redes de drenagem, 2016. 148 f. Tese (Doutorado em Geografia) – Setor de Ciências da Terra, Universidade Federal do Paraná, Curitiba. Disponível em: https://acervodigital.ufpr.br/handle/1884/44459>.

CASTRO, P. S.; LIMA, F. Z.; LOPES, J. D. S. **Recuperação e conservação de nascentes**. Viçosa/MG: Centro de Produções Técnicas - CPT, 2007.

CAVIGLIONE, J. H.; KIIHL, L. R. B.; CARAMORI, P. H.; et al. Cartas climáticas do Estado do Paraná. Anais do Congresso e mostra de agroinformática. **Anais...** v. 1, p.12–18, 2000. Ponta Grossa: Universidade Estadual de Ponta Grossa. Disponível em: http://infoagro2000.deinfo.uepg.br/artigos/pdf/info_102.pdf>.

CHAPLOT, V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3–N loads predictions. **Journal of hydrology**, v. 312, n. 1–4, p. 207–222, 2005. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/S0022169405000892>.

CHEN, L.; YUAN, Y.; YUAN, X.; et al. Threshold Selection of River Network Extraction Based on Different DEM Scales Using ATRIC Algorithm. IOP Conference Series: Materials Science and Engineering. **Anais...** v. 322, p.52047, 2018. IOP Publishing.

CHORLEY, R. J. Climate and Morphometry. **The Journal of Geology**, v. 65, n. 6, p. 628–638, 1957. Disponível em: https://doi.org/10.1086/626468.

CHORLEY, R. J.; DALE, P. F. Cartographic problems in stream channel delineation. **Cartography**, v. 7, n. 4, p. 150–162, 1972. Taylor & Francis. Disponível em:

http://www.tandfonline.com/doi/abs/10.1080/00690805.1972.10437698

CHORLEY, R. J.; SCHUMM, S. A.; SUGDEN, D. E. **Geomorphology**. 1^o ed. London: Methuen & Co. Ltd, 1984.

CHRISTOFOLETTI, A. Análise morfométrica de bacias hidrográficas. **Notícia Geomorfológica**, v. 9, n. 18, p. 35–64, 1969.

CHRISTOFOLETTI, A. Geomorfologia. São Paulo: E. Blucher, 1974.

CHRISTOFOLETTI, A. Geomorfologia. 2º ed. São Paulo: Edgard Blücher, 1980.

COLLINS, S. H.; MOON, G. C. Algorithms for dense digital terrain models.

Photogrammetric Engineering and Remote Sensing, v. 47, n. 1, p. 71–76, 1981. Disponível em: https://www.asprs.org/wp-

content/uploads/pers/1981journal/jan/1981_jan_71-76.pdf>.

COLOMBO, R.; VOGT, J. V; SOILLE, P.; PARACCHINI, M. L.; DE JAGER, A. Deriving river networks and catchments at the European scale from medium resolution digital elevation data. **Catena**, v. 70, n. 3, p. 296–305, 2007. Disponível em: https://www.sciencedirect.com/science/article/pii/S0341816206001937.

COURTOIS, M.; TRAIZET, M. The SPOT satellites: From SPOT 1 to SPOT 4. **Geocarto International**, v. 1, n. 3, p. 4–14, 1986.

COUTINHO, H. J. S.; PETRY, A.; CARDOSO, F. C. Avaliação da utilização de técnicas de estereoscopia para apresentação de conceitos de geometria descritiva. **Graphica Curitiba, Paraná, Brasil**, 2007. Disponível em:

<http://www.exatas.ufpr.br/portal/docs_degraf/artigos_graphica/AVALIACAODAUTILI ZACAO.pdf>.

CUNHA, S. B. DA; GUERRA, A. J. T. Geomorfologia uma atualização de bases e conceitos. **Rio de Janeiro: Bertrand Brasil**, 1995.

DAVIS, S. N.; DEWIEST, R. J. M. **Hydrogeology**. New York: John Wiley & Sons, 1966.

DELAZARI, L. S. **Extração automática de redes de drenagem a partir de modelos digitais de altitude**, 1996. 137 f. Dissertação (Mestrado em Geomática) – Departamento de Geomática, Universidade Federal do Paraná, Curitiba. Disponível em: http://www.acervodigital.ufpr.br/bitstream/handle/1884/43582/D - LUCIENE STAMATO DELAZARI.pdf?sequence=1>.

DEMATTÊ, J. A. M.; DEMÉTRIO, V. A. Caracterização de solos por padrões de drenagem e sua relação com índices de intemperismo. **Pesquisa Agropecuária Brasileira**, v. 33, n. 1, p. 87–95, 1998. Disponível em:

<http://seer.sct.embrapa.br/index.php/pab/article/view/4819>.

Diretoria de Serviço Geográfico (DSG). Norma da Especificação Técnica para Aquisição de Dados Geoespaciais Vetoriais de Defesa da Força Terrestre (ET ADGV Defesa F Ter). 2ª Edição. Brasília, 2016.

DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta **Topográfica.**, 1974a. Folha Duas Barras, MI 2716-2, Escala:1:50.000, colorida: DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1974b. Folha Cordeiro, MI 2717-1, Escala:1:50.000, colorida: DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1976a. Folha Cantagalo, MI 2683-3, Escala:1:50.000, colorida: . DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1976b. Folha Bom Retiro, MI 2908-3, Escala:1:50.000, colorida: . DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1976c. Folha Anitápolis. MI 2908-4. Escala: 1:50.000. colorida: DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1976d. Folha Aiurê, MI 2924-1, Escala:1:50.000, colorida: . DIRETORIA DE SERVICO GEOGRÁFICO DO EXÉRCITO (DSG). Carta **Topográfica.**, 1978. Folha Além Paraíba, MI 2682-4, Escala:1:50.000, colorida: DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1980a. Folha Maria, MI 2934-2, Escala:1:50.000, colorida: . DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1980b. Folha Serafina Correia, MI 2935-1, Escala:1:50.000, colorida: . DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1980c. Folha Arvorezinha, MI 2934-4, Escala:1:50.000, colorida: DIRETORIA DE SERVICO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 1980d. Folha GUAPORÉ, MI 2935-3, Escala:1:50.000, colorida: DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXERCITO (DSG). Carta Topográfica, 2000. Folha Santa Isabel do Ivaí, MI 2754-2, Escala:1:50.000, colorida: DIRETORIA DE SERVICO GEOGRÁFICO DO EXÉRCITO. DIRETORIA DE SERVICO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 2001. Folha Rio Sagrado, MI 2858-1-NE, Escala:1:25.000, colorida:

DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). **Carta Topográfica.**, 2002. Folha Estrada da Graciosa, MI 2843-3 SE, Escala:1:25.000, colorida:

DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). Carta Topográfica., 2003a. Folha Rio Marumbi, MI 2858-1-NO, Escala:1:25.000, colorida:

DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). **Carta Topográfica.**, 2003b. Folha Represa Guaricana, MI 2858-1-SO, Escala:1:25.000, colorida: .

DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO (DSG). **Carta Topográfica.**, 2003c. Folha Rio Canavieiras, MI 2858-1-SE, Escala:1:25.000, colorida: .

DIRETORIA DO SERVIÇO GEOGRÁFICO DO EXÉRCITO. NORMA PARA ESPECIFICAÇÃO TÉCNICA PARA PRODUTOS DE CONJUNTO DE DADOS GEOESPACIAIS (ET-PCDG). 1º ed. Rio de Janeiro, 2014.

DJI. Phantom 3 Professional. , 2015. Disponível em:

<https://dl.djicdn.com/downloads/phantom_3/pt/Phantom_3_Professional_User_Man ual_pt.pdf>.

DJI. Phantom 4 Pro., 2016. Disponível em:

<https://dl.djicdn.com/downloads/phantom_4/en/Phantom_4_User_Manual_en_v1.0. pdf>.

DONADIO, N. M. M.; GALBIATTI, J. A.; PAULA, R. C. DE. Qualidade da água de nascentes com diferentes usos do solo na bacia hidrográfica do córrego rico, São Paulo, Brasil. **Engenharia Agrícola**, v. 25, n. 1, p. 115–125, 2005.

DORRER, E.; ZHOU, X. Towards optimal relief representation from Mars imagery by combination of DEM and shape from shading. International Archives of

Photogrammetry and Remote Sensing. **Anais...** v. 32, p.156–161, 1998. Stuttgart. Disponível em: https://www.isprs.org/PROCEEDINGS/XXXII/part4/dorrer32.pdf>.

DSG. Especificação Técnica para a Estruturação de Dados Geoespaciais Vetoriais de Defesa da Força Terrestre (ET-EDGV). 2º ed. Brasília, 2016.

EPIPHANIO, J. C. N.; FORMAGGIO, A. R.; VALÉRIO FILHO, M. Imagens RBV/Landsat-3 em estudos quantitativos da rede de drenagem. In: INPE (Org.); Anais do II SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO. **Anais...** p.285–292, 1982. São José dos Campos: INPE. Disponível em:

<http://urlib.net/rep/dpi.inpe.br/marte@80/2008/09.30.12.08?ibiurl.language=pt-BR>.
 ESCOBAR, G. D. AGUAS SUPERFICIALES. In: G. D. ESCOBAR (Org.); MANUAL
 DE GEOLOGIA PARA INGENIEROS. p.606, 2003. MANIZALES: Universidad

Nacional de Colombia. Disponível em:

http://www.bdigital.unal.edu.co/1572/336/aguassuperficiales.pdf>.

ESRI. ArcGis, Spatial Analyst, 3D Analyst. Version 10.1. Environmental Systems Research Institute. , 2010. Califórnia.

EVERITT, B. S.; DUNN, G. Principal components analysis. **Applied Multivariate Data Analysis, Second Edition**, p. 48–73, 2001. Wiley Online Library.

FAN, F. M.; COLLISCHONN, W.; SORRIBAS, M. V.; PONTES, P. R. M. Sobre o início da rede de drenagem definida a partir dos modelos digitais de elevação.
Revista Brasileira de Recursos Hídricos, v. 18, p. 241–257, 2013. Disponível em: https://www.abrh.org.br/SGCv3/index.php?PUB=1&ID=109&SUMARIO=1630.
FARIA, A. P. Dinâmica e Fragilidade de Bacias Fluviais de Primeira Ordem, 1996. 225 f. Tese (Doutorado em Geografia) – Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

FARIA, A. P. A dinâmica de nascentes e a influência sobre os fluxos nos canais. **A Água em Revista, Rio de Janeiro**, v. 8, p. 74–80, 1997.

FARR, T. G.; ROSEN, P. A.; CARO, E.; et al. The shuttle radar topography mission. **Reviews of Geophysics**, v. 45, n. 2, 2007. Disponível em:

https://www.researchgate.net/publication/200459069_The_Shuttle_Radar_Topogra phy_Mission>.

FELIPPE, M. F. CARACTERIZAÇÃO E TIPOLOGIA DE NASCENTES EM UNIDADES DE CONSERVAÇÃO DE BELO HORIZONTE-MG COM BASE EM VARIÁVEIS GEOMORFOLÓGICAS, HIDROLÓGICAS E AMBIENTAIS, 2009. 277 f.

Dissertação (Mestrado em Geografia e Análise Ambiental) – Departamento de Geografia, Instituto de Geociências - Universidade Federal de Minas Gerais, Belo Horizonte. Disponível em:

http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/MPBB-83CPWN.

FELIPPE, M. F. **Gênese e dinâmica de nascentes: contribuições a partir da investigação hidrogeomorfológica em região tropical**, 2013. Universidade Federal de Minas Gerais. Disponível em:

<http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/IGCC-9GQJDJ>. FELIPPE, M. F.; MAGALHÃES JUNIOR, A. P. Conflitos conceituais sobre nascentes de cursos d'água e propostas de especialistas. **Revista Geografias**, v. 9, n. 1, p. 70–81, 2013. Disponível em:

<https://igc.ufmg.br/portaldeperiodicos/index.php/geografias/article/view/583>. FERNÁNDEZ, D. C. J. AVALIAÇÃO DE ALGORITMOS E MODELOS DIGITAIS DE ELEVAÇÃO PARA EXTRAÇÃO AUTOMÁTICA DA DRENAGEM, 2011. 114 f.

Dissertação (Mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos. Disponível em: http://mtcm16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2011/05.01.13.51/doc/publicacao.pdf>. FERNÁNDEZ, D.; VALERIANO, M.; ZANI, H.; ANDRADES FILHO, C. DE O. Extração automática de redes de drenagem a partir de modelos digitais de elevação. **Revista Brasileira de ...**, v. 64/5, p. 619–634, 2013. Disponível em:

<http://www.rbc.lsie.unb.br/index.php/rbc/article/view/469>.

FERNANDEZ, O. V. Q.; SANDER, C. Levantamento preliminar das características físicas e ambientais de canais de primeira ordem: bacia do córrego Curvado, Mal. C. Rondon (PR). **Geosul**, v. 14, n. 27, p. 622–624, 1998. Disponível em:

<https://www.researchgate.net/publication/303288034_Levantamento_preliminar_da s_caracteristicas_fisicas_e_ambientais_de_canais_de_primeira_ordem_bacia_do_c orrego_Curvado_Mal_C_Rondon_PR>.

FERNANDEZ, R. A. Identificação dos atributos do solo determinantes da qualidade de sítio para araucária angustifólia (BERT) O. Ktze., com apoio na metodologia da análise estrutural, 1989. [sn]. Disponível em:

https://acervodigital.ufpr.br/handle/1884/25174>.

FIELD, A. **Descobrindo a estatística usando o SPSS-2**. Porto Alegre: Bookman Editora, 2009.

FIELD, M. S. A Lexicon of Cave and Karst Terminology with Special Reference to Environmental Karst Hydrology. 2° ed. Washington, D. C.: United States Environmental Protection Agency, 2002.

FLORENZANO, T. G. **Geomorfologia: conceitos e tecnologias atuais**. São Paulo: Oficina de Textos, 2016.

FLORINSKY, I. V. Combined analysis of digital terrain models and remotely sensed data in landscape investigations. **Progress in Physical Geography**, v. 22, n. 1, p.

33–60, 1998. Sage Publications Sage CA: Thousand Oaks, CA. Disponível em: http://iflorinsky.impb.ru/Florinsky-1998d.pdf>.

FORTUNATO NETO, J. **Dicionário ambiental básico: iniciação à linguagem ambiental**. 8º ed. Brotas: Gráfica e editora Remi, 2010.

GARCIA, M. J. L.; CAMARASA, A. M. Use of geomorphological units to improve drainage network extraction from a dem: Comparison between automated extraction and photointerpretation methods in the carraixet catchment (valencia, spain).

International Journal of Applied Earth Observation and Geoinformation, v. 1, n. 3–4, p. 187–195, 1999. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/S0303243499850120>.

GLASS, G. V. Testing homogeneity of variances. **American Educational Research Journal**, v. 3, n. 3, p. 187–190, 1966. Sage Publications.

GOMES, P. M.; MELO, C.; VALE, V. S. Avaliação dos impactos ambientais em nascentes na cidade de Uberlândia-MG: análise macroscópica. **Sociedade & Natureza**, v. 17, n. 32, p. 103–120, 2005. Sociedade e Natureza. Disponível em: http://www.seer.ufu.br/index.php/sociedadenatureza/article/viewFile/9169/5638. GOUDIE, A. **Encyclopedia of geomorphology**. London; New York: Routledge: International Association of Geomorphologists, 2004.

GRAMANI, M. F.; CAVALHIERI, C. P.; DE SOUZA SILVA, A. P.; DA COSTA MANTOVANI, J.; CAROU, C. B. O Uso de Drone Multirrotor de Pequeno Porte para Diagnóstico e Monitoramento de Acidentes Geológicos., 2018. Disponível em: <https://www.researchgate.net/publication/327546671_O_Uso_de_Drone_Multirrotor

_de_Pequeno_Porte_para_Diagnostico_e_Monitoramento_de_Acidentes_Geologico s>.

GUERRA, A. T.; GUERRA, A. J. T. **Novo dicionário geológico-geomorfológico**. Rio de Janeiro: Bertrand Brasil, 1997.

GUJJAR, P.; RAO, P.; RAO, P. S.; DEVI, G. L. The MIR Flickr Retrieval Evaluation Proposal Based on User Tags and Textual Passwords. **International Journal of Advanced Engineering, Management and Science**, , n. 4, p. 343–349, 2017. HENGL, T.; EVANS, I. S. Mathematical and digital models of the land surface. In: T.

Hengl; H. I. Reuter (Orgs.); Geomorphometry - Concepts, Software,

Applications. v. 1, p.31–64, 2009. Amsterdam: Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/S0166248108000020>.

HERITAGE, G. L.; MILAN, D. J.; LARGE, A. R. G.; FULLER, I. C. Influence of survey strategy and interpolation model on DEM quality. **Geomorphology**, v. 112, n. 3–4, p. 334–344, 2009. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/S0169555X09002591>

HIRUMA, S. T.; PONÇANO, W. L. Densidade de drenagem e sua relação com fatores geomorfopedológicos na área do alto rio Pardo, SP e MG. **Revista do Instituto Geológico**, v. 15, n. 1–2, p. 49–57, 1994. Disponível em:

http://ppegeo.igc.usp.br/index.php/rig/article/view/8833>.

HORN, B. K. P. Hill shading and the reflectance map. **Proceedings of the IEEE**, v. 69, n. 1, p. 14–47, 1981. IEEE. Disponível em:

<http://people.csail.mit.edu/bkph/papers/Hill-Shading.pdf>.

HORTON, R. E. Erosional development of streams and their drainage basins, hydrophyrical approach to quantitative morphology. **Nihon Ringakkai Shi/Journal of the Japanese Forestry Society**, v. 37, n. 6, p. 257–262, 1945.

HOWARD, A. D. Drainage analysis in geologic interpretation: a summation. **AAPG bulletin**, v. 51, n. 11, p. 2246–2259, 1967. American Association of Petroleum

Geologists. Disponível em: http://archives.datapages.com/data/bulletns/1965-67/data/pg/0051/0011/2200/2246.htm.

HUNG, M. N. W. B. et al. LEVANTAMENTO COM VEÍCULO AÉREO NÃO TRIPULADO PARA GERAÇÃO DE MODELO DIGITAL DO TERRENO EM BACIA EXPERIMENTAL COM VEGETAÇÃO FLORESTAL ESPARSA. **Raega-O Espaço Geográfico em Análise**, v. 43, p. 215–231, 2018.

IBGE. **Vocabulário básico de recursos naturais e meio ambiente**. 2º ed. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2004.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Carta Topográfica.**, 1971. Folha Herciliópolis, MI 2876, Escala:1:100.000, colorida: . IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Carta**

Topográfica., 1973. Folha Caçador, MI 2877, Escala:1:100.000, colorida: . IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Carta Topográfica.**, 1976a. Folha Joacaba, MI 2888, Escala:1:100.000, colorida: . IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Carta**

Topográfica., 1976b. Folha Videira, MI 2889, Escala:1:100.000, colorida: . INAPAR. **Base Hidrográfica do Paraná - 1:50.000**. Curitiba - PR, 2011. INSTITUTO DAS ÁGUAS DO PARANÁ (INAPAR). Estação Pluviometrica. , 2018. Estação Serranópolis 02554018. Coordenadas:25° 24' 48''/54° 02' 14''.altitude

279.253 m.

ITCG - INSTITUTO DE TERRAS, C. E G. DO P. Carta Topográfica. , 2016. Folha Sem Nome, ID 227207170, Escala:1:10.000, sem edição.

JAIN, V. E. Geotectonica general. Moscou: Mir, 1984.

JARVIS, A.; REUTER, H. I.; NELSON, A.; GUEVARA, E. SRTM 90m Digital Elevation Database v4.1. Disponível em: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1>.

JENSON, S. K.; DOMINGUE, J. O. Extracting topographic structure from digital elevation data for geographic information system analysis. **Photogrammetric Engineering and Remote Sensing**, v. 54, n. 11, p. 1593–1600, 1988. Disponível

em: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.6487&rep=rep1

&type=pdf>.

JUBANSKI, J.; ALIXANDRINI, M.; BÄHR, I. Câmeras Aerofotogramétricas Digitais: Novos Conceitos e Normas. **Revista Brasileira de Cartografia**, v. 61, n. 01, p. 51– 62, 2009. Disponível em: http://www.lsie.unb.br/rbc/index.php/rbc/article/view/21. KALAIVANAN, K.; GURUGNANAM, B.; ISAI, R. Automated drainage extraction using spatial technologies, Kodavanar river basin, South India. , 2018. NISCAIR-CSIR, India. Disponível em: http://nopr.niscair.res.in/handle/123456789/43433.

KIRKBY, M. J.; BEVEN, K. J. A physically based, variable contributing area model of basin hydrology. **Hydrological Sciences Journal**, v. 24, n. 1, p. 43–69, 1979. International Association of Hydrological Sciences Press. Disponível em:

https://www.tandfonline.com/doi/abs/10.1080/02626667909491834>.

LACOSTE, Y. **Dicionário de Geografia: da geopolítica às paisagens**. 2º ed. Lisboa: Teorema, 2005.

LIMA, M. I. C. **Análise de drenagem e seu significado geológico**geomorfológico. Belém: Edição do autor, 2002.

MAACK, R. **Geografia Física do Estado do Paraná**. 1º ed. Curitiba: BADEP/UFPR/IBPT, 1981. MACHADO, M. A. Caracterização dos movimentos gravitacionais de massa por técnicas mineralógicas no bairro Belchior Baixo, Gaspar (SC). , 2013. Disponível em: https://repositorio.ufsc.br/handle/123456789/107310>.

MAGALHÃES, V. L.; DA CUNHA, J. E.; DE NÓBREGA, M. T. Indicadores de Vulnerabilidade Ambiental (Environmental Vulnerability Indicators). **Revista Brasileira de Geografia Física**, v. 7, n. 6, p. 1133–1144, 2014. Disponível em: https://periodicos.ufpe.br/revistas/rbgfe/article/view/233166>.

MARENGO, J. A. Água E Mudanças Climaticass. **Estudos Avançados**, v. 22, n. 63, p. 83–96, 2008. Disponível em:

<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-40142008000200006>.

MARION, F. A.; HENDGES, E. R.; SAMPAIO, T. V. M. PARÂMETROS E INCONGRUÊNCIAS NO PROCESSO DE MAPEAMENTO DA REDE DE DRENAGEM: O CASO DA BACIA DO RIO SANTA ROSA/PR. III Semana de Agrimensura da UTFPR - Pato Branco. **Anais...** v. 1, p.18–21, 2013. Disponível em: <http://www.periodicos.rc.biblioteca.unesp.br/index.php/ageteo/article/view/1360/204 6>.

MARION, F. A.; MELLO FILHO, J. A.; SILVA, J. L. S. Análise da vulnerabilidade natural das águas subterrâneas por geoprocessamento no campus da UFSM–RS. **Terr@ Plural**, v. 4, n. 1, p. 65–76, 2010. Disponível em:

http://www.revistas2.uepg.br/index.php/tp/article/view/1132.

MARION, F. A.; SAMPAIO, T. V. M. MAPEAMENTO DA REDE DE DRENAGEM COMO SUPORTE A PESQUISA CIENTÍFICA–UMA ANÁLISE A PARTIR DA PRODUÇÃO QUALIFICADA. Simpósio Nacional de Geografia e Gestão Territorial e Semana Acadêmica de Geografia da Universidade Estadual de Londrina. **Anais...** v. 1, p.1473–1486, 2018. Londrina. Disponível em:

<http://www.anais.uel.br/portal/index.php/sinagget/article/download/438/410/>. MARMONTEL, C. V. F.; RODRIGUES, V. A. Parâmetros indicativos para qualidade da água em nascentes com diferentes coberturas de terra e conservação da vegetação ciliar. **Floresta e Ambiente**, v. 22, n. 2, p. 171–181, 2015. SciELO Brasil. Disponível em: http://www.scielo.br/pdf/floram/v22n2/2179-8087-floram-21798087082014.pdf>.

MARQUES, H. G.; PENATTI, N. C.; PARANHOS FILHO, A. C.; et al. Comparação entre os modelos de elevação SRTM, TOPODATA e ASTER na delimitação automática de rede de drenagem e limite de bacia hidrográfica. In: INPE (Org.); Anais XV Simpósio Brasileiro de Sensoriamento Remoto. **Anais...** p.1271–1278, 2011. Curitiba: INPE. Disponível em:

http://marte.dpi.inpe.br/col/dpi.inpe.br/marte/2011/07.19.13.36/doc/p1263.pdf>. MARTZ, L. W.; GARBRECHT, J. Numerical definition of drainage network and subcatchment areas from digital elevation models. **Computers & Geosciences**, v. 18, n. 6, p. 747–761, 1992. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/009830049290007E

MATHER, P. M.; DOORNKAMP, J. C. Multivariate analysis in geography with particular reference to drainage-basin morphometry. **Transactions of the Institute of British Geographers**, p. 163–187, 1970. JSTOR. Disponível em:

<https://www.jstor.org/stable/621768?seq=1#page scan tab contents>.

MCKIGHT, P. E.; NAJAB, J. Kruskal-Wallis Test. **Corsini encyclopedia of psychology**, 2010. Wiley Online Library. Disponível em:

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0491>

MELGAÇO, L. DE M.; FILHO, C. R. DE S.; STEINMAYER, M. Comparação entre modelos digitais de elevação gerados por sensores ópticos e por radar. Anais XII Simpósio Brasileiro de Sensoriamento Remoto - SBSR. **Anais...** p.1215–1220, 2005. Disponível em:

http://www.obt.inpe.br/cbers/cbers_XIISBSR/559_melgaco_souzafilho_steinmayer.pdf>.

MELLO, Y. R.; SAMPAIO, T. V. M. Análise estatística preliminar de dados pluviométricos mensais, sazonais e anuais para o Estado do Paraná. **Os Desafios da Geografia Física na Fronteira do Conhecimento**, v. 1, n. 2017, p. 1532–1543, 2017. Disponível em: https://ocs.ige.unicamp.br/ojs/sbgfa/article/view/2090>.

MENEZES, B. G. DE. Fatores que governam as assembleias de

macroinvertebrados bentônicos em nascentes tropicais de áreas protegidas, 2017. São Paulo: Universidade Federal de Juiz de Fora (UFJF). Disponível em: https://repositorio.ufjf.br/jspui/handle/ufjf/4977>.

MIKHAIL, E. M.; ACKERMANN, F.; DOYLE, F. J.; et al. PANEL DISCUSSION-FUTURE OF DTM. **Photogrammetric Engineering and Remote Sensing**, v. 44, n. 12, p. 1487–1497, 1978. AMER SOC PHOTOGRAMMETRY 5410 GROSVENOR LANE SUITE 210, BETHESDA, MD 20814-2160.

MIKHAIL, E. M.; BETHEL, J. S.; MCGLONE, J. C. Introduction to modern photogrammetry. **New York**, 2001.

MINEROPAR. Atlas geológico do Estado do Paraná. **Curitiba: Mineropar**, v. 1, 2001. Disponível em:

<http://www.mineropar.pr.gov.br/arquivos/File/MapasPDF/atlasgeo.pdf>. MOHAMMAD, S.; KHAN, N.; MOHD, J.; QADRI, L. The Understanding of Exchangeable Image File (Exif) Metadata of Images : Towards Disseminating the Awareness to the Society. 3th International Conference on Information Technology & Society. **Anais...** p.6–16, 2017.

MOLOTCH, N. P.; COLEE, M. T.; BALES, R. C.; DOZIER, J. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. **Hydrological Processes: An International Journal**, v. 19, n. 7, p. 1459–1479, 2005. Wiley Online Library. Disponível em:

https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.5586>.

MONTGOMERY, D. R.; DIETRICH, W. E. Source areas, drainage density, and channel initiation. **Water Resources Research**, 1989. Disponível em:

<http://geomorphology.sese.asu.edu/Papers/Montgomery-

Dietrich_DrainageDensity_WRR1989.pdf>.

MOORE, I. D.; GESSLER, P. E.; NIELSEN, G. A.; PETERSON, G. A. Soil attribute prediction using terrain analysis. **Soil Science Society of America Journal**, v. 57, n. 2, p. 443–452, 1993. Soil Science Society of America.

MOORE, I. D.; GRAYSON, R. B.; LADSON, A. R. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. **Hydrological processes**, v. 5, n. 1, p. 3–30, 1991. Wiley Online Library. Disponível em:

https://pdfs.semanticscholar.org/bfbd/cb38c3ad4d86c0ad5c8f3d05db8a4897dfcb.pd f>.

MORAIS, R. C. DE S.; SALES, M. C. L. Extração Automática de Drenagem: uma Análise Comparativa a Partir de Diferentes Ferramentas e Bases de Dados. **Revista Brasileira de Geografia Física**, v. 9, n. 6, p. 1849–1860, 2016. Disponível em: <https://periodicos.ufpe.br/revistas/rbgfe/article/view/233860>. NAUD, M. J.; LONG, B.; BRÊTHES, J.-C.; SEARS, R. Influences of underwater bottom topography and geomorphology on minke whale (Balaenoptera acutorostrata) distribution in the Mingan Islands (Canada). Journal of the Marine Biological Association of the United Kingdom, v. 83, n. 4, p. 889–896, 2003. Cambridge University Press. Disponível em: < https://www.cambridge.org/core/journals/journalof-the-marine-biological-association-of-the-united-kingdom/article/influences-ofunderwater-bottom-topography-and-geomorphology-on-minke-whale-balaenopteraacutorostrata-distribution-in-the-mingan-islands-ca>.

NOUH, M. Methods of estimating bed load transport rates applied to ephemeral streams. Sediment Budgets. IAHS Publication, , n. 174, p. 107–115, 1988. Disponível em: <http://hydrologie.org/redbooks/a174/iahs 174 0107.pdf>.

NOWATZKI, A.; PAULA, E. V; SANTOS, L. J. C. Mapeamento das Áreas de Preservação Permanente na Bacia Hidrográfica do Rio Sagrado (Morretes/PR) e Avaliação do seu Grau de Conservação. Gestão Ambiental Portuária: Subsídio para o licenciamento das Dragagens. 1^a ed., v. 1, p.161–178, 2009. Curitiba: ADEMADAN.

O'CALLAGHAN, J. F.; MARK, D. M. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, v. 27, n. 2, p. 247, 1984. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0734189X84800110>. OLAYA, V. Basic land-surface parameters. **Developments in Soil Science**, v. 33, p. 141–169, 2009, Elsevier, Disponível em:

https://www.sciencedirect.com/science/article/pii/S0166248108000068> OLIVEIRA, P. A.; CALEGARI, M. R.; SILVA, B. A.; CALIXTO, G. R.; HABECK, A. VARIÁVEIS MORFOMÉTRICAS DERIVADAS DE DADOS OBTIDOS DE VEÍCULO AÉREO NÃO TRIPULADO E A DISTRIBUIÇÃO EM DETALHE DOS SOLOS EM BACIA DE PRIMEIRA ORDEM NO OESTE DO PARANÁ – CONTRIBUIÇÕES PARA ESTUDOS DE RELAÇÃO SOLO-RELEVO. In: UGB (Org.); Anais do XII SINAGEO. Anais..., 2018. Crato. Disponível em:

http://www.sinageo.org.br/2018/trabalhos/6/6-196-1044.html

OLIVEIRA, S. N.; DE CARVALHO JÚNIOR, O. A.; DA SILVA, T. M.; et al. Delimitação automática de bacias de drenagens e análise multivariada de atributos morfométricos usando modelo digital de elevação hidrologicamente corrigido.

Revista Brasileira de Geomorfologia, v. 8, n. 1, 2007. Disponível em: http://www.lsie.unb.br/rbg/index.php/rbg/article/view/82.

OZDEMIR, H.; BIRD, D. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental geology, v. 56, n. 7, p. 1405–1415, 2009. Springer. Disponível em:

https://link.springer.com/article/10.1007/s00254-008-1235-y>.

PAZ, O. L. S. Relação do litotipo e do relevo com a dimensão das bacias de drenagem de primeira ordem e com a ocorrência de nascentes, 2015. 98 f. Monografia (Graduação em Geografia) – Setor de Ciências da Terra, Universidade Federal do Paraná, Curitiba.

PEREIRA, M. L. M.; BONETTI FILHO, J. CARACTERIZAÇÃO GEOMORFOLÓGICA DO RELEVO SUBMARINO DE ÁREAS MARINHAS PROTEGIDAS BRASILEIRAS COM BASE EM TÉCNICAS DE ANÁLISE ESPACIAL. Revista Brasileira de Geomorfologia, v. 19, n. 1, 2018. Disponível em:

http://www.lsie.unb.br/rbg/index.php/rbg/article/view/1008.

PIERRE, G. Dictionnaire de la géographie. 5° ed. Paris: Presses Universitaires de France, 1993.

PIKE, R. J. Geomorphometry - diversity in quantitative surface analysis. **Progress in Physical Geography**, 2000.

PODOBNIKAR, T. Production of integrated digital terrain model from multiple datasets of different quality. **International journal of geographical information science**, v. 19, n. 1, p. 69–89, 2005. Taylor & Francis.

RAAFLAUB, L. D.; COLLINS, M. J. The effect of error in gridded digital elevation models on the estimation of topographic parameters. **Environmental Modelling & Software**, v. 21, n. 5, p. 710–732, 2006. Elsevier.

RECKZIEGEL, E. W.; ROBAINA, L. E. DE S. Estudo de parâmetros morfométricos do relevo e da rede de drenagem da área situada entre os rios Jaguari e Ibicuí no município de São Vicente do Sul–RS. SIMPÓSIO NACIONAL DE

GEOMORFOLOGIA. Anais... v. 6, p.2006, 2006. Disponível em:

http://coral.ufsm.br/lageolam/arquivos/Reckziegel_E.pdf>.

REICHEL, L.; NOACK, W.; KNOPFLE, W.; LEHMANN, F. Modelos Altimétricos ERS-TanDEM de Resolução Média e Dados de Alta Resolução Digitais em Estereoscopia da Câmara HRSC e sua Aplicação Comercial. In: T. BLASCHKE; H. KUX (Orgs.); **Sensoriamento Remoto e SIG Avanaçados**. Oficina de ed., p.118–128, 2007. São

Paulo.

ROGERSON, P. A. **Métodos estatísticos para Geografia: um guia para o estudante**. Porto Alegre: Bookman Editora, 2012.

ROSA, R. A. DA S.; FERNANDES, D. Correção radiométrica de imagens de radar de abertura sintética aerotransportado. Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR. **Anais...** p.8280–8287, 2011. Disponível em:

">http://www.dsr.inpe.br/sbsr2011/files/indextema.htm#tema22>.

SAHA, A. K.; GUPTA, R. P.; ARORA, M. K. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. **International journal of remote sensing**, v. 23, n. 2, p. 357–369, 2002. Taylor & Francis. Disponível em:

<https://www.tandfonline.com/doi/abs/10.1080/01431160010014260>.

SAITOU, N.; NEI, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. **Molecular biology and evolution**, v. 4, n. 4, p. 406–425, 1987. Disponível em: https://academic.oup.com/mbe/article/4/4/406/1029664>.

SAMPAIO, T. V. M. **Parâmetros morfométricos para melhoria da acurácia do mapeamento da rede de drenagem – uma proposta baseada na análise da Bacia Hidrográfica do Rio Benevente - ES**, 2008. 147 f. Tese (Doutorado em Geografia) – Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte.

SAMPAIO, T. V. M. Volume e Índice de Vazio em bacias hidrográficas de primeira ordem. **No prelô**, 2019.

SAMPAIO, T. V. M.; AUGUSTIN, C. H. R. R. Variáveis auxiliares para o mapeamento da rede de drenagem : correlação espacial entre nascentes , unidades de relevo e litotipos na bacia hidrográfica do rio Variáveis auxiliares para o mapeamento da rede de drenagem : correlação espacial entre nascentes. **GEOUSP**

- Espaço e Tempo, v. 18, n. 2014, p. 624–634, 2014a. Disponível em:

">http://www.revistas.usp.br/geousp/article/view/90071<">http://www.revistas.usp.br/geousp/article/view/90071

SAMPAIO, T. V. M.; AUGUSTIN, C. H. R. R. Índice de concentração da rugosidade: uma nova proposta metodológica para o mapeamento e quantificação da dissecação do relevo como subsídio a cartografia geomorfologica. **Revista Brasileira de Geomorfologia**, v. 15, n. 1, p. 1–14, 2014b. Disponível em:

Seconorrologia, v. 15, n. 1, p. 1–14, 2014b. Disponivel em. http://www.lsie.unb.br/rbg/index.php/rbg/article/view/376>.

SAMPAIO, T. V. M.; BRANDALIZE, M. Č. B. Cartografia geral, digital e temática.

Curitiba: Programa de Pós-Graduação em Ciências Geodésicas, 2018. Disponível em: < http://www.prppg.ufpr.br/site/ppggeografia/wp-

content/uploads/sites/71/2018/03/cartografia-geral-digital-e-tematica-b.pdf>. SANDER, C.; SANTOS, M. L.; FERNANDEZ, O. V. Q. Variação da extensão do fluxo em canais fluviais de primeira ordem, porção superior da Bacia do Córrego Guavirá, Mal. Cândido Rondon, Oeste do Paraná. **Perspectiva Geográfica**, v. 2, n. 2, p. 7– 19, 2006. Disponível em: http://e-

revista.unioeste.br/index.php/pgeografica/article/view/513>.

SANGIREDDY, H.; CAROTHERS, R. A.; STARK, C. P.; PASSALACQUA, P. Controls of climate, topography, vegetation, and lithology on drainage density extracted from high resolution topography data. **Journal of hydrology**, v. 537, p. 271–282, 2016. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/S0022169416300968>

SANTOS, L. C. DA S. DOS; FRANCISCO, C. N. Avaliação dos Modelos Digitais de Elevação aplicados à extração automática de redes de drenagem. Anais XV Simpósio Brasileiro de Sensoriamento Remoto. **Anais...** p.1311–1318, 2011. Curitiba: INPE. Disponível em:

<http://marte.sid.inpe.br/col/dpi.inpe.br/marte/2011/07.06.13.52/doc/p1582.pdf>. SANTOS, L. J. C.; OKA-FIORI, C.; CANALI, N. E.; et al. Mapeamento Geomorfológico Do Estado Do Paraná. **Revista Brasileira de Geomorfologia**, v. 2, n. 2006, p. 03-12, 2006.

SERVIÇO GEOLÓGICO DO PARANÁ (MINEROPAR). O Grupo Serra Geral no Estado do Paraná: apeamento geológico das cartas 1:250.000 de Guaíra, Cascavel, Campo Mourão, Foz do Iguaçu, Guaraniaçu, Guarapuava, Pato Branco e Clevelândia. Curitiba: MINEROPAR. 2013.

SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete samples). **Biometrika**, v. 52, n. 3/4, p. 591–611, 1965. JSTOR. Disponível em: http://www.jstor.org/stable/pdf/2333709.pdf?refreqid=excelsior%3A22ef25ac7b1f26 013f4d1a63f537078b>.

SHARY, P. A. The second derivative topographic method. **The Geometry of the Earth Surface Structures**, p. 30–60, 1991. Pushchino Research Centre Press Pushchino. Disponível em:

<http://www.lsie.unb.br/rbg/index.php/rbg/article/view/74>.

SICAR - SISTEMA NACIONAL DE CADASTRO AMBIENTAL RURAL. Base de dados do Cadastro Ambiental Rural. , 2018. Disponível em:

<http://www.car.gov.br/publico/municipios/downloads?sigla=PR>.

SILVA, A. S. DA. Mineração e áreas de preservação permanentes (APP) em Santo Antônio De Pádua-RJ. **Sociedade & Natureza**, v. 23, n. 2, 2011. Universidade Federal de Uberlândia. Disponível em:

<http://www.seer.ufu.br/index.php/sociedadenatureza/article/view/11765>.
SILVA, E. A.; SANTOS, F. P.; LEONARDI, F.; RODRIGUES, T. Aplicação de técnicas de Morfologia Matemática e PDI na detecção semi-automática de feições cartográficas em imagens digitais. Anais do XI Congresso Brasileiro de Cadastro Técnico Multifinalitário. Anais..., 2006. Florianópolis: UFSC.

SILVA, J. M. F.; OKA-FIORI, C.; SILVEIRA, C. T. Geomorfometria: uma Análise de Conceitos, Métodos e Aplicações em Geografia Física. **Revista Brasileira de Geografia Física**, v. 10, n. 2, p. 558–583, 2017. Disponível em:

https://periodicos.ufpe.br/revistas/rbgfe/article/view/234008/27453>

SILVEIRA, R. M. P.; SILVEIRA, C. T. DA; OKA-FIOR, C.; A.A. ANÁLISE DIGITAL DO RELEVO EMPREGADA NO MAPEAMENTO DE UNIDADES GEOMORFOLÓGICAS. **Geografar**, v. 7, p. 43–68, 2012. Disponível em: https://revistas.ufpr.br/geografar/article/view/26709.

SIRTOLI, A. E.; SILVEIRA, C. T. DA; MANTOVANI, L. E.; ANJOS SIRTOLI, A. R. DOS; OKA-FIORI, C. Atributos do relevo derivados de modelo digital de elevação e suas relações com solos. **Scientia agraria**, v. 9, n. 3, 2008. Universidade Federal do Paraná. Disponível em: https://revistas.ufpr.br/agraria/article/view/11517. SITHOLE, G.; VOSSELMAN, G. Experimental comparison of filter algorithms for

bare-Earth extraction from airborne laser scanning point clouds. **ISPRS journal of photogrammetry and remote sensing**, v. 59, n. 1–2, p. 85–101, 2004. Elsevier. Disponível em:

<https://www.sciencedirect.com/science/article/abs/pii/S0924271604000140>. SLIVA, L.; WILLIAMS, D. D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. **Water research**, v. 35, n. 14, p. 3462–3472, 2001. Elsevier. Disponível em:

<https://www.sciencedirect.com/science/article/abs/pii/S0043135401000628>. SOARES, P. C.; FIORI, A. P. Lógica e sistemática na análise e interpretação de fotografias aéreas em geologia. **Boletim Geográfico**, v. 5, p. 35–59, 1978. Disponível em:

<https://www.academia.edu/6961982/LÓGICA_E_SISTEMÁTICA_NA_ANÁLISE_E_I NTERPRETAÇÃO_DE_FOTOGRAFIAS_AÉREAS_EM_GEOLOGIA>. SODRÉ, R. V. R.; CARVALHO JÚNIOR, O. A. DE; MACHADO, W. P.; et al. Classificação de bacias de drenagem do Alto Jequitaí (Minas Gerais) a partir da análise de principais componentes e análise de grupos. **Revista Brasileira de**

Geomorfologia, v. 2, p. 73–86, 2007. União da Geomorfologia Brasileira (UGB). Disponível em: ">http://www.lsie.unb.br/rbg/index.php/rbg/article/view/95>.

SOPCHAKI, C. H. Influência do N amostral e das características do relevo na qualidade de modelos digitais do terreno, 2016. 165 f. Tese (Doutorado em Geografia) – Setor de Ciências da Terra, Universidade Federal do Paraná, Curitiba. Disponível em: ">http://acervodigital.ufpr.br/bitstream/handle/1884/45147/R - T - CARLOS HENRIQUE SOPCHAKI.pdf?sequence=1&isAllowed=y>.

SOUSA, M. S. DE; SAMPAIO, T. V. M. Influência da acurácia de completude na delimitação de áreas de preservação permanente. **Confins. Revue franco**-

brésilienne de géographie/Revista franco-brasilera de geografia, , n. 35, 2018. Théry, Hervé. Disponível em: https://journals.openedition.org/confins/13245>.

SOUSA, M. S.; PAZ, O. L. S.; SOPCHAKI, C. H.; SAMPAIO, T. V. M.

CORRELAÇÃO ESPACIAL ENTRE O ÍNDICE DE CONCENTRAÇÃO DA RUGOSIDADE E O VOLUME PRECIPITADO NO ESTADO DO PARANÁ (BRASIL). Anais do XI Simpósio Nacional de Geomorfologia. **Anais...** p.10–16, 2016. Maringá: UEM. Disponível em: http://www.sinageo.org.br/2016/trabalhos/6/6-174-1224.html. SOUSA, M. S.; SAMPAIO, T. V. M. RELAÇÃO ENTRE O TAMANHO DAS BACIAS DE DRENAGEM DE PRIMEIRA ORDEM E O GRAU DE DISSECAÇÃO DO RELEVO VIA ÍNDICE DE CONCENTRAÇÃO DA RUGOSIDADE (ICR) – UMA ANÁLISE COM BASE NO OESTE DO PARANÁ – BR. **REVISTA GEONORTE**, v. SPE, n. 1, p. 458–464, 2014. Disponível em:

http://www.periodicos.ufam.edu.br/revista-geonorte/article/view/1594/1484. SOUSA, M. S.; SAMPAIO, T. V. M. Avaliação da acurácia de bases cartográficas: um estudo de caso da rede de drenagem do estado do Paraná na escala 1:50.000 para a carta MI 2818-4. XVII Simpósio Brasileiro de Sensoriamento Remoto – SBSR. **Anais...** p.6713–6719, 2015. Disponível em:

http://www.dsr.inpe.br/sbsr2015/files/p1471.pdf>.

SOUZA, C. R. DE G. Suscetibilidade morfométrica de bacias de drenagem ao desenvolvimento de inundações em áreas costeiras. **Revista Brasileira de Geomorfologia**, v. 6, n. 1, p. 45–61, 2005. Disponível em:

<http://lsie.unb.br/rbg/index.php/rbg/article/view/38/157>.

SOUZA, J. D.; BOGUSZ, J. A.; ALDO MAFREI, C. G.; et al. BASE HIDROGRÁFICA DO ESTADO DO PARANÁ NA ESCALA 1:50.000. XIX Simpósio Brasileiro de Recursos Hídricos. **Anais...** p.101–113, 2011. Disponível em:

https://www.abrh.org.br/SGCv3/index.php?PUB=3&ID=81&SUMARIO=1228&ST=b ase_hidrografica_do_estado_do_parana_na_escala_1_50_000>.

STRAHLER, A. N. Hypsometric (area-altitude) analysis of erosional topography. **Geological Society of America Bulletin**, v. 63, n. 11, p. 1117–1142, 1952. Geological Society of America.

STRAHLER, A. N. Quantitative analysis of watershed geomorphology. **Eos**, **Transactions American Geophysical Union**, v. 38, n. 6, p. 913–920, 1957.

Disponível em: <http://dx.doi.org/10.1029/TR038i006p00913>.

SUGUIO, K.; BIGARELLA, J. J. **Ambientes fluviais**. Curitiba: Editora da Universidade Federal do Parana, 1990.

TACHIKAWA, T.; HATO, M.; KAKU, M.; IWASAKI, A. Characteristics of ASTER GDEM version 2. International Geoscience and Remote Sensing Symposium (IGARSS). **Anais...** p.3657–3660, 2011. Disponível em:

<https://ieeexplore.ieee.org/document/6050017>.

TARBOTON, D. A new method for the determination of flow directions and contributing areas in grid digital elevation models. **Water Resources Research**, v. 33, n. 2, p. 309–319, 1997. Disponível em:

<https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96WR03137>. THOMPSON, J. A.; BELL, J. C.; BUTLER, C. A. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling.

Geoderma, v. 100, n. 1–2, p. 67–89, 2001. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/S0016706100000811. TODD, D. K.; MAYS, L. W. **Groundwater Hydrology**. 3° ed. New York: John Wiley and Sons, 2005.

TOMAZONI, J. C.; GUIMARÃES, E.; GOMES, T. C.; SILVA, T. G. DA. Uso de Modelo Digital de Elevação Gerados a partir do ASTER GDEM e SRTM para Caracterização de Rede de Drenagem. **Revista Brasileira de Geografia Física**, v. 4, n. 2, p. 365–376, 2011. Disponível em:

http://www.revista.ufpe.br/rbgfe/index.php/revista/article/view/184/170.

TRIBE, A. Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method. **Journal of Hydrology**, v. 139, n. 1–4, p. 263–293, 1992. Elsevier. Disponível em:

<https://www.sciencedirect.com/science/article/pii/002216949290206B>. TUNDISI, J. G. Governança da Água. **Revista UFMG**, v. 20, n. 2, p. 222–235, 2013. Disponível em: <https://www.ufmg.br/revistaufmg/downloads/20-2/10-governancada-agua-jose-tundisi.pdf>.

UEMA, D. Y. Quantificação de perda de solos em bacia hidrográfica de primeira ordem: córrego Zaúna, Maringá-PR., 2018. Universidade Estadual de Maringá. VALENTE, O. F.; GOMES, M. A. **Conservação de nascentes: hidrologia e manejo de bacias hidrográficas de cabeceiras**. Viçosa: Aprenda Fácil, 2005.

VALERIANO, M. DE M.; ROSSETTI, D. D. F. Topodata: Seleção De Coeficientes Geoestatísticos Para O Refinamento Unificado De Dados Srtm. **Inpe**, p. 74, 2010. Disponível em: http://mtc-m16d.sid.inpe.br/rep/sid.inpe.br/mtc- m19@80/2010/05.10.18.35?mirror=sid.inpe.br/mtc-

m19@80/2009/08.21.17.02.53&metadatarepository=sid.inpe.br/mtc-

m19@80/2010/05.10.18.35.47>.

VALERIANO, M. DE M.; ROSSETTI, D. DE F. Topodata: Brazilian full coverage refinement of SRTM data. **Applied Geography**, v. 32, n. 2, p. 300–309, 2012. Disponível em:

<https://www.sciencedirect.com/science/article/abs/pii/S0143622811000786>. VALERIANO, M. M. Dados topográficos. **Geomorfologia: conceitos e tecnologias**

atuais. p.72–104, 2008. São Paulo: Oficina de Textos.

VERGARA, M. L. L. **MANUAL DE FOTOGEOLOGIA**. Madrid: MADRID, JUNTA DE ENERGIA NUCLEAR, 1971., 286P, FIGS. ANEXO DE LAMINAS, 1971.

VIOLANTE-CARVALHO, N.; RIZOPOULOU, K.; CARVALHO, L. M.; GOLDSTEIN, B. F. Sobre os mecanismos de imageamento do radar de abertura sintética sar para a estimação do espectro direcional de ondas geradas pelo vento. **Revista Brasileira de Geofisica**, v. 28, n. 4, p. 593–607, 2010. Disponível em:

<http://www.scielo.br/scielo.php?pid=S0102-

261X2010000400005&script=sci_abstract&tlng=pt>.

WEISS, A. Topographic position and landforms analysis. Poster presentation, ESRI user conference, San Diego, CA. **Anais...** v. 200, 2001. Disponível em:

http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf>.

WESTOBY, M. J.; BRASINGTON, J.; GLASSER, N. F.; HAMBREY, M. J.;

REYNOLDS, J. M. 'Structure-from-Motion'photogrammetry: A low-cost, effective tool for geoscience applications. **Geomorphology**, v. 179, p. 300–314, 2012. Elsevier. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0169555X12004217>. WILKS, D. S. Cluster analysis. **International geophysics**. v. 100, p.603–616, 2011. Elsevier. Disponível em:

https://www.sciencedirect.com/science/article/pii/B9780123850225000154. WILSON, J. P.; GALLANT, J. C. **Terrain analysis: principles and applications**. New York: John Wiley, 2000.

WISE, S. Assessing the quality for hydrological applications of digital elevation models derived from contours. **Hydrological processes**, v. 14, n. 11-12, p. 1909–1929, 2000. Wiley Online Library.

YANG, L.; MENG, X.; ZHANG, X. SRTM DEM and its application advances. International Journal of Remote Sensing, v. 32, n. 14, p. 3875–3896, 2011. Disponível em:

<https://www.tandfonline.com/doi/abs/10.1080/01431161003786016?journalCode=tres20>.

ZEVENBERGEN, L. W.; THORNE, C. R. Quantitative analysis of land surface topography. **Earth surface processes and landforms**, v. 12, n. 1, p. 47–56, 1987. Wiley Online Library. Disponível em:

https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.3290120107>.

Codigo campo	Tipo_Rio	CORD_X	CORD_Y	Minicipio
01	Intermitente	784971,2892	7201108,19	Medianeira
01	Intermitente	785058,4459	7200836,151	Medianeira
01	Intermitente	785055,1971	7200832,196	Medianeira
01	Intermitente	783875,3022	7204274,01	Medianeira
01	Intermitente	792293,96	7203434,46	Medianeira
01	Intermitente	790134,3467	7195668,19	Medianeira
01	Intermitente	796700,2593	7194199,706	Medianeira
01	Intermitente	793261,4066	7195392,161	Medianeira
01	Intermitente	792805,9622	7195181,901	Medianeira
01	Intermitente	792764,8376	7195125,75	Medianeira
01	Intermitente	791416,2689	7193607,69	Medianeira
01	Intermitente	792659,5534	7193073,662	Medianeira
01	Intermitente	792594,3843	7192429,53	Medianeira
01	Intermitente	793338,1615	7192418,86	Medianeira
01	Intermitente	794326,875	7192875,273	Medianeira
01	Intermitente	795090,6599	7193136,21	Medianeira
01	Intermitente	781387,1297	7194014,146	São Miguel do Iguaçu
01	Intermitente	800377,8373	7186779,684	Serranopolis
01	Intermitente	799653,4351	7186662,625	Serranopolis
01	Intermitente	799983,0909	7187102,307	Serranopolis
01	Intermitente	788598,0679	7183847,196	Serranopolis
01	Intermitente	790504,6687	7187093,701	Serranopolis
01	Intermitente	791153,2483	7189151,554	Serranopolis
01	Intermitente	791756,7234	7189323,296	Serranopolis
01	Intermitente	794346,1936	7188889,597	Serranopolis
01	Intermitente	794242,8101	7188288,077	Serranopolis
01	Intermitente	793774,4733	7186414,348	Serranopolis
01	Intermitente	793518,687	7185293,9	Serranopolis
01	Intermitente	798384,5878	7191888,586	Serranopolis
01	Intermitente	782425,4619	7192427,865	São Miguel do Iguaçu
01	Intermitente	782072,115	7190950,821	São Miguel do Iguaçu
01	Intermitente	781472,2552	7190791,438	São Miguel do Iguaçu
01	Intermitente	779242,3418	7191265,102	São Miguel do Iguaçu
01	Intermitente	778425,3449	7192121,304	São Miguel do Iguaçu
01	Intermitente	778076,2209	7197350,542	São Miguel do Iguaçu
01	Intermitente	778391,9618	7198819,298	São Miguel do Iguaçu
01	Intermitente	778064,0952	7198649,713	São Miguel do Iguaçu
01	Intermitente	787942,5061	7193578,163	São Miguel do Iguaçu

APÊNDICE 1 – LISTA PONTOS DE CAMPO COLETADOS

01	Intermitente	788069,9845	7193221,763	São Miguel do Iguaçu
01	Intermitente	787457,3731	7185035,475	São Miguel do Iguaçu
01	Intermitente	779068,1284	7202377,73	São Miguel do Iguaçu
11	Perene	784917,257	7199573,49	Medianeira
11	Perene	784484,1877	7200202,393	Medianeira
11	Perene	785860,5162	7198032,183	Medianeira
11	Perene	786762,7873	7197759,12	Medianeira
11	Perene	784906,5956	7203371,811	Medianeira
11	Perene	788578,2984	7200842,292	Medianeira
11	Perene	788610,9179	7202303,496	Medianeira
11	Perene	787827,9276	7202798,788	Medianeira
11	Perene	787149,3183	7204052,536	Medianeira
11	Perene	790464,3507	7196771,254	Medianeira
11	Perene	789457,8216	7196445,088	Medianeira
11	Perene	789137,274	7195771,839	Medianeira
11	Perene	790263,3572	7195237,336	Medianeira
11	Perene	789831,6319	7194904,131	Medianeira
11	Perene	790011,5326	7193482,129	Medianeira
11	Perene	788381,2509	7193624,451	Medianeira
11	Perene	787826,5383	7194332,424	Medianeira
11	Perene	793329,1088	7196371,332	Medianeira
11	Perene	792522,5318	7194522,656	Medianeira
11	Perene	791897,9225	7192243,818	Medianeira
11	Perene	795080,9892	7193132,618	Medianeira
11	Perene	789496,6806	7184643,223	Serranopolis
11	Perene	789427,7598	7186055,388	Serranopolis
11	Perene	788212,5135	7187521,342	Serranopolis
11	Perene	793997,5529	7183680,446	Serranopolis
11	Perene	794597,4131	7184629,898	Serranopolis
11	Perene	793893,7892	7186619,58	Serranopolis
11	Perene	791866,3448	7184227,638	Serranopolis
11	Perene	793385,6459	7183079,855	Serranopolis
11	Perene	791617,1051	7183195,302	Serranopolis
11	Perene	795336,7054	7182293,134	Serranopolis
11	Perene	796832,0575	7182313,802	Serranopolis
11	Perene	798217,9125	7183913,837	Serranopolis
11	Perene	797989,5915	7192216,973	Serranopolis
11	Perene	783464,8096	7192013,531	São Miguel do Iguaçu
11	Perene	781615,2777	7191491,439	São Miguel do Iguaçu
11	Perene	781981,3153	7190823,265	São Miguel do Iguaçu
11	Perene	777981,7587	7197593,339	São Miguel do Iguaçu

11	Perene	780624,1592	7196915,699	São Miguel do Iguaçu
11	Perene	780907,6733	7197216,557	São Miguel do Iguaçu
11	Perene	780910,6544	7197394,91	São Miguel do Iguaçu
11	Perene	780467,1854	7199404,321	São Miguel do Iguaçu
11	Perene	779885,031	7202354,19	São Miguel do Iguaçu
11	Perene	781688,9738	7203857,605	São Miguel do Iguaçu
11	Perene	787681,7147	7194052,974	São Miguel do Iguaçu
11	Perene	787792,1213	7191702,5	São Miguel do Iguaçu
11	Perene	787745,6091	7188961,974	São Miguel do Iguaçu
11	Perene	787418,2736	7188069,193	São Miguel do Iguaçu
11	Perene	787400,8057	7188060,963	São Miguel do Iguaçu
11	Perene	787292,2502	7187075,354	São Miguel do Iguaçu
10	Perene	788861,2045	7200663,514	Medianeira

Projeção UTM – Fuso 21S. EPSG: 31981

APÊNDICE 2 – LISTA DE COORDENADAS DAS BACIAS AMOSTRAIS

Cod. Pto	Coord X	Coord Y	Município
Bacia_Per_01	793077,66	7193204,70	Medianeira
Bacia_Per_02	786800,24	7203728,44	Medianeira
Bacia_Per_03	786572,31	7197607,40	Medianeira
Bacia_Per_04	796154,70	7191278,90	Serranópolis do Iguaçu
Bacia_Per_05	794776,78	7194272,56	Medianeira
Bacia_Per_06	789272,33	7186596,52	Serranópolis do Iguaçu
Bacia_Per_07	785288,08	7199511,47	Medianeira
Bacia_Per_08	785901,54	7198042,31	Medianeira
Bacia_Per_09	788699,11	7194067,81	Medianeira
Bacia_Per_10	787227,99	7193757,73	São Miguel do Iguaçu
Bacia_Per_11	792705,66	7194449,78	Medianeira
Bacia_Per_12	788736,80	7187215,32	Serranópolis do Iguaçu
Bacia_Per_13	790895,55	7195467,31	Medianeira
Bacia_Per_14	793861,33	7182424,07	Serranópolis do Iguaçu
Bacia_Per_15	790982,70	7183892,13	Serranópolis do Iguaçu
Bacia_Per_16	786720,08	7187365,63	São Miguel do Iguaçu
Bacia_Int_01	799738,82	7186511,94	Serranópolis do Iguaçu
Bacia_Int_02	794885,01	7190407,94	Serranópolis do Iguaçu
Bacia_Int_03	794604,27	7189486,46	Serranópolis do Iguaçu
Bacia_Int_04	791253,73	7189085,90	Serranópolis do Iguaçu
Bacia_Int_05	787928,40	7185341,30	São Miguel do Iguaçu
Bacia_Int_06	781457,86	7194326,53	São Miguel do Iguaçu
Bacia_Int_07	791516,97	7193257,96	Medianeira
Bacia_Int_08	788661,78	7183719,65	Serranópolis do Iguaçu
Bacia_Int_09	778172,78	7197431,05	São Miguel do Iguaçu
Bacia_Int_10	778472,39	7198782,09	São Miguel do Iguaçu
Bacia_Int_11	799955,67	7187255,58	Serranópolis do Iguaçu
Bacia_Int_12	794135,44	7193055,40	Medianeira
Bacia_Int_13	787257,53	7185141,50	São Miguel do Iguaçu
Bacia_Int_14	800761,02	7186616,31	Serranópolis do Iguaçu
Bacia_Int_15	793821,10	7188182,34	Serranópolis do Iguaçu
Bacia_Int_16	794792,44	7193583,50	Medianeira
 Dr/			

Projeção UTM – Fuso 21S. EPSG: 31981

APÊNDICE 3 – ORTOMOSAICOS GERADOS DAS BACIAS AMOSTRAIS.

APÊNDICE 4 – VALORES DOS PARÂMETROS GEOMORFOMÉTRICOS EXTRAÍDOS PARA CADA BACIA AMOSTRAL

TIPO_COD	AREA	PERIMETRO	Alt_min	Alt_max	Alt_mean	Alt_std	Alt_range
Bacia_Int_1	10,5154	1.338,8530	215,0849	251,2988	236,2693	7,6768	36,2138
Bacia_Int_2	14,2489	1.447,6664	250,2293	297,9479	278,7461	12,8636	47,7186
Bacia_Int_3	21,6386	1.772,0567	231,1715	279,0972	257,3240	10,5600	47,9257
Bacia_Int_4	18,0107	1.834,9051	182,8974	231,3794	212,2793	11,8084	48,4820
Bacia_Int_5	19,4113	1.705,3142	184,6562	236,2891	219,8893	14,5097	51,6329
Bacia_Int_6	27,3509	2.204,6268	291,6494	386,5041	336,8804	24,3955	94,8546
Bacia_Int_7	31,9965	2.251,9083	239,3626	295,2587	267,3805	12,6834	55,8961
Bacia_Int_8	20,4609	1.870,0819	190,6866	234,7612	219,8420	12,5701	44,0746
Bacia_Int_9	15,8356	1.638,5283	292,6686	364,6097	322,2751	15,6514	71,9411
Bacia_Int_10	24,8307	2.166,3652	263,4078	350,7690	293,0934	19,4726	87,3612
Bacia_Int_11	42,3797	2.489,9212	232,9930	317,9798	278,3704	22,5423	84,9868
Bacia_Int_12	35,3736	2.510,4572	248,3984	349,4853	286,9509	25,9744	101,0869
Bacia_Int_13	40,9017	2.340,0642	201,1306	236,2369	225,8106	7,6396	35,1063
Bacia_Int_14	43,4892	2.610,1430	272,7656	321,0091	300,7365	9,2493	48,2435
Bacia_Int_15	42,5338	2.762,3684	225,1280	298,4563	258,5279	17,1593	73,3283
Bacia_Int_16	44,6206	2.838,3826	261,8372	345,2340	301,7129	23,4886	83,3968
Bacia_Per_1	43,9074	2.815,1274	227,6623	354,9352	269,7024	27,3086	127,2729
Bacia_Per_2	43,6698	2.683,1693	268,6736	359,1656	327,0636	24,0951	90,4920
Bacia_Per_3	29,0107	2.168,3996	353,5222	413,6721	390,9659	13,3031	60,1499
Bacia_Per_4	45,9112	2.731,3502	257,7624	328,4882	295,2351	15,6628	70,7258
Bacia_Per_5	39,0436	2.648,4620	265,5404	374,4144	310,0572	23,4740	108,8740
Bacia_Per_6	32,4598	2.845,4046	185,2294	249,1888	226,8851	15,6816	63,9594
Bacia_Per_7	33,0334	2.588,0995	283,2662	371,0219	338,4266	20,6437	87,7557
Bacia_Per_8	28,8312	2.225,0403	307,9121	354,5580	338,3158	10,1629	46,6459
Bacia_Per_9	85,7662	3.524,7829	251,7881	355,4762	292,8031	20,7008	103,6881
Bacia_Per_10	51,0817	2.866,8391	230,3124	323,7564	265,0089	18,7739	93,4440
Bacia_Per_11	55,5284	3.142,0301	236,5550	376,0623	286,9527	38,8918	139,5073
Bacia_Per_12	48,2477	3.326,8004	185,9663	247,4264	227,4458	14,2795	61,4601
Bacia_Per_13	83,8083	4.508,4007	254,1906	377,1016	305,2064	25,9497	122,9110
Bacia_Per_14	183,9018	5.297,4208	174,6647	243,1841	219,2562	14,4695	68,5194
Bacia_Per_15	149,5885	5.179,4413	163,0695	228,8994	207,0436	14,1686	65,8299
Bacia_Per_16	104,8672	4.304,9633	199,1674	267,6552	243,6802	13,5076	68,4878

TIPO_COD	Alt_var	Alt_median	Decli_min	Decli_max	Decli_mean	Decli_std
Bacia_Int_1	58,9340	238,0291	0,0000	13,2692	7,2339	2,3432
Bacia_Int_2	165,4722	280,4962	0,1736	23,0251	9,6124	3,1598
Bacia_Int_3	111,5130	258,1755	0,1476	25,0889	9,2312	2,8469
Bacia_Int_4	139,4389	213,6785	0,2775	13,8238	6,5947	2,1407
Bacia_Int_5	210,5314	226,1262	0,0678	32,3866	9,4984	6,4331
Bacia_Int_6	595,1394	335,3166	0,2076	63,0373	15,8800	9,6890
Bacia_Int_7	160,8687	267,7882	0,0000	16,7600	7,8641	2,9049
Bacia_Int_8	158,0085	224,9298	0,0000	20,5056	7,7583	4,8676
Bacia_Int_9	244,9659	319,4942	1,0067	32,5312	13,4425	5,7698
Bacia_Int_10	379,1805	290,7653	0,0000	49,1620	12,7502	8,0837
Bacia_Int_11	508,1531	279,7253	0,0174	60,9862	11,5199	7,1284
Bacia_Int_12	674,6715	279,0206	0,2508	43,7581	13,3019	8,3022
Bacia_Int_13	58,3631	227,6428	0,0405	14,0693	4,6185	2,3103
Bacia_Int_14	85,5492	302,0890	0,0290	13,4623	5,9400	2,4060
Bacia_Int_15	294,4416	256,2916	0,0802	35,4309	6,6682	1,9287
Bacia_Int_16	551,7160	302,7474	0,0000	30,1678	13,1055	6,3533
Bacia_Per_1	745,7571	262,2606	0,1604	122,4171	13,9056	9,9174
Bacia_Per_2	580,5718	334,2391	0,2624	29,2562	10,2220	4,9510
Bacia_Per_3	176,9717	393,3194	0,3237	14,9660	7,2773	2,8711
Bacia_Per_4	245,3225	297,7832	0,1809	23,2078	10,2819	4,1245
Bacia_Per_5	551,0293	311,1993	0,0720	62,1763	15,9882	9,4908
Bacia_Per_6	245,9126	230,6355	0,4113	21,2359	5,4507	2,9618
Bacia_Per_7	426,1631	340,1657	0,0000	22,1884	9,3984	3,8712
Bacia_Per_8	103,2851	340,2173	0,1091	16,4722	6,8114	3,3846
Bacia_Per_9	428,5237	289,5520	0,0000	77,3187	9,5812	6,1303
Bacia_Per_10	352,4590	261,8647	0,0621	30,4279	9,3681	5,2161
Bacia_Per_11	1.512,5701	273,7776	0,1783	46,0199	15,9460	11,1136
Bacia_Per_12	203,9041	231,7529	0,0000	15,8993	5,2129	2,9412
Bacia_Per_13	673,3851	301,8211	0,0000	47,0091	9,3818	5,5834
Bacia_Per_14	209,3651	222,2120	0,0000	17,5155	4,6833	2,5059
Bacia_Per_15	200,7492	210,8045	0,0000	27,4459	5,3720	3,1277
Bacia_Per_16	182,4556	247,3162	0,0000	16,0598	4,8998	3,1333

TIPO_COD	Decli_rang	Decli_var	Decli_medi	Plan_min	Plan_max	Plan_mean
Bacia_Int_1	13,2692	5,4904	7,2737	-0,4399	0,6933	0,0006
Bacia_Int_2	22,8516	9,9843	10,0963	-0,5680	0,3217	0,0018
Bacia_Int_3	24,9413	8,1049	8,8268	-0,2231	0,8564	0,0010
Bacia_Int_4	13,5462	4,5828	6,7768	-1,3111	0,4990	0,0007
Bacia_Int_5	32,3188	41,3851	7,1170	-0,4857	0,7344	0,0030
Bacia_Int_6	62,8297	93,8768	12,9294	-0,6436	1,6652	-0,0002
Bacia_Int_7	16,7600	8,4383	6,9413	-0,2477	0,1830	-0,0003
Bacia_Int_8	20,5056	23,6932	6,8831	-0,6582	10,0259	0,0013
Bacia_Int_9	31,5245	33,2907	11,6543	-0,1646	0,1985	-0,0008
Bacia_Int_10	49,1620	65,3460	11,1391	-1,8872	1,7266	0,0008
Bacia_Int_11	60,9689	50,8138	9,0206	-3,7136	1,7931	0,0005
Bacia_Int_12	43,5074	68,9273	10,4100	-0,9672	1,0445	-0,0001
Bacia_Int_13	14,0288	5,3373	4,4705	-1,5442	3,2298	0,0009
Bacia_Int_14	13,4333	5,7888	5,7696	-1,7680	0,9910	0,0013
Bacia_Int_15	35,3506	3,7197	6,5130	-1,1089	2,5050	0,0007
Bacia_Int_16	30,1678	40,3641	12,6127	-1,1345	11,0852	0,0009
Bacia_Per_1	122,2567	98,3551	9,8976	-0,6038	0,7125	0,0006
Bacia_Per_2	28,9938	24,5127	9,4907	-3,5294	4,5535	0,0001
Bacia_Per_3	14,6422	8,2432	7,1830	-0,6327	0,3848	0,0014
Bacia_Per_4	23,0270	17,0117	9,9762	-1,9740	2,0718	0,0003
Bacia_Per_5	62,1043	90,0755	15,1888	-2,3804	4,4415	0,0009
Bacia_Per_6	20,8246	8,7722	4,8290	-0,1675	0,3040	0,0004
Bacia_Per_7	22,1884	14,9863	9,6195	-0,2702	3,7901	0,0011
Bacia_Per_8	16,3631	11,4552	6,1941	-0,4211	0,6059	0,0005
Bacia_Per_9	77,3187	37,5809	7,4718	-4,1110	5,8165	0,0014
Bacia_Per_10	30,3658	27,2072	7,5245	-4,6659	2,0509	-0,0011
Bacia_Per_11	45,8416	123,5111	11,4833	-0,5237	0,8499	0,0009
Bacia_Per_12	15,8993	8,6506	4,8900	-1,7235	1,4683	-0,0002
Bacia_Per_13	47,0091	31,1739	7,8450	-1,3643	0,7896	0,0000
Bacia_Per_14	17,5155	6,2793	4,2214	-3,3705	2,1693	0,0003
Bacia_Per_15	27,4459	9,7827	4,7824	-4,7657	7,6321	0,0005
Bacia_Per_16	16,0598	9,8175	4,0042	-1,9575	2,0602	0,0001

TIPO_COD	Plan_std	Plan_range	Plan_var	Plan_media	Perf_min	Perf_max
Bacia_Int_1	0,0259	1,1332	0,0007	0,0000	-0,0302	0,0047
Bacia_Int_2	0,0217	0,8897	0,0005	0,0003	-0,0199	0,0233
Bacia_Int_3	0,0195	1,0794	0,0004	0,0021	-0,0124	0,0111
Bacia_Int_4	0,0255	1,8101	0,0006	-0,0005	-0,0095	0,0066
Bacia_Int_5	0,0219	1,2201	0,0005	0,0018	-0,0450	0,0561
Bacia_Int_6	0,0343	2,3089	0,0012	-0,0008	-0,0590	0,0998
Bacia_Int_7	0,0196	0,4307	0,0004	0,0016	-0,0169	0,0140
Bacia_Int_8	0,0814	10,6841	0,0066	0,0002	-0,0288	0,0103
Bacia_Int_9	0,0166	0,3631	0,0003	0,0011	-0,0223	0,0189
Bacia_Int_10	0,0506	3,6138	0,0026	0,0011	-0,0735	0,0635
Bacia_Int_11	0,0471	5,5067	0,0022	0,0013	-0,1276	0,1479
Bacia_Int_12	0,0243	2,0118	0,0006	-0,0001	-0,0647	0,0556
Bacia_Int_13	0,0325	4,7739	0,0011	-0,0002	-0,0057	0,0051
Bacia_Int_14	0,0235	2,7590	0,0006	0,0012	-0,0102	0,0069
Bacia_Int_15	0,0307	3,6139	0,0009	-0,0001	-0,0898	0,0878
Bacia_Int_16	0,0644	12,2197	0,0041	0,0000	-0,0482	0,0592
Bacia_Per_1	0,0301	1,3163	0,0009	0,0010	-0,1956	0,1427
Bacia_Per_2	0,0388	8,0829	0,0015	0,0005	-0,0191	0,0376
Bacia_Per_3	0,0175	1,0175	0,0003	0,0010	-0,0077	0,0066
Bacia_Per_4	0,0302	4,0458	0,0009	0,0005	-0,0238	0,0362
Bacia_Per_5	0,0467	6,8218	0,0022	0,0006	-0,1623	0,2629
Bacia_Per_6	0,0189	0,4714	0,0004	0,0011	-0,0107	0,0115
Bacia_Per_7	0,0281	4,0603	0,0008	0,0003	-0,0442	0,0086
Bacia_Per_8	0,0211	1,0269	0,0004	0,0019	-0,0067	0,0108
Bacia_Per_9	0,0515	9,9275	0,0027	0,0012	-0,1730	0,2491
Bacia_Per_10	0,0440	6,7168	0,0019	0,0010	-0,0618	0,0663
Bacia_Per_11	0,0252	1,3736	0,0006	-0,0002	-0,0248	0,0382
Bacia_Per_12	0,0366	3,1918	0,0013	0,0003	-0,0247	0,0088
Bacia_Per_13	0,0276	2,1539	0,0008	0,0007	-0,0526	0,0607
Bacia_Per_14	0,0355	5,5398	0,0013	0,0005	-0,0294	0,0256
Bacia_Per_15	0,0756	12,3978	0,0057	0,0000	-0,0592	0,0684
Bacia_Per_16	0,0254	4,0178	0,0006	-0,0002	-0,0224	0,0097

TIPO_COD	Perf_mean	Perf_std	Perf_range	Perf_var	Perf_media	ACF_min
Bacia_Int_1	0,0001	0,0016	0,0349	0,0000	0,0002	9,2196
Bacia_Int_2	0,0002	0,0015	0,0432	0,0000	0,0001	10,1897
Bacia_Int_3	0,0000	0,0012	0,0235	0,0000	-0,0001	9,0000
Bacia_Int_4	0,0001	0,0010	0,0161	0,0000	0,0001	12,8906
Bacia_Int_5	0,0002	0,0036	0,1011	0,0000	0,0002	9,0000
Bacia_Int_6	0,0000	0,0052	0,1587	0,0000	-0,0003	9,0000
Bacia_Int_7	-0,0001	0,0011	0,0309	0,0000	0,0000	53,1613
Bacia_Int_8	0,0001	0,0015	0,0391	0,0000	0,0002	9,0000
Bacia_Int_9	-0,0003	0,0017	0,0412	0,0000	-0,0003	25,7650
Bacia_Int_10	-0,0002	0,0044	0,1370	0,0000	-0,0001	9,0000
Bacia_Int_11	0,0000	0,0058	0,2755	0,0000	0,0001	9,0000
Bacia_Int_12	0,0000	0,0038	0,1204	0,0000	-0,0002	9,0000
Bacia_Int_13	0,0001	0,0006	0,0108	0,0000	0,0001	9,0000
Bacia_Int_14	0,0001	0,0007	0,0171	0,0000	0,0001	9,0000
Bacia_Int_15	0,0000	0,0020	0,1775	0,0000	0,0000	9,0000
Bacia_Int_16	0,0000	0,0027	0,1074	0,0000	-0,0001	9,0000
Bacia_Per_1	-0,0001	0,0065	0,3383	0,0000	-0,0002	10,6576
Bacia_Per_2	0,0001	0,0014	0,0567	0,0000	0,0002	9,0000
Bacia_Per_3	0,0001	0,0008	0,0143	0,0000	0,0002	23,9015
Bacia_Per_4	0,0000	0,0015	0,0600	0,0000	-0,0001	9,0000
Bacia_Per_5	-0,0001	0,0052	0,4252	0,0000	-0,0003	9,0000
Bacia_Per_6	0,0001	0,0008	0,0223	0,0000	0,0001	32,7817
Bacia_Per_7	0,0001	0,0014	0,0528	0,0000	0,0000	9,0000
Bacia_Per_8	0,0001	0,0010	0,0176	0,0000	0,0002	11,7295
Bacia_Per_9	-0,0001	0,0054	0,4220	0,0000	-0,0001	9,0000
Bacia_Per_10	-0,0002	0,0029	0,1281	0,0000	-0,0001	9,0000
Bacia_Per_11	0,0000	0,0029	0,0629	0,0000	-0,0002	9,0000
Bacia_Per_12	0,0000	0,0011	0,0335	0,0000	0,0001	9,0000
Bacia_Per_13	0,0000	0,0027	0,1133	0,0000	0,0000	9,0000
Bacia_Per_14	0,0000	0,0010	0,0550	0,0000	0,0001	9,0000
Bacia_Per_15	0,0000	0,0026	0,1276	0,0000	0,0000	9,0000
Bacia_Per_16	0,0000	0,0008	0,0321	0,0000	0,0001	9,0000

TIPO_COD	ACF_max	ACF_mean	ACF_std	ACF_range
Bacia_Int_1	13.772,9385	824,2912	1.730,1076	13.763,7189
Bacia_Int_2	63.929,4492	881,9213	2.080,4870	63.919,2595
Bacia_Int_3	102.923,7969	1.061,3334	3.624,5170	102.914,7969
Bacia_Int_4	34.086,9180	1.194,8618	2.513,3762	34.074,0273
Bacia_Int_5	20.309,0859	659,6650	1.054,6339	20.300,0859
Bacia_Int_6	81.010,9844	1.670,4571	5.636,2524	81.001,9844
Bacia_Int_7	98.984,1406	1.757,2456	6.820,7059	98.930,9793
Bacia_Int_8	158.004,2969	1.492,0593	5.535,3636	157.995,2969
Bacia_Int_9	66.556,7734	1.150,2363	3.547,3077	66.531,0085
Bacia_Int_10	120.430,2500	1.693,0324	7.483,7995	120.421,2500
Bacia_Int_11	305.080,0000	1.728,6461	7.612,9583	305.071,0000
Bacia_Int_12	166.637,3750	2.203,4471	9.730,7704	166.628,3750
Bacia_Int_13	75.189,5000	1.186,0536	3.556,5419	75.180,5000
Bacia_Int_14	64.161,2891	1.059,8629	3.048,8104	64.152,2891
Bacia_Int_15	59.064,8594	1.731,8750	5.291,8900	59.055,8594
Bacia_Int_16	250.466,1875	2.201,4833	12.185,8149	250.457,1875
Bacia_Per_1	325.857,8750	2.015,2347	10.731,2298	325.847,2174
Bacia_Per_2	96.928,4844	1.960,1228	7.657,5939	96.919,4844
Bacia_Per_3	165.599,4531	1.333,3395	5.303,8704	165.575,5517
Bacia_Per_4	361.629,6563	2.124,0423	12.572,9396	361.620,6563
Bacia_Per_5	131.835,8750	1.803,3840	8.499,1300	131.826,8750
Bacia_Per_6	120.569,3359	2.114,7888	7.246,1728	120.536,5542
Bacia_Per_7	131.604,5000	1.704,9918	5.220,1783	131.595,5000
Bacia_Per_8	87.874,4297	1.395,5114	6.368,1543	87.862,7002
Bacia_Per_9	783.219,9375	2.295,2647	14.632,7318	783.210,9375
Bacia_Per_10	288.955,1563	2.335,9469	10.860,2514	288.946,1563
Bacia_Per_11	253.321,0313	2.082,3602	10.400,8406	253.312,0313
Bacia_Per_12	218.163,0781	2.377,4101	10.948,5665	218.154,0781
Bacia_Per_13	894.933,6250	3.592,3011	19.947,3710	894.924,6250
Bacia_Per_14	1.513.111,1250	3.715,6522	29.244,8073	1.513.102,1250
Bacia_Per_15	1.268.975,7500	3.538,4556	27.612,9848	1.268.966,7500
Bacia_Per_16	480.011,5313	2.933,2299	17.882,0951	480.002,5313

TIPO_COD	ACF_var	ACF_median	ITU_min	ITU_max	ITU_mean
Bacia_Int_1	2.993.272,3241	311,0249	5,1197	13,8440	7,0391
Bacia_Int_2	4.328.426,1320	438,0902	4,6466	13,2704	6,8456
Bacia_Int_3	13.137.123,1733	424,3869	4,1128	13,4517	6,8510
Bacia_Int_4	6.317.059,9456	492,4240	5,1511	14,2614	7,3824
Bacia_Int_5	1.112.252,6730	455,2926	4,9301	11,2951	7,0520
Bacia_Int_6	31.767.340,7482	412,7863	2,9969	14,0479	6,5272
Bacia_Int_7	46.522.029,2964	443,7228	4,1786	17,2879	7,2215
Bacia_Int_8	30.640.250,0969	362,2032	5,2591	17,9379	7,3019
Bacia_Int_9	12.583.392,1359	507,8598	4,4814	12,6843	6,7325
Bacia_Int_10	56.007.255,1748	305,4005	2,4056	16,3059	6,6188
Bacia_Int_11	57.957.134,0920	366,6205	1,5735	15,3251	6,8266
Bacia_Int_12	94.687.892,9669	449,9622	3,6675	17,6151	6,8660
Bacia_Int_13	12.648.990,1080	505,7460	5,4636	12,4449	7,8604
Bacia_Int_14	9.295.244,6680	530,4509	5,2759	12,6351	7,5456
Bacia_Int_15	28.004.100,0891	624,6832	2,0845	12,6458	7,5807
Bacia_Int_16	148.494.085,4703	364,4521	2,2920	17,5091	6,6125
Bacia_Per_1	115.159.292,3180	428,7898	1,9708	18,4899	6,7124
Bacia_Per_2	58.638.744,0011	493,4212	3,4538	12,8260	7,0654
Bacia_Per_3	28.131.040,8875	445,3165	5,1781	17,1202	7,3199
Bacia_Per_4	158.078.809,4036	338,4045	2,8855	15,4191	6,6975
Bacia_Per_5	72.235.210,5953	303,7789	1,1857	13,9548	6,2484
Bacia_Per_6	52.507.020,8283	486,9537	5,0381	13,7554	7,8702
Bacia_Per_7	27.250.261,2009	546,4034	4,3480	17,2940	7,2703
Bacia_Per_8	40.553.388,7341	379,9450	5,3010	13,9500	7,2272
Bacia_Per_9	214.116.839,3162	425,0322	1,3480	20,0155	7,0398
Bacia_Per_10	117.945.059,9314	389,9772	2,1451	15,4871	7,1130
Bacia_Per_11	108.177.484,9794	434,6335	3,1713	15,6272	6,6602
Bacia_Per_12	119.871.108,9880	430,8920	5,2684	18,1468	7,7720
Bacia_Per_13	397.897.607,9291	478,6504	3,0373	18,8948	7,2911
Bacia_Per_14	855.258.753,8600	643,6870	3,2127	20,5154	8,1951
Bacia_Per_15	762.476.929,6793	455,4597	2,0784	20,9023	7,7250
Bacia_Per_16	319.769.324,1502	764,0269	6,0281	18,3666	8,2651

TIPO_COD	ITU_std	ITU_range	ITU_var	ITU_median	Vol_vazio	Ind_Vazio
Bacia_Int_1	1,2255	8,7243	1,5020	6,7357	139.250,0000	1,3243
Bacia_Int_2	0,9800	8,6238	0,9604	6,7346	189.161,0000	1,3276
Bacia_Int_3	1,0964	9,3390	1,2021	6,7914	367.118,0000	1,6966
Bacia_Int_4	1,0716	9,1103	1,1484	7,2926	145.629,0000	0,8086
Bacia_Int_5	0,6114	6,3650	0,3738	7,0821	129.376,0000	0,6665
Bacia_Int_6	1,5562	11,0509	2,4218	6,4570	1.954.530,0000	7,1461
Bacia_Int_7	1,3658	13,1093	1,8653	7,0467	816.488,0000	2,5518
Bacia_Int_8	1,6836	12,6788	2,8345	6,9070	494.050,0000	2,4146
Bacia_Int_9	1,2077	8,2030	1,4586	6,7425	175.996,0000	1,1114
Bacia_Int_10	1,9246	13,9003	3,7040	6,3483	1.023.610,0000	4,1224
Bacia_Int_11	1,4227	13,7516	2,0240	6,5223	1.969.850,0000	4,6481
Bacia_Int_12	1,4742	13,9475	2,1733	6,6778	2.400.170,0000	6,7852
Bacia_Int_13	0,8860	6,9813	0,7850	7,8082	149.272,0000	0,3650
Bacia_Int_14	0,9022	7,3592	0,8140	7,4730	24.564,8000	0,0565
Bacia_Int_15	1,2313	10,5613	1,5161	7,4811	756.074,0000	1,7776
Bacia_Int_16	1,6288	15,2171	2,6529	6,2485	4.728.480,0000	10,5971
Bacia_Per_1	1,4959	16,5191	2,2377	6,6848	2.493.450,0000	5,6789
Bacia_Per_2	1,0643	9,3722	1,1328	6,8724	2.478.560,0000	5,6757
Bacia_Per_3	0,8812	11,9421	0,7766	7,2883	585.787,0000	2,0192
Bacia_Per_4	1,3746	12,5336	1,8895	6,4080	4.050.460,0000	8,8224
Bacia_Per_5	1,5348	12,7691	2,3556	5,9725	3.168.220,0000	8,1146
Bacia_Per_6	1,1705	8,7172	1,3701	7,5956	395.214,0000	1,2176
Bacia_Per_7	1,2388	12,9459	1,5347	7,1477	494.021,0000	1,4955
Bacia_Per_8	1,0044	8,6491	1,0088	7,0976	769.982,0000	2,6707
Bacia_Per_9	1,4867	18,6674	2,2103	6,9362	5.938.670,0000	6,9243
Bacia_Per_10	1,4350	13,3421	2,0592	6,9116	2.381.370,0000	4,6619
Bacia_Per_11	1,5560	12,4559	2,4210	6,6131	6.772.550,0000	12,1965
Bacia_Per_12	1,2303	12,8783	1,5137	7,4948	1.070.240,0000	2,2182
Bacia_Per_13	1,5400	15,8575	2,3715	7,1096	5.862.440,0000	6,9951
Bacia_Per_14	1,1897	17,3028	1,4154	7,9789	12.745.400,0000	6,9306
Bacia_Per_15	1,5233	18,8240	2,3204	7,4958	10.872.600,0000	7,2683
Bacia_Per_16	0,9920	12,3384	0,9841	8,1728	4.962.580,0000	4,7323

Bacia_int_1 4,7876 5,4471 5,2687 0,1445 0,6595 0,0209 5,3005 Bacia_int_2 5,8094 6,872 6,2258 0,1828 0,7778 0,0334 6,3592 Bacia_int_3 4,4184 5,5940 5,2456 0,2496 1,1756 0,0623 5,2885 Bacia_int_4 3,1547 4,2441 3,0603 0,2121 1,0893 0,0450 3,9954 Bacia_int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_int_7 3,7417 5,4424 5,0080 0,2992 1,7007 0,0896 5,0458 Bacia_int_1 8,3085 10,0779 9,4873 0,4253 1,7693 0,1808 9,5663 Bacia_int_1 5,4266 8,0119 7,1177 0,6597 2,7693 0,4352 7,2787 Bacia_int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,9033 3,6675 Bacia_int_13 2,8612 4,0211 <th3< th=""><th>TIPO_COD</th><th>ICR_min</th><th>ICR_max</th><th>ICR_mean</th><th>ICR_std</th><th>ICR_range</th><th>ICR_var</th><th>ICR_median</th></th3<>	TIPO_COD	ICR_min	ICR_max	ICR_mean	ICR_std	ICR_range	ICR_var	ICR_median
Bacia_Int_2 5,8094 6,5872 6,3258 0,1828 0,7778 0,0334 6,3592 Bacia_Int_3 4,4184 5,5940 5,2456 0,2496 1,1756 0,0623 5,2885 Bacia_Int_4 3,1547 4,2441 3,9603 0,2121 1,0893 0,0450 3,9954 Bacia_Int_5 4,0127 5,0236 4,6580 0,2698 1,0109 0,0728 4,7062 Bacia_Int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_Int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_Int_7 3,7417 5,4424 5,0080 0,2992 1,7007 0,0896 5,0458 Bacia_Int_10 8,3085 10,0779 9,4873 0,4253 1,7693 0,4352 7,2787 Bacia_Int_11 5,2426 8,0119 7,1177 0,6641 8,5066 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 <t< th=""><th>Bacia_Int_1</th><th>4,7876</th><th>5,4471</th><th>5,2687</th><th>0,1445</th><th>0,6595</th><th>0,0209</th><th>5,3005</th></t<>	Bacia_Int_1	4,7876	5,4471	5,2687	0,1445	0,6595	0,0209	5,3005
Bacia_Int_3 4,4184 5,5940 5,2456 0,2496 1,1756 0,0623 5,2885 Bacia_Int_4 3,1547 4,2441 3,9603 0,2121 1,0893 0,0450 3,9954 Bacia_Int_5 4,0127 5,0236 4,6580 0,2698 1,019 0,0728 4,7062 Bacia_Int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_Int_7 3,7417 5,4424 5,0808 0,2929 1,7007 0,0886 5,0458 Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,1808 9,5663 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_11 5,2426 8,0119 7,1177 0,6597 2,7093 0,4352 7,2787 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,9003 3,6675 Bacia_Int_14 3,2454 5,5489 <t< th=""><th>Bacia_Int_2</th><th>5,8094</th><th>6,5872</th><th>6,3258</th><th>0,1828</th><th>0,7778</th><th>0,0334</th><th>6,3592</th></t<>	Bacia_Int_2	5,8094	6,5872	6,3258	0,1828	0,7778	0,0334	6,3592
Bacia_Int_4 3,1547 4,2441 3,9603 0,2121 1,0893 0,0450 3,9954 Bacia_Int_5 4,0127 5,0236 4,6580 0,2698 1,0109 0,0728 4,7062 Bacia_Int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_Int_7 3,7417 5,4424 5,0080 0,2992 1,7007 0,0896 5,0458 Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,1808 9,5663 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_11 5,2426 8,0119 7,1177 0,6597 2,7693 0,4352 7,2787 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,9003 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Int_16 5,1307 10,3747	Bacia_Int_3	4,4184	5,5940	5,2456	0,2496	1,1756	0,0623	5,2885
Bacia_Int_5 4,0127 5,0236 4,6580 0,2698 1,0109 0,0728 4,7062 Bacia_Int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_Int_7 3,7417 5,4424 5,0080 0,2992 1,7007 0,0896 5,0458 Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,1088 9,5663 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_11 5,2426 8,0119 7,1177 0,6597 2,7693 0,4352 7,2787 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,0306 0,2594 4,9507 Bacia_Int_15 4,4128 6,0865 5,5058 0,3693 1,6737 0,1364 5,5204 Bacia_Int_16 5,1077 0,15643	Bacia_Int_4	3,1547	4,2441	3,9603	0,2121	1,0893	0,0450	3,9954
Bacia_Int_6 6,4747 9,8174 9,0999 0,5545 3,3427 0,3075 9,2003 Bacia_Int_7 3,7417 5,4424 5,0080 0,2992 1,7007 0,0896 5,0458 Bacia_Int_8 3,0731 4,4208 3,9577 0,3183 1,3478 0,1013 3,9836 Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,4382 7,2787 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_11 5,2426 8,0119 7,1177 0,6593 5,033 0,4352 7,2787 Bacia_Int_12 5,8564 10,8654 9,5927 1,0933 5,0090 1,1954 9,8861 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Per_1 4,6264 12,7590	Bacia_Int_5	4,0127	5,0236	4,6580	0,2698	1,0109	0,0728	4,7062
Bacia_Int_7 3,7417 5,4424 5,0080 0,2992 1,7007 0,0896 5,0458 Bacia_Int_8 3,0731 4,4208 3,9577 0,3183 1,3478 0,1013 3,9836 Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,1808 9,5663 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_12 5,8664 10,8654 9,5927 1,0933 5,0090 1,1954 9,8861 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Int_16 5,1307 10,3747 9,1777 0,9694 5,2440 0,9397 9,3925 Bacia_Per_1 4,6264 12,7590 10,5643 1,9752 8,1326 3,9016 11,2282 Bacia_Per_3 3,7599 5,7077	Bacia_Int_6	6,4747	9,8174	9,0999	0,5545	3,3427	0,3075	9,2003
Bacia_Int_8 3,0731 4,4208 3,9577 0,3183 1,3478 0,1013 3,9836 Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,1808 9,5663 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_11 5,2426 8,0119 7,1177 0,6597 2,7693 0,4352 7,2787 Bacia_Int_12 5,8564 10,8654 9,5927 1,0933 5,0090 1,1954 9,8861 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_16 5,1307 10,3747 9,1777 0,9694 5,2440 0,9397 9,3925 Bacia_Per_1 4,6264 12,7590 10,5643 1,9752 8,1326 3,9016 11,2282 Bacia_Per_3 3,7599 5,7077 5,1005 0,4291 1,9478 0,1841 5,1487 Bacia_Per_5 8,0190 12,1465	Bacia_Int_7	3,7417	5,4424	5,0080	0,2992	1,7007	0,0896	5,0458
Bacia_Int_9 8,3085 10,0779 9,4873 0,4253 1,7693 0,1808 9,5663 Bacia_Int_10 4,8897 9,0174 8,2290 0,8150 4,1277 0,6641 8,5066 Bacia_Int_11 5,2426 8,0119 7,1177 0,6597 2,7693 0,4352 7,2787 Bacia_Int_12 5,8564 10,8654 9,5927 1,0933 5,0090 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Int_15 4,4128 6,0865 5,5058 0,3693 1,6737 0,1364 5,5204 Bacia_Per_1 4,6264 12,7590 10,5643 1,9752 8,1326 3,9016 11,2282 Bacia_Per_3 3,7599 5,7077 5,1005 0,4291 1,9478 0,1841 5,1487 Bacia_Per_5 8,0190 12,1465 10,9650 0,8345 4,1275 0,6964 11,1185 Bacia_Per_7 4,4785	Bacia_Int_8	3,0731	4,4208	3,9577	0,3183	1,3478	0,1013	3,9836
Bacia_Int_104,88979,01748,22900,81504,12770,66418,5066Bacia_Int_115,24268,01197,11770,65972,76930,43527,2787Bacia_Int_125,856410,86549,59271,09335,00901,19549,8861Bacia_Int_132,86124,02113,59620,30051,15990,09033,6675Bacia_Int_143,24545,54894,85390,50932,30360,25944,9507Bacia_Int_154,41286,08655,50580,36931,67370,13645,5204Bacia_Int_165,130710,37479,17770,96945,24400,93979,3925Bacia_Per_14,626412,759010,56431,97528,13263,901611,2282Bacia_Per_24,29218,89717,51601,06034,60511,12437,7502Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bac	Bacia_Int_9	8,3085	10,0779	9,4873	0,4253	1,7693	0,1808	9,5663
Bacia_Int_11 5,2426 8,0119 7,1177 0,6597 2,7693 0,4352 7,2787 Bacia_Int_12 5,8564 10,8654 9,5927 1,0933 5,0090 1,1954 9,8861 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Int_15 4,4128 6,0865 5,5058 0,3693 1,6737 0,1364 5,5204 Bacia_Per_1 4,6264 12,7590 10,5643 1,9752 8,1326 3,9016 11,2282 Bacia_Per_2 4,2921 8,8971 7,5160 1,0603 4,6051 1,1243 7,7502 Bacia_Per_3 3,7599 5,7077 5,1005 0,4291 1,9478 0,1841 5,1487 Bacia_Per_4 6,2684 9,1783 8,2578 0,6114 2,9099 0,3738 8,3509 Bacia_Per_5 8,0190 12,1465	Bacia_Int_10	4,8897	9,0174	8,2290	0,8150	4,1277	0,6641	8,5066
Bacia_Int_12 5,8564 10,8654 9,5927 1,0933 5,0090 1,1954 9,8861 Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Int_15 4,4128 6,0865 5,5058 0,3693 1,6737 0,1364 5,5204 Bacia_Int_16 5,1307 10,3747 9,1777 0,9694 5,2440 0,9397 9,3925 Bacia_Per_1 4,6264 12,7590 10,5643 1,9752 8,1326 3,9016 11,2282 Bacia_Per_3 3,7599 5,7077 5,1005 0,4291 1,9478 0,1841 5,1487 Bacia_Per_4 6,2684 9,1783 8,2578 0,6114 2,9099 0,3738 8,3509 Bacia_Per_5 8,0190 12,1465 10,9650 0,8345 4,1275 0,6964 11,1185 Bacia_Per_6 2,7456 6,0638	Bacia_Int_11	5,2426	8,0119	7,1177	0,6597	2,7693	0,4352	7,2787
Bacia_Int_13 2,8612 4,0211 3,5962 0,3005 1,1599 0,0903 3,6675 Bacia_Int_14 3,2454 5,5489 4,8539 0,5093 2,3036 0,2594 4,9507 Bacia_Int_15 4,4128 6,0865 5,5058 0,3693 1,6737 0,1364 5,5204 Bacia_Int_16 5,1307 10,3747 9,1777 0,9694 5,2440 0,9397 9,3925 Bacia_Per_1 4,6264 12,7590 10,5643 1,9752 8,1326 3,9016 11,2282 Bacia_Per_2 4,2921 8,8971 7,5160 1,0603 4,6051 1,1243 7,7502 Bacia_Per_3 3,7599 5,7077 5,1005 0,4291 1,9478 0,1841 5,1487 Bacia_Per_5 8,0190 12,1465 10,9650 0,8345 4,1275 0,6964 11,1185 Bacia_Per_6 2,7456 6,0638 4,9973 0,9546 3,3182 0,9113 5,3447 Bacia_Per_7 4,4785 10,2160	Bacia_Int_12	5,8564	10,8654	9,5927	1,0933	5,0090	1,1954	9,8861
Bacia_Int_143,24545,54894,85390,50932,30360,25944,9507Bacia_Int_154,41286,08655,50580,36931,67370,13645,5204Bacia_Int_165,130710,37479,17770,96945,24400,93979,3925Bacia_Per_14,626412,759010,56431,97528,13263,901611,2282Bacia_Per_24,29218,89717,51601,06034,60511,12437,7502Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,564Baci	Bacia_Int_13	2,8612	4,0211	3,5962	0,3005	1,1599	0,0903	3,6675
Bacia_Int_154,41286,08655,50580,36931,67370,13645,5204Bacia_Int_165,130710,37479,17770,96945,24400,93979,3925Bacia_Per_14,626412,759010,56431,97528,13263,901611,2282Bacia_Per_24,29218,89717,51601,06034,60511,12437,7502Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Ba	Bacia_Int_14	3,2454	5,5489	4,8539	0,5093	2,3036	0,2594	4,9507
Bacia_Int_165,130710,37479,17770,96945,24400,93979,3925Bacia_Per_14,626412,759010,56431,97528,13263,901611,2282Bacia_Per_24,29218,89717,51601,06034,60511,12437,7502Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Ba	Bacia_Int_15	4,4128	6,0865	5,5058	0,3693	1,6737	0,1364	5,5204
Bacia_Per_14,626412,759010,56431,97528,13263,901611,2282Bacia_Per_24,29218,89717,51601,06034,60511,12437,7502Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bac	Bacia_Int_16	5,1307	10,3747	9,1777	0,9694	5,2440	0,9397	9,3925
Bacia_Per_24,29218,89717,51601,06034,60511,12437,7502Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091 <th>Bacia_Per_1</th> <th>4,6264</th> <th>12,7590</th> <th>10,5643</th> <th>1,9752</th> <th>8,1326</th> <th>3,9016</th> <th>11,2282</th>	Bacia_Per_1	4,6264	12,7590	10,5643	1,9752	8,1326	3,9016	11,2282
Bacia_Per_33,75995,70775,10050,42911,94780,18415,1487Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_2	4,2921	8,8971	7,5160	1,0603	4,6051	1,1243	7,7502
Bacia_Per_46,26849,17838,25780,61142,90990,37388,3509Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_3	3,7599	5,7077	5,1005	0,4291	1,9478	0,1841	5,1487
Bacia_Per_58,019012,146510,96500,83454,12750,696411,1185Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_4	6,2684	9,1783	8,2578	0,6114	2,9099	0,3738	8,3509
Bacia_Per_62,74566,06384,99730,95463,31820,91135,3447Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_5	8,0190	12,1465	10,9650	0,8345	4,1275	0,6964	11,1185
Bacia_Per_74,478510,21608,61991,36485,73751,86289,0783Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_6	2,7456	6,0638	4,9973	0,9546	3,3182	0,9113	5,3447
Bacia_Per_84,22885,76855,26760,35971,53970,12945,3284Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_7	4,4785	10,2160	8,6199	1,3648	5,7375	1,8628	9,0783
Bacia_Per_93,62228,61967,17490,97844,99740,95727,2996Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_8	4,2288	5,7685	5,2676	0,3597	1,5397	0,1294	5,3284
Bacia_Per_104,14936,89605,94910,63602,74660,40446,0075Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_9	3,6222	8,6196	7,1749	0,9784	4,9974	0,9572	7,2996
Bacia_Per_117,210615,585413,06192,13108,37484,541113,7903Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_10	4,1493	6,8960	5,9491	0,6360	2,7466	0,4044	6,0075
Bacia_Per_122,47245,45974,39090,75412,98730,56874,5564Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_11	7,2106	15,5854	13,0619	2,1310	8,3748	4,5411	13,7903
Bacia_Per_133,907011,71389,35651,88777,80683,56349,9441Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_12	2,4724	5,4597	4,3909	0,7541	2,9873	0,5687	4,5564
Bacia_Per_142,27935,81884,34510,91813,53940,84294,4172Bacia_Per_151,98146,29414,68521,09174,31271,19194,8627Bacia_Per_161,24376,81634,42751,36405,57261,86044,4091	Bacia_Per_13	3,9070	11,7138	9,3565	1,8877	7,8068	3,5634	9,9441
Bacia_Per_15 1,9814 6,2941 4,6852 1,0917 4,3127 1,1919 4,8627 Bacia_Per_16 1,2437 6,8163 4,4275 1,3640 5,5726 1,8604 4,4091	Bacia_Per_14	2,2793	5,8188	4,3451	0,9181	3,5394	0,8429	4,4172
Bacia_Per_16 1,2437 6,8163 4,4275 1,3640 5,5726 1,8604 4,4091	Bacia_Per_15	1,9814	6,2941	4,6852	1,0917	4,3127	1,1919	4,8627
	Bacia_Per_16	1,2437	6,8163	4,4275	1,3640	5,5726	1,8604	4,4091

APÊNDICE 5 – PARÂMETROS PARA PROCESSAMENTO DOS MODELOS DIGITAIS DO TERRENO A PARTIR DE AEROLEVANTAMENTO COM RPA

Bacia Perer	ne 01	Bacia Pe	rene 02
Input datasets		Input datasets	
∃ Dataset		🗆 Dataset	
	C:\Users\LAPE-		C:\Users\LAPE-
CT\Documents\09_Campo_Mestrac	lo\02_Campos\Campo 06	CT\Documents\09_Campo_Me	strado\02_Campos\Campo 06
- Mestrado Maio Pe		- Mest Mai	o/Perene/Novo/Bacia Per 02
\07 Ptos Filtra	dos\Pontos Per 01 UTM	\07_P1	tos_Filtrados\Pontos_Per_02_
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	
∃ Method	Kriging	□ Method	Kriging
Type	Simple	Type	Simple
	Drediction	Output type	Prediction
Dataset #	1	E Dataset #	1
Moon	265 085336024254	Mean	315 742804076467
Trand type	203.903330934234		J1J./420049/040/
Copyrighting a single barbara	None	Georghing poighborhout	None Smooth
Searching heighborhood	Smooth	E Searching heighborhoo	Smooth
Smoothing factor	0.02	Smoothing factor	0.02
Major semiaxis		Major semiaxis	
Minor semiaxis		Minor semiaxis	
Angle	0	Angle	0
🗆 Variogram	Semivariogram	🗆 Variogram	Semivariogram
Number of lags		Number of lags	
Lag size	4.4	Lag size	4.5
Nugget	0.377645262965	Nugget	0.541792461726
Measurement error %	100	Measurement error %	
Model type	Gaussian	🗆 Model type	Gaussian
Range	320	Range	750
2			
Anisotropy	No	Anisotropy	No
Anisotropy Partial sill Bacia Peren Input datasets	No 209.708667865886 e 03	Anisotropy Partial sill Bacia Pe Input datasets	541.792461726268 rene 04
Anisotropy Partial sill Bacia Peren Input datasets El Dataset	No 209.708667865886 e 03	Anisotropy Partial sill Bacia Pe Input datasets Dataset	541.792461726268 rene 04
Anisotropy Partial sill Bacia Peren Input datasets El Dataset CT\Documents\09_Campo_Mestrado Maio\Pe	C:\Users\LAPE- do\02_CamposCampo 06 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campo\Campo 06 rado Otacilio\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia Per 04
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pa Maio\Pa	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04 :os_Filtrados\Pontos_Per_04_
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrato Maio\Pe \07_Ptos_Fi Type	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 .0tacilio\Campo Mestrado erene\Nov\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me: Mai Mai	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04- cos_Filtrados\Pontos_Per_04- Feature Class
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai \07_Pt Type Data field 1	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04 cos_Filtrados\Pontos_Per_04_ Feature Class ELEVATION
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrato Maio\Pe \07_Ptos_Fi Type Data field 1 Records	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03 ltrados\Ptos_Per_03_utm Feature Class ELEVATION 9852	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai 	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_campos\Campo 06 rado Otacilio\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrato Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records E Method	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 .0tacilio\Campo Mestrado erene\Nov\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVA TION 9852 Kriging	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me: - Mest Mai Data field 1 Records Data field 1 Records	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153 Kriging
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 .0tacilio\Campo Mestrado erene\Nov\Bacia_Per_03 ltrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me: - Mest Mai - \07_Pt Type Data field 1 Records B Method Type	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04 Feature Class ELEVATION 10153 Kriging Simple
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction	Anisotropy	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ os_Filtrados\Pontos_Per_04_ Feature Class ELEVATION 10153 Kriging Simple Prediction
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset #	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0Ctacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1	Anisotropy	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04- .os_Filtrados\Pontos_Per_04- .Feature Class ELEVATION 10153 Kriging Simple Prediction 1
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894	Anisotropy	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campo\Campo 06 rado Otacilio\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrat - Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0Ctacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main CT\Documents\09_Campo_Me - \07_Pt Mast Mest Data field 1 Records B Method Type Output type Dataset # Mean Trend type	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pa \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type B Searching neighborhood	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0tacilio\Campo Mestrado erene\Novo\Bacia_Per_03 ltrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main (07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type E Searching neighborhor	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVA TION 10153 Kriging Simple Prediction 1 288.805758834414 None None Smoth
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\PP 	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 Otacilio\Campo Mestrado erene\Nov(Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main CT\Documents\09_Campo_Me - Mest Main V07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado 0/Perene/Novo\Bacia_Per_04_ Feature Class ELEVA TION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrat - Mestrado Maio/Pe 	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0tacilio\Campo Mestrado erene\Nov\Bacia Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVA TION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai OT\PC Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhoo Smoothing factor	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe (07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Miaor semiaxis	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 .0tacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai (07_Pt Type Data field 1 Records BMethod Type Output type Dataset # Mean Trend type Searching neighborhoot Smoothing factor Major semiaxis	No 541.792461726268 rene 04 c:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04- Feature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0Ctacilio\Campo Mestrado erene\Novo\Bacia_Per_03 ttrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Mai - \07_Pt Type Data field 1 Records B Method Type Output type Dataset # Mean Trend type Searching neighborhoo Smoothing factor Major semiaxis Minor semiaxis	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio/Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 235
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 Otacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 0 0	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main CT\Documents\09_Campo_Me - \07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhoo Smoothing factor Major semiaxis Angle	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrato Maio\Pa (07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0Ctacilio\Campo Mestrado erene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 0 Semivariogram	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main (07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle U Variogram	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVA TION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 235 0 Semivariogram
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrato - Mestrado Maio\PP 	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 Otacilio\Campo Mestrado arene\Novo\Bacia_Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 0 Semivariogram 50	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main CT\Documents\09_Campo_Me - Mest Main Nupe Data field 1 Records Mathed Type Output type Dataset # Mean Trend type Bataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle B Variogram Number of lags	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos(Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVA TION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 0 Semivariogram 50
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrat - Mestrado Maio\Pe - \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Dataset # Mean Trend type Dataset # Mean Trend type Dataset a Mior semiaxis Angle Variogram Number of lags Lag size	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado erene\Nov(Bacia Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 0 Semivariogram 50 4.6	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main CT\Documents\09_Campo_Me - Mest Main Mean Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Dataset Angle Dataset Minor semiaxis Angle Dataset Dataset Minor semiaxis Angle Dataset Data	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado 0\Perene\Novo\Bacia_Per_04_ Feature Class ELEVA TION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 0 Semivariogram 50
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrat - Mestrado Maio\Pe 	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0tacilio\Campo Mestrado orene\Nov(Bacia Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 0 Semivariogram 50 4.6 0.49681914194	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Data size Number of lags Lag size Nugget	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado 0/Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 0 Semivariogram 50 0.626454677867
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrat - Mestrado Maio\Pe 	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 .0tacilio\Campo Mestrado erene\Nov\Bacia Per_03 Itrados\Ptos_Per_03_utm Feature Class ELEVA TION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 0 Semivariogram 50 4.6 0.49681914194 100	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main (07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 235 0 Semivariogram 50 50 0.626454677867 100
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrat - Mestrado Maio\Pe (\07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0tacilio\Campo Mestrado orene\Nov\Bacia_Per_03 itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 0 0 Semivariogram 50 4.6 0.49681914194 100 Gaussian	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mesti Mai CT\Documents\09_Campo_Me - Mesti Mai Data field 1 Records Bata field 1 Records Bata field 1 Records Bataset # Mean Trend type Bataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle BVariogram Number of lags Lag size Nugget Measurement error % BMOdel type	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pe \07_Ptos_Fi Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Maiones Angle Measurement error % Maiones Maiones Measurement error % Maiones Maiones Maiones Maiones Maiones Measurement error % Maiones Maione	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 00tacilio\Campo Mestrado erene\Novo\Bacia_Per_03 ltrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 0 Semivariogram 50 4.6 0.49681914194 100 Gaussian	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main (07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Main Searching Neighborhood Smoothing factor	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ reature Class ELEVATION 10153 Kriging Simple Prediction 1 288.805758834414 None d Smooth 0.02 235 235 0 Semivariogram 50 0.626454677867 100 Gaussian 425
Anisotropy Partial sill Bacia Peren Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrado Maio\PA Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type Range Anisotropy	No 209.708667865886 e 03 C:\Users\LAPE- do\02_Campos\Campo 06 0.0tacilio\Campo Mestrado erene\Novo\Bacia_Per_03 itrados\Ptos_Per_03_utm Feature Class ELEVATION 9852 Kriging Simple Prediction 1 389.742519401894 None Smooth 0.02 205 205 205 0 Semivariogram 50 4.6 0.49681914194 100 Gaussian 650 No	Anisotropy Partial sill Bacia Pe Input datasets Dataset CT\Documents\09_Campo_Me - Mest Main (07_Pt Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Hodel type Range Anisotropy	No 541.792461726268 rene 04 C:\Users\LAPE- strado\02_Campos\Campo 06 rado Otacilio\Campo Mestrado o\Perene\Novo\Bacia_Per_04_ Feature Class ELEVA TION 10153 Kriging Simple Prediction 1 288.805758834414 None od Smooth 0.02 235 235 0 Semivariogram 50 0.626454677867 100 Gaussian 425 No

	e 05	Bacia Pere	ne 06
Input datasets		Input datasets	
Dataset		□ Dataset	
	C:\Users\LAPE-		C:\Users\LAPE-
CT\Documents\09_Campo_Mestrade	o\02_Campos\Campo 06	CT\Documents\09_Campo_Mestra	do\02_Campos\Campo 06
- Mestrado	Otacilio\Campo Mestrado	- Mestrado	o Otacilio\Campo Mestrado
Maio\Per	ene\Novo\Bacia_Per_05	Maio\Perene\Novo\Bacia_Per_	_06\07_Ptos\Ptos_Per_06
Type (07_FC03_	Feature Class	Type	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records	11410	Records	
Records	11419		
		E Method	Kriging
🗆 Method	Kriging	Type	Cimple
Туре	Simple	Output have	Dradiction
Output type	Prediction	Output type	Prediction
🗆 Dataset #	1	🖃 Dataset #	1
Mean	304,889787873889	Mean	221.300393075697
Trend type	None	Trend type	None
	Smooth	Searching neighborhood	
Smoothing factor	0.02	Smoothing factor	0.02
	0.02	Major semiaxis	270
Major semiaxis	190	Minor semiaxis	270
Minor semiaxis		Angle	 ^
Angle	0	- Vario gram	Comicario gram
🗆 Variogram	Semivariogram	variogram	sernivanogram
Number of lags		Number of lags	
Lag size	4.42	Lag size	
Nugget	0.481714012697	Nugget	0.216035188912
Measurement error %	100	Measurement error %	
Model type	Gaussian	Model type	Gaussian
Range	440	Range	
Anisotropy	No	Anisotropy	No
Partial cill	450	Partial sill	158.865518320253
Davia Dava	07	Denie Dene	
Bacia Perene	907	Bacia Pere	ne 08
Bacia Perene Input datasets	9 07	Bacia Pere Input datasets	ne 08
Bacia Perene Input datasets ⊟ Dataset	e 07	Bacia Pere Input datasets Dataset	ne 08
Bacia Perene Input datasets Dataset	C:\Users\LAPE-	Bacia Pere Input datasets Dataset	C:\Users\LAPE-
Bacia Perene Input datasets E Dataset CT\Documents\09_Campo_Mestrad - Mestrado	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrad	ne 08 C:\Users\LAPE- ido\02_Campo 86 0 Otariio.\Campo Mestado
Bacia Perene Input datasets E Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrad Maio\P	ne 08 C:\Users\LAPE- ido\02_CamposCampo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrad Maio\P	C:\Users\LAPE- do\02_CamposCampo 06 o tacilio\Campo Mestrado erene\Novo\Bacia_Per_08 tos_Filtrados\Ptos_Per_08
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado 'ene\Novo\Bacia_Per_07 'ados\Ptos_Per_07_UTM Feature Class	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrad Maio\P Maio\P Type_	C:\Users\LAPE- do\02_CamposCampo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 tos_Filtrados\Ptos_Per_08 Feature Class
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1	C:\Users\LAPE- o\02_Campos\Campo 06 Otaciio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Amestrado Maio\P Type Data field 1	C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 tos_Filtrados\Ptos_Per_08 Feature Class ELEVATION
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\P Type Data field 1 Records	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\P Type Data field 1 Records	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\P Type Data field 1 Records Method	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Amestrado Maio\P Type Data field 1 Records Maio	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 tos_Filtrados\Ptos_Per_08 Feature Class ELEVATION 10315 Kriging Gimula
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Qutput type	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\P Type Data field 1 Records B Method Type Output time	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilo\Campo Mestrado erene\Novo\Bacia_Per_08 tos_Filtrados\Ptos_Per_08 Feature Class ELEVATION 10315 Kriging Simple
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type E Dataset #	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVA TION 9344 Kriging Simple Prediction	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrad Maio\P Type Data field 1 Records Method Type Output type Data t	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333 332234120272	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\P Type Data field 1 Records Method Type Output type Dataset #	ne 08 C:\Users\LAPE- do\02_CampoS\Campo 06 o Otacilo\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trond hunce	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978	Bacia Pere	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo \06 Otacilio\Campo \06 Otacilio\Campo \06 Otacilio\Campo \06 Otacilio\Campo \06 Otacilio\Campo \06 Perduct Class ELEVATION 9344 Kriging Simple Prediction 1 333.33224172978 None	Bacia Pere	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 to Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra CT\Documents\09_Campo_Mestra Maio\P V07_P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 b Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth 0.02	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Amaio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth 0.02 210	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrade Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 210	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestradc Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 rados\Ptos_Per_07_UTM Feature Class ELEVA TION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth 0.02 210 210 0	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrado Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo %Campo 06 otacilio\Campo %Lampos rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 210 0 Semivariogram	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Angle Bacia Pere Bacia Pere Bacia Second Bacia Pere Bacia Second Bacia S	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 b Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 0 Semivariogram
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Waio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Uviogram Number of lags	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 210 0 Semivariogram 50	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra CT\Documents\09_Campo_Mestra Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of bas	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 b Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 175 0 Semivariogram
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07_ ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth 0.02 210 0 Semivariogram 50 4.73	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Amaio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Kriging ELEVATION 10315 Kriging Prediction 1 341.162927796387 None Smooth 0.02 175 175 0 Semivariogram 50 4 7
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07_ ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth 0.02 210 0 Semivariogram 50 4.73 0.444181476881	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestradc Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 0 Semivariogram 50 0 215165609
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %6	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07_ rados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 0 Semivariogram 50 4.73 0.444181476881 100	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestradc Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Meanumetric area 21	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 175 0 Semivariogram 50 4.7 0.2151665516608
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1. Records Method Type Output type Dataset # Mean Trend type Dataset # Mean Trend type Bacrohing neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 0 Semivariogram 50 4.73 0.444181476881 100 Gaussian	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestradc Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	ne 08 C:\Users\LAPE- ido\02_Campos\Campo 06 o 0tacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 175 0 Semivariogram 50 4.7 0.215166516608
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo %Campo 06 Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 210 0 Semivariogram 50 4.73 0.444181476881 100 Gaussian 555	Bacia Pere	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 D Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 0.215166516608 100 Gaussian
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type Range Anisotrony	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo %Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07 ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.33234172978 None Smooth 0.02 210 0 Semivariogram 50 4.73 0.444181476881 100 Gaussian 535	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Amaio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bacia Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type Range R	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 D Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 0.00 Semivariogram 50 4.7 0.215166516608 100 Gaussian 407
Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado Maio\Per \07_Ptos_Filtr Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type Range Anisotropy Dataited	C:\Users\LAPE- o\02_Campos\Campo 06 Otacilio\Campo Mestrado rene\Novo\Bacia_Per_07_ ados\Ptos_Per_07_UTM Feature Class ELEVATION 9344 Kriging Simple Prediction 1 333.333234172978 None Smooth 0.02 210 210 210 0 Semivariogram 50 4.73 0.444181476881 100 Gaussian 535 No	Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra . Mestrado Maio\P Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Maior semia factor Range Anisotropy	ne 08 C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado erene\Novo\Bacia_Per_08 Feature Class ELEVATION 10315 Kriging Simple Prediction 1 341.162927796387 None Smooth 0.02 175 175 0 Semivariogram 50 4.7 0.215166516608 100 Gaussian 407

Bacia Pere		Bacia Perene	; 10
Input datasets		Input datasets	
🗆 Dataset		Dataset	
	C:\Users\LAPE-		C:\Users\LAPE-
CT\Documents\09_Campo_Mestra	do/U2_Campos/Campo U6 -	CT\Documents\09_Campo_Mestrado	\U2_Campos\Campo U6 Itacilio\Campo Mestrado
Maio	Perene\Novo\Bacia Per 09	Maio/Pere	ene\Novo\Bacia Per 10
\07_	Ptos_Filtrados\Ptos_Per_09	\07_Ptos	_Filtrados\Ptos_Per_10
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	10831
Method	Kriging	E Mathad	Vriging
	Simple	Tupo	Simple
Output type	Brediction	Output type	Dradiction
	Frediction		Prediction
	202 105404025050	🖃 Dataset #	
Mean	283.195404035808	Mean	256./424//99883
Trend type	None	Trend type	None
Searching neighborhood	Smooth	Searching neighborhood	Smooth
Smoothing factor	0.02	Smoothing factor	0.02
Major semiaxis		Major semiaxis	
Minor semiaxis		Minor semiaxis	
Angle	0	Angle	0
🗆 Variogram	Semivariogram	🗆 Variogram	Semivariogram
Number of lags		Number of lags	- 50
Lag size	5.1	Lag size	4.5
Nugget	0.820628940767	Nugget	0.572841375219
Measurement error %	100	Measurement error %	100
🗆 Model type	Gaussian		Gaussian
Deser	660		Gdussidii
Kande	000	(Dautre	220
Kange Anisotropy	No	Anisotrony	•1-
kange Anisotropy Partial sill		Anisotropy	No
kange Anisotropy Partial sill	No 205.25785301481	Anisotropy Partial sil	No 148.24700679436
Anisotropy Partial sill Bacia Pere	No 205.25785301481 ne 11	Anisotropy Partial sil Bacia Perene	No 148.24700679436 2 12
Anisotropy Partial sill Bacia Pere Input datasets	No 205.25785301481 ne 11	Anisotropy Partial sill Bacia Perene Input datasets	No 148.24700679436 212
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset	No 205.25785301481	Anisotropy Partial sil Bacia Perene Input datasets Dataset	No 148.24700679436 2 12
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06	Anisotropy Partial sil Bacia Perene Input datasets E Dataset	No 148.24700679436 2 12 C:\Users\LAPE- C:\Users\LAPE-
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - lo Otacilio\Campo Mestrado	Anisotropy Partial sil Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado 0	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 \02_Campo Mestrado
kange Anisotropy Partial sill Bacia Pere Input datasets ☐ Dataset CT\Documents\09_Campo_Mestra Mestrac	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - jo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pere	No 148.24700679436 2 12 C:\Users\LAPE- taclio\Campo 06 taclio\Campo Mestrado .ne\Novo\Bacia_Per_12
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrac Maio\ \07_Ptc	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - jo 0tacilo.(Campo Mestrado Perene\Novo\Bacia_Per_11 ps_Filtrados\Pontos_Per_11	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pere 	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 taclio\Campo Mestrado ne\Novo\Bacia_Per_12 ;_Filtrados\Ptos_Per_12
Range Anisotropy Partial sill Bacia Pere Input datasets El Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio(\07_Ptc Type	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pere \07_Ptos Type	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado ne\Novo\Bacia_Per_12 _Filtrados\Ptos_Per_12 _Feature Class
Range Anisotropy Partial sill Bacia Pere Input datasets E Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class ELEVATION	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Pere \07_Ptos Type Data field 1	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 Filtrados\Ptos_Per_12 Feature Class ELEVATION
Range Anisotropy Partial sill Bacia Pere Input datasets E Dataset CT\Documents\09_Campo_Mestra Mestrac Maio(07_Ptc Type Data field 1 Records	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo\Campo\6- do\02_CampoMestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Pere Nestrado O Maio\Pere Data field 1 Records	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 _Filtrados\Ptos_Per_12 Feature Class _ELEVATION 11617
Kange Anisotropy Partial sill Bacia Pere Input datasets ☐ Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio\ \07_Ptc Type Data field 1 Records	No 205.25785301481 ne 11 c:\Users\LAPE- do\02_Campos\Campo 06 - io 0tacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records	No 148.24700679436 2 12 C:\Users\LAPE- 02_Campos\Campo 06 taclio\Campo Mestrado ne\Novo\Bacia_Per_12 Filtrados\Ptos_Per_12 Feature Class ELEVA TION 11617
Range Anisotropy Partial sill Bacia Pere Input datasets E Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio\ \07_Ptc Type Data field 1 Records	No 205.25785301481 ne 11 c:\Users\LAPE- do\02_Campos\Campo 06 - io 0tacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records E Method	No 148.24700679436 2 12 C:\Users\LAPE- 02_Campos\Campo 06 taclio\Campo Mestrado .ne\Novo\Bacia_Per_12 Feitrados\Ptos_Per_12 Feature Class ELEVA TION 11617 Kriging
Range Anisotropy Partial sill Bacia Pere Input datasets E Dataset CT\Documents\09_Campo_Mestra Mestrac Matrio 07_Ptc Type Data field 1 Records E Method Type	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere - \07_Ptos Type Data field 1 Records E Method Type	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 Filtrados\Ptos_Per_
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\ U07_Pto Type Data field 1 Records Method Type Output type	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type_ Data field 1 Records Method Type_ Output type	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado ne\Novo\Bacia_Per_12 ;_Filtrados\Ptos_Per_12 Feature Class ELEVATION 11617 Kriging Simple Prediction
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ 07_Ptc Type Data field 1 Records Method Type Output type E Dataset #	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo \Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type. Data field 1. Records Method Type. Output type. Dataset #	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado ine\Novo\Bacia_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\ \07_Ptc Data field 1 Records Method Type Output type B Dataset # Mean	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 S_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records B Method Type Output type Dataset # Mean	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilo\Campo Mestrado me\Novo\Bacia_Per_12 Feature Class ELEVATION 11617 Kriging Simple Prediction 1 221 203327234515
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrac Maio\ 07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - io Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 is_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilo\Campo Mestrado ene\Novo\Bacia_Per_12 Filtrados\Ptos_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515
Kange Anisotropy Partial sill Bacia Pere Input datasets ☐ Dataset CT\Documents\09_Campo_Mestrac Maio\ \07_Ptc Type Data field 1 Records ☐ Method Type Output type ☐ Dataset # Mean Trend type ☐ Searching neighborhood	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - io Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 is_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Security a sciebbacked	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 taclio\Campo Mestrado ene\Novo\Bacia_Per_12 Filtrados\Ptos_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515 None
Kange Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Bataset # Mean Trend type Searching neighborhood Smoothing factor	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_CampoS\Campo 06 - io Otaciio\Campo Mestrado Perene\Novo\Bacia_Per_11 is_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere - \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bearching neighborhood Cmeshing fightorhood	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 .Filtrados\Ptos
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio(07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type E Searching neighborhood Smoothing factor Major semiaxis	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos
kange Anisotropy Partial sill Bacia Pere Input datasets ☐ Dataset CT\Documents\09_Campo_Mestra Mestrac Mestrac Motarac 107_Ptc Type Data field 1 Records ■ Method Type Output type	No 205.25785301481 C:\Users\LAPE- do\02_CampoS\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290	Anisotropy Partial sil Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado me\Novo\Bacia_Per_12 Feature Class ELEVATION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 290	Anisotropy Partial sil Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records B Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado ine\Novo\Bacia_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 S-Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 0 0	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records B Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilo\Campo Mestrado me\Novo\Bacia_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270 270
Kange Anisotropy Partial sill Bacia Pere Input datasets ☐ Dataset CT\Documents\09_Campo_Mestrac Maio\ \07_Ptc Type Data field 1 Records ☐ Method Type Output type ☐ Dataset # Mean Trend type ☐ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle ☐ Variogram	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - io Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 .5_Filtrados\Pontos .5_Filtrados\Pontos_Per_11 .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos .5_Filtrados\Pontos	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado ine\Novo\Bacia_Per_12 Feature Class ELEVATION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270 270 0 Semivariogram
Kange Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Bataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Angle B Variogram Number of lags	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campoo\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 290 0 Semivariogram 50	Anisotropy. Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Uariogram Number of lags	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 .Filtrados\Ptos
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo\Campo 06 - to Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 0 Semivariogram 50 5.9	Anisotropy. Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type_ Data field 1 Records Method Type. Output type Dataset # Mean Trend type. Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270 0 .Semivariogram 50 5.4
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\ 07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_CampoS\Campo 06 - do Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Seriltrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 0 Semivariogram 50 5.9 0.442001355001	Anisotropy	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado me\Novo\Bacia_Per_12 Feature Class ELEVATION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270 Campo Simple Simoth 0.02 270 0 Semivariogram 50 5.4 0.329169778854
Kange Anisotropy Partial sill Bacia Pere Input datasets ☐ Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records ☐ Method Type Output type ☐ Dataset # Mean Trend type ☐ Searching neighborhood Smoothing factor Major semiaxis Angle ☐ Variogram Number of lags Lag size Nugget Measurement error %	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_CampoS\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 0 Semivariogram 50 5.9 0.442001355001 100	Anisotropy	No 148.24700679436 2 12 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado ine\Novo\Bacia_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270 0 Semivariogram 50 5.4 0.329169778854
Range Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % E Model type	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 os_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 290 0 0 0 Semivariogram 50 5.9 0.442001355001 100 Gaussian	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records B Method Type Output type Dataset # Mean Trend type B Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle B Variogram Number of lags Lag size Nugget Measurement error %	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilo\Campo Mestrado ne\Novo\Bacia_Per_12 Feature Class ELEVA TION 11617 Kriging Simple Prediction 1 221.203337334515 None Smooth 0.02 270 270 0 Semivariogram 50 5.4 0.329169778854 100
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % E Model type Range	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campos\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Septirados\Pontos_Per_11 Seature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 0 0 Semivariogram 50 5.9 0.442001355001 100 Gaussian 450	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere 0/7_Ptos Type Data field 1 Records B Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % B Model type	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado ine\Novo\Bacia_Per_12 :_Filtrados\Ptos_Per_12 :_Filtrado
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Dataset # Mean Nugget Nugget Nugget Range Anisotropy	No 205.25785301481 ne 11 C:\Users\LAPE- do\02_Campo\Campo 06 - lo Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 .Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 290 0 Semivariogram 50 5.9 0.442001355001 100 Gaussian 450 No	Anisotropy. Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type. Bearching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Meanuror % Model type Range Angle Partial sill Bearching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Minor semiaxis Minor semiaxis Minor semiaris Angle Partial sill Measurement error % Measurement error % Manorement errorement errorement errorement errorement erro	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 .Filtrados\Ptos
Anisotropy Partial sill Bacia Pere Input datasets Dataset CT\Documents\09_Campo_Mestrac Mestrac Maio\ \07_Ptc Type Data field 1 Records Method Type Output type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bacarching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % BModel type Range Anisotropy Partial sill	No 205.25785301481 C:\Users\LAPE- do\02_Campoo\Campo 06 - to Otacilio\Campo Mestrado Perene\Novo\Bacia_Per_11 Se_Filtrados\Pontos_Per_11 Feature Class ELEVATION 10535 Kriging Simple Prediction 1 278.624897138236 None Smooth 0.02 290 0 Semivariogram 50 5.9 0.442001355001 100 Gaussian 450 No 628.196086446493	Anisotropy Partial sill Bacia Perene Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Pere \07_Ptos Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Maior Serief	No 148.24700679436 2 12 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado .ne\Novo\Bacia_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos_Per_12 .Filtrados\Ptos .Filtra
Bacia Perene 13	3	Bacia Perer	ie 14
--	--	--	--
Input datasets		Input datasets	
∃ Dataset		□ Dataset	
	C:\Users\LAPE-		C:\Users\LAPE-
CT\Documents\09_Campo_Mestrado\02_0	Campos\Campo 06	CT\Documents\09_Campo_Mestrado	\02_Campos\Campo 06 - Otacilio\Campo Mestrado
Maio\Perene\N	lovo\Bacia Per 13	Maio/Pe	rene\Novo\Bacia Per 14
\07_Ptos_Filtr	ados\Ptos_Per_13	\07_Pt	os_Filtrados\Ptos_Per_14
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	
- Mathad	Kuininn	E Mothod	Kriging
			Simple
Type Output hime	Dradiction	Output type	Prediction
	Prediction	E Dataset #	1
	1	Mean	221 54709145049
Mean3	00.318/0/08/409	Trend type	None
	None	E Searching neighborhood	Smooth
E Searching neighborhood	Smooth	Smoothing factor	0.02
Smootning factor	0.02	Major comissie	405
Major semiaxis			405
Minor semiaxis	310	Angle	05
Angle	0		Somicoriogram
🗆 Variogram	Semivariogram	Number of box	Serrivariogram
Number of lags		Number of lags	
Lag size	6.3	Lag size	/.0
Nugget	0.473064036248	Nugget	0.3/0825629//8
Measurement error %		Measurement error %	
Model type	Gaussian	Model type	Gaussian
Range	875	Range	
Anisotropy	No	Anisotropy	No
Partial sill	18.365903898032	Partial sill	
Bacia Perene 15		Bacia Perer	ue 16
		Dacia Felei	
Input datasets		Input datasets	
	C:\LISers\LAPE-		C:\Users\LAPE-
CT\Documents\09_Campo_Mestrado\02_C	Campos\Campo 06	CT\Documents\09_Campo_Mestrad	o\02_Campos\Campo 06
- Mestrado Otacilio	Campo Mestrado	- Mestrado Maio De	Otacilio/Campo Mestrado
\07 Ptos Filtra	ados\Ptos Per 15	\07 Pt	os Filtrados\Ptos Per 16
Type	Feature Class	Type	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records	10022	Records	10810
∃ Method		⊟ Method	
Туре	Kriging		Kriging
Output type	Kriging Simple	Туре	Kriging Simple
	Kriging Simple Prediction	Type Output type	Kriging Simple Prediction
Dataset #	Kriging Simple Prediction 1	Type Output type Dataset #	Kriging Simple Prediction 1
Dataset # Mean 20	Kriging Simple Prediction 1 04.787591289032	Type Output type Dataset # Mean	Kriging Simple Prediction 1 243.059167442357
□ Dataset # Mean 20 Trend type	Kriging Simple Prediction 1 04.787591289032 None	Type Output type Dataset # Mean Trend type	Kriging Simple Prediction 1 243.059167442357 None
Dataset # Mean 20 Trend type Searching neighborhood	Kriging Simple Prediction 1 04.787591289032 None Smooth	Type Output type Dataset # Mean Trend type El Searching peighborhood	Kriging Simple Prediction 1 243.059167442357 None Smooth
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02	Type	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360	Type Output type Dataset # Mean Trend type Smoothing factor Major semipric	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 296
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 295
□ Dataset # Mean 20 Trend type □ □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386
□ Dataset # Mean 20 Trend type □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle □ Variogram	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 0 Semivariogram	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Contraction
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lans	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Semivariogram
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram 50 6 2	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Semivariogram 50
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram 50 6.2 0 512068549267	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Semivariogram 50 6.8
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 0 360 0 Semivariogram 50 6.2 0.512068549267 100	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 50 Semivariogram 50 6.8 0.184509613513
Dataset # Mean 20 Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Medel type	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram 50 6.2 0.512068549267 100	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Semivariogram 50 6.8 0.184509613513 100
□ Dataset # Mean 20 Trend type □ □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle □ Variogram Number of lags Lag size Nugget Measurement error % □ □ Model type □	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram 50 6.2 0.512068549267 100 Gaussian	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % SMOOT MARKET	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Semivariogram 50 6.8 0.184509613513 100 Gaussian
□ Dataset # Mean 20 Trend type □ □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle □ Variogram Number of lags Lag size Nugget Measurement error % □ □ Model type Range	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram 50 6.2 0.512068549267 100 Gaussian 470	Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Measurement error %	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 386 0 Semivariogram 50 6.8 0.184509613513 100 Gaussian 690
□ Dataset # Mean 20 Trend type □ □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle □ Variogram Number of lags Lag size Nugget Measurement error % □ □ Model type Range Anisotropy Databal off	Kriging Simple Prediction 1 04.787591289032 None Smooth 0.02 360 360 0 Semivariogram 50 6.2 0.512068549267 100 Gaussian 470 No	Type. Output type Dataset # Mean Trend type. Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Model type Range Anisotropy	Kriging Simple Prediction 1 243.059167442357 None Smooth 0.02 386 0 Semivariogram 50 6.8 0.184509613513 100 Gaussian 690 No

 Method Туре Output type..... 🗆 Dataset # Mean Trend type

Bacia Intermitente 01		Bacia Intermitente 02	
Input datasets		Input datasets	
□ Dataset		□ Dataset	
	C:\Users\LAPE-		C:\Users\LAPE-
CT\Documents\09_Campo_Mestrado\02 Mestrado_Ota	_Campos\Campo U6 - acilio\Campo Mestrado	CT\Documents\09_Campo_Mestrado\ - Mestrado O	02_Campos\Campo 06
Maio\Intermitente\Novo\Bacia_Int_01\	07_Ptos\Ptos_Int_01		2\07_Ptos\Pto_Int_02
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	
E Method	Kriging	Mothod	Vriging
Type	Simple		Cimple
	Prediction	Output time	Dradiction
Dataset #	1		Prediction
Mean	237 458915201717		272 144502022564
Trend type	None	Trend type	
E Searching neighborhood	Smooth	Georghing neighborhood	Croath
Smoothing factor	0.02	E Searching heighborhood	0.02
Major semiaxis	220	Major comjavia	150
Minor semiaxis	220	Minor semiavis	150
Angle	0		100
🗆 Variogram	Semivariogram		Semicoriogram
Number of lags	50	Number of bas	
Lag size	4.9		2.26
Nugget	0.633704789732	Nugget	0 601480352211
Measurement error %	100	Magget Maggreenent error %	100
	Gaussian		Gaussian
🖃 Model type		L Houar cype	700
Range		Pange	
Range Anisotropy		Range Apicotropy	/00
Range Anisotropy Partial sill Bacia Intermitente	650 No 170 9 03	Range Anisotropy Partial sil Bacia Intermite	No 350
Range Anisotropy Partial sill Bacia Intermitente	e 03	Range Anisotropy Partial sill Bacia Intermiter Input datasets	No 350
B Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets ☐ Dataset	650 No 170 e 03	Range Anisotropy Partial sill Bacia Intermiter Input datasets I Dataset	No 350 nte 04
□ Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets □ Dataset CT\Documents\09_Campo_Mestrado\03	e 03 C:\Users\LAPE- 2_Campos\Campo 06	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09 Campo Mestrado\	No 350 nte 04 C:\Users\LAPE- 02 Campos\Campo 06
Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 cilio\Campo Mestrado	Range	No 350 nte 04 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado
Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota -Maio\Intermitente\Novo\Bacia_Int_03\0	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 cilio\Campo Mestrado)7_Ptos\Ptos_Int_03	Range Anisotropy. Partial sill Bacia Intermiter Input datasets E Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04	C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04
□ Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets □ Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado 0ta - Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1	C:\Users\LAPE- 2_Campos\Campo 06 cilio\Campo Mestrado)7_Ptos\Ptos_Int_03 Feature Class	Range Anisotropy. Partial sill Bacia Intermiter Input datasets E Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type.	C:\Users\LAPE- 02_Campos\Campo 06 1cacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\02 - Mestrado 00 - Mestrado 00 - Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1 Paccade	C:\Users\LAPE- 2_Campos\Campo 06 cilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION	Range	C:\Users\LAPE- 02_Campos\Campo 06 02_Campos\Campo 06 \07_Ptos\Ptos_Int_04 Feature Class ELEVATION
□ Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets □ Dataset CT\Documents\09_Campo_Mestrado\0; - Mestrado Ota -Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1 Records	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 cilo\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595	Range Anisotropy Partial sil Bacia Intermited Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records	C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447
□ Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets □ Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado\00 - Mestrado\01 Type Data field 1 Records □ Method	650 No 170 e 03 C:\Users\LAPE- 2_CampoS\Campo 06 cilo\Campo Mestrado J7_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging	Range Anisotropy Partial sill Bacia Intermiter Input datasets IDataset CT\Documents\09_Campo_Mestrado - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records I Method	C:\Users\LAPE- 02_Campos\Campo 06 02_Campos\Campo 06 \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging
☐ Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets ☐ Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado\00 - Mestrado\01 - Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1 Records ☐ Method Type	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 cilio\Campo Mestrado J7_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple	Range Anisotropy Partial sill Bacia Intermiter Input datasets I Dataset CT\Documents\09_Campo_Mestrado - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records I Method Type	C:\Users\LAPE- 02_Campos\Campo 06 \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple
Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota Maio\Intermitente\Novo\Bacia_Int_03\00 Type Data field 1 Records Method Type Output type Output type	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 cilio\Campo Mestrado J7_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O -Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records BMethod Type Output type	C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction
Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota - Mestrado Ota Maio\Intermitente\Novo\Bacia_Int_03\00 Type Data field 1 Records Method Type Output type Dataset #	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado J7_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1	Range Anisotropy Partial sill Bacia Intermited Input datasets Dataset CT\Documents\09_Campo_Mestrado) - Mestrado O Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records BMethod Type Output type Dataset #	C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751	Range	C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679
Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado Ota Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos/Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records BMethod Type Output type Dataset # Mean Trend type	No No 350 Nte 04 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado Ota Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records B Method Type Output type Dataset # Mean Trend type B Searching neighborhood	No No 350 Nte 04 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.7331283967 None Smooth
E Model type Range Anisotropy Partial sil Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado Ota Maio\Intermitente\Novo\Bacia_Int_03\0 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records BMethod Type Output type Dataset # Mean Trend type Bsearching neighborhood Smoothing factor	No 350 Ne 02_Campos/Campo 06 tacilio/Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02
Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado 0: - Mestrado	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bata field 1 Records Bata field 1 Records Bataset # Mean Trend type Bataset # Mean Trend type Bacarching neighborhood Smoothing factor Major semiaxis	No 350 No 350 Ne O4 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150
■ Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets □ Dataset CT\Documents\09_Campo_Mestrado\03 - Mestrado 04 - Mest	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icdio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado • Mestrado O • Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bethod Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis	No 350 No 350 Ne O4 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado\0:	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icdio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 0	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bethod Type Output type Dataset # Mean Trend type Bacaset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis Angle	No 350 No 350 Ne C:\Users\LAPE- 02_campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150 150 0
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: -Mestrado 0:	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 200 0 Semivariogram	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Data field 1 Records Method Type Output type Dataset # Mean Trend type Bacaset # Mean Trend type Bacaset meighborhood Smoothing factor Major semiaxis Angle BVariogram	C:\Users\LAPE- 02_Campo 06 02_Campo 06 02_Campo 06 02_Campo 06 07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150 0 Semivariogram
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: - Mestrado\0:	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 200 0 Semivariogram 50	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bethod Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Angle BVariogram Number of lags	C:\Users\LAPE- 02_Campos\Campo 06 02_Campos\Campo 06 02_Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150 0 0 Semivariogram 50
Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota - Mestrado Ota - Mestrado Ota - Mestrado Ota - Mestrado Int_03\00	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 0 Semivariogram 50 4.24	Range Anisotropy Partial sill Bacia Intermited Input datasets Dataset CT\Documents\09_Campo_Mestrado) - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bethod Type Data field 1 Records Bethod Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	No 350 No 350 Nte 04 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150 0 Semivariogram 50 3.5
☐ Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets ☐ Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota Maio\Intermitente\Novo\Bacia_Int_03\00 Type Data field 1 Records Method Type Output type ☐ Dataset # Mean Trend type ☐ Searching neighborhood Smoothing factor Major semiaxis Angle ☐ Variogram Number of lags Lag size Nugget	650 No 170 e 03 c:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 0 Semivariogram 50 4.24 0.572752816581	Range Anisotropy Partial sill Bacia Intermited Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records E Method Type Output type E Dataset # Mean Trend type E Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle E Variogram Number of lags Lag size Nugget	No 350 No 350 Nte 04 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150 0 Semivariogram 50 3.5 0.171993763597
☐ Moder type Range Anisotropy Partial sill Bacia Intermitente Input datasets ☐ Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado Ota - Mestrado Ota - Maio\Intermitente\Novo\Bacia_Int_03\00 Type Data field 1 Records Method Type Output type ☐ Dataset # Mean Trend type ☐ Searching neighborhood Smoothing factor Major semiaxis Angle ☐ Variogram Number of lags Lag size Nugget Measurement error %	650 No 170 e 03 c:\Users\LAPE- 2_Campos\Campo 06 icilio\Campo Mestrado 07_Ptos/Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 200 0 Semivariogram 50 4.24 0.572752816581 100	Range Anisotropy Partial sill Bacia Intermited Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bethod Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	No No 350 No 250 No C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1210.7331283967 None Smooth 0.02 150 0 Semivariogram 50 0.171993763597 100
Model type Range Anisotropy Partial sill Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\0: -Mestrado 0: -Measis: -Mestrado 0: -Measurement error %	650 No 170 e 03 c:\Users\LAPE- 2_Campos\Campo 06 ictilo\Campo Mestrado 07_Ptos/Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 200 200 0 Semivariogram 50 4.24 0.572752816581 100 Gaussian	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O -Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % E Model type	No No 350 No 250 No C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1 210.73312839679 None Smooth 0.02 150 0 Semivariogram 50 3.5 0.171993763597 100 Gaussian
Model type Range Range Range Range Range Range Range Range Bacia Intermitente Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado 00 - Mestrado 00 - Mestrado 00 - Mestrado 01 - Mestrado	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 cilo\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Smooth 0.02 200 200 200 0 Semivariogram 50 4.24 0.572752816581 100 Gaussian 800	Range Anisotropy Partial sill Bacia Intermited Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records E Method Type Output type E Dataset # Mean Trend type E Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Medel type Range	No 350 No 350 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 210.73312839679 None Srmooth 0.02 150 0 Semivariogram 50 3.5 0.171993763597 100 Gaussian 400
Model type Range Range Range Range Range Range Range Range Range Bacia Intermitente Bacia Intermitente Input datasets Dataset CT\Documents\09_Campo_Mestrado\00 - Mestrado\00 - Mestrado\01 - Method Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bacet # Mean Trend type Bacet field Range	650 No 170 e 03 C:\Users\LAPE- 2_Campos\Campo 06 icdio\Campo Mestrado 07_Ptos\Ptos_Int_03 Feature Class ELEVATION 10595 Kriging Simple Prediction 1 260.644871171751 None Simooth 0.02 200 200 200 0 Semivariogram 50 4.24 0.572752816581 100 Gaussian 800 No	Range Anisotropy Partial sill Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_04 Type Data field 1 Records Bethod Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % BModel type Range Anisotropy	No 350 No 350 Ne C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado \07_Ptos\Ptos_Int_04 Feature Class ELEVATION 11447 Kriging Simple Prediction 1210.73312839679 None Smooth 0.02 150 0 Semivariogram 50 3.5 0.171993763597 100 Gaussian 400 No

Input datasets		Input datasets	
🗆 Dataset		Dataset	0.111 - 11 405
CT\Documents\09 Campo Mestrado	C:\Users\LAPE-	CT\Documents\09 Campo Mestra	do\02_Campos\Campo_06
- Mestrado O	tacilio/Campo Mestrado	- Mestrado	o Otacilio\Campo Mestrado
Maio\Intermitente\Novo\Bacia_Int_05	5\07_Ptos\Ptos_Int_05	Maio\Intermitente\Novo\Baci	ia_Int_06\07_Ptos\Int_06
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	
⊟ Method	Kriging	□ Method	Kriging
Туре	Simple	Туре	Simple
Output type	Prediction	Output type	Prediction
🗆 Dataset #	1	🗆 Dataset #	1
Mean	217.853530877152	Mean	331.647796466856
Trend type	None	Trend type	None
Searching neighborhood	Smooth	Searching neighborhood	Smooth
Smoothing factor	0 02	Smoothing factor	0.02
Major semiavis	200	Major semiaxis	450
Minor semiaxis	200	Minor semiaxis	450
Angle		Angle	0
	Comivaria aram	□ Variogram	Semivariogram
Number of bas	Serrivanogram	Number of bas	Sonivanografii 50
	20	l an size	2 Q
Lag size	4.2	Nugget	0 438018745067
Nugget	0.53	Magget Massurement error %	100
Measurement error %	100		Gaussian
🗆 Model type	Gaussian	Pange	450
Kanaa ka k	930	Nange	+JU
Anicotec		Anisotrony	No
Anisotropy	No 520	Anisotropy Partial sill	No 368 028808811612
Anisotropy Partial sill	No 530	Anisotropy Partial sill	No 368.028808811612
Anisotropy Partial sill Bacia Intermiten	No 530 te 07	Anisotropy Partial sill Bacia Intermi	No 368.028808811612 tente 08
Anisotropy Partial sill Bacia Intermiten Input datasets	No 530 te 07	Anisotropy Partial sill Bacia Intermi Input datasets	No 368.028808811612 tente 08
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset	No 530 te 07	Anisotropy Partial sill Bacia Intermi Input datasets Dataset	No 368.028808811612 tente 08
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09 Campo Mestrado	No 530 te 07 C:\Users\LAPE- .02 Campos\Campo 06	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09 Campo Mestra	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02 Campos\Campo 06
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O	No 530 te 07 C:\Users\LAPE- ,02_Campos\Campo 06 tacilio\Campo Mestrado	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_0	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int	No
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_0 Type	C:\Users\LAPE- 02_Campos\Campo 06 taclio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestrad - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type	No
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_0 Type Data field 1	C:\Users\LAPE- 02_Campos\Campo 06 tacilo\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado :_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_0 Type Data field 1 Records	No 530 te 07 C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1. Records	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado _08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method	C:\Users\LAPE- 02_Campos\Campo 06 taclio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records B Method	No
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_0 Type Data field 1 Records Method Type	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 taclio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type. Data field 1 Records B Method Type	No
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Intermitente\Novo\Bacia_Int_0 Type Data field 1 Records Method Type Output type	C:\Users\LAPE- 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c:_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado O Maio\Intermitente\Novo\Bacia_Int_0 Type Data field 1 Records Method Type Output type El Dataset #	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction	Anisotropy	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type El Dataset # Mean	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type E Dataset # Mean	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado _08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Prediction 1 223.763813946499
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	No 530 te 07 C:\Users\LAPE- ,02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado _08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type E Searching peighborhood	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smonth	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type E Searching neighborhood	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado :_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.76381394694 None Smooth
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type E Searching neighborhood Smothing factor	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado :_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Maior semiavie	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Maior semiaxis	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado :_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	C:\Users\LAPE- 02_campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	C:\Users\LAPE- 02_campos\Campo 06 taclio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152	Anisotropy	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152 0	Anisotropy	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152 0 Semivariogram	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle E Variogram	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado _08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags	No 530 te 07 C:\Users\LAPE- ,02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152 0 Semivariogram 50	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bearching neighborhood Smoothing factor Major semiaxis Angle E Variogram Number of lags	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado _08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175 0 Semivariogram
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	No 530 te 07 C:\Users\LAPE- 02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152 0 Semivariogram 50 4	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o 0tacilio\Campo Mestrado _08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175 0 Semivariogram 50
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O - Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget	No 530 te 07 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152 0 Semivariogram 50 4	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado :_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 223.76381394699 None Smooth 0.02 175 175 0 Semivariogram 50 3.9 0.192807006377
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado\ - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	No 530 te 07 C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 0 Semivariogram 50 4 0.225283566415 100	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle E Variogram Number of lags Lag size Nugget Measurement error %	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c.08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175 0.02 3.9 0.192807006377 100
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % E Model type	No 530 te 07 C:\Users\LAPE- (02_campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 0 Semivariogram 50 4 0.225283566415 100 Gaussian	Anisotropy Partial sill Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad - Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % E Model type	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175 0 0.0 Semivariogram 50 3.9 0.192807006377 100 Gaussian
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % B Model type Range	No 530 te 07 C:\Users\LAPE- ,02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 0 Semivariogram 50 4 0.225283566415 100 Gaussian 455	Anisotropy	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175 0 Semivariogram 50 3.9 0.192807006377 100 Gaussian 550
Anisotropy Partial sill Bacia Intermiten Input datasets Dataset CT\Documents\09_Campo_Mestrado' - Mestrado O - Mestrado O Maio\Intermitente\Novo\Bacia_Int_O Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % DMEDITE: Measurement error % Mean Range Anisotropy.	No 530 te 07 C:\Users\LAPE- ,02_Campos\Campo 06 tacilio\Campo Mestrado 7\07_Ptos\Pto_Int_07 Feature Class ELEVATION 10618 Kriging Simple Prediction 1 260.893267064069 None Smooth 0.02 152 152 0 Semivariogram 50 4 0.225283566415 100 Gaussian 455 No	Anisotropy Partial sill Bacia Intermi Bacia Intermi Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrad Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % E Model type Range Anisotropy	No 368.028808811612 tente 08 C:\Users\LAPE- ado\02_Campos\Campo 06 o Otacilio\Campo Mestrado c_08\07_Ptos\Ptos_Int_14 Feature Class ELEVATION 10354 Kriging Simple Prediction 1 223.763813946499 None Smooth 0.02 175 175 0 Semivariogram 50 0.192807006377 100 Gaussian 550 No

Bacia Intermitente 09		Bacia Intermitente 10	
Input datasets		Input datasets	
E Dataset		⊡ Dataset	
	C:\Users\LAPE-	CT/Decimental 00, Compa Mastrada	C:\Users\LAPE-
CT\Documents\09_Campo_Mestra	do\02_Campos\Campo 06	- Mestrado	102_Campos/Campo 06
	09\07 Ptos\Ptos Int 09	Maio\Intermitente\Novo\Bacia_Int_1	0\07_Ptos\Ptos_Int_10
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	
Method	Kriging	Method	Kriging
Type	Simple	Type	Simple
Output type	Prediction	Output type	Prediction
Dataset #	1	🗆 Dataset #	
Mean		Mean	288.185862853316
Trend type	None	Trend type	None
Searching neighborhood	Smooth	Searching neighborhood	Smooth
Smoothing factor		Smoothing factor	0.02
Major semiaxis		Major semiaxis	
Minor semiaxis		Minor semiaxis	
Angle	0	Angle	0
🗆 Variogram	Semivariogram	🗆 Variogram	Semivariogram
Number of lags		Number of lags	
Lag size	4.5	Lag size	4.02
Nugget	0.5892250256	Nugget	0.353997289656
Measurement error %		Measurement error %	
Model type	Gaussian	Model type	Gaussian
Range		Range	
Anisotropy	No	Anisotropy	No
Partial sill		Partial sill	
Bacia Intermite	ente 11	Bacia Intermite	nte 12
Input datasets		Input datasets	
Input datasets		Input datasets Dataset	
Input datasets ⊡ Dataset	C:\Users\LAPE-	Input datasets	C:\Users\LAPE-
Input datasets Dataset CT\Documents\09_Campo_Mestra	C:\Users\LAPE- do\02_Campos\Campo 06	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06
Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrado	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C	C:\Users\LAPE- (02_Campos\Campo 06 tacilio\Campo Mestrado 2007_Ptos/Detos_Int_12
Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrado - Maio\Intermitente\Novo\Bacia_Int_ Type	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado 11\07_Ptos\Ptos_Int_11 Feature Class	Input datasets Dataset CT\Documents\09_Campo_Mestrado - Mestrado C - Maio\Intermitente\Novo\Bacia_Int_1: Type	C:\Users\LAPE- \02_Campos\Campo 06 tacilio/Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class
Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrado - Maio\Intermitente\Novo\Bacia_Int_ Type Data field 1	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION
Input datasets Dataset CT\Documents\09_Campo_Mestra - Mestrado - Maio\Intermitente\Novo\Bacia_Int_ Type Data field 1 Records	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado 11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434
Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrado Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434
Input datasets □ Dataset CT\Documents\09_Campo_Mestra - Mestradc Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records □ Method	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging
Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado 11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple
Input datasets Dataset CT\Documents\09_Campo_Mestra Mestradc Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction
Input datasets Dataset CT\Documents\09_Campo_Mestrad Maio\Intermitente\Novo\Bacia_Int_ Type Data field 1 Records Method Type Output type Dataset #	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class 	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type E Dataset #	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1
Input datasets Dataset CT\Documents\09_Campo_Mestrad Maio\Intermitente\Novo\Bacia_Int_ Type Data field 1 Records Method Type Output type Dataset # Mean	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado 11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625
Input datasets Dataset CT\Documents\09_Campo_Mestradc Maio\Intermitente\Novo\Bacia_Int_ Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None
Input datasets Dataset CT\Documents\09_Campo_Mestra	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 _274.645247183901 None Smooth	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_12 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth
Input datasets Dataset CT\Documents\09_Campo_Mestra	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02
Input datasets Dataset CT\Documents\09_Campo_Mestra Mestrado Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450
Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450
Input datasets Dataset CT\Documents\09_Campo_Mestra Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 200	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0
Input datasets □ Dataset CT\Documents\09_Campo_Mestra _ Mestrado Maio\Intermitente\Novo\Bacia_Int_ Type_ Data field 1 Records □ Method Type Output type □ Dataset # Mean Trend type □ Searching neighborhood Smoothing factor Major semiaxis Angle □ Variogram	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 0 Semivariogram	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram
Input datasets □ Dataset CT\Documents\09_Campo_Mestra _ Mestrado Maio\Intermitente\Novo\Bacia_Int_ Type_ Data field 1 Records □ Method Type Output type □ Dataset # Mean Trend type □ Searching neighborhood Smoothing factor Major semiaxis Angle □ Variogram Number of lags	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 0 0 0 Semivariogram 50	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50
Input datasets Dataset CT\Documents\09_Campo_Mestrad	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 0 0 0 Semivariogram 50 4.6	Input datasets Dataset CT\Documents\09_Campo_Mestrado	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50 4.1
Input datasets □ Dataset CT\Documents\09_Campo_Mestra _ Mestrado Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records ■ Method Type Output type □ Dataset # Mean Trend type □ Searching neighborhood Smoothing factor Major semiaxis Angle □ Variogram Number of lags Lag size Nugget	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 200 0 Semivariogram 50 4.6 0.490064217045	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50 4.1 0.608754020716
Input datasets Dataset CT\Documents\09_Campo_Mestra Auso\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 0 Semivariogram 50 4.6 0.490064217045	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size_ Nugget Measurement error %	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 450 0 Semivariogram 50 4.1 0.608754020716 100
Input datasets □ Dataset CT\Documents\09_Campo_Mestra _ Mestradc Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records □ Method Type Output type □ Dataset # Mean Trend type □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle □ Variogram Number of lags Lag size Nugget Measurement error % □ Model type	C:\Users\LAPE- do\02_Campos\Campo 06 0 Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 0 Semivariogram 50 6 0.490064217045 100 Gaussian	Input datasets Dataset CT\Documents\09_Campo_Mestrado Maio\Intermitente\Novo\Bacia_Int_11 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % BModel type	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50 4.1 0.608754020716 100 Gaussian
Input datasets □ Dataset CT\Documents\09_Campo_Mestra _ Mestrado Maio\Intermitente\Novo\Bacia_Int Type Data field 1 Records □ Method Type Output type □ Dataset # Mean Trend type □ Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle □ Variogram Number of lags Lag size Nugget Measurement error % □ Model type Range	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 200 200 200 300 200 4.6 0.490064217045 100 Gaussian 850	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C Maio\Intermitente\Novo\Bacia_Int_11 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % BModel type Range	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50 4.1 0.608754020716 100 Gaussian 450
Input datasets Dataset CT\Documents\09_Campo_Mestra Amaio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Records Records Records Rean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Searching factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Mean Range Anisotropy	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 200 200 0 Semivariogram 50 4.6 0.490064217045 100 Gaussian 850 No	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Mean Range Anisotropy	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50 4.1 0.608754020716 100 Gaussian 450 No
Input datasets Dataset CT\Documents\09_Campo_Mestra Amio\Intermitente\Novo\Bacia_Int Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Mean Range Anisotropy Partial sill	C:\Users\LAPE- do\02_Campos\Campo 06 o Otacilio\Campo Mestrado _11\07_Ptos\Ptos_Int_11 Feature Class ELEVATION 9571 Kriging Simple Prediction 1 274.645247183901 None Smooth 0.02 200 200 200 0 Semivariogram 50 4.6 0.490064217045 100 Gaussian 850 No	Input datasets Dataset CT\Documents\09_Campo_Mestrado Mestrado C Maio\Intermitente\Novo\Bacia_Int_1: Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Mean Range Anisotropy Partial sill	C:\Users\LAPE- \02_Campos\Campo 06 tacilio\Campo Mestrado 2\07_Ptos\Ptos_Int_12 Feature Class ELEVATION 10434 Kriging Simple Prediction 1 282.357788078625 None Smooth 0.02 450 0 Semivariogram 50 4.1 0.608754020716 100 Gaussian 450 No

Bacia Intermitente 13		Bacia Intermitente 14	
Input datasets		Input datasets	
		□ Dataset	
CT\Documents\09_Campo_Mestrado	C:\Users\LAPE-)\02_Campos\Campo 06 Dtacilio\Campo Mestrado	CT\Documents\09_Campo_Mestrado - Mestrado C	C:\Users\LAPE- \02_Campos\Campo 06)tacilio\Campo Mestrado
Maio\Intermitente\Novo\Bacia_Int_1	3\07_Ptos\Ptos_Int_13	Maio\Intermitente\Novo\Bacia_Int_1	4\07_Ptos\Ptos_Int_14
Туре	Feature Class	Туре	Feature Class
Data field 1	ELEVATION	Data field 1	ELEVATION
Records		Records	
⊟ Method	Kriging	⊟ Method	Kriging
Туре	Simple	Туре	Simple
Output type	Prediction	Output type	Prediction
□ Dataset #	1	🗆 Dataset #	1
Mean	224.335753216835	Mean	301.395144795263
Trend type	None	Trend type	None
Searching neighborhood	Smooth	Searching neighborhood	Smooth
Smoothing factor	0.02	Smoothing factor	0.02
Maior semiaxis	200	Major semiaxis	
Minor semiaxis	200	Minor semiaxis	
Angle	0	Angle	
E Variogram	Semivariogram	🗆 Variogram	Semivariogram
Number of bas	50	Number of lags	.50
	5	Lag size	4.5
Nugget	0 21558389658	Nugget	0.252932399236
Maggee Measurement error %	100	Measurement error %	100
	Gaussian	Model type	Gaussian
Pango	520	Range	600
Apisotropy		Anisotropy	No
Dartial cill	71.0	Partial sill	109
	/1.9		
Bacia Intermiter	nte 15	Bacia Intermite	ente 16
Bacia Intermiter	nte 15	Bacia Intermite	ente 16
Bacia Intermiter Input datasets Dataset		Bacia Intermite Input datasets 🗆 Dataset	ente 16
Bacia Intermiter	C:\Users\LAPE-	Bacia Intermite	C:\Users\LAPE-
Bacia Intermiter	C:\Users\LAPE- 02_Campos\Campo 06 -)tacilio\Campo Mestrado	Bacia Intermite	C:\Users\LAPE- c:\Users\LAPE- 0\02_Campo %Campo Mostrado
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1	C:\Users\LAPE- 02_Campos\Campo 06 - >tacilo\Campo Mestrado 5\07_Ptos\Ptos_Int_15	Bacia Intermite	C:\Users\LAPE- C:\Users\LAPE- 0\02_Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type	C:\Users\LAPE- 02_Campos\Campo 06 -)tacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class	Bacia Intermite	C:\Users\LAPE- D\02_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Data	C:\Users\LAPE- 02_Campos\Campo 06 -)tacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION	Bacia Intermite	C:\Users\LAPE- o\02_Campos\Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 .Feature Class ELEVATION
Bacia Intermiter	C:\Users\LAPE- 02_Campos\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742	Bacia Intermite	C:\Users\LAPE- o\02_Campos\Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method	C:\Users\LAPE- 02_Campos\Campo 06 - 2tacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging	Bacia Intermite	c:\Users\LAPE- O\02_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type. Data field 1 Records Method Type	C:\Users\LAPE- 02_Campos\Campo 06 -)tacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple	Bacia Intermite	c:\Users\LAPE- 0\02_Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1. Records Method Type Output type Output type Data Intermitente	C:\Users\LAPE- 02_Campos\Campo 06 - 1taclib\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction	Bacia Intermite	c:\Users\LAPE- D\02_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset #	C:\Users\LAPE- 02_Campos\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1	Bacia Intermite	c:\Users\LAPE- b\02_Campos\Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 .Feature Class ELEVATION 10417 Kriging Simple Prediction 1
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean	C:\Users\LAPE- 02_Campos\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671	Bacia Intermite	c:\Users\LAPE- b\02_Campos\Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type	C:\Users\LAPE- 02_Campos\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None	Bacia Intermite	c:\Users\LAPE- \02_Campos\Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 .Feature Class ELEVATION 10417 Kriging Simple .Prediction 1 295.977871826266 None
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood	C:\Users\LAPE- 02_Campos\Campo 06 -)tacilo\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth	Bacia Intermite	c:\Users\LAPE- b\02_Campo\Campo\6 Dtacliio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.9778718266 None Smooth
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type. Smoothing factor	C:\Users\LAPE- 02_Campos\Campo 06 -)tacilo\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Simooth 0.02	Bacia Intermite	c:\Users\LAPE- D(2_Campos\Campo Mestrado D(2_Campos\Campo Mestrado D(2_Campo Mestra
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis	C:\USers\LAPE- 02_Campos\Campo 06 - >tacilo\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315	Bacia Intermite	c:\Users\LAPE- D(2_Campos\Campo Mestrado Dtaclio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis	C:\USers\LAPE- 02_Campos\Campo 06 - >tacilo\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315	Bacia Intermite	c:\Users\LAPE- C:\Users\LAPE- b\02_Campos\Campo Mestrado C:\Users\LAPE- b\02_Campo Mestrado compo Mestrado compo Mestrado compo Mestrado compo Mestrado Campo Mestrado Campo Mestrado Campo Mestrado ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Dataset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis Angle	C:\Users\LAPE- 02_Campos\Campo 06 - Dtaclio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0	Bacia Intermite	c:\Users\LAPE- D(2_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram	C:\Users\LAPE- 02_Campos\Campo 06 - Dtaclio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram	Bacia Intermite	C:\Users\LAPE- DOC_Campos\Campo Obstrado Coltacilio\Campo Mestrado Coltacilio\Campo Mestrado Coltacilio\Campo Mestrado Coltacilio\Campo Mestrado Coltacilio\Campo Mestrado Coltacilio\Campo Mestrado ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis Angle Variogram Number of lags	C:\Users\LAPE- 02_Campos\Campo 06 - 0taclio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50	Bacia Intermite	C:\Users\LAPE- D\02_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram 55
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size	C:\Users\LAPE- 02_Campos\Campo 06 - 0taclib\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50 5.1	Bacia Intermite	C:\Users\LAPE- D\02_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram 55 4.6
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bacarching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget	C:\Users\LAPE- 02_Campos\Campo 06 - 0taclib\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50 5.1 0.378385257409	Bacia Intermite	c:\Users\LAPE- b\02_Campo\Campo 06 Otacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram 55 4.6 0.477406951671
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Untput type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error %	Kriging C:\Users\LAPE- 02_Campos\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 0 Semivariogram 50 5.1 0.378385257409 100	Bacia Intermite	c:\Users\LAPE- b\02_Campos\Campo 06 Dtacilio\Campo Mestrado .6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram 55 4.6 0.477406951671
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type. Bacarching neighborhood Smoothing factor Major semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % BModel type	C:\Users\LAPE- 02_Campo\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50 5.1 0.378385257409 100 Gaussian	Bacia Intermite	c:\Users\LAPE- b)(02_Campos\Campo Mestrado c6(07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram 55 4.6 0.477406951671 100 Gaussian
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Bacarching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % BModel type Range	C:\Users\LAPE- 02_Campo\Campo 06 - Dtacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50 5.1 0.378385257409 100 Gaussian 700	Bacia Intermite	c:\Users\LAPE- b)(02_Campos\Campo Mestrado campo Mestrado contaclio\Campo Mestrado contaclio\Campo Mestrado contaclio\Campo Mestrado contaclio\Campo Mestrado contactor for the state contactor for the state contac
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Searching neighborhood Smoothing factor Major semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Maioser Searching Records	C:\Users\LAPE- 02_Campos\Campo 06 - 0tacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50 5.1 0.378385257409 100 Gaussian 700 No	Bacia Intermite	c:\Users\LAPE- b)(02_Campos\Campo Mestrado coloraciio\Campo Mestrado coloraciio\Campo Mestrado color_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 0 Semivariogram 555 4.6 0.477406951671 100 Gaussian 550 No
Bacia Intermiter Input datasets Dataset CT\Documents\09_Campo_Mestrado\ Mestrado C Maio\Intermitente\Novo\Bacia_Int_1 Type Data field 1 Records Method Type Output type Dataset # Mean Trend type Smoothing factor Major semiaxis Minor semiaxis Minor semiaxis Angle Variogram Number of lags Lag size Nugget Measurement error % Mange Anisotropy Partial sill	C:\Users\LAPE- 02_Campos\Campo 06 - 0tacilio\Campo Mestrado 5\07_Ptos\Ptos_Int_15 Feature Class ELEVATION 10742 Kriging Simple Prediction 1 255.683085972671 None Smooth 0.02 315 315 0 Semivariogram 50 5.1 0.378385257409 100 Gaussian 700 No 180.483697976098	Bacia Intermite	C:\Users\LAPE- D(02_Campos\Campo 06 Dtacilio\Campo Mestrado 6\07_Ptos\Ptos_Int_16 Feature Class ELEVATION 10417 Kriging Simple Prediction 1 295.977871826266 None Smooth 0.02 550 550 0 Semivariogram 55 4.6 0.477406951671 100 Gaussian 550 No

APÊNDICE 6 – SCRIPT EM PYTHON UTILIZADOS PARA AUTOMATIZAR PROCEDIMENTOS DE ANÁLISE ESPACIAL NO QGIS QGIS 2.18.19

Extrair parâmetros geomorfométricos das bacias amostrais

##parametro=name

##bacia=vector

##mdt=raster

##final=output vector

outputs_QGISZONALSTATISTICS_1=processing.runalg('qgis:zonalstatistics', mdt,1.0,bacia,'Alt_',False,None) outputs_GDALOGRSLOPE_1=processing.runalg('gdalogr:slope', mdt,1.0,False,False,True,1.0,None) outputs_SAGATOPOGRAPHICPOSITIONINDEXTPI_1=processing.runalg('saga:topographicpositionindextpi', mdt,True,0.0,100.0,0,1.0,True,75.0,3,None)

outputs_SAGASLOPEASPECTCURVATURE_1=processing.runalg('saga:slopeaspectcurvature',

outputs_SAGABASICTERRAINANALYSIS_1=processing.runalg('saga:basicterrainanalysis',

outputs_QGISZONALSTATISTICS_2=processing.runalg('qgis:zonalstatistics',

outputs_GDALOGRSLOPE_1['OUTPUT'], 1.0, outputs_QGISZONALSTATISTICS_1['OUTPUT_LAYER'], 'Decli_', F alse, None)

outputs_QGISZONALSTATISTICS_3=processing.runalg('qgis:zonalstatistics',

outputs_SAGASLOPEASPECTCURVATURE_1['C_PLAN'],1.0,outputs_QGISZONALSTATISTICS_2['OUTPUT_L AYER'],'Plan_',False,None)

outputs_QGISZONALSTATISTICS_4=processing.runalg('qgis:zonalstatistics',

outputs_SAGASLOPEASPECTCURVATURE_1['C_PROF'],1.0,outputs_QGISZONALSTATISTICS_3['OUTPUT_LAYER'],'Perf_',False,None)

outputs_QGISZONALSTATISTICS_5=processing.runalg('qgis:zonalstatistics',

outputs_SAGASLOPEASPECTCURVATURE_1['C_MINI'], 1.0, outputs_QGISZONALSTATISTICS_4['OUTPUT_L AYER'], 'MICUR_', False, None)

outputs_QGISZONALSTATISTICS_6=processing.runalg('qgis:zonalstatistics',

outputs_SAGASLOPEASPECTCURVATURE_1['C_MAXI'], 1.0, outputs_QGISZONALSTATISTICS_5['OUTPUT_L AYER'], 'MA_CUR', False, None)

outputs_QGISZONALSTATISTICS_7=processing.runalg('qgis:zonalstatistics',

outputs_SAGABASICTERRAINANALYSIS_1['FLOW'], 1.0, outputs_QGISZONALSTATISTICS_6['OUTPUT_LAYE R'], 'ACF_', False, None)

outputs_QGISZONALSTATISTICS_8=processing.runalg('qgis:zonalstatistics',

outputs_SAGABASICTERRAINANALYSIS_1['WETNESS'], 1.0, outputs_QGISZONALSTATISTICS_7['OUTPUT_L AYER'], 'ITU_', False, None)

outputs_QGISZONALSTATISTICS_9=processing.runalg('qgis:zonalstatistics',

outputs_SAGABASICTERRAINANALYSIS_1['LSFACTOR'],1.0,outputs_QGISZONALSTATISTICS_8['OUTPUT_ LAYER'],'LSF_',False,None)

outputs_QGISZONALSTATISTICS_10=processing.runalg('qgis:zonalstatistics',

outputs_SAGATOPOGRAPHICPOSITIONINDEXTPI_1['TPI'],1.0,outputs_QGISZONALSTATISTICS_9['OUTPUT _LAYER'],'IPT_',False,final)

APÊNDICE 7 – PERFIS LONGITUDINAIS DOS RIOS DE PRIMEIRA ORDEM PERENES DO SETOR NORTE

APÊNDICE 8 – PERFIS LONGITUDINAIS DOS RIOS DE PRIMEIRA ORDEM PERENES DO SETOR SUL