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 RESUMO 

O Método de Elementos Finitos (MEF) é uma técnica para resolver numericamente 
problemas físicos comumente utilizada na engenheria. Um fator importante na obtenção de 
uma solução precisa e eficiente decorre da utilização adequada da malha de discretização. 
Tipicamente, técnicas h-adaptativas são empregadas para projeção de uma malha ótima, onde 
o erro estimado em cada elemento é distribuído e minimizado de acordo com um critério de 
malha ótima. Neste contexto, o presente trabalho estende e avalia o método de refino h-
adaptativo denominado de Recuperação da Densidade do Erro Isotrópica (IEDR) para 
elementos triangulares quadráticos. Inicialmente desenvolvida para elementos lineares, esta 
técnica baseia-se na recuperação de uma função densidade do erro em energia em conjunto 
com a solução de um problema de otimização que busca o tamanho do novo elemento. Dessa 
maneira, a metodologia IEDR aborda os erros provenientes do MEF de maneira que contenha 
informações locais com maior abrangência, já que, nesta metodologia, uma função densidade 
do erro é recuperada. Os parâmetros de qualidade de malha, obtidos através desta técnica, são 
comparados à tradicionais técnicas de projeto de malha denominada de Chp e à técnica Li-
Bettess (LB). A estimativa dos erros de discretização é realizada através do estimador de erro 
a posteriori baseado em recuperação, onde os gradientes recuperados são obtidos pelo método 
Superconvergente de Recuperação de Padrões (Superconvergent Patch Recovery - SPR). A 
implementação computacional é elaborada no software Matlab®, sendo a geração de malha 
realizada pelo gerador Bidimensional Anisotropic Mesh Generator (BAMG). Resultados 
numéricos demonstram que o processo h-adaptativo baseado na técnica IEDR obtém malhas 
convergentes para problemas com e sem singularidade, as quais apresentam, em geral, 
vantagens em relação ao número de graus de liberdade, à convergência e aos parâmetros de 
malha em comparação à tradicional técnica Chp e vantagens comparada à técnica LB para 
elementos quadráticos. 
 
 
Palavras-chave: Elemento Triangular de Deformações Lineares. h-adaptividade. Método dos Elementos Finitos. 
Estimadores de erro a posteriori. Recuperação da Densidade do Erro Isotrópica. 
 

  



8 
 

ABSTRACT 

The finite element method (FEM) is a technique used to numerically solve physics 
problems which is often used in engineering. One factor in obtaining a solution that has 
acceptable accuracy is using adequate mesh discretization. Typically, h-adaptive techniques 
are used to determine new element sizes based on errors distributed among each element 
following an optimum mesh criterion. In this context, the current work proposes to extend and 
analyze the Isotropic Error Density Recovery (IEDR) h-refinement method for quadratic 
triangular finite elements. Initially developed for linear triangular finite elements, the 
extended technique is based on the recovery of an error density function, such that an 
optimization technique is used to search for the new element sizes. Hence, the IEDR 
technique utilizes more information of the local errors to design element sizes due to the 
recovery of an element error density function. The h-adaptive finite element method process 
based on the IEDR technique is compared to the traditionally used Chp and Li-Bettess mesh 
design techniques found in the literature. The discretization error estimates are achieved via a 
recovery based a posteriori error estimator, whereas the recovered gradients are obtained 
using the Superconvergent Patch Recovery Method. The algorithm is implemented using 
Matlab®, while the mesh generation is done by the Bidimensional Anisotropic Mesh 
Generator (BAMG). Results show, overall, that the meshes designed through the proposed 
methodology obtain superior mesh quality parameters, less degrees of freedom and better 
convergence in comparison with the traditional Chp remeshing methodology and advantages 
compared to the Li-Bettess element size estimation technique for quadratic elements. 
 
 
Keywords: Linear Strain Triangle. h-adaptativity. Finite Element Method. a posteriori Error Estimates. 
Isotropic Error Density Recovery. 
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1 INTRODUCTION 

Today’s engineering challenges are becoming more complex, while requiring more 

rapid and precise solutions. In this context, it is of utmost importance to develop new 

techniques to achieve these requirements with low costs. Hence, numerical methods have 

become valuable tools to solve a vast number of engineering problems, especially, those 

which its physical phenomena can be modelled mathematically as partial differential 

equations and imposed boundary conditions. 

The finite element method (FEM) is a numerical method based on solving the 

problem’s partial differential equations using an equivalent wighted-integral form aiming at 

the minimal potentional energy of the system, i.e. the Variational Principle. Hence, the 

equivalent form, called weak form, can be solved by discrete approximations through the 

discretization of the given domain of analysis into a set of subdomains (REDDY, 2006). 

Accordingly, the solution achieved using FEM can contain approximation errors. Thus, 

considerable effort has been invested in developing error estimators (NADAL et al., 2015). 

These, in general, can be classified as a priori and a posteriori error estimators, which are 

applied, respectively, before the finite element solution is obtained, providing information 

related to the asymptotic behavior of the discretization errors, and after the solution is 

obtained, providing more precise information of the field variables and comparison to the 

approximated solution. Considering a posteriori error estimators, two distinct types are 

defined: recovery-based estimation and residual based estimation. 

The recovery-based error estimator, according to Zienkiewicz and Zhu (1987), uses 

the numerical solution itself to obtain a more accurate recovered solution and evaluate, 

through a given error norm, the error estimation. 

The use of precise error estimators provides information regarding the local 

distribution of errors. Hence, it becomes possible to modify the finite element mesh through 

adaptive algorithms, seeking a solution that satisfies a pre-determined error criterion 

(PRUDHOMME et al., 2003). According to Cook et al. (2002), three categories of adaptive 

mesh refinement are available: h-adaptivity, related to the adjustment of the element size, p-

adaptivity, related to the alteration of the order p of the element approximation, and r-

adaptivity, concerning the adjustment of the location of the nodes of the mesh. On account of 

its broad use and the opportunity of improvement, the versatile h-adaptive mesh refinement is 

considered in the current study. 
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Recently, Pereira, Silva and Gonçalves (2016) and Silva (2017) proposed a new 

methodology of determining the element sizes for the h-adaptive finite element method, 

denominated Isotropic Error Density Recovery (IEDR). According to their studies, this mesh 

design technique, based on the recovery of an error density function, shows promising results. 

However, it has been exclusively applied and analyzed for linear triangular finite elements. 

Therefore, the current work proposes to extend and analyze the quality and 

performance of the IEDR mesh design technique for quadratic triangular elements applied to 

elliptic problems. The proposed methodology is compared to the classic element size design 

technique proposed by Zienkiewicz and Zhu (1987), defined as the Chp technique, as well as 

the method proposed by Li and Bettess (1995) and Li et al. (1995), called the Li-Bettess (LB) 

technique. 

 OBJECTIVES 

The main objective of this study is to extend, implement and analyze the h-adaptive 
FEM technique named IEDR for quadratic triangular elements and compare it to the classic 
remeshing strategies available in the literature. 

The main objectives can be divided into the following specific objectives: 

 Develop a formulation for the h-adaptive refinement for triangular quadratic 

elements based on the IEDR technique for linear elements; 

 Implement a numerical structure for the h-adaptive finite element method using 

the developed formulation for the following classic problems of engineering: 

 Scalar plane problem of thermal conductivity for a squared domain; 

 Plane elasticity vectorial problem for a squared domain; 

 Plane elasticity problem for an L shaped domain with the presence of a 

singularity. 

 Validate the results obtained through the adaptive FEM based on the IEDR 

technique in view of parameters of the analytical solution; 

 Analyze and compare the behavior and efficiency in global and element levels 

of the h-adaptive refinement based on the Chp, Li-Betess and IEDR element 

size design techniques for triangular elements with a quadratic shape function. 
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 DISSERTATION STRUCTURE 

The structure of this dissertation is discussed in this section. In the current Chapter, 
the relevance of the study is put forward. The importance of the finite element method is 
introduced, as well as the use of adaptive refinement. The objectives of the dissertation are 
also discussed. 

In Chapter 2, the ideas introduced in the first chapter are discussed in view of 
relevant articles in the literature. The parameters which influence the accuracy of the FEM, 
the derivative recovery techniques, the error estimation methods and, especially, the h-
adaptive strategies based on the Chp, Li-Bettess and IEDR element size designs are discussed. 

In Chapter 3, the numerical formulations and mathematical concepts as introduced in 
the literature are revised. These include a posteriori recovery-based error estimation, the Chp 
and LB element size design techniques based on the element error equidistribution criterion 
and the convergence criteria of the adaptive processes. 

In Chapter 4, the IEDR design technique is developed for triangular quadratic finite 
elements. In this chapter, mathematical formulas regarding the optimization of each element’s 
size are defined in relation to the error in energy density function. 

In Chapter 5, the results of the analysis are discussed. Final considerations are made 
in Chapter 6. Lastly, the references used in the development of this dissertation are listed in 
the final section.  
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2 LITERATURE REVIEW 

In this Chapter, the literature review is presented with relevant studies pertaining to 

the current work. The advancements in the h-refinement strategies are discussed emphasizing 

the error estimators used and the element size design techniques employed. 

 THE FINITE ELEMENT METHOD 

In most engineering problems, solutions are obtained through the modeling of 

physical phenomena. These models, described with the laws of physics, relate the variables of 

the problem in order to achieve a required solution. The analytical description of the models is 

developed using assumption applied to the context of the problem to be solved. However, the 

formulation and solution of such problems can become highly burdensome in the presence of 

complex domain geometries (REDDY, 2006). 

Traditionally, numerical methods are employed to achieve an acceptable solution for 

the governing differential equations. A variety of numerical methods is available today, such 

as the Finite Difference Method, the Boundary Element Method, the Finite-Volume Method, 

and others. In the Finite Element Method, the formulation of the governing differential 

equations is expressed in an equivalent variational form and boundary conditions are used to 

solve the problem. Consequently, it is possible to approximate the problem’s variables in each 

subdomain (element) of the discretization mesh, and, thereafter, an approximate solution for 

the whole domain is obtained. In a general sense, the FEM has the following characteristics:  

 The domain of the problem is represented as a set of simpler subdomains, 

denominated elements. The conjunction of these elements is called a mesh of 

elements (FIGURE 1); 

 The elements are defined by shape functions and nodes which introduce 

degrees of freedom to the domain system; 

 In each finite element, the solution is approximated by a polynomial shape 

function of order p;  

 Boundary conditions are applied to the domain of analysis, which are then 

used as constraints in determining the FEM solution. 
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FIGURE 1 – REPRESENTATION OF A BIDIMENSIONAL DOMAIN: (a) PROBLEM DIAGRAM. (b) 
DISCRETIZATION OF THE DOMAIN BY TRIANGULAR AND QUADRILATERAL ELEMENTS. 

 
SOURCE: Modified from Reddy (2006). 

 
Therefore, the approximate solution obtained through FEM introduces errors that 

degrade the solution’s quality when compared to the analytical solution. Hence, it is important 

to evaluate and develop techniques to reduce these errors. FIGURE 1 shows (a) the domain 

formed by a contour which has forces applied to it and, (b) the discretization of this domain 

by finite elements.  

According to Cook et al. (2002), several error sources exist in FEM, such as the 

numerical errors related to the rounding of numbers, user errors and discretization errors. 

However, only the discretization errors come solely from the representation of the 

mathematical model and are inherent to FEM. According to Reddy (2006), these errors can be 

divided into two categories: approximation errors due to the domain and approximation errors 

due to the FEM solution. 

Domain approximation errors can occur in bidimensional and tridimensional 

problems when the domain geometry cannot be represented accurately by the mesh of finite 

elements. This error can be defined as errors in the problem’s specification, leading to a 

solution of a modified domain boundary problem. 

On the other hand, approximation errors due to the finite element solution ( hu ), arise 

from the approximation the primary variable in each element’s domain ie . In this case, the 

exact solutions, u , is approximated as 

 

 
1 1

NEl NE
FEM e

i e
e i

u u u
 
 (1) 

 

 Boundary, 
(a) (b) 

Domain, Ω 
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where e
iu  is the nodal displacement vector for the ie-th element, e  defines the element 

interpolation function, while NEl  is the total number of elements in the finite element mesh 

and NE  is the number of nodes in an element. 

Thus, this dissertation focuses in controlling and reducing the solution’s 

approximation error through the use of h-adaptive mesh refinement, where error estimation is 

used to guide the process of acquiring suitable element sizes of the finite element mesh. 

 DISCRETIZATION ERROR ESTIMATION 

As discussed by González-Estrada et al (2014), the quality assessment of the 

numerical solution through FEM has become a critical research topic since the 1970s. This 

assessment, denominated error estimation, can be divided into two main categories: a 

posteriori error estimation and a priori error estimation (ZIENKIEWICZ; TAYLOR, 2000). 

In the a priori error estimation, the process occurs before the approximate solution is 

obtained. Thus, this error estimation provides information concerning the behavior of the 

error caused by changes in the discretization mesh rather than a direct error estimation related 

to the FEM solution (GRÄTSCH; BATHE, 2005). This category of error estimation 

techniques usually provides advantages in solving complex problems, where the 

computational are too costly to use a posteriori error estimation (FRAYSSE; VALERO; 

RUBIO, 2013). Fraysse, Valero and Rubio (2013), for example, analyzed the use of a priori 

discretization error estimation for tridimensional non-linear problems of computational fluid 

dynamics.  

On the other hand, a posteriori error estimators are currently used in several FEM 

algorithms due to their simplicity and robustness (CAO, 2014). These methods, in contrast to 

a priori estimators, use the computed numerical solution itself obtained through FEM 

(ZIENKIEWICZ; TAYLOR, 2000). Pioneering studies of a posteriori error estimation of 

discretization error were done by Babuska and Rheinboldt (1978a, 1978b, 1981) focusing on 

its use in h-adaptivity mesh refinement. These initial developments introduced residual based 

methodologies for unidimensional and bidimensional problems, achieving moderate success 

in decreasing the approximation error via mesh refinement. Since then, a vast number of 

studies have been produced on this topic. A more detailed literature review can be found in 

Ainsworth and Oden (2000). 
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Furthermore, a posteriori error estimators can be divided in two main categories: 

residual based estimators (implicit or explicit) and recovery-based estimators 

(ZIENKIEWICZ; TAYLOR, 2000). These techniques are briefly described in the following 

section. 

 a posteriori residual based error estimators 

The residual based error estimators are methodologies which use a residual equation 

to provide information about the discretization errors. This residual equation calculates two 

sources of errors: the element errors associated to the uncertainty of the differential equation 

solution in the element’s interior and the error present from the discontinuities of the 

derivative field between elements (GRÄTSCH; BATHE, 2005). The residual based error 

estimator can use and explicit or implicit formulation. The explicit formulation calculates the 

error directly thought the residual equation and the data finite element solution. On the other 

hand, the implicit formulation requires the solution of auxiliary boundary value problems to 

estimate an approximation to the actual error. As a result, the explicit formulation usually 

requires less computational costs (AINSWORTH; ODEN, 2000). The implicit formulation, 

initially developed by Demkowicz and Oden (1986), lead to studies such as, Bank and Weiser 

(1985), Ainsworth and Oden (1993a, 1993b, 1993c) and others. More information about 

explicit error estimators can be found in Babuska and Rheinboldt (1978), Johnson and Hansbo 

(1992) e Stewart and Hughes (1997). 

 a posteriori recovery based error estimators 

Regarding recovery-based error estimators, two important features should be 

considered, the gradient recovery procedures and the error estimation itself (ZIENKIEWICZ; 

ZHU, 1992a). This is due to the fact that recovery-based estimators are heavily dependent on 

the difference between the solution obtained through FEM and the recovered solution 

obtained through recovery procedures. In the current literature, many solution recovery 

methods are available due to the close relation between the quality of the recovered values 

and the accuracy of the error estimate (PEREIRA; SILVA; GONÇALVES, 2016). As 

demonstrated by Zienkiewicz and Zhu (1992b), the recovery based a posteriori error 

estimator, denominated Zienkiewicz-Zhu (ZZ) estimator, provides highly accurate error 
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estimation compared to previous methodologies. For this reason and due to its robustness and 

simplicity, recovery-based error estimators have been used predominately in adaptive 

refinement processes (ZIENKIEWICZ; ZHU, 1992b; ZIENKIEWICZ; TAYLOR, 2000). 

Recovery based error estimators were introduced by Zienkiewicz and Zhu (1987), 

where they were used as basis for h-adaptive mesh refinement for a linear elastic problem. In 

this article, the authors defined an optimal mesh criterion based on the equidistribution of the 

element error, thus, a way to estimate the sizes of the new elements was developed. This 

criterion is used extensively in this field of the literature. 

In order to improve the solution recovery procedure, Zienkiewicz and Zhu (1992a, 

1992b), introduced a new technique named Superconvergent Patch Recovery (SPR). 

According to Zienkiewicz and Zhu (1992a, 1992b), the ZZ error estimator demonstrated 

significant improvements in the estimation of error using the SPR methodology when 

compared to other recovery techniques.  

The ZZ error estimator uses a gradient recovery method to obtain a higher-order 

improved solution. The recovered solution is then used as a substitute to the analytical 

solution. The error function for an elastic linear problem, for example, can be expressed as a 

function of the displacement ( ), strain ( ) or stress ( ), given by, respectively as 

 

 ,e = u uFEM
u  (2) 

 ,e = FEM  (3) 

 ,e = FEM  (4) 

 

where u , ε  and σ  are analytical displacement, strain and stress fields and uFEM , FEM  and 
FEM  are the respective approximate solution fields obtained using FEM.  

Many norms can be used to calculate the error predicted by the error estimator, such 

as the L2 norm and the energy norm. The energy norm can be expressed as 

 

 
1

1 2
,D=e

TFEM FEM d  (5) 

 

where D  is the constitutive elasticity tensor of the material, in this work, an elastic linear 

isotropic material. The recovery-based estimator essentially consists of substituting the 

ue e e
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unknown analytical stress field solution, , which is unavailable in most cases, by a 

recovered stress field, , thus 

 

 
1

1 2
* ,D=e

TREC FEM REC FEM d  (6) 

 

In such cases, the value of REC  is recovered using the FEM solution FEM . Therefore, *e  

is denoted as the error in the energy norm obtained via error estimation. 

 Element solution recovery methods 

The development of recovery based a posteriori error estimators introduced a great 

necessity of improving the precision of solution recovery techniques in order to provide data 

for efficient adaptive methods (PEREIRA; SILVA; GONÇALVES, 2016). For this reason, 

Zienkiewicz and Zhu (1992a, 1992b, 1995) created and analyzed the Superconvergent Patch 

Recovery (SPR) method for unidimensional and bidimensional problems, using linear, 

quadratic and cubic elements. The SPR method makes use of a local patch of elements to 

adjust the gradient of the FEM solution by the Least Squares Method (LSM), where specific 

points with higher convergence rates are sampled in the process. These points are defined as 

superconvergente points which usually coincide with Gauss quadrature points (BARLOW; 

1976). The usage of points with higher convergence rates in the solution recovery process 

offers an asymptotically exact error estimate. In other words, the ratio between the estimated 

error and the real error tends to unity as the mesh is refined (CAO; 2014). In the works of 

Zienkiewicz and Zhu (1992a, 1992b), it was noted, heuristically, that, while using triangular 

quadratic elements, the SPR method results in a convergence rate for the gradient recovered 

solution proportional to O(hp+2), that is, two orders higher than the asymptotic convergence of 

the finite element approximation. This phenomenon is called ultraconvergence. 

Zhang (1996, 2000) mathematically proved the existence of ultraconvergence in the 

recovered derivatives obtained through the SPR method for uniform unidimensional meshes. 

It is shown that ultraconvergence will occur for any even-order finite element. Zhu and Meng 

(2004) investigated the presence of ultraconvergence in triangular quadratic finite elements. 

In this study, an asymptotic expansion was used to prove mathematically the presence of 

ultraconvergence for these elements in elliptic boundary value problems. Subsequently, many 

REC
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studies have been produced aiming at the investigation of optimal sampling points for the 

SPR process. For triangular quadratic elements, it was concluded that superconvergent points, 

those which have strictly highest convergence, do not exist (RAJENDRAN; LIEW, 2003; 

ZIENKIEWICZ; TAYLOR, 2000). 

In order to assist the SPR methodology, Rajendran and Liew (2003) analyzed the use 

of Gauss quadrature points in the SPR procedure for quadratic and linear elements. In this 

study, it was shown that, when utilizing 3 sampling points, the Gauss quadrature points had 

the best performance in recovering the gradient of the solution when compared to the Barlow 

and pseudo-Barlow points for quadratic triangular elements. Rajendran and Liew (2003) 

concluded that the recovered gradient, using the aforementioned points, is superconvergent 

even though the actual points are not superconvergent. Thus, the analyzed points are called 

optimal sampling points. Heuristically, Zienkiewicz and Taylor (2000) indicate that the Gauss 

quadrature with 4 sampling points are best sampling points for quadratic triangular elements, 

however they also affirm that superconvergent points (unique arrangement of points with 

optimal convergence), for these elements do not exist. 

Other studies have been produced to evaluate the SPR procedure for non-uniform 

meshes in view of h-adaptive FEM processes. Some of these studies are: Bank and Xu (2003) 

for linear elements and Huang and Xu (2008) for quadratic elements. These studies show that 

the high level of convergence is still present for non-uniform patches of elements. However, 

the ultraconvergence phenomenon is present exclusively in nodes located in the interior of the 

domain, where sufficient domain elements are present to form complete patches. For this 

reason, the rate of convergence of the calculated error in the energy norm is decreased when 

considering the whole domain (ZIENKIEWICZ; ZHU, 1992a, 1992b). 

Therefore, modifications to the SPR recovery technique were proposed in the 

literature. Initially, Wiberg and Abdulwahab (1992) and Wiberg, Abdulwahab and Ziukas 

(1994) introduced the Superconvergent Patch Recovery with Equilibrium (SPRE). In this 

method, an improvement in the recovered values is observed by satisfying the equilibrium 

condition through restrictions. Having in mind the low quality of the SPR recovery technique 

in the boundaries of the domain, Wiberg and Li (1994) modified the SPRE and created a new 

method called Superconvergent Patch Recovery Incorporating Equilibrium and Boundary 

Conditions (SPREB). This methodology uses weight functions in the gradient recovery 

procedure at nodes located near the boundaries, which imposes the recovered polynomial to 

satisfy, approximately the boundary conditions. Wiberg and Abdulwahab (1997) compared 

the three methods in unidimensional and bidimensional problems using various element types. 
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It was observed that the SPREB method showed robust results, with convergence rates for 

quadratic elements 1,5 above the convergence rates for linear elements using this technique. 

Henceforth, Boroomand and Zienkiewicz (1997) developed a new recovery 

technique denominated Recovery by Equilibration of Patches (REP). The formulation behind 

this technique is based on satisfying equilibrium conditions between recovered stress fields in 

each patch of elements through adjustments via the LSM of the stress fields obtained through 

FEM. This method does not require the identification of superconvergent points, thus, it is 

applicable for any element type. Specifically, for quadratic elements, the REP methodology 

obtained convergence rates similar to those obtained through SPR for the evaluation of the 

error in the energy norm.  

The recovery methods mentioned above are used as basis for the development of 

other recovery methods, which seek to improve the quality of the recovered values, such as: 

The Recovery by Compatibility in Patches (RCP) by Ubertini (2004); the Polynomial 

Preserving Recovery (PPR) by Zhang and Naga (2004, 2005); the Superconvergent Cluster 

Recovery Method (SCR) by Huang and Yi (2010). However, the SPR method, in account of 

its robustness and simplicity, provides an adequate solution recovery methodology and is a 

suitable alternative for problems with simple domains (Silva, 2015). 

 ISOTROPIC MESH ADAPTIVITY STRATEGIES 

The a posteriori error estimators, discussed previously, serve as foundation for the 

adaptive mesh refinement processes. As mentioned, in broad terms, these processes are 

divided into three categories (ZIENKIEWICZ; TAYLOR, 2000): the h-adaptive version, the 

p-adaptive version and the r-adaptive version. These methodologies use a stipulated 

discretization error distribution criterion, which has essential importance in the adaptive 

process. Thus, the h-adaptive process, in general, starts with a coarse uniform mesh that is 

iteratively refined following this pre-determined optimal mesh criterion.  

Zhu and Zienkiewicz (1992a, 1992b) analyzed an h-adaptive mesh refinement 

process using the ZZ error estimator and the SPR solution recovery technique for isotropic 

elements (quasi-equilateral elements). The authors defined the error equidistribution criterion, 

which requires the global error to be divided equally between each element of the mesh and 

limited by a maximum error value. In these articles, triangular and quadrangular elements of 

different orders are used in classical problems, such as plane elasticity problems and others. 
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The results show excellent effectiveness of the error estimator in the energy norm as basis of 

an h-adaptive process. Specifically, for quadratic triangular elements, and global relative error 

percentage of 1% is achieved in only 2 iterations.  

Since then, many authors applied the error estimators developed by Zienkiewicz and 

Zhu as the basis for adaptive processes. For example, Katragadda and Grosse (1996) applied 

the ZZ error estimator to analyze three h-adaptive mesh refinement methods for an adjunct 

elasticity and thermal problem. Novotny and Fancello (1998) employed an h, p and hp 

adaptive refinement in the investigation of elastic bending of plates. In these studies, high 

convergence rates are achieved. 

Recently, Nicolas et al. (2016) developed and analyzed the usage of pyramidal and 

tetrahedral elements in h-adaptive refinement for a tridimensional crack analysis, aiming at an 

efficient subdivision of hexahedral elements. 

As seen in the literature, great effort has been applied into using a posteriori error 

estimators in h-adaptive mesh refinement (AINSWORTH; ODEN, 2000). After determining 

the error distribution in the mesh of elements, in general, the refinement process employs an 

element design technique to define each new element size. A commonly used remeshing 

strategy, called ZZ or Chp remeshing strategy, is based on the criterion of asymptotic 

convergence of the error, thus, for a sufficiently regular problem (absence of singularities), 

the error norm is said to be proportional to the element size to the power of p, the order of the 

element (ZIENKIEWICZ; TAYLOR, 2000). 

Another h-adaptive mesh refinement strategy, based on the same criterion, was 

introduced by Li and Bettess (1995). The essence of this methodology is to use the element 

error convergence rate in conjunction with an a priori estimation of the number of elements 

required in the new mesh thus calculating the optimal element sizes. This method, named Li-

Bettess (LB), achieved more efficient meshes when compared to the Chp technique for certain 

problems (LI et al., 1995, LI, BETTESS, 1995; DIEZ, HUERTA, 1999). Li and Bettess 

(1995) mathematically proved that the errors in the mesh should be distributed based on the 

optimum mesh criterion introduced by Zienkiewicz and Zhu (1987), however using the 

appropriate number of elements of the new mesh, instead of the current mesh. Furthermore, 

Diéz and Huerta (1999) affirm that the LB technique achieves mesh optimality in the sense 

that it furnishes meshes with the minimum number of elements. 

Pereira, Silva and Gonçalves (2016) developed an alternative methodology to 

determine the element sizes, called the Isotropic Error Density Recovery (IEDR). This 

technique is based on recovering an error in the energy norm density function for each 
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element such that, by solving an optimization problem, the new element sizes are found. 

Using the SPR recovery technique as precursor for a posteriori error estimation, a comparison 

between h-adaptive processes based on the Chp and IEDR mesh design techniques was 

presented.  

FIGURE 2 – (a) SOLUTION OF PROBLEM PROPOSED BY MITCHELL (2013). (b) INITIAL MESH USED 
IN h-ADAPTIVE MESH REFINEMENT. 

 

 
SOURCE: Pereira, Silva and Gonçalves (2016). 

 
The problem introduced by Mitchell (2013) (FIGURE 2(a)) was used by Pereira, 

Silva and Gonçalves (2016) to compare the mentioned h-adaptive refinement strategies for 

linear triangular elements (Constant Strain Triangle – CST) considering the same limit error 

throughout the mesh. The initial coarse mesh is shown in FIGURE 2(b). Starting at the first 

iteration at the top of FIGURE 3, the h-adaptive refinement process based on the Chp 

remeshing strategy, FIGURE 3(a), produces meshes with a visible higher number of elements 

in regions of elevated gradient, whereas the process based on the IEDR methodology, 

FIGURE 3(b), fewer of elements are generated in these regions. As demonstrated, the IEDR 

element design methodology accurately estimates the new element sizes, producing a mesh 

with fewer degrees freedom in comparison with the Chp methodology. Thus, the average 

element error and maximum element error parameters are improved (PEREIRA; SILVA; 

GONÇALVES, 2016). 

(a) (b) 
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FIGURE 3 – SEQUENCE OF h-ADAPTIVE MESH REFINEMENTS: (a) ChP REMESHING STRATEGY, (b) 
ISOTROPIC ERROR DENSITY RECOVERY (IEDR) REMESHING STRATEGY. 

 
(a)                                               (b) 

SOURCE: Pereira, Silva and Gonçalves (2016). 
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 SUMMARY 

Many studies have been developed to assess h-adaptive mesh refinement techniques 

using a posteriori error estimators and the Chp element size design procedure. However, the 

LB element size design methodology showed more effective results for some problems 

investigated in the literature in comparison to the Chp technique. Furthermore, the promising 

isotropic element design technique called IEDR, however, was only implemented and 

analyzed using linear elements, where better performance was attained compared to the Chp 

technique. In this context, it is evident the need for further studies related to the application of 

the IEDR technique considering quadratic ordered elements. This study aims at validating: the 

practicability of the IEDR technique for quadratic elements and the advantages and 

disadvantages in using each of the remeshing strategies, called Chp, LB and IEDR techniques. 
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3 THEORETICAL BACKGROUND 

The current Chapter aims at reviewing relevant theoretical concepts regarding the 

methodologies used in this dissertation. Initially, the mathematical formulation of the error 

estimation process is described, focusing on the energy norm of the error for plane elasticity 

problems. The SPR recovery method is defined for quadratic triangular elements. Also, in 

relation to the h-adaptive FEM, expressions deemed relevant in the literature are presented, 

such as the convergence criteria of the process and the remeshing strategies, Chp and LB. It is 

important to notice that these expressions serve as a basis for the extension of the IEDR 

technique presented in Chapter 4, which characterizes one of the main contributions of the 

research. 

 RECOVERY BASED ERROR ESTIMATION IN THE ENERGY NORM 

The discretization error present in the finite element computations can be defined as 

the difference between the approximate FEM solution and the analytical solution 

(ZIENKIEWICZ; ZHU, 1992b; ZIENKIEWICZ; TAYLOR, 2000). In linear elasticity 

problems, the error function can defined in terms of the displacement field ( ue ), the strain 

field ( e ) or the stress field ( e ). These functions are defined, respectively, through Eq. (2), 

Eq. (3) and Eq. (4). 

In order to obtain a scalar value for the error intensity, several error norms are 

studied in the literature such as the 2L  norm and the strain energy norm. This dissertation uses 

the energy error norm e . For linear elasticity problems, the error energy norm is given by 

(ZIENKIEWICZ; ZHU, 1987) 

 

 
1

1 2
,D=e

TFEM FEM d  (7) 

where D  is the material’s constitutive elasticity tensor. 
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However, since the analytical solution of a given problem is usually unknown, a 

recovered stress field ( ) with higher rates of convergence than those of FEM can be used 

( FEM ). This process, introduced by Zienkiewicz and Zhu (1987) is the essence of a 

posteriori recovery-based error estimators. Based on the energy norm, this error estimation 

can be expressed as 

 

 
1

1 2
*

TREC FEM REC FEM dD=e . (8) 

 

Due to the use of a recovered solution with higher rates of convergence than the 

FEM solution, an asymptotically exact estimate is obtained i.e. the error estimator converges 

to the true error as element sizes get smaller (ZIENKIEWICZ; TAYLOR, 2000). 

In stress analysis problems, a relative measure of the error is defined in order to 

describe the behavior of the problem. This parameter is called the relative energy norm error 

percentage, , given by 

 

 , (9) 

where  is the total strain energy accumulated by the system. 

A measurement of the quality of the error estimator is defined as the effectivity 

index. This index is given by the ratio between the estimated error and true error, which is 

defined as 

 

 
*e

e
. (10) 

 SUPERCONVERGENT PATCH RECOVERY METHOD (SPR) 

The Superconvergent Patch Recovery method, developed by Zienkiewicz and Zhu 

(1992a, 1992b), is an important tool used to obtain accurate recovered gradient solutions. This 

method is based on obtaining a recovered polynomial which describes the recovered gradient 

REC

100(%)
e
u

u
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field, thus, recovered values in the nodes can be calculated. This polynomial is found by using 

a least squares fit (LSM) of the FEM solution calculated on superconvergent points or optimal 

sampling points. These points present higher convergence rates than any other point in the 

element. By using these points, the recovered solution converges to the analytical solution 

with a higher rate than the solution via FEM (BARLOW, 1976). 

In this process, a patch of elements is used instead of recovering the approximation 

polynomial throughout the domain. A recovered polynomial is calculated in a patch of 

elements formed by all the elements which share a common vertex node. Thus, the recovered 

stress or strain solution can be calculated at that node. 

FIGURE 4 illustrates a patch of elements for triangular quadratic elements formed by 

elements around a central node. In this figure, the SPR method uses the superconvergent 

(represented by ) points to obtain the recovered polynomial through LSM. After evaluating 

this polynomial, a nodal value of stress (or strain) can be calculated for the central node of the 

patch (denoted as ●) which will have a higher convergence rate. This is accomplished by 

using the central node’s coordinates in the recovered polynomial. In regards to the nodes in 

the edge of the triangle, which share more than one patch, an average between recovered 

values, calculated using each patch’s recovered polynomial and node coordinate, is used. 

 
FIGURE 4 – THE SPR METHOD FOR QUADRATIC TRIANGULAR ELEMENTS 

 
SOURCE: Modified from Zienkiewicz and Zhu (1992a). 

 
In FIGURE 4, the arrangement of superconvergent points ( ) used by Zienkiewicz 

and Zhu (1992a, 1992b) in the introduction of the method is shown. An alternative selection 

of superconvergent points for triangular quadratic elements is presented in FIGURE 5, in 

generalized coordinates  e  (RAJENDRAN; LIEW, 2003). Recently, Rajendran and Liew 

(2003) investigated optimal sampling points for the SPR method using triangular quadratic 

Nodal values to be evaluated 
through recovery 

Nodes used for patch assembly 

Superconvergent points 
Edge nodal values evaluated through an 
average  
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elements. It was shown that the arrangement given by FIGURE 5 offer the best performance 

for the SPR method when using a 3-point arrangement. In the other hand, Zienkiewicz and 

Taylor (2000), indicate that using a 4-point arrangement, as described in FIGURE 6, a high 

convergence rate (two orders higher than the FEM solution) of the error estimation is acquired 

with the use of the SPR method. Thus, as shown in FIGURE 4, 5 and 6 divergences regarding 

the definition of best sampling points for triangular quadratic elements is present in the 

literature. The arrangement given by Zienkiewicz and Taylor (2000) (FIGURE 6) is used in 

this dissertation since small improvements were found using this arrangement. 

 
FIGURE 5 – QUADRATIC ELEMENT’S CONTOUR PLOT OF THE SUM OF SQUARE OF RESIDUES. 

LOCATIONS OF MINIMA DEMONSTRATE POINTS WITH HIGHER CONVERGENCE. 

 
SOURCE: Rajendran and Liew (2003). 

 
 

FIGURE 6 – REPRESENTATION OF THE SUPERCONVERGENT 4-POINT ARRANGEMENT 
INDICATED FOR THE SPR TECHNIQUE.  

 
SOURCE: Zienkiewicz and Taylor (2000). 
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The recovered stress solution, for a generic patch, can be expressed as 

(ZIENKIEWICZ e ZHU, 1992a) 

 

 SPR *P a , (11) 

 

where *P  is a matrix formed by the interpolation function polynomial terms and  is the 

vector of unknown coefficients of the recovery polynomial. 

It is defined a quadratic distance function, , between the polynomial and the 

stress values obtained through FEM at the superconvergent points of each element formed 

around the i-th node. The minimization of , in relation to the vector of unknown 

coefficients, results in a linear system of equations which can be solved as 

  

 -1
SPR ,a = A b  (12) 

 

where the matrix A  is given by 

 

 
nsp

k k k k
k=1

x , y x , y*T *A P P , (13) 

 

and nsp  is the total number of superconvergente points in the analyzed patch. The vector SPRb  
is given by 

 

 b P
nsp

*T FEM
k k k kSPR i

k 1
x , y x , y . (14) 

 

while k kx , y  represents the coordinates of superconvergent point k. 

Once the coefficients of the recovery polynomial ( ) are determined, the recovered 

nodal values of the patch can be calculated by substituting the appropriate nodal coordinates 

into Eq. (11). The order of the recovered stress (or strain) field obtained through the SPR 

method is the same as the shape function used for the FEM solution After obtaining the 

recovered stress value for each node of the element, the element’s shape functions can used to 

a

a

a
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interpolate these values and create a smoothed field which is continuous between elements. 

For the e-th element, this interpolation is expressed as 

 

 *,REC
e  (15) 

 

where REC  is the recovered stress field vector and *  is the recovered stresses for each node 

of the element as obtained previously. Applying the energy norm, Eq. (8), at element level, it 

is possible to calculate the local error. 

 CONVERGENCE CRITERIA AND ERROR PARAMETERS OF THE h-ADAPTIVE 

FEM 

The estimated finite element errors can be used as basis for a process of finite 

element mesh adaptation. This process requires a convergence criterion in order to obtain the 

optimal sizes of each element while maintaining a uniform error distribution between 

elements. 

A FEM solution is considered convergent if it satisfies the convergence criterion at 

element and global levels. The latter refers to the global error of the solution. In this case, it is 

required that the total error of the mesh in the energy norm ( ) shall not surpass a 

percentage of the total energy accumulated in the system ( ). Mathematically, the global 

acceptability criterion can be expressed as 

 

 e u ,  (16) 

 

where  is the global admissible error. Henceforth, it is defined a global error parameter, g

, as 

 

 
ηg

e
u

. (17) 

 

e

u
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This parameter indicates whether the mesh satisfies the global convergence criterion ( 1g ) 

or does not ( 1g ), i.e. the mesh is inadequate. 

The usage of the global convergence criterion alone may create a mesh where some 

elements present high levels (and low levels) of errors. Instead, by using the global 

convergence criterion in conjunction with a local convergence parameter, a better mesh 

refinement is produced. Thus, the error distribution throughout the mesh can also satisfy a 

local convergence criterion in order to achieve an optimal mesh. This concept can be 

expressed as  

 

 ie lime e ,  (18) 
 

where iee  is the error in the ie-th element and lime  represents the admissible element error. 

The local error parameter, ie , can be defined as (OÑATE; BUGEDA, 1993) 

 

 ie
ie

lim

e
e

. (19) 

 

Thus, for an element with optimal size, its local error parameter should be equal to 

unity. In contrast, 1ie  or 1ie  indicate that the element should be refined or made 

coarser, respectively.  

It is important to note that the definition of the admissible element error, lime , 

makes a great influence in the adaptive process (OÑATE; BUGEDA, 1993). Thus, a single 

refinement parameter can be defined, which satisfies approximately both convergence criteria 

simultaneously. This parameter, called the element refinement parameter, ie , is defined by 

the multiplication of g  and ie , given as (OÑATE; BUGEDA, 1993) 

 

 
ee

u e
ie

ie g ie
lim

. (20) 

 

This parameter is used in the evaluation of the quality of the h-adaptive mesh refinement. 
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 ChP ELEMENT DESIGN TECHNIQUE BASED ON THE ELEMENT ERROR 

EQUIDISTRIBUTION CRITERION 

The Chp mesh design methodology, introduced by Zienkiewicz and Zhu (1987), is 

based on estimating the new size of each element by using the asymptotic convergence rate of 

the error and the error equidistribution criterion. Thus, the remeshing strategy seeks to obtain 

a mesh where the error is limited and equally distributed between each element of the mesh. 

The total error in the energy norm of the current mesh, , can be expressed in terms of 

each element’s error ie
e : 

 

 2 2

1

NEl

m ie
ie

e e . (21) 

 

Assuming a constant limiting value for the error in each element, e lim , Eq. (21) can be 

rearranged as 

 

 2 2
1m lim

NEle e ,  (22) 

  

where 1me  is the total error in the energy norm for the next mesh (adapted mesh). Thus, the 

limiting error for each element, e
lim

, can be expressed as  

 

 

1
2 2

1m
lim NEl

e
e . (23) 

 

The local error parameter can be defined by combining Eqs. (23) and (19), given by 

 

 ie ie
ie

lim

NEle e
e e

. (24) 

 

thus, the element refinement parameter is given as 

 

em
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 ie
ie g ie

m

NEle
u

. (25) 

 

Zienkiewicz and Zhu (1987), based on the asymptotic convergence rate of the error, 

proposed that the relation between the total error in a mesh, e , and the characteritc element 

size in the mesh, , is given by 

 

 e min( p, )Ch ,  (26) 

 

where C  is a constant related to the problem, p  is the polynomial order of element 

approximation and  is a parameter which defined the regularity of the solution u .  

In this study, the premise that the error convergence rate for a problem without 

singularities, ( ), is proportional to O( ) is adopted. Thus, it is possible to obtain an 

estimate of the size of the new element, 1mh , from the relationship between the error in the 

current mesh and the new mesh. For a generic element, ie, the error in that element for the 

current mesh is given by 

 

 p
m m,ieie

Che ,  (27) 

 

and for the next mesh (m+1), the error for that element should be equal to the element limit 

error 

 

 1 1
p

m m ,ie limie Che e . (28) 

 

Dividing Eq. (27) by Eq. (28) and considering that 

 

 
e

e
m ie

ie
m+1 ie

,  (29) 

 

an estimation of the new element size is found, such that 

 

h

p ph
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 1 1
m

m
p

ie

hh ,  (30) 

 

where mh  represents the size of the edges of that element in the current mesh (old mesh) and 

1mh  is the size of the edges of the element in the next mesh (new mesh). 

 LB REMESHING STRATEGY BASED ON THE ELEMENT ERROR 

EQUIDISTRIBUTION CRITERION 

Introduced by Li and Bettess (1995), the element design technique called Li-Bettess 

(LB) aims at predicting the number of elements necessary for the convergence of the h-

adaptive process while using the error equidistribution criterion to design the optimal element 

size. In view of the global convergence rate of the error in the mesh, Eq. (27), the element 

local convergence rate can be expressed as 

 

 min ,p n 2
ie Che , (31) 

 

where e ie  represents the error in the energy norm for the element ie,  is a constant,  

represents the edge’s size of the finite element,  is the polynomial order of the element 

approximation and n  is the highest order of differentiation of the solution which it remains 

continuous. Therefore, for FEM plane elasticity problems without singularities occurring, the 

element errors for the old mesh and new mesh, respectively, are expressed as 

 

 p 1
ieie Che  (32) 

 e p 1
ie,m 1ie,m 1 Ch .  (33) 

 

The convergence rate of the error in the element is one order higher than that of the whole 

mesh (Eq. 27). Consequently, the relation between the sizes and the error in the energy norm 

for each element, considering both old and new mesh, is given by 

 

C h

p
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e
e

1 p 1
ie,m 1

m 1 m
ie,m

h h .  (34) 

 

The admissible error per element in the next mesh, lime , is defined by the division of the 

global admissible error by an estimation of the number of elements required in that mesh, 

denoted as m 1Nel , given by 

 

 ue lim
m 1NEl

 (35) 

 

Thus, a prediction of the number of elements in the new mesh is required as mentioned. To do 

that, a geometrical relationship between the element sizes in the current mesh and new mesh 

for the same domain is used, such that 

 

 
2Nel

m
m 1

m 1ie 1

hNEl
h

 (36) 

 

By rearranging Eqs. (34), (35) and (36), an expression for the predicted number of elements in 

the new mesh is found. This calculation uses the element errors in the current mesh as 

calculated using the error estimator: 

 

 
p 1 pNel2 p 2 p 1

m 1 ie,m
ie 1

NEl u e . (37) 

 

Finally, the new element sizes can be found using the predicted number of elements in the 

optimal mesh, as 

 

 

1 p 1

m 1 m
m 1ie,m

h h
NEl
u

e
. (38) 
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 IEDR ELEMENT DESIGN BASED ON THE ELEMENT ERROR 

EQUIDISTRIBUTION CRITERION 

The Isotropic Error Density Recovery (IEDR) element design methodology, 

introduced by Pereira, Silva and Gonçalves (2016), named Recuperação Quadratica do Erro 

(RQE) in this article, seeks to search for the optimal element size in which the admissible 

element error is not surpassed. In this process, the technique is based on the recovery of a 

density function of the error in the energy norm and an optimization method used to maximize 

the element size restricted by the admissible error. 

Silva (2017) proposed a modification of the RQE technique, renamed as IEDR, that 

directly evaluates the optimal triangular sized element and added an iterative process to 

estimate the number of elements in the new adapted mesh, while adjusting each element’s 

error density function accordingly. The present dissertation develops a new methodology for 

this iterative process considering an a posteriori estimate of the error density function based 

on the asymptotic convergence rate of the error, which is developed in the next section. Silva 

(2017) analyzed the technique in plane elasticity problems while using linear triangular finite 

elements. In this thesis, the error in the energy norm, 2
kE , for a given a triangular domain, ie , 

is expressed as  

 

 

2 2 2
0 1 2 11 12 22

2
0 1 2 11

2
12 22

2

2

ie ie

ie ie ie ie

ie ie

ieE U d U G x G y H x H xy H y d

U d G x d G y d H x d

H xy d H y d .2H122H12

 (39) 

 

where 0U , G  and H  correspond to the constant, linear and quadratic terms of the error 

density function, respectively. In order to calculate the optimal element sizes for the new 

mesh, an optimization problem is posed, where the maximization of the element size, 

constrained by the prescribed admissible error, is sought. In the standard notation, the 

problem is represented as 

 

 
Minimize
Constraint : 0

h
P :

g h ,
 (40) 
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where 2 2 2 2 2
0 Hie adm admg h E h U tr h . The problem can be solved, for 

example, by the Langrange multiplier method. Thus, the optimal element size is given by 

 

 
1/ 22 2

0 adm 0
m 1

U 4 tr Uh ,
2 tr

H
H  (41) 

 

where  and  are constants. 

 

 QUALITY PARAMETERS OF THE ADAPTED MESH 

 

An important factor in the analysis of h-adaptive FEM is to quantify the quality of 

the meshes produced throughout the process. In broad terms, the literature usually only 

compares the global convergence curves between processes and number of elements in the 

mesh. Pereira, Silva and Gonçalves (2016) introduced three auxiliary measurements to better 

quantify and compare the quality of each h-adaptive methodology and mesh design strategy. 

These are: the maximum value of the local error parameter ( máx ), the average of the local 

error parameter for each element ( ave ) and the standard deviation of the local error parameter 

( D ). The latter indicates a measurement of the variation of the local error parameter 

compared to unity and can be expressed as 

 

 

2

1
1

NEl

ie
ieD

NEl
, (42) 

 
where ie  is the local error parameter given by Eq. (18). Note that for an optimal mesh, ave

= 1, máx = 1 e D = 0. 
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4 THE ISOTROPIC ERROR DENSITY RECOVERY (IEDR) ELEMENT SIZE 

DESIGN FOR QUADRATIC TRIANGULAR ELEMENTS (LST) 

In this Section, the IEDR formulation is developed for quadratic elements. This 

characterizes the main contribution of this dissertation. The formulation is developed for 2D 

problems. 3D problems can be solved via an extension of this formulation for 3D elements. 

 QUADRATIC STRAIN FIELD RECOVERY 

A plane elasticity problem is considered such that the approximate solution is known 

for mesh composed of quadratic triangular elements, also called Linear Strain Triangle (LST) 

elements. The strain field obtained through FEM ( FEM ) and the strain field obtained via a 

recovery technique ( ) are defined as, respectively 

 

 

FEM
11

FEM FEM
22
FEM
12

    and   REC

11

22

12

REC

REC

REC

. (43) 

In the present study, the recovered strain vector  is calculated using the SPR 

method. The recovered strain fields in each direction are obtained as polynomials with the 

same order as the element’s shape functions. Thus, for quadratic elements, the recovered 

strain fields can be expressed in matrix form as 

 

 ( , )

2

2

2

11 11 11 11 11 11 2REC
0 1 2 3 4 511

REC REC REC 22 22 22 22 22 22 2
22 0 1 2 3 4 5
REC 12 12 12 12 12 12 2
12 0 1 2 3 4 5

B + B x+ B y+ B x + B xy+ B y

x y B + B x+ B y+ B x + B xy+ B y

B + B x+ B y+ B x + B xy+ B y

. (44) 

Alternatively, Eq. (44) can be rearranged as 

 

REC

REC
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2

REC 11 11 11 11 11 11
11 0 1 2 3 4 5

REC REC 22 22 22 22 22 22 REC
22 0 1 2 3 4 5 ε

12 12 12 12 12 12REC
0 1 2 3 4 512

2

1
x

B B B B B B
y

B B B B B B
x

B B B B B B
xy

y

,B P  (45) 

where RECB  denotes a matrix composed by the coefficients of the recovered strain fields 

expansion, x and y are the relative coordinates of a given point, where the barycenter of the 

element is defined as origin, and P  is a vector with relative coordinates in different orders. 

Thus, any recovered strain component, REC
ij , is defined as 

 

 
T2REC ij ij ij ij ij ij 2 ij

ij 0 1 2 3 4 5B + B x+ B y + B x + B xy + B y B P . (46) 

Applying Eq. (46) to the coordinates of each of the 6 nodes of the triangular element, the 

following equations are derived 

 

 
(  )node 1

REC ij ij ij ij 2 ij ij 2
ij 0 1 1 2 1 3 1 4 1 1 5 1B B x B y B x B x y B y ,  (47) 

 
(  )node 2

REC ij ij ij ij 2 ij ij 2
ij 0 1 2 2 2 3 2 4 2 2 5 2B B x B y B x B x y B y ,  (48) 

 
(  )node 3

REC ij ij ij ij 2 ij ij 2
ij 0 1 3 2 3 3 3 4 3 3 5 3B B x B y B x B x y B y ,  (49) 

 
(  )node 4

REC ij ij ij ij 2 ij ij 2
ij 0 1 4 2 4 3 4 4 4 4 5 4B B x B y B x B x y B y ,  (50) 

 
(  5)node

REC ij ij ij ij 2 ij ij 2
ij 0 1 5 2 5 3 5 4 5 5 5 5B B x B y B x B x y B y ,  (51) 

 
(  6)node

REC ij ij ij ij 2 ij ij 2
ij 0 1 6 2 6 3 6 4 6 6 5 6B B x B y B x B x y B y . (52) 
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This system of equations can be expressed in matrix form as  

 

 

(  )

(  )

(  3)

(  4)

(  5)

(  6)

node 1

node 2

node

node

node

node

REC
ij 2

1 1 1 1 1 1REC
2ij

2 2 2 2 2 2
REC 2
ij 3 3 3 3 3 3

2REC
4 4 4 4 4 4ij

2REC
5 5 5 5 5 5ij

2
REC 6 6 6 6 6 6
ij

1 x y x x y y
1 x y x x y y
1 x y x x y y
1 x y x x y y
1 x y x x y y
1 x y x x y y

ij
0
ij
1
ij
2
ij
3
ij
4
ij
5

B
B
B
B
B
B

. (53) 

The solution of this system of equations gives the term ijB  of the quadratic approximation 

for the i-th recovered strain components for a given element in analysis. The same process is 

done for each of the strain components and the coefficients of the RECB  are found. 

 TOTAL ERROR CALCULATION IN A TRIANGULAR REGION AROUND THE 

ELEMENT 

As expressed in Eqs. (2) - (4), the error can be defined as the difference between the 

analytical solution and the approximate solution obtained through FEM. The quantification of 

pointwise error can be done using the error energy norm, given by 

 

 2
ie U d de DT ,  (54) 

where iee  is the energy error in a generic triangular region of the domain, , ( , )U U x y  is 

the error density function and  is the vector composed by the difference between the strain 

fields obtained through recovery and directly from the FEM solution, described as 

 

 REC FEM . (55) 

Rearranging Eq. (45) and Eq. (55) 
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 B PREC FEM REC FEM , (56) 

where FEM  can be represented by linear functions representing the strain fields in the use of 

LST elements. Eq. (56) can be expanded in the form 

 

 2 2

11 11 11 11 11 11 11 11 11
0 1 2 3 4 5 0 1 2
22 22 22 22 22 22 22 22 22
0 1 2 3 4 5 0 1 2
12 12 12 12 12 12 12 12 12
0 1 2 3 4 5 0 1 2

2 2

1 1
x x

B B B B B B A A A 0 0 0
y y

B B B B B B A A A 0 0 0
x x

B B B B B B A A A 0 0 0
xy xy

y y

, (57) 

where ij
lA  and ij

lB  are the coefficients of the polynomials related to the recovered strain and 

the strain solution via FEM, respectively, in the direction ij.  

Rearranging Eq. (57), the following is obtained 

 

 
-

2

11 11 11 11 11 11 11 11 11
0 0 1 1 2 2 3 4 5
22 22 22 22 22 22 22 22 22
0 0 1 1 2 2 3 4 5
12 12 12 12 12 12 12 12 12
0 0 1 1 2 2 3 4 5

2

1
x

(B - A ) (B - A ) (B A ) B B B
y

(B - A ) (B - A ) (B - A ) B B B
x

(B - A ) (B - A ) (B - A ) B B B
xy

y

B P , (58) 

 

where B  is a matrix composed by the differences between the recovered and FEM strain 

fields. As shown in Eq. (54) and based on Eq. (58), the error density function in the energy 

norm, U , can be expressed as 

 

, T T T TU U x y D P B DB P = P ZP ,    (59) 

 

where matrix Z  is symmetric and defined by the product 

 

.         (60) 

 

Z B DBT
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Rearranging Eq. (59) in terms of the matrix , the error density function is expressed as 

 

,         (61) 

 

in expanded form, the error density function is derived in terms of the coefficients of matrix 

Z , given as 

 

(62) 

 

Aiming at simplifying the equation above, the error density function can be expressed in 

terms of the constant, first order, second order, third order and fourth order terms. Thus,  

 

(63) 

where , , , , , ,  and  are defined as 

  (64) 

  (65)
 

 
 (66)

 

 (67)
 

Z

2
2

11 21 31 41 51 61

12 22 32 42 52 62

13 23 33 43 53 632

14 24 34 44 54 64

15 25 35 45 55 65
2

16 26 36 46 56 66

1Z Z Z Z Z Z
xZ Z Z Z Z Z
yZ Z Z Z Z Z

U 1 x y x xy y
xZ Z Z Z Z Z
xyZ Z Z Z Z Z

Z Z Z Z Z Z y

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

(

2 2
11 21 12 31 13 41 22 14 61 16 33

3 3 2
51 15 32 23 42 24 63 36 52 25 43 34

2 4 4 2 2 3
53 35 62 26 66 44 46 55 64 45 54

65 5

U Z Z Z x Z Z y Z Z Z x Z Z Z y

Z Z Z Z xy Z Z x Z Z y Z Z Z Z x y

Z Z Z Z xy Z y Z x Z Z Z x y Z Z x y

Z Z ) .3
6 xy

,

Gx x Hx x Lx x Qx ,

2 2 3 2 2 3
0 1 2 11 12 22 11 12 21 22

4 3 2 2 3 4
22 12 11 13 33

T T T
0

U x y U G x G y H x 2H xy H y L x L x y L xy L y

Q x 2Q x y 3Q x y 2Q xy Q y

U

0U G H L Q x x x

0 11U Z ,

12 211

13 312
G

Z ZG
,

Z ZG

22 2311 12

21 22 32 33

Z ZH H
,

H H Z Z
H

42 24 52 25 43 3411 12

21 22 53 35 62 26 36 63

Z Z Z Z Z ZL L
,

L L Z Z Z Z Z Z
L
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42 52 4311 12

21 22 53 62 36

2 2 2
2 2 2

Z Z ZL L
,

L L Z Z Z
L   (68)

 

11 21 31 46 55 45 56

12 22 32 54 44 46 55

13 23 33 65 46 55 66

2 3
2 3

2 3
Q

Q Q Q Z Z Z Z
Q Q Q Z Z Z Z ,
Q Q Q Z Z Z Z

          (69) 

x
x
y

 , 
2

2

x

y
x =  e 2

2

xy

x

y

x                 (70) 

 

Considering a triangular domain, ie , with origin at the barycenter of the element, 

the total error in the energy norm, 2
ieE , can be obtained by the integral of the error density 

function: 

 
2

2 2 3 2 2 3
0 1 2 11 12 22 11 12 21 22

4 3 2 2 3 4
22 12 11 13 33

2

2 3 2

ie

ie

2
ieie E U x, y d

U G x G y H x H xy H y L x L x y L xy L y

d ,Q x Q x y Q x y Q xy Q y

e

       (71) 

 
2 2

0 1 2 11 12

2 3 2 2 3
22 11 12 21 22

4 3 2 2 3 4
22 12 11 13 33

2

2 3 2

ie ie ie ie ie

ie ie ie ie ie

ie ie ie ie ie

ieE U d G x d G y d H x d H xy d

H y d L x d L x y d L xy d L y d

Q x d Q x y d Q x y d Q xy d Q y d ,

          (72) 

 
The integral of each term of the function is shown in TABLE 1, where  refers to 

the angle of rotation of the base of the triangular element and the x  axis. Due to the 

geometrical properties of the equilateral triangle, some area integrals are equal to zero. 
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TABLE 1 – MOMENT OF AREA INTEGRAL TERMS FOR QUADRATIC TRIANGULAR ELEMENTS. 

MOMENT OF 
AREA 

INTEGRAL 
SOLUTION 

k

d  23
4

h  

k

x d  0 

k

y d  0 

2

k

x d  43
96

h  

k

xy d  0 

2

k

y d  43
96

h  

3

k

x d  sin 51
480

h  

2

k

x y d  cos 51
480

h  

2

k

xy d  sin 51
480

h  

3

k

y d  cos 51
480

h  

4

k

x d  63
960

h  

3

k

x y d  0 

2 2

k

x y d  63
2880

h  

3

k

xy d  0 

4

k

y d  63
960

h  

SOURCE: The author (2018). 
 

Thus, the total error in the energy norm for an equilateral triangular region with 

edge’s size h  is given by the following expression: 

2 2 4 5
0 11 22 22 12 11 21

611
33 22

3 3 1
4 96 480

3 3
3 960

ieE U h H H h cos L L sin L L h

Q Q Q h .
    (73) 
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Since the orientation of each element is dependent exclusively on the mesh generation, the 

angle of rotation  is unknown at this point of the process. Thus, a negative average of the 

sum of the absolute values corresponding to each direction x and y is used for the third order 

terms corresponding to the sine and cosine functions in Eq. (73). The coefficient of the 5h  

exponent is simplified as 

 

 11 22 12 21
22 12 11 21 2 2

' L L L L
cos L L sin L L L . (74) 

 

where, empirically, the values obtained through 22 12 11 21cos L L sen L L  are 

mostly negative. It is important to notice that this term has little importance in the function 

since the even ordered terms, which are less dependant on mixed xy coefficients, represent the 

core behavior of the function. Finally, the error in the energy norm can be defined as a 

function of the element size h  and the coefficients of the error density function 

 

 
2 2 4 ' 5 6
ie 0

3 3 1 3E U h tr h L h tr h ,
4 96 480 960

H Q
 (75) 

 

where 11 22tr H HH  and 11 22 33tr Q Q QQ .  

Through an optimization problem, the optimal element size can be calculated 

satisfying the error constraint 2 2
ie admE . This is the topic of the next section.  

 DESIGN OF NEW ELEMENT SIZE VIA OPTIMIZATION 

This subsection aims at finding the new equilateral triangle with edge size 1mh  and 

with origin at the barycenter of the element which satisfies the error constraint. In other 

words, the new element size is maximized such that, in its interior, the value of the total error, 

ieE , is limited by the admissible element error, adm . Thus, an optimization problem is 

developed searching for the optimal element size (maximum) that is constrained by the 

admissible error, 2 2
ie admE . This problem is illustrated in FIGURE 7, where the error density 

function’s isolines ( 1U , 2U , 3U ...) are shown and the optimal element size, Newh , is sought. 
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The admissible element error is limited based on the error equidistribution criterion as 

aforementioned (ZIENKIEWICZ; ZHU, 1987). The optimization problem, as shown in 

FIGURE 7, is expressed in its standard form in Eq. (40) where the constraint function, ( )g h , 

is related to the element error given by 

 
2 2

2 4 5 6 2
0

3 3 1 3
4 96 480 960

ie adm

'
adm

g h E

U h tr h L h tr hH Q
    (76) 

 
FIGURE 7 – SEARCH PROCESS OF THE OPTIMAL ELEMENT SIZE. 

 
 

SOURCE: The author (2018). 

 
The optimization problem is solved by finding the first positive root of the constraint 

function. To achieve this, the necessary conditions for a local minimum are applied. The 

solution of this resultant equation can be found by a unidimensional search which combines 

the minimization techniques based on constant-sized steps and the bisection method. As a 

result, the optimal new element size can be found which satisfies the condition ie admE . The 

size 1mh  of each element in the mesh is calculated according to the procedure mentioned 

above. The coefficients of the error density function of each element are stored in memory 

since they are used in the iterative process described in the next section. 

jU

Triangular element 
with optimal edge size 

Isolines of the energy 
error density function 

PROCESS OF THE OPTIMAL ELEMENT SIZE.

ze

gy 
on

x

y

2U3U4U5U

Newh
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 ESTIMATE OF THE ELEMENT ERROR DENSITY FUNCTIONS IN THE NEW 

MESH 

The IEDR technique aims at searching for the optimal element sizes for the new 

generated mesh. Thus, in order to calculate the element sizes considering the new mesh, the 

error density functions for these new elements (region) can be estimated through the use of 

the error asymptotic convergence rate. This is done by calculating the predicted number of 

elements in the new mesh and adjusting the error density functions according to the new 

element sizes until no adjustments are required. Hence, an iterative process is implemented 

where each element’s error density function and number of elements for the new mesh are 

recalculated until convergence.  

In this section, the subscript 1m refers to the next mesh while subscript m  refers to 

the current mesh being analyzed. Considering a generic element, the error in the energy norm 

for the current mesh, me , and new mesh, 1me , respectively, can be expressed as 

 

 
2 2 2 ,

ie

m m mU d C he
 (77) 

 
2 2 2

1 1 1,
ie

m m mU d C he
 

(78) 

 

where , 2min p n , i.e. the element error convergence criterion as mentioned in Eq. 

(31). The integrals of the error density functions, for the old and new element, respectively. 

are given by 

 

 
m

ie

2 4 ' 5 6
m 0 m m m m mm m

3 3 1 3U d U h tr h L h tr h
4 96 480 960

H Q ,  (79) 

 
m 1

ie

2 4
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By rearranging Eqs. (77) and (78) into Eqs. (79) and (80), the element error convergence rate 

can be expressed in terms of the error density function for the old and new element: 
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m

22 4 ' 5 6
0 m m m m m mm m

3 3 1 3U h tr h L h tr h Ch
4 96 480 960

H Q , (81) 

m 1

22 4 ' 5 6
0 m 1 m 1 m 1 m 1 m 1 m 1m 1 m 1

3 3 1 3U h tr h L h tr h Ch
4 96 480 960

H Q , (82) 

 

By relating Eqs. (81) and (82) and cancelling the constants C, the element’s error density 

function in the current mesh can be expressed in terms of its error density function in the next 

mesh following the error convergence rate criterion. Thus,  

 

 
m 1

m

2 4 ' 5 6
0 m 1 m 1 m 1 m 1 m 1m 1 m 1

2
m 1 2 4 ' 5 6

0 m m m m mm mm

3 3 1 3U h tr h L h tr h
4 96 480 960

h 3 3 1 3U h tr h L h tr hh 4 96 480 960

H Q

H Q

 (83) 

 

To predict the element’s new error density function (in the energy norm), the method 

of equating coefficients 2
m 1h , 4

m 1h , 5
m 1h , 6

m 1h  of the polynomials is used. Thus, each term 

can be expressed as  

 

 m 1 m

2
m 12 2

0 m 1 0 m
m

3 h 3U h U h
4 h 4 , 

(84)
 

 

2
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3 h 3tr h tr h
96 h 96

H H
, 

(85) 
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480 h 480

, (86) 

 

2
m 16 6
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m

3 h 3tr h tr h
960 h 960

Q Q
. 

(87)
 

 

Isolating the 2
m 1h , 4

m 1h , 5
m 1h , 6

m 1h  terms in Eqs. (84) – (87) and further cancelling 

constants 

 

 
m 1 old

2 2
m 1 m 12 2

0 m 1 0 m2
m m 1

h hU h U h
h h

, (88) 
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m 1 m 14 4
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h hL h L h
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, (90) 

 
2 6

m 1 m 16 6
m 1 mm 1 m6

m m 1

h htr h tr h
h h

Q Q . (91) 

 

Thus, after further rearranging of Eqs. (88) – (91), each term of the error density function can 

be isolated. The element’s new error density function can be estimated using the following 

equations 

 

 
m 1 m

2 2
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m

hU U
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m

htr tr
h

Q Q . (95) 

 

In broad terms, the error density function for any isotropic element, for a bidimensional 

problem, can be represented as 

 

 
2

m 11 2 3 i 1 2 3 i
1 m 1 2 m 1 3 m 1 i m 1 1 m 2 m 3 m i m

m

hC h C h C h C h D h D h D h D hhi mi mi mi
iiC hii mi mi m

i
i mD hi mi  (96) 

 

where, iC  and iD  represent the coefficients of the error density function for the i-th order 

term. Therefore, an a priori estimation of the i-th order term in accordance to the asymptotic 

error convergence rate is given by 

 

 

2 i
m 1

i i
m

hC D
h . 

(97) 
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In summary, the terms of the error density function for a given element in current 

mesh element can be adjusted considering the error convergence rate such that the new 

adjusted error density function represents more precisely the error in the new element leading 

to better element size calculations. 

The process mentioned above can be used as the basis for an iterative process of 

redefining each element’s error density function considering the estimated element sizes in 

the new mesh and its number of elements. The implementation, FIGURE 8, can be 

summarized in the following steps: 

Step 1: Considering the current mesh, estimate the element’s error density 

parameters, i.e., 0U , tr H , 'L , tr Q  according to Eq. (63), 2
adm  according to Eq. (23) and 

the new element size according to the optimization problem stated in Eq. (40). 

Step 2: For each element, the parameters calculated in the first step are adjusted 

considering Eqs. (48) – (51), using the element size in the current mesh and the element size 

calculated for the next mesh, mh  and m 1h .  

Step 3: The number of elements in the new mesh newNEl  is estimated and the 

element admissible error, adm , is updated. These parameters are calculated according to the 

following equations: 

2
1

1

NEl

new m m
ie

NEL h / h
     

and      adm newNElu . 

Step 4: Check if convergence is reached (mesh energy error is lower than admissible 

error). 

FIGURE 8 exhibits the iterative process described above. Convergence is reached 

when there is no significant change in the number of elements and, consequently, in the 

admissible error. 
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FIGURE 8 – FLOW DIAGRAM OF ITERATIVE ELEMENT DESIGN PROCESS USED BY THE IEDR 
METHODOLOGY. 

 
SOURCE: The author (2018). 
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5 RESULTS 

In order to analyze the quality of the IEDR element design methodology, in this 

Chapter, results of four bidimensional problems found in the literature are solved: two of 

these problems are plane thermal conduction problems with squared shaped domains and the 

other two are plane elasticity problems, one with a squared shaped domain and the other with 

an L shaped domain which contains a stress singularity. These classic engineering problems 

are solved using h-adaptive FEM based on each of the remeshing methodologies 

aforementioned, the Chp, LB and IEDR methodologies. The error estimation process and 

initial meshes are the same across each methodology analyzed. Thus, the analysis exclusively 

focuses on each element design technique and avoids external influences. 

Each h-adaptive process is carried out until a convergent mesh is attained, in which 

the mesh global energy error is lower than the estipulated admissible error, and, in some 

cases, additional iterations are analysed to describe the behavior of the process. 

The problems discussed are evaluated in view of parameters of the h-adaptive 

process, discerning advantages and disadvantages of each methodology. The convergence 

curve of the process, the quality parameters of the mesh and the final mesh obtained are used 

to evaluate each process. This section does not include analysis of the error estimators since 

every methodology uses the same recovery method, thus, the same error estimation 

methodology.  

 NUMERICAL IMPLEMENTATION 

 

The numerical implementation of the h-adaptive FEM is performed through the 

Matlab® software. In this algorithm, each adaptive strategy and analyzed problem is 

implemented separately using subfunctions. FIGURE 09 illustrates the implementation 

architecture for each of the adaptive strategies, where the element size design is done using 

the same estimated error differently. 
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FIGURE 9 – GENERIC h-ADAPTIVE PROCESS USING MATLAB® AND BAMG SOFTWARE. 

 
SOURCE: The author (2018). 

 

In view of the numerical implementation, some remarks should be taken in 

consideration regarding the softwares and algorithm used: 

 The error estimator used in every process is the SPR as proposed by Zienkiewicz 

and Zhu (1992b). 

 The mesh generation is done via the Bidimensional Anisotropic Mesh Generator 

(BAMG) software (Hecht, 2006). This mesh generator is implemented to solely 

use nodal information related to the vertices of linear triangular elements. Thus, to 

generate quadratic triangular elements, two subfunctions were implemented in 

Matlab® by the author to add and remove the required edge nodes which 

characterize a quadratic triangular element, thus, making the use of this generator 

viable. 

 The information regarding the element sizes are calculated with reference to the 

element barycenter location. Hence, an adjustment to this data had to be post-

processed since the BAMG generator uses nodal parameters. FIGURE 9 

illustrates the nodes in the barycenter of each element, where the nodal element 

size, ieh , is calculated according to the element design strategies. For the vertex 

node as shown in the center of FIGURE 10, an inverse average of each element 

size in the patch of elements is used, ieh , given by 
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h
 

(98) 

 
FIGURE 10 – REPRESENTATION OF THE PATCH OF ELEMENTS ASSOCIATED TO THE CENTRAL 

NODES. BLACK DOTS REPRESENT ELEMENT SIZES SUPPLIED AS DATA. 
 

 
SOURCE: The author (2018). 

 
where NP  is the number of elements surrounding the vertex node. 

 
 Also, the solution of each problem is validated using information given in the 

literature regarding each problem analyzed. It was ensured that each of the h-

adaptive processes’ solution converge to the analytical solution of the problem, 

the total strain energy meets the value presented in the literature and the sum of 

forces in the positive x and y directions were also validated. 

 Limitations are imposed on the maximum element size and on the maximum 

refinement to guarantee the stability of the remeshing process and avoid distorted 

elements. The maximum size is defined as 20% of the characteristic domain size 

dimension and the maximum refinement is 10% of the original element size: 

 

 
20%LC  and 10%maxref  

 
(99) 

 

 The numerical integration of the analytical loads is achieved using the Wandzurat 

quadrature with 25 points (WANDZURAT; XIAO, 2003). 

 A constant value of 0,95C  is used to adjust the element size as described by Li 

and Bettess (1995). 

ieh

ieh

ieh

ieh

ieh

ieh

ieh
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 PROBLEM 1 – ELLIPTIC TYPE THERMAL CONDUCTIVITY PROBLEM 

A scalar bidimensional elliptic heat transfer problem (Poisson type problem) with 

homogeneous Dirichlet boundary conditions can be defined in a domain 2 20 1 R , as  

 

 

1
0

1
0

T
g

 ( x, y ) H

v T d vf d , v H

F d T

,

in

D  (100) 

 

where T  is the analytical solution, gD  is a generic constutive tensor related to the problem, 

f  is the scalar function of domain excitation,  is the gradient differential operator, v  is a 

function of a generic kinematically admissible variation and 1
0H  denotes first-order Hilbert 

space with compact support in . The analytical solution of the problem is given by 

(modified from Mitchel, 2013) 

 

 
2( )( , ) 2 (1 ) (1 ) ,a b a a b bT x y x x y y  (101) 

 

where 20a  and 1b . FIGURE 11 shows graphical representations of the problem’s 

analytical solution. The Chp, LB and IEDR based h-adaptive FEM methodologies are 

compared using LST elements.  

 
FIGURE 11 – PROBLEM 1: ANALYTICAL SOLUTION. 

  
    Isometric perspective.          Top view (x-y). 

SOURCE: The author (2018). 
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The initial mesh used by each of the methodologies is composed by 930 quasi-

equilateral elements. FIGURE 12 illustrates the initial mesh and its energy error distribution. 

The stipulated global admissible error is 0.5% . 

 
FIGURE 12 – PROBLEM 1: INITAL MESH AND ITS ERROR DISTRIBUTION, 2.28% . 

 
SOURCE: The author (2018). 

 
In this problem, for each of the methodologies discussed, 3 adaptive iterations are 

completed such that the convergent mesh and stability of the techniques are analyzed. The 

resultant meshes are illustrated in FIGURE 13 to 15. FIGURE 13 shows that all 3 

methodologies achieve the global admissible error, 0.5% , in the first iteration satisfying 

the convergence criterion. However, the meshes produced in the first iteration differ greatly 

between the Chp technique and LB and IEDR methodologies. The mesh produced by the Chp 

methodology presents a high number of elements and a global error percentage considerably 

lower than the admissible error indicating that the mesh is adapted with more elements than 

necessary. Furthermore, the error distribution in FIGURE 13 shows that the Chp technique 

produces high local errors in some regions while, in other regions, the error is much lower. 

On the other hand, the LB and IEDR techniques produced meshes, in the first iteration, with a 

lower number of elements, with 34.42% and 31.29% less degrees of freedom, respectively, 

when compared to the Chp technique. The subsequent meshes produced in iteration 2 and 3 

also present better mesh parameters for the LB and IEDR techniques when compared to the 

renowned Chp technique, as shown in TABLE 2. 
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FIGURE 13 – PROBLEM 1: ITERATION 1, ADAPTED MESHES AND THEIR ERROR DISTRIBUTION 
FOR THE ChP, LB AND IEDR REMESHING STRATEGIES FOR LST ELEMENTS. 

SOURCE: The author (2018). 
 
TABLE 2 compares the characteristics of the adapted meshes for the first iteration of 

each process, m=1. This table shows a standard deviation of the error parameter, D , of 0.37 

for the meshes produced by the IEDR and LB techniques whereas for the Chp technique the 

value of this parameter is 0.55. Thus, the first iteration of the adaptive process results in better 
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error equidistribution using the LB and IEDR element design methodologies when compared 

to the Chp technique.  

 
TABLE 2 – PROBLEM 1: MESH PARAMETERS OF THE FIRST ITERATION. 

h-adaptive 

Method 

Analytical 

error 

( ) 

Effectivity 

index 

( ) 

Standard deviation of 

element error 

( D ) 

Number of degrees 

of freedom 

( NDF ) 

Chp 0.34 1.11 0.55 5830 

LB 0.47 1.10 0.37 (-32.7%) 3823 (-34.4%) 

IEDR 0.46 1.10 0.37(-32.7%) 4000 (-31.3%) 

SOURCE: The author (2018). 

 
The meshes produced in the first iteration achieve inferior error in comparison to the 

stipulated admissible error, thus, these are said to be convergent meshes. Two subsequent 

iterations of the process are analyzed to further evaluate the behavior of each adaptive 

process. It is important to note that, even if the admissible error has been achieved, the h-

adaptive process can continue producing divergent meshes. Here, the definition of the final 

mesh of the h-adaptive process is achieved for each methodology when no considerable 

changes in the mesh between iteration occurs. FIGURES 14 and 15 demonstrate the mesh 

produced in the second and third iteration, respectively. From these figures, little change it is 

noticeable between iterations in the number of elements and global error percentage for the 

meshes produced via the LB and IEDR – LB: 4.2% change in the number of elements 

between iterations 1 and 2, and 2.6% between iterations 2 and 3, IEDR: 7.1% change in the 

number of elements between iterations 1 and 2, and 5.3% between iterations 2 and 3– 

indicating that these processes have reached, approximately, their final mesh in only one 

iteration. Conversely, there is a substantial change in the number of elements for the meshes 

produced via the Chp technique – a 30,4% change in the number of elements between iteration 

1 and 2, and a 8.5% change between iterations 2 and 3. Also, FIGURES 14 and 15 show that 

the meshes produced using this methodology have elements with higher local errors, indicated 

by the red elements in the error distribution figure, when compared to the IEDR and LB 

techniques.  
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FIGURE 14 – PROBLEM 1: ITERATION 2, ADAPTED MESHES AND THEIR ERROR DISTRIBUTION 
FOR THE ChP, LB AND IEDR REMESHING STRATEGIES FOR LST ELEMENTS. 

 
SOURCE: The author (2018). 
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FIGURE 15 – PROBLEM 1: ITERATION 3, ADAPTED MESHES AND THEIR ERROR DISTRIBUTION 
FOR THE ChP, LB AND IEDR REMESHING STRATEGIES FOR LST ELEMENTS. 

 
SOURCE: The author (2018). 

 
TABLE 3 compares the characteristics of the initial and adapted meshes for the first, 

second and third iteration of each adaptive process for this problem. The meshes produced by 

the Chp methodology show poorer mesh quality parameters in relation to the meshes produced 
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by the LB and IEDR methodologies. As a reference, it is important to note that for an optimal 

mesh ave = 1, = 1 and = 0. 

 
TABLE 3 – PROBLEM 1: MESH PARAMETERS FOR THE h-ADAPTIVE PROCESSES BASED ON THE 

IEDR, LB AND ChP METHODOLOGIES. 
 

h-adaptive Method  Initial mesh Mesh 1 Mesh 2 Mesh 3 

Chp 

 

NDF  

 

ave  

 

 

2.28 

1781 

1.11 

2.64 

24.66 

4.06 

0.34 

5830 

1.31 

0.58 

3.73 

0.55 

0.42 

4437 

1.09 

0.76 

3.26 

0.45 

0.44 

4110 

1.19 

0.81 

3.39 

0.39 

LB 

 

NDF  

 

ave  

 

 

2.28 

1781 

1.11 

2.64 

24.66 

4.06 

0.47 

3823 

1.10 

0.88 

2.33 

0.37 

0.44 

3980 

1.09 

0.82 

1.95 

0.34 

0.45 

3881 

1.19 

0.85 

2.09 

0.34 

IEDR 

 

NDF  

 

ave  

 

 

2.28 

1781 

1.11 

2.64 

24.66 

4.06 

0.46 

4000 

1.10 

0.86 

2.35 

0.37 

0.41 

4302 

1.09 

0,78 

1.82 

0.37 

0.43 

4086 

1.10 

0.82 

1.90 

0.34 

SOURCE: The author (2018). 

 
FIGURE 16 shows the convergence curves of each h-adaptive process analyzed. In 

this graph, the logarithm of the number of degrees of freedom versus the logarithm of the 

error is plotted for each process. It is shown that all 3 methodologies achieve convergence 

related to the stipulated admissible global energy error in one iteration. Furthermore, the 

convergence curves for the processes based on the IEDR e LB methodologies show linearity, 

where the logarithm of the global energy error in the mesh decreases proportionally to the 

logarithm of the number of elements. On the contrary, the meshes obtained through the Chp 

máx D

máx

D

máx

D

máx

D
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technique utilize a higher number of elements where the logarithm of the error does not 

change proportionally to the logarithm of the error, thus, a non-linear convergence curve is 

produced. In this technique, an overestimation of the required number of elements to achieve 

convergence is present. In the second and third iterations, this overestimation is adjusted 

incurring in additional computational costs in producing the final mesh for this formulation in 

comparison to the technique proposed in this dissertation, the IEDR technique. By comparing 

the IEDR and LB techniques, as shown in FIGURE 16, it is noticeable that both techniques 

show similar convergence curves. The LB methodology obtains meshes with a slightly lower 

number of elements, however no significant differences between the mesh parameters are 

present. 

 
FIGURE 16 – PROBLEM 1: CONVERGENCE GRAPH FOR EACH ADAPTIVE PROCESS. 

 
 

SOURCE: The author (2018). 
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 PROBLEM 2 – ELLIPTIC TYPE THERMAL CONDUCTIVITY PROBLEM 2 

In this elliptic problem (Poisson type) defined in a domain  and exclusively 

supported by a homogeneous Dirichlet boundary condition, the variational form of the 

problem for a given body load can be expressed as  

 

 

1
0

1
0

T
g

 ( x, y ) H

v u d vf d , v H

F d u

,

in

D  (102) 

 

where u  is the analytical solution of the problem. The domain load is applied such that the 

analitycal solution is given by (ZIENKIEWICZ; ZHU, 1992c) 

 

 0( , ) (1 ) (1 )arctan ( ) ,u x y x x y y  (103) 

 

where ( ) / 2x y , 0 0.8 and 20 . FIGURE 17 illustrated the analytical solution 

of this problem.  

 
FIGURE 17 – PROBLEM 2: ANALYTICAL SOLUTION. 

 
Isometric perspective.     Top view (X-Y). 

SOURCE: The author (2018). 
 
The same admissible global error of the last problem is stipulated ( 0.5% ) and the 

initial mesh of 252 elements is shown in FIGURE 18. A coarser initial mesh is used in this 

problem to verify possible characteristics of the methodologies related to the low number of 

elements in the initial mesh. In such cases, the error estimation is poorer leading to difficulties 
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in accurate mesh design. The solution of this classic problem varies abruptly near the central 

diagonal region as shown by FIGURE 17. 
 

FIGURE 18 – PROBLEM 2: INITIAL MESH. 

 
SOURCE: The author (2018). 

 
The resultant adapted meshes and their error distribution for this problem using the 

Chp, LB and IEDR methodologies can be visualized in FIGURE 19. Again, it can be seen that 

the LB and IEDR h-adaptivity strategies applied to this problem produce meshes with 

uniformly distributed errors among the elements, whereas for the Chp technique, the error 

distribution show oscillatory behavior having regions where the error abruptly increases and 

decreases between iterations. This behavior of the Chp technique was indicated by Oñate and 

Bugeda (1993). In the first iteration, for example, the methodology produces small elements 

with low errors in the central diagonal region of the problem, however, in the second iteration, 

this same region of the mesh has bigger elements with higher errors. Consequentially, in the 

third iteration, the central diagonal region of the mesh contains smaller elements with low 

errors again. The same oscillatory behavior happens between the subsequent iterations. 

Conversely, the IEDR and LB methodologies, excluding the first iteration, present little 

changes in the mesh and error distribution between regions of the mesh. This indicates a more 

robust behavior for these two techniques. Also, the IEDR and LB methodologies are able to 

successfully adjust the element sizes in the presence of the abrupt change in the solution 

located at the central diagonal region of this problem. 
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FIGURE 19 – PROBLEM 2: ERROR DISTRIBUTION FOR 4 ITERATIONS OF THE IEDR, LB AND ChP

ADAPTIVE PROCESSES.

SOURCE: The author (2018).

m = 1

m = 2

m = 3

m = 4

m = 5
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In FIGURE 20, the convergence graphs of the h-adaptive processes are shown. It can 

be seen that the LB and IEDR techniques produce a final mesh in the second iteration, where 

no significant change is present between iterations. These meshes present a lower number of 

degrees of freedom when compared to the Chp technique. This phenomenon also occurred in 

the first problem. 

 
FIGURE 20 – PROBLEM 2: CONVERGENCE GRAPH FOR EACH ADAPTIVE PROCESS. 

 
SOURCE: The author (2018). 
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Additionally, FIGURE 20 indicates that every h-adaptive process reaches the 

admissible global error value in a single iteration, even for a problem with higher gradient 

variation of the solution and a considerably coarser initial mesh. In this problem, it is shown 

that the meshes produced by the first iteration are not “final meshes”, where considerable 

change in the meshes are present between the first and second iterations for each process. The 

poor error estimation due to the coarse initial mesh causes difficulties for the h-adaptive 

processes to properly design the optimal element sizes. In this case, the IEDR technique 

presents better mesh parameters regarding the number of elements, closeness to the stipulated 

admissible error and standard deviation error parameter as shown in TABLE 4. This indicates 

that, even with poor error estimation, the methodology is still able to successfully predict with 

accuracy the required element sizes. The use of an error density function instead of pointwise 

element errors better describes the behavior of error for each element as it increases and 

decreases in size, in conjunction with the iterative adjustment process. Thus, the results show 

advantages in the use of the IEDR technique. Furthermore, as shown in FIGURE 20 and 

TABLE 4, the LB technique also produced similar meshes with mesh quality parameter 

superior to the Chp technique. 

The standard deviation parameter, D , curve of each h-adaptive process is shown in 

FIGURE 21. The IEDR technique obtained meshes with a lower standard deviation of 

element errors than the Chp and similar to the LB based methodology, while using a lower 

number of elements. This indicates an effective error equidistribution in the mesh. Also, this 

parameter varies less between iterations indicating stability of the formulation. 
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FIGURE 21 – PROBLEM 2: STANDARD DEVIATION OF THE REFINEMENT PARAMETER FOR EACH 

h-ADAPTIVE PROCESS ITERATIONS. 

 
SOURCE: The author (2018). 

 
TABLE 4 compares the characteristics of the initial and adapted meshes for the 4 

iterations of each h-adaptive process based on the IEDR, LB and Chp methodologies for 

Problem 2. It is shown that the mesh quality parameters of the h-adaptive process based on 

the IEDR and LB methodologies are superior when compared to the classic Chp remeshing 

strategy for this problem, similarly to the characteristics discussed in Problem 1. 
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TABLE 4 – PROBLEM 2: MESH PARAMETERS FOR THE h-ADAPTIVE PROCESSES BASED ON THE 
IEDR, LB AND ChP METHODOLOGIES. IN RED, RELEVANT PARAMETERS OF COMPARISON ARE 

HIGHLIGHTED. 
Method  Initial mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Chp 

 

NDF  

 

ave  

 

 

9.67 

465 

1.28 

9.28 

103.8 

18.89 

0.50 

5801 

1.05 

0.58 

5.00 

0.71 

0.41 

3916 

1.11 

0.76 

2.06 

0.40 

0.42 

3680 

1.09 

0.79 

2.25 

0.37 

0.48 

3417 

1.11 

0.88 

2.75 

0.38 

LB 

 

NDF  

 

ave  

 

 

9.67 

465 

1.28 

9.28 

103.8 

18.89 

0.43 

4407 

1.09 

0.71 

3.30 

0.56 

0.45 

3557 

1.09 

0.85 

2.30 

0.33 

0.44 

3536 

1.09 

0.84 

2.29 

0.34 

0.45 

3454 

1.10 

0.85 

2.09 

0.34 

IEDR 

 

NDF  

 

ave  

 

 

9.67 

465 

1.28 

9.28 

103.8 

18.89 

0.47 

4058 

1.09 

0.77 

5.51 

0.59 

0.48 

3311 

1.09 

0.90 

2.38 

0.34 

0.47 

3294 

1.10 

0.90 

2.24 

0.32 

0.49 

3273 

1.09 

0.93 

2.20 

0.34 

SOURCE: The author (2018). 

 
In this problem, the last mesh produced in the fourth iteration of the process is 

analyzed to evaluate the formulation of each methodology. The IEDR technique shows a 

convergent mesh with 5.53% less elements when compared to the LB technique and 4.40% 

less elements when compared to the mesh produced via the Chp methodology, while 

achieving a global analytical error percentage lower than the stipulated admissible global 

error. Further, the average value of the element error parameter is closer to 1 for the meshes 

produced through the IEDR technique when compared to the LB and Chp techniques and the 

standard deviation of the element error parameter is the same between the IEDR and LB 

techniques, and closer to 0 than the Chp technique. 
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 PROBLEM 3 – PLANE ELASTICITY PROBLEM WITH SQUARED DOMAIN 

An elliptical vectorial plane elasticity problem with homogeneous Dirichlet boundary 

conditions is defined in the variational form as 

 

 

1
0

1
0

T

 ( x, y ) H

d d , H ,

Find

v D u vf v

u
 (104) 

 

where a domain excitation is applied such that the solution is given by (ZIENKIEWICZ; 

TAYLOR, 2000) 

 

 0

1
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1
x

y

u
x y x x y y

u
u  (105) 

 

where ( ) / 2x y , 0 0.8 and 20 . The same domain is used as the last problem, 

described by 2 20 1 R . Plane stress state is assumed. TABLE 5 lists the properties 

of the plane stress state problem. 

 
TABLE 5 – PROBLEM 3: PROBLEM PROPERTIES. 

Modulus of 

Elasticity 
Thickness Poisson’s ratio 

1000E  1t  0,3  

SOURCE: The author (2018). 

 
A lower admissible error is used in this problem ( 0.2% ) and the initial mesh is composed 

by 942 elements. FIGURE 17 shows the analytical solution of this problem given in each 

principal direction. It can be seen that the solution of this problem is a modification of 

Problem 2. FIGURE 22 illustrates the initial mesh used in the h-adaptive processes. This 

problem is used to analyze the techniques for plane elasticity problems, where every node has 

two degrees of freedom, and draw comparisons between the results found in Problem 2. 
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FIGURE 22 – PROBLEM 3: INITIAL MESH. 

 
SOURCE: The author (2018). 

 
FIGURE 23 shows the adapted meshes using each of analyzed adaptive 

methodologies based on the LB, IEDR and Chp element designs for 5 iterations of the 

process. The figure shows that the IEDR technique produce meshes with a lower number of 

elements for every adapted mesh in comparison with the LB and Chp techniques. Specifically, 

in the convergent mesh, given by the first iteration, the technique uses approximately 44% 

less elements than the Chp technique for that iteration and 2.3% less elements when compared 

to the LB technique. Also, after the first iteration, there is little change in the subsequent 

meshes design through the IEDR technique, varying between 3988 and 4052 elements, 

indicating that a final mesh based on the technique’s formulation is achieved in the second 

iteration. The h-adaptive process based on the LB technique produce meshes similar to those 

based on the IEDR methodology, where small differences in the number of elements and 

analytical global errors are present.  

Both, IEDR and LB techniques reach convergence by accurately defining suitable 

element sizes in the region of high variation in the solution located in the central diagonal part 

of the domain, whereas the Chp technique designs an unnecessary high number of elements in 

that critical region. Furthermore, by comparing iterations 2 and 3 of the adaptive process 

based on the Chp methodology, an oscillation of the element size definition is present in the 

critical region of high variation in the solution. This behavior is also present in Problem 1 and 

2. Also, FIGURE 23 and TABLE 6 show similar results and behavior of each adaptive 

process as the problems discussed previously, even though a different problem is considered 

with a lower stipulated admissible error. 
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FIGURE 23 – PROBLEM 3: ADPTED MESHES PRODUCE FOR 5 ITERATIONS OF THE IEDR, LB E ChP 
ADAPTIVE PROCESSES. 

 
 

 
 
 

 
SOURCE: The author (2018). 

Iteration 1 Iteration 2 Iteration 3 

Iteration 4 Iteration 5 
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TABLE 6 – PROBLEM 3: MESH PARAMETERS FOR THE h-ADAPTIVE PROCESSES BASED ON THE 
IEDR, LB AND ChP METHODOLOGIES. IN RED, RELEVANT PARAMETERS OF COMPARISON ARE 

HIGHLIGHTED. 

Method  

Initial 

mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Chp 

 

NDF  

 

ave  

 

 

2.91 

3610 

1.23 

5.92 

168.49 

14.19 

0.17 

28570 

1.04 

0.59 

6.37 

0.71 

0.17 

19370 

1.10 

0.78 

3.24 

0.45 

0.17 

18630 

1.07 

0.81 

2.48 

0.39 

0.18 

17528 

1.09 

0.83 

2.26 

0.34 

0.18 

17280 

1.07 

0.85 

2.33 

0.32 

LB 

 

NDF  

 

ave  

 

 

2.91 

3610 

1.23 

5.92 

168.49 

14.19 

0.17 

19290 

1.07 

0.78 

3.10 

0.41 

0.18 

16998 

1.08 

0.85 

2.25 

0.30 

0.18 

16534 

1.08 

0.88 

2.16 

0.30 

0.18 

16798 

1.08 

0.87 

2.13 

0.30 

0.18 

16812 

1.08 

0.86 

2.19 

0.30 

IEDR 

 

NDF  

 

ave  

 

 

2.91 

3610 

1.23 

5.92 

168.49 

14.19 

0.17 

18846 

1.07 

0.80 

3.34 

0.40 

0.19 

15726 

1.08 

0.93 

2.49 

0.29 

0.19 

15982 

1.08 

0.92 

2.51 

0.30 

0.19 

15980 

1.08 

0.91 

2.51 

0.29 

0.19 

15748 

1.08 

0.92 

2.58 

0.31 

SOURCE: The author (2018). 

 
TABLE 6 lists the mesh parameters of each of the 5 adaptive iterations of the IEDR, 

LB and Chp based h-adaptive processes for Problem 3. It is shown that the number of degrees 

of freedom required for this problem is considerably higher than the previous ones due to the 

low admissible error stipulated and the vectorial problem. Also, the table shows that the 

meshes produced by the IEDR and LB techniques present a lower number of elements, lower 

standard deviation of the error parameter, lower maximum refinement parameter and an 

avarage of the refinement parameter closer to 1 when compared to the h-adaptive process 

based on the Chp technique. This behavior follows the results shown previously in Problem 1 

and 2 indicating that the Chp technique is not as effective in equidistibuting the element 
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errors. As emphasized in red in this table, the refinement parameter average, ave , is closer to 

the optimal value of 1 for the meshes produced by the IEDR methodology when compared to 

the LB e Chp element design techniques. 

FIGURE 24 – PROBLEM 3: CONVERGENCE CURVES OF EACH ADAPTIVE PROCESS IEDR, LB AND 
ChP.  

 
SOURCE: The author (2018). 

 
The convergence graph of each process is shown in FIGURE 24 and 25. FIGURE 25 

shows an enlarged view of the convergence graph in FIGURE 24 for iterations 1-5. The 

convergence curves for the IEDR and LB methodologies show that these adaptive processes 

reach convergence in the first iteration, where the global analytical error reaches the stipulated 

error, with a considerably lower number of degrees of freedom when compared to the Chp 

technique as visible in FIGURE 24. Also, the Chp technique overshoots the admissible error, 

producing a mesh with analytical error distant to that value. In an optimal mesh, the analytical 

error and admissible error should be equal. In terms of the behavior of the methodologies, 
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little differences in the meshes produced in iteration 2 to 5 are observed for the IEDR 

technique, whereas for the other techniques higher changes in the number of elements 

analytical error is present. All 3 methodologies analyzed show substantial mesh adjustments 

between the first and second iterations. This occurs due to the low admissible error of 0.2% 

which requires a significant increase in the number of elements in the first iteration when 

compared to the initial mesh, and, consequentially, loss of accuracy in the element design 

techniques is present. In the subsequent iterations, better error estimation is present due to the 

higher number of elements in the mesh.  

FIGURE 25 – PROBLEM 3: ENLARGED VIEW OF THE CONVERGENCE CURVES OF EACH 
ADAPTIVE PROCESS IEDR, LB AND ChP. 

 
SOURCE: The author (2018). 
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 PROBLEM 4 – PLANE ELASTICITY PROBLEM WITH SINGULARITY AND L 

SHAPED DOMAIN 

The plane elasticity problem with an L domain is a classic problem of the Theory of 

Elasticity (SZABO; BABUSKA, 2011). The presence of a singularity in this problem 

provides difficulties in the design of suitable element sizes, making this problem important in 

the analysis of h-adaptivity strategies. Furthermore, this is a vector problem, which, 

differently from Problems 1 and 2, the solution has two dependent variables. The material 

properties and geometrical data are given in TABLE 7 for this plane strain problem: 

 
FIGURE 26 – PROBLEM 4: MECHANICAL MODEL OF PROBLEM WITH L SHAPED 

DOMAIN. 

 
SOURCE: Modified from Díez; Ródenas and Zienkiewicz (2007). 

 
TABLE 7 – PROBLEM 4: PROBLEM AND MATERIAL PROPERTIES. 

Modulus of 

Elasticity 
Thickness 

Region of 

Singularity 
Poisson’s ratio 

1000E  1t  0.005r  0,3  

SOURCE: The author (2018). 

 
FIGURE 26 illustrates a mechanical model of the problem in analysis. Neumann 

boundary conditions are present on the outer edges of the domain. The stress components that 

describe the Neumann boundary condition are based on the first symmetric term (Mode I) of 

r  
(0,0) 
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the asymptotic expansion of the analytical solution around the central vertex (0,0) (SZABO; 

BABUSKA, 2011). Thus, the loads applied to the boundary of the domain (shown in red in 

FIGURE 26) are obtained through the solution of the stress fields given by (SZABO; 

BABUSKA, 2011) 

 

 

1

1

1

2 1 cos 1 1 cos 3

2 1 cos 1 1 cos 3

1 sen 1 1 sen 3

xx s

yy s

xy s

r Q

r Q

r Q

  (106) 

 

where 0.543075579sQ , 0.544483737 ,  is the angle and r denotes de radius as shown 

in FIGURE 26. In this problem, the stress field is singular in the central vertex, at point (0,0) 

of FIGURE 26. The order of the singularity is given by . Rigid body movement is 

restricted, such that no body reactive forces are created as shown in FIGURE 26 

Each element design methodology is based on the asymptotic convergence rate of the error as 

shown in Chapters 3 and 4. However, the presence of a singularity creates a critical region, as 

present in this problem near the re-entrant corner (0,0). The elements that share this region 

have a lower convergence rate as shown in Eq. (26) and Eq. (31) by the term min , p , i.e. 

the convergence rate is proportional to the minimum between the order of approximation or 

the regularity of the solution defined by the singularity. Hence, based on the formulation of 

each technique, the element design methodology, for these elements, is modified to account 

for the lower convergence rate of the singularity. TABLE 7 defines an arbritary radius of the 

singularity region as 0.005r , where elements inside this radius (with origin at 0,0) are 

assumed to be affected by the singularity. Eq. (26), Eq. (31) and Eq. (97) are modified for 

elements in the singularity region.  

For the Chp element design formulation, the order of singularity replaces the variable 

p in the element size formulation such that 

 

 e emin ,p 0.544483737Ch Ch , (107) 

 

The IEDR methodology, on the other hand, is only required to modify the convergence rate of 

its iterative process, given by  in Eq. (97). The resulting manipulation can be expressed as 
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2 i 2 1.544483737 i

new new
i i i i

old old

h hC D C D
h h , (108) 

 

Similarly to the Chp element design formulation, the LB methodology is modified by 

replacing the value of the order of approximation, p, by the order of regularity of the solution. 

The convergence rate for the elements influenced by the singularity, for this methodology, can 

be expressed as 

 

 e emin ,p n 2 1.544483737
ie ieCh Ch , (109) 

 

Eqs. (107) – (109) are valid exclusively in the region near the re-entrant corner. 

Therefore, a region composed by the elements between the radius r and point (0,0) was used 

as region of singularity, due to direct influence of the singularity into these elements. Further, 

the elements that are not located inside this radius maintain the original convergence rate, 

defined by the order of the element approximation, as indicated in Chapters 3 and 4. 

The analytical solution of this problem is illustrated in FIGURE 27 for the 

displacement in the x and y directions. The initial mesh used for the h-FEM process has 166 

triangular quadratic elements as shown in FIGURE 28. The admissible global error is set to 

1% ( 1%) . Also, the solution of this problem shows abrupt changes in the gradient due to 

the presence of the singularity. 

 
FIGURE 27 – PROBLEM 4: ANALYTICAL SOLUTION. 

 
Top view (solution in the x direction)  Top view (solution in the y direction) 

SOURCE: The author (2018). 
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FIGURE 29 shows the convergence curves obtained through each of the h-adaptive 

finite element procedures based on the IEDR, LB and Chp element design methodologies. In 

this graph, the curves show that the IEDR and Chp methodologies reach convergence in 3 

iterations while the LB technique requires 4 iterations.  

 
FIGURE 28 – PROBLEM 4: INITIAL MESH AND ITS ERROR DISTRIBUTION. 

 
SOURCE: The author (2018). 

 
FIGURE 29 – PROBLEM 4: CONVERGENCE CURVES OF EACH ADAPTIVE PROCESS IEDR, LB AND 

ChP. 

 
SOURCE: The author (2018). 
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Indeed, the h-adaptive FEM based on the IEDR methodology achieves convergence 

with 3 iterations producing a convergent mesh with considerably lower number of degrees in 

comparison with the Chp technique. In fact, the convergent mesh produced via the Chp has 

913 elements, 156.6% more elements when compared to the 583 elements required by the 

IEDR technique. In the other hand, the LB methodology reaches convergence in 4 iterations 

with gradual adjustments in the mesh in order to equidistribute the error. Although the 

increased number of iterations required, this technique uses slightly less elements to achieve 

convergence. The convergence curves indicate that the IEDR technique present advantages 

related to the computational cost due to the use of less iterations while providing suitable 

mesh parameters for the convergent mesh. This indicates that, through the iterative process of 

estimating the new element’s error density function, the IEDR technique is able to design 

element sizes in the critical singularity region effectively. Difficulties in predicting the 

element sizes in the critical region are due to the poor error estimation present. 

FIGURE 30 illustrates the 3 meshes obtained through the h-adaptive IEDR 

remeshing methodology required to achieve convergence, where the global energy error of the 

mesh is lower than the admissible energy error. In this image, the first and second meshes 

produced present an elevated number of elements and, in the thid mesh, the excessive number 

of elements is adjusted. The mesh produced in the first iteration shows a prediction of high 

number of elements required to achieve an optimal mesh, thus, a generalized refinement of 

the mesh is carried out. The meshes produced in the second and third iterations through the 

IEDR methodology for this problem are relatively similar, with small changes present in the 

critical region of singularity.  

 
FIGURE 30 – PROBLEM 4: ADAPTED MESHES NECESSARY TO ACHIEVE CONVERGENCE USING 

THE h-ADAPTIVE PROCESS BASED ON THE IEDR TECHNIQUE. 
 

 
SOURCE: The author (2018). 

 

m = 1            m = 2    m = 3 
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FIGURES 31 and 32 show the meshes required to achieve the admissible global error 

using the Chp and LB methods, respectively. The meshes produced by the Chp method show 

the same oscillatory behavior as found in the previous examples, where the element sizes vary 

from being smaller in the critical region, in iterations 1 and 3 (m = 1 and m = 3), to being 

smaller in the whole domain as in iteration 2 (m = 2). The LB method, on the other hand, 

gradually refines the region of singularity, thus, requiring more iterations to achieve a 

convergent mesh in view of the admissible error. 
 

FIGURE 31 – PROBLEM 4: ADAPTED MESHES NECESSARY TO ACHIEVE CONVERGENCE USING 
THE h-ADAPTIVE PROCESS BASED ON THE ChP TECHNIQUE. 

 

 
SOURCE: The author (2018). 

 
FIGURE 32 – PROBLEM 4: ADAPTED MESHES NECESSARY TO ACHIEVE CONVERGENCE USING 

THE h-ADAPTIVE PROCESS BASED ON THE LB TECHNIQUE. 
 

 
SOURCE: The author (2018). 

 

m = 1            m = 2    m = 3 

m = 1            m = 2    m = 3 

m = 4 
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In TABLE 8, the mesh parameters for 5 iterations of the adaptive processes are 

shown. Even though a convergent mesh is achieved after 3 or 4 iterations, additional iterations 

are analysed to assess the stability of each result. The mesh quality parameters obtained 

through the IEDR and LB methodologies show better characteristics, in broad terms, than the 

mesh parameters obtained through the Chp methodology. Specifically, the standard deviation 

of the element error is closer to 0, the maximum error parameter is lower, and the average of 

error parameter is closer to 1 for the IEDR and LB methodologies.  

 
TABLE 8 – PROBLEM 4: MESH PARAMETERS FOR THE h-ADAPTIVE PROCESSES BASED ON THE 

IEDR, LB AND ChP METHODOLOGIES. 

Method  Initial Mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Chp 

 

NDF  

 

ave  

 

 

14.61 

743 

0.72 

4.89 

108.3 

14.30 

3.66 

2779 

0.84 

1.05 

50.95 

3.50 

1.33 

2965 

0.95 

0.77 

14.31 

1.10 

0.81 

3797 

1.07 

0.61 

4.39 

0.66 

0.98 

3007 

1.11 

0.75 

8.57 

0.69 

0.81 

5195 

1.08 

0.53 

3.60 

0.78 

LB 

 

NDF  

 

ave  

 

 

14.61 

743 

0.72 

4.89 

108.3 

14.30 

3.45 

2363 

0.86 

1.10 

44.93 

3.27 

1.37 

2517 

0.91 

0.85 

14.91 

1.09 

1.04 

2289 

1.64 

0.88 

7.20 

0.57 

0.94 

2263 

1.06 

0.88 

4.51 

0.36 

0.87 

2379 

1.07 

0.83 

2.56 

0.31 

IEDR 

 

NDF  

 

ave  

 

 

14.61 

743 

0.72 

4.89 

108.3 

14.30 

3.64 

2789 

0.82 

1.01 

51.7 

3.50 

1.20 

3077 

0.91 

0.70 

14.65 

1.02 

0.91 

2465 

1.02 

0.79 

5.82 

0.49 

0.91 

2319 

1.07 

0.85 

3.79 

0.34 

0.80 

2621 

1.12 

0.75 

4.19 

0.38 

SOURCE: The author (2018). 

 
FIGURE 33 shows an enlarged view of the error distribution near the singularity for 

the first 3 iterations of each h-adaptive process. The figure shows a similar element sizes and 

error distributions near the re-entrant vertex for the LB and IEDR techniques, while the Chp 
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methodology produces a higher number of elements. Also, the IEDR methodology designed 

gradually decreasing element sizes towards the singularity vertex, whereas the Chp 

methodology produced equally small element sizes distributed in the region nearby the vertex. 

The LB methodology designed slightly bigger elements while using a lower number of 

elements, thus requiring another iteration to achieve convergence of 1% error. 
 

FIGURE 33 – PROBLEM 4: ENLARGED VIEW OF ERROR DISTRIBUTION NEAR THE RE-ENTRANT 

VERTEX FOR 3 ITERATIONS OF EACH METHODOLOGY. 

 

 

SOURCE: The author (2018). 
  

Iteration 2, enlarged view 

Iteration 3, enlarged view 

Iteration 1, enlarged view 
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6 FINAL CONSIDERATIONS 

 CONCLUSION 

In this dissertation, the analysis and the numerical implementation of a new element 

design methodology for the h-adaptive mesh refinement process considering approximately 

isotropic elements of quadratic order is studied. The formulation is developed based on the 

IEDR technique previously developed for linear triangular elements in the literature. This 

methodology innovates by recovering an error density function for each element instead of 

using a scalar value. As shown, for Poisson type heat transfer elliptic problems, the 

methodology based on the IEDR remeshing strategy produced meshes, in each iteration, with 

quality parameters comparable to the LB methodology and superior in comparison to the 

commonly used Chp element design methodology. The technique obtained improved results 

by allocating refined elements in regions of the solution with higher change in gradients while 

allocating coarser elements in regions of the solution with lower change in gradients. 

Furthermore, as shown in Problem 3 and 4, the methodology successfully refined linear 

elastic problems. In problem 4, where a stress singularity is present, the mesh required one 

less iteration than the methodology based on the LB remeshing strategy to achieve 

convergence and presented better mesh parameters than the methodology based on the Chp 

element design technique. The results show, in every problem analyzed, that the IEDR 

technique as proposed produces meshes, overall, with superior mesh quality parameters when 

compared to the Chp technique. 

Thus, it can be concluded that the IEDR technique, as seen from the results and 

formulation, addresses the approximate errors, through the recovery of an error density 

function, in such a manner that more information is used to design the new element sizes. 

Also, the developed formulation makes use of an iterative process that estimates the optimal 

number of elements required in the new mesh. Therefore, the methodology tends to achieve 

convergence in less iterations and better mesh quality parameters than the Chp technique. On 

the other hand, for the first 3 problems analyzed, the proposed element design methodology 

obtains meshes similar to those obtained through the LB element design methodology, which 

also predicts the optimal number of elements. Still, for the problems with higher complexity 

such as Problem 4, the IEDR technique achieves convergence with less iterations than the LB 

element design methodology. This indicates that the LB technique tends to smooth the mesh 
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excessively when compared to the IEDR technique, requiring more iterations to accurately 

design fine elements for regions with concentrated high errors, such as regions with 

singularities.  

The IEDR technique obtained meshes with adequate quality parameters for every 

problem analyzed when compared to the other techniques and reached convergence with 3 

iterations for the problem with singularity. These results demonstrate that the IEDR technique 

is as versatile as the LB methodology while obtaining better meshes when compared to the 

Chp technique. Thus, the proposed IEDR methodology for quadratic triangular elements is an 

effective alternative to the commonly used techniques discussed, providing a lower 

computational cost, due to the use of less elements, in obtaining an optimal solution. Also, 

through the recovery of an error density function, the methodology can be used in the 

anisotropic h-adaptive FEM, where elongated elements are designed to accommodate the 

required solution. The use of anisotropic elements has resulted in higher convergence rates 

with a considerably lower number of elements, as shown by Silva (2017). The LB and Chp 

techniques are not able to produce anisotropic meshes. 

The element design methodology developed in this study for the h-adaptive FEM 

using quadratic elements, called IEDR, was based on fundamental concepts of meh adaptivity, 

thus, the technique can be utilized in tridimensional problems as well as elements with 

different geometries. These extensions were not part of the scope of this study. 

 RECOMMENDATIONS 

The current work proposed an extension and evaluation of the IEDR element design 

methodology for quadratic elements. To achieve these goals, a new iterative process of a 

posteriori estimation of the error density function is introduced and results are shown in 

Chapter 5. In this context, some aspects of this methodology can be improved in future 

efforts. Thus, suggestions for future works are:  

I. Extension of the proposed methodology to higher element orders of 

approximation; 

II. Extension of the technique regarding the application of anisotropic elements; 

III. Extension of the methodology to other types of adaptivity processes such as: 

hp-FEM, hr-FEM, multigrid adaptivity and others; 
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IV. Application of the technique in practical engineering problems with high 

complexity, such as, for example, bone remodeling problems, crack growth 

analysis with enriched elements, porous media fluid flow, thermomechanical 

coupled problems and vibration problems. 

V. Undertake a study to assess, specifically, the computational costs related to 

the number of iterations of the adaptive process, the number of elements and 

order of element approximation such that a computational cost function can 

be developed, and an optimization of such function is possible. 
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