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RESUMO
O estudo e análise da liberação de dopamina (DA) no organismo são de grande

importância devido ao fato deste neurotransmissor influenciar diretamente processos como os de

aprendizado e dependência de drogas, além de ter relação com o desenvolvimento de diversas

patologias neurológicas. A técnica de voltametria cíclica de varredura rápida permite o registro

eficiente da liberação de DA fásica, entretanto os experimentos tendem a ter uma alta resolução

temporal, gerando grandes quantidades de dados, resultando em uma análise manual demorada

e repetitiva. O presente trabalho tem por finalidade apresentar e avaliar o desempenho de

um sistema de identificação automática de liberação fásica de dopamina, utilizando diferentes

descritores de características visuais e modelos de redes neurais convolucionais, combinando

diferentes abordagens e classificadores no intuito de aproveitar informações complementares

existentes e gerar melhores resultados. Duas bases de dados contendo imagens de liberação

fásica de dopamina foram geradas, sendo que o melhor classificador desenvolvido obteve uma

acurácia de 98.31% utilizando uma abordagem combinada de redes neurais convolucionais.

Palavras-chave: liberação de dopamina fásica, reconhecimento de padrões, textura, redes neurais

convolucionais.



ABSTRACT
The study and analysis of dopamine (DA) release in the organism are of great importance

due to the fact that this neurotransmitter directly influences processes such as cognition and drug

abuse. It is also related to the physiopathology of some neurological diseases. The fast scan

cyclic voltammetry technique allows efficient recording of the phasic release of DA. However,

due to the high temporal resolution of the technique, the experiments generate large amounts

of data, resulting in a slow and repetitive manual analysis. The present work is intended to

develop and evaluate the performance of an automatic identification system starting from phasic

dopamine release images, using different visual descriptors and convolutional neural network

models, combining different approaches and classifiers searching for complementarity to improve

the system overall performance. Two phasic dopamine release image datasets were created, and

the best developed classifier obtained an accuracy of 98.31% using a combined approach of

convolutional neural networks.

Keywords: phasic dopamine release, pattern recognition, texture, convolutional neural networks.
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Chapter 1

Introduction

The neurotransmitter dopamine (DA) has a key role in the brain and body, participating in the

modulation of functions of movement, behavior, emotion, learning, and memory (Da Cunha et al.,

2012). Abnormal variations in DA levels may be related to some pathologies, such as Parkinson’s

disease and schizophrenia (Da Cunha et al., 2015). Its release at the synaptic terminals can

happen in two distinct ways: phasic, where there is a large amount of short duration release, and

in a tonic form, where the dopamine is released slowly and in low quantity (Grace, 1995).

Effects of behavioral influence, such as decision making, are related to dopamine phasic

release. This kind of release promotes a motivation increase to initiate actions that result in

immediate rewards. Thus, it is also related to stimuli that are naturally rewarding, such as the

abuse of drugs use (Grace, 1995; Wanat et al., 2009).

The use and dependence of drugs like cocaine, amphetamine, nicotine, and alcohol

are serious public health problems. These drugs increase the concentration of extracelular

dopamine in the circuitry known as “reward pathway” by increasing dopamine release and

slowing dopamine reuptake (Wanat et al., 2009). In addition, Phillips et al. (2003) presented

relationships between this phasic release and drug-seeking behavior, which further evidence the

relationship of dopamine to drugs dependence.

An electrochemical method known as fast-scan cyclic voltammetry (FSCV) consists of

applying electrical potentials to microelectrodes, thus inducing oxidation and/or reduction of

molecules like dopamine. This technique allows the data collection of the phasic DA release and

store it in a numerical matrix, which can be processed and transformed in images.

Figure 1.1 shows an image generated from the data collected with FSCV, in which there

is a dopamine release highlighted. This type of image is the visual representation as the raw

data, but using a palette of false colors. Although there are variations in the data matrices and

how to read them depending on the equipment and proprietary software used in the experiments,

researchers usually represent this data in image forms using a standard false color palette. It

facilitates not only the visualization of the information but also the application of powerful

descriptors for the feature extraction and it standardizes all samples.
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Figure 1.1: Example of phasic dopamine release image generated from the data collected with

FSCV. Source: The Author (2019).

1.1 Motivation
Due to the dopamine behavioral impact, the study of the phasic release of this neurotransmitter

becomes extremely important, as well as the need for methods and tools that allow and facilitate

its analysis.

Although the fast-scan cyclic voltammetry stores the data of DA releases, many

experiments have a high temporal resolution and consequently large amounts of data generated.

Thereby, a manual analysis of these results requires a great deal of time, as well as being a

laborious and repetitive task.

Some systems have already been developed to identify substances release such as

transient adenosine in FSCV data (Borman et al., 2017). Nevertheless, as far as we know there

is no similar system to automatically identify phasic dopamine release images using pattern

recognition stages as preprocessing, feature extraction and classification.

1.2 Challenges
Each information collected in the experiments is stored in a matrix represented by the potential

on the y-axis and the cycle (time) on the x-axis. But the identification of the phasic dopamine is

difficult because it has a random nature of release over time and a certain voltage variation.

The nature of these events impacts the identification, being easily visualized when it

is in considerable quantity or simply confused with a noise when it is low. It also results in

release records with different forms and sizes. Noises and artifacts are constant throughout an

experiment recording. Both do not have a pattern of form, quantity, or intensity. In addition to

making it difficult to visualize the releases, they may even be confused with substances.

Finally, since there was no similar dataset available to the community, images with DA

releases were generated, and all labels were made manually for the proposed experiments.
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1.3 Objectives
The main objective of this research was to develop and evaluate the performance of a classification

system capable of identifying the phasic release of dopamine, based on visual characteristics

extracted from images generated with FSCV data. The system explored the use of different

descriptors as well as classifiers.

To achieve this objective, it was necessary to obtain a new dataset with dopamine

release images which, in addition to being adequately labeled, it was preprocessed. Patches were

extracted from the original images, which were explored different parameters. Subsequently, its

features were extracted and, finally, a classifier was used to generate the results. Such results

were also combined with those obtained using other features descriptors before generating a final

decision.

1.4 Contributions
In this dissertation, we proposed an automatic identification of the phasic dopamine release

system. We have successfully obtained great results using different approaches, not only by

classifying images generated from fast-scan cyclic voltammetry recordings, but also by providing

a DA release region. The resulting classifier will facilitate and make more objective the analysis

of data from real experiments using FSCV. In doing so, we also contribute to filling a gap in the

literature.

The datasets created were made available to the scientific community to be used in

future works. The Dataset I was used to exploit patches extraction and texture descriptors, and

was published in 2018 25th International Conference on Systems, Signals and Image Processing

(Matsushita et al., 2018). The Dataset 2 allowed new approaches to be explored, such as the

use of convolutional neural networks. We also mitigated the problem using an object detection

approach. Using a YOLO model we were able to develop an excellent classifier, in which with a

single architecture it was possible to identify and classify phasic dopamine releases.

1.5 Overview
The remainder of this dissertation is organized as follows. The Chapter 2 presents the theoretical

background that supports the work proposal. We present concepts of dopamine and the fast-scan

cyclic voltammetry. As well as concept and stages of pattern recognition, highlighting different

representations and classification. In Chapter 3 we review the state-of-the-art of using FSCV to

analyse diverse substances, and texture descriptors and convolutional neural networks applied in

several domains. In Chapter 4 we present our methodology for automatic identification of phasic

dopamine release, and in Chapter 5 we present the results obtained using different approaches.

The final considerations and future works are presented in Chapter 6.
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Chapter 2

Theoretical Background

To make this document self-contained, this chapter reviews the theoretical foundations that

support the work proposal. First we present the basic concepts of dopamine and the fast-scan

cyclic voltammetry. In sequence, the concept and stages of pattern recognition are reviewed,

highlighting the representations and classification.

2.1 Dopamine
The neurotransmitter dopamine (DA; 3,4-dihydroxyphenethylamine), as well as epinephrine and

norepinephrine, is a biogenic amine from the catecholamines group (Jackowska and Krysinski,

2013). These neurotransmitters synthesis occurs from the amino acid tyrosine (S)-2-amino-3-

(4-hydroxyphenyl)-propanoic acid, which through the enzymatic action of tyrosine hydroxylase

(TH), will convert tyrosine into L-DOPA (L-3-4-dihydroxyphenylalanine). So, the L-DOPA is

converted to DA by the enzyme DOPA decarboxylase (DDC).

The DA is transported to synaptic vesicles by the vesicular dopamine transporter

(VMAT) and released by exocytosis when the synaptic terminal is depolarized (Jones et al.,

2014). This release may occur in Tonic or Phasic way. The amount of neurotransmitter that will

be released depends on the intensity of the stimulus, and also its predictive capacity and the

salience associated (Grace, 1995).

The Tonic release occurs when dopaminergic fibers exhibit a low frequency of action

potentials that result in the release of small amounts of dopamine continuously. The Phasic

release occurs when dopaminergic fibers exhibit high frequencies of short-acting action potentials,

resulting in a large increase in short-acting dopamine synaptic concentration (Robinson et al.,

2009). Each of these is responsible for distinct types of behaviors, because, depending on the

concentration of DA, distinct neural pathways can be activated (Grace, 1995). To study these

release processes of DA, there are techniques to monitor the extracellular concentration of this

neurotransmitter such as microdialysis and fast-scan cyclic voltammetry (FSCV).

The microdialysis provides a good chemical selectivity, however, it has a poor temporal

resolution of the order of minutes to hours and it is more adequate to observe tonic dopamine

release (Robinson et al., 2009). The FSCV performs a high temporal resolution sampling, tenths

of second. Fast-scan cyclic voltammetry is more adequate to phasic dopamine release, and it is

also used for real-time observations associated with behavior studies.
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2.2 Fast-Scan Cyclic Voltammetry
The fast-scan cyclic voltammetry is an electrochemical detection technique. The current generated

by the electrons that dopamine donate to or get from the electrode is proportional to the dopamine

concentration. FSCV is able to measure variations in dopamine concentration with high temporal

and spatial resolution (Yorgason et al., 2011). Therefore, it provides information about how fast

dopamine is released from and reuptaked to synaptic terminals, which is very important to study

effects of drugs of abuse (Gomez-A et al., 2017; Fawaz et al., 2009).

In the FSCV, a potentiostat is used to pass a voltage ramp rapidly through a carbon fiber

electrode measuring the current. During this voltage ramp, nearby electroactive chemical species,

such as dopamine, adenosine or monoamines, are oxidized and/or reduced resulting in alterations

in current amplitude. This amplitude is proportional to the concentration of the species (Swamy

and Venton, 2006).

The current read also is referred to as a voltammogram that is collected and compared

across time to verify changes in concentrations of electroactive chemical species. The voltammetry

has a high temporal resolution and it is an ideal technique for measuring rapid presynaptic

signaling events in the brain. The measure of the DA release and transporter activity in limbic

brain regions is a common application of voltammetry (Yorgason et al., 2011).

All informations are stored in a numerical matrix, and each information collected in the

experiments is represented by the applied potential on the y-axis, the x-axis is the cycle (time),

and the color is current. The colors are based on a false color palette agreed by researchers and

used by FSCV analysis softwares.

2.3 Pattern Recognition
In pattern recognition the classification task can be understood as the assignment of a class to a

feature vector, extracted from a sample to be classified, that is called pattern. Generally in this

type of problem the patterns received are organized into a predefined number of classes with

supervised learning, in which the input and the desired output data are provided. Each sample

is a pair consisting of an input feature vector and a desired output class. An optimal scenario

will allow the correct classification for unseen instances. However, there are cases in which the

available attributes to characterize the samples do not obviously differentiate each class.

Classic examples in the application of pattern recognition are: writing recognition,

fingerprint recognition, speech recognition and face recognition. The classical approach to the

development of pattern recognition systems foresees three well-defined steps: preprocessing,

feature extraction and classification (Duda et al., 2012). These steps are represented in the Figure

2.1.

The initial step of sample preparation usually applies segmentation trying to isolate

parts of interest. In addition, filtering tasks such as noise reduction are part of the preprocessing

stage. In many cases, in the feature extraction stage we extract features of visual attributes such

as texture and color. Finally, classification algorithms are used on the extracted descriptors in

order to assign a class to each standard submitted to the system.

2.4 Representation
The representation or feature extraction stage is quite important in the development of pattern

recognition systems. Among the visual features as well as shapes and colors, the texture is
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Figure 2.1: Pattern recognition system steps. Source: The Author (2019).

perceived easily by a person, contributing to the identification of objects in a given scene. Texture

corresponds to a visual pattern which is usually related to the pixel distribution in a region and

properties of the image object such as color, brightness, and size. Thus, this attribute contains

significant information about the content of the image, being much explored in applications of

computer vision. According to Gonzalez and Woods (2010), the texture may be a set of statistical

features or other local image properties that are constant, periodic or with little variation.

2.4.1 Local Binary Pattern (LBP)
A widely used texture descriptor is the Local Binary Pattern, which has been used in several

application domains: face recognition (Ahonen et al., 2006), musical genre recognition (Costa

et al., 2012), handwriting identification (Bertolini et al., 2013) and classification of bird species

(Zottesso et al., 2016).

Originally used as a complementary descriptor for local image contrast, the LBP was

adapted and has become a good structural approach to texture (Ojala et al., 2002). Certain local

binary pattern to a pixel neighborhood are considered fundamental image texture properties and

the histogram of occurrence of these characteristics is used as features.

According to Ojala et al. (2002), the LBP operates on an image pixel and its adjacent

ones to find a histogram of local binary pattern. To be able to operate textures of different

scales, it can create patterns establishing different quantities of neighbors for its operation. Such

variations are identified by LBPP,R in which P is the number of neighboring pixels existing in a

region of radius R around the central pixel C (Figure 2.2).

The LBP values are computed by comparing the intensity of the central pixel with its

neighbors. According to Mäenpää (2003), the LBP works as a threshold where the value 1 is

taken if the neighbor intensity is equal to or higher than C, otherwise the value is 0. Then, these

values are multiplied by weights of neighboring pixels, which correspond to powers of two with

exponent equal to their order number in the neighbors sequence, the first one being equal to zero.

Finally, the central pixel is assigned the sum of this calculation.

The total of LBP features calculated depends on the variation of adjacent pixels in

relation to the central one. For example, in LBP8,2 there are 28 possible patterns. However not

all patterns need to be used as distinct feature. There is a concept of uniformity for the local

binary patterns, which is based on the number of transitions between one and zero present in

the sequence associated with the pattern. A binary code is considered uniform if the number of

transitions is less than or equal to two, and the code is treated as a circular list.
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Figure 2.2: Central pixel C with P neighboring ones. Source: The Author (2019).

Thus it is possible to use values associated with uniform patterns generating a smaller

vector. Ojala et al. (2002) established a histogram composed of 58 possible uniform combinations,

in addition to all nonuniform patterns found in an additional vector position. These 59

characteristics can be obtained using the LBP which uses 8 neighbors and a value of R equal to 2

(Figure 2.3), instead of 28 patterns.

Figure 2.3: Example of a neighborhood with LBP8,2. Source: The Author (2019).

2.4.2 Local Phase Quantization (LPQ)
Originally developed to identify the texture in blurred images (Ojansivu and Heikkilä, 2008), the

Local Phase Quantization has shown good performance in both blurred and clear images. This

descriptor is based on blur invariance property and uses the extracted local phase information

using the 2D Discrete Fourier Transform (DFT) computed on a rectangular neighborhood, that is

a local window for each pixel of the image.
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The local phase information of an image of size N × N is given by the Short-Time

Fourier Transform (STFT) presented in Equation 2.1.

f̂ui (x) = ( f × φui )x (2.1)

in which the filter φui is result of the Equation 2.2.

φui = e− j2πuTi |y ∈ Z2 | |y | |∞ ≤ r (2.2)

where r = (m − 1)/2 is the size of the window and ui is a 2D frequencies vector.

This descriptor considers only four complex coefficients that correspond to the 2D

frequencies: u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , u1 = [a,−a]T , where a = 1/m. The STFT is

expressed through the notation vector according to Equation 2.3.

f̂ui (x) = wT
ui f (x) (2.3)

F = [ f (x1), f (x2), · · · , f (xx2)] is denoted as a matrix m2 × N2 which comprises

neighborhood of all pixels of the image and w = [wR,wI], where wR = Re[Wu1,Wu2,Wu3,Wu4]
and wI = Im[Wu1,Wu2,Wu3,Wu4].

The Re and Im represent respectively the real and imaginary parts of a complex number,

and the transformation matrix (8 × N2) is given by F̂ = wF.

According to Ojansivu and Heikkilä (2008), the function f (x) is a result of the first order

Markov process. The coefficient of correlation between two pixels xi and xj is exponentially

related to its distance L2. A covariance matrix C of size m2 × m2 is defined for the vector f ,

according to the Equation 2.4.

This covariance matrix of the coefficients is obtained by DwCwT . D is not a diagonal

matrix, the coefficients are correlated and may be no longer through E = CT F̂, where V is an

orthogonal matrix derived from the singular value decomposition (SVD) of matrix D, with

D′ = VT DV .

Ci, j = σ
| |xi−xj | | (2.4)

The Equation 2.5 shows how the coefficients are quantized, where ei j are components

of E .

qi j =

{
1 if ei j ≥ 0

0 otherwise
(2.5)

Finally such binary elements are transformed to decimal (Equation 2.6), comprising

integer values between 0 and 255. Thus the LPQ histogram is composed of the vector of 256

positions, which represents all the positions of the input image.

bj =

7∑
i=0

qi j2
i (2.6)

2.5 Representation Learning
A classification system performance is heavily dependent on the choice of data representation or

features used. And the inability to extract and organize discriminative informations from the data

impacts poor results that can be obtained (Bengio et al., 2013).
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Automatic learning representation can make it easier to extract important information to

build a classification system. Among the ways of learning representations there are the deep

learning methods, like convolutional neural networks (CNN).

A convolutional neural network is a variation of a multi-layer perceptrons network and

consists of layers with different functions. Figure 2.4 shows an example of a CNN and the number

of each layer can vary from network to network. Initially it is common to apply the data to input

layers known as convolutional layers (Vargas, 2016). These layers are composed of neurons, and

each neuron is responsible for applying a trainable filter to a specific image area. Basically a

neuron is being connected to a set of pixels of the previous layer and for each connections is

applied a weight. The respective weights of its connections, produces an output passed to the

next layer. The weights assigned to the connections of a neuron can be interpreted as a matrix

representing the filter of a convolution of images in the spatial domain (kernel). The weights are

shared across neurons from a same layer, leading the filters to learn patterns which occur in any

part of the image.

Figure 2.4: Example of a convolutional neural network layers. Source: The Author (2019).

In the CNN convolutional layers, it is not necessary to specify which filters or features

to be used. It is defined only the architecture of the filters: sizes, stride and quantity per layer.

The learning process of the network changes the weights throughout the training, searching

automatically for the best values for the input dataset.

A very important layer commonly used after the convolutions is the pooling layer. The

function of this layer is to reduce the dimensionality of the data in the network. This reduction is

important for training faster, but also to create spatial invariance. The pooling layer only reduces

the height and width of a map.

When it is desired to perform a classification, it is appended after the set of the

convolutional and pooling layers at least one fully-connected layer. This fully-connected layer is

responsible for tracing a decision path to each class based on results of the filters from previous

layers.

After the fully-connected layer the last step is the classification function. It is fundamental

in training, since it influences the learning of the filters and consequently the result of the network.

However, it is not necessary to classify the input dataset using only CNN, it is possible to use the

features extracted using representation learning with another classification algorithm.

There is also the transfer learning approach, which can assist in tasks with a small

number of input images to train and learn parameters. A CNN often contains a huge number of

parameters, which is necessary a huge number of images for training. Even a direct learning using

thousands examples is problematic, thus a transfer learning can use the internal representation

learned from another task, and re-use it to extract features from a new target problem.
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Figure 2.5 shows an example of transfer learning based on the Oquab et al. (2014)

proposal. A CNN is trained in the source task, using its images. The parameters learned are

transfered to the target task, except for the last layer. The target task contains a smaller dataset

and to compensate the different images distribution, two additional fully-connected layers are

added at the end of the network, training it by using the target dataset and then classifying it.

Figure 2.5: Example of transfer learning. Source: The Author (2019).

2.5.1 Inception
Inception is a deep convolutional neural network architecture with a design that allows increasing

the depth and also the width of the network, while keep the computational cost constant (Szegedy

et al., 2015).

Images from a same class may have huge variation in the location and size of the

information. Choosing the best kernel size for the convolution is not so easy. So the Inception

uses multiple sizes filters operating on the same level.

The Figure 2.6 shows the inception modules. The naïve module performs convolution

on an input using 3 different sizes of filters: 1 × 1, 3 × 3, 5 × 5. Max pooling is also performed

and the results are concatenated before the next module. But even a few number of 5 × 5 is

computationally expensive. Szegedy et al. (2015) added an extra 1 × 1 convolution before the

3 × 3 and 5 × 5 convolutions to limit the number of input channels.

Thus, an Inception is a neural network consisted of inception modules stacked upon

each other, with occasional max-pooling layers to reduce the resolution of the grid. Using this

dimension reduced inception module, a neural network known as GoogLeNet (Inception v1) was

built.

Through Inception v2 and v3, several improvements were applied in the network model

(Szegedy et al., 2016), such as smart factorization methods. A filter n × n can be factored into a
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Figure 2.6: Inception module. Source: Szegedy et al. (2015).

combination of 1 × n and n × 1 convolutions to improve computational speed. Szegedy et al.

(2016) also altered the auxiliary classifiers, which contribute more near the end of the training

step. The Inception v3 network model can be seen in Figure 2.7.

Figure 2.7: Overview of Inception v3 network model. Source: The Author (2019).

2.5.2 You Only Look Once (YOLO)
YOLO is an accurate and fast approach to object detection (Redmon and Farhadi, 2017). A

single neural network evaluation predicts bounding boxes and class probabilities directly from

full images (Figure 2.8). You Only Look Once (YOLO) at a sample to predict the classes and

their locations (Redmon et al., 2016).

Figure 2.8: The YOLO Detection System. Source: Redmon et al. (2016).

The YOLO model initially divides the input sample into an S × S grid (Figure 2.9).

Each grid cell predicts a fixed number bounding boxes. If the center of an object falls into the

cell, it is responsible for predicting that object.
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Each cell predicts B bounding boxes and each box has a confidence score. This score

shows how confident the YOLO is that there is an object in the box and how accurate it is

(Redmon et al., 2016). The confidence score should be zero if there is no object in that grid cell.

Each bounding box also consists of: (x, y, w, h). The box width w and height h are

normalize, x and y are offsets to the corresponding cell. x, y, w, h are between 0 and 1. Each

cell also predicts C conditional class probabilities. And it is the probability that the detected

object belongs to a specific class. All these predictions are encoded as an (S, S, B×5+C) tensor.

YOLOv1 predicted the bounding boxes using fully-connected layers, which were

removed since its second version and know uses anchor boxes. So instead of directly predicting a

bounding box, YOLOv2 and v3 predict offsets from a predetermined set of predetermined boxes.

Figure 2.9: The model detection. Source: Redmon et al. (2016).

The YOLOv3 network for performing feature extraction uses successive 3 × 3 and 1

convolutional layers (Redmon and Farhadi, 2018). The model is significantly larger than other

versions (v1, v2, fast and tiny) with 53 convolutional layers, as shown in Table 2.1
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Table 2.1: YOLOv3 model (Darknet-53)

Type Filter Size Output

Convolutional 32 3 × 3 256 × 256

Convolutional 64 3 × 3 / 2 128 × 128

Convolutional 32 1 × 1

Convolutional 64 3 × 3 x1

Residual 128 × 128

Convolutional 128 3 × 3 / 2 64 × 64

Convolutional 64 1 × 1

Convolutional 128 3 × 3 x2

Residual 64 × 64

Convolutional 256 3 × 3 / 2 32 × 32

Convolutional 128 1 × 1

Convolutional 256 3 × 3 x8

Residual 32 × 32

Convolutional 512 3 × 3 / 2 16 × 16

Convolutional 256 1 × 1

Convolutional 512 3 × 3 x8

Residual 16 × 16

Convolutional 1024 3 × 3 / 2 8 × 8

Convolutional 512 1 × 1

Convolutional 1024 3 × 3 x4

Residual 8 × 8

AvgPool Global

Fully-Connected 1000

Softmax

2.6 Classification
The support vector machine (SVM) is a set of supervised learning techniques able to analyze

data, recognize patterns and classify them. This classifier, introduced by Vapnik (1995), has been

widely used with success. It has presenting competitive results in the most diverse applications,

such as classification of bird species (Zottesso et al., 2016), music genre recognition (Costa et al.,

2011) and identification of handwriting (Bertolini et al., 2013).

The standard SVM is defined as a non-probabilistic binary linear classifier, that has as

input a set of data, and is able to predict for each input, which of the possible classes it is part of.

Initially, with a training algorithm and set of examples already defined to which category each

belongs, the SVM constructs a model that assigns the new examples to one category or another.

2.6.1 Classifiers Combination
When the classifiers outputs present for each sample an estimate of probability for each class

in the classification system, it is possible to perform a combination of classifiers. Kittler et al.

(1998) proposed some merging rules to combine the predictions of different classifiers. Among

these rules we have:
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• Maximum: among all classifiers, the class with the highest prediction score is chosen.

• Average: it calculates the mean between the prediction values of each class present in all

classifiers, and chooses the class with the highest average.

• Sum: it sums all the predictions values of each class in all classifiers, and chooses the class

with the highest final value.

• Product: similar to the Sum Rule, but it calculates the product of the values instead of

adding up.

2.7 Evaluation Measures
An automatic classification system should be evaluated on the basis of evaluation measures.

Accuracy is one of the most common measures used in several areas, in which it is measured

how efficient the system is from the point of view of classification. It is basically the percentage

of final score that the system obtained taking into account the total number of correctly classified

samples, and the total number of samples classified (correct or not). Other criteria commonly

used in evaluating the efficiency of a system are Precision, Recall, and F-measure.

• Precision: It is the result of the number of True Positives (Tp) samples over the number of

True Positives plus the number of False Positives (Fp). If the classification system contains

a large number of False Positives (Fp), the precision decreases. Its formula is expressed by

Equation 2.7.

Precision =
Tp

Tp + Fp
(2.7)

• Recall: It is the result of the number of True Positives (Tp) samples over the number of True

Positives plus the number of False Negatives (Fn). If the classification system contains a

large number of False Negatives (Fn), the precision decreases. Its formula is expressed by

Equation 2.8.

Recall =
Tp

Tp + Fn
(2.8)

• F-measure or F-score: It is defined as the harmonic mean of Precision and Recall. Its

formula is expressed by Equation 2.9.

F − measure =
2 × Precision × Recall

Precision + Recall
(2.9)
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2.8 Receiver Operating Characteristic Curve
The performance of a binary classifier can be evaluated using a graphical plot called Receiver

Operating Characteristic (ROC) curve (Metz, 1978). By plotting the true positive rate (TPR)

against the false positive rate (FPR) at different threshold settings, it is possible to generate a

ROC curve.

Figure 2.10 shows an ROC space, which is defined by TPR as y-axis and FPR as x-axis.

The diagonal line represents a test with no discriminating ability (DeLong et al., 1988), which is

the same as guess a class by flipping coins.

Points below the diagonal represent worse results than a random classifier. Points above

it represent better classifications. The ideal point is (0,1). And the closer an ROC curve comes to

it, the better its discriminating.

Figure 2.10: Example of ROC space. Source: The Author (2019).
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Chapter 3

State-of-the-Art

The identification and analysis of dopamine release is a well-known and studied problem in the

area of neuroscience and medicine (Da Cunha et al., 2012, 2015; Grace, 1995). However, when

we are dealing specifically with systems in the computer science area, such as pattern recognition

systems, we have an original problem to be explored and tested. To the best of our knowledge, no

similar work has been found in the literature on automatic identification of images with phasic

dopamine release, generated from data obtained by FSCV.

Borman et al. (2017) presented an algorithm for detection of transient adenosine release.

However, an analysis of current (nA) data is performed at two specific voltages (1.4 V and 1.0

V) which are well-defined parameters for the oxidation of this substance. No features of visual

image information are extracted. In this case, it is verified peak moments at these two points and,

once they matched the proposed rules, an adenosine release is identified. The rules are based

on the fact that a peak must be present at both oxidation voltages, the secondary peak (1.0 V)

must lag the primary one (1.4 V), the ratio of secondary to primary peak currents must be in an

acceptable range consistent with adenosine, and the duration of secondary peak must be longer

than the primary one. The f-measure obtained with this system had a mean of 90%, being tested

in four different datasets.

Yorgason et al. (2011) created a Demon Voltammetry and Analysis software suit, which is

compatible with existing hardware and is capable of detecting and quantifying electrically evoked

DA release and uptake. It has been developed for data collection, analysis, and figure making.

This software also contains stimulation settings for performing pulse and burst stimulations. The

analysis tools contains features for examining data and figure making that allows for creation of

publication quality figures which can be exported. They also used it to compare the sensitivity of

multiple kinetic measures of release and uptake to cocaine-induced alterations in electrically

evoked dopamine.

Nguyen and Venton (2015) presented how FSCV can be used to adenosine release

detection, and also compared this technique with others used to measure adenosine. The

other methods are: Microdialysis which is one of the most general techniques for monitoring

neurochemical changes; Electrophysiology studies monitor the firing of neurons and can be

used to examine the effects of adenosine release; and Amperometric Biosensors that directly

measure adenosine at platinum electrodes coated with enzymes. They concluded there are several

advantages using fast-scan cyclic voltammetry and it is the best method for measuring rapid

changes. The carbor-fiber FSCV microelectrode is the small size of the electrodes, which are less

invasive than microdialysis probes, and are also cheap and easy to make compared to biosensors.

But the biggest advantage is the time resolution of the measurements, which is the fastest method
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for measures. Biosensors take too long to respond to a change in adenosine and thus are not fast

enough to respond to all changes in spontaneous adenosine releases.

Cyclic Voltammetry is not only used to analyze dopamine or adenosine. It is widely used

to analyze the most diverse substances. Park et al. (2014) examined zirconium electrochemical

redox behaviors based on cyclic voltammetry results. Masek et al. (2014) investigated using

cyclic and differential pulse voltammetry the process and the kinetics of the electrochemical

oxidation of morin in an anhydrous electrolyte. Kumar et al. (2016) examined therapeutic

potential of selective serotonin and norepinephrine reuptake inhibitor in an animal model of

comorbidity between epilepsy, depression- and impulsive-like behavior, using FSCV to measure

the strength of serotonergic and noradrenergic tones.

Many advances have occurred in the area of pattern recognition, which addresses the

classification of items according to certain classes, or categories provided in a domain of a problem

(Duda et al., 2012). Despite the lack of equivalent publications on automatic identification of

dopamine images, recognition techniques involving preprocessing, feature extraction and the

elaboration of a classification system, have been successfully applied in recognition tasks in the

most diverse domains. Cavalin and Oliveira (2017) presented a survey of texture classification

methods, which were already applied in writer identification (Bertolini et al., 2013), forest species

classification (Tou et al., 2007; Nasirzadeh et al., 2010), medical diagnosis (Sutton and Hall,

1972; Harms et al., 1985; Khademi and Krishnan, 2008), geo-processing (Haralick et al., 1973)

and agriculture (Jhuria et al., 2013; Pujari et al., 2015).

Haralick et al. (1973) used texture features for classification of photomicrograph (five

kinds of sandstones), aerial photograph (eight land-use categories) and satellite images (eight

land-use categories). In this paper the features were based on gray-level spatial-dependence

matrices, also known as gray-level co-occurrence matrices (GLCM), which were extracted from

these three different datasets. Each dataset was divided into two parts: a training and a testing set.

The best accuracy was 89% for the photomicrographs images, 82% for the aerial photographic

images, and 83% for the satellite images. They also concluded that the texture features probably

have a general applicability for a wide variety of images classification.

Cavalin et al. (2013) investigated the extraction of multiple feature vectors based on

image segmentation and multiple feature sets. Texture descriptors as gray-level co-occurrence

matrix (GLCM), local binary patterns (LBP) and linear phase quantization (LPQ) were used to

extract features from a 112 species database containing microscopic images of wood. Support

vector machines (SVM) were used for training and testing, and the results demonstrated that the

proposed approach increased the recognition rates. The best recognition rate was 93.2% as a

result of LPQ and GLCM features combined.

Bertolini et al. (2013) showed a classification scheme based on dissimilarity representa-

tion, in which were used texture descriptors to perform a writer identification and verification.

Two different databases were used: BFL database which is composed of 315 writers and a total of

945 images; and IAM database with a total of 650 different writers. Their experiments using LBP

and LPQ features, and SVM as classifier were able to surpass previous results in the literature,

and the best accuracies were using LPQ features: 96.7% on the BFL database and 99.2% on the

IAM database.

Pujari et al. (2015) presented different image processing techniques used to identify and

classify fungal diseases which affect different agriculture and horticulture crops. They focused on

visual symptoms and extracted features from fungal disease in plants images. The datasets used

were composed of different crops, for example: fruit, vegetable and commercial crops images.

And for each one was used a different approach. The identification of fruit crops disease was

performed extracting features as block-wise, GLCM and gray-level run-length matrix (GLRLM).
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And to classify these images into normal or severely, moderately and partially affected, the

nearest neighbor (NN) classifier was used considering the Euclidean distance. The accuracies

with block-wise, GLCM and GLRM features were respectively: 94.08%, 91.37% and 86.71%.

The identification of fungal disease affected on vegetable crops was performed extracting local

binary patterns (LBP) features and classifying them using a proposed neuro-kNN, which reached

the accuracy of 91.54%. Using discrete wavelet transform (DWT) features and a probabilistic

neural network (PNN) classifier, the identification on commercial crops dataset accuracy was

86.58%.

Lucio and Costa (2015) presented a bird species identification approach using sounds,

but not using acoustic features. The classification system was based on textural features of

spectrogram images. The dataset used was composed of 2814 audio samples of 46 different

species, which were converted to spectrogram. From those images, features were extracted using

local binary patterns (LBP), local phase quantization (LPQ) and Gabor filters. The classification

step was also performed using SVM and the best f-measures obtained were: 76.39%, 69.09%

and 75.67% for LBP, LPQ and Gabor filters features respectively.

In addition to all the researches using texture descriptors and SVM, since the first works

introducing convolutional neural networks (LeCun et al., 1989), it has also been applied in

several domains. Character recognition which is a problem well known in the literature was

investigated by LeCun et al. (1998). They applied deep neural network to a handwritten digit

database known as MNIST. There were also work using convolutional networks for traffic sign

recognition (Sermanet and LeCun, 2011) and real-world house numbers classification (Sermanet

et al., 2012).

Until Krizhevsky et al. (2012) achieved a significantly higher accuracy using CNN on

ImageNet dataset, winning the ILSVRC 2012 competition. And since then, the researches just

show more and more advance on convolutional neural networks over other classification methods

in the most varied databases.

Redmon et al. (2016) presented a unified architecture model for real-time object detection,

called YOLO. It runs a single convolutional network on the input image, identifying objects and

classifying them. This approach has been highlighted in several applications, such as the vehicle

detection and classification presented by Zhou et al. (2016). Laroca et al. (2018) developed a

real-time automatic license plate recognition system based on the YOLO detector and Severo

et al. (2018) published an iris location study also using a fine-tuned YOLO model.

During this chapter several works were presented, which using texture descriptors or

CNN were able to obtain excellent results in different domains. However, when we analyzed the

works using FSCV, a gap was found to be explored. No similar work was found in the literature

on automatic identification of DA using these images, nor any public dataset to be used for the

development of this dissertation.
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Chapter 4

Methodology

This chapter describes the techniques, datasets, and parameters used for the creation of the

proposed classification system. From a high-level, the process follows the classic steps presented

by Duda et al. (2012) and it was explored three mainly approaches: training and testing with

original images; training and testing with extracted image patches; and a combined approach.

4.1 Datasets
Fast-scan cyclic voltammograms (FSCV) color plot images were obtained from the Laboratory

of Central Nervous System of the Federal University of Parana (UFPR) at Curitiba, Brazil and

from D. Robinson’s Laboratory of the University of North Carolina (UNC) at Chapel Hill, United

States of America. Each rat was anesthetized with urethane and mounted in a stereotaxic frame.

A scalpel was used to make a midline incision exposing the skull bone surface, and a stainless

steel burr was used to drill two circular opening above the nucleus accumbens (NAc) and ventral

tegmental area (VTA), respectively. A recording carbon fiber electrode was inserted in the NAc

and an stainless steel electrode was inserted into the VTA. Another hole was opened above the

contralateral frontal cortex to insert an Ag/AgCl- reference electrode just below the dura mater.

Dopamine release was evoked by electrical stimulation of the ventral tegmental area

(20 pulses, 0.5 ms per pulse). FSCV measurements were taken with a Wireless Instantaneous

Neurotransmitter Concentration Sensor system (WINCS, Mayo Clinic, Rochester, Minnesota,

USA) and processed with WINCSware with MINCS software (version 2.10.4, Mayo Clinic,

Rochester, MN, USA). Every 100 ms, a triangular wave form potential of -0.4V to +1.3V to

-0.4V was applied at a rate of 300 V/s to the carbon-fiber recording electrode versus the Ag/AgCl-

reference electrode. Oxidative and reductive currents were continuously sampled at 100,000

samples/s and 944 samples/scan.

The images were generated from 30 different experimental records with a total of 1005

electrically evoked dopamine release, resulting in two datasets. Each record has dopamine release

evoked with different magnitude of electrical stimulation (200-600 μA, 50-60 Hz).

After recordings, the rats were decapitated and their brains were removed for histology.

All procedures were in accordance with National Institutes of Health Guide for the Care and Use of

Laboratory Animals and approved by institutional ethics committees for animal experimentation.

4.1.1 Dataset I
The first dataset of cyclic voltammogram images (Matsushita et al., 2018) was obtained exclusively

from the Laboratory of the Central Nervous System of the Federal University of Parana (UFPR).
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This initial dataset consists of 9 different experimental recordings with a total of 285 phasic

DA releases, which was processed and transformed into images with resolution of 1200 × 900

pixels. Each record has releases with different concentration, that results in images with different

intensities and sizes of these events.

Taking into account that the phasic dopamine has a random nature of release over time

and a certain potential (voltage) variation, these moments were labeled manually and with this

information it was possible to classify them. These labels saved in text files contain information

of the approximated x-axis release interval and release peak of each image. They also contain

information from which experimental recording the image belongs to and the original recording

cycle (time) from which it was extracted. Figure 4.1 shows red lines plotting this release interval

labeled.

Figure 4.1: Example of DA release interval highlighted by red lines. Source: Matsushita et al.

(2018).

Image patches with size of 100 × 100, 120 × 120 and 150 × 150 pixels were manually

created using the release moments labeled information. The central column (x-axis) of these

patches were based on the release peak. Despite of the voltage variation it was possible notice a

common area in all images, which is approximated between the pixel 515 and 615 of the y-axis.

This area was used to set the height of the patch, that can be increased or decreased proportionally

depending on the resolution used.

Peaks can be observed by green lines in the Figure 4.2, while the common release region

is limited by red ones.

Aiming at a balanced dataset, 285 random patches of areas without dopamine release

were extracted, but they keep using the common area to delimit the height. The 570 images

patches of the two classes were randomly divided into 3 folds with 190 images each (95 DA

release and 95 Non-release). These manually extracted patches folds constitutes the training

dataset.

Also a testing dataset was created using automatic image patches extraction, that is

closer to real life situation. A 120 × 120 sliding window was applied over the entire images,
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Figure 4.2: Peaks (highlighted by green lines) and common dopamine release region (limited by

red lines). Source: Matsushita et al. (2018).

moving horizontally from 60 to 60 pixel inside the common area. Since the labeled information

contains the approximated release interval, it was possible to separate them into two classes:

(1) phasic DA release patches, and (2) non-release patches. Figure 4.3 shows an example of

automatically extracted patches.

Figure 4.3: Example of a sliding window applied over the common region, extracting dopamine

release patches and non-release patches. Source: The Author (2019).

The automatic patches were divided into 3 folds as well. It is important to note that the

image distribution were the same as the manual one, but now with more than one patch extracted

from each original image. Patches from the same image are in the same fold, ensuring there were

no different training and testing folds with samples from the same source.

Since a complete experiment has more recording time with no dopamine release, more

912 samples from 48 images without DA complemented this dataset, 304 for each fold. And for

the use of texture descriptors, all images were converted to grayscale.

4.1.2 Dataset II
The second version of the dataset is composed of images generated from all the 30 experimental

records obtained from the Laboratory of Central Nervous System of the Federal University of

Parana (UFPR) and from D. Robinson’s Laboratory of the University of North Carolina (UNC),

including those in Dataset I. Unlike the first version, this one has not only phasic dopamine

release images, but also full images with no DA release. In total there are 2010 images, 1005 of

each of these classes, with resolution of 875 × 656 pixels. Despite the resolution difference, the

images on both datasets represent a 20 seconds recording.

During the generation of these FSCV images, it is common to use a background

subtraction before applying a fake color palette. Normally for each image, one column is selected
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to subtract the values from the others. In the case of the first dataset, this process was done

manually during its generation. In the dataset II, this process is done automatically, choosing

3 different background positions: the Background A was selected from the beginning of each

image (0.5 seconds), the Background B from the middle of each image (10 seconds), and the

Background C from the end of each image (19.5 seconds).

These images with different background end up generating different results, as it is

possible to be observed in Figure 4.4. Thus it is possible to explore different approaches of

training and testing, since for each DA release 3 images were generated.

Figure 4.4: Images generated using different background positions. In A, the background position

was selected from the beginning of the image; In B, the background position was selected from

the middle of the image; In C, the background position was selected from the end of the image.

Source: The Author (2019).

Like the first version, it also has a common region now between the pixel 320 and 520

of the y-axis. And all processes from labeling to patches extraction have also been applied to this

dataset. The patches size used was 200 × 200 and all images were divided into 3 folds as well.

The sliding window was applied over the images, moving horizontally from 135 to 135 pixel

inside the common area.

4.2 Image Patches Approach
The first approach used only the extracted image patches and it is illustrated in Figure 4.5: texture

descriptors were applied over the labeled image patches to extract features, then the classification

step was performed using the manually extracted patches features as training model and the

automatically extracted ones as testing. It was also performed tests using convolutional neural

networks replacing these two steps. Each sample was classified as Phasic Dopamine Release

(Class 1) or Non-Release (Class 2), and an evaluation metric will be applied to calculate the

accuracy and f-measure.

4.2.1 Texture Descriptors
The feature extraction was performed using texture descriptors presented in Chapter 2.4 with

grayscale input images. LBP8,2 was applied considering only the so-called uniform patterns,

which produces a histogram of 59 values as a feature vector. It was also tested a variant of LBP

with the same parameters, known as Robust Local Binary Pattern (RLBP) (Chen et al., 2013),

that was proposed to be more robust in noisy images. The LPQ generates a vector with 256

characteristics and was applied using different window sizes in order to find the best one.
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Figure 4.5: An overview of the image patches approach. Source: Matsushita et al. (2018).

4.2.2 Classification
Different classifiers were used in the experiments, but the best results were always obtained using

Support Vector Machines. Thus, the classification was performed according to the Chapter 2.6,

using SVM with RBF (radial basis function) kernel, and parameters C and gamma optimized by

grid-search. The SVM implementation used was proposed by Chang and Lin (2011) and it is

known as LIBSVM.

It was used a cross-validation, and when one among the 3 folds was used as testing set,

the other two were used as training set. Thus, it is guaranteed that no classified sample were

used in the training. All extracted patches experiments were performed using manual extracted

patches as training set, which has the same number of samples for both classes.

4.2.2.1 Early and Late Fusion

The use of SVM generates as a result an estimate of probability for each class existing in the

classification system. When we extract different features and classify with support vector machine,

this resulting predictions can be combined before having a final decision, as can be seen in the

Figure 4.6. The identified patterns, even if incorrectly and using the same classifier, do not

necessarily overlap. Thus, for some cases combinations of classifiers predictions were performed,

and it is called Late Fusion. The merging rules used are: Maximum, Product and Sum (Kittler

et al., 1998).
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Figure 4.6: Overview of Late Fusion. Source: The Author (2019).

For some experiments, instead of using the late fusion, it is possible to concatenate the

feature vectors before the classification. The features extracted with different descriptors were

used as one larger vector, for example: the 59 LBP features and the 256 LPQ features are fused

as a single array with 315 positions (Figure 4.7). It is called Early Fusion and the Figure 4.8

represents the overview of this technique.

Figure 4.7: Representation of Early Fusion. Source: The Author (2019).

Figure 4.8: Overview of Early Fusion. Source: The Author (2019).

4.2.3 Convolutional Neural Networks
The use of neural networks was applied only in tests performed with Dataset II. This second

version has already a significantly larger amount of samples than the first one, even though a data

augmentation technique was applied for some tests.

The technique consisted of adding up to three random variation in training images

including: rotation, translation, brightness, blur, saturation, sharpening. Figure 4.9 shows

examples after the data augmentation, in which an original training sample generates 14 new

samples increasing the training set.

The convolutional neural network model used in this Image Patches Approach was

proposed by Roecker et al. (2018). It was designed with principles to simplify the model and use

low-resolution images, useful to development of systems with limited resources.

Table 4.1 describes the model architecture which can also be observed in Figure 4.10. It

received as input an RGB image, in which the input passed through a stack of convolutional layer

with variable number of filters 3 × 3. The convolution output was set up with a leaky rectifier
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Figure 4.9: Examples of Data Augmentation, in which an original training sample generates 14

new samples. Source: The Author (2019).

activation function (LReLU). Then a spacial pooling performed a maximum-value subsampling

with a 2 × 2 window and stride of 2.

Fully-connected layers have structure similar to multilayer perceptron (MLP) receiving

the previously stages results as input (Roecker et al., 2018). The only existing difference of the

model used in this work for the one presented by Roecker et al. (2018), is the last layer which

does the classification and has 2 units. In this output a softmax (normalized exponential function)

was applied to result into probabilities. The best results were using a learning rate of 0.0001 and

the batch size was 50. These tests were run for 100 epochs.

Table 4.1: Architecture of Roecker et al. (2018) model

# Layer Parameters Stride (x, y)

1 Convolutional 3 × 3 × 32 (1, 1)

2 Convolutional 3 × 3 × 32 (1, 1)

3 Pooling 2 × 2 (2, 2)

4 Convolutional 3 × 3 × 32 (1, 1)

5 Convolutional 3 × 3 × 32 (1, 1)

6 Pooling 2 × 2 (2, 2)

7 Fully-connected 512 -

8 Fully-connected 512 -

9 Fully-connected 2 -

10 Softmax 2 -

4.2.4 Proposed Metrics
Using the idea of automatically generated patches of an image, the same release may be present

in more than one patch according to its size and the amount of DA released. Since it is important

to identify this release within the labeled interval, regardless of whether you have one or more
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Figure 4.10: Overview of Roecker et al. (2018) model. Source: The Author (2019).

patches at that moment, they were all considered as only one sample. Therefore, for example,

even if there were 10 patches, and all 10 were correctly classified, it was considered as 1 hit. It is

enough that one of the patches of this interval is correctly classified. If the 10 are incorrectly

classified, it was considered one miss classification.

However, false positives are not desirable. Thus, all patches that do not contemplate

a DA release were analyzed as individual samples. It was considered a hit if it was classified

as Non-release (TN). Using this proposed strategy, the correct answers were counted and the

f-measure were calculated. The f-measure is an important metric to analyze this type of problem,

since the automatic dataset will not have both balanced classes.

4.3 Combined Approach
The second approach follows the same methodology of representation and classification used in

the extracted patches approach, however it also used full images. Since a training set containing

complete samples with both dopamine release and non-release was required, this approach was

investigated only with the more complete dataset.

Figure 4.11 shows an overview of this approach, which contains two main steps: the

original images approach and the image patches approach. In the first main step, features was

extracted from the full images and then classified. In addition to the original samples, two

zoning variations were tested (Figure 4.12). The first one uses only the common region of

phasic dopamine release, and the second one also adds a region of the top of the original sample

(between the pixel 0 and 90 of the y-axis), which in some releases has visual information that

could be important for extracting features.

In this part of the approach, besides the techniques of representation of the previous

approach, some experiments were also carried out using the Inception v3 network described in

the Chapter 2.5. The RGB input images were resized to 299 × 299 × 3 which is the default value

of the Inception v3 model used. For these tests, the transfer learning technique was applied, using

the pre-trained parameters on ImageNet dataset (Russakovsky et al., 2015). The only altered

layer of the original network was the end of the fully-connected layers, so that it had the output

for our two classes.

In transfer learning, we reused these transferred weights for the feature extraction layers,

which is the most complex part of the model. Only the classification part (fully-connected layers)

was re-trained using our dataset as input. The best results were obtained using a learning rate of

0.01 and the batch size was 100. These tests were run for 15,000 iterations.
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Figure 4.11: An overview of the combined approach. Source: The Author (2019).

In the second main step, once it was decided if an input contains a DA release or not,

patches were extracted from those images classified as DA Release (Class 1). The patches will

be classified exactly as the first approach, with the exception of metrics, and this allows even the

wrong decisions to have the classification reviewed.

As it is assumed that each image contains only one release of dopamine, the classification

of these patches allows a more precise decision of its location. If all patches from a single image

are classified as Class 2 (non-release), the image from which they were extracted and reclassified
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Figure 4.12: Examples of the original image and two zoning variation: A commom DA release

region (I); and a concatenated zones (I and II). Source: The Author (2019).

to that other class. Otherwise, it means that at least one patch has been identified as containing

the DA release and, if correct, the image itself was considered as a hit. With this metric it

was possible to calculate hits and errors per image, keeping the dataset analysis balanced and

providing results of possible dopamine release images as well as most precise regions within

them.

4.4 Object Detection
Finally, some experiments based on the Combined Approach were performed using YOLOv3.

YOLO allows the creation of an end-to-end system, in which a single architecture allows the

detection and classification of objects. In this way it was possible to use original images as input

and provide an accurate result of the location of the dopamine release in the sample, without the

necessity of the two steps with patches extraction (Figure 4.13).

This approach is based on object detection, which has been used successfully in different

applications (Zhou et al., 2016; Laroca et al., 2018; Severo et al., 2018). YOLO identifies the

Class 1 (phasic dopamine release) in the input samples. And, unlike all other approaches, there

will be only one class to be identified. When it is not detected, then it is assumed that there is no

release of dopamine (Class 2).

The DA release labels were converted to the YOLO pattern of bounding boxes. Some

training sessions were carried out with the files of the DA images, and others with all the images.

The evaluation metrics are similar to the previous one. If a dopamine release is identified in the

correct location, compared with the original labels, it is already considered a hit. If there is any

identification in an image of Class 2, it will be considered a miss classification.

Two models were used: Yolo and Tiny Yolo with weights pre-trained on ImageNet, both

in version 3. From its default settings only the input resolution size and the output classes has

been changed. Different tests were performed, some using the default input size of 416 × 416

and others using its variable of random resize. Since the version 2 model, the convolutional and
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pooling layers can be resized on the fly, it means that instead of using only one input size, for

each 10 iterations, the network size will be randomly resized (input and output) to size between

320 × 320 and 608 × 608. The best results were obtained using a learning rate of 0.001 and the

batch size was 64 and 8 subdivision. These tests were run for 25,000 iterations.

Figure 4.13: Simplified YOLO overview. Source: The Author (2019).
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Chapter 5

Results

This chapter presents the best results obtained in tests, in which different approaches were used

for the construction of classifiers. Some experiments were also performed with a combination of

predictions or approaches allowing comparisons and analysis of these results. The results of tests

using a balanced dataset, with the same number of images in the two classes, are represented by

Accuracy, and the tests with different numbers by the F-measure.

5.1 Dataset I
The experiments using the initial version of the dataset were performed only following the image

patches approach, and initially manual images were tested to analyze the best parameters.

5.1.1 Manually Extracted Patches
The training and testing set used was composed of manually generated patches from the original

images. As described in the Chapter 4 for each testing fold, the other two were used as training.

5.1.1.1 Texture Descriptors

Table 5.1 summarizes the best results obtained using the features extracted with LBP8,2 and

RLBP8,2 descriptors and SVM as classifier. On the other hand, the Table 5.2 presents the results

using different window size parameters of the LPQ.

It is possible to notice that the LBP and RLBP results are quite similar, but the tests

using LPQ features showed a better performance. The best results were achieved with LPQ

(window size 9) and 120 × 120 patches, the accuracy obtained in the best case was 95.96%.

Table 5.1: Results obtained with LBP/RLBP and SVM using manually extracted patches

Patch Size Descriptor Accuracy (%)

100 × 100 LBP 92.63 ± 2.27

100 × 100 RLBP 93.68 ± 0.86
120 × 120 LBP 92.63 ± 2.58

120 × 120 RLBP 92.63 ± 1.72
150 × 150 LBP 91.40 ± 1.08
150 × 150 RLBP 91.23 ± 1.63
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Table 5.2: Results obtained with LPQ and SVM using manually extracted patches

Patch Size Window Size Accuracy (%)

100 × 100 3 92.28 ± 1.08

100 × 100 5 94.74 ± 0.43

100 × 100 7 95.44 ± 0.50
100 × 100 9 94.91 ± 0.50

100 × 100 11 94.21 ± 1.14

120 × 120 3 94.91 ± 1.08

120 × 120 5 94.91 ± 0.50

120 × 120 7 95.44 ± 0.66

120 × 120 9 95.96 ± 0.25
120 × 120 11 95.61 ± 0.66

150 × 150 3 93.68 ± 0.43

150 × 150 5 95.09 ± 0.25

150 × 150 7 93.33 ± 2.03

150 × 150 9 95.26 ± 2.27
150 × 150 11 94.56 ± 1.08

5.1.1.2 Early Fusion

The Early Fusion method was used for SVM classifications presented in the Table 5.3. The

classification was performed using features of the best LPQ parameter, for each patch size,

concatenated with LBP or RLBP features, according the methodology presented in the subsection

4.2.1. The results got a little improvement and the best accuracy (96.67%) was a result of the

LBP and LPQ features extracted from 120 × 120 patches.

Table 5.3: Results obtained with Early Fusion using manually extracted patches

Patch Size Descriptor 1 Descriptor 2 Accuracy (%)

100 × 100 LBP8,2 LPQ7 96.14 ± 0.66

100 × 100 RLBP8,2 LPQ7 95.79 ± 0.43

120 × 120 LBP8,2 LPQ9 96.67 ± 0.50
120 × 120 RLBP8,2 LPQ9 96.32 ± 0.43

150 × 150 LBP8,2 LPQ9 94.74 ± 1.14

150 × 150 RLBP8,2 LPQ9 94.91 ± 0.99

5.1.1.3 Late Fusion

Finally, a Late Fusion of SVM predictions was also performed. The set with patches with

resolution of 120 × 120 pixels presented good performances in all previously experiments and it

was chosen for these tests. Using either the maximum, sum or product rule the accuracy and

f-measure was the same for this specific problem, which has only two classes. The Table 5.4

summarizes the results of the predictions fusion using sum rule.

These results show that the combination of even weaker classifiers can provide better

results. Such a fusion of predictions provided the combination of complementary information,

even when errors occur. The accuracy of 97.37% was the best obtained in all preliminary
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Table 5.4: Results obtained with Late Fusion using manually extracted patches

Prediction 1 Prediction 2 Accuracy (%)

LBP8,2 LPQ3 97.02 ± 0.50

RLBP8,2 LPQ3 97.37 ± 1.14
LBP8,2 LPQ5 94.91 ± 1.38

RLBP8,2 LPQ5 95.79 ± 1.14

LBP8,2 LPQ7 95.79 ± 0.74

RLBP8,2 LPQ7 96.49 ± 0.89

LBP8,2 LPQ9 95.61 ± 0.25

RLBP8,2 LPQ9 96.49 ± 0.89

LBP8,2 LPQ11 96.49 ± 0.50

RLBP8,2 LPQ11 97.19 ± 0.50

experiments using manually extracted patches, being the result of the combination of a SVM

classifier with RLBP features and the classifier with LPQ (window size 3).

5.1.2 Automatically Extracted Patches
Since the preliminary tests with 120 × 120 manually extracted patches showed good results, the

following experiments were performed using 120× 120 automatically extracted patches as testing

set. Table 5.5 summarizes the results obtained using texture descriptors, while Table 5.6 shows

the results using early and late fusion (sum rule).

Table 5.5: Results with texture descriptors and SVM using automatically extracted patches

Patch Size Descriptor F-Measure(%)

120 × 120 LBP8,2 62.32 ± 0.43

120 × 120 RLBP8,2 69.85 ± 0.40

120 × 120 LPQ9 77.23 ± 1.20

Table 5.6: Results obtained with Early and Late Fusion using automatically extracted patches

Fusion Descriptor 1 Descriptor 2 F-Measure (%)

Early Fusion LBP8,2 LPQ9 72.69 ± 0.50

Early Fusion RLBP8,2 LPQ9 72.46 ± 0.84

Late Fusion LBP8,2 LPQ9 72.55 ± 0.37

Late Fusion RLBP8,2 LPQ9 75.47 ± 0.69

One can note that in these cases the LPQ performance was superior to the other

descriptors, and even the combinations of feature vectors or predictions did not improve the

f-measure. The concatenation of two features array not necessary will improve the results, since

the complexity will rise too.

The best f-measure using automatic patches was 77.23%, that is justified by the different

numbers of samples between both classes, there are significantly more patches without DA

release. Despite this low f-measure rate the Dopamine Release Class accuracy rate is about 98%,

and it is very important not to miss releases identification on the recordings.



47

Figure 5.1 shows the ROC curves of the best results of each approach, where we can see

how the ideal curve would be if all the patches could be extracted exactly in the most correct

position. Such ROC curves will serve as a comparison for the next experiments.

Figure 5.1: ROC curves of the best Dataset I tests. Source: The Author (2019).

5.2 Dataset II
The second and more complete version of the dataset allowed exploring new approaches. As in

the previous version, the initial tests were exploring texture descriptors and their best parameters.

However, the samples used as training and testing set were the original images, without patches

extraction.

5.2.1 Texture Descriptors
There are three different training sets, each generated with different background as presented

in Chapter 4.1.2. Table 5.7 shows the results obtained by training and testing full images with

a specific background and different texture descriptors, but for each dataset tests were also

performed with their two zoning variations: the first containing only the common DA release

region and the second containing two regions of the image concatenated. The results obtained

with these tests are shown in Table 5.8.

It was possible to notice that of all the varied images, the best results were always using

the background position A and C. The best result in these preliminary tests was using the common

DA release region, the background position C dataset and LPQ as descriptor, with an accuracy of

75.72%.

In addition to the experiments performed separately, tests were also done combining

the training sets of different background positions. Thus, the respective folds of positions A, B

and C were grouped, keeping the same original images together. The testing sets were explored

individually as shown in the Table 5.9. The best result was 73.88% and it was not better than the

previously one (75.72%) besides having a higher cost for the training.

Using the best results with background position A and C, late fusion tests were also

performed according to the Table 5.10. As before, the fusions showed the same results for the

different fusion rules, so only the results with the sum rule were presented. The accuracy of

79.15% was resulted from the combination of LPQ and SVM predictions, and it was the best

result obtained with texture descriptors and these samples.
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Table 5.7: Results from Dataset II obtained with texture descriptors

Background Position Descriptor Accuracy(%)

Background A LBP8,2 73.77 ± 0.31
Background A RLBP8,2 73.28 ± 0.64

Background A LPQ3 73.44 ± 0.78

Background A LPQ5 72.39 ± 1.39

Background A LPQ7 71.19 ± 1.29

Background A LPQ9 72.09 ± 0.56

Background B LBP8,2 69.20 ± 0.58

Background B RLBP8,2 69.10 ± 1.89

Background B LPQ3 72.04 ± 2.72

Background B LPQ5 72.39 ± 0.86
Background B LPQ7 70.35 ± 0.74

Background B LPQ9 69.15 ± 0.88

Background C LBP8,2 70.15 ± 1.52

Background C RLBP8,2 70.70 ± 1.85

Background C LPQ3 73.93 ± 0.31
Background C LPQ5 73.13 ± 1.29

Background C LPQ7 71.09 ± 0.73

Background C LPQ9 68.36 ± 2.76

Table 5.8: Tests using different zoned images

Zoning Type Background Descriptor Accuracy(%)

DA Release Region A LBP8,2 74.43 ± 0.74

DA Release Region A RLBP8,2 73.43 ± 1.69

DA Release Region A LPQ3 75.32 ± 1.65

DA Release Region B LBP8,2 67.16 ± 1.64

DA Release Region B RLBP8,2 66.67 ± 1.22

DA Release Region B LPQ3 69.75 ± 0.51

DA Release Region C LBP8,2 70.40 ± 0.51

DA Release Region C RLBP8,2 70.30 ± 0.88

DA Release Region C LPQ3 75.72 ± 0.60
Concatenated Zones A LBP8,2 73.38 ± 1.11

Concatenated Zones A RLBP8,2 73.08 ± 0.88

Concatenated Zones A LPQ3 75.32 ± 0.61

Concatenated Zones B LBP8,2 67.95 ± 1.78

Concatenated Zones B RLBP8,2 64.79 ± 1.30

Concatenated Zones B LPQ3 68.36 ± 2.76

Concatenated Zones C LBP8,2 70.95 ± 0.37

Concatenated Zones C RLBP8,2 70.20 ± 0.14

Concatenated Zones C LPQ3 75.52 ± 0.56

To finalize the investigations with texture descriptors, the same tests of Dataset I

automatically extracted patches were performed. In Table 5.11 it is possible to observe that the

best Dataset II automatically extracted patches result was of 74.78%, inferior to the 77.23% of

the first one. And as with Dataset I, early and late fusions did not improve results (Table 5.12).
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Table 5.9: Results obtained using a combined training set

Background Position Descriptor Accuracy(%)

Background A LBP8,2 73.63 ± 2.44

Background A RLBP8,2 73.73 ± 0.76

Background A LPQ3 73.03 ± 1.01

Background B LBP8,2 68.16 ± 1.62

Background B RLBP8,2 68.31 ± 1.34

Background B LPQ3 70.05 ± 1.04

Background C LBP8,2 69.20 ± 0.61

Background C RLBP8,2 70.40 ± 0.86

Background C LPQ3 73.88 ± 1.71

Table 5.10: Results obtained using Late Fusion (Sum Rule) of background position A and C

predictions

Fusion Rule Descriptor A Descriptor C Accuracy(%)

Sum Rule LBP8,2 LBP8,2 76.97 ± 0.92

Sum Rule LBP8,2 RLBP8,2 76.32 ± 0.70

Sum Rule LBP8,2 LPQ3 79.10 ± 1.44

Sum Rule RLBP8,2 LBP8,2 76.87 ± 0.49

Sum Rule RLBP8,2 RLBP8,2 76.07 ± 1.06

Sum Rule RLBP8,2 LPQ3 79.05 ± 0.91

Sum Rule LPQ3 LBP8,2 76.42 ± 1.93

Sum Rule LPQ3 RLBP8,2 76.77 ± 0.63

Sum Rule LPQ3 LPQ3 79.15 ± 0.67

Table 5.11: Results using texture descriptors and automatically extracted patches from Dataset II

Patch Size Descriptor F-Measure(%)

200 × 200 LBP8,2 74.78 ± 0.93
200 × 200 RLBP8,2 72.42 ± 0.85

200 × 200 LPQ3 71.86 ± 1.09

Table 5.12: Results obtained using Early and Late Fusion and automatically extracted patches

from Dataset II

Fusion Descriptor 1 Descriptor 2 F-Measure (%)

Early Fusion LBP8,2 LPQ3 69.05 ± 0.41
Early Fusion RLBP8,2 LPQ3 68.09 ± 1.21

Late Fusion LBP8,2 LPQ3 67.54 ± 1.16

Late Fusion RLBP8,2 LPQ3 67.32 ± 1.29

5.2.2 Convolutional Neural Networks
Dataset II brought greater complexity, and many new images without dopamine release. In these

images there are the most diverse variations and noises. Despite the greater challenge, it was

possible to explore new approaches such as the use of Convolutional Neural Networks.

The first experiments were using the Inception v3 and Roecker et al. (2018) models. As

shown in the previous Chapter 4.3, the Inception tests were performed using RGB input images
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(resized to 299 × 299 × 3) and pre-trained weights on ImageNet. Table 5.13 shows the results

using learning rate of 0.01 and the batch size of 100. These tests were run for 15,000 iterations

and the best accuracy was 95.72% using data augmentation in the original images training set,

which was already much better than all results obtained with texture descriptors.

Table 5.13: Results obtained using Inception v3

Zoning Type Data Augmentation Accuracy(%)

Original Samples No 95.67 ± 0.53

Original Samples Yes 95.72 ± 0.51
DA Release Region No 95.07 ± 0.85

DA Release Region Yes 95.17 ± 0.51

Concatenated Zones No 94.53 ± 0.19

Concatenated Zones Yes 94.98 ± 0.39

Unlike the Inception tests, no pre-trained parameters were used for the Roecker et al.

(2018) model. Each of the training sets were performed for 100 epochs and initially only

images generated using the background position A were used. These initial tests without data

augmentation expressed in Table 5.14 served to test different input sizes. From these results,

only the best parameters were used for the tests with the other training sets and using data

augmentation (Table 5.15). An accuracy of 97.31% was the best result obtained, using a training

set of zoned images in the common DA release region and generated by background B.

In spite of the excellent result obtained, when we analyzed the predictions, it was

possible to observe that both false positives and false negatives had very high values, and this

inflicted in the ROC curve obtained (Figure 5.2) that can be compared with a more optimal result

of Figure 5.1. Perhaps for this reason, no predictions fusion tests showed improvements, no

longer being an interesting approach to be used.

Figure 5.2: ROC curve of the best test using entire images approach. Source: The Author (2019).

Tests using automatically extracted patches approach and this model with data augmen-

tation also got good results. Table 5.16 shows that the best result had an f-measure of 95.64%.

However, for 1005 DA release, there are more than 9000 patches without release, generating

hundreds of false positives.
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Table 5.14: Results obtained using Roecker et al. (2018) CNN model

Input Size Zoning Type Accuracy(%)

350 × 262 Original Samples 85.87 ± 2.24

350 × 80 DA Release Region 92.64 ± 0.14

350 × 116 Concatenated Zones 84.28 ± 5.21

262 × 197 Original Samples 83.68 ± 3.05

262 × 60 DA Release Region 94.13 ± 1.99

262 × 87 Concatenated Zones 85.07 ± 4.23

175 × 131 Original Samples 91.14 ± 1.49

175 × 40 DA Release Region 94.73 ± 0.51
175 × 58 Concatenated Zones 89.35 ± 2.31

88 × 66 Original Samples 91.01 ± 1.75

88 × 20 DA Release Region 88.86 ± 4.58

88 × 29 Concatenated Zones 85.97 ± 3.92

Table 5.15: Results obtained with Data Augmentation using Roecker et al. (2018) CNN model

Background Position Zoning Type Accuracy(%)

Background A Original Samples (175 × 131) 96.47 ± 0.61

Background A DA Release Region (175 × 40) 96.47 ± 0.67

Background A Concatenated Zones (175 × 58) 96.22 ± 1.42

Background B Original Samples (175 × 131) 96.72 ± 0.12

Background B DA Release Region (175 × 40) 97.31 ± 0.64
Background B Concatenated Zones (175 × 58) 96.62 ± 0.55

Background C Original Samples (175 × 131) 94.78 ± 1.06

Background C DA Release Region (175 × 40) 96.22 ± 0.14

Background C Concatenated Zones (175 × 58) 95.77 ± 0.78

Table 5.16: Results obtained using automatically extracted patches and CNN

Background Position Patch Size F-measure(%)

Background A 200 × 200 94.44 ± 1.28

Background B 200 × 200 85.25 ± 1.34

Background C 200 × 200 95.64 ± 1.04

The alternative to this problem was to extract the patches directly from the images

classified as positive of the best experiment from Table 5.15, and then classify these patches.

Following the methodology presented in the previous chapter, this approach allowed even a

revision of the false positives: Considering the 41 FP there were only 17 now, and the final

accuracy of the complete process was 98.36% ± 2.39.

This classifier was very versatile in identifying phasic dopamine release in different

situations: in small amounts or in the middle of noises. Figure 5.3 shows examples classified as

Positive, where a few samples containing noise/artifacts from recording are still missclassified

(FP).
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Figure 5.3: Examples of True Positives and False Positives from the best experiment using CNN.

Source: The Author (2019).

5.2.2.1 YOLO

Despite excellent results already obtained, the previous approach requires two different steps of

training and classification with neural networks. Using YOLO, it was possible to directly identify

the original image without the need to extract patches.

Table 5.17 shows the accuracy obtained using the Tiny model and RGB inputs with size

of 416 × 416. The best result was 96.82% with a training composed only of phasic dopamine

release samples, and background position A. These same parameters were replicated to the

complete YOLOv3 model, which is larger and has a higher computational cost. However, the

accuracy did not improve, being 96.57% ± 0.68.

The last two tests performed were obtained again using the best parameters, but using

the random resize. New anchors were calculated using kmeans in the Dataset II to result in the

same default number of the model: 6. The result was 97.56% ± 0.49, but the best accuracy was

97.66% ± 0.67 using the default anchors.

YOLO only identifies the phasic dopamine release class, but it is possible to analyze

true and false positives predictions. As in the results of the other model, false positives also

have a high value, resulting in the ROC curve of Figure 5.4. These high values present in CNN

also made it impossible to apply a good threshold for rejection, and thus try to improve the final

decision. Like the other classifier, YOLO also makes correct DA identification in the most varied

situations, and in Figure 5.5 we can observe some examples of True Positives and False Positives.
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Table 5.17: Results obtained using Tiny YOLOv3 model

Training Set Background Position Accuracy(%)

Only DA release Background A 96.82 ± 1.13
Only DA release Background B 95.37 ± 1.08

Only DA release Background C 96.27 ± 0.21

Complete Background A 95.82 ± 1.52

Complete Background B 94.63 ± 1.84

Complete Background C 92.19 ± 0.79

Figure 5.4: ROC curve of the best test using YOLO. Source: The Author (2019).

Figure 5.5: Example of True Positives and False Positives using YOLO. Source: The Author

(2019).
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Chapter 6

Final Considerations and Future Works

In current literature, pattern recognition systems using dopamine images generated from data

collected with fast scan cyclic voltammetry are something new. There are many methods and

parameters to explore. Thus, this work explored mainly the use of visual texture features and

convolutional neural networks for the development of a classification system. The proposed

methodology uses original images and patches extracted from them to construct an automatic

identification system. However it was necessary to create two new dataset, which were made

available to the scientific community.

Preliminary experiments were performed using a dataset composed of patches. The

best manually extracted patches accuracy obtained was 97.37% using the fusion of classifiers

with different texture features. However there are much more patches without DA release using

automatically extracted patches, what really happens in a real life recording, and it results in

a challenging problem to get high f-measure rates and minimize the false positives. The best

f-measure was 77.23% using LPQ as texture descriptor.

The second version of the dataset not only brought new approaches to explore but also a

way to avoid the problem of the unbalanced classes. The tests in this dataset, which contains

greater diversity in phasic dopamine releases and also complete images without any release,

resulted in similar values using texture descriptors and automatically extracted patches. The

f-measure with automatically extracted patches from Dataset II was 74.78% using LBP. And

the accuracy with entire images approach using Late Fusion of different background positions

predictions was 79.15%. But by far the best results were using Convolutional Neural Networks.

The Roecker et al. (2018) model was able to classify entire images with an accuracy of

up to 97.31%. By itself, this result is already very good by classifying DA release within 20

seconds of an experimental recording. But using a combined approach, extracting patches from

images classified as Class 1, it was also possible to provide a more accurate result within each of

the images with an accuracy of 98.31%.

The combined approach provides an excellent result, but YOLO tests resulted in

an accuracy of 97.66%. Even though this value is somewhat lower, the YOLO allows the

identification of phasic DA release directly from the original samples, without the need for two

different training and classification steps.

This method also results in identifications in varied positions and sizes, being more

versatile and accurate than patches, which are always restricted to a defined size. Thus, in a

problem of identifying a substance that varies many patterns, YOLO also becomes an excellent

choice for an automatic classification. Although there were visual variations in the images, there

was no definitive background position that was always better than the others. It was possible to

achieve great results in all of them.
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In future work, we intend to continue to build a larger and more varied dataset, including

other substances, to better exploit the problem and to favor the development of new classification

systems. In this way, we can create classifiers for other substances, as well as different classes of

dopamine release by quantity. We also intend to experiment different neural networks models

and descriptors.
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