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RESUMO

Dada a dimensão da indústria pecuária de aves e suínos no Brasil, é fundamental 

destinar os resíduos produzidos pela mesma de forma adequada. Uma das formas de 

tratamento é através da compostagem do material. De forma tradicional em pilha ou 

em rotoacelerador, a compostagem é um processo realizado principalmente por 

microrganismos transformando a matéria orgânica em composto nutriente útil como 

adubo. Para este trabalho, foram analisadas amostras de compostagem de 5 granjas 

comerciais, através da extração e sequenciamento do DNA metagenômico para análise 

de biodiversidade por amplificação do gene 16S rDNA ou do DNA total por 

sequenciamento “shotgun”, ambos utilizando a plataforma Illumina MiSeq. Constatou-

se que o filo Firmicutes foi o mais abundante em todas as amostras, seguido de 

Actinobacteria, Proteobacteria e Bacteroidetes. O gênero Nasocomiicoccus foi

encontrado associado às amostras que continham resíduos de frango enquanto o 

gênero Bacillus às amostras de resíduos de suínos. Quando comparadas as amostras 

tratadas em pilha tradicional e em rotoacelerador não foi encontrada diferença

significativa na estrutura microbiológica, concluindo que tratando os resíduos em 

equipamento acelerado, uma vez que o processo de compostagem acontece de forma 

mais rápida e limpa, trazendo vantagens para as granjas comerciais dessa indústria

crescente.

Outra parte deste trabalho envolveu a identificação de uma nova enzima com potencial 

aplicação biotecnológica através do sequenciamento de bibliotecas metagenômicas 

construídas a partir de amostras de uma lagoa de descarte de indústria agropecuária. 

Nesta etapa a lipase Lip720E foi identificada por análise in silico, expressa em 

Escherichia coli e testada para atividade lipase com diferentes substratos de ácidos 

graxos. Esta análise permitiu comparar a estratégia de identificação por análise 

baseada na função de outra lipase apresentada na mesma biblioteca.

Palavras-chave: compostagem, biodiversidade bacteriana, lipases bacterianas, 

metagenômica.



ABSTRACT

Due to the relevance of the poultry and swine husbandry industry in Brazil, proper 

waste destination gains importance. One of the possible treatments is composting, and 

it can be carried out using a traditional static pile or a roto-accelerator. This process is 

performed mainly by microorganisms transforming organic matter in nutrient compost 

for crops. In this work, composting samples of 5 commercial farms were analyzed by

extracting and sequencing metagenomic DNA using the 16S rRNA biodiversity 

approach or the whole DNA sequencing by "shotgun", both using the Illumina MiSeq 

platform. Phylum Firmicutes was found as the most abundant one in all samples, 

followed by Actinobacteria, Proteobacteria and Bacteroidetes. Genus Nasocomiicoccus 

was found associated with poultry waste samples and Bacillus genus with swine waste 

samples. When compared samples treated in traditional pile with those from roto-

accelerator no difference in microbial structure was found, concluding that treatment in 

accelerated equipment may represent an advantage for a faster and cleaner 

composting process in a growing number of commercial farms.

This work also included the identification of a new enzyme with potential 

biotechnological application through the sequencing of metagenomic libraries from 

samples of a waste lagoon of husbandry industry. In this section the lipase Lip720 was 

identified by in silico analyses, expressed in Escherichia coli and tested for lipase 

activity with different substrates for fatty acids. This analysis allowed comparison of 

identification strategy function based with another lipase from the same library.

Key-words: composting, bacterial biodiversity, bacterial lipase, metagenomics.



RESUMEN

Dada la dimensión de la industria pecuaria de aves y cerdos en Brasil, es fundamental 

dar un destino adecuado a sus residuos producidos. Una de las formas de tratamiento 

es a través del compostaje, que puede ser de forma tradicional en pila estática o en 

rotoacelerador. Este proceso es realizado principalmente por microorganismos 

transformando la materia orgánica en compost útil para cultivos. En este trabajo, 

fueron analizadas muestras de compostaje de 5 granjas comerciales a través de la 

extracción y secuenciamiento de ADN metagenómico para análise de biodiversidad por 

amplificación del gen 16S ADNr o del ADN total por secuenciamiento “shotgun”, ambos 

utilizando la plataforma Illumina MiSeq. Se encontró que el phylum Firmicutes fue el 

más abundante en todas las muestras, seguido de Actinobacteria, Proteobacteria y 

Bacteroidetes. Se encontró que el género Nasocomiicoccus estaba asociado a muestras 

de residuos de aves, mientras que el género Bacillus a muestras de residuos porcinos.

Al comparar muestras tratadas en pila tradicional y en rotoacelerador, no se encontró 

diferencia en la composición microbiana, permitiendo concluir que el tratamiento en 

equipamento acelerado tiene más ventajas para el número creciente de granjas 

comerciales al ser un proceso más rápido y limpio.

Otra parte de este trabajo implicó la identificación de una nueva enzima con potencial 

aplicación biotecnológica a través del secuenciamiento de bibliotecas metagenómicas 

construidas a partir de muestras de una laguna de descartes de industria agropecuaria.

En esta etapa se identificó la lipasa Lip720E por análisis in silico, se expresó en 

Escherichia coli y se analizó para actividad lipasa con diferentes sustratos de ácidos 

grasos. Este análisis permitió comprar la estrategia de identificación por análisis basado 

en la función de otra lipasa contenida en la misma biblioteca.

Palabras claves: compostaje, biodiversidad bacteriana, lipasas bacterianas, 

metagenómica.
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INTRODUÇÃO

A criação de animais em sistemas confinados acarreta grande acúmulo 

de resíduos. No caso da avicultura e suinocultura para produção de carnes, 

ovos, laticínios e outros, estas indústrias pecuárias tem ganhado um lugar 

importante na economia brasileira, sendo uma das maiores do mundo. O Brasil 

é o segundo produtor mundial de carne de frango e o quarto de carne suína, 

essa posição é resultado de um processo de produção eficiente e altamente 

regulado (ABPA, 2017).  No entanto, essa produção gera uma grande 

quantidade de resíduos potencialmente contaminantes, só de rebanho suíno 

nacional a quantidade estimada é de 300.000.000 milhões de m3 (Ferreira, 

2014).

Esses resíduos pecuários incluem dejetos como fezes e urina, pelos ou 

penas, restos de comida, bebida, cama de criação e carcaças de animais que 

não conseguem chegar até o fim do processo produtivo. Além disso, o próprio 

processamento dos animais na indústria também gera resíduos biológicos e

químicos.

Antigamente os resíduos pecuários eram despejados para o meio 

ambiente sem tratamento nenhum já que esses dejetos não representavam 

problema ao meio ambiente, entretanto novas legislações para avicultura e 

suinocultura intensivas obrigam tratamento e despejo adequado desses

resíduos biológicos e químicos. Entre as diferentes formas de tratamento e/ou 

utilização dos resíduos incluem a compostagem e o descarte em lagoas

isoladas. Estes são usados como meios de decomposição da matéria orgânica, 

ciclagem de nutrientes e elementos químicos, redução da carga microbiana e 

fermentação da biomassa. No caso do processo de compostagem, como 

resultado tem-se a produção de um composto orgânico útil para adubação de 

solos e fertilização para lavouras, gerando um valor agregado aos resíduos da

indústria.
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Assim como muitos processos biogeológicos, os processos de tratamento 

de resíduos da indústria pecuária são realizados em grande parte pela atividade 

de microrganismos. Como descreveu Handelsman (1998) ao definir os 

metagenomas como o estudo dos microrganismos de um ambiente dado, estes 

seres vivos se encontram presentes em todos os ambientes possíveis do 

planeta e possuem vias metabólicas diversas cumprindo as mais variadas 

funções bioquímicas. Segundo o Comitê de Metagenômica do Conselho de 

Pesquisa Nacional dos Estados Unidos, a microbiologia se encontra em um 

momento sem precedentes para revolucionar o entendimento do mundo vivo

(Committee on Metagenomics: Challenges and Functional Applications, 2007).

A biodiversidade microbiana nos ambientes de compostagem ou lagoas 

de dejetos é pouco conhecida e os poucos estudos encontrados foram 

realizados com técnicas tradicionais de microbiologia dependentes de cultivo e

são limitadas às condições laboratoriais.  Como em outros ambientes, a grande 

maioria de microrganismos não cultiváveis permanece desconhecida (Martins et 

al., 2013; Delgado-Baquerizo et al., 2018) e as novas tecnologias de 

sequenciamento oferecem uma grande probabilidade na identificação de um 

amplo número de grupos taxonômicos bacterianos em menor tempo a cada vez 

um menor custo, possibilitando o encontro de novos grupos taxonômicos e

permitindo compreender suas funções.

De outra parte, o aproveitamento das variadas funções metabólicas 

microbianas através de ferramentas biotecnológicas oferece um potencial 

recurso para a bioprospecção e aplicação industrial. Uma das aplicações 

biotecnológicas com amplos estudos e potencial comercial é a das enzimas de 

degradação de lipídeos, enzimas do grupo das hidrolases que incluem as lipases 

e esterases (Böttcher et al., 2010; Lee e Lee, 2013). Estas enzimas possuem 

características interessantes como o não requerimento de cofatores, destacada 

estabilidade em solventes orgânicos, amplo reconhecimento de substratos,

podendo ainda apresentar estereoseletividade e seletividade posicional (Lee et 

al., 2004).
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O objetivo deste trabalho foi utilizar ferramentas metagenômicas para 

determinar a riqueza, equabilidade e composição microbianas em amostras de 

tratamentos de resíduos de avicultura e suinocultura, e realizar a bioprospecção 

na busca de novas enzimas.

Nesse projeto utilizamos técnicas da metagenômica para análise do

material genético obtido diretamente do ambiente sem cultivo celular prévio

e/ou identificação individual de amostras/indivíduos. O sequenciamento de DNA 

foi realizado utilizando metodologia de nova geração (plataforma Illumina 

MiSeq) para determinar a biodiversidade bacteriana de amostras de 

compostagem. Através desse trabalho foram possíveis comparações entre as 

compostagens de resíduos de criação de aves ou suínos, processados em pilha 

estática ou em rotoacelerador.

Na segunda parte deste projeto, foi caracterizada uma enzima com 

atividade lipolítica identificada a partir da prospecção in silico de uma biblioteca 

metagenômica (Glogauer et al., 2011). Esta parte do trabalho permitiu a 

comparação entre uma triagem funcional e in silico na prospecção por lipases.
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CAPÍTULO I

Biodiversidade bacteriana da compostagem de 

resíduos de avicultura e suinocultura
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Bacterial diversity of waste composting from poultry and swine

farming

Rocío Cuaspa, Leda S. Chubatsu.

ABSTRACT

Microorganisms are the main contributing factors responsible for organic matter 

degradation during composting. Wastes from poultry and swine production, 

such as carcasses and litter, are being treated by traditional pile or roto-

accelerated composting process to produce plant fertilizers. In this work,

Illumina DNA-sequencing of the 16S rRNA gene was used to determine the 

bacterial community structure and functional potential of animal farm 

composting using a traditional static pile or a roto-accelerator composting 

process of avian or swine carcasses. Analyses indicated that Firmicutes was the 

main phylum present in all samples, followed by Actinobacteria, Proteobacteria, 

and Bacteriodetes. PCA analysis of the relative number of sequences showed a 

difference between the composts according to the animal source, avian or 

swine, but no clear difference was found between the two types of composting 

treatments, static pile or roto-accelerated. To statistically address differential 

abundance, The Nasocomiicoccus genus was found to feature avian source

samples, while Bacillus genus features in swine source samples, suggesting 

that these two groups could be used as markers for animal waste composting.

Shotgun sequencing of total metagenomic DNA indicated similar functional 

profile between the animal source and between the type of treatment. This is 

the first study of composting wastes from commercial farms of poultry and 

swine farming, addressing a traditional pile protocol and an equipment to 

decrease the incubation period for composting.

Key words: animal husbandry, animal farm waste composting, bacterial 

community structure. 
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1. INTRODUCTION

Brazil is the world’s second producer of avian meat and the forth of pork 

meat having one of the largest herds in the world. Although this livestock 

industry has been highly regulated throughout the setting parameters for an 

efficient production process, more than one million tons of dead animals are 

produced per year as part of regular farming breeding process (ABPA, 2017). 

According to Nicoloso et al. (2017), the disposal of dead animals within the 

limits of the rural establishment involves the removal of carcasses from the 

breeding place, eventual temporary storage, transport and treatment system, 

and  composting is the most widely used method for totally decompose 

carcasses by the action of microorganisms. These composts are mainly used as 

plant fertilizer.

In addition to poultry and swine carcasses, farming wastes are also 

composed of litter, which has served for bedding the animals. This is made of a 

mixture of vegetal substrates such as sawdust, wood shavings, corncob, rice 

straw, coffee bark and others. After usage, this litter contains urine, feces, 

feathers or hair and remnants of food and drink. The used animal bedding and 

the carcasses of animals that eventually die during breeding are conventionally 

processed by traditional composting consisting of a static pile made up with a 

layer of vegetal matter, a layer of animal carcasses, and then another layer of 

vegetal matter. These successive layers are repeated until one last layer of 

vegetal material covers up the whole pile that should be assembled in 

windrows. Dimension, time, and composition may vary according to each case 

following technical parameters in the field.

Composting refers to the biodegradation process occurring 

spontaneously in nature and reproduced on human conditions, starting from a 

mixture of organic substrates in solid state, humidity and conditions of both 

aerophilia and microaerophilia. The exothermic process of highly metabolically 
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active microorganisms produces energy in the form of heat, resulting in an 

increase of the temperature and degradation of polymers and organic 

compounds to a final product of a stabilized organic matter beneficial to plant 

growth (Insam and de Bertoldi, 2007).

It is generally accepted that composting consists of mesophilic phase, 

thermophilic phase and maturation phase (de Gannes et al., 2013; Zhang et al.,

2016). Some authors add a cooling phase or second mesophilic phase (Insam 

and de Bertoldi, 2007). In a well-managed process, about 50% of the 

biodegradable organic matter is converted into CO2, H2O, mineral salts, and 

energy. The factors which affect this conversion are: system of composting, 

duration of the process, aeration system, chemical and physical composition of 

the organic matter, particle size, carbon/nitrogen ratio, and temperature. These 

parameters have shown to be key for composting optimization since they 

determine conditions for microbial development and organic matter degradation 

(Bernal et al., 2009).

Microorganisms are present in all biomes on Earth. In soils, sediments, 

water bodies and all natural conditions, organic matter transformation and 

nutrients cycling is carried out by microorganisms as the main contributing 

factor (Handelsman, 2004). Current knowledge of microbial community is 

largely based on traditional methods of isolation and culture by direct 

microscopic observation and plating procedures. During the composting 

process, microorganisms are induced into high metabolic activities growing at 

high densities at constant change of environmental conditions, favoring 

exponential growth of certain kind of microorganisms, and inducing stationary 

phases of others. However, only a minor fraction can be cultivated with 

conventional laboratory equipment and procedures, resulting in the known “the 

great plate count anomaly” that refers to the discrepancy between the viable 

plate count and total direct microscopic count of bacteria (Schloss and 

Handelsman, 2003; Staley and Konopka, 1985). Several culture methods have 

been developed since Lane et al. (1985) proposed direct DNA cloning from
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environmental samples. Current consensus on accessing complexity on 

microbiota information resides on next generation high-throughput DNA 

sequencing potential, which has become increasingly faster and less expensive 

(Boughner and Singh, 2016).

Recently, in order to increase the efficiency of composting, an equipment 

was developed. The Roto-Accelerator of Composting (AgroBona Indústria de 

Equipamentos, PR, Brazil) allows controlling the variables of the composting 

process promoting environmental and sanitary safety. In this treatment, whole 

carcasses and other organic residues are placed inside the drum of the 

equipment that remains sealed, with constant mixing. Temperature and 

moisture are constantly monitored, and carbon and nitrogen sources are 

adjusted according to user parameters, generating more homogeneous and 

stable compost in less than half of the time from traditional pile composing. 

Moreover, benefits of this technology include the disposal of carcasses with less 

environmental impact, safer handling for the farm worker, and the production 

of a higher quality plant fertilizer.

In characterizing composting microbiome community, some authors 

tested either sheep or cow manure with different vegetal substrates, rice straw, 

coffee hulls, and sugar cane bagasse (de Gannes et al., 2013), cattle tissues 

and manure with straw (Tkachuk et al., 2014), animal and vegetal wastes from 

a zoo (Martins et al., 2013) and soil (Delgado-Baquerizo et al., 2018). However, 

no current reports using high- throughput DNA sequencing applied to avian or 

swine waste and carcasses from husbandry composting has been published. 

Therefore, information about bacterial community composition during 

traditional or accelerated composting remains scarce. This type of study of 

microbial community structure analysis could result in improvement of 

composting facilities by adjusting appropriate conditions for an efficient 

microbiological process.

In this study, we analyzed the bacterial biodiversity of composting from

poultry farming and a swine farming comparing traditional pile composting or
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accelerated process using a roto-accelerator equipment. We hypothesize that 

these two types of treatment are comparable in terms of microbiome 

composition, regardless the animal source of the waste. To test this, we 

addressed two main approaches: taxonomical structure and functional potential 

analyses. To our knowledge, this is the first report of using high-throughput 

DNA sequencing applied to avian or swine waste and carcasses from husbandry

composting.

2. MATERIAL AND METHODS

2.1 Samples

For this study, samples of organic matter at different stages of the 

composting process were used from poultry or swine farms. Composting of 

poultry carcasses included animal bedding of mixed vegetal litter and 

composting of swine carcasses that do not use litter, included pine shavings. 

Protocols considered traditional or roto-accelerator equipment.

Composting samples were obtained from 5 commercial farms located in 

Toledo and Maripá, Paraná State of Brazil, on December 1st, 2014. Samples 

were provided by BRF Company. Farms composted animal waste either from 

avian farming (here indicated as Av.) or swine farming (indicated as Sw.); 

composting protocols were performed either in a static pile of composting 

(indicated as Com.), or in a roto-accelerator (indicated as Rot.); also, in the 

case of swine, a composting from adult animal (indicated as Sw.Com.t) or

young animal (indicated as Sw.Com.c) were analyzed. Geographical locations of 

sample collections were: Av.Com: 24º 30’ 44,1” S 53º 43’ 52,6” W; Av.Rot:

24º 28’ 32,8” S 53º 48’ 43,4” W; Sw.Rot: 24º 26’ 29,6” S 53º 48’ 00,7” W;

Sw.Com.t: 24º 29’ 10,0” S 53º 48’ 37,1” W; Sw.Com.c: 24º 33’ 04,8” S 53º 52’

15,1” W.

Composting materials were homogenized, collected and stored in 50 mL 
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plastic capped tubes, and maintained on ice until arriving to the lab and then 

kept frozen at -45 °C.

Samples from 4 biological replicates were mixed to promote 

homogenization of starting material, and 250 μg was used to extract DNA from 

the microbial community with 3 technical replicates using Power Fecal Isolation 

Kit (MOBIO, Carlsbad CA) according to manufacture instructions. Metagenomic 

DNA quality was evaluated by electrophoreses and quantified with Qubit 

(Invitrogen).

2.2. DNA Sequencing

Metagenomic DNA from each sample was used as template to amplify 

the V4 region of 16S rRNA gene (Caporaso et al., 2012; Caporaso et al., 2011).

Amplification was carried out using 10 ng of metagenomic DNA, KlenTaq Mix 

polymerase (Sigma-Aldrich) and 10 mM of primers

515F (AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGC 

CGCGGTA) and 806R (CAAGCAGAAGACGGCATACGAGATAGTCAGTCAGCC-

GGACTACHVGGGTWTCTAAT). Reaction occurred with initial denaturation 

temperature of 94 °C for 3 minutes, followed by 18 cycles of denaturation at 94

°C for 45 seconds, annealing at 50 °C for 30 seconds, and extension at 68°C 

for 60 seconds, with final extension at 72 °C for 10 minutes. Amplified DNA

products of 400 bp were precipitated and barcoded with Nextera kit and 

sequenced using Illumina MiSeq2000 platform according to manufacturer´s

instructions.

Also, from two random samples global sequencing of total DNA was 

performed in Illumina MiSeq2000 platform according to manufacturer´s 

instructions by shotgun strategy. 

2.3 DNA Sequences analyses
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Sequences of F1 strands were processed, demultiplexed and filtered 

using Qiime v.1.9.1 (Caporaso et al., 2010). Reads shorter than 240 pb were 

eliminated, and from those selected, quality acceptance was 0.5. Sequences

were treated with Uparse (Edgar, 2013) and denoised with Usearch9 (Quince et 

al., 2011). Chimeras were removed, and taxonomy was assigned through 

Operational Taxonomic Units (OTUs) that were generated at 97% of identity 

using Silva database release 128 (Yilmaz et al., 2014). Core analysis of 

biodiversity was performed with 1,114,635 reads in Qiime and normalization 

with 7860 reads. The OTUS visualization of alpha and beta diversity analyses, 

and the multivariated analyses of principal components (PCA) with alpha 0.5 

were performed in Emperor (Vazquez-Baeza et al., 2013). Also, alpha diversity 

analysis at level of genera groups were calculated in R (R Core Team, 2017) 

using BiodiversityR version 2.9-1 package (Kindt and Coe, 2005) including 

richness, abundance, Shannon and Simpson indexes. The Rényi profile that 

generates a visual comparison of biodiversity indexes was generated in R using 

Vegan version 2.4-6 package (Oksanen et al., 2018). Statistical analysis of 

metagenomic profile was done in STAMP v.2.1.3 (Parks et al., 2014) with 

extended error bar was used for two genera groups, indicating the genera with 

p-value <0.05, according to two sided t-test with confidence interval of 0.95 

and t-test inverted; multiple test correction was done with Bonferroni.

From global sequencing of total DNA of two random samples, the set of 

unassembled reads was submitted for functional annotation to Metagenomics 

Rapid Annotation (MG-RAST) pipeline (Meyer et al., 2008). The functional 

profile was analyzed with SEED database subsystem level 1 (Overbeek et al., 

2005) that provided more number of categories and presented the highest 

number of annotated sequences compared to the other databases provided by 

the platform.

2.4 Physico-chemical measurements

Carbon and nitrogen content of each sample was determined in 
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Department of Soils and Agriculture Engineering at the Federal University of 

Paraná (Curitiba, Brazil). Briefly, each composting sample was homogenized, 

dried in oven at 80 °C for 24-28 hours to completely eliminate moisture, 

macerated to fine powder and sifted through a fine sieve. A fraction of thirty 

five mg of powdered sample was encapsulated in a tin foil, and submitted to 

combustion with He/O2 atmosphere. Detection and quantification of total 

content of organic matter was performed in an elemental analyzer (Elementar, 

Germany).

Sample moisture was determined by weighting 3 g of homogenized 

samples before and after drying in oven at 60 °C for 9 days. For pH 

determination, 20 mL of fresh homogenized composting samples were mixed 

with equal volume of CaCl2 0.01M and the pH measured with a pHmeter.

3. RESULTS

The composting samples analyzed in this work were obtained from waste 

composting in different farms regardless animal source or treatment type. The 

physical-chemical parameters of the composting material are in accordance 

with isolated points of the composting process and constitute non comparable 

samples. The Carbon/Nitrogen ratio, moisture percentage and pH are 

characteristic of different phases of composting process. Sample parameters

are summarized in Table 1.
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Table 1. Samples characteristics. Samples correspond to isolated points of husbandry waste
composting; they are not comparable and were analyzed as described in Material and Methods.

Abbreviation Type of 
treatment

Length of 
treatment* 

(days)

Temperature 
at sampling 

(°C)
C/N** pH Moisture

(%)

Av.Com. Avian 
Composting 13 41.2 10.2 8.7 43.7

Av.Rot. Avian 
Rotoaccelarator 30 35.8 9.3 7.2 14.5

Sw.Rot. Swine 
Rotoacelerator 110 53.6 7.1 8.1 26.2

Sw.Com.t Adult Swine 
Composting 60 39.6 8.6 7.5 57.4

Sw.Com.c Young Swine 
Composting 130 35.8 23.7 7.6 13.7

*Length of treatment indicates composting period 
**Carbon/Nitrogen ratio

For each sample 3 technical replicates were processed for DNA

extraction resulting in 15 samples, assessed by visualization in agarose gel 

electrophoreses (Figure 1). These 15 extracted DNA samples were submitted 

to 16S rRNA amplification of V4 region as indicated in material and methods,

and products were sequenced and the number of reads obtained from each 

sample are indicated in Table 2. Samples with low number of reads were 

submitted to a new sequencing run and reads were combined to achieve a 

minimum number of reads for normalization at OTU determination. After quality 

filtering, 91.2% of reads were obtained with a total of 1,114,635 reads, and 

richness indexes were calculated starting from 7,860 reads as the even sample 

depth (Table 2).
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Figure 1. Electrophoresis in 1% agarose gel of purified metagenomic DNA. Samples 
are grouped together by replicates: Av.Com (Avian Composting); Av.Rot (Avian 
Rotoaccelerator); Sw.Rot (Swine Rotoaccelerator); Sw.Com.t (Swine Composting adults); 
Sw.Com.c (Swine Composting young individuals). Numbers indicate each replicate. M indicates 
the molecular weight markers (1 Kb ladder -Fermentas). Ethidium bromide was used for 
staining.

Table 2. DNA sequencing data. Each treatment gathers three technical replicates. The 
column of Sample indicates the number of the technical replicate. The column of Reads 
indicates the number of sequenced reads per sample.

Treatment Sample Reads Sample Reads Sample Reads TOTAL

Av.Com 1 68784 6 100458 11* 71247 240489

Av.Rot 2 107965 7 38849 12 132902 279716

Sw.Rot 3 128317 8* 10805 13 27500 166622

Sw.Com.t 4 63143 9*+ 7861 14 139472 210476

Sw.Com.c 5 57327 10 104499 15 55506 217332

Total 1114635
*number of reads after 2 gathered runs (combined)
+ cutline for OTU determination

The number of OTUs was determined showing a variation per treatment 

from 266 to 1191 on average (Table 3). When compared diversity of
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treatments by comparing samples from pile composting to those from 

rotoaccelerator, alpha richness analyses indicated higher average values from 

pile composting, including number of OTUs, richness, and estimator indexes of 

Chao, PD whole tree, Shannon and Simpson (Table 3). Moreover, Rényi profile

(Figure S1) that allows comparison among indexes, indicated a dominance 

pattern of all samples, confirmed a higher richness of pile composting samples

and revealed that some replicates with intersecting profiles, as explained by

Tóthmérész (1995), are non-comparable communities.

Table 3. Alpha diversity indexes per treatment. From 16S rRNA amplicon sequence 
dataset of composting samples are shown the number of OTUs, richness indices of Chao 1,
Phylogeny Distance (PD) whole tree, values of richness and abundance, Shannon index and 
Simpson index. Replicates per treatment are shown in samples and average values were 
calculated. Treatments: Av.Com (avian composting), Av.Rot (avian rotoaccelerator), Sw.Rot 
(swine rotoaccelerator), Sw.Com.t (swine composting of adults carcasses), and Sw.Com.c 
(swine composting of young carcasses).

Treatment Sample #
OTUs Chao 1

PD
whole 
tree

richness abundan
ce Shannon Simpson

Av.Com. 1 449 1257 26.47 357 7426 3.82 0.94

6 428 1243 26.12 316 6227 4.01 0.96

11 723 1920 40.53 479 5955 4.40 0.97

Average 533 1473 31.04 384 6536 4.08 0.96
Av.Rot. 2 201 603 15.59 158 7711 1.54 0.52

7 203 629 14.57 163 7708 1.63 0.53

12 395 1137 26.49 292 7333 2.40 0.68

Average 266 790 18.88 204 7584 1.86 0.58
Sw.Rot. 3 143 922 11.66 96 6914 1.61 0.63

8 262 609 15.84 217 7033 2.92 0.86

13 641 1273 35.85 485 6872 4.13 0.95

Average 349 935 21.12 266 6940 2.89 0.81
Sw.Com.t 4 1234 2399 75.85 842 5249 5.48 0.99

9 1344 1913 80.19 898 5195 5.85 0.99

14 994 2110 66.28 667 6092 4.22 0.91

Average 1191 2141 74.11 802 5512 5.18 0.97
Sw.Com.c 5 649 1419 36.69 483 6766 4.06 0.95

10 629 1298 38.09 485 7041 4.05 0.96

15 1226 2308 72.41 879 6223 5.25 0.98

Average 835 1675 49.07 616 6677 4.45 0.96
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The taxonomic assignment of the OTUs performed by Qiime using the 

Silva (release 128) database, revealed 39 phyla, 110 classes, 245 orders, 483 

families and 1,178 genera, obtaining a maximum of 1344 OTUS found, 

estimated according to Chao1 index as a maximum of 2,399 OTUs, hosting a 

moderate microbial diversity. Such difference is considering the unique OTUS 

found known as singletons that are calculated on each sample with Chao’s 

estimation (Colwell et al., 2012). In Figure 2, rarefaction curves plot shows 

that sequencing effort was sufficient to gather a representative number of 

taxonomic groups for all sample points, since curve slops tends lightly to 

saturation. Also, these curves show that pile composting samples presented 

more OTUS as compared to those from the rotoaccelerator process,

independently of animal source, swine or avian.

Figure 2. Alpha richness rarefaction curve of 16S gene amplicon sequencing. Number 
of reads sequences versus the quantity of OTUs calculated on Chaos1 index. Each line 
represents average of each treatment reaching 7,860 reads. In green: Sw.Com.t (swine 
composting of adults carcasses), orange: Sw.Com.c (swine composting of young carcasses), 
red: Av.Com (avian composting), purple: Sw.Rot (swine rotoaccelerator), and blue: Av.Rot 
(avian rotoaccelerator). Plot generated in Emperor.
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The global taxonomic profile, at phylum level (Figure 3) reveals in 

general a similar profile, in which Firmicutes is the dominant group with an 

average of 68.7%, followed by Actinobacteria with 16.2%, Proteobacteria with 

8.5% and Bacteroidetes with 3.4%. Unassigned phylum, that offers potential 

novel microorganisms, occupied 1.9%, while other phyla represented less than 

0.2%. Firmicutes, Actinobacteria and Proteobacteria have been reported as the 

most abundant phyla during composting processes using different organic 

wastes by high-throughput sequencing in other studies has revealed (Antunes 

et al., 2016; de Gannes et al., 2013; Martins et al., 2013; Tashiro et al., 2016; 

Tkachuk et al., 2014; Tortosa et al., 2017; Zhang et al., 2016).

It is well known that the composting affects bacterial population (Insam

and de Bertoldi, 2007) in the same way that practices such as aeration, given 

by the turning mechanism of substrates, impacts microbial activity and 

temperature (Antunes et al., 2016). When compared animal source, swine 

samples presented more abundance of Proteobacteria and Bacteroidetes than 

avian samples that presented more Actinobacteria and Firmicutes abundance 

than avian samples. The same comparison applies for long versus short length 

of treatments. When comparing the type of treatment, traditional composted 

samples presented higher abundance of other groups than rotoaccelerator 

samples. Moreover, within the same animal source, traditional composting 

treatment seems to have more Proteobacteria than rotoaccelerator. So, in 

general, traditional pile composting indicates higher biodiversity equability at 

phylum level.
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Figure 3. Taxonomic profile of composting metagenome at phylum level. Identification 
of OTUs was done by sequencing of 16S rRNA gene and comparison against Silva database. In 
stacked columns are represented the abundances of OTUs in each sample replicate (numbers), 
distributed throughout the treatments. Colors represent the four major phyla found. 
Treatments: Av.Com (avian composting), Av.Rot (avian rotoaccelerator), Sw.Rot (swine 
rotoaccelerator), Sw.Com.t (swine composting of adults carcasses), and Sw.Com.c (swine 
composting of young carcasses).

At order level, taxonomic profile revealed that the order Bacillales, from 

phyla Firmicutes, was the most abundant in all treatments, particularly in 

samples treated by rotoaccelerator (Figure 4). On the other hand, the order 

Corynebacteriales (Actinobacteria) was the most abundant representative of 

samples containing poultry residues, as well as Flavobacteriales and 

Sphingobacteriales (Bacteroidetes) from swine wastes. Also, Burkholderiales 

and Xanthomonadales (Proteobacteria) represented swine samples.
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Figure 4. Taxonomic profile of composting metagenome at order level. Identification 
of OTUs was done by sequencing of 16S rRNA gene and comparison against Silva database. In 
columns are represented the abundances of OTUs with the major orders found by treatments. 
Colors represent the treatments: Av.Com (avian composting), Av.Rot (avian rotoaccelerator), 
Sw.Rot (swine rotoaccelerator), Sw.Com.t (swine composting of adults carcasses), and 
Sw.Com.c (swine composting of young carcasses).

Besides Bacillaceae that counted for the most representative family in all 

treatments, a pattern of distribution according to treatments was not observed 

(Figure 5). However, uncharacterized OTUS such as unassigned or 

unculturable counted for an important presence, especially in composting swine 

samples, unveiling the possibility of finding novel families. 



29

Figure 5. Taxonomic profile of composting metagenome at family level. Identification 
of OTUs was done by sequencing of 16S rRNA gene and comparison against Silva database. In 
columns are represented the abundances of OTUs with the major families found by treatments. 
Colors represent the treatments: Av.Com (avian composting), Av.Rot (avian rotoaccelerator), 
Sw.Rot (swine rotoaccelerator), Sw.Com.t (swine composting of adults carcasses), and 
Sw.Com.c (swine composting of young carcasses).

We hypothesized that among the samples there should be differences in 

terms of microbiome composition regarding the source of animal waste 

processed and/or the type for composting processing. To assess this 

hypothesis, multivariate analysis of principal components (PCA) was carried out

(Figure 6) showing that samples are grouped together according to one of 

principal components. Principal component 1 (PC1) of 50% comprises an 

important percentage of the total variances data attributed to animal source 

indicating that variation in biodiversity samples is primarily representative when 
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different type of animal source is incorporated in the analysis of composting 

system (avian or swine). While PC2 in 30% a less important clusterization

factor was attributed to the type of treatment (composting or roto-accelerator); 

and the third component PC3 with only 8% was not attributed to any relevant 

clusterization component. Then, the plot showed that for composting samples 

the clusterization best fitted to animal source, being from avian or swine 

source, than for type of composting, although both samples from roto-

accelerator processes are closer related as compared to those from pile 

composting. This implied that avian samples and swine samples were 

microbiologically more similar among the replicates, and consequently, 

traditional composting and rotoaccelerator treatments accounted for more 

variation.

Figure 6. Principal Coordinates Analysis (PCoA) of the bacterial communities, based 
on weighted Unifrac distance. Each dot represents one sample sequenced. Colors of dots 
represent triplicates of samples: in red: Av.Com (avian composting), blue: Av.Rot (avian 
rotoaccelerator), green: Sw.Com.t (swine composting of adults carcasses), orange: Sw.Com.c 
(swine composting of young carcasses), and purple: Sw.Rot (swine rotoaccelerator). The circle 
in continuous line represents the clusterization by source Avian; and in dotted line by source 
Swine. Modified of plot generated in Emperor.
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For a better understanding of biological relevance from animal source in 

composting processing, characteristic taxonomic groups at level of genera were 

identified in the two groups of samples, avian and swine sources. This analysis 

was performed comparing in mean proportion between the two groups along 

with the associated 95% confidence interval of this effect size and the p-value

of the statistical test (Figure 7). The genera found associated to avian source 

were by far Nasocomiicoccus, followed by Tissierella, Peptoniphilus, and 

Allofustis, while in the swine source was Bacillus. None of these groups was 

mentioned in other studies about composting nor treatment of husbandry 

wastes.

Figure 7. Extended error bar indicating all genera where two sided t-test with confidence 
interval of 0.95 t-test inverted produces a p-value <0.05. Multiple test correction is done with 
Bonferroni test. Genera overabundant in the composting systems with avian source represented 
in blue and with swine sources in yellow.

Two samples were also analyzed by global shotgun DNA sequencing in 

order to survey the set of genes within these samples (Table S1). Global 

sequencing of total DNA unassembled was submitted to MG-RAST platform. 

Annotation yielded 85 and 62 % for samples of avian rotoaccelerator (Av. Rot) 

and young swine composting (Sw.Com.c), respectively (Table S1). To 

distinguish between taxonomic and functional annotation, most of dataset 
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corresponds to protein sequences or unknown, only 0.60% (5,069 sequences) 

for Av. Rot and 1.08% (13,687 sequences) for Sw.Com.c codify for rRNA 

(Table S1) useful for OTU classification based on 16S rRNA gene. From this 

annotation at phylum level both samples confirmed proportions of 16S r RNA

gene classification, being Firmicutes highly dominant followed by 

Actinobacteria, Proteobacteria and Bacteroidetes (Figure S2).

The functional profile of composting samples Av.Rot and Sw.Com.c 

was analyzed in MG-RAST with SEED database subsystem level 1 that

provided more number of categories and presented the highest number of 

annotated sequences among the databases (Figure S3). This functional 

annotation revealed that the two samples presented similar profile with 

prevalence for clustering-based subsystems and high number of genes 

involved with carbohydrates, amino acids, proteins, cofactors, vitamins, and 

others (Figure 8), indicating high metabolic capability for composting 

nutrients. The Av.Rot sample presented genes related to stress response, 

while Sw.Com.c sample presented in the same proportion genes related to 

virulence, disease and defense.
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Figure 8. Subsystems annotation. Piechart of functional categories annotated for the 
samples submitted to MG-RAST: Av.Rot (avian rotoaccelerator), Sw.Com.c (swine composting 
of young carcasses). Analysis performed with SEED-Subsystems database.
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4. DISCUSSION

We hypothesized that pile composting process is comparable with that of 

the roto-accelerator composting in terms of microbiome composition and it 

could replace the traditional one and take advantage of the higher rate of

biotransformation and making more clean and efficient the composting process 

in field.

Physico-chemical conditions of all samples correspond to given 

parameters of composting optimization. According to Bernal et al. (2009), 

Carbon-Nitrogen ratio is adequate in the range of 25-35. Higher ratios make the 

process very slow, and in lower ratios there is an excess of nitrogen, which may 

be lost by ammonia volatilization or leaching. In our study, sample from swine 

rotoaccelerator (Sw.Rot.) presented the lowest ratio. However, on the farm the 

composting material is kept closed in the roto-accelerator, which avoids 

ammonia volatilization, allowing higher concentration of nitrogen compounds 

until the end of the process, resulting in a final product with higher value as 

plant fertilizer (comm. pers. Pedro Pies).

Long periods of composing treatment, as seen in the sample for swine 

rotoaccelerator (Sw.Rot.) should not be necessary when composting is mature 

and stable (Bernal et al., 2009). However, the roto equipment also functions as 

a stocking chamber for composting, even organic material is processed in 7 

days, the compost remains inside being mixed with new material incoming, and 

several days later, is finally disposed when the equipment is completely full

(comm. pers. Pedro Pies).

Values of pH near to neutral at the end of the process after having an 

alkaline peak, is apparently a result of the high occurrence of lactic acid 

bacteria in combination with ample fermentable sugars which are broken down 

to form lactic acid and other organic acids, plus carbon dioxide and ethanol in 

oxygen limited conditions (He et al., 2013; Partanen et al., 2010). A pH of 7.2-
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8.7 as was in our study supports high microbial activity during composting.

Rarefaction plots and biodiversity estimations in our study showed that 

disturbed environments present higher richness and a greater number of 

taxonomic groups. That was the case of traditional pile composting that is 

exposed more directly to environmental conditions such as wind, moisture and 

temperature seasonal changes that act as stress factors, in contrast to 

rotoaccelerator samples in a more stable and isolated process in which smooth 

and controlled movement is part of the process in a closed chamber. This kind 

of phenomenon is also presented when compare other disturbed environments 

such as mangrove (Mendes and Tsai, 2018).

At highest taxonomic level, Firmicutes was the vast dominant phylum in 

all samples. Other composting studies also observed this group in high 

abundance (Oakley et al., 2013; Tkachuk et al., 2014), and it seems that 

regardless the composting treatment, substrate composition or temperature, it 

plays an important role in degrading organic matter throughout de composting 

process. Actinobacteria, the second most abundant group, importantly form 

part of the thermophilic solid phase highlighting its potential in cellulosic 

degradation (Heiss-Blanquet et al., 2016; Martins et al., 2013), found 

abundantly in the vegetal substrates of litter in composting matter, and being 

presumably responsible for C/N balance. Proteobacteria is frequently found in 

mesophilic lignocellulose-degrading microcosms, such as mangrove, soil or 

sugarcane bagasse, but also at initial phases of composting. Bacteroidetes are 

known plant cell wall polysaccharides degraders, especially in termite, herbivore 

and human gut microbiota. Put together, in the hydrolysis of polysaccharides 

within the compost habitat, there is a synergistic action of Actinobacteria with 

Proteobacteria and Bacteroidetes (Wang et al., 2016).

In a description of the molecular process sketch during lignocellulose 

degradation by composting described by Antunes et al. (2016), the order 

Bacillales plays an important role, and Clostridiales secondly important, during 

initial phases; while the Actinomycetales order plays an important role during 
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final phases after promoting aeration by turning process. Orders from Bacillales 

are abundant in thermophilic stages degrading complex polymers such as 

cellulose and solubilize lignin.

Genus Noscomiicoccus from the family Staphylococcaceae was found as

the most significant overabundant group in avian source samples of composting 

and it could be used as marker of poultry waste composting. This genus was 

first described by Alves et al. (2008) on the basis of 16S rRNA gene sequence 

and phenotypic analyses. Cells are non-pathogenic, aerobic, mesophilic, slightly 

halophilic and weakly or not- fermentative (Alves et al., 2008). At present, this 

genus only comprises two species with genomes already sequenced: N. 

ampullae (Alves et al., 2008) and N. massiliensis (Mishra et al., 2013), both 

isolated from clinical samples, from the surface of saline bottles used for 

washing wounds in hospital wards and from the fecal flora of an AIDS-infected 

patient. Despite of being poorly reported, genus Noscomiicoccus was also listed 

among 50 genera common to fecal, litter, and carcass samples of commercial 

poultry (Oakley et al., 2014; Oakley et al., 2013), and also in this study holds 

for an important place in agricultural samples, specially to characterize avian

samples.

The second important genus, significantly overabundant in avian source 

samples of composting, is the genus Tissierella. It belongs to Family XI or 

family Tissierellaceae as proposed by Alauzet et al. (2014), with cells obligately 

anaerobic, weakly or non-fermentative, creatine or creatinine are required for 

growth, and typically produce acetate, ammonia and CO2 (Shah and Hookey, 

2015). To date, this genus comprises four species, T. praeacuta and T. carlieri, 

reported from various clinical sources; and T. creatinini, and T. creatinophila,

recovered from environmental samples (Alauzet et al., 2014). Currently, only T. 

creatinophila and T. praeacuta have their genomes sequenced.

Together in the same family with Tissierella, genus Peptoniphilus has a 

close phylogenetic relationship (Alauzet et al., 2014) and significantly 
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overabundance in avian source samples of composting. Cells are also obligately 

anaerobic, use peptones and oligopeptide as major energy source (Ezaki and 

Kawamura, 2015). It comprises several genera, having 15 genomes sequenced 

and most of them were isolated from clinical specimens.

Genus Allofustis, from family Carnobacteriaceae, from the order 

Lactobacillales, has only one specie A. seminis that has its genome sequence 

and it is poorly reported. Cells are facultatively anaerobic and were isolated 

from porcine semen (Collins et al., 2003). Phylogenetic analysis using 16S rRNA 

gene sequences showed that this monophyletic group forms a suprageneric 

cluster that should be resolved when additional species were isolated and 

described, but it can be distinguished from its close phylogenetic relatives using 

a combination of morphological, biochemical and chemotaxonomic criteria 

(Lawson, 2015).

The Bacillus genus was found as the only group with significant 

overabundance in swine source compost samples, and its family Bacillaceae is 

the most abundant group in this study with 50% average among all samples. 

This genus with numerous species counts with 180 sequenced genomes. In 

general, Bacillus is a Gram-positive cell, spore-forming, obligate aerobes or 

facultative anaerobes, and ubiquitous in nature, reported as pathogenic, 

environmental, and used for industrial purposes (Alcaraz et al., 2010). In 

composting, this group becomes dominant at the thermophilic stage, and has 

the ability to produce enzymes involved in polysaccharide and lignocellulosic 

compounds degradation (Martins et al., 2013; Tortosa et al., 2017).

In other less abundant genera found, Clostridium and its relatives 

include anaerobic or micro-aerophilic species, and have been reported to play 

an important role in landfill cellulose degradation (Zhang et al., 2014). Presence 

of Clostridium and Clostridium-like sequences indicated oxygen limitation 

(Partanen et al., 2010), as well as cellulose degradation (Zhang et al., 2014), 

and was found among the 30 most prevalent groups at genera level (data not 

shown). Lactobacillus presence is correlated with low pH (4.7-5.9), mesophilic 
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temperatures, presence of available carbohydrates, and almost ubiquitous 

environments was reported in studies with related samples such us composting 

of a zoo park operation, organic municipal waste composting and animal feces

(Martins et al., 2013; Partanen et al., 2010; Endo et al., 2010). The presence of 

this taxon could infer some kind of resistance to a wider pH range and 

temperature, anyhow consistent with carbohydrate availability at late stage of 

composting.

Pathogenic and opportunistic enterobacteria genera such as Salmonella, 

Campylobacter, and Listeria were not found, suggesting the use of composting 

treatments for adequate sanitary treatment. Some other genera that may 

contain pathogenic species include Escherichia-Shigella, close related genera 

that represented 0.54% among all samples. Pseudomonas genus was present

in swine composting samples (Sw.Rot, Sw.Com.t, Sw.Com.c) with 9.13% 

average; Streptococcus was found with up to 1.22%; and Staphylococcus was

found not representative with less than 0.79%.

Some authors found significantly correlated an increasing number of 

genera Planomicrobium and Ohtaekwangia during maturation phase suggesting 

as possible biomarkers for this last phase of composting (Tortosa et al., 2017). 

In this study those groups were found in low prevalence of less than 0.02% or 

not found. Neither was genus Thermus, indicator of thermophilic phases.

Regarding bacterial population over imposing, Partanen et al. (2010) 

indicated that rapid turnings of the composting material produced a fast 

bacterial cell disintegration including genomic degradation, so this should 

influence in the content of DNA extracted and amplified, and only further 

transcriptomic studies could clarify whether population debris of first mesophilic 

phase are masking populations of the thermophilic phase. According to Tortosa 

et al. (2017), microbial communities in the mesophilic and mature phases are 

different. In this study, as thermophilic group Bacillus counted for the greatest 

taxon found, it could be masking other mesophilic groups. 
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An increase in diversity was not observed in mature compost, as was 

observed by de Gannes et al. (2013), on the contrary when longer periods of 

composting expected higher biodiversity, shrinkage on the community diversity 

was also observed by Zhang et al. (2016). However, as authors mentioned, 

patterns may vary on the feedstock composition, mechanism of composting and 

the method of analysis.

5. CONCLUSION

Regarding bacterial community structure and physic-chemical 

parameters, composting process carried on roto-accelerator equipment is 

comparable with that on static pile composting. Despite traditional pile 

composting presented slightly higher biodiversity richness, both processes are 

characterized by microbiota that transforms animal waste together with vegetal 

substrates in organic matter highly nutrient and pathogen clean, useful for crop 

fertilization.

In taxonomic profile at level of phylum, Firmicutes dominated all samples 

followed by Actinobacteria, Proteobacteria and Bacteroidetes. At level of 

genera, we found characteristic groups according to animal source, 

Nosocomiicoccus, Tissierella, Peptoniphilus and Allofustis for avian wastes, and 

Bacillus for swine waste source composting.

Many genera not previously associated with composts were identified in 

these systems. Thus, this study contributed with new concepts to compost 

microbiology and could have implications in monitoring compost process and in 

the development of biomarkers.
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7. SUPPLEMENTARY INFORMATION

Figure S1. Rényi profile plot of diversity. Visualization of comparison among different 
diversity indexes. The Y axe shows proportional values of richness and the curve pattern reveals 
relative abundance of maximum equability when curve tends to horizon. Intersecting curves 
indicate non-comparable samples. Samples 1, 6 and 11 correspond to Avian Composting; 
samples 2, 7 and 12 to Avian Rotoaccelerator; samples 3, 8 and 13 to Swine Rotoaccelerator; 4, 
9 and 14 to Swine Composting adults; and 5, 10 and 15 to Swine Composting young. 
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Table S1. Shotgun metagenome summary results. Metagenomes libraries submitted to 
MG-RAST analysis: Avian Rotoaccelerator (Av.Rot), and Swine composting young individuals 
(Sw.Com.c).

Av.Rot Sw.Com.c

Sequences 1,385,175 956,597

Basepairs 395,835,271 277,383,627

Failed QC
46,443 sequences

(3.35%)
54,847 sequences

(5.73%)

Mean Sequence Length 221 ± 97 bp 220 ± 101 bp

Ribosomal genes 13,687 sequences 
(0.6%)

5,069 sequences 
(1.0%)

Predicted proteins with known 
functions

1,072,616 sequences
(84.88%)

523,583 sequences
(61.92%)

Predicted proteins with unknown 
function

177,423 sequences
(14.04%)

316,987 sequences
(37.48%)
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Figure S2. Taxonomic profile at phylum level. Bars represented percentage of OTUS at 
different samples treatments: Avian rotoaccelerator (Av.Rot) and Swine Composting of young 
individuals (Sw.Com.c).

Figure S3. Databases annotation. Columns represent abundance of the estimate number of 
sequences that contain a given annotation by the different functional databases. Colors 
represent E-value ranges of the match of a given annotation. Analysis performed in MG-RAST.
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CAPÍTULO II

Bioprospecção de lipases na metagenômica: 

triagem funcional versus triagem iin silico

Observação: As informações aqui apresentadas correspondem ao 

trabalho desenvolvido em conjunto com vários pesquisadores que utilizaram as 

técnicas da metagenômica através das estratégias funcional e in silico. O 

interesse em apresentar as duas estratégias se justifica pela apresentação das 

vantagens e desvantagens dentro do objetivo comum da bioprospecção 

metagenômica. O capítulo a seguir apresenta unicamente  os resultados obtidos 

para a estratégia da triagem in silico, trabalho correspondente a essa tese de 

doutorado. Os resultados referentes à lipase identificada através de análise 

funcional correspondem a dados obtidos pelo doutorando Andre Ferreira Mota. 

A triagem in silico envolveu a participação das Drs. Sarah Sacks e Maura 

Gueiros nas etapas de sequenciamento e análise das sequências. Minha 

participação neste trabalho envolveu os ensaios de atividades da enzima 

Lip720.
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Bioprospection of lipases in metagenomics: functional screening 

versus iin silico screening

Mota A.F; Cuaspa R.; Sacks S.T; Moure V; Faoro H; Guerios M; Schuler M; ...

ABSTRACT

Two lipolytic enzymes were obtained from a metagenomic DNA library 

constructed from a sample of soil contaminated with animal fat. Enzyme LipE7 

(31 kDa) was identified and purified along with its chaperone, ChapE7 (20 kDa), 

through functional screening using culture media containing 1% tributyrin, 

trioctanoin or triolein. The other enzyme, Lip720E (47 kDa), which does not 

require a chaperone, was obtained using an in silico screening. A pool of 32 

metagenomic fosmids isolated from clones with fat acids hydrolyzing activity on

agar medium was sequenced using the Ion Proton platform. DNA sequences 

were analyzed using MG-Rast for searching of lipase or esterase domains. 

These proteins were assessed for lipase activities on different fatty acids

substrates and stability conditions. Comparison of both screening approaches

was addressed.

Key-words: bacterial lipase, metagenome, enzyme screening
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1. INTRODUCTION

Lipases are hydrolase enzymes that catalyze hydrolysis of carboxylic 

ester bonds in the presence of water (E.C.3.1.1.3.). Different from esterases, 

true lipases act on long chain triacylglycerols, have interfacial activation instead 

Michaelis-Menten kinetics and prefer hydrophobic substrates (Arpigny and 

Jaeger, 1999; Bornscheuer, 2002).

Lipases have characteristic alpha/beta folding structure. The catalytic 

center consists of three catalytic residues: nucleophilic residue (serine, 

glutamate or aspartate), catalytic acid residue (aspartate or glutamate) and 

histidine residue. The nucleophilic serine residue usually presented in the 

conserved pentapeptide G-X-S-X-G (Jaeger et al., 1994; Arpigny and Jaeger, 

1999). According to sequence identity and biochemical properties lipases and 

esterases are classified into eight canonical families (I-VIII), but recent studies 

reveal more than nine novel families (Lee, 2016; Lenfant et al., 2013).

Bacterial lipases have been gaining importance in biotechnology because 

of their activity in extreme temperature, pH, osmolarity and presence of 

detergents and organic solvents. Advantages of microbial lipases include shorter

generation time than eukaryote lipases, easier manipulation, scale up and 

purification, broader substrate specificity, enhanced stability and lower 

production costs (reviewed in Nagarajan, 2012).

The screening method for assessing cells carrying lipolytic activity by 

using tributyrin agar plates is still widely used allowing an easy access to

lipolytic activity through translucent halos formed around the cell colony. Similar 

activity detection can be observed using a protein extract. Halo diameter can be 

used as a semi quantitative parameter for enzyme activity. Other methods 

include chromophoric substances such as p-nitrophenyl esters or naphtyl esters 

(Popovic, 2017).
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Lipases have been isolated using traditional microbial cultivation 

methods. However, the increasing demand for novel and more diverse enzymes 

have favored searching for alternative methods. Considering that about 99% of 

the bacteria species is mainly unknown, a great potential for new enzymes 

upon environmental and unknown bacteria is presented (Culligan et al., 2014). 

Metagenomics, which address the environmental genomic DNA without the 

requirement of growing cells, can be used for biotechnological prospection of 

novel enzymes, metabolites and products (Schloss & Handelsman, 2003).

Metagenomics is considered the most promising methodology for identifying 

innovative biocatalysts from environmental DNA (eDNA) (Lorenz and Eck, 

2005).

Different environments have been explored in prospection for new 

enzymes using metagenomics approaches. Those environments include 

compost (Martins et al., 2015; Nurhasanah et al., 2015), soils (Glogauer et al., 

2011; Faoro et al., 2010), marine and freshwater environments, vegetal and 

animal tissues (further revision in Lopez-Lopez et al, 2014; Popovic et al., 

2017).

Two different approaches have been described for screening new 

enzymes using environmental samples: a functional screening in which enzyme 

activity is detected, and in silico screening which is based on DNA sequencing 

analysis and comparison to databanks.

Functional screening consists on cloning isolated eDNA into vectors 

allowing protein expression in a determined host, and then these metagenomic 

DNA library clones are submitted to massive screening for specific activities. 

This procedure involves that the eDNA can be expressed in the host cell and the 

activity can be observed and measured (Schloss & Handelsman, 2003).

Strategy based on in silico bioprospection is not dependent on DNA 

cloning since high throughput DNA sequence can be used. Data from DNA 

sequence are analyzed using homology search through different databank and 

bioinformatics tools (Schloss & Handelsman, 2003).
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Both strategies present advantages and disadvantages, and the choice 

depends on different circumstances, mainly relying on availability of technical 

resources at “wet” lab or in silico lab.

Lipid degrading enzymes are among the most widely studied with 

metagenomics (Vorapreeda et al., 2016), because of its multiple 

biotechnological applications as catalyzers, including stability in organic 

solvents, wide substrate specificity, stereo-selectivity, and positional selectivity.

In this work the two types of screening for lipolytic activity using eDNA 

have been addressed. The steps required for each one are detailed and the 

advantages are discussed. The comparison is based on two successful case 

studies of lipases LipE7 and Lip720E. Other unsuccessful cases are also 

presented for discussion. 

2. METHODS

2.2 Sequence screening steps for Lip720E

2.2.1 Sequencing of metagenomic library

A metagenomic DNA library constructed using soil from an animal fat

effluent pond of a dairy industry (Glogauer et al., 2011) was screened for lipase 

activity on LB-agar medium containing 1% triolein, allowing identification of 

potential lipolitic clones. A pool of 32 metagenomic clones had their fosmid DNA 

isolated and processed for high throughput DNA sequencing. Isolated pooled 

DNA of those clones was mechanically fragmented using a COVARIS system. 

Fragments were end repaired, linked to P1 and P2 adaptors and selected by 

magnetic spheres. This material was sequenced using the Ion Proton platform 

(Life Technologies) and the CLC Genomic Workbench was used for data 

analysis and de novo assembly. Obtained contigs were screened with MGRast
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for lipases and ORFs were identified with FramePlot software. Lipases domains 

were identified using BLASTp and InterProScan. Amino acid sequence was 

evaluated for identity against NCBI database, tested for signal peptide on 

SignalP, and transmembrane helix on TMHH.

Primers were designed to amplify putative lipases present in the original

pool of metagenomic DNA. When amplification was unsuccessful, putative 

lipase genes were synthesized at Integrated DNA Technologies 

(www.idtdna.com). In order to allow cloning into the pET28 vector, restriction 

enzymes sites were added. Synthesized lipase gene was digested with XbaI and 

HindIII and cloned into pET28a expression vector. Selection of clones was done 

by kanamycin antibiotic resistance in TOP10 E. coli cells.

2.2.2 Expression of recombinant Lip720E and activity measurement 

E. coli BL21(DE3) cells carrying the pET28a-lip720E plasmid were grown 

in 5 L LB medium at 37°C until an OD600 of 0.4 and induced by the addition of 

isopropyl- -D-thiogalactopyranoside (IPTG) to a final concentration of 0.3 mM. 

The induced culture was incubated for a further 16 h at 16 °C before harvesting 

by centrifugation (10,000 × g for 5 min) at 4 °C. Cell pellet was resuspended in 

120 mL of buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl) and disrupted by 

ultrasonication in an ice bath (10 cycles of 10 s pulses, with 10 s interval at 

40% power) using a SONICATOR® XL 2020 (Heat systems-Ultrasonics Inc.). 

The crude extract was then centrifuged at 15,000 ×g for 10 min at 4 °C to 

pellet cell debris. The supernatant containing the protein was maintained at 4°C 

until use. Protein fractions were analyzed by SDS-PAGE (Laemmli, 1970).

The soluble fraction of the crude extract of Lip720E had its activity tested 

by visualization of a clear halo of hydrolysis degradation in agar plate 

supplemented with trybutirin 1 %. Also activity was tested by measuring at 410

nm of the amount of p-nitrophenol released from the p-nitrophenyl ester at 30 

°C for 5 minutes. The substrate solution was composed of 20 mM of p-
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nitrophenyl decanoate (pNPD) in acetonitrile/isopropanol (1/4 v/v) with a buffer 

10x containing Tris-HCl pH 8 500 mM, CaCl2 10 mM and Triton X-100 3%,

under agitation in a water bath at 60 °C, until the solution became transparent. 

Then 12.5 -well microtiter 

plate and the reaction was initiated by addition of of the crude cell 

extract containing the enzyme. With the final volume of 250 L, the reaction 

mixture contained Tris-HCl 50 mM pH 8, CaCl2 1 mM, Triton X-100 0.3 % (v/v),

pNPD 1 mM, isopropanol 4 % (v/v), acetonitrile 1 % (v/v) and crude extract. All 

experiments were performed in triplicate, the extinction coefficients of p-

nitrophenol were determined under each reaction condition and the effect of 

non enzymatic hydrolysis of substrates was subtracted. One unit of lipase 

-nitrophenol produced per minute.

Determination of enzyme specificity was done using seven different 

substrates: p-nitrophenyl acetate (C-2); p-nitrophenyl butyrate (C-4); p-

nitrophenyl valerate (C-5); p-nitrophenyl caproate (C-6); p-nitrophenyl 

decanoate (C-10); p-nitrophenyl dodecanoate (C-12) and p-nitrophenyl 

myristate (C-14). Lipolytic activity was determined using 3 μL of supernatant 

extract with 1 mM pNP-esters in acetonitrile:isopropanol (4:1) during 5 minutes.

2. RESULTS

2.2 Lip720E: a lipase obtained from sequencing analysis of a
metagenomic library

Glogauer et al. (2011) used a sample from an industry waste lagoon 

containing animal fat. This sample was used to construct a metagenomic DNA 

library using a fosmid as vector. This metagenomic DNA library had about 500 

thousand clones and it has been used for screening new lipases enzymes

(Glogauer et al., 2001; Martini et al., 2012, 2014).
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In order to evaluate an in silico screening approach to identify a new 

lipase activity, 32 metagenomic clones, previously selected for lipase activity on 

agar containing 1% triolein (Gloglauer et al., 2011) were pooled and submitted 

to a high through put next generation sequencing using the Ion Proton platform 

(Life Technologies) as described in methods. 

Sequences of about 100 bp were processed yielding libraries SLP1 with 

68,483 reads and SLP2 with 153,413 reads. De novo assembly resulted in 23

and 30 contigs with N50=3,717 and 5,550, respectively for SLP1 and SLP2, with 

more than 1,042 bp. Those sequences were analyzed for the identification of 

those potentially codifying for lipase/esterase hydrolases. From these 

sequences some were identified as incomplete sequence showing only 

hydrolase domains.

The contig 720 was found to encode two genes potentially related to 

lipase/esterase functions (here namely lip720E and lip720G).  The lip720E gene 

showed 99% identity with a non-characterized esterase from Acidovorax caeni

(Heylen, Lebbe and De Vos, 2008), and 78% identity with an esterase/lipase 

from unculturable bacteria named TB_I_H8_p (GenBank KM669734.1). Amino 

acids sequence did not show a signal peptide nor a transmembrane helix. The 

lip720G gene coded for an enzyme with 97% identity with a lipase from SGNH 

hydrolases family from Acidovorax caeni, and 61% identity with a lipase from

Verminephrobacter aporrectodeae. Amino acid sequence contained signal 

peptide and no transmembrane helix.

Attempts to amplify those sequences by PCR were unsuccessful, 

therefore the gene was chemically synthesized with codon optimization for 

expression in E. coli. Synthesized sequences were digested with restriction 

enzymes XbaI and HindIII, and inserted in pET- 28a vector previously digested 

with same enzymes. 

For protein expression, plasmids were transformed in E. coli BL21(DE3),

however although several attempts were carried out to express Lip720G, the 

protein seems to be toxic for the bacteria cells since cell death was observed 
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upon induction. Therefore, characterization was carried out for Lip720E.

Phylogenetic analysis showed that Lip720E belongs to family III of 

lipases (Jaeger and Eggart, 1999; Lee, 2016). In a phylogenetic tree performed 

with Clustal Omega (EMBL-EBI), this amino acid sequence was clustered 

together with the other 5 lipases of the highest identity at Blastp, and they 

have a close relationship with lipases from canonical family III (Figure 8). 

Sequence analysis shows that Lip720E presents the characteristics of family III 

that includes typical fold alpha/beta from hydrolases; the catalytic triad for 

serine hydrolases, identified as Ser215 Asp372 His380 of 432; active-site aspartic 

residue, identified as Asp372; and conserved pentapeptide of serine catalysis 

GXSXG on Ser215.
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FIGURE 8. Phylogenetic tree with families of lipases. Analysis performed in Clustal 
Omega (EMBL-EBI) with Neighbour-joining method. Includes Lip720E highlighted in blue and 
representative members of each family classified by Jaeger and Eggart (1999) indicated in 
roman letters, also included lipases from a new family related to family III, a sister group IIIB. 
It is indicated access number of sequence, encoding product for group clustered with Lip720, 
organism name in genus and specie when available, and distance number of each branch of the 
tree.

Protein expression of Lip720E was performed at OD600 ~0.4 with 0.3 mM 

IPTG at 16°C overnight, and a low expression was detected. Nevertheless, 

compared to control, activity was detected on crude extract and supernatant 

extract using agar plates containing 1 % tributyrin (Figure 9) and 1% triolein. 
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Different attempts for purification of Lip720E were performed however, we 

were unable to produce a purified protein.  Therefore, activity was tested using 

a cell extract upon induction.

FIGURE 9. Activity of Lip720E on agar plate supplemented with tributyrin 1%. 
Hydrolysis halo of 15 μL of supernatant extract of induced E.coli BL21(DE3), after cell lysis and 
centrifugation A. protein extract of cells carrying plasmid pET-28a-lip720E, diameter: 14.5 mm. 
B. Protein extract of cells carrying plasmid pET-28a without insert. Lipolytic activity was 
determined using 3 μL of supernatant extract with pNP-esters during 5 minutes, in 1 mM 
substrate in acetonitrile:isopropanol (4:1). 

Hydrolysis activity using pNP-esters with different size chains were 

carried out (Figure 10) showing that Lip720E has lower activity for short chain 

acids. A higher activity was observed with C10 chain substrate.

FIGURE10. Lip720E activity in different esters of p-nitrophenyl. P-nitrophenyl acetate 
(C2), p-nitrophenyl butyrate (C4), p-nitrophenyl valerate (C5), p-nitrophenyl decanoate (C10), 
p-nitrophenyl dodecanoate (C12), p-nitrophenyl myristate (C14).
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3. DISCUSSION 

In order to compare two strategies for identification of new lipase, a 

metagenomic DNA library was screening using a functional and an in silico

approaches. The functional screening involved the identification of a fosmid 

clone with activity to produce a hydrolysis halo in tributyrin and triolein 

containing medium. After selection, fragments of the fosmid DNA were 

subcloned and subject to a second screening for lipase activity. Subclones 

showing activity were selected and analyzed. This strategy leaded to the 

identification of LipE7, a protein with homology with an uncharacterized lipase 

of Aeromonas hydrophila. Moreover, LipE7 is a lipase which requires a specific 

foldase for correct folding and whose gene frequently found near to the lipase 

gene. This foldase coding gene was identified in the same subclone of lipE7

allowing us to obtain an activity lipase. Part of these results are described in the 

dissertation by Andre Ferreira Mota (2016).

In this chapter we described the Lip720E, a lipase identified by in silico

screening. Lip720E protein was characterized as a lipase for acting on long 

chain ester substrates and it was found to be active in the water-soluble 

fraction of cell extract at room temperature. Further studies such as substrate 

specificity, enzyme stability, product quantification and possible biotechnological 

application could not be performed since purification of the enzyme from the 

rest of cell components was not possible, nor its visualization in polyacrylamide 

gel electrophoreses, steps required for assessing activity.

Prospection based on in silico strategy has several vantages considering 

nowadays capability for high throughput DNA sequencing and computation 

analyses availability, including different databank and comparison resources. On 

the other hand, this approach relies on sequence similarity (whole protein or 
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protein domains) therefore, making more difficult in finding new enzymes with 

low similarity to those described as well as active enzymes with expected 

functions.

The problems we faced in this work were related to expression of 

heterologous protein in a surrogate host since we found our gene to being

originally expressed under a codon bias completely different to the selected 

host E. coli. In that case, synthesis of the gene with known codon bias 

overcame this issue with verifiable expression and activity. However, the 

syntheses probably resulted in low expression that impaired with low or none 

visualization in polyacrylamide gel making it difficult the visual verification of 

expression. 

Another obstacle we have faced, not related to the metagenomic 

strategy screening, was the inability of achieving the His-tag fusion protein 

purification. Despite the simplicity and efficiency of this affinity purification 

method we were unable to obtain a purified protein. We have also tried 

unsuccessfully hydrophobic interaction and ion exchange chromatography. 

We also found difficulties in measuring lipolitic catalysis in rapid, precise 

and comparable manner, with no requirement of purification. Heterogeneous 

character of lipase catalysis makes difficult to accurately quantify lipolitic 

reaction, due to its nature of being hydrophilic enzymes and acting over 

hydrophobic substrates (Beisson et al., 2000). In this study it was used the agar 

plate containing fatty acid substrate for detecting hydrolytic activity of lipases 

by halo formation. This method allowed precise identification among few 

samples, but required few days or at least several hours in order to appreciate 

visible clear halo. Also it was tested the use of chromogenic substrates, p-NP-

esters of different fatty acids, but screening conducts to misleading results since 

they are not natural substrates (Beisson et al., 2000). 

The in silico strategy for prospection of the same metagenomic dataset 

allowed the identification and partial characterization of another lipase that 

encountered another issue of this strategy. The sequence lip355 codifies for a 
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carboxylic ester hydrolase (E.C. 3.1.1) with identity of 77% for a triacylglycerol 

lipase from Rhodoferax ferrireducens T118 (GeneBank WP_011465630.1). 

Lip335 presents a conserved pentapeptide motif G-X-S-X-G and a catalytic triad, 

thus, belonging to a true lipase family. The sequence lip355 was amplified by 

PCR, cloned in a vector for superexpression and the protein was expressed in 

E.coli. The expressed Lip355 was shown to be insoluble despite different 

protocols for expression and cell lysis conditions. Further in silico and in vitro

analyses indicated that a specie-specific foldase protein is required for the 

activity of the lipase Lip335 (Unpublished data).

Although in silico prospection may represent an interesting approach for 

identifying new enzymes, several difficulties are faced. Different codon bias 

between the original host and the one used for protein expression, requirement 

of a co-factor or a specific chaperone, for example, can impair activity. Since

sequence homology comparison is used in order to identify potential genes, a 

potential restriction with activity related to a novel sequence may apply. On the 

other hand, functional screening allows the identification of active enzymes 

upon expression in a different host, indicating that any requirement for activity 

(if any) can be provided by the host cell. Even with the requirement of cloning 

prior the prospection, if activity analyses are necessary, a functional screening 

may be a more appropriate approach.
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