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ESTUDO DO MÉTODO DE NEWTON EM VARIEDADES

Tese apresentada ao curso de Pós-Graduação em
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sem estes não chegaria até aqui. A minha cunhada e comadre Manuella Cajaiba sempre
presente como um anjo nos momentos mais dif́ıceis dessa batalha. Aos amigos (A galerinha)
que fizeram meus dias em Curitiba muito mais felizes: Fernando e Pâmela, Ana, Monique,
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RESUMO

Nesta tese, nós estudamos método de Newton para encontrar singularidade de campo de
vetor definido em variedade Riemanniana. Obtemos uma importante propriedade do trans-
porte paralelo de vetor para estabelecer (sob hipótese mı́nima) convergência super-linear da
sequência gerada pelo clássico método de Newton para encontrar zero de campo de vetor.
Além disso, nós propomos um método de Newton amortecido e apresentamos sua análise
global de convergência usando busca linear e uma função mérito. Asseguramos que, após um
número finito de iteradas, uma sequência gerada pelo proposto método de Newton amortecido
reduz-se a uma sequência gerada pelo método de Newton. Portanto, a taxa de convergência
do método proposto é super-linear/quadrática. Nós implementamos ambos os métodos para
encontrar minimizadores globais de uma famı́lia de funções definidas no cone de matrizes
simétricas definidas positivas. Nossos experimentos mostram que a performance do método
de Newton amortecido é superior a performance do clássico método de Newton, indicando
que o comportamento dos métodos no espaço Euclidiano permanecem neste novo cenário.
Para proceder com os experimentos, nós primeiro equipamos o cone de matrizes simétricas
definidas positivas com uma estrutura de variedade Riemanniana. Então, definimos as ite-
radas das sequências geradas pelo método de Newton e pelo método de Newton amortecido
usando a curva geodésica nesta variedade. Contudo, computar geodésica involve significante
custo numérico. Devido a isso, nós propomos dois novos algoritmos, a saber, método de
Newton com retração e método de Newton amortecido com retração, para encontrar singu-
laridade de campo de vetor definido em variedade Riemanniana. Nós apresentamos análises
de convergências desses novos métodos por extender os resultados obtidos para estabelecer
o método de Newton e o método de Newton amortecido. Finalmente, nós implementamos
o método de Newton amortecido com retração para encontrar minimizadores da famı́lia de
funções acima mencionada. Neste caso, nossos experimentos mostram que o método de
Newton amortecido possui performance similar do método de Newton amortecido com re-
tração. As principais contribuições desta tese são como seguem. 1) Sob hipótese mı́nima,
isto é, invertibilidade da derivada covariante do campo de vetor em sua singularidade, nós
mostramos que o método de Newton está bem definido em uma vizinhança aceitável de sua
singularidade e que a sequência gerada por este método converge com taxa super-linear,
(veja (27)). 2) Nós propomos um método de Newton amortecido no contexto de variedade
Riemanniana e estabelecemos sua convergência global para uma singularidade do campo de
vetor preservando as taxas de convergências super-linear e quadrática do método de Newton
(veja (16)). 3) Propomos o método de Newton amortecido com retração e estudamos suas
propriedades de convergência, obtendo os mesmos resultados do método de Newton e do
método de Newton amortecido.

Keywords: variedade Riemanniana · método de Newton · método de Newton amortecido ·
convergência local · convergência global · taxa super-linear · taxa quadratica · busca linear ·
exponential mapping · retração.



ABSTRACT

In this thesis, we study Newton’s method for finding a singularity of a differentiable vector
field defined on a Riemannian manifold. We obtain an important property of the parallel
transport of a vector which allows to establish (under a mild assumption) super-linear con-
vergence of the sequence generated by the classical Newton’s method for finding a zero of
a vector field. Moreover, we propose a damped Newton’s method and we present its global
analysis of convergence using a linear search together with a merit function. We ensure that
the sequence generated by the proposed damped Newton’s method reduces to a sequence
generated by the classical iteration of Newton’s method after a finite number of iterations.
Thus, the convergence rate of the proposed method is super-linear/quadratic. We implement
both methods for finding global minimizers of a family of functions defined on the cone of
symmetric positive definite matrices. Our experiments show that the performance of the
damped Newtons method is superior to that of the classical Newton’s method, indicating
that the behavior of the methods in Euclidean space persists in this new setting. To proceed
with the experiments, we first endow the cone of symmetric positive definite matrices with
a Riemannian manifold structure. Then, we define the iterations of the sequences generated
by Newton’s method and damped Newtons method using the geodesic curve of this manifold.
However, in general, performing this task in a computationally efficient manner involves sig-
nificant numerical challenges. Therefore, we propose two new algorithms, namely Newton’s
method with retraction and damped Newton’s method with retraction, to find a singularity of
a vector field defined on a Riemannian manifold. We present the convergence analysis of
these new methods by extending the results of Newton’s method and the damped Newton’s
method. Finally, we implement the damped Newton’s method with retraction for finding
global minimizers of the aforementioned family of functions. For this case, our experiments
show that damped Newton method with retraction does not present a better performance
than the damped Newton method. The main contributions of this thesis are the following.
1) Under a mild assumption, i.e., invertibility of the covariant derivative of the vector field
at its singularity, we show that Newton’s method is well defined in a suitable neighborhood
of this singularity and that the sequence generated by this method converges to the solution
at a super-linear rate (see (27)). 2) We propose the damped Newton’s method in the Rieman-
nian manifold context and establish its global convergence to a singularity of a vector field
preserving the super-linear convergence rates of Newton’s method (see (16)). 3) We propose
the damped Newton’s method with retraction and study its convergence properties, obtaining
the same results as those of Newton’s method and the damped Newton’s method.

Keywords: Riemannian manifold · Newton’s method · damped Newton’s method · local
convergence · global convergence · super-linear rate · quadratic rate · linesearch · exponential
mapping · retraction.
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NOTATIONS

M - finite-dimensional Riemannian manifold

TpM - tangent space of M at p

⋃
p∈M TpM - tangent bundle of M

X - vector field defined on M

∇X - covariant derivative of X

Pγ,a,b - parallel transport of v along γ from a to b

gradf - gradient of f

Hessf - Hessian of f

expp v - exponential mapping at p in the direction v

ip - injectivity radius of M at p

NX(p) - Newton’s iterate mapping for exponential at p

NR,X(p) - Newton’s iterate mapping for retraction at p



CONTENTS

1 Introduction 13

2 Basic Definition and Auxiliary Results 16

3 Super-linear Convergence of Newton’s Method on Riemannian Manifold 22
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Damped Newton Method on Riemannian Manifold 28
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 On Newton’s Method with Retraction 34
5.1 Basic Definition and Auxiliary Results . . . . . . . . . . . . . . . . . . 34
5.2 Newton’s Method with Retraction . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Damped Newton Method with Retraction . . . . . . . . . . . . . . . . 40

5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Numerical Experiments 43

7 Conclusions and Further Research 49
7.1 Rayleigh Quotient on the Sphere . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Karcher Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Reference 52



1. Introduction

Iterative methods on manifolds arise in the context of optimizing a real-valued function,
dating back to the work of Luenberger (51) in the early 1970s, if not earlier. Luenberger
proposed the idea of performing a line search along geodesics that are computationally fea-
sible. Around 1990, the main research issue was to exploit differential-geometric objects in
order to formulate optimization strategies on abstract nonlinear manifolds. Gabay was the
first to focus on optimization on manifolds by minimizing a differentiable function defined
on a Riemannian manifold (30). In the 1990s, the field of optimization on manifolds gained
considerable popularity, especially with the work of Edelman et al. (25). Recent years have
witnessed a growing interest in the development of numerical algorithms for nonlinear man-
ifolds, as there are many numerical problems posed in manifolds arising in various natural
contexts. For example, finding the largest eigenvalue of a symmetric matrix may be posed as
maximizing Rayleigh’s quotient defined on a sphere, invariant subspace computations, etc.
(5; 25; 30; 67; 70). For such problems, the solutions of a system of equations often have to
be computed or the zeros of a vector field have to be found. Because these problems are
naturally posed on Riemannian manifolds, we can use the specific underlying geometric and
algebraic structures in order to try significantly reduce the computational cost of finding
the zeros of a vector field. Moreover, it is preferable to treat certain constrained optimiza-
tion problems as problems of finding singularities of gradient vector fields on Riemannian
manifolds rather than using Lagrange multipliers or projection methods by exploiting the
Riemannian geometric structure of the constrained set (3; 68). Thus, algorithms that ex-
ploit the differential structure of nonlinear manifolds play an important role in optimization
(1; 7; 13; 14; 15; 18; 31; 32; 33; 34; 36; 38; 43; 47; 49; 53; 61; 64; 74). In this thesis, instead of
focusing on finding singularities of gradient vector fields on Riemannian manifolds, which in-
cludes finding local minimizers, we consider the more general problem of finding singularities
of vector fields.

Newton’s method is known to be a powerful tool for finding the zeros of nonlinear func-
tions in Banach spaces. It also serves as a powerful theoretical tool with a wide range of
applications in pure and applied mathematics (5; 56; 57). These factors have motivated
several studies to investigate the issue of generalizing Newton’s method from a linear setting
to the Riemannian setting (3; 6; 28; 29; 48; 50; 65; 72). In all these previous studies, the
analysis of the Riemannian version of Newton’s method involved Lipschitz or Lipschitz-like
conditions for the covariant derivative of the vector field. In fact, all these studies were con-
cerned with establishing a quadratic rate of convergence for the method. It seems that some
type of control on the covariant derivative of the vector field in a suitable neighborhood of

13



1 – Introduction

its singularity is required for obtaining the quadratic convergence rate of the sequence gen-
erated by Newton’s method. Thus, the convergence analysis of Newton’s method for finding
a singularity of a vector field in a Riemannian manifold under Lipschitz or Lipschitz-like
conditions is well known (1; 28; 29; 48; 68). However, in a linear context, whenever the
derivative of the function that defines the equation is nonsingular at the solution, Newton’s
method shows local convergence at a super-linear rate (58, chapter 8, Theorem 8.1.10, p.
148). Previously, we performed a local super-linear convergence analysis of Newton’s method
under a mild assumption (i.e., invertibility of the covariant derivative of the vector field at
its singularity) (27). Chapter 3 presents this result.

Although Newton’s method shows fast local convergence, it is highly sensitive to the
initial iterate and may diverge if the initial iterate is not sufficiently close to the solution.
Thus, Newton’s method does not converge in general. To overcome this drawback, some
strategies have been introduced for using Newton’s method in optimization problems, such
as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm which has global convergence
by using linesearch, Levenberg–Marquardt algorithm, and the trust region algorithm(10; 21).
When the objective function is twice continuously differentiable and strongly convex, the
Newton direction is a descent direction of the objective function. Hence, by adjusting the
step size in the Newton direction using, e.g., the Armijo rule, we can ensure convergence
of Newton’s method. This strategy of dumping the Newton step size to globalize Newton’s
method is known as the damped Newton’s method. For a comprehensive study of this
method, see (10; 17; 21; 42). For the problem of finding a zero of a nonlinear equation in
a Euclidean setting, this strategy of dumping the Newton step size can also be adopted by
using a merit function for which the Newton direction is a descent direction. The merit
function measures the quality of the approximation to a zero of the nonlinear function
being considered; see (21; 22; 59). In Chapter 4, we present a globalization strategy for
Newton’s method to solve the problem of finding singularities of vector fields defined on
Riemannian manifolds. Thus far, studies on globalization strategies in a Riemannian setting
have been restricted to optimization problems, such as Newton’s method with the Hessian
of the objective function updated by the BFGS family, trust region methods (2; 39), and
Levenberg–Marquardt methods (3, Chapter 8, Section 8.4.2). To the best of our knowledge,
the analysis presented herein is a novel global analysis of a damped Newton’s method for
finding singularities of vector fields defined on Riemannian manifolds using a linear search
together with a merit function. A particular case is finding critical points of real-valued
functions defined on Riemannian manifolds. On the basis of the idea presented in (26, Section
4) for the nonlinear complementarity problem, we propose a damped Newton’s method in
a Riemannian setting. Moreover, we show its global convergence to a singularity of the
vector field while preserving the same convergence rate as that of the classical Newton’s
method. For instance, we can use the proposed method to find a minimizer of a strongly
convex function with a super-linear/quadratic rate in Riemannian settings. Our numerical
experiments show the properties of global convergence of the proposed damped Newtons
method and that this method is superior to the classical Newton’s method for the problem
of finding global minimizers of some functions defined on the cone of symmetric positive
definite matrices.

To establish Newton’s method for finding a singularity of a vector field defined on a

14



1 – Introduction

Riemannian manifold, essentially, we use the notion of continuously moving in the Newton
direction while staying on a geodesic curve in the manifold until we reach a point where the
vector field vanishes. By using the geodesic curve, we can define the exponential mapping
that can be used to give a short notation for a geodesic with a given starting point and initial
velocity. However, the geodesic, and consequently the exponential mapping, is defined as the
solution of a nonlinear ordinary differential equation, whose efficient computation generally
involves significant numerical challenges. Nevertheless, an approximation of the geodesic
is sufficient to guarantee the desired convergence properties. Actually, to obtain the next
iterate of an iterative method on a manifold, it is sufficient to use the notion of moving in the
direction of a tangent vector while staying on the manifold. It is generalized by the notion
of a retraction mapping that may generate a curve on the manifold with greater computa-
tional efficiency compared to the exponential mapping. The idea of using computationally
efficient alternatives to the exponential mapping was introduced in (52). The strategy of
using approximations of classical geometric concepts to obtain efficient iterative algorithms
has attracted considerable attention lately in the context of Riemannian optimization; see,
e.g., (2; 3; 18; 44; 61; 66; 71). Obtaining an iterative method using retraction is becoming
increasingly common, as such algorithms are faster and possibly more robust than existing
algorithms. Recent studies on the development of geometric optimization algorithms that
exploit the mapping retraction on nonlinear manifolds include (35; 37; 40; 41; 75). A toolbox
for building retractions on manifolds can be found in (4). On the basis of these considera-
tions, we have sound arguments for generalization of the results obtained in Chapters 3 and
4 in the sense of retraction. We present these generalizations in Chapter 5.

The remainder of this thesis is organized as follows. Chapter 2 presents the notation and
basic results. Chapter 3 describes the local super-linear convergence analysis of Newton’s
method. Chapter 4 presents a damped Newton’s method and its global convergence at
a super-linear/quadratic rate. Chapter 5 discusses generalization of the results obtained in
Chapters 3 and 4 in the sense of retraction. Chapter 6 describes the numerical experiments.
Finally, Chapter 7 states our conclusions and briefly explores directions for future work.

15



2. Basic Definition and Auxiliary Re-
sults

In this chapter, we recall some notations, definitions, and auxiliary results of Riemannian
geometry used throughout this work. We begin with some basics concepts that can be found
in various introductory books on Riemannian geometry, e.g., (24) and (63).

Let M be a finite-dimensional Riemannian manifold. Denote the tangent space of M at p
by TpM and the tangent bundle ofM by

⋃
p∈M TpM. A vector field X onM is a correspondence

that associates, to each point p ∈M, a vectorX(p) ∈ TpM. The vector field is differentiable if
the mappingX : M→ TM is differentiable. Considering a parameterization x : U ⊂ R→M,
we can write

X(p) =
n∑

i=1

ai(p)
∂

∂xi

,

where each ai : U → R is a function on U and
∂

∂xi

is the basis associated with x, i = 1, . . . , n.

Then, X is differentiable if and only if the functions ai are differentiable for some, and
therefore for any, parameterization. Let D denote the set of all real-valued differentiable
functions on M and let F denote the set of all real-valued functions on M. Then, a vector
field X is a mapping X : D → F defined as follows:

(Xf) (p) =
n∑

i=1

ai(p)
∂ f

∂xi

(p),

where f denotes, by abuse of notation, the expression of f in the parameterization x. This
idea of a vector as a directional derivative is precisely what is used to define the notion of a
tangent vector. The function Xf does not depend on the choice of parameterization x.

A Riemannian metric on M is given by p → 〈· , ·〉p. We can delete the index p in the
function 〈· , ·〉p whenever there is no possibility of confusion. The metric can be used to
define the length l of a piecewise differentiable continuous curve γ : [a, b]→M by

l[γ, a, b] :=

∫ b

a

‖γ′(t)‖dt.

A distance function on a Riemannian manifold M is as follows. Given two points p, q ∈ M,
consider all the piecewise differentiable curves joining p to q. Since M is connected, such

16



2 –Basic Definition and Auxiliary Results

curves exist. The distance d(p, q) is defined as the infimum of the lengths of all curves fp,q,
where fp,q is a piecewise differentiable curve joining p to q. The distance induces the original
topology on M, i.e., (M, d) is a complete metric space. The corresponding norm associated
with the Riemannian metric 〈· , ·〉 is denoted by ‖ · ‖. An open ball of radius r > 0 centered
at p is defined by

Br(p) := {q ∈M : d(p, q) < r} .
Let Ω ⊆M be an open set, and let Dr(Ω) denote the ring of real-valued functions of class

Cr defined on Ω. Further, let X r(Ω) denote the space of differentiable vector fields of class
Cr on Ω.

Definition 2.0.1. An affine connection ∇ on a differentiable manifold M is a mapping

∇ : X 1(Ω)×X 0(Ω)→ X 0(Ω),

which is denoted by (X, Y )
∇→ ∇YX and satisfies the following properties:

(i) ∇fY+gZX = f∇YX + g∇ZX, where X ∈ X 1(Ω), Y, Z ∈ X 0(Ω), and f, g ∈ D0(M);

(ii) ∇Z (X + Y ) = ∇ZX +∇ZY , where X, Y ∈ X 1(Ω) and Y, Z ∈ X 0(Ω);

(iii) ∇Y fX = f∇YX + Y (f)X, where X ∈ X 1(Ω), Y,∈ X 0(Ω), and f ∈ D0(M).

This connection leads to a notion of a derivative that is presented next.

Proposition 2.0.1. Let M be a differentiable manifold with an affine connection ∇. There
exists a unique correspondence that associates to a vector field V along the differentiable
curve γ : I → M, another vector field DV/dt along γ, called the covariant derivative of V
along γ, such that

(i) D/dt (V +W ) = DV/dt+DW/dt;

(ii) D/dt (fV ) = (Df/dt)V + fDV/dt, where V is also a vector field along γ and f is a
differentiable function on I;

(iii) if V is induced by a vector field X ∈ X 1(Ω), i.e., V (t) = X(γ(t)), then DV/dt(t) =
∇γ′(t)X.

Proof. See (24, Prop. 2.2, p. 55)

Definition 2.0.2. Let M be a differentiable manifold with an affine connection ∇. A vector
field V along a curve γ : I →M is called parallel when DV/dt = 0 for all t ∈ I.

Proposition 2.0.2. (Parallel Transport) Let M be a differentiable manifold with an affine
connection ∇. Let γ : I →M be a differentiable curve in M and let v be a vector tangent to
M at γ(a), a ∈ I (i.e., v ∈ Tγ(a)M). Then, there exists a unique parallel vector field V along
γ such that V (a) = v. V (b) is called the parallel transport of v along γ from a to b. In fact,
we define an isometry relative to 〈· , ·〉:

Pγ,a,b : Tγ(a)M → Tγ(b)M

v 
→ Pγ,a,bv = V (b).

17



2 –Basic Definition and Auxiliary Results

Note that
Pγ, b1, b2 ◦ Pγ, a, b1 = Pγ, a, b2 and Pγ, b, a = P−1

γ, a, b.

A connection ∇ is said to be compatible with the metric 〈· , ·〉 when, for any smooth
curve γ and any pair of parallel vector fields P1 and P2 along γ, we have 〈P1 , P2〉 = c,
where c is a constant. The Lie bracket of two smooth vector fields X and Y is defined as
the smooth vector field [X, Y ] such that [X, Y ]f := (X(Y (f)− Y (X(f)) for all f ∈ D1(M).
An affine connection ∇ is said to be symmetric when ∇XY −∇YX = [X, Y ]. We are now
able to state the following theorem.

Theorem 2.0.1. (Levi-Civita) Given a Riemannian manifold M, there exists a unique affine
connection ∇ on M satisfying the following conditions:

(i) ∇ is symmetric;

(ii) ∇ is compatible with the Riemannian metric.

Proof. See (63, Th. 1.2, p. 28).

The connection given by the above-mentioned theorem is referred to as the Levi-Civita
connection associated with (M, 〈· , ·〉). Hereafter, this connection will be referred to as
the Levi-Civita (or Riemannian) connection on M. The covariant derivative of X ∈ X 0(Ω)
determined by ∇ defines, at each p ∈ Ω, a linear map

∇X(p) : TpM → TpM (2.1)

v 
→ ∇X(p)v := ∇YX(p), (2.2)

where Y is a vector field such that Y (p) = v. The norm of a linear map A : TpM→ TpM is
defined by

‖A‖ := sup {‖Av‖ : v ∈ TpM, ‖v‖ = 1} .
For f : M → R, a twice-differentiable function, the Riemannian metric induces the

mappings f 
→ gradf and f 
→ Hessf , which associate its gradient and Hessian via the rules

〈gradf,X〉 := df(X), 〈HessfX,X〉 := d2f(X,X), ∀ X ∈ X (Ω),

respectively. Therefore, the last equalities imply that

HessfX = ∇Xgradf, ∀ X ∈ X (Ω).

Definition 2.0.3. Let f : M→ R be a mapping and p ∈M. We say that f is coercive at p
iff limd(p,q)→+∞ f(q) = +∞.

Let M be a Riemannian manifold. A parameterized curve γ : I → M is a geodesic at
t0 ∈ I iff

γ′′(t) :=
D

dt

(
dγ

dt

)
= ∇γ′(t)γ

′(t) = 0

18



2 –Basic Definition and Auxiliary Results

at t0. When γ is a geodesic at t, for all t ∈ I, we say that γ is a geodesic. If [a, b] ⊂ I and
γ : I →M is a geodesic, the restriction of γ to [a, b] is called a geodesic segment joining γ(a)
to γ(b). Note that, if γ is a geodesic, then

d

dt
〈dγ
dt

,
dγ

dt
〉 = 2〈D

dt

dγ

dt
,
dγ

dt
〉 = 0.

The latter equality implies that the length of the tangent vector dγ/dt is constant. Therefore,
the parameter of a geodesic is proportional to the arc length, i.e., the arc length l of the
curve γ, starting from a fixed origin, say t = t0, is given by l[γ, t0, t] = ‖γ′(t0)‖(t− t0). When
‖γ′(t)‖ = 1, we say that γ is arc-length parameterized or normalized.

Proposition 2.0.3. Given p ∈M, there exist a neighborhood V of p in M, a number ε > 0,
and a C∞ mapping γ : (−2, 2)× U →M, U = {(q, w) ∈ TM : q ∈ V, w ∈ TqM, ‖w‖ < ε}
such that t → γ(t, q, w), t ∈ (−2, 2), is the unique geodesic of M that, at the instant t = 0,
passes through q with velocity w for every q ∈ V and for every w ∈ TqM, with ‖w‖ < ε.

Proof. See (24, Prop. 2.7, p. 72)

The above-mentioned proposition permits us to introduce the concept of the exponential
map.

Definition 2.0.4. Let M be a complete Riemannian manifold, p ∈ M, and U ⊂ TM be an
open set given by Proposition 2.0.3. Then, the exponential map on U , exp : U →M, is given
by

exp(q, v) = γ(1, q, v) = γ (‖v‖, q, v/‖v‖) , (q, v) ∈ U.

We apply the restriction of exp to an open subset of the tangent space TpM, i.e.,

expp : Bε(0p) ⊂ TpM→M,

by expp(v) := exp(p, v). Next, we define a complete Riemannian manifold.

Definition 2.0.5. A Riemannian manifold M is (geodesically) complete if for all p ∈ M,
the exponential map expp is defined for all v ∈ TpM, i.e., if any geodesic γ(t) starting from
p is defined for all values of parameter t ∈ R.

Theorem 2.0.2. (Hopf-Rinow) Let M be a Riemannian manifold and let p ∈ M. The
following assertions are equivalent:

(i) expp is defined on all TpM.

(ii) The closed and bounded sets of M are compact.

(iii) M is geodesically complete.

(iv) There exists a sequence of compact subsets Kn ⊂ M, Kn ⊂ Kn+1, and
⋃

n Kn = M

such that if qn �= Kn then d(p, qn) → ∞. In addition, any of the statements above
implies the following.
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(v) For any q ∈M, there exists a geodesic segment γ joining p to q, whose length is d(p, q).

Proof. See (63, Th. 1.1, p. 84).

When there exists a unique geodesic segment joining p to q, then we denote it by γpq, and
if there is no confusion, we will consider the notation Ppq instead of Pγ, a, b when γ is the unique
geodesic segment joining p and q. A geodesic γpq is a minimal geodesic if d(p, q) = l(γ). The
Hopf–Rinow theorem asserts that any pair of points in a complete Riemannian manifold M

can be joined by a (not necessarily unique) minimal geodesic segment.

Let p ∈M. The injectivity radius of M at p is defined by

ip := sup
{
r > 0 : expp|Br(op)

is a diffeomorphism
}
,

where op denotes the origin of the tangent plane TpM andBr(0p) := {v ∈ TpM :‖ v − 0p ‖< r}.
Remark 2.0.1. Let p̄ ∈ M. The above definition implies that if 0 < δ < ip̄, then
expp̄ Bδ(0p̄) = Bδ(p̄). Moreover, for all p ∈ Bδ(p̄), there exists a unique geodesic segment γ
joining p to p̄, which is given by γpp̄(t) = expp(t exp

−1
p p̄), for all t ∈ [0, 1].

Let p ∈ M and δp := min{1, ip}. Consider the quantity Kp, introduced in (20), which
measures the rate at which the geodesics spread apart in M:

Kp := sup

{
d(expq u, expq v)

‖ u− v ‖ :

q ∈ Bδp(p), u, v ∈ TqM, u �= v, ‖ v ‖≤ δp, ‖ u− v ‖≤ δp

}
. (2.3)

Remark 2.0.2. In particular, when u = 0, or more generally, when u and v are on the
same line through 0, d(expq u, expq v) =‖ u− v ‖. Hence, Kp ≥ 1 for all p ∈ M. Moreover,
when M has non-negative sectional curvature, the geodesics spread apart to a smaller extent
than the rays (24, chapter 5), i.e., d(expp u, expp v) ≤ ‖u − v‖; in this case, Kp = 1 for all
p ∈M.

Let X ∈ X (Ω) and p̄ ∈ Ω. Assume that 0 < δ < δp̄. Since expp̄ Bδ(0p̄) = Bδ(p̄), there
exists a unique geodesic joining each p ∈ Bδ(p̄) to p̄. Moreover, using (29, equality 2.3), we
obtain

X(p) = Pp̄pX(p̄) + Pp̄p∇X(p̄) exp−1
p̄ p+ d(p, p̄)r(p), lim

p→p̄
r(p) = 0. (2.4)

Now, we will define Newton’s method in the Riemannian context. For any X ∈ X (Ω)
and p ∈ M such that ∇X(p) is nonsingular, Newton’s iterate mapping for exponential NX

at p is given by
NX(p) := expp(−∇X(p)−1X(p)), (2.5)

and Newton’s method is defined by

pk+1 = exppk

(−∇X(pk)
−1X(pk)

)
, k = 0, 1, . . .

The next result establishes the quadratic convergence of Newton’s method. It is a particular
case of (28, Theorem 7.1).
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Theorem 2.0.3. Let X : Ω→ TM be a continuously differentiable vector field and let p̄ ∈M

be a singularity of X. Suppose that ∇X is locally Lipschitz continuous at p̄ with constant
L > 0, and ∇X(p̄) is nonsingular. Then, there exists r > 0 such that the sequence

pk+1 = exppk

(−∇X(pk)
−1X(pk)

)
, k = 0, 1, . . . ,

starting in p0 ∈ Br(p̄) \ {p̄} is well defined, contained in Br(p̄), and converges to p̄, and it
holds that

d(p̄, pk+1) ≤
LK2

p̄ ‖ ∇X(p̄)−1 ‖
2 [Kp̄ − d(p0, p̄)L‖∇X(p̄)−1‖] d(p̄, pk)

2, k = 0, 1, . . .

Corollary 2.0.1. Let f ∈ C1(Ω), and let p̄ ∈M be a critical point of f . Suppose that Hess f
is locally Lipschitz continuous at p̄ with constant L > 0 and Hess f(p̄) is nonsingular. Then,
there exists r > 0 such that the sequence

pk+1 = exppk

(−Hess f(pk)−1grad(pk)
)
, k = 0, 1, . . . ,

starting in p0 ∈ Br(p̄) \ {p̄} is well defined, contained in Br(p̄), and converges to p̄, and it
holds that

d(p̄, pk+1) ≤
LK2

p̄ ‖ Hess f(p̄)−1 ‖
2 [Kp̄ − d(p0, p̄)L‖Hess f(p̄)−1‖] d(p̄, pk)

2, k = 0, 1, . . .

We end this section with the well-known Banach’s lemma.

Lemma 2.0.1. Let B be a linear operator and let Ip be the identity operator in TpM. Assume

that ‖ B − Ip ‖< 1; then, B is invertible and ‖ B−1 ‖≤ 1

1− ‖ B − Ip ‖ .

Proof. See (59, Lemma 2.3.2, p. 45).
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3. Super-linear Convergence of New-
ton’s Method on Riemannian Man-
ifold

In this chapter, we study Newton’s method for finding a singularity of a differentiable vector
field defined on a Riemannian manifold. Our main goal is to show that, under the only
hypotheses of nonsingularity of the covariant derivative of the vector field, Newton’s method
is well defined and converges to a zero of this field at a super-linear rate. Formally, the
problem researched is as follows. To find a point p ∈ Ω satisfying the equation

X(p) = 0, (3.1)

where X : Ω→ TM is a differentiable vector field and Ω ⊂M is an open set. To solve (4.1),
Newton’s method formally generates a sequence with an initial point p0 ∈ Ω as described in
the following algorithm.

Algorithm 3.0.1.

Newton with Exponential

Step 0. Take an initial point p0 ∈M, and set k = 0. If ‖X(p0)‖ = 0, stop.

Step 1. Compute search direction vk ∈ TpkM by

vk = −∇X(pk)
−1X(pk). (3.2)

Step 2. Compute the next iterate by

pk+1 := exppk
vk. (3.3)

Step 3. Set k ← k + 1 and go to Step 1.

We remark that, if the covariant derivative is singular in iterate k, then vk given by (3.2)
does not exist. Hence, Newton’s Algorithm 3.0.1 stops and does not converge to a solution
of (4.1). Our aim is to prove that, under the assumption of nonsingularity of the covariant
derivative in a solution p∗, if p0 belongs to a suitable neighborhood of p∗, then vk given by
(3.2) exists for all k. Moreover, the sequence given by (3.3) is well defined and converges
super-linearly to p∗.
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3.1 Preliminaries

To achieve our goal, we begin by stating an important property of parallel transport in our
context. It is worth noting that, to ensure this property, we use the same ideas as those
presented in the proof of (47, Lemma 2.4, item (iv)) for Hadamard manifolds, with some
minor necessary technical adjustments to fit any Riemannian manifold.

Lemma 3.1.1. Let p̄ ∈M, 0 < δ < δp̄, and u ∈ Tp̄M. Then, the vector field F : Bδ(p̄)→ TM
defined by F (p) := Pp̄pu is continuous.

Proof. Assume that M is n-dimensional. Let p ∈ Bδ(p̄) and γp be the unique geodesic
segment joining p̄ to p (according to Remark 2.0.1). Let u ∈ Tp̄M. From the definition of
parallel transport, there is a unique continuously differentiable vector field Yp along γp such
that Yp (γp(0)) = u, Yp (γp(1)) = Pp̄pu, and

∇γ
′
p(t)

Yp (γp(t)) = 0, ∀ t ∈ [0, 1]; (3.4)

see (63, p. 29). The definition of δp̄ implies that ϕ := exp−1
p̄ : Bδ(p̄)→ Brp̄(0p̄) is a diffeomor-

phism; hence, (Bδ(p̄), ϕ) is a local chart at p̄. For each j = 1, 2, ..., n, define yj : Bδ(p̄)→ R

by yj = πj ◦ ϕ, where πj : Tp̄M → R is the projection defined by πj (a1, ..., aj, ..., an) = aj
for all (a1, ..., aj, ..., an) ∈ Tp̄M. Then, (Bδ(p̄), ϕ, y

j) is a local coordinate system at p̄. Let
{∂/∂yj} be the associated correspondent natural basis to (Bδ(p̄), ϕ, y

j). Since γp(t) ∈ Bδ(p̄)
for all t ∈ [0, 1] and Yp (γp(t)) ∈ Tγp(t)M, we can write

Yp (γp(t)) =
∑
j

Y j
p (t)

∂

∂yj
|γp(t) ∀ t ∈ [0, 1],

where each coordinate function Y j
p : [0, 1] → R is continuously differentiable for all j =

1, 2, ..., n. For simplicity, we set yjp := yj ◦ γp(·) for each j = 1, 2, ..., n. Thus, (3.4) is
equivalent to the ordinary differential equation

dY k
p

dt
+
∑
i,j

Γk
i,j(γp)

dyip
dt

Y j
p = 0, k = 1, 2, ..., n,

where Γk
i,j are the Christoffel symbols of the connection ∇; see (63, p. 29). Hence, the last

equality implies that {Y k
p : k = 1, 2, ..., n} is the unique solution of the following system of

p−parameter linear differential equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dY k
p

dt
= −

n∑
j

ak,jY
j
p , k = 1, 2, ..., n,

∑
j

Y j
p (0)

∂

∂yj
|γp(0) = u,

where, for (k, j), k, j = 1, ..., n, the continuous function ak,j : [0, 1]× Bδ(p̄)→ R is given by

ak,j(t, p) =
n∑

i=1

Γk
i,j (γp(t))

dyip(t)

dt
.
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Thus, from the continuity on parameters for differential equations (see, e.g., (23, Theo-
rem 10.7.1, p. 353)), the solution {Y k

. (·)} is continuous on [0, 1]× Bδ(p̄), and, equivalently,
Y.(γ.(·)) is continuous on [0, 1] × Bδ(p̄). Furthermore, we have F (p) = Pp̄pu = Yp(γp(1)) for
any p ∈ Bδ(p̄). Therefore, F is continuous on Bδ(p̄) and the proof is complete.

Next, we present an immediate consequence of Lemma 3.1.1.

Corollary 3.1.1. Let p̄ ∈M, 0 < δ < δp̄, and u ∈ Tp̄M. If the vector field Z : Bδ(p̄)→ TM
is continuous at p̄, then the mapping G : Bδ(p̄) → Tp̄M defined by G(p) := Ppp̄Z(p) is also
continuous at p̄.

Proof. Since parallel transport is an isometry, it follows from the definition of the vector
field G that

‖G(p)−G(p̄)‖ = ‖Z(p)− Pp̄pZ(p̄)‖.
Considering that Z is continuous at p̄ and Pp̄p̄ = Ip̄ = Ppp̄Pp̄p, we conclude from Lemma
3.1.1 that

lim
p→p̄
‖Z(p)− Pp̄pZ(p̄)‖ = 0.

Therefore, the desired result follows by a simple combination of the last two equalities.

The next result ensures that, if ∇X(p̄) is nonsingular, then there exists a neighborhood
of p̄ where ∇X is also nonsingular. Moreover, in this neighborhood, ∇X−1 is bounded.

Lemma 3.1.2. Assume that ∇X is continuous at p̄. Then,

lim
p→p̄

‖Ppp̄∇X(p)Pp̄p −∇X(p̄)‖ = 0. (3.5)

Moreover, if ∇X(p̄) is nonsingular, then there exists 0 < δ̄ < δp̄ such that Bδ̄(p̄) ⊂ Ω, and
for each p ∈ Bδ̄(p̄), the following statements hold:

(i) ∇X(p) is nonsingular;

(ii) ‖∇X(p)−1‖ ≤ 2 ‖∇X(p̄)−1‖.

Proof. Let 0 < δ < δp̄ such that Bδ(p̄) ⊂ Ω. For each u ∈ Tp̄M, define Z : Bδ(p̄)→ TM by

Z(p) = ∇X(p)Pp̄pu.

By applying Lemma 3.1.1, we conclude that Pp̄pu is continuous on Bδ(p̄). Thus, because
∇X is continuous, Z is also continuous on Bδ(p̄). Hence, using Corollary 3.1.1, we conclude
that the mapping F : Bδ(p̄)→ Tp̄M defined by

F (p) = Ppp̄Z(p)

is also continuous at p̄. Considering that Pp̄p̄ = Ip̄ as well as the definitions of the mappings
F and Z, we conclude that lim

p→p̄
F (p) = ∇X(p̄)u. Now, define the mapping

Bδ(p̄) � p 
→ [Ppp̄∇X(p)Pp̄p −∇X(p̄)] ∈ L(Tp̄M, Tp̄M),
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where L(Tp̄M, Tp̄M) denotes the space consisting of all linear operators from Tp̄M to Tp̄M.
Since lim

p→p̄
F (p) = ∇X(p̄)u, for each u ∈ Tp̄M, the definition of F implies that

lim
p→p̄

[Ppp̄∇X(p)Pp̄p −∇X(p̄)] u = 0, u ∈ Tp̄M.

Since Tp̄M is finite-dimensional and [Ppp̄∇X(p)Pp̄p −∇X(p̄)] ∈ L(Tp̄M, Tp̄M), for each p ∈
Bδ(p̄), the above equality implies that the equality (3.5) holds. Now, we proceed with the
proof of item (i) . The equality (3.5) implies that there exists 0 < δ̄ < δ such that

‖Ppp̄∇X(p)Pp̄p −∇X(p̄)‖ ≤ 1

2 ‖∇X(p̄)−1‖ , ∀ p ∈ Bδ̄(p̄).

Thus, from the last inequality and the property of the operator norm defined in L(Tp̄M, Tp̄M),
for all p ∈ Bδ̄(p̄), we obtain

∥∥∇X(p̄)−1Ppp̄∇X(p)Pp̄p − Ip̄
∥∥ ≤ ‖∇X(p̄)−1‖ ‖Ppp̄∇X(p)Pp̄p −∇X(p̄)‖ ≤ 1

2
. (3.6)

Hence, from Lemma 2.0.1, we conclude that ∇X(p̄)−1Ppp̄∇X(p)Pp̄p is a nonsingular operator
for each p ∈ Bδ̄(p̄). Since ∇X(p̄) and the parallel transport are nonsingular, ∇X(p) is also
nonsingular for each p ∈ Bδ̄(p̄), and the proof of the first item is complete. To prove item
(ii), we first note that, from (3.6) and Lemma 2.0.1, it follows that for all p ∈ Bδ̄(p̄),∥∥∥[∇X(p̄)−1Ppp̄∇X(p)Pp̄p

]−1
∥∥∥ ≤ 1

1− ‖∇X(p̄)−1Ppp̄∇X(p)Pp̄p − Ip̄‖ .

Since parallel transport is an isometry, by combining (3.6) with the above inequality, we
obtain ∥∥∇X(p)−1Pp̄p∇X(p̄)

∥∥ ≤ 2.

Thus, using the properties of the norm and the fact that the parallel transport is an isometry,
the last inequality implies that, for all p ∈ Bδ̄(p̄), we have∥∥∇X(p)−1

∥∥ ≤ ∥∥∇X(p)−1Pp̄p∇X(p̄)
∥∥ ∥∥∇X(p̄)−1

∥∥ ≤ 2
∥∥∇X(p̄)−1

∥∥ ,
which is the desired inequality in the second item. Thus, the proof of the lemma is complete.

Lemma 3.1.2 establishes the non-singularity of ∇X in a neighborhood of p̄. It ensures
that there exists a neighborhood of p̄ where the Newton’s iterate (3.3) is well defined, but
it does not guarantee that it belongs to this neighborhood. In the next lemma, we will
establish this fact. For stating the next result, since δ̄ is given by Lemma 3.1.2, we remark
that Newton’s iterate mapping NX : Bδ̄(p̄)→M given by (2.5) is well defined.

Lemma 3.1.3. Let p∗ ∈ Ω such that p∗ is a singularity of X. Assume that ∇X is continuous
at p∗ and ∇X(p∗) is nonsingular. Then,

lim
p→p∗

d(NX(p), p∗)
d(p, p∗)

= 0.
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Proof. Let δ̄ be given by Lemma 3.1.2 and p ∈ Bδ̄(p∗). Some algebraic manipulations show
that

∇X(p)−1X(p) + exp−1
p p∗ = ∇X(p)−1

[
X(p)− Pp∗pX(p∗)−

Pp∗p∇X(p∗) exp−1
p∗ p+ [Pp∗p∇X(p∗)−∇X(p)Pp∗p] exp

−1
p∗ p

]
.

Define r(p) := [X(p)− Pp̄pX(p∗)− Pp∗p∇X(p∗) exp−1
p∗ p]/d(p, p∗) for p ∈ Bδ̄(p∗). From (5.8),

we have limp→p∗r(p) = 0. Thus, using the above equality, the definition of r, d(p, p∗) =
‖ exp−1

p∗ p‖, and some properties of the norm, we conclude that∥∥∇X(p)−1X(p) + exp−1
p p∗

∥∥ ≤ ∥∥∇X(p)−1
∥∥ [‖r(p)‖+ ‖Pp∗p∇X(p∗)−∇X(p)Pp∗p‖] d(p, p∗).

Since p ∈ Bδ̄(p∗) and the parallel transport is an isometry, item (ii) of Lemma 3.1.2 implies
that∥∥∇X(p)−1X(p) + exp−1

p p∗
∥∥ ≤ 2

∥∥∇X(p∗)−1
∥∥ [ ‖r(p)‖+
‖Ppp∗∇X(p)Pp∗p −∇X(p∗)‖

]
d(p, p∗). (3.7)

From (3.5) and since lim
p→p∗

r(p) = 0, the right-hand side of the last inequality tends to zero as

p tends to p∗. Recalling that δp∗ = min{1, ip∗}, we can shrink δ̄, if necessary, to obtain∥∥∇X(p)−1X(p) + exp−1
p p∗

∥∥ ≤ δp∗ , ∀ p ∈ Bδ̄(p∗).

Hence, from the definition of Newton’s iterate mapping for exponential NX in (2.5) and the
definition of Kp∗ in (5.7), we have

d(NX(p), p∗) ≤ Kp∗
∥∥−∇X(p)−1X(p)− exp−1

p p∗
∥∥ , ∀ p ∈ Bδ̄(p∗).

Therefore, by combining (5.12) with the last inequality, we conclude that for all p ∈ Bδ̄(p∗),

d(NX(p), p∗)
d(p, p∗)

≤ 2Kp∗
∥∥∇X(p∗)−1

∥∥ [‖ r(p) ‖ + ‖ Ppp∗∇X(p)Pp∗p −∇X(p∗) ‖].

By letting p tend to p∗ in the last inequality, and by considering (3.5) and the fact that
limp→p∗r(p) = 0, we get the desired result.

3.2 Convergence Analysis

Now, we are ready to establish the main result in this chapter, and its proof is a combination
of the two previous lemmas.

Theorem 3.2.1. Let Ω ⊂ M be an open set, X : Ω → TM be a differentiable vector field,
and p̄ ∈ Ω. Suppose that p∗ is a singularity of X, ∇X is continuous at p∗, and ∇X(p∗) is
nonsingular. Then, there exists δ̄ > 0 such that, for all p0 ∈ Bδ̄(p∗), the Newton sequence

pk+1 = exppk
(−∇X(pk)

−1X(pk)), k = 0, 1, . . . , (3.8)

is well defined, contained in Bδ̄(p∗), and converges super-linearly to p∗.
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Proof. Let δ̄ be given by Lemma 3.1.2. From Lemma 3.1.3, we can shrink δ̄, if necessary, to
conclude that

d(NX(p), p∗) <
1

2
d(p, p∗), ∀ p ∈ Bδ̄(p∗). (3.9)

Thus, NX(p) ∈ Bδ̄(p∗), for all p ∈ Bδ̄(p∗). Note that (2.5) and (5.16) imply that {pk} satisfies

pk+1 = NX(pk), k = 0, 1, . . . (3.10)

which is indeed an equivalent definition of this sequence. Since NX(p) ∈ Bδ̄(p∗) for all
p ∈ Bδ̄(p∗), it follows from (5.17) and Lemma 3.1.2 item (i) that, for all p0 ∈ Bδ̄(p∗), the
Newton sequence {pk} is well defined and contained in Bδ̄(p∗). Moreover, using (5.18) and
(5.17), we obtain

d(pk+1, p∗) <
1

2
d(pk, p∗), k = 0, 1, . . .

The above inequality implies that {pk} converges to p∗. Thus, by combining (5.17) with
Lemma 3.1.3, we conclude that

lim
k→+∞

d(pk+1, p∗)
d(pk, p∗)

= 0.

Therefore, {pk} converges super-linearly to p∗ and the proof is complete.

Next, we present an application of Theorem 3.2.1 for finding the critical points of a
twice-differentiable function defined on a Riemannian manifold.

Corollary 3.2.1. Let Ω ⊂ M be an open set, f : Ω → R be a twice-differentiable function,
and p∗ ∈ Ω. Suppose that p∗ is a critical point of f , Hess f is continuous at p∗, and Hess f(p∗)
is nonsingular. Then, there exists δ̄ > 0 such that, for all p0 ∈ Bδ̄(p∗), the Newton sequence

pk+1 = exppk
(−Hess f(pk)−1grad f(pk)), k = 0, 1, . . . ,

is well defined, contained in Bδ̄(p∗), and converges super-linearly to p∗.

Proof. Letting X = grad f , the result follows by applying Theorem 3.2.1.
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4. Damped Newton Method on Rie-
mannian Manifold

In this chapter, we consider the problem of finding a singularity of a differentiable vector
field. The formal statement of the problem is as follows: Find a point p ∈M such that

X(p) = 0, (4.1)

where X : Ω ⊆ M → TM is a differentiable vector field. The Newton’s method applied to
this problem has local super-linear convergence rate, whenever the covariant derivative in
the singularity of X is non-singular, see (27), and, additionally, if the covariant derivative
is Lipschitz around the singularity then the method has Q-quadratic convergence rate, see
(28). In order to globalize Newton’s method keeping the same properties aforementioned, we
will use the same idea of the Euclidean setting by introducing a linear search strategy. This
modification of Newton’s method called damped Newton’s method perform a linear search
decreasing the merit function ϕ : M→ R,

ϕ(p) =
1

2
‖ X(p) ‖2, (4.2)

in order reaches the super-linear convergence region of the Newton’s method. In the following
we present the formal description of the damped Newton’s algoritm.

Algorithm 4.0.1.

Damped Newton with Exponential

Step 0. Choose a scalar σ ∈ (0, 1/2), let an initial point p0 ∈M, and set k = 0.

Step 1. Compute search direction vk ∈ TpkM as a solution of the linear equation

X(pk) +∇X(pk)v = 0. (4.3)

If vk exists, go to Step 2. Otherwise, set the search direction as vk = − grad ϕ(pk),
where ϕ is defined by (4.2), i.e.,

vk = −∇X(pk)
TX(pk). (4.4)

If vk = 0, stop.
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Step 2. Compute the step size by the rule

αk := max
{
2−j : j ∈ N, ϕ

(
exppk

(2−jvk)
) ≤ ϕ(pk) + σ2−j 〈grad ϕ(pk), vk〉

}
, (4.5)

and set the next iterate as

pk+1 := exppk
(αkvk). (4.6)

Step 3. Set k ← k + 1 and go to step 1.

4.1 Preliminaries

In this section, we present some preliminary results to ensure that the sequence generated
by the damped Newton’s method (Algorithm 4.0.1) is well defined and converges. We begin
with a result that will be useful to establish that the sequence is well defined.

Lemma 4.1.1. Let p ∈ Ω such that X(p) �= 0. Assume that v = −∇X(p)TX(p) or that v
is a solution of the equation

X(p) +∇X(p)v = 0. (4.7)

If v �= 0, then v is the descent direction for ϕ from p, i.e., 〈grad ϕ(p), v〉 < 0 .

Proof. First we assume that v satisfies (4.7). Since grad ϕ(p) = ∇X(p)TX(p), we obtain
that 〈grad ϕ(p), v〉 = 〈X(p),∇X(p)v〉. Thus, considering that X(p) �= 0, v �= 0, and v
satisfies (4.7), we conclude that

〈grad ϕ(p), v〉 = − ‖ X(p) ‖2< 0,

which implies that v is a descent direction for ϕ from p. Now, we assume that v =
−∇X(p)TX(p). Hence, 〈grad ϕ(p), v〉 = −‖∇X(p)TX(p)‖2 < 0, and we also have that
v is the descent direction for ϕ from p.

Under suitable assumptions, the following result guarantees that the damped Newton’s
method, after a finite number of iterates, reduces to the classical iteration of Newton’s
method.

Lemma 4.1.2. Let p∗ ∈ M be a solution of (4.1). If ∇X is continuous at p∗ and ∇X(p∗)
is nonsingular, then there exists 0 < δ̂ < δp∗ such that Bδ̂(p∗) ⊂ Ω, ∇X(p) is nonsingular
for each p ∈ Bδ̂(p∗), and

lim
p→p∗

ϕ (NX(p))

‖ X(p) ‖2 = 0. (4.8)

As a consequence, there exists δ > 0 such that, for all σ ∈ (0, 1/2) and δ < δ̂, it holds that

ϕ (NX(p)) ≤ ϕ (p)) + σ
〈
grad ϕ(p),−∇X(p)−1X(p)

〉
, ∀ p ∈ Bδp∗). (4.9)
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Proof. Using item (i) of Lemma 3.1.2, we obtain that there exists 0 < δ̂ < δp∗ such that
Bδ̂(p∗) ⊂ Ω and ∇X(p) is nonsingular for each p ∈ Bδ̂(p∗). We proceed to prove (5.23). To
simplify the notation, we define

vp = −∇X(p)−1X(p), p ∈ Bδ̂(p∗).

Since X(p∗) = 0 and ∇X is continuous at p∗, we have limp→p∗vp = 0. Moreover, using
(5.8) and the isometry of the parallel transport, and considering that ‖ exp−1

p∗ expp(vp)‖ =
d(expp(vp), p∗), we have

ϕ (NX(p)) =
1

2
‖ X (

expp(vp)
)− Pp∗ expp(vp)X(p∗) ‖2≤[‖∇X(p∗)‖+ ‖r(expp(vp))‖

]2
d2(expp(vp), p∗).

Hence, after some simples algebraic manipulations, we can conclude from the last inequality
that

ϕ
(
expp(vp)

)
‖ X(p) ‖2 ≤ [‖∇X(p∗)‖+ ‖r(expp(vp))‖

]2 d2(expp(vp), p∗)
d2(p, p∗)

d2(p, p∗)
‖ X(p) ‖2 , ∀ p ∈ Bδ̂(p∗)\{p∗}.

(4.10)
On the other hand, since X(p∗) = 0 and ∇X(p∗) is nonsingular, it is easy to see that

exp−1
p∗ p = −∇X(p∗)−1

[
Ppp∗X(p)−X(p∗)−∇X(p∗) exp−1

p∗ p
]
+∇X(p∗)−1Ppp∗X(p). (4.11)

From (5.8) and since ∇X(p∗) is nonsingular, we conclude that there exists 0 < δ̄ < δp∗ such
that ∥∥∇X(p∗)−1

[
Ppp∗X(p)−X(p∗)−∇X(p∗) exp−1

p∗ p
]∥∥ ≤ 1

2
d(p, p∗), ∀ p ∈ Bδ̄(p∗).

Combining (5.26) with the last inequality and considering that d(p∗, p) = ‖ exp−1
p∗ p‖, we

conclude that d(p∗, p) ≤ d(p, p∗)/2 + ‖∇X(p∗)−1Ppp∗X(p)‖ for all p ∈ Bδ̄(p∗), which implies
that

d2(p∗, p) ≤
[
2‖∇X(p∗)−1‖]2 ‖X(p)‖2, ∀ p ∈ Bδ̄(p∗).

Letting δ̃ = min{δ̂, δ̄}, we conclude from (5.25) and the last inequality that ∀ p ∈
Bδ̃(p∗)\{p∗},

ϕ
(
expp(vp)

)
‖ X(p) ‖2 ≤ [

2‖∇X(p∗)−1‖ (‖∇X(p∗)‖+ ‖r(expp(vp))‖
)]2 d2(expp(vp), p∗)

d2(p, p∗)
.

Therefore, from Lemma 3.1.3 and considering that limp→p∗ r(expp(vp)) = 0, the equality
(5.23) follows by taking the limit as p tends to p∗ in the above inequality. For proving (5.24),
we first use (5.23) for concluding that there exists δ > 0 such that δ < δ̂ and for σ ∈ (0, 1/2),
we have

ϕ (NX(p)) ≤ 1− 2σ

2
‖ X(p) ‖2, ∀ p ∈ Bδ(p∗).

Since grad ϕ(p) = ∇X(p)TX(p), we obtain 〈grad ϕ(p),−∇X(p)−1X(p)〉 = −‖X(p)‖2.
Then, the last inequality is equivalent to (5.24) and the proof is complete.
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In the next result, we show that whenever the vector field is continuous and has a non-
singular covariant derivative at a singularity, there exist a neighborhood around it that is
invariant by Newton’s iterate mapping for the associated exponential.

Lemma 4.1.3. Let p∗ ∈M be a solution of (4.1). If ∇X is continuous at p∗ and ∇X(p∗) is
nonsingular, then there exists 0 < δ̂ < δp∗ such that Bδ̂(p∗) ⊂ Ω and ∇X(p) is nonsingular
for each p ∈ Bδ̂(p∗). Moreover, NX(p) ∈ Bδ̂(p∗) for all p ∈ Bδ̂(p∗).

Proof. It follows from Lemma 3.1.2 that there exists 0 < δ̂ < δp∗ such that Bδ̂(p∗) ⊂ Ω

and ∇X(p) is nonsingular for each p ∈ Bδ̂(p∗). Thus, shrinking δ̂ if necessary, we can use
Lemma 3.1.3 to conclude that d(NX(p), p∗) < d(p, p∗)/2 for all p ∈ Bδ̂(p∗), which implies the
last statement of the lemma.

4.2 Convergence Analysis

Finally, we are ready to establish the main result, i.e., the damped Newton’s method with
exponential (Algorithm 4.0.1) converges globally to a solution of (4.1), preserving the fast
convergence rates of Newton’s method (3.3).

Lemma 4.2.1. The sequence {pk} generated by Algorithm 4.0.1 is well defined.

Proof. If vk �= 0 and X(pk) �= 0, then by using Lemma 4.1.1, we conclude that vk satisfying
(4.3) or (4.4) is the descent direction for ϕ from pk. Hence, by using a standard argument,
we conclude that αk defined in (4.5) is well defined, and hence the sequence generated by
the damped Newton’s method (Algorithm 4.0.1) is well defined.

It is worth noting that, if the sequence generated by Algorithm 4.0.1 is finite, then the
last point generated is a solution of (4.1) or it is a critical point of ϕ defined in (4.2). Thus,
we can assume that {pk} is infinite, vk �= 0, and X(pk) �= 0 for all k.

Theorem 4.2.1. Let X : Ω ⊆ M → TM be a differentiable vector field. Assume that {pk}
generated by the damped Newton’s method (Algorithm 4.0.1) has an accumulation point p̄ ∈ Ω
such that ∇X is continuous at p̄ and ∇X(p̄) is nonsingular. Then, p̄ is a singularity of X
and {pk} converges super-linearly to p̄. Moreover, the convergence rate is quadratic provided
that ∇X is locally Lipschitz continuous at p̄.

Proof. We begin by showing that p̄ is a singularity of X. Since {pk} is infinite, without loss
of generality, we can assume that grad ϕ(pk) �= 0 and X(pk) �= 0 for all k = 0, 1, . . .. Hence,
from (4.5) and (4.6), it follows that

ϕ(pk)− ϕ(pk+1) ≥ −σαk〈grad ϕ(pk), vk〉 =
{
σαk‖X(pk)‖2 > 0, if vk satisfies (4.3);

σαk‖ grad ϕ(pk)‖2 > 0, else.

Then, the sequence {ϕ(pk)} is a strictly decreasing sequence, and because it is bounded
below by zero, it converges. Hence, taking the limit as k tends to infinity in the above
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inequality, we conclude that limk→∞[αk 〈grad ϕ(pk), vk〉] = 0. Let {pkj} be a subsequence of
sequence {pk} such that limkj→+∞ pkj = p̄. Thus, we have

lim
kj→∞

[
αkj

〈
grad ϕ(pkj), vkj

〉]
= 0. (4.12)

Since ∇X is continuous at p̄ and ∇X(p̄) is nonsingular, using Lemma 3.1.2 we can also
assume that ∇X(pkj) is nonsingular for all j = 0, 1, . . .. Hence, (4.3) has a solution, and
then,

vkj = −∇X(pkj)
−1X(pkj),

〈
grad ϕ(pkj), vkj

〉
= −‖X(pkj)‖2 j = 0, 1, . . . .

(4.13)
For analyzing the consequences of (4.12), we consider the following two possible cases:

a) lim infj→∞αkj > 0;

b) lim infj→∞αkj = 0.

First, we assume that item a) holds. From (4.12), passing onto a further subsequence if
necessary, we can assume that

lim
j→∞

〈
grad ϕ(pkj), vkj

〉
= 0. (4.14)

Taking the limit in the above equality as j tends to infinity, and considering that
limj→+∞ pkj = p̄ and X is continuous at p̄, we conclude from (4.14) and (4.13) that X(p̄) = 0;
in this case, p̄ is a singularity of X. Now, we assume that item b) holds. Hence, given s ∈ N,
we can take j to be sufficiently large such that αkj < 2−s. Thus, 2−s does not satisfy Armijo’s
condition (4.5), i.e.,

ϕ
(
exppkj

(2−svk)
)
> ϕ(pkj) + σ2−s

〈
grad ϕ(pkj), vkj

〉
.

Letting j tend to infinity, considering that the exponential mapping is continuous,
limj→+∞ pkj = p̄, and since ∇X and X are continuous at p̄, it follows from (4.13) and
the last inequality that

ϕ
(
expp̄(2

−sv̄)
)
> ϕ(p̄) + σ2−s 〈grad ϕ(p̄), v̄〉 ,

where v̄ = −∇X(p̄)−1X(p̄), which implies that [ϕ
(
expp̄(2

−sv̄)
) − ϕ(p̄)]/2−s ≥

σ 〈grad ϕ(p̄), v̄〉 . Then, letting s tend to infinity, we conclude that 〈grad ϕ(p̄), v̄〉 ≥
σ 〈grad ϕ(p̄), v̄〉, or equivalently, ‖X(p̄)‖2 ≤ σ‖X(p̄‖2. Thus, since σ ∈ (0, 1/2), we have
‖ X(p̄) ‖= 0; in this case, we also obtain that p̄ is a singularity of X.

We proceed to prove that there exists k0 such that αk = 1 for all k ≥ k0. Since ∇X(p̄)
is nonsingular and X(p̄) = 0, Lemma 3.1.2 and Lemma 4.1.3 imply that there exists δ̂ > 0
such that ∇X(p) is nonsingular and NX(p) ∈ Bδ(p̄) for all p ∈ Bδ(p̄) and all δ ≤ δ̂. Thus,
considering that p̄ is an accumulation point of {pk}, there exists k0 such that pk0 ∈ Bδ̂(p̄),

and shrinking δ̂ if necessary, we can also conclude from Lemma 4.1.2 that

ϕ (NX(pk0)) ≤ ϕ (pk0)) + σ 〈grad ϕ(pk0), vk0〉 ,
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with vk0 = −∇X(pk0)
−1X(pk0). Hence, the last inequality, (2.5), and (4.5) imply that

αk0 = 1, and using (4.6), we conclude that pk0+1 = NX(pk0). Since NX(pk0) ∈ Bδ̂(p̄), we also
have pk0+1 ∈ Bδ̂(p̄). Then, an induction step is completely analogous, yielding

αk = 1, pk+1 = NX(pk) ∈ Bδ̂(p̄), ∀ k ≥ k0. (4.15)

To obtain super-linear convergence of the entire sequence {pk}, let δ̄ > 0 be given by
Theorem 3.2.1. Thus, shrinking δ̂ if necessary so that δ̂ < δ̄, we can apply Theorem 3.2.1 to
conclude from (5.27) that {pk} converges super-linearly to p̄.

To prove that {pk} converges quadratically to p̄, we first make δ̂ < r, where r is given by
Theorem 2.0.3. Then, considering that ∇X is locally Lipschitz continuous at p̄, the result
follows from the combination of (5.27) and Theorem 2.0.3.

An important issue is the existence of accumulation points of iterative sequences gen-
erated by Algorithm 4.0.1. This is guaranteed when ϕ given by (4.2) is coercive. Indeed,
if ϕ is coercive, it is easy see that the set L0 := {p ∈ Ω : ϕ(p) ≤ ϕ(p0)} is compact.
Moreover, if {pk} is a sequence generated by damped Newton’s method 1 (Algorithm 4.0.1),
then {pk} ⊂ L0.
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5. On Newton’s Method with Retrac-
tion

In this chapter, we generalize Theorem 3.2.1 and Theorem 4.2.1 for a general retraction. As
mentioned in the introduction, there are sound arguments to establish these generalizations
because efficient computation of the exponential, in general, involves significant numerical
challenges. As we shall see, the statement and proof of the results of this section follow
arguments similar to those in the previous sections.

5.1 Basic Definition and Auxiliary Results

In this section, we introduce some preliminary results that will be useful for achieving the
aim of this chapter. We begin by defining the concept of retraction, which was introduced
by (52); see also (5, Section 3).

Definition 5.1.1. A retraction on a manifold M is a smooth mapping R from the tangent
bundle TM onto M with the following properties. If Rp denotes the restriction of R to TpM,
then

(i) Rp0p = p, where 0p denotes the origin of TpM;

(ii) with the canonical identification T0pTpM � TpM, R′
p0p = Ip, where Ip is the identity

mapping on TpM and R′
p denotes the differential of Rp.

We remark that for every tangent vector v in TpM, the curve γ : t → Rptv satisfies
γ′(0) = v. Thus, moving along this curve γ is thought of as moving in the direction v while
constrained to the manifold M. We can see that Definition 5.1.1 implies that the exponential
map is a retraction. In the following, we present some examples of retractions.

Example 5.1.1. Let Pn
++ be the cone of real symmetric positive definite matrices of order

n × n, and let TPP
n
++ be the space of symmetric matrices of order n × n. A retraction on

P
n
++ is given by

RPV := P + V +
1

2
V P−1V, P ∈ P

n
++ V ∈ TPP

n
++; (5.1)

see (73).
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Example 5.1.2. Let Sn−1 := {p = (p1, ..., pn+1) ∈ R
n+1 : ‖ p ‖= 1} be a sphere. A retraction

on S
n−1 is given by

Rpv =
p+ v

‖p+ v‖ , p ∈ S
n−1, v ∈ TpS

n :=
{
v ∈ R

n+1 : 〈p, v〉 = 0
}
;

see (3, Ch. 4).

Example 5.1.3. Let S(p, n) :=
{
P ∈ R

n×p : P TP = Ip
}
be the Stiefel manifold, where Ip

denotes the identity matrix of dimension p and TPS(p, n) :=
{
P ∈ R

n×p : P TV + V TP = 0
}

denotes its tangent space. A retraction on S(p, n) is given by

RPV = (P + V )
(
Ip + V TV

)−1/2
, P ∈ S(p, n), V ∈ TPS(p, n),

where V T denotes the transpose of matrix V ; see (3, Ch. 4).

As mentioned in Chapter 2, if γ : [a, b] → M is a differentiable curve, then for each
t ∈ [a, b], the derivative covariant ∇ induces an isometry relative to the inner product of M,
Pγ,a,t : Tγ(a)M→ Tγ(t)M, i.e., parallel transport along a segment of curve γ joining the points
γ(a) and γ(t). Thus, we have the following important remark.

Remark 5.1.1. Let γ(t) = expp(tv) be a geodesic. Then, in a suitable neighborhood of p,
we obtain the equality

exp−1
p γ(t) = −Pγ,t,0 exp

−1
γ(t) p. (5.2)

This property of parallel transport along a geodesic curve allows us establish Lemma 3.1.3.
However, this property of parallel transport is not ensured for a curve given by any retraction.
This hampers the generalization of Theorem 3.2.1 and Theorem 4.2.1.

Since R′
p(0p) = Ip, by the inverse function theorem, Rp is a local diffeomorphism. Hence,

as defined for the exponential mapping in Chapter 2, we also can define, for p ∈ M, the
injectivity radius of M at p with respect to Rp as follows:

iRp := sup
{
r > 0 : Rp|Br(0p)

is a diffeomorphism
}
, (5.3)

where Br(0p) := {v ∈ TpM :‖ v − 0p ‖< r} is called the neighborhood of injectivity of p with
respect to R.

Remark 5.1.2. Let p̄ ∈M. The definition (5.3) implies that if 0 < δ < iRp̄, then Rp̄Bδ(0p̄) =
Bδ(p̄). Let v ∈ Bδ(0p̄), and consider a curve [0, 1] � t→ γ(t) = Rp̄tv such that γ(t) ⊂ Bδ(p̄)
for all t. Hence, for all p = γ(t), R−1

p̄ p is well defined. For all t ∈ [0, 1] satisfying p = γ(t)

such that for some 0 < δ̂ < iRp, p̄ ∈ Bδ̂(p) holds, we can conclude that R−1
p p̄ is well defined.

Consider γ as given in Remark 5.1.2. Hereafter, if 0 < δ < iRp̄ and p ∈ Bδ(p̄), we denote
by Pγ,p,p̄ parallel transport along this segment of curve γ joining p to p̄; its inverse is denoted
by Pγ,p̄,p. Let p̄ ∈ M and 0 < δ < iRp̄ . Consider γ as the curve given by Remark 5.1.2. We
will assume that the following equality holds.
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lim
p→p̄

Pγ,p,p̄R
−1
p p̄−R−1

p̄ p

d(p, p̄)
= 0, ∀p ∈ Bδ(p̄). (5.4)

Note that, (5.2) implies that the exponential map exp satisfies the equality (5.4). The
following result establishes an important relation between the retraction and the Riemannian
distance; see (35, Lemma 3).

Corollary 5.1.1. Let M be a Riemannian manifold endowed with retraction R and p̄ ∈M.
Then, there exist a0 > 0, a1 > 0, and δa0,a1 such that for all p in a sufficiently small
neighborhood of p̄ and all v ∈ TpM with ‖v‖ ≤ δa0,a1, the following inequality holds.

a0‖v‖ ≤ d (p, Rp(v)) ≤ a1‖v‖. (5.5)

Consider p̄ ∈M and iRp̄ as given by (5.3). We define the following quantity.

δRp̄ := min{1, iRp̄}

Let a0 > 0, a1 > 0, and δa0,a1 be given as in Corollary 5.1.1. Shrink δa0,a1 , if necessary,
such that δa0,a1 < δ < δRp̄ . Let v ∈ Bδa0,a1

(0p̄) and p = Rp̄(v). Then, by the inequality (5.5),
we can conclude that

a0
∥∥R−1

p̄ (p)
∥∥ ≤ d (p, p̄) ≤ a1

∥∥R−1
p̄ (p)

∥∥ , ∀ p ∈ Bδ(p̄). (5.6)

Using the last inequality, we can ensure that the number KR,p as follows is well defined.

KR,p = sup

{
d(Rqu,Rqv)

‖u− v‖ :

q ∈ BRδp
(p), u, v ∈ TqM, u �= v, ‖v‖ ≤ δRp , ‖u− v‖ ≤ δRp

}
. (5.7)

Let X ∈ X (Ω) and p̄ ∈ Ω, and assume that 0 < δ < δRp̄ . In this condition, using (29,
Eq. (2.3)) and (5.5), we can conclude that

X(p) = Pγ,p̄,pX(p̄) + Pγ,p̄,p∇X(p̄)R−1
p̄ p+ ‖R−1

p̄ p‖r(p), lim
p→p̄

r(p) = 0, (5.8)

where p ∈ Bδ(p̄) and [0, 1] � t→ γ(t) = Rp̄tR
−1
p̄ p.

5.2 Newton’s Method with Retraction

In this section, we propose a generalization of Newton’s algorithm 3.0.1 for retraction for
solving (4.1) with a differentiable vector field X. The formal description of the algorithm is
as follow.
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Algorithm 5.2.1.

Newton with Retraction

Step 0. Take an initial point p0 ∈M, and set k = 0. If ‖X(p0)‖ = 0, stop.

Step 1. Compute the search direction vk ∈ TpkM as a solution of the linear equation

X(pk) +∇X(pk)v = 0. (5.9)

If vk, exists go to Step 2. Otherwise, stop.

Step 2. Compute

pk+1 := Rpkvk. (5.10)

Step 3. Set k ← k + 1 and go to Step 1.

We remark that, when the covariant derivative is nonsingular at the singularity of the
vector field, and if the retraction R in Step 2 is the exponential mapping exp, Lemma 3.1.2
ensures that the solution of (5.9) is given by vk = −∇X(pk)

−1X(pk). Hence, the above
algorithm becomes Newton’s method given by (3.3). In this case, Theorem 3.2.1 ensures
that the sequence generated by Algorithm 5.2.1 starting at a suitable point converges to a
singularity of the vector field at a super-linear rate.

5.2.1 Convergence Analysis

In this section, we present the local convergence properties of the sequence generated by
Algorithm 5.2.1. Toward this end, we introduce Newton’s iterate mapping for retraction.
Consider p̄ ∈ Ω, where Ω is an open set of M. Assume that ∇X(p̄) is nonsingular and δ̄ is
given as in Lemma 3.1.2. Then, Newton’s iterate mapping for retraction NR,X : Bδ̄(p̄)→ M

is given by

NR,X(p) := Rp

(−∇X(p)−1X(p)
)
. (5.11)

Note that NR,X is well defined since Lemma 3.1.2 ensures that ∇X(p) is nonsingular for all
p ∈ Bδ̄(p̄). The proof of the next lemma is similar to the proof of Lemma 3.1.3. However,
we will present it here to highlight the technical details.

Lemma 5.2.1. Let p∗ ∈ Ω such that X(p∗) = 0. If ∇X is continuous at p∗ and ∇X(p∗) is
nonsingular, then

lim
p→p∗

d(NR,X(p), p∗)
d(p, p∗)

= 0.
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Proof. Consider the following equality, obtained using some algebraic manipulations.

∇X(p)−1X(p) + Pγ,p∗,pR
−1
p∗ p = ∇X(p)−1

[
X(p)− Pγ,p∗,pX(p∗)− Pγ,p∗,p∇X(p∗)R−1

p∗ p+

[Pγ,p∗,p∇X(p∗)−∇X(p)Pγ,p∗,p]R
−1
p∗ p

]
.

From the above equality and some properties of the norm, we have for each p ∈ Bδ̄(p∗),
where δ̄ is given by Lemma 3.1.2, that

∥∥∇X(p)−1X(p) + Pγ,p∗,pR
−1
p∗ p

∥∥
d(p, p∗)

≤
∥∥∇X(p)−1

∥∥ [ ‖r(p)‖+ ‖Pγ,p∗,p∇X(p∗)−∇X(p)Pγ,p∗,p‖
] ∥∥R−1

p∗ p
∥∥

d(p, p∗)
,

where r is given by (5.8). From (5.6), it follows that
∥∥R−1

p∗ p
∥∥ /d(p, p∗) ≤ 1/a0. Combining

the last two inequalities, we have∥∥∇X(p)−1X(p) + Pγ,p∗,pR
−1
p∗ p

∥∥
d(p, p∗)

≤ ‖∇X(p)−1‖
a0

[ ‖r(p)‖+ ‖Pγ,p∗,p∇X(p∗)−∇X(p)Pγ,p∗,p‖
]
.

Combining the last inequality with item (ii) of Lemma 3.1.2, we can obtain the following:

∥∥∇X(p)−1X(p) + Pγ,p∗,pR
−1
p∗ p

∥∥ ≤
2

a0

∥∥∇X(p∗)−1
∥∥ [ ‖r(p)‖+ ‖Pγ,p,p∗∇X(p)Pγ,p∗,p −∇X(p∗)‖

]
d(p, p∗). (5.12)

Taking the limit as p tends to p∗ on the right-hand side of the last inequality and using (3.5)
and lim

p→p∗
r(p) = 0, we have

lim
p→p∗

∥∥∇X(p)−1X(p) + Pγ,p∗,pR
−1
p∗ p

∥∥ = 0. (5.13)

Since R−1
p p∗ is continuous, by using Corollary 3.1.1, we can conclude that Pγ,p,p∗R

−1
p p∗ is

continuous. Thus,

lim
p→p∗

∥∥Pγ,p,p∗R
−1
p p∗ −R−1

p∗ p
∥∥ = 0. (5.14)

Using the triangular inequality and since parallel transport is an isometry, we conclude that

∥∥∇X(p)−1X(p) +R−1
p p∗

∥∥≤ ∥∥∇X(p)−1X(p) + Pγ,p∗,pR
−1
p∗ p

∥∥+∥∥Ppp∗R
−1
p p∗ −R−1

p∗ p
∥∥ . (5.15)

Thus, from (5.13) and (5.14), the left-hand side of the last inequality tends to zero as p tends
to p∗. Hence,

∥∥∇X(p)−1X(p) +R−1
p p∗

∥∥ ≤ δRp∗ for all p ∈ Bδ̄(p∗). From the definition of
NR,X in (5.11) and the definition of KR,p∗ in (5.7), it follows that

d(NR,X(p), p∗) ≤ KR,p∗
∥∥−∇X(p)−1X(p)−R−1

p p∗
∥∥ , ∀ p ∈ Bδ̄(p∗).
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From (5.12) and (5.15), combined with the last inequality, we can conclude the following:

d(NR,X(p), p∗)
d(p, p∗)

≤ 2

a0
Kp∗

∥∥∇X(p∗)−1
∥∥ [ ‖r(p)‖+ ‖Pγ,p,p∗∇X(p)Pγ,p∗,p −∇X(p∗)‖

]
+∥∥Pγ,p,p∗R

−1
p p∗ −R−1

p∗ p
∥∥

d(p, p∗)
.

The desired result follows by letting p tend to p∗ in the last inequality and by considering
(3.5), (5.4), and that r(p) tends to zero as p tends to p∗.

In the following, we present the main result of this section, i.e., a generalization of
Theorem 3.2.1 for retraction. Its proof is similar to the proof of Theorem 3.2.1, and for the
sake of completeness, we will present it here.

Theorem 5.2.1. Let M be a Riemannian manifold with a retraction R and let Ω ⊂M be an
open set. Let X : Ω→ TM be a differentiable vector field and p∗ ∈ Ω. Consider the Newton
sequence given by

pk+1 = Rpk(−∇X(pk)
−1X(pk)), k = 0, 1, . . . (5.16)

Suppose that p∗ is a singularity of X, ∇X is continuous at p∗, and ∇X(p∗) is nonsingular.
Then, there exists δ̄ > 0 such that, for all p0 ∈ Bδ̄(p∗), the sequence (5.16) is well defined,
contained in Bδ̄(p∗), and converges super-linearly to p∗.

Proof. First, note that from (5.11) and (5.16), we can obtain the following definition of
Newton’s sequence:

pk+1 = NR,X(pk), k = 0, 1, . . . (5.17)

From Lemma 3.1.3 and by considering δ̄ as given by Lemma 3.1.2, we can conclude that

d(NR,X(p), p∗) <
1

2
d(p, p∗), ∀ p ∈ Bδ̄(p∗). (5.18)

Thus, from (5.17), (5.18), and Lemma 3.1.2 item (i), it follows that for all p0 ∈ Bδ̄(p∗), the
Newton sequence {pk} defined by (5.16) is well defined and contained in Bδ̄(p∗). Moreover,
{pk} converges to p∗ since (5.18) and (5.17) imply that d(pk+1, p∗) < 1/2d(pk, p∗), k =
0, 1, . . . . The super-linear convergence of Newton’s sequence follows by combining (5.17)
with Lemma 3.1.3.

The convergence of the sequence generated by Algorithm 5.2.1 depends on the initial point
p0. Hence, this method is a local method. In general, we cannot guarantee that equation
(5.9) has a solution. If not, the method stops and it does not converge to a singularity
of the vector field in consideration. In the next section, we will consider a modification of
Algorithm 5.2.1 to globalize this algorithm in addition to improving its efficiency.
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5.3 Damped Newton Method with Retraction

In this section, we present and study the convergence properties of a new algorithm for
solving (4.1) with a differentiable vector field X, which is a generalization of Algorithm
4.0.1 with retraction. We point out that the results of the next two sections are similar
to those in Sections 4.1 and 4.2, respectively. However, we have decided to present them
for completeness. Let ϕ be the function defined in (4.2) associated with X. The formal
description of the method is as follows.

Algorithm 5.3.1.

Damped Newton with Retraction

Step 0. Choose a scalar σ ∈ (0, 1/2), take an initial point p0 ∈M, and set k = 0.

Step 1. Compute search direction vk ∈ TpkM as a solution of the linear equation

X(pk) +∇X(pk)v = 0. (5.19)

If vk exists, go to Step 2. Otherwise, set the search direction as vk = − grad ϕ(pk),
where ϕ is defined by (4.2), i.e.,

vk = −∇X(pk)
∗X(pk). (5.20)

If vk = 0, stop.

Step 2. Compute the step size by the rule

αk := max
{
2−j : ϕ

(
Rpk(2

−jvk)
) ≤ ϕ(pk) + σ2−j 〈grad ϕ(pk), vk〉 , j ∈ N

}
, (5.21)

and set the next iterate as

pk+1 := Rpk(αkvk). (5.22)

Step 3. Set k ← k + 1 and go to Step 1.

We remark that Lemma 4.1.1 ensures that the above algorithm is well defined, since vk
defined by (5.19) or (5.20) is a descent direction for ϕ. In the next section, we study the
convergence properties of this algorithm.

5.3.1 Preliminaries

In this section, we present some preliminary results to ensure that the sequence generated
by Algorithm 5.3.1 converges to a solution of the problem (4.1) at a super-linear rate. We
begin by showing that the damped Newton’s algorithm with retraction generates a sequence
that, after a finite number of iterates, reduces to the Newton’s sequence given by (5.10).
This result is a version of Lemma 5.23 for retraction. Its formal statement is as follows.
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Lemma 5.3.1. Let p∗ ∈M such that X(p∗) = 0. If ∇X is continuous at p∗ and ∇X(p∗) is
nonsingular, then there exists 0 < δ̂ < δRp∗ such that Bδ̂(p∗) ⊂ Ω, ∇X(p) is nonsingular for
each p ∈ Bδ̂(p∗), and

lim
p→p∗

ϕ (NR,X(p))

‖ X(p) ‖2 = 0. (5.23)

As a consequence, there exists δ > 0 such that, for all σ ∈ (0, 1/2) and δ < δ̂, it holds that

ϕ (NR,X(p)) ≤ ϕ (p)) + σ
〈
grad ϕ(p),−∇X(p)−1X(p)

〉
, ∀ p ∈ Bδ(p∗). (5.24)

Proof. Lemma 3.1.2 ensures that there exists 0 < δ̂ < δRp∗ such that Bδ̂(p∗) ⊂ Ω and ∇X(p)
is nonsingular for each p ∈ Bδ̂(p∗). To prove (5.23), we denote vp = −∇X(p)−1X(p) for
all p ∈ Bδ̂(p∗). Since X(p∗) = 0 and ∇X is continuous at p∗ and nonsingular, we have
limp→p∗vp = 0. Moreover, from (5.6) and (5.8), it follows that

ϕ (NR,X(p)) =
1

2
‖ X (Rpvp)− Pγ,p∗,RpvpX(p∗) ‖2≤ [‖∇X(p∗)‖+ ‖r(Rp∗vp)‖]2 d2(Rpvp, p∗).

Hence, after some simple algebraic manipulations, the last inequality implies the following:

ϕ (NR,X(p))

‖ X(p) ‖2 ≤ [‖∇X(p∗)‖+ ‖r(Rp∗v)‖]2
d2(Rp∗v, p∗)
d2(p, p∗)

d2(p, p∗)
‖ X(p) ‖2 , ∀ p ∈ Bδ̂(p∗)\{p∗}.

(5.25)
Note that, by considering that p∗ is a singularity of X and ∇X(p∗) is nonsingular,

R−1
p∗ p = −∇X(p∗)−1

[
Pγ,p,p∗X(p)−X(p∗)−∇X(p∗)R−1

p∗ p
]
+∇X(p∗)−1Pγ,p,p∗X(p). (5.26)

By using (5.6) and (5.8), we can take δ̄ with 0 < δ̄ < δRp∗ to conclude that∥∥∇X(p∗)−1
[
Pγ,p,p∗X (p)−X(p∗)−∇X(p∗)R−1

p∗ p
]∥∥ ≤ a0

2a1

∥∥R−1
p∗ p

∥∥
≤ 1

2a1
d (p, p∗) , ∀ p ∈ Bδ̄(p∗).

From the last inequality, (5.6), and (5.26), we have d(p, p∗) ≤ d(p, p∗)/2+a1‖∇X(p∗)−1Pγ,p,p∗X (p) ‖
for all p ∈ Bδ̄(p∗). Hence, we have

d2 (p∗, p) ≤
[
2a1‖∇X(p∗)−1‖]2 ‖X (p) ‖2, ∀ p ∈ Bδ̄(p∗).

From (5.25) and the last inequality, for all p ∈ Bδ̃(p∗)\{p∗}, where δ̃ = min{δ̂, δ̄}, we conclude
that

ϕ (NR,X(p))

‖ X(p) ‖2 ≤ [
2a1a

−1
0 ‖∇X(p∗)−1‖]2 [ ‖∇X(p∗)‖+ ‖r(Rp∗v)‖]2

d2(Rp∗v, p∗)
d2(p, p∗)

.

The equality (5.23) follows by taking the limit as p tends to p∗ in the above inequality and
considering Lemma 5.2.1. Moreover, from (5.23), there exists δ > 0 such that δ < δ̂ with

ϕ (NR,X(p)) ≤ 1− 2σ

2
‖ X(p) ‖2, ∀ p ∈ Bδ(p∗)

when σ ∈ (0, 1/2). Since 〈grad ϕ(p),−∇X(p)−1X(p)〉 = −‖X(p)‖2, the last inequality is
equivalent to (5.24).
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In the next result, we show that whenever the vector field is continuous and has a non-
singular covariant derivative at a singularity, there exist a neighborhood around it that is
invariant by Newton’s iterate mapping for the associated retraction.

Lemma 5.3.2. Let p∗ ∈M such that X(p∗) = 0. If ∇X is continuous at p∗ and ∇X(p∗) is
nonsingular, then there exists 0 < δ̂ < δRp∗ such that Bδ̂(p∗) ⊂ Ω and ∇X(p) is nonsingular
for each p ∈ Bδ̂(p∗). Moreover, NR,X(p) ∈ Bδ̂(p∗) for all p ∈ Bδ̂(p∗).

Proof. It similar to the proof of Lemma 4.1.3.

5.3.2 Convergence Analysis

In this section, we establish the main result of this chapter. We will present a result on the
global convergence of the damped Newtons method with retraction, preserving the property
of super-linear convergence of Algorithm 4.0.1. We begin by proving that the sequence
generated by the damped Newton’s algorithm with retraction is well defined.

Lemma 5.3.3. The sequence {pk} generated by the damped Newton’s algorithm is well de-
fined.

Proof. Lemma 4.1.1 ensures that v0 satisfying (5.19) or (5.20) is the descent direction for ϕ
from p0. Hence, α0 in (5.21) is well defined. By induction, we can prove that the sequence
{pk} given by (5.22) is well defined.

The next result is the main result of this section. The proof of this result is similar to
the proof of Theorem 4.2.1. Nevertheless, we will show the main idea of this proof for the
sake of completeness.

Theorem 5.3.1. Let X : Ω ⊆ M → TM be a differentiable vector field. Assume that {pk}
generated by the damped Newton’s method has an accumulation point p̄ ∈ Ω such that ∇X is
continuous at p̄ and ∇X(p̄) is nonsingular. Then, p̄ is a singularity of X and {pk} converges
super-linearly to p̄.

Proof. Let {pk} be a sequence generated by Algorithm 5.3.1 and p̄ be an accumulation point
of {pk} such that ∇X is continuous at p̄ and ∇X(p̄) is nonsingular. Since the retraction
is a continuous mapping, using Lemma 3.1.2, Lemma 5.3.2, Lemma 5.3.1, and the same
arguments as those used in the proof of Theorem 4.2.1, we can conclude that p̄ is a singularity
of X and that there exists δ̂ > 0 and k0 such that

αk = 1, pk+1 = NR,X(pk) ∈ Bδ̂(p̄), ∀ k ≥ k0.

The super-linear convergence of the entire sequence {pk} holds by shrinking δ̂ if necessary so
that δ̂ < δ̄, where δ̄ is given by Theorem 5.2.1, and by applying this theorem together with
the last equality.
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6. Numerical Experiments

In this chapter, we shall give some numerical experiments to illustrate the performance of the
damped Newton method and damped Newton method with retraction for minimizing families
of functions defined on the cone of symmetric positive definite matrices. Our goal here is to
compare the efficiency of Damped Newton method with Newton method where this last has
convergence global. Moreover, we compare the efficiency of the Damped Newton method with
damped Newton method with retraction in iterates and time. Before present our numerical
experiment, we need to introduce some concepts. Let Pn be the set of symmetric matrices of
order n×n and P

n
++ be the cone of symmetric positive definite matrices. Following Rothaus

(62), let M := (Pn
++, 〈 , 〉) be the Riemannian manifold endowed with the Riemannian metric

defined by

〈U, V 〉 = tr(V ψ′′(P )U) = tr(V P−1UP−1), P ∈M, U, V ∈ TPM ≈ P
n, (6.1)

where trP denotes the trace of P ∈ P
n. In this case exponential mapping is given by

expP V = P 1/2e(P
−1/2V P−1/2)P 1/2, P ∈M, V ∈ TPM ≈ P

n. (6.2)

Let X and Y be vector fields in M. Then, by using (63, Theorem 1.2, page 28), we can prove
that the Levi-Civita connection of M is given by

∇YX(P ) = X ′Y − 1

2

[
Y P−1X +XP−1Y

]
, (6.3)

where P ∈ M, and X ′ denotes the Euclidean derivative of X. Therefore, it follows from
(6.1) and (6.3) that the Riemannian gradient and hessian of a twice-differentiable function
f : M→ R are respectively given by:

gradf(P ) = Pf ′(P )P, Hess f(P )V = Pf ′′(P )V P +
1

2
[V f ′(P )P + PF ′(P )V ] , (6.4)

for all V ∈ TPM, where f ′(P ) and f ′′(P ) are the Euclidean gradient and hessian of f at P ,
respectively. In this case, by using (6.2), the Newton’s iteration for finding P ∈M such that
gradf(P ) = 0 is given by

Pk+1 = P
1/2
k eP

−1/2
k VkP

−1/2
k P

1/2
k , k = 0, 1, . . . , (6.5)

where, by using again the equalities in (6.4), Vk is the unique solution of the Newton’s linear
equation

Pkf
′′(Pk)VkPk +

1

2
[Vkf

′(Pk)Pk + Pkf
′(Pk)Vk] = −Pkf

′(Pk)Pk, (6.6)
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which corresponds to (5.19) for X = gradf . Now, we are going to present concrete examples
for (6.5) and (6.6). Let i = 1, 2 and fi : P

n
++ → R be defined, respectively, by

f1(P ) = a1 ln detP + b1 trP
−1, f2(P ) = a2 ln detP − b2trP, (6.7)

where b1/a1 > 0, a2/b2 > 0, and detP denotes the determinant of P , respectively. Then,
for each i = 1, 2, the Euclidean gradient and hessian of fi are given, respectively, by

f ′
1(P ) = a1P

−1 − b1P
−2, f ′′

1 (P )V = b1

(
P−1V P−2 + P−2V P−1

)− a1P
−1V P−1,

(6.8)

f ′
2(P ) = a2P

−1 − b2I, f ′′
2 (P )Vk = −a2P−1V P−1, (6.9)

where I denotes the n× n identity matrix. It follows from (6.4), (6.7), (6.8) and (6.9) that

grad f1(P ) = a1P − b1I, grad f2(P ) = a2P − b2P
2. (6.10)

From the last two equalities, we can conclude that the global minimizer of fi, for each
i = 1, 2 are P ∗

1 = b1/a1 I and P ∗
2 = a2/b2 I, respectively. Our task is to execute explicitly

the Damped Newton method to find the global minimizer of fi, for each i = 1, 2. For this
purpose, consider ϕi : P

n
++ → R given by ϕi(P ) = 1/2 ‖grad fi(P )‖2, i = 1, 2. Thus, by

using (6.10) we conclude that

grad ϕ1(P ) = abI − b2
1P

−1, grad ϕ2(P ) = d2P 3 − a2b2P
2. (6.11)

By combining (6.1), (6.2) and (6.10), after some calculations we obtain the following equal-
ities

ϕ1 (expP V ) =
1

2
tr

(
a1I − b1

(
P 1/2eP

−1/2V P−1/2

P 1/2
)−1

)2

, (6.12)

ϕ2 (expP V ) =
1

2
tr
(
a2I − b2P

1/2eP
−1/2V P−1/2

P 1/2
)2

. (6.13)

Finally, by using (6.5), (6.6), definition of f1 in (6.7), (6.8), left hand sides of (6.10) and
(6.11) and (6.12) we give the damped Newton method, for finding the global minimizer of
f1. The formal algorithm to find the global minimizer of function f2 will not be presented
here because it can be obtained similarly by using (6.5), (6.6), the definition of f2 in (6.7),
(6.9), right hand sides of (6.10) and (6.11) and (6.13). The Damped Newton algorithim for
the matrix cone is given as follows.

Damped Newton Method in P
n
++ (DNM-Pn

++)

Step 0. Choose a scalar σ ∈ (0, 1/2), take an initial point P0 ∈M, and set k = 0;

Step 1. Compute search direction Vk, as a solution of the linear equation

PkVk + VkPk = 2(P 2
k − a1/b1P

3
k ). (6.14)
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If Vk exists go to Step 2. Otherwise, set the search direction Vk = − grad ϕ1(pk),
i.e,

Vk = b2
1P

−1
k − a1b1I. (6.15)

If Vk = 0, stop;

Step 2. Compute the stepsize by the rule

αk := max

{
2−j :

1

2
tr

(
a1I − b1

(
P

1/2
k e2

−jP
−1/2
k V P

−1/2
k P

1/2
k

)−1
)2

≤(
1

2
− σ2−j

)
tr
(
a1I − b1P

−1
k

)2 }
(6.16)

and set the next iterated as

Pk+1 := P
1/2
k eαkP

−1/2
k VkP

−1/2
k P

1/2
k ; (6.17)

Step 3. Set k ← k + 1 and go to Step 1.

Although the domain of f1 is a subset of the symmetric matrix set, namely, Pn
++, equality

(6.17) shows that DNM-Pn
++ generates only feasible points without using projections or any

other procedure to remain the feasibility. Hence, problem of minimizing f1 in P
n
++ can be

seen as unconstrained Riemannian optimization problem. Note that, in this case, the equa-
tion (6.14) always has unique solution Vk ∈ TPk

P
n
++ see (19, Th. 8.2.1), and consequently

the direction Vk in (6.15) does not play any role here. Thus, in this case, we can compare
the Newton and damped Newton methods in number of iterations and CPU time to reach
the solution. The Newton method is formally described as follow.

Newton Method in P
n
++ (NM-Pn

++)

Step 0. Take an initial point P0 ∈M, and set k = 0;

Step 1. Compute search direction Vk as a solution of the linear equation

PkVk + VkPk = 2(P 2
k − a1/b1P

3
k ).

Step 2. Compute the next iterated by

Pk+1 := P
1/2
k eP

−1/2
k VkP

−1/2
k P

1/2
k ;

Step 3. Set k ← k + 1 and go to Step 1.
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In order to compare the efficiency of the damped Newton method with the damped
Newton method with retraction, we present damped Newton method with retraction in P

n
++

which follows by combining (5.1), (6.1), (6.10), (6.14) and (6.15).

Damped Newton Method with Retraction P
n
++ (DNMR-Pn

++)

Step 0. Choose a scalar σ ∈ (0, 1/2), take an initial point P0 ∈M, and set k = 0;

Step 1. Compute search direction Vk, as a solution of the linear equation

PkVk + VkPk = 2(P 2
k − a/bP 3

k ). (6.18)

If Vk exists go to Step 2. Otherwise, set the search direction Vk = − grad ϕ1(pk),
i.e,

Vk = b2
1P

−1
k − abI. (6.19)

If Vk = 0, stop;

Step 2. Compute the stepsize by the rule

αk := max

{
2−j :

1

2
tr

(
a1I − b1

(
Pk + Vk +

1

2
VkP

−1
k Vk

)−1
)2

≤
(
1

2
− σ2−j

)
tr
(
a1I − b1P

−1
k

)2 }
(6.20)

and set the next iterated as

Pk+1 := Pk + Vk +
1

2
VkP

−1
k Vk; (6.21)

Step 3. Set k ← k + 1 and go to Step 1.

Although the domain of f1 is a subset of the symmetric matrix set, namely, Pn
++, equality

(6.21) ensures that DNM-Pn
++ generates only feasible points, (see (73, Prop. 3.1)). Hence,

without using projections or any other procedure to remain the feasibility the problem of
minimizing f1 onto P

n
++ can be seen as unconstrained Riemannian optimization problem.

We have implemented the above three algorithms by using MATLAB R2015b. The
experiments are performed on an Intel Core 2 Duo Processor 2.26 GHz , 4 GB of RAM,
and OSX operating system. We compare the iterative behavior of NM-Pn

++ and DNM-Pn
++

applied to f1 and f2 with randomly chosen initial guesses. In all experiments the stop
criterio at the iterate Pk ∈ P

n
++ is ‖grad f (Pk)‖ ≤ 10−8 where ‖·‖ is norm associated to the

metric given by (6.1). All codes are freely available at http://www2.uesb.br/professor/
telesfernandes/wp-content/uploads/2018/04/codigo_tese.zip. We run the above two
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(a) f1 with b1/a1 = 0.1 and n = 1000.
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(b) f2 with b2/a2 = 0.002 and n = 1000.

Figure 6.1: Performance of DNM-Pn
++ and NM-Pn

++ to f1 and f2

algorithms in a huge number of problems by varying the dimensions and parameters b1/a1
and b2/a2 in functions f1 and f2, respectively. In general, DNM-Pn

++ is superior to NM-
P
n
++ in number of iterations and CPU time. As we can see in figures (a) and (b) NM-Pn

++

performs huge number of iterations before reaching the superlinear convergence region while
the line-search of DNM-Pn

++ decreasing gradient norm ensuring a superior performance in
number of iterations. Note that in these figures DNM-Pn

++ and NM-Pn
++ have the same

behavior when the iterations close to the solution, which is the consequence of Lemma 5.3.1.
In part the efficiency of the DNM-Pn

++ can be explained due to the linearsearch decreasing
the merit function.

Table 6.1 shows that DNM-Pn
++ is superior to NM-Pn

++ in number of iterations and
CPU time, besides showing the number of evaluation of the function in the linear-search
to compute the stepsize. In the columns of this table we read: n is the dimension of Pn,
b1/a1 and b2/a2 are the parameters defining the functions f1 and f2, respectively, NIT is
the number of iterates to reach the minimizer of the function, FE is the number of function
evaluations in the Armijo’s rule and Time is CPU time in seconds. We knows that, in
general, the linear-search to compute the stepsize is expensive, but the computational effort
did not grow significantly with the dimension of of Pn in the DNM-Pn

++.
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NM-Pn
++ DNM-Pn

++

bi/ai n NIT Time (sec.) NIT FE Time (sec.)

f1

0.1
1 41 0.1879 4 17 0.1012
100 109 1.9406 6 24 0.5875
1000 110 1239.7 6 24 107.19

1.0
1 7 0.0964 4 13 0.1059
100 13 0.4369 4 14 0.4341
1000 13 147.57 4 14 64.929

1.5
1 6 0.1038 4 13 0.1222
100 10 0.2161 5 17 0.2472
1000 10 112.69 6 21 97.08

f2

0.01
1 26 0.3075 5 18 0.1659
100 12 0.9245 5 17 0.2086
1000 12 137.70 5 17 85.003

0.002
1 125 0.2898 6 24 0.1022
100 51 0.9040 6 23 0.2740
1000 51 626.86 6 23 108.72

0.001
1 249 0.3749 6 25 0.1739
100 100 1.6574 7 27 0.4238
1000 100 1131.3 7 27 130.53

Table 6.1: Performance of DNM-Pn
++ and NM-Pn

++ to f1 and f2 and the effort to compute the
step-size.

DNMR-Pn
++ DNM-Pn

++

bi/ai n NIT FE Time (sec.) NIT FE Time (sec.)

f1

0.1
1 41 123 0.0251 4 17 0.0174
100 109 327 0.7863 6 24 0.1432
1000 110 330 421.47 6 24 28.688

1.0
1 7 21 0.0182 4 13 0.0173
100 13 39 0.1682 4 14 0.0535
1000 13 39 48.450 4 14 17.133

1.5
1 6 19 0.0167 4 13 0.0178
100 10 30 0.0836 5 17 0.0582
1000 10 30 36.793 6 21 24.403

f2

0.01
1 1 5 0.0142 5 18 0.0202
100 6 19 0.0915 5 17 0.0550
1000 6 19 19.998 5 17 17.941

0.002
1 5 18 0.0178 6 24 0.0208
100 6 20 0.0536 6 23 0.0628
1000 6 20 19.309 6 23 23.767

0.001
1 6 21 0.0169 6 25 0.0182
100 5 18 0.0500 7 27 0.0716
1000 5 18 16.976 7 27 27.539

Table 6.2: Performance of DNMR-Pn
++ and DNM-Pn

++ to f1 and f2 and the effort to compute the
step-size.
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In this doctoral thesis, under non-singularity of the covariant derivative of the vector field
at its zero and without any additional conditions on this derivative, we established the
super-linear local convergence of Newtons method with exponential mapping, i.e., Algo-
rithm 3.0.1, as well as the super-linear global convergence of the damped Newton’s method
with exponential mapping, i.e., Algorithm 4.0.1. Moreover, we presented generalizations of
these algorithms with retraction. However, we assumed the equality (5.4), which is true for
exponential mapping, but we did not prove it in the sense of any retraction. It is worth
noting that we assumed that the Riemannian manifold is finite-dimensional in order to es-
tablish Lemma 3.1.1 and Lemma 3.1.2. On the other hand, we know that Newton’s method
converges super-linearly on infinite-dimensional Banach spaces under non-singularity of the
derivative of the operator at its zero. Since many important problems arise in infinite-
dimensional Riemannian manifolds as problems of finding singularities of vector fields, e.g.,
see (45; 54), it would be interesting to extend our results to such manifolds. We also re-
mark that a global convergence analysis of a damped Newton’s method without assuming
non-singularity of the Hessian of the objective function at its critical points was established
in the Euclidean context (10, Chapter 1, Section 1.3.3). Since many important problems
in the context of a Riemannian manifold become the problem of finding a singularity of a
vector field (5; 25), it would be interesting to obtain a similar global analysis for a damped
Newton’s method to find a singularity of a vector field defined on a Riemannian manifold.

We implemented Newton’s method with exponential, i.e., Algorithm 3.0.1, and the
damped Newtons method with exponential, i.e., Algorithm 4.0.1, for the problem of finding
the global minimizers of an academic family of functions defined on the cone of symmetric
positive definite matrices. Our numerical results showed that the damped Newtons method
with exponential is superior to the classical Newton’s method given by Algorithm 3.0.1.
Moreover, we also implemented damped Newtons method with retraction for aforemen-
tioned problem. This algorithm present the same iterates numbers and functions evaluate
to damped Newtons method with exponential. Thus, in this sense the damped Newton’s
method with retraction does not present computational advantages over the damped New-
tons method with exponential mapping. Theses numerical experiments motivated us to
apply Algorithm 5.3.1 (since it is a generalization of Algorithm 4.0.1 for retraction) to the
Karcher problem (presented below), which is defined on the cone of symmetric positive def-
inite matrices. Furthermore, we intend to compare the performance of Algorithm 5.3.1 with
that of efficient methods for solving this problem in the Euclidean space. In the next section,
we present the damped Newton’s method with retraction to minimize the Rayleigh quotient.
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7.1 Rayleigh Quotient on the Sphere

Computing the eigenvalues of a symmetric n×nmatrix A has several important applications,
see for instance, (9; 60). This problem is equivalent to finding a minimizer of the Rayleigh
quotient of A on the sphere. We intend to evaluate the performance of Algorithm5.3.1
to solve this problem with efficient methods in the Euclidean space. Toward this end, we
begin by establishing Algorithm 4.0.1. Before we present this algorithm, we make some
considerations.

Let 〈 , 〉 be the Euclidean inner product, with the corresponding norm denoted by ‖ · ‖.
The n−dimensional Euclidean sphere and its tangent hyperplane at a point p are respectively
denoted by

S
n :=

{
p = (p1, ..., pn+1) ∈ R

n+1 :‖ p ‖= 1
}
, TpS

n :=
{
v ∈ R

n+1 : 〈p, v〉 = 0
}
.

Let M := (Sn, 〈 , 〉). Let X and Y be vector fields in M. Then, using (46, Theorem 1.2, p.
325), we can prove that the Levi-Civita connection of M is given by

∇YX(p) =
[
I − ppT

]
X ′(p)Y, (7.1)

where X ′(p) is the usual derivative of X at p and I denotes the (n + 1) × (n + 1) identity
matrix. Hence, for f : M → R, a twice-differentiable function, using the Euclidean inner
product and (7.1), the gradient and Hessian of f at p are, respectively, given by

grad f(p) =
[
I − ppT

]
f ′(p), Hess f(p) = [I − ppT ] [f ′′(p)− 〈f ′(p), p〉I] , (7.2)

where f ′(p) and f ′′(p) are the Euclidean gradient and Hessian of f at p, respectively. In
particular, let A be an n × n symmetric matrix and f : Sn → R be the Rayleigh quotient
function, i.e.,

f(p) = pTAp.

Then, from (2.2), (7.1), and (7.2), Newtons equation for unknown v ∈ TpM is given by

∇YX(p) = ∇grad f(p)v =
[
I − ppT

]
[Av − 〈p, Ap〉v] = − [

I − ppT
]
Ap.

Since v ∈ TpM,
[
I − ppT

]
v = v. Hence, the Newton equation can be written as follows:[

I − ppT
]
A
[
I − ppT

]
v − vpTAp = − [

I − ppT
]
Ap.

Finally, by using the last equality and the retraction defined in (5.1.2), we can present the
proposed algorithm.

Algorithm 7.1.1.

Damped Newton with retraction for Rayleigh Quotient in M = S
n

Step 0. Choose a scalar σ ∈ (0, 1/2), take an initial point p0 ∈M, and set k = 0.
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Step 1. Compute search direction vk as a solution of the equation linear system{[
I − pkp

T
k

]
A
[
I − pkp

T
k

]
vk − vkp

T
kApk = −

[
I − pkp

T
k

]
Apk,

pTk vk = 0.

If vk exists, go to Step 2. Otherwise, set the search direction as vk = − grad ϕ(pk),
where ϕ is defined by (4.2), i.e.,

vk = −4
(
[I − pkp

T
k ] [A− 〈Apk, pk〉I]

)T [
I − pkp

T
k

]
Apk.

If vk = 0, stop.

Step 2. Compute the step size by the rule

αk := max

{
2−j :

∥∥(I − qkq
T
k

)
Aqk

∥∥2 ≤ ∥∥(I − pkp
T
k

)
Apk

∥∥2
+

σ22−j
〈(

[I − pkp
T
k ] [A− 〈Apk, pk〉]

)T [
I − pkp

T
k

]
Apk, vk

〉
, j ∈ N

}
,

where qk =
pk + 2−jvk
‖pk + 2−jvk‖ and set the next iterate as

pk+1 :=
pk + αkvk
‖pk + αkvk‖ .

Step 3. Set k ← k + 1 and go to Step 1.

7.2 Karcher Problem

The Karcher problem is an important problem arising when one has to represent, through a
single matrix H, the results of several experiments involving a set of many n× n symmetric
positive matrices A1, . . . , Am. This problem has several applications; see (12; 55; 60; 69)
and the references therein. The geometric structure on P

n
++, the cone of symmetric positive

definite matrices of order n × n, with the metric given by (6.1), makes P
n
++ a complete

Riemannian manifold with negative curvature; see (11). Every compact set in P
n
++ has a

unique center of mass; see (8, Sec. 6.1.5). Representing through a single matrix H the results
of several experiments involving a set of many n×n symmetric positive matrices A1, . . . , Am

can be defined as finding their center of mass. This problem is formally defined by

min
P∈Pn

++

m∑
i=1

d2 (Ai, P ) , (7.-2)

where, for P and Q points in P
n
++, d(P,Q) :=

∥∥log (P−1/2QP−1/2
)∥∥

F
with ‖·‖F denoting the

Frobenius norm. The unique solution of (7.2) is referred to as the “least squares geometric
mean,” or more frequently as the “Karcher mean.” Numerical methods have been introduced
to solve the problem (7.2), for instance, fixed point iteration; see (55). To the best of our
knowledge, thus far, a Riemannian Newton’s method has not been adopted to solve (7.2).
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[47] C. Li, G. López, and V. Mart́ın-Márquez. Monotone vector fields and the proximal point
algorithm on Hadamard manifolds. J. Lond. Math. Soc. (2), 79(3):663–683, 2009.

[48] C. Li and J. Wang. Newton’s method on Riemannian manifolds: Smale’s point estimate
theory under the γ-condition. IMA J. Numer. Anal., 26(2):228–251, 2006.

[49] C. Li and J. Wang. Newton’s method for sections on Riemannian manifolds: generalized
covariant α-theory. J. Complexity, 24(3):423–451, 2008.

[50] C. Li, J.-H. Wang, and J.-P. Dedieu. Smale’s point estimate theory for Newton’s method
on Lie groups. J. Complexity, 25(2):128–151, 2009.

[51] D. G. Luenberger. The gradient projection method along geodesics. Management Sci.,
18:620–631, 1972.

[52] J. H. Manton. Optimization algorithms exploiting unitary constraints. IEEE Transac-
tions on Signal Processing, 50(3):635–650, 2002.

[53] J. H. Manton. A framework for generalising the Newton method and other iterative
methods from Euclidean space to manifolds. Numer. Math., 129(1):91–125, 2015.

[54] J. Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of
Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.

[55] M. Moakher. On the averaging of symmetric positive-definite tensors. Journal of
Elasticity, 82(3):273–296, 2006. Cited By :83.

[56] J. Moser. A new technique for the construction of solutions of nonlinear differential
equations. Proc. Nat. Acad. Sci. U.S.A., 47:1824–1831, 1961.

[57] J. Nash. The imbedding problem for Riemannian manifolds. Ann. of Math. (2),
63:20–63, 1956.

55



8 –Reference

[58] J. M. Ortega. Numerical analysis. A second course. Academic Press, New York-London,
1972. Computer Science and Applied Mathematics.

[59] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several
variables, volume 30 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1970 original.

[60] Y. Rathi, A. Tannenbaum, and O. Michailovich. Segmenting images on the tensor
manifold. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE, 2007.

[61] W. Ring and B. Wirth. Optimization methods on Riemannian manifolds and their
application to shape space. SIAM J. Optim., 22(2):596–627, 2012.

[62] O. S. Rothaus. Domains of positivity. Abh. Math. Sem. Univ. Hamburg, 24:189–235,
1960.

[63] T. Sakai. Riemannian geometry, volume 149 of Translations of Mathematical Mono-
graphs. American Mathematical Society, Providence, RI, 1996. Translated from the 1992
Japanese original by the author.

[64] H. Sato and T. Iwai. A Riemannian optimization approach to the matrix singular value
decomposition. SIAM J. Optim., 23(1):188–212, 2013.

[65] V. H. Schulz. A Riemannian view on shape optimization. Found. Comput. Math.,
14(3):483–501, 2014.

[66] U. Shalit, D. Weinshall, and G. Chechik. Online learning in the embedded manifold of
low-rank matrices. Journal of Machine Learning Research, 13:429–458, 2012.

[67] S. T. Smith. Geometric optimization methods for adaptive filtering. ProQuest LLC,
Ann Arbor, MI, 1993. Thesis (Ph.D.)–Harvard University.

[68] S. T. Smith. Optimization techniques on Riemannian manifolds. In Hamiltonian and
gradient flows, algorithms and control, volume 3 of Fields Inst. Commun., pages 113–136.
Amer. Math. Soc., Providence, RI, 1994.

[69] S. Sra and R. Hosseini. Conic geometric optimization on the manifold of positive definite
matrices. SIAM J. Optim., 25(1):713–739, 2015.

[70] C. Udriste. Convex functions and optimization methods on Riemannian manifolds,
volume 297 of Mathematics and its Applications. Kluwer Academic Publishers Group,
Dordrecht, 1994.

[71] B. Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM
Journal on Optimization, 23(2):1214–1236, 2013.

[72] J.-H. Wang and C. Li. Kantorovich’s theorems for Newton’s method for mappings and
optimization problems on Lie groups. IMA J. Numer. Anal., 31(1):322–347, 2011.

56



8 –Reference

[73] X. Yuan, W. Huang, P.-A. Absil, and K. A. Gallivan. A riemannian quasi-newton
method for computing the karcher mean of symmetric positive definite matrices. Technical
Report FSU17-02, Florida State University, 2017.

[74] Z. Zhao, Z.-J. Bai, and X.-Q. Jin. A Riemannian Newton algorithm for nonlinear
eigenvalue problems. SIAM J. Matrix Anal. Appl., 36(2):752–774, 2015.

[75] X. Zhu. A Riemannian conjugate gradient method for optimization on the Stiefel mani-
fold. Comput. Optim. Appl., 67(1):73–110, 2017.

57


