
UNIVERSIDADE FEDERAL DO PARANÁ

ADRIANO RODRIGO DELFINO

OUTER-APPROXIMATION ALGORITHMS FOR NONSMOOTH CONVEX MINLP

PROBLEMS WITH CHANCE CONSTRAINTS

CURITIBA

2018

ADRIANO RODRIGO DELFINO

OUTER-APPROXIMATION ALGORITHMS FOR NONSMOOTH CONVEX MINLP

PROBLEMS WITH CHANCE CONSTRAINTS

Tese apresentada ao curso de Pós-Graduação em

Matemática da Universidade Federal do Paraná, como

requisito parcial à obtenção do t́ıtulo de Doutor em

Matemática.

Orientador: Prof. Dr. Yuan Jin Yun

Coorientador: Prof. Dr. Welington Luis de Oliveira

CURITIBA

2018

To my family.

ACKNOWLEDGMENTS

Firstly, I would like to express my gratefulness to God. Without His support, I would not

achieve anything so far.

A very special gratitude goes out to my advisors Yuan Jin Yun and Welington de

Oliveira. They provided me great support in these past years and passed me a lot of

knowledge which I will carry on for my whole life.

I am eternally grateful to my family. My parents, Sonia and Jose, have always believed

in me and have provided me through moral and emotional support in my life. A special

gratitude to my brothers, Alessandro and Alisson, who have been present in my life and

helped me on tough times. They always were there to encourage me to not give up.

I would like to thank my fellow doctoral students, especially Teles, Claudio Avila and

Joseane, for their feedback, cooperation and of course friendship. In addition I would like

to express my gratitude to great friends Alberto, Jaqueline, Ronaldo and Gilberto whom

I have special consideration.

My special token of appreciation goes to the Federal University of Paraná, which was

a place where I spent ten worthy years learning every day something new. I am also

grateful to all the teachers who somehow participated in this journey. I also place on

record, my sense of gratitude to the Federal University of Technology of Paraná that has

been my second home since 2010.

Last but not the least, I would like to thank my thesis committee for their encourage-

ment, insightful comments, and hard questions which was a valuable contribution to this

work.

“We do not know what we want

and yet we are responsible for

what we are - that is the fact.”

Jean-Paul Sartre

RESUMO

As restrições de probabilidade desempenham um papel fundamental nos problemas de

otimização envolvendo incertezas. Essas restrições exigem que um sistema de desigual-

dade dependendo de um vetor aleatório tenha que ser satisfeito com uma probabilidade

suficientemente alta. Neste trabalho, lidamos com problemas de otimização com restrições

de probabilidades envolvendo variáveis inteiras. Assumimos que as funções envolvidas são

convexas e a restrição de probabilidade tenha propriedade generalizada de convexidade.

Para lidar com problemas de otimização desse tipo, combinamos o algoritmo de apro-

ximação externa (OA) e o algoritmo de feixes. Os algoritmos OA tem sido aplicado para

problemas suáveis e para uma pequena classe limitada de problemas não-suáveis. Neste

trabalho, estendemos o algoritmo OA para lidar com problemas mais gerais não-suáveis.

Além disso, mostramos que quando os subproblemas não-lineares resultantes do algo-

ritmo OA são resolvidos por um método de feixes, então os subgradientes que satisfazem

as condições de Karush Kuhn Tucker (KKT) estão prontamente dispońıveis independen-

temente da estrutura das funções convexas não-suáveis. Esta propriedade é crucial para

provar a convergência (finita) do algoritmo OA. Problemas com restrições probabiĺısticas

aparecem, por exemplo, em modelos de energia (estocásticos). No contexto de inter-

esse, pelo menos uma das restrições não lineares envolve uma função de probabilidade

P [h(x, y) ≥ ξ], onde h é uma função côncava e ξ ∈ R
m é um vetor aleatório. Em geral,

uma integração numérica multidimensional é empregada para avaliar essa função de prob-

abilidade. Como uma alternativa para lidar com restrições de probabilidades (que é muito

cara computacionalmente), propomos a aproximação da medida de probabilidade P por

uma cópula apropriada. Nós investigamos uma famı́lia de cópulas não-suáveis e fornece-

mos algumas propriedades generalizadas de convexidade novas e úteis. Em particular,

provamos que a famı́lia de cópulas de Zhang é α−côncava para todo α ≤ 0. Esse resul-

tado nos permite aproximar as restrições probabiĺısticas por restrições muito mais simples

envolvendo cópulas. Avaliamos numericamente as abordagens dadas em duas classe de

problemas provenientes do gerenciamento do sistema de energia elétrica.

Palavras-chave: Otimização não-linear inteira, Otimização Estocástica, Restrições Pro-

babiĺısticas.

ABSTRACT

Probability constraints play a key role in optimization problems involving uncertainties.

These constraints (also known as chance constraints) require that an inequality system de-

pending on a random vector has to be satisfied with high enough probability. In this work

we deal with chance-constrained optimization problems having mixed-integer variables.

We assume that the involved functions are convex and the probability constraint has gen-

eralized convexity properties. In order to deal with optimization problems of this type, we

combine outer-approximation (OA) and bundle method algorithms. OA algorithms have

been applied to smooth problems and to a small class of nonsmooth problems. In this

work we extend the OA to handle more general nonsmooth problems. Moreover, we show

that when the resulting OA’s nonlinear subproblems are solved by a bundle method, then

subgradients satisfying the Karush-Kuhn-Tucker (KKT) conditions are readily available

regardless the structure of the nonsmooth convex functions. This property is crucial for

proving (finite) convergence of the OA algorithm. Chance-constrained problems appear,

for instance, in (stochastic) energy models. In the context of interest, at least one non-

linear constraint models the probability function P [h(x, y) ≥ ξ], where h is a concave

map and ξ ∈ R
m is a random vector. In general, multidimensional numerical integration

is employed to evaluate this probability function. As an alternative to deal with proba-

bility constraints (which is very expensive computationally), we propose approximating

the probability measure P with a suitable copula. We investigate a family of nonsmooth

copulae and provide some new and useful generalized convexity properties. In particular,

we prove that Zhang’s copulae are α-concave for all α ≤ 0. This result allows us to

approximate chance-constrained programs by much simpler copula-constrained ones. We

assess numerically the given approaches on two classes of problems coming from power

system management.

Keywords: Mixed-Integer Nonlinear Optimization, Stochastic Optimization, Chance

constraints.

Contents

Introduction 12

1 Nonsmooth convex MINLP 16

1.1 An outer-approximation algorithm . 17

1.2 The OA algorithm applied to nonsmooth convex MINLP problems: a co-

unterexample . 18

1.3 The OA algorithm applied to nonsmooth convex MINLP problems: well-

chosen subgradients . 19

1.4 General comments . 20

2 An exact penalization proximal bundle method 22

2.1 Description of the method . 23

2.2 Convergence analysis . 30

3 Regularized OA algorithms for MINLP with nonsmooth convex fun-

ctions 35

3.1 Description of the method . 35

3.2 Convergence analysis . 42

4 Nonsmooth convex MINLP with chance constraints 44

4.1 Chance constraints . 44

4.1.1 Generalized convexity of chance constraint 46

4.2 Copulae: a bird’s eye view . 48

4.3 Chance-constrained MINLP problems . 50

4.3.1 Chance-constrained MINLP problems: an approximation using Co-

pulae . 51

4.3.2 Zhang’s copulae . 52

4.3.3 Chance-constrained involving discrete distribution 55

5 Numerical assessment 59

5.1 A hybrid robust/chance-constrained model 59

5.1.1 Test problems, solvers and results 61

5.2 A power system management problem . 66

5.2.1 Problem’s data . 69

5.2.2 Problem’s approximation . 71

5.2.3 Numerical experiments . 72

Conclusion 78

A Multivariate normal distribution 80

References 81

Introduction

Many real-life optimization problems are modeled in a mixed-integer setting, involving

discrete and continuous decision variables. Optimization algorithms for solving mixed-

integer nonlinear programming (MINLP) problems have become an important focus of

research over the last years [4, 9, 16, 26, 32, 35, 75, 77]. Most of these algorithms re-

quire the involved functions to be convex and differentiable. The latter hypothesis is

not assumed in this work. Moreover, we are particularly interested in nonsmooth convex

MINLP problems that have at least one probability constraint. Problems of this type fall

into a very challenging class of optimization problems, because not only smoothness and

convexity (of the feasible set) are absent, but also the probability constraint is in gen-

eral difficult to be evaluated, because it requires computing a multidimensional integral.

We also investigate an alternative to numerical integration which is approximating the

underlying probability constraint by Copula (Copula is a simple function, depending on

marginal distributions, that models dependence of the joint probability distribution).

By considering, for the moment, chance constraints as regular convex constraints, the

problem of interest is symbolized by:

min f0(x, y)

s. t. fi(x, y) ≤ 0, i ∈ Ic

x ∈ X, y ∈ Y,

(1)

with f0, fi, i ∈ Ic = {1, . . . ,mf}, convex functions, X a bounded polyhedron and Y a

bounded and discrete set. The main difficulty of this problem consists in dealing with Y ,

the set of integer variables. By relaxing Y to a convex set YR (for instance YR = convY),

the following convex problem (this is why problem (1), which is nonconvex, is called a

convex MINLP) is gotten:

min f0(x, y)

s. t. fi(x, y) ≤ 0, i ∈ Ic

x ∈ X, y ∈ YR.

(2)

For example, if Y = {0, 1}, it leads to take YR = [0, 1]. This technique is called relaxing

integrality. The optimal value of (2) is a lower bound for problem (1).

12

In 1960, in a classic paper, Kelley [42] introduced the cutting plane method for sol-

ving convex problems. The strategy was to solve the underlying optimization problem

by solving a sequence of linear programs (LPs). At that time, the interest for stochastic

optimization and mixed-integer programs started to grow up. In 1962, Benders [5] deve-

loped one of the first algorithm to deal with problems having uncertainty parameters and

integer variables. But the idea of Benders applies only to problems that involve linear

functions.

In 1972, Geoffrion [30] generalized the Bender’s approach to a broader class of pro-

grams (including MINLP) in which the objective function of those subproblems needs no

longer to be linear. Many authors have contributed to the field of MINLP and several

algorithms have been developed in the past years.

One of the most famous class of algorithms to solve mixed integer linear problems is

the so called branch-and-bound algorithms. The first algorithm of this class was developed

by Gupta and Ravindran [33] in 1985. The idea of this algorithm consists in solving the

relaxed problem (2) first. If all variables are integer, then a solution of problem (1) is

obtained. Otherwise, the solution provides a lower bound to the optimal value and in this

case a tree search is performed in the space of integer variables. This method is suitable

if the cost of solving (2) (and its variants with additional constraints in YR and X) is

cheaper or if a few of them needs to be solved. If the number of nodes visited in the tree

search is too large, then solving the problem becomes a very expensive computational

task.

Another important method for solving (1) is the outer-approximation algorithm given

in [24] and further extended in [28]. The method solves a sequence of nonlinear and

mixed linear subproblems, as described below. At iteration k, the method fixes the integer

variable yk and tries to solve, in the continuous variable x, the following subproblem:

min f0(x, y
k)

s. t. fi(x, y
k) ≤ 0, i ∈ Ic

x ∈ X.

(3)

If this subproblem is feasible, a feasible point to problem (1) is found and, therefore, an

upper bound fk
up for its optimal value. On the other hand, if (3) is infeasible the method

solves the feasibility subproblem:

min u

s. t. fi(x, y
k) ≤ u, i ∈ Ic

x ∈ X, u ≥ 0.

(4)

With a solution of (3) or (4), the linearization of f0 and fi can be used to approximate

13

problem (1) by the following MILP:

fk
low :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
r,x,y

r

s.t. r < fk
up

f0(x
j, yj) +∇f0(x

j, yj)�
[
x− xj

y − yj

]
≤ r, j ∈ T k

fi(x
j, yj) +∇fi(x

j, yj)�
[
x− xj

y − yj

]
≤ 0, j ∈ T k ∪ Sk, i ∈ Ic

r ∈ R, x ∈ X, y ∈ Y ,

(5)

where index sets T k and Sk are defined as follows

• T k := {j ≤ k : subproblem (2) was feasible at iteration j}, and

• Sk := {j ≤ k : subproblem (2) was infeasible at iteration j}.

Under convexity of underlying functions, the optimal value fk
low of (5) is a lower bound on

the optimal value of (1). Moreover, the y−part solution of (5) is the next integer iterate

yk+1. The algorithm stops when the difference between upper and lower bounds provided

respectively by (3) and (5) is within a given tolerance ε > 0. More details about this

method will be given in Chapter 3.

The outer approximation algorithm was revisited in 1992 in [56], where the authors

proposed a LP/NLP based on the branch and bound strategy in which the explicit solu-

tion of a MILP master problem is avoided at each major iteration k. In the context of

main interest, the underlying functions might not be differentiable, but subdifferentiable:

gradients will be replaced by subgradients. As pointed out in [26], replacing gradients by

subgradients in the classic OA algorithm entails a serious issue: the OA algorithm is not

convergent if the differentiability assumption is removed. In order to have a convergent

OA algorithm for nonsmooth convex MINLP one needs to compute linearizations (cuts)

in (5) by using subgradients that satisfy the KKT system of either subproblem (3) or (4),

see [26, 75] and Chapter 3 for more details.

Computing solutions and subgradients satisfying the KKT conditions of the nosmooth

subproblems is not a trivial task. For instance, the Kelley cutting-plane method and

subgradients methods for nosmooth convex optimization problems are ensured to find

an optimal solution, but are not ensured to provide a subgradient satisfying the KKT

system. Given an optimal solution xk of (3), there might be infinitely many subgradients

of f at xk if f is nonsmooth. How would a specific subgradient can be chosen in order

to satisfy the underlying KKT system? We show in this work that bundle methods give

an answer to this crucial question. We will prove that by using a specialized proximal

bundle algorithm to solve either (3) or (4), we will be able to compute subgradients that

14

satisfy the KKT conditions and therefore the OA convergence is ensured. The analysis of

such proximal bundle algorithm is the first contribution of the present work.

Other important class of algorithms for convex MINLP is based on the Kelley cutting-

plane method [76, 77]. These algorithms are able to deal with nonsmooth functions but

have, in general, slow convergence. In order to overcome this drawback, [16] and [69]

propose regularization techniques to stabilize the iterative process. We follow the lead of

[16, 69] and propose to regularize the MILP (5) in order to accelerate OA. We call this

resulting method regularized OA. This is the second contribution of this work.

We emphasize that the two first contributions of the present Thesis have been com-

bined in the paper [20], recently published in Optimization: A Journal of Mathematical

Programming and Operations Research.

As a third contribution, we deal with nonsmooth convex MINLP having some pro-

bability constraints. This type of problems appears, for instance, in (stochastic) energy

models [3]. In the context of interest, at least one of the constraints in (1) is of the type

fi(x, y) = log(p)− log(P [h(x, y) ≥ ξ]), modeling the chance-constraint P [h(x, y) ≥ ξ] ≥ p,

where h is a concave map, ξ ∈ R
m is a random vector and p ∈ (0, 1) is a level parameter.

The ”log” transform above is very often used to convexify the probability function. As

already mentioned, multidimensional numerical integration is employed to evaluate this

probability constraint. As an alternative to deal with probability constraints, we will

approximate the probability measure P with an appropriate copula. We will investigate

suitable copulae to better approximate P in a cheap and easy way.

This work is organized as follows: in Chapter 1 we will elaborate the nonsmooth

MINLP and will show a counterexample where the classic OA algorithm loops forever

and does not find an optimal solution of (1). In Chapter 2 we will provide and analyze a

proximal bundle algorithm that is able to compute both a solution and subgratients satis-

fying the KKT conditions of the underlying nonsmooth convex optimization problem. As

already argued, such bundle algorithm is the working horse in our OA algorithm for dea-

ling with the nonsmooth convex MINLP (1). In Chapter 3, we will provide the regularized

OA algorithm. In Chapter 4, we will present the chance constraint MINLP and a family

of nonsmooth Copulae which will be used to replace the probability constraint. Finally,

in Chapter 5, we will solve a class of hybrid robust and chance-constrained problems that

involve a random variable with finite support. In order to evaluate the Copula approach

we investigate a power management planning problem described in [3].

15

Chapter 1

Nonsmooth convex MINLP

The objective of this chapter is to present the deterministic setting of nonsmooth convex

mixed-integer nonlinear programs (MINLPs) of the form

min
x,y

f0(x, y)

s. t. fi(x, y) ≤ 0, i ∈ Ic

x ∈ X, y ∈ Y,

(1.1)

where functions f0 : R
nx × R

ny → R, fi : R
nx × R

ny → R are convex but possibly

nonsmooth. The set X �= ∅ is a compact polyhedron and Y �= ∅ is a compact set of

integer variables.

Many real-life optimization problems can be modeled as (1.1). The blackout prevention

of electric power system in electrical engineering, for instance, is modeled using MINLP

formulation [7]. In chemical engineering, MINLP models are applied in design of water

[41]. A recent application in pump scheduling in a class of branched water networks

can be found in [11]. Another application is to find the optimal response to a cyber

attack [31] in computer science. For more applications refer to [4] and reference therein.

In the nondifferentiable setting, MINLP models appear, for instance, in power system

optimization [3] and in chance-constrained optimization [17, 69].

Optimization methods have been developed to solve MINLP when the involved fun-

ctions are differentiable. Some approaches are based on branch-and-bound methods [46]

such as [1] and [29]. The work [51] combines branch-price-and-cut strategies with decom-

position techniques to provide valid inequalities and strong bounds to guide the search in

a branch-and-bound tree. Several others methods deal with these type of problems, see

for instance, articles [2, 9, 44, 60].

In the nonsmooth case, an important optimization technique is the extended cutting

plane method proposed in [76] and further studied in [26] and [77]. This method is based

16

on the classical cutting plane algorithm given in [42]. Another approach is using bundle

methods as proposed by [16], which is a extension of works given in [45] and [68].

In this Thesis, Outer-approximation Algorithms are considered to solve the MINLP. As

mentioned before, the OA was introduced in [24] and further extended in [28]. As briefly

discussed in the Introduction, OA algorithms solve a sequence of nonlinear subproblems

and linear integer subproblems. The choice of this type of approach is because the original

problem can be broken in a sequence of easier subproblems and can be faster than other

methods.

1.1 An outer-approximation algorithm

A standard outer-approximation algorithm is as following.

Algorithm 1.1. An outer-approximation algorithm

Step 0. Let y0 ∈ Y , ε > 0 and tol ≥ 0 be given. Set f−1
up = ∞, T−1 = S−1 = ∅, k = 0.

Step 1. Solve either the NLP subproblem (if it is feasible)

min
x

f0(x, y
k)

s.t. fi(x, y
k) ≤ 0, i ∈ Ic

x ∈ X,

(1.2)

or the infeasibility subproblem:

min
x

∑
i∈Ic

max{fi(x, yk), 0}

s.t. x ∈ X,

(1.3)

and let the solution be xk.

Step 2. Linearize the objective and constraint functions around (xk, yk):

fi(x
k, yk) + f

′
i (x

k, yk)T

[
x− xk

y − yk

]
, i = 0, . . . ,mf .

Set T k = T k−1 ∪ {k} if xk is provided by (1.2) or Sk = Sk−1 ∪ {k} if xk is provided by (1.3).

Step 3. If (1.2) is feasible and f0(x
k, yk) < fk−1

up then update the current best point by setting x∗ =

xk, y∗ = yk and fk
up = f0(x

k, yk).

Step 4. Solve the MILP

min r

s.t. r ≤ fk
up − ε

f0(x
j , yj) + f

′
0(x

j , yj)T

[
x− xj

y − yj

]
≤ r ∀j ∈ T k

fi(x
j , yj) + f

′
i (x

j , yj)T

[
x− xj

y − yj

]
≤ 0, ∀j ∈ T k ∪ Sk, i ∈ Ic(xj)

x ∈ X, y ∈ Y, r ∈ R,

(1.4)

17

where Ic(xj) is the set of active constraint at (xj , yj). If (1.4) is infeasible, stop with the ε−solution

(x∗, y∗). Otherwise, let yk+1 be the y−part of solution of the above problem, and fk
low its optimal

value.

Step 5. If fk
up − fk

low < tol, stop. The pair (x∗, y∗) is a tol-solution of problem (1.1). Otherwise, set

k = k + 1 and go back to Step 1.

This algorithm has finite convergence when the involved functions are differentiable

and the Slater’s assumptions holds [24, 28]. In the next section a nonsmooth MINLP

example is considered and is demonstrated that, if arbitrary subgradients to compute

cuts (constraints) in problem (1.4) are taken, then the OA algorithm fails to converge.

1.2 The OA algorithm applied to nonsmooth convex

MINLP problems: a counterexample

When some (or all) functions fi, i = 1, . . . ,mf , fail to be continuously differentiable,

OA algorithms may cycle indefinitely around non-optimal points. The following example,

extracted from [26, § 4.1] illustrates this situation.

Consider the following mixed-integer nonlinear problem:

min
x,y

2x− y

s.t. max{−3
2
− x+ y,−7

2
+ y + x} ≤ 0

−4x+ y − 1 ≤ 0,

0 ≤ x ≤ 2, y ∈ {0, 1, 2, 3, 4, 5}.

(1.5)

Suppose that the initial guess for the integer variable is y0 = 3. So the first nonlinear

subproblem becomes

min
0≤x≤2

2x− 3

s. t. max{3
2
− x,−1

2
+ x} ≤ 0

−4x+ 2 ≤ 0.

(1.6)

Subproblem (1.6) is infeasible. Then the infeasibility subproblem is solved

min
0≤x≤2

max{3
2
− x,−1

2
+ x, 0}

s. t. −4x+ 2 ≤ 0.
(1.7)

By solving (1.7) the solution x0 = 1 with optimal value 1
2
is obtained. Consequently,

T 0 = {0} and S0 = {1}. To create cuts, it is necessary to have a subgradient at point x0.

Consider the objective function of problem (1.7). The subgradient at the point x0 = 1 is

a value s ∈ [−1, 1] because 3
2
− x and −1

2
+ x has the same value at x0 = 1. That means

18

the subgradient at this point is a convex combination between the subgradients of both

functions. The subgradient s = 1 is chosen yielding the following MILP subproblem

min
x,y

2x− y

s. t. x+ y − 7
2
≤ 0

−4x+ y − 1 ≤ 0,

0 ≤ x ≤ 2, y ∈ Y = {0, 1, 2, 3, 4, 5}.

The solution of the above problem is x = 1
2
and y1 = 3. So the OA algorithm repeats

the integer variable and enters in an infinite loop. As a result, the OA algorithm fails to

solve the nonsmooth problem (1.5).

1.3 The OA algorithm applied to nonsmooth convex

MINLP problems: well-chosen subgradients

When the subgradients are carefully chosen the OA algorithm’s convergence is guaranteed.

In this section the example above is solved with the same initial point y0 = 3. As problem

(1.7) is the same, subgradient at point x0 = 1 is a number s ∈ [−1, 1] as explained before.

Now, a subgradient that satisfies the following KKT system of problem (1.7) is chosen:

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ ∂x[max{3
2
− x0,−1

2
+ x0, 0}] + μ̄∂x[−4x0 + 2] +N[0,2](x

0)

μ̄(−4x0 + 2) = 0

μ̄ ≥ 0.

As solution x0 is in the interior of interval [0, 2], the normal cone is the set {0}. Let

s ∈ ∂x[max{3
2
− x0,−1

2
+ x0, 0}]. The above system is equivalent to

⎧⎪⎨
⎪⎩

0 = s− 4μ̄

μ̄(−4(1) + 2) = 0

μ̄ ≥ 0.

The unique solution of the above system is s = μ̄ = 0. Consequently, s = 0 is taken as

a subgradient of the objective function in (1.7) at x0 = 1. With this choice the following

MILP problem is obtained:

min
x,y

2x− y

s. t. y − 5
2
≤ 0

−4x+ y − 1 ≤ 0,

0 ≤ x ≤ 2, y ∈ Y = {0, 1, 2, 3, 4, 5}.

19

The constraint y − 5
2
≤ 0 eliminates integer values bigger than 2. As a result, only three

options remain (y = 0, 1 or 2). By solving this subproblem, x̄ = 1
2
, ȳ = 2 with the optimal

value f 1
low = −1 is gotten. Thus a new integer variable y1 = 2 is known.

Fixing y1 = 2 at problem (1.5) a new nonlinear subproblem is gotten

min
x

2x− 2

s. t. max{1
2
− x,−3

2
+ x} ≤ 0

−4x+ 1 ≤ 0,

0 ≤ x ≤ 2,

which is feasible and its solution is x1 = 1
2
with optimal value f 1

up = −1. The OA

algorithm then stops at Step 5 because f 1
up − f 1

low = 0. Hence, the point (x̄, ȳ) = (1
2
, 2) is

a solution of problem (1.5) with optimal value −1. It turns out that the OA algorithm

converges because the chosen subgradient of the nonsmooth constraint satisfies the KKT

conditions of problem (1.7).

1.4 General comments

The above example illustrates the fact that subgradients of the involved functions should

be carefully chosen in order to ensure convergence of the OA algorithm in the nonsmooth

setting. It has been shown in [26] that subgradients of fi, i = 0, . . . ,mf at xk must satisfy

the KKT system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ∈ ∂xf0(x
k, yk) +

∑
i∈Ic(xk)

μ̄k
i ∂xfi(x

k, yk) +NX(x
k)

μ̄k
i fi(x

k, yk) = 0 , i ∈ Ic(x
k)

μ̄k
i ≥ 0, i ∈ Ic(x

k) ,

(1.8)

if problem (1.2) is feasible, or system

0 ∈ ∂x

⎛
⎝ ∑

i∈Ic(xk)

max{fi(xk, yk), 0}
⎞
⎠+NX(x

k), (1.9)

otherwise; where NX(x
k) is the normal cone of X at xk.

In the paper [26] the authors show how to determine such subgradients for a particular

class of functions, in which it is possible to know the vectors six ∈ ∂f(x), i = 1, . . . , p

yielding

∂f(x) =

{
p∑

i=1

αis
i
x|

p∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , p

}
.

20

This is, for instance, the case in which every function fi is the pointwise maximum of

finitely many differentiable functions. Hence, the use of the method in [26] is limited

because not all the MINLP problems satisfy this assumption. The OA algorithm will be

more detailed in Chapter 3. In the next chapter a new algorithm for solving the OA’s

nonlinear subproblems is proposed. It will be demonstrated that such algorithm provides

subgradients satisfying KKT system without further assumptions on problem (1.1). This

is a significant improvement on paper [26].

21

Chapter 2

An exact penalization proximal

bundle method

This Chapter corresponds to Section 3 in the work [20], which is a product of this Thesis.

Here we are not only concerned with the solution of the OAs subproblems (3) and (4) but

also with the calculation of subgradients satisfying the KKT systems (1.8). To accomplish

this task we investigate a proximal bundle algorithm.

Bundle methods solve nonsmooth convex optimization problems by requiring only

first-order information of the involved functions, and are well-known for their robustness

and for having limited memory, that is, one can keep the amount of information (bundle)

bounded along the iterative process [10, 39]. The latter is a very useful property when

dealing with large scale optimization problems. There are many bundle method variants

in the literature: see for example [17, 18, 19, 27, 45]. In this chapter the focus will be on

a proximal bundle method variant to solve the nonlinearly constrained nonsmooth opti-

mization subproblems coming from the OA algorithm. It will be presented an algorithm

that provides all the required information to ensure convergence of the OA algorithm

applied to nonsmmoth convex MINLP problems.

Consider the nonlinear subproblem of OA algorithm for a fixed integer variable yk:

min
x∈X

f0(x, y
k) s.t. fi(x, y

k) ≤ 0 , i ∈ Ic := {1, . . . ,mf} . (2.1)

Problem (2.1) can be feasible or infeasible. If the latter case then the infeasibility problem

is solved by

min
x∈X

∑
i∈Ic

max{fi(x, yk), 0} . (2.2)

22

In both cases, problems (2.1) and (2.2) can be written in a unified and more general

manner:

min
x∈X

φ(x) s.t. ci(x) ≤ 0, i ∈ Ic , (2.3)

where with this notation, function φ(x) is f0(x, y
k) and ci(x) is fi(x, y

k) if subproblem

(2.1) is considered or φ(x) is
∑
i∈Ic

max{fi(x, yk), 0} otherwise (i.e., (2.2) is considered). In

the latter case it does not have nonlinear constraints.

In order to confirm that the set of Lagrange multipliers associated to (2.3) is nonempty

and bounded [40], the Slater’s condition (if there is at least one nonlinear constraint ci)

is assumed:

H1- There exists x0 ∈ X such that ci(x
0) < 0 for all i ∈ Ic.

As a result, it is ensured the existence of a pair of points (x̄, μ̄) and subgradients

sφ ∈ ∂φ(x̄) and si ∈ ∂ci(x̄), i ∈ Ic, satisfying the following KKT system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(sφ +
∑
i∈Ic

μ̄isi) ∈ NX(x̄)

ci(x̄) ≤ 0 ≤ μ̄i, i ∈ Ic

x̄ ∈ X, μ̄ici(x̄) = 0, i ∈ Ic .

(2.4)

2.1 Description of the method

The method generates a sequence of feasible iterates {x�} ⊂ X. For each point x�, an

oracle is called to compute φ(x�), ci(x
�), i ∈ Ic and subgradients s�φ ∈ ∂φ(x�), s�i ∈ ∂ci(x

�),

i ∈ Ic. With such information, the method creates cutting-plane models for the functions

φ̌�(x) := max
j∈B�

{φ(xj) + 〈sjφ, x− xj〉} ≤ φ(x),

č�i(x) := max
j∈B�

i

{ci(xj) + 〈sji , x− xj〉} ≤ ci(x) i ∈ Ic . (2.5)

The index sets B�, B�
i are in general subsets of {1, . . . , �}, but can also contain some index

of an artificial/aggregate linearization.

Given a stability center x̂� ∈ X and a prox-parameter τ � > 0, the new iterate x�+1 is

obtained by solving the QP subproblem

min
x∈X

φ̌�(x) +
1

2τ �
‖x− x̂�‖2 s.t. č�i(x) ≤ 0, i ∈ Ic , (2.6)

23

that can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

min
(r,x)∈R×X

r + 1
2τ�

‖x− x̂�‖2

s.t. φ(xj) + 〈sjφ, x− xj〉 ≤ r , j ∈ B�

ci(x
j) + 〈sji , x− xj〉 ≤ 0 , j ∈ B�

i , i ∈ Ic .

(2.7)

The stability center x̂� is some previous iterates, usually is the best point generated by

the algorithm. In order to define what is the “best point so far”, a nonsmooth penalization

function and a penalization parameter ρ > 0 will be employed:

fρ(x) := φ(x) + ρ
∑
i∈Ic

max{ci(x), 0} and f̌ �
ρ(x) := φ̌�(x) + ρ

∑
i∈Ic

max{č�i(x), 0}.

(2.8)

A classification rule decides when to update x̂�: if

(0 ≤) κ (fρ(x̂
�)− f̌ �

ρ(x
�+1)) ≤ fρ(x̂

�)− fρ(x
�+1), with κ ∈ (0, 1) (2.9)

then x̂�+1 := x�+1, otherwise x̂�+1 := x̂�. In other words, the stability center is updated

only when the new candidate provides enough decrease with respect to the penalization

function: at least a fraction of the decrease provided by the model: κ (fρ(x̂
�)− f̌ �

ρ(x
�+1)).

The following is a useful result for the remaining of this chapter.

Proposition 2.1. Consider problem (2.3) and assume the involved functions to be convex

and X �= ∅ a polyhedron.

a) The vector x�+1 solves (2.6) if and only if x�+1 ∈ X, č�i(x
�+1) ≤ 0, i ∈ Ic, and

there exist vectors ŝ�φ ∈ ∂φ̌�(x�+1), ŝ�i ∈ ∂č�i(x
�+1), i ∈ Ic, s�X ∈ NX(x

�+1) and

stepsizes μ�
i ≥ 0 such that μ�

i č
�
i(x

�+1) = 0 and

x�+1 = x̂� − τ �d�, d� := ŝ�φ +
∑
i∈Ic

μ�
i ŝ

�
i + s�X . (2.10)

b) Let αj ≥ 0 (resp. λj
i ≥ 0) be Lagrange multiplier associated with the constraint

φ(xj) + 〈sjφ, x− xj〉 ≤ r (resp. ci(x
j) + 〈sji , x− xj〉 ≤ 0) in (2.7). Then,

∑
j∈B�

αj = 1, μ�
i =

∑
j∈B�

i

λj
i , ŝ�φ =

∑
j∈B�

αjsjφ and ŝ�i =
1

μ�
i

∑
j∈B�

i

λj
is

j
i .

c) The aggregate linearizations φ−�(x) := φ̌�(x�+1) + 〈ŝ�φ, x − x�+1〉 and c−�
i (x) :=

č�i(x
�+1) + 〈ŝ�i , x− x�+1〉 satisfies φ−�(x) ≤ φ(x) and c−�

i (x) ≤ ci(x) for all x ∈ R
nx.

24

Let f−�
ρ (x) := f̌ �

ρ(x
�+1) + 〈d�, x − x�+1〉 be the aggregate linearization of fρ. If ρ ≥

max
i∈Ic

μ�
i then f−�

ρ (x) ≤ fρ(x) + iX(x) is obtained for all x ∈ R
nx, where iX is the

indicator function of the polyhedral set X, i.e., iX(x) = 0 if x ∈ X and iX(x) = ∞
otherwise.

d) Let ê�φ := φ(x̂�)− φ−�(x̂�) and ê�i := ci(x̂
�)− c−�

i (x̂�). Then

ê�φ, ê
�
i ≥ 0, ŝ�φ ∈ ∂ê�φφ(x̂

�), and ŝ�i ∈ ∂ê�ici(x̂
�) .

Let ê� := fρ(x̂
�) + iX(x̂

�)− f−�
ρ (x̂�) be the aggregate error. If ρ ≥ max

i∈Ic
μ�
i then

ê� ≥ 0 d� ∈ ∂ê� [fρ(x̂
�) + iX(x̂

�)], and ê� ≥ ê�φ +
∑
i∈Ic

μ�
i ê

�
i .

e) Suppose that lim
�→∞

ê� = 0, and let x̂ be a cluster point of {x̂�}, i.e., lim
�∈K

x̂� = x̂. Let

also μi ≥ 0 be a cluster point of {μ�
i}K, i ∈ Ic. Then any cluster points d, sφ, si ∈ R

nx

of {d�}K, {s�φ}K and {s�i}K satisfy

ŝφ ∈ ∂φ(x̂) and ŝi ∈ ∂ci(x̂) if μi > 0 .

If ρ ≥ max
i∈Ic

μ�
i , then d ∈ ∂[fρ(x̂) + iX(x̂)].

Proof:

a) It follows from [57, p.215] that ∂iX(x) = NX(x) for x ∈ X. Problem (2.6) can

be written as

min
x∈Rnx

φ̌�(x) +
1

2τ �
‖x− x̂�‖2 + iX(x) s.t. č�i(x) ≤ 0, i ∈ Ic .

From KKT’s conditions the system holds:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŝ�φ +
1
τ�
(x�+1 − x̂�) + s�X +

∑
i∈Ic

μ�
i ŝ

�
i = 0,

μ�
i ≥ 0, i ∈ Ic,

μ�
i č

�
i(x

�+1) = 0, i ∈ Ic.

Putting all subgradients together the results are acquired.

b) The Lagrangian function of problem (2.7) for x ∈ X and α̃, λ̃ ≥ 0, is

L(x, r; α̃, λ̃) :=r +
1

2τ �
‖x− x̂�‖2 +

∑
j∈B�

α̃j(φ(xj) + 〈sjφ, x− xj〉 − r) (2.11)

+
∑
i∈Ic

∑
j∈B�

i

λ̃j
i (ci(x

j) + 〈sji , x− xj〉) .

25

Notice that the minimum of L over (r, x) ∈ R × X is well defined if and only if∑
j∈B�

α̃j = 1 (otherwise inf
(r,x)∈R×X

L(x, r; α̃, λ̃) = −∞). Let (r�+1, x�+1) be the solution

of (2.7) and (α, λ) be the associate Langrange multipliers. It follows from the KKT

conditions that αj > 0 implies

φ(xj) + 〈sjφ, x�+1 − xj〉 = r�+1 = φ̌�(x�+1), (2.12)

and λj
i > 0 implies

ci(x
j) + 〈sji , x�+1 − xj〉 = 0 = č�i(x

�+1). (2.13)

Differentiating both sides of (2.12) and (2.13) in relation to x�+1 the result is sjφ ∈
∂φ̌�(x�+1) and sji ∈ ∂č�i(x

�+1). The subdifferential of a convex function is convex,

then ∑
j∈B�

αjsjφ ∈ ∂φ̌�(x�+1)

and
1∑

j∈B�
i

λj
i

∑
j∈B�

i

λj
is

j
i ∈ ∂č�i(x

�+1).

Moreover, it follows from convexity of subproblem (2.7) and uniqueness of its solu-

tion that (r�+1, x�+1) is also the unique solution of

min
(r,x)∈R×X

L(x, r;α, λ)

which is equivalent (in terms of solution x) to

min
x∈X

1

2τ �
‖x− x̂�‖2 + 〈

∑
j∈B�

αjsjφ, x〉+
∑
i∈Ic

〈
∑
j∈B�

i

λj
is

j
i , x〉 . (2.14)

The KKT conditions for this problem lead to

1

τ �
(x�+1 − x̂�) +

∑
j∈B�

αjsjφ +
∑
i∈Ic

∑
j∈B�

i

λj
is

j
i + s�X = 0

which is equivalent to

−
⎛
⎝x�+1 − x̂�

τ �
+

∑
j∈B�

αjsjφ +
∑
i∈Ic

∑
j∈B�

i

λj
is

j
i

⎞
⎠ ∈ NX(x

�+1) .

By defining μ�
i , ŝ

�
φ and ŝ�i as in item b) the above relation is the same as (2.10).

26

c) By item a), ŝ�φ ∈ ∂φ̌�(x�+1). So

φ−�(x) = φ̌�(x�+1) + 〈ŝ�φ, x− x�+1〉 ≤ φ̌�(x) ≤ φ(x) ∀x ∈ R
nx .

The similar way implies

c−�
i (x) = č�i(x

�+1) + 〈ŝ�i , x− x�+1〉 ≤ č�i(x) ≤ ci(x) ∀x ∈ R
nx .

The last result follows below

f−�
ρ (x) = f̌ �

ρ(x
�+1) + 〈d�, x− x�+1〉

= φ̌�(x�+1) + ρ
∑
i∈Ic

max{č�i(x�+1), 0}+ 〈d�, x− x�+1〉

= φ̌�(x�+1) + ρ
∑
i∈Ic

max{č�i(x�+1), 0}+ 〈ŝ�φ +
∑
i∈Ic

μ�
i ŝ

�
i + s�X , x− x�+1〉

≤ φ̌�(x) + iX(x
�+1) + 〈s�X , x− x�+1〉+ ρ

∑
i∈Ic

max{č�i(x�+1), 0}

+〈∑i∈Ic μ
�
i ŝ

�
i , x− x�+1〉.

The last inequality follows from the aggregate linearizations φ−�(x) ≤ φ(x) which

was proved above. The next inequality follows from subgradient of iX at point x�+1.

f−�
ρ (x) ≤ φ(x) + iX(x) +

∑
i∈Ic

[
ρmax{č�i(x�+1), 0}+ 〈μ�

i ŝ
�
i , x− x�+1〉]

= φ(x) + iX(x) +
∑
i∈Ic

〈μ�
i ŝ

�
i , x− x�+1〉

= φ(x) + iX(x) +
∑
i∈Ic

μ�
i [č

�
i(x

�+1) + 〈ŝ�i , x− x�+1〉]

≤ φ(x) + iX(x) +
∑
i∈Ic

μ�
i č

�
i(x)

≤ φ(x) + iX(x) +
∑
i∈Ic

μ�
ici(x)

≤ φ(x) + iX(x) +
∑
i∈Ic

μ�
i max{ci(x), 0}

≤ φ(x) + iX(x) +
∑
i∈Ic

ρmax{ci(x), 0}

= fρ(x) + iX(x).

In the development above was used that č�i(x
�+1) = 0 from (2.13), c−�

i (x) ≤ ci(x)

and the assumption ρ ≥ max
i∈Ic

μ�
i .

d) It follows from item c) that φ ≥ φ−� and ci ≥ c−�
i . Then the aggregate error ê�φ

27

and ê�i are both nonnegative. Moreover,

φ(x) ≥ φ−�(x) = φ̌�(x�+1) + 〈ŝ�φ, x− x�+1〉
= φ(x̂�) + (−φ(x̂�) + φ̌�(x�+1) + 〈ŝ�φ, x̂� − x�+1〉) + 〈ŝ�φ, x− x̂�〉
= φ(x̂�)− ê�φ + 〈ŝ�φ, x− x̂�〉,

showing that ŝ�φ ∈ ∂ê�φφ(x̂
�). The proof that ŝ�i ∈ ∂ê�ici(x̂

�) is analogous. Next step

is to demonstrate that ê� ≥ 0. Consider the following development:

ê� = fρ(x̂
�)− (f̌ρ(x

�+1) + 〈d�, x̂� − x�+1〉)

= φ(x̂�) + ρ
∑
i∈Ic

max{ci(x̂�), 0} −
(
φ̌�(x�+1) + ρ

∑
i∈Ic

max{č�i(x�+1), 0}

+〈ŝ�φ +
∑
i∈Ic

μ�
i ŝ

�
i + s�X , x̂

� − x�+1〉
)

= φ(x̂�)− (φ̌�(x�+1) + 〈ŝ�φ, x̂� − x�+1〉)− 〈s�X , x̂� − x�+1〉)
+
∑
i∈Ic

[
ρmax{ci(x̂�), 0} − (

ρmax{č�i(x�+1), 0}+ 〈μ�
i ŝ

�
i , x̂

� − x�+1〉)]
≥ ê�φ +

∑
i∈Ic

[
ρmax{ci(x̂�), 0} − (

ρmax{č�i(x�+1), 0}+ 〈μ�
i ŝ

�
i , x̂

� − x�+1〉)] ,
where the last inequality is because s�X ∈ ∂NX(x

�+1). Notice that č�i(x
�+1) ≤ 0 and

μ�
i č

�
i(x

�+1) = 0 by the KKT conditions (item a). Therefore, max{č�i(x�+1), 0} = 0

and
ê� ≥ ê�φ +

∑
i∈Ic

[
ρmax{ci(x̂�), 0} − 〈μ�

i ŝ
�
i , x̂

� − x�+1〉]
≥ ê�φ +

∑
i∈Ic

[
μ�
i max{ci(x̂�), 0} − 〈μ�

i ŝ
�
i , x̂

� − x�+1〉]
≥ ê�φ +

∑
i∈Ic

[
μ�
ici(x̂

�)− (μ�
i č

�
i(x

�+1) + 〈μ�
i ŝ

�
i , x̂

� − x�+1〉)]
= ê�φ +

∑
i∈Ic

μ�
i ê

�
i ≥ 0 ,

where the second inequality above is due to the assumption that ρ ≥ max
i∈Ic

μ�
i . Under

this assumption, then item c) ensures fρ(x) + iX(x) ≥ f−�
ρ (x) for all x ∈ R

nx . It is

remaining to show that d� ∈ ∂ê� [fρ(x̂
�) + iX(x̂

�)]. It follows from item c) that

fρ(x) + iX(x) ≥ f−�
ρ (x) = f̌ �

ρ(x
�+1) + 〈d�, x− x�+1〉

= fρ(x̂
�) + (−fρ(x̂

�) + f̌ �
ρ(x

�+1) + 〈d�, x̂� − x�+1〉)
+〈d�, x− x̂�〉

= fρ(x̂
�)− ê� + 〈d�, x− x̂�〉

= fρ(x̂
�) + iX(x̂

�) + 〈d�, x− x̂�〉 − ê� .

Thus item d) has been proved.

28

e) If ρ > max
i∈Ic

μ�
i , then item d) ensures that

fρ(x) + iX(x) ≥ fρ(x̂
�) + iX(x̂

�) + 〈d�, x− x̂�〉 − ê� ∀ x ∈ R
nx .

Take the limit with � ∈ K in the above inequality to conclude that d ∈ ∂[fρ(x̂) +

iX(x̂)] (recall that fρ is continuous). The remaining results follow from the same

reasoning and inequality ê� ≥ ê�φ +
∑
i∈Ic

μ�
i ê

�
i (≥ 0).

It follows from standard results on exact penalization of constrained optimization

problems (see for example Theorem 6.9 in [59]) that if ρ > max
i∈Ic

μ�
i , and a Slater point for

(2.3) exists, then the point x�+1 solution of (2.6) also solves the QP

min
x∈X

f̌ �
ρ(x) +

1

2τ �
‖x− x̂�‖2 . (2.15)

This argument is employed in the proof of Theorem 2.1 below.

Bundle method algorithm developed in this work is presented in the sequence.

Algorithm 2.1. An exact penalization proximal bundle algorithm

Step 0. (Initialization) Select κ ∈ (0, 1), τmax ≥ τ1 ≥ τmin > 0 and a penalization parameter

ρ > 0. Choose x1 ∈ X and stopping tolerances ε0, ε1, ε2 > 0. Call the oracle to compute

(φ(x1), s1φ) and (ci(x
1), s1i), i ∈ Ic. Set x̂1 ← x1, � ← 1, �̂ ← 1, B1 ← {1}.

Step 1. (Next iterate) Obtain x�+1 by solving (2.7). Let μ�
i as in Proposition 2.1 b). If ρ ≤

μmax := max
i∈Ic

μ�
i , define ρ ← μmax + 1. Set d� ← (x̂� − x�+1)/τ �, and ê� ← fρ(x̂

�) −
f̌ �
ρ(x

�+1)− τ �‖d�‖2. Compute (approximated) subgradients ŝ�φ and ŝ�i for i ∈ Ic s.t. μ�
i > 0

as described in Proposition 2.1 b).

Step 2. (Stopping test) If max
i∈Ic

c(x̂�) ≤ ε0, ê
� ≤ ε1 and ‖d̂�‖ ≤ ε2, stop. Return x̂�, (φ(x̂�), ŝ�φ)

and (ci(x̂
�), ŝ�i) for i ∈ Ic such that μ�

i > 0.

Step 3. (Oracle call) Call the oracle to compute (φ(x�+1), s�+1
φ) and (ci(x

�+1), s�+1
i), i ∈ Ic.

Step 4. (Descent test). If (2.9) holds, then set x̂�+1 ← x�+1, �̂ ← � + 1 and choose τ �+1 ∈
[τ �, τmax]; otherwise set x̂�+1 ← x̂� and choose τ �+1 ∈ [τmin, τ

�].

Step 5 (Bundle management) Choose B�+1 ⊃ {�+ 1, �̂,−�}, B�+1
i ⊃ {�+ 1, �̂,−�}, i ∈ Ic.

Set � ← �+ 1 and go back to Step 1.

The penalization parameter ρ is only used in Steps 1 and 4, and it is not considered in

the QP subproblem. Therefore, the algorithm is not hindered by potentially large values

29

of ρ. This is the main advantage of this algorithm over the ones proposed in [43] that

employs the penalization parameter in the objective function of the QP subproblem.

It is worth mentioning that the ingredients d� and ê� are easily computed in Step 1 of

the algorithm and coincide with their definitions given in Propositions 2.1 a) and 2.1 d),

respectively.

The rule given in Step 5 above is a very economical one, since the information bundle

can be reduced to m triples of linearizations: the one issued by the new oracle informa-

tion (� + 1), the one given by the last descent iterate (�̂) and the artificial/aggregated

linearization represented by −�. Other bundle methods in the literature (e.g. [18]) do

not require keeping in the information bundle the linearization related to the last descent

iterate. However, having �̂ ∈ B�+1 in all iterations � facilitates the mathematical proof

that the algorithm provides subgradients satisfying the KKT system (2.4) (see Theorem

2.1 below).

2.2 Convergence analysis

In what follows it is demonstrated that Algorithm 2.1 converges to a solution of (2.3)

and, moreover, provides subgradients and multipliers satisfying the KKT system (2.4).

First, it is shown that the penalization parameter ρ (only used to update the stability

center and to compute the aggregate error in Step 1 of the algorithm) is bounded. To this

end, it is necessary to prove that multipliers associated with the QP subproblem (2.6) are

bounded as well.

Proposition 2.2. Suppose that X is a bounded set and there exists x0 ∈ X such that

ci(x
0) < 0 for all i ∈ Ic. If τ

� ≥ τmin > 0, then the sequence of Lagrange multipliers {μ�
i}

of (2.6) are bounded.

Proof: It follows from Proposition 2.1 items a) and b) that

d� = ŝ�φ +
∑
i∈Ic

μ�
i ŝ

�
i + s�X = ŝ�φ +

∑
i∈Ic

∑
j∈B�

i

λj
is

j
i + s�X ,

where λj
i ≥ 0 is the Lagrange multiplier associated with the constraint ci(x

j)+〈sji , x−xj〉 ≤
0 in (2.7). By defining

μ̄� =
∑
i∈Ic

μ�
i =

∑
i∈Ic

∑
j∈B�

i

λj
i and s̄� =

1

μ̄�

∑
i∈Ic

μ�
i ŝ

�
i =

1

μ̄�

∑
i∈Ic

∑
j∈B�

i

λj
is

j
i

d� = ŝ�φ+ μ̄�s̄�+s�X is obtained. Notice that, by proving that {μ̄�} is a bounded sequence,

30

it is also proven that every sequence {μ�
i} = {

∑
j∈B�

i

λj
i} is bounded (because λj

i ≥ 0, and

therefore μ�
i ≥ 0). To this end, assuming without loss of generality that μ̄� > 0 to define

p� = s̄� + 1
μ̄� s

�
X . Since x�+1 = x̂� − τ �d� by (2.10), it is conclude that

μ̄�p� = μ̄�s̄� + s�X = d� − ŝ�φ = −
(
x�+1 − x̂�

τ �
+ ŝ�φ

)
.

As a result,

μ̄�‖p�‖2 = 〈p�,−
(
x�+1 − x̂�

τ �
+ ŝ�φ

)
〉 ≤ ‖p�‖

(‖x�+1 − x̂�‖
τ �

+ ‖ŝ�φ‖
)

.

As, τ � ≥ τmin > 0, X is a compact set and φ is a convex function, the subdifferential of φ is

compact onX and therefore there exists a constantM > 0 bounding ‖x�+1−x̂�‖/τ �+‖ŝ�φ‖.
Thus,

μ̄� ≤ ‖p�‖
‖p�‖2M =

1

‖p�‖M ∀ � .

By showing that ‖p�‖ is bounded away from zero it is also proven that {μ̄�} is bounded

from above. Let γ = max
i∈Ic

ci(x
0). The definitions of ŝ�i and s�X implies that

č�i(x
�+1) + 〈ŝ�i , x0 − x�+1〉 ≤ č�i(x

0) ≤ ci(x
0) ≤ γ < 0 and 〈s�X , x0 − x�+1〉 ≤ 0.

By multiplying the first relation above by μ�
i > 0 and remembering that μ�

i č
�
i(x

�+1) = 0

(Proposition 2.1 a)) it is obtained

μ�
i〈ŝ�i , x0 − x�+1〉 =

∑
j∈B�

i

〈λj
is

j
i , x

0 − x�+1〉 ≤ μ�
ici(x

0) ≤ μ�
iγ < 0 .

If μ�
i = 0, then λj

i = 0 for all j ∈ B�
i and thus

∑
j∈B�

i

〈λj
is

j
i , x

0 − x�+1〉 = μ�
ici(x

0) = 0. Hence,

0 > μ̄�γ ≥
∑
i∈Ic

μ�
ici(x

0) ≥
∑
i∈Ic

∑
j∈B�

i

〈λj
is

j
i , x

0 − x�+1〉+ 〈s�X , x0 − x�+1〉

= μ̄�〈s̄�, x0 − x�+1〉+ 〈s�X , x0 − x�+1〉 = μ̄�〈p�, x0 − x�+1〉 ,

and it was demonstrated that 0 > γ ≥ −‖p�‖‖x0 − x�+1‖ for all �. As a result, p� is

bounded away from zero (because X is bounded and x� ∈ X for all �) and therefore {μ̄�}
is a bounded sequence. This concludes the proof.

This result shows that Algorithm 2.1 increases the penalization parameter only finitely

many times. As a consequence, ρ stabilizes and the study can rely on the theory of [18]

to establish convergence of Algorithm 2.1.

Theorem 2.1. Consider problem (2.3) with convex and continuous functions φ, ci :

31

R
nx → R. Suppose X �= ∅ is a bounded polyhedron, the sequence of prox-parameter

{τ �} satisfies τmax ≥ τ � ≥ τmin > 0 for all �, and that the Slater condition holds. Let

ε0 = ε1 = ε2 = 0 in Algorithm 2.1. Then

(a) There exists an index set K ⊂ {1, 2, . . .} such that lim
�∈K

ê� = 0, lim
�∈K

d� = 0 and

the whole sequence {x̂�} converges to a minimum x̂ of (2.3), and as a consequence

lim
�∈K

max
i∈Ic

ci(x̂
�) ≤ 0. Moreover, lim

�∈K
x�+1 = x̂.

(b) Furthermore, the three sequences {ŝ�φ}K, {ŝ�i}K and {μ�
i}K (defined in Proposition

2.1) have cluster points. Let sφ, si and μ̄i be arbitrary cluster points of these se-

quences, respectively. Then, sφ ∈ ∂φ(x̂) , si ∈ ∂ci(x̂) if μ̄i > 0, and μ̄i (i ∈ Ic)

satisfy the KKT system (2.4) with x̄ = x̂.

Proof: Proposition 2.2 ensures that the penalization parameter ρ stabilizes after finitely

many steps, and therefore the solution x̂�+1 of subproblem (2.6) also solves the QP (2.15)

for all large enough � (see the comments right after Proposition 2.1). As a result, after

finitely many iterations Algorithm 2.1 boils down to be the classical proximal bundle

algorithm applied to the problem of minimizing the penalized function fρ over X:

min
x∈X

fρ(x) , with fρ given in (2.8).

It follows from the analysis of the proximal bundle method (see Theorem 6.11 and § 7.1.1

of [18]) that there exists an index set K such that lim
�∈K

ê� = 0, lim
�∈K

d� = 0 and lim
�→∞

x̂� = x̂

(see [18, Theorem 6.2 iii)]) is a solution of the above penalized problem. Moreover, since

{τ �} is a bounded sequence, it follows from (2.10) and the above results that

lim
�∈K

x�+1 = lim
�∈K

x̂� − lim
�∈K

τ �d� = x̂ .

It remains to show that the cluster point x̂ also solves (2.3). To this end it is just necessary

to prove that x̂ is feasible for (2.3), i.e., ci(x̂) ≤ 0 for all i ∈ Ic. Notice that Step 5 of

the algorithm keeps the linearization of the last descent steps in the bundles B�
i , i ∈ Ic.

Then, as x�+1 is feasible for (2.6) and s�̂i ∈ ∂ci(x̂
�), ci(x̂

�) + 〈s�̂i , x�+1 − x̂�〉 ≤ 0 for all �

and all i ∈ Ic (because x̂� = x̂�̂ by definition). By the Cauchy-Schwartz inequality it is

obtained

ci(x̂
�) ≤ ‖s�̂i‖‖x�+1 − x̂�‖ = ‖s�̂i‖‖τ �d�‖, ∀ i ∈ Ic , � = 1, 2,

Since X is a bounded set, the subgradients s�̂i of the convex functions ci are also bounded,

[39, Proposition 6.2.2]. By taking the limit with � ∈ K in the above relation (and

remembering that ci are continuous functions) it is concluded that ci(x̂) ≤ 0 for all i ∈ Ic.

Hence, the solution x̂ of the penalized problem is feasible for (2.3), proving that x̂ is also

32

a solution to (2.3). This concludes the proof of item (a).

Existence of clusters points of the sequences in item (b) is ensured by the boundedness

of the subdifferentials of convex functions on bounded convex sets X and Proposition 2.2.

Let sφ be a cluster point of {ŝ�φ}K , and letK ′ ⊂ K be the index set gathering the iterations

satisfying sφ = lim
�∈K′

ŝ�φ. As the subsequence {ŝ�i}K′ is also bounded, it has a cluster point

si and therefore there exists an index set K ′′ ⊂ K ′ such that si = lim
�∈K′′

ŝ�i . By continuing

with this reasoning a cluster point μ̄i of the bounded subsequence {μ�
i}K′′ and an index

set L ⊂ K ′′ such that μ̄i = lim
�∈L

μ�
i are obtained. In summary, the index set L is such that

sφ = lim
�∈L

ŝ�φ, si = lim
�∈L

ŝ�i and μ̄i = lim
�∈L

μ�
i .

As lim
�∈K

ê� = 0 and L ⊂ K, it is concluded from Proposition 2.1 d) that lim
�∈L

ê�φ = 0

and lim
�∈L

ê�i = 0 for all i ∈ Ic with μ̄i > 0. It also follows from Proposition 2.1 d) that

ŝ�φ ∈ ∂ê�φφ(x̂
�) and ŝ�i ∈ ∂ê�ici(x̂

�). Hence, by passing to the limit as �
L→ ∞ in the latter

inclusions and recalling [40, Proposition 4.1.1] it is gotten sφ ∈ ∂φ(x̂) and si ∈ ∂ci(x̂) if

μ̄i > 0. (Notice that if K is a finite index set (so is L), then the same conclusion trivially

holds from Proposition 2.1 e) and stopping test of Algorithm 2.1 with ε0 = ε1 = ε2 = 0.)

From item (a) above, the cluster point x̂ is an optimal solution to (2.3), and thus ci(x̂) ≤ 0,

i ∈ Ic. It follows from the KKT conditions in Proposition 2.1 item a) that

0 = μ�
ici(x

�+1) = μ�
ici(x̂

� − τ �d�) .

Since τ � is bounded and lim
�∈L

d� = 0, the limit in the above identity can be taken to conclude

(by continuity of ci) that μ̄i = 0 whenever ci(x̂) < 0. Hence μ̄ici(x̂) = 0 for all i ∈ Ic.

Equation (2.10) gives

d� −
(
ŝ�φ +

∑
i∈Ic

μ�
i ŝ

�
i

)
= s�X ∈ NX(x

�+1) .

Notice that {s�X}L is a convergent sequence (because all of its ingredients indexed by L

are convergent sequences as well). Since lim
�∈L

x�+1 = x̂ and the normal cone of a convex

set X is outer semicontinuous, Proposition 6.6 in [58] ensures that lim
�∈L

s�X ∈ NX(x̂), i.e.,

lim
�∈L

s�X = lim
�∈L

[
d� −

(
ŝ�φ +

∑
i∈Ic

μ�
i ŝ

�
i

)]
= −

(
sφ +

∑
i∈Ic

μ̄isi

)
∈ NX(x̂) .

This concludes the proof.

It was shown that Algorithm 2.1 asymptotically finds an optimal solution, subgradients

and multipliers satisfying the KKT system (2.4) of problem (2.3). Hence, Algorithm 2.1

33

(that is not difficult to implement) appears as an interesting tool to be employed by

OA algorithms to solve the (nonsmooth convex) OA’s subproblems (2.1) and (2.2). This

approach is formalized in the following chapter.

34

Chapter 3

Regularized OA algorithms for

MINLP with nonsmooth convex

functions

In Chapter 2, the focus was on the OA nonlinear subproblems and on a bundle method

algorithm capable to solve them and providing appropriate subgradients. In this chapter,

the attention will be on OA’s MILP subproblems. The goal is to regularize the MILP

subproblems in order to accelerate the OA algorithm. As solving MILP problems is a

difficult task, the fewer MILP subproblem are solved the better.

3.1 Description of the method

In the sequel the regularized OA algorithms dealing with (possibly nonsmooth) convex

MINLP problems will be presented. If the problem’s functions are differentiable and there

is no regularization, then the given algorithms boil down to the classical one. To this end,

we recall the problem of interest:

fmin := min
(x,y)∈X×Y

f0(x, y) s.t. fi(x, y) ≤ 0 , i ∈ Ic := {1, . . . ,mf} , (3.1)

where fi : R
nx × R

ny → R, i = 0, 1, . . . ,mf , are convex functions, X ⊂ R
nx is a simple

convex set (e.g. a polyhedron), and Y ⊂ Z
ny is an integer set. Both sets X and Y are

assumed to be nonempty and bounded (as a result, Y contains finite number of points).

Given yk ∈ Y , one of the OA’s (nonsmooth) subproblem is (as we have already seen in

Chapter 1):

min
x∈X

f0(x, y
k) s.t. fi(x, y

k) ≤ 0 , i ∈ Ic := {1, . . . ,mf} . (3.2)

35

Suppose that problem (3.2) is feasible. As consequence at least a solution xk is known.

Under the Slater condition, there exists Lagrange multiplies μk
i satisfying the KKT system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ∈ ∂xf0(x
k, yk) +

∑
i∈Ic(xk)

μk
i ∂xfi(x

k, yk) +NX(x
k, yk)

μk
i fi(x

k, yk) = 0 , i ∈ Ic(x
k)

μk
i ≥ 0, i ∈ Ic(x

k) ,

(3.3)

where Ic(x
k) is the set of active constraints at point xk and NX(x

k, yk) is a normal cone

of X at point xk and yk is a fixed vector. From now on, the notation N(xk) will be used

for this cone. The first line in the above system can be written as

0 = sx
k

0 +
∑

i∈Ic(xk)

μk
i s

xk

i + sX , (3.4)

where sx
k

0 ∈ ∂xf0(x
k, yk), sx

k

i ∈ ∂xfi(x
k, yk) and sX ∈ N(xk). The vector sx

k

0 belongs to

R
nx . Another arbitrary vector sy

k

0 ∈ ∂yf0(x
k, yk) is needed, in a manner that (sx

k

0 , sy
k

0)

will be a subgradient of f0 at point (x
k, yk), to create a cut to the MILP master problem.

In other words, a vector sy
k

0 ∈ R
ny is required such that

f0(x, y) ≥ f0(x
k, yk) + 〈(sxk

0 , sy
k

0), (x− xk, y − yk)〉 (3.5)

holds for all (x, y) ∈ R
nx × R

ny . Analogously to the constraints, vectors sy
k

i ∈ R
ny are

required such that

fi(x, y) ≥ fi(x
k, yk) + 〈(sxk

i , sy
k

i), (x− xk, y − yk)〉 (3.6)

holds for all (x, y) ∈ R
nx × R

ny and i ∈ Ic(x
k). Observe that the only part of the

subgradient that requires satisfying KKT is the part relative to x. Any vectors sy
k

0 and

sy
k

i can be chosen such that (3.5) and (3.6) holds.

For a given fixed yk, Lemma 3.1 below shows that the subproblem

{
min
x∈X

f0(x
k, yk) + 〈(sxk

0 , sy
k

0), (x− xk, 0)〉
s.t. fi(x

k, yk) + 〈(sxk

i , sy
k

i), (x− xk, 0)〉 ≤ 0 , i ∈ Ic(x
k) .

(3.7)

has the same solution set of subproblem (3.2).

Lemma 3.1. Consider the problem given by (3.7). Suppose that (3.3) holds. Then xk

solution of (3.2) is an optimal solution for (3.7) and, moreover, f0(x
k, yk) is its optimal

value.

36

Proof: To prove this result it is sufficient to show that

〈(sxk

0 , sy
k

0), (x− xk, 0)〉 ≥ 0,

for all x ∈ X such that

fi(x
k, yk) + 〈(sxk

i , sy
k

i), (x− xk, 0)〉 ≤ 0 , i ∈ Ic(x
k). (3.8)

Consider x ∈ X such that (3.8) holds. Remember that by definition fi(x
k, yk) = 0 for all

i ∈ Ic(x
k) and consequently

〈sxk

i , x− xk〉 ≤ 0 , i ∈ Ic(x
k). (3.9)

Furthermore, there exists sX ∈ N(xk) such that (3.4) holds. As X is a convex set,

〈sX , x− xk〉 ≤ 0 for all x ∈ X. So, by (3.4)

〈(sxk

0 , sy
k

0), (x− xk, 0)〉 = 〈sxk

0 , x− xk〉
= 〈−

∑
i∈Ic(xk)

μk
i s

xk

i − sX , x− xk〉

= −
∑

i∈Ic(xk)

μk
i 〈sx

k

i , x− xk〉 − 〈sX , x− xk〉 ≥ 0 ,

where the first part is positive because μk
i ≥ 0 and holds (3.9).

With this result, and assumption that (3.7) is feasible for all y ∈ Y , all the pairs

(xk, yk) can be gathered and written a mixed integer linear programming equivalently to

problem (3.2):

⎧⎪⎪⎨
⎪⎪⎩

min
(r,x,y)∈R×X×Y

r

s.t. f0(x
j, yj) + 〈(sxj

0 , sy
j

0), (x− xj, y − yj)〉 ≤ r , ∀j ∈ T

fi(x
j, yj) + 〈(sxj

i , sy
j

i), (x− xj, y − yj)〉 ≤ 0 , ∀j ∈ T, i ∈ Ic(x
j) ,

(3.10)

where T is given by

T = {j| (3.2) is feasible and xj is an optimal solution.}

The constraints in problem (3.10) are known as optimality cuts.

Theorem 3.1. Assume that the nonlinear problem (3.2) satisfies the Slater’s condition

and (3.3) holds for all j ∈ T . Then problem (3.10) is equivalent to problem (3.1), in the

sense that both have the same solution (x̄, ȳ) with r̄ = f0(x̄, ȳ).

Proof: Let (x̄, ȳ) be an optimal solution of problem (3.1). Then f0(x̄, ȳ) ≤ f0(x
j, yj) for

all j ∈ T . In particular, f0(x̄, ȳ) ≤ r̄, the optimal value of (3.10). But (x̄, ȳ) = (xj̄, yj̄)

37

for some j̄ ∈ T . As a result, r̄ ≤ rj̄. Lemma 3.1 ensures that rj̄ = f0(x
j̄, yj̄), and as a

consequence

f0(x̄, ȳ) ≤ r̄ ≤ f0(x
j̄, yj̄) = f0(x̄, ȳ).

This completes the proof.

The previous result only holds if all nonlinear subproblems (3.2) are feasible and all

the finitely many point yj ∈ Y are collected. Still this is not always the case. Now suppose

that given yk, problem (3.2) is infeasible. In this case, there exists at least an index i ∈ Ic

such that fi(x, y
k) > 0 for some x ∈ X. Once subproblem (3.2) is infeasible for a fixed

yk, the aim is to minimize infeasibility. A way to do that is to solve the subproblem:

min
x∈X

∑
i∈Ic

max{fi(x, yk), 0} . (3.11)

Subproblem (3.11) has at least an optimal solution xk because X is compact and the

involved functions fi are continuous. Let βk = {i ∈ Ic|fi(x, yk) > 0 for some x ∈
X}. For all i ∈ βk the vector sx

k

i ∈ ∂xfi(x
k, yk) exists and it is also a subgradient in

∂x max{fi(xk, yk), 0}; and for all i /∈ βk, 0 ∈ ∂x max{fi(xk, yk), 0}. Note that functions

max{fi(·, yk), 0} are convex and their domains are the entire space R
nx . Then, Theorem

7.4 in [62] yields

∂x
∑
i∈Ic

max{fi(xk, yk), 0} =
∑
i∈Ic

∂x max{fi(xk, yk), 0} =
∑
i∈βk

∂x max{fi(xk, yk), 0}.

As a result, the optimality condition of subproblem (3.11) writes as

0 ∈ ∂x
∑
i∈βk

max{fi(xk, yk), 0}+N(xk),

or alternatively

0 =
∑
i∈βk

sx
k

i + sX . (3.12)

Using the same procedure as before, the existence of vectors sy
k

i can be assured and it

belongs to ∂yfi(x
k, yk), i ∈ βk such that (sx

k

i , sy
k

i) is a subgradient of max{fi, 0} at point

(xk, yk), where xk is a solution of (3.11).

Theorem 3.2. The variable yk which makes the NLP subproblem (3.2) infeasible does

not satisfy the following constraints

fi(x
k, yk) + 〈(sxk

i , sy
k

i), (x− xk, y − yk)〉 ≤ 0, ∀i ∈ βk (3.13)

where sx
k

i satisfies (3.12), x ∈ X and y ∈ Y .

38

Proof: Given yk the solution xk of problem (3.11) yields

∑
i∈βk

max{fi(xk, yk), 0} > 0. (3.14)

Suppose that the integer variable yk is feasible to constraints (3.13). So there exists x̄ ∈ X

such that

fi(x
k, yk) + 〈(sxk

i , sy
k

i), (x̄− xk, 0)〉 ≤ 0, ∀i ∈ βk.

Simplifying,

fi(x
k, yk) + 〈sxk

i , x̄− xk〉 ≤ 0, ∀i ∈ βk.

Summing for all i ∈ βk the inequality is written as

∑
i∈βk

fi(x
k, yk) +

∑
i∈βk

〈sxk

i , x̄− xk〉 ≤ 0.

Using (3.12)

∑
i∈βk

〈sxk

i , x̄− xk〉 = 〈
∑
i∈βk

sx
k

i , x̄− xk〉 = 〈−sX , x̄− xk〉 ≥ 0. (3.15)

It becomes ∑
i∈βk

fi(x
k, yk) ≤ 0,

which leads to ∑
i∈βk

max{fi(xk, yk), 0} = 0,

a contradiction with (3.14).

Consider the following index set

S = {j| (3.2) is infeasible and xj is an optimal solution of (3.11).}

The next result shows that variables yj, with j ∈ S, are eliminated from the feasible set

of problem (3.1) by the feasibility cuts defined in (3.16) below.

Theorem 3.3. Let j be an arbitrary index in S, fmax(x, y) =
∑
i∈βj

max{fi(x, y), 0}, sxj

max =∑
i∈βj

sx
j

i and sy
j

max =
∑
i∈βj

sy
j

i , where sx
j

i ∈ ∂xfi(x
j, yj) and sy

j

i ∈ ∂yfi(x
j, yj). The cut

fmax(x
j, yj) + 〈(sxj

max, b
yj

max), (x− xj, y − yj)〉 ≤ 0 (3.16)

excludes the variable yj ∈ Y .

39

Proof: By putting y = yj in (3.16) the following inequality holds

0 ≥ fmax(x
j, yj) + 〈sxj

max, x− xj〉
=

∑
i∈βj

max{fi(xj, yj), 0}+
∑
i∈βj

〈sxj

i , x− xj〉

>
∑
i∈βj

〈sxj

i , x− xj〉,

which leads to a contradiction with (3.15).

Note that to solve problem (3.11) we can start with cuts provided by (3.2). All the two

situations that can occur when we fix an integer variable y were analyzed. By gathering

all the possible optimality cuts in index set T and all the possible feasibility cuts in index

set S, the following MILP problem can be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
(r,x,y)∈R×X×Y

r

s.t. f0(x
j, yj) + 〈(sxj

0 , sy
j

0), (x− xj, y − yj)〉 ≤ r , ∀j ∈ T

fi(x
j, yj) + 〈(sxj

i , sy
j

i), (x− xj, y − yj)〉 ≤ 0 , ∀j ∈ T, i ∈ Ic(x
j)

fmax(x
l, yl) + 〈(sxl

max, s
yl

max), (x− xl, y − yl)〉 ≤ 0 , ∀l ∈ S ,

(3.17)

which is equivalent (in terms of the optimal solutions and optimal value) to the MINLP

(3.1).

In practice the index sets T and S are unknown. Iteratively subsets T k ⊂ T and

Sk ⊂ S are constructed gathering optimality and feasibility cuts, obtained up to iteration

k:

T k = {j ≤ k| (3.2) is feasible and xj is an optimal solution.}

Sk = {j ≤ k| (3.2) is infeasible and xj is an optimal solution of (3.11).}

Note that (xj, yj) is feasible to problem (3.1) for all j ∈ T k. As a result, fk
up =

min
j∈Tk

f0(x
j, yj) is a upper bound for the optimal value of problem (3.1). As the involved

function are convex, the following master problem provides a lower bound for (3.1).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
(r,x,y)∈R×X×Y

r

s.t. r ≤ fk
up

f0(x
j, yj) + 〈(sxj

0 , sy
j

0), (x− xj, y − yj)〉 ≤ r , ∀j ∈ T k

fi(x
j, yj) + 〈(sxj

i , sy
j

i), (x− xj, y − yj)〉 ≤ 0 , ∀j ∈ T k, i ∈ Ic(x
j)

fmax(x
l, yl) + 〈(sxl

max, s
yl

max), (x− xl, y − yl)〉 ≤ 0 , ∀l ∈ Sk .

(3.18)

Note that the point (xj, yj) yielding fk
up is feasible to above problem. In order to eliminate

such a point (and as well as all previous iterates) the constraint r ≤ fk
up is replaced by

r ≤ fk
up − ε, where ε > 0 is an arbitrary small parameter. The size of problem (3.18)

40

depends on the number of performed iterations, and can substantially grow making (3.18)

a very difficult optimization problem.

In order to overcome this situation, the goal is to regularize the MILP subproblem in

the sense that the minimum number of MILP as possible are solved allowing to stabilize

the OA iterative process by computing cuts and determining new iterates nearby a region

of the best known candidate solution (at iteration k) for (3.18). If visiting uninteresting

regions are avoided, the OA algorithm may approximate better (and faster) the functions

on regions containing global solutions. This may end up in solving less MILP subproblems

and less nonlinear subproblems. To this end, it is proposed to add a norm || · ||� to the

objective function of (3.18):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
(r,x,y)∈R×X×Y

r + μk||(x, y)− (x̂k, ŷk)||�
s.t. r ≤ fk

up − ε

f0(x
j, yj) + 〈(sxj

0 , sy
j

0), (x− xj, y − yj)〉 ≤ r , ∀j ∈ T k

fi(x
j, yj) + 〈(sxj

i , sy
j

i), (x− xj, y − yj)〉 ≤ 0 , ∀j ∈ T k, i ∈ Ic(x
j)

fmax(x
l, yl) + 〈(sxl

max, b
yl

max), (x− xl, y − yl)〉 ≤ 0 , ∀l ∈ Sk ,

(3.19)

where μk > 0 is a parameter controlling the influence of the norm. In this formulation the

pair (x̂k, ŷk), known as stability center [16], can be the current iterate (xk, yk) or the pair

yielding fk
up. The norm and parameter μk can be chosen freely. For instance, || · ||� = || · ||1

or || · ||� = || · ||∞ leads (3.19) to a MILP. On the other hand, the choice || · ||� = || · ||2
results on a MIQP, which is in general more difficult to solve than a MILP. The choice of

this norm depends on the structure of the problem. The usefulness of using regularization

in MINLP has been evidenced in [16, 68, 78]. However, regularized techniques have not

been employed so far in OA algorithms (except in [20], based in this work). The following

regularized OA algorithm is proposed.

Algorithm 3.1. A regularized outer approximation algorithm

Step 0. (Initialization) Choose y0 ∈ Y , ε > 0, a norm || · ||� and set f−1
up = ∞,T−1 = S−1 = ∅,

k = 0.

Step 1. (NLP) Apply Algorithm 2.1 to subproblem (3.2). If along the iterative process the

corresponding QP (2.6) is infeasible, go to Step 2. Otherwise, let xk ∈ X, and sx
k

i ∈
∂xfi(x

k, yk), i = 0, 1, . . . ,mf be returned by Algorithm 2.1. Compute arbitrary vectors

sy
k

i ∈ ∂yfi(x
k, yk), i = 0, 1, . . . ,mf , set T k = T k−1 ∪ {k} and Sk = Sk−1. Update the

upper bound fk
up = min{fk−1

up , f0(x
k, yk)} and go to Step 3.

Step 2. (NLP feasibility) Solve the feasibility subproblem (3.11) with Algorithm 2.1 to obtain

xk ∈ X, sx
k

max ∈ ∂xfmax(x
k, yk) with fmax(·, yk) := max

i∈Ic
{fi(·, yk), 0}. Compute an arbitrary

vector sy
k

max ∈ ∂yfmax(x
k, yk), set Sk = Sk−1 ∪ {k} and T k = T k−1.

41

Step 3. (Integer trial point) If (3.19) is infeasible, go to Step 4. Otherwise, let yk+1 be the

y−part of solution of problem (3.19). Set k = k + 1 and go back to Step 1.

Step 4. (Termination) If T k = ∅, then MINLP (3.19) is infeasible. Otherwise, return the ε-

solution (x∗, y∗), with (x∗, y∗) the pair of points yielding fk
up = f0(x

∗, y∗). Terminate the

algorithm.

Since the feasible set of the bundle method QP problem (2.6) is an outer approximation

of the feasible set of (2.3), if the former is empty so is the latter. This is why the above

algorithm moves to the feasibility problem whenever the bundle method QP is empty.

Observe that in this case the nonlinear subproblem is solved using Algorithm 2.1 because

its provides subgradients that satisfy KKT conditions as explain before. Moreover, the

master problem yielding yk+1 is the regularized one (3.19). In the step 0 of Algorithm

3.1, we can choose a parameter μ0 and a rule to updated this parameter. In this work,

we set this parameter as a constant, but a iterative process can be used as well.

3.2 Convergence analysis

The convergence analysis of Algorithm 3.1 is based on [26]. As the number of integer

variables of problem (3.1) is finite, it is enough to show that OA Algorithm 3.1 does not

repeat points. As a result, the algorithm finds an optimal solution of problem (3.1) (if

any) in finitely many steps, or proves that the problem is infeasible.

Lemma 3.2. Let C∗
MINLP be the solution set of problem (3.1) and CMILP be the feasible

set of problem (3.19). Given ε > 0 in Algorithm 3.1, let f̄0 be the optimal value of problem

(3.1) and fk
up as in the algorithm. If fk

up − ε ≥ f̄0 then C∗
MINLP ⊂ CMILP .

Proof: If C∗
MINLP = ∅ then the result trivially follows. Assuming that ∅ �= C∗

MINLP �
(x̄, ȳ). As fi, i = 0, . . . ,mf are convex functions, the following inequalities holds:

fk
up − ε ≥ f̄0 = f0(x̄, ȳ) ≥ f0(x

j, yj) + 〈(sxj

0 , sy
j

0), (x̄− xj, ȳ − yj)〉, j ∈ T k

0 ≥ fi(x̄, ȳ) ≥ fi(x
j, yj) + 〈(sxj

i , sx
j

i), (x̄− xj, ȳ − yj)〉 , ∀j ∈ T k, i ∈ Ic(x
j)

0 ≥ fmax(x̄, ȳ) ≥ fmax(x
l, yl) + 〈(sxl

max, s
yl

max), (x̄− xl, ȳ − yl)〉 , ∀l ∈ Sk .

It was then demonstrated that (x̄, ȳ) ∈ CMILP . As (x̄, ȳ) is an arbitrary point in C∗
MINLP ,

the proof is complete.

Theorem 3.4. Suppose that subproblem (3.2) satisfies the Slater’s condition, the chosen

subgradients at Step 2 of Algorithm 3.1 satisfy the KKT conditions and |Y | < ∞. Then

the algorithm terminates after finitely many steps either with an ε-solution of (3.1) or

proving that (3.1) is infeasible.

42

Proof: In order to prove that Algorithm 3.1 converges in a finite number of steps it is

sufficient to show that any y ∈ Y provides by the algorithm does not repeat, because the

set Y has only finitely many points. At iteration k, let (x̄, ȳ, r̄) be a solution of problem

(3.19). Suppose ȳ = yj for some j ∈ Sk or j ∈ T k. By Theorem 3.3, if j ∈ Sk then the

inequality

fmax(x
j, yj) + 〈(sxj

max, s
yj

max), (x− xj, y − yj)〉 ≤ 0,

excludes the variable yj ∈ Y . That means j ∈ T k. As (x̄, ȳ, r̄) is a solution of problem

(3.19) and ȳ = yj, then ȳ in (3.19) can be replaced and the following inequalities hold

r̄ ≤ fk
up − ε ≤ f0(x

j, yj)− ε

f0(x
j, yj) + 〈(sxj

0 , sy
j

0), (x̄− xj, 0)〉 ≤ r̄

fi(x
j, yj) + 〈(sxj

i , sx
j

i), (x̄− xj, 0)〉 ≤ 0

(3.20)

As subgradients satisfy KKT conditions the inner product 〈sxj

0 , x̄ − xj〉 ≥ 0 holds (see

proof of Lemma 3.1). So by the second inequality of (3.20) f0(x
j, yj) ≤ r̄ . By the first

inequality of (3.20), f0(x
j, yj) ≤ f0(x

j, yj) − ε which is a contradiction because ε > 0.

Therefore j /∈ T k ∪ Sk and the previous integer variable does not repeat in the OA

algorithm. As |Y | < ∞, the algorithm will stop after finitely many steps.

Now it will be proved that the algorithm either provides a ε-solution or proves that

(3.1) is infeasible. Suppose that Algorithm 3.1 stops at iteration k. If T k = ∅ then

problem (3.1) is infeasible. Now assume T k �= ∅, i.e., problem (3.1) is feasible. When the

algorithm stops at Step 3 with subproblem (3.19) infeasible, it follows from Lemma 3.2

and the fact that C∗
MINLP �= ∅ that fk

up − f̄0 < ε, i.e., the point (xj̄, yj̄) yielding fk
up is a

ε−solution. This concludes the proof.

Note that the norm does not interfere in the convergence of OA algorithm. The next

chapter addresses nonsmooth convex MINLP problems with chance constraints. The

numerical results about this theory will be present in Chapter 5.

43

Chapter 4

Nonsmooth convex MINLP with

chance constraints

In this chapter we considered MINLPs with chance constraints. In Section 4.1 a few

well-known results on Chance-Constrained Programming are revisited. Section 4.2 is

dedicated to Copulae, which are multivariate functions that approximate probability fun-

ctions. Chance-Constrained MINLP (CCMINLP) problems are considered in Section 4.3.

4.1 Chance constraints

In this thesis, stochastic optimization problems where the randomness appears only in

the constraints are studied. For instance, constrains represented by

hi(x, ξ) ≥ 0, ∀i = 1, . . . , s

where h : Rn×R
m → R

s is a mapping having generalized concavity properties on a given

level set and ξ ∈ R
m is a random vector. One strategy that is widely employed to deal

with problems of this class is chance-constrained programming, which replaces the above

stochastic constraint by the probability one

P [h(x, ξ) ≥ 0] ≥ p, (4.1)

where P is the probability measure associated to ξ, and p ∈ (0, 1] is a given parame-

ter. Chance constraints appear in several real life problems such as water management,

telecommunications, electricity network expansion, mineral blending, chemical engineer-

ing and others [36, 50, 55, 66, 71].

In a general term, a stochastic optimization problem involving chance constraints is

44

written as

min
x∈X

φ(x) s.t. P [h(x, ξ) ≥ 0] ≥ p . (4.2)

Function φ : R
n → R is assumed to be convex but not necessarily differentiable and

X �= ∅ is a given convex set, that does not depend on uncertain parameters. Basically,

a point x is feasible for problem (4.2) if the system of equations h(x, ξ) ≥ 0 is satisfied

with probability at least p. It is important to mention that the function P [h(x, ξ) ≥ 0]

may fail to be differentiable even when h is smooth. This is the case when ξ follows a

multivariate normal distribution having a singular covariance matrix [70].

Chance constraints problems have been introduced by Chernes, Cooper and Symonds

in 1958 in the papers [13] and [14]. The first proposed method was based on individual

chance constraints

min
x∈X

φ(x) s.t. P [hi(x, ξ) ≥ 0] ≥ p, ∀i = 1, . . . , s . (4.3)

Observe that problem (4.2) and (4.3) are different from each other. The constraint in (4.2)

is called joint chance constraint and the ones in (4.3) are individual chance constraints.

Miller and Wagner [49] investigated problem (4.3) where the stochastic components are in-

dependent. The general case, where the random vector could have dependent components

was introduced by Prékopa in the papers [53, 54].

Probability constraints lead to some difficulties: the first one is that evaluating the

probability function involve, in general, computing numerically a multidimensional inte-

gral. Depending on the dimension of the random vector ξ, the task of evaluating the

probability constraint becomes computationally very expensive. There are at least two

known manners to overcome this difficulty:

- considering inexact values for the probability function, an approach already inves-

tigated in [68];

- approximating the probability by a simpler function, also studied by [61, 66, 69, 71].

In this work the second strategy is employed and the probability function is approximated

by a suitable copula, as discussed in Section 4.3 below.

Another difficulty in dealing with chance-constrained programming is that the proba-

bility constraint can yield a nonconvex feasible set even if function h in (4.3) is concave.

The references [37, 38, 55, 72] have addressed this issue for a broad class of probability

measures. In what follows some main results on convexity of the set issued by probability

functions are reviewed.

45

4.1.1 Generalized convexity of chance constraint

In this section convexity of the following set

M(p) = {x ∈ R
n|P [h(x, ξ) ≥ 0] ≥ p} (4.4)

is reviewed. To this end, it is necessary to have some results on generalized concavity and

its properties . The following useful definition is classic.

Definition 4.1. Let α ∈ [−∞,∞] and mα : R+ × R+ × [0, 1] → R be defined as

mα(a, b, λ) = 0 if ab = 0,

and for a > 0, b > 0, λ ∈ [0, 1]:

mα(a, b, λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aλb1−λ if α = 0

max(a, b) if α = ∞
min(a, b) if α = −∞
(λaα + (1− λ)bα)

1
α otherwise·

The function defined above is used to generalize concavity. The following lemma is

given in [62].

Lemma 4.1. The function α �→ mα(a, b, λ) is nondecreasing and continuous.

The extension of concavity follows from the next definition.

Definition 4.2. Consider a nonnegative function f defined on some convex set Ω ⊂ R
n.

Then f is called α−concave (α ∈ [−∞,∞]) if only if

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ) ∀x, y ∈ Ω, λ ∈ [0, 1],

where mα is the function in Definition 4.1.

If α = 0, then function f is called log-concave because log f(·) is a concave function.

If α = 1, then f is concave; if α = −∞ then f is a quasi-concave function. If β ≤ α and

the function f is α−concave, then by Lemma 4.1 f is β−concave. The same definition

above can be used to define generalized concavity for probability measure.

Definition 4.3. Consider P a probability measure defined on some measurable convex set

Ω ⊂ R
n. Then P is called α−concave (α ∈ [−∞,∞]) if only if

P [λA+ (1− λ)B] ≥ mα(P [A], P [B], λ),

46

for all measurable sets A and B subsets of Ω and λ ∈ [0, 1]. Here λA + (1 − λ)B is the

Minkowski sum, that is, λA+ (1− λ)B = {λx+ (1− λ)y, x ∈ A, y ∈ B}.

Given a random vector ξ ∈ R
m, it has α−concave distribution if the margins Pξi

induced by ξi is α−concave. It is important to know the link between the margins and

the cumulative distribution function. This is given by the following lemma.

Lemma 4.2. If a random vector ξ induces a α−concave probability measure in R
m, then

its cumulative distribution function Fξ is a α−concave function.

Proof: See Lemma 4.12 in [62].

An important result says about the margins of ξ with the distribution of ξ.

Lemma 4.3. If a random vector ξ has independent components with log-concave marginal

distribution, then ξ has a log-concave distribution.

Proof: See Lemma 4.13 in [62].

Note that the function in (4.1) is a composite map. Therefore to know about gener-

alized concavity of composite functions the following theorem is necessary.

Theorem 4.1. If f is a concave function defined on a convex set Ω ⊂ R
n and g : R → R

is a nonnegative nondecreasing α−concave function, α ∈ [−∞,∞], then the function g◦f
is α−concave.

Proof: See Theorem 4.20 in [62].

When functions hj, j = 1, . . . , s are considered as being quasi-concave, the next theo-

rem assure that function (4.5) is α−concave on the set (4.6) .

Theorem 4.2. Let functions hj : R
n × R

m, j = 1, . . . , s be quasi-concave. If ξ ∈ R
m is a

random vector that has α−concave probability distribution, then the function

G(x) = P [hj(x, ξ) ≥ 0, j = 1, . . . , s] (4.5)

is α−concave on the set

D = {x ∈ R
n : ∃ξ ∈ R

m such that hj(x, ξ) ≥ 0, j = 1, . . . , s}. (4.6)

Proof: See Theorem 4.39 in [62].

Note that function (4.5) is α−concave at variable x, and then if function is α−concave

in the other coordinate, the convexity of set (4.4) can be ensured. This result is given by

the next corollary.

47

Corollary 4.1. Assuming that functions, hj(·, ·), j = 1, . . . , s are quasi-concave jointly

in both arguments and that ξ ∈ R
m is a random vector that has α−concave probability

distribution then (4.4) is a convex and closed set.

Results about convexity are important because many random vector ξ have a proba-

bility distribution which is 0− concave. Consequently in order to use outer-approximation

algorithms in problems with chance constraints, the ”log” function must be applied in the

probability function and then the composite function (multiplied by -1) is convex. The

function h can be separable and the random vector ξ has independent components. In

this case, the joint probability constraint can be written as a product of individual chance

constraint and the problem become easier to solve. In some applications, the function h

is not separable and even if it is, the random variable ξ has dependent components in

most of the time. Even when the set M(p) is convex, approximating it by linearizations

of the probability function is a difficult task due to the following reasons:

• evaluating the probability function P [h(x, ξ) ≥ 0] involves computing numerically a

multidimensional integral;

• computing a subgradient of P [h(x, ξ) ≥ 0] requires evaluating (numerically) m in-

tegrals of dimension m− 1, [70].

When the dimension of the random vector ξ is large, computing a linearization for the

probability constraint is too time consuming. To overcome this difficulty, the probability

P can be approximated by an appropriate copula C, modeling the dependence of the

components of ξ. Some results about copulae are reviewed in the next section.

4.2 Copulae: a bird’s eye view

In this section separable chance constraints are considered, that is, function h in (4.1) is

given by h(x, ξ) = g(x)− ξ, where g : Rn → R
m. When dealing with chance-constrained

programs it is, very often, impossible to get an explicit formula for the probability measure

P because the jointly distribution of ξ variable is unknown. In what follows, the random

variable ξ ∈ R
m will supposed to have known marginal distributions Fξ1 , . . . , Fξm . This

is a weaker assumption than assuming that the joint distribution of ξ is known. In order

to model the dependence among theses marginals a copula function will be employed.

The concept of copula was introduced by Sklar [63] in 1959, when he was studying the

relationship between a multidimensional probability function and its lower dimensional

marginals.

48

Definition 4.4. An m−dimensional copula is a function C : [0, 1]m → [0, 1] that satisfies

the following properties:

i) C(1, . . . , 1, u, 1, . . . , 1) = u ∀u ∈ [0, 1].

ii) C(u1, . . . , ui−1, 0, ui+1, . . . , um) = 0.

iii) C is quasi monotone on [0, 1]m.

In other words, the above definition means that C is a m−dimensional distribution

function with all univariate marginals being uniform in the interval [0, 1]. The item (iii)

means that the C−volume of any box in [0, 1]m is nonnegative (see [52] for more details).

Given a random vector ξ with known margins Fξi , i = 1, . . . ,m, an important tool

proved by Sklar [63] is a theorem that assures the existence of a copula that approximates

the cumulative distribution F . This theorem only assures the existence of a copula and

is reported below.

Theorem 4.3. Let Fξ be a m−dimensional distribution function with marginals Fξ1 , Fξ2 ,

. . . , Fξm. Then there exists a m−dimensional copula C such for all z ∈ R
m,

Fξ(z1, z2, . . . , zm) = C(Fξ1(z1), Fξ2(z2), . . . , Fξm(zm)). (4.7)

If Fξi , i = 1, . . . ,m are continuous, then C is unique. Otherwise, C is uniquely deter-

mined in the image of Fξ. Conversely, if C is a copula and Fξi , . . . , Fm are distribution

functions, then the function Fξ defined by (4.7) is a m−dimensional distribution function

with marginals Fξ1 , . . . , Fξm .

In the above theorem, functions Fξi , i = 1, . . . ,m can be different. Observe that this

theorem is not constructive, it just ensures the existence of a copula associated to the

distribution Fξ(z). In most of the cases, a copula providing the equality

C(Fξ1(z1), . . . , Fξm(zm)) = Fξ(z)

is unknown. One exception is when the random vector is independent, whose associated

copula is the product copula:

C(u1, . . . , um) = u1u2 · · · um.

The problem of choosing/estimating a suitable copula has been receiving (from the sta-

tistical community) much attention in the last few years, [15, 52]. As shown in books

[25, 52], there are many copulae in the literature.

49

Any copula C can be bounded by the functions Wm(u1, u2, . . . , um) = max{u1 +

u2, . . . um −m+ 1, 0} and Mm(u1, u2, . . . , um) = min{u1, u2, . . . , um}. Theses bounds are
expressed by the following theorem, whose proof can be found in [52].

Theorem 4.4. If C is a copula, then for all vector u = (u1, . . . , um) belonging to the

domain of C the following inequality holds

Wm(u) ≤ C(u) ≤ Mm(u).

Functions Wm and Mm are known as Frechet-Hoeffiding bounds. The map Mm is a

copula for any dimension, and Wm is a copula for dimension m = 2 only.

4.3 Chance-constrained MINLP problems

In recent years, the stochastic programming community have been witnessed a great deve-

lopment in optimization methods for dealing with stochastic programs with mixed-integer

variables [8]. However, there are only few works on chance-constrained programming with

mixed-integer variables, [3, 16, 64, 74].

In this section, the problem of interest consists in nonsmooth convex mixed-integer

nonlinear programs with chance constraints (CCMINLP). These class of problems can

be solved by employing the outer-approximation technique presented in Chapter 3. In

general, OA algorithms require solving less MILP subproblems than extended cutting-

plane algorithms [76], therefore the former class of methods is preferable than the latter

one. This justifies why we have chosen the former class of methods to deal with problems

of the type

min
(x,y)∈X×Y

f0(x, y)

s.t. fi(x, y) ≤ 0, i = 1, . . . ,mf − 1

P [h((x, y), ξ) ≥ 0] ≥ p,

(4.8)

where

• fi : R
nx×R

ny → R , i = 0, . . . ,mf−1, are convex but possibly nonsmooth functions;

• X ⊂ R
nx is a polyhedron;

• Y ⊂ Z
ny contains only integer variables;

• both X and Y are compacts sets;

• h((x, y), ξ) = g(x, y)− ξ, where function g : Rnx × R
ny → R

m;

• ξ ∈ R
m is the random vector;

50

• p ∈ (0, 1) is a given parameter;

• P is the probability measure associated to the random vector ξ.

Furthermore, g is assumed to be a concave function and P a 0−concave distribution (thus

P is α−concave for all α ≤ 0). Some examples of distribution functions that satisfies the

0−concavity property are the well-known multidimensional Normal, Log-normal, Gamma

and Dirichlet distributions [55]. Under these assumptions, the following function is convex

[Theorem 4.2]

fmf
(x, y) = log(p)− log(P [h((x, y), ξ) ≥ 0)]) = log(p)− log(P [g(x, y) ≥ ξ]). (4.9)

As a result, (4.8) is a convex (but possibly nonsmooth) MINLP problem fitting notation

(3.1) of Chapter 3:

fmin := min
(x,y)∈X×Y

f0(x, y) s.t. fi(x, y) ≤ 0 , i ∈ Ic := {1, . . . ,mf} . (4.10)

In addition to the difficulties present in MINLP models, the above problem has two

more complications: the involved functions can be nondifferentiable and, mainly, fmf
en-

compasses a probability function. Consequently, since problem (4.10) is a convex MINLP,

Algorithm 3.1 developed in Chapter 3 can be applied.

Let us now consider the OA’s nonlinear subproblem (3.2) with the last function rep-

resenting a joint probability constraint (the analysis given below is analogous for the

feasibility problem (3.11)). Given a fixed yk ∈ Y , the nonlinear subproblem (3.2) with

fmf
replaced by (4.9) becomes

min
x∈X

f0(x, y
k)

s.t. fi(x, y
k) ≤ 0, i = 1, . . . ,mf − 1

log(p)− log(P [g(x, yk) ≥ ξ]) ≤ 0.

(4.11)

4.3.1 Chance-constrained MINLP problems: an approximation

using Copulae

Due to the probability function P [g(x, y) ≥ ξ], evaluating the last constraint in problem

(4.11) and computing its subgradient is a difficult task: as previously explained in Section

4.1, computing a subgradient of P [g(x, y) ≥ ξ] requires numerically solving m integrals

of dimension m− 1. If the dimension m of ξ is too large, then creating a cut for function

log(p) − log(P [g(x, y) ≥ ξ]) is computationally challenging. In this situation, it makes

sense to replace the probability measure by a simpler function. In this manner, this work

51

proposes to approximate the hard chance constraint P [g(x, y) ≥ ξ] ≥ p by a copula C:

C(Fξ1(g1(x, y)), Fξ2(g2(x, y)), . . . , Fξm(gm(x, y)) ≥ p.

By applying ”log” in the inequality above the following function is obtained

fm(x, y) = log(p)− logC(Fξ1(g1(x, y)), Fξ2(g2(x, y)), . . . , Fξm(gm(x, y)), (4.12)

where Fξi is the marginal probability distribution of Fξ(z) = P [z ≥ ξ], which is assumed

to be known. The function given by (4.12) is well defined by Sklar’s theorem [Theorem

4.3]. If C is 0−concave, then (4.11) can be approximated by the convex MINLP

min
x∈X

f0(x, y
k)

s.t. fi(x, y
k) ≤ 0, i = 1, . . . ,mf − 1

log(p)− log(C(Fξ1(g1(x, y
k)), Fξ2(g2(x, y

k)), . . . , Fξm(gm(x, y
k))) ≤ 0.

(4.13)

In order to have a good approximation of chance constraint it is mandatory that

C(Fξ1(g1(x, y)), Fξ2(g2(x, y)), . . . , Fξm(gm(x, y)) ≈ Fξ(g1(x, y), g2(x, y), . . . , gm(x, y)),

for all (x, y) in a neighborhood of the solution set of problem (4.10). An appropriate

copula must be chosen in a way that

• approximates well the underlying probability function;

• has generalized concavity properties so that after a simple transform (e.g. log) the

resulting function is concave, and the CCMINLP problem becomes convex.

In the next section we present a family of copulas that satisfy the above requirements

(the first condition is verified numerically whereas the second one is asserted by Theorem

4.2.)

4.3.2 Zhang’s copulae

In order to ensure convexity of the underlying MINLP problem, suitable copulae must

be chosen (e.g. concave and α− concave copulae with α ≤ 0). Consider any copula C.

By applying the ”log” function in this copula, by Theorem 4.4 the following inequality is

obtained

logWm(u) ≤ logC(u) ≤ logMm(u).

52

As the only concave copula is Mn(u) (see [52, § 3.26]), in order that the copula C must

be log concave this copula should be

C(u) = K ·Mm(u)

for all natural K. In other words, the copula C is a product of copula Mn. Using

the logarithm property a log b = log ba, the number K can be decomposed, for instance,

K = K1 ·K2 and the copula can be written as C(u) = K1 ·Mm(u)K2 . This means that

the copula with this property must be the product of powers copulae Mn.

There is a family of copula with this property, introduced by Zhang [79]. The family

is given by

C(u1, . . . , um) =
r∏

j=1

min
1≤i≤m

(u
aj,i
i), (4.14)

where aj,i ≥ 0 and
r∑

j=1

aj,i = 1 for all i = 1, . . . ,m. Different choices of parameters aj,i give

different copulae, all of them nonsmooth functions, but with subgradient easily computed

via chain rule. The next result shows that this family of copula is a log concave.

Proposition 4.1. Let ξ ∈ R
m be a random vector with all marginals Fξi , i = 1, . . . ,m

being 0−concave functions. Suppose that g : Rnx × R
ny → R

m is a concave function.

Consider a Zhang’s Copula C given in (4.14) for a certain choice of parameters aj,i.

Then

C(Fξ1(g1(x, y)), Fξ2(g2(x, y)), . . . , Fξm(gm(x, y)))

is α−concave for α ≤ 0.

Proof: Given a pair (x, y) ∈ R
nx × R

ny we set z = (x, y) to simplify the notation. Let

z1 = (x1, y1), z2 = (x2, y2) and z = λz1 + (1 − λ)z2 with λ ∈ [0, 1]. As the function g is

concave, then for all i = 1, . . . ,m

gi(λz1 + (1− λ)z2) ≥ λgi(z1) + (1− λ)gi(z2). (4.15)

As Fξi , i = 1, . . . ,m, are increasing functions, by applying Fξi to inequality (4.15) it

becomes

Fξi(gi(λz1 + (1− λ)z2)) ≥ Fξi(λgi(z1) + (1− λ)gi(z2)). (4.16)

By applying log in the above inequality,

log(Fξi(gi(λz1 + (1− λ)z2))) ≥ log(Fξi(λgi(z1) + (1− λ)gi(z2))). (4.17)

53

Functions Fξi are 0−concave by hypothesis. Then

log(Fξi(λgi(z1) + (1− λ)gi(z2))) ≥ λ log(Fξi(gi(z1))) + (1− λ) log(Fξi(gi(z2))). (4.18)

By gathering inequality (4.17) and (4.18) we have

log(Fξi(gi(λz1 + (1− λ)z2))) ≥ log(λFξi(gi(z1)) + (1− λ)Fξi(gi(z2)))

≥ λ log(Fξi(gi(z1))) + (1− λ) log(Fξi(gi(z2))).
(4.19)

The Zhang’s Copula evaluated at the point λz1 + (1− λ)z2 is

C(Fξ1(g1(λz1 + (1− λ)z2), . . . , Fξm(gm(λz1 + (1− λ)z2)) =
r∏

j=1

min
1≤i≤m

[Fξi(gi(λz1

+ (1− λ)z2))]
aj,i ,

where aj,i ≥ 0.

To simply the notation, Fξ1(g1(λz1+(1−λ)z2), . . . , Fξm(gm(λz1+(1−λ)z2) is written

as Fξ(g(λz1 + (1− λ)z2)). So,

logC(Fξ(g(λz1 + (1− λ)z2))) = log

(
r∏

j=1

min
1≤i≤m

[Fξi(gi(λz1 + (1− λ)z2))]
aj,i

)

=
r∑

j=1

log

(
min

1≤i≤m
[Fξi(gi(λz1 + (1− λ)z2))]

aj,i

)
.

As the log function is increasing, logmin u = min log u, and therefore

logC(Fξ(g(λz1 + (1− λ)z2))) =
r∑

j=1

min
1≤i≤m

[log (Fξi(gi(λz1 + (1− λ)z2))
aj,i] .

As aj,i ≥ 0, the equality becomes

logC(Fξ(g(λz1 + (1− λ)z2))) =
r∑

j=1

min
1≤i≤m

[aj,i log (Fξi(gi(λz1 + (1− λ)z2))] .

By using (4.19) in the above equality it becomes

logC(Fξ(g(λz1 + (1− λ)z2))) ≥
r∑

j=1

min
1≤i≤m

aj,i [λ log(Fξi(gi(z1))) + (1− λ) log(Fξi(gi(z2)))] .

54

The right-most side of the above inequality is greater or equal than

r∑
j=1

min
1≤i≤m

aj,i [λ log(Fξi(gi(z1)))] +
r∑

j=1

min
1≤i≤m

aj,i [(1− λ) log(Fξi(gi(z2)))]

= λ

r∑
j=1

min
1≤i≤m

[log(Fξi(gi(z1)))
aj,i] + (1− λ)

r∑
j=1

min
1≤i≤m

[log(Fξi(gi(z2)))
aj,i]

= λ

r∑
j=1

log

(
min

1≤i≤m
(Fξi(gi(z1)))

aj,i

)
+ (1− λ)

r∑
j=1

log

(
min

1≤i≤m
(Fξi(gi(z2)))

aj,i

)

= λ

[
log

r∏
j=1

min
1≤i≤m

(Fξi(gi(z1)))
aj,i

]
+ (1− λ)

[
log

r∏
j=1

min
1≤i≤m

(Fξi(gi(z2)))
aj,i

]

= λ logC(Fξ(g(z1))) + (1− λ) logC(Fξ(g(z2))).

It was then demonstrated that

logC(Fξ(g(λz1 + (1− λ)z2))) ≥ λ logC(Fξ(g(z1))) + (1− λ) logC(Fξ(g(z2))),

i.e., the logC(Fξ1(g1(z)), . . . , Fξm(gm(z))) is a concave function. In other words, the copula

C is α−concave for α ≤ 0.

This result is fundamental for this Thesis because this family of copula is log concave

and can be used in the problem (4.13). As the assumptions about OA algorithms are

assured, the convergence for this class of problem is achieved.

4.3.3 Chance-constrained involving discrete distribution

Until now, we have seen the theory about chance constrained when ξ follows a continuous

distribution of probability. In this section we review briefly CCMINLP when ξ follows a

discrete distribution of probability.

Consider the chance constrained problem:

min
x∈X,x≥0

φ(x) s.t. P [g(x) ≥ ξ] ≥ p (4.20)

where φ : Rn → R is a convex function, g : Rn → R
m is concave function. We assume that

the deterministic constraints are expressed by a closed convex set X ⊂ R
n. The random

vector ξ ∈ R
m has finite support, that is, there exist vectors ξi ∈ R

m, i = 1, . . . , N with

P [ξ = ξi] = πi for every i where πi ≥ 0 and
N∑
i=1

πi = 1. We assume without loss of

generality that ξi ≥ 0 and πi ≤ 1− p. We can formulate problem (4.20) as a MINLP. To

55

this end, we introduce for each i = 1, . . . , N a binary variable zi where

zi =

{
0 if g(x) ≥ ξi

1 if g(x) �≥ ξi.

Then letting v = g(x) we obtain the equivalent problem

min
x,z,v

φ(x)

s.t. g(x) = v

v + ξizi ≥ ξi i = 1, . . . , N
N∑
i=1

πizi ≤ 1− p

x ≥ 0, x ∈ X, v ≥ 0, z ∈ {0, 1}N .

(4.21)

Problem (4.21) is a MINLP problem that can be solved by specialized methods.

Another approach to solve chance constrained problems when ξ follows a discrete

distribution is using p−efficient points.

The p−level set of the distribution function Fξ(w) = P [ξ ≤ w] of ξ is defined as

Zp = {w ∈ R
m| Fξ(w) ≥ p}.

Problem (4.20) can be rewritten as

min
x∈X

φ(x) s.t. g(x) ∈ Zp . (4.22)

It can be proved that for every p ∈ (0, 1) the level set Zp is nonempty and closed (see

Theorem 4.6.2 and 4.6.3 in [62]).

There exist minimal points in the level set Zp with respect to the partial order in R
m

generated by the nonnegative cone R
m
+ . These points are called p−efficient points.

Definition 4.5. Let p ∈ (0, 1). A point v ∈ R
m is called a p−efficient point of the

probability distribution Fξ if Fξ(v) ≥ p and there is not w ≤ v, w �= v such that Fξ(w) ≥ p.

For a given p ∈ (0, 1) let be � = (F
(−1)
ξ1

(p), . . . , F
(−1)
ξm

(p)). Then can be proved that for

every w ∈ R
m such that Fξ(v) ≥ p must satisfy the inequality w ≥ �.

Let be I an arbitrary index set and let be vj, j ∈ I all p−efficient points of ξ. We

define the cones

Kj = vj + R
m
+ , j ∈ I.

56

By Theorem 4.60 in [62] it follows that Zp =
⋃
j∈I

Kj. With the results above, problem

(4.22) can be rewritten as the following disjunctive semi-infinite formulation

min
x∈X

φ(x) s.t. g(x) ∈
⋃
j∈I

Kj . (4.23)

Denote the convex hull of the p−efficient points by E, i.e., E = conv{vj, j ∈ I}. Then

can be proved that

conv(Zp) = E + R
m
+ .

Moreover, the set conv(Zp) is nonempty, closed and it is contained in the set of p−efficient

points. If ξ ∈ Z
m, Theorem 4.64 of [62] assures that the distribution function Fξ has

finitely many p−efficient points. With this assumption, the set I is a finite set.

Theorem 4.5. Let A be the set of all possible values of an integer random vector ξ. If

the distribution function Fξ of ξ is α−concave on A + Z
m
+ for some α ∈ [−∞,∞], then

for every p ∈ (0, 1) one has

Zp = {y ∈ R
m|y ≥ w ≥

∑
j∈I

λjv
j,
∑
j∈I

λj = 1, λj ≥ 0, w ∈ Z
m},

where vj, j ∈ I are the p−efficient points of Fξ.

Proof: See Theorem 4.65 in [62].

The consequence of this theorem is that under α−concavity assumption, all integer

points contained on conv(Zp) = E + R
m
+ satisfy the probability constraint. Under the

conditions of Theorem 4.5, problem (4.22) can be formulated as

min
x,w,λ

φ(x)

s.t. g(x) ≥ w

w ≥
∑
j∈I

λjv
j

∑
j∈I

λj = 1,

λj ≥ 0, j ∈ I x ∈ X,w ∈ Z
m.

. (4.24)

In problem (4.24), the probability constraint was replaced by algebraic equations and

inequality, together with the integrality requirement w ∈ Z
m. Methods to solve (4.24)

require the generation of p−efficient points and use an enumeration scheme to identity

such points. It is not the scope of this work to study this approach. More about p−efficient

points can be found in [21, 22, 62]. A recent paper is [67].

Another approach to deal with chance constrained problems with finite support are

57

sample average approximation [47, 48].

The next chapter deals with the task of computing numerically solutions of several

CCMINLP problems, some of them having discrete probability distributions, whereas

others having continuous distributions approximated or not by copulae.

58

Chapter 5

Numerical assessment

In this chapter we assess the numerical performance of the proposed OA algorithms

on some chance-constrained MINLP problems. In Section 5.1, a hybrid robust/chance-

constrained model with finitely many scenarios is considered. The studied model is of

great interest in the industry of energy. The main difficulty in this type of problems

consists in solving a master subproblem (MILP or MIQP). In Section 5.2 we consider a

different application of CCMINLP problems: we investigate a power management plan-

ning problem with realistic data. Differently from the application of Section 5.1, the

considered chance-constrained problem is based on a continuous probability distribution.

As a result, the main difficulty in solving the problem is handling the nonlinear OA’s

subproblems, rather than the master problem. To overcome this difficulty, we consider an

approximation of the problem by replacing the probability by a Copula (which is much

easier to evaluate).

5.1 A hybrid robust/chance-constrained model

This section corresponds to Section 5 of paper [20] with different results because a different

computer was used. However, the conclusion are similar. We consider the minimization

of a linear function f(x, y) = c�x x+ c�y y subject to deterministic linear constraints x ∈ X,

y ∈ Y , and the stochastic linear constraints

A(ω)x+B(ω)y ≤ ξ , (5.1)

where ω ∈ Ω and ξ ∈ Ξ represents different sources of uncertainty. It is important to

mention that not all uncertainty are equally well understood. This setting is of interest,

for instance, in the industry of energy, where x represents an energy production schedule, y

an integer variable modeling importation/investment/“on-off” decisions, and (5.1) means

59

that energy production should meet the energy demand ξ. While the distribution of ξ is

very often available (since its characterization has received considerable attention), much

less information is available on the uncertainty ω impacting A(ω) and B(ω), which are

related to the underlying physics of generation plants and/or to the behavior of other

generation companies. We follow the lead of [69] and employ a hybrid robust/chance-

constrained approach to this problem:

⎧⎪⎪⎨
⎪⎪⎩

min
x,y

c�x x+ c�y y

s.t. Pξ[A(ω)x+B(ω)y ≤ ξ ∀ω ∈ Ω] ≥ p

x ∈ X, y ∈ Y ,

(5.2)

where Pξ is a probability measure related to the random vector (energy demand) ξ. The

joint probabilistic constraint in (5.2) requires that all stochastic inequalities hold simul-

taneously with high enough probability p ∈ (0, 1]. When every row ai(ω) and bi(ω) of

matrices A(ω) and B(ω) depend on the random vector ω in the form

ai(ω)
�x+ bi(ω)

�y = ā�i x+ b̄�i y + 〈Piω, (x, y)〉,

with given āi ∈ R
nx , b̄i ∈ R

ny , Pi ∈ R
(nx+ny)×ni and ω ∈ Ωi := {ω ∈ R

ni : ‖ω‖ ≤ κi}
(with given κi > 0), the well-established theory of robust optimization [6] applies and the

above problem can be rewritten in the following equivalent formulation

⎧⎪⎪⎨
⎪⎪⎩

min
x,y

c�x x+ c�y y

s.t. Pξ[ā
�
i x+ b̄�i y + κi‖P�

i (x, y)‖ ≤ ξi ∀i = 1, . . . ,m] ≥ p

x ∈ X, y ∈ Y .

We suppose that ξ takes values in a finite set Ξ = {ξs, s ∈ S} ⊆ R
m of possible realizations

with associated weights πs > 0 with
∑
s∈S

πs = 1. Under this assumption, a binary variable

zs ∈ {0, 1} for each s ∈ S is introduced which dictates whether or not ā�i x + b̄�i y +

κi‖P�
i (x, y)‖ ≤ ξsi is satisfied for all i. By using a “big M” formulation, with M > 0 a

given parameter, the problem of interest can be reformulated as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x,y,z

c�x x+ c�y y

s.t. max
s∈S

{ā�i x+ b̄�i y + κi‖P�
i (x, y)‖ − ξi −M s

i zs} ≤ 0, i = 1, . . . ,m∑
s∈S

πszs ≤ 1− p

x ∈ X, y ∈ Y, zs ∈ {0, 1}.

(5.3)

Problem (5.3) fits the general formulation (3.1) and hence can be solved by variants of

the Outer Approximation Algorithm 3.1.

60

In spite of the nonlinear constraints in problem (5.3), which are nonsmooth ones, a

second order constrained formulation for problem (5.3) can be obtained by introducing

auxiliary variables wi, i = 1, . . . ,m, and additional constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,z,w

c�x x+ c�y y

s.t. ā�i x+ b̄�i y + κiwi − ξsi ≤ M s
i zs i = 1, . . . ,m and all s ∈ S

(x, y)�(PiP
�
i)(x, y) ≤ w2

i i = 1, . . . ,m∑
s∈S

πszs ≤ 1− p

x ∈ X, y ∈ Y, zs ∈ {0, 1}, w ≥ 0.

(5.4)

This formulation, denoted by “Monolithic”, replaces m nonsmooth constraints with m|S|
linear and m conic constraints. Thus, the state-of-the-art mixed-integer second-order

algorithms can be applied to solve the above problem and compare the numerical per-

formance with OA algorithms applied to (5.3). In this numerical tests, the Monolithic

formulation is solved by Gurobi [34].

5.1.1 Test problems, solvers and results

The integer set Y in the problem (5.3) was set as 0 ≤ yi ≤ 3, y1 + y2 ≥ 3 and
5∑

i=1

yi ≤ 5.

Instances for problem (5.3) are generated following the procedure: First, the dimension

of problem is set as ny = 5, nx ∈ {30 − ny, 40 − ny} , m ∈ {15, 20, 25} and the number

of scenarios N ∈ {30, 40, 50, 60}. Next, ni = nx + ny, κi = 1
2
for all i = 1, . . . ,m,

and p ∈ {0.9, 0.95}. The probability of every scenario s is πs = 1
N
. The vectors āi ∈

R
nx , b̄i ∈ R

ny were generated with entries uniformly distribution on the interval [0, 10].

The vector cost c = (cx, cy) was generated with entries on the interval [−100, 0) and

the matrix Pi with coefficients following a normal distribution N(0, 1). An initial point

(x0, y0) was chosen which is feasible for construct and the scenarios was set as ξi =

ā�i x0 + b̄�i y0 + κi‖P�
i (x0, y0)‖ + ξ̄i where ξ̄i is uniformly on the interval [0, 100]. The

constants M s
i are the same for all scenarios and was chosen with an ad-hoc approach. In

this problem, the number of continuous, integer and binary variables are respectively nx,

ny and N . For each one of this configuration, two instances are generated by changing

the seed of the pseudorandom number generator. In a total, 2 · 3 · 4 · 2 · 2 = 96 different

test problems were considered.

Solvers. These nonsmooth convex mixed-integer programs are solved with the follow-

ing solvers, coded in/or called from matlab version 2017a:

– Monolithic: solver Gurobi applied to the mixed-integer quadratically constrained pro-

gramming problem (5.4);

61

– OA: it is an implementation of the outer-approximation Algorithm 3.1 with μk = 0 for all

k (the classic algorithm), where in Step 1 the (nonsmooth convex) nonlinear subproblems

are solved by the Bundle Algorithm 2.1. In this solver, the MILP subproblem (3.19) is

solved by Gurobi to define the next integer iterate;

– OA-1pt: as solver OA, with the difference that trial integer iterates are defined by apply-

ing Gurobi to the MILP subproblem (3.19) and halting the solver as soon as a feasible

point is found;

– OA1: as solver OA, with integer iterates defined by solving the regularized MILP sub-

problem (3.19) with the �1 norm, i.e., ‖ · ‖� = ‖ · ‖1. The stability center was set as the

current iterate and the prox parameter as μk = 10 for all k;

– OA∞: as solver OA1, with the �1 norm replaced by �∞;

– OA2: as solver OA1, with the �1 norm replaced by �2. In this case, the subproblem

defining the next iterate is no longer a MILP, but a MIQP;

– ECPM: this is an implementation of the extended cutting plane method of [76]. It is the

same solver employed in [16];

– ELBM: this is the extended level bundle method of [16] with the current iterate rule to

define the stability center and �1-norm for the stability function.

All the solvers employed a relative stopping test with tolerance 10−3, and time limit

(for solving each problem) of 3600 seconds. Numerical experiments were performed on

a computer with Intel(R) Core(TM), i7-5500U, CPU @ 2.40 GHz, 8G (RAM), under

Windows 10, 64Bits.

Numerical experiments. The performance profiles [23] of the eight considered solvers

on the 96 instances of problem (5.3) are presented in Figure 5.1. Given a set of problems

P and a set of methods S it is possible to compare the performance of these methods on

problems using any metric, for example, CPU time. For each problem p ∈ P and solver

s ∈ S, a measure is defined

ts(p) = CPU time request to solve problem p by solver s.

Next, a best achieve is also defined as, t∗s(p) = min
s∈S

ts(p) (the best CPU time to solve

problem p). For each solver s ∈ S, the comparison of its performance in solving a problem

p ∈ P in relation to the best method is done using the performance ratio given by

rs(p) =
ts(p)

t∗s(p)
. (5.5)

If the method s fails to solve problem p, then ts(p) = ∞. The performance ratio shows the

behavior of a method in solving a given problem. For a more general view the performance

62

profile of method s ∈ S is defined as

ρs(γ) :=
number of problems p such that rs(p) ≤ γ

total number of problems
. (5.6)

By replacing (5.5) in (5.6) an equivalent form is obtained

ρs(γ) :=
number of problems p such that ts(p) ≤ γ t∗(p)

total number of problems
.

These numbers give the proportion of problems solved by solver s within a factor γ.

Therefore, the value ρs(1) gives the probability of the solver s to be the best by a given

criteria. Furthermore, unless ts(p) = ∞ (which means that solver s failed to solve problem

p), it follows that lim
γ→∞

ρs(γ) = 1. Thus, the higher is the line, the better is the solver.

The image at the top of Figure 5.1 corresponds to the performance profiles of CPU time

required by the methods on all the instances.

100 101 102 103

Performance ration, γ

0

0.2

0.4

0.6

0.8

1

ρ
s
(γ
)

CPU time

Monolithic
OA
OA-1pt
OA1

OA
∞

OA2

ECPM
ELBM

100 101 102 103

Performance ration, γ

0

0.2

0.4

0.6

0.8

1

ρ
s
(γ
)

Number of mixed-integer subproblems

100 101 102 103

Performance ration, γ

0

0.2

0.4

0.6

0.8

1

ρ
s
(γ
)

oracle calls

Figure 5.1: Performance profile on 96 problems (logarithmic scale): CPU time, oracle’s

calls and number of solved mixed-integer subproblems.

Overall, solver OA2 was the most robust with respect to CPU time, followed by OA,

OA1 and OA∞. Although solver ECPM failed to solve 5 out of 96 problems in less than one

hour, ECPM was the fastest method in 37% of the problems, followed by OA and OA2(both

with approximately 22%) and OA1 (14%). As shown by Figure 5.1, solver Monolithic

was not competitive in these instances (except in the small ones).

The left-bottom image in Figure 5.1 reports the solvers performance with respect to

the number of master subproblems (MILP or MIQP) solved by each method (except

Monolithic). Concerning this attribute, solver OA2 was the most efficient one: overall,

this method required solving less master subproblems and, as a consequence, less nonlinear

63

subproblems (that are not trivial to solve, since they are nonsmooth programs). Solver

OA1 also provided a good performance on the number of (MILP) subproblems.

Finally, the right-bottom image in Figure 5.1 presents performance profiles with res-

pect to the number of oracle calls. Concerning this attribute, ELBM and ECPM provided

(for the solved instances) better performances than the OA solvers, corroborating in this

manner with [16]: when functions are costly (which is not the case in the considered pro-

blem), cutting-plane methods as ELBM and ECPM seem to be so far the methods of choice.

However, these solvers could not solve some of the instances in one hour of time limit.

The information provided by Figure 5.1 are complemented with two tables. Table 5.1

reports (for all the eight solvers) the number of problems that could not be solved within

one hour of processing.

Table 5.1: Number (and percentage) of problems that could

not be solved in the time limit of one hour.

Solver Number of fails Percentage

Monolithic 27 28.12%

OA 1 1.04%

OA-1pt 1 1.04%

OA1 1 1.04%

OA∞ 1 1.04%

OA2 1 1.04%

ECPM 5 5.21%

ELBM 7 7.29%

All OA solvers were able to solve the majority of the problems, while the other solvers

could not solve the larger ones. CPU time (in seconds) of every solver on every problem’s

instance are presented in Table 5.2. The first column corresponds to the seed used to

generate the problem instances, and columns 2 up to 5 report the problem’s dimension.

The total CPU time in hours is reported on the last line of the table.

Table 5.2: CPU time required by the eight solvers on all the ninety six test problems. The

asterisk stands for unsolved problem (within one hour).

Problem’s data Solvers

seed m N p n Monolithic OA OA-1pt OA1 OA∞ OA2 ECPM ELBM

0 15 30 0.90 30 411.89 13.84 19.92 14.74 16.27 21.92 14.67 24.50

0 15 30 0.95 30 7.99 6.03 10.80 6.40 5.55 6.13 2.14 5.60

0 15 40 0.90 30 1093.32 23.27 54.10 31.01 49.03 27.01 42.46 78.04

0 15 40 0.95 30 218.44 8.44 21.85 9.36 9.66 10.68 6.45 15.06

0 15 50 0.90 30 933.01 47.79 61.86 39.08 95.73 46.54 102.46 169.22

0 15 50 0.95 30 388.12 8.53 21.23 9.53 10.28 7.62 4.46 9.33

0 15 60 0.90 30 3600.45∗ 84.87 108.99 108.74 157.94 125.90 605.06 894.03

0 15 60 0.95 30 487.35 18.47 38.60 19.59 21.21 15.88 22.64 33.87

0 20 30 0.90 30 377.46 22.45 40.02 26.70 25.29 22.86 17.50 26.86

0 20 30 0.95 30 29.70 11.14 13.80 12.87 14.94 13.49 2.75 4.89

0 20 40 0.90 30 1940.36 51.06 49.35 78.89 61.54 42.87 95.18 123.81

0 20 40 0.95 30 264.78 19.46 24.07 22.48 19.85 19.83 11.46 15.51

0 20 50 0.90 30 3600.55∗ 121.38 123.45 133.28 168.73 136.26 615.62 661.36

0 20 50 0.95 30 365.46 20.42 27.46 25.74 24.58 26.15 9.82 19.88

0 20 60 0.90 30 3600.61∗ 378.85 387.21 248.87 369.35 398.53 2516.52 3607.79∗

0 20 60 0.95 30 1747.97 61.90 48.60 49.63 55.56 41.86 61.75 84.56

64

0 25 30 0.90 30 1873.46 30.10 28.33 27.12 43.09 24.62 21.08 34.21

0 25 30 0.95 30 67.48 13.29 19.33 13.90 13.38 13.06 3.23 12.37

0 25 40 0.90 30 3173.34 25.17 31.77 19.80 33.45 17.68 12.92 26.62

0 25 40 0.95 30 266.32 27.47 34.25 25.02 24.97 26.95 19.15 38.95

0 25 50 0.90 30 3600.66∗ 61.28 43.35 55.64 64.07 37.25 96.00 226.40

0 25 50 0.95 30 435.86 22.93 25.88 22.90 26.10 25.96 15.63 33.67

0 25 60 0.90 30 3600.74∗ 54.43 82.01 81.81 115.40 70.06 432.93 490.82

0 25 60 0.95 30 829.24 28.51 39.14 29.82 33.72 28.82 35.04 55.17

0 15 30 0.90 40 825.62 40.40 83.13 43.22 49.23 45.53 61.23 77.31

0 15 30 0.95 40 29.76 21.64 28.09 19.60 21.03 21.92 8.72 16.60

0 15 40 0.90 40 2539.62 79.51 112.78 85.20 86.42 79.90 202.85 260.76

0 15 40 0.95 40 285.58 35.14 72.53 39.49 42.11 46.35 49.43 60.76

0 15 50 0.90 40 3600.37∗ 148.28 249.20 110.73 160.70 131.77 591.12 673.54

0 15 50 0.95 40 391.90 32.12 52.67 31.50 35.69 36.83 20.81 46.63

0 15 60 0.90 40 3600.42∗ 258.02 223.97 330.01 329.30 294.80 2582.24 3605.11∗

0 15 60 0.95 40 1037.53 57.33 97.85 63.53 62.02 56.62 91.18 139.36

0 20 30 0.90 40 340.55 42.68 83.13 49.61 44.49 44.05 24.96 40.32

0 20 30 0.95 40 46.08 24.88 37.68 23.66 24.32 25.30 8.23 11.94

0 20 40 0.90 40 3386.89 63.38 97.95 63.59 82.44 53.80 112.69 129.37

0 20 40 0.95 40 130.57 37.49 65.94 36.38 35.86 37.38 33.06 28.51

0 20 50 0.90 40 3600.57∗ 80.74 150.94 108.63 107.54 84.98 282.99 365.57

0 20 50 0.95 40 510.08 37.56 67.19 38.60 36.15 40.92 13.50 27.08

0 20 60 0.90 40 3600.64∗ 246.19 229.49 259.83 255.72 225.18 1753.08 1946.67

0 20 60 0.95 40 499.31 61.92 81.34 54.94 69.30 54.71 35.96 75.96

0 25 30 0.90 40 3600.65∗ 281.92 449.04 260.59 319.36 216.12 2942.72 2054.70

0 25 30 0.95 40 579.42 29.93 64.82 32.05 30.16 41.08 76.23 62.50

0 25 40 0.90 40 3600.75∗ 586.78 727.09 519.04 620.05 722.95 3600.10 3605.11

0 25 40 0.95 40 3600.73∗ 96.38 165.87 72.72 78.52 89.02 428.04 311.99

0 25 50 0.90 40 3600.85∗ 686.96 965.57 898.29 1096.53 1074.16 3600.04∗ 3605.07∗

0 25 50 0.95 40 3600.91∗ 84.06 161.17 103.57 99.37 98.79 612.98 378.62

0 25 60 0.90 40 3600.96∗ 3600.64∗ 3601.81∗ 3630.99∗ 3601.47∗ 3600.84∗ 3600.05∗ 3605.08∗

0 25 60 0.95 40 3600.96∗ 243.48 274.16 269.38 440.80 238.34 1855.23 2030.06

1 15 30 0.90 30 403.92 13.72 18.29 12.39 23.23 10.43 11.48 25.33

1 15 30 0.95 30 36.13 5.23 10.36 4.53 6.97 5.61 2.42 7.76

1 15 40 0.90 30 1383.36 24.41 56.29 16.29 32.31 16.73 32.65 58.79

1 15 40 0.95 30 185.04 8.82 17.45 8.46 12.40 10.12 9.18 23.25

1 15 50 0.90 30 1560.95 44.82 55.54 38.98 81.42 29.05 89.88 213.77

1 15 50 0.95 30 170.54 8.39 19.06 9.53 10.20 9.32 6.56 18.12

1 15 60 0.90 30 3600.32∗ 71.45 136.74 95.85 121.39 85.24 372.76 436.56

1 15 60 0.95 30 713.57 15.35 21.79 14.89 21.75 18.26 25.44 42.55

1 20 30 0.90 30 188.75 13.08 15.78 12.08 15.31 9.54 9.39 17.57

1 20 30 0.95 30 13.86 8.24 5.92 4.77 5.48 5.35 1.87 3.61

1 20 40 0.90 30 684.83 22.76 24.26 20.47 30.05 22.83 48.13 66.07

1 20 40 0.95 30 159.82 10.73 13.11 12.05 10.41 10.85 3.30 8.91

1 20 50 0.90 30 3484.95 29.04 31.61 29.05 46.14 29.66 63.28 91.53

1 20 50 0.95 30 251.40 10.22 14.99 12.17 11.66 12.00 3.77 11.55

1 20 60 0.90 30 3600.60∗ 59.76 50.54 49.10 83.15 63.56 156.22 178.26

1 20 60 0.95 30 287.24 14.23 21.66 18.82 19.90 10.45 13.38 21.14

1 25 30 0.90 30 503.61 13.77 19.24 15.59 18.28 13.88 13.87 20.68

1 25 30 0.95 30 52.13 12.41 10.28 13.69 12.53 12.30 3.12 7.94

1 25 40 0.90 30 2356.79 21.26 30.16 18.11 25.40 20.14 47.75 41.55

1 25 40 0.95 30 285.75 18.32 19.63 17.44 21.12 19.63 11.68 18.27

1 25 50 0.90 30 2637.16 24.62 38.56 33.36 44.60 28.04 101.90 148.34

1 25 50 0.95 30 141.11 13.11 14.84 13.34 17.03 16.34 9.32 18.56

1 25 60 0.90 30 3600.96∗ 42.29 53.30 32.04 50.99 39.51 353.11 331.32

1 25 60 0.95 30 1191.08 23.95 25.77 26.80 34.62 26.94 55.93 71.24

1 15 30 0.90 40 98.96 28.14 36.39 28.76 27.82 28.33 11.83 23.18

1 15 30 0.95 40 16.09 15.32 12.13 14.97 13.68 14.54 4.41 10.03

1 15 40 0.90 40 358.24 37.94 39.30 33.26 41.16 37.48 29.50 46.69

1 15 40 0.95 40 38.50 20.95 19.85 23.60 20.85 24.65 10.46 19.36

1 15 50 0.90 40 531.15 59.80 82.84 61.33 63.00 56.12 128.66 168.15

1 15 50 0.95 40 104.15 26.14 30.77 30.87 26.06 26.29 12.40 33.70

1 15 60 0.90 40 755.10 78.43 99.32 86.41 108.60 21.64 300.95 365.36

1 15 60 0.95 40 141.04 38.43 50.43 45.97 43.47 42.52 26.26 57.31

1 20 30 0.90 40 1141.73 61.03 62.43 62.96 64.45 52.91 61.86 88.89

1 20 30 0.95 40 120.23 27.00 32.59 33.56 31.95 32.81 12.19 30.27

1 20 40 0.90 40 3600.77∗ 122.07 170.08 118.00 195.61 122.81 594.95 570.18

1 20 40 0.95 40 1071.87 49.75 73.90 50.79 49.94 25.40 70.67 83.14

1 20 50 0.90 40 3601.05∗ 162.02 196.93 176.61 208.95 135.69 2288.86 1541.48

1 20 50 0.95 40 576.97 49.89 101.12 58.72 52.48 52.96 53.42 84.75

1 20 60 0.90 40 3600.96∗ 214.88 355.88 246.94 416.04 410.33 3600.08∗ 3605.08∗

1 20 60 0.95 40 1589.51 65.96 125.11 73.37 78.31 57.07 231.53 230.40

1 25 30 0.90 40 3068.97 49.86 78.35 59.33 64.42 47.13 101.36 133.00

1 25 30 0.95 40 53.80 22.94 35.30 19.32 22.68 26.91 7.60 14.89

1 25 40 0.90 40 3600.89∗ 137.77 155.86 123.90 183.12 96.60 593.01 677.54

1 25 40 0.95 40 1614.16 37.07 64.11 40.20 42.12 38.81 47.03 75.26

1 25 50 0.90 40 3600.96∗ 186.12 129.90 172.66 193.90 199.77 1258.34 2310.61

1 25 50 0.95 40 3601.06∗ 29.94 42.31 32.72 36.38 32.99 29.37 60.29

1 25 60 0.90 40 3601.09∗ 366.88 365.36 562.11 411.18 691.30 3600.05∗ 3605.11∗

1 25 60 0.95 40 3601.54∗ 85.98 110.02 83.73 101.60 63.68 200.20 268.61

Total CPU time in hours 41.9 h 2.9 h 3.5 h 3.1 h 3.5 h 3.2 h 11.7 h 12.7 h

65

Solvers OA and OA1 were faster, followed by OA2. The solver OA2 solve a MIQP per

iteration which is more expensive than MILP subproblem. The outer-approximation

algorithms were 4 times faster than the extended cutting-plane methods.

Note that the numerical performances of the regularized OA algorithms are very close to

each other. Better performances are expected to be obtained if μk is iteratively updated.

5.2 A power system management problem

Consider a power management model consisting of a hydro power plant and a wind

farm. Electricity that is generated by both units has two purposes: first attend the

local community power demand and secondly the leftover is sold on the market. The

energy that is generated by the wind farm is designated to supply the local community

demand only. If it is not enough then the remaining demand is covered by the hydro

power plant. The residual energy portion generated by the hydro power plant is then sold

to the market with the aim of maximizing the profit, which varies according to the given

energy price. Since the intention is to consider a short time planning period (e.g. one day)

the assumption is that the only uncertainty in this energy planning problem comes from

the wind power production. As a result the approach will consider the inflow to the hydro

plant, market prices and energy demand as known parameters. The hydro plant counts

with a reservoir that can be used to store water and adapt the water release strategy

to better achieve profit according the price versus demand: the price of electricity varies

during the day, thus it is convenient to store water (if possible) to generate electricity at

moments of the day deemed more profitable.

In order to exclude production strategy that can be optimum in a short period of time

and can harm the near future energy supply (e.g. the planner can be willing to use all

water in the reservoir to produce energy to maximize profit because the energy prices are

higher and in the next hour there is no enough water to produce energy in case the wind

farm is failing to supply the local community leading to a blackouts), a level constraint is

imposed for the final water level in the hydro reservoir i.e. it cannot be lower of a certain

level l∗.

The decision variables of the problem are the leftover energy to supply the local com-

munity and the residual energy to be sold to the market (both generated by the hy-

dro power plant). Since the main purpose of the problem is to maximize the profit for

the power plant owner then the objective function is profit maximization. Some of the

constraints of this problem are simple bounds of water release which are given by the

operational limits of the turbine (usually provided per the manufacturer), lower and up-

per bounds of hydro reservoir filling level and demand satisfaction. As in the paper [3],

66

the demand satisfaction constraint will be dealt with in a probabilistic manner: random

constraints in which a decision has to be taken prior to the observation of the random

variable are not well-defined in the context of an optimization problem. This motivates

the formulation of a corresponding probabilistic constraint in which a decision is defined

to be feasible if the underlying random constraint is satisfied under this decision at least

with a certain specified probability p.

A further characteristic of this model is to consider binary decision variables. These

variables are needed because turbines cannot be operated using an arbitrary level: they

are either off or on (working in a positive level). Such on/off constraints are easily modeled

by binary variables. By discretizing the time horizon (one day) into T intervals (hours),

the resulting optimization problem is described below:

max
x,y,z

T∑
t=1

πtzt

s.t. P [xt + ξt ≥ dt ∀t = 1, . . . , T] ≥ p

ytv ≤ xt + zt ≤ ytv̄ ∀t = 1, . . . , T

xt, zt ≥ 0 ∀t = 1, . . . , T

yt ∈ {0, 1} ∀t = 1, . . . , T

l ≤ l0 + tω − 1
χ

t∑
τ=1

(xτ + zτ) ≤ l̄ ∀t = 1, . . . , T

l0 + Tω − 1
χ

t∑
τ=1

(xτ + zτ) ≥ l∗,

(5.7)

where

• zt is the residual energy which is produced by the hydro power plant in time interval

t that is sold to market;

• πt is the energy price in the time t;

• xt is the amount of energy generated by hydro power plant to supply the remaining

demand on local community on time t;

• dt is the local community demand on time t, which is assumed to be known (due to

the short planning horizon of one day);

• ξt is the random energy generated by the wind farm on time t;

• P is the probability measure associated to random vector ξ. As in [3], we assume

that the wind power generation follows a multivariate normal distribution with mean

vector μ and a positive definite correlation matrix Σ. This assumption leads to this

function to be differentiable, see Theorem A.3 below;

67

• p ∈ (0, 1] is the given parameter to ensure confidence level for the demand satisfac-

tion;

• v and v̄ are the lower and upper respectively operations limits of the hydro power

plant turbine;

• yt is the binary variable modeling turbine turn on/turn off;

• l0 is the initial water level of the hydro power plant reservoir at the beginning of

the horizon;

• l and l̄ are the lower and upper water levels respectively in the hydro power plant

reservoir at any time;

• ω denotes the constant amount of water inflow to the hydro power plant reservoir

at any time t;

• χ represents a conversion factor between the released water and the energy produced

by the turbine: one unit of water released corresponds to χ units of energy generated;

• l∗ is the minimum level of water into the hydro power plant reservoir in the last

period T of the time horizon.

The difficulty of this problem consists in dealing with hard chance constraint (even

though it is a differentiable function) and the binary variables. As in the previous section,

this problem will be solved using variants of the OA algorithm and two more methods to

compare the results. The methods are ECPM and ELBM. It is important to observe that in

this problem the binary variables are not present at the probability constraint, however

on chance constraint these variables impact the continuous variables xt.

As in [3], we assume that the wind power generation follows a multivariate normal

distribution1 with mean vector μ and positive definite covariance matrix Σ. We can

replace the first inequality in problem (5.7) by a equivalent one. To this end, consider the

following development:

P [xt + ξt ≥ dt ∀t = 1, . . . , T) = P (x+ ξ ≥ d]

= P [ξ ≥ d− x]

= P [−ξ ≤ x− d]

= F−ξ(x− d).

(5.8)

Using the results of equality (5.8) and the results of 0−concavity by Prékopa (Theorem

4.2) the following function is convex:

f1(x, y) = log p− logF−ξ(x− d), (5.9)

1See Appendix A.

68

where x = (x1, x2, . . . , xT) and d = (d1, . . . , dT). By replacing the function −P [xt + ξt ≥
dt ∀t = 1, . . . , T]+p in the first inequality in (5.7) with f1 above the resulting (equivalent)

problem fits the general formulation (3.1), i.e., a convex MINLP.

5.2.1 Problem’s data

In this Thesis we will solve a similar problem as [3] but with different data2. Problem

(5.7) couples one wind farm with one hydro power plant to supply energy to one city

(or region). The remain of the energy is sold at the market. The demand considered in

this problem was extracted from the ONS website (www.ons.org.br). ONS is the Brazilian

independent system operator. The behavior of Brazilian demand of energy in all days of

the week can be seen in Figure 5.2 below. As expected, the demand of energy is higher

on working days than in on weekends and the demand peak is reached around 7pm daily.

2 4 6 8 10 12 14 16 18 20 22 24
hours

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
Demand

Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday

Figure 5.2: Demand

In our numerical tests, the considered daily demands corresponds to eighty percent

of averaged demand Southern region of Brazil, divided by the number of cities in such a

region. Table 5.3 shows the total demand for each hour in the South of Brazil along the

first week of August of year 2017. In this part of Brazil, there exist 1191 cities, so the

demand dt was set as dt =
0.8·Dt

1191
, where Dt is the real demand from Table 5.3. Disclaimer,

the time on Table 5.3 start counting from midnight. Note that we have only one city (or

2We did not have access to the data used in [3].

69

region) and two sources of energy: hydro power plant and wind farm. The price πt of

energy is directly proportional to the demand and varies between 166.35 and 266.85 by

MW\hour.
Table 5.3: Total demand by day in MegaWatts. 3

Tuesday Wednesday Thursday Friday Saturday Sunday Monday

1 9227.99 9350.23 9182.76 9022.94 9241.86 7937.74 7673.28

2 8658.61 8737.46 8526.88 8367.84 8485.47 7442.99 7361.51

3 8317.70 8376.20 8246.14 8024.16 8079.97 7061.61 7235.43

4 8255.23 8280.63 8165.01 7866.53 7913.52 6750.67 7296.04

5 8347.14 8325.56 8230.96 7961.15 7909.38 6658.99 7502.61

6 8861.46 8852.44 8718.87 8459.56 8040.18 6676.26 8095.74

7 10160.85 10096.96 9879.40 9601.52 8457.01 6801.74 9422.43

8 11196.35 11280.72 11080.43 10689.89 8811.82 6738.44 10482.32

9 12158.75 12220.84 12006.24 11770.01 9534.67 7276.68 11550.99

10 12480.01 12551.32 12242.64 12136.07 9847.49 7880.52 11926.67

11 12941.58 13003.01 12666.33 12566.19 10143.86 8420.08 12359.81

12 12934.24 13031.27 12736.43 12666.51 10256.33 8649.89 12494.15

13 11819.08 11854.94 11530.89 11597.79 9840.34 8251.92 11340.65

14 12439.62 12442.20 11996.27 12110.67 9685.11 7975.58 11846.42

15 12817.28 12781.02 12308.21 12361.02 9568.39 7855.23 12253.40

16 12731.74 12761.31 12283.81 12283.77 9463.17 7792.09 12447.63

17 12812.86 12961.39 12383.91 12168.82 9639.17 8027.79 12444.58

18 12584.67 13071.17 12210.86 11946.67 10389.63 8820.52 12217.66

19 13242.21 13337.65 12790.96 12742.76 12206.38 11014.10 12947.36

20 13071.51 12916.61 12665.62 12614.07 11907.12 10896.47 12960.04

21 12408.24 12259.99 12002.74 11892.67 10995.60 10285.13 12412.71

22 12157.55 12064.61 11812.95 11752.07 10217.42 9882.17 12112.37

23 11489.58 11473.23 11164.35 11307.19 9498.72 9199.07 11426.03

24 10413.51 10233.62 10134.66 10249.81 8724.79 8374.14 10203.60

The configuration of hydro power plant reservoir is mirrored from [3] and in this

problem is set as l = 5000 hm3 (cubic hectometre), l̄ = 10000 hm3 and l0 = l∗ = 7500 hm3.

The amount of water inflow is a constant ω = 2500 hm3 each hour and the conversion

factor is χ = 0.0035MWm3. When the turbines are turned on, the minimum power

generation is 5 megawatts per hour and the maximum generation is 20 megawatts per

hour.

As previously mentioned, the random variable ξ = (ξ1, . . . , ξT) of wind farm generation

follows the distribution N(μ,Σ) , where μ denotes the vector of expected values of ξ and Σ

is the covariance matrix associated with the components of ξ. The constant mean vector

as set as μi = 1.1 ∗ min
1≤j≤T

dj ∀i = 1, . . . , T and

Σij =

{
1
16

if i = j
17
320

if i �= j.

These assumptions assures that function (A.1) is differentiable (Σ has full rank)4 and the

3This data corresponds to the first week of August 2017.
4We recall that differentiability is not required by our solvers.

70

coordinates ξ1, ξ2, . . . , ξm are dependent.

5.2.2 Problem’s approximation

In this section we replace function (5.9) with a Zhang’s Copula (4.14) in problem (5.7):

max
x,y,z

T∑
t=1

πtzt

s.t. log p− log(C(F−ξ1(x1 − d1), . . . , F−ξT (xT − dT)) ≤ 0

ytv ≤ xt + zt ≤ ytv̄ ∀t = 1, . . . , T

xt, zt ≥ 0 ∀t = 1, . . . , T

yt ∈ {0, 1} ∀t = 1, . . . , T

l ≤ l0 + tω − 1
χ

t∑
τ=1

(xτ + zτ) ≤ l̄ ∀t = 1, . . . , T

l0 + Tω − 1
χ

t∑
τ=1

(xτ + zτ) ≥ l∗,

(5.10)

where F−ξi are the margins associate to distribution function F−ξ.

As F−ξi , i = 1, . . . ,m are 0−concave (because −ξi ∼ N(−μi, σ
2
i)) and

g(x, y) = (x1 − d1, x2 − d2, . . . , xT − dT)

is concave, by Preposition 4.1

C(F−ξ1(x1 − d1), . . . , F−ξT (xT − dT)

is 0−concave and hence

f1(x, y) = log p− log(C(F−ξ1(x1 − d1), . . . , F−ξT (xT − dT))

is convex. Consequently, problem (5.10) is a nonsmooth convex MINLP.

The only difference between problems (5.7) and (5.10) is the first constraint. We will

see in the next section that problem (5.7) is very challenging computationally. Instead of

solving problem (5.7) we will get an approximate solution by solving problem (5.10). Such

approximate solution will be a feasible point of (5.7) if it satisfy the chance constraint of

problem (5.7).

Parameters of Zhang’s Copula

One of difficulties in using copulae is to find its coefficients that model with accuracy

the probability constraint. The parameters of Zhang’s Copula depend on the size of the

71

problem. If the random vector ξ has dimension T then the number of parameters is 1+rT :

r and aj,i ≥ 0 with
r∑

j=1

aj,i = 1 ∀i = 1, . . . , T.

In this work we do not focus on the best choice of the Copula parameters. Instead, we

simply set r = 8 and the coefficients aj,i was generated following a uniform probability

distribution with low sparseness. As shown below, this simple choice gives satisfactory

results.

5.2.3 Numerical experiments

As already mentioned, it is very expensive computationally to evaluate the probability

function, which consists in solving numerically a multidimensional integral. For instance,

for evaluating the multivariate normal probability function (A.1) with the Matlab’s func-

tion mvncdf one takes almost 40 seconds if ξ ∈ R
24, in the computer described in Section

5.1. In order to compute a subgradient of such a probability function, the function mvncdf

needs to be called 23 (T − 1) times, see Theorem A.3. An alternative to the mvncdf func-

tion is the routine mvNcdf recently developed by Botev [12]. We have verified numerically

that Botev’s function is around 20 times faster than mvncdf to evaluate multivariate nor-

mal probability functions. The following results are obtained with the Botev’s function.

We solved the power system management problem for T = 12 (half day) and T =

24 (one day). For dimension T = 12, we solved both problems (5.7) and (5.10). For

dimension T = 24 was not possible to solve (5.7) within one hour CPU time, given the

considered computer and softwares. Then we solved (5.10) with T = 24 and we checked

the probability constraint of (5.7). The results are reported below.

Numerical results for T = 12.

The chosen day was Wednesday and solved for p = 0.8 and p = 0.9 utilizing all solvers.

The first image on Figure 5.3 illustrates the CPU time required by all solvers for both

problems. Problem (5.7) (with the multivariate normal probability function) and Problem

(5.10) (with copula) with parameter p = 0.8 and p = 0.9. In this figure, the CPU time

spent by all solvers are summed to facilitate visualization. Detailed information about

the optimum value and time spent by each method are reported on Table 5.4 and Table

5.55. The CPU time spent to solve problem (5.10) was approximately 113 times faster

than utilized to solve problem (5.7).

The number of master subproblems (MILP or MIQP) solved by each method was

5We recall that is a maximization problem.

72

smaller when using copula as shown in the middle image on Figure 5.3. The last image

on Figure 5.3 represents the number of oracle calls. This example, shows that it is very

expensive to solve numerically the multidimensional integral even for small dimensions.

CC Copula
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 in

 m
in

ut
es

CC Copula
0

200

400

600

800

1000

1200

M

IL
P

s

CC Copula
0

2000

4000

6000

8000

10000

12000

14000

or

ac
le

 c
al

ls

Figure 5.3: Numerical results for problem with T = 12 on Wednesday : CPU time, oracle’s

calls and number of solved mixed-integer subproblems.

Table 5.4: Optimal value and CPU time for OA, OA1 and OA∞.

OA OA1 OA∞
p optimal value CPU time p optimal value CPU time p optimal value CPU time

CC 0.8 21234.15 493.69 0.8 21232.02 553.33 0.8 21232.46 680.89

Copula 0.8 21191.96 8.50 0.8 21191.98 3.66 0.8 21191.98 4.44

CC 0.9 21102.19 543.72 0.9 21101.25 431.88 0.9 21099.66 661.35

Copula 0.9 21075.08 7.71 0.9 21075.09 3.48 0.9 21075.07 2.61

Table 5.5: Optimal value and CPU time for OA2, ECPM and ELBM.

OA2 ECPM ELBM

p optimal value CPU time p optimal value CPU time p optimal value CPU time

CC 0.8 21232.21 752.50 0.8 21232.65 451.04 0.8 21233.48 142.82

Copula 0.8 21191.98 4.13 0.8 21192.21 3.77 0.8 21192.07 6.22

CC 0.9 21101.12 401.89 0.9 21101.03 454.38 0.9 21100.49 161.71

Copula 0.9 21075.11 4.20 0.9 21075.79 4.01 0.9 21075.93 6.67

Finally, Table 5.6 demonstrates the quality of the solution. The solution obtained

using copulas is the same as the optimal solution with a relative error maximum of 0.2%

which is acceptable as tolerance error.

Table 5.6: Quality of solution for T=12.

p optimal value estimate value relative error

OA
0.8 21234.15 21191.96 0.2%

0.9 21102.19 21075.08 0.1%

OA1
0.8 21232.02 21191.98 0.2%

0.9 21101.25 21075.09 0.1%

OA∞
0.8 21232.46 21191.98 0.2%

0.9 21099.66 21075.07 0.1%

OA2
0.8 21232.21 21191.98 0.2%

0.9 21101.12 21075.11 0.1%

ECPM
0.8 21232.65 21192.21 0.2%

0.9 21101.03 21075.79 0.1%

73

ELBM
0.8 21232.48 21192.07 0.2%

0.9 21100.49 21075.93 0.1%

Numerical results for T = 24.

In this dimension is not possible to solve problem (5.7) anymore. We solved problem

(5.10) by T = 24 using Zhangs copula with parameters described above. Figure 5.4 shows

the performance profiles [23] of solvers OA, OA1, OA∞, OA2, ECPM and ELBM.

100 101 102

Performance ration, γ

0

0.2

0.4

0.6

0.8

1

ρ
s
(γ
)

CPU time

OA
OA1
OA

∞

OA2
ECPM
ELBM

100 101 102

Performance ration, γ

0

0.2

0.4

0.6

0.8

1

ρ
s
(γ
)

Number of mixed-integer subproblems

100 101 102

Performance ration, γ

0

0.2

0.4

0.6

0.8

1

ρ
s
(γ
)

oracle calls

Figure 5.4: Performance profile on 21 problems (logarithmic scale): CPU time, oracle’s

calls and number of solved mixed-integer subproblems.

The first image on Figure 5.4 corresponds to the performance profiles of CPU time

required by the methods on all instances, i.e. problem (5.10) with p = 0.8, 0.9 and 0.95.

The image shows that the fastest and more robust solver in this application was OA2,

followed by OA1. Solvers ECPM and ELBM had a similar good performance. Solver OA∞
ranked fifth and the classic OA was the worst solver in this application. Notice that

OA2 was the fastest solver in around 87.5% of the problems while OA1 was faster in the

remaining problems. For 21 problems, all solvers were able to solve problem (5.10) within

1 hour, except OA. Solver OA failed to solve 9 problems although it almost hit the solution.

The left-bottom image on Figure 5.4 reports the solvers performance considering the

number of master subproblems (MILP or MIQP) solved by each method. With respect

to this attribute, solver OA2 was the most efficient method even though it require solving

MIQP instead of MILP subproblem. It was closely followed by OA1. The methods OA∞,

ECPM and ELBM had solved approximately 10 times more MILPs subproblems than solver

OA2. As expected the OA method solved more MILPs in this problem.

The right-bottom image on Figure 5.4 demonstrates the performance profiles consi-

74

dering the number of oracle calls. Regarding this attribute the ELBM and ECPM methods

provided better performances than OA solvers corroborating to [16].

Table 5.7 shows the optimal value for all algorithms with p = 0.8, p = 0.9 and p = 0.95

respectively. For example, if the decision maker wants to supply the local community

demand with probability p = 0.8 on Tuesday the profit will be R$ 43504. Changing

the probability to p = 0.9 the profit will be R$ 43076 and finally it will be R$ 42767 for

probability p = 0.95. These numbers demonstrates that the profit is inversely proportional

to the level p of demand satisfaction, i.e. for higher probabilities the lower is the profit.

It is important to note that profits are higher in business days because it is directly

proportional to demand as well.

Table 5.7: Estimate optimal value for p ∈ {0.8, 0.9, 0.95}. The asterisk ∗ stands

for unsolved problem (within one hour).

p=0.8

Day OA OA1 OA∞ OA2 ECPM ELBM

Tuesday 43504.01 43503.99 43504.01 43504.02 43504.96 43504.33

Wednesday 43704.87 43704.88 43704.87 43704.88 43705.41 43705.04

Thursday 43137.90 43137.90 43137.93 43135.39 43135.80 43137.05

Friday 41619.99∗ 41690.12 41690.14 41684.85 41690.42 41690.37

Saturday 41023.31 41023.34 41023.32 41023.33 41023.53 41023.50

Sunday 34660.05 34660.07 34660.08 34660.04 34660.48 34660.39

Monday 38443.81∗ 38489.47 38489.49 38489.47 38489.80 38490.13

p=0.9

Tuesday 43014.20∗ 43075.82 43075.89 43075.86 43060.45 43077.03

Wednesday 43368.72 43368.71 43368.72 43368.72 43369.61 43370.00

Thursday 42784.96 42785.09 42785.10 42779.33 42786.37 42786.15

Friday 41286.48∗ 41356.63 41356.66 41356.64 41357.52 41357.16

Saturday 40857.38 40857.37 40857.34 40857.37 40857.88 40857.88

Sunday 34466.99 34466.98 34466.99 34466.99 34467.35 34467.15

Monday 38092.81∗ 38138.46 38138.53 38138.54 38139.48 38139.22

p=0.95

Tuesday 42706.29∗ 42767.90 42767.88 42767.89 42769.41 42769.65

Wednesday 42951.92 42951.68 42951.87 42952.09 42953.43 42955.49

Thursday 42341.11∗ 42395.79 42395.64 42392.93 42395.73 42396.77

Friday 40994.54∗ 41064.56 41064.56 41064.65 41066.61 41065.52

Saturday 40690.00 40689.99 40689.95 40689.97 40683.51 40688.40

Sunday 34303.96 34303.89 34303.94 34303.96 34304.70 34303.63

Monday 37789.85∗ 37835.55 37835.62 37835.39 37837.61 37836.54

The obtained decision for the binary variables representing the on/off the turbines are

shown on Figure 5.5. Results depend on day and on the volume of water in the reservoir.

If the amount of water is abundant then the optimal solution is to turn on the turbine all

time independently of the price. However, for the purpose of this work the assumption is

that the amount of the water is limited leading to a solution that is no longer trivial.

75

0

1
Turnines ON/OFF for p=0.8

0

1
Turnines ON/OFF for p=0.9

TUE WED THU FRI SAT SUN MON
0

1
Turnines ON/OFF for p=0.95

Figure 5.5: Solution ON/OFF turbines

Table 5.8 complements information shown on Figure 5.4 and informs the CPU time

spent by every solver and the number of MILPs subproblems solved by each of them.

Regularized solvers OA2 and OA1 were the best ones on these instances.

Table 5.8: Number of MILPs and CPU time for p ∈ {0.8, 0.9, 0.95}

Day OA OA1 OA∞ OA2 ECPM ELBM

k CPU k CPU k CPU k CPU k CPU k CPU

p=0.8

Tuesday 1175 3395.79 39 141.08 539 1485.71 37 113.72 272 462.65 253 623.40

Wednesday 502 1327.55 44 140.20 147 349.76 47 102.97 281 563.28 242 442.22

Thursday 967 2958.82 57 174.08 452 1235.68 52 151.84 283 528.34 240 442.62

Friday 908 3600.89∗ 41 173.59 781 2971.03 48 152.14 328 733.75 309 848.80

Saturday 31 36.27 9 9.08 53 45.53 11 12.41 71 16.29 59 16.87

Sunday 197 407.31 13 21.33 79 79.91 13 19.61 99 36.56 90 68.93

Monday 653 3605.96∗ 23 96.57 1073 3347.86 28 87.82 338 787.99 273 618.75

p=0.9

Tuesday 1204 3600.92∗ 32 179.63 390 1225.37 34 107.71 379 1081.07 305 873.53

Wednesday 533 1510.74 41 152.42 157 465.13 52 120.90 300 672.95 267 621.72

Thursday 1031 3425.71 73 213.68 472 1329.76 58 176.13 294 546.93 276 650.54

Friday 820 3603.04∗ 42 146.48 793 3203.98 43 128.13 344 825.08 324 1050.28

Saturday 29 37.92 9 10.44 33 27.35 11 15.92 80 21.23 71 32.49

Sunday 778 3582.22 15 46.50 461 1239.08 14 35.07 127 67.49 101 91.23

Monday 646 3609.38∗ 23 96.59 373 1288.81 28 86.89 365 968.77 312 946.39

p=0.95

Tuesday 1165 3601.44∗ 32 204.71 394 1310.39 23 112.16 372 1195.34 325 1097.20

Wednesday 717 2129.51 56 181.47 398 1081.85 51 127.46 389 1144.42 323 1124.83

Thursday 1032 3600.68∗ 49 219.76 374 1280.56 41 99.64 382 1086.66 343 1226.53

Friday 771 3605.22∗ 42 123.34 789 3045.20 48 110.58 365 968.78 340 1244.15

Saturday 38 94.58 9 19.13 14 22.51 10 20.93 118 52.96 88 59.09

Sunday 761 3401.13 15 48.91 123 356.63 14 45.96 146 94.46 121 148.09

Monday 622 3600.82∗ 22 98.68 986 3580.10 28 84.72 391 1165.09 336 1208.03

Sum 14580 15.20 h 686 0.69 h 8881 8.05 h 691 0.53 h 5724 3.62 h 4998 3.73 h

Table 5.7 shows the optimal value for problem (5.10). Next step is to verify if this

solution is a feasible point for problem (5.7). In order to have this confirmation it is

necessary to check the true constraint at the obtained vector of decisions. The result

76

should be equal or greater than stipulated value p to ensure that the obtained vector is a

feasible decision. Table 5.9 shows the estimated probability (EP) and the true probability

(TP), obtained by evaluating the obtained solution with the Botev’s code. The table

shows that all points found by solving (5.10) are considered feasible points for problem

(5.7). These results allow to estimate a good solution for problem (5.7) without using the

hard chance constraint.

Table 5.9: Real probability and estimate probability (via copula).

Day OA OA1 OA∞ OA2 ECPM ELBM

TP EP TP EP TP EP TP EP TP EP TP EP

p=0.8

Tuesday 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.80

Wednesday 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80

Thursday 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80

Friday 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.84 0.80

Saturday 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80

Sunday 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.80 0.83 0.80

Monday 0.84 0.80 0.83 0.80 0.84 0.80 0.84 0.80 0.84 0.80 0.83 0.80

p=0.9

Tuesday 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90

Wednesday 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90

Thursday 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90

Friday 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90

Saturday 0.92 0.90 0.92 0.90 0.92 0.90 0.92 0.90 0.92 0.90 0.92 0.90

Sunday 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90

Monday 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.90

p=0.95

Tuesday 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Wednesday 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Thursday 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Friday 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Saturday 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.95

Sunday 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Monday 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

77

Conclusion

Technology growth and scientific development in the world create a high number of pro-

blems that demands mathematical and computational assistance to be solved. Examples

of complex problems are energy outlook, oil reserves estimation, the impact of wind in

human life (power generation), effects of climate and so on. The characteristics of these

problems are that in order to solve it is necessary to apply heavy math and tremendous

computational effort. Most of the problems contains uncertainties and integer variables

that lead to optimization problems with mixed-integer variables and chance-constraints.

This justifies the relevance of the theme considered in this thesis not only to the indus-

trial/productive sector but also to the (applied) mathematical community.

In this work we have studied mixed-integer optimization problems with chance cons-

traints. It is well known in the mathematical community that mixed-integer program-

ming and stochastic programming constitute two very active and challenging research

areas. Therefore, the combination of mixed-integer variables and chance-constraints in

decision/planning problems lead to optimization programs that are both mathematically

and computationally difficult to solve. The setting is even more complicated when diffe-

rentiability is absent, a common situation in real-life applications.

In order to deal with more general mixed-integer convex programs we have extended

the well-known Outer-Approximation algorithm to deal with nonsmooth objective and

constraint functions. In order to obtain finite convergence in this more general setting,

the linearizations must be computed by using particular subgradients of the nonsmooth

functions. To accomplish this task, we have presented a bundle method algorithm that

not only solves the resulting OA’s nonlinear subproblems but also computes (at no extra-

cost) subgradients that satisfy the (nonlinear subproblem’s) KKT system, yielding thus

convergence of OA algorithms. The bundle algorithm considers an exact penalization

function that is employed only to choose stability centers, and as result, the algorithm

is not hindered by any large penalization value. This theoretical contribution has been

published in the article [20].

78

We have also presented an outer-approximation algorithmic pattern that employs the

given bundle algorithm and that possesses quite some freedom in defining new integer

iterates. Such flexibility in choosing trial points opens the way to employ regularization

strategies as an attempt to reduce the number of outer-approximation iterations and, as

a result, the number of OA’s subproblems to be solved.

Concerning the chance-constraint formulation, we have recalled in this work some

known results on generalized convexity, and have assessed the computational cost of eva-

luating probability functions in a practical problem. Furthermore, in order to approximate

the probability function, we have investigated a family of (nonsmooth) Copulae and proved

some useful generalized convexity properties. Numerical experiments on a fictitious power

system management have shown that the copula approach presents itself as an interesting

tool for approximating the probabilistic function in a chance-constrained program.

We have numerically assessed the performance of several variants of the proposed

OA algorithm on two families of nonsmooth mixed integer chance-constraints problems

arising from power management. In the first class of problems the probability distribution

is discrete (and finite), and therefore the chance constraint has been modeled with the

help of linear functions and binary variables. The second family of problems deals with

continuous probability distribution, whose probability values are computed numerically

by solving a multidimensional integral. Overall, the obtained numerical results suggest

that the proposed regularized variants of the given nonsmooth OA algorithm can provide

an effective reduction of the number of outer-approximation iterations required to solve

convex mixed-integer programs.

79

Appendix A

Multivariate normal distribution

In this appendix, a brief review of multivariate normal distribution and its properties are

presented. These results were used to solve computationally problem (5.7).

Definition A.1. A random vector ξ ∈ R
m follows a multivariate normal distribution with

mean vector μ and covariance matrix Σ if its cumulative distribution function is given by

Fξ(z1, . . . , zm) =

∫
1√|2πΣ| exp(−

1

2
(z − μ)

′
Σ−1(z − μ))dw, (A.1)

where z ∈ R
m, μ ∈ R

m and Σ ∈ R
m × R

m. The symbol of integral in (A.1) means a

multiple integral of dimension m. The standard notation is ξ ∼ N(μ,Σ).

The function (A.1) is differentiable if the covariance matrix Σ is positive definite (see

Theorem A.3 below).

Theorem A.1. Suppose that ξ ∈ R
m follows a multivariate normal distribution N(μ,Σ).

Let be δ = Aξ + a where A ∈ R
p × R

m and a ∈ R
m. Then δ ∼ N(μ̄, Σ̄) where

μ̄ = Aμ+ a and Σ̄ = AΣAT . (A.2)

Proof: See [65, Theorem 3.3.3].

Suppose that ξ ∼ N(μ,Σ). As −ξ = −Iξ, by Theorem A.1 we have that −ξ ∼
N(−μ,Σ).

Theorem A.2. Suppose that ξ ∈ R
m follows a multivariate normal distribution N(μ,Σ).

Let be

ξ =

[
ξ1

ξ2

]
, μ =

[
μ1

μ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

where ξ1 ∈ R
q, ξ2 ∈ R

m−q, μ1 ∈ R
q, μ2 ∈ R

m−q,Σ11 ∈ R
q × R

q,Σ12 ∈ R
q × R

m−q,Σ21 ∈

80

R
m−q × R

q and Σ22 ∈ R
m−q × R

m with m > q ≥ 1. Then

ξ1 ∼ N(μ1,Σ11) and ξ2 ∼ N(μ2,Σ22). (A.3)

Proof: See [65, Theorem 3.3.1].

Suppose that diagonal of matrix Σ is the vector [σ2
1, σ

2
2, . . . , σ

2
m]. Then, by Theorem A.2

we have −ξi ∼ N(−μi, σ
2
i). In other words, the unidimensional margins of a multivariate

normal distribution is also normal.

Theorem A.3. Suppose that ξ ∈ R
m follows a multivariate normal distribution with

mean vector μ ∈ R
m and positive covariance matrix Σ ∈ R

m ×R
m. Then the distribution

function Fξ(z) = P [ξ ≤ z] is continuously differentiable and in any fixed z ∈ R
m the

following holds for arbitrary i = 1, . . . ,m:

∂Fξ

∂zi
(z) = fξi(zi)Fξ̃(zi)

(z1, . . . , zi−1, zi+1, . . . , zm), (A.4)

where fξi is the one dimensional normal density associated to random variable ξi given by

fξi(zi) =
1√
2πσii

e
1

σ2
ii

(zi−μi)
2

and Fξ̃(zi)
is the cumulative distribution function associated to random vector ξ̃(zi) with

mean vector μ̂ ∈ R
m−1 and covariance matrix Σ̂ ∈ R

m−1 × R
m−1. Let Di

m denote the

(m− 1)×m matrix obtained from the m×m identity matrix deleting the ith row. Then

μ̂ = Di
m(μ+ Σ−1

ii (zi − μi)Σi) and Σ̂ = Di
m(Σ− Σ−1

ii ΣiΣ
T
i)(D

i
m)

T , (A.5)

where Σi is the i-th column of Σ and Σii is the i-th element of the main diagonal of Σ.

Proof: See [73, Theorem 1].

Theorem A.3 gives the formulas to gradient of function Fξ associate to measure P of

problem (5.7). Note if the dimension of ξ is m then it is necessary to evaluate m multiple

integrals of dimension m− 1 (one multiple integral for each coordinate of gradient).

81

References

[1] Ambrosio, C., Frangioni, A., Liberti, L., and Lodi, A. On interval-

subgradient and no-good cuts. Operations Research Letters 38, 5 (2010), 341 – 345.

[2] Amor, H. M. T. B., Desrosiers, J., and Frangioni, A. On the choice of

explicit stabilizing terms in column generation. Discrete Applied Mathematics 157,

6 (2009), 1167 – 1184. Reformulation Techniques and Mathematical Programming.

[3] Arnold, T., Henrion, R., Möller, A., and Vigerske, S. A mixed-

integer stochastic nonlinear optimization problem with joint probabilistic constraints.

Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II,

Institut für Mathematik, 2013.

[4] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., and

A., M. Mixed-integer nonlinear optimization. Acta Numerica 22 (5 2013), 1–131.

[5] Benders, J. F. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik 4, 1 (Dec 1962), 238–252.

[6] Bertsimas, D., Brown, D., and Caramanis, C. Theory and applications of

robust optimization. SIAM Review 53, 3 (2011), 464–501.

[7] Bienstock, D., and Mattia, S. Using mixed-integer programming to solve power

grid blackout problems. Discrete Optimization 4, 1 (2007), 115 – 141. Mixed Integer

Programming.

[8] Birge, J., and Louveaux, F. Introduction to Stochastic Programming. Springer-

Verlag, New York, 2011.

[9] Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I.,

Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter,

A. An algorithmic framework for convex mixed integer nonlinear programs. Discrete

Optimization 5, 2 (2008), 186 – 204. In Memory of George B. Dantzig.

[10] Bonnans, J., Gilbert, J., Lemaréchal, C., and Sagastizábal, C. Numerical

Optimization. Theoretical and Practical Aspects. Universitext. Springer-Verlag Berlin

Heidelberg, Berlin, 2006. Second edition, xiv+490 pp.

82

[11] Bonvin, G., Demassey, S., Le Pape, C., Mäızi, N., Mazauric, V., and

Samperio, A. A convex mathematical program for pump scheduling in a class of

branched water networks. Applied Energy 185 (2017), 1702 – 1711. Clean, Efficient

and Affordable Energy for a Sustainable Future.

[12] Botev, Z. I. The normal law under linear restrictions: simulation and estimation

via minimax tilting. Journal of the Royal Statistical Society Series B 79, 1 (2017),

125–148.

[13] Charnes, A., and Cooper, W. W. Deterministic equivalents for optimizing and

satisficing under chance constraints. Operations Research 11, 1 (1963), 18–39.

[14] Charnes, A., Cooper, W. W., and Symonds, G. H. Cost horizons and cer-

tainty equivalents: An approach to stochastic programming of heating oil. Manage-

ment Science 4, 3 (1958), 235–263.

[15] Choroś, B., Ibragimov, R., and Permiakova, E. Copula estimation. In Copula

Theory and Its Applications (2010), Springer Berlin Heidelberg, pp. 77–91.

[16] de Oliveira, W. Regularized optimization methods for convex minlp problems.

TOP 24, 3 (Oct 2016), 665–692.

[17] de Oliveira, W., and Sagastizábal, C. Level bundle methods for oracles with

on-demand accuracy. Optimization Methods and Software 29, 6 (2014), 1180–1209.

[18] de Oliveira, W., Sagastizábal, C., and Lemaréchal, C. Convex proxi-

mal bundle methods in depth: a unified analysis for inexact oracles. Mathematical

Programming 148, 1 (Dec 2014), 241–277.

[19] de Oliveira, W., and Solodov, M. A doubly stabilized bundle method for

nonsmooth convex optimization. Mathematical Programming 156, 1 (Mar 2016),

125–159.

[20] Delfino, A., and de Oliveira, W. Outer-approximation algorithms for nons-

mooth convex minlp problems. Optimization 67, 6 (2018), 797–819.

[21] Dentcheva, D., and Martinez, G. Regularization methods for optimization

problems with probabilistic constraints. Mathematical Programming 138, 1 (Apr

2013), 223–251.

[22] Dentcheva, D., Prékopa, A., and Ruszczynski, A. Concavity and efficient

points of discrete distributions in probabilistic programming. Mathematical Program-

ming 89, 1 (Nov 2000), 55–77.

[23] Dolan, E. D., and Moré, J. J. Benchmarking optimization software with per-

formance profiles. Mathematical Programming 91, 2 (Jan 2002), 201–213.

83

[24] Duran, M. A., and Grossmann, I. E. An outer-approximation algorithm for

a class of mixed-integer nonlinear programs. Mathematical Programming 36, 3 (Oct

1986), 307–339.

[25] Durante, F., and Sempi, C. Principe of Copula Theory. Taylor & Francis, 2015.

[26] Eronen, V., Mäkelä, M. M., and Westerlund, T. On the generalization

of ecp and oa methods to nonsmooth convex minlp problems. Optimization 63, 7

(2014), 1057–1073.

[27] Fábián, C. Bundle-type methods for inexact data. Central European Journal of

Operations Research 8 (2000), 35–55.

[28] Fletcher, R., and Leyffer, S. Solving mixed integer nonlinear programs by

outer approximation. Mathematical Programming 66, 1 (Aug 1994), 327–349.

[29] Frangioni, A., and Gentile, C. Perspective cuts for a class of convex 0–1 mixed

integer programs. Mathematical Programming 106, 2 (Apr 2006), 225–236.

[30] Geoffrion, A. M. Generalized benders decomposition. Journal of Optimization

Theory and Applications 10, 4 (Oct 1972), 237–260.

[31] Goldberg, N., Leyffer, S., and Safro, I. Optimal response to epidemics and

cyber attacks in networks. Networks 66, 2 (2015), 145–158.

[32] Grossmann, I. E. Review of nonlinear mixed-integer and disjunctive programming

techniques. Optimization and Engineering 3, 3 (Sep 2002), 227–252.

[33] Gupta, O. K., and Ravindran, A. Branch and bound experiments in convex

nonlinear integer programming. Management Science 31, 12 (1985), 1533–1546.

[34] Gurobi Optimization, I. Gurobi optimizer reference manual, 2016.

[35] Hemmecke, R., Köppe, M., Lee, J., and Weismantel, R. Nonlinear integer

programming. In 50 Years of Integer Programming 1958-2008, M. Jünger, T. M.

Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi,

and L. A. Wolsey, Eds. Springer Berlin Heidelberg, 2010, pp. 561–618.

[36] Henrion, R., and Möller, A. Optimization of a continuous distillation process

under random inflow rate. Computers & Mathematics with Applications 45, 1 (2003),

247 – 262.

[37] Henrion, R., and Strugarek, C. Convexity of chance constraints with inde-

pendent random variables. Computational Optimization and Applications 41, 2 (Nov

2008), 263–276.

84

[38] Henrion, R., and Strugarek, C. Convexity of chance constraints with dependent

random variables: the use of copulae. Springer, 2011.

[39] Hiriart-Urruty, J. B., and Lemaréchal, C. Convex Analysis and Minimiza-

tion Algorithms. No. 305-306 in Grundlehren der mathematischen Wissenschaften.

Springer-Verlag Berlin Heidelberg, 1993. (two volumes).

[40] Hiriart-Urruty, J. B., and Lemaréchal, C. Convex Analysis and Mini-

mization Algorithms II, 2nd ed. No. 306 in Grundlehren der mathematischen Wis-

senschaften. Springer-Verlag, 1996.

[41] Karuppiah, R., and Grossmann, I. E. Global optimization for the synthesis of

integrated water systems in chemical processes. Computers & Chemical Engineering

30, 4 (2006), 650 – 673.

[42] Kelley, J. J. E. The cutting-plane method for solving convex programs. Journal

of the Society for Industrial and Applied Mathematics 8, 4 (1960), 703–712.

[43] Kiwiel, K. C. Exact penalty functions in proximal bundle methods for constrained

convex nondifferentiable minimization. Mathematical Programming 52, 1 (May 1991),

285–302.

[44] Kiwiel, K. C., and Lemaréchal, C. An inexact bundle variant suited to column

generation. Mathematical Programming 118, 1 (Apr 2009), 177–206.

[45] Lemaréchal, C., Nemirovskii, A., and Nesterov, Y. New variants of bundle

methods. Mathematical Programming 69, 1 (Jul 1995), 111–147.

[46] Leyffer, S. Integrating sqp and branch-and-bound for mixed integer nonlinear

programming. Computational Optimization and Applications 18, 3 (Mar 2001), 295–

309.

[47] Luedtke, J. A branch-and-cut decomposition algorithm for solving chance-

constrained mathematical programs with finite support. Mathematical Programming

146, 1 (Aug 2014), 219–244.

[48] Luedtke, J., and Ahmed, S. A sample approximation approach for optimization

with probabilistic constraints. SIAM Journal on Optimization 19, 2 (2008), 674–699.

[49] Miller, B. L., and Wagner, H. M. Chance constrained programming with joint

constraints. Operations Research 13, 6 (1965), 930–945.

[50] Morgan, D. R., Eheart, J. W., and Valocchi, A. J. Aquifer remediation

design under uncertainty using a new chance constrained programming technique.

Water Resources Research 29, 3 (1993), 551–561.

85

[51] Munari, P., and Gondzio, J. Using the primal-dual interior point algorithm

within the branch-price-and-cut method. Computers & Operations Research 40, 8

(2013), 2026 – 2036.

[52] Nelsen, R. B. An Introduction to Copulas. Springer, New York, 2006.

[53] Prékopa, A. On probabilistic constrained programming. Mathematical Program-

ming Study 28 (1970), 113–138.

[54] Prékopa, A. Contributions to the theory of stochastic programming. Mathematical

Programming 4, 1 (Dec 1973), 202–221.

[55] Prékopa, A. Stochastic programming. Dordrechet, 1995.

[56] Quesada, I., and Grossmann, I. E. An lp/nlp based branch and bound algorithm

for convex minlp optimization problems. Computers & Chemical Engineering 16, 10

(1992), 937 – 947. An International Journal of Computer Applications in Chemical

Engineering.

[57] Rockafellar, R. T. Convex Analysis, 1st ed. Princeton University Press, 1970.

[58] Rockafellar, R. T., and Wets, R. J. B. Variational Analysis. Springer Verlag

Berlin, 2009.

[59] Ruszczyński, A. Nonlinear Optimization. Princeton. Princeton University Press,

2006.

[60] Sagastizábal, C. Divide to conquer: decomposition methods for energy optimiza-

tion. Mathematical Programming 134, 1 (Aug 2012), 187–222.

[61] Shapiro, A. Analysis of stochastic dual dynamic programming method. European

Journal of Operational Research 209, 1 (2011), 63 – 72.

[62] Shapiro, A., Dentcheva, D., and Ruszczyński, A. Lectures on stochastic

programming. MPS-SIAM, 2009.

[63] Sklar, A. Fountions de rapartition á dimentisions et leurs marges. Publications

and Institut de Statistique de Paris 8 (1959), 229–231.

[64] Song, Y., Luedtke, J., and Küçükyavuz, S. Chance-constrained binary pack-

ing problems. INFORMS Journal on Computing 26, 4 (2014), 735–747.

[65] Tong, Y. L. The Multivariate Normal Distribution. Springer Series in Statistic,

1990.

86

[66] van Ackooij, W. Decomposition approaches for block-structured chance-

constrained programs with application to hydro-thermal unit commitment. Mathe-

matical Methods of Operations Research 80, 3 (Dec 2014), 227–253.

[67] van Ackooij, W., Berge, V., de Oliveira, W., and Sagastizábal, C.

Probabilistic optimization via approximate p-efficient points and bundle methods.

Computers & Operations Research 77 (2017), 177 – 193.

[68] van Ackooij, W., and de Oliveira, W. Level bundle methods for constrained

convex optimization with various oracles. Computational Optimization and Applica-

tions 57, 3 (Apr 2014), 555–597.

[69] van Ackooij, W., Frangioni, A., and de Oliveira, W. Inexact stabilized

benders’ decomposition approaches with application to chance-constrained problems

with finite support. Computational Optimization and Applications 65, 3 (Dec 2016),

637–669.

[70] van Ackooij, W., Henrion, R., Möller, A., and Zorgati, R. On proba-

bilistic constraints induced by rectangular sets and multivariate normal distributions.

Mathematical Methods of Operations Research 71, 3 (Jun 2010), 535–549.

[71] van Ackooij, W., Henrion, R., Möller, A., and Zorgati, R. Joint chance

constrained programming for hydro reservoir management. Optimization and Engi-

neering 15, 2 (Jun 2014), 509–531.

[72] van Ackooij, W., and Malick, J. Eventual convexity of probability constraints

with elliptical distributions. Mathematical Programming (Jan 2018).

[73] van Ackooij, W., and Minoux, M. A characterization of the subdifferential of

singular gaussian distribution functions. Set-Valued and Variational Analysis 23, 3

(Sep 2015), 465–483.

[74] Vielma, J., Ahmed, S., and Nemhauser, G. Mixed integer linear programming

formulations for probabilistic constraints. Operations Research Letters 40, 3 (2012),

153 – 158.

[75] Wei, Z. Ali, M. M. Convex mixed integer nonlinear programming problems and

an outer approximation algorithm. Journal of Global Optimization 63, 2 (Oct 2015),

213–227.

[76] Westerlund, T., and Pettersson, F. An extended cutting plane method for

solving convex minlp problems. Computers & Chemical Engineering 19 (1995), 131

– 136. European Symposium on Computer Aided Process Engineering 3-5.

87

[77] Westerlund, T., and Pörn, R. Solving pseudo-convex mixed integer optimiza-

tion problems by cutting plane techniques. Optimization and Engineering 3, 3 (Sep

2002), 253–280.

[78] Zaourar, S., and Malick, J. Quadratic stabilization of Benders decomposition.

working paper or preprint, 2014.

[79] Zhang, Z. On approximation max-stable process and constructing extremal copula

functions. Statistical Inference for Stochastic Process 12 (2009), 89–114.

88

