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RESUMO

As restricoes de probabilidade desempenham um papel fundamental nos problemas de
otimizacao envolvendo incertezas. Essas restricoes exigem que um sistema de desigual-
dade dependendo de um vetor aleatério tenha que ser satisfeito com uma probabilidade
suficientemente alta. Neste trabalho, lidamos com problemas de otimizacao com restrigoes
de probabilidades envolvendo varidveis inteiras. Assumimos que as funcoes envolvidas sao
convexas e a restricao de probabilidade tenha propriedade generalizada de convexidade.
Para lidar com problemas de otimizacao desse tipo, combinamos o algoritmo de apro-
ximagao externa (OA) e o algoritmo de feixes. Os algoritmos OA tem sido aplicado para
problemas sudveis e para uma pequena classe limitada de problemas nao-suaveis. Neste
trabalho, estendemos o algoritmo OA para lidar com problemas mais gerais nao-suaveis.
Além disso, mostramos que quando os subproblemas nao-lineares resultantes do algo-
ritmo OA sao resolvidos por um método de feixes, entao os subgradientes que satisfazem
as condigoes de Karush Kuhn Tucker (KKT) estao prontamente disponiveis independen-
temente da estrutura das funcoes convexas nao-suaveis. Esta propriedade é crucial para
provar a convergéncia (finita) do algoritmo OA. Problemas com restri¢oes probabilisticas
aparecem, por exemplo, em modelos de energia (estocdsticos). No contexto de inter-
esse, pelo menos uma das restricoes nao lineares envolve uma funcao de probabilidade
Plh(x,y) > £], onde h é uma fungao concava e & € R™ é um vetor aleatério. Em geral,
uma integracao numérica multidimensional é empregada para avaliar essa funcao de prob-
abilidade. Como uma alternativa para lidar com restrigoes de probabilidades (que é muito
cara computacionalmente), propomos a aproximagao da medida de probabilidade P por
uma copula apropriada. Nos investigamos uma familia de cépulas nao-sudveis e fornece-
mos algumas propriedades generalizadas de convexidade novas e tteis. Em particular,
provamos que a familia de copulas de Zhang é a—concava para todo o < 0. Esse resul-
tado nos permite aproximar as restrigoes probabilisticas por restricoes muito mais simples
envolvendo copulas. Avaliamos numericamente as abordagens dadas em duas classe de

problemas provenientes do gerenciamento do sistema de energia elétrica.

Palavras-chave: Otimizacao nao-linear inteira, Otimiza¢ao Estocastica, Restricoes Pro-

babilisticas.



ABSTRACT

Probability constraints play a key role in optimization problems involving uncertainties.
These constraints (also known as chance constraints) require that an inequality system de-
pending on a random vector has to be satisfied with high enough probability. In this work
we deal with chance-constrained optimization problems having mixed-integer variables.
We assume that the involved functions are convex and the probability constraint has gen-
eralized convexity properties. In order to deal with optimization problems of this type, we
combine outer-approximation (OA) and bundle method algorithms. OA algorithms have
been applied to smooth problems and to a small class of nonsmooth problems. In this
work we extend the OA to handle more general nonsmooth problems. Moreover, we show
that when the resulting OA’s nonlinear subproblems are solved by a bundle method, then
subgradients satisfying the Karush-Kuhn-Tucker (KKT) conditions are readily available
regardless the structure of the nonsmooth convex functions. This property is crucial for
proving (finite) convergence of the OA algorithm. Chance-constrained problems appear,
for instance, in (stochastic) energy models. In the context of interest, at least one non-
linear constraint models the probability function P[h(x,y) > ], where h is a concave
map and & € R™ is a random vector. In general, multidimensional numerical integration
is employed to evaluate this probability function. As an alternative to deal with proba-
bility constraints (which is very expensive computationally), we propose approximating
the probability measure P with a suitable copula. We investigate a family of nonsmooth
copulae and provide some new and useful generalized convexity properties. In particular,
we prove that Zhang’s copulae are a-concave for all & < 0. This result allows us to
approximate chance-constrained programs by much simpler copula-constrained ones. We
assess numerically the given approaches on two classes of problems coming from power

system management.

Keywords: Mized-Integer Nonlinear Optimization, Stochastic Optimization, Chance

constraints.
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Introduction

Many real-life optimization problems are modeled in a mixed-integer setting, involving
discrete and continuous decision variables. Optimization algorithms for solving mized-
integer nonlinear programming (MINLP) problems have become an important focus of
research over the last years [4, 9, 16, 26, 32, 35, 75, 77]. Most of these algorithms re-
quire the involved functions to be convex and differentiable. The latter hypothesis is
not assumed in this work. Moreover, we are particularly interested in nonsmooth convex
MINLP problems that have at least one probability constraint. Problems of this type fall
into a very challenging class of optimization problems, because not only smoothness and
convexity (of the feasible set) are absent, but also the probability constraint is in gen-
eral difficult to be evaluated, because it requires computing a multidimensional integral.
We also investigate an alternative to numerical integration which is approximating the
underlying probability constraint by Copula (Copula is a simple function, depending on

marginal distributions, that models dependence of the joint probability distribution).

By considering, for the moment, chance constraints as regular convex constraints, the

problem of interest is symbolized by:

min  fo(z,y)
s. t. filz,y) <0,i €L, (1)
re X,yey,

with fo, fi,i € Z. = {1,...,my}, convex functions, X a bounded polyhedron and Y a
bounded and discrete set. The main difficulty of this problem consists in dealing with Y,
the set of integer variables. By relaxing Y to a convex set Yy (for instance Yz = convY),
the following convex problem (this is why problem (1), which is nonconvex, is called a
convex MINLP) is gotten:

min fﬂ(way)
s. t. fz<m7y) < 072 € Ic (2)
re X,yeYg

For example, if Y = {0, 1}, it leads to take Yz = [0, 1]. This technique is called relazing

integrality. The optimal value of (2) is a lower bound for problem (1).
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In 1960, in a classic paper, Kelley [42] introduced the cutting plane method for sol-
ving convex problems. The strategy was to solve the underlying optimization problem
by solving a sequence of linear programs (LPs). At that time, the interest for stochastic
optimization and mixed-integer programs started to grow up. In 1962, Benders [5] deve-
loped one of the first algorithm to deal with problems having uncertainty parameters and
integer variables. But the idea of Benders applies only to problems that involve linear

functions.

In 1972, Geoffrion [30] generalized the Bender’s approach to a broader class of pro-
grams (including MINLP) in which the objective function of those subproblems needs no
longer to be linear. Many authors have contributed to the field of MINLP and several

algorithms have been developed in the past years.

One of the most famous class of algorithms to solve mixed integer linear problems is
the so called branch-and-bound algorithms. The first algorithm of this class was developed
by Gupta and Ravindran [33] in 1985. The idea of this algorithm consists in solving the
relaxed problem (2) first. If all variables are integer, then a solution of problem (1) is
obtained. Otherwise, the solution provides a lower bound to the optimal value and in this
case a tree search is performed in the space of integer variables. This method is suitable
if the cost of solving (2) (and its variants with additional constraints in Yz and X) is
cheaper or if a few of them needs to be solved. If the number of nodes visited in the tree
search is too large, then solving the problem becomes a very expensive computational
task.

Another important method for solving (1) is the outer-approximation algorithm given
in [24] and further extended in [28]. The method solves a sequence of nonlinear and
mixed linear subproblems, as described below. At iteration k, the method fixes the integer

variable 3% and tries to solve, in the continuous variable x, the following subproblem:

min  fo(z, y*)
s. t. filw,y*) <0,i €L, (3)
reX.

If this subproblem is feasible, a feasible point to problem (1) is found and, therefore, an
upper bound ffp for its optimal value. On the other hand, if (3) is infeasible the method

solves the feasibility subproblem:

min u
s. t. filr,y*) <w i€ L, (4)
re X,u>0.

With a solution of (3) or (4), the linearization of fy and f; can be used to approximate

13



problem (1) by the following MILP:

( .
min r
T,y

s.t. r< L’fp

x — 2’

J a0 i o, d\T . L
fE, = fol@,y7) + V fo(a?, ) Yy <r, jeT 5)
—
Filad, ) + Vil )T | xj <0, jeTFtuSk el
y—y

reR zeX, yeyY,

\

where index sets T* and S* are defined as follows

e TF:={j <k : subproblem (2) was feasible at iteration j}, and

o S¥:={j < k: subproblem (2) was infeasible at iteration j}.

Under convexity of underlying functions, the optimal value f{¥ of (5) is a lower bound on
the optimal value of (1). Moreover, the y—part solution of (5) is the next integer iterate
y*+1. The algorithm stops when the difference between upper and lower bounds provided
respectively by (3) and (5) is within a given tolerance ¢ > 0. More details about this
method will be given in Chapter 3.

The outer approximation algorithm was revisited in 1992 in [56], where the authors
proposed a LP/NLP based on the branch and bound strategy in which the explicit solu-
tion of a MILP master problem is avoided at each major iteration k. In the context of
main interest, the underlying functions might not be differentiable, but subdifferentiable:
gradients will be replaced by subgradients. As pointed out in [26], replacing gradients by
subgradients in the classic OA algorithm entails a serious issue: the OA algorithm is not
convergent if the differentiability assumption is removed. In order to have a convergent
OA algorithm for nonsmooth convex MINLP one needs to compute linearizations (cuts)
in (5) by using subgradients that satisfy the KKT system of either subproblem (3) or (4),
see [26, 75] and Chapter 3 for more details.

Computing solutions and subgradients satisfying the KK'T' conditions of the nosmooth
subproblems is not a trivial task. For instance, the Kelley cutting-plane method and
subgradients methods for nosmooth convex optimization problems are ensured to find
an optimal solution, but are not ensured to provide a subgradient satisfying the KKT
system. Given an optimal solution z* of (3), there might be infinitely many subgradients
of f at z* if f is nonsmooth. How would a specific subgradient can be chosen in order
to satisfy the underlying KKT system? We show in this work that bundle methods give
an answer to this crucial question. We will prove that by using a specialized proximal

bundle algorithm to solve either (3) or (4), we will be able to compute subgradients that

14



satisfy the KKT conditions and therefore the OA convergence is ensured. The analysis of

such proximal bundle algorithm is the first contribution of the present work.

Other important class of algorithms for convex MINLP is based on the Kelley cutting-
plane method [76, 77]. These algorithms are able to deal with nonsmooth functions but
have, in general, slow convergence. In order to overcome this drawback, [16] and [69]
propose regularization techniques to stabilize the iterative process. We follow the lead of
[16, 69] and propose to regularize the MILP (5) in order to accelerate OA. We call this

resulting method regularized OA. This is the second contribution of this work.

We emphasize that the two first contributions of the present Thesis have been com-
bined in the paper [20], recently published in Optimization: A Journal of Mathematical

Programming and Operations Research.

As a third contribution, we deal with nonsmooth convex MINLP having some pro-
bability constraints. This type of problems appears, for instance, in (stochastic) energy
models [3]. In the context of interest, at least one of the constraints in (1) is of the type
fiz,y) = log(p) —log(Plh(x,y) > &]), modeling the chance-constraint Plh(x,y) > & > p,
where h is a concave map, £ € R™ is a random vector and p € (0, 1) is a level parameter.
The "log” transform above is very often used to convexify the probability function. As
already mentioned, multidimensional numerical integration is employed to evaluate this
probability constraint. As an alternative to deal with probability constraints, we will
approximate the probability measure P with an appropriate copula. We will investigate

suitable copulae to better approximate P in a cheap and easy way.

This work is organized as follows: in Chapter 1 we will elaborate the nonsmooth
MINLP and will show a counterexample where the classic OA algorithm loops forever
and does not find an optimal solution of (1). In Chapter 2 we will provide and analyze a
proximal bundle algorithm that is able to compute both a solution and subgratients satis-
fying the KKT conditions of the underlying nonsmooth convex optimization problem. As
already argued, such bundle algorithm is the working horse in our OA algorithm for dea-
ling with the nonsmooth convex MINLP (1). In Chapter 3, we will provide the regularized
OA algorithm. In Chapter 4, we will present the chance constraint MINLP and a family
of nonsmooth Copulae which will be used to replace the probability constraint. Finally,
in Chapter 5, we will solve a class of hybrid robust and chance-constrained problems that
involve a random variable with finite support. In order to evaluate the Copula approach

we investigate a power management planning problem described in [3].

15



Chapter 1

Nonsmooth convex MINLP

The objective of this chapter is to present the deterministic setting of nonsmooth convex

mixed-integer nonlinear programs (MINLPs) of the form

min  fo(z, y)

.y

s. t. filz,y) <0,i €. (1.1)
re X,yey,

where functions fy : R™ x R™ — R, f; : R™ x R™ — R are convex but possibly
nonsmooth. The set X # () is a compact polyhedron and Y # () is a compact set of

integer variables.

Many real-life optimization problems can be modeled as (1.1). The blackout prevention
of electric power system in electrical engineering, for instance, is modeled using MINLP
formulation [7]. In chemical engineering, MINLP models are applied in design of water
[41]. A recent application in pump scheduling in a class of branched water networks
can be found in [11]. Another application is to find the optimal response to a cyber
attack [31] in computer science. For more applications refer to [4] and reference therein.
In the nondifferentiable setting, MINLP models appear, for instance, in power system

optimization [3] and in chance-constrained optimization [17, 69].

Optimization methods have been developed to solve MINLP when the involved fun-
ctions are differentiable. Some approaches are based on branch-and-bound methods [46]
such as [1] and [29]. The work [51] combines branch-price-and-cut strategies with decom-
position techniques to provide valid inequalities and strong bounds to guide the search in
a branch-and-bound tree. Several others methods deal with these type of problems, see
for instance, articles [2, 9, 44, 60].

In the nonsmooth case, an important optimization technique is the extended cutting
plane method proposed in [76] and further studied in [26] and [77]. This method is based

16



on the classical cutting plane algorithm given in [42]. Another approach is using bundle

methods as proposed by [16], which is a extension of works given in [45] and [68].

In this Thesis, Outer-approximation Algorithms are considered to solve the MINLP. As
mentioned before, the OA was introduced in [24] and further extended in [28]. As briefly
discussed in the Introduction, OA algorithms solve a sequence of nonlinear subproblems
and linear integer subproblems. The choice of this type of approach is because the original
problem can be broken in a sequence of easier subproblems and can be faster than other
methods.

1.1 An outer-approximation algorithm

A standard outer-approximation algorithm is as following.

Algorithm 1.1. AN OUTER-APPROXIMATION ALGORITHM

Step 0. Lety €Y, € > 0 and tol > 0 be given. Set u’pl =00, T7'=8"1=0,k=0.
Step 1. Solve either the NLP subproblem (if it is feasible)
min  fo(z,y")
st filz,y*) <0,i €T, (1.2)
z e X,
or the infeasibility subproblem:
min Z max{ f;(z,y"),0}
= (1.3)

s.t. reX,

and let the solution be .

Step 2. Linearize the objective and constraint functions around (x*,y*):

k
’ r—Xx )
fi@® ") + fi(2® )T [ k] , i=0,...,my.
y—y

Set TF = T+ U {k} if 2* is provided by (1.2) or S¥ = S*=L U {k} if 2% is provided by (1.3).
Step 3. If (1.2) is feasible and fo(x*,y*) < fffp_l then update the current best point by setting x* =

ok gt =yt and [, = fo(a®,y").

Step 4. Solve the MILP

min r
s.t. r < ffp—e
folad, ) + fo(ad )T |© 7T | < v vy e T
y—y (1.4)
fila?, y?) + fi (7, )T z_zj <0,¥j € TFUS*,i € T.(29)

reX,yeYrekR,

17



where T.(x7) is the set of active constraint at (x7,y?). If (1.4) is infeasible, stop with the e—solution

k+1

(x*,y*). Otherwise, let y be the y—part of solution of the above problem, and fl’f)w its optimal

value.

Step 5. If ffp — fF. < tol, stop. The pair (x*,y*) is a tol-solution of problem (1.1). Otherwise, set

k=k+1 and go back to Step 1.

This algorithm has finite convergence when the involved functions are differentiable
and the Slater’s assumptions holds [24, 28]. In the next section a nonsmooth MINLP
example is considered and is demonstrated that, if arbitrary subgradients to compute

cuts (constraints) in problem (1.4) are taken, then the OA algorithm fails to converge.

1.2 The OA algorithm applied to nonsmooth convex

MINLP problems: a counterexample

When some (or all) functions f;, i = 1,...,my, fail to be continuously differentiable,
OA algorithms may cycle indefinitely around non-optimal points. The following example,

extracted from [26, § 4.1] illustrates this situation.

Consider the following mixed-integer nonlinear problem:

min 2z —y
x?y

s.t. max{—% —x—l—y,—%—i—y—kx} <0 (1.5)
—4r+y—-1<0,
0<z<2,ye{0,1,23,4,5}

Suppose that the initial guess for the integer variable is y° = 3. So the first nonlinear

subproblem becomes

min 2z —3
0<x<L2

s.t. max{3 -z, —3+2} <0 (1.6)
—4x +2 < 0.

Subproblem (1.6) is infeasible. Then the infeasibility subproblem is solved

i 3 _p 1
i, max{; — z,—5 +,0} )
s. t. —4r+2<0.

By solving (1.7) the solution 2° = 1 with optimal value % is obtained. Consequently,

T° = {0} and S° = {1}. To create cuts, it is necessary to have a subgradient at point 2.

Consider the objective function of problem (1.7). The subgradient at the point 2° = 1 is

3

a value s € [—1,1] because 2 — z and —3 + x has the same value at 2° = 1. That means

18



the subgradient at this point is a convex combination between the subgradients of both
functions. The subgradient s = 1 is chosen yielding the following MILP subproblem

min  2r —y
:E’y

s. t. x—l—y—%go
—4dr+y—-1<0,
0<z<2yeY ={01,234,5}.

The solution of the above problem is x = % and y' = 3. So the OA algorithm repeats

the integer variable and enters in an infinite loop. As a result, the OA algorithm fails to

solve the nonsmooth problem (1.5).

1.3 The OA algorithm applied to nonsmooth convex
MINLP problems: well-chosen subgradients

When the subgradients are carefully chosen the OA algorithm’s convergence is guaranteed.
In this section the example above is solved with the same initial point 3° = 3. As problem
(1.7) is the same, subgradient at point 2° = 1 is a number s € [—1, 1] as explained before.

Now, a subgradient that satisfies the following KKT system of problem (1.7) is chosen:

3 1
0 € dumax{z — 2%, =5 + 2", 0}] + 042" + 2 + Nip.3 (2")
i(—42° +2) =0
> 0.

=I

0

As solution 2" is in the interior of interval [0,2], the normal cone is the set {0}. Let

3
5 € 0, [max{§ -, —3 +2°%,0}]. The above system is equivalent to

0=s—4u
a(—4(1)+2)=0
p = 0.

The unique solution of the above system is s = 1 = 0. Consequently, s = 0 is taken as
a subgradient of the objective function in (1.7) at 2° = 1. With this choice the following
MILP problem is obtained:

min 2z —y
z,y

s. t. y—gSO
—4dr+y—-1<0,
0<z<2yeY ={0,1,23,4,5}.

19



The constraint y — g < 0 eliminates integer values bigger than 2. As a result, only three
options remain (y = 0,1 or 2). By solving this subproblem, & = %, y = 2 with the optimal

value fl = —1 is gotten. Thus a new integer variable y' = 2 is known.

Fixing y' = 2 at problem (1.5) a new nonlinear subproblem is gotten

min 2z — 2

s. t. max{% —a:,—%—ka:} <0

—dr+1<0,
0<x <2,
which is feasible and its solution is #' = § with optimal value fl = —1. The OA

algorithm then stops at Step 5 because f, — fi, = 0. Hence, the point (z,7) = (3,2) is
a solution of problem (1.5) with optimal value —1. It turns out that the OA algorithm
converges because the chosen subgradient of the nonsmooth constraint satisfies the KKT

conditions of problem (1.7).

1.4 General comments

The above example illustrates the fact that subgradients of the involved functions should
be carefully chosen in order to ensure convergence of the OA algorithm in the nonsmooth

setting. It has been shown in [26] that subgradients of f;,i = 0,...,m; at 2¥ must satisfy
the KKT system

0e axf(](mk?yk> + Z Iafaxfz(xk?yk) + NX(wk)

i€Ze(xP)

_ . 1.8
FELat 1) = 0,1 € T -
fif >0,i¢€Z(z"),

if problem (1.2) is feasible, or system
0€d, [ 3 max{fie*,5"),0} | + Nx(ab), (1.9)

i€Zc(zh)
otherwise; where N (z*) is the normal cone of X at .

In the paper [26] the authors show how to determine such subgradients for a particular
class of functions, in which it is possible to know the vectors s’ € df(z),i = 1,...,p

yielding

p P
of(z) = {Zais;]Zai =1,0; >0,i = 1,...,p}.
i=1 i=1
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This is, for instance, the case in which every function f; is the pointwise maximum of
finitely many differentiable functions. Hence, the use of the method in [26] is limited
because not all the MINLP problems satisfy this assumption. The OA algorithm will be
more detailed in Chapter 3. In the next chapter a new algorithm for solving the OA’s
nonlinear subproblems is proposed. It will be demonstrated that such algorithm provides
subgradients satisfying KKT system without further assumptions on problem (1.1). This

is a significant improvement on paper [26].
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Chapter 2

An exact penalization proximal
bundle method

This Chapter corresponds to Section 3 in the work [20], which is a product of this Thesis.
Here we are not only concerned with the solution of the OAs subproblems (3) and (4) but
also with the calculation of subgradients satisfying the KKT systems (1.8). To accomplish

this task we investigate a proximal bundle algorithm.

Bundle methods solve nonsmooth convex optimization problems by requiring only
first-order information of the involved functions, and are well-known for their robustness
and for having limited memory, that is, one can keep the amount of information (bundle)
bounded along the iterative process [10, 39]. The latter is a very useful property when
dealing with large scale optimization problems. There are many bundle method variants
in the literature: see for example [17, 18, 19, 27, 45]. In this chapter the focus will be on
a proximal bundle method variant to solve the nonlinearly constrained nonsmooth opti-
mization subproblems coming from the OA algorithm. It will be presented an algorithm
that provides all the required information to ensure convergence of the OA algorithm

applied to nonsmmoth convex MINLP problems.
Consider the nonlinear subproblem of OA algorithm for a fixed integer variable y*:

min folz,y") st fix,y") <0, i €T, :={1,...,my}. (2.1)
xe

Problem (2.1) can be feasible or infeasible. If the latter case then the infeasibility problem
is solved by

min Z max{ fi(z,y"),0} . (2.2)

zeX
€L,
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In both cases, problems (2.1) and (2.2) can be written in a unified and more general

manner:

m1)r(1 o(x) st. ¢(r)<0,i€Z,., (2.3)
Te

where with this notation, function ¢(x) is fo(z,y*) and c;(x) is fi(x,y"*) if subproblem
(2.1) is considered or ¢(z) is Z max{ f;(x,y"),0} otherwise (i.e., (2.2) is considered). In
ieZ.
the latter case it does not have nonlinear constraints.
In order to confirm that the set of Lagrange multipliers associated to (2.3) is nonempty
and bounded [40], the Slater’s condition (if there is at least one nonlinear constraint c;)

is assumed:
H1- There exists 2° € X such that ¢;(z°) < 0 for all i € Z...

As a result, it is ensured the existence of a pair of points (z, 1) and subgradients

sy € 00(Z) and s; € 0¢;(T), i € I, satisfying the following KKT system

—(ss+ Y fisi) € Nx(Z)
i,
ci(Z) <0<, i €,

TeX, () =0,i€Z..

(2.4)

2.1 Description of the method

The method generates a sequence of feasible iterates {z'} C X. For each point z*, an
oracle is called to compute ¢(z), ¢;(2°), i € Z. and subgradients s}, € d¢(z"), 5] € de;(x"),

it € Z.. With such information, the method creates cutting-plane models for the functions

#(@) = maxlo(e)) + (shor =)} <o)

x) = mai({ci(a:j) + (sl x—a2))} <cix) i€, . (2.5)
jeB.
The index sets BY, BY are in general subsets of {1,..., ¢}, but can also contain some index

of an artificial /aggregate linearization.

Given a stability center 2 € X and a prox-parameter 7° > 0, the new iterate 2! is
obtained by solving the QP subproblem
. 1 012 v ,
min ¢ (z) + — ||z — 2°|° s.t. &(x) <0, ieZ., (2.6)

reX 27’6
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that can be rewritten as

. L Alp2
o 7 gl — &

s.t. ¢(27) + (sh,x —al)y <r, jeB 29)
(@) + (sl,x —a7) <0, jeBlieT

The stability center ¢ is some previous iterates, usually is the best point generated by
the algorithm. In order to define what is the “best point so far”, a nonsmooth penalization

function and a penalization parameter p > 0 will be employed:

folx) = ¢x) + p ) _max{e,(x), 0} and  fi(x) = @ (z) +p Yy  max{&(x), 0}.

€L, 1€l

A classification rule decides when to update #%: if

(0=) m (o) = f(a™) < £(&°) = fo(a™),  with s € (0,1) (2.9)

l+1 41

then 2! := 2!, otherwise & = 2. In other words, the stability center is updated
only when the new candidate provides enough decrease with respect to the penalization
function: at least a fraction of the decrease provided by the model:  (f, (&%) — ff(xé“)).

The following is a useful result for the remaining of this chapter.

Proposition 2.1. Consider problem (2.3) and assume the involved functions to be convex
and X # 0 a polyhedron.

a) The vector 271 solves (2.6) if and only if 2**' € X, &(2*1) <0, i € Z., and
there exist vectors 85 € 0¢'(x™1), §¢ € 9ci(a*t), i € I., s € Nx(z**') and
stepsizes pt > 0 such that picé(x*) =0 and

$£+l _ i,@ . ngﬁ’ _ 8¢ + Zlu g SAKX . (210)
1€L,

b) Let o > 0 (resp. )\z > 0) be Lagrange multiplier associated with the constraint
o(a?) + (Sé,x — a9y <7 (resp. ¢;(z?) + (s), 2 —27) <0) in (2.7). Then,

| L _ J Al j J Al
g o =1, = E Ay 8y = E sy and 8 = E N s
jeBt jeBs jeBt JeB;

¢) The aggregate linearizations ¢ (z) = ¢ (xt™) + (84, x — YY) and ¢ (x) =
¢ i

() + (8%, 1 — 2™1) satisfies ¢*e(x) o(x) and ¢;(x) < ci(x) for all x € R™.
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Let fp_g(x) = f'ﬁ(m”l) + (d,z — 2*T1) be the aggregate linearization of f,. If p >
m%x,uf then f'(x) < fo(x) + ix(x) is obtained for all x € R™, where ix is the
1€Le

indicator function of the polyhedral set X, i.e., ix(x) =0 ifx € X and ix(x) = 00

otherwise.

d) Let & .= ¢(2') — ¢~(&") and & := ¢;(&) — ¢;*(2"). Then
~0 ~f ~A N/ ~ L
ey, e >0, §5¢€ (9%(;5(1: ), and 5 € Deci(2).

Let é" := [ (2") +ix (&%) — f, (") be the aggregate error. If p > rlréegcpf then

>0 d € 0ulf, (&) +ix(2)], and & el +> ulel.

ZEZE

e) Suppose that lim ¢* =0, and let @ be a cluster point of {3*}, i.e., lim ' =&. Let
also p; > 0 be a cluster point of {ut}x, i € I.. Then any cluster pomts d 54,5, € R"

of {d'}k, {s}x and {si}x satisfy
S5 € 09(z) and §; € 0ci(z) if pu; > 0.
If p> maxpl, then d € O[f,(Z) + ix(&)].
Proof:

a) It follows from [57, p.215] that dix(x) = Nx(z) for x € X. Problem (2.6) can

be written as

1
min o' (z )+W||x—i€||2+ix(x) st. d(x)<0, i€T,.

From KKT’s conditions the system holds:

8o Fr(@ = @) sk + Y s =0
1€21c
pi>0,i €1,

plet(z1) = 0,i € Z.
Putting all subgradients together the results are acquired.

b) The Lagrangian function of problem (2.7) for x € X and &, A > 0, is

Lz, 7; &, \) —7"—|——||x A£||2—|—Zoﬂ s¢,m—xj> —r) (2.11)
jeBt
—i—ZZ)\chaL‘J (s],x —a7)).
lGcheBZ
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Notice that the minimum of L over (r,z) € R x X is well defined if and only if

E &’ = 1 (otherwise ( )inﬂg XL(x,r; &, \) = —00). Let (r™, 21) be the solution
7,x)ERX
jent

of (2.7) and (a, A) be the associate Langrange multipliers. It follows from the KKT

conditions that o/ > 0 implies
Oa?) + ()2t —af) = 1 = § ("), (212)
and X! > 0 implies

ci(@?) + (s, 2t — 27y = 0 = (a1, (2.13)

2

Differentiating both sides of (2.12) and (2.13) in relation to z**! the result is sé €
d¢' (z+1) and s/ € 0&(z*1). The subdifferential of a convex function is convex,

then

Z Ozjsg5 € 0@ (z*1)

jent

and

Z v N " Nl € 0el(a").
4 ]GBZ

jEBL

Moreover, it follows from convexity of subproblem (2.7) and uniqueness of its solu-

tion that (r*1, 2/*!) is also the unique solution of

min Lz, r;a, )
(ryx)ERxX

which is equivalent (in terms of solution z) to

min e — &+ {3 adsh, ) + 33 Nt (214)

jeBt i€le jeB!

The KKT conditions for this problem lead to

Tle e —i—ZoﬂsJ—i—ZZ)\ T 45 =0

jeBt i€le jeBY

which is equivalent to

xﬁ—&—l_ij
_ T+Za] +ZZ/\JJ € Ny( €+1).

jeBt i€le jeBY

By defining 1f, 5 and ] as in item b) the above relation is the same as (2.10).
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¢) By item a), & € ¢ (). So
¢~ (x) = 9" (@) + (3, @ — &™) < ¢ () < () Vo € R™.
The similar way implies

e (x) = &) + (84 2 — 2 < E(2) < ¢i(x) Vo € R™,

The last result follows below

fp—z(x) _ fﬁ(xé—i-l) + <dz,x _ xé+1>
= (") + p Y max{&(«), 0} + (@', z — )

’LGIC

= ¢f(z'*) —i—pZmaX{c( S0} + (8 —I—Zu s, o —atth
1€ 1€

< @ x) +ix (@) + (shw — ) + p ) max{e ("), 0}

1€7¢
H(D ez, Hish, @ — ).

The last inequality follows from the aggregate linearizations ¢—*(z) < ¢(x) which

was proved above. The next inequality follows from subgradient of ix at point 2!,

£ @) <o) +ix(x) + ) [pmax{e (@), 0} + (ufs), « — )]

ZEZ{:

= ¢(z) +ix(x) + > _(ufsl,x — ")
ZEZC
¢ _'_ ZX + ZMZ vf £+1 é T — $Z+l>]
ZEZC
Qb + ZX + Z luz z
€L,
< o(x) +ix(z) + Z i ci(x
€L
< ¢(x) +ix(x) + Y pt max{e;(x), 0}
ZEZ{:
< ¢(x) +ix(x)+ Y pmax{c(x),0}
ZEIC

= fol@) +ix(2).

In the development above was used that ¢/(z*!) = 0 from (2.13), ¢;“(z) < ()

and the assumption p > max 1.
1€Le

: ¢ — N
d) It follows from item c) that ¢ > ¢~" and ¢; > ¢;. Then the aggregate error é;
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and é¢ are both nonnegative. Moreover,

d(z) > ¢~ (x) = (") + (55,2 —a"t)
= ¢<if>+( G(&°) + (@) + (85, 21 — 2h)) + (85, @ — 2
= B(&") — &+ (85,2 — 2,

showing that &} € 8% #(2%). The proof that & € d,c;(2%) is analogous. Next step

is to demonstrate that é > 0. Consider the following development:
et = fp(ig) - (fp(le) + <deai'f - mz+1>)

— o) + p > maxf{e,(i), 0} - (dsf(xf“) +p Y max{é(a"1), 0}

+ Zuzsl + 5%, 2 xz+1>>
= 9 () + (38— ) — (s 8 - 2
+Z pmax{c;(2'),0} — (pmax{cf(z"), 0} + (ui8f, 2" — 2]

’LEIC

é‘l;’ - Z [p max{ci(je)7 0} - (p max{éf(x”l), ()} + <quf(§zlf’ 4 :17“'1))] 7

i€,

v

where the last inequality is because s € ONx (x1). Notice that &(2*1) < 0 and
pt cé(x 1) = 0 by the KKT conditions (item a). Therefore, max{¢‘(x*™),0} = 0

and
e > é5;+z[pmax{q 9,0} — (uisg, 2 — 2]

lGIc

> + Z max{cl ) 0} — <,ulSZ,[f? £+1>]

1€

> e+ [ple(dh) — (el + (ulst, 2 — 2))]
i€l

= +Zuee£>0

lGIc

where the second inequality above is due to the assumption that p > max u!. Under
i€1c

this assumption, then item c) ensures f,(z) + ix(z) > f,“(z) for all z € R™. It is
remaining to show that d* € 9x[f, (&%) +ix(2%)]. It follows from item c) that

fo@) +ix () > [ () = [oa™h) + (d e —a™)
= [p(@) + (= () + (@) + (d, 2 = 2))
+{d* x — 2°)
= [fo(@") =&+ (dx — 3
= f,(2° + zx(as )+ (d'x — 2ty — et

Thus item d) has been proved.
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e)If p> max pf, then item d) ensures that
1€Le

folz) +ix(z) > f,(3°) +ix(2Y) + (d 2 — 2 — & Ve eR™.

Take the limit with ¢ € K in the above inequality to conclude that d € 9[f,(%) +
ix(z)] (recall that f, is continuous). The remaining results follow from the same

reasoning and inequality é* > éf; + Z Mféf (>0).
i€T.

It follows from standard results on exact penalization of constrained optimization

problems (see for example Theorem 6.9 in [59]) that if p > max pt, and a Slater point for
1€Le
(2.3) exists, then the point z*! solution of (2.6) also solves the QP

.z 1 .
min f2(2) + e — 3. (2.15)

This argument is employed in the proof of Theorem 2.1 below.
Bundle method algorithm developed in this work is presented in the sequence.

Algorithm 2.1. AN EXACT PENALIZATION PROXIMAL BUNDLE ALGORITHM

Step 0. (Initialization) Select k € (0,1), Tmax > T4 > Tmin > 0 and a penalization parameter
p > 0. Choose x' € X and stopping tolerances eq, €1, €2 > 0. Call the oracle to compute
((b(xl),sé) and (ci(z"),s)), i € T.. Set &' «— x', £ 1,0+ 1, B' « {1}.

Step 1. (Next iterate) Obtain x**! by solving (2.7). Let ut as in Proposition 2.1 b). If p <
P = mé%x,uf, define p < p™®* + 1. Set dt (i‘e — az”l)/Té, and é¢ + fp(a?g) —

1€Le
fg(x“l) —7\d¥||?. Compute (approzimated) subgradients 32) and §¢ fori € T, s.t. ut >0
as described in Proposition 2.1 b).
Step 2. (Stopping test) If m%xc(i"é) < g, e' < € and ||d*|| < e, stop. Return i, (qb(ie),ég)
1€Le
and (c;(2%),85) fori € T. such that ut > 0.

Step 3. (Oracle call) Call the oracle to compute (p(x*1), sf;;rl) and (ci($€+1)7sf+1), i €.

Step 4. (Descent test). If (2.9) holds, then set 27! « 21 0 « ¢ + 1 and choose T4 €

~l+1

[TE, Tmax|; otherwise set T « % and choose 7't € [Tmm,Tf].

Step 5 (Bundle management) Choose B4 5 {6+ 1,0, £}, B 5 {0 +1,0, 1}, i € ..
Set £ < ¢+ 1 and go back to Step 1.

The penalization parameter p is only used in Steps 1 and 4, and it is not considered in

the QP subproblem. Therefore, the algorithm is not hindered by potentially large values
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of p. This is the main advantage of this algorithm over the ones proposed in [43] that

employs the penalization parameter in the objective function of the QP subproblem.

It is worth mentioning that the ingredients d‘ and é° are easily computed in Step 1 of
the algorithm and coincide with their definitions given in Propositions 2.1 a) and 2.1 d),

respectively.

The rule given in Step 5 above is a very economical one, since the information bundle
can be reduced to m triples of linearizations: the one issued by the new oracle informa-
tion (¢ 4 1), the one given by the last descent iterate (£) and the artificial/aggregated
linearization represented by —¢. Other bundle methods in the literature (e.g. [18]) do
not require keeping in the information bundle the linearization related to the last descent
iterate. However, having ¢ € B! in all iterations ¢ facilitates the mathematical proof
that the algorithm provides subgradients satisfying the KKT system (2.4) (see Theorem
2.1 below).

2.2 Convergence analysis

In what follows it is demonstrated that Algorithm 2.1 converges to a solution of (2.3)
and, moreover, provides subgradients and multipliers satisfying the KKT system (2.4).
First, it is shown that the penalization parameter p (only used to update the stability
center and to compute the aggregate error in Step 1 of the algorithm) is bounded. To this
end, it is necessary to prove that multipliers associated with the QP subproblem (2.6) are

bounded as well.

Proposition 2.2. Suppose that X is a bounded set and there ewists 2° € X such that
ci(z) <0 for alli € I... If 78 > Toin > 0, then the sequence of Lagrange multipliers {,uf}
of (2.6) are bounded.

Proof: 1t follows from Proposition 2.1 items a) and b) that

df =S D pis sk =S+ D D Nst + sk

1€Z, i€le jeBY

where A/ > 0 is the Lagrange multiplier associated with the constraint ¢;(x7)+(s?, z—27) <
0 in (2.7). By defining

ﬁe:ZMfZZZV and 5" = ZZ EAK_—ZZZ)&S{

i€Zlc i€l jeB! i€, 1€le jeBt

d' = §f; + ji*3" + 5% is obtained. Notice that, by proving that {fi‘} is a bounded sequence,
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it is also proven that every sequence {ut} = {Z M} is bounded (because A > 0, and
JEBE
therefore pf > 0). To this end, assuming without loss of generality that i’ > 0 to define

pl =5+ ZSX Since x**! = ¢ — 7¢d* by (2.10), it is conclude that

Z—l—l xZ
apt =5 s =d -5, =— (T—+s§,) .

As a result,

- xﬂ-i—l _ i.ﬁ . ”xf-‘rl _ in R
w1 = 0 - (S s ) < (B )

As, 78 > Toin > 0, X is a compact set and ¢ is a convex function, the subdifferential of ¢ is
compact on X and therefore there exists a constant M > 0 bounding ||z — 2| /7°+||85]|.
Thus,

< Il
< M=_—=M V.
= TP Hp |

By showing that [|p|| is bounded away from zero it is also proven that {ji‘} is bounded

from above. Let v = max ci(2°). The definitions of 5/ and s% implies that
1€

C

() 4+ (80, 2" — 2™ < E(%) < i(a®) <y <0 and  (s%, 2" — 2 ) <0.

7

By multiplying the first relation above by uf > 0 and remembering that u! & (1) =0
(Proposition 2.1 a)) it is obtained

pi(sh 2 — 2y =Y (sl 2 — 2 < pfey(2”) < ply < 0.
jeB!

If 41¢ = 0, then A = 0 for all j € B¢ and thus Z (Nl 2% — 2™y = pbe;(2°) = 0. Hence,

jeBt

0>ty = Y mie(a®) 2 ) Y (Msla® — ™) + (s, 2" — o)

i€Ze i€le jeBt
_ ﬂ€<§€,l‘0 o xé+1> + <s€(,x0 _ xé+1> — [/(pé,xo o x€+1> 7

and it was demonstrated that 0 > v > —|[p‘||[|z° — 2"} for all £. As a result, p is
bounded away from zero (because X is bounded and z‘ € X for all £) and therefore {/i‘}

is a bounded sequence. This concludes the proof. [

This result shows that Algorithm 2.1 increases the penalization parameter only finitely
many times. As a consequence, p stabilizes and the study can rely on the theory of [1§]

to establish convergence of Algorithm 2.1.

Theorem 2.1. Consider problem (2.3) with convex and continuous functions ¢,c; :
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R™ — R. Suppose X # 0 is a bounded polyhedron, the sequence of prox-parameter
{74} satisfies Tmax > 7° > Tmin > 0 for all €, and that the Slater condition holds. Let
€p = €1 = €3 = 0 in Algorithm 2.1. Then

(a) There exists an indexr set K C {1,2,...} such that %irﬁée = 0, %irﬁde = 0 and
= =

the whole sequence {2} converges to a minimum & of (2.3), and as a consequence

+1

lim max ¢;(2) < 0. Moreover, lim 2™ = #.
leK

leK i€l

(b) Furthermore, the three sequences {85}k, {8{}x and {pi}x (defined in Proposition
2.1) have cluster points. Let sy, s; and fi; be arbitrary cluster points of these se-
quences, respectively. Then, s, € 0p(Z) , s; € 0ci(2) if i, > 0, and f; (i € Z.)
satisfy the KKT system (2.4) with & = .

Proof: Proposition 2.2 ensures that the penalization parameter p stabilizes after finitely
many steps, and therefore the solution 2! of subproblem (2.6) also solves the QP (2.15)
for all large enough ¢ (see the comments right after Proposition 2.1). As a result, after
finitely many iterations Algorithm 2.1 boils down to be the classical proximal bundle

algorithm applied to the problem of minimizing the penalized function f, over X:

IIli)I(l fo(x), with f, given in (2.8).
re
It follows from the analysis of the proximal bundle method (see Theorem 6.11 and § 7.1.1
of [18]) that there exists an index set K such that limé* = 0, limd* = 0 and lim 2* = #
teK teK Jes

(see [18, Theorem 6.2 iii)]) is a solution of the above penalized problem. Moreover, since
{7} is a bounded sequence, it follows from (2.10) and the above results that

lim 2™ = lim ¢ — lim 7d‘ = 2.

teK teK teK
It remains to show that the cluster point Z also solves (2.3). To this end it is just necessary
to prove that z is feasible for (2.3), i.e., ¢;(Z) < 0 for all ¢ € Z.. Notice that Step 5 of
the algorithm keeps the linearization of the last descent steps in the bundles Bf, i € T..
Then, as 2™ is feasible for (2.6) and s/ € dc;(#Y), ¢i(2%) + (sf, 20T — 2¢) < 0 for all £
and all i € Z. (because &’ = it by definition). By the Cauchy-Schwartz inequality it is

obtained
(@) < |sillll=t = 2| = [|slI=*d"]l, Viel., £=1,2,....

Since X is a bounded set, the subgradients Sf of the convex functions ¢; are also bounded,
[39, Proposition 6.2.2]. By taking the limit with ¢ € K in the above relation (and
remembering that ¢; are continuous functions) it is concluded that ¢;(z) < 0 for all i € Z...

Hence, the solution & of the penalized problem is feasible for (2.3), proving that & is also
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a solution to (2.3). This concludes the proof of item (a).

Existence of clusters points of the sequences in item (b) is ensured by the boundedness
of the subdifferentials of convex functions on bounded convex sets X and Proposition 2.2.
Let s4 be a cluster point of {3} } x, and let K’ C K be the index set gathering the iterations
satisfying s = ZléIII(l’ §$5 As the subsequence {8} is also bounded, it has a cluster point
s; and therefore there exists an index set K C K’ such that s; = zlei%/ 5f. By continuing

with this reasoning a cluster point fi; of the bounded subsequence {f}» and an index

set L C K" such that j; = 1{115:1 (1t are obtained. In summary, the index set L is such that
€

14

i

54 = lim §f;>, s; =lim §

_ . ¢
and p; = lim ;.
(el (el Hi = e i

As %1% ¢ = 0and L C K, it is concluded from Proposition 2.1 d) that 1€1HLl éﬁ) =0
€ €

and 12112 ¢t = 0 for all i € T, with fi; > 0. It also follows from Proposition 2.1 d) that
€

8 € Géégb(i*e) and & € 6’(35;01-(564). Hence, by passing to the limit as £ 5 oo in the latter
inclusions and recalling [40, Proposition 4.1.1] it is gotten s, € 0¢(2) and s; € Oc; () if
f; > 0. (Notice that if K is a finite index set (so is L), then the same conclusion trivially
holds from Proposition 2.1 e) and stopping test of Algorithm 2.1 with ¢y = ¢; = €3 = 0.)
From item (a) above, the cluster point  is an optimal solution to (2.3), and thus ¢;(z) < 0,
i € Z... It follows from the KKT conditions in Proposition 2.1 item a) that

0 = pbci(x"h) = ples(a" — 7%d").

Since 7 is bounded and lzlnLl d* = 0, the limit in the above identity can be taken to conclude
S
(by continuity of ¢;) that f; = 0 whenever ¢;(Z) < 0. Hence fi;¢;(2) = 0 for all i € Z..

Equation (2.10) gives

d' — (éé+2uf§f) = s € Nx(z"*).

i€l

Notice that {s%}1 is a convergent sequence (because all of its ingredients indexed by L

+1

are convergent sequences as well). Since lim 2™ = # and the normal cone of a convex

el
set X is outer semicontinuous, Proposition 6.6 in [58] ensures that IEIHLl s% € Nx(#), i.e.,
€

VAT ¢ Al e\ | - .
IEIEI%SX = 1£1€I£l [d — (% + Zuz@)] =— <s¢ + Z,um) € Nx(z).
lGIc lGIc
This concludes the proof. [
It was shown that Algorithm 2.1 asymptotically finds an optimal solution, subgradients

and multipliers satisfying the KKT system (2.4) of problem (2.3). Hence, Algorithm 2.1

33



(that is not difficult to implement) appears as an interesting tool to be employed by
OA algorithms to solve the (nonsmooth convex) OA’s subproblems (2.1) and (2.2). This

approach is formalized in the following chapter.
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Chapter 3

Regularized OA algorithms for
MINLP with nonsmooth convex

functions

In Chapter 2, the focus was on the OA nonlinear subproblems and on a bundle method
algorithm capable to solve them and providing appropriate subgradients. In this chapter,
the attention will be on OA’s MILP subproblems. The goal is to regularize the MILP
subproblems in order to accelerate the OA algorithm. As solving MILP problems is a
difficult task, the fewer MILP subproblem are solved the better.

3.1 Description of the method

In the sequel the regularized OA algorithms dealing with (possibly nonsmooth) convex
MINLP problems will be presented. If the problem’s functions are differentiable and there
is no regularization, then the given algorithms boil down to the classical one. To this end,

we recall the problem of interest:

fmin = min  fo(x,y) st. fi(r,y) <0, ieZ.:={1,...,ms}, (3.1)
(z,y)eX XY
where f; : R" x R™ — R, 7 = 0,1,...,my, are convex functions, X C R" is a simple

convex set (e.g. a polyhedron), and Y C Z"™ is an integer set. Both sets X and Y are
assumed to be nonempty and bounded (as a result, Y contains finite number of points).
Given y* € Y, one of the OA’s (nonsmooth) subproblem is (as we have already seen in
Chapter 1):

gél)r(l folz,y") st fiw,y") <0, i €L, :={1,...,my}. (3.2)
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Suppose that problem (3.2) is feasible. As consequence at least a solution z* is known.

Under the Slater condition, there exists Lagrange multiplies z¥ satisfying the KKT system

i€ZLo(zF)
py fi(a®, y%) = 0,0 € T(a")
pk >0, € Z(z%),

(3.3)

where Z.(2"%) is the set of active constraints at point 2* and Nx(z*,4") is a normal cone
of X at point z* and y* is a fixed vector. From now on, the notation N(2*) will be used

for this cone. The first line in the above system can be written as

0=+ T M ox o4

i€Te(xh)

where s2° € 0, fo(z", y¥), s € 8, f;(a%,y*) and sx € N(zF). The vector s& belongs to
R . Another arbitrary vector sgk € d,fo(x", y*) is needed, in a manner that (s%", sgk)
will be a subgradient of fy at point (2%, 3*), to create a cut to the MILP master problem.

In other words, a vector sgk € R™ is required such that

folw,y) > fola®,y%) + ((s5",s8), (x — a¥,y — y¥)) (3.5)

holds for all (z,y) € R"™ x R"™. Analogously to the constraints, vectors S?k e R™ are

required such that

k
holds for all (z,y) € R"™ x R™ and i € Z.(2*). Observe that the only part of the

subgradient that requires satisfying KK'T is the part relative to x. Any vectors sgk and
k

s/ can be chosen such that (3.5) and (3.6) holds.

(2

For a given fixed y*, Lemma 3.1 below shows that the subproblem

min  fo(z*,y*) + (537, sf), (2 — 2*,0))
re

st fildb, ) + (57, 8V, (@ — a%,0)) 0, i€ To(ah).
has the same solution set of subproblem (3.2).

Lemma 3.1. Consider the problem given by (3.7). Suppose that (3.3) holds. Then z*
solution of (3.2) is an optimal solution for (3.7) and, moreover, fo(x*,y*) is its optimal

value.
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Proof: To prove this result it is sufficient to show that
(55,53, (x —a*,0)) = 0,

for all z € X such that

k

Fila®, ™) + (52,87, (@ — 2%,0)) <0, i € T(zb). (3.8)

()

Consider x € X such that (3.8) holds. Remember that by definition f;(z*,4"*) = 0 for all

i € Z.(2*) and consequently

(s*" x—aF) <0, i e T(a"). (3.9)

70

Furthermore, there exists sy € N(2*) such that (3.4) holds. As X is a convex set,
(sx,r — %) <0 for all z € X. So, by (3.4)

(537,58 ), (= a*,0)) = (s, — )
= (- Z /Lfsfk — sx,z —a")
i€Ze(xh)
= — Z uf(sf,x—a:’“) — (sx, o —2") >0,
i€Ze(xh)
where the first part is positive because pf > 0 and holds (3.9). [

With this result, and assumption that (3.7) is feasible for all y € Y, all the pairs
(2%, y*) can be gathered and written a mixed integer linear programming equivalently to

problem (3.2):

min r
(r,x,y)ERX X XY _
s.t. f0($j7yj) + <(5§j>58j>a (IL’ - $j7y - yj)> S T, \V/] eT
fi(xj7yj> + <(S?J7 S;ﬂ)? (ZL’ - xjuy - y])> < 07 vj € Ta (&S IC(‘rj)>

(3.10)

where T is given by
T = {j| (3.2) is feasible and 2’ is an optimal solution.}

The constraints in problem (3.10) are known as optimality cuts.

Theorem 3.1. Assume that the nonlinear problem (3.2) satisfies the Slater’s condition
and (3.3) holds for all j € T'. Then problem (3.10) is equivalent to problem (3.1), in the

sense that both have the same solution (z,y) with 7 = fo(Z, 7).

Proof: Let (Z,y) be an optimal solution of problem (3.1). Then fo(Z,y) < fo(27,y7) for
all j € T. In particular, fy(Z,7) < 7, the optimal value of (3.10). But (z,7) = (27,7’
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for some j € T. As a result, 7 < r/. Lemma 3.1 ensures that 7 = fo(x7,17), and as a

consequence
fo(z,9) <7 < fola?,y7) = fo(2, 7).
This completes the proof. |

The previous result only holds if all nonlinear subproblems (3.2) are feasible and all
the finitely many point ¢/ € Y are collected. Still this is not always the case. Now suppose
that given y*, problem (3.2) is infeasible. In this case, there exists at least an index i € Z,
such that f;(z,y*) > 0 for some x € X. Once subproblem (3.2) is infeasible for a fixed

y*, the aim is to minimize infeasibility. A way to do that is to solve the subproblem:

min Z max{ fi(z,y"),0} . (3.11)

zeX
1€,

Subproblem (3.11) has at least an optimal solution z* because X is compact and the
involved functions f; are continuous. Let 8, = {i € Z.|fi(x,y*) > 0 for some z €
X}. For all i € f the vector sfk € O, fi(x* y*) exists and it is also a subgradient in
O, max{ fi(xz* y*),0}; and for all i ¢ B, 0 € 0, max{f;(z*,y*),0}. Note that functions
max{ f;(-,y¥),0} are convex and their domains are the entire space R". Then, Theorem
7.4 in [62] yields

8m2max{fi(xk,yk),0} = Z@mmax{fi 2 "), 0} = 28 max{ f;(x", y*),0}.

1€ 1€ZL, 1€L%

As a result, the optimality condition of subproblem (3.11) writes as

0 €0, Z max{ f;(z",y*),0} + N(2"),

1€0k

or alternatively

0= s +sx. (3.12)

i€ B
. . k .
Using the same procedure as before, the ex1stence of vectors s! can be assured and it

belongs to 9, f;(z*,y"*), i € Bk such that (s¥ yk) is a subgradient of max{f;,0} at point

S 5
k

(2%, y¥), where z* is a solution of (3.11).

Theorem 3.2. The variable y* which makes the NLP subproblem (3.2) infeasible does

not satisfy the following constraints

k k

fi@® y") + (57, 87), (x — 2ty — ) <0, Vi€ G (3.13)

where sfk satisfies (3.12), z € X andy € Y.
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Proof: Given y* the solution z* of problem (3.11) yields
Z max{ f;(z*, y*),0} > 0. (3.14)
1E€BK

Suppose that the integer variable y* is feasible to constraints (3.13). So there exists 7 € X
such that

k

Fil@® yF) + ((s7 80, (7 — 2%,0)) <0, Vi € By,

Simplifying,

Summing for all ¢ € 8 the inequality is written as
Z fi(z® y*) + Z(sfk,i — 2y <.
€Lk i€P%

Using (3.12)

S st —at) = () stz —ab) = (—sx, 7 —ab) >0, (3.15)

It becomes

> filatyh) <o,

1€fy
which leads to

Z max{fi(xk, yk)v O} =0,

1€fy

a contradiction with (3.14). =

Consider the following index set
S = {j| (3.2) is infeasible and 27 is an optimal solution of (3.11).}

The next result shows that variables ¢/, with j € S, are eliminated from the feasible set
of problem (3.1) by the feasibility cuts defined in (3.16) below.

Theorem 3.3. Let j be an arbitrary index in S, fuax(T,y) = Z max{ f;(z,v),0}, sﬁfax =

iE,Bj
Z s and s¥,, = Z sV where s € 0, fi(x7,y7) and sV € 9, fi(27,y7). The cut
1€ 1€,
leaX(Ij7 yj> + <<Sf15ax7 b%ax)? (ZE - xjv Yy — y])> S 0 (316)

excludes the variable i’ €Y.
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Proof: By putting y = ¢’ in (3.16) the following inequality holds

0 Z fmax( ,y])—|—<njax,$—l'j>

— Zmax{fi 7 ,y ,0}+Z<Sfjaw_$j>

i€B; i€fj
> Z(Szx y L — J'J>
iE,Bj
which leads to a contradiction with (3.15). [

Note that to solve problem (3.11) we can start with cuts provided by (3.2). All the two
situations that can occur when we fix an integer variable y were analyzed. By gathering
all the possible optimality cuts in index set 7" and all the possible feasibility cuts in index

set S, the following MILP problem can be written as

;

min T
(ray) ERX X XY
s.t. fo(x?, yj)—i—((so ,50 ),(x—xj,y—yj)>§r VieT
fil@d ) + ((s7 80, (w — 2l ,y — y7)) <0, Vj €T, i€ L))
\ Fras (', 41) 4 (8T ) (@ — 2y = 9')) <0, VIES,

(3.17)
which is equivalent (in terms of the optimal solutions and optimal value) to the MINLP
(3.1).

In practice the index sets 7' and S are unknown. Iteratively subsets 7% C T and

Sk C S are constructed gathering optimality and feasibility cuts, obtained up to iteration
k:
T" = {j < k| (3.2) is feasible and 27 is an optimal solution.}

S* = {j < k| (3.2) is infeasible and 27 is an optimal solution of (3.11).}

Note that (z7,y7) is feasible to problem (3.1) for all j € T*. As a result, f& =

up
mir% fo(z?,47) is a upper bound for the optimal value of problem (3.1). As the involved
jeT

function are convex, the following master problem provides a lower bound for (3.1).

;

min T
(r,z,y) ERX X XY
S.t. r <
fola?, y])+<(so 730 N (@ —ady—y)) <7, vjeT"
fila ) + (st 8)), (@ — a7y — 7)) <0, VjeTh i€ ()
\ Fras (', 41) + (5T %) (@ — 2y — 9')) <0, Wl € ™.

(3.18)
Note that the point (z7,y7) yielding f* k is feasible to above problem. In order to eliminate
such a pomt (and as well as all previous iterates) the constraint r < , 1s replaced by

r < up — ¢, where € > 0 is an arbitrary small parameter. The size of problem (3.18)
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depends on the number of performed iterations, and can substantially grow making (3.18)

a very difficult optimization problem.

In order to overcome this situation, the goal is to regularize the MILP subproblem in
the sense that the minimum number of MILP as possible are solved allowing to stabilize
the OA iterative process by computing cuts and determining new iterates nearby a region
of the best known candidate solution (at iteration k) for (3.18). If visiting uninteresting
regions are avoided, the OA algorithm may approximate better (and faster) the functions
on regions containing global solutions. This may end up in solving less MILP subproblems
and less nonlinear subproblems. To this end, it is proposed to add a norm || - ||, to the

objective function of (3.18):

(

g T ukll(x y) — (@95
s.t. r < —€
fo(z?, y”)+<(so,so ), (x—ad,y—y)) <7, Vje Tk
filad ) +{(s7 s s1), (@ =2l y —¢)) <0, Vi €T i€L(a!)
\ Fonax(@, 1)+ (($hras Vla)s (2 — sy =) <0, VI € S,

(3.19)
where ;. > 0 is a parameter controlling the influence of the norm. In this formulation the
pair (¥, Ak) known as stability center [16], can be the current iterate (z*, y*) or the pair
yielding f* . The norm and parameter j;, can be chosen freely. For instance, ||-||o = ||-||1
or || - ||o = || “|]oo leads (3.19) to a MILP. On the other hand, the choice || - ||o = || - ||2

results on a MIQP, which is in general more difficult to solve than a MILP. The choice of
this norm depends on the structure of the problem. The usefulness of using regularization
in MINLP has been evidenced in [16, 68, 78]. However, regularized techniques have not
been employed so far in OA algorithms (except in [20], based in this work). The following
regularized OA algorithm is proposed.

Algorithm 3.1. A REGULARIZED OUTER APPROXIMATION ALGORITHM

Step 0. (Initialization) Choose y° €Y , € >0, a norm ||-||s and set fu_p1 =00, T 1 =8"1=0,
k=0.

Step 1. (NLP) Apply Algorithm 2.1 to subproblem (3.2). If along the iterative process the
corresponding QP (2.6) is infeasible, go to Step 2. Otherwise, let ¥ € X, and ka €
O fi (¥, yP),i = 0,1,...,my be returned by Algorithm 2.1. Compute arbitrary vectors
y* N N k _ k-1 k _ gk—1
s; € Oyfi(x®,y"),i = 0,1,...,my, set T = T"" U {k} and S* = S*~". Update the

upper bound ,[fp = min{ff;l, fo(z¥, yk)} and go to Step 3.

Step 2. (NLP feasibility) Solve the feasibility subproblem (3.11) with Algorithm 2.1 to obtain
7 € X, 58 € O (o, 4) with frae (1) = max{fi(, ), 0}. Compute an arbitrary
i€,

vector shax € Oy frnax (2%, y%), set S¥ = SE=L U {k} and T* = T+ 1.
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Step 3. (Integer trial point) If (3.19) is infeasible, go to Step 4. Otherwise, let y*' be the
y—npart of solution of problem (3.19). Set k =k + 1 and go back to Step 1.

Step 4. (Termination) If T* = (), then MINLP (3.19) is infeasible. Otherwise, return the e-
solution (z*,y*), with (x*,y*) the pair of points yielding f{fp = fo(z*,y*). Terminate the

algorithm.

Since the feasible set of the bundle method QP problem (2.6) is an outer approximation
of the feasible set of (2.3), if the former is empty so is the latter. This is why the above
algorithm moves to the feasibility problem whenever the bundle method QP is empty.
Observe that in this case the nonlinear subproblem is solved using Algorithm 2.1 because
its provides subgradients that satisfy KKT conditions as explain before. Moreover, the

! is the regularized one (3.19). In the step 0 of Algorithm

master problem yielding y**
3.1, we can choose a parameter py and a rule to updated this parameter. In this work,

we set this parameter as a constant, but a iterative process can be used as well.

3.2 Convergence analysis

The convergence analysis of Algorithm 3.1 is based on [26]. As the number of integer
variables of problem (3.1) is finite, it is enough to show that OA Algorithm 3.1 does not
repeat points. As a result, the algorithm finds an optimal solution of problem (3.1) (if

any) in finitely many steps, or proves that the problem is infeasible.

Lemma 3.2. Let C}npp be the solution set of problem (3.1) and Cyrpp be the feasible
set of problem (3.19). Given € > 0 in Algorithm 3.1, let fy be the optimal value of problem

(3.1) and f¥ as in the algorithm. If f¥ — e > fo then Cyynpp € Crire-

Proof: It C3;inpp = O then the result trivially follows. Assuming that O # C5npp 2

(z,9). As f;,1=0,...,my are convex functions, the following inequalities holds:
5}7 —€ 2 fO = fo(fag) > fO(xjayj) + <(ng7 326]), ('i. - ijaﬂ - yj»: ] € Tk

0 Z fz(jvg> 2 fi(xjayj) + <(8?j78?j)7 (j - xj’g - yj>>7 VJ € Tka (RS Ic(xj)

!

0 > fuox(@7) > fax (@ 01) + (850, 8%0), (7 — 2,5 — 1)), VI e Sk,

It was then demonstrated that (z,y) € Cprrop. As (Z,y) is an arbitrary point in Cy; v ps

the proof is complete. [

Theorem 3.4. Suppose that subproblem (3.2) satisfies the Slater’s condition, the chosen
subgradients at Step 2 of Algorithm 3.1 satisfy the KKT conditions and |Y'| < co. Then
the algorithm terminates after finitely many steps either with an e-solution of (3.1) or

proving that (3.1) is infeasible.
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Proof: In order to prove that Algorithm 3.1 converges in a finite number of steps it is
sufficient to show that any y € Y provides by the algorithm does not repeat, because the
set Y has only finitely many points. At iteration k, let (z,y,7) be a solution of problem
(3.19). Suppose j = ¢’ for some j € S*¥ or j € T*. By Theorem 3.3, if j € S* then the
inequality

Fnax (@ 47) + ((Sts Stha)s (7 = 2y = 7)) <0,

excludes the variable 4/ € Y. That means j € T*. As (z,,7) is a solution of problem

(3.19) and y = 5/, then 7 in (3.19) can be replaced and the following inequalities hold

P e < ol y) — e
Jol?, ) + (55758, (@ = 29,0)
fi(xj’yj) + <(8§:J’8§:J)7 ("Z‘ - CUj70)>

(3.20)

As subgradients satisfy KKT conditions the inner product (s%’,z — x7) > 0 holds (see
proof of Lemma 3.1). So by the second inequality of (3.20) fo(2?,y’) < 7 . By the first
inequality of (3.20), fo(2?,4’) < fo(2?,y?) — € which is a contradiction because € > 0.
Therefore j ¢ T* U S* and the previous integer variable does not repeat in the OA
algorithm. As |Y'| < oo, the algorithm will stop after finitely many steps.

Now it will be proved that the algorithm either provides a e-solution or proves that
(3.1) is infeasible. Suppose that Algorithm 3.1 stops at iteration k. If 7% = () then
problem (3.1) is infeasible. Now assume T* # (), i.e., problem (3.1) is feasible. When the
algorithm stops at Step 3 with subproblem (3.19) infeasible, it follows from Lemma 3.2
and the fact that Cy;ypp # 0 that fi — fo < €, ie., the point (z7,97) yielding v, 1s a

e—solution. This concludes the proof. [

Note that the norm does not interfere in the convergence of OA algorithm. The next
chapter addresses nonsmooth convex MINLP problems with chance constraints. The

numerical results about this theory will be present in Chapter 5.
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Chapter 4

Nonsmooth convex MINLP with

chance constraints

In this chapter we considered MINLPs with chance constraints. In Section 4.1 a few
well-known results on Chance-Constrained Programming are revisited. Section 4.2 is

dedicated to Copulae, which are multivariate functions that approximate probability fun-
ctions. Chance-Constrained MINLP (CCMINLP) problems are considered in Section 4.3.

4.1 Chance constraints

In this thesis, stochastic optimization problems where the randomness appears only in

the constraints are studied. For instance, constrains represented by
hi(z, ) > 0,Vi=1,...,s

where h : R" x R™ — R® is a mapping having generalized concavity properties on a given
level set and £ € R™ is a random vector. One strategy that is widely employed to deal
with problems of this class is chance-constrained programming, which replaces the above

stochastic constraint by the probability one
Plh(z, &) 2 0] = p, (4.1)

where P is the probability measure associated to &, and p € (0,1] is a given parame-
ter. Chance constraints appear in several real life problems such as water management,
telecommunications, electricity network expansion, mineral blending, chemical engineer-
ing and others [36, 50, 55, 66, 71].

In a general term, a stochastic optimization problem involving chance constraints is
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written as
min ¢(z) s.t. Plh(z,§) > 0] >p. (4.2)

zeX
Function ¢ : R® — R is assumed to be convex but not necessarily differentiable and
X # () is a given convex set, that does not depend on uncertain parameters. Basically,
a point z is feasible for problem (4.2) if the system of equations h(x,&) > 0 is satisfied
with probability at least p. It is important to mention that the function P[h(z,&) > 0]
may fail to be differentiable even when h is smooth. This is the case when £ follows a

multivariate normal distribution having a singular covariance matrix [70].

Chance constraints problems have been introduced by Chernes, Cooper and Symonds
in 1958 in the papers [13] and [14]. The first proposed method was based on individual

chance constraints

Hli)I(l o(z) st Plhi(z,§) >0 >p,Vi=1,...,s. (4.3)
ze

Observe that problem (4.2) and (4.3) are different from each other. The constraint in (4.2)
is called joint chance constraint and the ones in (4.3) are individual chance constraints.
Miller and Wagner [49] investigated problem (4.3) where the stochastic components are in-
dependent. The general case, where the random vector could have dependent components

was introduced by Prékopa in the papers [53, 54].

Probability constraints lead to some difficulties: the first one is that evaluating the
probability function involve, in general, computing numerically a multidimensional inte-
gral. Depending on the dimension of the random vector £, the task of evaluating the
probability constraint becomes computationally very expensive. There are at least two

known manners to overcome this difficulty:

- considering inexact values for the probability function, an approach already inves-
tigated in [68];

- approximating the probability by a simpler function, also studied by [61, 66, 69, 71].

In this work the second strategy is employed and the probability function is approximated

by a suitable copula, as discussed in Section 4.3 below.

Another difficulty in dealing with chance-constrained programming is that the proba-
bility constraint can yield a nonconvex feasible set even if function A in (4.3) is concave.
The references [37, 38, 55, 72] have addressed this issue for a broad class of probability
measures. In what follows some main results on convexity of the set issued by probability

functions are reviewed.
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4.1.1 Generalized convexity of chance constraint

In this section convexity of the following set
M(p) = {z € R*|P[h(x,&) = 0] = p} (4.4)

is reviewed. To this end, it is necessary to have some results on generalized concavity and

its properties . The following useful definition is classic.

Definition 4.1. Let o € [—00, 0] and m, : Ry x Ry x [0,1] — R be defined as
me(a,b,\) =0 if ab =0,
and fora > 0,b> 0, € [0,1]:

)
ab' = ifa=0
max(a,b) if a = o0

malab,3) = XGOS

min(a,b) if @« = —o0

\ (Aa® 4 (1 — \)b*)a otherwise:

The function defined above is used to generalize concavity. The following lemma is

given in [62].

Lemma 4.1. The function a — mg(a,b, \) is nondecreasing and continuous.

The extension of concavity follows from the next definition.

Definition 4.2. Consider a nonnegative function f defined on some convex set £ C R™.

Then f is called a— concave (o € [—00, 0] ) if only if
FOw + (1= A)y) = ma(f(x), f(y), A) Yo,y € QA € [0, 1],

where my, is the function in Definition 4.1.

If &« = 0, then function f is called log-concave because log f(-) is a concave function.
If « =1, then f is concave; if &« = —oo then f is a quasi-concave function. If § < a and
the function f is a—concave, then by Lemma 4.1 f is f—concave. The same definition

above can be used to define generalized concavity for probability measure.

Definition 4.3. Consider P a probability measure defined on some measurable conver set

Q C R™ Then P is called a—concave (a € [—o0, 00]) if only if
PAA+ (1 — \)B] > m4(P[A], P|B], \),
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for all measurable sets A and B subsets of Q and X\ € [0,1]. Here NA + (1 — A\)B is the
Minkowski sum, that is, N\A+ (1 = XN)B={ x+ (1 — \N)y,z € A,y € B}.

Given a random vector £ € R™, it has a—concave distribution if the margins P,
induced by &; is a—concave. It is important to know the link between the margins and

the cumulative distribution function. This is given by the following lemma.

Lemma 4.2. If a random vector £ induces a a—concave probability measure in R™, then

its cumulative distribution function F¢ is a a—concave function.

Proof: See Lemma 4.12 in [62]. ]
An important result says about the margins of £ with the distribution of &.

Lemma 4.3. If a random vector £ has independent components with log-concave marginal

distribution, then & has a log-concave distribution.

Proof: See Lemma 4.13 in [62]. m

Note that the function in (4.1) is a composite map. Therefore to know about gener-

alized concavity of composite functions the following theorem is necessary.

Theorem 4.1. If f is a concave function defined on a convex set 2 C R™ and g : R =+ R
is a nonnegative nondecreasing a— concave function, o € [—00, 00|, then the function go f

18 (x— concave.

Proof: See Theorem 4.20 in [62]. m

When functions h;,j = 1,...,s are considered as being quasi-concave, the next theo-

rem assure that function (4.5) is a—concave on the set (4.6) .

Theorem 4.2. Let functions h; : R" x R™,j =1,...,s be quasi-concave. If £ € R™ is a

random vector that has a— concave probability distribution, then the function

G(z) = Plhj(z,£) > 0,7 =1,...,] (4.5)

18 a— concave on the set
D ={x e R": 3¢ € R™ such that h;(z,§) > 0,7 =1,...,s}. (4.6)
Proof: See Theorem 4.39 in [62]. m

Note that function (4.5) is a—concave at variable z, and then if function is a—concave
in the other coordinate, the convexity of set (4.4) can be ensured. This result is given by

the next corollary.
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Corollary 4.1. Assuming that functions, h;(-,-),7 = 1,...,s are quasi-concave jointly
i both arguments and that & € R™ is a random wvector that has a—concave probability

distribution then (4.4) is a conver and closed set.

Results about convexity are important because many random vector £ have a proba-
bility distribution which is 0— concave. Consequently in order to use outer-approximation
algorithms in problems with chance constraints, the "log” function must be applied in the
probability function and then the composite function (multiplied by -1) is convex. The
function h can be separable and the random vector ¢ has independent components. In
this case, the joint probability constraint can be written as a product of individual chance
constraint and the problem become easier to solve. In some applications, the function h
is not separable and even if it is, the random variable ¢ has dependent components in
most of the time. Even when the set M(p) is convex, approximating it by linearizations

of the probability function is a difficult task due to the following reasons:

e cvaluating the probability function P[h(z,&) > 0] involves computing numerically a

multidimensional integral;

e computing a subgradient of P[h(x,£) > 0] requires evaluating (numerically) m in-

tegrals of dimension m — 1, [70].

When the dimension of the random vector £ is large, computing a linearization for the
probability constraint is too time consuming. To overcome this difficulty, the probability
P can be approximated by an appropriate copula C, modeling the dependence of the

components of £. Some results about copulae are reviewed in the next section.

4.2 Copulae: a bird’s eye view

In this section separable chance constraints are considered, that is, function A in (4.1) is
given by h(z,§) = g(x) — &, where g : R" — R™. When dealing with chance-constrained
programs it is, very often, impossible to get an explicit formula for the probability measure
P because the jointly distribution of £ variable is unknown. In what follows, the random
variable § € R™ will supposed to have known marginal distributions F,, ..., Fg, . This
is a weaker assumption than assuming that the joint distribution of £ is known. In order

to model the dependence among theses marginals a copula function will be employed.

The concept of copula was introduced by Sklar [63] in 1959, when he was studying the
relationship between a multidimensional probability function and its lower dimensional

marginals.
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Definition 4.4. An m—dimensional copula is a function C : [0,1]™ — [0, 1] that satisfies
the following properties:

i) C(1,...,1,u,1,...,1) =u Yu € [0,1].
ZZ) (C(ul, ey Ui, O, Uity - - - ,um) =0.
iii) C is quasi monotone on [0, 1]™.
In other words, the above definition means that C is a m—dimensional distribution

function with all univariate marginals being uniform in the interval [0,1]. The item (iii)

means that the C—volume of any box in [0, 1]™ is nonnegative (see [52] for more details).

Given a random vector £ with known margins F¢,,7 = 1,...,m, an important tool
proved by Sklar [63] is a theorem that assures the existence of a copula that approximates
the cumulative distribution F'. This theorem only assures the existence of a copula and

is reported below.

Theorem 4.3. Let F¢ be a m—dimensional distribution function with marginals F,, Fg,,

.., Fe,,. Then there exists a m—dimensional copula C such for all z € R™,

Ff('Zlv 22y« 7Zm> = (C(F§1 (21>7 F52<22>7 ce ,F§m<2m)). (47)
If Fe,oi = 1,...,m are continuous, then C is unique. Otherwise, C is uniquely deter-
mined in the image of Fe. Conversely, if C is a copula and Fy,, ..., F,, are distribution

functions, then the function F¢ defined by (4.7) is a m—dimensional distribution function

with marginals Fy,, ..., Fg, .

In the above theorem, functions F¢,,i = 1,...,m can be different. Observe that this
theorem is not constructive, it just ensures the existence of a copula associated to the

distribution F¢(z). In most of the cases, a copula providing the equality

ClFe (21), - Fe(2m)) = Fe(2)

is unknown. One exception is when the random vector is independent, whose associated

copula is the product copula:
Clug, ...y Up) = Ul -+ U

The problem of choosing/estimating a suitable copula has been receiving (from the sta-
tistical community) much attention in the last few years, [15, 52|. As shown in books

[25, 52|, there are many copulae in the literature.
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Any copula C can be bounded by the functions W™(uy,ug, ..., u,) = max{u; +
Uy Uy —m + 1,0} and M™(uy, ug, ..., Uy) = min{uy, ug, . .., uy}. Theses bounds are

expressed by the following theorem, whose proof can be found in [52].

Theorem 4.4. [f C is a copula, then for all vector w = (uy,...,uy) belonging to the

domain of C the following inequality holds

W™ (u) < C(u) < M™(u).

Functions W™ and M™ are known as Frechet-Hoeffiding bounds. The map M™ is a

copula for any dimension, and W™ is a copula for dimension m = 2 only.

4.3 Chance-constrained MINLP problems

In recent years, the stochastic programming community have been witnessed a great deve-
lopment in optimization methods for dealing with stochastic programs with mixed-integer
variables [8]. However, there are only few works on chance-constrained programming with
mixed-integer variables, [3, 16, 64, 74].

In this section, the problem of interest consists in nonsmooth convex mixed-integer
nonlinear programs with chance constraints (CCMINLP). These class of problems can
be solved by employing the outer-approximation technique presented in Chapter 3. In
general, OA algorithms require solving less MILP subproblems than extended cutting-
plane algorithms [76], therefore the former class of methods is preferable than the latter

one. This justifies why we have chosen the former class of methods to deal with problems

of the type
el folr,y)
s.t. filz,y) <0, i=1,...,mp—1 (4.8)
Plh((z,y),£) = 0] = p,
where
o fi :R"™xR™ =R ,i=0,...,ms—1, are convex but possibly nonsmooth functions;
e X C R™ is a polyhedron;

e Y C Z™ contains only integer variables;

both X and Y are compacts sets;

o h((z,v),&) = g(x,y) — & where function g : R"™ x R™ — R™;

¢ € R™ is the random vector;
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e pe€ (0,1) is a given parameter;

e P is the probability measure associated to the random vector &.

Furthermore, g is assumed to be a concave function and P a 0—concave distribution (thus
P is a—concave for all & < 0). Some examples of distribution functions that satisfies the
0—concavity property are the well-known multidimensional Normal, Log-normal, Gamma
and Dirichlet distributions [55]. Under these assumptions, the following function is convex
[Theorem 4.2]

fmy (2, y) = log(p) — log(P[h((x,y),§) > 0)]) = log(p) — log(Plg(x,y) >&]).  (4.9)

As a result, (4.8) is a convex (but possibly nonsmooth) MINLP problem fitting notation
(3.1) of Chapter 3:

fmin == min  fo(z,y) st. filr,y) <0,ieZ.:={1,...,ms}. (4.10)

(z,y)eEX XY

In addition to the difficulties present in MINLP models, the above problem has two
more complications: the involved functions can be nondifferentiable and, mainly, f,,, en-
compasses a probability function. Consequently, since problem (4.10) is a convex MINLP,

Algorithm 3.1 developed in Chapter 3 can be applied.

Let us now consider the OA’s nonlinear subproblem (3.2) with the last function rep-
resenting a joint probability constraint (the analysis given below is analogous for the
feasibility problem (3.11)). Given a fixed y* € Y, the nonlinear subproblem (3.2) with
fm, replaced by (4.9) becomes

Izlél)r(l fO(xvyk)
st file,y®) <0, i=1,...,my—1 (4.11)
log(p) — log(P[g(z,y*) > ¢]) < 0.

4.3.1 Chance-constrained MINLP problems: an approximation

using Copulae

Due to the probability function P[g(x,y) > £|, evaluating the last constraint in problem
(4.11) and computing its subgradient is a difficult task: as previously explained in Section
4.1, computing a subgradient of Plg(x,y) > £| requires numerically solving m integrals
of dimension m — 1. If the dimension m of £ is too large, then creating a cut for function
log(p) — log(Plg(x,y) > &]) is computationally challenging. In this situation, it makes

sense to replace the probability measure by a simpler function. In this manner, this work
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proposes to approximate the hard chance constraint Plg(z,y) > &] > p by a copula C:

C(F§1 (gl(x> y))v FEz(QQ(xv y))’ s >F§m<gm($a y)) > b.

By applying "log” in the inequality above the following function is obtained

fm(z,y) = log(p) —log C(F¢, (91(7,v)), Fe,(92(,v)), - - -, Fe,, (gm (7, v)), (4.12)

where F, is the marginal probability distribution of F¢(z) = P[z > £], which is assumed
to be known. The function given by (4.12) is well defined by Sklar’s theorem [Theorem
4.3]. If C is 0—concave, then (4.11) can be approximated by the convex MINLP

Héi)l(l fo(z,y%)
st filz,y®) <0, i=1,...,m;—1 (4.13)
log(p) — 10g(C(Fe, (91(x,4*)), Fe, (g2(x,4%)), . ., Fe, (gm(z,y"))) < 0.

In order to have a good approximation of chance constraint it is mandatory that

C(Ffl(gl(xay))7F§2<92<x7y))7 R Ffm(gm(m7y)) ~ Ff(.gl(x?y)ng(m?y)a cee agm(xay))v

for all (z,y) in a neighborhood of the solution set of problem (4.10). An appropriate

copula must be chosen in a way that

e approximates well the underlying probability function;

e has generalized concavity properties so that after a simple transform (e.g. log) the

resulting function is concave, and the CCMINLP problem becomes convex.

In the next section we present a family of copulas that satisfy the above requirements
(the first condition is verified numerically whereas the second one is asserted by Theorem
4.2.)

4.3.2 Zhang’s copulae

In order to ensure convexity of the underlying MINLP problem, suitable copulae must
be chosen (e.g. concave and a— concave copulae with a < 0). Consider any copula C.
By applying the ”log” function in this copula, by Theorem 4.4 the following inequality is
obtained

log W™ (u) <log C(u) < log M™(u).
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As the only concave copula is M™(u) ( see [52, § 3.26]), in order that the copula C must

be log concave this copula should be
Clu) =K - M™(u)

for all natural K. In other words, the copula C is a product of copula M"™. Using
the logarithm property alogb = log b®, the number K can be decomposed, for instance,
K = K, - K, and the copula can be written as C(u) = K; - M™(u)*2. This means that
the copula with this property must be the product of powers copulae M".

There is a family of copula with this property, introduced by Zhang [79]. The family

is given by
o . ajyz
Clur, - um) = | | min (@), (4.14)
j=1
where a;; > 0 and Z a;j; = 1foralle=1,...,m. Different choices of parameters a;; give

j=1
different copulae, all of them nonsmooth functions, but with subgradient easily computed

via chain rule. The next result shows that this family of copula is a log concave.

Proposition 4.1. Let £ € R™ be a random vector with all marginals Fe,,i = 1,...,m
being 0—concave functions. Suppose that g : R" x R™ — R™ is a concave function.
Consider a Zhang’s Copula C given in (4.14) for a certain choice of parameters a;;.
Then

C(Fe, (91(7,9)), Fey (92(,9)), - - -, Fe, (gm (7, 9)))

1s a—concave for a < 0.

Proof: Given a pair (z,y) € R™ x R™ we set z = (x,y) to simplify the notation. Let
21 = (x1,21), 22 = (22,92) and z = Az; + (1 — N)zp with A € [0,1]. As the function g is

concave, then for alli =1,....m

As Fe,, i = 1,...,m, are increasing functions, by applying F¢, to inequality (4.15) it
becomes

Fe(9:(Az1 + (1 = A)z2)) 2 Fe,(Agi(z1) + (1 = A)gi(22)). (4.16)

By applying log in the above inequality,

log(F, (g:(Az1 + (1 = A)22))) = log(Fy, (Agi(z1) + (1 = N)gi(22))). (4.17)
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Functions F, are 0—concave by hypothesis. Then

log(Fe,(Agi(z1) + (1 = N)gi(22))) = Alog(F, (9:(21))) + (1 = M) log(Fe,(gi(22))).  (4.18)

By gathering inequality (4.17) and (4.18) we have

log(Fe,(9:(A21 + (1 = N)22))) > log(AFe,(gi(21)) + (1 = M) Fe;(9:(22))) (4.19)
> Alog(Fe (9:(21))) + (1 = A) log(Fe,(gi(22)))-
The Zhang’s Copula evaluated at the point Az; + (1 — \)zy is
C(Fa (0101 + (1= 0)22). . P (gm(hy + (1= N)22) = [T pmin (B (g:00s
7j=1

+(1=N)z))]",
where a;; > 0.

To simply the notation, Fg, (g1(Az1 + (1 —X)z2), ..., Fg, (gm(Az1 + (1 — X)22) is written
as Fe(g(Az1 + (1 — N)22)). So,

LA 1<<m
7j=1

log C(Fe(g(hz1 + (1= 1)22)) =1%< MHVH%QA+O—A)DWQ

= Zlog (gggig}n [Fe, (9i( Az + (1 — A)zQ))]““) .

As the log function is increasing, log min v = min log u, and therefore

r

log C(Fe(g(Az1 + (1 = A)22))) = . B, log (Fe,(g:(Az1 + (1 — A)z2))™"] .

As a;; > 0, the equality becomes

log C(Fe(g(Az1 + (1 = N)z2))) = lgg}n [ajilog (Fe,(gi(Az1 + (1 = A)22))] -

J=1

By using (4.19) in the above equality it becomes

log C(Fe(g(Az + (1 - ) = Z min a;,; [Alog(F, (gi(21))) + (1 — A) log(Fe, (gi(22)))] -

1<i<m
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The right-most side of the above inequality is greater or equal than

Z min a;; [Alog(F, (9i(z1)) —I—Z min a;; [(1 — A) log(Fe, (gi(22)))]

1<i<m 1<i<m

1<i<
3—1

=AY min [log(F(g:(0))) + (1 = ) Z min [log(Fy (6:(22)))"]

=3 tog (i (Rl + (- 0 Y o i (P ae2))

j=1 j=1

=A llogH min (F (gi(20))™ | + (1= A) llogH min (F, (gi(Zz)))‘””’]

= Mog C(Fe(g(z1))) + (1 — A) log C(Fe(g(22))).-

It was then demonstrated that
log C(Fe(g(Az1 + (1 = AN)22))) > Alog C(Fe(g(z1))) + (1 — A) log C(Fe(g(22))),

i.e., the log C(F¢, (g1(2)), - .., Fe,. (gm(2))) is a concave function. In other words, the copula

C is ae—concave for a < 0. (]

This result is fundamental for this Thesis because this family of copula is log concave
and can be used in the problem (4.13). As the assumptions about OA algorithms are

assured, the convergence for this class of problem is achieved.

4.3.3 Chance-constrained involving discrete distribution

Until now, we have seen the theory about chance constrained when ¢ follows a continuous
distribution of probability. In this section we review briefly CCMINLP when ¢ follows a
discrete distribution of probability.

Consider the chance constrained problem:

min_¢(z) st. Plg(a) =€ >p (4.20)

zeX,z>0

where ¢ : R" — R is a convex function, g : R — R™ is concave function. We assume that
the deterministic constraints are expressed by a closed convex set X C R™. The random

vector & € R™ has finite support, that is, there exist vectors ¢ € R™,i = 1,..., N with
N

Pl¢ = &' = m; for every i where m; > 0 and Zm = 1. We assume without loss of
i=1
generality that £ > 0 and 7; < 1 — p. We can formulate problem (4.20) as a MINLP. To
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this end, we introduce for each i = 1,..., N a binary variable z; where

__foit swze
' 1 if g(x) 2 &

Then letting v = g(z) we obtain the equivalent problem

min  ¢(z)
T,2,0

st.  glz)=wv
v+Eiy>E i=1,...,N

N
Zﬂizi <l-p
i=1

r>02€X,v>02¢€{0,1}".

(4.21)

Problem (4.21) is a MINLP problem that can be solved by specialized methods.

Another approach to solve chance constrained problems when ¢ follows a discrete

distribution is using p—efficient points.

The p—level set of the distribution function F¢(w) = P[{ < w] of £ is defined as

2z, = {weR" F(w)>p}

Problem (4.20) can be rewritten as

ml)I(l o(x) st. g(z) € Z,. (4.22)
Te
It can be proved that for every p € (0,1) the level set Z, is nonempty and closed (see
Theorem 4.6.2 and 4.6.3 in [62]).

There exist minimal points in the level set Z, with respect to the partial order in R™

generated by the nonnegative cone R'?. These points are called p—efficient points.

Definition 4.5. Let p € (0,1). A point v € R™ is called a p—efficient point of the
probability distribution F¢ if F¢(v) > p and there is not w < v,w # v such that F¢(w) > p.

For a given p € (0,1) let be £ = (Fé;l)(p) F(_l)(p)). Then can be proved that for

yeee e

every w € R™ such that F¢(v) > p must satisfy the inequality w > .

Let be Z an arbitrary index set and let be v7,j € T all p—efficient points of £. We
define the cones
K;j=v +R7,j e
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By Theorem 4.60 in [62] it follows that Z, = U K;. With the results above, problem
JET
(4.22) can be rewritten as the following disjunctive semi-infinite formulation

min ¢(x) s.t. g(x) € U K;. (4.23)

rzeX )
JjET

Denote the convex hull of the p—efficient points by E, i.e., F = conv{v’,j € Z}. Then
can be proved that
conv(Z,) = £ + R

Moreover, the set conv(Z),) is nonempty, closed and it is contained in the set of p—efficient
points. If £ € Z™, Theorem 4.64 of [62] assures that the distribution function F: has
finitely many p—efficient points. With this assumption, the set Z is a finite set.

Theorem 4.5. Let A be the set of all possible values of an integer random vector &. If
the distribution function F¢ of & is a—concave on A+ ZT for some o € [—00,00], then

for every p € (0,1) one has

Z,={yeRMy>w>Y M/, Y N =11 >0wezm},

jeT jeT

where v, j € T are the p—efficient points of Fy.

Proof: See Theorem 4.65 in [62]. m

The consequence of this theorem is that under a—concavity assumption, all integer
points contained on conv(Z,) = E + R satisfy the probability constraint. Under the
conditions of Theorem 4.5, problem (4.22) can be formulated as

min  ¢(x)

T,

st.  glz)>w

>y \od
w=) Av . (4.24)

jeT

D=1
jez
ANj>0,5el zveXweZ™

In problem (4.24), the probability constraint was replaced by algebraic equations and
inequality, together with the integrality requirement w € Z™. Methods to solve (4.24)
require the generation of p—efficient points and use an enumeration scheme to identity
such points. It is not the scope of this work to study this approach. More about p—efficient
points can be found in [21, 22, 62]. A recent paper is [67].

Another approach to deal with chance constrained problems with finite support are
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sample average approximation [47, 48].

The next chapter deals with the task of computing numerically solutions of several
CCMINLP problems, some of them having discrete probability distributions, whereas

others having continuous distributions approximated or not by copulae.
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Chapter 5
Numerical assessment

In this chapter we assess the numerical performance of the proposed OA algorithms
on some chance-constrained MINLP problems. In Section 5.1, a hybrid robust/chance-
constrained model with finitely many scenarios is considered. The studied model is of
great interest in the industry of energy. The main difficulty in this type of problems
consists in solving a master subproblem (MILP or MIQP). In Section 5.2 we consider a
different application of CCMINLP problems: we investigate a power management plan-
ning problem with realistic data. Differently from the application of Section 5.1, the
considered chance-constrained problem is based on a continuous probability distribution.
As a result, the main difficulty in solving the problem is handling the nonlinear OA’s
subproblems, rather than the master problem. To overcome this difficulty, we consider an
approximation of the problem by replacing the probability by a Copula (which is much

casier to evaluate).

5.1 A hybrid robust/chance-constrained model

This section corresponds to Section 5 of paper [20] with different results because a different
computer was used. However, the conclusion are similar. We consider the minimization
of a linear function f(z,y) = ¢,z + ¢, y subject to deterministic linear constraints z € X,

y € Y, and the stochastic linear constraints
Aw)z + Blw)y <€, (5.1)

where w € Q and ¢ € = represents different sources of uncertainty. It is important to
mention that not all uncertainty are equally well understood. This setting is of interest,
for instance, in the industry of energy, where = represents an energy production schedule, y

an integer variable modeling importation/investment/ “on-off” decisions, and (5.1) means
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that energy production should meet the energy demand £&. While the distribution of ¢ is
very often available (since its characterization has received considerable attention), much
less information is available on the uncertainty w impacting A(w) and B(w), which are
related to the underlying physics of generation plants and/or to the behavior of other
generation companies. We follow the lead of [69] and employ a hybrid robust/chance-
constrained approach to this problem:

min clx + c;y

.,y

st. PeA(w)r +Bw)y <& Ywe]>p (5.2)

reX,yeyYy,

where P¢ is a probability measure related to the random vector (energy demand) . The
joint probabilistic constraint in (5.2) requires that all stochastic inequalities hold simul-
taneously with high enough probability p € (0,1]. When every row a;(w) and b;(w) of

matrices A(w) and B(w) depend on the random vector w in the form
ai(w) 'z +bi(w) 'y = @/ v + by + (Pw, (2,y)),

with given @; € R™, b, € R, P, € Retm)xni and w € Q; := {w € R™ : |jw|| < K}
(with given x; > 0), the well-established theory of robust optimization [6] applies and the
above problem can be rewritten in the following equivalent formulation
min ¢!z + c;jy
T,y B
st Pefa) o +bly+wllBN(zy)| <& Vi=1,...,m] >p
reX,yeY.

We suppose that £ takes values in a finite set = = {£*, s € S} C R™ of possible realizations

with associated weights 7, > 0 with Z ms = 1. Under this assumption, a binary variable

ses B
2, € {0,1} for each s € S is introduced which dictates whether or not a; x + by +

kil | BT (z,y)|| < & is satisfied for all 4. By using a “big M” formulation, with M > 0 a
given parameter, the problem of interest can be reformulated as

(i T T
mn ¢, T +c,y
x7y7z

s.t. makg({@iTa:+l7)iTy+ /@HPZT(x,y)H —&— Mz} <0, i=1,...,m
sE

5.3
Zﬂ-szsgl_p ( )

seS

reX,yey, z €{0,1}.

\

Problem (5.3) fits the general formulation (3.1) and hence can be solved by variants of

the Outer Approximation Algorithm 3.1.
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In spite of the nonlinear constraints in problem (5.3), which are nonsmooth ones, a

second order constrained formulation for problem (5.3) can be obtained by introducing

auxiliary variables w;, i = 1,...,m, and additional constraints
i, ey
s.t. aj x4+ by +raw; — & < Mfz, i=1,...,m andall s&S
(z,9) (PP )(z,y) Sw! i=1,....m (5.4)
Z TisZs S 1 - p
seS
L reX, yeyY, z,€{0,1}, w>0.

This formulation, denoted by “Monolithic”, replaces m nonsmooth constraints with m/|S|
linear and m conic constraints. Thus, the state-of-the-art mixed-integer second-order
algorithms can be applied to solve the above problem and compare the numerical per-
formance with 0A algorithms applied to (5.3). In this numerical tests, the Monolithic

formulation is solved by Gurobi [34].

5.1.1 Test problems, solvers and results

5
The integer set Y in the problem (5.3) was set as 0 < y; < 3, y; +y2 > 3 and Zyl < 5.

i=1
Instances for problem (5.3) are generated following the procedure: First, the dimension
of problem is set as n, = 5, n, € {30 —n,,40 —n,} , m € {15,20,25} and the number

of scenarios N € {30,40,50,60}. Next, n;, = n, +n,, k;, = & for all i = 1,...,m,

1
— N'

R™ b, € R™ were generated with entries uniformly distribution on the interval [0, 10].

[l

and p € {0.9,0.95}. The probability of every scenario s is 7 The vectors a; €
The vector cost ¢ = (cg,c,) was generated with entries on the interval [—100,0) and
the matrix P; with coefficients following a normal distribution N(0,1). An initial point
(x0,y0) was chosen which is feasible for construct and the scenarios was set as & =
a; xo + b yo + Kil| P (20, 90)|| + & where & is uniformly on the interval [0,100]. The
constants M are the same for all scenarios and was chosen with an ad-hoc approach. In
this problem, the number of continuous, integer and binary variables are respectively n,,
n, and N. For each one of this configuration, two instances are generated by changing
the seed of the pseudorandom number generator. In a total, 2-3-4-2-2 = 96 different

test problems were considered.

Solvers. These nonsmooth convex mixed-integer programs are solved with the follow-

ing solvers, coded in/or called from MATLAB version 2017a:

— Monolithic: solver Gurobi applied to the mixed-integer quadratically constrained pro-

gramming problem (5.4);
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— DA: it is an implementation of the outer-approximation Algorithm 3.1 with u; = 0 for all
k (the classic algorithm), where in Step 1 the (nonsmooth convex) nonlinear subproblems
are solved by the Bundle Algorithm 2.1. In this solver, the MILP subproblem (3.19) is
solved by Gurobi to define the next integer iterate;

— DA-1pt: as solver 0A, with the difference that trial integer iterates are defined by apply-
ing Gurobi to the MILP subproblem (3.19) and halting the solver as soon as a feasible
point is found;

— 0A;: as solver 0A, with integer iterates defined by solving the regularized MILP sub-
problem (3.19) with the ¢; norm, i.e., || - ||o = || - ||1. The stability center was set as the
current iterate and the prox parameter as pp = 10 for all k;

— DA : as solver 0Ay, with the ¢; norm replaced by /..;

— 0Ay: as solver 0A;, with the ¢; norm replaced by /¢5. In this case, the subproblem
defining the next iterate is no longer a MILP, but a MIQP;

— ECPM: this is an implementation of the extended cutting plane method of [76]. It is the
same solver employed in [16];

— ELBM: this is the extended level bundle method of [16] with the current iterate rule to

define the stability center and ¢;-norm for the stability function.

All the solvers employed a relative stopping test with tolerance 1073, and time limit
(for solving each problem) of 3600 seconds. Numerical experiments were performed on
a computer with Intel(R) Core(TM), i7-5500U, CPU @ 2.40 GHz, 8G (RAM), under
Windows 10, 64Bits.

Numerical experiments. The performance profiles [23] of the eight considered solvers

on the 96 instances of problem (5.3) are presented in Figure 5.1. Given a set of problems
P and a set of methods S it is possible to compare the performance of these methods on
problems using any metric, for example, CPU time. For each problem p € P and solver

s € S, a measure is defined
ts(p) = CPU time request to solve problem p by solver s.

Next, a best achieve is also defined as, t*(p) = miél ts(p) (the best CPU time to solve
ElS
problem p). For each solver s € S, the comparison of its performance in solving a problem

p € P in relation to the best method is done using the performance ratio given by

rs(p) = 5 (5.5)

If the method s fails to solve problem p, then t4(p) = co. The performance ratio shows the

behavior of a method in solving a given problem. For a more general view the performance
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profile of method s € S is defined as

number of problems p such that ry(p) < v

s(7) = —. 5.6
Ps(7) total number of problems (56)

By replacing (5.5) in (5.6) an equivalent form is obtained

number of problems p such that ts5(p) < vt*(p)

ps(v) = total number of problems

These numbers give the proportion of problems solved by solver s within a factor ~.
Therefore, the value p,(1) gives the probability of the solver s to be the best by a given
criteria. Furthermore, unless t4(p) = oo (which means that solver s failed to solve problem
p), it follows that li_>m ps(y) = 1. Thus, the higher is the line, the better is the solver.
The image at the tZ)pOZf Figure 5.1 corresponds to the performance profiles of CPU time

required by the methods on all the instances.

CPU time
T T

—&— Monolithic

—>—OA-pt
—a—O0A,
——OA_
—<—On,
—#—ECPM
——ELBM
PRI

# oracle calls

Figure 5.1: Performance profile on 96 problems (logarithmic scale): CPU time, oracle’s

calls and number of solved mixed-integer subproblems.

Overall, solver 0A; was the most robust with respect to CPU time, followed by 0A,
0A; and 0A,,. Although solver ECPM failed to solve 5 out of 96 problems in less than one
hour, ECPM was the fastest method in 37% of the problems, followed by 0A and 0Ay(both
with approximately 22% ) and 0A; (14%). As shown by Figure 5.1, solver Monolithic

was not competitive in these instances (except in the small ones).

The left-bottom image in Figure 5.1 reports the solvers performance with respect to
the number of master subproblems (MILP or MIQP) solved by each method (except
Monolithic). Concerning this attribute, solver 0Ay was the most efficient one: overall,

this method required solving less master subproblems and, as a consequence, less nonlinear
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subproblems (that are not trivial to solve, since they are nonsmooth programs). Solver

0A; also provided a good performance on the number of (MILP) subproblems.

Finally, the right-bottom image in Figure 5.1 presents performance profiles with res-
pect to the number of oracle calls. Concerning this attribute, ELBM and ECPM provided
(for the solved instances) better performances than the 0A solvers, corroborating in this
manner with [16]: when functions are costly (which is not the case in the considered pro-
blem), cutting-plane methods as ELBM and ECPM seem to be so far the methods of choice.

However, these solvers could not solve some of the instances in one hour of time limit.

The information provided by Figure 5.1 are complemented with two tables. Table 5.1
reports (for all the eight solvers) the number of problems that could not be solved within

one hour of processing.

Table 5.1: Number (and percentage) of problems that could

not be solved in the time limit of one hour.

Solver Number of fails | Percentage
Monolithic 27 28.12%
0A 1 1.04%
OA-1pt 1 1.04%
044 1 1.04%
0A 1 1.04%
04, 1 1.04%
ECPM 5 5.21%
ELBM 7 7.29%

All 0A solvers were able to solve the majority of the problems, while the other solvers
could not solve the larger ones. CPU time (in seconds) of every solver on every problem’s
instance are presented in Table 5.2. The first column corresponds to the seed used to
generate the problem instances, and columns 2 up to 5 report the problem’s dimension.
The total CPU time in hours is reported on the last line of the table.

Table 5.2: CPU time required by the eight solvers on all the ninety six test problems. The
asterisk stands for unsolved problem (within one hour).

Problem’s data Solvers
seed | m | N D n Monolithic 0A 0A-1pt 0A1 DAoo DAo ECPM ELBM
0 15 30 0.90 30 411.89 13.84 19.92 14.74 16.27 21.92 14.67 24.50
0 15 30 0.95 30 7.99 6.03 10.80 6.40 5.55 6.13 2.14 5.60
0 15 40 0.90 30 1093.32 23.27 54.10 31.01 49.03 27.01 42.46 78.04
0 15 40 0.95 30 218.44 8.44 21.85 9.36 9.66 10.68 6.45 15.06
0 15 50 0.90 30 933.01 47.79 61.86 39.08 95.73 46.54 102.46 169.22
0 15 50 0.95 30 388.12 8.53 21.23 9.53 10.28 7.62 4.46 9.33
0 15 60 0.90 30 3600.45* 84.87 108.99 108.74 157.94 125.90 605.06 894.03
0 15 60 0.95 30 487.35 18.47 38.60 19.59 21.21 15.88 22.64 33.87
0 20 30 0.90 30 377.46 22.45 40.02 26.70 25.29 22.86 17.50 26.86
0 20 30 0.95 30 29.70 11.14 13.80 12.87 14.94 13.49 2.75 4.89
0 20 40 0.90 30 1940.36 51.06 49.35 78.89 61.54 42.87 95.18 123.81
0 20 40 0.95 30 264.78 19.46 24.07 22.48 19.85 19.83 11.46 15.51
0 20 50 0.90 30 3600.55* 121.38 123.45 133.28 168.73 136.26 615.62 661.36
0 20 50 0.95 30 365.46 20.42 27.46 25.74 24.58 26.15 9.82 19.88
0 20 60 0.90 30 3600.61* 378.85 387.21 248.87 369.35 398.53 2516.52 3607.79*
0 20 60 0.95 30 1747.97 61.90 48.60 49.63 55.56 41.86 61.75 84.56
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0 25 30 0.90 30 1873.46 30.10 28.33 27.12 43.09 24.62 21.08 34.21
0 25 30 0.95 30 67.48 13.29 19.33 13.90 13.38 13.06 3.23 12.37
0 25 40 0.90 30 3173.34 25.17 31.77 19.80 33.45 17.68 12.92 26.62
0 25 40 0.95 30 266.32 27.47 34.25 25.02 24.97 26.95 19.15 38.95
0 25 50 0.90 30 3600.66™ 61.28 43.35 55.64 64.07 37.25 96.00 226.40
0 25 50 0.95 30 435.86 22.93 25.88 22.90 26.10 25.96 15.63 33.67
0 25 60 0.90 30 3600.74* 54.43 82.01 81.81 115.40 70.06 432.93 490.82
0 25 60 0.95 30 829.24 28.51 39.14 29.82 33.72 28.82 35.04 55.17
0 15 30 0.90 40 825.62 40.40 83.13 43.22 49.23 45.53 61.23 77.31
0 15 30 0.95 40 29.76 21.64 28.09 19.60 21.03 21.92 8.72 16.60
0 15 40 0.90 40 2539.62 79.51 112.78 85.20 86.42 79.90 202.85 260.76
0 15 40 0.95 40 285.58 35.14 72.53 39.49 42.11 46.35 49.43 60.76
0 15 50 0.90 40 3600.37* 148.28 249.20 110.73 160.70 131.77 591.12 673.54
0 15 50 0.95 40 391.90 32.12 52.67 31.50 35.69 36.83 20.81 46.63
0 15 60 0.90 40 3600.42* 258.02 223.97 330.01 329.30 294.80 2582.24 3605.11*
0 15 60 0.95 40 1037.53 57.33 97.85 63.53 62.02 56.62 91.18 139.36
0 20 30 0.90 40 340.55 42.68 83.13 49.61 44.49 44.05 24.96 40.32
0 20 30 0.95 40 46.08 24.88 37.68 23.66 24.32 25.30 8.23 11.94
0 20 40 0.90 40 3386.89 63.38 97.95 63.59 82.44 53.80 112.69 129.37
0 20 40 0.95 40 130.57 37.49 65.94 36.38 35.86 37.38 33.06 28.51
0 20 50 0.90 40 3600.57* 80.74 150.94 108.63 107.54 84.98 282.99 365.57
0 20 50 0.95 40 510.08 37.56 67.19 38.60 36.15 40.92 13.50 27.08
0 20 60 0.90 40 3600.64* 246.19 229.49 259.83 255.72 225.18 1753.08 1946.67
0 20 60 0.95 40 499.31 61.92 81.34 54.94 69.30 54.71 35.96 75.96
0 25 30 0.90 40 3600.65™ 281.92 449.04 260.59 319.36 216.12 2942.72 2054.70
0 25 30 0.95 40 579.42 29.93 64.82 32.05 30.16 41.08 76.23 62.50
0 25 40 0.90 40 3600.75* 586.78 727.09 519.04 620.05 722.95 3600.10 3605.11
0 25 40 0.95 40 3600.73* 96.38 165.87 72.72 78.52 89.02 428.04 311.99
0 25 50 0.90 40 3600.85™ 686.96 965.57 898.29 1096.53 1074.16 3600.04* 3605.07*
0 25 50 0.95 40 3600.91* 84.06 161.17 103.57 99.37 98.79 612.98 378.62
0 25 60 0.90 40 3600.96™ 3600.64™ 3601.81* 3630.99* 3601.47* 3600.84* 3600.05* 3605.08™
0 25 60 0.95 40 3600.96* 243.48 274.16 269.38 440.80 238.34 1855.23 2030.06
1 15 30 0.90 30 403.92 13.72 18.29 12.39 23.23 10.43 11.48 25.33
1 15 30 0.95 30 36.13 5.23 10.36 4.53 6.97 5.61 2.42 7.76
1 15 40 0.90 30 1383.36 24.41 56.29 16.29 32.31 16.73 32.65 58.79
1 15 40 0.95 30 185.04 8.82 17.45 8.46 12.40 10.12 9.18 23.25
1 15 50 0.90 30 1560.95 44.82 55.54 38.98 81.42 29.05 89.88 213.77
1 15 50 0.95 30 170.54 8.39 19.06 9.53 10.20 9.32 6.56 18.12
1 15 60 0.90 30 3600.32* 71.45 136.74 95.85 121.39 85.24 372.76 436.56
1 15 60 0.95 30 713.57 15.35 21.79 14.89 21.75 18.26 25.44 42.55
1 20 30 0.90 30 188.75 13.08 15.78 12.08 15.31 9.54 9.39 17.57
1 20 30 0.95 30 13.86 8.24 5.92 4.77 5.48 5.35 1.87 3.61
1 20 40 0.90 30 684.83 22.76 24.26 20.47 30.05 22.83 48.13 66.07
1 20 40 0.95 30 159.82 10.73 13.11 12.05 10.41 10.85 3.30 8.91
1 20 50 0.90 30 3484.95 29.04 31.61 29.05 46.14 29.66 63.28 91.53
1 20 50 0.95 30 251.40 10.22 14.99 12.17 11.66 12.00 3.77 11.55
1 20 60 0.90 30 3600.60* 59.76 50.54 49.10 83.15 63.56 156.22 178.26
1 20 60 0.95 30 287.24 14.23 21.66 18.82 19.90 10.45 13.38 21.14
1 25 30 0.90 30 503.61 13.77 19.24 15.59 18.28 13.88 13.87 20.68
1 25 30 0.95 30 52.13 12.41 10.28 13.69 12.53 12.30 3.12 7.94
1 25 40 0.90 30 2356.79 21.26 30.16 18.11 25.40 20.14 47.75 41.55
1 25 40 0.95 30 285.75 18.32 19.63 17.44 21.12 19.63 11.68 18.27
1 25 50 0.90 30 2637.16 24.62 38.56 33.36 44.60 28.04 101.90 148.34
1 25 50 0.95 30 141.11 13.11 14.84 13.34 17.03 16.34 9.32 18.56
1 25 60 0.90 30 3600.96* 42.29 53.30 32.04 50.99 39.51 353.11 331.32
1 25 60 0.95 30 1191.08 23.95 25.77 26.80 34.62 26.94 55.93 71.24
1 15 30 0.90 40 98.96 28.14 36.39 28.76 27.82 28.33 11.83 23.18
1 15 30 0.95 40 16.09 15.32 12.13 14.97 13.68 14.54 4.41 10.03
1 15 40 0.90 40 358.24 37.94 39.30 33.26 41.16 37.48 29.50 46.69
1 15 40 0.95 40 38.50 20.95 19.85 23.60 20.85 24.65 10.46 19.36
1 15 50 0.90 40 531.15 59.80 82.84 61.33 63.00 56.12 128.66 168.15
1 15 50 0.95 40 104.15 26.14 30.77 30.87 26.06 26.29 12.40 33.70
1 15 60 0.90 40 755.10 78.43 99.32 86.41 108.60 21.64 300.95 365.36
1 15 60 0.95 40 141.04 38.43 50.43 45.97 43.47 42.52 26.26 57.31
1 20 30 0.90 40 1141.73 61.03 62.43 62.96 64.45 52.91 61.86 88.89
1 20 30 0.95 40 120.23 27.00 32.59 33.56 31.95 32.81 12.19 30.27
1 20 40 0.90 40 3600.77* 122.07 170.08 118.00 195.61 122.81 594.95 570.18
1 20 40 0.95 40 1071.87 49.75 73.90 50.79 49.94 25.40 70.67 83.14
1 20 50 0.90 40 3601.05™ 162.02 196.93 176.61 208.95 135.69 2288.86 1541.48
1 20 50 0.95 40 576.97 49.89 101.12 58.72 52.48 52.96 53.42 84.75
1 20 60 0.90 40 3600.96 214.88 355.88 246.94 416.04 410.33 3600.08* 3605.08™
1 20 60 0.95 40 1589.51 65.96 125.11 73.37 78.31 57.07 231.53 230.40
1 25 30 0.90 40 3068.97 49.86 78.35 59.33 64.42 47.13 101.36 133.00
1 25 30 0.95 40 53.80 22.94 35.30 19.32 22.68 26.91 7.60 14.89
1 25 40 0.90 40 3600.89* 137.77 155.86 123.90 183.12 96.60 593.01 677.54
1 25 40 0.95 40 1614.16 37.07 64.11 40.20 42.12 38.81 47.03 75.26
1 25 50 0.90 40 3600.96* 186.12 129.90 172.66 193.90 199.77 1258.34 2310.61
1 25 50 0.95 40 3601.06* 29.94 42.31 32.72 36.38 32.99 29.37 60.29
1 25 60 0.90 40 3601.09* 366.88 365.36 562.11 411.18 691.30 3600.05* 3605.11*
1 25 60 0.95 40 3601.54* 85.98 110.02 83.73 101.60 63.68 200.20 268.61

Total CPU time in hours 41.9 h 29h 3.5h 3.1h 3.5 h 3.2 h 11.7 h 12.7 h
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Solvers 0A and 0A; were faster, followed by 0A;. The solver 0Ay solve a MIQP per
iteration which is more expensive than MILP subproblem. The outer-approximation

algorithms were 4 times faster than the extended cutting-plane methods.

Note that the numerical performances of the regularized 0A algorithms are very close to

each other. Better performances are expected to be obtained if p; is iteratively updated.

5.2 A power system management problem

Consider a power management model consisting of a hydro power plant and a wind
farm. Electricity that is generated by both units has two purposes: first attend the
local community power demand and secondly the leftover is sold on the market. The
energy that is generated by the wind farm is designated to supply the local community
demand only. If it is not enough then the remaining demand is covered by the hydro
power plant. The residual energy portion generated by the hydro power plant is then sold
to the market with the aim of maximizing the profit, which varies according to the given
energy price. Since the intention is to consider a short time planning period (e.g. one day)
the assumption is that the only uncertainty in this energy planning problem comes from
the wind power production. As a result the approach will consider the inflow to the hydro
plant, market prices and energy demand as known parameters. The hydro plant counts
with a reservoir that can be used to store water and adapt the water release strategy
to better achieve profit according the price versus demand: the price of electricity varies
during the day, thus it is convenient to store water (if possible) to generate electricity at

moments of the day deemed more profitable.

In order to exclude production strategy that can be optimum in a short period of time
and can harm the near future energy supply (e.g. the planner can be willing to use all
water in the reservoir to produce energy to maximize profit because the energy prices are
higher and in the next hour there is no enough water to produce energy in case the wind
farm is failing to supply the local community leading to a blackouts), a level constraint is
imposed for the final water level in the hydro reservoir i.e. it cannot be lower of a certain

level [*.

The decision variables of the problem are the leftover energy to supply the local com-
munity and the residual energy to be sold to the market (both generated by the hy-
dro power plant). Since the main purpose of the problem is to maximize the profit for
the power plant owner then the objective function is profit maximization. Some of the
constraints of this problem are simple bounds of water release which are given by the
operational limits of the turbine (usually provided per the manufacturer), lower and up-

per bounds of hydro reservoir filling level and demand satisfaction. As in the paper [3],
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the demand satisfaction constraint will be dealt with in a probabilistic manner: random
constraints in which a decision has to be taken prior to the observation of the random
variable are not well-defined in the context of an optimization problem. This motivates
the formulation of a corresponding probabilistic constraint in which a decision is defined
to be feasible if the underlying random constraint is satisfied under this decision at least

with a certain specified probability p.

A further characteristic of this model is to consider binary decision variables. These
variables are needed because turbines cannot be operated using an arbitrary level: they
are either off or on (working in a positive level). Such on/off constraints are easily modeled
by binary variables. By discretizing the time horizon (one day) into T intervals (hours),

the resulting optimization problem is described below:

T
max E T2t
x’y?'z 1

s.t. P[xt+£t2dt Vtzl,,T]Zp

YU < 2y + 2 S YU vt=1,...,T
Ty, 2t > 0 Vi=1,...,T (5.7)
y, € {0,1} Vi=1,....T
t

lglo—l—tw—)—l(Z(xT—i—zT)Sl Vi=1,...,T

tT:l
10+Tw—§2(xT+zT)zz*,

T=1

where

e 2; is the residual energy which is produced by the hydro power plant in time interval
t that is sold to market;

e 7, is the energy price in the time t;

e 1, is the amount of energy generated by hydro power plant to supply the remaining

demand on local community on time ¢;

e d; is the local community demand on time ¢, which is assumed to be known (due to

the short planning horizon of one day);
e ¢, is the random energy generated by the wind farm on time ¢;

e P is the probability measure associated to random vector £. As in [3], we assume
that the wind power generation follows a multivariate normal distribution with mean
vector p and a positive definite correlation matrix . This assumption leads to this

function to be differentiable, see Theorem A.3 below;
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p € (0, 1] is the given parameter to ensure confidence level for the demand satisfac-

tion;

e v and v are the lower and upper respectively operations limits of the hydro power

plant turbine;
e y; is the binary variable modeling turbine turn on/turn off;

e [y is the initial water level of the hydro power plant reservoir at the beginning of

the horizon;

e [ and [ are the lower and upper water levels respectively in the hydro power plant

reservoir at any time;

e w denotes the constant amount of water inflow to the hydro power plant reservoir

at any time t;

e \ represents a conversion factor between the released water and the energy produced

by the turbine: one unit of water released corresponds to x units of energy generated;

e [* is the minimum level of water into the hydro power plant reservoir in the last

period T of the time horizon.

The difficulty of this problem consists in dealing with hard chance constraint (even
though it is a differentiable function) and the binary variables. As in the previous section,
this problem will be solved using variants of the 0A algorithm and two more methods to
compare the results. The methods are ECPM and ELBM. It is important to observe that in
this problem the binary variables are not present at the probability constraint, however

on chance constraint these variables impact the continuous variables z;.

As in [3], we assume that the wind power generation follows a multivariate normal

distribution!

with mean vector p and positive definite covariance matrix ¥. We can
replace the first inequality in problem (5.7) by a equivalent one. To this end, consider the

following development:

Plxy+&>dy Vi=1,...,T) =Plx+&>d|
=Pl >d— 7]
= P[-¢{ <z —d
=F_¢(x—d).

Using the results of equality (5.8) and the results of 0—concavity by Prékopa (Theorem

4.2) the following function is convex:

fi(z,y) =logp —log F_¢(z — d), (5.9)

!See Appendix A.
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where = (21,29, ...,27) and d = (dy,...,dr). By replacing the function —P[z; + & >
dy Vt=1,...,T|+pin the first inequality in (5.7) with f; above the resulting (equivalent)
problem fits the general formulation (3.1), i.e., a convex MINLP.

5.2.1 Problem’s data

In this Thesis we will solve a similar problem as [3] but with different data?. Problem
(5.7) couples one wind farm with one hydro power plant to supply energy to one city
(or region). The remain of the energy is sold at the market. The demand considered in
this problem was extracted from the ONS website (www.ons.org.br). ONS is the Brazilian
independent system operator. The behavior of Brazilian demand of energy in all days of
the week can be seen in Figure 5.2 below. As expected, the demand of energy is higher

on working days than in on weekends and the demand peak is reached around 7pm daily.

Demand
9 I I I T T
8.5 ' 7
\
8 [ -
151 N
7 [
6.5 :
6N
==Tuesday
55+ ==Wednesday -
Thursday
55N ==Friday 4
== Saturday
| ~=Sunday |
45 == Monday
4 \ \ \ \ \ \ \ \ \ \ \

2 4 6 8 10 12 14 16 18 20 22 24
hours

Figure 5.2: Demand

In our numerical tests, the considered daily demands corresponds to eighty percent
of averaged demand Southern region of Brazil, divided by the number of cities in such a
region. Table 5.3 shows the total demand for each hour in the South of Brazil along the

first week of August of year 2017. In this part of Brazil, there exist 1191 cities, so the

demand d; was set as d; = Oﬁ'gfft, where Dy is the real demand from Table 5.3. Disclaimer,

the time on Table 5.3 start counting from midnight. Note that we have only one city (or

2We did not have access to the data used in [3].
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region) and two sources of energy: hydro power plant and wind farm. The price m; of
energy is directly proportional to the demand and varies between 166.35 and 266.85 by
MW \hour.

Table 5.3: Total demand by day in MegaWatts. 3

Tuesday | Wednesday | Thursday Friday | Saturday Sunday Monday

1 9227.99 9350.23 9182.76 9022.94 9241.86 7937.74 7673.28
2 8658.61 8737.46 8526.88 8367.84 8485.47 7442.99 7361.51
3 8317.70 8376.20 8246.14 8024.16 8079.97 7061.61 7235.43
4 8255.23 8280.63 8165.01 7866.53 7913.52 6750.67 7296.04
5 8347.14 8325.56 8230.96 7961.15 7909.38 6658.99 7502.61
6 8861.46 8852.44 8718.87 8459.56 8040.18 6676.26 8095.74
7 10160.85 10096.96 9879.40 9601.52 8457.01 6801.74 9422.43
8 11196.35 11280.72 11080.43 | 10689.89 8811.82 6738.44 | 10482.32
9 12158.75 12220.84 12006.24 | 11770.01 9534.67 7276.68 | 11550.99
10 | 12480.01 12551.32 12242.64 | 12136.07 9847.49 7880.52 | 11926.67
11 | 12941.58 13003.01 12666.33 | 12566.19 | 10143.86 8420.08 | 12359.81
12 | 12934.24 13031.27 12736.43 | 12666.51 | 10256.33 8649.89 | 12494.15
13 | 11819.08 11854.94 11530.89 | 11597.79 9840.34 8251.92 | 11340.65
14 | 12439.62 12442.20 11996.27 | 12110.67 9685.11 7975.58 | 11846.42
15 | 12817.28 12781.02 12308.21 | 12361.02 9568.39 7855.23 | 12253.40
16 | 12731.74 12761.31 12283.81 | 12283.77 9463.17 7792.09 | 12447.63
17 | 12812.86 12961.39 12383.91 | 12168.82 9639.17 8027.79 | 12444.58
18 | 12584.67 13071.17 12210.86 | 11946.67 | 10389.63 8820.52 | 12217.66
19 | 13242.21 13337.65 12790.96 | 12742.76 | 12206.38 | 11014.10 | 12947.36
20 | 13071.51 12916.61 12665.62 | 12614.07 | 11907.12 | 10896.47 | 12960.04
21 | 12408.24 12259.99 12002.74 | 11892.67 | 10995.60 | 10285.13 | 12412.71
22 | 12157.55 12064.61 11812.95 | 11752.07 | 10217.42 9882.17 | 12112.37
23 | 11489.58 11473.23 11164.35 | 11307.19 9498.72 9199.07 | 11426.03
24 | 10413.51 10233.62 10134.66 | 10249.81 8724.79 8374.14 | 10203.60

The configuration of hydro power plant reservoir is mirrored from [3] and in this
problem is set as [ = 5000 hm? (cubic hectometre), I = 10000 hm? and ly = I* = 7500 hm?.
The amount of water inflow is a constant w = 2500 hm? each hour and the conversion
factor is y = 0.0035MWm3. When the turbines are turned on, the minimum power
generation is 5 megawatts per hour and the maximum generation is 20 megawatts per

hour.

As previously mentioned, the random variable £ = (&1, ..., &r) of wind farm generation
follows the distribution N (u, ) , where p denotes the vector of expected values of £ and X
is the covariance matrix associated with the components of £. The constant mean vector

asset as p; = 1.1% min d; Vi=1,...,T and

1<j<T
1 . s .
S I ; if =7
L/ 17 - . .
35 U 1F ]

These assumptions assures that function (A.1) is differentiable (X has full rank)* and the

3This data corresponds to the first week of August 2017.
4We recall that differentiability is not required by our solvers.
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coordinates &1, &, ..., &, are dependent.

5.2.2 Problem’s approximation
In this section we replace function (5.9) with a Zhang’s Copula (4.14) in problem (5.7):

T
max E T2t
x’y7z
t=1

s.t. logp —1log(C(Fg, (1 —dy), ..., Fogp(xp —dr)) <0

Yo < T+ 2 < Y0 vi=1,...,T
>0 Vi=1,...,T
o= v (5.10)
y. € 10,1} Vt=1,...,T
t
I<lo+tw—1> (2. +2)<I Vt=1,....T
T=1

t
lo+ Tw — i Z(mT +z.) > 17,
=1

where F_¢, are the margins associate to distribution function F_;.

As F ¢, i =1,...,m are 0O—concave ( because —& ~ N(—p;,02)) and
g(x,y) = (x1 — dy, 29 — dy, ..., o7 — dr)
is concave, by Preposition 4.1
C(F_g(x1 —dy),..., Fgp(xp —dp)
is 0—concave and hence

filz,y) =logp —log(C(F_¢ (x1 — dy), ..., Fg (xr —dr))

is convex. Consequently, problem (5.10) is a nonsmooth convex MINLP.

The only difference between problems (5.7) and (5.10) is the first constraint. We will
see in the next section that problem (5.7) is very challenging computationally. Instead of
solving problem (5.7) we will get an approximate solution by solving problem (5.10). Such

approximate solution will be a feasible point of (5.7) if it satisfy the chance constraint of
problem (5.7).

Parameters of Zhang’s Copula

One of difficulties in using copulae is to find its coefficients that model with accuracy

the probability constraint. The parameters of Zhang’s Copula depend on the size of the
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problem. If the random vector ¢ has dimension 7" then the number of parameters is 147"

r and a;; >0 with Zamzl Vi=1,...,T.

J=1

In this work we do not focus on the best choice of the Copula parameters. Instead, we
simply set » = 8 and the coefficients a;; was generated following a uniform probability
distribution with low sparseness. As shown below, this simple choice gives satisfactory

results.

5.2.3 Numerical experiments

As already mentioned, it is very expensive computationally to evaluate the probability
function, which consists in solving numerically a multidimensional integral. For instance,
for evaluating the multivariate normal probability function (A.1) with the Matlab’s func-
tion mvncdf one takes almost 40 seconds if ¢ € R?*, in the computer described in Section
5.1. In order to compute a subgradient of such a probability function, the function mvncdf
needs to be called 23 (T'—1) times, see Theorem A.3. An alternative to the mvncdf func-
tion is the routine mvNcdf recently developed by Botev [12]. We have verified numerically
that Botev’s function is around 20 times faster than mvncdf to evaluate multivariate nor-

mal probability functions. The following results are obtained with the Botev’s function.

We solved the power system management problem for 7' = 12 (half day) and T =
24 (one day). For dimension 7" = 12, we solved both problems (5.7) and (5.10). For
dimension 7" = 24 was not possible to solve (5.7) within one hour CPU time, given the
considered computer and softwares. Then we solved (5.10) with 7" = 24 and we checked

the probability constraint of (5.7). The results are reported below.

Numerical results for T = 12.

The chosen day was Wednesday and solved for p = 0.8 and p = 0.9 utilizing all solvers.

The first image on Figure 5.3 illustrates the CPU time required by all solvers for both
problems. Problem (5.7) (with the multivariate normal probability function) and Problem
(5.10) (with copula) with parameter p = 0.8 and p = 0.9. In this figure, the CPU time
spent by all solvers are summed to facilitate visualization. Detailed information about
the optimum value and time spent by each method are reported on Table 5.4 and Table
5.5°. The CPU time spent to solve problem (5.10) was approximately 113 times faster
than utilized to solve problem (5.7).

The number of master subproblems (MILP or MIQP) solved by each method was

5We recall that is a maximization problem.
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smaller when using copula as shown in the middle image on Figure 5.3. The last image
on Figure 5.3 represents the number of oracle calls. This example, shows that it is very

expensive to solve numerically the multidimensional integral even for small dimensions.
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Figure 5.3: Numerical results for problem with 7" = 12 on Wednesday : CPU time, oracle’s

calls and number of solved mixed-integer subproblems.

Table 5.4: Optimal value and CPU time for 0A, 047 and OAco.

0A 0A; 0Aoo

p optimal value CPU time p optimal value CPU time P optimal value CPU time

cC 0.8 21234.15 493.69 0.8 21232.02 553.33 0.8 21232.46 680.89
Copula 0.8 21191.96 8.50 0.8 21191.98 3.66 0.8 21191.98 4.44
[e]e} 0.9 21102.19 543.72 0.9 21101.25 431.88 0.9 21099.66 661.35
Copula 0.9 21075.08 7.71 0.9 21075.09 3.48 0.9 21075.07 2.61

Table 5.5: Optimal value and CPU time for 0A, ECPM and ELBM.

0Ao ECPM ELBM
P optimal value CPU time p optimal value CPU time P optimal value CPU time
[e]e} 0.8 21232.21 752.50 0.8 21232.65 451.04 0.8 21233.48 142.82
Copula 0.8 21191.98 4.13 0.8 21192.21 3.77 0.8 21192.07 6.22
cC 0.9 21101.12 401.89 0.9 21101.03 454.38 0.9 21100.49 161.71
Copula 0.9 21075.11 4.20 0.9 21075.79 4.01 0.9 21075.93 6.67

Finally, Table 5.6 demonstrates the quality of the solution. The solution obtained
using copulas is the same as the optimal solution with a relative error maximum of 0.2%

which is acceptable as tolerance error.

Table 5.6: Quality of solution for T=12.

p optimal value estimate value relative error
o4 0.8 21234.15 21191.96 0.2%
0.9 21102.19 21075.08 0.1%
on 0.8 21232.02 21191.98 0.2%
5 0.9 21101.25 21075.09 0.1%
0.8 21232.46 21191.98 0.2%
0Aso
0.9 21099.66 21075.07 0.1%
0.8 21232.21 21191.98 0.2%
0Ao
0.9 21101.12 21075.11 0.1%
ECPN 0.8 21232.65 21192.21 0.2%
0.9 21101.03 21075.79 0.1%
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0.8 21232.48 21192.07 0.2%

ELBM
0.9 21100.49 21075.93 0.1%

Numerical results for T = 24.

In this dimension is not possible to solve problem (5.7) anymore. We solved problem
(5.10) by T' = 24 using Zhangs copula with parameters described above. Figure 5.4 shows
the performance profiles [23] of solvers 0A, 0A;, OA,,, 0Ay, ECPM and ELBM.

CPU time
i T T T T T

—o—0A m
OA
—+—0A
o0

——ECPM| |
——ELBM

100 10" 10?
Performance ration, ~

# oracle calls

1

0.8

= -

10° 10 10?
Performance ration, v Performance ration, ~

Figure 5.4: Performance profile on 21 problems (logarithmic scale): CPU time, oracle’s

calls and number of solved mixed-integer subproblems.

The first image on Figure 5.4 corresponds to the performance profiles of CPU time
required by the methods on all instances, i.e. problem (5.10) with p = 0.8,0.9 and 0.95.
The image shows that the fastest and more robust solver in this application was 0A,,
followed by 0A;. Solvers ECPM and ELBM had a similar good performance. Solver 0A
ranked fifth and the classic 0A was the worst solver in this application. Notice that
0A, was the fastest solver in around 87.5% of the problems while 0A; was faster in the
remaining problems. For 21 problems, all solvers were able to solve problem (5.10) within

1 hour, except 0A. Solver 0A failed to solve 9 problems although it almost hit the solution.

The left-bottom image on Figure 5.4 reports the solvers performance considering the
number of master subproblems (MILP or MIQP) solved by each method. With respect
to this attribute, solver 0A; was the most efficient method even though it require solving
MIQP instead of MILP subproblem. It was closely followed by 0A;. The methods 0A.,
ECPM and ELBM had solved approximately 10 times more MILPs subproblems than solver
0A5. As expected the 0A method solved more MILPs in this problem.

The right-bottom image on Figure 5.4 demonstrates the performance profiles consi-
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dering the number of oracle calls. Regarding this attribute the ELBM and ECPM methods

provided better performances than 0A solvers corroborating to [16].

Table 5.7 shows the optimal value for all algorithms with p = 0.8, p = 0.9 and p = 0.95
respectively. For example, if the decision maker wants to supply the local community
demand with probability p = 0.8 on Tuesday the profit will be R$43504. Changing
the probability to p = 0.9 the profit will be R$ 43076 and finally it will be R$ 42767 for
probability p = 0.95. These numbers demonstrates that the profit is inversely proportional
to the level p of demand satisfaction, i.e. for higher probabilities the lower is the profit.
It is important to note that profits are higher in business days because it is directly

proportional to demand as well.

Table 5.7: Estimate optimal value for p € {0.8,0.9,0.95}. The asterisk * stands

for unsolved problem (within one hour).

Day 0A 044 0Aoo A5 ECPM ELBM

Tuesday 43504.01 | 43503.99 | 43504.01 | 43504.02 | 43504.96 | 43504.33
Wednesday | 43704.87 | 43704.88 | 43704.87 | 43704.88 | 43705.41 | 43705.04
Thursday 43137.90 | 43137.90 | 43137.93 | 43135.39 | 43135.80 | 43137.05

p=0.8 Friday 41619.99* | 41690.12 | 41690.14 | 41684.85 | 41690.42 | 41690.37
Saturday 41023.31 41023.34 | 41023.32 | 41023.33 | 41023.53 | 41023.50
Sunday 34660.05 34660.07 | 34660.08 | 34660.04 | 34660.48 | 34660.39
Monday 38443.81* | 38489.47 | 38489.49 | 38489.47 | 38489.80 | 38490.13
Tuesday 43014.20* | 43075.82 | 43075.89 | 43075.86 | 43060.45 | 43077.03

Wednesday | 43368.72 43368.71 | 43368.72 | 43368.72 | 43369.61 | 43370.00
Thursday 42784.96 42785.09 | 42785.10 | 42779.33 | 42786.37 | 42786.15

p=0.9 Friday 41286.48* | 41356.63 | 41356.66 | 41356.64 | 41357.52 | 41357.16
Saturday 40857.38 40857.37 | 40857.34 | 40857.37 | 40857.88 | 40857.88
Sunday 34466.99 34466.98 | 34466.99 | 34466.99 | 34467.35 | 34467.15
Monday 38092.81* | 38138.46 | 38138.53 | 38138.54 | 38139.48 | 38139.22
Tuesday 42706.29* | 42767.90 | 42767.88 | 42767.89 | 42769.41 | 42769.65

Wednesday | 42951.92 42951.68 | 42951.87 | 42952.09 | 42953.43 | 42955.49
Thursday 42341.11% | 42395.79 | 42395.64 | 42392.93 | 42395.73 | 42396.77

p=0.95 | Friday 40994.54* | 41064.56 | 41064.56 | 41064.65 | 41066.61 | 41065.52
Saturday 40690.00 40689.99 | 40689.95 | 40689.97 | 40683.51 | 40688.40
Sunday 34303.96 34303.89 | 34303.94 | 34303.96 | 34304.70 | 34303.63
Monday 37789.85* | 37835.55 | 37835.62 | 37835.39 | 37837.61 | 37836.54

The obtained decision for the binary variables representing the on/off the turbines are
shown on Figure 5.5. Results depend on day and on the volume of water in the reservoir.
If the amount of water is abundant then the optimal solution is to turn on the turbine all
time independently of the price. However, for the purpose of this work the assumption is

that the amount of the water is limited leading to a solution that is no longer trivial.
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Table 5.8 complements information shown on Figure 5.4 and informs the CPU time

spent by every solver and the number of MILPs subproblems solved by each of them.

Regularized solvers 0A, and 0A; were the best ones on these instances.

Table 5.8: Number of MILPs and CPU time for p € {0.8,0.9,0.95}

Day 0A 0Aq 0Aco 0Ao ECPM ELBM
k CPU k CPU k CPU k CPU k CPU k CPU
Tuesday 1175 3395.79 39 | 141.08 539 | 1485.71 37 | 113.72 272 462.65 253 623.40
Wednesday 502 1327.55 44 | 140.20 147 349.76 47 | 102.97 281 563.28 242 442.22
Thursday 967 2958.82 57 | 174.08 452 | 1235.68 52 | 151.84 283 528.34 240 442.62
p=0.8 Friday 908 3600.89* 41 173.59 781 2971.03 48 152.14 328 733.75 309 848.80
Saturday 31 36.27 9 9.08 53 45.53 11 12.41 71 16.29 59 16.87
Sunday 197 407.31 13 21.33 79 79.91 13 19.61 99 36.56 90 68.93
Monday 653 3605.96* 23 96.57 1073 3347.86 28 87.82 338 787.99 273 618.75
Tuesday 1204 | 3600.92* 32 | 179.63 390 | 1225.37 34 | 107.71 379 | 1081.07 305 873.53
Wednesday 533 1510.74 41 | 152.42 157 465.13 52 | 120.90 300 672.95 267 621.72
Thursday 1031 3425.71 73 | 213.68 472 | 1329.76 58 | 176.13 294 546.93 276 650.54
p=0.9 Friday 820 3603.04* 42 146.48 793 3203.98 43 128.13 344 825.08 324 1050.28
Saturday 29 37.92 9 10.44 33 27.35 11 15.92 80 21.23 71 32.49
Sunday 778 3582.22 15 46.50 461 | 1239.08 14 35.07 127 67.49 101 91.23
Monday 646 3609.38* 23 96.59 373 1288.81 28 86.89 365 968.77 312 946.39
Tuesday 1165 | 3601.44* 32 | 204.71 394 | 1310.39 23 | 112.16 372 | 1195.34 325 | 1097.20
Wednesday 717 2129.51 56 | 181.47 398 | 1081.85 51 | 127.46 389 | 1144.42 323 [ 1124.83
Thursday 1032 3600.68* 49 219.76 374 1280.56 41 99.64 382 1086.66 343 1226.53
p=0.95 Friday 771 3605.22* 42 123.34 789 3045.20 48 110.58 365 968.78 340 1244.15
Saturday 38 94.58 9 19.13 14 22.51 10 20.93 118 52.96 88 59.09
Sunday 761 3401.13 15 48.91 123 356.63 14 45.96 146 94.46 121 148.09
Monday 622 3600.82* 22 98.68 986 3580.10 28 84.72 391 1165.09 336 1208.03
Sum 14580 1520 h | 686 | 0.69 h | 8881 8.05h | 691 | 0.53h | 5724 3.62 h | 4998 3.73 h

Table 5.7 shows the optimal value for problem (5.10). Next step is to verify if this

solution is a feasible point for problem (5.7). In order to have this confirmation it is

necessary to check the true constraint at the obtained vector of decisions. The result
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should be equal or greater than stipulated value p to ensure that the obtained vector is a
feasible decision. Table 5.9 shows the estimated probability (EP) and the true probability
(TP), obtained by evaluating the obtained solution with the Botev’s code. The table
shows that all points found by solving (5.10) are considered feasible points for problem
(5.7). These results allow to estimate a good solution for problem (5.7) without using the
hard chance constraint.

Table 5.9: Real probability and estimate probability (via copula).

Day 0A 041 0Aoo 0Ag ECPM ELBM
TP EP TP EP TP EP TP EP TP EP TP EP
Tuesday 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80
Wednesday | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80
Thursday 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80
p=0.8 Friday 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80
Saturday 0.85 | 0.80 | 0.85 | 0.80 | 0.85 | 0.80 | 0.85 | 0.80 | 0.85 | 0.80 | 0.85 | 0.80
Sunday 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80 | 0.83 | 0.80
Monday 0.84 | 0.80 | 0.83 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.84 | 0.80 | 0.83 | 0.80
Tuesday 0.91 [ 0.90 | 0.91 [ 0.90 | 0.91 | 0.90 | 0.91 | 0.90 [ 0.91 [ 0.90 [ 0.91 | 0.90
Wednesday | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90
Thursday 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90
p=0.9 Friday 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90
Saturday 0.92 | 0.90 | 0.92 | 0.90 | 0.92 | 0.90 | 0.92 | 0.90 | 0.92 | 0.90 | 0.92 | 0.90
Sunday 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90
Monday 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90 | 0.91 | 0.90
Tuesday 0.95 [ 0.95 | 0.95 | 0.95 | 0.95 | 095 | 095 | 0.95 | 0.95 | 0.95 [ 0.95 | 0.95
Wednesday | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95
Thursday 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95
p=0.95 | Friday 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95
Saturday 0.96 | 0.95 | 0.96 | 095 [ 0.96 | 0.95 | 0.96 | 0.95 | 0.96 | 0.95 [ 0.96 | 0.95
Sunday 0.95 | 095 | 095 | 095 [ 095 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 [ 0.95 | 0.95
Monday 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95
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Conclusion

Technology growth and scientific development in the world create a high number of pro-
blems that demands mathematical and computational assistance to be solved. Examples
of complex problems are energy outlook, oil reserves estimation, the impact of wind in
human life (power generation), effects of climate and so on. The characteristics of these
problems are that in order to solve it is necessary to apply heavy math and tremendous
computational effort. Most of the problems contains uncertainties and integer variables
that lead to optimization problems with mixed-integer variables and chance-constraints.
This justifies the relevance of the theme considered in this thesis not only to the indus-

trial /productive sector but also to the (applied) mathematical community.

In this work we have studied mixed-integer optimization problems with chance cons-
traints. It is well known in the mathematical community that mixed-integer program-
ming and stochastic programming constitute two very active and challenging research
areas. Therefore, the combination of mixed-integer variables and chance-constraints in
decision/planning problems lead to optimization programs that are both mathematically
and computationally difficult to solve. The setting is even more complicated when diffe-

rentiability is absent, a common situation in real-life applications.

In order to deal with more general mixed-integer convex programs we have extended
the well-known Outer-Approximation algorithm to deal with nonsmooth objective and
constraint functions. In order to obtain finite convergence in this more general setting,
the linearizations must be computed by using particular subgradients of the nonsmooth
functions. To accomplish this task, we have presented a bundle method algorithm that
not only solves the resulting OA’s nonlinear subproblems but also computes (at no extra-
cost) subgradients that satisfy the (nonlinear subproblem’s) KKT system, yielding thus
convergence of OA algorithms. The bundle algorithm considers an exact penalization
function that is employed only to choose stability centers, and as result, the algorithm
is not hindered by any large penalization value. This theoretical contribution has been
published in the article [20].
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We have also presented an outer-approximation algorithmic pattern that employs the
given bundle algorithm and that possesses quite some freedom in defining new integer
iterates. Such flexibility in choosing trial points opens the way to employ regularization
strategies as an attempt to reduce the number of outer-approximation iterations and, as

a result, the number of OA’s subproblems to be solved.

Concerning the chance-constraint formulation, we have recalled in this work some
known results on generalized convexity, and have assessed the computational cost of eva-
luating probability functions in a practical problem. Furthermore, in order to approximate
the probability function, we have investigated a family of (nonsmooth) Copulae and proved
some useful generalized convexity properties. Numerical experiments on a fictitious power
system management have shown that the copula approach presents itself as an interesting

tool for approximating the probabilistic function in a chance-constrained program.

We have numerically assessed the performance of several variants of the proposed
OA algorithm on two families of nonsmooth mixed integer chance-constraints problems
arising from power management. In the first class of problems the probability distribution
is discrete (and finite), and therefore the chance constraint has been modeled with the
help of linear functions and binary variables. The second family of problems deals with
continuous probability distribution, whose probability values are computed numerically
by solving a multidimensional integral. Overall, the obtained numerical results suggest
that the proposed regularized variants of the given nonsmooth OA algorithm can provide
an effective reduction of the number of outer-approximation iterations required to solve

convex mixed-integer programs.
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Appendix A

Multivariate normal distribution

In this appendix, a brief review of multivariate normal distribution and its properties are

presented. These results were used to solve computationally problem (5.7).

Definition A.1. A random vector £ € R™ follows a multivariate normal distribution with

mean vector u and covariance matrixz X if its cumulative distribution function is given by

L) S (= — ), (A1)

1
C Zm) = /—_|27T2| exp(—§

Fg(Zh ..

where z € R™ p € R™ and X € R™ x R™. The symbol of integral in (A.1) means a

multiple integral of dimension m. The standard notation is & ~ N(p,2).
The function (A.1) is differentiable if the covariance matrix ¥ is positive definite ( see

Theorem A.3 below).

Theorem A.1. Suppose that £ € R™ follows a multivariate normal distribution N(u, ).

Let be 6 = AE + a where A € RP X R™ and a € R™. Then § ~ N(f,Y) where

f=Au+a and ¥ = AXAT. (A.2)

Proof: See [65, Theorem 3.3.3]. m

Suppose that & ~ N(u,%). As —¢ = —I&, by Theorem A.1 we have that —& ~

Theorem A.2. Suppose that £ € R™ follows a multivariate normal distribution N(u, ).
Let be

and X = [ZH 212]

221 222
where 51 € Rq,gz € ]Rm_q,ul S Rq,,ug € Rm_q,En € R? x ]R‘I,Zlg € R? x Rm_q,Zm S
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R™™% x R? and Yoy € R™ 7 x R™ with m > q > 1. Then

61 ~ N(,ul, 211) and 52 ~ N([LQ, 222). (A3)
Proof: See [65, Theorem 3.3.1]. ]
Suppose that diagonal of matrix ¥ is the vector [63, 03, ..., 02]. Then, by Theorem A.2

we have —& ~ N(—p;,02). In other words, the unidimensional margins of a multivariate

normal distribution is also normal.

Theorem A.3. Suppose that & € R™ follows a multivariate normal distribution with
mean vector € R™ and positive covariance matriz X2 € R™ x R™. Then the distribution
function F¢(z) = P < z] is continuously differentiable and in any fived z € R™ the

following holds for arbitraryi=1,...,m:

OF
321»

(Z) = fgl (Zi)Fé(zi)(Zl’ ce ey B 1, Ry e e 7Zm>7 (A4)

where fe, is the one dimensional normal density associated to random variable & given by

1 — (zi—pi)?
\Z;) = e %ii

and Fg, ) is the cumulative distribution function associated to random vector £(z) with
mean vector fi € R™ ' and covariance matriz ¥ € R™ x R™1. Let D! denote the

(m — 1) X m matriz obtained from the m x m identity matriz deleting the ith row. Then
fi=Di(n+ 35" (5 — p)%)  and ¥ =D}, (2 - Z'SEN)(D;)T, (A5)
where Y; is the i-th column of ¥ and ¥;; is the i-th element of the main diagonal of 3.

Proof: See [73, Theorem 1]. m

Theorem A.3 gives the formulas to gradient of function F, associate to measure P of
problem (5.7). Note if the dimension of £ is m then it is necessary to evaluate m multiple

integrals of dimension m — 1 ( one multiple integral for each coordinate of gradient).
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