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Everything that can possibly go wrong,  

will go wrong.  
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RESUMO 

Partículas de aerossol biológicas primárias (primary biological aerosol particles - 
PBAP) são essenciais como fonte de nutriente e na dispersão de material reprodutivo. 
Pólens e esporos de fungos são considerados potenciais núcleos gigantes de 
condensação de nuvens sobre florestas tropicais. Portanto, eles provavelmente 
influenciam nos processos de precipitação em escala local e regional. A distribuição 
vertical de partículas grossas sobre a floresta foi analisada utilizando medições na 
Torre Alta de Observação da Amazônia (Amazon Tall Tower Observatory - ATTO), no 
Brasil. Esta é a primeira caracterização de dispersão e transporte vertical de 
bioaerossóis atmosféricos até 300 m de altura para a Amazônia central. Campanhas 
de amostragem foram conduzidas durante ambas as estações, seca e chuvosa, de 
2015 a 2017. Um amostrador volumétrico de esporos (tipo Hirst) foi utilizado para 
coletar partículas na torre a 25, 40, 60, 80 e 300 metros de altura acima do nível do 
solo. As amostras foram imageadas com microscopia ótica e a série temporal de 
abundância de bioaerossol foi obtida baseada na classificação, quantificação e 
identificação morfológica. Grãos de pólen, esporos de fungos e ferns, e resíduos da 
copa como fragmentos de folhas e insetos, ceras e glândulas de plantas, decresceram 
em abundância da copa (30 a 35 m) até 300 m de altura. Precipitação, umidade 
relativa e direção e velocidade do vento tiveram uma forte influência na distribuição 
vertical dessas PBAP. Partículas de pólen foram encontradas na faixa de tamanho de 
10 a 95 µm, com maior frequência de 10 a 30 µm. Grandes grãos de pólen estavam 
ausentes bem acima da copa, exceto durante eventos de tempestade. Pólens acima 
da copa raramente apareceram rompidos. A baixa precipitação através da estação 
seca de 2015, registrada durante um evento de El Niño, foi correlacionado com um 
acréscimo no número de PBAP suspensos, devido ao aumento na emissão e/ou 
decréscimo na remoção proporcionada pela chuva. Para 60 e 80 m, houveram 
diferenças significativas (p-valor<0,01) entre concentrações de pólen e fungos de dia 
e a noite. A composição relativa de PBAP é similar ao longo do ano, apesar das 
diferenças de altura e estação. Fora de eventos de tempestade, aerossóis primários 
grossos mensurados, especialmente pólens maiores que 10 µm de diâmetro, podem 
geralmente sofrer menos arrastamento atmosférico e ter menos influência nos 
processos atmosféricos. 

 
Palavras-chave: Partículas de aerossol biológicas primárias, polén, distribuição 
vertical, Torre Alta de Observação da Amazônia, Amazônia. 



 
 

ABSTRACT 

Primary biological aerosol particles (PBAP) are essential as a nutrient source and for 

dispersal of reproductive material. Pollen and fungal spores are considered potential 

giant cloud condensation nuclei over tropical rainforests. Thus, they likely influence 

local and regional scale precipitation processes. The vertical distribution of coarse 

particles above the rainforest was analysed using tower-based measurements at the 

Amazon Tall Tower Observatory (ATTO) in Brazil. This is the first characterization of 

airborne bioaerosol emission and vertical transport up to 300 m height for the central 

Amazon. Sampling campaigns were conducted during both the wet and dry seasons 

from 2015 to 2017. A Recording Volumetric Spore Sampler (Hirst-type) was used to 

collect particles on the tower at heights of 25, 40, 60, 80 and 300 m above ground 

level. Samples were imaged with optical microscopy, and time series of bioaerosol 

abundance were obtained based on morphological classification, quantification and 

identification. Pollen grains, fungal spores, fern spores and canopy debris, such as leaf 

and insect fragments, as well as plant waxes and glands, decreased in abundance 

from the canopy (around 30~35 m) to 300 m height. Precipitation, relative humidity, 

and wind direction and speed had a strong influence on the vertical distribution of those 

PBAP. Pollen particles were found in the size range of 10 to 95 µm, with higher 

frequency from 10 to 30 µm. Large pollen grains were absent high above the canopy 

except during some thunderstorm events. Pollen above the canopy rarely appeared 

ruptured. The low rainfall across the 2015 dry season, recorded during an El Niño 

event, correlated with an increased number of suspended PBAP, due to an increased 

emission and/or decreased rain-related scavenging. For 60 and 80m, there were 

significant (p-value<0.01) differences between day and night concentrations of pollen 

and fungi. The relative PBAP composition is similar throughout the year, despite 

season and height difference. Outside of storm events, measured coarse primary 

aerosols, especially pollen larger than 10 µm in diameter, might generally undergo less 

atmospheric entrainment and have less influence on atmospheric processes. 

 
 

Key-words: primary biological aerosol particles (PBAP), pollen, vertical distribution, 

Amazon Tall Tower Observatory (ATTO), Amazon. 
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1 INTRODUCTION 

Biological particles are abundant in the atmosphere and follow an essential 

path in the dissemination of biological organisms and reproductive material. Also, they 

are important components for air chemistry and physics. These suspended particles 

can influence the surface’s energy by scattering and absorbing radiation and can 

initiate the formation of clouds and precipitation as cloud condensation and ice nuclei 

(ANDREAE; CRUTZEN, 1997; PÖSCHL, 2005, 2010). Primary biological aerosol 

particles (PBAP), such as pollen, bacteria, fungal and fern spores, viruses, and 

fragments of animals and plants, are directly emitted from the biosphere remaining in 

suspension according to its size and density (ELBERT et al., 2007; DESPRES et al., 

2012). 

Primary biological particles typically belong to the coarse fraction of 

atmospheric particulate matter, with aerodynamic diameter from 10 to 100 

micrometers. Those particles and components are also found in intermediate and fine 

fractions, like most fungal spores, small fragments, and excretions of plants and 

animals, bacteria, viruses, carbohydrates, proteins, waxes, ions, (TAYLOR et al., 2004; 

PÖSCHL, 2005). The possible driven mechanisms (like turbulence and long-range 

transport) and effects (as nucleation or health effects) of those particles in the 

atmosphere are frequently discussed (TAYLOR; JONSSON, 2004; SUN; ARIYA, 

2006; ELBERT et al., 2007; STEINER et al., 2015).  

Although different types of investigations, including airborne and tower-based 

measurements, have been performed to understand the dispersion and physical 

behaviour of long-distance and short-range transport of pollen grains (RAYNOR et al., 

1973; MANDRIOLI et al., 1984; SOFIEV et al., 2006), the data obtained from these 

studies are restricted in their representativeness because of the limited number of 

observed pollen events, the lack of continuous airborne measurements, and the limited 

height coverage of tower-based measurements. Therefore, observations of the vertical 

distribution and abundance of pollen are a need to more accurately determine pollen 

dispersion and transport. 

Raynor et al. (1973) and Hart et al. (1994) reported that the vertical distribution 

of pollen is highly correlated with meteorological conditions, and their findings are 

based on vertically resolved measurements using towers. Since the maximum height 

of their sampling was limited to 108 m, these tower-based studies did not take account 
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of the distribution of pollen up to the top of the planetary boundary layer, and into the 

free troposphere. The presence of pollen in samples collected by aircraft suggested 

that a substantial abundance of pollen was prolonged at heights over 1 km. These 

results corroborated the hypothesis that recurring meteorological conditions favour 

vertical exchange and long-range transport of pollen (MANDRIOLI et al., 1984). 

In order to understand and predict temporal and spatial characteristics of 

pollen, pollen-forecasting models have been developed (VAZQUEZ et al., 2003). The 

models utilize pollen concentration data observed by in situ aerobiological monitors 

near the surface (PORSBJERG et al., 2003). However, there is convincing evidence 

that long-range transported pollen can significantly enhance pollen concentrations at 

both the surface and at elevated altitudes above the receptor sites. Especially in these 

cases, temporally and vertically resolved data of pollen concentration are expected to 

improve the forecasting capability of these models. 

Meteorological events combined with an analysis of pollen morphology, 

suggest that rupture of airborne pollen can occur. These micron-sized particles might 

influence cloud formation (STEINER et al., 2015). Strong downdrafts and dry, cold 

outflows distinguish thunderstorm rain from frontal rain (STULL, 2011). The weather 

system of a mature thunderstorm likely entrains pollen grains into the cloud base, 

where pollen rupture would be enhanced, then transports the nano and micro-sized 

fragments of pollen debris to ground level where outflows distribute them ahead of the 

rain. Examining the morphology of pollen during thunderstorms could assist in 

understanding these events. Therefore, to understand and predict pollen release, 

dispersal, and transport, it is necessary to simultaneously measure the vertical 

distribution of pollen associated with meteorological parameters. 
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1.1 HYPOTHESIS 

Studies performed at high altitude suggest that primary biological aerosol 

particles, such as pollen grains, are evenly distributed across the atmospheric 

boundary layer. These concepts, first developed in the 1970’s, based on North 

American and European measurements, proposed a relatively linear vertical pattern of 

biogenic particles dispersal throughout the atmospheric boundary layer. 

Considering that the tropical rainforest is a large source of PBAP, it is 

opportune to examine the entrainment of bioaerosols using tower-based 

measurements. Regarding the transport mechanism of particles and the development 

of the atmospheric boundary layer structure, vertical pollen abundance should follow a 

pattern of exponential decrease. 

  

1.2 AIMS 

 

The present study proposes to seasonally and vertically evaluate the Primary 

Biological Aerosol Particles suspended in a pristine atmosphere of the Amazon 

rainforest. 

In order to achieve the main goal, these specific aims were targeted: 

� Quantify the seasonal distribution of PBAP, during dry and wet periods; 

� Measure the vertical distribution of biogenic particles at different tower-

based heights; 

� Catalogue the types of biological aerosol particles; 

� Record the incidences of pollen rupture related to meteorological conditions. 
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2 LITERATURE REVIEW 
 

2.1  GLOBAL ATMOSPHERIC CIRCULATION 

 

2.1.1 Atmospheric Boundary Layer 

 

Horizontally, the global circulation around the planet surface can be visualized 

in three major cells. In the Northern Hemisphere, the major winds at the Equator’s 

region are directed from West, and in the Southern Hemisphere, from the East. Around 

the zero latitude, the trade winds are from Northeast and Southeast, respectively, 

driving the major winds and jets easterly in low-pressure zones. At this region, between 

the Hadley cells, the variation is known as Intertropical Convergence Zone (ITCZ), and 

its seasonal oscillation along with other meteorological conditions, are responsible for 

weather changes in the region (STULL, 2011). 

The South American climate system presents some features like the ITCZ, 

maintained by the transient moisture flux from the Amazon (MARENGO, 2012). The 

specific local topography, heating and moisture conditions over the Amazon Basin at 

the Equator’s line are responsible for the climate intra-seasonal pattern on the region.  

The seasonality over South America is strongly related to the annual cycle of 

the Convergence Zone and the surface temperature gradients (GRIMM, 2010). The 

rainfall over South America is also influenced by the El Niño Southern Oscillation, an 

upper-low level circulation anomaly that perturbes the global circulation (GRIMM and 

TEDESCHI, 2009; TEDESCHI, CAVALCANTI and GRIMM, 2012). 

Vertically, the atmosphere around the Earth’s planet is structured in layers 

according to the pressure and density profile. The troposphere, the first layer above 

the ground’s surface, below around 10 km, is characterized by an exponential drop of 

density and air pressure with altitude increase. Within the troposphere, the layer 

directly above, and influenced by the surface, is known as the atmospheric boundary 

layer (ABL), and extends up to 3 km, as shown in FIGURE 1. The layer above is known 

as the free troposphere (GRIMM, 2010). 
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FIGURE 1: Scheme of the Atmospheric Boundary Layer structure: Surface, Convective Mixed, 
Stable and Residual Layers up to the capping inversion. 

SOURCE: adapted from STULL (2003). 

 

The ABL is characterized by a diurnal cycle, based on the temperature surface 

variation that, once transported to the air, can drive turbulence processes. All the 

subsequent processes are mainly concentrated to the ABL extension, with the free 

troposphere being barely perturbed by the changes on the ground. Heat and moisture 

can increase the turbulence and the development of the different structures inside the 

ABL: mixed or convective layer (very turbulent) during sunlight hours, residual layer 

(less turbulent) and stable boundary layer during nocturnal periods. Depending on the 

vertical temperature profile, particles or substances emitted from the surface can be 

dispersed or trapped according to the ABL development structure (STULL, 2003; 

2011). 

 

2.1.2 Physical transport mechanisms 

 

Long-range transport in the atmosphere generally occurs in the free 

troposphere. To achieve long-range transport, the substance must reach the edge or 

beyond the ABL.  

Vertical motions are related to atmosphere stability, which is related to the 

moisture content and temperature profile above ground level. The lapse rate of an air 

mass and the conditions around defines the convergence and divergence motions 

horizontally, which leads to updrafts or downdrafts vertically, FIGURE 2.   
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FIGURE 2: Scheme of vertical motions in the boundary layer, air mass subsidence related to 
divergence in the surface, and air updraft related to convergence. 

SOURCE: adapted from STULL (2003). 
   

Over high-pressure surface, the divergence motion is feed by air mass 

subsidence just above, illustrated in FIGURE 2. The opposite occurs over low-pressure 

surface when the convergence leads to a rising up mass and can also cause updrafts. 

The instability can lead to air gusts and convection with the lifting and mixture 

of the air mass. One weather event related to atmospheric instability is a thunderstorm, 

when high moisture and unstable air gets lifted and forms fronts. The rapid updrafts 

and downdrafts promote a disturbance in the air, and lightning (an electric current 

charge between the clouds and the ground’s surface) that can also perturb and 

damage suspended particles. Over arid or semi-arid regions, winds gust from a dry 

cold front lead to a dust storm (a storm with no rain) whereby sand/dust is suspended 

and resuspended from the ground. (STULL, 2003). 

The Sahara is the largest source of desert dust to the atmosphere (GINOUX 

et al., 2012). Studies have revealed the extent of the influence of Saharan dust on 

nutrient dynamics and biogeochemical cycling in both oceanic and terrestrial 

ecosystems in North Africa and far beyond, due to frequent long-range transport 

across the Atlantic Ocean, the Mediterranean Sea, and the Red Sea, and on to the 

Americas, Europe, and the Middle East (GOUDIE; MIDDLETON, 2001; HOORNAERT 

et al., 2003; YU et al., 2015; LONGO et al., 2016; RAVELO-PEREZ et al., 2016; 

SALVADOR et al., 2016). 
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2.2  ATMOSPHERIC PARTICLES 

2.2.1 General classification of atmospheric particles 

 

Substances present in the air may be formed and emitted from natural or 

anthropogenic sources and among the pollutants stands the particulate matter (PM). 

This one plays an important role in the atmosphere, influencing and being influenced 

by the climate system.  

Atmospheric particles or PM can be described as a complex mixture of solid 

particles and liquid droplets in sufficient size and density to remain in suspension in 

the atmosphere (EPA, 2013). Particles are mainly classified according to their size. 

The aerodynamic diameter of 2.5 µm separates two main aerosol categories: coarse 

mode, and fine mode that can present chemical compounds and/or metals adsorbed 

on the surface (EPA 2011, 2013). 

The mobility and residence time in the atmosphere is defined by the particle 

size and density. This might be small enough to allow the transport to regions far from 

the source and, according to the prevailing meteorological conditions, influence distant 

regions and countries, even transporting pollution overseas and across continents. In 

general, the larger the diameter of the particles, the lower the residence time in 

suspension. Very fine particles remain suspended for considerable periods and can be 

transported to remote and uninhabited regions such as deserts and the poles. The 

composition of the suspended particle determines their potential influence on the 

environment (MARTIN et al., 2010). 

In general, the smaller the fragment in suspension, the greater the possibility 

of agglomeration, coagulation and condensation of gases onto the surface, or even the 

formation of new particles (BUSECK; ADACHI, 2008). The shape and content of each 

particle can be defined by the formation process. In this case, it is possible to 

differentiate between particles formed naturally from particles that have resulted from 

human activities (ZHAO et al., 2013). In both cases, emission rates are highly variable 

and the impact cannot be fully understood or measured. 

In addition to the PM physical characteristics (size) and chemical (elemental) 

composition, the climate and weather variables are extremely important in the transport 

of these particles to local, regional (EPA, 2011), and even intercontinental range 
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(ANDREAE et al., 2015). Particles physical characterization and chemical composition 

are determined by location and atmospheric conditions of the source region. 

 

2.2.2 Particle formation and emission to the atmosphere 

 

The composition of each particle varies according to location, weather 

conditions and source. Primary particles are directly emitted from the source, whereas 

secondary particles are formed in the atmosphere from gases and/or smaller particles. 

In a forest region, favorable conditions lead to the formation or growth of a new particle 

by nucleation or condensation, defined as a secondary organic aerosol – SOA, from a 

light volatile organic compound exposed to solar radiation and air humidity (PERRAUT 

et al., 2012; FUENTES et al., 2016). 

Pollen grains, fern spores, large fungal spores, and other large primary 

biological aerosol particles, are directly emitted from the biosphere to the atmosphere, 

and typically belong to the coarse fraction of air particulate matter, with aerodynamic 

diameters up to 100 μm. PBA and components are also found in intermediate and fine 

fractions of air particulate matter, with aerodynamic diameters less than 10 μm (PM10), 

2.5 μm (PM2.5), and 1 μm (PM1), respectively: most fungal spores, small fragments 

and excretions of plants and animals, bacteria, viruses (TAYLOR et al., 2004), 

carbohydrates, proteins, waxes, ions, are in this size range (PÖSCHL, 2005). 

Primary bioaerosols are generally considered efficient cloud condensation 

nucleus (CCN) due to their wettability and size (ANDREAE; ROSENFELD, 2008; 

ARIYA et al., 2009). Large bioaerosols, such as pollen grains, can act as giant CCNs 

(FIGURE 3). This means that they can develop cloud drops under lower 

supersaturation conditions than other types of aerosol. They can also rapidly grow, 

facilitating the formation of rain due to their ability to absorb large amounts of water. 

Thus, there is a geometric increase of grain size with increase in relative humidity 

(DINGLE, 1966; MOHLER et al., 2007; POPE, 2010; STEINER et al., 2015). This 

mechanism seems to dominate the formation of secondary organic particulate particles 

in the Amazon forest (PÖHLKER et al., 2013). The link between biogenic particle 

emissions and cloud properties in the rainforest ecosystem seems even stronger and 

more direct than previously thought.  

Another particle formation process may initiate from nanoparticles, which 

create larger particles by agglutination or condensation of gases and other materials 
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on the surface. Salts are also cores for particle growth, mainly by hygroscopicity (high 

moisture absorption). Hydrophobic, hydrophilic or hygroscopic characteristics are 

crucial for the growth of particles and enable the formation of cloud condensation nuclei 

(BUSECK; ADACHI, 2008; KOEHLER et al., 2009; DESPRES et al., 2012). Hydrophilic 

substances strongly facilitate droplet nucleation (PETTERS; KREIDENWEIS, 2007; 

ANDREAE; ROSENFELD, 2008). 

 

 
FIGURE 3: Scheme of cloud condensation nuclei (CCN) formation from bioaerosols emitted 
from the surface and consequent dry or wet deposition on the surface. 

SOURCE: adapted from ARIYA et al. (2009). 

 

In general, smaller particles have greater relative surface area, increasing the 

number of physical and chemical reactions and the formation of other particles. The 

composition is determined by the availability of substances derived from primary 

sources. This process helps in tracking the particle, relating the characteristic 

composition to possible generating sources (LOWRY et al., 2012). 

Fine particles can be emitted into the atmosphere by several sources: 

industrial activities, fuel burning in automotive vehicles (especially Diesel engine) and 

biomass burning (ANDRADE et al., 2012). The source determines the composition of 

the particle and this may be organic compounds, acids, or heavy metals, for example. 

Generally, the incomplete burning of fossil fuels and organic material generates large 

amounts of carbonaceous particulates, therefore, elemental carbon is an abundant 

constituent of PM in urban areas (EPA, 2011; ZHAO et al., 2013).  

Regarding the elemental composition of the particles, the presence of 

Aluminium, Silicon, Iron, Calcium, or Titanium, for example, can categorize the source 

as terrigenous, abundant in soil composition (MAENHAUT et al., 1989). Sodium and 



 24 

Chlorine, are directly related to the marine source (WOROBIEC et al., 2007). Industrial 

activities and fossil fuel burning are usually related to elements such as Chromium, 

Manganese, Nickel, and Lead (TRAPP; MILLERO; PROSPERO, 2010; ARTAXO et 

al., 2013). Potassium, Phosphorus, and Zinc are considered biological tracers, while 

Sulphur, Potassium and Chlorine may also be associated with biomass burning 

(YAMASOE et al., 2000), just to mention a few examples. 

To quantify the anthropogenic carbonaceous fraction present in PM over 

natural sources is a challenge pursued worldwide (ANDREAE; GELENCSER, 2006; 

BOND, 2013). Soot particles have high porosity and ability to adsorb other substances 

in the vapour phase, especially organic compounds (SANDRADEWI et al., 2008), and 

also present high rates of absorption and refraction of electromagnetic radiation, as 

defined by Buseck et al. (2012). In the present work, the term soot is used to describe 

a set of amorphous black particles consisting primarily of carbonaceous matter. 

 

2.2.3 Biological particles in the atmosphere 

 

Biological particles are emitted directly to the atmosphere from biological 

organisms, such as microorganisms, plants, and animals, and this includes fragments 

from tissues and cells. Pollen is commonly the largest, in size, of those particles 

observed in the atmosphere. Pollen grains are reproductive plant cells with a hard wall 

that protects the sperm cells, nuclei and other cytoplasmic content (DEPRES et al., 

2012).  

The exine, external layer of the grain, is a waxy or resinous wall, chemically 

and mechanically resistant, developed to facilitate the dispersion, by wind or animal 

agent, through its sculptural features (KAPP, 1975). The rupture of the pollen exine 

naturally occurs during germination, and empty shells, derived from pollen grain 

rupture with consequent content release, are also included in atmospheric pollen 

counts (GROTE et al., 2000; TAYLOR et al., 2002, 2004; MIGUEL et al., 2006; ZHOU, 

2014; STEINER et al., 2015). 

The pollen grain has a shape factor related to the feature of the exine particle. 

The size, shape, sculptural structure, and polarity (the number, spatial orientation, and 

arrangement of the microspores and apertures, e.g. germination regions, are the 

guides (keys) for pollen identification (KAPP, 1975). These morphological 

characteristics are genetically determined and used to microscopically identify the 
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species. The FIGURE 4 shows some examples of pollen grains. Sizes and shapes are 

variable, from circular, elliptical, long, triangular and semicircular to boat-shaped 

(AGASHE; CAULTON, 2009; HESSE et al., 2009). 

 

 

FIGURE 4: Optical view of pollen grains: Pinaceae, Sphagnaceae, Pteridaceae, Oculopollis, 
and 3D SEM view of Oculopollis (from left to right). 

SOURCE: HESSE et al. (2009). 

 

Pollen production occurs in the anthers for flowering and seed plants, as 

shown in FIGURE 5. Each anther of a flower produces up to several thousands of 

pollen grains, and anthers exsert and dehisce according to changes in the temperature 

and relative humidity, respectively, releasing the pollen grains at the atmosphere. The 

emission of pollen from the open anther mainly relies on wind or animal disturbance 

(COLINVAUX; OLIVEIRA; PATINO, 2005; HESSE et al., 2009). Once in the air, the 

dispersal depends on meteorological conditions, being positively correlated with 

temperature, relative humidity, and wind speed and negatively correlated with 

precipitation (DEPRES et al., 2012). 

 

 
FIGURE 5: Scheme of pollen production for a flowering plant: simplified steps from the flower 
parts description until the pollen release from the anther. Out of scale. 

SOURCE: adapted from KAPP (1975). 
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Vertical entrainment plays an important part in long-range dispersion and is 

related to, and controlled by, convection and inversion layers. This issue is not well 

covered in the published literature since there is a paucity of measurements at fixed 

heights well above ground level. During aircraft measurements, high concentrations of 

aerosol particles were found being transported from the free troposphere into the 

boundary layer by strong convective downdrafts during precipitation events. This rapid 

vertical motion may influence cloud properties and climate (WANG et al., 2016). 

For vertical pollen measurements, earliest methods used adhesive-coated 

slides in hot air balloons, and by the mid 20th-century samplings were also performed 

with aircrafts. In 1937, Rempe stated that 40% of the ground concentration of pollen 

could be found at 2000 m height. In 1984, Mandrioli et al., concluded that pollen grains 

were evenly distributed over the first 1 km. However, in 2003, Graham et al., recorded 

high variations in pollen abundance within the first 50 meters above ground.  

There have been major limitations with appropriate equipment for quantitative 

assessment.  But, with those first results, the concept that pollen and other giant 

particles are readily dispersed across the atmospheric boundary layer up to 2000 m 

above ground level was disseminated (RAYNOR et al., 1973; MANDRIOLI et al., 1984; 

HART et al., 1994).  

Although pollen grains, and large fungal spores, have a sedimentation velocity 

of approximately 2.5 cm s−1 in quiescent air, recent attempts at modelling ground-

based concentrations of pollen have relied on the assumption of an even distribution 

across the lower atmosphere. Further to this, it is believed that pollen grains are 

regularly transported over long distances. For example, grass pollen detected in 

Melbourne, Australia, was believed to be mainly sourced from extensive pastures that 

ring the city and are located 30 km from the sampler site (DE MORTON et al., 2011). 

Recent advances in ground-based LIDAR technology reinforce this assumption of high 

vertical displacement (NOH et al., 2013; SICARD et al., 2016; RAO et al., 2017), 

although direct observations remain lacking. 

Another group of highly diverse bioaerosols that is common on the Earth’s 

surface is fungal spores. Spores are as small as a few micrometers in size, usually 

spherical, spheroidal or elongated in shape (GABEY et al., 2010; HUSSEIN et al., 

2013). Spores are often actively released by osmotic pressure or surface tension 

during the sexual and/or asexual stage of the organism. The release mechanisms are 

different in the major groups of fungi, as Ascomycota release ascospores (FIGURE 6) 
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in a wet state, whereas Basidiomycota release basidiospores (FIGURE 7) in a dry 

state. Conidiospores are asexual spores produced from hyphae by both groups of 

fungi. Ascospore and basidiospore are airborne dominant (ELBERT et al., 2007; 

FRÖHLICH-NOWOISKY et al., 2009; DEPRES et al., 2012). 

Fern and mosses spores, released by cryptogamic plants, can also be found 

suspended in the atmosphere. Near the source, they can be the dominant groups 

(GRAHAM et al., 2003). Fern spores (FIGURE 8) are usually produced by meiosis 

where the sporulation generate a single type of spore or two distinct spores (male and 

female). Many fern spores present a ‘kidney’ shape (KAPP, 1975). 

 

 

 
FIGURE 6: Simplified scheme of an ascospore reproduction based on an ascus, up to the 
hyphae formation at the germination phase. Out of scale. 

SOURCE: adapted from PIEPENBRING (2015). 

 

 

 

 
FIGURE 7: Simplified scheme of a basidiospore reproduction from the basidia cell until the 
spores dispersion. Out of scale. 

SOURCE: adapted from HØILAND (2007). 
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FIGURE 8: Simplified scheme of a fern reproduction based on the sporulation where the 

several spores are released into the atmosphere. Out of scale. 
SOURCE: adapted from KRUPP (2011). 

 

The quantity of PBA globally emitted into the atmosphere has been estimated 

at less than 10 to as much as 1000 Tg per year (PENNER, 1995; JAENICKE, 2005; 

WINIWARTER et al., 2009; HOOSE et al., 2010; WOMACK et al., 2015). The wide 

range is due to the measuring limitations and diverse methods applied. The IPCC 

estimates approximately 80 Tg only for pollen emission into the atmosphere each year 

across the globe (IPCC, 2013). 

  

2.3  ATMOSPHERIC PARTICLES OVER THE AMAZON RAINFOREST 

The large extent of the rainforest at the Amazon Basin, the largest tropical 

forest (GARSTANG et al., 1988; ARAGÃO, 2012; DOUGHTY et al., 2015) releases 

natural biogenic aerosols such as microorganisms, pollen, and spores, as well as 

secondary particles formed by volatile organic compounds emitted by the forest 

throughout the year. So, the Amazon Basin is an important region for the atmospheric 

particles study (ANDREAE et al., 1990, 2015). 

In order to evaluate the influence of the forest on the climate, it is important to 

understand the natural sources of atmospheric aerosols. In this context, the Amazon 

Basin is considered one of the few continental regions where such particles can be 

studied under almost natural conditions (pristine during the wet season), emitting a 

high aerosol load, driven mainly by an intense interaction between the biosphere and 

the atmosphere (PAULIQUEVIS et al., 2012; HUFFMAN et al., 2013). 
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The variability in the PM composition and concentration in the region is 

influenced by aspects such as: transport of dust and soot from the African continent to 

the northeast coast of South America reaching the Amazon; vertical transport which 

enables the particles redistribution; fires occurrence which increases PM emissions; 

boundary layer mixing gradient that affects day and night particle distribution; and the 

high variability of primary particles (MARTIN et al., 2010).  

Brazil's northern region is characterized by a rainy equatorial climate with 

spatial and seasonal temperature homogeneity, a result of the incident solar radiation 

that separates the two predominant seasons: rainy and dry (FISH; MARENGO; 

NOBRE, 1996). The rain distribution along the months of the year can change between 

October and May. In years with El Niño occurrence, the wet season generally starts 

later, around December, and presents a different pattern of incidence and frequency 

(GRIMM, 2010). 

The global circulation pattern influences rain occurrence in the Amazon Basin, 

as in the entire of South America. Near the zero-latitude line, the convergent air from 

both hemispheres is also associated with low equatorial pressure. This is the region 

with the highest precipitation frequency and intensity, due to movement of the trade 

winds. High levels of rainfall occur in the Amazon Basin area, a region with a high 

evapotranspiration rate, which helps to retain the humidity over the forest. In South 

America, the ITCZ influence and the west topography are important for the spread of 

humidity along the continent, modulating the rain distribution. Thus, the dry and rainy 

seasons, according to humidity at the northern region, have a fundamental role in the 

continent climate (GRIMM, 2003; GRIMM, 2010; TEDESCHI; CAVALCANTI; GRIMM, 

2012). 

Regardless of the season, about 90% of the atmospheric particulate matter in 

the region is organic material (ANDREAE and CRUTZEN, 1997; MARTIN et al., 2010; 

ANDREAE et al., 2015). Also, the Amazon Basin receives annually about 28 million 

tons of African dust (YU et al., 2015), as well as Atlantic sea spray and smoke from 

African biomass burning (TALBOT et al., 1990; MARTIN et al., 2010; BAARS et al., 

2011; ANDREAE et al., 2015). 

During the dry season, the smoke from forest fires and the predominant 

northeastern wind transport (due to the trade winds) may explain the abundance of 

carbonaceous organic particles (potassium-containing). At this period, surrounding 

anthropogenic activity affects the properties of the PM and biomass burning 
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contributes to high sulfur levels, in addition to chloride and potassium, to the fine 

particulate fraction composition (GUNTHER et al., 2009; MARTIN et al., 2010). 

During the rainy season, the Amazon region is known as pristine, with very low 

trace gases and PM concentrations consisting mostly of biogenic elements (ARTAXO 

et al., 2013). During this period, increased concentrations of crustal elements is due to 

the intercontinental transport of dust from Africa, enabled by the global circulation 

pattern (BEN-AMI et al., 2010; BAARS et al., 2011; RIZZOLO et al., 2017). There is 

also the observation of new particle formation in the range of 10 to 20 µm in intervals 

of less than 24 h (MARTIN et al., 2010). 

Studies indicate that fine particles, which serve as cloud condensation nuclei 

in pristine forests, such as the Amazon, are predominantly composed of organic 

secondary aerosol, formed by oxidation of volatile organic compounds and 

condensation of oxidation of semi-volatile products. The results support the hypothesis 

that the Amazon forest ecosystem can be considered as a biogeochemical reactor, in 

which cloud formation and precipitation in the atmosphere are driven by particles 

emitted from the biosphere (ARTAXO et al., 2006; PÖHLKER et al., 2012). 

According to the IPCC simulations, the Amazon Basin should experience an 

average increase of 3°C, with a reduction of about 20% in the average precipitation in 

this century. Such climate change would reduce the water availability of plants and 

thus increase water stress for many species because these areas tend to be more 

vulnerable to increased drought and heat. Each species varies in tolerance to 

environmental stress, and it is difficult to predict the overall response to this 

environmental change (IPPC, 2013). 

In the formulation of future scenarios, there are high uncertainties about 

changes in biomass, and significant rearrangement of plant species within 

communities in response to such changes. Plant growth rates have increased in 

tropical forests over the past three decades, related to increased CO2eq (carbon 

dioxide equivalent) and incident radiation (LEWIS et al., 2004; PHILLIPS et al., 2009; 

HASHIMOTO et al., 2010). 

Interactions between CO2eq and the water cycle can be very important for 

tropical forests in a future with high carbon dioxide concentrations. By increasing 

photosynthesis and/or reducing water usage via reduced stomatal conductance, water 

use efficiency generally rises in response to CO2eq addition, and that could increase 

drought tolerance (NORBY; ZAK, 2011; CERNUSAK; WINTER; DALLING, 2013).  
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In some localities, recent global climate changes may be associated with 

increases in the length of the season of certain types of pollen (SINGER et al., 2005; 

ROGERS et al., 2006; ZISKA et al., 2011). The effect on production varies according 

to several factors, whereby some areas showed increased pollen concentrations, 

others had a decrease, as observed in European studies after 1992 (FREI; GASSNER, 

2008) where grass pollen decreased with a reduction in precipitation (JATO et al., 

2009). 

Air sampling in a forest clearing near Manaus (Amazonas state) at ground level 

in 2004 showed consistent high level emissions of both pollen and fungal spores each 

day and throughout the day/night cycle with clear variations in species abundance in 

wet and dry weather. Previous published work at forest canopy level at Balbina, 

Amazonas state, was consistent with these observations (GRAHAM et al., 2003). In 

pristine tropical rainforest air, fungal spores account for a major fraction of coarse 

particulate matter (ELBERT et al., 2007).  

Around the globe, pollen and fungal spores are continuously monitored, 

usually in large and dense populated areas, due to its harm effect regarding public 

health. The daily concentration of the allergen species is a parameter for public 

policies. In Japan, Italy, USA, France, Spain and Germany are installed the major 

number of monitoring stations in urban areas (BUTERS et al., 2018). The present 

project is responsible for the first monitoring station installed in the Amazon area. 
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3 METHODS  

3.1 SAMPLING SITE 

The sampling site is a natural forest area located in the Uatumã Sustainable 

Development Reserve (RDS Uatumã), at the Amazonas state, in Brazil, designated as 

the ATTO site elsewhere (FIGURE 9). For the present project two towers were used 

to install the samplers at different heights according to the sampling strategy: the 

INSTANT tower (walk-up) with 80 m above ground level (S 2° 8.647’ W 58° 59.992’) 

and the ATTO tower, 320 m height (S 2° 8.752’ W 59° 0.335’) illustrated on FIGURE 

10. 

 
FIGURE 9: Sampling site location: Amazon Tall Tower Observatory (ATTO) almost 200 km 
northeast of Manaus, the capital of Amazonas state in Brazil. 

 

           
FIGURE 10: Image of the tall towers at the research site where the sampler(s) were installed: 
INSTANT tower: 80 m height (left) and ATTO tower: 320 m height (right). 
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Vertical measurements were made possible through towers that have been 

developed by national and international research institutes to measure the relationship 

between climate change, land use and biological, chemical and physical functions 

(OMETTO et al., 2005). The focus includes meteorological and micrometeorological 

measurements, trace gases, physical/chemical and optical measurements of 

particulate matter and vegetation cover profiles, all at different heights (ANDREAE et 

al., 2015). 

Following the same principle of vertical measurement of carbon dioxide fluxes 

as the ZOTTO observatory tall tower project, installed in Siberia in the last decade 

(MIKHAILOV et al., 2015; TIMOKHINA et al., 2015), the ATTO project (Amazon Tall 

Tower Observatory) was designed to monitor fluxes, particles and trace gases in the 

rainforest region with great potential for fauna and flora still unexplored. 

The site location for the ATTO project was defined based on the importance of 

the tropical rainforest in the climate change global context, the specific circulation 

pattern, the extent influence in humidity for the continent, the high emission rate of 

aerosol to the atmosphere and the system of carbon generation and consumption. 

Thus, it is a remote site in the Amazon Basin, without direct urban influence and far 

from urban areas. 

Since 2012, two 80 m height towers have been operating on the site, which 

serves as a basis for continuous measurement equipment. In 2015, the main tower 

with 320 m height was completed. The towers were installed to establish long-term 

profiles of variables that could elucidate the biosphere-atmosphere interaction and 

assist in climate predictions. The project was developed to operate continuously for at 

least 20 years (ANDREAE et al., 2015). 

The following variables are continuously measured above the canopy: CO/CO2 

flux, CH4/CO2 flux, CO2 concentration, O3 concentration, Black Carbon concentration, 

Aerosol scattering, Aerosol number and size distribution (0.3 to 10 µm), Aerosol mass 

and chemical speciation, and Visibility. There is also a vertical meteorological profile 

with data from 4 cm to 80 m above ground level, distributed in seven different heights: 

air temperature, air relative humidity, short and long wave radiation, ultraviolet 

radiation, net radiation, air pressure, rainfall, CO2 flux, sensible/latent heat flux, 

humidity absorption, wind speed and direction, soil water volume content and soil 

temperature/heat flux. 
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The meteorological sensors, installed at the Instant tower, are periodically 

calibrated and maintained by LBA’s Micrometeorology Department, that provides data 

each minute for all the ongoing researches. Air Temperature and RH were monitored 

by Rotronic CS215 and Vaisala HMP45C sensors at 0.4, 1.5, 4, 12, 26, 36, 40, 55, 73 

and 81 m. Air Pressure is monitored by LICOR LI-7200 and LI7500A sensors. Rainfall 

measured by TB4 sensor at 81 m. Wind Speed/Direction measured by EC and Gill 

WindSonic at 19, 26, 42, 50, 65 and 73 m. 

 

3.2  SAMPLING EQUIPMENT 

The sampling of biological particles can be performed with passive equipment 

that collects the particles by sedimentation, or active traps known as Hirst-type 

volumetric trap, which forces the impaction using a vacuum pump. The last one is the 

most widely used due to its robustness and reproducibility, allowing data collection and 

comparison (FRENZ, 1999; FRENZ; JOHANN, 2001; LACEY; WEST, 2006; 

FERNÁNDEZ-RODRÍGUEZ et al., 2014). From the almost 900 active pollen 

monitoring stations around the globe, densely installed in North American, European 

and Japanese territories, 70 % are Hirst-type (BUTERS et al., 2018).   

At the ATTO site, the first biological particle collecting station used a Hirst-type 

volumetric equipment consisting of a Sporewatch spore sampler. This is a Burkard 7-

Day Recording Volumetric Spore Sampler (Burkard Scientific Ltd., Uxbridge, UK). The 

sampler was installed with a metallic arm support allowing the main body to be placed 

outside the tower and freely rotate according to the wind direction. 

The impactor (FIGURE 11), called pollen sampler elsewhere, has a wind vane 

that always directs the intake orifice into the wind and a rain shield that protects the air 

inlet from direct rain droplets. The inlet (2 x 14 mm) allows the entrance of particles 

into the 2 mm slot with inertia from the 10 L min−1 air flow provided by a vacuum pump. 

The interior design enables the impaction of particles larger than 3.7 μm (diameter) 

onto a tape fixed around a rotating drum, but smaller particles can remain in the airflow. 

The drum rotates 2 mm per hour allowing up to seven days of continuous sampling, 

permitting the time-discriminate analysis according to the set up chosen on the 

electronic panel. 
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The tape was prepared for sampling with a translucid adhesive mixture of 

gelatine, glycerol, phenol and water, developed for this purpose (see recipe in 

APPENDIX A). The adhesive has the following properties: stickiness, weather 

resistance, compatible with mountant and clean and transparent structure. It holds the 

particles on the tape surface, maintains moisture and prevents biological particles from 

germinating after the sampling.  

 

   
FIGURE 11: The Sporewatch spore sampler: Scheme of the external view describing the parts 
attached to the main body, with the internal view in detail showing the rotating drum (left), and 
image of the sampler installed at the tower (right). 

 

After the exposure period, that varied from 3 to 7 days for each tape, the 

sampled tape was removed and mounted onto microscope slides (26 x 76 mm) using 

the mountant media consisting of Mowiol, glycerol, phenol and water (see recipe in 

APPENDIX A). A piece of tape up to 48 mm of length that corresponds to 24 hours of 

sampling was attached to each slide (FIGURE 12) with a coverslip placed using a 

glycerol (40%) / water (60%) solution. After the mounting, they were stored for further 

optical scanning. 

The samples followed a pattern of preparation according to the International 

Association for Aerobiology, so any biological material collected was prevented from 

growing or reproducing (IAA, 2015). Therefore, no special authorization for collection 

or transportation applied. All the sampled material was stored in slide boxes under 

room conditions for further optical microscopic analysis. 
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FIGURE 12: Scheme of the steps followed during sampling: (1) tape preparation with adhesive 
for sampling, (2) after sampling the tape was divided, (3) mounted onto glass slides (4) with a 
coverslip, (5) and then stored for longitudinal optical scanning. 

 

3.3 SAMPLING PERIODS 

The towers INSTANT (80 m height) and ATTO (320 m height) installed in the 

Amazon forest, municipality of São Sebastião do Uatumã, 130 m above sea level and 

located approximately 200 km northeast of Manaus (TOLLEFSON, 2010; ANDREAE 

et al., 2015), were used for sampling following the chronogram presented in TABLE 1. 

The primary goal was to use different heights along the sampling period, and those 

were chosen based on the spot availability and access allowance at the towers. 

 
TABLE 1: Description of sampling periods with pollen trap, according to the height, with total 
sampled hours. Periods of simultaneous sampling at different heights are specified. 

 

HEIGHT PERIOD TOTAL SAMPLING COMMENTS 
25 m 08 OCT to 12 OCT 2017 96 h  

40 m 15 SEP to 07 OCT 2016 
29 NOV to 16 DEC 2016 904 h Simultaneous with 80 m 

Simultaneous with 300 m 
60 m 16 SEP to 20 NOV 2015 1328 h  

80 m 
09 to 24 JAN 2015 
28 MAR to 25 APR 2015 
15 SEP to 07 OCT 2016 

 
1546 h Simultaneous with 40 m 

300 m 29 NOV to 16 DEC 2016 
12 MAR to 25 APR 2017 1250 h Simultaneous with 40 m 

 

The first sampling was performed in January 2015, after an initial field test of 

the system structure: sampler, tape, adhesive, time of exposure, storage and 

laboratory preparation. One Sporewatch sampler was installed at 80 m height on the 

INSTANT tower, during 09th and 24th January. Another sampling was performed from 
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28th March to 25th April 2015, also at 80 m height. After new tests with the adhesive 

substance, the third sampling was executed from September to November 2015, at 

60 m height at the INSTANT tower.  

The fourth sampling took place for 20 days, with two samplers installed at the 

INSTANT tower: 40 m and 80 m height. During the same period, particulate matter 

was also sampled into different size stages using a PIXE impactor only at 80 m height, 

from 17th September to 07th October 2016. 

Another simultaneous sampling took place in November/ December 2016 at 

40 m (INSTANT tower) and 300 m (ATTO tower) over 3 weeks. The tapes were 

exposed from 3 to 7 days and during rainy days the drums were replaced more often. 

The same occurred only at 300 m, over 7 weeks during March and April 2017. So, from 

2015 to the middle of 2017 all the samplings took place above the forest canopy. With 

this lack of data below the canopy, another sampling was executed during October 

2017, only for a week at 25 m height.  

The samplings performed so far were not designed for the pollen seasonality, 

the seasons for this project concern only for the dry and wet periods at the region. The 

CHART 1 illustrates the periods described in TABLE 1 with most samples collected on 

March, April, September, October and November among the sampled years. 

 
CHART 1: Montlhy distribution of the sampling periods by height, regardless the year of the 
sampling. Months with sampling for each height are marked in green. 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

300             

80             

60             

40             

25             

 

Due to the unique characteristics of the field, and as it was the first time a 

sampling like this was performed in that region, some adjustments in the adhesive 

substance were necessary along the entire project period due to the influence of high 

temperature and humidity on the sampling substrate surface. Laboratory tests 

(simulating the field conditions) to optimize the adhesive substance, were carried out 
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during the 3 years of sampling in order to respond to the challenges faced along the 

way (details can be found in APPENDIX A). 

3.4  MICROSCOPY ANALYSIS  

During the last half-century, optical microscopy has been used to identify 

biological particles based on morphology (LACEY; WEST, 2006). New techniques for 

identifying species are starting to become available nowadays, but there are some 

considerations regarding their use: particle concentrations may not be enough to be 

detected and quantified, sample preparation can degrade the particles, and the range 

of biological particles present in an environmental sample can interfere with the 

identification method (HOSPODSKY et al., 2010; CROUZY et al., 2016; LEONTIDOU 

et al., 2017). 

The optical microscope allows the visual observation of mounted specimens, 

usually in the micrometer scale. Using a lens system to produce a virtual image, the 

eyepiece and objectives can achieve up to 3000x of magnification. The equipment 

includes a tungsten halogen lamp as a source to transmit the light through the 

condenser, the observed specimen, and the lens, what classifies the ensemble as 

brightfield optical microscope. 

Therefore, tapes from the Pollen trap were analysed by optical microscopy 

using an Olympus BX50 light microscope installed in the NeuroAllergy Laboratory 

(Deakin University – Australia). The brightfield optics equipment has Olympus 

UPlanApo lens (40x) allowing a 400x image magnification. A Canon EOS 1100D 

camera coupled to the microscope by a phototube was used to capture the images.  

The set up for the microscope followed the Koehler alignment (MORTIMER, 

2004). The halogen’s lamp voltage was set in 9 V and no neutral density filters were 

used. The condenser aperture was set at 85% of the lens description. The microscope 

was dedicated to the samples analysis so there was no change in the set up during 

analysis. 

All mounted slides were prepared with a temporary coverslip (25 x 50 mm) 

using a mixture 40 % glycerol and 60 % water (FIGURE 12). After placing the coverslip, 

the slide was linear scanned and photographed through its longitudinal dimension. 

Particles were morphologically identified in 200 fields of view for each sample and with 

the assistance of a certified pollen and spore counter with the US National Allergy 
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Bureau, following the guidelines from the International Association for Aerobiology 

(ELBERT et al., 2007; IAA, 2015). Identification and counting were performed 

manually, for each particle, and by an open source software: Image J (NIH - USA, 

version 1.51j8).    

The bioaerosols found in the samples were separated into the following 

categories (CHART 2): pollen grains, fungal spores, fern spores, moss spores, soot 

(black amorphous structures), unknown particles (bioaerosols that could not be related 

with one of the previous categories) and canopy debris including all sorts of leaf/wood 

pieces, plant waxes, leaf glands, leaf trichomes, insect fragments, hyphae parts, 

mineral grains and amorphous particles.  

 
CHART 2: Examples of bioaerosols categorized for this project: pollen, fungal, fern, moss, soot 
and debris. The particles were redimensioned and the scale for each category is shown. 

  
 Categories 

Pollen grains 
 

Fungal spores 
 

Fern spores 
 

Moss spores 
 

Soot structure 
 

Canopy debris 
 

 

After identification, particles were counted and the Feret’s diameter1 was 

measured using Image J software (FERREIRA; RASBAND, 2012) through the pictures 

using 400x magnification. Overlapping particles were counted as one and categorized 

based on the top particle, the only one that could be completely visualized for 

identification, i.e., hidden particles were not counted. The concentration was 

_______________  
 
1 The longest distance between any two points along the selection boundary (FERREIRA; RASBAND, 2012). 
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determined for all the different types of particles through raw counts, averaged over 

one-hour sampling period and expressed per cubic meter of air. 

 

 

3.5  SAMPLE VALIDATION AND DATA TREATMENT 

 

All the sampled tapes were visually inspected after sampling to ensure the 

quality of the data. The samples were considered valid regarding the adhesive surface 

if there were no visual damage, wrinkles, or breaks. The amount of valid samples 

considered for the present project, according to the height above ground level, is 

described in TABLE 2. Periods with alterations on the sampling substrate surface were 

considered invalid, likewise periods with technical problems regarding the sampler 

and/or transport conditions. 

 
TABLE 2: Total and valid sampled hours according to the height. 

 

HEIGHT TOTAL 
SAMPLING 

VALID 
SAMPLES 

25 m 96 h 1 h (1%) 
40 m 904 h 228 h (25%) 
60 m 1328 h 1320 h (99%) 
80 m 1546 h 1392 h (90%) 

300 m 1250 h 1214 h (97%) 
 

The sampling at 300, 80 and 60 m was executed with minimal failures and the 

sampling conditions allowed high-quality tapes for analysis. The sampling at 40 m 

height was interrupted several times due to technical issues. Only 25% of the samples 

were considered for the valid results, as the rest of the data might not be reliable. 

The sampling at 25 m, the last one executed, presented minimal technical 

failures but the high temperature and high humidity on the site caused damage to the 

tape surface, a mix of melting, wrinkles, and breaks, hindering and/or preventing the 

visualization and identification of the particles in 99% of the samples. Thus, all the 

samples from this height were excluded from the results, as showed in CHART 3. 

Every sampling and analysis process was susceptible to random and 

systematic errors related to equipment functioning and human operation. As this is a 

singular project regarding particles counting, the accuracy and precision of the data 
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were equally important. Therefore, the error of the valid data presented on the following 

section was calculated considering:  

� sampler efficiency regarding the wind speed range during sampling,  

� sampler efficiency considering the size range of the collected particles, 

� flow deviation of the sampler during all the sampling periods,  

� deviation between the manual particle’s identification by: 

o the author and  

o the certified pollen/spore counter (co supervisor on this project),  

� particles counting deviation among the counts executed by: 

o the ImageJ software,  

o the author and  

o the certified pollen/spore counter, 

� conversion factor from raw counts to concentration in the air.  

For those items, the expanded uncertainty at the 95% level of confidence 

(BIPM, 2008) is 18.5% for the sampled tapes. So, this uncertainty must be considered 

for each value presented in the Results section. 

 
CHART 3: Monthly sampling calendar with the periods marked in green: valid samples and 
results, or red: invalid samples, results not used. 

  
 

          2015           
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 
80 m   80 m         60 m   

          2016           

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 
                40 / 80 m 40 / 300 m 

          2017           
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

    300 m           25 m     
 

The meteorological data set received had a 1 min resolution, up to 80 m, and 

were pooled to obtain hourly resolution (the same of the biological data). The Pearson’s 

correlation among maximum, minimum, average, median and mode values defined the 

variables for temperature, wind speed, and humidity. No meteorological data was 

available for 300 m. 

The complete data set for the biological data has the concentration values from 

the results and also zeros recording the absence of that particle during the period, 
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then, the distribution function is Poisson-like. As the data set failed the tests for normal 

distribution, shown in FIGURE 13, where the sample quantiles should follow the 

pattern of the theoretical quantiles for a normal distribution using the same parameters; 

and no normalization procedure such as logarithm, square root or cubic square root 

was successful, the results were statistically processed with non-parametric tests using 

the R software (The R Project - Austria, version 3.3.3).  

   
FIGURE 13: Normal Q-Q plot for each category with the respective distribution in dots (vertical 
axis) and the Normal Quantiles line marked in red (horizontal axis).  

 

The next section will describe both results: the complete data set with the 

absence data and only the concentrations for each measured category, without the 

zeros. All the concentration results (number of particles per cubic meter of air) were 

hourly averaged.   
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4 RESULTS AND DISCUSSION  

4.1 MORPHOLOGY AND VERTICAL DISTRIBUTION OF BIOLOGICAL PARTICLES  

Optical identification of bioaerosols was performed using the morphological 

characters, such as format (general shape), colour, structure (cell wall and content), 

size and surface texture, as referenced in the literature (KAPP, 1975; BFA, 1995; 

FRENZ, 1999; FRENZ; JOHANN, 2001; KAGEN; LEWIS; LEVETIN, 2005; LACEY; 

WEST, 2006). 

Pollen grains are hyaline structures, generally with a thick wall and granular 

content. The fungal spores observed were comprised of two major classes: 

ascospores and basidiospores. The ferns collected were less morphologically diverse, 

having a circular to semi-circular shape and brown colour. Soot was identified as 

amorphous shaped, black structures. Debris believed to be sourced from the canopy 

appeared as a wide range of leaf and insect fragments, wax-like particles and hyphae, 

as pictured in FIGURE 14.  
 

 
FIGURE 14: Pictures of biological particles sampled showing the morphology of the selected 
categories: (A) Pollen grains, (B) Fungal spores, (C) Fern spores, (D) Unknown particles, (E) 
Soot particles and (F) Canopy debris. Scale: 50 µm. 
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All the valid samples were scanned and the total of 491,745 were counted, 

thereby distributed: 67,236 particles counted and identified for the 40 m height, 

236,898 particles for 60 m height, 61,598 for 80 m and 126,013 for 300 m height. No 

representative value for moss spores were found among the samples, so the particles 

were classified in: pollen, fungi (fungal spores), fern, soot, debris and unknown, as 

illustrated in the FIGURE 14. 

The concentration for each category, FIGURE 15, regardless the sampled 

height, presents the general pattern for counted samples, high frequency for lower 

concentrations and the opposite for high concentrations. These results show similar 

distribution ratio of bioaerosols across all heights, whereas canopy debris is dominant. 

Canopy debris, or just debris, is the category with the wider range, and represents 

approximately 70% of all sampled particles in each height (see APPENDIX B). Fern 

spores represent less than 1% and is the group with lower variety of particles. Among 

the biological particles, fungal spores are the group with higher variety and number of 

particles (only individual particles were considered, hyphae parts, for example were 

categorized as debris), followed by pollen grains and fern spores (see APPENDIX C). 

Pollen represents only a small fraction of all the airborne particles, similar to 

fern spores. Among the biological particles that were identified, fungal spores are the 

dominant group. Particles that could not be classified into the groups above, the 

unknown category, are less than 1% of the total for all the measured heights.     

Particles varied in size, mostly from 5 to 100 µm in diameter. Soot and canopy 

debris categories had 5% of their particles larger than 100 µm in diameter. The total 

size distribution, up to 100 µm, can be viewed in FIGURE 16. Across all four sampling 

heights, the highest abundance occurs in the size range of 3 to 20 µm, integrating all 

the categories. Once canopy debris correspond to the major fraction at each height, 

this is the size range where dust particles peaked. The elemental composition for total 

PM was investigated to elucidate this category, details presented in APPENDIX B.    

A decrease in particle size with increased height occurred along each level, 

with a difference in the number of particles. The 60 m height presented the higher 

values for all the categories, in absolute number and concentration, followed by 300, 

40 and 80 m. This can also be a result of the sampling period length and season. 

So, a decreasing pattern dominates all the data set regarding each category, 

as well, each height, as shown in FIGURE 15 and FIGURE 16 for both seasons 

integrated. 
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FIGURE 15: Density distribution (black line) and accumulated distribution (dotted blue line) for 
each category with all sampled heights integrated. All the horizontal axis are in concentration 
unit (particles m−3): Pollen (top left), Fungal spores (top right), Fern spores (center left), Soot 
(center right), Unknonwn particles (bottom left) and Debris canopy (bottom right). 
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FIGURE 16: Relative histogram (black lines) and log-normal distribution (red line) for the size 
(from 3 to 100 µm) of all particles sampled, integrating all the categories and seasons at each 
sampled height: 40 m (top left), 60 m (top right), 80 m (bottom left) and 300 m (bottom right).  

 

Across the various heights, many different types of pollen were identified, in 

sizes varying from 10 to 95 µm (details in APPENDIX C.1). In all measurements a 

deviation of ± 2.5 µm for the particle diameter was considered. The most common 

sizes were 10 to 20 µm for all the heights, showed on the left in FIGURE 17. Only two 

grains with 95 µm were collected, a unique event, one at 60 m and another at 80 m 

during a storm event. Even with the sampling height variation, the 10 µm size peaked 

in all the measured levels, illustrated in FIGURE 18.     

The 40 m was the only height with no pollen larger than 50 µm diameter. The 

frequency of observations follows the sequence: 60 m had the higher frequency with 

3,520 grains collected, followed by 300 m with 294 pollen grains, 80 m with 202 and 

40 m with 130 units. At 40 m, around 5 to 15 m above the canopy, there were less valid 

samples available, so, the total sampling period might influence comparisons between 
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counts. The 60 m height is the only one with frequency in a different magnitude scale, 

see FIGURE 18. 

 
FIGURE 17: Examples of the size diference for pollen grains collected across all heights. The 
scale bar is marked.  
 

 

 
FIGURE 18: Histogram of absolute frequency for size distribution of pollen grains at each 
sampled height, with both seasons integrated for 40 and 80 m: 40 m (top left), 60 m (top right), 
80 m (bottom left) and 300 m (bottom right). The total number of pollen sampled is detailed in 
blue and the percentage up to 20 µm is marked in red. 
 

At 40 m height, 130 pollen grains were observed with diameters ranging 

between 10 and 45 µm, and with 48 % of the pollen having a 10 µm diameter. At 60 m, 

3,519 pollen grains up to 60 µm were observed with 39 % having 10 µm diameter, 

24 % with 15 µm and 31 % with 20 µm. Just one particle with 95 µm was collected. At 

80 m, a distribution similar to 60 m was observed: 201 pollen grains up to 65 µm in a 

frequency inversely proportional to size (45 % with 10 µm, 17 % with 15 µm, 9 % with 

20 µm) and just one grain with 95 µm. Grains up to 50 µm were evenly collected at 



 48 

300 m, and just one with 60 µm. The diameter of 10 and 15 µm respond to 70 % of the 

collected grains at that height. 

The fungal spore category, the larger biological fraction collected, has 95 % of 

the particles up to 15 µm. This kingdom can be separated into different divisions or 

phyla, and the most frequent found were: Ascomycota and Basidiomycota, according 

to FIGURE 19. 

 
FIGURE 19: Fungal spores major division at each height, with integrated seasons: 40 m (top 
left), 60 m (top right), 80 m (bottom left) and 300 m (bottom right). 
 

The Ascomycota and Basidiomycota phyla respond to more than 70 % of the 

particles collected at the four heights. The pattern is the same for the heights: 

Ascospores had the higher frequency, followed by Basidiospores and Other phyla. The 

pictures, regarding each phylum, of all the sampled fungal spores can be found in 

APPENDIX C.2.     
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4.2 METEOROLOGICAL PATTERN AND SEASONAL DISTRIBUTION  

For the Amazon Basin, seasonality is well delimited according to precipitation 

amounts and convection activity. The characteristic period of the year varying from 

rainy/wet season to dry season (low precipitation) is an important issue due to the 

washout that removes particles from the atmosphere. The average precipitation for a 

30-year historical series (INMET) reveals monthly values higher than 200 mm for 

January, February, March, April, May and December, and below 200 mm from June to 

November, a drier period. So, according to the rainfall, the months can be classified as 

wet, dry or transition period (dry-to-wet or wet-to-dry). 

All the meteorological data presented were provided by LBA’s 

Micrometeorology Department. The sensors are installed at the same tower used for 

sampling, at different heights from 4 cm up to 80 m above ground level, and the sensor 

selected was the closest to the sampling spot. For the present analysis, the 

precipitation during the sampled period was evaluated and the seasonality defined 

according to the monthly precipitation trend line. The rain levels reached the minimum 

value in August and the peak in March for the three years (FIGURE 20).   

An accentuated dry season took place in 2015, from July to December, as a 

result of an El Niño system, and that was the main difference among the sampling 

periods. Whilst for 2016 and 2017 November can be considered as a transition period 

between the dry and wet, whereas December is already a rainy month. Low 

precipitation amount persisted from July 2015 to January 2016. Therefore, for 2015, 

the rainy season was defined from January to May and the dry season from July to 

December. In the period covering 2016 to April 2017 the dry season ranged from June 

to October, and December was already a wet period. 

The most obvious differences among the sampled years are the precipitation 

events. The relative humidity can reach 100% in every month, and the lower values, 

around 40%, are associated with drier months at the dry season (FIGURE 20). For a 

rainforest, the relative humidity is expected to remain high across the year, with some 

reductions observed during the dry season, consistent with the observed median 

values for the sampling period of around 80 %. Monthly values for temperature and 

wind speed are illustrated in FIGURE 21. 
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FIGURE 20: Accumulated monthly Precipitation (top) for the site and monthly Relative humidity range (bottom): minimum and maximum values 
measured at 80 m height, from 2015 to 2017. All the sampling periods with valid results are highlighted in red with the considered season specified. 

WET DRY WET WET DRY WET 

WET WET WET WET DRY DRY 
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FIGURE 21: Mean and maximum monthly Wind Speed values (top) and monthly Temperature range with minimum and maximum values (bottom), 
from 2015 to 2017. Sampling periods with valid results highlighted in red. All the values correspond to the height of 80 m. 

 

WET WET WET WET DRY DRY 

DRY DRY WET WET WET WET 
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Temperatures ranged from 20.7 to 36.1 °C for 2015, 19.8 to 36.4 °C for 2016, 

and 20.2 to 33.6 °C for 2017. Higher values are observed at the end of 2015 and the 

beginning of 2016, consistent with the lack of precipitation.  Mean wind speeds values, 

shown in FIGURE 21, were almost constant across the years, around 3 m s−¹, with 

frequent gusts above 11 m s−¹, but reaching 20 m s−¹ on occasions. 

Gusts higher than 5 m s−¹ occurred on 86 % of the sampled days, and more 

than 40 events per day on average. The recorded wind speed for each sampled height 

can exceed 16 m s−¹, but gusts higher than 10 m s−¹ represent 0.5 % of the events.  

Regarding the seasonality, specific meteorological conditions drive pollen 

emission: lack of precipitation, low relative humidity, temperatures above 21 °C, and 

high wind speed. Absence of precipitation is necessary for pollen emission, i. e. to exit 

the anther, so a higher amount of pollen in the 2015 dry season is coherent with that 

scenario. During the dry season, three heights were sampled: 40, 60 and 80 m, and 

the concentration for each category is shown in FIGURE 22.  

As also illustrated in FIGURE 15, fungal spores reached the highest values 

among the biological data, not considering the canopy debris. Pollen abundance was 

greatest at 60 m during the extreme dry season of 2015. The higher values for 60 m 

might be due the low precipitation amount, and less washout effect. The dry season is 

less likely to immediately influence overall pollen production, but more likely to 

influence day to day pollen emission. This is consistent with the data collected from 

the air samples. 

For the fungal spores during the dry season, there was little diversity of 

abundance across the different heights. Fern spores showed a pattern similar to pollen 

grains, with higher concentrations for 60 m. Unlike most pollen, fern spores are actively 

released from the fern plant with a drop in relative humidity, and thus the absence of 

precipitation is necessary for their emission in the atmosphere. 

Large black soot structures decreased in abundance with increased height, 

which suggests a ground source. For the 2015 dry season, concentrations were 

highest, likely from the entrainment of brown carbon particles from biomass burning 

sites distant from the study area. Particles classified as unknown also had a similar 

pattern of abundance across the sampled heights. 

During the wet season, the sampled heights were 40, 80 and 300 m, as 

pictured in FIGURE 23. As occurred during the dry season, the fungal spores have the 

highest abundance. Pollen grains peaked at 133 particles per cubic meter of air near 
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the canopy at 40 m and presented higher variability at 80 m related with storms 

occurrence. 

 
FIGURE 22: Bar plot of particles concentration by category: pollen, fungal spores, fern spores, 
unknown particles, soot and canopy debris, sampled during dry season periods from 2015 to 
2017 at 40, 60 and 80 m (vertical axis out of scale).  

 

 
FIGURE 23: Bar plot of particles concentration by category: pollen, fungal spores, fern spores, 
unknown particles, soot and canopy debris, sampled during wet season periods at 40, 80 and 
300 m, from 2015 to 2017 (vertical axis out of scale).  
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The heights of 40 and 80 m were the ones simultaneous sampled during the 

dry and wet seasons, and the season comparison by height is illustrated in FIGURE 

24 and FIGURE 25, respectively.  

 

 
FIGURE 24: Seasonal median concentration of fern, fungal spores, pollen, soot and unknown 
particles for 40 m height. Interquartile ranges are represented on the top of each columns. 
 
 

 
FIGURE 25: Seasonal median concentration of fern, fungal spores, pollen, soot and unknown 
particles for 80 m height. Interquartile ranges are represented on the top of each columns. 
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The FIGURE 24 shows the concentrations for fern, fungal, pollen, soot and 

unknown particles for all the valid samples at 40 m. All of the categories, except fern, 

have median statistical differences (Kruskal-Wallis test, 99 % level of confidence, p-

value < 0.01). Only fern spores do not have a significative difference between the 

seasons (p-value = 0.8) at 40 m height. 

For the 80 m height, besides the apparent similarity between the seasons for 

the entire data set (FIGURE 25), pollen, fungi, fern and unknown particles have median 

statistical differences (Kruskal-Wallis test, p-value < 0.01). For that height, only soot 

have a similar pattern across the seasons (p-value = 0.1). 

The tropical zone has almost equal day/night duration throughout the year, 

according to the solar radiation data received. Thus, all sampled days were separated 

into periods with and without sunlight. The concentrations separated into day and night 

periods of sampling for pollen, fungi, fern and soot, during both seasons do not showed 

any statistical difference. 

All the sampled heights had particles throughout the day and night for all the 

measured groups. Regarding only the categories, the day/night concentration showed 

no statistic difference (Kruskal-Wallis test, 95 % level of confidence) for pollen grains 

(p-value = 0.14), fungal spores (p-value = 0.13), fern spores (p-value = 0.75) or soot 

particles (p-value = 0.84). For each category and considering the height differences, 

just 40 and 300 m showed similar day/night concentration distribution for pollen, fungi 

and fern. For all the other heights and categories, a statistic difference is observed (p-

value < 0.05).  

Soot were present in the samples even during the night period and throughout 

wet and dry periods (FIGURE 24 and FIGURE 25). On average, the organic debris 

from the canopy made up 70 % of the collected material, with no statistic differences 

observed between day and night emissions (p-value = 0.37). This pattern was very 

consistent across the different heights.  

The hourly resolution enabled the visualization of the emission pattern across 

the entire day. The pollen results can be viewed in FIGURE 26. The concentration of 

pollen grains was highest at 60 m during the 2015 dry season. From the day/night 

distribution, the 60 m sampler showed the highest number of pollens grains per cubic 

meter of air. The meteorological conditions were consistent with an increased pollen 

dispersion and/or less particles rain-related scavenging, as was subsequently 

observed. Only during this period values higher than 700 particles m−³ were found, as 
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can be seen in FIGURE 26 (top right). The concentrations during sunlight periods were 

slightly higher (p-value = 0.04) than during the night. 

 

  

  

   
FIGURE 26: Boxplot of pollen concentrations (particle m-3) for each hour interval (in local time): 
dry season at 40 m (top left), wet season at 40 m (top right), dry season at 80 m (center left), 
wet season at 80 m (center right), 60 m (bottom left), and 300 m (bottom right). Number of 
events recorded during each hour interval is in gray above each boxplot.  
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For the pollen concentration at 300 m, FIGURE 26, a peak around 18 h (local 

time) is due to a peak in just as few types of pollen, possibly correlated with a change 

in wind speed. The pollen concentration presented no specific correlation with the time 

of the day (FIGURE 26), and higher values were found during dry season. There is no 

evidence or statistical significance among the sampled hours for each height. Instead, 

there are correlation with meteorological conditions.  

At 40 m height, the maximum and minimum relative humidity values and the 

maximum wind speed were the most significant parameters for the pollen 

concentration distribution (p-value < 0.05, Generalized Linear Model (GLM) and 

Generalized Additive Model (GAM) with consecutive iterations for each parameter). At 

60 m, the association with pollen concentration is significant for maximum and 

minimum relative humidity values, maximum and minimum wind speed and rain 

amount (p-value < 0.01 for the cited parameters). 

At 80 m height, for dry and wet seasons, there was significant correlation 

between pollen abundance and minimum relative humidity, maximum and minimum 

temperatures, maximum and minimum wind speed and rain occurrence (p-

value < 0.01 for the cited parameters). 

For the precipitation variable, two parameters were investigated: the 

occurrence of, and the amount of rain. The precipitation occurrence influenced all the 

categories (p-value < 0.01) at every height. These were the only parameters analysed 

for 300 m height. The wind direction, considered as the mode of all the directions 

recorded during the hour period was relevant only for fern spores at 40 m and 80 m, 

and fungal spores at 60 m and at 80 m (p-value < 0.01). The recurrent significant 

parameters for each category at each height were: maximum and minimum relative 

humidity, wind speed, temperature and rain occurrence (p-value ≤ 0.01, GLM and 

GAM tests, 95 % level of confidence). 

In summary, the concentrations found varied up to 2200 particles m−³ for 

pollen grains throughout the entire sampling period. Maximum values for fungal spore 

values were in the range of 2,733 to 5,200 particles m−³ and for fern spores from 67 to 

933 particles m−³, as detailed in TABLE 3.  The time resolution for the concentration 

values follows the sampler resolution: one-hour interval.  
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TABLE 3: Summary of pollen, fungi and fern results with median and maximum values for each 
height at each sampled season. All values are in one-hour time resolution. 

 

HEIGHT/ 
SEASON 

POLLEN 

(particle m−³) 
FUNGI 

(particle m−³) 
FERN 

(particle m−³) 

Dry/Wet MED MAX MED MAX MED MAX 

40 m (D) 133 667 1200 4467 67 200 

40 m (W) 67 133 333 2733 67 200 

60 m (D) 333 2200 1067 5333 200 933 

80 m (D) 200 533 600 5200 67 467 

80 m (W) 200 533 400 4667 67 67 

300 m (W) 267 667 600 4267 67 333 

 

Pollen monitoring around the globe follows the pattern of concentration 

averaged over 24-hour time period. With this time resolution is known the daily 

concentration for each location, used as an indicator for public health purposes. Pollen 

concentration overcomes 1000 of pollen particles m−³ averaged over 24 hours in 

Melbourne, Australia, during grass season (SILVER et al., 2017). Peaks higher than 

4000 particles m−³ were recorded in Aomori and Hirosaki, Japan, as a consequence 

of a meteorological front (TAKAHASHI et al, 2018). In Sydney (Australia) values from 

2008 to 2012 show pollen concentrations up to 300 particles m−³ averaged over 24 

hours. In France the following values were observed, around 800 particles m−³ (24 h) 

in Montlucon, and up to 500 in Lyon and 300 in Amiens during the season peak 

considering a 11-year period (DEVADAS et al., 2018).  

The present study was designed for morphological characterization and is not 

related to public health issues, so, it is complex to directly correlate the forest 

environment with urban sites due to the differences on vegetation distribution and 

emission pattern. The top value for the forest just overcomes 600 pollen particles m−³ 

averaged over 24 hours, with median values around 150 particles m−³ for 60 m, during 

the driest period, and below 50 particles m−³ for the other heights, considering daily 

values. Regarding just that, the values measured over the Amazon rainforest, even 

near the canopy, are considerably low compared to urban sites under crops and 

ornamental grass influence. However, the seasonality of the particles emission must 

be considered for a direct comparison approach.      
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4.3 BIOGENIC PARTICLE VERTICAL DISTRIBUTION   

Chronologically, the first sampler was installed at 80 m in January 2015 during 

the wet season. With the washout effect, just a few particles suspended in the 

atmosphere were sampled, as illustrated in FIGURE 28 - top left. This period showed 

few pollen events, with the lowest pollen concentrations observed. The concentration 

reached 533 pollen particles m−³ during the night, and 267 particles m−³ during daylight.  

Only two pollen events occurred during that period, with the presence of the 

biggest pollen grains yet observed (FIGURE 27). These events were associated with 

peaks in wind speeds, as registered for each hour period and were the only pollen 

grains collected during that month. Apart from those grains, there was no other pollen 

observed during January 2015. 

 
FIGURE 27: Each pollen occurrence (with size diameter marked in blue dots) and maximum 
wind speed (black dotted line), in hourly resolution during thunderstorms in January 2015, for 
80 m height. 

 

No pollen grains nor other giant particles were present, except for two peaks 

correlated with thunderstorm occurrences when horizontal wind speeds reached more 

than 10 m s−¹. The two thunderstorm events coincided with the observation of giant 

particles, larger than 50 µm (FIGURE 28 – top right, bottom left and right), and within 

a temporal resolution of less than 1 hour (the minimum temporal resolution of the 

sampler).  Most of the pollen grains were from trees, but some were from ground-based 

weeds as well as bamboo (APPENDIX C.1). The samples were consistent with pollen 

grains sourced from both the local canopy plus long-distance transport from regions 

likely including cleared forest openings or river banks. 
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FIGURE 28: Samples from 80 m height, 10th Janurary 2015: only a few particles observed for long hours (top left), a large variety of 
particles sampled during thunderstorm event around 6 am (top right and bottom right/left), and larger size of pollen particle sampled at 
80 m height (bottom right) also during a thunderstom, probably from Podocarpaceae family (giant hyaline particle on the left). 
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The following March and April again showed an absence of any giant particles 

at 80 m except during the peak of the Saharan dust transport over the ATTO site in 

early April.  During the 2 days of this dust event, high concentrations of giant particles 

were observed and these included small fungal spores and a few pollen grains 

(RIZZOLO et al., 2017).   

During this sampling, very few coarse particles (> 2 µm diameter) occurred in 

the atmosphere until the beginning of April. On 3rd April at 13 h (local time), coarse 

particles (2 to 10 µm) peaked in number and were black, hyaline or variously coloured 

and of irregular shape, as shown in FIGURE 29. The amorphous particles were 

interspersed with a large diversity of small fungal particles. Several small pollen grains 

apparently from ground growing herbs were also observed. No moss nor fern spores 

were found. All primary biological particles in the sample had a diameter less than 

12 µm, similar to adjacent coarse dust particles. 

 

 
FIGURE 29: High density of particles sampled during a wind gust event at 80 m, on 3rd April at 
1pm during the 2015 wet season. Larger concentration of canopy debris and fungal spores. 

 

At 80 m height, the total fungal count was 1,587 spores per cubic meter of air, 

averaged over 24 h (on 2 to 3 April). High concentrations of fungi and other coarse 

particles persisted in the samples for several days in the first days of April, then, once 

again very few particles and only the occasional spore was observed, as shown in 
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FIGURE 28 – top left. The variety of particles that could be identified are more common 

at ground level across arid and temperate zones, consistent with an African source. 

(MIMS; MIMS, 2004; PROSPERO et al., 2014; WOMACK et al., 2015). However, 

genetic analysis of the samples is needed to confirm this assumption, as well as 

confirmation from genetic analysis of diverse plant types at the source and destination 

of the dust plume, a huge challenge. 

The wind rose chart (FIGURE 30) for the period shows a predominant easterly 

air mass reaching the site, with some influences from northeast and southest (inner 

continent). Some pollen grains were identified as ground based weeds, which could 

not be emitted from the forest canopy. Winds speeds at ATTO were quite low other 

than during the Saharan dust event. During most of the time, calm winds prevailed, 

with just a few episodes presenting gusts higher than 8 m s−1. Those episodes were 

responsible for the movement of the few pollen grains collected.  

 

 
FIGURE 30: Wind rose chart for the wet season sampling period at 80 m height from 9th to 
24th January 2015. 

 

One type of pollen identified above the canopy 80 m at ATTO was bamboo 

(Parianaceae family), see APPENDIX C.1.  This short growing, understory species has 

been observed at rivers edge approximately 15 km away.  As one source location is 

known, this is an interesting pollen type for its potential as a marker to record horizontal 

transport of pollen. 
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It is not possible to fully compare the bioaerosol to determine an African source 

because previous studies cultured air samples of viable spores only and analyzed 

them with high throughput sequencing. Only a few types of particles were detected at 

the species level in these studies. It is unknown whether any of the PBAP observed in 

the dust above the Amazon are still viable upon sedimentation onto the forest. Other 

than during the formation of a Saharan dust plume, smoke plumes are also known to 

entrain fungi over long distances (MIMS; MIMS, 2004), so that some of the airborne 

material could have been introduced by burning in west Africa. 

During the dry season of September to November 2015, samples were 

collected at 60 m. Consistently high levels of fungi and pollen grains were observed 

each day, as pictured in FIGURE 31, compatible with a local canopy source, highly 

dense from 25 to approximately 35 m height. The black amorphous particles are soot 

derived. The spherical shaped structures with hyaline content are pollen grains. The 

long, narrow shaped particles are fungal spores and other small amorphous particles 

were classified as debris. 

 

 
FIGURE 31: High variety of particles sampled at 60 m, on 19th September 2015 at 6 am, local 
time. All the categories are evenly represented during the sampling period. 
 

50 µm 
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This 2015 sampling was the only one with all the values one order of 

magnitude higher than the others. Unfortunately, this height was only sampled during 

the period of the El Niño effect at the dry season, and it is not possible to compare with 

a wet season at the same height. As shown in FIGURE 26, the pollen concentration 

reached 2,200 particles m−3, and during the concentration peaks only small grains 

were found (10, 15 and 20 µm in diameter).  

The larger particles (50 – 95 µm) are related to high wind speeds above 

8 m s−1. During that period easterly/northeasterly air masses reached the site with that 

velocity, as observed in FIGURE 32. Maximum wind speeds just reached 10 m s−1 in 

0.5% of the sampling time and they are not specific correlated with the larger particles. 

The pollen concentration at that height is associated with the relative humidity and also 

wind speed range.  

 
FIGURE 32: Wind rose chart for the dry season period sampled at 60 m height, from 16th 
September to 20th November 2015. 

 

During the extreme dry season recorded in the Amazon in 2015, an opposite 

pattern was observed: an increase in the concentration of pollen in the atmosphere, 

with the same size distribution as observed in other seasons (FIGURE 18), but with 

higher frequency of the small pollen types. This could be a result of the reduction on 

the washout effect, with less precipitation events and even less intensity of the scarce 

rainfall.   

The entire dry season showed high concentrations of small and medium pollen 

grains, very different from the previous wet season when pollen occurred in many size 
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ranges and types and peaks in PBAP were associated with specific meteorological 

conditions, such as storms. No tendency is highlighted in the 60 m data set, and 

perhaps this is also an effect of the drastic change in the weather for the period and 

the reduction of wash out events.  

The only large-sized pollen found at 60 m (FIGURE 33) was collected two days 

after a small shower and with the wind direction from the northeast reaching a 

maximum velocity of 7 m s−1. After the event several particles of debris and small 

pollen grains were also observed. Those conditions are different from the ones at 80 m, 

during the other big pollen sampling events, when a thunderstorm was necessary to 

take the particle up to 80 m height. 

 

 
FIGURE 33: Unique larger pollen grain collected at 60 m during 2015 dry season, on 14th 
October 2015 at 8 pm. 

 

During 2016, simultaneous samplings were carried out at the end of the dry 

season and the beginning of the wet season. At 40 m height, more pollen grains were 

collected during the dry season. Pollen collected during the wet season varied from 10 

to 35 µm in diameter and peaked mainly during the day with wind speeds in the range 

of 1.0 to 7.5 m s−1. During September and October, 2016, the air masses that reached 

the site came mainly from east and southeast, and for late November and December 

period the easterly and northeasterly winds were more frequent. 
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Total pollen concentration was 133 particle m−3 for the wet season and 

667 particle m−3 for the dry season and with diameters up to 45 µm. The majority of the 

grains were collected when wind speeds were up to 6 m s−¹.  Most ambient pollen 

sampling is performed in temperate parts of the world at 15 m above ground level, and 

in open areas where grasses dominate. This height range is planned to minimize 

influence of emissions from the immediate vegetation. At 40 m in the Amazon forest, 

just above the canopy, the PBA sampled were more likely biased towards emissions 

from the tree canopy immediately below the sampler than occurs at 60 m.   
 

   
FIGURE 34: Wind rose for 40 m height during dry season (left), for 15th September to 7th 
October 2016 and wet season (right), from 29th November to 16th December 2016. 

 

The other stages from the simultaneous samplings occurred at 80 and 300 m. 

At 80 m, the pollen concentration reached 533 m−3 with the larger pollen being 50 µm 

in diameter. Wind speed reached 7.6 m s−1 and the predominant direction was mainly 

southeast, FIGURE 35 (inner continent). 

At 300 m, the pollen peaked at 667 m−3 with the largest at 50 µm in diameter. 

There is no information about wind speed, but the direction was mainly northeast, as 

illustrated by the backward trajectory from FIGURE 36. 
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FIGURE 35: Wind rose chart for the dry season period sampled at 80 m height, from 15th 
September to 7th October 2016. 

 

 

  
FIGURE 36: Backward trajectories reaching the site by the end of the sampling period on 
December 2016 (left) and April 2017 (right) at 300 m, showing the dominance of northeasterly 
air masses for the period.  

 

At 300 m height, two sampling campaigns during the wet season were 

executed. December 2016 was the beginning of the wet season, with higher 

concentrations (667 particles m−3), while March and April 2017 were the middle/end of 

the wet season with few suspended particles (FIGURE 37). This period had a peak of 
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333 particles m−3 that are likely contributed from a distant area. The concentrations are 

quite similar with no pronounced day or night pattern. 

At 80 and 300 m, samples followed similar pattern of low concentration and 

similar day/night abundance, and with a few peaks correlated with high wind speeds. 

A typical sample from the mid wet season (2016) can be viewed in FIGURE 37. A 

sample, likely during a wind gust or long-distance transport event, is shown in FIGURE 

38. The high density was mainly formed from small particles with amorphous/irregular 

shape. There was no wind speed data available for that height. 

Since low amounts of pollen are present at 300 m and, given the generally low 

wind velocities in and above the canopy (mean wind speed is below 3 m s−1, as shown 

in FIGURE 21), most pollen grains released into the atmosphere from the rainforest 

are expected to quickly settle out the atmosphere and thus not travel far. This is 

different for storms, such as Saharan dust storms, and squall line thunderstorms with 

strong outflows. 
 
 

 
FIGURE 37: Example of a typical sample from 300 m during the wet season with a clear 
background and few collected particles, including biological ones, on 30th March 2017 at 11am. 

 

 

50 µm 
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FIGURE 38: Example of an atypical observation during the mid wet season at 300 m, showing 
high density of small particles, up to 15 µm, on 3rd April 2015 at 6 pm. 

 

 

It appears likely that the modeled vertical and long-distance transport of pollen 

might be over-estimated using only surface and low levels measurements. Current 

models used to estimate pollen levels in the air (ZHANG et al., 2014) need to re-assess 

the existing premise of regular vertical transport of pollen to 2,000 m. Instead, the 

majority of pollen and fungal spores are likely to be restricted to as little as 60 m above 

ground level or surface structures except for the duration of high speed winds found in 

thunderstorms, and at the source of dust storms.   

In a general overview of all sampling heights and across both wet and dry 

seasons, pollen size and abundance were more diverse at 60 m and below. The 60 m 

samples in 2015 correlated with the unique meteorological scenario of an extreme dry 

season caused by an El Niño event. Pollen abundance exceeded all the previous 

measured ranges from 80 m. Coarse particle diversity was also high across all sampled 

heights and seasons.  

Only under specific types of thunderstorm conditions large pollen grains were 

observed at 300 m.  The detected high wind speeds were consistent with the passage 

of a storm front. Many of these pollen grains were likely transported in downdrafts and 

outflows from higher in the atmosphere near the cloud base. A similar pattern was 

observed by Ryder et al. (2015) during aircraft measurements of dust particles and 
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associated dust storms in the Saharan atmospheric boundary layer. At ATTO, the 

strong winds associated with the storm are likely to mix with updrafts that may also 

have driven large pollen grains to 300 m from the canopy. However, pollen was only 

identified to family level, and thus does not allow us to determine the potential for a 

local versus distant source. Data on the identification and position of trees around the 

tower might provide a valuable data source for comparison. 

 

4.4 INCIDENCE OF POLLEN RUPTURE AT THE AMAZON REGION   

Thunderstorm and lightning events are common at the sampling region 

(REHBEIN et al., 2018). Therefore, the high frequency of these events should have a 

substantial influence on the dispersion and transport of pollen, but also on the quality 

of pollen grains.  

Pollen grains have a robust external layer, with the role of protection for the 

enclosed male gametophyte in order to survive transport and succeed at reproduction 

(MOORE et al., 1991; HESSE et al, 2009). So, under normal conditions, pollen has an 

unbreakable wall but, this can be damaged under specific meteorological conditions, 

e.g., high humidity with or without electric fields (GROTE et al., 2000; VAIDYANATHAN 

et al., 2006). This can occur on the anther of the flower, and winds can then 

subsequently release the pollen contents into the atmosphere (TAYLOR et al., 2002).  

These pollen cytoplasmic fragments disperse into thousands of smaller (nano, micro) 

particles that could have cloud nucleation properties (PÖSCHL et al., 2010; PÖHLKER 

et al., 2012). 

At 80 m height and assessing the type of the storm defined by lightning and 

wind speed, the second storm occurrence was the Saharan dust storm (RIZZOLO et 

al., 2017). So, lightning plus high wind is consistent with a downdraft from a 

thunderstorm with a squall front, and many of the storms in the Amazon are mesoscale 

convective systems as confirmed by REHBEIN and others (2018). The thick band of 

large pollen (FIGURE 27) was sampled during high wind speed plus lightning (FIGURE 

39) prior to rain and was a unique occurrence across a period of weeks when no other 

pollen was entrained to 80 m.   
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FIGURE 39: Air mass backtrajectories 3 days prior to the sampling with lightning occurrence 
highlighted in a map (top) and an electric field profile with number of strikes (bottom). Dark 
blue dots are the highest frequency of strikes reaching the air mass. 

Source: provided by Dr. Rachel Albrecht (IAG/USP). 
 

These storm conditions were present when ruptured pollen grain were 

observed at 80 m: more than 15 lightning strikes, 95 % relative humidity and wind 

speed reaching 10 m s−1.  

Pollen of most temperate plants have been shown to rupture in high humidity 

whilst still on the flower, and subsequently release pollen fragments into the airstream 
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(GLOVSKY et al., 2007). Laboratory experiments were performed for this project in 

order to determine if pollen can rupture in the atmosphere and disperse its contents. 

Preliminary experiments were done to test the minimum conditions required to rupture 

pollen. Past experiments relied only on immersion in water for direct observations. 

Under an optical microscope, pollen was placed on a glass slide inside a small 

chamber with controlled increases in relative humidity, as well as the application of 

different voltages to create an electric field, while recording the temperature. 

Using 30 µm diameter, freshly collected pollen grains of ryegrass (Lolium 

perenne), each variable was tested for the effect on pollen rupture (FIGURE 40). Upon 

the relative humidity exceeding 92 %, pollen grains condensed moisture from the air. 

Within 10 min, a microdroplet of about 100 µm diameter formed around each pollen 

grain. The pollen subsequently ruptured and released the contents into the liquid 

meniscus external to the wall. Electric fields of up to 5kV per meter sped up the rate 

and percent of pollen grains that ruptured. 

 

 
FIGURE 40: Image of a pollen rupture experiment. The particle on the left is still intact and the 
one on the right released the contents into the microdroplet of liquid that condensed around 
each pollen grain. Experiments performed in a controlled environment with up to 94 % relative 
humidity. 
 

Because these experiments were performed on glass we did not observe 

dispersion of the fragments into the air upon drying.  However, this is likely to occur in 

the atmosphere during a thunderstorm and under specific conditions, but this final 

observation remains to be performed.  The mechanism of thunderstorm asthma as 

50 µm 
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proposed by Taylor and Johsson (2004) appears valid, and the detailed description of 

the process can now be further refined.  

The natural appearance of the pollen looks like collapsed, but all the sampling 

was executed in order to moisturize the grain when collected. Damage pollen, 

observed as completely empty pollen shells, was observed in samples from above the 

rainforest (FIGURE 41). This suggest that even though they are adapted to high 

humidity environments, pollen of tropical plants is also susceptible to rupture.  

  

 
FIGURE 41: Pictures of damaged pollen grains sampled from 2015 to 2017, occurred at all 
sampled heights. Different types and sizes of particles can be observed. All the images are in 
the same scale: 25 µm. 

   

Ruptured pollen was also observed during thunderstorm events at 60, 80 and 

300 m heights. The rupture was recorded only when pollen grains had clearly lost their 

contents and the pollen shell was observed to be collapsed. However, there was no 

peak in, nor substantial amounts of, ruptured pollen. From all the pollen grains 

collected, only 0.3% were observed to be empty and obviously collapsed, i.e., just a 

small fraction of grains was damaged.  

This amount of pollen contents released into the atmosphere would have no 

measurable influence on weather patterns, even at the scale of the rainforest. There 

does appear to be an emission of pollen fragments into the atmosphere above the 

Amazon, especially in thunderstorm squall lines, but, unlike temperate pastures and 

forests, pollen rupture does not appear to be a particularly large source of sub-micron 

sized particle mass nor number.   
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Ruptured pollen grains occurred associated high humidity and lightning, but 

again, they represent only a small amount total pollen present. Ruptured pollen grains 

were more readily observed during the dry season at 60 m height, during El Niño 

effects. This highlights that little is known about the consequences of climate change 

on the production, emission and viability of particles such as pollen.    
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5 CONCLUSION 

 

The present project was designed to analyse the seasonal and vertical 

distribution of PBAP using towers installed in a pristine area of the Amazon rainforest. 

Four different heights were selected above the canopy: 40 m, 60 m, 80 m and 300 m 

(above ground level) at the maximum height of the tallest tower. In order to assess the 

relative amounts of the various types of bioaerosols, all the coarse particles were 

classified into different categories, labeled as: pollen grains, fungal spores, fern spores, 

moss spores, soot structures and canopy debris.  

No significative value for moss spores was identified in the samples, and this 

might be a result of the sampling strategy executed for the project. Regarding the 

sampling height results, particles were abundant up to 60 m. The 80 m height samples, 

obtained mostly during the wet season, presented the lowest values for all the 

categories. For 80 m and upwards, bioaerosol abundance was considerably lower than 

near the canopy, consistent with a pattern of exponential decrease with height.   

Seasonal distribution of bioaerosols confirmed the tendency of higher values 

during the dry season. For the wet season, even with a strong rainfall scavenging 

effect, all the categories were observed across all the sampled heights, but in lower 

concentrations. Although sampling occurred over a large PBAP source area, the 

largest tropical rainforest, bioaerosol abundance was relatively low compared to urban 

environments, at least by a magnitude order. This is an important result to be 

considered regarding IPCC estimates for bioaerosols. A large data set from forested 

areas should be considered for forthcoming investigations on future scenarios and 

estimated emission values. 

The vertical analysis indicated that the most abundant region for bioaerosols 

is not immediately above the canopy, dominated by local tree canopy emissions, but 

about 25 m above (60 m), even though this sampling was performed during an El Niño 

year with the most low-rainfall dry season yet recorded. Those results could be just a 

consequence of the meteorological conditions, so, a future monitoring would be 

interesting to verify the pattern found. The pollen counts at 60 m in and out of lightning 

events did not show any distinct peaks but were well distributed across the entire 

sampling period. Bioaerosols concentrations were similar for 80 and 300 m, with 

occasional peaks correlated to specific storm events. 
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The majority of pollen and fungal spores appear to be restricted to the canopy 

area or surface structures, up to 60 m, except for the duration of high speed winds 

exceeding 10 m s−1 as found in thunderstorm outflows and at the source of dust storms. 

These storm like conditions appear to be the driving force for the suspension of the 

largest pollen grains that otherwise were rarely sampled at 80 and 300 m. Pollen 

emitted from the canopy appear to be restricted to approximately the surface 

roughness sub-layer of the atmospheric boundary layer, and seldom exceed 80 m 

above the canopy. So, giant particles such as pollen and large fungal spores are not 

evenly distributed across the entire atmospheric boundary layer, and therefore, it 

appears to have less influence on atmospheric processes. 

Contradicting some existing models that estimate pollen levels in the air with 

a regular vertical transport up to 2 km, apart from a strong air mass and during high 

wind speed, it is unlikely for giant-sized pollen grains to remain suspension for a 

substantial period of time. As vertical transport is necessary for horizontal and long-

distance transport, turbulent motions are needed to resuspend particles and entrain 

them to higher levels. With a continuous sampling at different heights above the canopy 

it would be possible to acquire accurate data on the vertical transport of coarse and 

giant particles and estimate their long-distance transport.   

The high diversity of the sampled biological material above the canopy was 

categorized and illustrated in an atlas specifying the family level (when identified) and 

the collected height (APPENDIX C). The sampling period during the El Niño effect 

correlated with the highest diversity for all the categories. This was also the longest 

continuous sampling period and the results highlight the importance of frequent 

airborne biological particle measurements for the region. More than a hundred different 

types of pollen were collected from 2015 to 2017 across the various heights, and more 

than 200 types of fungal spores were also sampled. Almost half of the material was 

identified to the family level, and a multidisciplinary study should be considered for a 

future work in order to execute a continuous measurement as well. That would enable 

the identification of all the sampled particles, including the ones categorized as 

unknown for this project.     

Even with the diversity of pollen types sampled at different heights and under 

varied meteorological conditions, only 0.3 % of the total pollen collected were obviously 

empty, notedly showing a collapsed shell. The particle structure was intact on 

practically all the bioaerosols sampled. At temperate latitudes, a relatively large 
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amount of grass pollen can be found damaged and ruptured. Yet under the harsh 

conditions and frequent lightning events in the Amazon, tropical pollen types seem well 

adapted with a hard thick wall to protect their contents. 

Aerosols studies agree that over the rainforest environment more than 90 % 

of atmospheric particles have organic source. The results presented here are in 

agreement with previous research from the region. Up to 70 % of the sampled material 

is accounted for as organic material from the canopy, followed by fungal spores, pollen 

grains and fern spores. Unknown recurrent particles are, in general, less than 1 % 

across all the sampled heights. High levels of mineral particles and dust are only 

present during specific storm events.  

From 2015 to 2017, across both dry and wet seasons, the general relative 

composition and abundance of particles were similar despite weather conditions and 

height differences. Wet and dry seasons presented the same composition with 

differences in concentration. All the categorized PBAP for this work were observed up 

to 300 m regarding the concentration proportions, and events out of the ordinary 

occurred just during a few number of extreme meteorological conditions. So, as an 

indication for forthcoming monitoring two stages are essential: one not close to the 

canopy line and another as high as possible. These first results on airborne bioaerosols 

above a tropical rainforest open a wide range of possibilities for future investigations 

into biological emissions and dispersal.   
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APPENDIX A: ADHESIVE RECIPE AND PREPARATION  
 

The adhesive substance responsible for fixing the particles onto the tape can 

be chosen from a wide range of chemicals with a gelatine, silicone or vaseline base 

(FRENZ, 1999; KAGEN, LEWIS and LEVETIN, 2005; SOLDEVILLA et al, 2007; 

GRIPST, 2009). The final substance must be clear, sticky and transmissible to bright 

light (BURKARD, 2003).  

The recipe chosen for this project was gelatine based, using agar (adhesive), 

glycerol (moisture), phenol (preservative) and ultrapure water. The proportions 

suggested in the literature were executed during the last 20 years in mid-latitudes (20 

to 40°): 5 % agar, 20 % glycerol, 0.5 % phenol in ultrapure water to complete 100 % 

(TAYLOR et al, 2002).  

The adhesive preparation steps are as follows: heat 90% of the ultrapure water 

at 60 °C in a glass bottle (heatproof), add the agar stirring gently until dissolved, 

remove the bottle from the heater and add the glycerol and phenol stirring until 

complete homogeneity. This substance is stored in a sealed bottle at room 

temperature. For the tape preparation before the sampling the substance should be 

heated until it becomes liquid and a thin layer spread on the Mellinex tape (cellophane) 

surface, leaving the borders clean to handle the tape and fixing it around the drum. 

The mountant media used to attach the sampled tape to the glass slide after 

the sampling is prepared with 15 % Mowiol or Gelvatol (water soluble plastic), 25 % 

glycerol and 0.5 % phenol in ultrapure water solution. The preparation is similar to that 

of the adhesive: warm water with the mowiol (60 °C) until complete dissolution, first the 

glycerol is added and then the phenol, the mixture is stirred until completely 

homogeneous. The solution can be placed into small glass or plastic inert containers 

and stored at – 4 °C. A small aliquot is kept at room temperature for immediate use. 

Regarding the adhesive substance, some challenges were faced during this 

project, but the mountant media’s recipe worked well throughout the whole period. 

During the preliminary tests and upon first sampling, the adhesive started melting on 

the tape with the natural warm temperature (30 to 40 °C), so it was not working properly 

as an adhesive. Protocols had been developed for temperate zones, and this is the 

first time this sampling method was used in a tropical rainforest. The sampling region 

has an unusual characteristic for sampling as shown by its location near zero latitude, 

with high temperatures plus very high relative humidity. The texture of the first adhesive 
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(plane, smooth and firm at room temperature) changed as soon as the tape exposure 

started at the tower. Also, the preserving chemical (phenol) was not enough to actually 

prevent fungi growth. 

Thus, some tests were made in a controlled environment, inside a foam 

cupboard with known temperature and humidity simulating the field conditions, in order 

to find a better combination of the components to allow the capture of the particles 

during the sampling. First of all, only phenol was added to the original adhesive recipe: 

5 % agar, 20 % glycerol and 1.5 % phenol, but during the second sampling it also 

started to melt. 

Then, more agar and glycerol were added to the mixture: 10 % agar, 30 % 

glycerol and 5 % phenol. This resulted in an adhesive resistant to heat, but with high 

humidity some fungi started growing just after the third sampling. 

Another adhesive recipe, used for the last samplings, more resistant to heat 

and humidity simultaneously, was composed of: 20 % agar, 35 % glycerol and 10 % 

phenol. As the tape remained exposed from 1 to 7 days (replaced with rain 

occurrence), after the sampling a mixture of ethanol and phenol (30 %) was also 

sprayed onto the tape to prevent any growth.  

This last recipe was used for sampling during wet and dry seasons and worked 

very well during the dry season above the canopy. But during the wet season with 

constant rain and humidity frequent at 100 % or during the dry season below the 

canopy, where the humidity is continuously high, and there is a lack of 

evapotranspiration, some issues such as melting and wrinkles still appeared. 

The vaseline and silicon base, due to its temperature resistance, also starts 

melting in the range of the field conditions, so more tests with other chemical 

substances are necessary to develop the ideal adhesive recipe for both seasons that 

can maintain the moisture at the sample. 

 

 

  



 90 

APPENDIX B: TOTAL PARTICULATE MATTER AND BIOGENIC FRACTION 
 

During the 2016 dry season, a simultaneous sampling with fractionated fine 

particulate matter was carried out to investigate the dust composition classified as 

canopy debris from the pollen sampling.  

In order to separate specific fractions of the total particulate matter, a cascade 

impactor (PIXE, Model I-1L, Tallahassee, USA) was installed connected to a vacuum 

pump with 1 L min−1 flow. This cascade-type sampler allows size fractionation of all 

particles from the income air. The sampler was connected to an inlet of 20 cm and 

protected from direct rain, in order to prevent water droplets impinging into the filters. 

Fiberfilm filters (Pallflex, 25 mm diameter) were used as substrates on the 

following stages: 8, 4 and 2 µm. A Mellinex tape with adhesive (gelatine based), as 

used in the pollen sampler, was placed atop the first stage, to retain particles with an 

aerodynamic diameter larger than 16 µm.  

Two sets of filters were sampled, each with 10 days of exposure. Also, a blank 

filter was kept for each set. The collected samples from the first stage were analysed 

by optical microscopy, and the rest were analysed by scanning electron microscopy. 

The fiberfilm filters were weighed before and after sampling using a Sartorius 

micro-balance (MSA2.7S-000- DF) from Laboratory of Analysis and Air Quality (UFPR 

- Brazil), and then coated with carbon and analysed by Scanning electron microscopy 

(JEOL JSM-IT300) at the Microscopy Laboratory (Deakin University - Australia). 

The optical microscopy has a magnification limitation due to the lens system. 

In order to access the morphology and also the composition of smaller particles, 

another type of microscopy, electron-based, can be used. The Scanning Electron 

Microscopy (SEM/EDX) provides information on elemental composition, size, and 

shape of the particles. Its operation consists of an electron-emitting source (electron 

beam) finely scanning the specimen surface generating various continuous signals as 

secondary electrons, backscattered electrons, Auger electrons and characteristic X-

rays. The different signals produced by the interaction of the energy on the sample are 

detected, converted, amplified and simultaneously displayed for chemical composition 

and morphology of a microscopic volume in one single particle (KRUPINSKA et al., 

2012; JEOL, 2017). 

For the fractioned total particles collected in fiberfilm filters, the Scanning 

electron microscopy(e) - SEM - was chosen. The filters were analysed with a SEM 
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(JEOL JSM-IT300, Peabody, USA) using a Tungsten secondary electron detector 

(SED) and giving a resolution of 4 nm. The filters were previously placed on an 

aluminium stage using a thick layer of carbon tape and were also coated with carbon 

(Leica EM ACE 600, Macquarie Park, Australia) to conduct the electron beam through 

the sample. They were stored in a sealed container with silica to maintain low humidity.  

The samples were analysed with an acceleration voltage of 20 kV in high 

vacuum to increase the sensitivity in the analysis of low Z elements, allowing double 

scanning to verify the beam stability. The X-ray spectra were captured and integrated 

using the AZ Tech software.  

For the fiberfilm filters only one stage in the range of 2 µm was damaged (by 

visual inspection), and because it could be caused by handling, leading to 

contamination, this one was not analysed. The fiberfilm filters, rather one, were 

scanned for morphology and composition. The expanded uncertainty (BIPM, 2008) for 

the results is 5.4%. 

The amount of specific biological particles on the Mellinex tape in the pollen 

trap are presented as daily averaged concentration on TABLE 4. Those results are 

higher than the ones sampled during wet season, but quite low regarding urban sites.  

 
TABLE 4: Particle concentration sampled with Pollen trap during the dry season of 2016. 
Median results in number of particle per cubic meter of air, averaged over 24 h. 

 

PERIOD Pollen Fungi Fern Soot Debris Total 
17th Sep 
07th Oct 25 812 11 78 2183 3011 

 
The samples from 80 m height for the period were very clear with low particles 

density, as shown in FIGURE 42. Canopy debris were predominant, as occurred during 

the entire sampling period, followed by fungal spores, soot particles, pollen grains and 

fern spores. The total amount of collected particles was around 3000 particles m−3 

averaged over 24 h. 

The 2014 wet season (ANDREAE et al., 2015) showed the total number of 

PM10 as 282 particles cm−3 in a seven-day period, and more than 1000 particles cm−3 

during the dry season. On a daily basis, this corresponded to almost 

2x107 particles m−3 over 24 h compared with 3000 found with this sampling that 

covered the size range of 3 to 100 µm. 
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FIGURE 42: Example of a sample from 80 m height with the Pollen trap on the 26th of 
September 2016, 8h (local time).  

 
 The few particles observed could also have been influenced by marine and 

urban aerosols transported from the surroundings. The FIGURE 43 illustrates that 

during the 20-day period of sampling, the area received air masses from all directions, 

but mainly south-easterly, with wind speeds reaching 10 m s−1.   

 

 
FIGURE 43: Wind rose from September 17th to October 7th 2016, at 80 m height. 
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 The collected mass per cubic meter of air sampled in each period for the 

fractionated particulate matter in fiberfilm filter is shown in TABLE 5. Considering the 

sum of the last two stages as an approximation to PM10, the results are quite low 

compared to a range from 500 to 2000 cm−3 (ANDREAE et al., 2015), previous 

recorded at the same site two years before, during September 2014. For that season, 

it is known that the PBAP dominates the coarse particle mode. (HUFFMAN et al., 2012; 

ANDREAE et al., 2015). Only particles in the range of 3.2 to 5.6 µm were measured 

by Fraund (et al, 2017), with a daily average count of 0.0011 particles m−3 and an 

organic fraction of 3.8 µg m−3.  

From the first stage of tape and for both periods, the dominant particles 

observed were just canopy debris. Only around 4% (3.6% for the first period and 3.9% 

for the second period of sampling) were biological particles belonging to the fungi 

category. The number of pollen grains correspond to less than 1% of the particles 

collected at this first stage. 

 
TABLE 5: Total particle concentration for fractionated particle sampling using the PIXE 
cascade impactor during the dry season of 2016. 

 

Size range Substrate Particles Concentration 
  17th Sep - 27th Sep 27th Sep - 07th Oct 

> 16 µm Mellinex Tape 19 pollens m−3 35 pollens m−3 
8 - 16 µm Fiberfilm 0.6 µg m−3 0.3 µg m−3 
4 - 8 µm Fiberfilm 2.6 µg m−3 2.8 µg m−3 
2 - 4 µm Fiberfilm -------* 2.9 µg m−3 
Blank Fiberfilm 0.0 µg m−3 0.0 µg m−3 

   * filter excluded due to possible contamination. 
 

Among the 5 samples, a total of 140 individual particles were analysed for 

elemental compounds. At the size range from 8 to 16 µm a total of 32 particles were 

analysed, 83 particles from 4 to 8 µm, and 25 particles from the lower stage. Elemental 

composition from the spectrum results will be presented as relative composition for all 

the samples.  

The fiberfilm filter contained Fluorine (F) Silicon (Si) and oxygen compounds, 

with some minor elements, such as Sodium (Na), Barium (Ba), Zinc (Z), Aluminium 

(Al), Potassium (K) and Calcium (Ca). The filters were scanned in order to find particles 

with a composition different from the main ratio 2:1:1 for F, Si and O, the substrate 
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composition. C:O ratio could not be measured due to the coating of the samples with 

carbon. 

Organic particles are mainly C O-containing, but as the samples were coated 

with carbon, all the results present some C fraction. Mineral particles can be identified 

when the elements O, Si and Al prevails. The biological ones show N, P, K, O, S and 

also C. Salt particles can be mainly Na or Mg-containing. Inorganic salts also can be 

present in fungal spores’ fractions (PÖHLKER et al., 2012). Minor compounds as Fe, 

Mg, S, Ca can be present in almost all categories.   

The filters from the stage 8 to 16 µm showed amorphous particles with mainly 

an oxygen element peak, FIGURE 44. The particles composition is mainly Si, Na, Zn, 

Ba, Ca or Al oxygen compounds, i.e., mainly organic and mineral particles were found 

at this stage. Al- and Si-containing (FIGURE 44 - right) are almost half of the analysed 

particles, followed salt particles (Na-containing). Two of the particles showed 

Potassium as the major element. Also, 6 % presented Iron as major compound (> 15 % 

Fe), illustrated in FIGURE 44 (left). 
 

  
FIGURE 44: Images with 1000x magnification of particles from 8 to 16 µm sampled with 
fiberfilm filter, scale bar: 10 µm. Example of Iron-containing particles with minor oxygen 
compounds (left) and Si-, O-containing particle (right). 
 

From the next stage, 4 to 8 µm, the particles peaked in O, N, Si and Na, with 

minor recurrent elements, such as Ba, Al, Zn, Ca, Cl, S and K. Organic and mineral 

elements prevails (FIGURE 45 – top left and right), also followed by salt elements with 

Na-, Mg- and Cl-compounds (FIGURE 45 –bottom left and right). Biological particles 

are present (FIGURE 45 – top left), Potassium and Iron containing particles were also 

sampled in this range (FIGURE 46).   
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FIGURE 45: Images with 1000x magnification of particles from 4 to 8 µm sampled with fiberfilm 
filter, scale bar: 10 µm. Example of biological particles (top left), Si-, O-, N-containing particles 
(top right), salt and mineral particles (bottom left and right). 
 

   
FIGURE 46: Elemental composition spectrum (left) from the central particle (left) and colour 
image highlighting K-(orange), Na-(yellow), Mg-(purple) containing particle (right). 

 

Particles with Na, Si and Al represent 50 % of the total number of particles 

analyzed. Cl, K and Fe also appeared, but at a lesser frequency. In a previous study, 

during the 2014 dry season (FRAUND et al, 2017), organic compounds were found to 
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be the major constituent. Ammonium, Chloride, Nitrate, Sulfate and Black carbon were 

also quantified only in the range of 3.2 to 5.6 µm, where fragments of fungal spores 

were found above and below the canopy (CHINA et al., 2016). 

For the sample in the range of 2 to 4 µm, mainly amorphous carbonaceous, 

mineral and salt particles were found (FIGURE 47). Minor elements quantified were 

Fe, Mg, Al, Ba, Cl, K, Mg, Ca, Zn and S. From the 25 particles analysed, 2 had more 

than 10 % Iron. Potassium is less than 2 % by composition of all particles. Nitrogen 

appeared just once, also as a minor compound.  
 

   
 

FIGURE 47: Images with 1000x magnification of particles from 2 to 4 µm sampled with fiberfilm 
filter, scale bar: 10 µm. Example of C-, O-containing amorphous particles (left), and Si-, O-, 
Na- and Mg-containing particles (right). 

 
From the 140 single particles analysed for elemental composition it was 

determined that the sampled particles can be qualitatively classified as organic and 

biological, followed by mineral and finally salt particles. This main relative composition 

is similar for all the stages from 2 to 16 µm, as shown in TABLE 6.  

 
TABLE 6: Relative cluster classification of single particles in the range of 2 to 16 µm sampled 
at 80 m height during 2016 dry season. Results in percentage (%). 
 

 Organic/Biological Mineral Salt 
2 to 4 µm 56 28 16 
4 to 8 µm 47 31 22 

8 to 16 µm 47 41 12 
 

Canopy debris are the dominant type of particles in suspension (TABLE 4), in 

agreement with the prevalence of organic and biological microparticles, as shown by 

the SEM/X-ray data about the particles composition (TABLE 6). Those results spread 
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the scope for future investigations, aiming to identify and quantify the canopy 

compounds. A different technique is needed to fully characterize these coarse 

particles, e.g. to detect a potential dominance of micronic-sized wax and lipid leaf 

surface debris. 

The results corroborate what was shown with the pollen sampler results. 

Almost 75 % of the samples content, classified as canopy debris can be formed by 

organic/biological material, mineral and salt particles, but mainly biological particles or 

fragments. Organic and biological particles accounted for half of the material sampled 

across the different size cuts from 2 to 16 µm. Combined analytical techniques can be 

used in a future work to assess the composition of the canopy debris, since this is the 

major component detected throughout the samples. 
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APPENDIX C: BIOAEROSOL ATLAS 

 

 

All the biological particles sampled were imaged at 400 x magnification with a 

40 x objective lens, unstained. After categorization into broad types, an attempt was 

made to identify each pollen and fungal spore. The following pages show images of 

each particle without image color post-processing and with the respective scale bar 

(20 µm for pollen grains and 10 µm for spores), and at the bottom is the height(s) of 

occurrence marked in black. Each category is arranged in order from smallest to 

largest particle diameter. The images follow the format below: 
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APPENDIX C.1: POLLEN GRAINS (1/10) 

 

   

 
 

 

  

   

 
 

 

  

   

 
 

 

  

   

 
 

  

 

Moraceae 

40 m 60 m 80 m 

Fabaceae 

40 m 60 m 80 m 300 m 

Fabaceae 

40 m 60 m 80 m 300 m 

Fabaceae 

40 m 60 m 80 m 300 m 

Moraceae 

40 m 60 m 80 m 300 m 

Moraceae 

40 m 60 m 80 m 300 m 

40 m 60 m 80 m 300 m 

Asteraceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Asteraceae 

40 m 60 m 80 m 300 m 

Fabaceae 

40 m 60 m 80 m 300 m 

300 m 

Identification 



100 
 

POLLEN GRAINS (2/10) 
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POLLEN GRAINS (3/10) 
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POLLEN GRAINS (6/10) 
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POLLEN GRAINS (7/10) 
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POLLEN GRAINS (8/10) 
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Identification 

40 m 60 m 80 m 300 m 

Podocarpaceae 

40 m 60 m 80 m 300 m 

Myrtaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Fabaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Combretaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 
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POLLEN GRAINS (9/10) 
 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

 
 

 
 
 

 

 

Cyperaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Arecaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Bambusoideae 

40 m 60 m 80 m 300 m 

Parianaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Poaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 
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POLLEN GRAINS (10/10) 
 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Cyperaceae 

40 m 60 m 80 m 300 m 

Cyperaceae 

40 m 60 m 80 m 300 m 

Cyperaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Poaceae 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Podocarpaceae 

40 m 60 m 80 m 300 m 

Podocarpaceae 

40 m 60 m 80 m 300 m 
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APPENDIX C.2: FUNGAL SPORES (1/17) – PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

   

 
 

 

  

   

 
 

 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (2/17) - PHYLUM: ASCOMYCOTA 
 

   

 
 

 

  

 

   

 
 

 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Xylaria 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Ascospore 

40 m 60 m 80 m 300 m 

Venturia 

40 m 60 m 80 m 300 m 

300 m 



111 
 

FUNGAL SPORES (3/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Venturia 

40 m 60 m 80 m 300 m 

Venturia 

40 m 60 m 80 m 300 m 

Venturia 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Venturia 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Bispora 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (4/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 

 
 

  

   

 
 

 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Venturia 

40 m 60 m 80 m 300 m 

Bispora 

40 m 60 m 80 m 300 m 

Xylaria 

40 m 60 m 80 m 300 m 

Periconia 

40 m 60 m 80 m 300 m 

Nigrospora 

40 m 60 m 80 m 300 m 

Nigrospora 

40 m 60 m 80 m 300 m 

Spegazzinia 

40 m 60 m 80 m 300 m 

Spegazzinia 

40 m 60 m 80 m 300 m 

Spegazzinia 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (5/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 

 
 

  

   

 
 

 

  

   

 
 

  

 

Torula 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (6/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Penicilium 

40 m 60 m 80 m 300 m 

Penicilium 

40 m 60 m 80 m 300 m 

Penicilium 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (7/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Cladosporium 

40 m 60 m 80 m 300 m 

Cladosporium 

40 m 60 m 80 m 300 m 

Cladosporium 

40 m 60 m 80 m 300 m 

Cladosporium 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (8/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 
 

 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Alternaria 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (9/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 

 
 

  

   

 
 

 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Curvularia 

40 m 60 m 80 m 300 m 

Curvularia 

40 m 60 m 80 m 300 m 

Curvularia 

40 m 60 m 80 m 300 m 

Alternaria 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Alternaria 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (10/17) - PHYLUM: ASCOMYCOTA 

 

   

 
 

 

  

 

   

 
 

 

  

   
 

  

   

   

 

 

 

 

 

 

 

 

 

Identification 

40 m 60 m 80 m 

Leptosphaerulina 

40 m 60 m 80 m 300 m 

Leptosphaerulina 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 



119 
 

FUNGAL SPORES (11/17) - PHYLUM: BASIDIOMYCOTA 

 

   

  
 

 

   

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Ganoderma 

40 m 60 m 80 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Ganoderma 

40 m 60 m 80 m 300 m 

Conocybe 

40 m 60 m 80 m 300 m 

300 m 



120 
 

FUNGAL SPORES (12/17) - PHYLUM: BASIDIOMYCOTA 

 

   

  
 

 

   

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Conocybe 

40 m 60 m 80 m 

Conocybe 

40 m 60 m 80 m 300 m 

Conocybe 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Coprinoid 

40 m 60 m 80 m 300 m 

Scleroderma 

40 m 60 m 80 m 300 m 

Scleroderma 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (13/17) – OTHER PHYLA 

 

   

  
 

 

   

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (14/17) - OTHER PHYLA 

 

   

  
 

 

   

 

   

 
 

 

  

   

 
 

 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (15/17) - OTHER PHYLA 

 

   

  
 

 

   

 

   

 
 

 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (16/17) - OTHER PHYLA 

 

   

  
 

 

   

 

   

 

 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FUNGAL SPORES (17/17) - OTHER PHYLA 

 

   

  
 

 

   

 

   

 
 

 

  

   
 

  

   

   

 

 

 

 

 

 

 

 

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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APPENDIX C.3: FERN SPORES (1/2) 

 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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FERN SPORES (2/2) 

 

   

 
 
 

  

   

 
 
 

  

   
 

  

   

   

 

  

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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APPENDIX C.4: UNKNOWN PARTICLES (1/4) 

 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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UNKNOWN PARTICLES (2/4) 

 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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UNKNOWN PARTICLES (3/4) 

 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

 
 

  

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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UNKNOWN PARTICLES (4/4) 

 

   

 
 
 

  

   

 
 
 

  

   

 
 
 

  

   

   

 

 

 

 

 

Identification 

40 m 60 m 80 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

Identification 

40 m 60 m 80 m 300 m 

300 m 
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CANOPY DEBRIS (1/1) 

 

Example of structures classified as canopy debris. The general scale is 50 µm. 
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SOOT (1/1) 

 

Examples of black amorphous structures classified as soot. General scale: 25 µm. 
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