UNIVERSIDADE FEDERAL DO PARANÁ

CARINA PEDROZO

IMPACTO DAS ALTERAÇÕES CLIMÁTICAS NA GERAÇÃO DE ENERGIA ELÉTRICA DA USINA HIDRELÉTRICA DE FOZ DO AREIA NO ESTADO DO PARANÁ

CURITIBA

2017

CARINA PEDROZO

IMPACTO DAS ALTERAÇÕES CLIMÁTICAS NA GERAÇÃO DE ENERGIA ELÉTRICA DA USINA HIDRELÉTRICA DE FOZ DO AREIA NO ESTADO DO PARANÁ

Dissertação apresentada ao Programa de Pós Graduação em Engenharia de Recursos Hídricos e Ambiental, Área de Concentração em Engenharia de Recursos Hídricos, Setor de Tecnologia, Universidade Federal do Paraná, como requisito parcial para obtenção do título de mestre em Engenharia de Recursos Hídricos.

Orientador Prof. Heinz Dieter Fill, PhD

CURITIBA

2017

FICHA CATALOGRÁFICA ELABORADA PELO SISTEMA DE BIBLIOTECAS/UFPR BIBLIOTECA DE CIÊNCIA E TECNOLOGIA

P372i

Pedrozo, Carina

Impacto das alterações climáticas na geração de energia elétrica da Usina Hidrelétrica de Foz do Areia no estado do Paraná / Carina Pedrozo. – Curitiba, 2017. 143 f. : il. color. ; 30 cm.

Dissertação - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental, 2017.

Orientador: Heinz Dieter Fill.

1. Energia hidrelétrica. 2. Usina Foz do Areia. 3. Recursos hídricos. 1. Universidade Federal do Paraná. II. Fill, Heinz Dieter. III. Título.

CDD: 621.312134

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO Setor TECNOLOGIA Programa de Pós Graduação em ENGENHARIA DE RECURSOS HÍDRICOS E AMBIENTAL Código CAPES: 40001016021P0

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em ENGENHARIA DE RECURSOS HÍDRICOS E AMBIENTAL da Universidade Federal do Paraná foram convocados para realizar a arguição da Dissertação de Mestrado de CARINA PEDROZO, intitulada: "IMPACTO DAS ALTERAÇÕES CLIMÁTICAS NA GERAÇÃO DE ENERGIA ELÉTRICA DA USINA HIDRELÉTRICA DE FOZ DE AREIA NO ESTADO DO PARANÁ", após terem inquirido a aluna e realizado a avaliação do trabalho, são de parecer pela sua __________.

Curitiba, 03 de Maio de 2017.

HEINZ DIETER ØSKAR AUGUST FILL Presidente da Banca Examinadora (UFPR)

CLAUDIO MARCHAND KRÜGER Avaliador Externo (UP)

DANIEL HENRIQUE MARCO DETZEL Avaliador Interno (UFPR)

Larnh MARCELO RODRIGUES BESSA Avaliador Interno (UFPR)

A água é um elemento amigo, para quem a conhece e sabe lidar com ela

(J.W. von GOETHE)

AGRADECIMENTOS

A Deus.

A minha família, principalmente a minha mãe, Neusa, pelo incentivo, pelo apoio e pela paciência, além de toda a estrutura necessária para que anos depois ainda tivesse força para recomeçar e concluir esta etapa.

Ao meu orientador Heinz Dieter Fill por me permitir acompanhar sua genialidade, além de partilhar seu tempo e sua amizade, como aluna e orientada sempre o observei com respeito e admiração. Foi uma grande honra poder fazer parte desta história.

Ao Luciano Juvinski, por acreditar e confiar meu potencial e ao Vinícius Juvinski por me auxiliar prontamente nas rotinas computacionais me socorrendo e poupando muitas horas de trabalho. Sou privilegiada em tê-los como amigos.

A Eng. Eimi V. Suzuki pela sua paciência oriental, fundamental em me auxiliar nas questões de formatação e organização do texto.

Aos professores Marcelo Bessa e Daniel Detzel, e ao colega Angelo Breda, que disponibilizaram do seu tempo e partilharam seus conhecimentos quando muito precisei.

Aos amigos, a Eng. Adriana R. Tozzi Pontoni e Ranieri Campos por todo incentivo, apoio e amizade, sendo uma luz no caminho e não me permitindo desistir.

A todos os amigos que entenderam minhas ausências e foram solidários ao me incentivar a realizar este passo importante em minha vida.

E também, ao Theo, que é fonte de alegria, energia e amor, estando ao meu lado mesmo em longos períodos de trabalho, mostrando que a perseverança é fundamental para atingir as metas.

RESUMO

Esta pesquisa visa analisar os efeitos de futuras mudanças climáticas sobre a energia garantida de usinas hidrelétricas operando integradas em um sistema interligado eletricamente. O método é exemplificado com a usina hidrelétrica de Foz do Areia (Gov. Bento Munhoz da Rocha) no rio Iguaçu, estado do Paraná, Brasil. Utilizaram-se na análise parte dos resultados das simulações climáticas do projeto CLARIS/LPB para a definição dos cenários futuros referentes aos períodos 2021-2070 e 2071-2099. A energia garantida futura foi avaliada pelo método de Monte Carlo usando 100 series sintéticas de energia natural da usina Foz do Areia e do sistema Sul/Sudeste (S/SE). O método de simulação foi o método da energia natural (CANAMBRA, 1969) que costuma dar bons resultados em grandes sistemas elétricos bem regularizados. Como no projeto CLARIS/LPB, obtiveram-se reduções, não superiores a 15%, na energia garantida hidrelétrica do sistema S/SE ao longo do século XXI. No caso de Foz do Areia, ao contrário, ocorreu um ligeiro aumento, na energia garantida. Deve se considerar que, devido a não estacionariedade das vazões do rio Iguaçu na década de 1970, a geração de Foz do Areia mostrou um ganho na energia firme atual em relação aos valores de projeto. O estudo também mostra que devido às incertezas dos modelos climáticos, o uso de uma modelagem simplificada (e.g. método da energia natural) pode proporcionar resultados bastante uteis na previsão dos efeitos de mudanças climáticas futuras.

Palavras chave: Usina Foz do Areia, alterações climáticas, séries sintéticas, energia garantida.

ABSTRACT

This research proposes to analyze the impacts of future climate changes on the dependable energy of hydro plants operating integrated within large interconnected systems. The method is illustrated by the Foz do Areia hydro plant on the Iguacu river, South Brazil. In the analysis, a large part of the results of the CLARIS/LPB project were used to define future climate scenarios for the 2021-2070 and 2071-2099 periods. The future dependable energy was evaluated by the Monte Carlo method using 100 synthetic series of natural energy for both Foz do Areia and the South/Southeast interconnected system. Simulation was performed by the Natural Energy Hydrograph method (CANAMBRA, 1969) which gives reasonable results in case of large hydropower systems with good regulation capacity. Like in the CLARIS/LPB, a reduction of the order of 15%, of the dependable hydropower energy could be expected for the interconnected S/SE system over the XXI century. In case of Foz do Areia a slight increase of its dependable energy has been observed. Also an increase in firm energy with respect to design values, due to nonstationarity of the Iguacu river flows during the 1970 decade has been observed. The study also shows that because of large uncertainties of climate model outputs, the use of simplified modeling (e.g. Natural Energy Hydrograph method) can provide useful results for the estimation of future climate change impacts.

Key words: Foz do Areia Plant, climate changes, synthetic streamflow series, dependable energy.

LISTA DE FIGURAS

Figura 2.1 - Localização da Bacia do Rio Iguaçu	16
Figura 2.2 – Localização da UHE Foz do Areia	17
Figura 2.3 – Perfil do Rio Iguaçu	17
Figura 2.4 – Temperatura Média em Foz do Areia	19
Figura 2.5 – Vazão média por mês em Foz do Areia - Sazonal	20
Figura 2.6 – Anomalias Médias Anuais de Temperatura	24
Figura 2.7 – Anomalia Temperatura Média Anual no Hemisfério Norte	25
Figura 2.8 – Vazões Médias, Mínimas e Máximas rio Paraná	26
Figura 2.9 – Matriz Elétrica Brasileira	27
Figura 2.10 – Energia Garantida – Sistema Prata (2021 – 2070)	35
Figura 3.1 – Representação do Método Monte Carlo	58
Figura 3.2 – Ábaco para determinação de Tr	71
Figura 4.1 – Médias Anuais de Vazão – Foz do Areia	74
Figura 4.2 – Vazões Médias Anuais Acumuladas em Foz do Areia	75
Figura 4.3 – Gráfico de Médias Móveis de Vazões em Foz do Areia	77
Figura 4.4 – Vazões Médias Anuais em Salto Osório	78
Figura 4.5 – Vazões Médias Anuais Acumuladas em Salto Osório	79
Figura 4.6 - EN Médias Anuais S/SE	80
Figura 4.7 – EN Médias Anuais Acumuladas S/SE	80
Figura 4.8 – Vazões Acumuladas Corrigidas em Foz do Areia	83
Figura 4.9 – Vazões Acumuladas Corrigidas em Salto Osório	83
Figura 4.10 – Distribuição Amostral Média Energia Natural S/SE	85
Figura 4.11 – Distribuição Amostral Desvio Padrão S/SE	
Figura 4.12 – Distribuição Amostral Autocorrelação S/SE	
Figura 4.13 – Distribuição Amostral Assimetria S/SE	87
Figura 4.14 – Distribuição Amostral Energia Firme S/SE	87
Figura 4.15 – Distribuição Amostral – Médias – Foz do Areia	
Figura 4.16 – Distribuição Amostral Desvio Padrão – Foz do Areia	
Figura 4.17 – Distribuição Amostral Autocorrelação – Foz do Areia	
Figura 4.18 – Distribuição Amostral Assimetria – Foz do Areia	

Figura 4.19 – Distribuição Amostral – Médias – S/SE (Futuro)	.90
Figura 4.20 – Distribuição Amostral Desvio Padrão S/SE (Futuro)	.91
Figura 4.21 - Distribuição Amostral Autocorrelação S/SE (Futuro)	.91
Figura 4.22 - Distribuição Amostral Assimetria S/SE (Futuro)	. 92
Figura 4.23 - Distribuição Amostral – Médias – F.A. (Futuro)	92
Figura 4.24- Distribuição Amostral – Desvio Padrão – F.A. (Futuro)	.93
Figura 4.25 - Distribuição Amostral – Autocorrelação – F.A. (Futuro)	.93
Figura 4.26 - Distribuição Amostral – Assimetria – F.A. (Futuro)	.94
Figura 4.27 - Confiabilidade da Energia Garantida – S/SE	. 97
Figura 4.28 - Confiabilidade da Energia Garantida – F.A	.98
Figura 4.29 - Confiabilidade da Energia Garantida – S/SE	101
Figura 4.30 - Confiabilidade da Energia Garantida em Foz do Areia	102

LISTA DE TABELAS

Tabela 2.1 – Dados das Estações Fluviométricas Utilizadas em 1974	21
Tabela 3.1 – Média e Desvio Padrão das séries de Energia Natural	44
Tabela 3.2 – Coeficiente de autocorrelação transformação "log"	62
Tabela 3.3 – Valores de μ = $f(a)$ para Tr =100 anos e Tr = 45 anos	72
Tabela 4.1 – Vazões Médias Móveis em Foz do Areia – Período de 10 anos	76
Tabela 4.2 – Resumo dos Dados para Correção da Estacionariedade	82
Tabela 4.3 – Resumo de Valores Estatísticos Séries Sintéticas Corrigidas	84
Tabela 4.4 - Parâmetros Básicos das Séries Históricas Corrigidas	95
Tabela 4.5 - Parâmetros Básicos dos Cenários Futuros (RCM PROMES)	96
Tabela 4.6 - Energia Garantida – Níveis de Confiabilidade (Histórico)	97
Tabela 4.7 - Energia Garantida – Níveis de Confiabilidade (Futuro)	. 101
Tabela 4.8 - Energia Garantida – Monte Carlo	. 103
Tabela 4.9 – Energia garantida – Teoria Estocástica	. 104
Tabela 4.10 - Comparativo do Métodos da Teoria Estocástica x Monte Carlo	. 105

LISTA DE SIGLAS

- EN Energia Natural
- ENA Energia Natural Afluente
- UHE Usina Hidrelétrica
- FA Foz do Areia
- SO Salto Osório
- S/SE Subsistema Sul Sudeste
- SIN Sistema Interligado Nacional
- AD Área de Drenagem
- ANEEL Agência Nacional de Energia Elétrica
- ANA Agência Nacional de Águas
- IPCC *Intergovernmental Panel on Climate Change* (Painel Intergovernamental sobre Mudanças Climáticas)
- GCM Modelo Climático Global
- RCM Modelo de Circulação Regional
- GGE Gases do Efeito Estufa
- CPTEC Centro de Previsão de Tempo e Estudos Climáticos
- A1B Cenário Futuro de Emissão de Carbono
- EASS Energia Assegurada
- INPE Instituto Nacional de Pesquisas Espaciais
- ONS Operador Nacional do Sistema Elétrico
- LN2 Distribuição Log Normal 2 parâmetros
- LN3 Distribuição Log Normal 3 parâmetros
- AR (1) Modelo Autorregressivo de Primeira Ordem

SUMÁRIO

1.	INTRODUÇÃO	11
1.1	GERAL	11
1.2	JUSTIFICATIVA	12
1.3	OBJETIVOS	13
1.3.1	1 Objetivo Geral	13
1.3.2	2 Objetivos Específicos	13
1.4	ORGANIZAÇÃO DO TRABALHO	14
2.	REVISÃO BIBLIOGRÁFICA	15
2.1	PROJETO DA UHE FOZ DO AREIA	15
2.1.1	1 A Bacia Hidrográfica do rio Iguaçu	16
2.1.2	2 Hidrologia de Projeto para a UHE Foz do Areia	
2.2	ALTERAÇÕES CLIMÁTICAS	23
2.2.1	I Tendências Hidrológicas	
2.2.2	2 Modelos Climáticos	
2.2.3	3 Modelos Climáticos em Desenvolvimento	
2.2.4	Projeto CLARIS - LPB	
2.3	ANÁLISE ESTATÍSTICA DAS SÉRIES HIDROLÓGICAS	
2.3.1	1 Análise de Estacionariedade	
2.3.2	2 Estudos Hidrológicos Relacionados a Alterações Climáticas	
3	MÉTODOS DE ANÁLISE	42
3.1	DADOS BÁSICOS	42
3.1.1	1 Séries Históricas	
3.1.2	2 Séries Futuras	44

3.Z	ENERGIA FIRME	.45
3.3	ENERGIA GARANTIDA	.48
3.4	ANÁLISE DE ESTACIONARIEDADE	.48
3.5	OPERAÇÃO INTEGRADA – SISTEMAS ELÉTRICOS	.51
3.5.1	l Método da Energia Natural	.52
3.6	MÉTODO DE MONTE CARLO	.55
3.6.1	I. Geral	. 55
3.6.2	2. Determinação das Energias Firmes	. 59
3.7	GERAÇÃO DE SÉRIES SINTÉTICAS	.60
3.7.1	l Séries Sintéticas Anuais	.61
3.7.2	2 Desagregação das Séries Anuais em Mensais	. 63
3.8	OBTENÇÃO DA ENERGIA GARANTIDA	.64
3.8.1	l Risco de Falha e Tempo de Retorno	. 64
3.8.2	2 Séries Sintéticas Futuras	.67
3.8.3	Simulação de Monte Carlo e Energia Garantida	. 68
3.8.4	Conversão de Confiabilidade em Tempo de Retorno	.68
A		72
4	RESULTADOS	.73
4 4.1	RESULTADOS ANÁLISE DA ESTACIONARIEDADE	. 73 .73
4 4.1 4.1.1	RESULTADOS ANÁLISE DA ESTACIONARIEDADE I Análise de Estacionariedade em Foz do Areia	.73 .73 .73
4 4.1 4.1.1 4.1.2	RESULTADOS ANÁLISE DA ESTACIONARIEDADE I Análise de Estacionariedade em Foz do Areia 2 Análise de Estacionariedade em Salto Osório	.73 .73 .73 .73
4 4.1 4.1.1 4.1.2 4.1.3	RESULTADOS ANÁLISE DA ESTACIONARIEDADE I Análise de Estacionariedade em Foz do Areia Análise de Estacionariedade em Salto Osório Análise Estacionariedade do Sistema S/SE	.73 .73 .73 .77 .79
4 4.1.1 4.1.2 4.1.3 4.1.4	RESULTADOS ANÁLISE DA ESTACIONARIEDADE I Análise de Estacionariedade em Foz do Areia 2 Análise de Estacionariedade em Salto Osório 3 Análise Estacionariedade do Sistema S/SE	.73 .73 .73 .77 .79 .81
4 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	RESULTADOS ANÁLISE DA ESTACIONARIEDADE I Análise de Estacionariedade em Foz do Areia 2 Análise de Estacionariedade em Salto Osório 3 Análise Estacionariedade do Sistema S/SE 4 Aplicação do Teste Estatístico 5. Teste Estatístico – S/SE.	.73 .73 .73 .77 .79 .81 .82
4 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6	RESULTADOS ANÁLISE DA ESTACIONARIEDADE I Análise de Estacionariedade em Foz do Areia 2 Análise de Estacionariedade em Salto Osório 3 Análise Estacionariedade do Sistema S/SE 4 Aplicação do Teste Estatístico 5. Teste Estatístico – S/SE 6. Correção da Estacionariedade	.73 .73 .73 .77 .79 .81 .82 .82
4 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2	RESULTADOS. ANÁLISE DA ESTACIONARIEDADE. Análise de Estacionariedade em Foz do Areia. Análise de Estacionariedade em Salto Osório Análise Estacionariedade do Sistema S/SE. Análise Estacionariedade do Sistema S/SE. Aplicação do Teste Estatístico. 5. Teste Estatístico – S/SE. 6. Correção da Estacionariedade. VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS	.73 .73 .73 .77 .79 .81 .82 .82 .84
4 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1	RESULTADOS. ANÁLISE DA ESTACIONARIEDADE. Análise de Estacionariedade em Foz do Areia. Análise de Estacionariedade em Salto Osório	.73 .73 .73 .77 .79 .81 .82 .82 .84 .84
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2	RESULTADOS. ANÁLISE DA ESTACIONARIEDADE. I Análise de Estacionariedade em Foz do Areia. 2 Análise de Estacionariedade em Salto Osório 3 Análise Estacionariedade do Sistema S/SE. 3 Análise Estacionariedade do Sistema S/SE. 4 Aplicação do Teste Estatístico. 5. Teste Estatístico – S/SE. 6. Correção da Estacionariedade VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS 1 Séries Geradas para o Período Histórico 2 Séries Geradas para o Período Futuro (2021-2070).	.73 .73 .73 .77 .79 .81 .82 .82 .82 .84 .84
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.3	RESULTADOS. ANÁLISE DA ESTACIONARIEDADE. I Análise de Estacionariedade em Foz do Areia. 2 Análise de Estacionariedade em Salto Osório 3 Análise Estacionariedade do Sistema S/SE. 4 Aplicação do Teste Estatístico 5. Teste Estatístico – S/SE. 6. Correção da Estacionariedade VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS 1 Séries Geradas para o Período Histórico. 2 Séries Geradas para o Período Futuro (2021-2070). PARÂMETROS BÁSICOS	.73 .73 .73 .77 .79 .81 .82 .82 .82 .84 .84 .90 .94
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.6 4.1.6 4.2 4.2.1 4.2.2 4.3 4.4	RESULTADOS ANÁLISE DA ESTACIONARIEDADE Análise de Estacionariedade em Foz do Areia Análise de Estacionariedade em Salto Osório Análise Estacionariedade do Sistema S/SE Análise Estacionariedade do Sistema S/SE Aplicação do Teste Estatístico Correção do Teste Estatístico Correção da Estacionariedade VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS Séries Geradas para o Período Histórico Séries Geradas para o Período Futuro (2021-2070) PARÂMETROS BÁSICOS RESULTADOS MONTE CARLO	.73 .73 .73 .77 .79 .81 .82 .82 .84 .84 .90 .94 .96
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.3 4.4 4.4.1	RESULTADOS. ANÁLISE DA ESTACIONARIEDADE. Análise de Estacionariedade em Foz do Areia. Análise de Estacionariedade em Salto Osório. Análise Estacionariedade do Sistema S/SE. Análise Estacionariedade do Sistema S/SE. Aplicação do Teste Estatístico. Aplicação do Teste Estatístico. Teste Estatístico – S/SE. Correção da Estacionariedade. VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS. Séries Geradas para o Período Histórico. Séries Geradas para o Período Histórico. Séries Geradas para o Período Futuro (2021-2070). PARÂMETROS BÁSICOS. RESULTADOS MONTE CARLO.	.73 .73 .73 .77 .79 .81 .82 .82 .82 .84 .84 .90 .94 .96 .96
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2	RESULTADOS ANÁLISE DA ESTACIONARIEDADE Análise de Estacionariedade em Foz do Areia Análise de Estacionariedade em Salto Osório Análise Estacionariedade do Sistema S/SE Análise Estacionariedade do Sistema S/SE Aplicação do Teste Estatístico Aplicação do Teste Estatístico Correção da Estacionariedade Correção da Estacionariedade VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS Séries Geradas para o Período Histórico Séries Geradas para o Período Futuro (2021-2070) PARÂMETROS BÁSICOS RESULTADOS MONTE CARLO Séries Futuras	.73 .73 .73 .77 .79 .81 .82 .82 .82 .84 .84 .90 .94 .96 .96 .98
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2 4.5	RESULTADOS. ANÁLISE DA ESTACIONARIEDADE. Análise de Estacionariedade em Foz do Areia. Análise de Estacionariedade em Salto Osório Análise Estacionariedade do Sistema S/SE. Análise Estacionariedade do Sistema S/SE. Aplicação do Teste Estatístico	.73 .73 .73 .77 .79 .81 .82 .82 .82 .84 .84 .90 .94 .96 .96 .98 103

5	CONCLUSÕES E RECOMENDAÇÕES	106
5.1	CONCLUSÕES	106
5.2	RECOMENDAÇÕES	107
REF	ERÊNCIAS BIBLIOGRÁFICAS	108
ANE	XOS	113
ANE	XO 1 – USINAS HIDRELÉTRICAS QUE COMPÕEM OS SUBSISTEMAS	
PRA	TA, S/SE E SIN	114
ANE	XO 2 – SÉRIES HISTÓRICAS (SEM CORREÇÃO DE TENDÊNCIA)	119
ANE	XO 3 – DADOS DO TESTE WILCOXON – FOZ DO AREIA	126
ANE	XO 4 – SÉRIES DE VAZÕES CORRIGIDAS	128
ANE	XO 5 – DADOS DE FOZ DO AREIA	133

1. INTRODUÇÃO

1.1 GERAL

A produção de eletricidade no Brasil é constituída em grande parte de fontes renováveis, onde aproximadamente 65% são de hidrelétricas, algumas com reservatórios de regularização plurianual distribuídas em todas as regiões do país. Devido a sua extensão, a complexidade na transmissão, manutenção e gerenciamento do sistema elétrico brasileiro, este é dividido em 4 subsistemas: Sul, Sudeste/Centro-Oeste, Norte e Nordeste.

A produção de energia devido a esta característica é dependente da disponibilidade hídrica que está relacionada às condições do clima: temperatura, vento, chuvas e particularmente das vazões afluentes às usinas, entre outras. Cada subsistema apresenta características climáticas definidas, como um regime de chuvas e, portanto, de vazões diferenciadas nas grandes bacias hidrográficas do país. A diversidade hidrológica entre regiões e bacias permite obter ganhos consideráveis através da integração das fontes geradoras.

Devido à capacidade de regularização plurianual, as condições críticas são geralmente uma sequência de anos secos e não uma estiagem de curta duração intensa (intra-anual). Isso distingue essencialmente o sistema interligado nacional de outros sistemas hidrelétricos em países de clima frio e ciclo anual muito diferenciado entre as estações do ano (p. ex. Noruega, França). O principal parâmetro que define a vulnerabilidade do sistema é o armazenamento disponível no início do período seco (abril/maio) em cada ano.

É importante notar que em usinas na região amazônica também se observa uma grande variação sazonal das vazões, o que implica na importância da regularização sazonal em detrimento à plurianual (PERICO, 2014).

As condições do clima podem sofrer alterações em consequência das mudanças climáticas observadas no globo terrestre, como o aumento da

temperatura em diversas regiões no mundo e o aquecimento das águas oceânicas (NASA, 2016).

A Usina Hidrelétrica Governador Bento Munhoz da Rocha – UHE Foz do Areia situada na bacia hidrográfica do Rio Iguaçu, Estado do Paraná, é objeto do estudo de caso realizado, sendo abordadas as características hidrológicas históricas e futuras, com o auxílio de modelos climáticos, sua interferência na geração de energia elétrica e consequente impacto dessa usina no subsistema no qual está inserida.

Embora o nome oficial dessa usina seja Governador Bento Munhoz da Rocha, no presente trabalho será referida como "Foz do Areia", nome de origem histórica e adotado em muitos estudos.

1.2 JUSTIFICATIVA

A localização da UHE Foz do Areia na bacia hidrográfica do rio Iguaçu é muito importante para o gerenciamento dos recursos disponíveis ao longo do curso do rio, visto que é o primeiro empreendimento de um total de cinco que caracterizam a geração de energia na região, onde é capaz de regularizar as vazões afluentes.

Possíveis alterações climáticas que impactem na diminuição do regime de chuvas a ponto de alterar a regularização do reservatório de Foz do Areia podem acarretar uma alteração da geração de energia elétrica nas demais usinas situadas à jusante do empreendimento analisado. Contudo, o impacto das mudanças climáticas nas usinas a jusante não será analisado neste trabalho.

Dessa forma, se as alterações climáticas indicam aumento das vazões e consequentemente da energia assegurada de projeto, será possível ampliar a potência instalada das usinas do rio Iguaçu, como ocorreu recentemente na Usina de Itaipu, onde a última unidade geradora começou a operar em 2007 (ITAIPU, 2017).

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Este trabalho tem como objetivo analisar possíveis alterações na geração de energia hidrelétrica pela UHE Foz do Areia, no horizonte futuro de 100 anos, considerando mudanças climáticas e a comparação com os dados utilizados no projeto executivo e os valores de energia disponíveis no momento atual. Na análise dos impactos futuros não se consideraram alterações no uso da terra ou nos usos consuntivos, e também, se mantêm inalterada a configuração do sistema sul – sudeste (S/SE) ao qual a usina está integrada.

O presente estudo não discutirá se essas alterações são de origem antrópica ou natural. Tampouco considera mudanças no uso do solo ou no uso consuntivo da água, nem os efeitos dinâmicos da expansão do parque gerador, adotando um enfoque essencialmente estático.

1.3.2 Objetivos Específicos

A partir das séries históricas de vazão e energia naturais, serão abordados os seguintes tópicos:

- Estacionariedade da série histórica de vazão natural no local da usina hidrelétrica Foz do Areia;
- Gerar séries sintéticas com os parâmetros da série histórica;
- Analisar séries de energia natural e vazões naturais geradas pelos modelos climáticos do projeto CLARIS;
- Gerar séries sintéticas com os parâmetros obtidos no modelo climático PROMES utilizado no projeto CLARIS;
- Avaliar possíveis tendências e comparar os resultados obtidos para a geração de energia no local do estudo com os do sistema S/SE.

1.4 ORGANIZAÇÃO DO TRABALHO

O presente estudo está organizado em cinco capítulos, sendo o primeiro a introdução, o segundo a revisão bibliográfica, no qual estão apresentados os estudos similares e tendências das alterações climáticas em escalas globais e regionais. Já no capítulo 3 são apresentados os métodos de análise utilizados para obtenção dos objetivos descritos. Os resultados estão apresentados no capítulo 4, a partir dos cálculos realizados pelos métodos utilizados e finalmente no capítulo 5 são colocadas às conclusões e discussões a respeito dos resultados obtidos, além de recomendações de estudos futuros acerca do tema explanado neste trabalho.

Nos anexos constam: a relação das Usinas Hidrelétricas Brasileiras, as séries históricas utilizadas no trabalho, os dados utilizados para o teste estatístico de Wilcoxon, as séries históricas corrigidas e os demais dados da usina de Foz do Areia, objeto do estudo.

2. REVISÃO BIBLIOGRÁFICA

Este capítulo é iniciado pela descrição do local de estudo da Usina Hidrelétrica Foz do Areia, incluindo tanto as características geográficas e hidrológicas, como as estimativas de energia firme utilizadas no projeto.

Na sequência é apresentada uma análise das alterações climáticas futuras expostas na literatura e os modelos matemáticos utilizados. Por fim são comentados trabalhos acerca das características estatísticas hidrológicas e quanto a estacionariedade.

2.1 PROJETO DA UHE FOZ DO AREIA

A Usina Hidrelétrica Governador Bento Munhoz da Rocha Neto, aqui referida como Foz do Areia, situa-se no Rio Iguaçu, 5 km a jusante da foz do rio Areia, no estado do Paraná a 240 km a sudoeste de Curitiba, no município de Pinhão. A UHE Foz do Areia possui capacidade instalada de 1.676 MW de potência (MILDER-KAISER, 1974), com previsão de ampliação futura para 2.514 MW.

As obras foram iniciadas em 1975 e a usina começou a operar em 1980. A barragem possui 160 metros de altura e 828 metros de comprimento. A Usina Hidrelétrica de Foz do Areia opera atualmente com quatro unidades geradoras de 419 MW de potência cada (COPEL, 2016).

Na Figura 2.1 está apresentada a localização das bacias hidrográficas no Estado do Paraná. A bacia hidrográfica do rio Iguaçu, onde está inserido o aproveitamento energético Foz do Areia, localiza-se na parte sul do estado.

Figura 2.1 - Localização da Bacia Hidrográfica do Rio Iguaçu

Fonte: Bacias Hidrográficas do Paraná, SEMA, 2010

A bacia hidrográfica do Rio Iguaçu é a maior em área e em geração de energia no Estado do Paraná, sendo a usina hidrelétrica Foz do Areia a primeira de uma sequência de cinco usinas. Portanto, as análises realizadas neste empreendimento são, também, de grande utilidade para previsão da geração nas demais usinas situadas no Rio Iguaçu.

2.1.1 A Bacia Hidrográfica do rio Iguaçu

O reservatório de Foz do Areia é abastecido pelo rio Iguaçu que possui suas nascentes próximas a Curitiba com área de drenagem da sub-bacia de 29.800 km² até a barragem. A localização da Usina Hidrelétrica objetivo do estudo está apresentada na Figura 2.2.

Figura 2.2 – Localização da UHE Foz do Areia

A localização da UHE Foz do Areia ao longo do rio Iguaçu, sendo a primeira de cinco aproveitamentos energéticos, está apresentada na Figura 2.3, a seguir:

A geologia predominante na região do aproveitamento consiste em substrato de rochas basálticas com cobertura de solos residuais.

No relatório de engenharia da usina hidrelétrica (MILDER-KAISER, 1974) a caracterização fisiográfica considera que não ocorreram profundas alterações, onde

Fonte: COPEL (2016).

Fonte: COPEL, (2016).

o relevo consiste na irregularidade das nascentes na Serra do Mar, percorrendo o 1° planalto sobre rochas cristalinas até a cidade de Porto Amazonas e seguindo a direção sudoeste até a cidade de Porto Vitória pelo 2° planalto, em baixas declividades sobre sedimentos da formação Campos Gerais. Após Porto Vitória adentra o 3° Planalto de rochas basálticas com elevada declividade até a sua foz no rio Paraná.

A vegetação e o uso da terra, em 1974, eram basicamente de cultivo de cereais, agricultura de subsistência e vegetação secundária. Ao longo dos últimos anos a utilização do solo sofreu alterações: as áreas destinadas à agricultura foram reduzidas, principalmente as áreas de cultivo anual que foram substituídas por reflorestamento. Como também, as áreas de pasto diminuíram e as áreas urbanizadas aumentaram desde 1974.

O aumento da urbanização e desmatamento ou reflorestamento ao longo da área de drenagem causa efeitos no regime hidrológico, alterando a capacidade de infiltração do solo, a evapotranspiração e o escoamento superficial.

Os efeitos do aumento das áreas impermeáveis são sentidos ainda no incremento da absorção de energia solar, chamadas de ilhas de calor, ocasionando favorecimento na movimentação do ar e aumento da precipitação (SCHIAV, 2014).

Com relação ao clima, a temperatura média anual assumida era de 16° C, não sendo possível à época dados mais consistentes de meteorologia devido à escassez de observações e poucas estações climáticas, como também a ausência de observações de evaporação e evapotranspiração.

A bacia hidrográfica que alimenta a Usina Hidrelétrica Foz do Areia está situada na classificação climática Cfb, segundo a classificação de Koppen que se baseia na distribuição sazonal de temperatura, na qual o tipo climático Cfb é caracterizado por chuvas bem distribuídas no ano, com pluviosidade média de até 1500 mm/ano. A temperatura média dos meses frios fica abaixo de 18^oC e a temperatura média dos meses quentes abaixo de 22^oC, sem estação seca definida.

Segundo dados apresentados pelo Plano Ambiental de Conservação e Uso do Entorno de Reservatório Artificial da UHE (LACTEC, 2009) a temperatura média no período de 1982 a 2004 variou entre 13,7°C e 21,9°C nos meses de julho e janeiro respectivamente, a evaporação na área do reservatório foi de 1.244 mm/ano e a evapotranspiração potencial é em média 1.053 mm/ano. Na Figura 2.4 estão apresentadas as temperaturas médias no período de 1982 a 2004 na estação meteorológica de Foz do Areia.

Figura 2.4 – Temperatura Média em Foz do Areia

Os valores médios da umidade do ar observados na estação meteorológica situada em Foz do Areia foram 75,7% a 86,7%.

Importante ressaltar que a bacia hidrografia é afetada pelo tipo de vegetação, as propriedades do solo, geologia, relevo, clima, práticas de uso da terra, e padrões espaciais de interações entre esses fatores. Agora há consenso que alguns desses fatores e interações são influenciados pela atividade humana (FATICHI *et al.* 2015).

O estudo hidrológico da bacia hidrográfica que abastece o reservatório da UHE Foz do Areia foi definido para o projeto em 1974.

Fonte: LACTEC (2009)

As séries históricas de vazão utilizadas para definição do potencial energético passaram por correções por meio de correlação com diversos postos fluviométricos situados na mesma bacia hidrográfica e com características fisiográficas semelhantes, considerando sempre os efeitos do próprio reservatório (evaporação, chuva direta no reservatório, evapotranspiração real, etc.). Estudos hidrológicos são realizados periodicamente para realização de manutenções do empreendimento. A Figura 2.5 mostra a variação sazonal das vazões médias em Foz do Areia.

Figura 2.5 – Vazão Médias mensais Foz do Areia - Sazonalidade

Durante a etapa de projeto foram implantados novos postos fluviométricos, incluindo Foz do Areia I e II, postos a jusante e a montante do reservatório.

2.1.2 Hidrologia de Projeto para a UHE Foz do Areia

O estudo hidrológico realizado para a avaliação do potencial energético da UHE Foz do Areia foi realizado a partir das estações fluviométricas apresentadas na Tabela 2.1.

Estação	Rio	Área de Drenagem AD (km²)	Período
Porto Amazonas	lguaçu	3.650	1935-1973
S. Mateus do Sul	lguaçu	6.060	1930-1973
Rio Negro	Negro	3.370	1930-1973
União da Vitória	lguaçu	24.200	1931-1973
Salto Osório	lguaçu	45.800	1941-1973

Tabela 2.1 – Dados das Estações Fluviométricas Utilizadas em 1974

Fonte: DNAEE (1996)

Como os valores de vazões disponíveis na estação de Salto Osório eram a partir de 1941, estes dados foram estendidos até 1931, por regressão simples com União da Vitória.

A partir das análises das vazões observadas nas séries históricas destes dados foram estabelecidas as características do regime fluvial do Rio Iguaçu e determinado que a distribuição anual das vazões médias mensais é relativamente uniforme e estacionária ao longo do trecho, para o período passado.

As vazões médias mensais no local de Foz do Areia foram obtidas mediante a correlação de postos vizinhos com características hidrológicas semelhantes. Os postos-chave utilizados são de União da Vitória e Salto Osório, sendo as vazões geradas para o local a partir da relação:

$$Q_{FA} = 0,25. \, Q_{SO} + 0,75. \, Q_{UV} \tag{2.1}$$

Onde:

 Q_{FA} – Vazão em Foz do Areia (AD = 29.800 km²); Q_{SO} – Vazão em Salto Osório (AD = 45.800 km²); Q_{UV} – Vazão em União da Vitória (AD = 24.200 km²) A equação 2.1 foi obtida a partir da relação aproximada das áreas de drenagem de Salto Osório, União da Vitória e Foz do Areia, resultantes da equação 2.2.

$$Q_x = Q_1 + \frac{A_x - A_1}{A_2 - A_1} \cdot (Q_2 - Q_1)$$
(2.2)

Onde: $Q_x - Vazão em Foz do Areia;$ $Q_1 - Vazão em União da Vitória;$ $Q_2 - Vazão em Salto Osório;$ $A_x - Área de drenagem em Foz do Areia (AD = 29.800 km²);$ $A_1 - Área de drenagem em União da Vitória (AD = 24.200 km²);$ $A_2 - Área de drenagem em Salto Osório (AD = 45.800 km²);$

As demais estações foram usadas na análise de consistência e preenchimento de falhas.

A análise do hidrograma de vazões médias mensais, curvas de duração e gráficos de correlação, entre as vazões derivadas da equação 2.1 e das observadas no posto fluviométrico Foz do Areia (1968-1973), resultou nos seguintes valores, para o período 1931 – 1973:

Vazão Média de Longo Período	544 m³/s
Máxima Vazão Média Mensal	3.243 m³/s
Mínima Vazão Média Mensal	79 m³/s
Vazão Específica Média de Longo Período	18 l/s/km ²
Deflúvio Anual Médio	17.156 x 10 ⁶ m³

Outras informações referentes a UHE Foz do Areia, são:

Localização	25° 53' S e 51° 13' O
Área de Drenagem	29.800 km²
Área do Reservatório	139 km²
Nível d'Água Máximo Normal*	742 m
Nível de Água Mínimo Operacional	678 m
Nível de Água de Restituição Normal	605 m
Energia Firme (antes da interligação)	322 MWmed
Energia Firme (depois da interligação)	609 MWmed
Volume Total do Reservatório	5.779 hm³
Volume Útil do Reservatório	3.805 hm³
Descarga Máxima do Vertedouro	11.000 m³/s

As energias naturais afluentes médias após a correção de estacionariedade (ver seção 4.1) ficavam alteradas para 350 e 759 MWmed, respectivamente, sem e com a interligação da usina no sistema S/SE.

No anexo 5 são listadas outras características de projeto da usina Foz do Areia.

2.2 ALTERAÇÕES CLIMÁTICAS

2.2.1 Tendências Hidrológicas

A preocupação mundial com as possíveis alterações climáticas divulgadas nas últimas décadas e os impactos econômicos, sociais e ambientais resultantes destas alterações culmina em grande receio em todo o mundo.

Diversos estudos têm sido realizados para estimar o futuro do clima, porém ainda é grande a incerteza com relação a previsões de temperatura, ventos e chuvas ao longo do globo. Contudo, mesmo com vários cenários, todos convergem para um perfil de maior estresse e conflito, com prováveis alterações na disponibilidade hídrica e energética, além da agricultura, biodiversidade e meio ambiente.

^{*}Originalmente o nível d'água máximo normal foi fixado em 744 m, porém para evitar problemas de alagamento em União da Vitória durante o período de cheias, foi rebaixado para a cota de 742 m.

Grande grupo de cientistas (SCHIAV, 2014; FISEHA *et al.* 2014; ARROIO e MAUAD, 2015) apontam como causa destas alterações a crescente concentração de gases do efeito estufa, resultantes da queima de combustíveis fósseis e atividades antrópicas. Outro grupo acredita que estas alterações são de origem cíclica natural. Mesmo que não haja consenso quanto à origem das alterações, a maioria concorda que, a despeito de vários ciclos em épocas remotas, a temperatura na Terra aumentou ao longo das últimas décadas (ver Figura 2.6).

Na Figura 2.6 estão apresentadas as estimativas de anomalias, variações com relação as médias, de temperaturas para o período de 1880 a 2020, com base na média entre 1951 a 1980, na qual a linha com pontos é a temperatura média anual, a linha contínua é a média móvel de cinco anos e as retas circuladas são barras de incerteza com limites de confiança de 95%, se forem consideradas as amostragens espaciais (HANSEN *et al.*, 2010).

Como o ciclo hidrológico está ligado às condições climáticas, também é esperado que o regime de chuvas e vazões fosse alterado. De acordo com o que os modelos climáticos sinalizam, haverá aumento na intensidade e variabilidade das precipitações. A Figura 2.7 mostra, para um período de 1.000 anos, usando dados paleo-climáticos, a evolução da temperatura média anual no hemisfério norte.

Fonte: Nasa (2016)

Observa-se que, a despeito de ciclos da ordem de 100 anos, o aumento da temperatura a partir de 1900 se mostra significativamente maior que a variação cíclica do registro.

Figura 2.7 – Anomalia da Temperatura Média Anual no Hemisfério Norte

A Figura 2.8 mostra a evolução das vazões médias, mínimas e máximas anuais do rio Paraná em Santa Fé de 1902 a 2004.

Fonte: BARROS, et al (2004).

Figura 2.8 – Vazões Médias, Mínimas e Máximas rio Paraná

Considerando-se os períodos de 1902 – 1970 (etapa antiga) e 1980 – 2000 (etapa moderna) observa-se (BARROS *et al*, 2004):

- i) A vazão média da etapa moderna é 37% superior à etapa antiga;
- ii) Observa-se, também, um aumento das máximas a partir de aproximadamente 1975, além de um aumento da amplitude da diferença entre máximos e mínimos;
- iii) Finalmente, pode-se notar que dentre as 4 maiores cheias (Q > 50.000 m³/s) 3 ocorreram na etapa moderna (1983, 1992 e 1998) e apenas uma na etapa antiga (1905). A frequência de (Q > 50.000 m³/s) é, portanto, de 3/21 na etapa moderna e de 1/69 na etapa antiga. Assim, a probabilidade de uma cheia acima de 50.000 m³/s é no período moderno em torno de dez vezes maior que na etapa antiga.

Essas estatísticas implicam em um aumento da média e do desvio padrão na época mais recente. Isso também se observa no futuro para o conjunto das séries da bacia do rio da Prata, como mostrado em FILL *et al.* (2013).

Fonte: BARROS, et al (2004).

Para minimizar as incertezas, diversos pontos de monitoramento climático e hidrológico estão sendo implantados e acompanhados, com o objetivo principal de obter informações robustas na escala das bacias hidrográficas. Há poucos investimentos, entretanto, na área de modelagem, sistemas de alerta, infraestrutura de defesa e fortalecimento institucional para casos de eventos extremos.

Há de se lembrar, contudo, que para conclusões sobre tendências em longo prazo, registros de mais de 20 ou 30 anos são necessários para evitar a influência de ciclos e flutuações aleatórias.

O planejamento da infraestrutura hídrica do país, reservatórios, canais, usinas hidrelétricas e áreas de irrigação, entre outros, busca se adequar aos possíveis efeitos de maior demanda hídrica como também às hipóteses de escassez de água (ANA, 2016).

Os recursos hídricos são referências decisivas para dimensionamento, planejamento e desenvolvimento de diversos setores, dentre os quais se destaca a geração de energia elétrica. No Brasil este aspecto é muito importante devido às características da matriz energética brasileira, conforme Figura 2.9:

Figura 2.9 – Matriz Elétrica Brasileira – Dados 2017

É importante notar que o gráfico apresentado no Plano Nacional de Mudança do Clima expressava um percentual maior na utilização de usinas hidrelétricas na geração de energia elétrica brasileira, contudo este panorama mudou na última década, onde o país consumiu mais energia de outras fontes, sendo, portanto a utilização de energia hídrica na ordem de 65% (ANEEL - BIG, 2017).

A análise do comportamento do regime hidrológico para a manutenção de usinas hidrelétricas em funcionamento é de vital importância para garantir a segurança do abastecimento de energia elétrica e a viabilidade do planejamento energético. O ciclo hidrológico, por sua vez, sofre alterações nas variáveis hidrológicas (vazão, chuva e evapotranspiração) em função tanto de flutuações naturais como também de causas antrópicas.

De acordo com o Quarto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas (IPCC, 2014), ao longo dos últimos 50 anos tem havido uma mudança climática antropogênica especialmente intensiva em todo o mundo. Essa mudança, que parece ser mais decisiva do que a variabilidade climática natural, tem afetado o clima e o ciclo hidrológico (ver Figura 2.7 e Figura 2.8).

Diversos estudos estimam que a temperatura no globo terrestre tenha se elevado aproximadamente 0,6°C nos últimos 100 anos (NASA, 2016), trazendo como consequência a elevação dos níveis oceânicos e mudanças nos padrões dos regimes de chuvas, aumento na intensidade dos períodos de secas e cheias, em diversas regiões do globo (ver Figura 2.6 e Figura 2.8)

Estudos referentes a alterações climáticas divergem em dois pontos: alterações naturais de temperatura referentes ao ciclo de vida da Terra e elevação da temperatura devido a ações antropogênicas.

As ações antropogênicas consistem basicamente na queima de combustíveis fósseis que liberam carbono na atmosfera, principal gás responsável pela regularização da temperatura terrestre, além de alterações no uso da terra, vegetação e urbanização e de obras hidráulicas. Diversos estudos analisam a

correlação entre a quantidade de carbono e o aumento da temperatura global (D'AGOSTINI *et al.* 2012). Os gráficos resultantes das análises de correlação apresentam uma tendência de aumento de carbono na atmosfera e consequente aumento na temperatura da Terra.

As temperaturas médias globais quando estimadas por tendências lineares no período de 1906 a 2005 demonstram que a temperatura média na superfície subiu em torno de $0,74^{\circ}C \pm 0,18^{\circ}C$, sendo que nos últimos 50 anos a variação foi o dobro da analisada no período anterior (MARENGO *et al.* 2009).

Diversos outros processos antropogênicos também podem interferir na caracterização do clima, como por exemplo: desmatamento, mudanças na cobertura vegetal e aumento de área impermeável, além de obras hidráulicas e usos consuntivos (p.ex. irrigação). Estes fatores afetam significativamente o balanço de energia, intensificando o ciclo hidrológico por meio de variação na precipitação, evapotranspiração e infiltração, afetando consequentemente as vazões.

A relação entre a atmosfera e as bacias hidrográficas é bastante complexa, criando diversas incertezas para avaliar a dimensão do impacto do aquecimento global nos recursos hídricos, inclusive nas séries históricas observadas e simuladas.

Nas análises de extremos de vazões, máximas ou mínimas, as distinções entre as alterações devidas às variabilidades climáticas ou aos efeitos das mudanças no uso do solo são sutis, porém é possível distinguir aproximadamente a influência na bacia hidrográfica e consequentemente no balanço energético do uso da terra com alterações no clima (TOMER e KEITH, 2009)

O aumento na intensidade de vazões extremas não necessariamente devese às alterações climáticas. Alguns itens referentes a mudança na utilização do solo podem ocasionar mudanças nos ciclos hidrológicos. Segundo ANA (2010), o desenvolvimento urbano diminui a cobertura vegetal e altera os períodos de chuva e em alguns casos os intensificam. As modificações geradas são:

- Redução da infiltração da água no solo, aumentando o escoamento superficial;
- O aquífero tende a rebaixar o nível do lençol freático, reduzindo o escoamento subterrâneo; e,
- Devido à substituição da cobertura natural ocorre uma redução da evapotranspiração, uma vez que a superfície urbana não retém água como a cobertura vegetal e não permite a evapotranspiração das folhagens e do solo.

Ocorre, também, na impermeabilização do solo, o aumento das temperaturas, criando ilhas de calor, o que pode aumentar a emissão da radiação térmica, o que condiciona as movimentações do ar gerando um possível aumento nas intensidades de precipitações.

Para a boa avaliação da modificação climática, em termos globais e locais, é necessária uma coleta de dados de qualidade e quantidade suficientes, com a finalidade de abastecer corretamente os modelos climáticos de previsão para o período futuro e com isto obter características climáticas mais confiáveis.

Devido a todas as incertezas envolvidas, os parâmetros utilizados nos modelos climáticos devem ser cuidadosamente selecionados para expressar da melhor forma os cenários possíveis.

Contudo, apesar de todos os cuidados na calibração dos modelos, os resultados obtidos para o escoamento e, em consequência da energia garantida, ainda apresentam divergências consideráveis entre os diferentes modelos de circulação geral atmosférica (LIMA *et al.*, 2014). e entre estes e valores observados em estações de monitoramento (FILL *et al.*, 2013).

Para lidar com essas diferenças costuma-se simular os modelos climáticos sobre períodos históricos, comparar os resultados com valores observados e corrigir as diferenças. Esse procedimento é designado por "*bias correction*" (correção da tendenciosidade).

A isso se acrescentam as incertezas nos cenários futuros de emissão de CO₂ e outros gases de efeito estufa e do uso da terra. Desta forma os prognósticos dos efeitos de mudanças climáticas sobre o desempenho de sistemas hidrelétricos devem ser encarados com cautela.

2.2.2 Modelos Climáticos

Modelos climáticos globais (GCM) geram resultados para diferentes cenários futuros em nível planetário. Dados iniciais como: temperatura, velocidades dos ventos, umidade do ar, pressão, entre outros, são utilizados para abastecer o modelo. Assim, o problema resolvido pelos GCM constitui-se em um problema de valor inicial, sendo a concentração dos gases de efeito estufa (GGE) a principal forçante. O resultado dos dados gerados pelos modelos globais podem mascarar eventos extremos, visto que trabalham com escalas de médias anuais e uma discretização espacial muito grande com relação à dimensão das bacias hidrográficas.

As parametrizações e a representação do clima atual pelos modelos climáticos globais são apresentadas em escalas relativamente grandes, o que deriva dos limites de capacidade computacional disponível atualmente. Para diminuir as incertezas, é necessário utilizar métodos de interpolação nos quais as variáveis meteorológicas são modificadas para maiores resoluções, adequando as escalas aos padrões aproximados das utilizadas em bacias hidrográficas.

A interpolação dos dados consiste na projeção de informações globais para níveis regionais e de escalas de tempo anuais para diárias. Esta técnica pode aumentar o grau de incerteza para as alterações climáticas (KIM e IVANOV, 2010). O procedimento é denominado "*downscaling*" e os modelos correspondentes são chamados "modelos de circulação regional" conhecidos pela sigla RCM.

Modelos de circulação regional (RCM) geram séries de temperatura e precipitação em diversos cenários climáticos, em escalas compatíveis com as dimensões das bacias hidrográficas (20 – 40 km). Os resultados obtidos são então transformados em séries de vazões utilizando modelos chuva-vazão.
No presente estudo foram utilizados dados obtidos a partir do modelo climático PROMES (FILL *et al.*,2013). Os resultados encontrados foram satisfatórios comparativamente com as médias anuais e sazonais para os estados do Sul e Sudeste brasileiro. Entretanto, quando se comparam médias mensais de vazões geradas por modelos climáticos com valores observados, as discrepâncias são consideráveis (FILL *et al.*, 2013).

Para a geração dos dados utilizados na dissertação foi adotada a hipótese de estacionariedade das séries dentro dos subperíodos utilizados, justificada pela incerteza dos cenários climáticos que abasteceram os modelos.

Outro modelo, que, no entanto, não foi usado no presente trabalho, mas foi adotado por LIMA *et al.* (2014) e PLOSZAI (2014) é o modelo ETA e cujas características são apresentadas abaixo.

Uma breve descrição dos modelos foi apresentada por PLOSZAI (2014) e está descrita a seguir:

Modelo ETA

O modelo regional ETA, segundo BLACK (1994), inicialmente desenvolvido Universidade de Belgrado, é utilizado na operacionalmente para fornecer previsões de tempo de curto prazo (seis em seis horas). Tem uma resolução horizontal de 40 km ou 80 km, com 38 níveis na vertical. O domínio do modelo cobre grande parte da América do Sul. Uma das características deste modelo é a utilização da coordenada vertical ETA, criada para reduzir o erro no cálculo da força do gradiente de pressão. Este erro pode estar presente em modelos que usam coordenadas que consideram a pressão atmosférica e a altura topográfica. Os valores obtidos são de temperatura, vento horizontal, umidade específica, pressão à superfície, energia cinética turbulenta e hidrometeoros das nuvens.

Modelo PROMES

O *Prognostic Mesoscale* (PROMES), desenvolvido como um projeto conjunto por pesquisadores das universidades de Castilla-La Mancha e Politécnica de Madrid, é um modelo paralelo oceano-atmosfera de alta resolução, de área limitada 3D e a projeção cônica de Lambert. Esta consiste numa projeção cartográfica em que a superfície da Terra é representada sobre um cone imaginário em contato com a esfera em determinado paralelo, para lidar com as coordenadas horizontal e vertical. O modelo tem uma resolução espacial de aproximadamente 25 km a 50 km e 37 níveis de discretização vertical. Resultam em valores de temperatura potencial, pressão à superfície, componentes horizontais do vento, umidade específica, nuvens e chuva.

Modelo RCA1

Modelo regional baseado no modelo operacional de alta resolução para previsão do clima numa área limitada: *High Resolution Limited Area Model* (HIRLAM). Trata-se de um modelo hidrostático com 24 níveis verticais, sendo o mais alto a 10 hPa, embasado em equações primitivas de ponto de grade, do qual são calculadas as variáveis prognósticas. O RCA1 fornece cenários climáticos regionais com resolução espacial de aproximadamente 44 km, e as suas variáveis prognósticas são: temperatura, umidade específica, vento horizontal, precipitação e pressão à superfície. Foi elaborado pelo Rossby Centre na Suécia (RUMMAKAINEN *et al.* 2001).

Estes modelos, que são modelos regionais (RCM) no estudo de Lima *et al.*, 2014 e também no projeto CLARIS-LPB, utilizam como dados de entrada (condições de contorno e iniciais) os resultados do modelo global (GCM) HadCM3 e cenários de emissão A1B do IPCC.

Evidentemente, podem ser utilizados outros GCM's disponíveis e igualmente válidos levando a resultados muitas vezes bastante diversos.

LIMA *et al.* (2014) analisaram e compararam os resultados para a evolução futura da energia assegurada (EASS) do sistema interligado nacional (SIN) considerando 5 GCM's obtendo para EASS em 2.100 valores variando de 84.000 MWmed a 113.000 MWmed. Na figura 2.10 estão apresentadas as comparações na evolução futura de energia garantida, obtidas do estudo do projeto CLARIS - LPB, para dois modelos climáticos (PROMES e RCA) do Sistema Prata (usinas hidrelétricas na bacia do Prata). Nota-se uma diferença na energia garantida, termo estatístico, entre os dois modelos de aproximadamente 3.000 MWmédios.

A energia assegurada, que é um conceito contábil, equivale à energia que pode ser suprida pelo sistema em um risco médio de 5% sobre um período de 5 anos (LIMA *et al.*, 2014).

Figura 2.10 – Energia Garantida – Sistema Prata (2021 – 2070)

Fonte: Fill et al. (2013).

Estes resultados dão uma ideia da precisão numérica dos resultados da modelagem GCM/ RCM/ chuva-vazão/ energia garantida.

Diversos estudos têm sido realizados para avaliação de outros modelos, entre eles o modelo SWAT, utilizado para avaliar as possíveis alterações nas características hidrológicas da Bacia do Ribeirão do Feijão, situado no interior do Estado de São Paulo (ARROIO e MAUAD, 2015). O modelo foi abastecido com dados do modelo estocástico LARS – WG, com geração de séries sintéticas diárias de vazões, sob diversos cenários climáticos citados no relatório IPCC. O modelo gerou, para a bacia hidrográfica do Ribeirão do Feijão, coeficientes de Nash – Sutcliffe entre 0,73 e 0,78, apresentando uma redução nas vazões do período seco da ordem de 1,5% a 3% podendo chegar a 10% no período de 2090, e por fim se conclui pela variabilidade dos modelos e os possíveis problemas devidos à escassez de água.

2.2.3 Modelos Climáticos em Desenvolvimento

O Modelo climático regional, ETA para a América do Sul, com características de clima e com as interações de escala para se adequar as séries históricas de precipitação, estão em desenvolvimento no CPTEC – Centro de Previsão do Tempo e Estudos do Clima.

Este modelo poderá obter projeções regionalizadas do clima futuro, considerando cenários com alta e baixa emissão de gases de efeito estufa acoplado um modelo climático global para a América do Sul.

Dados como temperatura, precipitação, frequência de extremos climatológicos, vazões, entre outras variáveis, necessárias para abastecimento do modelo em desenvolvimento, são obtidas a partir de observações realizadas pelo INPE – Instituto Nacional de Pesquisas Espaciais, sendo possível analisar diversos cenários das mudanças climáticas.

O modelo regional pode dar maiores detalhes em distribuição do clima, em relação aos modelos globais, e pode ajudar na geração de extremos do clima, que com certeza podem mudar de forma mais radical no futuro. O modelo CPTEC pode contribuir para que os países de América do Sul possam aproveitar os seus resultados e possam fazer também suas próprias predições climáticas de forma mais detalhada (COMITÊ INTERMINISTERIAL SOBRE MUDANÇA DO CLIMA, 2007).

2.2.4 Projeto CLARIS - LPB

O projeto CLARIS-LPB foi um projeto conjunto de cooperação europeu-sulamericano para a avaliação de mudanças climáticas e o estudo dos respectivos impactos na bacia do rio da Prata. Esse projeto foi financiado com recursos da comunidade europeia e contou com a participação de cientistas e profissionais de vários países e de diferentes especialidades.

Operacionalmente o projeto foi dividido em nove grupos de estudo (*work package* = WP) como segue:

- WP1- Gerenciamento geral do projeto
- WP2 Divulgação do projeto
- WP3 Descrição do passado recente
- WP4 Variações climáticas de baixa frequência (plurianual)
- WP5 Mudança climática regional na bacia do Prata
- WP6 Processos e evolução futura de eventos extremos
- WP7 Avaliação da capacidade de previsão de impactos socioeconômicos
- WP8 Mudança do solo e sua implicação socioeconômica
- WP9 Recursos hídricos no contexto das mudanças climáticas

Dentro do contexto da presente dissertação interessa apenas o grupo WP9, parte do qual esteve a cargo de pesquisadores da Universidade Federal do Paraná (UFPR), que analisaram os impactos das mudanças climáticas na geração hidrelétrica em usinas situadas na bacia do rio da Prata. Os outros grupos de estudo (WPs) não têm relação com o presente trabalho e por isso não são comentados aqui.

Obteve-se a energia garantida agregada desse conjunto de usinas para dois horizontes futuros, 2021-2070 e 2071-2097 e ainda para um período passado recente de 1991-2005 a partir de dois modelos climáticos regionais, PROMES e RCA e um modelo de transformação chuva-vazão (VIC). O período passado foi comparado com valores observados em nove estações pluvio-fluviométricas que também foram usadas nas séries futuras para estimar as vazões nos locais das usinas hidrelétricas. Os resultados dos impactos estimados na geração hidrelétrica (grupo WP9) foram publicados em um relatório final (CLARIS) e de forma resumida em artigo técnico-científico (Fill *et al.*, 2013). Existem ainda vários relatórios parciais elaborados pelo grupo da UFPR ao longo do desenvolvimento dos estudos. Outros estudos do grupo WP9 (e.g. navegação, cheias, sedimentos) não tiveram a participação do subgrupo da UFPR e também não guardam relação com o presente trabalho.

Os estudos de impacto na geração hidrelétrica (WP9) concluíram que (1) os modelos climáticos ainda apresentam consideráveis erros na reprodução de vazões médias mensais, porém conseguem prever razoavelmente médias de longo prazo; (2) deve-se esperar uma redução na energia garantida do conjunto de usinas ao longo do século XXI, embora seja difícil uma previsão quantitativa (Fill *et al.* 2013).

A presente dissertação utilizou para os seus cenários futuros os resultados e parâmetros estatísticos do projeto CLARIS-LPB, transpondo os mesmos para o sistema Sul/Sudeste e/ou para a usina de Foz do Areia.

2.3 ANÁLISE ESTATÍSTICA DAS SÉRIES HIDROLÓGICAS

Devido à natureza complexa das vazões e precipitações naturais, as séries históricas são analisadas quanto a parâmetros estatísticos, como: média, variância, autocorrelação, entre outros. Os modelos matemáticos criados para determinação das informações estatísticas das séries, bem como o planejamento da utilização dos recursos hídricos, são geralmente baseados na premissa de que as séries analisadas são estacionárias.

Os parâmetros estatísticos das séries estacionárias não se alteram ao longo do tempo, assim os seus valores são representativos para toda a série. A menos de forte evidência em contrário, as séries hidrológicas são consideradas estacionárias. Porém diversos autores defendem que séries longas, superiores a 100 anos, são essencialmente não estacionárias (BATISTA, *et al.* 2009)

2.3.1 Análise de Estacionariedade

A homogeneidade da série de dados implica de que os elementos de uma amostra são de uma única população, possuem a mesma média, desvio padrão, assimetria, curtose e estrutura de dependência temporal para qualquer seleção de valores na amostra. A aceitação ou rejeição da hipótese de homogeneidade é verificada por meio de testes estatísticos. A homogeneidade dos elementos de uma série temporal é designada de estacionariedade.

A análise da estacionariedade é realizada a partir de testes paramétricos ou não paramétricos, nos quais os primeiros admitem uma distribuição de probabilidade teórica dos dados analisados conhecida. Já os testes não paramétricos não consideram esta informação e são úteis quando não é possível afirmar qual a distribuição de probabilidades subjacente dos dados.

A estacionariedade das séries de vazões do rio Iguaçu foram analisadas em trabalhos recentes, através de métodos estatísticos e foram observados que na vazão do Alto Iguaçu há uma provável não estacionariedade, principalmente em vazões médias anuais (TOZZI, 2015).

No presente estudo, para verificar a estacionariedade das séries históricas optou-se pela realização de análises visuais com auxílio de gráficos de tendências e do teste de Wilcoxon.

O teste de Wilcoxon, (DAVORE, 1991, NAGUETTINI e PINTO, 2007) proposto por MANN e WHITNEY (1947), é um teste não paramétrico, ou seja, não exige que a série de dados siga uma distribuição definida. Consiste em um teste de hipótese para as médias da distribuição, tendo como base observações da população. O teste será descrito detalhadamente na seção 3.4. deste trabalho.

2.3.2 Estudos Hidrológicos Relacionados a Alterações Climáticas

Segundo o Plano Nacional de Mudança do Clima (COMITÊ INTERMINISTERIAL SOBRE MUDANÇA DO CLIMA, 2007), as avaliações e estudos relacionados a modificações climáticas e como prever e mitigar seus efeitos é de vital importância para o desenvolvimento do país, tanto para a identificação das causas, como para a estimativa da intensidade dos extremos e impactos a eles relacionados. Com isto os modelos climáticos existentes têm sido regionalizados, reduzindo as escalas espaciais e temporais, na tentativa de diminuir as incertezas resultantes de todo o processo de análise climática e por consequência do regime de chuvas ao nível da bacia hidrográfica.

No entanto, as alterações climáticas que se apresentam em relação a temperaturas e precipitações em diversos locais do mundo não apresentam, do ponto vista global, um padrão para estudos de impacto, gerando diversas incertezas nas avaliações das séries hidrológicas locais (REMESAN E HOLMAN, 2015).

A quantificação dos impactos hidrológicos das mudanças climáticas exige qualidade dos dados de base para permitir uma comparação significativa entre o presente e o futuro. Entretanto há uma escassez ou falta de cobertura das medições de variáveis meteorológicas, sendo estas muitas vezes mal caracterizadas no tempo e espaço, devido a limitações de estações meteorológicas. Alguns estudos têm sido realizados para simulação hidrológica, utilizando modelagens e detalhando futuras incertezas (FISEHA *et al.*, 2014; REIS, 2013; SOUZA *et al 2006*).

Estes estudos são necessários para fornecer informações sobre as diferentes características do regime de escoamento, como: vazões, sazonalidade, mínimas e máximas, entre outras características.

Análises dos impactos das alterações climáticas em locais específicos fornecem bases sobre o futuro possível dos regimes hidrológicos, porém incertezas consideráveis geradas pelos modelos geradores de séries futuras de vazões, ainda persistem no atual estado da arte (SCHIAV,2014; BARROS *et al.*, 2004; LIMA *et al.* 2014).

Mudanças no regime hidrológico são importantes e precisam ser identificadas em toda a bacia hidrográfica, pois revelam aspectos relevantes para a gestão do empreendimento. Para analisar as características futuras deste regime e compará-las com os dados utilizados no momento do projeto da Usina Hidrelétrica de Foz do Areia, este estudo irá apresentar análises das séries hidrológicas presentes e estimar as vazões no futuro, a partir de modelos meteorológicos e hidrológicos, usados no projeto CLARIS, com vistas aos efeitos das alterações futuras no escoamento e na geração de energia.

3 MÉTODOS DE ANÁLISE

O objetivo do trabalho é analisar os impactos das alterações climáticas na geração de energia elétrica em Foz do Areia. Para isto serão verificadas as séries históricas de energia natural no local do aproveitamento e também no subsistema S/SE do sistema elétrico brasileiro no qual esta usina está integrada. As séries futuras correspondentes serão igualmente analisadas.

É apresentado, também, um condensado dos estudos hidrológicos utilizados no presente estudo. Estes estudos referem-se a testes estatísticos, geração de séries sintéticas e séries de energia natural, no período histórico (1931 – 2014) e no período futuro (2021 – 2070 e 2071 – 2099).

Os dados apresentados no trabalho foram verificados em 4 etapas: (i) Verificação das séries históricas de vazões e de Energia Natural no local do estudo e do sistema S/SE; (ii) análise da estacionariedade das séries de Energia Natural; (iii) geração de séries sintéticas de energia e; (iv) análise das séries futuras de energia geradas a partir de dados de precipitação obtidas por modelos climáticos.

3.1 DADOS BÁSICOS

Para realização do estudo foram utilizadas séries históricas de vazões naturais, séries históricas de energia natural e volumes de armazenamento do sistema S/SE e da UHE Foz do Areia, séries de energia futura para a bacia do Prata e para a UHE Salto Osório, além de séries sintéticas para os locais de análise.

3.1.1 Séries Históricas

Os dados utilizados no estudo foram obtidos junto ao ONS (2016), que disponibiliza séries históricas de energias naturais nos subsistemas que compõem o sistema elétrico brasileiro e as vazões naturais nos locais dos aproveitamentos hidrelétricos, no período de 1931 a 2014.

As Usinas que compõem os subsistemas S/SE e Prata estão listadas no anexo I deste estudo.

Para a localidade da UHE Foz do Areia foi utilizada a série de vazões naturais no período de 1931 a 2014, disponibilizada pelo ONS. Estas vazões foram convertidas em energia não regularizada, ou energia natural, pela equação:

$$EN(t) = \frac{g\overline{H}\,\eta}{1000}\,Q(t) \tag{3.1}$$

Onde:

EN(t) – Energia Natural, MW médio (MW mês/mês); g – Aceleração da Gravidade (9,81 m/s²); \overline{H} – Queda Média da Usina (m); η – Rendimento médio do conjunto gerador da Usina; Q (i)– Vazão natural do sistema(m³/s). t – tempo.

O fator $\frac{g\overline{H} \eta}{1000}$ é denominado produtividade da usina.

A série de energia gerada a partir dos valores de vazões naturais foi obtida a partir dos dados disponibilizados pela COPEL, que opera a usina hidrelétrica Foz do Areia. Os valores foram:

- Queda média: 120 metros;

- Rendimento do conjunto gerador: 88%.

Para as simulações efetuadas neste estudo, os volumes úteis dos reservatórios, expressos em valores de energia armazenada, foram obtidos do ONS (2016), de PERICO (2014) e da COPEL (2016) e valem:

i)	Foz do Areia	A = 124 MWano;
ii)	Sistema S/SE	A = 18.740 MWano;
iii)	Sistema Prata	A = 11.090 MWano.

3.1.2 Séries Futuras

As séries de energia natural para o período futuro do "Sistema Prata" (UHEs situadas na bacia do rio da Prata) foram cedidas gentilmente pela equipe da UFPR do projeto CLARIS (FILL *et al.*, 2013). As séries foram obtidas a partir dos modelos climáticos utilizados no projeto, bem como para os cenários definidos no período do estudo.

Algumas características estatísticas do Sistema Prata estão apresentadas na tabela a seguir (FILL *et al.*, 2013):

Tabela 3.1 – Média e Desvio Padrão das séries de Energia Natural – Sistema Prata

Madala	Período	Média	Desvio Padrão (10 ³ Mwmed)		Coeficiente de Variação		
wodero		(10 ³ Mwmed)	Anual	Mensal	Anual	Mensal	
Observado	1991-2005	36,2	4,7	13,4	0,130	0,370	
PROMES	1991-2005	34,3	10,1	24,4	0,293	0,790	
RCA	1991-2005	32,1	5,0	18,8	0,257	0,587	
PROMES	2021-2070	35,7	11,7	30,8	0,326	0,861	
RCA	2021-2070	42,6	16,8	42,5	0,395	0,998	
PROMES	2071-2099	38,0	13,4	33,8	0,351	0,889	
RCA	2071-2099	38,6	14,1	32,8	0,364	0,849	

Fonte: FILL et al., 2013

Com estas informações foram geradas as séries de energia natural dos modelos climáticos utilizados para previsão dos cenários futuros, como esperado. Neste estudo serão adotadas as séries de vazões naturais médias anuais geradas pelo modelo PROMES, por melhor representar os dados observados, analisando os valores obtidos para o período histórico. Foi assumida uma distribuição Log Normal (LN2) para a geração das séries a partir dos dados da Tabela 3.1.

As séries do projeto CLARIS referem-se ao sistema de usinas na Bacia do Prata. Estas séries foram convertidas, neste estudo, para o sistema S/SE através da

regressão simples entre as séries históricas no período de 1991 a 2005 (E (S/SE) = 1,42 x E(PRATA).

Para obtenção da série futura de energias de Foz do Areia foram utilizadas as séries de vazões em Salto Osório fornecidas no contexto do projeto CLARIS por Saurral (2013). O método de transferência está descrito na seção 4.2.

3.2 ENERGIA FIRME

No passado, o dimensionamento de aproveitamentos energéticos e reservatórios para abastecimento de água era baseado na máxima vazão que pode ser mantida em todo o período histórico, com o uso de todo o volume do reservatório. Esta vazão era denominada vazão "firme", valor que pode ser assegurado nos períodos mais críticos já observados.

Um método para o cálculo da capacidade do reservatório para garantir o atendimento da demanda ou qual a vazão firme associada a cada volume do reservatório foi proposto por RIPPL (1883), utilizando a ferramenta da curva diferencial de massa, conhecida como diagrama de Rippl.

O diagrama de Rippl é um gráfico de vazão acumulada versus o tempo, no qual as áreas sob a curva do fluviograma indicam os volumes e a inclinação representa a vazão média do período (PINTO *et al*, 1976). Com isto, para cada capacidade do reservatório, há uma vazão firme relacionada.

A partir dos valores de vazão, a energia natural equivalente do sistema é obtida utilizando a equação (3.2.). O período crítico é definido como o período que precede o esvaziamento do reservatório equivalente, desde sua cota máxima até o esvaziamento total.

$$EN(t) = \sum_{i \in U} \frac{g\overline{H}_i \eta_i}{1000} Q_i(t)$$
(3.2)

Onde:

- EN(t) Energia Natural Equivalente do Sistema (MW mês/mês);
- g Aceleração da Gravidade (9,81 m/s²);
- H_i Queda Média da Usina (i) (m);
- η Rendimento médio do conjunto gerador da Usina (%);
- $Q_i(t)$ Vazão natural da Usina (i) no mês t (m³/s);
- U conjunto das usinas do sistema.

A energia armazenada equivalente do sistema é obtida pela equação (3.3):

$$A = \sum_{j \in \mathbb{R}} \frac{Vj}{2.628} g\left(\sum_{i \in J} H_i \eta_i\right)$$
(3.3)

Onde:

- A Capacidade de Armazenagem de Energia (MW mês);
- V_j Volume útil do reservatório (j) (10⁶ m³);
- g Aceleração da Gravidade (9,81 m/s²);
- η_i Rendimento do Conjunto Gerador da Usina (i);
- H_i Queda líquida da usina (i) (m).
- R Conjunto dos Reservatórios do Sistema;
- J Conjunto de Usinas a Jusante do reservatório (j).

Usando estes dois conceitos (Energia Natural e Armazenamento) pode-se aplicar o método de Rippl e obter a energia firme de um sistema hidrelétrico interligado. As vazões podem ser transformadas em unidades de energia e serem utilizadas para calcular a regularização do sistema (FILL, 1980).

Dentro desse contexto, a contribuição firme de uma usina operando integrada a um sistema interligado pode ser estimada pela sua geração máxima média sobre o período crítico usando apenas o armazenamento a montante da mesma.

Um método alternativo denominado "*Sequent Peak Method*" (LOUKS, et.al., 1981) consiste no seguinte algoritmo (série de t meses).

$$A(0) = 0$$

Para t = 1, 2, 3, ...,
$$A(t) - máx \begin{cases} 0\\ A(t-1) - EN(t) + EF \end{cases}$$

A = max A(t)

Onde EF é a energia firme.

Esse método também pode ser chamado de método do máximo déficit acumulado.

Estas definições foram amplamente utilizadas para expansão do sistema elétrico brasileiro, com a finalidade de garantir a máxima produção de energia no sistema. Muitas vezes o sistema foi analisado substituindo o conjunto de usinas e reservatórios, por um único reservatório equivalente e uma única usina equivalente, como descrito na seção 3.6.1. e conhecido como "*método da energia natural*" ou "*método do sistema equivalente*".

Porém esta metodologia para o planejamento do sistema elétrico tem como premissa que os dados históricos se repitam no futuro, o que traz um risco desconhecido. Com isto, a partir de 1980, foi adotada a análise probabilística, usando o conceito de energia garantida e métodos da hidrologia estocástica (NEIRA, K. 2005).

3.3 ENERGIA GARANTIDA

Nesta análise, a energia firme é substituída pela energia garantida, calculada assumindo uma probabilidade de confiança para atendimento da demanda, ou seja, assumindo um risco de falha.

Como esta probabilidade depende da extensão do período analisado, muitas vezes o risco de falha é substituído pelo conceito de tempo de retorno, que é definido como sendo o valor esperado do intervalo entre falhas consecutivas (uma variável aleatória) e é usado com frequência como indicador de confiabilidade de um sistema.

A probabilidade de sucesso ou falha está vinculada aos modelos de geração de vazões ou energias utilizadas nas simulações do sistema via método de Monte Carlo, descrito com mais detalhe na seção 3.6.

3.4 ANÁLISE DE ESTACIONARIEDADE

A estacionariedade das séries é um importante aspecto quanto a possíveis modificações nos regimes de chuvas ou vazões, que podem aumentar ou reduzir ao longo dos anos.

Uma série é considerada estacionária se os seus parâmetros estatísticos não se alteram para uma mudança da origem. Distinguem-se a estacionariedade estrita ou forte - SSS (PAPOULIS, 1965) como definida pela equação 3.4..

$$f[x(t_1), x(t_2) \dots] = f[x(t_1 + \zeta), x(t_2 + \zeta), \dots]$$
(3.4)

Onde $f[x(t_1), x(t_2) \dots]$ é a função densidade conjunta das variáveis $x(t_i)$ e a estacionariedade no sentido amplo ou fraco – WSS, definida pelas equações 3.5 e 3.6. (PAPOULIS, 1965).

$$E[x(t)] = cte \tag{3.5}$$

$$COV[x(t_i), x(t_j)] = f(t_i - t_j) = f(\tau)$$
(3.6)

Onde E[x(t)] é a média das variáveis $x(t_i)$ e $COV[x(t_i), x(t_j)]$ é a covariância de $x(t_i) e x(t_j)$.

O comportamento contrário, quando apresentado, deve-se a diversos fatores, como: alterações no uso do solo, usos múltiplos consuntivos da água, desvios, mudança na região ciliar dos rios, obras hidráulicas e a possíveis alterações climáticas de origem antrópica ou natural (ROUGÉ *et al.*, 2013). Também alterações nas características dos postos fluviométricos (e.g. mudança da curva de descarga) podem afetar as séries de forma aparente.

Como o objetivo deste trabalho é a análise da geração de energia em Foz do Areia e não a verificação dos métodos utilizados para determinar a estacionariedade das séries, optou-se por utilizar apenas um teste para verificação da estacionariedade nas séries analisadas: o teste proposto por Mann e Whitney (1947), também chamado de teste de Wilcoxon. O teste de Wilcoxon é um teste não paramétrico para comparação entre duas amostras, ou seja, não depende da distribuição subjacente dos dados (DAVORE, 1991).

Previamente a aplicação do teste, entretanto, as séries foram analisadas através de gráficos de curvas acumuladas, para a definição do ponto de divisão em subamostras, após a análise de estacionariedade através do teste de Wilcoxon foi aplicada às séries de vazões afluentes em Foz do Areia e Salto Osório.

No caso da série de energias naturais do sistema S/SE foram realizadas análises dos gráficos de curvas acumuladas para definição de possível não estacionariedade, não sendo definido o ponto de divisão da amostra.

Duas subamostras são selecionadas a partir de uma série de vazões, energias, precipitações, etc. Seccionando esta série onde se suspeita que ocorra a mudança na estacionariedade, definem-se as duas subséries. Essa suspeita pode ser determinada a partir da análise visual de gráficos temporais da variável de interesse, como: curva dupla acumulativa, diagramas de massa, médias móveis entre outros. Essa fase da análise da estacionariedade é denominada análise exploratória e geralmente precede a aplicação de testes estatísticos (TOZZI, 2015).

Neste trabalho, a série de vazões médias anuais acumuladas foram plotadas em função do tempo e analisadas visualmente. Posteriormente pode ser acrescentada uma linha de tendência, a qual pode indicar que as vazões médias anuais aparentemente sofreram alteração no período histórico observado e definir um ano (ou conjunto de anos) na qual esta alteração ocorreu.

Definida a quebra de tendência desse gráfico como um ano com suspeita de mudança, aplicou-se o teste estatístico Wilcoxon descrito detalhadamente em DAVORE (1991) e LOUCKS *et al.* (1981).

Nesse teste classificam-se as vazões em ordem crescente atribuindo-se um índice de ordem chamado "posto" (*rank*) a cada valor da amostra completa. Sendo X_j o conjunto de valores da subamostra anterior ao ponto de mudança assumida e Y_k os valores posteriores a este ponto.

Seja W a soma dos postos relativos aos valores X_j ou Y_k que seja menor. Então se cada uma das sub amostras contiver 9 ou mais elementos, W tem aproximadamente uma distribuição normal com média:

$$E(W) = \frac{n(n+1) + n.m}{2}$$
(3.7)

E variância:

$$VAR(W) = \frac{n.m(n+m+1)}{12}$$
(3.8)

Sendo *n* o número de valores X_j e *m* o número de valores de Y_k .

A estatística de teste Z é dada por:

$$Z = \frac{W - E(W)}{\sqrt{Var W}} \sim N(0,1)$$
(3.9)

Este teste verifica a hipótese nula H0: $F_X(x) = F_Y(y)$, sendo x e y os valores em cada uma das subséries (LOUCKS *et al.*, 1981). A hipótese de estacionariedade é rejeitada se $|Z| > Z_{crit}$. com Z_{crit} . sendo a variável normal padrão para o nível de confiança desejado.

3.5 OPERAÇÃO INTEGRADA – SISTEMAS ELÉTRICOS

O atendimento ao mercado de energia responde a diversas variáveis, sendo este realizado a partir de ajustes entre a demanda e as unidades geradoras, considerando as variações da afluência de vazões, a capacidade do reservatório e a demanda exigida, além de outras restrições operacionais.

A operação integrada do sistema considera previsões de mercado, energia e demanda, relevando a geração de energia e as potências máximas do sistema (FORTUNATO *et al.*, 1990). O setor de operação das usinas hidrelétricas é responsável por manter a disponibilidade da unidade geradora para atender a demanda do sistema interligado nacional e possibilitar a estabilidade no atendimento ao mercado.

Para o planejamento da operação do sistema são estimados valores de garantia de suprimento, que relacionam custos para produção de energia e disponibilidade. Devido a flutuações nos parâmetros (particularmente as vazões) envolvidos na produção desta energia, é impossível garantir o fornecimento em todo o tempo, contudo o dimensionamento do sistema é realizado a partir de avaliação estatística do risco de falha do sistema, fixado a priori.

Em estudos energéticos, os critérios de operação e expansão do sistema são baseados em análises de risco, sendo necessária a verificação desse risco para diversos cenários possíveis. Contudo, como é extremamente complexa a análise individualizada das usinas para monitorar e operar o sistema, diversas simplificações são introduzidas nos modelos usados no planejamento energético. Para facilitar o entendimento, sem perda de informações, muitas vezes o sistema de usinas é analisado de forma simplificada usando uma usina e um reservatório equivalente. Esta metodologia é chamada de Método da Energia Natural (CANAMBRA, 1969).

3.5.1 Método da Energia Natural

A modelagem da operação de um sistema elétrico real envolve diversas variáveis para reproduzir as grandezas físicas envolvidas e as relações entre as mesmas. Contudo a representação simultânea de muitas variáveis torna a avaliação do sistema um processo bastante complexo, exigindo simplificações para tornar o problema tratável dentro das capacidades computacionais atuais.

Com isto, mesmo uma análise mais abrangente envolve simplificações físicas, sendo que estas simplificações determinam os modelos matemáticos. O método da Energia Natural consiste na substituição de todo o sistema gerador individualizado por uma única usina equivalente, a qual recebe afluências de energia e apenas um reservatório equivalente de energia.

Obviamente este método representa um processo bastante simplificado para a simulação do sistema hidrelétrico, porém com resultados globais muito próximos à realidade, principalmente se os reservatórios que o compõem possuírem boa regularização a montante (CANAMBRA, 1969).

Além da demanda e das regras operativas, duas componentes básicas entram na simulação de um sistema hidrelétrico: vazões naturais e capacidade de regularização de reservatórios. Essas duas componentes podem ser transformadas em unidades de energia e assim conduzir a uma regularização de energia usando as equações 3.2 e 3.3 (FILL, 1980). As vazões naturais dos rios podem, para cada usina, ser convertidas em energia não regularizada, ou "energia natural" multiplicando-se essas vazões pela queda líquida, pelo rendimento das máquinas e pela aceleração da gravidade. Somando-se as energias naturais das várias usinas, obtém-se a energia natural do sistema.

Os reservatórios podem ser expressos em termos energéticos, sendo os volumes úteis transformados em estoque de energia. A armazenagem total representa a soma de toda a capacidade energética dos reservatórios envolvidos, ou seja, pode ser usada para regularizar a energia natural do sistema ao atender a demanda do mercado (FILL, 1979).

Com isto o sistema pode ser analisado como a regularização de um rio de energia com unicamente um reservatório e uma usina hidrelétrica, sendo assumida a total integração do sistema e onde as simulações são realizadas normalmente em escalas temporais mensais.

Algumas hipóteses simplificadoras devem ser adotadas para a utilização do método da Energia Natural, conforme FILL (1980):

- 1) Para converter vazão em energia natural, uma queda média deve ser escolhida em cada usina que pode diferir da queda real a cada mês. Para usinas com reservatórios, o nível de montante depende da função do reservatório no sistema, das afluências naturais e da posição da usina no diagrama de carga do sistema. O nível de jusante varia com a vazão defluente e o nível do reservatório a jusante. Geralmente se assume a queda média como aquela correspondente ao reservatório com 50% do volume útil com o nível de jusante correspondente a uma vazão defluente igual a 110% da vazão média. O erro resultante dessa simplificação afeta pouco o resultado, que é o valor da energia firme.
- As vazões naturais devem ser corrigidas pela evaporação líquida dos reservatórios. A evaporação líquida é definida como a diferença entre a

evaporação da superfície líquida do reservatório e a evapotranspiração real da área inundada. Isso não cria maiores problemas, podendo a evaporação líquida ser avaliada como função das afluências naturais e ser subtraída das afluências naturais, embora se deva considerar uma área média para o reservatório (usando o mesmo critério da queda média).

- 3) Está implícito no método que toda energia natural e armazenada é usável, isto é, enquanto aquela for menor que a carga e/ou esta for menor que a armazenagem máxima, não haverá vertimentos. Essa condição é difícil de verificar plenamente, mas está próxima da realidade durante épocas de estiagem em sistemas bem regularizados. O vertimento das usinas a fio d'água, e sem regularização a montante, não coloca problemas, podendo ser eliminado das energias naturais, limitando-se essas à produção máxima da usina.
- 4) Na simulação da operação do sistema, a energia natural em cada período é comparada com a carga, para decidir se o reservatório de energia será deplecionado ou enchido. A distribuição da armazenagem sobre os diferentes reservatórios do sistema (prioridades) e restrições à sua operação (vazões mínimas, curvas de controle) são ignoradas. Admite o método que a operação do sistema é suficientemente flexível para utilizar de alguma forma a armazenagem disponível na geração de energia. Eventuais perdas de água dos reservatórios por limitações locais ou erros de operação podem ser consideradas de forma aproximada por um chamado "rendimento operacional" das unidades geradoras.
- 5) Uma restrição evidente para o acúmulo de energia armazenada são as vazões naturais nos locais onde não existam reservatórios. Se houver um excesso de energia natural no trecho à jusante do reservatório, ela não pode ser adicionada à armazenagem. Entretanto essa limitação pode ser levada em conta separando a energia natural a montante dos reservatórios (energia controlável) e a energia natural incremental

afluente aos aproveitamentos a fio de água (energia não controlável ou a fio de água).

Contudo, o método da energia natural retorna bons resultados, mesmo com as hipóteses simplificadoras, desde que o sistema priorize a produção de energia hidrelétrica, pois desta forma as restrições de uso da água serão condizentes com os propósitos para garantir a geração energética. As diferenças comparando o método da energia natural e as análises individualizadas das usinas raramente são superiores a 5%, o que é inferior à precisão das séries de vazões nas usinas (FILL, 1980).

A utilização deste método é justificada pela rapidez nos cálculos de sistemas hidrelétricos complexos onde mesmo com algumas aproximações é possível determinar as gerações firmes individuais das usinas do sistema, bastando somar as energias naturais durante o período crítico do sistema e a energia armazenada a montante, considerando apenas a queda da usina considerada e dividindo pela quantidade de meses do período crítico.

3.6 MÉTODO DE MONTE CARLO

3.6.1. Geral

O método de Monte Carlo constitui-se em uma ferramenta poderosa para analisar o desempenho de sistemas complexos sujeitos a incertezas (entradas aleatórias).

Suponha que se dispõe de N séries de energia afluentes independentes e igualmente prováveis, cada uma produzindo por simulação um resultado (ex. energia firme). Então, a probabilidade de cada resultado pode ser estimada pelo critério de Weibull como sendo 1/(N+1).

Se os N resultados são ordenados ($X_{(1)} \le X_{(2)} \le ... \le X_{(N)}$), a função de distribuição acumulada pode ser estimada por (STEDINGER et.al., 1993):

$$\mathbf{F}\left[x_{(i)}\right] = \frac{i}{N+1} \tag{3.10}$$

No caso de um sistema de regularização sazonal, as N séries podem ser os N anos hidrológicos históricos, mas no caso de regularização plurianual, cada série deve ser constituída por *n* anos, sendo *n* a extensão máxima do período de regularização. Como a precisão do método exige N grande (N \ge 100) o uso da série histórica nesse último caso é inviável.

Com isto, recorre-se a séries sintéticas que são sequências geradas estatisticamente e que são indistinguíveis da série histórica.

Para geração das séries sintéticas foi admitido que a série histórica fosse apenas um resultado possível de um processo estocástico (sequência de vazões ou energia). A partir dos parâmetros desse processo estocástico podem ser obtidas séries diferentes, porém igualmente prováveis e independentes entre si.

Estas séries são denominadas de séries sintéticas, com parâmetros estatísticos iguais à série histórica, porém com valores individuais distintos. Para a aplicação do método de Monte Carlo, simulam-se cada uma das N séries obtendo N resultados (p.ex. os volumes para regularização v₁, v₂, ..., v_N).

Os valores v_n são então ordenados $v_{(1)} \le v_{(2)} \le \dots \le v_{(n)}$, que plotados em função de i fornecem uma estimativa da função de distribuição acumulada:

$$F_{V}[v_{(i)}] = Prob\left[\left(V \le v_{(i)}\right)\right] = \frac{i}{N+1}$$
(3.11)

De maneira análoga, é possível obter a função de distribuição acumulada da energia garantida calculando as energias firmes de cada cenário e considerando o armazenamento fixo.

$$F_{EF}(e_i) = Prob \ (E \le e_i) = \frac{i}{N+1}$$
 (3.12)

O diagrama da simulação pelo método de Monte Carlo é apresentado na Figura 3.1. a seguir.

Figura 3.1 – Representação do Método de Monte Carlo

Fonte: NEIRA (2005)

3.6.2. Determinação das Energias Firmes

Para correta aplicação do conceito de Energia Firme é necessário verificar a capacidade de influência dos reservatórios como estoque de energia. Os valores de energia firme são obtidos a partir de cada série sintética, onde foram utilizados os dados do subsistema elétrico Sul/Sudeste e as vazões naturais afluentes em Foz do Areia, para cada cenário de série sintética.

A determinação das Energias Firmes foi realizada pela simulação de cada série sintética de energias médias mensais usando a máxima capacidade de armazenamento do sistema, obtida pela equação:

$$Amáx = \sum \frac{Vj}{2.628} (\sum Ki)$$
(3.13)

Onde:

Amáx – Capacidade de Armazenamento de Energia do Reservatório Equivalente (MW mês);

Vj – Volume útil do reservatório (j) (10⁶ m³);

Ki – Produtividade das usinas a jusante do reservatório (j) (MW/m³/s).

A simulação realizada para obter os valores de energia firme é dada pelo algoritmo:

Arbitra-se EF A(0) = Amáx Para t = 1, 2, 3, ..., A(t) = mín $\begin{cases} Amáx \\ A(t-1) + EN(t) - EF \end{cases}$

Onde:

EN(t) – Energia natural do mês t; A(t) – Armazenamento no final do mês t. A energia firme (EF) é obtida por tentativas para que o mínimo de A(t) seja próximo de zero e que não ocorram valores negativos de A(t).

Um resultado importante da simulação é a definição do período crítico, que corresponde ao intervalo entre a capacidade máxima do reservatório até o seu esvaziamento total. Os dados do período crítico serão utilizados para determinação da energia firme de uma usina particular que corresponde à sua geração média ao longo do período crítico do sistema, usando todo o volume útil dos seus reservatórios a montante.

3.7 GERAÇÃO DE SÉRIES SINTÉTICAS

Em estudos energéticos, os critérios e regras de operação e expansão do sistema são atualmente baseados em análises de risco. Para a estimativa do risco para diversos cenários, utiliza-se na prática de planejamento o método de Monte Carlo, usando séries sintéticas de energia natural.

Foram geradas 100 séries sintéticas em Foz do Areia como no subsistema S/SE, após postular uma distribuição Log Normal às afluências médias anuais. As séries históricas analisadas foram ajustadas à distribuição LN3, por se tratar da mais adequada para a região analisada, baseado em estudos citados por KELMAN (1987), onde foram analisados coeficientes de assimetria e de variação. As séries futuras foram geradas usando a distribuição LN2.

A dependência temporal das séries de energia média anual foi representada por um modelo autorregressivo de primeira ordem AR (1), também baseado em conclusões de KELMAN (1987).

As séries de energia natural média mensal foram obtidas por desagregação das médias anuais pela sazonalidade média da série histórica.

Para avaliar a representatividade das séries sintéticas geradas foi efetuada a validação do conjunto de 100 séries geradas no sistema S/SE, assim como no local

da usina Foz do Areia. Foi avaliada a distribuição amostral dos seguintes parâmetros estatísticos: (1) média, (2) desvio padrão, (3) coeficiente de assimetria e (4) coeficiente de autocorrelação.

A distribuição amostral foi avaliada, também, para as séries sintéticas de energia firme geradas a partir da análise do período crítico nas séries sintéticas no sistema S/SE e para a usina Foz do Areia interligada ao sistema.

3.7.1 Séries Sintéticas Anuais

As séries sintéticas de energias naturais foram geradas a partir de variáveis aleatórias Z seguindo uma distribuição Normal (0,1), transformadas em variáveis aleatórias Log-Normais.

As relações entre energia natural (X ~ LN3) e a variável Z (Z~N(0,1)) são:

$$z = \frac{\ln(X - \xi) - \mu}{\sigma} \tag{3.14}$$

Onde:

$$\xi = max \begin{cases} \frac{X_1 \cdot X_n - X_{med}^2}{X_1 + X_n - 2X_{med}} \\ 0 \end{cases}$$
(3.15)

$$\mu = \frac{\sum \ln(x-\xi)}{n} \tag{3.16}$$

$$\sigma = \sqrt{\frac{\sum [\ln(\mathbf{x} - \xi) - \mu]^2}{n}}$$
(3.17)

Foi verificado, também, o coeficiente de autocorrelação (ρ) entre as energias médias mensais pela expressão:

$$\rho = \frac{\sum (X_t - \bar{X})((X_{t+1} - \bar{X}))}{\sum (X_t - \bar{X})^2}$$
(3.18)

Com a finalidade de garantir a estrutura temporal das séries sintéticas as variáveis normais médias anuais foram obtidas utilizando a relação descrita na equação a seguir.

$$z(t) = \rho . z(t-1) + \sqrt{1 - \rho^2} . \varepsilon(t)$$
(3.19)

Onde:

z(0) - 0 $\varepsilon(t) - variável normal padrão independente de <math>z(t)$.

Neste caso o coeficiente ρ foi obtido pela Tabela 3.2, extraída de PERICO (2014) e reproduzida abaixo (para o sistema S/SE ρ =0,34).

Tabela 3.2 –	Coeficiente	de	autocorrelação) -	transform	ıação	"log"
--------------	-------------	----	----------------	-----	-----------	-------	-------

C ária	ρ			
Selle	Zt			
SIN	0,44			
S/SE	0,34			
MÉDIA	0,39			

Fonte: PERICO (2014)

Para obter as séries de energia (LN3), as séries foram transformadas utilizando:

$$X_t = \xi + \exp(\sigma Z_t + \mu) \tag{3.20}$$

Onde:

 X_t – Energia Afluente no mês t; ξ – Parâmetro de erro (equação 3.15); μ – média de ln (x- ξ) (Equação 3.16); σ – desvio padrão de ln (x- ξ) (Equação 3.17). Para os períodos futuros de 2021 a 2070 e de 2071 a 2099, as séries das médias anuais foram geradas a partir dos resultados publicados pelo projeto CLARIS (FILL *et al*, 2013) e reproduzidos, na tabela 3.1 para o "Sistema Prata". Os valores para o sistema S/SE foram obtidos multiplicando os valores do sistema Prata por 1,42, conforme explicado anteriormente na seção 3.1.2 (página 43).

Foram geradas séries para o subsistema S/SE e para a localidade da Usina Hidrelétrica Salto Osório situada a jusante de Foz do Areia, visto que os dados gerados pelo PROMES, no projeto CLARIS, são referentes a esta localidade, e transpostos para o local de Foz do Areia. Adotou-se na geração de energia do sistema S/SE uma distribuição LN2 mais simples, em vista da precisão dos modelos GCM e RCM, do erro amostral do coeficiente de assimetria e da disponibilidade de dados do projeto CLARIS (FILL *et al*, 2013; PERICO, 2014).

3.7.2 Desagregação das Séries Anuais em Mensais

Devido às incertezas inerentes ao processo de previsão, optou-se por desagregar as séries anuais em mensais proporcionalmente as médias mensais encontradas no histórico das séries corrigidas, admitindo assim que a sazonalidade da série histórica se mantém nos períodos futuros analisados.

Os coeficientes mensais foram obtidos pela equação:

$$Qmg = \frac{\overline{Qm}}{\overline{Qlt}} . Qag \tag{3.21}$$

Onde:

Qmg – Vazão Mensal Gerada (m³/s); Qag – Vazão Anual Gerada (m³/s); Qm – Vazão média do mês no período histórico (m³/s); Qlt – Vazão média anual histórica (m³/s).

3.8 OBTENÇÃO DA ENERGIA GARANTIDA

3.8.1 Risco de Falha e Tempo de Retorno

Seja F um evento denominado falha e que pode ocorrer ao longo do tempo (p.ex. o esvaziamento completo de um reservatório de regularização). O evento S chamado sucesso é o complemento de *F*[*Prob* (*S*) = 1 - Prob (*F*)].

No caso de eventos dependentes, a probabilidade da falha em um ano depende do que ocorreu nos anos anteriores. Seja Sn o evento sucesso em *n* anos (anos 1, 2, ..., n) e s_n o evento sucesso no ano *n*. A probabilidade de falha no enésimo ano vale então:

$$\Pr[(F_n)] = 1 - \Pr[(s_n/S_{n-1})]$$
(3.22)

O tempo de retorno Tr é definido como o valor esperado do intervalo entre duas falhas do sistema. Posto isto:

$$Tr = \Pr(S_0) \left[1 - \Pr(s_1 \mid S_0)\right] + 2\Pr(S_1) \left[1 - \Pr(s_2 \mid S_1)\right] + 3\Pr(S_2) \left[1 - \Pr(s_3 \mid S_2)\right] + \dots +$$
(3.23)

Supondo que $Pr(s_{n+1} | Sn)$ seja constante e independente de n (sistema estacionário) e que

$$\Pr(S_n) = \Pr(S_{n-1}) \Pr[(s_n | S_{n-1})]$$
(3.24)

Resulta

$$Tr = \Pr(S_0) \left[1 - \Pr(s_n \mid S_{n-1})\right] + 2\Pr(S_1) \left[1 - \Pr(s_n \mid S_{n-1})\right] + 3\Pr(S_2) \left[1 - \Pr(s_n \mid S_{n-1})\right] + \dots +$$
(3.25)

Ou

$$Tr = \Pr(S_0)[1 - \Pr(s_n | S_{n-1})]$$

$$\{[1 + 2[\Pr(s_n | S_{n-1})] + 3[\Pr(s_n | S_{n-1})]^2 + \dots + \}$$
(3.26)

Considerando

$$P(S_0) = 1$$

 $Pr(s_n | S_{n-1}) = p$
(3.27)

Resulta

$$Tr = (1 - p)(1 + 2p + 3p^{2} + \dots)$$
(3.28)

Pelo binômio de Newton

$$(1-p)^{-2} = 1 + 2p + 3p^2 + \cdots$$
(3.29)

Resulta

$$Tr = \frac{1}{1 - p} = \frac{1}{1 - \Pr(s_n \mid S_{n-1})}$$
(3.30)

No caso de eventos independentes, essa expressão se reduz a conhecida relação entre o tempo de retorno e probabilidade de falha:

$$Tr = \frac{1}{1 - \Pr(s_n)} = \frac{1}{\Pr(b[F_n])}$$
 (3.31)

Por outro lado, a relação entre tempo de retorno e probabilidade de sucesso (ou falha) em n anos pode ser obtida como:

$$Pr(S_{1}) = Pr(S_{0}) Pr(s_{1}|S_{0}) = Pr(S_{0}) Pr(s_{n}|S_{n-1})$$

$$Pr(S_{2}) = Pr(S_{1}) Pr(s_{2}|S_{1}) = Pr(S_{0}) [Pr(s_{n}|S_{n-1})]^{2}$$
...
$$Pr(S_{n}) = Pr(S_{0}) [Pr(s_{n}|S_{n-1})]^{n}$$

$$Pr(S_{n}) = (1 - \frac{1}{Tr})^{n} \qquad (3.32)$$

Pois

$$\frac{1}{Tr} = 1 - \Pr(s_n \mid S_{n-1}) \tag{3.33}$$

O risco de pelo menos uma falha num período de *n* anos, portanto, vale:

$$\Pr(F_n) = 1 - (1 - \frac{1}{Tr})^n$$
(3.34)

Das equações (3.30 e 3.31) resulta que a probabilidade de sucesso (e de falha) depende de n enquanto o tempo de retorno (para um sistema estacionário) é constante, o que o torna mais apropriado para definir a confiabilidade de um sistema e será usado neste trabalho como indicador da confiabilidade (ou risco) dos sistemas analisados.

Por outro lado, para Tr > 1:

$$\lim_{n \to \infty} \Pr(S_n) = \lim_{n \to \infty} (1 - \frac{1}{Tr})^n = 0$$
(3.35)

O que significa que ao aumentar o horizonte de planejamento a probabilidade de sucesso tende a zero e, portanto, a probabilidade de falha tende a certeza, ou seja, se um fenômeno aleatório pode dar errado, ao repeti-lo indefinidamente dará errado com certeza.

3.8.2 Séries Sintéticas Futuras

Para obter a energia garantida futura do sistema S/SE foram geradas 100 séries de energia natural para os cenários 2021-2070 e 2071-2099 com extensão de 50 e 30 anos, respectivamente. Para o sistema S/SE foram geradas inicialmente séries de energia natural para o Sistema Prata.

Utilizaram-se nas gerações os respectivos parâmetros do modelo PROMES da tabela 3.1, uma distribuição marginal LN2 e um coeficiente de autocorrelação p igual a 0,32, valor obtido pela análise das características estatísticas das séries históricas e da série futura.

Posteriormente, essas séries futuras foram convertidas para o sistema S/SE pela multiplicação por 1,42, como já explicado anteriormente. Por último, a série foi desagregada em uma série de energias mensais segundo o procedimento da seção 3.7.2.

Para obter séries futuras de energias naturais em Foz do Areia (50 e 30 anos respectivamente) seguiram-se os seguintes passos:
- i) Obtenção de vazões médias anuais em Salto Osório (rio Iguaçu) de um arquivo do projeto CLARIS (SAURRAL, 2013).
- ii) Correção do viés pelo método quantil-quantil (LIMA et al., 2014).
- iii) Transferência da série de vazões para Foz do Areia por relação de médias anuais ($Q_{FA} = 0.624.Q_{SO}$).
- iv) Desagregação das vazões anuais em Foz do Areia para vazões mensais.
- v) Transformação das vazões mensais em Foz do Areia para energias naturais.

3.8.3 Simulação de Monte Carlo e Energia Garantida

Definido o conjunto de séries sintéticas para o sistema S/SE e Foz do Areia, foram efetuadas as respectivas simulações do sistema S/SE, seguindo o algoritmo da seção 3.6.2.

A partir das energias firmes correspondentes a cada uma das 100 séries, obteve-se uma estimativa da energia garantida para níveis de confiabilidade variando de 1/101 a 100/101, para horizontes de planejamento de 50 e 30 anos respectivamente.

Nas séries correspondentes das energias naturais de Foz do Areia, calcularam-se as gerações dessa Usina no período crítico do sistema S/SE seguindo o procedimento da seção 3.5.1 e atribuindo-lhes o mesmo nível de confiabilidade do sistema S/SE.

3.8.4 Conversão de Confiabilidade em Tempo de Retorno

Para converter o nível de confiabilidade [$Pr(S_n)$] dependente do horizonte de planejamento em tempo de retorno Tr independente do mesmo, foram usados dois procedimentos distintos:

 i) Inversão da equação (3.32) para calcular a probabilidade de sucesso correspondente ao tempo de retorno obtendo o valor da energia garantida da função da distribuição acumulada empírica. Portanto,

$$\frac{1}{Tr} = 1 - \left[\Pr(S_n)\right]^{1/n}$$
(3.36)

e

$$Pr(S_n) = \frac{i}{N+1} \ i = 1, 2 \dots, n$$
 (3.37)

Onde n é a extensão da série (50 ou 30), N o número de séries (100) e i a ordem das energias firmes em ordem decrescente.

Assim, no caso do período 2021 - 2070 (n = 50), i = 61 corresponde a Tr = 99,7 ~100 anos. No caso do período 2071 - 2099 (n = 30), i = 75 corresponde a Tr = 101 ~100 anos.

 ii) Utilização do ábaco proposto por GOMIDE (1983) e adaptado para distribuição log-normal por FILL et.al.(2003) que fornece o tempo de retorno Tr em função de dois parâmetros adimensionais µ e a, descritos nas equações 3.38 e 3.39.

$$\mu = \frac{\bar{E} - Eg}{\sigma} \tag{3.38}$$

$$a = \frac{Ap}{\sigma} \tag{3.39}$$

Onde:

Eg – Energia Garantida Ap – Armazenamento Equivalente Plurianual \overline{E} - Média das energia naturais (MWmed). σ – Desvio Padrão das energia naturais (MWmed).

O armazenamento plurianual é obtido subtraindo do armazenamento total do sistema a parcela usada para regularizar as variações sazonais (intra-ano), GOMIDE (1986) mostram que este armazenamento pode ser expresso como uma fração da energia garantida desde que haja regularização plurianual, obtendo para o sistema S/SE a relação:

$$As = 0,182 Eg(MWano) \tag{3.40}$$

Sendo As o armazenamento sazonal.

PÉRICO (2014) usando séries mais recentes de energia natural obteve:

$$As = 0,149 Eg(MWano), \tag{3.41}$$

equação que foi usada no presente trabalho.

O ábaco utilizado neste trabalho foi publicado por FILL et al. (2003) e FILL e PÉRICO (2012) e é reproduzido na figura 3.6.

Usando equações (3.38 e 3.39) pode-se obter do ábaco (Figura 3.2) para um tempo de retorno pré-fixado a correspondente energia garantida ou vice-versa.

Figura 3.2 – Ábaco para determinação de Tr

Fonte: FILL et al., 2003

A Tabela 3.3 apresenta os valores, obtidos do ábaco da Figura 3.2., para os parâmetros adimensionais ($\mu e a$) na qual $\mu = f(a)$ para Tr = 100 anos e Tr = 45 anos.

Tr a	0	0,2	0,4	0,6	0,8	1	1,2	1,4	1,6
100	1,543	1,357	1,200	1,100	1,023	0,948	0,894	0,846	0,800
45	1,428	1,237	1,080	0,975	0,876	0,808	0,755	0,703	0,653

Tabela 3.3 – Valores de $\mu = f(a)$ para Tr =100 anos e Tr = 45 anos

4 **RESULTADOS**

Neste capítulo estão apresentados os resultados obtidos a partir das análises realizadas e mediante os métodos descritos no capítulo 3.

4.1 ANÁLISE DA ESTACIONARIEDADE

A verificação da estacionariedade foi realizada para as séries históricas, de vazões e energias naturais, nos locais analisados: Foz do Areia, Salto Osório e sistema S/SE.

4.1.1 Análise de Estacionariedade em Foz do Areia

A análise de estacionariedade foi realizada para a série de vazões médias anuais em Foz do Areia, primeiramente de forma visual e subjetiva pelos gráficos obtidos das médias anuais. A Figura 4.1 mostra a sequência histórica das vazões médias mensais, incluindo uma linha de tendência. Embora a linha de tendência mostre um crescimento dessas vazões, a dispersão dos valores dificulta a interpretação.

Figura 4.1 – Médias Anuais de Vazão – Foz do Areia

As estatísticas correspondentes são:

Vazão média longo Termo – Q = 660,14 m³/s Desvio Padrão – S = 498,4 m³/s Coeficiente de Variação – Cv = 0,75 Coeficiente de Assimetria – Cs = 0,884 Coeficiente de autocorrelação – ρ = 0,214

A Figura 4.2 mostra as vazões médias anuais acumuladas podendo, neste caso, se verificar uma mudança na declividade na década de 1970 - 1980, indicando uma não estacionariedade.

Figura 4.2 – Vazões Médias Anuais Acumuladas em Foz do Areia

Mesmo sem grandes alterações nas médias acumuladas, foi traçada uma curva de tendência para o primeiro período. Foi observado que há uma descontinuidade nos dados, indicada por uma mudança na declividade, sugerindo uma não estacionariedade por volta do ano de 1972.

Com isto duas subamostras foram definidas, cada uma com 42 anos: sendo a primeira do ano de 1931 a 1972, e a segunda de 1973 a 2014.

Ainda para verificação da coerência na série histórica foram analisadas as vazões médias móveis por períodos de 10 anos, nas quais também é possível observar um aumento dessas médias a partir da década de 1970, conforme apresentada na Tabela 4.1 a seguir.

Déc	ada	Vazão Média	Déc	ada	Vazão Média	Década		Vazão Média
1931	1940	577	1956	1965	601	1981	1990	730
1932	1941	567	1957	1966	621	1982	1991	726
1933	1942	551	1958	1967	562	1983	1992	732
1934	1943	570	1959	1968	539	1984	1993	657
1935	1944	566	1960	1969	575	1985	1994	648
1936	1945	522	1961	1970	582	1986	1995	691
1937	1946	546	1962	1971	598	1987	1996	748
1938	1947	566	1963	1972	638	1988	1997	790
1939	1948	548	1964	1973	675	1989	1998	883
1940	1949	519	1965	1974	675	1990	1999	873
1941	1950	536	1966	1975	664	1991	2000	821
1942	1951	526	1967	1976	676	1992	2001	868
1943	1952	510	1968	1977	685	1993	2002	841
1944	1953	512	1969	1978	693	1994	2003	807
1945	1954	559	1970	1979	696	1995	2004	802
1946	1955	598	1971	1980	713	1996	2005	805
1947	1956	559	1972	1981	673	1997	2006	732
1948	1957	597	1973	1982	671	1998	2007	689
1949	1958	587	1974	1983	734	1999	2008	612
1950	1959	591	1975	1984	755	2000	2009	621
1951	1960	594	1976	1985	714	2001	2010	658
1952	1961	610	1977	1986	672	2002	2011	676
1953	1962	612	1978	1987	676	2003	2012	674
1954	1963	618	1979	1988	690	2004	2013	712
1955	1964	591	1980	1989	691	2005	2014	742

Tabela 4.1 – Médias Móveis das Vazões Médias Anuais em Foz do Areia – Período de 10 anos

A Figura 4.3 é o resultado gráfico da tabela de médias móveis de 10 anos, observando-se nitidamente uma alteração no padrão de distribuição das médias móveis em relação às sub-séries 1931-1972 e 1974-2014.

Figura 4.3 – Gráfico de Médias Móveis de Vazões em Foz do Areia

4.1.2 Análise de Estacionariedade em Salto Osório

A análise no local da UHE Salto Osório foi realizada para consolidação dos dados utilizados para geração das séries sintéticas no futuro, visto que os dados gerados pelo modelo climático são para esta localidade.

De forma análoga, a série de vazões médias anuais em Salto Osório apresentou alterações semelhantes, conforme apresentado na Figura 4.4 a seguir.

Figura 4.4 – Vazões Médias Anuais em Salto Osório

As estatísticas correspondentes são:

Vazão média longo Termo – Q = $1.035 \text{ m}^3/\text{s}$ Desvio Padrão – S = $417 \text{ m}^3/\text{s}$ Coeficiente de Variação – Cv = 0,40Coeficiente de Assimetria – Cs = 1,03Coeficiente de Autocorrelação – $\rho = 0,264$

Na Figura 4.5 a seguir estão apresentadas as vazões médias anuais acumuladas no período e a linha tendência linear para o período 1931 – 1972.

Figura 4.5 – Vazões Médias Anuais Acumuladas em Salto Osório

Assim como em Foz do Areia as análises gráficas demonstram uma possível não estacionariedade próxima ao ano de 1970. Estes resultados eram esperados, pois o local de estudo (Salto Osório) está situado a jusante de Foz do Areia.

Para eliminar a mudança de tendência da série, os dados anteriores ao ano de 1972 foram corrigidos multiplicando os valores antigos pela diferença das médias entre os dois períodos (1931-1972 e 1973-2014), tornando desta forma a série estacionária, com a mesma média nos dois períodos.

4.1.3 Análise Estacionariedade do Sistema S/SE

No caso da análise de estacionariedade do subsistema S/SE foram analisadas as séries de energias naturais médias anuais no período de 1931 a 2014. Estes valores foram plotados em gráfico, como também os valores acumulados ao longo do período. Estes dados estão apresentados na Figura 4.6 e na Figura 4.7, a seguir.

Figura 4.6 - EN Médias Anuais S/SE

Pela análise visual dos gráficos não é possível determinar um período de mudança de viés, ou não estacionariedade. Portanto, assumiu-se neste caso, que a série seja estacionária.

4.1.4 Aplicação do Teste Estatístico

Devido à possível não estacionariedade nas séries observadas de vazão na localidade da Usina Hidrelétrica Foz do Areia, o teste estatístico foi realizado para este local. A série em Salto Osório, situada a jusante de Foz do Areia, apresenta as mesmas proporções estatísticas do local de estudo.

Definido o ano de mudança de tendência hidrológica em 1972 resultaram duas subséries com m = 42 (1931 – 1972) e n = 42 (1973 – 2014) às quais foi aplicado o teste de Wilcoxon (DAVORE, 1991; LOUCKS *et al.*, 1981) descrito detalhadamente na seção 3.4 deste trabalho.

A estatística de teste W (igual à soma dos "*ranks*" da sub-amostra X_i) para a usina de Foz do Areia resultou igual a 1419 (ver anexo 3).

Sendo:

$$E(W) = \frac{n(n+1) + m.n}{2} = 1785$$
(4.1)

е

$$Var(W) = \frac{n.m(n+m+1)}{12} = 12.495$$
(4.2)

A estatística Z distribuída N(0,1) será

$$Z = \frac{W - E(W)}{\sqrt{Var(W)}} = \frac{1419 - 1785}{111,8}$$

$$= -3,27$$
(4.3)

Este valor, em módulo, superior ao valor crítico para uma confiabilidade de 99% que é de 2,575 (teste bilateral). Portanto, rejeita-se a hipótese nula da estacionariedade ao nível de 99%. Usualmente, os testes estatísticos são avaliados

a um nível de confiabilidade de 95% o que corresponde a valores críticos de 1,96 (teste bilateral) ou 1,645 (teste unilateral). O valor Z = -3,27 supera em módulo todos estes valores críticos. A planilha de aplicação do teste para Foz do Areia é reproduzida no Anexo 3.

4.1.5. Teste Estatístico – S/SE

A série histórica de energias naturais para o subsistema S/SE foi analisada graficamente, com os valores plotados de forma isolada ou acumuladas, demonstrando uma provável estacionariedade, não sendo realizado o teste estatístico por não ser possível distinguir uma mudança de comportamento da série.

4.1.6. Correção da Estacionariedade

Após a verificação da estacionariedade das séries, as mesmas foram corrigidas para atender a mesma média e uniformizar os dados históricos. Com isto as séries das médias anuais foram corrigidas antes do ano de 1972, baseado-se nas médias do período de 1972 a 2014.

Os valores para correção estão apresentados na Tabela 4.2, onde foi apresentado rapidamente os valores do teste de Student.

Dados	Foz do Areia	Salto Osório	S/SE (MWmed)
Média 1931 - 1972 (m³/s)	582	905	53.405
Média 1973 - 2014 (m³/s)	735	1217	52.866
$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma x^2}{nx} + \frac{\sigma y^2}{ny}}}$	-2,991	-3,728	0,302
Diferença (m³/s)	153	312	-539
Coeficiente de Correção	1,26	1,34	0,99

Tabela 4.2 – Resumo dos Dados para Correção da Estacionariedade

As subséries do período 1931 – 1972 foram então corrigidas pelo coeficiente de correção. As séries corrigidas foram analisadas através das vazões acumuladas em função do tempo. Estes dados foram plotados em gráfico e estão apresentados na Figura 4.8 e na Figura 4.9, a seguir. Não se nota qualquer alteração da tendência e, portanto, assume-se estacionariedade das séries corrigidas.

Figura 4.8 – Vazões Acumuladas Corrigidas em Foz do Areia

Figura 4.9 – Vazões Acumuladas Corrigidas em Salto Osório

4.2 VALIDAÇÃO DAS SÉRIES ESTATÍSTICAS

4.2.1 Séries Geradas para o Período Histórico

Foi assumida uma distribuição amostral essencialmente normal para os parâmetros avaliados (média, desvio padrão, coeficiente de assimetria e coeficiente de correlação). Neste caso, os valores reduzidos dos parâmetros nas séries geradas se ajustariam a uma distribuição normal padrão, cuja densidade de probabilidade é dada por:

$$f(z) = \frac{1}{\sqrt{2\pi}} \cdot e^{-(\frac{z^2}{2})}$$
(4.4)

Com:

$$Z = \frac{X - \mu}{\sigma} \tag{4.5}$$

Onde: X – parâmetro de interesse; μ – média; σ – erro padrão

Os valores de μ e σ , bem como os correspondentes parâmetros obtidos da série histórica corrigida após a não tendenciosidade, são apresentados na Tabela 4.3.

Tabela 4.3 – Resumo de Valores Estatísticos das Séries Sintéticas Corrigidas -Anual

		Mé	dia	Desvio	Padrão	Autoco	rrelação	Assimetria	
		Média	Desvio	Média	Desvio	Média	Desvio	Média	Desvio
S/SE	Histórico	48.968		9.035		0,360		1,881	
	S. Sintéticas	48.967	1.326	8.371	883	0,346	0,102	0,516	0,276
F.A.	Histórico	737		254		0,104		0,635	
	S. Sintéticas	741	44,139	277	38	0,335	0,103	1,069	0,377

A Figura 4.10, Figura 4.11, Figura 4.12 e Figura 4.13 mostram a distribuição amostral dos parâmetros das séries sintéticas do subsistema S/SE comparados com os valores correspondentes das séries históricas usadas na geração dessas séries. Assumiu-se, no caso, uma distribuição amostral essencialmente normal.

Figura 4.10 – Distribuição Amostral da Média Energia Natural – S/SE

Na figura 4.10 está expresso que as médias obtidas nas séries sintéticas estão muito próximas à média histórica.

Figura 4.11 – Distribuição Amostral do Desvio Padrão S/SE

Figura 4.12 – Distribuição Amostral de Autocorrelação - S/SE

A figura 4.13 mostra a distribuição amostral da assimetria das séries sintéticas geradas para o sistema S/SE.

Figura 4.13 – Distribuição Amostral da Assimetria - S/SE

A distribuição amostral das energias firmes das séries sintéticas comparada com a energia firme histórica é mostrada na Figura 4.14.

Figura 4.14 – Distribuição Amostral Energia Firme S/SE

Utilizando as mesmas equações descritas no início da seção foram verificados os modelos para geração das séries sintéticas no local de Foz do Areia e para o período histórico. Os gráficos resultantes destas análises são apresentados nas figuras: 4.15, 4.16, 4.17 e 4.18.

Figura 4.15 – Distribuição Amostral das Médias – Foz do Areia

Figura 4.16 – Distribuição Amostral do Desvio Padrão – Foz do Areia

Figura 4.17 – Distribuição Amostral da Autocorrelação – Foz do Areia

Figura 4.18 – Distribuição Amostral da Assimetria – Foz do Areia

4.2.2 Séries Geradas para o Período Futuro (2021-2070)

Para o período futuro, a mesma análise foi realizada, para os parâmetros das séries sintéticas comparados com os valores utilizados no processo de geração e obtidas dos resultados do projeto CLARIS.

As figuras a seguir, Figura 4.19, Figura 4.20, Figura 4.21 e Figura 4.22 mostram as distribuições amostrais das médias, desvio padrão, autocorrelação e assimetria das séries sintéticas futuras para o subsistema S/SE.

Figura 4.19 – Distribuição Amostral das Médias – S/SE (Futuro)

Figura 4.20 – Distribuição Amostral do Desvio Padrão - S/SE (Futuro)

Figura 4.21 - Distribuição Amostral da Autocorrelação - S/SE (Futuro)

Figura 4.22 - Distribuição Amostral da Assimetria - S/SE (Futuro)

As validações das séries sintéticas geradas para o período futuro na localidade de Foz do Areia estão apresentadas nas Figura 4.23, 4.24, 4.25 e 4.26.

Figura 4.23 - Distribuição Amostral das Médias – F.A. (Futuro)

Figura 4.24- Distribuição Amostral do Desvio Padrão – F.A. (Futuro)

Figura 4.26 - Distribuição Amostral da Assimetria – F.A. (Futuro)

A análise visual das figuras 4.10 a 4.26 mostra que o processo de geração das séries sintéticas preserva adequadamente os principais parâmetros das séries históricas (ou produzidas pelo modelo climático), visto que os valores médios estão dentro das variações estatísticas esperadas. No caso das séries históricas, também a energia firme é reproduzida a contento como mostrado na figura 4.14.

4.3 PARÂMETROS BÁSICOS

As tabelas 4.4 e 4.5 apresentam os parâmetros básicos das séries históricas e dos cenários futuros, respectivamente. Os parâmetros para os cenários futuros foram obtidos a partir dos resultados do projeto CLARIS para o "Sistema Prata" (conjunto das usinas da bacia do Prata) e extrapolados para o Sistema S/SE por regressão das séries históricas. No caso de Foz do Areia, foram obtidos pela série gerada pelo modelo PROMES corrigidas pela tendenciosidade para Salto Osório e transferidos para Foz do Areia por regressão das séries históricas. O método de correção da tendenciosidade foi o método quantil-quantil (LIMA *et al.* 2014).

Dorâmetro	1931 ·	- 2014	1991 - 2005		
Parametro	Sistema S/SE	Foz do Areia	Sistema S/SE	Foz do Areia	
Armazenamento Total (Mwano)	18.740	124	18.740	124	
Armazenamento Intra - ano (Mwano)	6.040	-	7.048	-	
Armazenamento Plurianual (Mwano)	12.700	-	11.692	-	
Energia Natural Média (MWmed)	49.000	737	54.250	765	
Desvio Padrão Anual (Mwmed	8.980	255	8.245	262	
Energia Firme (Mwmed)	40.510	505	-	-	
Coeficiente de Variação	0,183	0,345	0,152	0,342	
Coeficiente de Assimetria	1,881	0,635	0,070	1,120	
Coeficiente de Autocorrelação Anual	0,358	0,104	0,080	0,290	
Armazenamento Equivalente (a)	1,410	-	1,418	-	
Energia Equivalente (µ)	0,940	-	0,820	-	
Tempo de Retorno para Energia Firme	200	-	-	-	
Energia Garantida para Tr = 100 anos*	41.400	521	47.300	544	
Energia Garantida para Tr = 45 anos*	42.600	559	48.500	581	

Tabela 4.4 - Parâmetros Básicos das Séries Históricas Corrigidas

*estimado pela teoria estocástica dos reservatórios (MWmed)

	Sistem	a Prata	Sistem	a S/SE	Foz do Areia	
	2021-2070	2071 - 2099	2021-2070	2071 - 2099	2021-2070	2071 - 2099
Armazenamento Total (Mwano)	11.090	11.090	18.740	18.740	124	124
Armazenamento Intra - ano (Mwano)	3.440	3.530	5.050	5.240	-	-
Armazenamento Plurianual (Mwano)	7.650	7.560	13.690	13.500	-	-
Energia Natural Média (MWmed)	35.700	38.000	50.690	53.960	847	833
Desvio Padrão Anual (Mwmed)	11.650	13.360	16.540	18.970	224	278
Energia Firme (Mwmed)	25.100	28.100	-	-	-	-
Coeficiente de Variação	0,326	0,351	0,326	0,351	0,264	0,334
Coeficiente de Assimetria *	1,013	1,096	1,010	1,100	1,052	1,248
Coeficiente de Autocorrelação Anual **	0,358	0,358	0,469	0,469	0,258	0,177
Armazenamento Equivalente (a)	0,660	0,570	0,828	0,727	-	-
Energia Equivalente (µ)	1,080	1,080	1,013	1,053	-	-
Energia Garantida para Tr = 100 anos**	23.100	23.000	33.900	34.000	620	540
Energia Garantida para Tr = 45 anos***	24.500	24.600	36.200	36.400	651	576

Tabela 4.5 - Parâmetros Básicos dos Cenários Futuros (RCM PROMES)

* Considerando distribuição LN2

** Estimado a partir da série histórica (MWmed)

*** Estimado pela teoria estocástica dos reservatórios (MWmed)

Fonte: Projeto CLARIS

As equações de transferência das vazões em Salto Osório para energias naturais em Foz do Areia foram:

$$Q_{FA} = 0,624 \, Q_{SO} \tag{4.6}$$

$$E_{FA} = 1,035 \, Q_{FA} = 0,646 \, Q_{SO} \tag{4.7}$$

4.4 RESULTADOS MONTE CARLO

4.4.1 Séries Históricas

Com os parâmetros (média, desvio padrão, coeficiente de assimetria) da série histórica mostrados na tabela 4.3, foram geradas 100 séries sintéticas de 84 anos usando a distribuição marginal log-normal de três parâmetros (LN3) e estrutura temporal AR1, conforme descrito nas seções 3.7.1 e 3.7.2.

Estas séries foram então simuladas pelo método exposto na seção 3.6.2 ordenados em função da energia firme. A

Tabela **4.6** mostra os percentis da energia firme a partir desta ordenação para o sistema S/SE e para a usina Foz de Areia

Confishilidado	Histó	órico
Comabilidade	S/SE	F.A
10%	44.800	621
20%	44.000	588
30%	43.500	568
40%	42.870	546
50%	42.300	535
60%	41.900	516
70%	41.300	496
80%	40.300	473
90%	39.473	436
95%	37.950	407
99%	36.300	370

Tabela 4.6 - Energia Garantida – Níveis de Confiabilidade (Histórico) - MWmed

A análise gráfica da confiabilidade da Energia Garantida do subsistema S/SE para o período histórico está representada na Figura 4.27 e na Figura 4.28 a confiabilidade para a usina Foz do Areia, no mesmo período.

50000 48000 46000 (in the second s 36000 34000 32000 30000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% % tempo

Figura 4.27 - Confiabilidade da Energia Garantida – S/SE

Figura 4.28 - Confiabilidade da Energia Garantida – F.A.

A seguir foram determinadas as energias garantidas atuais para Tr = 100 anos e Tr = 45 anos como explicado na seção 3.8.4.

Como as séries históricas têm extensão de 84 anos, as energias garantidas correspondem aos percentis de 43% para Tr = 100 anos e 15,1% para Tr = 45 anos, baseado nas equações 3.36 e 3.37. Resultam, portanto, nas energias garantidas de 541 MWmed e 599 MWmed em Foz do Areia e 42.800 MWmed e 44300 MWmed, para Tr igual a 100 anos e 45 anos, respectivamente.

4.4.2 Séries Futuras

Com os parâmetros básicos da tabela 4.4 foram geradas 100 series sintéticas de energias naturais para o sistema S/SE para cada um dos períodos futuros (2021-2070 e 2071-2099) com 50 e 30 anos de extensão respectivamente. Inicialmente geraram-se energias médias anuais. Nessa geração adotou-se uma distribuição LN2 segundo o algoritmo em dois passos como mostrado a seguir:

$$Z(0) = 0$$

para t = 1, 2, ...,n :

$$Z(t) = \rho.Z(t-1) + \sqrt{1 - \rho^2}.\varepsilon(t)$$

$$X(t) = \exp[(Z(t).\sigma y + \mu y]]$$
(4.9)

Onde:

X(t) – Energia Natural Media Anual;

ρ – coeficiente de autocorrelação dos logaritmos das energias naturais médias anuais;

 σ_v – Desvio Padrão dos Logaritmos das energias naturais anuais;

 μ_{ν} – média dos logaritmos das energias naturais anuais;

O desvio padrão e a média dos logaritmos das médias anuais de Energias Naturais são calculados pelas equações 4.10. e 4.11. a seguir (STEDINGER *et al.*, 1993):

$$\sigma_y = \sqrt{\ln(1 + CV^2)} \tag{4.10}$$

$$\mu_{y} = \ln M - \frac{\sigma_{y}^{2}}{2} \tag{4.11}$$

M - Média das Energias Naturais;CV - Coeficiente de Variação das Energias Naturais Anuais.

Na sequência, as energias médias anuais são desagregadas em médias mensais usando a distribuição sazonal da respectiva serie histórica pela equação 4.12, como descrito anteriormente na seção 3.7.

$$X(t,m) = X(t).Med \left[\frac{X'(m,a)}{X''(a)}\right]$$
(4.12)

Onde:

Dispondo-se das séries mensais de energia, o sistema S/SE é simulado pelo método da energia natural obtendo-se para cada série o período crítico e a energia firme, conforme descrito no capítulo 3. Para a usina de Foz do Areia a energia firme associada a cada série foi considerada igual à geração média possível no período crítico do sistema S/SE.

$$EF = \frac{\left[\sum_{Pcrit} E_{nat} + A\right]}{N} \tag{4.13}$$

Onde:

Enat – Energia Natural (MWmed); A – Armazenamento (MW/mês) N – Extensão do período crítico do sistema

A seguir, os valores das energias firmes das 100 séries foram ordenados em ordem decrescente e a cada valor (energia garantida) foi atribuída uma probabilidade de excedência (nível de confiabilidade), pela equação 4.14.

$$\frac{i}{n+1} \tag{4.14}$$

Onde:

i - ordem de classificação.

n – número de séries.

Os valores da energia garantida são mostrados na

Tabela **4.7** para o sistema S/SE e para a usina Foz de Areia para cada um dos períodos futuros.

Confishilidada	2021-	2070	2071-2099		
Connabilidade	S/SE	F.A	S/SE	F.A	
10%	40.300	723	44.610	686	
20%	38.760	707	42.840	671	
30%	37.780	680	42.010	650	
40%	36.400	668	40.140	626	
50%	36.200	652	40.020	612	
60%	35.400	638	38.770	600	
70%	34.700	624	37.690	579	
80%	33.800	605	36.990	545	
90%	33.000	574	35.740	502	
95%	31.700	553	33.710	487	
99%	26.800	456	30.680	395	

Tabela 4.7 - Energia Garantida – Níveis de Confiabilidade (Futuro) – Mwmed

A análise gráfica da confiabilidade da Energia Garantida do subsistema S/SE para o período de 2021 a 2070 e para 2071 a 2099 está representada na figura 4.29.

Figura 4.29 - Confiabilidade da Energia Garantida – S/SE

A análise gráfica da confiabilidade da Energia Garantida da UHE Foz do Areia para o período de 2021 a 2070 e para 2071 a 2099 está representada na Figura 4.30.

Figura 4.30 - Confiabilidade da Energia Garantida em Foz do Areia

A estimativa do tempo de retorno pode ser feita usando a expressão clássica derivada na seção 3.8.1.:

$$\frac{1}{Tr} = 1 - (1 - R_n)^{\frac{1}{n}} = 1 - [Pr(S_n)]^{\frac{1}{n}}$$
(4.15)

Onde:

 R_n - Risco de falha (1 – confiabilidade) em n anos

S_n - *Sucesso* (*ausência de falha*) *em n anos*

As energias garantidas para um dado tempo de retorno podem então ser calculadas a partir dos valores das tabelas 4.6 e 4.7 utilizando a equação 4.15.

O tempo de retorno resultante para a energia assegurada (valor contábil equivalente a energia garantida com risco de falha médio de 5%) tal como utilizado por LIMA *et al* (2014) equivale a 100 anos. Para um sistema com risco de falha de 50% para um horizonte de 30 anos (prazo de concessão de aproveitamentos hidrelétricos), o tempo de retorno equivalente é de aproximadamente 45 anos (FILL e PERICO, 2012).

Como mostrado na seção 3.8.4 para um tempo de retorno de 100 anos e um horizonte de 50 anos, o risco de confiabilidade resulta em 60%, no caso de um horizonte de 30 anos seria de 74%. Para o tempo de retorno de 45 anos a confiabilidade seria de 32,5% e 51%, respectivamente.

A Tabela 4.8 mostra os resultados das simulações de Monte Carlo para tempos de retorno de 100 e 45 anos, para os sistema S/SE e também para a usina de Foz do Areia.

Tr	Local	Monte Carlo						
(1)		Atual	2021/70	2071/99	Variação			
(1)	(2)	(3)	(4)	(5)	(5)/(3)			
100	Foz do Areia	541	637	567	4,81%			
	S/SE	42.800	35.400	37.400	-12,62%			
45	Foz do Areia	599	673	611	2,00%			
	S/SE	44.300	37.400	39.800	-10,16%			

Tabela 4.8 - Energia Garantida – Monte Carlo

No método de Monte Carlo a energia garantida para o sistema S/SE apresentou resultados com reduções de 10 a 12% no sistema S/SE e em Foz do Areia crescimento de 2 a 5%.

4.5 TEORIA ESTOCÁSTICA DOS RESERVATÓRIOS

Outra forma de se estimar a energia garantida para um dado tempo de retorno é mediante o ábaco publicado por FILL e PERICO (2012) em função dos parâmetros adimensionais μ e a definidos pelas equações 3.38 e 3.39. A partir destes valores, definiram-se os valores da energia garantida, equação 4.16.
$$E_q = \bar{E} - \mu\sigma \tag{4.16}$$

Onde:

 \overline{E} – energia natural média;

*E*_g – energia garantida,

 σ – desvio padrão das energias naturais anuais;

 μ – parâmetro dado pela equação 3.38.

Esse método é derivado da teoria estocástica dos reservatórios (GOMIDE, 1986), proposto originalmente por GOMIDE (1983), para afluências independentes e normalmente distribuídas e foi adaptado, posteriormente, para afluências lognormais e com dependência em série (NEIRA, 2005; FILL et.al., 2003, FILL e PERICO, 2012; FILL e PERICO, 2013 e PERICO, 2014).

A Tabela 4.9 mostra, para tempos de retorno de 100 e 45 anos, a energia garantida para o sistema S/SE e a usina de Foz do Areia usando o critério da teoria estocástica. O ábaco usado é reproduzido na Figura 3.2.

Tr	Local		Teoria Estocástica									
(1)		Atual	2021/70	2071/99	Variação							
(1)	(2)	(3)	(4)	(5)	(5)/(3)							
100	Foz do Areia	521	620	540	3,65%							
100	S/SE	41.400	33.900	34.000	-17,87%							
45	Foz do Areia	559	651	576	3,04%							
45	S/SE	42.600	36.200	36.400	-14,55%							

Tabela 4.9 – Energia garantida – Teoria Estocástica

Pode-se verificar pelo método da teoria estocástica que a energia garantida para o sistema S/SE, assim como no método de Monte Carlo, apresentam reduções, porém pela teoria estocástica os valores estão entre 15% e 18%, já os valores de energia garantida em Foz do Areia apresentam um ganho da ordem de 3%.

4.6 COMPARATIVOS ENTRE MONTE CARLO E A TEORIA ESTOCÁSTICA

As diferenças entre os resultados das duas metodologias estão dispostos na Tabela 4.10, a seguir.

Tr	Local	Teoria Estocástica/ Monte Carlo								
(1)	(2)	Atual	2021/70	2071/99						
100	Foz do Areia	-3,70%	-2,67%	-4,76%						
100	S/SE	-3,27%	-4,24%	-9,09%						
45	Foz do Areia	-6,68%	-3,27%	-5,73%						
45	S/SE	-3,84%	-3,21%	-8,54%						

 Tabela 4.10 - Comparativo do Métodos da Teoria Estocástica x
 Monte Carlo

Observa-se na Tabela 4.10 que as diferenças entre os resultados do método de Monte Carlo e da teoria estocástica dos reservatórios são sempre inferiores a 10%, portanto dentro das imprecisões da metodologia, dos dados utilizados e do número limitado das séries sintéticas.

Percebe-se ainda, que a energia garantida (assim como a energia firme) alterou-se já no passado devido à não estacionariedade nas séries históricas de vazão observada na década de 1970, como também deve sofrer variações no futuro. O presente estudo indicou um ganho da ordem de 20%, ver seção 2.1.2, na energia firme desde a construção da usina (em 1980) até o presente.

Para o futuro (século XXI) a teoria estocástica dos reservatórios indica para Foz do Areia um ganho adicional da energia garantida da ordem de 3%. No caso do método de Monte Carlo estes ganhos são de até 5% aproximadamente. Por outro lado, o sistema S/SE registrou no século XXI redução da energia garantida de 10 a 12% pelo método de Monte Carlo e 14 a 18% pela teoria estocástica.

5 CONCLUSÕES E RECOMENDAÇÕES

O presente trabalho permite algumas conclusões sobre a variabilidade do potencial energético de um aproveitamento hidrelétrico como aqui foi demonstrado com o exemplo da usina de Foz do Areia:

5.1 CONCLUSÕES

As principais conclusões estão apresentadas a seguir:

- A energia firme avaliada durante o projeto, no caso estudado, parece subestimada, pois não levou em conta alterações nos parâmetros estatísticos de vazões na década de 1970, detectadas mais tarde.
- 2) Embora seja difícil quantificar precisamente, devido a aproximações nos modelos climáticos, incertezas sobre uso futuro do solo e usos consuntivos, além dos cenários de emissão, as simulações demonstram uma redução da energia garantida no sistema S/SE e um ligeiro ganho na usina de Foz do Areia para o período futuro analisado.
- 3) Essa redução da energia garantida no futuro já havia sido detectada em outros estudos (LIMA *et al*, 2014; FILL *et al*., 2013) para conjuntos de usinas (sistema Prata, SIN) sem, contudo, analisar uma usina em particular. Indícios de aumento da vazão média na região Sul e parte da região Sudeste foram registrados, o que levou a uma expansão na capacidade instalada da usina de Itaipu. Entretanto, um ganho de vazão média não leva necessariamente a um ganho na energia garantida, que também é influenciada por outros parâmetros da vazão (desvio padrão, assimetria, autocorrelação).
- As diferenças encontradas entre o método de Monte Carlo e a teoria estocástica dos reservatórios situam-se dentro das aproximações de cada método.

5) Finalmente, o presente estudo demonstra a viabilidade do uso de métodos aproximados para avaliação da energia garantida (como o método da energia natural), cujos erros certamente são bastante inferiores às incertezas sobre o futuro de várias causas como mencionado no item 2.

5.2 RECOMENDAÇÕES

Sugere-se, ainda, para estudos futuros, as seguintes recomendações:

- Ampliação de estudos desta natureza para outros aproveitamentos hidrelétricos.
- Comparação entre diferentes modelos climáticos disponíveis, visando uma estimativa das incertezas nas previsões.
- Prosseguimento de estudos de mudanças climáticas, buscando reduzir as incertezas e fazer a distinção entre causas naturais e antrópicas.
- Monitoramento das vazões naturais (correções de regularização, evaporação e usos múltiplos) das usinas, para confirmar eventuais tendências e mudanças.

REFERÊNCIAS BIBLIOGRÁFICAS

AGÊNCIA NACIONAL DE ÁGUAS – ANA. Mudanças climáticas e Recursos Hídricos. Avaliações e Diretrizes para Adaptação Brasília/ DF. 2016.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA – ANEEL. BANCO DE INFORMAÇÕES DE GERAÇÃO, BIG. <u>http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm</u> (16/04/2017).

ARROIO, P.P. J e MAUAD, F. F., Simulação dos Impactos das Mudanças Climáticas na Vazão da Bacia do Ribeirão do Feijão – SP. **Revista Brasileira de Recursos Hídricos.** Vol 20 n.3 jul/ set 2015. p. 741-751. Porto Alegre, RS, 2015.

BARROS, V.; CLARKE, R.; DIAS, P. S.. **A Mudança do Clima na Bacia do Prata.** Projeto SGP II057: "Trends in the hydrological cycle of the Plata basin: Raising awareness and new tools dor water management" Instituto Inter-Americano para Mudanças Globais (IAI), 2004.

BATISTA, A. L.; FREITAS, S. A. J; DETZEL, D. H. M.; MINE, M. R.M; FILL, H.D. O.; FERNANDES, C.; KAVISKI, E.. Verificação da Estacionariedade de Séries Hidrológicas no Sul Sudeste do Brasil. Simpósio Brasileiro de Recursos Hídricos, 2009.

BLACK, T. L. The New NMC Mesoscale ETA Model: Description and forecast examples. **Weather and Forecasting**, p. 265–278, 1994.

CANAMBRA ENGINEERING CONSULTANTS. **Power study of South Brazil**.App XVII. Curitiba, 1969.

CHEN, J., BRISSETTE, F.P., CHAUMONT, D, BRAUN, M. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. **Journal of Hydrology**, 478 pg. 200-214, 2013.

COMISIÓN EUROPEA,. La Acción da la EU Contra el Cambio Climático.**Oficina de Publicaciones Oficiales da las Comunidades Europeas.** 2008

COMITÊ INTERMINISTERIAL SOBRE MUDANÇA DO CLIMA. **Plano Nacional Sobre Mudança do Clima** – PNMC – Governo Federal. Decreto nº 6.263, de 21 de novembro de 2007.Brasília, DF. 2007.

COPEL – **Situação Hidrológica da Bacia do Iguaçu, Monitoramento.** <u>https://www.copel.com/mhbweb/paginas/bacia-iguacu.jsf</u>, ago, 2016. Acesso: 20/08/2016 – 17:31h.

D'AGOSTINI, L.R.; SCHLINDWEIN, S. L.; FANTINI, A.C.; MARTINS, S.R. Mudanças Climáticas: Clima de Mudanças. Florianópolis, **NUMAVAM** p.62, 2012 DAVORE, J.L. **Probability and Statistics for Engineering and the Sciences**. Brooks Cole, Belmont, 1991.

DNAEE – **Inventário das Estações Fluviométricas.** Ministério Nacional de Águas e Energia Elétrica, Brasil, 1996.

FATICHI, S; RIMKUS, S; BURLANDO, P; BORDOY,R; MOLNAR, P. High-resolution distributed analysis of climate and anthropogenic changes on the hydrology of an Alpine catchment. **Journal of Hydrology**, 518, p. 362-382, 2015.

FILL, H. D. Estudos Energéticos. **Revista Paranaense de Desenvolvimento**, Curitiba, n.67, p. 27-60, 1979.

FILL, H. D. O Método da Energia Natural como Técnica de Simulação em Estudos Energéticos. **Revista Técnica do Instituto de Engenharia do Paraná,** Curitiba, v. 20, p.38-44. 1980.

FILL, H. D.; PÉRICO, G. Avaliação do risco associado à energia firme de um sistema hidrelétrico. **XX Simpósio Brasileiro de Recursos Hídricos - ABRH**, Bento Gonçalves, RS, 2013.

FILL, H. D.; PÉRICO, G. Importância dos reservatórios de regularização em sistemas hidrelétricos. **Revista Técnica do Instituto de Engenharia do Paraná** - IEP, v. 4, pp. 33-37, Curitiba, PR, 2012.

FILL, H.; MINE, M. R.; FERNANDES, C. V.; BESSA, M. Impact of Climate Change on Hydropower Production within the La Plata Basin. **In International Journal of River Basin Management**, 11:4, p.449-462. (2013).

FILL, H. D.; KAVISKI, E.; MINE, M. R. M.; CHELLA, M. R.; FREITAS, C. Projeto Energia: Metodologia para avaliação da contribuição energética de pequenas centrais hidrelétricas a fio d'água. Curitiba: UFPR - **LACTEC / CNPq**, 2003. 58 p. Relatório Final.

FISEHA, B.M., SETENG, S.G.; MELESSE, A.M., VOLPI, E., FIORI, A. Impact of Climate Change on the Hydrology of UpperTiber River Basin Using Bias Corrected Regional Climate Model. **Water Resour – Manage Springer Science+Business Media Dordrecht** (2014) 28:1327–1343.

FORTUNATO, L. A. M.; ARARIPE NETO, T. A.; ALBUQUERQUE, J. C. R.; PEREIRA, M. A. F. **Introdução ao Planejamento da Expansão e Operação de Sistemas de Produção de Energia Elétrica**. Rio de Janeiro: Editora Universitária – Universidade Federal Fluminense, 1990.

GOMIDE, F. L. S. Contribuição ao estudo de períodos de estiagem, **Congresso Latino-americano de Hidráulica**, Anais, Oaxtepec Morelos, IAHR, 1970.

GOMIDE, F. L. S. Introdução à teoria estocástica dos reservatórios. Curso de Engenharia Hidrológica II: Hidrologia Operacional. Capítulo J. Escola Politécnica da

Universidade de São Paulo, Departamento de Águas e Energia Elétrica, Associação Brasileira de Hidrologia e Recursos Hídricos, 1983.

GOMIDE, F. L. S. Sobre reservatórios e segurança hídrica. **GMD – Organização Industrial e Engenharia, Curitiba**, Abril de 2012.

GOMIDE, F. L. S. **Teoria estocástica dos reservatórios aplicada ao planejamento energético de sistemas hidrelétricos**. Curitiba, 1986. Paginação irregular. Tese (Titular), Departamento de Hidráulica e Saneamento, Universidade Federal do Paraná.

GOMIDE, F. L. S., Entrevista ao Instituto de Engenharia do Paraná – **IEP, Revista Técnica do IEP**, n.3, 2011.

HANSEN, J.; RUEDY, M. SATO; LO, K. Global Surface Temperature Change. **Rev. Geophys**, 48, RG 4004, 2010.

IPCC, INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change, Impacts, Adaption e Vulnerability. WMO, UNEP, 2014.

ITAIPU BINACIONAL. Energia e Unidades Geradoras. https://www.itaipu.gov.br/energia/unidades-geradoras, abril/2017. Acesso: 17/04/2017. 01:12h.

KELMAN, J., **Modelos para Gerenciamento de Recursos Hídricos**, Cap IV: Modelos Estocásticos, NOBEL, São Paulo, 1987.

KIM, J., IVANOV V. Y.. A Holistic, Multi-scale Dynamic Downscaling Framework for Climate Impact Assessments and Challenges of Addressing Finer-scale Watershed Dynamics. **Journal of hydrology** 522 pg 645-660, 2015.

LACTEC. Plano Ambiental de Conservação e Uso do Entorno do Reservatório Artificial UHE Governador Bento Munhoz Da Rocha Neto (Foz Do Areia), Curitiba, 2009.

LIMA, J. W. M; COLISCHON, W.; MARENGO, J.A.. Efeitos das Mudanças Climáticas na Geração de Energia Elétrica, HUNTER, pgs.357, 2014.

LOUCKS, D. P.; STEDINGER, J. R., HAITH, D. A. Water resource systems **Planning and analysis**. New Jersey: Prentice-Hall, 1981.

MAIDMENT, D.R. editor. **Handbook of Hydrology.** Capítulo 18. Stendinger *et al.*. MCGRAW – HILL, USA, 1992.

MANN, H.B.; WHITNEY, D.R.. On The Test of Whether One of Two Random Variables is Stochastically Larger Than The Other. *In* Anais de Matemática Estatística, 18. 1947.

MARENGO, J.; NOBRE, C.A.; BETTS, R.A.; COX, P.M. SAMPAIO, G. e SALAZAR, L. Aquecimento Global e Mudança Climática na Amazônia: Retroalimentação Clima-

Vegetação e Impactos nos Recursos Hídricos. Amazonia and Global Change Geophysical Monograph Series 186, pgs. 273-292. 2009

MILDER – KAISER ENGENHARIA S/A, **Relatório de Engenharia. Usina Hidrelétrica Foz do Areia.** Rio Iguaçu, Paraná, Brasil. COPEL, 1974;.

NAGHETTINI, M.; PINTO, E. J. A. **Hidrologia Estatística**, CPRM, Belo Horizonte, MG, 2007.

NASA's Goddard Institute for Space Studies (GISS) - 2016 Climate Trends. <u>https://www.nasa.gov/feature/goddard/2016/climate-trends-continue-to-break-records</u>. Jun/2016.

NEIRA, K. L. Curvas de Regularização para Reservatórios Parcialmente Cheios e Confiabilidade Constante. Dissertação (Mestrado em Engenharia Hidráulica), UFPR. Curitiba, 2005.

ONS – Site <u>http://www.ons.org.br/operacao/vazoes_naturais.aspx</u>, dia 19/07/2016 às 15:00hs. Dados referentes as vazões médias mensais naturais em Foz do Areia no período de 1931- 2014.

ONU, Quarto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas (IPCC AR4), 2014.

PAPOULIS, A. **Probability, random variables and stochastic processes**. McGraw-Hill Kogakusha LTD, Tokio, 1965.

PERICO, G. Avaliação Estocástica dos Efeitos de Reservatórios na Expansão de Um Sistema Hidrelétrico. Dissertação (Mestrado em Engenharia Hidráulica), UFPR. Curitiba, 2014.

PINTO, N. L. S.; HOLTZ, A.C.T.; MARTINS, J. A.; GOMIDE, F. L. S.. Hidrologia Básica, Edgard Blucher, São Paulo, SP, 1976.

PLOSZAI, R. Análise de Tendências no Regime de Chuvas em Curitiba usando Cenários de Modelos Climáticos Regionais. Dissertação de Mestrado, UFPR, Curitiba, PR, 2014.

REIS, R.L.. **Modelos Autoregressivos Periódicos para Previsão e Geração de Séries de Vazões Médias Mensais.** Tese de Doutorado, Instituto de Ciências Matemáticas e de Computação, USP, São Carlos, 2013.

REMESAN, R.; HOLMAN, I. Effect of Baseline Meteorological Data Selection On Hydrological Modelling of Climate Change Scenarios. **Journal of Hydrology**, 518, p. 631-642, 2015.

RIPPL, W. The capacity of storage reservoir for water supply. **Proceedings Institution of Civil Engineers**, v. 71, p. 270-278, 1883.

ROUGÉ, C.; GE, Y.; CAI, X. (2013). Detecting Gradual and Abrupt Changes in Hydrological Records. *In* Advances in Water Resources, n° 53, p. 33-44.

RUMMUKAINEM, M.; RAISANEM, J.; BRINHFELT, B.; ULLERSTING, A.; OMSTEDT, A.; WILLEN, U.; JONES, C. A regional climate model for northern Europe:model description and results from the downscaling of two GCM control simulations. **Climate Dynamics**, v. 17, p. 339–359, 2001.

SAURAL, R.. Comunicação Pessoal, 2013.

SCHIAV, L. Avaliação Preliminar do Efeito das Mudanças Climáticas na Geração de Energia Elétrica. Dissertação (Mestrado em Ciências em Engenharia Elétrica), UFI, Itajubá, 2014.

SEMA - Secretaria de Estado do Meio Ambiente e Recursos Hídricos - **Bacias Hidrográficas do Paraná** Projeto Gráfico: Via Comunicação Integrada Curitiba, Paraná, 2010.

SILVA, T. C.; ALENCAR, M. B.. Análise da Estacionariedade de Séries de Vazões na Bacia do Rio Gramame. **21 Congresso de Engenharia Sanitária e Ambiental**. 2001, Alagoas-PE.,

SOUZA, C.F., SILVEIRA, A. L. L., COLLISCHONM, W. **Análise de Vazões Diárias com Métodos de Séries Temporais.** I Simpósio de Recursos Hídricos Sul-Sudeste, 2006, Porto Alegre.

STEDINGER, J. R.; VOGEL, R. M.; FOUFOULA-GEORGIOU, E. **Frequency analysisof extreme events. In:** Handbook of Hydrology, New York: McGraw-Hill, v. 1, p. 18.1-18.49, 1993.

TOMER, M. D., KEITH E. A Simple Approach to Distinguish Land-use and Climatechange Effects on Watershed Hydrology Schilling, **Journal of Hydrology** 376 (2009) 24–33

TOZZI, B. K.M. Verificação da Estacionariedade de Séries Hidrológicas de Vazões na Bacia do Rio Iguaçu. Dissertação de Mestrado, Curitiba, PR, 2015.

ANEXOS

ANEXO 1 – USINAS HIDRELÉTRICAS QUE COMPÕEM OS SUBSISTEMAS PRATA, S/SE E SIN.

Nome	Rio	Capacidade	SIN	S/SE	Prata
Usina Hidrelétrica de Itaipu Binacional	Rio Paraná	14 000 MW	Х	Х	Х
Usina Hidrelétrica de Belo Monte	Rio Xingú	11 233 MW	Х		
Usina Hidrelétrica de Tucuruí	Rio Tocantins	8 370 MW	Х		
Usina Hidrelétrica de Jirau	Rio Madeira	3 750 MW	Х		
Usina Hidrelétrica Santo Antônio	Rio Madeira	3 568 MW	Х		
Usina Hidrelétrica de Ilha Solteira	Rio Paraná	3 444 MW	Х	х	Х
Usina Hidrelétrica de Xingó	Rio São Francisco	3 162 MW	Х		
Usina Hidrelétrica de Paulo Afonso IV	Rio São Francisco	2 850 MW	Х		
Usina Hidrelétrica de Itumbiara	Rio Paranaíba	2 082 MW	Х	Х	Х
Usina Hidrelétrica Teles Pires	Rio Teles Pires	1 820 MW	Х		
Usina Hidrelétrica de São Simão	Rio Paranaíba	1 710 MW	Х	Х	Х
Usina Hidrelétrica de Foz do Areia	Rio Iguaçu	1 676 MW	Х	Х	Х
Usina Hidrelétrica de Jupiá	Rio Paraná	1 551 MW	Х	Х	Х
Usina Hidrelétrica de Itaparica	Rio São Francisco	1 500 MW	Х		
Usina Hidrelétrica de Itá	Rio Uruguai	1 450 MW	Х	Х	Х
Usina Hidrelétrica de Marimbondo	Rio Grande	1 440 MW	Х	Х	Х
Usina Hidrelétrica de Porto Primavera	Rio Paraná	1 430 MW	Х	Х	Х
Usina Hidrelétrica de Salto Santiago	Rio Iguaçu	1 420 MW	Х	Х	Х
Usina Hidrelétrica de Água Vermelha	Rio Grande	1 396 MW	Х	Х	Х
Usina Hidrelétrica de Serra da Mesa	Rio das Almas	1 275 MW	Х		
Usina Hidrelétrica de Segredo	Rio Iguaçu	1 260 MW	Х	Х	Х
Usina Hidrelétrica de Salto Caxias	Rio Iguaçu	1 240 MW	Х	Х	Х
Usina Hidrelétrica de Furnas	Rio Grande	1 216 MW	Х	Х	Х
Usina Hidrelétrica de Emborcação	Rio Paranaíba	1 192 MW	Х	Х	Х
Usina Hidrelétrica de Machadinho	Rio Pelotas	1 140 MW	Х	Х	Х
Usina Hidrelétrica Estreito	Rio Tocantins	1 087 MW	Х	Х	Х
Usina Hidrelétrica de Salto Osório	Rio Iguaçu	1 078 MW	Х	Х	Х
Usina Hidrelétrica de Sobradinho	Rio São Francisco	1 050 MW	Х		
Usina Hidrelétrica Luiz Eduardo Magalhães	Rio Tocantins	902,5 MW	Х		
Usina Hidrelétrica Henry Borden	Rio das Pedras	889 MW	Х	Х	Х
Usina Hidrelétrica Jamanxim	Rio Tapajós	881 MW	Х		
Usina Hidrelétrica de Campos Novos	Rio Canoas	880 MW	Х	Х	Х

Tabela A.1. Relação das Usinas – SIN, S/SE e Prata

Nome	Rio	Capacidade	SIN	S/SE	Prata
Usina Hidrelétrica Foz do Chapecó	Rio Uruguai	855 MW	Х	х	х
Usina Hidrelétrica de Três Irmãos	Rio Tietê	807,50 MW	Х	х	х
Usina Hidrelétrica Cachoeira do Caí	Rio Tapajós	802 MW	Х		
Usina Hidrelétrica de São Manoel	Rio Teles Pires	746 MW	Х		
Usina Hidrelétrica de Barra Grande	Rio Pelotas	708 MW	Х	х	х
Usina Hidrelétrica de Capivara	Rio Paranapanema	619 MW	Х	х	х
Usina Hidrelétrica de Cachoeira Dourada	Rio Paranaíba	600 MW	Х	х	х
Usina Hidrelétrica Cachoeira dos Patos	Rio Tapajós	528 MW	Х		
Usina Hidrelétrica de Taquaruçu	Rio Paranapanema	526 MW	Х	х	х
Usina Hidrelétrica de Nova Ponte	Rio Araguari	510 MW	Х	х	х
Usina Hidrelétrica Itaúba	Rio Jacuí	500 MW	Х	х	
Usina Hidrelétrica de Sinop	Rio Teles Pires	461 MW	Х		
Usina Hidrelétrica Mascarenhas de Moraes	Rio Grande	458 MW	Х	х	х
Usina Hidrelétrica de Cana Brava	Rio Tocantins	456 MW	Х	х	
Usina Hidrelétrica de Peixe Angical	Rio Tocantins	452 MW	Х	х	
Usina Hidrelétrica de Itapebi	Rio Jequitinhonha	450 MW	Х		
Usina Hidrelétrica de Moxotó	Rio São Francisco	440 MW	Х		
Usina Hidrelétrica de Jaguara	Rio Grande	424 MW	Х	Х	Х
Usina Hidrelétrica de Chavantes	Rio Paranapanema	414 MW	Х	Х	х
Usina Hidrelétrica de Miranda	Rio Araguari	408 MW	Х	х	х
Usina Hidrelétrica de Três Marias	Rio São Francisco	396 MW	Х	Х	
Usina Hidrelétrica de Volta Grande	Rio Grande	380 MW	Х	Х	х
Usina Hidrelétrica de Corumbá	Rio Corumbá	375 MW	Х	Х	х
Usina Hidrelétrica Santo Antonio do Jari	Rio Jari	392,95 MW	Х		
Usina Hidrelétrica Mauá	Rio Tibagi	361 MW	Х	Х	
Usina Hidrelétrica de Irapé	Rio Jequitinhonha	360 MW	Х	Х	
Usina Hidrelétrica de Rosana	Rio Paranapanema	353 MW	Х	Х	Х
Usina Hidrelétrica de Tabajara	Rio Ji-Paraná	350 MW	Х		
Usina Hidrelétrica de Nova Avanhandava	Rio Tietê	347 MW	Х	Х	Х
Usina Hidrelétrica de Aimorés	Rio Doce	330 MW	Х	Х	
Usina Hidrelétrica de Porto Colômbia	Rio Grande	320 MW	Х	Х	х
Usina Hidrelétrica Mário Lopes Leão (Promissão)	Rio Tietê	264 MW	Х	Х	Х
Usina Hidrelétrica de Dardanelos	Rio Aripuanã	261 MW	Х	Х	

Tabela A.1. Relação das Usinas – SIN, S/SE e Prata (Continuação)

Nome	Rio	Capacidade	SIN	S/SE	Prata
Usina Hidrelétrica Gov. Pedro V. P de Souza	Rio Capivari Cachoeira	260 MW	Х	х	
Usina Hidrelétrica de Balbina	Rio Uatumã	250 MW	Х		
Usina Hidrelétrica de São Salvador	Rio Tocantins	243,20 MW	Х	х	
Usina Hidrelétrica Capim Branco	Rio Araguari	240 MW	Х	х	х
Usina Hidrelétrica de Boa Esperança	Rio Parnaíba	237 MW	Х	х	
Usinba Hidrelétrica Itutinga	Rio Grande	232 MW	Х	х	
Usina Hidrelétrica de Samuel	Rio Jamari	216 MW	Х	х	х
Usina Hidrelétrica Passo Fundo	Rio Passo Fundo	226 MW	Х	х	х
Usina Hidrelétrica de São Roque	Rio Canoas	214 MW	Х	х	х
Usina Hidrelétrica de Manso	Rio das Mortes	212 MW	Х	х	
Usina Hidrelétrica Serra do Facão	Rio São Marcos	210 MW	Х	х	х
Usina Hidrelétrica Capim Branco II	Rio Araguari	210 MW	Х	х	х
Usina Hidrelétrica de Igarapava	Rio Grande	210 MW	Х	х	х
Usina Hidrelétrica Itaocara	Rio Paraíba do Sul	195 MW	Х	х	
Usina hidrelétrica de Salto Pilão	Rio Itajaí-Açu	182,30 MW	Х	х	
Usina Hidrelétrica Funil	Rio Grande	180 MW	Х	х	х
Usina Hidrelétrica Leonel de Moura Brizola (Jacuí)	Rio Jacuí	180 MW	Х	х	
Usina Hidrelétrica Passo Real	Rio Jacuí	158 MW	Х	х	
Usina Hidrelétrica Garibaldi	Rio Canoas	191 MW	Х	х	х
Usina Hidrelétrica de Bariri	Rio Tietê	143 MW	Х	х	х
Usina Hidrelétrica de Barra Bonita	Rio Tietê	141 MW	Х	х	х
Usina Hidrelétrica de Guilman Amorim	Rio Piracicaba	140 MW	Х	Х	
Usina Hidrelétrica de Baguari	Rio Doce	140 MW	Х	х	
Usina Hidrelétrica de Ibitinga	Rio Tietê	132 MW	Х	Х	х
Usina Hidrelétrica de Mascarenhas	Rio Doce	131 MW	Х	Х	
Usina Hidrelétrica Castro Alves	Rio das Antas	130 MW	Х	Х	
Usina Hidrelétrica Montes Claros	Rio das Antas	130 MW	Х	Х	
Usina Hidrelétrica de Corumbá IV	Rio Corumbá	127 MW	Х	Х	х
Usina Hidrelétrica Dona Francisca	Rio Jacuí	125 MW	Х	Х	
Usina Hidrelétrica Jauru	Rio Jauru	121 MW	Х	Х	
Usina Hidrelétrica Quebra Queixo	Rio Chapecó	120 MW	Х	Х	Х
Usina Hidrelétrica Telêmaco Borba	Rio Tibagi	120 MW	Х	Х	
Usina Hidrelétrica de Fundão	Rio Jordão	118 MW	Х	Х	Х

Tabela A.1. Relação das Usinas – SIN, S/SE e Prata (Continuação)

Nome	Rio	Capacidade	SIN	S/SE	Prata
Usina Hidrelétrica de Santa Clara	Rio Jordão	118 MW	Х	х	х
Usina Hidrelétrica Salto GO	Rio Verde	116 MW	Х	х	х
Usina Hidrelétrica Salto do Verdinho	Rio Verde	108 MW	Х	Х	Х
Usina Hidrelétrica de Euclides da Cunha	Rio Pardo	109 MW	Х	х	х
Usina Hidrelétrica de Queimado	Rio Preto	105 MW	Х	х	
Usina Hidrelétrica de Salto Grande	Rio Santo Antônio	102 MW	Х	х	
Usina Hidrelétrica 14 de Julho	Rio das Antas	100 MW	Х	х	
Usina Hidrelétrica de Jurumirim	Rio Paranapanema	98 MW	Х	х	х
Usina Hidrelétrica de Corumbá III	Rio Corumbá	93 MW	Х	х	х
Usina Hidrelétrica Barra dos Coqueiros	Rio Claro	90 MW	Х	х	х
Usina Hidrelétrica de Paraibuna	Rio Paraibuna	85 MW	Х	Х	
Usina Hidrelétrica de Retiro Baixo	Rio Paraopeba	82 MW	Х	Х	
Usina Hidrelétrica de Canoas I	Rio Paranapanema	81 MW	Х	Х	х
Usina Hidrelétrica de Caconde	Rio Pardo	80 MW	Х	Х	х
Usina Hidrelétrica Piraju	Rio Paranapanema	80 MW	Х	Х	х
Usina Hidrelétrica Coaracy Nunes	Rio Araguari	78 MW	Х		
Usina Hidrelétrica de Salto Grande	Rio Paranapanema	74 MW	Х	Х	х
Usina Hidrelétrica de Canoas II	Rio Paranapanema	72 MW	Х	Х	х
Usina Hidrelétrica Caçu	Rio Claro	65 MW	Х	Х	х
Usina Hidrelétrica de Santa Clara	Rio Mucuri	60 MW	Х	Х	
Usina Hidrelétrica de São João	Rio Chopim	60 MW	Х	Х	
Usina Hidrelétrica de Rosal	Rio Itabapoana	55 MW	Х	Х	
Usina Hidrelétrica de Camargos	Rio Grande	48 MW	Х	х	х
Usina Hidrelétrica de Cachoeirinha	Rio Chopim	45 MW	Х	Х	
Usina Hidrelétrica Ourinhos	Rio Paranapanema	44 MW	Х	Х	х
Usina Hidrelétrica Canastra	Rio Santa Maria	44 MW	Х	Х	
Usina Hidrelétrica L N Garcez	Rio Capivara	40 MW	Х	Х	х
Usina Hidrelétrica Barra do Braúna	Rio Pomba	39 MW	Х	Х	
Usina Hidrelétrica Barra Bonita	Rio Tietê	36,02 MW	Х	Х	Х
Usina Hidrelétrica de Espora	Rio Corrente	32 MW	Х	Х	Х
Usina Hidrelétrica de Limoeiro	Rio Pardo	32 MW	Х	Х	Х

Tabela A.1. Relação das Usinas – SIN, S/SE e Prata (Continuação)

ANEXO 2 – SÉRIES HISTÓRICAS (SEM CORREÇÃO DE TENDÊNCIA)

AnolMés Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez Anual 1931 710 398 382 195 1241 1383 895 415 1119 851 415 637 720 1932 277 700 292 174 178 133 156 115 251 554 321 170 249 1933 290 258 477 128 125 287 354 817 1142 4115 1041 575 750 1938 190 197 726 591 377 288 191 336 289 121 112.5 379 343 484 665 1938 494 197 796 437 580 375 575 526 116 315 1004 1803 315 1944 5107 1076 802													0 0 0 9	Média
1931 710 398 382 195 1241 1383 895 415 1119 851 415 637 720 1933 277 370 292 174 178 133 155 155 155 354 821 170 249 1934 273 649 473 529 362 201 175 165 206 489 196 555 356 1935 1926 288 477 218 125 287 354 817 1142 3415 104 455 557 750 1936 194 397 770 691 377 288 191 362 289 1221 1126 509 557 1938 494 1097 352 413 899 150 104 478 423 333 337 1940 628 432 248 403 401 239 254	Ano\Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Anual
1932 547 756 1445 979 844 482 437 606 772 534 876 753 1933 277 370 292 174 178 133 156 115 251 554 321 170 249 1934 273 649 477 218 125 287 354 817 1142 3415 1041 575 550 1936 414 397 770 691 377 288 191 336 288 121 1126 509 557 1938 494 1097 352 413 899 1520 2104 541 503 478 423 334 763 1940 635 1097 488 321 437 580 375 967 542 616 684 748 625 1942 378 1078 706 802 610 816 81	1931	710	398	382	195	1241	1383	895	415	1119	851	415	637	720
1933 277 370 292 174 178 133 156 115 251 554 321 170 249 1933 276 684 473 529 362 201 175 165 206 489 196 555 356 1936 152 392 267 169 235 1321 353 953 1008 858 783 484 665 1937 494 397 706 611 377 288 191 336 289 1221 1126 509 557 1938 448 1097 452 413 899 1520 2104 541 271 138 433 763 1940 628 432 248 403 491 239 151 543 431 421 272 059 533 533 137 1942 578 407 484 322 551 </td <td>1932</td> <td>547</td> <td>756</td> <td>756</td> <td>1445</td> <td>979</td> <td>844</td> <td>482</td> <td>437</td> <td>606</td> <td>772</td> <td>534</td> <td>876</td> <td>753</td>	1932	547	756	756	1445	979	844	482	437	606	772	534	876	753
1934 273 649 473 529 362 201 175 165 206 489 196 555 356 1936 1152 392 267 169 235 1321 353 953 1008 858 783 484 665 1937 494 397 770 691 377 288 191 336 289 1221 1126 505 1938 494 1097 352 413 899 1520 2104 541 503 478 423 334 763 1940 624 432 248 403 413 139 120 254 271 238 533 337 1941 635 1097 498 321 437 580 375 567 542 616 644 748 625 1942 378 1078 706 802 610 816 815 55	1933	277	370	292	174	178	133	156	115	251	554	321	170	249
1935 296 258 477 218 125 287 354 817 1142 3415 1041 575 750 1936 1152 392 267 169 235 1321 333 953 1008 858 783 484 665 1937 494 1097 352 413 899 1520 2104 541 503 478 423 334 763 1938 369 448 760 451 563 456 481 217 516 315 1004 1803 615 1944 635 1097 498 321 437 580 375 670 542 616 684 462 531 1944 523 1757 768 432 231 533 235 220 376 269 296 316 1944 512 2198 142 153 1501 1336	1934	273	649	473	529	362	201	175	165	206	489	196	555	356
1936 1152 392 267 169 235 1321 353 953 1008 858 783 484 665 1937 494 1097 352 413 899 1520 2104 541 503 478 423 334 763 1938 696 448 760 451 563 456 481 217 516 315 1004 1803 615 1940 628 432 248 403 491 239 191 292 254 271 238 353 337 1942 537 1706 802 610 816 843 744 627 269 263 144 625 151 534 539 924 633 674 903 1943 243 416 299 163 142 215 1554 539 907 761 1944 521 2198 6	1935	296	258	477	218	125	287	354	817	1142	3415	1041	575	750
1937 494 397 770 691 377 288 191 336 289 1221 1126 509 557 1938 494 1097 352 413 899 1520 2104 541 503 478 423 334 763 1940 628 432 264 470 491 239 191 292 254 271 238 353 337 1941 635 1097 498 321 437 580 375 967 542 616 684 748 625 1942 378 1078 706 802 610 816 815 568 443 474 227 200 593 1944 243 416 299 169 162 612 436 794 631 142 115 133 136 634 655 111 134 132 133 120 316<	1936	1152	392	267	169	235	1321	353	953	1008	858	783	484	665
1938 494 1097 352 413 899 1520 2104 541 503 478 423 334 763 1939 369 448 760 451 563 456 481 217 516 315 1004 1803 615 1944 635 1097 498 321 437 580 375 967 542 616 684 748 625 1942 378 1078 706 802 610 816 815 568 443 474 227 200 593 1943 234 166 193 132 231 953 255 200 376 649 450 166 1948 513 740 660 431 132 231 153 453 1607 761 1948 277 150 280 659 391 606 246 257 312 289<	1937	494	397	770	691	377	288	191	336	289	1221	1126	509	557
1939 369 448 760 451 563 456 481 217 516 315 1004 1803 615 1940 628 432 248 403 491 239 191 292 254 271 238 353 337 1941 635 1097 498 321 437 580 375 967 542 616 648 748 625 1942 273 1078 706 802 610 816 855 684 474 227 200 593 1943 243 416 299 169 162 612 436 794 660 748 483 263 440 1944 520 296 847 304 142 115 101 873 155 539 607 761 1948 513 740 651 491 650 472 343 1280 <td>1938</td> <td>494</td> <td>1097</td> <td>352</td> <td>413</td> <td>899</td> <td>1520</td> <td>2104</td> <td>541</td> <td>503</td> <td>478</td> <td>423</td> <td>334</td> <td>763</td>	1938	494	1097	352	413	899	1520	2104	541	503	478	423	334	763
1940 628 432 248 403 491 239 191 292 254 271 238 353 337 1941 635 1097 498 321 437 580 375 967 542 616 684 748 625 1943 243 416 299 169 162 612 436 794 660 748 483 263 440 1944 220 268 468 193 132 231 153 483 263 674 903 1945 128 268 468 193 132 231 953 255 220 376 269 296 316 1948 513 740 650 472 333 128 135 453 504 677 507 1949 277 150 280 659 391 606 246 257 312 289	1939	369	448	760	451	563	456	481	217	516	315	1004	1803	615
1941 635 1097 498 321 437 580 375 967 542 616 684 748 625 1942 378 1078 706 802 610 816 815 568 443 474 227 200 593 1943 243 416 299 169 162 612 436 794 660 748 483 263 440 1944 520 296 847 304 142 115 101 87 233 153 483 453 164 1944 525 994 764 322 255 660 493 832 1552 1554 539 607 761 1948 513 740 661 491 650 472 343 1280 433 120 438 507 312 289 207 761 1949 727 102 102	1940	628	432	248	403	491	239	191	292	254	271	238	353	337
1942 378 1078 706 802 610 816 815 568 443 474 227 200 593 1943 243 416 299 169 162 612 436 794 660 748 483 263 440 1944 520 296 847 304 142 115 101 87 233 153 483 455 311 1945 128 268 468 193 132 231 953 255 220 376 269 296 316 1947 555 994 764 322 255 660 493 832 1552 1554 539 607 761 1948 513 740 661 491 655 371 208 293 1292 536 660 507 1951 111 111 1178 344 175 172 101	1941	635	1097	498	321	437	580	375	967	542	616	684	748	625
1943 243 416 299 169 162 612 436 794 660 748 483 263 440 1944 520 296 847 304 142 115 101 87 233 153 483 455 311 1945 128 268 468 193 312 231 953 255 220 376 269 296 316 1947 555 944 764 322 255 660 433 832 1552 1554 539 607 761 1948 513 740 661 491 650 472 343 1280 438 504 697 209 583 1949 277 150 280 659 391 606 246 257 312 289 207 187 322 1951 110 1178 344 175 201 120	1942	378	1078	706	802	610	816	815	568	443	474	227	200	593
1944 520 296 847 304 142 115 101 87 233 153 483 455 311 1945 128 268 468 193 132 231 953 255 220 376 269 296 316 1946 621 2198 1809 671 439 635 1156 534 539 924 633 674 903 1948 513 740 661 491 650 472 433 1280 438 504 679 299 583 1949 277 150 280 659 391 606 246 257 312 289 207 187 322 1950 639 523 939 314 359 273 270 185 481 127 518 460 507 1951 511 1101 1178 341 199 177 <td>1943</td> <td>243</td> <td>416</td> <td>299</td> <td>169</td> <td>162</td> <td>612</td> <td>436</td> <td>794</td> <td>660</td> <td>748</td> <td>483</td> <td>263</td> <td>440</td>	1943	243	416	299	169	162	612	436	794	660	748	483	263	440
19451282684681931322319532552203762692963161946621219818096714396351156534539924633674903194755599476432225566049383215521554539607761194851374066149165047234312804385046972095831949277150280659391606246257312289207187322195063952393931435927327018523112253646050719515111101117834417517220110210489089763652619523162752071649241429017175812179144054351953465503366279216259178153466848127251846019544625126814131794138081941857811814642777821955242220359551885174121057957992772012957611956447530276605<	1944	520	296	847	304	142	115	101	87	233	153	483	455	311
1946621219818096714396351156534539924633674903194755599476432225566049383215521554539607761194851374066149165047234312804385046972095831949277150280659391606246257312289207187322195063952393931435927327018529312925364605071951511110111783441751722011021048098976365261952316275207164924142901717581217914405435195346550336627921625917815346684812725184601954462512681413179413808194185781181464277782195524222035955188517412105795799277201295706195510078327660511195304733025333341871493591956472938376206 <td>1945</td> <td>128</td> <td>268</td> <td>468</td> <td>193</td> <td>132</td> <td>231</td> <td>953</td> <td>255</td> <td>220</td> <td>376</td> <td>269</td> <td>296</td> <td>316</td>	1945	128	268	468	193	132	231	953	255	220	376	269	296	316
1947 555 994 764 322 255 660 493 832 1552 1554 539 607 761 1948 513 740 661 491 650 472 343 1280 438 504 697 209 583 1949 277 150 280 659 391 606 246 257 312 289 207 187 322 1950 639 523 939 314 359 273 270 185 293 1292 536 460 507 1951 511 1101 1178 344 175 172 201 102 104 890 897 636 526 1953 465 503 366 279 216 591 183 418 578 1181 464 277 782 1955 242 220 359 51 885 1741 </td <td>1946</td> <td>621</td> <td>2198</td> <td>1809</td> <td>671</td> <td>439</td> <td>635</td> <td>1156</td> <td>534</td> <td>539</td> <td>924</td> <td>633</td> <td>674</td> <td>903</td>	1946	621	2198	1809	671	439	635	1156	534	539	924	633	674	903
1948 513 740 661 491 650 472 343 1280 438 504 697 209 583 1949 277 150 280 659 391 606 246 257 312 289 207 187 322 1950 639 523 939 314 359 273 270 185 293 1292 536 460 507 1951 511 1101 1178 344 175 172 201 102 104 890 897 636 526 1953 455 503 366 279 216 259 178 153 466 848 1272 518 460 1954 862 512 681 413 1794 1380 819 418 578 1181 464 277 720 1955 242 220 359 511 850 1473	1947	555	994	764	322	255	660	493	832	1552	1554	539	607	761
19492771502806593916062462573122892071873221950639523939314359273270185293129253646050719515111101117834417517220110210489089763652619523162752071649241429017175812179144054351953465503366279216259178153466848127251846019548625126814131794138081941857811814642777821955242220359551885174121057957992772012957061956447593276605111953047370257840122818151119573107843713192825142039318230361226101055311361958376296655337200410307534104456152363849019594685453112933994012713226333341871493591960200351305385 <td>1948</td> <td>513</td> <td>740</td> <td>661</td> <td>491</td> <td>650</td> <td>472</td> <td>343</td> <td>1280</td> <td>438</td> <td>504</td> <td>697</td> <td>209</td> <td>583</td>	1948	513	740	661	491	650	472	343	1280	438	504	697	209	583
19506395239393143592732701852931292536460507195151111011178344175172201102104890897636526195231627520716492414290171758121791440543519534655033662792162591781534668481272518460195486251268141317941380819418578118146427778219552422203595518851741210579579927720129570619564475932766051119530473702578401228181511195731078437131928251420393182303612261010553113619583762966553372004103075341044561523638490195946854531129339940127132263333410214615321961438381108761750854330216195510761612616691196237249181534	1949	277	150	280	659	391	606	246	257	312	289	207	187	322
1951 511 1101 1178 344 175 172 201 102 104 890 897 636 526 1952 316 275 207 164 92 414 290 171 758 1217 914 405 435 1953 465 503 366 279 216 259 178 153 466 848 1272 518 460 1954 862 512 681 413 1794 1380 819 418 578 1181 464 277 782 1955 242 220 359 551 885 1741 2105 795 799 277 201 295 706 1955 242 220 359 511 853 174 2039 3182 3036 1226 1010 53 1136 1956 476 728 531 200 410 <td< td=""><td>1950</td><td>639</td><td>523</td><td>939</td><td>314</td><td>359</td><td>273</td><td>270</td><td>185</td><td>293</td><td>1292</td><td>536</td><td>460</td><td>507</td></td<>	1950	639	523	939	314	359	273	270	185	293	1292	536	460	507
1952 316 275 207 164 92 414 290 171 758 1217 914 405 435 1953 465 503 366 279 216 259 178 153 466 848 1272 518 460 1954 862 512 681 413 1794 1380 819 418 578 1181 464 277 782 1955 242 220 359 551 885 1741 2105 795 799 277 201 295 706 1956 447 593 276 605 1119 530 473 702 578 401 228 181 511 1957 310 784 371 319 282 514 2039 3182 3036 1226 1010 533 1136 1958 366 557 337 200 161 <td< td=""><td>1951</td><td>511</td><td>1101</td><td>1178</td><td>344</td><td>175</td><td>172</td><td>201</td><td>102</td><td>104</td><td>890</td><td>897</td><td>636</td><td>526</td></td<>	1951	511	1101	1178	344	175	172	201	102	104	890	897	636	526
1953 465 503 366 279 216 259 178 153 466 848 1272 518 460 1954 862 512 681 413 1794 1380 819 418 578 1181 464 277 782 1955 242 220 359 551 885 1741 2105 795 799 277 201 295 706 1956 447 593 276 605 1119 530 473 702 578 401 228 181 511 1957 310 784 371 319 282 514 2039 3182 306 1226 1010 533 1136 1958 376 296 655 337 200 410 307 534 1044 561 523 638 490 1960 200 351 305 385 335 <td< td=""><td>1952</td><td>316</td><td>275</td><td>207</td><td>164</td><td>92</td><td>414</td><td>290</td><td>171</td><td>758</td><td>1217</td><td>914</td><td>405</td><td>435</td></td<>	1952	316	275	207	164	92	414	290	171	758	1217	914	405	435
19548625126814131794138081941857811814642777821955242220359551885174121057957992772012957061956447593276605111953047370257840122818151119573107843713192825142039318230361226101055311361958376296655337200410307534104456152363849019594685453112933994012713226333341871493591960200351305385335418313958807834102146153219614383811087617508543302161955107616126166911962372491815347242280220169587112353923345219633697667285711851501061021391100134374752619642464273294365965576797739474792713055041964266733139594	1953	465	503	366	279	216	259	178	153	466	848	1272	518	460
1955 242 220 359 551 885 1741 2105 795 799 277 201 295 706 1956 447 593 276 605 1119 530 473 702 578 401 228 181 511 1957 310 784 371 319 282 514 2039 3182 3036 1226 1010 553 1136 1958 376 296 655 337 200 410 307 534 1044 561 523 638 490 1959 468 545 311 293 399 401 271 322 633 334 187 149 359 1960 200 351 305 385 335 418 313 958 807 834 1021 461 521 1961 438 381 1087 617 508	1954	862	512	681	413	1794	1380	819	418	578	1181	464	277	782
19564475932766051119530473702578401228181511195731078437131928251420393182303612261010553113619583762966553372004103075341044561523638490195946854531129339940127132263333418714935919602003513053853354183139588078341021461532196143838110876175085433021619551076161261669119623724918153472422802201695871123539233452196336976672857118515010610213911001343747526196424642732943659655767977394747927130550419652734074452381511539146274866213459491085805196670313959433363064535852727661027103477671619684653932252	1955	242	220	359	551	885	1741	2105	795	799	277	201	295	706
19573107843713192825142039318230361226101055311361958376296655337200410307534104456152363849019594685453112933994012713226333341871493591960200351305385335418313958807834102146153219614383811087617508543302161955107616126166911962372491815347242280220169587112353923345219633697667285711851501061021391100134374752619642464273294365965576797739474792713055041965273407445238151153914627486621345949108580519667031395943336306453585272766102710347767161967667869111654221851538238343833238263954019684553932252	1956	447	593	276	605	1119	530	473	702	578	401	228	181	511
195837629665533720041030753410445615236384901959468545311293399401271322633334187149359196020035130538533541831395880783410214615321961438381108761750854330216195510761612616691196237249181534724228022016958711235392334521963369766728571185150106102139110013437475261964246427329436596557679773947479271305504196527340744523815115391462748662134594910858051966703139594333630645358527276610271034776716196766786911165422185153823834383323826395441969459541565120768613349793253437439205047171970478444337288 </td <td>1957</td> <td>310</td> <td>784</td> <td>371</td> <td>319</td> <td>282</td> <td>514</td> <td>2039</td> <td>3182</td> <td>3036</td> <td>1226</td> <td>1010</td> <td>553</td> <td>1136</td>	1957	310	784	371	319	282	514	2039	3182	3036	1226	1010	553	1136
19594685453112933994012713226333341871493591960200351305385335418313958807834102146153219614383811087617508543302161955107616126166911962372491815347242280220169587112353923345219633697667285711851501061021391100134374752619642464273294365965576797739474792713055041965273407445238151153914627486621345949108580519667031395943336306453585272766102710347767161967667869111654221851538238343833238263954019684653932252531671591861411641994793352641969459541565120768613349793253437439205047171970478444337288 <td>1958</td> <td>376</td> <td>296</td> <td>655</td> <td>337</td> <td>200</td> <td>410</td> <td>307</td> <td>534</td> <td>1044</td> <td>561</td> <td>523</td> <td>638</td> <td>490</td>	1958	376	296	655	337	200	410	307	534	1044	561	523	638	490
19502003513053853354183139588078341021461532196143838110876175085433021619551076161261669119623724918153472422802201695871123539233452196336976672857118515010610213911001343747526196424642732943659655767977394747927130550419652734074452381511539146274866213459491085805196670313959433363064535852727661027103477671619676678691116542218515382383438332382639540196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802	1959	468	545	311	293	399	401	271	322	633	334	187	149	359
19614383811087617508543302161955107616126166911962372491815347242280220169587112353923345219633697667285711851501061021391100134374752619642464273294365965576797739474792713055041965273407445238151153914627486621345949108580519667031395943336306453585272766102710347767161967667869111654221851538238343833238263954019684653932252531671591861411641994793352641969459541565120768613349793253437439205047171970478444337288505106312773524698313438586041971222478884580211211506103752639262421719985719724069608885	1960	200	351	305	385	335	418	313	958	807	834	1021	461	532
19623724918153472422802201695871123539233452196336976672857118515010610213911001343747526196424642732943659655767977394747927130550419652734074452381511539146274866213459491085805196670313959433363064535852727661027103477671619676678691116542218515382383438332382639540196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148	1961	438	381	1087	617	508	543	302	161	955	1076	1612	616	691
196336976672857118515010610213911001343747526196424642732943659655767977394747927130550419652734074452381511539146274866213459491085805196670313959433363064535852727661027103477671619676678691116542218515382383438332382639540196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148476990912601073189613487544348961974806819802 <td< td=""><td>1962</td><td>372</td><td>491</td><td>815</td><td>347</td><td>242</td><td>280</td><td>220</td><td>169</td><td>587</td><td>1123</td><td>539</td><td>233</td><td>452</td></td<>	1962	372	491	815	347	242	280	220	169	587	1123	539	233	452
19642464273294365965576797739474792713055041965273407445238151153914627486621345949108580519667031395943336306453585272766102710347767161967667869111654221851538238343833238263954019684653932252531671591861411641994793352641969459541565120768613349793253437439205047171970478444337288505106312773524698313438586041971222478884580211211506103752639262421719985719724069608885091844565619561942176578076284719736706604914847699091260107318961348754434896197480681980241822543965644965027632622550819754473504902	1963	369	766	728	571	185	150	106	102	139	1100	1343	747	526
19652734074452381511539146274866213459491085805196670313959433363064535852727661027103477671619676678691116542218515382383438332382639540196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148476990912601073189613487544348961974806819802418225439656449650276326225508197544735049028620824229072888517657571892695	1964	246	427	329	436	596	557	679	773	947	479	271	305	504
196670313959433363064535852727661027103477671619676678691116542218515382383438332382639540196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148476990912601073189613487544348961974806819802418225439656449650276326225508197544735049028620824229072888517657571892695	1965	273	407	445	238	1511	539	1462	748	662	1345	949	1085	805
19676678691116542218515382383438332382639540196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148476990912601073189613487544348961974806819802418225439656449650276326225508197544735049028620824229072888517657571892695	1966	703	1395	943	336	306	453	585	272	766	1027	1034	776	716
196846539322525316715918614116419947933526419694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148476990912601073189613487544348961974806819802418225439656449650276326225508197544735049028620824229072888517657571892695	1967	667	869	1116	542	218	515	382	383	438	332	382	639	540
19694595415651207686133497932534374392050471719704784443372885051063127735246983134385860419712224788845802112115061037526392624217199857197240696088850918445656195619421765780762847197367066049148476990912601073189613487544348961974806819802418225439656449650276326225508197544735049028620824229072888517657571892695	1968	465	393	225	253	167	159	186	141	164	199	479	335	264
1970 478 444 337 288 505 1063 1277 352 469 831 343 858 604 1971 2224 788 845 802 1121 1506 1037 526 392 624 217 199 857 1972 406 960 888 509 184 456 561 956 1942 1765 780 762 847 1973 670 660 491 484 769 909 1260 1073 1896 1348 754 434 896 1974 806 819 802 418 225 439 656 449 650 276 326 225 508 1975 447 350 490 286 208 242 290 728 885 1765 757 1892 695	1969	459	541	565	1207	686	1334	979	325	343	743	920	504	717
1971 2224 788 845 802 1121 1506 1037 526 392 624 217 199 857 1972 406 960 888 509 184 456 561 956 1942 1765 780 762 847 1973 670 660 491 484 769 909 1260 1073 1896 1348 754 434 896 1974 806 819 802 418 225 439 656 449 650 276 326 225 508 1975 447 350 490 286 208 242 290 728 885 1765 757 1892 695	1970	478	444	337	288	505	1063	1277	352	469	831	343	858	604
1972 406 960 888 509 184 456 561 956 1942 1765 780 762 847 1973 670 660 491 484 769 909 1260 1073 1386 1348 754 434 896 1974 806 819 802 418 225 439 656 449 650 276 326 225 508 1975 447 350 490 286 208 242 290 728 885 1765 757 1892 695	1971	2224	788	845	802	1121	1506	1037	526	392	624	217	199	857
1973 670 660 491 484 769 909 1260 1073 1896 1348 754 434 896 1974 806 819 802 418 225 439 656 449 650 276 326 225 508 1975 447 350 490 286 208 242 290 728 885 1765 757 1892 695	1972	406	960	888	509	184	456	561	956	1942	1765	780	762	847
1974 806 819 802 418 225 439 656 449 650 276 326 225 508 1975 447 350 490 286 208 242 290 728 885 1765 757 1892 695	1973	670	660	491	484	769	909	1260	1073	1896	1348	754	434	896
1975 447 350 490 286 208 242 290 728 885 1765 757 1892 695	1974	806	819	802	418	225	439	656	449	650	276	326	225	508
	1975	447	350	490	286	208	242	290	728	885	1765	757	1892	695
1976 1072 748 774 669 500 1556 574 1198 867 545 855 673 836	1976	1072	748	774	669	500	1556	574	1198	867	545	855	673	836
1977 828 1002 746 751 284 318 328 424 372 1048 705 676 624	1977	828	1002	746	751	284	318	328	424	372	1048	705	676	62.4
1978 271 211 372 173 132 180 470 542 637 337 463 435 352	1978	271	211	372	173	132	180	470	542	637	337	463	435	352
1979 303 164 249 241 1539 406 350 486 859 1639 1590 1105 744	1979	303	164	249	241	1539	406	350	486	859	1639	1590	1105	744
1980 627 569 929 439 405 330 952 955 1580 833 605 1033 771	1980	627	569	929	439	405	330	952	955	1580	833	605	1033	771

Tabela A.2. UHE Foz do Areia (m³/s)

1981	1341	679	287	262	217	182	119	149	221	539	602	853	454
1982	330	544	368	182	193	719	1846	657	342	1088	2165	1477	826
1983	790	817	1238	683	2010	2169	5150	1658	1158	1332	739	588	1528
1984	434	255	354	417	631	1102	601	1747	779	595	1037	645	716
1985	274	595	392	781	296	179	191	110	183	143	256	82	290
1986	166	430	433	390	405	346	144	276	438	512	570	903	418
1987	848	773	277	311	1814	1386	666	439	321	544	344	229	663
1988	287	410	417	265	1580	1229	401	179	216	439	312	197	494
1989	824	1259	690	705	940	280	459	898	1736	714	322	201	752
1990	1490	943	512	847	934	1781	1137	1498	1565	1396	1222	571	1158
1991	253	311	275	279	203	689	564	476	177	634	535	585	415
1992	357	396	626	512	1452	2845	1363	1143	628	468	509	334	886
1993	320	833	791	493	1006	722	710	391	911	2194	396	568	778
1994	236	820	510	389	795	1064	1337	535	224	342	772	433	621
1995	2148	1415	683	299	174	304	1097	267	480	1045	452	307	723
1996	1085	1399	1370	1086	249	659	1327	593	897	1389	1034	787	990
1997	1069	1781	885	248	237	678	688	1056	546	2362	2296	1134	1082
1998	1370	1153	1407	2418	1587	458	1088	1818	1963	2679	660	545	1429
1999	519	814	632	654	325	770	1620	268	385	1151	388	299	652
2000	445	669	743	231	219	269	490	342	1863	1420	477	425	633
2001	979	1596	942	443	585	740	882	780	637	1872	562	682	892
2002	677	543	399	229	528	276	189	537	866	892	1088	1084	609
2003	547	652	602	229	142	491	454	189	168	304	504	1056	445
2004	727	351	289	256	602	753	759	296	312	978	1015	486	569
2005	467	251	182	293	593	852	552	461	2036	1957	1083	332	755
2006	284	294	292	257	95	80	95	132	352	428	332	466	259
2007	564	612	681	618	1516	686	376	255	218	458	1034	715	644
2008	690	422	399	488	838	647	393	669	397	1356	1329	287	660
2009	351	401	306	128	147	197	711	1047	1647	2218	865	931	746
2010	1238	1181	866	1651	2089	785	800	707	220	485	427	1563	1001
2011	1089	1791	972	842	258	358	1443	2219	2038	951	565	307	1069
2012	611	479	367	434	732	1773	840	704	197	337	370	254	592
2013	640	540	866	528	317	1552	1709	831	1104	1045	360	366	822
2014	823	360	939	432	470	3098	861	384	782	1147	557	596	871
Média	583	664	600	471	568	660	702	592	706	919	703	567	645
DP	393,6	395,9	321,9	312,9	476,6	517,7	717,7	504	559,1	618,7	429,7	350,2	247
Mínima	128	150	182	128	92	80	95	87	104	143	187	82	249
Máxima	2224	2198	1809	2418	2089	3098	5150	3182	3036	3415	2296	1892	1528

									C.F.T.				N 4 / 11
ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SEI	001	NOV	DEZ	Media
1931	1075	572	529	310	2201	2289	1405	613	1527	1167	606	844	1095
1932	/88	1095	1294	2495	1531	1572	882	/1/	1098	1681	//4	1135	1255
1933	409	499	449	264	287	196	229	158	341	741	488	262	360
1934	398	891	687	834	600	339	285	261	325	/33	309	/80	537
1935	416	343	659	367	224	634	/19	1449	1875	5161	1452	870	1181
1936	1/10	580	383	260	430	3151	688	1532	1450	1201	1032	654	1089
1937	760	590	1043	935	5/6	448	306	473	449	1651	1830	794	821
1938	726	1615	540	610	1491	2548	3304	814	711	658	603	449	051
1939	508	625	1068	666	915	704	837	358	758	502	1703	2763	951
1940	990	667	396	/6/	812	443	337	399	380	370	389	552	542
1941	858	1763	818	603	836	1030	691	1/23	897	948	1137	1123	1036
1942	666	1367	1045	1322	967	1221	1254	911	6/6	/23	379	283	901
1943	318	514	409	261	217	946	6/1	1105	917	1082	/81	406	636
1944	6/6	408	1035	456	209	1/5	157	119	308	218	675	611	421
1945	201	372	620	275	190	316	1229	395	339	537	452	457	449
1946	899	3079	2290	951	/42	1082	2040	799	112	1557	1083	1235	13//
1947	926	1322	1060	618	436	1148	838	1221	2329	2045	809	908	1138
1948	724	1001	893	687	925	747	518	1540	649	880	1184	355	842
1949	362	210	395	911	/20	913	394	355	424	456	304	257	475
1950	942	8/5	1396	521	628	452	522	302	436	2000	879	643	800
1951	/36	1447	1740	545	282	266	326	1/3	159	1273	1415	1019	782
1952	466	428	297	314	150	/34	491	304	1170	2205	1469	625	721
1953	611	695	535	527	414	511	326	243	998	1490	1966	824	762
1954	1386	/82	887	580	2694	2163	1247	654	981	1819	816	506	1210
1955	437	336	493	/84	1372	3040	3128	1344	1214	450	336	380	1110
1956	5/1	798	424	1311	1708	964	796	1268	981	643	341	226	836
1957	422	1069	516	421	412	1031	3038	4402	4769	1/88	1429	801	1675
1958	521	348	778	466	257	505	4/1	836	1818	993	902	955	/38
1959	710	992	502	464	587	/38	4/1	569	840	539	320	237	581
1960	270	502	407	540	481	084	485	1361	1385	1393	1610	641	813
1961	562	495	1087	969	897	847	481	257	1234	1620	2113	994	1013
1962	619	1020	1205	537 910	347	499	302	209	895	2001	940	405	764
1963	503	1086	950	816	324	277	1/9	159	191	1616	2566		820
1964	443	534	498	946	935	908	1050	1474	1441	909	497	5/1	859
1965	470	745	139	462	2339	869	2086	1075	1036	2330	1648	1889	1308
1966	1138	2091	1353	508	415	031	927	453	720	1623	1531	1008	1066
1967	1011	1140	1512	755	327	707	201	292	739	528	720	945	798
1968	608	535	320	380	316	243	301	217	524	400	123	525	399
1969	716	820	798	1038	995	2001	1424	550	534	1278	1287	1009	1100
1970	716	607	503	445	/19	1496	2001	526	580	1257	547	1098	883
19/1	3094	11/6	1129	1189	1898	2367	1/24	801	/35	969	427	390	1325
1972	0/5	1366	1289	835	327	808	1030	1/94	3212	2659	1130	1124	1354
1973	1124	1170	0/0 1001	745	12/8	1042	1/90	1090	2047	2223	1732	0/U	1459
1974	1124	11/0	1091	000	3/3	/45	93/	/30	1030	200	1250	5/4 2400	194
1975	182	1002	/54	403	343	489	4/9	997	1333	2025	1424	2480	1004
1970	1200	1204	940	985	112	Z1/U	924	1/10	1340	914	1434	1103	1235
1079	1209	1304	983	929	580 101		211	005	010	1292	990	939	502
1978	5/0	292	44Z	24/	101	620	500	005	1240	403 2010	707 2E10	1550	JZŎ
1090	410	270	354	5/0	2305	030	1407	020	1240	2010	2010	1520	1107
1980	1048	849	1733	025	/95	290	140/	15/4	2385	1410	TUUU	12/2	1131

Tabela A.3. UHE Salto Osório (m³/s)

1981	1995	1242	557	599	543	468	333	288	332	895	1024	1877	846
1982	694	740	595	281	272	1354	3407	1138	576	2046	4014	2543	1472
1983	1319	1303	2195	1431	4102	3657	8473	2482	2129	2381	1542	936	2663
1984	683	509	627	766	1010	2005	942	2587	1261	962	1688	1234	1190
1985	464	990	643	1452	581	336	359	220	293	240	388	126	508
1986	254	742	728	677	991	847	279	493	807	822	795	1219	721
1987	1104	1276	466	583	3701	2351	1208	707	457	838	718	482	1158
1988	446	595	612	469	2546	1968	723	280	270	514	419	276	760
1989	1316	2072	1100	1029	1567	465	735	1546	3067	1465	678	391	1286
1990	2299	1382	678	1259	1454	3062	1910	2469	2667	2408	1824	902	1860
1991	367	408	339	445	308	1227	954	706	272	915	905	1074	660
1992	673	610	883	907	2838	4544	2317	1927	1358	1089	1006	666	1568
1993	658	1182	1145	737	1936	1314	1225	755	1398	3732	718	1112	1326
1994	521	1214	749	573	1242	1987	2174	865	427	697	1335	884	1056
1995	4023	1998	1093	633	349	535	1750	466	770	1757	758	457	1216
1996	1482	2399	2074	1733	408	954	1937	816	1207	2744	1670	1342	1564
1997	1557	2950	1380	429	500	1585	1331	1912	939	3922	3504	1713	1810
1998	1815	1913	2075	4799	2832	811	1571	2699	3426	4565	1175	813	2375
1999	779	1283	936	1058	596	1473	2582	469	623	1426	611	454	1024
2000	667	1001	1075	428	501	559	1018	648	3264	2543	879	643	1102
2001	1436	3021	1574	850	953	1271	1443	1151	883	2971	906	1054	1459
2002	1087	953	628	368	1273	614	381	866	1448	1825	1979	1855	1106
2003	868	1113	1035	451	296	935	796	369	316	590	1028	1850	804
2004	1218	547	436	395	1202	1302	1496	578	549	1751	1983	768	1019
2005	706	391	273	411	1105	1849	1009	722	3071	3625	1698	535	1283
2006	553	533	528	479	184	157	167	242	601	717	541	864	464
2007	1011	898	1103	1397	2785	1162	634	432	313	625	1573	1083	1085
2008	1058	604	527	718	1310	1225	820	1286	746	2030	2252	516	1091
2009	531	537	466	211	365	560	1366	1747	2599	3525	1484	1501	1241
2010	1841	1697	1394	2589	3013	1173	1153	1011	358	718	641	2437	1502
2011	1635	2649	1435	1243	457	557	2246	3637	2989	1556	1125	530	1672
2012	857	653	602	708	1153	2712	1301	1134	359	567	658	506	934
2013	1256	944	1926	1108	786	3300	2715	1298	1635	1679	724	864	1520
2014	1297	539	1476	880	1034	5240	1659	574	1278	2047	817	737	1465
Média	900	1011	881	774	970	1137	1147	934	1123	1497	1148	894	1035
DP	617,6	623,8	465	579,9	855,4	869,3	1151	742,6	906,5	1018	703,2	542,6	416,5
Mínima	201	210	273	211	150	157	157	119	159	218	304	126	360
Máxima	4023	3079	2290	4799	4102	5240	8473	4402	4769	5161	4014	2763	2663

ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	оит	NOV	DFZ	Média
1931	72423	101243	104855	78051	69347	54892	43269	29860	40040	33729	33846	49525	59257
1932	70506	80364	72157	70848	54355	47068	35637	27137	30256	37766	35943	64264	52192
1933	78057	66973	56905	50754	37578	28296	22835	19965	20907	31474	25840	42469	40171
1934	57096	56448	52367	46342	34343	25528	20746	17719	18580	20802	19501	48712	34849
1935	68945	87991	78000	68720	42959	36011	32878	36303	37234	73145	38343	46630	53930
1936	53982	42189	64828	46420	36922	48265	27517	30786	31199	28973	27448	43305	40153
1937	77536	59373	61115	54186	39070	30487	24273	22465	21823	35673	50409	62066	44873
1938	67007	67171	53068	44908	45179	42186	41159	23388	20526	24579	28988	46042	42017
1939	66021	68341	50971	43597	41724	30735	24854	18280	22579	21006	41287	62185	40965
1940	71851	90921	83153	55764	45117	32907	27992	26873	21524	24370	37770	46243	47040
1941	60606	59191	56564	54314	46456	35984	28505	35402	30161	34767	43784	56295	45169
1942	56785	72251	81490	66354	50963	47049	37252	27824	26236	29508	32559	47493	47980
1943	87875	84774	82092	53166	38247	40813	30101	30456	27117	33277	41149	48170	49770
1944	48615	60914	70380	46555	30909	24685	20213	15480	14646	16133	30730	35741	34583
1945	49370	83902	77334	74662	44346	32260	33253	21981	19859	24042	36362	67733	47092
1946	96201	91752	94418	61934	43549	41753	48207	27871	22932	32583	32001	43301	53042
1947	66046	78982	109518	68918	45025	38284	31538	29689	41902	40228	33832	56115	53340
1948	63396	72152	74847	56812	44191	34209	28635	36183	20516	24024	32807	54366	45178
1949	59130	82018	65916	52178	39060	35371	25670	21675	21310	22772	26679	40359	41012
1950	54051	78626	74785	53622	40470	30574	24990	23800	19150	38726	40423	53030	44354
1951	67483	87335	86154	59155	37646	30055	25000	19194	16543	32460	30399	36657	44007
1952	43575	61929	89425	52759	33848	35590	29527	19712	25698	34128	36996	37204	41699
1953	36201	40405	44930	47519	31431	27603	21006	16808	27018	37326	39782	44847	34573
1954	45705	59340	47813	41782	56631	48738	39467	19816	32137	37580	24009	31465	40374
1955	44399	39223	42346	48048	38787	42946	42883	23974	22337	19297	24397	42970	35967
1956	51843	42503	50148	46218	48398	43845	29877	35686	29646	23616	28345	51297	40119
1957	68413	77565	76291	70247	45617	36899	50529	62799	67633	38460	41544	53208	57434
1958	51615	69614	66277	53290	42211	41605	29368	28391	38035	35572	38947	46097	45085
1959	75558	67800	67464	56832	40993	32940	24398	23517	24535	23682	28460	33727	41659
1960	58203	71630	76000	53383	41293	35399	27175	32639	29157	29895	41179	51684	45636
1961	82781	87788	101260	67063	53504	41116	30833	22678	37210	37482	43355	39634	53725
1962	57000	74333	75440	47764	37753	31283	24789	19987	26240	3/16/	33758	58495	43667
1963	/6546	77802	60451	43544	30636	24634	20031	20389	19906	36016	42035	28691	40057
1964	45927	72083	49149	42967	30297	27943	25555	20044	20172	2/390	32595	4/5/4	58220
1905	0000	106202	90710	60029	44204	20221	24620	20001	26270	41044	47904	57522	E6642
1900	20200	06000	70956	00020 EE201	26222	39221	20272	29091	24516	241044	249071	57552	17022
1907	60754	571/2	64226	11/27	2015/	22462	29373	17091	10120	24550	21084	16603	26084
1960	17110	5/145	17751	41437	29134	36203	20721	17252	17578	20025	52202	40093	27252
1909	65721	68317	70595	42340	38579	30203	39130	22720	27817	23923	30114	38/37	/3216
1971	57497	40368	46553	41717	38403	40651	36308	26975	20719	27700	30599	51992	38290
1972	51055	77882	71265	54544	33572	37844	35902	44345	50427	63467	56939	63617	53405
1973	71687	74344	65548	64739	51481	45816	44916	41434	43952	42266	47925	54961	54089
1974	78764	64549	84375	70517	46606	44941	34489	26001	26728	25884	30637	44811	48192
1975	63206	62522	52009	47839	33405	29222	26550	27734	31145	45237	43407	67512	44149
1976	60830	64960	67114	53895	44449	52842	36937	44412	41290	39096	54431	74264	52877
1977	90388	91654	59669	62560	40836	37305	31555	33922	27383	32040	42554	63417	51107
1978	81697	59823	69358	47020	37089	34020	34529	26595	29595	24278	41203	57784	45249
1979	78428	101449	70744	55778	59866	38100	33791	31702	37572	52601	54458	60067	56213
1980	89188	105066	81408	67190	49314	38933	40961	41381	42582	35979	40895	73173	58839

Tabela A.4. Subsistema S/SE (MW Médio)

1981	90380	67232	57767	54286	39513	35993	25991	21753	21743	35531	58790	79500	49040
1982	96727	88252	101386	77559	52863	58857	67145	40556	30505	55916	76691	83097	69130
1983	115221	137671	121852	94887	102905	115892	124678	66371	64347	67620	67880	83704	96919
1984	78005	63300	57103	62653	57805	50862	39374	51346	37065	35110	39991	58946	52630
1985	84658	88815	86929	72678	54231	39156	32670	29033	28035	24679	31895	38177	50913
1986	63215	64769	63687	53701	48024	38441	28865	31975	28675	27633	30720	56412	44676
1987	70355	77314	58582	56984	74769	55011	39991	30670	27240	35902	38239	58381	51953
1988	58446	71970	76867	60594	63796	52780	31077	22216	25076	28040	31616	38527	46750
1989	73858	84030	70983	52960	47897	31804	33088	38247	57614	33956	34583	68968	52332
1990	103698	60250	58345	54524	49317	60038	43049	38592	47879	52646	46312	38302	54413
1991	59230	78670	80804	81191	49878	45529	35895	29742	21773	36933	33746	49139	50211
1992	73197	100963	75017	68244	84503	70466	53309	42676	44518	46205	59413	65774	65357
1993	62407	89013	76863	65361	54453	48856	45966	29193	37372	54078	31412	51837	53901
1994	76155	74471	78180	60073	51141	49078	46457	27852	20812	28619	40650	49685	50264
1995	84941	104620	69925	61443	44244	34453	38394	24893	24018	41831	32582	42131	50290
1996	72798	66164	75707	56978	35662	32995	35605	27898	35861	42054	51679	59590	49416
1997	109471	104971	78928	60835	45675	56123	44264	41896	29734	63440	70535	68659	64544
1998	64975	84804	84168	86306	63116	38697	36912	49005	51359	61089	40103	51362	59325
1999	71556	68624	74836	52357	37061	38330	45499	22179	23211	28601	27122	39029	44034
2000	65936	81787	78941	50412	35268	30842	33989	27025	58275	44809	39879	55882	50254
2001	60556	70615	60911	48036	42178	36751	34551	24578	26385	49933	36898	53584	45415
2002	77304	84558	63912	44138	44554	37004	28029	30149	33710	33873	42494	56119	47987
2003	73917	78855	66204	56129	37472	34792	29016	20162	18841	23192	31099	54829	43709
2004	64083	84480	73743	60057	52594	45663	42891	25730	24935	37417	41456	50726	50315
2005	78660	68932	68146	51674	50472	48850	32923	25848	47374	54052	44093	65372	53033
2006	58788	63233	73624	63815	37737	29765	26121	23957	24856	32753	39785	69375	45317
2007	109107	106899	71830	55290	58230	37997	39061	27452	23170	25038	41539	43644	53271
2008	54011	79394	79931	70411	55929	44547	31460	34305	26195	44922	48336	46629	51339
2009	67099	78650	62340	61627	43233	36187	45487	46320	64033	64474	55485	80171	58759
2010	95267	84219	74498	75586	60486	38096	34149	26484	21774	29729	36391	63884	53380
2011	93971	79647	109898	78493	48611	40987	49565	56799	43361	38069	36013	51501	60576
2012	85649	63178	50805	44506	43019	58927	40462	27247	20706	24171	29958	36499	43761
2013	62675	70757	71896	68982	40284	61378	50736	39243	36024	40102	34274	52684	52420
2014	49271	41150	61712	55624	44979	74150	39357	24220	28490	33645	28601	46936	44011
Média	69448	75521	71411	57255	45777	40200	34849	29527	30600	36091	39472	52882	48586
DP	16260	17400	15232	10770	12165	12527	13553	9922	11308	12022	10762	11991	9188
Mínima	36201	39223	42346	41437	28609	22462	20031	15480	14646	16133	19501	28691	34573
Máxima	115221	137671	121852	94887	102905	115892	124678	66371	67633	73145	76691	83704	96919

ANEXO 3 – DADOS DO TESTE WILCOXON – FOZ DO AREIA

Ano	Média	R1	Per X n valores	Per Y m valores	Ano	Média	R1	Per X n valores	Per Y m valores
1933	249,25	1		1	1999	652,08	43	43	
2006	258,92	2	2		2008	659,65	44	44	
1968	263,83	3		3	1987	662,67	45	45	
1985	290,17	4	4		1936	664,58	46		46
1944	311,33	5		5	1961	691,33	47		47
1945	315,75	6		6	1975	695,00	48	48	
1949	321,75	7		7	1955	705,83	49		49
1940	336,67	8		8	1966	716,33	50		50
1978	351,92	9	9		1984	716,42	51	51	
1934	356,08	10		10	1969	717,17	52		52
1959	359,42	11		11	1931	720,08	53		53
1991	415,08	12	12		1995	722,58	54	54	
1986	417,75	13	13		1979	744,25	55	55	
1952	435,25	14		14	2009	745,70	56	56	
1943	440,42	15		15	1935	750,42	57		57
2003	444,83	16	16		1989	752,33	58	58	
1962	451,50	17		17	1932	752,83	59		59
1981	454,25	18	18		2005	754,92	60	60	
1953	460,25	19		19	1947	760,58	61		61
1958	490,08	20		20	1938	763,17	62		62
1988	494,33	21	21		1980	771,42	63	63	
1964	503,75	22		22	1993	777,92	64	64	
1950	506,92	23		23	1954	781,58	65		65
1974	507,58	24	24		1965	805,33	66		66
1956	511,08	25		25	2013	821,57	67	67	
1963	525,50	26		26	1982	825,92	68	68	
1951	525,92	27		27	1976	835,92	69	69	
1960	532,33	28		28	1972	847,42	70	70	
1967	540,25	29		29	1971	856,75	71		71
1937	557,42	30		30	2014	870,85	72	72	
2004	568,67	31	31		1992	886,08	73	73	
1948	583,17	32		32	2001	891,67	74	74	
2012	591,61	33	33		1973	895,67	75	75	
1942	593,08	34		34	1946	902,75	76		76
1970	603,75	35		35	1996	989,58	77	77	
2002	609,00	36	36		2010	1001,05	78	78	
1939	615,25	37		37	2011	1069,35	79	79	
1994	621,42	38	38		1997	1081,67	80	80	
1977	623,50	39	39		1957	1135,50	81		81
1941	625,00	40		40	1990	1158,00	82	82	
2000	632,75	41	41		1998	1428,83	83	83	
2007	644,46	42	42		1983	1527,67	84	84	

Tabela A.5. – Teste Wilcoxon – Foz do Areia

ANEXO 4 – SÉRIES DE VAZÕES CORRIGIDAS

Tabela A.6. UHE Foz do Areia (m³/s) – Vazões Corrigidas

Ano\Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média Anual
1931	904	507	486	248	1580	1760	1139	528	1424	1083	528	811	917
1932	696	962	962	1839	1246	1074	614	556	771	983	680	1115	958
1933	353	471	372	221	227	169	199	146	319	705	409	216	317
1934	347	826	602	673	461	256	223	210	262	622	249	706	453
1935	377	328	607	277	159	365	451	1040	1454	4347	1325	732	955
1936	1466	499	340	215	299	1681	449	1213	1283	1092	997	616	846
1937	629	505	980	880	480	367	243	428	368	1554	1433	648	710
1938	629	1396	448	526	1144	1935	2678	689	640	608	538	425	971
1939	470	570	967	574	717	580	612	276	657	401	1278	2295	783
1940	799	550	316	513	625	304	243	372	323	345	303	449	429
1941	808	1396	634	409	556	738	477	1231	690	784	871	952	796
1942	481	1372	899	1021	776	1039	1037	723	564	603	289	255	755
1943	309	530	381	215	206	779	555	1011	840	952	615	335	561
1944	662	377	1078	387	181	146	129	111	297	195	615	579	396
1945	163	341	596	246	168	294	1213	325	280	479	342	377	402
1946	790	2798	2303	854	559	808	1471	680	686	1176	806	858	1149
1947	706	1265	972	410	325	840	628	1059	1976	1978	686	773	968
1948	653	942	841	625	827	601	437	1629	558	642	887	266	742
1949	353	191	356	839	498	771	313	327	397	368	263	238	410
1950	813	666	1195	400	457	347	344	235	373	1645	682	586	645
1951	650	1401	1499	438	223	219	256	130	132	1133	1142	810	669
1952	402	350	263	209	117	527	369	218	965	1549	1163	516	554
1953	592	640	466	355	275	330	227	195	593	1079	1619	659	586
1954	1097	652	867	526	2284	1757	1042	532	736	1503	591	353	995
1955	308	280	457	701	1127	2216	2679	1012	1017	353	256	376	898
1956	569	755	351	770	1424	675	602	894	736	510	290	230	651
1957	395	998	472	406	359	654	2595	4050	3864	1561	1286	704	1445
1958	479	377	834	429	255	522	391	680	1329	714	666	812	624
1959	596	694	396	373	508	510	345	410	806	425	238	190	457
1960	255	447	388	490	426	532	398	1219	1027	1062	1300	587	678
1961	558	485	1384	785	647	691	384	205	1216	1370	2052	784	880
1962	474	625	1037	442	308	356	280	215	747	1429	686	297	575
1963	470	975	927	727	235	191	135	130	177	1400	1709	951	669
1964	313	544	419	555	759	709	864	984	1205	610	345	388	641
1965	347	518	566	303	1923	686	1861	952	843	1712	1208	1381	1025
1966	895	1776	1200	428	390	577	745	346	975	1307	1316	988	912
1967	849	1106	1421	690	277	656	486	488	558	423	486	813	688
1968	592	500	286	322	213	202	237	179	209	253	610	426	336
1969	584	689	719	1536	873	1698	1246	414	437	946	1171	642	913
1970	608	565	429	367	643	1353	1625	448	597	1058	437	1092	769
1971	2831	1003	1076	1021	1427	1917	1320	670	499	794	276	253	1091
1972	406	960	888	509	184	456	561	956	1942	1765	780	762	847
1973	670	660	491	484	769	909	1260	1073	1896	1348	754	434	896
1974	806	819	802	418	225	439	656	449	650	276	326	225	508
1975	447	350	490	286	208	242	290	728	885	1765	757	1892	695
1976	1072	748	774	669	500	1556	574	1198	867	545	855	673	836
1977	828	1002	746	751	284	318	328	424	372	1048	705	676	624
1978	271	211	372	173	132	180	470	542	637	337	463	435	352
1979	303	164	249	241	1539	406	350	486	859	1639	1590	1105	744
1980	627	569	929	439	405	330	952	955	1580	833	605	1033	771

1981	1341	679	287	262	217	182	119	149	221	539	602	853	454
1982	330	544	368	182	193	719	1846	657	342	1088	2165	1477	826
1983	790	817	1238	683	2010	2169	5150	1658	1158	1332	739	588	1528
1984	434	255	354	417	631	1102	601	1747	779	595	1037	645	716
1985	274	595	392	781	296	179	191	110	183	143	256	82	290
1986	166	430	433	390	405	346	144	276	438	512	570	903	418
1987	848	773	277	311	1814	1386	666	439	321	544	344	229	663
1988	287	410	417	265	1580	1229	401	179	216	439	312	197	494
1989	824	1259	690	705	940	280	459	898	1736	714	322	201	752
1990	1490	943	512	847	934	1781	1137	1498	1565	1396	1222	571	1158
1991	253	311	275	279	203	689	564	476	177	634	535	585	415
1992	357	396	626	512	1452	2845	1363	1143	628	468	509	334	886
1993	320	833	791	493	1006	722	710	391	911	2194	396	568	778
1994	236	820	510	389	795	1064	1337	535	224	342	772	433	621
1995	2148	1415	683	299	174	304	1097	267	480	1045	452	307	723
1996	1085	1399	1370	1086	249	659	1327	593	897	1389	1034	787	990
1997	1069	1781	885	248	237	678	688	1056	546	2362	2296	1134	1082
1998	1370	1153	1407	2418	1587	458	1088	1818	1963	2679	660	545	1429
1999	519	814	632	654	325	770	1620	268	385	1151	388	299	652
2000	445	669	743	231	219	269	490	342	1863	1420	477	425	633
2001	979	1596	942	443	585	740	882	780	637	1872	562	682	892
2002	677	543	399	229	528	276	189	537	866	892	1088	1084	609
2003	547	652	602	229	142	491	454	189	168	304	504	1056	445
2004	727	351	289	256	602	753	759	296	312	978	1015	486	569
2005	467	251	182	293	593	852	552	461	2036	1957	1083	332	755
2006	284	294	292	257	95	80	95	132	352	428	332	466	259
2007	564	612	681	618	1516	686	376	255	218	458	1034	715	644
2008	690	422	399	488	838	647	393	669	397	1356	1329	287	660
2009	351	401	306	128	147	197	711	1047	1647	2218	865	931	746
2010	1238	1181	866	1651	2089	785	800	707	220	485	427	1563	1001
2011	1089	1791	972	842	258	358	1443	2219	2038	951	565	307	1069
2012	611	479	367	434	732	1773	840	704	197	337	370	254	592
2013	640	540	866	528	317	1552	1709	831	1104	1045	360	366	822
2014	823	360	939	432	470	3098	861	384	782	1147	557	596	871
Média	663	754	687	545	639	783	806	689	808	1032	773	641	735
DP	423	457,2	374,2	350,7	527,3	625,4	755,6	588,1	627,2	679,2	462,7	390	255,5
Mínima	163	164	182	128	95	80	95	110	132	143	238	82	259
Máxima	2831	2798	2303	2418	2284	3098	5150	4050	3864	4347	2296	2295	1528

Tabela A.6. UHE Foz do Areia (m³/s) – Vazões Corrigidas (continuação)

	,	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	~~~~~~	·····	······	·····		·	,,
ANO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Média
1931	1467	780,6	721,9	423	3004	3124	1917	837	2084	1593	827	1152	1494
1932	1075	1494	1766	3405	2089	2145	1204	978	1498	2294	1056	1549	1713
1933	558	681	613	360	392	267	313	216	465	1011	666	358	492
1934	543	1216	938	1138	819	463	389	356	444	1000	422	1064	733
1935	568	468	899	501	306	865	981	1977	2559	7043	1981	1187	1611
1936	2334	791	523	355	587	4300	939	2091	1979	1639	1408	892	1486
1937	1037	805	1423	1276	786	611	418	645	613	2253	2497	1084	1121
1938	991	2204	737	841	2035	3477	4509	1111	970	898	823	613	1601
1939	693	853	1457	909	1249	961	1142	489	1034	685	2324	3771	1297
1940	1351	910	540	1047	1108	605	460	544	519	505	531	753	739
1941	1171	2406	1116	823	1141	1406	943	2351	1224	1294	1552	1533	1413
1942	909	1865	1426	1804	1320	1666	1711	1243	923	987	517	386	1230
1943	434	701	558	356	296	1291	916	1508	1251	1477	1066	554	867
1944	923	557	1412	622	285	239	214	162	420	297	921	834	574
1945	274	508	846	375	259	431	1677	539	463	733	617	624	612
1946	1227	4202	3125	1298	1013	1477	2784	1090	1054	2125	1478	1685	1880
1947	1264	1804	1447	843	595	1567	1144	1666	3178	2791	1104	1239	1553
1948	988	1366	1219	938	1262	1019	707	2102	886	1201	1616	484	1149
1949	494	287	539	1243	983	1246	538	484	579	622	415	351	648
1950	1286	1194	1905	711	857	617	712	412	595	2729	1200	877	1091
1951	1004	1975	2374	744	385	363	445	236	217	1737	1931	1391	1067
1952	636	584	405	429	205	1002	670	415	1597	3009	2005	853	984
1953	834	948	730	719	565	697	445	332	1362	2033	2683	1124	1039
1954	1891	1067	1210	791	3676	2952	1702	892	1339	2482	1114	691	1651
1955	596	459	673	1070	1872	4149	4269	1834	1657	614	459	519	1514
1956	779	1089	579	1789	2331	1316	1086	1730	1339	877	465	308	1141
1957	576	1459	704	575	562	1407	4146	6007	6508	2440	1950	1093	2286
1958	711	475	1062	636	351	689	643	1141	2481	1355	1231	1303	1006
1959	969	1354	685	633	801	1007	643	776	1146	736	445	323	793
1960	368	685	555	737	656	933	662	1857	1890	1901	2197	875	1110
1961	767	676	2302	1322	1224	1156	656	351	1684	2211	2884	1356	1382
1962	843	1392	1644	733	474	681	494	367	1221	2731	1291	635	1042
1963	768	1482	1296	1114	442	378	244	217	261	2205	3502	1516	1119
1964	605	865	680	1291	1276	1239	1433	2011	1966	1240	678	779	1172
1965	641	1017	1008	630	3192	1186	2847	1467	1414	3188	2249	2578	1785
1966	1553	2853	1846	693	566	861	1265	618	1515	2215	2089	1376	1454
1967	1380	1564	2063	1030	446	1047	839	808	1008	721	869	1290	1089
1968	830	730	437	519	431	332	411	296	303	546	987	716	545
1969	1635	1119	1089	2235	1358	2731	1943	751	729	1744	1756	1022	1509
1970	977	828	686	607	981	2042	2731	718	928	1715	746	1498	1205
1971	4222	1605	1541	1623	2590	3230	2353	1093	1003	1322	583	532	1808
1972	675	1366	1289	835	327	808	1030	1794	3212	2659	1130	1124	1354
1973	1354	1292	876	745	1278	1642	1790	1690	2647	2223	1295	670	1459
1974	1124	1170	1091	606	373	745	937	730	1030	500	646	574	794
1975	782	766	754	463	343	489	479	997	1333	2625	1250	2486	1064
1976	1466	1093	940	985	719	2170	924	1716	1346	914	1434	1109	1235
1977	1209	1304	983	929	386	581	511	618	597	1295	990	939	862
1978	376	292	442	247	181	251	966	885	910	463	707	611	528
1979	416	276	354	376	2305	630	506	820	1246	2810	2516	1556	1151
1980	1048	849	1299	625	795	590	1407	1374	2385	1418	1000	1572	1197

Tabela A.7. UHE Salto Osório (m³/s) – Vazões Corrigidas

1981	1995	1242	557	599	543	468	333	288	332	895	1024	1877	846
1982	694	740	595	281	272	1354	3407	1138	576	2046	4014	2543	1472
1983	1319	1303	2195	1431	4102	3657	8473	2482	2129	2381	1542	936	2663
1984	683	509	627	766	1010	2005	942	2587	1261	962	1688	1234	1190
1985	464	990	643	1452	581	336	359	220	293	240	388	126	508
1986	254	742	728	677	991	847	279	493	807	822	795	1219	721
1987	1104	1276	466	583	3701	2351	1208	707	457	838	718	482	1158
1988	446	595	612	469	2546	1968	723	280	270	514	419	276	760
1989	1316	2072	1100	1029	1567	465	735	1546	3067	1465	678	391	1286
1990	2299	1382	678	1259	1454	3062	1910	2469	2667	2408	1824	902	1860
1991	367	408	339	445	308	1227	954	706	272	915	905	1074	660
1992	673	610	883	907	2838	4544	2317	1927	1358	1089	1006	666	1568
1993	658	1182	1145	737	1936	1314	1225	755	1398	3732	718	1112	1326
1994	521	1214	749	573	1242	1987	2174	865	427	697	1335	884	1056
1995	4023	1998	1093	633	349	535	1750	466	770	1757	758	457	1216
1996	1482	2399	2074	1733	408	954	1937	816	1207	2744	1670	1342	1564
1997	1557	2950	1380	429	500	1585	1331	1912	939	3922	3504	1713	1810
1998	1815	1913	2075	4799	2832	811	1571	2699	3426	4565	1175	813	2375
1999	779	1283	936	1058	596	1473	2582	469	623	1426	611	454	1024
2000	667	1001	1075	428	501	559	1018	648	3264	2543	879	643	1102
2001	1436	3021	1574	850	953	1271	1443	1151	883	2971	906	1054	1459
2002	1087	953	628	368	1273	614	381	866	1448	1825	1979	1855	1106
2003	868	1113	1035	451	296	935	796	369	316	590	1028	1850	804
2004	1218	547	436	395	1202	1302	1496	578	549	1751	1983	768	1019
2005	706	391	273	411	1105	1849	1009	722	3071	3625	1698	535	1283
2006	553	533	528	479	184	157	167	242	601	717	541	864	464
2007	1011	898	1103	1397	2785	1162	634	432	313	625	1573	1083	1085
2008	1058	604	527	718	1310	1225	820	1286	746	2030	2252	516	1091
2009	531	537	466	211	365	560	1366	1747	2599	3525	1484	1501	1241
2010	1841	1697	1394	2589	3013	1173	1153	1011	358	718	641	2437	1502
2011	1635	2649	1435	1243	457	557	2246	3637	2989	1556	1125	530	1672
2012	857	653	602	708	1153	2712	1301	1134	359	567	658	506	934
2013	1256	944	1926	1108	786	3300	2715	1298	1635	1679	724	864	1520
2014	1297	539	1476	880	1034	5240	1659	574	1278	2047	817	737	1465
Média	1056	1179	1054	924	1116	1392	1356	1121	1321	1731	1305	1042	1216
DP	667,9	718,2	561	624,6	915,5	1088	1224	902,7	1033	1128	769,3	616,7	425
Mínima	254	276	273	211	181	157	167	162	217	240	388	126	464
Máxima	4222	4202	3125	4799	4102	5240	8473	6007	6508	7043	4014	3771	2663

Tabela A.7. UHE Salto Osório (m³/s) – Vazões Corrigidas (continuação)

ANEXO 5 – DADOS DE FOZ DO AREIA

Hidrologia

Coordenadas geográficas: 26° 0' 35.40" sul / 51°39'44.39" oeste

Área da bacia hidrográfica 29.800 km²

Vazão média de longo prazo (1931 - 1975): 544 m³/s

Geologia

O local é formado por camadas basálticas regulares e quase horizontais. Cinco camadas aparecem entre as cotas 550 e 750, cada uma delas formadas principalmente por basaltos maciços.

Reservatório

Nível máximo operacional: 744,0 m;

Nível máximo excepcional: 745,5 m;

Nível mínimo operacional: 698,0 m;

Volume total: 8.300.000.000 m³;

Volume útil: 5.600.000.000 m³

Comprimento aproximado: 100 km

Área inundada: 167 km²

Canal de Fuga

Nível máximo normal: 607,0 m;

Nível máximo excepcional: 617,5 m;

Nível médio normal: 605,0 m;

Nível mínimo normal: 602,0 m;

Barragem principal

Enrocamento compactado com face de concreto

Altura máxima: 160 m;

Comprimento da crista: 828 m;

Largura da crista: 12 m;

Largura máxima na fundação: 400 m;

Volume total do enrocamento: 13.340.000 m³.

Volume nominal 100.260 m³

Volume total de concreto 81.150 m³

Desvio do rio durante a construção

Fase 1:

Construção dos túneis de desvio na margem direita.

Características dos túneis:

- quantidade: 2;
- diâmetro: 12,0 m;
- comprimento,túnel n.º 1: 568,0 m;
- comprimento,túnel n.° 2: 586,0 m;
- material de proteção concreto projetado (parcial)

Fase 2:

Construção das ensecadeiras e desvio do rio através dos túneis; construção da barragem:

- vazão máxima de projeto: 7.700 m³/s (500 anos).

Fase 3:

Fechamento dos túneis e armazenamento de água no reservatório.

Vertedouro

Tipo de superfície controlado por comportas; estrutura de concreto armado com crista, pilares, ponte, canal e defletor.

Comprimento total: 400 m;

Altura máxima acima da fundação: 30 m;

Largura de cada comporta: 14,5 m;

Quantidade de comportas: 4;

Altura de cada comporta: 18.5 m;

Capacidade máxima de descarga: 11.000 m³/s.

Canal de adução

Comprimento: 400 m;

Largura do fundo: 90 m;

Tomada de água

Estrutura de concreto armado apoiada em rocha

Comprimento: 108 m;

Altura máxima: 70 m.

Comportas

- tipo plana;
- quantidade: 4;
- dimensões 7,4 x 7,4 m;

Túneis forçado

Escavados na rocha, revestidos de concreto armado e armação metálica nos últimos 50 metros.

Quantidade de condutos: 6;

Comprimento médio: 217 m;

Diâmetro:

- trecho sem armadura: 7,40 m;

- trecho com armadura: 7,00 m.

Casa de força

Tipo semi-abrigada

Instalação inicial:

4 unidades de 418,5 MW - Total:1.674,0 MW

Instalação final:

6 unidades de 418,5 MW - Total:2.511,0 MW

Capacidade máxima da ponte rolante: 800 ton.

Capacidade da ponte auxiliar: 50 ton.

Subestação

Tipo externa, blindada, isolamento SF 6.

Tensão máxima de operação: 550 kV;

Nível básico de isolamento: 1.550 kV;

Corrente nominal: 3.000 A;

Quantidade de disjuntores: 10;

Capacidade de interrupção: 50 k;

Quantidade de transformadores monofásicos: 19;

Potência de cada transformador: 155 MVA;

Tensão: 16,5 - 552/ V3 kV.

Turbinas

Tipo Francis, eixo vertical;

Potência máxima: 585.000 CV;

Queda nominal: 120 m;

Queda máxima: 135 m;

Vazão nominal: 304 m³/s;

Vazão máxima: 349 m³/s;

Velocidade sincronal: 126 rpm.

Rotor:

Diâmetro máximo: 6.024 mm;

Altura: 2.615 mm;

Peso 120 ton;

Geradores

Tipo Umbrella, trifásico

Potência nominal: 415.000 kVA;

Elevação de temperatura acima de 40 °C (ambiente 80 °C);

Fator de potência: 0,9;

Tensão nominal: 16,5 kV;

Freqüência: 60 Hz.

Quantidades principais

Escavação comum: 10.461.000 m³; Escavação em rocha (superficial): 14.631.000 m³; Escavação em rocha (túneis): 245.000 m³; Enrocamento: 13.314.000 m³; Concreto (todas as estruturas): 584.000 m³.