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RESUMO 

 

 Estimar a diversidade marinha é uma tarefa desafiadora. Mais de 250 anos após Lineu começar a 

descrever a diversidade marinha, é estimado que mais de 70% das espécies ainda não foram descritas. Essa missão 

é ainda mais difícil para a meiofauna, devido ao seu pequeno tamanho, ao tempo requerido para o estudo desta 

comunidade polifilética e à necessidade de taxonomistas treinados em cada grupo. Ferramentas moleculares 

começaram a ser utilizadas com o intuito de facilitar essa missão, mas ainda há limitações por serem uma técnica 

recente. Neste trabalho utilizamos o gene 18S para sequenciar a meiofauna marinha de uma planície de maré de 

uma baía subtropical. Em 13 amostras foram encontrados 11 filos, com dominância de Nematoda. O 

comportamento assimptótico da curva de rarefação indicou que 13 amostras foram suficientes para acessar a 

diversidade total da área estudada (0,12 km2). Quando os resultados da riqueza e composição da fauna obtidos por 

metabarcoding e morfologia foram comparados, os padrões de diversidade encontrados foram similares, mas a 

composição de gêneros foi diferente. A distribuição da diversidade foi significativamente correlacionada com a 

porcentagem de areia média, o grau de seletividade do sedimento e a concentração mínima de bactérias. O 

metabarcoding se mostrou uma ferramenta útil e eficiente para explorar a diversidade, porém com 

incompatibilidades na identificação da maioria dos gêneros. O aumento do número de sequencias depositadas em 

banco de dados virtuais e a construção de livrarias especificas para a área são requisitos essenciais para o aumento 

da robustez dos dados de diversidade obtidos por metabarcoding. Nosso estudo também enfatiza a necessidade de 

integrar abordagens moleculares com identificação morfológica e taxonômica para a construção de livrarias.   

Palavras-chave: 18S; Ecologia de comunidade; Baía do Araçá; Ecologia bêntica; Canal de São Sebastião. 
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ABSTRACT 

 Estimating marine diversity is still a challenging task, more than 250 years after Linnaeus started to 

describe it. We estimate that more than 70% of the species are still undescribed.  This mission is even harder for 

meiofaunal animals, because of their small body size, polyphyletic tratis and need of high taxonomical expertise. 

Molecular tools can make this task easier, but they are still limited. In this study the 18S gene was used to sequence 

marine meiofauna from a subtropical tidal flat. 11 phyla were found in 13 samples, dominated by nematodes.  The 

asymptotic behaviour of the rarefaction curve indicated that 13 samples were sufficient for diversity estimative for 

the studied area (0.12 km2).  The richness and faunal composition as estimated by metabarcoding and morphology 

were congruent, but differed in the composition of genera. Diversity distribution patterns were related to the mean 

sand percentage, sediment sorting, and the minimum concentration of bacteria. Metabarcoding was useful and 

efficient to explore diversity, but with mismatches in genera identification. Increasing the number of sequences 

deposited in virtual databases and building specific libraries to the study area are essential to enhance the 

robustness of the diversity data obtained by metabarcoding. Our study also emphasizes the urgency to integrate 

molecular approaches with morphological and sound taxonomical identification by experts. 

Key words: 18S; Community ecology; Araçá Bay; Benthic ecology; São Sebastião channel. 
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1.INTRODUCTION 

 

Meiofauna is a diverse and abundant benthic size-compartment, with thousands of individuals and 

hundreds of species in a small portion of sediment (Giere, 2009). Meiofauna is a polyphyletic community, with 

small sized individuals between 42 μm and 1000 μm (Higgins and Thiel, 1988). At least 22 of the 35 known phyla 

are found within the meiofauna (Higgins and Thiel, 1988; Giere, 2009).  Sound meiofauna studies require time 

and trained taxonomists for each group of organisms (Carugati et al. 2015; Sinniger et al. 2016). On a large scale, 

meiofaunal distribution and diversity seem be linked to sedimentological (Flach et al. 2002; Semprucci et al. 2010), 

physical (Atilla et al. 2005; Boeckner et al. 2009) and chemical drivers (Urban-Malinga and Moens 2006; 

Pusceddu et al. 2009), while on a small scale they are correlated with biotic factors (Papageorgiou et al. 2007; 

Pusceddu et al. 2016) .  

The lack of consistent morphological information (Derycke et al. 2008; Creer et al. 2010), the small-size 

bodies (Fontaneto et al. 2009), and scarcity of trained taxonomist place meiofauna among the most unknown 

metazoans (Carugati et al. 2015). Experts assume that less than 30% of meiofaunal species have been described 

(Appeltans et al. 2012). Then, assessing meiofaunal diversity becomes a challenging task (Carugati et al. 2015; 

Fontaneto et al. 2015). Due to the difficulties to handle, visualize, and identify the organisms, meiofauna are in the 

cutting edge of taxonomical, ecological and phylogenetic discussion (Vinther 2015), and molecular technics for a 

fast and effective knowledge of its diversity are urgent (Carugati et al. 2015; Brannock et al. 2016).  

In the last decades, several different views are discussing the possibilities to finish Linnaeus task (Godfray 

and Charles 2002; Anonymous 2007; Godfray 2007). For instance, some studies regarding DNA barcoding 

(Cristescu 2014) for species identification support the idea that the global diversity cannot be estimated before it 

disappears (Godfray and Charles 2002), while other authors support the robustness of the morphological 

information and the necessity to keep training taxonomist and enhance  museological traditions (Carvalho et al. 

2005; Ebach and Holdrege 2005). Nowadays,  most experts agree that both approaches are complementary and 

necessary (Pennisi 2003; Stoeckle 2003).   

DNA barcoding, a technique that uses individual fragments of DNA (Cristescu 2014),  has been used for 

the identification of organisms since the early 2000s (Floyd et al. 2002; Hebert et al. 2003). Recently, the 

introduction of the metabarcoding method for the identification of multiple species from environmental DNA 

(eDNA) raised the promise of representing a faster and more efficient technique for assessing marine biodiversity 

(Ji et al. 2013; Leray and Knowlton 2015). Due to its versatility, this technique can be applied to evaluate the 

organisms diet through their gut contents (Leray et al. 2015); microorganism diversity (Grossart and Rojas-

Jimenez 2016; Shehzad et al. 2016), and even to explore remote places, such as the deep sea (Guardiola et al. 2015; 

Sinniger et al. 2016). 

This technique has already been used to describe and identify meiofaunal distribution patterns, by 

assessing the relative levels of richness and diversity patterns in micro- and macro-scale (Fonseca et al. 2010; 

Fonseca et al. 2014b), as well as to access the spatial distribution patterns of the organisms (Brannock et al. 2016) 
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However, there is still a need for methodological standardization to optimize the results (Brannock et al. 2016). 

This study aims to estimate meiofaunal diversity in a tidal flat, using metabarcoding approach. First, we estimate 

the effectiveness of metabarcoding, contrasting OTUs richness with the number of expected OTUs, then we 

compared the diversity obtained from metabarcoding and from morphological analyses. Finally, we assessed the 

relation between diversity parameters, richness and faunal composition, and environmental variables. 

 

2. STUDY AREA 

  

The Araçá Bay (23°49’S, 45°24’W), is a small tidal flat (0.12 km2) near to São Sebastião Harbor and São 

Sebastião Oil Terminal (Fig 1), is located in São Sebastião, on the northern coast of São Paulo state, Brazil.  The 

bay shelters four beaches: Deodato, Pernambuco, Germano and Topo, apart from two small islands, Pernambuco 

and Pedroso. During low tides, the exposed area can reach 300 m (Amaral et al. 2010).  Araçá Bay is one of the 

last remaining mangrove areas along the coast of São Sebastião. 

The bay presents low hydrodynamics and is protected from wave action by the São Sebastião Island 

(Dottori et al. 2015). Heterogeneous sediments compose the tidal flat, with mud (silt and clay), sand, and gravel 

areas (Amaral et al. 2015) 

 

Fig 1. The Araçá Bay and sampling points in detail. 
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3. MATERIALS AND METHODS 

 

3.1. METABARCODING SAMPLING AND EXTRACTION 

 

Sampling was done in March 2015 with a 2.5 cm diameter cylindrical corer to a 10-cm depth. Sampling 

was performed in six geo-referenced sites, spaced approximately 50 m from each other. Four samples, with a 

distance of 1m from each other were taken in each site, totalizing 24 samples. Samples were immediately fixed in 

absolute ethanol, and stored at -20ºC. Meiofauna were floated from each sample with Ludox TM 50 (specific 

density 1.18) (Heip et al. 1985), sieved through a 63 µM mesh, washed with distilled H2O, and stored again with 

absolute ethanol at -20ºC. Before DNA extraction, ethanol was discarded; samples were washed with distilled 

H2O, and centrifuged to settle the organisms. 

 

3.2. MORPHOLOGICAL ANALYSES 

 

For meiofaunal analyses, sediment samples were taken using a cylindrical corer (2.5 cm diameter and 5 

cm height) in October 2012, February, June and September 2013. Samples were taken during the low tide from 

thirty-seven geo-referenced sites arranged on an irregular sampling grid, spaced about 50 m from the neighbour 

site, from the intertidal zone up to 25 m depth. Samples were collected simultaneously at each sampling site for 

the investigation of meiofauna, microbiota and grain size.  

Samples were immediately fixed in 4% formaldehyde. In the laboratory, samples were processed after 

sieving through a 45 µM mesh and flotation with Ludox TM 50 (specific density 1.18) (Heip et al. 1985). 

Meiofauna was counted and identified under a stereomicroscope. Nematodes were identified to genus level and 

identified into morphospecies.  

 

3.3. ENVIRONMENTAL CHARACTERIZATION 

 

 The environmental characterization of Araçá Bay was made along one year before the metabarcoding 

sampling. Four field surveys were done in October 2012, February, June and September 2013. The parameters 

evaluated were chlorophyll-a, phaeopigments, cyanobacteria, bacteria, depth, nanophytobenthos, margalef, wave 

orbital velocity, organic carbon, grain size, percentage of coarse and medium sand, coarse sand, medium sand, fine 

sand, medium and fine sand, silt and clay, and sorting. Concentration of chlorophyll a, phaeopigments, and 

nanophytobenthos were obtained according to Plante-Cuny (1978). The cellular density of cyanobacteria was 

estimated according to Lund et al. (1958). Bacteria density was determinated by direct counting. Titillation of 

organic carbon followed  Gaudette et al. (1974). Margalef’s diversity pigment index, was calculated according to 

Margalef (1974).  For sediment texture analyses, samples were dried in a kiln at 60ºC, and then through traditional 

routines of sieving and pipetting (Suguio 1973) 

 Average, minimum, maximum and standard deviation values were used as predictors for each parameter.   
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3.4. DNA EXTRACTION AND AMPLIFICATION  

 

 For the metabarcoding analyses, specimens’ DNA was extracted from each sample using the PowerSoil® 

DNA Isolation Kit, following the company protocols. The primers SSU_FO4 (5‘- 

GCTTGTCTCAAAGATTAAGCC -3‘) and SSU_R22 (5‘- GCCTGCTGCCTTCCTTGGA -3‘) were used to 

amplify approximately 450bp, between the regions V1 and V2 of 18S ribosomal DNA (rDNA). PCR conditions 

was 2 minutes denaturation at 95ºC, followed by 35 cycles of 1 minute at 95ºC, 45 seconds at 57ºC, 3 minutes at 

72ºC and a final extension of 10 minutes at 72ºC (Fonseca et al. 2010). 

 Primers mlCOIintF (5’-GGWACWGGWTGAACWGTWTAYCCYCC -3’) (Leray et al. 2013) and 

jgHCO2198 (5’- TAIACYTCIGGRTGICCRAARAAYCA -3’) (Geller et al. 2013) were needed to amplify a 

313bp region of the mitochondrial Cytochrome C oxidase subunit I (COI) region. PCR conditions involved 16 

initial cycles: denaturation for 10s at 95°C, annealing for 30s at 62°C (−1°C per cycle) and extension for 60s at 

72°C, followed by 25 cycles at 46°C annealing temperature (Leray et al. 2013). 

PCR products were purified using illustra GFX PCR DNA and Gel Band Purification kit, according to 

the company protocols. After purification, all of the COI PCR products, and a few of the 18S had concentrations 

below the minimum recommend to be read on Illumina MiSeq sequencer. The remaining thirteen samples were 

sequenced. 

 

3.5. METABARCODING DATA ANALYSES 

 

A database was created on Usearch v9.0 software (Edgar 2010) using sequences downloaded from 

GenBank to predict OTUs (Operational Taxonomic Unit). The sequences were selected according to a species list 

of nematodes, created by traditional meiofaunal sampling and identification and by a list of species, performed by 

experts during the “Workshop on Taxonomy and Diversity of Marine Meiofauna, Brazil”, held at CEBIMar, the 

Centre for Marine Biology of the University of São Paulo in São Sebastião, in 2012 (28 October-9 November 

2012). During the workshop, the same sites area were sampled and prosed by several experts.  

All sequences generated by Illumina were merged on Pear 0.9.10 software (Zhang et al. 2014), selecting 

only sequences with length between 380 bp e 420 bp. Usearch v9.0 was used to procedure quality filtering, to find 

uniques, clustering with chimeras filtering, predict OTUs, and alignment sequences with 80% of similarity (Edgar 

2016). 

 

3.6. DIVERSITY ESTIMATIVES 

 

Statistical analyses were performed with the R language (R Development Core Team, 2016). The number 

of genera (S) per area for the metabarcoding sampling were calculated using rarefaction curves with the function 

specaccum.  The number of expected genera (ES) was calculated by Chao, Jackknife 1, Jackknife 2, and 

Bootstraping with the function poolaccum. The ratio of ES/S was used to evaluate the representativeness of the 

metabarcoding method. The package vegan was used in both cases (Oksanen et al. 2016). The same approach was 

used to compare the congruency between metabarcoding and morphology.  To generate phylum diversity plot, the 

packages reshape, ggplot2 and scales were necessary (Wickham 2007, 2009, 2016). 
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To test the response of the association obtained by metabarcoding and by traditional methods for 

nematode composition a permutational multivariate analysis was performed with adonis function, using the 

Mountford index of similarity (Mountford 1962). We used studies (Metabarcoding, Morphology) and sites and the 

interaction among then as predictors variables. A PCoA (Principal Coordinates Analysis), using ape package, was 

used to visualize the similarities between studies (Paradis et al. 2004).  

The presence-absence matrix of diversity and richness of OTUs generated by metabarcoding was used as 

response variable to assess patterns of distribution and environmental correlations. The multicollinearity of the 

environmental variables was tested by the variance inflation factor (VIF), package car (Fox and Weisberg, 2011). 

Then, the function adonis (Mountford index), and a generalized linear model (GLM) were used to assess the multi- 

and univariate response. Richness are counted data and a Poisson model as used to fit the GLM models. 

To avoid Type-I error generated by the geo-spatial distance of the samples and points in the GLM (Diniz-

Filho et al. 2003), and make the results more realistic, a spatial autocorrelation by SARerr was applied. We used 

the function sarerrr in spdep package (Bivand and Piras 2015). The spatial weights were constructed with 0.005 

neighbourhood distance, coding style "W". The model selection and model averaging was performed with the 

package MuMIn (Barton 2016).  

After this, a Redundancy analysis (RDA), to summarise correlation between OTUs and environmental 

variables was applied. An ANOVA was used to test the significance of the RDA axes (Borcard et al. 2011)  

 

4. RESULTS 

 

4.1 METABARCODING DIVERSITY 

 

 A summary of the number of reads for each sample, merged and filtered sequences, uniques and 

singletons, chimera and OTUs is given in Appendix 1. 115 genera were found in the 13 samples, separated into 60 

families, 24 orders, 12 classes, and 11 phyla for a total of 8,040,154 reads generated by Illumina, (Appendix 2). 

The rarefaction curve shows that the registered number of OTUs is close to the expected for Araçá Bay (Fig 2.). 

The ratio of ES/S indicated that between 78% (Jack2) and 91% (Bootstrap) of total diversity was reported. 
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Fig 2.  Rarefaction curves showing mean expected OTU number (Jack 2, Jack 1, Chao and Bootstrap) as a 

function of sample size, and what was found with metabarcoding on Araçá Bay (black line).  

 

The phylum Nematoda was the most representative in all samples, followed by Arthropoda and Annelida 

(Fig 3). Platyhelminthes and Gastrotricha were also reported in all samples. Nematode OTUs summed up for more 

than 50% of the OTUs in nine samples. Tardigrada, Xenacoelomorpha, and Kinorhyncha were reported in one, 

three and four samples, respectively. Samples 141 and 142 showed the highest number of different phyla (9 phyla), 

with 73 and 63 OTUs respectively. Sample 112 had the lowest number of phyla (5), but also 73 OTUs. 
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Fig 3. Percentage of OTUS per phylum for each sample (s). 

 

4.2. NEMATODE DIVERSITY: MORPHOLOGICAL VS. MOLECULAR APPROACHES 

 

 When contrasting the metabarcoding and morphological methods, the rarefaction curve of morphospecies 

and number of OTUS showed a similar slope (Fig 4). The asymptotic behaviour of the curve shows that 

approximately five samples are sufficient to assess the total diversity of nematodes in Araçá Bay. Despite the 

similar number of morphospecies and OTUs, the permutational multivariate analysis showed significant 

differences between the two methodologies (Table 1).  
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Fig 4. Black line represents the total diversity found using metabarcoding. The blue line is the nematode 

diversity found using morphology, and the red line represent the nematode diversity found with metabarcoding. 

 

Table 1. The Pr(>F) near to zero shows a significant difference between studies, between sites, and between 

studies and sites.  

 Df SumOfSqs MeanSqs F.Model R2 Pr(>F) 

Study 1 2.4001 2.40011 14.9796 0.20688 1e-04*** 

Site 5 3.4016 0.68031 4.2460 0.29320 1e-04*** 

Study:Site 5 1.7940 0.35881 2.2394 0.15464 2e-04*** 

Residuals 25 4.0056 0.16023  0.33527  

Total 36 11.6013   1.00000  

 

The PCoA also shows that OTUs composition for metabarcoding and morphology are different (Fig 5.). 

PCoA1 divides the approaches, metabarcoding on the left side, and morphology on the right side. Nevertheless, 

PCoA2 shows a tendency: sites 5 and 7 from both studies are located at the same side, while point 9 is located on 

the other side. Sites 11, 12 and 14 were randomly spread among the sites 5 and 9. 
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Fig 5. PCoA 1 and PCoA 2, metabarcoding approach is represented by black circles, and morphology by 

the red circles. 

 

4.3. ENVIRONMENTAL VARIABLES VS. DIVERSITY 

 

 The multicollinearity test selected only five among all the environmental variables: medium sand average, 

sorting standard deviation, minimum bacteria record, maximum of orbital velocity and nanophytobenthos. A GLM 

was applied using these five variables, producing 13 candidate models.  

 From the 13 candidate models, five better explained the OTU richness (Table 2). The model with average 

of medium sand and standard deviation of sorting was selected as the best model. The remaining models showed 

a Delta value between 0 and 5.3, and an Akaike weight between 0.046 and 0.654.   
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Table 2: Selection of GLM and SARerr models for richness of OTUs. MS (medium sand average), SORT (sorting 

standard deviation), BACMIN (minimum bacteria record), maximum of orbital velocity (Ov.max) and 

nanophytobenthos (NA_M). 

 (Int) MS BACMIN NA_M Ov.max SORT df logLik AICc delta weight 

Sem.nb1.5.w2 66.31 -0.4607    -31.82 5 -30.075 78.7 0.00 0.654 

Sem.nb1.5.w9 11.08  37.12   10.74 5 -31.835 82.2 3.52 0.112 

Sem.nb1.5.w4 48.88 -0.3092     4 -34.682 82.4 3.64 0.106 

Sem.nb1.5.w8 59.90   -83.23   4 -35.450 83.9 5.18 0.049 

Sem.nb1.5.w7 21.90  30.74 -5.057   5 -32.720 84.0 5.29 0.046 

 

Genera distribution was correlated with MS (medium sand average), SORT (sorting standard deviation), 

and BACMIN (minimum bacteria record) (Fig 6.). The RDA was formed by two significant axes (Table 3), which 

together explained about 27% of the total variability between genera, sites and environmental variables. From that 

27%, 39% is explained by RDA1, which separated site 5 from sites 9, 11, 12 and 14. MS and BACMIN were 

correlated with the first RDA axe. RDA2 explain 35% from the 27%, and separate sites 7 and 9, from sites 5, 11, 

12 and 14. SORT was correlated with this second axe. 

 The Gnathostomulida Austrognathia, Xenacoelomorpha Proposus, and Nematoda Paradesmodora and 

Axonolaimus were positively related with higher amount of medium sand. Poorly sorted sediments were linked to 

the Nematoda  genera Sabatieria, Spilophorella, Paraphanolaimus, Bathylaimus, Halalaimus, Paralinhomoeus, 

and Gastrotricha of the genus Urodasys. Some Platyhelminthes, as Gyatrix, Itaipusa, and Mesorhynchus, 

Annelida, as Protodrilus, Saccocirrus, and Protodriloides, and the Nematoda Terschellingia were related with 

higher minimum bacteria record. 
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Fig 6. Canonical Redundancy Analysis (RDA) ordination plots of genera, sample site, environmental variables. 

Arrows represent the environmental variables MS (medium sand average), SORT (sorting standard deviation), 

and BACMIN (minimum bacteria record). All genera from same phylum are with the same colour, being dark 

green= Xenacoelomorpha, light green= Nematoda, dark blue= Annelida, light blue= Kinorhyncha, grey= 

Platyhelminthes, rose= Nemertea, yellow= Arthopoda, orange= Mollusca, purple= Gastrotricha, violet= 

Tardigrada and coral= Gnathostomulida. 

 

Table 3. Summary of ANOVA shows the significance of RDA1 and RDA2. 

 Df Variance F Pr(>F) 

RDA1 1 1.4859 1.9745 0.003 

RDA2 1 1.3226 1.7574 0.009 

RDA3 1 0.9763 1.2973 0.125 

Residual 9 6.7730   

 

 

 

 

 

 



22 

 

5. DISCUSSION 

 

5.1 METABARCODING DIVERSITY 

 

 Our intensive survey in a small tidal flat area (0.12 km2) yielded an effective estimate of total meiofaunal 

diversity. A total of 768 OTUs belonging to 115 genera showed an asymptotic behaviour in the rarefaction curve, 

and 10 samples per area may be enough to assess the diversity of the intertidal area of Araçá, a subtropical Bay. 

Comparing our study with Leray & Knowlton (2015), we found ten time less OTUs, but around 25% of their OTUs 

were unidentified, and several groups (such as Gastrotricha, Nematoda, Nemertea, Platyhelminthes, Tardigrada, 

and Xenacoelomorpha) were classified as “other animals”. This observation may be explained by the fact that our 

study let several non-meiofaunal groups out as Bryozoa, Cnidaria, Rotifera, and Fungi. 

In general, Nematoda is the dominant marine meiofaunal phyllum, followed by Platyhelminthes and 

Arthropoda (Fonseca et al. 2010; Fonseca et al. 2014b; Lallias et al. 2015). Nematodes are so diverse and abundant 

probably because of their  rapid generation time and capacity to adapt to new environmental conditions, especially 

in interstitial areas (Fonseca et al. 2010). Our results showed a similar pattern, except that Platyhelminthes were 

less representative than Annelida. This observation can be a reflex of some groups of Platyhelminthes, such 

Proseriata, being more abundant in sediments from high-energy areas (Swedmark 1964; Curini-Galletti 2014) and 

because Araçá Bay is a protected area (Dottori et al. 2015).  

Xenacomelomorpha, Gastrotricha, Gnathostomulida are not commonly reported in metabarcoding 

studies. The morphological identification by experts before the metabarcoding study in the Araçá Bay would be 

helpful to generate a more reliable matrix of species and phyla.  

 

5.2. NEMATODE DIVERSITY: MORPHOLOGICAL VS. MOLECULAR APPROACHES 

 

 Differences in association composition were found when comparing the nematode genera obtained by 

metabarcoding and morphological methods. Differences between the methods may be a methodological artifact 

probably generated by the nucleotide dataset deposited on NCBI (Noppe and Guilini 2015; Holovachov 2016). 

The estimated diversity of marine nematodes is estimated in about 61,400 species, but only 11,400 are currentily 

described and accepted (Appeltans et al. 2012). Robustness of metabarcoding is closely dependent on available 

libraries, and related to the amount of the target gene (18S and COI) deposited and correctly assigned to a species 

(Fonseca et al. 2010; Leray et al. 2016).  

Nematode genera retrieved by metabarcoding probably were misidentified wrong identification because 

of the lack of information on this group. Studies with deep-sea nematodes showed a similar mismatch with the 

traditional taxonomical routines. Morphological and metabarcoding identification only matched at the order-

family level (Dell’Anno et al. 2015). Genera that were only detected with metabarcoding may also be explained 

because morphology methods consider just body complete animals, while metabarcoding can identify body-

damaged animals.  
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These results indicate that the metabarcoding approach may be a powerful tool for environmental studies, 

although it stills need to be improved by the background complements of the experts and morphology (Sinniger et 

al. 2016). 

 

5.3 ENVIRONMENTAL VARIABLES AS DRIVERS OF LOCAL DIVERSITY 

 

 The correlation between the diversity descriptors, richness and meiofauna composition emphasised the 

utility of the metabarcoding to detected patterns of distribution of these organisms. Richness showed a tendency 

to decrease when the percentage of medium sand increased. As nematodes were the most diverse group, a close 

relation between medium sand and nematode richness was expected. However, nematode distribution does not not 

seem to be directly correlated to sediment grain size in the literature (Vanaverbeke et al. 2011; Fonseca et al. 

2014a).  

Gnasthotomulida, Gastrotricha and Annnelida also contributed to explain meiofaunal distribution 

patterns. Richness was at the lowest in poorly sorted sediments. Nevertheless, some groups, as Gastrotricha, 

presented higher richness in this kind of habitat (Garraffoni et al. 2016), corroborating our results regarding the 

presence of Urodasys. Sorting is associated with transport dynamics and deposition forces, and a high standard 

deviation of the degree of sorting is likely a result of mixed of forces, such as tidal forces, waves, river discharge, 

and wind (Wright et al., 1999). The group Gnathostomulida is mostly associated with fine sands and hypoxic 

sediments (Giere, 2009). Our results showed a strong relation between Austrognathia and medium sand. 

The effect of the minimum amount of bacteria on the richness and meiofauna composition is probably 

explained the trophic cascade effect (Pace et al. 1999). Bacteria are an important source of food for meiofaunal 

organisms (Moens and Vincx 1997; Vanaverbeke et al. 2011) which may regulate the distribution of niches, and 

consequently the total diversity. We found that the richness decreases with decreasing concentration of bacteria. 

The annelids, some platyhelminths (Gyatrix, Itaipusa and Mesorhynchus) and Terschellingia are related with 

higher amount of minimum bacteria (Moens and Vincx 1997). 

 

5.4. CONCLUSIONS 

 

This is the first DNA metabarcoding study specifically applied for meiofauna in the Brazilian coast. We 

found this approach reliable to be used on the estimative of the meiofauna diversity and its distribution, especially 

emphasizing in small areas, such as the Araçá Bay. We also found that meiofauna and nematodes diversity 

estimated by metabarcoding may be indicative of environmental conditions. On the other hand, metabarcoding is 

still fragile on identifying organism on more specific levels, as genus. Further studies combining molecular biology 

and morphology are highly encouraged to achieve the Linnaeus saga, and better understanding the complexity of 

the ecological process and patterns among the interstitial spaces. 
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Appendix 1. 

Mean numbers of merged and filtered sequences, number of uniques and singletons, chimera and OTUs per 

sample. 

Sample 
Number of sequences 

merged 

Number of sequences 

filtered 

Number of 

uniques/singletons 

Number of 

chimera 

Number of 

OTUs 

52 352711/423634 (83.258%) 204349 (57.9%) 69584/58632 (84.3%) 2744 165 

53 246495/366997 (67.165%) 140856 (57.1%) 53801/45201 (84%) 1793 302 

54 126113/188128 (67.036%) 28727 (22.8%) 11877/10091 (85%) 538 142 

71 414988/521135 (79.632%) 236596 (57%) 80255/67806 (84.5%) 3814 310 

72 336117/421637 (79.71%) 185912 (55.3%) 68822/58313 (84.7%) 3244 275 

74 333689/441372 (75.603%) 184158 (55.2%) 60503/50351 (83.2%) 2526 357 

91 117919/381352 (30.921%) 66967 (56.8%) 36531/32042 (87.7%) 2194 152 

93 318443/445095 (71.545%) 181134 (56.9%) 67195/56438 (84%) 3127 325 

94 244632/407167 (60.081%) 133429 (54.5%) 53126/44986 (84.7%) 2610 362 

112 274286/463471 (59.181%) 145965 (53.2%) 71830/62558 (87.1%) 6138 349 

124 277756/401667 (69.151%) 150304 (54.1%) 49171/41314 (84%) 2063 245 

141 282755/412373 (68.568%) 162997 (57.6%) 66966/57003 (85.1%) 3367 361 

142 262261/399978 (65.569%) 144082 (54.9%) 53590/45312 (84.6%) 2228 348 
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Appendix 2.  

List of OTUs found by metabarcoding on Araçá Bay. 

  
52 53 54 71 72 74 91 93 94 112 124 141 142 

Phylum Nematoda 
 

  
            

 Class Chromadorea 
              

  Order Chromadorida 
             

   Family Cyatholaimidae 0 0 0 0 0 1 0 0 0 0 0 0 0 

 

Genus 

Longicyatholaimus 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

Genus 

Praeacanthonchus 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
Genus Gomphionema 1 1 1 1 1 1 1 1 1 1 1 1 1 

   Family Selachinematidae 
             

 

Genus 

Halichoanolaimus 1 0 1 0 1 0 0 1 0 1 2 1 1 

 
Genus Bendiella 0 0 0 0 0 1 0 1 0 0 1 0 0 

   Family Chromadoridae 0 0 0 1 2 1 0 0 0 0 0 0 0 

 
Genus Chromadorita 1 2 0 1 0 1 1 0 1 0 1 0 1 

 
Genus Chromadorina 0 1 1 1 1 1 0 0 0 0 1 0 0 

 
Genus Spilophorella 0 0 1 0 0 0 1 1 1 0 1 1 1 

 
Genus Neochromadora 0 0 0 1 0 1 1 0 0 1 0 1 1 

 
Genus Punctodora 0 0 0 0 0 0 0 0 0 0 1 1 0 

  Order Monhysterida 
             

   Family Comesomatidae 0 0 0 0 0 0 0 0 0 1 0 1 0 

 
Genus Sabatieria 4 3 4 2 2 2 7 3 5 3 6 5 6 

   Family Xyalidae 
              

 
Genus Theristus 1 2 2 3 1 2 1 1 0 2 4 3 3 

 
Genus Daptonema 1 2 1 2 1 1 1 1 1 2 1 1 1 

 
Genus Metadesmolaimus 0 0 0 0 0 0 0 0 0 0 0 1 0 

   Family Linhomoeidae 
             

 
Genus Desmolaimus 0 1 1 1 1 0 1 1 1 1 2 1 2 

 
Genus Terschellingia 0 0 0 3 3 4 2 2 2 1 4 1 4 

 
Genus Paralinhomoeus 0 0 0 0 0 0 0 1 1 0 1 0 1 

   Family Monhysteridae 
             

 
Genus Diplolaimelloides 0 2 0 1 0 1 0 1 1 0 1 0 0 

 
Genus Halomonhystera 0 0 0 0 0 1 0 1 0 0 0 1 0 

   Family Sphaerolaimidae 
             

 
Genus Sphaerolaimus 0 0 0 0 0 0 0 0 0 0 0 1 1 

   Family Siphonolaimidae 
             

 
Genus Astomonema 0 0 0 0 0 0 0 0 0 0 0 0 1 

  Order Desmodorida 
             

   Family Desmodoridae 
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Genus Metachromadora 1 1 1 2 1 1 0 0 0 0 0 1 1 

 
Genus Desmodora 1 1 1 1 2 1 2 2 1 1 1 1 1 

 
Genus Robbea 0 1 0 0 1 0 0 0 0 0 1 0 0 

 
Genus Spirina 0 1 0 1 0 0 0 0 0 0 0 0 0 

 
Genus Paradesmodora 0 1 1 0 0 0 0 0 0 0 0 0 0 

 
Genus Zalonema 0 0 0 1 1 0 0 0 0 0 0 0 1 

 
Genus Stilbonema 0 0 0 1 0 0 0 0 0 0 0 0 0 

 
Genus Laxus 0 0 0 0 0 0 0 0 0 0 1 0 0 

 
Genus Eubostrichus 0 0 0 0 0 0 0 0 0 0 1 1 0 

   Family Microlaimidae 
             

 
Genus Calomicrolaimus 0 0 0 1 1 1 0 0 1 1 1 2 0 

 
Genus Molgolaimus 0 0 0 0 0 1 0 0 0 0 0 1 0 

  Order Araeolaimida 
             

   Family Axonolaimidae 
             

 
Genus Axonolaimus 1 0 1 0 0 0 0 0 0 0 0 1 1 

 
Genus Odontophora 1 0 2 0 0 0 1 1 0 0 1 0 0 

  Family Leptolaimidae 
             

 
Genus Paraphanolaimus 0 0 0 0 0 0 1 1 0 0 2 0 0 

  Order Rhabditida 
              

   Family Rhabditidae 
             

 
Genus Poikilolaimus 1 1 1 1 1 1 1 1 1 2 1 2 1 

 
Genus Rhabditinae 0 1 0 1 0 1 1 0 1 0 0 0 1 

 Class Enoplea 
              

  Order Enoplida 
              

   Family Thoracostomopsidae 
             

 
Genus Enoploides 1 1 0 3 1 1 1 0 1 1 2 2 1 

   Family Oxystominidae 
             

 
Genus Oxystomina 1 1 2 1 1 1 1 1 0 0 1 1 1 

 
Genus Halalaimus 0 0 0 0 0 0 3 2 1 0 0 1 1 

   Family Oncholaimidae 0 0 0 0 1 1 0 0 0 0 0 0 0 

 
Genus Oncholaimus 1 1 1 2 1 1 0 1 0 1 1 1 1 

 
Genus Viscosia 0 0 0 0 0 0 1 1 0 0 0 0 0 

 
Genus Metoncholaimus 0 0 0 0 0 0 0 0 0 0 1 0 0 

   Family Enchelidiidae 
             

 
Genus Bathyeurystomina 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
Genus Calyptronema 0 0 0 1 0 0 0 0 0 0 0 0 0 

   Family Ironidae 
              

 
Genus Trissonchulus 0 1 1 1 1 1 1 1 1 1 0 0 1 

   Family Anticomidae 
             

 
Genus Cephalanticoma 0 0 0 1 1 0 1 1 1 1 0 1 1 

 
Genus Anticoma 0 0 0 0 0 0 0 0 1 0 0 1 0 

   Family Anoplostomatidae 
             

 
Genus Anoplostoma 0 0 0 1 1 2 1 1 1 0 0 0 0 
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   Family Tripyloididae 
             

 
Genus Bathylaimus 0 0 0 0 0 0 1 1 0 0 2 0 0 

Phylum Arthropoda 
              

 Class Maxillopoda 
 

0 0 1 0 1 1 0 0 1 2 0 0 0 

  Order Poecilostomatoida 
             

   Family Ergasilidae 
              

 
Genus Sinergasilus 1 1 0 1 0 1 1 1 0 1 1 1 1 

 
Genus Pseudergasilus 1 1 1 1 1 1 1 2 1 1 1 1 1 

 
Genus Paraergasilus 0 0 0 0 0 1 0 0 0 1 0 0 0 

 
Genus Ergasilus 0 0 0 0 0 0 0 0 1 0 0 0 0 

   Family Chondracanthidae 
             

 
Genus Chondracanthus 0 0 0 0 0 0 1 0 0 0 0 0 0 

  Order Siphonostomatoida 
             

   Family Sphyriidae 
              

 
Genus Paeon 1 1 1 1 1 1 1 1 1 1 1 1 1 

   Family Asterocheridae 0 0 0 0 0 0 1 0 0 0 0 0 0 

  Order Harpacticoida 
             

   Family Miraciidae 
              

 
Genus Paramphiascella 1 0 0 1 1 1 0 1 1 1 1 0 0 

 
Genus Stenhelia 1 0 0 0 0 0 0 1 0 0 0 1 0 

   Family Dactylopusiidae 
             

 
Genus Diarthrodes 1 0 1 1 0 0 0 1 1 1 0 0 0 

 
Genus Sewellia 0 1 0 0 0 0 0 0 0 1 0 0 0 

   Family Tisbidae 
              

 
Genus Tisbe 1 0 0 0 0 0 1 0 0 1 0 1 1 

   Family Laophontidae 
             

 
Genus Paralaophonte 0 1 0 0 0 1 0 1 0 0 0 0 0 

   Family Euterpinidae 
             

 
Genus Euterpina 0 0 1 0 0 0 1 0 0 0 0 0 0 

   Family Canthocamptidae 
             

 
Genus Itunella 0 0 0 0 1 0 0 0 1 0 0 0 0 

   Family Tachidiidae 
             

 
Genus Tachidius 0 0 0 0 0 1 0 0 0 0 0 0 0 

   Family Harpacticidae 
             

 
Genus Harpacticus 0 0 0 0 0 0 1 0 0 0 0 0 0 

   Family Ectinosomatidae 
             

 
Genus Bradya 0 0 0 0 0 0 0 0 0 1 0 0 0 

   Family Thalestridae 
             

 
Genus Phyllothalestris 0 0 0 0 0 0 0 0 0 0 1 0 0 

   Family Canuellidae 
             

 
Genus Canuella 0 0 0 0 0 0 0 0 0 0 0 1 0 

  Order Calanoida 
              

   Family Paracalanidae 
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Genus Acrocalanus 1 1 0 0 1 0 1 1 1 1 1 0 1 

   Family Temoridae 
              

 
Genus Temora 0 0 0 0 0 0 0 0 1 0 0 0 0 

  Order Cyclopoida 
              

   Family Cyclopettidae 
             

 
Genus Paracyclopina 1 1 0 1 0 0 0 2 1 1 1 1 1 

   Family Lernaeidae 
              

 
Genus Lamproglena 0 1 0 1 1 0 1 1 0 1 0 1 0 

 
Genus Lernaea 0 0 0 0 0 0 0 0 0 1 1 0 0 

   Family 

Cyclopidae 
              

 
Genus Cyclops 0 1 0 0 0 1 0 0 0 1 0 0 0 

 
Genus Euryte 0 0 0 1 1 0 1 0 1 0 0 0 0 

 
Genus Microcyclops 0 0 0 0 0 0 1 0 0 1 0 0 0 

Phylum Gnathostomulida 
             

 Class Gnathostomulida 
             

  Order Bursovaginoidea 
             

   Family Austroghathiidae 
             

 
Genus Austrognathia 2 1 1 0 0 0 0 0 0 0 0 2 1 

Phylum Annelida 
              

 Class Polychaeta 
              

  Order Polychaeta 
              

   Family Saccocirridae 
             

 
Genus Saccocirrus 1 1 3 1 5 4 3 2 3 4 3 6 2 

   Family Protodrilidae 
             

 
Genus Protodrilus 2 5 0 3 2 4 0 4 6 9 3 6 2 

 
Genus Protodriloides 0 0 0 0 1 1 0 1 1 1 1 0 1 

 
Genus Astomus 0 0 0 0 0 1 0 0 0 0 1 0 1 

  Order Eunicida 
              

   Family Dorvilleidae 
             

 
Genus Pettiboneia 0 1 1 1 1 1 1 1 1 1 1 1 1 

Phylum Gastrotricha 
             

 Class Gastrotricha 
              

  Order Macrodasyida 
             

   Family Macrodasyidae 
             

 
Genus Urodasys 3 2 2 1 1 2 1 4 2 4 5 5 4 

Phylum Platyhelminthes 
             

 Class Rhabditophora 
             

  Order Rhabdocola 
              

   Family Polycystididae 
             

 
Genus Stradorhynchus 1 0 0 0 0 0 0 0 0 0 0 0 0 

 
Genus Phonorhynchella 1 1 1 0 1 1 0 0 0 1 0 0 0 

 
Genus Gyatrix 2 0 0 3 1 3 2 1 1 1 1 2 2 
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Genus 

Psammopolycystis 0 1 0 1 0 0 0 0 0 0 0 0 0 

 
Genus Limipolycystis 0 0 1 0 0 0 0 0 0 0 0 0 0 

 

Genus 

Brachyrhynchoides 0 1 0 0 0 0 0 0 0 0 0 0 0 

 
Genus Mesorhynchus 0 0 0 1 0 1 0 1 0 0 0 0 0 

 
Genus Polycystis 0 0 0 0 1 0 0 0 0 0 0 0 0 

 
Genus Rogneda 0 0 0 0 1 0 0 0 0 0 0 0 0 

 
Genus Neopolycystis 0 0 0 0 1 0 0 0 0 0 0 0 0 

 
Genus Paulodora 0 0 0 0 0 0 1 0 0 0 0 0 0 

   Family Koinocystididae 
             

 
Genus Itaipusa 0 0 0 1 1 1 1 1 1 1 1 0 1 

  Order Rhabdocoela 
             

   Family Typhloplanidae 
             

 
Genus Phaenocora 0 0 0 1 0 0 0 0 0 0 0 0 0 

 
Genus Dochmiotrema 0 0 0 0 1 0 0 0 0 1 0 0 0 

   Family Promesostomidae 
             

 
Genus Coronhelmis 0 0 0 0 0 0 0 0 0 0 1 0 0 

 
Genus Cilionema 0 0 0 0 0 0 0 0 0 0 1 0 0 

  Order Proseriata 
              

   Family Monocelididae 
             

 
Genus Archilopsis 0 1 0 0 0 1 0 0 0 0 0 0 0 

Phylum Xenacoelomorpha 
             

 Class Acoela 
              

  Order Acoela 
              

   Family Proporidae 
              

 
Genus Proposus 2 1 0 0 0 0 0 0 0 0 0 0 1 

Phylum Nemertea 
              

 Class Anopla 
              

  Order Palaeonemertea 
             

   Family Cephalothricidae 
             

 
Genus Cephalothrix 1 0 0 0 0 1 0 0 0 0 0 0 0 

 Class Enopla 
              

  Order Monostilifera 
             

   Family Ototyphlonemertidae 
             

 

Genus 

Ototyphlonemertes 0 0 0 1 0 0 1 0 0 0 0 1 1 

Phylum Mollusca 
              

 Class Gastropoda 
              

  Order Acochlidiacea 
             

   Family Asperspinidae 
             

 
Genus Asperpina 0 0 1 0 1 1 0 0 0 0 1 0 0 

   Family Hedylopsidae 
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Genus Hedylopsis 0 0 0 0 0 1 0 0 1 0 0 1 0 

   Family Microhedylidae 
             

 
Genus Pontohedyle 0 0 0 0 0 0 0 0 1 0 0 1 1 

Phylum Tardigrada 
              

 Class Eutardigrada 
              

  Order Parachela 
              

   Family Macrobiotidae 
             

 
Genus Dactylobiotus 0 0 0 1 0 0 0 0 0 0 0 0 0 

Phylum Cephalorhynca 
             

 Class Kinorhyncha 
              

  Order Cyclorhagida 
             

   Family Echinoderidae 0 0 0 0 0 0 1 1 1 0 0 1 0 

 


