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ABSTRACT

Alzheimer’'s disease (AD) is the world’s most common form of dementia,
affecting over 44 million people worldwide. AD is a neurodegenerative disease,
characterized by extracellular deposition of amyloid-3 peptide and the intracellular
formation of neurofibrillary tangles. During the last few years, neuroinflammation has
been pointed out as an important component of AD pathology and several
inflammation-related genes have already been associated with AD. Elevated levels of
inflammatory cytokines and interleukins have been found in AD patients.
Overexpression of these mediators is critical for the onset of the inflammatory process
and mediates the expression of inflammation-related genes. Here we performed a
case-control association study to evaluate the association between TLR6, TLR2,
NEK7, IL-18, IL-1B, NLRP10, and COL4Al genetic polymorphisms, and AD
susceptibility, and association with other AD cognitive variables. A total of 152 AD
patients and 120 controls were included in the study. All the polymorphisms were
genotyped using the Sequenom MassARRAY iPLEX Platform. rs6531669 (TLR6) was
found to be associated with AD susceptibility, age of onset, and MMSE; rs13105517
(TLR2) was found to be associated with AD susceptibility, and MMSE; rs9919613
(NLRP10) was found to be associated with AD susceptibility, age of onset, and disease
severity; rs1143643 (1I-1B) was found to be associated with age of onset, and disease
severity; rs613430 (COL4Al) was found to be associated with disease severity. In
conclusion, our study suggests that TLR6, TLR2 and NLRP10 are candidate genes for
AD pathogenesis, and that these genes and IL-1B and COL4A1 are associated with
AD onset and other cognitive variables.

Key-words: Alzheimer's disease, inflammation, TLR2, TLR6, IL-1B, NLRP10,
COL4AL.



RESUMO

A doenca de Alzheimer (DA) é a forma de deméncia mais comum, afetando
cerca de 44 milhdes de pessoas em todo o mundo. A DA é uma doenca
neurodegenerativa, caracterizada por deposicao extracelular do peptideo (3- amiléide
e a formacado intracelular de emaranhados neurofibrilares. Recentemente, a
neuroinflamacgdo surgiu como um componente importante da patologia da DA e
diversos genes inflamatorios ja foram associados a DA. Niveis elevados de citocinas
e interleucinas inflamatérias foram encontrados em pacientes com DA. A
superexpressao desses mediadores € critica para o inicio do processo inflamatério e
medeia a expressao de genes varios genes inflamatoérios. O principal objetivo do
estudo foi analisar associag&o entre polimorfismos dos genes TLR6, TLR2, NEK7, IL-
18, IL-1B, NLRP10 e COL4A1, e susceptibilidade a DA, e associacdo com outras
variaveis cognitivas da DA, atraves estudo de associacao caso-controle. Um total de
152 pacientes com DA e 120 controles foram incluidos no estudo. Todos os
polimorfismos foram genotipados usando a plataforma Sequenom MassARRAY
IPLEX. Foram encontradas associacfes entre o polimorfismo rs6531669 (TLR6) e
susceptibilidade a DA, idade de inicio e MMSE; o polimorfismo rs13105517 (TLR2)
encontrou-se associado com susceptibilidade a DA, e MMSE; rs9919613 (NLRP10)
foi associado com a susceptibilidade a DA, idade de inicio e gravidade da doenca;
foram encontradas associa¢fes entre o polimorfismo rs1143643 (1I-1B) e idade de
inicio e gravidade da doenca; o polimorfismo rs613430 (COL4Al) encontrou-se
associado a gravidade da doenca. Em concluséo, o nosso estudo sugere que o TLR6,
TLR2 e NLRP10 sao genes candidatos para a patogénese da DA, e que esses genes
e 0s genes IL-1B e COL4A1l, estdo associados a idade de inicio e outras variaveis
cognitivas da doenca.

Palavras-chave: Doenca de Alzheimer, inflamagéo, TLR2, TLR6, IL-1B, NLRP10,
COL4AL.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative and progressive disease and
is the leading cause of dementia (FREEMAN; TING, 2016). The majority of cases are
sporadic and late-onset with no proven evidence for a Mendelian pattern of inheritance
(HEPPNER et al., 2015). There are no treatments to cure or halt the progression of
AD, and there are no validated biomarkers for early diagnosis of the disease
(HEPPNER et al., 2015). AD pathology is characterised by extracellular deposition of
amyloid-f3 (AB) plaques, intracellular accumulation of hyperphosphorylated tau protein,
known as neurofibrillary tangles (NFTs) (HUANG; MUCKE, 2012), and an
inflammatory response, which escalates with disease progression (HEPPNER et al.,
2015). Only very recently, the importance of inflammation in AD pathogenesis has
been appreciated, and it is now thought to contribute to and exacerbate AD pathology
(COUTURIER et al., 2016; HENEKA et al., 2015; HENEKA et al., 2014; HEPPNER et
al., 2015; HICKMAN; EL KHOURY, 2014; MARCHESI, 2016; MINTER et al., 2016;
PERRY; HOLMES, 2014; SHICHITA; YOSHIMURA, 2016).

Elevated levels of inflammatory cytokines and interleukins, in particular IL-1[3
and IL-18, have been found in the brain and peripheral blood of AD patients
(JOHNSTON et al., 2011). Overexpression of these interleukins was shown to be
critical for the onset of the inflammatory process (RUBIO-PEREZ; MORILLAS-RUIZ,
2012) and both mediate the expression of a vast range of inflammation-related genes
(WEBER et al.,, 2010). Inflammasomes are high-molecular-weight complexes that
mediate the auto-activation of caspase-1, which cleaves the pro-forms of IL-13 and IL-
18 to active forms (FRIEDLANDER et al., 1997; HERX; YONG, 2001). Inflammasomes
have been acknowledged for their crucial role in host defence against pathogens (VON
MOLTKE et al., 2013), but it's dysregulated activation is linked to the development of
cancer and autoimmune, metabolic and neurodegenerative diseases (BROZ; DIXIT,
2016).

Several genes have been identified as having a key role in the inflammatory
process and being associated with AD (GUERREIRO et al., 2013; HOLLINGWORTH
et al., 2011). We propose to assess the association of some particular inflammation-
related gene polymorphisms, such as TLR6, TLR2, NEK7, IL-1B, IL-18, NLRP10, and
COL4A1, that might also be associated with AD. These analyses will help to better

understand the role of inflammation in the pathogenesis of AD, thus contributing to the
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discovery of new therapeutic targets, improved care and to advance the treatment of
patients, and deliver new biomarkers for diagnosis.

The overall aim of this study is to verify the existence of association between
inflammation-related gene polymorphisms and the risk of developing late-onset AD
and evaluate the relationship between these genes and clinical and cognitive variables
of the patients.

2 LITERATURE REVIEW

2.1 ALZHEIMER’S DISEASE

Dementia is one of the greatest public health challenges affecting over 46.8
million people worldwide, with a global estimated financial cost of US$818 billion in
2015 (The Global Voice on Dementia, 2016). AD, a fatal neurodegenerative disorder,
is the most prevalent cause of dementia (HEPPENER et al., 2015).

Over the last few years, there has been considerable progress in unravelling the
genetic influences of AD. About 5% of AD cases, known as familial AD or early-onset
AD (EOAD), are inherited as an autosomal dominant trait and are the result of full
penetrant mutations in genes that encode the amyloid beta precursor protein (APP)
(GOATE et al., 1991), and presenilins 1 and 2 (PSEN1 and PSEN2) (LEVY-LAHAD et
al., 1995; ROGAEYV et al., 1995). 95% of the AD cases are late-onset and sporadic
(LOAD). LOAD is a non-familial, complex disease, and is likely the result of the
interaction between environmental factors and highly prevalent genetic variants with
low penetrance (TANZI, 1999). A major genetic risk factor for LOAD is the presence of
the €4 allele of apolipoprotein E (ApoE) (SAUNDERS et al., 1993). However, the
presence of €4 is neither necessary nor sufficient for the development of AD.

So far, there is no cure or validated biomarkers for early diagnosis of LOAD. At
present, only four currently available drugs have been approved for treating AD. They
belong to 2 groups: the acetylcholinesterase (AChE) inhibitors and the N-Methyl-D-
aspartate (NMDA) receptors (CHIANG; KOO, 2014; FRANCIS et al., 2005; HUANG,;
MUCKE, 2012). Nonetheless, it has been shown that these drugs are only a palliative
measure, and their effectiveness decreases over time (FOLCH et al., 2017). Recently,
a group of researchers conducted a clinical trial with aducanumab, an anti—3 amyloid

antibody drug that selectively targets aggregated APB. So far, this antibody has shown
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to reduce soluble and insoluble AB in a transgenic mouse model of AD, and improve
cognitive function in people diagnosed with early AD. Nevertheless, the trial is still too
small to be conclusive (SEVIGNY et al., 2016).

The early stages of AD are mainly characterized by mild cognitive and functional
decline. However, with the disease development the intensity of memory loss and
impairment of other intellectual abilities progresses, and at the late stages patients alter
their personality and lose their bodily functions (HUANG; MUCKE, 2012). The
prevalence of the disease increases with life expectancy, and it affects more than one-
third of people over the age of 90 (HENRY et al., 2010). Even though most patients
with AD are 65 and older, evidence suggests that the pathological processes
underlying the disease start years before a clinical diagnosis can be made (JACK et
al., 2013).

The primary pathological hallmarks of AD are the senile plaques, which result
from the extracellular deposition of AR peptides (CAMPION et al., 2016), and NFTs,
intracellular aggregates composed of hyperphosphorylated forms of the microtubule-
associated protein tau (CAMPION et al., 2016). The AP peptide results from the
sequential cleavage of the amyloid precursor protein (APP) by (- and y-secretases
(FIGURE 1) (CAMPION et al.,, 2016; HENRY et al., 2010). In AD, the aberrant
processing of APP or the dysfunctional clearance of the Af peptide results in the
formation of the Ap plaques.

Am\,"lmdoqi\mc ety A protofibrils  A[} fibrils Plaques

Y-secretase AP monomer “m

}-secretase
| - AP oligomers
ﬂ —_—
. |

W = J} J = B3

i

o O<

B (

FIGURE 1 - FORMATION OF A3 PLAQUES.

SOURCE: adapted from HEPPNER et al., 2015

NOTE: Cleavage of APP by (- and y-secretases results in the production and release of A into the
extracellular compartment. AR monomers may then go on to form oligomers which can, eventually, turn
into fibrils and plaques.
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There are several hypotheses for the pathogenesis of AD, but the most widely
accepted are the amyloid cascade hypothesis and the tau hypothesis. According to the
amyloid cascade hypothesis, AR accumulation and deposition in the brain are the
initiating events in AD (HEPPNER et al., 2015). The tau hypothesis postulates that tau
protein abnormalities are the fundamental causes of the disease (LIU; CHAN, 2014).

However, neuroimaging studies and biomarkers have established that amyloid
alterations occur prior to tau pathology, supporting the amyloid cascade hypothesis
(PERRIN et al., 2009). Genetic evidence also supports this hypothesis, since
mutations in the APP, PSEN1, and PSENZ2 genes are the only known causes of EOAD
(BATEMAN et al., 2011) and, so far, no mutations in tau have been found to cause AD.

Nonetheless, AP deposition, tau phosphorylation, and subsequent NFT
formation, are not sufficient to explain all the features of AD. Elderly individuals have
shown abnormal levels of A plagues but no signs of AD (AIZENSTEIN et al., 2008).
Also, animal models of AD expressing high levels of A3 or tau protein did not show
significant neurodegenerative changes (JOHNSTON et al., 2011). Moreover, most
clinical trials with immune-therapeutics showed clearance of AB plaques but no
cognitive improvement in AD patients (HOLMES et al., 2008).

It remains unclear how A is linked to the NFT, but there is growing evidence
that neuroinflammation could represent one of the critical linking factors. It has been
shown that AP induces sustained inflammation which causes and propagates
phosphorylated and aggregated tau species, substantially contributing to neuronal
death in AD (ASAI et al., 2015; VENEGAS; HENEKA, 2017). These findings suggest
that other factors might also be involved in the pathogenesis of AD (LIU; CHAN, 2014).

2.2 THE ROLE OF INFLAMMATION IN AD

Increasing evidence suggests that neurodegeneration is accompanied by an
inflammatory process that is likely to interfere and contribute to the degenerative
mechanisms involved in LOAD (ZHANG et al., 2013).

The association between AD and mutations in genes encoding immune
receptors of myeloid cells, such as triggering receptor expressed in myeloid cells 2
(TREM2), and the anti-inflammatory/phagocytosis receptor (CD33) (BRADSHAW et
al., 2013; GUERREIRO et al.,, 2013; JONSSON et al.,, 2013), and inflammation
modulating cytokines, such as interleukin-10 (IL-10) and tumour necrosis factor a



14

(TNFa) (RAMOS et al.,, 2006), links immune alterations and AD pathogenesis.
Additionally, several inflammatory cytokines, chemokines and other immune mediators
are elevated in the brain and cerebro-spinal fluid (CSF) of AD patients and mild
cognitive impairment (MCI) patients, a condition that precedes AD, indicating that
inflammatory processes are involved in the pathology of AD (BROSSERON et al.,
2014; JOHNSTON et al.,, 2011; TARKOWSKI et al., 2003). The presence of
inflammatory changes in MCI patients suggests that the immune system activation
precedes AP deposition (BROSSERON et al., 2014; TARKOWSKI et al., 2003).

Epidemiologic evidence also suggests that inflammation is an important
contributor to AD since prolonged treatment with nonsteroidal anti-inflammatory drugs
Is associated with delayed onset or slowed progression of AD (IN'T VELD et al., 2001,
SASTRE et al., 2003; WEGGEN et al.,, 2001), and histopathology studies show
increased numbers of activated astro- and microglial cells surrounding AB deposits
(WYSS-CORAY, 2006).

These observations imply that inflammatory processes may induce AD
pathology, independently of AR deposition, and sustain increased AP levels, thus
exacerbating the pathology (HEPPNER et al., 2015).

2.3 MICROGLIA AND AD

Microglia are the principal innate immune cells of the central nervous system
(CNS) and constitute the first line of defence against many pathological events
(FALSIG et al., 2008). Activation of these cells has been associated with the
pathogenesis of several neurodegenerative diseases, including AD (JANA et al.,
2008).

It has been shown that microglia can act in two different ways. In one hand,
activated microglia search for dead cells from the CNS and secrete several
neurotrophic factors essential for neuronal survival (JANA et al., 2008). This type of
activation is associated with neuronal protection and regeneration. Additionally, these
cells are responsible for the uptake and degradation of A, thereby contributing to the
clearance of A (HENEKA et al., 2015). On the other hand, when activated by Af3,
microglia may misread the signal and interpret it as bacterial presence (HENEKA,

2017). Since there is a constant production of AB in the brain, microglia may never fully
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succeed in removing the A3, thus contributing to the establishment of a chronic, long
lasting, type of sterile inflammation in AD. During this type of activation, microglia
release inflammatory mediators, including cytokines and reactive oxygen and nitrogen
species (LUE et al., 2001; MURPHY et al., 1998; SZCZEPANIK et al., 2001; WALKER
et al., 2006; YATES et al., 2000). Excessive production of these pro-inflammatory
molecules is believed to play a significant role in enhancing the degenerative process
in AD patients (JANA et al., 2008).

Microglia are equipped with several cell membrane and cytosolic pattern
recognition receptors (PRRs) which initiate the inflammatory phenotype (HEPPNER et
al., 2015). A few cell surface toll-like receptors (TLRs), such as TLR2, 4 and 6, and
their co-receptors, such as oxidized low-density lipoprotein receptor (CD36), can be
triggered by fibrillary and aggregated A( forms, to prime the cell (LIU et al., 2012;
WEGGEN et al., 2001). AB makes microglia cells susceptible to a secondary stimulus
and promotes their activation. It has been demonstrated that stimulation of the immune
system in response to Ap and pro-inflammatory cytokines impairs microglial clearance
of ApB and neuronal debris (HENEKA et al., 2013).

The gene encoding TLR6, a protein composed of 796 aa with a molecular mass
of 91.9 kDa, is located on chromosome 4pl14 (FIGURE 2), compromises 34,008 bases
and is composed of 6 exons (GENECARDS, 2017; NCBI, 2017).

The TLR2 gene is located on chromosome 4931.3 (FIGURE 2), compromises
21,836 bases and 5 exons and it encodes a 784 aa protein with 89.8 kDa
(GENECARDS, 2017; NCBI, 2017).

Assembly exceptions
chromeosome 4

Assembly exceptions ' ! ! ' cilck '

FIGURE 2 — LOCATION OF TLR6 and TLR2 GENES ON CHROMOSOME 4.
SOURCE: Ensembl in 04/2017.

NOTE: The red rectangles represents the location of the TLR6 and TLR2 genes.

Recently, a number of studies have suggested that TLRs may be intimately
associated with LOAD (BSIBSI et al., 2002; REED-GEAGHAN et al., 2009; LIU et al.,
2012; YU; YE, 2015; MCDONALD et al., 2016).

There is evidence that expression of TLR2 is increased in brain tissue of AD
patients and animal models of AD (YU; YE, 2015), and increased levels of TLR2 mRNA
have also been found in microglia from AD patients (BSIBSI et al., 2002). Studies show

that inhibition of TLR2 results in a decrease of the inflammatory response and elevated
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plague clearance by microglia (LIU et al., 2012; MCDONALD et al., 2016). Contrarily,
some studies have reported that both TLR2 and TLR4 are necessary for fibrillar Ap
phagocytosis (REED-GEAGHAN et al., 2009).

Unlike other TLRs, which are functionally active as homomers, TLR2 can form
heterodimers with TLR1 or TLR6, allowing detection of even more ligands (FARHAT
et al., 2008). TLR4 and TLR6 can also form heterodimers, and CD36 serves as a co-
receptor for TLR2-TLR6, as well as TLR4-TLR6 heterodimers (STEWART et al., 2010).

In AD, AP sustains chronic activation of primed microglia (due to the peptide’s
accumulation), resulting in a continuous production of inflammatory cytokines and
chemokines by these cells, such as IL-13 and IL-18; in turn, the cytokines and
chemokines sustain activation of the primed microglial cells. This process leads to a
vicious cycle, which ultimately impairs microglial causing neurodegeneration and
neurone loss (FIGURE 3) (HEPPNER et al., 2015).

N wglia
'|{L|c_q||.|l :4
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— gl Ty
—*J@gre@:r —>
AR e and chemokines
Primed * Neurodegeneration
. -‘,II ron If 5

microglial cell

FIGURE 3 — MICROGLIAL PRIMING.

SOURCE: adapted from HEPPNER et al., 2015.

NOTE: The presence of AP sustains chronic activation of primed microglial cells resulting in a constant
production of inflammatory cytokines and chemokines, which, in turn maintain activation of the primed
microglial cells. This process leads to a vicious cycle, which ultimately impairs microglia causing
neurodegeneration and neuron loss.

TLR4-TLR6 heterodimers regulate the expression of pro-inflammatory
mediators, including chemokines, and reactive oxygen and nitrogen species, and
activation of these heterodimers primes microglia for IL-13 production.

Moreover, a common TLR6 polymorphism has been associated with a reduced
susceptibility to coronary artery disease (HAMANN et al., 2013), an inflammatory
disease associated with the eventual development of AD in APOE ¢4 allele carriers
(BEERI et al., 2006).

The microglial cells activation is also intimately associated with the activation of
the NLRP3 inflammasome (HENEKA et al., 2013; SHEEDY et al., 2013).
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2.4 NLRP3 INFLAMMASOME AND AD

Inflammasomes are high-molecular-weight complexes that mediate the
activation of inflammatory caspases. There are two families of inflammasomes: the
NLR (Nod-like receptor) family and the PYHIN (pyrin and HIN domain-containing)
family (HENEKA et al., 2015). The assembly of each inflammasome is conducted by a
PRR in response to pathogen-associated molecular patterns (PAMPs) or danger-
associated molecular patterns (DAMPs) during tissue-based injury (DAVIS et al.,
2011). The NLRP3 inflammasome has probably attracted the most interest, because
of its role in AD (LAMKANFI; DIXIT, 2014). Several genetic, behavioural phenotype
and biochemical studies have shown that this inflammasome is activated in AD and
contributes to the pathology of the disease (HALLE et al. 2008; HENEKA et al., 2013;
MURPHY et al. 2014; SALMINEN et al. 2008; SARESELLA et al., 2016; TAN et al.
2013).

The NLRP3 inflammasome, from the NLR family, consists of a NLRP3 sensor
protein, an adaptor protein known as apoptosis-associated speck-like protein (ASC)
formed by two domains: a pyrin domain (PYD) and a caspase recruitment domain
(CARD), and a pro-caspase-1. ASC’s domains allow ASC to bridge the NLRP3 sensor
protein to pro-caspase-1 (BROZ; DIXIT, 2016).

Activation of the NLRP3 inflammasome is a tightly regulated process that
comprises two consecutive steps. The first step is provided by pro-inflammatory
stimuli, such as A, that upregulates the cellular expression of NLRP3, pro-IL-13 and
pro-1L-18, through nuclear translocation of NF-kB (LAMKANFI; DIXIT, 2014). While
this step is clear and well defined, the nature of the second step is more ambiguous,
though it is known to require the oligomerization of NLRP3 and the assembly with ASC
and pro-caspase-1 (GOLD; EL KHOURY, 2015), but the mechanisms behind this
oligomerization are still being studied.

It was recently discovered that the oligomerization of the NLRP3 inflammasome
requires the NIMA-related kinase 7 (NEK7), which binds to the NLRP3 leucine-rich
repeats (LRRs) (HE et al., 2016; SCHMID-BURGK et al., 2016; SHI et al., 2015). This
kinase has been identified as an essential upstream regulator of NLRP3 (SCHMID-
BURGK et al., 2016; SHI et al., 2015). NEK7 may be a novel promising therapeutic
target for a variety of inflammatory diseases via direct targeting of the NLRP3

inflammasome (XU et al., 2016).
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The gene encoding NEK7, a 302 aa protein with 34.6 kDa, is located on
chromosome 1031.3 (FIGURE 4). NEK7 is composed of 165,458 bases and
compromises 12 exons (GENECARDS, 2017; NCBI, 2017).
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FIGURE 4 — LOCATION OF NEK7 GENE ON CHROMOSOME 1.
SOURCE: Ensembl in 04/2017.
NOTE: The red rectangle represents the location of the NEK7 gene.

Assembly and activation of this complex leads to the auto-activation of pro-
caspase-1 to active caspase-1, which cleaves the pro-forms of IL-13 and IL-18 to their
active forms (FIGURE 5) (SHAW et al., 2011).
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FIGURE 5 — FORMATION OF IL-1f3 AND IL-18 THROUGH ACTIVATION OF THE NLRP3
INFLAMMASOME.

SOURCE: the author.

NOTE: Toll-like receptors and their co-receptors can be triggered by AB to induce signalling via the
innate immune system. This pro-inflammatory stimulus induces NLRP3 activation. Oligomerization and
assembly of the NLRP3 inflammasome complex is regulated by NEK7 which binds to the NLRP3
leucine-rich repeats (LRRs). The assembly and activation of this complex lead to the auto-activation of
pro-caspase-1 to active caspase-1 and subsequent processing of pro IL-13 and pro-IL-18 into its
biologically active forms. The red boxes represent some of the genes which polymorphisms will be
genotyped in the study.
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2.51L-1B, IL-18 AND AD

Hyperactivation of IL-13 and IL-18 may lead to the overproduction of these, and
other cytokines, which will result in excessive proliferation and recruitment of microglia
cells and, eventually, lead to neurodegeneration and neurone loss (FREEMAN; TING,
2016; HEPPNER et al., 2015).

IL-1P is a key mediator in the innate immune response in AD and elevated levels
of these interleukins have been found in the brain and peripheral blood of AD patients,
especially near AB plaques (JOHNSTON et al., 2011; OJALA et al., 2009). Previous
studies have identified an IL-1B polymorphism as a risk factor for AD (LIO et al., 2006;
WAN et al., 2008). IL-13 has also been shown to induce nitric oxide synthase activity
to produce the free radical NO, leading to neurotoxicity (ROSSI; BIANCHINI, 1996;
RUBIO-PEREZ; MORILLAS-RUIZ, 2012). IL-13 secreted from astrocytes has been
shown to enhance the production of APP and A3 from the neurones (BLASKO et al.,
2000; BONIFATI; KISHORE, 2007; LI et al., 2011). Studies have also demonstrated
that IL-1B can induce the phosphorylation of tau protein and hence mediate the
formation of NFT (GRIFFIN et al., 2006; SALMINEN et al., 2008). Blocking IL-13
signalling in the brain of a mouse model of AD resulted in an alteration of the
inflammatory responses of the brain, rescuing cognition, attenuating tau pathology,
and reducing fibrillar AR levels (KITAZAWA et al., 2011). Heneka et al. (2013)
demonstrated that knockout of NLRP3 reduced IL-13 production which resulted in a
reduction of amyloid plague burden in mice. Conversely, knocking out the IL-1(3
receptor antagonist in mice increased the neuronal damage induced by A3 (CRAFT et
al., 2005). These studies implicate a pro-inflammatory role of IL-1[3 in the pathogenesis
of AD.

The IL-1B gene is located on chromosome 2g14.1 (FIGURE 6) and is composed
of 7,153 bases with 7 exons, encoding a 269 aa protein with 30.7 kDa (GENECARDS,
2017; NCBI, 2017).
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FIGURE 6 — LOCATION OF IL-1B GENE ON CHROMOSOME 2.
SOURCE: Ensembl in 04/2017.

NOTE: The red rectangle represents the location of the IL-1B gene.
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IL-18 polymorphisms (rs1946518 and rs187238) have been shown to increase
the risk of developing LOAD in Han Chinese and Italian populations (BOSSU et al.,
2007; YU et al., 2009). On the other hand, other investigators have found that IL-18
gene polymorphisms may decrease the risk of AD, especially among Asians and those
with the APOE €4 allele (LUO et al., 2016). High levels of this interleukin are present
in the blood of patients with ischemic heart disease, type-2 diabetes, and obesity,
which are risk factors for AD (SUTINEN et al., 2012). Levels of IL-18 in AD patients
have been shown to decrease as the disease progresses, and no significant
upregulation is observed in severe AD patients as compared to age-matched control
subjects (MOTTA et al., 2007). This gradual decline suggests that IL-18 could be an
initiator factor of AD pathogenesis. Sutinen et al. (2012) demonstrate that elevated
protein levels of APP, BACE1, and the N-terminal fragment of PSEN1 and PSEN
enhancer 2, which are components of the y-secretase complex, are triggered by IL-18,
suggesting IL-18 accelerates AB genesis. Preclinical studies have also demonstrated
a link between IL-18 and tau pathology (OJALA et al., 2008).

The gene encoding IL-18, a 193 aa protein with 22.3 kDa, is located on
chromosome 11g23.1 (FIGURE 7), has 20,867 bases and is composed of 6 exons
(GENECARDS, 2017; NCBI, 2017).
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FIGURE 7 — LOCATION OF IL-18 GENE ON CHROMOSOME 11.
SOURCE: Ensembl in 04/2017.
NOTE: The red rectangle represents the location of the IL-18 gene.

Regulation of IL-13 and IL-18 may play a role in attenuating and/or balancing

the innate immune response during neuroinflammation.

2.6 NLRP10 INFLAMMASOME AND AD

Another inflammasome, the NLRP10, has also been associated with the
inflammatory processes underlying AD (MURPHY et al., 2014). This inflammasome,
also belonging to the NLR family, differs from NLRP3 because it does not contain LRRs
(WANG et al., 2004). It is thought that the lack of LRRs prevents ASC, when bound to
NLRP10, from binding to the NLRP3 sensor protein, hence preventing activation of the
NLRP3 inflammasome (GOLD; EL KHOURY, 2015) and activating caspase-1 (WANG



21

et al., 2004). A study in a mouse model of AD showed that inhibition of the NLRP3
inflammasome leads to a reduction of the size of A plagues (MURPHY et al., 2014).
These findings suggest that NLRP10 may act as a negative regulator of NLRP3
inflammasome activation.

The gene encoding NLRP10, a 655 aa protein with 75.0 kDa, is located on
chromosome 11p15.4 (FIGURE 8), and is composed of 6,404 bases compromising 3
exons (GENECARDS, 2017; NCBI, 2017).
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FIGURE 8 — LOCATION OF THE NLRP10 GENE ON CHROMOSOME 11.
SOURCE: Ensembl in 04/2017.

NOTE: The red rectangle represents the location of the NLRP10 gene.

2.7 COL4A1 AND AD

Gain-of-function somatic mutations in the COL4A1 gene have been shown to
provoke inflammatory reactions and damage the brain in a broad range of diseases
(GEORGE et al., 1993; POSCHL et al., 2004; GOULD et al., 2005; GOULD et al.,
2006; ALAMOWITCH et al., 2009). This gene encodes a type IV collagen alpha protein
and its involved in brain and neuromuscular junction development (MARCHESI, 2016).

Marchesi (2016) proposed that low abundant somatic mutations of this and
other genes, such as NLRP3, APP, TREX1, and NOTCH3, might promote localised
inflammation and blood vessel damage in the brain. COL4A1 mutations have been
identified as a monogenic cause of cerebral small-vessel disease (CSVD) (GOULD et
al., 2006; SIBON et al., 2007; ALAMOWITCH et al., 2009). Age-associated CSVD
shares multiple risk factors and overlaps neuropathologically with AD (LOVE; MINERS,
2016). There is an additive component to the clinical and pathological effects of CSVD
and AD, and growing evidence suggests that the disease processes also interact
mechanistically at a cellular level. Cerebral microbleeds (CMBs), a kind of CSVD
(BATH; WARDLAW, 2015), can be found in a large number of patients with AD (IKRAM
et al., 2012; POELS et al., 2012), and high levels of IL-18 were observed in CMB
patients.

Additionally, the presence of vascular risk factors has been reported to predict
the development of AD or the conversion from MCI to AD (LUCHSINGER et al., 2005;
HELZNER et al., 2009; LI et al., 2011; DE BRUIJN; IKRAM, 2014).
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The COL4AL1l gene is located on chromosome 13934 (FIGURE 9). This gene
compromises 158,200 bases and is composed of 54 exons, and encodes a 1669 aa
protein with 16.1 kDa (GENECARDS, 2017; NCBI, 2017).
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FIGURE 9 — LOCATION OF THE COL4A1 GENE ON CHROMOSOME 13.
SOURCE: Ensembl in 04/2017.
NOTE: The red rectangle represents the location of the COL4A1 gene.

Genetic variants and trait scores can be associated with the mechanisms
mentioned above. One way to recognize genes involved in human disease is to identify
polymorphic sites associated with the presence of the disease. Some genetic
polymorphisms can contribute to the disease while others are simply useful markers.
The most common type of polymorphism is a single nucleotide polymorphism (SNP)
where a base is simply replaced by another. The primary goal of this study is to verify
the existence of association between inflammation-related gene polymorphisms and

the risk of developing AD.
3 OBJECTIVES
3.1 GENERAL OBJECTIVE

To verify the existence of association between polymorphisms of inflammation-
related genes and LOAD and evaluate the relationship between these genes

and clinical and cognitive variables of the patients.
3.2 SPECIFIC OBJECTIVES

Determine the genotypic and allelic frequencies, both in patients and the control
group, of the following polymorphisms: rs6531669 (TLR6), rs13105517 (TLR2),
rs4915274 of (NEK7), rs1143643 (IL-1B), rs187238 and rs1946518 (IL-18),
rs9919613 (NLRP10), and rs9515185, rs4773142, rs9301441, rs613430 and
rs649104 (COL4A1L);
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Evaluate the relationship between the frequency of the polymorphisms and
clinical and cognitive variables, such as cognitive performance, age of onset,
duration of the disease, and severity of the disease;

Evaluate the effect of gender and APOE status on AD susceptibility, severity of

the disease, disease progression, duration of the disease, and age of onset.

4 JUSTIFICATION

As the world population lives longer, the prevalence of AD is increasing.
However, at the moment, there are only symptom modifying drugs for AD, making the
discovery of new molecular pathways and genes involved in AD development and
progression a priority for medical research.

The goal of case-control association studies is to identify patterns of
polymorphisms that vary systematically between individuals with different disease
states and thus identify risk-enhancing or protective alleles.

Identifying genotype—disease correlations will help us to identify genetic risk
factors for LOAD, deliver new therapeutic targets, improve care and advance treatment
of patients, and deliver attractive biomarkers for this disease that are relevant for
diagnostics. Plus, these studies are one of the main thrusts of the drive towards

personalized medicine.

5 MATERIALS AND METHODS

5.1 PARTICIPANTS

AD patients (n=152) were recruited at Hospital de Clinicas da Universidade
Federal do Parand (HC-UFPR) and Instituto de Neurologia de Curitiba (INC). The
diagnosis was based on the patient’s medical history and cognitive tests. Patients
under 60 were excluded from the sample to prevent possible cases of early-onset AD.
Individuals aged 60 or over (n=120) were recruited as part of the control group (TABLE
1). The selection was based on the result of a mini mental status examination (MMSE)
exam (APPENDIX 1). Exclusion criteria were the presence of infectious disease, both
in the patients and control group; contracting any other type of dementia, having

alcohol addiction or having an inconclusive diagnosis (in the patient’s group).
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Written informed consent was obtained from all participants and approved by
the ethics committee of Universidade Federal do Parana (APPENDIX 2). This study is

part of a larger project.

TABLE 1 — DESCRIPTIVE DATA FOR ASSOCIATION SAMPLE.

Cases Controls
n 152 120
Basic descriptives
% Female 64.90% 74.17%
% Male 35.10% 25.83%
Mean age (SD) 79.33 (6.82) 70.15 (7.18)
Mean Age of Onset (SD) 75.14 (6.05) n/a
Mean Disease Duration (SD) 4.10 (2.77) n/a
Mean MMSE Score (SD) 14.17 (7.46) 27.49 (2.10)
APOE genotyped (%)
€2/e2 0% 0.84%
€2/e3 8.11% 8.40%
€3/e3 43.24% 71.42%
€2/e4 2.70% 0%
€3/ed 36.49% 19.33%
ed/ed 9.46% 0%

5.2 VARIABLES

Variables in this study included MMSE results; age of onset of the disease;
duration of the disease, calculated from the age of onset and the patients age when
the information was collected; and severity of the disease, obtained through Clinical
Dementia Rating (CDR) values. The CDR is a scale used to characterize six domains
of cognitive and functional performance. The level of dementia in AD is given by three
different scores: 1 = Mild Dementia, 2 = Moderate Dementia, and 3 = Severe Dementia.
In our study, the association between CDR results and the polymorphisms was tested
in three different ways: we tested 3 against 2 (CDR 3:2), 3 against 2+1 (CDR 3:2+1),

and 3+2 against 1 (CDR 3+2:1). This information was obtained from medical reports.

5.3 SNP TAGGING

NCBI has made information available from completely sequenced TLR6, TLR2,
NEK7, IL-1B, 1L-18, NLRP10 and COL4A1 genes in different populations. Linkage
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Disequilibrium (LD) estimates based on D' and r? are available for these SNPs on
Haploview (BARRETT et al., 2004) and can be used to select a minimal number of
SNPs that retain as much as possible of the genetic variation of the full SNP set. For
TLR6, TLR2, NEK7, IL-1B, and NLRP10 genes one SNP was representative of the
whole gene. For the IL-18 gene, SNPs were chosen according to publicly available
data, LD and frequency in the population, and for COL4A1, five SNPs were selected
according to their LD and frequency in the population. For each gene, only SNPs with
a global Minor Allele Frequency (MAF) greater or equal to 0.15 were selected, to
minimize the chances of selecting a rare variant. We selected a total of 12
polymorphisms: 5 polymorphisms from COL4A1, 2 polymorphisms from IL-18, and 1
polymorphism for each of the following genes: IL-1B, NEK7, NLRP10, TLR2 and TLR6.
Table 2 shows the SNPs genotyped from each gene.



TABLE 2 - LIST OF THE POLYMORPHISMS SELECTED FOR THE STUDY.
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Global MAF/Minor

Gene Locus SNP Functional Consequence Variants Function of the protein
Allele Count
TLR6 4pl4 rs6531669 intron variant G=0.4363/2185 GIT Fundamental role in pathogen recognition and activation of innate immunity
TLR2 4q931.3 rs13105517 intron variant, utr variant 5’ A=0.3594/1800 AIG Fundamental role in pathogen recognition and activation of innate immunity
NEK7 1g31.3 rs4915274 intron variant A=0.2945/1475 AIC Essential in NLRP3 Inflammasome activation
rs187238 upstream variant 2KB G=0.2127/1065 CIG Proinflammatory cytokine;
IL-18 11g23.1
rs1946518 upstream variant 2KB T=0.4079/2043 GIT 1 cytokine expression
IL-1B 2q14.1 rs1143643 intron variant T=0.2877/1441 CIT Proinflammatory cytokine; 1 cytokine expression
NLRP10 11p15.4 rs9919613 intron variant C=0.3490/1748 CIG Inhibits formation of the NLRP3 Inflammasome
rs9515185 missense, upstream variant 2KB ~ G=0.4241/2124 CIG
rs4773142 intron variant, utr variant 5’ A=0.4052/2029 AIG
COL4AL 13034 1$9301441 intron variant T=0.4393/2200 oIT Provokes inflammatory reactions ahd damages the brain in a wide variety of
diseases
rs613430 intron variant G=0.1683/843 CIG
rs649104 intron variant G=0.4056/2031 AIG
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5.4 DNA EXTRACTION AND QUANTIFICATION

Approximately 4 mL of peripheral blood from each participant was collected in
a tube with EDTA. The samples were processed, and the DNA extraction followed an
adapted version of the salting out method of Lahiri and Nurnberger’s protocol (LAHIRI;
NURNBERGER JR, 1991). The DNA was quantified and stored at -20°C for posterior

genotyping.

5.5 GENOTYPING

Polymorphisms were genotyped at the University of Auckland (New Zealand)
using Sequenom MassARRAY iPLEX Platform (FIGURE 10). This method is based on
primer extension to generate allele-specific products with distinct masses. It starts with
a locus-specific PCR reaction, followed by a locus-specific primer extension reaction
in which an oligonucleotide primer anneals immediately upstream of the polymorphic
site being genotyped. The primer extension is made according to the sequence of the
variant site and is a single complementary mass-modified base. Mass-modified
dideoxynucleotide terminators are incubated in the primer and amplified target DNA.
These terminators do not have a 3’ hydroxyl group. The absence of this group prevents
any other nucleotide of being added as no phosphodiester bond can be created.

Using mass spectrometry, the mass of the extended primer is determined. The
primer's mass indicates the sequence and, therefore, the alleles present at the
polymorphic site of interest. The mass of the observed primers is automatically
translated into a genotype for each reaction through Sequenom supplies software
(SpectroTYPER).

One of the key strengths of the MassARRAY iPLEX assay lies in its multiplexing
capabilities. This technique allows us to analyse many individual loci of DNA in one-
well reaction. Another significant advantage of this method is the extremely rapid turn-
around time that is allowed due to the multiplexing capabilities, convenient assay
design tools, and the use of simple reagents. Moreover, the iPLEX assay makes it

possible to obtain highly precise, quantitative results.
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FIGURE 10 — THE MASSARRAY IPLEX REACTION.
SOURCE: GABRIEL et al., 2009.
NOTE: A schematic of the genotype reaction of a C-to-G SNP.

rs9515185 of the COL4Al gene could not be genotyped, possibly due to the
presence of proximal SNPs and the inability of designing SNP-specific primers.

rs7412 and rs429358 from the APOE gene were previously genotyped, as part
of another study, using real-time PCR, performed using a standard TagMan® PCR kit
protocol (Applied Biosystems).

5.6 STATISTICAL ANALYSIS

Normality, and homogeneity tests were performed for all variables. The x2 test
was used to test for Hardy-Weinberg equilibrium (HWE). Allele and genotype

frequencies were obtained by direct counting. The x2 test was used to compare allele
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and genotype frequencies in cases and controls and subgroups defined by gender,
and APOE status when appropriated. The relationship between genotypes and the
other study variables was assessed by logistic regression analysis. All quantitative
variables were converted to binary variables using a median split. The R package
PredictABEL (KUNDU et al., 2011) was used for prediction of the disease risk, which
was calculated based on logistic regression values, and the R package pROC (ROBIN
et al., 2011) to obtain the receiver operating characteristic (ROC) curves, and the area
under the curve (AUC). All statistical analysis was performed using R software, and

statistical test significance was evaluated using a P-value of 0.05 (5%).

6 RESULTS

Descriptive statistics for both sample groups are presented in Table 2. All SNPs
followed Hardy-Weinberg equilibrium (HWE) in both groups (P > 0.05).

6.1 LOAD SUSCEPTABILITY

Of the eleven SNPs analysed in this study SNPs rs6531669 (TLR6),
rs13105517 (TLR2), and rs9919613 (NLRP10) showed association with LOAD
susceptibility (TABLE 3).

The X? test for rs6531669 showed a significant difference in the frequency of
TLR6 genotypes between AD cases and controls (P = 0.0173, TABLE 3). In a
recessive genetic model, individuals carrying two copies of the minor allele for
rs6531669 of the TLR6 gene (G/G), showed a consistently lower risk of LOAD (P =
0.0065, OR =0.3310, 95 % CI =[0.1493, 0.7336], TABLE 4a). In addition, the X? test
was also statistically significant for the recessive genetic model (P = 0.0048, TABLE
3). Moreover, the association remained statistically significant after adjusting for
gender, and APOE status (P = 0.0075, OR = 0.3150, 95 % CI =[0.1352, 0.7343],
TABLE 4b). When considering all the SNPs included in the study, and after adjusting
for gender, and APOE status, the association of rs6531669 remained statistically
significant (P =0.0278, OR =0.3817, 95 % CI =[0.1618, 0.9003], TABLE 4c), although,
in this case, gender showed statistical significance as well (P = 0.0380, TABLE 4c).

When using the X? test to analyse both genders separately, no significant association
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was found in men (P > 0.05), but it remained statistically significant in women (P =
0.0118, SUPPLEMENTARY TABLE 1).

The X? test showed a significant difference in the frequency of TLR2 alleles for
rs13105517 between AD cases and control subjects (P = 0.0351, TABLE 3). The
association between rs13105517 and LOAD susceptibility was not confirmed by the
logistic regression model (P = 0.0516). However, considering a recessive genetic
model, and after adjusting for gender, and APOE status, individuals carrying two
copies of the minor allele (A/A) showed a higher risk of LOAD (P = 0.0406, OR =
2.3444, 95 % CI = [1.0369, 5.3004], TABLE 4b). In addition, the X? test was also
statistically significant for the recessive genetic model (P = 0.0477, TABLE 3). When
considering all the SNPs included in the study, as well as adjusting for gender, and
APOE status, the association remained statistically significant (P = 0.0395, OR =
2.4346, 95 % CIl = [1.0435, 5.6805], TABLE 4c) and gender showed statistical
significance as well (P = 0.0380, TABLE 4c). When analysing both genders separately,
no significant association was found in men (P > 0.05), but it remained statistically
significant in women (P = 0.0434, SUPPLEMENTARY TABLE 1).

In a recessive genetic model, individuals carrying two copies of the minor allele
for rs9919613 of the NLRP10 gene (C/C), showed a lower risk of LOAD (P = 0.0196,
OR =0.407, 95 % CI =[0.1914, 0.8656], TABLE 4a). In addition, the X? test was also
statistically significant for the recessive genetic model (P = 0.0169, TABLE 3). When
adjusting for gender the association remained significant (P = 0.0164, TABLE 4b).
However, when adjusting for gender, and APOE status, no statistically significant
association was observed between cases and controls (P > 0.05). When analysing
NLRP10 C/T+T/T (absence of the protective genotype) together with the presence of
€4 (risk factor for AD), the risk of developing AD was higher than when considering the
presence of €4 alone (OR =4,37; 95 % CIl = [2.51, 7.60] for €4, and OR = 4.44, 95 %
Cl = [2.49, 7.92] for e4+C/T+T/T; data not shown). Additionally, when analysing the
absence of €4 together with the protective genotype C/C, the protective effect was
greater than when considering the C/C genotype alone (OR = 0.25, 95 % CI = [0.14,
0.44]; data not shown).

No significant differences in the frequency of NLRP10 alleles, and genotypes in
the AD cases were detected compared with the controls.

For AD susceptibility, ROC curve for the 11 SNPs had an AUC of 0.6509
(FIGURE 11).
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TABLE 3 — rs6531669, rs13105517, AND rs9919613 ALLELE AND GENOTYPE FREQUENCIES FOR AD PATIENTS (AD) AND CONTROL SUBJECTS

(CRTL). GENOTYPE DISTRIBUTIONS IN A RECESSIVE AND DOMINANT GENETIC MODEL IN AD AND CTRL.

rs6531669
© Groups Allele Frequency (%) Genotype Frequency (%) Recessive Model Dominant Model
= G T P GIG GIT TT P GIT+TT (%) GIG (%) P GIT + GIG (%) TIT (%) P
AD (n=151) 32 68 7 51 42 93 7 58 42
Control (n=119) 39 61 0.0928 18 43 39 0.0173 82 18 0.0048 o1 39 0.632
rs13105517
o Groups Allele Frequency (%) Genotype Frequency (%) Recessive Model Dominant inhritance
= G A P GIG GIA AJA P GIA+ GIG (%) AIA (%) P GIA + AJA (%) GIG (%) p
AD (n=151) 62 38 40 43 17 83 17 60 40
Control (n=119) 71 00351 50 42 8 0.0938 92 8 0.0477 50 go 21317
rs9919613
g Groups Allele Frequency (%) Genotype Frequency (%) Recessive Model Dominant Model
o c G P CiC CIG GIG P CIG + GIG (%) CIC (%) P CIG + CIC (%) GIG (%) P
z AD (n=151) 32 68 0.136 8 48 a4 0.0543 92 8 0.0169 56 a4 0.6553
Control (n=120) 38 62 18 41 42 83 18 59 42




TABLE 4 — LOGISTIC REGRESSION ANALYSIS ODDS RATIO FOR ALZHEIMER'S DISEASE.
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Gene SNP Model OR Lower Cl Upper CI P

a.

TLR6 rs6531669 G/T+T/T xGIG 0.3310 0.1493 0.7336  0.0065

NLRP10 rs9919613 C/G+G/G xC/C 0.4070  0.1914 0.8656  0.0196

b.

TLR6 rs6531669 G/T+T/T xGIG 0.3150 0.1352 0.7343  0.0075
Gender 1.6342 0.9298 2.8723 0.0878
€4 4.0719 2.2964 7.2203  0.0000

TLR2 rs13105517 G/A+G/G x A/A 2.3444  1.0369 5.3004 0.0406
Gender 1.7180 0.9796 3.0129  0.0590
€4 3.9862 2.2627  7.0227  0.0000

NLRP10 rs9919613 C/G+G/G xC/C 0.3933 0.1836  0.8427 0.0164
Gender 16324 0.9544 2.7920 0.0735

C.

TLR6 rs6531669 G/T+T/T x G/G 0.3817 0.1618 0.9003  0.0278

TLR2 rs13105517 G/A+G/G x AIA 24346  1.0435 5.6805 0.0395
Gender 1.8686 1.0352 3.3729  0.0380
€4 3.6416 19858  6.6779  0.0000

a. For each SNP;

b. In the presence of factors including gender (for NLRP10), and gender and APOE status (for
TLR6 and TLR2);

c. Considering all the SNPs, and in the presence of factors including gender and APOE status.
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FIGURE 11 — ROC CURVE FOR AD SUCEPTIBILITY CONSIDERING THE RECESSIVE GENETIC
MODEL OF THE 11 SNPs. AUC = 0.65089.
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6.2 AGE OF ONSET

Of the eleven SNPs analysed in this study SNPs rs9919613 (NLRP10), and
rs1143643 (IL-1B) showed association with the age of onset of the disease.

In a recessive genetic model for rs9919613 of the NLRP10 gene, individuals
carrying two copies of the minor allele (C/C) showed a higher risk of developing the
disease earlier when compared to those carrying one or no copies of the allele (P =
0.0125, OR =14.0877, 95 % Cl = [1.7681, 112.2492], TABLE 6a). In addition, the X?
test was also statistically significant for the recessive genetic model (P = 0.0015,
TABLE 5). This association remained significant after adjusting for gender and APOE
status (P = 0.0084, OR =17.1105, 95 % Cl = [2.0676, 141.5985], TABLE 6b). Gender
showed statistical significance as well (P = 0.0098, TABLE 6b). When analysing both
genders separately, no significant association was found in men (P > 0.05), but it
remained statistically significant in women (P = 0.0089, SUPPLEMENTARY TABLE
2). Moreover, when considering all the SNPs included in the study, and after adjusting
for gender and APOE status, the association of rs9919613 with the age of onset
remained statistically significant (P = 0.0021, OR = 44.878, 95 % CI = [3.9571,
508.9622], TABLE 6c).

In a recessive genetic model for rs1143643 of the IL-1B gene, individuals
carrying two copies of the minor allele (T/T) showed a lower risk of developing the
disease earlier when compared to those carrying one or no copies of the allele (P =
0.0471, OR = 0.3348, 95 % CI = [0.1137, 0.9861], TABLE 6a). The X? test was also
statistically significant for the recessive genetic model (P = 0.0399, TABLE 5). This
association remained significant after adjusting for gender and APOE status (P =
0.0479, OR = 0.3278, 95 % CI = [0.1086, 0.9897], TABLE 6b). Gender showed
statistical significance as well (P = 0.0164, TABLE 6b). When analysing both genders
separately, no significant association was found neither in men or women (P > 0.05,
SUPPLEMENTARY TABLE 2). When considering all the SNPs included in the study,
and after adjusting for gender and APOE status, the association of the recessive
genetic model of rs1143643 with the age of onset of the disease increased significantly
(P =0.0099, OR =0.1208, 95 % CI =[0.0242, 0.6022], TABLE 6¢), and the codominant
genetic model for rs1143643 also showed association with the age of onset (P =
0.0238, OR =0.5212, 95 % CI =[0.2962, 0.9172], TABLE 6c¢).
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For the age of onset, the ROC curve for the 11 SNPs had an AUC of 0.7379
(FIGURE 12).

TABLE 5 - GENOTYPE DISTRIBUTIONS OF rs9919613 OF THE NLRP10 GENE, AND rs1143643 OF
THE IL-1B GENE, IN A RECESSIVE AND DOMINANT GENETIC MODEL, IN INDIVIDUALS WITH AN
AGE OF ONSET < 75YO AND INDIVIDUALS WITH AN AGE OF ONSET > 75Y0.

rs9919613
S Recessive Model Dominant Model
o Groups
5 CIG + GIG (%) CIC (%) P CIG+ CIC (%) GIG (%) P
z = 84
AO < 75 (n=73) 16 0.0015 54 46 0.9054
AQ > 75 (n=69) 99 1 55 45
rs1143643
. Recessive Model Dominant Model
p Groups
i C/IT+CIC (%) TIT (%) P CIT+T/T (%) CI/IC (%) P
AO < 75 (n=74) 93 7 0.0399 52 48 0.5823
AO > 75 (n=69) 81 19 57 43

Abbreviations: AO, age of onset.

TABLE 6 — LOGISTIC REGRESSION ANALYSIS ODDS RATIO FOR THE AGE OF ONSET.

Gene SNP Model OR Lower Cl _Upper CI P

a.

NLRP10 rs9919613 C/G+G/GxC/C 14.0877 1.7681 112.2492 0.0125

IL-1B rs1143643 C/T+C/IC xTIT 0.3348  0.1137 0.9861 0.0471

b.

NLRP10 rs9919613 C/G+G/GxC/C 17.1105 2.0676 141.5985 0.0084
Gender 2.6300 1.2629 5.4770 0.0098
€4 1.6195 0.7889 3.3248 0.1889

IL-1B rs1143643 C/T+C/C xT/T 0.3278  0.1086 0.9897 0.0479
Gender 2.3948 1.1736 4.8867 0.0164
€4 1.2184  0.6121 2.4254  0.5739

C.
NLRP10 rs9919613 C/G+G/GxC/C 44.878  3.9571 508.9622  0.0021
IL-1B rs1143643 C/T+C/IC xTIT 0.1208  0.0242 0.6022  0.0099

Gender 2.9155 1.2859 6.6106 0.0104
€4 1.6178  0.7235 3.6172  0.2413
IL-1B rs1143643 C/CxC/TxT/T 0.5212  0.2962 0.9172  0.0238
Gender 3.0693  1.4267 6.6031  0.0041
g4 1.2855  0.5996 2.7561  0.5186

a. For each SNP;

b. Inthe presence of factors including gender and APOE status;

c. Considering all the SNPs in a recessive (top) and codominant (bottom) genetic model, and in
the presence of factors including gender and APOE status.
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FIGURE 12 — ROC CURVE FOR AGE OF ONSET CONSIDERING THE RECESSIVE GENETIC
MODEL OF THE 11 SNPs. AUC = 0.7379.

6.3 MINI MENTAL STATE EXAMINATION

No SNP showed any significant differences in allelic or genotypic frequencies
for the MMSE results (data not shown). However, in a recessive genetic model, when
considering all the SNPs included in the study, and after adjusting for gender and
APOE status, individuals carrying two copies of the minor allele of rs6531669 of the
TLR6 gene (G/G), and rs13105517 of the TLR2 gene (A/A), showed significant lower
results when compared with those carrying one or no copies of these alleles (P =
0.0445, OR =5.4781, 95 % Cl = [1.0423, 28.7924], P = 0.0350, OR = 3.2392, 95 % ClI
=[1.0862, 9.6604], respectively, TABLE 7).

For the MMSE, the ROC curve for the 11 SNPs had an AUC of 0.6579 (FIGURE
13).

TABLE 7 — LOGISTIC REGRESSION ANALYSIS ODDS RATIO FOR MMSE.

Gene SNP Model OR Lower Cl_Upper CI P
TLR2 rs13105517 G/A+G/G x A/JA 3.2392 1.0862 9.6604  0.0350
TLR6 rs6531669 G/T+T/T x G/IG 5.4781 1.0423 28.7924 0.0445

Gender 0.8038 0.3592 1.7988  0.5952

g4 1.3538  0.6262  2.9268  0.4413
NOTE: Considering all the SNPs, and in the presence of factors including gender and APOE status.
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FIGURE 13 — ROC CURVE FOR MMSE CONSIDERING THE RECESSIVE GENETIC MODEL OF
THE 11 SNPs. AUC = 0.6579.

6.4 DISEASE SEVERITY

6.4.1 CDR 3:2

No significant associations were found between the SNPs analysed in the study
and CDR 3:2. Nevertheless, when adjusting for gender and APOE status, in a
recessive genetic model for rs6531669 of the TLR6 gene, individuals carrying two
copies of the major allele (T/T) showed significant lower CDR results when compared
with those with one or no copies of the allele (P = 0.0406, OR = 0.3695, 95 % CI =
[0.1424, 0.9583], TABLE 8a). Furthermore, when considering all the SNPs, and after
adjusting for gender and APOE status, the association of the recessive model for
rs6531669 and CRD 3:2 remained significant (P = 0.0406, OR = 0.3695, 95 % CI =
[0.1424, 0.9583], TABLE 8b).

In a recessive genetic model for rs1143643 of the IL-1B gene, when considering
all the SNPs, and after adjusting for gender and APOE status, individuals carrying two

copies of the major allele (C/C) showed higher disease severity when compared to
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those with one or no copies of the allele (P = 0.0406, OR = 0.3695, 95 % CI =[0.1424,
0.9583], TABLE 8b).

TABLE 8 — LOGISTIC REGRESSION ANALYSIS ODDS RATIO FOR CDR 3:2.

Gene SNP Model OR Lower Cl Upper CI P
a.
TLR6 rs6531669 G/T+G/GxT/T 0.3695 0.1424 0.9583 0.0406
Gender 0.8198 0.3239 2.0748 0.6749
e4 1.5744 0.6501 3.8128 0.3145
b

TLR6 rs6531669 G/T+G/GxT/T 0.2976  0.0990 0.8945  0.0309
IL-1B rs1143643 C/T+T/TxC/C 3.0152 1.0616 85645  0.0383
Gender 0.5517 0.1801 1.6901  0.2978

€4 15363 0.5366  4.3986  0.4237
a. Inthe presence of factors including gender and APOE status;
b. Considering all the SNPs, and in the presence of factors including gender and APOE status.

6.4.2 CDR 3:2+1

In a codominant genetic model for rs6531669 of the TLR6 gene, individuals
carrying two copies of the major allele (T/T) showed lower disease severity when
compared to the ones with one or no copies of this allele (P = 0.0325, OR = 0.6336,
95 % CI =[0.4171, 0.9626], TABLE 10a). The association was more significant in a
recessive genetic model for the same allele (P = 0.0268, OR = 0.3905, 95 % CI =
[0.1699, 0.8976], TABLE 10a). The recessive genetic model association was also
confirmed in the X2 test (P = 0.0245, TABLE 9). The associations of the codominant
and recessive models remained significant after adjusting for gender and APOE status
(P =0.0251, OR =0.6094, 95 % CI =[0.3952, 0.9399], P = 0.0208, OR = 0.3609, 95
% CI =[0.1521, 0.8565], respectively, TABLE 10b). When including all the SNPs, and
after adjusting for gender and APOE status, only the recessive model for rs6531669
remained significant (P = 0.0378, OR = 0.3674, 95 % CI = [0.1428, 0.9453], TABLE
10c).

In a codominant genetic model for rs613430 of the COL4A1 gene, individuals
carrying two copies of the minor allele (G/G) showed greater disease severity when
compared to those with one or no copies of this allele (P = 0.0244, OR = 2.5397, 95 %
Cl = [1.1278, 5.7194], TABLE 10a). The association remained significant after
adjusting for gender and APOE status (P = 0.0289, OR = 2.4920, 95 % CI =[1.0983,
5.6545], TABLE 10b), and when considering all the SNPs, and after adjusting for



38

gender and APOE status (remained significant after adjusting for gender and APOE
status (P = 0.0236, OR = 2.8927, 95 % CI = [1.1532, 7.2559], TABLE 10c).

In a recessive genetic model for rs1143643 of the IL-1B gene, when considering
all the SNPs, and after adjusting for gender and APOE status, individuals carrying two
copies of the major allele (C/C) showed higher disease severity when compared to
those with one or no copies of the allele (P = 0.0110, OR = 3.2162, 95 % CI =[1.3075,
7.9113], TABLE 10c).

For the CDR 3:2+1, the ROC curve for the recessive genetic model of the 11
SNPs had an AUC of 0.7068 (FIGURE 14), and the ROC curve for the codominant
genetic model of the 11 SNPs had an AUC of 0.7066 (FIGURE 15).

TABLE 9 — GENOTYPE DISTRIBUTIONS OF rs6531669 OF THE TLR6 GENE, IN A CODOMINANT,
RECESSIVE AND DOMINANT GENETIC MODEL, IN INDIVIDUALS WITH A CDR VALUE OF 3 AND
INDIVIDUALS WITH A CDR VALUE OF 1 OR 2.

rs6531669
Groups Codominant Model Dominant Model Recessive Model
GIG (%) GIT(%) TIT (%) P GIT + TIT (%) GIG (%) P GIT + GIG (%) TIT (%) P
CDR 3 (n=41) 10 66 24 90 10 76 24
CDR 2+1 (n=84) 7 48 45 93 7 55 45

TLR6




TABLE 10 — LOGISTIC REGRESSION ANALYSIS ODDS RATIO FOR CDR 3:2+1.

Gene SNP Model OR Lower Cl Upper CI P

a.

TLR6 rs6531669 G/GxG/TxT/T 0.6336 0.4171 0.9626  0.0325

TLR6 rs6531669 G/T+G/GxT/T 0.3905 0.1699 0.8976  0.0268

COL4Al1 rs613430 C/C xCIGxGIG 25397 11278 5.7194  0.0244

b.

TLR6 rs6531669 G/GxG/TxT/T 0.6094 0.3952 0.9399  0.0251
Gender 0.8417 0.3714 1.9074 0.6797
€4 1.3723  0.6298 2.9902  0.4258

TLR6 rs6531669 G/T+G/Gx T/T 0.3609 0.1521 0.8565 0.0208
Gender 0.8373 0.3691 1.8994 0.6709
€4 1.3487 0.6187 2.9402 0.4518

COL4A1l rs613430 C/ICxC/IGxG/IG 24920 1.0983 5.6545  0.0289
Gender 0.8608 0.3791 1.9545 0.7202
€4 1.3257 0.6099 2.8813 0.4766

(o

TLR6 rs6531669 G/T+G/GxT/T 0.3674 0.1428 0.9453 0.0378

IL-1B rs1143643 C/T+T/TxC/C 3.2162 1.3075 7.9113 0.0110
Gender 0.6585 0.2604 1.6652 0.3775
€4 12306 0.4927 3.0739 0.6568

COL4Al rs613430 C/CxC/IGxGIG 2.8927 1.1532 7.2559  0.0236
Gender 0.9458 0.3891 2.2992  0.9021
g4 1.5699  0.6099  4.0408  0.3498

For each SNP;

In the presence of factors including gender and APOE status;
Considering all the SNPs in a recessive (top) and codominant (bottom) genetic model, and in

the presence of factors including gender and APOE status.
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FIGURE 14 — ROC CURVE FOR CDR 3:2+1 CONSIDERING THE RECESSIVE GENETIC MODEL
OF THE 11 SNPs. AUC = 0.7068.
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FIGURE 15 — ROC CURVE FOR CDR 3:2+1 CONSIDERING THE CODOMINANT GENETIC MODEL
OF THE 11 SNPs. AUC = 0.7066.



6.4.3 CDR 3+2:1

41

In a recessive genetic model for rs9919613 of the NLRP10 gene, individuals

carrying two copies of the minor allele (C/C) showed a lower disease severity (P =
0.0195, OR =0.2134, 95 % CI =[0.0584, 0.7799], TABLE 12a). This association was
also confirmed by the X2 test results (P = 0.0121, TABLE 11). The association
remained significant after adjusting for gender, and APOE status (P = 0.0108, OR =
0.1723, 95 % CI =[0.0446, 0.6656], TABLE 12b), and when considering all the SNPs
the association was even more significant (P = 0.0062, OR = 0.1291, 95 % CI =

[0.0298, 0.5587], TABLE 12c).

For the CDR 3+2:1, the ROC curve for the 11 SNPs had an AUC of 0.6653

(FIGURE 16).

TABLE 11 — GENOTYPE DISTRIBUTIONS OF rs9919613 OF THE NLRP10 GENE, IN A
RECESSIVE AND DOMINANT GENETIC MODEL, IN INDIVIDUALS WITH A CDR VALUE OF 1 AND
INDIVIDUALS WITH A CDR VALUE OF 2 OR 3.

rs9919613
g Groups Recessive Model Dominant Model
@ C/IG+ GIG (%) CIC (%) P C/IG+ CIC (%) GIG (%) P
z CDR 3+2 (n=87) 95 5 0.0121 43 57 0.5518
CDR 1 (n=38) 82 8 37 63

TABLE 12 — LOGISTIC REGRESSION ANALYSIS ODDS RATIO FOR CDR 3+2:1.

Gene SNP Model OR Lower Cl Upper CI P

a.

NLRP10 rs9919613 C/G+G/G x C/C 0.2134 0.0584 0.7799  0.0195

b.

NLRP10 rs9919613 C/G+G/G xC/C 0.1723 0.0446 0.6656  0.0108
Gender 0.7498 0.3304 1.7018 0.4911
€4 0.6179  0.2690  1.4190  0.2564

(o

NLRP10 rs9919613 C/G+G/G x C/C 0.1291  0.0298 0.5587  0.0062
Gender 0.9431 0.3915 2.2718 0.8960
€4 0.5619 0.2367 1.3340 0.1913

a. For NLRP10;

b. Inthe presence of factors including gender and APOE status;
c. Considering all the SNPs, and in the presence of factors including gender and APOE status.
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FIGURE 16 — ROC CURVE FOR CDR 3+2:1 CONSIDERING THE RECESSIVE GENETIC MODEL
OF THE 11 SNPs. AUC = 0.6653.

6.5 DURATION OF DISEASE

No statistically significant associations were found for the duration of the
disease.

6.6 NONSIGNIFICANT RELATIONSHIPS

No associations were found between any of the study variables and rs4915274
of the NEK7 gene, rs187238 and rs1946518 of the IL-18 gene, and rs4773142,
rs9301441 and rs649104 of the COL4A1 gene.

Figure 17 summarises the results found in the study.
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B Risk factor

Age of Onset Severity of Disease
Protective factor

FIGURE 17 — GRAPHICAL RESUME OF ASSOCIATIONS FOUND IN THE STUDY, SEPARATED BY
VARIABLES.

SOURCE: the author.

NOTE: AD — TLR6 G/G genotype was associated with lower risk of developing AD, TLR2 A/A genotype
was associated with higher risk of developing AD, NLRP10 C/C genotype was associated with lower
risk of developing AD; MMSE — TLR6 G/G and TLR2 A/A genotypes were associated with lower MMSE
results; Age of Onset — NLRP10 C/C genotype was associated with early age of onset, II-1B T/T
genotype was associated with late age of onset; Disease Severity — TLR6 T/T and NLRP10 C/C
genotypes were associated with lower disease severity, 1I-1B C/C and COL4A1 G/G genotypes were
associated with greater disease severity.

7 DISCUSSION

AD is the world’'s most common form of dementia. It is estimated that the
prevalence of the disease will be 100 million by 2050 due to the ageing population
(BROOKMEYER et al., 2007). The pathogenesis of AD has not been fully elucidated
yet, and over 100 compounds attempting to treat AD have failed (MULLANE;
WILLIAMS, 2013). Therefore, current treatment options aim at pain and symptom
management, such as acetylcholinesterase inhibitors, and often show little efficacy
(KADUSZKIEWICZ et al., 2005; MULLANE; WILLIAMS, 2013; RAINA et al., 2008).
Hence, research has focused on the discovery of genetic factors for LOAD.

The present study showed a significant association between rs6531669 of the
TLR6 gene, and AD. To our knowledge, this study was the first to find an association
between TLR6 polymorphisms and AD susceptibility.
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TLR6 G/G genotype showed a consistent protective effect against the risk of
developing LOAD. This association remained statistically significant after adjusting for
gender and the presence of an APOE ¢4 allele, the major genetic risk factor for
sporadic, LOAD. This polymorphism was also associated with MMSE scores and CDR
values. Individuals carrying two copies of the G allele had a lower score on the MMSE
test than those with one or no copies of the G allele. Additionally, and consistent with
this result, individuals carrying two copies of the T allele had lower CDR values than
those with one or no copies of the T allele. A less significant association was found for
the codominant genetic model of this polymorphism, where individuals carrying two
copies of the T allele showed less severity of the disease.

It is possible to infer cognitive impairment trough the MMSE test results: lower
MMSE results indicate severe cognitive impairment while higher results indicate mild
cognitive impairment. These results show that the G/G genotype of the rs6531669
polymorphism is a genetic risk factor for cognitive impairment while the T/T genotype
of the same polymorphism is a protective genetic factor for severity of the AD.

It is important to notice that TLR6 G/G genotype was associated with lower risk
of developing AD but, at the same time, with greater cognitive impairment. One
plausible explanation is that the presence of this TLR6 genotype is neither necessary
nor sufficient for the development of AD. Although acting as a protective factor for AD,
in the case of eventually developing the disease, individuals carrying two copies of the
G allele have a higher risk of presenting severe cognitive impairment. Moreover, TLR6
association with MMSE score was only significant when considering the effect of all
the SNPs included in the study.

The TLR6 receptor has been previously associated with the innate immune
activation of microglia. Stewart et al. (2010) showed that the TLR4-TLR6 heterodimer
regulates the expression of pro-inflammatory mediators, such as chemokines, and
reactive oxygen and nitrogen species, promoting microglial inflammatory responses
associated with the pathology of AD. Additionally, CD36-TLR4-TLR6 signalling in
microglia resulted in transcription of MRNA encoding pro-IL-1[3, priming these cells for
inflammasome activation and IL-1 secretion (STEWART et al., 2010). Interestingly,
Reed-Geaghan et al. (2009) reported that TLR4 is necessary for binding fibrillar A to
the cell surface, and is required for activation of microglia and induction of
phagocytosis, and a TLR4 polymorphism was shown to attenuate receptor signalling,
thus being associated with decreased risk of AD (MINORETTI et al., 2006). It is
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possible that the same is happening with TLR6 rs6531669, and that this polymorphism,
or another in linkage disequilibrium with the first, attenuates receptor signalling,
resulting in reduced microglia activation and, therefore, is associated with decreased
risk of developing AD. Additionally, Liu and colleagues (LIU et al., 2012) demonstrated
that TLR2-mediated AB-triggered inflammatory activation was suppressed by TLR6,
which resulted in decreased production of interleukins, suggesting that TLR6 could be
a potential therapeutic target AD.

Our study suggests that the TLR6 rs6531669 is an important protective factor
for the development of LOAD in a Brazilian population.

Although of lesser magnitude, rs13105517 of the TLR2 gene showed
association with the disease susceptibility. Inheritance of the TLR2 A/A genotype
increased the risk for AD, although this association was only significant after adjusting
for gender and APOE status. When including all the SNPs in the analysis the
association was stronger, showing that the genetic effect of rs13105517 is greater
when combined with the influence of other polymorphisms. Additionally, TLR2 A/A
genotype was also associated with greater cognitive impairment than G/G+G/A
genotypes.

Our results are consistent with other genetic studies that have also identified an
association between TLR2 and AD susceptibility (SOHRABIFAR et al., 2015; WANG
et al., 2011; YU et al., 2011).

Direct interaction between TLR2 and AB has been shown to trigger inflammatory
microglia activation (LIU et al., 2012; WALTER et al., 2007), and induce expression of
pro-inflammatory cytokines (LIN et al., 2013). Several studies demonstrated that TLR2
deficiency is associated with reduced Ap-triggered inflammatory activation, and
increased AP phagocytosis (JANA et al., 2008; LIU et al., 2012; RAVARI et al., 2017).
Additionally, inhibition of TLR2 has been found to be therapeutic in mouse models of
AD (LIU et al., 2012; MCDONALD et al., 2016). These findings suggest that inhibition
of TLR2 in microglia could be beneficial in AD pathogenesis.

However, other studies have shown that TLR2 acts as a receptor to clear AR
plaques, and a deficiency of TLR2 would lead to elevated Af plaque levels and
intensified memory loss (HANKE; KIELIAN, 2011; RICHARD et al., 2008), showing
that TLR2 might play a dual role in AD pathogenesis.
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Our analysis suggests that the A/A genotype of rs13105517 is associated with
a modest increase in AD risk and greater cognitive impairment in a Brazilian
population.

rs9919613 of the NLRP10 gene also showed association with AD susceptibility.
NLRP10 C/C genotype had a protective effect against AD when compared with
C/G+G/G genotypes. This association remained significant when adjusting for gender.
Interestingly, when adjusting for gender and APOE status, no statistically significant
association was observed between cases and controls. We demonstrated that the
presence of APOE ¢4 allele and the absence of NLRP10 C/C protective genotype
confers a greater risk of developing AD than the presence of €4 allele alone, and that
the presence of the protective C/C genotype together with the absence of €4 allele is
a strong protective factor against the development of AD. One plausible interpretation
is that the protective genetic effect of NLRP10 is relevant in influencing AD
susceptibility only in the absence of the APOE ¢4 allele, while in €4 carriers the genetic
effect is essentially determined by this susceptibility factor. Moreover, the same
genotype was associated with lower CDR scores, suggesting a protective effect
against cognitive impairment, when compared with C/G+G/G genotypes.

This result is consistent with the findings that NLRP10 inflammasome has an
anti-inflammatory effect since it inhibits the ASC-mediated activation of caspase 1 and
consequent IL-1[3 release (WANG et al., 2004).

However, although associated with lower risk of AD and lower cognitive
impairment, the NLRP10 C/C genotype was also associated with early age of onset
when compared with C/G+G/G genotypes.

Our data suggest that this NLRP10 polymorphism contributes to the
susceptibility to AD, cognitive impairment, and age of onset of the disease, in a
Brazilian population. To the best of our knowledge, this is the first time that an NLRP10
polymorphism has been directly associated with AD susceptibility and age of onset.

Contrarily to NLRP10, rs1143643 of the IL-1B gene was associated with
delayed age of onset. IL-1B T/T carriers showed a delay in onset of AD when compared
with C/T+C/C carriers. In a lesser magnitude, and when considering all the SNPs in
the study, the codominant genetic model for rs1143643 also showed a protective effect
for the age of onset of AD. When analysing the X? test for the codominant genetic
model, we conclude that inheritance of the T/T genotype is associated with delayed

age of onset when compared with C/T and C/C genotypes.
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Similar results were also observed in previous researches (GRIMALDI et al.,
2000). Grimaldi et al. (2010) reported an association of another IL-1B polymorphism
with delayed age of onset in AD patients. Polymorphisms of other genes encoding
inflammatory cytokines, such as IL-6 and IL-a, have been associated with a variable
age at onset of AD (PAPASSOTIROPOULOS et al., 1999). These findings suggest
that it is possible that genetic factors that regulate the immune response alter the
course of AD. Hence, pharmacological control of cytokine-mediated chronic
neuroinflammation in the initial stages of the disease might prove effective in
controlling neurodegeneration and clinical progression of the disease.

When analysing all the SNPs together, IL-1B C/C genotype was found to be
associated with higher CDR values, meaning individuals carrying two copies of the C
allele showed greater disease severity than those with one or no copies of this allele.

IL-1[3 release from microglia has been shown to regulate activity and expression
of B- and y-secretases (SASTRE et al., 2008). One IL-1B polymorphism has already
been associated with fourfold increase in production of IL-13 (NICOLL et al., 2000). It
is possible that this polymorphism’s genotype has a similar effect and is associated
with up-regulation of IL-1B gene, resulting in higher production of IL-1. This, in turn,
may lead to greater [3- and y-secretases activity and expression, and consequently
higher production of APP and deposition of AB, and microglia activation, which can
ultimately result in greater severity of AD.

Our study shows that rs1143643 of the IL-1B is associated with age of onset,
and severity of AD in a Brazilian population.

rs613430 of the COL4Al gene was also associated with CDR values. In a
codominant genetic model, individuals carrying two copies of the G allele had a
significantly higher disease severity than those with one or no copies of the allele.

Mutations in the COL4Al1 gene are associated with stress-induced
haemorrhage, adult-onset stroke in humans and mice, and CMBs (GEORGE et al.,
1993; POSCHL et al., 2004; GOULD et al., 2006; ALAMOWITCH et al., 2009). In
recent years, CMBs have obtained much attention as an important cause of dementia
and have been associated with MCI and AD (PETTERSEN et al., 2008). There is
growing evidence that CMBs may confer increased risk of cognitive impairment, and
future cognitive decline (UITERWIJK et al., 2014). Increased levels of cerebral ApB have
also been associated with CMBs (YATES et al., 2011). Rosidi et al. (2011) proposed

that CMBs lead to a sustained local inflammatory response, characterized by initial
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activation and persistent increase in microglia and macrophages, and that this
inflammatory response leads to neuronal dysfunction and cell death. Additionally,
Shoamanesh et al. (2015) demonstrated that CMBs patients showed high levels of
various circulating markers of inflammation, such as the regulatory cytokine TNF-a.

Our results are consistent with these findings and suggest that the COL4A1
polymorphism is associated with stronger disease severity in AD patients, resulting in
greater cognitive impairment. Nevertheless, we believe this to be the first work that
shows a direct association between a COL4A1l gene polymorphism and severity of
LOAD.

Our results show that gender is a significant factor for AD susceptibility and age
of onset, but that might be due to the considerable difference between the number of
woman and men in our sample.

In order to evaluate the clinical utility for both prognostic and diagnostic models,
the ROC curve is typically employed and the AUC is used to measure the
discrimination power of a classifier. It is assumed that classifiers with an AUC
significantly greater than 0.5 have at least some ability to discriminate between cases
and controls, however a more conservative approach is used for screening of
individuals with an increased risk of disease, where is suggested that the AUC be 0.75,
and for presymptomatic diagnosis of the general population, the AUC should be 0.99
(JANSSENS et al., 2007). In our study, a classification model for the age of onset
based on the 11 SNPs reached an AUC of 0.7379. An AUC of this magnitude suggests
that this model has a fair discrimination power. The remaining variables showed an
AUC under 0.7, which suggest poor discrimination power.

Our findings provide further evidence for a role of inflammation as a driving force
in AD pathogenesis. The association between inflammation-related gene
polymorphisms and AD susceptibility and cognitive variables further suggests that
genetically determined alterations of the immune response can indeed alter the course
of this disease. Moreover, this was the first study to suggest a direct association
between TLR6, NLRP10, and COL4A1 polymorphisms with susceptibility to AD, the
age of onset, and disease severity.

More than potentially aiding the differential diagnosis of patients with dementia
and assessing the degree of risk for the development of dementia, identification of
genetic associations should foster the emphasis on the pursuit of anti-inflammatory

therapies for the protection against and treatment of AD.
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8 CONCLUSIONS

In conclusion, rs6531669 (TLR6) G/G genotype was associated with lower risk
of developing AD and with lower MMSE results, and the T/T genotype was associated
with lower disease severity. rs13105517 (TLR2) A/A genotype was associated with
higher risk of developing AD, and with lower MMSE results. rs9919613 (NLRP10) C/C
genotype was associated with lower risk of developing AD, and with lower disease
severity. The same genotype was also associated with early age of onset. rs1143643
(-1B) T/T genotype was associated with late age of onset, and the C/C genotype was
associated with greater disease severity. rs613430 (COL4Al) G/G genotype was
associated with greater disease severity. Figure 18 summarises the associations found

in this study.

Age of Onset

AD x CTRL MMSE

FIGURE 18 — GRAPHICAL RESUME OF ASSOCIATIONS FOUND IN THE STUDY.

SOURCE: the author.

NOTE: TLR6 gene polymorphism was found to be associated with AD susceptibility, age of onset, and
MMSE; TLR2 gene polymorphism was found to be associated with AD susceptibility, and MMSE;
NLRP10 gene polymorphism was found to be associated with AD susceptibility, age of onset, and
disease severity; II-1B gene polymorphism was found to be associated with age of onset, and disease
severity; COL4A1 gene polymorphism was found to be associated with disease severity.
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APPENDIX 1 — MINI MENTAL STATE EXAMINATION (MMSE) MODEL
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(Folstein, Folstein & McHugh, 1.975)
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APPENDIX 2 — CONSENT FORM MODEL

Ministério da Educacdo UFPR
UNIVERSIDADE FEDERAL DO PARANA B ioh:.g icas
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DEPARTAMENTO DE GENETICA ‘- e e

PROGRAMA DE POS-GRADUACAO EM GENETICA 0t® Traga® Teaga® e,

TERMO DE CONSENTIMENTO LIVRE ESCLARECIDO

___________________________________________________________________________________________________________ autorizo a parficipacio na
pesquisa: “ASSOCIACAO ENTRE VARIANTES DE GENES COMO BCHE, APOE, SLITRK3,
NEP E GENES DA FAMILIA MLR HUMANA E A DOENCA DE ALZHEIMER™. Concordo com o
armazenamento e guarda do material genético e utilizacio deste material para pesquisas cientificas
futuras nos termos citados na Carta de Informacdo. Tenho pleno conhecimento dos procedimentos
que serdc submetidos conforme descritos anteriormente. Assino o presente termo, apos ter lido a

Carta de Informacio, entendido e nio ter mais nenhuma duvida.

|:| Controle idoso
1D A

' S

Centro Politécnico - Jardim das Américas - Caixa Postal 19071 - CEP 81531-980 - Curitiba, Brasil
faf (+41) 33611587 [ 33611684 — /Gy (+41) 33611793 — e-mai ppg-gen@ufpr.br
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Prof. Dr. Ricardo Lehtonen Rodrigues de Souza
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Dr. Maure Piovezan
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CARTA DE INFORMAGAO AOQ PACIENTE E IDOSO CONTROLE NO ESTUDC DOS
COMPONENTES GENETICOS DAS DEMENCIAS

Pesquisa:
ASSOCIACAO ENTRE VARIANTES DE GENES COMO BCHE, APOE, SLITRK3, NEP E
GENES DA FAMILIA MLR HUMANA E DEMENCIAS.

O presente trabalho tem por objetivo investigar os componentes genéticos das deméncias na
tentativa de estabelecer ligagdes que possam ser utilizadas no diagnostico, prognostico e tratamento
dos individuos acometidos pelas Deméncias.

Pouco se conhece da genética das Deméncias para aplicac3o na pratica meédica, mas os
trabalhos cientificos sugerem que os componentes genéticos sdo fundamentais para o aparecimento
e desenvolvimento da doenca.

O material vtilizado nesse estudo serd obtido através da simples e rapida coleta de Tml de
sangue, dos pacienfes com Deméncias e idosos sadios. A coleta de sangue sera realizada por
profissionais especializados, ficando o voluntario isento de gqualguer risco grave, sendo submetido
apenas a coleta de sangue & uma rapida entrevista. O sangue coletado sera levado ao laboratorio
onde os materiais genéticos (DNA/FRNA) e proteinas serio retirados, estudados e comparados aos
de outros pacientes e idosos sauddveis.

Por fim a pesquisa em questio apresenta riscos minimos aos voluntarios, sendo o beneficio
dos wvoluntarios unicamente a contribuicio cientifica que possa surgir com os resultados da
pesquisa, no qual seu material foi fundamental para concretizacio, nio havendo nenhum beneficio
de ordem financeira. O material podera. no entanto. contribuir futuramente para a elaboragio de
novas formas de tratamento das deméncias.

O voluntario goza de total liberdade para se refirar do estudo a qualquer momento.
Informamos também que havera o armazenamento e guarda do material genético e utilizacio deste
material para pesquisas cientificas futuras.

E de responsabilidade do pesquisador sempre resguardar e manter dados e informacdes dos
pacientes em sigilo absoluto. Os gastos relativos aos procedimentos laboratoriais serdo absorvidos
pelo orcamento da pesquisa sem qualquer gasto por parte do paciente ou familiar Colocamo-nos 3

disposicdo dos pacientes ou responsaveis para elucidar qualquer davida relacionada i pesquisa.

Informacdes: Daiane P. Simio-5Silva, email: dpscientistf@gmail com; fone: (042) 995040046,
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SUPLEMMENTARY TABLES

SUPLEMMENTARY TABLE 1 — GENOTYPE DISTRIBUTIONS IN A RECESSIVE AND DOMINANT

GENETIC MODEL IN AD AND CTRL, SEPARATED BY GENDER.

rs6531669
© Recessive Model ¢ Recessive Model ¢
X Groups
= GIT+TT (%) GIG (%) P GIT+TT (%) GIG (%) P
AD (n=151) 94 6 0.01182 92 8 0.2108
Control (n=119) 82 84 16
rs13105517
~ Recessive Model ¢ Recessive Model ¢
0: Groups
= GIA + GIG (%) AIA (%) P GIA + GIG (%) A/A (%) P
AD (n=151) 80 20 0.0434 89 11 0.4632
Control (n=119) 91 94 6

SUPLEMMENTARY TABLE 2 - GENOTYPE DISTRIBUTIONS OF rs9919613 OF THE NLRP10 GENE,
AND rs1143643 OF THE IL-1B GENE, IN A RECESSIVE, AND CODOMINANT GENETIC MODEL, IN
INDIVIDUALS WITH AN AGE OF ONSET < 75YO AND INDIVIDUALS WITH AN AGE OF ONSET >
75Y0, SEPARATED BY GENDER.

rs9919613
= Recessive Model ¢ Recessive Model &
o Groups
E C/IG+ GIG (%) CIC (%) P CIG + GIG (%) CIC (%) P
z =
AO < 75 (n=73) 85 17 0.0089 85 15 0.06737
AO > 75 (n=69) 98 100 0
rs1143643
— Recessive Model ¢ Recessive Model ¢
= Groups
i) CIT+CIC (%) TIT (%) P C/IT+CIC (%) TT (%) P
- AO < 75 (n=74) 92 8 94 6
AO > 75 (n=69) 81 19 0.1781 80 20 0.1205
rs1143643
— Codominant Model ¢ Codominant Model ¢
= Groups
T C/C CIT TT P Cc/C CIT TT P
AO < 75 (n=74) 45 47 8 04030 2 42 6 L9956
AO > 75 (n=69) 39 43 18 55 25 20




