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RESUMO 

 

Escoamentos periódicos de fluidos newtonianos e não-newtonianos estão presentes em um 

grande número de aplicações, particularmente em lavadoras domésticas de eixo vertical. O 

processo de lavação depende do transporte de massa e quantidade de movimento do agitador 

para o fluido. Nesses casos, o escoamento segue o padrão de Taylor-Couette, cuja característica 

é um escoamento confinado entre dois cilindros rotativos. O presente trabalho está focado na 

simulação numérica de escoamentos periódicos e em regime permanente de fluidos 

newtonianos e não-newtonianos (fluidos de Herschel-Bulkley) com base nas equações 

tridimensionais de conservação de massa e de quantidade de movimento. Uma geometria 

simplificada é utilizada como domínio físico para as análises numéricas. Além disso, o perfil 

de rotação (deslocamento angular e velocidade) foi imposto externamente ao modelo como 

condições de contorno, já que o padrão de escoamento é dependente deste parâmetro, bem como 

das propriedades reológicas do fluido. As simulações foram baseadas no Método dos Volume 

Finitos, utilizando o algoritmo PRIME para o acoplamento de pressão-velocidade e a técnica 

BiCGSTAB, que usa o algoritmo de Thomas como pré-condicionador, para a solução numérica 

das equações. Além disso, testes experimentais foram realizados para a obtenção das 

propriedades reológicas das misturas de água e tecidos. Esses experimentos recaem no 

problema inverso de Couette, onde as curvas de taxa de deformação e tensão de cisalhamento 

são obtidas a partir dos resultados de torque e velocidade angular. Os resultados numéricos 

foram verificados contra os resultados experimentais e também contra resultados obtidos na 

literatura aberta apresentando uma concordância satisfatória para as velocidades e torques tanto 

para os fluidos newtonianos como para os não-newtonianos. 

 

Palavras-Chave:   Reometria. Misturas água-tecido. CFD. Lavanderia. Escoamentos periódicos.



 

 

 

 

ABSTRACT 

 

Periodic flows of Newtonian and non-Newtonian fluids are present in a wide range of 

applications, particularly in household vertical axis washing machines. The washing process 

relies on the mass and momentum transport from the agitator to the fluid stream. In such cases, 

the flow follows a pattern that recalls the Taylor-Couette one, whose main feature is the 

confinement between two rotating cylinders. The present study concerns the numerical 

simulation of steady-state and periodic flows of Newtonian and non-Newtonian (Herschel-

Bulkley) fluids based on the three-dimensional conservation equations of mass and momentum. 

A simplified Taylor-Couette geometry is used as the physical domain for the numerical 

analyses. In addition, the agitation profile (angular swept and speed) was imposed externally as 

boundary condition as the flow patterns rely on it, and also on the rheological properties of the 

fluid. Simulations were carried out by means of a homemade finite-volume-based code (which 

used the PRIME method for the sake of velocity-pressure coupling, and the BiCGSTAB solver 

together with the Thomas algorithm as a preconditioner, for solving the linear set of equations). 

Furthermore, experimental tests were carried out in a purpose-built facility in order to gather 

the rheological properties of the fabric-water suspensions. The experiments rely on the Couette 

inverse problem, in which the shear curves are obtained from the torque and velocity data. The 

simulation model was verified against experimental and numerical data obtained in-house or 

elsewhere indicating a satisfactory agreement between numerical and experimental torques and 

velocities. 

 

Keywords: Rheometry. Fabric-water suspensions. CFD. Laundry. Periodic Flows. 
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1 INTRODUCTION 

 

1.1 GENERAL VIEW 

 

The efforts of the mankind to improve the washing processes date back to prehistory, 

when fur and leather, used as clothing, were washed in lakes by rubbing through friction of 

stones. Since then, the human habits have changed significantly in the pioneer civilizations, 

especially the Romans (from ~500 to 476 BCE), when cities had supplied water and the use of 

detergents as soap was disseminated (STALMANS, 2008).  

The laundry techniques had undergone little progress in the Middle Ages (476-1453), 

when the concern for hygiene and, consequently, public health, had lessened in Europe due to 

the superstitious fear that water could bring diseases (STALMANS, 2008). In Arab countries, 

on the other hand, the production of soaps had advanced, especially in Mediterranean countries 

during the Renaissance years (1453 to ~1700). Furthermore, following the development of 

sciences and arts, there was a greater dissemination of the direct relationship between hygiene 

and health relation. Consequently, laundries which provided water came up in major European 

cities, as shown in Figure 1, which depicts an illustration of a popular alchemy guide 

(TRISMOSIN, 1582). According to Stalmans (2008), the dirty water, from laundry applications, 

used to be sold to the less fortunate. 

During the Industrial Revolution, particularly in 1744, the Swedish chemist Karl W. 

Scheele pointed out that chlorine has not only a bleaching effect but also acts as a disinfectant 

when present in an aqueous solution containing sodium hydroxide (NaOH). A few years later 

(1783), Scheele discovered glycerin, which would revolutionize the manufacturing of soap and 

detergents in industrial scale. Likewise, in the late eighteenth century, the first washboards came 

up, thus producing a better washing effect with less human effort. 
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FIGURE 1 - ENGRAVING OF WOMEN WASHING CLOTHES. 

 
SOURCE: TRISMOSIN (1582). 

 

The widespread use of disinfectants took place nearly a century later the germ theory 

was published by Louis Pasteur (1880), which associated infectious diseases to micro-

organisms. Moreover, in the mid-nineteenth century, in addition to the advances in Chemistry, 

households started to be water supply. Consequently, the first mechanical devices to aid the 

laborious process of cloth washing came onto the market, which consisted of a cylindrical tank 

that was rotated by means of manual action. 

The first washing machine was designed by Jacob Schaeffer in 1767. It was made of 

wood and comprised of a four-blade agitator operated manually, as depicted in Figure 2. In 

1851 James King patented the first drum-type washing machine. A few years later, in 1858, 

Hamilton Smith designed a washing machine with mechanical actuation, which was improved 

and marketed by William Blackstone in 1874, whose company is still open these days (VAN 

DEN BREKEL, 1987). Also, according to Sérgio et al. (2003), approximately two thousand 

patents related to washing machines have been requested in the U. S. and U. K. between 1850 

and 1870. 
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FIGURE 2 - SCHEMATIC SKETCH OF THE WASHING MACHINE DESIGNED BY JACOB 

SCHAEFFER. 

 
SOURCE: SCHAEFFER (1767). 

 

In the early twentieth century, the first electrically-driven washing machine was 

developed. One of the first vertical axis washing machines with electric actuator produced in 

large scale, named Thor, is illustrated in Figure 3. Only in the 1920s, the first horizontal axis 

washing machine was released on the market. Since then, a series of improvements have been 

implemented, such as water heating, additives dispenser (e.g., detergent, softener, bleach) and 

spinning. 

 

FIGURE 3 - THOR, ONE OF THE FIRST WASHING MACHINES WITH ELECTRICAL 

ACTUATION - 1911 MODEL. 

 
SOURCE: MAXWELL (2009). 
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Currently, a washing machine is a household appliance whose main purpose is to 

remove the dirt from a given amount of fabric (natural or synthetic) by means of mechanical, 

thermal, and chemical processes occurring simultaneously during the washing cycle (VAN 

DEN BREKEL, 1987). Such an apparatus may be mounted with either horizontal or vertical 

axis, where the former is more likely found in European countries, and the latter in Australasia 

and the Americas, including Brazil (BANSAL, VINEYARD and ABDELAZIS, 2011).  

Therefore, a vertical axis washing machine, with top loading, is comprised of a structure 

that supports a water reservoir (outer bowl), wherein a perforated drum (spin bowl) that rotates 

without angular restrictions is placed, and an agitator – responsible for moving the set formed 

by fabric, water, additives, and the spin bowl itself. The agitator is connected to an electric 

motor by a transmission so that the torque and the angular velocity can be both controlled. 

Finally, the tank is filled with water through a hydraulic system comprising a pump, a suction 

valve, and a water level sensor, as shown in Figure 4. 

 

FIGURE 4 - SCHEMATIC REPRESENTATION OF A VERTICAL AXIS WASHING MACHINE. 

 
SOURCE: ADAPTED FROM HTTP://WWW.HOMETIPS.COM, 2015. 

 

In general, the washing process depends on a wide set of parameters, such as the spin 

bowl and agitator geometries, the agitation profile (i.e., temporal variation of torque, angular 

swept and speed), water level, temperature of the mixture formed by water, fabric, additives, 

detergent, among others (VAN DEN BREKEL, 1987). In addition, the washing process relies 

on the mass and momentum transport from the agitator to the fluid stream. Essentially, there is 

a periodic circular flow between two concentric cylinders, where the inner cylinder (spin bowl) 
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rotates while the outer cylinder (outer bowl) remains stationary. Because not only of the 

geometry but also of the fluid characteristics, the flow pattern is quite complex. Most of the 

information concerning this kind of flow is of empirical nature, which does not provide a deep 

understanding of the mechanical interactions, the flow pattern, and the chemical reactions. 

However, a satisfactory level of understanding can be obtained by means of an analysis of fluid 

flows in cylindrical cavities, which follows a pattern that refers to the well-known Taylor-

Couette one, whose main characteristic is the confinement between two rotating cylinders 

(DONNELLY, 1991).   

The Taylor-Couette flow, although may appear to be simple, is quite complex: when 

one limits the radius ratio (k = Rinn/Rout), and the angular velocity of the inner cylinder exceeds 

a critical figure, hydrodynamic instabilities take place.  

A typical Taylor-Couette domain is shown in Figure 5. The inner radius can be denoted 

as kR, whereas k is the radius ratio. The height of the fluid column is denoted by h, whereas the 

total height is denoted by H. In this case, the outer cylinder is held stationary while the inner 

one rotates independently with an imposed angular velocity ω. The radius gap (δ), radius 

ratio (k) and aspect ratio (Γ) are defined as follows: 

 

 δ = Rout − Rinn (1.1)   

 k =
Rinn
Rout

 (1.2)   

 Γ =
H

δ
 (1.3)   

 

where the dimensionless flow parameters are the rotational Reynolds number and Taylor 

number. The former is the ratio between inertial and viscous forces acting in the flow. Whereas 

the later relates the same forces taking the above geometrical parameters in consideration. 

Regarding the Newtonian fluids: 

 

 Re =
ρ(ωRinn)δ

μ
 (1.4)   

 Ta = (
ρω

μ
)
2

Rinnδ
3 = (

1

k
− 1)Re2 (1.5)   

 

where ρ denotes the density (kg/m³) and μ denotes the dynamic viscosity (Pa·s) of the fluid. 
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FIGURE 5 - SCHEMATIC REPRESENTATION OF THE PHYSICAL DOMAIN. 

 

 

The flow is considered unstable when the viscous forces are not able to dissipate the 

disturbance caused by the inertial forces, which occurs when a critical value of the 

dimensionless number (either Reynolds or Taylor) is reached. 

Many scientists have studied the physics of confined flow between two rotating 

cylinders, aiming at the instabilities due to the turbulence that occurs when an angular velocity 

of the cylinders is exceeded (NEWTON, 1946) (STOKES, 1880) (STOKES, 1905) 

(MALLOCK, 1888) (COUETTE, 1888) (COUETTE, 1890) (RAYLEIGH, 1914), (see Figure 

6). However, only in 1923, G. I. Taylor developed a theory concerning the stability of the 

Couette flow (TAYLOR, 1923). His study was a milestone in the realm of fluid dynamics 

(DONNELLY, 1991) because: (i) held a convincing proof of the no-slip condition, (ii) provided 

evidence that the Navier-Stokes equations could predict accurately the flows of Newtonian 

fluids, and (iii) applied the linear stability theory to predict the experimental results, 

characterizing the transition from the stable flow to the unstable one (DONTULA, MACOSKO 

and SCRIVEN, 2005) (PIAU and PIAU, 2005).  
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FIGURE 6 - MALLOCK'S APPARATUS USED IN PIONEERING INVESTIGATIONS OF THE 

FLUID FLOW OF THE BETWEEN CONCENTRIC CYLINDERS. 

 
SOURCE: DONNELLY (1991). 

 

The present study has focused the flow of fabric-water suspensions in simplified Taylor-

Couette cylindrical geometries through experimental measurements and numerical simulations 

carried out by means of a purpose-built testing facility and a tailor-made computational model, 

respectively. The numerical front is regarded with the computer simulation of flows of 

homogeneous Newtonian and non-Newtonian fluids based on the three-dimensional 

conservation equations of mass and momentum in cylindrical coordinates, whilst the 

experimental front is conducted for different mixtures of fabrics in water. 

 

1.2 LITERATURE 

 

Since the present work is aimed at understanding the rheological behavior of fabric-

water suspensions inside a cylindrical cavity (a simplified geometry that emulates a washing 

machine), the literature review spanned different fronts.  

Firstly, a brief review of the literature in the realm of laundry/washing processes was 

conducted. It was found that the literature is still scarce in this field, especially regarded with 

numerical simulations of fabric-water suspensions (AKCABAY, DOWLING and SCHULTZ, 

2014). Next, a literature review of the Taylor-Couette flows of Newtonian and non-Newtonian 
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fluids was performed to get a better understanding of the main and secondary flows behaviors, 

as well as the conditions which lead to unstable flows. The main flow is described by the 

tangential velocity only, which is transmitted from the cylinder to the fluid stream. The 

secondary flow is the fluid circulation inside the cavity in both the radial and the vertical 

directions.  Finally, a comprehensive literature review of rheometry in cylindrical cavities (also 

called Couette geometries) was carried out. In this part, the focus was on the experimental 

measurement and numerical reduction of raw data (torque and angular velocity). 

 

 Laundry/ Washing Processes  

 

In a pioneering work, Van den Brekel (1987) studied the momentum and mass transfer 

in a horizontal axis washing machine. The author focused especially on the chemical aspects of 

the washing process. A simplified model suited for the drum dynamics, responsible for the 

movement of the fluid stream and the mass transfer between water and fabric, was developed 

and validated against experimental data obtained in-home. Moreover, based on a simplified 

simulation model, Van den Brekel concluded that the advection caused by the flow of water-

detergent mixture between basket and tank outweighs the diffusive transport, while the opposite 

is observed for the fabric. 

Two decades later, aiming at advancing the knowledge about the mechanical aspects of 

the washing process, Akcabay (2007) put forward two and three-dimensional models to solve 

the flows of fabric-water suspensions. The fabric was modeled as an elastic plate, while the 

water flow was modeled by means of the Navier-Stokes equations. The fabric-water coupling 

was performed by the Peskin’s immersed boundary method (PESKIN, 2002). The numerical 

results have not been validated against experimental data. His research was also published in 

Akcabay, Dowling, and Shultz (2014). 

Calvimontes (2009) sought to understand the wetting phenomena on rugged surfaces. 

The author performed a topographic characterization of polyester and cotton fabric. The 

influence of the morphology of yarns and fibers on the wettability was additionally studied. He 

observed that the polyester fabric parameters strongly affect the capillarity. Another front of 

research was on the effect of the washing cycles on topography, spreading, wetting and dirt 

accumulation in cotton fabric. For doing so, he proposed a mathematical model to represent the 

fabric surface so that the changes in the topography can be predicted. 
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Eger (2010) analyzed numerically the flow mixing in alternated motion focusing on 

vertical drum washing machines. A turbulent three-dimensional model was implemented into 

a commercial CFD software to simulate the water flow in a simplified geometry in which the 

drum (outer bowl) rotates. An experimental rig was built so that velocity was measured to 

validate the model. The following parameters were analyzed: water level, rotational velocity, 

and geometry. Finally, a comparison between numerical and experimental data showed a 

satisfactory level of concordance, according to the author. Numerical analyses including fabric-

water suspensions were not performed. 

Janáčová et al. (2011) analyzed the washing process in a vertical axis washing machine 

for the reducing the water consumption. A lumped model based on the fundamental principles 

was designed to predict the diffusive mass transfer along a homogeneous fabric-water 

suspension. The authors determined the optimal operation cost in terms of a dimensionless 

parameter introduced by them, called the soak number. 

Yee (2013), Machado (2014) and Zanotto (2015) advanced in their undergraduate term 

papers – all carried out at the Laboratory of Thermodynamics and Thermophysics of the Federal 

University of Parana – different work fronts concerning both the experimental analysis and 

numerical flow simulations of vertical axis washing machines. Yee performed numerical 

simulations using a commercial CFD software to evaluate the flow of water in complex washing 

machine geometries, whereas Machado designed and constructed an experimental apparatus to 

gather data to validate the numerical simulations. The numerical and experimental data for 

power and torque were compared when a satisfactory level of agreement was observed. Zanotto, 

on the other hand, adapted the purpose-built facility introduced by Machado to perform 

experimental tests using fabric-water suspensions confined in two concentric cylinders, 

supporting the present work. All the three prior studies have been used as the baseline for this 

thesis work. 

Campos and Hermes (2016) investigated experimentally and numerically the transient 

detergent transport between the compartments and through the garments during the washing 

process in a household top-load washing machine. The experimental results were used in the 

numerical model as closing parameters, thus providing the model with a semi-empirical 

character. The model prediction and the experimental results agreed quite well for the time 

evolution of the detergent concentration within the different compartments of the washing 

machine. The authors pointed out that the detergent insertion and the agitation level were the 

most influencing washing parameters. 
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The review of the literature on laundry points out that studies in the open literature that 

sought to understand chemical and mechanical phenomena present in the fabric washing are 

quite scarce. Additionally, there is no evidence in the literature of a computational fluid 

dynamics models considering the presence of fabric during the washing process that was 

validated against experimental data. Finally, there is no information regarded with the rheology 

of fabric-water suspensions. The present work is aimed at filling those gaps. 

 

 Taylor-Couette Literature 

 

Figure 7 shows a steadily increasing number of published papers in the main areas of 

the present work over the years from 1900 up to 2016. One can note that the rheology and yield 

stress fronts experienced a notable growth in the last decades. Rheometry, which is a sub-area 

of rheology, has also shown a significant growth in this period. Figure 8 depicts the interest on 

the non-Newtonian fluid models that are subject matter for the present work. The figure shows 

that the Bingham fluid was the most cited model but there had been a great interest in the 

Herschel-Bulkley and Casson fluids in the last two decades. 

 

FIGURE 7 - NUMBER OF PUBLICATIONS CONCERNING THE LITERATURE FRONTS 

REVIEWED IN THE PRESENT WORK. 

 
SOURCE: DATA OBTAINED FROM SCIENCE DIRECT (2017). 
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FIGURE 8 - NUMBER OF PUBLICATION CONCERNING SOME YIELD STRESS MODELS. 

 
SOURCE: DATA OBTAINED FROM SCIENCE DIRECT (2017). 

 

The literature concerning Taylor-Couette flows is quite broad, since it covers different 

aspects of the flow (i.e., flow regimes, instabilities, fluid type, etc). Among the classical works 

concerning the instabilities in Taylor-Couette flows, one can mention the pioneering studies by 

Chandrasekhar (1953), Di Prima and Swinney (1985) and Andereck, Liu and Swinney (1986). 

Chandrasekhar (1953) performed a numerical study based on the flow stability equations and 

studied cases where the gap between cylinders was narrow and both cylinders were rotated in 

the same direction. The author produced a table of critical Taylor numbers in which the flow 

regime changed to turbulent. Di Prima and Swinney (1985) conducted a comprehensive review 

of many works concerning instability and transition in circular flows between concentric 

cylinders. Table 1 shows some of the works cited by them and presents some critical values for 

the following dimensionless parameter, Re (
δ

Rinn
)

1 2⁄
, where δ (Rout - Rinn) denotes the radius gap, 

considering different radius ratios. The Reynolds number for a fluid flow between concentric 

cylinders is calculated as follows: 

 

 Re =
ρωinnRinnδ

μ
=
ωinnRinnδ

ν
 (1.6)   
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TABLE 1 - CRITICAL VALUES FOR TAYLOR-COUETTE FLOWS. 

SOURCE: ADAPTED FROM DI PRIMA AND SWINNEY (1985). 

 

Dou, Khoo, and Yeo (2008) summarized some classic experimental studies on Taylor-

Couette flows considering the geometric aspects of the experimental apparatuses, as presented 

in Table 2. Attention should be also given to the work of Andereck et al. (1986), who have 

shown, by means of the map depicted in Figure 9, the flow regimes in case of fluid flow between 

two independent rotating coaxial cylinders as a function of the Reynolds numbers relative to 

the inner cylinder (R0) and the outer cylinder (R1).  Their experimental facility had a radius ratio 

(k) of 0.884 and cylinder aspect ratios (Γ  = δ/H) varying from 20 to 48. During their 

experiments, both the top and bottom surfaces were fixed, while that inner cylinder was put to 

rotate with gradually increasing speed in order to achieve flow transition.  

 

 

 

 

 

k Reference Re (
𝛅

Rinn
)

1 2⁄

 k Reference Re (
𝛅

Rinn
)

1 2⁄

 

1.000 Walowit et al, 1964 41.18 0.600 Walowit et al, 1964 58.56 

0.975 Donnelly et al., 1965 41.79 

0.500 

Donnelly et al., 1965 68.19 

0.963 Donnelly et al., 1965 42.09 Sparrow et al, 1964 68.19 

0.950 

Donnelly et al., 1965 42.44 
Walowit et al, 1964 68.18 

Sparrow et al, 1964 42.44 

Walowit et al, 1964 42.45 
0.400 Walowit et al, 1964 83.64 

0.360 Donnelly et al., 1965 97.72 

0.925 Donnelly et al., 1965 43.13 0.350 Sparrow et al, 1964 95.38 

0.900 
Donnelly et al., 1965 43.87 0.300 Walowit et al, 1964 118.89 

Walowit et al, 1964 43.88 0.280 Donnelly et al., 1965 120.43 

0.875 Donnelly et al., 1965 44.66 
0.250 Sparrow et al, 1964 136.40 

0.850 Donnelly et al., 1965 45.50 

0.800 Walowit et al, 1964 47.37 
0.200 

Donnelly et al., 1965 176.26 

0.750 

Donnelly et al., 1965 49.52 Walowit et al, 1964 176.33 

Sparrow et al, 1964 49.53 
0.150 Sparrow et al, 1964 250.10 

0.100 

Sparrow et al, 1964 423.48 

0.700 Walowit et al, 1964 52.04 
Walowit et al, 1964 422.79 

0.650 Donnelly et al., 1965 55.01 
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TABLE 2 - CRITICAL VALUES FROM KEY EXPERIMENTAL STUDIES ON TAYLOR-

COUETTE FLOW. 

Author Year Rinn (cm) Rout (cm) H (cm) k Rec 

Taylor 1923 

3.8 4.035 0.235 0.94 169 

3.55 4.035 0.485 0.88 120 

3 4.035 1.035 0.74 95 

Coles 1965 10.155 11.52 1.365 0.88 116 

Snyder 1968 
6.023 6.281 0.258 0.96 217 

5.032 6.281 1.249 0.80 94 

Gollub and 

Swinney 
1975 2.224 2.54 0.316 0.88 128 

Andereck et al. 1986 5.25 5.946 0.696 0.88 120 

SOURCE: ADAPTED FROM DOU ET AL. (2008). 

 

FIGURE 9 - TAYLOR-COUETTE FLOW MAP AS A FUNCTION OF REYNOLDS NUMBERS OF 

THE INNER AND THE OUTER CYLINDERS. 

 

SOURCE: ANDERECK ET AL. (1986). 

 

Both Tables 1 and 2 shows that the critical Reynolds number values change according 

to the geometry parameters (cylinders radius and column height). Figure 9 also shows different 

wave regimes (instabilities) in a Taylor-Couette flow by changing the velocities and rotation 

directions of both inner and outer cylinders. 

Table 3 summarizes some of the key studies regarding Taylor-Couette flows of 

Newtonian fluids. The radius ratio (k) is used as a comparison parameter.  Wu and Swift (1989), 
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for instance, performed an experimental work focusing on Taylor-Couette secondary flows, 

where inner and outer cylinder rotation were both modulated according to a sinusoidal pattern. 

The model was validated against data from the literature when it was observed that the outer 

cylinder modulation leads to large critical Reynolds numbers, whereas the inner cylinder 

modulation led to the opposite behavior. 

 

TABLE 3 - KEY TAYLOR-COUETTE STUDIES CONCERNING NEWTONIAN FLUIDS. 

Authors Year Origin Approach Validation k 

Meyer-Spasche and 

Keller 
1980 Germany Numerical Yes 0.5 and 0.95 

Marcus 1984 United States Numerical Yes 0.5 to 0.9 

Wu and Swift 1989 United States Numerical Yes 0.88 and 0.95 

Escudier et al. 1995 England Experimental - 0.506 

Weisberg et al. 1997 United States Experimental - 0.9051 

Takeda et al. 1999 Swiss Experimental - 0.904 

Watanabe et al. 2003 Japan 
Numerical and 

Experimental 
Yes 

0.675, 0.839 and 

0.931 

Djeridi et al. 2004 France Experimental   0.857 

Huang et al. 2007 Singapore Numerical Yes 0.5 

Watanabe and Toya 2012 Japan 
Numerical and 

experimental 
Yes 0.667 

 

Weisberg et al. (1997) conducted an experimental work to generate Taylor vortices in a 

flow produced from an imposed periodical axial velocity (vz) applied in the inner cylinder 

simultaneously to the rotational velocity. Water and Kalliroscope AQ-1000 solution was 

employed as the working fluid, in such a way that the flakes enabled the flow visualization. 

From the axial velocity and Taylor number, the authors could establish a flow stability criterion. 

Takeda et al. (1999) performed an experimental work concerning the measurement of 

axial velocity by means of ultrasonic Doppler method. The experimental apparatus had a radius 

ratio of 0.904, where flows with the Reynolds number varying from 9 up to 40 times the critical 

value were tested. Water and glycerin solutions (30 wt.%) were used as the working fluid. Fast 

Fourier Transform (FFT) techniques were applied in order to observe the density, power, and 

energy spectral distributions. By doing so, the authors confirmed part of the flow regimes 

depicted by Andereck et al. (1986). 

Watanabe et al. (2003) performed an experimental and numerical research to evaluate 

the influence of the cylinder surface characteristics, the concentration of the fluid (glycerine 

solution), and the aspect ratio of the flow pattern in a Taylor-Couette flow. The authors used 

highly repellent wall coatings to figure out the effect of the cylinder surface on the laminar drag 
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reduction with fluid slip. Furthermore, through PIV (Particle Image Velocimetry) techniques, 

they visualized the velocity profile close to the inner cylinder using smooth and highly repellent 

walls. They found that the intervals of Taylor cell vortices (of secondary flow) become slightly 

irregular when a highly repellent wall was used. The numerical results concerning the velocity 

profile and the Taylor cells visualization, when the slip velocity boundary condition was 

applied, agreed with the experimental counterparts. 

Djeridi et al. (2004) conducted an experimental study of two-phase Taylor-Couette 

flows of air-water-glycerin mixtures. Their apparatus had a radius ratio of 0.857, where the air 

was introduced into the flow in two different ways: through free surface or by cavitation through 

a pressure drop. They found that in the case of low Reynolds numbers, air bubbles were trapped 

inside the core of the Taylor-cells. On the other hand, for higher Reynolds number the air 

bubbles migrated to the region near the inner cylinder. 

Watanabe and Toya (2012) performed a numerical-experimental study regarding 

Taylor-Couette flows with the free top surface. A finite-difference scheme was employed to 

solve the governing equations, while the pressure equation was solved through the marker-and-

cell (MAC) method. The experimental apparatus had a radius ratio of 0.667 and water-glycerin 

mixtures were used as working fluid, while aluminum flakes were applied to visualize the flow. 

The reason to make use of low Reynolds numbers was to ensure axisymmetric flow. Moreover, 

the study focus was on the recirculation cells in the axial direction due to the increase of the 

aspect ratio (Γ =  δ/H). The interface curves between the flow transition regimes were plotted 

as function of Reynolds number and aspect ratio as the number of recirculation cells increased 

Similarly, a summary of key numerical-experimental studies found in the open literature 

concerning Taylor-Couette flows of non-Newtonian fluids is found in Table 4, some of them 

used in the present work for the sake of code verification. 

For instance, Chow and Fuller (1985) draws attention to some experimental results 

regarding collagen solutions obtained by means of an apparatus where the inner diameter of the 

outer cylinder was 2.54 cm, and two different gap sizes were applied during the tests: 0.5 and 

1.0 mm, corresponding to aspect ratios (k) of approximately 0.96 and 0.92, respectively. 

Birefringence techniques in bicolor flow experiments, where the outer cylinder was rotated 

while the inner one was kept stationary, were applied and proven to be suitable for measuring 

the changes of non-Newtonian flows in which fast transients were observed. Nevertheless, the 

techniques failed in observing the flow as a whole. 
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One year later Sinevic et al. (1986) conducted an experimental work using three 

different test rigs: two with different aspect ratios (0.908 and 0.702) and one with four vertical 

strip baffles with 1.4 cm on the outer cylinder inner liner. The tests were performed with 

Newtonian fluid (corn syrup) and non-Newtonian fluids (carboxymethyl cellulose solutions - 

CMC and Carbopol). A strain gauge was used for the torque measurements, and small 

polystyrene particles were used for the flow visualization. They pointed out that the presence 

of the vertical strip baffles increased the value of the critical Taylor number, thus making it less 

dependent on the rheological properties of the fluids while increasing the vortex numbers. 

Lockett et al. (1992) handled computer simulations by means of finite element 

techniques in two different geometries: aspect ratios of 0.95 (narrow gap) and 0.5 (wide gap). 

Two models of inelastic non-Newtonian fluids were used and compared with literature values, 

namely Power-Law and Bingham model. Also, two different dimensionless parameters (critical 

Taylor number and wavenumber) were applied to compare the differences between the radius 

gaps and the fluid flows, where a good agreement with the literature data was found in the 

narrow gap case, while it was also detected that the critical values were more dependent on the 

rheological parameters in the wide gap case. 

Jastrzębski et al. (1992) performed some numerical simulations to ascertain the critical 

values of the Taylor number and the vortex number in the axial direction. Four different radius 

ratio values were applied (0.90, 0.80, 0.66 and 0.5), where the first two were considered as 

narrow gap geometries and the latter ones as a wide gap geometry. Also, different values of the 

Power-Law index (n) ranging from 0.25 (shear-thinning) to 1.75 (dilatant) were tested. It was 

observed that in all simulations, the greater the Power-Law index (n) the greater was the critical 

Taylor number. Furthermore, pseudoplastic fluid flows showed a tendency to destabilize the 

rotational flow, while for dilatant fluids the tendency for stabilization was noted. Also, it was 

observed that for k > 0.6 the theoretical stability limit was in good agreement with the 

experiments, while for k<0.6 the critical Taylor number was found to be lower than that 

predicted by theory. 
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TABLE 4 - KEY TAYLOR-COUETTE STUDIES CONCERNING NON-NEWTONIAN FLUIDS. 

Authors Year Origin NNF Model Approach Validation k 

Chow and 

Fuller 
1985 

United 

States 
Collagen solution Experimental - 0.96 and 0.92 

Sinevic et al. 1986 England 

Corn syrup, CMC 

solutions, and 

Carbopol 

Experimental - 

0.908, 0.702 

and with 

vertical strip 

baffles 

Lockett et al. 1992 England 
Power-law and 

Bingham 
Numerical Yes 0.95 and 0.5 

Jastrzębski et 

al. 
1992 Poland Power-Law Numerical Yes 

0.5 0.66 0.8 and 

0.9 

Escudier et al. 1995 England 

Xanthan gum 

solution and 

Laponite/CMC 

aqueous blend 

Experimental - 0.506 

Coronado et 

al. 
2002 Brazil Carreau Numerical Yes 0.6 to 0.9 

Escudier et al. 2002 England 

Cross, Carreau and 

Herschel-Bulkley 

models 

Numerical Yes 

0.2 to 0.8 

(eccentric 

annulus) 

Smieszek and 

Egbers 
2005 Germany 

Silicone oil and 

Boger fluid 

(viscoelastic) 

Experimental - 0.5 

Amoura et al. 2006 Algeria Carreau Numerical Yes 0.5 

Jeng and Zhu 2010 China Bingham Numerical Yes 0.5 

Alibenyahia 

et al. 
2012 Algeria 

Bingham, Carreau, 

and Power-law 
Numerical Yes 0.4 to 0.9 

Khali et al. 2013 Algeria Power-law Numerical Yes 0.5 

 

Escudier et al. (1995) performed an experimental work in a concentric annular geometry 

with a radius ratio (k) of 0.506 and a very large aspect ratio (Γ), wherein the inner cylinder 

rotates where the outer one is held stationary. Velocity measurements were carried out by means 

of a laser Doppler anemometer for an aqueous solution of Glucose, which is a Newtonian fluid. 

They found that for Taylor numbers above the critical value the components of the tangential 

velocity have periodic structures of the same wavelengths as those of the axial components. 

Moreover, the maximum axial velocity and velocity gradient were found to be closer to the 

core, whilst the radial location of zero axial velocity in the vortex interior moves towards the 

outer wall with an increasing Taylor number. Furthermore, they performed similar 

measurements for an aqueous solution of Xanthan gum (very shear-thinning and slightly 

elastic), where it was found that the asymmetry of the maximum axial velocities was higher 

than the Newtonian fluid with a significant radial shift in the location of the vortex eye towards 

the core, while the vortices exhibited a slow axial drift in the direction opposite to the centre 

body rotation vector. Finally, measurements were made using a Laponite/CMC aqueous blend 
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(shear-thinning and thixotropic fluid), where they found that the shear-thinning aspect of the 

fluid rheology was more significant than either thixotropy or viscoelasticity for both non-

Newtonian fluids. 

Coronado et al. (2002) performed a numerical work in which the effect of the 

viscoplastic properties of high concentration suspensions on the onset of the Taylor vortices 

was determined theoretically through the critical values of the Taylor number for Newtonian 

and non-Newtonian fluids. The differential equations were solved by the Galerkin finite-

element method and the resulting set of nonlinear algebraic equations, by Newton iteration. The 

Newtonian fluid flow simulations were validated against experimental data of the literature with 

radius ratio (k) ranging from 0.4 to 1. Also, the Carreau non-Newtonian model was applied to 

simulate pseudoplastic flows, where the results showed that for shear-thinning fluids the vortex 

tends to occur in lower angular velocities regions. 

Escudier et al. (2002) presented results of extensive numerical calculations carried out 

using a finite-volume method for fully developed laminar flow of an inelastic shear-thinning 

Power-Law fluid, as well as Cross, Carreau and Herschel-Bulkley fluid models. The 

simulations took place in a concentric and eccentric annulus with inner cylinder rotation, when 

the results were compared with other numerical studies covering a wide range of parameters 

(Power-Law index n, radius ratio δ, eccentricity, Reynolds, and Taylor numbers). 

Smieszek and Egbers (2005) performed an experimental work using a silicone oil as 

reference fluid (Newtonian fluid) and a viscoelastic Boger fluid in a wide-gap Taylor-Couette 

system (k = 0.5) to investigate the pattern formation and stability of the flow through a PIV 

(Particle Image Velocimetry), which was used to visualize and measure the flow fields. The 

results showed that the transition sequence of the Boger fluid resembles the Newtonian fluid at 

lower rotation rates for the inner cylinder. They also demonstrated that the aspect ratio (Γ) 

strongly affects the fluid flow behavior, where for aspect ratios lower than 4.48 the wavy vortex 

flow is inhibited by the Boger fluid flow. 

Amoura et al. (2006) performed a numerical work focused on the flow characteristics 

and the heat transfer mechanism of a non-Newtonian flow in a Taylor-Couette geometry, where 

the vortex generation can enhance the heat transfer. The Carreau model was adopted to model 

the rheological fluid behavior. The authors considered a geometry with a radius ratio of 0.5 and 

Power-Law index (n) spanning from 0.6 and 1. The heated inner cylinder rotated while the 

cooled outer cylinder was at the rest. Also, the horizontal axis was assumed to be adiabatic. The 

governing equations were solved by means of the finite element method while some 
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dimensionless numbers (Reynolds, Grashof, and Weissenberg numbers) were evaluated. The 

results show that the non-Newtonian effects are important on the structure of the flow and on 

the heat transfer. 

Jeng and Zhu (2010) performed a numerical study regarding the Taylor-Couette flow of 

a Bingham fluid where the cylinders were assumed to rotate independently and there was an 

imposed axial sliding. The applied numerical methods were based on the expression of the 

deviation field in terms of complete sets of orthogonal function and Chebyshev series, where 

the Galerkin projection was used to eliminate the pressure term. Thus, the numerical method 

was compared with literature data using the friction coefficient as a reference with τ0 = 0 

referring to Newtonian fluids. For τ0 > 0 , the Papanastasiou method was adopted 

(PAPANASTASIOU, 1987). They also showed that when the outer cylinder was held 

stationary the vortices were squeezed toward the inner cylinder and the friction factor was 

augmented. However, when the outer cylinder rotates in the same direction of the inner 

cylinder, the vortex flow is initially strengthened with an increase of the yield stress, but after 

that, it is weakened when the yield stress is raised large enough, while the annular unyielded 

regions emerge and stick to the outer cylinder. Finally, in the case where there was an imposed 

axial sliding of the inner cylinder, spiral vortices were formed with spiral unyielded regions 

being obtained. 

Alibenyahia et al. (2012) conducted a numerical analysis of the three-dimensional 

stability of the Taylor-Couette flow of non-Newtonian fluids. Three different models were used: 

Bingham, Carreau, and Power-Law fluids. The authors explored a wide range of rheological, 

geometrical, and dynamical parameters using a pseudo-spectral method to solve the eigenvalue 

problem of the governing equations and validating the code against Newtonian fluid flows 

found in the literature for different aspect ratios. In all cases, it was observed that along the 

increasing shear viscosity in the inner cylinder a stabilizing effect in the pseudoplastic is 

observed, thus delaying the onset vortices, and confirming that the viscosity gradient near the 

inner cylinder has the highest stabilizing effect, while the gradients far from the cylinders 

produce almost no effect. Also, in the axisymmetric case, they showed that the shear-thinning 

delayed the appearance of the vortices, but no instability was found in the non-axisymmetric 

case. 

Khali, Nebbali, and Bouhadef (2013) performed a numerical investigation concerning 

the flow of a Power-Law non-Newtonian fluid flow in a Taylor-Couette geometry by means of 

a DQ29 lattice Boltzmann model developed from the Bhatangar-Gross-Krook (LBGK) 
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approximation. Two different cases were evaluated: counter and co-rotating cylinders while the 

end walls are held at rest. The code was validated against an analytical solution of azimuthal 

velocity and an available literature database. It was observed that in the counter-rotating case 

the increasing of the inner cylinder velocity tends to increase the vorticity for the shear-thinning 

fluids, while that for shear-thickening its influence is lowered. Moreover, in the co-rotating case, 

the increasing of the inner cylinder velocity favors the number of vortices cells for shear-

thinning fluids, while that for shear-thickening fluids it leads to a higher stability. 

Finally, Table 5 summarizes the key features of various studies concerned with 

viscometry in both experimental and numerical counterpoints. For instance, Nguyen and Boger 

(1985) proposed the vane method as an alternative for measuring the yield stress. By means of 

a four-blade vane and assuming that the stress is uniformly distributed on a cylindrical sheared 

surface, thus computing the yield stress from a maximum torque and vane dimensions using the 

red mud as working fluid. Moreover, the authors proposed two methods of analysis: one 

assuming an approximate distribution for the end shear, and a second one considering only the 

wall shear stress. Finally, they proved that the assumption of a uniform stress distribution along 

a cylindrical yield surface is reasonable for this purpose. Both methods agreed well with the 

results obtained with the conventional method widely employed. 

Darby (1985) used the Power-Law approximation to evaluate the error in calculating 

the shear rate in a Couette viscometer. The author applied the dimensionless forms of the 

Bingham and Casson fluids constitutive equations to evaluate the error in the shear rate and 

viscosity computation, which depends on the gap width and the yield stress value. Furthermore, 

he concluded that the maximum error for the Bingham fluid occurs at the point where the stress 

at the outer cylinder coincides with the yield stress, while for Casson fluids it shifts to slightly 

higher stress levels as the gap increases. Also, the error in the viscosity is lower than that in the 

shear rate due to the shear-thinning nature of the fluids. Finally, he concluded that the 

approximation leads to a reasonably accurate evaluation of the shear rate. 

In a follow-up study, Nguyen and Boger (1987) proposed a two-step procedure in order 

to obtain the shear stress-shear rate curves from the torque-angular velocity curves in concentric 

cylinders’ rheometers. Thus, they employed the Casson constitutive equation in order to 

proceed a numerical analysis of the errors embedded in the using of different equations to obtain 

the shear rate values in two cases: partially sheared and fully sheared flows. Finally, they 

performed some tests to stipulate the errors when the assumption of time-independent yield 

stress fluid is used to characterize thixotropic fluids. 
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TABLE 5 - SOME VISCOMETRY STUDIES CONCERNING DIFFERENT FLUID MODELS. 

continue 

Authors Year Approaches 
Fluid 

model 
Real fluid k (ratio) Comments 

Nguyen 

and Boger 
1983 Experimental Several Red mud 

Several 

(depending on 

the vane 

dimension) 

Also, contains a 

review 

concerning 

different vane 

method papers 

Hanks 1983 Numerical Casson  Several 
Only numerical 

experimentation 

Dzuy and 

Boger 
1985 Experimental Several Red mud 

Several 

(depending on 

the vane 

dimension) 

Comparison 

between different 

methods to 

obtain yield 

stress in vane 

geometry 

Darby 1985 Numerical 
Bingham 

and Casson 
 Several 

Error analysis 

from using local 

Power-Law 

approximation 

Nguyen 

and Boger 
1987 

Numerical 

and 

Experimental 

Casson Red mud 0.88  

Borgia and 

Spera 
1990 

Numerical 

and 

Experimental 

Herschel-

Bulkley 
Clay slurry 0.11 

Shear-rate 

recovered by 

Krieger-Elrod-

Pawlowski series 

Barnes and 

Carnali 
1990 

Numerical 

and 

Experimental 

Power-Law 

fluid 

Clay-in-water 

suspension and 

aqueous 

polymer 

solution 

  

Yan and 

James 
1997 Numerical 

Herschel-

Bulkley, 

Casson and 

viscoelastic 

 0.51 

Modeled the 

viscoelastic fluid 

as a Maxwell 

type 

Yeow et 

al. 
2000 Numerical 

Casson, 

purely NNF 

Synthetic 

Couette 

viscometry 

data, CMC 

solutions 

Several 

Compared the 

results obtained 

from Tikhonov 

regularization 

with 

experimental 

database 

Saak et al. 2001 Experimental  Cement-based 

materials 

0.92 

(concentric 

cylinder) and 

0.5 (vane) 
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TABLE 5- SOME VISCOMETRY STUDIES CONCERNING DIFFERENT FLUID MODELS. 

continuation 

Authors Year Approaches Fluid model Real fluid k (ratio) Comments 

Leong and 

Yeow 
2003 

Numerical 

and 

Experimental 

 

Tomato ketchup, 

red gum honey, 

French salad 

dressing and 

creamy 

mayonnaise 

Several 

Solved Couette 

inverse 

problem (with 

wall sleep) 

from raw data 

of other authors 

using Tikhonov 

regularization 

James et al. 2004 Numerical 

Power-Law, 

Cross model, 

and Carrier-

Yasuda 

2% Keltrol 

solution, 2% 

Benecel solution, 

orange juice, and 

chicken soup 

Eccentric 

Finite 

difference 

solution 

Yeow et al. 2004 Numerical  
Blood, bentonite 

suspensions and 

CMC solutions 

Several 

(narrow 

gaps) 

Solved Couette 

inverse 

problem (with 

wall sleep) 

from raw data 

of other authors 

using Tikhonov 

regularization 

Ancey 2005 Numerical Casson 

Commercial hair 

gel (Baudez et 

al., 2004) and 

granular 

suspensions 

(Ancey, 2001) 

0.51 and 

0.24 

(Baudez 

et al., 

2004) 

and 0.3 

(Ancey, 

2001) 

The author 

developed the 

wavelet-

vaguelette 

decomposition 

in order to 

solve the 

Couette inverse 

problem 

Kelessidis and 

Maglione 
2006 Experimental 

Casson and 

Robertson-

Stiff 

Bentonite 

Suspensions 
0.936  

Estellé et al. 2008 Numerical Bingham 

Tomato ketchup 

and bentonite 

suspensions 

0.96, 

0.50 and 

0.33 

 

Kelessidis and 

Maglione 
2008 Numerical 

Herschel-

Bulkley 
Several 

Several 

(narrow 

gaps) 
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TABLE 5- SOME VISCOMETRY STUDIES CONCERNING DIFFERENT FLUID MODELS. 

continuation 

Authors Year Approaches Fluid model Real fluid 
k 

(ratio) 
Comments 

Ovarlez et al. 2008 Experimental 
Herschel-

Bulkley 

Dense 

emulsions 
0.68  

Chatzmina et 

al. 
2009 Numerical 

Herschel-

Bulkley 
 

0.833 

and 

0.952 

 

Ahuja and 

Singh 
2009 

Numerical 

and 

Experimental 

Stokesian 

dynamics 

PMMA 

(Polymethylme

thacrylate) 

particles and 

water-glycerol 

0.876 

Wall slip velocity 

measurements 

with smooth and 

serrated walls 

Coussot et al. 2009 Experimental 
Herschel-

Bulkley 

Carbopol 

solution (hair 

gel) 

0.69 

Compared the 

results with a cone 

and plate 

rheometer 

Potanin 2010 Numerical 

Casson and 

Thixotropic 

models 

Toothpastes 0.51  

Kelessidis et 

al. 
2010 Experimental 

Herschel-

Bulkley 

Water-glycerol 

solution 

(Newtonian) 

and water-

bentonite 

suspension 

(non-

Newtonian) 

0.94 End-effect analysis 

Laskar and 

Bhattacharjee 
2011 Experimental Bingham Concrete 0.454 

Vane method, 

including bottom 

and top resistance 
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TABLE 5- SOME VISCOMETRY STUDIES CONCERNING DIFFERENT FLUID MODELS. 

conclusion 

Authors Year Approaches Fluid model Real fluid k (ratio) Comments 

Koos et al. 2012 Experimental  

Nylon, 

polystyrene, 

and SAN 

(styrene 

acrylonitrile) 

water 

suspensions 

0.834 
Rough and 

smooth wall 

Ihle et al. 2013 Experimental Bingham 
Copper 

concentrates 
0.44 

Particle 

migration and 

loading speed 

and times 

influence 

Konijin et al. 2014 Experimental Power-Law 

Glycerine with 

solid spherical 

DynoAdd 

particles 

0.88  

Marchesini et 

al. 
2015 

Numerical 

and 

Experimental 

SMD function 

Water-based 

Carbopol 

dispersions 

0.941 

Smooth, grooved 

and vane-in-cup 

geometries were 

applied in 

experiments 

Wallevik et 

al. 
2015 

Numerical 

and 

Experimental 

Bingham and 

Herschel-

Bulkley 

Vegetable oil 

and Cement-

based materials 

0.922(a), 

0.576(b) 

and 

0.922(c) 

Smooth wall - (a) 

and (b) and 

sandblast wall (c) 

Heirman et al. 

2008 

(a) 

and 

2009 

(b) 

Numerical 

and 

Experimental 

Bingham and 

Herschel-

Bulkley 

Self-

compacting 

concrete 

0.690 

Mineral additions 

and chemical 

admixtures were 

used in (b) 

 

Barnes and Canali (1990) performed a numerical simulation of the vane-in-cup 

rheometer geometry and compared the results with the conventional bob-in-cup (circular 

Couette) geometry, thus showing that for a sufficiently Power-Law fluid (index less than 0.5) 

the assumption of the fluid trapped between the vane blades acting as a solid cylinder is valid. 

Furthermore, experimental tests with two different fluids: 5.5% sodium carboxymethylcellulose 

(CMC) solution and a 4.2% Veegum PRO clay suspension were carried out. Even though both 

fluids were thought to have yield stress, the results showed that there was an absence of a true 
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yield stress. Both fluids were compared with the results of the vane-in-cup and bob-in-cup 

geometries and showed equivalent rheometric curves at very low shear rates, but a loss of 

viscosity was found for both fluids for larger shear rates, which was faster in the bob-in-cup 

case. Finally, the authors assigned this loss to the fact that there was an apparent slip due to the 

formation of a thixotropic layer at the bob and vane surfaces. 

Snabre and Mills (1999) presented a Kelvin Voigt model (BITBOL and MILLS, 1984) 

to describe the deformation and stable orientation of a viscoelastic particle in a simple shear 

flow. Thus, by relating the maximum packing concentration of the suspension they made use 

of a viscosity law for concentrated suspensions of hard particles. The rheological law described 

the viscosity of viscoelastic suspensions such as red cells and granted information about the 

non-linear viscoelastic properties of the fluid. 

Yeow et al. (2000) solved the Couette inverse problem by means of the Tikhonov 

regularization. They demonstrated that the method is not dependent on the small gap 

assumption and is also applied to yield stress fluids. Hence, by solving a synthetic Couette 

viscometry data (using the Casson constitutive equation) and using the torque-velocity curves 

from CMC (carboxymethyl cellulose) solution and mineral suspension (SCA330) found in the 

open literature, the authors proved that the Tikhonov regularization is suitable for solving the 

Couette inverse problem independently of the radius gap and the presence of a yield stress. 

When comparing the curves obtained by the method and the experimental data a good 

agreement was found. 

Saak et al. (2001) compared the measurements of wall slip on the yield stress and 

modulus of cement paste through a rotational rheometer with smooth-walled concentric 

cylinders and a vane. Also, they showed that the use of vane prevented the wall slip from 

appearing. The slip layer, which occurred in the smooth-walled surface cylinders, developed 

when the shear stress approached the yield point. Finally, oscillatory tests were conducted for 

both geometries and they showed good agreement with the literature at a stress below the yield 

point. 

Similarly, Yeow et al., (2004) applied Tikhonov regularization to obtain the shear stress 

and shear rate curves from raw data from elsewhere considering the slip velocity in narrow-gap 

rheometers. They compared the results obtained via the regularization with the curves from the 

other authors and obtained a good concordance between the counterparts, proving that the 

Tikhonov is also a reliable method for processing Couette viscometry when slip is present. 
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James et al. (2004) described a numerical method to determine the apparent viscosity of 

shear-thinning liquids on wide-gap double concentric cylinders geometries. The authors 

explained the errors associated when the narrow-gap approach is used in a wide-gap geometry 

and by means of a numerical procedure which gives the best agreement between experimental 

torque data and the numerical simplified simulation. The model was validated against two 

shear-thinning liquids with no particles and then presented results for orange juice and chicken 

soup. 

Ancey (2005) employed a numerical method, called wavelet-vaguelette decomposition 

(WVD), which was not being used in rheometry techniques so far. In order to solve the Couette 

inverse problem and derive the flow curve of shear stress in function of shear-rates, this method 

is more accurate and presents faster convergence. Furthermore, the author used raw data from 

other data to compare the solution of the Couette inverse problem with Tikhonov method. Also, 

according to Ancey, no prior knowledge of the shear rate characteristics is needed. 

Kelessidis and Maglione (2006), similarly to Joye (2003), performed a numerical and 

an experimental work in order to obtain the best way to describe some aqueous bentonite 

solution using the Casson and Robertson-Stiff fluid models. The authors used some sample raw 

rheological data found in the literature and also performed some experiments in a small-gap 

Couette geometry using different bentonite suspensions. Moreover, the authors performed the 

non-linear regression data to obtain the stress-shear rate curves using true (analytical) shear 

rates and Newtonian shear rates for both methods. Finally, the results fitted well the 

experimental data and it was observed that true shear rates were always higher than the 

Newtonian shear rates for both methods, where the fitted rheological model parameters 

presented small differences between the two different shear rates. However, the true (or 

analytical) shear rates should be applied whenever it is possible. 

Kelessidis and Maglione (2008) presented a methodology to solve the Couette inverse 

problem of a Herschel-Bulkley fluid, so enabling the computation of the three model parameters 

and the true shear-rates. They used data found in the literature of narrow-gap (oil field 

rheometer) for different fluids, thereby comparing the errors with the Newtonian fluid approach 

and realizing that the computed Herschel-Bulkley shear-rates are higher than the Newtonian 

ones. The methodology was compared with some others found in the literature (power series 

approximation and Tikhonov regularization) with nearly identical results. 

Ovarlez et al. (2008) studied the behavior of dense emulsions flows for four different 

oils droplet sizes: 0.3, 1, 6.5 and 40 μm. Hence, they carried out some experiments in a wide-
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gap Couette geometry and coupled the macroscopic rheometric experiments and local velocity 

and concentration measurements through MRI (magnetic resonance imaging) techniques. 

Moreover, in order to minimize some undesirable effects, they carried out some experiments to 

make sure that there was no particle migration and wall slip effects. Finally, they found that all 

the emulsions behaviors were consistent with the Herschel-Bulkley model. 

Heirman et al. (2008) studied the shear thickening flow behavior of powder type self-

compacting concrete (SCC) through a wide-gap (k = 0.69) Taylor-Couette geometry. In order 

to obtain the flow curve τ(γ̇) from torque measurements by means of the integration method 

for the Bingham and Herschel-Bulkley fluids the Couette inverse problem for Herschel-Bulkley 

fluid was approached by decoupling the flow resistance and the Power-Law behavior after 

exceeding the flow resistance the integration was validated by experimental verification, 

despite the fact that the Herschel-Bulkley fluid flow does not have an analytical solution. 

Similarly, the authors (2009) studied the influence of mineral additions and chemical 

admixtures (chemicals used to aid the properties of concrete or cement) on the shear thickening 

flow behavior of powder type self-compacting concrete (SCC) and found that the addition of 

mineral and chemical admixtures modify the intensity of shear thickening.  

Chatzimina et al. (2009) studied the effect of the errors introduced when the Newtonian 

fluid and the Power-Law non-Newtonian fluid assumptions were used to calculate the wall 

shear-rate of the rotating inner cylinder in a Couette geometry. They found that the errors, when 

compared to the numerical (and analytical in some cases) solution of a Herschel-Bulkley fluid 

flow, were greater the wider was the gap between the cylinders. The errors were proved to be 

dependent also on the power index (n) and the yield stress. 

Coussot et al. (2009) measured the flow characteristics of a Carbopol gel using an MRI 

velocimetry for a wide range of shear rates. Those measurements revealed an excellent 

agreement with the measurements made in a cone and plate viscometry, both represented 

through the Herschel-Bulkley model. 

Ahuja and Singh (2009) presented a simple experimental method for measurement of 

wall-slip velocity in a cylindrical Couette geometry. The authors have used a serrated cup and 

a serrated rotor to avoid the slip velocity and then realized the tests again with a smooth rotor 

to compare the results. Two different concentrations of suspensions of PMMA (Polymethyl 

methacrylate) spheres were used as working fluids and it was found that higher wall slip 

velocities were observed at higher concentrations, which varies linearly with the shear rate. 

Also, the authors have performed some Stokesian dynamic simulations in similar conditions to 
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the experimental tests, which found similar viscosities for both smooth and serrated rotor for 

low concentration values, but the difference was more significant the higher was the 

concentration, which is in concordance with the experimental observations. 

Kelessidis et al. (2010) realized an experimental and numerical analysis in order to 

quantify the magnitude of end-effects in oil-field direct indicating viscometers (with a narrow-

gap) for Newtonian (water-glycerol) and non-Newtonian (water-bentonite suspension) fluids. 

Considering the end-effects on the manufacturing rheometers they estimated the errors 

associated and the embedded correction. Finally, it was detected and additional end-effect from 

the top section of the bob (inner cylinder), which is higher for non-Newtonian fluids. 

Laskar and Bhattacharjee (2011) advanced a mathematical relationship between torque 

and angular speed in a concrete rheometer with vane geometry. The resistance of the concrete 

below and above the vane as well as other end effects were evaluated too, thus resulting in an 

expression that computes the total shear stress during the flow. Besides, an experimental test 

was carried out using a cement mixture, which behaves like a Bingham fluid, and the curves 

obtained were evaluated with the expression showing a good agreement with values of yield 

stress and plastic viscosity obtained elsewhere. Moreover, they showed the importance of taking 

into account the resistance of the fluid at the top and bottom of the vane geometry. 

Koos et al. (2012) performed some experimental measurements of the rheological 

behavior of some Nylon, polystyrene, and SAN (styrene acrylonitrile) water suspensions at 

moderate Reynolds and Stoke numbers. Experiments were held on a coaxial double cylinder 

geometry with the smooth and rough wall. Despite prior works had shown that the shear stress 

changes non-linearly with the shear rate, in the range of conditions that the authors performed 

the tests, it was observed a linear dependence of them on both smooth and rough walls, despite 

that the effective viscosity is larger for rough walls. In addition, the authors also performed 

some measurements of the wall slip for the smooth wall geometry. 

Ihle et al. (2013) performed an experimental work using two copper sulfides concentrate 

samples as working fluid. Also, the cylinder wall had a sand-blasted surface to prevent slip. 

The authors carried out two different test types: the generation of angular velocity ramp and 

individual torque measurements with constant angular velocities.  They noticed that 

hydrodynamic segregation and angular velocities played a more significant role than the sample 

loading time. Furthermore, the impact of the sample loading time may have a greater 

importance for small loading times. 
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Konijn et al. (2014) realized experiments with cylindrical rheometers using a nearly-

buoyant suspension (glycerin and DynoAdd spherical particles). They studied the effects of (i) 

solid fraction, (ii) diameter of the solid spherical particles, (iii) viscosity of the suspending 

liquid and (iv) shear rate on the suspension viscosity. The suspension was well-described by 

the Power-Law fluid. Finally, they concluded that the suspension viscosity is not a function of 

the solid fraction only, but also depends on shear-rate, particle diameter and viscosity of the 

suspending liquid.  

Wallevik et al. (2015) evaluated the errors that arise when some mistakes are made on 

the regression of the raw data from the rheometers. The authors discussed some errors occurring 

by using equations for Newtonian fluids when analyzing data from non-Newtonian fluid 

(vegetable oil) and using the small-gap interpretation into a wide-gap of a coaxial double 

cylinder rheometer. The errors of an incorrect rheological model, thixotropy, plug flow 

appearance and particle migration were also evaluated. Finally, the authors discussed the use 

of numerical simulations to obtain the rheological parameters of cement-based materials. 

Marchesini et al. (2015) performed experimental and numerical tests using Carbopol 

dispersions as working fluid in a coaxial double concentric cylinder rheometer and compared 

the results of both counterparts for three different arrangements of cylinders’ walls: smooth 

walls, grooved walls, and vane-in-cup geometry. In the experimental tests, where the outer 

cylinder rotated while the torque needed to hold still the inner cylinder was measured the 

grooved wall presented better results than the other geometries because it performed better in 

preventing the wall slip condition, which occurs in lower shear stresses. Furthermore, the 

bidimensional numerical simulations were carried out in a commercial CFD software using the 

finite volume technique and presented good agreement in higher shear-rates, while, contrary to 

a prior work (BUSCALL, MCGOWAN and MORTON-JONES, 1993), it was found that the 

wall slip was higher in the outer cylinder surface for lower shear-rates. Finally, numerical 

results showed that the kinematics was more affected in the vane-in-cup geometry which could 

lead to experimental errors in viscosity measurements. 

Finally, one can note that, among all these works found in the literature, there is not a 

single one concerning the study of Taylor-Couette flows with fabric-water suspensions as 

working fluids. This arrangement is an emulation of the complex geometry that occurs on top-

loading household washing machines. Moreover, there are no studies aimed at modeling the 

fabric-water suspension as non-Newtonian fluid either. These characters, which are some of the 

objectives of the present work, give to this thesis an unprecedented nature. 
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1.3 OBJECTIVES AND METHODOLOGY 

 

The key objective of the present work is to understand the fluid flow between two 

concentric cylinders, using as the working fluid a mixture of fabric and water, which is treated 

as a non-Newtonian fluid (suspension) and is different from the other authors works found in 

the literature. Moreover, the specific objectives as follows: 

 

• Development of a computational code based on the finite volume approach, in 2 

and 3 dimensions, to predict the fluid flow of NNF on Taylor-Couette 

geometries, comparing the results with numerical and experimental datasets; 

• Design and construct an experimental facility to gather a reliable database for 

water and fabric-water flows in terms of power and torque values for different 

rotation profiles and amounts of fabric;  

• Obtain the shear stress and shear rate curves of the fabric-water suspension by 

testing different NNF models by means of rheometry techniques applied to the 

experimental database; 

• Verify the hypothesis of generalizing the whole fluid suspension as a 

homogeneous non-Newtonian and non-thixotropic mixture. In other words, the 

time dependence of the fluid thermophysical properties are negligible; 

• Conduct experimental tests in periodic regime – similar agitation profiles used 

in actual washing machines – and compare the results with the ones obtained 

from the steady-state approach. 

 

1.4 THESIS STRUCTURE 

 

This thesis is organized as follows: Chapter 1 introduced the main objectives and the 

methodology of the present work, as well as a comprehensive literature review. Chapter 2, in 

turn, introduces the theoretical fundamentals regarding the flow of Newtonian and non-

Newtonian fluids confined between two concentric cylinders, as well as the rheometry 

techniques that have been applied in the experimental work. Chapter 3 depicts the numerical 

methodology used to solve the model and the structure of the homemade finite-volume code. 

Chapter 4 presents the experimental work, whereas Chapter 5 depicts the code-verification for 

both Newtonian and non-Newtonian fluids flows, including (but not limited to) comparisons 
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between the experimental and numerical results, and numerical experimentation concerning 

yield stress fluids and periodic unsteady flows. Finally, Chapter 6 summarizes the achievements 

of the present thesis and provides the reader with some recommendations for future endeavors 

in the field. 
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2 THEORETICAL BACKGROUND 

 

In this chapter, the first-principles are introduced with the purpose of modeling the flow 

of both Newtonian and non-Newtonian fluids in cylindrical coordinates. In addition, some key 

generalized empirical fluid models are presented. Finally, the physical domain and the 

mathematical model adopted in this thesis are discussed. 

 

2.1 FLUID MODEL 

 

A fluid is called Newtonian when the shear stress magnitude (τ) is directly proportional 

to its shear rate, as follows in tensor notation: 

 

 τ̿ = μγ̿̇ (2.1)   

 

where the dynamic viscosity (μ) is a thermophysical property of the fluid that relates the shear 

stress to the shear rate. Newtonian fluids examples include water, air, and glycerin.  

The viscosity of the non-Newtonian fluid differs from the Newtonian one as it is 

dependent on the shear rate. Unlike a Newtonian fluid, the relation between the shear stress and 

the shear rate is not linear and can be even time-dependent (thixotropic fluids). In general, the 

behavior of a non-Newtonian fluid can be described through an apparent viscosity (η), also 

known as rheological dynamic viscosity, for the Generalized Newtonian Fluid models (which 

can describe the non-Newtonian fluid behavior through a modification in the Newtonian fluid 

constitutive equation), 

 

 τ̿ = ηγ̿̇ (2.2)   

 

The curve of the shear stress and viscosity as a function of the shear rate for a Newtonian 

fluid and different non-Newtonian fluid models is illustrated in Figure 10. One can note in 

Figure 10 three different behaviors for the non-Newtonian fluids: (i) shear-thinning Power-Law 

fluid, (ii) shear-thickening Power-Law fluid, and (iii) yield stress Bingham fluid. Both Power-

Law-fluid and Bingham fluid are empirical models applied to the so-called Generalized 

Newtonian Fluid, which is a well-known rheological model. It should also be mentioned that 
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the Generalized Newtonian Fluid model has been extensively used to model non-Newtonian 

fluids in engineering complex problems (BIRD, ARMSTRONG and HASSAGER, 1987). 

 

FIGURE 10 - PROPERTIES BEHAVIORS OF NEWTONIANS AND SOME NON-NEWTONIAN 

FLUIDS. 

 

(A) 

 

(B) 

(A) SHEAR STRESS AND (B) APPARENT VISCOSITY. Μ = 1 PA·S, N = 0.8 (SHEAR-

THINNING FLUID), N = 1.2 (SHEAR-THICKENING FLUID) AND Τ0 = 10 PA. 

 

The Generalized Newtonian fluid (GNF) is a simple model used to describe a collection 

of non-Newtonian fluids by means of a constitutive equation based on a generalized form of 

the Newtonian fluid model. Even though the GNF cannot characterize the time-dependent 

aspects of the fluid, it is widely used in engineering because leads to reliable results. 
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In the model, the apparent viscosity (η) is a scalar dependent on the shear rate tensor γ̿̇, 

especially on the tensor independent combinations, also known as invariants, (SCHOWALTER, 

1978), as follows: 

 

 I =  ∑ γ̇ii = tr(γ̿̇)

i

 (2.3)   

 II =  ∑∑γ̇ijγ̇ji =
1

2
[tr(γ̿̇2) − (tr(γ̿̇))

2
]

ji

 (2.4)   

 III =  ∑∑∑γ̇ijγ̇jkγ̇ki
k

= det(γ̿̇)

ji

 (2.5)   

 

where i, j and k denote the three-dimensional coordinates indices. 

For an incompressible fluid and steady-state shear flow, the apparent viscosity is 

dependent only on the second invariant (BIRD, ARMSTRONG and HASSAGER, 1987). Thus, 

the magnitude of the tensor is reduced to: 

 

 |γ̇| = √
1

2
∑∑γ̇ijγ̇ji

ji

= √
1

2
II (2.6)   

 

Some of the empirical viscosity models used to describe the behavior of the apparent 

viscosity η(γ̇) curve, which is used in the present work, are introduced as follows:  

 

2.2 POWER-LAW MODEL 

 

The Power-Law model, developed by Oswald (1925) and de Waele (1923), is the most 

well-known and widely used non-Newtonian empirical viscosity model in engineering works 

(BIRD, ARMSTRONG and HASSAGER, 1987). The model can be described by the following 

constitutive equation: 

 

 τ̿ = (m|γ̇|n−1)γ̿̇ (2.7)   

 

where m represents the flow consistency index (Pa·sn), and n represents the Power-Law index 

(dimensionless). One can note that when n = 1 and m = μ (Newtonian dynamic viscosity) the 
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model describes the Newtonian fluid. However, if n < 1, the fluid is called shear-thinning (or 

pseudoplastic) and if n > 1, the fluid is called shear-thickening (or dilatant).  

 

2.3 YIELD STRESS FLUIDS 

 

Yield stress fluids, also known as viscoplastic fluid, are characterized by the presence 

of a yield stress τ0, below which there is no deformation of the fluid flow (BARNES, 1999). 

Above the yield stress, the fluid will deform according to different constitutive equations 

(MITSOULIS, 2007). The most well-spread constitutive equations concerning yield stress 

fluids are the ones due to Bingham (1916), (1922) (mudflow in drilling engineering and in the 

handling of slurries), Herschel-Bulkley (1926) (complex fluids, like self-compacting concrete) 

and Casson (1959) (printing inks, drilling fluids). These models are respectively as follows: 

 

a) Bingham 

Fluid 
{
γ̿̇ = 0 (|τ| ≤ τ0)

τ̿ = (μ +
τ0
|γ̇|
) γ̿̇ (|τ| > τ0)

 (2.8)   

b) Herschel-

Bulkley Fluid 
{
γ̿̇ = 0 (|τ| ≤ τ0)

τ̿ = (m|γ̇|n−1 +
τ0
|γ̇|
) γ̿̇ (|τ| > τ0)

 (2.9)   

c) Casson 

Fluid 

{
 
 

 
 γ̿̇ = 0 (|τ| ≤ τ0)

τ̿ = (√μ + √
τ0
|γ̇|
)

2

γ̿̇ (|τ| > τ0)
 (2.10)   

 

Another viscosity model that has been used, mostly for cement slurries and drilling 

fluids, is the Robertson-Stiff fluid model, which is also a three-parameter model and is 

represented as follows (ROBERTSON and STIFF, 1976) (bentonite suspensions, drilling fluids, 

and cement slurries): 

 

 τ̿ = m(γ̇0 + γ̿̇)
n
 (2.11)   

 

where γ̇0 is a shear rate correction factor (s-1). 

The behavior of the shear stress (a) and viscosity (b) related to the shear rate for all the 

above-mentioned yield stress fluid models are illustrated in Figure 11. One can notice that 
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despite the Robertson-Stiff fluid does not have a yield stress (τ0) embedded in its model, the γ̇0 

parameter can be used to model the yield stress behavior. 

 

FIGURE 11 - YIELD STRESS FLUID BEHAVIOR. 

 

(A) 

 

(B) 

(A) SHEAR STRESS AND (B) APPARENT VISCOSITY. FOR M = Μ = 1 PA·S, N = 0.8 (SHEAR-

THINNING FLUID), N = 1.2 (SHEAR-THICKENING FLUID) AND Τ0 = 10 PA. 

 

One can also note that, as there is no flow when the shear stress is below yield stress, 

two different regions take place, the unyielded and the flow region. This discontinuity may lead 

to numerical problems of convergence when a simulation is conducted. Papanastasiou (1987) 

proposed a modification in the viscosity of yield stress fluid models to avoid this discontinuity 

by introducing a parameter K, which controls the exponential growth of the stress 
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(MITSOULIS, 2007). These modifications applied to the Bingham fluid, Herschel-Bulkley 

fluid and Casson fluid constitutive equations lead to: 

 

a)  Bingham 

Fluid 
τ̿ = (μ +

τ0
|γ̇|
[1 − exp(−K|γ̇|)]) γ̿̇ (2.12)   

b) Herschel-

Bulkley Fluid 
τ̿ = (m|γ̇|n−1 +

τ0
|γ̇|
[1 − exp(−K|γ̇|)]) γ̿̇ (2.13)   

c) Casson 

Fluid 
τ̿ = (√μ + √

τ0
|γ̇|
[1 − exp (−√K|γ̇|)])

2

γ̿̇ (2.14)   

 

Hence, the apparent viscosities for the above-mentioned fluid models are given as 

follows: 

 

a) Bingham 

Fluid 
η = μ +

τ0
|γ̇|
[1 − exp(−K|γ̇|)] (2.15)   

b) Herschel-

Bulkley Fluid 
η = m|γ̇|n−1 +

τ0
|γ̇|
[1 − exp(−K|γ̇|)] (2.16)   

c) Casson 

Fluid 
√η = √μ+ √

τ0
|γ̇|
[1 − exp (−√K|γ̇|)] (2.17)   

 

The behavior of the Papanastasiou-Herschel-Bulkley fluid compared with the Herschel-

Bulkley fluid, concerning different values for the K-parameter, are depicted below for the 

apparent viscosities (Figure 12) and shear stresses (Figure 13) for both shear-thinning and 

shear-thickening Herschel-Bulkley fluids. 
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FIGURE 12 - PAPANASTASIOU-HERSCHEL-BULKLEY APPARENT VISCOSITIES 

BEHAVIORS. 

 

(A) 

 

(B) 

(A) SHEAR-THINNING AND (B) SHEAR-THICKENING. 
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FIGURE 13 - PAPANASTASIOU-HERSCHEL-BULKLEY SHEAR STRESS BEHAVIOR. 

 

(A) 

 

(B) 

(A) SHEAR-THINNING AND (B) SHEAR-THICKENING. 

 

The K-parameter can be adopted for adjusting the fluid behavior for very low shear rates 

domain, or else to enable a faster convergence for numerical simulations. One can note that for 

high the K-parameters the model approaches the original yield stress fluid 

 

2.4 GOVERNING EQUATIONS 

 

The rotational flows between two concentric cylinders are ruled by the governing 

equations obtained through mass and momentum balances in a control volume (in cylindrical 
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coordinates). Given the advective-diffusive nature of the governing equations, they are second-

order partial differential equations, thus requiring two boundary conditions in each direction (θ, 

r, and z). 

There are four variables (vθ vr, vz, and p) and three momentum equations, which must 

be coupled with the mass conservation equation (also known as the continuity equation) in order 

to obtain the pressure field of the flow. The continuity equation and the momentum 

conservation equations, in all three cylindrical directions (θ, r, and z), are respectively as 

follows: 

 

 
∂ρ

∂t
+
1

r

∂(ρrvr)

∂r
+
1

r

∂(ρvθ)

∂θ
+
∂(ρvz)

∂z
= 0 (2.18)   

 

∂(ρvθ)

∂t
+
∂(ρvrvθ)

∂r
+
1

r

∂(ρvθvθ)

∂θ
+
ρvrvθ
r

+
∂(ρvzvθ)

∂z

= − [
1

r

∂(τθθ)

∂θ
+
1

r2
∂(r2τrθ)

∂r
+
∂(τzθ)

∂z
+
τθr − τrθ

r
]

−
1

r

∂p

∂θ
+ ρgθ 

(2.19)   

 

∂(ρvr)

∂t
+
∂(ρvrvr)

∂r
+
1

r

∂(ρvθvr)

∂θ
−
ρvθ

2

r
+
∂(ρvzvr)

∂z

= − [
1

r

∂(τθr)

∂θ
+
1

r

∂(rτrr)

∂r
+
∂(τzr)

∂z
−
τθθ
r
] −

∂p

∂r
+ ρgr 

(2.20)   

 

∂(ρvz)

∂t
+
∂(ρvrvz)

∂r
+
1

r

∂(ρvθvz)

∂θ
+
∂(ρvzvz)

∂z

= − [
1

r

∂(τθz)

∂θ
+
1

r

∂(rτrz)

∂r
+
∂(τzz)

∂z
] −

∂p

∂z
+ ρgz 

(2.21)   

 

For both Newtonian and non-Newtonian fluids (τ̿ = ηγ̿̇), the stress components are related with 

the shear rates components (BIRD, ARMSTRONG and HASSAGER, 1987) as follows: 

 

 γ̇θθ = 2(
1

r

∂vθ
∂θ

+
vr
r
) (2.22)   

 γ̇rr = 2
∂vr
∂r

 (2.23)   

 γ̇zz = 2
∂vz
∂z

 (2.24)   
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 γ̇rθ = γ̇θr = r
∂

∂r
(
vθ
r
) +

1

r

∂vr
∂θ

 (2.25)   

 γ̇θz = γ̇zθ =
1

r

∂vz
∂θ

+
∂vθ
∂z

 (2.26)   

 γ̇zr = γ̇rz =
∂vr
∂z

+
∂vz
∂r

 (2.27)   

 

Stokes proposed that stress components for a Newtonian fluid flow could be described 

from: 

 

 τrr = −p + 2μ
∂vr
∂r

 (2.28)   

 τθθ = −p +  2μ (
1

r

∂vθ
∂θ

+
vr
r
) (2.29)   

 τzz = −p +  2μ
∂vz
∂z

 (2.30)   

 τrθ = τθr = μ [r
∂

∂r
(
vθ
r
) +

1

r

∂vr
∂θ
] (2.31)   

 τθz = τzθ = μ [
1

r

∂vz
∂θ

+
∂vθ
∂z
] (2.32)   

 τzr = τrz = μ [
∂vr
∂z

+
∂vz
∂r
] (2.33)   

 

Introducing the above Equations (2.28 to 2.33) into the equations from (2.19) to (2.21), 

and assuming an incompressible flow with constant viscosities, the so-called Navier-Stokes 

equations are retrieved: 

 

 

∂(ρvθ)

∂t
+
∂(ρvrvθ)

∂r
+
1

r

∂(ρvθvθ)

∂θ
+
ρvrvθ
r

+
∂(ρvzvθ)

∂z

= μ [
1

r2
∂2vθ
∂θ2

+
∂

∂r
(
1

r

∂

∂r
(rvθ)) +

∂2vθ
∂z2

+
2

r2
∂vr
∂θ
]

−
1

r

∂p

∂θ
+ ρgθ 

(2.34)   
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∂(ρvr)

∂t
+
∂(ρvrvr)

∂r
+
1

r

∂(ρvθvr)

∂θ
−
ρvθ

2

r
+
∂(ρvzvr)

∂z

= μ [
1

r2
∂2vr
∂θ2

+
∂

∂r
(
1

r

∂

∂r
(rvr)) +

∂2vr
∂z2

−
2

r2
∂vθ
∂θ
] −

∂p

∂r

+ ρgr 

(2.35)   

 

∂(ρvz)

∂t
+
∂(ρvrvz)

∂r
+
1

r

∂(ρvθvz)

∂θ
+
∂(ρvzvz)

∂z

= μ [
1

r2
∂2vz
∂θ2

+
1

r

∂

∂r
(r
∂vz
∂r
) +

∂2vz
∂z2

] −
∂p

∂z
+ ρgz 

(2.36)   

 

In the same way, regarding a fluid with variable viscosities, e.g. non-Newtonian fluid, 

the equations above are as follows: 

 

 

∂(ρvθ)

∂t
+
∂(ρvrvθ)

∂r
+
1

r

∂(ρvθvθ)

∂θ
+
ρvrvθ
r

+
∂(ρvzvθ)

∂z

= [
2

r2
∂

∂θ
(η
∂vθ
∂θ
) +

1

r2
∂

∂r
(ηr2

∂vθ
∂r
) +

∂

∂z
(η
∂vθ
∂z
)]

+ [
2

r2
∂

∂θ
(ηvr) +

1

r2
∂

∂r
(ηr

∂vr
∂θ
) +

∂

∂z
(
η

r

∂vz
∂θ
)

−
1

r2
∂

∂r
(ηrvθ)] −

1

r

∂p

∂θ
+ ρgθ 

(2.37)   

 

∂(ρvr)

∂t
+
∂(ρvrvr)

∂r
+
1

r

∂(ρvθvr)

∂θ
−
ρvθ

2

r
+
∂(ρvzvr)

∂z

= [
1

r2
∂

∂θ
(η
∂vr
∂θ
) +

2

r

∂

∂r
(ηr

∂vr
∂r
) +

∂

∂z
(η
∂vr
∂z
)]

+ [
1

r

∂

∂θ
(η
∂vθ
∂r
) +

∂

∂z
(η
∂vz
∂r
) −

2η

r2
∂vθ
∂θ

−
2η

r2
vr
r

−
1

r2
∂(ηvθ)

∂θ
] −

∂p

∂r
+ ρgr 

(2.38)   

 

∂(ρvz)

∂t
+
∂(ρvrvz)

∂r
+
1

r

∂(ρvθvz)

∂θ
+
∂(ρvzvz)

∂z

= [
1

r2
∂

∂θ
(η
∂vz
∂θ
) +

1

r

∂

∂r
(ηr

∂vz
∂r
) + 2

∂

∂z
(η
∂vz
∂z
)]

+ [
1

r

∂

∂θ
(η
∂vθ
∂z
) +

1

r

∂

∂r
(ηr

∂vr
∂z
)] −

∂p

∂z
+ ρgz 

(2.39)   
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In all the above equations, the first term denotes the momentum temporal variation 

inside the control volume, whereas the other terms denote the momentum carried by advection 

through the control volume faces. The terms on the right side of the equations above stand for 

the momentum quantity transported by diffusion and the external forces acting on the flow, e.g. 

pressure gradient and gravitational force. For non-Newtonian fluids, the Newtonian viscosity μ 

should be shifted with the apparent viscosity η. 

 

2.5 TAYLOR-COUETTE FLOW 

 

As described in Chapter 1, the domain of a typical Taylor-Couette flow is shown in 

Figure 14, repeated here for convenience. The inner radius (Rinn) can also be denoted as kR, 

whereas k is the radius ratio. The fluid column height is denoted by h, whereas the cylinders’ 

total height is denoted by H. In this case, the outer cylinder is held stationary while the inner 

one rotates independently with an imposed angular velocity ω. Also, the radius gap (δ), radius 

ratio (k) and aspect ratio (Γ) are the geometry parameters. 

The dimensionless flow parameters are the rotational Reynolds number and Taylor 

number. The former is the ratio between inertial and viscous forces acting in the flow, whereas 

the latter relates the same forces taking the above geometrical parameters in consideration. 

Regarding the Newtonian fluids: 

 

 Re =
ρ(ωRinn)δ

μ
 (2.40)   

 Ta = (
ρω

μ
)
2

Rinnδ
3 = (

1

k
− 1)Re2 (2.41)   

 

whereas for Power-Law non-Newtonian fluids the Taylor number was applied as suggested by 

Sinevic, Kuboi and Nienow (1986), considering an effective viscosity determined from the 

theoretical shear rate (γ̇C), as follows: 

 

 γ̇C = (
2ω

n
) [1 − k2 n⁄ ]

−1
 (2.42)   
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FIGURE 14 - SCHEMATIC REPRESENTATION OF THE PHYSICAL DOMAIN. 

 
 

The flow is considered unstable when the viscous forces are not capable of inhibiting 

the disturbance caused by the inertial forces, which occurs when a critical value of the 

dimensionless number (either Reynolds or Taylor) is reached. 

The following flow simplifying assumptions are adopted in the present work: 

• Isothermal and incompressible flow; 

• Natural convection effects were rejected as (Gr / Re² ~ 10-2); 

• The viscous dissipation was rejected as (Ec / Re ~ 10-8); 

• The gravitational force acts in the axial direction only; 

• There is no meniscus on the free surface condition; 

• The air-liquid interface is not considered as the air viscosity is much lower than 

that of liquid. 

 

where Gr denotes the Grashof number (ratio of the buoyancy to the viscous force acting on a 

fluid) and Ec denotes the Eckert number (ratio between a flow's kinetic energy and the boundary 

layer enthalpy difference). The rejection of the natural convection and viscous dissipation were 
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based on the Fluid Dynamics and Heat Transfer literature (BIRD, STEWART, and 

LIGHTFOOT, 2006) 

In order to emulate the behavior of a washing machine, the following boundary 

conditions are imposed 

• At z = 0 → (vθ , vr , vz) =  (0 , 0 , 0) for Rinn ≤ r ≤ Rout, bottom surface; 

• At z = H→ (
∂vθ

∂z
 , 
∂vr

∂z
, vz)  =  (0 , 0 , 0)  for Rinn ≤ r ≤ Rout, if there is a free 

surface condition; 

• At z = H → (vθ , vr , vz) =  (0 , 0 , 0) for Rinn ≤ r ≤ Rout,  if the surface is 

closed; 

• For r < Rinn → (vθ , vr , vz) =  (0 , 0 , 0) for 0 ≤ z ≤ H , inside the inner 

cylinder; 

• At r = Rinn → (vθ , vr , vz) =  (ωkR , 0 , 0) for 0 ≤ z ≤ H; 

• At r = Rout → (vθ , vr , vz) =  (0 , 0 , 0) para 0 ≤ z ≤ H; 

• Neumann boundary conditions are applied for the pressure field on the surfaces; 

• Cyclic boundary condition for θ = 0 and θ = 2π 

 

Moreover, the second invariant of the shear rate tensor, needed for viscosity, is 

calculated as follows: 

 

 
IIγ̇ =

1

2
(tr(γ̿̇))

2

− tr(γ̿̇2)

= γ̇θθγ̇rr + γ̇θθγ̇zz + γ̇rrγ̇zz − γ̇θrγ̇rθ − γ̇θzγ̇zθ − γ̇rzγ̇zr 

(2.43)   

 

thus, 

 

 

IIγ̇ = 4 (
1

r

∂vθ
∂θ

+
vr
r
) (
∂vr
∂r
) + 4 (

1

r

∂vθ
∂θ

+
vr
r
) (
∂vz
∂z
)

+ 4(
∂vr
∂r
) (
∂vz
∂z
) − [r

∂

∂r
(
vθ
r
) +

1

r

∂vr
∂θ
]
2

− (
1

r

∂vz
∂θ

+
∂vθ
∂z
)
2

− (
∂vr
∂z

+
∂vz
∂r
)
2

 

(2.44)   

 

Finally, it is possible to compute the magnitude of the tensor of a control volume inside 

the geometry through the equation above applied in the Equation (2.6). 
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Considering a laminar steady-state flow, where the cylinder height is sufficient to 

disregard the bottom and top boundary walls end-effects, the analytical solution for the 

tangential velocity is achieved close to the half-height of the cylinders, as shown in the top view 

of Figure 15. In this case, both axial and radial velocity components are considered negligible 

when compared to the tangential one. The derivation of the following equations is explained in 

Appendix III. 

Considering a Newtonian fluid, the analytical solution for the tangential velocity is 

(WHITAKER, 1992), the solution yields: 

 

 vθ(r) =
ωkR

1 − k2
(
r

kR
−
kR

r
) (2.45)   

 

Moreover, for the Power-Law non-Newtonian fluid (BIRD, ARMSTRONG and 

HASSAGER, 1987): 

 

 
vθ
ωr

=
(R r⁄ )2 n⁄ − 1

(1 k⁄ )2 n⁄ − 1
 (2.46)   

 

FIGURE 15 - REPRESENTATION OF A UNIDIMENSIONAL FLOW BETWEEN TWO 

CONCENTRIC CYLINDERS. 
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2.6 RHEOMETRY - COUETTE INVERSE PROBLEM 

 

In general, rheometry is based on experimental techniques applied in the determination 

of the rheological properties of materials, which gives the relation (η) between deformation 

(shear rates γ̿̇) and stresses (τ̿) (JACOBSEN, 1974). The measurement of the fluid rheological 

properties, e.g., viscosity (by viscometry) and elastic modulus, relies on the physical parameters 

imposed to the fluid flow to find suitable tests conditions which allow the measurement of flow 

properties objectively and reproducibility (SCHRAMM, 1994). A deeper understanding of the 

rheology in the industry can be found in the work of Boger (2009). 

An example of a wide-used rheometry technique is the so-called Couette inverse 

problem, which relies on the regression of the flow curve τ(γ̇) from the measurements of torque 

T (N·m) and angular velocity ω (rad/s) in a coaxial double cylinder rheometer, where τ is the 

shear stress (N·m2) and γ̇ is the shear rate (s-1) (ANCEY, 2005). In the present study, one can 

note that the measurements of angular velocity and torque were held in the inner cylinder 

(agitator), while the outer cylinder (drum) remains stationary. The angular velocity variation 

over the gap can be described in terms of the shear stress and shear rate as follows (NGUYEN 

and BOGER, 1987): 

 

 ω =
1

2
∫

γ̇(τ)

τ
dτ

τinn

τout

= ∫
γ̇(r)

r
dr

Rinn

Rout

 (2.47)   

 

where for laminar steady-state flow, 

 

 γ̇ = r
∂ω(r)

∂r
 (2.48)   

 

In the cases where yield stress takes place within the gap, the upper limit of integration 

in Equation (2.47) must be replaced by the yield stress of the fluid (τ0) and the plug radius (r0). 

Therefore, solving the velocity profile, Equation (2.19), of a unidimensional tangential laminar 

steady-state flow between the gap, yields to (BARNES, HUTTON and WALTERS, 1989): 

 

 
1

r2
∂

∂r
(r2τrθ) = 0 (2.49)   
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which is reduced to 

 

 r2τrθ = constant (2.50)   

 

where the shear stress and the inner cylinder radius can be related to a given radial position (r) 

as follows: 

 

 τrθ =
Rinn
2

r2
τinn (2.51)   

 

The equation above relates the shear stress to the radial position. Moreover, one can 

note that the shear stress measured in the inner cylinder can be obtained directly from the torque 

value, as follows (KRIEGER and MARON, 1952): 

 

 |τinn| =
T

2πRinn
2 H

 (2.52)   

 

The solution of the Couette inverse problem, summarized by Equation (2.47), relies on 

the solution of a Volterra integral of the first kind (YEOW, KO, and TANG, 2000). Many 

authors proposed a practical way for solving Equation (2.47) by applying the existing NNF 

models in the equation, whose parameters are obtained by best-fitting to the experimental data 

(KELESSIDIS and MAGLIONE, 2008). The most-used fitting technique is the least square 

method.  

For simplifying the mathematical analysis henceforth, the inverse of the radius ratio k 

(Rinn Rout⁄ ) will be represented as κ, which is Rout Rinn⁄ . The following analysis is presented 

in accordance with the works of Kelessidis and Maglione (2006, 2008). 

Considering that the fluid inside the geometry is a Newtonian one, and inserting the 

Equation (2.1) into the Equation (2.52) yields to: 

 

 |τinn| =
T

2πRinn
2 H

=
2

1 − k2
μω =

2κ2

κ2 − 1
μω (2.53)   

 

thus, the shear rate in the inner cylinder is obtained from: 
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 |�̇�inn| =
2

1 − k2
ω =

2κ2

κ2 − 1
ω (2.54)   

 

When the gap between the cylinders is narrow, the above equations present a good 

approximation of the real values measured by the viscometer (JOYE, 2003). For this reason, 

commercial viscometers, also known as viscosimeters, frequently use the Newtonian fluids 

approximations for the shear rate (ESTELLÉ, LANOS, and PERROT, 2008). However, many 

fluids present a yield stress, thus requiring a wider gap between the cylinders in order to measure 

the yield stress and the true flow behavior of a non-Newtonian fluid (KELESSIDIS and 

MAGLIONE, 2006).  

Starting from the Equation (2.52) one can note that the shear stress experienced by the 

non-Newtonian fluid between the cylinders is given by: 

 

 τ =
T

2πr2H
 (2.55)   

 

so, if one denotes: 

 

 y =
r

Rinn
 (2.56)   

 τ =
τinn
y2

 (2.57)   

 

it follows that from Equation (2.48): 

 

 γ̇ = r
∂ω(r)

∂r
= f(τ) = f (

τinn
y2
) = y

dω

dy
 (2.58)   

 

which leads to 

 

 dω = f (
τinn
y2
)
dy

y
 (2.59)   

 

Therefore, applying the following boundary conditions in two different notations (r and 

y) for a rotating inner cylinder and a statical outer cylinder. One can note that the imposed inner 
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cylinder tangential velocity (vθ) is denoted as negative (counterclockwise) just for the sake of 

simplifying the mathematics, but it does not matter for physical interpretation. 

 

 
at r = Rinn → ω = −Ω
at r = Rout → ω = 0

 (2.60)   

 

 
at y =

Rinn
Rinn
⁄ = 1 → ω = −Ω

at y =
Rout

Rinn
⁄ = 𝜅 → ω = 0

 (2.61)   

 

thus, leading Equation (2.59) to: 

 

 Ω = ∫ (
1

y
)

κ

1

f (
τinn
y2
)dy (2.62)   

 

The above equation denotes the relationship between the inner cylinder velocity and the 

shear stress within the Couette geometry viscometer. Some of the solutions for the Couette 

inverse problems found in the literature, concerning the most well-known yield stress non-

Newtonian fluid models, are summarized in the next subsections. 

Besides, one can obtain the value of the plug radius r0 of a yield stress fluid, which is 

the region where the shear stress between the gap has the yield stress value (i.e. there is the 

presence of plug flow), by substituting these values into Equation (2.52): 

 

 r0 = √
T

2πHτ0
 (2.63)   

 

 Casson Fluid  

 

The Casson fluid was introduced previously in Equation (2.10) and its shear rate is 

represented as follows: 

 

 |γ̇| =
(√τ − √τ0)

2

μ
 (2.64)   
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so, for a full shearing flow without plug existing between cylinders, Equation (2.62) becomes 

(KELESSIDIS and MAGLIONE, 2006): 

 

 
Ω = ∫ (

1

y
)

𝜅

1

f (
τinn
y2
)dy = ∫ (

1

y
)

κ

1

(√
τinn
y2

−√τ0)
2

μ
dy 

(2.65)   

 

which turns to, 

 

 μΩ = ∫ [
τinn
y3

−
2

y2
√τinn√τ0 +

τ0
y
]

κ

1

dy (2.66)   

 

thus,  

 

 μΩ = τinn∫ (
dy

y3
)

κ

1

− 2√τinn√τ0∫ (
dy

y2
)

κ

1

+ τ0∫
dy

y

κ

1

 (2.67)   

 

solving separately the three integrals above yields 

 

 Ω =
1

μ
[
τinn
2
(
κ2 − 1

κ2
) − 2√τinn√τ0 (

κ − 1

κ
) + τ0 ln(κ)] (2.68)   

 

Thus, isolating the shear stress in the inner cylinder, one can achieve the following 

expression: 

 

 τinn = [√(Ωμ − τ0 ln(κ))
2κ2

κ2 − 1
+

4κ2τ0
(κ + 1)2

+
2κτ0
κ + 1

]

2

 (2.69)   

 

Hence, substituting the equation above into the Equation (2.10), the following 

expression for the shear rate in the inner cylinder is obtained: 
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 |γ̇|inn =
1

μ
[√(Ωμ − τ0 ln(κ))

2κ2

κ2 − 1
+

4κ2τ0
(κ + 1)2

+√τ0 (
κ − 1

κ + 1
)]

2

 (2.70)   

 

Moreover, combining the Equations (2.54) and (2.10), an equation for the shear stress 

experienced by the fluid in the inner cylinder for a Newtonian fluid is obtained. 

 

 τinn = [√τ0 +√k
2κ2

κ2 − 1
Ω]

2

 (2.71)   

 

One can note that Equation (2.54) has the same meaning of Equation (2.70), but denotes 

the behavior of a Newtonian fluid. It is important to mention that the equations above were 

obtained by the approach introduced by Kelessedis and Maglione (2006). Similarly, Joye 

(2003) achieved a similar expression for the flow of Casson fluids through a different approach. 

 

 Robertson-Stiff Fluid  

 

Similarly, the same method used on Casson fluids is employed for the Robertson-Stiff 

fluid model in Equation (2.11) yielding to: 

 

 τinn = μ [
2κ

2
n

n (κ
2
n − 1)

(Ω + γ̇0 ln κ)]

n

 (2.72)   

 

Therefore, substituting the equation above into the Equation (2.11), the following 

equation for the shear rate in the inner cylinder is obtained for the Robertson-Stiff fluid similarly 

to the Casson fluid: 

 

 γ̇inn =
2Ωk

2
n

n (κ
2
n − 1)

+ γ̇0 [
2k

2
n ln κ

n (κ
2
n − 1)

− 1] (2.73)   
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Finally, for a Newtonian fluid, combining the Equations (2.54) and (2.11), one can 

achieve: 

 

 τinn = μ [γ̇0 +
2κ2

κ2 − 1
Ω]

n

 (2.74)   

 

 Bingham Fluid  

 

For a Bingham fluid, Equation (2.8), it is also possible to use the integration approach 

of Kelessidis and Maglione, by considering the same flow conditions (full shearing flow 

without plug). 

 

 τinn =
2κ2Ωμ

(κ2 − 1)
+
2κ2τ0 ln(κ)

(κ2 − 1)
=

2κ2

(κ2 − 1)
(Ωμ + τ0 ln(κ)) (2.75)   

 

Substituting the equation above into the Equation (2.8), the following equation for the 

shear rate in the inner cylinder for the Bingham fluid is obtained after some simplifications: 

 

 
γ̇inn =

τinn − τ0
μ

=

2κ2

(κ2 − 1)
(Ωμ + τ0 ln(κ)) − τ0

μ
 

(2.76)   

 

Similarly, for a Newtonian fluid, Equation (2.75) can be simplified into: 

 

 τinn = τ0 + μ
2κ2

(κ2 − 1)
Ω (2.77)   

 

Alternatively, there is also the so-called Reiner-Riwlin equation, which relates the 

torque measured value in the cylinder surface with the imposed angular velocity.  

 

 
T =

4πHτ0

(
1
Rinn
2 −

1
Rout
2 )

ln(κ) +
μ8π2H

(
1
Rinn
2 −

1
Rout
2 )

Ω 
(2.78)   

 

A more detailed explanation of this equation is found on Appendix III.3. 
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 Herschel-Bulkey Fluid 

 

The Herschel-Bulkley fluid was introduced previously in Equation (2.9) and, if its shear 

rate is isolated, it can be represented as follows: 

 

 |γ̇| = √
τ−τ0
m

n
 (2.79)   

 

So, by means of the Kellesidis and Maglione analysis, for a full shearing flow without 

plug existing between cylinders, Equation (2.62) yields (KELESSIDIS and MAGLIONE, 

2008): 

 

 Ω = ∫ (
1

y
)

𝜅

1

f (
τinn
y2
) dy = ∫ (

1

y
)

κ

1

(
τinn − τ0

m
)

1
n
dy (2.80)   

 

Letting that: 

 

 x =
τinn
τ0y2

− 1 (2.81)   

 y =
√τinn τ0⁄

√x + 1
− 1 (2.82)  

 dy = −
√τinn τ0⁄

2(x + 1)3 2⁄
dx (2.83)  

 

Setting the new boundary conditions, which are the limits of the integration of the 

equation: 

 

 

at y = 1 → x =
τinn
τ0

− 1 ≡ 𝔸

at y = κ → x =
τinn
τ0κ2

− 1 ≡ 𝔹
 (2.84)   

 

Substituting the boundary conditions into the Equation (2.80) it becomes: 
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 Ω = (
1

2
) (
τinn
m
)

1
n
∫

x
1
n

(x + 1)
dx

𝔸

𝔹

 (2.85)   

 

One can note that the equation above does not have an analytical solution, which can be 

only be achieved numerically through a series expansion. For the case where −1 ≤ x ≤ 1, 

which is true for values where τinn ≤ 2τ0, Equation (2.85) becomes: 

 

 Ω = (
1

2
) (
τinn
m
)

1
n
∫ x

1
n[1 − x + x2 − x3 +⋯± xj]dx ; j = 0,∞

𝔸

𝔹

 (2.86)   

 

Then, performing the integration above, one obtains: 

 

 Ω = (
1

2
) (
τinn
m
)

1
n
∑(−1)j

[
 
 
 
 (
τinn
τ0

− 1)

1
n
+1+j

− (
τinn
τ0κ2

− 1)

1
n
+1+j

1
n
+ 1 + j

]
 
 
 
 ∞

j=0

 (2.87)   

 

Hence, for this condition, the true shear rate on the inner cylinder: 

 

 γ̇ =

[
 
 
 
 
 
 
 
 
 

τinn
m

[
 
 
 
 
 
 
 
 
 

2Ω

∑ (−1)j

[
 
 
 
 (
τinn
τ0

− 1)

1
n
+1+j

− (
τinn
τ0κ2

− 1)

1
n
+1+j

1
n
+ 1 + j

]
 
 
 
 

∞
j=0

]
 
 
 
 
 
 
 
 
 
n

]
 
 
 
 
 
 
 
 
 

1
n

 (2.88)   

 

Now, for the case where x ≤ −1and x > 1, which is true for shear stress values where 

τinn ≥ τ0, Equation (2.85) becomes 
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Ω = (
1

2
) (
τinn
m
)

1
n
∫

x
1
n

(x + 1)
dx = (

τinn
m
)

1
n

𝔸

𝔹

∫
x
1
n x⁄

(x + 1) x⁄
dx

𝔸

𝔹

= (
τinn
m
)

1
n
∫

x
1
n
−1

1 + 1 x⁄
dx

𝔸

𝔹

 

(2.89)   

 

The expansion of the term 
1

1+1 x⁄
 yields 

 

 
1

1 +
1
x

= 1 −
1

x
+
1

x2
+⋯+

1

xj
;  j = 0,∞ (2.90)   

 

so 

 

 

Ω = (
1

2
) (
τinn
m
)

1
n
∫ x

1
n
−1∑(

−1

x
)
j∞

j=0

dx
𝔸

𝔹

= (
τinn
m
)

1
n
∫ ∑(−1)j

∞

j=0

x(−1−j+
1
n
)dx

𝔸

𝔹

 

(2.91)   

 

hence 

 

 Ω = (
1

2
) (
τinn
m
)

1
n
∑(−1)j
∞

j=0

[
 
 
 
 (
τinn
τ0

− 1)

1
n
−j
− (

τinn
τ0κ2

− 1)

1
n
−j

1
n − j

]
 
 
 
 

 (2.92)   

 

Finally, the true shear rate for this case is calculated 
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 γ̇ =

[
 
 
 
 
 
 
 
 
 

τinn
m

[
 
 
 
 
 
 
 
 
 

2Ω

∑ (−1)j

[
 
 
 
 (
τinn
τ0

− 1)

1
n
−j
− (

τinn
τ0κ2

− 1)

1
n
−j

1
n − j

]
 
 
 
 

∞
j=0

]
 
 
 
 
 
 
 
 
 
n

]
 
 
 
 
 
 
 
 
 

1
n

 (2.93)   

 

One can note that, differently from the other fluid models, the equations above for both 

cases depend also on the measured shear stress (torque) for different imposed angular velocities, 

and also on the gap value. Thus, the Herschel-Bulkley model parameters should be regressed 

through a method that minimizes the errors between the difference between computed shear 

stress value and the measured one. Kelessidis and Maglione (2008) suggested the mean square 

deviation (MSD) for limiting the range of the parameters and finding the best fitting values of 

n, m and τinn. 

Alternatively, Heirman et al. (2008) proposed an integration approach similar to the 

Reiner-Riwlin equation to solve the Couette inverse problem for Herschel-Bulkley fluids,  

 

 
T =

4πHτ0

(
1
Rinn
2 −

1
Rout
2 )

ln (
Rout
Rinn

) +
22n+1πn+1Hm

nn (
1

Rinn
2 n⁄ −

1

Rout
2 n⁄ )

nN
n 

(2.94)   

 

where N is the velocity of the inner cylinder in rps. A more detailed approach for the equation 

below is also depicted in Appendix III.3. 

 

 Experimental and Numerical Difficulties 

 

The literature review showed some studies regarding the measurement errors associated 

with some experimental difficulties. The most common ones in a coaxial double cylinder 

Couette geometry are the end-effects, slip velocity (BARNES, 1995), and the viscous heating.  

The end-effects are associated with the torque measurements in a coaxial Couette 

geometry by the contribution from the portion of the flow which is influenced by the solid 

bottom surface and the open air/fluid interface. As all the mentioned techniques simplify the 
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analysis to the τrθ shear stress only, thus neglecting the effect of all other shear and normal 

stresses, an obvious way to minimize those effects is to design an apparatus with a sufficient 

height (SCHOWALTER, 1978). Also, when the bottom basis is rotating, there is a presence of 

a singularity at the corner between the bottom basis and the outer cylinder because of the 

difference of the velocity, which may lead to some numerical issues that must be removed 

(TAMANO, ITOH, et al., 2010). 

In this work, both end-effects are present, and as the experimental rig is similar to a 

vertical axis washing machine, it is not practical to perform tests in a different apparatus. Thus, 

prior to the experimental tests, in order to minimize the torque gain caused by mechanical loss 

and air presence, some tests were performed without the presence of the fabric-water 

suspensions. 

 

2.7 CHAPTER SUMMARY 

 

The present theoretical description has been introduced with a brief review of the 

concepts of Newtonian and non-Newtonian fluids, as well as some empirical generalized 

models of Newtonian fluids. Then, a brief explanation concerning the Taylor-Couette flow was 

given, whereas the physical and mathematical models were presented. Finally, a brief review 

of the viscometry literature was quoted for some key non-Newtonian fluid models. In general, 

the raw experimental data obtained from the viscometer, i.e. the torque supplied to the fluid by 

the inner cylinder wall as a function of the angular velocity is converted into shear stress/shear 

rate data, which are used to correlate the rheological properties of the fluid. Despite many 

different methods can be found in the open literature, such as the Tikhonov regularization 

(YEOW, CHOON, et al., 2004) and the wavelet-vaguelette decomposition (ANCEY, 2005), 

the integration of the equation which relates the shear stress with the angular velocity was 

adopted in the present work as it returns the physical parameters of the model, while the other 

methods carry no physical background. 
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3 NUMERICAL METHODOLOGY 

 

3.1 GENERAL VIEW 

 

Even though flows of Newtonian and non-Newtonian fluids can be solved analytically 

in some restricted conditions (i.e., steady-state, and two-dimensional flows), in the present work, 

the mathematical model was solved numerically by means of CFD (Computational Fluid 

Dynamics) techniques due to the non-linear behavior of the governing equations and fluid 

rheology.  

CFD techniques can solve, approximately, the governing equations for the advective 

and diffusive mass, momentum, and energy transport, thus making possible the prediction of 

the quantities carried by the flow (e.g., velocities, temperature, chemical composition, among 

others).  

The choice of the numerical method is made considering the impact of some factors, 

such as computational cost, implementation complexity, and the accuracy of the results. The 

key numerical methods available for solving advective-diffusive problems are Finite-

Difference Method (FDM) (MORINISHI, VASILYEV and OGI, 2004), Finite-Element 

Method (FEM), Boundary-Element Method (BEM) and Finite-Volume Method (FVM) 

(PATANKAR, 1980). The FVM was chosen to solve the Taylor-Couette problem in the present 

thesis due to its physical background based on the conservation of the transported quantities in 

each finite volume. 

Therefore, the following numerical methodologies have been applied: 

• Velocity-pressure coupling by the PRIME method (MALISKA, 1995); 

• Staggered grid for the velocities control volumes (HARLOW and WELCH, 

1965); 

• Collocated grid for the pressure field (PATANKAR, 1980); 

• Non-uniform cylindrical grid at r and z-axes adapted from Wood (1996); 

• Power-Law interpolation scheme (PATANKAR, 1980); 

• Biconjugate gradient stabilized method (BiCGSTAB) to solve the linear system 

(VAN DER VORST, 1992); 

• TDMA (Tridiagonal Matrix Algorithm, also known as Thomas Algorithm) as 

the preconditioner for the BiCGSTAB method. The line-by-line method 

(PATANKAR, 1980) is applied for the radial and axial axes, while on θ axis, 
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due to its cyclic boundary condition, required the CTDMA (Cyclic Tridiagonal 

Matrix Algorithm) method is used (AHLBERG, NILSON and WALSH, 1967); 

• No-slip boundary conditions applied when the surface velocity is zero (i.e., 

Dirichlet boundary conditions) (CHENG and CHENG, 2005); 

• Neumann boundary conditions applied for the pressure field in all directions 

(CHENG and CHENG, 2005). 

 

3.2 DISCRETIZATION OF THE GOVERNING EQUATIONS 

 

The FMV consists in integrating the differential equations in their conservative forms, 

in each of the elementary control volumes of the domain. For the generalized advective-

diffusive transport equation concerning a generic variable ϕ={vθ,vr,vz} and a general diffusivity 

(Γ) in polar cylindrical coordinates, the following expression was adopted: 

 

 

∂(ρϕ)

∂t
+
1

r

∂(ρvθϕ)

∂θ
+
∂(ρvrϕ)

∂r
+
∂(ρvzϕ)

∂z
 

=  [
1

r2
∂

∂θ
(Γ
∂ϕ

∂θ
) +

1

r

∂

∂r
(Γr

∂ϕ

∂r
) +

∂

∂z
(Γ
∂ϕ

∂z
)] + S 

(3.1)   

 

where the terms on the left-hand side of the equation above correspond to the temporal variation 

of ϕ  inside the control volume and the advective fluxes that carries ϕ  through the control 

volume boundaries, while the terms on the right-hand side of the equation correspond to the 

assessment of the diffusive fluxes and the source term (S), respectively. 

Thus, integrating the Equation (3.1) over the control volume of finite dimensions, and 

then applying the divergence theorem, one can obtain: 

 

 ∫
∂(ρϕ)

∂t
d∀

∀

+∫(ρv⃗ ϕ).n̂dA
A

 = ∫(Γϕ∇⃗⃗ ϕ).n̂dA
A

+∫Sϕd∀
∀

 (3.2)   

 

So, defining the advective flux as J  = (ρv⃗ ϕ)-(Γϕ∇⃗⃗ ϕ), the Equation (3.2) can be rewritten 

as: 

 

 ∫
∂

∂t
(ρϕ)d∀

∀

+ ∫J .n̂dA
A

 = ∫Sϕd∀
∀

 (3.3)   
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Figure 16 demonstrates the control volumes in cylindrical coordinates in (a) two 

dimensions and (b) three dimensions. Whereas the discretized control volume represents the 

central nodal point P, the points E, W, N, S, T, and B represent the points of the neighbor control 

volumes immediately at east, west, north, south, top, and bottom, respectively. One can note 

that the points e, w, n, s, t, and b represent the control surfaces to the east, west, north, south, 

top, and bottom, respectively. Δθ, Δr, and Δz represent the control volume dimensions, while 

δθe, δθw, δrn, δrs, δzt and δzb symbolize the distances from the nodal point P to the respective 

points of the neighborhood. 

Considering an incompressible flow, with a first-order implicit temporal approximation, 

the discretized Equation (3.3) is as follows: 

 

 
ρ(ϕ − ϕ0)

r∆r∆θ∆z

∆t
+ (Je − Jw)ΔrΔz + (Jn − Js)r∆θ∆z

+ (Jt − Jb)r∆r∆θ = SP
ϕ
r∆r∆θ∆z 

(3.4)   

 

Similarly, the continuity equation can be expressed in terms of a flux integral as: 

 

 ∫
∂

∂t
(ρϕ)d∀

∀

+∫(ρv⃗ ).n̂dA
A

= 0 (3.5)   

 

So, the discretization of the Equation (3.5) over the control volume yields: 

 

 

(ρ − ρ0)
r∆r∆θ∆z

∆t
+ [(ρvθ)e − (ρvθ)w]∆r∆z

+ [(ρrvr)n − (ρrvr)s]∆θ∆z

+ [(ρvz)t − (ρvz)b]r∆r∆θ = 0 

(3.6)   
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FIGURE 16 - DISCRETIZED CONTROL VOLUME. 

 

 

(A) (B) 

(A) TWO-DIMENSIONAL AND (B) THREE-DIMENSIONAL. 

 

Multiplying Equation (3.6) by ϕP, and then subtracting it from the Equation (3.4), the 

following expression is obtained for an incompressible fluid: 

 

 

ρ(ϕ − ϕ0)
r∆r∆θ∆z

∆t
+ [(Je − ρvθeϕP) − (Jw − ρvθwϕP)]ΔrΔz

+ [(Jn − ρ(rvr)nϕP) − (Js − ρ(rvr)sϕP)]∆θ∆z

+ [(Jt − ρvztϕP) − (Jb − ρvzbϕP)]r∆r∆θ = SP
ϕ
ΔV 

(3.7)   

 

where, 
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{
 
 
 

 
 
 
(Je − ρvθeϕP)ΔrΔz = Ae(ϕP − ϕE)

(Jw − ρvθwϕP)ΔrΔz = −Aw(ϕP − ϕW)

(Jn − ρ(rvr)nϕP)∆θ∆z = An(ϕP − ϕN)

(Js − ρ(rvr)sϕP)∆θ∆z = −As(ϕP − ϕS)

(Jt − ρvztϕP)r∆r∆θ = At(ϕP − ϕT)

(Jb − ρvzbϕP)r∆r∆θ = −Ab(ϕP − ϕB)

 (3.8)   

 

Hence, the following heptadiagonal system of algebraic equation is obtained: 

 

 ApϕP = AeϕE + AwϕW + AnϕN + AsϕS + AtϕT + AbϕB + B (3.9)   

 

where, 

 

 

{
 
 
 
 

 
 
 
 Ap = Ae + Aw + An + As + At + Ab − Sp

ϕ
ΔV

Ae = Deℐ(Pe) + ‖−Fe, 0‖

Aw = Dwℐ(Pe) + ‖−Fw, 0‖

An = Dnℐ(Pe) + ‖Fn, 0‖

As = Dsℐ(Pe) + ‖−Fs, 0‖

At = Dtℐ(Pe) + ‖Ft, 0‖

Ab = Dbℐ(Pe) + ‖−Fb, 0‖

B = Ap
0ϕP

0ΔV + Sς
0ΔV

 (3.10)   

 

where ℐ denote the interpolation function on the control volume surfaces, which depends only 

on the Péclèt local number based on the control volume size (Pe = F D)⁄  and the symbol ‖ ‖ 

denotes the highest number inside the argument. 

The source term was linearized so that SP
ϕ
= Sς

0 + Sp
ϕ
ϕP. Therefore, the advective flow 

rate (F) and the diffusivity flow rate (D), can be obtained by the following expressions: 

 

 

{
  
 

  
 
Fe = ρvθeΔrΔz

Fw = ρvθwΔrΔz

Fn = ρ(rvr)n∆θ∆z

Fs = ρ(rvr)s∆θ∆z
Ft = ρvztr∆r∆θ

Fb = ρvzbr∆r∆θ

 (3.11)   
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 θ-axis r-axis z-axis  

 

{
 
 
 
 
 
 

 
 
 
 
 
 De =

Γ

r

ΔrΔz

δθe

Dw =
Γ

r

ΔrΔz

δθw

Dn = Γr
∆θ∆z

δrn

Ds = Γr
∆θ∆z

δrs

Dt = Γ
r∆r∆θ

δzt

Db = Γ
r∆r∆θ

δzb

 

{
 
 
 
 
 
 

 
 
 
 
 
 De =

Γ

r

ΔrΔz

δθe

Dw =
Γ

r

ΔrΔz

δθw

Dn = Γr
∆θ∆z

δrn

Ds = Γr
∆θ∆z

δrs

Dt = Γ
r∆r∆θ

δzt

Db = Γ
r∆r∆θ

δzb

 

{
 
 
 
 
 
 

 
 
 
 
 
 De =

Γ

r

ΔrΔz

δθe

Dw =
Γ

r

ΔrΔz

δθw

Dn = Γrn
∆θ∆z

δrn

Ds = Γrs
∆θ∆z

δrs

Dt = Γ
r∆r∆θ

δzt

Db = Γ
r∆r∆θ

δzb

 (3.12)   

 

Table 6 shows some of the interpolation functions used in the literature (PATANKAR, 

1980). 

 

TABLE 6 - ℐ(PE) FUNCTION FOR SOME INTERPOLATION SCHEMES. 

Interpolation function 𝓘(𝐏𝐞 = 𝐅 𝐃⁄ ) 

Up-Wind scheme 1 

Hybrid scheme ‖0, (1 −
1

2
|Pe|)‖ 

Power-Law scheme ‖0, (1 −
1

10
|Pe|)

5
‖ 

SOURCE: PATANKAR (1980). 

 

Accordingly, the heptadiagonal linear system can be represented in a compact form, as 

follows: 

 

 Apϕ
P
 - ∑Anbϕ

NB
= B (3.13)   

 

where Anbϕ
NB

 stands for the products of the neighborhood coefficients with their respective 

variables. The above linear system is solved by means of the Biconjugate gradient stabilized 

method (BiCGSTAB) together with the Thomas Algorithm (TDMA - Tridiagonal Matrix 

Algorithm) as a preconditioner. Both TDMA and BiCGSTAB are explained in detail in 

Appendixes I and II, respectively. The TDMA is applied iteratively by means of a line-by-line 
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procedure in the radial and the axial axis (r and z), while in the tangential axis (θ) the cyclic 

nature of the problem is considered by means of an algorithm called CTDMA.  

 

3.3 DISCRETIZED EQUATIONS IN THE STAGGERED GRID 

 

A staggered grid is applied for the velocity computation (HARLOW and WELCH, 

1965) to avoid non-physical behaviors of the pressure gradients (VERSTEEG and 

MALALASEKERA, 2007). The pressure field is evaluated at the central points, while the 

velocities are evaluated at the control volume surfaces (PATANKAR, 1980). Consequently, the 

pressure field remains properly coupled with the velocity fields. 

Figure 17 symbolizes a two-dimensional mesh with the staggered grid, where the i and 

j indices represent the control volume positions, while I and J stand for the control volume 

surfaces. In a three-dimensional mesh, the indices k and K are also used to represent, 

respectively, the control volume position and points on the vertical axis (z). One can note that 

the velocity control volumes are shifted: the tangential one (green) is shifted clockwise and 

centered on the east face of the pressure control volume. In the same way, the radial velocity 

control volume (red) is shifted to the north, while the axial one is shifted to the top direction, 

despite not being depicted in the figure. 

As the points for pressure integration coincide with the velocities faces of the control 

volumes in the staggered grid, the pressure gradients can be discretized as follows: 

 

 
1

r

∂p

∂θ
=
1

r

pE − pP
∆θvθ

 (3.14)   

 
∂p

∂r
=
pN − pP
∆rvr

 (3.15)   

 
∂p

∂z
=
pT − pP
∆zvz

 (3.16)   
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FIGURE 17 - STAGGERED TWO-DIMENSIONAL MESH IN POLAR CYLINDRICAL 

COORDINATES. 

 

 

where  ∆θvθ , ∆rvr  and ∆zvz represent the control volumes dimensions in their respective 

directions. 

Thus, the momentum conservation equations (represented in a general form by Equation 

3.9) are integrated, so that the discretized equations are as follows: 

 

 AI,j,kvθI,j,k=∑Anbvθnb
+
1

rj

(pi.j,k − pi+1,j,k)

∆θvθ
∆Vvθ + B̅vθ∆Vvθ (3.17)   

 Ai,J,kvri,J,k=∑Anbvrnb
+
(pi.j,k − pi,j+1,k)

∆rvr
∆Vvr + B̅vr∆Vvr (3.18)   
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 Ai,j,Kvzi,j,K=∑Anbvznb
+
(pi.j,k − pi,j,k+1)

∆zvz
∆Vvz + B̅vz∆Vvz (3.19)   

 

where B̅ denotes the source term without the pressure differential term and ∆V stands for the 

present control volume. 

Moreover, the advective and diffusive fluxes, for all control volumes in the staggered 

grid, is necessary to evaluate the coefficients (A) of the pressure linear system. Therefore, the 

dimensions of the control volumes in all directions are defined, as well as the pressure control 

volumes, are shown in Table 7. 

 

TABLE 7 - CONTROL VOLUMES DIMENSIONS: STAGGERED GRID (VELOCITIES) AND CO-

LOCATED (PRESSURE). 

vθ vr vz p 

∆θ = θi+1 − θi
δθe = θI+1 − θI
δθw = θI − θI−1
∆r = rJ − rJ−1
δrn = rj+1 − rj
δrs = rj − rj−1
∆z = zK − zK−1
δzt = zk+1 − zk
δzb = zk − zk−1

 

∆θ = θI − θI−1
δθe = θi+1 − θi
δθw = θi − θi−1
∆r = rj+1 − rj
δrn = rJ+1 − rJ
δrs = rJ − rJ−1
∆z = zK − zK−1
δzt = zk+1 − zk
δzb = zk − zk−1

 

∆θ = θI − θI−1
δθe = θi+1 − θi
δθw = θi − θi−1
∆r = rJ − rJ−1
δrn = rj+1 − rj
δrs = rj − rj−1
∆z = zk+1 − zk
δzt = zK+1 − zK
δzb = zK − zK−1

 

∆θ = θI − θI−1
δθe = θi+1 − θi
δθw = θi − θi−1
∆r = rJ − rJ−1
δrn = rj+1 − rj
δrs = rj − rj−1
∆z = zK − zK−1
δzt = zk+1 − zk
δzb = zk − zk−1

 

 

The coefficients of the heptadiagonal set of equations are evaluated in a different way 

for flows of Newtonian and non-Newtonian fluids as follows: 

 

 Newtonian Fluid 

 

Considering a flow of Newtonian fluid, the advective (F) and diffusive (D) fluxes of the 

discretized terms of the Navier-Stokes equations can be evaluated as follows: 

 

 

{
  
 

  
 
Fe=ρvθe∆r∆z

Fw=ρvθw∆r∆z

Fn=ρrnvrn∆θ∆z

Fs=ρrsvrs∆θ∆z

Ft=ρvztr∆θ∆r

Fb=ρvztr∆θ∆r

 (3.20)   
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{
 
 
 
 
 
 

 
 
 
 
 
 De=

μ

r

∆r∆z

δθe

Dw=
μ

r

∆r∆z

δθw

Dn=μ
r∆θ∆z

δrn
(
r

rn
)

Ds=μ
r∆θ∆z

δrs
(
r

rs
)

Dt=μ
r∆θ∆r

δzt

Db=μ
r∆θ∆r

δzb
r

 (3.21)   

 

Also, the source terms (B), without the pressure gradients, and the Sp
ϕ
ΔV terms can be 

evaluated as follows: 

 

• Tangential velocity component (vθ): 

 

 

Sp
ϕ
ΔV = ρ

r∆θ∆r∆z

∆t
+ ρvrϕP∆r∆θ∆z 

B = ρϕP
0
r∆θ∆r∆z

∆t
+
2μ

r
[vre − vrw]∆r∆z + ρgθr∆r∆θ∆z 

(3.22)   

 

• Radial velocity component (vr): 

 

 

Sp
ϕ
ΔV = ρ

r∆θ∆r∆z

∆t
 

B = ρϕP
0
r∆θ∆r∆z

∆t
+ ρvθ

2∆r∆θ∆z −
2μ

r
[vθe − vθw]∆r∆z

+ ρgrr∆r∆θ∆z 

(3.23)   

 

• Axial velocity component (vz): 

 

 

Sp
ϕ
ΔV = ρ

r∆θ∆r∆z

∆t
 

B = ρϕP
0
r∆θ∆r∆z

∆t
+ ρgzr∆r∆θ∆z 

(3.24)   
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 Non-Newtonian Fluid 

 

In the case of a flow of non-Newtonian fluid, the apparent viscosity at each control 

volume is of great importance as the viscosity is dependent on the shear rate. Thereafter, in all 

iterations, both the shear rate and apparent viscosity are evaluated for all control volumes. 

Therefore, the advective (F) and diffusive (D) terms of the discretized Navier-Stokes equations 

can be evaluated as follows: 

 

 

{
  
 

  
 
Fe = ρvθeΔrΔz

Fw = ρvθwΔrΔz

Fn = ρ(rvr)n∆θ∆z

Fs = ρ(rvr)s∆θ∆z
Ft = ρvztr∆r∆θ

Fb = ρvzbr∆r∆θ

 (3.25)   

 

 θ-axis r-axis z-axis  

 

{
 
 
 
 
 
 

 
 
 
 
 
 De =

2

r
ηe
ΔrΔz

δθe

Dw =
2

r
ηw
ΔrΔz

δθw

Dn =
rn
2

r
ηn
∆θ∆z

δrn

Ds =
rs
2

r
ηs
∆θ∆z

δrs

Dt = ηt
r∆r∆θ

δzt

Db = ηb
r∆r∆θ

δzb

 

{
 
 
 
 
 
 

 
 
 
 
 
 De =

1

r
ηe
ΔrΔz

δθe

Dw =
1

r
ηw
ΔrΔz

δθw

Dn = 2rnηn
∆θ∆z

δrn

Ds = 2rsηs
∆θ∆z

δrs

Dt = ηt
r∆r∆θ

δzt

Db = ηb
r∆r∆θ

δzb

 

{
 
 
 
 
 
 

 
 
 
 
 
 De =

1

r
ηe
ΔrΔz

δθe

Dw =
1

r
ηw
ΔrΔz

δθw

Dn = rnηn
∆θ∆z

δrn

Ds = rsηs
∆θ∆z

δrs

Dt = 2ηt
r∆r∆θ

δzt

Db = 2ηb
r∆r∆θ

δzb

 (3.26)   

 

Similarly, the source terms (B), without the pressure gradients, and the Sp
ϕ
ΔV terms are 

evaluated as follows. 

 

• Tangential velocity component (vθ): 

 

 Sp
ϕ
ΔV = ρ

r∆θ∆r∆z

∆t
+ ρvrϕP∆r∆θ∆z (3.27)   
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B = ρϕP
0
r∆θ∆r∆z

∆t
+
2

r
[ηevre − ηwvrw]∆r∆z

+
1

r
[ηnrn (

vre − vrw
∆θ

)
n
− ηsrs (

vre − vrw
∆θ

)
s
] ∆θ∆z

+ [ηt (
vze − vzw

∆θ
)
t
− ηb (

vze − vzw
∆θ

)
b
] ∆θ∆r

−
1

r
[(ηrϕ)n − (ηrϕ)s]∆θ∆z + ρgθr∆r∆θ∆z 

 

• Radial velocity component (vr): 

 

 

Sp
ϕ
ΔV = ρ

r∆θ∆r∆z

∆t
+
2η

r
ϕP∆θ∆r∆z 

B = ρϕP
0
r∆θ∆r∆z

∆t
+ [ηe (

vθn − vθs
∆r

)
e
− ηs (

vθn − vθs
∆r

)
w
] ∆r∆z

+ [ηt (
vzn − vzs

∆r
)
t
− ηb (

vzn − vzs
∆r

)
b
] r∆θ∆r

+ ρvθ
2∆r∆θ∆z −

2η

r
[vθe − vθw]∆r∆z

−
1

r
[(ηvθ)e − (ηvθ)w]∆r∆z + ρgrr∆r∆θ∆z 

(3.28)   

 

• Axial velocity component (vz) 

 

 

Sp
ϕ
ΔV = ρ

r∆θ∆r∆z

∆t
 

B = ρϕP
0
r∆θ∆r∆z

∆t

+ [ηe (
vθt − vθb

∆z
)
e
− ηw (

vθt − vθb
∆z

)
w
] ∆r∆z

+ [ηnrn (
vrt − vrb
∆z

)
n

− ηsrs (
vrt − vrb
∆z

)
s
] ∆θ∆z + ρgzr∆r∆θ∆z 

(3.29)   

 

3.4 PRIME METHOD 

 

The PRIME method (PRessure Implicit Momentum Explicit), introduced by Maliska 

and Raithby (1984), is applied to solve the pressure-velocity coupling. According to this method, 

the pressure field is computed implicitly, while the velocity components (vθ, vr, and vz) are 
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computed explicitly so that there is only one linear system (pressure) that must be solved. The 

velocities correction and the pressure computation are realized in one step, whereas the pressure 

field is used to correct iteratively the velocities on the next step. 

The method consists of introducing the transport equations, written in explicit form for 

the velocity components, into the mass conservation, thus obtaining a Poisson-like implicit 

equation to calculate the pressure field. 

To apply the method, it is necessary to compute, beforehand, the pseudo-velocities from 

the discretized governing equations, as follows: 

 

 vθ̂P =
AnbvθNB
AP

 (3.30)   

 vr̂P =
AnbvrNB
AP

 (3.31)   

 vẑP =
AnbvzNB
AP

 (3.32)   

 

Next, the pseudo-velocities vθ̂P, vr̂P, and vẑP, which compute all the terms from the 

conservation equations but the pressure ones, are used for the computation of vθ, vr, and vz 

velocity components, which are stored on the faces of the pressure control volumes, as follows: 

  

 vθe = vθI,j,k = vθ̂e − d̅e(pE − pP) (3.33)   

 vθw = vθI−1,j,k = vθ̂w − d̅e(pP − pW) (3.34)   

 vrn = vri,J,k = vr̂n − d̅n(pN − pP) (3.35)   

 vrs = vri,J−1,k = vr̂s − d̅s(pP − pS) (3.36)  

 vzt = vzi,j,K = vẑt − d̅t(pT − pP) (3.37)  

 vzb = vri,j,K−1 = vẑb − d̅b(pP − pB) (3.38)  

 

where the d̅ terms are as follows: 

 

 d̅e =
∆r∆z

ApI,j,k
 (3.39)   
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 d̅w =
∆r∆z

ApI−1,j,k
 (3.40)   

 d̅n =
rJ∆θ∆z

Api,J,k
 (3.41)   

 d̅s =
rJ−1∆θ∆z

Api,J−1,k
 (3.42)  

 d̅t =
rj∆θ∆r

Api,j,K
 (3.43)  

 d̅b =
rj∆θ∆r

Api,j,K−1
 (3.44)  

 

Previously, the coefficients of the linear system, Ap, have been calculated for each 

velocity component. So, substituting Equations (3.33) to (3.38) into the discretized continuity 

Equation (3.6) yields: 

 

 

ρ[vθ̂e − d̅e(pE − pP) − vθ̂w − d̅w(pP − pW)]∆r∆z

+
ρ

r
[rnvr̂n − rnd̅n(pN − pP) − rsvr̂s

− rsd̅s(pP − pS)]r∆θ∆z

+ ρ[vẑt − d̅t(pT − pP) − vẑb

− d̅b(pP − pB)]r∆r∆θ = 0 

(3.45)   

 

So, one can obtain the heptadiagonal linear system for pressure calculation by 

rearranging the equation above: 

 

 AppP = AepE + AwpW + AnpN + AspS + AtpT + AbpB + B (3.46)   

 

where, 
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{
 
 
 
 

 
 
 
 
Ap = Ae + Aw + An + As + At + Ab

Ae = ρd̅e∆r∆z

Aw = ρd̅w∆r∆z

An = ρ(
rn
r
) d̅nr∆θ∆z

As = ρ(
rs
r
) d̅sr∆θ∆z

At = ρd̅tr∆θ∆r

Ab = ρd̅br∆θ∆r

 (3.47)   

 

and 

 

 

B = ρ [(vθ̂w − vθ̂e)∆r∆z + ((
rs
r
) vr̂s − (

rn
r
) vr̂n) r∆θ∆z

+ (vẑb − vẑt)] r∆θ∆r∆z 

(3.48)  

 

Equation (3.46) is then solved by means of the Biconjugate gradient stabilized method 

(BiCGSTAB) together with the TDMA algorithm, applied line-by-line, as a preconditioner.  

The PRIME algorithm follows the steps below (MALISKA, 1995): 

1. Estimate the velocity (vθ, vr, and vz) and pressure (p) fields; 

2. Compute the momentum equations coefficients; 

3. Compute the pseudo-velocities on the surfaces of the pressure control volumes; 

4. Solve the linear system and compute the pressure field, from Equation (3.46); 

5. Correct the velocity components; 

6. Go back to step 2 until convergence is achieved. 

 

3.5 COMPUTATIONAL MESH 

 

The discretization employed here uses a non-uniform cylindrical mesh with a co-located 

arrangement for the pressure control volumes, and a staggered one for the velocities. In the 

discretized domain, it was decided to place points on its physical boundaries. Moreover, the 

non-uniform mesh has a high-concentration of points near the boundaries for the radial and 

axial axes. For the θ axis, the non-uniform arrangement is used only for non-steady state flows. 

This kind of arrangement favors a faster convergence as the pressure and velocities gradients 

are more intense near the physical boundaries. 
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The non-uniform mesh was generated algebraically from the equation proposed by 

Wood (1996) in radial and axial directions: 

 

 ε =
ε∗(ς + 1) − (ς − 1)

2(δ∗ + 1)
 (3.49)   

 

where 

 

 ε∗ = (
ς + 1

ς − 1
)

2q−Q−1
Q−1

 (3.50)   

 

where ε denotes control volume surface position, q the volume index, Q the number of control 

volumes along the coordinate direction and ς is a concentration factor. 

 

3.6 CONVERGENCE CRITERIA 

 

In the present work, both the mass convergence and the momentum convergence are 

monitored to advance the simulation to the next time step. If both mass and momentum (3 

directions) conservation residues, for all the control volumes, converge to a value below the 

convergence (tolerance), the simulation proceeds to the next time step.  

The following equations demonstrate how the residues are evaluated. For the mass 

conservation: 

 

 ERRmass = 1 − 
∑ Fin
∑Fout

 (3.51)   

 

One can note that, as the fluid is considered incompressible, the residue is a simple ratio 

between the sum of the mass fluxes that enter the control volume and the sum of the mass fluxes 

that exit the control volume. Similarly, the momentum residues are as follows: 

 

 ERRmomentum = 1 − 
Apϕ

P

B + ∑Anbϕ
NB

 (3.52)   
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The error between the evaluated velocity field and the one from the prior iteration are 

monitored in all iterations, as well as the residue from the linear system solution through the 

norm of the BiCGSTAB residue. 

Furthermore, the discrepancies between (experimental and numerical) values obtained 

from the open literature, and numerical residues of the present work were quantified through 

the RMS deviation (Root Mean Square) as follows: 

 

 RMS = √
∑ (ϕj − ϕi)

2n
i=1

n − p
 (3.53)   

 

where ϕ is the generic variable, and ϕ
j
 is the reference value of the generic variable either 

measured by experiments or found in the open literature. Also, n is the total number of points, 

and p represents the degree of freedom of model (e.g., 2 for Power-Law model and 3 for 

Herschel-Bulkley model). 

A simple statistical indicator is the SSE (sum of square errors), which is computed from: 

 

 SSE =∑ (ϕj − ϕi)
2n

i=1
 (3.54)   

 

So, both the RMS and SSE are used to compare the numerical results with the 

experimental measurements. Also, it can be used to evaluate the best-fitting parameters for fluid 

model regressions. 

 

3.7 CHAPTER SUMMARY 

 

The algorithm employed for both Newtonian and non-Newtonian fluids is summarized 

in Figures 18 and 19. Because the PRIME method treats the pressure field implicitly, it can 

solve the linear system for each control volume in all iterations. The numerical simulations are 

detailed in Chapter 5, while the BiCGSTAB and TDMA solvers algorithms are presented in the 

appendixes. 
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FIGURE 18 - NEWTONIAN FLUID FLOW SOLVER. 
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FIGURE 19 - NON-NEWTONIAN FLUID FLOW SOLVER.  
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4 EXPERIMENTAL WORK 

 

Experimental tests were carried out, in the LTT – UFPR, to obtain a reliable database 

of torque and angular velocity, which is used to calculate rheological parameters of the fabric-

water suspensions through data regression. This chapter presents a description of the 

experimental facility and its equipment (i.e., servo-motor, servo-drive, test rig, data acquisition, 

control system and closed-loop water supply). Moreover, the test plan, that was designed 

according to the rheometry model (Couette inverse problem), shown in Chapter 2, is also 

detailed. The results for both steady-state and periodic tests are presented and discussed. 

 

4.1 TEST RIG 

 

A purpose-built experimental facility was constructed for this thesis work. The 

experimental apparatus is comprised of a tank, a basket, an inner rotating cylinder, and a 

metallic structure. The cylindrical structure is presented in Figure 20, while the schematic view 

of the test apparatus is presented in Figure 21. At first, the plastic inner cylinder had a smooth 

surface with a radius of 73 mm, while the aluminum outer cylinder has a radius of 269 mm. 

Consequently, the radius ratio, k = Rinn Rout⁄ , was approximately 0.27, which is considered a 

wide-gap geometry for the sake of rheometry and large enough to measure the viscosity of large 

particles (BARNES, 2000). 

 

FIGURE 20 - TOP VIEW OF THE TAYLOR-COUETTE RHEOMETER. 
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FIGURE 21 - SCHEMATIC VIEW OF THE TEST APPARATUS. 

 
 

The servo-motor is coupled to a rod to drive the inner cylinder, while the rotation is 

controlled by the servo-drive, whose acquisition system records the torque values transmitted 

from the cylinder.  

Additionally, the water used in the experimental tests is pumped from a 310-L tank, 

which forms a closed loop, as depicted in Figure 21. To avoid backflow caused by the residual 

water in the hose, a ball valve was installed in the discharge line between the basket and tank. 

After the test, the water is pumped back to the water tank through an additional pump. The 

metallic structure was made of structural steel and fixed to the floor. Also, elastomeric 

components were used to fix the tank to the structure so as to prevent vibrations.  

Figure 22 represents the rheometer internal section. A scale was used to calibrate the 

water volume inside the basket through a visual inspection. Figure 23 depicts the calibration 

curve between the water column height (h) and the volume of water within the gap between the 

two cylinders. One can note that the symbols indicate the water volume while the line refers to 

the theoretical volume between the gap (hπRout
2 − hπRinn

2 ). 

 

FIGURE 22 - WATER COLUMN INSIDE THE GAP. 
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FIGURE 23 - WATER VOLUME CALIBRATION. 

 

 

The torque required to drive the inner cylinder is provided by a servo-motor (Delta 

Electronics, model ECMA-E21320ES), which may be controlled through rotation, torque, 

angular position by combining two parameters. Table 8 presents the technical specifications of 

the equipment. 

 

TABLE 8 - SPECIFICATIONS OF THE SERVO-MOTOR. 

Power 2.0 kW 

Maximum velocity 2000 rpm 

Torque 9.55 N·m 

Voltage 110 V 

Electric current 11.0 A 

Rotor inertia  14.59·10-4 kg·m² 

 

The servo-motor control is handled through a servo-drive (Delta Electronics, model 

ASDA-B2-2023-B), which is powered by Triphase 220V. The servo-drive was programmed 

through the velocity control mode, setting the angular velocity of the inner cylinder transmitted 

to the fluid in each time instant (10-3 s). Also, the servo-drive when operated on speed control 

mode has a speed fluctuation rate of 0.01% or less at load fluctuation 0 to 100%, 0.01% or less 

at power fluctuation ±10%, and 0.01% or less at ambient temperature fluctuation 0°C to 50°C. 

The control is performed through the LabVIEW software, from National Instruments.  
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A data acquisition system (DAQ) from National Instruments (model cDAQ-9174 with 

4 series modules) is connected to the servo-drive to convert the output electric signal into the 

rotation, torque, and angular position values. The modules NI 9215 for analogical inputs and 

the NI 9263 for analogical outputs, described in Table 9, were used. 

 

TABLE 9 - DAQ MODULES. 

Model NI 9215 NI 9263 

Channels 4 4 

Resolution 16 bits 16 bits 

Maximum voltage 10 V 10 V 

Voltage maximum range ± 10 V  ± 10 V 

 

The angular velocity profile, which represents the inner cylinder behavior in time scale, 

is depicted in Figure 24. One can note that this behavior is similar to the agitation profile in a 

top-load vertical axis washing machine Firstly, an abrupt acceleration takes place, later the 

cylinder maintains the maximum velocity for a short period of time. So, the velocity decreases 

until the cylinder stops (i.e., time off). The same operation is repeated with the opposite 

direction. 

  

FIGURE 24 - ANGULAR VELOCITY PROFILE. 
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4.2 TESTES PLANNING 

 

The experimental plan was designed considering three main variables: (a) fabric 

material, (b) fabric amount, and (c) angular velocity (ω). Two different tests were regimes 

proposed: (a) steady-state flow and (b) periodic flow. The raw data from the former was applied 

to obtain the non-Newtonian model parameters according to the rheometry techniques 

described in Chapter 2. In all tests, a water volume of 64 liters was established (which equals 

to 310 mm of the water column height). 

 

 Steady-state Tests 

 

It has been mentioned in Chapter 2 that the measurement of rheological properties of 

suspensions, composed of large components (e.g., fabrics) in the disperse phase, may 

experience the undesirable wall-slip effects, which are observed when smooth walls, low shear 

rates, and large suspensions take place. Such an effect can be mitigated by roughening the 

cylinder walls or using the vane geometry assuming that the fluid is trapped between the blades, 

thus acting as a solid cylinder (BARNES and NGUYEN, 2001). 

On that purpose, a rugged plastic inner cylinder surface, composed of small blades, was 

used to cover the inner cylinder surface with a radius of 76 mm, while the aluminum outer 

cylinder has a radius of 269 mm. This structure is depicted in Figure 25. Also, the inner surface 

has a four-bladed structure with 34 mm length, so that k = Rinn Rout⁄  is approximately 0.4. 

Experiments were carried out with different fabric-water suspensions, as follows: (i) 1.25 kg 

and 2.50 kg of 400 cm² (20 x 20 cm) cotton fabrics, (ii) 1.25 and 2.50 kg of 400 cm² semi-

synthetic fabrics and (iii) 1.25 and 2.50 kg mix of 400 cm² cotton, and semi-synthetic fabrics. 

All the tests were carried out with a 310-mm column of fluid (fabric and water), thus the 

cylinders aspect ratio was Γ = 1.96. This structure is also represented in Figure 26, where one 

can see the inner cylinder surface with four-blade vane geometry from (a) front view and (b) 

top view. 
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FIGURE 25 - SCHEMATIC VIEW OF THE FOUR-BLADE VANE-GEOMETRY. 

 

 

FIGURE 26 - RUGGED INNER CYLINDER SURFACE WITH FOUR-BLADE VANE GEOMETRY. 

  

(A) (B) 

(A) FRONT VIEW AND (B) TOP VIEW. 

 

Ten pieces of cotton fabric have a mass of 93.94 g, so 134 pieces have 1.259 kg, and 

268 pieces 2.517 kg. On the other hand, ten pieces of semi-synthetic fabric have a mass of 41.70 

g, 300 pieces 1.251 kg, and 600 pieces of fabric have 2.502 kg. Considering the mixtures with 

different fabrics, the mixed fabric-water suspension is produced, so that the two different fabric 
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types have nearly the same mass. Thus, 150 pieces of semi-synthetic fabric and 66 pieces of 

cotton fabric totalize 1.246 kg, whereas 300 pieces of semi-synthetic fabric and 132 pieces of 

cotton fabric totalize 2.491 kg of mass. 

For the steady-state flow, two main parameters were varied: (i) the angular velocities in 

the clockwise direction – 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and 120 rpm; and (ii) 6 

fabric-water suspension characteristics. Therefore, 78 different tests were carried out, each one 

repeated 3 times, thus totalizing 234 tests. The steady-state tests plan is summarized in Table 

10. 

 

TABLE 10 - STEADY-STATE TESTS PLANNING. 

Test 
ω 

(rpm) 
Fabric 

Mass 

(kg) 
Test 

ω 

(rpm) 
Fabric 

Mass 

(kg) 
Test 

ω 

(rpm) 
Fabric 

Mass 

(kg) 

1 5 Cotton 1.25 27 5 S.S. 1.25 53 5 Mixed 1.25 

2 10 Cotton 1.25 28 10 S.S. 1.25 54 10 Mixed 1.25 

3 20 Cotton 1.25 29 20 S.S. 1.25 55 20 Mixed 1.25 

4 30 Cotton 1.25 30 30 S.S. 1.25 56 30 Mixed 1.25 

5 40 Cotton 1.25 31 40 S.S. 1.25 57 40 Mixed 1.25 

6 50 Cotton 1.25 32 50 S.S. 1.25 58 50 Mixed 1.25 

7 60 Cotton 1.25 33 60 S.S. 1.25 59 60 Mixed 1.25 

8 70 Cotton 1.25 34 70 S.S. 1.25 60 70 Mixed 1.25 

9 80 Cotton 1.25 35 80 S.S. 1.25 61 80 Mixed 1.25 

10 90 Cotton 1.25 36 90 S.S. 1.25 62 90 Mixed 1.25 

11 100 Cotton 1.25 37 100 S.S. 1.25 63 100 Mixed 1.25 

12 110 Cotton 1.25 38 110 S.S. 1.25 64 110 Mixed 1.25 

13 120 Cotton 1.25 39 120 S.S. 1.25 65 120 Mixed 1.25 

14 5 Cotton 2.50 40 5 S.S. 2.50 66 5 Mixed 2.50 

15 10 Cotton 2.50 41 10 S.S. 2.50 67 10 Mixed 2.50 

16 20 Cotton 2.50 42 20 S.S. 2.50 68 20 Mixed 2.50 

17 30 Cotton 2.50 43 30 S.S. 2.50 69 30 Mixed 2.50 

18 40 Cotton 2.50 44 40 S.S. 2.50 70 40 Mixed 2.50 

19 50 Cotton 2.50 45 50 S.S. 2.50 71 50 Mixed 2.50 

20 60 Cotton 2.50 46 60 S.S. 2.50 72 60 Mixed 2.50 

21 70 Cotton 2.50 47 70 S.S. 2.50 73 70 Mixed 2.50 

22 80 Cotton 2.50 48 80 S.S. 2.50 74 80 Mixed 2.50 

23 90 Cotton 2.50 49 90 S.S. 2.50 75 90 Mixed 2.50 

24 100 Cotton 2.50 50 100 S.S. 2.50 76 100 Mixed 2.50 

25 110 Cotton 2.50 51 110 S.S. 2.50 77 110 Mixed 2.50 

26 120 Cotton 2.50 52 120 S.S. 2.50 78 120 Mixed 2.50 
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All tests lasted for ten minutes, where the first two minutes had a constant acceleration 

of the inner cylinder until the maximum velocity was reached. The following steady-state 

criterion was applied: a time span was selected and the average torque in the interval was 

considered. If the tendency of the torque values tends to a horizontal line within the uncertainty 

thresholds it is considered that the steady-state was achieved, as depicted in Figure 27. This 

methodology considers that the fabric-water suspension does not exhibit a thixotropic behavior. 

 

FIGURE 27 - ILLUSTRATION OF THE STEADY-STATE CRITERION. 

 

 

Also, the regression provides the average power supplied to the suspension: 

 

 Ẇ =
π T̅ ω

30
 (4.1)   

 

where ω is the inner cylinder velocity (rpm) and T̅ is the average torque (N.m) calculated from: 

 

 T̅ = ∫Tdt (4.2)   

 

In addition, to prove that in a vane-geometry the fluid is trapped between the vane blade 

thus acting like a solid cylinder, additional tests were carried out with longer four-blades with 

45.5 mm each blade, thus k = Rinn Rout⁄  is approximately 0.44 and Γ = 2.10. At this time, the 

experiments were carried with the mixed fabrics only, while the water column is still the same 

(310 mm).  

Additional tests were carried out with no liquid in the cylinder gap. The average torque 

values of this tests are subtracted from the tests with the fabric-water suspension in order to 

obtain the torque transmitted to the suspension only. Thus, the torque transmitted to the 
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suspension is calculated from: T̅net = T̅loaded − T̅unloaded. These tests are depicted in section 

4.3. 

Figure 28 (a) depicts the torque response for a 10-minute test. One can note that the 

signal noise muddles the analysis and the visual aspect of the graphs (OPPENHEIM, 

SCHAFER and BUCK, 1999). The moving average filter is a simple method for smoothing 

noisy data with the size of a window (ws) of 600 milliseconds is depicted in Figure 30 (b) where 

the response y(n) was the filter is computed through the following expression: 

 

 y(n) =
1

ws
(x(n) + (x(n − 1) +⋯+ (x(n − (ws − 1))) (4.3)   

 

Since the moving average filter with a sufficient windows size resulted in a reasonably 

smooth signal, it was applied henceforth in this work. 

 

FIGURE 28 - EXAMPLE OF TORQUE RESPONSE. 

 

(A) 

 

(B) 

(A) RAW DATA, (B) MOVING AVERAGE FILTER.  
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 Periodic Tests 

 

Four different tests were carried out concerning periodic conditions. Figure 29 shows 

the angular velocity sweep over time, while Figure 30 shows the angular acceleration for the 

different tests. One can see that all the tests have swift acceleration and deceleration steps, 

where the difference between them is the maximum velocity. Tests 1 and 2 cycles last three 

seconds, while Tests 3 and 4 last six seconds. Also, Tests 1 and 3 have a maximum velocity of 

40 rpm, while 80 rpm is designed for Tests 2 and 4. 

Similarly, the water column is maintained in 310 mm (64 Liters of water) and the mixed 

fabric-water suspensions were used as working fluid. All tests were conducted with the four-

bladed inner cylinder, with and without the smooth bottom basis rotating with the inner cylinder.  

The input parameters for the periodic tests are (i) agitation profile, (ii) amount: 1.25 kg 

and 2.50 kg, and (iii) with and without the rotating bottom basis. In total, 16 periodic tests were 

carried out, each one repeated 5 times. 

 

FIGURE 29 - ANGULAR VELOCITY FOR DIFFERENT PERIODIC TESTS. 
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FIGURE 30 - ANGULAR ACCELERATION FOR DIFFERENT PERIODIC TESTS. 

 

 

4.3 EXPERIMENTAL RESULTS 

 

 Raw Data - Steady-State Results 

 

Before performing the regression of the raw data for different non-Newtonian fluid 

models, all the measured torque values (T) for various angular velocities (ω) is presented for 

all runs. The raw data regression itself relies on the solution of the inverse Couette problem, 

thus obtaining the curve τ(γ̇) from the measurements of torque T (N·m) and angular velocity 

ω (rad/s) in a coaxial cylinder rheometer, as explained in section 2.6 (Chapter 2). 

Tables 11 and 12 present the raw data considering three repetitions for each test for the 

two different cotton fabric-water suspensions. One can note the unloaded columns in the tables, 

which represent the torque value obtained when there was only air within the cylinders gap. 

The average value of the three runs, deducting the unloaded value, provides the torque 

transmitted from the inner cylinder to the liquid. As μT
2 = μm

2 +μP
2, where μm is the uncertainty 

of the measurement instruments, whereas μP of the process itself, being p μP >> μm, then μT = 

μP (2σ for 95% of confidence bounds). 
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TABLE 11 - EXPERIMENTAL TORQUE FOR 1.25 KG OF COTTON FABRIC-WATER 

SUSPENSIONS. 

 
Torque (N·m) values for cotton fabric-water suspensions 

1.251 kg of cotton fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 1.12 1.09 1.10 1.104 ± 0.030 0.973 ± 0.053  0.131 

10 1.16 1.13 1.13 1.139 ± 0.029 0.971 ± 0.004 0.168 

20 1.27 1.30 1.30 1.291 ± 0.042 1.072 ± 0.006 0.218 

30 1.74 1.67 1.62 1.675 ± 0.116 1.144 ± 0.024 0.530 

40 2.37 2.14 2.40 2.303 ± 0.284 1.207 ± 0.025  1.096 

50 3.14 3.21 3.23 3.196 ± 0.095  1.260 ± 0.011 1.936 

60 3.47 3.47 3.48 3.474 ± 0.016 1.320 ± 0.041 2.154 

70 3.64 3.65 3.67 3.652 ± 0.038 1.329 ± 0.045 2.323 

80 3.87 3.90 3.87 3.879 ± 0.035 1.346 ± 0.017 2.533 

90 4.16 4.11 4.06 4.108 ± 0.106 1.391 ± 0.031 2.717 

100 4.46 4.48 4.41 4.454 ± 0.072 1.416 ± 0.015 3.037 

110 4.63 4.75 4.70 4.697 ± 0.120 1.474 ± 0.039 3.223 

120 5.02 5.04 4.98 5.013 ± 0.068 1.481 ± 0.048 3.532 

 

TABLE 12 - EXPERIMENTAL TORQUE FOR 2.50 KG OF COTTON FABRIC-WATER 

SUSPENSIONS. 

 
Torque (N·m) values for cotton fabric-water suspensions 

2.502 kg of cotton fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 1.23 1.23 1.23 1.229 ± 0.008 0.973 ± 0.053  0.256 

10 1.59 1.45 1.44 1.493 ± 0.167 0.971 ± 0.004 0.522 

20 2.56 2.45 2.26 2.425 ± 0.302 1.072 ± 0.006 1.352 

30 2.41 2.55 2.79 2.586 ± 0.384 1.144 ± 0.024 1.442 

40 2.79 2.61 2.79 2.730 ± 0.213 1.207 ± 0.025  1.523 

50 3.40 2.73  3.064 ± 0.941 1.260 ± 0.011 1.805 

60 4.75 4.77 4.57 4.695 ± 0.219 1.320 ± 0.041 3.375 

70 5.26 5.47 4.73 5.152 ± 0.762 1.329 ± 0.045 3.822 

80 6.84 6.42 6.02 6.427 ± 0.819 1.346 ± 0.017 5.082 

90 6.87 6.93 6.86 6.885 ± 0.074 1.391 ± 0.031 5.495 

100 6.88 7.64 7.32 7.278 ± 0.758 1.416 ± 0.015 5.862 

110 7.61 7.55 7.45 7.535 ± 0.161 1.474 ± 0.039 6.061 

120 7.37 7.65 7.72 7.580 ± 0.379 1.481 ± 0.048 6.100 

 

Figure 31 plots the torques for each suspension of cotton fabric-water suspension. The 

solid line represents the average torque (spline), whereas the symbols indicate the measurement 

from each of the 3 runs. One can notice that, as expected, the torque values are higher the higher 

the quantity of fabric and that the two different fluids exhibit different sort of behaviors. On the 

one hand, the suspension with 1.25 kg of cotton shows a swifter torque growth from 5 to 50 

rpm, after that it tends to a nearly linear behavior. On the other hand, the suspension with 2.50 

kg of cotton has a slow torque growth until 50-rpm is reached. Afterward, an asymptotic torque 

growth can be observed. 



119 

 

 

 

Likewise, Tables 13 and 14 summarize the raw data for torque values concerning the 

tests for different suspensions of semi-synthetic fabric (1.25 and 2.50 kg). Similarly, the 

unloaded column is also provided. 

 

FIGURE 31 - AVERAGE TORQUE FOR TWO DIFFERENT COTTON FABRIC-WATER 

SUSPENSIONS. 

 

 

TABLE 13 - TORQUE MEASUREMENTS FOR 1.25 KG OF SEMI-SYNTHETIC FABRIC-WATER 

SUSPENSIONS. 

 
Torque (N·m) values for semi-synthetic fabric-water suspensions 

1.251 kg of semi-synthetic fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 1.06 1.09 1.12 1.090 ± 0.057 0.973 ± 0.053  0.118 

10 1.12 1.11 1.10 1.111 ± 0.022 0.971 ± 0.004 0.140 

20 1.28 1.35 1.25 1.293 ± 0.103 1.072 ± 0.006 0.220 

30 1.46 1.50 1.39 1.449 ± 0.101 1.144 ± 0.024 0.304 

40 1.77 1.54 1.54 1.618 ± 0.263 1.207 ± 0.025  0.411 

50 1.93 1.90 1.99 1.940 ± 0.098 1.260 ± 0.011 0.680 

60 2.52 2.45 2.52 2.497 ± 0.081 1.320 ± 0.041 1.178 

70 2.48 2.77 2.70 2.651 ± 0.301 1.329 ± 0.045 1.321 

80 2.95 2.93 2.85 2.910 ± 0.104 1.346 ± 0.017 1.564 

90 3.56 3.54 3.43 3.508 ± 0.132 1.391 ± 0.031 2.118 

100 3.66 3.61 3.94 3.738 ± 0.356 1.416 ± 0.015 2.322 

110 4.23 3.99 4.35 4.192 ± 0.373 1.474 ± 0.039 2.718 

120 4.21 4.65 4.65 4.502 ± 0.511 1.481 ± 0.048 3.022 

 

Figure 32 plots the average torque for each semi-synthetic suspension represented by 

the solid lines. The symbols refer to the 3 runs. Again, one can notice that the torques are higher 

the higher the quantity of fabric. The suspension with 1.25 kg of semi-synthetic fabric shows a 
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slow torque growth from 5 to 40 rpm, after that it tends to a higher almost linear growth. On 

the other hand, the suspension with 2.50 kg, albeit showing an analogous behavior to the lighter 

suspension for higher velocities, with a plato between 10 and 40 rpm, presents a different 

behavior for low velocities. 

 

TABLE 14 - TORQUE MEASUREMENTS FOR 2.50 KG OF SEMI-SYNTHETIC FABRIC-WATER 

SUSPENSIONS. 

 
Torque (N·m) values for semi-synthetic fabric-water suspensions 

2.502 kg of semi-synthetic fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 1.88 1.84 1.52 1.745 ± 0.393 0.973 ± 0.053  0.772 

10 2.09 2.15 2.18 2.140 ± 0.092 0.971 ± 0.004 1.169 

20 2.31 2.32 2.37 2.333 ± 0.060 1.072 ± 0.006 1.262 

30 2.11 2.29 2.95 2.450 ± 0.886 1.144 ± 0.024 1.306 

40 2.87 2.59 2.18 2.547 ± 0.688 1.207 ± 0.025  1.340 

50 3.19 2.77 3.46 3.137 ± 0.697 1.260 ± 0.011 1.877 

60 3.26 3.27 3.62 3.386 ± 0.413 1.320 ± 0.041 2.066 

70 3.75 3.93 4.03 3.902 ± 0.291 1.329 ± 0.045 2.573 

80 4.61 4.40 4.33 4.447 ± 0.294 1.346 ± 0.017 3.102 

90 4.83 5.22 4.51 4.855 ± 0.711 1.391 ± 0.031 3.465 

100 5.52 5.14 5.55 5.405 ± 0.457 1.416 ± 0.015 3.989 

110 5.81 5.64 5.88 5.778 ± 0.245 1.474 ± 0.039 4.304 

120 6.25 6.11 6.46 6.272 ± 0.349 1.481 ± 0.048 4.791 

 

FIGURE 32 - AVERAGE TORQUE FOR TWO DIFFERENT SEMI-SYNTHETIC FABRIC-WATER 

SUSPENSIONS. 
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Tables 15 and 16 summarizes the raw data for the two different mixed cotton and semi-

synthetic suspensions. Likewise, the torque transmitted only to the suspension is depicted in the 

last column. 

 

TABLE 15 - TORQUE MEASUREMENTS FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSIONS. 

 
Torque (N·m) values for mixed fabric-water suspensions 

1.251 kg of mixed fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 1.21 1.20 1.16 1.190 ± 0.055 0.973 ± 0.053  0.217 

10 1.21 1.25 1.23 1.232 ± 0.037 0.971 ± 0.004 0.261 

20 1.42 1.45 1.44 1.439 ± 0.033 1.072 ± 0.006 0.367 

30 1.65 1.68 1.51 1.614 ± 0.176 1.144 ± 0.024 0.470 

40 2.03 1.93 1.70 1.886 ± 0.329 1.207 ± 0.025  0.679 

50 2.53 2.26 2.43 2.407 ± 0.276 1.260 ± 0.011 1.147 

60 2.86 2.93 2.98 2.922 ± 0.120 1.320 ± 0.041 1.602 

70 3.05 3.15 3.22 3.142 ± 0.174 1.329 ± 0.045 1.813 

80 3.64 3.28 3.38 3.434 ± 0.372 1.346 ± 0.017 2.088 

90 3.83 3.77 3.89 3.831 ± 0.121 1.391 ± 0.031 2.441 

100 4.33 4.12 4.20 4.216 ± 0.217  1.416 ± 0.015 2.800 

110 4.36 4.44 4.42 4.408 ± 0.078 1.474 ± 0.039 2.934 

120 4.87 4.94 4.76 4.860 ± 0.181 1.481 ± 0.048 3.380 

 

Figure 33 plots the torque for each suspension, represented by the full lines, while the 

symbols refer to the different runs. One can note that the behavior of those suspensions holds 

some characteristics from the two different fabrics. In this case, with growth following an 

exponential behavior. 

 

TABLE 16 - TORQUE MEASUREMENTS FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSIONS. 

 
Torque (N·m) values for mixed fabric-water suspensions 

2.502 kg of mixed fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

10 1.35 1.36 1.26 1.324 ± 0.114 0.973 ± 0.053  0.353 

20 2.29 1.66 1.71 1.886 ± 0.703 0.971 ± 0.004 0.813 

30 1.90 2.03 2.20 2.043 ± 0.297 1.072 ± 0.006 0.899 

40 
 

2.53 2.63 2.581 ± 0.137 1.144 ± 0.024 1.374 

50 3.08 2.43 3.27 2.926 ± 0.874 1.207 ± 0.025  1.666 

60 3.73 3.36 3.55 3.548 ± 0.373 1.260 ± 0.011 2.228 

70 3.98 4.30 3.81 4.031 ± 0.495 1.320 ± 0.041 2.702 

80 4.83 4.82 4.45 4.697 ± 0.434 1.329 ± 0.045 3.352 

90 5.61 4.84 5.31 5.252 ± 0.781 1.346 ± 0.017 3.862 

100 6.09 5.78 5.95 5.943 ± 0.312 1.391 ± 0.031 4.526 

110 6.53 6.21 5.98 6.240 ± 0.548 1.416 ± 0.015 4.766 

120 6.75 6.42 6.43 6.534 ± 0.379 1.474 ± 0.039 5.054 
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FIGURE 33 - AVERAGE TORQUE FOR TWO DIFFERENT MIXED FABRIC-WATER 

SUSPENSIONS. 

 

 

 Data Regression –  Short Blade Vane  

 

The experimental raw data organized in the tables above have been analyzed to figure 

out which yield stress fluid model best fitted the data (Bingham fluid, Casson Fluid, Robertson-

Stiff fluid, and Herschel-Bulkley model). Similarly, the Kelessidis and Maglione (2006 and 

2008) approach, where both Newtonian shear rate and true shear rate are compared in order to 

evaluate whether the Newtonian approach applicable for narrow-gap geometry is accurate or 

not, is used in this work. Such a procedure has been applied for all different suspensions. 

Furthermore, to evaluate the assumption that for vane-in-cup geometries the fluid is 

trapped between the vane blades acting as a solid cylinder, additional tests for mixed fabric-

water suspensions were carried out with longer blades. In this case, similar results are expected 

for the two different four-blade lengths. 

It is important to mention that for the Newtonian shear rate for each angular velocity (in 

rad/s) is calculated from Equation (2.54). Then, then non-linear regression is performed by 

statistical techniques (least square fitting), with 95% of confidence bounds, in order to 

determine the appropriate rheological parameters for each non-Newtonian fluid model. All non-

linear regressions are evaluated through three statistical indicators, R² (coefficient of 

determination), SSE (sum of square errors) and RMS (root mean square). 
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Finally, the plots comparing the differences between the Newtonian and true shear rates, 

also known as rheogram, show the shear stresses in the surface of the inner cylinder (τinn) plotted 

as a function of different shear rates. 

 

4.3.2.1  Bingham Fluid  

 

Data fitting to the Bingham fluid model is not very accurate, despite showing relatively 

good statistical indicators (R², SSE, and RMS) for all the fluids. Table 17 shows the yield stress 

(τ0) and dynamic viscosities (μ) calculated by the least square fitting, for all the six different 

fluid suspensions and the two different data verification approaches wide gap (true) and narrow 

gap (Newtonian). The Bingham fluid model describes a Newtonian fluid behavior with the 

presence of a yield stress, below which there is no deformation of the fluid flow. For that reason, 

the values obtained for both Newtonian and true shear rate approaches are quite the same for 

all the fluids but the semi-synthetic fabric (2.50 kg) and water suspension (Figures 34 - 36). 

The best-fitted parameters were calculated by regression of Equation (2.75) for true shear rates 

and Equation (2.77) for Newtonian shear rates. A data-fitting was also computed for the Reiner-

Riwlin Equation (2.78), also depicted in Table 16.  

One can note that the fluid suspension with semi-synthetic fabric (2.50 kg) is the only 

one which presents a significant yield stress (τ0) value. In all cases, the nature of the Bingham 

model does not follow the trend of the data. Figure 34 shows the rheogram for cotton fabric-

water suspensions, Figure 35 for 1.25 kg semi-synthetic fabric-water suspension, Figure 36 for 

semi-synthetic fabric-water suspensions, and finally, Figure 36 for mixed fabric-water 

suspensions. One can also note, that the true and Newtonian shear rates are coincident as the 

calculated parameters of the model are quite the same, but for the 2.50 kg of semi-synthetic 

fabric-water fluid, which presents a higher yield stress because of the fabric agglomeration near 

the inner cylinder. 
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TABLE 17 - BINGHAM MODEL RHEOLOGICAL PARAMETERS FOR NEWTONIAN (NARROW 

GAP) AND TRUE (WIDE GAP) SHEAR RATES, AND EQUATION (2.78) (95% CONFIDENCE 

BOUNDS). 

Fluid suspension - Shear 

rate approach 
τ0 (Pa) μ (Pa·s) R2 SSE RMS 

Cotton (1.25kg) - True 2.2 10-14 5.16 ± 0.35 0.963 1238 10.16 

Cotton (1.25kg) - Newt. 2.4 10-14 5.16 ± 0.35 0.963 1238 10.16 

Cotton (1.25kg) - (2.78) 2.4 10-14 5.16 0.963 1238 10.16 

Cotton (2.50kg) - True 4.3 10-14 9.32 ± 0.67 0.957 4687 19.76 

Cotton (2.50kg) - Newt. 2.2 10-14 9.32 ± 0.67 0.957 4687 19.76 

Cotton (2.50kg) - (2.78) 2.2 10-14 9.32 0.957 4687 19.76 

S.S. (1.25kg) - True 2.2 10-14 3.74 ± 0.41 0.926 1710 11.94 

S.S. (1.25kg) - Newt. 2.2 10-14 3.74 ± 0.41 0.926 1710 11.94 

S.S. (1.25kg) - (2.78) 2.2 10-14 3.74 0.926 1710 11.94 

S.S. (2.50kg) - True 7.61 ± 6.34 5.81 ± 0.77 0.958 1502 11.68 

S.S. (2.50kg) - Newt. 16.45 ± 13.7 5.81 ± 0.77 0.961 1502 11.68 

S.S. (2.50kg) - (2.78) 16.45 ± 13.7 5.81 0.961 1502 11.68 

Mixed (1.25kg) - True 2.4 10-14 4.49 ± 0.26 0.974 691.8 7.59 

Mixed (1.25kg) - Newt. 2.2 10-14 4.49 ± 0.26 0.974 691.8 7.59 

Mixed (1.25kg) - (2.78) 2.2 10-14 4.49 0.974 691.8 7.59 

Mixed (2.50kg) - True 2.5 10-14 7.04 ± 0.36 0.977 1233 10.59 

Mixed (2.50kg) - Newt. 2.2 10-14 7.04 ± 0.36 0.977 1233 10.59 

Mixed (2.50kg) - (2.78) 2.2 10-14 7.04 0.977 1233 10.59 

 

FIGURE 34 - RHEOGRAM FOR COTTON FABRIC-WATER SUSPENSION WITH BINGHAM 

MODEL. 
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FIGURE 35 - RHEOGRAM FOR SEMI-SYNTHETIC FABRIC-WATER SUSPENSION WITH 

BINGHAM MODEL. 

 

 

FIGURE 36 - RHEOGRAM FOR MIXED FABRIC-WATER SUSPENSION WITH BINGHAM 

MODEL. 

 

 

4.3.2.2  Casson Fluid  

 

Likely to the Bingham fluid, data fitting to Casson fluid model is not very accurate, 

despite showing good statistical indicators. Table 18 shows the yield stress (τ0) and dynamic 

viscosities (μ) best-fitted for the six different fluid suspensions through the two different shear 

rate approaches (true and Newtonian). The Casson fluid is widely used to model the flow 
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behavior of chocolate and bloodstreams (JOYE, 2003), which are shear-thinning fluids, but it 

could not describe in a good way the behavior of the suspensions of this work. Similar to the 

Bingham fluid, the values obtained for both Newtonian and true shear rate approaches are 

almost the same for all the fluids but the semi-synthetic fabric (2.50 kg) and water suspension. 

The fitted parameters were calculated by regression of Equation (2.69) for true shear rates and 

Equation (2.71) for Newtonian shear rates.  

One can note that the fluid suspension with semi-synthetic fabric (2.50 kg) is the only 

one that presents a significant yield stress value too. In all cases, the nature of the Casson model 

cannot follow the experimental curves because of its 2 parameters are not sufficient to fit the 

experimental points. 

Finally, Figure 37 shows the rheogram of cotton fabric-water suspensions, Figure 38 for 

semi-synthetic fabric-water suspensions and Figure 39 for mixed fabric-water suspensions. 

Again, the true and Newtonian shear rates are coincident for almost all curves. 

 

TABLE 18 - CASSON MODEL RHEOLOGICAL PARAMETERS FOR NEWTONIAN AND TRUE 

SHEAR RATES (WITH 95% CONFIDENCE BOUNDS). 

Shear rate approach τ0 (Pa) μ (Pa·s) R2 SSE  RMS  

Cotton (1.25kg) - True 4.7 10-07 ± 1.7 10-03 5.15 ± 1.77 0.963 1239 10.61 

Cotton (1.25kg) - Newt. 9.5 10-07 ± 3.5 10-03 5.15 ± 1.77 0.963 1239 10.61 

Cotton (2.50kg) - True 8.1 10-07 ± 3.3 10-03 9.27 ± 3.45 0.956 4700 20.67 

Cotton (2.50kg) - Newt. 7.0 10-07 ± 4.3 10-03 9.27 ± 3.45 0.956 4699 20.67 

S.S. (1.25kg) - True 2.2 10-14 3.74 ± 0.41 0.926 1710 11.94 

S.S. (1.25kg) - Newt. 2.2 10-14 3.74 ± 0.41 0.926 1710 11.94 

S.S. (2.50kg) - True 1.11 ± 2.75 5.05 ± 1.83 0.949 1993 13.46 

S.S. (2.50kg) - Newt. 2.28 ± 5.38 5.04 ± 1.79 0.949 1983 13.43 

Mixed (1.25kg) - True 9.4 10-07 ± 2.0 10-03 4.43 ± 1.34 0.974 711 8.04 

Mixed (1.25kg) - Newt. 6.6 10-07 ± 2.4 10-03 4.43 ± 1.34 0.974 710 8.03 

Mixed (2.50kg) - True 9.7 10-07 ± 2.4 10-03 6.96 ± 1.99 0.974 1267 11.25 

Mixed (2.50kg) - Newt. 7.1 10-07 ± 2.9 10-03 6.96 ± 1.99 0.974 1265 11.25 
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FIGURE 37 - RHEOGRAM FOR COTTON FABRIC-WATER SUSPENSION WITH CASSON 

MODEL. 

 

 
FIGURE 38 - RHEOGRAM FOR SEMI-SYNTHETIC FABRIC-WATER SUSPENSION WITH 

CASSON MODEL. 
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FIGURE 39 - RHEOGRAM FOR MIXED FABRIC-WATER SUSPENSION WITH CASSON 

MODEL. 

 

 

4.3.2.3  Robertson-Stiff Fluid  

 

In contrast to the Bingham and Casson fluids models, the Robertson-Stiff one, which is 

a three-parameter model, describes the fluid flows a little better. The Robertson-Stiff model has 

been used in the open literature to describe the behavior of bentonite suspensions, drilling fluids, 

cement slurries and maize flour samples (shear-thickening). Table 18 depicts the values of the 

best-fitted consistency index (m), the index behavior (n) and the shear rate correction factor 

(�̇�0) for all fluids, as well as the statistical indicators. One can see that the model can best 

describe the rheological behavior of the semi-synthetic and the mixed fabric-water suspension 

fluids, albeit the behavior of the cotton fabric-water fluid suspensions is not well represented. 

The reason is explained by the absence of the shear rate correction factor for such a model. 

In this case, one can note the differences between the true and Newtonian shear rate, 

with good results for cotton and mixed fabric-water fluid suspensions, but much better for the 

fluid with 2.50 kg of semi-synthetic fabrics. The best-fitted parameters were calculated by 

regression of Equation (2.72) for true shear rates and Equation (2.74) for Newtonian shear rates. 
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TABLE 19 - ROBERTSON-STIFF MODEL RHEOLOGICAL PARAMETERS FOR NEWTONIAN 

AND TRUE SHEAR RATES (WITH 95% CONFIDENCE BOUNDS). 

Shear rate approach �̇�0 (s-1) m (Pa·sn) n R2 SSE  RMS  

Cotton (1.25kg) - True 2.22 10-14 5.15 ± 2.70 1.00 ± 0.21 0.963 1238 10.61 

Cotton (1.25kg) - Newt. 6.31 10-04 3.88 ± 7.41 1.09 ± 0.52 0.959 1346 11.60 

Cotton (2.50kg) - True 2.22 10-14 7.85 ± 4.53 1.07 ± 0.23 0.958 4490 20.20 

Cotton (2.50kg) - Newt. 2.28 10-05 7.30 ± 13.8 1.08 ± 0.52 0.958 4493 21.20 

S.S. (1.25kg) - True 0.21 ± 2.50 0.81 ± 1.30 1.61 ± 0.50 0.992 179.3 4.23 

S.S. (1.25kg) - Newt. 0.45 ± 5.4 0.53 ± 1.04 1.61 ± 0.50 0.992 179.3 4.23 

S.S. (2.50kg) - True 16.54 ± 26 0.0026 3.05 ± 3.21 0.989 432.9 6.94 

S.S. (2.50kg) - Newt. 7.27 ± 18 0.50 ± 2.75 1.67 ± 1.32 0.957 1675 12.94 

Mixed (1.25kg) - True 0.34 ± 1.90 2.15 ± 2.36 1.28 ± 0.35 0.990 259.4 5.09 

Mixed (1.25kg) - Newt. 0.73 ± 4.11 1.78 ± 2.38 1.28 ± 0.35 0.990 259.4 5.09 

Mixed (2.50kg) - True 0.29 ± 2.10 3.75 ± 4.3 1.24 ± 0.37 0.992 457.3 7.13 

Mixed (2.50kg) - Newt. 0.62 ± 4.54 3.18 ± 4.44 1.24 ± 0.37 0.992 457.3 7.13 

 

Casson and Bingham fluid could not describe well the non-Newtonian behavior of the 

fluid suspensions. Conversely, in all cases but the cotton fabric-water fluid suspensions, the 

Robertson-Stiff model follows to the curvatures of the rheological behavior of the fluids. 

For the Robertson-Stiff fluid mode, Figure 40 shows the rheogram of cotton fabric-water 

suspensions, Figure 41 for semi-synthetic fabric-water suspensions and Figure 42 for mixed 

fabric-water suspensions. 

 

FIGURE 40 - RHEOGRAM FOR COTTON FABRIC-WATER SUSPENSION WITH ROBERTSON-

STIFF MODEL. 
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FIGURE 41 - RHEOGRAM FOR SEMI-SYNTHETIC FABRIC-WATER SUSPENSION WITH 

ROBERTSON-STIFF MODEL. 

 

 

FIGURE 42 - RHEOGRAM FOR MIXED FABRIC-WATER SUSPENSION WITH ROBERTSON-

STIFF MODEL. 

 

 

4.3.2.4  Herschel-Bulkley Fluid  

 

Similarly, the Herschel-Bulkley model, which is also a three-parameter model that 

combines the Power-Law and Bingham model, describe the suspensions better than the 

Bingham and Casson models. One should note that the Herschel-Bulkley model is not a wide-

spread model due to the difficulty in finding an analytical solution to perform the parameter 
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regression model, although it has been used to describe the behavior of cement slurries 

(HEIRMAN, VANDEWALLE, et al., 2008). Table 19 depicts the values of the best-fitted 

consistency index (m), the index behavior (n) and the yield stress (τ0) for all suspensions, as 

well as the statistical indicators.  

In this case, one can note the differences between the true and Newtonian shear rate, 

which more notable for all suspensions. The best-fitted parameters were calculated by 

regression of Equation (2.92) for True shear rates. As there is no analytical solution for this 

fluid, a one-hundred terms series was applied to minimize the errors between the numerical and 

experimental shear stress (RMS), then obtaining the best-fitted parameters for the model. Figure 

43 describes the rheogram for cotton fabric-water suspensions. For the 1.25 kg one, a near 

Newtonian behavior is observed (n is almost 1), but the true shear rate approach indicates a 

higher yield stress value for the fluid. Also, for the 2.50 kg suspension more shear-thickening 

behavior is observed, but also the true shear rate approach indicates a higher yield stress value 

for the fluid again. 

 

TABLE 20 - HERSCHEL-BULKLEY MODEL RHEOLOGICAL PARAMETERS FOR 

NEWTONIAN AND TRUE SHEAR RATES, AND EQUATION (2.103) (WITH 95% CONFIDENCE 

BOUNDS). 

Shear rate approach τ0 (Pa) m (Pa·sn) n R2 SSE  RMS  

Cotton (1.25kg) - True 0.48 ± 0.05 4.94 ± 3.62 1.02 ± 0.30 0.957 8.37 0.91 

Cotton (1.25kg) - Newt. 3.49 10-14 5.15 ± 3.39 1.00 ± 0.21 0.963 1238 10.61 

Cotton (1.25kg) - 2.94 4.35 10-13 5.15 1.00 ± 0.21 0.963 0.69 0.25 

Cotton (2.50kg) - True 0.88 ± 20.6 6.10 ±10.2 1.17 ± 0.60 0.960 7.83 0.88 

Cotton (2.50kg) - Newt. 4.84 10-14 7.13 ± 12.0 1.09 ± 0.48 0.958 4500 21.21 

Cotton (2.50kg) - 2.94 6.80 10-13 7.85 1.07 ± 0.23 0.958 2.50 0.48 

S.S. (1.25kg) - True 0.41 ± 2.82 0.88 ± 0.83 1.59 ± 0.32 0.987 2.60 0.51 

S.S. (1.25kg) - Newt. 1.80 ± 6.24 0.51 ± 0.45 1.63 ± 0.26 0.993 173 4.16 

S.S. (1.25kg) - 2.94 0.83 0.79 1.63 ± 0.26 0.993 0.10 0.10 

S.S. (2.50kg) - True 2.81 ± 0.02 6.27 ± 2.96 1.00 ± 0.19 0.966 6.65 0.82 

S.S. (2.50kg) - Newt. 38.16 ± 9.1 0.69 ± 0.68 1.62 ± 0.29 0.991 365 6.04 

S.S. (2.50kg) - 2.94 17.65 1.06 1.61 ± 0.29 0.990 0.20 0.14 

Mixed (1.25kg) - True 0.75 ± 5.28 2.28 ± 2.30 1.27 ± 0.37 0.988 2.41 0.49 

Mixed (1.25kg) - Newt. 2.75 ± 9.2 1.79 ± 1.54 1.29 ± 0.25 0.991 253 5.03 

Mixed (1.25kg) - 2.94 1.27 2.16 1.29 ± 0.25 0.990 0.14 0.12 

Mixed (2.50kg) - True 1.23 ± 12.2 3.77 ± 4.14 1.25 ± 0.38 0.992 1.26 0.37 

Mixed (2.50kg) - Newt. 3.62 ± 18.7 3.23 ± 3.13 1.24 ± 0.27 0.992 454 7.10 

Mixed (2.50kg) - 2.94 1.67 3.79 1.24 ± 0.27 0.992 0.25 0.17 
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FIGURE 43 - RHEOGRAM FOR COTTON FABRIC-WATER SUSPENSION WITH HERSCHEL-

BULKLEY MODEL. 

 

 

Figures 44 describes the rheogram of 1.25 kg and 2.50 semi-synthetic fabric-water 

suspension, respectively. While the lighter suspension presents a more shear-thickening 

behavior, the heavier suspension presents a more Newtonian-like behavior with a more viscous 

suspension with a higher yield stress value. It might happen because for achieving such mass 

of semi-synthetic fabric bulks a higher quantity of fabric tissues is needed thus saturating the 

fluid suspension if compared to the cotton fabric-water suspensions case. 

Again, the rheogram of 1.25 and 2.50 kg of mixed fabric-water of cotton and semi-

synthetic are depicted in Figure 45. As expected, a mixed behavior of the two fluids is observed 

as well. For the lighter suspension, an index value (n) of 1.27, which is higher than the cotton 

one and smaller than the semi-synthetic one, is observed. The same is observed for the yield 

stress (τ0) and consistency index (m). On the other hand, the heavier fluid also shows a more 

shear-thickening behavior, contrary to the semi-synthetic fabric-water fluid suspension, thus 

also mixing the behaviors of the two fabrics types suspensions. 
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FIGURE 44 - RHEOGRAM FOR SEMI-SYNTHETIC FABRIC-WATER SUSPENSION WITH 

HERSCHEL-BULKLEY MODEL. 

 

 

FIGURE 45 - RHEOGRAM FOR MIXED FABRIC-WATER SUSPENSION WITH HERSCHEL-

BULKLEY MODEL. 

 

 

  Comparison 

 

The different flows have been analyzed by regression of the parameters for four different 

yield stress NNF models. In all the following figures, the different fluid models are plotted 

together in order to find out the one that best represents the fluid behavior, taking into account 

the shear stress value in the inner cylinder surface. 
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Figure 46 represents the flow behavior for the 1.25 kg of cotton fabric-water suspension, 

which presents a nearly Newtonian fluid behavior because almost no curvature is observed.  In 

this case, both Robertson-Stiff and Herschel-Bulkley fluid models cover the experimental 

points in a better way than the Bingham and Casson fluids. 

Figure 47 depicts the flow behavior of the 2.50 kg of cotton fabric-water suspension, 

which presents a more shear-thickening behavior than the lighter fluid. Because of the nature 

of the models, again both Robertson-Stiff and Herschel-Bulkley fluid models follow the 

experimental points better than the others.  

 

FIGURE 46 - COMPARISON OF DIFFERENT FLUID MODELS REGRESSIONS FOR A 1.25 KG 

OF COTTON FABRIC-WATER SUSPENSION. 

 

 

Considering the semi-synthetic fabric-water fluid flows, Figures 48 and 49 show the 

flow behavior of the 1.25 kg and 2.50 kg of fabric-water suspension, respectively. For those 

cases, the differences between the models, where Casson and Bingham models fail in 

representing the experimental points in lower velocities. 
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FIGURE 47 - COMPARISON OF DIFFERENT FLUID MODELS REGRESSIONS FOR A 2.50 KG 

OF COTTON FABRIC-WATER SUSPENSION. 

 

 

FIGURE 48 - COMPARISON OF DIFFERENT FLUID MODELS REGRESSIONS FOR A 1.25KG 

OF SEMI-SYNTHETIC FABRIC-WATER SUSPENSION. 

 

 

 

 

 

 

 



136 

 

 

 

FIGURE 49 - COMPARISON OF DIFFERENT FLUID MODELS REGRESSIONS FOR A 2.50KG 

OF SEMI-SYNTHETIC FABRIC-WATER SUSPENSION. 

 

 

Figure 50 shows the flow behavior for the 1.25 kg of mixed fabric-water and water 

suspension, which presents a very shear-thickening behavior, where Bingham and Casson fluids 

fail in following the flow behavior, while the other fluids represent the curves properly. 

 

FIGURE 50 - COMPARISON OF DIFFERENT FLUID MODELS REGRESSIONS FOR A 1.25KG 

OF MIXED FABRIC-WATER SUSPENSION. 
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Finally, Figure 51 represents the flow behavior for the 2.50 kg of mixed fabric-water 

suspension. This fluid, when compared to the lighter one with the same fabric types, shows a 

more similar Newtonian fluid model behavior. Again, the Herschel-Bulkley showed a better 

approximation of the experimental curve. 

 

FIGURE 51 - COMPARISON OF DIFFERENT FLUID MODELS REGRESSIONS FOR A 2.50 KG 

OF MIXED FABRIC-WATER SUSPENSION. 

 

 

Observing the figures above, the following remarks can be summarized: 

 

• All the fluids present a shear-thickening behavior, which is in general more 

perceptible for the heavier ones; 

• The yield stress values are also higher for the heavier suspensions using a single 

fabric type; 

• The Robertson-Stiff and Herschel-Bulkley fluid models represent the 

experimental points better than the others; 

• The mixed fabric-water fluid suspensions combine the different behaviors of the 

cotton and semi-synthetic fabrics. 

 

A possible explanation for the shear-thickening behavior is that the greater the imposed 

velocity by the inner cylinder, the higher the agglomerated of fabric tissues near the inner 

cylinder surface, which tends to elevate the viscosity near the cylinder. The yield stress growth 
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is clear as the higher the concentration of suspended fabrics the harder is to deflagrate the fluid 

flow. 

Comparing the cotton and semi-synthetic fabric-water suspensions, it has been noticed 

that the cotton ones present a more Newtonian-like behavior. Leaving aside the physical 

stretching behavior of the cotton fabric and the more rigid behavior of the semi-synthetic fabric-

water suspension, one possible explanation for the different regimes is that much more fabric 

tissues of semi-synthetic are needed to achieve the same mass value of the cotton tissues fabrics, 

thus resulting in a more concentrated suspension, which tends to increase the agglomeration of 

the tissue fabrics and elevating the viscosities values for this fluid suspensions. 

 

  Data Reduction –  Long Blade Vane 

 

Tables 21 and 22 present the Torque measurements values considering the three 

repetitions for each test for the two different bulks of mixed fabric-water suspensions. In this 

case, tests were carried out with longer four-blades with 45.5 mm, thus k = Rinn Rout⁄  is 

approximately 0.44, while the water column is the same (310 mm). 

Tests concerning other fabric-water suspensions have not been carried out because the 

main purpose is to show that the vane-geometry is adequate to avoid the presence of wall slip 

velocity on the inner cylinder.  

Figure 52 shows of the average values for each suspension (mixed fabrics), represented 

by the solid lines, where the symbols refer to the different runs for each test condition with the 

longer blades vane-geometry. One can note that the behavior of the fluid flows when compared 

to the shorter blade vane-geometry is roughly similar with higher torque values observed. 
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TABLE 21 - TORQUE MEASUREMENTS FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSIONS (LONG-BLADE GEOMETRY). 

 
Torque (N.m) values for mixed fabric-water suspensions 

1.251 kg of mixed fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 1.34 1.15 1.10 1.199 ± 0.257 0.973 ± 0.053  0.226 

10 1.34 1.26 1.29 1.298 ± 0.077 0.971 ± 0.004 0.327 

20 1.65 1.68 1.60 1.642 ± 0.083 1.072 ± 0.006 0.569 

30 1.84 1.77 1.79 1.799 ± 0.064 1.144 ± 0.024 0.655 

40 2.08 2.60 2.85 2.509 ± 0.782 1.207 ± 0.025  1.302 

50 2.86 3.08 3.14 3.029 ± 0.292 1.260 ± 0.011 1.769 

60 3.42 3.38 3.41 3.404 ± 0.043 1.320 ± 0.041 2.084 

70 3.60 3.49 3.70 3.599 ± 0.209 1.329 ± 0.045 2.269 

80 3.82 4.08 3.85 3.916 ± 0.282 1.346 ± 0.017 2.570 

90 4.48 4.43 4.36 4.426 ± 0.120 1.391 ± 0.031 3.035 

100 4.81 4.71 4.86 4.792 ± 0.153 1.416 ± 0.015 3.376 

110 4.97 5.03 4.59 4.862 ± 0.474 1.474 ± 0.039 3.388 

120 5.24 5.07 5.37 5.225 ± 0.300 1.481 ± 0.048 3.745 

 

TABLE 22 - TORQUE MEASUREMENTS FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSIONS (LONG-BLADE GEOMETRY). 

 
Torque (N.m) values for mixed fabric-water suspensions 

2.502 kg of mixed fabrics 

ωinn (rpm) Run 1 Run 2 Run 3 Loaded Unloaded Net 

5 2.07 2.03 2.07 2.055 ± 0.047 0.973 ± 0.053  1.083 

10 2.15 2.13 2.35 2.210 ± 0.239 0.971 ± 0.004 1.239 

20 2.52 2.75 2.56 2.608 ± 0.249 1.072 ± 0.006 1.535 

30 2.85 2.77 2.76 2.793 ± 0.091 1.144 ± 0.024 1.648 

40 3.25 3.15 3.27 3.223 ± 0.135 1.207 ± 0.025  2.016 

50 3.94 3.92 3.29 3.717 ± 0.736 1.260 ± 0.011 2.458 

60 4.03 4.31 4.04 4.126 ± 0.316 1.320 ± 0.041 2.806 

70 4.35 5.16 4.52 4.678 ± 0.858 1.329 ± 0.045 3.349 

80 5.39 5.56 5.50 5.483 ± 0.169 1.346 ± 0.017 4.137 

90 6.28 5.96 6.00 6.081 ± 0.349 1.391 ± 0.031 4.691 

100 6.83 6.73 6.53 6.696 ± 0.301 1.416 ± 0.015 5.280 

110 6.74 7.02 7.09 6.952 ± 0.372 1.474 ± 0.039 5.478 

120 7.26 7.15 6.63 7.012 ± 0.676 1.481 ± 0.048 5.531 
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FIGURE 52 - EXPERIMENTAL AVERAGE TORQUE VALUES FOR TWO DIFFERENT MIXED 

FABRIC-WATER SUSPENSIONS BULKS STEADY-STATE FLOWS (LONG-BLADED 

GEOMETRY). 

 

 

Figure 53 shows the difference between the rheograms for different blade length vane-

geometries for a 1.25 kg of mixed fabric-water suspension. In this case, both geometries present 

similar yield stress and flow index value, and the difference between both curves is due to the 

difference of the Power-Law index (n), which is 1.27 for the shorter blades and 1.15 for the 

longer blades. 

Figure 54 shows the difference between the rheograms of different blade length vane-

geometries for a 2.50 kg of mixed fabric-water suspension. In this case, probably because of 

the longer length of the blades, the yield stress values are higher in this geometry, but both flow 

index values (m) and Power-Law index values (n) are much closer (1.25 and 1.17), which can 

be observed in the closest approximation of the curves. 

Despite some difference between the curves, one can see the convergence of the values 

obtained for different vane-geometries dimensions for the same fluids. This denotes that both 

succeed to avoid the slip velocity and prove the assumption that the fluid is trapped between 

the vane blade acting like a solid cylinder.  
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FIGURE 53 - RHEOGRAM COMPARISON FOR DIFFERENT BLADE LENGTH VANE-

GEOMETRIES FOR A 1.25KG OF MIXED FABRIC-WATER SUSPENSION. 

 

 

FIGURE 54 - RHEOGRAM COMPARISON FOR DIFFERENT BLADE LENGTH VANE-

GEOMETRIES FOR A 2.50KG OF MIXED FABRIC-WATER SUSPENSION. 
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 Periodic Flow 

 

Based on Figures 29 and 30, four different periodic tests were performed. Tests 1 and 2 

have the following cycle step: acceleration and deceleration times of 0.32 s each, time in 

constant maximum or minimum velocity of 1.72 s, and time-off of 0.64 s. For Tests 3 and 4, all 

the times above are cutted to half. The tests were conducted with the four-bladed inner cylinder 

with 34 mm of blade length, with and without the smooth bottom basis rotating with the inner 

cylinder. For all test conditions, five repetitions were performed. 

 

4.3.5.1  Static Bottom Basis Flow 

 

The results for the Test 1 are presented below. Figure 55 shows the five runs for 1.25 

kg of mixed fabric-water suspension, while Figure 56 shows the results for 2.50 kg of mixed 

fabric-water suspension. 

 

FIGURE 55 - EXPERIMENTAL TORQUE DATA OF THE 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION IN PERIODIC TEST 1. 
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FIGURE 56 - EXPERIMENTAL TORQUE DATA OF THE 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION IN PERIODIC TEST 1. 

 

 

Figure 57 shows comparisons between the average torque of the two conditions above. 

One can note that all the tests present higher peaks every time a swift acceleration and 

deceleration takes place. In times when constant or null velocities takes place, the torque 

response tends to a more linear behavior. As expected, the torque response values are higher 

the heavier is the suspension. 

 

FIGURE 57 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 1., 
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Figure 58 shows the average velocities of all runs on time. It is observed that a good 

response, between the imposed and the measured velocities, was achieved for all tests. 

 

FIGURE 58 - EXPERIMENTAL AVERAGE VELOCITY DATA FOR TWO DIFFERENT BULKS 

OF MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 1. 

 

 

Similarly, the results for Test 2 are presented in Figure 59. Which depicts comparisons 

between the average values of the torque for two conditions. As expected, when compared to 

Test 1, the torque responses are higher not only because the maximum velocity is higher, but 

also the acceleration and deceleration values are higher as well. 

 

FIGURE 59 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 2. 
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Figure 60 shows the average velocities of all tries along with time for Test 2 tries. One 

can notice that a quite good response and similarity between the tests are observed. 

 

FIGURE 60 - EXPERIMENTAL AVERAGE VELOCITY DATA FOR TWO DIFFERENT BULKS 

OF MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 2. 

 

 

Figure 61 shows comparisons between the average values of the two conditions. As Test 

3 period is shorter, thus acceleration and deceleration periods are faster, the peaks of torque 

values have a higher magnitude in comparison with Test 1. 

 

FIGURE 61 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 3. 
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Figure 62 shows the average velocities of all tries along with time for Test 3 tries, 

showing a good velocity response even for faster acceleration and deceleration periods. 

 

FIGURE 62 - EXPERIMENTAL AVERAGE VELOCITY DATA FOR TWO DIFFERENT BULKS 

OF MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 3. 

 

 

Similar to Figure 61, Figure 63 shows comparisons between the average values of the 

two conditions. Again, it presents higher peaks of torque magnitude in reason of the maximum 

velocity and the shorter periods of acceleration and deceleration. 

 

FIGURE 63 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 4 
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Figure 64 shows the average velocities of all tries along with time for Test 4 runs. 

 

FIGURE 64 - EXPERIMENTAL AVERAGE VELOCITY DATA FOR TWO DIFFERENT BULKS 

OF MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 4. 

 

 

4.3.5.2  Rotating Bottom Basis Flow 

 

As mentioned before, additional tests with the bottom rotating with the inner cylinder at 

the same speed were carried out to emulate the conditions found in a household vertical-axis 

top-load washing machine. Thus, the total torque, comprised of the torque to drive the inner 

cylinder plus the bottom basis, and the torque transmitted to the fluid were measured. In this 

case, the figures showing the angular velocities over time are not presented, as they look like 

almost the same due to the good velocity control.  

The results for the Test 1 are presented below. Figure 65 shows the results of the five 

tries for the 1.25 kg of mixed fabric-water suspension, while Figure 66 shows the results for 

2.50 kg of mixed fabric-water suspension. Figure 67 shows comparisons between the average 

values of the two figures above. One can note that, when compared to Figure 82, all the tests 

present higher peaks every time a swift acceleration and deceleration takes place. As one could 

have expected, with the basis contribution addition, the torque values response is also higher. 
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FIGURE 65 - EXPERIMENTAL TORQUE DATA OF 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION IN PERIODIC TEST 1 (WITH ROTATING BASIS). 

 

 

FIGURE 66 - EXPERIMENTAL TORQUE DATA OF 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION IN PERIODIC TEST 1 (WITH ROTATING BASIS). 
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FIGURE 67 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 1 (WITH ROTATING BASIS). 

 

 

Figure 68 shows comparisons between the average values of the two conditions (1.25 

and 2.50 kg of fabric) for Test 2. Again, when compared to Figure 57, all the torque responses 

are higher, similar to Figure 67. It also should be mentioned that the torque value signal has 

more noise than before. 

 

FIGURE 68 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 2 (WITH ROTATING BASIS). 
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Like the other tests, Figure 69 shows comparisons between the average values of the 

two conditions (1.25 and 2.50 kg of fabric) for Test 3, which torque values are higher than the 

ones observed in Figure 61. 

 

FIGURE 69 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 3 (WITH ROTATING BASIS). 

 
 

In conclusion, Figure 68 shows comparisons between the average values of the two 

conditions (1.25 and 2.50 kg of fabric) for Test 4. One can observe that the heavier fluid presents 

higher torque values, despite the peak points is similar for both fluids. 

 

FIGURE 70 - EXPERIMENTAL AVERAGE TORQUE DATA FOR TWO DIFFERENT BULKS OF 

MIXED FABRIC-WATER SUSPENSIONS IN PERIODIC TEST 4 (WITH ROTATING BASIS). 
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4.4 CHAPTER SUMMARY 

 

This chapter presented test rig used to measure the torque transmitted from the rotating 

inner cylinder surface to the fluid through a controlled angular velocity imposed to the inner 

cylinder. The geometry of the apparatus consists in a coaxial double cylinder viscometer. In 

addition, a plan of tests was designed considering three main parameters: (a) fabric type, (b) 

amount of fabric and (c) angular velocity (ωinn). Two different regimes were proposed: (a) 

steady-state flow and (b) periodic flow. 

At first, the steady-state tests have been carried out and their results were used for the 

regression of the rheological behavior of the fluid through a method called Couette inverse 

problem. It consists of obtaining the curve of shear stress in function of the shear rate values 

from measured torques for different angular velocities. In this work, four different NNF models 

with yield stress were investigated to find out which model is more suitable to describe the 

rheological behavior of the fabric-water suspensions. It was observed that the Herschel-Bulkley 

was the best fitting NNF model among all the options so that its parameters are used for 

modeling the numerical simulations of water-fabric suspensions flows henceforth. Also, 

different flow behaviors were discussed when the fabric types and the fabric amounts were 

changed, as well as the comparison between two different ways to obtain the shear rate values 

(true and Newtonian approaches). While the Newtonian approach is mostly used for narrow 

gap geometries, the so-called “true” approach is a more suitable way to describe the rheological 

behavior of a fluid flow in a wide-gap geometry, which is the here. 

Finally, periodic tests with the mixed fabric-water suspensions (cotton and semi-

synthetic) were carried out for two different geometry conditions: (i) non-rotating bottom basis 

and (ii) rotating bottom basis. The latter one was performed in order to emulate the conditions 

found in a real washing machine. 

The results obtained in this Chapter were used as boundary conditions for fluid modeling 

in numerical experimentation in Chapter 5. 
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5 NUMERICAL SIMULATIONS 

 

This chapter presents the implementation of the numerical methodology, presented in 

Chapter 3, by means of numerical carried out by means of a finite-volume-based code. 

Numerical results are verified against the experimental measurements presented in Chapter 4. 

For that reason, the NNF is modeled considering the regressed parameters for the Herschel-

Bulkley fluid model. Furthermore, not only steady-state simulations are on the matter of this 

Chapter, but also periodic fluid flows. 

 

5.1 CODE VERIFICATION AND NUMERICAL EXPERIMENTATION 

 

Code verification and numerical experimentation by means of a homemade finite-

volume-based code using CFD techniques are presented. The simulation results have been 

verified against analytical solutions for laminar steady-state simulations and numerical-

experimental database obtained in the open literature. 

 

 Two-dimensional Results Verification  

 

A two-dimensional laminar steady-state simulation using glycerin as the Newtonian 

fluid (ρ = 1261.3 kg m3⁄ and μ = 1.412 Pa · s) was held and its results were compared to the 

analytical solution (Equation 2.46). The geometric parameters utilized in this simulation 

were: Rinn = 0.075 m and Rout = 0.265 m, which indicates that both radius ratio and gap are 

respectively k = 0.283 and δ = 0.19 m. The angular inner cylinder speed was ω = π rad s⁄ , 

while the outer cylinder remained static. Those geometrical parameters and input parameter 

lead to the following dimensionless numbers: Re = 48.4 and Ta = 5932. The convergence 

criterion used in this simulation was 10-10 for both mass and momentum residues (Equations 

3.51 and 3.52). 

Figure 71 shows a comparison between the numerical results for the tangential velocity 

component and the analytical solution along the radial direction (nθ  and nr  = 15). In the 

dimensionless scale, the zero value indicates the inner cylinder while the unitary value indicates 

the outer cylinder. The maximum velocity is obtained along the inner cylinder surface (ωRinn). 

One can observe that there is a good matching between the solutions. Figure 72 shows the 

tangential velocity component behavior along the tangential direction in the middle of the radial 
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gap. For a steady-state simulation, it is expected that the velocity maintains a constant value, 

which can be observed in the figure. 

 

FIGURE 71 - TWO-DIMENSIONAL VALIDATION: TANGENTIAL VELOCITY COMPONENT 

(VΘ) PROFILE IN RADIAL DIRECTION (R). 

 

 

FIGURE 72 - TWO-DIMENSIONAL VALIDATION: TANGENTIAL VELOCITY COMPONENT 

(VΘ) PROFILE IN TANGENTIAL DIRECTION (Θ). 
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The same configuration of the previous simulation was used in order to perform a 

comparison between three different solvers: (a) TDMA / CTDMA, (b) BiCGSTAB (without 

preconditioner), and (c) BiCGSTAB using the TDMA / CTDMA as a preconditioner. For the 

same convergence criterion (ERR = 10-10), various simulations changing the number of control 

volumes were performed. The number of control volumes corresponding to the number of nodes 

on tangential (nθ) and radial (nr) directions are shown in Table 23, as well as the computational 

time to achieve the convergence criterion for the three different solvers. 

Figure 73 illustrates Table 23 information and points out that the BiCGSTAB with the 

CTDMA as preconditioner is the fastest method (between the three mentioned) for this 

simulation, while the TDMA/CTDMA spends almost three times more the CPU time in the 150 

x 150 grid case. This comparison was used as the basis for choosing the BiCGSTAB, using the 

TDMA/CTDMA (preconditioner), as the main solver for both two-dimensional and three-

dimensional simulations. 

 

TABLE 23 - COMPUTATIONAL CONVERGENCE TIME COMPARISON. 

Bidimensional 

Grid 

(𝐧𝛉 𝐱 𝐧𝐫) 

Control 

Volumes 

Number 

CPU time until convergence (s) 

CTDMA 
BiCGSTAB 

(alone) 

BiCGSTAB – 

TDMA 

150 x 150 22500 31339.8 23970.9 10906.2 

100 x 100 10000 5438.4 3886.0 2143.9 

75 x 75 5625 1652.2 1294.1 659.6 

50 x 50 2500 307.6 225.7 119.8 

45 x 45 2025 193.7 149.5 76.9 

40 x 40 1600 123.9 94.6 49.3 

35 x 35 1225 72.4 55.7 28.2 

30 x 30 900 38.0 29.6 15.0 

25 x 25 625 18.4 16.1 7.9 

20 x 20 400 7.2 7.2 3.7 

15 x 15 225 2.8 3.3 1.2 

10 x 10 100 0.6 1.1 0.5 

5 x 5 25 0.3 0.3 0.3 
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FIGURE 73 - COMPUTATIONAL TIME COMPARISON. 

 
 

 Three-dimensional Results Verification 

 

The simulation results for the Newtonian fluid were verified against the numerical and 

experimental database from Watanabe et al. (2003). In that work, numerical results and 

experimental measurements concerning three different concentrations of an aqueous solution 

of glycerin (60%, 70%, and 80%) for two different wall types (smooth and water-repellent) 

were conducted. For the present verification, only the results concerning smooth walls were 

taken into account. 

The two concentric cylinders geometric parameters in this simulation are the following: 

Rinn = 0.081 m and Rout = 0.0965 m, leading to radius ratio and gap of respectively k = 0.839 

and δ = 0.0155 m. The fluid column height h is H = 0.240 m, thus the aspect ratio Γ = 15.5. 

Considering the above-mentioned geometry, Watanabe et al. (2003) performed some 

experiments for the all three Newtonian fluids with Reynolds number in the range of 10 to 25. 

The fluids thermophysical properties are summarized in Table 24. 
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TABLE 24 - PHYSICAL PROPERTIES OF THE AQUEOUS SOLUTION OF GLYCERIN  

Fluid 

concentration 

in weight (%) 

Density 

(kg/m3) 

Viscosity 

(Pa·s) 

Kinematic 

viscosity 

(m2/s) 

Temperature 

(°C) 

60 1.157 13.1 x 10-3 11.3 x 10-6 15 

70 1.185 28.1 x 10-3 23.7 x 10-6 15 

80 1.212 72.2 x 10-3 59.6 x 10-6 16 

Source: (Watanabe at al., 2003) 

 

The results obtained by Watanabe et al. comparing the experimental measurements and 

the analytical solution for the dimensionless tangential velocity component values are 

illustrated in Figure 74. 

 

FIGURE 74 - TANGENTIAL VELOCITY COMPONENT PROFILES FOR ROTATING SMOOTH-

WALL INNER CYLINDER. 

 
SOURCE: WATANABE ET AL. (2003) 

 

Watanabe et al. achieved a very good agreement between the experimental and 

analytical points. Thus, in order to certificate if the present code is able to achieve such good 

agreement with the analytical solution, some simulations concerning the same geometry were 

held for all the three fluid concentrations. The conditions are summarized in Table 25 below: 
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TABLE 25 - SIMULATIONS USING AQUEOUS SOLUTION OF GLYCERIN DIMENSIONLESS 

NUMBERS.  

Fluid 

concentration (%) 

Inner cylinder 

velocity 

(rad / s) 

Reynolds number Taylor number 

60 
1.5

30
π 17.42 58.06 

70 
2.5

30
π 13.86 36.76 

80 
11

30
π 24.27 112.79 

 

Figure 75 shows the results of the tangential velocity component profiles obtained 

through the simulations realized using the aqueous solutions of glycerin (60%, 70%, and 80%) 

until convergence. All three simulations show a good agreement with the analytical solution, 

the results plotted in the figures were obtained in the height of h = 0.120 m, in order to avoid 

the bottom and top wall effects. The convergence criterion used in this simulation was 10-10 for 

both mass and momentum residues and the applied mesh has 25 x 25 x 25 nodal points. 

Watanabe et al. (2003), also performed some numerical simulation and experiments in 

order to compare the flow behavior through some PIV measurements and numerical contour 

plots. The fluid applied in this case was the aqueous solution of glycerin with 80% of weight 

concentration. The outer radius applied has the value Rout = 0.120 m, which changes some 

geometric parameters: k = 0.675, δ = 0.039 m and Γ = 6.15. The Reynolds number utilized 

is 300, thus the inner cylinder velocity is ω = 1.8 π rad 𝑠⁄  and Taylor number is 43297.  

Figure 76 compares the results obtained with the present work simulation (right side) 

with the one obtained by Watanabe et al., (2003). The streamlines obtained by Watanabe et al. 

show the three Taylor-cells in half cylinder length. One can observe a great agreement between 

the positions of the Taylor cells from both works, despite the difference of the streamlines 

values. 

Figure 77, on the other hand, compares the photographs of the Taylor-cells with the flow 

direction obtained in this work. Both demonstrated that for the first Taylor-cell, near the bottom 

wall, the fluid moves from the outer cylinder to the inner cylinder in a counterclockwise 

orientation. 
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FIGURE 75 - TANGENTIAL VELOCITY COMPONENT PROFILE OF THE AQUEOUS 

SOLUTION OF GLYCERIN DIFFERENT CONCENTRATIONS. 

 

(A) 

 

(B) 

 
(A) 60%, (B) 70% AND (C) 80% 

(C) 
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FIGURE 76 - STREAMLINES CONTOURS COMPARISON. 

 

(A) (B) 

(A) BY WATANABE ET AL., (2003), AND (B) SIMULATION RESULT 
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FIGURE 77 - TAYLOR-CELL DIRECTIONS COMPARISON. 

 

(A) (B) 

(A) BY WATANABE ET AL., (2003), AND (B) SIMULATION RESULT 

 

In the case of the non-Newtonian fluids, the verification was performed in two different 

ways: (i) through steady-state flow simulations, comparing the tangential velocity component 

profile at the half-height of the cylinders with the analytical solution, and (ii) performing a 

qualitative comparison with the results obtained by Escudier (1995) in a supercritical 

experiment (high Reynolds and Taylor numbers values). While the former way of comparison 

regards to a steady-state laminar flow simulation, the latter is considered supercritical as the 

author observed that, for that specific geometry and fluid, its critical Taylor number is 10000.  

Firstly, two geometries with different radius gaps were analyzed in order to compare the 

results between three different fluids: (i) shear-thinning Power-Law fluid, (b) Newtonian fluid 
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and (iii) shear-thickening Power-Law fluid. For all the simulations, in steady-state regime, the 

outer radius is  Rout = 0.12 m, thus the discrepancies between the two geometries are the 

following: (i) Rinn = 0.06 m, H = 0.24 m, δ = 0.06 m, k = 0.5 and Γ = 4, while (ii)  Rinn =

0.114 m, H = 0.24 m, δ = 0.006 m, k = 0.95 and Γ = 4. The former geometry is considered 

wide-gap Taylor-Couette geometry, whereas the latter is a narrow-gap one. The utilized mesh 

has 50 x 50 x 70 nodal points in tangential, radial, and axial axis, respectively. The six different 

simulations information are summarized in Table 29. 

 

TABLE 26 - THREE-DIMENSIONAL SIMULATIONS PROPERTIES. 

Simulation 𝐤 Type 

Power-

Law 

index 

(n) 

Flow 

Consistency 

(m) 

𝛚inn 

(rad/s) 
Reynolds Taylor 

(a) 0.50 Power-Law 0.5 1 π 8⁄  1.830 3.35 

(b) 0.50 Newtonian 1.0 1 π 8⁄  1.410 2.00 

(c) 0.50 Power-Law 1.5 1 π 8⁄  1.520 2.30 

(d) 0.95 Power-Law 0.5 1 π 8⁄  0.780 0.03200 

(e) 0.95 Newtonian 1.0 1 π 8⁄  0.270 0.00380 

(f) 0.95 Power-Law 1.5 1 π 8⁄  0.096 0.00048 

 

The main results obtained from the simulations are summarized from Figure 78 to 

Figure 81. Simulations (a), (b), (c) streamlines contours are observed in Figure 78. One can 

observe that the Taylor-vortices have different shapes for the different fluids. It is possible to 

observe the main characteristics of shear-thinning and shear-thickening fluids. While the former 

leads to higher apparent viscosities values in regions with the lesser shear rates values (i.e., top 

and bottom walls near the outer cylinder surface), the latter leads to higher apparent viscosities 

values in regions with the higher shear rates values (i.e., top and bottom walls near the inner 

cylinder surface). 

Figure 80 shows a good agreement between the numerical solution of the tangential 

velocity profile through the radial direction with the analytical solutions (Equations (2.45) and 

(2.46)). 

Likewise, simulations (d), (e) and (f) streamlines contours are illustrated in Figure 79. 

One can observe that despite the fact of the Taylor-vortices having similar shapes for both wide-

gap and narrow-gap geometries, the streamlines values are smaller for the narrow-gap case, 

especially for the Newtonian case. 
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Following the results observed in Figure 80, Figure 81 also shows a very good 

agreement between the numerical and analytical results. The major difference observed is that 

for the narrow-gap case the velocity profile, for all the cases, is similar to a straight line. 

 

FIGURE 78 - STREAMLINE CONTOURS COMPARISON BETWEEN (A) SHEAR-THINNING, 

(B) NEWTONIAN AND (C) SHEAR-THICKENING FLUIDS IN WIDE-GAP GEOMETRY. 

   
(A) (B) (C) 

 

 

FIGURE 79 - STREAMLINE CONTOURS COMPARISON BETWEEN (D) SHEAR-THINNING, 

(R) NEWTONIAN AND (F) SHEAR-THICKENING FLUIDS IN NARROW-GAP GEOMETRY. 

   
(D) (E) (F) 
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FIGURE 80 - TANGENTIAL VELOCITY COMPONENT VALIDATION FOR (A) SHEAR-

THINNING, (B) NEWTONIAN AND (C) SHEAR-THICKENING FLUIDS IN WIDE-GAP 

GEOMETRY. 

 

(A) 

 

(B) 

 

(C) 
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FIGURE 81 - TANGENTIAL VELOCITY COMPONENT VALIDATION FOR (D) SHEAR-

THINNING, (E) NEWTONIAN AND (F) SHEAR-THICKENING FLUIDS IN NARROW-GAP 

GEOMETRY. 

 

(D) 

 

(E) 

 

(F) 
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Additionally, a mesh size comparison was held regarding the simulation (a), while 

holding the nodal points number at the tangential and axial direction, three different simulations 

were performed using three different number of nodal point at radial direction (nr). The RMS 

deviation values for each simulation are also shown in the graphs (Equation 3.53). The RMS 

deviation values in function of the number of nodal points in the radial direction are presented 

in Figure 82. One can observe that, for this specific simulation, all the values are acceptable 

(for a convergence criterion that is less than 10-3). For this reason, the value nr = 50 was used 

also in simulations (b), (c), (d), (e) and (f). Figure 83 shows the comparison between numerical 

and analytical solutions for (i) nr = 25, (ii) nr = 50 and (iii) nr = 100.  

 

FIGURE 82 - RMS DEVIATION AGREEMENT BETWEEN NUMERICAL RESULTS AND 

ANALYTICAL SOLUTION IN FUNCTION OF THE RADIAL NODAL POINTS. 

 

 

 

 

 

 

 

 

 

 



166 

 

 

 

FIGURE 83 - RMS DEVIATION VALUES COMPARISON BETWEEN SIMULATION WITH (A) 

25, (B) 50 AND (C) 100 RADIAL NODAL POINTS. 

 

(A) 

 

(B) 

 

(C) 
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Furthermore, the simulations regarding Power-Law fluids were also verified against the 

database from Escudier (1995). In that paper, experimental measurements for an aqueous 

solution of Xantham gum in a concentric longitudinal annular geometry were carried in order 

to compare the measurements with a Newtonian fluid and thixotropic shear-thinning fluid 

measurements. In the present work, only the measurements for the Xantham gum solution were 

taken into account. 

The geometric parameters of the annular section for this work are the following:  Rinn =

0.0254 m, Rout = 0.0502 m, k = 0.506, δ = 0.025 m. While the overall apparatus length is 

H = 5.775 m, thus the aspect ratio is Γ = 233. Measurements were made at a location of 24 

radius gap from the end housing furthest away from the centrebody drive. A laser Doppler 

anemometer was used to determine the mean flow velocities and the vortex mapping in the 

axial direction, and it was realized by traversing the probe head along the axis of the annulus at 

discrete radii within the annulus gap. The Taylor number of the experiments is 46000. 

Consequently, the simulations of the present work were made only for an 8 radius gap 

values in the axial distance due to the fact that the apparatus length is very large and would be 

necessary a large computational effort to simulate the whole experiment. Besides, the present 

simulation main objective is to perform only a qualitative comparison, because the present 

computational code is not aimed to turbulent flows. In order to fit the condition, which is found 

at the same distance of the experiments measurements from Escudier, the bottom and top 

boundary conditions of the present simulations were made as symmetric boundary conditions. 

The convergence criterion used in this simulation was 10-3 mass residues and the applied mesh 

has 50 x 50 x 100 nodal points. 

Xantham gum apparent viscosity obeys the following relation: 

 

 η = 1 + (11γ̇)0.437−1 + 0.001 (5.1)   

 

Figure 84 makes a comparison between the numerical results and experimental 

measurements for the dimensionless tangential velocity component along one Taylor-vortices 

pair. One can observe that the smaller the relation (Rout − r) δ⁄  the closer to the outer cylinder. 

Therefore, for the present simulation, a better agreement with the experimental results was 

observed near the inner cylinder. 
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FIGURE 84 - TANGENTIAL VELOCITY COMPONENT WITHIN TAYLOR VORTICES FOR 

XANTHAN GUM COMPARISON WITH THE WORK OF ESCUDIER (1995). 

 

 

Similarly, Figure 85 shows a comparison between the numerical results and 

experimental measurements for the dimensionless axial velocity component along one Taylor-

vortices pair. The comparison is realized for six different (Rout − r) δ⁄  distance relations: (a) 

0.1, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8 and (f) 0.86. The same behaviors of the numerical and 

experimental axial velocity profiles are observed in all the radial points. 
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FIGURE 85 - AXIAL VELOCITY COMPONENT WITHIN TAYLOR VORTICES FOR XANTHAN 

GUM COMPARISON. 

  
(A) (B) 

  
(C) (D) 

  
(E) (F) 

 

Figure 86 also shows a comparison of the axial velocity component contours within 

Taylor-vortices between the experimental measurements (top) and the numerical simulation 

results of this work (bottom). Moreover, Figure 87 shows a similar comparison between the 

streamline contour patterns. One can see that a similar behavior for both axial velocity and 

streamline patterns are observed. 
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FIGURE 86 - AXIAL VELOCITY COMPONENT CONTOUR PLOT COMPARISON. 

  

TOP (ESCUDIER, 1995), BOTTOM (PRESENT WORK). 
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FIGURE 87 - STREAMLINE CONTOURS COMPARISON 

  

TOP (ESCUDIER, 1995), BOTTOM (PRESENT WORK). 

 

5.2 STEADY-STATE SIMULATIONS 

 

In Chapter 4, it has been discussed that the Robertson-Stiff and Herschel-Bulkley 

models presented a best fitting regression than the Bingham and Casson NNF models. 

Accordingly, the Herschel-Bulkley fluid has been chosen to model the behavior of fabric-water 

solutions through the algorithm presented in Figures 18 and 19.  

It should also be noted that the Herschel-Bulkley fluid model parameters obtained by 

regression were used for the six different fluid suspensions considered in this work: (i) 1.25 kg 

of cotton fabric, (ii) 2.50 kg of cotton fabric, (iii) 1.25 kg of semi-synthetic fabric, (iv) 2.50 kg 

of semi-synthetic fabric, (v) 1.25 kg of mixed fabrics, and (vi) 2.50 kg of mixed fabrics. For all 
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the suspensions, numerical simulations with six different angular velocities for the inner 

cylinder were used as boundary conditions: (i) 40 rpm, (ii) 60 rpm, (iii) 80 rpm, (iv) 100 rpm, 

and (v) 120 rpm. Simulations have not been carried out for 20-rpm because of the presence of 

plug flow (see Tables 27 to 29) 

In total, 30 different steady-state simulations were carried out. It is worthy of mention 

that for all simulations the mass conservation and the θ-axis momentum convergence were 

achieved before the r and z-axes momentum ones. 

Furthermore, the BiCGSTAB method using the CTDMA as preconditioner was used for 

solving the pressure heptadiagonal linear system for each iteration (Appendixes I and II).  

Moreover, a mesh grid with 50, 65 and 50 points in tangential (θ), radial (r) and axial 

(z) directions, respectively, was implemented. Thus, the tridimensional cylindrical mesh 

presents a total of 162500 nodal points to represent the geometry described in Chapter 4 (Rinn = 

110 mm, Rout = 269 mm, and H = 316 mm). Also, a concentration factor (ς) of 1.05, see 

Equations (3.49) and (3.50), was applied for generating the non-uniform grid in the radial and 

axial directions. 

To avoid two discontinuous regions in the flow domain, the Papanastasiou- Herschel-

Bulkley Equation with K = 1 is used to model the fluid behavior – Equations (2.13) and (2.16). 

Plots of all the shear rate (γ̇θθ, γ̇rr, γ̇zz, γ̇rθ, γ̇θz, and γ̇rz) components and velocities 

components (vθ, vr, and vz), as well as shear stress components and shear stress tensor modulus, 

pressure, residues and streamfunction distributions, were analyzed in each iteration to evaluate 

the flow progress until convergence.  

The key point of the streamfunction analysis is to evaluate the secondary flow, the fluid 

circulation inside the gap concerning the radial and the vertical axis, this understanding of its 

directions and magnitudes to perform some comparisons.  

Torque values are used as the comparison parameter between the simulation results and 

the experimental data. In the first place, it was mentioned that the relation between the torque 

transmitted to the fluid stream and shear stress on the inner cylinder surface relation is as 

follows: 

 

 |τinn| =
T

2πRinn
2 H

 (5.2)   
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The equation above is accurate only when all shear and normal stress components, but 

the τrθ one is neglected, together with all the end effects. However, the aspect ratio in this work 

is not high enough to neglect end effects (Γ ≈ 2) and the water-fluid suspension is not uniformed 

to neglect all the stress components too.  

For the numerical computation of the torque on the inner cylinder surface is calculated 

by the following equation: 

 

 T = ∫ ∫ |τ|2Rinndzdθ
H

0

2π

0

 (5.3)   

 

In order to evaluate the torque, two different calculations were proposed: (i) complete 

torque calculation and (ii) simplified torque calculation. The former considers all the shear 

stress components (τθθ, τrr, τzz, τrθ, τθz, and τrz) in order to evaluate the shear stress near the 

inner cylinder surface, while the latter only consider the τrθ shear stress component. One can 

note that as the integration limits of Equation (5.2) vary from the bottom to the top basis of the 

geometry, the end-effects are considered in both calculations. 

Figure 88 depicts the comparison of the experimental torques (solid lines) for fabric-

water suspensions (1.25 kg and 2.50 kg of cotton fabric) with the numerical torque, evaluated 

by Equation (5.2) represented by symbols (circle for complete torque calculation and square for 

the simplified one) in function of the velocity. In addition, two dashed lines with ± 20% of 

tolerance were plotted together with the experimental measurement spline. One can note that 

for the lighter suspension, the numerical torque values for 40 rpm condition do not fit the 

tolerance boundary, while it fits the boundaries for higher velocities. The lighter suspension 

presents a Power-Law index parameter (n) of 1.02, thus showing the Newtonian-like behavior 

also in the plot, while that for the heavier suspension n = 1.17, which reflects on the shear-

thickening behavior. 
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FIGURE 88 - COMPARISON OF THE EXPERIMENTAL TORQUE MEASUREMENTS WITH 

NUMERICAL TORQUE RESULTS FOR COTTON FABRIC-WATER SOLUTIONS. 

 

 

Similarly, Figure 89 shows the comparison of the measured values with the numerical 

torque calculation for fabric-water suspensions for 1.25 and 2.50 kg of semi-synthetic fabric 

mass in function of ωinn (rpm). Again, the dashed lines with ± 20% of tolerance from the 

experimental values were plotted again. Contrary to the cotton fabric case, the lighter 

suspension presents a larger difference between the two torque calculation approaches, thus 

showing that not only the 𝜏rθ  shear stress component affects the fluid flow. The torque 

calculations for the heavier fluid do not fit very well the tolerance boundaries for all the ωinn 

values but 20 rpm. However, in that case, the values for the different torque calculations 

approaches are more similar. The Newtonian-like behavior of the heavier suspension is 

demonstrated on the plot (n is nearly the unit), while that for the lighter suspension a more 

shear-thickening behavior is observed (n = 1.59), because of the torque tendency for slower 

velocities. 
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FIGURE 89 - COMPARISON OF THE EXPERIMENTAL TORQUE MEASUREMENTS WITH 

NUMERICAL TORQUE RESULTS FOR SEMI-SYNTHETIC FABRICS AND WATER 

SOLUTIONS. 

 

 

Figure 90 shows the comparison between the experimental torque values (with ± 20% 

of tolerance dashed lines) and the calculated numerical torques for 1.25 kg and 2.50 kg of mixed 

fabric amounts (cotton and semi-synthetic). Both fluids fit satisfactorily the tolerance 

boundaries. For the lighter fluid, only the values for 40 rpm do not fit the boundaries, while for 

the heavier fluid the numerical calculation fit the boundaries. The difference between the 

approaches is notable and denotes that other shear rate components also have importance. 

Similarly to the other fluid suspensions, for the mixed fabric-water ones, both curves show the 

tendency to a shear-thickening behavior. These behaviors were also observed on the 

experimental torque and the Herschel-Bulkley parameters obtained by non-linear regression o 

Chapter 4. The mixed fabric-water suspensions show a combined effect of both cotton and 

semi-synthetic on the fluid flow. 
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FIGURE 90 - COMPARISON OF THE EXPERIMENTAL TORQUE MEASUREMENTS WITH 

NUMERICAL TORQUE RESULTS FOR MIXED FABRIC-WATER SOLUTIONS. 

 

 

One can note that the difference between the torque calculation approaches is more 

notable for some fluids, which may vary because of the Herschel-Bulkley parameters and the 

flow behavior change because of the bottom surface end-effects. For that reason, plots of 

tangential velocities, pressure, shear rate, viscosity, shear stress, and streamlines are presented 

next for all fluids.  

Table 27 summarizes the conditions for the steady-state simulations. Both the Reynolds 

number (Re) and Taylor numbers (Ta), based on Equations (2.40) and (2.41), were obtained 

using the shear rates ( γ̇ ) and viscosity (η) from the regression of the experimental 

measurements. One can see that the Reynolds values are below the critical values so that all 

simulations are comprised in the laminar regime. The value of the plug radius (ro) – Equation 

(2.63) – is also shown, pointing out that only the 20-rpm inner cylinder velocity condition (1.25 

kg cotton fabric-water suspension) there was a presence of a plug flow as the plug radius is 

smaller than the outer cylinder radius (Rout), which is 269 mm, reason why 20-rpm condition 

has not been performed. 
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TABLE 27 - CONDITIONS OF COTTON FABRIC-WATER SIMULATIONS. 

 1.25 kg of cotton fabric 2.50 kg of cotton fabric 

ωinn 

(rpm) 
�̇� (s-1) 

η 

(Pa·s) 
Re Ta 

r0 
(mm) 

�̇� (s-1) 
η 

(Pa·s) 
Re Ta 

r0 
(mm) 

40 8.91 5.20 14.00 409.24 1181.4 7.34 8.75 8.32 144.67 885.31 

60 17.43 5.24 20.83 906.83 2322.2 14.62 9.79 11.16 260.11 1962.3 

80 20.43 5.26 27.72 1604.9 2731.0 20.75 10.39 14.03 411.03 2954.6 

100 24.43 5.27 34.55 2494.4 3274.3 23.44 10.60 17.17 616.28 3408.1 

120 28.34 5.28 41.37 3575.4 3808 24.24 10.66 20.49 877.39 3546.6 

 

Table 28, on the other hand, summarizes the flow conditions for the semi-synthetic 

fabric-water suspension. One can see that there is the presence of plug flow for 20 and 40-rpm 

simulations for the 2.50 kg of semi-synthetic fabric-water suspension flows. However, both 

plug radius values are closer to the outer cylinder radius, thus the plug flow comprehends just 

a small portion of the gap. The values of Reynolds and Taylor number are not high either. 

 

TABLE 28 - CONDITIONS OF SEMI-SYNTHETIC FABRIC-WATER SIMULATIONS. 

 1.25 kg of semi-synthetic fabric 2.50 kg of semi-synthetic fabric 

ωinn 

(rpm) 
�̇� (s-1) 

η 

(Pa·s) 
Re Ta 

r0 
(mm) 

�̇� (s-1) 
η 

(Pa·s) 
Re Ta 

r0 
(mm) 

40 6.42 2.69 27.10 1533.8 517.0 8.39 6.69 10.89 247.9 245.0 

60 12.68 3.94 27.72 1605.9 1482.1 13.24 6.58 16.60 575.8 377.8 

80 15.17 4.37 33.35 2323.1 1968.7 20.15 6.52 22.33 1041.5 567.1 

100 19.50 5.05 36.07 2718.4 2922.1 26.01 6.50 28.00 1638.2 729.3 

120 23.04 5.56 39.30 3226.6 3803.1 31.30 6.49 33.66 2367.1 876.0 

 

Similarly, Table 29 summarizes the flow conditions for the mixed fabric-water 

suspension simulations. Similar to the other fabrics, the Reynolds and Taylor numbers are not 

high enough to characterize a turbulent flow regime because the fluid is very viscous. In this 

table, only the 20-rpm condition indicates the presence of a plug flow for 1.25 kg of semi-

synthetic fluid suspension, but the plug radius value is close to the outer cylinder radius. 

 

 

 

 

 



178 

 

 

 

TABLE 29 - CONDITIONS OF MIXED FABRIC-WATER SIMULATIONS. 

 1.25 kg of mixed fabric 2.50 kg of mixed fabric 

ωinn 

(rpm) 
�̇� (s-1) 

η 

(Pa·s) 
Re Ta 

r0 
(mm) 

�̇� (s-1) 
η 

(Pa·s) 
Re Ta 

r0 
(mm) 

40 7.15 3.99 18.25 696.17 464.13 8.81 6.61 11.02 253.93 574.96 

60 14.33 4.75 23.02 1107.4 1095.3 13.07 7.23 15.12 477.73 932.21 

80 17.67 5.01 29.07 1765.7 1427.8 18.20 7.81 18.65 726.99 1402.4 

100 22.29 5.33 34.19 2441.9 1914.3 23.20 8.27 22.01 1011.7 1894.0 

120 25.86 5.54 39.44 3250.3 2310.7 25.34 8.45 25.85 1396.2 2114.7 

 

 Inner Cylinder Angular Velocity of  40 rpm  

 

For 40 rpm, there are no significant differences, at sight, between the six fabric-water 

suspensions for tangential velocity and pressure plots. Consequently, Figure 91 depicts the plots 

of the (a) tangential velocity vθ (m/s) and (b) pressure p (Pa) representing all the six fluids. The 

maximum velocity, demonstrated at the inner cylinder wall, is the same for all fluid 

suspensions. There are only slight differences between the velocity propagation in radial 

direction depending on the fluid parameters, despite it is nearly indistinguishable by perception. 

It is important to emphasize that the pressure was not computed as the absolute, but zero-

referenced differential pressure. One can note that, as the inner cylinder velocity is relatively 

slow, the represented pressure difference between the bottom and top surfaces are almost equal 

to the hydrostatic pressure difference (ph=0 = ph=H + ρgH). 

One can note that the plots presented are represented in an r-z section for θ = 180º (π 

rad), thus the left corner of the plots corresponds to the inner cylinder surface. This pattern will 

be used in all plots henceforth. 
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FIGURE 91 - TANGENTIAL VELOCITY (VΘ) AND PRESSURE FIELD (P) FOR 40 RPM 

IMPOSED VELOCITY. 

  
(A) (B) 

 

Figure 92 represents the dynamic viscosity (η) for the six different fluid suspensions for 

40 rpm. For the cases where the Power-Law indexes (n) is closer to unity, 1.25 kg of cotton and 

2.50 kg of semi-synthetic fabric-water suspensions. On the other hand, because of the higher 

variation of the shear rates within the gap, the main variation of the viscosity is noticeable for 

the suspensions where the Power-Law index is higher. One can mention that the maximum 

viscosity value is higher for the heavier fluids, except for the semi-synthetic fabric-water 

suspension, where the heavier fluid presents a Newtonian fluid-like behavior with higher flow 

consistency index (m) and yield stress values (τ0) however. 
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FIGURE 92 - APPARENT VISCOSITY (Η) FIELD FOR A 40 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

One can note that in the case of 2.50 kg of semi-synthetic fabric-water suspension, 

contrary to the other fluids, the maximum viscosity is found on the bottom corner with the outer 

cylinder, where the minimum shear rate value is found. This behavior can be better observed in 

Figure 93. The fluid suspension has the following parameters for the Herschel-Bulkley fluid, n 

= 1.006, m = 6.271 Pa·sn and τ0 = 2.808 Pa. Thus, Figure 93 represents the rheological curve of 

the fluid in function of the maximum and minimum shear rate values found in the simulation 

(4.57·10² and 4.63·10-3) for the real Power-Law index and another index (n = 1.05). So, one 

can observe that the higher index represents a more shear-thickening behavior, the viscosity 

increases with the shear rate, as for the smaller index it has a Newtonian-like behavior. However, 
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for the minimum shear rate value, the viscosity tends to the infinity because of the presence of 

yield stress. That is the reason because such an unexpected behavior showed up on simulation. 

 

FIGURE 93 - APPARENT VISCOSITY (Η) CURVES FOR DIFFERENT POWER-LAW INDEX (N) 

CONCERNING THE 2.50KG OF SEMI-SYNTHETIC FABRIC-WATER SUSPENSION. 

 

 

Figure 94 represents the stream function behaviors for the different fluid suspensions. 

One can note that there is still only one Taylor cell for all simulations, different from Newtonian 

fluids, where more cells can appear depending on the Reynolds number and geometrical aspects 

(WATANABE et al., 2003). There are only minor differences between the stream function 

intensities, which may vary according to the viscosity distribution across the gap, which can 

enhance or decrease either radial or axial velocity components. The center of Taylor-Couette 

cells denotes the center of rotation of the secondary flow within the gap. Also, the magnitude 

of the stream function denotes the influence of the secondary flow on the main flow. The higher 

the stream function magnitude the higher its influence. For all cases, the secondary flow goes 

upward near the inner cylinder and downwards near the outer cylinder surface. 
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FIGURE 94 - STREAM FUNCTION (Ψ) FIELD FOR A 40 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

 Inner Cylinder Angular Velocity of  60 rpm  

 

Figure 95 depicts the plots of the (a) tangential velocity vθ (m/s) and (b) pressure p (Pa) 

representing one of the six suspension fluids for ωinn of 60 rpm. There is no significant change 

in the tangential velocity propagation across the gap. Moreover, the pressure distribution shows 

a more apparent influence of the inner cylinder velocity on it as there is a discontinuity of the 

pressures isolines near the cylinder surface. 
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FIGURE 95 - TANGENTIAL VELOCITY (VΘ) AND PRESSURE FIELD (P) FOR A 60 RPM 

IMPOSED VELOCITY. 

  
(A) (B) 

 

Furthermore, Figure 96 represents the apparent viscosity (η)  for all six fluid 

suspensions. One can note that there is a small difference between the fluids with the smaller 

Power-Law indexes (n), which varies from 9 to 6.5 Pa·s for the fluid with the 2.50 kg of fabric-

water suspension and 5.55 to 5 Pa·s for the 1.25 kg of cotton fabric-water suspension. 
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FIGURE 96 - APPARENT VISCOSITY (Η) FIELD FOR A 60 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

Figure 97 represents the stream function distribution across the gap for different fluid 

suspensions. Because of the non-Newtonian behavior of the suspensions, only one cell of 

circulation of the second flow is observed as well (Taylor-cell) in the same direction as the 

slower inner cylinder velocities cases. There are some minor differences concerning the center 

of the cell and the magnitude of the stream function which is defined according to the fluid 

properties but still, demonstrates that the second flow is weaker than the magnitude of the 

primary flow (tangential velocity). 
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FIGURE 97 - STREAM FUNCTION (Ψ) FIELD FOR A 60 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

 Inner Cylinder Angular Velocity of  80 rpm  

 

Figure 98 represents the (a) tangential velocity vθ (m/s) and (b) pressure p (Pa) 

distribution plotted across the gap between the cylinders. As one can see, the propagation of the 

tangential velocity does not change significantly between the fluids, for this reason, only one 

of them has been plotted representing all fluid suspensions. The same analysis can be extended 

to the pressure distribution, which one can see the growing influence of the inner cylinder 

velocity boundary into it, thus changing the pressure isolines near the inner cylinder surface. 
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FIGURE 98 - TANGENTIAL VELOCITY (VΘ) AND PRESSURE FIELD (P) FOR A 80 RPM 

IMPOSED VELOCITY. 

  
(A) (B) 

 

Figure 99 represents the apparent viscosity(η) for all six different fluid suspensions. 

One can see that if compared to the water dynamic viscosity (μ), which is near 10-3 Pa·s at 20°C, 

the viscosity of the suspension is thousands of times higher, approaching that of glycerin. It can 

demonstrate the influence of the presence of fabrics inside washing machines. The fabric tissues 

used in these tests do not affect the fluid density significantly because their volume compared 

with the water is minimum, besides being lighter than the water. The main influence of the 

fabrics is in the way how the fluids behave when an external torque is imposed on it, and it can 

be seen that the quantities of tissues and fabric kind have a quite influence on its distribution. 
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FIGURE 99 - APPARENT VISCOSITY (Η) FIELD FOR AN 80 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

Figure 100 represents the stream function (ψ) distribution across the gap for the six 

different fluid suspensions. One can see that there is only one cell of recirculation, despite the 

higher velocities on the inner cylinder. In this case, the magnitude of the secondary flow is 

higher than the ones found on the 60-rpm inner cylinder velocity condition. The direction of 

the secondary flow did not change either. 

 

 

 

 



188 

 

 

 

FIGURE 100 - STREAM FUNCTION (Ψ) FIELD FOR AN 80 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

 Inner Cylinder Angular Velocity of  100 rpm  

 

Figure 101 depicts the plot of the (a) tangential velocity vθ (m/s) and (b) pressure p (Pa) 

distribution plotted across the gap between the cylinders, where there are no visual differences 

between these six fluid suspensions distributions. As one can see the maximum velocity is 

achieved near the inner cylinder surface (ωinn · Rinn = 1.152 m/s). Also, the influence of the 

growing inner cylinder velocity on the pressure distribution becomes more noteworthy as it 

deflects this distribution near the left-top boundary. 
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FIGURE 101 - TANGENTIAL VELOCITY (VΘ) AND PRESSURE FIELD (P) FOR A 100 RPM 

IMPOSED VELOCITY. 

  
(A) (B) 

 

Figure 102 depicts the apparent viscosity (η) for all six fluid suspensions. One can see 

that for the fluids with Newtonian-like behavior, the maximum and the minimum have not 

changed much in all ωinn imposed conditions. Moreover, the main difference between the 

maximum and the minimum viscosity along the distribution is due to the shear stress influence. 

However, the fluids that present a high viscosity near the left-bottom end wall also presents a 

strong variation of the viscosity variation. Thus, one can note that the most important 

characteristic is the viscosity distribution across the whole gap, not only where the end-effects 

occur. 
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FIGURE 102 - APPARENT VISCOSITY (Η) FIELD FOR AN 100 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

Figure 103 represents the stream function (ψ) distribution across the gap for all fluid 

suspensions. The presence of only one Taylor-cell (secondary flow recirculation) has not 

changed, despite some variations on the eye of recirculation position and the higher stream 

function intensity when compared to the slower cases.  
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FIGURE 103 - STREAM FUNCTION (Ψ) FIELD FOR AN 100 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

 Inner Cylinder Angular Velocity of  120 rpm  

 

Figure 104 represents the plotted distribution of the (a) tangential velocity vθ (m/s) and 

(b) pressure p (Pa) for one fluid suspension representing all six fabric-water suspensions. In this 

case, where the inner cylinder surface velocity is the maximum, the deflection on the pressure 

distribution maximized near its surface as well. 
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FIGURE 104 - TANGENTIAL VELOCITY (VΘ) AND PRESSURE FIELD (P) FOR A 120 RPM 

IMPOSED VELOCITY. 

  
(A) (B) 

 

Figure 105 represents the apparent viscosity (η)  for all the six different fluid 

suspensions. The graphics represent not only the influence of the rheological parameters of the 

suspensions, given by the Herschel-Bulkley model but also the differences between the fabric 

kinds and tissues quantities in each suspension. For the cotton fabric case, the lighter suspension 

presents a Newtonian-like behavior and smaller yield stress and Power-Law consistency index 

compared to the heavier suspension, which can be observed in the other viscosities graphs for 

all velocities. On the other hand, for the semi-synthetic fabric the heavier fluid also presents a 

higher m-parameter and yield stress, but in this case, a Newtonian-like behavior which could 

be explained by the great concentration of fabric tissues near the inner cylinder wall that 

influence the suspension behavior. Finally, for the mixed fluids, both heavier and lighter 

presents similar shear-thickening Power-Law index (n) and greater m-parameter and yield 

stress for the heavier fluid. 
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FIGURE 105 - APPARENT VISCOSITY (Η) FIELD FOR AN 120 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   

(A) (B) (C) 

   
(D) (E) (F) 

 

Figure 106 represents the stream function (ψ) distribution across the gap for all the fluid 

suspensions. On the literature review concerning the instabilities on the Taylor-Couette flow it 

has been mentioned how the increasing on the Reynolds number (or the inner cylinder imposed 

velocity) enhances the secondary flow influence than increasing the number of recirculation 

cells (depending on the geometry) and also impacts on the primary flow behavior. However, 

for these suspensions, the rheological parameters point out that they are very viscous fluids, 

thus the appearance of instabilities is retarded, as one can see on all graphical visualization of 

the stream functions. 
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FIGURE 106 - STREAM FUNCTION (Ψ) FIELD FOR AN 120 RPM IMPOSED VELOCITY 

CONSIDERING A SUSPENSION WITH (A) 1.25KG OF COTTON, (B) 2.50KG OF COTTON, (C) 

1.25KG OF SEMI-SYNTHETIC, (D) 2.50KG OF SEMI-SYNTHETIC, (E) 1.25 OF MIXED AND 

(F) 2.50 OF MIXED FABRICS. 

   
(A) (B) (C) 

   
(D) (E) (F) 

 

 End-Effect Analysis  

 

End-effects were computed on the torque calculations and also in the experimental 

measurements as well. It is important to mention that the geometry aspect ratio (Γ), which is 

not high enough to avoid the impact of end-effects on measurement, is similar to the ones found 

in real washing machines. One can note that the faster is the inner cylinder tangential velocity, 

the higher is the influence of the end walls and the end-effects influence in numerical 

calculation and experimental measurements. One can see, by checking the rheological 

parameters of the fluids (Table 19), that the higher the Power-Law index parameter (n) the 

higher the maximum shear-stress value and the end-effect impact in the fluid flow. Not only 
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the n-parameter enhances the end-effect, but also the yield stress (τ0) and the flow consistency 

index (m). 

Table 30 summarizes the maximum shear-stress found for each numerical simulation. 

In a coaxial Couette geometry, the maximum shear stress occurs due to the contribution from 

the portion of the flow which is influenced by the solid bottom surface. The growth of the tensor 

magnitude across the gap is related to the rheological properties. For example, despite being 

the lighter, the semi-synthetic fabric-water fluid suspension presents a higher maximum tensor 

magnitude value than the heavier one. The propagation of shear stresses from the end-effect 

focuses depends on the rheological parameters for each fluid suspension. Table 31 presents the 

ratio between the average of the shear stress magnitude in the inner cylinder surface with the 

maximum magnitude. One can see that it changes significantly with the fabric type, but it does 

not change very much with the velocities. 

 

TABLE 30 - MAXIMUM SHEAR STRESS TENSOR MAGNITUDE. 

′ |τ|max (Pa) 

 Cotton Semi-synthetic Mixed 

 1.25 kg 2.50 kg 1.25 kg 2.50 kg 1.25 kg 2.50 kg 

40 rpm 2488 7749 12778 2924 5173 7434 

60 rpm 3761 12472 24298 4395 8663 12330 

80 rpm 5041 17482 38335 5869 12491 17654 

100 rpm 6328 22718 54600 7345 16591 23323 

120 rpm 7620 28140 72894 8823 20921 29282 

 

TABLE 31 - RATIO BETWEEN AVERAGE AND MAXIMUM SHEAR STRESS ON THE INNER 

CYLINDER SURFACE. 

 |τ̅| |τ|max⁄  

 Cotton Semi-synthetic Mixed 

 1.25 kg 2.50 kg 1.25 kg 2.50 kg 1.25 kg 2.50 kg 

40 rpm 7.589% 5.526% 4.217% 8.041% 4.920% 5.043% 

60 rpm 7.576% 5.519% 4.216% 7.970% 4.912% 5.031% 

80 rpm 7.580% 5.518% 4.215% 7.936% 4.911% 5.028% 

100 rpm 7.586% 5.516% 4.215% 7.921% 4.911% 5.026% 

120 rpm 7.596% 5.516% 4.215% 7.905% 4.912% 5.026% 

 

One can still note that the maximum shear stress tensor magnitude is found near the 

bottom corner with the inner cylinder surface, which denotes the presence of a great end-effect 

in such a small region. For almost all fluids the shear stress variation changes in a radial way 
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along the gap. Figure 107 denotes that variation along the axial direction for the ratio of the 

local shear stress and the maximum one in the inner cylinder surface region. It shows that the 

fluids with the lower Power-Law index (n) (i.e., 1.25 kg of cotton and 2.50 of semi-synthetic 

fabric-water suspensions) are the most affected with the end-effects. It occurs because the linear 

behavior of the shear stress for Newtonian-like fluid flows. While that for a shear-thickening 

fluid the viscosity on the maximum shear stress region is also maximum, but with the decreasing 

of the shear stress magnitude leaving the end-effect region the viscosity also decreases, thus 

suffering less from the end-effects. 

 

 FIGURE 107 - RATIO BETWEEN THE SHEAR STRESS ALONG THE INNER CYLINDER 

SURFACE AND THE MAXIMUM SHEAR STRESS. 

 

 

Figure 108 plots the variation along the axial direction for the ratio of the local shear 

rate and the maximum one in the inner cylinder surface region. One can see some minor 

differences when comparing to the shear stress behavior. In this case, it occurs because the 

shear rate is calculated directly with the velocity variation on the region, while that for the shear 

stress it is more affected with the change on the viscosities. 
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FIGURE 108 - RATIO BETWEEN THE SHEAR RATE ALONG THE INNER CYLINDER 

SURFACE AND THE MAXIMUM SHEAR RATE. 

 

 

Figure 107 and 108 are depicted for the 120-rpm simulation, but their analyses are 

extended to the other velocities due to the fact that there are almost no changes between the 

distribution of the local shear rate and the maximum one, as seen in Table 31. 

 

5.3PERIODIC FLOW SIMULAT IONS 

 

Similar to the steady-state simulations the results of the periodic flow simulations were 

compared against the experimental measurements presented in Chapter 4. The parameters of 

the Herschel-Bulkley fluid model obtained through the regression of experimental 

measurements are used in simulations. In the periodic flow simulations, only the two bulks of 

mixed fabric-water suspensions are used as the working fluid. 

 Two different tests conditions have been analyzed: (i) statical basis flow, and (ii) 

rotating basis flow. The former corresponds to the geometry used for steady-state simulations, 

whereas the latter bottom of the geometry also rotates with the inner cylinder.  

For convenience, Figures 31 and 32 are repeated here to facilitate the understanding of 

the four periodic test conditions.  

A time-step (∆t) of 80 milliseconds was applied for all the simulations, following the 

algorithm depicted in Figure 20. The value of 80 milliseconds was appointed just for the sake 

of illustrating the fluid flow, without any further evaluation of the best time-step value. 
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FIGURE 109 - ANGULAR VELOCITY FOR DIFFERENT PERIODIC TESTS. 

 

 

FIGURE 110 - ANGULAR ACCELERATION FOR DIFFERENT PERIODIC TESTS. 

 

 

 Static Bottom Basis Flow Simulations 

 

In accordance to the steady-state simulations, two different torque calibrations were 

conducted: One considers all the shear stress components (τθθ, τrr, τzz, τrθ, τθz and τrz) in 

order to evaluate the shear stress near the inner cylinder surface, while the another consider the 

τrθ shear stress component only. 

Figure 111 shows the verification of the numerical torque on inner cylinder surface 

(complete and simplified calculations) compared to the experimental measurement for the Test 
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1 of 1.25 kg of mixed fabric-water simulations. One can see that the simulated torque values 

follow the pattern of the experimental measurement. Despite the model cannot specify the 

torque peaks values when the cylinder is at full velocity, the torque values are similar to the 

experimental ones for time periods of constant velocity.  

 

FIGURE 111 - TORQUE VERIFICATION OF TEST 1 NON-ROTATING BASIS SIMULATION 

FOR 1.25 KG OF MIXED FABRIC-WATER SUSPENSION. 

 

 

Similarly, Figure 112 shows the verification of the numerical torque on inner cylinder 

surface (complete and simplified calculations) compared to the experimental torque 

measurement for the Test 1 of 2.50 kg of mixed fabric-water simulations. The same 

observations mentioned in the previous figure is extended henceforth. One can see that both 

numerical and experimental torque values in this case for the heavier suspension.  

Figure 113 depicts the verification of the numerical torque on inner cylinder surface 

(complete and simplified calculations) compared to the experimental torque measurement for 

the Test 2 of 1.25 kg of mixed fabric-water simulations. In this test, the maximum velocity is 

80 rpm, thus a higher torque is expected as well. One can observe a better agreement between 

numerical and experimental torques in this case.  
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FIGURE 112 - TORQUE VERIFICATION OF TEST 1 NON-ROTATING BASIS SIMULATION 

FOR 2.50 KG OF MIXED FABRIC-WATER SUSPENSION. 

 

 

Similarly, Figure 114 shows the verification for the numerical torque values for the Test 

2 with 2.50 kg of mixed fabric-water simulations. In the same way, the torque values are higher 

for the heavier suspension. One can see that the agreement between both numerical and 

experimental counterparts are quite good for this case too. 

 

FIGURE 113 - TORQUE VERIFICATION OF TEST 2 NON-ROTATING BASIS SIMULATION 

FOR 1.25 KG OF MIXED FABRIC-WATER SUSPENSION. 
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FIGURE 114 - TORQUE VERIFICATION OF TEST 1 NON-ROTATING BASIS SIMULATION 

FOR 2.50 KG OF MIXED FABRIC-WATER SUSPENSION. 

 

 

To verify the algorithm consistency for faster responses, 1.25 kg of mixed fabric-water 

suspension were simulated for Tests 3 and 4. Figure 115 depicts the torque verification for Test 

3 and Figure 116 for Test 4. Tests 3 and 4 cycles are half (3 seconds) of the cycle extent of 

Tests 1 and 2, and the numerical responses for both tests are still in very good agreement with 

experimental measurements, despite not being able to represent the peaks. 

 

FIGURE 115 - TORQUE VERIFICATION OF TEST 3 NON-ROTATING BASIS SIMULATION 

FOR 1.25 KG OF MIXED FABRIC-WATER SUSPENSION. 
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FIGURE 116 - TORQUE VERIFICATION OF TEST 4 NON-ROTATING BASIS SIMULATION 

FOR 1.25 KG OF MIXED FABRIC-WATER SUSPENSION. 

 

 

 Rotating Bottom Basis Flow Simulations 

 

Previously in Chapter 4, experimental tests concerning a simple arrangement aiming to 

emulate a top-load washing machine were carried out. Those experimental measurements 

demonstrated the torque response behavior over time when a rotating bottom basis was put to 

rotate with the inner cylinder. Nevertheless, the main objective of the simulation results 

presented below is to illustrate the fluid flow behavior in some critical instants of a washing 

cycle. 

For that reason, the distribution of the tangential velocity (vθ) and the apparent viscosity 

(η), as well as the streamlines of the secondary flow (with arrows), are presented for the four 

tests and the two fluid suspensions (1.25 and 2.50 kg of mixed fabric-water). The critical 

instants presented on the plots below are, for Tests 1 and 2: (i) 0.32 s, (ii) 2.34 s, (iii) 3.32 s, 

and (iv) 5.04 s. These times represent, respectively, (i) the instant when the maximum velocity 

is reached, (ii) when the first deceleration takes place after some time on constant maximum 

velocity, (iii) when the maximum velocity is reached on contrary direction, and (iv) when the 

last acceleration of the cycle takes place after some time in constant velocity on contrary 

direction. While that, for Tests 3 and 4, that were faster cycles, these instants are: (i) 0.16 s, (ii) 

1.02 s, (iii) 1.66 s, and (iv) 2.52 s. 
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All the plots presented are represented in an r-z section for θ = 180º (π rad). Even though 

there are flow variations in tangential axis, the differences between angular positions are not 

important when compared to the radial and axial variations.  

Figures 117 to 120 represent the tangential velocity and apparent viscosity distribution, 

as well as the streamlines of the secondary flow at t = 0.32 s for 1.25 kg of mixed fabric-water 

suspension on Test 1 (Figure 117), for 2.50 kg of mixed fabric-water suspension on Test 1 

(Figure 118), for 1.25 kg of mixed fabric-water suspension on Test 2 (Figure 119) and for 2.50 

kg of mixed fabric-water suspension on Test 2 (Figure 120). These graphics represent the 

instant when the maximum velocity is reached and the torque peak is observed after a swift 

acceleration. One can see that the distribution of vθ is quite contrasting with the ones observed 

in steady-state simulations due to the rotating basis, and the maximum velocity is observed on 

the corner of the bottom basis with the outer cylinder. The main difference between the tests is 

the maximum velocity, which is 40-rpm for Test 1 and 80-rpm for Test 2. However, the 

discrepancy between the velocity distribution across the gap for the two suspensions is almost 

imperceptible. 

The apparent viscosity distribution along the gap is more notable as its changes with the 

fluid rheological parameters. One can see that for the shear-thickening fluids the maximum 

viscosity is observed on the place where the shear rate is also maximum and thus the velocity. 

The heavier suspension presents a wider difference between the maximum and minimum 

viscosity values, which is enhanced on Test 2 because of the 80-rpm condition. Finally, by 

observing the streamlines one can note that there is no perceptible discrepancy between them 

despite some minor changes on the recirculation cell eye position. The main difference is 

observed when compared with the tests when the bottom basis was static because the 

recirculation orientation is the opposite. Now, the secondary flow goes upward near the outer 

cylinder wall and downwards near the inner cylinder wall. 
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FIGURE 117 - TEST 1 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 118 - TEST 1 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 119 - TEST 2 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 120 - TEST 2 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

Subsequently, the distribution of the tangential velocity (vθ), apparent viscosity (η) and 

the streamlines of the secondary flow at t = 2.04 s. Figure 121 represents the flow of 1.25 kg of 

mixed fabric-water suspension on Test 1, Figure 122 represents the heavier suspension also on 

Test 1, Figure 123 depicts the flow of 1.25 kg of mixed fabric-water suspension on Test 2 and 

Figure 124 depicts the heavier fluid on Test 2. One can see that after 1.72 seconds of constant 

velocity of the inner cylinder, the distribution of the tangential velocity across the gap has 
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spread even more; however, it has not reached the steady-state regime yet. This distribution is 

more apparent for Test 2 because of the faster-imposed velocity into the flow. The viscosity 

distribution changed according to the change on velocity fields, as one can see on the graphics. 

Finally, the streamlines denote a small change of orientation between the fluids and the tests 

when compared to the previous moment, but the secondary flow magnitude is greater. 

 

FIGURE 121 - TEST 1 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 122 - TEST 1 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 123 - TEST 2 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 124 - TEST 2 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

Then, for t = 3.32 seconds, the graphics concerning the variation of tangential velocity, 

apparent viscosity, and streamlines on the r-z section plane (θ = 180°) are depicted below from 

Figure 125 to Figure 128 with the same sequence of fluid suspensions and tests made 

previously. This time is related to the moment where the maximum velocity is reached in the 

contrary direction, after periods of deceleration and time-off period. Compared to the first 

acceleration period, when the fluid was static at the beginning, in this case when the fluid 
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experiences this acceleration on contrary velocity the fluid flow was still rotating in the previous 

direction, thus requiring a higher torque from the inner cylinder to the fluids for inverting 

rotation direction. It was also perceived on the experimental measurements that second torque 

peak magnitude was greater than the first one. For that reason, one can see on the graphics 

below that the maximum velocity modules are higher than the ones for t = 0.32 s. The 

distribution of the plots below is similar to the ones observed before. For the apparent viscosity, 

its values are similar when compared to the flow on contrary direction with some minor 

differences because of the relevance of other shear rates components due to the variations in 

velocity. Finally, there are no changes in the direction of the recirculation cells but some minor 

variation on the position of the recirculation eye. 

 

FIGURE 125 - TEST 1 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 3.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 126 - TEST 1 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 3.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 127 - TEST 2 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 3.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 128 - TEST 2 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 3.32 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

Finally, for t = 5.04 seconds, the following graphics depicts the distribution of the 

tangential velocity and the apparent viscosity as well as the streamlines of the secondary flow. 

The plots are represented from Figure 129 to Figure 132 with the same organization of fluid 

suspensions and tests made previously. At this instant, this tangential velocity is more spread 

across the gap, similar to the distribution at t = 2.04 s. The viscosity also has changed and is 

more spread, as well as the streamlines. 

 

FIGURE 129 - TEST 1 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 5.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 130 - TEST 1 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 5.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 131 - TEST 2 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 5.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 132 - TEST 2 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 5.04 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

In addition, the graphics concerning the Tests 3 and 4 are presented below. For Tests 3 

and 4 all the times (acceleration, deceleration, time on and time off) are cutted in half. Thus, it 

is expected that swifter accelerations and decelerations result in more torque transmitted to the 

fluid flow and that shorter time-spans in constant velocities result in a fluid flow more distant 

to the steady-state flow regime. 

Figures 133 to 136 represent the tangential velocity and the apparent viscosity 

distribution, as well as the streamlines of the secondary flows at t = 0.16 s for the lighter fluid 

suspension (1.25 kg of mixed fabric-water fluid suspension) and the heavier suspension (2.50 

kg of the same fabrics) concerning the Tests 3 and 4. Comparing the vθ distribution across the 

gap with the ones for Tests 1 and 2, one can see that velocity spread across the gap is less intense 

than for the previous tests, as the isolines are much closer to the location of maximum velocity. 

It occurs because of the shorter time of acceleration. 

Moreover, because of this swifter acceleration, the viscosities distribution is also 

different from the previous tests, as the difference between maximum and minimum velocities 

are tighter, as well as the isolines distribution. Finally, the streamlines show that the 

organization of the secondary flow has not changed at all, but the magnitude of the secondary 

flow is lower than the previous tests ones. 
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FIGURE 133 - TEST 3 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.16 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 134 - TEST 3 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.16 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 135 - TEST 4 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.16 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 136 - TEST 4 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 0.16 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

Subsequently, the distribution of the tangential velocity (vθ), apparent viscosity (η) and 

the streamlines of the secondary flow at t = 1.02 s for Tests 3 and 4 are plotted. Figure 137 

represents the flow of 1.25 kg of mixed fabric-water suspension on Test 3, Figure 138 represents 

the heavier suspension also on Test 3. Similarly, Figures 139 and 140 represents the same fluid 

suspensions for Test 4. At this instant, the velocity of the inner cylinder was maintained constant 

for 0.86 s, which can be seen on the plots below as the velocity field has spread across the gap, 
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thus changing the viscosity distribution as well. Because of the shorter period on maximum 

velocity, the fluid flows are even more distant from the conditions found in steady-state flow 

regimes. It can be seen, when compared to the plots of Tests 1 and 2, where the velocity field 

is more distributed, that the both velocities and viscosities are less scattered across the gap. 

Moreover, streamlines at this moment appear to be more uniform than the previous moment. 

 

FIGURE 137 - TEST 3 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.02 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 138 - TEST 3 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.02 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 139 - TEST 4 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.02 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 140 - TEST 4 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.02 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

Yet, for t = 1.66 seconds, the plots concerning the distribution of the tangential velocity 

and the apparent viscosity, as well as the streamlines are depicted on Figures 141 to 144. 

At this instant, the principal differences between the faster cycles and the slower cycles 

can be noticed easily. The analysis of the tangential velocities plots shows that there are still 

some portions of the flow with contrary velocity orientation, which denotes that the fluid flow 

is far from the ones observed in Tests 1 and 2 and that it is more unstable. It can be observed 
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that the viscosity variation is more concentrated near the inner wall and bottom basis corner, 

and the streamlines demonstrate an unstable recirculation cell near the open surface.  

 

FIGURE 141 - TEST 3 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.66 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 142 - TEST 3 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.66 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 143 - TEST 4 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.66 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 144 - TEST 4 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 1.66 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

Finally, for t = 2.52 s, the following plots depict the distribution of the tangential velocity 

and the apparent viscosity, as well as the streamlines of the secondary flow. The plots are 

represented from Figure 145 to Figure 148 for the different mixed fabric amounts and Tests (3 

and 4). 

At this instant, the tangential velocity across the gap is in the same direction as the inner 

cylinder and the velocity distribution is more distributed because a 0.86 s period has passed by 
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with constant velocity. Also, the viscosity distribution has changed and it is more similar to the 

one observed at t = 1.02 s. The streamlines also demonstrate that the secondary flow is more 

uniformly distributed across the gap than before. 

 

FIGURE 145 - TEST 3 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.52 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 146 - TEST 3 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.52 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 
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FIGURE 147 - TEST 4 PERIODIC FLOW FOR 1.25 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.52 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

FIGURE 148 - TEST 4 PERIODIC FLOW FOR 2.50 KG OF MIXED FABRIC-WATER 

SUSPENSION; T = 2.52 S: (A) TANGENTIAL VELOCITY, (B) APPARENT VISCOSITY AND (C) 

SECONDARY FLOW STREAMLINES. 

   

(A) (B) (C) 

 

5.4 CHAPTER SUMMARY 

 

This Chapter presented some numerical simulations concerning the fluid flow of 

suspensions of fabric-water in a coaxial double cylinder geometry, also known as Taylor-

Couette geometry by means of the numerical methodology presented previously in this thesis 
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and the Herschel-Bulkley NNF model, where the rheological parameters were obtained from 

experimental raw data and non-linear regression (Chapter 4). 

At first, the numerical torque was obtained from different simulations with: different 

fluid fabric-water suspensions (cotton, semi-synthetic and mixed fabrics), and two different 

fabric amounts each. These tests were verified through a direct confrontation with the 

experimental measurements, and it was observed that for most of the simulation results 

exhibited a satisfactory agreement (±20%) with the experimental torque measurements. This 

agreement was better for the mixed fabric-water suspensions simulations. 

Moreover, the tangential velocity (vθ), apparent viscosity (η), pressure (p), and 

streamfunction (ψ) distributions were plotted along the r-z plane for all simulations. It has been 

observed a presence of end-effects near the corner of the bottom surface and inner cylinder, 

which is proportional to the maximum shear rate region and the viscosity of the fluid. These 

end-effects were considered on the numerical torque calculations. 

Finally, periodic flow simulations were carried out for two different imposed conditions: 

(i) non-rotating basis flow and (ii) rotating basis flow. The former results were verified with the 

experimental measurements of periodic experiments and presented a good agreement for both 

mixed fabric-water suspensions. The latter was used to observe the behaviors of velocity fields 

and apparent viscosities for different test conditions and different suspensions.  

The periodic flow where the bottom basis rotates with the inner cylinder attempted to 

emulate a simple operation cycle of a washing machine. It was observed that faster washing 

cycles enhance the unstable behavior of the principal and secondary flows. In a real washing 

machine, the flow instability may lead to a higher washing efficiency as the mechanical action 

has a quite influence on its efficiency. Finally, it was observed that, contrary to the case where 

the bottom basis is stationary, the direction of the secondary flow goes upward near the outer 

cylinder wall and downwards near the inner cylinder wall, which may have an influence on the 

clothes disposal on a real washing machine. 
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6 CONCLUDING REMARKS 

 

6.1 CONCLUSIONS 

 

The present work discussed the importance of a study for understanding the flow of 

fabric-water suspensions in a geometry similar to the one found in a top-load washing machine 

in two fronts: (i) regression of a non-Newtonian model to represent the behavior of the 

suspensions, and (ii) CFD simulations of the suspensions. 

In this fashion, a comprehensive literature review was carried out covering not only 

different rheometry techniques for Couette-Inverse problems but also providing a deeper 

understanding of the flow in a coaxial double cylinder cavity (i.e., Taylor-Couette flow) and so 

the laundry and washing processes. 

Based on the literature review and the theoretical background, an experimental 

methodology was proposed to obtain the rheological behavior of the fabric-water suspensions. 

Tests with a geometry similar to a real top-load washing machine were carried out varying 

fabric materials (cotton, semi-synthetic and mixed) for different amounts of fabric and 

velocities. It was observed that among four different well-known NNF model, the one that best 

described the suspensions was the Herschel-Bulkley.  

A numerical methodology based on CFD techniques was proposed and adopted for 

steady-state and periodic fluid flows simulations, where the Herschel-Bulkley NNF was used 

as the working fluid. For steady-state simulations, the results were validated against 

experimental torque data, where most of the data agreed to within  20% tolerance bounds. In 

the same way, the results for the periodic flow were compared with experimental measurements 

and showed a good accordance with the torque values over time. Also, periodic flows with a 

rotating basis were analyzed to emulate a simplified washing machine geometry. 

Some difficulties concerning the modeling of such a suspension (fabric-water) have 

been noticed. The distribution of the fabric tissues within the gap between the cylinders was 

always non-uniform due to the fabric underwater deformation and the decantation phenomena. 

Thus, a shear-thickening behavior was observed for almost all suspensions because of the 

agglomeration of the fabric tissues near the vanes of the inner cylinder surface. Such 

agglomeration tends to increase the viscosity when both the fabric amount and the velocity 

increase. Furthermore, the presence of end-effects was reported.  

In summary, the key conclusions of this thesis are as follows: 
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• The Herschel-Bulkley NNF model was used to describe different fabric-water 

suspensions, each one with their own characteristics because of the three-

parameter nature of the model and physical interpretation (sum of yield stress 

and Power-Law effects); 

• The numerical methodology showed reliable results when compared with the 

experimental data, thus providing information about the suspensions behavior 

on a geometry that attempts to emulate a washing machine running; 

• Cotton and semi-synthetic fabric-water suspensions present different behaviors 

for different amounts of fabric (changing from Newtonian-like to shear-

thickening and vice-versa). The mixed fabric-water suspensions presented a 

more uniform variation of the shear-thickening behavior with the amount of 

fabric; 

• The periodic flows present peaks of torque responses when changing the velocity 

direction. Such a torque response is due to the efforts for changing the velocities 

of the fluid flow and the physical structure itself (cylinder and basis); 

• The recirculation of the secondary flow, which denotes the fabric rotation inside 

the washing machine, changes if the bottom basis is rotating or not. Contrary to 

the cases where the bottom basis are static, if the basis rotates the direction of 

the secondary flow goes upward near the outer cylinder wall, and downwards 

near the inner cylinder wall; 

• Shorter cycles of agitation tend to promote the instabilities of the fluid flow, 

which may intensify the mechanical action and the washing efficiency. 

 

This thesis contributed to promoting the study of the flow of fabric-water suspensions 

within a simplified geometry that attempts to emulate the fluid flow inside the basket of a 

washing machine by means of a rheometric approach in numerical and experimental 

counterparts. One can see that this approach does not provide a quite understanding of the 

behavior of a real fabric in a washing process, but it advances the understanding the behavior 

of the suspension in the process. It is worthy of note that this thesis provides a simple 

understanding of a complex fluid flow that involves much more parameters and conditions than 

the ones taken into account. 
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6.2 RECOMMENDATIONS 

 

The suggestions for further works are as follows: 

 

• Find a more suitable coaxial double cylinder geometry that minimizes the effects 

of the immerse fabric distribution and end-effects; 

• Extend the conclusions of this thesis to different kinds and forms of fabrics (e.g., 

real clothes); 

• Extend the modeling of suspensions using different NNF models found in 

literature or elsewhere, and confront with different rheometry techniques, such 

as the Tikhonov regularization and the wavelet-vaguelette, which give the τ(γ̇) 

curve directly from the raw data without the model limitations; 

• Perform some numerical simulations in a commercial CFD package to extend 

the numerical analyses; 

• Use other numerical techniques for modeling a submerged fabric tissue, or a real 

cloth independently; 

• Perform simulations in geometries that can emulate other types of washing 

machines, such as front-loads and top-loads, with an impeller. 



225 

 

 

 

REFERENCES 

 

AHLBERG, J. H.; NILSON, E. N.; WALSH, J. L. The Theory of Splines and Their 

Applications. New York: Academic Press, v. 38, 1967. 284 p. 

AHUJA, A.; SINGH, A. Slip velocity of concentrated suspensions in Couette flow. Journal 

of Rheology, v. 53, n. 6, p. 1461-1485, 2009. 

AKCABAY, D. T. Physics Based Washing Machine Simulations. University of Michigan. 

Ann Arbor, MI, USA, p. 174. 2007. 

AKCABAY, D. T.; DOWLING, D. R.; SCHULTZ, W. W. Clothes washing simulations. 

Computers & Fluids, v. 100, p. 79-94, 1 set. 2014. 

ALIBENYAHIA, B. et al. Revisiting the stability of circular Couette flow of shear-thinning 

fluids. Journal of Non-Newtonian Fluid Mechanics, v. 183-184, p. 37-51, set. 2012. 

AMOURA, M. et al. Finite element study of mixed convection for non-Newtonian fluid 

between two coaxial rotating cylinders. International Communications in Heat and Mass 

Transfer, v. 33, n. 6, p. 780-789, jun. 2006. 

ANCEY, C. Solving the Couette inverse problem using a wavelet-vaguelette decomposition. 

Journal of Rheology, v. 49, n. 2, p. 441-460, 2005. 

ANDERECK, C. D.; LIU, S. S.; SWINNEY, H. L. Flow regimes in a circular Couette system 

with independently rotating cylinders. Journal of Fluid Mechanics, v. 164, p. 155-183, mar. 

1986. 

BANSAL, P.; VINEYARD, E.; ABDELAZIS, O. Advances in household appliances- A 

review. Applied Thermal Engineering, v. 31, n. 17-18, p. 3748-3760, dez. 2011. 

BARNES, H. A. A review of the slip (wall depletion) of polymer solutions, emulsions and 

particle suspensions in viscometers: its cause, character, and cure. Journal of Non-

Newtonian Fluid Mechanics, v. 56, n. 3, p. 221-251, mar. 1995. 

BARNES, H. A. The yield stress—a review or ‘παντα ρει’—everything flows? Journal of 

Non-Newtonian Fluid Mechanics, v. 81, n. 1-2, p. 133-178, fev. 1999. 

BARNES, H. A. Measuring the viscosity of large-particle (and flocculated) suspensions — a 

note on the necessary gap size of rotational viscometers. Journal of Non-Newtonian Fluid 

Mechanics, v. 94, n. 2-3, p. 213-217, 30 nov. 2000. 

BARNES, H. A.; CARNALI, J. O. The vane‐in‐cup as a novel rheometer geometry for shear 

thinning and thixotropic materials. Journal of Rheology, v. 34, n. 6, p. 841-866, 1990. 



226 

 

 

 

BARNES, H. A.; HUTTON, J. F.; WALTERS, K. F. R. S. An Introduction to Rheology. 

Amsterdam: Elsevier, v. 3, 1989. 200 p. 

BARNES, H. A.; NGUYEN, Q. D. Rotating vane rheometry — a review, v. 98, n. 1, p. 1-14, 

15 mar. 2001. 

BINGHAM, E. C. An Investigation of the Laws of Plastic Flow. Bulletin of the Bureau of 

Standards, v. 13, p. 309–353, 1916. Scientific Paper 278. 

BINGHAM, E. C. Fluidity And Plasticity. New York: McGraw-Hill, 1922. 

BIRD, R. B.; ARMSTRONG, R. C.; HASSAGER, O. Dynamics of Polymeric Liquids - 

Volume 1 Fluid Mechanics. New York: John Wiley & Sons, 1987. 

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Transport Phenomena. 2nd, Revised. 

ed. Hoboken: John Wiley & Sons, 2006. 895 p. 

BITBOL, M.; MILLS, P. The deformation of a viscoelastic sphere in a time dependent shear 

flow. Journal de Physique, 45, n. 16, 1984. 775-780. 

BOGER, D. V. Rheology and the resource industries. Chemical Engineering Science, v. 64, 

n. 22, p. 4525-4536, 16 nov. 2009. 

BORGIA, A.; SPERA, F. J. Error analysis for reducing noisy wide‐gap concentric cylinder 

rheometric data for nonlinear fluids: Theory and applications. Journal of Rheology, v. 34, n. 

1, p. 117-136, jan. 1990. 

BUSCALL, R.; MCGOWAN, J. I.; MORTON-JONES, A. J. The rheology of concentrated 

dispersions of weakly attracting colloidal particles with and without wall slip. Journal of 

Rheology, v. 37, n. 4, p. 621-641, 1993. 

CALVIMONTES, A. Topographic characterization of polymer materials at different 

length scales and the mechanistic understanding of wetting phenomena. Dresden 

Technical University. Dresden, Germany, p. 171. 2009. 

CAMPOS, L. G. C.; HERMES, C. J. L. Experimental evaluation and transient simulation of 

detergent transport in household vertical axis washing machines. Chemical Engineering 

Research and Design, v. 109, p. 720-729, maio 2016. 

CASSON, N. Rheology of disperse systems. Proceedings of a Conference Organized by the 

British Society of Rheology. Oxford: Pergamon Press. 1959. p. 84–104. 

CHANDRASEKHAR, S. The Stability of Viscous Flow between Rotating Cylinders in the 

Presence of a Magnetic Field. Proceedings of the Royal Society of London A: 

Mathematical, Physical and Engineering Sciences, London, v. 216, n. 1126, p. 293-309, 10 

fev. 1953. 



227 

 

 

 

CHATZIMINA, M.; GEORGIOU, G.; ALEXANDROU, A. Wall shear rates in circular 

Couette flow of a Herschel-Bulkley fluid. Applied Rheology, v. 19, n. 3, p. 34288, jan. 2009. 

CHENG, A. H.-D.; CHENG, D. T. Heritage and early history of the boundary element 

method. Engineering Analysis with Boundary Elements, v. 29, n. 3, p. 268-302, mar. 2005. 

CHOW, A. W.; FULLER, G. G. Some experimental results on the development of Couette 

flow for non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, v. 17, n. 2, p. 

233-243, 1985. 

COLES, D. Transition in circular Couette flow. Journal of Fluid Mechanics, Cambridge, v. 

21, n. 3, p. 385-425, mar. 1965. 

CORONADO, O.; MENDES, P. R. D. S.; CARVALHO, M. D. S. Stability of viscoplastic 

flow in annuli with a rotating inner cylinder. 9th Brazilian Congress of Thermal 

Engineering and Sciences - ENCIT. Caxambu, MG, Brazil: The Brazilian Society of 

Mechanical Sciences. 2002. p. 1-10. 

COUETTE, M. La viscosité des liquides. Bulletin des Sciences Physiques, v. 4, p. 40-62, 

123-133, 262-278, 1888. as well as a 47 pages monography of Georges Carré, Paris, 1888. 

COUETTE, M. Etudes sur le frottement des liquides. Annales de Chimie et de Physique, v. 

21, n. VI, p. 433-510, 1890. 

COUSSOT, P. et al. Macroscopic vs. local rheology of yield stress fluids. Journal of Non-

Newtonian Fluid Mechanics, v. 158, n. 1-3, p. 85-90, maio 2009. 

DARBY, R. Couette Viscometer Data Reduction for Materials with a Yield Stress. Journal 

of Rheology, v. 29, n. 4, p. 369-378, 1985. 

DE WAELE, A. Viscometry and Plastometry. Journal of the Oil & Colour Chemists 

Association, v. 6, p. 33–69, 1923. 

DI PRIMA, R. C.; SWINNEY, H. L. Instabilities and transition in flow between concentric 

rotating cylinders. In: SWINNEY, H. L.; GOLLUB, J. P. Hydrodynamic Instabilities and 

the Transition to Turbulence. Berlin: Springer Berlin Heidelberg, 1985. p. 139-180. 

DJERIDI, H.; GABILLET, C.; BILLARD, J. Y. Two-phase Couette–Taylor flow: 

Arrangement of the dispersed phase and effects on the flow structures. Physics of Fluids, v. 

16, n. 1, p. 128-139, jan. 2004. 

DONNELLY, R. J. Taylor-Couette Flow: The Early Day. Physics Today, v. 44, n. 11, p. 32-

39, nov. 1991. 

DONNELLY, R. J.; SCHWARZ, K. W.; ROBERTS, P. H. Experiments on the Stability of 

Viscous Flow Between Rotating Cylinders. VI. Finite-Amplitude Experiments. Proceedings 



228 

 

 

 

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, v. 

283, n. 1395, p. 531-556, 1965. 

DONTULA, P.; MACOSKO, C. W.; SCRIVEN, L. E. Origins of concentric cylinders 

viscometry. Journal of Rheology, v. 49, n. 4, p. 807-818, 2005. 

DOU, H.-S.; KHOO, B. C.; YEO, K. S. Instability of Taylor–Couette flow between 

concentric rotating cylinders. International Journal of Thermal Sciences, v. 47, n. 11, p. 

1422-1435, nov. 2008. 

EGER, R. S. Modelação de escoamentos turbulentos sob a ação de rotação alternada (in 

portuguese). Federal University of Santa Catarina. Florianópolis, SC, Brazil, p. 106. 2010. 

ESCUDIER, M. P.; GOULDSON, I. W.; JONES, D. M. Taylor Vortices in Newtonian and 

Shear-Thinning Liquids. Proceedings of the Royal Society of London A: Mathematical, 

Physical and Engineering Sciences, v. 449, n. 1935, p. 155-176, 1995. 

ESCUDIER, M. P.; OLIVEIRA, P. J.; PINHO, F. T. Fully developed laminar flow of purely 

viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-

cylinder rotation. International Journal of Heat and Fluid Flow, v. 23, n. 1, p. 52-73, fev. 

2002. 

ESTELLÉ, P.; LANOS, C.; PERROT, A. Processing the Couette viscometry data using a 

Bingham approximation in shear rate calculation. Journal of Non-Newtonian Fluid 

Mechanics, v. 154, n. 1, p. 31-38, set. 2008. 

GOLLUB, J. P.; SWINNEY, H. L. Onset of Turbulence in a Rotating Fluid. Physical Review 

Letters, v. 35, n. 14, p. 927-930, 1975. 

HANKS, R. W. Couette Viscometry of Casson Fluids. Journal of Rheology, v. 27, n. 1, p. 1-

6, 1983. 

HARLOW, F. H.; WELCH, E. Numerical Calculation of Time‐Dependent Viscous 

Incompressible Flow of Fluid with Free Surface. Physics of Fluids, v. 8, p. 2182-2189, 1965. 

HEIRMAN, G. et al. Integration approach of the Couette inverse problem of powder type 

self-compacting concrete in a wide-gap concentric cylinder rheometer. Journal of Non-

Newtonian Fluid Mechanics, v. 150, n. 2-3, p. 93-103, abr. 2008. 

HEIRMAN, G. et al. Integration approach of the Couette inverse problem of powder type 

self-compacting concrete in a wide-gap concentric cylinder rheometer: Part II. Influence of 

mineral additions and chemical admixtures on the shear thickening flow behaviour. Cement 

and Concrete Research, v. 39, n. 3, p. 171-181, mar. 2009. 

HERSCHEL, W. H.; BULKLEY, R. Konsistenzmessungen von Gummi-Benzollösungen. 

Kolloid-Zeitschrift, v. 39, n. 4, p. 291–300, ago. 1926. 



229 

 

 

 

HUANG, H.; LEE, T. S.; SHU, C. Hybrid lattice Boltzmann finite-difference simulation of 

axisymmetric swirling and rotating flows. International Journal for Numerical Methods in 

Fluids, v. 53, n. 11, p. 1707-1726, 2007. 

IHLE, C. F.; TAMBURRINO, A.; VIVERO, P. Effect of sample manipulation on the Couette 

rheometry of copper concentrates. Powder Technology, v. 239, p. 78-85, maio 2013. 

JACOBSEN, R. T. The determination of the flow curve of a plastic medium in a wide gap 

rotational viscometer. Journal of Colloid and Interface Science, 48, n. 3, 1974. 437-441. 

JAMES, P. W.; JONES, T. E. R.; HUGHES, J. P. The determination of apparent viscosity 

using a wide gap, double concentric cylinder. Journal of Non-Newtonian Fluid Mechanics, 

v. 124, n. 1-3, p. 33–41, 15 dez. 2004. 

JANÁčOVÁ, D. et al. Computer simulation of washing processes. International Journal of 

Mathematical Models and Methods in Applied Sciences, v. 5, n. 6, p. 1094-1101, 2011. 

JASTRZęBSKI, M.; ZAIDANI, H. A.; WROņSKI, S. Stability of Couette flow of liquids 

with power law viscosity. Rheologica Acta, v. 31, n. 3, p. 264-273, 1992. 

JENG, J.; ZHU, K.-Q. Numerical simulation of Taylor Couette flow of Bingham fluids. 

Journal of Non-Newtonian Fluid Mechanics, v. 165, n. 19-20, p. 1161-1170, out. 2010. 

JOYE, D. D. Shear rate and viscosity corrections for a Casson fluid in cylindrical (Couette) 

geometries. Journal of Colloid and Interface Science, v. 267, n. 1, p. 204-210, 1 nov. 2003. 

KELESSIDIS, V. C.; MAGLIONE, R. Modeling rheological behavior of bentonite 

suspensions as Casson and Robertson–Stiff fluids using Newtonian and true shear rates in 

Couette viscometry. Powder Technology, v. 168, n. 3, 18 out. 2006. 

KELESSIDIS, V. C.; MAGLIONE, R. Shear rate corrections for Herschel-Bulkley fluids in 

Couette geometry. Applied Rheology, v. 18, n. 3, p. 3448211, jan. 2008. 

KELESSIDIS, V. C.; MAGLIONE, R.; BANDELIS, G. On the end-effect correction for 

Couette type oil-field direct-indicating viscometers for Newtonian and non-Newtonian fluids. 

Journal of Petroleum Science and Engineering, v. 71, n. 1-2, p. 37-46, mar. 2010. 

KHALI, S.; NEBBALI, R.; BOUHADEF, K. Numerical Investigation of Non-Newtonians 

Fluids Flows between Two Rotating Cylinders Using Lattice Boltzmann Method. 

International Journal of Mechanical, Aerospace, Industrial, Mechatronic and 

Manufacturing Engineering, v. 7, n. 10, p. 924-930, out. 2013. 

KONIJN, B. J.; SANDERINK, O. B. J.; KRUYT, N. P. Experimental study of the viscosity of 

suspensions: Effect of solid fraction, particle size and suspending liquid. Powder 

Technology, v. 266, p. 61-69, nov. 2014. 



230 

 

 

 

KOOS, E. et al. Rheological measurements of large particles in high shear rate flows. Physics 

of Fluids, v. 24, n. 1, p. 01330219, 2012. 

KRIEGER, I. M.; MARON, S. H. Direct Determination of the Flow Curves of Non‐

Newtonian Fluids. Journal of Applied Physics, v. 23, n. 1, p. 147-149, jan. 1952. 

LASKAR, A. I.; BHATTACHARJEE, R. Torque–speed relationship in a concrete rheometer 

with vane geometry. Construction and Building Materials, v. 25, n. 8, p. 3443-3449, ago. 

2011. 

LEONG, Y. K.; YEOW, Y. L. Obtaining the shear stress shear rate relationship and yield 

stress of liquid foods from Couette viscometry data. Rheologica Acta, v. 42, n. 4, p. 365-371, 

jul. 2003. 

LOCKETT, T. J.; RICHARDSON, S. M.; WORRAKER, W. J. The stability of inelastic non-

Newtonian fluids in Couette flow between concentric cylinders: a finite-element study. 

Journal of Non-Newtonian Fluid Mechanics, v. 43, n. 2-3, p. 165-177, jul. 1992. 

MACHADO, D. J. Estudo experimental do escoamento periódico de água em lavadoras 

de eixo vertical. Federal University of Paraná. Curitiba, PR, Brazil, p. 35. 2014. 

MALISKA, C. R. Transferência de Calor e Mecânica dos Fluidos Computacional. Rio de 

Janeiro: LTC - Livros Técnicos e Científicos Editora S.A., 1995. 

MALISKA, C. R.; RAITHBY, G. D. A method for computing three dimensional flows using 

non-orthogonal boundary-fitted co-ordinates. International Journal for Numerical 

Methods in Fluids, v. 4, n. 6, p. 519-537, jun. 1984. 

MALLOCK, A. Determination of the viscosity of water. Proceedings of the Royal Society 

of London, v. 45, p. 126-132, 1888. 

MARCHESINI, F. H. et al. Rheological characterization of yield-stress materials: Flow 

pattern and apparent wall slip. Applied Rheology, v. 25, n. 5, p. 39-48, 2015. 

MARCUS, P. S. Simulation of Taylor-Couette flow. Part 2. Numerical results for wavy-

vortex flow with one travelling wave. Journal of Fluid Mechanics, v. 146, p. 65-113, 9 set. 

1984. 

MAXWELL, L. Who Invented the Electric Washing Machine? An Example of How 

Patents Are Misused by Historians. [S.l.], p. 18. 2009. 

MEYER-SPASCHE, R.; KELLER, H. B. Computations of the axisymmetric flow between 

rotating cylinders. Journal of Computational Physics, v. 35, n. 1, p. 100-109, 1980. 

MITSOULIS, E. Flows of viscoplastic materials: models and computations. Rheology 

reviews, v. 2007, p. 135-178, 2007. 



231 

 

 

 

MORINISHI, Y.; VASILYEV, O. V.; OGI, T. Fully conservative finite difference scheme in 

cylindrical coordinates for incompressible flow simulations. Journal of Computational 

Physics, v. 197, n. 2, p. 686-710, 1 jul. 2004. 

NEWTON, S. I. Mathematical Principles of Natural Philosophy and His System of the 

World. Tradução de Andrew Motte. Oakland: University of California Press, 1946. 

NGUYEN, Q. D.; BOGER, D. V. Yield Stress Measurement for Concentrated Suspensions. 

Journal of Rheology, v. 27, n. 4, p. 321-349, 1983. 

NGUYEN, Q. D.; BOGER, D. V. Direct yield stress measurement with the vane method. 

Journal of Rheology, v. 29, n. 3, p. 335-347, 1985. 

NGUYEN, Q. D.; BOGER, D. V. Characterization of yield stress fluids with concentric 

cylinder viscometers. Rheologica Acta, v. 26, n. 6, p. 508-515, 1987. 

OPPENHEIM, A. V.; SCHAFER, R. W.; BUCK, J. R. Discrete-Time Signal Processing. 

2nd. ed. Upper Saddle River: Prentice Hall, 1999. 

OSTWALD, W. Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I. 

Kolloid-Zeitschrift, v. 36, n. 2, p. 99–117, fev. 1925. 

OVARLEZ, G. et al. Wide-gap Couette flows of dense emulsions: Local concentration 

measurements, and comparison between macroscopic and local constitutive law 

measurements through magnetic resonance imaging. Physical Review E, v. 78, n. 3, p. 

03630713, 2008. 

PAPANASTASIOU, T. C. Flows of Materials with Yield. Journal of Rheology, v. 31, n. 5, 

p. 385-404, 1987. 

PATANKAR, S. Numerical Heat Transfer and Fluid Flow. 1. ed. New York: Hemisphere 

Publishing Co., 1980. 214 p. Hemisphere Series on Computational Methods in Mechanics and 

Thermal Science. 

PESKIN, C. S. The Immersed Boundary Method. Acta Numerica, 11, 2002. 479-517. 

PIAU, J.-M.; PIAU, M. Letter to the Editor: Comment on “Origin of concentric cylinder 

viscometry” [J. Rheol.49, 807–818 (2005)]. The relevance of the early days of viscosity, slip 

at the wall, and stability in concentric cylinder viscometry. Journal of Rheology, v. 49, n. 6, 

p. 1539-1550, 2005. 

POTANIN, A. 3D simulations of the flow of thixotropic fluids, in large-gap Couette and 

vane-cup geometries. Journal of Non-Newtonian Fluid Mechanics, v. 165, n. 5-6, p. 299-

312, mar. 2010. 

RAYLEIGH, L. Further remarks on the stability of viscous fluid motion. Philosophical 

Magazine, v. 28, n. 6, p. 609-619, 1914. 



232 

 

 

 

ROBERTSON, R. E.; STIFF, H. A. An Improved Mathematical Model for Relating Shear 

Stress to Shear Rate in Drilling Fluids and Cement Slurries. Society of Petroleum Engineers 

Journal, v. 16, n. 01, p. 31-36, fev. 1976. 

SAAK, A. W.; JENNINGS, H. M.; SHAH, S. P. The influence of wall slip on yield stress and 

viscoelastic measurements of cement paste. Cement and Concrete Research, v. 31, n. 2, p. 

205-212, fev. 2001. 

SCHAEFFER, J. C. Die bequeme und höchstvortheilhafte Waschmaschine. Wie solche in 

den damit gemachten Versuchen bewährt gefunden und damit dieselbe um so sicherer 

und nützlicher gebraucht werden könne hin und wieder abgeändert und verbessert 

worden ; Nebst einer Kupfertaf. Frankfurt: [s.n.], 1767. Disponivel em: <http://nbn-

resolving.de/urn:nbn:de:bvb:210-14-008994946-2>. 

SCHOWALTER, W. R. Mechanics of Non-Newtonian Fluids. 1st. ed. Oxford: Pergamon 

Press, 1978. 300 p. 

SCHRAMM, G. A Practical Approach to Rheology and Rheometry. 2nd. ed. [S.l.]: 

Gebrueder Haake, 1994. 290 p. 

SCIENCE Direct. Science Direct, 2017. Disponivel em: <http://www.sciencedirect.com>. 

Acesso em: 08 March 2017. 

SÉRGIO, A. et al. The design of a washing machine prototype. Materials & Design, v. 24, n. 

5, p. 331-338, ago. 2003. 

SINEVIC, V.; KUBOI, R.; NIENOW, A. W. Power numbers, Taylor numbers and Taylor 

vortices in viscous newtonian and non-newtonian fluids. Chemical Engineering Science, v. 

41, n. 11, p. 2915-2923, 1986. 

SMIESZEK, M.; EGBERS, C. Flow structures and stability in Newtonian and non-Newtonian 

Taylor-Couette flow. Journal of Physics: Conference Series, v. 14, n. 1, p. 72-77, 2005. 

SNABRE, P.; MILLS, P. Rheology of concentrated suspensions of viscoelastic particles. 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 152, n. 1-2, p. 79-

88, jul. 1999. 

SNYDER, H. A. Stability of Rotating Couette Flow. II. Comparison with Numerical Results. 

Physics of Fluids, Melville, v. 11, n. 8, p. 1599-1605, 1968. 

SPARROW, E. M.; MUNRO, W. D.; JONSSON, V. K. Instability of the flow between 

rotating cylinders: the wide-gap problem. Journal of Fluid Mechanics, v. 20, n. 01, p. 35-46, 

9 set. 1964. 

STALMANS, M. History of Washing. Brussels, Belgium. 2008. 



233 

 

 

 

STOKES, G. G. Mathematical and Physical Papers. Cambridge: Cambridge University 

Press, v. 1, 1880. 

STOKES, G. G. Mathematical and Physical Papers. Cambridge: Cambridge University 

Press, v. 5, 1905. 

TAKEDA, Y. Quasi-periodic state and transition to turbulence in a rotating Couette system. 

Journal of Fluid Mechanics, v. 389, p. 81-99, 6 jun. 1999. 

TAMANO, S. et al. Numerical simulation of confined swirling flow of viscoelastic fluid due 

to partially rotating disc. Nihon Reoroji Gakkaishi, v. 38, n. 1, p. 9-16, 2010. 

TAYLOR, G. I. Stability of a Viscous Liquid Contained between Two Rotating Cylinders. 

Philosophical Transactions of the Royal Society of London A: Mathematical, Physical 

and Engineering Sciences, London, v. 223, p. 289-343, 1923. 

THOMAS, L. H. Elliptic Problems in Linear Differential Equations over a Network. New 

York. 1949. 

TRISMOSIN, S. Splendor Solis. Nuremberg: [s.n.], 1582. 

VAN DEN BREKEL, D. M. Hydrodynamics and mass transfer in domestic drum-type 

fabric washing machine. Technical University Delft. Delft, Netherlands. 1987. 

VAN DER VORST, H. A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG 

for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and 

Statistical Computing, v. 13, n. 2, p. 631–644, 1992. 

VERSTEEG, H.; MALALASEKERA, W. An Introduction to Computational Fluid 

Dynamics: The Finite Volume Method. 2nd. ed. Harlow: Pearson Education Limited, 2007. 

520 p. 

WALLEVIK, O. H. et al. Avoiding inaccurate interpretations of rheological measurements for 

cement-based materials. Cement and Concrete Research, v. 78, n. A, p. 100-109, dez. 2015. 

WALOWIT, J.; TSAO, S.; DI PRIMA, R. C. Stability of Flow Between Arbitrarily Spaced 

Concentric Cylindrical Surfaces Including the Effect of a Radial Temperature Gradient. 

Journal of Applied Mechanics, v. 31, n. 4, p. 585-593, 1 dez. 1964. 

WATANABE, K. et al. Flow between two coaxial rotating cylinders with a highly water-

repellent wall. AIChE Journal, v. 49, n. 8, p. 1956-1963, 2003. 

WATANABE, T.; TOYA, Y. Vertical Taylor-Couette flow with free surface at small aspect 

ratio. Acta Mechanica, v. 223, n. 2, p. 347-353, 2012. 



234 

 

 

 

WEISBERG, A. Y.; KEVREKIDIS, I. G.; SMITS, A. J. Delaying transition in Taylor–

Couette flow with axial motion of the inner cylinder. Journal of Fluid Mechanics, v. 348, p. 

141-151, 10 out. 1997. 

WHITAKER, S. Introduction to Fluid Mechanics. 2nd. ed. Malabar: Krieger Publishing 

Company, 1992. 474 p. 

WOOD, W. A. Multigrid Approach to Incompressible Viscous Cavity Flow. Hampton. 

1996. 

WU, X.; SWIFT, J. B. Onset of secondary flow in the modulated Taylor-Couette system. 

Physical Review A, v. 40, n. 12, p. 7197-7201, dez. 1989. 

YAN, J.; JAMES, A. E. The yield surface of viscoelastic and plastic fluids in a vane 

viscometer. Journal of Non-Newtonian Fluid Mechanics, v. 70, n. 3, p. 237-253, jun. 1997. 

YEE, R. P. Simulação numérica de escoamento bifásico em máquinas de lavar de eixo 

vertical. Federal University of Paraná. Curitiba, PR, Brazil, p. 46. 2013. 

YEOW, Y. L. et al. Obtaining the shear rate function and the slip velocity function from 

Couette viscometry data. Journal of Non-Newtonian Fluid Mechanics, v. 124, n. 1-3, p. 43-

49, 15 dez. 2004. 

YEOW, Y. L.; KO, W. C.; TANG, P. P. P. Solving the inverse problem of Couette 

viscometry by Tikhonov regularization. Journal of Rheology, v. 44, n. 6, p. 1335-1351, 11-

12 2000. 

ZANOTTO, F. Determinação experimental das características reológicas de misturas 

água-tecido em geometrias cilíndricas. Federal University of Paraná. Curitiba, PR, Brazil, 

p. 47. 2015. 

 



235 

 

 

 

APPENDIX A –  THOMAS ALGORITHM 

 

A.1  TDMA 

 

The TDMA (Tridiagonal Matrix Algorithm) method, also known as Thomas algorithm 

(THOMAS, 1949), is a numerical method based on the Gaussian elimination used to solve a 

tridiagonal system of equations when the matrix is diagonally dominant or symmetric positive 

definitive. Considering a discretized linear equation system as follows: 

 

 -aixi-1 + bixi - cixi+1 = di (A.1)  

  

Likewise, in the matricial form: 

 

 

[
 
 
 
 
 
b1 c1 0

a2 b2 c2

0 a3 b3

⋯
⋯
⋯

0

0

0

0

0

0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0

0

0

0

0

0

⋯
⋯

bn-1

an

cn-1

bn ]
 
 
 
 
 

[
 
 
 
 

x1

x2
x3

⋮
xn-1

xn ]
 
 
 
 

=

[
 
 
 
 
 

d1

d2

d3

⋮
dn-1

dn ]
 
 
 
 
 

 (A.2)  

 

The method consists of modifying the above algebraic equations on a forward sweep. 

Considering a tridiagonal system for n unknowns, an equation with i index can be written as: 

 

 xi = Aixi+1+Bi (A.3)  

 

so, 

 

 xi-1 = Ai-1xi + Bi-1 (A.4)  

 

Substituting the Equation (I.4) into the Equation (I.3), one obtains the following 

equation: 

 

 xi = (
ci

bi-aiAi-1

) xi+1 + (
aiBi-1+di

bi-aiAi-1

) (A.5)  
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where, 

 

 Ai = 
ci

bi-aiAi-1

 (A.6)  

 Bi = (
aiBi-1+di

bi-aiAi-1

) (A.7)  

 

Evaluating the modified coefficients Ai  and Bi , it is possible to perform a back 

substitution using the Equation (I.3). Starting the back substitution with the  xn value, which is 

a known boundary condition, as below: 

 

 xn = Bn (A.8)  

 x1 = B1 (A.9)  

 

In the case of two-dimensional and three-dimensional problems, the matrix will not be 

three-diagonal anymore. It is called the line-by-line TDMA method (VERSTEEG and 

MALALASEKERA, 2007). As the boundaries points in all directions are known, one direction 

is chosen (i.e., west-east, north-south and top-bottom) and the sweeping occurs following this 

direction. Considering a vertical sweep in the north-south direction of a three-dimensional mesh, 

the discretized Equation (I.1) can be written as shown below: 

 

 -AsϕS
 + Apϕ

P
 - Anϕ

N
 = Aeϕ

E
 + Awϕ

W
+ AtϕT

 + Abϕ
B
 +B (A.10)  

 

The right-hand side of the equation above, and its respective neighbor control volumes 

nodal points is assumed to be temporarily known. So, the linear system is evaluated starting 

from the second north-south column, as the first column has known boundary condition. The 

sweep is done in all the columns (line-by-line), and the results obtained for each column will 

be used for the next column evaluation. In order to obtain a faster convergence, the sweep can 

also be performed in the south-north direction. 

In order to have the entire mesh covered with all the boundary conditions considered 

(also to improve the numerical convergence), turning the system more explicit, the sweeping 

shall be performed in all other directions as well. Thus, the Equation (I.10) can be discretized 

in other two different manners: 
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 -Awϕ
W

+Apϕ
P
-Aeϕ

E
=Anϕ

N
+AsϕS

+AtϕT
+Abϕ

B
+B (A.11)  

 -Abϕ
B

+Apϕ
P
-AtϕT

=Anϕ
N

+AsϕS
+AeϕE

+Awϕ
W

+B (A.12)  

 

Finally, the TDMA method includes all the boundary conditions and source terms of a 

three-dimensional mesh. The reason that this method is called line-by-line is because the 

TDMA method is performed in all directions in an iterative way. 

 

A.2  CTDMA 

 

The CTDMA (Cyclic Tridiagonal Matrix Algorithm), is a modified case of Gaussian 

elimination (AHLBERG, NILSON and WALSH, 1967) used to solve a linear system with 

cyclic boundary conditions. Considering the following equation: 

 

 aixi = bixi+1 + cixi+1 + di (A.13)  

 

For i varying from 1 to n-1, the following boundary conditions are known: 

 

 if i =  1, xi = xn−1 (A.14)  

 if i =  n − 1, xi+1 = x1 (A.15)  

 

Performing the following transformation: 

 

 xi = eixi+1 + fixi+1 + g
i
 (A.16)  

 

where, 

 

 e1 = b1/a1 (A.17)  

 f1 = c1/a1 (A.18)  

 g1 = d1/a1 (A.19)  

 

thus, for i varying from 2 to n-2: 
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 ei =
bi

ai − ciei-1
 (A.20)  

 fi =
cifi−1

ai − ciei-1
 (A.21)  

 g1 =
di+cigi−1
ai − ciei-1

 (A.22)  

 

The value of xn-1 is obtained by replacing the i index in Equation (I.13) with i = n-1, 

then solving x1 using Equation (I.16) in terms of x2 and xn-1. Then for x2 in terms of x3 and xn-

1, and so on until xn-1 is the only unknown of the system. Considering the following terms: 

 

 p1 = an-1 (A.23)  

 q1 = bn-1 (A.24)  

 r1 = dn-1 (A.25)  

 

then, for i varying from 2 to n-1: 

 

 pi = p
i-1
− q

i-1
fi-1 (A.26)  

 qi = q
i-1

ei-1 (A.27)  

 ri = ri-1 − q
i-1

g
i-1

 (A.28)  

 xn-1 = 
(qn−2  + cn+1)gn−2 + rn−2

pn−2 − (qn−2  +  cn+1)(en−2  +  fn−2)
 (A.29)  

 

thus, Equation (I.16) is used to evaluate the system for i varying from n-2 to 1 by back-

substitution.
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APPENDIX B –  BICGSTAB 

 

The BiCGSTAB (Biconjugate gradient stabilized method) is an iterative method used 

for solving a linear system, developed by H. A. van der Vorst (1992). It is a variant of the 

biconjugate gradient method (BiCG) with faster convergence. Moreover, the BiCGSTAB 

method can be evaluated with or without preconditioners. In the present work, the TDMA 

method is used as the preconditioner for the BiCGSTAB method. Thus, considering a 

discretized linear equation system as follows: 

 

 Ax = D (B.1)  

 

The initial residue r0 is calculated using the initial guess x0 (or the previous value) as 

follows: 

 

 r0= D-Ax0 (B.2)  

 

The initial guesses of ρ, α and ω are considered. As well as the initial guess of v and p 

vectors. 

 

 ρ0= α0 = ω0 = 1 (B.3)  

 v0= p0 = 0 (B.4)  

 

For i = 1, 2, 3... 

 

  ρi = r0
Tri−1 (B.5)  

 
β =

i

ρi−1

αi
ωi−1

 
(B.6)  

 pi = ri−1 + βi(pi−1 −ωi−1vi−1) (B.7)  

 

The preconditioner K is used to evaluate the value of  p̂ 

 

 Kp̂ = pi (B.8)  
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then, 

 

 vi = Ap̂ (B.9)  

 αi =
ρi

r0
Tvi

 (B.10)  

 si = ri−1 − αivi (B.11)  

 

In the same way of the Equation (II.8), the preconditioner K is also used to evaluate the 

value of  ŝ. 

 

 Kŝ = si (B.12)  

 

thus, 

 

 ti = Aŝ (B.13)  

 ωi =
ti
Tsi

ti
Tti

 (B.14)  

 xi = xi−1 + ip̂ + ωiŝ (B.15)  

 

Finally, the residue ri is evaluated as follows: 

 

 ri = si − ωiti (B.16)  

 

If the norm of the residue is smaller than the convergence criterion the algorithm stops 

and the value xi is considered as the solution of the system. If not, it returns to the Equation 

(II.5).
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APPENDIX C –  ANALYTICAL SOLUTIONS 

 

Analytical solutions for a laminar-steady flow between two long concentric cylinders, 

where the is no wall slip and that cylinder height is sufficient to avoid boundary wall effects on 

the bottom and top boundaries, were presented in chapter 2 for incompressible Newtonian fluids 

and Power-Law non-Newtonian fluids (Figure 13). Moreover, the Reiner-Riwlin Equation 

(2.86), which relates the torque of the inner cylinder to the angular velocity of a Bingham fluid, 

and an adapted Equation (2.102) for a Herschel-Bulkey were also presented. All those equations 

derivations are depicted below. 

 

C.1  NEWTONIAN FLUID 

 

Considering a laminar steady-state flow, where the cylinder height is sufficient to avoid 

the bottom and top boundary walls effects, the analytical solution for the tangential velocity is 

achieved close to the half-height of the cylinders, as shown in the top view of Figure 13. In this 

case, both axial and radial velocities are considered negligible when compared to the tangential 

one. 

Considering a Newtonian fluid, the analytical solution for the tangential velocity is: 

 

 
∂vθ
∂θ

= 0 (C.1)  

 

Also, the pressure difference is dependent only of the tangential velocity and radial 

position. 

 

 
∂p

∂r
=
ρvθ

2

r
 (C.2)  

 

Thus, Equation (2.36) is simplified to: 

 

 
∂2vθ
∂r2

+
∂

∂r
(
vθ
r
) = 0 →

∂

∂r
(
1

r

∂(rvθ)

∂r
) (C.3)  

 

Integrating both sides of the equation in the radial axis gives 
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 ∫
∂

∂r
(
1

r

∂(rvθ)

∂r
)

r

= ∫0
r

 (C.4)  

 

So, the constant of integration C1 appears. 

 

 
1

r

∂(rvθ)

∂r
= C1 (C.5)  

 

Rearranging the equation and integrating it for the second time gives: 

 

 ∫
∂(rvθ)

∂rr

= ∫rC1
r

 (C.6)  

 

Now, there are two constants of integration that should be solved in order to obtain the 

analytical solution. 

 

 rvθ =
r2C1
2

+ C2 (C.7)  

 

Isolating the tangential velocity on the left side of the equation leads to: 

 

 vθ(r) =
rC1
2
+
C2
r

 (C.8)  

 

One can note that the constants of integration above will be found if correct boundary 

conditions are applied, which are: 

i. At r = Rinn → vθ = Rinnωinn 

ii. At r = Rout → vθ = Routωout 

 

Finally, a set of two equations are obtained. 

 

 ωinnRinn = RinnC1 +
C2
Rinn

 (C.9)  
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 ωoutRout = RoutC1 +
C2
Rout

 (C.10)  

 

So, the constants of integration are depicted as follows: 

 

 C1 =
ωoutRout

2 −ωinnRinn
2

Rout
2 − Rinn

2  (C.11)  

 C2 =
Rinn
2 Rout

2 (ωinn −ωout)

Rout
2 − Rinn

2  (C.12)  

 

Substituting the values above into the Equation (III.8) gives the analytical solution of 

the tangential velocity of a Newtonian fluid flowing between two concentric, rotating 

independently, cylinders. 

 

 vθ(r) = Rinnωinn(

Rout
r −

r
Rout

Rout
Rinn

−
Rinn
Rout

)+ Routωout(

r
Rinn

−
Rinn
r

Rout
Rinn

−
Rinn
Rout

) (C.13)  

 

In the case where only the inner cylinder rotates and the outer cylinders is static, the 

equation above can be described as the Equation (2.49) 

 

 vθ(r) =
Rinnωinn
1 − k2

(
r

Rinn
−
Rinn
r
) (C.14)  

 

C.2  POWER-LAW FLUID 

 

For a non-Newtonian Power-Law fluid the hypothesis applied in the Newtonian case is 

the same. Thus, Equation (2.20) can be simplified in: 

 

 0 = −
1

r2
∂(r2τrθ)

∂r
 (C.15)  

 

Where for a Power-Law fluid the Equation (2.8) the only non-vanishing component of 

the stress tensor are τrθ = τθr. 
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 τrθ = m[r
∂

∂r
(
vθ
r
)]
n

 (C.16)  

 

Then, combining the two equations above one can obtain the following expression: 

 

 m
∂

∂r
[r2 (r

∂

∂r
(
vθ
r
))

n

] = 0 (C.17)  

 

Similarly, the equation above is integrated into the radial axis 

 

 ∫
∂

∂r
[r2 (r

∂

∂r
(
vθ
r
))

n

]
r

= 0 (C.18)  

 

Obtaining the first constant of integration C1. 

 

 (r
∂

∂r
(
vθ
r
))

n

=
C1
r2

 (C.19)  

 

Rearranging the equation above and re-integrating the equation leads to: 

 

 ∫
∂

∂r
(
vθ
r
)

r

= ∫
C1

1
n

r
2
n
+1r

 (C.20)  

 

Thus, obtaining the second constant of integration C2. For the sake of simplicity, the 

term C1
1

nn 2⁄  will be depicted as ℂ1. 

 

 
vθ
r
= −

C1
1
nn

2r
2
n

+ C2 →
vθ
r
=
ℂ1

r
2
n

+ C2 (C.21)  

 

So, the tangential velocity component can be depicted as: 
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 vθ(r) =
ℂ1

r
2
n

r + C2r (C.22)  

 

Applying the correct boundary conditions for an inner rotating cylinder and a statical 

outer cylinder, as follows: 

i. At r = Rinn = kRout → vθ = Rinnωinn 

ii. At r = Rout → vθ = 0 

The constants of integration ℂ1 and C2 are obtained. 

 

 ℂ1 =
ωinnRout

2 n⁄

(
1
k)

2 n⁄

− 1

 (C.23)  

 
C2 = −

ωinn

(
1
k)

2 n⁄

− 1

 
(C.24)  

 

Substituting the equations above into Equation (III.22) gives the analytical solution for 

a flowing Power-Law fluid, which is the Equation (2.50). 

 

 
vθ(r)

ωinnr
=
(Rout r⁄ )

2 n⁄ − 1

(1 k⁄ )2 n⁄ − 1
 (C.25)  

 

Furthermore, the torque on the inner cylinder can be described on the following 

expression. 

 

 T = 2π(kRout)
2mH(

2ωinn n⁄

1 − k2 n⁄
)

n

 (C.26)  

 

C.3  REINER-RIWLIN EQUATION 

 

Invoking the expression which relates the Torque measured in the rotating inner cylinder 

with the shear stress in a steady-state incompressible flow (2.56) and the model of the Bingham 

fluid (2.9) and relating them with the shear rate Equation (2.52), one can obtain the following 

expression. 
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T

2πr2H
= τ0 + μr

∂ω(r)

∂r
 (C.27)  

 

Consequently, rearranging and integrating the equations above with the boundary limits 

for a no-slip flow gives: 

 

 ∫ (
T

2πr3H
−
τ0
r
) dr

Rout

Rinn

= μ∫ dω(r)
0

−ω

 (C.28)  

 

One can note that similarly to analysis held in Chapter 2, the inner cylinder velocity is 

denoted as a negative just for the sake of simplifying the mathematics. Thus, solving the integral 

above and rearranging the equation to isolate the torque value on the left side of the equations 

gives (HEIRMAN, VANDEWALLE, et al., 2008): 

 

 
T =

4πHτ0

(
1
Rinn
2 −

1
Rout
2 )

ln (
Rout
Rinn

) +
μ8π2H

(
1
Rinn
2 −

1
Rout
2 )

N = G𝐵 + H𝐵N 
(C.29)  

 

where Heirman et al.,  (2008) called G and H as the flow resistance and viscosity factor, 

respectively, while N is the velocity of the inner cylinder in rps. 

The equation above is the so-called Reiner-Riwlin equation, and it can be found in 

different forms in the literature. In the present work, the approach showed by Heirman et al., 

was chosen because it could be used to obtain the physical properties of the fluid from 

regression directly from the torque and velocity experimental measurements. Thus, the yield 

stress and Newtonian viscosity from the Bingham fluid can be determined respectively by: 

 

 τ0 =
G𝐵
4πH

(
1

Rinn
2 −

1

Rout
2 )

1

ln (
Rout
Rinn

)
 (C.30)  

 μ =
H𝐵
8π2H

(
1

Rinn
2 −

1

Rout
2 ) (C.31)  

 

Also, the velocity profile for the Bingham fluid flow in function of the radial position 

(r) inside the gap can be determined as: 
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 vθ(r) =
Tr

4πHμ
(
1

Rinn
2 −

1

r2
) −

τ0r

μ
ln (

r

Rinn
) (C.32)  

 

The equations above are valid only when there is no plug formation in the gap between 

the cylinders. Otherwise, the upper integration limit on the left size of the equation (III.28) 

should be replaced with the plug radius r0. 

 

C.4  REINER-RIWLIN EQUATION ADAPTED TO HERSCHEL-BULKLEY 

FLUIDS 

 

Likewise, the same approach used for Bingham fluid was held by Heirman et al., (2008) 

(2009). Hence, a similar Equation (III.27) for a Herschel-Bulkley fluid is demonstrated below: 

 

 
T

2πr2H
= τ0 +m(r

∂ω(r)

∂r
)

n

 (C.33)  

 

Next, the integration limits applied to the equation are identical to the ones used on 

Bingham fluids. 

 

 ∫ ((
T

2πr2Hm
−
τ0
m
)

1
n 1

r
)dr

Rinn

Rout

= ∫ dω(r)
0

−ω

 (C.34)  

 

According to Herman et al., (2008), there is no analytical solution to the integral above. 

Instead, “the solution contains the LerchPhi function ϕ̂(x, 1, a) , which is a single-valued, 

continuous but non-polynomial function on the x-plane all along the interval 𝑥 ∈] − ∞, 1[ (for 

a fixed 𝑎,−𝑎 ∉ ℕ)”. This solution is presented below: 

 

 

[
 
 
 
 
 
(

T

2πRinn
2 Hm

−
τ0
m
)

1
n

[n − ϕ̂ (1 −
T

2πRinn
2 Hτ0m

,1,
1

n
)] −

(
T

2πRout
2 Hm

−
τ0
m
)

1
n

[n − ϕ̂ (1 −
T

2πRout
2 Hτ0m

, 1,
1

n
)]

]
 
 
 
 
 

= 4πN (C.35)  
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Similarly, the tangential velocity distribution across the gap is: 

 

 vθ(r) =  
r

2

[
 
 
 
 
 
(

T

2πRinn
2 Hm

−
τ0
m
)

1
n

[n − ϕ̂ (1 −
T

2πRinn
2 Hτ0m

, 1,
1

n
)] −

(
T

2πr2Hm
−
τ0
m
)

1
n
[n − ϕ̂ (1 −

T

2πr2Hτ0m
, 1,
1

n
)]

]
 
 
 
 
 

 (C.36)  

 

One may note that if n=1 the above equations results to the same solutions for Bingham 

fluids. Thus, Heirman et al., suggested a different approach that is based in the superposition of 

the flow resistance and the Power-Law effect to solve the Couette inverse problem. This 

approach is represented below: 

 

 T = GHB + HHBN
J (C.37)  

 

According to Heirman et al., experiments proved that this superposition of decoupled 

terms can be used for non-linear cases where κ = Rout Rinn⁄ , 1 < J < 1.81 and 1.9 10-4 < Od < 

33.4, where Od is the Oldroyd number. 

Therefore, the first subfunction for the decoupled solution approach is: 

  

 T′ = GHB (C.38)  

 

where, the solution is the same as presented for Bingham fluid, which is: 

 

 τ0 =
GHB
4πH

(
1

Rinn
2 −

1

Rout
2 )

1

ln (
Rout
Rinn

)
 (C.39)  

 

Still, the second subfunction is related to the Power-Law effect, which is presented 

below: 

 

 T′′ = HHBN
J (C.40)  

 

One can note that the equation above is a representation of Power-Law Fluid Equation 

(2.8), which can be written as: 
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T′′

2πr2H
= m(r

∂ω(r)

∂r
)

n

 (C.41)  

 

So, applying the boundary limits into the integration of the equation above: 

 

 ∫ ((
T′′

2πr2Hm
)

1
n 1

r
)dr

Rout

Rinn

= ∫ dω(r)
0

−ω

 (C.42)  

 

where the solution is: 

 

 
T′′ =

22n+1πn+1Hm

nn (
1

Rinn
2 n⁄ −

1

Rout
2 n⁄ )

nN
n = HHBN

J 
(C.43)  

 

thus, 

 

 n = J (C.44)  

 m =
HHB

22n+1πn+1H
nn (

1

Rinn
2 n⁄

−
1

Rout
2 n⁄
)

n

 (C.45)  

 

Finally, the complete decoupled solution is represented by 

 

 T = T′ + T′′ = GHB + HHBN
J (C.46)  

 
T =

4πHτ0

(
1
Rinn
2 −

1
Rout
2 )

ln (
Rout
Rinn

) +
22n+1πn+1Hm

nn (
1

Rinn
2 n⁄ −

1

Rout
2 n⁄ )

nN
n 

(C.47)  

 

More details of this solution can be found in the two works from Heirman et al., (2008) 

(2009).  


