
L
E

A
N

D
R

O
 J

O
S

É
 L

E
M

E
S

 S
T

IV
A

L
 

2
0

1
7
 

UNIVERSIDADE FEDERAL DO PARANÁ 

LEANDRO JOSÉ LEMES STIVAL 

A STUDY ON WIND ASSESSMENT ON THE WIND POWER 
PERFORMANCE: WIND SHEAR AND TURBULENCE INTENSITY 

EFFECTS BESIDES THE WAKE MODELING FOR A SINGLE WIND 
TURBINE 

CURITIBA 
2017 



 

 

ii 

 

 

 

 

 

LEANDRO JOSE LEMES STIVAL 

 

 

 

 

 

 

 

 

A STUDY ON WIND ASSESSMENT ON THE WIND POWER 

PERFORMANCE: WIND SHEAR AND TURBULENCE INTENSITY EFFECTS 

BESIDES THE WAKE MODELING FOR A SINGLE WIND TURBINE  

 

Master’s Dissertation presented for the Final 

Exam to the Graduate Program on Water 

Resources and Environmental Engineering 

of Federal University of Paraná. 

Advisor: Prof. Dr. Alexandre Kolodynskie 

Guetter 

Co-advisor: Prof. Dr. Fernando Oliveira 

Andrade 

 

 

 

 

 

 

CURITIBA 

2017 



 

 

iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ST862s Stival, Leandro Jose Lemes 

A study on wind assessment on the wind power performance: wind shear and 
turbulence intensity effects besides the Wake modeling for a single wind turbine / 
Leandro Jose Lemes Stival. – Curitiba, 2017. 

118 f. : il. color. ; 30 cm. 

 

 
Dissertação - Universidade Federal do Paraná, Setor de Tecnologia, Programa 

de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental, 2017. 
 

Orientador: Alexandre Kolodynskie Guetter. 
Coorientador: Fernando Oliveira Andrade. 

 

 
1. Força do vento. 2. Modelo de Wake. 3. Energia eólica. I. Universidade 

Federal do Paraná.  II. Guetter, Alexandre Kolodynskie.  III. Andrade, Fernando 

Oliveira.   IV. Título. 
 

CDD: 621.312136  
 

  



 

 

iv 

  



v 

ACKNOWLEDGEMENT 

I would first like to express my very profound gratitude to my parents, Luci 

Lemes and José Stival, also to my partner, Luana Pádua, for providing me with 

inexhaustible assistance and continuous encouragement during a couple of 

years of researching and writing this thesis. This accomplishment would not have 

been possible without them. 

I must declare my genuine appreciation to Alexandre K. Guetter, my 

thesis advisor from Federal University of Paraná, also to Fernando O. Andrade, 

my co-advisor from Federal University of Technology - Paraná. The gates to Prof. 

Guetter and Prof. Andrade offices were always open whenever I ran into a volatile 

situation or had a doubt about my research or writing. They regularly supported 

this thesis where I had to control the research as my particular aspiration, 

however guide me in the right the direction whenever he thought I needed it. 

I would also like to extend a special thanks to the experts who were 

interested in the development of this research project: Gareth Brown, Aaron 

Culver and the whole SgurrEnergy team from Vancouver. Without Sgurr’s 

comprehension to trust and assist the research with data, the survey could not 

have been successfully validated. 

I would also like to acknowledge Prof. Maria Cristina Borba Braga  for 

elucidating me on intellectual formulations, also to Prof. Eloy Kaviski for helping 

to clarify my codes, both from Federal University of Paraná. Beyond that, the 

board examination deserves a special acknowledge, composed by Prof. Marcelo 

Bessa, Prof. André Fabiani, Prof. Maurício Cantão, all from Federal University of 

Paraná and Doctor Luiz Steinle from BBB Energias Renováveis Ltda.  

Finally, a very serious thanks to the Post-Graduate Program on Water 

Resources  and Environmental Engineering at Federal University of Paraná, 

coordinated by Prof. Cristovão Fernandes and Prof. Tobias Bleninger, by 

providing me all I need inside the University, also to the Coordenação de 

Aperfeiçoamento de Pessoal de Nivel Superior, CAPES, for the scholarship 

during the whole process.  

Thank you all. 



RESUMO 

A energia eólica cresceu significativamente, porém a eficiência de 

geração da fonte eólica gira em torno de 30% da energia cinética disponível no 

vento. Por este motivo é de extrema importância que estudos sejam elaborados 

afim de aumentar a eficiência na geração de energia. Este estudo visa investigar 

o desempenho da geração de energia eólica em dois parques eólicos situados

na América do Norte, através da investigação dos dados de vento e modelagem 

da esteira turbulenta. Os dados analisados são provenientes da turbina, SCADA, 

e dados coletados pelo LiDAR.  A partir das análises dos dados de vento foram 

estimados parâmetros como tensão de cisalhamento do vento, rosa dos ventos, 

perfil de velocidade do vento e intensidade de turbulência. Portanto, aumentando 

a intensidade de turbulência, a energia gerada é superestimada em moderadas 

velocidades do vento e subestimada em altas velocidades do vento. Enquanto 

isso, os coeficientes de cisalhamento do vento variaram entre 0 e 0.2 para altas 

velocidades. Além disso, coeficientes de cisalhamento com valores elevados, 

perto de 0.4, foram encontrados em baixas velocidades do vento. Este trabalho 

visou também comparar modelos de esteira turbulenta de PARK (Jensen), 

Frandsen, Larsen and Eddy Viscosity (Ainslie) com resultados obtidos pelo 

LiDAR, além disso foi realizado uma simulação numérica da esteira turbulenta 

utilizando Fluent CFD com as equações médias de Reynolds (RANS) que 

resolvem o modelos de duas equações diferenciais para obter a viscosidade 

turbulenta. A turbulência foi fechada pelo modelo 𝑘 − 𝜀, sendo o modelo de 

esteira turbulenta desenvolvido para uma única turbina num terreno plano. O 

modelo de PARK obteve os melhores resultados para linha de centro longitudinal 

em relação as velocidades de 6 a 8 ms-1. Entretanto, para velocidade de 9 a 12 

ms-1 , o modelo de EDDY VISCOSITY apresentou o melhor desempenho. As 

análises de seção transversal apresentaram o modelo de PARK como melhor 

resultado para 500 m. Enquanto isso, para 700 m de seção transversal, o melhor 

desempenho foi obtido pelo modelo de LARSEN. 

Palavras-chave: Energia Eólica, Modelo de Esteira Turbulenta, LiDAR, 

Análises do Vento. 
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ABSTRACT 

 

Wind power has gained significant share in the global power production. 

However, the wind power output efficiency is only about 30% of the wind kinetic 

energy. Because of that, it is essential to study the efficiency of these power 

generation systems by assessing the effects that wind parameters and wakes will 

have on the whole system. Hence, a complete assessment of wind resources is 

crucial to retain full advantage of wind power. This study aims to investigate the 

efficiency of wind energy generation in two North American Wind Farms, through 

wind data investigation and wake modeling. The data analyzed are the SCADA 

data and the data collected by LiDAR measurements. The wind data analysis has 

estimated parameters as wind shear, wind rose, wind speed profile and 

turbulence intensity. Therefore increasing turbulence intensity the power output 

is overestimated at moderate wind speeds and underestimated at higher wind 

speeds. Meanwhile, the wind shear coefficients were found to vary between 0 

and 0.2 at higher inflow velocities. High wind shear values, close to 0.4, were 

recorded for lower inflow velocities. The goal of the wake models is to simulate 

the turbine induced wind speed deficits and the ratio of restoration to the free 

stream velocity. This work has compared the PARK (Jensen), Frandsen, Larsen 

and Eddy Viscosity (Ainslie) models with LiDAR wake measurements, besides 

that it has performed a numerical simulation of the wind turbine wake using the 

Fluent CFD with the Reynolds Averaged Navier Stokes (RANS) equations that 

solves two differential equation model to obtain turbulent viscosity. The 

turbulence was closed by the 𝑘 − 𝜀 model, where the wake modeling has been 

developed for a single turbine on a flat terrain. In terms of centerline wake 

analysis, the PARK wake model yielded the best velocity simulations for inflow 

winds from 6 to 8 ms-1. However, the EDDY VISCOSITY wake model yielded the 

best performance for wind speed bins from 9 to 12 ms-1. The cross section wake 

analysis presented for the 500 m cross section, the domination by the PARK 

model. Meanwhile, along the 700 m cross section, the LARSEN wake model 

produced the best simulations.  

 

Key-words: Wind Power, Wake Modeling, LiDAR, Wind Analysis.  
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1 

1 INTRODUCTION  

The demand for energy has been increasing in the last decade due to the 

global economic growth. Such development has risen quickly over the past three 

decades. Fossil fuels have become a point of environmental concern.  Increasing 

energy consumption not only results in depletion of energy resources but also 

gives rise to problems like global warming and greenhouse effect through 

emissions generated by burning of fossil fuels.  As result of that, some countries 

were driven to prospect and adjust to renewable resources to maintain the 

expanding energy requirement.  

Therefore, the development of several sources of renewable energies, 

such as solar, hydropower and wind energy is extremely important and timely. 

Amid these renewable resources, wind energy has offered a range of 

advantages, as technology already developed along with a prospection on the 

market (Leung & Yang, 2012).   

Wind power has gained respect in terms of progress and potential as a 

clean resource. This selective evolution is explained due to the global availability 

of such resource, reason that has brought a growing success and has pushed 

the development of the wind farms. Moreover, beyond its recognition as one of 

the cleanest energy, its cost has been falling and becoming financially more 

feasible by many reasons such as tax breaks. As consequence, a large number 

of farms have been developed at onshore and offshore locations over the past 

years. 

Many countries have accomplished high standards of wind power 

application, such as 21% of electricity production in Denmark, 18% in Portugal, 

16% in Spain, 14% in Ireland and 9% in Germany in 2010. By the end of 2013, 

90 countries around the world operated commercial wind power installations with 

total installed capacity of 318 GW, providing about 3% of global electricity supply 

at the end of 2013. Wind power production has gained an exceptionally fast 

growth in the past 20 years, being a sophisticated and efficient technology for 

electricity production (Bhattacharyya & Timilsina 2009; GWEC 2014). 

The most significant regions of new expansion are in Brazil, Mexico and 

South Africa. Brazil is the leader in wind power installed capacity. The wind 

resources in the country represent an enormous potential. After a reluctant start 
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to wind power growth in the beginning of the 2000 decade, the Brazilian wind 

market has now advanced significantly. In 2011, Brazil reached 1.5 GW of 

installed capacity, and by the end of 2013, the total installed capacity exceeded 

3.4 GW. The country reached over 10 GW in February of 2017, representing a 

huge cumulative growth, which has not being seen frequently, apart from China 

in the period 2005-2010 (GWEC, 2014; Abeeólica, 2017). 

Wind energy projects endure the disadvantage of the wind resource 

intermittency; thus, the wind turbines do not run steadily because the wind does 

not blow constantly over time. Therefore, wind energy projects are treated as 

energy-replacement instead of capacity-replacement resources. The quantity of 

energy that can be provided by layouts of wind turbines rely upon the wind 

resource availability and on the character of the load being supplied. Because of 

that, it is essential to study the efficiency of these power generation systems by 

assessing the effects that wind parameters and wakes will have on the whole 

system and on its reliability. 

A complete assessment of wind resources is crucial to retain full 

advantage of wind power. For instance, accurate and correct measurements of 

wind speed decrease the needs of massive investments. In site, the wind 

measurements are commonly made at different heights, but not coinciding with 

the hub height of the rotor. The wind velocity at a given site increases with height 

by a power factor called the wind shear coefficient. This coefficient is extremely 

variable to the site where the measurements are performed. The other two crucial 

parameters that influence the energy production evaluation are the turbulence 

kinetic energy and turbulence intensity, which are related to atmospheric stability 

that could affect the power performance (Rehman and Al-Abbadi, 2005; Wharton 

and Lundquist, 2012). 

Wind turbines generate wakes, which are areas of flow with lowered 

momentum and enlarged turbulence. Such phenomena is induced by the energy 

extraction from the wind, where each wind turbine produces a turbulent region 

with slower wind velocities downstream, thus leading to decreased energy yield 

for the downstream wind turbine. The development of wake surely affects power 

output and, because of that it is essential for wind power plants developers to be 

capable to both quantify and estimate the magnitude of the uncertainties and 
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characteristics of the flow behind the turbine. Attending to study and project large 

wind farms layouts, modeling of wake effects is a crucial element of the energy 

yield. Looking to diminish power losses and increase the lifetime of the blades, it 

is essential to have a valuable understanding of the behavior of wakes in wind 

power plants. Such knowledge can be obtained  by modeling the wake effects in 

wind turbines (Mo et al., 2013; Vermeer et al., 2003; Tsalicoglou, 2012). 

With the development of the computational technology, CFD is 

expanding into complex problems involving fluid-structure interaction. However, 

in most situations, a simplistic modeling is satisfactory to evaluate the effects of 

turbulence on the flow. Although, the application of large scale simulation (LES) 

has gradually increased for wind power simulations, but a large part of the 

simulations is represented by the Reynolds Average Navier-Stokes (RANS) 

equations, derived from the fundamental assumptions of mass conservation and 

momentum (Yildirim et al., 2013; Rapaka and Sarkar, 2016). 

This work has developed a verification of the aerodynamics of a wind 

turbine, including analysis of how wind characteristics parameters affect the 

energy power production. Moreover, it has compared semi empirical existing 

wake models with wake results obtained by Light Detection and Ranging (LiDAR) 

measurements, which are used to understand the physics concepts behind wind 

turbine wakes. At the end, a Computational Fluid Dynamics (CFD) model has 

been implemented for simulating flows around a single wind turbine, by solving 

the Reynolds Averaged Navier-Stokes (RANS) equations. 

1.1 JUSTIFICATION 

Wind energy is one of the most promising renewable energy sources 

around the world, this is mostly due the recent significant enhancement on wind 

energy conversion technologies efficiency. Therefore, in order to achieve optimal 

technology performance, it is pivotal to develop specialized studies on the wind 

flow through wind turbines. 
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1.2 OBJECTIVE 

This study has a general objective to evaluate the performance of wind 

energy generation by vertical wind profile analysis seeking to determine the 

influence of wind characteristics parameters in wind energy production and 

compare existing wake models with wake measurements by LiDAR, as well as, 

a numerical simulation of aerodynamics of the turbine using CFD. 

1.3 GOALS 

The goals of this research are: 

 

1. Basic statistical analysis of LiDAR data. 

2. Identify and determine parameters of importance for the project, such 

as: wind shear, wind diurnal profile, turbulence intensity, wind speed 

distribution and wind rose; 

3. Comparison among power performance generation with parameters of 

importance and identification of ranges are generating the best results. 

4. Applying wakes models that are useful to the industry and compare with 

LiDAR measurements data to different boundary conditions. 

5. Numerical simulation of aerodynamics around a wind turbine generator 

through CFD. 

1.4 MASTER THESIS CHAPTERS 

Chapter I presents the introduction of the research, where defines the 

justification, objectives and goals. 

Chapter II develops the review of principles aspects that are retreated at 

the dissertation, divided by physical aspects, wind assessment and wake models. 

Chapter III presents the case study, reporting the study area subdivided 

by site A and B, alongside with the data. 

Chapter IV describes the methodology applied in the research, which is 

divided by data quality control, wind rose, wind speed distribution, wind analysis 

parameters and wake modeling. 
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Chapter V details the results and discussion obtained by the evaluated 

analysis at this work, the subsections are the wind and power generations 

analysis for site A and wake modeling analysis for site B. 

Chapter VI finishes with the conclusion and recommendations for future 

studies in the area. 
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2 REVIEW 

This chapter presents a literature review by discussing the main concepts 

and considerations about wind power generation, wind parameters and wake 

modeling that have been applied to develop the wind energy system. 

2.1 PHYSICAL ASPECTS 

Wind turbines generate electricity by taking the raw power of the wind to 

induce a generator. Wind turbines convert the kinetic energy of the flow that 

passes the swept area of the wind turbine to mechanical torque on the rotor hub. 

Such torque is transformed into electrical energy by an electromagnetic 

conversion with the assistance of an electric generator. 

The kinetic energy related to the inflow wind over the wind turbine blades 

that rotate on a cross section 𝐴 is given by 

 

𝐸𝑐 =
1

2
𝑚𝑣2,          (2.1) 

 

where 𝐸𝑐 is the kinetic energy (Joules); 𝑚 is the airflow mass (kg); 𝑉 is the wind 

speed (ms-1). 

Therefore, the power produced from wind speed is defined as the time rate 

of kinetic energy, and then the power of an air mass with density 𝜌 flowing at wind 

speed 𝑉 trough an area 𝐴 can be expressed as 

 

𝑃 =
1

2
𝜌𝐴𝑣3.           (2.2)  

However, according to Betz’s theory, the maximum value that the 

efficiency of a wind turbine can reach is 59.3%, as the air decelerated when it 

approaches the rotor plane. Though the efficiency of current wind turbines is 

around to half of this optimal value (Çengel and Cimbala, 2006). 
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2.1.1 THE ACTUATOR DISC CONCEPT 

The basic theory of rotor aerodynamics in based on Betz’s Blade Element 

Momentum (BEM) theory that models an optimal one-dimensional flow through a 

rotor disc. The rotor obtains mechanical energy from the flow by reducing its 

kinetic energy and thus its velocity (Tsalicoglou, 2012) 

 

Figure 1: Stream tube positions when using Betz analogy 

Source: adapted from Tsalicoglou (2012) 

 

Consequently, if a stream tube is considered, the cross-sectional area 

through which the flow passes has to increase to ensure the conservation of 

mass. To better describe these considerations four locations of the flow are 

defined as: 1: free flow; 2: flow just upstream of the turbine rotor; 3: flow just 

downstream of the turbine rotor; and 4: flow far downstream of the turbine rotor 

(Manwell et al., 2009). If 𝑣1 is the velocity of the undisturbed flow and 𝑣4 the 

reduced velocity of the flow far behind the rotor, the area 𝐴4 downstream of the 

rotor needs to be larger than 𝐴1 in order to maintain a constant mass flow rate 𝑚̇: 

 

𝑚̇ = 𝜌𝑣1𝐴1 = 𝜌𝑣4𝐴4.         (2.3) 

The obtained mechanical power is then given by 

 

𝑃 =
1

2
𝜌(𝑣1

3𝐴1 − 𝑣4
3𝐴4)  =

1

2
𝑚̇(𝑣1

2 − 𝑣4
2),        (2.4) 
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and the thrust force on the rotor is 

 

𝐹𝑇 = 𝑚̇(𝑣1 − 𝑣4).         (2.5) 

Assuming the point that no work is done on either side of the rotor, the 

Bernoulli equation can be applied in the transition from 1 to 2 and 3 to 4, then the 

total pressure, 𝑝𝑡 of the flow still consistent in these regions, thus  𝑝𝑡,1 = 𝑝𝑡,2 and  

𝑝𝑡,3 = 𝑝𝑡,4, with 𝑝𝑡 given as:  

 

𝑝𝑡 = 𝑝 +
1

2
𝜌𝑣2.          (2.6) 

Assumptions have to be made to derive a new equation from equation 

(2.5). Those assumptions take in consideration the fact that sections 1 and 4 are 

sufficiently far from the turbine then  𝑝𝑡,1 = 𝑝𝑡,4 =  𝑝𝑎𝑡𝑚 and 𝑣2 = 𝑣3. The sum of 

the forces on either sides of the turbine is 𝐹𝑇 = 𝐴2(𝑝2 − 𝑝3). Then: 

 

𝐹𝑇 =
1

2
𝜌𝐴2(𝑣1

2 − 𝑣4
2).         (2.7) 

The velocity at the hub height can then be derived by equaling the 

equations (2.5) and (2.7), resulting in: 

 

𝑣2 = 𝑣3 =
(𝑣1+𝑣4)

2
.         (2.8) 

Thus the conclusion is that the average velocity of a fluid through a turbine 

is the arithmetic average of the upstream and downstream velocities. The validity 

of this result is limited by the applicability of the Bernoulli equation (Çengel and 

Cimbala, 2006).  

The decline of wind velocity between sections 1 and 2, associated to the 

velocity of the free stream is defined as the axial induction factor, 𝜔: 

 

𝜔 =
(v1−v2)

v1
  .                    (2.9) 
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As the axial induction factor increases from 0, the wind speed behind the 

rotor slows continuously. If 𝜔 = 1/2, the wind has slowed to zero velocity behind 

the rotor and the simple theory is no longer applicable. 

Manipulating the given equation above, the power can be written as: 

 

𝑃 =
1

2
𝜌𝐴2𝑣2

34𝜔(1 − 𝜔)2 ,       (2.10) 

where the control volume area at the rotor, 𝐴2, is replaced by 𝐴, the rotor area, 

and the free stream velocity v2 is replaced by 𝑉. 

Wind power performance is generally characterized by its power 

coefficient, 𝐶𝑝: 

 

𝐶𝑝 = 4𝜔(1 − 𝜔)2.         (2.11) 

That can also be written as function of power 

 

𝐶𝑝 =
𝑃

1

2
𝜌𝐴𝑉3

=  
Rotor power

Power in the wind
 .      (2.12) 

The non-dimensional power coefficient represents the fraction of the 

power in the wind that is extracted by the rotor (Manwell et al., 2009). In a similar 

way to the power, the thrust can be established by a dimensionless thrust 

coefficient: 

𝐶𝑇 =
𝐹𝑇

1

2
𝜌𝐴𝑉2

=  
Thrust force 

Dynamic force  in the wind 
 .     (2.13) 

Therefore, the thrust coefficient related to an ideal wind turbine is 

equivalent to eq. (2.11), where  𝐶𝑝 turns 𝐶𝑇 and has its highest value in 𝜔 = 0.5, 

which reaches 𝐶𝑇 = 1. However, for maximum power where 𝜔 = 1/3, the thrust 

coefficient reaches value of around 0.89 (Manwell et al., 2009). 

2.2 WIND ASSESSMENT 

Wind turbines are operating in the lowest part of the atmospheric boundary 

layer. This complicates the calculation of the flow around the turbines. Though 

wind speed is a dependent variable parameter that optimizes the power 
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generation for a wind turbine, thus the maximum efficiency can be achieved at 

all wind velocities. In addition, the power output primarily depends on the mean 

speed of the inflow wind. However, this system requires high quality parameters 

for calculation of the optimum wind turbine power generation. The effectiveness 

of maximum power control with the identified parameters can be verified through 

simulations of the wind power generation system. The power output primarily 

depends on the mean speed of the inflow wind. 

2.2.1 WIND MEASUREMENT AND LIDAR 

Obtaining a good estimate of wind speed is crucial in a wind farm 

project. For large installations, a good deal of expert assessment of wind 

speeds will be of highest importance to the efficiency of the project. However 

when it comes to smaller projects, there is often lack of analysis of the 

aerodynamics characteristics of the wind. 

High-quality site wind speed measurements are therefore important to 

reduce the uncertainty of the energy produced estimation of a project. 

Nowadays there are some equipment that are able to measure wind speeds, 

such as, anemometer, LiDAR and SODAR (Moore, 2010; Lang and McKeogh, 

2011; Wandinger, 2005; Carsewell, 1983). 

A typical anemometry mast will have several anemometers installed at 

different heights on the mast, and vanes, which are devices that measure wind 

direction. These devices will be connected to a data logger, via cables. Remote 

sensing has gained space and the technology available for this is being refined 

quickly. The devices are basically ground-based, which can measure at a range 

of heights externally the use of mat masts (Clive, 2012).   

SODAR (Sound Detection and Ranging) emits and receives sound waves 

which yield wind speed through the Doppler Shift principle (Vogt and Thomas, 

1995; Lang and McKeogh, 2011). 

LiDAR (Light Detection and Ranging), which also works with the Doppler 

Shift principle, emits light waves from a laser and receives the signal back from 

airborne particulate matters. In addition, LiDAR devices are currently quite 

expensive to purchase, but suitable wind measurements can be acquired using 

it. This offers an opportunity to make significant savings on the cost of data 
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acquisition and as a result boost the return on investment associated with these 

data (Clive, 2011; Wandinger, 2005). 

LiDARs identify the Doppler shift in the laser emissions frequency, which 

is back-spread by aerosol particles heading in the wind. Such movement 

establishes a Doppler shift on the frequency of the back-spread discharge 

expressly equivalent to the element of the wind speed vector ahead the line of 

sight (LOS) wherever the laser discharges radiates. Interpreting a wind velocity 

from Doppler shifts and equivalent LOS radial wind speed vector elements, the 

difference acquired by changing the direction of the beam in relation to the wind 

direction have to be checked (Clive, 2016). 

LiDAR measurements frequently include the operating function with a 

scan geometry to collect radial speeds from three elementary directions and 

assessing wind speed in accordance with the following equation (2.14) (Wang et 

al., 2016, Sathe et al., 2011): 

 

𝑣(𝑠) = 𝑑𝑇𝑢,         (2.14) 

 

where 𝑑𝑇 = [𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜑] and 𝑢 = [𝑣𝑥 , 𝑣𝑦, 𝑣𝑧] . The radial velocity 

𝑣 is the prolongation of the wind speed 𝑢 on the line of sight (LOS) at the position 

𝑠 = 𝑠𝑑 for which 𝑠 is the distance from the LiDAR ahead the LOS and 𝑑 is the unit 

directional vector driven by the elevation angle 𝜑 and the azimuth angle 𝜃 of the 

LOS from north. Equation (2.14) can be written as (Werner, 2005): 

 

𝑣(𝑠) = 𝑣𝑥 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜃 + 𝑣𝑦 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 +  𝑣𝑧 𝑠𝑖𝑛𝜑   (2.15) 

 

If we fit Figure 2 to a function that displays the amplitude behavior (A) of 

the sinusoidal gradient in radial velocity is equivalent to the wind speed 

supporting flow homogeneity, which the hypothesis that every LiDAR beam 

authenticates the identical wind speed vector (𝑉𝐻) is genuine. The scan geometry 

present the opportunity to obtain wind data from a volume of air, which is not 

limited to the volume instantly superior the device, using low elevation angle 

(Clive, 2016; Werner, 2005).  
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Figure 2: Deriving wind speed from Doppler shifts observed by LiDAR 

Source: Clive, 2016 

 

Therefore, horizontal wind speed vector (𝑉𝐻) can be written by: 

 

𝑉𝐻 = (𝑣𝑥
2 + 𝑣𝑦

2)1/2 =
𝐴

𝑐𝑜𝑠𝜑
       (2.16) 

 

The Arc Scans or PPIs contain the asset by sampling exclusively the area 

of attraction, which the total collection repetitions in a given period can increase. 

2.2.2 ATMOSPHERIC BOUNDARY LAYER 

The winds have their origins in the effects of differential solar heating on 

the earth’s surface. The resulting temperature and pressure differences, with the 

addition of Coriolis forces, are responsible for the large scale motion of air 

masses along the lines of constant pressure as indicated in weather maps 

(Manwell et al., 2009). At altitudes of the order of 1000 m, the effects of earth’s 

surface friction can be neglected, and the wind is determined mainly by these 

large scales pressure patterns. However, at lower altitude, where occurs the 

utilization of wind energy, the wind is limited by surface friction.  

The wind over the earth’s surface may be assumed as composed by two 

time-dependent terms: average velocity and fluctuating velocity. The average 

wind speed is proportional to the “wind gradient”. The fluctuating wind is the 

unsteady, continuously unstable and varying randomly (Rohatgi & Barbezier, 
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1999). These variations are responsible for the vertical transport of horizontal 

momentum by which surface shear stress is transmitted through the atmospheric 

boundary layer. 

The wind speed profile in the atmospheric boundary layer is frequently 

designed by a logarithmic function (Sanderse, 2009): 

 

𝑣(𝑧) ∝ ln (
𝑧

𝑧0
) + 𝐹𝑠𝑡,        (2.17) 

with 𝑧0 the surface roughness length, a quantity that expresses how the 

atmospheric boundary layer interacts with the surface, ranging from 0.01 m very 

flat terrain to 0.7 m for forests and urban areas. 𝐹𝑠𝑡 is a function which depends 

on stability (Burton et al., 2001). For neutral atmospheric conditions, the function 

is small and the equation (2.13) reduces to: 

 

𝑣(𝑧) ∝ ln (
𝑧

𝑧0
) .        (2.18) 

2.2.3 STABILITY 

The tendency to endure vertical motion or to restrain existing turbulence is 

defined by stability, which is a crucial characteristic of the atmosphere. The 

boundary layer turns its stratification stable on any occasion of the elemental 

surface has lower temperature compared to the air. The effects of stability on 

turbulence and wind shear are relevant to wind power applications. Turbulence 

is highly associated with stability and also wind shear, that is developed in the 

early stages of the first kilometer above the ground, is particularly influenced by 

the stability of the atmospheric boundary layer, which is general classified as 

stable, neutrally stable, or unstable (Manwell et al., 2009). Subject to the condition 

that turbulence is induced due shear and dissipated due negative tendency to 

float and viscosity. Because of this conflict, the turbulence intensity in stables 

boundaries is a lot vulnerable than the neutral and unstable boundary layers. 

Resulting in hollow and identified by tinier eddy movements at stable conditions 

(Basu and Porté-Agel, 2006). 

Turbulence produced under unstable conditions may influence turbine load 

and performance, due the development of mixing between air portions at distinct 
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heights, by that diminishing the vertical variability of wind (Roy & Sharp, 2013). 

For that reason, a stable atmosphere that presents small turbulence drives to 

high wind shear, while an unstable atmosphere generates the minimum quantity 

of wind shear. High wind shear indicates a faster variation in wind velocities with 

height. Therefore, in stable conditions hub height wind velocities point to be 

greater than the under winds, thus its huge gradient generates torque across the 

rotor which could be the source of the fatigue (Sathe et al. 2012; Rohatgi & 

Barbezier, 1999). 

Improving the knowledge involving environmental atmospheric stability, its 

effect on turbulence and wind shear is crucial for assisting wind farms developers 

in achieving efficiency optimization. Studies of stability effects on a single wind 

farm´s production can support greater management for long-term operation and 

maintenance designs. Developing better stability models may essentially raise 

the power output production (Roy & Sharp, 2013).  

2.2.4 WIND SHEAR 

Wind shear might be defined as the local variation of wind vector. Such 

variation can be measured as the spatial change in any direction of the wind 

speed. For practical purposes in industry, wind shear is generally assumed to be 

the variation of wind speed with height above ground level (Mclaughlin 2012). 

Over rough terrain, the wind shear decreases near the ground, but there 

is a compensated increase in higher layers. Unstable air tends to rise, 

intensifying the vertical mixing and reducing vertical wind shear in grand part 

of the layers. However, in stable conditions, the vertical motion slows down 

and consequently vertical wind shear might become extremely high. Vertical 

wind shear is a crucial parameter in wind energy projects, because it is directly 

correlated to the productivity of wind turbine output and it reduces the lifetime 

of the turbine rotor blade (Honrubia et. al., 2009).  

A power law is usually used to represent vertical wind profiles. The basic 

equation of wind shear power law is as follows (Chehouri et. al., 2015): 

 

𝑉(𝑧) = 𝑉𝑟 (
𝑧

𝑧r
)

𝛼

,        (2.19) 
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where z is the elevation above the ground level; zr is the reference altitude; α 

the wind shear exponent; Vr is the wind speed at the reference altitude. The 

exponent α often ranges from 0.1 to 0.4, varying according to the terrain 

roughness and the air temperature variation (Manwell et al., 2009). A power 

law, characterized by an exponent, is a reasonable approximation to the 

logarithmic law and has the advantage that it is much more straightforward to 

find an analytical solution for an exponent. 

2.2.5 TURBULENCE 

Atmospheric turbulence is the set of random and continuously changing 

air motions that are superimposed on the average of the wind motion. Its impact 

can influence the power performance, and also cause effects as turbine loads, 

fatigue, wake effects and noise propagation. Turbulence is related to the 

topography of the site and also depend on of the atmospheric stratification 

(Gottschall & Peinke, 2008; Prospathopoulos et al., 2011) Low turbulence 

conditions are linked with stable conditions, which describes the persistence or 

consistence of wind speeds, whereas in unstable conditions the wind speed 

strongly changes with height therefore the turbulence intensity is high (Kaiser 

et. al., 2007). 

Turbulence intensity is, following the International Electrotechnical 

Commission (IEC) standard for wind turbine power performance measurements, 

IEC 61400-12-1, estimated in wind power as the ratio of the standard deviation, 

𝜎, of 10  minute  wind  speed  dataset  by  its  mean  wind  speed, 𝑉,  according  

to the equation (Wharton & Lundquist, 2012) 

 

𝐼 =
𝜎

𝑉̅
 .          (2.20) 

 

Steady wind flows deliver lower turbulence intensity, on the contrary, the 

turbulence is high when wind fluctuates fast. Hence, often the literature reports 

values of horizontal turbulence intensity in the range from 3% to 20% (Wharton 

and Lundquist, 2010).   
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Sheinman and Rosen (1992) demonstrated that neglecting the effect of 

wake turbulence in the incoming wind speed can lead to an overestimation of 

turbine output slightly over 10%. In particular, the velocity deficit, which is 

highly related to power losses in wind farms, recovers faster when the 

turbulence intensity level of the incoming flow is higher, which usually occurs 

near to the high turbulence turbine zone (Wu and Porté-Agel, 2012). 

Turbulence from the upwind turbines affects the power performance of the 

downwind turbines whenever the wind direction gets aligned with the wind farm 

turbines. 

2.2.6 POWER PERFORMANCE ANALYSIS  

Environmental external forces have to be considered for the study of 

wind turbines loading and fatigue. Primarily due to the interaction of wind with 

different components of the wind turbine, result not only the reduction of energy 

output, but also reduce the lifetime of the constituent materials.  

Fatigue affects the lifetime of wind turbine components that are expected 

to withstand continuously varying loads. Rotor blade fatigue life is influenced 

by the cyclic loads resulting from rotation through a wind field that varies in the 

vertical direction (Manwell et al., 2009). This is particularly the case if they are 

located in a very turbulent wind climate associated with relative wind shear 

variation, which is strongly correlated with turbine produced wakes. Kim et al. 

(2015) reported that the wind variation caused by wake effect, which produces 

high fluctuation on mechanical loads, can be estimated through both 

turbulence intensity and wind shear gradient. The study was based using 

steady and dynamic power curves. The authors found that for the low wind 

velocities, the power curves had different behavior even though the high 

turbulence intensity profile was incorporated. However, the authors understood 

that when a site has a low mean wind speed, the energy improvement for low 

wind velocities would compensated for the power losses for higher velocities, 

due to the high turbulence intensity effect. Therefore, the study concluded that 

high turbulence intensity significantly increases the fatigue load. Adaramola and 

Krogstad (2011)  showed that the power losses for a turbine operating in the 

wake of the upstream wind turbine are important; with the maximum loss in 
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the  downstream  turbine  varying   from  20  to  45%  depending  on  the  

distance between the turbines and their operating conditions. The power losses 

for the downstream wind turbines are directly linked with the velocity deficit in 

the wake area, which means that inferior quantity of energy is available in the 

downstream turbine.  The authors found that the improvement of the power 

coefficient of the downstream turbine, is about 29% higher for yaw angle 

corrected upstream wind turbine than the non-yawed upstream turbine. 

2.3 WAKE MODELS 

Due to the fast growth in the number and size of installed wind farms 

around the world, wind-turbine wakes have become an important topic of study. 

As many wind turbines in wind farms have to operate in the wakes of upwind 

turbines, they are exposed to incoming wind velocities that are smaller than those 

under unperturbed (without wake) conditions; as a result, turbine wakes are 

responsible for significant power losses in wind farms (Bastankhah and Porté-

Agel, 2014). Barthelmie et al. (2007) reported that wake losses, for a given wind 

direction, can be as much as 10–20% of the power when no wakes are present. 

The comprehension of power losses expected to wind turbine wake on wind 

plants is vital to improve the wind farm display. However, power losses detected 

by a single wind turbine due to wakes are closely to 10% generally. Although, the 

wind farm output energy reduction may range from 5% to 8% of the annual energy 

yield.  

Therefore, it is necessary for wind park developers to be able to estimate 

quantitatively and with small uncertainties the extent and characteristics of the 

flow downstream of wind turbines (Tsalicoglou, 2012). Extensive analytical, 

numerical and experimental efforts have been carried out to better understand 

and estimate turbine wake flows. Although numerical and experimental 

techniques have become increasingly sophisticated and accurate in recent years, 

simple analytical models are still useful tools to estimate wind-turbine wake flows 

and their effect on power production. Analytical models are widely used due to 

their simplicity and low computational cost (Bastankhah and Porté-Agel, 2014; 

Crespo et al., 1999; Katic, et al. 1986; Kiranoudis and Maroulis,  1997).  
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In order to reduce computational costs, analytical models assume that 

wake geometry and intensity are functions of both the inflow conditions and the 

turbine’s operating point. Vermeer et al. (2003) reviewed several analytical 

models that estimate wake development, interaction and superposition. However, 

an accurate understanding of the effects of unsteady flow regime is of huge 

significance, as turbines generally perform in unsteady environment that may be 

produced by yaw, wind shear, the tower shadow and dynamic wind flow 

(Leishman, 2002). 

The wake is normally represented in two zones; a near wake, where the 

induced wake of the isolated rotor blades can be identified; and a far wake, whose 

properties are reported in experimental studies and simulations in the literature 

(Renkema, 2007; Vermeer et al., 2003). The near wake is distinguished by the 

existence of edge vortices that trail a spiral course, separating the fluid with lower 

velocity within the wake from the faster fluid external to the wake. The free shear 

layer, that develops between the lower and larger velocity regions, widens as the 

vortices combine and expands downstream, which characterizes the far wake 

(Crespo et al., 1999; Politis et al., 2015).  

The analytical models that are used by the industry are terse in the 

physical representation of the phenomena in comparison to most of the advanced 

methods based on CFD models. An advantage of the analytical models to point 

out is the lower cost compared to the more computationally expensive models 

that not always represents the wake with better accuracy (Crespo et al., 1999). 

However, there are cases where the analytical models represent reality poorly; 

then CFD models are employed aiming a higher accuracy description as example 

of complex topography (Nedjari et al., 2017; Prospathopoulos et al., 2010). 

2.3.1 SIMPLIFIED MODELS   

Many wake models are established on the fundamental assumption of 

conservation of mass and momentum. The goal of wake models employed in 

energy yield estimation software is to represent the turbine induced wind speed 

deficits and the ratio of restoration to the free stream velocity. 

The simplified models neglect some terms of the Navier-Stokes 

Equations and consider the wake to be consistent and axisymmetric for 
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increasing solving velocity. The quickest methods are developed to model the 

wake expansion directly rather the turbulence, as the models of: Jensen, 

Frandsen, Larsen and Ainslie (eddy viscosity model). They fundamentally 

simulate momentum conservation at wake area that is expanded in agreement 

with a factual wake development function (Rethore, 2009). 

2.3.1.1 PARK (JENSEN) MODEL 

One of the first wake models is the one proposed by Jensen (1983). The 

model, illustrated in Figure 3, is a simplification of the reality, which assumes a 

top-hat shape for the velocity deficit in the wake, then taking into consideration a 

gradually developing wake with a velocity deficit that is only relative to the 

distance behind the rotor, which means that expands radially at the rate (𝑘 𝑥). 

This model is deficient for the far wake, but it is a fairly good representation for 

the near wake (Janssen, 2012).  

 

 

Figure 3: Jensen wake model 

Source: Janssen, 2012 

 

The mass balance for the control volume of Figure 3 is given by equation 

(2.21):  
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 2 2 2 2

0 1w wD u D D V D u   ,         (2.21) 

where D is the rotor diameter; Dw is the wake diameter; V0 is the free stream wind 

velocity; u1 is the wind velocity deficit. Then assuming the wind speed just after 

the wind turbine rotor, 𝑢, is 
1

3
𝑉0, the equation (2.21) can be written as equation 

(2.22) for an ideal wind turbine: 
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,       (2.22) 

Where 𝑘 is the wake decay constant; 𝑥 is the wake distance downstream of the 

wind turbine. The equation (2.22), can also be rewritten by using the “ ”, 

induction factor  (equation 2.9), not considering a ideal wind turbine anymore, 

yielding equation (2.23), 
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The induction factor ( ) can also be written as function of the thrust 

coefficient, CT, which is a coefficient applied to indicate the maximum thrust force 

resulting from the energy conversion equipment, 

 

1 1

2

TC


 
 .          (2.24) 

These assumptions yield the Jensen wake model, that can be used to 

calculate the wind speed deficit as, 
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.        (2.25) 

 

The wake development can be computed as, 
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2wD D kx  .          (2.26) 

The equation (2.23) states k as the wake decay constant, which 

represents the dissipation of the wake as the wake width increases. The large 

wake decay means a rapid decrease of the wake and a large rate of wake width 

increase. The value of k is usually adopted to be 0.075, which is adequate for 

onshore wind farms, but for offshore the use of a 0.04 – 0.05 value is 

recommended.  

The Jensen model hypothesis requires that, 𝐶𝑡 < 1,  the thrust coefficient 

of the rotor must be lower than one (Renkema, 2007). 

2.3.1.2 FRANDSEN WAKE MODEL  

In order to estimate the wake in wide wind farms, Frandsen et al. (2006) 

developed a wake model that was initially used for offshore wind turbines, which 

use could be extended for onshore conditions, if they were similar to offshore, 

that is very low roughness. The kinematics energy deficit downstream of the 

turbine is determined and sustained as the wake develops downstream. The wind 

speed deficit is computed taking into consideration a circular wake area, which 

develops until hitting the terrain or sideways wakes, thus considering a circular 

control volume with stable cross-sectional region equivalent to the wake sector. 

When one considers a single wake in a wind farm, the velocity deficit for Frandsen 

model is given by 

 

𝑢 =
𝑉0

2
(1 ± √1 − 2

𝐴

𝐴𝑤
𝐶𝑇),       (2.27) 

where 𝑢 is the velocity deficit, 𝑉0 is the freestream velocity, 
𝐴

𝐴𝑤
 is the ratio between 

the rotor and wake area and 𝐶𝑇 is the thrust coefficient.  

The model assumes three distinct wake zones: in the first zone a single 

wake is produced with no synergy among adjacent wakes. The second zone 

begins when two adjacent wake streams merge; the wake development is 

restricted to an enlargement just in the vertical direction, when represented in 2D. 

The third zone occurs when the wake flow is in equilibrium with the atmospheric 
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boundary layer, which only can happen when the wind farm is sufficiently and 

extremely large. 

2.3.1.3 LARSEN WAKE MODEL  

The Larsen wake model is based on Prandtl’s turbulent boundary layer 

equations, being recognized as EWTS (European Wind Turbine Standards II). 

The wake expansion in terms of wake radius and wind velocity profile have a 

closed form solution, which means that in order to gather that class of solution a 

self-similar wind speed profile is required.  The model also assumes the Prandtl’s 

mixing length theory, thus the wind flow is presumed to be incompressible, 

stationary and axisymmetric (Larsen, 1988; Larsen et al., 1996). 

The wind speed deficit, count on both the radius (𝑟) and the downstream 

length from the wind turbine (𝑥). The equation used to calculate the wind speed 

deficit at the radial location 𝑟 and at the downwind location 𝑥 is 

 

𝑉0 − 𝑢𝑥 = 

−
𝑉0

9
(𝐶𝑡𝐴(𝑥 + 𝑥0)−2)1/3 {𝑟3/2(3𝑐1

2𝐶𝑡𝐴(𝑥 + 𝑥0))−1/2 − (
35

2𝜋
)

3/10
(3𝑐1

2)−1/5}
2

, (2.28) 

where 𝑉0 is the freestream velocity at rotor, 𝑢𝑥 is the wind velocity, 𝐴 the rotor 

area, 𝑐1 the non-dimensional mixing length. Thus, the equation used to calculate 

the wake radius is: 

 

𝑅𝑤 = (
35

2𝜋
)

1/5
(3𝑐1

2)1/5(𝐶𝑡𝐴(𝑥 + 𝑥0))1/3.      (2.29) 

  

2.3.1.4 EDDY VISCOSITY WAKE MODEL  

Ainslie (1988) developed a wake model based on the numerical solution 

of the flow differential equations using an eddy viscosity model for system’s 

closure. The eddy viscosity wake model is related to the shear layer estimation 

of the Navier-Stokes equation.  
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The model assumes the hypothesis of an axisymmetric, stationary, 

entirely turbulent wake with no circumferential velocity and insignificant pressure 

gradients external to the wake area. The axisymmetric assumption allows a two-

dimensional characterization of the wake (Van Luvanee, 2006).  

The model goal was to develop a physically based representation of the 

flow system, its description and governing equations can be found in Ainslie 

(1988). The eddy viscosity turbulence closure aims a more accurate simulation 

of the turbulent mixing in the wake shear layer (Janssen, 2012). Hence Navier-

Stokes can be replaced by the simplified shear layer estimation which, neglecting 

viscosity in cylindrical coordinates. The shear layer estimation is linked with the 

axisymmetric assumption for the incompressible fluid continuity equation to build 

the differential equations system that simulates the wake. The mass conservation 

equation can be written as: 

 

 1
0

rv u

r r x

 
 

 
,        (2.30) 

and the momentum equation in freestream direction by 

 

 1
 ,

ru vu u
u v

x r r r

  
  

  
       (2.31) 

where u  is the downstream velocity (ms-1), v  the radial velocity (ms-1), the x  

downstream distance coordinate from the turbine (m) and r the radial distance 

coordinate from the wake centerline (m). The right side of the equality describes 

the alteration in acceleration, thus momentum transport crosswise the flow. u v   

is the Reynolds stress characterized as the cross-correlation of the turbulent 

elements of mean velocities u  and v . The constant momentum transfer between 

adjacent fluid elements occurs due to the orthogonal fluctuating velocities, hence 

diminishing velocity gradients (Fox et al., 2004). 

The turbulent viscosity approach is used to explain the Reynolds stress 

with an eddy viscosity (𝜀), determined by the following equations: 
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

         (2.32)

( ) ( )w w al x u x            (2.33) 

where, 𝑙𝑤 is the wake length; 𝑢𝑤 is the velocity deficit and both are responsible 

for characterizing the wake shear layer, 𝜀𝑎 expresses the ambient turbulence 

input to eddy viscosity (Janssen, 2012). Then the velocity gradient covering the 

shear layer, being a representation of the downstream distance, 𝑥, and not the 

radial distance, 𝑟. 

2.3.2 NUMERICAL SIMULATION (CFD) 

Computational fluid dynamics (CFD) is the branch of fluid dynamics that 

simulates real flows by means of the numerical solution of the governing 

equations. The objective is to reduce the effects of the assumptions limitations 

used in simplified methods. 

The early usage of CFD in the framework of wind power performance 

studies was correlated with the estimation of two-dimensional airfoil 

characteristics. However, with technology growth in terms of computing capacity, 

the CFD has become a useful tool for the solution of many problems, ranging 

from a simple airfoil to the atmospheric boundary layer. Turbulent flows are so 

complex, that a direct solution is inaccessible, particularly for large Reynolds 

numbers (Sumner et al., 2010). However, in most situations a closure turbulence 

assumption is satisfactory to simulate the effects of turbulence on the flow stream.  

In the past years, wake effects had been reported in CFD applications. 

Simulating the wind turbine rotation, which gives the most detailed information 

that is necessary to understand the behavior of the flow behind the wind turbine 

and in the swept area. However, the processing time of the simulation turns large 

when a high quality grid cells are used to accurately capture the rotational motion 

of the fluid though swept area (Nedjari et al., 2017). 

Two common turbulence closure assumptions are: (1) large eddy 

simulation (LES) and (2) Reynolds-Averaged Navier-Stokes (RANS) equations 

derived from the fundamental assumptions of conservation of mass and 

momentum, which are described by (Pope, 2001): 
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0U                          (2.34) 

1U
UU p f

t





     


,                  (2.35) 

where U  represents the mean velocity vector, p  is mean pressure,   is the 

fluid density, f  represents a body force (i.e., Coriolis, buoyancy, gravity, etc.) 

and   is the specific Reynolds stress tensor. To close the RANS equations, the 

Boussinesq linear isotropic eddy-viscosity hypothesis is often applied 

 

2 tv S  ,         (2.36) 

where S  is the mean strain rate tensor and the turbulent viscosity ( tv ). The 

choice of turbulence model depends on the problem and it is chosen to obtain a 

balance between desired accuracy and computational resources. Within this 

basic framework, a wide range of theoretical and practical problems can be 

investigated (Sumner et al., 2010).  

Numbers of distinctive methods have been proposed to compute ( tv ), 

generally named zero-equation, one-equation and two-equation models. The 𝑘 −

𝜀 model is fitted into a two-equation model pattern, frequently applied in wind 

energy purpose. This approach is defined by adding two partial differential 

equations, one related to turbulent kinetic energy 𝑘 and one for the turbulent 

dissipation 𝜀. General approaching have been applied by simulating the flow 

characteristics in order to determine many different constants that the model 

carried, such as flow over a flat terrain or isotropic turbulence dissipation 

(Sanderse et al., 2011).  

Current challenges related to CFD simulations are found when 

considered wakes behind a wind turbine, particularly when contrasting with 

experimental data. One of those challenges is the determination of inflow 

conditions that is representative in all significant characteristics of the 

environmental conditions (Sanderse et al., 2011).  Prevenient studies of CFD 

simulations, the uniform and laminar inflow profiles were applied, however 

posterior works showed that both the appearance of the shear profile, (Wu and 
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Porté-Agel, 2012), likewise turbulence application in the inflow conditions 

(Troldborg et al., 2007) admitted a notable effect on the downstream wind flow 

behind the turbine. 

The hypothesis of modeling the turbulence effect adding viscosity is well 

known applied for turbulent flows. Such theory is very useful, being dependent 

computationally on the Reynolds number. However, the efficacy of the 

Boussinesq hypothesis is relative restricted. Nevertheless, the CFD results are 

more accurate than simplified methods. The complexity of turbulent flows 

suggests that functional CFD developments will be the standard for the wind 

energy industry.  
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3 CASE STUDY 

3.1 STUDY AREA 

The study area comprises two sites, both in North America. Due to 

confidentiality requirements of the data providing company, SgurrEnergy1, site 

locations and its detailed information were not described. Therefore the sites 

were described as site “A” and site “B”, hereinafter. 

3.2 DATA 

Data for this master’s dissertation was provided by SgurrEnergy, 

company that developed the feasibility study for both sites. Provided data are the 

supervisory control and data acquisition (SCADA), which is these 

devices/systems make use of data processing techniques in order to detect, 

predict faults and is installed into the wind turbine, and the data collected by the 

company using the Galion LiDAR, which an example of LiDAR installation is 

depicted in Figure 4. 

 

 

Figure 4: Galion LiDAR used in sites A and B 
Source: SgurrEnergy, 2015 

 

                                            

1 SgurrEnergy, www.sgurrenergy.com 
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The aim of the first campaign, on site A that consists in a flat terrain with 

annual average temperature of the region close to 22°C and approximately 10m 

above sea level, was to measure wind inflow conditions in order to characterize 

the atmospheric conditions around the swept area of a WTG, where the hub 

height is 80m above the ground. For the measurement campaign it was used a 

G4000 Galion unit installed on the ground, which is capable to range up to 4000m 

with 30m spatial resolution, the accuracy is close to 0.1 ms-1that permits to 

capture a maximum velocity up to 70 ms-1. The measurement campaign lasted 

for 9 months in 2014, and the measurement characteristics, depicted in Figure 5, 

were: (1) scan geometry of 5 beams, incremented at 30° intervals in azimuth, and 

(2) angle of 18.32° on the vertical plane. 

 

Figure 5: LiDAR Scan Geometry of 5 beams on site A 
 

The second campaign, on site B, a flat plateau over 1500 m above sea 

level with annual average temperature close to 10°C that is also aimed the wake 

modeling study. For site B, the Galion LiDAR was mounted in a specific wind 

turbine generator (WTG), which was located at the first row of WTGs in the 

southern portion of the wind plant (Figure 6). 
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Figure 6: Galion positioning in the WTG for PPI Scan 
Source: SgurrEnergy, 2012 

 

The measurement campaign lasted for six weeks with a long range Galion 

LiDAR that took place from September 14th, 2011 until October 26th, 2011. A 

nacelle mounted deployment was selected at the site due to the retractable back 

door on WTG at 80m above ground, which enabled relatively easy installation 

and concurrent measurements through the horizontal plane of the wake. The 

Plane Position Indicator (PPI) scan collected data for a single wake analysis. The 

PPI scan mode consisted in a constant elevation angle and varying azimuth 

angles, such that data could be projected on a horizontal plane. It was carried out 

a scan with 84° width in ± 3° azimuth increments centered on the 180° axis 

straight out behind of the WTG, as depicted in Figure 7. Thereby the 29-beam 

scan would take nearly four minutes to finish a scan period (SgurrEnergy, 2012). 
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Figure 7: Site B Galion PPI Scan of 29 beams 

 

Close to 300 m west of the WTG, a meteorological mast was installed in 

order to have the concurrent wind measurement data for both wind direction 

calibration pertinent to the WTG yaw angle, and freestream wind speed. The wind 

direction of interest for site B ranged from 90° to 270°, in order to evaluate a single 

wake. 

3.3 FLOWCHART OF METHODOLOGIES APPLIED IN SITE A AND B 

This section describes the separation of methodologies applied for site A 

and B, as presented in Figure 8. 

 

Figure 8: Flowchart of methodologies for Site A and B 

SITE A

Wind Rose and Wind Speed 
Distribution

Wind Shear

Turbulence Intensity

Power Performance Analysis

SITE B

Wind Rose and Wind Speed 
Distribution

Simplistic Wake Modeling

Wake Numerical Simulation
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4 METHODOLOGY 

4.1 DATA QUALITY CONTROL 

Data quality control aimed to eliminate redundancy or insufficient record 

samples. The first step was an initial screening to identify the indicators of poor 

quality samples, which are: 

 Extreme wind speed values; 

 Same wind speed for extended periods of time; 

 Same wind direction on several subsequent measurements; 

 Sectors with large wind gradient exponents, related to abrupt 

changes in wind speed between two measurement heights. 

The quality control second step has required single case verification of 

suspect values. Suspect data were either maintained or discarded based on the 

knowledge of the wind resource pattern and local weather conditions. Therefore 

the outliers were removed. Despite of that, the Site A had the system operating 

for approximately 93% of the time and the LiDAR deployment with 61% of the 

data available to analyze. The Site B achieved a Met Mast recovery data around 

76%, while the LiDAR presented the average recovery of 74% of the available 

data. 

4.2 WIND ROSE 

Attaining a valid data set of the wind direction during the period of 

production is very important due to the large variation in wind farm production 

over just a few degrees. Wind rose diagrams help to visualize the site wind 

patterns, being the most common instrument to display wind data in terms of 

either wind velocity distribution or frequency distribution. 

This work analyzed both wind roses (wind speed and frequency 

distribution) through the Windographer2 software. 

                                            

2 Windographer - Wind Resource Assessment Software, www.windographer.com 
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4.3 WIND SPEED DISTRIBUTION 

Since one of the goals of this study is the evaluation of the influence of 

the wind characteristics parameters on wind turbine performance, sets of wind 

profiles samples were required. Therefore, the statistical analysis of wind speed 

was performed with several sets of wind profiles, considering the diurnal variation 

of wind characteristics in terms of frequency and wind speed distribution. The 

wind profile sets were produced through LiDAR measurements, in order to 

assess the importance of wind shear and stability on power production. 

The Weibull distribution was applied for wind speed analysis, in which the 

parameters k and c represent the dimensionless shape parameter and the scale 

parameter (ms-1), respectively. 10-min wind speed averages obtained by Galion 

LiDAR were the input for wind analyses. The k and c parameters of Weibull’s 

distribution were obtained through the wind velocity Least Squares Technique 

(LST).  

The Weibull distribution density function for 𝑢 ≥ 0 is given by the 

equation: 

 

𝑓(𝑢) = (
𝑘

𝑐
) (

𝑢

𝑐
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑢

𝑐
)

𝑘

],       (4.1) 

 

where 𝑓(𝑢) is the wind velocity probability density function, 𝑘 is the dimensionless 

Weibull´s shape parameter and c is the Weibull’s scale parameter in units of 

velocity (for instance, Spera, 1998). 

Then the Weibull cumulative distribution function, for 𝑢 ≥ 0 is: 

 

𝐹(𝑢) = 1 − 𝑒𝑥𝑝 [− (
𝑢

𝑐
)

𝑘

].        (4.2) 
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4.4 WIND ANALYSIS PARAMETERS FOR SITE A 

The parameters selected to understand how wind characteristics can 

affect power generation were: wind shear, turbulence intensity and power 

performance, which were discussed in the following sections.  

4.4.1 WIND SHEAR 

The dimensionless wind shear exponent (Chehouri et al., 2015) was 

estimated from wind speed at two heights, 1 and 2, using the simple power law 

of equation (4.3): 

 

𝑉2(𝑧) = 𝑉1 (
𝑍2

𝑍1
)

𝛼

,            (4.3) 

where 𝑍2 and 𝑍1 are heights, in (m), above the ground level; 𝑉2(𝑧) is the mean 

horizontal wind speed (ms-1) at height 𝑍2 (m); 𝑉1 is the horizontal wind speed 

(ms-1) at the reference height 𝑍1(m); α is the wind shear exponent. 

The wind shear exponent is an indicator of atmospheric stability, but it is 

not a straightforward measure of stability (Wharton and Lundquist, 2010). 

Different wind shear exponents were calculated at three distinct heights of the 

LiDAR measurements, such heights were the bottom tip, hub height and the top 

tip of the wind turbine. 

4.4.2 TURBULENCE INTENSITY 

Turbulence intensity, obtained from straight measurements of horizontal 

turbulence fluctuations at the site, was also considered in this analysis. 

Turbulence measurements are frequently done by employing equipment placed 

within the flow, such as: either cup or propeller anemometers, sonic 

anemometers and LiDAR. The last was used in this study. The new version of 

2017 of the International Electrotechnical Commission (IEC) standard for wind 

turbine power performance measurements, IEC 61400-12-1, accepts the LiDAR 

technology to measure hub height wind speeds in combination with me mast, 

Another detail to point out that the IEC demands the measurement of only wind 
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horizontal component, therefore the turbulence intensity can be analyzed from 

the horizontal component of the velocity. 

Turbulence intensity involves straight measurements of horizontal 

turbulence fluctuations at the site and is estimated by the ratio of the standard 

deviation, 𝜎, in (ms-1) of the wind speed for a 10-minute period time step and the 

corresponding mean wind speed, 𝑉, in (ms-1) at the 80 m-height (Wharton and 

Lundquist, 2012): 

 

𝑇𝐼 =
𝜎

𝑉̅
 .          (4.4) 

4.4.3 POWER PERFORMANCE 

Power performance parameters are estimated in order to assess 

differences between observed power curves and the wind turbine manufacturer 

power curve. The manufacturer power performance curve assumes standard 

atmospheric conditions. 

Power curves from the manufacturer traditionally relate power to the hub-

height wind speed. Since the last decade, studies have presented the advantage 

of considering a wind velocity representative of the whole rotor disk (Antoniou et 

al., 2007; Wagner et al., 2009; Kim et al., 2016; Kumer et al., 2016).  

The power performance analysis is carried out through scatter plots to 

examine if the turbine is generating under or overpower. The wind characteristics 

parameters selected for the scatter plots are: 

 Normalized power as function of wind speed; 

 Normalized power as a function of wind shear coefficient; 

 Normalized power as a function of turbulence intensity; 

4.5 MODELING FOR SITE B 

The quality assessment of wake models was developed for site B, in 

which the wake was measured.  The wake profile data comprised the mean wind 

speed for every downstream distance, where each interval distance was 

normalized by the rotor diameter (D); the mean wind speed was normalized for 

each 1 ms-1 wind speed bin. 
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4.5.1 PARK WAKE MODEL 

The PARK wake model, developed by Jensen (1983), models a gradually 

extending wake with a velocity deficit varying with distance, as depicted in Figure 

9.  

 

 
Figure 9: Schematic view of the PARK model wake expansion 

 

First of all, the local atmospheric stability evaluation is required for model 

application. Atmospheric stability is a function of potential temperature; therefore, 

it requires the ratio of potential temperature gradient over the height gradient.  

Potential temperature 𝑇𝑝 is given by equation (4.5): 

 

𝑇𝑝 = 𝑇 (
𝑝𝑠

𝑝
)

𝜆

,          (4.5) 

where  the 𝑇 stands for absolute temperature, 𝑝 is local pressure, 𝑝𝑠 is the sea 

level pressure, which is equal to 1000 mb, and the exponent 𝜆 is equal to 0.286. 

After estimating the ratios ∆𝑇𝑝/∆𝑍 and computing their average, neutral 

atmospheric stability at the site can be assumed, if the average ratio is close to 

zero. Then one can apply the wake decay (𝑘) equation (Peña and Rathmann, 

2014; Frandsen, 1992): 
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𝑘 =
1/2

ln (
ℎ

𝑧0
)
 ,            (4.6) 

where ℎ is the WTG hub height; 𝑧0 is the surface roughness. 

The wake width (𝐷𝑤) is a function of rotor diameter (𝐷), wake decay (k) 

and the downstream distance (𝑥), according to equation (2.23) 

 

𝐷𝑤 = 𝐷 + 2𝑘𝑥 .         (2.23) 

The PARK model wake profile (𝑃𝑃) is a function of wake width (Dw), thrust 

coefficient (𝐶𝑡) and rotor diameter (𝐷), according to equation (4.7): 

 

𝑃𝑃 = 1 − [(1 − ((1 − 𝐶𝑡)
1

2))] ∙ [
𝐷

𝐷𝑤
]

2

.        (4.7) 

The thrust coefficient values are dependent on the power curve and 

should be retrieved for each inflow wind speed. 

4.5.2 FRANDSEN WAKE MODEL 

Frandsen et al. (2006) based their model on both mass and momentum 

conservation at the WTG control volume. The model assumed a top-hat shape 

for the wind speed deficit in the control volume. Then wake diameter of a single 

wake is given by equation (4.8), 

 

𝐷𝑤 = 𝐷(𝛽
3

2 + 𝛾𝑥)
1

3,             (4.8) 

where 𝐷𝑤 is the wake diameter, 𝐷 is the rotor diameter, 𝑥 is the downstream 

distance in rotor diameter (𝐷), 𝛾 is a non dimensional parameter dependent on  

𝐶𝑡 , which is computed through the equation (4.9), 

𝛾 = 1 − √1 − 𝐶𝑡,         (4.9) 

and 𝛽 that corresponds to the wake expansion parameter, which is determined 

as: 
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𝛽 =
1+√1−𝐶𝑡

2√1−𝐶𝑡
.          (4.10) 

The wind speed deficit in the wake is computed by the equation (2.24):  

 

𝑢 =
𝑉0

2
(1 ± √1 − 2

𝐴

𝐴𝑤
𝐶𝑡),        (2.24) 

where 𝑢 is the velocity deficit, 𝑉0 is the freestream velocity, 𝐴𝑤 is the cross-

sectional wake area,  𝐴 is the cross-sectional region just after the beginning of 

the wake expansion. Therefore, it is accepted that the downstream length of a 

rotor, which the wind demands to attain the pressure of the freestream is 

negligible, then to reach the pressure of the free flow is negligible, so 𝐴 is 

considered to be the cross-sectional wake area at 𝑥 = 0, which is the rotor area. 

4.5.3 LARSEN WAKE MODEL 

The model developed by Larsen (1988) simulate the wake through two 

paramenters the wake width and the velocity variation behind the WTG. The 

Larsen simplified model can be considered as a first order solution, which main 

advantage is its straightforward implementation. Larsen assumed that the 

Prandtl’s boundary layer theory was an adequate representation of the turbulent 

phenomenon after the WTG. As a first order approach, Larsen´s Model takes into 

account just the dominant terms of the boundary layer expressions, assuming an 

incompressible fluid and steady flow.  

The two main parameters of Larsen´s model are: (1) wake radius (𝑅𝑤), 

and (2) wind speed deficit inside the wake (𝑉0 − 𝑢𝑥), described by equations 

(2.26) and (2.25), respectively, 

 

𝑅𝑤 = (
35

2𝜋
)

1/5
(3𝑐1

2)1/5(𝐶𝑡𝐴(𝑥 + 𝑥0))1/3.       (2.26) 

𝑉0 − 𝑢𝑥 = 

−
𝑉0

9
(𝐶𝑡𝐴(𝑥 + 𝑥0)−2)1/3 {𝑟3/2(3𝑐1

2𝐶𝑡𝐴(𝑥 + 𝑥0))−1/2 − (
35

2𝜋
)

3/10
(3𝑐1

2)−1/5}
2

,   (2.25) 
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where 𝑉0 is the freestream velocity at rotor 𝑢𝑥 is the wind velocity in the wake, 𝐴 

the rotor area, 𝐶𝑡 is the thrust coefficient. The constant 𝑐1 is associated to the 

Prandtl mixing length and is given by:  

 

𝑐1 = (
𝐷𝑒𝑓𝑓

2
)

5/2

(
105

2𝜋
)

−1/2
(𝐶𝑡𝐴𝑥0)−5/6 ,      (4.11) 

𝑐1 is a function of 𝑥0, which is the normalized position of the WTG:  

 

𝑥0 =
9.5𝐷

(
2𝑅9.5

𝐷𝑒
)

3
−1

.         (4.12) 

The 𝑥0 parameter is a function of the effective rotor diameter (𝐷𝑒) and the 

wake radius at a downstream distance of 9.5 rotor diameters (𝑅9.5) from the hub, 

which was defined by EWTSII (1999) and given by:  

 

𝑅9.5 = 0.5[𝑅𝑛𝑏 + 𝑚𝑖𝑛(𝐻, 𝑅𝑛𝑏)],       (4.13) 

in which 𝑅𝑛𝑏 is defined by 

 

𝑅𝑛𝑏 = 𝑚𝑎𝑥(1.08𝐷, 1.08𝐷 + 21.7𝐷(𝐼𝑎 − 0.05)),     (4.14) 

The parameter 𝐷𝑒, in equation (4.12), is only function of the thrust 

coefficient (𝐶𝑡), according to equation (4.15) 

 

𝐷𝑒 = 𝐷√
1+√1−𝐶𝑡

2√1−𝐶𝑡
.         (4.15) 

 

4.5.4 EDDY VISCOSITY WAKE MODEL 

The EDDY Viscosity Wake Model, described by Ainslie (1988), simulates 

the wake using numerical solutions to the governing differential equations with 

eddy viscosity turbulence closure. The differential equations, introduced at 

section (2.3.1.4), are numerically integrated using the Crank-Nicolson method. 

Since the goal is to estimate the velocity deficit at the centerline of the wake 
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expansion, a simplified solution of the EDDY Viscosity model is carried out. The 

boundary conditions were described in detail by Ainslie (1988). The boundary 

condition close to the hub is considered at two rotor diameters downstream of the 

wind turbine generator: 

 

1 −
𝑢1

𝑉0
= 𝐷𝑚𝑒−3.56(

𝑟

𝑏
)

2

,        (4.16) 

 

where 𝐷𝑚 is the initial velocity deficit, r is the radius of the point of interest and b 

is the wake width (or radius). 

𝐷𝑚 was experimentally estimated on wind tunnels and fitted to the 

equation (4.17): 

 

𝐷𝑚 = 𝐶𝑡 − 0.05 − (16𝐶𝑡 − 0.5)
aI /1000 ,      (4.17) 

in which aI  is the ambient turbulence intensity (%) and (𝐶𝑡) the turbine thrust 

coefficient.  

Based on momentum conservation, one obtains the relation between 

velocity deficit and thrust coefficient, which yields equation (4.18) for, b, the wake 

width (or wake diameter): 

 

𝑏 = √
3.56𝐶𝑡

8𝐷𝑚(1−0.5)𝐷𝑚
 .        (4.18) 

The model assumes that the wind speed deficit is self-similar, following 

an Gaussian curve with its peak located at the wind turbine axis (Ainslie, 1988), 

starting at two rotor diameters downstream of the hub. Solution of the above 

system of equations yield self-similar wake profiles for all distances downwind; in 

other words the initial Gaussian shape is preserved and only its width and the 

corresponding centerline velocity deficit change with downwind distances. As the 

wake width is related to the wake deficit through conservation of momentum, one 

is left with only the wake centerline velocity deficit to solve for. 

Taking into consideration only the centerline velocity deficit cu , for r = 0, 

equation (4.16) becomes: 
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 0 1c mu V D           (4.19) 

Substitution of both equations (4.19) and (2.26) into equation (2.29) and 

noting that the only requirement is to solve for the centerline velocity, one obtains: 

 

3 2( 1)
16c c c c

c t

u u u u

x u C


   



        (4.20) 

Therefore, the eddy viscosity (  ) is determined by: 

 

  00.015 c mF b V u K           (4.21) 

2

100

a
m

I
K  ,          (4.22) 

where  is the Von Karman constant, aI is the ambient turbulence, which can be 

computed as a percentage, 𝑏 is a measure of the wake width and 𝑥 is normalized 

by rotor diameters (D). 

Parameter F in equation (4.21) varies with 𝑥 according to the equation 

 

{

𝐹 = 1 𝑓𝑜𝑟 𝑥 ≥ 5.5

𝐹 = 0.65 + (
𝑥−4.5

23.32
)

1

3
 𝑤ℎ𝑒𝑛 𝑥 < 5.5

      (4.23) 

Equation (4.20) is a first order ordinary differential equation that can be 

solved efficiently using a numerical integration scheme such as Runge Kutta. 

4.5.5 WAKE NUMERICAL SIMULATION USING CFD 

In this study the wind turbine wake simulation has used the concept of 

the actuator disc in CFD (Computational Fluid Dynamics) assuming a flat terrain 

geometry. The implementation had been applied in the Fluent software 

(ANSYS®, 2017) due the student free license that ANSYS® provided for a period 

of time. The Reynolds Averaged Navier Stokes (RANS) equations were solved 

with a two differential equation model for the turbulent viscosity. Turbulence was 
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closed by the 𝑘 − 𝜀 model, which solves two differential equations for turbulent 

kinetic energy, 𝑘, and for dissipation rate, 𝜀. The characteristic velocity is 

represented by √𝑘, meanwhile the characteristic length, l, is obtained through 

equation (4.24) function of advective energy production and dissipation rate: 

 

𝑙 =  
𝑘3/2

𝜀
 .            (4.24) 

The turbulent viscosity is represented by equation (4.25): 

 

𝜇𝑡 =  𝜌𝑙√𝑘 .          (4.25) 

Then substituting equation (4.24) into equation (4.25), and utilizing a 

constant, 𝐶𝜇,  the equation can be written as: 

 

𝜇𝑡 = 𝐶𝜇
𝜌𝑘2

𝜀
 .           (4.26) 

This study has implemented CFD simulations of the wake for a single 

turbine on a flat terrain. The wind turbine rotor was modeled by an actuator disc 

with porous jump sponge, supporting a resisting force which was computed from 

the thrust coefficient of the wind turbine generator. Therefore, a wake was 

simulated downstream of the wind turbine generator, with the wake velocity deficit 

and corresponding turbulence. 

4.5.6 WAKE MODELS ACCURACY 

The performance assessment of the wake models in comparison to the 

Galion LiDAR data used the root mean square error statistic (RMSE), according 

to equation: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑛
 ,       (4.27) 

where, 𝑦𝑖 is the measured data in a certain bin; 𝑥𝑖 is the model ouput and 𝑛 is the 

number of bins.  

The lowest RMSE value is associated with the most accurate wake 

model. 
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5 RESULTS AND DISCUSSION 

This chapter reports first the Site A results, focusing on the analyses of 

wind and power generation, followed by the Site B results, focusing on the wake 

modeling analysis. 

5.1 WIND AND POWER GENERATION ANALYSES FOR SITE A 

The next sub-sections report site A’s results; beginning with a description 

of the atmospheric field conditions, followed by the investigation of the wind shear 

ranges. The intercomparison of turbulence, presented in terms of power curves, 

is discussed at the end of this section. 

5.1.1 ATMOSPHERIC AND WIND CHARACTERISTICS AT SITE A 

Both, the data collected by the LiDAR, and the meteorological mast were 

used as an input to the Windographer software, in order to describe the wind 

attributes over the Site A field campaign. 

The mean wind velocity from the LiDAR dataset was 7.76 ms-1. The 

dominant wind direction was 139° corresponding to the southeastern quadrant. 

The mean temperature was 21°C, associated with a mean air density of 1.221 

kgm-3, which was a little higher than the normal temperature and pressure at sea 

level (20°C). The variables measured by LiDAR and the meteorological mast are 

presented on Table 1. 

 
Table 1: Mean wind and meteorological parameters at Site A 

 

Parameters Unit Value 

Mean wind speed  (ms-1) 7.8 

Wind speed standard deviation  (ms-1) 3.0 

Maximum wind speed  (ms-1) 19.5 

Mean wind direction  (°) 138.7 

Mean temperature  (°C) 20.9 

Mean air density  (kgm-3) 1.221 

 
The wind temporal variability is shown in Figure 10, through the 

comparison of the wind velocity histogram with the fitted Weibull distribution.  
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Figure 10: Wind velocity distribution at Site A 

 

The Weibull fit produced by the Windographer software is based on the 

Least Squares Technique (LST); where the two parameters of the Weibull 

distribution (k is the shape parameter and c is the scale parameter) are fitted to 

the measured velocity histogram. The shape parameter was k=2.70 and the scale 

parameter was c=8.63 ms-1. 

The wind rose obtained from LiDAR measurements data is shown in 

Figure 11.  
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Figure 11: Wind rose for Site A 
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Winds from the southeast sector were dominant, corresponding to 78% 

of the events. The highest frequency was 35% for the 150° direction, followed by 

15% for 120° and 180° directions. 

5.1.2 WIND SHEAR 

The wind shear coefficients (𝛼) were determined according to the 

equation (4.3) for three different heights, corresponding to the 32.5, 80 and 127.5 

m above ground, which yielded the event mean shear coefficient. Such 

coefficients have been binned in six ranges in order to have enough data to plot 

the power performance. Those ranges are presented in Table 2, alongside to the 

number of occurrences and the median wind shear. 

 

Table 2: Wind shear ranges for Site A 
 

Wind Shear Bin Number of 
Occurrences 

Median Wind 
Shear 

< 0.0 1655 -0.053 

0.0 to 0.1 6806 0.059 

0.1 to 0.2 4701 0.144 

0.2 to 0.3 3563 0.246 

0.3 to 0.4 2668 0.346 

> 0.4 2782 0.483 

 
 

As seen from the table, the band with the lowest number of events 

corresponded to 𝛼 < 0 and the range with the largest number of events 

corresponded to [0.0 - 0.1] bin, which means that most events had low wind shear 

values. Such density of data counts for each range of wind shear can also be 

seen at Figure 12, which depicts scatter plots of the power generation curves 

over the wind speed at the hub height for distinct band of wind shear exponents. 

Figure 12 also show that the events are concentrated on lower wind 

speeds. Most of the high wind speeds (𝑉 >14 ms-1) produced shear coefficients 

in the [0.1 - 0.2] range, whereas the negative shear coefficient has almost not 

occurred for high speed winds. 
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Figure 12: Power curve scatter plots for wind shear ranges 
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Figure 13 is the wind speed histogram conditioned on wind shear 

coefficients, which was designed to enhance the understanding of the wind shear 

coefficients behavior for different wind speeds.  
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Figure 13: Wind speed histogram conditioned on wind shear coefficients 

 

The wind speed bins of 5 to 10 ms-1, comprised 65% of the events, which 

were mostly associated with the [0.0 - 0.1] shear coefficient range. The largest 

shear coefficients [>0.4] were registered mostly for the 6 to 8 ms-1 wind speeds, 

whereas they were almost not registered for speeds over 12 ms-1. 

Finally, Figure 14 compares how the power curve varies with respect to 

wind shear. Large shear coefficients reduce power production for wind speeds 

lower than 10 ms-1, and enhance power production for wind speeds on the 11-13 

ms-1 range. The negative shear range underestimates power production for 11 

ms-1 winds, while shear greater than 0.4 seems to overestimate the power 

production. 

Therefore, the wind shear range of [0.0 - 0.1] was taken as the power 

curve base, due to the highest data counts in general and its better representation 

for every single wind speed bin.  
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Figure 14: Power curve conditioned on wind shear coefficients 

 

In addition, for wind speeds higher than 3 ms-1, the power curve 

conditioned on negative shear performed similarly to the base curve. However, 

wind shear ranges of [0.3 - 0.4] and [>0.4] displayed two wind speed bins in which 

there was at least 14% power underestimation with respect to the base curve. 

Both bins, at lower wind speeds of 4 and 5 ms-1, were associated with power 

underestimation of 30% and 14%, respectively, for shear between [0.3 - 0.4], and 

power underestimation of 50% and 23% respectively for wind shear coefficients 

[>0.4]. 

5.1.3 TURBULENCE INTENSITY 

Turbulence intensity can be estimated as a function of the wind temporal 

variability, through its standard deviation, according to equation (4.4). Kaiser et 

al. (2007) stated that as velocity oscillates around the rated velocity, the power 

output is restricted to the rated power. Power oscillation occurs only when the 

instantaneous velocity gets below the rated velocity. As a consequence, for a 

certain time interval in which the power produced with a certain degree of 

turbulence intensity is typically lower than the power output with hypothetical 

turbulence intensity equals to 0%, for the same wind speed. 
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Figure 15 compares the power curve variability with respect to turbulence 

intensity (TI) ranges. 
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Figure 15: Variability of power curves with respect to turbulence intensity (TI) 

 

Table 3 summarizes the statistics of turbulence intensity ranges used in 

Figure 15. 
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Table 3: Turbulence intensity statistics 

 

TI range Number of 
Occurrences 

Median TI 

< 0.05 1405 0.033 

0.05 to 0.1 1230 0.070 

0.1 to 0.15 412 0.121 

> 0.15 370 0.200 

 
 

Figure 15 and Table 3 show that low turbulence events occur more often 

(77% of time) than high turbulence events (23% of time).  

Figure 16 shows the wind speed histogram conditioned on turbulence 

intensity for four turbulence ranges.  
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Figure 16: Wind speed histogram conditioned on turbulence intensity 

High velocities are associated with low turbulence, as one can see for the 

wind speed bins from 9 to 17 ms-1, in which TI lower than 0.05 is dominant. Low 

velocities are associated with enhanced turbulence intensity, shown by [0.05 - 

0.10] dominant events for wind speed bins from 4 to 8 ms-1. High turbulence 

events TI [>0.15] were registered only for the 3 to 10 ms-1 velocity range. 

Lastly, Figure 17 depicts the power curves conditioned on turbulence 

intensity, in order to assess the effect of turbulence intensity on power output. 
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Figure 17: Power curves conditioned on turbulence intensity (TI) 

The power curve base was assumed as the one obtained for turbulence 

intensity lower than 0.05, which is dominant for a wide velocity range. 

For wind velocity ranging from cut in to 10 ms-1 the power output is 

enhanced by turbulence intensity. However, the power output drops with high 

turbulence intensities, for high wind speeds (𝑉 >10 ms-1). It is important to point 

out that there were no events of TI [>0.15] for the 12, 15, 16, 17 ms-1 wind speed 

bins. Also at the 17 ms-1 wind speed bin there were no events for the TI [<0.05] 

and [0.05 - 0.1] ranges. 

For the wind speed bin of 7 ms-1 and turbulence intensity greater than 

0.15 the power output exceeded in 33% to the base curve. However, for the 11 

ms-1 wind speed bin the power for high turbulence [0.1 – 0.15] underestimates 

more than 10% the base power. 

Therefore increasing turbulence intensity the power output is 

overestimated at moderate wind speeds and underestimated at greater than 10 

ms-1 wind speeds, in agreement to Langreder et al. (2004). The only exception 

for that occurred at 11 ms-1 to [> 0.15] turbulence intensity range, which is 

attributed to the low data count at the range. 
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5.2 WAKE MODELING ANALYSIS FOR SITE B 

The following sub-sections have reported the results for Site B’s field 

campaign and wake modeling. Initially there is a description of Site B’s wind and 

meteorological data. After that, a sub-section with the inputs estimation for the 

simplified wake models, followed by a CFD model configuration sub-section. 

Next, the comparison of wake models against LiDAR data was presented. At the 

end, the accuracy of the wake models was analyzed in terms of RMSE. 

5.2.1 METEOROLOGICAL MAST DATA CHARACTERISTICS FOR SITE B 

The data obtained by the meteorological mast was used as input to the 

Windographer software, which produced the wind characteristics (wind mean, 

frequency distribution and wind rose) for the campaign period. 

The mean wind speed at 80m from the meteorological mast data was 5.1 

ms-1, whereas the operational wind speed range of the WTG varied between 4 

ms-1 (cut in) to 25 ms-1 (cut off). During the field campaign the largest wind speed 

was 24.1 ms-1, although wind speeds below 15 ms-1 occurred 99.9% of the 

campaign. The dominant wind direction was 183°, representing the southern 

sector. The mean temperature was 15.3°C.  

Table 4 summarizes the statistics of the variables measured by the 

sensors of the meteorological mast. 

 

Table 4: Meteorological mast variables 
 

Parameters Unit Value 

Mean wind speed  (ms-1) 5.09 

Wind speed standard deviation  (ms-1) 0.64 

Wind speed variance  (m2s-2) 0.41 

Maximum wind speed  (ms-1) 24.1 

Mean turbulence intensity  0.13 

Mean wind direction  (°) 183.2 

Mean temperature  (°C) 15.3 

Mean pressure  (kPa) 83.94 

Mean air density  (kgm-3) 1.21 
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The histogram of the meteorological mast wind speed and the fitted 

Weibull distribution are presented in Figure 18. The Weibull fit used the maximum 

likelihood algorithm to estimate the two parameters of the distribution function, 

namely: shape parameter, k, and the scale parameter, c. 

The estimated shape parameter was k=1.30, which indicates an 

asymmetrical distribution, skewed toward low wind velocities. 

 

 

Figure 18: Wind speed histogram and fitted Weibull distribution for site B 

 

The Weibull scale parameter was c = 5.04 ms-1. Increasing c, the 

distribution peak moves to the right and the peak magnitude also declines. 

Figure 19 depicts the wind rose obtained from the met mast dataset. 

Winds from the southern sectors were prevalent, dominating 65% of the 

occurrences, which attended the wind direction requirement for LiDAR 

measurements that ranged from 90° to 270°. Southern winds frequency reached 

70% of the sample, for winds above the cut in velocity (4 ms-1). 

Once the wind data from the meteorological mast were analyzed, the 

dataset was used as initial and boundary conditions for wake modeling. The 

parameter used as the model inflow condition was the freestream wind speed. 
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Figure 19: Wind rose for the meteorological mast data of Site B 

5.2.2 LIDAR DATA CHARACTERISTICS FOR SITE B 

For the wake modeling simulations, the inflow conditions were chosen for 

1 ms-1 bins, within the range of interest varying from 5 ms-1to 12 ms-1. The 

downstream distance, x, was normalized by the rotor diameter, D. The wake 

diameter, Dw, was normalized by D, as well. The wake characteristics are shown 

in x-y graphical format, in which the vertical axis represents the normalized 

freestream velocity recovery (also named as velocity deficit). The horizontal axis 

shows the downstream distance behind the wind turbine in the wake centerline. 

Before presenting the comparison between wake models and LiDAR 

measurements,  

Figure 20 points out LiDAR results for the freestream velocity recovery 

on the wake centerline. The plots show the median values as small circles and 

the bars show bin data scattering (usually named as error bars). Each bar 

corresponds to ± 1 standard error for the bin sample. 
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Figure 20: LiDAR centerline velocity recovery for 5 to 12 ms-1 freestream bins 
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Velocity at the downstream distance of one diameter from the hub varied 

from 0.55 to 0.70 of the freestream velocity, and it has taken a downstream 

distance of six diameters to recover 0.80 of the freestream velocity. 

High velocity recovery variability has started at the downstream distance 

of ten rotor diameters, for freestream velocities ranging from 5 ms-1 to 10 ms-1. 

Increasing the freestream velocity to either 11 ms-1 or 12 ms-1, the velocity 

recovery variability has started at the distance of eight rotor diameters.  

The variation of the freestream velocity recovery over the wake cross-section has 

been analyzed for three cross section locations, corresponding to downstream 

distances of 500 m (Figure 21), 700 m (Figure 22) and 1000 m (Figure 23). 

For all three cross sections 21 points have been chosen, being one point 

in the centerline and ten points on each side of the centerline. The cross section 

points were equally spaced, with 20 m between adjacent points. The total cross 

section width corresponded to 400 m, took into consideration the LiDAR quality 

recovery, which began to have lower recovery over 400 m width.  

The last section, which is at 1000 m downstream of the wind turbine is 

marked by low LiDAR data counts. For instance, although the cross section 

sampled 21 points, there were data counts in only 16 points for the 5, 8, 9 ms-1 

bins, 15 points for 6 and 7 ms-1 bins, 14 points for 10 ms-1 bin, 11 points for 11 

ms-1 bin and by the end only one point at 12 ms-1 bin.  

The reason for that could be attributed to LiDAR limitations to acquire 

high velocities at distances farther than 1000 m. Adding that the Galion was 

deployed during a low wind speed period which will impact on the validity of the 

results, suffering range issues due to low aerosol content.  
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Figure 21: LiDAR 500 m cross section velocity recovery for 5 to 12 ms-1 

freestream bins 
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Figure 22: LiDAR 700 m cross section velocity recovery for 5 to 12 ms-1 

freestream bins 
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Figure 23: LiDAR 1000 m cross section velocity recovery for 5 to 12 ms-1 

freestream bins 
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5.2.3 SIMPLIFIED WAKE MODELS PARAMETERS   

In this section, the parameters of the four simplified models selected for 

this study were defined and computed to be used as model inputs. It is pointed 

out that the models which use parameters derived from thrust coefficients have 

such parameters omitted due to contractual restrictions of the data provider. 

The PARK model considers the wake decay constant (k), through the 

equation (4.6), in which h = 80 m, 𝑧0 = 0.03 m for open flat terrain (WMO, 2008) 

and   = 0.5 (SgurrEnergy, 2012), resulting in k = 0.063 and considering D = 99 

m. The FRANDSEN model required the parameters: D = 99 m,  therefore the 

swept area A = 7697.7 m2. The model parameters 𝛾 and 𝛽 are based on the thrust 

coefficient for each wind speed bin; therefore, their values cannot be presented. 

The LARSEN model required the parameters: z0 = 0.03 m (WMO, 2008), D = 99 

m, A = 7697.7 m2, Ia =0.13,  Rnb = 278.8 m,  R9.5 = 179.4 m, Deff 128.3 m, x0 = 

45 m and c1 = 0.23. The thrust coefficients, for each wind speed bin, were not 

presented. The EDDY VISCOSITY model parameters ere:   = 0.40 and aI  = 

0.13, then 𝐷𝑚 and 𝑏 could not be presented. Table 5 summarizes the model 

parameters of the simplified models. 

 
Table 5: Parameters of the simplified models 

 

Model Parameter Value Unit 

𝑧0 0.03  m 
  0.5  

k 0.063  

D 99 m 

A 7697.7 m² 

Ia 0.13  

Rnb 278.8 m 

R9.5 179.4 m 

Deff 128.3 m 

x0 45 m 

c1 0.23  

  0.40  

𝛾 N/A*  

𝛽 N/A*  

𝐷𝑚 N/A*  

𝑏 N/A*  

* Parameter values cannot be presented because they are based on the thrust coefficient of 

the specific wind turbine. Restrictions that are imposed on the non-disclosure agreement.  
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5.2.4 CFD WAKE MODEL CONFIGURATION 

For the CFD simulations, the wind turbine rotor is modeled by a sponge 

rotor that consists in a permeable area, which is calculated by pressure gradient 

through the wind turbine generator, according to the Fluent CFD software 

formulation. CFD simulations used a student version of the ANSYS Fluent CFD 

available for downloading at ANSYS3 website (ANSYS, 2017). The CFD model 

configuration is detailed in the next sub-sections. 

5.2.4.1 MESH AND BOUNDARY CONDITIONS  

The mesh used in the CFD simulations consisted in 14 zones with 

380265 nodes. The longitudinal length of the mesh is 2000 m and width of 700 

m. There is a sponge zone that represents the wind turbine, which is defined to 

be a porous zone that is located at 500 m downstream the inflow, such sponge 

is 2 m wide in horizontal direction and 100 m long in vertical direction, with 2 m 

thick, yielding a 400 m³ volume.  

Figure 24 illustrates the mesh implemented for this study. 

 

 

Figure 24: Mesh for CFD wake simulation 

 

                                            

3 ANSYS Fluent CFD - http://www.ansys.com/ 
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The solver parameters were chosen to be pressure-based, with absolute 

velocity formulation for a stationary flow. The reference values applied for air 

density, temperature and viscosity were 1.225 kgm-³, 15 °C, 1.789x10-5 kg (m·s)-

1. 

Inflow velocity was the entrance boundary conditions, which was taken 

as the freestream velocity normal to the boundary. Turbulence specification 

method for the inflow was chosen to be Intensity and Length Scale, where the 

turbulence intensity parameter was defined as 13% (according to the 

meteorological mast results) and the turbulent length scale was defined as 1 m, 

equals to the computational node volume. 

The sponge zone was assumed to be a porous zone for the CFD wake 

model implementation. Such boundary condition is based on three parameters: 

𝛹 is the medium permeability, 𝐶2 is the pressure-jump coefficient, 𝑣 is the velocity 

normal to the porous face, and ∆𝑚 is the medium thickness.  

Porous jump method is commonly used to model an obstacle whose flow 

characteristics are known, presented by Malavasi et al., (2012) and Özahi, 

(2015).  The thin porous medium applies a finite thickness, where the pressure 

drop is designed as a relation of Darcy's Law and an additional inertial loss term 

according to the following equation (ANSYS, 2017): 

 

∆𝑝 = − (
𝜇

𝛹
𝑣 + 𝐶2

1

2
𝜌𝑣2) ∆𝑚,      (5.1) 

 

where 𝜇 is the fluid viscosity, 𝛹 is the medium permeability, 𝐶2 is the pressure-

jump coefficient, 𝑣 is the velocity normal to the porous face, and ∆𝑚 is the  

medium thickness.  

ANSYS Fluent manual provides a procedure to compute the permeability 

and the pressure-jump coefficients, based on pressure drop of the freestream 

wind through the sponge zone.  

Table 6 summarizes the relation between pressure drop and wind 

freestream velocity. It must be noted that the pressure drop was based on the 

pressure gradient between the inflow and LiDAR wind speed, 100 m downstream. 

Therefore, the pressure drop assumes a second order equation dependent of the 
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inflow wind speed, where the pressure drop increases as the wind speed 

develops, except for the 12 ms-1. 

 

Table 6: Pressure drop related to freestream velocity 
 

Freestream Velocity 
(ms-1) 

Pressure Drop 
(Pa) 

5 9.2 

6 14.7 

7 19.3 

8 24.7 

9 33.3 

10 35.1 

11 48.5 

12 43.3 
 

A second order polynomial was fitted to the data, yielding the empirical 

pressure drop function below: 

∆𝑝 = 0.249𝑣² + 1.102𝑣,        (5.2) 

where ∆𝑝 is the pressure drop and 𝑣 is the velocity. 

The parameters for the porous zone, listed in Table 7, where obtained by 

comparing, equations (5.1) and (5.2). 

Table 7: Sponge porous zone parameters 
 

Porous Zone Parameter Unit Symbol Value 

Face Permeability m² 𝛹 0.00003 

Porous Medium Thickness m ∆𝑚 2 

Pressure-Jump Coefficient m-1 𝐶2 0.203 

 

5.2.4.2 TURBULENCE MODEL  

The mathematical model for the CFD flow simulation is based on the 

steady state Navier-Stokes equations, for incompressible fluids. The standard 

"𝑘 − 𝜀" turbulence model was applied, which solves one differential equation for 
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turbulence kinetic energy, 𝑘, and another for turbulent dissipation rate, 𝜀. This 

turbulence model allows the determination of a turbulent length and time scale. 

Proposed by Launder and Spalding (1974), the model produces a reasonable 

representation for a large range of turbulence. The mainly assumption is related 

to the idea that flow is fully turbulent. For details of the turbulence model see 

Launder and Spalding (1974). 

The numerical solution method applied is the pressure-based solver with 

finite volume, which is applicable for a large range of flow and requires low 

computational capacity, granting flexibility for the solution process. Then the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) was applied, 

better detailed in Ferziger and Peric (2001), where the algorithm employs a 

relationship between wind speed and pressure adjustment to accomplish mass 

conservation and to simulate the pressure field (ANSYS, 2017). Moreover, 

gradients are necessary to compose values of a scalar at the cell faces, but also 

for estimating wind speed derivatives. Green Gauss Cell Based was chosen for 

being the least computationally demanding, which was a requirement for this 

study, the method is used to compute the gradient of the scalar at cell center, see 

section (25.3.3 Evaluation of Gradients and Derivatives) of (ANSYS, 2017) guide. 

The Standard Method was applied in treating interpolation schemes for 

calculating cell-face pressures. By the end, it was chosen a Second-Order 

Upwind Scheme to solve momentum, turbulent kinetic energy and dissipation 

rate with higher accuracy than the first order. For more details of upwind scheme 

see, Barth and Jespersen, (1989).  

5.2.5 COMPARISON OF WAKE MODELS AND LIDAR MEASUREMENTS 

In order to evaluate the performance of the wake modeling simulations, 

this sub-section presents the intercomparison of the freestream velocity recovery 

measured with LiDAR and the velocity recovery simulated with the five models 

for different locations in the wake. The velocity recovery locations were selected 

either along the centerline or along the cross section. 

The intercomparison results were selected for streamflow velocities 

ranging from 5 ms-1 to 12 ms-1. This range have been chosen due the low wind 

speed density during the sample period and also due the quality recovery of the 
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LiDAR. The results were discussed individually in order to understand the 

behavior of wake models for each streamflow velocity bin in the ensuing sub-

sections. 

5.2.5.1 5 ms-1 WIND SPEED BIN  

For the 5 ms-1 wind speed bin, the velocity recovery values at the wake 

centerline were depicted in Figure 25. 
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Figure 25: 5 ms-1 velocity recovery along the wake centerline 

 

For the 5 ms-1 streamflow wind, the LARSEN model had the best overall 

agreement with the LiDAR data. The largest difference was a 12% overestimation 

at 𝑥 = 3𝐷 downstream of the hub. The PARK and EDDY VISCOSITY ranked 

second with respect to LiDAR data agreement. Both underestimate the velocity 

recovery from the beginning of the wake up to 𝑥 = 8𝐷, farther downstream (𝑥 >

9𝐷) there is a fairly good agreement between measured and simulated velocity 

recovery along the wake centerline. 

The FRANDSEN model wake simulation was fairly different than the 

measured wake. This model overestimates the centerline wind speed recovery 
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from the beginning up to 𝑥 = 9𝐷; farther downstream (𝑥 > 10𝐷) the simulated 

velocity recovery values were within the error bars of the measured wake. 

The CFD model had the lowest agreement of all models. There is 

significant discrepancy in the centerline velocity recovery from the beginning up 

to 𝑥 = 9𝐷. The largest discrepancy was close to 70% at 4𝐷 < 𝑥 < 5𝐷. This could 

be attributed to the hypothesis to simulate the wind turbine, which could be 

causing the extraction of energy even downstream the swept area.  

Figure 26 compares the velocity recovery shapes at three distinct cross 

sections downstream of the wind turbine. LARSEN, PARK and FRANDSEN 

models simulate self-similar shapes, whereas the CFD computes the function 

shape.  

The measured wake for the 5 ms-1 inflow was asymmetric, with lower 

velocity recovery fraction on the left side than on the right side (and centerline). 

Such asymmetry could be attributed to some wake influences from lateral wind 

turbine. 

The best model simulation for the three cross sections located 500 m, 

700 m and 1000 m behind the hub was produced by the LARSEN wake model. 

About 50% of the points simulated velocity recovery fractions within  10% 

difference with respect to the measured values, and 13% of the points with less 

than  1% difference. 

Regarding the velocity recovery cross-sectional shape simulation the 

models ranked: first LARSEN, second FRANDSEN, third PARK and fourth CFD. 
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Figure 26: 5 ms-1 velocity recovery along the wake cross sections 
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5.2.5.2 6 ms-1 WIND SPEED BIN 

The centerline velocity recovery fractions for the 6 ms-1 inflow wind are 

displayed on Figure 27, for the measured LiDAR data, and for the five models 

simulations. 
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Figure 27: 6 ms-1 velocity recovery along the wake centerline 

 

PARK model had an excellent agreement to the LiDAR measurements, 

since almost all points of the simulation where within the range of LiDAR errors. 

The highest difference was 13% at the first rotor diameter downstream. LARSEN 

model presented four downstream distances are over than the validation rate of 

10%, from 2𝐷 ≤ 𝑥 ≤ 5𝐷 rotor diameters respectively. Meanwhile, EDDY 

VISCOSITY model demonstrated the highest difference to be 29% at 𝑥 = 2𝐷. 

The rank of model accuracy for the centerline velocity recovery fraction 

for the 6 ms-1 wind inflow is: first PARK, second LARSEN (overestimate), third 

EDDY VISCOSITY (underestimate), fourth FRANDSEN (overestimate) and fifth 

CFD (underestimate). 

The complementary analysis for the 6 ms-1 wind speed bin is the 

assessment of the wake cross section shapes which are shown in Figure 28.  
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The measured wake for the 6 ms-1 inflow was asymmetric up to 700 m 

behind the hub, with lower velocity recovery fraction on the left side than on the 

right side (and centerline). The measured shape for the wake cross section was 

almost symmetrical for the 1000 m downstream location. 

The cross section shape simulations for PARK, LARSEN and 

FRANDSEN models were quite close to the measured wake shape. The best 

simulation was for the PARK model with 67% of the points having differences 

smaller than  10% of the measured wake. 

The CFD results were quite poor for both 500 m and 700 m cross 

sections. However the CFD simulation achieved an outstanding accuracy for the 

1000 m cross section. 
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Figure 28: 6 ms-1 velocity recovery along the wake cross sections 
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5.2.5.3 7 ms-1 WIND SPEED BIN 

For the case of 7 ms-1 inflow wind, the centerline velocity recovery fraction 

is illustrated in Figure 29, in which the measured fractions had smaller standard 

errors up to 10 D, due to the large wind data counts. 

The PARK model presented excellent agreement with all the centerline 

points showing velocity recovery fractions with less than 10% of difference with 

respect to LiDAR measurements. The LARSEN model agreement with wake 

measurement was also very high, with 84% of the centerline points with less than 

10% difference with respect to the measurements. 

The EDDY VISCOSITY underestimated the velocity recovery fraction for 

the centerline region from the hub up to 𝑥 = 6𝐷, whereas the simulation was quite 

accurate for 𝑥 > 7𝐷. 
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Figure 29: 7 ms-1 velocity recovery along the wake centerline 

 

The FRANDSEN model overestimated the velocity recovery fraction for 

the centerline wake between the hub and 𝑥 = 6𝐷. There was high agreement 

between the simulated and measured wake for the centerline region 𝑥 > 7𝐷. 
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The poorest results were for the CFD simulation. The CFD model 

underestimated the velocity recovery fraction throughout the centerline domain. 

Figure 30 shows the cross section wake results for the 7 ms-1 inflow wind. 

The measured wake for the 7 ms-1 inflow was asymmetric for all three cross 

sections, with lower velocity recovery fraction on the left side than on the right 

side. 

The simulation of the cross section shapes produced by PARK, LARSEN 

and FRANDSEN models were close to the measured wake for the cross section 

half between the centerline and the wake right edge. The PARK model was 

dominating at 500 m with 67% of its points lower than the limit validation. 

Nonetheless sections 700 and 1000 m were dominated by LARSEN model, which 

demonstrated 62% and 60% of its points to be lower than threshold validation. 

The CFD model for the 7 ms-1 inflow produced the lowest accuracy 

among the models for the two cross sections closer to the hub (500 m and 700 

m). However, the cross section shape agreed with the measurements for the 

1000 m cross section. 
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Figure 30: 7 ms-1 velocity recovery along the wake cross sections 
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5.2.5.4 8 ms-1 WIND SPEED BIN  

Figure 31 shows the centerline velocity recovery fraction for the 8 ms-1 

wind inflow condition, whose pattern is similar to the previous wind speed bin. 

The measured centerline wake presents smaller standard errors than the 

previous inflow bins, due to the larger wind data counts. The PARK model once 

again had the best agreement to the LiDAR data, with differences in the velocity 

recovery fractions smaller than 10% for all twelve centerline locations. 
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Figure 31: 8 ms-1 velocity recovery along the wake centerline 

 

The EDDY VISCOSITY model ranked second in accuracy. It 

underestimated the velocity recovery fraction for 𝑥 < 4𝐷, and matched the LiDAR 

measurements for 𝑥 > 5𝐷. The largest differences between simulation and 

measurements were 22% and 13%, for 𝑥 = 1𝐷 and 𝑥 = 2𝐷, respectively.  

LARSEN and FRANDSEN models ranked third and four with respect to 

centerline wake accuracy. Both overestimated the velocity recovery fraction for 

𝑥 < 8𝐷. The CFD model ranked last with respect to accuracy, underestimating 

the velocity recovery fraction throughout the wake. 
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Figure 32 depicts the wake transversal shape analysis for 8 ms-1 inflow 

wind. 
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Figure 32: 8 ms-1 velocity recovery along the wake cross sections 
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As in previous inflow bins, the measured wake for the 8 ms-1 inflow was 

asymmetric for all three cross sections, with lower velocity recovery fraction on 

the left side than on the right side. Therefore, the simulated wakes, which are 

symmetric, showed a closer match to the measurements for the reach from 

centerline to the wake right edge. 

The models of LARSEN, FRANDSEN and PARK had similar 

performances with respect to the velocity recovery fraction over the 500 m and 

700 m cross sections. Although, PARK model dominated the 500 m, while 

LARSEN model exceed at 700 m and 1000 m. The current implementation of the 

CFD model had the lowest agreement of all models for the three cross-sections. 

5.2.5.5 9 ms-1 WIND SPEED BIN  

Figure 33 and Figure 34 show the centerline and transversal velocity 

recovery fraction, respectively, for the 9 ms-1 wind inflow condition. 
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Figure 33: 9 ms-1 velocity recovery along the wake centerline 

 

The EDDY VISCOSITY model produced the best agreement with the 

LiDAR data. The centerline velocity recovery fraction for all points, except at 𝑥 =
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1𝐷, had less than 10% difference with respect to the measurement. Only for 𝑥 =

1𝐷 there was a 14% difference.  The PARK model ranked second with four marks 

greater than 10 % difference related to LiDAR measurements data, from 2𝐷 ≤

𝑥 ≤ 5𝐷. The LARSEN model did not have the same accuracy as presented in the 

previous wind speed bins, ranking in third at 9 ms-1. The model presented the 

highest difference of 25% at 𝑥 = 3𝐷. In fourth was characterized by FRANDSEN 

model, which demonstrated similar pattern to second and third, but lower 

accuracy. CFD model presented the poorest accuracy among the models even 

characterizing an improvement.  

The cross section wake analysis for 9 ms-1 wind inflow has shown the 

same patterns of the previous wind inflow bins. PARK, FRANDSEN and LARSEN 

wake model simulations show a close agreement with measurements for the 500 

m and 700 m cross-section, followed by a poorer agreement for the 1000 m cross 

section. The CFD model simulation ranked last with respect to accuracy, although 

it has shown an acceptable agreement for the 1000 m cross section.  
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Figure 34: 9 ms-1 velocity recovery along the wake cross sections 
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5.2.5.6 10 ms-1 WIND SPEED BIN  

Figure 35 and Figure 36 depict the centerline and transversal velocity 

recovery fraction, respectively, for 10 ms-1 inflow wind.  
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Figure 35: 10 ms-1 velocity recovery along the wake centerline 
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Figure 36: 10 ms-1 velocity recovery along the wake cross sections 

 

For the wake centerline, the EDDY VISCOSITY model produced the best 

agreement with LiDAR data. The difference between simulated and measured 
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velocity recovery fraction was less than 10%, for all centerline points except at 

𝑥 = 1𝐷 (16% underestimation) and at 𝑥 = 11𝐷 (15% overestimation).  

FRANDSEN, PARK and LARSEN models overestimated the velocity 

recovery fraction for the centerline points, ranging from the hub to 𝑥 = 10𝐷. 

Ranking in second the FRANDSEN model present the highest value to be 19% 

at 𝑥 = 2𝐷. After the PARK model showed two points inside the error bar range 

while LAREN model only had one point. The current CFD model implementation 

ranked last with respect to agreement with measured data, having grossly 

underestimated the centerline velocity recovery. 

Regarding the wake characteristics along the cross section, it is noted 

that the measured values varied significantly along the 700 m and 1000 m cross 

sections for the 10 ms-1 inflow wind. Nevertheless, FRANDSEN, PARK and 

LARSEN wake models have described the LiDAR measured pattern, for the 500 

m cross section. The current implementation of the CFD model grossly 

underestimated the velocity recovery fraction for the 500 m cross section. 

There was a significant discrepancy between simulated and measured 

wake for both the 700 m and 1000 m cross sections, for all models. Therefore, 

one may question whether those measurements truly describe the wake, 

considering that the wind counts get smaller when the inflow wind increases. 

5.2.5.7 11 ms-1 WIND SPEED BIN  

Figure 37 shows the simulated and measured velocity recovery fraction, 

at the wake centerline, for 11 ms-1 inflow wind.  EDDY VISCOSITY, PARK, 

LARSEN and FRANDSEN models had overestimated the velocity recovery at the 

wake centerline, whereas the current implementation of the CFD model had 

underestimated the measured values. 

The EDDY VISCOSITY model had the best agreement with the LiDAR 

data, where only presented one difference over 10% at 𝑥 = 2𝐷. The FRANDSEN 

model had the best agreement with measured velocities for 𝑥 > 6𝐷. 

The LARSEN and PARK model wake simulations were very similar, and 

both overestimated the wake centerline velocity recovery. The CFD model ranked 

last with respect to agreement with measured data at the centerline, 

underestimating from 𝑥 > 2𝐷. Although, the model presented to match the LiDAR 
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data with difference of 4% and 6% at 𝑥 = 1𝐷 and 𝑥 = 2𝐷 respectively. Meanwhile, 

the high interval of the LiDAR error bars could be attributed to low data counts. 
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Figure 37: 11 ms-1 velocity recovery along the wake centerline 

 

Regarding the wake characteristics along the cross section, it is noted 

that the measured values varied significantly along the 700 m and 1000 m cross 

sections for the 10 ms-1 inflow wind. Nevertheless, FRANDSEN, PARK and 

LARSEN wake models have described well the right side of the LiDAR measured 

pattern, for the 500 m cross section. The current implementation of the CFD 

model grossly underestimated the velocity recovery fraction for the 500 m cross 

section. 

Figure 38 depicts the transversal velocity recovery fraction, at the 500 m, 

700 m, and 1000 m cross sections, for 11 ms-1 inflow wind. There is significant 

variability in the LiDAR wake measurements, which sample sizes get smaller 

when the inflow wind increases.  

There is some agreement between measured and simulated velocity 

recovery only along the 500 m cross section, where PARK was dominating. The 

LARSEN model exceed at 700 m, while FRANDSEN model ranks first at 1000 m. 

The CFD model underestimated the velocities for both 500 m and 700 m cross 
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sections. However, the CFD accurately simulated the velocity recovery for the 

1000 m cross section. 
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Figure 38: 11 ms-1 velocity recovery along the wake cross sections 
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5.2.5.8 12 ms-1 WIND SPEED BIN  

Figure 39 and Figure 40 depict the centerline and transversal velocity 

recovery fraction, respectively, for 11 ms-1 inflow wind.  
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Figure 39: 12 ms-1 velocity recovery along the wake centerline 

 

The EDDY VISCOSITY model produced the highest accuracy with 

respect to the LiDAR data, mainly in the near wake. The difference between 

measured and simulated velocities were lower than 1% for the centerline points 

at 𝑥 = 1𝐷 and 𝑥 = 3𝐷. Even for the far wake, the differences between simulations 

and measurements were smaller than 10%.  

Regarding centerline wake simulation accuracy, FRANDSEN model 

ranked second, LARSEN ranked third, PARK fourth, and CFD last. FRANDSEN 

overestimated LiDAR data for 𝑥 < 7𝐷, but only at 𝑥 = 1𝐷 and 𝑥 = 2𝐷 there were 

differences above 10% between the centerline wake simulation and 

measurement. For the far wake, 𝑎𝑡 𝑥 = 8𝐷 and 𝑥 = 9𝐷, the difference was 

smaller than 1%, which is impressive for a model that performed poorly for the 

previous cases of lower inflow winds. LARSEN and PARK models overestimated 

velocities throughout the wake centerline, both models showed the highest 
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difference at 𝑥 = 2𝐷, which are 19% and 21% respectively.   Besides that, the 

CFD model underestimated the centerline velocities. 

 

-240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240

0.4

0.6

0.8

1.0

1.2

-240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240

0.4

0.6

0.8

1.0

1.2

-240 -200 -160 -120 -80 -40 0 40 80 120 160 200 240

0.4

0.6

0.8

1.0

1.2

Freestream Recovery Normalized

12 m/s

 

Lateral Distance (m)

 LIDAR 500 m

 PARK 500 m

 FRANDSEN 500 m

 LARSEN 500 m

 CFD 500 m

12 m/s

 

Lateral Distance (m)

 LIDAR 700 m

 PARK 700 m

 FRANDSEN 700 m

 LARSEN 700 m

 CFD 700 m

12 m/s

 

Lateral Distance (m)

 LIDAR 1000 m

 PARK 1000 m

 FRANDSEN 1000 m

 LARSEN 1000 m

 CFD 1000 m

 

Figure 40: 12 ms-1 velocity recovery along the wake cross sections 
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The last wake analysis is for the three cross sections, which are 500 m, 

700 m and 1000 m downstream the turbine, for the 12 ms-1 inflow wind. Since the 

relative frequency of inflow winds within the 12 ms-1 wind bin was only 1%, then 

the number of LiDAR data counts were small. The lower panel of Figure 40 shows 

only one measured location for the 21-point cross section located at 1000 m 

downstream the hub. PARK and FRANDSEN models simulated velocities for 

both the 500 m and 700 m cross sections, yielded the smaller differences with 

respect to LiDAR measurements. LARSEN model overestimated all cross 

sectional velocities and the CFD model underestimated the velocities for the 500 

m and 700 m cross sections. 

5.2.6 WAKE MODEL ACCURACY ASSESSMENT 

In order to assess the accuracy of the wake models with respect to LiDAR 

velocity data, the root mean square error (RMSE) was computed for both 

centerline and cross-sections for every single wake model and all inflow wind 

boundary conditions. Wake velocity data is expressed in terms of velocity 

recovery fractions, i. e., each point value is normalized by the inflow wind. 

Therefore, the velocity recovery fraction values vary between 0.0 and 1.0. 

5.2.6.1 RMSE ANALYSIS FOR THE WAKE CENTERLINE 

Table 8 lists the RMSE for the velocity recovery fraction along the wake 

centerline, in which the lowest fraction for each inflow wind is highlighted. 

Therefore, presenting which wake model better described the LiDAR 

measurements. 
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Table 8: Root Mean Square Error along the wake centerline 
 

Inflow Wind 

Speed Bin 

(ms-1) 

PARK FRANDSEN LARSEN 
EDDY 

VISCOSITY 
CFD 

5 0.0082 0.0114 0.0020 0.0121 0.0886 

6 0.0010 0.0092 0.0035 0.0042 0.0745 

7 0.0012 0.0054 0.0029 0.0044 0.0868 

8 0.0015 0.0052 0.0036 0.0033 0.0662 

9 0.0045 0.0088 0.0073 0.0016 0.0535 

10 0.0160 0.0128 0.0161 0.0027 0.1444 

11 0.0217 0.0152 0.0194 0.0038 0.0548 

12 0.0098 0.0039 0.0079 0.0015 0.0802 

 
Therefore, as highlighted on Table 8, the centerline wind velocity 

recovery fractions were better simulated by LARSEN and PARK wake models for 

inflow winds equal or smaller than 8 ms-1. LARSEN model produced the most 

accurate centerline simulation for the 5 ms-1 inflow wind (sample average for site 

B). The PARK model produced the lowest RMSE values for inflow winds between 

6 ms-1 and 8 ms-1. 

For inflow winds equal or higher than 8 ms-1, the EDDY VISCOSITY 

model, produced the most accurate velocity recover fraction along the wake 

centerline.  

5.2.6.2 RMSE ANALYSIS FOR THE WAKE CROSS  

Table 9, Table 10 and Table 11 list the RMSE for the velocity recovery 

fraction along the 500 m, 700 m and 1000 m. cross sections, respectively. The 

lowest fraction for each inflow wind is highlighted. 
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Table 9: RMSE analysis along the cross section, 500 m behind the turbine 
 

Wind Speed Bin (ms-1) PARK FRANDSEN LARSEN CFD 

5 0.0187 0.0190 0.0181 0.0942 

6 0.0113 0.0142 0.0137 0.0426 

7 0.0096 0.0104 0.0113 0.0470 

8 0.0150 0.0161 0.0179 0.0524 

9 0.0204 0.0216 0.0253 0.0592 

10 0.0168 0.0192 0.0193 0.0641 

11 0.0428 0.0447 0.0471 0.0813 

12 0.0304 0.0325 0.0366 0.0784 

 

For the 500 m cross section, the best simulations were produced by the 

PARK model, which was also the best for centerline simulations. The LARSEN 

model obtained the lower value at 5 ms-1 velocity. 

Along the 700 m cross section, the LARSEN wake model produced the 

lowest RMSE for the inflow winds between 5 ms-1 and 11 ms-1.  The FRANDSEN 

model was the most accurate for the 12 ms-1 inflow wind. 

 

Table 10: RMSE analysis along the cross section, 700 m behind the turbine 
 

Wind Speed Bin (ms-1) PARK FRANDSEN LARSEN CFD 

5 0.0172 0.0127 0.0125 0.0419 

6 0.0132 0.0137 0.0125 0.0964 

7 0.0097 0.0096 0.0092 0.0821 

8 0.0214 0.0215 0.0212 0.0871 

9 0.0180 0.0180 0.0179 0.0726 

10 0.0169 0.0175 0.0136 0.1686 

11 0.0172 0.0176 0.0160 0.0806 

12 0.0151 0.0131 0.0243 0.0684 

 

 
 
 
 
 
 
 
 
 
 



 

88 

Table 11: RMSE analysis along the cross section, 1000 m behind the turbine 
 

Wind Speed Bin (ms-1) PARK FRANDSEN LARSEN CFD 

5 0.0316 0.0169 0.0143 0.0234 

6 0.0137 0.0047 0.0035 0.0059 

7 0.0243 0.0190 0.0159 0.0318 

8 0.0333 0.0320 0.0288 0.0459 

9 0.0215 0.0195 0.0178 0.0319 

10 0.0232 0.0197 0.0160 0.0710 

11 0.0171 0.0157 0.0164 0.0164 

12 0.0108 0.0220 0.0411 0.0002 

 

For the 1000 m cross section, the LARSEN model produced the lowest 

RMSE values for inflow winds between 5 ms-1 and 10 ms-1. For the 11 ms-1 inflow 

wind, FRANDSEN yielded the lowest RMSE. The CFD model produced the 

lowest RMSE for the 12 ms-1 inflow wind; in this case the LiDAR data count was 

very small, having a single measurement point in the centerline of the 21 points 

cross section.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

The conclusions and recommendations were organized in two parts:  the 

first evaluated wind power performance through analysis of wind shear and 

turbulence intensity at site A; the second part, analyzed site B data, to assess the 

wake velocity field, specifically for the wake centerline and for three cross 

sections located at 500 m, 700 m and 1000 m behind turbine. 

The investigation of the wind parameters that can influence the power 

performance at the wind farm in the United States of America, named as Site A, 

used a Galion LiDAR mounted near to the wind turbine. The mean inflow velocity 

for site A was 7.8 ms-1. Inflow velocity variability was described by a fitted Weibull 

distribution, with the shape parameter k=2.70 and the scale parameter, c= 8.63 

ms-1. The dominant wind direction was southeast. The mean temperature was 

around 21°C, which is within the range for the Galion LiDAR operation.  

According to site A’s data analysis, it is concluded that neglecting the 

turbulence intensity effect in the inflow wind speed that reaches the wind turbine 

might overestimate the power production approximately 900 MW for lower wind 

speeds up to 10 m/s, however for higher velocities could underestimated the 

power production close to 800 MW. Meanwhile, the wind shear coefficients were 

found to vary between 0 and 0.2 at higher inflow velocities. High wind shear 

values, close to 0.4, were recorded for lower inflow velocities. Therefore, when 

high turbulence intensity develops in conjunction with elevated values of wind 

shear, the power production can be remarkably overestimated and the wind 

turbine lifetime may be reduced due to turbulence-induced damages. 

The site B analysis evaluated the wake of a single WTG in the United 

States of America. Where the wind resource assessment had been deployed 

using the PPI scan of Galion LiDAR mounted at the hub of a wind turbine. 

Therefore, the results from LiDAR delivered a great representation of the wake 

phenomenon. For site B, the mean wind speed that was 5.1 ms-1, the inflow 

velocity variability was represented by a fitted Weibull distribution, with the shape 

parameter k=1.30, and the scale parameter c=5.0 ms-1. The dominant wind 

direction was the southern section. And the mean of the local air temperature was 

15°C. 
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In terms of centerline wake analysis, the LiDAR wake measurements 

yielded low standard errors for the near wake, whereas the errors increased for 

the far wake region. The reason for the error increase with distance could be 

explained by the low data counts on the far wake. The PARK wake model yielded 

the best velocity simulations for inflow winds smaller than 8 ms-1 The EDDY 

VISCOSITY wake model yielded the best performance for wind speed bins from 

9 to 12 ms-1. However the model also produced adequate wake simulations for 

lower inflow winds, with exception of the 5 ms-1 bin.  

In this study, it was implemented a CFD model, which has a detailed 

representation of turbulence, and required high computational effort. The CFD 

model implemented in this study underestimated the velocities within the wake, 

with larger errors for the near wake region. It is not concluded that the CFD is 

less accurate than the other simplified models, because the current CFD 

implementation could have been improved, through sensitivity analysis. The 

hypothesis applied in the porous jump condition could have been effected the 

extension of the energy extraction, causing the velocity recovery begin after 6 to 

7 rotor diameters downstream of the wind turbine. The conclusion is that the CFD 

implementation of a wake model is not a simple task. 

The cross section wake analysis was carried out for three cross-sections, 

located at 500 m, 700 m and 1000 m behind the hub. For the 500 m cross section, 

the best simulations were produced by the PARK model, which was also the best 

for centerline simulations. Along the 700 m cross section, the LARSEN wake 

model produced the best simulation for the inflow winds between 5 ms-1 and 11 

ms-1. 

The recommendations for future work are: (1) develop the relationship 

between the wake centerline velocity recovery and power production of the 

downstream turbine, in order to estimate the wake effect on power reduction; (2) 

understand better the CFD and its hypothesis with planned sensitivity analysis 

and calibration, in order to implement a model with high validation performance.  
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