UNIVERSIDADE FEDERAL DO PARANÁ

THAÍSA MARIANA SANTIAGO ROCHA

CONTRIBUIÇÃO AO DESENVOLVIMENTO DE PLACAS PARA VEDAÇÃO VERTICAL PRODUZIDAS COM RESÍDUO DE MADEIRA DE CONSTRUÇÃO, UTILIZANDO GESSO E CIMENTO COMO AGLOMERANTE

THAÍSA MARIANA SANTIAGO ROCHA

CONTRIBUIÇÃO AO DESENVOLVIMENTO DE PLACAS PARA VEDAÇÃO VERTICAL PRODUZIDAS COM RESÍDUO DE MADEIRA DE CONSTRUÇÃO, UTILIZANDO GESSO E CIMENTO COMO AGLOMERANTE

Dissertação apresentada à ao curso de Pós-Graduação em Engenharia de Construção Civil, Setor de Tecnologia, da Universidade Federal do Paraná, como requisito parcial à obtenção do titulo de Mestre em Engenharia.

Orientador: Prof. Dr. Leonardo Fagundes Rosemback

Miranda

Co-orientador: Prof. Dr. Carlos Frederico Alice Parchen

R672c Rocha, Thaisa Ma

Rocha, Thaisa Mariana Santiago

Contribuição ao desenvolvimento de placas para vedação vertical produzidas com resíduo de madeira de construção, utilizando gesso e cimento como aglomerante / Thaísa Mariana Santiago Rocha. — Curitiba, 2017.

202 f.: il. color.; 30 cm.

Dissertação - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia de Construção Civil, 2017.

Orientador: Leonardo Fagundes Rosemback Miranda. Coorientador: Carlos Frederico Alice Parchen.

Resíduos sólido.
 Resíduos de madeira.
 Placas de vedação.
 Universidade Federal do Paraná.
 Miranda, Leonardo Fagundes Rosemback.
 Parchen, Carlos Frederico Alice.
 Título.

CDD: 628.4

TERMO DE APROVAÇÃO

THAÍSA MARIANA SANTIAGO ROCHA

CONTRIBUIÇÃO AO DESENVOLVIMENTO DE PLACAS PARA VEDAÇÃO VERTICAL PRODUZIDAS COM RESÍDUO DE MADEIRA DE CONSTRUÇÃO, UTILIZANDO GESSO E CIMENTO COMO AGLOMERANTE

Dissertação aprovada como requisito parcial para obtenção do grau de Mestre no Programa de Pós-Graduação em Engenharia de Construção Civil, Setor de Tecnologia da Universidade Federal do Paraná, pela seguinte banca examinadora:

<u>Leonardo J. R. Miranda</u> Prof. Dr. Leonardo Fagundes Rosemback Miranda

Orientador - Programa de Pós-Graduação em Engenharia de

Construção Civil - UFPR

Profo. Dr. Carlos Frederico Alice Parchen.

Coorientador - Programa de Pós-Graduação em Engenharia de

Construção Civil/UFPR

Prof° Dr. Marienne do Rocio de Mello Maron da Costa

Programa de Pós-Graduação em Engenharia de Construção Civil -

UFPR

Profo. Dr José Guilherme Prata

Departamento de Engenharia e Tecnologia Florestal - UFPR

Curitiba, 20 de Fevereiro de 2017.

AGRADECIMENTOS

A Deus pela vida e pela fé que me sustém.

Aos meus pais, Carlos Alberto e Maria Janete. Em especial à minha mãe, a quem devo tudo o que sou e tudo o que almejo me tornar. À minha irmã, Bárbara, pelos ensinamentos e carinho desde que nasceu, e por compreender que a distância física não nos afasta. Aos meus familiares pelo apoio em todas as etapas da minha vida.

Ao meu orientador, Prof^o Dr. Leonardo Fagundes Rosemback Miranda, pela amizade, pela paciência nos meus momentos de ansiedade e dúvida, pelo ensinamento além da teoria e pela motivação que me transmitiu em todas as nossas reuniões. Obrigada por acreditar em mim!

Ao meu co-orientador, Profo Dr. Carlos Frederico Alice Parchen, pelas considerações relevantes a este estudo e por manter acessa minha paixão pelo canteiro de obras.

Aos técnicos de laboratório do LAME, Douglas Mancini e Ricardo Volert, pela ajuda nos ensaios e pelas sugestões. E às funcionárias da limpeza por confiarem que eu limparia todo o laboratório ao terminar (rs).

Aos servidores do CME da Universidade Federal do Paraná, Deonir Agustini e Luis Gustavo Santos, pelo auxílio nos ensaios de microscopia eletrônica.

Ao técnico de laboratório do departamento de Engenharia Mecânica, Rodrigo Metz, pelo auxílio no preparo das amostras para a realização dos ensaios de microscopia eletrônica.

Ao Programa de Pós-Graduação em Engenharia de Construção Civil da Universidade Federal do Paraná (PPGECC/UFPR), à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa concedida.

Aos alunos de iniciação científica, Lara Ruhnke e Paolo Lima, que muito me ajudaram.

Às amigas que permanecem no meu coração e que se enchem de orgulho por mais simples que seja a novidade contada, Luriana Dalla Vecchia, Vanessa Oliveira, Sabrina Requião, Heloene Siqueira e Kaline Gomes.

Às amigas que aguentaram meu mau humor e stress, que me fizeram rir e sorrir, e que me motivaram a seguir em frente, mesmo sem perceber, Ana Capraro, Ana Mikos e Maria Clara. Aos amigos da sala 28 pela companhia, pela distração e pelas diferenças.

E por fim, ao meu noivo Douglas Zeni. Pelo nosso relacionamento e pela nossa convivência, que incluem meus medos, inseguranças e dúvidas. Sua presença me acalmou, motivou e proporcionou que eu sonhasse e fizesse planos. Você está presente em cada linha escrita e ensaio realizado deste estudo, obrigada por tudo!

RESUMO

As atividades da indústria da construção civil produzem um volume expressivo de resíduos de construção e demolição (RCD) e, por isso, estudos têm sido realizados no intuito de promover e viabilizar a incorporação do RCD como matéria-prima em novos produtos e componentes úteis para a sociedade. A utilização da madeira como estrutura temporária, nos canteiros de obra, propicia o aumento do volume de resíduo gerado deste material. Compósitos de madeira surgem como alternativa para o reaproveitamento dos resíduos de madeira resultantes das atividades do setor da construção civil. O cimento Portland tem sido utilizado como aglomerante conferindo resistência e durabilidade. Porém, a combinação da madeira com este componente pode resultar na inibição da pega. Em contrapartida, poucos estudos têm sido realizados com compósitos de madeira utilizando o gesso como aglomerante. Seguindo esta tendência, o objetivo deste estudo é avaliar as propriedades físicas e mecânicas de corpos de prova produzidos com compósito cimento-madeira e gesso-madeira, contendo partículas de madeira proveniente de RCD. Os resíduos de madeira foram coletados em canteiros de obras, moídos, tratados e secos. A caracterização das partículas de madeira (compensado, eucalipto e pinus) foi realizada através dos ensaios de composição granulométrica, massa unitária e microscopia eletrônica de varredura (MEV). Foi estabelecido um traço (proporção entre o aglomerante e as partículas de madeira) de referência para a dosagem dos compósitos de 1:0,075 (em massa). Os compósitos produzidos foram: de cimento-madeira e de gessomadeira. Para a confecção dos compósitos de cimento-madeira foram utilizados, também, dois tipos de aceleradores de pega. A quantidade de água foi fixada em 0,50 para a relação água/cimento e 0,70 para a relação água/gesso. Os teores de madeira sofreram variações tendo como base o teor referência. Foram realizados ensajos no estado fresco – consistência. densidade de massa fresca, tempo de início e fim de pega - e no estado endurecido densidade de massa endurecida, resistência à tração na flexão e à compressão, variação dimensional e microscopia eletrônica de varredura (MEV). Foram produzidas placas de vedação vertical do compósito cimento-madeira e gesso-madeira para os três tipos de madeira estudados. Ao fim desse estudo foi realizada uma análise crítica dos compósitos produzidos, além dos comparativos entre os compósitos produzidos com diferentes aglomerantes. Percebeu-se que os aditivos influenciaram os resultados no estado fresco e endurecido através da aceleração da pega e da diminuição das resistências mecânicas. O procedimento de saturação apresentou-se ineficaz, pois permitiu que as partículas de madeira continuassem absorvendo água da mistura. As diferentes proporções de madeira provocaram alterações nas propriedades mecânicas. Os compósitos indicaram a possibilidade da produção de placas de vedação, sendo necessário adequar a composição para que seja possível reduzir sua densidade de massa endurecida.

Palavras-chave: resíduos de construção, resíduos de madeira, compósitos, vedação vertical, placas de vedação.

ABSTRACT

The activities of the construction industry produce a large volume of construction and demolition waste (CDW) and, therefore, studies have been carried out in order to promote and make feasible the incorporation of CDW as a raw material into new products and components useful for the society. The use of wood as a temporary structure in the construction sites, increases the volume of waste generated by this material. Wood composites appear as an alternative for the reuse of wood waste, resulting from the activities of this sector. Portland cement has been used as a binder conferring strength and durability. However, combining wood with this component may result in handle inhibition. In contrast, few studies have been carried out with wood composites using gypsum as a binder. Following this trend, the objective of this study is to evaluate the physical and mechanical properties of specimens produced with composite cement-wood and gypsum-wood, containing wood particles from CDW. The wood residues were collected in construction sites, ground, treated and dried. The characterization of the wood particles (plywood, eucalyptus and pinus) was performed through the granulometric composition, unit mass and scanning electron microscopy (SEM) tests. A mix proportion (ratio of binder to wood particles) was determined for the dosage of the composites of 1: 0.075 (by mass). The composites produced were: cement-wood and gypsum-wood. In both, the wood was used in the saturated and not saturated condition. For the preparation of cement-wood composites, two types of handle accelerators were also used. The amount of water was set at 0.50 for the water/cement ratio and 0.70 for the water/gypsum ratio. An addition of water was carried out for the dosages carried out with the wood particles in the unsaturated condition. The wood contents varied (0.50, 0.75, 1.25, 1.50, 1.75 and 2.00) based on the reference content (1.00). The tests were done in the fresh properties consistency, fresh mass density, setting time - and in the hardened properties - hardened mass density, tensile strength in flexion and compression, dimensional variation, and scanning electron microscopy (SEM). Vertical slabs, with 1.18m x 1.76m (e = 12.5mm) dimensions. of cement-wood and gypsum-wood composites, were produced for the three types of wood studied. At the end of this study a critical analysis of the composites produced, besides the comparative ones between the composites produced with different binders, is carried out. It was observed that the additives influenced the results in the fresh and hardened state through the acceleration of the handle and the decrease of the mechanical resistances. The saturation procedure was ineffective, as it allowed the wood particles to continue absorbing water from the mixture. The different proportions of wood caused changes in the mechanical properties. The composites indicated the possibility of the production of insulation plates, and it is necessary to adjust the composition so that its hardened mass density can be reduced.

Keywords: construction waste, wood waste, composites, vertical fence, insulation plates.

LISTA DE FIGURAS

FIGURA 2.1 – PRODUÇÃO E CONSUMO DE COMPENSADOS NO BRASIL (2002-
2012)32
FIGURA 2.2 – PRODUÇÃO E CONSUMO DE MADEIRA SERRADA NO BRASIL (2002-
2012)32
FIGURA 2.3 – O USO DA MADEIRA NA CONSTRUÇÃO CIVIL
FIGURA 2.4 – CLASSIFICAÇÃO VEGETAL SIMPLIFICADA36
FIGURA 2.5 – CARACTERÍSTICA DO CORTE TRANSVERSAL DO TRONCO DE UMA
ÁRVORE38
FIGURA 2.6 – ASPECTOS ANATÔMICOS DO LENHO DAS CONÍFERAS
FIGURA 2.7 – ASPECTOS ANATÔMICOS DO LENHO DAS DICOTILEDÔNEAS 40
FIGURA 2.8 – CONSUMO HISTÓRICO ANUAL DE CHAPAS PARA <i>DRYWALL</i> NO
BRASIL60
FIGURA 2.9 – CONSUMO DE CHAPAS PARA <i>DRYWALL</i> NO MUNDO60
FIGURA 2.10 – PROCESSO DE PRODUÇÃO DE PLACAS DE GESSO ACARTONADO6
FIGURA 2. 11 – FLUXOGRAMA DE PRODUÇÃO DE PAINÉIS DE CIMENTO-
MADEIRA63
FIGURA 3.1– FLUXOGRAMA DOS PROCEDIMENTOS REALIZADOS PARA A
CARACTERIZAÇÃO DOS MATERIAIS67
FIGURA 3.2 – DISTRIBUIÇÃO GRANULOMÉTRICA DO GESSO69
FIGURA 3.3 – DETALHE DA DISTRIBUIÇÃO GRANULOMÉTRICA DO GESSO PARA
A PORCENTAGEM RETIDA ATÉ 10% 69
FIGURA 3.4 – MOINHO DE MARTELOS UTILIZADO PARA A MOAGEM DA
MADEIRA71
FIGURA 3.5 – MOAGEM DO RESÍDUO DE COMPENSADO71
FIGURA 3.6 – MOAGEM DO RESÍDUO DE EUCALIPTUS SPP71
FIGURA 3.7 – MOAGEM DO RESÍDUO DE PINUS SPP72
FIGURA 3.8 – DETERMINAÇÃO DA MASSA UNITÁRIA73
FIGURA 3.9 – DETERMINAÇÃO DA COMPOSIÇÃO GRANULOMÉTRICA73
FIGURA 3.10 – PROCEDIMENTOS PARA A DETERMINAÇÃO DO PH74
FIGURA 3.11 – DISTRIBUIÇÃO GRANULOMÉTRICA DAS PARTÍCULAS DE
MADEIRA75
FIGURA 3.12 – FLUXOGRAMA DOS PROCEDIMENTOS REALIZADOS PARA O
COMPÓSITO de CIMENTO MADEIRA 76

FIGURA 3.13 – PROCEDIMENTO DE SATURAÇÃO DAS PARTÍCULAS DE MADEIRA
NO MOMENTO DA DOSAGEM DO COMPÓSITO78
FIGURA 3.14 – MATERIAIS (MADEIRA, CIMENTO, ÁGUA E ADITIVO)
PREPARADOS PARA A DOSAGEM (A) E CORPOS DE PROVA
MOLDADOS COM COMPÓSITO DE CIMENTO-MADEIRA (B) 79
FIGURA 3.15 – DISPOSIÇÃO DOS CORPOS DE PROVA DO COMPÓSITO DE
CIMENTO-MADEIRA NA CÂMARA SECA81
FIGURA 3.16 – PREPARO DO MATERIAL PARA O ENSAIO DO ÍNDICE DE
CONSISTÊNCIA DO COMPÓSITO DE CIMENTO-MADEIRA82
FIGURA 3.17 – ENSAIO DE TEMPO DE INÍCIO DE PEGA (A) E TEMPO DE FIM DE
PEGA (B) DO COMPÓSITO DE CIMENTO-MADEIRA82
FIGURA 3.18 – PROCEDIMENTOS PARA DETERMINAÇÃO DA DENSIDADE DE
MASSA ENDURECIDA DO COMPÓSITO DE CIMENTO-MADEIRA82
FIGURA 3.19 – ENSAIOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (A) E ENSAIO
DE RESISTÊNCIA À COMPRESSÃO (B) DO COMPÓSITO DE
CIMENTO-MADEIRA83
FIGURA 3.20 – PROCEDIMENTO DE EMBUTIMENTO DAS AMOTRAS83
FIGURA 3.21 – EQUIPAMENTO UTILIZADO PARA A REALIZAÇÃO DO ENSAIO DE
ANÁLISE MICROESTRUTURAL84
FIGURA 3.22 – MOLDAGEM (A), DESFORMA (B) E DETERMINAÇÃO DA
VARIAÇÃO DIMENSIONAL (C) DO COMPÓSITO DE CIMENTO
MADEIRA86
FIGURA 3.23 - CONFECÇÃO DAS FORMAS PARA AS PLACAS87
FIGURA 3.24 - COMPÓSITO DE CIMENTO-MADEIRA COM RELAÇÃO A/C=0,50 87
FIGURA 3.25 - COMPÓSITO DE CIMENTO-MADEIRA COM RELAÇÃO A/C=0,65 88
FIGURA 3.26 - PLACA COM COMPÓSITO DE CIMENTO-MADEIRA DESFORMADA88
FIGURA 3.27 – DETALHE DA PLACA COM COMPÓSITO DE CIMENTO-MADEIRA
QUEBRADA88
FIGURA 3.28 – FLUXOGRAMA DOS PROCEDIMENTOS REALIZADOS PARA O
COMPÓSITO DE GESSO MADEIRA89
FIGURA 3.29 – PROCEDIMENTO DE SATURAÇÃO DAS PARTÍCULAS DE MADEIRA
NO MOMENTO DA DOSAGEM DO COMPÓSITO91
FIGURA 3.30 – CORPOS DE PROVA MOLDADOS COM COMPÓSITO DE GESSO-
MADEIDA 03

FIGURA 3.31 – DISPOSIÇÃO DOS CORPOS DE PROVA DO COMPÓSITO DE GESSO-
MADEIRA NA CÂMARA SECA
FIGURA 3.32 – ENSAIO DE TEMPO DE INÍCIO E FIM DE PEGA DO COMPÓSITO DE
GESSO-MADEIRA
FIGURA 3.33 – PROCEDIMENTOS PARA DETERMINAÇÃO DA DENSIDADE DE
MASSA ENDURECIDA DO COMPÓSITO DE GESSO-MADEIRA 95
FIGURA 3.34 – ENSAIOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (A) E ENSAIO
DE RESISTÊNCIA À COMPRESSÃO (B) DO COMPÓSITO DE
GESSO-MADEIRA95
FIGURA 3.35 – MOLDAGEM (A) E DETERMINAÇÃO DA VARIAÇÃO DIMENSIONAL
(B) DO COMPÓSITO DE GESSO-MADEIRA97
FIGURA 3.36 - CONFECÇÃO DAS FORMAS PARA AS PLACAS98
FIGURA 3.37 - CONFECÇÃO DA PLACA COM COMPÓSITO DE GESSO-MADEIRA. 98
FIGURA 3.38 - PLACA COM COMPÓSITO DE GESSO-MADEIRA DESFORMADA 99
FIGURA 3.39 – DETALHES DA PLACA COM COMPÓSITO DE GESSO-MADEIRA
QUEBRADA99
FIGURA 4.1 – IMAGEM DE MEV DE UMA PARTÍCULA DE COMPENSADO (300X DE
AUMENTO)
FIGURA 4.2 – IMAGEM DE MEV DE UMA PARTÍCULA DE EUCALIPTO (500X DE
AUMENTO)
FIGURA 4.3 – IMAGEM DE MEV DE UMA PARTÍCULA DE PINUS (300X DE
AUMENTO)102
FIGURA 4.4 – RESULTADO DO ÍNDICE DE CONSISTÊNCIA – <i>FLOW TABLE</i> – DOS
COMPÓSITOS DE CIMENTO-MADEIRA105
FIGURA 4.5 – RESULTADO DO TEMPO DE INÍCIO DE PEGA DOS COMPÓSITOS DE
CIMENTO-MADEIRA106
FIGURA 4.6 – EXSUDAÇÃO APRESENTADA PELO COMPÓSITO DE CIMENTO-
MADEIRA PRODUZIDO COM 1% PIN SAT107
FIGURA 4.7 – RESULTADO DO TEMPO DE FIM DE PEGA DOS COMPÓSITOS DE
CIMENTO-MADEIRA
FIGURA 4.8 – RESULTADO DO TEMPO DE PEGA DOS COMPÓSITOS DE CIMENTO-
MADEIRA REFERÊNCIA E DA AMOSTRA CIMENTO REFERÊNCIA 109
FIGURA 4.9 – RESULTADOS DE DENSIDADE DE MASSA FRESCA DOS
COMPÓSITOS DE CIMENTO-MADEIRA110

FIGURA 4.10 – CONSUMO DE CIMENTO POR M³ DOS COMPÓSITOS DE CIMENTO-
MADEIRA110
FIGURA 4.11 – RESULTADO DA DENSIDADE DE MASSA ENDURECIDA AOS 28
DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA113
FIGURA 4.12 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28
DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA114
FIGURA 4.13 – RESULTADOS DE RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS
COMPÓSITOS DE CIMENTO-MADEIRA116
FIGURA 4.14 – IMAGEM DE MEV DOS COMPÓSITOS DE CIMENTO-MADEIRA (A)
COMP NSAT 0%; (B) COMP SAT 0%; (C) EUC NSAT 0%; (D) EUC
SAT 0%; (E) PIN NSAT 0%; E (F) PIN SAT 0%
FIGURA 4.15 – RESULTADO DA DENSIDADE DE MASSA ENDURECIDA AOS 28
DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA121
FIGURA 4.16 – EVOLUÇÃO DA DENSIDADE ENDURECIDA AOS 7 E 28 DIAS DOS
COMPÓSITOS DE CIMENTO-MADEIRA122
FIGURA 4.17 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28
DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA123
FIGURA 4.18 – EVOLUÇÃO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 7 E 28
DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA124
FIGURA 4.19 – RESULTADO DA RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS
COMPÓSITOS DE CIMENTO-MADEIRA125
FIGURA 4.20 – EVOLUÇÃO DA RESISTÊNCIA À COMPRESSÃO AOS 7 E 28 DIAS
DOS COMPÓSITOS DE CIMENTO-MADEIRA126
FIGURA 4.21 – RESULTADO DA VARIAÇÃO DIMENSIONAL ATÉ OS 28 DIAS DOS
COMPÓSITOS DE CIMENTO-MADEIRA127
FIGURA 4.22 – RESULTADO DO TEMPO DE INÍCIO DE PEGA DOS COMPÓSITOS
DE GESSO-MADEIRA
FIGURA 4.23 – RESULTADO DO TEMPO DE FIM DE PEGA DOS COMPÓSITOS DE
GESSO-MADEIRA133
FIGURA 4.24 – RESULTADO DA DENSIDADE DE MASSA FRESCA DOS
COMPÓSITOS DE GESSO-MADEIRA134
FIGURA 4.25 – CONSUMO DE GESSO POR M³ DOS COMPÓSITOS DE GESSO-
MADEIRA

FIGURA 4.26 – RESULTADO DA DENSIDADE ENDURECIDA AOS 28 DIAS DOS
COMPÓSITOS DE GESSO-MADEIRA137
FIGURA 4.27 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28
DIAS DOS COMPÓSITOS DE GESSO-MADEIRA138
FIGURA 4.28 – RESULTADO DA RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS EM
COMPÓSITOS DE GESSO-MADEIRA139
FIGURA 4.29 – CORRELAÇÃO ENTRE A RESISTÊNCIA À COMPRESSÃO AOS 28
DIAS E O CONSUMO DE GESSO POR M3 DOS COMPÓSITOS DE
GESSO-MADEIRA140
FIGURA 4.30 – CORRELAÇÃO ENTRE A RESISTÊNCIA À COMPRESSÃO AOS 28
DIAS E A DENSIDADE DE MASSA FRESCA DOS COMPÓSITOS DE
GESSO-MADEIRA141
FIGURA 4.31 – IMAGEM DE MEV DO COMPÓSITO DE GESSO-MADEIRA
PRODUZIDO COM COMP NSAT142
FIGURA 4.32 – IMAGEM DE MEV DOS COMPÓSITOS DE GESSO-MADEIRA (A)
COMP NSAT E (B) COMP SAT143
FIGURA 4.33 – RESULTADOS DE DENSIDADE DE MASSA ENDURECIDA AOS 28
DIAS DOS COMPÓSITOS DE GESSO-MADEIRA146
FIGURA 4.34 – EVOLUÇÃO DA DENSIDADE ENDURECIDA AOS 7 E 28 DIAS DOS
COMPÓSITOS DE GESSO-MADEIRA146
FIGURA 4.35 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28
DIAS DOS COMPÓSITOS DE GESSO-MADEIRA147
FIGURA 4.36 – EVOLUÇÃO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 7 E 28
DIAS DOS COMPÓSITOS DE GESSO-MADEIRA148
FIGURA 4.37 – RESULTADO DA RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS
COMPÓSITOS DE GESSO-MADEIRA149
FIGURA 4.38 – EVOLUÇÃO DA RESISTÊNCIA À COMPRESSÃO AOS 7 E 28 DIAS
DOS COMPÓSITOS DE GESSO-MADEIRA150
FIGURA 4.39 – RESULTADO DA VARIAÇÃO DIMENSIONAL ATÉ OS 28 DIAS DOS
COMPÓSITOS DE GESSO-MADEIRA151
FIGURA 4.40 – COMPARATIVO ENTRE A DENSIDADE DE MASSA ENDURECIDA
AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA E
GESSO-MADEIRA155

FIGURA 4.41 – COMPARATIVO ENTRE A RESISTÊNCIA À TRAÇÃO NA FLEXÃO		
AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA E		
GESSO-MADEIRA156		
FIGURA 4.42 – COMPARATIVO ENTRE A RESISTÊNCIA À COMPRESSÃO AOS 28		
DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-		
MADEIRA157		
FIGURA 4.43 – COMPARATIVO ENTRE A VARIAÇÃO DIMENSIONAL DOS		
COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA		
PRODUZIDOS COM PARTÍCULAS DE COMPENSADO158		
FIGURA 4.44 – COMPARATIVO ENTRE A VARIAÇÃO DIMENSIONAL DOS		
COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA		
PRODUZIDOS COM PARTÍCULAS DE EUCALIPTO159		
FIGURA 4.45 – COMPARATIVO ENTRE A VARIAÇÃO DIMENSIONAL DOS		
COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA		
PRODUZIDOS COM PARTÍCULAS DE PINUS160		

LISTA DE TABELAS

TABELA 2.1 – CARACTERÍSTICAS GEOMÉTRICAS, FÍSICAS E MECÂNICAS DAS
CHAPAS DE GESSO ACARTONADO62
TABELA 2.2 – DADOS TÉCNICOS DAS PLACAS DE GESSO ACARTONADO
STANDART62
TABELA 2.3 – DENSIDADE DOS COMPÓSITOS PRODUZIDOS EM OUTROS
ESTUDOS64
TABELA 3.1 – PROPRIEDADES QUÍMICAS DO CIMENTO CPV ARI RS
TABELA 3.2 – PROPRIEDADES FÍSICAS DO CIMENTO CPV ARI RS
TABELA 3.3 – PROPRIEDADES MECÂNICAS DO CIMENTO CPV ARI RS68
TABELA 3.4 – PROPRIEDADES QUÍMICAS DO GESSO
TABELA 3.5 – CARACTERÍSTICAS DO ADITIVO I70
TABELA 3.6 – CARACTERÍSTICAS DO ADITIVO II70
TABELA 3.7 – ENSAIOS DE CARACTERIZAÇÃO DOS RESÍDUOS DE MADEIRA 72
TABELA 3.8 – RESULTADOS DE CARACTERIZAÇÃO DAS PARTÍCULAS DE
MADEIRA74
TABELA 3.9 – VARIÁVEIS INDEPENDENTES DOS COMPÓSITOS DE CIMENTO-
MADEIRA77
MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO-
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA
TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO- MADEIRA

TABELA 3.17 – VARIÁVEIS INDEPENDENTES DOS COMPÓSITOS DE GESSO-
MADEIRA90
TABELA 3.18 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE GESSO-
MADEIRA90
TABELA 3.19 – PROPORÇÕES AGLOMERANTE/MADEIRA UTILIZADOS NOS
COMPÓSITOS DE GESSO-MADEIRA92
TABELA 3.20 – DOSAGEM E QUANTIDADE DE CORPOS DE PROVA PRODUZIDOS
COM COMPÓSITO DE GESSO-MADEIRA COM DIFERENTES
CONDIÇÕES DE SATURAÇÃO93
TABELA 3.21 – ENSAIOS REALIZADOS PARA OS COMPÓSITOS DE GESSO-
MADEIRA94
TABELA 3.22 – PROPORÇÕES AGLOMERANTE/MADEIRA UTILIZADOS NOS
COMPÓSITOS DE GESSO-MADEIRA96
TABELA 3.23 – DOSAGEM E QUANTIDADE DE CORPOS DE PROVA PRODUZIDOS
COM COMPÓSITO DE GESSO-MADEIRA96
TABELA 3.24 – ENSAIOS REALIZADOS PARA COMPÓSITOS DE GESSO-MADEIRA
97
TABELA 4.1 – RESULTADOS DO ENSAIO DE PH
TABELA 4.2 – RESULTADOS DOS ENSAIOS NO ESTADO FRESCO DOS
COMPÓSITOS DE CIMENTO-MADEIRA104
TABELA 4.3 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS
COMPÓSITOS DE CIMENTO-MADEIRA112
TABELA 4.4 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS
COMPÓSITOS DE CIMENTO-MADEIRA120
TABELA 4.5 - COMPARATIVO ENTRE A DENSIDADE DE MASSA ENDURECIDA
DOS COMPÓSITOS DE CIMENTO-MADEIRA E DAS PLACAS DE
DRYWALL
TABELA 4.6 – RESULTADOS DOS ENSAIOS NO ESTADO FRESCO DOS
COMPÓSITOS DE GESSO-MADEIRA131
TABELA 4.7 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS
COMPÓSITOS DE GESSO-MADEIRA135
TABELA 4.8 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS
COMPÓSITOS DE GESSO-MADEIRA145

TABELA 4.9 – COMPARATIVO ENTRE A DENSIDADE DE MASSA ENDURECIDA
DOS COMPÓSITOS DE GESSO-MADEIRA E DAS PLACAS D
DRYWALL15
TABELA 4.10 – RESULTADOS DAS PROPRIEDADES NO ESTADO DE ENDURECIDO
DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA
15

LISTA DE QUADROS

QUADRO I – VALORES DE Q EMPREGADOS PARA O TESTE ESTATÍSTICO DE
TUKEY179
QUADRO II - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DOS
DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES
ADOTADOS) AOS 28 DIAS181
QUADRO III - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DOS
DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES
ADOTADOS) AOS 28 DIAS183
QUADRO IV - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO
E TEOR DE MADEIRA COM AS IDADES DE 7 E 28 DIAS)185
QUADRO V - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO
DE MADEIRA COM OS DIFERENTES TEORES DE MADEIRA) AOS
28 DIAS
QUADRO VI - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO
TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA
AOS 28 DIAS186
QUADRO VII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DO
MESMO TIPO DE MADEIRA E DO MESMO PROCEDIMENTO DE
SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TEORES DE
MADEIRA) AOS 28 DIAS
QUADRO VIII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DO
MESMO TIPO DE MADEIRA E DO MESMO PROCEDIMENTO DE
SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TEORES DE
MADEIRA) AOS 28 DIAS189
QUADRO IX - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO

TEOR DE MADEIRA E DO MESMO PROCEDIMENTO DE
SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TIPOS DE
MADEIRA) AOS 28 DIAS
QUADRO X - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO
DE MADEIRA E DO MESMO PROCEDIMENTO DE SATURAÇÃO
COM RELAÇÃO AOS DIFERENTES TEORES DE MADEIRA) AOS 28
DIAS191
QUADRO XI - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE
DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DOS
DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES
DE MADEIRA) AOS 28 DIAS192
QUADRO XII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DOS
DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES
DE MADEIRA) AOS 28 DIAS
QUADRO XIII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO
TIPO E TEOR DE MADEIRA COM AS DIFERENTES IDADES) AOS
28 DIAS194
QUADRO XIV - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO
TIPO DE MADEIRA COM OS DIFERENTES TEORES DE MADEIRA)
AOS 28 DIAS194
QUADRO XV - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO
TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA)
AOS 28 DIAS195
QUADRO XVI - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DO
MESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE
MADEIRA E AGLOMERANTE) AOS 28 DIAS197
QUADRO XVII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS
DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DO

ESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE	
ADEIRA E AGLOMERANTE) AOS 28 DIAS199	
ESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS	QUADRO
E RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO	
EOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA E	
GLOMERANTE) AOS 28 DIAS201	

LISTA DE SIGLAS

a/c – Relação água/cimento

ABCP – Associação Brasileira de Cimento Portland

ABD – Associação Brasileira de *Drywall*

ABIMCI – Associação Brasileira da Indústria de Madeira Processada

Mecanicamente

ABNT – Associação Brasileira de Normas Técnicas

ABRAF – Associação Brasileira dos Produtores de Florestas Plantadas

ABRELPE – Associação Brasileira de Empresas de Limpeza Pública e Resíduos

Especiais

AD I – Aditivo I

AD II – Aditivo II

AF-48H – Água Fria 48 Horas AF-72H – Água Fria 72 Horas

APA – The Engineered Wood Association

CBCS – Conselho Brasileiro de Construção Sustentável

CM – Cimento-Madeira

CONAMA – Conselho Nacional do Meio Ambiente

CP – Corpo de Prova

CP V ARI – Cimento Portland V Alta Resistência Inicial

CV – Cavalo à Vapor

DCC – Departamento de Construção Civil

DECONCIC – Departamento da Indústria da Construção Civil

FRX – Espectrometria de Fluorescência de Raios-X

GM – Gesso-Madeira

IPT – Instituto de Pesquisas Tecnológicas do Estado de SP

ISO – International Organization for Standardization

LAME – Laboratório de Materiais e Estruturas

LAMIR – Laboratório de Análises de Minerais e Rochas

MDF – Medium Density Fiberboard

MEV – Microscopia Eletrônica de Varredura

NBR – Norma Brasileira

NBR NM – Norma Brasileira Mercosul

OSB - Oriented Strand Board

PIB - Produto Interno Bruto

RCD - Resíduo de Construção e Demolição

REMADE – Revista da Madeira

SEBRAE — Serviço Brasileiro de Apoio às Micro e Pequenas Empresas

SINDUSGESSO – Sindicato da Indústria do Gesso

SUMÁRIO

1	INTRODUÇAO	24
1.1	PROBLEMA	25
1.2	OBJETIVO	26
1.3	JUSTIFICATIVA	26
2	REVISÃO BIBLIOGRÁFICA	28
2.1	RESÍDUOS DE CONSTRUÇÃO E DEMOLIÇÃO (RCD)	28
2.2	RESÍDUOS DE MADEIRA	31
2.3	A MADEIRA COMO MATERIAL DE CONSTRUÇÃO	34
2.3.1	A importância da anatomia da madeira	35
2.3.1.1	Classificação vegetal	35
2.3.1.2	Fisiologia das árvores	37
2.3.2	Comportamento tecnológico	40
2.3.2.1	Propriedades físicas	41
2.3.2.2	Propriedades químicas	43
2.3.3	Características dos diferentes tipos de madeira utilizados	45
2.3.3.1	Painéis compensados multilaminados	45
2.3.3.2	Eucalyptus spp	46
2.3.3.3	Pinus spp.	47
2.4	COMPÓSITOS DE MADEIRA	47
2.4.1	Componentes dos compósitos de madeira	48
2.4.1.1	Cimento	48
2.4.1.2	Gesso	50
2.4.1.3	Aditivo	50
2.4.1.4	Água	52
2.4.2	Compósitos de cimento-madeira	52
2.4.3	Compósitos de gesso-madeira	56
2.4.4	Pré-tratamento nas partículas de madeira	58
2.5	PLACAS DE VEDAÇÃO COM MADEIRA	59
2.5.1	Painéis tipo drywall.	59
2.5.2	Painéis com compósitos de madeira	62
3	MATERIAIS E MÉTODOS	65
3.1	CARACTERIZAÇÃO DOS MATERIAIS	66
3.1.1	Aglomerantes	67
3.1.2	Aditivos químicos	69
3.1.3	Resíduo de madeira	70
3.1.4	Água	75

3.2	COMPÓSITO DE CIMENTO-MADEIRA	75
3.2.1	Definição das variáveis de estudo	76
3.2.2	Pré-tratamento realizado nas partículas de madeira	77
3.2.3	Condição das partículas de madeira	78
3.2.4	Análise da influência da saturação da madeira e do uso de aditivos aceleradores de	
pega	78	
3.2.5	Análise da influência das diferentes proporções de madeira na composição	84
3.2.6	Confecção e análise da viabilidade de produção de placas de vedação vertical	86
3.3	COMPÓSITO DE GESSO-MADEIRA	89
3.3.1	Definição das variáveis de estudo	90
3.3.2	Pré-tratamento realizado nas partículas de madeira	90
3.3.3	Condição das partículas de madeira	91
3.3.4	Análise da influência da saturação da madeira e das diferentes proporções de madeira	
na comp	osição	91
3.3.5	Análise da influência das diferentes proporções de madeira na composição	96
3.3.6	Confecção e análise da viabilidade de produção de placas de vedação vertical	97
4	RESULTADOS E DISCUSSÕES	100
4.1	RESULTADO DA CARACTERIZAÇÃO DAS PARTÍCULAS DE MADEIRA	100
4.2	ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE	
CIMENT	TO-MADEIRA	102
4.2.1	Análise da influência da saturação da madeira e do uso de aditivos aceleradores de	
pega	103	
4.2.1.1	Estado fresco	103
4.2.1.2	Estado endurecido	111
4.2.1.3	Análise microestrutural	116
4.2.2	Análise da influência das diferentes proporções de madeira na composição	119
4.2.2.1	Estado endurecido	120
4.2.3	Confecção e análise da viabilidade de produção de placas de vedação vertical	128
4.3	ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE GESSO-	
MADEII	RA	130
4.3.1	Análise da influência da saturação e das proporções de madeira na mistura	130
4.3.1.1	Estado fresco	130
4.3.1.2	Estado endurecido	135
4.3.1.3	Análise microestrutural	141
4.3.2	Análise da influência das diferentes proporções de madeira na composição	144
4.3.2.1	Estado endurecido	145
4.3.3	Confecção e análise da viabilidade de produção de placas de vedação vertical	152

4.4	ANÁLISE COMPARATIVA DOS RESULTADOS DE ENSAIOS NO ESTADO			
ENDURE	CIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA E DE GESSO-MADEIRA 153			
5	CONSIDERAÇÕES FINAIS			
5.1	CONCLUSÕES DO TRABALHO EXPERIMENTAL			
5.1.1	Conclusões dos resultados apresentados pelo compósito de cimento-madeira161			
5.1.2	Conclusões dos resultados apresentados pelo compósito de gesso-madeira 162			
5.1.3	Conclusões da análise comparativa dos resultados de ensaios no estado endurecido dos			
compósito	os de cimento-madeira e de gesso-madeira			
5.2	SUGESTÕES PARA TRABALHOS FUTUROS			
REFERÊ	NCIAS BIBLIOGRÁFICAS166			
APÊNDICE A – ANÁLISE ESTATÍSTICA REALIZADA ATRAVÉS DO TESTE DE				
TUKEY	178			
A.	ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE			
CIMENTO	O-MADEIRA			
B.	ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE GESSO-			
MADEIR	A			
C.	ANÁLISE COMPARATIVA DOS RESULTADOS DE ENSAIOS NO ESTADO			
ENDURE	CIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA E DE GESSO-MADEIRA 196			

1 INTRODUÇÃO

A indústria da construção civil é um dos setores mais importantes da economia brasileira, recebendo investimentos próximos a 10% do PIB. (DECONCIC, 2015). Devido à sua magnitude, é capaz de consumir, aproximadamente, 50% dos recursos naturais extraídos no país (CBCS, 2014), produzindo uma quantidade expressiva de resíduos proveniente de seus processos produtivos. Estima-se que a maior parte dos materiais retornem à natureza como resíduos antes de completar o primeiro ano após sua extração (MATTHEWS *et al.*, 2000), seja como resíduos da produção de materiais ou como resíduo resultante da execução inadequada da obra.

Em 2014 o consumo de madeira para uso temporário em obras aumentou em torno de 242%, quando comparado com o ano de 2001, chegando a 80% do total da madeira utilizada por este setor. (SEBRAE, 2014). A Resolução nº 307 do CONAMA determina que os resíduos da classe B - recicláveis para outras destinações, tais como: plásticos, papel/papelão, metais, vidros, madeiras, gesso e outros - deverão ser reutilizados, reciclados ou encaminhados a áreas de armazenamento temporário, sendo dispostos de modo a permitir a sua utilização ou reciclagem futura. (CONAMA, 2002).

Miranda, Angulo e Careli (2009) apontam que os resíduos de madeira representam cerca de 31% de todo o volume de resíduo de construção gerado numa obra de um edifício residencial. Quando considerada apenas a etapa de execução estrutural, os resíduos de madeira gerados podem representar até 42% do total de resíduos produzidos nesta etapa. Dessa forma, é necessário que engenheiros e investidores não priorizem, exclusivamente, o custo de suas construções, mas que também sejam capazes de contribuir para a conversão dos resíduos industriais de construção em materiais úteis. Nesse sentido, IPT (2009) ressalta que é possível reutilizar ou reciclar resíduos de madeira por meio de processamento mecânico para a produção de painéis.

Devido ao aumento da geração de resíduos de construção e demolição (RCD), tornou-se necessária a utilização de materiais de construção mais sustentáveis. Estudos têm sido realizados com o objetivo de contribuir para a manutenção dos materiais que atendam as normas em vigor, além de identificar maneiras de beneficiar o meio ambiente. A indústria de materiais de construção tem sido pressionada a desenvolver produtos de baixo custo, produzidos com baixo consumo de energia e que sejam ecologicamente corretos, devido à escassez das matérias-primas para a produção desses materiais. Para tanto, engenheiros têm sido desafiados a converter resíduos industriais em materiais úteis para a construção,

principalmente em países em desenvolvimento, pois eles podem contribuir para o rápido crescimento de sua infraestrutura. (SWAMY, 1990; TURGUT, 2007).

Uma alternativa para a utilização de resíduos da construção são os compósitos minerais com madeira. Esses materiais são geralmente produzidos a partir da mistura de um aglomerante com as partículas de madeira e dentre os aglomerantes, os principais são: o gesso, o cimento de magnésio e o cimento Portland. (YOUNGQUIST, 1999). Nos compósitos, o aglomerante atua como ligante, sendo capaz de transmitir os esforços entre as fibras, mantendo-as protegidas do meio e permitindo sua orientação adequada. (MATOSKI, 2005). Entretanto, a madeira contém componentes químicos e comporta-se de maneira diferente quando comparada aos agregados convencionais. (IWAKIRI, 2005).

Levando em consideração o exposto, este trabalho pretende contribuir no estudo da utilização de compósitos cimento-madeira e gesso-madeira, avaliando seu comportamento com relação às propriedades mecânicas, no intuito de viabilizar a produção de placas de vedação vertical.

1.1 PROBLEMA

Compósitos cimento-madeira e gesso-madeira surgem como uma alternativa para o reaproveitamento de madeiras oriundas de resíduos de construção e demolição (RCD). No Brasil, pesquisas têm sido direcionadas para o reaproveitamento da madeira rejeitada por outros setores industriais e processos produtivos.

Esses compósitos são constituídos, geralmente, por cimento Portland, partículas de madeira, água e aditivo químico. Estudos têm sido realizados e apresentam como fator limitante a incompatibilidade entre o cimento Portland e a madeira, devido ao contato e a interação dos extrativos presentes na madeira com o aglomerante, sendo esta, capaz de retardar ou até mesmo inibir a pega do cimento Portland. O gesso surge como um aglomerante alternativo e mais sustentável, visto que durante sua produção a emissão de CO₂ é inferior à quantidade emitida durante a produção do clínquer para o cimento Portland.

Dessa forma, procura-se entender se é possível obter boa compatibilidade, tanto física como química, entre os diferentes tipos de madeira, provenientes de RCD, com dois diferentes aglomerantes, viabilizando a produção de placas de vedação que atendam às especificações da normatização brasileira vigente.

1.2 OBJETIVO

O objetivo geral desta pesquisa foi avaliar as propriedades físicas e mecânicas de compósitos de cimento-madeira e de gesso-madeira, com partículas de madeira proveniente de RCD.

Foram estabelecidos, também, objetivos específicos, sendo estes:

- verificar a influência de dois aditivos aceleradores de pega um à base de nitrato de cálcio e outro à base de silicato de sódio – em compósitos de madeira utilizando o cimento Portland como aglomerante;
- verificar a influência do procedimento de saturação e não saturação das partículas de madeira em compósitos produzidos com cimento Portland e gesso;
- avaliar a influência das diferentes proporções de madeira em compósitos de cimento-madeira e gesso-madeira;
- avaliar a viabilidade da confecção de placas de vedação vertical produzidas com compósitos de cimento-madeira e de gesso-madeira.

1.3 JUSTIFICATIVA

Estudos têm sido realizados no intuito de promover e viabilizar a utilização de resíduos de construção e demolição (RCD) em novos materiais ou componentes. Além disso, existe a necessidade de diminuir a emissão de dióxido de carbono, visto que a construção civil é responsável por, aproximadamente, 40% das emissões. (KILBERT, 2016).

Construções com estruturas e componentes em madeira utilizam processos construtivos de baixo consumo de energia e, consequentemente, liberam uma baixa quantidade de carbono em forma de CO₂. Essa característica tornou-se imprescindível para as construções atuais, visto que a concentração de dióxido de carbono na atmosfera está aumentando e contribuindo com o aquecimento global. A incorporação e/ou a introdução da madeira como material de construção proporciona a redução da emissão de CO₂ para atmosfera. (MATOSKI, 2005; GUSTAVSSON, L.; SATHRE, R., 2006).

A utilização de partículas de madeira provenientes de RCD propicia, também, a geração de renda, pois se torna possível agregar valor ao produto que seria descartado. A

produção de materiais e componentes com RCD pode contribuir para o rápido crescimento da infraestrutura de países em desenvolvimento. (SWAMY, 1990; TURGUT, 2007).

Além disso, com o avanço da tecnologia, tem-se desenvolvido materiais que sejam produzidos a partir da combinação de propriedades (compósitos) sendo capaz de substituir outros materiais que utilizem como matéria-prima materiais não renováveis. Pesquisadores têm aprofundado seus estudos na incorporação de resíduos em diversas atividades, como em painéis de madeira aglomerada (IWAKIRI *et al.*, 2000), em compósitos de plástico-madeira (YAMAJI, 2004) e em compósitos de madeira-cimento. (LIMA, 2009; PARCHEN, 2012; VILLAS-BÔAS, 2016).

No intuito de obter maior nível de racionalização e de produtividade nos serviços de vedação vertical, a utilização de painéis industrializados vem se intensificando. (TANIGUTTI, E. K.; BARROS, M. M. S. B. de, 1998). Sua utilização de forma modulada, em obra, permite a eliminação de diversas etapas, evitando dificuldades na execução de acabamentos. A precisão geométrica, a variedade de dimensões, as formas de acabamento, incorporação de revestimentos em escala industrial e a facilidade de montagens, são outras vantagens que podem contribuir para a utilização de painéis como elementos construtivos. (MATOSKI, 2005).

2 REVISÃO BIBLIOGRÁFICA

A indústria da construção civil apresenta-se como um dos principais setores da economia brasileira. Este segmento recebe investimentos que chegam a 10% do PIB brasileiro (DECONCIC, 2015), sendo capaz de fornecer indicativos de crescimento econômico e social. Entretanto, esta atividade, devido à sua magnitude, gera grandes impactos ambientais prejudicando a sociedade. Estudos têm se direcionado para o desenvolvimento de materiais e produtos que sejam capazes de incorporar os resíduos gerados por este setor. Neste capítulo, serão abordados assuntos como a geração de resíduo de construção e demolição (RCD) e a geração de resíduos de madeira. Na sequência, será apresentada a madeira como material de construção, as características das madeiras utilizadas neste estudo, as propriedades e peculiaridades dos compósitos produzidos com madeira, para que então sejam descritas as propriedades de placas de vedação de madeira.

2.1 RESÍDUOS DE CONSTRUÇÃO E DEMOLIÇÃO (RCD)

Obras de construção civil são capazes de alterar permanentemente o ambiente no qual estão inseridas, além de provocar, significativos, impactos ambientais ao gerarem uma grande quantidade de resíduos provenientes de seus processos produtivos. O setor de materiais e componentes de construção engloba desde as atividades extrativas – proporcionando a obtenção de areia, brita e madeira nativa – até as parcelas da indústria química. A indústria de materiais consome aproximadamente 50% dos recursos naturais extraídos. (CBCS, 2014).

Kulatunga *et al.* (2006) afirmam que o setor da construção civil consome cerca de 25% de toda a madeira virgem e 40% das pedras brutas, cascalhos e areia do mundo. A estimativa realizada por Agopyan e John (2011), a partir dos dados disponíveis no 2° Inventário Brasileiro das Emissões de Gases do Efeito Estufa, indicou que, no Brasil, as emissões de CO₂ mais impactantes ocorrem durante a produção de materiais. (CBCS, 2014).

Com a intensa industrialização, a chegada de novas tecnologias, o crescimento populacional, a concentração de pessoas em centros urbanos e a diversificação do consumo de bens e serviços, os resíduos se transformaram em graves problemas urbanos e com um gerenciamento oneroso e complexo, quando considerados o volume e a massa acumulados. (ANGULO, S. C.; ZORDAN, S.E.; JOHN, V. M., 2001). Santos (1995) afirma que, no que se

refere aos materiais de construção, a mitigação do impacto ambiental vai depender da otimização dos produtos existentes.

Estima-se que a maior parte dos materiais retornem à natureza como resíduos antes de completar o primeiro ano após sua extração (MATTHEWS *et al.*, 2000), seja como resíduos da produção de materiais ou como resíduo resultante da execução inadequada da obra. Ao final da vida útil, aproximadamente, 5kg de resíduos são gerados para cada 1kg de material utilizado. (JOHN, 2000). Souza (2005) afirma ainda que, para cada metro quadrado construído, é consumida cerca de uma tonelada de recursos naturais. Agopyan e John (2011) considera que a construção civil demanda de 4,0t a 7,0t de material por habitante por ano.

Miranda, Ângulo e Careli (2009) estimaram que a massa de RCD gerado nas regiões urbanas é superior que a dos resíduos domiciliares. São raros os levantamentos, mas números indicam que é produzida anualmente uma quantidade de RCD entre 220 kg/hab a 670 kg/hab, com mediana de 510 kg/hab. Os mesmo autores constataram que a reciclagem dos resíduos de construção e demolição é viável do ponto de vista técnico e ambiental. De acordo com a ABRELPE (2014), estima-se que neste mesmo ano, no Brasil, os municípios coletaram mais de 45 milhões de toneladas de RCD, representando em torno de 63% dos resíduos sólidos urbanos do total coletado.

Acredita-se que cerca de 35% dos resíduos sólidos gerados em todo o mundo seja proveniente da construção civil, e a maior parte deste RCD é destinado de modo incorreto – a aterros sanitários ou locais não controlados – ocasionando problemas ao meio ambiente e à saúde pública. (LLATAS, 2011). A destinação inadequada do RCD pode propiciar a degradação estética do meio, o assoreamento de várzeas e rios, a intensificação das enchentes, a proliferação de pragas e vetores, além de prejuízos econômicos ao município. (NETO *et al.*, 2004).

O desenvolvimento sustentável pode ser entendido como um processo que causa mudanças na exploração de recursos, na direção dos investimentos, na orientação do desenvolvimento tecnológico e nas mudanças institucionais, sempre levando em consideração as necessidades humanas presentes e futuras. Essa mudança envolve, também, mudanças culturais, educação ambiental e visão sistêmica. (BRANDON, 1999; ANGULO, 2000; JOHN, 2000; ANGULO, S. C.; ZORDAN, S.E.; JOHN, V. M., 2001). A desmaterialização – que pode ser entendida como a adoção de sistemas construtivos leves ou do reuso de componentes ao final da vida útil da obra - e a reciclagem podem ser consideradas estratégias importantes para a amenização do impacto ambiental. (CBCS, 2014).

A criação do CONAMA n°307 (CONAMA, 2002) resultou da crescente preocupação com os impactos ambientais causados pelas atividades da construção civil ocasionadas pela urbanização e pelo aumento populacional, principalmente no que se refere à utilização de recursos naturais e à geração de resíduos. (CARVALHO, E. M. de; CARVALHO, P. M.; DALTRO FILHO, J., 2007).

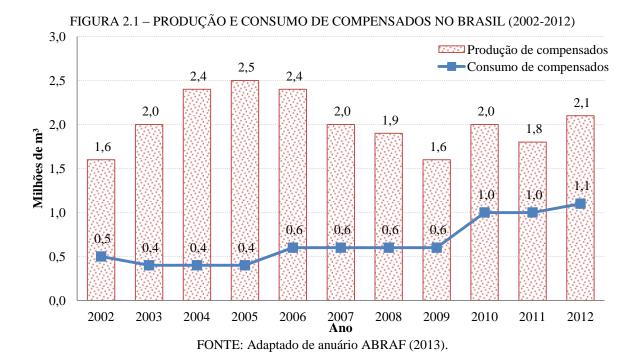
O gerenciamento de resíduos é definido como o sistema de gestão que visa reduzir, reutilizar ou reciclar resíduos, incluindo o planejamento, as responsabilidades, as práticas, os procedimentos ou os recursos para desenvolver e implementar as ações necessárias ao cumprimento das etapas previstas em programas e planos. (CONAMA, 2002).

Entende-se que o propósito do gerenciamento de resíduos é fornecer condições saudáveis de vida para reduzir a quantidade de matéria que entra ou sai da sociedade e incentivar o uso de materiais dentro da sociedade. Em Curitiba, o Decreto nº 1068 (CURITIBA, 2004) e a Lei Municipal nº 11682 (CURITIBA, 2006) determinam que o plano de gerenciamento e o destino dos resíduos sólidos são condicionantes para a expedição de alvarás de construção.

É importante esclarecer as diferentes formas de gerenciamento de resíduos, nas quais reutilizar consiste na aplicação de um resíduo sem a sua transformação; reciclar consiste no processo de reaproveitamento de um resíduo depois de submetido à transformação; e beneficiamento é o ato de submeter um resíduo a operações e/ou processos que sejam capazes de transformá-lo em matéria-prima ou produto. (CONAMA, 2002).

De acordo com as Resoluções nº 307 (CONAMA, 2002), nº 348 (CONAMA, 2004) e nº 431 (CONAMA, 2011) do CONAMA, os resíduos da construção civil são classificados da seguinte maneira:

- I Classe A são os resíduos reutilizáveis ou recicláveis como agregados, tais como:
- a) de construção, demolição, reformas e reparos de pavimentação e de outras obras de infraestrutura, inclusive solos provenientes de terraplanagem;
- b) de construção, demolição, reformas e reparos de edificações: componentes cerâmicos (tijolos, blocos, telhas, placas de revestimento etc.), argamassa e concreto;
- c) de processo de fabricação e/ou demolição de peças pré-moldadas em concreto (blocos, tubos, meio-fios etc.) produzidas nos canteiros de obras;
- II Classe B são os resíduos recicláveis para outras destinações, tais como:
 plásticos, papel, papelão, metais, vidros, madeiras e gesso;


 III - Classe C - são os resíduos para os quais não foram desenvolvidas tecnologias ou aplicações economicamente viáveis que permitam a sua reciclagem ou recuperação;

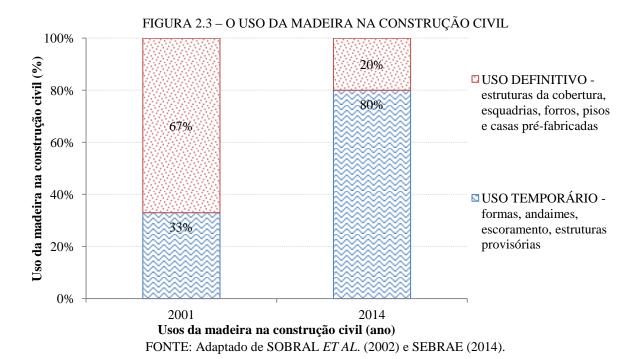
IV - Classe D - são resíduos perigosos - oriundos do processo de construção, tais como: tintas, solventes, óleos e outros ou aqueles contaminados ou prejudiciais à saúde, oriundos de demolições, reformas e reparos de clínicas radiológicas, instalações industriais e outros bem como telhas e demais objetos e materiais que contenham amianto ou outros produtos nocivos à saúde.

A Resolução nº 307 do CONAMA determina, ainda, que os resíduos da classe B, que inclui os resíduos de madeira, deverão ser reutilizados, reciclados ou encaminhados a áreas de armazenamento temporário, sendo dispostos de modo a permitir a sua utilização ou reciclagem futura. (CONAMA, 2002).

2.2 RESÍDUOS DE MADEIRA

A indústria da construção civil é o maior consumidor de madeira tropical do Brasil. No canteiro de obra, um projeto adequado, que seja capaz de evitar perdas com cortes desnecessários e que possibilite a reutilização das peças, pode propiciar a economia de dinheiro e de matéria-prima. (IPT, 2009). Nestes locais, os painéis compensados multilaminados são utilizados, principalmente, para a produção de formas; a madeira de eucalipto é empregada para o escoramento de lajes e demais elementos estruturais; e as ripas e os vigotes produzidos com a madeira de pinus são utilizados para o fechamento das formas. O setor de madeira mecanicamente processada é composto pelas indústrias de madeira sólida produtoras de compensados, madeira serrada e laminados. Na indústria de produção de compensados, os principais segmentos consumidores são as indústrias de móveis e da construção civil. Entre 2002 e 2012, a produção de compensados (FIGURA 2.1) um crescimento médio de 2,8% a.a., enquanto que o consumo apresentou um incremento de 9,0% a.a.

A mesma tendência foi observada com a madeira serrada (FIGURA 2.2), cuja produção apresentou um crescimento médio de 1,0% a.a., enquanto que o consumo apresentou um incremento de 2,7% a.a.



No período de 2002 a 2012, o aumento do consumo de madeira serrada foi influenciado, principalmente, pelo desenvolvimento do mercado interno, estimulado pelo crescimento da indústria da construção civil e do mercado de embalagens, os quais são

fortemente impactados pela política governamental expansionista orientada ao crescimento da economia brasileira. (ABRAF, 2013). No mesmo período, tem-se como destaque o crescimento do consumo de madeiras de reflorestamento, principalmente o eucalipto e pinus. (ABIMCI, 2004).

A utilização da madeira na construção civil geralmente é feita na forma de elementos temporários – formas, escoramentos e andaimes – ou na forma de elementos definitivos – estruturas de coberturas, forros, pisos, esquadrias e acabamentos – gerando uma grande quantidade de resíduos, principalmente, quando os elementos temporários são descartados. (IPT, 2009).

Observa-se (FIGURA 2.3) a utilização da madeira consumida pela construção civil. A construção verticalizada apresenta-se como o principal consumidor com 485 mil m³/ano. (IPT, 2009). Além disso, de acordo com SEBRAE (2014), o consumo de madeira para uso temporário aumentou cerca de 242% quando comparado com o ano de 2001. O aumento, significativo, do consumo de madeira para uso temporário pode ter sido provocado pelo aquecimento da indústria da construção civil neste período.

Miranda, Ângulo e Careli (2009) verificaram que os resíduos gerados dependem do tipo de edificação e da fase da obra em execução. Durante a fase de execução do projeto estrutural é provável que sejam produzidos mais resíduos de madeira e de metal, visto que nesta etapa da obra o uso de aço nas armaduras de peças estruturais e a utilização de madeira

para a confecção das formas e escoramentos ocorrem de maneira mais expressiva. Esses mesmos autores acreditam que os resíduos de madeira representam cerca de 31% de todo o volume de resíduo de construção gerado numa obra de um edifício residencial. Quando considerada apenas a etapa de execução estrutural, os resíduos gerados podem representar até 42% do total de resíduos produzidos nesta etapa. A utilização de resíduos vegetais, como agregados em compósitos para a construção civil, representa um significativo ganho ambiental, pois os agregados convencionais são produzidos a partir de fontes não renováveis, além de sua exploração proporcionar alterações ambientais. (LIMA, 2009).

A resolução nº 307 do Conselho Nacional do Meio Ambiente considera que os geradores de resíduos são responsáveis pelo seu destino, e deverão ter como objetivo principal a não geração de resíduos e, também, a redução, a reutilização, a reciclagem e a destinação final. (IPT, 2009).

As alternativas possíveis para a destinação dos resíduos de madeira são a compostagem, o uso como resíduo estruturante, a produção de energia, o uso como lenha ou carvão vegetal, a produção de materiais diversos e a produção de painéis (aglomerados, MDF, OSB e outros), ou ainda a produção de briquetes. (REMADE, 2003).

2.3 A MADEIRA COMO MATERIAL DE CONSTRUÇÃO

Acredita-se que a madeira seja o material de construção mais antigo utilizado pelo homem. A facilidade de obtenção e de adequação aos fins previstos viabilizou sua utilização por populações primitivas. (PETRUCCI, 1976). Como material de construção, pode participar de forma temporária ou definitiva, em todas as etapas de uma obra. É um material tecnicamente adequado e economicamente competitivo, podendo ser apresentado como matéria-prima de múltiplo aproveitamento. (BAUER, 1994).

De acordo com Petrucci (1976) e Bauer (1994), quando considerado um material de construção, pode apresentar vantagens como:

- Facilidade de obtenção em grande quantidade e com baixo custo, além de poder ser transformada com utilização de ferramentas simples;
- Fácil desdobramento de peças de maiores dimensões para peças menores;
- É um material capaz de resistir a esforços de compressão e tração e, devido à sua resiliência, é capaz de absorver choques e impactos;
- Possui baixa massa específica quando comparado com a resistência mecânica que é capaz de suportar;

- Apresenta boas condições naturais de isolamento térmico e absorção acústica;
- No estado natural, apresenta grande variedade de padrões.

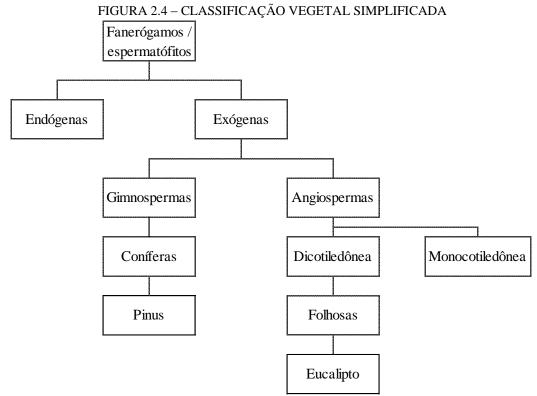
Esses mesmo autores acreditam, ainda, que algumas características da madeira podem, até mesmo, inviabilizar sua utilização:

- A heterogeneidade e a anisotropia, além da grande variação dimensional provocada pela variação da umidade;
- A vulnerabilidade com relação aos agentes biodeterioradores, influenciando na sua durabilidade;
- A combustibilidade.

As propriedades anatômicas, físicas e químicas das diferentes espécies de madeira são capazes de alterar de maneira positiva ou negativa a fabricação de produtos contendo madeira. (TRIANOSKI *et al.*, 2015). O estudo das características da madeira é imprescindível para sua utilização de forma eficiente, além de fornecer informações relevantes para sua industrialização. (TRIANOSKI *et al.*, 2014).

Na sequência, serão apresentadas algumas características e propriedades das madeiras, como a anatomia e o seu comportamento tecnológico, no intuito de conhecer os materiais que serão utilizados neste trabalho.

2.3.1 A importância da anatomia da madeira


A madeira utilizada comercialmente é obtida do lenho superior existente nos vegetais. Suas propriedades, principalmente sua heterogeneidade e anisotropia, são resultantes da sua origem, e por isso, faz-se necessário conhecer e identificar os diferentes tipos de árvores para que seja possível entender as alterações no tecido lenhoso. (BAUER, 1994).

O tronco de uma árvore é formado por milhões de células lenhosas de diferentes tamanhos e formas, dependendo do seu papel fisiológico na árvore. Estas células são organizadas e distribuídas de diferentes maneiras de acordo com a espécie. (KOLLMANN, F. F. P.; CÔTÉ JR., W. A., 1968).

2.3.1.1 Classificação vegetal

Na Botânica, é considerado que os vegetais superiores pertencem ao ramo das fanerógamas ou dos espermatófitos - vegetais completos, contendo raízes, caule, copa, folhas, flores e sementes. As fanerógamas são classificadas de acordo com a sua germinação e o seu

crescimento, podendo ser endógenas – de germinação interna – ou exógenas – de germinação externa, apresentando os anéis anuais de crescimento. As árvores exógenas constituem o grande grupo de árvores aproveitáveis para a produção de madeiras para utilização na construção. Com relação à anatomia e à morfologia, as árvores exógenas diferenciam-se em dois grandes grupos: gimnospermas e angiospermas (FIGURA 2.4). (KOLLMANN, F. F. P.; CÔTÉ JR., W. A., 1968; BAUER, 1994; GONZAGA, 2006).

FONTE: Adaptado de BAUER (1994).

As gimnospermas são arvores que não produzem frutos e possuem suas sementes descobertas. Apresentam folhas perenes em forma de agulha (folhas aciculares) e compreendem 35% das espécies conhecidas. Neste grupo destaca-se a classe das coníferas ou resinosas. (BAUER, 1994; RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E., 2007). Apresenta maior ocorrência em climas temperados e frios, constituindo grande quantidade de florestas no hemisfério norte e, tem sido utilizada em larga escala na construção civil e indústrias do setor. (CALIL JÚNIOR, C.; LAHR, F. A. R.; DIAS, A. A., 2003). Anatomicamente, as coníferas são formadas por uma estrutura mais simples, e suas principais características são a ausência de vasos e a quantidade pequena de parênquima axial. (RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E., 2007). O principal elemento do tronco ou xilema são os traqueídeos fibrosos – que podem ser identificados por apresentarem pontoações

grandes, circulares e areoladas (RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E., 2007), que são tecidos formados por pequenos tubos que possuem a função de conduzir a seiva e estruturar o tronco. As pontuações, que consistem em pequenas válvulas de passagem, permitem a passagem da seiva de um elemento tubular para outro. As pináceas apresentam um tipo de tecido diferente das demais coníferas: os canais resiníferos que percorrem o sentido axial (longitudinal) do tronco. (KOLLMANN, F. F. P.; CÔTÉ JR., W. A., 1968; GONZAGA, 2006). A madeira das gimnospermas apresenta estrutura homogênea com predominância de elementos longos e retos, propiciando sua utilização. (ESAU, 1974).

As angiospermas são conhecidas como folhosas e apresentam estrutura mais complexa, mais organizada e moderna. Podem ser subdivididas em: monocotiledôneas – apresenta fruto sem a semente dividida – e dicotiledônea – com sementes divididas em dois cotilédones e conhecida por folhosa. Abrangem cerca de 65% das espécies conhecidas (BAUER, 1994), além de apresentar vasta gama de densidades, adaptam-se melhor em regiões de clima quente. (ALMEIDA, T. H. de; CHRISTOFORO, L. A.; LAHR, A. R., 2016). As angiospermas monocotiledôneas possuem como representantes as palmeiras e o bambu, além de apresentar seu tecido vascular em feixes dispersos, não favorecendo sua utilização como tábuas. (KOLLMANN, F. F. P.; CÔTÉ JR., W. A., 1968).

Nas angiospermas dicotiledôneas – folhosas – a especialização dos tecidos é maior, contendo vasos/poros, fibras, parênquima axial e radial. (GONZAGA, 2006). São consideradas madeiras extremamente fortes, densas, devido à elevada proporção de fibrotraqueídeos e de fibras libriformes. (ESAU, 1974).

2.3.1.2 Fisiologia das árvores

Genericamente, compõem uma arvore: a raiz, o tronco ou caule, e a copa. Tem-se o tronco como a parte útil para a produção de peças de madeira natural e material de construção e, por isso, a necessidade de aprofundar os estudos nessa seção da árvore que apresenta partes bem distintas, contendo a casca, o câmbio, o lenho (divido entre alburno e cerne), a medula e os vasos (FIGURA 2.5). (BAUER, 1994).

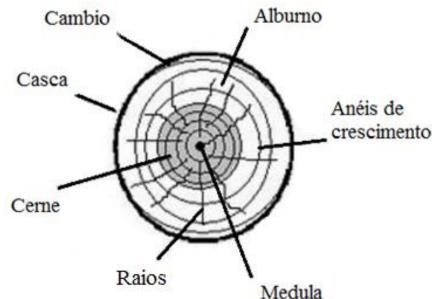


FIGURA 2.5 – CARACTERÍSTICA DO CORTE TRANSVERSAL DO TRONCO DE UMA ÁRVORE

FONTE: Adaptado de EFFTING (2014).

O lenho é o núcleo de sustentação e de resistência da árvore. É a parte útil do tronco para a produção das peças estruturais de madeira natural ou madeira de obra. Apresentando duas fases distintas: o alburno e o cerne. O alburno, elemento externo, tem coloração mais clara e está formado por células vivas e atuantes, e além de proporcionar resistência, exerce a função de conduzir a seiva bruta. O cerne, elemento interno, possui coloração mais escura e é formado por células mortas e inativas. As alterações e envelhecimento no alburno contribuem para a ampliação do cerne. O cerne apresenta maior densidade, compacidade, resistência mecânica, e durabilidade. (BAUER, 1994).

O lenho está constituído por diversas células elementares, configurando uma estrutura anatômica celular, que varia de acordo com sua localização no lenho e a espécie lenhosa. Essa diferença na constituição do tecido lenhoso propicia a heterogeneidade e a anisotropia do material, sendo capaz de influenciar no comportamento físico-mecânico do material. (BAUER, 1994). A função de sustentação é desempenhada nas gimnospermas e angiospermas, principalmente, pelas células alongadas que constituem a maior parte do xilema secundário: os traqueoides axiais, que nas gimnospermas pode chegar numa proporção de até 95%, e nas angiospermas, representam de 20 a 80% do lenho. (BURGUER, L. M.; RICHTER, H. G., 1991).

O lenho nas resinosas é composto por células alongadas de diâmetro quase constante – traqueídeos ou traqueoides – que exercem a função de conduzir a seiva e proporcionar suporte mecânico. Existem, ainda, numerosas linhas finas na direção radial – raios medulares

ou lenhosos – que armazenam e distribuem os nutrientes neste sentido. Apresentam, também, pequenas aberturas ou pontuações pequenas nas seções transversais do lenho – canais resinosos ou ductos resiníferos – são espaços intercelulares que ficam impregnados de óleos e resinas (FIGURA 2.6). (KOLLMANN, F. F. P.; CÔTÉ JR., W. A., 1968; BAUER, 1994; CALIL JÚNIOR, C.; LAHR, F. A. R.; DIAS, A. A., 2003).

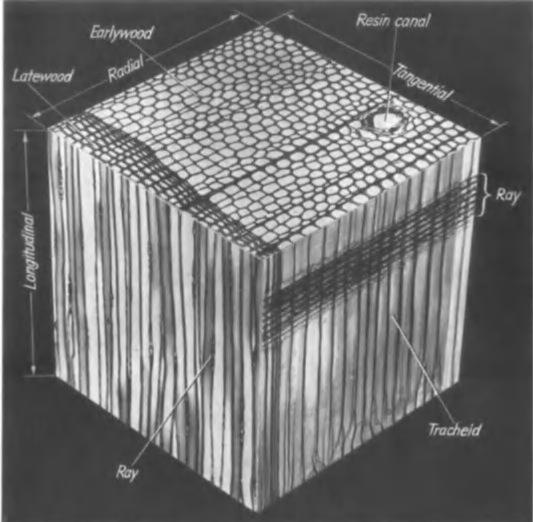


FIGURA 2.6 – ASPECTOS ANATÔMICOS DO LENHO DAS CONÍFERAS

FONTE: KOLLMANN, F. F. P. e CÔTÉ JR., W. A. (1968).

O lenho de uma folhosa difere do lenho de uma resinosa por apresentar vasos lenhosos ou traqueias que se apresentam como uma grande quantidade de pequenos furos circulares ou poros. Num corte transversal no lenho é possível verificar que os vasos possuem maior dimensão que os demais elementos fibrosos. A principal característica anatômica das folhosas são as células fibrosas – fibras – que possuem diâmetro inferior aos traqueídeos das resinosas, além de estarem dispostas longitudinalmente e possuírem grande comprimento.

Quando dispostas em conjuntos, as fibras constituem o tecido de resistência e sustentação das árvores folhosas (FIGURA 2.7). (BAUER, 1994; MOREY, 1980).

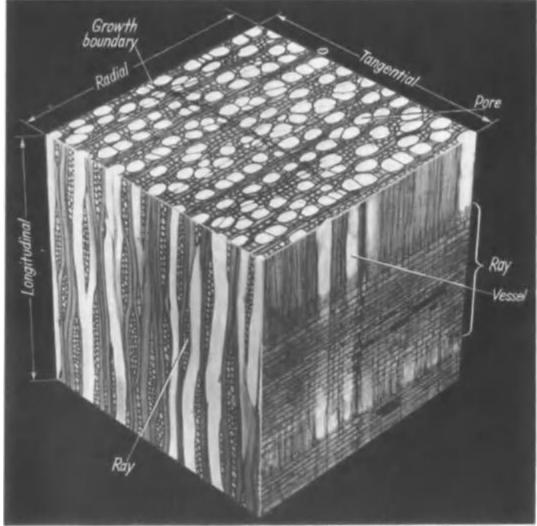


FIGURA 2.7 – ASPECTOS ANATÔMICOS DO LENHO DAS DICOTILEDÔNEAS

FONTE: KOLLMANN, F. F. P. e CÔTÉ JR., W. A. (1968).

2.3.2 Comportamento tecnológico

A madeira é considerada um material orgânico (composta basicamente por carbono) e heterogêneo (devido à grande variação existente, tanto em tipos, como em componentes) apresentando características singulares. A disposição e o arranjo diferenciado desses elementos deixam vazios, tornando a madeira porosa podendo reter água fisicamente aderida às paredes e no seu interior, caracterizando-se, portanto, como um material higroscópico. Sua estrutura fibrosa proporciona suas características anisotrópicas, de modo que seu comportamento físico e mecânico variam de acordo com cada uma das direções: transversal,

longitudinal radial e longitudinal tangencial. Quando esforços são aplicados na direção das fibras obtém-se elevada resistência à tração e à compressão, porém, apresenta-se menos resistente para esforços aplicados transversalmente. É considerado, também, um material de natureza complexa, multicomponente, descontínuo, inelástico, biodegradável e renovável. (BURGUER, L. M.; RICHTER, H. G., 1991; MATOSKI, 2005; GARCEZ, M. R.; SANTOS, T.; GATTO, D. A., 2013).

2.3.2.1 Propriedades físicas

Dentre as propriedades físicas pertencentes à madeira, destacam-se o teor de umidade, a estabilidade dimensional, a densidade, a condutibilidade térmica e sonora, a resistência ao fogo e a durabilidade natural. (BAUER, 1994).

Teor de umidade

A água é essencial para a sobrevivência do vegetal e é apresentada de três formas: a água de constituição – que consiste na água combinada quimicamente e que compõem a estrutura do vegetal, não podendo ser eliminada através da secagem; a água de impregnação – que é a água presente nas fibrilas de celulose capaz de provocar o inchamento e a contração das paredes, alterando o volume da madeira; e a água livre – quando essa preenche os espaços intercelulares e o lúmen. (BAUER, 1994). Tem-se que madeiras com densidade elevada apresentam maior dificuldade de secagem, pois se verifica um volume menor de espaços vazios para a circulação de fluidos. A maior penetração ou eliminação de líquidos nas madeiras se dá por meio dos elementos estruturais que desempenham a função de condução nos vegetais. (BURGUER, L. M.; RICHTER, H. G., 1991). É importante entender as relações entre água e propriedades físicas do material, isto porque, essas são capazes de influenciar diretamente o seu desempenho nas diversas fases do beneficiamento, processamento e utilização. (ALMEIDA, T. H. de; CHRISTOFORO, L. A.; LAHR, A. R., 2016).

Retratibilidade

É a propriedade que considera as alterações volumétricas e dimensionais sofridas pela madeira quando ocorre a variação do seu teor de umidade. A retratibilidade linear pode ocorrer nas três direções anisotrópicas principais, sendo elas: tangencial, radial e axial. (BAUER, 1994; GONZAGA, 2006). A madeira é um material altamente higroscópico e é susceptível às alterações dimensionais provocadas pela contração e o inchamento devido à

entrada e saída de água das paredes celulares. Madeiras que possuem células de paredes espessas, em abundância, apresentam alta massa específica e, por isso, apresentam estes fenômenos em grau mais acentuado. (BURGUER, L. M.; RICHTER, H. G., 1991).

Densidade

É a propriedade física mais importante da madeira, já que suas propriedades tecnológicas são diretamente influenciadas por este parâmetro. (BURGUER, L. M.; RICHTER, H. G., 1991; PRATA, 2010). É considerada como a massa específica aparente e é comparável quando referida a um teor de umidade constante. A massa específica é considerada um índice de compacidade da madeira e, por isso, suas características de resistência mecânica são proporcionais à mesma. (BAUER, 1994). Quanto maior a densidade da madeira, maior influência será exercida com relação à alteração dimensional provocada pela umidade. (IWAKIRI, 2005). Além disso, é uma propriedade capaz de refletir a composição química e o volume de matéria lenhosa por peso. Esta característica está relacionada com a resistência mecânica e o grau de instabilidade dimensional. (BURGUER, L. M.; RICHTER, H. G., 1991). Tem-se ainda que madeiras com alta densidade apresentam baixa permeabilidade devido à menor quantidade de poros, além de apresentar alto teor de extrativos, propiciando a redução da permeabilidade. (PRATA, 2010).

Condutibilidade térmica e sonora

Devido à sua estrutura celular, a madeira é capaz de aprisionar numerosas massas de ar, além de ser composta por celulose que é má condutora de calor. A madeira é considerada um excelente material para absorção acústica. (BAUER, 1994).

Resistência ao fogo

Madeiras com alta massa específica queimam com maior facilidade, já que apresentam maior quantidade de matéria lenhosa por volume. Com relação à combustibilidade e ao poder calorífico, estes são diretamente influenciados pelo teor de lignina e pela presença de materiais extrativos inflamáveis. (BURGUER, L. M.; RICHTER, H. G., 1991).

Durabilidade natural

De modo geral, as madeiras de alta massa específica, por apresentarem uma estrutura mais fechada e elevado teor de substâncias especiais impregnando as paredes de suas células, são mais resistentes à ação de agentes externos. (BURGUER, L. M.; RICHTER, H. G., 1991).

2.3.2.2 Propriedades químicas

A estrutura química da madeira pode ser considerada extremamente complexa. Basicamente, as madeiras possuem a mesma composição elementar, não apresentando diferenças significativas. (MATOSKI, 2005). A madeira é constituída de componentes majoritários, sendo a celulose, as polioses e a lignina, além de componentes minoritários, formados por extrativos e substâncias inorgânicas. Estima-se que a proporção de cada componente seja celulose (60 a 75%), lignina (20 a 30%), extrativos (1 a 10%) e cinzas (0,1 a 0,5%). (IWAKIRI, 2005).

Genericamente, a madeira é formada pela combinação química da água (H₂O) e do gás carbônico (CO₂) e a reação de fotossíntese ocorre de acordo com a expressão da equação 2.1. (GONZAGA, 2006):

$$CO_2 + H_2O \rightarrow CH_2O + O_2 + H_2O$$
 (EQUAÇÃO 2.1)

Onde o CH₂O formado é o elemento básico da formação dos açúcares que constituem a estrutura molecular da árvore.

Celulose

É o principal componente da parede celular. (MATOSKI, 2005). É um polímero formado por centenas de glicoses (açúcares), formando cadeias estáveis. Estas são longas e se unem lateralmente por pontes de tensão, originando micelas, que unidas formam fibrilas, que são capazes de formar as paredes do tecido do xilema. Quando existe água em excesso, esta permanece entre duas cadeias de celulose, alargando a micela e, consequentemente, enfraquecendo o tecido. Tem-se que o máximo de água que a celulose pode adsorver é 33%, o que configura o ponto de saturação das fibras (PSF), usualmente, adotado como 30%. (GONZAGA, 2006).

Hemicelulose

As hemiceluloses são constituídas por diversas unidades de glicose ligadas entre si. Não produzem fibras nem possuem regiões cristalinas, apresentam solubilidade em álcalis e são susceptíveis ao ataque por ácidos. (GONZAGA, 2006). Por não formarem cadeias, contribuem para a formação de pontes de hidrogênio que proporcionam resistência ao ataque químico. (MATOSKI, 2005).

Lignina

É um composto fenólico de alta densidade, composto pelos mesmos elementos químicos que a celulose, atuando como adesivo entre os diversos tecidos da madeira proporcionando dureza e resistência. (GONZAGA, 2006). É o componente que proporciona rigidez à parede da célula, atuando como agente de ligação entre as células, criando uma estrutura resistente ao impacto, à compressão e à flexão. (MATOSKI, 2005).

Extrativos

Além dos demais componentes, a madeira é impregnada por diversas substâncias que dela podem ser extraídas – os extrativos. Essas substâncias podem influenciar as características da madeira de diversas formas (GONZAGA, 2006), seja aumentando a massa específica ou alterando o ponto de equilíbrio da umidade. (MATOSKI, 2005).

Os componentes químicos da madeira, geralmente, são divididos em dois grandes grupos: os componentes estruturais e os componentes não estruturais (ou extrativos). Nos componentes estruturais estão inseridas as substâncias macromoleculares, que constituem a parede celular de todas as madeiras e cuja remoção dessa estrutura implica a utilização de processos químicos ou mecânicos com elevada quantidade de energia, alterando fundamentalmente as propriedades das células. Além disso, são os elementos estruturais que caracterizam as propriedades físicas da madeira. Essas macromoléculas são: a celulose, as hemiceluloses e as ligninas (PEREIRA, H.; GRAÇA, J.; RODRIGUES, J. C., 2003), e caracterizam-se como polímeros de baixa solubilidade em água. (HANSEN, C. M.; BJÖRKMAN, A., 1998).

Nos componentes não estruturais, fazem parte substâncias de massa molecular pequena, como os extrativos e as substâncias minerais que se encontram no lúmen das células e nos espaços vazios existentes na estrutura da madeira, podendo ser removidas pela utilização de solventes. Essas são capazes de influenciar a massa específica e a umidade de equilíbrio e, indiretamente, outras propriedades físicas. (PEREIRA, H.; GRAÇA, J.; RODRIGUES, J. C., 2003; MATOSKI, 2005). Desta forma, segundo Iwakiri (2005), a interferência dos açúcares com estrutura molecular amorfa e cristalina torna-se agente promotor da dificuldade de ligação entre a madeira e a matriz de cimento em compósitos. Carvalho (2000) acredita que algumas reações inibitórias podem se desenvolver na interface madeira-cimento, ou até mesmo na matriz, propiciando o enfraquecimento das ligações químicas e mecânicas entre a madeira e o cimento. Na realidade, não existe incompatibilidade

entre a madeira e a celulose, mas as hemiceluloses solúveis e os açúcares simples, quando combinados com os íons metálicos, provocam a incompatibilidade. Diversos estudos foram realizados para avaliar a compatibilidade entre a madeira e o aglomerante e, para isso, alguns pesquisadores adotaram a relação aglomerante/madeira de 13:1. (MOSLEMI A. A.; GARCIA, J.F.; HOFSTRAND, A.D.,1983; LATORRACA; IWAKIRI; LELIS, 1999; LATORRACA, 2000; LIMA, 2009; LIMA, A. J. M.; IWAKIRI, S., 2011).

2.3.3 Características dos diferentes tipos de madeira utilizados

Pfeil e Pfeil (2009) descrevem que por ser um material com origem natural, a madeira apresenta grande heterogeneidade em sua estrutura, contendo nós, fendas, defeitos e variações, proporcionando interferência em suas propriedades mecânicas. Dois pedaços de madeira, mesmo que retirados da mesma árvore, não serão absolutamente iguais. (BURGUER, L. M.; RICHTER, H. G., 1991). A seguir, são apresentados os três tipos de madeira utilizados neste estudo.

2.3.3.1 Painéis compensados multilaminados

Os compensados são painéis com aplicações muito abrangentes, podendo ser destinados para setores da construção civil, naval, indústria moveleira, embalagens, entre outros. Os painéis compensados multilaminados são vulgarmente denominados como *madeirite* na construção civil. Comercialmente são produzidos nas dimensões de 1,10m x 2,20m. Na construção civil é o material utilizado para a produção de formas para peças de concreto e tapumes, pois apresentam boa resistência mecânica e, quando utilizado corretamente, boa durabilidade.

Define-se o compensado como um painel fabricado através da colagem de lâminas em número ímpar de camadas, com a direção da grã perpendicular entre as camadas adjacentes. (IWAKIRI, 2005; PRATA, 2006). A madeira compensada foi idealizada para equilibrar e restringir as variações dimensionais de retratibilidade da madeira. As lâminas são dispostas de maneira que as fibras de cada uma sejam perpendiculares às fibras da lâmina seguinte. Como a madeira trabalha no sentido transversal, as duas camadas externas tendem a limitar a expansão da lâmina interna. Suas propriedades mecânicas dependem da madeira, do tipo e qualidade da cola, do número e espessura das lâminas, e do tipo da solicitação mecânica. (BAUER, 1994). Com a colagem das lâminas, através da laminação cruzada, a

linha de cola torna-se capaz de restringir o comportamento individual das lâminas, resultando em produtos com melhor estabilidade dimensional e melhor distribuição de resistência nos sentidos longitudinal e transversal. (PETRUCCI, 1976; IWAKIRI, 2005). Além disso, estes painéis utilizam a resina de fenol-formaldeído em sua composição, conferindo ao produto características de resistência à água, tornando-se imune às ações do tempo, podendo ser aplicado em locais externos ou com finalidades estruturais.

Painéis de madeira compensada multilaminada possibilitam, também, a produção de chapas em maiores dimensões, além de possuir menor custo quando comparada à madeira maciça. (IWAKIRI, 2005). Para a sua produção, são utilizadas madeira de pinus, em maior quantidade, madeiras tropicais (ABIMCI, 2009) e eucaliptos.

Com relação aos principais usos e aplicações, o compensado atende a uma demanda diversificada que se mostra fortemente segmentada entre construção civil, indústria moveleira, embalagens, entre outros. (ABIMCI, 2009).

Weber (2011), no estudo realizado com resíduos de compensados, MDF e MDP para a produção de painéis aglomerados, verificou que os resíduos apresentaram potencial técnico para reconstituir novos painéis. Azambuja (2015) utilizou madeiras provenientes de RCD, também, para a produção de painéis aglomerados, e pode verificar que apesar de apresentar viabilidade para a utilização, as composições produzidas com 25% de resíduos apresentaram melhores resultados quando comparados às composições contendo 50%.

2.3.3.2 Eucalyptus spp.

A madeira de eucalipto tem como características o rápido crescimento e o bom desenvolvimento em plantações nas regiões tropicais e subtropicais. Tem recebido destaque por ter se tornado uma importante matéria-prima para diversas atividades, inclusive como madeira serrada para a construção civil e como celulose para a produção de painéis e mobiliário. Esse gênero mostrou-se, ainda, viável e adequado para a utilização na produção de compósitos cimento-madeira. (OKINO *et al.*, 2004). Apesar disso, em outro estudo, o eucalipto apresentou alto inchaço e baixa estabilidade dimensional. (AYRILMIS *et al.*, 2011).

A incorporação das cascas, geralmente, não é indicada devido aos altos teores de matéria orgânica que influenciam no processo de hidratação do cimento Portland. (CASTRO, 2015). Outro estudo concluiu que a adição da casca, sem tratamento prévio, apresentou-se inviável para a produção de painéis de cimento-madeira. (LOPES *et al.*, 2005).

2.3.3.3 *Pinus spp.*

As madeiras coníferas apresentam, devido à sua estrutura anatômica, uma estrutura simples quando comparadas com as demais espécies, pois possuem apenas dois tipos de células. (SHIMOYAMA, 2005). Este gênero é caracterizado por apresentar madeiras com baixa densidade, baixa massa específica propiciando a ocorrência de baixa resistência à flexão estática e baixa resistência à compressão. (MATOSKI, 2005). Em compósitos de cimentomadeira, as espécies de coníferas têm sido mais empregadas como agregado devido à boa compatibilidade observada com o aglomerante. (IWAKIRI, 2005).

2.4 COMPÓSITOS DE MADEIRA

Construções com estruturas e componentes em madeira utilizam processos construtivos de baixo consumo de energia e, consequentemente, liberam uma baixa quantidade de carbono em forma de CO₂. Essa característica tornou-se imprescindível para as construções atuais, visto que a concentração de dióxido de carbono na atmosfera está aumentando e contribuindo com o aquecimento global. A incorporação e/ou a introdução da madeira como material de construção proporciona a redução da emissão de CO₂ para atmosfera. (MATOSKI, 2005; GUSTAVSSON, L.; SATHRE, R., 2006).

Com o avanço da tecnologia, observa-se cada vez mais o desenvolvimento de materiais que são produzidos a partir da combinação de propriedades sendo capaz de substituir outros materiais. Um compósito pode ser caracterizado como um material multifásico (que inclui umidade, vazios e aditivos), produzido artificialmente no qual suas propriedades estão relacionadas com os seus constituintes. Como são produzidos a partir de materiais heterogêneos, suas propriedades dependem da proporção e das características de seus componentes, e por isso suas propriedades físicas e mecânicas devem ser estudadas, no intuito de avaliar e verificar o desempenho do material ou produto final. (MARTINS, 2002; MATOSKI, 2005; CALLISTER JR., 2008).

A concepção e a definição do material considerado como "entulho" foi modificada, visto que, atualmente, este passou a ser entendido como renovável. Considera-se que a utilização de resíduos vegetais tende a representar uma fonte promissora para a exploração industrial (STANCATO, 2006; PARCHEN, 2012), contribuindo para a produção de materiais ecologicamente mais corretos, resguardando os recursos naturais e reduzindo a emissão de dióxido de carbono.

Pesquisadores têm aprofundado seus estudos na incorporação de resíduos em diversas atividades, como em painéis de madeira aglomerada (IWAKIRI *et al.*, 2000), em compósitos de plástico-madeira (YAMAJI, 2004) e em compósitos de madeira-cimento. (LIMA, 2009; PARCHEN, 2012; VILLAS-BÔAS, 2016). Além da disponibilidade e do baixo custo da matéria-prima, características como a baixa densidade, isolamento termoacústico e baixa permeabilidade, apresentam-se como vantagens quando comparadas às placas de compensado. (SOUZA, 2006). Compósitos dosados com fibras recicladas quando comparadas com compósitos com fibras virgens apresentaram propriedades mecânicas satisfatórias. (CARVALHO *et al.*, 2008).

Os compósitos de madeira geralmente são produzidos a partir da mistura de um aglomerante com as partículas de madeira. Dentre os aglomerantes, os principais são o gesso, o cimento de magnésio e o cimento Portland. (YOUNGQUIST, 1999).

Nos compósitos, o aglomerante atua como ligante, sendo capaz de transmitir os esforços entre as fibras, mantendo-as protegidas do meio e permitindo sua orientação adequada. (MATOSKI, 2005). Porém, na construção civil durante a produção de concreto, o agregado é considerado um elemento inerte na matriz cimentícia, entretanto, a madeira contém componentes químicos e comporta-se de maneira diferente quando comparado aos agregados convencionais. (IWAKIRI, 2005).

2.4.1 Componentes dos compósitos de madeira

Compósitos de madeira são produzidos, geralmente, com aglomerante, partículas de madeira, aditivos e água. As partículas de madeira tem a função de contribuir para o aumento da resistência à flexão, reduzir a densidade, e melhorar propriedades, como o desempenho termoacústico. O aglomerante tem a função de propiciar as propriedades físicas e mecânicas de resistência, além de proporcionar durabilidade. Os aditivos atuam como facilitadores da compatibilidade entre o aglomerante e a madeira. E a água, que além de hidratar o aglomerante, deve proporcionar trabalhabilidade.

2.4.1.1 Cimento

O cimento Portland é definido como um pó fino, com propriedades aglomerantes, aglutinantes ou ligantes, que endurece sob a ação da água; depois de endurecido, mesmo submetido à ação da água, não se decompõe. (ABCP, 2002). Este produto é resultado da

queima de uma mistura bem proporcionada de matérias-primas contendo os quatro óxidos principais - CaO, SiO₂, Al₂O₃ e Fe₂O₃ – que produzem o clínquer, um dos dois ingredientes imprescindíveis para a fabricação do cimento Portland. O outro é o sulfato de cálcio na forma de sulfato de cálcio ou anidrita (CaSO₄) ou na forma de gesso (CaSO₄.2H₂O) ou hemidrato (CaSO₄.½H₂O). Para a produção do cimento Portland, o clínquer deve ser misturado com uma quantidade ótima de sulfato de cálcio, pois este possui o papel de controlar a hidratação inicial do cimento. (AÏTCIN, 2000; MEHTA, P. K.; MONTEIRO, P. J. M., 2014).

O CP V ARI tem a peculiaridade de atingir altas resistências ainda nos primeiros dias, devido à dosagem diferente de calcário e argila na produção do clínquer, bem como pela moagem mais fina do cimento (VILLAS-BÔAS, 2016), e tem sido utilizado para a produção industrial de artefatos de concreto, concreto protendido, pisos industriais, argamassa armada e concreto dosado em central. (POUEY, 2006). Este cimento tem sido considerado o mais adequado para a produção de compósitos de cimento-madeira. (LATORRACA, 2000; MATOSKI, 2005; LIMA, 2009; VILLAS-BÔAS, 2016).

Ao entrar em contato com a água, o cimento Portland inicia sua hidratação num processo complexo que envolve diversas reações químicas simultâneas e sucessivas. Este processo é associado à liberação de calor, caracterizando uma reação exotérmica. Essas reações fazem com que o cimento se torne um elemento ligante, devido à formação dos produtos de aluminatos e silicatos que proporcionam rigidez e resistência. (MATOSKI, 2005). O progresso da hidratação pode ser influenciado por diversos fatores como: a composição e granulometria do cimento, a relação a/c, a temperatura de cura e presença de misturas e/ou aditivos na pasta. (HEWLETT, 2003). A adição de outro material como partículas de madeira ou outros aditivos, pode influenciar na magnitude da reação, no tempo de reação e na resistência final do material. Com o avanço da hidratação, a água e os componentes da madeira dissolvidos migram para a superfície das partículas de madeira; provavelmente, esses componentes acabam formando uma camada inibitória, prejudicando os estágios mais avançados da hidratação e endurecimento do cimento. (HACHMI et al., 1989 apud VILLAS-BÔAS, 2016). Componentes da madeira são capazes de retardar a cura, ou até mesmo inibir a pega, impedindo a formação do compósito. (MATOSKI, 2005). Existem algumas características do cimento utilizado que são capazes de influenciar a duração da pega, entre eles a quantidade de C₃A presente no cimento – cimentos ricos em C₃A dão pega rapidamente e o grau de moagem – cimentos muito finos dão início de pega mais rápido e fim de pega mais lentos. Porém, alguns compostos solúveis são capazes de retardar a pega, como gesso, carbonato de sódio, óxido de zinco, açúcar, bórax, tanino, ácido fosfórico. (PETRUCCI, 1993).

A hidratação parcial do cimento pode ocorrer devido à umidade do ar, porém para que todo o cimento seja devidamente hidratado, deve-se disponibilizar uma quantidade de água suficiente. A quantidade de água (relação água/aglomerante) é capaz de influenciar na reologia, no progresso da hidratação, e nas propriedades do produto final. (HEWLETT, 2003).

Geralmente, a avaliação da compatibilidade entre o cimento Portland e a madeira é realizada através da determinação da temperatura de hidratação, isto porque a reação é exotérmica. (LIMA, 2009). Porém, alguns autores determinaram a compatibilidade através dos resultados de resistência mecânica das amostras, em que foi verificado que a resistência è diretamente proporcional à temperatura máxima de hidratação. (ZUCCO, 1999; PIMENTEL, 2000; LATORRACA, 2000; BERALDO, A. L.; CARVALHO, J. V., 2004; MATOSKI, 2005). Outro método para verificar a compatibilidade e as características dos compósitos consiste na avaliação por ultrassom. (STANCATO, 2006).

Porém, como na maioria das vezes, não é possível escolher as espécies que apresentam melhor compatibilidade com o aglomerante, tem-se realizado tratamentos nas partículas de madeira.

2.4.1.2 Gesso

Atualmente, existem dois principais tipos de gesso disponíveis no mercado da construção civil, sendo o gesso para fundição e o gesso para revestimento. Estes produtos têm suas propriedades normatizadas pela NBR 13207 (ABNT, 1994) e métodos de ensaio prescritos nas NBR 12127 (ABNT, 1991a), NBR 12128 (ABNT, 1991b), NBR 12129 (ABNT, 1991c) e NBR 12130. (ABNT, 1991d). As normas NBR 12127, NBR 12128 e NBR 12129 foram atualizadas em Janeiro de 2017.

Acredita-se que quando o gesso é utilizado como parede, é possível obter uma redução de até 11% no custo da fundação por conta do seu peso, podendo influenciar no investimento total da obra. (SINDUSGESSO, 2014).

2.4.1.3 Aditivo

Os aditivos químicos são originalmente desenvolvidos para a utilização em concretos produzidos com cimento Portland, e tem a função de modificar algumas de suas propriedades,

no intuito de adequá-las a determinadas condições. No Brasil, têm-se como aditivos: plastificantes, superplastificantes, incorporador de ar, retardadores e aceleradores de pega, normatizados pela NBR 11.768. (ABNT, 2011).

A utilização de aditivos químicos para a produção de painéis produzidos com compósitos de madeira apresenta um princípio diferente, pois atuam na extração das substâncias inibidoras presentes nas partículas de madeira, agindo como aceleradores de pega do cimento. O uso desses aditivos pode variar na formulação e na quantidade utilizada. (CASTRO, 2015).

No intuito de melhorar a compatibilidade de algumas espécies de madeira para a produção de compósitos de cimento-madeira têm-se adicionado produtos químicos inorgânicos com a finalidade de acelerar a cura do cimento ou realizado pré-tratamento na madeira. Existem vários métodos capazes de minimizar a incompatibilidade entre o cimento e a madeira, entre eles, o pré-tratamento da madeira, a adição de aceleradores de pega do cimento, e a injeção de CO₂. A eliminação do retardamento da pega, através desses métodos, pode ser atribuída à redução da quantidade de substâncias inibitórias na matriz cimentícia ou, então, na ação de uma força externa para acelerar a hidratação do cimento. (NA *et al.*, 2014).

Aditivos químicos têm sido empregados com a finalidade de contribuir para a redução do tempo de pega do cimento, acelerando o desenvolvimento da resistência. (SANTOS *et al.*, 2008). Alguns aditivos minerais, quando adicionados ao compósito de cimento-madeira, podem melhorar suas propriedades. (NA *et al.*, 2014).

Aditivos aceleradores de pega modificam as propriedades do concreto de cimento Portland, provocando a redução do tempo de cura e o aumento da velocidade de desenvolvimento da resistência inicial do material. (MEHTA, P. K.; MONTEIRO, P. J. M., 2014).

Macedo *et al.* (2011), no estudo realizado com compósito de cimento-madeira com cloreto de cálcio como aditivo, verificaram que o aditivo foi capaz de aumentar a resistência mecânica e reduzir o consumo de cimento. Entretanto, Wei, Zhou e Tomita (2000) verificaram que a utilização de cloretos (CaCl₂, FeCl₃ e SnCl₂) misturados em uma quantidade de 4% em relação ao peso do cimento, propiciou uma melhora nas propriedades mecânicas dos compósitos.

Outros estudos apresentaram resultados favoráveis para o uso de cloreto de cálcio com relação à redução dos efeitos inibidores dos extrativos da madeira sobre a hidratação do cimento Portland. (LATORRACA, 2000; BADEJO *et al.*, 2011; PEREIRA *et al.*, 2012; MATOSKI *et al.*, 2013). Porém, de acordo com Neville e Brooks (2013), há controvérsias

sobre a utilização do cloreto de cálcio (CaCl₂) pois este pode contribuir para a corrosão do aço revestido de concreto; e por isso, passou-se a avaliar a proporção máxima do cloreto em relação ao peso do cimento. De acordo com a NBR 6.118 (ABNT, 2014) não é permitido o uso de aditivos contendo cloreto em estruturas de concreto armado.

2.4.1.4 Água

Para a produção de compósitos de madeira, é imprescindível realizar uma consideração com relação à quantidade de água utilizada. A madeira é um material higroscópico, capaz de absorver água, diferente do que ocorre com os agregados utilizados na construção civil — a água absorvida por agregado é muito inferior à absorvida por partículas ou fibras de madeira. Por isso, diversos autores relatam que é necessário adicionar água até o ponto de saturação das fibras (PSF) da madeira, considerando que abaixo desse teor de umidade, não haverá água suficiente para a hidratação do cimento Portland. Essa consideração é apresentada na EQUAÇÃO 2.2 sugerida por Simatupang (1979).

$$Ca = R_{a/a} \times C + (PSF - U) \times M$$
 (EQUAÇÃO 2.2)

Onde: Ca = Consumo de água (g)

 $R_{a/a}$ = Relação água/aglomerante

C = Consumo de cimento (g)

PSF = Ponto de saturação das fibras (adotado como 30%)

U = Teor de umidade da madeira (%)

M = Massa de madeira (g)

2.4.2 Compósitos de cimento-madeira

A combinação entre partículas de madeira ou fibras vegetais com o cimento Portland é realizada desde o início do século XX. O cimento proporciona aumento da durabilidade, maior resistência à umidade e a ataques biológicos, alta estabilidade dimensional, e maior resistência ao fogo. Enquanto que a presença das partículas de madeira propicia maior resistência à matriz cimentícia com relação à ruptura, maior leveza quando comparado às peças de concreto, maior trabalhabilidade e melhores propriedades termoacústicas. Porém, o sucesso desta combinação depende do entendimento de suas interações químicas e das propriedades do material resultante. (STOKKE, D. D.; WU, Q.; HAN, G., 2014).

Painéis de cimento-madeira são produtos compostos por partículas ou fibras de madeira (agregados), cimento Portland (aglomerante) e água. (SANTOS *et al.*, 2008). Esses compósitos podem ser definidos como uma argamassa de cimento Portland na qual uma parcela ou toda a fração do agregado mineral é substituída por material orgânico. O desenvolvimento e a utilização deste material têm sido impulsionados, principalmente, devido à sua boa resistência às degradações causada por insetos e fungos. (MACEDO *et al.*, 2011).

Pesquisas relacionadas a compósitos de cimento com fibras naturais têm evoluído devido ao aumento da procura pela utilização de produtos sustentáveis, de baixo custo, com baixa densidade, com desempenho adequado e com disponibilidade de matéria-prima. Atualmente, a influência das fibras no desempenho mecânico e na durabilidade dos compósitos ainda é um limitante para a propagação de seu uso. (ONUAGULUCHI, O.; BANTHIA, N., 2016).

Gassan (2002) observa, ainda, que compósitos de cimento-madeira apresentam menor retração que as argamassas comuns de referência. Savastano Júnior, Dantas e Agopyan (1994) demonstraram que as fibras vegetais possuem baixo módulo de elasticidade e elevada resistência à tração e, quando associadas a uma matriz cimentícia, é possível obter um material com boas propriedades de isolamento acústico e térmico. Além disso, o material possui modo de fissura por dissipação de energia, sendo capaz de trabalhar no estágio pósfissurado e com excelente aplicabilidade em situações de carregamento constante e com grande resistência a impacto. Neste sentido, compósitos com partículas de madeira, envolvidas por um ligante – cimento Portland - apresentam maior resistência quando comparados aos materiais separados, além de baixa densidade. (MATOSKI, A.; IWAKIRI, S., 2007). É possível, também, que as fibras contribuam para colmatar e minimizar os efeitos da fissuração, propiciando uma alta absorção de energia mecânica, aumentando sua capacidade de desempenho, conforme observado por Silva, Mobasher e Toledo Filho (2009), através da análise microestrutural realizada em compósitos de fibrocimento com sisal.

Em compósitos produzidos com fibras vegetais, faz-se necessária a caracterização da zona de transição, uma vez que as propriedades físicas e mecânicas dessas fibras, bem como sua composição química, determinam um comportamento diferente das demais em pastas de cimento. (SAVASTANO JÚNIOR, H.; DANTAS, F. de A. S.; AGOPYAN, V., 1994).

A influência do comprimento das fibras foi observada por Tonoli *et al.* (2010) no estudo de verificação da viabilidade da utilização de fibras curtas (de eucalipto) como alternativa às fibras longas (de pinus) para reforços em compósitos à base de cimento. Ao realizar ciclos de envelhecimento acelerado foi observado, através do ensaio de microscopia

eletrônica de varredura (MEV), que as fibras curtas apresentaram melhor dispersão na matriz de cimento, além de serem eficazes na ligação das rachaduras ocasionadas pelo efeito do envelhecimento da matriz, contribuindo para a melhoria do desempenho mecânico dos compósitos. Esses autores acreditam que a superfície mais áspera encontrada nas fibras de eucalipto propiciou o aumento da ligação com a matriz.

De acordo com Dantas Filho (2004) é possível reduzir a demanda de agregado miúdo para a fabricação de concreto e argamassa, além de tornar esses compostos termicamente mais isolantes e leves. Em estudos realizados, a partir da produção de tijolos de calcário artificial com a incorporação de madeira, os tijolos produzidos com a incorporação da madeira apresentaram-se 65% mais leves do que o tijolo de concreto convencional. (TURGUT, 2007). Wei, Zhou e Tomita (2000) sugeriram que o material poderia substituir o tijolo e o concreto em determinadas ocasiões.

Todavia, Garcez, Santos e Gatto (2013) verificaram que quanto maior o percentual de serragem em substituição da areia em concretos pré-moldados, menor o limite de resistência do concreto, tanto no ensaio de compressão axial quanto na tração por compressão diametral. Observou-se, também, que quanto maior a substituição por serragem, menor a massa específica do concreto e mais leve a peça estrutural, facilitando sua montagem. Ao investigar a influência da serragem de madeira em pastas cimentícias de preenchimento, Koohestani *et al.* (2016) verificaram que a adição de até 12,5% de serragem, com relação à massa de cimento, melhora o desenvolvimento de resistência nas maiores idades (91 dias), porém para 14,5% de serragem ocorreu uma diminuição das propriedades avaliadas. Stasiak *et al.* (2015), ao avaliar as características mecânicas de serragem e lascas de madeiras com diferentes teores de umidade, observaram que os valores de módulo de elasticidade diminuem com o aumento do teor de umidade e, além disso, as lascas de madeira apresentaram pior fluidez.

No entanto, a utilização de material vegetal em uma matriz de cimento, também, apresenta efeitos deletérios sobre o aglomerante. É possível que ocorra um retardamento significativo ou, até mesmo, o impedimento total do processo de pega do cimento. (MACEDO *et al.*, 2011). Autores como Mehta e Monteiro (2014) não recomendam a utilização de material orgânico como componente em matrizes de predominância de cimento Portland, devido ao forte efeito do retardamento da pega. Latorraca, Iwakiri e Lelis (1999) acreditam que os componentes orgânicos afetam tanto a possível interação entre a madeira e o cimento quanto às interações internas do próprio cimento, resultando em painéis de baixa qualidade. Por isso, diferentes tratamentos têm sido realizados no intuito de proporcionar uma

maior durabilidade de compósitos cimento e celulose, como a adição de pozolanas e o tratamento das fibras vegetais. (ARDANUY, M.; CLARAMUNT, J.; TOLEDO FILHO, R. D., 2015).

A utilização de resíduos lignocelulósicos, em alguns casos, segundo Karade (2010), exige a utilização de aceleradores químicos e justifica que esses compósitos por serem mais leves que o concreto, não possua a mesma resistência. O mesmo autor conclui que são necessárias novas pesquisas no intuito de melhorar as resistências sem perder o benefício da baixa densidade.

Não se sabe, com precisão, qual o mecanismo que causa a incompatibilidade entre a madeira e o cimento, porém existem duas teorias que vêm sendo propostas. A primeira teoria explica que, é possível que, os compostos orgânicos formem produtos com os íons metálicos presentes na matriz cimentícia, reduzindo a concentração de íons de Ca²⁺ no cimento, e desestabilizando o equilíbrio da matriz, retardando o início da formação de Ca(OH)₂ e do gel de CSH. (MILLER *et al.*, 1991 *apud* CASTRO, 2015). E a segunda, e mais recente, explica que os compostos orgânicos são capazes de formar uma fina camada de adsorção na superfície dos grãos de cimento, impedindo a absorção, e retardando o processo de hidratação. (JUENGER, M. C. G.; JENNINGS, H. M., 2002).

Contudo, outros pesquisadores acreditam que podem ser vários os fatores capazes de influenciar na compatibilidade entre o cimento e a madeira, tais como o tipo da espécie, o tipo de cimento, a parte da árvore, a estação durante o corte da madeira, a relação madeira/cimento, e a condição de armazenamento da madeira. (KARADE, S. R.; AGGARWAL, L. K., 2005). Geralmente, quanto menor for a quantidade de extrativos inibitórios incorporados à pasta de cimento, maior é a compatibilidade entre a madeira e o cimento. A composição granulométrica das fibras vegetais também pode influenciar na compatibilidade entre o cimento e a madeira. No estudo realizado por Karade, Irle e Maher (2006) foi verificado que quanto menor a partícula de cortiça, maior é a área superficial e, consequentemente, maior é a quantidade de extrativos livres na mistura. Além disso, cada espécie de madeira possui diferentes tipos e quantidades de extrativos de madeira, provocando diferentes efeitos sobre a hidratação do cimento. (NA et al., 2014).

É possível melhorar a compatibilidade entre a madeira e o cimento através da realização de tratamentos físicos, químicos e biológicos, sendo os mais simples e usuais a remoção dos extrativos utilizando água fria, quente ou extração por solventes orgânicos, como etanol, tolueno e outros. (CASTRO, 2015).

Alguns métodos são utilizados para minimizar o efeito da incompatibilidade entre o cimento e a madeira, entre eles o uso de preservativos de madeira, o armazenamento prolongado da madeira, a extração dos açúcares solúveis em água quente e fria, a mistura com aditivos químicos ou aceleradores em solução diluída, como hidróxido de sódio (NaOH) ou cloreto de cálcio (CaCl₂). (MOSLEMI A. A.; GARCIA, J.F.; HOFSTRAND, A.D., 1983). Na última década, boas propriedades mecânicas e de alta durabilidade foram desenvolvidas em compósito de cimento com celulose, porém os próximos desafios estão em continuar desenvolvendo e melhorando esses produtos sem aumentar os custos de produção, mesmo utilizando tecnologias mais sustentáveis. (ARDANUY *et al.*, 2015).

2.4.3 Compósitos de gesso-madeira

Estudos utilizando outros aglomerantes, também têm sido realizados, dentre eles, a cal. Hamsik e Kral (2014) produziram painéis com diferentes proporções de cal e madeira, além de outros componentes, e, apesar de esperarem propriedades de resistência inferiores à do cimento, os resultados surpreenderam negativamente. Esses autores verificaram resultados muito baixos, e o valor para a resistência à tração na flexão pouco diferiu da composição no estado "úmido" para o estado "seco".

Ao ser comparado com o cimento Portland e com a cal, o processo de produção do gesso emite uma menor quantidade de CO₂, além de consumir menor quantidade de energia, o que pode levar o gesso a ser considerado um "aglomerante verde". (CARVALHO *et al.*, 2008).

O consumo de energia nas construções tem aumentado gradativamente e, para obter uma melhoria da eficiência energética, têm-se investigado maneiras de aperfeiçoar as propriedades térmicas dos materiais de construção como forma de contribuir para a melhoria da eficiência energética das edificações. (CHERKI *et al.*, 2014).

O gesso é um dos primeiros materiais de construção utilizados pela humanidade, acredita-se que sua utilização teve início há, aproximadamente, 4000 anos atrás. (RYAN, 1962). O *drywall* vem sendo muito utilizado para vedações internas, como paredes, e tetos devido às suas características de simples fabricação, boa estética e acabamento, baixo custo e, também, devido à sua excelente resistência ao fogo. (YU, Q. L.; BROUWERS, H. J. H., 2012).

Diversos estudos têm sido realizados no intuito de melhorar as propriedades das placas de gesso. A adição de fibras, tais como fibras de vidro (EVANS, T. J.; MAJUMDAR,

A. J.; RYDER, J. F., 1981; SINGH, M.; GARG, M., 1992), de fibra de carbono (TAGGE *et al.*, 2005), fibra de polipropileno DENG, Y. H.; FURNO,, 2001; EVE, S.; GOMINA, M.; ORANGE, G., 2004; GENCEL *et al.*, 2014), a fibra de poliamida (EVE *et al.*, 2006) e fibra de poliéster (DWECK *et al.*, 2002) têm sido utilizadas para reforçar as placas de gesso, porém estes pouco contribuíram para uma melhoria na resistência mecânica e na propriedade térmica. Ao avaliar as propriedades físicas e mecânicas de compósitos de gesso com adição de resíduos de borracha na matriz, Rivero, Báez e Navarro (2014) verificaram que é possível obter uma redução de até 49% da densidade do compósito com relação às amostras de referência, além disso, quanto maior a quantidade e a dimensão do resíduo incorporado ao compósito, menores foram as resistências mecânicas obtidas. Estudos realizados com a incorporação de cortiça em compósitos de gesso, no intuito de verificar o comportamento das propriedades térmicas em placas de forro, demonstraram que devido à sua microestrutura e porosidade, os compostos dosados com cortiça, apresentaram uma redução de, aproximadamente, 30% da condutividade térmica quando comparado com o gesso sem a cortiça. (CHERKI *et al.*, 2014).

Carvalho *et al.* (2008) verificaram que a presença de resíduos de celulose *kraft* alterou a cinética de hidratação de gesso. As fibras naturais também foram capazes de absorver e reter uma maior quantidade de água na matriz, permitindo a formação de cristais maiores ao seu redor e uma melhor aderência na matriz de gesso. No mesmo estudo, a presença da pasta de celulose também propiciou a melhora das propriedades mecânicas.

Diferente do que ocorre em compósitos produzidos com cimento Portland, os extrativos da serragem, que reagem ao entrarem em contato com a água, podem não influenciar, negativamente, no desempenho das propriedades mecânicas do gesso. (DAI, D.; FAN, M., 2015).

Morales-Conde, Rodríguez-Liñán e Pedreño-Rojas (2016) verificaram as propriedades físicas e mecânicas de compósitos de madeira-gesso e concluíram que a presença da madeira reciclada sempre reduz a densidade do compósito, além de favorecer as propriedades térmicas dos materiais compósitos. Contudo, as propriedades mecânicas são limitadas por um teor máximo de adição do resíduo de madeira, caso contrário, é capaz de reduzir as propriedades mecânicas.

Tittelein, Cloutier e Bissonnette (2012) ao verificarem a viabilidade da substituição do gesso por compósitos de cimento-madeira em placas para a vedação interna, verificaram que é possível obter um material de baixa densidade e com melhores propriedades de flexão do que quando comparadas com placas de gesso. A condutividade térmica obtida nos painéis

de cimento-madeira foi, cerca de, três vezes mais baixas do que a de uma placa de gesso, devido à sua elevada porosidade que permite, também, o aumento da resistência térmica da parede, diminuindo o aquecimento da edificação.

A combinação de um material ligante inorgânico, tal como o gesso, com fibras de resíduos tem se apresentado como uma provável solução para a reciclagem de materiais. A principal vantagem da utilização de fibras naturais é a sua elevada capacidade de absorção, resultante do seu baixo módulo de elasticidade. A grande disponibilidade de resíduos de fibras, ainda não comercializadas, pode ser considerada uma oportunidade para a produção de componentes de baixo custo para a construção civil. (CARVALHO *et al.*, 2008).

2.4.4 Pré-tratamento nas partículas de madeira

Muitos são os pré-tratamentos que podem ser realizados nas partículas de madeira no intuito de contribuir para o aumento da compatibilidade com o cimento Portland. O método mais adequado é o que viabilize a fabricação do compósito, atuando isoladamente ou em conjunto sobre a madeira e o cimento. Por exemplo, a lavagem das partículas contribui para a eliminação de parte dos extrativos, porém sua eficiência depende do pH da solução, da temperatura e do tempo de extração. Aparentemente, pode melhorar a inibição do cimento, mas, dependendo da partícula vegetal, pode se tornar desnecessária, não apresentando a eficiência esperada. (CARVALHO, 2000).

Lima e Iwakiri (2011) no estudo realizado com resíduos de madeira de pinus com metacaulim e resíduo de cerâmica calcinada em compósitos de cimento-madeira, concluíram que a utilização do cloreto de cálcio, como aditivo, contribuiu para aumentos significativos de resistência em pastas de cimento Portland. O pré-tratamento de extração em água fria por 48 horas propiciou aumentos significativos de resistência à compressão dos compósitos quando comparados aos compósitos com os resíduos de madeira sem tratamento.

Xie *et al.* (2016) ao avaliarem a influência de fibras de palha de arroz com diferentes pré-tratamentos, verificaram que o tratamento de *steam exploded* ("explosão de vapor") foi capaz de eliminar componentes amorfos, como hemicelulose e lignina, além de aumentar a cristalinidade e melhorar a estabilidade térmica da fibra. Esses autores afirmam, ainda, que a ordem dos componentes que são mais prejudiciais à hidratação do cimento é: a hemicelulose, seguido pela lignina e a celulose.

Fan *et al.* (2012) verificaram que a compatibilidade da madeira com o cimento foi significativamente melhorada com uma extração prévia da madeira, e formaram uma ordem

de classificação global de eficácia dos tratamentos sendo Ca(OH)₂ > MeOH > H₂O > CaCl₂, podendo variar de acordo com a espécie da madeira. Para a madeira de *Eucalyptus benthamii*, Castro *et al.* (2014) verificaram que o pré-tratamento mais eficiente para reduzir a inibição que a madeira dessa espécie causa na cura inicial do cimento foi a adição de 3% do cloreto de cálcio. Enquanto que para os resíduos de *Pinus spp.*, Lima (2009) concluiu que os únicos pré-tratamentos que não apresentaram diferenças estatísticas significativas entre si foram os efetuados com água fria por 48 horas (AF-48H) e água fria por 72 horas (AF-72H). Para a mesma espécie de madeira, Villas-Bôas (2016) observou que o pré-tratamento com suspensão de Ca(OH)₂ é capaz de substituir a utilização de superplastificantes em compósitos de madeira-cimento. Parchen *et al.* (2016) ao realizar a compactação vibro-dinâmica em compósitos de cimento-madeira de baixa densidade, verificaram que o pré-tratamento com suspensão de hidróxido de cálcio contribuiu para a redução do efeito de inibição provocado no cimento Portland, permitindo uma cura mais rápida.

2.5 PLACAS DE VEDAÇÃO COM MADEIRA

No Brasil, é muito frequente o emprego da alvenaria como vedação vertical. Porém, com o intuito de obter maior nível de racionalização e de produtividade nos serviços de vedação vertical, a utilização de painéis industrializados vem se intensificando. (TANIGUTTI, E. K.; BARROS, M. M. S. B. de., 1998).

A utilização de painéis como componentes ou estruturas para a construção tem se apresentado como uma tendência. Sua utilização de forma modulada, em obra, permite a eliminação de diversas etapas, evitando dificuldades na execução de acabamentos. A precisão geométrica, a variedade de dimensões, as formas de acabamento, incorporação de revestimentos em escala industrial e a facilidade de montagens, são outras vantagens que podem contribuir para a utilização de painéis como elementos construtivos. (MATOSKI, 2005).

2.5.1 Painéis tipo drywall

A utilização de um sistema de divisórias com fechamento com placas de gesso acartonado inclui a montagem de um esqueleto de aço galvanizado que proporciona estrutura a este sistema. Placas de gesso acartonado, denominadas chapas de *drywall*, são

comercializadas no Brasil há mais de 30 anos e apesar de seu consumo apresentar crescimento (FIGURA 2.8) verifica-se que, internacionalmente, ainda é pouco expressivo (FIGURA 2.9).

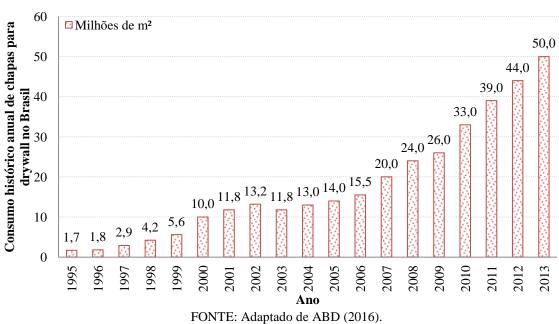
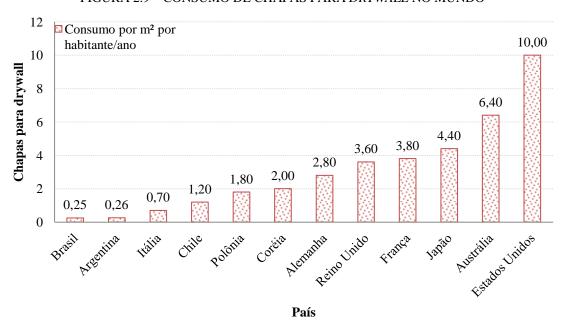
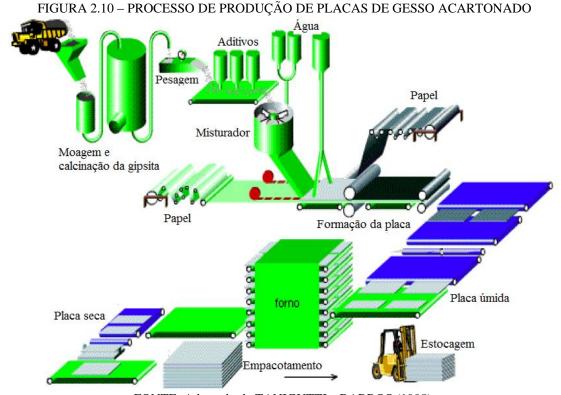



FIGURA 2.8 – CONSUMO HISTÓRICO ANUAL DE CHAPAS PARA DRYWALL NO BRASIL



FONTE: Adaptado de ABD (2016).

De acordo com Tanigutti e Barros (1998), a fabricação das placas (FIGURA 2.10) de gesso acartonado tem início com a extração da gipsita da mina, que é transportada por caminhões até a fábrica, onde é seca no forno, para que seja obtido o gesso. Dos silos, o gesso

é transportado e através de uma balança pneumática é realizada a dosagem. São adicionados aditivos no intuito de produzir diferentes tipos de placas. Em seguida, é adicionada a água. No misturador são adicionados os materiais em pó e a água. A pasta é espalhada em uma folha de papel em que é submetida a um processo de vibração, que provoca a saída de bolhas de ar da pasta. Outra folha de papel é utilizada para cobrir a pasta, formando um sanduíche de gesso entre duas camadas de papel. Após o endurecimento das placas, são realizados os cortes e o transporte para o túnel de secagem com controle de umidade e temperatura. O último procedimento consiste na exposição das placas a um circuito de ar frio, para que a secagem ocorra de modo a manter as propriedades elásticas requeridas.

FONTE: Adaptado de TANIGUTTI e BARROS (1998).

De acordo com a NBR 14.715 (ABNT, 2010) as características geométricas, físicas e mecânicas das chapas de gesso acartonado devem estar de acordo com o apresentado na TABELA 2.1.

TABELA 2.1 – CARACTERÍSTICAS GEOMÉTRICAS, FÍSICAS E MECÂNICAS DAS CHAPAS DE GESSO ACARTONADO

Parâmetro	Densidade de massa	-	Resistência mínima à ruptura na flexão (N)		Dureza superficial determinada pelo	
		Mín.	Máx.	Longitudinal	Transversal	diâmetro máximo
	9,5	6,5	9,5	400,0	160,0	
Espessura (mm)	12,5	8,0	12,0	550,0	210,0	20,0
	15,0	10,0	14,0	650,0	250,0	
Largura (mm)	máx. 1200	-	-	-	-	-
Comprimento (mm)	máx. 3600	-	-	-	-	-

FONTE: Adaptado da NBR 14.715 (ABNT, 2010).

No Brasil, existem diversas marcas que comercializam chapas de *drywall*. As marcas Knauf e Placo se destacam como os principais fornecedores desse produto no país. Na TABELA 2.2 estão descritos os dados técnicos adotados por estas duas empresas.

TABELA 2.2 – DADOS TÉCNICOS DAS PLACAS DE GESSO ACARTONADO STANDART

Parâmetros		Marca						
		Knauf		Placo				
Espessura (mm)		12,50	15,00	6,00	9,50	12,50	15,00	
Largura (mm)		1200,00	1200,00	1200,00	1200,00	600,00	1200,00	
Comprimento (mm)		1.800,00 a 3.600,00		2000,00	2400,00	1.200,00 a 3.000,00	1.800,00 a 3.000,00	
Densidade superficial (kg/m²)		8,00 a 12,00	10,00 a 14,00	6,00	6,50 a 8,50	8,00 a 12,00	10,00 a 14,00	
Resistência mínima (N)	Longitudinal	550,00	650,00	258,00	400,00	550,00	650,00	
Resistencia illillilla (N)	Transversal	210,00	250,00	100,80	160,00	210,00	250,00	
Densidade (kg/m³)		640,00 a 960,00	667,00 a 934,00	-	-	-	-	
Dureza superficial - máx. (mm)		20,00		20,00				

FONTE: Adaptado dos fabricantes (2016).

Assim como as placas de gesso acartonado, as placas produzidas com compósitos de cimento-madeira têm sido utilizadas como placas de vedação, principalmente em países europeus.

2.5.2 Painéis com compósitos de madeira

Painéis produzidos com compósitos de madeira contribuem para a construção modular, proporcionando uma redução no tempo e no custo da mão de obra. (MATOSKI, 2005). Além de satisfazerem as necessidades de segurança e saúde, pois são mais resistentes ao ataque por fungos e insetos, possuem resistência ao fogo, e isolamento termoacústico adequado. (RAMIREZ-CORETTI, A.; ECKELMAN, C. A.; WOLFE. R. W., 1998).

A produção dos painéis de cimento-madeira (FIGURA 2. 11), descrita por Iwakiri (2005), tem início com a redução da madeira em partículas que são classificadas em sistemas de peneiras, onde são separadas por tamanho desejado. A madeira, o cimento Portland e a

água são misturados para formar o colchão que será levado para prensagem. A dosagem de cada material é controlada por dispositivos eletrônicos e o preparo dos aditivos químicos é realizado em tanques especiais controlados automaticamente. Os colchões são depositados em placas, onde serão prensados e grampeados. Uma mistura contendo partículas finas de madeira é utilizada para formar as camadas superficiais, e outra, contendo partículas maiores, forma o miolo. Após o grampeamento, os painéis são transferidos para câmaras de cura com umidade e temperatura controladas para o endurecimento e o ganho de resistência. A cura controlada propicia boa hidratação do cimento e não permite que ocorra a perda do calor, contribuindo para o aumento da velocidade de consolidação dos painéis.

Com o processo de cura realizado, os painéis retornam à prensa onde os grampos são abertos e os aparatos de prensagem retornam para a linha de produção. Quando realizada a autoclave, são modificadas as formulações dos materiais, para que então seja possível eliminar a necessidade de cura. Após a maturação, os painéis são transportados através de estufa de secagem, onde ocorre a padronização de umidade. Já condicionadas, os painéis recebem acabamento final, estando disponíveis para comercialização.

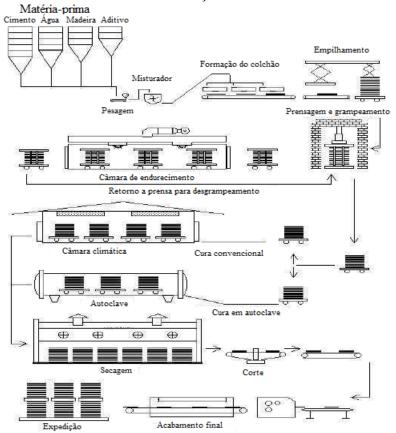


FIGURA 2. 11 – FLUXOGRAMA DE PRODUÇÃO DE PAINÉIS DE CIMENTO-MADEIRA

FONTE: IWAKIRI (2005).

Dentre suas aplicações, os painéis de cimento-madeira podem ser utilizados para paredes de casas pré-fabricadas, bancadas, pisos, revestimentos, paredes divisórias, paredes com isolante térmico e acústico, forros, entre outros.

Com as informações levantadas é possível constatar que chapas de gesso acartonado e painéis de cimento-madeira são produzidos com a utilização de equipamentos adequados e específicos para esta finalidade. Na TABELA 2.3, estão relacionadas às densidades dos compósitos produzidos por diferentes pesquisadores.

TABELA 2.3 – DENSIDADE DOS COMPÓSITOS PRODUZIDOS EM OUTROS ESTUDOS

Pesquisador (es)	Objeto	Densidade utilizada (g/cm³)
Morales-Conde et al. (2016)	Compósito gesso-madeira	0,6 a 1,25
Parchen et al. (2016); Parchen (2012)	Compósito cimento-madeira	0,53 a 0,68
Dai et al. (2015)	Compósito de gesso com serragem	0,868 a 1,11
Castro et al. (2014)	Compósito cimento-madeira	0,75 a 1,22
Rivero et al. (2014)	Compósito de gesso com resíduo de borracha	0,56 a 1,03
Matoski et al. (2013); Matoski et al. (2007)	Compósito cimento-madeira	2,0
Yu et al. (2012)	Compósito à base de gesso	0,82 a 0,97
Karade (2010); Karade et al. (2005)	Compósito de cimento	1,06 a 1,38
Santos et al. (2008)	Compósito cimento-madeira	1,25
Loes et al. (2005)	Compósito cimento-madeira	1,25
Matoski (2005)	Compósito cimento-madeira	1,40 a 1,53
Yamaji (2004)	Compósito plástico-madeira	0,86 a 0,94
Okino et al. (2004)	Compósito cimento-madeira	1,4
Deng et al. (2001)	Compósito de gesso com fibras	1,1 a 1,3
Wei et al. (2000)	Compósito cimento-madeira	1,2
Singh et al. (1992)	Compósito de gesso com fibra de vidro	1,2

FONTE: A autora (2016).

Os diferentes valores apresentados para a densidade dos painéis, geralmente, ocorrem devido aos métodos de produção empregados. Neste estudo, os compósitos serão produzidos e moldados no estado plástico, pois, além das limitações laboratoriais, procura-se viabilizar o método de produção à indústria de construção civil.

3 MATERIAIS E MÉTODOS

O estudo teve início com a coleta dos resíduos de madeira de construção nos canteiros de obra, sendo coletadas as madeiras de compensado, eucalipto e pinus. Os resíduos de madeira foram moídos em um moinho de martelos e passaram por um pré-tratamento, conforme proposto por Lima e Iwakiri (2011), no intuito de minimizar sua interação com os aglomerantes empregados. Os materiais utilizados para a produção dos compósitos foram caracterizados, sendo eles: o cimento Portland e o gesso, o resíduo vegetal, os aditivos químicos e a água.

Foi estabelecido um traço (proporção entre o aglomerante e as partículas de madeira) de referência para a dosagem dos compósitos de 1:0,075 (em massa), o mesmo adotado por Moslemi, Garcia e Hofstrand (1983), Latorraca, Iwakiri e Lelis (1999), Latorraca (2000), Lima (2009), Lima e Iwakiri (2011) para verificar a compatibilidade entre o cimento Portland e a madeira. Os compósitos produzidos foram: de cimento-madeira e de gesso-madeira. Em ambos os compósitos a madeira foi utilizada na condição saturada e na condição não saturada para avaliar a influência da absorção de água provocada pelas partículas de madeira na mistura.

Em uma primeira etapa, considerando o compósito de cimento-madeira, o objetivo foi verificar a influência da condição da madeira (saturada *versus* não saturada) na trabalhabilidade e na consistência das misturas e de dois tipos diferentes de aditivos aceleradores de pega, sendo fixada a relação cimento/madeira.

No compósito gesso-madeira, o objetivo foi verificar somente a influência da condição da madeira, e dessa forma a relação gesso/madeira variou em 5 proporções diferentes tomando como base a proporção de referência. A quantidade de água foi fixada em 0,50 para a relação água/cimento e 0,70 para a relação água/gesso. Realizou-se um acréscimo de água para as dosagens realizadas com as partículas de madeira na condição não saturada, conforme proposto por Simatupang (1979) e apresentado na EQUAÇÃO 2.2 da página 51.

Com os resultados obtidos na primeira etapa, foi possível determinar qual o aditivo que apresentou melhor desempenho no compósito cimento-madeira. Ainda, para ambos os compósitos, foi possível verificar qual a condição das partículas de madeira favoreceu a produção dos compósitos.

Desta forma, a etapa seguinte teve como objetivo variar as proporções aglomerante/madeira, no intuito de adequar a densidade de massa endurecida dos compósitos contribuindo para a viabilidade da produção de placas de vedação vertical. Por fim, foram

produzidas placas de vedação vertical com dimensões de 1,18m x 1,76m do compósito de cimento-madeira e de gesso-madeira para os três tipos de madeira estudados.

Após a realização das atividades propostas, foi aplicada a técnica estatística de análise de variância em conjunto com o teste de Tukey com o objetivo de analisar, por meio de procedimento de comparação múltipla, se há diferença significativa entre as médias dos resultados de densidade de massa endurecida, de resistência à tração na flexão e à compressão.

No decorrer deste capítulo, são apresentadas as etapas desenvolvidas nesta pesquisa, bem como os materiais e métodos utilizados. O desenvolvimento deste estudo foi realizado no Laboratório de Materiais e Estruturas – LAME/DCC da Universidade Federal do Paraná.

3.1 CARACTERIZAÇÃO DOS MATERIAIS

Os materiais utilizados para o desenvolvimento da pesquisa foram caracterizados em laboratório ou através das informações fornecidas por seus respectivos fabricantes. Na FIGURA 3.1 estão apresentados os procedimentos realizados para a caracterização dos materiais.

CARACTERIZAÇÃO DOS MATERIAIS Aglomerante Aditivo químico Cimento Portland Gesso Acelerador de pega \downarrow Avaliação Avaliação Aditivo I Aditivo II Propriedades Composição Químicas Avaliação Avaliação granulométrica Propriedades Espectrometria de Propriedades Propriedades Físicas fluorescência de Químicas Químicas Propriedades raios-X (FRX) Propriedades Propriedades Mecânicas Físicas Físicas Resíduo de madeira Compensado Eucalipto Pinus Avaliação Massa unitária Teor de umidade Composição granulométrica Microscopia Eletrônica de Varredura (MEV)

FIGURA 3.1– FLUXOGRAMA DOS PROCEDIMENTOS REALIZADOS PARA A CARACTERIZAÇÃO DOS MATERIAIS

3.1.1 Aglomerantes

Foram utilizados como aglomerantes o cimento Portland e o gesso. O cimento Portland foi o CPV ARI RS: Alta Resistência Inicial – Resistente a Sulfatos de acordo com a NBR 5.733. (ABNT, 1991a). O cimento foi adquirido em sacos de 50 kg, conforme é vendido comercialmente. Na TABELA 3.1, TABELA 3.2 e TABELA 3.3, estão apresentadas as

FONTE: A autora (2016).

propriedades químicas, físicas e mecânicas do cimento Portland CPV ARI RS, respectivamente, conforme informadas pelo fabricante.

TABELA 3.1 – PROPRIEDADES QUÍMICAS DO CIMENTO CPV ARI RS

Propriedades químicas						
Perda ao fogo (%) MgO (%) SO ₃ (%) Resíduo Insolúvel (%)						
3,5	5,5	3,1	11,8			

FONTE: O fabricante (2016).

TABELA 3.2 – PROPRIEDADES FÍSICAS DO CIMENTO CPV ARI RS

Propriedades físicas							
Finura	Finura	Blaine	Massa Água de		Tempo d	le pega	Expansibilidade
#200	#325	(cm ² /g)	específica	consistência	Início (min)	Fim (min)	1
(%)	(%)	(CIII-/g)	(g/cm ³)	(%)	micio (mm)		a quente (mm)
0,0	0,9	4955,0	2,98	31,0	247	315	0,5

FONTE: O fabricante (2016).

TABELA 3.3 – PROPRIEDADES MECÂNICAS DO CIMENTO CPV ARI RS

Propriedades mecânicas				
Resistência à compressão (MPa)				
1 dia	3 dias	7 dias	28 dias	
22,1	34,1	39,4	49,2	

FONTE: O fabricante (2016).

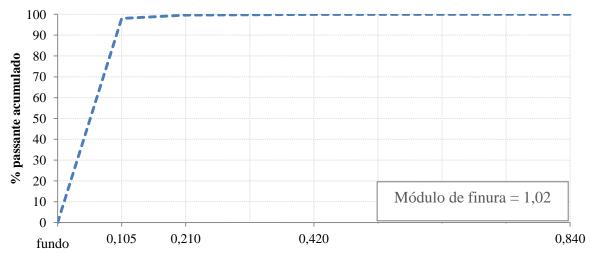
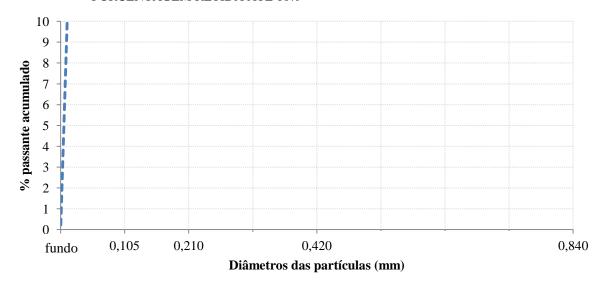

O gesso utilizado foi o Gesso Universal de pega lenta 60, que foi adquirido em sacos de 40 kg, conforme é vendido comercialmente, e caracterizado com relação à composição granulométrica (FIGURA 3.2 e FIGURA 3.3) e ao módulo de finura de acordo com a NBR 12.127. (ABNT, 1991b). A caracterização química semi-quantitativa do gesso foi realizada através do ensaio de espectrometria de fluorescência de raios-X (FRX) no Laboratório de Análise de Minerais e Rochas (LAMIR) da Universidade Federal do Paraná. Utilizou-se o espectrômetro de fluorescência de raios X – Panalytical - modelo Axios Max. Na TABELA 3.4 estão apresentadas as propriedades químicas do gesso utilizado.

TABELA 3.4 – PROPRIEDADES OUÍMICAS DO GESSO

TIBLETON TROTRIBETIBLE QUINTERB BO GESSO								
Propriedades químicas								
SO_3	CaO	SiO_2	MgO	Al_2O_3	SrO	Fe_2O_3	K ₂ O	P.F.
(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
51	42,7	0,3	0,1	0,1	0,1	< 0,1	< 0,1	5,63

FONTE: LAMIR (2016).


FIGURA 3.2 – DISTRIBUIÇÃO GRANULOMÉTRICA DO GESSO

Diâmetros das partículas (mm)

FONTE: A autora (2016).

FIGURA 3.3 – DETALHE DA DISTRIBUIÇÃO GRANULOMÉTRICA DO GESSO PARA A PORCENTAGEM RETIDA ATÉ 10%

FONTE: A autora (2016).

3.1.2 Aditivos Químicos

Foram empregados dois aditivos químicos com o objetivo de combater o efeito retardador na pega do cimento devido aos compostos orgânicos presentes na madeira. Os aditivos aceleradores de pega utilizados foram:

 Aditivo I – Aditivo acelerador de endurecimento do concreto. As características do aditivo estão listadas na TABELA 3.5.

TABELA 3.5 – CARACTERÍSTICAS DO ADITIVO I

Características do AD I					
Estado Físico	Líquido				
Forma	Líquido				
Cor	Amarelo				
Odor	Característico				
Composição básica	Nitrato de cálcio				
pН	5,5				
Solubilidade	Solúvel em água				
Dosagem (%)	0,20 a 1,00 (sobre a massa do cimento)				
Densidade (g/cm³)	1,42				

FONTE: O fabricante (2016).

 Aditivo II – Aditivo acelerador de pega ultrarrápida. As características do aditivo estão listadas na TABELA 3.6.

TABELA 3.6 – CARACTERÍSTICAS DO ADITIVO II

Características do AD II					
Estado Físico	Líquido				
Forma	Líquido				
Cor	Incolor				
Odor	Inodor				
Composição básica	Silicatos				
Principal composto químico (%)	Silicato de Sódio (concentração de 28 a 32)				
pH	13 a 14				
Solubilidade	Solúvel em água				
Dosagem (%)	3,00 a 15,00 (sobre a massa do cimento)				
Densidade (g/mL)	1,27				

FONTE: O fabricante (2016).

Os aditivos foram adquiridos no comércio e foram aqueles comumente utilizados como aceleradores de pega para a construção civil.

3.1.3 Resíduo de madeira

Toda a madeira utilizada neste trabalho pode ser caracterizada como resíduo de construção. As madeiras foram obtidas de sobras de insumos de construtoras da Região de Curitiba – PR e Rio Negrinho – SC, e são de três origens: compensado, eucalipto e pinus.

Os resíduos de madeira foram separados, coletados e limpos. A moagem foi realizada no barração da Construtora Luibi, proprietária do moinho. A moagem foi realizada num moinho de martelos (FIGURA 3.4) com potência de 5,0 cv e 1160 RPM. Durante o procedimento, houve interrupções provocadas pelo travamento da fibra da madeira. Nas

FIGURA 3.5, FIGURA 3.6 e FIGURA 3.7 é possível observar os procedimentos de coleta, preparo e moagem de cada tipo de resíduo.

FIGURA 3.4 – MOINHO DE MARTELOS UTILIZADO PARA A MOAGEM DA MADEIRA

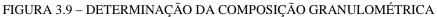
FONTE: A autora (2015).

FIGURA 3.5 – MOAGEM DO RESÍDUO DE COMPENSADO

FONTE: A autora (2015).

FIGURA 3.6 – MOAGEM DO RESÍDUO DE EUCALIPTUS SPP

Após a moagem da madeira, por meio do moinho de martelos, as partículas foram armazenadas em sacos de ráfia, e condicionadas em local coberto e protegido. A caracterização dos resíduos de madeira (FIGURA 3.8 e FIGURA 3.9) foi realizada conforme descrito na TABELA 3.7.


TABELA 3.7 – ENSAIOS DE CARACTERIZAÇÃO DOS RESÍDUOS DE MADEIRA

Ensaios realizados	Norma	Observações	
Determinação da massa unitária	NBR NM 45		
Determinação da massa umtaria	(ABNT, 2006)	-	
Determinação da composição	NBR NM 248	Uso da série de peneiras	
granulométrica	(ABNT, 2003b)	normal	
	NBR 7.190	Adaptação da temperatura	
Determinação do teor de umidade	(ABNT, 1997) utilizada para	utilizada para secagem	
	(ADN1, 1991)	(80°C)	
Determinação do pH	TAPPI 252		
Determinação do pri	(TAPPI, 2002)	-	
Microscopia Eletrônica de Varredura			
(MEV)	_	-	

FONTE: A autora (2015).

Os procedimentos realizados para a determinação da massa unitária em agregados minerais são similares aos realizados para a determinação da massa específica em partículas de madeira. Azambuja (2015) obteve a massa específica a granel das partículas a partir da adaptação da NBR 6.922 (ABNT, 1983), e esses procedimentos se aproximam do prescrito na NBR NM 45 (ABNT, 2006). Desta forma, optou-se por utilizar a norma prescrita para agregados minerais no intuito de aproximar as partículas de madeira ao agregado miúdo utilizado na construção civil.

FONTE: A autora (2016).

O preparo das partículas de madeira para o ensaio de pH foi realizado conforme o descrito na TAPPI 252 (TAPPI, 2002), em que 1,5g de madeira retida na peneira 300 μm, foi seca a 105°C por 3 horas, e misturada a 150 mL de água fervente durante 10 minutos. Na sequencia, realizou-se o resfriamento da composição para então, filtrar 50 mL do líquido utilizado para o ensaio.

O ensaio de determinação do pH foi realizado num pHmêtro modelo LUCA-210 (FIGURA 3.10FIGURA 2.1) calibrado com soluções tampão de pH 4, pH 7 e pH 10.

Os resultados obtidos nos ensaios de caracterização das partículas de madeira são apresentados na TABELA 3.8.

.

TABELA 3.8 – RESULTADOS DE CARACTERIZAÇÃO DAS PARTÍCULAS DE MADEIRA

Madeira	Massa específica (g/cm³)	Massa unitária (kg/m³)	Teor de umidade (%)
Compensado	0,121	173,83	12,56
Eucalipto	0,123	137,25	13,81
Pinus	0,173	207,72	12,30

FONTE: A autora (2016).

Na FIGURA 3.11 é apresentada a distribuição granulométrica das partículas de madeira. Para os três tipos de madeira – compensado, eucalipto e pinus – observa-se que as curvas são contínuas.

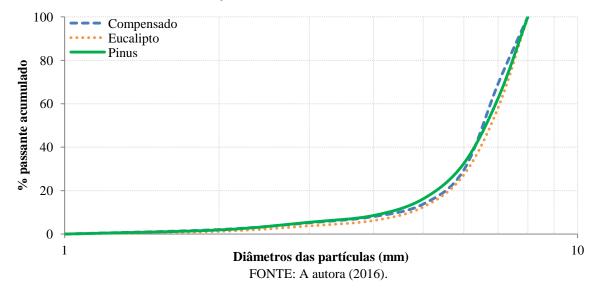
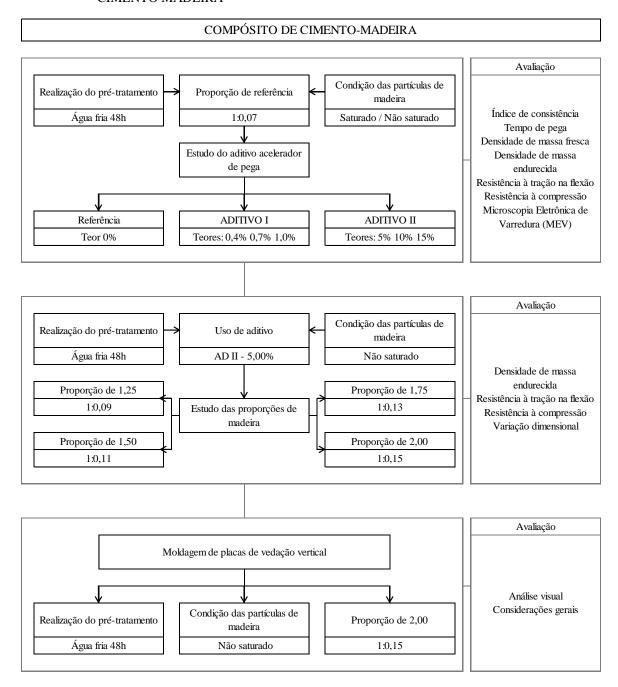


FIGURA 3.11 – DISTRIBUIÇÃO GRANULOMÉTRICA DAS PARTÍCULAS DE MADEIRA

O ensaio de microscopia eletrônica de varredura (MEV) foi realizado no centro de microscopia eletrônica da UFPR com a finalidade de caracterizar anatomicamente as partículas de madeira. Neste ensaio, as partículas de madeira foram aderidas ao recipiente, com auxílio de fita dupla face de cobre, e observadas e registradas em microscópio eletrônico de varredura modelo Tescan Vega3 LMU.


3.1.4 Água

Foi utilizada água potável, proveniente da rede de abastecimento da Companhia de Saneamento do Paraná – Sanepar.

3.2 COMPÓSITO DE CIMENTO-MADEIRA

Neste item são apresentados os procedimentos, as proporções dos materiais e os ensaios realizados nas diferentes composições produzidas para a avaliação dos compósitos de cimento com resíduos de madeira de construção. A FIGURA 3.12 apresenta o fluxograma que lista a sequência dos procedimentos realizados para os compósitos de cimento-madeira.

FIGURA 3.12 – FLUXOGRAMA DOS PROCEDIMENTOS REALIZADOS PARA O COMPÓSITO DE CIMENTO MADEIRA

3.2.1 Definição das variáveis de estudo

Têm-se como variáveis independentes e variáveis dependentes os parâmetros listados na TABELA 3.9 e TABELA 3.10.

TABELA 3.9 – VARIÁVEIS INDEPENDENTES DOS COMPÓSITOS DE CIMENTO-MADEIRA

Variáveis independentes	Parâmetros
Condição dos portículos do modeiro	Saturada
Condição das partículas de madeira	Não saturada
Tino do aditivo acalerador de naga	Aditivo I - AD I (à base de nitrato de cálcio)
Tipo do aditivo acelerador de pega	Aditivo II - AD II (à base de silicato de sódio)
	Referência (0%)
Teor do aditivo acelerador de pega	AD I (0,4%; 0,7% e 1,0%)
	AD II (5,0%; 10,0% e 15,0%)
	Proporção 1,00 (1:0,07)
Durana and de marketich (m.l., 2)	Proporção 1,25 (1:0,09)
Proporções de material (relação cimento/madeira)	Proporção 1,50 (1:0,11)
cinicito/madena)	Proporção 1,75 (1:0,13)
	Proporção 2,00 (1:0,15)

FONTE: A autora (2016).

TABELA 3.10 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE CIMENTO-MADEIRA

Variáveis dependentes
Índice de consistência
Tempo de pega
Densidade de massa fresca
Densidade de massa endurecida
Resistência à tração na flexão
Resistência à compressão
Microscopia eletrônica de varredura (MEV)
Análise visual
Considerações gerais
FONTE: A autora (2016).

3.2.2 Pré-tratamento realizado nas partículas de madeira

O pré-tratamento aplicado às partículas de madeira foi realizado de acordo com o descrito por Lima (2009). Este procedimento consistiu na imersão das partículas de madeira em água fria pelo período de 48 horas. A proporção de água utilizada foi de 10:1, ou seja, 10 litros de água para cada 1 kg de madeira. Em seguida, o material foi espalhado em uma área coberta e passou por um período de secagem ao ar livre, por 72 horas, para que então fosse colocado em estufa à 80°C por 24 horas para completar sua secagem.

3.2.3 Condição das partículas de madeira

Diferente dos agregados utilizados na construção civil - cuja absorção de água é pequena, a madeira é um material altamente higroscópico. Neste sentido, pensou-se em propiciar duas diferentes condições para a utilização das partículas de madeira, secas em estufa, uma condição saturada e outra não saturada.

Para a condição saturada, as partículas foram submersas em água por 20 minutos, em seguida coadas na peneira #200 e deixadas em repouso, por 10 minutos, para retirar o excesso de água. Este procedimento pode ser observado na FIGURA 3.13.

FONTE: A autora (2016).

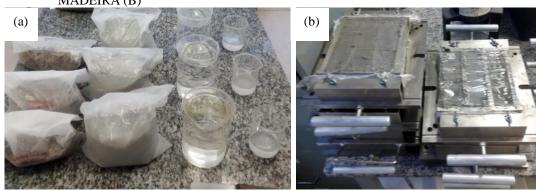
Para a condição não saturada, as partículas de madeira foram utilizadas após a secagem em estufa. Nesta condição, foi realizado um ajuste na quantidade de água, conforme descrita na EQUAÇÃO 2.2., item 2.5.1.4. (página 52), no intuito de evitar que a água da mistura fosse absorvida pela madeira, tornando-se insuficiente para a hidratação do aglomerante.

3.2.4 Análise da influência da saturação da madeira e do uso de aditivos aceleradores de pega

Para a produção dos compósitos de cimento-madeira, a proporção de referência foi adotado de acordo com o que foi utilizado em outras pesquisas, como Moslemi e Garcia (1983), Latorraca, Iwakiri e Lelis (1999), Latorraca (2000), Lima (2009) e Lima e Iwakiri (2011), para verificar a compatibilidade entre o cimento Portland e a madeira. Naqueles trabalhos, as quantidades utilizadas foram 200 g de cimento Portland e 15 g de madeira,

apresentando uma relação aglomerante/madeira de 13,33:1, ou seja, 1:0,075 (aglomerante/madeira). Neste estudo, a relação água/cimento utilizada foi 0,50.

Em um primeiro momento, a produção das composições teve como objetivo avaliar o comportamento dos diferentes tipos e teores de aditivos aceleradores de pega, e por isso foram adotados três teores para cada um. Na TABELA 3.11 estão descritos os teores utilizados para cada tipo de aditivo com relação à massa do cimento Portland.


TABELA 3.11 – TEOR DOS ADITIVOS ACELERADORES DE PEGA UTILIZADOS NOS COMPÓSITOS DE CIMENTO-MADEIRA

Aditivo	Teor
Referência	0%
AD I	0,4% 0,7% 1,0%
AD II	5% 10% 15%

FONTE: A autora (2016).

Na realização da mistura (FIGURA 3.14a), para a produção dos compósitos de cimento-madeira, foi realizada uma adaptação na norma NBR 13.276 (ABNT, 2005a). Adicionou-se primeiramente a água e o aditivo, quando utilizado, e em seguida o cimento Portland. A composição foi misturada na argamassadeira em velocidade baixa por 30s, na sequência, adicionou-se a madeira gradativamente durante 30s, sem parar a mistura. A velocidade foi aumentada para alta por mais 30s. Ao término, as misturas foram homogeneizadas manualmente por 30s, para que então fossem realizados os ensaios no estado fresco e a moldagem dos corpos de prova.

FIGURA 3.14 – MATERIAIS (MADEIRA, CIMENTO, ÁGUA E ADITIVO) PREPARADOS PARA A DOSAGEM (A) E CORPOS DE PROVA MOLDADOS COM COMPÓSITO DE CIMENTO-MADEIRA (B)

FONTE: A autora (2016).

A moldagem dos corpos de prova foi realizada de acordo com a NBR 13.279 (ABNT, 2005c). Foram moldados corpos de prova prismáticos (4x4x16 cm) (FIGURA 3.14b) e a quantidade de corpos de prova produzidos está apresentada na TABELA 3.12. Depois de

preenchidas, as formas foram cobertas por plástico filme para evitar a perda de água para o ambiente. Após $48h \pm 24h$, os corpos de prova foram desmoldados, identificados e armazenados em câmara seca FIGURA 3.15 com temperatura de 23 ± 2 °C e umidade relativa de, aproximadamente, $50\% \pm 10\%$ onde permaneceram até a data de ensaio. Nesta tabela, o compósito identificado como Cimento Referência foi produzido sem a presença da partícula de madeira apenas para a realização do ensaio de tempo de pega.

TABELA 3.12 – DOSAGEM E QUANTIDADE DE CORPOS DE PROVA PRODUZIDOS COM COMPÓSITO DE CIMENTO-MADEIRA COM DIFERENTES ACELERADORES DE PEGA E CONDIÇÕES DE SATURAÇÃO

	COMPIÇ	Madeira	<u>SATURAÇ</u> A		tivo		Quantidad	le de corpos	s de prova	
Aglomerante		Maucha		Aui	Identificação		(unid.)			
	Tipo	Trat.	Condição	Tipo	Teor		7 dias	14 dias	28 dias	
				Ref	0,0%	CM COMP NSAT REF	1	1	1	
					0,4%	CM COMP NSAT 0,4	1	1	1	
				AD I	0,7%	CM COMP NSAT 0,7	1	1	1	
			Não-saturado		1,0%	CM COMP NSAT 1,0	1	1	1	
					5,0%	CM COMP NSAT 5,0	1	1	1	
				AD II	10,0%	CM COMP NSAT 10,0	1	1	1	
	Compensado	AF 48h			15,0%	CM COMP NSAT 15,0	1	1	1	
	Compensado	111 1011		Ref	0,0%	CM COMP SAT REF	1	1	1	
					0,4%	CM COMP SAT 0,4	1	1	1	
				AD I	0,7%	CM COMP SAT 0,7	1	1	1	
			Saturado		1,0%	CM COMP SAT 1,0	1	1	1	
					5,0%	CM COMP SAT 5,0	1	1	1	
				AD II	10,0%	CM COMP SAT 10,0	1	1	1	
					15,0%	CM COMP SAT 15,0	1	1	1	
				Ref	0,0%	CM EUC NSAT REF	1	1	1	
					0,4%	CM EUC NSAT 0,4	1	1	1	
				AD I	0,7%	CM EUC NSAT 0,7	1	1	1	
		Não-s	Não-saturado		1,0%	CM EUC NSAT 1,0	1	1	1	
					5,0%	CM EUC NSAT 5,0	1	1	1	
				AD II	10,0%	CM EUC NSAT 10,0	1	1	1	
G:	Eucalipto	AF 48h			15,0%	CM EUC NSAT 15,0	1	1	1	
Cimento						Ref	0,0%	CM EUC SAT REF	1	1
				40.1	0,4%	CM EUC SAT 0,4	1	1	1	
			G . 1	AD I	0,7%	CM EUC SAT 0,7	1	1	1	
			Saturado		1,0%	CM EUC SAT 1,0	1	1	1	
				AD II	5,0%	CM EUC SAT 5,0	1	1	1	
				AD II	10,0%	CM EUC SAT 10,0	1	1	1	
				D.C	15,0%	CM EUC SAT 15,0	1	1	1	
				Ref	0,0%	CM PIN NSAT REF	1	1	1	
				ADI	0,4%	CM PIN NSAT 0,4	1	1	1	
			Não sotumodo	AD I	0,7%	CM PIN NSAT 0,7	1	1	1	
			Não-saturado		1,0%	CM PIN NSAT 1,0	1	1	1	
				AD II	5,0%	CM PIN NSAT 5,0	1	1	1	
				ADII	10,0%	CM PIN NSAT 10,0	-		1	
	Pinus	AF 48h		Dof	15,0%	CM PIN NSAT 15,0	1	1	1	
			Saturado	Ref	0,0%	CM PIN SAT REF	1	1	1	
				AD I	0,4%	CM PIN SAT 0,4	1	1	1	
				ADI	1,0%	CM PIN SAT 1.0	1	1	1	
						CM PIN SAT 1,0	1	1	1	
				AD II	5,0%	CM PIN SAT 10.0	1	1	1	
				ADII	10,0%	CM PIN SAT 10,0	1	1	1	
									1	
	Cimento Referência							-	_	

FIGURA 3.15 – DISPOSIÇÃO DOS CORPOS DE PROVA DO COMPÓSITO DE CIMENTO-MADEIRA NA CÂMARA SECA

Para avaliar a influência dos aditivos aceleradores de pega foram realizados ensaios no estado fresco, no estado endurecido e, também, ensaios para análise microestrutural (TABELA 3.13).

TABELA 3.13 – ENSAIOS REALIZADOS PARA OS COMPÓSITOS DE CIMENTO-MADEIRA

Estado	Ensaios	Norma	Idade (dias)
	Determinação do tempo de pega	NBR NM 65 (ABNT, 2003a)	-
Estado fresco	Determinação do índice de consistência	NBR 13.276 (ABNT, 2005a)	-
	Determinação da densidade de massa fresca	NBR 13.278 (ABNT, 2005b)	-
	Determinação da densidade de massa endurecida	NBR 13.280 (ABNT, 2005d)	7, 14 e 28
Estado endurecido	Determinação da resistência à tração na flexão	NBR 13.279 (ABNT, 2005c)	7, 14 e 28
	Determinação da resistência à compressão	NBR 13.279 (ABNT, 2005c)	7, 14 e 28
Análise microestrutural	Microscopia eletrônica de varredura (MEV)	-	56

FONTE: A autora (2016).

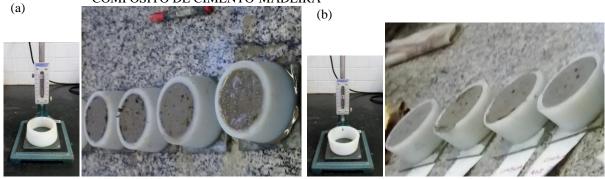

No estado fresco os ensaios realizados foram o índice de consistência (FIGURA 3.16), o tempo de início e de fim de pega (FIGURA 3.17) e a densidade de massa fresca.

FIGURA 3.16 – PREPARO DO MATERIAL PARA O ENSAIO DO ÍNDICE DE CONSISTÊNCIA DO COMPÓSITO DE CIMENTO-MADEIRA

FONTE: A autora (2016).

FIGURA 3.17 – ENSAIO DE TEMPO DE INÍCIO DE PEGA (A) E TEMPO DE FIM DE PEGA (B) DO COMPÓSITO DE CIMENTO-MADEIRA

FONTE: A autora (2016).

No estado endurecido os ensaios realizados foram: a determinação da densidade endurecida (FIGURA 3.18), a resistência à tração na flexão e à compressão (FIGURA 3.19).

FIGURA 3.18 – PROCEDIMENTOS PARA DETERMINAÇÃO DA DENSIDADE DE MASSA ENDURECIDA DO COMPÓSITO DE CIMENTO-MADEIRA

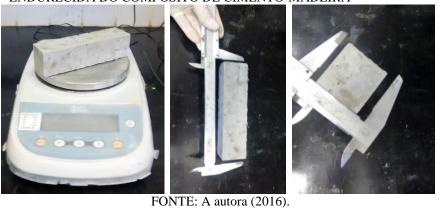
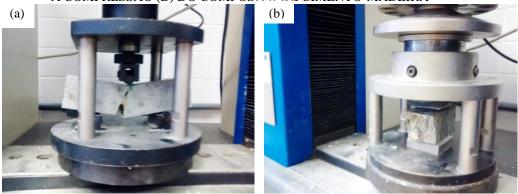



FIGURA 3.19 – ENSAIOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (A) E ENSAIO DE RESISTÊNCIA À COMPRESSÃO (B) DO COMPÓSITO DE CIMENTO-MADEIRA

FONTE: A autora (2016).

O ensaio de microscopia eletrônica de varredura (MEV) foi realizado no Centro de Microscopia Eletrônica da UFPR com o intuito de realizar a análise microestrutural das amostras através da visualização da zona de transição, entre a matriz cimentícia e a partícula de madeira. Para realizar o ensaio com a idade de 56 dias, foram realizados os procedimentos de paralisação de hidratação de acordo com Pan *et al.* (2002) que consiste na imersão das amostras em álcool etílico durante 24 horas e, na sequência, secagem em estufa a 40 °C por 24 horas.

Foi realizado, também, o embutimento, com resina de Baquelite, a quente sob pressão de cada amostra, no intuito de proporcionar sua adequada manipulação. O equipamento utilizado foi a embutidora metalográfica EM 30D (FIGURA 3.20).

Em seguida, foi realizado o lixamento, em lixadeira elétrica rotativa com água, das amostras já embutidas. As lixas utilizadas foram lixas d'água nas gramaturas de 220, 400, 600, 800 e 1200. Após o lixamento, foi realizado o polimento mecânico manual das amostras em politriz elétrica circular.

FIGURA 3.20 – PROCEDIMENTO DE EMBUTIMENTO DAS AMOTRAS

As amostras foram observadas e registradas em microscópio eletrônico de varredura modelo TESCAN VEGA3 LMU (FIGURA 3.21).

FONTE: A autora (2016).

O ensaio foi realizado apenas para os compósitos de referência e para os maiores teores de cada aditivo, totalizando 18 amostras.

3.2.5 Análise da influência das diferentes proporções de madeira na composição

A continuidade do estudo foi realizada com o compósito que apresentou o tipo e o teor de aditivo mais adequado, bem como a melhor condição das partículas de madeira. No intuito de diminuir a densidade endurecida dos compósitos, foram propostas outras 4 relações aglomerante/madeira (em massa), que variaram em +25%, +50%, +75% e +100%, a quantidade de madeira, com relação ao teor de referência (TABELA 3.14). A relação água/cimento utilizada foi mantida em 0,50.

TABELA 3.14 – PROPORÇÕES AGLOMERANTE/MADEIRA UTILIZADOS NOS COMPÓSITOS DE CIMENTO-MADEIRA

Proporção (cimento/madeira)	Identificação
1:0,15	2,00
1:0,13	1,75
1:0,11	1,50
1:0,09	1,25

FONTE: A autora (2016).

Os procedimentos de mistura, a confecção e a moldagem dos corpos de prova da foram realizadas de acordo com o descrito anteriormente. A dosagem e a quantidade de

corpos de prova confeccionados para cada traço foram realizadas conforme descrito na TABELA 3.15.

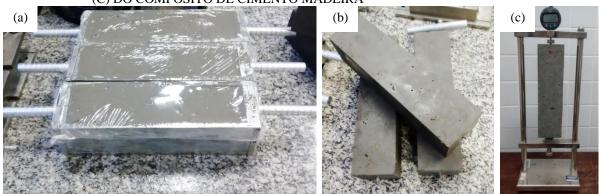
TABELA 3.15 – DOSAGEM E QUANTIDADE DE CORPOS DE PROVA PRODUZIDOS COM COMPÓSITO DE CIMENTO-MADEIRA

		Madeira			4.3242			Quant. de corpos de prova (unid.)																					
Aglom.		Made	Іга		Autivo		Auitivo		Aditivo		Identificação	Prismáticos 4	4 x 4 x 16 cm	Prismáticos 7,5 x 7,5 x															
	Tipo	Trat.	Cond.	Teor	Tipo	Teor		7 dias	28 dias	28,5 cm																			
				1,25			CM COMP NSAT 5%-1,25	3	3	3																			
	Compensado	A E 19h	Não-	1,50	AD II	5,0%	CM COMP NSAT 5%-1,50	3	3	3																			
	Compensado	AI 40II	saturado	1,75	ADII	3,0%	CM COMP NSAT 5%-1,75	3	3	3																			
				2,00			CM COMP NSAT 5%-2,00	3	3	3																			
				1,25			CM EUC NSAT 5%-1,25	3	3	3																			
Cimento	Eucalipto	AF 48h	Não-	1,50	VD II	AD II 1 50% I	AD II I 50%	AD II I 50%	CM EUC NSAT 5% -1,50	3	3	3																	
Cimento	Eucanpio	AI 40II	saturado	1,75	3,070				3,070	3,070	3,070	3,070	3,070	3,070	3,070	3,070	3,070	3,070	3,070	711 11 3,070	3,070	, 11 3,070	3,070	5,070	3,070	3,070	3,070	5,070	CM EUC NSAT 5%-1,75
				2,00			CM EUC NSAT 5% -2,00	3	3	3																			
				1,25			CM PIN NSAT 5%-1,25	3	3	3																			
	Pinus	AF 48h	Não-	1,50	VD II	AD II 5.0%	AD II I 5.0%	CM PIN NSAT 5%-1,50	3	3	3																		
	Filius	A1 4011	saturado	1,75	ADII			5,0%	CM PIN NSAT 5%-1,75	3	3	3																	
				2,00			CM PIN NSAT 5% -2,00	3	3	3																			

FONTE: A autora (2016).

Para avaliar o desempenho dos corpos de prova foram realizados, apenas, os ensaios no estado endurecido descritos na TABELA 3.16.

TABELA 3.16 – ENSAIOS REALIZADOS PARA OS COMPÓSITOS DE CIMENTO-MADEIRA


Ensaios	Norma	Idade (dias)	
Determinação da densidade de massa	NBR 13.280 (ABNT, 2005d)	7 e 28	
endurecida	11BR 13.200 (11B111, 2003d)	7 C 26	
Determinação da resistência à tração na	NBR 13.279 (ABNT, 2005c)	7 e 28	
flexão	(ABIVI, 2003C)	7 6 28	
Determinação da resistência à compressão	NBR 13.279 (ABNT, 2005c)	7 e 28	
Variação dimensional	NBR 15.261 (ABNT, 2005e)	3 a 28	

FONTE: A autora (2016).

A determinação da densidade endurecida, da resistência de tração à flexão e compressão foi realizada de acordo com o descrito anteriormente.

O ensaio de variação dimensional foi realizado de acordo com a NBR 15.261 (ABNT, 2005e), porém as formas utilizadas foram detalhadas na NBR 15.577-4. (ABNT, 2008). Os procedimentos de moldagem, desforma e determinação da variação dimensional são apresentados na FIGURA 3.22.

FIGURA 3.22 – MOLDAGEM (A), DESFORMA (B) E DETERMINAÇÃO DA VARIAÇÃO DIMENSIONAL (C) DO COMPÓSITO DE CIMENTO MADEIRA

FONTE: A autora (2016).

.Para as composições realizadas, foi calculado o consumo de cimento (EQUAÇÃO 3.1) que leva em consideração a relação a/c, a densidade de massa fresca e a proporção de mistura (traço).

Consumo de cimento
$$(kg/m^3) = \frac{Densidade de massa fresca (kg/m^3)}{1 + Relação a/c + Traço}$$
 (EQUAÇÃO 3.1)

3.2.6 Confecção e análise da viabilidade de produção de placas de vedação vertical

Por fim, foram moldadas as placas de cimento-madeira. Os procedimentos das moldagens foram realizados de acordo com a NBR 13.279. (ABNT, 2005c). Foi utilizada uma betoneira portátil de 130L com motor de 0,33 CV e 34 RPM.

As placas foram produzidas com dimensões de 1,16 m x 1,78 m, e espessura de 12,5 mm. Foram confeccionadas 6 formas com gabaritos de madeira colados com cola de contato em lona plástica (FIGURA 3.23).

Para a madeira de compensado foi confeccionada uma placa (devido à escassez deste resíduo), para a madeira de eucalipto foram confeccionadas duas placas, assim como para a madeira de pinus. A dosagem e a mistura na betoneira e a dosagem foram realizadas individualmente para cada placa. Após a mistura, o material foi lançado na forma, espalhado com uma colher de pedreiro, e alisado com régua de madeira e desempenadeira para propiciar um bom acabamento. Porém, na primeira placa produzida – que continha partículas de eucalipto - a mistura apresentou-se extremamente seca (FIGURA 3.24) e por isso a relação água/cimento foi alterada de 0,50 para 0,65 para todas as placas (FIGURA 3.25).

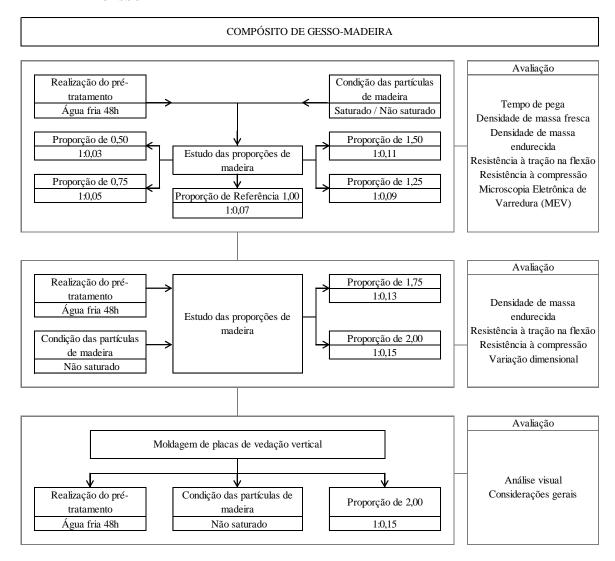
FIGURA 3.24 - COMPÓSITO DE CIMENTO-MADEIRA COM RELAÇÃO A/C=0,50

As placas foram produzidas nas dependências do LAME – Laboratório de Materiais e Estruturas na Universidade Federal do Paraná. Após 15 dias, as placas foram desformadas (FIGURA 3.26) e dispostas pelos corredores dos laboratórios. No momento da desmoldagem, uma das placas produzidas com resíduo de eucalipto e outra de pinus, trincou e quebrou (FIGURA 3.27).

FIGURA 3.26 - PLACA COM COMPÓSITO DE CIMENTO-MADEIRA DESFORMADA

FONTE: A autora (2016).

FIGURA 3.27 – DETALHE DA PLACA COM COMPÓSITO DE CIMENTO-MADEIRA QUEBRADA



Depois de realizada a produção das placas, foi realizada considerações referentes ao processo de produção e às principais propriedades observadas.

3.3 COMPÓSITO DE GESSO-MADEIRA

Neste item são apresentados os procedimentos, as proporções dos materiais e os ensaios realizados nas diferentes composições produzidas para a avaliação dos compósitos de gesso com resíduos de madeira de construção. A FIGURA 3.28 apresenta o fluxograma que lista a sequência dos procedimentos realizados para os compósitos de gesso-madeira.

FIGURA 3.28 – FLUXOGRAMA DOS PROCEDIMENTOS REALIZADOS PARA O COMPÓSITO DE GESSO MADEIRA

3.3.1 Definição das variáveis de estudo

Têm-se como variáveis independentes e variáveis dependentes os parâmetros listados na TABELA 3.17 e TABELA 3.18.

TABELA 3.17 – VARIÁVEIS INDEPENDENTES DOS COMPÓSITOS DE GESSO-MADEIRA

Variáveis independentes	Parâmetros
Condição dos portículos do modeiro	Saturada
Condição das partículas de madeira	Não saturada
	Proporção 0,50 (1:0,03)
	Proporção 0,75 (1:0,05)
Duonous as de motorial	Proporção 1,00 (1:0,07)
Proporções de material (relação gesso/madeira)	Proporção 1,25 (1:0,09)
(tetação gesso/madena)	Proporção 1,50 (1:0,11)
	Proporção 1,75 (1:0,13)
	Proporção 2,00 (1:0,15)

FONTE: A autora (2016).

TABELA 3.18 – VARIÁVEIS DEPENDENTES DOS COMPÓSITOS DE GESSO-MADEIRA

Variáveis dependentes
Tempo de pega
Densidade de massa fresca
Densidade de massa endurecida
Resistência à tração na flexão
Resistência à compressão
Microscopia eletrônica de varredura (MEV)
Análise visual
Considerações gerais
FONTE: A autora (2016).

3.3.2 Pré-tratamento realizado nas partículas de madeira

O pré-tratamento aplicado às partículas de madeira foi realizado de acordo com o descrito por Lima (2009). Este procedimento consistiu na imersão das partículas de madeira em água fria pelo período de 48 horas. A proporção de água utilizada foi de 10:1, ou seja, 10 litros de água para cada 1 kg de madeira. Em seguida, o material foi espalhado em uma área coberta e passou por um período de secagem ao ar livre, por 72 horas, para que então fosse colocado em estufa à 80°C por 24 horas para completar sua secagem.

3.3.3 Condição das partículas de madeira

Diferente dos agregados utilizados na construção civil – cuja absorção de água é pequena, a madeira é um material higroscópico. Neste sentido, pensou-se em propiciar duas diferentes condições para a utilização das partículas de madeira, secas em estufa, uma condição saturada e outra não saturada.

Para a condição saturada, as partículas foram submersas em água por 20 minutos, em seguida coadas na peneira #200 e deixadas em repouso, por 10 minutos, para retirar o excesso de água. Este procedimento pode ser observado na FIGURA 3.29.

FONTE: A autora (2016).

Para a condição não saturada, as partículas de madeira foram utilizadas após a secagem em estufa. Nesta condição, foi realizado um ajuste na quantidade de água, conforme descrita na EQUAÇÃO 2.2., item 2.5.1.4. (página 52), no intuito de evitar que a água da mistura fosse absorvida pela madeira, tornando-se insuficiente para a hidratação do aglomerante.

3.3.4 Análise da influência da saturação da madeira e das diferentes proporções de madeira na composição

Para a produção dos compósitos de gesso-madeira foram utilizados inicialmente, além da proporção de referência (1:0,075), outras 4 relações aglomerante-madeira, que variaram em -50%, -25%, +25% e +50%, a quantidade de madeira em massa, com relação ao teor de referência (TABELA 3.19). Neste estudo a relação água/gesso utilizada foi de 0,70.

TABELA 3.19 – PROPORÇÕES AGLOMERANTE/MADEIRA UTILIZADOS NOS COMPÓSITOS DE GESSO-MADEIRA

Proporção (gesso/madeira)	Identificação
1:0,11	1,50
1;0,09	1,25
1:0,07	1,00
1:0,05	0,75
1:0,03	0,50

Na realização da mistura, para a produção dos compósitos de gesso-madeira, adaptou-se os procedimentos indicados pela NBR 12.128. (ABNT, 1991c). Adicionou-se primeiramente a água, realizou-se o polvilhamento do gesso anidro, durante 1 min, para que fosse mantida em repouso durante 2 min. A composição foi misturada em argamassadeira, em velocidade baixa, e, simultaneamente, adicionou-se a madeira, gradativamente, durante 30s. A argamassadeira foi mantida ligada em velocidade baixa por mais 30s. Ao término, as misturas foram homogeneizadas manualmente por 30s para que então fossem realizados os ensaios no estado fresco e a moldagem dos corpos de prova.

A moldagem dos corpos de prova (FIGURA 3.30) foi realizada de acordo com a NBR 12.129. (ABNT, 1991d). Foram moldados corpos de prova prismáticos (4x4x16 cm) e a quantidade de corpos de prova produzidos está apresentada na TABELA 3.20. Depois de preenchidas, as formas foram cobertas por plástico filme para evitar a perda de água para o ambiente. Após $48h \pm 24h$, os corpos de prova foram desmoldados, identificados e armazenados em câmara seca (FIGURA 3.31) com temperatura de 23 ± 2 °C e umidade relativa de, aproximadamente, $50\% \pm 10$ onde permaneceram até a data de ensaio.

A dosagem e a quantidade de corpos de prova confeccionados para cada traço foram realizadas conforme descrito na TABELA 3.20. Nesta tabela, os compósitos identificados como Gesso Referência foram produzidos sem a presença da partícula de madeira. Entretanto, somente para avaliar os resultados no ensaio de tempo de pega, os compósitos Gesso Referência (Compensado)*, Gesso Referência (Eucalipto)* e Gesso Referência (Pinus)* foram produzidos com a água de mistura obtida, após um período de 24 horas, em que as partículas de madeira ficaram submersas em água.

TIOURA 5.50 - CORI OS DE TRO VA MOLDADOS COM COMI OSTIO DE GESSO-MIADEIRA

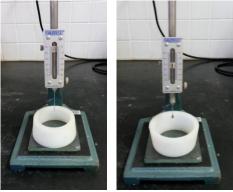
FIGURA 3.30 – CORPOS DE PROVA MOLDADOS COM COMPÓSITO DE GESSO-MADEIRA

TABELA 3.20 – DOSAGEM E QUANTIDADE DE CORPOS DE PROVA PRODUZIDOS COM COMPÓSITO DE GESSO-MADEIRA COM DIFERENTES CONDIÇÕES DE SATURAÇÃO

-	Madeira				TYTES CONDIÇOES	Quant. de corpos de		
Aglom.					Identificação	prova (unid.)		
	Tipo	Trat.	Cond. Teor			7 dias	28 dias	
				0,50	GM COMP NSAT 0,5	3	3	
			Não-	0,75	GM COMP NSAT 0,75	3	3	
			saturado	1,00	GM COMP NSAT 1,0	3	3	
			Saturado	1,25	GM COMP NSAT 1,25	3	3	
	Compensado	AE 19h		1,50	GM COMP NSAT 1,50	3	3	
	Compensado	Ai 4oii		0,50	GM COMP SAT 0,5	3	3	
				0,75	GM COMP SAT 0,75	3	3	
			Saturado	1,00	GM COMP SAT 1,0	3	3	
				1,25	GM COMP SAT 1,25	3	3	
				1,50	GM COMP SAT 1,50	3	3	
				0,50	GM EUC NSAT 0,5	3	3	
			Não-	0,75	GM EUC NSAT 0,75	3	3	
				1,00	GM EUC NSAT 1,0	3	3	
	Eucalipto	AF 48h	saturado	1,25	GM EUC NSAT 1,25	3	3	
				1,50	GM EUC NSAT 1,50	3	3	
				0,50	GM EUC SAT 0,5	3	3	
Gesso				0,75	GM EUC SAT 0,75	3	3	
Gesso			Saturado	1,00	GM EUC SAT 1,0	3	3	
				1,25	GM EUC SAT 1,25	3	3	
				1,50	GM EUC SAT 1,50	3	3	
			Não-	0,50	GM PIN NSAT 0,5	3	3	
				0,75	GM PIN NSAT 0,75	3	3	
		AF 48h		1,00	GM PIN NSAT 1,0	3	3	
	Pinus		saturado	1,25	GM PIN NSAT 1,25	3	3	
				1,50	GM PIN NSAT 1,50	3	3	
	Filius	AF 46II		0,50	GM PIN SAT 0,5	3	3	
				0,75	GM PIN SAT 0,75	3	3	
			Saturado	1,00	GM PIN SAT 1,0	3	3	
				1,25	GM PIN SAT 1,25	3	3	
				1,50	GM PIN SAT 1,50	3	3	
		3	3					
	Gesso Referência (Compensado)*						-	
	Gesso Referência (Eucalipto)*						-	
		-	-					

FIGURA 3.31 – DISPOSIÇÃO DOS CORPOS DE PROVA DO COMPÓSITO DE GESSO-MADEIRA NA CÂMARA SECA

Para avaliar a influência das partículas de madeira foram realizados ensaios no estado fresco e no estado endurecido (TABELA 3.21).


TABELA 3.21 – ENSAIOS REALIZADOS PARA OS COMPÓSITOS DE GESSO-MADEIRA

Estado	Ensaios	Norma	Idade (dias)
	Determinação do tempo de pega	NBR 12.128 (ABNT, 1991c)	-
Estado fresco	Determinação da densidade de massa fresca	NBR 13.278 (ABNT, 2005b)	-
	Determinação da densidade de massa endurecida	NBR 13.280 (ABNT, 2005d)	7 e 28
Estado endurecido	Determinação da resistência à tração na flexão	NBR 13.279 (ABNT, 2005c)	7 e 28
	Determinação da resistência à compressão	NBR 13.279 (ABNT, 2005c)	7 e 28
Análise microestrutural	Microscopia Eletrônica de Varredura (MEV)	-	56

FONTE: A autora (2016).

No estado fresco, os ensaios realizados foram o tempo de início e de fim de pega (FIGURA 3.32), e a densidade de massa fresca.

FIGURA 3.32 – ENSAIO DE TEMPO DE INÍCIO E FIM DE PEGA DO COMPÓSITO DE GESSO-MADEIRA

FONTE: A autora (2016).

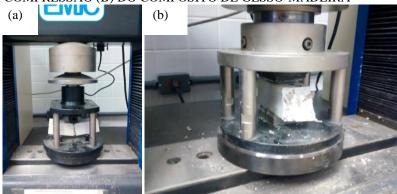

No estado endurecido, os ensaios realizados foram a determinação da densidade endurecida (FIGURA 3.33), a resistência à tração na flexão e à compressão (FIGURA 3.34).

FIGURA 3.33 – PROCEDIMENTOS PARA DETERMINAÇÃO DA DENSIDADE DE MASSA ENDURECIDA DO COMPÓSITO DE GESSO-MADEIRA

FONTE: A autora (2016).

FIGURA 3.34 – ENSAIOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (A) E ENSAIO DE RESISTÊNCIA À COMPRESSÃO (B) DO COMPÓSITO DE GESSO-MADEIRA

FONTE: A autora (2016).

A análise microestrutural foi realizada conforme os procedimentos prescritos para os compósitos de cimento-madeira no item 3.2.4. (página 83).

3.3.5 Análise da influência das diferentes proporções de madeira na composição

A continuidade do estudo foi realizada no intuito de determinar o traço com propriedades mecânicas adequadas para a produção de placas e, por isso, foram realizadas outras 2 relações aglomerante/madeira, que variaram em +75% e +100%, a quantidade de madeira, com relação ao teor de referência (TABELA 3.22). A relação água/gesso utilizada foi mantida em 0,70.

TABELA 3.22 – PROPORÇÕES AGLOMERANTE/MADEIRA UTILIZADOS NOS COMPÓSITOS DE GESSO-MADEIRA

Proporção (gesso/madeira)	Identificação
1:0,15	2,00
1:0,13	1,75

FONTE: A autora (2016).

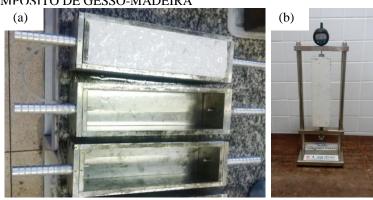
Os procedimentos de mistura, a confecção e a moldagem dos corpos de prova da foram realizadas de acordo com o descrito anteriormente. A dosagem e a quantidade de corpos de prova confeccionados para cada traço foram realizadas conforme descrito na TABELA 3.23.

TABELA 3.23 – DOSAGEM E QUANTIDADE DE CORPOS DE PROVA PRODUZIDOS COM COMPÓSITO DE GESSO-MADEIRA

						Quant. de corpos de prova (unid.)			
Aglom.		Madeiı	a		Ide ntificação	Prismáticos 4 x 4 x 16 cm		Prismáticos 7,5 x	
	Tipo	Trat.	Cond.	Teor		7 dias	28 dias	7,5 x 28,5 cm	
Gesso	Compensado	AF 48h	Não-	1,75	GM COMP NSAT 1,75	3	3	3	
			saturado	2,00	GM COMP NSAT 2,00	3	3	3	
	Eucalipto	Eucalipto AF 48h	Não-	1,75	GM EUC NSAT 1,75	3	3	3	
			saturado	2,00	GM EUC NSAT 2,00	3	3	3	
	Pinus	AF 48h	Não-	1,75	GM PIN NSAT 1,75	3	3	3	
			saturado	2,00	GM PIN NSAT 2,00	3	3	3	

FONTE: A autora (2016).

Para avaliar o desempenho dos corpos de prova serão realizados, apenas, os ensaios no estado endurecido descritos na TABELA 3.24.


TABELA 3.24 – ENSAIOS REALIZADOS PARA COMPÓSITOS DE GESSO-MADEIRA

Ensaios	Norma	Idade (dias)
Determinação da densidade de massa endurecida	NBR 13.280 (ABNT, 2005d)	7 e 28
Determinação da resistência à tração na flexão	NBR 13.279 (ABNT, 2005c)	7 e 28
Determinação da resistência à compressão	NBR 13.279 (ABNT, 2005c)	7 e 28
Variação dimensional	NBR 15.261 (ABNT, 2005e)	3 a 28

A determinação da densidade de massa endurecida, da resistência de tração à flexão e compressão foi realizada de acordo com o descrito anteriormente.

O ensaio de variação dimensional foi realizado de acordo com a NBR 15.261 (ABNT, 2005e), porém as formas utilizadas foram detalhadas na NBR 15.577-4. (ABNT, 2008). Os procedimentos de moldagem, desforma e determinação da variação dimensional são apresentados na FIGURA 3.35.

FIGURA 3.35 – MOLDAGEM (A) E DETERMINAÇÃO DA VARIAÇÃO DIMENSIONAL (B) DO COMPÓSITO DE GESSO-MADEIRA

FONTE: A autora (2016).

3.3.6 Confecção e análise da viabilidade de produção de placas de vedação vertical

Por fim, foram moldadas as placas de gesso-madeira. Os procedimentos das moldagens foram realizados de acordo com a NBR 12.129. (ABNT, 1991d). Foi utilizada uma betoneira portátil de 130L com motor de 0,33 CV e 34 RPM.

As placas foram produzidas com dimensões de 1,16 m x 1,78 m, e espessura de 12,5 mm. Foram confeccionadas 6 formas com gabaritos de madeira colados com cola de contato em lona plástica (FIGURA 3.36).

Para a madeira de compensado foi confeccionada uma placa (devido à escassez deste resíduo), para a madeira de eucalipto foram confeccionadas duas placas, assim como para a madeira de pinus. A mistura na betoneira e a dosagem foram realizadas de uma placa de cada vez. Após a mistura, o material foi lançado na forma, espalhado com uma colher de pedreiro, e alisado com régua de madeira para propiciar um bom acabamento (FIGURA 3.37).

FONTE: A autora (2016).

As placas foram produzidas nas dependências do LAME – Laboratório de Materiais e Estruturas na Universidade Federal do Paraná. Após 24h, as placas foram desformadas (FIGURA 3.38) e dispostas pelos corredores dos laboratórios. No momento da desmoldagem, uma das placas produzida com resíduo de pinus trincou e quebrou (FIGURA 3.39).

FIGURA 3.38 - PLACA COM COMPÓSITO DE GESSO-MADEIRA DESFORMADA

FIGURA 3.39 – DETALHES DA PLACA COM COMPÓSITO DE GESSO-MADEIRA QUEBRADA

FONTE: A autora (2016).

Depois de realizada a produção das placas, foi realizada considerações referentes ao processo de produção e às principais propriedades observadas.

4 RESULTADOS E DISCUSSÕES

Neste capítulo estão apresentados, analisados e discutidos os resultados obtidos com os ensaios realizados, conforme descrito no Capítulo 3. No intuito de facilitar e organizar o entendimento, este capítulo está dividido em três subitens principais. Nos dois primeiros, os resultados estão descritos de acordo com o aglomerante utilizado para a produção do compósito e, um terceiro subitem apresenta um comparativo entre os dois tipos de compósitos produzidos neste estudo.

A análise estatística realizada através do teste de Tukey está apresentada no **ANEXO**A.

4.1 RESULTADO DA CARACTERIZAÇÃO DAS PARTÍCULAS DE MADEIRA

Os resultados obtidos com o ensaio de pH estão apresentados na TABELA 4.1.

TABELA 4.1 – RESULTADOS DO ENSAIO DE PH

Madeira	pН
Compensado	8,72
Eucalipto	7,71
Pinus	7,69
EQ. IEEE	(2015)

FONTE: A autora (2016).

Geralmente, a maior parte das espécies de madeira apresentam pH ácido, entre 3,0 e 6,0 (IWAKIRI, 2005; REMADE, 2007) e, por isso, a partir dos valores obtidos, acredita-se que as partículas de madeira apresentaram contaminação provocada pela exposição nos canteiros de obras.

A discrepância observada para o resultado de pH da madeira de compensado pode ter sido provocada pela presença da resina fenol-formaldeído presente na composição deste resíduo. Isto porque, a resina utilizada apresenta, geralmente, pH alcalino entre 11,5 e 13,0. (IWAKIRI, 2005).

As imagens obtidas através do microscópio eletrônico de varredura estão apresentadas nas FIGURA 4.1, FIGURA 4.2 e FIGURA 4.3. A FIGURA 4.1 indica a existência da laminação cruzada na composição das partículas de compensado.

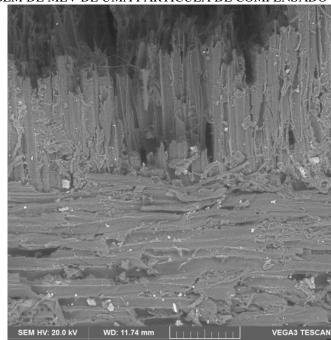


FIGURA 4.1 – IMAGEM DE MEV DE UMA PARTÍCULA DE COMPENSADO (300X DE AUMENTO)

Na FIGURA 4.2 é possível observar a imagem de uma folhosa, em que se encontram destacados os raios (seta 1) e os vasos com pontoações (seta 2) no plano tangencial.

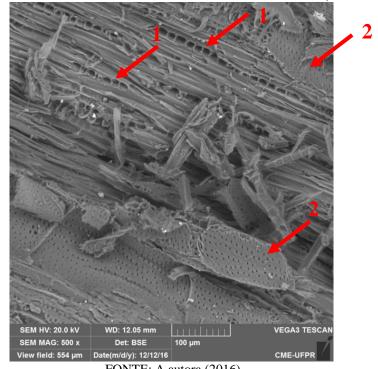


FIGURA 4.2 – IMAGEM DE MEV DE UMA PARTÍCULA DE EUCALIPTO (500X DE AUMENTO)

Na FIGURA 4.3 é possível observar a imagem de uma conífera, em que se encontram destacados as pontoações (seta 1) no campo de cruzamento no plano tangencial.



FIGURA 4.3 – IMAGEM DE MEV DE UMA PARTÍCULA DE PINUS (300X DE AUMENTO)

FONTE: A autora (2016).

4.2 ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE CIMENTO-MADEIRA

A produção dos compósitos de cimento-madeira foi realizada a partir de diferentes composições. Num primeiro momento, o objetivo foi analisar a influência da saturação, ou não, da madeira e a utilização dos aditivos aceleradores de pega. Na sequência, foi realizado o estudo das diferentes proporções de madeira. E por fim, foram produzidas as placas de vedação com a composição que apresentou propriedades mecânicas mais relevantes, para cada tipo de madeira, com relação ao seu desempenho.

4.2.1 Análise da influência da saturação da madeira e do uso de aditivos aceleradores de pega

Conforme apresentado no Capítulo 3, os procedimentos executados nesta fase contaram com a confecção de apenas uma amostra ou um corpo de prova para cada propriedade avaliada e, devido a isto, não foi aplicada nenhuma técnica estatística. Os resultados obtidos nesta fase foram necessários para delimitar os procedimentos e as composições produzidas nas próximas etapas.

4.2.1.1 Estado fresco

No estado fresco, foram realizados os ensaios do índice de consistência, de tempo de pega e de densidade de massa fresca. A TABELA 4.2 apresenta o resultado dos ensaios realizados no estado fresco, e os valores calculados para o consumo de cimento e relação a/c.

Os valores obtidos a partir dos resultados do ensaio de densidade de massa fresca – entre 1,58 g/cm³ e 1,71 g/cm³ – apresentaram coeficiente de variação de 9% considerando todas as composições produzidas.

Com relação ao índice de consistência, os resultados – entre 251,67 mm e 403,33 mm – apresentaram um coeficiente de variação de, aproximadamente, 60%, indicando a heterogeneidade das composições quando avaliada esta propriedade.

Os ensaios de tempo de pega apresentaram valores entre 35min e 7h 37min para o início de pega e valores entre 05h 49min e 10h 24min para o fim de pega.

Os valores obtidos a partir do cálculo do consumo de cimento apresentaram valores entre 1.000,35 kg/m³ e 1.078,89 kg/m³, e coeficiente de variação de 8%. E no que se refere à relação a/c, as composições produzidas com as partículas de madeira na condição não saturada apresentaram relação a/c de 0,51, enquanto que quando utilizadas as partículas de madeira na condição saturada, a relação a/c foi de 0,50.

TABELA 4.2 – RESULTADOS DOS ENSAIOS NO ESTADO FRESCO DOS COMPÓSITOS DE CIMENTOMADEIRA

MADEIR.	Densidade de	Índice de	Tempo de	nega	Consumo de		
Identificação	massa fresca	consistência	_	(h:min)		Relação	
ide initieuşuo	(g/cm ³)	(mm)	Início Fim		cimento (kg/m³)	a/c	
CM COMP NSAT REF	1,64	308	04:48	08:18	1.030,53	0,51	
CM COMP NSAT 0,4	1,63	335	04:32	06:58	1.026,24	0,51	
CM COMP NSAT 0,7	1,64	347	04:00	07:08	1.029,90	0,51	
CM COMP NSAT 1,0	1,67	343	03:07	06:37	1.053,79	0,51	
CM COMP NSAT 5,0	1,65	320	01:54	07:03	1.041,24	0,51	
CM COMP NSAT 10,0	1,60	292	01:19	07:54	1.007,68	0,51	
CM COMP NSAT 15,0	1,60	252	00:35	07:27	1.008,43	0,51	
CM COMP SAT REF	1,66	403	07:37	08:05	1.056,59	0,50	
CM COMP SAT 0,4	1,58	373	04:45	08:33	1.002,94	0,50	
CM COMP SAT 0,7	1,58	365	03:50	08:28	1.002,54	0,50	
CM COMP SAT 1,0	1,62	400	06:29	07:31	1.030,74	0,50	
CM COMP SAT 5,0	1,62	347	01:48	07:27	1.027,14	0,50	
CM COMP SAT 10,0	1,64	337	01:24	09:43	1.040,79	0,50	
CM COMP SAT 15,0	1,63	312	01:32	08:11	1.032,60	0,50	
CM EUC NSAT REF	1,68	340	04:42	08:29	1.060,44	0,51	
CM EUC NSAT 0,4	1,65	327	03:52	07:28	1.041,95	0,51	
CM EUC NSAT 0,7	1,70	340	02:29	06:54	1.071,94	0,51	
CM EUC NSAT 1,0	1,69	312	01:42	06:22	1.062,00	0,51	
CM EUC NSAT 5,0	1,65	297	01:42	07:06	1.002,00	0,51	
CM EUC NSAT 10,0	1,65	282	01:12	06:29	1.037,13	0,51	
CM EUC NSAT 15,0	1,62	280	00:49	06:57	1.037,01	0,51	
CM EUC SAT REF	1,67	398	03:34	07:04	1.018,72	0,51	
CM EUC SAT REF	1,63	368	04:31	08:46	1.002,40	0,50	
CM EUC SAT 0,7	1,61	395	04:14	08:09	1.034,33	0,50	
CM EUC SAT 1,0	1,61	393	04:14	05:49	1.024,09	0,50	
CM EUC SAT 1,0	1,63	357	01:53	06:43	1.024,70	0,50	
CM EUC SAT 10,0	1,63	330	01:42	08:00	1.033,27	0,50	
CM EUC SAT 10,0		348	01:50	07:41			
CM PIN NSAT REF	1,60	350	04:32		1.014,38	0,50	
	1,64 1,66	382	04.32	09:16 07:26	1.029,44	0,51	
CM PIN NSAT 0,4 CM PIN NSAT 0,7		390	03:58		1.043,32	0,51	
CM PIN NSAT 0,7 CM PIN NSAT 1,0	1,65 1,71	362	02:05	08:17 06:47	1.041,27	0,51	
CM PIN NSAT 5,0 CM PIN NSAT 10,0	1,66	343 338	02:13 01:30	06:56	1.048,27	0,51	
	1,69			06:37	1.061,34	0,51	
CM PIN NSAT 15,0	1,66	317	01:17 04:16	06:45	1.043,29	0,51	
CM PIN SAT REF	1,66	385		08:06	1.056,94	0,50	
CM PIN SAT 0,4	1,62	383	04:06	08:21	1.028,02	0,50	
CM PIN SAT 1.0	1,64	402	04:01	08:26	1.038,56	0,50	
CM PIN SAT 1,0	1,63	398	07:14	08:44	1.032,38	0,50	
CM PIN SAT 10.0	1,60	372	03:10	09:25	1.016,92	0,50	
CM PIN SAT 10,0	1,59	340	02:03	10:24	1.006,54	0,50	
CM PIN SAT 15,0	1,58	353	01:19	07:28	1.000,35	0,50	
Cimento Referência	-	-	03:22	08:48	-	0,50	

Na FIGURA 4.4 estão apresentados os resultados obtidos no ensaio do índice de consistência para os compósitos de cimento-madeira. Com relação à condição da partícula de madeira, percebe-se que para os três tipos (compensado, eucalipto e pinus), independente do aditivo utilizado, a condição saturada das partículas propiciou maior índice de consistência, tornando a mistura mais fluida.

Para as composições utilizando as partículas de madeira na condição não saturada, foi realizado um acréscimo de água conforme proposto por Simatupang (1979). Entretanto, considera-se que a quantidade de água adicionada talvez não tenha sido suficiente, uma vez que com a trituração das partículas houve um aumento da área específica das mesmas, o que pode ter causado redução da quantidade de água livre na mistura através da absorção desta, pelas partículas de madeira.

Já no procedimento de saturação, apesar de incluir o escoamento do excesso de água em peneira, a madeira ainda apresentava água livre aderida, provocando o aumento do índice de consistência. Santos (2005) relata que para um período curto de contato entre a água e a madeira, a água não ultrapassa as camadas superficiais da madeira, podendo ter contribuído na lubrificação entre as partículas do compósito.

Com relação à influência dos diferentes tipos de aditivos utilizados, é possível observar que o ADII – à base de silicato de sódio – exerceu influência na redução do índice de consistência provocando a diminuição da plasticidade do compósito.

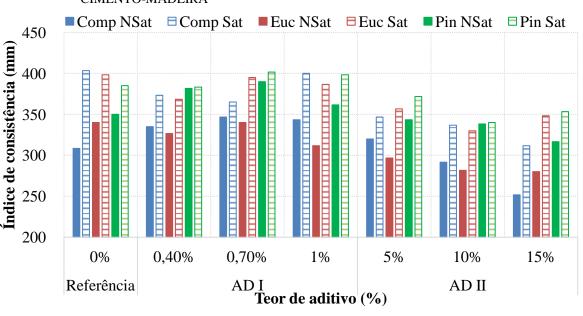


FIGURA 4.4 – RESULTADO DO ÍNDICE DE CONSISTÊNCIA – *FLOW TABLE* – DOS COMPÓSITOS DE CIMENTO-MADEIRA

Na FIGURA 4.5 é possível verificar a influência dos diferentes tipos de aditivos aceleradores de pega no ensaio de tempo de início de pega. De modo geral, para os resultados obtidos, quando comparado com as dosagens de referência, o AD I não foi eficaz apenas para a madeira de eucalipto na condição saturada. Enquanto que o AD II mostrou-se eficaz em todas as composições. Pode-se observar, também, que entre os dois diferentes tipos de aditivo acelerador de pega utilizados, o AD II apresentou maior eficácia mesmo para os menores de teores utilizados na mistura, diferente do observado para os resultados dos tempos de início de pega dos compósitos de cimento-madeira dosados com o AD I.

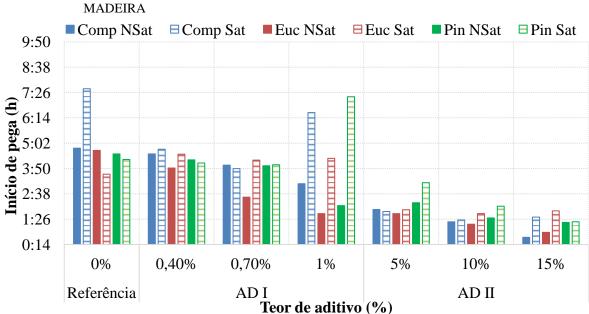
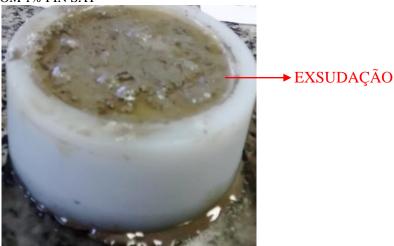



FIGURA 4.5 – RESULTADO DO TEMPO DE INÍCIO DE PEGA DOS COMPÓSITOS DE CIMENTO-

É importante ressaltar que para os ensaios de tempo de pega, a presença das partículas de madeira pode ter contribuído para uma falsa leitura, apesar de ter sido tomado o cuidado de repetir a leitura caso fosse observado que a agulha tivesse atingido uma partícula de madeira. Essa falsa leitura pode ter ocorrido nos compósitos de 0% Comp Sat, 1% Comp Sat e 1% Pin Sat, pois os valores de tempo de início de pega foram discrepantes. Para o caso do compósito 1% Pin Sat foi possível observar ainda, durante o ensaio, forte exsudação (FIGURA 4.6) – fenômeno que consiste na segregação em que parte da água da mistura tende a subir para a superfície (PETRUCCI, 1993) - que pode ter contribuído ainda mais para a falsa leitura.

FIGURA 4.6 – EXSUDAÇÃO APRESENTADA PELO COMPÓSITO DE CIMENTO-MADEIRA PRODUZIDO COM 1% PIN SAT

FONTE: A autora (2016).

Ao comparar a eficácia dos dois aditivos utilizados, verifica-se que o AD II 5% reduziu o início de pega em 51% quando comparado ao AD I 0,4%, o AD II 10% reduziu 59% quando comparado ao AD I 0,7% e o AD II 15% reduziu 65% quando comparado ao AD I 1%. Porém, ao levar em consideração a eficácia dos três teores adotados para o AD II, observa-se que o início do tempo de pega para o teor de 5% é 52% superior ao teor de 15%, entretanto o AD II 5% consome um terço da quantidade do teor AD II 15%, apresentando melhor custo benefício.

Na FIGURA 4.7 estão apresentados os resultados do tempo de fim de pega que é o termo designado para o período necessário para a pasta de solidificar completamente. (MEHTA, P. K.; MONTEIRO, P. J. M., 2014). Percebe-se que os aditivos foram eficazes para as composições em que a partícula de madeira foi utilizada na condição não saturada, exceto para as amostras de Euc NSat 1% e Euc NSat 5%.

Das substâncias presentes na madeira, a celulose, hemicelulose e lignina são polímeros de baixa solubilidade em água (HANSEN, C. M.; BJÖRKMAN, A.), entretanto, os extrativos são substâncias que apresentam baixo peso molecular e alta solubilidade em solventes orgânicos neutros. (FENGEL, D.; WEGENER, G., 1989). Além disso, Morais, Nascimento e Melo (2005) explicam que alguns constituintes da madeira são solúveis em água como, por exemplo, alguns sais ou minerais orgânicos, açúcares e polissacarídeos. Aliado às substâncias presentes na madeira, a solubilidade de partículas de madeira menores é maior quando comparado às partículas de madeira de maiores dimensões (HORVATH, 2006), sendo assim acredita-se que a condição saturada das partículas de madeira foi capaz de propiciar a solubilização de substâncias que camuflaram a eficácia dos aditivos para o ensaio

do tempo de fim de pega. Petrucci (1993) afirma que, em concretos, a presença de açúcar em até 0,3% (com relação à água de amassamento) pode retardar a pega e provocar a diminuição da resistência mecânica. Isto porque, a sacarose aumenta a solubilidade do aluminato tricálcio (C₃A) que junto com o ferroaluminato-tetracálcio é responsável pela resistência inicial da massa. A rápida dissolução do C₃A consome água em excesso e a quantidade de água livre torna-se insuficiente para a hidratação dos silicatos de cálcio que são responsáveis pelas resistências finais. O açúcar, também, se combina com a cal presente no cimento e forma o sacarato de cálcio, solúvel e expansivo, tornando o concreto facilmente desagregável, propiciando a queda de resistência.

Neste mesmo sentido, Iwakiri (2005) afirma que a interferência dos açúcares com estrutura molecular amorfa e cristalina torna-se agente promotor da dificuldade de ligação entre a madeira e a matriz de cimento em compósitos.

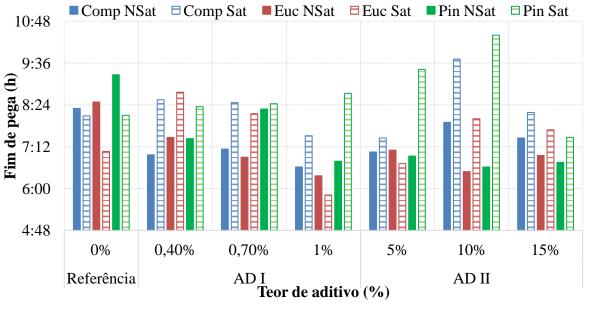


FIGURA 4.7 – RESULTADO DO TEMPO DE FIM DE PEGA DOS COMPÓSITOS DE CIMENTO-MADEIRA

A FIGURA 4.8 apresenta os resultados do tempo de início e fim de pega dos compósitos de cimento-madeira referência, ou seja, compósitos sem aditivo acelerador de pega em sua composição. Desta forma, é possível verificar que, para o tempo de início de pega, a presença da partícula de madeira, de fato, contribuiu para o retardo do início de pega. Entretanto, para o tempo de fim de pega, a presença da partícula de madeira não foi determinante para seu retardo.

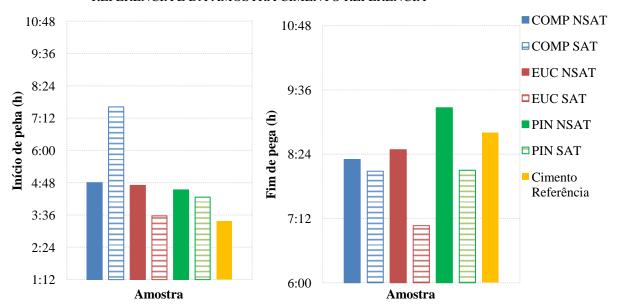


FIGURA 4.8 – RESULTADO DO TEMPO DE PEGA DOS COMPÓSITOS DE CIMENTO-MADEIRA REFERÊNCIA E DA AMOSTRA CIMENTO REFERÊNCIA

A FIGURA 4.9 apresenta os resultados de densidade de massa fresca dos compósitos de cimento-madeira produzidos com diferentes tipos e teores de aditivo acelerador de pega. Os resultados não apresentam uma tendência clara e isto pode ter ocorrido devido à heterogeneidade do compósito, além da variação da dispersão e da disposição das partículas de madeira. No entanto, na maioria das composições, pode-se verificar que os compósitos produzidos com as partículas de madeira na condição não saturada apresentaram maior densidade de massa fresca, já que o procedimento da saturação das partículas pode, além de ter aumentado o teor de água da mistura, ter propiciado o inchamento da madeira, provocando a alteração do volume e, consequentemente, permitindo que uma menor quantidade de pasta de cimento ocupasse o volume do recipiente de ensaio. Souza *et al.* (2012) avaliaram o inchamento em espessura de painéis aglomerados de pinus e verificaram que as amostras saturadas em água por um período de 2h, apresentaram inchamento de 3,99% a 7,74%.

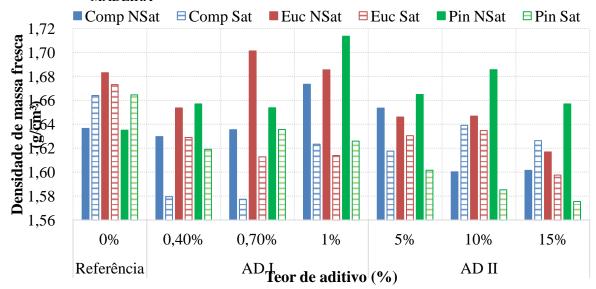
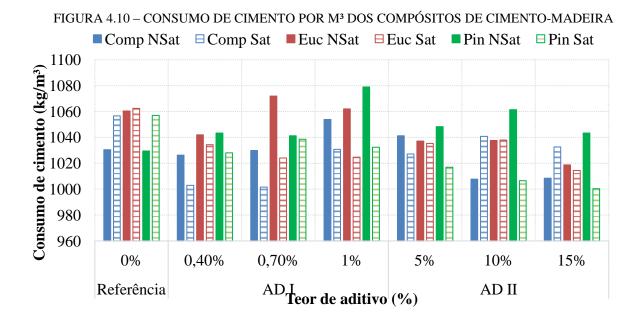



FIGURA 4.9 – RESULTADOS DE DENSIDADE DE MASSA FRESCA DOS COMPÓSITOS DE CIMENTO-MADEIRA

Na FIGURA 4.10 estão apresentados os valores do consumo de cimento dos compósitos de madeira produzidos. Estes valores são considerados muito altos, porque concretos tendem a consumir cerca de 360 kg/m³ a 500 kg/m³ em elementos e componentes estruturais de concreto armado e protendido.

É importante ressaltar que, apesar de elevado, o consumo de cimento propiciou o excesso de pasta na mistura e, consequentemente, a possibilidade de confecção e moldagem do compósito no estado plástico, sem a utilização de equipamentos específicos de aquecimento, prensagem e grampeamento. Porém, quanto maior o consumo de cimento, maior tende a ser o custo para a produção do compósito.

4.2.1.2 Estado endurecido

No estado endurecido, foram realizados, aos 7 e aos 28 dias, os ensaios de densidade de massa endurecida, resistência à tração na flexão e resistência à compressão. A TABELA 4.3 apresenta o resultado dos ensaios realizados no estado endurecido.

Os valores obtidos a partir dos resultados do ensaio de densidade de massa endurecida – entre 1.317,38 kg/m³ e 1.774,49 kg/m³ aos 7 dias, entre 1.314,01 kg/m³ e 1.776,78 kg/m³ aos 14 dias e entre 1.301,93 kg/m³ e 1.704,27 kg/m³ aos 28 dias, – apresentaram coeficiente de variação de, aproximadamente, 35% considerando todas as composições produzidas.

Com relação à resistência à tração na flexão, os valores obtidos mantiveram-se entre 1,33 MPa e 5,91 MPa aos 7 dias, entre 1,46 MPa e 6,21 MPa aos 14 dias e entre 2,19 MPa e 6,85 MPa aos 28 dias.

Os resultados de resistência à compressão permaneceram entre 4,67 MPa e 21,74 MPa aos 7 dias, 5,86 MPa e 22,00 MPa aos 14 dias e 7,38 MPa e 24,95 MPa aos 28 dias.

TABELA 4.3 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA

CIMENT	Densidade de massa endurecida			Resistência à tração na			Resistência à compressão		
Identificação	(kg/m³)			flexão (MPa)			(MPa)		
3	7 dias	14 dias	28 dias	7 dias	14 dias	28 dias	7 dias	14 dias	28 dias
CM COMP NSAT REF	1.643,99	1.622,07	1.657,04	4,98	3,54	6,85	14,35	18,20	19,72
CM COMP NSAT 0,4	1.706,23	1.655,39	1.704,27	3,31	3,87	4,21	19,10	18,15	20,99
CM COMP NSAT 0,7	1.751,76	1.411,65	1.612,02	4,74	6,21	5,71	17,74	17,19	21,24
CM COMP NSAT 1,0	1.703,39	1.658,17	1.697,14	5,85	4,47	5,10	15,28	19,91	23,19
CM COMP NSAT 5,0	1.661,28	1.338,63	1.585,70	3,76	3,20	4,00	9,82	12,44	15,20
CM COMP NSAT 10,0	1.555,02	1.314,01	1.490,04	2,90	2,96	4,86	7,32	8,68	9,85
CM COMP NSAT 15,0	1.625,31	1.512,88	1.538,97	2,56	2,65	4,16	5,40	7,97	10,41
CM COMP SAT REF	1.657,84	1.592,84	1.447,70	2,79	4,36	4,13	17,20	18,98	24,95
CM COMP SAT 0,4	1.466,19	1.645,92	1.357,99	5,91	4,04	4,14	14,93	20,10	20,81
CM COMP SAT 0,7	1.473,58	1.611,74	1.312,96	3,50	2,79	4,69	17,33	18,64	20,84
CM COMP SAT 1,0	1.774,49	1.599,77	1.533,58	2,53	4,52	4,52	21,74	22,00	21,94
CM COMP SAT 5,0	1.469,57	1.587,83	1.521,00	5,61	2,72	4,55	13,52	15,66	16,36
CM COMP SAT 10,0	1.358,61	1.541,50	1.442,14	3,04	2,14	3,83	8,63	10,98	12,19
CM COMP SAT 15,0	1.367,06	1.571,41	1.498,89	2,52	2,69	4,51	8,26	9,85	10,29
CM EUC NSAT REF	1.774,03	1.776,78	1.646,62	3,21	2,66	4,68	8,68	12,41	13,63
CM EUC NSAT 0,4	1.657,45	1.729,16	1.669,29	2,50	3,64	3,35	12,35	13,87	16,71
CM EUC NSAT 0,7	1.739,00	1.426,83	1.701,27	3,45	2,93	3,99	13,22	13,74	15,96
CM EUC NSAT 1,0	1.701,32	1.725,04	1.703,59	2,57	5,99	4,42	12,95	16,01	19,28
CM EUC NSAT 5,0	1.729,33	1.407,95	1.511,34	1,85	2,72	3,81	8,05	9,58	10,91
CM EUC NSAT 10,0	1.528,24	1.318,40	1.511,54	2,84	2,25	3,07	6,02	7,19	8,14
CM EUC NSAT 15,0	1.613,56	1.501,56	1.539,19	2,33	2,04	3,39	5,42	7,07	7,38
CM EUC SAT REF	1.725,03	1.560,83	1.458,40	2,28	2,81	2,92	13,66	10,76	18,79
CM EUC SAT 0,4	1.438,81	1.585,57	1.361,06	2,81	1,83	2,69	10,58	13,86	13,44
CM EUC SAT 0,7	1.408,03	1.469,15	1.356,42	2,22	2,26	4,06	9,40	11,75	13,36
CM EUC SAT 1,0	1.646,14	1.545,04	1.390,78	2,18	4,37	3,56	13,38	14,81	16,74
CM EUC SAT 5,0	1.607,58	1.473,35	1.330,37	2,19	2,81	2,68	7,24	9,31	9,98
CM EUC SAT 10,0	1.359,38	1.493,33	1.441,19	2,48	2,49	2,95	6,37	7,76	8,87
CM EUC SAT 15,0	1.317,38	1.429,86	1.410,33	1,47	1,46	2,90	5,32	5,86	9,59
CM PIN NSAT REF	1.678,18	1.613,77	1.592,79	2,92	2,95	4,17	12,49	13,93	12,75
CM PIN NSAT 0,4	1.664,02	1.705,81	1.625,44	2,19	2,16	4,07	10,99	14,37	18,96
CM PIN NSAT 0,7	1.694,22	1.426,29	1.589,47	2,84	2,84	3,42	12,61	12,93	16,17
CM PIN NSAT 1,0	1.746,75	1.707,18	1.633,28	3,91	3,30	3,89	16,21	12,65	15,46
CM PIN NSAT 5,0	1.681,57	1.375,60	1.575,23	1,99	2,59	4,37	7,80	10,04	13,98
CM PIN NSAT 10,0	1.605,52	1.336,07	1.575,75	2,74	2,43	2,41	8,60	9,20	10,43
CM PIN NSAT 15,0	1.563,85	1.516,75	1.556,09	1,87	2,35	3,33	4,67	5,98	8,61
CM PIN SAT REF	1.639,26	1.599,35	1.382,38	2,26	2,96	3,39	8,81	12,96	16,50
CM PIN SAT 0,4	1.482,97	1.470,89	1.394,33	2,29	2,00	4,45	15,55	10,10	19,54
CM PIN SAT 0,7	1.483,75	1.537,22	1.390,20	1,33	2,09	3,15	15,11	15,91	18,66
CM PIN SAT 1,0	1.753,24	1.488,22	1.301,93	2,87	2,14	2,26	9,24	12,49	13,29
CM PIN SAT 5,0	1.406,24	1.425,79	1.321,57	2,47	2,55	3,10	15,47	8,05	10,84
CM PIN SAT 10,0	1.383,45	1.448,42	1.366,80	2,33	2,69	2,96	6,91	8,78	9,12
CM PIN SAT 15,0	1.389,94	1.370,54	1.423,73	2,70	2,21	2,19	6,87	7,53	9,55

Na FIGURA 4.11 são apresentados os resultados do ensaio de densidade de massa endurecida aos 28 dias. Observa-se que para todas as composições, a condição da partícula de madeira apresentou influência nos resultados. Pois, para a condição não saturada foram obtidos valores superiores quando comparado à condição saturada. É possível inferir que a produção do compósito com a madeira saturada incluiu excesso de água proveniente do procedimento da saturação, que evaporaram e propiciaram a formação de vazios no interior

do compósito. Deve-se levar em consideração, também, a variação dimensional das partículas de madeira desde a dosagem do compósito até a realização do ensaio, que perdem a água para o meio reduzindo seu tamanho e provocando a existência de vazios na zona de transição entre a madeira e a matriz cimentícia.

É importante destacar que para os compósitos de referência e os compósitos dosados com o ADI foi verificada, em média, a diferença de 14% e 21% da densidade de massa endurecida entre a condição saturada e não saturada, respectivamente, enquanto que para o AD II a diferença média foi de 9%. Esta diferença pode ter sido provocada pela composição dos aditivos utilizados.

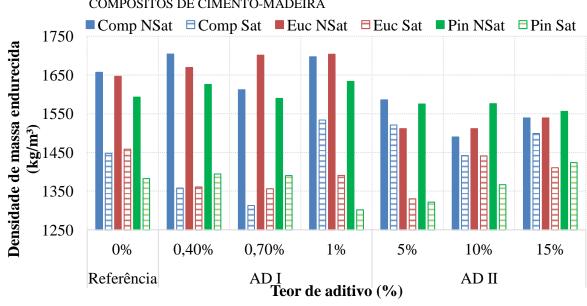


FIGURA 4.11 – RESULTADO DA DENSIDADE DE MASSA ENDURECIDA AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

Na FIGURA 4.12 estão apresentados os resultados do ensaio de resistência à tração na flexão aos 28 dias. Os valores obtidos apresentaram grande variação que pode ter sido provocada devido à natureza dos três tipos de madeira, à influência dos aditivos aceleradores de pega e à condição da partícula de madeira, mas, sobretudo pela dispersão das partículas na mistura e sua disposição no momento da moldagem dos corpos de prova.

No que se refere ao tipo de madeira utilizado, as composições produzidas com compensado, eucalipto e pinus apresentaram valores médios de 4,66 MPa, 3,46 MPa e 3,37 MPa, respectivamente.

Com relação à natureza do aditivo empregado, os compósitos produzidos sem aditivo apresentaram resistência média de 4,36 MPa, enquanto que os compósitos produzidos com o AD I e o AD II apresentaram resistência média de 3,98 MPa e 3,50 MPa, respectivamente.

Verifica-se que ambos aditivos aceleradores de pega utilizados contribuíram para a redução da resistência à tração na flexão.

No que se refere à condição da partícula de madeira, os compósitos de compensado, eucalipto e pinus apresentaram uma redução média de 15%, 23% e 19%, respectivamente, quando utilizados na condição saturada. Savastano Júnior, Dantas e Agopyan (1994) explicam que, devido à sua estrutura, as fibras vegetais apresentam elevada capacidade de absorção de água e inchamento, provocando a diminuição da resistência da fibra e a sua aderência com a matriz, propiciando o deslizamento entre as fases.

Alguns pesquisadores afirmam que relações a/c maiores são capazes de propiciar o aumento da porosidade da matriz, principalmente próximo à fibra e, por isso, tendem a apresentar uma diminuição da resistência à tração. (SAVASTANO JÚNIOR, H.; DANTAS, F. de A. S.; AGOPYAN, V., 1994).

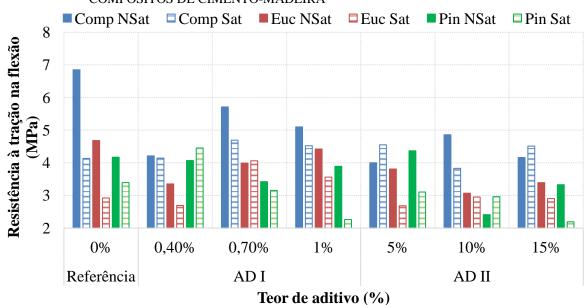


FIGURA 4.12 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

Na FIGURA 4.13 estão apresentados os resultados do ensaio de resistência à compressão aos 28 dias. Os valores obtidos apresentaram grande variação, também, devido à natureza dos três tipos de madeira, à influência dos aditivos aceleradores de pega e à condição da partícula de madeira e, assim como no ensaio de resistência à tração na flexão, a dispersão das partículas na mistura e a sua disposição no momento da moldagem dos corpos de prova podem ter contribuído para a discrepância dos resultados.

No que se refere ao tipo de madeira utilizada, as composições produzidas com compensado, eucalipto e pinus, apresentaram valores médios de 17,71 MPa, 13,05 MPa e 13,85 MPa, respectivamente. Assim como no ensaio de resistência à tração na flexão, dentre os tipos de madeira utilizados, as partículas provenientes da madeira de compensado apresentaram os maiores resultados. Isso se deve, provavelmente, a duas peculiaridades presentes neste resíduo, sendo a primeira a laminação cruzada realizada em seu processo de fabricação, capaz de proporcionar uma melhor distribuição das resistências nos sentidos longitudinal e transversal (PETRUCCI, 1976; IWAKIRI, 2005), e, também, devido à presença da resina fenol-formaldeído em sua composição, conferindo ao produto características de resistência à água (PETRUCCI, 1976; IWAKIRI, 2005) e, consequentemente, maior durabilidade. Além disso, a maior alcalinidade da partícula de madeira deste resíduo pode ter contribuído para a compatibilidade entre o cimento e a madeira.

Azambuja (2015) relata em seu estudo que a presença de água pode provocar alterações nas partículas de compensado durante as primeiras horas de exposição, todavia, as partículas foram capazes de se estabilizar quando exposta em longo prazo. Os baixos valores de resistência mecânica obtidos para os compósitos produzidos com as partículas provenientes dos resíduos de eucalipto podem ter sido provocados pelo alto inchaço e baixa estabilidade dimensional desta madeira. (AYRILMIS *et al.*, 2011).

Com relação à natureza do aditivo empregado, os compósitos produzidos sem aditivo apresentaram resistência média de 17,72 MPa, enquanto que os compósitos produzidos com o AD I e o AD II apresentaram resistência média de 18,14 MPa e 10,65 MPa, respectivamente. É possível observar que apesar da diminuição da resistência propiciada pela utilização do AD II quando comparado ao AD I, o segundo não apresentou viabilidade de utilização devido à exsudação provocada ainda no estado fresco.

No que se refere à condição da partícula de madeira, os compósitos produzidos com as partículas de compensado, eucalipto e pinus apresentaram uma redução média de 6%, 1% e 1%, respectivamente, quando utilizados na condição saturada em comparação com a condição não saturada.

Ao avaliar a utilização do AD II, percebe-se que a diminuição da resistência à compressão provocada por este aditivo quando utilizado na composição, ocorreu em menor magnitude para o menor teor utilizado.

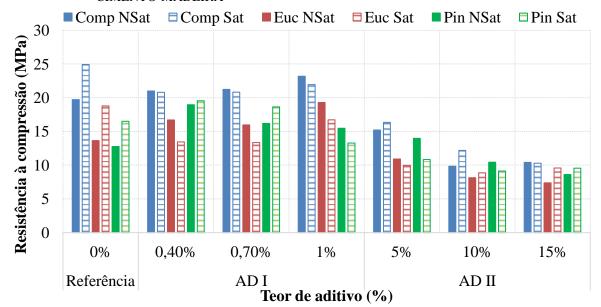


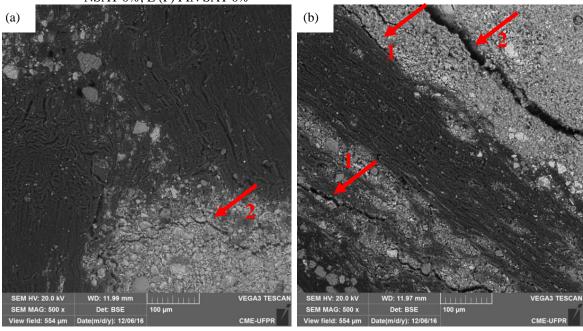
FIGURA 4.13 – RESULTADOS DE RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

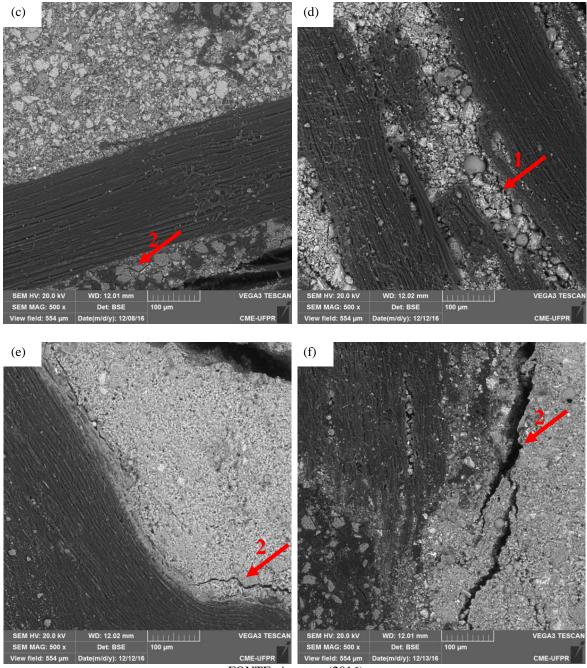
4.2.1.3 Análise microestrutural

Foram realizados os ensaios de microscopia eletrônica de varredura (MEV) e, no intuito de evitar a repetitividade de imagens, devido à sua semelhança, estão apresentas e comentadas somente as principais imagens e características verificadas nos compósitos de cimento-madeira produzidos.

Na FIGURA 4.14 são apresentadas as imagens obtidas através do ensaio de microscopia eletrônica de varredura (MEV) para os compósitos de referência de cimento-madeira produzido com resíduo de compensado, eucalipto e pinus, na condição não saturada e saturada e com 0% de aditivo. A imagem possui ampliação de 500 X sendo possível identificar em tom mais escuro as partículas de madeira e, ao redor em tom mais claro, a pasta da matriz cimentícia.

As setas nº1 indicam os descolamentos das partículas de madeira com relação à matriz que ocorreram devido à variação dimensional provocada pela perda de água que é absorvida durante a produção do compósito. (SAVASTANO JÚNIOR, H.; DANTAS, F. de A. S.; AGOPYAN, V., 1994).


Em compósitos com fibras, Savastano Júnior, Dantas e Agopyan (1994), afirmam, ainda, que a zona de transição compreende até 200µm ao redor da fibra e, neste estudo, é possível identificar nas setas nº2 a evolução de fissuras através da zona de transição demonstrando sua baixa resistência.


Nas figuras FIGURA 4.14 (a) e FIGURA 4.14 (b) estão apresentadas as imagens dos compósitos Comp NSat 0% e Comp Sat 0%, respectivamente. Na figura (a), a partícula de madeira permanece aderida à matriz, porém é possível identificar a evolução de uma fissura ao longo da zona de transição (seta 2). Na figura (b), o compósito produzido com a partícula saturada apresenta o descolamento da partícula da madeira com relação à matriz, indicado pela seta 1, além da ocorrência de uma fissura no decorrer da zona de transição.

As figuras FIGURA 4.14 (c) e FIGURA 4.14 (d) apresentam as imagens dos compósitos Euc NSat 0% e Euc Sat 0%, respectivamente. A figura (c) apresenta a boa aderência existente entre a partícula de madeira e a matriz cimentícia, apesar disso, é possível identificar (seta 2) uma pequena fissura desenvolvida ao longo da zona de transição. A figura (d), que ilustra o compósito produzido com a madeira na condição saturada, apresenta o descolamento da partícula de madeira provocado, além de uma zona de transição porosa.

As figuras FIGURA 4.14 (e) e FIGURA 4.14 (f) apresentam as imagens dos compósitos Pin NSat 0% e Pin Sat 0%, respectivamente. Nas duas figuras é possível verificar a incidência de fissuras ao longo da zona de transição, porém, na figura (e) a fissura apresenta menor magnitude quando comparada à figura (f).

FIGURA 4.14 – IMAGEM DE MEV DOS COMPÓSITOS DE CIMENTO-MADEIRA
(A) COMP NSAT 0%; (B) COMP SAT 0%; (C) EUC NSAT 0%; (D) EUC SAT 0%; (E) PIN NSAT 0%; E (F) PIN SAT 0%

FONTE: A autora (2016).

A partir das imagens obtidas com o ensaio de microscopia eletrônica de varredura (MEV) nos compósitos produzidos com cimento-madeira, é possível deduzir que a saturação das partículas de madeira contribuiu para o enfraquecimento da matriz cimentícia. Isto porque, quando comparada à condição não saturada, foi verificada a ocorrência do descolamento da partícula de madeira, além do desenvolvimento de fissuras de maiores proporções ao longo da zona de transição.

A partir dos ensaios realizados, tornou-se possível efetuar a análise da influência da saturação da madeira e do uso de aditivos aceleradores de pega em compósitos de cimento-madeira, produzidos com madeira proveniente de RCD.

Com relação à condição da madeira – saturada ou não saturada – os ensaios no estado fresco, indicam que esse procedimento provocou a alteração do índice de consistência, já que, os compósitos produzidos com as partículas de madeira saturada apresentaram maior índice de consistência, tornando a mistura mais fluida. Verificou-se, também, que o ensaio de tempo de fim de pega apresentou os maiores valores para a condição saturada, isto porque, pode ter contribuído para a solubilização de substâncias presentes na madeira. No estado endurecido, a saturação contribuiu para a diminuição da resistência à tração na flexão e da resistência à compressão dos compósitos quando comparados aos produzidos na condição não saturada. Além disso, a análise microestrutural indica que a saturação propiciou o enfraquecimento da matriz cimentícia.

Com relação à utilização dos aditivos aceleradores de pega, os ensaios no estado fresco indicam que para os três tipos de madeira estudados, a maior compatibilidade foi obtida com a utilização do AD II – à base de silicato de sódio – quando comparado ao AD I – à base de nitrato de cálcio. No estado endurecido, ambos aditivos propiciaram a diminuição da resistência à tração na flexão e à compressão. Considerando os teores utilizados para o AD II – 5%, 10% e 15% – verificou-se que o melhor custo benefício foi apresentado pelo teor de 5%.

Desta maneira, a análise da influência das diferentes proporções de madeira na composição foi realizada em compósitos de cimento-madeira produzidos com a partícula de madeira na condição não saturada e com o AD II no teor de 5%.

4.2.2 Análise da influência das diferentes proporções de madeira na composição

Os procedimentos executados nesta fase contaram com a confecção de três a seis corpos de prova para cada propriedade avaliada sendo possível aplicar a técnica estatística de análise de variância em conjunto com o teste de Tukey.

4.2.2.1 Estado endurecido

No estado endurecido, foram realizados os ensaios de densidade de massa endurecida, resistência à tração na flexão, resistência à compressão e variação dimensional. A TABELA 4.4 apresenta o resultado dos ensaios realizados no estado endurecido.

Os resultados do ensaio de densidade de massa endurecida apresentaram valores entre 1.510,05 kg/m³ e 1.710,02 kg/m³ aos 7 dias e entre 1.437,96 kg/m³ e 1.627,59 kg/m³ aos 28 dias.

Com relação à resistência à tração na flexão, os valores obtidos mantiveram-se entre 2,49 MPa e 6,63 MPa aos 7 dias e entre 3,03 MPa e 7,79 MPa aos 28 dias.

Os resultados de resistência à compressão permaneceram entre 6,26 MPa e 12,59 MPa aos 7 dias e 8,05 MPa e 16,65 MPa aos 28 dias.

TABELA 4.4 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA

	Densidade de massa endurecida (kg/m³)		Resistênci	a à tração	Resistência à		
Identificação			na flexã	o (MPa)	compressão (MPa)		
	7 dias	28 dias	7 dias	28 dias	7 dias	28 dias	
CM COMP NSAT 1,25	1.710,02	1.627,59	5,50	5,30	12,59	16,65	
CM COMP NSAT 1,50	1.570,65	1.499,80	6,39	6,63	11,27	13,71	
CM COMP NSAT 1,75	1.532,18	1.492,29	6,19	6,96	10,32	12,57	
CM COMP NSAT 2,00	1.523,91	1.438,66	6,63	7,79	10,49	12,66	
CM EUC NSAT 1,25	1.611,35	1.485,06	3,06	3,79	7,11	8,41	
CM EUC NSAT 1,50	1.588,38	1.477,10	2,77	4,65	7,29	10,25	
CM EUC NSAT 1,75	1.553,93	1.470,27	2,95	3,86	7,07	8,86	
CM EUC NSAT 2,00	1.510,05	1.446,60	2,73	3,03	6,26	8,05	
CM PIN NSAT 1,25	1.638,67	1.490,22	2,49	4,09	8,28	10,18	
CM PIN NSAT 1,50	1.611,26	1.455,05	3,96	4,37	8,25	10,54	
CM PIN NSAT 1,75	1.590,22	1.447,03	3,24	4,03	8,41	9,39	
CM PIN NSAT 2,00	1.563,00	1.437,96	3,81	3,45	7,53	9,98	

Na FIGURA 4.15 estão apresentados os resultados obtidos para o ensaio de densidade de massa endurecida realizado nos corpos de prova aos 28 dias. Para os teores de madeira de 1,25, 1,50, 1,75 e 2,00, as densidades endurecidas foram, em média, de 1.534,29 g/cm³, 1.477,32 g/cm³, 1.469,86 g/cm³ e 1.441,07 g/cm³, respectivamente.

Assim como obtido anteriormente, conforme o teor de madeira aumenta no compósito, menor é a densidade endurecida obtida, corroborando com o explicado por Morales-Conde, Rodríguez-Liñán e Pedreño-Rojas (2016).

A análise estatística aplicada através do teste de Tukey realizou a comparação de todas as médias das densidades de massa endurecida, aos 28 dias, indicando equivalência estatística para todas as comparações, exceto para as combinações de Comp 1,25 com Comp 2,00, Euc 1,50, Euc 1,75, Euc 2,00, Pin 1,50, Pin 1,75 e Pin 2,00. É possível concluir que a densidade de massa endurecida para a composição Comp 1,25 apresenta diferença significativa quando comparada com as demais. Graficamente, é possível visualizar a discrepância da densidade obtida por esta composição.

Nesta análise, o coeficiente de variação apresentado pelos dados analisados foi de 3,32% indicando a homogeneidade dos valores obtidos com o ensaio de densidade de massa endurecida para os compósitos de cimento-madeira.

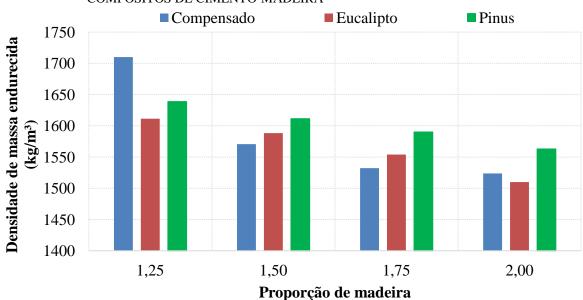


FIGURA 4.15 – RESULTADO DA DENSIDADE DE MASSA ENDURECIDA AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

Ao acompanhar a evolução da densidade endurecida no período de 7 e 28 dias (FIGURA 4.16), percebe-se que para todas as composições ocorreu a perda de massa, e isto se deve à evaporação da água presente no corpo de prova e, consequentemente, a formação de vazios. Ao analisar a influência do teor para cada tipo de madeira, em todos os casos, é possível observar que o aumento da densidade endurecida é inversamente proporcional ao aumento da proporção de madeira, tanto para a idade de 7 dias como para a idade de 28 dias.

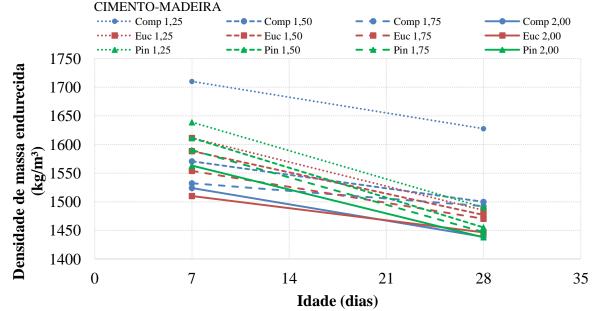


FIGURA 4.16 – EVOLUÇÃO DA DENSIDADE ENDURECIDA AOS 7 E 28 DIAS DOS COMPÓSITOS DE

Os resultados do ensaio de resistência à tração na flexão, aos 28 dias, podem ser observados na FIGURA 4.17. Os valores obtidos apresentaram uma grande variabilidade, 3,03 MPa a 7,79MPa, e é possível constatar que isso foi provocado pelos diferentes tipos de madeira utilizados em cada composição.

As maiores resistências foram verificadas para os compósitos produzidos com a partícula de madeira proveniente do resíduo de compensado. Observa-se que, para esta madeira, quanto maior a proporção de madeira, maior é a resistência obtida. O resíduo em questão é proveniente de um produto industrializado que apresenta em sua composição a resina de formol-formaldeído e é produzida através da laminação cruzada.

No entanto, para os compósitos produzidos com a partícula de madeira proveniente do resíduo de eucalipto e de pinus, os resultados apresentaram maior valor para a proporção de madeira de 1,50. Para proporções maiores, a quantidade de madeira provocou o decréscimo da resistência.

A análise estatística aplicada através do teste de Tukey realizou a comparação de todas as médias das resistências à tração na flexão, aos 28 dias, indicando diferença estatística nas comparações realizadas É possível inferir que a resistência à tração na flexão pode ser influenciada pela presença de resíduos de compensado em sua composição, pois, essas composições apresentam diferença significativa quando comparada com as demais. Graficamente, é possível visualizar a discrepância da resistência à tração na flexão para as composições contendo as partículas de compensado.

Nesta análise, o coeficiente de variação apresentado pelos dados analisados foi de 13,89% indicando a baixa dispersão dos valores obtidos com o ensaio de resistência à tração na flexão para os compósitos de cimento-madeira.

Desta maneira é possível perceber que, para as composições contendo resíduos de eucalipto e pinus, por não apresentarem diferença estatística, adotar a maior proporção de madeira para a produção do compósito é vantajoso no sentido de retirar do meio ambiente uma maior quantidade de resíduos, além de diminuir o consumo de aglomerante.

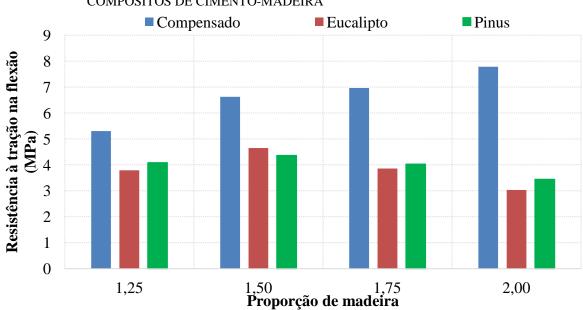


FIGURA 4.17 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

Na FIGURA 4.18 está apresentada a evolução da resistência à tração na flexão nos compósitos para as idades de 7 e 28 dias. É possível observar a diferença das resistências obtidas para os compósitos produzidos com a partícula de compensado. Aos 7 dias, as resistências para a madeira de compensado, de eucalipto e de pinus foram, em média, de 6,18 MPa, 2,87 MPa, e 3,37 MPa, respectivamente. O ganho de resistência para cada uma das madeiras, comparando os períodos de 7 e 28 dias, foi de 6% para o compensado, de 23% para o eucalipto e de 14% para o pinus, em média.

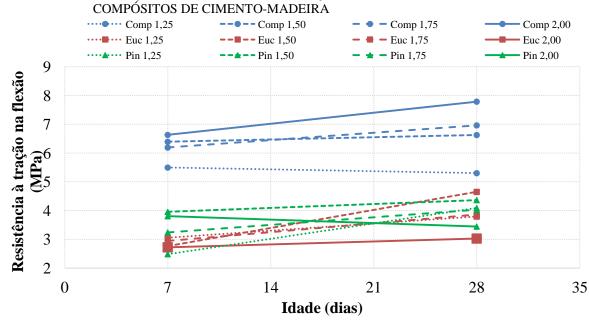


FIGURA 4.18 – EVOLUÇÃO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 7 E 28 DIAS DOS

Os resultados do ensaio de resistência à compressão, aos 28 dias, podem ser observados na FIGURA 4.19. Os valores médios obtidos apresentaram uma grande variabilidade, 8,05 MPa a 16,65 MPa e, assim como no resultado de resistência à tração na flexão, é possível inferir que isto foi provocado pelos diferentes tipos de madeira (compensado, eucalipto e pinus).

As maiores resistências foram verificadas para os compósitos de cimento-madeira produzidos com a partícula de madeira proveniente do resíduo de compensado. Observa-se que, para este resíduo, quanto a maior proporção de madeira, maior é a resistência à compressão obtida.

Entretanto, para os compósitos produzidos com a partícula de madeira proveniente do resíduo de eucalipto e de pinus, os resultados médios apresentaram maior valor para a proporção de madeira de 1,50. Para proporções maiores, a quantidade de madeira provocou a diminuição da resistência.

A análise estatística realizada através do teste de Tukey, comparando as médias das resistências para o mesmo tipo de madeira em diferentes proporções, aos 28 dias, não foi observada equivalência estatística.

Considerando a mesma proporção para os diferentes tipos de madeira, aos 28 dias, a análise estatística indicou que para as quatro proporções de madeira avaliadas (1,25; 1,50; 1,75 e 2,00) foi observada equivalência estatística apenas para as combinações Euc 1,25 x Pin 1,25, Euc 1,50 x Pin 1,50 e Euc 1,75 x Pin 1,75.

Todas as combinações realizadas em que um dos fatores avaliado era o resíduo de compensado, a análise apresentou diferença estatística. Desta forma, é possível assegurar que a partícula proveniente do resíduo de compensado pode proporcionar melhor resistência à compressão quando utilizado para a produção de compósitos de cimento-madeira, e que para as proporções de 1,25, 1,50 e 1,75, os compósitos de cimento-madeira produzidos com resíduos de eucalipto apresentam resultados de resistência à compressão estatisticamente equivalentes aos compósitos produzidos com resíduos de pinus.

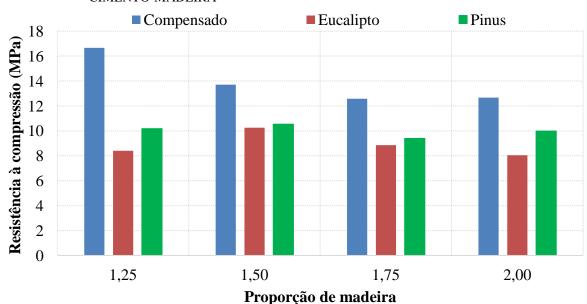


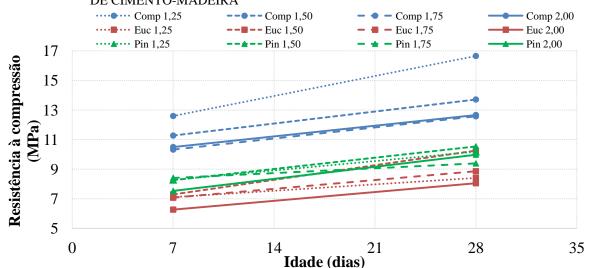
FIGURA 4.19 – RESULTADO DA RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

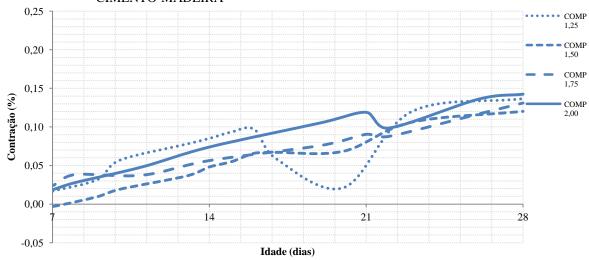
Na FIGURA 4.20 está apresentada a evolução da resistência à compressão nos compósitos para as idades de 7 e 28 dias. É possível observar com clareza a diferença das resistências obtidas para os compósitos produzidos com a partícula de compensado. Aos 7 dias, as resistências para a madeira de compensado, de eucalipto e de pinus foram, em média, de 11,17 MPa, 6,93 MPa, e 8,12 MPa, respectivamente.

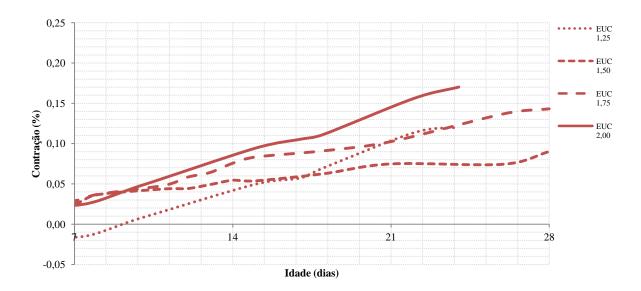
O ganho de resistência para cada uma das madeiras, comparando os períodos de 7 e 28 dias, foi de 24% para o compensado, de 28% para o eucalipto e de 24% para o pinus, em média.

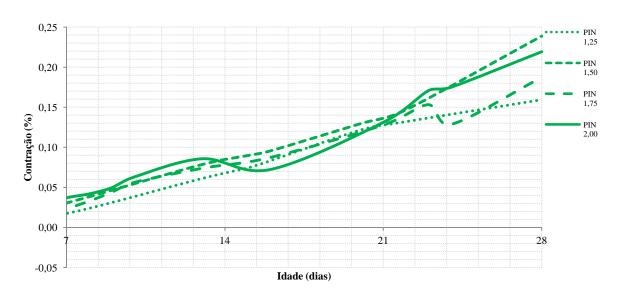
Comparando o resultado da resistência à compressão para as mesmas composições – considerando o mesmo tipo e a mesma proporção de madeira – em diferentes idades, o teste de Tukey indicou diferença estatística para todas as combinações analisadas, ou seja, o

intervalo entre as idades de 7 e de 28 dias foi suficiente para provocar o aumento da resistência à compressão.




FIGURA 4.20 – EVOLUÇÃO DA RESISTÊNCIA À COMPRESSÃO AOS 7 E 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA


A FIGURA 4.21 apresenta o resultado do ensaio de variação dimensional realizado até os 28 dias de idade. É possível observar que para os compósitos produzidos com maior proporção de madeira, maior é a retração apresentada. Os compósitos de cimento-madeira produzidos com as partículas de compensado, eucalipto e pinus apresentaram retração máxima de, aproximadamente, 0,14%, 0,17% e 0,24%, respectivamente.


Com relação aos diferentes tipos de resíduos utilizados, é possível observar que as partículas provenientes do resíduo de compensado propiciaram melhor estabilidade dimensional. Com relação aos resíduos de eucalipto e pinus, no estudo realizado por Del Menezzi, Souza e Gonçalez (1996), com diferentes proporções para a produção de chapas aglomeradas, quanto maior a proporção de pinus na composição, maiores foram os resultados obtidos para os ensaios de inchamento e absorção de água, corroborando com os resultados apresentados neste estudo.

Para todas as composições avaliadas, percebe-se que, até os 28 dias, não foi verificada estabilidade dimensional, isto porque as variações dimensionais apresentam a tendência de intensificação da retração.

FIGURA 4.21 – RESULTADO DA VARIAÇÃO DIMENSIONAL ATÉ OS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA

A partir dos ensaios realizados, tornou-se possível efetuar a análise da influência das diferentes proporções de madeira em compósitos de cimento-madeira, produzidos com madeira proveniente de RCD.

Observa-se que, com relação à densidade de massa endurecida, composições realizadas com maiores proporções de madeira tendem a apresentar os menores valores, ou seja, propiciam estruturas de maior leveza. Considerando os resultados de resistência à tração na flexão, através da análise estatística, verificou-se que não foi observada diferença para as diferentes proporções de madeira adotadas nas composições de eucalipto e pinus, quando analisadas individualmente. Com relação ao ensaio de resistência à compressão, as proporções de 1,25, 1,50 e 1,75 apresentaram equivalência estatística entre as partículas de eucalipto e pinus. Entretanto, as propriedades mecânicas sofrem influência quando possuem as partículas de compensado em sua composição.

Desta maneira, a confecção e análise da viabilidade de produção de placas de vedação vertical foram realizadas em compósitos de cimento-madeira produzidos com a partícula de madeira na proporção de 2,00.

4.2.3 Confecção e análise da viabilidade de produção de placas de vedação vertical

Com os resultados obtidos nos ensaios realizados nos procedimentos anteriores, tornou-se possível identificar qual composição apresentou as melhores propriedades para a confecção das placas de vedação vertical produzidas com os compósitos de cimento-madeira. A TABELA 4.5 apresenta a avaliação da densidade de massa endurecida dos compósitos de cimento-madeira produzidos e sua comparação com a densidade de placas de *drywall* disponíveis no mercado. Tem-se que, as maiores proporções de madeira na composição propiciam a diminuição da densidade de massa endurecida, entretanto os compósitos de cimento-madeira produzidos com as partículas de compensado, eucalipto e pinus, naproporção de 2,00, apresentaram densidade de massa endurecida de 1.438,66 kg/m³, 1.446,60 kg/m³ e 1.437,96 kg/m³, respectivamente.

As placas de *drywall* apresentam densidade entre 640,00 kg/m³ e 960,00 kg/m³. A densidade de massa endurecida das placas confeccionadas com os compósitos de cimentomadeira produzidas com as partículas de compensado, eucalipto e pinus é 50%, 51% e 50%, respectivamente, superior às placas de *drywall*.

TABELA 4.5 - COMPARATIVO ENTRE A DENSIDADE DE MASSA ENDURECIDA DOS COMPÓSITOS DE CIMENTO-MADEIRA E DAS PLACAS DE *DRYWALL*

Identificação	Densidade de massa endurecida	Densidade de p come	•	Diferença da densidade de massa endurecida dos compósitos e das		
	(kg/m³)	Mínimo (kg/m³)	Máximo (kg/m³)	placas de drywall		
CM COMP NSAT 1,25	1.627,59			70%		
CM COMP NSAT 1,50	1.499,80			56%		
CM COMP NSAT 1,75	1.492,29			55%		
CM COMP NSAT 2,00	1.438,66			50%		
CM EUC NSAT 1,25	1.485,06			55%		
CM EUC NSAT 1,50	1.477,10	640.00	960.00	54%		
CM EUC NSAT 1,75	1.470,27	040,00	900,00	53%		
CM EUC NSAT 2,00	1.446,60			51%		
CM PIN NSAT 1,25	1.490,22			55%		
CM PIN NSAT 1,50	1.455,05			52%		
CM PIN NSAT 1,75	1.447,03			51%		
CM PIN NSAT 2,00	1.437,96			50%		

É importante destacar que, apesar da proporção de madeira indicado para a produção das placas tenha sido a proporção de 2,00, a placa de vedação produzida com o compósito de cimento-madeira utilizando o resíduo de compensado, foi confeccionada com a proporção de madeira de 1,25, devido à quantidade insuficiente deste resíduo. Além disso, deve-se levar em consideração que a confecção dos compósitos de cimento-madeira foi realizada com relação água/cimento de 0,65.

As placas de vedação produzidas com os compósitos de cimento-madeira foram desformadas 14 dias após a moldagem, e por isso não foi utilizado o aditivo acelerador de pega em sua composição. A produção da placa sem o aditivo acelerador de pega propicia também a diminuição do seu custo.

A partir da confecção das placas de vedação vertical, tornou-se possível verificar que o método de produção utilizado, com a mistura com maior plasticidade, mostrou-se viável e exigiu materiais e equipamentos encontrados facilmente no mercado, apresentando baixo custo. Entretanto, o manuseio das placas demandou muito cuidado devido às suas dimensões.

Além disso, a densidade de massa endurecida das placas produzidas encontra-se, ainda, muito elevada, indicando a necessidade da continuação dos estudos no sentido de avaliar as propriedades mecânicas e de desempenho em placas produzidas com as maiores proporções de madeira na mistura.

4.3 ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE GESSO-MADEIRA

A produção dos compósitos de gesso-madeira foi realizada a partir de diferentes composições. Num primeiro momento, o objetivo foi analisar a influência da saturação, ou não, e as diferentes proporções das partículas de madeira na mistura. Definida a condição da madeira, foram realizadas, ainda, outras duas composições com diferentes proporções de madeira. E por fim, foram produzidas as placas de vedação com a composição que apresentou propriedades mecânicas mais relevantes, para cada tipo de madeira, com relação ao seu desempenho.

4.3.1 Análise da influência da saturação e das proporções de madeira na mistura

Conforme apresentado no Capítulo 3, os procedimentos executados nesta fase contaram com a confecção de apenas uma amostra no estado fresco, e três a seis corpos de prova para cada propriedade avaliada no estado endurecido. Devido a isto, foi aplicada a técnica estatística de análise de variância em conjunto com o teste de Tukey somente para as propriedades do estado endurecido. Os resultados obtidos nesta fase foram necessários para delimitar os procedimentos e as composições produzidas nas próximas etapas.

4.3.1.1 Estado fresco

No estado fresco, foram realizados os ensaios de tempo de pega e de densidade de massa fresca. A TABELA 4.6 apresenta o resultado dos ensaios realizados no estado fresco, e os valores calculados para o consumo de gesso e relação a/g.

Os valores obtidos a partir dos resultados do ensaio de densidade de massa fresca – entre 1,36 g/cm³ e 1,67 g/cm³ – apresentaram coeficiente de variação de 22% considerando todas as composições produzidas.

Os ensaios de tempo de pega apresentaram valores entre 6min e 27min para o início de pega e valores entre 17min e 52min para o fim de pega.

Os valores obtidos a partir do cálculo do consumo de gesso apresentaram valores entre 747,33 kg/m³ e 980,98 kg/m³. E no que se refere à relação a/g, as composições produzidas com as partículas de madeira na condição não saturada apresentaram relação a/g

entre 0,71 e 0,72, enquanto que quando utilizadas as partículas de madeira na condição saturada, a relação a/g foi de 0,70.

TABELA 4.6 – RESULTADOS DOS ENSAIOS NO ESTADO FRESCO DOS COMPÓSITOS DE GESSOMADEIRA

Identificação	Densidade de massa fresca	Tempo de	e pega (h)	Consumo de	Relação a/g	
	(g/cm³)	Início Fim		gesso (kg/m³)		
GM COMP NSAT 0,5	1,50	00:23	00:30	862,59	0,71	
GM COMP NSAT 0,75	1,53	00:16	00:21	864,45	0,71	
GM COMP NSAT 1,0	1,51	00:13	00:17	844,19	0,71	
GM COMP NSAT 1,25	1,40	00:14	00:28	773,88	0,72	
GM COMP NSAT 1,50	1,40	00:11	00:23	764,80	0,72	
GM COMP SAT 0,5	1,48	00:17	00:33	854,16	0,70	
GM COMP SAT 0,75	1,50	00:06	00:17	856,37	0,70	
GM COMP SAT 1,0	1,52	00:12	00:19	857,28	0,70	
GM COMP SAT 1,25	1,36	00:11	00:37	760,72	0,70	
GM COMP SAT 1,50	1,38	00:08	00:24	763,03	0,70	
GM EUC NSAT 0,5	1,53	00:20	00:27	874,89	0,71	
GM EUC NSAT 0,75	1,52	00:25	00:30	861,28	0,71	
GM EUC NSAT 1,0	1,50	00:15	00:19	836,74	0,71	
GM EUC NSAT 1,25	1,50	00:13	00:26	828,45	0,72	
GM EUC NSAT 1,50	1,40	00:12	00:25	765,39	0,72	
GM EUC SAT 0,5	1,53	00:15	00:29	878,57	0,70	
GM EUC SAT 0,75	1,52	00:22	00:33	868,29	0,70	
GM EUC SAT 1,0	1,49	00:27	00:36	840,66	0,70	
GM EUC SAT 1,25	1,46	00:14	00:25	816,04	0,70	
GM EUC SAT 1,50	1,41	00:10	00:23	780,29	0,70	
GM PIN NSAT 0,5	1,52	00:21	00:35	872,83	0,71	
GM PIN NSAT 0,75	1,50	00:24	00:32	848,82	0,71	
GM PIN NSAT 1,0	1,53	00:14	00:22	856,24	0,71	
GM PIN NSAT 1,25	1,41	00:15	00:30	778,64	0,72	
GM PIN NSAT 1,50	1,37	00:16	00:32	747,33	0,72	
GM PIN SAT 0,5	1,51	00:20	00:34	867,55	0,70	
GM PIN SAT 0,75	1,49	00:13	00:23	848,68	0,70	
GM PIN SAT 1,0	1,46	00:19	00:26	822,28	0,70	
GM PIN SAT 1,25	1,40	00:14	00:35	780,64	0,70	
GM PIN SAT 1,50	1,37	00:11	00:35	756,71	0,70	
Gesso Referência	1,67	00:18	00:52	980,98	0,70	
Gesso Referência (Compensado)*	-	01:08	01:15	-	0,70	
Gesso Referência (Eucalipto)*	-	00:37	00:56	-	0,70	
Gesso Referência (Pinus)*	-	01:22	01:35	-	0,70	

Na FIGURA 4.22 são apresentados os resultados para o tempo de início de pega dos compósitos de madeira produzidos com gesso. Os valores médios obtidos para as proporções de madeira de 0,50, 0,75, 1,00, 1,25 e 1,50 foram, respectivamente, de 00:19 min, 00:17 min, 00:16 min, 00:13 min e 00:11 min, indicando que a presença das partículas de madeira

contribuiu para a diminuição do tempo de início de pega com relação ao Referência. Para as proporções de 1,25 e 1,50 esta tendência pode ser observada com mais evidência.

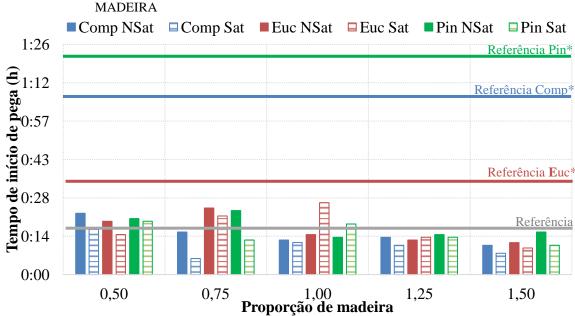


FIGURA 4.22 – RESULTADO DO TEMPO DE INÍCIO DE PEGA DOS COMPÓSITOS DE GESSO-

Entretanto, verifica-se que os compósitos de gesso-madeira produzidos e identificados como Referência Compensado*, Referência Eucalipto* e Referência Pinus* apresentam tempo de início de pega superior ao Referência. Isto indica que as substâncias presentes nas partículas de madeira, assim como nos compósitos produzidos com cimento-madeira, podem provocar o retardo do início da pega. Desta forma, é possível entender que os compósitos de gesso-madeira produzidos com as partículas de madeira apresentam menor tempo de pega devido às alterações físicas provocadas pela sua presença na mistura.

As partículas de madeira, seja na condição saturada ou não saturada, tendem a apresentar maior área específica devido à moagem realizada e, por isso, podem adsorver uma maior quantidade de moléculas de água que estão disponíveis na mistura para realizar a hidratação do aglomerante.

É provável, também, que as partículas de madeira continuem absorvendo as moléculas de água para o seu interior, porque, de acordo com os resultados obtidos, quanto maior a proporção de madeira na composição, menor tende a ser o tempo de início de pega do compósito.

Para o ensaio de tempo de fim de pega, a influência das partículas de madeira pode ser claramente observada ao comparar os resultados obtidos (FIGURA 4.23). Todos os

valores de tempo de fim de pega para os compósitos foram inferiores ao valor apresentado pela composição Referência, que apresentou tempo de fim de pega de 00:52 min.

Entretanto, observa-se que as composições produzidas e identificadas como Referência Compensado*, Referência Eucalipto* e Referência Pinus* apresentam tempo de fim de pega superior ao Referência, indicando que, assim como no tempo de início de pega, as substâncias presentes nas partículas de madeira, podem provocar o aumento do tempo de fim de pega ao invés de acelerar, processo semelhante ao que ocorre em compósitos de cimentomadeira. Desta forma, é possível inferir que os compósitos de gesso-madeira produzidos com as partículas de madeira apresentam menor tempo de pega devido às alterações físicas provocadas pela sua presença na mistura. Pois, as partículas de madeira ao absorverem as moléculas de água da mistura — evidenciando que o procedimento de saturação não apresentou eficácia — provocaram a diminuição da água disponível para a hidratação do gesso e, consequentemente, a aceleração do tempo de fim de pega.

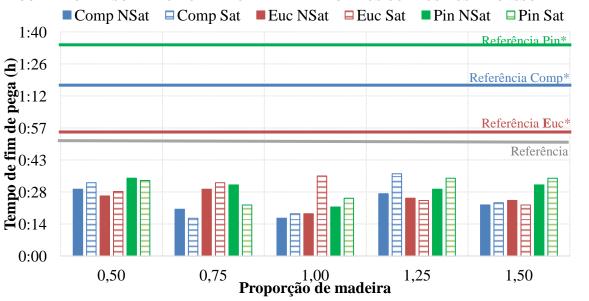


FIGURA 4.23 – RESULTADO DO TEMPO DE FIM DE PEGA DOS COMPÓSITOS DE GESSO-MADEIRA

Os resultados do ensaio de densidade de massa fresca estão apresentados na FIGURA 4.24. Novamente é possível observar que a presença da madeira é capaz de reduzir, significativamente, a densidade de massa fresca. Para as proporções de 0,50, 0,75, 1,00, 1,25 e 1,50 foram obtidas diferenças médias de 10%, 10%, 11%, 17% e 20%, respectivamente, com relação à amostra de Referência. A mesma situação foi observada Morales-Conde, Rodríguez-Liñán e Pedreño-Rojas (2016). Estes autores verificaram, em compósitos de madeira-gesso, que a presença da madeira sempre reduz a densidade do compósito, o que ocorre em função

de sua menor massa específica. Entretanto, conforme citado por Savastano Júnior, Dantas e Agopyan (1994), pode ter ocorrido também a incorporação de bolhas de ar.

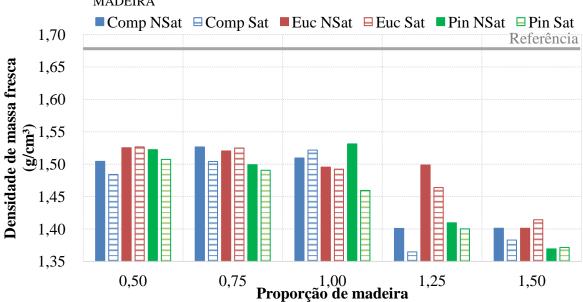


FIGURA 4.24 – RESULTADO DA DENSIDADE DE MASSA FRESCA DOS COMPÓSITOS DE GESSOMADEIRA

Na FIGURA 4.25, estão apresentados os valores do consumo de gesso dos compósitos de madeira produzidos. O cálculo do consumo de gesso, assim como o consumo de cimento, foi realizado conforme apresentado na EQUAÇÃO 3.1. Os valores obtidos para o consumo de gesso variaram de 747,33 kg/m³ a 878,57 kg/m³. É importante ressaltar que, apesar de elevado, o consumo de gesso, assim como o consumo de cimento, propiciou o excesso de pasta na mistura.

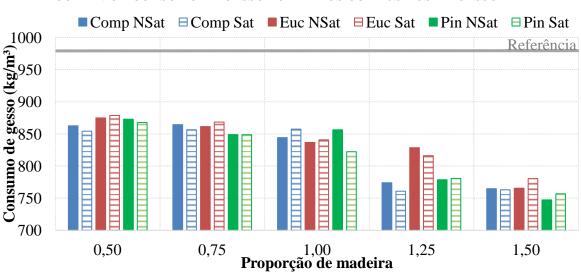


FIGURA 4.25 – CONSUMO DE GESSO POR M3 DOS COMPÓSITOS DE GESSO-MADEIRA

4.3.1.2 Estado endurecido

No estado endurecido, foram realizados os ensaios de densidade de massa endurecida, resistência à tração na flexão e resistência à compressão. A TABELA 4.7 apresenta o resultado dos ensaios realizados no estado endurecido.

Os resultados do ensaio de densidade de massa endurecida apresentaram valores entre 1.122,01 kg/m³ e 1.496,72 kg/m³ aos 7 dias e entre 1.022,88 kg/m³ e 1.238,88 kg/m³ aos 28 dias. Com relação à resistência à tração na flexão, os valores obtidos mantiveram-se entre 1,83 MPa e 2,78 MPa aos 7 dias e entre 2,48 MPa e 4,33 MPa aos 28 dias. Os resultados de resistência à compressão permaneceram entre 2,96 MPa e 7,57 MPa aos 7 dias e 4,64 MPa e 9,80 MPa aos 28 dias.

TABELA 4.7 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS COMPÓSITOS DE GESSO-MADEIRA

	Densidade		Resistência	-	Resistência à		
Identificação	endurecid		flexão	` ′	compressão (MPa)		
	7 dias	28 dias	7 dias	28 dias	7 dias	28 dias	
GM COMP NSAT 0,5	1.134,37	1.117,88	2,62	3,42	5,65	8,60	
GM COMP NSAT 0,75	1.380,84	1.130,39	2,27	3,79	4,59	8,37	
GM COMP NSAT 1,0	1.260,21	1.129,48	1,99	3,83	4,12	9,04	
GM COMP NSAT 1,25	1.396,81	1.126,31	2,05	3,54	4,10	6,98	
GM COMP NSAT 1,50	1.365,94	1.067,27	2,39	3,37	4,19	6,80	
GM COMP SAT 0,5	1.122,01	1.115,68	2,50	3,29	7,57	9,32	
GM COMP SAT 0,75	1.331,19	1.138,71	2,22	3,85	4,34	9,80	
GM COMP SAT 1,0	1.258,72	1.057,97	2,27	2,94	4,33	7,24	
GM COMP SAT 1,25	1.224,57	1.038,69	1,98	2,68	3,05	5,27	
GM COMP SAT 1,50	1.381,37	1.050,48	1,95	2,69	3,29	5,56	
GM EUC NSAT 0,5	1.329,44	1.128,45	2,48	3,48	5,21	8,62	
GM EUC NSAT 0,75	1.405,62	1.153,47	2,52	3,61	5,37	8,78	
GM EUC NSAT 1,0	1.336,58	1.146,23	2,73	4,26	4,86	8,25	
GM EUC NSAT 1,25	1.427,16	1.141,28	2,63	3,43	5,10	7,38	
GM EUC NSAT 1,50	1.339,31	1.147,78	2,66	3,56	5,12	7,08	
GM EUC SAT 0,5	1.253,40	1.151,37	2,78	3,94	5,49	9,80	
GM EUC SAT 0,75	1.414,47	1.078,99	2,17	3,38	4,54	8,15	
GM EUC SAT 1,0	1.228,98	1.084,49	2,28	3,85	4,64	7,47	
GM EUC SAT 1,25	1.307,58	1.089,51	2,37	3,61	4,28	6,28	
GM EUC SAT 1,50	1.380,69	1.040,58	2,39	3,71	3,78	5,67	
GM PIN NSAT 0,5	1.432,34	1.149,72	2,50	3,71	5,40	9,36	
GM PIN NSAT 0,75	1.402,31	1.154,06	2,16	4,33	4,50	7,75	
GM PIN NSAT 1,0	1.226,68	1.112,97	2,30	3,77	5,06	7,34	
GM PIN NSAT 1,25	1.379,50	1.104,74	2,20	2,67	4,08	6,36	
GM PIN NSAT 1,50	1.347,58	1.089,33	2,13	2,97	4,01	6,13	
GM PIN SAT 0,5	1.312,76	1.099,02	2,04	2,92	4,96	8,47	
GM PIN SAT 0,75	1.426,51	1.108,79	2,22	3,72	4,50	8,44	
GM PIN SAT 1,0	1.236,02	1.054,43	1,83	2,57	3,60	6,41	
GM PIN SAT 1,25	1.365,29	1.050,39	2,31	3,86	3,86	5,49	
GM PIN SAT 1,50	1.157,58	1.022,88	1,84	2,48	2,96	4,64	
Gesso Referência	1.496,72	1.238,88	2,16	3,99	4,74	9,68	

A FIGURA 4.26 apresenta os resultados da densidade endurecida dos compósitos aos 28 dias. Em consonância com os resultados obtidos para o ensaio de densidade de massa fresca, no estado endurecido os valores para os compósitos se mantiveram inferiores ao valor da pasta de Referência. Para as proporções de 0,50, 0,75, 1,00, 1,25 e 1,50 foram obtidas diferenças médias de 10%, 10%, 13%, 14% e 16%, respectivamente.

Foi realizada a análise estatística através do teste de Tukey, comparando as médias das densidades de massa endurecida para o mesmo tipo de madeira e condição de saturação em diferentes proporções de madeira aos 28 dias. Nessas análises, o coeficiente de variação foi entre 2,03% e 2,91%, indicando baixa dispersão.

Existe equivalência estatística entre todas as composições contendo partículas de compensado na condição não saturada considerando as diferentes proporções de madeira. Para esta mesma madeira, nas composições realizadas com a partícula na condição saturada, verificou-se diferença estatística para as comparações entre as composições de Comp Sat 0,50 x Comp Sat 1,25, Comp Sat 0,75 x Comp Sat 1,00, Comp Sat 0,75 x Comp Sat 1,25 e Comp Sat 0,75 x Comp Sat 1,50.

Com relação aos resíduos de eucalipto, foi verificada equivalência estatística para todas as composições produzidas com a madeira na condição não saturada, independente da proporção de madeira utilizado. Entretanto, com as partículas na condição saturada, verificouse diferença estatística apenas para a composição Euc Sat 0,50 x Euc Sat 1,50. A diferença estatística entre as composições produzidas com a menor e a maior proporção de madeira pode ter sido provocada pela maior adsorção de água pelos compósitos contendo maior teor de madeira, já que aos 28 dias, após a evaporação da água presente no sistema, a existência dos vazios contribuiu para uma redução significativa da densidade de massa endurecida.

Considerando as composições realizadas com o resíduo de pinus, não foi identificada diferença estatística quando utilizada a madeira na condição não saturada, independente da proporção de madeira. Porém, com as partículas na condição saturada, foi obtida diferença estatística apenas para as composições Pin Sat 0,50 x Pin Sat 1,50 e Pin Sat 0,75 x Pin Sat 1,50. Assim como nos compósitos produzidos com as partículas de eucalipto, a diferença estatística obtida para as composições com pinus podem ter sido provocadas pela maior adsorção de água pelos compósitos contendo maior proporção (1,50) de madeira quando comparados ás menores proporções (0,50 e 0,75).

A partir das análises realizadas, é possível concluir que o procedimento de saturação pode provocar alterações na densidade de massa endurecida no compósito de gesso-madeira, diferente do que ocorre para as partículas não saturadas.

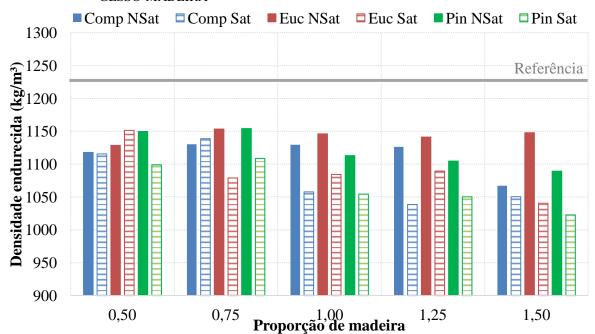


FIGURA 4.26 – RESULTADO DA DENSIDADE ENDURECIDA AOS 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA

Na FIGURA 4.27 são apresentados os resultados do ensaio de resistência à tração na flexão aos 28 dias. Os valores obtidos apresentaram grande variação, de 2,48 MPa a 4,33 MPa, devido à natureza dos três tipos de madeira, à proporção de madeira presente na composição, e à condição da partícula de madeira.

No que se refere ao tipo de madeira utilizado as composições produzidas com compensado, eucalipto e pinus apresentaram valores médios de 3,34 MPa, 3,68 MPa e 3,30 MPa, respectivamente, ou seja, bem semelhantes, não indicando influência, com relação ao tipo de madeira, na resistência à tração na flexão.

Levando em consideração a proporção de madeira presente no compósito, as variações de 0,50, 0,75, 1,00, 1,25 e 1,50 apresentaram resistências médias de 3,46 MPa, 3,78 MPa, 3,54 MPa, 3,30 MPa e 3,13 MPa, respectivamente, também não indicam uma tendência de redução da resistência à tração com o aumento da proporção de madeira, para as proporções utilizadas.

No que se refere à condição da partícula de madeira, os compósitos de compensado, eucalipto e pinus apresentaram uma redução média de 16%, 1% e 12%, respectivamente, quando utilizado na condição saturada e comparado à condição não saturada.

Foi realizada a análise estatística através do teste de Tukey, comparando as médias das resistências à tração na flexão para o mesmo tipo de madeira – compensado, eucalipto e pinus – e a mesma condição da partícula – saturada ou não saturada – comparando as

diferentes proporções de madeira – 0,50, 0,75, 1,00, 1,25 e 1,50 aos 28 dias. Nessas análises, o coeficiente de variação foi 10,49%, 8,01% e 10,96% para as comparações realizadas entre as madeiras de compensado, eucalipto e pinus, respectivamente, na condição não saturada, e de 23,34%, 14,06% e 22,55% para as comparações com as partículas saturadas. A diferença dos coeficientes de variação obtidos indica que o procedimento de saturação contribui para uma maior dispersão dos resultados da amostra. Foi obtida equivalência estatística para as amostras com Comp NSat, Comp Sat, Euc NSat, Euc Sat e Pin Sat. A análise realizada com Pin NSat apresentou diferença estatística para as proporções 0,75 x 1,25 e 0,75 x 1,50.

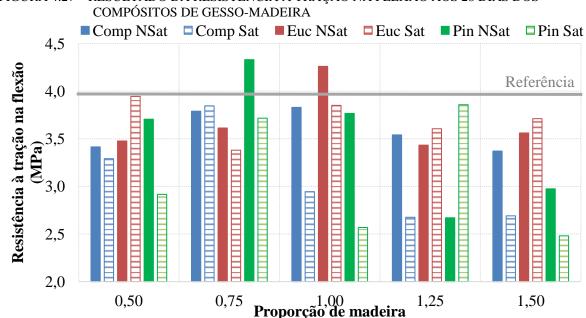


FIGURA 4.27 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28 DIAS DOS

Na FIGURA 4.28 estão apresentados os resultados do ensaio de resistência à compressão aos 28 dias. Os valores obtidos apresentaram grande variação, de 4,64 MPa a 10,04 MPa, devido à natureza dos três tipos de madeira, à proporção de madeira presente na composição, e à condição da partícula de madeira.

No que se refere ao tipo de madeira utilizado as composições produzidas com compensado, eucalipto e pinus, apresentaram valores médios de 7,70 MPa, 7,81 MPa e 7,06 MPa, respectivamente. Com relação à proporção de madeira presente no compósito, as variações de 0,50, 0,75, 1,00, 1,25 e 1,50 apresentaram resistências médias de 9,14 MPa, 8,55 MPa, 7,69 MPa, 6,26 MPa e 5,98 MPa, respectivamente. É evidente a influência da proporção de madeira na resistência à compressão, porque, quanto maior a quantidade de madeira na composição, menor é a resistência obtida.

Levando em consideração a condição da partícula de madeira, os compósitos de compensado, eucalipto e pinus apresentaram uma redução média de 7%, 7% e 12%, respectivamente, quando utilizados na condição saturada e comparados à condição não saturada. A análise estatística realizada através do teste de Tukey, comparando as médias das resistências para o mesmo tipo de madeira em diferentes proporções, aos 28 dias, foi observada diferença estatística para as composições comparadas.

Considerando a mesma proporção e a mesma condição da partícula para os diferentes tipos de madeira, aos 28 dias, a análise estatística indicou que para a proporção de 0,50 existe diferença estatística apenas para a combinação Euc Sat x Pin Sat. Para a proporção de 0,75, foi observada diferença estatística apenas para as combinações Comp x Euc na condição saturada e não saturada. Foi obtida equivalência estatística, na proporção de 1,00, apenas para as combinações com a madeira de eucalipto e os outros dois tipos na condição não saturada – Comp NSat x Euc Nat e Euc Nsat x Pin NSat. Para a proporção de 1,25, a equivalência estatística foi verificada apenas para os compósitos com resíduo de compensado nas seguintes combinações: Comp NSat x Euc NSat e Comp Sat x Pin Sat. Foi obtida equivalência estatística, na proporção de 1,50, as combinações contendo compensado identificados por Comp x Pin – independente da condição da partícula – e Comp Sat x Euc Sat.

Desta forma, é possível concluir que existe diferença estatística de acordo com as composições utilizando as partículas de madeira provenientes dos resíduos de compensado, de eucalipto e de pinus.

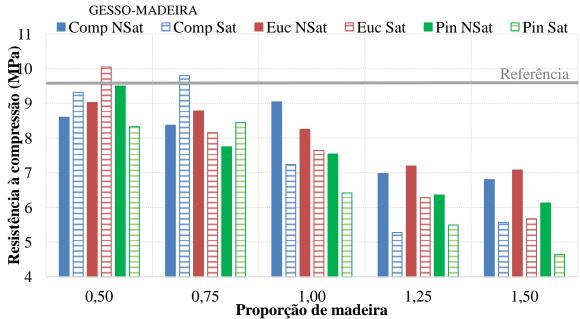


FIGURA 4.28 – RESULTADO DA RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS EM COMPÓSITOS DE GESSO-MADEIRA

A FIGURA 4.29 apresenta, ainda, a correlação entre a resistência à compressão aos 28 dias e o consumo de gesso por m³ do compósito produzido. É possível perceber que, apesar de não apresentar uma alta correlação (R²=0,7162), o aumento do consumo de gesso nos compósitos produzidos com gesso-madeira propicia o aumento da resistência à compressão aos 28 dias.

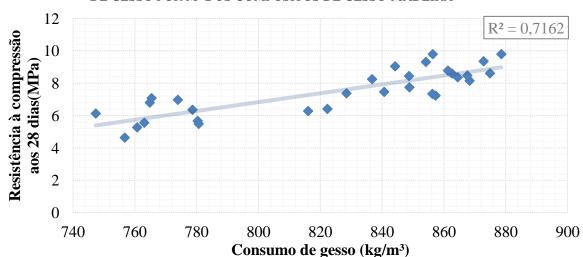


FIGURA 4.29 – CORRELAÇÃO ENTRE A RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS E O CONSUMO DE GESSO POR M³ DOS COMPÓSITOS DE GESSO-MADEIRA

A FIGURA 4.30 apresenta, ainda, a correlação entre a resistência à compressão e a densidade de massa fresca. Neste estudo, é possível inferir que o aumento da densidade de massa fresca contribui para o aumento da resistência à compressão. O valor de R²=0,8261 foi obtido após a exclusão de seis resultados considerados discrepantes e destacados na figura em vermelho. Esses pontos, também, podem ter apresentado discrepância devido à heterogeneidade provocada pela dispersão das partículas de madeira no compósito, além da influência da saturação das madeiras, isto porque quatro desses pontos representam compósitos produzidos com as partículas de madeira na condição saturada.

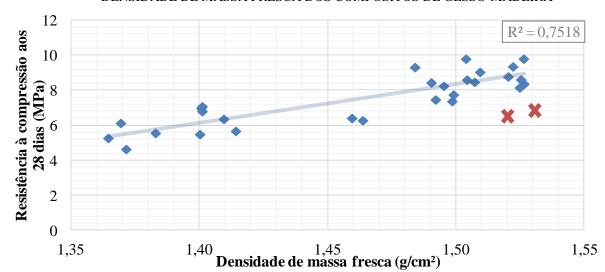


FIGURA 4.30 – CORRELAÇÃO ENTRE A RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS E A DENSIDADE DE MASSA FRESCA DOS COMPÓSITOS DE GESSO-MADEIRA

4.3.1.3 Análise microestrutural

Foram realizados os ensaios de microscopia eletrônica de varredura (MEV) para todas as composições produzidas e, no intuito de evitar a repetitividade de imagens, devido à sua semelhança, estão apresentas e comentadas somente as principais imagens e características verificadas nos compósitos de gesso-madeira produzidos.

Na FIGURA 4.31 é apresentada a imagem obtida através do ensaio de microscopia eletrônica de varredura (MEV) para o compósito de gesso-madeira produzido com resíduo de compensado na condição não saturada (Comp NSat). A imagem possui ampliação de 5.000 X sendo possível identificar, conforme destacado pelo tracejado em vermelho, a presença de impurezas na fibra da madeira. Izani *et al.* (2013) observaram que pré-tratamentos realizados com 2% de hidróxido de sódio (NaOH) durante 30 minutos apresentaram boa eficácia na eliminação de impurezas da partícula e foram capazes de melhorar suas propriedades mecânicas. A FIGURA 4.31 indica que o pré-tratamento, em água fria, realizado pelo período de 48 horas pode não ter sido eficaz na eliminação de impurezas da partícula de madeira.

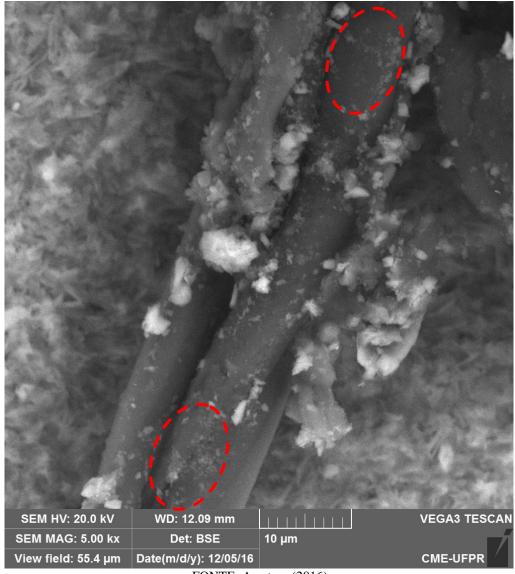


FIGURA 4.31 – IMAGEM DE MEV DO COMPÓSITO DE GESSO-MADEIRA PRODUZIDO COM COMP NSAT

FONTE: A autora (2016).

Na FIGURA 4.32 são apresentadas as imagens obtidas através do ensaio de microscopia eletrônica de varredura (MEV) para os compósitos de gesso-madeira produzido com resíduo de compensado na condição não saturada e saturada. Cada imagem possui ampliação de 500 X sendo possível identificar em tom mais escuro as partículas de madeira e, ao redor em tom mais claro, a pasta da matriz de gesso.

Assim como nos compósitos de cimento-madeira, as setas nº1 indicam os descolamentos das partículas de madeira com relação à matriz que ocorreram devido à variação dimensional provocada pela perda de água que é absorvida durante a produção do compósito. (SAVASTANO JÚNIOR, H.; DANTAS, F. de A. S.; AGOPYAN, V., 1994).

Em compósitos com fibras, Savastano Júnior, Dantas e Agopyan (1994), afirmam, ainda, que a zona de transição compreende até 200µm ao redor da fibra e, neste estudo, é possível identificar nas setas nº2 a evolução de fissuras através da zona de transição demonstrando sua baixa resistência.

Na FIGURA 4.32(a) está apresentada a imagem do compósito Comp NSat, nesta a partícula de madeira aparenta estar aderida à matriz.

Na FIGURA 4.32(b), o compósito produzido com a composição Comp Sat, em que a partícula de madeira encontra-se na condição saturada, observa-se o descolamento da partícula da madeira com relação à matriz, indicado pela seta 1, além da ocorrência de uma fissura no decorrer da zona de transição (seta 2).

SEM HV: 20.0 KV WD: 12.02 mm VEGA3 TESCAN SEM HV: 20.0 KV WD: 11.98 mm VEGA3 TESCAN SEM MAG: 500 x Det: BSE 100 µm VEGA3 TESCAN VIew field: 554 µm Date(midly): 12/05/16 CME-UFPR

FIGURA 4.32 – IMAGEM DE MEV DOS COMPÓSITOS DE GESSO-MADEIRA

FONTE: A autora (2016).

A partir das imagens obtidas com o ensaio de microscopia eletrônica de varredura (MEV) é possível deduzir que a saturação das partículas de madeira contribuiu para o enfraquecimento da matriz de gesso, semelhante ao que foi verificado nos compósitos de cimento-madeira. Pois, quando comparada à condição não saturada, foi verificada a ocorrência do descolamento da partícula de madeira, além do desenvolvimento de fissuras de maiores proporções ao longo da zona de transição.

A partir dos ensaios realizados, tornou-se possível efetuar a análise da influência da saturação e das proporções de madeira na mistura em compósitos de gesso-madeira, produzidos com madeira proveniente de RCD.

Com relação à condição da madeira – saturada ou não saturada – os ensaios no estado fresco, indicam que esse procedimento não foi capaz de evitar a absorção de água da mistura pela partícula de madeira. Já que, os ensaios de tempo de início e fim de tempo de pega quando realizados nos compósitos de gesso-madeira, apresentaram valores menores que o obtido com a composição de Referência. Entretanto, a diminuição desses resultados foi provocada pela absorção da água da mistura pela partícula de madeira, que reduziu a quantidade de água disponível para hidratar o gesso, e não pela solubilização das substâncias que estão presentes na madeira. No estado endurecido, a saturação contribuiu, assim como nos compósitos de cimento-madeira, para a diminuição da resistência à tração na flexão e da resistência à compressão dos compósitos quando comparados aos produzidos na condição não saturada. Além disso, a análise microestrutural indica que a saturação propicia o enfraquecimento da matriz cimentícia.

Com relação à influência das diferentes proporções de madeira na mistura, os ensaios no estado fresco indicam que para os três tipos de madeira estudados, quanto maior a proporção de madeira na mistura, menor será o início e o fim do tempo de pega, isto porque, a maior quantidade de madeira é capaz de absorver mais água da mistura. No estado endurecido, existe diferença estatística para as diferentes proporções e tipos de madeira utilizados para a produção dos compósitos.

Desta maneira, a análise da influência das diferentes proporções de madeira na composição foi realizada em compósitos de gesso-madeira produzidos com a partícula de madeira na condição não saturada.

4.3.2 Análise da influência das diferentes proporções de madeira na composição

Os procedimentos executados nesta fase contaram com a confecção de três a seis corpos de prova para cada propriedade avaliada sendo possível aplicar a técnica estatística de análise de variância em conjunto com o teste de Tukey.

4.3.2.1 Estado endurecido

No estado endurecido, foram realizados os ensaios de densidade de massa endurecida, resistência à tração na flexão, resistência à compressão e variação dimensional. A TABELA 4.8 apresenta o resultado dos ensaios realizados no estado endurecido.

Os resultados do ensaio de densidade de massa endurecida apresentaram valores entre 1.277,00 kg/m³ e 1.355,10 kg/m³ aos 7 dias e entre 1.086,59 kg/m³ e 1.096,21 kg/m³ aos 28 dias.

Com relação à resistência à tração na flexão, os valores obtidos mantiveram-se entre 1,92 MPa e 2,83 MPa aos 7 dias e entre 3,26 MPa e 5,59 MPa aos 28 dias.

Os resultados de resistência à compressão permaneceram entre 3,45 MPa e 4,62 MPa aos 7 dias e 5,27 MPa e 7,01 MPa aos 28 dias.

TABELA 4.8 – RESULTADOS DOS ENSAIOS NO ESTADO ENDURECIDO DOS COMPÓSITOS DE GESSO-MADEIRA

Identificação	Densidade de massa endurecida (kg/m³)		Resistência à tração na flexão (MPa)		Resistência à compressão (MPa)	
ruentmeação	7 dias	28 dias	7 dias	28 dias	7 dias	28 dias
GM COMP NSAT 1,75	1.344,21	1.090,54	1,92	3,26	3,45	5,66
GM COMP NSAT 2,00	1.337,65	1.086,59	2,06	4,27	3,90	6,55
GM EUC NSAT 1,75	1.304,59	1.093,06	2,83	4,36	4,61	7,01
GM EUC NSAT 2,00	1.277,00	1.091,52	2,50	5,59	4,62	6,29
GM PIN NSAT 1,75	1.355,10	1.096,21	2,35	3,64	3,53	5,27
CM PIN NSAT 2,00	1.347,42	1.089,13	2,38	3,79	3,82	5,65

Na FIGURA 4.33 estão apresentados os resultados obtidos com o ensaio de densidade endurecida realizado nos corpos de prova aos 28 dias. Para as proporções de madeira de 1,75 e 2,00, as densidades endurecidas foram, em média, de 1.093,27 g/cm³ e 1.089,08 g/cm³, respectivamente.

A análise estatística aplicada através do teste de Tukey realizou a comparação de todas as médias das densidades de massa endurecida, aos 28 dias, indicando equivalência estatística para todas as comparações. É possível concluir que a densidade de massa endurecida não sofreu influência com relação ao tipo de madeira e à proporção utilizada durante a produção dos compósitos.

Nesta análise, o coeficiente de variação apresentado pelos dados analisados foi de 2,84% indicando a homogeneidade dos valores obtidos com o ensaio de densidade de massa endurecida para os compósitos de gesso-madeira.

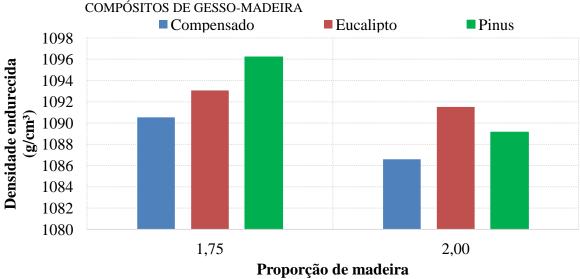


FIGURA 4.33 – RESULTADOS DE DENSIDADE DE MASSA ENDURECIDA AOS 28 DIAS DOS

Ao acompanhar a evolução da densidade endurecida no período de 7 e 28 dias (FIGURA 4.34), percebe-se que para todas as composições ocorreu a perda de massa. Ao analisar a influência da proporção para cada tipo de madeira, em todos os casos, é possível observar que o aumento da densidade endurecida é inversamente proporcional ao aumento da proporção de madeira, tanto para a idade de 7 dias como para a idade de 28 dias. A evolução da densidade endurecida dos compósitos produzidos com o resíduo de compensado, eucalipto e pinus, apresentou uma variação, em média, de 23%, 18% e 24%, respectivamente.

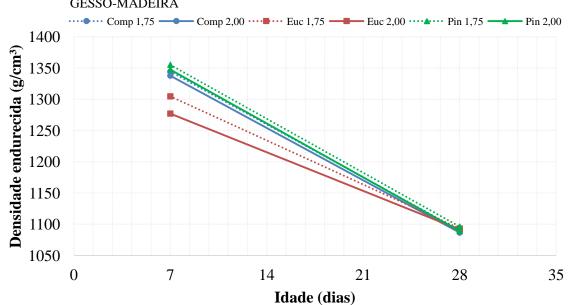


FIGURA 4.34 – EVOLUÇÃO DA DENSIDADE ENDURECIDA AOS 7 E 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA

Os resultados do ensaio de resistência à tração na flexão, aos 28 dias, podem ser observados na FIGURA 4.35. Os valores obtidos estão entre 3,26 MPa a 5,59MPa.

As maiores resistências foram verificadas para os compósitos produzidos com a partícula de madeira proveniente do resíduo de eucalipto, diferente dos resultados verificados para o compósito produzido com cimento Portland. Observa-se, ainda, que para os três tipos de madeira, quanto maior a proporção de madeira, maior foi a resistência obtida.

A análise estatística aplicada através do teste de Tukey realizou a comparação todas as médias das resistências à tração na flexão, aos 28 dias, indicando equivalência estatística para todas as comparações.

Nesta análise, o coeficiente de variação apresentado pelos dados analisados foi de 20,24% indicando a média dispersão dos valores obtidos com o ensaio de resistência à tração na flexão para os compósitos de gesso-madeira.

Assim, é possível inferir que adotar a maior proporção de madeira para a produção do compósito é vantajoso no sentido de retirar do meio ambiente uma maior quantidade de resíduos, além de diminuir o consumo do aglomerante.

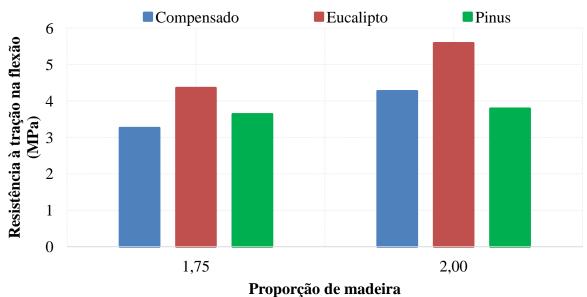


FIGURA 4.35 – RESULTADO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA

Na FIGURA 4.36 está apresentada a evolução da resistência à tração na flexão nos compósitos para as idades de 7 e 28 dias. É possível observar com clareza a diferença das resistências obtidas para os compósitos produzidos com a partícula de eucalipto. Aos 7 dias, as resistências para a madeira de compensado, de eucalipto e de pinus foram, em média, de

1,99 MPa, 2,67 MPa, e 2,37 MPa, respectivamente. O ganho de resistência para cada uma das madeiras, comparando os períodos de 7 e 28 dias, foi de 47% para o compensado, de 45% para o eucalipto e de 36% para o pinus, em média.

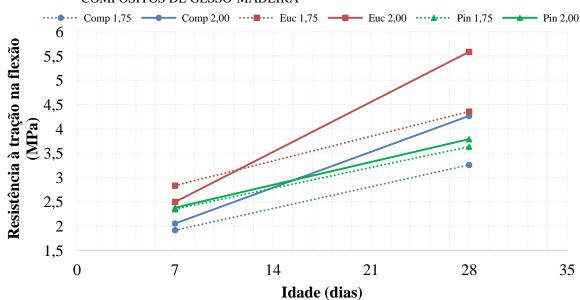


FIGURA 4.36 – EVOLUÇÃO DA RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 7 E 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA

Os resultados do ensaio de resistência à compressão, aos 28 dias, podem ser observados na FIGURA 4.37. Os valores obtidos estão entre 5,27 MPa a 7,01 MPa.

A análise estatística realizada através do teste de Tukey, comparando as médias das resistências para o mesmo tipo de madeira em diferentes proporções, aos 28 dias, possibilitou a constatação da equivalência estatística para as composições com eucalipto e com pinus. Para o resíduo de compensado, as resistências obtidas para as proporções de 1,75 e 2,00 apresentaram diferença estatística quando comparadas aos 28 dias.

Considerando a mesma proporção para os diferentes tipos de madeira, aos 28 dias, a análise estatística indicou que para as duas proporções de madeira avaliadas (1,75 e 2,00) foi observada equivalência estatística apenas para as combinações Comp 1,75 x Pin 1,75 e Comp 2,00 x Euc 2,00.

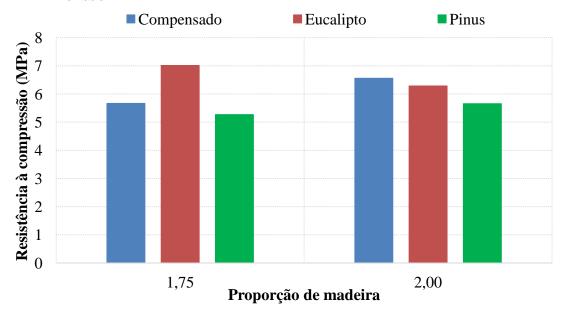
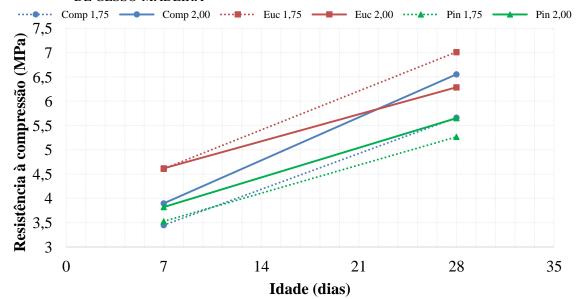
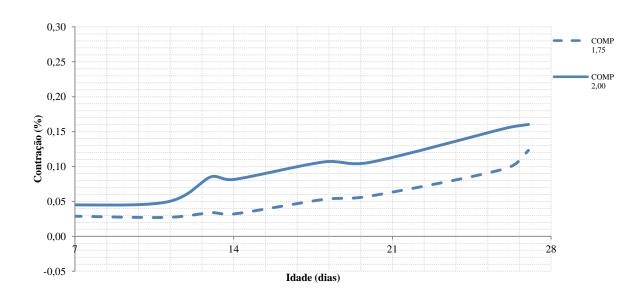


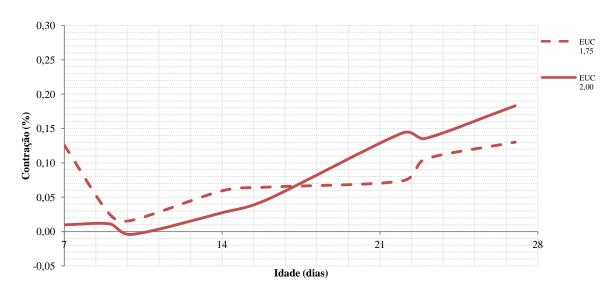
FIGURA 4.37 – RESULTADO DA RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA

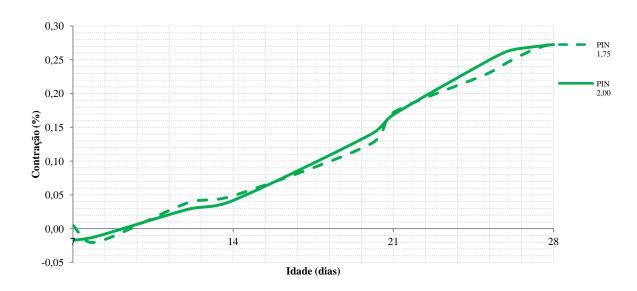
Na FIGURA 4.38 está apresentada a evolução da resistência à compressão nos compósitos para as idades de 7 e 28 dias. Aos 7 dias, as resistências para a madeira de compensado, de eucalipto e de pinus foram, em média, de 3,67 MPa, 4,61 MPa, e 3,68 MPa, respectivamente. O ganho de resistência para cada uma das madeiras, comparando os períodos de 7 e 28 dias, foi de 40% para o compensado, de 30% para o eucalipto e de 33% para o pinus, em média.

Comparando o resultado da resistência à compressão para as mesmas composições – considerando o mesmo tipo e proporção de madeira – em diferentes idades, o teste de Tukey indicou diferença estatística para todas as combinações analisadas, ou seja, o intervalo entre as idades de 7 e de 28 dias foi suficiente para provocar o aumento da resistência à compressão, assim como nos compósitos de cimento-madeira.




FIGURA 4.38 – EVOLUÇÃO DA RESISTÊNCIA À COMPRESSÃO AOS 7 E 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA


A FIGURA 4.39 apresenta o resultado do ensaio de variação dimensional realizado até os 28 dias de idade. É possível observar que para os compósitos produzidos com maior proporção de madeira, maior é a retração apresentada. Os compósitos de gesso-madeira produzidos com as partículas de compensado, eucalipto e pinus apresentaram retração máxima de, aproximadamente, 0,16%, 0,22% e 0,27%, respectivamente.


Com relação aos diferentes tipos de resíduos utilizados, assim como nos compósitos de cimento-madeira, é possível observar que as partículas provenientes do resíduo de compensado propiciaram melhor estabilidade dimensional. Com relação aos resíduos de eucalipto e pinus, no estudo realizado por Del Menezzi, Souza e Gonçalez (1996) com diferentes proporções de eucalipto e pinus para a produção de chapas aglomeradas, quanto maior a proporção de pinus na composição, maiores foram os resultados obtidos para os ensaios de inchamento e absorção de água, corroborando com os resultados apresentados neste estudo.

Para todas as composições avaliadas, percebe-se que, até os 28 dias, não foi verificada estabilidade dimensional, isto porque as variações dimensionais apresentam a tendência de intensificação da retração.

FIGURA 4.39 – RESULTADO DA VARIAÇÃO DIMENSIONAL ATÉ OS 28 DIAS DOS COMPÓSITOS DE GESSO-MADEIRA

A partir dos ensaios realizados, tornou-se possível efetuar a análise da influência das diferentes proporções de madeira em compósitos de gesso-madeira, produzidos com madeira proveniente de RCD.

Observa-se que, com relação à densidade de massa endurecida, composições realizadas com maiores proporções de madeira tendem a apresentar os menores valores, ou seja, maiores proporções de madeira na composição propiciam estruturas de maior leveza. Considerando os resultados obtidos com os ensaios mecânicos, através da análise estatística, verificou-se que para os resultados de resistência à tração na flexão não foi observada diferença estatística para as diferentes proporções de madeira adotadas nas composições. Com relação à resistência à compressão, foi obtida equivalência estatística para o mesmo tipo de madeira em diferentes teores para as madeira de eucalipto e pinus.

Desta maneira, a confecção e análise da viabilidade de produção de placas de vedação vertical foi realizada em compósitos de gesso-madeira produzidos com a partícula de madeira na proporção de 2,00.

4.3.3 Confecção e análise da viabilidade de produção de placas de vedação vertical

Com os resultados obtidos nos ensaios realizados nos procedimentos anteriores, tornou-se possível identificar qual composição apresentou as melhores propriedades para a confecção das placas de vedação vertical produzidas com os compósitos de gesso-madeira. A TABELA 4.9 apresenta a avaliação da densidade de massa endurecida dos compósitos de gesso-madeira produzidos e sua comparação com a densidade de placas de *drywall* disponíveis no mercado. Tem-se que, as maiores proporções de madeira na composição propiciam a diminuição da densidade de massa endurecida, entretanto os compósitos de gesso-madeira produzidos com as partículas de compensado, eucalipto e pinus, na proporção de 2,00, apresentaram densidade de massa endurecida de 1.086,59 kg/m³, 1.091,52 kg/m³ e 1.089,13 kg/m³, respectivamente.

As placas de *drywall* apresentam densidade entre 640,00 kg/m³ e 960,00 kg/m³. A densidade de massa endurecida das placas confeccionadas com os compósitos de gessomadeira produzidas com as partículas de compensado, eucalipto e pinus é, aproximadamente, 13%, 14% e 13%, respectivamente, superior às placas de *drywall*.

	Densidade de	Densidade de p	lacas de drywall	Diferença da densidade de massa	
Identificação	massa endurecida	a endurecida comerciais		endurecida dos compósitos e das	
	(kg/m³)	Mínimo (kg/m³)	Máximo (kg/m³)	placas de drywall	
GM COMP NSAT 1,75	1.090,54	640,00	960,00	14%	
GM COMP NSAT 2,00	1.086,59			13%	
GM EUC NSAT 1,75	1.093,06			14%	
GM EUC NSAT 2,00	1.091,52			14%	
GM PIN NSAT 1,75	1.096,21			14%	
GM PIN NSAT 2,00	1.089,13			13%	

TABELA 4.9 – COMPARATIVO ENTRE A DENSIDADE DE MASSA ENDURECIDA DOS COMPÓSITOS DE GESSO-MADEIRA E DAS PLACAS DE *DRYWALL*

As placas de vedação produzidas com os compósitos de gesso-madeira foram desformadas 24 h após a moldagem

A partir da confecção das placas de vedação vertical, tornou-se possível verificar que o método de produção utilizado, com a mistura com maior plasticidade, mostrou-se viável e exigiu materiais e equipamentos encontrados facilmente no mercado, apresentando baixo custo. Entretanto, o manuseio das placas demandou muito cuidado devido às suas dimensões.

Além disso, a densidade de massa endurecida das placas produzidas encontra-se, ainda, muito elevada, indicando a necessidade da continuação dos estudos no sentido de avaliar as propriedades mecânicas e de desempenho em placas produzidas com maiores proporções de madeira na mistura.

4.4 ANÁLISE COMPARATIVA DOS RESULTADOS DE ENSAIOS NO ESTADO ENDURECIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA E DE GESSO-MADEIRA

A produção dos compósitos de madeira foi realizada com diferentes materiais e proporções. Este item apresenta o comparativo das propriedades avaliadas dos compósitos produzidos com cimento-madeira e gesso-madeira, na condição não saturada, no estado endurecido, entre eles a densidade de massa endurecida, a resistência à tração na flexão, a resistência à compressão e a variação dimensional. A TABELA 4.10 apresenta os resultados das propriedades mecânicas avaliadas nos compósitos de cimento-madeira e gesso-madeira.

Os resultados do ensaio de densidade de massa endurecida apresentaram valores entre 1.067,27 kg/m³ e 1.147,78 kg/m³ para os compósitos de gesso-madeira e entre 1.437,96 kg/m³ e 1.627,59 kg/m³ para os compósitos de cimento-madeira.

Com relação à resistência à tração na flexão, os valores obtidos mantiveram-se entre 2,84 MPa e 5,37 MPa para os compósitos de gesso-madeira e entre 2,72 MPa e 6,41 MPa para os compósitos de cimento-madeira.

Os resultados de resistência à compressão permaneceram entre 5,27 MPa e 8,33 MPa para os compósitos de gesso-madeira e 8,05 MPa e 15,20 MPa para os compósitos de cimento-madeira.

TABELA 4.10 – RESULTADOS DAS PROPRIEDADES NO ESTADO DE ENDURECIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA

	Densidade de massa		Resistência	à tração na	Resistência à compressão	
Identificação	endurecida aos 28 dias (kg/m³)		flexão aos 28 dias (MPa)		aos 28 dias (MPa)	
	Gesso-	Cimento-	Gesso-	Cimento-	Gesso-	Cimento-
	madeira	madeira	madeira	madeira	madeira	madeira
COMP NSAT 1,00	1.129,48	1.585,70	3,83	4,00	8,33	15,20
COMP NSAT 1,25	1.126,31	1.627,59	3,54	5,13	6,98	14,75
COMP NSAT 1,50	1.067,27	1.499,80	3,19	6,39	6,80	13,04
COMP NSAT 1,75	1.090,54	1.492,29	3,46	5,86	5,66	12,16
COMP NSAT 2,00	1.086,59	1.438,66	4,27	6,41	6,38	12,74
EUC NSAT 1,00	1.146,23	1.511,34	4,02	3,81	8,25	10,91
EUC NSAT 1,25	1.141,28	1.485,06	3,43	3,52	7,20	8,54
EUC NSAT 1,50	1.147,78	1.477,10	3,36	2,95	7,08	10,18
EUC NSAT 1,75	1.093,06	1.470,27	4,36	2,73	6,72	9,41
EUC NSAT 2,00	1.091,52	1.446,60	5,37	3,01	6,29	8,05
PIN NSAT 1,00	1.112,97	1.575,23	3,58	4,37	7,53	13,98
PIN NSAT 1,25	1.104,74	1.490,22	2,84	2,72	6,36	9,38
PIN NSAT 1,50	1.089,33	1.455,05	2,97	3,69	6,13	10,12
PIN NSAT 1,75	1.096,21	1.447,03	3,37	3,85	5,27	9,14
PIN NSAT 2,00	1.089,13	1.437,96	3,79	4,03	5,57	9,53

A FIGURA 4.40 apresenta o resultado do ensaio da densidade de massa endurecida aos 28 dias para os compósitos de cimento-madeira e gesso-madeira. Enquanto os compósitos de cimento-madeira apresentaram resultados entre 1.437,96 kg/m³ e 1.627,59 kg/m³, os compósitos de gesso-madeira apresentaram resultados inferiores, entre 1.067,27 kg/m³ e 1.147,78 kg/m³. Ao considerar a média das diferentes proporções de madeira, observa-se que os compósitos de cimento produzidos com a madeira de compensado, eucalipto e pinus apresentaram os resultados, aproximadamente, 39%, 32% e 35%, respectivamente, superior quando comparado com os compósitos produzidos com gesso.

Foi realizada a análise estatística através do teste de Tukey, comparando as médias das densidades de massa endurecida para a mesma proporção de madeira com diferentes tipos de madeira e de aglomerante aos 28 dias. Nessas análises, o coeficiente de variação foi entre 0,90% e 4,24%, indicando baixa dispersão.

A partir da análise realizada foi possível verificar quais composições apresentaram equivalência estatística, entretanto todas as comparações realizadas entre compósitos produzidos com cimento-madeira e gesso-madeira indicaram diferença estatística.

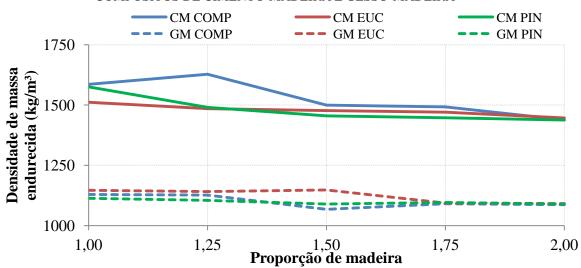


FIGURA 4.40 – COMPARATIVO ENTRE A DENSIDADE DE MASSA ENDURECIDA AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA

A FIGURA 4.41 apresenta o resultado do ensaio de resistência à tração na flexão aos 28 dias para os compósitos de cimento-madeira e gesso-madeira. Enquanto os compósitos de cimento-madeira apresentaram resultados entre 2,72 MPa e 6,41 MPa, os compósitos de gesso-madeira entre 2,84 MPa e 5,38 MPa. Ao considerar a média das diferentes proporções de madeira, observa-se que os compósitos de cimento produzidos com a madeira de compensado, eucalipto e pinus apresentaram os resultados, aproximadamente, 54%, -19% e 12%, respectivamente, quando comparado com os compósitos produzidos com gesso.

É importante destacar que na proporção de madeira de 1,50, os compósitos de cimento-madeira apresentam uma redução da resistência à tração na flexão, diferente do que ocorre com os compósitos de gesso-madeira.

Observa-se, também, o significativo ganho de resistência para o compósito de cimento-madeira produzido com o resíduo de compensado de acordo com o aumento da proporção de madeira na composição.

Foi realizada a análise estatística através do teste de Tukey, comparando as médias das resistências à tração na flexão para a mesma proporção de madeira com diferentes tipos de madeira e de aglomerante aos 28 dias.

Comparando os compósitos produzidos com proporção de madeira de 1,00 foi verificada equivalência estatística para todas as combinações realizadas (CV= 7,73%). Nas

proporções de 1,25 e 1,50, foi obtida diferença estatística apenas para as combinações em que um dos fatores pertencia ao compósito de cimento-madeira produzido com o resíduo de compensado (CM Comp). Nessas análises os coeficientes de variação obtidos foram de 16,54% e 8,76%, respectivamente, indicando a média e a baixa dispersão dos resultados.

Entretanto, para a proporção de 1,75 de madeira, todas as combinações avaliadas apresentaram equivalência estatística. É possível perceber que a equivalência estatística foi obtida devido à alta dispersão da amostra, mensurada através do coeficiente de variação de 45,27% que indica a heterogeneidade dos dados.

Com relação à proporção de madeira de 2,00, apresentaram equivalência estatística apenas as combinações: GM Comp x CM Pin, GM Comp x GM Pin, CM Pin x GM Pin, CM Euc x GM Pin e GM Euc x GM Pin. Nas demais comparações realizadas foram verificadas diferenças estatísticas. O coeficiente de variação obtido foi de 10,61%, indicando a baixa dispersão dos dados analisados.

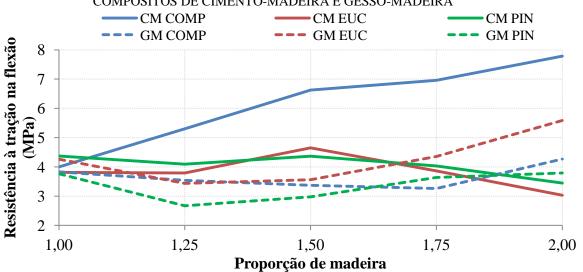


FIGURA 4.41 – COMPARATIVO ENTRE A RESISTÊNCIA À TRAÇÃO NA FLEXÃO AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA

A FIGURA 4.42 apresenta o resultado do ensaio de resistência à compressão aos 28 dias para os compósitos de cimento-madeira e gesso-madeira. Enquanto os compósitos de cimento-madeira apresentaram resultados entre 8,05 MPa e 15,20 MPa, os compósitos de gesso-madeira entre 5,27 MPa e 8,33 MPa. Ao considerar a média das diferentes proporções de madeira, observa-se que os compósitos de cimento produzidos com a madeira de compensado, eucalipto e pinus apresentaram os resultados, aproximadamente, 100%, 33% e 69%, respectivamente, superiores quando comparado com os compósitos produzidos com gesso.

É importante destacar que existe uma tendência dos compósitos produzidos com as menores proporções de madeira apresentar as maiores resistência à compressão.

A análise estatística foi realizada através do teste de Tukey, comparando as médias das resistências à compressão para a mesma proporção de madeira com diferentes tipos de madeira e de aglomerante aos 28 dias. Para os diferentes grupos de combinações, o coeficiente de variação variou de 3,89% a 13,02%, indicando a baixa dispersão dos dados avaliados.

A partir da análise realizada foi possível verificar as composições que apresentaram equivalência estatística, porém todas as comparações realizadas entre compósitos produzidos com cimento-madeira e gesso-madeira indicaram diferença estatística.

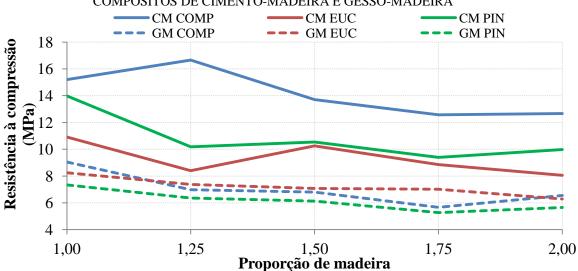


FIGURA 4.42 – COMPARATIVO ENTRE A RESISTÊNCIA À COMPRESSÃO AOS 28 DIAS DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA

O comparativo realizado com os resultados obtidos no ensaio de variação dimensional levou em consideração o tipo de madeira na mistura, o aglomerante utilizado e as leituras realizadas apenas aos 7, 14, 21 e 28 dias. Nas figuras, as linhas contínuas representam as maiores proporções de madeira e as tracejadas as menores proporções. Além disso, as cores mais fortes representam os compósitos de cimento-madeira e as mais claras os de gessomadeira.

A FIGURA 4.43 apresenta o comparativo realizado entre os compósitos de cimentomadeira e gesso-madeira produzidos com o resíduo de compensado. A partir da ilustração gráfica, percebe-se que é maior a influência da proporção de madeira do que o tipo do aglomerante utilizado. O comparativo entre os diferentes compósitos evidencia o fato de que quanto menor a proporção de madeira presente na mistura seja ele de cimento-madeira ou gesso-madeira, menor é a retração do compósito. Foram obtidas correlações satisfatórias em que o R² variou entre 0,8194 e 0,989. A variação dimensional provocada pela presença do compensado nos compósitos apresentou retração máxima de 0,165%.

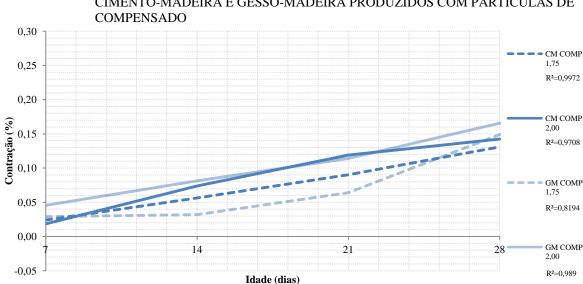


FIGURA 4.43 – COMPARATIVO ENTRE A VARIAÇÃO DIMENSIONAL DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA PRODUZIDOS COM PARTÍCULAS DE COMPENSADO

A FIGURA 4.44 apresenta o comparativo realizado entre os compósitos de cimentomadeira e gesso-madeira produzidos com o resíduo de eucalipto.

A partir do comparativo entre os diferentes compósitos é possível deduzir que, assim como nos compósitos produzidos com resíduo de compensado, quanto menor a proporção de madeira presente na mistura seja ele de cimento-madeira ou gesso-madeira, menor é a retração do compósito.

Foram obtidas correlações satisfatórias, exceto para o compósito GM Euc 1,75 que aos 7 dias apresentou uma significativa retração contribuindo para o valor de $R^2 = 0,0184$. A variação dimensional provocada pela presença do eucalipto nos compósitos apresentou retração máxima de 0,216%.

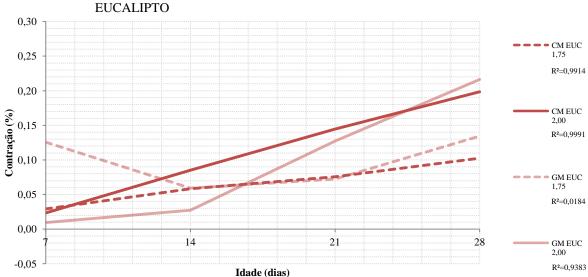


FIGURA 4.44 – COMPARATIVO ENTRE A VARIAÇÃO DIMENSIONAL DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA PRODUZIDOS COM PARTÍCULAS DE ELICALIDADO

A FIGURA 4.45 apresenta o comparativo realizado entre os compósitos de cimentomadeira e gesso-madeira produzidos com o resíduo de pinus. A partir da ilustração gráfica, percebe-se que é maior a influência do tipo do aglomerante utilizado do que a proporção de madeira.

O comparativo entre os diferentes compósitos indica que, para as primeiras idades analisadas os compósitos produzidos com gesso-madeira apresentam menor variação dimensional. Entretanto, após os 14 dias, ocorreu a inversão dos compósitos com relação à retração observada para cada um em que os compósitos produzidos com cimento-madeira passaram a apresentar menor variação dimensional.

Foram obtidas correlações satisfatórias para os compósitos avaliados, apresentando R² entre 0,9696 e 0,9988. A variação dimensional provocada pela presença do pinus nos compósitos apresentou retração máxima de 0,273%.

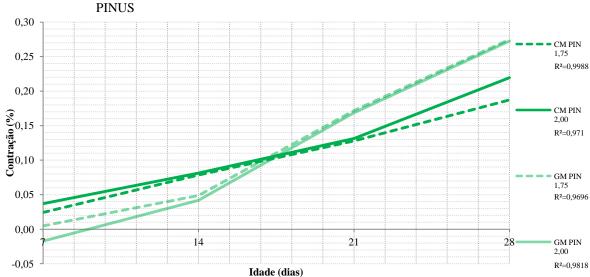


FIGURA 4.45 – COMPARATIVO ENTRE A VARIAÇÃO DIMENSIONAL DOS COMPÓSITOS DE CIMENTO-MADEIRA E GESSO-MADEIRA PRODUZIDOS COM PARTÍCULAS DE DINITIS

A partir da análise comparativa dos resultados de ensaios no estado endurecido dos compósitos de cimento-madeira e gesso-madeira tornou-se possível observar a influência provocada pelo tipo de aglomerante no compósito, além de relacioná-lo com a proporção de madeira presente na mistura.

O ensaio de densidade de massa endurecida apresentou diferença significativa para todas as comparações entre os compósitos produzidos com cimento-madeira e gesso-madeira.

Com relação ao ensaio de resistência à tração na flexão, as proporções de 1,00 e 1,75 apresentaram equivalência estatística para todas as combinações consideradas. Para as proporções de 1,25 e 1,50 verificou-se diferença estatística para todas as combinações em que o compósito de cimento-madeira produzido com o resíduo de compensado foi um dos fatores avaliados. Os compósitos produzidos com proporção de madeira de 2,00 apresentaram equivalência estatística em três composições em que o aglomerante dos dois fatores analisados era diferente (GM Comp x CM Pin, CM Pin x GM Pin e CM Euc x GM Pin).

Para o ensaio de resistência à compressão, todas as comparações realizadas entre compósitos produzidos com cimento-madeira e gesso-madeira indicaram diferença estatística.

A variação dimensional avaliada entre os compósitos produzidos com diferentes tipos de madeira apresentaram maior variação dimensional para o resíduo de pinus, em seguida, para o resíduo de eucalipto e, a maior estabilidade dimensional, observada neste estudo, para o resíduo de compensado.

5 CONSIDERAÇÕES FINAIS

Este capítulo apresenta as conclusões obtidas a partir dos resultados dos ensaios realizados nesse estudo que foram capazes de contribuir para o desenvolvimento de placas para vedação vertical produzidas com resíduo de madeira de construção, utilizando gesso e cimento como aglomerante.

5.1 CONCLUSÕES DO TRABALHO EXPERIMENTAL

Considerando os dois tipos de compósitos produzidos – sendo eles de cimentomadeira e de gesso-madeira – e o comparativo entre eles, foi possível levantar as conclusões, conforme listado abaixo.

5.1.1 Conclusões dos resultados apresentados pelo compósito de cimento-madeira

Sobre a influência exercida pelos aditivos aceleradores de pega - AD I e AD II - utilizados:

- O AD II à base de silicato de sódio provocou a diminuição do índice de consistência e para o tempo de início de pega, mostrou-se eficaz em todas as composições em que foi utilizado. O teor de 5% (com relação à massa do cimento) apresentou, ainda, o melhor custo-benefício quando comparado aos demais teores.
- Os aditivos aceleradores de pega AD I e AD II contribuíram para a redução da resistência à tração na flexão e à compressão. Para o AD II, a diminuição da resistência à compressão ocorreu em maior magnitude quanto maior foi o teor (5%, 10 % ou 15%) utilizado.

Sobre a influência exercida pela condição da partícula – saturada ou não saturada – na produção do compósito:

- O procedimento de saturação contribuiu para o aumento do índice de consistência e, consequentemente, da fluidez da mistura.
- O tempo de fim de pega foi influenciado pela condição saturada das partículas de madeira, inibindo a eficácia dos aditivos aceleradores de pega.

O procedimento de não saturação apresentou valores superiores de densidade de massa endurecida quando comparado à condição saturada. Além disso, a análise microestrutural indicou que a saturação das partículas de madeira contribuiu para o enfraquecimento da matriz cimentícia.

Sobre a influência exercida pelas diferentes proporções de madeira utilizadas para a confecção do compósito:

- Com relação à resistência à tração na flexão, as partículas de madeira provenientes dos resíduos de eucalipto e pinus apresentaram equivalência estatística, entretanto foi obtida diferença estatística para as comparações com os resíduos de compensado.
- Com relação à resistência à compressão, os compósitos produzidos com resíduos de eucalipto e pinus, nas proporções de 1,25, 1,50 e 1,75, apresentaram equivalência estatística. Porém, todas as composições com o resíduo de compensado apresentaram diferença estatística.
- Os compósitos produzidos com as maiores proporções de madeira (proporção de 2,00) apresentaram maior variação dimensional, que neste caso foi de retração. Dentre os tipos de madeira, o resíduo de compensado apresentou maior estabilidade, seguido pelo eucalipto e pinus.

Sobre a viabilidade da confecção das placas de vedação vertical:

A densidade de massa endurecida das placas confeccionadas com os compósitos de cimento-madeira produzidas com as partículas de compensado, eucalipto e pinus foram 50%, 51% e 50%, respectivamente, superior às placas de drywall.

5.1.2 Conclusões dos resultados apresentados pelo compósito de gesso-madeira

Sobre a influência exercida pela condição da partícula – saturada ou não saturada – na produção do compósito:

Com relação à densidade de massa fresca, foi obtida equivalência estatística para todas as madeiras, na condição não saturada, quando comparadas as diferentes proporções utilizadas (0,50, 0,75, 1,00, 1,25 e 1,50). O

- procedimento de saturação das partículas de madeira provocou alterações na densidade dos compósitos.
- A saturação das partículas de madeira contribuiu para o enfraquecimento da matriz de gesso, assim como nos compósitos produzidos com cimento Portland.

Sobre a influência exercida pelas diferentes proporções de madeira utilizadas para a confecção do compósito:

- Com relação ao tempo de início e fim de pega, constatou-se que a presença das partículas de madeira contribuiu para sua diminuição. Análises complementares indicam que essa influência ocorre devido às alterações físicas provocadas na mistura.
- Quanto maior a proporção (0,50, 0,75, 1,00, 1,25 e 1,50) de madeira na composição, menor é a densidade de massa fresca apresentada.
- O ensaio de resistência à tração apresentou equivalência estatística entre as diferentes proporções (0,50, 0,75, 1,00, 1,25 e 1,50) de madeira nas amostras Comp NSat, Comp Sat, Euc NSat, Euc Sat e Pin Sat. Entretanto, para a resistência à compressão, quanto maior a proporção (0,50, 0,75, 1,00, 1,25 e 1,50) de madeira, menor é a resistência.
- A partir das análises estatísticas com os resultados de resistência à compressão, foi verificada diferença estatística para as comparações entre os diferentes tipos de madeira e entre as diferentes proporções.
- Assim como nos compósitos produzidos com cimento-madeira, as maiores proporções de madeira (proporção de 2,00) apresentaram maior variação dimensional. Dentre os tipos de madeira, o resíduo de compensado apresentou maior estabilidade, seguido pelo eucalipto e pinus.

Sobre a viabilidade da confecção das placas de vedação vertical:

A densidade de massa endurecida das placas confeccionadas com os compósitos de gesso-madeira produzidas com as partículas de compensado, eucalipto e pinus é, aproximadamente, 13%, 14% e 13%, respectivamente, superior às placas de *drywall*.

- 5.1.3 Conclusões da análise comparativa dos resultados de ensaios no estado endurecido dos compósitos de cimento-madeira e de gesso-madeira
 - Foi verificada diferença estatística entre as comparações realizadas entre os compósitos produzidos com diferentes aglomerantes.
 - Na resistência à tração na flexão, as proporções de 1,00 e 1,75 apresentaram equivalência estatística para todas as combinações consideradas. As proporções de 1,25 e 1,50 indicaram diferença estatística nas combinações em que o compósito de cimento-madeira produzido com o resíduo de compensado foi um dos fatores avaliados. E os compósitos produzidos com proporção de madeira de 2,00 não apresentaram equivalência estatística.
 - Os valores de resistência à compressão apresentaram em todas as comparações realizadas, entre compósitos produzidos com cimento-madeira e gesso-madeira, diferença estatística.
 - A variação dimensional avaliada entre os compósitos produzidos com diferentes tipos de madeira apresentaram maior variação dimensional para o resíduo de pinus, em seguida, para o resíduo de eucalipto e, a maior estabilidade dimensional, observada neste estudo, para o resíduo de compensado.

5.2 SUGESTÕES PARA TRABALHOS FUTUROS

A partir dos resultados obtidos após a realização dos ensaios, sugerem-se alguns assuntos a serem estudados em futuras pesquisas:

- avaliar a influência e a eficácia de pré-tratamentos realizados com outras substâncias, entre elas a parafina;
- verificar as propriedades mecânicas de compósitos produzidos com maiores proporções de resíduo de madeira presente na mistura;
- realizar a dosagem dos compósitos com proporções de diferentes tipos de madeira numa mesma composição;
- utilizar aditivos superplastificantes para promover a fluidez da mistura possibilitando a redução do consumo de aglomerante no compósito;

 adotar materiais alternativos para manter a estabilidade da placa no intuito de produzir uma placa com menor espessura.

REFERÊNCIAS BIBLIOGRÁFICAS

AGOPYAN, V.; JOHN, V. M. **O desafio da sustentabilidade na construção civil**. São Paulo: Blucher, 2011.

AÏTCIN, P. Concreto de alto desempenho. 1ª Edição. São Paulo: PINI, 2000.

ANGULO, S. C. Variabilidade de agregados graúdos de resíduos de construção e demolição reciclados. 155 f. Dissertação (Mestrado em Engenharia) - Departamento de Engenharia de Construção Civil, Escola Politécnica da Universidade de São Paulo, São Paulo, 2000.

ANGULO, S. C.; ZORDAN, S.E.; JOHN, V. M. Desenvolvimento sustentável e a reciclagem de resíduos na construção civil. In: **IV Seminário Desenvolvimento Sustentável e a Reciclagem na construção civil - materiais reciclados e suas aplicações**. IBRACON, São Paulo, 2001.

ARDANUY, M.; CLARAMUNT, J.; TOLEDO FILHO, R. D. Cellulosic fibre reinforced cement-based composites: a review of recent research. **Construction and Building Materials**, v. 79, p. 115-128, 2015.

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE MADEIRA PROCESSADA MECANICAMENTE (ABIMCI) – **Aplicação da madeira na construção civil.** Artigo técnico n° 24, agosto, 2004.

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE MADEIRA PROCESSADA MECANICAMENTE (ABIMCI). **Estudo setorial 2009, ano base 2008.** Curitiba, 2009.

ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND (ABCP). Guia básico de utilização do cimento Portland. São Paulo, 2002.

ASSOCIAÇÃO BRASILEIRA DO *DRYWALL* (ABD). Números do segmento. Disponível em: http://www.drywall.org.br/index.php/6/numeros-do-segmento. Acesso em: 20/08/2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR NM 45**: Agregados - Determinação da massa unitária e do volume de vazios. Rio de Janeiro, 2006.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR NM 65**: Cimento Portland - Determinação do tempo de pega. Rio de Janeiro, 2003a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR NM 248**: Agregados - Determinação da composição granulométrica. Rio de Janeiro, 2003b.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 5.733**: Cimento Portland de alta resistência inicial. Rio de Janeiro, 1991a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 6.118**: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 6.922**: Carvão vegetal - Ensaios físicos determinação da massa específica (densidade à granel) — Cancelada. Rio de Janeiro, 1981.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 7.190**: Projeto de estruturas de madeira. Rio de Janeiro, 1997.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 11.768**: Aditivos químicos para concreto de cimento Portland – Requisitos. Rio de Janeiro, 2011.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 12.127**: Gesso para construção - Determinação das propriedades físicas do pó - Método de ensaio. Rio de Janeiro, 1991b.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 12.128**: Gesso para construção - Determinação das propriedades físicas da pasta - Método de ensaio. Rio de Janeiro, 1991c.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 12.129**: Gesso para construção - Determinação das propriedades mecânicas - Método de ensaio. Rio de Janeiro, 1991d.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 12.130**: Gesso para construção - Determinação da água livre e de cristalização e teores de óxido de cálcio e anidrido sulfúrico - Método de ensaio. Rio de Janeiro, 1991e.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 13.207**: Gesso para construção civil - Especificação. Rio de Janeiro, 1994.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 13.276**: Argamassa para assentamento e revestimento de paredes e tetos - Preparo da mistura e determinação do índice de consistência. Rio de Janeiro, 2005a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 13.278**: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da densidade de massa e do teor de ar incorporado. Rio de Janeiro, 2005b.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 13.279**: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro, 2005c.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 13.280**: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da densidade de massa aparente no estado endurecido. Rio de Janeiro, 2005d.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 14.715**: Chapas de gesso para *drywall* - Requisitos. Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 15.261**: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da variação dimensional (retratação ou expansão linear). Rio de Janeiro, 2005e.

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 15.577-4**: Agregados Reatividade álcali-agregado. Parte 4: Determinação da expansão em barras de argamassa pelo método acelerado. Rio de Janeiro, 2008.
- ASSOCIAÇÃO BRASILEIRA DOS PRODUTORES DE FLORESTAS PLANTADAS (ABRAF). **Anuário Estatístico da ABRAF 2013 ano base 2012**. Brasília, 2013.
- ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). **Panorama dos Resíduos Sólidos no Brasil 2013**. São Paulo, 2014.
- AYRILMIS, N.; JARUSOMBUTI, S.; FUEANGVIVAT, V.; BAUCHONGKOL, P. Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. **Polymer Degradation and Stability**, v. 96, p. 818–822, 2011.
- AZAMBUJA, R. da R. **Aproveitamento de resíduos da construção e demolição para produção de painéis aglomerados.** 107f. Dissertação (Mestrado em Engenharia Florestal) Setor de ciências agrárias, Universidade Federal do Paraná, 2011.
- BADEJO, S. O.; OMOLE, A. O.; FUWAPE, J. A.; OYELEYE, B. O. Static bending and moisture response of cement bonded particleboard produced at different levels of percent chemical additive content in board. **Nigerian Journal of Agriculture, Food and Environment**, v. 7, n. 4, p. 111-120, 2011.
- BAUER, L. A. F. **Materiais de construção 2**. 5ª Edição. Volume 2. Rio de janeiro: Editora LTC, 1994.
- BERALDO, A. L.; CARVALHO, J. V. Compósito *Eucalyptus grandis* cimento Portland. **Scientia Forestalis**, v. 65, p.150-161, 2004.
- BRANDON, P. S. Sustainability in management and organization: the key issues? **Building Research & Information**, v. 7, n. 6, p. 390–396, 1999.
- BURGUER, L. M.; RICHTER, H. G. Anatomia da Madeira. São Paulo: Nobel, 1991.
- CALIL JÚNIOR, C.; LAHR, F. A. R.; DIAS, A. A. **Dimensionamento de elementos estruturais de madeira**. 1ª Edição. São Paulo: Manole, 2003.
- CALLISTER JR., W. D. **Ciência e engenharia de materiais: uma introdução**. 7ª Edição. Rio de Janeiro: LTC, 2008.
- CARVALHO, J. V. Aproveitamento de resíduos particulados da madeira de Eucalipto Grandis na fabricação de compósitos a base de cimento Portland. 82 f. Dissertação (Mestrado em Engenharia Agrícola), Universidade Estadual de Campinas, Campinas, 2000.
- CARVALHO, E. M. de; CARVALHO, P. M.; DALTRO FILHO, J. Resíduos da construção civil e os desafios para a implementação da resolução CONAMA no. 307/2002: o caso de Aracaju-Sergipe. **24º Congresso Brasileiro de Engenharia Sanitária e Ambiental**. Belo Horizonte, 2007.

- CARVALHO, M. A.; CALIL JÚNIOR, C.; SAVASTANO JUNIOR, H.; TUBINO, R.; CARVALHO, M. T. Microstructure and Mechanical Properties of Gypsum Composites Reinforced with Recycled Cellulose Pulp. **Materials Research**, v. 11, n. 4, p. 391-397, 2008.
- CASTRO, V.; ARAÚJO, R. D.; PARCHEN, C.; IWAKIRI, S. Avaliação dos efeitos de prétratamentos da madeira de *eucalyptus benthamii maiden & cambage* no grau de compatibilidade com cimento Portland. **Revista Árvore**, v. 38, n. 5, p. 935-942, 2014.
- CASTRO, V. G. Utilização de espécies da Amazônia na produção de compósitos madeira-cimento por vibro-compactação. 223 f. Tese (Doutorado) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2015.
- CHERKI, A.; REMY, B.; KHABBAZI, A.; JANNOT, Y.; BAILLIS, D. Experimental thermal properties characterization of insulating cork—gypsum composite. **Construction and Building Materials**, v. 54, p. 202–209, 2014.
- CONSELHO BRASILEIRO DE CONSTRUÇÃO SUSTENTÁVEL (CBCS). Aspectos da construção sustentável no Brasil e promoção de políticas públicas. São Paulo. 2014.
- CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução nº. 307, de 05 de julho de 2002. Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil. **Diário Oficial da União**, Brasília, DF, n. 136, 17 jul. 2002. Seção 1, p. 95-96.
- CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução nº. 348, de 16 de agosto de 2004. Altera a Resolução CONAMA no 307, de 5 de julho de 2002, incluindo o amianto na classe de resíduos perigosos. **Diário Oficial da União**, Brasília, DF, n. 158, 17 ago. 2002. Seção 1, p. 70.
- CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA). Resolução nº. 431, de 24 de maio de 2011. Altera o art. 30 da Resolução no 307, de 5 de julho de 2002, do Conselho Nacional do Meio Ambiente- CONAMA, estabelecendo nova classificação para o gesso. **Diário Oficial da União**, Brasília, DF, n. 99, 5 mai. 2011. Seção 1, p. 123.
- CURITIBA. Decreto n. 1068, de 18 de novembro de 2004. Institui o regulamento do plano integrado de gerenciamento de resíduos da construção civil do município de Curitiba e altera disposições do Decreto n. 1.120/97. **Legislação do município de Curitiba**, Curitiba, 18 nov 2004. Disponível em:
- http://www.curitiba.pr.gov.br/servicos/MeioAmbiente/legislações/D1068.pdf>. Acesso em: 01/08/2016.
- CURITIBA. Lei n. 11682, de 6 de abril de 2006. Dispõe sobre o programa municipal de gerenciamento de resíduos da construção civil em Curitiba PROMGER. **Legislação do município de Curitiba**, Curitiba, 6 abr 2006. Disponível em:
- http://www.sindusconpr.com.br/downloads/Lei%20mun%20gerenciamento%20de%20residuos%20da%20const.doc. Acesso em 01/08/2016.
- DAI, D.; FAN, M. Preparation of bio-composite from wood sawdust and gypsum. **Industrial Crops and Products**, v. 74, p. 417–424, 2015.

- DANTAS FILHO, P. F. Contribuição ao estudo para aplicação do pó de serra da madeira em elementos de alvenaria de concreto não estrutural. 136 f. Dissertação (Mestrado em Engenharia Civil), Universidade de Campinas, Campinas, 2004.
- DEL MENEZZI, C. H. S.; SOUZA, M. R. de; GONÇALEZ, J. C. Fabricação e avaliação tecnológica da chapa aglomerada da mistura de *Eucalyptus urophylla* T. S. Blake e *Pinus oocarpa* Schiede. **Revista Árvore**, v. 20, n.4, p. 371-379, 1996.
- DENG, Y. H.; FURNO, T. Properties of gypsum particleboard reinforced with polypropylene fibers. **Journal of Wood Science**, v. 47, n. 6, p. 445-450, 2001.
- DEPARTAMENTO DA INDÚSTRIA DA CONSTRUÇÃO CIVIL (DECONCIC). Cadeia produtiva da construção: estimativas do investimento em obras, do PIB e do emprego. FIESP, São Paulo, 2015.
- DWECK, J.; ANDRADE, B. F.; MONTEIRO, E. E. C.; FISCHER, R. Thermal characterization of polymeric plaster composites. **Journal of Thermal Analysis and Calorimetry**, v. 67, p. 321-326, 2002.
- EFFTING, C. Madeiras. Notas de aula, UDESC, 2014. Disponível em: http://www.joinville.udesc.br/portal/professores/carmeane/materiais/AULA_12___MADEIR A_2015.pdf. Acesso em: 20/08/2016.
- ESAU, K. Anatomia das plantas com sementes. São Paulo: Editora Bluncher, 1974.
- EVANS, T. J.; MAJUMDAR, A. J.; RYDER, J. F. A semi-dry method for the production of lightweight glass–fibre-reinforced gypsum. The International **Journal of Cement Composites and Lightweight Concrete**, v. 3, n. 1, p. 41-44, 1981.
- EVE, S.; GOMINA, M.; ORANGE, G. Effects of polyamide and polypropylene fibers on the setting and the mechanical properties of plaster. **Key Engineering Materials**, v. 264-268, p. 2531-2536, 2004.
- EVE, S.; GOMINA, M.; HAMEL, J.; ORANGE, G. Investigation of the setting of polyamide fibre/latex-filled plaster composites. **Journal of the European Ceramic Society**, v. 26, p. 2541–2546, 2006.
- FAN, M.; NDIRKONTAR, M. K.; ZHOU, X.; NGAMVENG, N. Cement-bonded composites made from tropical woods: compatibility of wood and cement. **Construction and Building Materials**, v. 36, p. 135-140, 2012.
- FENGEL, D.; WEGENER, G. **Wood: chemistry, ultrastrusture, reactions.** Berlin: W. de Gruyter, 1989.
- GARCEZ, M. R.; SANTOS, T.; GATTO, D. A. Avaliação das propriedades físicas e mecânicas de concretos pré-moldados com adição de serragem em substituição ao agregado miúdo. **Ciência e Engenharia**, v.22, n.2, p. 95-104, 2013.
- GASSAN, J. A. Study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. **Composites Part A: Applied Science and Manufacturing**, v. 33, p. 369-374, 2002.

- GENCEL, O.; DEL COZ DIAZ, J. J.; SUTCU, M.; KOKSAL, F.; RABANAL, F. P. A.; MARTINEZ-BARRERA, G; BROSTOW, W. Properties of gypsum composites containing vermiculite and polypropylene fibers: numerical and experimental results. **Energy and Buildings,** v. 70, p. 135–44, 2014.
- GONZAGA, A. L. Madeira: Uso e Conservação. Brasília: IPHAN/MONUMENTA, 2006.
- GUSTAVSSON, L.; SATHRE, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. **Building and Environment**, v. 41, p. 940–951, 2006.
- HAMSIK, P.; KRAL, P. Composite materials from hemp and hydraulic lime for use in building and wood-constructions. **Wood Research**, v. 59(5), p 871-882, 2014.
- HANSEN, C. M.; BJÖRKMAN, A. The ultrastructure of wood from a solubility parameter point of view. **Holzforschung**, v. 52 n. 4, 335–344, 1998.
- HEWLETT, P. C. Lea's chemistry of cement and concrete. Butterworth-Heinemann: Fourth Edition, 2003.
- HORVATH, A. L. Solubility of structurally complicated materials: I. Wood. **Journal of prhysical and chemical reference data**, v. 35, n. 01, p. 77-92, 2006.
- INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SP (IPT). Madeira: uso sustentável na construção civil. São Paulo, 2009.
- IWAKIRI, S. Painéis de madeira reconstituída. Curitiba: FUPEF, 2005. 247p.
- IWAKIRI, S.; CUNHA, A. B. da; ALBUQUERQUE, C. E. C.; GORNIAK, E.; MENDES, L. M. Resíduos de serraria na produção de painéis de madeira aglomerada de eucalipto. **Scientia Agrária**, v. 1, n. 1-2, p. 23-28, 2000.
- IZANI, M. A. N.; PARIDAH, M. T.; ANWAR, U. M. K.; NOR, M. Y. M.; H'NG, P. S. Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. **Composites: Part B**, v. 45, p. 1251-1257, 2013.
- JOHN, V. M. **Reciclagem de resíduos na construção civil: Contribuição para metodologia de pesquisa e desenvolvimento**. 113 f. Tese (Livre Docência) Departamento de Engenharia de Construção Civil, Escola Politécnica da Universidade de São Paulo, São Paulo, 2000.
- JUENGER, M. C. G.; JENNINGS, H. M. New insights into the effects of sugar on the hydration and microstructure of cement pastes. **Cement and Concrete Research**, v. 32, p. 393-399, 2002.
- KARADE, S. R. Cement-bonded composites from lignocellulosic wastes. **Construction and Building Materials**, v. 24, p. 1323–1330, 2010.
- KARADE, S. R.; AGGARWAL, L. K. Cement-bonded lignocellulosic composites for building applications. **Metals Materials and Processes**, v. 17, n. 2, p. 129, 2005.
- KARADE, S. R.; IRLE, M.; MAHER, K. Influence of granule properties and concentration on cork-cement compatibility. **Holz als Roh-und Werkstoff**, v. 64, n. 4, p. 281-286, 2006.

- KILBERT, C. Sustainable construction: green building design and delivery. Fourth edition, New Jersey: Wiley, 2016.
- KOLLMANN, F. F. P.; CÔTÉ, W. A. **Principles of wood science and technology**, vol.1, Solid Wood. Nova Iorque: Springer-Verlag New York Inc., 1968. 604 p.
- KOOHESTANI, B.; KOUBAA, A.; BELEM, T.; BUSSIÈRE, B.; BOUZAHZAH, H. Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. **Construction and Building Materials**, v. 121, p. 222-228, 2016.
- KULATUNGA, U.; AMARATUNGA, D.; HAIGH, R.; RAMEEZDEEN, R. Attitudes and perceptions of construction workforce on construction waste in Sri Lanka. **Management of Environmental Quality: An International Journal**, v. 17, n. 1, p. 57-72, 2006.
- LATORRACA, J. V. de F. *Eucalyptus* spp na produção de painéis de cimento-madeira. 191f. Tese (Doutorado) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2000.
- LATORRACA J. V.; IWAKIRI S.; LELIS R. C. Efeito Inibidor de cinco espécies florestais sobre a cura do compósito cimento-madeira. **Floresta e Ambiente**, v. 6, n. 1, p. 76-82, 1999.
- LIMA, A. J. M. Utilização de resíduo de *Pinus* spp e materiais cimentícios alternativos na produção de blocos para alvenaria estrutural. 281 f. Tese (Doutorado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2009.
- LIMA, A. J. M.; IWAKIRI, S. Produtos alternativos na produção de blocos para alvenaria estrutural. **Floresta e Ambiente**, v. 18, n. 3, p. 310-323, 2011.
- LLATAS, C. A model for quantifying construction waste in projects according to the European waste list. **Waste management**, v. 31, n. 6, p. 1261-1276, 2011.
- LOPES, Y. L. V., MORI, F. A., MENDES, L. M., LATORRACA, J. V. F., TRUGILHO, P. F., SILVA, G. C. Avaliação do potencial técnico da madeira e casca de *Eucalyptus grandis* Hill ex Maiden na produção de painéis cimento-madeira. **Scientia Forestalis,** n. 67. p.111-122, 2005.
- MACEDO, A. N.; LIMA, A. M. de; FONSECA, F. de O.; LAVÔR, B. V. de A. Análise estatística do comportamento mecânico à compressão do compósito cimento-madeira. **Revista Matéria**, v. 16, n. 2, p. 658 667, 2011.
- MARTINS, S. C. F. **Pisos de argamassa reforçada com partículas de bambu**. 100 f. Dissertação (Mestrado em Engenharia Agrícola) Universidade Estadual de Campinas, Campinas, 2002.
- MATTHEWS, E.; BRINGEZU, S.; FISCHER-KOWALSKI, M.; HU'TTLER, W.; KLEIJN, R.; MORIGUCHI, Y.; OTTKE, C.; RODENBURG, E.; ROGICH, D.; SCHANDI, H.; SCHUTZ, H.; VAN DER VOET, E.; WEISZ, H. The weight of nations Material outflows from industrial economies. **World Resources Institute**, 2000.

- MATOSKI, A. Utilização de pó de madeira com granulometria controlada na produção de painéis de cimento-madeira. 187 f. Tese (Doutorado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2005.
- MATOSKI, A.; IWAKIRI, S. Avaliação das propriedades físico-mecânicas de painéis de cimento-madeira utilizando farinha de madeira com granulometria controlada. **Floresta**, v. 37, n. 2, p. 149-158, 2007.
- MATOSKI, A., HARA, M. M., IWAKIRI, S., CASALI, J. M. Influence of accelerating admixtures in wood-cement panels: characteristics and properties. **Acta Scientiarum. Tecnology**. v. 35. n. 4, p. 655-660. 2013
- MEHTA, P. K.; MONTEIRO, P. J. M. Concreto: microestrutura, propriedades e materiais. 2ª Edição. São Paulo: Ibracon, 2014.
- MIRANDA, L. F. R.; ANGULO, S. C.; CARELI, É. D. A reciclagem de resíduos de construção e demolição no Brasil: 1986–2008. **Ambiente Construído**, v. 9, n. 1, p. 57–71, 2009.
- MORAIS, S. A. L. de; NASCIMENTO, E. V. do; MELO, D. C. de. Análise da madeira de *Pinus oocarpa* Parte I Estudo de constituintes macromoleculares e extrativos voláteis. **Revista Árvore**, v. 29, n. 3, p. 461-470, 2005.
- MORALES-CONDE, M. J.; RODRÍGUEZ-LIÑÁN, C.; PEDREÑO-ROJAS, M. A. Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works. **Construction and Building Materials**, v. 114, p. 6-14, 2016.
- MOREY, P. R. O crescimento das árvores. 1ª Edição. São Paulo: EPU, 1980.
- MOSLEMI A. A.; GARCIA, J.F.; HOFSTRAND, A.D. Effect of various treatments and additives on wood-portland cement water systems. **Wood and Fiber science**, v. 15, n. 2, p. 164-176, 1983.
- NA, B.; WANG, Z. Q.; WANG, H. Q.; LU, X. N. Wood–cement compatibility review. **Wood Research**, v. 59, n. 5, p. 813-825, 2014.
- NETO, J. da C. M.; CAPELINI, M.; BITTENCOURT, V. S. de A.; SCHALCH, V. Impactos causados pelos resíduos de construção e demolição no meio ambiente urbano. Congresso Brasileiro de ciência e tecnologia em resíduos e desenvolvimento sustentável (ICTR), Florianópolis, 2004.
- NEVILLE, A. M.; BROOKS, J. J. **Tecnologia do concreto**. 2ª Edição. Porto Alegre: Bookman, 2013.
- OKINO, E. Y. A.; SOUZA, M. R.; SANTANA, M. A. E.; ALVES, M. V. S.; SOUZA, M. E.; TEIXEIRA, D. E. Physico-mechanical properties and decay resistance of *Cupressus spp.* cement-bonded particleboards. **Cement and Concrete Composites**, v. 27 p. 333-338, 2004.
- ONUAGULUCHI, O.; BANTHIA, N. Plant-based natural fibre reinforced cement composites: A review. **Cement and Concrete Composites**, v. 68, p. 96-108, 2016.

- PAN, Z.; CHENG, L.; LU, Y.; YANG, N. Hydration products of alkali-activated slag–red mud cementitious material. **Cement and concrete research**, v. 32, p. 357-362, 2002.
- PARCHEN, C. F. A. Compósito madeira cimento de baixa densidade produzido com método de compactação vibro dinâmica. 172 f. Tese (Doutorado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2012.
- PARCHEN, C. F. A.; IWAKIRI, S.; ZELLER, F.; PRATA, J. G. Vibro-dynamic compression processing of low-density wood-cement composites. **European Journal of Wood and Wood Products**, v. 74, p. 75-81, 2016.
- PEREIRA, H.; GRAÇA, J.; RODRIGUES, J. C. Wood chemistry in relation to quality. In: BARNETT, J. R.; JERONIMIDIS, G. **Wood quality and its biological basis**. [S.l.]: CRC Press, 2003.
- PEREIRA, C.; CALCEIRA, F.; FERREIRA, J. M. F.; IRLE, M. A. Characterization of cement-bonded particleboards manufacture with maritime pine, blue gum and cork grown in Portugal. **European Journal of Wood Products**. v. 70, p. 107-111, 2012.
- PETRUCCI, E. G. R. **Concreto de cimento Portland**. 12ª Edição. São Paulo: Editora Globo, 1993.
- PETRUCCI, E. G. R. **Materiais de construção**. 2ª Edição. Porto Alegre: Editora Globo, 1976.
- PFEIL, W.; PFEIL, M. S. Estruturas de madeira. 6ª Edição. Rio de Janeiro: LTC, 2009.
- PIMENTEL, L. L. **Telhas onduladas à base de cimento Portland e resíduos de** *Pinus caribea*. 67 f. Dissertação (Mestrado) Faculdade de Engenharia Agrícola de Universidade Estadual de Campinas, Campinas, 2000.
- POUEY, M.T.F. Beneficiamentos da cinza de casca de arroz residual com vistas à produção de cimento composto e/ou pozolânico. 320 f. Tese (Doutorado) Escola de Engenharia da Universidade Federal do Rio Grande do Sul, Porto Alegre, 2006.
- PRATA, G. P. **Desempenho de um sistema de qualidade em uma fábrica de painéis compesados**. 118 f. Dissertação (Mestrado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2006.
- PRATA, G. P. Estudo da viabilidade tecnológica do uso de espécies de pinus tropicais para produção de painéis colados lateralmente (edge glued panels EGP). 117 f. Tese (Doutorado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2010.
- RAMIREZ-CORETTI, A.; ECKELMAN, C. A.; WOLFE. R. W. Inorganic-Bonded composite wood panel systems for low-cost housing: a Central American Perspective. **Forest Product Journal**, n. 48, v. 4, p. 62-68, 1998.
- RAVEN, P. H.; EVERT, R. F.; EICHHORN, S. E. **Biologia vegetal.** 7ª Edição. Rio de Janeiro: Guanabara Koogan, 2007.

- REVISTA DE MADEIRA (REMADE). Painéis de cimento-madeira: características e aplicações. Edição nº 71, 2003.
- REVISTA DE MADEIRA (REMADE). **Pinus e eucalipto para produção de painéis**. Edição nº 103, 2007.
- RIVERO, A. J.; BÁEZ, A. G; NAVARRO, J. G. New composite gypsum plaster—ground waste rubber coming from pipe foam insulation. **Construction and Building Materials**, v. 55, p. 146-152, 2014.
- RYAN, J. V. Study of gypsum plasters exposed to fire. **Journal or research of the national bureau of standards**, v. 66C, n. 4, 1962.
- SANTOS, dos A. **Método de intervenção em obras de edificações enfocando o sistema de movimentação e armazenamento de materiais: Um estudo de caso**. 170 f. Dissertação (Mestrado em Engenharia) Universidade Federal do Rio Grande do Sul, Porto Alegre, 1995.
- SANTOS, R. C.; MENDES, L. M.; MORI, F. A.; MENDES, R. F. Aproveitamento de resíduo da madeira de Candeia (*Eremanthus erythropappus*) para produção de painéis cimentomadeira. **Cerne**, v. 14, n. 3, p. 241-250, 2008.
- SAVASTANO JÚNIOR, H.; DANTAS, F. de A. S.; AGOPYAN, V. Materiais reforçados com fibras correlação entre a zona de transição fibra-matriz e as propriedades mecânicas. 1ª Edição. São Paulo: PINI Editora, 1994.
- SERVIÇO BRASILEIRO DE APOIO ÀS MICRO E PEQUENAS EMPRESAS (SEBRAE). Utilização da madeira certificada na construção civil: um diferencial. 2014.
- SHIMOYAMA, V. R. de S. Estimativas de propriedades da madeira de *Pinus taeda* através do método não destrutivo emissão de ondas de tensão, visando a geração de produtos de alto valor agregado. 151 f. Tese (Doutorado) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2005.
- SILVA, F. A.; MOBASHER, B.; TOLEDO FILHO, R. D. Cracking mechanisms in durable sisal fiber reinforced cement composites. **Journal of Cement & Concrete Composites**, v. 31, p. 721–730, 2009.
- SIMATUPANG, M. H. Der Wasserbedarf bei der Herstellung zementgebunder Holzspanplatten. **Holz als Roh-und Werkstoff**, v. 27, p. 379-382, 1979.
- SINDICATO DA INDÚSTRIA DO GESSO (SINDUGESSO). **Produtos de gesso terão novas normas**. Disponível em: <<u>http://www.sindusgesso.org.br/produtos-de-gesso-teraonovas-normas</u>. 2014>. Acesso em: 01/08/2016.
- SINGH, M.; GARG, M. Glass fibre reinforced water-resistant gypsum-based composites. **Cement and Concrete Composites**, v. 14, n. 1, p. 23-32, 1992.
- SOBRAL, L.; VERÍSSIMO, A.; LIMA, E.; AZEVEDO, T.; SMERALDI, R. Acertando o alvo 2: consumo de madeira amazônica e certificação florestal no Estado de São Paulo. Belém, 2002.

- SOUZA, U. E. L. de. Como reduzir perdas nos canteiros Manual de gestão do consumo de materiais na construção civil. Pini, São Paulo, 2005.
- SOUZA, A. A. C. **Utilização de resíduos da indústria madeireira para fabricação de chapas cimento-madeira**. 147 f. Dissertação (Mestrado em Engenharia Civil) Universidade Federal do Pará, Belém, 2006.
- SOUZA, K. B.; ALMEIDA, K. N. S.; GUIMARÃES JÚNIOR, J. B.; GUIMARÃES NETO, R. M. Comparação das propriedades físicas de painéis aglomerados de Pinus de origem industrial e laboratorial. **Scientia Plena**, v. 8, n. 4, 2012.
- STANCATO, A. C. Caracterização de compósitos à base de resíduos vegetais e argamassa de cimento modificada pela adição de polímeros para a fabricação de blocos vazados. 234 f. Tese (Doutorado em Engenharia Agrícola) Universidade Estadual de Campinas, Campinas, 2006.
- STASIAK, M.; MOLENDA, M.; BANDA, M.; GONDEK, E. Mechanical properties of sawdust and woodchips. **Fuel**, v. 159, p. 900-908, 2015.
- STOKKE, D. D.; WU, Q.; HAN, G. Introduction to wood and natural fiber composites. Wiley, 2016.
- SWAMY, R.N. **Vegetable fiber reinforced cement composites** a false dream or a **potential reality?** In: International Symposium on Vegetable Plants and their Fibres as Building Materials. Salvador, 1990, Proceedings. Chapman and hall, p. 3-9.
- TAGGE, C. D.; POLLOCK, J. F.; TORRES, L.; SOANE, D. S. **Reinforced wallboard**. Innovative Construction and Building Materials. US 6841232 B2. 11 jan. 2005.
- TANIGUTTI, E. K.; BARROS, M. M. S. B. de. **Recomendações para a produção de vedações verticais para edifícios com placas de gesso acartonado**. Projeto EPUSP/SENAI: São Paulo, 1998.
- TAPPI. Testing Procedures of Technical Association of the Pulp and Paper Industry. In: **TAPPI Standard Method**. Atlanta, USA. Cd-Rom, 2002 (coletânea de normas).
- TITTELEIN, P.; CLOUTIER, A.; BISSONNETTE, B. Design of a low-density wood–cement particleboard for interior wall finish. **Cement & Concrete Composites**, v. 34, p. 218–222, 2012.
- TONOLI, G. H. D.; SAVASTANO, H.; FUENTE, E.; NEGRO, C.; BLANCO, A.; LAHR, F. R. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. **Industrial crops and products**, v. 31, n. 2, p. 225-232, 2010.
- TRIANOSKI, R.; MATOS, J. L. M. de; IWAKIRI, S.; PRATA, J. G. Avaliação das propriedades mecânicas da madeira de espécies de Pinus tropicais. **Scientia Forestalis**, v. 42, n. 101, p. 21-28, março, 2014.
- TRIANOSKI, R.; IWAKIRI, S.; NASCIMENTO, C. C. do; BILA, N. F. Painéis aglomerados produzidos com quatro espécies de madeiras tropicais da Amazônia. **Scientia Forestalis**, v. 43, n. 106, p. 445-452, junho, 2015.

- TURGUT, P. Cement composites with limestone dust and different grades of wood sawdust. **Building and Environment**, v. 42, n. 11, p. 3801-3807, 2007.
- VILLAS-BÔAS, B. T. Utilização de cimento Portland e resíduos de *Pinus spp* para fabricação de blocos vazados de baixa densidade. 186 f. Tese (Doutorado em Engenharia Florestal) Setor de ciências agrárias, Universidade Federal do Paraná, 2016.
- WEBER, C. Estudo sobre viabilidade de uso de resíduos de compensados, mdf e mdp para produção de painéis aglomerados. 90f. Dissertação (Mestrado em Engenharia Florestal) Setor de ciências agrárias, Universidade Federal do Paraná, 2011.
- WEI, Y. M.; ZHOU, Y. G.; TOMITA, B. Hydration behavior of cement-based composite I: evaluation of wood species effects on compatibility and strength with ordinary Portland cement. **Journal of Wood Science**, v. 46, p.296-302, 2000.
- XIE, X.; GOU, G.; WEI, X.; ZHOU, Z.; JIANG, M.; XU, X.; HUI, D. Influence of pretreatment of rice straw on hydration of straw fiber filled cement based composites. **Construction and Building Materials**, v. 113, p. 449-455, 2016.
- YAMAJI, F. M. **Produção de compósito plástico-madeira a partir de resíduos da indústria madeireira**. 182 f. Tese (Doutorado em Ciências Florestais) Universidade Federal do Paraná, Curitiba, 2004.
- YOUNGQUIST, J. A. Wood handbook—Wood as an engineering material: Wood-based composites and panel products. **Forest Products Laboratory**, 1999.
- YU, Q. L.; BROUWERS, H. J. H. Development of a self-compacting gypsum-based lightweight composite. **Cement and Concrete Composites**, v. 34, n. 9, p. 1033-1043, 2012.
- ZUCCO, L. L. Estudo da viabilidade de fabricação de placas de compósitos à base de cimento e casca de arroz. 118 f. Dissertação (Mestrado em Engenharia Agrícola) Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas, 1999.

APÊNDICE A – Análise estatística realizada através do teste de Tukey

As análises estatísticas realizadas, ao longo deste estudo, estão descritas e apresentadas neste apêndice. Através da aplicação do teste de Tukey, com 95% de confiança, foram realizadas comparações duas a duas em cada conjunto de dados.

Esse teste foi aplicado no intuito de verificar a existência de diferenças entre os tipos e os teores de madeira utilizados para a produção do compósito, entre as diferentes condições da partícula de madeira e, entre os diferentes tipos de aglomerantes adotados.

Os resultados obtidos foram validados pelo Software ASSISTAT Versão 7.7 beta (2016) desenvolvido pelo Professor Francisco Silva da Universidade Federal de Campina Grande.

O teste de Tukey consiste em definir a menor diferença significativa (DMS) a partir dos dados da amplitude total estudentizada, do quadrado médio do resíduo do conjunto (QME), e do número de repetições do tratamento (n). Desta maneira, a análise estatística realiza a comparação da diferença entre as médias avaliadas com o valor DMS calculado. Caso a diferença entre as médias seja superior, em módulo, à DMS, considera-se que as médias são estatisticamente diferentes. Senão, as médias são consideradas estatisticamente equivalentes.

A EQUAÇÃO A.1 apresenta o cálculo realizado para a determinação do DMS.

$$DMS = q_{\alpha}(k, T - k) \times \sqrt{\frac{QME}{n}}$$
 EQUAÇÃO A.1.

Onde:

DMS é a diferença máxima significativa;

 $q_{\alpha}(k,T-k)$ é o valor tabelado correspondente a amplitude total estudentizada em função do número de medições independentes (k), do número total de medições (T) e do grau de significância α ;

QME é o quadrado médio do resíduo do conjunto;

n é o número de repetições do tratamento.

O QUADRO I apresenta os valores tabelados para $q_{\alpha}(k, T - k)$.

	UADR	.U1-	VALO	KES D	E Q E	VIPKE	JADU	3 PAK	AUI.	COIE	COIAI	15110	O DE I	UKEI	
GL erro	α						t (núr	nero de	tratan	nentos)					
GL CITO	u	2	3	4	5	6	7	8	9	10	11	12	13	14	15
5	0,05	3,64	4,60	5,22	5,67	6,03	6,33	6,58	6,80	6,99	7,17	7,32	7,47	7,60	7,72
6	0,05	3,46	4,34	4,90	5,30	5,63	5,90	6,12	6,32	6,49	6,65	6,79	6,92	7,03	7,14
7	0,05	3,34	4,16	4,68	5,06	5,36	5,61	5,82	6,00	6,16	6,30	6,43	6,55	6,66	6,76
8	0,05	3,26	4,04	4,53	4,89	5,17	5,40	5,60	5,77	5,92	6,05	6,18	6,29	6,39	6,48
9	0,05	3,20	3,95	4,41	4,76	5,02	5,24	5,43	5,59	5,74	5,87	5,98	6,09	6,19	6,28
10	0,05	3,15	3,88	4,33	4,65	4,91	5,12	5,30	5,46	5,60	5,72	5,83	5,94	6,03	6,11
11	0,05	3,11	3,82	4,26	4,57	4,82	5,03	5,20	5,35	5,49	5,61	5,71	5,81	5,90	5,98
12	0,05	3,08	3,77	4,20	4,51	4,75	4,95	5,12	5,27	5,39	5,51	5,62	5,71	5,80	5,88
13	0,05	3,06	3,73	4,15	4,45	4,69	4,88	5,05	5,19	5,32	5,43	5,53	5,63	5,71	5,79
14	0,05	3,03	3,70	4,11	4,41	4,64	4,83	4,99	5,13	5,25	5,36	5,46	5,55	5,64	5,71
15	0,05	3,01	3,67	4,08	4,37	4,59	4,78	4,94	5,08	5,20	5,31	5,40	5,49	5,57	5,65
16	0,05	3,00	3,65	4,05	4,33	4,56	4,74	4,90	5,03	5,15	5,26	5,35	5,44	5,52	5,59
17	0,05	2,98	3,63	4,02	4,30	4,52	4,70	4,86	4,99	5,11	5,21	5,31	5,39	5,47	5,54
18	0,05	2,97	3,61	4,00	4,28	4,49	4,67	4,82	4,96	5,07	5,17	5,27	5,35	5,43	5,50
19	0,05	2,96	3,59	3,98	4,25	4,47	4,65	4,79	4,92	5,04	5,14	5,23	5,32	5,39	5,46
20	0,05	2,95	3,58	3,96	4,23	4,45	4,62	4,77	4,90	5,01	5,11	5,20	5,28	5,36	5,43
24	0,05	2,92	3,53	3,90	4,17	4,37	4,54	4,68	4,81	4,92	5,01	5,10	5,18	5,25	5,32
30	0,05	2,89	3,49	3,85	4,10	4,30	4,46	4,60	4,72	4,82	4,92	5,00	5,08	5,15	5,21
40	0,05	2,86	3,44	3,79	4,04	4,23	4,39	4,52	4,63	4,73	4,82	4,90	4,98	5,04	5,11
60	0,05	2,83	3,40	3,74	3,98	4,16	4,31	4,44	4,55	4,65	4,73	4,81	4,88	4,94	5,00
120	0,05	2,80	3,36	3,68	3,92	4,10	4,24	4,36	4,47	4,56	4,64	4,71	4,78	4,84	4,90
∞	0,05	2,77	3,31	3,63	3,86	4,03	4,17	4,29	4,39	4,47	4,55	4,62	4,69	4,74	4,80

QUADRO I – VALORES DE O EMPREGADOS PARA O TESTE ESTATÍSTICO DE TUKEY

O teste de Tukey foi aplicado sobre os resultados obtidos nos ensaios de densidade de massa endurecida, de resistência à tração na flexão e de resistência à compressão dos compósitos produzidos com cimento-madeira e com gesso-madeira, aos 7 e 28 dias de idade.

Assim como nos Capítulos 4 e 5, este se encontra dividido entre as análises estatísticas aplicadas aos resultados do compósito de cimento-madeira, de gesso-madeira e do comparativo entre os dois diferentes compósitos.

A. ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE CIMENTO-MADEIRA

A análise estatística realizada com os resultados obtidos a partir dos ensaios realizados com os compósitos produzidos com cimento-madeira está apresentada a seguir (QUADRO II, QUADRO II, QUADRO IV, QUADRO V e QUADRO VI).

Os ensaios de densidade de massa endurecida e de resistência à tração na flexão foram analisados com relação ao tipo de madeira (compensado, eucalipto e pinus) e ao teor de madeira presente na mistura (1,25, 1,50, 1,75 e 2,00) aos 28 dias.

Para o ensaio de resistência à compressão foram realizadas três diferentes análises, sendo elas: o mesmo tipo e teor de madeira comparados às idades de 7 e 28 dias, o mesmo

tipo de madeira comparado aos diferentes teores de madeira presentes na mistura aos 28 dias, e o mesmo teor de madeira comparado aos diferentes tipos de madeira aos 28 dias.

QUADRO II - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DOS DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES ADOTADOS) AOS 28 DIAS

DII EKENTES TII OS DE I	MADEIRA COM OS DIFERENTES TEOR Idade (,	
	Partícula de Compensado x Partícula de Eucalipto x Partícu	la de Pinus e Teor 1,25 x Teor 1,50 x Teor 1,75 x Teor 2,00	
COMP 1,25 x COMP 1,50	COMP 1,25 x COMP 1,75	COMP 1,25 x COMP 2,00	COMP 1,25 x EUC 1,25
med 1 = 1.627,59 med 2 = 1.499,80 DIF = 127,79	med 1 = 1.627,59 med 2 = 1.492,29 DIF = 135,30	med 1 = 1.627,59 med 2 = 1.438,66 DIF = 188,93	med 1 = 1.627,59 med 2 = 1.485,06 DIF = 142,53
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente diferentes	Estatisticamente equivalentes
COMP 1,25 x EUC 1,50	COMP 1,25 x EUC 1,75	COMP 1,25 x EUC 2,00	COMP 1,25 x PIN 1,25
med 1 = 1.627,59 med 2 = 1.477,10 DIF = 150,49	med 1 = 1.627,59 med 2 = 1.470,27 DIF = 157,32	med 1 = 1.627,59 med 2 = 1.446,60 DIF = 180,99	med 1 = 1.627,59 med 2 = 1.490,22 DIF = 137,37
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente diferentes	Estatisticamente diferentes	Estatisticamente diferentes	Estatisticamente equivalentes
COMP 1,25 x PIN 1,50	COMP 1,25 x PIN 1,75	COMP 1,25 x PIN 2,00	COMP 1,50 x COMP 1,75
med 1 = 1.627,59 med 2 = 1.455,05 DIF = 172,54	med 1 = 1.627,59 med 2 = 1.447,03 DIF = 180,56	med 1 = 1.627,59 med 2 = 1.437,96 DIF = 189,63	med 1 = 1.499,80 med 2 = 1.492,29 DIF = 7,50
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente diferentes	Estatisticamente diferentes	Estatisticamente diferentes	Estatisticamente equivalentes
COMP 1,50 x COMP 2,00	COMP 1,50 x EUC 1,25	COMP 1,50 x EUC 1,50	COMP 1,50 x EUC 1,75
med 1 = 1.499,80 med 2 = 1.438,66 DIF = 61,14		med 1 = 1.499,80 med 2 = 1.477,10 DIF = 22,70	med 1 = 1.499,80 med 2 = 1.470,27 DIF = 29,53
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes
COMP 1,50 x EUC 2,00	COMP 1,50 x PIN 1,25	COMP 1,50 x PIN 1,50	COMP 1,50 x PIN 1,75
med 1 = 1.499,80 med 2 = 1.446,60 DIF = 53,19		med 1 = 1.499,80 med 2 = 1.455,05 DIF = 44,74	med 1 = 1.499,80 med 2 = 1.447,03 DIF = 52,77
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes
COMP 1,50 x PIN 2,00	COMP 1,75 x COMP 2,00	COMP 1,75 x EUC 1,25	COMP 1,75 x EUC 1,50
med 1 = 1.499,80 med 2 = 1.437,96 DIF = 61,84	med 1 = 1.492,29 med 2 = 1.438,66 DIF = 53,63	med 1 = 1.492,29 med 2 = 1.485,06 DIF = 7,23	med 1 = 1.492,29 med 2 = 1.477,10 DIF = 15,20
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59		QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes
COMP 1,75 x EUC 1,75	COMP 1,75 x EUC 2,00	COMP 1,75 x PIN 1,25	COMP 1,75 x PIN 1,50
med 1 = 1.492,29 med 2 = 1.470,27 DIF = 22,03		med 1 = 1.492,29 med 2 = 1.490,22 DIF = 2,07	med 1 = 1.492,29 med 2 = 1.455,05 DIF = 37,24
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59		QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes
COMP 1,75 x PIN 1,75	COMP 1,75 x PIN 2,00	COMP 2,00 x EUC 1,25	COMP 2,00 x EUC 1,50
med 1 = 1.492,29 med 2 = 1.447,03 DIF = 45,26		med 1 = 1.438,66 med 2 = 1.485,06 DIF = 46,40	med 1 = 1.438,66 med 2 = 1.477,10 DIF = 38,43
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59		QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes
COMP 2,00 x EUC 1,75	COMP 2,00 x EUC 2,00	COMP 2,00 x PIN 1,25	COMP 2,00 x PIN 1,50
med 1 = 1.438,66 med 2 = 1.470,27 DIF = 31,60		med 1 = 1.438,66 med 2 = 1.490,22 DIF = 51,56	med 1 = 1.438,66 med 2 = 1.455,05 DIF = 16,39
QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59		QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59	QME = 2.411,26 q (12,24) = 5,10 DMS = 144,59
Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes	Estatisticamente equivalentes

											Idade	e (28 dias)											
							Partícula	de Compens	sado x Partí	cula de Euc	alipto x Partí	cula de Pin	us e Teor 1,	25 x Teor 1,	50 x Teor 1,	75 x Teor 2	,00						
	(COMP 2,00	x PIN	1,75				COMP 2,00	x PIN 2,00					EUC 1,25	x EUC 1,50					EUC 1,25 x	EUC 1,75		
med 1 =	1.438,66	med 2 =	###:	## DIF =	8,37	med 1 =	1.438,66	med 2 =	1.437,96	DIF =	0,70	med 1 =	1.485,06	med 2 =	1.477,10	DIF =	7,97	med 1 =	1.485,06	med 2 =	1.470,27	DIF =	14,80
QME =	2.411,26	q (12,24)	5,1	10 DMS =	144,59	QME=	2.411,26	q (12,24) =	5,10	DMS =	144,59	QME=	2.411,26	q (12,24) =	5,10	DMS =	144,59	QME=	2.411,26	q (12,24) =	5,10	DMS =	144,59
	Estat	tisticament	e equi	ivalentes			Est	atisticament	te equivalen	ites			Es	tatisticamen	te equivalent	tes			Es	tatisticament	e equivalent	es	
	_	EUC 1,25 x	EUC 2	2,00				EUC 1,25							x PIN 1,50					EUC 1,25			
med 1 =	,	med 2 =	-	## DIF =	38,46	med 1 =	1.485,06	med 2 =	1.490,22		5,16	med 1 =	1.485,06	med 2 =	1.455,05	DIF =	30,01	med 1 =	,	med 2 =	1.447,03	DIF =	38,03
QME=	2.411,26	q (12,24)	5,1	10 DMS =	144,59	QME=	2.411,26	q (12,24) =	5,10	DMS =	144,59	QME=	2.411,26	q (12,24) =	5,10	DMS =	144,59	QME=	2.411,26	q (12,24) =	5,10	DMS =	144,59
		tisticament	_				Est	atisticament		ites			Es		te equivalent	tes			Es		e equivalent	es	
		EUC 1,25 >						EUC 1,50 >						EUC 1,50	_					EUC 1,50			
med 1 =	1,	med 2 =	_	## DIF =	47,10	med 1 =	1.477,10		1.470,27		6,83	med 1 =	1.477,10		1.446,60		30,49	med 1 =	1.477,10		1.490,22		13,13
QME=		q (12,24)	_	10 DMS =	144,59	QME=		q (12,24) =	-, -	DMS =	144,59	QME=		q (12,24) =	-	DMS =	144,59	QME=		q (12,24) =		DMS =	144,59
		tisticament					Est	atisticament		ites			Es		te equivalent	tes			Es		e equivalent	es	
	_	EUC 1,50 >	_	,,,,				EUC 1,50			1		1	EUC 1,50			1			EUC 1,75 x			
med 1 =		med 2 =		## DIF =	22,04	med 1 =	1.477,10		1.447,03		30,07	med 1 =	1.477,10		1.437,96		39,14	med 1 =	1.470,27	med 2 =	1.446,60		23,66
QME=				10 DMS =	144,59	QME=	2.411,26	1		DMS =	144,59	QME=		q (12,24) =	-	DMS =	144,59	QME=		q (12,24) =		DMS =	144,59
		tisticament					Est	atisticament		ites			Es		te equivalent	tes			Es		e equivalent	es	
		EUC 1,75 >			T			EUC 1,75		I			T	EUC 1,75			T			EUC 1,75			
med 1 =		med 2 =	_	## DIF =	19,96	med 1 =	1.470,27		1.455,05		15,21	med 1 =	1.470,27		1.447,03		23,24	med 1 =		med 2 =	1.437,96		32,31
QME=		1	_	10 DMS =	144,59	QME=	-	q (12,24) =		DMS =	144,59	QME=		q (12,24) =		DMS =	144,59	QME=		q (12,24) =		DMS =	144,59
		tisticament	_				Est	atisticament		ites			Es		te equivalent	tes			Es		e equivalent	es	
med 1 =		EUC 2,00 2		1,25 ## DIF =	43.62	med 1 =	1.446.60	EUC 2,00		DIF =	0.45	med 1 =	1 446 60	EUC 2,00 med 2 =	1.447,03	DIE -	0.43	med 1 =	1.446.60	EUC 2,00 :	1.437.96	DIE -	8,64
OME =	1 1,11	q (12,24)	_	10 DMS =	144,59	OME =	,	q (12,24) =	,	DMS =	144,59	OME =	,	q (12,24) =		DMS =	144,59	OME =	,	q (12,24) =	,	DMS =	144,59
QME =		tisticament	_		144,39	QME=	-	atisticament			144,39	QME =		A	te equivalent		144,39	QME=			e equivalent		144,39
	Estat	PIN 1.25 x					EST	PIN 1.25 >		ites			LS	PIN 1.25		ies			125	PIN 1.50 x		C8	
med 1 =	1.490.22	med 2 =	_	## DIF =	35,17	med 1 =	1,490,22	med 2 =	1.447,03	DIF =	43,20	med 1 =	1.490.22		1.437,96	DIF=	52,26	med 1 =	1.455.05	med 2 =	1.447,03	DIF =	8,02
OME=		q (12,24)	-	10 DMS =	144,59	OME=	,	q (12,24) =		DMS =	144,59	OME=	,	q (12,24) =		DMS =	144,59	QME=	,	q (12,24) =		DMS =	144,59
		tisticament			11.90			atisticament			,				te equivalent		11,00	` _			e equivalent		1,00
			1					PIN 1,50 >	•					PIN 1,75	•								
						med 1 =	1.455,05		1.437,96	DIF =	17,09	med 1 =	1.447,03		1.437,96	DIF=	9,07	1					
						QME=	2.411,26	q (12,24) =		DMS =	144,59	QME=	2.411,26	q (12,24) =		DMS =	144,59	1					
							Est	atisticament	te equivalen	ites			Es	tatisticamen	te equivalent	tes							

QUADRO III - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DOS DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES ADOTADOS) AOS 28 DIAS

<u>п</u>	II LIN	ENIESI	по	S DE N	IAD	LIKA C	OWI	OS DIFE	KEIN			28 dias)	JIA	DOS) AC	<i>J</i> S 20	DIAS							1
					Partíc	ula de Con	npensa	do x Partícul	a de Eu		,		s e Teo	or 1,25 x Teor	1,50 x	Teor 1,75	x Teo	or 2,00					
	CC	OMP 1,25 x CO	OMP 1,	50			CC	OMP 1,25 x CO	OMP 1,	75			CC	OMP 1,25 x CO	OMP 2,0	00			(OMP 1,25 x E	UC 1,2	5	
med 1 =	5,88	med 2 =	6,80	DIF =	0,92	med 1 =	5,88	med 2 =	6,34	DIF =	0,46	med 1 =	5,88	med 2 =	7,30	DIF =	1,43	med 1 =	5,88	med 2 =	3,79	DIF =	2,08
QME =	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Estat	isticamente e	quivale	entes			Estat	isticamente e	quivale	ntes			Estat	isticamente e	quivale	ntes			Est	atisticamente	diferer	ites	
	C	OMP 1,25 x E	UC 1,5	0			C	OMP 1,25 x E	UC 1,7	5			C	OMP 1,25 x E	UC 2,0	0			(COMP 1,25 x l	PIN 1,2	5	
med 1 =	5,88	med 2 =	4,65	DIF =	1,23	med 1 =	5,88	med 2 =	3,86	DIF =	2,02	med 1 =	5,88	med 2 =	3,51	DIF =	2,37	med 1 =	5,88	med 2 =	3,83	DIF =	2,05
QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Estat	isticamente e	quivale	entes			Esta	atisticamente	diferen	tes			Esta	atisticamente	diferen	tes			Est	atisticamente	diferen	ites	
	(COMP 1,25 x I	PIN 1,50	0			(COMP 1,25 x F	IN 1,75	5			(COMP 1,25 x F	PIN 2,00)			C	OMP 1,50 x C	OMP 1,	75	
med 1 =		med 2 =		DIF =	1,95	med 1 =		med 2 =		DIF =	1,85	med 1 =	5,88			DIF =	2,06	med 1 =		med 2 =		DIF =	0,46
QME=		q (12,24) =			1,97	QME=				DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =			1,97
		isticamente e	•					isticamente e	•					atisticamente						isticamente e	•		
	1	OMP 1,50 x CO						OMP 1,50 x E						OMP 1,50 x E						OMP 1,50 x E		1	
med 1 =		med 2=		DIF =	0,51	med 1 =		med 2=		DIF =	3,00	med 1 =		med 2 =		DIF =	2,15			med 2 =		DIF =	2,94
QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =			1,97
		isticamente e	•					atisticamente						atisticamente						atisticamente			
1.1	I	OMP 1,50 x E		1	2.20	1 1		COMP 1,50 x F			2.07	1 1		COMP 1,50 x F			2.07	4.1		COMP 1,50 x l	r	1	277
med 1 = QME =	-	med 2 =	_	DIF =	3,29	med 1 =	6,80		_	DIF =	2,97 1,97	med 1 =	6,80		_	DIF =	2,87	med 1 =		med 2 = q (12,24) =	_	DIF =	2,77 1,97
QME=		q (12,24) =			1,97	QME=		q (12,24) =			1,97	QME=		q (12,24) =		DMS =	1,97	QME=					1,97
		COMP 1,50 x F						OMP 1,75 x CO						OMP 1,75 x E						atisticamente OMP 1,75 x E			
med 1 =		med 2 =		DIF=	2,98	med 1 =		med 2 =		DIF =	0,96	med 1 =		med 2 =		DIF =	2,55	med 1 =		med 2 =		DIF=	1,69
OME=	-	q (12,24) =			1.97	OME=				DMS =	1.97	OME=		q (12,24) =	_		1.97	OME=		q (12,24) =	-		1.97
QIIIZ		atisticamente			2,77	Q.III		isticamente e			2,,,,	Q.IIZ		atisticamente			1,,,,	QIIIE		isticamente e	_		2,57
		OMP 1,75 x E						OMP 1,75 x E						OMP 1,75 x F						COMP 1,75 x l	•		
med 1 =	6,34	med 2 =	3,86	DIF =	2,48	med 1 =	6,34	med 2 =	3,51	DIF =	2,83	med 1 =	6,34	med 2 =	3,83	DIF =	2,51	med 1 =	6,34	med 2 =	3,92	DIF =	2,42
QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Esta	atisticamente	diferen	ites			Esta	atisticamente	diferen	tes			Esta	atisticamente	diferen	tes			Est	atisticamente	diferer	ites	
	(COMP 1,75 x I	PIN 1,7:	5			(COMP 1,75 x F	IN 2,00)			C	OMP 2,00 x E	UC 1,2:	5			(OMP 2,00 x F	UC 1,5	0	
med 1 =	6,34	med 2 =	4,03	DIF =	2,31	med 1 =	6,34	med 2 =	3,82	DIF =	2,52	med 1 =	7,30	med 2 =	3,79	DIF =	3,51	med 1 =	7,30	med 2 =	4,65	DIF =	2,65
QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Esta	atisticamente	diferen	ites			Esta	atisticamente	diferen	tes			Esta	atisticamente	diferen	tes			Est	atisticamente	diferer	ites	
	C	OMP 2,00 x E	UC 1,7	5			C	OMP 2,00 x E	UC 2,0	0			(COMP 2,00 x F	PIN 1,25	5			(COMP 2,00 x l	PIN 1,5	0	
med 1 =	7,30	med 2 =	3,86	DIF =	3,44	med 1 =	7,30	med 2 =	3,51	DIF =	3,80	med 1 =	7,30	med 2 =	3,83	DIF =	3,48	med 1 =	7,30	med 2 =	3,92	DIF =	3,38
QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Esta	atisticamente	diferen	ites			Esta	atisticamente	diferen	tes			Esta	atisticamente	diferen	tes			Est	atisticamente	diferer	ites	

							•		•	•	Id	lade (28 dia	s)				•		•		-		
							Partíc	ula de Com	pensado x Pa	artícula de H	Eucalipto x P	artícula de l	Pinus e Teor	1,25 x Teor	1,50 x Teo	r 1,75 x Teo	r 2,00						
		COMP 2	2,00 x PII	N 1,75				COMP 2,0	0 x PIN 2,00					EUC 1,25 >	EUC 1,50					EUC 1,25	x EUC 1,75		
med 1 =	7,30	med 2	= 4,03	DIF =	3,27	med 1 =	7,30	med 2 =	3,82	DIF =	3,49	med 1 =	3,79	med 2 =	4,65	DIF =	0,86	med 1 =	3,79	med 2 =	3,86	DIF =	0,07
QME =	0,45	q (12,2	4) 5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME =	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Est	tatistica	mente di	iferentes			F	statisticame	nte diferente	es			Es	tatisticament	te equivalen	ites			Es	tatisticamen	te equivaler	ates	
		EUC 1,2	-						x PIN 1,25					EUC 1,25							x PIN 1,75		
med 1 =		_	_	DIF =	0,29	med 1 =		med 2 =	-	DIF =	0,03	med 1 =	- ,	med 2 =		DIF =	0,13		- ,	med 2 =	,	DIF =	0,24
QME =			-	DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97
	Esta			ivalentes			Es		te equivalen	tes			Es	tatisticament		ites			Es	tatisticamen		ites	
		EUC 1,	_	1				,	x EUC 1,75					EUC 1,50 >	,					1 ,	x PIN 1,25		
med 1 =		_		DIF =	0,02	med 1 =	,,,,	med 2 =	- ,	DIF =	0,79		/	med 2 =		DIF =	1,14		/**	med 2 =	- 7	DIF =	0,82
QME =	0,45	q (12,2	4) 5,10	DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97	QME=	0,45	q (12,24) =	5,10	DMS =	1,97
	Esta			uivalentes			Es		te equivalen	tes			Es	tatisticament		ites			Es	tatisticamen		ites	
	_	EUC 1,	-	- 1					x PIN 1,75					EUC 1,50							x EUC 2,00		
med 1 =		_		DIF=	0,73	med 1 =		med 2 =	<u> </u>	DIF =	0,62	med 1 =	-	med 2 =		DIF=	0,83			med 2 =		DIF=	0,35
QME =				DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97
	Esta			uivalentes			Es		te equivalen	tes			Es	tatisticament	-	ites			Es	tatisticamen		ites	
		EUC 1,	-					,	x PIN 1,50		1		1	EUC 1,75	- ,		1				x PIN 2,00		
med 1 =		_		DIF=	0,03	med 1 =		med 2 =		DIF =	0,06	med 1 =		med 2 =	,	DIF=	0,17			med 2 =		DIF =	0,04
QME=		11.	71 7	DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97
	Esta			uivalentes			Es		te equivalen	tes			Es	tatisticament		ites			Es	tatisticamen		ites	
		EUC 2,	-		1			,	x PIN 1,50		1		1	EUC 2,00	,,,,,		1		1	,	x PIN 2,00		
med 1 =		_		DIF=	0,32	med 1 =		med 2 =	<u> </u>	DIF =	0,42	med 1 =	-	med 2 =		DIF=	0,52			med 2 =		DIF=	0,31
QME=		1 1 1	71 7	DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97
	Esta			ivalentes			Es		te equivalen	ites			Es	tatisticament	-	ites			Es	tatisticamen		ites	
	T		25 x PIN				1		x PIN 1,75	I	1			PIN 1,25 >	. ,	I					x PIN 1,75	T	
med 1 =	_	_	_	DIF=	0,10	med 1 =		med 2 =	,	DIF =	0,20	med 1 =		med 2 =		DIF =	0,01		-	med 2 =	,	DIF =	0,11
QME =				DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97
	Esta	itisticam	ente equ	ivalentes			Es		te equivalen	ites			Es	tatisticament		ites			Es	tatisticamen	te equivaler	ites	
									x PIN 2,00	1	T		1	PIN 1,75 x		1	T						
						med 1 =		med 2 =	- /-	DIF =	0,11	med 1 =	-	med 2 =		DIF=	0,21						
						QME=		q (12,24) =		DMS =	1,97	QME=		q (12,24) =		DMS =	1,97						
							Es	tatisticamen	te equivalen	ites			Es	tatisticament	te equivalen	ites		J					

QUADRO IV - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO E TEOR DE MADEIRA COM AS IDADES DE 7 E 28 DIAS)

	Ida	de (7 dias)	x Idade (28 d	ias)		
	med 1 =	12,12	med 2=	14,75	DIF =	2,63
COMP 1,25	QME=	3,10	q(2,10) =	3,15	DMS =	2,26
		Est	atisticamente	diferentes	3	
	med 1 =	10,78	med 2 =	13,04	DIF =	2,26
COMP 1,50	QME=	0,60	q(2,10) =	3,15	DMS =	0,99
		Est	tatisticamente	diferentes	3	
	med 1 =	10,33	med 2 =	12,16	DIF =	1,82
COMP 1,75	QME=	0,29	q(2,10) =	3,15	DMS =	0,70
		Est	tatisticamente	diferentes	S	
	med 1 =	10,41	med 2 =	12,74	DIF =	2,33
COMP 2,00	QME=	0,41	q(2,10) =	3,15	DMS =	0,82
		Est	tatisticamente	diferentes	3	Y
	med 1 =	7,11	med 2 =	8,54	DIF =	1,43
EUC 1,25	QME=	0,39	q(2,10) =	3,15	DMS =	0,81
		Est	tatisticamente	diferentes	3	
	med 1 =	7,21	med 2 =	10,18	DIF =	2,96
EUC 1,50	QME=	0,25	q(2,10) =	3,15	DMS =	0,65
		Est	tatisticamente	diferentes	S	
	med 1 =	6,84	med 2 =	9,41	DIF =	2,57
EUC 1,75	QME=	0,29	q(2,10) =	3,15	DMS =	0,69
		Est	tatisticamente	diferentes	3	8
	med 1 =	6,26	med 2 =	8,05	DIF =	1,79
EUC 2,00	QME=	0,08	q(2,10) =	3,15	DMS =	0,37
		Est	tatisticamente	diferentes	3	
	med 1 =	7,65	med 2 =	9,38	DIF =	1,74
PIN 1,25	QME=	0,90	q(2,10) =	3,15	DMS =	1,22
		Est	tatisticamente	diferentes	3	
	med 1 =	8,15	med 2 =	10,12	DIF =	1,97
PIN 1,50	QME=	0,82	q(2,10) =	3,15	DMS =	1,17
		Est	atisticamente	diferentes	3	
	med 1 =	7,61	med 2 =	9,14	DIF =	1,53
PIN 1,75	QME=	0,54	q(2,10) =	3,15	DMS =	0,94
		Est	tatisticamente	diferentes	3	
	med 1 =	7,39	med 2=	9,53	DIF =	2,14
PIN 2,00	QME=	0,55	q(2,10) =	3,15	DMS =	0,95
		Est	tatisticamente	diferentes	S	

QUADRO V - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO DE MADEIRA COM OS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

	_		-		202 50 4 50						103 fb f 81				901		3 FD 4 00		
	ado			OMP 1,25 x C						OMP 1,25 x C	OMP 1,75				CON	ЛР 1,25 х СС			
	Sua	med 1 =	14,75	med 2 =	13,04	DIF =	1,71	med 1 =	14,75	med 2 =	12,16	DIF =	2,59	med 1 =	14,75	med 2=	12,74	DIF =	2,01
	Compensado	QME=	1,83	q (4,20) =	3,96	DMS =	2,19	QME=	1,83	q (4,20) =	3,96	DMS =	2,19	QME=	1,83	q (4,20) =	3,96	DMS =	2,19
			Estat	tisticamente	equivalen	tes			Esta	atisticament	e diferente	s			Estatis	ticamente ed	quivalente	s	
	Partícula de		CC	OMP 1,50 x C	COMP 1,75	5			CC	OMP 1,50 x C	OMP 2,00)			CON	ИР 1,75 x CC	MP 2,00		
	ícul	med 1 =	13,04	med 2 =	12,16	DIF =	0,88	med 1 =	13,04	med 2 =	12,74	DIF =	0,30	med 1 =	12,16	med 2=	12,74	DIF =	0,58
	art	QME=	1,83	q (4,20) =	3,96	DMS =	2,19	QME=	1,83	q (4,20) =	3,96	DMS =	2,19	QME=	1,83	q (4,20) =	3,96	DMS =	2,19
			Estat	tisticamente	equivalen	tes			Estat	isticamente	equivalen	tes			Estatis	ticamente ed	quivalente	s	
	0			EUC 1,25 x E	EUC 1,50					EUC 1,25 x E	UC 1,75				Е	UC 1,25 x EU	C 2,00		
_	Ϊġ	med 1 =	8,54	med 2 =	10,18	DIF =	1,63	med 1 =	8,54	med 2 =	9,41	DIF=	0,86	med 1 =	8,54	med 2=	8,05	DIF =	0,49
lias	n Ca	QME=	0,41	q (4,20) =	3,96	DMS =	1,04	QME=	0,41	q (4,20) =	3,96	DMS =	1,04	QME=	0,41	q (4,20) =	3,96	DMS =	1,04
28 0	le E		Est	atisticament	e diferente	es			Estat	isticamente	equivalen	tes			Estatis	ticamente ed	quivalente	s	
Idade (28 dias)	Partícula de Eucalipto			EUC 1,50 x E	EUC 1,75					EUC 1,50 x E	UC 2,00				E	UC 1,75 x EU	C 2,00		
Ida	ıţc	med 1 =	10,18	med 2 =	9,41	DIF =	0,77	med 1 =	10,18	med 2 =	8,05	DIF =	2,13	med 1 =	9,41	med 2=	8,05	DIF =	1,36
	Pa	QME=	0,41	q (4,20) =	3,96	DMS =	1,04	QME=	0,41	q (4,20) =	3,96	DMS =	1,04	QME=	0,41	q (4,20) =	3,96	DMS =	1,04
			Estat	tisticamente	equivalen	tes			Esta	atisticament	e diferente	s			Estat	isticamente (diferentes		
				PIN 1,25 x F	PIN 1,50					PIN 1,25 x F	IN 1,75				F	'IN 1,25 x PII	N 2,00		
	2	med 1 =	9,38	med 2 =	10,12	DIF =	0,74	med 1 =	9,38	med 2 =	9,14	DIF =	0,24	med 1 =	9,38	med 2=	9,53	DIF =	0,15
	뎚	QME=	0,84	q (4,20) =	3,96	DMS =	1,48	QME=	0,84	q (4,20) =	3,96	DMS =	1,48	QME=	0,84	q (4,20) =	3,96	DMS =	1,48
	a de		Estat	tisticamente	equivalen	tes			Estat	isticamente	equivalen	tes			Estatis	ticamente ed	quivalente	s	
	ic al			PIN 1,50 x F	PIN 1,75					PIN 1,50 x F	IN 2,00				F	IN 1,75 x PII	N 2,00		
	Partícula de Pinus	med 1 =	10,12	med 2 =	9,14	DIF=	0,98	med 1 =	10,12	med 2 =	9,53	DIF=	0,59	med 1 =	9,14	med 2=	9,53	DIF =	0,39
	-	QME=	0,84	q (4,20) =	3,96	DMS =	1,48	QME=	0,84	q (4,20) =	3,96	DMS =	1,48	QME=	0,84	q (4,20) =	3,96	DMS =	1,48
			Estat	tisticamente	equivalen	tes			Estat	isticamente	equivalen	tes			Estatis	ticamente ed	quivalente	s	

QUADRO VI - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA) AOS 28 DIAS

	,25		(COMP 1,25 x I	EUC 1,25				(COMP 1,25 x	PIN 1,25					EUC 1,25 x F	PIN 1,25		
	le 1	med 1 =	14,75	med 2 =	8,54	DIF =	6,20	med 1 =	14,75	med 2 =	9,38	DIF =	5,36	med 1 =	8,54	med 2 =	9,38	DIF =	0,84
	or c	QME =	2,54	q (3,15) =	3,67	DMS =	2,39	QME =	2,54	q (3,15) =	3,67	DMS =	2,39	QME =	2,54	q (3,15) =	3,67	DMS =	2,39
	Ĕ		E	statisticamente	diferentes				F	statisticamente	diferentes				Es	tatisticamente (equivalente	es	
	,50		(COMP 1,50 x I	EUC 1,50				(COMP 1,50 x	PIN 1,50					EUC 1,50 x I	PIN 1,50		
	de 1	med 1 =	13,04	med 2 =	10,18	DIF =	2,86	med 1 =	13,04	med 2 =	10,12	DIF =	2,92	med 1 =	10,18	med 2 =	10,12	DIF =	0,06
dias	[eor	QME =	0,92	q (3,15) =	3,67	DMS =	1,44	QME =	0,92	q (3,15) =	3,67	DMS =	1,44	QME =	0,92	q(3,15) =	3,67	DMS =	1,44
28 (Ē		E	statisticamente	diferentes				F	Estatisticamente	diferentes				Es	tatisticamente (equivalente	es	
Idade	,75		(COMP 1,75 x I	EUC 1,75				(COMP 1,75 x	PIN 1,75					EUC 1,75 x I	PIN 1,75		
Id	de 1	med 1 =	12,16	med 2 =	9,41	DIF =	2,75	med 1 =	12,16	med 2 =	9,14	DIF =	3,01	med 1 =	9,41	med 2 =	9,14	DIF =	0,26
	eor	QME =	0,31	q (3,15) =	3,67	DMS =	0,84	QME =	0,31	q (3,15) =	3,67	DMS =	0,84	QME =	0,31	q (3,15) =	3,67	DMS =	0,84
	F		E	statisticamente	diferentes				E	estatisticamente	diferentes				Es	tatisticamente (equivalente	es	
	00		(COMP 2,00 x I	EUC 2,00				(COMP 2,00 x	PIN 2,00					EUC 2,00 x I	PIN 2,00		
	de 2	med 1 =	12,74	med 2 =	8,05	DIF =	4,69	med 1 =	12,74	med 2 =	9,53	DIF =	3,21	med 1 =	8,05	med 2 =	9,53	DIF =	1,48
	or c	QME =	0,34	q (3,15) =	3,67	DMS =	0,88	QME =	0,34	q (3,15) =	3,67	DMS =	0,88	QME =	0,34	q (3,15) =	3,67	DMS =	0,88
	Ĕ		E	statisticamente	diferentes				F	statisticamente	diferentes				I	Estatisticamente	diferentes	3	

B. ANÁLISE DOS RESULTADOS DE ENSAIOS DOS COMPÓSITOS DE GESSO-MADEIRA

A análise estatística realizada com os resultados obtidos a partir dos ensaios realizados com os compósitos produzidos com gesso-madeira está apresentada a seguir e estão divididos em duas etapas.

A primeira etapa (QUADRO VII, QUADRO VIII, QUADRO IX e QUADRO X) considera as análises realizadas com os parâmetros da condição da partícula de madeira (sendo saturado ou não saturado) e os diferentes teores de madeira na composição (0,50, 0,75, 1,00, 1,25 e 1,50).

Na sequencia (QUADRO XI, QUADRO XII, QUADRO XIII, QUADRO XIV e QUADRO XV), são apresentadas as análises contendo apenas uma condição da partícula de madeira (não saturada) e outros dois teores de madeira na composição (1,75 e 2,00).

Os ensaios de densidade de massa endurecida e de resistência à tração na flexão foram analisados com o mesmo tipo de madeira (compensado, eucalipto e pinus) e o mesmo procedimento de saturação (saturado ou não saturado) com relação aos diferentes teores de madeira (0,50, 0,75, 1,00, 1,25 e 1,50) aos 28 dias.

Para o ensaio de resistência à compressão foram realizadas duas diferentes análises, sendo elas: o mesmo teor de madeira e o mesmo procedimento de saturação com relação aos diferentes tipos de madeira aos 28 dias, e o mesmo tipo de madeira e do mesmo procedimento de saturação com relação aos diferentes teores de madeira aos 28 dias.

QUADRO VII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DO MESMO TIPO DE MADEIRA E DO MESMO PROCEDIMENTO DE SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

	9 a	GM COMP NSAT 0.5	GM COMP NSAT 0.75	GM COMP NSAT 0.5	GM COMP NSAT 1.00	GM COMP NSAT 0.5	GM COMP NSAT 1.25	GM COMP NSAT 0.5	GM COMP NSAT 1.50	GM COMP NSAT 0.75	GM COMP NSAT 1.00
	sad	med 1 = 1.117,88 med 2 =	1.130,39 DIF = 12,50		1.129,48 DIF = 11,60	med 1 = 1.117,88 med 2 =	1.126,31 DIF = 8,43		1.067,27 DIF = 50,61	med 1 = 1.130.39 med 2 =	1.129.48 DIF = 0.90
	mpensa Satura	QME = 1.049,61 q (5,12) =	4.51 DMS = 87.16		4.51 DMS = 87.16	QME = 1.049,61 q (5,12) =	4.51 DMS = 87.16		4.51 DMS = 87.16	QME = 1.049,61 q (5,12) =	4.51 DMS = 87.16
	m o	Estatisticamente		Estatisticamente	7	Estatisticamente	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Estatisticamente	A	Estatisticamente	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	le Cor Não	GM COMP NSAT 0.75	GM COMP NSAT 1.25	GM COMP NSAT 0.75	GM COMP NSAT 1.50	GM COMP NSAT 1.00	GM COMP NSAT 1.25	GM COMP NSAT 1.00	GM COMP NSAT 1.50	GM COMP NSAT 1.25	GM COMP NSAT 1.50
	da e ição	med 1 = 1.130,39 med 2 =	1.126,31 DIF = 4,08		1.067,27 DIF = 63,11					med 1 = 1.126,31 med 2 =	1.067.27 DIF = 59.04
	tícu	OME = 1.049,61 q (5,12) =	4.51 DMS = 87.16		4,51 DMS = 87,16		1.126,31 DIF = 3,17 4,51 DMS = 87,16		1.067,27 DIF = 62,21 4,51 DMS = 87,16	OME = 1.049,61 q (5,12) =	4.51 DMS = 87.16
	Partícula de C Condição N		7								74 10 10 10 10 10
		Estatisticamente		Estatisticamente		Estatisticamente	1	Estatisticamente	•	Estatisticamente	,
	a do	GM COMP SAT 0,5	GM COMP SAT 0,75	GM COMP SAT 0,5	GM COMP SAT 1,00	GM COMP SAT 0,5	GM COMP SAT 1,25	GM COMP SAT 0,5	GM COMP SAT 1,50	GM COMP SAT 0,75	GM COMP SAT 1,00
	Compensad Saturada	med 1 = 1.115,68 med 2 =		med 1 = 1.115,68 med 2 =		med 1 = 1.115,68 med 2 =		med 1 = 1.115,68 med 2 =		med 1 = 1.138,71 med 2 =	1.057,97 DIF = 80,74
	E atr	QME = 672,12 q (5,12) =	4,51 DMS = 69,75	1 22 / 1 1 1 2 / 2	4,51 DMS = 69,75	QME = 672,12 q (5,12) =	4,51 DMS = 69,75		4,51 DMS = 69,75	QME = 672,12 q (5,12) =	4,51 DMS = 69,75
	de C ção S	Estatisticamente		Estatisticamente		Estatisticament		Estatisticamente		Estatisticament	
	la d diçi	GM COMP SAT 0,75	GM COMP SAT 1,25	GM COMP SAT 0,75	GM COMP SAT 1,50	GM COMP SAT 1,00	GM COMP SAT 1,25	GM COMP SAT 1,00	GM COMP SAT 1,50	GM COMP SAT 1,25	GM COMP SAT 1,50
	rtícula Condi	med 1 = 1.138,71 med 2 =	1.038,69 DIF = 100,01	med 1 = 1.138,71 med 2 =	1.050,48 DIF = 88,23	med 1 = 1.057,97 med 2 =	1.038,69 DIF = 19,28		1.050,48 DIF = 7,49		1.050,48 DIF = 11,79
	Part (QME = 672,12 q (5,12) =	4,51 DMS = 69,75		4,51 DMS = 69,75	QME = 672,12 q (5,12) =	4,51 DMS = 69,75	1 1 1 1 1 1 1 1	4,51 DMS = 69,75	QME = 672,12 q (5,12) =	4,51 DMS = 69,75
		Estatisticament		Estatisticamente		Estatisticamente	1	Estatisticamente	•	Estatisticamente	
	ucalipto - Saturada	GM EUC NSAT 0,5	GM EUC NSAT 0,75	GM EUC NSAT 0,5	GM EUC NSAT 1,00	GM EUC NSAT 0,5	GM EUC NSAT 1,25	GM EUC NSAT 0,5	GM EUC NSAT 1,50	GM EUC NSAT 0,75	GM EUC NSAT 1,00
	di pi	med 1 = 1.128,45 med 2 =	1.153,47 DIF = 25,02		1.146,23 DIF = 17,78	med 1 = 1.128,45 med 2 =	1.141,28 DIF = 12,83		1.147,78 DIF = 19,33	med 1 = 1.153,47 med 2 =	1.146,23 DIF = 7,24
	Sal	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51
	de E Não	Estatisticamente		Estatisticamente	equivalentes	Estatisticamente		Estatisticamente	equivalentes	Estatisticamente	equivalentes
	ıla (ão]	GM EUC NSAT 0,75	GM EUC NSAT 1,25	GM EUC NSAT 0,75	GM EUC NSAT 1,50	GM EUC NSAT 1,00	GM EUC NSAT 1,25	GM EUC NSAT 1,00	GM EUC NSAT 1,50	GM EUC NSAT 1,25	GM EUC NSAT 1,50
_	Partícula Condição	med 1 = 1.153,47 med 2 =	1.141,28 DIF = 12,20	med 1 = 1.153,47 med 2 =	1.147,78 DIF = 5,69	med 1 = 1.146,23 med 2 =	1.141,28 DIF = 4,95	med 1 = 1.146,23 med 2 =	1.147,78 DIF = 1,55	med 1 = 1.141,28 med 2 =	1.147,78 DIF = 6,50
lias	Par	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51	QME = 557,24 q (5,12) =	4,51 DMS = 63,51
28 6		Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes
Idade(28 dias)	- 0	GM EUC SAT 0,5	GM EUC SAT 0,75	GM EUC SAT 0,5	GM EUC SAT 1,00	GM EUC SAT 0,5	GM EUC SAT 1,25	GM EUC SAT 0,5	GM EUC SAT 1,50	GM EUC SAT 0,75	GM EUC SAT 1,00
Id	Eucalipto Saturada	med 1 = 1.151,37 med 2 =	1.078,99 DIF = 72,38	med 1 = 1.151,37 med 2 =	1.084,49 DIF = 66,88	med 1 = 1.151,37 med 2 =	1.089,51 DIF = 61,86	med 1 = 1.151,37 med 2 =	1.040,58 DIF = 110,79	med 1 = 1.078,99 med 2 =	1.084,49 DIF = 5,49
	uca	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23
	de E ão Sa	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticament	e diferentes	Estatisticamente	equivalentes
	ıla d İção	GM EUC SAT 0,75	GM EUC SAT 1,25	GM EUC SAT 0,75	GM EUC SAT 1,50	GM EUC SAT 1,00	GM EUC SAT 1,25	GM EUC SAT 1,00	GM EUC SAT 1,50	GM EUC SAT 1,25	GM EUC SAT 1,50
	Partícula Condiçã	med 1 = 1.078,99 med 2 =	1.089,51 DIF = 10,51	med 1 = 1.078,99 med 2 =	1.040,58 DIF = 38,41	med 1 = 1.084,49 med 2 =	1.089,51 DIF = 5,02	med 1 = 1.084,49 med 2 =	1.040,58 DIF = 43,91	med 1 = 1.089,51 med 2 =	1.040,58 DIF = 48,93
	Par C	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23	QME = 867,15 q (5,12) =	4,51 DMS = 79,23
		Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes
	- ada	GM PIN NSAT 0,5	GM PIN NSAT 0,75	GM PIN NSAT 0,5	GM PIN NSAT 1,00	GM PIN NSAT 0,5	GM PIN NSAT 1,25	GM PIN NSAT 0,5	GM PIN NSAT 1,50	GM PIN NSAT 0,75	GM PIN NSAT 1,00
	us-	med 1 = 1.149,72 med 2 =	1.154,06 DIF = 4,34	med 1 = 1.149,72 med 2 =	1.112,97 DIF = 36,75	med 1 = 1.149,72 med 2 =	1.104,74 DIF = 44,99	med 1 = 1.149,72 med 2 =	1.089,33 DIF = 60,39	med 1 = 1.154,06 med 2 =	1.112,97 DIF = 41,09
	Pinus Satur:	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31
	ortícula de dição Não	Estatisticamente	equivalentes	Estatisticamente d	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes
	io N	GM PIN NSAT 0,75	GM PIN NSAT 1,25	GM PIN NSAT 0,75	GM PIN NSAT 1,50	GM PIN NSAT 1,00	GM PIN NSAT 1,25	GM PIN NSAT 1,00	GM PIN NSAT 1,50	GM PIN NSAT 1,25	GM PIN NSAT 1,50
	artí diçã	med 1 = 1.154,06 med 2 =	1.104,74 DIF = 49,32	med 1 = 1.154,06 med 2 =	1.089,33 DIF = 64,73	med 1 = 1.112,97 med 2 =	1.104,74 DIF = 8,23	med 1 = 1.112,97 med 2 =	1.089,33 DIF = 23,64	med 1 = 1.104,74 med 2 =	1.089,33 DIF = 15,41
	Par	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31	QME = 607,51 q (5,12) =	4,51 DMS = 66,31
	_	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes
		GM PIN SAT 0,5	GM PIN SAT 0,75	GM PIN SAT 0,5	GM PIN SAT 1,00	GM PIN SAT 0,5	GM PIN SAT 1,25	GM PIN SAT 0,5	GM PIN SAT 1,50	GM PIN SAT 0,75	GM PIN SAT 1,00
	rs - da	med 1 = 1.099,02 med 2 =	1.108,79 DIF = 9,77	med 1 = 1.099,02 med 2 =	1.054,43 DIF = 44,59	med 1 = 1.099,02 med 2 =	1.050,39 DIF = 48,63	med 1 = 1.099,02 med 2 =	1.022,88 DIF = 76,14	med 1 = 1.108,79 med 2 =	1.054,43 DIF = 54,36
	Pinus - aturada	QME = 471,37 q (5,12) =	4,51 DMS = 58,41	QME = 471,37 q (5,12) =	4,51 DMS = 58,41	QME = 471,37 q (5,12) =	4,51 DMS = 58,41	OME = 471,37 q (5,12) =	4,51 DMS = 58,41	QME = 471,37 q (5,12) =	4,51 DMS = 58,41
	de I Sa 1	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticamente	equivalentes	Estatisticament	e diferentes	Estatisticamente	equivalentes
	Partícula de F Condição Sat	GM PIN SAT 0,75	GM PIN SAT 1,25	GM PIN SAT 0,75	GM PIN SAT 1,50	GM PIN SAT 1,00	GM PIN SAT 1,25	GM PIN SAT 1,00	GM PIN SAT 1,50	GM PIN SAT 1,25	GM PIN SAT 1,50
	rtíc	med 1 = 1.108,79 med 2 =	1.050,39 DIF = 58,40		1.022.88 DIF = 85.91	med 1 = 1.054.43 med 2 =	1.050.39 DIF = 4.04		1.050,39 DIF = 4.04	med 1 = 1.050.39 med 2 =	1.022.88 DIF = 27.51
	S B	OME = 471.37 q (5.12) =	4.51 DMS = 58.41		4.51 DMS = 58.41		4.51 DMS = 58.41		4.51 DMS = 58.41	OME = 471.37 q (5.12) =	4.51 DMS = 58.41
		Estatisticamente		Estatisticamente		Estatisticamente		Estatisticamente		Estatisticamente	
		Estatisticaliente	equivalentes	Estatisticaliente	uncientes	Estatisticaliente	equivalentes	Estatisticaliente	equivalentes	Estatisticalielle	equivalentes

QUADRO VIII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DO MESMO TIPO DE MADEIRA E DO MESMO PROCEDIMENTO DE SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

		DIAS															
	lo - la	GM COMP NSAT 0,5	GM COMP NSAT 0.	75 GM COMP NSAT 0,5	GM COMP NSAT 1,0	GM COM	IP NSAT 0,5	GM C	OMP NSAT 1,25	GM CO	OMP NSAT 0,5	GM COM	MP NSAT 1,50	GM CO	OMP NSAT 0,75	GM COMP NSAT	1,00
	ısacı	med 1 = 3,10 med 2 =	3,63 DIF = 0.	53 med 1 = 3,10 med 2 =	3,83 DIF = 0,7	3 med 1 =	3,10 me	3,54	DIF = 0,	4 med 1	3,10 med 2	3,19 I	DIF = 0,10	med 1	3,63 med 2 =	3,83 DIF =	0,20
	Compensa Vão Saturao	QME = 0,13 q (5,12) =	4,51 DMS = 0.	98 QME = 0,13 q (5,12) =	4,51 DMS = 0,9	8 QME=	0,13 q (5 4,51	DMS 0,	8 QME	0,13 q (5,12	4,51 I	DMS 0,98	QME	0,13 q (5,12)	4,51 DMS =	0,98
	Con ão (Estatisticamente	equivalentes	Estatisticament	e equivalentes		Estatisticamente	e equivalen	tes		Estatisticam	ente equivale	lentes		Estatisticame	ente equivalentes	
	de l	GM COMP NSAT 0.75	GM COMP NSAT 1.	25 GM COMP NSAT 0.75	GM COMP NSAT 1.5) GM COM	P NSAT 1,00	GM C	OMP NSAT 1.25	GM CC	MP NSAT 1.00	GM COM	MP NSAT 1,50	GM CO	OMP NSAT 1.25	GM COMP NSAT	1.50
	Partícula Condiçã	med 1 = 3,63 med 2 =	3,54 DIF = 0.	09 med 1 = 3,63 med 2 =	3,19 DIF = 0,4		3,83 me	3,54	DIF = 0,	9 med 1	3,83 med 2	3,19 I	DIF = 0,64	med 1	3,54 med 2 =	3,19 DIF=	0,35
	ří (QME = 0,13 q (5,12) =	4,51 DMS = 0.				0,13 q (DMS 0,		0,13 q (5,12			QME	0,13 q (5,12)	4,51 DMS =	0,98
	Pa (Estatisticamente		Estatisticament		Q	Estatisticamente			y Quita	Estatisticam			Q. III		ente equivalentes	0,50
1 1		GM COMP SAT 0.5	GM COMP SAT 0.7		GM COMP SAT 1,00	GM CO	MP SAT 0,5	1	OMP SAT 1.25	GM C	OMP SAT 0.5		MP SAT 1,50	GM C	OMP SAT 0.75	GM COMP SAT	1.00
	sado Ia	med 1 = 3,29 med 2 =	3,27 DIF = 0.		2,94 DIF = 0,3		3,29 me		DIF = 0,		3,29 med 2	3,35 I		med 1	3,27 med 2 =	2,94 DIF =	0,33
	pen	QME = 0,51 q (5,12) =	4,51 DMS = 1.				0,51 q (DMS 1,		0,51 q (5,12	4,51 I	_	QME	0,51 q (5,12)	4,51 DMS =	1,93
	Compensado Saturada	Estatisticamente		Estatisticament		J QIIIL	Estatisticamente			QIIII	Estatisticam			QML		ente equivalentes	1,55
	de 'ão	GM COMP SAT 0.75	GM COMP SAT 1,2		GM COMP SAT 1,50	GM CON	AP SAT 1.00		OMP SAT 1,25	GM C	OMP SAT 1.00		MP SAT 1,50	GM C	OMP SAT 1.25	GM COMP SAT	1.50
	ndi ndi	med 1 = 3.27 med 2 =	2,50 DIF = 0.		3.35 DIF = 0.0		2,94 me		DIF = 0,	1	2.94 med 2	3,35 I		med 1	2.50 med 2 =	3,35 DIF =	0,85
	rffe Co	QME = 0,51 q (5,12) =	4,51 DMS = 1.		2722 272		0,51 q (7	DMS 1,		0,51 q (5,12			QME	0,51 q (5,12)	4,51 DMS =	1,93
	Pa	Estatisticamente		Estatisticament		J QIIIL	Estatisticamente			QIIII	Estatisticam			QML		ente equivalentes	1,55
l f		GM EUC NSAT 0,5	GM EUC NSAT 0,7		GM EUC NSAT 1,00	GM EU	C NSAT 0,5		EUC NSAT 1,25	GM E	UC NSAT 0,5	_	C NSAT 1,50	GM E	UC NSAT 0,75	GM EUC NSAT	1.00
	pto .	med 1 = 3,48 med 2 =		14 med 1 = 3,48 med 2 =	4,02 DIF = 0,5		3,48 me		DIF = 0,0		3,48 med 2			med 1	3,61 med 2 =	4.02 DIF =	0.41
	atur atur	QME = 0,08 q (5,12) =	4,51 DMS = 0.				0,08 q (DMS 0,		0,08 q (5,12			QME	0,08 q (5,12)	4,51 DMS =	0,77
	Partícula de Eucalipto Condição Não Saturad	Estatisticamente		Estatisticament		/ QIVIE =	Estatisticamente			7 QIVIL	Estatisticam			QIVIE		ente equivalentes	0,77
	a de	GM EUC NSAT 0.75	GM EUC NSAT 1,2		GM EUC NSAT 1,50	GM FLIC	NSAT 1,00	1	EUC NSAT 1,25	GM F	UC NSAT 1,00		C NSAT 1,50	GM E	UC NSAT 1.25	GM EUC NSAT	1.50
	içã içã	med 1 = 3,61 med 2 =	3,43 DIF = 0.		3,36 DIF = 0,2		4,02 me	_	DIF = 0,:		4,02 med 2			med 1	3,43 med 2 =	3,36 DIF =	0,08
as)	Partícu Condiç	QME= 0,08 q (5,12)=	4,51 DMS = 0.				0.08 g (DMS 0,		0,08 q (5,12	_		OME	0,08 q (5,12)	4,51 DMS =	0,77
æ Ģ	С	Estatisticamente		Estatisticament		/ QML =	Estatisticamente	CI //		/ QIVIL	Estatisticam			QIVIL		ente equivalentes	0,77
le(2		GM EUC SAT 0.5	GM EUC SAT 0,75		GM EUC SAT 1.00	GM EI	JC SAT 0.5		EUC SAT 1,25	GM I	EUC SAT 0.5		JC SAT 1,50	GM I	EUC SAT 0.75	GM EUC SAT 1.	00
Idade(28 dias)	pto .	med 1 = 3,94 med 2 =	3,08 DIF = 0.		3,63 DIF = 0,3		3,94 me		DIF = 0,:		3,94 med 2	3,71 I		med 1	3,08 med 2 =	3,63 DIF =	0,55
	Eucalipto Saturada	QME = 0,25 q (5,12) =	4,51 DMS = 1.				0,25 q (DMS 1,		0,25 q (5,12	4,51 I		QME	0,25 q (5,12)	4.51 DMS =	1.34
	Eu	Estatisticamente		Estatisticament		, Q.II.L.	Estatisticamente			, QIIIL	Estatisticam			QML		ente equivalentes	1,01
	a de ção (GM EUC SAT 0,75	GM EUC SAT 1,25		GM EUC SAT 1,50	GM FU	C SAT 1,00		EUC SAT 1,25	GM F	UC SAT 1,00		JC SAT 1,50	GM I	EUC SAT 1,25	GM EUC SAT 1.	50
	Partícula Condiçã	med 1 = 3,08 med 2 =	3.41 DIF = 0.		3,71 DIF = 0,6		3,63 me		DIF = 0,:		3,63 med 2	3,71 I		med 1	3,41 med 2 =	3,71 DIF =	0,30
	Sart Co	QME = 0,25 q (5,12) =	4,51 DMS = 1.		271		0,25 q (DMS 1,		0,25 q (5,12			OME	0,25 q (5,12)	4,51 DMS =	1,34
	1	Estatisticamente		Estatisticament		2	Estatisticamente			QIIII	Estatisticam			2		ente equivalentes	1,00
	_	GM PIN NSAT 0.5	GM PIN NSAT 0,7		GM PIN NSAT 1,00	GM PIN	N NSAT 0,5		PIN NSAT 1,25	GM I	IN NSAT 0,5		N NSAT 1,50	GM I	PIN NSAT 0,75	GM PIN NSAT 1	1.00
	- ada	med 1 = 3.56 med 2 =	4.03 DIF = 0.		3.58 DIF = 0.0		3.56 me		DIF = 0.1		3.56 med 2	2.97 I		med 1	4.03 med 2 =	3.58 DIF =	0.44
	Pinus Satura	QME = 0,14 q (5,12) =	744	00 QME = 0,14 q (5,12) =	271 2 271		0,14 q (DMS 1,		0,14 q (5,12	4,51 I	- ,	QME	0,14 q (5,12)	4.51 DMS =	1.00
	de P ão S	Estatisticamente		Estatisticament		g.n.z.	Estatisticamente			o QIIII	Estatisticam			QME		ente equivalentes	1,00
	ula o Nã	GM PIN NSAT 0.75	GM PIN NSAT 1.2		GM PIN NSAT 1.50	GM PIN	NSAT 1,00		PIN NSAT 1,25	GM P	IN NSAT 1,00		N NSAT 1,50	GM I	PIN NSAT 1,25	GM PIN NSAT 1	1.50
	Partícula ondição Nã	med 1 = 4,03 med 2 =		19 med 1 = 4,03 med 2 =	2,97 DIF = 1,0		3,58 me		DIF = 0,		3,58 med 2	2,97 I		med 1	2,84 med 2 =	2,97 DIF =	0,13
	Pa Onc	QME = 0,14 q (5,12) =		00 QME = 0,14 q (5,12) =			0,14 q (DMS 1,		0,14 q (5,12	4,51 I		QME	0,14 q (5,12)	4,51 DMS =	1.00
	0	Estatisticament		Estatisticamer		o QIIIL	Estatisticamente			o QIIII	Estatisticam			QML		ente equivalentes	1,00
l f		GM PIN SAT 0.5	GM PIN SAT 0.75	GM PIN SAT 0.5	GM PIN SAT 1.00	GM PI	N SAT 0,5	_	PIN SAT 1.25	GM	PIN SAT 0.5		IN SAT 1,50	GM	PIN SAT 0.75	GM PIN SAT 1,	00
	. e	med 1 = 3,30 med 2 =	1 1	15 med 1 = 3,30 med 2 =	2,57 DIF = 0,7		3,30 me	_	DIF = 0,:		3,30 med 2	2,48 I		med 1	3,45 med 2 =	2,57 DIF =	0.88
	de Pinus - Saturada	OME = 0.50 q (5.12) =	4.51 DMS = 1.				0.50 g (DMS 1.		0.50 g (5.12			OME	0,50 q (5,12)	4.51 DMS =	1.90
	le Pi Satu	Estatisticamente		Estatisticament		O QIVIE -	Estatisticamente			O QIVIL	Estatisticam			QIVIE		ente equivalentes	1,50
	ıla d ão (GM PIN SAT 0,75	GM PIN SAT 1,25	GM PIN SAT 0,75	GM PIN SAT 1,50	GM DIN	N SAT 1,00	_	PIN SAT 1,25	GM I	PIN SAT 1,00		IN SAT 1,50	GM.	PIN SAT 1,25	GM PIN SAT 1,	50
	Partícula Condição	med 1 = 3,45 med 2 =	3,86 DIF = 0.		2.48 DIF = 0.9		2,57 me		DIF = 1,		2,57 med 2	3,86 I		med 1	3,86 med 2 =	2,48 DIF =	1.38
	Par Col		3,86 DIF = 0.		7.1		0,50 q (DIF = 1,		0,50 q (5,12			OME	0,50 q (5,12)	2,48 DIF = 4,51 DMS =	1,38
		QME = 0,50 q (5,12) = Estatisticamente		90 QME = 0,50 q (5,12) = Estatisticament		UME=	Estatisticamente			O QME	0,50 q (5,1) Estatisticam			QME		4,51 DMS =	1,90
									TPS		Estatisticam	ente equival	entes		Estatisticame		

QUADRO IX - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TEOR DE MADEIRA E DO MESMO PROCEDIMENTO DE SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TIPOS DE MADEIRA) AOS 28 DIAS

									Idade (28 d	lias)								
	Partícula	a de Cor	mpensado x	Partíc	ula deEuc	alipto	Partícu	la de C	ompensado	_	cula de Pi	nus	Partíc	cula de	Eucalipto x	Partícu	ıla de Pin	us
	CC	OMP NS	SAT 0,50 x I	EUC NS	SAT 0,50	-	C	OMP N	SAT 0,50 x I	PIN NS	AT 0,50		I	EUC NS	SAT 0,50 x P	IN NSA	T 0,50	
Teor 0,50	med 1 =	8,41	med 2 =	8,86	DIF =	0,45	med 1 =	8,41	med 2 =	9,00	DIF =	0,59	med 1 =	8,86	med 2 =	9,00	DIF =	0,14
NSat	QME=	0,35	q (3,15) =	3,67	DMS =	0,88	QME=	0,35	q (3,15) =	3,67	DMS =	0,88	QME=	0,35	q (3,15) =	3,67	DMS =	0,88
		Estatis	ticamente e	quival	entes			Estatis	ticamente e	quivale	entes			Estatis	sticamente e	quivale	entes	
	(COMPS	SAT 0,50 x I	EUC SA	AT 0,50			COMP	SAT 0,50 x I	PIN SA	T 0,50			EUC S	SAT 0,50 x P	IN SAT	0,50	
Teor 0,50	med 1 =	8,83	med 2 =	9,46	DIF =	0,63	med 1 =	8,83	med 2 =	8,03	DIF =	0,80	med 1 =	9,46	med 2 =	8,03	DIF =	1,43
Sat	QME=	0,49	q (3,15) =	3,67	DMS =	1,04	QME=	0,49	q (3,15) =	3,67	DMS =	1,04	QME=	0,49	q (3,15) =	3,67	DMS =	1,04
		Estatis	ticamente e	quival	entes			Estatis	sticamente e	quivale	entes			Esta	tisticamente	diferen	ites	
	CC	OMP NS	SAT 0,75 x I	EUC NS	SAT 0,75		C	OMP N	SAT 0,75 x I	PIN NS	AT 0,75		I	EUC NS	AT 0,75 x P	IN NSA	T 0,75	
Teor 0,75	med 1 =	7,85	med 2 =	8,80	DIF =	0,95	med 1 =	7,85	med 2 =	8,23	DIF =	0,38	med 1 =	8,80	med 2 =	8,23	DIF =	0,57
NSat	QME=	0,28	q (3,15) =	3,67	DMS =	0,79	QME=	0,28	q (3,15) =	3,67	DMS =	0,79	QME=	0,28	q (3,15) =	3,67	DMS =	0,79
		Estat	isticamente	difere	ntes			Estatis	ticamente e	quivale	entes			Estatis	sticamente e	quivale	entes	
	(COMPS	SAT 0,75 x I	EUC SA	AT 0,75			COMP	SAT 0,75 x I	PIN SA	T 0,75			EUC S	SAT 0,75 x P	IN SAT	0,75	
Teor 0,75	med 1 =	8,90	med 2 =	7,76	DIF =	1,14	med 1 =	8,90	med 2 =	8,02	DIF =	0,88	med 1 =	7,76	med 2 =	8,02	DIF =	0,26
Sat	QME=	0,45	q (3,15) =	3,67	DMS =	1,00	QME=	0,45	q (3,15) =	3,67	DMS =	1,00	QME=	0,45	q (3,15) =	3,67	DMS =	1,00
		Estat	isticamente	difere	ntes			Estatis	ticamente e	quivale	entes			Estatis	sticamente e	quivale	entes	
	CC	OMP NS	SAT 1,00 x I	EUC NS	SAT 1,00		C	OMP N	SAT 1,00 x I	PIN NS	AT 1,00		I	EUC NS	AT 1,00 x P	IN NSA	T 1,00	
	med 1 =	8,43	med 2 =	-, -	DIF =	0,20	med 1 =	8,43	med 2 =	7,37	DIF =	1,06	med 1 =	8,23	med 2 =	7,37	DIF =	0,86
NSat	QME=	0,35	q (3,15) =	3,67	DMS =	0,88	QME=	0,35	q (3,15) =	3,67	DMS =	0,88	QME=	0,35	q (3,15) =	3,67	DMS =	0,88
		Estatis	ticamente e	quival	entes				tisticamente					Estatis	sticamente e	quivale	entes	
			SAT 1,00 x I						SAT 1,00 x I						SAT 1,00 x P	T		
Teor 1,00			med 2 =	.,	DIF =	0,55	med 1 =		med 2 =	- ,-	DIF =	0,61	med 1 =		med 2 =	- /-	DIF =	1,16
Sat	OME =			3,67	DMS =	0,44	QME=		q (3,15) =	3,67	DMS =	0,44	QME=		q (3,15) =	- /	DMS =	0,44
	_		q (3,15) =														ites	
		Estat	isticamente						tisticamente						tisticamente			
		Estat OMP NS	isticamente SAT 1,25 x I	EUC NS	SAT 1,25			OMP N	SAT 1,25 x I	PIN NS	AT 1,25			EUC NS	SAT 1,25 x P	IN NSA		
Teor 1,25	med 1 =	Estat OMP NS 6,83	SAT 1,25 x I med 2 =	EUC NS 6,97	SAT 1,25 DIF =	0,13	med 1 =	OMP N 6,83	SAT 1,25 x I med 2 =	PIN NS 6,28	AT 1,25 DIF =	0,56	med 1 =	EUC NS 6,97	SAT 1,25 x P med 2 =	IN NSA 6,28	DIF =	0,69
Teor 1,25 NSat		Estat OMP NS 6,83 0,13	isticamente SAT 1,25 x I med 2 = q (3,15) =	EUC NS 6,97 3,67	SAT 1,25 DIF = DMS =	0,13 0,54		OMP N 6,83 0,13	SAT 1,25 x F med 2 = q (3,15) =	PIN NS 6,28 3,67	AT 1,25 DIF = DMS =	0,56 0,54		6,97 0,13	MAT 1,25 x P med 2 = q (3,15) =	6,28 3,67	DIF = DMS =	0,69
	med 1 = QME =	Estato OMP NS 6,83 0,13 Estatis	SAT 1,25 x I med 2 = q (3,15) =	6,97 3,67	SAT 1,25 DIF = DMS =	_	med 1 = QME =	OMP N 6,83 0,13	SAT 1,25 x I med 2 = q (3,15) =	PIN NS 6,28 3,67 diferen	AT 1,25 DIF = DMS =		med 1 =	6,97 0,13	$\begin{array}{c} \text{AT 1,25 x P} \\ \text{med 2} = \\ \text{q (3,15)} = \\ \text{tisticamente} \end{array}$	6,28 3,67 diferen	DIF = DMS =	
NSat	med 1 = QME =	Estation Estation Estation COMP S	isticamente SAT 1,25 x I med 2 = q (3,15) = sticamente e SAT 1,25 x I	EUC NS 6,97 3,67 equival	DIF = DMS = entes AT 1,25	0,54	med 1 = QME =	OMP N 6,83 0,13 Estat	SAT 1,25 x I med 2 = q (3,15) = tisticamente SAT 1,25 x I	PIN NS 6,28 3,67 diferer	AT 1,25 DIF = DMS = ates T 1,25	0,54	med 1 = QME =	6,97 0,13 Esta	MAT 1,25 x P med 2 = q (3,15) = tisticamente MAT 1,25 x P	6,28 3,67 diferen	DIF = DMS = ntes	0,54
NSat Teor 1,25	med 1 = QME = med 1 =	Estation DMP NS 6,83 0,13 Estatis COMP S 5,35	SAT 1,25 xI med 2 = q (3,15) = sticamente e SAT 1,25 xI med 2 =	6,97 3,67 equivalence SA 6,38	DIF = DMS = entes AT 1,25 DIF =	1,02	med 1 = QME = med 1 =	OMP N 6,83 0,13 Estat COMP 5,35	SAT 1,25 x I med 2 = q (3,15) = tisticamente SAT 1,25 x I med 2 =	OIN NS 6,28 3,67 diferer PIN SA 5,60	DIF = DMS = ates T 1,25 DIF = DIF =	0,54	med 1 = QME = med 1 =	6,97 0,13 Esta EUC S 6,38	$MT 1,25 \times P$ $med 2 =$ $q (3,15) =$ $tisticamente$ $MT 1,25 \times P$ $med 2 =$	6,28 3,67 diferent 5,60	DIF = DMS = ntes T 1,25 DIF =	0,54
NSat	med 1 = QME =	Estation	Esticamente SAT 1,25 x I med 2 = q (3,15) = sticamente e SAT 1,25 x I med 2 = q (3,15) =	6,97 3,67 equivalence SA 6,38 3,67	DIF = DMS = entes AT 1,25 DIF = DMS = DMS = DMS = DMS = DMS =	0,54	med 1 = QME =	OMP N 6,83 0,13 Estat COMP 5,35 0,11	SAT 1,25 x F med 2 = q (3,15) = tisticamente SAT 1,25 x F med 2 = q (3,15) =	9IN NS 6,28 3,67 diferer PIN SA 5,60 3,67	DIF = DMS = ates T 1,25 DIF = DMS = DIF = DMS = DIF = DMS = DMS = DIF = DMS =	0,54	med 1 = QME =	6,97 0,13 Esta EUC S 6,38 0,11	med 2 = q (3,15) = tisticamente AT 1,25 x PI med 2 = q (3,15) = q (3,15) = q (3,15) =	6,28 3,67 diferent SAT 5,60 3,67	DIF = DMS = ntes T 1,25 DIF = DMS =	0,54
NSat Teor 1,25	med 1 = QME = med 1 = QME =	Estation Est	issticamente SAT 1,25 x I med 2 = q (3,15) = sticamente e SAT 1,25 x I med 2 = q (3,15) = cisticamente	6,97 3,67 equivalence SA 6,38 3,67	DIF = DMS = entes AT 1,25 DIF = DMS = DMS = DMS =	1,02	med 1 = QME = med 1 = QME =	OMP N 6,83 0,13 Estat COMP 5,35 0,11 Estatis	SAT 1,25 x I med 2 = q (3,15) = tisticamente SAT 1,25 x I med 2 = q (3,15) = sticamente e	PIN NS 6,28 3,67 diferer PIN SA 5,60 3,67 quivak	DIF = DMS = DIF = DMS =	0,54	med 1 = QME = med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta	$\begin{aligned} &\text{MAT 1,25 x P} \\ &\text{med 2} = \\ &\text{q (3,15)} = \\ &\text{tisticamente} \\ &\text{MAT 1,25 x P} \\ &\text{med 2} = \\ &\text{q (3,15)} = \\ &\text{tisticamente} \end{aligned}$	6,28 3,67 diferent IN SAT 5,60 3,67 diferent	DIF = DMS = ntes T 1,25 DIF = DMS =	0,54
NSat Teor 1,25 Sat	med 1 = QME = med 1 = QME = CO	Estation	isticamente SAT 1,25 x I med 2 = $q (3,15) =$ sticamente e SAT 1,25 x I med 2 = $q (3,15) =$ cisticamente SAT 1,50 x I	6,97 3,67 equivalence SA 6,38 3,67 diference UC NS	DIF = DMS = entes AT 1,25 DIF = DMS = DIF = DMS	1,02	med 1 = QME = med 1 = QME = CO	OMP N 6,83 0,13 Estat COMP 5,35 0,11 Estatis	SAT 1,25 x I med 2 = q (3,15) = tisticamente SAT 1,25 x I med 2 = q (3,15) = ticamente e SAT 1,50 x I	PIN NS 6,28 3,67 diferer PIN SA 5,60 3,67 quivake	AT 1,25 DIF = DMS = tes T 1,25 DIF = DMS = entes AT 1,50	0,54	med 1 = QME = med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta	$\begin{aligned} &\text{AT 1,25 x PI} \\ &\text{med 2} = \\ &\text{q (3,15)} = \\ &\text{tisticamente} \\ &\text{AT 1,25 x PI} \\ &\text{med 2} = \\ &\text{q (3,15)} = \\ &\text{tisticamente} \\ &\text{AT 1,50 x PI} \end{aligned}$	A SAT S,60 3,67 diferent SAT S,60 diferent N NSAT S	DIF = DMS = ntes T 1,25 DIF = DMS = ates AT 1,50	0,54 0,78 0,50
NSat Teor 1,25 Sat Teor 1,50	med 1 = QME = med 1 = QME = CO med 1 =	Estat OMP NS 6,83 0,13 Estatis COMP S 5,35 0,11 Estat OMP NS 6,53	isticamente SAT 1,25 x 1 med 2 = q (3,15) = sticamente e SAT 1,25 x 1 med 2 = q (3,15) = isticamente SAT 1,50 x 1 med 2 =	6,97 3,67 equivalence SA 6,38 3,67 difference UC NS 7,09	DIF = DMS = entes AT 1,25 DIF = DMS = entes AT 1,25 DIF = DMS = ntes BAT 1,50 DIF =	0,54 1,02 0,50 0,57	med 1 = QME = med 1 = QME = Comed 1 =	OMP N 6,83 0,13 Estati COMP 5,35 0,11 Estatis OMP N 6,53	SAT 1,25 x I med 2 = q (3,15) = listicamente SAT 1,25 x I med 2 = q (3,15) = sticamente e SAT 1,50 x I med 2 =	6,28 3,67 diferer PIN SA 5,60 3,67 quivak PIN NS 6,18	AT 1,25 DIF = DMS = ates T 1,25 DIF = DMS = ates AT 1,50 DIF =	0,54 0,25 0,50	med 1 = QME = med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta EUC NS	AT 1,25 x P med 2 = q (3,15) = tisticamente AT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 =	1N NSA 6,28 3,67 diferent 1N SAT 5,60 3,67 diferent 1N NSA 6,18	DIF = DMS = ates T 1,25 DIF = DMS = ates AT 1,50 DIF =	0,54 0,78 0,50 0,91
NSat Teor 1,25 Sat	med 1 = QME = med 1 = QME = CO	Estatis COMP S 5,35 0,11 Estatis COMP NS 5,35 0,11 Estation OMP NS 6,53 0,07	isticamente SAT 1,25 x 1 med 2 = q (3,15) = SAT 1,25 x 1 med 2 = q (3,15) = isticamente SAT 1,50 x 1 med 2 = q (3,15) =	6,97 3,67 equivalence SA 6,38 3,67 diference SA 7,09 3,67	AT 1,25 DIF = DMS = entes AT 1,25 DIF = DMS = DMS = DMS = DMS = DMS =	1,02	med 1 = QME = med 1 = QME = CO	OMP N 6,83 0,13 Estat COMP 5,35 0,11 Estatis OMP N 6,53 0,07	SAT 1,25 x F med 2 = q (3,15) = listicamente SAT 1,25 x F med 2 = q (3,15) = listicamente e. SAT 1,50 x F med 2 = q (3,15) = listicamente e.	9IN NS 6,28 3,67 diferent PIN SA 5,60 3,67 quivake PIN NS 6,18 3,67	AT 1,25 DIF = DMS = ates T 1,25 DIF = DMS = DMS = DMS = DMS = DMS = DMS =	0,54	med 1 = QME = med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta EUC NS 7,09 0,07	MAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) =	1N NSA 6,28 3,67 diferent N SAT 5,60 3,67 diferent N NSA 6,18 3,67	DIF = DMS = ttes T 1,25 DIF = DMS = ttes T 1,50 DIF = DMS =	0,54 0,78 0,50
NSat Teor 1,25 Sat Teor 1,50	med 1 = QME	Estatis COMP S 5,35 0,11 Estatis COMP S 5,35 0,11 Estation OMP NS 6,53 0,07 Estatis	isticamente SAT 1,25 x 1 med 2 = q (3,15) = sticamente e SAT 1,25 x 1 med 2 = q (3,15) = isticamente SAT 1,50 x 1 med 2 = q (3,15) = isticamente	6,97 3,67 equivalence SA 6,38 3,67 difference T,09 3,67 difference difference T,09	DIF = DMS =	0,54 1,02 0,50 0,57	med 1 = QME	OMP N 6,83 0,13 Estat COMP 5,35 0,11 Estatis OMP N 6,53 0,07 Estatis	SAT 1,25 x F med 2 = q (3,15) = listicamente SAT 1,25 x F med 2 = q (3,15) = listicamente e. SAT 1,50 x F med 2 = q (3,15) = listicamente e.	PIN NS 6,28 3,67 diferer PIN SA 5,60 3,67 quivale 6,18 3,67 quivale	AT 1,25 DIF = DMS = ates T 1,25 DIF = DMS =	0,54 0,25 0,50	med 1 = QME = med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta EUC NS 7,09 0,07 Esta	$AT 1,25 \times P$ $med 2 =$ $q (3,15) =$ $tisticamente$ $AT 1,25 \times P$ $med 2 =$ $q (3,15) =$ $tisticamente$ $AT 1,50 \times P$ $med 2 =$ $q (3,15) =$ $tisticamente$ $q (3,15) =$ $tisticamente$ $tisticamente$ $tisticamente$ $tisticamente$	1N NSA 6,28 3,67 diferen 1N SAT 5,60 3,67 diferen 1N NSA 6,18 3,67 diferen	DIF = DMS = ttes C 1,25 DIF = DMS = ttes T 1,50 DIF = DMS = ttes	0,54 0,78 0,50 0,91
NSat Teor 1,25 Sat Teor 1,50 NSat	med 1 = QME	Estatis COMP S 5,35 0,11 Estatis OMP NS 5,35 0,11 Estati OMP NS 6,53 0,07 Estat	isticamente es SAT 1,25 x I med 2 = $q(3,15) = \frac{1}{2}$ isticamente SAT 1,50 x I med 2 = $q(3,15) = \frac{1}{2}$ $q(3,15) = \frac{1}{$	6,97 3,67 equivalence SA 6,38 3,67 difference SA 7,09 3,67 difference SA	DIF = DMS = =	0,54 1,02 0,50 0,57 0,39	med 1 = QME = med 1 = QME = Comed 1 = QME = QME = Output Outp	OMP N 6,83 0,13 Estat COMP 5,35 0,11 Estatis OMP N 6,53 0,07 Estatis COMP	SAT 1,25 x F med 2 = q (3,15) = listicamente SAT 1,25 x F med 2 = q (3,15) = listicamente e. SAT 1,50 x F med 2 = q (3,15) = listicamente e. SAT 1,50 x F med 2 = q (3,15) = sticamente e.	PIN NS 6,28 3,67 diferer PIN SA 5,60 3,67 quivake PIN NS 6,18 3,67 quivake PIN SA	AT 1,25 DIF = DMS = ates T 1,25 DIF = DMS = DMS = DMS = Entes AT 1,50 DIF = DMS = T 1,50	0,54 0,25 0,50 0,34 0,39	med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta EUC NS 7,09 0,07 Esta EUC S	MAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) =	IN NSA 6,28 3,67 diferent IN SAT 5,60 3,67 diferent IN NSA 6,18 3,67 diferent N SAT	DIF = DMS = 1 tes	0,54 0,78 0,50 0,91 0,39
NSat Teor 1,25 Sat Teor 1,50	med 1 = QME	Estat OMP NS 6,83 0,13 Estatis COMP S 5,35 0,11 Estat OMP NS 6,53 0,07 Estat COMP S 5,37	isticamente es SAT 1,25 x1 med 2 = $q(3,15) = \frac{1}{2}$ $q(3,15) =$	6,97 3,67 equivale EUC SA 6,38 3,67 differer EUC NS 7,09 3,67 differer EUC SA	DIF = DMS = =	0,54 1,02 0,50 0,57 0,39	med 1 = QME = med 1 = QME = Comed 1 = QME = QME = med 1 = QME = med 1 = QME =	OMP N 6,83 0,13 Estatis COMP 5,35 0,11 Estatis OMP N 6,53 0,07 Estatis COMP 5,37	SAT 1,25 x F med 2 = q (3,15) = listicamente SAT 1,25 x F med 2 = q (3,15) = listicamente e SAT 1,50 x F med 2 = q (3,15) = listicamente e SAT 1,50 x F med 2 = q (3,15) = listicamente e SAT 1,50 x F med 2 = q (3,15) = listicamente e	PIN NS 6,28 3,67 diferer PIN SA 5,60 3,67 quivale PIN NS 6,18 3,67 quivale 2,10 4,57	AT 1,25 DIF = DMS = ttes T 1,25 DIF = DMS = DMS = DMS = T 1,50 DIF = DMS = DMS = DMS = DMS =	0,54 0,25 0,50 0,34 0,39	med 1 = QME = Med 1	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta EUC NS 7,09 0,07 Esta EUC S 5,70	MAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 =	IN NSA 6,28 3,67 diferent IN SAT 5,60 3,67 diferent IN NSA 6,18 3,67 diferent IN SAT 4,57	DIF = DMS = ates OT 1,25 DIF = DMS = ates OT 1,50 DIF = DMS = ates	0,54 0,78 0,50 0,91 0,39
NSat Teor 1,25 Sat Teor 1,50 NSat Teor 1,50	med 1 = QME	Estation	isticamente es SAT 1,25 x I med 2 = $q(3,15) = \frac{1}{2}$ isticamente SAT 1,50 x I med 2 = $q(3,15) = \frac{1}{2}$ $q(3,15) = \frac{1}{$	6,97 3,67 equivale 6,38 3,67 difference EUC NS 7,09 3,67 difference EUC SA 5,70 3,67	DIF = DMS = DIF = DMS =	0,54 1,02 0,50 0,57 0,39	med 1 = QME = med 1 = QME = Comed 1 = QME = QME = Output Outp	OMP N 6,83 0,13 Estati COMP 5,35 0,11 Estatis OMP N 6,53 0,07 Estatis COMP 5,37 0,06	SAT 1,25 x F med 2 = q (3,15) = listicamente SAT 1,25 x F med 2 = q (3,15) = listicamente e. SAT 1,50 x F med 2 = q (3,15) = listicamente e. SAT 1,50 x F med 2 = q (3,15) = sticamente e.	PIN NS 6,28 3,67 diferer 5,60 3,67 quivale PIN NS 6,18 3,67 quivale PIN SA 4,57 3,67	AT 1,25 DIF = DMS = tes T 1,25 DIF = DMS = DMS = DMS = T 1,50 DIF = DMS = DMS = DMS = DMS = DMS = DMS =	0,54 0,25 0,50 0,34 0,39	med 1 = QME =	EUC NS 6,97 0,13 Esta EUC S 6,38 0,11 Esta EUC NS 7,09 0,07 Esta EUC S 5,70 0,06	MAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,25 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) = tisticamente SAT 1,50 x P med 2 = q (3,15) =	1N NSA 6,28 3,67 diferent N SAT 5,60 3,67 diferent N NSA 6,18 3,67 diferent N SAT 4,57 3,67	DIF = DMS = ates T 1,25 DIF = DMS = ates AT 1,50 DIF = DMS = ates T 1,50 DIF = DMS = ates DIF = DMS = ates	0,54 0,78 0,50 0,91 0,39

QUADRO X - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO DE MADEIRA E DO MESMO PROCEDIMENTO DE SATURAÇÃO COM RELAÇÃO AOS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

March Marc		_				TO BE SITE		3	DILLICIATED			
Part	1 1	දි අ	GM COMP NSAT 0,5	GM COMP NSAT 0,75	GM COMP NSAT 0,5	GM COMP NSAT 1,00	GM COMP NSAT 0,5	GM COMP NSAT 1,25	GM COMP NSAT 0,5	GM COMP NSAT 1,50	GM COMP NSAT 0,75	GM COMP NSAT 1,00
Part		nsa ILa	med 1 = 8,41 med 2 =	- DIF = 8,41	med 1 = 8,41 med 2 =	8,43 DIF = 0,02	med 1 = 8,41 med 2 =	6,83 DIF = 1,57	med 1 = 8,41 med 2 =	6,83 DIF = 1,57	med 1 = 7,85 med 2 =	8,43 DIF = 0,58
Part		gata	QME = 0,30 q (5,25) =	4,16 DMS = 0,92	QME = 0,30 q (5,25) =	4,16 DMS = 0,92	QME = 0,30 q (5,25) =	4,16 DMS = 0,92	QME = 0,30 q (5,25) =	4,16 DMS = 0,92	QME = 0,30 q (5,25) =	4,16 DMS = 0,92
Part		. S										equivalentes
Part		ğ				. 						_
Part		çã çã										
Part		E E				7.				7.1		
Part		i ပို		7.7		7.71		7.7		7.1	0.00 1000	7 - 1
Part		-	Estatisticamente	diferentes	Estatisticament	diferentes	Estatisticamente	diferentes	Estatisticamente	diferentes	Estatisticamente e	equivalentes
Mart		မ္	GM COMP SAT 0,5	GM COMP SAT 0,75	GM COMP SAT 0,5	GM COMP SAT 1,00	GM COMP SAT 0,5	GM COMP SAT 1,25	GM COMP SAT 0,5	GM COMP SAT 1,50	GM COMP SAT 0,75	GM COMP SAT 1,00
Part		ada	med 1 = 8,83 med 2 =	8,90 DIF = 0,07	med 1 = 8,83 med 2 =	7,12 DIF = 1,71	med 1 = 8,83 med 2 =	5,35 DIF = 3,48	med 1 = 8,83 med 2 =	5,37 DIF = 3,46	med 1 = 8,90 med 2 =	7,12 DIF = 1,77
Part		Ĕ	QME = 0,32 q (5,25) =	4,16 DMS = 0,97	QME = 0,32 q (5,25) =	4,16 DMS = 0,97	QME = 0,32 q (5,25) =	4,16 DMS = 0,97	QME = 0,32 q (5,25) =	4,16 DMS = 0,97	QME = 0,32 q (5,25) =	4,16 DMS = 0,97
Part		S S	Estatisticamente e	equivalentes	Estatisticament	diferentes	Estatisticamente	diferentes	Estatisticamente	diferentes	Estatisticamente	diferentes
Part		ção ção	GM COMP SAT 0.75	GM COMP SAT 1.25	GM COMP SAT 0.75	GM COMP SAT 1.50	GM COMP SAT 1.00	GM COMP SAT 1.25	GM COMP SAT 1.00	GM COMP SAT 1.50	GM COMP SAT 1.25	GM COMP SAT 1.50
Marc		ngi p										
Fig.	1 1	၌ ပိ				2752		.,,,,		7.5		2,72
Fig.		E E					1 1/4 1 1 (7 17					
Part	I ⊨											
Part		g g										
Part				.,		17.5		7.0		7.5		700
March Marc		Sa	- 1 - 1 - 1 - 1 - 1		1 0 1 10 0		QME = 0,17 q (5,25) =	4,16 DMS = 0,71	QME = 0,17 q (5,25) =	4,16 DMS = 0,71	QME = 0,17 q (5,25) =	4,16 DMS = 0,71
Part		ie F	Estatisticamente e	equivalentes	Estatisticamente	.*	Estatisticamente	diferentes	Estatisticamente	diferentes	Estatisticamente	diferentes
Part		2 o	GM EUC NSAT 0,75	GM EUC NSAT 1,25	GM EUC NSAT 0,75	GM EUC NSAT 1,50	GM EUC NSAT 1,00	GM EUC NSAT 1,25	GM EUC NSAT 1,00	GM EUC NSAT 1,50	GM EUC NSAT 1,25	GM EUC NSAT 1,50
Part	1.1	diç.	med 1 = 8,80 med 2 =	6,97 DIF = 1,83	med 1 = 8,80 med 2 =	7,09 DIF = 1,71	med 1 = 8,80 med 2 =	6,97 DIF = 1,83	med 1 = 8,23 med 2 =	7,09 DIF = 1,13	med 1 = 6,97 med 2 =	7,09 DIF = 0,13
Part	ias	, <u>, , , , , , , , , , , , , , , , , , </u>	QME = 0,17 q (5,25) =	4,16 DMS = 0,71	QME = 0,17 q (5,25) =	4,16 DMS = 0,71	QME = 0,17 q (5,25) =	4,16 DMS = 0,71	QME = 0,17 q (5,25) =	4,16 DMS = 0,71	QME = 0,17 q (5,25) =	4,16 DMS = 0,71
Formal F	ဆ	- ~ I	Estatisticamente	diferentes	Estatisticament	diferentes	Estatisticamente	diferentes	Estatisticamente	diferentes	Estatisticamente e	equivalentes
## OF THE PROPERTY OF THE PROP	de	:	GM EUC SAT 0.5	GM EUC SAT 0.75	GM EUC SAT 0.5	GM EUC SAT 1.00	GM EUC SAT 0.5	GM EUC SAT 1.25	GM EUC SAT 0.5	GM EUC SAT 1.50	GM EUC SAT 0.75	GM EUC SAT 1.00
Fig.	Ida	<u>ਬੂ</u> ਬੂ	med 1 = 9.46 med 2 =									
Fig.	1 1	ia ii		1,70 200 2,70	7,10 1002				7,10 1000			
Fig.			$OME = 1 + 0.26 \ln (5.25) = 1$	4 16 DMS = 0.86	OME = 0.26 a (5.25) =	4 16 DMS = 0.86	OME = 0.26 a (5.25) =	4 16 DMS = 0.86	OME = 0.26 a (5.25) =	1 416 DMS = 1 0.86		
Fig. 10 Fig.		Sat Eu			0.1107.7							
Marcology Marc		de Eu ão Sati	Estatisticamente	diferentes	Estatisticament	e diferentes	Estatisticamente	diferentes	Estatisticamente	diferentes	Estatisticamente e	equivalentes
Statisticamente differents		rula de Eu dição Satı	Estatisticamente GM EUC SAT 0,75	diferentes GM EUC SAT 1,25	Estatisticament GM EUC SAT 0,75	e diferentes GM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00	diferentes GM EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00	diferentes GM EUC SAT 1,50	Estatisticamente e GM EUC SAT 1,25	equivalentes GM EUC SAT 1,50
March Pin Na To Color Pin Na Pi		rticula de Eu Condição Sat	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 =	GM EUC SAT 1,25 6,38 DIF = 1,38	### Estatisticament GM EUC SAT 0,75 med 1 = 7,76 med 2 =	e diferentes GM EUC SAT 1,50 5,70 DIF = 2,06	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 =	GM EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 =	GM EUC SAT 1,50	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 =	GM EUC SAT 1,50
Marcol M		Particula de Eu Condição Sat	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) =	CM EUC SAT 1,25 C	Estatisticament GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) =	e diferentes GM EUC SAT 1,50 5,70 DIF = 2,06 4,16 DMS = 0,86	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0,26 q (5,25) =	diferentes GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,86	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) =	GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) =	equivalentes GM EUC SAT 1,50 5,70 DIF = 0,68 4,16 DMS = 0,86
Mart Second Figure Second Sec		Particula de Eu Condição Sat	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticamente	GM EUC SAT 1,25 6,38 DIF = 1,38 4,16 DMS = 0,86 differentes	Statisticament GM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament	e diferentes GM EUC SAT 1,50 5,70 DIF = 2,06 4,16 DMS = 0,86 e diferentes	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente	diferentes GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,86 diferentes 0.86	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente	GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86 diferentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e	GM EUC SAT 1,50 5,70 DIF = 0,68 4,16 DMS = 0,86 equivalentes
Statisticamente equivalentes Statisticamente equivalentes Statisticamente differentes St		Particula de Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5	CM EUC SAT 1,25	Estatisticament GM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.5	GM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5	diferentes	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5	diferentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6.38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75	Quivalentes
Statisticamente equivalentes Statisticamente equivalentes Statisticamente differentes St		ns - Particula de nrada Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 =	diferents CM EUC SAT 1,25	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.5 med 1 = 9.00 med 2 =	CM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 =	diferentes GM EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 =	diferents	Statisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 =	CM EUC SAT 1,50 5,70 DIF = 0,68 4,16 DMS = 0,86 2quivalentes GM PIN NSAT 1,00 7,37 DIF = 0,86
March Fig. March		Pinus - Particula de Saturada Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 =	diferents CM EUC SAT 1,25	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.5 med 1 = 9.00 med 2 =	CM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 =	diferentes GM EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 =	diferents	Statisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 =	CM EUC SAT 1,50 5,70 DIF = 0,68 4,16 DMS = 0,86 2quivalentes GM PIN NSAT 1,00 7,37 DIF = 0,86
Statisticamente differentes Estatisticamente differentes		Pinus - Particula de Saturada Condição	Estatisticamente	CM EUC SAT 1,25	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) =	GM EUC SAT 1,50	Estatisticamente CM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5.25) = Estatisticamente CM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) =	GM EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) =	differentes	Statisticamente e CM EUC SAT 1,25 med 1 = 6.38 med 2 = QME = 0,26 q (5.25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5.25) =	CM EUC SAT 1,50
Statisticamente differentes Estatisticamente differentes		nla de Pinus - Particula de o Não Saturada Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = 0,26 q.525 = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = 0,26 q.525 = 0,26 q	MEUC SAT 1,25	Estatisticament CM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticament Estatist	diferentes diferentes diferentes GM EUC SAT 1,50 DIF = 2,06 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,00 7,37 DIF = 1,63 4,16 DMS = 0,86 diferentes 0,86 diferentes diferent	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente GM Estatisticamente Estatisticamente GM Estatisticamente Estatisticamente GM Estatisticamente Estatisticamente GM Estatisticamente	M EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente GM PIN	Milestein Control Co	Estatisticamente e GM EUC SAT 1,25 med 1 = 6.38 med 2 = QME = 0.26 q (5.25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5.25) = Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e GM E GM E Estatisticamente e Estatisticamen	CM EUC SAT 1,50 S,70 DIF = 0,68 4,16 DMS = 0,86 equivalentes GM PIN NSAT 1,00 7,37 DIF = 0,86 4,16 DMS = 0,86 equivalentes
Statisticamente differentes Stat		nla de Pinus - Particula de o Não Saturada Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN NSAT 0,75	differentes	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticament Estatisticament CM PIN NSAT 0.75 CM	diferentes GM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 M EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 1,00 Milestentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6.38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 1,25	CM EUC SAT 1,50		
CM PIN SAT 0,5 CM PIN SAT 1,0 CM P		nla de Pinus - Particula de o Não Saturada Condição	Estatisticamente	CM EUC SAT 1,25	Estatisticament CM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5.25) = Estatisticament CM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) = Estatisticament CM PIN NSAT 0,75 med 1 = 8,23 med 2 = Restatisticament CM PIN NSAT 0,75 med 1 = 8,23 med 2 = Restatisticament Rest	diferentes GM EUC SAT 1,50 5,70 DIF = 2,06 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,00 7,37 DIF = 1,63 4,16 DMS = 0,86 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 2,04	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7,37 med 2 =	GM EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente CM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7,37 med 2 =	diferentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = GM PIN NSAT 1,25 med 1 = 6,28 med 2 = GM PIN NSAT 1,25 med 1 = 6,28 med 2 = GM PIN NSAT 1,25 med 2 = GM PIN NSAT 1,	CM EUC SAT 1,50
Wed 1 Solid Wed 2		nla de Pinus - Particula de o Não Saturada Condição	Estatisticamente GM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.75 med 1 = 8.23 med 2 = QME = 0.26 q (5.25) = CME 0.26 q (5	MEUC SAT 1,25	Estatisticament CM EUC SAT 0.75 med 1 = 7,76 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = QME =	differentes GM EUC SAT 1.50 5,70 DIF = 2,06 4,16 DMS = 0,86 differentes GM PIN NSAT 1,00 4,16 DMS = 0,86 differentes GM PIN NSAT 1,50 GM PIN NSAT 1,50 GM PIN NSAT 1,50 GM PIN NSAT 1,50 GM PIN SAT 1,50 GM PIN NSAT 1,5	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) QME = 0.26 q (5.25)	differentes GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,86 differentes GM PIN NSAT 1,25 6,28 DIF = 2,72 4,16 DMS = 0,36 differentes GM PIN NSAT 1,25 6,28 DIF = 1,09 4,16 DMS = 0,86 0,86 0,81 0,86 0,86	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME 0.26 q (5.25) = QME 0.26 q (5.25) = QME 0.26 q (5.25) = QME 0.26 q (5.25) = QME 0.26 q (5.25) = QME 0.26 q (5.25) QME 0.26 q (5.25) QME 0.26 q (5.25)	Milestein Company Co	Estatisticamente e GM EUC SAT 1.25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 1.25 med 1 = 6,28 med 2 = QME = 0,26 q (5,25) = CM PIN NSAT 1.25 med 1 = 6,28 med 2 = QME = 0,26 q (5,25) = QME =	CM EUC SAT 1,50
Marcolumn Marc		nla de Pinus - Particula de o Não Saturada Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM Estatisticamente GM Estatisticamente GM Estatisticamente GM Estatisticamente GM Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente GM Estatisticamente Estatisticamente Estatisticamente GM Estatisticamente Estatisticamente GM Estatisticamente Estatist	### Company of the co	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = CM PIN SAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = Estatisticament Estatisticament Estatisticament Estatisticament Estatisticament Estatisticament Estatisticament CM PIN	diferentes GM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente Estatisticamente GM PIN NSAT 1,00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente GM PIN SAT 1,00 q (5.25) = Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente GM PIN SAT 1,00 q (5.25) = Estatisticamente Estatisticamente	M EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente Estatisticamente GM PIN	Milestensis	Estatisticamente e GM EUC SAT 1,25 med 1 = 6.38 med 2 = QME = 0.26 q (5.25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5.25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = QME = 0,26 q (5.25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = QME = 0,26 q (5.25) = Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e GM PIN SAT 1,25 med 1 = 6,28 med 2 = QME = 0,26 q (5.25) = Estatisticamente e Estatisticamente Estati	CM EUC SAT 1,50
Facing Statistic Statist	_	- Particula de Pinus - Farticula de a Condição Não Saturada Condição	Estatisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (525) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (525) = Estatisticamente GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (525) = Estatisticamente QM PIN SAT 0,5 Estatisticamente GM PIN SAT 0,5 Estatisticamente CM PIN SAT 0,5	differentes	Estatisticament CM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5.25) = Estatisticament CM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) = Estatisticament CM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5.25) = QME = 0,26 q (5.25) = QME = 0,26 q (5.25) = Estatisticament Estatisticament CM PIN SAT 0,5 CM PIN SAT 0	diferentes GM EUC SAT 1,50 5,70 DIF = 2,06 4,16 DMS = 0,86 diferentes CM PIN NSAT 1,00 7,37 DIF = 1,63 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 2,04 4,16 DMS = 0,86 diferentes GM PIN SAT 1,50 6,18 DIF = 2,04 4,16 DMS = 0,86 diferentes GM PIN SAT 1,00	Estatisticamente CM EUC SAT 1,00 med 1 = 7.68 med 2 =	M EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 Estatisticamente GM PIN SAT 0.5 Estatisticamente GM PIN SAT 0.5 GM PIN SAT 0.5 CM PIN SAT	diferentes GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 2,82 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,86 diferentes GM PIN SAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,86 diferentes GM PIN SAT 1,50	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = QME = 0,26 q (5,25) = Estatisticamente e Estatisticamente e Estatisticamente e GM PIN SAT 0,75	CM EUC SAT 1,50
The part of the	_	- Particula de Pinus - Farticula de a Condição Não Saturada Condição	Statisticamente GM EUC SAT 0.75	Continue	Estatisticament CM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticament CM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticament Estatisticament CM PIN SAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticament CM PIN SAT 0,5 med 1 = 8,03 med 2 = Med 3 = Med 2 = Med 3 = Med 2 = Med 3 =	SM EUC SAT 1,50	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7,37 med 2 = QME = 0,26 q (5.25) = Estatisticamente GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 2 = GM PIN SAT 0,5 med 2 = GM PIN SAT 0,5 med 3 =	Minimum Mini	Estatisticamente GM EUC SAT 1,00 med 1 = 7,68 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7,37 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 1 = 8,03 med 2 = GM PIN SAT 0,5 med 2 = GM PIN SAT 0	Milestentes	Statisticamente e GM EUC SAT 1,25 med 1 = 6.88 med 2 = QME = 0,26 q (5.25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8.23 med 2 = QME = 0,26 q (5.25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = QME = 0,26 q (5.25) = Estatisticamente e GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 1 = 8,02 med 2 = GM PIN SAT 0,75 med 2 = GM PI	CM EUC SAT 1,50
Que (1)		Pinus - Particula de Pinus - Particula de turada Condição Não Saturada Condição	Estatisticamente GM EUC SAT 0.75	MEUC SAT 1,25	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.75 med 1 = 8.23 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.75 med 1 = 8.23 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = CM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = QME	Continue	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) QME QME = 0.13 q (5.25) QME QME = 0.13 q (5.25) QME differentes GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,86 differentes GM PIN NSAT 1,25 6,28 DIF = 2,72 4,16 DMS = 0,36 differentes GM PIN NSAT 1,25 6,28 DIF = 1,09 4,16 DMS = 0,36 differentes GM PIN SAT 1,25 5,60 DIF = 2,43 4,16 DMS = 0,61	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = GME = 0.13 q (5.25) GME = 0.13 q (5.25) GME	Milestentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = QME = 0,26 q (5,25) = Estatisticamente e GM PIN SAT 0,75 med 1 = 8,02 med 2 = QME = 0,13 q (5,25) = QME QME = 0,13 q (5,25) = QME	CM EUC SAT 1,50	
Que (1)		de Pinus - Particula de Pinus - Particula de Saturada Condição Não Saturada Condição	Estatisticamente GM EUC SAT 0,75	M EUC SAT 1,25	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN SAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = Estatisticament GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0.13 q (5.25) = Estatisticament Estat	diferentes diferentes GM EUC SAT 1,50 5,70 DIF = 2,06 4,16 DMS = 0,86 diferentes CM PIN NSAT 1,00 7,37 DIF = 1,63 4,16 DMS = 0,86 diferentes CM PIN NSAT 1,50 6,18 DIF = 2,04 4,16 DMS = 0,86 diferentes CM PIN SAT 1,00 6,52 DIF = 1,52 4,16 DMS = 0,61 diferentes	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7.37 med 2 = QME 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7.37 med 2 = QME 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME 0.13 q (5.25) = Estatisticamente Estati	diferentes GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,25 6,28 DIF = 2,72 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,25 6,28 DIF = 1,09 4,16 DMS = 0,86 diferentes GM PIN SAT 1,25 6,28 DIF = 1,09 4,16 DMS = 0,86 diferentes GM PIN SAT 1,25 5,60 DIF = 2,43 4,16 DMS = 0,61 diferentes	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 =	diferentes GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 2,82 4,16 DMS = 0,36 diferentes GM PIN NSAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,36 diferentes GM PIN NSAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,36 diferentes GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6.38 med 2 = QME = 0.26 q (5.25) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = QME = 0.26 q (5.25) = Estatisticamente e GM PIN SAT 0,75 med 1 = 8,02 med 2 = QME = 0.13 q (5.25) = GM PIN SAT 0,75 med 1 = 8,02 med 2 = QME = 0.13 q (5.25) = Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente e Estatisticamente Esta	CM EUC SAT 1,50
Que (1)	-	de Pinus - Particula de Pinus - Particula de Saturada Condição Não Saturada Condição	Statisticamente GM EUC SAT 0,75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN NSAT 0,75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticamente GM PIN SAT 0,5 med 1 = 8,03 med 2 = QME = 0,13 q (5,25) = Estatisticamente GM PIN SAT 0,5 med 1 = 8,03 med 2 = QME = 0,13 q (5,25) = Estatisticamente GM PIN SAT 0,5 GM PIN SAT 0,5 Estatisticamente GM	differentes	Estatisticament CM EUC SAT 0.75 med 1 = 7.76 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN SAT 0.75 med 1 = 8,23 med 2 = QME = 0.26 q (5.25) = Estatisticament CM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0.13 q (5.25) = CME STATISTICAMENT CM PIN SAT 0.5 med 1 = STATISTICAMENT STATISTICAMENT STATISTICAMENT STATISTICAMENT CM PIN SAT 0.75 CM PIN SAT 0.	diferentes GM EUC SAT 1,50 5,70 DIF = 2,06 4,16 DMS = 0,86 diferentes CM PIN NSAT 1,00 7,37 DIF = 1,63 4,16 DMS = 0,86 diferentes CM PIN NSAT 1,50 6,18 DIF = 2,04 4,16 DMS = 0,86 diferentes CM PIN SAT 1,50 6,20 DIF = 1,52 4,16 DMS = 0,61 4,16 DMS = 0,61 diferentes GM PIN SAT 1,00 6,52 DIF = 1,52 4,16 DMS = 0,61 diferentes CM PIN SAT 1,50	Estatisticamente CM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0,26 q (5.25) = Estatisticamente CM PIN NSAT 0,5 med 1 = 9,00 med 2 = QME = 0,26 q (5.25) = Estatisticamente CM PIN NSAT 1,00 med 1 = 7,37 med 2 = QME = 0,26 q (5.25) = Estatisticamente CM PIN SAT 0,5 med 1 = 8,03 med 2 = QME = 0,13 q (5.25) = Estatisticamente CM PIN SAT 0,5 med 1 = 8,03 med 2 = QME = 0,13 q (5.25) = Estatisticamente CM PIN SAT 1,00	M EUC SAT 1,25	Estatisticamente GM EUC SAT 1,00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1,00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0.13 q (5.25) = GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 1,00 Estatisticamente	diferentes GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 2,82 4,16 DMS = 0,86 diferentes GM PIN NSAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,86 diferentes GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferentes GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferentes	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = (QME = 0,26 q.62,5) = Estatisticamente e GM PIN NSAT 0,75 med 1 = 8,23 med 2 = (QME = 0,26 q.62,5) = Estatisticamente e GM PIN NSAT 1,25 med 1 = 6,28 med 2 = (QME = 0,26 q.62,5) = Estatisticamente e (GM PIN SAT 0,75 med 1 = 8,02 med 2 = (QME = 0,13 q.62,5) = Estatisticamente e (GM PIN SAT 0,75 med 1 = 8,02 med 2 = (GM PIN SAT 0,75 (5,25) = Estatisticamente e (5,25) = Estatisticamente (5,25) = Estatisticamente (5,25) = (5,25	CM EUC SAT 1,50 5,70 DIF
Estatisticamente diferentes Estatisticamente diferentes Estatisticamente diferentes Estatisticamente diferentes Estatisticamente diferentes	_	de Pinus - Particula de Pinus - Particula de Saturada Condição Não Saturada Condição	Statisticamente GM EUC SAT V 0.75	MICHAEL CAN	Estatisticament CM EUC SAT 0.75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0,13 q (5,25) = Estatisticament GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0,13 q (5,25) = Estatisticament CAP PIN SAT 0.75 med 1 = 8,02 med 2 = QME = 0,13 q (5,25) = Estatisticament CAP PIN SAT 0.75 med 1 = 8,02 med 2 = 0,13 q (2,25) med 2 = 0,13 q (3,25) q (diferents	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 0.50 med 1 = 6.52 med 2 = GM PIN SAT 0.50 me	diferents GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,36 diferents GM PIN NSAT 1,25 6,28 DIF = 2,72 4,16 DMS = 0,36 diferents GM PIN NSAT 1,25 6,28 DIF = 1,09 4,16 DMS = 0,36 diferents GM PIN SAT 1,25 5,60 DIF = 2,43 4,16 DMS = 0,61 diferents GM PIN SAT 1,25 5,60 DIF = 0,61 differents GM PIN SAT 1,25 5,60 DIF = 0,61	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 2 = GM PIN SAT 1.00 med 3 = GM PIN SAT 1.00 med 4 = GM PIN SAT 1.00 med 4 = GM PIN SAT 1.00 med 4 = GM PIN SAT 1.00 med 5 = GM PIN SAT 1.00 med 6 = GM PIN SAT 1.00 med	diferents GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86 diferents GM PIN NSAT 1,50 6,18 DIF = 2,82 4,16 DMS = 0,86 diferents GM PIN NSAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,86 diferents GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferents GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferents GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferents GM PIN SAT 1,50	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q.(5,25) =	CM EUC SAT 1,50
	_	de Pinus - Particula de Pinus - Particula de Saturada Condição Não Saturada Condição	Statisticamente GM EUC SAT V 0.75	MICHAEL CAN	Estatisticament CM EUC SAT 0.75 med 1 = 7,76 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN NSAT 0.5 med 1 = 9,00 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN NSAT 0.75 med 1 = 8,23 med 2 = QME = 0,26 q (5,25) = Estatisticament GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0,13 q (5,25) = Estatisticament GM PIN SAT 0.5 med 1 = 8,03 med 2 = QME = 0,13 q (5,25) = Estatisticament CAP PIN SAT 0.75 med 1 = 8,02 med 2 = QME = 0,13 q (5,25) = Estatisticament CAP PIN SAT 0.75 med 1 = 8,02 med 2 = 0,13 q (2,25) med 2 = 0,13 q (3,25) q (diferents	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 9.00 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 0.50 med 1 = 6.52 med 2 = GM PIN SAT 0.50 me	diferents GM EUC SAT 1,25 6,38 DIF = 1,30 4,16 DMS = 0,36 diferents GM PIN NSAT 1,25 6,28 DIF = 2,72 4,16 DMS = 0,36 diferents GM PIN NSAT 1,25 6,28 DIF = 1,09 4,16 DMS = 0,36 diferents GM PIN SAT 1,25 5,60 DIF = 2,43 4,16 DMS = 0,61 diferents GM PIN SAT 1,25 5,60 DIF = 0,61 differents GM PIN SAT 1,25 5,60 DIF = 0,61	Estatisticamente GM EUC SAT 1.00 med 1 = 7.68 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 0.5 med 1 = 0.26 q (5.25) = Estatisticamente GM PIN NSAT 1.00 med 1 = 7.37 med 2 = QME = 0.26 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 0.5 med 1 = 8.03 med 2 = QME = 0.13 q (5.25) = Estatisticamente GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 1 = 6.52 med 2 = GM PIN SAT 1.00 med 2 = GM PIN SAT 1.00 med 3 = GM PIN SAT 1.00 med 4 = GM PIN SAT 1.00 med 4 = GM PIN SAT 1.00 med 4 = GM PIN SAT 1.00 med 5 = GM PIN SAT 1.00 med 6 = GM PIN SAT 1.00 med	diferents GM EUC SAT 1,50 5,70 DIF = 1,98 4,16 DMS = 0,86 diferents GM PIN NSAT 1,50 6,18 DIF = 2,82 4,16 DMS = 0,86 diferents GM PIN NSAT 1,50 6,18 DIF = 1,19 4,16 DMS = 0,86 diferents GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferents GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferents GM PIN SAT 1,50 4,57 DIF = 3,46 4,16 DMS = 0,61 diferents GM PIN SAT 1,50	Estatisticamente e GM EUC SAT 1,25 med 1 = 6,38 med 2 = QME = 0,26 q.(5,25) =	CM EUC SAT 1,50

QUADRO XI - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DOS DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

								Idade (28	dias)								
				Partícula	a de Con	npensado x	Partícula	de Eucalipto	x Partícul	a de Pinus	e Teor	1,75 x Ted	or 2,00				
	CC	OMP 1,75 x C	OMP 2,00				C	OMP 1,75 x	EUC 1,75				C	OMP 1,75 x	EUC 2,00		
med 1 =	1.090,54	med 2 =	1.086,59	DIF =	3,95	med 1 =	1.090,54	med 2 =	1.093,06	DIF =	2,52	med 1 =	1.090,54	med 2 =	1.091,52	DIF=	0,98
QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05
	Estat	isticamente (equivalente	es			Estat	isticamente	equivalente	es			Estat	isticamente	equivalente	es	
***************************************		OMP 1,75 x	PIN 1,75		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			OMP 1,75 x	PIN 2,00	TOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		C	OMP 2,00 x	EUC 1,75	200000000000000000000000000000000000000	og
med 1 =	1.090,54	med 2 =	1.096,21	DIF =	5,67	med 1 =	1.090,54	med 2 =	1.089,13	DIF=	1,41	med 1 =	1.086,59	med 2 =	1.093,06	DIF=	6,47
QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05
	Estat	isticamente (equivalente	es			Estat	isticamente	equivalente	es			Estat	isticamente	equivalente	es	
	C	OMP 2,00 x	EUC 2,00		,		(OMP 2,00 x	PIN 1,75		,		(COMP 2,00 x	PIN 2,00		
med 1 =	1.086,59	med 2 =	1.091,52	DIF =	4,93	med 1 =	1.086,59	med 2 =	1.096,21	DIF=	9,62	med 1 =	1.086,59	med 2 =	1.089,13	DIF=	2,54
QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05
	Estat	isticamente (equivalente	es			Estat	isticamente	equivalente	es			Estat	isticamente	equivalente	es	
]	EUC 1,75 x E	UC 2,00		,			EUC 1,75 x I	PIN 1,75		,			EUC 1,75 x I	PIN 2,00		
med 1 =	1.093,06	med 2 =	1.091,52	DIF =	1,54	med 1 =	1.093,06	med 2 =	1.096,21	DIF=	3,15	med 1 =	1.091,52	med 2 =	1.089,13	DIF=	2,39
QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05
	Estat	isticamente (equivalente	es			Estat	isticamente	equivalent	es			Estat	isticamente	equivalente	es	
		EUC 2,00 x F	PIN 1,75		,			EUC 2,00 x I	PIN 2,00		,			PIN 1,75 x P	IN 2,00		
med 1 =	1.091,52	med 2 =	1.096,21	DIF=	4,69	med 1 =	1.091,52	med 2 =	1.089,13	DIF=	2,39	med 1 =	1.096,21	med 2 =	1.089,13	DIF=	7,08
QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05	QME=	961,83	q (6,12) =	4,75	DMS =	85,05
	Estat	isticamente (equivalente	es			Estat	isticamente	equivalente	es			Estat	isticamente	equivalente	es	

QUADRO XII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DOS DIFERENTES TIPOS DE MADEIRA COM OS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

	DILL	SILETTI	20 111 00	DL WILL	DEIKA C	OM OD L	II LILLI		28 dias)	VIII IDDIIC	1) 1105 2	ODITIO					
					D // 1 1		1 D (/)	,			TD 4 55	T 4.00					
					Particula de	e Compensa	do x Particu	la de Eucalij	oto x Particu	la de Pinus	e Teor 1,75	x Teor 2,00					
	CO	OMP 1,75 x	COMP 2,00)		***************************************		COMP 1,75	x EUC 1,75				-	COMP 1,75	x EUC 2,00	-	equence and a second
med 1 =	3,46 m	ned 2 =	4,27	DIF =	0,81	med 1 =	3,46	med 2 =	4,36	DIF =	0,90	med 1 =	3,46	med 2 =	5,37	DIF =	1,91
QME=	0,69 q	(6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28
	Estati	isticament	e equivalent	tes			Es	tatisticamen	te equivalen	tes			Es	tatisticament	e equivalen	tes	
	C	OMP 1,75	x PIN 1,75					COMP 1,75	5 x PIN 2,00					COMP 2,00	x EUC 1,75		
med 1 =	3,46 m	ned 2 =	3,37	DIF =	0,09	med 1 =	3,46	med 2 =	3,79	DIF =	0,33	med 1 =	4,27	med 2 =	4,36	DIF =	0,09
QME=	0,69 q	(6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28
	Estati	isticament	e equivalent	tes			Es	tatisticamen	te equivalen	tes			Es	tatisticament	e equivalen	tes	
	CC	OMP 2,00	x EUC 2,00					COMP 2,00	x PIN 1,75					COMP 2,00	x PIN 2,00		
med 1 =	4,27 m	ned 2 =	5,37	DIF =	1,10	med 1 =	4,27	med 2 =	3,37	DIF =	0,90	med 1 =	4,27	med 2 =	3,79	DIF =	0,48
QME=	0,69 q	(6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28
	Estati	isticament	e equivalent	tes			Es	tatisticamen	te equivalen	tes			Es	tatisticament	e equivalen	tes	
	F	EUC 1,75 x	EUC 2,00					EUC 1,75	x PIN 1,75					EUC 1,75	x PIN 2,00		
med 1 =	4,36 m	ned 2 =	5,37	DIF=	1,01	med 1 =	4,36	med 2 =	3,37	DIF =	0,99	med 1 =	5,37	med 2 =	3,79	DIF=	1,58
QME=	0,69 q	(6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28
	Estati	isticament	e equivalent	tes			Es	tatisticamen	te equivalen	tes			Es	tatisticament	e equivalen	tes	
	I	EUC 2,00 >	PIN 1,75					EUC 2,00	x PIN 2,00					PIN 1,75	PIN 2,00		
med 1 =	5,37 m	ned 2 =	3,37	DIF =	2,00	med 1 =	5,37	med 2 =	3,79	DIF =	1,58	med 1 =	3,37	med 2 =	3,79	DIF=	0,42
QME=	0,69 q	(6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28	QME=	0,69	q (6,12) =	4,75	DMS =	2,28
	Estati	isticament	e equivalent	tes			Es	tatisticamen	te equivalen	tes			Es	tatisticament	e equivalen	tes	

QUADRO XIII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO E TEOR DE MADEIRA COM AS DIFERENTES IDADES) AOS 28 DIAS

	Idad	e (7 dias) x	x Idade (28 dia	as)											
	med 1 =	3,45	med 2 =	5,66	DIF =	2,21									
COMP 1,75	QME=	0,03	q(2,10) =	3,15	DMS =	0,21									
		Est	tatisticamente	diferentes	S										
	med 1 =	3,90	med 2 =	6,38	DIF=	2,48									
COMP 2,00	QME=	0,22	q(2,10) =	3,15	DMS =	0,61									
		Estatisticamente diferentes													
	med 1 =	4,61	med 2 =	6,72	DIF =	2,11									
EUC 1,75	QME=	0,23	q(2,10) =	3,15	DMS =	0,62									
		Es	tatisticamente	diferentes	3										
	med 1 =	4,62	med 2 =	6,29	DIF =	1,67									
EUC 2,00	QME=	0,03	q(2,10) =	3,15	DMS =	0,20									
		Es	tatisticamente	diferentes	3										
	med 1 =	3,53	med 2 =	5,27	DIF =	1,74									
PIN 1,75	QME=	0,06	q(2,10) =	3,15	DMS =	0,32									
		Es	tatisticamente	diferentes	S										
	med 1 =	3,82	med 2 =	5,57	DIF =	1,75									
PIN 2,00	QME=	0,09	q(2,10) =	3,15	DMS =	0,39									
		Es	tatisticamente	diferentes	S										

QUADRO XIV - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TIPO DE MADEIRA COM OS DIFERENTES TEORES DE MADEIRA) AOS 28 DIAS

	ado		(COMP 1,75 x C	OMP 2,0	O										
	Jompensa	med 1 =	5,66	med 2 =	6,38	DIF=	0,71									
	mc	QME=	0,23	q(2,10) =	3,15	DMS =	0,62									
<u> </u>	C		Es	statisticamente	e diferente	es										
dias)	to		EUC 1,75 x EUC 2,00													
(28	Eucalipto	med 1 =	6,72	med 2 =	6,29	DIF=	0,44									
Idade	Euc	QME=	0,18	q(2,10) =	3,15	DMS =	0,55									
Ida	[Est	atisticamente (equivalen	tes										
				PIN 1,75 x P	IN 2,00											
	Pinus	med 1 =	5,27	med 2 =	5,57	DIF=	0,31									
	$\mathbf{Pi}_{\mathbf{l}}$	QME=	0,12	q(2,10) =	3,15	DMS =	0,44									
			Est	atisticamente (equivalen	tes										

QUADRO XV - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA) AOS 28 DIAS

	75		CC	OMP 1,75 x l	EUC 1,	75			C	OMP 1,75 x	PIN 1,7	' 5			I	EUC 1,75 x F	IN 1,75	5	
s)	. 1,7	med 1 =	5,66	med 2=	6,72	DIF =	1,06	med 1 =	5,66	med 2 =	5,27	DIF=	0,40	med 1 =	6,72	med 2 =	5,27	DIF =	1,46
dias	leoi	QME =	0,14	q(3,15) =	3,67	DMS =	0,57	QME =	0,14	q(3,15) =	3,67	DMS =	0,57	QME=	0,14	q(3,15) =	3,67	DMS =	0,57
28 (L 1		Esta	tisticamente	difere	ntes			Estati	sticamente e	equival	entes			Esta	tisticamente	difere	ntes	
ıde (00		CC	OMP 2,00 x l	EUC 2,	00			C	OMP 2,00 x	PIN 2,0	00			I	EUC 2,00 x F	IN 2,00)	
Ida	2,0	med 1 =	6,38	med 2=	6,29	DIF =	0,09	med 1 =	6,38	med 2 =	5,57	DIF =	0,80	med 1 =	6,29	med 2 =	5,57	DIF =	0,71
	[6]	QME =	0,21	q(3,15) =	3,67	DMS =	0,69	QME =	0,21	q(3,15) =	3,67	DMS =	0,69	QME=	0,21	q(3,15) =	3,67	DMS =	0,69

C. ANÁLISE COMPARATIVA DOS RESULTADOS DE ENSAIOS NO ESTADO ENDURECIDO DOS COMPÓSITOS DE CIMENTO-MADEIRA E DE GESSO-MADEIRA

A análise estatística realizada com os resultados obtidos a partir dos ensaios realizados com os compósitos produzidos com cimento-madeira e com gesso-madeira está apresentada a seguir (QUADRO XVI, QUADRO XVII e QUADRO XVIII).

Os ensaios de densidade de massa endurecida, de resistência à tração na flexão e de resistência à compressão foram analisados com o mesmo teor de madeira (1,00, 1,25, 1,50, 1,75 e 2,00) com relação aos diferentes tipos de madeira (compensado, eucalipto e pinus) e de aglomerante (cimento Portland e gesso) na composição. e o mesmo procedimento de saturação (saturado ou não saturado) com relação aos diferentes teores de madeira (0,50, 0,75, 1,00, 1,25 e 1,50) aos 28 dias.

QUADRO XVI - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE DENSIDADE DE MASSA ENDURECIDA (COMPARAÇÃO DO MESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA E AGLOMERANTE) AOS 28 DIAS

								Ida	de (28 dias)									
	CN	1 COMP N	SAT 1,00 x	GM COMP	NSAT 1,0	0	C	M COMP	NSAT 1,00 x	CM EUC 1	NSAT 1,00)	C	М СОМР	NSAT 1,00 x	GM EUC	NSAT 1,00)
	med 1 =	1.585,70	med 2 =	1.129,48	DIF=	456,22	med 1 =	1.585,70	med 2 =	1.511,34	DIF =	74,36	med 1 =	1.585,70	med 2 =	1.146,23	DIF =	439,48
	QME=	145,60	q (6,12) =	4,75	DMS =	33,09	QME=	145,60	q (6,12) =	4,75	DMS =	33,09	QME=	145,60	q (6,12) =	4,75	DMS =	33,09
		Est	atisticament	te diferente	S			Est	atisticament	e diferente	s			Es	tatisticamen	te diferente	s	
		M COMP	NSAT 1,00	x CM PIN N	ISAT 1,00		(CM COMP	NSAT 1,00	GM PIN N	ISAT 1,00		C	M COMP	NSAT 1,00 x	CM EUC	NSAT 1,00)
	med 1 =	,	med 2 =	1.575,23	DIF=	10,47	med 1 =	1.585,70		1.112,97		472,73	med 1 =	1.129,48	med 2 =	1.511,34	DIF =	381,86
	QME =	145,60	q (6,12) =	4,75	DMS =	33,09	QME=	145,60	q (6,12) =	4,75	DMS =	33,09	QME=	145,60	q (6,12) =	4,75	DMS =	33,09
		Esta	tisticamente	equivalent	es			Est	atisticament	e diferente	s			Es	tatisticamen	te diferente	s s	
			NSAT 1,00 x	1					NSAT 1,00		· ·			1	NSAT 1,00	1		1
TEOR	med 1 =		med 2 =	1.146,23		16,75		1.129,48		1.575,23		445,75	med 1 =		med 2 =	1.112,97		16,51
1,00	QME=		q (6,12) =		DMS =	33,09	QME=		q (6,12) =	,,,,	DMS =	33,09	QME=		q (6,12) =	7	DMS =	33,09
			tisticamente						atisticament						tisticamente	_		
			SAT 1,00 x 0	1					SAT 1,00 x		· ·			1	NSAT 1,00 x	1		1
	med 1 =		med 2 =	1.112,97		462,27	med 1 =	1.511,34		1.146,23		365,11	med 1 =	_	med 2 =	1.575,23		63,89
	QME=		q (6,12) =		DMS =	33,09	QME=		q (6,12) =		DMS =	33,09	QME=		q (6,12) =		DMS =	33,09
			atisticament						atisticament						tatisticament			
			ISAT 1,00 x						ISAT 1,00 x			I			NSAT 1,00 x			T
	med 1 =		med 2 =	1.112,97		398,37		1.146,23		1.575,23		429,01		_	med 2 =	1.112,97		33,26
	QME=		q (6,12) =		DMS =	33,09	QME=		q (6,12) =		DMS =	33,09	QME=		q (6,12) =		DMS =	33,09
-	_		atisticament			_			atisticament				_		tatisticamen			
	med 1 =		SAT 1,25 x 0 med 2 =	GM COMP 1.126.31		501,28		1.627,59	NSAT 1,25 x	1.485,06		142,53			NSAT 1,25 > med 2 =	1.141,28		486,31
	OME =			1 17	DMS =	136.24		_		_	DMS =	136,24			_	_	DMS =	136,24
	QME=		q (6,12) =			130,24	QME =		q (6,12) =			150,24	QME=		q (6,12) =			130,24
	-		NSAT 1,25				(NSAT 1,25				-		NSAT 1,25 >			
		1.627.59		1.490,22		137,37		1.627,59		1.104,74				1	med 2 =	1.485.06		358,75
	OME=		q (6,12) =		DMS =	136,24	QME=		q (6,12) =		DMS =	136.24			q (6,12) =	,	DMS =	136,24
	QME =		atisticament			130,24	QWE-		atisticament			130,24	QME =		tatisticament	7	-	130,24
	G		NSAT 1,25 x				(NSAT 1.25				(NSAT 1.25			<u> </u>
TEOR			med 2 =			14,97		1.126,31		1.490,22	1	363,92			med 2 =		1	21,57
1,25			q (6,12) =		DMS =	136,24			q (6,12) =		DMS =	136,24	QME=		q (6,12) =		DMS =	136,24
			tisticamente						atisticament						tisticamente			
		CM PIN N	SAT 1,25 x	GM PIN NS	AT 1,25				SAT 1,25 x					CM EUC 1	NSAT 1,25 x	CM PIN N	SAT 1,25	
	med 1 =	1.490,22	med 2 =	1.104,74	DIF=	385,49		1.485,06		1.141,28		343,79	med 1 =	1.485,06	med 2 =	1.490,22	DIF =	5,16
	QME=	2.468,26	q (6,12) =	4,75	DMS =	136,24	QME=	2.468,26	q (6,12) =	4,75	DMS =	136,24	QME=	2.468,26	q (6,12) =	4,75	DMS =	136,24
		Est	atisticament	te diferente	s			Est	atisticament	e diferente	s			Esta	tisticamente	equivalen	tes	
		CM EUC N	ISAT 1,25 x	GM PIN NS	SAT 1,25			GM EUC N	ISAT 1,25 x	CM PIN N	SAT 1,25			GM EUC 1	NSAT 1,25 x	GM PIN N	SAT 1,25	
	med 1 =	1.485,06	med 2 =	1.104,74	DIF=	380,33	med 1 =	1.141,28	med 2 =	1.490,22	DIF =	348,95	med 1 =	1.141,28	med 2 =	1.104,74	DIF =	36,54
	QME=	2.468,26	q (6,12) =	4,75	DMS =	136,24	QME=	2.468,26	q (6,12) =	4,75	DMS =	136,24	QME=	2.468,26	q (6,12) =	4,75	DMS =	136,24
		Est	atisticament	te diferente	S			Est	atisticament	e diferente	s			Esta	tisticamente	equivalen	tes	
			SAT 1,50 x						NSAT 1,50 x						NSAT 1,50 >			
	med 1 =		med 2 =	1.067,27		432,52		1.499,80		1.477,10	_	22,70	med 1 =		med 2 =	1.147,78		352,02
	QME=		q (6,12) =		DMS =	149,95	QME=		q (6,12) =		DMS =	149,95	QME=		q (6,12) =		DMS =	149,95
			atisticament						tisticamente						tatisticamen			
			NSAT 1,50						NSAT 1,50						NSAT 1,50 >			
	med 1 =			1.455,05		44,74		1.499,80		1.089,33		410,47	med 1 =	_	med 2 =	1.477,10		409,82
	QME=		q (6,12) =		DMS =	149,95	QME=		q (6,12) =		DMS =	149,95	QME=		q (6,12) =		DMS =	149,95
			tisticamente NSAT 1.50 x						NSAT 1,50						NSAT 1.50			
TEOR	med 1 =		,,,,,,	1.147,78		80,51	med 1 =		med 2 =	1.455,05		1			7	1.089,33	1	22,05
1,50	OME=	2.090.70		4,75		149,95	QME=				DMS =	387,78	med 1 = QME=	i e	med 2 =		DMS =	149,95
	QME=		q (6,12) = tisticamente			149,93	QIVIE =		q (6,12) = atisticament			149,95	QME=		q (6,12) = tisticamente			149,95
			SAT 1,50 x						SAT 1,50 x						NSAT 1,50 x			
	med 1 =	1.455,05		1.089,33		365,73	med 1 =	1.477,10		1.147,78		329,31	med 1 =		med 2 =	1.455,05		22,04
	QME=		q (6,12) =		DMS =	149,95	QME=		q (6,12) =		DMS =	149,95	QME=		q (6,12) =	_	DMS =	149,95
	AME -		atisticament			177,73	Amr-		atisticament			177,73	QmE-		tisticamente			177,73
			SAT 1,50 x						SAT 1,50 x						NSAT 1,50 x			
	med 1 =	1.477,10		1.089,33		387,77	med 1 =	1.147,78		1.455,05		307,27	med 1 =		med 2 =	1.089,33		58,45
	QME=		q (6,12) =	4,75		149,95	QME=		q (6,12) =	4,75		149,95	QME=		q (6,12) =	_	DMS =	149,95
			atisticament			.,			atisticament			,,,,,			tisticamente			, ,,,,
		Lot		unoiditte				LOI		_ andiente	-			Lota	, cicumonte	-quivalen		

	CN	M COMP N	SAT 1,75 x 0	ЭМ СОМР	NSAT 1,7	5	C	M COMP	NSAT 1,75 x	CM EUC ì	NSAT 1,75	5	C	M COMP	NSAT 1,75 x	GM EUC 1	NSAT 1,75	5
	med 1 =	1.492,29	med 2 =	1.090,54	DIF =	401,75	med 1 =	1.492,29	med 2 =	1.470,27	DIF=	22,03	med 1 =	1.492,29	med 2 =	1.093,06	DIF =	399,23
	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME =	685,04	q (6,12) =	4,75	DMS =	71,77
		Est	atisticament	e diferente	s			Esta	tisticamente	equivalent	es			Est	atisticament	e diferente	s	
	(CM COMP	NSAT 1,75 x	CM PIN N	ISAT 1,75		C	CM COMP	NSAT 1,75	x GM PIN N	ISAT 1,75		C	M COMP	NSAT 1,75 x	CM EUC 1	NSAT 1,75	5
	med 1 =	1.492,29	med 2 =	1.447,03	DIF =	45,26	med 1 =	1.492,29	med 2 =	1.096,21	DIF=	396,08	med 1 =	1.090,54	med 2 =	1.470,27	DIF =	379,73
	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77
		Estat	tisticamente	equivalent	es			Est	atisticament	te diferente	s			Est	atisticament	e diferente	s	
	C	M COMP	NSAT 1,75 x	GM EUC N	ISAT 1,75		(M COMP	NSAT 1,75	CM PIN N	ISAT 1,75		(M COMP	NSAT 1,75 x	GM PIN N	ISAT 1,75	
TEOR	med 1 =	1.090,54	med 2 =	1.093,06	DIF =	2,52	med 1 =	1.090,54	med 2 =	1.447,03	DIF=	356,49	med 1 =	1.090,54	med 2 =	1.096,21	DIF =	5,67
1,75	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77
		Estat	tisticamente	equivalent	es			Est	atisticament	te diferente	S			Esta	tisticamente	equivalent	es	
			SAT 1,75 x 0						SAT 1,75 x 0						ISAT 1,75 x			
	med 1 =	1.447,03	med 2 =	1.096,21	DIF =	350,82	med 1 =	1.470,27	med 2 =	1.093,06	DIF=	377,20	med 1 =	1.470,27	med 2 =	1.447,03	DIF =	23,24
	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77
			atisticament						atisticament						tisticamente	•		
			ISAT 1,75 x						ISAT 1,75 x						ISAT 1,75 x			
	med 1 =	1.470,27		1.096,21		374,06	med 1 =	1.093,06		1.447,03		353,97	med 1 =	1.093,06		1.096,21		3,15
	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77	QME=	685,04	q (6,12) =	4,75	DMS =	71,77
			atisticament						atisticament						tisticamente	•		
			SAT 2,00 x 0						NSAT 2,00 x						NSAT 2,00 x			
	med 1 =	1.438,66		1.086,59		352,07	med 1 =	1.438,66		1.446,60	_	7,94	med 1 =	1.438,66		1.091,52	_	347,14
	QME=		q (6,12) =		DMS =	88,71	QME=		q (6,12) =		DMS =	88,71	QME=		q (6,12) =	,,,,	DMS =	88,71
			atisticament						tisticamente	•					atisticament			
			NSAT 2,00 x						NSAT 2,00 x						NSAT 2,00 x			
	med 1 =	1.438,66		1.437,96		0,70	med 1 =	1.492,29		1.096,21		396,08	med 1 =	1.086,59		1.446,60	_	360,01
	QME=		q (6,12) =		DMS =	88,71	QME=		q (6,12) =	7	DMS =	88,71	QME=		q (6,12) =		DMS =	88,71
			tisticamente	•					atisticament						atisticament			
			NSAT 2,00 x			4.93		1.086,59	NSAT 2,00 2	1.437.96		351.37			NSAT 2,00 >			
TEOR 2,00	med 1 = OME =	1.086,59		1.091,52	DIF =	4,93 88,71	med 1 = OME =	,		,	DIF = DMS =	88.71	med 1 = OME =	1.086,59	med 2 =	1.089,13	DIF =	2,54 88.71
2,00	QME=		q (6,12) =	,	-	88,/1	QME=		q (6,12) =	,,,,	-	88,/1	QME=		q (6,12) =	,,,,		88,71
			tisticamente	•					atisticament						tisticamente	•		
	med 1 =	1.447.03	SAT 2,00 x 0	1.089.13		357.90	med 1 =		SAT 2,00 x 0	1.091,52		355,08			ISAT 2,00 x	1.437,96		8,64
	OME =	,	q (6,12) =		DMS =	88,71	OME=	1.446,60	q (6,12) =		DMS =	88,71	med 1 = OME =	1.446,60	q (6,12) =		DMS =	88,71
	QIVIE -		atisticament			00,/1	QWE-		atisticament			00,/1	QME -					00,71
			ISAT 2,00 x						SAT 2,00 x						ISAT 2,00 x			
	med 1 =	1.446.60		1.089.13		357.47	med 1 =	1.091,52		1.437,96		346,44	med 1 =	1.093.06		1.089.13		3,93
	OME=	,	q (6,12) =	,	DMS =	88,71	QME=		q (6,12) =	<u> </u>	DMS =	88,71	OME=		q (6,12) =	,	DMS =	88,71
	QIVIL -		atisticament	_		00,71	ZWIE-		atisticament			00,/1	QIVIL -		tisticamente			00,71
		EST	acisticaniciit	c difficille	o			EST	austicaniciii	e difficille	0			Lsta	is in amount	cquivaient	C.S	

QUADRO XVII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À TRAÇÃO NA FLEXÃO (COMPARAÇÃO DO MESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA E AGLOMERANTE) AOS 28 DIAS

								Idə	de (28 dias)									
	CM CO	MP NS	AT 1,00 x G	M CON	IP NSAT	1,00	CM CO	OMP N	SAT 1,00 x 0	CM EU	C NSAT 1	,00	CM (COMP N	SAT 1,00 x C	M EUG	NSAT 1,	,00
	med 1 =	4,00	med 2 =	3,83	DIF =	0,17	med 1 =	4,00	med 2 =	3,81	DIF =	0,19	med 1 =	4,00	med 2 =	4,02	DIF =	0,02
	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69
		Estati	sticamente e	quival	entes			Estati	sticamente e	quivale	entes			Estatis	ticamente e	quivale	ntes	
	CM C	OMP N	SAT 1,00 x	CM PI	NSAT 1	,00	CM C	OMP N	ISAT 1,00 x	GM PIN	NSAT 1	,00	GM (COMP N	SAT 1,00 x C	M EUG	NSAT 1,	,00
	med 1 =	4,00	med 2 =	4,37	DIF =	0,37	med 1 =	4,00	med 2 =	3,58	DIF =	0,42	med 1 =	3,83	med 2 =	3,81	DIF =	0,02
	QME =	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69
		Estati	sticamente e	quival	entes			Estati	sticamente e	quivale	entes			Estatis	ticamente e	quivale	ntes	
	GM C	OMP N	SAT 1,00 x	GM EU	CNSAT 1	,00	GM C	OMP N	ISAT 1,00 x	CM PIN	NSAT 1	,00	GM	COMP N	SAT 1,00 x 0	GM PIN	NSAT 1,	00
TEOR	med 1 =	3,83	med 2 =	4,02	DIF =	0,19	med 1 =	3,83	med 2 =	4,37	DIF =	0,54	med 1 =	3,83	med 2 =	3,58	DIF =	0,25
1,00	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69
			sticamente e	quival	entes				sticamente e	quivale	entes			Estatis	ticamente e	quivale	ntes	
	CM	PIN NS	AT 1,00 x G	M PIN	NSAT 1,0	0	CM E	UC NS	AT 1,00 x G	M EUC	NSAT 1,0	00	CM	EUC NS	AT 1,00 x C	M PIN	NSAT 1,0	0
	med 1 =	4,37	med 2 =	3,58	DIF =	0,79	med 1 =	3,81	med 2 =	4,02	DIF =	0,21	QME=	0,06	q (6,12) =	4,75	DMS =	0,69
	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	0,06	q (6,12) =	4,75	DMS =	0,69	QME=	145,60	q (6,12) =	4,75	DMS =	33,09
			tisticamente				,		sticamente e				,	Estatis	ticamente e			
	CM I	EUC NS	SAT 1,00 x C	M PIN	NSAT 1,0	0	GM I	EUC NS	SAT 1,00 x C	M PIN	NSAT 1,0	00	GM	EUC NS	AT 1,00 x G	M PIN	NSAT 1,0	0
	med 1 =	3,81	med 2 =	3,58	DIF =	0,23	med 1 =	4,02	med 2 =	4,37	DIF =	0,35	med 1 =	4,02	med 2 =	3,58	DIF =	0,44
	QME=	0,06	q (6,12) =	_	DMS =	0,69	QME=	0,06	q (6,12) =	-	DMS =	0,69	QME=	_	q (6,12) =	4,75	DMS =	0,69
			sticamente e					_	sticamente e	_					ticamente e	-		
	CM CO		AT 1,25 x G			1,25	CM CO		SAT 1,25 x 0			,25	CM (SAT 1,25 x C			,25
	med 1 =	5,13	med 2 =	3,54	DIF =	1,59	med 1 =	5,13	med 2 =		DIF=	1,61	med 1 =	5.13	med 2 =	3,43	DIF =	1,70
	QME=	0,25	q (6,12) =	_	DMS =	1,37	QME=	0,25	q (6,12) =	_	DMS =	1,37	QME=		q (6,12) =	4,75	DMS =	1,37
	Ç		tisticamente	7		-,	Ç		tisticamente			- 1,6.7	Ç.:	_	isticamente			-,
	CM C		SAT 1,25 x			25	CM C		ISAT 1.25 x			.25	GM (SAT 1,25 x C			.25
	med 1 =	_	med 2 =		DIF =	2,42	med 1 =	5,13	med 2 =	_	DIF =	2.29	med 1 =		med 2 =		DIF =	0,02
	QME=	.,	q (6,12) =	_	DMS =	1,37	QME=	0,25	q (6,12) =	_	DMS =	1,37	QME=	- 77	q (6,12) =	-	DMS =	1,37
	QME		tisticamente			1,07	Q.II.E		tisticamente			1,57	Q.IIL		ticamente e	_		1,57
	GM C		SAT 1,25 x 0			.25	GM C		ISAT 1,25 x 0			.25	GM		SAT 1,25 x 0			25
TEOR	med 1 =	3,54	med 2 =		DIF =	0,11	med 1 =	3,54	med 2 =		DIF =	0,82	med 1 =		med 2 =	2,84	DIF =	0,70
1,25	QME =	—	q (6,12) =	_	DMS =	1,37	QME=	—	q (6,12) =	-	DMS =	1,37	QME=	_	q (6,12) =	-	DMS =	1,37
, ,	QME		sticamente e			1,07	Q.III		sticamente e			1,57	Q.VIL		ticamente e			1,07
	CM		AT 1,25 x G			5	CM F		AT 1,25 x G			25	CM		AT 1,25 x C	_		5
	med 1 =	2,72	med 2 =	2,84	DIF =	0,12	med 1 =	3,52	med 2 =		DIF =	0,09	med 1 =	3,52		2,72	DIF =	0,81
	QME=	—	q (6,12) =	-	DMS =	1,37	QME=	0,25	q (6,12) =	-7.	DMS =	1,37	QME=	_	q (6,12) =	-	DMS =	1,37
	Q		sticamente e			-,	Ç		sticamente e			- 1,0 /	Ç		ticamente e			-,
	CM I		SAT 1,25 x C			5	GM I		SAT 1,25 x C			25	GM		AT 1,25 x G			5
	med 1 =	3,52	med 2 =	2,84	DIF =	0,68	med 1 =	3,43	med 2 =	2,72	DIF =	0,72	med 1 =	3,43			DIF =	0,59
	QME=	0,25	q (6,12) =	_	DII -	_	med 1 –	, 0, 10									- L	_
	QII.	_			DMS =	1.37	OME=	0.25		-		-	OME=	_		2,84	DMS =	1 37
—		Estate			DMS =	1,37	QME=	0,25	q (6,12) =	4,75	DMS =	1,37	QME=	0,25	q (6,12) =	4,75	DMS =	1,37
	CM CO		sticamente e	quival	entes			Estati	q (6,12) =	4,75 quivale	DMS =	1,37		0,25 Estatis	q (6,12) =	4,75 quivale	ntes	
		MP NS	sticamente e AT 1,50 x G	quivak M CON	entes IP NSAT	1,50	CM CO	Estati: OMP N	q (6,12) = sticamente e SAT 1,50 x 0	4,75 quivale CM EU	DMS = entes C NSAT 1	,50	СМ	0,25 Estatis	q (6,12) = sticamente e SAT 1,50 x 0	4,75 quivale	ntes CNSAT 1,	.50
	med 1 =	MP NS 6,39	AT 1,50 x G med 2 =	quival M CON 3,19	entes IP NSAT DIF =	1,50 3,20	CM CC	Estati: OMP N 6,39	q (6,12) = sticamente e SAT 1,50 x 0 med 2 =	4,75 quivale CM EU 2,95	DMS = entes C NSAT 1 DIF =	,50 3,44	CM 0	0,25 Estatis COMP NS 6,39	q (6,12) = sticamente e SAT 1,50 x 0 med 2 =	4,75 quivale 3M EUC 3,36	ntes C NSAT 1, DIF =	50 3,03
		MP NS 6,39 0,09	AT 1,50 x G med 2 = q (6,12) =	M CON 3,19 4,75	P NSAT DIF = DMS =	1,50	CM CO	Estati: OMP N 6,39 0,09	q (6,12) = sticamente e SAT 1,50 x 0 med 2 = q (6,12) =	4,75 equivale CM EU 2,95 4,75	DMS = entes C NSAT 1 DIF = DMS =	,50	СМ	0,25 Estatis COMP NS 6,39 0,09	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) =	4,75 quivale GM EUC 3,36 4,75	DIF =	.50
	med 1 = QME =	MP NS 6,39 0,09 Esta	AT 1,50 x G med 2 = q (6,12) = tisticamente	M CON 3,19 4,75	DIF = DMS =	1,50 3,20 0,80	CM CC med 1 = QME=	Estati: OMP N 6,39 0,09 Esta	q (6,12) = sticamente e SAT 1,50 x (med 2 = q (6,12) = tisticamente	4,75 equivale CM EU 2,95 4,75 diferer	DMS = entes C NSAT 1 DIF = DMS =	1,37 ,50 3,44 0,80	CM (med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estat	q (6,12) = sticamente e SAT 1,50 x 0 med 2 = q (6,12) = sticamente	4,75 quivale GM EUC 3,36 4,75 diferen	DIF = DMS =	3,03 0,80
	med 1 = QME = CM C	MP NS 6,39 0,09 Esta OMP N	AT 1,50 x G med 2 = q (6,12) = tisticamente	M CON 3,19 4,75 diferen	entes MP NSAT DIF = DMS = otes N NSAT 1.	1,50 3,20 0,80	CM CC med 1 = QME = CM CC	Estation OMP N 6,39 0,09 Esta	q (6,12) = sticamente e SAT 1,50 x 0 med 2 = q (6,12) = tisticamente ISAT 1,50 x 0	4,75 equivale CM EU 2,95 4,75 diferer	DMS = entes C NSAT 1 DIF = DMS = ntes	1,37 ,50 3,44 0,80	CM (med 1 = QME = GM (0,25 Es tatis COMP NS 6,39 0,09 Es tat	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) = disticamente SAT 1,50 x C	4,75 quivale GM EUO 3,36 4,75 diferen	DIF = DMS = tes	3,03 0,80
	med 1 = QME = CM C med 1 =	MP NS 6,39 0,09 Esta OMP N	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 =	M COM 3,19 4,75 diferer CM PIN 3,69	ontes MP NSAT DIF = DMS = ntes N NSAT 1.	1,50 3,20 0,80 50 2,70	CM CC med 1 = QME = CM CC med 1 =	Estation OMP N 6,39 0,09 Esta OMP N 6,39	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) = tisticamente ISAT 1,50 x C med 2 =	4,75 quivak CM EU 2,95 4,75 diferer GM PIN 2,97	DMS = entes C NSAT 1 DIF = DMS = ntes N NSAT 1	1,37 ,50 3,44 0,80 ,50 3,42	CM 0 med 1 = QME = GM 0 med 1 =	0,25 Es tatis COMP NS 6,39 0,09 Es tat COMP NS	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) = sticisticamente SAT 1,50 x C med 2 =	4,75 quivale GM EUG 3,36 4,75 diferen CM EUG 2,95	DIF = DMS = tes DIF = DIF =	50 3,03 0,80 50 0,25
	med 1 = QME = CM C	6,39 0,09 Esta OMP N 6,39 0,09	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 = q (6,12) =	diferer CM PIN 3,69 4,75	ontes MP NSAT DIF = DMS = ates N NSAT 1, DIF = DMS =	1,50 3,20 0,80	CM CC med 1 = QME = CM CC	Estation OMP N 6,39 0,09 Esta OMP N 6,39 0,09	q (6,12) = sticamente e SAT 1,50 x 0 med 2 = q (6,12) = tisticamente ISAT 1,50 x 0 med 2 = q (6,12) =	4,75 equivaled 2,95 4,75 different GM PIN 2,97 4,75	DMS = entes C NSAT 1 DIF = DMS = ntes N NSAT 1 DIF = DMS =	1,37 ,50 3,44 0,80	CM (med 1 = QME = GM (0,25 Estatis COMP NS 6,39 0,09 Estat COMP NS 3,19 0,09	q (6,12) = cticamente e SAT 1,50 x C med 2 = q (6,12) = cticamente e SAT 1,50 x C med 2 = q (6,12) = q (6,12) = q (6,12) = cticamente e sAT 1,50 x C med 2 = q (6,12) = cticamente e sAT 1,50 x C	4,75 quivale 3,36 4,75 diferen CM EU0 2,95 4,75	DIF = DMS = CNSAT 1, DIF = DMS = tes CNSAT 1, DIF = DMS =	50 3,03 0,80
	med 1 = QME = CM C med 1 = QME =	6,39 0,09 Esta OMP N 6,39 0,09	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 = q (6,12) = tisticamente	equivalent M COM 3,19 4,75 different CM PIN 3,69 4,75 different di	entes IP NSAT DIF = DMS = ates N NSAT 1. DIF = DMS = ates	1,50 3,20 0,80 50 2,70 0,80	CM CC med 1 = QME = CM CC med 1 = QME =	Estatis OMP N 6,39 0,09 Esta OMP N 6,39 0,09	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) = tisticamente SAT 1,50 x C med 2 = q (6,12) = tisticamente SAT 1,50 x C	4,75 equivaled CM EUC 2,95 4,75 diferer GM PIN 2,97 4,75 diferer	DMS = entes C NSAT 1 DIF = DMS = ttes N NSAT 1 DIF = DMS = ttes	,50 3,44 0,80 ,50 3,42 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estati COMP NS 3,19 0,09 Estatis	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) = sticamente SAT 1,50 x C med 2 = q (6,12) = sticamente q (6,12) = sticamente e	4,75 quivale GM EU0 3,36 4,75 diferen CM EU0 2,95 4,75 quivale	DIF = DMS = DIF = DMS =	50 3,03 0,80 50 0,25 0,80
TEAD	med 1 = QME = CM C med 1 = QME =	6,39 0,09 Esta OMP N 6,39 0,09 Esta	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 = q (6,12) = tisticamente SAT 1,50 x G	quivalent M COM 3,19 4,75 different CM PIN 3,69 4,75 different GM EU	entes IP NSAT DIF = DMS = ates NNSAT 1, DIF = DMS = ates CNSAT 1	1,50 3,20 0,80 50 2,70 0,80	CM CC med 1 = QME = CM CC med 1 = QME = GM CC	Estatis OMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 6,39	q (6,12) = sticamente e SAT 1,50 x 0 med 2 = q (6,12) = tisticamente SAT 1,50 x 0 med 2 = q (6,12) = tisticamente SAT 1,50 x 0	4,75 equivale CM EU 2,95 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN	DMS = entes C NSAT 1 DIF = DMS = ttes N NSAT 1 DIF = DMS = ttes N NSAT 1	,50 3,44 0,80 ,50 3,42 0,80	CM (med 1 = QME = GM (med 1 = QME = GM)	0,25 Estatis COMP NS 6,39 0,09 Estati COMP NS 3,19 0,09 Estatis COMP NS	q (6,12) = sticamente e SAT 1,50 x C med 2 = q (6,12) = sticamente SAT 1,50 x C med 2 = q (6,12) = sticamente e SAT 1,50 x C	4,75 quivale 3,36 4,75 diferen CM EUC 2,95 4,75 quivale GM PIN	DIF = DMS = tes CNSAT 1, DIF = DMS = tes CNSAT 1, DIF = DMS = tes NSAT 1,	50 3,03 0,80 50 0,25 0,80
TEOR	med 1 = QME = CM C med 1 = QME = GM C0 med 1 =	6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 = q (6,12) = tisticamente SAT 1,50 x med 2 = q (6,12) =	diferer GM EU 3,36 3,19 4,75 diferer GM PIN 3,69 4,75 differer GM EU 3,36	entes MP NSAT DIF = DMS = attes N NSAT 1. DIF = DMS = attes C NSAT 1 DIF =	1,50 3,20 0,80 50 2,70 0,80 ,50 0,16	CM CC med 1 = QME = CM CC med 1 = QME = GM CC med 1 =	Estatis DMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19	$\begin{array}{l} q.(6,12) = \\ \text{sticamente e} \\ \text{SAT 1,50 x G} \\ \text{med } 2 = \\ q.(6,12) = \\ \text{tisticamente} \\ \text{ISAT 1,50 x G} \\ \text{med } 2 = \\ q.(6,12) = \\ \text{tisticamente} \\ \text{SAT 1,50 x G} \\ \text{med } 2 = \\ \text{Mod 1} \\ \text{Mod 2} = \\ \text{Mod 2} \\ \text{Mod 2} = \\ \text{Mod 2} \\ \text{Mod 2} = \\ \text{Mod 2} \\ \text{Mod 3} \\ \text{Mod 2} \\ \text{Mod 3} \\ \text{Mod 2} \\ \text{Mod 3} \\ Mod $	4,75 quivale CM EU 2,95 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN 3,69	DMS = entes C NSAT 1 DIF = DMS = ntes N NSAT 1 DIF = DMS = tes N NSAT 1 DIF =	,50 3,44 0,80 3,42 0,80 50 3,42 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = GM 0 med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estat COMP NS 3,19 0,09 Estatis COMP NS	$\begin{array}{l} q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 x G} \\ \text{med 2} = \\ q (6,12) = \\ \text{isticamente} \\ \text{SAT 1,50 x G} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 x G} \\ \text{med 2} = \\ \end{array}$	4,75 quivale GM EUG 3,36 4,75 diferen CM EUG 2,95 4,75 quivale GM PIN 2,97	DIF = DMS = tes C NSAT 1, DIF = DMS = tes C NSAT 1, DIF = DMS = tes I NSAT 1, DIF = DIF = tes I NSAT 1,	50 3,03 0,80 50 0,25 0,80 50 0,22
TEOR 1,50	med 1 = QME = CM C med 1 = QME =	6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 = q (6,12) = tisticamente SAT 1,50 x med 2 = q (6,12) =	3,19	entes MP NSAT DIF = DMS = ttes N NSAT 1, DIF = DMS = ttes C NSAT 1 DIF = DMS =	1,50 3,20 0,80 50 2,70 0,80	CM CC med 1 = QME = CM CC med 1 = QME = GM CC	Estation DMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09	$\begin{array}{l} q (6,12) = \\ \text{sticamente e} \\ \text{SAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{ISAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{ISAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \end{array}$	4,75 quivale CM EU 2,95 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN 3,69 4,75	DMS = entes C NSAT 1 DIF = DMS = ntes N NSAT 1 DIF = DMS =	,50 3,44 0,80 ,50 3,42 0,80	CM (med 1 = QME = GM (med 1 = QME = GM)	0,25 Estatis COMP NS 6,39 0,09 Estat COMP NS 3,19 0,09 Estatis COMP NS 3,19 0,09 0,09	$\begin{array}{l} q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 x C} \\ \text{med 2} = \\ q (6,12) = \\ \text{isticamente} \\ \text{SAT 1,50 x C} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 x C} \\ \text{med 2} = \\ q (6,12) = \\ \end{array}$	4,75 quivale GM EUG 3,36 4,75 diferen CM EUG 2,95 4,75 quivale GM PIN 2,97 4,75	DIF = DMS = tes DMS = DMS = tes DMS =	50 3,03 0,80 50 0,25 0,80
	med 1 = QME	MP NS 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09 Estatis	sticamente e AT 1,50 x G med 2 = q (6,12) = $tisticamente$ (SAT 1,50 x med 2 = q (6,12) = $tisticamente$ (SAT 1,50 x med 2 = q (6,12) = $tisticamente$ 2 = q (6,12) = $tisticamente$ 8 sticamente e sticamente e	diferer GM EU 3,36 4,75 diferer 3,69 4,75 diferer 4,75 diferer cut 4,75 cut 4,75 cut 4,75	entes MP NSAT DIF = DMS = M NSAT 1, DIF = DMS = ates C NSAT 1 DIF = DMS = ates	1,50 3,20 0,80 50 2,70 0,80 ,50 0,16 0,80	CM CC med 1 = QME = CM CC med 1 = QME = GM CC med 1 = QME = QME = QME = QME = QME = CM CC med 1 = QME = QME = CM CC med 1 = QME = QME = QME = QME	Estation OMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta 0,09 Esta OMP N 3,19 0,09 Estation	$\begin{array}{l} q (6,12) = \\ \text{sticamente e} \\ \text{SAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{ISAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{ISAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \text{sticamente} \\ \text{esticamente} \\ \text{esticamente} \\ \end{array}$	4,75 quivale CM EU 2,95 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN 3,69 4,75 quivale	DMS = entes C NSAT I DIF = DMS = tes NNSAT I DIF = DMS = tes NNSAT I DIF = DMS = tes NNSAT I	,50 3,44 0,80 ,50 3,42 0,80 ,50 0,49 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = GM and the control of the	O,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis COMP NS 3,19 0,09 Estatis	$\begin{array}{l} q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 x C} \\ \text{med 2} = \\ q (6,12) = \\ \text{isticamente} \\ \text{SAT 1,50 x C} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 x C} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente} \\ \text{e} \\ \text{ticamente} \\ \text{e} \end{array}$	4,75 quivale GM EUG 3,36 4,75 diferen CM EUG 2,95 4,75 quivale GM PIN 2,97 4,75 quivale	DIF = DMS = tes C NSAT 1, DIF = DMS = tes C NSAT 1, DIF = DMS = tes DIF = DMS = tes DIF = tes	50 3,03 0,80 50 0,25 0,80 50 0,22 0,80
	med 1 = QME = CM C med 1 = QME = GM C med 1 = QME = CM	MP NS 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09 Estatis	sticamente e AT 1,50 x G med 2 = $q (6,12) =$ tisticamente (SAT 1,50 x med 2 = $q (6,12) =$ tisticamente SAT 1,50 x med 2 = $q (6,12) =$ tisticamente AT 1,50 x G med 2 = $q (6,12) =$ sticamente e AT 1,50 x G	quivale M CON 3,19 4,75 diferer CM PIN 3,69 4,75 diferer GM EU 3,36 4,75 equivale M PIN	ontes MP NSAT DIF = DMS = M NSAT 1. DIF = DMS = ONE DIF = DMS = ONE C NSAT 1 DIF = DMS = NSAT 1.5	1,50 3,20 0,80 50 2,70 0,80 ,50 0,16 0,80	CM CC med 1 = QME = CM CC med 1 = QME = QME = QME = GM CC med 1 = QME =	Estation DMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09 Estatic EUC NS	$\begin{array}{l} q (6,12) = \\ \text{sticamente e} \\ \text{SAT 1,50 x G} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{ISAT 1,50 x} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{SAT 1,50 x G} \\ \text{med } 2 = \\ q (6,12) = \\ \text{tisticamente} \\ \text{SAT 1,50 x G} \\ \text{med } 2 = \\ \text{d } (6,12) = \\ \text{sticamente} \\ \text{e} \\ \text{AT 1,50 x G} \\ \end{array}$	4,75 equivale CM EU 2,95 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN 3,69 4,75 equivale M EUC	DMS = Pentes C NSAT I DIF = DMS = N NSAT I DIF = DMS = DMS = DMS = DMS = N NSAT I DIF = DMS = N NSAT I	,50 3,44 0,80 ,50 3,42 0,80 ,50 0,49 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = QME = CM GM GM THE CM THE	0,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis COMP N 3,19 0,09 Estatis COMP NS 4,19 0,09 Estatis EUC NS	$\begin{array}{l} q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 xC} \\ \text{med 2} = \\ q (6,12) = \\ \text{isticamente} \\ \text{SAT 1,50 xC} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente} \\ \text{e} \\ \text{SAT 1,50 xC} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente} \\ \text{e} \\ \text{AT 1,50 xC} \\ \end{array}$	4,75 quivale 3,36 4,75 diferen CM EUC 2,95 4,75 quivale GM PIN 2,97 4,75 quivale M PIN	DIF = DMS = tes CNSAT 1, DIF = DMS = tes CNSAT 1, DIF = DMS = tes NSAT 1, DIF = DMS = NSAT 1, DIF =	50 3,03 0,80 50 0,25 0,80 50 0,22 0,80
	med 1 = QME	MP NS 6,39 0,09 Esta OMP N 6,39 0,09 Esta DMP N 3,19 0,09 Estatis PIN NS 3,69	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x med 2 = q (6,12) = tisticamente SAT 1,50 x G med 2 = q (6,12) = sticamente e AT 1,50 x G med 2 =	diferer GM EU 3,36 4,75 diferer GM EU 3,36 4,75 diferer GM EU 3,36 4,75 equivale M PIN 2,97	entes MP NSAT DIF = DMS = tes N NSAT 1. DIF = DMS = tes C NSAT 1 DIF = DMS = NSAT 1.5 DIF =	1,50 3,20 0,80 50 2,70 0,80 0,16 0,80 0	CM CC med 1 = QME = CM CO med 1 = QME = QME = GM CO med 1 = QME =	Estation DMP N 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09 Estatic EUC NS 2,95	$\begin{array}{l} q~(6,12) =\\ \text{sticamente e}\\ \text{SAT 1,50 x} (x)\\ \text{med } 2 =\\ q~(6,12) =\\ \text{tisticamente}\\ \text{ISAT 1,50 x} (x)\\ \text{med } 2 =\\ q~(6,12) =\\ \text{tisticamente}\\ \text{SAT 1,50 x} (x)\\ \text{med } 2 =\\ q~(6,12) =\\ \text{sticamente}\\ \text{stat 1,50 x} (x)\\ \text{med } 2 =\\ \text{d } (6,12) =\\ d$	4,75 diferer 2,97 4,75 diferer 2,97 4,75 diferer 2,97 4,75 diferer 3,69 4,75 quivale 4,75 3,69 4,75 3,36	DMS = entes C NSAT 1 DIF = DMS = tes N NSAT 1 DIF = DMS = tes N NSAT 1 DIF = DMS = tes N NSAT 1 DIF = DMS =	,50 3,44 0,80 50 3,42 0,80 0,80 0,49 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = CM med 1 = QME = CM med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis COMP N 3,19 0,09 Estatis EUC NS	$\begin{array}{l} q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 xC} \\ \text{med 2} = \\ q (6,12) = \\ \text{isticamente} \\ \text{SAT 1,50 xC} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente e} \\ \text{SAT 1,50 xC} \\ \text{med 2} = \\ q (6,12) = \\ \text{ticamente e} \\ \text{AT 1,50 xC} \\ \text{med 2} = \\ \text{d 1,50 xC} \\ \text{med 2} = \\ \text{d 2,50 xC} \\ \text{med 2} = \\ \text{d 3,50 xC} \\ \text{med 2} = \\ \text{d 3,50 xC} \\ \text{d 4,50 xC} \\ \text{d 6,12} = \\ \text{d 7,10 xC} \\ d 7,$	quivaled and EUC 2,95 4,75 quivaled 2,95 4,75 quivaled 2,97 4,75 quivaled M PIN 2,97 quivaled M PIN 3,69	DIF = DMS = tes CNSAT 1, DIF = DMS = tes CNSAT 1, DIF = DMS = tes NSAT 1, DIF = DMS = tes DMS =	50 3,03 0,80 50 0,25 0,80 50 0,22 0,80 0
	med 1 = QME = CM C med 1 = QME = GM C med 1 = QME = CM	MP NS 6,39 0,09 Esta OMP N 6,39 0,09 Esta OMP N 3,19 0,09 Estatis PIN NS 3,69 0,09	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente SAT 1,50 x med 2 = q (6,12) = tisticamente SAT 1,50 x G med 2 = q (6,12) = sticamente e AT 1,50 x G med 2 = q (6,12) =	M COM 3,19 4,75 differer CM PIN 3,69 4,75 differer GM EU 3,36 4,75 equivala M PIN 2,97 4,75	entes IP NSAT DIF = DMS = ates N NSAT 1, DIF = DMS =	1,50 3,20 0,80 50 2,70 0,80 ,50 0,16 0,80	CM CC med 1 = QME = CM CC med 1 = QME = QME = QME = GM CC med 1 = QME =	Estation 6,39 0,09 Esta 00MP N 6,39 0,09 Esta 00MP N 6,39 0,09 Esta 2,95 0,09	$\begin{array}{l} q (6,12) = \\ \text{sticamente e} \\ \text{SAT 1,50 x G} \\ \text{med 2} = \\ q (6,12) = \\ \text{tisticamente} \\ \text{SAT 1,50 x G} \\ \text{med 2} = \\ q (6,12) = \\ \text{tisticamente} \\ \text{SAT 1,50 x G} \\ \text{med 2} = \\ q (6,12) = \\ \text{sticamente} \\ \text{AT 1,50 x G} \\ \text{med 2} = \\ q (6,12) = \\ \text{q (6,12)} = \\ q ($	4,75 4,75 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN 3,69 4,75 quivale M EUC 3,36 4,75	DMS = entes C NSAT 1 DIF = DMS = ttes N NSAT 1 DIF = DMS = DMS = ttes DMS = ttes N NSAT 1 DIF = DMS = ttes DMS =	,50 3,44 0,80 ,50 3,42 0,80 ,50 0,49 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = QME = CM GM GM THE CM THE	0,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis COMP NS 3,19 0,09 Estatis EUC NS 2,95 0,09	$\begin{array}{l} q.(6,12) =\\ \text{cticamente e} \\ \text{SAT 1,50 x 0} \\ \text{med 2} =\\ q.(6,12) =\\ \text{isticamente} \\ \text{SAT 1,50 x 0} \\ \text{med 2} =\\ q.(6,12) =\\ \text{cticamente e} \\ \text{SAT 1,50 x 0} \\ \text{med 2} =\\ q.(6,12) =\\ \text{def (6,12)} =\\ \text{def (A)} \\ \text{end 2} =\\ q.(6,12) =\\ \text{def (A)} \\ \text{end 2} =\\ \text{def (A)} \\ \text{end 3} \\ \text{end 4} \\ end$	4,75 quivale 3,36 4,75 diferen 2,95 4,75 quivale 2,97 4,75 quivale M PIN 3,69 4,75	DIF = DMS =	50 3,03 0,80 50 0,25 0,80 50 0,22 0,80
	med 1 = QME	MP NS 6,39 0,09 Esta 6,39 0,09 Esta 0,09 Esta 0,09 Esta 3,19 0,09 Estatin 3,69 0,09 Estatin	sticamente e AT 1,50 x G med 2 = q (6,12) = t issticamente (SAT 1,60 x G med 2 = t (6,12) = t issticamente (SAT 1,50 x G med 2 = t (6,12) = t issticamente e AT 1,50 x G med 2 = t (6,12) = t issticamente e AT 1,50 x G med 2 = t (6,12) = t issticamente e SAT 1,50 x G med 2 = t (6,12) = t issticamente e SAT 1,50 x G	squivale M CON 3,19 4,75 differer CM EU 3,69 4,75 differer CM EU 2,97 4,75 differer CM EU 4,75 differer CM	entes MP NSAT DIF = DMS = ttes N NSAT I, DIF = DMS = ttes C NSAT I DIF = DMS = ttes DIF = DMS = ttes DIF = DMS = entes NSAT I,5	1,50 3,20 0,80 550 2,70 0,80 0,16 0,80 0,71 0,80	CM CO med 1 = QME = CM CO med 1 = QME = QME = QME = CM E GM CO med 1 = QME = QME =	Estation 6,39 0,09 Estation 6,39 0,09 Estation 1,19 0,09 Estation 2,95 0,09 Estation 1,009 Estat	q (6,12) = sticamente e sticamente e star 1,50 x G med 2 = q (6,12) = ttisticamente sisAT 1,50 x G med 2 = q (6,12) = ttisticamente sisAT 1,50 x G med 2 = q (6,12) = sticamente e q (6,12) = sticamente e sticament	4,75 4,75 4,75 diferer 2,97 4,75 diferer CM PIN 3,69 4,75 3,69 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75	DMS = entes C NSAT 1 DIF = DMS = ntes N NSAT 1 DIF = DMS = ntes DMS = ntes N NSAT 1 DIF = DMS = ntes	50 3,44 0,80 3,42 0,80 0,49 0,80 0,41 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = CM med 1 = QME = CM med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis COMP NS 1,19 0,09 Estatis EUC NS 2,95 0,09 Estatis	q (6,12) = sticamente e SAT 1,50 x 6 med 2 = q (6,12) = issticamente SAT 1,50 x 6 med 2 = q (6,12) = sticamente e SAT 1,50 x 6 med 2 = q (6,12) = sticamente e AT 1,50 x 6 med 2 = q (6,12) = sticamente e AT 1,50 x 6 med 2 = q (6,12) = sticamente e AT 1,50 x 6	4,75 quivale 3,36 4,75 diference XM EUC 2,95 4,75 quivale 4,75 quivale M PIN 3,69 4,75 quivale 4,75	ntes CNSAT I, DIF = DMS = tes CNSAT I, DIF = DMS = tes DMS = tes NSAT I, SIF = DMS = tes DIF = DMS = tes DIF = DMS = tes DIF = DMS = tes	50 3,03 0,80 50 0,25 0,80 50 0,22 0,80 0 0,74 0,80
	med 1 = QME = CM C med 1 = QME = GM C med 1 = QME = QME = CM Med 1 = QME = CM C med 1 = QME = QME = CM Med 1 = QME = QME = QME = CM Med 1 = QME = QM	MP NS 6,39 0,09 Esta 0,09 Csta 0,09 Esta 1,19 0,09 Estati: 3,69 0,09 Estati: 2,69 Estati: 2,60 E	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = q (6,13) = q (6,13) = q (6,13) = q	3,19 4,75 diferer 3,69 4,75 diferer GM EU 3,36 4,75 4,75 cquivala	entes IP NSAT DIF = DMS = IN NSAT I, DIF = DMS = Entes C NSAT I DIF = DMS = DIF = DMS = Entes NSAT I,5 NSAT I,5	1,50 3,20 0,80 50 2,70 0,80 0,16 0,80 0 0,71 0,80	CM CO med 1 = QME = CM CO med 1 = QME = GM CO med 1 = QME = CM E QME = CM E GM CO med 1 = QME = CM E med 1 = QME =	Estatii 6,39 0,09 Esta 6,39 0,09 Esta 0,09 Esta 2,95 0,09 Estatii ESTATION NS	q (6,12) = sticamente e star 1,50 x G med 2 = q (6,12) = tisticamente itsicamente e q (6,12) = tisticamente itsicamente e star 1,50 x G med 2 = q (6,12) = tisticamente e AT 1,50 x G med 2 = q (6,12) = sticamente e star 1,50 x G	4,75 4,75	DMS = entes C NSAT I DIF = DMS = ntes N NSAT I,	50 3,44 0,80 5,50 3,42 0,80 0,49 0,80 0,41 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = GM med 1 = QME = CM med 1 = QME = CM med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis COMP NS 3,19 0,09 Estatis EUC NS 2,95 0,09 Estatis	q (6,12) = ticamente e SAT 1,50 x 6 med 2 = q (6,12) = isticamente SAT 1,50 x 6 med 2 = q (6,12) = ticamente e SAT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6	4,75 quivale 3,36 4,75 4,75 quivale 2,95 4,75 quivale 3,69 4,75 quivale 4,75 quivale M PIN 3,69 4,75	DIF = DMS =	550 3,03 0,80 0,25 0,25 0,80 0,22 0,80 0,00 0,74 0,80
	med 1 = QME = CM C med 1 = QME = GM C med 1 = QME = CM C med 1 = QME = CM med 1 = QME = CM	MP NS 6,39 0,09 Esta 6,39 0,09 Esta 6,39 0,09 Esta 3,19 0,09 Estatic EVC NS 2,95	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = tisticamente SAT 1,50 x G med 2 = q (6,12) = tisticamente AT 1,50 x G med 2 = q (6,12) = sticamente CAT 1,50 x G med 2 = q (6,12) = sticamente CAT 1,50 x G med 2 = q (6,12) = sticamente CAT 1,50 x G med 2 =	gquivalad M COMM COMM COMM COMM COMM COMM COMM C	entes MP NSAT DIF = DMS = ates N NSAT 1. DIF = DMS = ates C NSAT 1 DIF = DMS = ates NSAT 1.5 DIF = DMS = entes NSAT 1.5 DIF =	1,50 3,20 0,80 50 2,70 0,80 0,16 0,80 0,71 0,80 0,03	CM CO med 1 = QME =	Estation MP N 6,39 0,09 Estat OMP N 6,39 0,09 Estat OMP N 3,19 0,09 Estation Estation CUC NSS 0,09 Estation Succ NSS 3,36	q (6,12) = sticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = tisticamente e AT 1,50 x G med 2 = q (6,12) = sticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = tisticamente e SAT 1,50 x G med 2 = q (6,12) = q	4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75	DMS = entes C NSAT I DIF = DMS = ntes N NSAT I DIF = DIF = N NSAT I DIF = DIF = DIF = DIF = DIF = DMS = ntes	50 3,42 0,80 3,42 0,80 0,80 0,49 0,80 0,41 0,80 0,41 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = CM med 1 = QME = QME = GM med 1 = QME =	0,25 Estatis COMP NS 6,39 0,09 Estatis COMP NS 3,19 0,09 Estatis EUC NS 2,95 0,09 Estatis EUC NS 3,36	q (6,12) = ticamente e SAT 1,50 x 0 med 2 = q (6,12) = isticamente SAT 1,50 x 0 med 2 = q (6,12) = ticamente e SAT 1,50 x 0 med 2 = q (6,12) = ticamente e AT 1,50 x 0 med 2 = q (6,12) = ticamente e AT 1,50 x 0 med 2 = q (6,12) = ticamente e AT 1,50 x 0 med 2 = q (6,12) = ticamente e AT 1,50 x 0 med 2 =	4,75 quivale 3,36 4,75 diferen EM EUC 2,95 4,75 quivale GM PIN 3,69 4,75 quivale 4,75 quivale M PIN 3,69 4,75 quivale 4,75	ntes C NSAT 1, DIF = DMS = tes C NSAT 1, DIF = DMS = ntes NSAT 1,50 DIF = DMS = ntes NSAT 1,50 DIF = DMS = ntes	50 3,03 0,80 50 0,25 0,80 0,22 0,80 0,00 0,74 0,80 0,00 0,74 0,80
	med 1 = QME = CM C med 1 = QME = GM C med 1 = QME = QME = CM Med 1 = QME = CM C med 1 = QME = QME = CM Med 1 = QME = QME = QME = CM Med 1 = QME = QM	MP NS 6,39 0,09 Esta 6,39 0,09 Esta 6,39 0,09 Esta 3,19 0,09 Estatic Estatic 2,95 0,09	sticamente e AT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = tisticamente (SAT 1,50 x G med 2 = q (6,12) = q (6,13) = q (6,13) = q (6,13) = q	3,19 4,75 differer CCM PIN 3,69 4,75 differer GSM EU 2,97 4,75 divided by the sequivalence of the sequival	entes MP NSAT DIF = DMS = attes N NSAT 1. DIF = DMS = attes C NSAT 1 DIF = DMS = bites NSAT 1,5 DIF = DMS = entes 1,50 3,20 0,80 50 2,70 0,80 0,16 0,80 0 0,71 0,80	CM CO med 1 = QME = CM CO med 1 = QME = GM CO med 1 = QME = CM E QME = CM E GM CO med 1 = QME = CM E med 1 = QME =	Estation MP N 6,39 0,09 0,09 6,39 0,09 Esta 0MP N 3,19 0,09 Estation Estation Estation 3,19 0,09 Estation Estation 3,36 0,09	q (6,12) = sticamente e star 1,50 x G med 2 = q (6,12) = tisticamente itsicamente e q (6,12) = tisticamente itsicamente e star 1,50 x G med 2 = q (6,12) = tisticamente e AT 1,50 x G med 2 = q (6,12) = sticamente e star 1,50 x G	4,75 quivale 2,95 4,75 diferer GM PIN 2,97 4,75 diferer CM PIN 3,69 4,75 quivale 4,75	DMS = entes C NSAT I DIF = DMS = tes N NSAT I DIF = DMS = tes N NSAT I DIF = DMS = entes N NSAT I, DIF = DMS = entes N NSAT I, DIF = DMS = entes N NSAT I, DIF = DMS = entes	50 3,44 0,80 5,50 3,42 0,80 0,49 0,80 0,41 0,80	CM 0 med 1 = QME = GM 0 med 1 = QME = QME = GM med 1 = QME = CM med 1 = QME = CM med 1 = QME =	0,25 Estatis G.39 0,09 Estatis 0,09 Estatis 0,09 Estatis 0,09 Estatis EUC NS 0,09 Estatis EUC NS 0,09 Estatis EUC NS 0,09 Estatis EUC NS 0,09 Estatis	q (6,12) = ticamente e SAT 1,50 x 6 med 2 = q (6,12) = isticamente SAT 1,50 x 6 med 2 = q (6,12) = ticamente e SAT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6 med 2 = q (6,12) = ticamente e AT 1,50 x 6	4.75 quivale 3.36 4.75 diferen M EUCL 2.95 4.75 quivale 3.69 4.75 quivale M PIN 3.69 4.75 quivale M PIN 2.97 4.75 quivale 4.75 quivale 4.75 quivale 4.75 quivale 4.75 quivale 4.75 quivale 4.75	ntes CNSAT I, DIF = DMS = tes CNSAT I, DIF = DMS = ntes NSAT I, DIF = DMS = ntes	550 3,03 0,80 0,25 0,25 0,80 0,22 0,80 0,00 0,74 0,80	

	CM CO	MP NS	SAT 1,75 x G	M CON	AP NSAT	1,75	CM CO	OMP N	SAT 1,75 x 0	CM EU	C NSAT 1	,75	CM (COMP N	SAT 1,75 x C	M EU	NSAT 1,	75
	med 1 =	5,86	med 2 =	3,46	DIF=	2,40	med 1 =	5,86	med 2 =	2,73	DIF=	3,12	med 1 =	5,86	med 2 =	4,36	DIF=	1,50
	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49
		Estati	sticamente e	equival	entes			Estati	sticamente e	quival	entes			Estatis	ticamente e	quivale	ntes	
	CM C	OMP N	ISAT 1,75 x	CM PI	NSAT 1	,75	CM C	OMPN	ISAT 1,75 x	GM PII	N NSAT 1	,75	GM (COMP N	SAT 1,75 x C	CM EU	CNSAT 1,	.75
	med 1 =	5,86	med 2 =	3,85	DIF=	2,00	med 1 =	5,86	med 2 =	3,37	DIF=	2,49	med 1 =	3,46	med 2 =	2,73	DIF=	0,73
	QME =	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49
		Estati	sticamente e	equival	entes			Estati	sticamente e	quival	entes			Estatis	ticamente e	quivale	ntes	
	GM C	OMP N	SAT 1,75 x	GM EU	C NSAT 1	,75	GM C	OMPN	ISAT 1,75 x	CM PI	NSAT 1	,75	GM	COMP N	SAT 1,75 x 0	GM PIN	NSAT 1,	75
TEOR	med 1 =	3,46	med 2 =	4,36	DIF=	0,90	med 1 =	3,46	med 2 =	3,85	DIF=	0,39	med 1 =	3,46	med 2 =	3,37	DIF=	0,09
1,75	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49
		Estati	sticamente e	equival	entes			Estati	sticamente e	quival	entes			Estatis	sticamente e	quivale	ntes	
	CM	PIN NS	AT 1,75 x G	M PIN	NSAT 1,7	5	CM E	UC NS	AT 1,75 x G	M EUC	NSAT 1,	75	CM	I EUC NS	AT 1,75 x C	M PIN	NSAT 1,7:	5
	med 1 =	3,85	med 2 =	3,37	DIF =	0,48	med 1 =	2,73	med 2 =	4,36	DIF =	1,62	med 1 =	2,73	med 2 =	3,85	DIF =	1,12
	QME =	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49
		Estati	sticamente e	equival	entes			Estati	sticamente e	quival	entes			Estatis	ticamente e	quivale	ntes	
	CM I	EUC N	SAT 1,75 x C	M PIN	NSAT 1,7	5	GM I	EUC NS	SAT 1,75 x C	M PIN	NSAT 1,7	75	GM	I EUC NS	AT 1,75 x G	M PIN	NSAT 1,7	5
	med 1 =	2,73	med 2 =	3,37	DIF =	0,64	med 1 =	4,36	med 2 =	3,85	DIF=	0,50	med 1 =	4,36	med 2 =	3,37	DIF =	0,99
	QME =	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49	QME=	2,68	q (6,12) =	4,75	DMS =	4,49
		Estati	sticamente e	equival	entes			Estati	sticamente e	quival	entes			Estatis	ticamente e	quivale	ntes	
		MP NS	AT 2,00 x G			2,00		OMP N	SAT 2,00 x 0	CM EU	_	2,00	CM (COMP N	SAT 2,00 x C	M EU	C NSAT 2,	
	med 1 =	6,41	med 2 =	4,27	DIF=	2,14	med 1 =	6,41	med 2 =	3,01	DIF=	3,40	med 1 =	6,41	med 2 =	5,37	DIF=	1,04
	QME=		q (6,12) =	4,75		1,00	QME=	0,13	q (6,12) =	4,75	DMS =	1,00	QME=		q (6,12) =	4,75	DMS =	1,00
			tisticamente						tisticamente						tisticamente			
	CM C	OMP N	ISAT 2,00 x		_	,00	CM C	OMPN	SAT 2,00 x	GM PII	NSAT 2	,00	GM (COMP N	SAT 2,00 x C	CM EUC	C NSAT 2,	00
	med 1 =	6,41	med 2 =	4,03	DIF=	2,37	med 1 =	5,86	med 2 =	3,37	DIF=	2,49	med 1 =	4,27	med 2 =	3,01	DIF=	1,26
	QME=	0,13	q (6,12) =	4,75	DMS =	1,00	QME=	0,13	q (6,12) =	4,75	DMS =	1,00	QME=	0,13	q (6,12) =	4,75	DMS =	1,00
			tisticamente						tisticamente						tisticamente			
	GM C	_	SAT 2,00 x			,00	GM C	_	SAT 2,00 x	_		,00	GM		SAT 2,00 x 0	_		
TEOR	med 1 =		med 2 =	- /	DIF =	1,10	med 1 =	4,27	med 2 =	4,03	DIF=	0,23	med 1 =		med 2 =		DIF=	0,48
2,00	QME=		q (6,12) =	/**	DMS =	1,00	QME=		q (6,12) =		DMS =	1,00	QME=		q (6,12) =	/ / /	DMS =	1,00
			tisticamente						sticamente e						sticamente e			
	_	_	AT 2,00 x G	_	,,,	_	-		AT 2,00 x G			1			AT 2,00 x C	_	,,,	
	med 1 =	3,85	med 2 =	3,79	DIF =	0,06	med 1 =	3,01	med 2 =	5,37	DIF=	2,36	med 1 =	- 7.	med 2 =	4,03	DIF=	1,02
	QME =		q (6,12) =	4,75	DMS =	1,00	QME=	0,13	q (6,12) =	4,75	DMS =	1,00	QME=		q (6,12) =	4,75	DMS =	1,00
			sticamente e			_			tisticamente						tisticamente			
			SAT 2,00 x C						SAT 2,00 x C						AT 2,00 x G			
	med 1 =	3,01	med 2 =	3,79	DIF =	0,78	med 1 =	5,37	med 2 =	4,03	DIF =	1,33	med 1 =	/	med 2 =	3,79	DIF =	0,57
	QME =	0,13	1 (-7)	4,75	DMS =	1,00	QME=	0,13	q (6,12) =	4,75	DMS =	1,00	QME=	0,13	107 /	4,75	-	1,00
		Estati	sticamente e	equival	entes			Esta	tisticamente	diferer	ntes			Estatis	sticamente e	quivale	ntes	

QUADRO XVIII - TESTE ESTATÍSTICO TUKEY PARA ANÁLISE DOS RESULTADOS DE RESISTÊNCIA À COMPRESSÃO (COMPARAÇÃO DO MESMO TEOR DE MADEIRA COM OS DIFERENTES TIPOS DE MADEIRA E AGLOMERANTE) AOS 28 DIAS

								Idad	e (28 dias)									
	CM C	OMP NS	SAT 1,00 x G	м сом	P NSAT 1	,00	CM C	OMP N	SAT 1,00 x	CM EUC	NSAT 1,	00	CM C	COMP N	SAT 1,00 x	GM EUC	NSAT 1,	,00
	med 1 =	15,20	med 2 =	8,33	DIF=	6,87	med 1 =	15,20	med 2 =	10,91	DIF =	4,29	med 1 =	15,20	med 2 =	8,25	DIF =	6,95
	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes	
	CM (COMP N	NSAT 1,00 x	CM PIN	NSAT 1,0	0	CM (COMP N	ISAT 1,00 x	GM PIN	NSAT 1,0	00	GM (OMP N	SAT 1,00 x 0	CM EUC	NSAT 1.	,00
	med 1 =	15,20	med 2 =	13,98	DIF=	1.22	med 1 =	15,20	med 2 =	7,53	DIF=	7.66	med 1 =	8,33	med 2 =	10,91	DIF =	2,58
	QME=	0,17		4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73
			tisticamente	_		.,		_	tisticamente	_		- 7,			tisticamente			1,7.2
	GM (ISAT 1,00 x 0			00	GM (ISAT 1,00 x			00	GM (ISAT 1,00 x			00
TEOR	med 1 =		med 2 =	8,25	DIF=	0,08	med 1 =	8,33	med 2 =	13,98	DIF=	5,65	med 1 =	8,33	med 2 =	7,53	DIF =	0,80
1,00	OME=	0,17		4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73
-,	QIVIL -		isticamente e	_		0,75	QIVIL =		tisticamente			0,73	QIVIL =		tisticamente			0,73
	CM		SAT 1.00 x G				CM		AT 1,00 x G			n	CM		SAT 1,00 x C			0
			med 2 =	_	1	6.11											_	_
	med 1 =	13,98		7,53	DIF=	6,44	med 1 =	10,91	med 2 =	8,25	DIF =	2,66	QME=	0,06	q (6,12) =	4,75	DMS =	0,69
	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73
			tisticamente						tisticamente				CD 4		sticamente e			
			SAT 1,00 x G						SAT 1,00 x C						SAT 1,00 x G			_
	med 1 =	10,91	med 2 =	7,53	DIF =	3,38	med 1 =	8,25	med 2 =	13,98	DIF =	5,73	med 1 =	8,25	med 2 =	7,53	DIF =	0,72
	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73	QME=	0,17	q (6,30) =	4,30	DMS =	0,73
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes				sticamente e			
	CM C	OMP NS	SAT 1,25 x G	м сом	P NSAT 1	,25	CM C	OMP N	SAT 1,25 x 0	CM EUC	NSAT 1,	25	CM C	COMP N	SAT 1,25 x 0	GM EUC	NSAT 1.	,25
	med 1 =	14,75	med 2 =	6,98	DIF =	7,77	med 1 =	14,75	med 2 =	8,54	DIF =	6,20	med 1 =	14,75	med 2 =	7,20	DIF =	7,55
	QME=	1,34	q (6,30) =	4,30	DMS =	2,03	QME=	1,34	q (6,30) =	4,30	DMS =	2,03	QME=	1,34	q (6,30) =	4,30	DMS =	2,03
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes	
	CM (COMP N	NSAT 1,25 x	CM PIN	NSAT 1,2	5	CM (COMP N	ISAT 1,25 x	GM PIN	NSAT 1,2	25	GM (COMP N	SAT 1,25 x 0	CM EUC	NSAT 1,	,25
	med 1 =	14,75	med 2 =	9,38	DIF =	5,36	med 1 =	14,75	med 2 =	6,36	DIF =	8,39	med 1 =	6,98	med 2 =	8,54	DIF =	1,57
	QME=	1,34	q (6,30) =	4,30	DMS =	2,03	QME=	1,34	q (6,30) =	4,30	DMS =	2,03	QME=	1,34		4,30	DMS =	2,03
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes			Estati	sticamente e	quivale	ntes	
	GM (OMP N	ISAT 1,25 x 0	GM EUC	NSAT 1.	25	GM (COMP N	ISAT 1,25 x	CM PIN	NSAT 1.2	25	GM (COMP N	ISAT 1,25 x	GM PIN	NSAT 1.	25
TEOR	med 1 =	_	med 2 =		DIF=	0,22	med 1 =	6,98	med 2 =		DIF=	2,41	med 1 =		med 2 =		DIF =	0,62
1,25	QME=	1,34		4,30	DMS =	2.03	QME=	1,34	q (6,30) =	4,30	DMS =	2.03	QME=	1,34		4,30	DMS =	2,03
-,	QME=		isticamente e	_		2,03	QME=	_	tisticamente	_		2,03	QIVIL-		sticamente e	_	_	2,03
	CM		SAT 1,25 x G				CM		AT 1,25 x G			5	CM		SAT 1,25 x C			5
	med 1 =	9,38	med 2 =	6,36	DIF=	3,03	med 1 =	8,54	med 2 =	7,20	DIF=	1,35	med 1 =	8,54		9,38	DIF =	0,84
	OME=	1,34		4,30	DMS =	2,03		_		4,30	DMS =	2,03		1,34		4,30	DMS =	2,03
	QWE-		q (6,30) = itisticamente	_		2,03	QME=	1,34	q (6,30) =			2,03	QME=		q (6,30) =		_	2,03
	CM		SAT 1,25 x G				CM		SAT 1,25 x C				CM		SAT 1,25 x G			5
																	_	_
	med 1 =	8,54		6,36		2,19	med 1 =	_	med 2 =	9,38	DIF =	2,19	med 1 =	_	med 2 =	6,36	DIF =	0,84
	QME=	1,34	-	4,30		2,03	QME=		q (6,30) =		DMS =	2,03	QME=		q (6,30) =		DMS =	2,03
<u> </u>			tisticamente			***			tisticamente			#0			sticamente e			* 0
			SAT 1,50 x G						SAT 1,50 x 0						SAT 1,50 x 0			_
	med 1 =	13,04	med 2 =	6,80	DIF =	6,23	med 1 =	13,04	med 2 =	10,18	DIF =	2,86	med 1 =	13,04	med 2 =	7,08	DIF =	5,96
	QME=	0,50	q (6,30) =	4,30	DMS =	1,24	QME=	0,50	q (6,30) =	4,30	DMS =	1,24	QME=	0,50	q (6,30) =	4,30	DMS =	1,24
		Esta	itisticamente	diferen	tes			Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes	
	CM (COMP N	NSAT 1,50 x 0	CM PIN	NSAT 1,5	0	CM (COMP N	ISAT 1,50 x	GM PIN	NSAT 1,5	50	GM (COMP N	SAT 1,50 x 0	CM EUC	NSAT 1,	,50
	med 1 =	13,04	med 2 =	10,12	DIF =	2,92	med 1 =	13,04	med 2 =	6,13	DIF =	6,91	med 1 =	6,80	med 2 =	10,18	DIF =	3,37
	QME=	0,50	q (6,30) =	4,30	DMS =	1,24	QME=	0,50	q (6,30) =	4,30	DMS =	1,24	QME =	0,50	q (6,30) =	4,30	DMS =	1,24
		Esta	itisticamente	diferen	tes			Esta	tisticamente	diferen	tes			Esta	tisticamente	diferen	tes	
	GM (COMP N	ISAT 1,50 x 0	GM EUC	NSAT 1,	50	GM (COMP N	ISAT 1,50 x	CM PIN	NSAT 1,5	50	GM (COMP N	ISAT 1,50 x	GM PIN	NSAT 1,	50
TEOR	med 1 =	6,80	med 2 =	7,08	DIF=	0,28	med 1 =	6,80	med 2 =	10,12	DIF =	3,32	med 1 =	6,80	med 2 =	6,13	DIF =	0,68
1,50	QME=	0,50	q (6,30) =	4,30	DMS =	1,24	QME=	0,50	q (6,30) =	4,30	DMS =	1,24	QME=	0,50	q (6,30) =	4,30	DMS =	1,24
			isticamente e						tisticamente	diferen	tes				sticamente e	quivale	ntes	
	CM		SAT 1,50 x G				CM	EUC NS	AT 1,50 x G	M EUC	NSAT 1,5	0	CM		SAT 1,50 x C			0
	med 1 =		med 2 =		DIF=	3,99	med 1 =	10.18	med 2 =	7,08	DIF =	3,10	med 1 =		med 2 =		DIF =	0,06
	QME=		q (6,30) =	_	DMS =	1,24	QME=	_	q (6,30) =	_	DMS =	1,24	QME=		q (6,30) =	_	DMS =	1,24
	Z	_	tisticamente	_		-,-/	Z		tisticamente	_		-,	Ç		sticamente e			-,27
	CM		SAT 1,50 x G)	GM		SAT 1,50 x C)	GM		SAT 1,50 x G			0
	med 1 =		med 2 =	6,13		4,05	med 1 =		med 2 =		DIF=	3,04	med 1 =	_	med 2 =		DIF =	0,95
				4,30			QME=	_	q (6,30) =	4,30	DMS =	1,24	QME =			4,30	DMS =	1,24
I	QME=		q (6,30) = tisticamente	_		1,24	QME=			_		1,24	QIVIE =		q (6,30) =			1,24
				dilleren	ies			Esta	tisticamente	dueren	ies			Estati	sticamente e	convale	mes	

	CM C	OMP NS	AT 1,75 x G	м сом	P NSAT 1	,75	CM C	OMP N	SAT 1,75 x 0	CM EUC	NSAT 1,	75	CM (OMP N	SAT 1,75 x 0	M EUC	NSAT 1,	75
	med 1 =	12,16	med 2 =	5,66	DIF =	6,49	med 1 =	12,16	med 2 =	9,41	DIF =	2,75	med 1 =	12,16	med 2 =	6,72	DIF=	5,43
	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferent	es			Esta	tisticamente	diferent	tes	
	CM (COMP N	ISAT 1,75 x 0	CM PIN	NSAT 1,7	5	CM (COMP N	ISAT 1,75 x	GM PIN	NSAT 1,7	15	GM (OMP N	SAT 1,75 x 0	CM EUC	NSAT 1,	75
	med 1 =	12,16	med 2 =	9,14	DIF =	3,01	med 1 =	12,16	med 2 =	5,27	DIF =	6,89	med 1 =	5,66	med 2 =	9,41	DIF =	3,74
	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME =	0,23	q (6,30) =	4,30	DMS =	0,84
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferent	es			Esta	tisticamente	diferent	tes	
	GM C	COMP N	SAT 1,75 x 0	GM EUC	NSAT 1,	75	GM (COMP N	ISAT 1,75 x	CM PIN	NSAT 1,7	75	GM (COMPN	ISAT 1,75 x	GM PIN	NSAT 1,7	75
TEOR	med 1 =	5,66	med 2 =	6,72	DIF =	1,06	med 1 =	5,66	med 2 =	9,14	DIF =	3,48	med 1 =	5,66	med 2 =	5,27	DIF=	0,40
1,75	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferent	es			Estati	sticamente e	quivale	ntes	
	CM	PIN NS	AT 1,75 x G	M PIN N	SAT 1,75		CM	EUC NS	AT 1,75 x G	M EUC	NSAT 1,75	5	CM	EUC N	SAT 1,75 x C	M PIN I	NSAT 1,75	5
	med 1 =	9,14	med 2 =	5,27	DIF =	3,88	med 1 =	9,41	med 2 =	6,72	DIF =	2,68	med 1 =	9,41	med 2 =	9,14	DIF =	0,26
	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferent	es			Estati	sticamente e	quivale	ntes	
	CM	EUC N	SAT 1,75 x G	M PIN	NSAT 1,75		GM	EUC NS	SAT 1,75 x C	M PIN N	NSAT 1,75	5	GM	EUC N	SAT 1,75 x G	M PIN I	NSAT 1,75	5
	med 1 =	9,41	med 2 =	5,27	DIF =	4,14	med 1 =	6,72	med 2 =	9,14	DIF =	2,42	med 1 =	6,72	med 2 =	5,27	DIF =	1,46
	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84	QME=	0,23	q (6,30) =	4,30	DMS =	0,84
		Esta	tisticamente	diferen	tes			Esta	tisticamente	diferent	es			Esta	tisticamente	diferent	tes	
	CM CO	OMP NS	AT 2,00 x G	M COM	P NSAT 2	,00	CM C	OMP N	SAT 2,00 x 0	CM EUC	NSAT 2,0	00	CM (OMP N	SAT 2,00 x 0	M EUC	NSAT 2,	00
	med 1 =	12,74	med 2 =	6,38	DIF =	6,36	med 1 =	12,74	med 2 =	8,05	DIF =	4,69	med 1 =	12,74	med 2 =	6,29	DIF=	6,45
	QME=	0,28	q (6,30) =	4,30	DMS =	0,93	QME=	0,28	q (6,30) =	4,30	DMS =	0,93	QME=	0,28	q (6,30) =	4,30	DMS =	0,93
			tisticamente						tisticamente						tisticamente			
					NSAT 20	0	CM (COMP N	ISAT 2,00 x	GM PIN	NSAT 2,0	00	GM (COMP N	SAT 2,00 x 0	M FIIC	NSAT 2,	00
	CM C	COMP N	ISAT 2,00 x	CM PIN	110711 2,0	_										AVI LOC		
	med 1 =		med 2 =	9,53	DIF =	3,21	med 1 =	12,16	med 2=	5,27	DIF =	6,89	med 1 =	6,38	_	8,05	DIF=	1,67
		12,74			DIF =			12,16 0,28	med 2 = q (6,30) =		DIF = DMS =	6,89 0,93	med 1 = QME =	_	_	8,05	DIF = DMS =	1,67 0,93
	med 1 = QME =	12,74 0,28 Esta	med 2 = q (6,30) = tisticamente	9,53 4,30 diferen	DIF = DMS =	3,21 0,93	med 1 = QME =	0,28 Esta	q (6,30) =	4,30 diferent	DMS =	0,93	QME=	0,28 Esta	med 2 = q (6,30) =	8,05 4,30 diferent	DMS =	0,93
	med 1 = QME = GM C	12,74 0,28 Esta	med 2 = q (6,30) = tisticamente	9,53 4,30 diferen	DIF = DMS = tes	3,21 0,93	med 1 = QME = GM (0,28 Esta COMP N	q (6,30) = tisticamente ISAT 2,00 x	4,30 diferent	DMS =	0,93	QME=	0,28 Esta	med 2 = q (6,30) = tisticamente	8,05 4,30 diferent GM PIN	DMS = tes	0,93
TEOR	med 1 = QME = GM C med 1 =	12,74 0,28 Esta COMP N 6,38	med 2 = q (6,30) = tisticamente SAT 2,00 x 0 med 2 =	9,53 4,30 diferen GM EUC 6,29	DIF = DMS = tes CNSAT 2,0 DIF =	3,21 0,93 00 0,09	med 1 = QME = GM 0 med 1 =	0,28 Esta COMP N 6,38	q (6,30) = tisticamente ISAT 2,00 x med 2 =	4,30 diferent CM PIN 9,53	DMS = es NSAT 2,0 DIF =	0,93	QME = GM (med 1 =	0,28 Esta COMP N 6,38	med 2 = q (6,30) = tisticamente	8,05 4,30 diferent GM PIN 5,57	DMS = tes NSAT 2,0 DIF =	0,93
TEOR 2,00	med 1 = QME = GM C	12,74 0,28 Esta COMP N 6,38 0,28	med 2 = q (6,30) = tisticamente (SAT 2,00 x 0 med 2 = q (6,30) =	9,53 4,30 diferen GM EUC 6,29 4,30	DIF = DMS = tes CNSAT 2,0 DIF = DMS =	3,21 0,93	med 1 = QME = GM (0,28 Esta COMP N 6,38 0,28	q (6,30) = tisticamente iSAT 2,00 x o med 2 = q (6,30) =	4,30 diferent CM PIN 9,53 4,30	DMS = es NSAT 2,0 DIF = DMS =	0,93	QME=	0,28 Esta COMP N 6,38 0,28	med 2 = q (6,30) = stisticamente RSAT 2,00 x 0 med 2 = q (6,30) =	8,05 4,30 diferent GM PIN 5,57 4,30	DMS = tes NSAT 2,0 DIF = DMS =	0,93
	med 1 = QME = GM C med 1 = QME =	12,74 0,28 Esta COMP N 6,38 0,28 Estati	med 2 = q (6,30) = tisticamente SAT 2,00 x C med 2 = q (6,30) = sticamente e	9,53 4,30 diferen GM EUC 6,29 4,30 equivale	DIF = DMS = tes CNSAT 2,0 DIF = DMS =	3,21 0,93 00 0,09	med 1 = QME = GM 0 med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Esta	q (6,30) = tisticamente ISAT 2,00 x (med 2 = q (6,30) = tisticamente	4,30 diferent CM PIN 9,53 4,30 diferent	DMS = tes NSAT 2,0 DIF = DMS =	0,93 00 3,16 0,93	QME = GM 0 med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Estati	med 2 = q (6,30) = tisticamente WSAT 2,00 x 0 med 2 = q (6,30) = sticamente e	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler	DMS = tes NSAT 2,0 DIF = DMS =	0,93
	med 1 = QME = GM C med 1 = QME =	12,74 0,28 Esta COMP N 6,38 0,28 Estati	med 2 = q (6,30) = tisticamente SAT 2,00 x G med 2 = q (6,30) = sticamente e SAT 2,00 x G	9,53 4,30 diferen GM EUC 6,29 4,30 equivale	DIF = DMS = tes CNSAT 2,0 DIF = DMS = tes DMS =	3,21 0,93 00 0,09 0,93	med 1 = QME = GM 0 med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Esta EUC NS	q (6,30) = tisticamente iSAT 2,00 x (med 2 = q (6,30) = tisticamente AT 2,00 x G	4,30 diferent CM PIN 9,53 4,30 diferent M EUC 1	DMS = tes NSAT 2,0 DIF = DMS = tes	0,93 00 3,16 0,93	GM C med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Estati EUC NS	med 2 = q (6,30) = stisticamente (SAT 2,00 x 0) med 2 = q (6,30) = sticamente e SAT 2,00 x 0	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N	DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00	0,93
	med 1 = QME = GM C med 1 = QME = CM med 1 =	12,74 0,28 Estat COMP N 6,38 0,28 Estati PIN NS 9,14	med 2 = q (6,30) = tisticamente SAT 2,00 x G med 2 = q (6,30) = sticamente e SAT 2,00 x G med 2 = med 2 =	9,53 4,30 diferen GM EUC 6,29 4,30 equivale M PIN N 5,57	DIF = DMS = tes CNSAT 2,0 DIF = DMS = tes DMS = tes DMS =	3,21 0,93 00 0,09 0,93	med 1 = QME = GM 0 med 1 = QME = CM med 1 =	0,28 Esta COMP N 6,38 0,28 Esta EUC NS	q (6,30) = tisticamente iSAT 2,00 x i med 2 = q (6,30) = tisticamente iAT 2,00 x G med 2 =	4,30 diferent CM PIN 9,53 4,30 diferent EUC 1 6,29	DMS = tes NSAT 2,0 DIF = DMS = tes NSAT 2,00 DIF =	0,93 00 3,16 0,93 0 1,76	GM 0 med 1 = QME = CM med 1 =	0,28 Estat COMP N 6,38 0,28 Estati EUC NS 8,05	med 2 = q (6,30) = tisticamente (SAT 2,00 x 0 med 2 = q (6,30) = sticamente e SAT 2,00 x 0 med 2 =	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N 9,53	DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00 DIF =	0,93
	med 1 = QME = GM C med 1 = QME =	12,74 0,28 Estat COMP N 6,38 0,28 Estati PIN NS 9,14 0,28	med 2 = q (6,30) = tisticamente SAT 2,00 x (6 med 2 = q (6,30) = sticamente e SAT 2,00 x (6 med 2 = q (6,30) =	9,53 4,30 diferen GM EUC 6,29 4,30 equivale M PIN N 5,57 4,30	DIF = DMS = tes CNSAT 2,0 DIF = DMS = ntes NSAT 2,000 DIF = DMS =	3,21 0,93 00 0,09 0,93	med 1 = QME = GM 0 med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Esta EUC NS 8,05 0,28	q (6,30) = tisticamente iSAT 2,00 x med 2 = q (6,30) = tisticamente AT 2,00 x G med 2 = q (6,30) =	4,30 diferent CM PIN 9,53 4,30 diferent M EUC 1 6,29 4,30	DMS = DMS = DIF = DMS =	0,93 00 3,16 0,93	GM C med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Estati EUC NS 8,05 0,28	med 2 = q (6,30) = tisticamente SAT 2,00 x cmed 2 = q (6,30) = sticamente e SAT 2,00 x Cmed 2 = q (6,30) =	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N 9,53 4,30	DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00 DIF = DMS =	0,93
	med 1 = QME = GM C med 1 = QME = CM med 1 = QME = QME =	12,74 0,28 Esta COMP N 6,38 0,28 Estati PIN NS 9,14 0,28 Esta	med 2 = q (6,30) = tisticamente SAT 2,00 x (6) med 2 = q (6,30) = sticamente e SAT 2,00 x (6) med 2 = q (6,30) = tisticamente e q (6,30) =	9,53 4,30 diferen GM EUC 6,29 4,30 equivale M PIN N 5,57 4,30 diferen	DIF = DMS = tes CNSAT 2,0 DIF = DMS = tes DIF = DMS = tes DIF = DMS = tes	3,21 0,93 00 0,09 0,93 3,57 0,93	med 1 = QME = GM (med 1 = QME = CM med 1 = QME = QME = QME = QME = GME =	0,28 Esta COMP N 6,38 0,28 Esta EUC NS 8,05 0,28 Esta	q (6,30) = tisticamente iSAT 2,00 x c med 2 = q (6,30) = tisticamente iAT 2,00 x G med 2 = q (6,30) = tisticamente iAT 2,00 x G	4,30 diferent CM PIN 9,53 4,30 diferent M EUC 1 6,29 4,30 diferent	DMS = Les NSAT 2,0 DIF = DMS = Les DMS =	0,93 00 3,16 0,93 1,76 0,93	GM 0 med 1 = QME = CM med 1 = QME =	0,28 Estat COMP N 6,38 0,28 Estati EUC NS 8,05 0,28 Estat	med 2 = q (6,30) = tisticamente SAT 2,00 x c med 2 = q (6,30) = sticamente e SAT 2,00 x C med 2 = q (6,30) = tisticamente et significamente et significament	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N 9,53 4,30 diferent	DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00 DIF = DMS = tes	0,93
	med 1 = QME = GM C med 1 = QME = CM med 1 = QME = CM med 1 = QME = CM	12,74 0,28 Estat COMP N 6,38 0,28 Estati PIN NS 9,14 0,28 Esta	$\begin{array}{l} \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{SAT } 2.00 \times G \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{sticamente e} \\ \text{sAT } 2.00 \times G \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{SAT } 2.00 \times G \\ \text{solution} \end{array}$	9,53 4,30 diferen GM EUC 6,29 4,30 equivale M PIN N 5,57 4,30 diferen GM PIN N	DIF = DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00 DIF = DMS = tes NSAT 2,00	3,21 0,93 00 0,09 0,93 3,57 0,93	med 1 = QME = GM 0 med 1 = QME = CM med 1 = QME = GM 0 med 1 = QME = GM	0,28 Esta COMP N 6,38 0,28 Esta EUC NS 8,05 0,28 Esta EUC NS	q (6,30) = tisticamente ISAT 2,00 x G med 2 = q (6,30) = tisticamente AT 2,00 x G med 2 = q (6,30) = tisticamente SAT 2,00 x G	4,30 diferent CM PIN 9,53 4,30 diferent M EUC 1 6,29 4,30 diferent M PIN N	DMS = sees NSAT 2,0 DIF = DMS = sees NSAT 2,00 DIF = DMS = sees NSAT 2,00	0,93 00 3,16 0,93 0,93 1,76 0,93	QME = GM 0 med 1 = QME = CM med 1 = QME =	0,28 Estati COMP N 6,38 0,28 Estati EUC NS 8,05 0,28 Estat	$\begin{array}{l} \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{tisticamente} \\ \operatorname{isAT} 2,00 \times 0 \\ \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{sticamente} \\ \operatorname{esAT} 2,00 \times 0 \\ \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{tisticamente} \\ \operatorname{SAT} 2,00 \times 0 \\ \operatorname{SAT} 2,00 \times 0 \\ \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{tisticamente} \\ \operatorname{SAT} 2,00 \times 0	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N 9,53 4,30 diferent M PIN N	DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00 DIF = DMS = tes NSAT 2,00	0,93
	med 1 = QME = GM C med 1 = QME = CM med 1 = QME = CM med 1 = QME = CM med 1 =	12,74 0,28 Estat COMP N 6,38 0,28 Estati PIN NS 9,14 0,28 Esta EUC NS 8,05	$\begin{array}{l} \operatorname{med} 2 = \\ \operatorname{q} \left(6,30 \right) = \\ \operatorname{tisticamente} \\ \operatorname{SAT} 2,00 \times C \\ \operatorname{med} 2 = \\ \operatorname{q} \left(6,30 \right) = \\ \operatorname{sticamente} e \\ \operatorname{AT} 2,00 \times G \\ \operatorname{med} 2 = \\ \operatorname{q} \left(6,30 \right) = \\ \operatorname{tisticamente} \\ \operatorname{AT} 2,00 \times G \\ \operatorname{med} 2 = \\ \operatorname{q} \left(6,30 \right) = \\ \operatorname{tisticamente} \\ \operatorname{AT} 2,00 \times G \\ \operatorname{med} 2 = \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{tisticamente} \\ \operatorname{AT} 2,00 \times G \\ \operatorname{med} 2 = \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{tisticamente} \\ \operatorname{AT} 2,00 \times G \\ \operatorname{med} 2 = \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{AT} 2,00 \times G \\ \operatorname{med} 2 = \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{AT} 2,00 \times G \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{AT} 2,00 \times G \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{AT} 2,00 \times G \\ \operatorname{g} \left(6,30 \right) = \\ \operatorname{g} \left(6,30 \right) $	9,53 4,30 diferen GM EUC 6,29 4,30 equivale M PIN N 5,57 4,30 diferen M PIN N	DIF = DMS = tes C NSAT 2,0 DIF = DMS = tes NSAT 2,00 DIF = DMS = tes NSAT 2,00 DIF =	3,21 0,93 00 0,09 0,93 3,57 0,93	med 1 = QME = GM 0 med 1 = QME = CM med 1 = QME = GM med 1 = QME = GM med 1 = GM	0,28 Esta COMP N 6,38 0,28 Esta EUC NS 8,05 0,28 Esta EUC NS 6,29	$\begin{array}{l} q\left(6,30\right) =\\ \text{tisticamente} \\ \text{ISAT 2,00 x o} \\ \text{med 2} =\\ q\left(6,30\right) =\\ \text{tisticamente} \\ \text{AT 2,00 x G} \\ \text{med 2} =\\ q\left(6,30\right) =\\ \text{tisticamente} \\ \text{SAT 2,00 x C} \\ \text{med 2} =\\ \end{array}$	4,30 diferent CM PIN 9,53 4,30 diferent M EUC 1 6,29 4,30 diferent M PIN N 9,53	DMS = sees NSAT 2,00 DIF = DMS = sees NSAT 2,00 DIF = DMS = sees NSAT 2,000 DIF = DMS = sees	0,93 3,16 0,93 1,76 0,93 1,76 0,93	GM 0 med 1 = QME = CM med 1 = QME = GM med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Estati EUC NS 8,05 0,28 Estat EUC NS 6,72	$\begin{array}{l} \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{SAT } 2.00 \text{ x} \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{sticamente} \text{ e} \\ \text{SAT } 2.00 \text{ xC} \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{SAT } 2.00 \text{ xC} \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{some } 2 = \\ \text{med } 3 = \\ \text{med } 3 = \\ \text{med } 4	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N 9,53 4,30 diferent M PIN N 5,57	DMS = tes NSAT 2,0 DIF = DMS = ntes NSAT 2,00 DIF = DMS = tes NSAT 2,00 DIF = DMS = tes	0,93
	med 1 = QME = GM C med 1 = QME = CM med 1 = QME = CM med 1 = QME = CM	12,74 0,28 Estat COMP N 6,38 0,28 Estati PIN NS 9,14 0,28 Estat EUC NS 8,05 0,28	$\begin{array}{l} \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{SAT } 2.00 \times G \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{sticamente e} \\ \text{sAT } 2.00 \times G \\ \text{med } 2 = \\ \text{q } (6.30) = \\ \text{tisticamente} \\ \text{SAT } 2.00 \times G \\ \text{solution} \end{array}$	9,53 4,30 diferen GM EUC 6,29 4,30 equivale M PIN N 5,57 4,30 diferen M PIN N 5,57 4,30	DIF = DMS = tes C NSAT 2,0 DIF = DMS = tes NSAT 2,00 DIF = DMS = tes NSAT 2,00 DIF = DMS =	3,21 0,93 00 0,09 0,93 3,57 0,93	med 1 = QME = GM 0 med 1 = QME = CM med 1 = QME = GM 0 med 1 = QME = GM	0,28 Esta COMP N 6,38 0,28 Esta EUC NS 8,05 0,28 Esta EUC NS 0,28 0,28 0,28 0,28	q (6,30) = tisticamente ISAT 2,00 x G med 2 = q (6,30) = tisticamente AT 2,00 x G med 2 = q (6,30) = tisticamente SAT 2,00 x G	4,30 diferent CM PIN 9,53 4,30 diferent M EUC 1 6,29 4,30 diferent M PIN N 9,53 4,30	DMS = sees NSAT 2,00 DIF = DMS = sees NSAT 2,00 DIF = DMS = sees NSAT 2,00 DIF = DMS = sees	0,93 00 3,16 0,93 0,93 1,76 0,93	QME = GM 0 med 1 = QME = CM med 1 = QME =	0,28 Esta COMP N 6,38 0,28 Estati EUC NS 8,05 0,28 Esta EUC NS 6,72 0,28	$\begin{array}{l} \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{tisticamente} \\ \operatorname{isAT} 2,00 \times 0 \\ \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{sticamente} \\ \operatorname{esAT} 2,00 \times 0 \\ \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{tisticamente} \\ \operatorname{SAT} 2,00 \times 0 \\ \operatorname{SAT} 2,00 \times 0 \\ \operatorname{med} 2 = \\ \operatorname{q} (6,30) = \\ \operatorname{tisticamente} \\ \operatorname{SAT} 2,00 \times 0	8,05 4,30 diferent GM PIN 5,57 4,30 quivaler M PIN N 9,53 4,30 diferent M PIN N 5,57 4,30	DMS = tes NSAT 2,0 DIF = DMS = tes NSAT 2,00 DIF = DMS = tes NSAT 2,00 DIF = DMS =	0,93