
CRISTIANE APARECIDA GONÇALVES HUVE

AN ARCHITECTURE FOR MAPPING RELATIONAL
DATABASE TO ONTOLOGY

Dissertation presented as partial requirement
to obtain a master’s degree. Postgradu-
ate Program in Computer Science at Federal
University of Paraná.
Supervisor: Prof. Let́ıcia Mara Peres, Ph.D.

CURITIBA

2017

CRISTIANE APARECIDA GONÇALVES HUVE

AN ARCHITECTURE FOR MAPPING RELATIONAL
DATABASE TO ONTOLOGY

Dissertation presented as partial requirement
to obtain a master’s degree. Postgradu-
ate Program in Computer Science at Federal
University of Paraná.
Supervisor: Prof. Let́ıcia Mara Peres, Ph.D.

CURITIBA

2017

H973a Huve, Cristiane Aparecida Gonçalves
 An architecture for mapping relational database to ontology / Cristiane
Aparecida Gonçalves Huve. – Curitiba, 2017.
 112 f ; il. color : 30 cm.

 Dissertação - Universidade Federal do Paraná, Setor de Ciências Exatas,
Programa de Pós-Graduação em Informática, 2017.

 Orientador: Letícia Mara Peres
 Bibliografia: p. 80-85.

 1. Banco de dados relacionais. 2. Ontologia. 3. Mapeamento conceitual. I.
Universidade Federal do Paraná. II.Peres, Letícia Mara. III. Título.

CDD: 005.756

i

ACKNOLEDGEMENTS

I would like to thank:

My family and especially my fiance, Giordano Dornelles, for always believe in me, by

the comprehension in moments of absence and the unconditional patience.

My supervisor, Leticia Mara Peres, and Marcos Didonet Del Fabro, for the patience,

the valuable guidance, and all provided support to help me in this work.

My professors, Rosane Pasarini and Jefferson Martins, and my cousins, Alline Lara and

Aramis Fernandes, for the motivation and the helping in joining the graduate program.

My colleagues, Hegler Tissot and Alex Porn (FAES Research Group), for help me with

ontology concepts, and Jeovane Alves, for helps me in reviewing the dissertation.

My friends who always believed it was possible and supported me at all times, espe-

cially Flávio Araujo and Jariel Luvizon.

My colleagues of the graduate program by the precious coffee.

Informatics Department of Federal University of Paraná for having provided structure

to accomplish this work.

The Dental Uni Cooperative and Wise Systems for the permission to use the SIO

corpus.

CAPES, which financed part of this work.

Everyone who helped me in different ways to conclude this work.

ii

RESUMO

Nos últimos anos tem sido propostos trabalhos sobre definições de mapeamento de um

banco de dados para ontologias. Este trabalho de mestrado propõe a construção de uma

arquitetura que viabiliza um processo de mapeamento automático de um banco de dados

relacional para uma ontologia OWL. Para isto, faz uso de regras novas e existentes e

tem como contribuições a nomeação dos elementos e sua eliminação quando duplicados,

aumentando a legibilidade da ontologia gerada. Destacamos na arquitetura a estrutura de

mapeamento de elementos, que permite manter uma rastreabilidade de origem e destino

para verificações. Para validar a arquitetura e as regras propostas, um estudo de caso é

realizado utilizando um banco de dados de atendimento odontológico.

Palavras-Chave: Banco de dados relacional. Ontologia. Mapeamento.

iii

ABSTRACT

In recent years a number of researches have been written on the topic of definitions

of mapping of a database to ontology. This dissertation presents the proposal and the

construction of an architecture which enables an automatic mapping process of relational

database to OWL ontology. For this purpose, it makes use of new and existent rules

and offers as contributions naming and elimination of duplicated elements, increasing the

legibility of the generated ontology. We stand out the structure of element mapping,

which allows to maintain a source-to-target traceability for verifications. Validating of

proposed architecture and rules is made by a case study using a dental care database.

Key-words: Relational database. Ontology. Mapping.

iv

CONTENTS

1 INTRODUCTION 2

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Organization . 4

2 STATE OF THE ART 5

2.1 Database design . 5

2.2 Ontologies . 9

2.3 Mappings . 15

2.4 Related works . 17

3 MAPPING ARCHITECTURE 22

3.1 Architecture components . 23

3.1.1 Configuration template . 24

3.1.2 Mapping model . 25

3.1.3 Mapping process . 28

3.1.3.1 Naming ontology elements 28

3.1.3.2 Data types . 30

3.1.3.3 Mapping rules . 30

3.1.4 Generation of ontology . 53

3.2 Prototype . 53

3.2.1 Development of mapping process 55

3.2.2 Use of mapping model . 56

3.2.3 Generation of OWL ontology . 57

3.2.4 Deployment diagram of architecture 57

3.3 Summary . 58

v

4 CASE STUDY 60

4.1 Objectives . 60

4.2 Scenarios . 60

4.3 Method . 63

4.4 Results and discussions . 66

4.4.1 Rule discussions . 67

4.4.2 Architecture discussions . 70

4.4.3 Comparative discussion . 73

4.5 Summary . 75

5 CONCLUSIONS 77

5.1 Future work . 79

REFERENCES 85

A STRUCTURE OF CONFIGURATION TEMPLATE 86

B ER MODEL OF MAPPING SCHEMA 87

C DETAILS OF MAPPING SCHEMA TABLES 88

D PROTOTYPE CONFIGURATION 89

E SCRIPT OF MAPPING SCHEMA 90

F CASE STUDY - DETAILS OF DATABASE TABLES 112

vi

LIST OF FIGURES

2.1 Mapping cardinalities: a) one to one; b) one to many; c) many to one; and

d) many to many. Figure of [49] . 7

2.2 An example of data model representation 8

2.3 OWL ontology definition metamodel. Figure of [24] 11

2.4 Relational to ontology mapping . 16

3.1 Architecture components . 24

3.2 ER model - part A - mapping of database elements 26

3.3 ER model - part B - mapping of ontology elements 27

3.4 Components of mapping process . 28

3.5 Architecture components of prototype . 54

3.6 Prototype . 55

3.7 Deployment diagram of architecture . 58

4.1 Activities of method . 64

4.2 Class hierarchy classification: a) asserted and b) inferred 69

4.3 Example of mapping rules . 69

1

LIST OF TABLES

2.1 Common rules of mapping relational database to ontology 17

3.1 Correlated data types . 30

4.1 Number of database elements . 62

4.2 Number of ontology elements . 66

4.3 Comparative of generated ontology elements 74

2

CHAPTER 1

INTRODUCTION

Nowadays there are different computer systems for the same business area. In the vast

majority, each system models a database structure with definitions, concepts, and rela-

tions, according to specific processes practiced in the organization. Facing the definition

of different models, achieving the interoperability of these systems is a great challenge to

be overcome [51].

Ontologies prove to be useful in supporting the specification and development of com-

puter systems. In computing, an ontology is defined based on a set of concepts in which a

domain of specific knowledge is modeled. The definitions of these concepts include infor-

mation about the semantics and restrictions applied on the domain [27]. Ontologies offer

advantages in their use, such as: providing an exact description and an exact vocabulary

for representation and sharing of knowledge and extending the use of a generic ontology

for a specific domain [28].

From the considerations presented, we understand that the elaboration of an ontology

to represent a specific domain is an alternative to handle interoperability issues. However,

the process of elaborating an ontology is a task which requires a great amount of effort

[51, 52]. Considering this, related works proposed building ontologies from a database of

existing systems [45, 46, 60, 17, 9, 60, 13].

The main related works which propose mapping relational database to ontologies,

mostly utilize the physical database model or they perform the extraction of this informa-

tion directly from schema [45, 46, 60]. Others, in addition to the physical model, consider

the database tuples [34, 52]. Recent works [17, 58] suggest new treatments for the trans-

formation process, however, the logic model was not identified in any of the analyzed

related works.

At the beginning of the database modeling, the definition of the model takes place,

3

which includes a description of the structures stored and the relations among them. When

defining the physical model from the logic model, we define the structure of this model

according to the database management system (DBMS).

For simplification reasons or due to DBMS restrictions, definitions are adapted and

consequently lose semantic definitions initially represented in the logic model. The re-

trieval of this information for the ontology elaboration is of great importance to the naming

of its elements. We identified a significant number of rules which establish conditions for

mapping [9, 60, 13, 16, 45, 46]. However, in none of them, details are given regarding the

naming of the elements, an important issue to ontology legibility. In general, the mapping

process is quite abstract and there is no source-to-target relationship of the elements.

1.1 Motivation

Given the above context, the following motivations for the present study are given: a)

the existing mapping processes only perform a direct mapping of the elements and do

not reuse pre-existent definitions of elements; b) the existing solutions do not deal with

the naming of mapped elements considering the name of the database element without

formatting; c) the proposed solutions do not consider the information from the logic model

in the mapping process and for naming the ontology elements; and d) in face of different

contributions, we identify the opportunity to consolidate the proposed functionalities of

different works in a unique architecture.

1.2 Objectives

The main objective of this work is to define an architecture that, from a set of rules,

performs the mapping process from relational database elements to ontology elements.

We have the following specific objectives: a) to define an architecture that supports the

mapping process and the relations of elements of a relational database to an ontology; b) to

identify and define a set of rules to be applied in the mapping process of the architecture;

and c) to validate the proposed architecture and rules through the development of a

4

prototype.

1.3 Organization

Considering the facts above, we have developed an architecture to perform an automatic

mapping from relational database to ontology. In this architecture, besides the database

schema and tuples, its logic model is considered. The mapping process uses existing and

new rules which, in addition to defining new mapping criteria, aim at the elimination of

duplicated elements and the representation of concepts. A schema for mapping database

elements to ontology elements has been developed.

It is intended with this architecture, to obtain an automatic mapping process, applies

validations for naming elements, in order to generate an ontology with greater legibility;

maintains the traceability of database elements and ontologies; and contribute to the

representation and interpretation of specific domains of a database structure.

A case study, in which we elaborated three different scenarios over a dental care

database, was conducted in this work with the objective of validating the proposed map-

ping architecture and rules.

This work is presented into five chapters. In Chapter 2 concepts and definitions of re-

lational database and ontologies used in this work are presented. We also present concepts

of mappings and the previous works which proposed mapping rules. In Chapter 3 the

architecture elaborated in this research is described, justifications for its conception, the

mapping rules, the details about each of the architecture components and the developed

prototype. In Chapter 4 the case study is presented, in which, through three different

scenarios, a relational database is transformed to ontology in Web Ontology Language

(OWL). We report the details and results of the case study conducted to validate the

architecture and the mapping rules and we perform a comparative discuss. In Chapter 5

we present the conclusions and proposals for future works.

5

CHAPTER 2

STATE OF THE ART

This chapter presents concepts review. Section 2.1 provides an introduction to a database,

data modeling, and the relational model. Section 2.2 and Subsection 2.2 presents a brief

introduction of ontology concepts and OWL ontology. Subsection 2.2 presents a class

definition. Subsections 2.2 and 2.2 demonstrates property characteristics and definitions.

Subsection 2.2 explains the concept of instances. Section 2.3 presents concepts and uses

of mapping, which support our architecture and Section 2.4 presents an analysis of related

works which map a relational database to ontologies.

2.1 Database design

Database management system (DBMS) is a software which enables to create, maintain,

use and share large data among various users and applications [44]. Its primary goal is

to provide an environment in which it is both convenient and efficient on retrieving and

storing information in a database [49].

A database is a collection of related data, typically describing information about one

or more related concepts [21, 44]. By data, we mean a set of arranged and interrelated

information, which can be recorded and has implicit meaning [21]. A database has implicit

properties: it represents aspects of the real world; it contains logically coherent data with

inherent meaning; and it is designed, built, and populated with data for a specific purpose.

A database can be of any size and complexity [21], but it is mostly designed to manage

large bodies of information [49].

Modeling is part of database design which defines a capable structure for data ma-

nipulation. Modeling is divided into three levels: conceptual, logical and physical, which

together propose to obtain a unified view of creation and maintenance of the information.

At high-level, data requirements are mapped into a conceptual data model, sufficiently

6

detailed to describe its scope [29], and to determine the way data can be stored [45]. Next

level matches the logical specification of a data model, which groups the information into

structures (e.g. entities, attributes) and describes how the information will be structured

(e.g. relationships, integrity rules). Last, physical data model corresponds to the inter-

nal organization of data storage. Physical data model match data manipulation and an

efficient data retrieval. [29].

Entity-relationship data model (ER model), developed by Chen [14], is a conceptual

data modeling tool, which corresponds a data representation of DBMS in a diagram.

The ER model has three main concepts: entity, which represents an object in the real

world; attributes, which are properties describing an entity; and relationships, which are

association among two or more entities. Conceptual modeling uses ER model to generate

entity-relationship diagrams and describes database data and their interrelationships [29,

47].

Cardinalities specify the number of entities which another entity can be associated and

are most useful in describing binary relationship [49]. For a set of binary relationships

between entity sets A and B, mapping cardinalities must be one of the following [48, 49]:

• one to one: an entity in A is associated with at most one entity in B, and an entity

in B is associated with at most one entity in A, as it can be seen on Figure 2.1a;

• one to many: an entity in A is associated with any number of entities in B. An

entity in B can be associated with at most one entity at A, as it can be seen on

Figure 2.1b;

• many to one: an entity in A is associated with at most one entity in B. An entity

in B can be associated with any number of entities in A, as it can be seen on Figure

2.1c;

• many to many: an entity in A is associated with any number of entities in B, and

an entity in B is associated with any number of entities in A, as it can be seen on

Figure 2.1d.

7

Figure 2.1: Mapping cardinalities: a) one to one; b) one to many; c) many to one; and d)
many to many. Figure of [49]

Database definition involves specifying data types, structures and constraints of data

to be stored. Database definitions and all descriptive information are stored by the DBMS

in a database catalog or dictionary [21]. Data specification from a database is called data

schema. Database schema reflects the design and the data specification of the database.

A specific content of the database is called instance [29].

ER model is commonly used in commercial implementations of DBMS’s, which is

considered a standard in the area of conceptual methods of design and database tools

[47, 49]. ER model is typically used for the representation of an initial database design in

high-level. After the ER design, the model needs to be converted into a usable database.

Given an ER diagram, a standard approach is taken to generate a relational database

schema, which closely approximates the ER design.

Relational model

The relational data model was proposed by Codd in 1970. From ER model, entities

are mapped to tables, attributes become columns, and relationship types are mapped to

relations in the relational model [44].

A relational schema R, denoted by R(A1, A2, ..., An), is composed by a relation name

R and a list of attributes A1, A2, ..., An. Each attribute Ai is a name of a role played

by some domain D in the relational schema R. D is called domain of Ai and is denoted

by dom(Ai). A relational schema is used to describe a relation; R is called a name of

8

this relation. A relation (or relation state) r of a relational schema R(A1, A2, ..., An), also

denoted by r(R), is a set of n-tuples r = t1, t2, ..., tm. Each n-tuple t is an ordered list of

n values t = (v1, v2, ..., vn), where each value vp, 1 ≤ p ≤ n, is an element of dom(Ai) or

is a special NULL value [21].

The database schema specifies a database structure and the database instance specifies

the actual content of a database. [7]. The database schema contains tables, in the which is

possible to represent domains. Table names and column names are used to understand the

target domain and the content which is persisted. Figure 2.2 shows a representation of a

data model, where each table (student, class, student class and country) and each column

(student [id student, name student, id country], class [id class, description], student class

[id student, id class] and country [id country, description]) have an identifier name.

Figure 2.2: An example of data model representation

Integrity constraints are specified on a database schema and they are used to prevent

the entry of incorrect information [21]. An integrity constraint is a condition which

restricts data and can be stored in a database instance.

The key allows identifying stored data referring it by a unique identifier [49]. A unique

key (UK) is composed of one or more columns, and it forces a unique information in each

table tuple. A primary key (PK) is composed of one or more columns which, taken

collectively, allows us to identify uniquely a table tuple of the database [44]. In Figure

2.2, PKs id student, id class and id country are identified with a key representation before

the column description.

In order to relate two or more tables, they must have a common relationship. An

9

integrity constraint involving two relations is called foreign key (FK) constraint [44]. In

Figure 2.2, the data model has the associative table student class, representing a multiple

relation of two tables student and class. Student class has two keys id student and id class

which are inherited of source tables.

Sometimes, the data stored in a relation is linked to the data stored in another relation.

This means a relation may have more than one key. Another type of foreign key relation

can be represented with, e.g tables country and student, in which student table has a

column id country referring to the primary key of country table.

2.2 Ontologies

Ontology comes from two Greek words ontos (being) + logos (science, study) [33]. On-

tology concepts are strongly associated to philosophy, as they are considered a subject

which treats the being and their relations [30]. The use of the term ontology in computer

science is related to build knowledge bases using automatic computational reasoning, with

interoperable structures that describes concepts and relations among them [42, 30, 39].

According to Sowa [50], an ontology categorizes the existence of things and defines a set

of terms to represent knowledge on a given domain. For Gruber [26], ontologies are explicit

formal specifications of terms and relations among them, of a shared conceptualization of

things in the domain. For “explicit specifications”, an ontology specifies an explicit and

unambiguous definition of concepts; for “formal”, ontology needs to be understood and

processed by computers; for “shared”, ontology needs to contain a consensual definition

about a domain; and for “conceptualization”, there is an abstract model representing

concepts and relations among them.

Ontologies standardize meanings through semantic identifiers, which can represent

the real and conceptual world [23], using a specific and shared vocabulary to describe a

domain, capturing concepts and relations, and axioms to restrict its interpretation [18].

An ontology O can be represented using five basic ontology elements O = (C, P, I, V,

A) where ontos C, P, I, V, and A are the sets of classes, properties, instances, property

values and axioms, respectively [41, 59]. Classes are used to represent a group of elements,

10

which have similar characteristics and form a capable concept to represent an object

belong to a domain. An ontology can be represented by a tree structure. This structure

is composed of classes and subclass which inherit class properties which are associated.

Associations are described by binary properties. Properties describe characteristics and

interaction types among concepts of a domain. Axioms represent constraints which must

be strictly adhered. Instances represent individuals which share class properties, and

property values is a set of instances for each of these properties [30, 42].

Ontologies are developed to specify standard procedures to extract and share knowl-

edge among different systems. They are used to ensure the consistency of system extracted

data and the sharing of data among computers and humans [55].

OWL ontologies

OWL (Web Ontology Language) is a web-based language, defined by W3C (World Wide

Web Consortium) to define and instantiate ontologies. OWL can be used to explicitly

represent the meaning of terms in vocabularies and relations between them [1, 2].

OWL is a language developed to represent the information to be used by applications

which need to process the modeled information content instead of just presenting infor-

mation [35]. The main elements of OWL ontologies concern classes, properties, instances

of classes, and associations between these instances. These elements are described by a

rich vocabulary [24, 1].

This language allows specifying how to derive logical consequences using formal se-

mantics, where is possible to clarify facts which are represented by semantic relations

[1]. Logical expressions in OWL ontologies are defined by the representation of axioms

[42], which describe relations among other ontology elements, as properties, classes and

instances [56].

Model is a specification or description of a system and its environment with a particu-

lar purpose [11]. Metamodel defines possible structures and meanings for the elements of

a model [20]. A model must be defined according to the structure provided by its meta-

model, that is, a template must conform to its metamodel [8]. OWL Ontology Definition

11

Metamodel (ODM) is composed of two models to represent OWL structure, defined by

RDFS (Resource Description Framework Schema) and OWL [51, 24]. RDFS is a met-

alanguage which besides representing its concepts, also defines OWL model, inheriting

RDFS structure definitions [24]. Figure 2.3 presents ODM substructure.

Figure 2.3: OWL ontology definition metamodel. Figure of [24]

In this work, we use definitions of OWLClass, OWLRestriction, Property and Indi-

vidual, which are detailed in following sections.

Classes

Classes provide an abstraction mechanism for grouping resources with similar characteris-

tics [1]. Class is a collection of common properties, which can be named and enumerated,

and it describes a set of individuals organized in a taxonomy [41, 1]. Classes correspond

to a set of things which naturally occur in represented domain [1].

Considering Figure 2.3, an owl:Class is a subclass of rdfs:Class, this inheritance allows

to define hierarchical classes, and represents that a class is a subclass of another [51].

According to Example 1, universityStudent class is defined as a subclass of student class,

establishing all instances of universityStudent class also belong to student class.

Example 1:

12

<owl:Class rdf:ID=“universityStudent”>

<rdfs:subClassOf rdf:resource=“#student” />

</owl:Class>

A class can be constructed in OWL as an intersection, a union or as a complement

of other classes using operators owlintersectionOf, owlunionOf and owlcomplementOf,

equivalent to operators “AND”, “OR” and “NOT” used for descriptive logic [24, 42].

Disjointness of a set of classes can be expressed using the owl:disjointWith operator.

Disjointness ensures an instance of a class does not have a common instance in other

specific class [1]. Example 2 shows universityStudent class is disjoint from masterStudent

and doctoralStudent classes, which can state every individual who is associated with uni-

versityStudent class cannot be defined as an instance of another member of listed classes.

Example 2:

<owl:Class rdf:ID=“universityStudent”>

<owl:disjointWith rdf:resource=“#masterStudent”/>

<owl:disjointWith rdf:resource=“#doctoralStudent”/>

</owl:Class>

Properties

Properties in OWL ontologies are binary associations among individuals and they allow

to represent general facts about class members and specific facts about individuals [1, 26].

Considering Figure 2.3, we have two distinct types of properties: owl:ObjectProperty,

which relates a class to another class, and owl:DatatypeProperty, which is a relation

between class and datatype value, both organized in a taxonomy [41, 24].

Properties are characterized by their domain, range or algebraic characteristics [41].

More than one domain or range may be declared and it can be specified to restrict the

relation. For each datatype property and object property, the operator rdfs:domain can

be set. When the domain is specified, a restriction is established. Restriction represents

a property belongs to a domain of one or multiple classes. OWL Datatype properties

13

connect an individual to a literal data type. Considering the student class, we can associate

an integer numeric data type which represents age.

Example 3:

<owl:DatatypeProperty rdf:about=“#age”>

<rdfs:domain rdf:resource=“#student”/>

<rdf:range rdf:resource=“&xsd;integer”/>

</owl:DatatypeProperty>

We can define a restriction of values in object property of multiple classes using op-

erator owl:unionOf [3]. Example 4 presents the domain of hasStudentBackground object

property, which can be either one or several individuals of experience class or qualification

class, i.e. this property should only be used by individuals of this two classes.

Example 4:

<owl:ObjectProperty rdf:ID=“hasStudentBackground”>

<rdfs:domain>

<rdfs:Class>

<owl:unionOf rdf:parseType=\Collection>

<owl:Class rdf:about=“#experience”/>

<owl:Class rdf:about=“#qualification”/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

Properties can connect individuals of a domain to individuals of a range. According

to Example 5, object property hasIdentification connects individuals belonging to student

class to individuals belonging to studentIdentification class.

Example 5:

<owl:ObjectProperty rdf:ID=“hasIdentification”>

<rdfs:domain rdf:resource=“#student”/>

<rdfs:range rdf:resource=“#studentIdentification”/>

14

</owl:ObjectProperty>

Restrictions

Restriction is a concept tightly connected to properties characteristics [1]. OWL Restric-

tion defines an anonymous class of individuals which satisfy certain restrictions on their

properties [51]. Basically, it distinguishes two types of property restrictions: value con-

straints, which establish constraints on the range of properties, and cardinality constraints,

which establish constraints on the number of values which properties can represent. Value

constraints are modeled using HasIndividualValue, HasLiteralValue, SomeValuesFrom,

and AllValuesFrom elements.

Cardinality constraints are modeled using MinCardinality, Cardinality, and MaxCar-

dinality elements [3, 24]. Cardinality constraint establishes any instance of a class may

have an arbitrary number (zero or more) of values for a particular property. In this way,

owl:maxCardinality and owl:minCardinality allows specify the number of values, which

can be maximum or minimum, respectively. According to Example 6, course class require

being taught by at least someone [51].

Example 6:

<owl:Class rdf:ID=“course”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=“#isTaughtBy”/>

<owl:minCardinality rdf:datatype=“&xsd;nonNegativelnteger”>

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

15

Individuals

Individuals or instances are used to represent specific elements in class extension, i.e. to

represent data which populate ontology structure [3, 51]. Individuals should correspond

to actual entities, which can be grouped into those classes [1]. An instance is presented

in Example 7.

Example 7:

<rdf:Description rdf:ID=“12345”>

<rdf:type rdf:resource=“#student”/>

</rdf:Description>

or equivalently:

<student rdf:ID=“12345”/>

Example 8 relate an instance of age “39” to student id “12345”.

Example 8:

<student rdf:ID=“12345”>

<uni:age rdf:datatype=“&xsd;integer”>

39

</uni:age>

</student>

2.3 Mappings

Mappings are defined to relate different types of models [19] and, in this sense, the term

mapping is used in this work to refer to the relations between database elements and

ontology elements. A mapping can be designed to overcome more specific or broader

needs, involving one or many technologies, in different degrees of complexity and formats

[19].

16

Through the definition of criteria, the mapping process performs transformations

which tell us how an instance of a source data can be translated into an instance of a

target data [38]. These criteria define the relations to be established between the models

and may contain definitions regarding the naming of the elements and eventual definitions

of exceptions or restrictions.

The relations indicate that certain elements of a source model M1 are mapped to

certain elements of a target model M2, and can be established by a direct (1..1) or multiple

cardinalities (1...N) between the elements of each model. The specification of a mapping

between M1 to M2 must to support the transformation rules [19, 43].

Let us consider the two models in Figure 2.4. The first model is a relational schema

M1 and the second model is an ontology structure M2. Schema M1 is composed of

database elements (tables, columns, tuples, and relationships). Ontology M2 is composed

of ontology elements (classes, properties, instances, and associations). The translation

from M1 to M2 is represented by the mapping M1toM2 which establish links between the

model elements.

Figure 2.4: Relational to ontology mapping

In automated mapping processes, the relations can be stored permanently or kept

in memory. In [19] it is recommended the creation of structures which contain specific

entities to represent and store the relations established in the mapping process. This

allows their use in the future in different ways, those being: for checking, modification,

verification or reuse [19]. In this text, we will use the term rules instead of relations.

17

2.4 Related works

Tissot 1 identified related works [9, 13, 16, 25, 32, 34, 36, 45, 46, 52, 54, 60] aiming to map

relational databases (RDB) to ontologies. In existing methods for ontology engineering

from a relational database, a mapping is defined aiming to transform database elements to

ontology elements. After an analysis of these articles, nineteen mapping rules used to map

relational database elements to ontology elements were identified. Rules are presented in

Table 2.1. Following, we present the related works and the details of proposed mapping

rules.

Table 2.1: Common rules of mapping relational database to ontology
Mapped Elements Rule Rule Description

1. Tables to
classes

A It maps each non-associative table to a class.
B It integrates information from different tables in a single class.

2. Associative tables
to object properties

C It maps many-to-many relationships to object property.

D
It maps many-to-many relationships to two mutually inverse
object properties.

E
It defines domain and range for object properties which represent
many-to-many relationships.

F
It maps each table which references more than two tables to one
class and one object property for each FK.

3. Foreign key (FK) to
object properties

G It maps FKs in non-associative tables to object property.

H
It defines domain and range for object properties which represent FK
in rule G and I.

I It maps FK to two object property mutually inverse.

J
It defines “has-part” “and is-part-of” object properties when FK is part
of the primary key in non-associative tables.

4. Tables to
subclasses

K It maps a subclass for FK which is equivalent to the PK.
L It maps a subclass for each FK which is part of the PK.

5. Columns to data
properties

M
It creates one datatype property for each attribute which cannot be mapped
to an object property.

6. Primary key (PK)
constraints to
properties

N
It defines min and max cardinalities equals to 1 for properties which
represent PK attributes.

O
It maps PK attributes with min cardinality equals to 1 and as inverse
functional properties.

7. Unique (UK) constraints
to properties

P
It defines max cardinality equals to 1 for data properties which represent
UK attributes.

Q Map UK columns as functional properties.
8. Not null
constraints

R It maps not null attributes with min cardinality restriction equals to 1.

9. Table data to
instances

S It maps table data to instances.

1. Tables to classes: each table which is not an associative table (e.g. those which

does not represent pure many-to-many relationships) is mapped to an ontological

class in rule A [9, 13, 16, 25, 34, 36, 45, 46, 52, 60]; additionally, when tables have

1Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

18

the same PK definition [52], or several tables are used to describe one entity [34],

such information is integrated in one single ontological class in rule B [34, 52].

2. Associative tables to object properties: each associative table which represents

a many-to-many relationship between two other tables is mapped to two object

properties in rule C [9, 45, 46, 52], which can be also defined as object properties

mutually inverse in rule D [16, 34, 36, 60]; domain and range are defined for such

object properties in rule E [16, 45, 46, 52, 60]; however, for tables which reference

more than two tables (multi-relationships), a class is created to represent the bridge

table, and one object property is defined for each FK in rule F [34, 36].

3. Foreign key (FK) to object properties: for tables which are not associative,

each FK is mapped to an object property in rule G [9, 16, 25, 34, 45, 52, 60]; domain

and range are defined for such object properties in rule H [16, 25, 45, 52, 60];

moreover, [36, 52] use an approach to map each FK to two object properties in

rule I: a) the first object property has as domain the class corresponding to table

containing the column, and its range is the related table of the FK column, and

b) second object property is declared as inverse functional of the first FK object

property [36, 52]; for each entity described by a relation which is a special type of

entity described by other, i.e. FK which connects both tables is also part of the PK

is defined two object properties named “has part” and “is part” in rule J [34, 52, 60].

4. Tables to subclasses: different solutions consider specific mapping rules to define

subclasses in target ontology, including related tables which share same PK defini-

tion, i.e. FK is equivalent to PK in rule K [9, 36, 45, 52], and related tables which

have a FK as part of PK in rule L [16, 34, 46, 60].

5. Columns to data properties: one datatype property is created for each column

which cannot be mapped to an object property in rule M [9, 13, 16, 25, 34, 36, 45, 46,

52, 60]; in [46], however, primary key attributes are not defined as data properties

even when they do not represent FK attributes.

19

6. Primary Key (PK) constraints to properties: while some approaches define

min and max cardinalities equals to 1 for data properties, which represent PK

attributes in rule N [13, 34, 52], others define min cardinality of PK attributes

equals to 1 and define such attributes as inverse functional properties, aiming to

ensure uniqueness in rule O [9, 36, 45].

7. Unique (UK) constraints to properties: similar to the approach used to map

primary key, max cardinality is defined equals to 1 for data properties which repre-

sent Unique key (UK) attributes in rule P [34, 52], and others define such attributes

as inverse functional properties in rule Q [9, 36, 46].

8. Not null constraints: min cardinality restriction is defined equals to 1 for onto-

logical properties which represent not null attributes in rule R [9, 34, 36, 46, 52].

9. Table data to instances: each tuple is mapped to one ontological instance of

its specific class, following the definition of data and object properties in rule S

[9, 25, 32, 34, 36, 45, 46, 52, 54, 60].

Related works present, in short, mapping rules which map RDB tables, attributes and

data to the corresponding ontology components of classes, properties, and instances.

Astrova [9] has made a considerable contribution to this research area. In [10], the

author explain rules of mapping databases to ontologies, considering mapping rules to

database tables, columns, and tuples. In [9], it added check constraint mapping rule. An

approach to mapping data types from SQL to XSD was presented by [10] and [13].

Moreover, [45] propose the creation of cardinality property restriction, intend to map

constraints at column level from data type information. They also proposed semantic rules

which defines equivalence class, all values from and some values property definitions. The

main intuition of these rules was to promote the ontology-based RDB development with

more reasoning support.

In [46], authors propose a framework which classifies data according to metamodels

and map constraints in relational databases. In the metamodel, data are divided into

two parts: master data, which represents core objects in business; and transactional data,

20

which represents transactional flow tuples in business behaviors. Based on this classifica-

tion, the proposed framework performs a transformation process using the schema and the

data level, to generate two ontologies. Each ontology is generated for each transformation

process.

Zhang and Li [60] propose an automatic method to map a relational database to

ontologies. The methodology was developed using metamodels concepts. They extract

data from a relational database to a database metadata model. After its first mapping,

its metadata is mapped to an ontology meta-model by mapping rules. Finally, OWL

document is generated using the ontology meta-model. As a conclusion, they evaluated a

huge contrast between the ontology produced automatically and the one created manually;

the automatic generation requires further research.

Two distinct tools DB2OWL [16] and RDB2OWL [13] automatically generate ontolo-

gies from database schema. DB2OWL [16] generates, from mapping process, a document

with relations of database and ontologies elements and RDB2OWL [13] elaborates a map-

ping schema to establish the correspondences between RDB schema elements and OWL

ontology elements.

Telnarova [52] focused on the principles of automatic conversion of ontology elements,

mapping relational data model to OWL ontology elements and data to ontology instances.

Louhdi [36] proposed rules which analyze stored data to detect disjointness and totalness

constraints in hierarchies.

Two other solutions [32, 54] propose to map exclusively database tuples to ontological

instances. In [32] the authors extract tuples from a schema and map it using a specific

template. In [54] authors execute queries which extract tuples from RDB to generate

ontology tags and their solution was presented with a friendly interface.

Regarding mapping check constraints, [45] proposed a different mapping that led us

to set a new rule for mapping check constraints. In [46], the authors propose naming

the properties by concatenating the name of the class to the property name, seeking

not to generate duplicated elements. However, we noticed that the solution of [46] can

generate countless properties containing the same represented concept, differing only the

21

domain and range of the property. This made us reflect upon the need a mapping that

eliminates duplicated elements, not only for property elements but also for classes and

instances. Another contribution made in [46] lies in the table data classification. We use

this specification to classify different kinds of transformations according to the table data

content.

In general, related works do not present details about naming ontological elements

during the mapping process. An exception is [46] which append the database relation

name to the column name when mapping columns. In related works, the name of database

elements comes from database schema and the name of ontology elements retain the source

name of database element. When there is a type of encoding in the name of database

elements, is more difficult to understand the meaning of target ontology. The encoding is

commonly declared to arrange the database elements in the source RDB schema.

Different types of mapping have been proposed to establish a relation between the

concepts of database elements and the concepts of ontology elements, in order to construct

an ontology from a database. Some proposals are not clear on how the Mapping Process

is performed [52, 34]. Others cite that the process is performed semi-automatically or

automatically [16, 45, 46, 54, 60]. In this work we propose to develop an architecture that

unifies the rules A, D, E, F, G, H, I, K, L, M, O, Q, and S of related works presented in

Table 2.1 and we propose new rules for the mapping process.

22

CHAPTER 3

MAPPING ARCHITECTURE

Relational database mapping to ontologies is a subject explored by many researchers, as

we presented in 2.4. As for the main objectives, they intend to use database structure

aiming: simplify the build of the ontology; allow multiple database integrations; learning

of ontology; managing knowledge of an organization using ontology and others [17].

As principles of the elaborated mapping architecture, we seek an increase in the leg-

ibility of the generated ontology and the elimination of duplicated elements, due to the

defined criteria for naming them and the mapping structure which allows database ele-

ments to be related to one or many elements of the ontology.

Our proposed mapping architecture in this work is composed of external and internal

components. As external components, we have the Database Schema and Logical Model,

used as input artifacts to fill the Configuration Template. As internal components we

have: a) the Configuration Template, which provides database source information; B)

the Mapping Model, a metadata repository where the database elements are mapped to

ontology elements; C) the Mapping Process, which receives the contents of Configuration

Template to perform the Mapping Process and store the results in a schema based on

Mapping Model; and d) the Generation of Ontology, which from the results stored in a

schema based on Mapping Model, generates an ontology. With the definition of the Map-

ping Model, Mapping Process and Generation of Ontology we have developed a Prototype

to integrate the execution of these components.

We present in this chapter our proposed work. Section 3.1 presents in detail each

component of our mapping architecture. Section 3.6 presents the Prototype specification

to perform the Mapping Process from relational database (RDB) to the generation of

ontology.

23

3.1 Architecture components

The proposed mapping architecture of this work was designed based on proposals sug-

gested by various previous works as well as from observed needs. Through the analyzes

the proposal of several authors we developed a mapping architecture that allows storing

the mapping between database elements and ontology elements, offering a more complete

solution than the one proposed by [16, 13]. For mapping rules we rewrite 13 rules (A, D,

E, F, G, H, I, K, L, M, O, Q, and S) of related works presented in Table 2.1 and we con-

sidered 3 rules proposed by Tissot 1. Our contribution consists in the definition of 3 new

rules and in the adequacy of rules and proposals, aiming to eliminate duplicate elements,

however, maintaining the traceability between the database and ontology elements.

We also consider in our mapping architecture the Logic Model rather than using

uniquely database schema or physical model. The terminology used in the Logic Model

are more related to the real world definitions than the terminology used in the physical

model, improving the semantics of the generated ontology elements.

From the presented considerations we have elaborated a mapping architecture capable

of overcoming these needs. Figure 3.1 presents the Configuration Template and External

and Internal Components that constitute the architecture. External Components have

Database Schema and Logic Model as subcomponents. Data of External Components

is filled into Configuration Template. Internal Components are composed of subcompo-

nents Mapping Process, Mapping Model and Generation of Ontology. Owl Ontology is

a subcomponent generated from the others Internal subcomponents. For a better under-

standing of architecture components, we present each component in detail in the coming

sessions.

1Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

24

Figure 3.1: Architecture components

3.1.1 Configuration template

In order to import the database structure and considering the use of the Database Schema,

Tuples, and Logical Model, a template was set so that all this information could be inserted

into a single file and so that a prototype was capable of reading it at once. Initially, we

considered creating an automatic process, from the start of the architecture to its end. As

we studied mechanisms that enable the extraction of the Database Schema, Tuples, and

Logical Model, we perceived that recent studies directed efforts in this sense [12] and that

the complexity involved in this activity could be higher than the complete conception of

the proposed architecture.

Based on this and on a large amount of database management systems to be considered

in an integration, we designed a template in Comma Separated Value (CSV) format,

commonly used in the area [40]. The Configuration Template was developed to receive

the data originated from a) the Database Schema; b) the Logic Model; c) Tuples; and

d) the indication of specific types, such as the range of values of a check constraint,

concept definitions of a check constraint, classification of fields of the description type

and classification of table types.

A relevant factor in the definition of the structure of this template is the possibility to

partially import the database structure, not making it mandatory to inform the database

tuples or Logical Model. Another relevant point in the proposed architecture is that with

25

the definition of Configuration Template we do not restrict the use of the architecture to

a specific database or a tool, in case of using the Logic Model.

The file is filled manually, which allows the input of the data to be previously filtered

when the extraction of tuples is done or it can even be increased when the concept that

represents the range of values of a constraint is filled in. Appendix A presents definitions

of each item which composes the Configuration Template.

3.1.2 Mapping model

During an analysis of the use of ontology in data integration, Cruz [15] affirmed the pos-

sibility of use a standard ontology to support the mapping from a database to ontologies.

The term “mapping” is often used to refer to the ontology connection to the other parts of

application systems [57]. In order to allow the mapping between relational database ele-

ments and ontology elements, we designed a structure to perform this correspondence. For

this, we used the ontology concept for modeling this structure as a mediator conceptual

schema [37].

According to Ushold [53], the RDB schema can serve as ontological structure, where

it is possible to specify relations and integrity constraints. Based on this statement, we

created a mapping to represent the concepts and the relations in entity–relationship model

(ER model). We represented the elements from database and ontology, the relation of

the elements, and its correspondences by tables relationship, respecting the definitions of

mapping rules.

The Mapping Model is divided into two parts: part A, in Figure 3.2, represents

concepts related to database and part B, in Figure 3.3, represents concepts related to

ontology. The area comprising the concepts related to relational database comprises

the tables: T001 database, T002 table, T003 column, T004 record, T005 datatype db,

T006 check value, T007 check subject, T008 database domain, T009 column check value,

T010 table db domain.

26

Figure 3.2: ER model - part A - mapping of database elements

The area comprising the concepts related to ontology contain the tables: T011 class,

T012 hierarchy, T013 datatype property, T014 datatype property domain, T015 instance,

T016 ontology, T017 disjoint class, T018 datatype onto, T019 object property,

T022 object property domain range, T023 column record value.

27

Figure 3.3: ER model - part B - mapping of ontology elements

Tables T020 column to datatype property and T021 column to object property were de-

fined to relate database and ontology concepts. The complete Mapping Model can be

seen in Appendix B, and Appendix C presents details of each table of Mapping Model.

28

3.1.3 Mapping process

In our architecture, the mapping process is performed by a set of rules. Each rule contains

a definition of the relations to be established between database elements to ontology ele-

ments, definitions regarding the naming of elements and eventual definitions of exceptions

or restrictions to be considered.

In the Mapping Process that we defined, we present details of how we perform the

naming of the elements, how we correlate SQL data types to XML data types, and the rule

definitions of the Mapping Process, for the latter we rewrote proposed rules in previous

works and we also propose new rules. Figure 3.4 shows the Mapping Process component,

which receives the information to be mapped by the Configuration Template and as it

performs the mapping. During the Mapping Process, an instance of the schema generated

from the Mapping Model stores the database and ontology elements and also mapping

the relations among them.

Figure 3.4: Components of mapping process

3.1.3.1 Naming ontology elements

Conventions for naming classes and properties are proposed in [31]. Although there are

no mandatory naming conventions for OWL classes, it is recommended that every class

name should start with a capital letter and should not contain spaces. With regard to

properties, there is also no naming convention. Property names should start with a lower

29

case letter, no spaces, and the remaining words capitalized. It is also recommended to

prefix properties with the word “has”, or the word “is”, for example hasPart, isPartOf,

hasManufacturer, isProducerOf. Proposed conventions by [31] help on property identifi-

cation and its understanding, and also establish a pattern of ontology reading.

When we consider only the names of elements from the database schema, we depart

from the essence of building a common vocabulary which provides a common understand-

ing of knowledge domain. We observed in the elements name of physical model the use of

numbers and characters, as underscore and underline, to organize table structures, which

is commonly used to separate sentences and words. When, e.g. T009 Proc Covered Plan

table is converted to ontological class, and the class is named to T009 Proc Covered Plan

the mapped ontology element is difficult to be decoded, whether mapping rules consider

only the physical name of elements without criteria to format it.

Thus, in our architecture, we chose to use the information from the Logic Model

for naming ontology elements. In the absence of information from the Logic Model, we

consider the information from the Database Schema. Front of this and to improve semantic

characteristics from database elements to ontology elements, we additionally perform a

filtration in the element names to remove characters, by defining in our Prototype a

formatting function. The filtration is applied during naming the ontology elements, in

the Mapping process.

Formatting function is used to the formatting of the physical and logical name of

database elements and when the logical name is filled in, the physical name is discarded

from the Mapping Process. One of the treatments of our formatting function treats each

space between the words, removing them. Formatting function also removes words with

less than three characters, e.g. (in, on, at, of, by) underscore and underline characters.

When the character is removed, the first letter of each word is highlighted in capital letter.

With the formatting function T009 Proc Covered Plan table is converted to ontological

class named as ProcCoveredPlan.

30

3.1.3.2 Data types

As proposed by Astrova [10], we correlate SQL data types from database elements to

XML data types to ontology elements. For this purpose, the data types of the SQL

Server, Oracle, MySQL and PostgreSQL databases were considered. The size constraint

specifications defined in the data types of database columns were disregarded. We do not

consider SQL data types such as blobs (binary large objects), image and xml in the list

of correlation between SQL and XML data types. For cases where the data type is not

in the list of correlated elements, we used the classification of the XML data type string.

Table 3.1 displays the SQL data types match definitions for XML data types.

Table 3.1: Correlated data types
SQL data types
(Sql Server, Oracle, MySQL, PostgreSQL)

XML data types

Text, TinyText, MediumText, LongText, Varchar2,
varchar, char, nchar,nvarchar, nvarchar2, lob, and long

string

Integer, Int, Mediumint, Numeric, smallint, tnyint,
bigint, and decimal

decimal

Bit, Byte, and Boolean boolean
Float, Real, Number, and Numeric float
Double double
Date, year date
Time time
Timestamp datetime
Interval duration

3.1.3.3 Mapping rules

We present in the following subsections each rule and how the Mapping Process is per-

formed. We describe how we can identify the information to be mapped in the Configura-

tion Template; we also describe which database elements are mapped to which ontology

elements and how these elements are named; for a better understanding of definitions of

the proposed rules, we present a pseudocode of each rule; and, we present an example of

generated OWL tags from rule following W3C standards is presented. The rules respect

the definitions presented in Subsections3.1.3.1 and 3.1.3.2.

31

Mapping tables

Rule 1: mapping non-associative tables

Non-associative tables store primary information to be used as reference to other tables.

We can identify non-associative tables when a table contains only one primary key or

whether the table contains primary key columns that are not foreign keys of two other

distinct tables.

In the Configuration Template we defined the field Type to identify tables (T), columns

(C) and tuples (R), as we presented in Subsection 3.1.1. For each table (T), the field

Is Associative in the Configuration Template can have two table classifications: (1) for

associative tables or (0) for non-associative tables. Each non-associative table is mapped

to one ontological class, wherein the class name is composed of: a) it starts with a capital

letter and b) the value which correspond to the table name. This rule is equivalent to

Rule A of Table 2.1. The sequence of steps of this mapping rule is displayed in Algorithm

3.1.

Algorithm 3.1: Rule 1 - mapping non-associative tables

1 read configurationTemplate;

2 tables ←configurationTemplate.type(T);

3 insert into MappingModel.T002 TABLE(tables);

4 for (i = 0; tables is not null; i++) do

5 table ←tables[i];

6 if table is non-associative then

7 class ←formattingFunction(table);

8 insert table, class into MappingModel.T011 CLASS;

9 else

10 go to Algorithm 3.2;

11 end

12 end

13 Result: Mapping non-associative tables to classes.

Considering the table T002 Dentist are non-associative, it is mapped to the class

32

Dentist represented by the following OWL tags in the generated ontology:

Example 9:

<Declaration>

<Class IRI=“#Dentist”/>

</Declaration>

Rule 2: mapping associative tables

Associative tables represent a relationship between two entities. We can identify associa-

tive tables when their primary key columns are only foreign keys to two other tables. In

rule 1 we explained how to identify associative tables in the Configuration Template. For

mapping associative tables we also defined the field Is Primary Key to identified primary

key columns(1), and the field Related Table, in which is filled the referenced table of the

foreign key columns.

At first, we map the primary key columns of associative tables to ontological elements

generating an object properties (mutually inverse) for each primary key column, unless

the table columns are only foreign key. The first object property name is composed of:

a) it starts with fixed value has - with lowercase letter; and b) the corresponding value

for the column name - starts with a capital letter. The second object property name is

composed of: a) it starts with fixed value is - with lowercase letter; b) the corresponding

value for the column name - starts with a capital letter; and c) the fixed value of - with

a capital letter.

For each object property a minimum cardinality of restriction, declared as inverse, and

the domain and range are assigned. The range is specified using the created class to the

foreign key of the referenced table; and domain is specified using the created class to the

referenced table to the other foreign key which compose the associative table. Algorithm

3.2 contains the pseudocode of this mapping rule.

33

Algorithm 3.2: Rule 2 - mapping associative tables

1 read configurationTemplate;

2 columns ←configurationTemplate.type(C);

3 insert into MappingModel.T003 COLUMN(columns);

4 insert into MappingModel.T005 DATATYPE DB(columns.dataType);

5 for (i = 0; tables is not null; i++) do

6 table ←tables[i];

7 if table is associative then

8 for (j = 0; table.columns is not null; j++) do

9 column ←table.columns[j];

10 if column is primary key then

11 1ObjProp ← “has”+formattingFunction(column);

12 2ObjProp ← “is”+formattingFunction(column) + “of”;

13 1ObjProp, 2ObjProp ←isMinCardinality, isInverse, column.domain,

column.range;

14 insert column, 1ObjProp, 2ObjProp into

MappingModel.T021 COLUMN TO OBJECT PROPERTY,

MappingModel.T019 OBJECT PROPERTY and

MappingModel.T022 OBJECT PROPERTY DOMAIN RANGE;

15 else

16 go to Algorithm 3.3;

17 end

18 end

19 else

20 end

21 Result: Mapping associative tables to object properties.

In Example 10, the associative table T024 Dentist Specialty is mapped to the object

properties (mutually inverse) named hasDentistId, isDentistOf; and hasSpecialtyId, isSpe-

cialtyIdOf, according to their primary key columns. The hasDentistId object property is

represented by the following OWL tags in the generated ontology:

34

Example 10:

<Declaration>

<ObjectProperty IRI=“#hasDentistId”/>

</Declaration>

<ObjectPropertyDomain>

<ObjectProperty IRI=“#hasDentistId”/>

<Class IRI=“#Especialidade”/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<ObjectProperty IRI=“#hasDentistId”/>

<ObjectMinCardinality cardinality=“1”>

<ObjectProperty IRI=“#hasDentistId”/>

<Class IRI=“#Dentista”/>

</ObjectMinCardinality>

</ObjectPropertyRange>

<InverseObjectProperties>

<ObjectProperty IRI=“#hasDentistId”/>

<ObjectProperty IRI=“#isCodigoDentistaOf”/>

</InverseObjectProperties>

We can identify in the schema generated from the Mapping Model whether an asso-

ciative table has additional columns, finding a column which is not checked as primary

key. Whether the result returns a value we apply in conjunction with the rule above,

these steps: a) we create a class to the associative table, according to Rule 1; and b) we

create a datatype property for each non primary key column, according to Rule 3. This

rule is equivalent to Rules D, E and partly to F of Table 2.1. The pseudocode of this

extra mapping is described in Algorithm 3.3.

35

Algorithm 3.3: Rule 2 - mapping associative tables with non primary key columns

1 continue from line 10 of Algorithm 3.2;

2 if column is not primary key then

3 Algorithm 3.2;

4 else

5 class ←formattingFunction(table);

6 insert table, class into MappingModel.T011 CLASS;

7 datatypeProp ←formattingFunction(column), column.domain, column.dataType;

8 insert column, datatypeProp into

MappingModel.T020 COLUMN TO DATATYPE PROPERTY,

MappingModel.T013 DATATYPE PROPERTY,

MappingModel.T014 DATATYPE PROPERTY DOMAIN and

MappingModel.T018 DATATYPE ONTO;

9 end

10 Result: Mapping associative tables to class and datatype property.

Mapping columns

Database represents characterizes an information type or category to be included in the ta-

ble. For each table column defined in the source relational database, we define a datatype

property or an object property. In the Configuration Template we can identify the different

column types by the fields: primary key (Is Primary Key), unique key (Is Unique Key)

foreign key (Is Foreign Key) or check constraint (Is Column Check).

Rule 3: mapping columns to datatype properties

Table columns that are not part of these column types (primary, unique and foreign key

or check constraint) are mapped to a datatype property, at first moment, wherein the

datatype property name is composed of: a) it starts with lowercase letter; and b) the

value corresponding to the column name.

For each datatype property the domain and range are assigned, where the domain

is specified using the created class to the table column; and range is specified using the

36

column data type value. Each datatype property is related to the respective domain and

range. The definition above is equivalent to Rule M of Table 2.1. Algorithm 3.4 displays

the pseudocode of this mapping rule.

Algorithm 3.4: Rule 3 - mapping columns

1 continue from line 7 of Algorithm 3.2;

2 for (i = 0; table.columns is not null; i++) do

3 column ←table.columns[i];

4 if column is not (primary key, unique key, foreign key, check constraint and

description) then

5 datatypeProp ←formattingFunction(column), column.domain, column.dataType;

6 insert column, datatypeProp into

MappingModel.T020 COLUMN TO DATATYPE PROPERTY,

MappingModel.T013 DATATYPE PROPERTY,

MappingModel.T014 DATATYPE PROPERTY DOMAIN and

MappingModel.T018 DATATYPE ONTO;

7 else

8 if column is description then

9 go to Algorithm 3.5;

10 else

11 if column is primary key or is unique key or is foreign key then

12 go to Algorithm 3.6;

13 else

14 go to Algorithm 3.9 and Algorithm 3.10;

15 end

16 end

17 end

18 end

19 Result: Mapping no constraint columns to datatype properties.

As we present in Example 11, the T002 Dentist table has A006 Dentist Name column,

which is mapped to a datatype property named Dentistname. After the mapping, the

elements are represented by the following OWL tags in the generated ontology:

37

Example 11:

<Declaration>

<DataProperty IRI=“#Dentistname”/>

</Declaration>

<DataPropertyDomain>

<DataProperty IRI=“#Dentistname”/>

<Class IRI=“#Dentist”/>

</DataPropertyDomain>

<DataPropertyRange>

<DataProperty IRI=“#Dentistname”/>

<Datatype abbreviated IRI=“xsd:string”/>

</DataPropertyRange>

Ontological elements may have conflict when setting datatype property names for

columns that have the same physical or logical names in different tables (e.g. columns

with physical name active and columns with logical name description). In this case, only

one datatype property should be created to refer to all database columns which have the

same logical name.

In the Configuration Template we can identify columns which describes items from

a specific domain by the field Is Description. This condition was parameterized in the

template because the tables can use different names to identify a column type which

contains description of the represented context. We can create only one datatype property

for all columns checked as description in the Configuration Template, considering that the

meaning of this property is the same, only change the data in each table. For this columns,

the datatype property name is composed of: a) it starts with lowercase letter; and b) the

fixed value description.

Through one datatype property is created to refer all database columns which have

the same logical name, datatype property domain has to be defined considering all tables

which have columns description. Therefore, to the description datatype property the

domain and range are assigned, where the domain is specified using the created class for

each description column; and range is specified using the column data type value.

38

For each datatype property one subproperty, the domain and range are assigned.

The subproperty connect in a hierarchical structure to the first one description datatype

property; domain is specified using the created class to the table column; range is specified

using the column data type value. After the mapping, the elements are represented by

the following OWL tags in the generated ontology:

Example 12:

<Declaration>

<DataProperty IRI=“#description”/>

</Declaration>

<DataPropertyDomain>

<DataProperty IRI=“#description”/>

<ObjectUnionOf>

<Class IRI=“#Procedure”/>

<Class IRI=“#UserType”/>

<Class IRI=“#MaritalStatus”/>

</ObjectUnionOf>

</DataPropertyDomain>

<DataPropertyRange>

<DataProperty IRI=“#description”/>

<Datatype abbreviated IRI=“xsd:string”/>

</DataPropertyRange>

Additionally, for each field checked as description in the Configuration Template, a

datatype property is mapped. Its name is composed of: a) it starts with the class name

mapped from the table column - with lowercase letter; and b) the fixed value Description -

with a capital letter. The sequence of steps of this mapping rule is displayed in Algorithm

3.5.

39

Algorithm 3.5: Rule 3 - mapping description columns

1 continue from line 10 of Algorithm 3.4;

2 datatypePropDesc ←formattingFunction(“description”);

3 descriptionColumns ← listAlldescriptionColumns();

4 for (i = 0; descriptionColumns is not null; i++) do

5 column ←descriptionColumns[i];

6 datatypePropDesc ←column.domain, column.dataType;

7 datatypeProp ←formattingFunction(column), column.domain, column.dataType;

8 datatypeProp is subproperty of datatypePropDesc;

9 insert column, datatypePropDesc, datatypeProp into

MappingModel.T020 COLUMN TO DATATYPE PROPERTY,

MappingModel.T013 DATATYPE PROPERTY,

MappingModel.T014 DATATYPE PROPERTY DOMAIN and

MappingModel.T018 DATATYPE ONTO;

10 end

11 Result: Mapping description columns to datatype properties.

This elements are represented by the following OWL tags in the generated ontology:

Example 13:

<Declaration>

<DataProperty IRI=“#procedureDescription”/>

</Declaration>

<DataPropertyDomain>

<DataProperty IRI=“#procedureDescription”/>

<Class IRI=“#Procedure”/>

</DataPropertyDomain>

<SubDataPropertyOf>

<DataProperty IRI=“#procedureDescription”/>

<DataProperty IRI=“#description”/>

</SubDataPropertyOf>

<DataPropertyRange>

<DataProperty IRI=“#procedureDescription”/>

<Datatype abbreviated IRI=“xsd:string”/>

</DataPropertyRange>

40

In addition, regardless of whether the description field has been filled in or not, we

verify columns have the same physical or logical name in different tables, to avoid conflicts.

In this case only one datatype property for all columns with repeated name is created. For

this datatype property the domain and range are assigned, where the domain is specified

using the created class for each column with duplicated name.

Rule 4: mapping columns to object properties

In the Configuration Template, the fields checked as primary or unique key are mapped

to two functional object properties (mutually inverse), wherein the first object property

name is composed of: a) it starts with fixed value has - with lowercase letter; and b) the

value corresponding to the column name - starts with a capital letter. The second object

property name is composed of: a) it starts with fixed value is - with lowercase letter; b)

the value corresponding to the column name - starts with a capital letter; and c) the fixed

value of - with a capital letter.

Each object property is declared as functional, inverse and its range is specified using

the created class from the table column. Object property mapped from primary key a

minimum cardinality of restriction is assigned. The definition above was partially pro-

posed in Rules O and Q of Table 2.1.

The T008 Procedure table has the column A008 Procedure Id checked as its primary

key and the column A008 Procedure Number checked as unique key. Each column is

mapped to two object properties, wherein object properties generated from the mapped

primary key are named as: hasProcedureId and isProcedureIdOf; and the unique key

mapped to object properties are named as hasProcedureNumber and isProcedureNum-

berOf.

As we map the primary and unique key to object properties, for each object property

we define the range, which this range is defined to Procedure Class. After performing

the mapping, as we present in Example 14, the elements are represented by the following

OWL tags in the generated ontology:

41

Example 14:

<Declaration>

<ObjectProperty IRI=“#hasProcedureId”/>

</Declaration>

<Declaration>

<ObjectProperty IRI=“#isProcedureIdOf”/>

</Declaration>

<InverseObjectProperties>

<ObjectProperty IRI=“#hasProcedureId”/>

<ObjectProperty IRI=“#isProcedureIdOf”/>

</InverseObjectProperties>

<FunctionalObjectProperty>

<ObjectProperty IRI=“#hasProcedureId”/>

<ObjectProperty IRI=“#isProcedureIdOf”/>

</FunctionalObjectProperty>

<ObjectPropertyRange>

<ObjectProperty IRI=“#hasProcedureId”/>

<ObjectMinCardinality cardinality=“1”>

<ObjectProperty IRI=“#hasProcedureId”/>

<Class IRI=“#Procedure”/>

</ObjectMinCardinality>

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty IRI=“#isProcedureIdOf”/>

<ObjectMinCardinality cardinality=“1”>

<ObjectProperty IRI=“#isProcedureIdOf”/>

<Class IRI=“#Procedure”/>

</ObjectMinCardinality>

</ObjectPropertyRange>

In the Configuration Template, the fields checked as foreign key (in non-associative

tables) is mapped to two object properties (mutually inverse). Their names respect the

primary and unique key definition presented above.

For each object property minimum cardinality of restriction, declared as inverse, and

the domain and range are assigned. The range is specified using the class created from the

foreign key of the referenced table; and domain is specified using the class corresponding

42

the referenced table of the foreign key column. The definition for foreign key is equivalent

to Rules G, H and I of Table 2.1 and we adding new features. Algorithm 3.6 contains the

pseudocode of this mapping rule.

Algorithm 3.6: Rule 4 - mapping columns

1 continue from line 13 of Algorithm 3.4;

2 objectProp ←formattingFunction(column);

3 if column is primary key then

4 objectProp ←column.range;

5 objectProp is functional, inverse and has minCardinality;

6 else

7 if column is unique key then

8 objectProp ←column.range;

9 objectProp is functional and inverse;

10 else

11 objectProp ←column.domain, column.range;

12 objectProp is inverse and has minCardinality;

13 end

14 end

15 insert column, objectProp into

MappingModel.T021 COLUMN TO OBJECT PROPERTY,

MappingModel.T019 OBJECT PROPERTY and

MappingModel.T022 OBJECT PROPERTY DOMAIN RANGE;

16 Result: Mapping columns to object properties.

Mapping tuples

Database tuples is an ordered list of n values where each value is an element of domain,

consisting in a set of data structured in a table. We defined three categories to classify

tables according to their content: specific concepts of a domain (D), common concepts of

multiple domains (C), and control (T). Specific concepts of a domain (D) refers to tables

modeled to store information directly related to the represented domain, e.g. medical

43

procedure; common concepts of multiple domains (C) refers to tables modeled to store

information where the concept is a standard to many domains, e.g. Marital status; and

control (T), refers to tables that store information relating to several tables and store

repeating facts, e.g. sales.

Table classification is performed manually in Configuration Template according to its

tuples content and its classification is filled in the field Table type. Tables classified as

control for example, have an extensive amount of information which do not add represen-

tativeness of a domain. Meaning it is not relevant to generate instances of all database

tables. Similar proposal was made by [46], which proposes a classification of database

data in two parts: data of core objects in business behaviors and transactional data flow

tuples in business behaviors. However, regardless of classification, instances from tuples

are generated. In our approach, based on table classification we propose to map database

tuples to instances or classes.

Rule 5: mapping tuples to instances

In Configuration Template the field Related Table has the table name of tuples. Every

tuple from tables classified as specific concepts of a domain (D) are mapped to instances.

None of the analyzed solutions describe how to name ontological instances, an exception

is [46] which translates primary key values to URIs postx of instance names.

When a description attribute is not used as part of the instance name, it becomes

necessary to analyze the instance property values to recognize such instance, instead of

identifying it only by its name. Considering the tuple (8310,Orthodontic Treatment), it is

desirable that the correspondent instance in ontology carries the description Orthodontic

Treatment in its name. Thus, a rule must be defined to set ontological names of instances

to avoid conflicts when instances of different classes have the same description.

For this, the instance name is composed of: a) tuple values, whereby we recommend

the value corresponding to the PK column and the column content (or columns) - with

a capital letter. In case of instance name, as we can have many values, we separate the

44

values with underscore. The definition above was partially proposed by Tissot 2 and

partly to Rule S of Table 2.1. The sequence of steps of this mapping rule is displayed in

Algorithm 3.7.

Algorithm 3.7: Rule 5 - mapping tuples

1 read configurationTemplate;

2 tuples ←configurationTemplate.type(R);

3 insert into MappingModel.T004 RECORD(tuples);

4 for (i = 0; tuples is not null; i++) do

5 tuple ←tuples[i];

6 for (i = 0; tuple is not null; i++) do

7 columnRecord ←formattingFunction(tuple[i]);

8 insert columnRecord into MappingModel.T023 COLUMN RECORD VALUE;

9 end

10 if tuple.RelatedTable.tableType is D then

11 insert into MappingModel.T015 INSTANCE(formattingFunction(tuple));

12 else

13 go to Algorithm 3.8;

14 end

15 end

16 Result: Mapping tuples to instances

Considering the database tuple (8310,Orthodontic Treatment) in T008 Procedure ta-

ble, its mapping to an instance is named as 8310 Orthodontic Treatment, where: a) 8310

correspond to primary key column; and b) Orthodontic Treatment correspond to the col-

umn content. After the mapping, the elements are represented by the following OWL

tags in the generated ontology:

Example 15:

<Declaration>

<NamedIndividual IRI=“#8310 Orthodontic Treatment”/>

</Declaration>

2Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

45

<ClassAssertion>

<Class IRI=“#Procedure”/>

<NamedIndividual IRI=“#8310 Orthodontic Treatment”/>

</ClassAssertion>

Rule 6: mapping tuples to classes

A proportion of tables in the database have a small number of tuples which represent

specific definitions of a particular domain. Considering classes are concrete representations

of concepts, we classified tables with specific definitions of a domain as common concepts

of multiple domains (C) and all tuples from these tables are mapped to classes, wherein

the class name is the tuple content - starts with a capital letter. The definition above was

partially proposed by Tissot 3. Algorithm 3.8 contains the pseudocode of this mapping

rule.

Algorithm 3.8: Rule 6 - mapping tuples to classes

1 continue from line 14 of Algorithm 3.7;

2 if tuple.RelatedTable.tableType is C then

3 insert into MappingModel.T011 CLASS (formattingFunction(tuple));

4 end

5 Result: Mapping tuples to classes

Considering the T017 Marital Status table is defined as a conceptual table, the tuple

(1, Single) is mapped to a class named 1 Single, where: a)1 correspond to primary key

column; and b) Single correspond to Description column. The 1 Single class is defined as

subclass of MaritalStatus class. After the mapping, the elements are represented by the

following OWL tags in the generated ontology:

Example 16:

<Declaration>

<Class IRI=“#1 Single”/>

</Declaration>

3Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

46

<SubClassOf>

<Class IRI=“#1 Single”/>

<Class IRI=“#MaritalStatus”/>

</SubClassOf>

Mapping check constraints

Database check constraints are a type of integrity constraint which can ensure that only

specific values are allowed in the certain column. Although [9] can convert check con-

straints with specifically enumerated values to data range definition, it does not create a

mapping which can be reused by other entities. We propose to map the check constraint

restricted by a list of possible values, defining in the ontology a specification of a domain

from the check constraint (term used to represent the set of values), the possible values

of the check constraint and the check constraint column identification.

Rule 7: mapping check constraint concept

The check constraint concept represents a term which we use to represent a set of values

defined in a check constraint. We propose to map the database check constraints and

create a class to represent the set of values defined in the check constraint. For this, in

the Configuration Template, the field Concept Check Value is filled the check constraint

concept and the field Check Value is filled the set of values defined for this check constraint.

For the check constraint concept we map this information to one ontological class,

wherein the class name is composed of the value corresponding to the check constraint

concept - with a capital letter. Every possible value of this check constraint is mapped to

an instance, wherein the instance name is composed of: a) the value corresponding to the

class constraint name - with lowercase letter; b) we separate the values with underscore;

and c) the value corresponding to the constraint name - with a capital letter. This rule

was proposed by Tissot 4. Following, we present Algorithm 3.9 with the pseudocode of

4Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

47

this mapping rule.

Algorithm 3.9: Rule 7 - mapping check constraint concept

1 continue from line 16 of Algorithm 3.4;

2 class ←formattingFunction(column.SubjectCheckValue), formattingFunction(table);

3 insert table, class into MappingModel.T007 CHECK SUBJECT,

MappingModel.T011 CLASS;

4 values ←formattingFunction(column.CheckAbreviation, column.CheckValue);

5 for (i = 0; values is not null; i++) do

6 value ←values[i];

7 instance ←formattingFunction(value);

8 insert instance, class into MappingModel.T006 CHECK VALUE,

MappingModel.T015 INSTANCE;

9 end

10 go to Algorithm 3.10;

11 Result: Mapping check constraint concept

Every generated instance are associated to the class which represents the check con-

straint. For example, a check constraint defined to the inactive column is mapped to

the class named Boolean and two instances: boolean True and boolean False, defined as

possible constraint values.

After the mapping, as we can be seen in Example 17, the elements are represented by

the following OWL tags in the generated ontology:

Example 17:

<Declaration>

<Class IRI=“#Boolean”/>

</Declaration>

<Declaration>

<NamedIndividual IRI=“#boolean True”/>

</Declaration>

<ClassAssertion>

<Class IRI=“#Boolean”/>

<NamedIndividual IRI=“#boolean True”/>

</ClassAssertion>

48

<Declaration>

<NamedIndividual IRI=“#boolean False”/>

</Declaration>

<ClassAssertion>

<Class IRI=“#Boolean”/>

<NamedIndividual IRI=“#boolean False”/>

</ClassAssertion>

Rule 8: mapping check constraint column

In the Configuration Template, the field checked as check constraint is mapped to one

object property, wherein the object property name is composed of: a) the value corre-

sponding to the column name - starts with lowercase letter. For this object property

the domain and range are assigned, where the domain is specified using the class created

from the table column; range is specified using the class created with the Rule 7, which

represents the global concept of this set of check constraints values.

Considering the database column A008 inactive in T008 Procedure, this column is

mapped to the object property named inactive, wherein domain is defined to the Procedure

class range is defined to the Boolean class. This rule was partially proposed by Tissot 5.

Algorithm 3.10 shows the pseudocode of this mapping rule.

Algorithm 3.10: Rule 8 - mapping check constraint column

1 continue from line 11 of Algorithm 3.9;

2 objectProp ←formattingFunction(column), column.domain, column.range;

3 insert column, objectProp into MappingModel.T009 COLUMN CHECK VALUE,

MappingModel.T021 COLUMN TO OBJECT PROPERTY,

MappingModel.T019 OBJECT PROPERTY and

MappingModel.T022 OBJECT PROPERTY DOMAIN RANGE;

4 Result: Mapping check constraint column.

After the mapping, the elements are represented by the following OWL tags in the

generated ontology:

5Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

49

Example 18:

<Declaration>

<ObjectProperty IRI=“#inactive”/>

</Declaration>

<ObjectPropertyDomain>

<ObjectProperty IRI=“#inactive”/>

<Class IRI=“#Procedure”/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<ObjectProperty IRI=“#inactive”/>

<Class IRI=“#Boolean”/>

</ObjectPropertyRange>

Mapping hierarchies

For each related table a subclass hierarchy based on foreign keys definition is created. We

also propose a hierarchy of classes based on extracted data, used to represent information

of specific concept.

Rule 9: mapping inheritance relationships from tables

For each foreign key which is equivalent to the primary key in non-associative tables,

the class representing the referenced table is defined as a superclass of the class rep-

resenting the non-associative table. For example, A029 Arch Id is the primary key in

T029 Dental Arch table and it is a foreign key in T030 Dental Segment table. Thus, the

DentalArch class (created from T029 Dental Arch table) is a subclass of DentalSegment

class, created from T030 Dental Segment table. This rule is equivalent to Rules K and L

of Table 2.1. Algorithm 3.11 contains the pseudocode of this mapping rule.

50

Algorithm 3.11: Rule 9 - mapping inheritance relationships from tables

1 continue from line 11 of Algorithm 3.6;

2 relatedTable ←column.relatedTable;

3 if relatedTable is non-associative then

4 sourceTable ←column.tableForeignKey;

5 superclass ←getClass(sourceTable);

6 class←getClass(relatedTable);

7 insert superclass, class into MappingModel.T012 HIERARCHY;

8 end

9 Result: Mapping inheritance relationships from tables

After the mapping, the elements are represented by the following OWL tags in the

generated ontology:

Example 19:

<Declaration>

<Class IRI=“#DentalArch”/>

</Declaration>

<Declaration>

<Class IRI=“#DentalSegment”/>

</Declaration>

<SubClassOf>

<Class IRI=“#DentalArch”/>

<Class IRI=“#DentalSegment”/>

</SubClassOf>

Rule 10: mapping table record hierarchy

In Rule 6 the mapping of all tuples to classes, from tables of common concepts of multiple

domains (C), was proposed. These tables have relationships with another tables and

to their relation, as we describe in Rule 9, for each related table we create a subclass

hierarchy based on foreign keys definition. Creation of class hierarchy based on classes

mapped from tuples of these tables is proposed in this rule.

51

The table record hierarchy can be mapped when both related tables belong to tables

classified as (C). We performed this mapping for non-associative tables and for tables in

which the foreign key columns number is not greater than one in the referenced table.

This rule was partially proposed by Tissot 6.

To clarify this mapping, according to Rule 6, all tuples from T029 Dental Arch table

and T030 Dental Segment table are mapped to classes. Thus, the generated classes from

these table tuples are defined as a subclass of the generated class to these table. Con-

sidering the T029 Dental Arch table has a relationship with T030 Dental Segment table,

whereby one Dental Segment has one Dental Arch, the Dental Segment record (1, 1,

Upper Right Posterior Segment Deciduos) has a relation with Arch record, specific with

(1, Upper Dental Arch Deciduos). Algorithm 3.12 shows the pseudocode of this mapping

rule.

Algorithm 3.12: Rule 10 - mapping table record hierarchy

1 continue from line 8 of Algorithm 3.7;

2 if columnRecord has foreignKey and tuple.RelatedTable.tableType is C then

3 go to Algorithm 3.8 and continue from line 4;

4 class ←getClass(tuple);

5 superclass ←getClass(columnRecord.foreignKey.tuple);

6 insert superclass, class into MappingModel.T012 HIERARCHY;

7 end

8 Result: Mapping table record hierarchy

Faced with this, we define a record hierarchy between 1 Upper Dental Arch Deciduos

and 1 1 Upper Right Posterior Segment Deciduos record classes. After the mapping, the

elements are represented by the following OWL tags in the generated ontology:

Example 20:

<Declaration>

<Class IRI=“#1 Upper Dental Arch Deciduos”/>

</Declaration>

<Declaration>

6Tissot, Hegler Correa; Del Fabro, Marcos Didonet. Mapping relational databases to ontologies.
Informatics Department, Federal University of Paraná, Brazil, 2014. Not published.

52

<Class IRI=“#1 1 Upper Right Posterior Segment Deciduos”/>

</Declaration>

<SubClassOf>

<Class IRI=“##1 Upper Dental Arch Deciduos”/>

<Class IRI=“#DentalArch”/>

</SubClassOf>

<SubClassOf>

<Class IRI=“#1 1 Upper Right Posterior Segment Deciduos”/>

<Class IRI=“#DentalSegment”/>

</SubClassOf>

<SubClassOf>

<Class IRI=“#1 1 Upper Right Posterior Segment Deciduos”/>

<Class IRI=“##1 Upper Dental Arch Deciduos”/>

</SubClassOf>

Ontology axioms

None of the analyzed solutions of Section 2.4 presented definitions about ontological as-

pects which are not directly related to the RDB mapping. In our work, we propose a

rule definition not directly related to the database but generated from the mapping of the

elements. This because in ontologies we have situations where classes should not overlap,

for this, they must be explicitly defined as disjoint [4].

Rule 11: disjointness axiom

The definition of disjointness axiom about two classes states that an element cannot be

an instance of both classes and the disjointness axiom is relevant to ontology validation

enabling a lot of inference on an ontology. We propose in the ontology generation the

definition of disjointness axiom. From the data mapped and stored in a schema generated

from the Mapping Model, a class can be defined as disjoint of other class that has not

been mapped as its subclass. The elements are represented by the following OWL tags:

53

Example 21:

<DisjointClasses>

<Class IRI=“#Gender”/>

<Class IRI=“#MaritalStatus”/>

</DisjointClasses>

As we present in Example 21, the definition of disjointness axiom says directly that

nothing can be both a type of Gender and a type of Marital status.

3.1.4 Generation of ontology

Upon completion of the mapping rules, the information of database elements is mapped

to ontology elements and stored an instance of the schema generated from the Mapping

Model. We created a functionality to generate a file containing the information of onto-

logical elements in the OWL language format called Generation of ontology.

This functionality generates the structure of the OWL file by generating the syntaxes

from the results of the Mapping Process. The structuring of the ontology elements in the

file is performed in the following order: a) classes; b) subclasses; c) datatype property,

datatype property domain, datatype property range, datatype property UnionOf and

subproperty; d) object property, object property domain, object property range, object

property minCardinality and inverse object property; and e) instance and class assertion.

The generation of the OWL file allows the extracted ontological structure to be viewed and

validated in ontology editors, as well as it allows the ontology to be accessed automatically

by other applications.

3.2 Prototype

We developed a Prototype to automatically perform the Mapping Process. The Proto-

type has a web interface and was implemented using Java programming language, using

jdk 1.8.0 77, Apache Tomcat 7.0.37 application server and MySQL 6.3.6 database. The

Prototype is able to transform the information manually filled in the Configuration Tem-

54

plate file to OWL file. We perform the manual upload of Configuration Template in the

Prototype, and it starts the execution, first reading the data filled and on sequence the

Mapping Process automatically applying the mapping rules numbers 1 to 10, described in

the 3.1.3.3 section. We created a schema generated from the Mapping Model, structured

in a schema of Mysql database to store the processed information from the mapping.

At the end of the Mapping Process execution, the Prototype generates the ontology and

makes downloadable the OWL file.

In the Figure 3.5, the painted area corresponds to the components of our architecture

which were developed in the Prototype.

Figure 3.5: Architecture components of prototype

The Prototype is divided into structures, which are themselves subdivided into four

layers: action, bean, bo and dao. In the action layer classes that receive the requests and

guide the result of the processing are found. In the bean layer, the classes that define

objects and their attributes, which are necessary to carry out the transformation process,

are defined. In the bo layer the classes that execute the business rule of the Mapping

Process and generation of the OWL file are found, and in the dao layer the classes that

access objects in the instance of the schema generated from the Mapping Model are

specified.

Appendix D introduces a step-by-step guide for configuration of the Prototype en-

vironment. Once the configuration of the environment is set, we need a Configuration

Template file filled with the Database Schema, Tuples, and information from Logic Model,

55

in order to perform the Mapping Process. For the execution of the Mapping Process in

the Prototype the following two pieces of information are required: the database name,

information which, in addition to identifying the database that will be mapped, is used to

name the ontology; and the upload of the Configuration Template file. Figure 3.6 presents

the Prototype screen, which has a web interface.

Figure 3.6: Prototype

3.2.1 Development of mapping process

The Mapping Process performs different types of mappings, which occur according to the

types of database elements informed in the Configuration Template file. The mapping is

processed in the following sequence: database tables, database columns, database tuples,

and database.

In the Prototype, the Mapping Process is the main functionality which integrating

the architecture components. Through our Prototype this process comprises receiving

manually the Configuration Template file; apply the first 10 mapping rules presented in

subsection 3.1.3.3; and store the database and ontology elements in the instance of the

schema generated from the Mapping Model. In order to do this, the Prototype reads

the content of the Configuration Template and sends it to the Mapping Process which

56

automatically starts the mapping through the rows that have table information. After

that, the lines containing the information of columns are processed and finally, the tables

tuples are manually classified as specific concepts of a domain (D) and common concepts

to multiple domains (C).

The functions which implement the mapping rules initiate the mapping by non-

associative tables and concepts which represent the range of values of a constraint, and

these elements are mapped to classes. The range of constraint values are mapped for

instances, and these instances are related to the class which represents the concept of

the range of constraint values. After that, five functions were defined to map the ta-

ble columns for object property. The first function maps unique key columns, the second

maps primary key columns of associative tables, the third maps check constraint columns,

the fourth maps primary key columns of non-associative tables, and the last one maps

foreign key columns. There are also two functions that were elaborated to map columns

for datatype property; the first function maps columns checked in Configuration Template

as description columns, and the second one maps the other columns of the database that

were not classified as description; or unique, primary or foreign key. The functions that

map database columns for object property or datatype property also define the domain

and range of these properties, adopting the definitions established in the mapping rules.

Finally, we defined two functions to map the database tuples, the first to map tuples for

instances and the second to map tuples for classes.

3.2.2 Use of mapping model

The Mapping Model is a metamodel which we elaborated in order to create a schema

and maintain the relations between database elements and ontology elements. During the

Mapping Process, the database elements are automatically inserted into the tables defined

for the database context in the instance of the schema generated from the Mapping Model.

Once the database elements are stored and the mapping rules are applied, the ontology

elements are generated, which are also inserted into the tables defined for the ontology

context.

57

The relations between database elements and ontology elements is what enables source-

to-target traceability. The structure which we created generates an identification of the

mapping, enabling different database models to use the Prototype at the same time and

the information to be maintained during the mapping can be stored each one in its

respective domain. The script that enables the schema creation based on the Mapping

Model is presented in Appendix E.

3.2.3 Generation of OWL ontology

After completing the Mapping Process, the Prototype enables the upload of the file con-

taining the description of the ontological structure of the OWL language. The OWL file

generator was implemented in the Prototype without the aid of frameworks and other ex-

ternal tools. The syntaxes were defined in the scope of this work, following the standard

and the organization adopted by the Protégé [5] tool.

With the generation of the OWL file, it is possible to view the ontology manually or

by using a tool that supports the edition of ontologies.

3.2.4 Deployment diagram of architecture

We elaborated a deployment diagram [22], as we can observe in Figure 3.7, to represent

the physical structure of the Prototype. In the deployment diagram, the three application

nodes are represented, which are: the Web Client, which consists of the environment client

of the Prototype; RDB to onto Mapping Server, which corresponds to the application

server; and the Mapping Database Server, which corresponds to the schema where the

database elements and ontology elements are stored. The nodes are connected through

TCP/IP communication paths. Within each node are the components which we defined

to represent physical modules of code are represented.

58

Figure 3.7: Deployment diagram of architecture

3.3 Summary

In this chapter, we present in detail each component of the architecture which we elabo-

rated to map relational database to ontologies, but we also present in detail the Prototype

developed to carry out the automatic Mapping Process.

We defined an architecture in which we can carry out the Mapping Process using from

the database: a) the Database Schema, in which we can extract the database structure

and the database instances; and b) the Logic Model, in which we can use in conjunction

with the database structure. The database entry information definitions were defined so

that the Mapping Process could be carried out with the available database resources, and

it is not a deterrent to make use of the architecture in case the database has no Logic

Model or, in case consideration of the database tuples is undesired. This definition makes

the use of the architecture more flexible, facilitates the validation of imported data and

enables the architecture to be used in different scenarios of various degrees of complexity.

Regarding the set of defined rules, we presented new ways of mapping relational

database to ontologies, which count on the support of the Mapping Model so that ele-

59

ments representing the same concept are not duplicated and source-to-target traceability

of the mapped elements takes place. We also presented criteria to name the ontology

elements, which enables conventions to be established to be used by the community and

which contribute to a greater legibility and understanding of the constructed ontology.

In Rule 5 we presented that our configuration template allows creating an instance

with more than one database column. The composition of instance name with the PK

column is an alternative to avoid conflicts when instances of different classes have the

same description. However, the architecture allows informing the desired columns to be

mapped, not being an obligation use the suggested standard.

We proposed Rule 11 in this dissertation and there is no definition in the literature of

a disjointness axiom definition in mapping process of a database to ontology. However,

Rule 11 was not implemented in the developed Prototype.

The naming specifications of the elements in the Mapping Process and the use of

the Logic Model in the Configuration Template were performed with the objective of

contributing to the legibility of the ontology. This is because, from the Database Schema

the database elements may contain abbreviations in the composition of their name, which

may cause doubts as to their definition.

60

CHAPTER 4

CASE STUDY

One case study with three scenarios from a dental care system was elaborated to verify the

defined rules and architecture, enabling mapping relational database to ontology. Each

scenario was submitted to the developed Prototype. Section 4.2 presents the details of

each scenario elaborated for the case study. Section 4.3 describes the evaluation method.

Section 4.4 presents rules discussions, architecture discussions, and a comparative discus-

sion with a related work.

4.1 Objectives

The objectives of this case study are: a) to verify the rules applied in the Mapping Pro-

cess in a way that all specified rules can be tested and the traceability between database

elements and ontology elements was verified; b) to validate the operation of the architec-

ture elaborated, assessing in each of the scenarios the representativeness of the modeled

ontology; and c) to make a comparison between the proposed rules by one of the related

works and the rules that we defined for our Mapping Process.

4.2 Scenarios

In order to carry out the case study, the scenarios were elaborated using the same database.

For each scenario, we performed the verification of mapping rules numbers 1 to 10, de-

scribed in the 3.1.3.3 section. We also observed the behavior of the defined architecture

through the Prototype execution.

The case study was conducted with the authorization of use and data collection of a

dental services provider with the prerequisite that the identity of the institution as well as

the data was preserved. In this way, all the examples presented in this work were adapted

61

to conceal any type of identification of people and companies involved.

The difference between the three scenarios lies in the Mapping Configuration (MC),

created from the filling in the Configuration Template, which was designed to receive all

the information from the Database Schema and Logic Model, as detailed in the 3.1.1 sec-

tion. The following differences for gathering data are considered: in the first scenario only

the Database Schema; in the second scenario, the Database Schema and the Logic Model;

and the third scenario comprises the Database Schema and the Logic Model, where an

analysis by a specialist was performed. This specialist refers to a database administrator

responsible for maintaining the database and knowledge holder of the database business

model. This activity in the third scenario consisted of filtering the definitions which per-

form specific domain representations and of discarding the elements defined to support

security, configuration, and system log matters.

For each scenario, the database structure was extracted and populated in the MC

structure, considering in all scenarios 696 tuples and the same set of 25 tables presented

in Appendix F. The selected tables are associative and non-associative, and contain, in

its turn, columns of different data types and relationships. In the scenarios, we filled the

information of tuples only from tables classified as type of specific concepts of a domain

(D) and type of common concepts of multiple domains (C). The tables classified as type

of control (T) was discarded of our case study.

Table 4.1 presents the number of database elements we considered in each of the

scenarios. The quantities of database elements in the first and second scenario are the

same, differing only in the naming of the elements, which, in the second scenario, we used

the information from the Logic Model.

62

Table 4.1: Number of database elements
Number of elements

Database elements
First

scenario
Second
scenario

Third
scenario

Tables 25 25 25

Columns

Primary key 45 45 45
Unique key 1 1 1
Foreign key 19 19 19
Check constraints 28 28 28
No constraints 225 225 74

Tuples from tables of types D and C 696 696 696
Total 1039 1039 888
Columns with logical name 0 232 140
Tables with logical name 0 25 25

First scenario

The MC file designed to conduct the first scenario verifications only considers the Database

Schema (Logic Model was not considered). As we presented in Table 4.1, we used the set

of 25 Tables which contain 318 Columns, consisting of: 45 Primary keys, 1 Unique key, 19

Foreign keys, 28 Check constraints and 225 Columns with no constraints. We considered

696 Tuples which are not classified as control (T), as presented in the 16 section. This is

the reason that, as mapping rules 5 and 6 states, we should not import tuples of tables

with this classification.

Second scenario

The MC structure is designed to separately receive the information from the Database

Schema and Logic Model. Given this possibility, we elaborated different scenarios to verify

the operation of the Prototype developed. The MC file for the second scenario is designed

from the items put in in the first scenario, and their inclusion of the logical name of the

elements, which are found in the Logical Model. In Table 4.1 we showed that, of the 1039

database elements, 318 are columns and only 232 Contain logical name, adding up to 257

logical names, that is, considering the logical name of the tables.

63

Third scenario

There are columns created in the database to support configuration issues, data security,

or logs, which, in short, do not contribute to the domain representation. Given this, we

defined the third scenario in which the database schema columns defined for these types

of systemic controls are disregarded from the MC filling. From the MC file filled in the

second scenario, we performed an analysis by an expert in the table columns. The set

of tables and information related to the primary key, unique key, foreign key and check

constraints were kept. The columns which support security, configuration, and system

log matters are removed from this file. In Table 4.1 we demonstrate that, from items

of the second scenario, 151 Columns without constraints which the expert considered to

be unrelated to the domain representation concepts were removed. Thus, one of the

differences between the third scenario and the second scenario is the number of columns,

adding up to 167 columns, of which 140 Contain logical name.

4.3 Method

We developed an evaluation method based on four activities: 1) extraction of the database

information to fill the MC; 2) prototype execution; 3) ontology verification; and 4) tab-

ulation of results. The sequence of the activities application is presented in Figure 4.1.

Each activity represented by a rectangle generates an input artifact for the next activity.

64

Figure 4.1: Activities of method

For activity 1) extraction of the database information (Database Schema and Logic

Model) we performed a manual activity to extract the information from the Database

Schema, Tuples, and Logic Model for after fill the MC file. In order to extract the

information, we considered the set of selected tables in the scenarios, as described in the

4.2 section. The process of extracting the information from database tables occurs in

conjunction with the filling of MC file.

We first fill in the table information, according to Appendix A, supplying in addition

to the information of table structures the classification of the table representation, with

the possibilities: specific concepts of a domain (D), common concepts of multiple domains

(C), and control (T).

As a next step, the information regarding the columns of these tables is inserted. The

source table, the data type, and the constraints are put in in each column, and for foreign

key columns, the related table is also filled in. The columns which contain constraints we

also supply the range of defined values, e.g. male/female, and a domain definition which

represents them, e.g. gender.

According to the type of representation from the table data, we performed the extrac-

tion of table tuples, which are of specific concepts of a domain (D) and common concepts

of multiple domains (C) types. The extraction of these tuples is performed through queries

65

carried out in the database, elaborated to individually extract the tuples of each table.

The tuples were formatted and inserted into the MC. It was through this that the filling

of the MC file used in the first scenario of this case study was concluded.

In the second scenario, in which we performed the filling of the second MC file, we

followed the same steps as in the first scenario to extract the information from the database

schema. Table and column information from Logic Model is included. While elaborating

the third scenario, we initially filled the third MC file, following the same steps of the

second scenario to extract the information from the Database Schema and Logic Model.

The expert then performs a complete analysis of all table columns in the database schema,

in order to identify and remove from the MC file the columns that were modeled to support

security, configuration, and system log matters and which do not significantly contribute

to the representation of the domain. In this way, the MC filling is concluded. After

that, we performed activity 2) prototype execution for each of the scenarios, initiating

the process by uploading the MC file. This activity was individually performed for each

scenarios. When the prototype execution was completed, for each scenario an OWL file

was generated.

We then performed activity 3) ontology verification in two steps: first with an analysis

of mapped elements and second a verification applying inferences. Both activities were

performed using the Protégé [5] tool, which is an OWL ontology creation and edition

tool, developed by the Stanford University Center for Biomedical Informatics Research.

Protégé allows the application of inference mechanisms in so as to verify the consistency

of the definitions performed.

First, we used the Protégé to support a direct analysis of the database elements with

the ontology elements generated in each of the scenarios. This analysis enabled verifying

whether the defined mapping rules were applied correctly by the Mapping Process. For

this reason, we analyzed all the generated elements in all the scenarios. We observed

matters regarding the elements organization, the naming and specific characteristics of

each one. Second, we used the Protégé to apply inferences in each OWL file using the

reasoner Pellet [6]. The inferences carry out the ontology classification, the computation

66

of inferred instances and the validation of ontology consistency.

After that, we performed activity 4) tabulation of results in which we presented a

number of ontology elements generated from the database elements considered in the

three scenarios, as presented in the Section 4.2.

4.4 Results and discussions

In order to validate the operation of the architecture and the application of the rules,

we submitted the three scenarios to the Prototype. Table 4.2 presents the number of

ontology elements generated for each scenario.

Table 4.2: Number of ontology elements
Number of elements

Ontology elements
First

scenario
Second
scenario

Third
scenario

Class 109 109 108
SubClass 121 121 121

Object property 68 74 73
Functional 50 54 54
Inverse 30 32 32
Domain 105 107 107
Range 84 86 85
Min cardinality 76 76 76

Datatype property 142 122 64
SubProperty 5 5 5
Domain 141 128 67
Range 142 128 66

Instances 668 668 668
Class assertion 668 668 668

We classified the results of Table 4.2 by scenario (columns) and in four categories

of ontology elements (lines), which are: Class, Object property, Datatype property, and

Instances. In the Class category we presented the total of Class and Subclass that were

generated. The elements of the Class category were generated from Rules 1, 2, 6, 7, 9, and

10, as covered in the 3.1.3.3 section. We also presented the total number of Object property

elements and their definitions of Functional, Inverse, Domain, Range, and Min cardinality

for Object property. The elements of the Object property category were generated from

67

Rules 2, 4, and 8. In the Datatype property category we presented the total number of

Datatype property elements, and their SubProperty, Domain, and Range definitions. The

elements of the Datatype property category were generated from Rules 3. Finally, we

presented the total number of Instances and Class assertion, generated from Rules 5 and

7.

Based on the quantities previously presented in Table 4.1, we can observe that the

number of database elements for the first and second scenarios is the same. However,

due to the use of the Logic Model in the second scenario, we observed in Table 4.2 a

difference in the number of ontology elements that were generated. On the one hand,

the logical name can present specification which differentiates the elements, generating

a greater amount, such as the elements of Object property, which go from 68 in the first

scenario to 74 in the second scenario. On the other hand, the logical name of few elements

can be the same, generating a smaller number of elements, such as the Datatype property

elements, which go from 142 in the first scenario to 127 in the second scenario.

To provide a better understanding of the results presented in Table 4.2, we present

in the Subsection 4.4.1 observations regarding the mapping rules. In Subsection 4.4.2

we cover the operation of the architecture considering the three scenarios. In Subsection

4.4.3, we present the obtained results by applying rules from another work [9], and a

comparative discussion of the obtained results.

4.4.1 Rule discussions

From the set of rules we presented in 3.1.3.3 and so as in to verify the rules applied in the

Mapping Process, we performed the following activities: 1) verification in parts of a set

of rules that sensitize a given set of elements; and 2) verification of each database element

and its respective generated element in the ontology.

Activity 1) verification in parts of a set of rules, was established so that we could

test isolated mappings for the generation of each specific set of ontology elements. This

is because ontology verifications in parts enable controlled observation of the generated

elements, facilitating the identification of defects.

68

For this, we divided the Generation of Ontology into four parts. For each ontology

structure verified, new ontology elements are incremented in the following order: 1) Class

and Subclass, 2) Datatype properties, 3) Object properties, and 4) Instances. Each gen-

erated ontology, in a total of four, was individually checked with the Protégé tool [5].

This tool supports check generated elements. The reasoner Pellet [6] was used to perform

classifications, compute instances, and validate the ontology consistency.

The first generated ontology was composed of Class and Subclass which derived from

Rules 1, 2, 6, 7, 9, and 10, as presented in the 3.1.3.3 section. By using Protégé we were

able to view the ontology and we identified that the Class and Subclass were correctly

declared. We then executed the Pellet reasoner and there was no identification of inference

errors in the ontology.

The second ontology was composed of Class, Subclass and we added Datatype prop-

erties, which derived from Rule 3. In the ontology, we observed that the elements of

Datatype properties and the definitions of SubProperty, Domain and Range, were repre-

sented correctly. We executed the Pellet reasoner, and the inferences in the ontology were

carried out successfully.

The third ontology was structured with Class, Subclass, Datatype properties and we

added Object properties, generated from Rules 2, 4, and 8. The elements of Object proper-

ties and the definitions of Functional, Inverse, Domain, Range and Min cardinality were

represented correctly, and the inferences were successfully applied.

The fourth and last ontology was composed of Class, Subclass, Datatype properties,

Object properties and we added Instances and Class assertion, generated from Rules 5

and 7. The generated ontology represented correctly all the elements, and the inferences

were applied successfully.

After the ontology verification in parts, we generated an ontology for each single one of

the scenarios. We identified the representation of all mapped elements in each scenario and

the inferences were successfully applied. Figure 4.2 presents an example of class hierarchy

classification inferred by the reasoner Pellet in the third scenario. In the left part (a) of

the Figure, we present the asserted hierarchy of the Classes, which corresponds to the

69

hierarchical representation in which the Classes were initially constructed. In the right

part (b) of the Figure, we present the hierarchy of Classes inferred and automatically

calculated by the reasoner Pellet. Regarding the class equivalence classifications, no

inferences were made because mapping rules do not include definitions of equivalence.

Figure 4.2: Class hierarchy classification: a) asserted and b) inferred

In Figure 4.3 we present an illustrated example of an analysis performed. Give

the following database elements: T002 Dentist (a002 dentist id: int, a002 cro: varchar,

a002 dentist name: varchar, a017 marital status id: int) with the Mapping Process we

obtained the following elements of ontology: Dentist (cro, dentistName, hasDentistId,

isDentistIdOf, hasMaritalStatusId, isMaritalStatusIsOf).

Figure 4.3: Example of mapping rules

We can observe an example in Figure 4.3 in which Rules 1, 3 and 4 were applied.

Rule 1 maps non-associative table to class, where table T002 Dentist is mapped for a

class Dentist. Rule 3 maps database columns to Datatype properties, where columns

a002 cro and a002 dentist name are mapped to the Datatype properties cro and den-

tistName. Rule 4 maps database columns (PK, FK e UK) to Object properties, where

70

columns a002 dentist id and a017 marital status id are mapped to the Object properties

hasDentistId, isDentistIdOf, hasMaritalStatusId, and isMaritalStatusIsOf.

When we individually check each of the rules and each generated element in the on-

tologies of the three scenarios, we verify: the fulfillment of the definitions established in

each one of the Mapping rules; the naming and correct application of specific characteris-

tics of each element; the correct grouping of elements which could generate duplicity; and

the establishment of relations among the database elements in the instance of the schema

generated from the Mapping Model.

4.4.2 Architecture discussions

The architecture validation was performed in each of the architecture components, as

presented in the 3.1 section. We observed the behavior of the architecture and the ontology

representativeness in each of the scenarios.

The Configuration Template structure fulfilled satisfactorily the filling of the database

elements consumed by the Mapping Process. The developed Prototype processed the

Mapping Configuration (MC) and all elements declared in the file were mapped. We

had few problems with tuples when part of their content contained quotation marks (“”),

requiring the elimination of those characters from the file. We observed in few tuples the

existence of other characters such as: (?, Ç, , -, *); which, however, did not cause errors

in the execution of the Prototype.

We verified the implemented Rules in the Prototype, both in respect to the coherence

of the rule definitions, as we covered in the Subsection 4.4.1, and regarding the mapping

of the elements in the instance of the schema generated from the Mapping Model. In

order to verify the mapping of elements, we query the tables and we verified whether

all the database elements reported in the MC were stored in the instance and related to

the ontology elements. As for the Generation of Ontology, the OWL file was constructed

correctly with all mapped ontology elements.

We noticed that the naming of the elements in the Mapping Process and the use of

the Logic Model in the Configuration Template increase the legibility of the ontology.

71

For instance, in the three scenarios, there is the Column a002 ci Identi, considering the

application of the naming specifications in this element, the numbers, and special char-

acters are removed, mapping according to Rule 3, Datatype property CiIdenti. However,

the name of the element causes a fuzzy understanding of its correct representation, being

either Civil identity or Citizen identification. With this, we confirmed that legibility for

humans is impaired when we perform Mapping Process using only database schema. With

the Logic Model, we identified that the Column a002 ci Identi has the logical name Num-

ber of civil identity. When we considered this logical name in the Mapping Process, we

map this Column to the Datatype property NumberCivilIdentity, which is more descriptive

than CiIdenti, generated from the Database Schema.

Therefore, we observed a greater clarity in the element names of the second scenario,

that is, compared to the first scenario, highlighting one of the benefits gained through the

use of the Logic Model in the Mapping Process. With the elaboration of the third scenario

using the Database Schema, Logic Model, and the analysis of an expert in the database

elements to be mapped, we obtained, besides a representation of the domain with greater

legibility, definitions which are more coherent to the domain. In the first and second

scenarios, several mapped elements, such as columns defined to ensure data security, gen-

erated a large amount of information which was not related to the domain representation.

During the analysis of the expert in the third scenario, out of the 151 Columns that were

excluded, 75 controlled the security of database tuples and 76 controlled operations of the

system which populates data in the database.

The Mapping Model enabled us to map the relation between the database elements

and the ontology elements. Unlike other approaches which performed only 1:1 mapping

of the elements, we modeled a database schema from the Mapping Model so that 1:N

relationships could be represented. Due to this structure, n database elements can be

mapped to 1 element in the ontology, and vice versa. A practical example is the repre-

sentation of a property generated from a primary key column. This column may exist in

different tables, being represented by a foreign key column. We understand that it does

not make sense to represent n times the same element that represents the same concept

72

but inserted in different domains.

Table 4.1 shows that in the three scenarios there are 93 database elements classified

as Primary key (PK), Unique key (UK), Foreign Key (FK) and Check constraints. These

elements, according to Rule 4, are mapped to the Object properties. When looking at the

results presented in Table 4.2, for the first scenario 68 Object properties were generated,

while in the second scenario 74 and in the third scenario 73. In these three scenarios,

the amount of Object properties is smaller than the 93 database elements, showing the

elimination of elements that would be duplicated in the ontology. This matter is made

clear when we identify in the Object properties several Domain definitions, each being

specified to represent the different domains in which the Object property is inserted, e.g.

the Object property hasCityId, where the source of the element is a PK, containing the

Range City and the Domains Dentist, Patient, and Neighborhood, Classes which represent

tables where this PK is an FK.

Unlike other proposals which map classes from one table, Rules 1, 2, 6, and 7 set

criteria for mapping different types of database elements to classes. With this, as seen

in Table 4.2, we could represent a greater number of Classes in the ontology, that is,

compared to the number of Tables, as can be seen in Table 4.1. Although the number

of database elements which are mapped to Classes is the same in all three scenarios, the

third scenario presents one Class less because, during the expert analysis, a column was

removed from an associative table. With this, a Rule 2 criterion was not applied, which

generates a Class for non-associative tables which contain columns other than primary

keys, thus generating one Class less than in the first and second scenarios.

Although we considered the third scenario to be the most interesting for the con-

struction of domain ontology and, in this sense, the expert analysis is indispensable and

consists of a manual activity, the automatic extraction of the database schema is an issue

that would quicken the process of the MC filling, even whether adjustments were made

into the file structure.

73

4.4.3 Comparative discussion

The mapping process defined by Irina [9] is one of the proposals which clearly presents the

definition and application of Mapping rules, proposing rules for mapping tables, columns,

constraints, and tuples. Although [9] mentions an electronic address to access the Proto-

type developed for the QUALEG DB tool, such address is no longer available for online

access.

The database elements used in the three scenarios and totaled in Table 4.1 were used to

simulate the application of the mapping rules proposed by [9]. For this, we performed the

following activities: 1) gathering of the proposed rules in [9]; 2) simulating the mapping

process of Astrova [9], which we refer to as process B; and 3) tabulating the obtained

results.

For activity 1) gathering of the proposed rules in [9], where 13 rules were identified, 3

of them to to map Tables, 9 to map Columns and 1 to map Tuples. After this, activity

2) simulating the mapping process of [9] was conducted. For each rule we identified the

number of database elements, we simulated the mapping process according to the rules

gathered and took note of the number of ontology elements which would be generated

according to process B. Finally, we performed activity 3) tabulating the obtained results,

where we totaled the number of elements which would be generated according to process

B. Table 4.3 presents the number of elements generated in each of the scenarios, where

each scenario was related to the results of our mapping process, which we refer to as A

and the simulation results of the mapping process.

74

Table 4.3: Comparative of generated ontology elements
Number of elements

Ontology elements
First

scenario
Second
scenario

Third
scenario

A B A B A B
Class 109 24 109 24 108 24

SubClass 121 19 121 19 121 19
Object property 68 65 74 65 73 65

Functional 50 23 54 23 54 23
Inverse 30 27 32 27 32 27
Domain 105 42 107 42 107 42
Range 84 42 86 42 85 42
Min cardinality 76 42 76 42 76 42

Datatype property 142 225 122 225 64 74
Enumerated 0 25 0 25 0 25
SubProperty 5 0 5 0 5 0
Domain 141 225 128 225 67 74
Range 142 225 128 225 66 74
Max cardinality 0 225 0 225 0 74

Instances 668 221328 668 221328 668 221328
Class assertion 668 221328 668 221328 668 221328

A= Results of our mapping rules
B= Results of mapping rules proposed in [9]

Based on the data presented in the simulation of the mapping process B, we performed

comparative analyses. Rules of B generate the Enumerated and Max cardinality definitions

for the Datatype property element, unlike the definitions we made. However, we defined

SubProperty for the element Datatype property and we observed that due to the defini-

tions for mapping tuples of B generate many Instances, where A=668 and B=221328;

consequently the ontology will contain the representation of many elements. Regarding

this, Rule 5, which we defined and presented in the 3.1.3.3 section for mapping instances,

does not generate elements for each single piece of the information represented in a tuple.

We generated in A only one instance for all tuple content, therefore, for process A of

Table 4.3, the amount of Tuples and Instances is the same. Considering that a generated

ontology can be used to share a common understanding of the domain represented in it,

a smaller ontology is easier to be processed and to be interpreted by people.

Rules 6, 7, and 8 results in an increase in the number of generated elements. We

noticed that our Mapping Process (A) generates a greater number of Class, Subclass and

75

Object properties. We concluded that, the greater number of Class, more definitions of

concepts are represented in the ontology; the greater number of Subclass, the greater

number of taxonomies which represent more sets and subsets of elements; and the greater

number of Object property, more associations among concepts are represented.

For the effect of separating the content which represents knowledge domain from the

content which represents operational knowledge, in the Rules defined in this paper and

presented in the 3.1.3.3 section, we proposed methods to address this matter. The tuples

mapping is not applied to all tables. The tables are classified precisely to map the infor-

mation in it stored and to conduct the mapping only of data related to the represented

domain.

4.5 Summary

The three scenarios enabled us to observe the behavior of our architecture in the light

of a) the process of mapping performed only with the database schema; b) the Database

Schema with the Logic Model, or, c) the Database Schema with the Logic Model and

the analysis of an expert. We noticed that when the mapping process with the logical

name of the database elements is carried out, it results in a more legible ontology, that

is, compared to the Mapping Process considering only the database schema. Through

the case study, it was also possible to evaluate the operation of the architecture in the

Mapping Process, the traceability between the mapped elements and the defined mapping

rules.

Given the results of the third scenario, compared to the second scenario, we came to

understand that expert analysis in the Configuration Template contributes to the Mapping

Process. This is due to the information which is modeled in the database, but which do

not perform the representation of a concept of the mapped domain, being irrelevant for

the mapping process.

So as in to simplify and standardize the name of the elements of the ontology, we

applied a function to format the name of the elements, in order to maintain a naming

pattern. In case the logical name is not entered in Mapping Configuration, we also apply

76

the formatting function to the physical name. Following the principle of elimination

of duplicated elements, we elaborated mechanisms for the non-generation of duplicated

elements and so that a hierarchy relation among these items is established, as well as a

single definition of concepts.

We observed a greater number of ontology elements to define concepts, taxonomies,

and associations through the comparative analysis of our Mapping Process (A), with the

simulation of the mapping process B in [9].

77

CHAPTER 5

CONCLUSIONS

Ontologies define classes, properties, relations, restrictions and axioms on a given domain

of knowledge, to represent elements of the real and conceptual world. Through the use of

ontologies, a specific domain can be modeled and used in several ways. We understand

that an ontology is only a start for a series of actions that follow. With it we can

direct efforts for the development of semantic web applications, aiming at obtaining more

accurate results in information research. We can use it in order to obtain interoperability,

detect inconsistencies and define terminology standards.

Considering the large amount of database that we have been modeling and being used

by systems, we have proposed in this work an architecture to construct ontologies of

specific domains of knowledge from a relational database. We designed an architecture

based on four main definitions: a) we designed a schema to map the relations between

concepts of relational database and ontologies; b) we defined a Configuration Template

which can be filled with the Database Schema, Tuples and Logic Model; c) we developed

a prototype to read the Configuration Template, to perform the Mapping Process and to

store the mapping results in a an instance of the schema generated from the Mapping

Model; and d) Prototype reads the data stored in the instance to generate the OWL file.

By filling the Configuration Template of our architecture, we identified the importance

of an expert analysis of the information which is filled in. It enables the complementation

of Logic Model definitions and even enables to check whether all database elements should

be considered by the Mapping Process. Examples of complementation of information are:

a) inclusion of constraints which were not defined in the conception of database schema,

and b) exclusion of elements which have been defined in the database schema, but they do

not correspond to conceptual definitions of the domain to be represented in the ontology.

In this way, we realize the filling of the Configuration Template, generating the Mapping

78

Configuration, an activity which, even it demands a great effort to be performed manually,

when carried out in parallel with the analysis of the content by a specialist, results in an

ontology with greater legibility and definitions which are more consistent with the domain

represented.

We observed the need of maintaining the mapping between relational database ele-

ments and ontology elements and with this have the traceability of the elements, aiming

to eliminate duplicate ontology elements which have the same meaning in the mapped

domain. With a mapping structure we can expand our possibilities, e.g. a) we can track

the transformation process for its verification; b) we can perform a reverse engineering

from ontology to relational database; c) we can design a software for querying data from

relational database through ontology; and others features which mapping structure can

facilitate. Therefore, we elaborate a Mapping Model, integrated to the architecture. The

Mapping Model, in addition to making possible the benefits mentioned above, it supported

the validation process of the mapping rules.

When we conducted an analysis of previous works, we revised mapping rules and we

do not identify a preoccupation about how ontology elements should be named. We also

do not identify works which use the Logic Model as an input to the mapping process.

The Logic Model contains definitions of objects or events which occurring in the real

world and its definitions can enrich the name of ontology elements. In light of this, in our

architecture, in addition to the database schema, we consider using the Logic Model for

gathering more details of database elements. Based on the analysis of previous works in the

area, we rewrite the proposed mapping rules for better naming the ontology elements and

for correcting mistakes identified. We consider that the goal of designing an architecture

to map the relational database to ontologies has been achieved. Through the prototype

developed and the case study which we carried out, we validated the mapping rules which

we proposed and the operation of the architecture. The use of the Logic Model in the

Mapping Process is unprecedented and contributes to the generation of a more legible

ontology. The Mapping Model contributed to the traceability of the Mapping Process

and the elimination of duplicate elements. These contributions had not been considered

79

previously and collaborate in a significant way for an adequate modeling of the elements

declared in the ontology.

5.1 Future work

• Incorporate rules into the mapping process which allow to generate an ontology

with definitions which complete and associate the represented concepts. For this,

we propose to implement Rule 11 to define disjointness axiom in OWL ontology.

• Define disjoint classes, equivalence classes, and new rules to improve the semantics

of elements. By doing this, we will be able to perform queries in the ontology which

answer questions.

• We have conducted a case study which involved a manual analysis of a database.

We propose to automate the extraction of Database Schema and Logic Model to

quicken the process of Configuration Template filling.

• Adapt the architecture to integrate ontologies of the same domain and to generate

a single ontology, establishing interoperability among different database schemas.

• Design a structure to store specific conditions of the database mapping. When the

mapping is reprocessed, the architecture will automatically be able to apply these

conditions.

• We propose to integrate the Mapping Process with a thesaurus for naming the

ontology elements with more appropriate terms used in the domain. Thus, we

propose to perform an adequacy in names of mapped ontology elements.

80

REFERENCES

[1] Owl web ontology language guide. http://www.w3.org/TR/owl-guide/. Accessed:

Jun, 2015.

[2] Owl web ontology language overview. http://www.w3.org/TR/owl-features/. Ac-

cessed: Jun, 2015.

[3] Owl web ontology language reference. http://www.w3.org/TR/owl-ref/. Accessed:

Jul, 2015.

[4] Protégé ontology editor. http://protege.stanford.edu/conference/2004/

slides/6.1_Horridge_CommonErrorsInOWL.pdf. Accessed: Set, 2016.

[5] Protégé ontology editor. http://protege.stanford.edu/products.php. Accessed:

Jul, 2015.

[6] Protege-owl reasoning api. http://protegewiki.stanford.edu/wiki/

ProtegeReasonerAPI. Accessed: Oct, 2016.

[7] Serge Abiteboul, Richard Hull, e Victor Vianu. Foundations of databases, volume 8.

Addison-Wesley Reading, 1995.

[8] Vińıcius Camargo Andrade. Transformação de modelos de diagrama de sequência

uml contemplando restrições de tempo e energia para rede de petri temporal. 2013.

[9] Irina Astrova. Rules for mapping sql relational databases to owl ontologies. Metadata

and Semantics, pages 415–424. Springer, 2009.

[10] Irina Astrova, Nahum Korda, e Ahto Kalja. Rule-based transformation of sql rela-

tional databases to owl ontologies. In Proceedings of the 2nd International Conference

on Metadata & Semantics Research, 2007.

81

[11] Jean Bézivin e Olivier Gerbé. Towards a precise definition of the omg/mda frame-

work. Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th Annual

International Conference on, pages 273–280. IEEE, 2001.

[12] Francesca Bugiotti. A model oriented approach to heterogeneity. PhD thesis, Roma

Tre University, Dept. of Informatics and Automation, Roma, 2012.

[13] Guntars Būmans e Kārlis Čerāns. Rdb2owl: A practical approach for transforming

rdb data into rdf/owl. Proceedings of the 6th International Conference on Semantic

Systems, I-SEMANTICS ’10, pages 25:1–25:3, New York, NY, USA, 2010. ACM.

[14] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view of data.

ACM Transactions on Database Systems (TODS), 1(1):9–36, 1976.

[15] Isabel F Cruz e Huiyong Xiao. The role of ontologies in data integration. Engineering

intelligent systems for electrical engineering and communications, 13(4):245, 2005.

[16] Nadine Cullot, Raji Ghawi, e Kokou Yétongnon. Db2owl: A tool for automatic

database-to-ontology mapping. SEBD, pages 491–494, 2007.

[17] Mona Dadjoo e Esmaeil Kheirkhah. An approach for transforming of relational

databases to owl ontology. arXiv preprint arXiv:1502.05844, 2015.

[18] John Davies, Dieter Fensel, e Frank Van Harmelen. Towards the semantic web:

ontology-driven knowledge management. John Wiley & Sons, 2003.

[19] Marcos Didonet del Fabro. Gestion de métadonnées utilisant tissage et transforma-

tion de modèles. PhD thesis, Université de Nantes, 2010.

[20] Carlos Julian Menezes Araújo e Robson do Nascimento Fidalgo. Metamodelo para

banco de dados.

[21] Ramez Elmasri e Shamkant Navathe. Fundamentals of database systems sixth edi-

tion pearson education. Reproduced with permission of the copyright owner. Further

reproduction prohibited without permission, 2011.

82

[22] Martin Fowler. UML distilled: a brief guide to the standard object modeling language.

Addison-Wesley Professional, 2004.

[23] Frederico Freitas e Stefan Schulz. Ontologias, web semântica e saúde. Revista

Eletrônica de Comunicação, Informação & Inovação em Saúde, 3(1), 2009.

[24] Dragan Gaševic, Dragan Djuric, e Vladan Devedžic. Model driven engineering and

ontology development. Springer Science & Business Media, 2009.

[25] Noreddine Gherabi, Khaoula Addakiri, e Mohamed Bahaj. Mapping relational

database into owl structure with data semantic preservation. CoRR, abs/1205.5922,

2012.

[26] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowl. Acquis., 5(2):199–220, junho de 1993.

[27] Thomas R Gruber. Toward principles for the design of ontologies used for knowledge

sharing? International journal of human-computer studies, 43(5):907–928, 1995.

[28] Nicola Guarino. Formal ontology, conceptual analysis and knowledge representation.

International journal of human-computer studies, 43(5):625–640, 1995.

[29] Celio Cardoso Guimaraes. Fundamentos de bancos de dados: modelagem, projeto de

linguagem SQL. Ed. da Unicamp, 2003.

[30] Roberto Heinzle. Um modelo de engenharia do conhecimento para sistemas de apoio

a decisão com recursos para racioćınio abdutivo. PhD thesis, Universidade Federal

de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia

e Gestão do Conhecimento, Florianópolis, 2011.

[31] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, e Chris Wroe.

A practical guide to building owl ontologies using the protégé-owl plugin and co-ode

tools edition 1.0. University of Manchester, 2004.

[32] Michal Laclavik. Rdb2onto: Relational database data to ontology individuals map-

ping. 2006.

83

[33] Tony Lawson. A conception of ontology. Unpublished manuscript, University of

Cambridge, 2004.

[34] Man Li, Xiaoyong Du, e Shan Wang. A semi-automatic ontology acquisition method

for the semantic web. Advances in Web-Age Information Management, pages 209–

220. Springer, 2005.

[35] Haiyun Ling e Shufeng Zhou. Mapping relational databases into owl ontology. In-

ternational Journal of Engineering and Technology, 5(6), 2013.

[36] Mohammed Reda Chbihi Louhdi, Hicham Behja, e Said Ouatik El Alaoui. Transfor-

mation rules for building owl ontologies from relational databases. Computer Science

& Information Technology (CS & IT), 3:271–283, 2013.

[37] Giansalvatore Mecca, Guillem Rull, Donatello Santoro, e Ernest Teniente. Semantic-

based mappings. International Conference on Conceptual Modeling, pages 255–269.

Springer, 2013.

[38] Giansalvatore Mecca, Guillem Rull, Donatello Santoro, e Ernest Teniente. Ontology-

based mappings. Data & Knowledge Engineering, 98:8–29, 2015.

[39] Alexandra Moreira, Ĺıdia Alvarenga, e Alcione de Paiva Oliveira. O ńıvel do conhec-

imento e os instrumentos de representação: tesauros e ontologias. DataGramaZero-

Revista de Ciência da Informação, 5(6), 2004.

[40] Muhammad Mughees. Data migration from standard sql to nosql. 2014.

[41] Teresa Podsiad ly-Marczykowska, Tomasz Gambin, e Rafa l Zawíslak. Rule-based

algorithm transforming owl ontology into relational database. Beyond Databases,

Architectures, and Structures, pages 148–159. Springer, 2014.

[42] Alex Mateus Porn. Teste de mutação para ontologias owl. Master’s thesis, 2014.

[43] Erhard Rahm e Philip A Bernstein. A survey of approaches to automatic schema

matching. the VLDB Journal, 10(4):334–350, 2001.

84

[44] Raghu Ramakrishnan e Johannes Gehrke. Database management systems. 2003.

[45] C Ramathilagam e ML Valarmathi. A framework for owl dl based ontology con-

struction from relational database using mapping and semantic rules. International

Journal of Computer Applications, 76(17):31–37, 2013.

[46] Yutao Ren, Lihong Jiang, Fenglin Bu, e Hongming Cai. Rules and implementation for

generating ontology from relational database. Cloud and Green Computing (CGC),

2012 Second International Conference on, pages 237–244. IEEE, 2012.

[47] Andrea Rodacki. Aplicação de estratégias de integração de bancos de dados: Um

estudo de caso. Master’s thesis, Universidade Federal do Paraná, 2000.

[48] Valdemar Waingort Setzer. Banco de dados: conceitos, modelos, gerenciadores, pro-

jeto logico, projeto fisico. Edgard Blucher, 1989.

[49] Abraham Silberschatz, Henry F Korth, S Sudarshan, e Daniel Vieira. Sistema de

banco de dados. Elsevier, 2006.

[50] John F. Sowa. Ontology. http://www.jfsowa.com/ontology/index.htm. Accessed:

Jul, 2015.

[51] Steffen Staab e Rudi Studer. Handbook on ontologies. Springer Science & Business

Media, 2013.

[52] Zdenka Telnarova. Relational database as a source of ontology creation. IMCSIT,

pages 135–139, 2010.

[53] Mike Uschold e Michael Gruninger. Ontologies: Principles, methods and applications.

The knowledge engineering review, 11(02):93–136, 1996.

[54] Konstantinos N. Vavliakis, Theofanis K. Grollios, e Pericles A. Mitkas. Rdote -

transforming relational databases into semantic web data. Axel Polleres e Huajun

Chen, editors, ISWC Posters&Demos, volume 658 of CEUR Workshop Proceedings.

CEUR-WS.org, 2010.

85

[55] Denny Vrandečić. Ontology evaluation. Handbook on Ontologies, pages 293–313.

Springer, 2009.

[56] Denny Vrandecic, Johanna Völker, Peter Haase, Duc Thanh Tran, e Philipp Cimiano.

A metamodel for annotations of ontology elements in owl dl. Proceedings of the 2nd

Workshop on Ontologies and Meta-Modeling, WoMM 2006. LNI, 96, 2006.

[57] Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard

Schuster, Holger Neumann, e Sebastian Hübner. Ontology-based integration of

information-a survey of existing approaches. IJCAI-01 workshop: ontologies and

information sharing, volume 2001, pages 108–117. Citeseer, 2001.

[58] Dewi Wisnu Wardani e Josef Küng. Mapping rdb to rdf with higher semantic ab-

straction. pages 59–67, 2016.

[59] Daya C Wimalasuriya e Dejing Dou. Using multiple ontologies in information ex-

traction. Proceedings of the 18th ACM conference on Information and knowledge

management, pages 235–244. ACM, 2009.

[60] Lei Zhang e Jing Li. Automatic generation of ontology based on database. Journal

of Computational Information Systems, 7:4:1148–1154, 2011.

86

APPENDIX A

STRUCTURE OF CONFIGURATION TEMPLATE

Configuration Template Item Used to

TYPE
In this field is filled the database element. The collumn receive this three value options:
T(for tables); C(for columns) ; and R (for tuples). Mandatory: yes

NM PHYSICAL ELEMENT In this field is filled the element physical name. Mandatory: yes
NM LOGICAL ELEMENT In this field is filled the element logical name. Mandatory: no

TABLE TYPE
In this field is filled the table type, a classification used to classify the table content.
The column receive this three value options: C(as conceptual); D(as domain); and T(as transactional).
Mandatory: yes - for tables

IS ASSOCIATIVE
In this field is filled a table characteristic: 1(for associative tables) and 0(for non-associative tables).
Mandatory: yes - for tables

RELATED TABLE In this field is filled the table which the column belongs to. Mandatory - yes for columns and tuples
COLUMN DATATYPE In this field is filled the column datatype. Mandatory - yes for columns
IS PRIMARY KEY In this field is filled a column characteristic: 1 for primary key columns. Mandatory: no
IS UNIQUE KEY In this field is filled a column characteristic: 1 for unique key columns. Mandatory: no
IS FOREIGN KEY In this field is filled a column characteristic: 1 for foreign key columns. Mandatory: no

TABLE FOREIGN KEY
In this field is filled the foreign key source table. It is required when filled IS FOREIGN KEY column.
Mandatory: no

IS DESCRIPTION In this field is filled a column characteristic: 1 for description columns. Mandatory: no

IS COLUMN CHECK
In this field is filled a column characteristic:
1 for check constraint columns.
Mandatory: no

CHECK VALUE
In this field is filled the set of values defined for the check constraint column. It is required when filled
IS COLUMN CHECK column. Mandatory: no

CHECK ABREVIATION
In this field is filled the set of abbreviation values defined for the check constraint column. The values
are separeted by commas. It is required when filled IS COLUMN CHECK column.
Mandatory: no

SUBJECT CHECK VALUE

In this field is filled the term which we use to represent a set of values defined in a check constraint. The values
are separeted by commas. It is required when filled
IS COLUMN CHECK column
Mandatory: no

TABLE COLUMNS
In this field is filled the table columns inside brackets
and separated by commas.
Mandatory: yes for tuples

COLUMN VALUES

In this field is filled the record values inside brackets
and separated by commas. The values needs to respect
the columns sequence filled in the field Table Columns
Mandatory: yes for tuples

87

APPENDIX B

ER MODEL OF MAPPING SCHEMA

88

APPENDIX C

DETAILS OF MAPPING SCHEMA TABLES

Tables of mapping schema Used to
T001 database stores the imported schema name.
T002 table stores table informations.
T003 column stores column informations.
T004 record stores tuple informations.
T005 datatype db stores data types of database schema.
T006 check value stores values of check constraints.

T007 check subject
stores the concept of a range of values of check
constraints.

T008 database domain stores database definitions of domains that group tables.

T009 column check value
stores the relationship of columns with a set of check
constraint values.

T010 table db domain
stores the relationship of tables with database definition
of domain.

T011 class stores the mapped classes.
T012 hierarchy stores the mapped subclasses of a class.
T013 datatype property stores the mapped datatype properties.
T014 datatype property domain stores the domain and range of datatype properties.
T015 instance stores the mapped instances.

T016 ontology
stores the created ontology to the mapped database
schema.

T017 disjoint class stores the mapped disjoint classes of a class.
T018 datatype onto stores data type of ontology datatype properties.
T019 object property stores the mapped object properties.

t020 column to datatype property
stores the relationship of each column to each
datatype property.

t021 column to object property
stores the relationship of each column to each
object property.

t022 object property domain range stores the domain and range of object properties.

t023 column record value
stores the relationship of each value of tuple with
corresponding column.

89

APPENDIX D

PROTOTYPE CONFIGURATION

Technologies used:

MySQL version 5.0.8

Apache Tomcat version 7.0.37

Java version 8

Struts version 1.3.10

Hibernate version 5

Eclipse (version: Neon Milestone 1 (4.6.0M1)):

Installation:

1 - Through Git CMD, access the workspace folder that will be used by

Eclipse.

2 - Execute the following command:

git clone https://github.com/caghuve/rdb-to-onto.git

3 - Open Eclipse and create a new Dynamic Web Project project named

rdb-to-onto.

4 - Add the project to Tomcat 7.0.37 configured with Java 8.

5 - No MySQL, criar o banco rdbtoonto.

6 - Run the file rdb-to-onto\WebContent\db\rdt-to-onto.sql or according

Appendix E, in MySQL to create the tables.

7 - Initialize Tomcat and access the address:

http://localhost:8080/rdb-to-onto/RdbToOnto.do

Obs.: The system is configured to access the database with the

credentials root/12345. If necessary, change the data in the file

rdb\to\onto\src\resources\hibernate.cfg.xml

90

APPENDIX E

SCRIPT OF MAPPING SCHEMA

--

-- Table structure for table ‘t001_database‘

--

DROP TABLE IF EXISTS ‘t001_database‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t001_database‘ (

‘C001_DATABASE_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C001_DATABASE_NAME‘ varchar(255) NOT NULL,

PRIMARY KEY (‘C001_DATABASE_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t002_table‘

--

DROP TABLE IF EXISTS ‘t002_table‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t002_table‘ (

‘C002_TABLE_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C002_TABLE_TYPE‘ varchar(255) NOT NULL,

91

‘C001_DATABASE_ID‘ int(11) NOT NULL,

‘C002_PHYSICAL_NAME‘ varchar(255) NOT NULL,

‘C002_LOGICAL_NAME‘ varchar(255) NOT NULL,

‘C002_IND_ASSOCIATIVE‘ tinyint(1) NOT NULL DEFAULT ’0’,

PRIMARY KEY (‘C002_TABLE_ID‘),

KEY ‘C001_DATABASE_ID_idx‘ (‘C001_DATABASE_ID‘),

CONSTRAINT ‘FK_T001_TO_T002‘ FOREIGN KEY (‘C001_DATABASE_ID‘)

REFERENCES ‘t001_database‘ (‘C001_DATABASE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FKt5v2hc1iahvdxl20y08a3j7hu‘ FOREIGN KEY (‘C001_DATABASE_ID‘)

REFERENCES ‘t001_database‘ (‘C001_DATABASE_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=195 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t003_column‘

--

DROP TABLE IF EXISTS ‘t003_column‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t003_column‘ (

‘C003_COLUMN_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C003_PHYSICAL_NAME‘ varchar(255) NOT NULL,

‘C003_LOGICAL_NAME‘ varchar(255) NOT NULL,

‘C002_TABLE_ID‘ int(11) NOT NULL,

‘C003_IND_PRIMARY_KEY‘ tinyint(1) NOT NULL DEFAULT ’0’,

‘C003_IND_FOREIGN_KEY‘ tinyint(1) NOT NULL DEFAULT ’0’,

‘C002_FK_TABLE_ID‘ int(11) DEFAULT NULL,

92

‘C005_DATATYPE_ID‘ int(11) NOT NULL,

‘C003_IND_DESCRIPTION‘ tinyint(1) DEFAULT NULL,

‘C003_IND_ASSOCIATIVE_KEY‘ tinyint(1) DEFAULT NULL,

‘C002_AK_TABLE_ID_1‘ int(11) DEFAULT NULL,

‘C003_AK_COLUMN_ID_1‘ int(11) DEFAULT NULL,

‘C002_AK_TABLE_ID_N‘ int(11) DEFAULT NULL,

‘C003_AK_COLUMN_N‘ int(11) DEFAULT NULL,

‘C003_LOGICAL_NAME_2‘ varchar(255) DEFAULT NULL,

‘C003_IND_COLUMN_CHECK‘ tinyint(1) DEFAULT NULL,

‘C003_IND_UNIQUE_KEY‘ tinyint(1) DEFAULT NULL,

PRIMARY KEY (‘C003_COLUMN_ID‘),

KEY ‘FK_T002_TO_T003_idx‘ (‘C002_TABLE_ID‘),

KEY ‘FK_T002_TO_T003_FK_ID_idx‘ (‘C002_FK_TABLE_ID‘),

KEY ‘FK_T005_TO_T003_idx‘ (‘C005_DATATYPE_ID‘),

KEY ‘FKro2eoxoxnx9sodk0lqmd7p9ys‘ (‘C002_AK_TABLE_ID_1‘),

KEY ‘FKnucnnor18i92n364i49e9mwjy‘ (‘C002_AK_TABLE_ID_N‘),

CONSTRAINT ‘FK43t3s791t1x8b07x0p49retvw‘ FOREIGN KEY (‘C002_FK_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘),

CONSTRAINT ‘FK99dqxjxkjrtwr6kch4hqkxsb8‘ FOREIGN KEY (‘C005_DATATYPE_ID‘)

REFERENCES ‘t005_datatype_db‘ (‘C005_DATATYPE_ID‘),

CONSTRAINT ‘FK_T002_TO_T003‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FK_T002_TO_T003_FK_ID‘ FOREIGN KEY (‘C002_FK_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FK_T005_TO_T003‘ FOREIGN KEY (‘C005_DATATYPE_ID‘)

REFERENCES ‘t005_datatype_db‘ (‘C005_DATATYPE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

93

CONSTRAINT ‘FKbrq9bix9aktmakiqxk8gv6nb6‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘),

CONSTRAINT ‘FKnucnnor18i92n364i49e9mwjy‘

FOREIGN KEY (‘C002_AK_TABLE_ID_N‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘),

CONSTRAINT ‘FKro2eoxoxnx9sodk0lqmd7p9ys‘

FOREIGN KEY (‘C002_AK_TABLE_ID_1‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=2505 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t004_record‘

--

DROP TABLE IF EXISTS ‘t004_record‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t004_record‘ (

‘C004_RECORD_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C002_TABLE_ID‘ int(11) NOT NULL,

‘C004_TABLE_COLUMNS‘ varchar(255) NOT NULL,

‘C004_COLUMN_VALUES‘ varchar(255) DEFAULT NULL,

PRIMARY KEY (‘C004_RECORD_ID‘),

KEY ‘FK_T004_TO_T002_idx‘ (‘C002_TABLE_ID‘),

CONSTRAINT ‘FK_T002_TO_T004‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FKi2vp9scqhet6tg6bdix1rm3v‘ FOREIGN KEY (‘C002_TABLE_ID‘)

94

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=3139 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t005_datatype_db‘

--

DROP TABLE IF EXISTS ‘t005_datatype_db‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t005_datatype_db‘ (

‘C005_DATATYPE_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C005_DESCRIPTION‘ varchar(255) NOT NULL,

PRIMARY KEY (‘C005_DATATYPE_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=51 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t006_check_value‘

--

DROP TABLE IF EXISTS ‘t006_check_value‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t006_check_value‘ (

‘C006_CHECK_VALUE_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C006_DESCRIPTION‘ varchar(255) NOT NULL,

‘C006_ABREVIATION‘ varchar(255) DEFAULT NULL,

95

‘C007_CHECK_SUBJECT_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C006_CHECK_VALUE_ID‘),

KEY ‘FK_T007_TO_T006_idx‘ (‘C007_CHECK_SUBJECT_ID‘),

CONSTRAINT ‘FK_T007_TO_T006‘ FOREIGN KEY (‘C007_CHECK_SUBJECT_ID‘)

REFERENCES ‘t007_check_subject‘ (‘C007_CHECK_SUBJECT_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FKrdir765o3xw1u19373k8s0w19‘

FOREIGN KEY (‘C007_CHECK_SUBJECT_ID‘)

REFERENCES ‘t007_check_subject‘ (‘C007_CHECK_SUBJECT_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=316 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t007_check_subject‘

--

DROP TABLE IF EXISTS ‘t007_check_subject‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t007_check_subject‘ (

‘C007_CHECK_SUBJECT_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C007_DESCRIPTION‘ varchar(255) NOT NULL,

PRIMARY KEY (‘C007_CHECK_SUBJECT_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=49 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t008_database_domain‘

--

96

DROP TABLE IF EXISTS ‘t008_database_domain‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t008_database_domain‘ (

‘C008_DATABASE_DOMAIN_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C008_DESCRIPTION‘ varchar(255) NOT NULL,

‘C001_DATABASE_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C008_DATABASE_DOMAIN_ID‘),

KEY ‘FK_T001_TO_T008_idx‘ (‘C001_DATABASE_ID‘),

CONSTRAINT ‘FK_T001_TO_T008‘ FOREIGN KEY (‘C001_DATABASE_ID‘)

REFERENCES ‘t001_database‘ (‘C001_DATABASE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FKp2xywmq1bw74he5e61l0tyi9s‘

FOREIGN KEY (‘C001_DATABASE_ID‘)

REFERENCES ‘t001_database‘ (‘C001_DATABASE_ID‘)

) ENGINE=InnoDB AUTO_INCREMENT=179 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t009_column_check_value‘

--

DROP TABLE IF EXISTS ‘t009_column_check_value‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t009_column_check_value‘ (

‘C003_COLUMN_ID‘ int(11) NOT NULL,

‘C006_CHECK_VALUE_ID‘ int(11) NOT NULL,

97

PRIMARY KEY (‘C003_COLUMN_ID‘,‘C006_CHECK_VALUE_ID‘),

KEY ‘FK_T006_TO_T009_idx‘ (‘C006_CHECK_VALUE_ID‘),

CONSTRAINT ‘FK_T003_TO_T009‘ FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FK_T006_TO_T009‘ FOREIGN KEY (‘C006_CHECK_VALUE_ID‘)

REFERENCES ‘t006_check_value‘ (‘C006_CHECK_VALUE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FKe60pjh7s6347o2pvo7eyunmwi‘ FOREIGN KEY (‘C006_CHECK_VALUE_ID‘)

REFERENCES ‘t006_check_value‘ (‘C006_CHECK_VALUE_ID‘),

CONSTRAINT ‘FKiqha46f5t341cypf8uewk71c9‘ FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t010_table_db_domain‘

--

DROP TABLE IF EXISTS ‘t010_table_db_domain‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t010_table_db_domain‘ (

‘C008_DATABASE_DOMAIN_ID‘ int(11) NOT NULL,

‘C002_TABLE_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C008_DATABASE_DOMAIN_ID‘,‘C002_TABLE_ID‘),

KEY ‘FK_T002_TO_T010_idx‘ (‘C002_TABLE_ID‘),

CONSTRAINT ‘FK1cftrdckmllvlye6vkj0qcja1‘

FOREIGN KEY (‘C008_DATABASE_DOMAIN_ID‘)

98

REFERENCES ‘t008_database_domain‘ (‘C008_DATABASE_DOMAIN_ID‘),

CONSTRAINT ‘FK_T002_TO_T010‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FK_T008_TO_T010‘ FOREIGN KEY (‘C008_DATABASE_DOMAIN_ID‘)

REFERENCES ‘t008_database_domain‘ (‘C008_DATABASE_DOMAIN_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘FKbq22p96ii7piowfutxf3tx3xq‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t011_class‘

--

DROP TABLE IF EXISTS ‘t011_class‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t011_class‘ (

‘C011_CLASS_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C011_CLASS_NAME‘ varchar(255) DEFAULT NULL,

‘C008_DATABASE_DOMAIN_ID‘ int(11) DEFAULT NULL,

‘C003_COLUMN_ID‘ int(11) DEFAULT NULL,

‘C016_ONTOLOGY_ID‘ int(11) NOT NULL,

‘C002_TABLE_ID‘ int(11) DEFAULT NULL,

‘C007_CHECK_SUBJECT_ID‘ int(11) DEFAULT NULL,

‘C004_RECORD_ID‘ int(11) DEFAULT NULL,

PRIMARY KEY (‘C011_CLASS_ID‘),

99

KEY ‘fk_T011_CLASS_T016_ONTOLOGY1_idx‘ (‘C016_ONTOLOGY_ID‘),

KEY ‘fk_T011_CLASS_T002_TABLE1_idx‘ (‘C002_TABLE_ID‘),

KEY ‘fk_T011_CLASS_T007_CHECK_SUBJECT1_idx‘ (‘C007_CHECK_SUBJECT_ID‘),

KEY ‘fk_T011_CLASS_T004_RECORD1_idx‘ (‘C004_RECORD_ID‘),

KEY ‘FKn2lohk5sq13mirac040oxygwy‘ (‘C003_COLUMN_ID‘),

KEY ‘FKpl6kkwe55plwpe8o8lisup30t‘ (‘C008_DATABASE_DOMAIN_ID‘),

CONSTRAINT ‘FKhk1j7oi6kv6ux38vudwb1xana‘ FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘),

CONSTRAINT ‘FKiiy72pvdbcnrjj72blw09tqvf‘ FOREIGN KEY (‘C004_RECORD_ID‘)

REFERENCES ‘t004_record‘ (‘C004_RECORD_ID‘),

CONSTRAINT ‘FKmb4fu278pd5pb7q4wmpkadudy‘

FOREIGN KEY (‘C007_CHECK_SUBJECT_ID‘)

REFERENCES ‘t007_check_subject‘ (‘C007_CHECK_SUBJECT_ID‘),

CONSTRAINT ‘FKn2lohk5sq13mirac040oxygwy‘

FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘),

CONSTRAINT ‘FKpl6kkwe55plwpe8o8lisup30t‘ FOREIGN KEY (‘C008_DATABASE_DOMAIN_ID‘)

REFERENCES ‘t008_database_domain‘ (‘C008_DATABASE_DOMAIN_ID‘),

CONSTRAINT ‘FKtjjkwwkrbksrm9mgpufg5yjf2‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘),

CONSTRAINT ‘fk_T011_CLASS_T002_TABLE1‘ FOREIGN KEY (‘C002_TABLE_ID‘)

REFERENCES ‘t002_table‘ (‘C002_TABLE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T011_CLASS_T004_RECORD1‘ FOREIGN KEY (‘C004_RECORD_ID‘)

REFERENCES ‘t004_record‘ (‘C004_RECORD_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T011_CLASS_T007_CHECK_SUBJECT1‘

FOREIGN KEY (‘C007_CHECK_SUBJECT_ID‘)

REFERENCES ‘t007_check_subject‘ (‘C007_CHECK_SUBJECT_ID‘)

100

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T011_CLASS_T016_ONTOLOGY1‘

FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT=291 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t012_hierarchy‘

--

DROP TABLE IF EXISTS ‘t012_hierarchy‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t012_hierarchy‘ (

‘C011_SUPER_CLASS_ID‘ int(11) NOT NULL,

‘C011_SUB_CLASS_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C011_SUPER_CLASS_ID‘,‘C011_SUB_CLASS_ID‘),

KEY ‘fk_T012_HIERARCHY_T011_CLASS1_idx‘ (‘C011_SUB_CLASS_ID‘),

CONSTRAINT ‘FK76qbmccup4w1xtk0403g0tdph‘ FOREIGN KEY (‘C011_SUPER_CLASS_ID‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘),

CONSTRAINT ‘FKcrh0tw9q6gxyheebua08qx1ud‘ FOREIGN KEY (‘C011_SUB_CLASS_ID‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘),

CONSTRAINT ‘fk_T012_HIERARCHY_T011_CLASS1‘ FOREIGN KEY (‘C011_SUB_CLASS_ID‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

101

--

-- Table structure for table ‘t013_datatype_property‘

--

DROP TABLE IF EXISTS ‘t013_datatype_property‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t013_datatype_property‘ (

‘C013_DATATYPE_PROPERTY_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C013_DATATYPE_PROPERTY_DESCRIPTION‘ varchar(100) DEFAULT NULL,

‘C016_ONTOLOGY_ID‘ int(11) DEFAULT NULL,

‘C018_DATATYPE_ID‘ int(11) DEFAULT NULL COMMENT ’\n\n\n’,

‘C013_IND_COMMON_CONCEPT‘ tinyint(1) DEFAULT NULL,

‘C013_IND_DESCRIPTION‘ tinyint(1) DEFAULT NULL,

PRIMARY KEY (‘C013_DATATYPE_PROPERTY_ID‘),

KEY ‘fk_T013_DATATYPE_PROPERTY_T016_ONTOLOGY1_idx‘ (‘C016_ONTOLOGY_ID‘),

KEY ‘fk_T013_DATATYPE_PROPERTY_T018_DATATYPE_ONTO1_idx‘ (‘C018_DATATYPE_ID‘),

CONSTRAINT ‘FK67goxyjcnbtg7v99454g96hb6‘ FOREIGN KEY (‘C018_DATATYPE_ID‘)

REFERENCES ‘t018_datatype_onto‘ (‘C018_DATATYPE_ID‘),

CONSTRAINT ‘FKsyftv96wq3p7g3eu1ljb9su8i‘

FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘),

CONSTRAINT ‘fk_T013_DATATYPE_PROPERTY_T016_ONTOLOGY1‘

FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T013_DATATYPE_PROPERTY_T018_DATATYPE_ONTO1‘

FOREIGN KEY (‘C018_DATATYPE_ID‘)

102

REFERENCES ‘t018_datatype_onto‘ (‘C018_DATATYPE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT=414 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t014_datatype_property_domain‘

--

DROP TABLE IF EXISTS ‘t014_datatype_property_domain‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t014_datatype_property_domain‘ (

‘C013_DATATYPE_PROPERTY_ID‘ int(11) NOT NULL,

‘C011_CLASS_ID_DOMAIN‘ int(11) DEFAULT NULL,

‘C014_DATATYPE_SUBPROPERTY_OF‘ tinyint(1) DEFAULT NULL,

KEY ‘fk_T014_DATATYPE_PROPERTY_DOMAIN_RANGE_T011_CLASS1_idx‘

(‘C011_CLASS_ID_DOMAIN‘),

KEY ‘fk_T014_DATATYPE_PROPERTY_DOMAIN_RANGE_T013_DATATYPE_PROPER_idx‘

(‘C013_DATATYPE_PROPERTY_ID‘),

CONSTRAINT ‘FK9oelemvo01c3yg80xba9h4yj‘

FOREIGN KEY (‘C013_DATATYPE_PROPERTY_ID‘)

REFERENCES ‘t013_datatype_property‘ (‘C013_DATATYPE_PROPERTY_ID‘),

CONSTRAINT ‘FKcwn5tokbgf9tfrrsqclovbhif‘

FOREIGN KEY (‘C011_CLASS_ID_DOMAIN‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘),

CONSTRAINT ‘fk_T014_DATATYPE_PROPERTY_DOMAIN_RANGE_T011_CLASS1‘

FOREIGN KEY (‘C011_CLASS_ID_DOMAIN‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘)

103

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T014_DATATYPE_PROPERTY_DOMAIN_RANGE_T013_DATATYPE_PROPERTY1‘

FOREIGN KEY (‘C013_DATATYPE_PROPERTY_ID‘)

REFERENCES ‘t013_datatype_property‘ (‘C013_DATATYPE_PROPERTY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t015_instance‘

--

DROP TABLE IF EXISTS ‘t015_instance‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t015_instance‘ (

‘C015_INSTANCE_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C015_INSTANCE_DESCRIPTION‘ varchar(250) DEFAULT NULL,

‘C011_CLASS_ID‘ int(11) DEFAULT NULL,

‘C016_ONTOLOGY_ID‘ int(11) DEFAULT NULL,

‘C004_RECORD_ID‘ int(11) DEFAULT NULL,

PRIMARY KEY (‘C015_INSTANCE_ID‘),

KEY ‘fk_T015_INSTANCE_T011_CLASS1_idx‘ (‘C011_CLASS_ID‘),

KEY ‘fk_T015_INSTANCE_T016_ONTOLOGY1_idx‘ (‘C016_ONTOLOGY_ID‘),

KEY ‘fk_T015_INSTANCE_T004_RECORD1_idx‘ (‘C004_RECORD_ID‘),

CONSTRAINT ‘FK1h5ys6tqg9hralvbjwxyx7aga‘ FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘),

CONSTRAINT ‘FKa6r70f08p1oknil36fjf1fsrv‘ FOREIGN KEY (‘C011_CLASS_ID‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘),

104

CONSTRAINT ‘FKom0jr9b5x26lmtkh5xv9gps3v‘ FOREIGN KEY (‘C004_RECORD_ID‘)

REFERENCES ‘t004_record‘ (‘C004_RECORD_ID‘),

CONSTRAINT ‘fk_T015_INSTANCE_T004_RECORD1‘ FOREIGN KEY (‘C004_RECORD_ID‘)

REFERENCES ‘t004_record‘ (‘C004_RECORD_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T015_INSTANCE_T011_CLASS1‘ FOREIGN KEY (‘C011_CLASS_ID‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T015_INSTANCE_T016_ONTOLOGY1‘

FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT=3377 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t016_ontology‘

--

DROP TABLE IF EXISTS ‘t016_ontology‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t016_ontology‘ (

‘C016_ONTOLOGY_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C016_ONTOLOGY_NAME‘ varchar(255) DEFAULT NULL,

‘C001_DATABASE_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C016_ONTOLOGY_ID‘),

KEY ‘fk_T016_ONTOLOGY_T001_DATABASE1_idx‘ (‘C001_DATABASE_ID‘),

CONSTRAINT ‘FKk22h5c31u6eve7r16o08ovn2r‘ FOREIGN KEY (‘C001_DATABASE_ID‘)

105

REFERENCES ‘t001_database‘ (‘C001_DATABASE_ID‘),

CONSTRAINT ‘fk_T016_ONTOLOGY_T001_DATABASE1‘

FOREIGN KEY (‘C001_DATABASE_ID‘)

REFERENCES ‘t001_database‘ (‘C001_DATABASE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t017_disjoint_class‘

--

DROP TABLE IF EXISTS ‘t017_disjoint_class‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t017_disjoint_class‘ (

‘C011_CLASS_ID‘ int(11) NOT NULL,

‘C011_DISJOINT_CLASS_ID‘ int(11) DEFAULT NULL,

PRIMARY KEY (‘C011_CLASS_ID‘),

KEY ‘fk_T017_CLASS_RESTRICTION_T011_CLASS1_idx‘ (‘C011_CLASS_ID‘),

CONSTRAINT ‘fk_T017_CLASS_RESTRICTION_T011_CLASS1‘

FOREIGN KEY (‘C011_CLASS_ID‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t018_datatype_onto‘

106

--

DROP TABLE IF EXISTS ‘t018_datatype_onto‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t018_datatype_onto‘ (

‘C018_DATATYPE_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C018_DESCRIPTION‘ varchar(255) NOT NULL,

‘C005_DATATYPE_DB_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C018_DATATYPE_ID‘),

KEY ‘fk_T018_DATATYPE_ONTO_T005_DATATYPE_DB1_idx‘ (‘C005_DATATYPE_DB_ID‘),

CONSTRAINT ‘FKgc1g163ci8jv1lod3do7geu1v‘

FOREIGN KEY (‘C005_DATATYPE_DB_ID‘)

REFERENCES ‘t005_datatype_db‘ (‘C005_DATATYPE_ID‘),

CONSTRAINT ‘fk_T018_DATATYPE_ONTO_T005_DATATYPE_DB1‘

FOREIGN KEY (‘C005_DATATYPE_DB_ID‘)

REFERENCES ‘t005_datatype_db‘ (‘C005_DATATYPE_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT=51 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t019_object_property‘

--

DROP TABLE IF EXISTS ‘t019_object_property‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t019_object_property‘ (

107

‘C019_OBJECT_PROPERTY_ID‘ int(11) NOT NULL AUTO_INCREMENT,

‘C019_OBJECT_PROPERTY_DESCRIPTION‘ varchar(250) DEFAULT NULL,

‘C016_ONTOLOGY_ID‘ int(11) NOT NULL,

‘C019_IND_INVERSE_FUNCTIONAL‘ tinyint(1) DEFAULT NULL,

‘C019_MIN_CARDINALITY‘ tinyint(1) DEFAULT NULL,

PRIMARY KEY (‘C019_OBJECT_PROPERTY_ID‘),

KEY ‘fk_T019_OBJECT_PROPERTY_T016_ONTOLOGY1_idx‘ (‘C016_ONTOLOGY_ID‘),

CONSTRAINT ‘FKrp5ougah0fnomgf5ut3efqai3‘ FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘),

CONSTRAINT ‘fk_T019_OBJECT_PROPERTY_T016_ONTOLOGY1‘

FOREIGN KEY (‘C016_ONTOLOGY_ID‘)

REFERENCES ‘t016_ontology‘ (‘C016_ONTOLOGY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB AUTO_INCREMENT=765 DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t020_column_to_datatype_property‘

--

DROP TABLE IF EXISTS ‘t020_column_to_datatype_property‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t020_column_to_datatype_property‘ (

‘C003_COLUMN_ID‘ int(11) NOT NULL,

‘C013_DATATYPE_PROPERTY_ID‘ int(11) NOT NULL,

PRIMARY KEY (‘C003_COLUMN_ID‘,‘C013_DATATYPE_PROPERTY_ID‘),

KEY ‘fk_T003_COLUMN_has_T013_DATATYPE_PROPERTY_T013_DATATYPE_PRO_idx‘

(‘C013_DATATYPE_PROPERTY_ID‘),

108

KEY ‘fk_T003_COLUMN_has_T013_DATATYPE_PROPERTY_T003_COLUMN1_idx‘

(‘C003_COLUMN_ID‘),

CONSTRAINT ‘FK1h8uwdyrdjtgr5py0sketus5q‘

FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘),

CONSTRAINT ‘FK3fumgxcfi85ylh2xvw32th89f‘

FOREIGN KEY (‘C013_DATATYPE_PROPERTY_ID‘)

REFERENCES ‘t013_datatype_property‘ (‘C013_DATATYPE_PROPERTY_ID‘),

CONSTRAINT ‘fk_T003_COLUMN_has_T013_DATATYPE_PROPERTY_T003_COLUMN1‘

FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T003_COLUMN_has_T013_DATATYPE_PROPERTY_T013_DATATYPE_PROPE1‘

FOREIGN KEY (‘C013_DATATYPE_PROPERTY_ID‘)

REFERENCES ‘t013_datatype_property‘ (‘C013_DATATYPE_PROPERTY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t021_column_to_object_property‘

--

DROP TABLE IF EXISTS ‘t021_column_to_object_property‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t021_column_to_object_property‘ (

‘C003_COLUMN_ID‘ int(11) NOT NULL,

‘C019_OBJECT_PROPERTY_ID‘ int(11) NOT NULL,

109

PRIMARY KEY (‘C003_COLUMN_ID‘,‘C019_OBJECT_PROPERTY_ID‘),

KEY ‘fk_T003_COLUMN_has_T019_OBJECT_PROPERTY_T019_OBJECT_PROPERT_idx‘

(‘C019_OBJECT_PROPERTY_ID‘),

KEY ‘fk_T003_COLUMN_has_T019_OBJECT_PROPERTY_T003_COLUMN1_idx‘

(‘C003_COLUMN_ID‘),

CONSTRAINT ‘FKpb856xnpnnog7p41q1a3f99y5‘ FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘),

CONSTRAINT ‘FKt248lsd4i9j436pcbvu03ufc6‘

FOREIGN KEY (‘C019_OBJECT_PROPERTY_ID‘)

REFERENCES ‘t019_object_property‘ (‘C019_OBJECT_PROPERTY_ID‘),

CONSTRAINT ‘fk_T003_COLUMN_has_T019_OBJECT_PROPERTY_T003_COLUMN1‘

FOREIGN KEY (‘C003_COLUMN_ID‘)

REFERENCES ‘t003_column‘ (‘C003_COLUMN_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T003_COLUMN_has_T019_OBJECT_PROPERTY_T019_OBJECT_PROPERTY1‘

FOREIGN KEY (‘C019_OBJECT_PROPERTY_ID‘)

REFERENCES ‘t019_object_property‘ (‘C019_OBJECT_PROPERTY_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Table structure for table ‘t022_object_property_domain_range‘

--

DROP TABLE IF EXISTS ‘t022_object_property_domain_range‘;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE ‘t022_object_property_domain_range‘ (

110

‘C019_OBJECT_PROPERTY_ID‘ int(11) NOT NULL,

‘C011_CLASS_ID_DOMAIN‘ int(11) DEFAULT NULL,

‘C011_CLASS_ID_RANGE‘ int(11) DEFAULT NULL,

KEY ‘fk_T022_OBJECT_PROPERTY_DOMAIN_RANGE_T011_CLASS1_idx‘

(‘C011_CLASS_ID_DOMAIN‘),

KEY ‘fk_T022_OBJECT_PROPERTY_DOMAIN_RANGE_T011_CLASS2_idx‘

(‘C011_CLASS_ID_RANGE‘),

KEY ‘fk_T022_OBJECT_PROPERTY_DOMAIN_RANGE_T019_OBJECT_PROPERTY1_idx‘

(‘C019_OBJECT_PROPERTY_ID‘),

CONSTRAINT ‘FK7iil0daxusnbx6my8w3npl2j‘

FOREIGN KEY (‘C019_OBJECT_PROPERTY_ID‘)

REFERENCES ‘t019_object_property‘ (‘C019_OBJECT_PROPERTY_ID‘),

CONSTRAINT ‘FKhlvs46m0wfrhwn54woa9hvsr2‘

FOREIGN KEY (‘C011_CLASS_ID_DOMAIN‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘),

CONSTRAINT ‘FKpp8jc2psw73mtqyf2p41oycrf‘

FOREIGN KEY (‘C011_CLASS_ID_RANGE‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘),

CONSTRAINT ‘fk_T022_OBJECT_PROPERTY_DOMAIN_RANGE_T011_CLASS1‘

FOREIGN KEY (‘C011_CLASS_ID_DOMAIN‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T022_OBJECT_PROPERTY_DOMAIN_RANGE_T011_CLASS2‘

FOREIGN KEY (‘C011_CLASS_ID_RANGE‘)

REFERENCES ‘t011_class‘ (‘C011_CLASS_ID‘)

ON DELETE NO ACTION ON UPDATE NO ACTION,

CONSTRAINT ‘fk_T022_OBJECT_PROPERTY_DOMAIN_RANGE_T019_OBJECT_PROPERTY1‘

FOREIGN KEY (‘C019_OBJECT_PROPERTY_ID‘)

REFERENCES ‘t019_object_property‘ (‘C019_OBJECT_PROPERTY_ID‘)

111

ON DELETE NO ACTION ON UPDATE NO ACTION

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

/*!40101 SET character_set_client = @saved_cs_client */;

112

APPENDIX F

CASE STUDY - DETAILS OF DATABASE TABLES

Tables of case study Used to
t008 ato stores procedures for dental treatment.
t041 grupo ato Stores dental specialties.
t027 tipo usuario uniodonto stores the type of patients.
t017 estado civil stores the types of marital status.

t305 grupo sip
stores a group classification of procedures for the Product Information System
of the Brazilian national health agency.

t002 pessoa stores dentists data.
t006 plano stores dental insurance plan.
t900 pais store country data.
t901 estado store state data.
t902 cidade store city data.
t903 titulo store a classification of streets.
t904 bairro store neighborhood data.
t905 logradouro store street data.
t005 cliente store information of companies.
t003 associado store information of clients.
t012 usuario uniodonto store information of patients.
t054 plano usuario store dental insurance plan of patients.
t026 form cooperado store data of dentist of a dental,care.
t034 orcamento store data of patient of a dental care.
t035 atos orcamento store data of procedure of a dental care.
t023 especialidade store data of dental specialty.
t029 arcada store data of dental arch.
t030 segmento store data of dental segment.
T024 espec coop store the specialty of a dentist.
t009 plano ato padrao store data of procedures covered by the dental insurance plan.

