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FLÁVIO HENRIQUE DE BITTENCOURT ZAVAN

NOSE POSE ESTIMATION IN THE WILD AND ITS
APPLICATIONS ON NOSE TRACKING AND 3D FACE

ALIGNMENT

Dissertação apresentada como requisito par-
cial à obtenção do grau de Mestre. Programa
de Pós-Graduação em Informática, Setor de
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RESUMO

Neste trabalho, estimamos a pose da cabeça em imagens 2D, tanto em ambientes contro-

lados como não controlados, baseado apenas na região do nariz. Para este fim, propomos

e comparamos uma metodologia livre de landmarks, baseado em Support Vector Machi-

nes (SVM-NosePose). O uso de apenas a região do nariz apresenta vantagens sobre o

uso da face inteira; não apenas é menos provável a oclusão do nariz, mas ele também é

viśıvel e provado ser altamente discriminante em todas as poses de perfil a frontal. O

SVM já foi utilizado para este tipo de tarefa em uma base pequena e controlada. Nosso

SVM-NosePose adiciona novas idéias e experimentos à etapa da geração do vetor de ca-

racteŕısticas, tanto na extração destas, como na agregação dos dados. É comparado favo-

ravelmente ao estado-da-arte, através de experimentos abrangentes cuidadosamente ela-

borados, utilizando seis bases de dados publicamente dispońıveis, Pointing’04, Multi-PIE,

McGillFaces, SFEW, AFW e PaSC, abrangendo diversos cenários posśıveis na estimativa

da pose da cabeça. A fim de realizar uma avalição completa e detalhada, apresentamos

resultados tanto com as regiões anotadas do nariz quanto com a sáıda de um detector

de narizes estado-da-arte. Adicionalmente, investigamos duas diferentes aplicações para

nossa estimativa: a inclusão original de uma pontuação da pose da cabeça na estimativa

da qualidade da face para a inicialização de um rastreador de narizes, alcançando maior

precisão de rastreamento; e a execução de alinhamento 3D livre de landmarks em ambi-

entes não controlados utilizando apenas a informação da região do nariz, permitindo que

estimativas sejam geradas mesmo em cenários desafiadores.

Palavras-chave: pose da cabeça; rastreamento facial; alinhamento facial
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ABSTRACT

We perform head pose estimation solely based on the nose region as input, extracted from

2D images in both constrained and unconstrained environments. To this end, we propose

a landmark free methodology, based on Support Vector Machines (SVM-NosePose) and

compare it against the state-of-the-art. Using the nose region has advantages over us-

ing the whole face; not only it is less likely to be occluded, it is also visible and proved

to be highly discriminant in all poses from profile to frontal. SVM has been previously

used for this task on a small, controlled dataset. Our SVM-NosePose adds new ideas

and experiments on the feature vector generation stage, both in feature extraction and

data aggregation. Our SVM-NosePose estimation favorably compares, through thought-

ful and comprehensive experiments, against state-of-the-art approaches, using six pub-

licly available datasets, Pointing’04, Multi-PIE, McGillFaces, SFEW, AFW and PaSC.

To achieve a complete and detailed evaluation, we present results using both the nose

region ground-truth and the output of a state-of-the-art nose detector. Additionally, two

different applications for our approach are also investigated: the original inclusion of a

head pose score for face quality estimation, for initializing a nose tracker, leading to higher

tracking precision; and performing landmark-free 3D face alignment in the wild using only

the information of the nose region, enabling coherent estimates to be generated even in

challenging scenarios.

Keywords: head pose; face tracking; face alignment
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CHAPTER 1

INTRODUCTION

The head pose estimation problem can be defined as determining at least one of the three

parameters that configures the face relative to its three degrees of freedom, yaw, pitch

and roll and the camera [1]. The growing interest in head pose estimation is mainly due

to the advantages it brings to facial analysis tasks. Estimating the head pose can lead

to higher accuracy rates in other computer vision problems, such as gaze estimation [2],

face quality assessment [3], face recognition [4], facial landmark detection [5], automatic

affect analysis in infants [6] and face frontalization [7].

Most of the previous works use 2D information from the whole face to perform head

pose estimation [1]. Recently, due to the advent of real-time and low-cost 3D sensors,

the focus of many researchers shifted towards estimating the head pose on facial depth

images [8] [9]. However, one cannot rely on having depth information in unconstrained

environments, where there is no control over the sensor that is being used to capture the

images. According to Zhu and Ramanan [10], not only estimating extreme head poses

(such as profile) is a difficult problem, but even face detection. Such poses are likely to

be found in unconstrained environments and are not considered in many published works.

In our work, the focus is kept on 2D RGB images, including those with extreme poses.

The use of manifold analysis for estimating 3D head pose in unconstrained environ-

ments is proposed by Peng et al. [11]. Pawelczyk and Kawulok [12] extract gradient

information from the nose region and use SVM to classify it into a discrete set of angles.

This approach was applied in a controlled environment dataset. For estimating the pose

in uncontrolled environments, Demirkus et al. [13] proposed using a set of facial features

to estimate a probability density function over the pose on each frame and aggregating

the results using temporal information.

In this work we show that the nose region can be successfully used for head pose
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estimation on constrained and unconstrained environments. The use of the nose has

already been proven efficient for biometrics [14] [15] and head pose estimation [12]. The

nose has many properties that make it a good candidate to be used for estimating the

head pose. Unlike the eyes and ears, it is visible even in profile faces; unlike the mouth,

it cannot be easily deformed by speech and expressions; it is also less likely to be partly

occluded by accessories and facial traits, such as sunglasses and beards, when compared

to using the whole face.

We developed a method, named SVM-NosePose, for estimating the head pose based

on the nose region. It uses Support Vector Machines (SVM) trained with the output of

the LGIP filter [16] on the nose region, it is landmark-free, does not take advantage of

temporal information, treats pose estimation as a classification problem and estimates

the angles based on a predefined set of discrete poses that depends on the dataset used

for training. To achieve completeness in our NosePose methodology, a state-of-the-art

detection method [17] is combined with SVM-NosePose for finding the nose region.

In addition, we propose two applications for our pose estimation method. An existing

face quality estimation method [18] is enhanced by a head pose score and is applied to

initializing a nose tracker. The nose pose is also utilized for performing landmark-free 3D

face alignment in the wild, such that consistent estimations are generated even in extreme

poses and expressions.

This paper is organized as follows: Chapter 2 describes our approach in detail, Chapter

3 presents the datasets used for evaluating our method and the experimental results,

Chapter 4 presents our applications and Chapter 5 suggests future work and includes

final remarks.
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CHAPTER 2

NOSE POSE ESTIMATION

Our SVM-NosePose strategy for feature extraction relies on experimenting with different

descriptors and number of subregions of the input image. Pawelczyk and Kawulok [12]

use the raw gradient values as the feature vector. We found that binary pattern descrip-

tors histograms can be applied to achieve higher head pose classification accuracy. To

find the best combination, three histogram-based descriptors and ten different numbers

of subregions were tested. Results obtained using LBP [19], LGIP [16] and LGP [20]

descriptors histograms with 1, 4, 9, 16, 25, 36, 49, 64, 81 and 100 subregions (Figure 2.1)

were compared.

Figure 2.1: Example subdivision of an image from 1 to 100 subregions

Our tests indicate that LGIP almost always achieves higher recall rates than LBP and

LGP for all number of subregions (Table 2.1), LGP comes second, but uses twice as much

memory, slowing down classification and causing some tests to fail. LGIP robustness to

local intensity variation proved to be able to properly describe the nose region for head

pose estimation purposes in environments with variable lighting conditions, such as in the

Multi-PIE [21] and PaSC [22] datasets. However, it was also noticed that the optimal

number of subregions varies for each dataset, therefore, for each case, all possible number

of subregions are tried and the one that gives the best results was chosen.

Extracting the histogram of the subregions of the ROI instead of the whole region
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Table 2.1: Example results with different descriptors on a subset of the Multie-Pie dataset.
Some are not available due to memory constraints when training

Subregions LBP LGIP LGP

1 61.92% 73.27% 59.07%
4 76.52% 91.04% 82.53%
9 90.14% 91.75% 87.46%
16 87.67% 91.03% 89.84%
25 90.11% 90.16% 90.09%
36 83.46% 85.22% 87.98%
49 85.43% 94.01% 91.51%
64 90.84% 93.08% 91.14%
81 91.84% 94.13% N.A.
100 92.03% 93.83% N.A.

Figure 2.2: SVM-NosePose diagram

enables some of the spatial information to be kept, while allowing some variations to

occur. This also allows the final size of the feature vector to remains constant independent

of the image size, this way, more data can be extracted from higher resolution images.

Our SVM-NosePose method is outlined in Algorithm 1 and shown as a diagram in Figure

2.2.

To properly apply our method for assessing the head pose in unconstrained environ-

ments, the nose must first be detected. To this end, we propose the use of a state-of-the-art

object detection approach, Faster R-CNN [23].
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Algorithm 1 SVM-NosePose Classification Algorithm

function EstimatePose(img)
Detect the nose
Crop img
Normalize img

lgip← LGIP filter on img

Initialize an empty feature vector fv

for all subregion sr do

h← sr’s histogram
Concatenate fv and h

end for

c← SVM classification of fv
return c

end function
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CHAPTER 3

EXPERIMENTAL RESULTS

Our SVM-NosePose was tested on six datasets using ground-truth nose region annotations

to allow for better evaluating the performance of the pose estimation. We present the

results individually in this section, including the optimal number of subregions, confusion

matrices, grand-truth and result class distribution, a comparison against other published

methods when possible and a brief discussion of the achieved results using both strict and

weak (off-by-one errors are considered hits) evaluation protocols [12] when applicable. All

experiments were performed on Arch Linux running on an Intel Xeon E5-2640 with 64GB

of RAM.

3.1 Multi-PIE

The CMU Multi-PIE [21] is a controlled environment dataset composed of 755370 high

resolution images of 337 subjects taken in four distinct sessions (Figure 3.1). Each scene

was captured using 15 cameras in 19 different illumination conditions. Each camera

represents a different head yaw angle, ranging from −90◦ to 90◦ in steps of 15◦. The

remaining two cameras are mounted near the ceiling, simulating a surveillance camera

setting. Different sessions have different facial expressions and amount to a total of six

distinct possibilities: neutral, smiling, surprised, squinting, disgusted and screaming.

3.1.1 Multi-PIE Results

The ground-truth noses for the Multi-PIE dataset were generated semi-automatically,

a 54x60 region was cropped around the annotated tip of the nose [24] on all images

taken with all 13 cameras around the head, except for exactly two images, which had

broken annotations. Random visual inspection of a few thousand images showed that

this heuristic provided adequate precision.
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Figure 3.1: Image samples from the Multi-PIE dataset

Two main subsets were stipulated, one for testing and one for training, in such a way

that all images from a given subject belong to the same subset. Due to the highly in-

creasing training and testing complexity when using more images with the SVM approach,

both subsets had to be further simplified to allow for experiments to be performed. Ex-

actly 7000 random images were used from the training subset to train the SVM and 10000

random images from the testing subset were used for quickly evaluating the performance.

However, once all parameters were set, a more thorough test was performed with the

whole testing subset (355900 images). The ideal number of subregions was estimated

using the smaller testing subset (Table 3.1), 81 regions yield the best results.

Table 3.1: Achieved accuracy with different numbers of subregions on the Multi-PIE
dataset

Subregions 1 4 9 16 25 36 49 64 81 100

Accuracy 73.27% 91.04% 91.75% 91.03% 90.16% 85.22% 94.01% 93.08% 94.13% 93.83%

Confusion matrices for the tests on the reduced subsets using SVM-NosePose are
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presented in Figure 3.3(a) and 3.3(b). Results are similar when using the whole dataset,

as seen in Figure 3.3(c) and 3.3(d), meaning that the training performed on 7000 images

generalizes well for the whole dataset.

The comparative results between our approaches and [10] and [13] are shown in Table

3.2. Both our approaches achieve comparable or better results than the compared methods

even when tested in much larger subsets. Peng et al. [11] reported the mean absolute

error (MAE) and standard deviation (SD) when estimating the pose on 3600 images from

the Multi-PIE dataset, the values are 4.62◦and 3.89◦, respectively. Our SVM-NosePose

achieves 1.04◦MAE and 4.85◦SD for 10000 images and 1.06◦MAE and 5.07◦SD for 355900.

We also present the distributions of our results, for visual evaluation. Figure 3.3(e)

and Figure 3.3(f) show the results for SVM-NosePose using 10000 and 355900 images,

respectively.

Table 3.2: Comparative results of the yaw estimation on Multi-PIE

Strict Weak
SVM-NosePose (10000 images) 94.13% 99.31%
SVM-NosePose (355900 images) 94.11% 99.29%

[10] (900 images) 91.40% 99.99%
[13] (5200 images) 94.46% −
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(a) Strict evaluation 10000 images SVM-NosePose

(b) Weak evaluation 10000 images SVM-NosePose
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(c) Strict evaluation 355900 images SVM-NosePose

(d) Weak evaluation 355900 images SVM-NosePose

Figure 3.2: Confusion matrices when estimating the yaw on the Multi-PIE dataset
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(e) Distribution for 10000 images

(f) Distribution for 355900 images

Figure 3.3: Head pose estimation distribution on the Multi-PIE dataset
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3.2 Pointing’04

The Pointing’04 dataset [25] includes 15 subjects and two different series of 93 images

of each. Each image represents a different combination of yaw and pitch in the range

from −90◦ to 90◦ in both axes. Totaling 2790 images (Figure 3.4) , the dataset is mostly

composed of white Europeans (73% of the subjects). Only a small portion of the dataset

(27%) is composed of other ethnicities. No expressions or lighting variations are present.

Figure 3.4: Image samples from the Pointing’04 dataset

3.2.1 Pointing’04 Experiments

Experiments performed on the Pointing’04 dataset were conducted similar to Pawelczyk

and Kawulok [12]. Ten subjects were chosen for the training subset and 5 for testing,

amounting to 1842 training images and 836 test images. The pose annotations are already

part of the dataset, even though they are not precise [12], and Pawlczyk and Kawulok

[12] shared the nose region annotations via personal communication to allow for a fairer

comparison.
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Tests were performed estimating the head yaw, pitch and both yaw and pitch at the

same time, the optimal number of subregions are presented in Table 3.3. Confusion

matrices were generated for both strict and weak evaluation protocols when estimating

the yaw (Figure 3.5) and the pitch (Figure 3.6) separately. When estimating the pose on

both axes at the same time, due to the large number of classes, the resulting confusion

matrices are unreadable.

Table 3.3: Achieved accuracy with different numbers of subregions on the Pointing’04
dataset

Subregions 1 4 9 16 25 36 49 64 81 100

Yaw Acc. 48.21% 54.90% 58.97 % 57.18% 49.64% 48.56% 58.97% 61.36% 61.00% 59.09%
Pitch Acc. 41.27% 57.89% 56.22% 51.67% 46.41% 39.47% 56.94% 58.49% 57.18% 55.02%
Both Acc. 25.12% 35.53% 38.28% 40.55% 37.68% 37.92% 36.36% 36.96% 38.40% 38.52%

When comparing against Pawelczyk and Kawulok’s [12] method, we implemented

the approach and estimated the SVM parameters, but were unable to achieve the same

accuracy as reported. Kawulok shared the original SVM parameters that were used, but

we were still unable to achieve similar accuracy. We present all our results and compare

them against all of Pawelczyk and Kawulok’s [12] method’s possibilities in Tables 3.4, 3.5,

3.6 when estimating the yaw, pitch and both, respectively.

The ground-truth distribution and the distribution we obtained when estimating the

yaw with both our methods are shown in Figure 3.7(a). A similar graph, but for the pitch

estimation is shown in Figure 3.7(b).

Out method outperforms the compared approach in all aspects. When the weak

evaluation protocol is considered, good performance is reached even for estimating the

pitch and yaw simultaneously when each class only has a few samples in the training set.
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Table 3.4: Comparative results for estimating the yaw on Pointing’04

Strict Weak
[12] (reported) 56.99% 93.41%

[12] (original parameters) 18.06% 45.45%
[12] (estimated parameters) 28.59% 69.38%

SVM-NosePose 61.36% 95.69%

Table 3.5: Comparative results when estimating the pitch on Pointing’04

Strict Weak
[12] (reported) 47.91% 77.80%

[12] (original parameters) 13.88% 37.44%
[12] (estimated parameters) 28.23% 59.57%

SVM-NosePose 58.49% 94.50%

Table 3.6: Comparative results for simultaneous estimation of the pitch and yaw on
Pointing’04

Strict Weak
[12] (reported) 27.41% 73.46%

[12] (original parameters) 3.47% 27.27%
[12] (estimated parameters) 14.11% 66.27%

SVM-NosePose 40.55% 91.87%
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(a) Strict evaluation

(b) Weak evaluation

Figure 3.5: Confusion matrix estimating the yaw on the Pointing’04 dataset
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(a) SVM strict evaluation

(b) SVM weak evaluation

Figure 3.6: Confusion matrices when estimating the pitch on the Pointing’04 dataset
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(a) Result distribution on the yaw axis

(b) Result distribution on the pitch axis

Figure 3.7: Result distributions on the yaw and pitch axes
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3.3 McGillFaces

The McGillFaces database [26] consists of 18000 unconstrained frames extracted from

video sequences of 60 unique subjects and the corresponding labels (face mask, gender

and head yaw). However, only 10500 frames are available publicly and only 6665 frames

have the head pose annotation. During recording, the subjects were placed in different

illumination and background conditions and were allowed free movement and object in-

teraction. This resulted in a variety of arbitrary face scales, expressions, viewpoints and

occlusions. Figure 3.8 shows sample images taken from the McGillFaces dataset.

Figure 3.8: Image samples from the McGillFaces dataset

3.3.1 McGillFaces Results

To perform our experiments, we manually annotated the nose region in all provided images

with the head yaw annotation and used 6665 total images for our tests, 3208 for training

and 3457 for testing, without overlapping subjects. We present the achieved accuracy for

all possible number of subregions in Table 3.7.
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Table 3.7: Achieved accuracy with different numbers of subregions on the McGillFaces
dataset

Subregions 1 4 9 16 25 36 49 64 81 100

Accuracy 53.08% 55.34% 53.34% 55.71% 53.69% 58.06% 59.24% 58.66% 58.57% 56.78%

The results obtained with our approach are shown in Figure 3.9 in the form of confusion

matrices for both strict and weak evaluation protocols. We provide the distribution of

our estimation and the ground-truth labels in Figure 3.10. Table 3.9 shows our results

compared to Demirkus et al., who reported, via personal communication, to have used all

18000 images for training and testing. Because of this, the comparison is, unfortunately,

biased as our method would have benefited from using almost three times as many images.

3.3.2 Filtered McGillFaces Results

We investigated and evaluated the reliability of the provided pose annotations, since

they were annotated semi-automatically [26]. Each image in the dataset with a label

was evaluated by at least two different people, one by one in random order and was

tagged either good or inconsistent. This visual analysis of the provided ground-truth

annotation showed that approximately one fifth of the images were assigned inconsistent

labels (Figure 3.11).

Because of this, we also evaluate our algorithm in a filtered version of the McGillFaces

dataset, containing only the images tagged as good. It contains 5329 total images, 2475

for training and 2854 for testing. The increase in accuracy is evident, our results in this

subset are presented in Figure 3.12 as confusion matrices and distributions, Table 3.8

presents the optimal number of subregions.

Table 3.8: Achieved accuracy with different numbers of subregions on the Filtered McGill-
Faces dataset

Subregions 1 4 9 16 25 36 49 64 81 100

Accuracy 57.95% 62.37% 66.54% 67.55% 61.88% 69.38% 70.71% 69.80% 69.48% 68.04%
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We also present all results in the McGillFaces dataset in Table 3.9. Our accuracy is

lower than Demirkus et al. [13], however we used a smaller training subset, due to the

whole dataset not being available, and make no use of temporal information. Higher

accuracy is achieved in the filtered dataset, indicating that some labels are inconsistent.

Table 3.9: Original McGillFaces vs. Filtered McGillFaces both approaches.

Strict Weak
SVM (Original McGill, 6665 images) 59.24% 83.34%
SVM (Filtered McGill, 5329 images) 70.71% 92.68%

[13] (18000 images) 79.02% −
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(a) SVM-NosePose using strict evaluation

(b) SVM-NosePose using weak evaluation

Figure 3.9: Confusion matrices estimating the yaw on the McGillFaces dataset
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Figure 3.10: Results distribution on McGillFaces

Figure 3.11: Examples of inconsistent ground-truth annotations in the McGillFaces
dataset
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(a) SVM using strict evaluation

(b) SVM using weak evaluation
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(c) Results Distribution

Figure 3.12: Confusion matrix and distribution on the Filtered McGillFaces dataset
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3.4 SFEW

SFEW (Static Facial Expressions in the Wild) [27] is a dataset dedicated for expression

recognition evaluation, it contains approximately 1700 images divided into three sub-

sets, training, validation and test. All images are automatically extracted movie frames

based on the detected expression and contain challenging variations in illumination, pose,

expression and scale. Sample images from the dataset can be seen in Figure 3.13.

Figure 3.13: Image samples from the SFEW dataset

3.4.1 SFEW Results

The SFEW dataset is divided into three subsets, training, validation and testing. As the

SFEW dataset only comes with annotated expressions, we annotated both the head pose

and nose region in all images, totaling 957 training images, 436 validation images and 372

testing images. We trained our method using both the training and validation subsets

and evaluated the performance on the testing subset. Figure 3.14 contains our resulting

confusion matrix and distributions, Table 3.10 presents the best number of subregions.

The lack of profile head pose images in the training subset causes our estimation to
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Table 3.10: Achieved accuracy with different numbers of subregions on the PaSC dataset

Subregions 1 4 9 16 25 36 49 64 81 100

Accuracy 65.86% 72.31% 77.42% 75.27% 76.61% 81.45% 83.60% 79.57% 81.99% 76.34%

favor frontal and half-frontal poses even when presented with profile images. Our com-

parative results (displayed in Table 3.11) show that our algorithm can achieve satisfactory

performance in extreme cases with facial expressions, poor illumination and other adver-

sities present in the SFEW dataset.

Table 3.11: Comparative results on the SFEW dataset

Accuracy
SVM-NosePose 83.60%
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(a) Confusion Matrix

(b) Distribution

Figure 3.14: Confusion matrix and distribution on the SFEW dataset
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3.5 PaSC

PaSC (Point-and-Shoot Challenge) [22] is an in-the-wild dataset with both videos and still

frames subsets for face recognition. In this paper, we focus on the stills subset. It contains

9376 challenging images of 293 subjects (Figure 3.15) of different ethnical backgrounds in

different environments, illumination conditions, poses and sensors.

Figure 3.15: Image samples from the PaSC dataset
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3.5.1 PaSC Results

The PaSC dataset is pre-divided into training and testing subsets optimized for evaluating

face recognition. This subdivision proved to be poor for evaluating head pose estimation,

as the distribution of the poses in the subsets vary greatly (Figure 3.16(a)). We redivided

the images in a way that this difference would be less noticeable (Figure 3.16(b)) while

guaranteeing that no subject is present in both subsets.

Table 3.12: Achieved accuracy with different numbers of subregions on the PaSC dataset

Subregions 1 4 9 16 25 36 49 64 81 100

Accuracy 75.65% 81.05% 82.80% 75.51% 74.63% 77.32% 86.13% 86.42% 86.91% 85.41%

For this experiment, we used only the images on which we were able to manually

annotate the nose region and the head pose (into 5 classes [−90, 45, 0, 45, 90]), resulting in

5784 training and 6243 testing still images. The best number of subregions is presented

in Table 3.12, Figure 3.17 shows the confusion matrices and label distribution. Table 3.13

shows our results for both approaches. As a consequence of the head pose not being very

well distributed in the dataset, both algorithms tend to be biased towards estimating the

pose as frontal.

Table 3.13: Results obtained on PaSC dataset

Strict
SVM-NosePose 86.91%
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(a) Original PaSC subset distribution for face recognition

(b) Proposed PaSC subset distribution for head pose estimation

Figure 3.16: Different class distributions on the PaSC dataset
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(a) SVM-NosePose using strict evaluation

(b) Distribution of our results

Figure 3.17: Results when estimating the yaw on the PaSC dataset
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3.6 AFW

The annotated faces in-the-wild (AFW) [10] dataset containing 468 faces with landmark

and pose annotations. Large variations in the background, pose, expression and subject

appearance are present (Figure 3.18), as the images were extracted from Flickr and are

all from real world in-the-wild scenarios.

Figure 3.18: Image samples from the AFW dataset

3.6.1 AFW Results

The AFW dataset contains no training subset. Just like Zhu and Ramanan [10], we trained

using the provided 900 images subset from the Multi-PIE dataset, the same training data

we used when experimenting on the dataset and split and augmented the subjects 14-fold,

using 300 of them for training to evaluate our performance on AFW, yielding three distinct

results. The annotations include, sometimes, multiple subjects in a single image with a

precision of 15 degrees on the yaw pose. We manually annotated all the corresponding

nose regions. Our results are shown as confusion matrices and distributions in Figures
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3.19, 3.20 and 3.21. The optimal number of subregions is shown in Table 3.14. We

compare our results against Zhu and Ramanan [10] in Table 3.15.

Table 3.14: Achieved accuracy with different numbers of subregions on the AFW dataset

Subregions 1 4 9 16 25 36 49 64 81 100

900 12.18% 16.03% 23.08% 23.50% 22.01% 22.22% 22.01% 20.30% 21.15% 20.51%
7000 10.90% 14.11% 20.09% 21.37% 22.86% 23.50% 25.00% 25.00% 23.93% 25.00%

Augmented 28.21% 37.07% 36.25% 36.00% 35.46% 35.25% 44.71% 44.46% 44.82% 44.21%

Table 3.15: Comparative results when estimating the yaw on the AFW dataset

Strict Weak
SVM-NosePose (900 images) 22.22% 54.49%

[10] (900 images) − 81.00%
SVM-NosePose (7000 images) 25.00% 70.09%
Augmented (268 ∗ 14 faces) 44.71% 81.26%

The increase in accuracy is clear when more images are used for training. Our algo-

rithm has no problem estimating the pose for multiple subjects in a single image. However,

the achieved mediocre accuracy is expected when training using a controlled environment

dataset and estimating the pose on an in-the-wild dataset, when splitting the dataset for

training, the results are consistent with the previous ones.
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(a) SVM-NosePose using strict evaluation

(b) SVM-NosePose using weak evaluation
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(c) Distribution of the results

Figure 3.19: Results on the AFW dataset, using 900 images for training
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(a) SVM-NosePose using strict evaluation

(b) SVM-NosePose using weak evaluation
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(c) Distribution of the results

Figure 3.20: Results on the AFW dataset, using 7000 images for training
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(a) SVM-NosePose using strict evaluation

(b) SVM-NosePose using weak evaluation
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(c) Distribution of the results

Figure 3.21: Results on the AFW dataset, using 268 augmented faces for training
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3.7 Nose Detection

The Faster R-CNN [23] detection method was evaluated on all datasets for finding the

nose in the whole image, to assess the suitability of combining our head pose estimation

method with a state-of-the-art detection step. All default Faster R-CNN parameters and

models were used for training.

Algorithm 2 Intersection Coefficient

function iCoefficient(pred, gt)
intersection← getIntersection(pred, gt)
iArea← intersection.width ∗ intersection.height
pArea← pred.width ∗ pred.height
gArea← gt.width ∗ gt.height
return min(iArea/pArea, iArea/gArea)

end function

The intersection coefficient (Algorithm 2), proposed by Hoover et al. [28], was used as

metric, the rates presented in Table 3.16 are the number of images where the coefficient is

at least 0.5 and include all detections. The results are also presented as curves in Figure

3.22 after being filtered according to the detection score internally calculated by Faster

R-CNN, limiting one region per subject.

Table 3.16: Percentage of images where the intersection coefficient of the detected nose
region and the annotated ground-truth is at least 0.5 and the amount of false positives

Dataset Accuracy False Positives

Multi-PIE 99.66% 15.52%
Pointing’04 99.89% 29.38%
McGillFaces 97.21% 22.56%

SFEW 90.86% 14.21%
PaSC 82.89% 92.51%

PaSC (face only) 73.66% 47.97%
AFW 51.19% 79.18%
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Figure 3.22: Intersection Coefficient curves on all datasets. The number in parenthesis is
the area under the curve

While the detection performance on the Multi-PIE, Pointing’04, McGillFaces and

SFEW is very high, Faster R-CNN failed to produce useful estimations on both PaSC

and AFW. We believe this is due to different reasons: the very limited number of images

in the AFW dataset, the low quality of many faces in the PaSC dataset (some are just a

blur) and the large size of the images in the same dataset, which is incompatible with the

default training parameters. To better understand the obtained results, we also retrained

on the PaSC dataset using only the cropped face regions and achieved much lower false

positive rates, particularly after filtering the detections.

We also present the pose estimation accuracy on all datasets when the filtered detected

regions are used for extracting the features (Table 3.17). Performance is similar on most

datasets, with the exception of those where the detection did not yield good results.
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Table 3.17: Nose pose estimation performance when using the detected nose regions

Dataset Ground-Truth Detections

Strict Weak Strict Weak
Multi-PIE 94.13% 99.31% 76.67% 97.13%

Pointing’04 (yaw) 58.49% 94.50% 45.53% 83.96%
Filtered McGillFaces 70.71% 92.68% 55.08% 82.98%

SFEW 83.60% – 66.67% –
PaSC (faces only) 86.91% – 75.65% –

AFW 25.00% 70.09% 7.14% 31.55%
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CHAPTER 4

APPLICATIONS

We present two different applications for our head pose estimation method: Face quality

estimation for nose tracking and 3D face alignment in the wild. Tests were performed to

assess the real possibility and performance of integrating head pose estimation to these

ends.

4.1 Face Quality Estimation For Face Tracking

We propose an initialization step for in the wild nose tracking, such that the initial frame

is chosen based on face quality and head pose. We perform experiments using a state-of-

the-art generic visual tracking method [17] and compare the accuracy when initializing

the tracker with the first frame (baseline) and with the selected frame.

Given all frames in a video, the quality score for each is calculated according to

the following steps: 1. Detect the face using Faster R-CNN [23]; 2. Detect the nose

inside the face; 3. Obtain face quality asessment score using Abaza et al.’s method [18];

4. Estimate the head pose yaw; 5. Calculate a pose score favoring half-profile and frontal

faces; 6. Multiply the face quality and pose scores. Nam and Han’s [17] tracker is initialized

using the frame with the highest quality score and tracking is performed both forwards

and backwards in time.

The proposed pose score can be adapted to the problem being solved, our empirical

experiments showed that initializing the tracker with the nose region on frontal and half-

frontal head poses yield better results compared to profile noses, due to the difference

in the included background. By multiplying it by the geometrical average of the face

illumination, brightness, focus, sharpness and contrast scores calculated by Abaza et al.’s

method [18], our algorithm is able to select the best quality nose for the problem.

Experiments were performed on the 300 Videos in the Wild (300VW) [29] dataset,
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Algorithm 3 The precision metric. The predicted region is represented as pred and the
ground-truth region as gt

function precision(pred, gt)
return l2norm(center(pred), center(gt))

end function

where all 64 videos in the testing subset where used to evaluate our results. We present

the achieved increase in performance when our initial frame selection approach is applied

and compare it against the baseline using two different metrics: intersection coefficient

and precision (Algorithms 2 and 3).

Using our initialization, the tracker is able to estimate the size of of the bounding

boxes with greater accuracy (Figure 4.1), 79.65% of the estimated regions are have an

intersection coefficient of at least 0.5, compared to only 75.36% achieved by the baseline.

Our frame selection did not influence the precision of the nose tracker (Figure 4.2).
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Figure 4.1: Comparison of the intersection coefficient metric between the baseline and
our approach. The area under the curve is displayed in parenthesis
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Figure 4.2: Comparison of the precision metric between the baseline and our approach.
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in parenthesis
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4.2 3D Face Alignment in the Wild

The 3D face alignment in the wild problem is defined by estimating the position of the fa-

cial landmarks in the 3D space given only a 2D image of the face. We propose a landmark-

free, in the sense that it does not use any individual face characteristics, methodology

using only the nose region. It is trained and evaluated on the available subset of the 3D

Face Alignment in the Wild (3DFAW) challenge The face points are estimated by scaling,

rotating and translating a generic face landmark model according to the detected nose

region, estimated head pose and an optional face region (Figure 4.3), such that no specific

facial trait or expression information is taken into account.

The 3DFAW challenge presents a set of images and annotations for evaluating the

performance of in the wild 3D sparse face alignment methods. Part of the data is from the

MultiPIE dataset [21] or from images and videos collected on the internet, having its depth

information been recovered through a dense 3D from 2D videos alignment method [30].

The rest of the data was synthetically generated by rendering the 3D models present

in the BU-4DFE [31] and BP4D-Spontaneous [32] databases onto different backgrounds.

The training data includes the face bounding box and the 3D coordinates of 66 facial

landmarks, while the testing data only includes the face bounding box. Experiments were

performed on the training and validation subsets only.

The landmark model is generated by a series of steps: 1. A near frontal face for calibra-

tion from the training subset (Figure 4.4(a) and 4.4(b)) is selected; 2. All other training

Figure 4.3: Overview of the 3D face alignment method
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(a) (b) (c)

Figure 4.4: a) Calibration image; b) Calibration landmarks; c) Landmark model viewed
with the calibration pose

facial landmark sets are then aligned using an affine transform on scale, translation and

rotation; 3. The position of all landmarks is averaged (Figure 4.4(c)).

The head pose is estimated on both yaw and pitch in steps of 7.5 degrees and the

model is aligned based on the detected nose region using a series of empirically determined

parameters. If the face region is known, it can be used to better scale the landmark model,

otherwise the size of the nose region is used as basis for the scaling. This process is detailed

in Algorithm 4.

Our results obtained on the validation dataset are presented evaluated on the Ground

Truth Error (GTE) metric (Equation 4.1). We do not compare our results against any

other methods as there are currently no publications on this dataset. However, we present

a set of examples for visual inspection of the results (Figure 4.5).

E(X, Y ) =
1

N

N∑

k=1

‖xk − yk‖2
di

(4.1)

The achieved alignment precision, of 11.113 pixels, and robustness to challenging envi-

ronments, including extreme head pose and face expression indicates that our estimation

has the potential to be used as initialization for finer alignment methods that rely on such

step [30, 33].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Example results of the model fitting stage, showing the face bounding-box
in red, the detected nose region in blue and the estimated position of the landmarks in
green. a) Near frontal good fit; b) Bad fit caused by bad head pitch estimation; c) and
d) Half-profile good fit; e) Good fit in an image sourced from the MultiPIE dataset; f)
Modest fit in one of the most challenging images in the dataset
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Algorithm 4 Model Fitting Algorithm

function fitModel(model, noseBB, headPose, faceBB)
modelNoseBase← average(model.noseBaseLeft,model.noseBaseRight)
rotate(model,modelNoseBase, headPose)
if isDefined(faceBB) then

xScale← .975 ∗ faceBB.width/model.width
yScale← .975 ∗ faceBB.height/model.height
zScale← (xScale+ yScale)/2 ∗ .95
scale(model, xScale, yScale, zScale)

else

modelNoseWidth← l2Norm(model.noseBaseLeft,model.noseBaseRight)
scale(model, .6 ∗ nose.width/modelNoseWidth)

end if

noseBase← {nose.x+ nose.width ∗ .5, nose.y + nose.height ∗ .9, 0}
translate(model,modelNoseBase− noseBase)
translate(model, {0, 0,−average(model).z})
return model

end function
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CHAPTER 5

FINAL REMARKS

We performed head pose estimation based on the nose region using our approach, SVM-

NosePose. Our method was tested on six different publicly available datasets.

On Multi-PIE [21], we achieved better performance than Zhu and Ramanan [10] and

similar performance to Demirkus et al. [13]. On the Pointing’04 dataset, our accuracy

surpassed Pawelczyk and Kawulok’s [12] when estimating the yaw, the pitch and both at

the same time. After annotating SFEW [27], we were able to evaluate our method and

achieved a hit rate of 83.6%.

On the publicly available subset of the McGillFaces dataset [26], we were able to train

our algorithm and evaluate all images independently, we achieved 59.24% accuracy, lower

than Demirkus et al. [13], who used temporal information and almost three times as many

images. We noticed the ground-truth annotations on the McGillFaces dataset [26] were

inconsistent, and produced a filtered version of the dataset, with only four fifths of the

total images, the ones with consistent labels, and were able to achieve 70.71% accuracy

on it.

We achieved 70.09% hit rate on AFW [10] dataset, considering the weak protocol.

This can be considered poor when compared to Zhu and Ramanan’s [10] result, however

our method was not developed for training on a controlled dataset and testing on an

in-the-wild dataset. We also present our achieved accuracy of 86.91% when training and

testing on a large in-the-wild dataset, PaSC [22].

A state-of-the-art object detection method was applied and evaluated for finding the

nose region. Our results show that with proper training, high detection rates can be

achieved while keeping the number of false positives low.

Two applications for NosePose were suggested and tested: tracking initialization and

3D face alignment. The results indicate great potential when integrating our method due
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to it being robust even in challenging scenarios.

In future work, we also intend on using temporal information to improve our accuracy

and allow better comparisons against other published methods. This can be done in

datasets where the images were extracted from video sequences, such as McGillFaces [26]

and PaSC [22].
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