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RESUMO 

Um método para se obter impressões digitais 3D da derme e da epiderme a partir de imagens 

em alta resolução adquiridas utilizando Tomografia de Coerência Ótica (OCT) é proposto neste 

trabalho. Este método, resolve limitações das técnicas de reconstrução 3D de impressões 

digitais que empregam múltiplas câmeras/triangulação ou iluminação estruturada, tais como 

variações de resolução do centro para as bordas das impressões digitais 3D causadas por erros 

de reconstrução, sensibilidade a baixa iluminação e contraste insuficiente. 

Uma técnica de busca e identificação baseados em padrões inovativos, os “mapas KH ” 

(usados para a segmentação de regiões de superfície em imagens de intensidade e de 

profundidade), extraídos computando as curvaturas Gaussiana (K) e média (H) de uma região 

de interesse na vizinhança das minúcias (denominada nuvem de minúcia), é apresentada. 

Grandes bases de mapas KH, uma para cada nuvem de minúcia identificada, podem ser 

construídos com essa técnica. A estratégia de busca e identificação, em duas etapas, baseia-se 

primeiro em padrões locais de gradientes (LGP) dos mapas KH, para reduzir o espaço de busca 

dentro da base, seguidos de uma comparação que utiliza uma medida de similaridade, a 

correlação cruzada normalizada dos padrões pré-selecionados com o LGP com os que se quer 

identificar. A acuracidade do método e sua compatibilidade com os métodos correntes, 

comparável ou superior à dos métodos 2D, é verificada através da identificação biométrica de 

impressões digitais 3D utilizando duas bases de imagens, uma adquirida através da tecnologia 

OCT e a outra gentilmente cedida pela Universidade Politécnica de Hong Kong. 

A base de imagens OCT, a primeira adquirida com essa tecnologia, é composta de imagens 

coletadas de onze voluntários em duas sessões de escaneamento e contém imagens de dedos 

de pessoas com diferentes idades, gênero e etnias e contém casos de cicatrizes, calos e 

alterações, tais como abrasão e arranhões. Uma base de impressões digitais 2D, obtida dos 

mesmos voluntários    através de um leitor regular de impressões digitais, foi adquirida para 

permitir uma comparação da técnica proposta com os métodos de identificação tradicionais. 

A aplicabilidade do método proposto à identificação de impressões digitais alteradas, 

deterioradas acidentalmente ou intencionalmente, é investigada. Nesses casos, a impressão 

digital 3D extraída da derme e compatível com a da epiderme é empregada. A identificação 

destas impressões 3D alteradas é testada utilizando a base de imagens adquiridas com OCT. A 

acuracidade da técnica é comparada com a obtida utilizando os métodos tradicionais 2D usando 



os gráficos de taxas de Falsa Aceitação e Falsa Rejeição (FAXxFRR) e de Características 

Cumulativas de Identificação (CMC). Impressões digitais 2D, extraídas a partir das impressões 

digitais 3D simulando o rolamento do dedo durante a aquisição (rolamento virtual), foram 

geradas e sua compatibilidade com as bases de imagens 2D foi testada. 

Um conjunto de medidas de avaliação de qualidade foram aplicados às bases de imagens de 

impressões digitais 3D e sua correspondência aos escores de identificação foi analisada para 

determinar aqueles que podem contribuir para melhorar a acuracidade da identificação. 

Palavras-chave: Impressões digitais 3D. Identificação Biométrica. Tomografia de Coerência 

Ótica. 



ABSTRACT 

A method to obtain epidermal and dermal 3D fingerprints from high-resolution images 

acquired using Optical Coherence Tomography (OCT) is proposed. This method addresses 

limitations of current 3D reconstruction techniques that employ multiple cameras/triangulation 

or structured illumination such as depth and resolution variations from the center to the borders 

of the fingerprint caused by reconstruction errors, sensitivity to low illumination and poor 

contrast. The availability of these 3D fingerprints allowed the creation of new matching 

methods that benefit from the rich information available in 3D.  

A 3D fingerprint matching technique based on novel patterns, the KH maps (used to surface 

region segmentation in range and intensity images), extracted by computing the Gaussian and 

mean curvatures (SILVA; BELLON; GOTARDO, 2001) from a region of interest around the 

minutiae, named minutiae clouds is presented. Large databases of KH maps, one for each 

identified minutiae cloud can be built. The matching strategy, a two-step approach, relies on 

local gradient patterns (LGP) of the KH maps to narrow the search space, followed by a 

similarity matching, the normalized cross correlation of patterns being matched. The accuracy 

and matching compatibility, comparable or improved in relation to the 2D matching methods, 

is verified through matching 3D fingerprints from two databases one acquired using OCT and 

a public database gently made available by the Hong Kong Polytechnic University. 

The OCT database, the first 3D database acquired using Optical Coherence Tomography, to 

our knowledge, is made of images collected from eleven volunteers in two scanning sessions 

and contains images of people of different ages, genders and ethnicities and also cases of scars, 

calluses and alterations as abrasion and scratches. A 2D fingerprint database, scanned from the 

same volunteers using a regular fingerprint reader was also obtained for comparison with 

traditional matching methods. 

We investigate the applicability of our method to the identification of altered fingerprints, 

damaged unintentionally or accidentally. In these cases, the 3D dermal fingerprint, compatible 

with the epidermis fingerprint, is employed. Matching with 3D dermal and epidermal 

fingerprints is tested in the OCT database. Matching accuracy is compared with the obtained 

using traditional matching 2D methods by using False Acceptance and False rejection rate 

(FARxFRR) and Cumulative Matching Characteristics (CMC) graphs. Unwrapped 



fingerprints, 2D fingerprints extracted from 3D fingerprints by virtual unrolling were generated 

and tested for compatibility with 2D databases. 

A set of quality evaluation measures were employed to the 3D fingerprint databases and 

their correspondence to the matching scores was analyzed to identify those that can contribute 

to improve the matching accuracy.  

Key-words: 3D Fingerprints. Biometric identification. Optical Coherence Tomography. 
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1 - INTRODUCTION 

The identification of human beings has been used for many years in commercial, 

governmental and legal applications such as checking if the identity claimed by the individual 

is true by comparing its features to previously stored ones or identifying if these features could 

be found within a database. Many personal attributes such as fingerprints, iris, signature, retina, 

ear shape, hand veins, gait, palm print and people odor have been used individually or 

combined (multibiometrics). Fingerprint based biometric systems rely on image features 

present in the finger skin, such as the ridges and valleys patterns, minutiae, texture and sweat 

pores.  

A particular use of these technologies, that is gaining importance due to the increasing 

number of identification deception attempts (FENG; JAIN; ROSS, 2010; YOON; FENG; 

JAIN, 2012), is border control and access to security facilities, which are in crescent demand 

for governmental and civilian applications. 2D fingerprint technologies have been successfully 

used for years but despite the continuous improvement, such as the adoption of more 

discriminant information of sweat pores and ridge textures, some opportunities for 

improvement remain. It has been estimated that 4% of the population  (JAIN; ROSS; 

PRABHAKAR, 2004)  may have poor skin ridge quality making it difficult to scan these 

fingerprints. One of the current issues is vulnerability to skin alterations, which can negatively 

affect the identification systems performance. Alterations can be unintentional, as in the cases 

of abrasion and cutting, or deliberate, as the cases of acid burns and plastic surgery with the 

purpose of evading the identification by a biometric system , as described by Yoon and Jain 

(YOON; FENG; JAIN, 2012). Another case of relevance is the identification of corpses, whose 

skin alteration is caused by the putrefaction or damage to the skin by accidents or catastrophes. 

In this case, the dermal fingerprint is usually employed, after exposed through a chemical 

process (MIZOKAMI; SILVA; KÜCKELHAUS, 2015).  

The identification of newborn babies is considered a challenging problem due to its high 

deformability, the small dimensions of their dermatoglyphics. The use of current contact-based 

fingerprint scanners, whose resolution is typically 500 dpi, is not suited to these individuals for 

the mentioned reasons. Resolution greater than 1,500 dpi to imaging newborn babies 

fingerprints is recommended (WEINGAERTNER, 2007), since papillary ridges width is 

approximately 0.10 mm (CUMMINS; MIDLO, 1976) and 2,250 dpi to premature babies is 
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suggested as their ridge with is even smaller. Skin deformability was attributed to the small 

thickness of the epidermis, in contrast with the dermis, more dense and less deformable, as 

tested in (GUTIERREZ DA COSTA; MAXEY; SILVA; ELLERBEE, 2014) and can be 

prevented by scanning without the need to have the contact of finger skin with the scanner.  

The use of 3D fingerprint geometry has been studied as a promising alternative to 2D 

identification technologies as it provides richer discriminatory information obtained through 

contactless imaging and 3D reconstruction. However, despite their inherent advantages as the 

immunity to skin deformation, it has been limited to superficial images of the skin, i.e. the 

stratum corneum, which can be impacted by illumination, brightness, contrast, and errors 

inherent to triangulation (in multiple camera implementation) or phase-calculation (in 

structured light illumination  techniques) such as ridge/valley depth variations and resolution 

variation from the center to the borders of the 3D images (PARZIALE, 2008). The use of 3D 

scanners that provide the spatial information directly, with no need of reconstruction from 2D 

images, can potentially minimize the errors inherent to these techniques. By working with the 

3D information, one can use it to matching directly or extract some discriminant characteristic 

such as curvatures. 

A new method to obtain 3D fingerprints from images of the dermis and epidermis, acquired 

through Optical Coherence Tomography, by detecting the signal intensity changes caused by 

variations in the refractive index of the skin layers is proposed. Optical Coherence 

Tomography, a contactless high-resolution scanning technology that acquires in-depth 3D 

images of the skin layers allows obtaining images of the internal structures of the skin, exposing 

information that can be potentially be used to improve identification or verification if compared 

to traditional 2D fingerprint identification methods and help identifying fake fingerprints. The 

resolutions obtained (of less than 1μm in some configurations) are sufficient to scan newborn 

babies’ fingerprints and the use of the information available in the dermis-epidermis interface 

can be make possible biometric identifications when the epidermis has been altered. In addition 

,  the skin intensity profile (signal intensity with  depth) and the internal structures of the skin 

can be used to detect fake fingerprints or evidence of fingerprint alteration (CHENG; LARIN, 

2006), (MEISSNER; BREITHAUPT; KOCH, 2013a). 

In our method, 3D point clouds (3D fingerprints) are extracted from the epidermis and 

dermis-epidermis of OCT images and a region of interest (ROI), a small point cloud around 

fingerprint minutiae, named minutiae cloud is cut. From the points of this ROI, the distinctive 

information that will be used for biometric identification is calculated by using the gradients 
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of each point and its neighbors. The use of multiple minutiae clouds can improve the accuracy 

of the biometric identification if compared to the traditional 2D methods. A database of 

epidermal and dermal OCT 3D fingerprints, the first to our knowledge, was built by scanning 

images of eleven volunteers in two sessions held in different days, following a protocol 

approved by Stanford University, where the images were collected. The volunteers, of various 

ethnicities and ages had their ten fingers scanned.  

 A method for fingerprint matching based on the mentioned novel patterns is also presented. 

The patterns used for matching, KH maps, are shown in Fig.1, being computed from minutiae 

clouds based on signs of the Gaussian and mean curvatures as proposed by (BESL; JAIN, 

1986). Large databases of KH maps, one for each identified minutiae cloud, can be built, what 

can impact the matching response time. The matching strategy, a two-step approach relies on 

local gradient patterns (LGP) of the KH maps to mitigate this problem by narrowing the search 

space, followed by a similarity matching of the nearest neighbors of the pattern being searched. 

Our proposed method addresses the problem of extracting 3D features and exploiting them for 

improved matching in large databases. The accuracy and matching compatibility, comparable 

or improved in relation to the 2D matching methods is verified through matching using 

epidermis-epidermis and dermis-epidermis minutiae clouds and comparing the results 

(FARxFRR, ROC and CMC curves) with those obtained for traditional 2D fingerprint 

matching collected from the same volunteers.  

Fig. 1- KH map:(a) 3D plotting, colors correspond to curvature types (light blue-peak, dark 

blue-saddle ridge, yellow-pit and orange-saddle valley) and (b) 2D representation 

We also investigate the applicability of our method to the identification of altered 

fingerprints, damaged unintentionally or accidentally.  In these cases, the 3D dermal 

fingerprint, compatible with the epidermis fingerprint, is employed and the KH maps extracted 

from them. 

Finally, a test of the applicability of the proposed matching technique to 3D fingerprints 

acquired through other acquisition methods has been conducted and the results presented. 
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2 - PERSON IDENTIFICATION USING FINGERPRINTS 

Personal identification based on physical or behavioral attributes of the individual is largely 

used for commercial, governmental and legal applications. The most frequent situations are: 

verification, i.e. checking if the identity claimed by the individual is true by comparing its 

features against previously stored ones (a 1:1 comparison with features of the same individual) 

or identification, matching the features to the ones stored in a database (a 1:N comparison). In 

both fingerprint-based identification and verification, the dermatoglyphics, finger skin patterns 

present in the skin, are used. 

Dermatoglyphics and Ridge Formation 

Fingerprints are formed by the detection (by an image sensor or ink and paper printing) of 

the finger dermatoglyphics, present in the outer layer of the epidermis of the hands, palmprints 

and soles. The epidermis is divided in several layers, being the stratum corneum, the outermost. 

This layer is made of dead, hardened cells., constantly removed by the use of hands. It is 

originated by the migration of cells from the deepest part of the epidermis, where the living 

cells are constantly multiplying to replace the lost cells of the stratum corneum. During this 

migration, the epidermal cells get hardened (CUMMINS; MIDLO, 1976) . 

The epidermal- dermal interface is not smooth, having irregularities that, in the dermis are 

named dermal papillae, made of connective tissue. The occurrence of the epidermal ridges is 

determined during the fetus formation, caused by the proliferation of the cells into the 

epidermis  , which is invaded and molded by the dermal papillae (CUMMINS; MIDLO, 1976). 

The process is also influenced by the flow of the amniotic fluids around the fetus and its 

position within the uterus, making it virtually impossible for two individuals to have the same 

configuration, although genetic influence could be observed between identical twins 

(D.MALTONI, A.JAIN, D.MAIO, 2003), case where a strong similarity occurs.  

Alterations 

Finger skin alteration can occur for several reasons, one example is related to the constant 

use of the hands in labor activities that change the structure of the skin ridges (JAIN; ROSS; 

PRABHAKAR, 2004),  (FENG; JAIN; ROSS, 2010) another is the intentional alteration of the 

skin to try to mask a person identity through burns, cuts,  abrasion and even plastic surgery. 

These changes can alter the shape of the fingerprints scanned by traditional, contact-based or 

even contactless scanners and deceive the automatic identification systems, problem known as 
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biometric obfuscation (YOON; FENG; JAIN, 2012). Since the quality of the resulting altered 

fingerprints is not always lowered, the use of quality measures of the fingerprints is, in many 

cases, ineffective to detect alteration.  

Alterations can generally be classified in three types, Obliteration, Distortion  and Imitation 

(SELVARANI; JEBAPRIYA; MARY, 2014). Obliteration, is caused by abrading, burning, 

cutting or applying chemicals in an attempt to wipe out or make the fingerprint 

indistinguishable. Distortion is the change of ridge patterns into unnatural ones, by cutting or 

replacing finger pads of one finger by skin removed from other finger or from other parts of 

the body as the palms and soles. Imitation is an alteration that does not change the ridge 

patterns. It is made by removing a part of the skin and stitching the remaining part together or 

by swapping finger tips of two different fingers. 
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3 - BIOMETRIC IDENTIFICATION / VERIFICATION SYSTEMS  

The automated identification of a person is usually made through biometrical systems. 

These are described by (JAIN; ROSS; PRABHAKAR, 2004) as pattern recognition systems 

that acquires biometric data from a person, extracts a particular feature set from the data, 

compares it against the ones stored in a database and executes some action, depending on the 

comparison result.  

These systems must satisfy the following conceptual requirements (Table I)  (JAIN; ROSS; 

PRABHAKAR, 2004), (LI; JAIN, 2009): universality (every individual has the biometrical 

characteristic used by the system), distinctiveness (the characteristic is different if two 

individuals are compared), permanence (the characteristic should not change with the time), 

collectability (the characteristic can be measured). In addition, other practical requirements are 

relevant, as the performance (speed and accuracy), acceptability (people willingness to accept 

the use of such biometric identification/verification in their lives) and circumvention (immunity 

to fraud).  

Table I – Comparison of biometrics technologies based on the perceptions of three experts. H 

means high, M means Medium and L means Low (JAIN; ROSS; PRABHAKAR, 2004). 
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DNA H H H L H L L 

Ear shape M M H M M H M 

Face H L M H L H H 

     Facial Thermogram. H H L H M H L 

Fingerprint M H H M H M M 

Gait M L L H L H M 

          Hand Geometry M M M H M M M 

Hand veins M M M M M M L 

Iris H H H M H L L 

Keystrokes L L L M L M M 

Odor H H H L L M L 

Palm print M H H M H M M 

Retina H H M L H L L 

Signature L L L H L H H 

Voice M L L M L H H 
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By observing Table, I, it is possible to conclude that no biometric system fully satisfies all 

the requirements. To improve the performance of such systems, approaches using multi-

biometric identification by fusing information from multiple biometric sources  (CHANG; 

XIAOQING, 2006; POH; ROSS; LEE; KITTLER, 2013) are employed. An alternative is to 

improve the matching accuracy by the use of new biometric information as 3D fingerprints 

since they are universal and permanent and the availability of 3D much richer information (if 

compared with 2D) can increase the distinctiveness. If added the capture of inner skin layer 

structures, improvement in the circumvention characteristics can also be obtained. 

In general, biometrical systems can be viewed as a combination of  modules: an image 

acquisition device (where the images are collected), a processing and feature extraction stage 

(where tasks as de-noising, image registration, quality evaluation, feature extraction and 

database construction occur) and an identification/verification stage, where matching by 

comparing the image from user to the ones stored in a database is executed (JAIN; ROSS; 

PRABHAKAR, 2004), as in Fig. 2. 

 

Fig. 2 – Biometric System Modules 

In the next session, 3D Image Acquisition literature is reviewed and a detailed description 

of Optical Coherence Tomography (OCT) technology is presented. 
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4 - ACQUISITION OF 3D FINGERPRINTS 

3D acquisition systems have been proposed in the literature: in  (PARZIALE; DIAZ-

SANTANA; HAUKE, 2005) a touchless scanner with 5 cameras and an array of 16 LEDs (light 

emitting diodes) obtains 3D reconstructed images using stereovision and photogrammetry-

based algorithms from 2D images. Minutiae coordinates (x, y, z) and their azimuthal and 

zenithal angles are employed to find the correspondent points between pairs of 2D images 

scanned. This information and the 3D shape estimation (using “shape from silhouette” 

technique), are needed for 3D reconstruction. The matching process employs 2D and 3D 

features: 2D matching is computed using unwrapped images (from the 3D reconstructed 

fingerprints) and 3D matching uses correspondent spatial minutiae triangles.  

In (HUANG; ZHANG; ZHAO; DAI; … XIE, 2014), a sinusoidal pattern is projected by a 

digital light processing (DLP) device on the finger. Images of the projection of these patterns 

are captured by a CCD and the phase change in relation to the projected pattern is recovered 

by a four-step algorithm and a technique named “optimum three fringe number selection”. A 

calibration method recovers the depth (z) and x-y positions to the 3D reconstruction of the 

fingerprint. Additional processing as calibration (to compensate for optical system and 

projector errors), phase calculation, phase unwrapping, optimum three fringe number selection 

and reconstruction are needed. Errors of 0.0301 mm in depth and 0.0006 mm in x and 0.014mm 

in y were found, in relation to the golden standard adopted. Matching results were not presented 

in this work.  

(WANG; HASSEBROOK; LAU, 2010) used structured light illumination (SLI) and phase 

measuring profilometry to obtain a 3D model of the finger. An unwrapped 2D fingerprint is 

built through a deformable tube parametric technique (where each transversal section of the 3D 

fingerprint at a given height is unwrapped on a cylindrical surface). The final 2D fingerprint 

can use ridge depth, albedo or a combination of both. Quality evaluation and matching has 

shown that the best quality 2D fingerprints were obtained when the combined strategy (ridge 

depth and albedo) is adopted.  

In (LABATI; GENOVESE; PIURI; SCOTTI, 2016), whose focus was in the acquisition 

with moving fingers, two images are collected and enhanced to increase fringe contrast,  they 

are rotated to align to the Y Cartesian axis and correspondent points of the two images (obtained 

by two cameras) are found using block matching and normalized cross-correlation. A 3D shape 

is computed by triangulation using the coordinates of the corresponding points; an image of 
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the ridge pattern texture is superimposed to the 3D model. Unwrapped images are obtained by 

rotating the model at a constant regular angle pitch and resampling the texture image at a 

constant step. These images are used for matching, having obtained an EER of 0.09% and FMR 

of 0.12%. However, those rates worsened with intentional misplacements and rotations of the 

finger to respectively 2.40% and 1.2%. When the compatibility with flat 2D fingerprints was 

tested, the EER was 1.48% in one of the tested datasets in the worst case. The 3D reconstructed 

model does not have the ridges and valleys depth information, only the finger shape superposed 

by the ridge/valley texture.  

A different approach, using a single camera  and seven LEDs was described in (KUMAR; 

KWONG, 2013) and (KUMAR; KWONG, 2015). Seven 2D images obtained by synchronized 

flashing of the LEDs at different angles in relation to the finger are used to build a 3D 

fingerprint (approximated to a Lambertian surface) using the shape from shading technique, 

least squares technique and a Poisson solver. For matching, the surface curvatures maximum 

and minimum are calculated and used to compute a shape index (SI). Depending on the value 

of SI, the surface is segmented in five types (cup, rut, saddle, ridge, cap). This index is 

combined with the direction of the dominant principle curvature (out of six possible directions) 

to form a representative vector of the surface, named Finger Code. Normalized Hamming 

distance between the surface codes of two different 3D fingerprints is used for 3D matching. 

The 3D coordinates, including the height (in spherical coordinates) and the angles in relation 

to a central minutia, adopted as a reference are also employed for matching through the 

calculation of a score based on the amount of matched minutiae. 2D camera images were used 

to construct the 3D fingerprint are also to 2D matching. Attempts to unwrap the 3D image to 

generate a compatible 2D fingerprint resulted in excessive distortions, if compared to 2D 

fingerprints obtained from 3D models using structured light (adopted as the golden standard) 

what prevented its use for matching.  A database of 3D fingerprints from 240 users was built. 

3D fingerprint matching using the curvatures obtained an EER of 15.56%.The best matching 

results were obtained when 3D minutiae was fused  with 2D minutiae-based scores (adaptive 

fusion),  achieving an EER 1.02% (KUMAR; KWONG, 2015). Reconstruction errors and 

differences of height between the center and the edges of the fingerprint were reported as 

detrimental to matching performance. 

In (LIU; ZHANG, 2014), the images are obtained through three cameras and three  LEDs. 

The 3D image reconstruction is done first by finding SIFT features and minutiae 

correspondence between the collected 2D images, then fitting the points to a shape model 
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(quadratic model in the transversal direction and logarithmic in the longitudinal direction). 

Reconstruction errors between the obtained 3D fingerprints and the ground truth (images 

obtained by structured light illumination) of up to 0.35 mm were found. Curve skeletons 

extracted from these 3D images (LIU; ZHANG; SHEN, 2015) are used for matching along 

with curvature maximum and minimum measures. The curvature shape matching (mean 

distance between sets and matched points, obtained through Iterative Closest Points) alone 

resulted in EER of 15%, improved to 3.4% when the curvature measures were included. The 

maximum curvature was also used to gender classification. 

The mentioned acquisition/3D reconstruction techniques can be classified in two categories: 

structured light illumination followed by phase detection and depth calculation or 

triangulation-based to find the corresponding points of multiple images and shape estimation.  

The matching methods can be classified as: 1) 2D-based using unwrapped images obtained 

from the 3D fingerprint models or from the original 2D images themselves; 2) Purely 3D, by 

using the 3D minutia linear and angular positioning; curvature-based features or a combination 

of them with 2D matching (usually minutiae) features. A set of common problems to the listed 

3D reconstruction methods was reported: depth errors due to the reconstruction method used; 

depth difference from the center to the image borders; ridge width variation from the center to 

the border of image; correspondence error between 2D fingerprints due to small overlapping, 

poor illumination/low-contrast and different resolutions from the center to the image borders. 

In the following session, Optical Coherence Tomography (OCT), the technology selected 

to acquire the 3D Fingerprints used in this research is detailed and its robustness to the 

mentioned problems explained due through its different acquisition principle that relies on light 

interference to obtain directly acquired images and does not require 3D reconstruction. In 

addition, OCT allows high resolution touchless acquisition of the internal layers of the skin 

which can contribute to the solve the problem of biometric identification in the presence of 

alterations listed in the Introduction. 
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5 - OPTICAL COHERENCE TOMOGRAPHY  

 

Optical Coherence Tomography can generate 2D cross-sectional images or 3D images of 

the skin and has been used in the biomedical area to image structures a few millimeters deep 

with submicron resolution (BOUMA, B.E.TEARNEY, 2002) as shown in Fig.3. Low time-

coherent light in the near infrared wavelength range (700 to 1,300 nm) (WOJTKOWSKI; 

SRINIVASAN; KO; FUJIMOTO; KOWALCZYK; DUKER, 2004) and low optical power are 

used (FERCHER, 2010). This technology, suited to skin imaging, has been applied to the 

dermatology field in monitoring of wound healing, inflammatory skin diseases and tumor 

diagnosis. The use of OCT to image the skin have been published in several works 

(ZAKHAROV; TALARY; KOLM; CADUFF, 2009), (HOJJATOLESLAMI; AVANAKI, 

2012), (YANG; CHEN, 2010) . In the biometric identification area, research regarding the 

detection fake fingerprints using this technology has been published (GALBALLY; 

CAPPELLI; LUMINI; GONZALEZ-DE-RIVERA; MALTONI; FIERREZ; ORTEGA-

GARCIA; MAIO, 2010; MEISSNER; BREITHAUPT; KOCH, 2013b), (CHENG; LARIN, 

2006),(NASIRI-AVANAKI, 2011), (DARLOW; CONNAN, 2015),(BREITHAUPT; 

SOUSEDIK; MEISSNER, 2015). 

 

Fig. 3 – OCT and other medical imaging modalities 

OCT is based on the low coherence interferometry, i.e. the interference of two light 

beams with low time coherence. Low time coherence light sources are the ones whose phase 

of the light wave can be reasonably predicted (HECHT, 2002) within a short period of time. 
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Such time is related to the bandwidth of the light source Δυ. If the source is perfectly 

monochromatic Δυ=0, the coherence time is infinite, in practice partial coherence (quasi-

monochromatic light sources whose bandwidth is limited) or no coherence if found (which is 

the case of natural light in general). The short time coherence is used to acquire images to select 

the scanning depth in traditional time domain OCT. 

OCT implementations are usually based on an interferometer. In Fig. 4 the basic 

configuration of a Michelson interferometer (used in OCT), is shown. Low-coherence light 

beam (from the light source) is divided (by a beam splitter) in two beams (reference beam and 

sample beam), one directed to a mirror (reference mirror) and other to the sample. After 

reflecting in the reference mirror and in the sample, the beams are recombined in the beam 

splitter and interfere in a light detector or a camera, where the depth information can be 

obtained. The depth signal (interference signal) is proportional to the intensity reflected from 

the internal layers of the sample at a certain depth and amplitude is obtained after processing 

in a computer.  The coherence depth can be changed by moving the reference mirror in the 

traditional OCT (in time-domain configuration) or using through the reflected light bandwidth, 

scanned by a spectrometer (in Fourier-domain configuration).  

Fig. 4 – Basic OCT implementation using a Michelson interferometer 

The signal amplitude graph in the figure refers to the scanning of a single line of the sample in 

depth of (from depths 0 to zmax). This scanned signal is known as A-scan (axial scan). A 

transversal cross-section of the image can be obtained by scanning several A-scans in a row, 
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representation known as a B-scan as in Fig 5.a.  B-scans can be stacked to build a 3D volume, 

as shown in Fig.5.b. 

 

Fig. 5 – Skin images acquired by OCT: (a) B-scan of the skin(a), the white arrows in white 

detail of some A-scans;(b) a 3D image (volume) 

 OCT Implementation Schemes 

OCT implementation schemes can be classified in two domains: Time-Domain (TD-OCT) 

and Fourier Domain (FD-OCT). These differ in way that the depth information is recovered 

and, as a consequence,  in some of their system components (as spectrometers, tunable lasers 

and translation stages), and in performance parameters as sensitivity and acquisition speeds 

(LEITGEB; HITZENBERGER; FERCHER, 2003). In general FD-OCT has less moving parts 

to scanning in depth. 

Time Domain is the traditional OCT technology and relies on low coherence interferometry 

(LCI). The depth scan is obtained by the translation of a mirror (as shown in Fig. 4) and, if a 

point-scan is used (scanning point by point), the lateral scan is usually done using a X-Y 

translator to move the scanning probe or the sample (in this case keeping the probe in a fixed 

position) i.e. scanning a point at a time is adopted. If an area scanning is adopted,  an 

implementations known as Full-Field OCT (FERCHER; DREXLER; HITZENBERGER; 

LASSER, 2003), studied in this research work, can be adopted (Fig.6). 

Full-field OCT (FF-OCT) is capable of scanning large areas (of a few tens of millimeters) 

requiring only the translation of the reference mirror to obtain the depth scan. In this case, the 

collected images are acquired in planes parallel to the objective lens, called en-Face images (as 

shown in Fig.7). To obtain a large field of view (in a configuration known as Wide-field) , low 

numerical aperture objective lens is usually adopted as in  (FEDERICI, A., COSTA, H.S.G, 

DUBOIS, OGIEN, J., ELLERBEE,A.K., DUBOIS,A., 2015).  
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 Two factors limit the use of FF-OCT, slow acquisition speeds resulting from the need to 

execute a mechanical translation of the reference mirror to depth scanning and the need to 

accumulate (add) images to improve the sensitivity (DUBOIS, ARNAUD;BOCCARA, 2008).  

Fig. 6 – Full-Field (TD) typical configuration. From: (DUBOIS, 2001) 

 

Fig. 7 – En-Face image of the skin 

In Fourier-Domain (FD-OCT), the depth information is obtained by calculating the Fourier 

transform of the spectrally resolved interference fringes in the interferometer detection arm 

(DREXLER; FUJIMOTO, 2008). FD-OCT has usually two implementations: Spectral-Domain 

OCT (SD-OCT) and Swept-Source OCT (SS-OCT) also known as optical frequency domain 

interferometry (OFDI). In SD-OCT, a broad-bandwidth light source is used and the 

interference spectrum is detected by a spectrometer equipped with a line detector or a camera 

and in SS-OCT, a high-speed narrow-band tunable light source that sweeps the frequency in 

time is used (WOJTKOWSKI; SRINIVASAN; KO; FUJIMOTO; KOWALCZYK; DUKER, 

2004). The frequency swept light is divided into two beams (sample and reference), that have 
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a time offset that depends on the optical path length difference. As the light frequency is swept 

in time, the two beams will have a frequency offset and when the beams interfere, a modulation 

(or beat) is produced. By Fourier transforming this beat frequency signal, depth scanning is 

obtained. 

 In Fig.8 the block diagram of the two FD-OCT implementations is presented. In Fig. 8.a, 

the graph shows the A-Scan (encoded in the signal frequencies within the source bandwidth), 

obtained through the spectrometer after the Fourier transform, in Fig 8.b the light frequency is 

swept as a function of time and the Fourier transform is calculated as the frequency is swept. 

The signals refer to a single point scan in both cases. 

 

Fig. 8 – Block diagrams of FD-OCT configurations: (a) Spectral Domain OCT; (b) Swept 

Source OCT. From (WOJTKOWSKI, 2010). 

One alternative to a point-scan of Full-field configuration is known Line-Field OCT 

(YASUNO; MAKITA; ENDO; AOKI; NAKAMURA; YAMANARI; ITOH; YATAGAI, 

2005) (YASUNO, ENDO, MAKITA ,AOKI, ITOH,YATAGAI.,2006) that allows the 

simultaneous depth scanning of an entire line (B-Scan) of the sample at a time, as in Fig.9. In 

this configuration, a cylindrical lens shapes the light beam into a line that will scan the sample 

through a rotating mirror controlled by a galvo actuator. The line beam returned from the 

sample passes through a diffraction grating, where it is dispersed an is focused on a camera 

where each line represents the wavelength resolved interference of a sample point. In the figure, 

M is a mirror, CL is a cylindrical lens; L1, L2, L3 and L4 are regular lenses (for the wavelengths 

of the light source); SLD is a superluminescent diode (the light source), 2D CCD is a CCD 

camera and a rotating mirror that makes the line beam scan the sample.  
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Fig. 9 – Line-field schematics and line scanning on the sample. From ( YASUNO, ENDO, 

MAKITA ,AOKI, ITOH,YATAGAI, 2006) 

 

OCT Design parameters 

 

The choice of an implementation scheme influences important parameters of the system. 

Resolution, sensitivity, field of view (FOV), penetration depth and scanning speed are essential 

parameters to a 3D fingerprint acquisition system.  

Resolution 

Resolution in biomedical imaging is usually defined in terms of the smallest dimension that 

can be resolved by the optical system, usually measured in microns (μm) and not in dpi (dots 

per inch) as usual in biometric identification applications. OCT permits obtaining high 

resolution images, submicron resolutions have been  obtained in both time and Fourier domains 

(DUBOIS; VABRE; BOCCARA; BEAUREPAIRE, 2002), (WOJTKOWSKI; SRINIVASAN; 

KO; FUJIMOTO; KOWALCZYK; DUKER, 2004) . An interesting feature to mention is that 

the depth resolution (Cartesian Z-axis) and the lateral (X-Cartesian axis) are dependent on 

different characteristics (FERCHER, 2010). Depth resolution depends on the wavelength and 

bandwidth of the light source, being calculated by equation (1): 

zres = 
2.ln⁡(2)

𝜋

𝜆2

𝛥𝜆
          (1) 
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where λ is the light source wavelength and  Δλ is the bandwidth of the light source, both 

expressed in nanometers (nm). 

The lateral (transversal) resolution depends on the focusing properties of the optical beam, 

determined by the numerical aperture (NA) of the optical system and calculated by the equation 

(2): 

tres= 
4𝜆

𝜋
.
𝑓

𝑑
            (2) 

 where λ is the light source wavelength, f  is the objective lens focal distance and d is the 

spot size of the beam on the objective lens, proportional to the numerical aperture of the beam 

angle of focus (BOUMA, B.E.TEARNEY, 2002) . 

Sensitivity  

Sensitivity and signal-to-noise ratio (SNR)  are used interchangeably in OCT to express the 

minimum  reflected optical power that can be detected, compared to a perfect reflector 

(FUJIMOTO, 2006). SNR is usually expressed in decibel units (dB). In Table II,  the sensitivity 

equations of  TD-OCD, SD-OCT and SS-OCT (WOJTKOWSKI, 2010) are listed for shot noise 

limited detection. From this table it can be observed that SNR depends of similar most factors 

(Po, kr, ks,Rs,Rr, e
- and ρ). What makes them different are factors that alter time constants as 

the electrical bandwidth in TD-OCT or the signal integration time in SD-OCT and the sweep 

rate in SS-OCT. 

Table II – Sensitivity of FD-OCT, SD-OCT and SS-OCT 

TD-OCT SD-OCT SS-OCT 

2𝜌𝑃0
𝑒−∆𝑓

.
𝑘𝑟𝑘𝑠𝑅𝑟𝑅𝑠
(𝑅𝑟 + 𝑅𝑠)

 
𝜌𝑃0𝑇

𝑒−
.
𝑘𝑟𝑘𝑠𝑅𝑟𝑅𝑠
(𝑅𝑟 + 𝑅𝑠)

 
𝜌𝑃0

2𝑒−. 𝑓𝑠𝑠
.
𝑘𝑟𝑘𝑠𝑅𝑟𝑅𝑠
(𝑅𝑟 + 𝑅𝑠)

 

where: Po is the average optical power exiting the interferometer; e- is the electron charge; Δf 

is the electronic detection bandwidth; kr and ks are unidirectional coupling coefficients 

respectively of the reference and sample arms; Rr and Rs are reflectivity of the reference mirror 

and the sample respectively; T is the camera integration time; fss is the sweep frequency of the 

tunable light source and ρ is calculates by the equation (3). 

𝜌 =
𝑒−−𝜂

ℎ𝑐
           (3) 
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where: e- is the electron charge; η is the detector quantum efficiency; h – Planck constant 

and c the speed of light. 

As the electronic bandwidth is determined by the measurement time, that depends on the 

speed of the optical delay line, it can be expressed by equation (4): 

Δ𝑓⁡ ≅ ⁡
2𝑍𝑚𝑎𝑥Δ𝜆

𝜆0
2𝑇

          (4) 

From these equations, a relation between Time-Domain OCT and Fourier Domain OCT can 

be obtained (5): 

𝑆𝑁𝑅𝐹𝐷−𝑂𝐶𝑇 =
2𝑙𝑛2

𝜋

𝑍𝑚𝑎𝑥

Δ𝑧
𝑆𝑁𝑅𝑇𝐷−𝑂𝐶𝑇       (5) 

Where Zmax is the axial imaging range and  Δz is the axial resolution. For tissue imaging 

ratio Zmax/ Δz is expected to be very large.  

The equation shows that an increase in axial resolution favors SNRFD-OCT in relation to 

SNRTD-OCT.  In theory, FD-OCT systems are capable of having up to 20dB more sensitivity than 

TD-OCT.  

Sensitivities equal or superior to 90dB have been reported in the literature (FERCHER, 

2010). For a Line-Field device scanning the human skin, a sensitivity of 75.6dB have been 

reported  ( YASUNO, ENDO, MAKITA ,AOKI, ITOH,YATAGAI, 2006). A recent paper 

reporting a Full Field-OCT imaging system that acquired finger skin images, a sensitivity of 

85dB has been reported (AUKSORIUS; BOCCARA, 2015). 

Penetration depth 

Penetration depth depends on both the source wavelength and the scattering and absorption 

properties of the sample. The light transmission in biological tissue is mainly limited by water 

and melanin absorption (FERCHER, 2010). The red and near infrared wavelengths (700 to 

1300nm) are preferred as the absorption is minimized in skin, this range is known as the 

“window of transmission” (GAMBICHLER; MOUSSA; SAND; SAND; HOFFMANN, 

2005). OCT skin penetration depths of 1 mm have been reported in (KNUTTEL; BONEV; 

KNAAK, 2003) and (ZAKHAROV; TALARY; KOLM; CADUFF, 2009), sufficient to scan 

the epidermis and epidermis-dermis interface (GAMBICHLER; MATIP; MOUSSA; 

ALTMEYER; HOFFMANN, 2006).  
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Field of View 

The field of view (FOV) is determined by the numerical aperture of the objective lens (and 

its diameter) used in the OCT, in general low NA allows larger fields of view but the lateral 

resolution may be affected, a tradeoff between FOV and resolution is usually adopted. As an 

example the OCT equipment to acquire the  3D fingerprints used in this research a FOV of 

14.1mm x 14.1mm (THORLABS, 2016),. 

Scanning Speed 

OCT technology scanning speeds have improved in recent years, especially in Fourier-

Domain schemes. Acquisition speeds of 50,000 A-scans/s have been reported 

(WOJTKOWSKI, 2010). In finger skin, an acquisition time of 1.6s for a single 2D image of 

1.02cm x 1.28cm was obtained (AUKSORIUS; BOCCARA, 2015). A line-field configuration 

reported an acquisition time  of 10s for a volume of 2.1mmx1.4mm x 1.3mm ( YASUNO, 

ENDO, MAKITA ,AOKI, ITOH,YATAGAI, 2006). In the commercial OCT device used in 

our experiments, speeds near 1/60 images/s (approximately 1 min for image) for a volume of 

approximately 14.1mm x14.1mm x 1 mm were obtained. This speed was sufficient to obtain 

acceptable images, although some motion artifacts occurred due to the difficulty to keep the 

finger still during the acquisition. 

OCT Unique Advantages 

OCT technology potentially addresses some of the limitations reported in the previous 

sections such as the following: 

o Reconstruction errors: OCT images are not generated by triangulation or 

profilometry techniques followed by reconstruction, the 3D volumes are natively 

generated by the equipment. To build 3D fingerprints (point clouds) of the external 

and internal layers, edge and layer interface detection techniques can be used. 

o Contrast problems: OCT does not rely on visible camera images of the finger to 

obtain images. Layer visibility can be adjusted before acquisition, as a consequence 

image generation is not affected by contrast and illumination problems 

o Variable resolutions: OCT images can provide high depth and lateral resolutions 

independent of the position of the point in the fingerprints. For newborn babies, a 

lateral resolution of 5μm (achievable with OCT) would result in 20 points per ridge, 
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better than minimum required quantity. As the images are collected in 3D, more 

points per ridge are available. 

o Fingerprint Alterations: the access to the internal layers of the skin permits 

construction of internal (dermal) 3D fingerprints when the skin change is superficial, 

as detailed in the next sessions. 

o Contactless: OCT images are acquired without the need to contact the sensor to 

acquire images which prevents deformation and facilitates the adoption of 

technology 

o Improved biometric accuracy: the availability of 3D information uncovers rich new 

information that can be used for improved matching. In addition, some other skin 

structures such as the sweat ducts and the epidermis-dermis interface can potentially 

be exploited. 
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6 – STRUCTURE OF THE FINGER SKIN 

The human skin consists of two layers, the dermis and the epidermis. The epidermis can be 

divided into four sublayers: the stratum corneum, the stratum granulosum, the stratum 

spinosum and the stratum basale (VENUS; WATERMAN; MCNAB, 2010). The deepest 

layers of the epidermis (stratum basale) consists of living cells, which are constantly 

multiplying and replacing the dead cells from the outermost layer (stratum corneum). Every 

epidermal cell begins its life in the deepest part of the epidermis and migrates gradually to the 

stratum corneum, suffering a process of hardening as they migrate. 

The stratum corneum, the outermost layer, is composed of cells that migrate from the 

stratum granulosum and have lost their nuclei and cytoplasmatic organelles. This layer is 

usually thick on the palms and soles but less thick in other parts of the body. The stratum 

granulosum (granular cell layer) is made of keratin production cells, the keratinocytes. These 

cells discharge their lipid components in the intercellular space, playing a barrier function and 

intercellular cohesion within the stratum corneum. The stratum spinosum is formed by basal 

cells (from the stratum basale layer) that moves to the outer part and form a layer of polyhedral 

cells connected by desmosomes (a structure that binds cells membranes). The stratum basale: 

thin layer with thickness of one to three cells. Predominance of keratinocytes, although some 

melanocytes may be up to 5 to 10% of the cell population. 

The dermis is a thick and resilient layer that protects the body against injury. It is limited by 

the interface with the epidermis, an irregular portion made of blunt pegs named dermal papillae 

(Fig.10), composed of connective tissue. These papillae are arranged in double rows and 

follows the shape of the epidermal ridges as they mold the epidermis in the fetus formation.    
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Fig. 10 – Skin layers. From  (CUMMINS; MIDLO, 1976) 

When the skin is damaged, the original ridge characteristic can be restored if the wound 

does not reach this level. Burns and caustic agents produce no permanent effect if the papillae 

level is not damaged.  

The skin layer thickness varies in different parts of the body and different people presents 

different thickness variations in corresponding regions. The epidermis and dermis are of similar 

thicknesses and the height of dermal papillae is approximately 0.2 mm. In OCT transversal 

images (B-Scans), the stratum corneum and the epidermis-dermis interface are visible as high 

intensity layers, as shown in Fig.11. Epidermal ridges are developed in the fetus between the 

third and fourth weeks of the fetal period and no significant alteration occurs in their 

configuration during the life after birth (i.e. there are permanent). The finger skin capacity of 

corrugation associated with the moistening by sweat and the absence of hair prevents slipping, 

for this reason the undulations of the skin are named friction ridges. 

Fig. 11 – B-Scan of the finger skin showing the stratum corneum and the dermis-epidermis 

interface 

 Although friction ridges look like smooth lines with constant height and width in 2D 

fingerprint images, a closer look in OCT images (Fig.12) show that they are irregular, having 

varied thicknesses and superficial undulations. The sweat pores can be clearly observed as 

holes on the top of the ridges. 

 Fig. 12 – Detail of the ridge shapes (rendered 3D OCT image of the finger) 
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In 2D fingerprints,  ridge width varies from 100μm to 300µm, in general the ridge/valley 

period is approximately 500µm (D.MALTONI, A.JAIN, D.MAIO, 2003). A width difference 

may exist between the 2D and 3D width measurements since deformation occurs when the 

ridge is pressed against the 2D fingerprint sensor. This deformation is different in the internal 

layers of the skin if compared to the external layer (stratum corneum), as observed in 

(GUTIERREZ DA COSTA; MAXEY; SILVA; ELLERBEE, 2014) and is anisotropic 

(different in each direction). 2D minutiae are features formed by the ridge lines, easily 

observable in images acquired by a touch-based scanner, as in Fig.13, when ridges form 

discontinuities as ends or bifurcations. In this case, the parts of the skin that touch the sensor 

(ridges) are represented in black and the parts that don’t touch it are represented by white lines. 

Minutiae are frequently used in 2D biometric identification. 

Fig. 13 – A fingerprint acquired by a touch-based scanner (the yellow circles show an ending 

and a bifurcation). 

In our research, the epidermis layer, especially the stratum corneum and the dermis-

epidermis interface are the layers of interest to extract the 3D fingerprints as explained in the 

following session.  
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7 – IMAGE EXTRACTION AND 3D OCT FINGERPRINT 

DATABASE  

 

In OCT images (Fig.11), the external part of the epidermis (stratum corneum), where the 

skin contacts the air, appears as a thin bright layer due to a large the refractive index mismatch 

between the air and the skin, as a consequence the ridges and valleys are clearly visible in these 

images. Deeper in the skin, the interface between epidermis-dermis has a structure whose shape 

is very similar to the stratum corneum (MIZOKAMI; SILVA; KÜCKELHAUS, 2015) and is 

visible as a medium intensity section of the skin  (if compared to the stratum corneum)   in the 

B-scans as the refractive index mismatch is not so large. By detecting the interfaces between 

the stratum corneum/air and the dermis/epidermis, two point clouds, the 3D dermal and 3D 

epidermal fingerprints can be built (Fig.12). These are named the epidermal and dermal 3D 

fingerprints. 

 

Fig. 14 – 3D fingerprints: (a)3D epidermis fingerprint; (b) 3D dermis fingerprints; (c) 3D 

registered epidermis and dermis fingerprints;(d) a region around the minutiae (a line ending) 

known as minutia cloud (corresponding to the rectangle in figure (a)). 

3D Fingerprint extraction  

The OCT acquired images are processed to generate the 3D epidermis fingerprint (external), 

obtained from the stratum corneum and the 3D dermal fingerprint (internal), from the 

epidermis-dermis interface. Different methods are adopted for each 3D fingerprint. For the 

epidermis (external), since the stratum corneum  is a high-intensity sharp line, a Canny edge 

detector (CANNY, 1986) has been adopted after testing several algorithms such as Sobel, 

Prewitt, and Roberts (GONZALEZ, RAFAEL C.;WOODS, RICHARD E.;EDDINS, 2004), as 

it obtained the best results, as shown in Fig.15. The same edge detection processing is executed 
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in two orthogonal directions to increase the amount of points. The stacking of all the detected 

edges forms the 3D external (epidermal) fingerprint. 

Fig. 15 - Detection of external fingerprint: (a) Original (top) and detected external layer 

(bottom); (b) detection directions (white arrows). 

For computing the internal (dermal) 3D fingerprint, the intensity of dermis-epidermis 

interface points is first enhanced by the method proposed by (AVANAKI; 

HOJJATOLESLAMI, 2013) that takes into consideration the intensity contribution of groups 

of neighbor points in this region. This process results in an enhanced B-scan. Follows the 

detection of the dermis-epidermis interface by computing for each column of it (A-scan) an 

intensity profile (plotted in Fig. 16) and detecting the location of points corresponding to 

intensity peaks, the first corresponding to the stratum corneum and the second to the epidermis-

dermis interface (used to generate the points of the 3D internal fingerprint). The process is 

applied to enhanced B-scans obtained from two orthogonal directions as in Fig.16 (i.e. slices 

along the finger and transversal to it) to increase the point cloud density. The result after the 

two layer detections are two point clouds, corresponding to the external and internal 3D 

fingerprints  (COSTA; BELLON; SILVA; BOWDEN, 2016).  

Fig. 16 – Epidermis-dermis detection: (top) A-scan represented by the white arrow; (bottom) 

the intensity graph of the A-scan 
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OCT 3D Fingerprint database (OCTDB) 

The first 3D fingerprint database (OCTDB) was acquired through a partnership with Stanford 

University and followed an approved acquisition protocol. 3D images were acquired using a 

general-purpose OCT device (Telesto OCT System) with a field of view of 14.1 mm X 14.1 

mm and a resolution of 7.5µm (equivalent to approximately 1170 ppi). Volumes of 700 x 700 

x 256 voxels were obtained from eleven volunteers in two scanning sessions and occurred in 

different days at the Stanford Biomedical Optics Group laboratory. Each unprocessed image 

had 245 MB and was reduced 4.3 to 33MB after 3D fingerprint extraction. 

The volunteers, whose identity was not linked to the images, had their ten fingers scanned 

by the OCT device in a 25-minute session. During the acquisition process, no special 

positioning of the finger, except keeping it relaxed but still during the acquisition were 

required. The ten fingers were scanned and when needed, additional scans (in the same session) 

were done if motion artifacts (caused by involuntary motion) were observed. A total of 163 3D 

fingerprints was obtained (including the external and internal 3D fingerprints from both 

scanning sessions). During the acquisition, scars, callus, scratching, abrasion and some 

sweating occurred. Fingers from individuals of both genders were scanned and various types 

of fingerprint patterns were found in the collection as arches, loops, whorls and twin loops as 

defined by Galton-Henry (D.MALTONI, A.JAIN, D.MAIO, 2003). During the generation of 

the 3D images of the OCT database, a few images had low quality problems such as motion 

artifacts, holes and low density of points, as shown in Fig. 17. Those were not used in the 

experiments. In addition, 2D images of the fingerprints using a regular contact-based scanner 

were scanned from the same volunteers.  
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Fig. 17 – Low quality images: (a) Motion artifacts (appear as longitudinal lines in the picture); 

(b) Holes and low-density regions 

The 3D fingerprint images were registered to the X-Y Cartesian plane and saved in XYZ 

format. The processed images formed the first OCT 3D fingerprint database (OCTDB) to our 

knowledge. Some samples of OCTDB are presented in Fig.18 (3D) and 19 (2D).  

 

 

Fig. 18 – Rendered images from the OCT 3D Fingerprint database (OCTDB) 

 

Fig. 19 – 2D fingerprints scanned from the same volunteers (samples) 
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Additionally, 2D fingerprints of the same volunteers were acquired using a contact-based 

scanner (Secugen). These fingerprints can be used for comparing matching results of 2D 

against the 3D methods 

This database differs from the others acquired by the other technologies by the higher 

resolution of images, clearly defined ridges and valleys, accurate scanning of all the skin 

irregularities and the availability of the internal structures as the sweat ducts and dermal 

papillae (dermis-epidermis interface). Its use in future research can open the exploitation of 

new biometric features and innovative matching methods as the one proposed in the next 

session. 

 

ROI Extraction to Matching 

Our proposed matching process uses regions of the 3D cloud around the minutiae, considered 

distinctive regions of the finger. These were extracted by selecting a frame of 150x150 pixels 

(X-Y) around the 3D coordinates of the minutiae to obtain the region of interest (ROI), named 

minutia cloud, which is aligned with the XY Cartesian plane. Only two types of minutiae – 

bifurcations and endings – were used in this experiment since they are the most commonly 

adopted in identification (D.MALTONI, A.JAIN, D.MAIO, 2003). In Fig. 20, rendered images 

of two minutiae clouds are shown. 

Fig. 20 – Minutiae clouds (rendered images): (a) Bifurcation; (b) Ridge ending. 

The minutiae clouds acquired in the first scanning session were stored in a group named 

gallery and the ones acquired in the second session in a group named probe. The probe group 

simulates the enrolled minutiae clouds of a user to be identified by searching the minutiae 

clouds stored in the gallery.  The same grouping criteria (gallery and probe) was adopted to 

the internal (epidermal) point clouds. 

Minutiae clouds are convenient to matching for the following reasons:  their configuration 
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makes them very distinctive from mere ridges; they are found in reasonable amounts in the 

fingers, allowing a direct comparison with the 2D minutiae-based matching methods and they 

reduce the computational effort to calculate our distinctive features, the KH-maps, obtained 

from the Gaussian and Mean curvatures of point clouds, to be explained in the next session.  

KH Maps 

KH maps (Fig. 21) are obtained from the minutiae cloud by the following steps: (1) Gaussian 

smoothing; (2) interpolation of the 3D points in a regular grid by a 3D linear interpolation; (3) 

computing curvature values for each 3D point; and (4) converting the curvature values to the 

KH map. The regular grid is based on the useful area of the 3D minutia cloud. Finally, the 

regions are segmented by curvature type and different greyscale intensities (greyscale values 

of 10, 30, 70 and 90 to fit in 7 bits and provide separation of classes by at least 20 intensity 

levels) are attributed to the curvature types of each minutiae cloud segment for visualization, 

showing that different segments have clear separation edges. The KH-maps are pre-classified 

according to the finger type (LP-left pinky, LM-left middle, LR-left ring, LI – left index, LT – 

left thumb, RP-right pinky, RR-right ring, RM-right middle, RI-right index, RT- right thumb) 

to reduce the search space. 

Fig. 21 - KH map: (a) 3D plotting. Colors correspond to different curvature types (light blue-

peak, dark blue-saddle ridge, yellow-pit and orange-saddle valley) and (b) 2D representation 

In Fig.22, KH maps obtained from bifurcation and ending regions, the minutiae used in the 

proposed method are presented. 
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Fig. 22 – KH maps of: (a) line ending; (b) bifurcation 

Other patterns as cores and deltas can be extracted from 3D fingerprints resulting in more 

complex KH maps (Fig.23).  Their extraction from selected regions of the hand could help 

improve identification although they usually demand larger areas and more computational 

effort. Their use will be studied in future works.  

 

Fig. 23 – KH maps extracted from: (a) core; (b) delta 

 

 

 

(a) (b) 

(a) (b) 
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8 – 3D FINGERPRINT MATCHING 

Our two-step 3D fingerprint matching method starts by extracting the Region-Of-Interest 

(ROI), i.e. minutiae clouds, from the full 3D fingerprint image. Follows the computation of the 

KH maps and their LGPs and the final score calculation. Two sets of KH maps are used:1) the 

gallery, resulting from the 3D fingerprints scanned in the first session, simulating the 

enrollment stage and the 2) probe, composed of the 3D fingerprints scanned in the second 

session, representing the case of a user having its 3D fingerprints scanned to identification. The 

samples of the probe KH-maps are matched against the gallery ones. Fig. 24 shows an 

overview of the matching process. Details are presented in the following subsections. 

Fig. 24 – Matching method overview  

A process to locate and extract the minutiae clouds was devised by first extracting the KH-

map of the whole finger (as in Fig.25) and running a minutiae location software (in our case 

mindtct, an application from NIST Biometric Image Software package that provides the XY 

coordinates of the minutiae (NIST, 2015). Then the points within a Δx, Δy window (in our 
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case, 150 by 150 pixels) around the minutiae (minutiae clouds) were extracted and saved using 

the following name convention shown in the Table III. Follows the computation of the KH 

maps. 

 

Table III – File name convention used for the extracted minutiae clouds 

Scanning session Fingerprint type X coord. Y coord. 

 

 

Fig. 25 -  Examples KH-maps of the entire fingerprint 

The first step of our method uses Local Gradient Patterns  (LGP) (LUBING; HAN, 2012) 

followed by a similarity calculation (second step) through normalized cross-correlation of the 

KH-maps. LGP have been successfully used as a texture descriptor for face recognition, 

allowing discrimination between face and non-face regions based on the image texture (JUN; 

KIM, 2012)(KANG, 2015). 

The Local Gradient Patterns of the KH maps are obtained for each point of the minutia cloud 

by first calculating the intensity gradient gi of it to its p closest neighbors (in absolute value), 

then obtaining the average of these gradients, ḡ and then attributing a value Si (0 or 1) 

corresponding to each neighbor, according to the following formula (6): 

       (6) 

 

where i=0 to 7  

The values of Si are concatenated to form the LGP value for each pixel, a p-bits number 

(Fig. 26). 

si  = 0 if gi  > ḡ , 1 otherwise 
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𝐿𝐺𝑃𝑖 = Σ𝑖=0
7 {𝑠𝑖. 2

𝑛}, i=0 to 7 

 

Fig. 26 – LGP calculation, from original intensity values to the final code (8 bits and decimal)  

The image is then divided in sections (25 sections in our case) and the histogram of LGP 

values for each section is calculated and concatenated to form a representative vector used for 

the first classification step. The LGP vectors, calculated for each gallery KH map, are used to 

build ten Kd-Trees (BENTLEY, 1975), using the LGP vector as the key and specifying the 

Euclidean distance as the distance metric, to speed-up k-Nearest Neighbor searches (KNN) . 

One Kd-Tree for each finger type (pinky, ring, medium, index and thumb from left and right 

hands) was built. The probe minutiae cloud has its KH map calculated, its finger type 

determined and LGP descriptor built. Then a KNN search on the Kd-Tree corresponding to 

that finger returns the K closest neighbors using Euclidean distance. Finally, the 2D correlation 

is executed between the probe KH map and all the K closest neighbors to determine the 

similarity score used for matching. 

We applied the normalized cross-correlation as a similarity measure since it provides a 

measure of the correlation between two images (KARNA; AGARWAL; NIKAM, 2008). This 

approach has been used previously for template and fingerprint matching  (D.MALTONI, 

A.JAIN, D.MAIO, 2003). In our case it serves two purposes, as a means for registering the KH 

maps and to measure their similarity. The output of the correlation function is a 2D array, and 

the maximum value of this array (corresponding to the function maximum) was used as the 

similarity score. The normalized cross correlation (CORR2D) can be calculated by the equation 

(7). 

𝐶𝑂𝑅𝑅2𝐷(𝑢, 𝑣) =
Σx,y[f(x,y)-fu,v].[t(x-u,y-v)-tm]

{Σx,y[f(x,y)-fu,v]
2
.[t(x-u,y-v)-tm]

2}
0.5⁡⁡⁡⁡⁡       (7) 

Where f(x,y) and t(x,y) are the images being correlated  

The minutia cloud matching process is repeated for all the minutiae clouds found in each 

finger (probe) and a score S (matched minutiae cloud divided by the total amount minutiae 
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clouds found in the probe) for all the Rank-1 matches is calculated. The FARxFRR (False 

Acceptance Rate x False Rejection Rate), CMC (Cumulative Matching Characteristic) and 

ROC (Receiver Operator Characteristic) curves were plotted based on the S score to evaluate 

the accuracy of the method. Other descriptors were tested in our research  as local binary 

patterns  (ZHAO; PIETIKAINEN, 2007), local gradient increasing pattern (LUBING; HAN, 

2012) but LGP achieved the best matching results.  

Average execution times are 1.0735s for building the Kd-Tree (whole OCTDB database) and 

0.0072s for the CORR2D calculation. 

9 - EXPERIMENTS AND MATCHING RESULTS 

We measured the matching accuracy of our matching method using two databases, the 

OCTDB and a public database. In addition, we evaluate the compatibility of the minutiae 

clouds extracted from the dermis and epidermis to check if dermis 3D fingerprint can be used 

when the epidermis is altered or damaged.  

3D Fingerprint Images Database from Hong Kong Polytechnic POLYUDB 

A public database gently made available by the Hong Kong Polytechnic University, named 

“The Hong Kong Polytechnic University  3D Fingerprint Images Database” (KUMAR, 2013), 

referred as POLYUDB in this work, was used to test the matching method applicability and 

allow a comparison with OCTDB matching. This database has around 1,560 3D images from 

260 subjects, around six images from same finger per each subject, plus seven 2D images that 

were used to generate the 3D images. In our work we selected 88 3D images from 44 subjects, 

the ones that allowed the best calculation of the curvature types. Those had clear definition of 

curvature types as opposed to images excessively smoothed and containing artifacts, where the 

curvature type segments were not distinguishable, as shown in Fig. 27. Just as a comparison, 

in (KUMAR; KWONG, 2013) , just used a subset of POLYUDB with 135 subjects was used. 

Fig.27 – Black and white representation of entire fingerprint KH maps: (a) bad quality image 

with ridges unclear and noise; (b) acceptable quality image  
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Some differences between the OCTDB and the POLYUDB were observed, the ridge heights 

and valley depths in the first (OCTDB) are bigger than in the second, suggesting that some 

smoothing was applied to the POLYUDB. The OCTDB finger images are more irregular 

reflecting the nature of the finger skin as opposed to a shape approximation in the case of 

POLYUDB. Another significant difference from the POLYUDB is that the amount of points 

per area used in the reconstruction is higher, making it denser and more regular that the 

OCTDB. Finally, in POLYUDB the entire fingerprint area is covered what is not the case in 

the OCTDB database, where areas of 14.1 mm x 14.1mm were acquired. For the POLYUDB 

matching, the pre-classification based on the finger type could not be used since the finger type 

information was not available. A single Kd-tree was built to the search. 

KH Map Matching (CORR2D) 

A test with KH maps from different fingers (and users) was executed to evaluate the accuracy 

of the method by first trying to match a single minutia cloud from the probe to the ones in the 

gallery to evaluate how accurate the use of a single minutiae cloud was for identifying a finger. 

Then matching was applied using whole set of minutiae found for each the finger of the probe 

to the gallery to measure the increase in matching accuracy.  

It has been observed that the CORR2D scores drops if the images were misaligned. For this 

reason, an additional pre-alignment of the KH maps was computed before calculating the score. 

During the KH map matching tests, it has been observed that the window size influenced the 

CORR2D index values (in the range [0, 1]), small areas frequently presented false high 

similarity values. After tests with window sizes varying from 20x20 to 200 x 200, it has been 

determined that, an area of 100x100 pixels maximizes the CORR2D index.  

Tests with the OCTDB Database 

Tests using 3,945 minutiae clouds extracted from 163 3D fingerprints (epidermal and 

dermal) of ten volunteers (in two scanning sessions) were executed to evaluate the matching 

accuracy.  The minutia distribution is shown in Fig.28, on average 4.12 minutiae clouds per 

finger were found.  
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The first test aims to evaluate if a single minutia from the probe could be identified in the 

gallery. The resulting FARxFRR and CMC curves, are shown in Fig. 29.a. An EER (equal 

error rate) of 12.77% and an identification rate of 75% for Rank-1 (being Rank-k the k matches 

with highest score, in decreasing order) using the same threshold (of EER) was obtained. The 

second test evaluated the accuracy of the method to match a finger using all the minutiae clouds 

found in a finger (from probe). 86 fingers from the probe were matched. The resulting 

FARxFRR and CMC curves are shown in Fig. 29.b. An EER of 3.8% was obtained and an 

identification rate of 94.23%, showing a significant improvement was obtained for Rank-1. 

Fig. 28 – Fingers x amount of minutiae for OCTDB 
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Fig. 29 – FAXxFRR and CMC curves for matching (OCTDB): (a) single minutia; (b) multiple 

minutiae 

Tests with POLYU database 

Tests using 350 minutiae clouds extracted from 86 3D fingerprints of 43 volunteers were 

executed to evaluate the method accuracy and allow a comparison with the OCTDB database 

results. An average of 3.97 minutiae clouds per finger was found in the POLYU database with 

the distribution shown in Fig. 30. As in the previous database tests, single and multiple minutia 

cloud tests were run.  For single minutiae, an EER of 12.36% and a CMC curve with 77.61% 

recognition rate for the POLYUDB was found (for the EER threshold) as in Fig.31.a. 

Recognition rates superior to 80% can be obtained if other thresholds are used. For multiple 

minutiae, a significant improvement was found an EER of 9.96% and an identification rate 

99% for Rank-1 was obtained (Fig.31.b). A comparison of the EER and identification rates 

(a) (b) 
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obtained for the OCTDB and POLYUDB show that the obtained EER and identification rates 

are similar, as detailed in Table IV. 

Fig.30 - Fingers x amount of minutiae for POLYUDB 

 

TABLE IV - Results for OCTDB and POLYUDB 

 OCTDB POLYUDB 

EER (one minutia) 12.77% 12.36% 

Ident. Rate (one minutia) 75% 77.61% 

EER (mult. minutiae) 3.8% 9.96% 

Ident. Rate (mult.minutia) 94.23% 99% 
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Fig. 31 – FARxFRR and CMC for finger matching with multiple minutiae (POLYUDB) 

 

Comparison with 2D matching results 

A matching test, using 2D fingerprints scanned from the same volunteers of OCTDB was 

executed. NIST bozorth3 matcher (NIST, 2015) was used to obtain the matching scores for this 

2D fingerprint set.  An EER of 5% and an identification rate of 93.2% (Fig.32) were obtained. 

In Table V the comparison with the 3D matching is presented showing favorable results to 3D 

matching. 
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Fig. 32 – FARxFRR and CMC curves for 2D matching 

TABLE V -  Results for OCTDB: 3D and 2D 

 3D 2D 

EER 3.8% 5% 

Identification Rate 94.23% 93.2% 

 

Compatibility of 3D Dermal and Epidermal Fingerprints  

The hypothesis that the dermal 3D fingerprints can be used for matching when the epidermal 

fingerprint due to their significant similarity (Fig. 33) is tested. Images from 3D epidermis x 

dermis fingerprints from the gallery and probe sets were selected to the matching test. The 

amount of 3D image pairs used in this test was smaller than in the Epidermis x Epidermis test, 

because only images with high contrast and low noise level were used, selected through visual 

inspection, a total of 11 fingers from 5 volunteers and a total of 52 minutiae clouds. As the 

structure of the internal and external fingerprints are compatible (MIZOKAMI; SILVA; 

KÜCKELHAUS, 2015), the degree of similarity of the KH maps of the dermis and epidermis 

is expected to be high  as their correspondent matching scores. 
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Fig. 33 – Curvature maps of the external (left) and internal (right) fingerprints 

As can be seen in Fig. 34, the resulting FARxFRR and CMC curves show an EER of 0.6% 

and an identification rate of 88.89% (rank 1) when a threshold of 0.006 is used. The 

identification rate obtained using the dermis is typically inferior to regular 2D due to the smaller 

percentage of minutiae coincidence between the epidermis and dermis,  as  reported in 

(MIZOKAMI; SILVA; KÜCKELHAUS, 2015).  However, the identification rate obtained was 

superior to the results obtained by the traditional invasive process used in identification of 

corpses, (exposure of the dermis by chemical process) as (MIZOKAMI; SILVA; 

KÜCKELHAUS, 2015). 

Fig. 34 – FARxFRR (top) and CMC (bottom) for epidermis KH maps 



52 

 

 

 

Unrolled 2D fingerprints comparison 

An additional test with unwrapped 2D fingerprints obtained from 3D clouds through a based 

on the described in (JAIN; ABRAMOVICH, 2011) and (CHEN; PARZIALE; DIAZ-

SANTANA; JAIN, 2006) was executed to assess the compatibility of the 2D fingerprints 

obtained from the OCT images. The method uses a parametric approach to obtain the unrolled 

fingerprint and starts with the registration of the 3D fingerprint to the Z Cartesian axis as shown 

in Fig. 35. It can be observed that the 3D fingerprint is aligned with Z-axis at -45o with the X 

and Y axis and all the point cloud (x,y,z) coordinates are positive. After that, starting from the 

z=0 coordinate, the points at transversal planes parallel (slices at height zi) to the X-Y Cartesian 

plane are selected and curve fitting is applied to find the circle that best fits the cloud points at 

that height (z), as in the dashed semi-circles in Fig. 35. The fitting results in the center position 

(C) and a radius (R). Having this information, the difference between the radius and the 

distance of each cloud point to C, named point radius (d) is calculated as shown in the plot 

(Fig.35). The maximums and minimums of this plot are calculated, these correspond to the 

position of ridge tops and the valley bottoms.  Each point of the ridge in that plane (slice at 

height zi) is then mapped to a line segment. The Cartesian coordinates are converted to polar 

coordinates (ρi,ϴi) and the arc length in relation to a plane at 45o with the X and Y axes 

corresponds to the o a linear position in the dashed line shown in Fig.36.  The point intensity 

varies from 0 to 255 (in greyscale) depending on the proximity of a maximum or a minimum, 

assuming a sinusoidal intensity variation between them, resulting in the pattern depicted by the 

vertical line in Fig. 36.a. The images of the lines (zi) are stacked to form the unrolled fingerprint 

that is converted to black and white for matching as in Fig. 36b. 

Fig. 35 – 3D Fingerprint aligned with the Z axis: (a) perspective view; (b) top view 
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A 2D test database, named COMPDB (compatibility database) has 180 images and is 

composed of: ten 2D regular fingerprints scanned using a 500 ppi contact-based optical scanner 

plus a database obtained from the Fingerprint Verification Competition 2000  (database DB3) 

with images scanned with an optical scanner and the same resolution (“FVC2004: the Third 

International Fingerprint Verification Competition”, 2003). The “unrolled” fingerprints (Fig. 

36) were converted to a 500 dpi black and white image and matched using the demo version of 

the Verifinger software, downloaded from (NEUROTECHNOLOGY, 2016).  

 

Fig. 36 – Mapping of clouds points at height z to: (a) linear representation ;(b) the resulting 

unrolled fingerprint 

Four flat fingerprints (Fig.37) were generated by selecting the images that resulted in the 

best finger-to-valley contrast. These unrolled fingerprints were tested against the COMPDB 

database. The Verifinger demo application was configured to a FAR from 0.1% to 0.001% to 

cover most of the practical scenarios.  

The results, shown in Table VI show that the finger-prints were correctly matched against 

regular 2D fingerprints (scanned by a contact-based scanner) for different false acceptance 

rates (0.1%, 0.01% and 0.01% configurable in the software), in all except one case where the 

unrolled image has noise as marked in the “positive” cases where the matched fingerprint was 

the correct one. 
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Fig. 37 - Examples of unrolled fingerprints (top) and their correspondent regular 

fingerprints(bottom), scanned with a regular fingerprint scanner. (a) left ring, (b) left middle, 

(c) left ring and (d) left pinky. 

 

Table VI - UNROLLED FINGERPRINT COMPATIBILITY 

FAR 0.1% 0.01% 0.001% 

Left Index Positive Positive Negative 

Left Middle Positive Positive Positive 

Left Ring Positive Positive Positive 

Left Pinky Positive Positive Positive 
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10 - QUALITY MEASUREMENTS 

 During the matching tests it has been observed a large overlap of match and no-match 

score ranges for the results obtained, as can be seen in Fig. 38, where the match and no-match 

score distributions for OCTDB (COR2D matching scores) are presented. As the database of 

minutiae clouds is larger than the amount of correspondent ones, the amount of matches is 

smaller than no-matches. 

Fig. 38 – Matching scores distribution (CORR2D). Match (blue), No-match (red). The 

arrow indicates the threshold to eliminate the uncertain no-matches 

One of the possible reasons for having unexpected low score matchings (in true cases) is the 

presence of holes or regions of low density if compared the average of the minutiae cloud. 

Another reason would be noise, which can cause sharp transitions may lead to spurious 

curvature values, as can be seen in Fig. 39. 

Fig. 39 – Quality problems. (a) holes; (b) noise. 

0.56 
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The ranges (Table VII) separate the regions where the no-match or match is certain (no 

overlap between match and non-match) or uncertain (overlap between match and no-match). 

From the graph, a threshold of 0.56 for COR2D was considered satisfactory to eliminate the 

uncertain no-matches for the OCTDB database as only 23 misclassifications out of 6,810 occur 

Table VII – Matching scores ranges (OCTDB) 

Database No-Match Uncertain  Match 

OCTDB 0 to 0.2 0.2 to 0.66 0.66 to 1 

Image quality evaluations can prevent matching inaccuracies, in (KUMAR; KWONG, 

2013) a 2D quality criteria, was evaluated to check if the quality of 2D images (used in the 

triangulation process) could be a predictor of the quality of 3D point clouds but the approach 

was not effective in predicting the matching performance. In (KUMAR; KWONG, 2015), the 

need quality evaluation of the 3D reconstruction was suggested as  a future research direction 

but no suggested measure was presented. Quality indicators that could help pre-evaluate the 

images before the matching calculations can minimize the computational cost and serve as a 

feedback during the acquisition process to improve the collected images through re-acquisition. 

Three quality indicators related to the reported problems (noise and holes)  were proposed:  

local density (LDENSITY) and two smoothness measurements proposed by (BESL, 1988), ρ1 

and ρ2. Their effectiveness in helping separate the match and no-match minutiae clouds were 

evaluated. 

The local density is calculated by dividing the amount of pixels in the minutiae cloud by the 

area X-Y, measured in square pixels as in equation (8).  

density = 
𝑁⁡𝑜𝑓⁡𝑝𝑖𝑥𝑒𝑙𝑠

𝑎𝑟𝑒𝑎⁡
         (8) 

where the area is measured in square pixels 

The density indicator of two minutiae clouds being matched is calculated by dividing the 

density of one minutiae cloud (density1) by the other (density2), as in equation (9). 

𝑑𝑒𝑛𝑠 = ⁡
𝑑𝑒𝑛𝑠𝑖𝑡𝑦1

𝑑𝑒𝑛𝑠𝑖𝑡𝑦2
         (9) 

The smoothness indicator is calculated by fitting a plane to each point of the minutia cloud 

and its 9x9 neighbors and calculating the planar RMS (root mean square) fit error of the whole 
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minutia cloud to the plane. The RMS is divided by the total amount of points of the minutia 

cloud, as in the equations (10) and (11). 

𝜌1 = (
1

|𝐼′|
∑ 𝜀1,3(𝑥, 𝑦)
⁡
(𝑥,𝑦)∈𝐼´ )       (10) 

𝜌3 = (
1

|𝐼′|
∑ 𝜀1,3

3 (𝑥, 𝑦)⁡
(𝑥,𝑦)∈𝐼´ )

1/3

       (11) 

where I´ is the amount of image pixels (excluded the ones in image edges) and ε1,3 (x, y) is 

the planar RMS fit error for the 3x3 window at the pixel (x, y) 

During the tests, it was noticed with the ρ1 and ρ3 indicators, a higher absolute value was 

associated to increase in the RMS plane fitting error. For this reason, it was decided to work 

with the inverse of these indicators (1/ρ1 and 1/ρ3) as the quality criteria. The average of the 

two quality scores of the minutiae clouds being matched was used to obtain the evaluation 

graphs. 

Quality Measurements for OCTDB 

The distribution scores to the proposed quality indicators for OCTDB is presented in Fig. 40 

and Fig. 41. It can be noticed that 1/ρ1 and 1/ρ3 have similar distributions but different from 

dens. 

Fig. 40 – Quality indicators for OCTDB: (1) 1/ρ1; (b) 1/ρ3 
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Fig. 41 – Quality indicator for OCTDB: dens  

Since different normalization schemes can help promoting the separation of classes, as 

suggested in (ABAZA; HARRISON; BOURLAI, 2012) and (ABAZA; BOURLAI; ROSS; 

HARRISON, 2014) we tested linear and non-linear (Gaussian) normalization schemes to the 

quality indicators and generated graphs of match/non-match distributions using as threshold 

the 0.56 for CORR2D scores that allowed a good tradeoff between “match” and “no-match” 

scores. The Gaussian normalization tends to attribute to values close to the average of the 

scores. For ρ1 and ρ3, the best normalization scheme was Gaussian normalization, as promoted 

better separation of classes as shown in Fig.42.   

 

Fig. 42 – Normalized (OCTDB) scores (Gaussian) to: (a) ρ1;(b) ρ3. In blue the “match” scores 

and in red the “no-match” scores.  
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It can be observed that, for ρ1, values smaller than 0.9948 and greater 0.9962 tend to be a 

positive match. For  ρ3, with Gaussian normalization, values smaller than 0.9623 and greater 

than 0.9957 tend to be a positive match. For the dens quality indicator, a linear normalization 

scheme promoted the best separation of classes as shown in Fig. 43. It can be observed that the 

separation of classes (match/no-match) is not as efficient as in the previous indicators but some 

amount of scores can be considered a n-match for values greater than 0.526. 

Fusion of quality scores was not possible as the normalization schemes were different for the 

quality indicators. 

 

Fig. 43 -  Normalized (OCTDB) scores (linear) for dens quality indicator 

 

Quality Measurements in POLYUDB database 

The quality indicators ρ1 and ρ3 were applied to the POLYUDB database to test their 

efficacy in detecting quality problems. The CORR2D score distribution to this database is 

plotted in Fig.44, a large overlap was also observed. The score range is shown in Table VIII. 

 

Table VIII – Matching scores ranges (POLYUDB) 

Database No-Match Uncertain  Match 

OCTDB 0 to 0.2 0.2 to 0.7 0.7 to 1 
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Fig. 44 – CORR2D score distribution to POLUYDB 

As the images of POLYU database are significantly smoothed, the 1/ρ1 and 1/ρ3 are very 

similar and the quality indicators did not present a good separation of classes for neither the 

linear nor the Gaussian normalization schemes, as shown in Fig.45. For this reason, the ratio 

between the   ρ1 and ρ2 for the two images being matched ρ1/ ρ1’ and ρ2/ ρ2’ was tested. In 

Fig. 46.a and 46.b it can be noticed that the linearly ratios ρ1/ ρ1’ and ρ2/ ρ2’ promoted a better 

separation of classes than the Gaussian (for ρ1/ ρ1’ greater than 0.32 and ρ2/ ρ2’ greater than 

0.55) but some significant overlap still remains.  
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Fig. 45 – Normalized scores for 1/ρ1 (top) and 1/ρ3 (bottom): (a) linear normalization; (b) 

Gaussian normalization  

Fig. 46- Linearly normalized scores: (a) ρ1/ ρ1’ and (b) ρ2/ ρ2’ 
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(b) 

1/ρ1 1/ρ3 

q
u

an
ti

ty
 

q
u

an
ti

ty
 

q
u

an
ti

ty
 

ρ1/ρ1’ ρ2/ρ2’ 

(a) (b) 



62 

 

 

 

11- ALTERED FINGERPRINTS 

The external layer of the skin is vulnerable to intentional or intentional alterations and can 

be changed by some drugs used in the treatment of cancer (DOLEZEL; DRAHANSKY; 

URBANEK; BREZINOVA; KIM, 2012). These can negatively affect the quality of 

fingerprints and the performance of fingerprint identification systems as the structure of the 

ridges and the relative positions of minutiae is affected, as reported by Yoon and Jain (YOON; 

FENG; JAIN, 2012).  

In some cases, the alteration of the fingerprint is done with the intention of masking an 

individual identity from an identification system by using mechanical (as abrasion or cuts), 

chemical or even surgical means as shown in the Fig. 47. Cases of successful evasion of border 

control systems have been reported in the literature (YOON; ZHAO; JAIN, 2012), 

(SELVARANI; JEBAPRIYA; MARY, 2014) and on a larger scale, fingerprint alteration 

attempts against the European asylum seeker register, EURODAC have been found 

(ELLINGSGAARD; SOUSEDIK; BUSCH, 2014) 

Fig. 47 – Skin alterations: (a) finger skin replaced by skin from the sole; (2)  fingers that were 

bitten; (c)  fingers burnt by acid; (d) stitched fingers; Figure from (YOON; FENG; JAIN, 2012) 

In general, according to (YOON; FENG; JAIN, 2012), the alterations can be classified in 

three categories, obliteration, distortion and imitation: Obliteration is the attempt to destroy the 

fingerprint or part of it by cutting, burning, using chemicals and transplanting the skin from 

other place of the body. Some cancer treatments can temporarily obliterate fingerprints 

(HUESO; SANMARTÍN; NAGORE; BOTELLA-ESTRADA; GUILLÉN, 2008). The authors 

suggest that a countermeasure to obliteration could be the use of dermal fingerprint for 

identification. Distortion is the attempt to change the ridge patterns into unnatural ones by 

removing parts of the skin and transplanting it to the same finger or to other fingers. This 

usually results in unusual ridge patterns as abrupt orientation changes or the abnormal 

distribution of singular points. Imitation is the change in the fingerprint that preserves patterns 

similar to the existing ones in the original fingerprint by removing a piece of skin and stitching 
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together the remaining parts or transplanting entire fingerprints. From the three mentioned, 

Obliteration is the most popular form of alteration. 

Alterations are difficult to detect, in some cases the amount of unreliable minutia found in 

the fingerprints increases (YOON; ZHAO; JAIN, 2012) but changes not always affect 

negatively the quality of the fingerprints. In this case, fingerprint quality cannot be used to 

detect them.  

Attempts to detect altered fingerprints using orientation fields and minutiae distribution 

(YOON; FENG; JAIN, 2012) (SELVARANI; JEBAPRIYA; MARY, 2014); discarding 

spurious minutiae and restoring minutiae to their original positions in the case of Z-shaped cuts 

(Fig. 48) or analyzing the singular points density and minutiae orientation (ELLINGSGAARD; 

SOUSEDIK; BUSCH, 2014) have been published but opportunities for improvement remains 

as the best false detection rates are in the 2% range. In addition, not all the altered fingerprints 

can be detected by current methods, as in the case where the altered area is small or when the 

ridge orientation field and the minutiae density have not been significantly changed an (YOON; 

FENG; JAIN, 2012). 

Fig. 48 – A Z-shaped fingerprint cut. From (YOON; ZHAO; JAIN, 2012). By observing the 

ridge flow it can be noticed that parts of the skin have been transplanted other positions of the 

same finger. 

During the OCTDB acquisition, some cases of alterations could be observed, as scars, 

abrasion and cutting, as shown in Fig.49 and Fig.50. In the first case (scar), the external 3D 

fingerprint shows that the external skin has healed and although some ridge patterns have 

changed the scar seems not to have affected much the 3D fingerprint. The same is not true for 

3D internal fingerprint, the image shows that the deeper layers were strongly affected by the 

cut, even after healing. In this case, the difference between the internal and external fingerprints 

could be used to detect the change. 
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Fig. 49 – Scar, clearly visible in (a) rendered OCT image;(b) external 3D fingerprint and (c) 

internal 3D fingerprint strongly affected. 

In one experiment, induced alterations using sand paper and a needle to promote a small 

amount of abrasion in the left middle finger and a small number of scratches on the right ring 

finger of a volunteer were done, as shown in Fig. 50. Is can be observed that the abrasion had 

no effect on the outer appearance of the ridges and valleys (left medium finger), but some 

flattening of the ridges can be observed in the OCT transversal images (B-scans) of the skin 

(Fig. 50-a). Moreover, the scratches in the right ring finger are clearly visible in the camera 

picture (Fig. 50-b) and in the OCT transversal images (Fig. 50-c).  

Fig. 50 – Finger skin damaged by abrasion or scratches. (a) OCT image of ridges flattened by 

abrasion; (b) scratched skin image; (c) OCT image of scratched ridges 

In both cases (abrasion and cut) it can be observed that although some change occurred in 

the outer layer (stratum corneum), the dermis-epidermis junction remains intact. For this 

reason, it is reasonable to assume that, if the abrasions and scratches are not deep enough to 

affect the papillary glands, the dermal fingerprint could be detected and used for matching by 

the proposed method. This practical experiment has shown that shallow abrasion and scratches 

preserve the dermis-epidermis interface, which may allow the use of dermal 3D fingerprints 

even in the event of alterations to the outer skin. 

(a) (b) (c) 
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Finger Sweating   

Another case that could potentially affect the performance of identification systems is the 

presence of moisture. One of the volunteers had sweating hands and it was possible to capture 

this condition (shown in Fig.51). 

Fig.51 – Sweating fingers: (a) OCT rendered image; (b) 3D external fingerprint;(c) 3D internal 

fingerprint 

In this case, part of the external fingerprints (around the sweat pores) was affected but the 

internal fingerprint was unaffected. 

Based on the investigated cases, it is reasonable to conclude that cases deep alteration affect 

both the internal and external fingerprints but superficial changes as scratches, abrasion and 

some degrees of moisture allow the use of the internal 3D fingerprints for biometric 

identification. Even in cases of deep alterations, the differences between the internal and 

external fingerprints (for instance with Iterative Closest Points) can be used to detect potential 

alterations. 

 

 

 

 

 

 

(a) (b) (c) 
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12 - OCT SCANNER PROTOTYPE 

One goal of this thesis was to develop a prototype of a OCT scanner for acquiring images 

of both adults and children (including newborn babies). Part of the research work was 

developed in a doctoral stage at Stanford University, USA in the Stanford Biomedical Optics 

Group as this group is one of the centers of excellence in the development of OCT devices. 

The student scholarship was sponsored by Program Science without Borders/CNPq. 

During the research, several design parameters were discussed based on existing 

implementations, safety recommendations, the IMAGO Research Group and the Stanford 

Biomedical Optics Group experience and on the nature of the samples, human skin with high 

light scattering. Other specifications appeared as part of the learning process as more 

experience with the OCT technology and the scanning of the human skin.  

Design Specifications 

1) Resolution of 10μm to allow a minimum of 10 points per ridge (as a newborn baby ridge 

width is approximately 100μm)  

2) Sensitivity: approximately 80dB  similar to the obtained in (YASUNO; ENDO; 

MAKITA; AOKI; ITOH; YATAGAI, 2006) 

3) Penetration depth: of 500μm as the epidermis depth measures approximately 200μm, 

according to   

4) Field of view: 14mm x 14mm, as used in the obtained in the images of the OCTDB. A 

resolution x field of view tradeoff may be required. 

5) Scanning Speed: 1 to 4 seconds, as used in (LEMES; BELLON; SILVA; JAIN, 2011) 

6) Power on the sample smaller than 2mW (following ANSI standard safety 

recommendations)  

Other functional and environmental requirements: 

7) Instant image quality feedback is intended to alert to the need to repeat the image 

acquisition 

8) The equipment needs to be portable to fit in surgical centers 

9) The equipment needs support sterilization 

10)  A support for the hand needs is needed to prevent motion artifacts  

11)  Low cost (compared to commercial OCT scanners) 
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OCT Implementation 

A review of the literature about OCT implementations to image the skin, 

implementation schemes, key components (as lenses, light sources, spectrometers) and 

performance parameters served as base to select the implementation alternatives to be 

implemented, Full-Field OCT and Line-field OCT as detailed in the next session.     

Full-field OCT  

Full-field OCT a time domain implementation, has the advantage of scanning entire areas 

(of approximately 16 mm x 16mm) with minimum moving parts as only translation of a mirror 

is needed for depth scanning. En-Face images (parallel to lens plane) are obtained by collecting 

images at the desired depth range in steps of a few microns. The final volumetric images are 

built by stacking the scanned slices. A large amount of slices (hundreds) were needed to obtain 

a volume of a few millimeters. A first implementation of Full-field OCT (DUBOIS; 

MONERON; BOCCARA, 2006)  based of the architecture described in (FEDERICI, COSTA, 

OGIEN, ELLERBEE, DUBOIS, 2015) was built in Stanford University with the scheme shown 

in Fig.52.  

The proposed architecture helped reducing costs as a single objective lens were used 

(instead of a pair of objectives as in the classical implementation of a FF-OCT) and a low cost 

LED or halogen lamp, were used as light sources. The drawbacks of this architecture were the 

need to keep the finger very close to the beam splitter (a few millimeters) due to the short 

objective working distance (what limited the space for placing the finger) and the long 

acquisition times due to the depth scan (obtained by the translation of the reference mirror) and 

the need of accumulate images (sum several images at the same depth) to improve the system 

sensitivity. Usually more than 25 images were needed to generate a single slice, making the 

acquisition time last several minutes to a single volume. The long acquisition timed impacted 

the sensitivity due to frequent motion of the finger and the finger images obtained had bad 

quality. 

During the implementation of the FF-OCT, several practical insights occurred as the need 

to minimize the finger motion due to the long acquisition times are needed to calculate each 

slice (en-Face image) due to accumulations. Motion also affected the system sensitivity and 

caused artifacts. An acrylic holder to keep the hand still was built as shown in Fig. 53 but even 
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the use of it did not prevent some motion associated to the difficulty to keep the fingers in the 

same position during the whole scanning time. 

 

Fig.52 – Full-field OCT implementation schematic 

Another insight gained was focusing the objective not on the finger surface but inside the 

skin and using the reference mirror to scan slices before and after the focused depth in order to 

explore the whole depth of field (range of depth that keeps the image within an acceptable 

quality) of the objective lens. 

Acceptable images of semi-transparent biological samples as a rat ear (Fig. 54) were 

obtained but difficulties to obtain images of the finger skin (a scattering media) occurred and 

only the stratum corneum could be imaged due to the low sensitivity obtained. One of the 

reasons is the presence of motion that made images vanish between successive slice scans as 

shown in Fig.55. 
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Fig. 53 –  FF-OCT prototype 

 

Fig. 54 – A rat ear (B-Scan) imaged with the FF-OCT system 
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Fig. 55 – FF-OCT images of the finger skin: 3D rendered image of some ridges (top) and a B-

scan showing the stratum corneum (bottom) 

 

Line- Field OCT 

Another implementation studied, named Line-Field OCT and more suited for imaging the 

skin is currently being tested. This implementation, published in (YASUNO; ENDO; 

MAKITA; AOKI; ITOH; YATAGAI, 2006) has the advantage of requiring a single rotation to 

make the scanning beam cover the sample Images of the finger skin have already been obtained 

(Fig.56),  a volume of 2.1mm x 1.4mm x 1.3mm of 480 x 300 x 1024 points in 10s with a 

sensitivity of 75.6dB and a power on the sample of 1.1mW was reported. In this system, the 

light beam is shaped as a line and the depth information is recovered through a spectrometer, 

after processing. Being a FD-OCT, improved sensitivity is expected in relation to the FF-OCT 

and the faster acquisition times reduce the possibility of motion during the acquisition. One of 

the drawbacks is the requirement of heavy processing as a Fourier transform is executed to 

recover the depth information (A-scan) to each point. 

A prototype of this scheme is being implemented (Fig. 57) in the IMAGO Research Group 

laboratories at Universidade Federal do Paraná. One of the differences between this 

implementation and the on adopted in (YASUNO; ENDO; MAKITA; AOKI; ITOH; 
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YATAGAI, 2006) is the use of an LED (850nm) as light source instead of a Superluminescent 

diode (SLD) to minimize costs. A Photonfocus Gigabit camera with 1312 x 1082 pixels was 

adopted.   

  

Fig. 56 – Skin images acquired by a Line-field OCT device ( YASUNO, ENDO, MAKITA,  

AOKI, ITOH,YATAGAI, 2006)  

 

Fig. 57 – Prototype being implemented in IMAGO Research Group laboratory (Universidade 

Federal do Paraná) 
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The next steps to the prototype implementation are the installation of new translation stages 

to increase the degrees of freedom of the system, the improvement of focusing the LED light 

on the sample by optimizing the beam diameter, the adoption of a slit between the beam splitter 

and the diffraction grating to reject light out of focus from the sample and the use of a ND 

(neutral density) filter to balance the power between the reference and sample arms  as in  

(WANG; DAINTY; PODOLEANU, 2009). B-scans of test samples will be scanned and the 

installation of a galvo mirror will be added to collect volumes. Follows performance 

optimization, usability improvements and a future miniaturization of the system. 
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13 – CONCLUSIONS AND FUTURE DIRECTIONS 

 

The acquisition of 3D fingerprints obtained through the use of Optical Coherence 

Tomography was proved viable and the first OCT 3D fingerprint database to date, containing 

163 3D fingerprints from eleven volunteers of different genders, ethnicity and skin conditions 

was obtained. This database allows the exploitation of novel features and structures as papillary 

glands and sweat ducts for improved matching. A 2D database from the same group of 

volunteers was also obtained to allow a comparison with existing matching methods. 

OCT has a series of advantages over the multi-camera triangulation-based and structured 

illumination profilometry-based systems as the immunity to contrast and illumination problems 

and reconstruction errors. Besides that, the access to the internal layers of the skin opens the 

possibility to do biometric identification and matching in the presence of alterations, moisture 

or when the external layer of the skin is not accessible. 

A new matching method, based on new features, the KH maps, computed from small 

selected regions of the 3D fingerprint, the minutiae clouds, was proposed to improve the 

biometric identification accuracy. A two-step LGP-based matching process was devised to 

cope with the large volume of minutiae clouds obtained and reduced the processing time by 

85%. These matching results, for two databases, the OCTDB and a publicly available database 

(POLYUDB), were tested and a comparison with 2D traditional matching for the same 

volunteers was executed. Identification rates of 75% and 77.61 % and EER of 12.77% and 

12.36% for respectively the OCTDB and POLYUDB to a single minutiae cloud and 94.23% 

and 99% for an EER 0f 0.09% and 0.01% for multiple minutiae were achieved. 

The case of matching an external 3D database (gallery) using internal fingerprints (probe) 

has been tested obtaining identification rate of 88.89% and EER 0f 0.06% showing that 

identification is feasible when only the internal fingerprint is available, as in the case of 

alterations. Practical cases of alterations as scars, abrasion and cuts and a condition of excessive 

moisture were analyzed to check the impact of such conditions in the 3D internal fingerprints.  

A set of three 3D quality indicators related to density and smoothness was proposed and 

their efficacy to promote the separation of classes match and no match was evaluated for the 

mentioned databases using different normalization schemes. 
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The description of the parameters of a Full-Field (Time Domain) prototype, built in Stanford 

University, tests with fingerprint scanning and practical insights gained during the experiments 

is presented and details of a Line-field (FD-OCT) scanner prototype (in construction), 

customized to scanning 3D fingerprints in adults and babies is presented and its parameters 

evaluated. 

As future directions, the construction of larger 3D fingerprint databases including more 

cases of alteration is intended and a more detailed evaluation of varied degrees of moisture and 

dirt are intended. The evaluation of the use of other types of minutiae clouds as cores and deltas 

is intended as the prototype is finished. A test with different kinds of dirt in the hands to 

evaluate the potential of the technology in the case of disasters or catastrophes that resulted in 

damage to the fingerprints. 

The current database will be used with future research as improvements in the 3D fingerprint 

acquisition process, extraction of minutiae clouds, in the matching speed and the test of new 

3D matching methods using iterative closest points (ICP) and Surface interpenetration Measure 

(SILVA; BELLON; BOYER, 2005).The evaluation of the impact of using the quality 

indicators as predictors of performance is also feasible. 

Finally, an acquisition of children fingerprints, when the prototype conclusion and the safety 

conditions are assured is intended. 
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