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Abstract

An equation for MHD stationary equilibrium of rotating plasmas in the azimuthal direction
is derived in the case of an spherical coordinate system, with a plasma description of a fluid,
considered the entropy is a surface quantity. The equation obtained is solved using both an
analytical and a semi-numerical approach for chosen profiles for the current and the pressure
functions in terms of the flux function. Plots were made of the solution obtained by this method.
The rotation affects only some components of the magnetic field and the current density, the flux
function is also affected by the rotation.

Keywords: mhd. plasma. rotation. equilibrium. stationary.
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Resumo

Foi derivada uma equação de equilíbrio estacionário MHD de plasmas em rotação na direcção
azimutal, no caso de um sistema de coordenadas esféricas, describindo o plasma como um fluido,
e considerando a entropia como uma quantidade de superfície. A equação obtida é resolvida
utilizando uma abordagem analítica e numérica para os perfis escolhidos das funções de corrente
e de pressão em termos da função de fluxo. Gráficos foram feitos da solução obtida por este
método. A rotação afecta apenas alguns componentes do campo magnético, da densidade de
corrente, a corrent de fluxo poloidal, assim como a função de fluxo também é afectada pela
rotação.
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“The goal of science

is to understand nature

not to memorize definitions.”

(Michael Seeds & Dana Backman)
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1 Introduction

When a gas is heated above a certain temperature, or it is subject to strong electromagnetic
fields, it gets ionized, and a transition towards the so-called fourth state of matter, plasma state,
is observed.

Being constituted by electrical charges, ions and electrons, a plasma responds to electric and
magnetic fields including those that are produced by itself.

It actually turns out the plasma is an extremely complex medium characterized by non-linear
phenomena that occur over a very wide range of temporal and spatial scales.

Understanding the plasma behavior is thus extremely challenging, and before turning our
attention to the applications, it is necessary to disentangle, at least partially, this complexity
uncovering together some of the basic phenomena that characterize the plasma state.

Plasma (from Greek πλασµα1, “anything formed”) is one of the four fundamental states of
matter, the others being solid, liquid, and gas. The word plasma means ‘a moldable substance’,
‘jelly’. It was given by Irving Langmuir, one of the pioneers in the study of Plasma Physics. He
was studying mercury arc discharges and found that this substance, the plasma, was diffusing
in the vacuum chamber as a jelly in a mold. A plasma has properties unlike those of the other
states.

If we increase the temperature of a solid then we can destroy the crystalline lattice structure
and we can end up with a liquid. If we furthermore increase the temperature of the liquid, then
the kinetic energy of the atoms increases and the distance between atoms also increases and
what we end up with is a gas.

Figure 1: Aurora borealis in the northern hemisphere a

aExtracted from https://boredyoumustbe.wordpress.com/

Solid, liquid and gas are the three states of matter that we all know. But when we increase
furthermore the temperature, then the kinetic energy of the atoms of the gas becomes so high

1used http://www.perseus.tufts.edu/hopper/
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Chapter 1. Introduction 8

that when they collide, the electrons can be stripped away. Matter becomes a collection of ions
and electrons. This is what we call plasma, the fourth state of matter. Plasma is therefore ionized
gas, that can be reached if the temperature of the gas is sufficiently high that the electrons can be
stripped away from the atoms. The difference between a neutral gas and a plasma, is that, in a
neutral gas, particles interact only during a collision. In plasma, the particles interacts with a
large number of other particles.

Plasmas show a simultaneous response of many particles to an external stimulus [10]. In
this sense, plasmas show collective behavior, which means that the macroscopic result to an
external stimulus is the cooperative response of many plasma particles. Mutual shielding of
plasma particles or wave processes are examples of collective behavior [29].

We deal most of the time in our everyday life with gases, liquids, solids. Actually there are a
number of examples of plasmas in nature and in the laboratory. Stars are made of plasmas [11].
As a matter of fact, most of the visible matter in the Universe is in the plasma state2, in the form
of an electrified gas with the atoms dissociated into positive ions and negative electrons. This
estimate may not be very accurate, but it is certainly a reasonable one in view of the fact that
stellar interiors and atmospheres, gaseous nebulae, and much of the interstellar hydrogen are
plasmas [8].

There are also geophysical plasmas like the solar wind, the magnetosphere and the ionosphere
as some examples [4]. But there are also examples of plasmas in nature on our planet. For
example, the aurora Borealis as seen in figure (1) is a beautiful evidence of plasmas that can be
found on our planet. And there are also man-made plasmas, neon lamps like the one in figure
(2).

Figure 2: Neon lamps uses plasma to function are an example of plasmas a

aExtracted from http://www.keywordpicture.com/

Also in a number of laboratories worldwide matter is heated at very high temperature in
order to reproduce the nuclear fusion reaction that occurs in a star. One of these devices that is
used to heat up matter at such a high temperature, is the TCV tokamak in Lausanne, Switzerland,
illustrated in figure (3).

The word ’tokamak’ is derived from the Russian words, toroidal’naya kamera s magnitnymi

2see http://www.plasma-universe.com
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Figure 3: Variable Configuration Tokamak in Switzerland a

aExtracted from http://www.fusenet.eu/node/159

katushkami, meaning ’toroidal chamber with magnetic coils’. The device was invented in
the Soviet Union, the early development took place in the late 1950s. The advantage of the
tokamak comes from the increased stability provided by its larger toroidal magnetic field. The
successful development of the tokamak was principally the result of the careful attention paid to
the reduction of impurities and the separation of the plasma from the vacuum vessel by means
of a limiter [43].

The idea is using on our planet the fusion reaction that occurs in a star to produce energy
that is clean, sustainable, without emission of greenhouse gases, nor of long-lived radioactive
waste [28].

We have mentioned stars, we have mentioned neon lamps. Clearly these are very different
systems, characterized by very different temperatures, densities. In reality the plasma state spans
a huge range of temperature and densities [35]. If we look at what is the state of matter as a
function of density and temperature, density which we measure in particles per cubic meter, and
temperature, which we measure in Kelvin, we observe that the solid, liquid and gaseous state
occupy a very small portion of this huge parameter space (temperature and volume). All the rest
is occupied by plasmas. At very high density and high temperature one can find that the plasma
state is present in the solar core [11]. At slightly smaller density but a higher temperature one
can find that plasmas that are found in machines that are used for obtaining the nuclear fusion
reaction on our planet. And solar corona is at slightly smaller density and temperature [21].
Neon lamps are at similar density but lower temperature. And the temperature comparable to
the solar corona but at lower density, one has the plasmas that are found in nebulas or in the
solar wind [22]. And at even lower temperature, one can have plasmas that are found in the
interstellar medium [17].

The earliest studies date to the 1920s, 1930s. A few scientists, among which Irving Langmuir,
started to work on ionospheric plasmas because these were affecting radio transmission, and at
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Figure 4: TFTR tokamak a

aExtracted from http://www.huffingtonpost.com/

the same time, on the gaseous electron tubes, these were devices that were used, for example, to
rectify current in the era before semiconductors [37].

Figure 5: JET tokamak a

aExtracted from https://www.flickr.com/photos/fusionenergyvisual/

But the largest development of plasma physics came in the 1950s where few countries, the
United States, the United Kingdom, Soviet Union, started to work on magnetic fusion research.
Basically, on reproducing the reaction that occurs in the stars to produce energy. This was
initially an offshoot of the nuclear weapons program. However the progress in this research was
much slower than initially thought. And research, which up to that moment had been classified
and carried out independently by these three countries, was unclassified during the Second UN
Conference on Peaceful Uses of Atomic Energy that took place in Geneva in 1958 [7].

In general, the development of devices which could reproduce on our planet the fusion
reaction that occurs in the stars has been the strongest drive to the study of plasma physics
[44]. The research avenue that has been followed, is one of the construction of the tokamak
device. Starting from the earliest device, a number of tokamak have been built in the world. For
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Figure 6: W7-X stellarator a

aExtracted from http://www.scilogs.de/formbar/wendelstein-w7-x-erstes-plasma/

example, the TFTR tokamak that was built in the United States figure (4), or the largest existing
tokamak in the world, the JET tokamak, which is in the United Kingdom figure (5).

Figure 7: ITER tokamak dimensions a

aExtracted from http://www.universetoday.com/

Along with the mainstream tokamak approach, a number of other approaches have been
followed in order to make energy from fusion a reality. Two of those are the W7-X Stellarator in
Germany figure (6) and the National Ignition Facility in the United States. And nowadays, the
ITER device figure (7). The ITER device is a tokamak, the largest experiment that is being built
on our planet with the goal of showing that it is feasible to use the fusion reaction to produce
energy on our planet [3].

And together with the development of fusion devices the study of space and astrophysical
systems has been a strong drive for plasma physics[14]. Starting from the 60s, satellites have
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been launched and have provided us with a huge amount of data on the activity of the solar
surface[30], of the solar wind [21] or the dynamics of the earth and magnetic fields[36]. And
these have become key areas for plasma physicists. At the same time, plasma physicists have
devoted their attention to the study of astrophysical systems [15]. Just to give an example, the
astrophysical jets [2], the jets that are shot out from the stars, from active galactic nuclei or from
black holes.

Since the 80s, industry has made massive use of technologies based on plasmas, where,
in our everyday lives, plasma technology enters. Starting from the plasma TVs that we all
know. The semiconductor industry makes a huge use of plasma physics. And also the plasma
deposition technology is used on many of the materials that we encounter in our everyday life.
Plasma medicine is a growing field of plasma physics [13].

The main drive of plasma physical research has been provided by fusion [12]. Fusion
research [28], the quest for a source of energy which is clean, sustainable, with no production of
greenhouse gases nor of long-lived radioactive waste [23]. But understanding plasma physics is
essential to uncover the dynamics of astrophysical systems. And plasmas are playing a crucial
role in industry today [31].

Studying plasma physics is extremely challenging [6]. From a theoretical point of view,
dealing with plasma means dealing with electrically charged particles which move under the
effect of the electromagnetic field that they have themselves produced. It means dealing with a
complex, non-linear medium [42], and therefore, the most sophisticated numerical techniques,
the most advanced computers that exist today in the world, advanced analytical techniques [14],
they have all been used to uncover the dynamics of plasma. From an experimental point of view,
taking measurement of a plasma is very difficult [18]. Its temperature is too hot. And therefore
to infer what’s going on inside a plasma, one has to use smarter ways, which typically require a
multidisciplinary approach.

Plasma related definitions.
Beam injection.

Neutral atoms injected into a plasma travel in straight lines, being unaffected by the magnetic
field. The atoms become ionized through collisions with the plasma particles and the resulting
ions and electrons are then held by the magnetic field. Since the ions and electrons have the
same velocity the energy is carried almost entirely by the more massive ions. Once ionized the
ions have orbits in the magnetic field determined by their energy, angle of injection and point
of deposition. The energy of the injected ions is gradually transferred to the plasma electrons
and ions through Coulomb collisions. Thus the injected ions are initially slowed and then
thermalized [43].

Beam heating.

Once the neutral beam particles entering the plasma have become ionized, the resulting fast
ions are slowed down by Coulomb collisions. As the slowing down occurs energy is passed to
the particles of the plasma, causing heating of both electrons and ions. At high injection velocity
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the electron heating is initially dominant. Then, as the beam ions slow down, the heating is
transferred to the ions [43].

Magnetohydrodynamics or MHD.

The word Magnetohydrodynamics covers those phenomena, where, in an electrically con-
ducting fluid, the velocity field v and the magnetic field B are coupled. In objects subject
to solid body motion such as rotors, the velocity field is reduced to a change of the frame of
reference, and its relation with the magnetic field is considerably simplified; such phenomena
belong to electromagnetism. Similarly, the movement of an insulating fluid, which is insensitive
to the presence of a magnetic field, belongs to fluid mechanics. However, as soon as these two
vector fields v and B are dependent on each other, their description goes beyond these two
independent disciplines, and calls for a more general formalism [24].

The mutual interaction of the magnetic field,B, and the velocity field, v, arises partially as a
result of the laws of Faraday and Ampere, and partially because of the Lorentz force experienced
by a current-carrying body [9]. It is convenient, to split this interaction into three parts:

First, the relative movement of a conducting fluid and a magnetic field causes an e.m.f.
(of order |v × B|) to develop in accordance with Faraday’s law of induction. In general,
electrical currents will ensue, the current density being of order σ(v×B), σ being the electrical
conductivity.

Second, these induced currents must, according to Ampere’s law, give rise to a second,
induced magnetic field. This adds to the original magnetic field and the change is usually such
that the fluid appears to ‘drag’ the magnetic field lines along with it.

And third, the combined magnetic field (imposed plus induced) interacts with the induced
current density, J , to give rise to a Lorentz force (per unit volume), J ×B. This acts on the
conductor and is generally directed so as to inhibit the relative movement of the magnetic field
and the fluid.

The last two effects have similar consequences. In both cases the relative movement of fluid
and field tends to be reduced. Fluids can ‘drag’ magnetic field lines (second effect) and magnetic
fields can pull on conducting fluids (third effect). It is this partial ‘freezing together’ of the
medium and the magnetic field which is the hallmark of MHD [9].

We study plasma rotations because the azimuthal rotation [34] in Tokamaks and other fusion
machines is observed when confined plasma is subjected, for example, to neutral beam heating.
The impacts of the beam particles with plasma electrons and ions amounts to a net momentum
transfer with causes rotation in the toroidal direction.

A key problem in the theoretical study of azimuthal rotation [38] is whether such a plasma
flow could coexist with a state of MHD (stationary) equilibrium. The answer turns to be positive
provided some requirements are fulfilled by the system. If axisymmetry exists, field lines lie
on magnetic flux surfaces with topology of tori and characterized by surface quantities, like
the transversal magnetic flux. The set of ideal MHD equations allow us to derive a partial
differential equation for it. Maschke and Perrin [20] obtained a MHD equilibrium equation
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for azimuthal plasma flows supposing that either the temperature or the entropy were surface
quantities. They considered only cylindrical coordinates, having obtained exact analytical
solutions for the transversal magnetic flux. Viana, Clemente and Lopes found a semi-analytical
solution for spherical coordinates considering the temperature as a surface quantities [41].

The case where the plasma flow is adiabatic, demands the use of the entropy as a surface
quantity. This is particularly important in the case of anisotropic plasmas. To apply the MHD
equilibrium theory for realistic magnetic confinement schemes, is necessary an equilibrium
equation in a general curvilinear coordinate system. An equilibrium equation for plasmas with
azimuthal rotation was derived in [40], with the temperature as a surface quantity.

The objective of this work is to obtain MHD expressions in equilibria when the plasma flow
is adiabatic and is rotating in the azimuthal, considering the confinement scheme as having a
spherical symmetry.

The structure of this document is as follows: first, is presented the equations that describes
the MHD status treating the plasma as fluid; second, are the equation for the MHD equilibrium
status of the plasma in the ideal case with the description of the quantities used in the derivation
for a system with axial symmetry. In the third chapter, are the equations for the MHD equilibrium
of plasmas in rotation and also considering the entropy as a surface quantity, and specifying the
use of a geometry like in spherical coordinates, also is presented the solution of the equation
obtained with the corresponding analysis of the solution and its consequences. Finally there are
the conclusions of this work, the appendix with useful information about generalized coordinates
and curvilinear systems and the bibliography.



2 MHD Equations

The Magnetohydrodynamics combines the equations of fluid mechanics, the Maxwell
equations for electromagnetism and some thermodynamical relations. The equations can be
derived by two approaches, the microscopic approach and the macroscopic approach, the
following is the latter one.

2.1 Equations for a fluid

In a plasma the E andB fields are not prescribed but are determined by the positions and
motions of the charges themselves. One must find a set of particle trajectories and field patterns
such that the particles will generate the fields as they move along their orbits and the fields will
cause the particles to move in those exact orbits. If each of these particles follows a complicated
trajectory predicting the plasma’s behavior would be difficult. Fortunately, as much as 80% of
plasma phenomena observed in real experiments can be explained by a model that is used in
fluid mechanics, in which the identity of the individual particle is neglected, and only the motion
of fluid elements is taken into account. In the case of plasmas, the fluid contains electrical
charges [1]. In an ordinary fluid, frequent collisions between particles keep the particles in
a fluid element moving together. That model works for plasmas [24], which generally have
infrequent collisions [8].

2.1.1 Theory for a fluid

The plasma is considered like a mixture of two fluids, one electronic and other ionic. Using
the subindices i for positive ions with charge +Ze (being Z the atomic number), e for free
electrons (with charge −e) and s for any of those species, we define the following quantities that
depend on the position ξ and the time t by using n for the number densities, m for the masses
and v for the velocities.

Density of mass %:
%(ξ, t) =

∑
s

msns = nimi + neme, (2.1)

where ms is the mass of the species and ns the number densities of that species.

Mean velocity of the fluid v:

v(ξ, t) =
1

%

∑
s

nsmsvs =
nimivi + nemeve
nimi + neme

, (2.2)

where vs is the velocity of the species.

15
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Electric charge density ρc:

ρc(ξ, t) =
∑
s

nsqs = e(ni − ne). (2.3)

Electric current density J :

J(ξ, t) =
∑
s

nsqsvs = e(nivi − neve), (2.4)

where qs is the electric charge of the species and e is the charge of an electron.

2.1.2 Mass conservation and the equations of Continuity

Continuity of mass.

P (x1, x2, x3)

dx3

dx2

dx1

Figure 8: Eulerian volume element. Its boundaries are fixed in space.

The first thing is to start by looking at the mass flowing into and out of a physically
infinitesimal volume element. From this, we will use the Eulerian viewpoint: a volume element
is fixed in space in the laboratory frame of reference [32]. The volume element dV = dx1dx2dx3

is shown in figure (8)

P (x1, x2, x3) is the centroid of the volume element. The sides of the volume element are
fixed in space. Fluid can flow into and out of the volume element through the sides.

Let the mass density at P (x1, x2, x3) be %(x1, x2, x3) (mass/volume). It is the average (and
nearly uniform) mass density throughout dV . The total mass contained within dV is

M =

∫
%dV =

∫
%dx1dx2dx3. (2.5)

Assume that there are no sources or sinks of mass within dV . Then dM/dt is the rate at
which mass enters or leaves through the surface dS.

A surface element dS is shown in figure (9), the corresponding surface area is dS, and n̂ is
a unit vector normal to the surface. When dS is a side of a volume element dV , n̂ is assumed to
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dS = n̂dS

v

Figure 9: Eulerian surface element, showing the velocity vector v and the surface area element
vector dS

point out of the volume element (i.e., from inside to outside). The flux of mass passing through
a surface is %v, where v is the fluid velocity. Then the mass per unit time flowing through dS is
%v · dS = %v · n̂dS, and the total rate of flow of mass out of the volume dV is

∑
faces

%v · dS ⇒
∮
S

%v · dS =

∮
S

%v · n̂dS, (2.6)

where the integral is over the surface enclosing dV . Since this must be equal o −dM/dt, we
have

dM

dt
=

d

dt

∫
V

%dV = −
∮
S

%v · n̂dS. (2.7)

For a fixed (Eulerian) surface, we can take the total time derivative inside the volume integral
as a partial derivative: ∫

V

∂%

∂t
dV = −

∮
S

%v · n̂dS, (2.8)

applying the Gauss’s theorem in the right hand side to transform the surface integral into a
volume integral, gives ∮

S

%v · n̂dS =

∫
V

∇ · (%v)dV, (2.9)

rearranging terms and grouping integrals in dV gives∫
V

[
∂%

∂t
+∇ · (%v)

]
dV = 0. (2.10)

This expression must hold for every arbitrarily shaped volume; the only way that it can be
satisfied is if the integrand (the part between brackets) vanishes identically, or

∂%

∂t
= −∇ · (%v). (2.11)

This is called the continuity of mass equation. It expresses conservation of mass in the
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Eulerian frame of reference.

It must be noticed that the Eq. 2.11 has four dependent variables: % and the three components
of the velocity v. If the velocity was known a priori, the system would be closed and we
could solve Eq. 2.11 for the evolution of %. Problems in which the velocity field is fixed, or
specified in advance, are called kinematic. Problems where v is determined from other physical
principles are called dynamic. We therefore have three more unknowns than we have equations;
the problem is not closed. This problem of closure is of fundamental importance in MHD, and it
will be discussed later.

Continuity of charge.

The instantaneous current i is defined as the time rate of change of charge transfer, in other
words

i(t) =
dq(t)

dt
. (2.12)

If charge with density ρc(ξ, t) is moving with velocity v(ξ, t), the corresponding convective
current density J is

J(ξ, t) = ρc(ξ, t)v(ξ, t). (2.13)

Noticing that if ρc is positive, then J is in the same direction as v, but if ρc is negative, then
J is in the opposite direction to v.

dA

n̂

J

Figure 10: Surface element with unit normal vector n̂

Let dA be an infinitesimal element of a regular surface with unit normal vector n̂, as in
figure (10).

If the current density J is evaluated at an interior point of dA, then the quantity J · n̂dA is
the rate at which charge flows across dA either into the region of space that n̂ is directed if ρc is
positive, or into the region of space that −n̂ is directed if ρc is negative.

The net flow of charge per unit area per unit time, Fc, across an arbitrarily oriented surface
element n̂dA is then given by

Fc(ξ, t) = J(ξ, t) · n̂dA. (2.14)
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The total current I flowing across a regular surface S into the region of space that the unit
surface normal n̂ to S is directed is then given by the surface integral

I(t) =

∫ ∫
S

J(ξ, t) · n̂dA. (2.15)

For a closed surface S, conservation of charge requires that∮
S

J(ξ, t) · n̂dA = − d

dt

∫ ∫
V

∫
ρc(ξ, t)d

3r, (2.16)

where V is the volume enclosed by S.

If the surface S is fixed in space, Leibniz rule gives∮
S

J(ξ, t) · n̂dA = −
∫ ∫

V

∫
∂ρc(ξ, t)

∂t
d3r. (2.17)

Application of the divergence theorem to this result then gives∫ ∫
V

∫ (
∇ · J(ξ, t) +

∂ρc(ξ, t)

∂t

)
d3r. (2.18)

Because this integral must vanish for an arbitrary region V , it is then necessary that the
integrand itself be identically zero at all points of space, resulting in the equation of charge
continuity

∇ · J +
∂ρc
∂t

= 0. (2.19)

Not forgetting that the density current J and the charge density ρc both depend on the
position vector and time (ξ, t).

2.1.3 Simplifying assumptions

The passage of the two fluids theory to the theory of one fluid is not entirely trivial, because
it involves the use of a number of simplifying assumptions about the involved species (electrons,
positive ions) as well as the characteristic scales of length and time involved.

Debye shielding.

The Debye length is an important physical parameter for the description of a plasma. It
provides a measure of the distance over which the influence of the electric field of an individual
charged particle (or of a surface at some nonzero potential) is felt by the other charged particles
inside the plasma. The charged particles arrange themselves in such a way as to effectively
shield any electrostatic fields within a distance of the order of the Debye length. This shielding
of electrostatic fields is a consequence of the collective effects of the plasma particles [5].

The Debye length (λD) is directly proportional to the square root of the temperature (T ) and
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inversely proportional to the square root of the electron number density (ne) according to

λD =

(
ε0kBT

nee2

)1/2

, (2.20)

where kB = 1.38064852× 10−23m
2Kg
s2K

is the Boltzmann’s constant.

The Debye length can also be regarded as a measure of the distance over which fluctuating
electric potentials may appear in a plasma, corresponding to a conversion of the thermal particle
kinetic energy into electrostatic potential energy.

When a boundary surface is introduced in a plasma, the perturbation produced extends only
up to a distance of the order of λD from the surface. In the neighborhood of any surface inside
the plasma there is a layer of width of the order of λD, known as the plasma sheath, inside
which the condition of macroscopic electrical neutrality may not be satisfied. Beyond the plasma
sheath region there is the plasma region, where macroscopic neutrality is maintained.

Using 2.20 we can calculate the number ND of particles in a "Debye sphere"

ND = n
4

3
πλ3D = 1.38× 106T 3/2/n1/2, (2.21)

with the temperature T measured in Kelvin.

The Debye shielding effect is a characteristic of all plasmas, although it does not occur in
every medium that contains charged particles. A necessary and obvious requirement for the
existence of a plasma is that the physical dimensions of the system be large compared to λD.
Otherwise there is just not sufficient space for the collective shielding effect to take place, and
the collection of charged particles will not exhibit plasma behavior. If Λ is a characteristic
dimension of the plasma, a first criterion for the definition of a plasma is therefore

Λ� λD. (2.22)

Quasi neutrality.

The requirement of Eq. 2.22 already implies in macroscopic charge neutrality if it is realized
that deviations from neutrality can naturally occur only over distances of the order of λD.
Sometimes is considered as a criterion for the existence of a plasma, although it is not an
independent one, and can be expressed as

ne =
∑
i

ni. (2.23)

A charge in a plasma being shielded is envolved by a ”cloud” of charges with a characteristic
length equal to the Debye length λD for a given species. For greater distances than Debye length
we have, ideally, the neutrality of charges, in other words, the charge densities of electrons and
ions are the equal, that is qene = qini, or ne = ni. For a plasma the Debye length is much
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smaller than the characteristic length of the system, so that this property is valid for all the
system. However, the neutrality is not total at all, because the involved charges are in movement,
so that is better to say that exists a quasi-neutrality, so

ne ≈ ni. (2.24)

A first consequence of the quasi neutrality of the plasma is that the electric charge density
(Eq. 2.3) is approximately zero, or

ρc ≈ 0, (2.25)

in such a way that the equation of charge continuity (Eq. 2.19) becomes

∇ · J = 0. (2.26)

Then the electric current density (Eq. 2.4) can be expressed, in an approximate way, as

J ≈ eni(vi − ve) ≈ −ene(ve − vi). (2.27)

Mass ratio.

The mass ratio between electrons and positive ions is very small, if working with hydrogen,
for example, we have

mi

me

=
mp

me

≈ 1840� 1. (2.28)

Hence, we can neglect the ratio mi/me when we are considering quantities from the fluid
theory. As an example, the mass density can be written as

% = nimi

(
1 +

ne
ni

me

mi

)
≈ nimi

(
1 +

me

mi

)
, (2.29)

where we have used the quasi neutrality. Eventually, the ratio me/mi is negligible compared
with other involved terms, so that % ≈ nimi is acceptable.

2.1.4 Momentum equation - Euler fluid

The Euler equations describe how the velocity v, pressure p and density % of a moving fluid
are related. The equations are a set of coupled differential equations and they can be solved
for a given flow problem by using methods from calculus. Though the equations appear to be
very complex, they are actually simplifications of the more general Navier-Stokes equations of
fluid dynamics. The Euler equations neglect the effects of the viscosity of the fluid which are
included in the Navier-Stokes equations. A solution of the Euler equations is therefore only an
approximation to a real fluids problem.

Our world has three spatial dimensions (x, y, z), for convenience represented as (x1, x2, x3)
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and one time dimension t. In general, the Euler equations have a time-dependent continu-
ity equation for conservation of mass and three time-dependent conservation of momentum
equations.

We can express the total momentum Γ in the xi direction in the volume element dV as

Γi =

∫
%vidV, (2.30)

being i = 1, 2, 3.

The momentum rate of change is then

∂Γi
∂t

=

∫
∂(%vi)

∂t
dV. (2.31)

We have assumed that there are no external forces being applied, like gravity, and no pressure
(a fluid of non-interacting dust particles). We also assume viscous forces are negligible. Then,
the only way a momentum-change can occur is by momentum flowing across the boundary
surface S:

∂Γi
∂t

=

∫
(%vi)v · dS =

∫
(%vi)vjdSj. (2.32)

Expressing the dot products using the Einstein summation convention: implied summation
over repeated dummy indices.

Changing the surface integral into a volume integral using Green’s Theorem, gives

∂Γi
∂t

= −
∫
∇j(%vivj)dV. (2.33)

Comparing Eqs. 2.31 with 2.33 is clearly that

∂Γi
∂t

=

∫
∂(%vi)

∂t
dV = −

∫
∇j(%vivj)dV, (2.34)

or more importantly the integrands must be equal

∂(%vi)

∂t
= −∇j(%vivj). (2.35)

This equations says that each component of the momentum-density %vi (for each i separately)
obeys a local conservation law.

The operator ∇j is differentiating two velocities (vi and vj) only one of which undergoes
dot-product summation over j.

Next, we consider the pressure of the mixture, it contributes a force on the particles in the
control volume, specifically

fi =

∫
pdSi (2.36)
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and again using Green’s theorem to transform it into a volume integral

fi = −
∫
∇ipdV. (2.37)

Now we consider a uniform gravitational field, and it contributes another force equals to

fi =

∫
%gidV. (2.38)

These forces contribute to changing the momentum, by the second law of motion:

dΓ ′i
dt

= fi. (2.39)

The notation used (d/dt instead of ∂/∂t and Γ ′ instead of Γ ) is interesting because reminds
that the three laws of motion apply to particles, not to the control volume itself. The rate of
change of P , the momentum in the control volume, contains the newtonian contributions (Eqs.
2.37 and 2.38 ) plus the flow contributions (Eq. 2.35).

Combining the contributions, the equation of motion for the fluid is

∂(%vi)

∂t
+∇j(%vivj) = −∇ip+ fi, (2.40)

where fi is an external force per volume unit like gravity or any other force.

Expressing Eq. 2.40 in vectorial form, gives

%
∂v

∂t
+ %∇(v ⊗ v) = −∇p+ fext, (2.41)

⊗ is the outer product and fext is an external force applied on the system.

Expanding the left hand side of the Eq. 2.40 gives

%
∂vi
∂t

+ vi
∂%

∂t
+ vi∇j(%vj) + %vj∇j(vi) = −∇ip+ fi, (2.42)

the second and third terms cancel because of conservation of mass (Eq. 2.11) leaving only

%
∂vi
∂t

+ %vj∇j(vi) = −∇ip+ fi, (2.43)

or in vectorial form
%
∂v

∂t
+ %(v · ∇)v = −∇p+ fext. (2.44)

In fluid dynamics the relation between total and partial derivatives is

d

dt
=

∂

∂t
+ v · ∇,
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also known as convective derivative, the left hand side expresses the rate of change of a quantity
at a point moving with the fluid and the partial derivative at the right hand side expresses the
rate of change of a quantity at a fixed point in space. So, in a more compact representation the
equation becomes

%
dv

dt
= −∇p+ fext. (2.45)

In our case the external force can be derived from the force on a charged particle q (can be
electrons or ions) with velocity v under electric and magnetic fields E andB respectively, or
known as the Lorentz force F that is given by

F = q(E + v ×B), (2.46)

the total electromagnetic force per unit volume on electrons with charge −e is

fe = −nee(E + ve ×B), (2.47)

and for ions with charge e is
fi = nie(E + vi ×B), (2.48)

where ne and ni are the electron and ion number densities respectively.

The total electromagnetic force per unit volume is the sum of Eq. 2.47 and 2.48

f = fe + fi = e(ni − ne)E + (enivi − eneve)×B, (2.49)

as the plasma is considered as quasi-neutral, as explained before (i.e. ni ≈ ne = n), the first
term involving the electric field cancels, and this gives

f = en(vi − ve)×B, (2.50)

or by noting that the term en(vi − ve) is just the current density J , we can say that

f = en(vi − ve)×B = J ×B. (2.51)

Hence by using this as an external force and putting into Eq. 2.45

%
dv

dt
= −∇p+ J ×B. (2.52)

Or expanding the convective derivative, the Eq. 2.52 gives

%

(
∂

∂t
+ v · ∇

)
v = −∇p+ J ×B. (2.53)

Noting that J × B is the only change to fluid equations in MHD. An equation for the
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magnetic field and current density are needed to close the system.

2.2 Equations from thermodynamics

2.2.1 State equations

The plasma is considered as an ideal gas; then, the state equation p = p(%, T ) for an ideal
gas of density % and temperature T is of the form

p = %R̄T = nkBT, (2.54)

where R̄ = 8.31446J/mol ·K is the Gas constant and kB = 1.38065× 10−23m2Kg/s2 ·K is
the Boltzmann constant.

In this work we are considering an adiabatic process, so, the equation for that process in a
system with volume V is

pV γ = const., (2.55)

and we can express it in terms of a new constant A that only depends on the entropy S. In an
adiabatic process the entropy remains constant, so that constant A(S) is also a constant, in such
a way that we can write Eq. 2.55 in terms of the density of mass as

p = A(S)%γ, (2.56)

using this equation to get A(S) as A(S) = p/%γ Then, as said before, A(S) is constant in time
so we can write

dA(S)

dt
=

d

dt

(
p

%γ

)
= 0. (2.57)

But, using the definition of the convective derivative from Eq. 2.1.4 gives

dA(S)

dt
=
∂A

∂t
+ v · ∇A = 0, (2.58)

for the case of reversible processes.

In equilibrium, the partial derivative vanishes, giving the relation for the entropy S

v · ∇A(S) = 0, (2.59)

or
v · ∇S = 0, (2.60)

because the constant A is also a function of the entropy S.
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2.3 Equations from electromagnetism

2.3.1 Maxwell’s equations

The electromagnetic fields are E, the electric field, and B, the magnetic flux density or
magnetic field, J is the electrical current density. Together, these must satisfy Maxwell’s
equations, but any temporal derivatives nulls because of the stationary nature:

Faraday’s law:

∇×E = −∂B
∂t

. (2.61)

Ampère’s law:

∇×B = µ0J −
1

c2
∂E

∂t
. (2.62)

Magnetic Gauss’s law:
∇ ·B = 0. (2.63)

These equations are written in MKS units. This system is the used in this work. In these
units, the speed of light c is

c =
1

√
ε0µ0

= 2.99792458× 108m/s. (2.64)

The constant ε0 is called the permitivity of free space and the constant µ0 is called the
permeability of free space. The dynamics of the electromagnetic fields and the fluid are coupled
through Ohm’s law [32].

The Gauss and Faraday laws suffer no changes in the context of MHD, but the electric Gauss
and Ampère laws will experiment some changes.

2.3.2 Absence of the displacement current

The temporal term 1
c2
∂E
∂t

appearing in Ampère’s law, is known as the displacement current
density, and can be neglected compared with the electrical current density J substituting the
Faraday’s law into Ampère’s law gives

∇× (∇×E) = µ0
∂J

∂t
+

1

c2
∂2E

∂t2
, (2.65)

which, is well known, that will lead to wave equation for the electric field.
Let a plane wave with wave vector k and a frequency ω moving in the ξ direction:

E = E0e
i(k·ξ−ωt), (2.66)

for which the associations are valid
∂

∂t
→ −iω, (2.67)
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and
∇ → ik, (2.68)

and using them we can estimate the magnitude of their terms

|∇ × (∇×E)| ∼ k2 |E| , (2.69)

1

c2

∣∣∣∣∂2E∂t2
∣∣∣∣ ∼ ω2

c2
|E|, (2.70)

then,
1

c2

∣∣∣∣∂2E∂t2
∣∣∣∣� |∇× (∇×E)| ,

if ω is small, then the displacement current can be neglected, and turns the Ampère-Maxwell as

∇×B = µ0J . (2.71)

2.3.3 Ohm’s Law

The dynamics of the electromagnetic fields and the fluid are coupled through Ohm’s law,

E′ = ηJ , (2.72)

where η is the electrical resistivity, which is to be considered a material property of the fluid,
and E′ is the electric field as seen by a conductor moving with velocity v.

According to the theory of relativity, this is given by

E′ =
E + v ×B√

1− v2

c2

, (2.73)

where E is the electric field in the stationary frame.

Maxwell’s equations and Ohm’s law are Lorentz invariant, i.e., they are physically accurate
to all orders of v2

c2
. However, the fluid equations are Gallilean invariant; they are physically

accurate only to O(v/c). The two systems of equations are incompatible as presently formulated.
So, we either need to make the fluid equations relativistic or need to render Maxwell’s equations’
Gallilean invariant. In MHD we will consider only low frequencies, i.e., v2/c2 = (ωL/c)2 << 1.
We therefore choose the latter course and seek a form of Maxwell’s equations that is only accurate
through O(v/c). Consider Ohm’s law Eq. 2.72. From Eq. 2.73, when v2/c2 << 1 we can write
the electric field in the moving frame as

E′ = (E + v ×B)

(
1− 1

2

v2

c2
+ . . .

)
(2.74)

= E + v ×B +O

(
v2

c2

)
. (2.75)
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Ohm’s law then becomes
E + v ×B =

J

σ
, (2.76)

where σ = 1/η is the conductivity. This equation is the proper MHD form, it is sometimes
called the resistive Ohm’s law[32].

By assuming a perfect conductivity (i.e. σ →∞) and with J 6= 0 this gives

E + v ×B = 0. (2.77)

2.3.4 Ideal MHD equations

Putting in all together, then, the ideal MHD equations are

∂ρ

∂t
= −∇ · (ρv), (2.78)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ J ×B, (2.79)

d

dt

(
p

%γ

)
= 0, (2.80)

∇×B = µ0J , (2.81)

∇×E = −∂B
∂t

, (2.82)

E = −v ×B, (2.83)

∇ ·B = 0. (2.84)

where p is the pressure, J the plasma current density,B the magnetic field, E the electric field,
v the velocity, % the mass density and the γ is the adiabatic gas constant.



3 MHD equilibrium

3.1 Conditions for equilibria

In plasma confinement configurations, open (including adiabatic traps), closed or toroidal
configurations, there are some terms that will be explained in the next paragraphs.

One condition considered to reach MHD equilibrium is that all the quantities do not depend
on the time, or in other words, the time derivatives are equal to zero. The fluid is assumed to be
spatially uniform with constant density %. The magnetic Gauss’s law∇ ·B = 0 is also satisfied,
this is not a MHD equation but a necessary condition that must be satisfied by any magnetic
field.

3.2 Ideal MHD equations under stationary equilibrium

Then, in stationary MHD equilibrium the (plasma) velocities are different from zero, i.e.
v 6= 0. In this ideal system the ideal MHD equations are expressed as

∇ · (ρv) = 0, (3.1)

ρ (v · ∇)v = −∇p+ J ×B, (3.2)

d

dt

(
p

%γ

)
= 0, (3.3)

∇×B = µ0J , (3.4)

∇×E = 0, (3.5)

E = −v ×B, (3.6)

∇ ·B = 0. (3.7)

3.3 Ideal MHD equations under static equilibrium

In static MHD equilibrium all the velocities are equal to zero, i.e. v = 0 Also, the generalized
Ohm’s law E = ηJ becomes E = 0 (where η is the resistivity), this is because in an ideal
MHD the resistivity is ideally zero, i.e. η → 0. All these requirements must be met to achieve
the MHD equilibrium.

In the study of magnetically confined plasmas, the most important requirement is the
existence of an MHD equilibrium suitable to confinement. Under static equilibrium conditions
the equilibrium velocity is considered zero, and throughout the fluid the magnetic inductionB
is constant [5]. This is defined by a stationary state without plasma flow (time derivatives are
zero and v = 0) [28].

29
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The kinetic pressure of the plasma, which tends to make it expand, is counterbalanced by
the joint action of magnetic forces. The latter is important, for example, in star balance, but it is
negligible for laboratory and plasma fusion. For that reason the gravitational forces are ignored,
so that the MHD equations for static equilibrium are determined by

∇p = J ×B, (3.8)

∇×B = µ0J , (3.9)

∇ ·B = 0. (3.10)

3.4 Isobaric or magnetic surfaces

Toroidal direction

O′

P ′

Q
θ′

θ

O

P

θ

magnetic field line

magnetic axis

= const. surface

x3 = const.

x2 = const.

x1 = a

x1 = const.

poloidal direction

Figure 11: Sketch maps of the magnetic configuration of the tokamak. The magnetic field lines
form a series of nested magnetic flux surfaces

A magnetic surface is represented as a function where the flux is constant, in toroidal
configurations, the lines of force of the magnetic field lie on magnetic surfaces which form
a system of nested tori, as shown in figure 11. That function that defines an equation for the
magnetic surfaces, is called a magnetic surface function or, simply, a surface function.

We have from MHD condition for static equilibrium (that comes from the equation of
movement 3.8) by doing the inner product ofB with it

B · ∇p = B · J ×B = 0. (3.11)

Which means that the lines of force of the magnetic field and the lines of current lie on the
surfaces of constant pressure or isobaric. Magnetic surfaces are also flux surfaces, the toroidal
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magnetic flux is independent of the position of the poloidal current.

Also by doing the inner product of the same MHD condition with the current J

J · ∇p = J · J ×B = 0. (3.12)

So, the lines of current also lie on the magnetic surfaces. The magnetic surfaces only can be
limited spatially if they have a nested tori topology. The existence of closed magnetic surfaces
are a necessary condition but not a sufficient condition for magnetic confinement of fusion
plasmas. The determination of the magnetic surfaces, in general, requires a configuration with a
specific spatial symmetry, in this work that configuration is an sphere, so the symmetry involved
is a spherical one.

3.4.1 Magnetic axis

The flux enclosed in a magnetic surface can be used as a label of the surfaces, another option
is to use the volume inside the surface. The innermost surface has zero volume, it is called the
magnetic axis. [10]

3.5 MHD equilibrium in systems with axial symmetry

We introduce the use of a curvilinear coordinate system with coordinates x1 and x2 are
chosen in order to have the magnetic axis of the system coincident with a coordinate curve x3

as shown in figure 11. The surface quantities over magnetic surfaces to work are the pressure,
volume which are constant. These surface quantities do not depend on the third coordinate x3,
that is an ignorable coordinate, which means the system has axial symmetry. The magnetic axis,
which is a degenerate surface, is a coordinate curve x3, the first coordinate is represented as
x1 = a. S2 is a segment of the coordinate surface x2 = constant from the magnetic axis to the
coordinate x3 [19]. The following periodicity

x3 = L(x1, x2), (3.13)

is assumed and 0 < x3 < L.

The poloidal flux function is the magnetic flux through S2 per length unit in the x3 direction,
so

Ψ(x1, x2) =
1

L

∫
S2

B · dS =
1

L

∫ x1

a

dx′1
∫ L

0

dx3
√
gB2, (3.14)

where g = det(gij) is the covariant metric tensor of the coordinate system (see Appendix), Ψ

is a surface quantity that does not depend on the third coordinate x3, then by doing the inner
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product of the the magnetic field and the gradient of Ψ gives

B · ∇Ψ = 0, (3.15)

using the magnetic Gauss’s law where∇ ·B = 0

∂Ψ

∂x1
=

1

L

∫ x1

a

dx′1
∫ L

0

dx3
√
gB2 = 0, (3.16)

multiplying by dx1 and integrating from x1 = a to any x1 gives

B1(x1, x2) = − 1
√
g

∫ x1

a

dx′1
∂

∂x2
(
√
gB2), (3.17)

multiplying by
√
gdx3 ant integrating from x3 = 0 to L we have

B1 = − 1
√
g

∂Ψ

∂x2
, (3.18)

B2 =
1
√
g

∂Ψ

∂x1
. (3.19)

Using the formulas, from the appendix, for the curvilinear coordinates (x1, x2, x3) that relates
their corresponding covariant and contravariant unit vectors (ê1, ê2, ê3)

ê1 × ê3 =
1
√
g

(g32ê3 − g33ê2), (3.20)

ê2 × ê3 =
1
√
g

(g33ê1 − g31ê3), (3.21)

ê3 × ê3 =
1
√
g

(g31ê2 − g32ê1), (3.22)

gives
1

g33
ê3 ×∇Ψ = B1ê1 +B2ê2 −

(
g31
g33

B1 +
g32
g33

B2

)
ê3, (3.23)

multiplying by ê3/g33 and because

∇Ψ =
∂Ψ

∂x1
ê1 +

∂Ψ

∂x2
ê2,

also,
B = B1ê1 +B2ê2 +B3ê3

then after writing in terms of B3 = g3jB
j to lowering the indices we have

B3
ê3
g33

=

(
g31
g33

B1 +
g32
g33

B2 +B3

)
ê3 (3.24)
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we obtain the following representation for the magnetic field in terms of the poloidal flux
function

B =
ê3
g33
×∇Ψ +B3

ê3
g33

, (3.25)

and with the previous expression we can verify thatB · ∇Ψ = 0 so that the magnetic surfaces
are such that Ψ = constant so they are also called flux surfaces.

3.5.1 Flux function and vector potential

UsingB = ∇×A and the Stoke’s theorem in the definition of the poloidal flux function
gives

Ψ(x1, x2) =
1

L

∫
S2

∇×A · dS =
1

L

∮
C2

A · dl, (3.26)

where C2 is a coordinate curve x3. Then dl = −dx3ê3 and substituting in the previous equation
gives

Ψ(x1, x2) = − 1

L

∫ L

0

A3dx
3. (3.27)

Because of the axial symmetry, A3 does not depend on x3 and we have

Ψ(x1, x2) = −A3(x
1, x2). (3.28)

3.5.2 Poloidal flux current

The letter I represents the total electric current flowing through the surface S2 by length unit
in the x3 direction, so

I(x1, x2) = Iaxis +
1

L

∫
S2

J · dS = Iaxis +
1

L

∫ x1

a

dx′1
∫ L

0

dx3
√
gJ2, (3.29)

where Iaxis is the current at the magnetic axis.

Proceeding in a similar way to the previous case and using the equation of charge continuity
∇ · J we obtain the next relations

µ0J
1 = − 1

√
g

∂I

∂x2
, (3.30)

µ0J
2 =

1
√
g

∂I

∂x1
, (3.31)

where we have used the charge continuity equation∇ · J = 0
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3.5.3 Analogy between the flux and current functions

In the table 1 we can see some analogies between the equations for the magnetic field and
the current density

magnetic fieldB current density J
∇×A = B ∇×B = µ0J
∇ ·B = 0 ∇ · J = 0

B1 = 0 at the axis J1 = 0 at the axis
Ψ(x1, x2) = 1

L

∫
S2
B · dS µ0I(x1, x2) = Iaxis + 1

L

∫
S2
µ0J · dS

Table 1: Analogies between the expressions for the magnetic field and current density

So, we can conclude that Ψ is similar to µ0I and the vectors A and B are also similar as
well. With that analogy kept in mind, next, we can infer that

µ0I(x1, x2) = −B3(x
1, x2), (3.32)

where we have a representation for the current density in terms of the poloidal current function
in a similar fashion of that used for the magnetic field

J(x1, x2) =
ê3
g33
×∇I + J3

ê3
g33

. (3.33)

By doingB · ∇I we verify that Ψ and I are also surface quantities.

3.5.4 Grad-Shafranov equation

H. Grad [16] and VD Shafranov [33], derived an equilibrium equation in ideal magneto-
hydrodynamics for a two dimensional plasma, starting from the expressions for the magnetic
field

B =
ê3
g33
×∇Ψ +B3

ê3
g33

, (3.34)

and for the current density

J(x1, x2) =
ê3
g33
×∇I + J3

ê3
g33

, (3.35)

substituting these expressions in the MHD equilibrium condition∇p = J ×B gives

∇p = J ×B =
B3

g33
∇I − J3

g33
∇Ψ. (3.36)

After multiplying by µ0g33 we obtain

µ0J3∇Ψ = −µ0g33∇p− µ2
0I∇I, (3.37)
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putting in Ampére’s law µ0J = ∇×B gives

µ0J = ∇×
(
ê3
g33
×∇Ψ

)
− µ0∇×

(
I
ê3
g33

)
. (3.38)

We expand it using the mathematical identity for two any vectorsA andB

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B, (3.39)

we are interested in the component J3 of J then J3 = J · ê3.

Defining the Shafranov operator as

∆∗Ψ = g33∇ ·
(
∇Ψ

g33

)
= ∇2Ψ− ∇Ψ

g33
· ∇g33, (3.40)

and using it in the expression obtained, gives

µ0J3 = ∆∗Ψ− µ0

(
∇× I ê3

g33

)
· ê3. (3.41)

It is necessary to use the vector identity for the rotational of any vectorA

∇×A =
1
√
g
εijk(∂iAj)êk, (3.42)

then
µ0∇× I

ê3
g33

=
µ0√
g
εijk∂i

(
Ig3j

g33

)
êk. (3.43)

Making the dot product with ê3

µ0∇× I
ê3
g33
· ê3 =

µ0√
g
εijk∂i

(
I
gj3
g33

)
gk3, (3.44)

expanding terms and simplifying, gives

µ0∇× I
ê3
g33
· ê3 =

µ0Ig33√
g

[
∂1

(
g23
g33

)
− ∂2

(
g13
g33

)]
. (3.45)

Putting in the expression obtained for µ0J3 it reads

µ0J3 = ∆∗Ψ− µ0Ig33√
g

[
∂1

(
g23
g33

)
− ∂2

(
g13
g33

)]
. (3.46)

After multiplying by∇Ψ and using the equation µ0J3∇Ψ = −µ0g33∇p−µ2
0I∇I we obtain
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the Grad-Shafranov equation

(∆∗Ψ)∇Ψ = −µ0g33∇p− µ2
0I∇I + µ0I

g33√
g

[
∂

∂x1

(
g23
g33

)
− ∂

∂x2

(
g13
g33

)]
∇Ψ. (3.47)

Because I and p are surface quantities we can write them as

∇I =
dI

dΨ
∇Ψ, (3.48)

and
∇p =

dp

dΨ
∇Ψ. (3.49)

Dividing the Grad-Shafranov equation by∇Ψ and rewriting it as

∆∗Ψ = −µ0g33p
′ − 1

2
µ2
0(I

2)′ + µ0I
g33√
g

[
∂

∂x1

(
g23
g33

)
− ∂

∂x2

(
g1
g33

)]
, (3.50)

the prime represents the derivative with respect to Ψ. Noting that for orthogonal systems the
metric tensor vanishes, i.e. gij = 0 for i 6= j, then

∆∗Ψ = −µ0g33p
′ − 1

2
µ2
0(I

2)′, (3.51)

where

∆∗Ψ =
g33√
g

[
∂

∂x1

(√
gg11

g33

∂Ψ

∂x1

)
+

∂

∂x2

(√
gg22

g33

∂Ψ

∂x2

)]
. (3.52)

We need to specify the profiles for p = p(Ψ) and I = I(Ψ) with the objective of having a
partial differential equation (elliptical) in Ψ (plus the boundary conditions).

By knowing Ψ(x1, x2) we determine I and find the components ofB and J using

B1 = − 1
√
g

∂Ψ

∂x2
, (3.53)

B2 =
1
√
g

∂Ψ

∂x1
, (3.54)

B3 = −µ0I, (3.55)

µ0J
1 = − 1

√
g

∂I

∂x2
, (3.56)

µ0J
2 =

1
√
g

∂I

∂x1
, (3.57)

µ0J
3 = ∆∗Ψ. (3.58)

All of these will be used after finding the expression for the flux function Ψ(x1, x2).



4 MHD equilibrium of plasmas in rotation

4.1 Basic equations

We have defined the MHD stationary equilibrium state without an explicit dependency on
time, then the set of MHD equations in the ideal case (remembering that it is when there is no
resistivity) is:

∇ · (%v) = 0, (4.1)

%(v · ∇)v = −∇p+ J ×B, (4.2)

∇ ·
(
p%−γ+1

)
= 0 (4.3)

∇×E = 0 (4.4)

∇×B = µ0J , (4.5)

E + v ×B = 0, (4.6)

for v = 0 we get the equations for static MHD equilibrium. If the plasma velocity is different
from zero, like in the case of an uniform rotation, then, the above equations describe a stationary
MHD equilibrium.

A fundamental difference between the stationary equilibrium equations and the static ones,
are, that now the density % is present. For that reason, it is necessary to include in the theoretical
description of plasmas in rotation, thermodynamical equations that specify the process involved.
The Gibbs’s equation can be a starting point from the thermodynamics

dε = Tds− pd
(

1

%

)
= Tds+

p

%2
d%, (4.7)

where ε is the specific internal energy (per unit mass), s is the specific entropy, p is the kinetic
pressure and T is the temperature of the plasma, pressure related through the state equation for
an ideal gas

p = %R̄T = nkBT (4.8)

where kB is the Boltzmann constant, n = %/(me +mi) is the plasma particle density (equal for
electrons and ions, because of quase neutrality), and R̄ is the gas constant.

An important thermodynamical potential is the specific enthalpy h, that satisfies the relation

dp = %(dh− Tds). (4.9)

To close the set of thermodynamical equations of stationary MHD equilibrium, is necessary
to specify a hypothesis for the thermodynamical process corresponding to the plasma rotation.

37
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4.2 MHD equilibrium with azimuthal rotation

We are working with stationary equilibrium configurations where there is an ignorable
coordinate (x3), then the equilibrium is essentially bidimensional and we can use the same
surface quantities defined before, just to remind:

• Transversal flux function: Ψ(x1, x2), defined in (3.14);

• Transversal current function: I(x1, x2), defined in (3.29),

with those, the magnetic field is represented as:

B(x1, x2) =
ê3
g33
×∇Ψ(x1, x2)− µ0I(x1, x2)

ê3
g33

. (4.10)

4.3 Ferraro’s iso-rotation law

Another supposition used is to consider the rotation as being azimuthal, i.e., along the x3

direction: v = v3ê3. This is compatible with the continuity equation, because

∇ · (%v) =
1
√
g

[
∂

∂x1
(
√
g%v1) +

∂

∂x2
(
√
g%v2)

]
= 0.

Assuming, also, a rigid rotation of plasma in that direction, defining an angular frequency of
rotation Ω as

v3 =
√
g33Ω (4.11)

or
v = Ωê3. (4.12)

The angular frequency Ω is a surface quantity, that is, each magnetic surface rotates with a
different angular velocity. This result is known as Ferraro’s isorotation law. The way to prove
this fact, is by eliminating the electric field through the generalized Ohm’s law 4.6 and replacing
in Faraday’s law (4.4):

∇×E = −∇× (v ×B) = 0. (4.13)

Substituting (4.11) and (4.10) in (4.13) gives

∇×
[

Ω

g33
ê3 × (ê3 ×∇Ψ)

]
= 0 (4.14)

−∇× (Ω∇Ψ) = 0 (4.15)

∇Ω×∇Ψ = 0 (4.16)
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that is, Ω = Ω(Ψ) is, in fact, a surface quantity, so that

∇Ω =
dΩ

dΨ
∇Ψ. (4.17)

Using (4.11) and writing the velocity dependent term in the equation of stationary equilibrium
(4.2) as

%(v · ∇)v = %(Ωê3 · ∇)(Ωê3) (4.18)

= %
(
Ωê3 · êj∂j

)
(Ωê3) (4.19)

= %Ω2∂3ê3. (4.20)

In case the element g33 of the metric tensor does not depend on x3 then the vector ∂3ê3 ê3,
since

(∂3ê3) · ê3 =
1

2
∂3g33 = 0. (4.21)

Because ê3 =
√
gê1 × ê2 then, results that ∂3ê3 is parallel to a linear combination of ê1 e

ê2, in the form
∂3ê3 = a1ê

1 + a2ê
2. (4.22)

The coefficients a1 e a2 can be calculated by doing the scalar product of (4.22) with ê1 e ê2,
respectively:

a1 = −1

2
∂1g33, a2 = −1

2
∂2g33, (4.23)

so that
∂3ê3 = −1

2
∇g33. (4.24)

Substituting (4.24) in (A.8) the velocity dependent term in the equilibrium equation is written
as

%(v · ∇)v = −1

2
%Ω2∇g33. (4.25)

Finally, using the isorotation law (4.17) we can write

∇
(

Ω2g33
2

)
= g33Ω

dΩ

dΨ
∇Ψ +

1

2
Ω2∇g33, (4.26)

and gives the expression

%(v · ∇)v = −g33Ω
dΩ

dΨ
∇Ψ−∇

(
Ω2g33

2

)
. (4.27)
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4.4 Equilibrium equation with azimuthal rotation

The magnetohydrostatic equilibrium condition∇p = J ×B implies the following relation

µ0J3∇Ψ = −µ0g33∇p− µ2
0I∇I = −µ0g33∇p−

1

2
µ2
0

dI2

dΨ
∇Ψ (4.28)

so that I = I(Ψ) because both are surface quantities. In the case of stationary MHD equilibrium,
where the equation (4.2) is valid, we will have the condition (in absence of gravitational fields,
i.e. Φ = 0):

%(v · ∇)v +∇p = J ×B. (4.29)

Then, to include the rotational azimuthal effect, we replace∇p with the first member of the
above relation in eq. (4.28):

µ0J3∇Ψ = −µ0g33 [∇p+ %(v · ∇)v]− 1

2
µ2
0

dI2

dΨ
∇Ψ, (4.30)

or else, using (4.22),[
µ0J3 +

1

2
µ2
0

dI2

dΨ

]
∇Ψ = −µ0g33

(
∇p− 1

2
%Ω2∇g33

)
. (4.31)

As a consequence of Ampére law, we have

µ0J3 = ∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
, (4.32)

where ∆∗ is the Shafranov operator. Substituting (4.32) in (4.31) gives{
∆∗Ψ + µ0I

g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
+

1

2
µ2
0

dI2

dΨ

}
∇Ψ =

= −µ0g33

(
∇p− 1

2
%Ω2∇g33

)
. (4.33)

4.5 Adiabatic processes

In an adiabatic process the pressure and the density are related by Poisson’s law

p = A(s)%γ, (4.34)

where A is a constant that depends on the specific entropy s, that does not change with time.
Using ds = 0 in Gibb’s equation (4.7) gives

dε =
p

%2
d% = A(s)%γ−2d%, (4.35)
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by integrating, gives the specific internal energy as

ε =

∫
dε = A(s)

%γ−1

γ − 1
=
h

γ
(4.36)

and the specific enthalpy is obtained from Eq. 4.9

h =

∫
dh = A(s)γ

∫
%γ−2d% = A(s)

γ

γ − 1
%γ−1 = γε. (4.37)

From Gibbs’s equation (4.7) the temperature is given by

T =
∂ε

∂s
=

%γ−1

γ − 1

dA

ds
. (4.38)

4.6 Entropy as a surface quantity

A key problem in the theoretical study of azimuthal rotation is whether such a plasma flow
could coexist with a state of MHD under stationary equilibrium. The answer turns to be positive
provided some requirements are fulfilled by the system [41]. If axissymetry exists, field lines
lie on magnetic flux surfaces with topology of tori and characterized by surface quantities, like
the transversal magnetic flux. The set of ideal MHD equations allows us to derive a partial
differential equation for it. Maschke and Perrin [20] obtained a MHD equilibrium equation
for azimuthal plasma flows supposing that either the temperature or the entropy were surface
quantities. They considered only cylindrical coordinates, having obtained exact analytical
solutions for the transversal magnetic flux. There are a few other solved cases in cylindrical and
spherical geometries, but considering the temperature as a surface quantity. [39]

The case where the plasma flow is adiabatic, however, demands the use of the entropy as
a surface quantity. This is particularly important in the case of anisotropic plasmas, where a
double-adiabatic theory is necessary to describe the situation. To apply the MHD equilibrium
theory for realistic magnetic confinement schemes, one would need an equilibrium equation in a
general curvilinear coordinate system, that is provided in reference [41], and that is used next.

4.7 Maschke-Perrin equation for adiabatic processes

In the derivation of the equilibrium equation for azimuthal rotation (4.33) we did not any
assumptions about the type of thermodynamic process represented by rotation. Assuming,
therefore, that rotation is an adiabatic process, it will be Poisson’s law

d

dt

(
p

%γ

)
=
dA

dt
= 0 (4.39)
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so that, as A = A(s), the entropy will be constant:

ds

dt
=
∂s

∂t
+ (v · ∇)s = 0, (4.40)

where has been used the expression for the material derivative of a function of a moving plasma.
As s does not depend explicitly of the time then follows the condition

v · ∇s = 0. (4.41)

If the rotation is purely toroidal, according to (4.11) this relation implies

v · ∇s = Ωê3 · ∇s = Ω
∂s

∂x3
= 0 (4.42)

so that the plasma entropy will be a surface quantity, s = s(x1, x2). Consequently

B · ∇s = 0. (4.43)

implying∇Ψ×∇s = 0, so that s = s(Ψ), such that

∇s =
ds

dΨ
∇Ψ. (4.44)

From (4.9) follows that dp = %(dh− Tds)

∇p = %(∇h− T∇s) = %∇h− %T ds

dΨ
∇Ψ. (4.45)

Substituting this last expression in the general equation of equilibrium with azimuthal
rotation (4.33):{

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
+

1

2
µ2
0

dI2

dΨ

}
∇Ψ =

= −µ0g33

(
%∇h− %T ds

dΨ
∇Ψ− 1

2
%Ω2∇g33

)
. (4.46)

Using
dΩ

dΨ
=
kBT

Ω

d

dΨ

(
Ω2

2kBT

)
+

Ω

2T

dT

dΨ
(4.47)

to rewriting this equation takes the form{
∆∗Ψ + µ0I

g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
+

1

2
µ20
dI2

dΨ
− µ0g33%T

ds

dΨ
+ µ0g

2
33%Ω

dΩ

dΨ

}
∇Ψ

= −µ0g33%∇
(
h− %T 1

2
Ω2g33

)
= −µ0g33%∇Θ, (4.48)
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where we define the centrifugally corrected enthalpy as

Θ = h− 1

2
Ω2g33, (4.49)

since, in absence of rotation, Ω→ 0 implies Θ→ h.

Doing the cross product of (4.48) with ∇Ψ gives∇Θ×∇Ψ = 0, so that Θ = Θ(Ψ) is also
a surface quantity. Inserting

∇Θ =
dΘ

dΨ
∇Ψ,

in (4.48) we obtain, for any∇Ψ 6= 0, the equation of Maschke-Perrin for adiabatic azimuthal
rotations:

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
= (4.50)

= −1

2
µ2
0

dI2

dΨ
− µ0g33%

[
g33Ω

dΩ

dΨ
+
dΘ

dΨ
− T ds

dΨ

]
.

In the case without rotation (Ω = 0) the above equation reduces to

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
= −1

2
µ2
0

dI2

dΨ
− µ0g33

dp

dΨ
, (4.51)

where we used (4.9) to write
dp

dΨ
= %

(
dh

dΨ
− T ds

dΨ

)
. (4.52)

Moreover, the temperature, given by (4.38), is

T =
%γ−1

γ − 1

dA/dΨ

ds/dΨ
, (4.53)

since S and A = A(S) are surface quantities. This relation can be used to eliminate ds/dΨ in
(4.50):

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
= (4.54)

= −1

2
µ2
0

dI2

dΨ
− µ0g33%

[
g33Ω

dΩ

dΨ
+
dΘ

dΨ
− %γ−1

γ − 1

dA

dΨ

]
.

Using (4.36) the density can be eliminated, so, the enthalpy is

h =
γ

γ − 1
A(S)%γ−1



Chapter 4. MHD equilibrium of plasmas in rotation 44

and gives the expression for the density as a function of surface quantities:

% =

[
γ − 1

γA(s)

(
Θ +

1

2
Ω2g33

)] 1
γ−1

. (4.55)

that, inserted in (4.54), gives an equilibrium equation that involves only surface quantities:

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
= −1

2
µ2
0

dI2

dΨ
− (4.56)

−µ0g33

[
γ − 1

γA(s)

(
Θ +

1

2
Ω2g33

)] 1
γ−1
{
g33Ω

dΩ

dΨ
+
dΘ

dΨ
− 1

γA(s)

(
Θ +

1

2
Ω2g33

)
dA

dΨ

}
.

Writing for simplicity
η =

γ

γ − 1
. (4.57)

Now, is possible to express (4.56) as

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
= −1

2
µ2
0

dI2

dΨ
− µ0g33

(
1 +

g33Ω
2

2Θ

)η−1
×

×
{
d

dΨ

[(
Θ

η

)η
A1−η

]
+ g33

[
d

dΨ

(
Θ

η

)η
A1−ηΩdΩ/dΨ

dΘ/dΨ
+

(
Θ

η

)η
dA1−η

dΨ

Ω2

2Θ

]}
. (4.58)

This equation just can represents a closed system if we specify a priori the four functions
I(Ψ), Ω(Ψ), Θ(Ψ) eA(Ψ). To simplify this task Maschke e Perrin [20] considered the particular
case where the surface quantities Ω and Θ satisfy the next relation:

Ω2

Θ
=
ω2

`2
, (4.59)

where ω is a constant and ` is a characteristic length of the system. Thus

ΩdΩ/dΨ

dΘ/dΨ
=

1

2

dΩ2/dΨ

dΘ/dΨ
=

1

2

dΩ2

dΘ
=
ω2

2`2
. (4.60)

We introduce, also the following quantity

G(Ψ) =

(
Θ

η

)η
A1−η, (4.61)

that, when Ω → 0, it reduces to plasma kinetic pressure. Then G is a centrifugally corrected
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pressure. Substituting (4.60) and (4.61) in (4.7) gives

∆∗Ψ + µ0I
g33√
g

[
∂

∂x1

(
g32
g33

)
− ∂

∂x2

(
g31
g33

)]
=

= −1

2
µ2
0

dI2

dΨ
− µ0g33

(
1 +

g33ω
2

2`2

)η
dG

dΨ
. (4.62)

That has only two surface quantities whose profiles should be known, namely, I and G.
This will be the basic equation, which we will consider possible analytical solutions. For
completeness, in the case of orthogonal coordinate systems, we employ a simpler form of this
equation:

∆∗Ψ +
1

2
µ2
0

dI2

dΨ
+ µ0g33

(
1 +

g33ω
2

2`2

)η
dG

dΨ
= 0. (4.63)

4.8 MHD equilibrium of plasmas in rotation in spherical co-
ordinates

Figure 12: Spherical coordinates represented in a cartesian system

In this system (see figure 12) where (x1, x2, x3) = (r, θ, ϕ) the ignorable coordinate is ϕ
and g33 = r2 sin2 θ (see appendix). The Shafranov operator is

∆∗Ψ =
∂2Ψ

∂r2
+

1

r2

(
∂2Ψ

∂θ2
− cot θ

∂Ψ

∂θ

)
(4.64)
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and the Maschke-Perrin equation with l = r0 is

∆∗Ψ = −1

2
µ2
0

dI2

dΨ
− µ0r

2 sin2 θ

(
1 +

ω2r2 sin2 θ

2r20

)η
dG

dΨ
, (4.65)

where the centrifugally corrected pressure and the poloidal flux current are given by adopting
profiles for I2 and G.

4.9 Solution to the Maschke-Perrin equation

The main problem addressing equation (4.65) is that the dependent variable is also an
independent variable (read Ψ), so, to solve it, it is necessary the use of iterative methods, or
another approach is by trying an ansatz for Ψ and after trying to solve the equation, this was
done with no results, then, the following approach is by the choosing of profiles for the poloidal
flux current I and the pressure parameter G and then trying to solve the equation by any known
method. In this work, was assumed Ψ positive inside the plasma and vanishing at its boundary,
so we opt for chosen profiles in the form

I2(Ψ) = I20 ±
2λ2

µ2
0

Ψ2, (4.66)

G(Ψ) = G0 +
κ2

µ0

Ψ, (4.67)

where λ2, κ2, I20 and G0 are positively defined constants. The plus sign in front of λ2 means that
paramagnetic plasmas are considered, the minus sign refers to diamagnetic plasmas.

In a paramagnetic plasma, the poloidal currents increase the toroidal magnetic field relative
to its value in the absence of the plasma. This reduces the allowable plasma kinetic pressure
relative to the allowable value if the vacuum toroidal field was present. The converse is true for
a diamagnetic plasma, in which the poloidal current decreases the toroidal field and increases
the allowable pressure. [35]

Defining a typical length r0, the spherical Maschke-Perrin equation can be simplified by
introducing

x =
r

r0
(4.68)

in such a way that, according to assumption, it takes the form

∂2Ψ

∂x2
+

1

x2

(
∂2Ψ

∂θ2
− cot θ

∂Ψ

∂θ

)
± 2λ2r20Ψ + κ2r40x

2 sin2 θ

(
1 +

ω2x2 sin θ

2

)η
= 0. (4.69)

Again, the variable Ψ is at the same time a dependent and independent variable, to solve the
equation, after trying other known methods like separation of variables, changing of variables,
etc., after no immediate analytical solution we use the same methodology introduced by Viana,
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et al., in [39] for a similar work but considering the temperature as a surface quantity. We start
with an approximation by expanding the binomial term as(

1 +
ω2x2 sin θ

2

)η
≈ 1 +

η

2
ω2x2 sin2 θ + ..., (4.70)

this is valid for values of
ω2x2 sin θ

2
� 1,

or, in other words ω �
√

2.

We have the equation in the form

∂2Ψ

∂x2
+

1

x2

(
∂2Ψ

∂θ2
− cot θ

∂Ψ

∂θ

)
= −(±2λ2)r20Ψ− κ2r40x2 sin2 θ − η

2
κ2r40ω

2x4 sin4 θ, (4.71)

The solution of Eq. (4.71) can be written in the form

Ψ(x, θ) = Ψp(x, θ) + Ψg(x, θ), (4.72)

where the subscripts refer to the particular and general solutions, respectively. By analyzing the
right hand side of the inhomogeneous equation (4.71), we test for a particular solution having
the same order of the second and third terms with arbitrary coefficients, namely

Ψp(x, θ) = Ax2 sin2 θ + Bx4 sin4 θ, (4.73)

with the coefficients given by

A =
κ2 (2ηω2 − λ2r20)

±2λ4
,B = −ηκ

2r20ω
2

±4λ2
, (4.74)

and the general solution of the homogeneous equation will be

Ψg(x, θ) = Cf±1 (x) sin2(θ) +Df±2 (x)

[
1− 5 sin2(θ)

4

]
sin2(θ), (4.75)

where C,D are coefficients to be determined by boundary conditions, and the (±) sign refers to
the sign of λ in the profile for I2. When the plus sign is adopted, f+

1,2 are

f+
1 (x) =

sin(λRx)

λRx
− cos(λRx) (4.76)

f+
2 (x) =

sin(λRx)

λRx

[
15

(λRx)2
− 6

]
− cos(λRx)

[
15

(λRx)2
− 1

]
, (4.77)
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and when the minus sign is adopted, f−1,2 are

f−1 (x) =
sinh(λRx)

λRx
− cosh(λRx) (4.78)

f−2 (x) =
sinh(λRx)

λRx

[
15

(λRx)2
+ 6

]
− cosh(λRx)

[
15

(λRx)2
+ 1

]
, (4.79)

A spherical boundary condition that allows us to define C and D corresponds to the case in
which the plasma is enclosed by a conducting spherical shell of radius r0 = R. In this case I20
must vanish and the plus sign in front of λ2 must be chosen. Correspondingly,

C =
κ2R [20ηω2 − λ2R2(2ηω2 + 5)]

5λ3 [λR cos(λR)− sin(λR)]
(4.80)

D = − 2ηκ2λR5ω2

5 [3(5− 2λ2R2) sin(λR) + λR(λ2R2 − 15) cos(λR)]
. (4.81)

One important aspect to mention is the limit as the parameter ω approximates to zero, namely,
when ω = 0 then we are in the static case (Ω = 0), that was described by Morikawa in 1968
[25] and 1969 [26]. The solution for the static case becomes

Ψ(x, θ) =
κ2R2

λ2

[
sin(λRx/λRx)− cos(λRx)

sin(λR/λR)− cos(λR)
− x2

]
sin2 θ, (4.82)

which is the same solution obtained by Morikawa in 1969, a difference to mention is that he
considered a thick force-free shell between a plasma sphere of radius r = ∆ and a conducting
shell at r = R.

A force-free magnetic field is a magnetic field that arises when the plasma pressure is so
small, relative to the magnetic pressure, that the plasma pressure may be ignored, and so only
the magnetic pressure is considered. For a force free field, the electric current density is either
zero or parallel to the magnetic field. The name "force-free" comes from being able to neglect
the force from the plasma. [27]

The imposed boundary conditions on the plasma and force-free regions constrain the possible
values of the λ and κ parameters.

We restrict the cases where Ψ has only one maximum inside the imposed boundary, the
values of λ2 are restricted (see [25]) by the condition

sinλR

λR
− cosλR = 0 (4.83)

or
tanλR = λR. (4.84)
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Equation (4.84) is satisfied by discrete values of λR, we are interested in the first ones, then

0 ≤ λR ≤ 4.493 · · · , (4.85)

λR = 0 corresponds to a spherical rotating field-reversed configuration without toroidal mag-
netic field. λR = 4.493... corresponds to a force-free magnetic field configuration in which the
centripetal force is balanced by the pressure gradient (i.e. the pressure increases monotonously
with r sin θ) [39]. In this case, care has to be taken in evaluating the constant C since κ also
vanishes.

To illustrate these features it is convenient to write the solution at θ = π/2:

Ψ(x, π/2) = −
(
A+

4B
5

)
f±1 (x)

f±1 (1)
− B

5

f±2 (x)

f±2 (1)
+Ax2 + Bx4. (4.86)
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Figure 13: Flux Ψ as a function of x for ω values of 0 (no rotation), 0.15, 0.25 and 0.35 for
λR = 0.50
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After finding the expressions for the flux function in terms of (x, θ) plots were made for
different values of ω in the equatorial plane (i.e. θ = π/2) with a value of λR = 0.50; as can be
seen in figure (13), the maximum of the flux function increases with increasing values of ω.
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Figure 14: Flux Ψ as a function of x for ω values of 0 (no rotation), 0.15, 0.25 and 0.35 for
λR = 0.50

The maximum of the flux function experiments a displacement because of the rotation, figure
() shows the effect of the rotation near the maximum of the flux function.

Is notorious that the flux function Ψ has a maximum at a certain position x = x∗ . Indicating
this maximum as Ψmax = (x∗, π/2) and assume it to be a fixed parameter. x∗ is a function of
λR and it is shown in figure (15) for different values of ω. As can be seen, rotational effects are
more evident for lower values of λR, resulting in an outwards shift of x∗ (i.e. shifting of the
magnetic axis).

Then, the constant κ2 appearing in the definition of G can be related to Ψmax [39]. The
non-dimensional parameter κ2R4/Ψmax is a function of x∗(λR) and in figure (16) it has been
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Figure 15: Magnetic axis radial location as a function of λR for ω values of 0 (no rotation), 0.10
and 0.20

plotted as a function of λR for different values of ω. As can be seen, κ2 decreases when the
rotation is increased; once again the effect is more evident at small λR.

The flux function was also plotted as a function of the dimensionless parameter x and the
variable angle θ through

Ψ(x, θ) = Ax2 sin2 θ + Bx4 sin4 θ + Cf±1 (x) sin2 θ +Df±2 (x)

(
1− 5 sin2 θ

4

)
sin2 θ, (4.87)

using a value of ω = 0.15 and λR = 0.50, the result is shown if figure (17), this kind of plot
is also known as contour lines, level curves or level set of the flux function, and it shows the
plasma edge as well the different magnetic surfaces in the plasma.

Figure (18) shows the comparison, for exaggeration, between the contour lines of the plasma
in figure (18a) with no rotation, i.e. ω = 0 and, in figure (18b) with the maximum rotation
studied, ω = 0.35. It is evident the difference in the magnetic surfaces, and it is more evident
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Figure 16: Non-dimensional pressure parameter as a function of λR for different values of ω

near the magnetic axis where the flux reaches the maximum value than in the edge of the plasma.

Near the magnetic axis, additional plots were made, as shown in figure (19) containing
figures (19a) and (19b) showing the deformation of the level curve near the maximum of the
flux function, related to the rotation effect.

Plots were also made in the equatorial plane for each of the components of the magnetic field
B, the poloidal flux current I and for the poloidal current density J using the expressions from
Eqs. (3.53) to (3.58). In spherical coordinates we have g11 = 1, g22 = r2 and g33 = r2 sin2 θ,
then, the metric gives

g =

∣∣∣∣∣∣∣
1 0 0

0 r2 0

0 0 r2 sin2 θ

∣∣∣∣∣∣∣ = r4 sin2 θ (4.88)

and Eqs. (3.53) to (3.58) becomes
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Figure 17: Plot as contour lines of the flux function Ψ as a function of x and θ with ω = 0.15
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Figure 18: Magnetic contour lines for λR = 0.50
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(a) Contour lines of the flux function Ψ as a function
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Figure 19: Magnetic contour lines for λR = 0.50 showing deformation of the contour line near
the maximum

Br = − 1

r2 sin θ

∂Ψ

∂θ
, (4.89)

Bθ =
1

r2 sin θ

∂Ψ

∂r
, (4.90)

Bϕ = −µ0I, (4.91)

µ0Jr = − 1

r2 sin θ

∂I

∂θ
, (4.92)

µ0Jθ =
1

r2 sin θ

∂I

∂r
, (4.93)

µ0Jϕ = ∆∗Ψ. (4.94)

So, we obtain the corresponding expressions for each of the component and made the
corresponding plots of each quantity.

The figure (20) represents the behavior with rotation of the magnetic field B for the ϕ
component, which reads

Bϕ(x, π/2) = ±

√
2λ2x2

µ2
0

[
A
x2

+ B + C f
±
1 (x)

x4
−Df

±
2 (x)

4x4

]
+
I20
x2
, (4.95)

the ϕ component of the magnetic field B is affected by the rotation, the effect is greater at the
magnetic axis where Bϕ has its maximum absolute value, and also is greater as the rotation also
increases in its value.

The r component of the magnetic field B is not affected by the rotation and it remains with
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Figure 20: Plot in the equatorial plane of the ϕ component of the magnetic field B for ω values
of 0 (no rotation), 0.15, 0.25 and 0.35

a value of zero along the x parameter, i.e., Br = 0

The θ component of the magnetic field is plotted in figure (21), with the corresponding
expression

Bθ(x, π/2) = −2A− 4Bx2 − C f
±
1 (x)

x
+Df

±
2 (x)

4x
. (4.96)

Bθ begins very strong for small x and then rapidly decreases until approaching to zero near the
end at x = 1.0. It is difficult to note the effects of rotation because of the scale, so, a new plot
was made showing the plot near the magnetic axis the plot is represented in figure (22), and now,
the effect of rotation is more evident, also, from the graphic, we see, first, that the component
has an inversion of its value, from positive to negative, and second, we observe an intersection
of the curves at a different position of the magnetic axis.
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Figure 21: Plot in the equatorial plane of the θ component of the magnetic field B for ω values
of 0 (no rotation), 0.15, 0.25 and 0.35

The plot for the poloidal flux current computed through the equation

I(x, θ) =

√
I20 +

2λ2

µ2
0

Ψ(x, θ), (4.97)

and evaluated in the equatorial plane gives

I(x, π/2) =

√
I20 +

2λ2

µ2
0

[
−
(
A+

4B
5

)
f±1 (x)

f±1 (1)
− B

5

f±2 (x)

f±2 (1)
+Ax2 + Bx4

]
, (4.98)

and is shown in figure (23) where it shows the strong rotational effects located at the magnetic
axis, the poloidal flux current starts with its initial value, then changes because of the rotation
and then returns to its initial value at the end in x = 1.00.

There is no changes for the current density J in the ϕ component, because of the rotation,
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Figure 22: Plot in the equatorial plane of the θ component of the magnetic field B only for ω
values of 0 (no rotation) and 0.35 (rotation)

the plotted figure (24), shows no sign of rotational effects. The plot was made through the
expression

Jφ(x, θ) =
κ

µ0

x sin θ +
2λ2

µ2
0

Ψ(x, θ)

x sin θ
, (4.99)

then evaluating it in the equatorial plane it simplifies to

Jφ(x, π/2) =
κ

µ0

x+
2λ2

µ2
0

1

x

[
−
(
A+

4B
5

)
f±1 (x)

f±1 (1)
− B

5

f±2 (x)

f±2 (1)
+Ax2 + Bx4

]
. (4.100)

Jϕ starts with an initial value of zero, then decreases until it reaches a minimum at the end in
x = 1.00

The r component does not experiment any changes in the current density component, that is,
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Figure 23: Plot in the equatorial plane of the poloidal flux current for ω values of 0 (no rotation),
0.15, 0.25 and 0.35

Jr = 0. The figure (25) represents the θ component of the current density J with

Jθ(x, π/2) =− 2λ2

µ2
0x

[A+ Bx4 + Cf±1 (x)− 1

4
Df±2 (x)]× (4.101)

×
[2Ax+ 4Bx3 + Cf±1 (x)− 1

4
Df±2 (x)]√

I20 + 2λ2

µ20

[
Ax2 + Bx4 + Cf+

1 (x)− 1
4
Df+

2 (x)
]2 .

This is also an interesting plot, because Bθ has one positive value starting from a zero value,
then exhibits rotational effects with a maximum at about half the magnetic axis distance, the
rotational effect remains until the magnetic axis where it reaches again the zero value and after
the magnetic axis it changes to a negative value that is also affected by the rotation, with a
minimum between the magnetic axis position and the end, finally at the end reaches the initial
value of zero.
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Figure 24: Plot in the equatorial plane of the φ component for the current density for ω values
of 0 (no rotation), 0.15, 0.25 and 0.35
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Figure 25: Plot in the equatorial plane of the θ component for the current density for ω values of
0 (no rotation), 0.15, 0.25 and 0.35



5 Conclusions

Spherically symmetric MHD adiabatic equilibria with azimuthal rotation find some applica-
tions in fusion and astrophysical problems. We have obtained a pressure equilibrium equation
through a procedure introduces by Maschke and Perrin (1980) for this kind of geometry.

This equation was solved through choosing of pressure and current profiles linear in the
magnetic flux, supposing an adiabatic system and the assumption of small rotation velocities.
The solution of the rotating equilibrium equation was written in a closed form, dependent on
the current λ and pressure κ parameters. The solutions obtained are valid for paramagnetic and
diamagnetic plasmas.

The configuration studied in this work consists of a plasmoid contained in a spherical con-
ducting shell. In the limit of no rotation the solution reduces to results obtained by Morikawa in
1969. For angular velocities different of zero we show the behavior of λ2 and κ2 with the rotation
parameter, also the behavior of magnetic flux and pressure surfaces, as well as the behavior of
the components of the current densities, the magnetic fields and the current. We have restricted
our analysis to an interval for λR whose limits are the first two non-negative eigenvalues of
tan(λR) = λR. These two limiting cases are a rotating field-reversed configuration and a
force-free configuration, respectively.

We are extending this solution to the configurations proposed, in the static case, by Morikawa
(1969) and Morikawa and Rebhan (1970). The former includes a force-free shell between the
plasma sphere and the conducting shell. The resulting boundary conditions limit the possible
values for λ and κ2.

An observation of our solution is that the magnetic axis position, located at the equatorial
plane, is shifted outwards as the rotation velocity increases, and this effect is more evident for
lower values of λR. Considering the value at the magnetic axis to be a constant parameter, we
observe a decrease in the pressure parameter κ2 when rotation is increased, this effect is also
more pronounced for small values of λR.

The magnetic surface of the plasma exhibits changes because of the rotation, the effect being
greater surrounding the magnetic axis than at the ends.

The components ofB are all affected by the rotation except for theBr that suffers no changes
and remains constant. In Bθ there are no rotational effects at the magnetic axis, but at other
distances. In Bϕ the rotational effect is more evident at the magnetic axis.

The poloidal flux current exhibits rotational effects being greater at the magnetic axis.

The components of J are affected by the rotation, but Jθ which exhibits greater rotational
effects located at two different positions. Jϕ, which is variable through the distance does not
experiment rotational changes and Jr remains constant with a value equal to zero.

At the moment of writing, this is the second solution known of the Grad-Shafranov equation
in spherical coordinates by considering the plasma as an adiabatic system with the entropy as a
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surface quantity.



A Curvilinear coordinate systems

The MHD equations presented in this work used arbitrary coordinates. For that reason, we
used curvilinear coordinates, for which the basic definitions and properties are the objectives of
this appendix.

This appendix address two commonly curvilinear coordinates systems, cartesian (for clarity)
and spherical, both are orthogonal and found in MHD equilibrium configurations.

A.1 Coordinates and base vectors

The position vector can be written as a function of the contravariant coordinates (x1, x2, x3)

as
r = r(x1, x2, x3), (A.1)

a coordinate surface xi is defined by the condition

xi(r) = ci = const., (i = 1, 2, 3). (A.2)

Defining covariant base vectors (ê1, ê2, ê3) as

êi =
∂r

∂xi
, (i = 1, 2, 3), (A.3)

such that the base vectors ê2 and ê3 are tangent to the coordinate surface x1 = const. at point r.

Also defining contravariant base vectors (ê1, ê2, ê3) by

êi = ∇xi, (i = 1, 2, 3), (A.4)

such that the base vector êi is perpendicular to the coordinate surface xi = const.. Results that
ê1 is perpendicular to the vectors ê2 and ê3, etc.

In general, the covariant base vector êi is tangent to the intersection curve of the coordinate
surfaces xj = const. and xk = const., with i 6= j 6= k, and (i, j, k) are in a cyclical permutation
(even) of indices (1, 2, 3). Therefore êi is perpendicular to vectors êj and êk, so that we can
write the following relations between the co- and contravariant base vectors:

ê1 = c1ê
2 × ê3, (A.5)

ê2 = c2ê
3 × ê1, (A.6)

ê3 = c3ê
1 × ê2, (A.7)
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where c1, c2 e c3 are coefficients to be determined. Generalizing we have

êi = ciê
j × êk. (A.8)

Similarly, writing relations for the contravariant base vectors as function of the covariant
ones, with coefficients to be determined:

ê1 = c1ê2 × ê3, (A.9)

ê2 = c2ê3 × ê1, (A.10)

ê3 = c3ê1 × ê2, (A.11)

or simply
êi = ciêj × êk. (A.12)

The contravariant base vectors help us to write the gradient of a scalar function Φ(r):

∇Φ =
∂Φ

∂xi
∇xi =

∂Φ

∂xi
êi. (A.13)

Noting that the use of the sum convention for curvilinear coordinates involves a that: one
of the two summed indices must be contravariant (up) and the other one covariant (down), or
vice-versa. Consistent with this convention, the partial derivative ∂Φ/∂xi acts as if it had a
covariant index, then

∂iΦ =
∂Φ

∂xi
, (A.14)

such that
∇Φ = ∂iΦê

i.

Combining (A.3) e (A.13)

dΦ = ∇Φ · dl =
∂Φ

∂xi
dxjêi · êj. (A.15)

Comparing with the formula of total differential

dΦ =
∂Φ

∂xi
dxi, (A.16)

results that
dxi = dxjêi · êj,

where we obtain the orthonormality relation:

êi · êj = δij, (A.17)
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where δij is the Kronecker delta.

Substituting (A.8) and (A.12) in (A.17) we have, in the case i 6= j, that

ci =
1

êi · êj × êk
, (A.18)

ci =
1

êi · êj × êk
. (A.19)

The jacobian of the transformation (x, y, z) to (x1, x2, x3) is denoted by
√
g:

√
g =

∂(x, y, z)

∂(x1, x2, x3)
=

∣∣∣∣∣∣∣
∂x
∂x1

∂x
∂x2

∂x
∂x3

∂y
∂x1

∂y
∂x2

∂y
∂x3

∂z
∂x1

∂z
∂x2

∂z
∂x3

∣∣∣∣∣∣∣ (A.20)

Using the expression for the mixed cross product we obtain

√
g =

∂r

∂x1
· ∂r
∂x2
× ∂r

∂x3
= ê1 · ê2 × ê3, (A.21)

that, because of the cyclical property of the mixed product, lead us to

c1 = c2 = c3 =
1
√
g
, (A.22)

Now, let be the inverse transformation:

x1 = x1(x, y, z), x2 = x2(x, y, z), x3 = x3(x, y, z),

whose jacobian is, by analogy,

∂(x1, x2, x3)

∂(x, y, z)
= ∇x1 · ∇x2 · ∇x3 = ê1 · ê2 × ê3.

As this jacobian is the inverse of the previous one, we will have

1
√
g

= ê1 · ê2 × ê3, (A.23)

and, furthermore,
c1 = c2 = c3 =

√
g. (A.24)

From (A.22) and (A.24), the relations (A.8) and (A.12) provide

êi =
√
gêj × êk, (A.25)

êi =
1
√
g
êj × êk, (A.26)
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where (i, j, k) are in a cyclical permutation of (1, 2, 3).

A.2 Line elements, area and volume

The vectorial line element is written as

dl =
∂r

∂xi
dxi = dxiêi. (A.27)

Be, now, a coordinate surface xi = const.. Two line elements parallel to that surface in a
given point are

dl1 = dxjêj (A.28)

dl2 = dxkêk. (A.29)

The vectorial area element is given by

dS = dl1 × dl2 = dxjdxkêj × êk.

Using (A.26) we have
dS(i) =

√
gdxjdxkêi, (A.30)

where the superindex (i) indicates that dS points in the direction perpendicular to the surface
coordinate xi = const.: dS(i) = dSêi.

The volume element in cartesian coordinates is dV = dxdydz. In the coordinate transforma-
tion the jacobian of the transformation is given by (A.20), so

dxdydz =
√
gdx1dx2dx3.

Then, the volume element in curvilinear coordinates is

dV =
√
gdx1dx2dx3. (A.31)

A.3 The metric tensor

The square of the line element can be written in a quadratic way in contravariant coordinates
of the differential, namely, the double sum

d`2 = gijdx
idxj, (A.32)
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where gij are the elements of the covariant metric tensor. Using (A.27) we have

d`2 = dl · dl = dxidjêi · êj (A.33)

so that
gij = êi · êj, (A.34)

as gji = gij the covariant metric tensor is symmetric.

The square modulus of the gradient of a scalar function may also be expressed as a quadratic
form of partial derivatives, as

(∇Φ)2 = gij∂iΦ∂jΦ, (A.35)

where we used the shorthand notation (A.14), e gij are the elements of the contravariant metric
tensor. Using (A.13) follows that

gij = êi · êj. (A.36)

The contravariant metric tensor is the inverse of the covariant metric tensor, because the
product of both is equal to the identity tensor

gikgkj = δij. (A.37)

To show that relation, we use the respective definition (A.34) and (A.36) as well as the
following property of tensorial calculus

(a · d)(b · c) = c · (a⊗ b) · d = (a · c)(b · d).

Taking the square of (A.21) and using the determinant multiplication rule

g = (
√
g)(
√
g) = (ê1 · ê2 × ê3)(ê1 · ê2 × ê3) (A.38)

=

∣∣∣∣∣∣∣
ê1 · ê1 ê1 · ê2 ê1 · ê3
ê2 · ê1 ê2 · ê2 ê2 · ê3
ê3 · ê1 ê3 · ê2 ê3 · ê3

∣∣∣∣∣∣∣ (A.39)

=

∣∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣∣ , (A.40)

and therefore,
g = det(gij). (A.41)

Doing the same, now, for (A.23) we obtain

g =
1

det(gij)
. (A.42)
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A curvilinear coordinate system is said orthogonal if their metric tensor is diagonal, that is,
the elements outside the diagonal are zero: gij = 0 if i 6= j. For them

g = g11g22g33 =
1

g11g22g33
, (A.43)

where
g11 =

1

g11
, g22 =

1

g22
, g33 =

1

g33
. (A.44)

In literature, the diagonal elements of the metric tensor of an orthogonal system are also
called metric coefficients:

hi = gii, hi = gii =
1

gii
=

1

hi
. (A.45)

A.4 Vector components

A vector-valued of curvilinear coordinates can be expressed both in terms of their contravari-
ant and covariant basis vectors:

A = Aiêi = Aiê
i, (A.46)

where the contravariant and covariant componentes are given, respectively, by

Ai = A · êi, Ai = A · êi. (A.47)

The scalar product (or inner product) of two vectors, using the relation of orthonormality
(A.17) is

A ·B = AiB
i = AiBi, (A.48)

and the square module of a vector

A2 = A ·A = AiA
i = AiAi. (A.49)

The vector cross product of two vectors A and B is obtained using (A.47), (A.25) and
(A.26):

A×B =
1
√
g

[(A2B3 − A3B2)ê1 + (A3B1 − A1B3)ê2 + (A1B2 − A2B1)ê3] . (A.50)

The i-th contravariant component of the cross product is

(A×B)i =
1
√
g

(AjBk − AkBj), (A.51)

where (i, j, k) are in a cyclic permutation of the indices (1, 2, 3).
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A shorthand notation for this expression draw on the Levi-Civita symbol, defined as

εijk = εijk =


+1 if (i, j, k) are in an even permutation of índices (1, 2, 3),

−1 if (i, j, k) are in an odd permutation of indices (1, 2, 3),

0 if there are repeated indices,

(A.52)

so that,
A×B =

1
√
g
εijkAjBkêi =

√
gεijkA

jBkêi. (A.53)

The contravariant and covariant metric tensors are useful to raise or lowering indices of
vectorial components. For example

Ai = A · êi = Ajê
j · êi = Ajg

ji

As the metric tensors are symmetric,

Ai = gijAj, (A.54)

allowing to lowering the index. Similarly, is possible to raise the indices by

Ai = gijA
j. (A.55)

In addition, we can use these expressions to raise or lower indices of covariant and con-
travariant base vectors. For example, the following cross products of basis vectors will be
useful

ê1 × ê3 = 1√
g

(−g33ê2 + g32ê3) (A.56)

ê2 × ê3 = 1√
g

(g33ê1 − g31ê3) (A.57)

ê3 × ê3 = 1√
g

(−g32ê1 + g31ê2) . (A.58)

The squared modulus of a vector is a quadratic form of their contravariant or covariant
components

|A|2 = A ·A = gijA
iAj = gijAiAj. (A.59)

In an orthogonal coordinate system these sums include only the diagonal elements, so that

|A|2 = g11A
1A1 + g22A

2A2 + g33A
3A3 = g11A1A1 + g22A2A2 + g33A3A3. (A.60)

Remembering that the vectorA will commonly represent some physical quantity. In general,
due to the factor

√
g, the dimensions of the contravariant and covariant components will not

be the same as the vector itself. To remedy this problem we have defined only in orthogonal
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systems, the so called physical components

A<i> =
√
giiA

i =
√
giiAi, (A.61)

where the index i, although repeated, does not sum. So we have

|A|2 = (
√
g11A

1)(
√
g11A

1) + (
√
g22A

2)(
√
g22A

2) + (
√
g33A

3)(
√
g33A

3) (A.62)

= A2
<1> + A2

<2> + A2
<3>. (A.63)

In general, the contravariant and covariant basis vectors are not mutually orthogonal nor have
unit module, unlike the cartesian vectors (êx, êy, êz). To remedy this problem, we introduced
also orthonormal basis vectors, defined as

ê<i> =
√
giiê

i =
√
giiêi, (A.64)

where again the index i does not sum despite being repeated. We can show the orthonormality
relation for them:

ê<i> · ê<j> = δij. (A.65)

With these basis vectors and physical components an arbitrary vector is written as

A = A<i>ê<i>, (A.66)

with summation over i.

A.5 Vector differential operators

The gradient of a scalar function Φ(r) has been defined in (A.13). Sometimes it is helpful to
write it in terms of orthonormal basis vectors (A.64):

∇Φ =
∂Φ

∂xi
1
√
gii
ê<i>. (A.67)

The divergent of a vector functionA(r) is

∇ ·A = ∇ · (Aiêi) = êi · ∇Ai + Ai(∇ · êi). (A.68)

Using (A.13) and (A.17)

êi · ∇Ai = ∂jA
iêi · êj = ∂jA

iδji = ∂iAi. (A.69)
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From (A.25) we obtain

∇ · êi = ∇ ·
(√

gêj × êk
)

(A.70)

= (êj × êk) · ∇√g +
√
g∇ ·

(
êj × êk

)
(A.71)

=
(
êj × êk

)
· ∂i
√
gêi, (A.72)

where we used the identity

∇ · (êj × êk) = ∇ · (∇xj ×∇xi) = 0.

Then
∇ · êi =

1
√
g

∂
√
g

∂xi
, (A.73)

which, when inserted into (A.68) provides

∇ ·A =
∂Ai

∂xi
+

1
√
g
Ai
∂
√
g

∂xi
=

1
√
g

∂

∂xi
(√

gAi
)
. (A.74)

The Laplacian of a scalar function, according to (A.74), is given by

∇2Φ = ∇ · ∇Φ =
1
√
g

∂

∂xi

(√
g(∇Φ)i

)
, (A.75)

where the contravariant components of the gradient are

(∇Φ)i = ∇Φ · êi = ∂jΦê
j · êi = gij∂jΦ

hence,

∇2Φ =
1
√
g

∂

∂xi

(
√
ggij

∂Φ

∂xj

)
. (A.76)

The rotational of a vector function is

∇×A =∇× (Aiê
i)

=Ai∇× êi + (∇Ai)× êk

=Ai∇×∇xi︸ ︷︷ ︸
=0

+∂jA
iêj × êi

=∂jA
iêj × êi, (A.77)

where we used (A.4). Expanding the above double sum and using (A.25) we collect the similar
terms to write

∇×A =
1
√
g

(∂2A
3 − ∂3A2)ê1 +

1
√
g

(∂3A
1 − ∂1A3)ê2 +

1
√
g

(∂1A
2 − ∂2A1)ê3, (A.78)
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which can be rewritten using the Levi-Civita symbol as

∇×A =
1
√
g
εijk∂iAjêk, (A.79)

A.6 Cartesian or rectangular coordinates

1. Contravariant coordinates

x1 = x, x2 = y, x3 = z. (A.80)

2. Surface coordinates

• x1 = const.: perpendicular planes to the x axis;

• x2 = const.: perpendicular planes to the y axis;

• x3 = const.: perpendicular planes to the z axis

3. Contravariant base vectors

ê1 =
∂r

∂x1
= êx (A.81)

ê2 =
∂r

∂x2
= êy (A.82)

ê3 =
∂r

∂x3
= êz (A.83)

4. Covariant metric tensor: gij = êi · êj = δij

(gij) =

 1 0 0

0 1 0

0 0 1

 (A.84)

g = det gij = 1 (A.85)

5. Contravariant base vectors

ê1 = ∇x1 =
∂x

∂x
êx = êx (A.86)

ê2 = ∇x2 =
∂y

∂y
êy = êy (A.87)

ê3 = ∇x3 =
∂z

∂z
êz = êz (A.88)
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6. Contravariant metric tensor: gij = êi · êj = δij

(gij) =

 1 0 0

0 1 0

0 0 1

 (A.89)

7. Physical components

A<1> = A1 = Ax, (A.90)

A<2> = A2 = Ay, (A.91)

A<3> = A3 = Az, (A.92)

8. Orthonormal basis vectors

ê<1> = ê1 = êx, (A.93)

ê<2> = ê2 = êy, (A.94)

ê<3> = ê3 = êz, (A.95)

9. Gradient
∇Φ =

∂Φ

∂x
êx +

∂Φ

∂y
êy +

∂Φ

∂z
êz. (A.96)

10. Divergent

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (A.97)

11. Laplacian

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
. (A.98)

12. Rotational

∇×A =

(
∂Az
∂y
− ∂Ay

∂z

)
êx +

(
∂Ax
∂z
− ∂Az

∂x

)
êy +

(
∂Ay
∂x
− ∂Ax

∂y

)
êz (A.99)

13. Differential operator

(A · ∇)B =

(
Ax

∂Bx

∂x
+ Ay

∂Bx

∂y
+ Az

∂Bx

∂z

)
êx + (A.100)(

Ax
∂By

∂x
+ Ay

∂By

∂y
+ Az

∂By

∂z

)
êy +(

Ax
∂Bz

∂x
+ Ay

∂Bz

∂y
+ Az

∂Bz

∂z

)
êz
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A.7 Spherical coordinates

1. Contravariant coordinates

x1 = r, (0 ≤ R ≤ a) (A.101)

x2 = θ, (0 ≤ θ ≤ π) (A.102)

x3 = φ, (0 ≤ φ < 2π) (A.103)

2. Coordinate surfaces

• x1 = const.: spheres of radius r;

• x2 = const.: cones with vertices at the origin

• x3 = const.: planes containing the axis z;

3. Relation with the cartesian coordinates

x = r sin θ cosφ (A.104)

y = r sin θ sinφ (A.105)

z = r cos θ. (A.106)

4. Covariant basis vectors

ê1 = sin θ cosφêx + sin θ sinφêy + cos θêz (A.107)

ê2 = r cos θ cosφêx + r cos θ sinφêy − r sin θêz (A.108)

ê3 = −r sin θ sinφêx + r sin θ cosφêy (A.109)

5. Covariant metric tensor

(gij) =

 1 0 0

0 r2 0

0 0 r2 sin2 θ

 (A.110)

g = r4 sin2 θ, (A.111)

6. Contravariant metric tensor

(gij) =

 1 0 0

0 1
r2

0

0 0 1
r2 sin2 θ

 (A.112)
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7. Physical components

A<1> = Ar = A1, (A.113)

A<2> = Aθ = rA2, (A.114)

A<3> = Aφ = r sin θA3, (A.115)

8. Orthonormal basis vectors

ê<1> = êr = ê1 (A.116)

ê<2> = êθ =
1

r
ê2, (A.117)

ê<3> = êφ =
1

r sin θ
ê3, (A.118)

9. Gradient
∇Φ =

∂Φ

∂r
êr +

1

r

∂Φ

∂θ
êθ +

1

r sin θ

∂Φ

∂ϕ
êφ. (A.119)

10. Divergent

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

[
∂

∂θ
(sin θAθ) +

∂Aφ
∂φ

]
(A.120)

11. Laplacian

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+ (A.121)

1

r sin2 θ

∂2Φ

∂φ2
. (A.122)

12. Rotational

∇×A =
1

r sin θ

[
∂

∂θ
(sin θ)Aφ)− ∂Aθ

∂φ

]
êr+ (A.123)[

1

r sin θ

∂Ar
∂φ
− 1

r

∂(rAφ)

∂r

]
rêθ+ (A.124)

1

r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
êθ. (A.125)
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