MODELAGEM MATEMÁTICA DAS DEFORMAÇÕES GEOMÉTRICAS DE UM *DESKTOP SCANNER* VISANDO SUA APLICAÇÃO NA FOTOGRAMETRIA

Dissertação apresentada ao Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, como requisito à obtenção do título de Mestre.

Orientador: Prof. Dr. Edson Aparecido Mitishita

Co-orientadora: Prof.^a Dr.^a Claudia Robbi Sluter

CURITIBA 2003

"MODELAGEM MATEMÁTICA DAS DEFORMAÇÕES GEOMÉTRICAS DE UM DESKTOP SCANNER VISANDO SUA APLICAÇÃO NA FOTOGRAMETRIA"

POR

EDIE ANDREETO JUNIOR

Dissertação nº 165 aprovada como requisito parcial do grau de Mestre no Curso de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, pela Comissão formada pelos professores:

Curitiba, 21 de março de 2003.

Orientador e Presidente Prof. Dr. Edson Aparecido Mitishit

Luís Nunes e Silva Brito - Membro (IME) Prof. Dr. Jorge I

Prof. Dr. Quintino Dalmolin - Membro (UFPR)

Aos meus pais Edie e Isabel, minha esposa Helenice e filhos Albert e Stela

Dedico

AGRADECIMENTOS

O autor externa os mais sinceros agradecimentos às instituições e pessoas que através de seus préstimos contribuíram para a realização deste trabalho. Especialmente:

Ao Prof. Dr. Edson Aparecido Mitishita, pela amizade e orientação zelosa, paciente e precisa;

À minha co-orientadora Prof^a. Dr^a. Cláudia Robbi Slutter, pela motivação, e irrestrito apoio;

Ao Prof. Dr. Quintino Dalmolin, pela brilhante docência da cadeira de Fotogrametria Geral;

Ao amigo Major Eduardo Gurgel Garcia Augusto, professor do Instituto Militar de Engenharia, pelas valiosas sugestões e motivação;

Ao amigo Capitão de Corveta da Marinha Francisco Rogério Ribeiro da Silva pelo apoio e incentivo;

Ao Coronel e Engenheiro Luis Ferreira dos Santos, pelo irrestrito apoio;

Ao amigo fotogrametrista Romilton Pedrosa de Lima, pelas observações fotogramétricas necessárias ao desenvolvimento dos trabalhos;

Ao amigo Professor Alvaro Muriel Lima Machado, pelas sugestões e grande auxílio na programação computacional;

À amiga Prof^a Alteni Fidelis Pimenta, pela leitura do trabalho e sugestões de gramática e redação;

Às empresas de aerofotogrametria Aerosat, Engefoto, Aerodata e Esteio, pela disponibilidade de materiais e equipamentos necessários à realização deste trabalho;

A Companhia de Desenvolvimento dos Vales do São Francisco e Parnaíba – CODEVASF, pela concessão de licença remunerada para realização deste curso e disponibilidade do acervo da mapoteca;

Ao Curso de Pós-Graduação em Ciências Geodésicas pela oportunidade concedida de realização do curso e deste trabalho;

Especialmente aos meus pais, esposa e filhos pela compreensão da minha ausência e apoio para atingir meus objetivos.

ii

SUMÁRIO

LISTA I	DE FIGURAS VIII
LISTA I	DE QUADROS E TABELASX
LISTA I	DE GRÁFICOSXIV
LISTA I	DE ABREVIATURAS E SIGLASXVI
RESUM	OXVII
ABSTR	ACTXVIII
1	INTRODUÇÃO1
1.1	OBJETIVOS
1.1.1	Objetivo Geral
1.1.2	Objetivos Específicos3
1.2	JUSTIFICATIVA4
1.2.1	Contribuição da Dissertação5
2	REVISÃO BIBLIOGRÁFICA6
2.1	CONCEITOS FUNDAMENTAIS
2.1.1	Estruturas de Dados
2.1.1.1	Estrutura raster ou matricial
2.1.1.2	Estrutura vetorial7
2.1.2	O Processo Fotográfico Analógico8
2.1.3	Processo Fotográfico Digital10
2.1.4	Definição Matemática de Imagem Digital12
2.1.5	Características da Imagem Digital13
2.1.5.1	Resolução geométrica ou espacial13
2.1.5.2	Precisão e acurácia geométricas14
2.1.5.3	Resolução e acurácia radiométrica15
2.1.6	Digitalização Matricial16

2.2	SCANNERS	16
2.2.1	Classificação Quanto à Finalidade	16
2.2.1.1	Scanners fotogramétricos	17
2.2.1.2	Desktop scanners (DTP)	17
2.2.1.3	Desktop scanners com unidade de transparência	19
2.2.2	Características Dimensionais dos Sensores	21
2.2.2.1	Sensores de ponto	21
2.2.2.2	Sensores de linha	21
2.2.2.3	Sensores de área	22
2.2.3	Padrões de Calibração de scanners	23
2.2.4	Procedimentos Para Calibração Geométrica de Desktop Scanners	27
2.3	TRANSFORMAÇÕES GEOMÉTRICAS	30
2.3.1	Transformação Ortogonal	30
2.3.2	Transformação Afim	33
2.3.3	Transformação Projetiva	
2.3.4	Transformação Polinomial de 2º e 3º Grau	
2.3.5	Transformação Isogonal	
2.3.6	Equações de Colinearidade	
2.4	REFERENCIAIS USUAIS	
2.4.1	Sistemas do Espaço Imagem	
2.4.2	Sistemas do Espaço Objeto	
2.4.2.1	Referenciais geodésicos	
2.4.2.2	Sistema elipsóidico geocêntrico cartesiano	
2.4.2.3	Sistema geodésico	
2.4.2.4	Referencial geodésico cartesiano tridimensional local	40
2.5	FOTOGRAMETRIA DIGITAL	42
2.6	REAMOSTRAGEM	42
2.6.1	Interpoladores para Reamostragem	43
2.6.1.1	Vizinho mais próximo	43
2.6.1.2	Interpolação bilinear	44

2.6.1.3	Polinômio de Lagrange	44
2.7	RESTITUIÇÃO	45
2.7.1	Monorestituição	45
2.7.2	Orientação Interior de Uma Aerofoto	46
2.7.3	Orientação Exterior	47
2.7.3.1	Orientação relativa	47
2.7.3.2	Orientação absoluta do modelo fotogramétrico	48
2.7.3.3	Ajustamento simultâneo de aerofotos	50
2.7.3.4	Campo de calibração de câmeras aéreas	55
2.8	ESTIMATIVA DA PRECISÃO DAS OBSERVAÇÕES	56
2.8.1	Média dos Erros Verdadeiros	56
2.8.2	Erro Médio Quadrático e Desvio Padrão da Amostra	57
3	MATERIAIS E METODOLOGIA	60
3.1	MATERIAIS	60
3.1.1	Placa de Calibração de um Estéreo-restituidor Analógico WILD	
	A-10	60
3.1.2	Estéreo-restituidor Analítico PLANICOMP	61
3.1.3	Desktop Scanner EPSON –1640XL	6 1
3.1.4	Scanner Fotogramétrico RM-1	62
3.1.5	Hardware	63
3.1.6	Softwares	63
3.1.7	Negativos de Aerofotos do Campo de Calibração de Câmeras de	
	São Luis do Purunã – PR	64
3.2	METODOLOGIA	65
3.2.1	Verificação da Confiabilidade do Referencial de Placa	65
3.2.2	Análise de Resíduos	65
3.2.2.1	Tomada das imagens no desktop scanner EPSON 1640 XL	65
3.2.2.2	Tomada da imagem do grid no scanner RM1 (fotogramétrico)	67
3.2.2.3	Leitura de coordenadas na imagem	67
3.2.2.4	Determinação das distorções no grid digitalizado	70

3.2.2.5	Cálculo do desvio padrão dos resíduos	70
3.2.3	Parametrização (Calibração)	71
3.2.3.1	Grid on line	72
3 .2.3.1.1	grid on line com observações na imagem deformada	72
3.2.3.1.2	grid on line com reamostragem para correção	73
3.2.3.2	Grid off line	76
3.2.4	Modelos locais	78
3.2.5	Modelos globais	79
3.2.6	Verificação da Eficiência da Metodologia Proposta	8 0
3.2.6.1	Verificação da eficiência de modelagem	80
3.2.6.2	Verificação de aplicabilidade	81
4	RESULTADOS E DISCUSSÕES	83
4.1	VERIFICAÇÃO DA CONFIABILIDADE DO REFERENCIAL	
	DE PLACA	83
4.2	DETERMINAÇÃO DOS ERROS GEOMÉTRICOS	
	(DISTORÇÕES) PROVOCADAS PELO EPSON 1640 XL NO	
	GRID DIGITALIZADO	84
4.3	DETERMINAÇÃO DE DISTORÇÕES PROVOCADAS PELO	
	RM1	88
4.4	ANÁLISES DA EFICIÊNCIA DOS MODELOS	89
4.4.1	Grid off line	89
4.5	VERIFICAÇÃO DA EFICIÊNCIA DA METODOLOGIA	
	PROPOSTA	96
4.5.1	Orientação Exterior de Duas Aerofotos com Observações	
	Realizadas no PLANICOMP	96
4.5.2	Orientação Interior e Exterior de Duas Aerofotos Digitalizadas no	
	VEXCEL	100
4.5.3	Orientação Interior e Exterior de Duas Aerofotos Digitalizadas no	
	EPSON 1640 XL	105
4.5.4	Orientação Interior e Exterior de Três Aerofotos	120

4.5.4.1	Coordenadas corrigidas pelo método grid off line 120	5
4.5.4.2	Coordenadas corrigidas pelo método grid on line	1
4.5.4.3	Reamostragem com correção130	5
5	CONCLUSÕES E RECOMENDAÇÕES14	3
6	REFERÊNCIAS BIBLIOGRÁFICAS14	5
7	BIBLIOGRAFIA CONSULTADA14	8
APÊND	ICE 1 - GRÁFICOS DE RESULTANTES E VARIÁVEIS DA ANÁLISE DA DEFORMAÇÕES15	۹۶ ۱
	DEFORMAÇÕES15	0
APÊND	ICE 2 – AEROFOTOS UTILIZADAS, ESQUEMAS DE PONTOS E	
	FIDUCIAIS15	8
ANEXO) 1 – CERTIFICADO DA PLACA DE CALIBRAÇÃO EXPEDIDO PELA	
	WILD HEERBRUGG LTD., COM A POSIÇÃO DOS 9 PONTOS	
	CALIBRADOS E SUAS COORDENADAS16	2

LISTA DE FIGURAS

FIGURA 1 - ESTRUTURA MATRICIAL	6
FIGURA 2 – CÂMERA MÉTRICA ANALÓGICA RMK TOP 15	9
FIGURA 3 – CÂMERA AÉREA DIGITAL DMC	11
FIGURA 4 - DESKTOP SCANNER COM UNIDADE DE	
TRANSPARÊNCIA	19
FIGURA 5 - ESQUEMA DE FUNCIONAMENTO DE UM CCD LINEAR	22
FIGURA 6 - CCD DE 7000 X 9000 PIXELS DO OBSERVATÓRIO	
STEWART DA UNIVERSIDADE DO ARIZONA	22
FIGURA 7 - PADRÃO "USAF" DE TESTE DE RESOLUÇÃO	23
FIGURA 8 - PADRÃO DE TESTE DE RESOLUÇÃO HEIDENHAIN	24
FIGURA 9 - TIPOS DE ALVOS DE PLACAS DE GRID	25
FIGURA 11 - PLACA DE GRID ON-LINE	26
FIGURA 10 - PLACA DE GRID OFF-LINE	26
FIGURA 12 - REFERENCIAIS DO ESPAÇO IMAGEM	38
FIGURA 13 - REFERENCIAL ELIPSÓIDICO GEOCÊNTRICO	39
FIGURA 14 - REFERENCIAL GEODÉSICO	40
FIGURA 15 - REFERENCIAL GEODÉSICO CARTESIANO LOCAL	41
FIGURA 16 - ASPECTO NUMÉRICO DA MATRIZ "A" PARA 2 FOTOS	50
FIGURA 17 - ASPECTO NUMÉRICO DA MATRIZ "N"	51
FIGURA 18 - PLACA DE CALIBRAÇÃO DO ESTÉREO RESTITUIDOR	
WILD A10	60
FIGURA 19 – DESKTOP SCANNER EPSON 1640 XL	62
FIGURA 20 - SCANNER FOTOGRAMÉTRICO RM1	63
FIGURA 21 - POSIÇÃO DE TOMADA DAS IMAGENS	66
FIGURA 22 - PONTOS DE CONTROLE NO REFERENCIAL DE PLACA	69
FIGURA 23 – ESQUEMA DA REAMOSTRAGEM COM CORREÇÃO	74

FIGURA 24 -INVERSÃO DO NEGATIVO DA AEROFOTO 33 DO VÔO	
DE 1994 PARA CALIBRAÇÃO DA CÂMERA WILD RC 10	
UTILIZADA NA CALIBRAÇÃO DO SCANNER	j
FIGURA 25 - INVERSÃO DO NEGATIVO DA FOTO 73 DO VÔO DE	
2002 PARA CALIBRAÇÃO DA CÂMERA ZEISS LMK	
JENA UTILIZADA NA CALIBRAÇÃO DO SCANNER	
DIGITALIZADA COM GRID159)
FIGURA 26 - INVERSÃO DO NEGATIVO DA FOTO 73	
REAMOSTRADA)
FIGURA 27 - ESQUEMA DE PONTOS E FIDUCIAIS DA FOTO 33	
(CÂMERA WILD RC 10) 161	
FIGURA 28 - ESQUEMA DE PONTOS E FIDUCIAIS DA FOTO 73	
(CÂMERA ZEISS LMK - JENA)158	\$

LISTA DE QUADROS E TABELAS

QUADRO 1 - ERROS GEOMÉTRICOS EM DIVERSOS DTP	. 18
QUADRO 2 – VALORES ESTATÍSTICOS DE ACURÁCIA	
GEOMÉTRICA EM DIVERSOS DTP APÓS CALIBRAÇÃO	. 28
QUADRO 2 - RESÍDUOS DA VERIFICAÇÃO DO REFERENCIAL DE	
PLACA	. 83
QUADRO 3 - VALORES DE RESÍDUOS ENCONTRADOS NAS	
IMAGENS TOMADAS NO EPSON 1640 XL EM	
DIFERENTES DATAS	. 87
QUADRO 4 – COORDENADAS FOTOGRAMÉTRICAS OBTIDAS NO	
PLANICOMP C 100	. 97
QUADRO 5 – RESULTADOS DA ORIENTAÇÃO EXTERIOR	
(PLANICOMP)	. 98
QUADRO 6 – PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS	. 99
QUADRO 7 – RESÍDUOS DA ORIENTAÇÃO INTERIOR (VEXCEL)	100
QUADRO 8 – COMPARAÇÃO DE DISTÂNCIAS ENTRE FIDUCIAIS	
(VEXCEL)	101
QUADRO 9 – COORDENADAS FOTOGRAMÉTRICAS (VEXCEL)	102
QUADRO 10 – RESULTADOS DA ORIENTAÇÃO EXTERIOR	
(VEXCEL)	103
QUADRO 11 – PRECISÃO PONTUAL DAS COORDENADAS	
OBTIDAS (VEXCEL)	104
QUADRO 12 RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON)	105
QUADRO 13 – COMPARAÇÃO DE DISTÂNCIAS ENTRE FIDUCIAIS	
(EPSON)	105
QUADRO 14 – COORDENADAS FOTOGRAMÉTRICAS (EPSON)	107
QUADRO 15 – RESULTADOS DA ORIENTAÇÃO EXTERIOR	
(EPSON)	108

QUADRO 16 – PRECISÃO PONTUAL DAS COORDENADAS	
CALCULADAS (EPSON)	109
QUADRO 17 – RESÍDUOS DA ORIENTAÇÃO INTERIOR USANDO A	
PLACA DE CALIBRAÇÃO PARA PLANIFICAR O	
NEGATIVO	109
QUADRO 18 – DISTÂNCIAS ENTRE AS MARCAS FIDUCIAIS	
USANDO A PLACA DE CALIBRAÇÃO PARA	
PLANIFICAR O NEGATIVO	110
QUADRO 19 – OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS E	
SUAS PRECISÕES USANDO A PLACA DE CALIBRAÇÃO	
PARA PLANIFICAR O NEGATIVO	112
QUADRO 20 – RESULTADOS DA ORIENTAÇÃO EXTERIOR	
USANDO A PLACA DE CALIBRAÇÃO PARA	
PLANIFICAR O NEGATIVO	113
QUADRO 21 – PRECISÃO PONTUAL DAS COORDENADAS	
CALCULADAS USANDO A PLACA DE CALIBRAÇÃO	
PARA PLANIFICAR O NEGATIVO	114
QUADRO 23 – DISTÂNCIAS ENTRE AS MARCAS FIDUCIAIS	
OBSERVADAS APÓS APLICAÇÃO DO MODELO DE	
CORREÇÃO (FOTOS 33 E 34)	115
QUADRO 22 – RESÍDUOS DA ORIENTAÇÃO INTERIOR APÓS A	
APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E	
34)	115
QUADRO 24 – VALORES DAS OBSERVAÇÕES	
FOTOGRAMÉTRICAS AJUSTADAS APÓS A	
APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E	
34)	117
QUADRO 25 – RESULTADOS DA ORIENTAÇÃO EXTERIOR APÓS	
APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E	
34)	118

QUADRO 26 – PRECISÃO PONTUAL DAS COORDENADAS APÓS A	
APLICAÇÃO DO MODELO DE CORREÇÃO	119
QUADRO 27 – RESÍDUOS DA ORIENTAÇÃO INTERIOR DO	
MODELO AFIM (FOTOS 73,74 E 75)	120
QUADRO 28 – RESÍDUOS DA ORIENTAÇÃO INTERIOR DO	
MODELO POLINOMIAL (FOTOS 73,74 E 75)	120
QUADRO 29 – DISTÂNCIAS ENTRE MARCAS FIDUCIAIS (FOTO	
73,74 E 75)	121
QUADRO 30 – VALORES DAS OBSERVAÇÕES	
FOTOGRAMÉTRICAS AJUSTADAS (FOTO 73, 74 E 75)	123
QUADRO 31 – RESULTADOS DA ORIENTAÇÃO EXTERIOR (FOTOS	
73,74 E 75)	124
QUADRO 32 – PRECISÃO PONTUAL DAS COORDENADAS	
OBTIDAS (FOTOS 73,74 E 75)	125
QUADRO 33 – RESÍDUOS DA ORIENTAÇÃO INTERIOR COM GRID	
<i>OFF LINE</i> (FOTOS 73,74 E 75)	126
QUADRO 34 – DISTÂNCIAS ENTRE MARCAS FIDUCIAIS APÓS	
APLICAÇÃO DO GRID OFF LINE (FOTOS 73,74 E 75)	127
QUADRO 35 – OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS	
COM GRID OFF LINE (FOTOS 73,74 E 75)	128
QUADRO 36 – RESULTADOS DA ORIENTAÇÃO EXTERIOR COM	
GRID OFF LINE (FOTOS 73,74 E 75)	129
QUADRO 37 – PRECISÃO PONTUAL DAS COORDENADAS	
OBTIDAS COM GRID OFF LINE (FOTOS 73,74 E 75)	130
QUADRO 38 – RESÍDUOS DA ORIENTAÇÃO INTERIOR COM GRID	
ON LINE	131
QUADRO 39 – COMPARAÇÃO DE DISTÂNCIAS ENTRE MARCAS	
FIDUCIAIS COM GRID ON LINE (FOTOS 73,74 E 75)	132
QUADRO 40 – VALORES DAS OBSERVAÇÕES	
FOTOGRAMÉTRICAS AJUSTADAS COM GRID ON LINE	133

QUADRO 41 – RESULTADOS DA ORIENTAÇÃO EXTERIOR COM	
GRID ON LINE (FOTOS 73,74 E 75)	134
QUADRO 42 – PRECISÃO PONTUAL DAS COORDENADAS	
OBTIDAS COM GRID ON LINE (FOTOS 73,74 E 75)	135
QUADRO 43 – RESÍDUOS DA ORIENTAÇÃO INTERIOR PARA	
IMAGEM REAMOSTRADA COM CORREÇÃO	136
QUADRO 44 – COMPARAÇÃO ENTRE DISTÂNCIAS DAS MARCAS	
FIDUCIAIS COM IMAGEM REAMOSTRADA (FOTOS	
73,74 E 75)	137
QUADRO 45 – VALORES DAS OBSERVAÇÕES	
FOTOGRAMÉTRICAS AJUSTADAS COM A IMAGEM	
REAMOSTRADA (FOTOS 73,74 E 75)	139
QUADRO 46 – RESULTADOS DA ORIENTAÇÃO EXTERIOR COM	
IMAGEM REAMOSTRADA FOTOS (73,74 E 75)	140
QUADRO 47 – PRECISÃO PONTUAL DAS COORDENADAS	
OBTIDAS COM A IMAGEM REAMOSTRADA	141
QUADRO 48 – TESTES DE ERRO ADMISSÍVEL DAS ORIENTAÇÕES	
EXTERIORES	142
TADELA 1 COODDENADAS DO DEFEDENCIAL DE DIACA	61
TADELA T - COONDENADAS DO REFERENCIAE DE FLACA	

LISTA DE GRÁFICOS

GRÁFICO 1 - EXEMPLO DE GRÁFICO DE VARIÁVEIS	
GRÁFICO 2 - RESULTANTES DA IMAGEM 1 TOMADA EM	
05/04/2002	
GRÁFICO 3 - RESULTANTES DA IMAGEM 2 TOMADA EM	
05/04/2002	
GRÁFICO 4 - RESULTANTES DA IMAGEM TOMADA PELO RM1	
GRÁFICO 5 - RESULTANTES APÓS A MODELAGEM	
(TRANSFORMAÇÃO AFIM - CÉLULAS)	
GRÁFICO 6 - CONTROLE DOS RESÍDUOS APÓS MODELAGEM	
(TRANSFORMAÇÃO AFIM-CÉLULAS)	90
GRÁFICO 7 - RESULTANTES APÓS A MODELAGEM	
(TRNSFORMAÇÃO AFIM GLOBAL)	91
GRÁFICO 8 - CONTROLE DOS RESÍDUOS APÓS MODELAGEM	
(TRANSFORMAÇÃO AFIM GLOBAL)	92
GRÁFICO 9 - RESULTANTES APÓS MODELAGEM	
(TRANSFORMAÇÃO PROJETIVA)	93
GRÁFICO 10 - CONTROLE DOS RESÍDUOS APÓS MODELAGEM	
(TRANSFORMAÇÃO PROJETIVA)	93
GRÁFICO 11 - RESULTANTES APÓS MODELAGEM (POLINÔMIO	
BIVARIADO DE 3º GRAU)	94
GRÁFICO 12- CONTROLE DOS RESÍDUOS APÓS MODELAGEM	
(TRANSFORMAÇÃO POLINOMIAL DE 3º GRAU)	95
GRÁFICO 13 - RESULTANTES DA IMAGEM 3 TOMADA EM	
12/04/2002	150
GRÁFICO 14 – CONTROLE (VARIÁVEIS) DA IMAGEM 3 TOMADA	
EM 12/04/2002	

GRÁFICO 15 - RESULTANTES DA IMAGEM 4 TOMADA EM	
12/04/2002	151
GRÁFICO 16 – CONTROLE (VARIÁVEIS) DA IMAGEM 4 TOMADA	
EM 12/04/2002	151
GRÁFICO 17 - RESULTANTES DA IMAGEM 5 TOMADA EM	
19/04/2002	152
GRÁFICO 18 - CONTROLE (VARIÁVEIS) DA IMAGEM 5 TOMADA	
EM 19/04/2002	152
GRÁFICO 19 - RESULTANTES DA IMAGEM 6 TOMADA EM	
19/04/2002	153
GRÁFICO 20 - CONTROLE (VARIÁVEIS) DA IMAGEM 6 TOMADA	
EM 19/04/2002	153
GRÁFICO 21 – RESULTANTES DA IMAGEM 7 TOMADA EM	
19/05/2002	154
GRÁFICO 22 – CONTROLE (VARIÁVEIS) DA IMAGEM 7 TOMADA	
EM 19/05/2002	154
GRÁFICO 23 – RESULTANTES DA IMAGEM 8 TOMADA EM	
19/05/2002	155
GRÁFICO 24 – CONTROLE (VARIÁVEIS) DA IMAGEM 8 TOMADA	
EM 19/05/2002	155
GRÁFICO 25 – RESULTANTES DA IMAGEM 13 TOMADA EM	
09/09/2002	156
GRÁFICO 26 – CONTROLE (VARIÁVEIS) DA IMAGEM 13 TOMADA	
EM 09/09/2002	156
GRÁFICO 27 – RESULTANTES DA IMAGEM 14 TOMADA EM	
09/09/2002	157
GRÁFICO 28 – CONTROLE (VARIÁVEIS) DA IMAGEM 14 TOMADA	
EM 09/09/2002	157

LISTA DE ABREVIATURAS E SIGLAS

- CCAUEX CENTRO DE CARTOGRAFIA AUTOMATIZADA DO EXÉRCITO BRASILEIRO
- CCD CHARGED COUPLED DEVICES
- DEM DIGITAL ELEVATION MODEL (MODELO DIGITAL DE ELEVAÇÃO)
- DSG DIRETORIA DO SERVIÇO GEOGRÁFICO DO EXÉRCITO BRASILEIRO
- DTP DESKTOP PUBLISHING SCANNERS
- IAPRS INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY AND REMOTE SENSING
- ISPRS INTERNATIONAL SOCIETY OF PHOTOGRAMMETRY AND REMOTE SENSING
- LCL LOWER CONTROL LIMIT
- LSL LOWER SPECIFICATION LIMIT
- NBS NATIONAL BUREAU OF STANDARDS
- UCL UPPER CONTROL LIMIT
- USAF UNITED STATES AIR FORCE
- USGS UNITED STATES GEOLOGICAL SURVEY
- USL UPPER SPECIFICATION LIMIT

RESUMO

Este trabalho trata da calibração geométrica de *desktop scanners* e sua aplicação em fotogrametria. Foram testadas metodologias no intuito de parametrizar as distorções geométricas causadas pelo sistema óptico-mecânico do equipamento no processo de conversão de imagens analógicas em digitais. Verificou-se a influência de tais distorções na orientação interior e exterior de aerofotos. O estudo apresenta dois métodos de correção de todas as foto-coordenadas das imagens digitalizadas e um método para geração de imagens geometricamente corrigidas. O equipamento estudado é um EPSON 1640XL, com resolução de hardware de 1600 dpi, utilizando uma placa de calibração de um estéreo – restituidor WILD A10.

ABSTRACT

This work presents some results about desktop scanner geometric calibration and its application to photogrammetry. Some methodologies were tested in order to set parameters for geometric distortions caused by analogue to digital image conversion process. The influence of this distortions in the interior and exterior orientation of aerial photographs was verified. This study presents two methods for correcting every photo-coordinates of the scanned imagery and one method for generating geometrically corrected image. The device studied is an EPSON 1640XL, with 1600 dpi hardware resolution, using a WILD A-10 stereo-plotter calibration glass plate.

1 INTRODUÇÃO

Este estudo trata da modelagem de distorções geométricas de um *desktop* scanner EPSON 1640 XL (não fotogramétrico) com resolução óptica, isto é, sem interpolação, de 1600 dpi. Para a realização dos trabalhos, foi utilizada uma placa de calibração de um estéreo-restituidor WILD A-10, que possui um *grid* com coordenadas de suas interseções de elevada precisão ($\pm 6\mu m$ em x e $\pm 8\mu m$ em y).

A Fotogrametria Digital realizada por meio de conversão de imagens provenientes de câmaras métricas analógicas é uma atividade de elevada importância na cartografia nacional. Devido ao elevado custo das câmeras digitais, não seria exagero dizer que a grande maioria dos aerolevantamentos nacionais utiliza câmeras analógicas. Para realizar-se a transformação "a/d" torna-se necessária a utilização de dispositivos que façam tal conversão.

Os dispositivos capazes de converter imagens analógicas em digitais, denominados *scanners*, introduzem novas deformações na imagem, além daquelas provenientes do processo fotográfico. Estas últimas já possuem um conjunto de conhecidos métodos de correção, que utiliza parâmetros de calibração de câmeras, equações e transformações para correção de deformações do filme, distorções radiais simétricas, descentradas e refração atmosférica.

Caso a digitalização venha a ser realizada por *scanners* fotogramétricos, as novas deformações introduzidas na imagem são desprezíveis para a maioria das aplicações. Em geral tais deformações são menores que a própria resolução geométrica da imagem. No entanto, existem poucos *scanners* fotogramétricos no Brasil. Por exemplo, cita-se um LEICA/HELAVA DSW 100 da Esteio Aerolevantamentos S.A., um RASTER MASTER RM1 do consórcio Engefoto/ Aerosul /Aeroimagem, um ZEISS SCAI da Base Aerofotogrametria e Projetos S.A., um ULTRA SCAN 5000 da Alesi Teodolini e outro ZEISS SCAI pertencente à Universidade Federal de Santa Catarina em Florianópolis. A DSG possui um PHOTOSCAN e o CCAUEx um

Optronics. A escassez deste tipo de equipamento no país torna sua utilização e acesso caros.

Por ser uma alternativa de baixo custo, se comparada ao preço de um fotogramétrico, os *desktop scanners* ou DTP de grande formato (A3 ou maior) despertam especial interesse. Além disto, a quantidade deste tipo de equipamento no mercado brasileiro é bem maior que a de fotogramétricos e os preços da digitalização por foto são muito menores.

As novas deformações introduzidas pelo processo de digitalização matricial são pouco discutidas e menos ainda tratadas. Este trabalho representa uma contribuição na tentativa sistematizar de procedimentos de calibração de *desktop scanners*. Por isso, em todas as etapas buscou-se a máxima generalidade, para que o processo não se aplique somente ao aparelho em estudo, mas a qualquer DTP.

A calibração de *scanner* pode ser radiométrica, geométrica ou ambas. Neste estudo é abordada a geométrica, que consiste na escolha de um modelo matemático bem como a determinação de seus parâmetros para depuração dos erros geométricos sistemáticos provenientes do sistema óptico-mecânico. Tal modelo e parâmetros podem viabilizar a utilização destes dispositivos para a fotogrametria, o que justifica a presente pesquisa.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

O objetivo geral deste trabalho consiste em analisar e modelar as deformações geométricas provenientes do sistema óptico-mecânico de um *desktop scanner*, visando o seu uso na Fotogrametria Digital.

1.1.2 Objetivos Específicos

Como objetivos específicos da pesquisa tem-se:

- a) Obter os valores das deformações geométricas ocasionadas pela conversão de imagens analógicas em digitais, realizada por um desktop scanner EPSON 1640 XL (não fotogramétrico);
- b) Determinar as possíveis causas destas deformações;
- c) Verificar a influência de tais deformações no processo de orientação interior, exterior e formação de modelos por ajustamento simultâneo de aerofotos;
- d) Tentar obter os parâmetros necessários para um modelo matemático de correção das mesmas;
- e) Analisar a validade do modelo de correção em um caso específico (fotos do campo de calibração de câmeras aéreas de São Luís do Purunã - PR);
- f) Discutir e classificar, em função das precisões obtidas, a destinação do procedimento de calibração.

1.2 JUSTIFICATIVA

O processo de calibração de *desktop scanners* proposto implica, em caso de sucesso do experimento, na possibilidade da utilização de equipamentos de baixo custo para conversão de aerofotos analógicas em digitais. As câmaras métricas analógicas ainda são utilizadas em grande parte dos aerolevantamentos realizados no país. Conseqüentemente a necessidade de tal conversão ainda é grande.

Supõe-se que os avanços tecnológicos no desenvolvimento de câmaras digitais proporcionarão, em breve, imagens de elevada precisão, eliminando a importância de *scanners* do contexto da fotogrametria digital. Porém, câmaras digitais livres de distorções, com compensação de movimento, sensores com grande estabilidade geométrica, resolução, variação dinâmica equivalentes às dos filmes e com preços atraentes permanecem como um desafio que, provavelmente, sistemas de aquisição de dados digitais não enfrentarão num futuro próximo (SCHENK, 1999). Outro ponto sensível é a questão da transferência da massa de dados gerados em cada exposição durante o vôo (OLIVAS, 1999).

Os *scanners* fotogramétricos possuem elevada precisão geométrica e propiciam imagens adequadas à realização de observações fotogramétricas em meio digital. Entretanto, o elevado custo de tais equipamentos e a escassez dos mesmos no país torna difícil e oneroso seu acesso ou aquisição. Portanto, uma alternativa menos dispendiosa de digitalização matricial de imagens faz-se necessária. Os *desktop scanners* ou DTP de grande formato, podem vir atender a esta necessidade.

Além disso, os fabricantes de *scanners* (tanto dos *desktop* quanto fotogramétricos) em geral não fornecem especificações técnicas detalhadas de seus equipamentos. Isto faz com que os usuários não tenham acesso a informações importantes sobre a acurácia, precisão geométrica e radiométrica dos dispositivos, o que implica numa utilização inadequada dos mesmos, ou ainda pior, a aquisição de equipamentos impróprios ou demasiadamente caros (BALTSAVIAS, 1994a).

Portanto, a evidente lacuna existente de trabalhos abordando as questões acima relacionadas deve ser preenchida, tratando-as de maneira isenta. Isso justifica não somente trabalhos científicos, mas até mesmo a existência de grupos de trabalho como o WG I/5 da ISPRS, o qual subsidiou grande parte das informações necessárias a esta pesquisa.

1.2.1 Contribuição da Dissertação

A presente pesquisa traz as seguintes contribuições para a fotogrametria digital:

- a) A verificação da viabilidade de utilização de um equipamento de menor custo na conversão de imagens analógicas em digitais, para fins fotogramétricos;
- b) A determinação dimensional das deformações geométricas provocadas pelo dispositivo em estudo;
- c) A sistematização de um procedimento para análise de tais deformações;
- d) A busca de uma metodologia de correção das mesmas;
- e) A verificação da influência dos erros geométricos ocasionados pelo DTP no processo de orientação interior e exterior de aerofotos;
- f) A discussão da precisão de resultados obtidos por mapeamento de baixo custo, comparando-os com produtos gerados pelos métodos fotogramétricos convencionais.
- g) A reabertura de uma linha de pesquisa quase inexplorada no país, que é de pouco interesse aos fabricantes deste tipo de equipamento, pois já existe o mercado para o mesmo (editoração eletrônica), sendo porém de grande importância a pequenas e médias empresas de aerolevantamento. O custo destes equipamentos faz com que as mesmas vislumbrem a possibilidade de utilização da Fotogrametria *softcopy* sem a necessidade de terceirizar a digitalização matricial.

2 REVISÃO BIBLIOGRÁFICA

2.1 CONCEITOS FUNDAMENTAIS

2.1.1 Estruturas de Dados

A Fotogrametria é a técnica, ciência e arte que permite geração e aquisição de dados espaciais ou geográficos. A representação da geometria de dados espaciais em ambiente computacional é realizada por intermédio de estruturas de dados. As duas principais estruturas de dados são a *raster* ou matricial e a vetorial.

2.1.1.1 Estrutura raster ou matricial

Os fenômenos espaciais podem ser representados por uma grade de células ou *pixels* (termo derivado de *picture x element*). A localização de cada parcela é dada com referência direta à grade.

A organização de dados em estruturas matriciais consiste num sistema cartesiano com unidades de eixos denominadas colunas (eixo U) e linhas (eixo V) (Figura 1). A relação nas estruturas matriciais mais elementares é a de associação de

FIGURA 1 - ESTRUTURA MATRICIAL

um par de coordenadas de um *pixel* a um único atributo, em geral um nível de cinza de 0 a 255 em imagens pancromáticas de 8 bits (BOURROUGH, 1998).

No caso de imagens coloridas pelo sistema RGB (*Red, Green, Blue*) existem três atributos associados a uma mesma posição, e as mesmas são resultantes de uma superposição das matrizes formadas.

O RGB, um sistema de cores aditivo, é utilizado em monitores de computador. Tem três cores primárias - vermelho, verde, e azul – criadas por emissão de luz. Essas três cores são combinadas em várias proporções para produzir todas as cores exibidas. Ele é denominado aditivo porque combina cores para produzir o branco. Cores primárias são medidas como um valor inteiro de 0 a 255. As cores produzidas por combinação das três primárias são um resultado do vigor relativo (valor) de cada primária. Por exemplo, vermelho puro tem um valor vermelho de 255, um valor verde de 0, e um valor azul de 0. Amarelo tem um valor vermelho de 255, um valor verde de 255, e um valor azul de 0. Uma ausência das três cores primárias colore resultantes em preto; quando todas as três têm valores de 255, elas produzem o branco (JASC SOFTWARE, 2001). Em qualquer caso, os três valores são associados a uma mesma posição na imagem.

Pode-se ainda ter uma separação em bandas ou canais *Red*, *Green* e *Blue* tendo-se desta maneira três matrizes. Neste caso, cada matriz possui um único valor associado a cada posição.

2.1.1.2 Estrutura vetorial

Estruturas vetoriais utilizam basicamente pontos, linhas e áreas como entidades fundamentais para descrição de fenômenos geográficos. Este tipo de dado tem maior fidelidade e precisão na representação de dados.

Em sua organização, as unidades são representadas como pontos compostos por pares ou ternos de coordenadas, de modo contínuo. Isto permite a todas as posições, comprimentos e dimensões de fenômenos serem definidos precisamente, dentro das limitações de apresentação computacional (BOURROUGH, 1998).

Para a representação bidimensional (\mathbb{R}^2) de entidades puntiformes o par abscissa e ordenada (x,y) é suficiente. Para representações destas em \mathbb{R}^3 o terno (x,y,z) as define. A complexidade da representação cresce progressivamente para segmentos de reta (dois pontos) e para curvas ou polígonos regulares não ortogonais (três ou mais pontos para polígonos ou para curvas, dependendo da suavidade desejada para as mesmas). Polígonos regulares ortogonais exigem no mínimo quatro pontos; áreas irregulares, ainda que pequenas, exigem quantidade bem maior que esta (MITISHITA, 1997).

Ainda segundo o mesmo autor, a caracterização de uma entidade na forma vetorial fundamenta-se quanto à estrutura do arquivo na definição de cinco elementos básicos: códigos do programa para a definição da função matemática associada a geometria da feição, espessura do traço, nível gráfico, cor e tipo de traço. Estas informações são posicionadas no *header* (ou cabeçalho) do elemento gráfico e seguidas de uma lista de coordenadas de seus pontos.

2.1.2 O Processo Fotográfico Analógico

Luz e matéria interagindo geram as componentes básicas do processo fotográfico. A sensibilidade de alguns materiais à luz, em especial o brometo de prata, possibilita que se registre os raios refletidos de um objeto ou área qualquer em um suporte plano chamado filme fotográfico. Os grãos deste sal são diluídos em gelatina e a exposição deste conjunto à luz reduz os mesmos, gerando uma composição denominada imagem latente (ANDRADE, 1998).

Uma vez gerada a imagem latente que é perfeita, porém invisível, é necessário ampliá-la. Isto é feito através da revelação. Este processo é executado em ambiente totalmente escuro. O processo é dividido em três fases: o desenvolvimento da imagem latente, a fixação da imagem e, por último, a lavagem e secagem do negativo. Nas duas primeiras fases são utilizadas soluções de compostos químicos denominadas reveladores e fixadores, prontos ou semi-prontos, disponíveis no mercado. A lavagem é feita com água corrente. Este processo pode ser feito manualmente ou por meio de equipamentos processadores de filmes (OLIVAS, 1999).

Para que o filme seja exposto de maneira eficiente à luminosidade, são utilizadas as câmeras. Para fotografias obtidas com fins fotogramétricos, as câmeras analógicas de quadro são as mais utilizadas. Os sistemas de lentes de câmeras aéreas são classificados em: de ângulo estreito $(10^{\circ} < \alpha < 30^{\circ})$, normal $(50^{\circ} < \alpha < 75^{\circ})$, grande angular $(85^{\circ} < \alpha < 95^{\circ})$ ou super grande angular $(110^{\circ} < \alpha < 130^{\circ})$ (OLIVAS, 1999). As principais partes e elementos destas câmeras são: cone, magazine e corpo.

A figura 2 ilustra uma câmera analógica ZEISS RMK-TOP 15, grande angular (93°), distância focal de 153 mm, abertura f/4 a f/22 e distorção média de 3µm (ZEISS, 2002a).

FIGURA 2 – CÂMERA MÉTRICA ANALÓGICA RMK TOP 15

FONTE: ZEISS

O cone é hermeticamente fechado e contém os filtros, o sistema de lentes, o obturador, o diafragma e o cone interno. Os filtros desempenham as funções de distribuição uniforme da luz sobre o filme, correções espectrais e proteção do sistema de lentes. O sistema de lentes estabelece a convergência dos raios luminosos provenientes do espaço objeto e projeta-os sobre o plano imagem. O obturador controla o tempo que o filme recebe luz para ser sensibilizado. O diafragma tem a

função de controlar o diâmetro do feixe luminoso e reduzir as aberrações esféricas, eliminando raios próximos aos bordos das lentes. O cone interno é construído com metal de baixo coeficiente de dilatação, que mantém a rigidez do conjunto (OLIVAS, 1999).

O magazine é composto de porta-filme, placa do plano focal, câmara de vácuo e servo motor. A placa do plano focal proporciona os meios para que o filme possa ser tracionado e planificado durante a exposição à luz, através de orificios ligados a uma bomba de vácuo. Isto faz com que o filme permaneça em contato com a placa plana. Câmeras modernas compensam o arrastamento (deslocamentos relativos dos objetos enquanto o obturador está aberto) pelo movimento desta placa, carregando consigo o filme com velocidade igual à da imagem. Este sistema é denominado *Forward Motion Compensation* ou FMC (ANDRADE, 1998).

2.1.3 Processo Fotográfico Digital

De mesma concepção que as câmaras analógicas no quesito sistema óptico, as câmaras digitais diferenciam-se das analógicas na forma de captação da imagem. O elemento responsável por esta captação é uma matriz de sensores CCD *(Charged Coupled Devices)* que detectam o fluxo radiante sobre eles incidente. Esta detecção ocorre pela conversão da energia luminosa em carga elétrica, gerando sinais de voltagem proporcionais à carga e, finalmente, em valores digitais associados à posição do elemento no sensor (OLIVAS, 1999).

A figura 3 ilustra uma DMC (DIGITAL MAPPING CAMERA) desenvolvida pela ZEISS - Z/I IMAGING. Possui resolução interna de 3000 x 2000 *pixels* multiespectral, 7680 x 13824 pancromática e de saída. Possui f-stop f/4 a f/22, capacidade de armazenamento de 840 GB (>2000 imagens) e taxa máxima por *frame* de 2 segundos por imagem. O sistema de lentes é da forma 4 x f =120 mm/ 1:4 (ZEISS, 2002b). No documento consultado o fabricante não fornece as dimensões do sensor CCD e nem do *pixel*. A acurácia geométrica não é relatada em valores numéricos.

FIGURA 3 – CÂMERA AÉREA DIGITAL DMC

FONTE: ZEISS – Z/I IMAGING

Apesar das vantagens de não necessitarem de revelação e possuírem melhor resolução radiométrica, ainda hoje problemas relativos à resolução geométrica e elevado custo de matrizes de sensores CCD de grandes dimensões impossibilitam atualmente a total substituição de câmaras aéreas fotogramétricas analógicas por digitais.

Existe divergência entre quando se deve utilizar os termos imagem e fotografia. Nos dicionários de língua portuguesa, imagem é definida como representação de pessoa ou objeto por meio de desenho, pintura, fotografia ou como a reprodução invertida de um objeto ou pessoa por meio da reflexão ou refração num sistema óptico. A fotografia é definida como o processo de fixação em chapa sensível à luz, da imagem de objetos.

Na língua inglesa, *image* é definida como "a gravura de algo visto no espelho, através de uma câmera, em uma televisão ou computador". O termo *photograph* refere-se a uma gravura feita pelo uso de uma câmara que tem um filme sensível à luz em seu interior.

Nota-se que em nossa língua ou mesmo na inglesa, caso se queira identificar diferenças, estas são tênues e certamente não justificam polêmica. Autores consagrados como ANDRADE (1998), não consideram tal fato relevante. Neste trabalho, por conveniência dissertativa, o termo imagem será usado tanto para o domínio analógico quanto para digital, diferenciando-os pelos adjetivos.

2.1.4 Definição Matemática de Imagem Digital

A fotografia pode ser descrita como uma função contínua f(x,y) chamada imagem, onde as coordenadas (x,y) são as variáveis espaciais e os valores da função (amplitude) são a densidade. Na realidade esta função contínua é discretizada, tanto pelas variáveis espaciais quanto pela amplitude. A função discreta resultante é chamada imagem digital (SCHENK, 1999).

Ainda segundo o mesmo autor, o processo de discretização das variáveis espaciais $\Delta x, \Delta y$ é conhecido como amostragem . Discretizar a amplitude G é chamado quantização. Os elementos discretos $\Delta x, \Delta y$ constituem o *pixel* e ΔG é o nível de cinza, informalmente também chamado "brilho". Então, uma imagem digital pode ser expressa por:

$$f(\Delta x i, \Delta y, j, i = 0, ..., N - 1; j = 0, ..., M - 1)$$
(1)

onde:

i, *j* = "endereço" do *pixel*; *N* = número de linhas; *M* = número de colunas;

Observe-se que os valores das variáveis espaciais são valores discretos (inteiros).

2.1.5 Características da Imagem Digital

Uma imagem digital, seja ela proveniente de câmeras ou *scanners*, tem características técnicas que basicamente são: resolução, precisão geométrica e acuracidade (ou acurácia) geométrica (ANDRADE, 1998).

2.1.5.1 Resolução geométrica ou espacial

Os sensores individualizam elementos gráficos que são parcelas da imagem. A capacidade de individualização por uma unidade de comprimento, convencionada internacionalmente como uma polegada, é denominada resolução da imagem. Tem-se então uma unidade de resolução denominada *dots per inch* (DPI) ou pontos por polegada (ROCHA, 2000). Esta unidade é utilizada quando se tem *pixels* quadrados.

O cálculo das dimensões em unidades do Sistema Internacional (µm) deste tipo de *pixel* é dado por:

$$D_{pixel}(\mu m) = \frac{25,4mm}{resolução(dpi)} \times 10^3$$
⁽²⁾

No caso de câmaras digitais fotográficas ou de vídeo, os fabricantes em geral fornecem uma dimensão do dispositivo CCD, o que torna inadequado o procedimento acima descrito. Porém é possível através de placas de vídeo com função de captura, selecionar-se quadros e efetuar medidas das dimensões (base e altura) da imagem em fotoeditores que possuam esta função. Estas medidas em colunas e linhas e posteriormente em unidades do SI permitem facilmente o cálculo das dimensões do *pixel*.

Os scanners possuem a opção de definição da resolução da imagem. Para a definição da amostragem Δx , Δy é necessário estabelecer as dimensões desta parcela discreta da imagem. A alternativa ideal para esta determinação seria definir um tamanho de unidades tal que não evidenciasse os efeitos da discretização. Apesar dos

sistemas de câmeras métricas analógicas oferecerem resoluções acima de 100 pares de linhas por mm, o movimento da imagem e fatores atmosféricos limitam-na a valores de 50 a 60 pares de linhas por mm (SCHENK, 1999).

Segundo o mesmo autor, a função contínua da imagem analógica pode ser recuperada por esta função discreta se a menor dimensão do *pixel* for igual à metade da sua mais alta freqüência. O cálculo desta dimensão é dado por:

$$D_{pixel ideal}(\mu m) = \frac{1}{2 \cdot n^{\circ} \text{ de pares de linhas/mm}} \cdot 10^{3}$$
(3)

A expressão resulta em dimensões de *pixel* (quadrado) de 8,33µm para a condição de 60 pares de linhas por mm. Isto implicaria, no caso de uma fotografia aérea de 230 x 230mm, em uma imagem digital em níveis de cinza de 762 Megabytes (1 byte por *pixel*), o que traz pouca conveniência em termos de processamento.

Não existe uma resolução ideal para fins fotogramétricos que seja unânime entre fabricantes, usuários e até mesmo entre cientistas. Pode-se utilizar alguns critérios para estabelecê-la, como necessidades do usuário e capacidade de processamento disponível. O limite razoável para esta decisão parece situar-se em torno de 15 a 20 µm, ou seja de 1600 a 1200 dpi (BALTSAVIAS e BILL, 1994).

2.1.5.2 Precisão e acurácia geométricas

A precisão geométrica está vinculada à repetibilidade dos sensores. A unidade de mensuração desta característica e o micrômetro (μm). A acurácia geométrica corresponde ao desvio médio da posição prevista (ideal) também em μm (ANDRADE, 1998).

A precisão de uma imagem geralmente é comprometida pela presença de erros sistemáticos nos dispositivos responsáveis por sua geração. No caso de Fotogrametria com utilização de conversão de imagens analógicas em digitais, os erros decorrentes do processo analógico (obtenção das fotografias aéreas) de geração, são depurados pelos conhecidos processos de correção de erros sistemáticos. Entretanto, a conversão

a ser realizada introduz novos erros sistemáticos e aleatórios, provenientes de vários problemas inerentes ao processo de conversão.

A acurácia também está fortemente relacionada ao método utilizado para obtenção de posições (coordenadas) sobre a imagem. Segundo ANDRADE (1998) é o desvio médio da posição prevista. Diversos algoritmos são propostos para obtenção de posições com acurácia de sub-pixel em SCHENK (1999 pp 7 e 339).

2.1.5.3 Resolução e acurácia radiométrica

A resolução e acurácia radiométrica provém da capacidade de quantização do sensor. Neste tópico são envolvidas algumas questões específicas tais como densidade e variação dinâmica.

A densidade é a relação entre a quantidade de luz incidente e a luz transmitida através de corpos translúcidos. É medida em uma escala logarítmica e calculada por (DAINTY e SHAW, 1974):

$$D = \log \frac{I_o}{I_T} \tag{4}$$

onde:

 I_o = quantidade de luz incidente;

 I_{τ} = quantidade de luz transmitida.

A variação dinâmica refere-se à capacidade do sensor de detectar mudanças sutis nos níveis de cinza em imagens de alto contraste. É mensurada e indicada por uma escala logarítmica em decibéis de 0 a 79dB. A variação dinâmica é inversamente proporcional do nível de ruído da imagem, o qual por sua vez está relacionado à densidade (BALTSAVIAS,1994a). Os fabricantes, em geral, apresentam nas fichas técnicas somente o fator de variação de densidade, normalmente de 0,2.D a 4,0.D.

A incapacidade de acomodar as referidas mudanças, estimando-as adequadamente na imagem gera imagens saturadas e de baixa resolução radiométrica.

A acurácia radiométrica também está relacionada a estes fatores e, para definila, o que se mede é a homogeneidade de níveis de cinza em áreas que possuam esta característica. Isto significa que os CCD devem ter em uma condição ideal, a mesma resposta fotoelétrica de conversão. O que ocorre na prática é uma tentativa de aproximação máxima dos valores do conjunto.

2.1.6 Digitalização Matricial

Devido à ainda intensa utilização de câmaras métricas analógicas, uma importante etapa na Fotogrametria Digital é a conversão de imagens analógicas em digitais no formato *raster* (MITISHITA, 1997). Para esta tarefa são empregados os *scanners*.

2.2 SCANNERS

2.2.1 Classificação Quanto à Finalidade

Os *scanners* podem ser classificados de acordo com suas finalidades nas seguintes categorias (BALTSAVIAS e BILL, 1994):

- 1. Scanners fotogramétricos;
- 2. Restituidores analíticos ou monocomparadores modificados;
- 3. Scanners de grande formato;
- 4. Microdensiômetros;
- 5. Desktop Publishing scanners (DTP);
Outros tipos, tais como os especializados (de códigos de barras, por exemplo) e os de múltiplas funções (copiadora, fax e impressora), dentre outros.

Os tipos 1 (em caráter comparativo) e 5 serão descritos e discutidos, pois são os que interessam ao propósito do presente estudo.

2.2.1.1 Scanners fotogramétricos

Os scanners fotogramétricos são especialmente desenvolvidos para este fim. Possuem uma estrutura muito robusta, sistema de servomotores aprimorado e lentes de excelente qualidade. O sistema de iluminação é composto por lâmpadas fluorescentes e são utilizados filtros colocados sob uma roda para controle espectral. O sistema óptico é fixo e um conjunto de placas de vidro sobrepostas para planificação da foto ou diafilme movimenta-se sobre o mesmo.

As precisões geométrica e radiométrica obtidas são elevadas. Sob o aspecto geométrico BOLTE et al (1996) afirmam ser de \pm 2,6µm o erro sistemático e de \pm 2,0µm o erro randômico presentes em um equipamento deste tipo (RM1 – WEHRLI & ASSOCIATES).

Existem ainda os *scanners* fotogramétricos de filme, com dispositivos para movimentar os rolos de filmes aéreos e para a captação automática dos quadros.

2.2.1.2 Desktop scanners (DTP)

Os *desktop scanners* são equipamentos desenvolvidos para digitalização de documentos. Pela sua generalidade este tipo de dispositivo ocupa um grande espaço no mercado e está em constante desenvolvimento e implementação de melhorias.

Nesta categoria existem os *drum scanners* ou "de tambor" e os *flatbed* ou "de mesa". Os *drum scanners* têm, em geral, alta resolução (2000-4000dpi) e são apropriados para a digitalização matricial de cartas. Estes equipamentos são mais caros que os *flatbeds* e menos precisos no quesito geométrico. O sistema de captação não

permite a adoção de métodos de calibração pela impossibilidade de digitalização de placas reticuladas (BALTSAVIAS e WAEGLI, 1996).

Os *flatbeds* são o grupo de maior destaque. Possuem em geral resoluções acima de 1200dpi, que implica em um pixel de 21µm ou menor. Sua precisão radiométrica e velocidade de digitalização são em alguns casos superiores à dos fotogramétricos. Sua qualidade tem aumentado enquanto seu preço diminui (especialmente para os de formato A4). As grandes distorções geométricas e instabilidade, causada pelos erros de posicionamento mecânico e baixa qualidade de lentes, são as desvantagens do uso destes equipamentos (BALTSAVIAS e WAEGLI, 1996).

O mesmo autor, utilizando uma transformação afim no plano, encontrou os seguintes valores para distorções geométricas, para cinco equipamentos testados em 1996 no *Institute of Geodesy and Photogrametry* em Zurique. O quadro 1 mostra os resultados.

	pontos de	RMS(µm)		Média(µm)		Máx. absoluto(µm)	
Scanner	controle / verificação	X	у	x	у	X	У
Horizon	4/621	146	71	-5	-26	224	151
	8/617	147	67	-4	-13	223	139
	625/0	92	54	0	0	220	159
JX-610	4/621	106	51	67	-39	214	117
	8/617	91	42	45	-26	182	105
	625/0	56	29	0	0	182	91
Mirage D-	4/621	35	20	24	-4	73	56
	8/617	32	20	20	-7	67	54
IOL	625/0	18	19	0	0	56	51
ArcusII	4/521	85	81	51	-69	199	151
	8/517	76	62	36	-46	180	129
	525/0	63	41	0	0	216	122
Power- Look	4/546	101	112	-66	103	181	177
	8/542	87	77	-45	65	158	138
	550/0	52	43	0	0	185	114

QUADRO 1 - ERROS GEOMÉTRICOS EM DIVERSOS DTP

FONTE: BALTSAVIAS e WAEGLI,1996

2.2.1.3 Desktop scanners com unidade de transparência

A elaboração deste tipo de dispositivo pelos fabricantes de *desktop scanners* encorajou pesquisadores a investigarem as possibilidades de seu uso na fotogrametria digital (*softcopy*). Possuem dois conjuntos de lâmpadas (de transmissão e reflexão), os quais incrementam a iluminação na linha a ser digitalizada (BALTSAVIAS,1994).

Em decorrência do sistema de iluminação complementar, torna-se possível digitalizar objetos translúcidos, como filmes por exemplo, obtendo-se imagens de grande qualidade radiométrica. A figura 4 ilustra um esquema de *desktop scanner* com unidade de transparência.

Figura 4 - Desktop Scanner com Unidade de Transparência

FONTE: Adaptado de Baltsavias,1994b

- a) Espelho ajustável;
- b) Espelho móvel (Zoom);
- c) Lentes e diafragma;
- d) Ajustador do foco com 3 CCD;
- e) Unidade de iluminação (reflexiva).

Um motor de passo e um sistema de correias movimentam a *zoombox* por toda a área de digitalização. A cada linha o sinal é recebido e convertido pelas placas de conversão. Cada sinal convertido é armazenado em um byte do arquivo temporário.

Finalizada a digitalização, este arquivo é disponibilizado para visualização. Caso a imagem gerada esteja de acordo com o que se deseja, salva-se o arquivo. Os Finalizada a digitalização, este arquivo é disponibilizado para visualização. Caso a imagem gerada esteja de acordo com o que se deseja, salva-se o arquivo. Os tipos de arquivos possíveis são inúmeros, devendo ser escolhido conforme a compatibilidade do processamento posterior (restituição digital, ortofotos, etc).

Pode-se ainda, caso se deseje fazer alterações, realizar-se em alguns modelos inversão da imagem (negativo – positivo e vice-versa), ajustar a radiometria, mudar a posição da janela de digitalização dentre outras.

A velocidade de digitalização varia em torno de 0,13 a 0,35 Mega bytes por segundo. No caso de digitalização de filmes aéreos, a primeira digitalização é mais lenta. Isto se deve ao fato de a varredura inicial ser completa (toda a área de digitalização). Após definida a janela de seleção de objetos (que em alguns casos é automática), o dispositivo varre somente a área selecionada. Ocorre então uma grande diminuição do tempo de digitalização.

A maioria dos *desktop scanners* atualmente oferece duas opções de portas (serial e USB). As portas USB possibilitam taxas de transferência maiores e menos conflitos internos que as portas seriais.

Algumas adaptações para agilizar o trabalho de digitalização de filmes aéreos podem facilmente ser implementadas. Podem ser adaptados, em um suporte, rolos para movimentação do filme. Para a planificação do filme, em geral utiliza-se uma placa de vidro. Esta placa deve ser cortada nas mesmas dimensões da plataforma do aparelho e ter espessura de 4.0 a 6.0 mm (ideal 6.0mm). Um feltro ou flanela, posicionado na região de entrada e saída do filme, evita que a emulsão seja danificada pelo atrito com o vidro.

Existe também a possibilidade de uso de *scanners* A4 para aplicações fotogramétricas. Respeitada a limitação quanto à precisão e acurácia, fotos de 8 fiduciais podem ser digitalizadas, perdendo-se 3 fiduciais e aproximadamente 20mm da aerofoto. Restam então 5 fiduciais, sendo possível realizar-se a orientação interior (BALTSAVIAS e WAEGLI, 1996).

2.2.2 Características Dimensionais dos Sensores

Os sensores utilizados nos *scanners* podem ser de ponto, de linha ou de área. A descrição a seguir propicia uma síntese das características de cada grupo.

2.2.2.1 Sensores de ponto

Usados com freqüência em microdensiômetros e *drum-scanners*, propiciam alta resolução geométrica e radiométrica. Normalmente cada *pixel* é iluminado por um feixe de raios laser e o sensor consiste num tubo foto-multiplicador (PMT). Têm alta velocidade e variação dinâmica (BALTSAVIAS e BILL, 1994).

Este tipo de sensor possui ainda a interessante característica de flexibilidade quanto às dimensões, espaçamento e forma do *pixel*. Os *drum-scanners* utilizam ao invés de laser, lâmpadas halógenas para redução de custo. Apesar desta solução implicar em menor variação dinâmica que a dos PMT, ainda é maior que a dos CCD.

2.2.2.2 Sensores de linha

Usualmente a linha consiste de elementos CCD, mas pode também ser constituída de fotodiodos ou *charged-coupled* fotodiodos. Deve possuir um ou mais elementos que são focalizados por feixes de luz provenientes de prismas ou espelhos rotativos (BALTSAVIAS e BILL, 1994).

A captação de cores pode ser efetuada por sucessivos passos ou por um conjunto de CCD múltiplo de três. Conseqüentemente, as opções de varredura de digitalização de cores para sensores lineares podem ser de três bandas espectrais digitalizadas em um único passo, ou três passos digitalizando uma banda por vez. A figura 5 ilustra sensores CCD de linha.

FIGURA 5 - ESQUEMA DE FUNCIONAMENTO DE UM CCD LINEAR

Fonte: Adaptado do Museu Nacional de História Natural (EUA)

2.2.2.3 Sensores de área

Possuem sensores CCD em matrizes de diversas dimensões. São utilizados em câmaras de vídeo e fotográficas. Em geral tornam-se a mais dispendiosa solução, tendo em vista que a quantidade de elementos é demasiadamente grande. A figura 6 ilustra um exemplo de utilização de CCD de área

FIGURA 6 - CCD DE 7000 x 9000 PIXELS DO OBSERVATÓRIO STEWART DA UNIVERSIDADE DO ARIZONA

Fonte:Baltsavias,2000

2.2.3 Padrões de Calibração de scanners

Nos *desktop scanners*, os erros na direção da linha de sensores aumentam consideravelmente nos extremos desta. Na direção perpendicular eles aumentam um pouco menos e são de valores menores que os primeiros (BALTSAVIAS, 1994a).

A calibração pode ser executada uma única vez, caso seja feita durante o processo de fabricação do aparelho. Entretanto, o desgaste de partes mecânicas introduzirá novos erros sistemáticos e aleatórios.

Os erros de maior representatividade no tipo de *scanner* em questão são os geométricos. Um procedimento periódico de calibração pode manter sob controle tais erros sistemáticos, que em geral são a maior componente nos erros totais. As alternativas mais comuns de padrões para calibração de *scanners* são os gráficos de resolução e filmes para calibração radiométrica (menos dispendiosas) e as placas de *grid*¹ para calibração geométrica (mais dispendiosas) (BALTSAVIAS, 1994a).

Os Gráficos de resolução consistem em placas de vidro (positivo ou negativo) de teste com alvos constituídos de barras de diferentes resoluções. As mais comuns são as placas de teste "USAF", que utilizam alvos de 3 barras de 0,25 a 228 pares de linhas por mm e as "NBS" com 5 barras e resolução de 1 a 500 pares de linhas por mm. Ambas possuem uma variação com um passo de aproximadamente 1,12 pares de linhas por mm (BALTSAVIAS, 1994a). Segundo o mesmo autor, qualquer gráfico de resolução de 3,6 a 100 pares de linhas por mm atende perfeitamente a testes de *scanners* de tamanho de *pixel* de até 5µm. A figura 7 ilustra um gráfico "USAF".

FIGURA 7 - PADRÃO "USAF" DE TESTE DE RESOLUÇÃO

¹ A menção ao termo *grid* pelos autores consultados refere-se a um reticulado com sistema de coordenadas e não a uma grade. Pelo poder de síntese do termo, o autor optou por não traduzi-lo.

FONTE: BALTSAVIAS, 1994a

Os padrões de nível de cinza consistem em escalas transparentes ou opacas, com variações de densidade de 0 a 1,8D em passos de 0,5D (KODAK SR37 – opaca) até 0 a 3,4D em passos de 0,1D (KODAK ST34 – transparente). Podem ainda ser produzidas em laboratório fotográfico, com os níveis de cinza medidos através de microdensiômetros (MILLER e DAM, 1994).

Os Padrões de teste de uniformidade da resposta fotoelétrica verificam a homogeneidade com que os sensores respondem a impulsos fotoelétricos gerados pelo objeto a ser digitalizado. Para este teste podem ser utilizados níveis de cinza graduados das escalas (BALTSAVIAS, 1994a). Uma outra alternativa é a utilização de objetos de baixa densidade, transparentes ou semi-transparentes.

As formas fundamentais de aplicações fotogramétricas são as linhas e pontos. Portanto, sua reprodução deve ser verificada por digitalização de tais formas em tamanhos variados (BALTSAVIAS, 1994a).

Para realização deste teste, são necessários alvos como os produzidos pela Heidenhain (Dr. Johanes Heidenhain, Traunreut, Alemanha). A figura 8 ilustra tais alvos.

1

FIGURA 8 - PADRÃO DE TESTE DE RESOLUÇÃO HEIDENHAIN

FONTE: BALTSAVIAS, 1994a

Filmes aéreos de alta resolução pancromáticos ou coloridos servem tanto para calibração geométrica quanto radiométrica. No caso de calibração geométrica, pode-se fotografar um campo de teste, como por exemplo uma parede com alvos facilmente identificáveis e determinar suas coordenadas em um restituidor. Após a obtenção de tais coordenadas, pode-se digitalizar o quadro do filme e então verificar numa transformação ortogonal no plano os resíduos provenientes dos erros geométricos do

scanner. Para testes de resolução e acurácia radiométrica, pode-se utilizar variações de níveis de cinza de média a alta, simulando situações de difícil operação do aparelho. (BALTSAVIAS, 1994a). Esta alternativa, apesar de menos dispendiosa, traz desvantagens nos quesitos de precisão e acurácia dos resultados, principalmente na calibração geométrica.

Os testes de calibração geométrica com placas de *grid* de cristal destinam-se à verificação da acurácia e precisão geométrica da imagem gerada pelo *scanner*. As placas utilizadas em tais testes consistem basicamente de um *grid* de linhas espaçadas regularmente de 1 a 2 cm, com espessuras de linhas variando de 20 a 40 µm. Algumas observações com relação às características da placa de *grid* a ser utilizada são importantes. Suas dimensões não devem exceder 25 x 25 cm, que é o tamanho máximo de *scanners* para filmes aéreos. Devem ser deixadas livres bordas de aproximadamente 1 cm , pois as linhas dos extremos podem não ter acurácia suficiente. A densidade de pontos de controle e a forma dos alvos são também aspectos importantes (BALTSAVIAS, 1994a).

A figura 9 ilustra alvos comumente utilizados, a figura 10 uma placa de grid off-line e a figura 11 uma placa de grid on-line.

FIGURA 9 - TIPOS DE ALVOS DE

PLACAS DE GRID

FONTE: BALTSAVIAS, 1994a

Os alvos do tipo A são os mais utilizados e consistem em interseções de retas, normalmente prolongadas até as proximidades da borda. Algumas placas de calibração de estéreorrestituidores (ex. WILD A10) propiciam alvos similares.

FIGURA 10 - PLACA DE GRID OFF-LINE

FONTE: BALTSAVIAS, 1994a

As placas de *grid* ou de calibração de restituidores são objetos caros. Fortuitamente para este trabalho foi disponibilizada uma destas, tipo *off-line* que será detalhada na metodologia.

FONTE: BALTSAVIAS, 1994a

As placas de *grid off-line* são utilizadas na modelagem de erros de variação lenta (distorção pelo sistema de lentes). Possuem em cada interseção um quadrado branco para medir-se suas coordenadas.

As placas de *grid on-line* são utilizadas na modelagem de erros de variação freqüente (posicionamento mecânico). O uso deste tipo de *grid* é opcional e pode ser substituído por termos de segunda ordem no modelo matemático. Porém o modelo de correção será mais exigente em termos de processamento (BALTSAVIAS e WAEGLI, 1996).

2.2.4 Procedimentos Para Calibração Geométrica de Desktop Scanners

Na literatura brasileira encontram-se muitas publicações sobre calibração radiométrica de *desktop scanners*. Contudo, são raros os trabalhos sobre calibração geométrica destes equipamentos. Foge ao escopo desta pesquisa discutir as razões para esta escassez.

No âmbito internacional pode-se citar como exemplo os trabalhos sobre precisão e acurácia geométricas de DTP de SARJAKOSKI (1992) que resultou em uma metodologia de calibração de acurácia de 0,2 *pixel* (8µm). Este trabalho foi considerado muito otimista por BALTSAVIAS e BILL (1994). Segundo os mesmos, estes resultados foram obtidos devido à remoção de erros (resíduos) acima de 30µm, considerados como erros grosseiros de observação. Na realidade ocorreram resíduos máximos de ±60µm. Tais resíduos denotavam a incapacidade de modelagem e sua exclusão superestimava o potencial do modelo proposto.

BALTSAVIAS e WAEGLI (1996) propuseram um procedimento de calibração, valendo-se de observações automáticas por mínimos quadrados. Os erros geométricos do *scanner* foram, como dito anteriormente (item 2.2.1.2), calculados por uma transformação afim no plano (a mesma utilizada nos procedimentos de orientação interior).

Neste estudo foram gerados 3 modelos de correção. Utilizando o *grid on-line* (de bordas) foi determinado um conjunto de valores de resíduos que permitiram calcular a denominada pré-correção em y. O valor desta pré-correção foi obtido para cada ponto por uma interpolação bilinear.

A primeira versão (1) do modelo de correção é de uma transformação afim com pré-correção em y. A segunda versão (2) é uma transformação afim mais um termo de segunda ordem em y e sem a pré-correção. A terceira versão (3) difere da segunda pelo acréscimo de um termo de segunda ordem ou bivariado (xy) na direção x.

O quadro (2) mostra os valores estatísticos de acurácia geométrica após a calibração dos cinco *desktop scanners* mencionados no quadro 1 (item 2.2.1.2). Estes valores são indicados pelos resíduos dos pontos de controle.

Scanner	Versão	Pontos de controle	RMS (µm)		Média (µm)		Máx. absoluto(µm)	
			X	у	x	у	X	у
Horizon	1	4	8	8	4	6	22	27
	2	8	7	6	3	0	20	20
JX-610	1	4	7	6	5	5	14	16
	2	8	5	4	4	1	14	15
Mirage D-16L	1	4	19	10	-15	2	40	23
	2	8	14	8	-9	1	30	22
	3	8	8	9	1	1	21	22
Arcus II	1	4	18	11	8	-5	45	25
	2	8	16	9	4	3	39	28
	3	8	10	9	4	3	22	28
Power- Look	1	4	12	6	-6	-1	32	15
	2	8	12	6	-5	1	33	16
	3	8	10	6	0	1	26	16
FONTE: BALTSAVIAS e WEAGLI,1996								

QUADRO 2 -VALORES ESTATÍSTICOS DE ACURÁCIA GEOMÉTRICA EM DIVERSOS DTP APÓS CALIBRAÇÃO

O scanner HORIZON é de formato A3 com resolução geométrica de 21,2µm horizontal e vertical. O JX-610 é também de formato A3 com resolução geométrica de

21,2µm em x (paralelo a scanline) e 42,3µm em y. O MIRAGE D-16L é A3 com resolução de 31,75 em x e 63,5 em y. O ARCUS II é um scanner de formato A4 de resolução geométrica de 21.2µm em x e 42,3µm em y. O POWER LOOK é similar ao ARCUS II.

Segundo BALTSAVIAS (1994a) os procedimentos de calibração que exigem pós-processamento devem ser evitados, inserindo-se no sistema algoritmos de calibração que interajam com o hardware. Entretanto esta metodologia somente é possível para *scanners* fotogramétricos, pois os fabricantes de *desktop scanners* não têm interesse na aquisição de uma tecnologia que agregará custo ao equipamento e não têm utilidade para o seu mercado principal. Os erros geométricos apresentados por estes dispositivos podem ser divididos em duas classes temporais. A primeira é a dos erros de variação freqüente, por exemplo, mau posicionamento mecânico e vibração excessiva. A segunda é a dos erros estáveis, por exemplo, erros devido ao sistema de lentes.

Ainda segundo o mesmo autor, a modelagem local com modelos possuindo termos de baixa ordem (primeiro ou segundo grau) é preferível. Modelos globais, como polinômios de alta ordem devem ser evitados. Relata ainda que a acurácia resultante da calibração deve ser avaliada por uma tranformação afim ou conforme (isogonal). Esta deve ser realizada utilizando-se quatro pontos do *grid* como controle e os demais, após transformados com os parâmetros obtidos, como verificação.

Sendo assim, para os algoritmos de *desktop scanners*, sempre prescindirá alguma forma de pós-processamento. Cabe a quem busca a calibração, racionalizar o processamento necessário e adequação da metodologia ao material disponível. Isto significa enquadrar a decisão na fronteira entre o possível e o ideal.

2.3 TRANSFORMAÇÕES GEOMÉTRICAS

Uma transformação geométrica é uma relação funcional entre objetos de dois espaços (KLEIN, 1939). Interessam de modo especial à Fotogrametria os sistemas de coordenadas retangulares.

As transformações podem ser ativas ou passivas. Quando ocorre uma transformação do espaço sem variação do sistema de referência, esta é denominada ativa. O caso do espaço estacionário, com variação do sistema de referência é denominado transformação passiva (LUGNANI, 1987).

Os aspectos numéricos desta variação consistem de sutis diferenças nas matrizes de rotação das transformações que são alterações na posição dos elementos responsáveis pelas reflexões nos eixos. Conseqüentemente as posições das reflexões são alteradas. Para nosso propósito interessa a variação do sistema de referência com manutenção do espaço.

2.3.1 Transformação Ortogonal

Esta transformação, também chamada de transformação de corpo rígido, parte do pressuposto que os referenciais diferenciam-se apenas por translações e rotação. Não existem em tal modelo, parâmetros para escala e forma. Por conseqüência, o objeto transformado tem a manutenção destas características geométricas (MITISHITA, 1986).

O modelo matemático direto da transformação ortogonal no plano é dado pelo mesmo autor sob a forma:

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \cos \kappa & \sin \kappa \\ -\sin \kappa & \cos \kappa \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$
(5)

onde:

 $\begin{bmatrix} X & Y \end{bmatrix}^{T}$ = coordenadas observadas a serem transformadas;

- $\kappa =$ ângulo de rotação em torno do eixo z;
- $\begin{bmatrix} x & y \end{bmatrix}^{T} =$ coordenadas dos pontos no referencial desejado;

 $\begin{bmatrix} X_0 & Y_0 \end{bmatrix}^T$ = translações da origem do referencial desejado.

E a forma inversa dada por:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \kappa & \sin \kappa \\ -\sin \kappa & \cos \kappa \end{bmatrix}^T \cdot \begin{bmatrix} X - X_0 \\ Y - Y_0 \end{bmatrix}$$
(6)

No caso da transformação ortogonal no espaço, os três ângulos de Euler (χ, φ, ω) e as três translações no espaço euclidiano (Xo, Yo, Zo) são os parâmetros envolvidos na mudança de referencial (LUGNANI, 1987).

Raramente citado na literatura, o responsável pelo desenvolvimento da maior parte da teoria que fundamentou os trabalhos iniciais de Fotogrametria Analítica nos EUA, foi o Professor Earl Church, na Universidade de Syracuse entre 1920 a 1950 (MERCHANT, 1979). Dentre suas contribuições estão as tão comentadas matrizes de rotação que consistem numa variação dos clássicos ângulos de Euler.

As matrizes de rotação são:

$$R\omega = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\omega & \sin\omega \\ 0 & -\sin\omega & \cos\omega \end{bmatrix}$$
(8)

$$R\varphi = \begin{bmatrix} \cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \\ \sin\varphi & 0 & \cos\varphi \end{bmatrix}$$
(9)
$$R\kappa = \begin{bmatrix} \cos\kappa & \sin\kappa & 0 \\ -\sin\kappa & \cos\kappa & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(10)

Sendo o produto:

$$R = R\boldsymbol{\omega} \cdot R\boldsymbol{\varphi} \cdot R\boldsymbol{\kappa} \tag{11}$$

A transformação ortogonal geral direta no espaço assume a forma:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = R \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$
(12)

e a inversa:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R^{T} \cdot \begin{bmatrix} X - X_{o} \\ Y - Y_{o} \\ Z - Z_{o} \end{bmatrix}$$
(13)

de notação para as coordenadas semelhante à do plano.

A matriz de rotação é ortogonal e tem a transposição igual à inversão, o que traz grande facilidade de cálculo e implementação de algoritmos.

As transformações afim têm como característica de seu grupo a manutenção do paralelismo. Dois segmentos paralelos entre si no domínio (referencial inicial) terão imagens (referencial final) paralelas (MERCHANT, 1979). Desta forma tem-se o modelo:

 $x = a_1 \cdot X + b_1 \cdot Y + c_1 \tag{14}$

$$y = a_2 \cdot X + b_2 \cdot Y + c_2 \tag{15}$$

Onde:

x, y - Coordenadas de pontos observados no referencial inicial;

X, Y - Coordenadas de pontos no referencial desejado;

 $a_1, b_1, c_1, a_2, b_2, c_2$ - Parâmetros de transformação entre os sistemas (máquina e fiducial ou imagem e placa, por exemplo).

Em forma matricial direta:

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{b}_1 \\ \mathbf{a}_2 & \mathbf{b}_2 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} + \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{bmatrix}$$
(16)

E em forma matricial inversa:

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} x - c_1 \\ y - c_2 \end{bmatrix}$$
(17)

2.3.3 Transformação Projetiva

Segundo Lugnani, 1987, p. 87; esta transformação admite um maior grau de deformação linear. Sua propriedade característica é a colinearidade invariante de pontos num mesmo plano.

O modelo é dado por:

$$x = \frac{a_1 \cdot X_i + a_2 \cdot Y_i + a_3}{a_4 \cdot X_i + a_5 \cdot Y_i + 1}$$
(18)

$$y = \frac{a_6 \cdot X_i + a_7 \cdot Y_i + a_8}{a_4 \cdot X_i + a_5 \cdot X_i + 1}$$
(19)

Que assume a forma matricial:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \left(\begin{bmatrix} a_1 & a_2 & a_3 \\ a_6 & a_7 & a_8 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} \right) \cdot \left(\begin{bmatrix} a_4 & a_5 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} \right)^{-1}$$
(20)

O modelo não é linear e exige valores aproximados para os parâmetros, bem como iterações. Uma solução bastante atraente é inicialmente realizar o ajustamento da expressão:

$$x_{i} \cdot b_{11} + y_{i} \cdot b_{12} + b_{13} - x_{i} \cdot X_{i} \cdot b_{31} - y_{i} \cdot X_{i} \cdot b_{32} = X_{i}$$
(21)

$$x_i \cdot b_{21} + y_i \cdot b_{22} + b_{23} - x_i \cdot Y_i \cdot b_{31} - y_i \cdot Y_i \cdot b_{32} = Y_i$$
(22)

$$p/i=1...n.$$

A condição mínima é que pelo menos três dos pontos não sejam colineares. Obtidos os parâmetros aproximados, pode-se então utilizá-los no ajustamento do modelo matemático principal. Consegue-se convergência em geral com oito iterações.

2.3.4 Transformação Polinomial de 2º e 3º Grau

Apesar de tratar-se de uma relação geométrica é costumeira a denominação "transformação". São muito utilizadas em problemas de interpolação e modelagem de distorções. As escolhas empíricas ou arbitrárias das equações podem ocasionar inconvenientes tais como correlação de parâmetros, dificuldades na precisão de soluções de polinômios de graus elevados e baixa confiabilidade (LUGNANI, 1987). Além disso, o polinômio costuma absorver erros, falhar no caso de correlação entre parâmetros e onde não se têm pontos de controle.

Uma transformação de 3º grau, por exemplo, é dada por:

$$X = a_0 + a_1 x_i + a_2 y_i + a_3 x_i y_i + a_4 x_i^2 + a_5 y_i^2 + a_6 x_i^2 y_i + a_7 x_i y_i^2 + a_8 x_i^3 + a_9 y_i^3$$
(23)

$$Y = b_0 + b_1 x_i + b_2 y_i + b_3 x_i y_i + b_4 x_i^2 + b_5 y_i^2 + b_6 x_i^2 y_i + b_7 x_i y_i^2 + b_8 x_i^3 + b_9 y_i^3$$
(24)

2.3.5 Transformação Isogonal

A transformação isogonal é também chamada de similaridade e tem como característica a forma invariante (LUGNANI, 1987). O comprimento dos elementos varia, pois o parâmetro de escala permite que isto ocorra. Pode-se dizer que esta transformação é a ortogonal acrescida de um parâmetro de escala. O modelo da isogonal no plano é dado por:

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \lambda \cdot \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} X0 \\ Y0 \end{bmatrix}$$
(25)

e no espaço:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \lambda \cdot R \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} X0 \\ Y0 \\ Z0 \end{bmatrix}$$
(26)

2.3.6 Equações de Colinearidade

São provenientes de uma adequação do modelo isogonal ao princípio da colinearidade de pontos do espaço objeto e imagem, de dedução muito conhecida e dadas por:

$$x = -f \frac{m_{11}(X - X0) + m_{12}(Y - Y0) + m_{13}(Z - Z0)}{m_{31}(X - X0) + m_{32}(Y - Y0) + m_{33}(Z - Z0)}$$
(27)

$$y = -f \frac{m_{21}(X - X0) + m_{22}(Y - Y0) + m_{23}(Z - Z0)}{m_{31}(X - X0) + m_{32}(Y - Y0) + m_{33}(Z - Z0)}$$
(28)

onde:

$$m_{ij}$$
 // i=1...3; j=1...3; = elementos da matriz de rotação $M=R(\omega).R(\varphi).R(\kappa)$;
 x,y = coordenadas no referencial fotogramétrico;
 X,Y,Z = coordenadas no referencial geodésico;
 $X0,Y0,Z0$ = coordenadas do centro perspectivo no referencial

geodésico.

$$f$$
 = distância focal calibrada da câmera.

Estas equações relacionam pontos do espaço objeto e imagem, pelo princípio acima descrito. A distância focal calibrada funciona como um fator de escala da foto no espaço imagem. O sinal é negativo para observações no positivo e vice-versa.

2.4 REFERENCIAIS USUAIS

Sistemas de referência têm rigor em sua definição somente em situações ideais. Na prática, dados ligados à realidade física são processados sempre sob a condição de alguma simplificação. A fotogrametria segue esta regra e estabelece duas grandes classes de referenciais: os sistemas do espaço imagem e do espaço objeto (LUGNANI, 1988).

2.4.1 Sistemas do Espaço Imagem

Os pontos nodais são relacionados com a objetiva óptica e dispostos de tal maneira que um raio incidente no sistema de lentes pelo ponto nodal frontal ou anterior irá deixar o sistema pelo ponto nodal posterior com direção paralela e mesmo sentido.O espaço entre o nodo posterior do sistema de lentes e o plano do negativo ou espaço correspondente no caso de diapositivo é denominado espaço imagem (ANDRADE, 1998 e LUGNANI, 1988).

As simplificações deste sistema consistem em assumir que o centro de projeção é um ponto e que o negativo planificado é realmente plano. Na prática esta construção exata não é possível (LUGNANI, 1988).

A figura 12 ilustra o sistema do espaço imagem adotado para se realizar observações fotogramétricas e a real posição dos pontos nodais. Os pontos notáveis do sistema são:

O'D = origem do sistema fiducial no diapositivo;

O'N= origem do sistema fiducial no negativo;

 $\overline{\mathbf{X}}$ = direção da linha de vôo;

 $\overline{\mathbf{Y}} = \mathbf{e}\mathbf{i}\mathbf{x}\mathbf{o}$ perpendicular à linha de vôo;

pp= pontos principais do negativo e diapositvo;

O= pontos nodais (na prática considerados um único ponto) ou centro de projeção.

FIGURA 12 - REFERENCIAIS DO ESPACO IMAGEM

2.4.2 Sistemas do Espaço Objeto

2.4.2.1 Referenciais geodésicos

No estudo da forma da terra ou no apoio a trabalhos práticos de mapeamento, a Geodésia materializa sobre a superficie física do planeta uma grande quantidade de pontos. Para esta materialização adota-se um modelo para simplificação das irregularidades terrestres. A determinação das dimensões e os parâmetros do modelo geométrico são a primeira etapa deste processo. O modelo geodésico de consenso é o elipsóide de revolução. Para mais detalhes sobre a história e definição deste modelo, ver GEMAEL (1988). O sistema elipsódico geocêntrico faz uma aproximação da forma da Terra (indefinida) a um elipsóide de revolução (LUGNANI, 1987). Desta forma sua definição é dada pela figura 13, onde:

G A=0 C.G.=0 Y

FIGURA 13 - REFERENCIAL ELIPSÓIDICO GEOCÊNTRICO

Origem: centro de gravidade da terra;

Eixo Z: dirigido para o pólo norte;

Eixo X: paralelo ao meridiano astronômico médio de Greenwich;

Eixo Y: torna o sistema destrógiro;

2.4.2.3 Sistema geodésico

A latitude ϕ e a longitude λ são definidas sobre um elipsóide arbitrário escolhido como *datum* do sistema. Este elipsóide não possui o centro de gravidade coincidente com o da Terra. Porém o eixo de rotação é aproximadamente paralelo ao da Terra e consequentemente ao eixo Z do sistema elipsóidico geocêntrico (LUGNANI, 1987).

Segundo o mesmo autor, a coordenada "h" não pode ser medida diretamente e é aproximada por (H+N) onde H é a altitude ortométrica e N a altura geoidal. A não colinearidade destas quantidades implica numa aproximação como resultado para esta adição. Além disso, as altitudes ortométricas também são decorrentes de aproximações. A figura 14 ilustra tal referencial.

FIGURA 14 - REFERENCIAL GEODÉSICO

2.4.2.4 Referencial geodésico cartesiano tridimensional local

O conhecimento dos referenciais elipsóidico geocêntrico e geodésico permite a definição de um referencial de grande conveniência numérica para a fotogrametria. Este referencial é denominado geodésico cartesiano tridimensional local(MITISHITA, 1997).

Ainda segundo o mesmo autor, sua origem é tomada sobre o elipsóide de referência no ponto definido pela normal passante na estação inicial do sistema a qual tem em sua direção e sentido a orientação positiva do eixo OZ_L . O eixo OY_L é coincidente com o meridiano que passa pelo mesmo ponto, de orientação positiva para o C.I.O (origem convencional internacional do pólo). O eixo OX_L é coincidente com a

direção e sentido positivo que tornem o sistema cartesiano destrógiro (Leste). A Figura 15 ilustra o referencial em questão.

FIGURA 15 - REFERENCIAL GEODÉSICO CARTESIANO LOCAL

Nesta pesquisa será realizado o ajustamento simultâneo de fotos para a verificação da eficiência da metodologia de correção de aerofotos digitalizadas. Portanto, o estudo de referenciais se fez necessário. Isto se deve a um fundamento básico da fotogrametria que é a mudança de referenciais.

2.5 FOTOGRAMETRIA DIGITAL

Na imagem digital, cores ou níveis de cinza são representados por dígitos e estas representações, como visto, são associadas a uma posição. Isto possibilitou aos conceitos da Fotogrametria clássica migrarem acrescidos de vantagens para o meio digital, devido às infinitas possibilidades matemáticas que este oferece (Andrade, 1998).

Realizar observações fotogramétricas em meio digital tornou-se uma constante na maioria das empresas de aerolevantamentos, apesar da persistência de restituições analógicas. Isto porque algumas empresas terceirizam seus serviços a restituidores autônomos que possuem estéreo-restituidores analógicos com *encoders* que geram arquivos de estrutura vetorial em CAD. O esclarecimento deste aspecto do produto, em geral não ocorre.

Entretanto, as vantagens oferecidas pela forte automação do processo digital, o qual de certa forma é menos dependente de características fisiológicas específicas do operador, como distância interpupilar, vem a cada dia ganhado mais espaço. Orientação interior e exterior automáticas, geração de ortofotos digitais e redução dos custos dos equipamentos e de produção são fatores que com certeza farão com que estes serviços transfiram-se em sua totalidade para o meio digital.

2.6 REAMOSTRAGEM

Em algumas aplicações fotogramétricas como geração de ortofotos digitais, restituição e aerotriangulção digital automáticas, existe a necessidade de efetuar-se mudanças na imagem. Estas mudanças podem ter várias finalidades, como por exemplo, a normalização de pares de fotos para produção automática de DEM ou correções geométricas.

Em qualquer dos casos, a imagem resultante difere-se em tamanho e talvez em forma. Assim sendo os *pixels* da mesma não têm sua posição coincidente com os da

imagem original. Então para associar-se os níveis de cinza dos *pixels* da imagem original aos da resultante utiliza-se técnicas de reamostragem (SCHENK,1999).

2.6.1 Interpoladores para Reamostragem

Estas técnicas são fundamentadas no uso de interpoladores. Tais interpoladores determinam os níveis de cinza do *pixel* da imagem resultante pelo entorno da posição do mesmo, projetado na imagem original. Serão aqui descritos os três principais (mais usados): vizinho mais próximo, bilinear e polinômio de Lagrange. Outros interpoladores são descritos por ANDRADE (1998).

2.6.1.1 Vizinho mais próximo

SCHENK (1999) não considera a utilização de truncamento da posição do *pixel* reamostrado e associação do nível de cinza do vizinho mais próximo como uma interpolação. Entretanto denomina-se de maneira corrente, até mesmo em meios acadêmicos, tal procedimento de interpolador.

Segundo o mesmo autor, este procedimento apresenta como vantagem a preservação do nível de cinza original. Entretanto, afirma ser desvantajoso no quesito geométrico, pois tende a deslocar o *pixel* para posições da imagem original.

O algoritmo segundo Andrade (1998) é:

$A'_{(k,l)} = A_{(l,l)}$	para $dx < 0.5$ e $dy < 0.5$	(29)
(K,I) (I,J)	1 , , ,	()

$A_{(k,l)} - A_{(i+1,j)}$ para $u_{k} \ge 0, 5 \ c \ u_{k} < 0, 5$	$A'_{(k,l)} = A_{(i+1,j)}$	para $dx \ge 0.5$ e $dy < 0.5$	(30)
--	----------------------------	--------------------------------	------

$$A'_{(K,j)} = A_{(i,j+1)}$$
 para $dx < 0.5$ e $dy \ge 0.5$ (31)

$$A'_{(k,l)} = A_{(i+1,j+1)}$$
 para $dx \ge 0,5$ e $dy \ge 0,5$ (32)

onde:

A' = valor do nível de cinza reamostrado do *pixel*;

A = valor do nível de cinza do *pixel* na imagem original;

dx, dy= diferenças entre os valores reais e inteiros das coordenadas do pixel reamostrado projetado na imagem original.

2.6.1.2 Interpolação bilinear

A interpolação bilinear consiste em uma interpolação linear na direção das linhas e colunas. A interpolação traz como vantagem um efeito de suavização da imagem, tornando sua visualização mais aprazível. Como desvantagem tem-se níveis de cinza distorcidos em relação a imagem original (SCHENK, 1999).

Possui um entorno de interpolação (região de busca de níveis de cinza na imagem original) de 2 por 2 *pixels* e apresenta erros médios de interpolação de 3,7% (STUCKI, 1979 por ANDRADE, 1998).

O algoritmo de notação semelhante às equações 30 a 32, segundo Andrade (1998) é:

$$A'_{(k,l)} = A_{(i,j)} + dx.(A_{(i+1,j)} - A_{(i,j)}) + dy.(A_{(i,j+1)} - A_{(i,j)}) + dx.dy.(A_{(i,j)} - A_{(i+1,j)} - A_{(i,j+1)} + A_{(i+1,j+1)})$$
(33)

2.6.1.3 Polinômio de Lagrange

A interpolação utilizando o polinômio de Lagrange é o método de interpolação mais eficiente no que se refere à acurácia da imagem resultante. Possui entorno de interpolação de 4 por 4 *pixels*. Os erros de interpolação são aproximadamente nulos (STUCKI, 1979 por ANDRADE, 1998). O número de operações é bem maior que o da interpolação bilinear e exige maior capacidade computacional.

O algoritmo de notação semelhante às equações 30 a 32, segundo Andrade (1998) é:

$$a_{(n)} = A_{(i-1,j+n-2)} \cdot (dx-1) \cdot (dx-2) \cdot \frac{dx}{-6} + A_{(i,j+n-2)} \cdot (dx+1) \cdot (dx-1) \cdot \frac{(dx-2)}{2} + A_{(i+1,j+n-2)} \cdot (dx+1) \cdot (dx-2) \cdot \frac{dx}{-2} + A_{(i+2,j+n-2)} \cdot (dx+1) \cdot (dx-1) \cdot \frac{dx}{6}$$
(34)

$$A'_{(k,l)} = a_{(1)}.(dy-1).(dy-2).\frac{dy}{-6} + a_{(2)}.(dy+1).(dy-1).\frac{(dy-2)}{2} + a_{(3)}.(dy+1).(dy-2).\frac{dy}{-2} + a_{(4)}.(dy+1).(dy-1).\frac{dy}{6}$$
(35)

2.7 RESTITUIÇÃO

Restituição significa reconstruir o terreno fotografado. A confecção de um mapa a partir de aerofotos envolve: restituição da foto ou modelo, compilação das feições extraídas e edição, com introdução de informações complementares (Andrade, 1998).

Os métodos os mais comuns de restituição são os analíticos e digitais utilizando-se a estereoscopia para definição de altitudes pela geometria epipolar. Porém existem outros métodos alternativos mais simples e menos dispendiosos. No caso de necessidade de informações planialtimétricas, uma alternativa muito interessante é a ortofoto digital com curvas de nível. Para informações planimétricas a monorestituição supre necessidades de aplicações como, por exemplo mapeamento florestal e rural.

2.7.1 Monorestituição

Monorestituição é a extração de feições das imagens com finalidade de mapeamento planimétrico a partir de observações monoscópicas. Makarovic (1973) propôs a fundamentação matemática básica para este processo. A proposta consiste na transformação de coordenadas fotogramétricas (x_p, y_p) em coordenadas geodésicas tridimensionais locais (X_L, Y_L, Z_L) utilizando as equações de colinearidade inversa e modelamento matemático de superfícies (D.T.M.).

Em seguida tais coordenadas são lançadas sobre uma superfície de projeção cartográfica. Alguns autores não fazem a diferenciação entre superfícies de referência e de projeção. Isto gera algumas confusões de terminologia (Ex. Referencial UTM).

Vale lembrar que existe uma diferenciação notável entre as mesmas. Para mais detalhes sobre as quantidades fundamentais de Gauss e critérios extrínsecos e intrínsecos de superfícies de representação ver RICHARDUS (1972).

2.7.2 Orientação Interior de Uma Aerofoto

A orientação interna de uma aerofoto consiste no restabelecimento da geometria projetiva de geração da mesma. Isto implica em recuperar a posição da fotografia em relação à câmara. Pode também ser definida em termos de reconstrução do feixe perspectivo que gerou as fotografias (ANDRADE, 1998).

Ainda, segundo o mesmo autor, aparelhos analógicos fazem a orientação interna forçando a coincidência das marcas fiduciais das câmeras com as correspondentes marcas no restituidor e ajustando a distância principal do restituidor com a da câmera. Restrições instrumentais fazem com que este ajuste possua uma pequena faixa de variação para as distâncias principais, o que impossibilita a utilização de diferentes distâncias focais.

Aparelhos analíticos fazem a determinação dos parâmetros de orientação interior utilizando as coordenadas calibradas das marcas fiduciais, coordenadas do ponto principal, distância focal calibrada, parâmetros de distorção radial simétrica e descentrada. Em geral é utilizada uma transformação afim que modela a deformação do filme. Os dados provenientes do certificado de calibração da câmera são imprescindíveis para este processo. Caso exista necessidade de precisão elevada na orientação interior, deve-se considerar no modelo de correção as distorções provocadas pela refração atmosférica.

2.7.3 Orientação Exterior

A orientação externa consiste na recuperação da posição do centro perspectivo da câmera no instante da tomada das fotografias, bem como sua orientação no espaço. Esta orientação é feita em relação a um referencial geodésico cartesiano local.

A posição do centro perspectivo é determinada pelas coordenadas Xo, Yo e Zo. A orientação espacial é dada pelos ângulos de Euler (χ, φ, ω). A obtenção destes valores é efetuada pelas equações de colinearidade na forma direta. Cada ponto, tendo coordenadas geodésicas e fotogramétricas conhecidas dá origem a duas equações.

Como cada ponto dá origem a duas equações, três pontos proporcionam um sistema de equações compatível e determinado. Entretanto é necessário um número superabundante de equações para possibilitar análise de precisões dos parâmetros obtidos e observações realizadas. Desta forma, um total de cinco pontos, quatro nos extremos da foto e um central, são desejáveis para fins de orientação exterior de uma aerofoto (MITISHITA, 1997).

2.7.3.1 Orientação relativa

A orientação relativa não leva em conta o referencial terrestre. Isto implica numa diminuição da quantidade de parâmetros a serem determinados pelas seguintes condições:

Se cinco pares de raios procedentes de pontos homólogos no par de aerofotos cruzarem-se, todos os demais se cruzarão (Teorema de VON GRÜBBER);

Admissão de que as fotografias foram tomadas com o eixo ótico bem próximo da vertical;

Tem-se então a determinação do sistema fotogramétrico de uma fotografia em relação à outra. Tal determinação pode ser feita por processos analíticos (mais comuns) ou por processos analógicos de solução de sistema de equações (mais raros e obsoletos, porém ainda em uso) (ANDRADE, 1998).

2.7.3.2 Orientação absoluta do modelo fotogramétrico

Um par de aerofotos orientadas uma em relação à outra subsequente é denominado modelo. Tal modelo é restabelecido num referencial não geodésico. O modelo possui um único conjunto de parâmetros de orientação absoluta $(\chi, \varphi, \omega, Xo, Yo, Zo \in \lambda)$, caso admita-se a hipótese de diferenças fisicas decorrentes de rotações, translações nos três eixos e um único fator de escala (MITISHITA, 1997).

Como consequência da adoção de tal hipótese, tem-se a possibilidade de adoção do modelo isogonal para orientar o modelo em relação ao referencial geodésico local. O referido modelo é dado por:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \lambda^{-1} \cdot M \begin{bmatrix} X - X0 \\ Y - Y0 \\ Z - Z0 \end{bmatrix}$$
(36)

Sendo:

 $\begin{bmatrix} X & Y & Z \end{bmatrix}^{r}$ = Coordenadas no referencial geodésico local;

 $\begin{bmatrix} x & y & z \end{bmatrix}^T$ = Coordenadas no referencial de modelo de pontos fotogramétricos;

 $\lambda =$ Fator de escala;

 $\begin{bmatrix} X0 & Y0 & Z0 \end{bmatrix}^{T}$ = Parâmetros de translação;

M = Matriz de rotação ortogonal transposta ($M = R^{T} = R^{-1}$).

Quatro pontos não alinhados, situados nos extremos da interseção de duas fotos subseqüentes propiciam doze (12) equações a sete (7) parâmetros e, conseqüentemente cinco graus de liberdade, majorados pelas doze (12) equações das injunções de posição (no caso de pontos planialtimétricos) totalizando dezessete (17) graus de liberdade.

Os demais pontos fotogramétricos observados no modelo, podem ser transformados para o referencial geodésico local pela forma inversa, aplicando-se os parâmetros obtidos. Esta é dada por:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \lambda \cdot R \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} X0 \\ Y0 \\ Z0 \end{bmatrix}$$
(37)

Pela equação 37, tem-se todo o conjunto de pontos observados no referencial geodésico local. O ajustamento paramétrico propicia a precisão dos parâmetros obtidos pela matriz variância covariância dos mesmos. É possível ainda analisar resíduos e valores de observações ajustadas. Este método exige menor esforço computacional, porém é matematicamente inferior ao ajustamento simultâneo de fotos, devido às perdas numéricas.

Consiste em determinar simultaneamente os parâmetros de orientação exterior de duas ou mais aerofotos e as coordenadas no referencial geodésico local de todos os pontos pertencentes ao conjunto de fotos (MERCHANT, 1979).

É possível a solução do sistema de equações pelo método paramétrico de ajustamento com injunções de posição. As matrizes das derivadas parciais (Figura 16) e das equações normais (Figura 17) apresentam a seguinte configuração:

FIGURA 16 - ASPECTO NUMÉRICO DA MATRIZ "A" PARA 2 FOTOS

Os blocos 2n x 6 são procedentes das derivadas parciais das equações de colinearidade em relação aos parâmetros de orientação exterior ($\chi, \varphi, \omega, Xo, Yo \in Zo$) das fotos da esquerda e direita, no caso de duas aerofotos. Os blocos 2n x 6 hachurados possuem valores numéricos diferentes de zero. Os não hachurados, valores nulos.

Os blocos 2x3 na região " $3 \times N^{\circ}$ de pontos" da matriz "A" provém das derivadas parciais das equações de colinearidade em relação às coordenadas (*Xi*, *Yi* e *Zi*) dos pontos que participam do ajustamento. As demais posições da matriz possuem valores nulos.

Os blocos hachurados da matriz "N" têm dimensões 6 x 6. Os blocos 3 x 3

FIGURA 17 - ASPECTO NUMÉRICO DA MATRIZ "N"

pertencentes à região inferior direita serão somados, nas posições referentes aos pontos a serem injuncionados, aos valores presentes na matriz N^c. Tais injunções eliminam a singularidade da matriz N. Dois pontos planialtimétricos e um altimétrico propiciam 7 equações de injunção e eliminam a singularidade da matriz.

A matriz N^c possui na mesma região de N, valores provenientes da matriz P_i^C , blocos internos 3 x 3 dados por:

$$P_{i}^{C} = \begin{bmatrix} \frac{1}{\sigma_{x}^{2}} & 0 & 0\\ 0 & \frac{1}{\sigma_{y}^{2}} & 0\\ 0 & 0 & \frac{1}{\sigma_{z}^{2}} \end{bmatrix}$$
(38)

onde:

 σ_x = precisão das coordenadas X no referencial geodésico;

 σ_{y} = precisão das coordenadas Y no referencial geodésico;

 σ_z = precisão das coordenadas Z no referencial geodésico.

Tais valores assumem o mesmo posicionamento dos pontos a serem injuncionados. As demais posições têm valores nulos.

Faz-se ainda necessário o cálculo do vetor ε ("erro de fechamento") dado pelas equações:

$$\varepsilon = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{calc} - \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{obs}$$
(39)

onde:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{colc} = coordenadas resultantes do ajustamento (ou valores aproximados no$$

caso da 1ª iteração);

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{obs} = \text{ coordenadas dos pontos de apoio}$$

E o cálculo do vetor U^c dado por:

$$U^{c} = P^{C}_{i} \times \varepsilon \tag{40}$$

Desta forma, está completo o cálculo das matrizes para a injunção de posição. A matriz dos pesos das observações fotogramétricas P, é dada por:
onde:

 σ_x = precisão das coordenadas x fotogramétricas;

 σ_y = precisão das coordenadas y fotogramétricas.

A solução do sistema é dada por :

$$N = (A^T . P . A)^{-1}$$
(42)

$$L_0 = F(X_0) \tag{43}$$

$$L = L_0 - L_b \tag{44}$$

$$U = A^T . P . L \tag{45}$$

$$X = -(N + N^{c})^{-1} (U + U^{c})$$
(46)

$$X_a = X_0 + X \tag{47}$$

$$V = A \cdot X + L \tag{48}$$

$$La = Lb + V \tag{49}$$

$$\sum Xa = \hat{\sigma}_o^2 N^{-1}$$
 (50)

sendo:

 X_0 = vetor dos parâmetros aproximados;

 L_0 = vetor função dos parâmetros aproximados;

 L_b = vetor dos valores observados;

X = vetor solução do sistema das equações normais,

 X_a = vetor dos parâmetros ajustados, contendo nas primeiras 12 linhas² os valores dos parâmetros de orientação exterior ajustados na seqüência das derivadas parciais e nas demais as coordenadas ajustadas no referencial geodésico;

V = Vetor dos resíduos;

La= Vetor das observações fotogramétricas ajustadas;

 $\sum Xa =$ matriz variância-covariância dos parâmetros ajustados;

 $\hat{\sigma}_o^2$ = variância da unidade de peso a *posteriori*.

O cálculo da variância da unidade de peso a *posteriori* é simplificado quando se calcula os resíduos e dado por:

² A generalização para *n* fotos é possível, tendo-se nas (6. n° de fotos) primeiras linhas os valores dos parâmetros de orientação exterior ajustados e nas demais as coordenadas no referencial geodésico.

$$\hat{\sigma}_{o}^{2} = \frac{V^{T} P V + \varepsilon^{T} P^{C} \varepsilon}{Gl}$$
(51)

Sendo Gl o número de graus de liberdade que corresponde à diferença entre a maior e a menor dimensão da matriz A somada ao número de equações de injunção.

É possível por $\sum Xa$ verificar-se a precisão dos parâmetros de orientação exterior e das coordenadas dos pontos pertencentes ao modelo no referencial geodésico. Os elementos da diagonal principal de tal matriz correspondem às variâncias dos parâmetros e coordenadas. Então, as respectivas raízes quadradas de tais elementos correspondem às precisões dos mesmos (desvio padrão).

2.7.3.4 Campo de calibração de câmeras aéreas

Em decorrência dos estudos de ANDRADE e OLIVAS (1981), um campo de calibração foi levantado em São Luís do Purunã – PR, para possibilitar a calibração de câmeras aéreas no país. Tal campo foi desenvolvido com base no método dos *mixed ranges* ou "campos misturados", e consiste em quebrar a correlação existente entre as coordenadas do centro perspectivo da câmera no instante da tomada e as coordenadas da origem do referencial fotogramétrico juntamente com a distância focal (ANDRADE, 1998).

Segundo o mesmo autor, esta correlação é evidenciada por um valor constante da diferença entre a altitude do ponto observado (Z) e a altitude do centro perspectivo (Z0). Portanto um campo que possua desníveis acentuados pode eliminar esta correlação. Para mais detalhes sobre calibração de câmeras ver Andrade (1998, pp 231 a 235).

Os pontos do campo de calibração foram posicionados em uma escarpa de 100 metros de desnível que na parte superior possui rochas afloradas e na parte inferior um vale. Totalizando trinta (30) pontos, os da parte superior foram pintados a óleo sobre os afloramentos com um formato circular de 0,50m de diâmetro, no centro de um

quadrado de 2,0m de lado. Os da parte inferior totalizam apenas seis (6) e foram feitos sobre blocos de concreto.

As distâncias entre os alvos foram medidas com distanciômetros eletrônicos e altitudes determinadas através de nivelamento geométrico de 1^a ordem, arbitrando-se a altitude 996,00 m para o ponto 26.

O campo de calibração possibilita, além da calibração de câmeras, verificar a interferência do processo de conversão de imagens analógicas em digitais na precisão das observações fotogramétricas.

Partindo-se deste princípio, fotos de um levantamento aerofotogramétrico para fins de calibração, podem ter sua orientação interior e exterior realizadas e a precisão dos parâmetros obtidos verificada. Por este procedimento tem-se uma valoração da influência da utilização de um *scanner* nesta estimativa.

2.8 ESTIMATIVA DA PRECISÃO DAS OBSERVAÇÕES

Quando o número de observações é grande, a precisão do conjunto de observações realizadas para efeito de verificação da existência de erros grosseiros na etapa de detecção das deformações pode ser obtida pelo desvio padrão (σ) ou também chamado erro médio quadrático (*m*) das mesmas. Convém lembrar que a notação para o erro médio quadrático é diferente, pois este não é uma distância como σ , necessitando dos sinais antecedendo o valor ($m = \pm \sigma$).

2.8.1 Média dos Erros Verdadeiros

Os valores médios dos resíduos, considerados como erros verdadeiros, podem ser calculados na forma proposta por Laplace (GEMAEL, 1994):

$$E = \frac{\sum_{i=1}^{n} |v_i|}{n}$$
(52)

Onde:

 $|v_i| = m$ ódulo dos resíduos provenientes do ajustamento;

n= tamanho da amostra.

Isto se deve ao fato de que os resíduos provenientes do ajustamento, em geral assumem uma distribuição normal e tendem a anular-se no somatório, descaracterizando na média o erro que se busca modelar.

2.8.2 Erro Médio Quadrático e Desvio Padrão da Amostra

A precisão do conjunto de observações fotogramétricas realizadas para efeito de verificação da existência de erros grosseiros, pode ser obtida pelo desvio padrão das mesmas ou erro médio quadrático (MITISHITA, 1986).

Este pode ser calculado pelas expressões:

$$m_{x} = \sqrt{\frac{\sum_{i=1}^{n} v_{xi}^{2}}{n-1}}$$
(53)

$$m_{y} = \sqrt{\frac{\sum_{i=1}^{n} v_{y_{i}}^{2}}{n-1}}$$
(54)

onde:

- v_{x_i} = resíduos em na direção x;
- v_{y_i} = resíduos na direção y;
- n =tamanho da amostra.

Este procedimento possibilita a detecção numérica de erros grosseiros. Entretanto uma análise mais dinâmica faz-se necessária.

Estabelecendo a área da curva de distribuição normal como filtro classificador de erros, tal que o eixo dos σ seja a delimitação inferior. Associando-se aos conceitos de SHEWART (1924 por SYMLEY, 2001) que identificam dois tipos de causas de variação: as comuns e especiais. Sendo as causas comuns embutidas no próprio processo tecnológico utilizado, a sua retirada exige incorporação de novas tecnologias. As causas especiais ocorrem devido a desvios do procedimento padrão de operação e são de fácil remoção (SYMLEY, 2001).

Segundo o mesmo autor, os erros posicionados dentro da região dos 30, são de difícil eliminação, pois são decorrentes de causas inerentes ao processo. Porém erros fora dos 30 são de eliminação tão fácil quanto sua detecção, pois estão vinculados a causas especiais (no caso de observações, erros grosseiros, por exemplo).

Uma maneira de detectar rapidamente tais propriedades estatísticas de observações é a utilização de gráficos de variáveis. Através destes gráficos pode-se estabelecer limites superiores (UCL) e inferiores (LCL) de controle e especificação (USL e LSL). Tais limites são estabelecidos por (SOARES et al., 1991):

$$UCL = \mu_{\bar{x}} + n \cdot \sigma_{\bar{x}}$$
(55)

$$LCL = \mu - n \cdot \sigma \tag{56}$$

sendo:

 $\mu_{\bar{t}} =$ média das médias;

n = fator de nível de confiança (1,0 para 68,26%, 2,0 para 95,45% e 3,0 para 99,73%);

 σ_{z} = desvio padrão das médias;

Entretanto a solução por mínimos quadrados possibilita uma generalização poderosa do gráfico de variáveis, pois considerando-se μ_{x} como a média aritmética dos resíduos e cada observação como uma amostra pode-se estabelecer tais limites com o erro médio quadrático e plotando os resíduos V_{x_i} e V_{y_i} (V_{z_i} se for o caso), verificar se a observação está dentro dos limites de controle e especificação. Os limites de especificação podem ser calculados (para maiores detalhes ver SOARES et al.,1991 ou SYMLEY,2001) ou estabelecidos como o erro máximo desejado.

O gráfico 1 exemplifica um gráfico de variáveis. Pode-se perceber que, uma vez estabelecidos os limites de controle, constata-se facilmente qualquer valor além destes.

GRÁFICO 1 - EXEMPLO DE GRÁFICO DE VARIÁVEIS

Este tipo de gráfico segundo Symley (2001), é utilizado pela USGS (United States Geological Survey), instituição ligada ao Departamento do Interior dos EUA. É aplicado na verificação da qualidade de DEM e cartas digitalizadas.

3 MATERIAIS E METODOLOGIA

3.1 MATERIAIS

3.1.1 Placa de Calibração de um Estéreo-restituidor Analógico WILD A-10

Esta placa de calibração tem dimensões de 250 x 250 mm, é constituída de cristal, com concepção extremamente precisa, possuindo um *grid* de 13x13 linhas, sendo a primeira linha afastada 5mm da borda. Possui ainda um certificado de calibração com as coordenadas de nove pontos em seu interior. O certificado foi expedido pela WILD HEERBRUG LTD. em 05/07/1974.

As interseções das linhas do reticulado propiciam 165 pontos, pois os quatro extremos não se interceptam. A figura 18 ilustra a placa (medidas em mm). A tabela 1 é transcrita do referido certificado, cuja cópia é apresentada no ANEXO 1.

FIGURA 18 - PLACA DE CALIBRAÇÃO DO ESTÉREO RESTITUIDOR WILD A10

PONTO	X (mm)	ERRO (µm)	Y (mm)	ERRO (µm)
13	600,000	-0,200	400,000	-0,500
12	500,000	-0,200	400,000	-0,500
11	400,000	0,200	400,000	-0,200
23	599,999	-0,700	500,000	-0,200
22	499,999	-1,200	500,000	-0,200
21	400,000	0,200	500,000	-0,500
33	600,000	0,000	600,000	0,500
32	499,999	-0,700	600,000	0,000
31	400,001	0,700	600,000	0,200
	<i>m x</i> =	± 0.2	μm	
	<i>my</i> =	± 0.3	μm	

TABELA 1 - COORDENADAS DO REFERENCIAL DE PLACA

3.1.2 Estéreo-restituidor Analítico PLANICOMP

- Resolução interna do aparelho: 1μm;
- Erro médio quadrático (em condições ideais): ±5μm.

3.1.3 Desktop Scanner EPSON –1640XL

- Tipo: Flatbed colorido;
- Dispositivo fotoelétrico: Matriz colorida tipo CCD linear;
- Pixels efetivos: 19.520 x 27.520 com escala de 100% a 1.600 dpi;
- Densidade óptica: 3,6 D;
- Profundidade de cor: 42 bits interna e externa;
- Profundidade de níveis de cinza: 14 bits interna e externa;
- Dimensões da área de digitalização: 310 x 437 mm (A3);
- Máxima resolução de Hardware: 1.600 dpi (na direção da linha);
- Máxima resolução Interpolada: 12.800 x 12.800 dpi;

- Tamanho do *pixel*: 15,9 μm (na resolução de *hardware*)³;
- Profundidade de pixel: 14 bits por pixel (12 de entrada, 1 a 14 de saída);
- Fonte de iluminação: Lâmpada fluorescente à base de Xenônio;
- Unidade de transparência: Incrementa a iluminação possibilitando digitalização de filmes e objetos não reflexivos;
- Preço aproximado do *scanner*: US\$ 2.500,00.

FIGURA 19 – DESKTOP SCANNER EPSON 1640 XL

3.1.4 Scanner Fotogramétrico RM-1

- Fabricante: Wehrli & Associates Inc.;
- Tipo: Flatbed;
- Movimento: da plataforma (sensor estacionário);
- Dispositivo fotoelétrico: Matriz CCD linear;
- Pixels efetivos: 2.048;
- Área de digitalização: 260x260mm;
- Resolução geométrica: 12,5 a 100 μm;
- Resolução radiométrica: 8 bits (interna e saída);
- Fonte de iluminação: lâmpada fluorescente;
- Variação de densidade: 0,2 a 2,4D;

- Acurácia geométrica: 3µm;
- Preço aproximado: US\$ 60.000,00.

FIGURA 20 - SCANNER FOTOGRAMÉTRICO RM1

3.1.5 Hardware

• Micro Computadores do Laboratório de fotogrametria da UFPR.

3.1.6 Softwares

- MATLAB 5.3;
- PAINT SHOP PRO 7.04 (TRIAL);
- Adobe Photoshop 6.0 (TRIAL);
- AutoCad 2000;
- Pacote Microsoft Office 2000;
- Monorestituidor
- DELPHI 4.0
- SURFER 7.0.

3.1.7 Negativos de Aerofotos do Campo de Calibração de Câmeras de São Luis do Purunã – PR

- Escala aproximada dos negativos : 1:12.000;
- Certificados de calibração das Câmeras;
- Coordenadas planialtimétricas dos pontos no referencial geodésico local determinadas por aerotriangulação em estéreo-restituidor analítico.

3.2 METODOLOGIA

3.2.1 Verificação da Confiabilidade do Referencial de Placa

Para a criação de um modelo de correção de distorções geométricas é necessária uma análise inicial de resíduos. Neste estudo estes resíduos serão obtidos com o ajustamento de observações realizadas sobre a imagem da placa de calibração gerada pelo *scanner*. Entretanto a estimativa da precisão do referencial de placa deve ser o primeiro passo, pois o referencial de placa estabelecerá os pontos de controle para obtenção das distorções geométricas do *scanner*.

Foi utilizado o PLANICOMP C100, para leitura de coordenadas das interseções do reticulado da placa. O referencial da placa possui uma rotação de 180 graus e translações aproximadas de 500mm em x e y, em relação ao sistema de leitura do restituidor. A transformação ortogonal é a mais adequada para a relação funcional entre o referencial de placa e o sistema de leitura.

3.2.2 Análise de Resíduos

3.2.2.1 Tomada das imagens no desktop scanner EPSON 1640 XL

As imagens para fins de modelagem devem ser tomadas em aproximadamente uma mesma posição. Esta simplificação não implica em grandes diferenças da condição normal de operação, pois na digitalização de diapositivos ou filmes é perfeitamente possível posicionar-se de forma adequada o objeto a ser digitalizado. Além disso, na fase de modelagem, tal procedimento facilita a análise da manutenção e periodicidade de alteração dos erros sistemáticos. Tais erros, como visto anteriormente, têm como componentes mais significativas as distorções provocadas pelo sistema de lentes.

O equipamento possui duas réguas, uma transversal paralela à *scanline* e outra longitudinal paralela a direção da digitalização. A figura 21 mostra o posicionamento definido.

FIGURA 21 - POSIÇÃO DE TOMADA DAS IMAGENS

A resolução adotada é de 1600 dpi ou 15,9 µm. Esta é a máxima resolução de hardware e garante que os erros presentes na imagem não são decorrentes das interpolações dos algoritmos de reamostragem e duplicação de *pixels*.

A periodicidade para a tomada das imagens foi estabelecida tal que se tivesse um conjunto inicial de seis imagens tomadas duas a duas semanalmente com intervalos constantes. Um outro conjunto de periodicidade mensal também foi gerado.

O procedimento de obtenção tanto para a periodicidade mensal, quanto para semanal foi o mesmo. Após tomar-se a primeira imagem o *scanner* foi desligado. Aguardou-se cinco minutos, ligou-se e tomou-se nova imagem. Isto fez com que todos os dispositivos ópticos e mecânicos (lentes, braços, prismas ou espelhos) voltassem às suas posições iniciais.

3.2.2.2 Tomada da imagem do grid no scanner RM1 (fotogramétrico)

Para certificação da validade dos procedimentos adotados, procedeu-se a verificação das distorções provocadas pela digitalização em um *scanner* fotogramétrico RM1. Apesar da área de digitalização ser de 260 x 260mm, o aparelho não consegue capturar imagens deste tamanho. A área efetiva é de pouco mais de 230 x 230 mm. Isto fez com que não se pudesse digitalizar a placa de calibração utilizada neste trabalho (250 x 250mm) integralmente.

Conseqüentemente os pontos extremos do *grid* não foram capturados. Este fato não invalidou o teste, pois a quantidade de pontos remanescentes é grande e possibilitou elevado número de graus de liberdade na solução por mínimos quadrados. Foi tomada uma imagem com *pixel* de 24µm, a qual teve suas deformações analisadas.

3.2.2.3 Leitura de coordenadas na imagem

Com um foto-editor é possível realizar observações no sistema de coordenadas da imagem (coluna,linha). O software utilizado (PAINTSHOP-PRO 7.04) permite o posicionamento preciso do cursor com uma resolução de um *pixel*.

Para a abertura do arquivo contendo a imagem é necessário informar quais as suas dimensões (número de colunas x número de linhas). Um sistema de cálculo destes valores pode ser estabelecido em meios computacionais, com a seguinte expressão:

$$C \cdot L = |\mathbf{N}| \tag{57}$$

sendo:

$$(N - \Delta_c \le C \le N + \Delta_c) \tag{58}$$

$$(N - \Delta_L \le L \le N + \Delta_L) \tag{59}$$

$$N = T^{1/2}$$

onde:

T= tamanho da imagem em bytes (nominal);

N= limite central de variação;

 Δ_c = variação devido à desigualdade das dimensões para largura;

 Δ_L = variação devido à desigualdade das dimensões para altura;

C = número de colunas da imagem;

L= número de linhas da imagem;

Devido à propriedade comutativa do produto, serão possíveis duas soluções dentre as quais uma é correspondente às dimensões da imagem.

Depois visualizar a imagem na tela do computador, efetua-se observações das coordenadas dos pontos na mesma. A figura 22 ilustra os pontos da placa e da imagem digitalizada, bem como suas respectivas localizações.

As dimensões de *pixel* em mm podem ser calculadas pela expressão:

$$Dim_{pixel} = \frac{25.4 \,(\text{mm})}{resolução(\text{dpi})} \tag{61}$$

Conhecidas estas dimensões para imagens torna-se possível a conversão dos valores destas coordenadas para valores em milímetros, para conveniência numérica.

(60)

Г		b		h	*			*	L	4	4	1	-
I	[130	1301	1302	1303	1304	120	1201	1202	1203	1 204	110	
	14	13	1310	1320	1330	1340	12	1710	1220	1230	1240	<u>h</u>	10
	1+1	131	1311	1312	1313	1314	121	1211	1212	1713	1214	ш	101
	142	132	1321	1322	1323	1324	122	1221	1222	1223	1224	112	102
	143	133	1331	1332	1333	1334	123	1231	1232	1233	1234	113	103
	144	134	13+1	1342	1343	1344	124	1241	1242	1243	1244	114	104
	24	в	2310	2320	7330	2340	22	2210	2220	2230	2240	21	20
	2+1	231	2311	2312	2313	2314	221	2211	2212	2213	2214	211	203
	242	232	2321	1322	2323	2324	22.2	2221	1222	1113	2224	212	20:
	N3	233	2331	1331	1333	2334	213	2231	1232	1133	2234	213	203
	244	234	2341	2342	2343	2344	22+	22841	22142	22113	2 244	214	20-
·	24		3310	3790	3330	7740	21	2910	2110	2120	3940	1	20
ľ	 	1					<u> </u>	4		, <u>,,,,,</u>			
	l	331	3311	3312	3313	3314	321	3211	3212	3213	3214	311	

FIGURA 22 - PONTOS DE CONTROLE NO REFERENCIAL DE PLACA

Uma outra possibilidade, mais atrativa, utilizada na leitura de pontos para resseção espacial e nos testes de *grid on line* foi o uso do ADOBE PHOTOSHOP 6.0. Isto porque o software já possui o algoritmo para estimar os valores das dimensões das imagens. Apresenta ainda, dentre outras, a vantagem de permitir o posicionamento com acurácia de sub-*pixel*. Ambos (PAINTSHOP e ADOBE) apresentam a imagem discretizada na resolução de sua geração, desde que o hardware (placa de vídeo) o permita.

3.2.2.4 Determinação das distorções no grid digitalizado

Considerando o grid como isento de erros, e realizando-se observações na imagem digitalizada do mesmo, obteve-se um conjunto de coordenadas (coluna,linha) de 165 pontos. O método paramétrico de ajustamento, dado pela forma:

$$La = F(Xa) \tag{62}$$

foi utilizado para a obtenção de parâmetros bem como as deformações geométricas da imagem, que neste caso correspondem aos resíduos do ajustamento.

Admitindo-se a hipótese de inexistência de escala na digitalização (cada milímetro digitalizado correspondendo a um milímetro de imagem gerada) e ainda que as diferenças físicas entre o *grid* e a sua imagem digital correspondem a uma rotação (α) e duas translações (*Xo e Yo*). A transformação ortogonal ou de corpo rígido é detentora de tais propriedades e assume a forma:

$$\begin{vmatrix} X_{imagem} \\ Y_{imagem} \end{vmatrix} = \begin{vmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{vmatrix} \begin{vmatrix} X_{grid} \\ Y_{grid} \end{vmatrix} + \begin{vmatrix} X_{0} \\ Y_{0} \end{vmatrix}$$
(63)

Desta forma, os resíduos do ajustamento, calculados por:

$$V = A \cdot X + L \tag{64}$$

correspondem aos erros geométricos provocados pelo sistema óptico mecânico do equipamento.

3.2.2.5 Cálculo do desvio padrão dos resíduos

Considerando-se cada coluna de pontos do grid (pontos alinhados na direção x e y) é possível calcular o desvio padrão dos resíduos nas direções dos dois eixos. Essa medida de dispersão permite uma análise da variabilidade das distorções no sentido da varredura e perpendicular a mesma. Foram calculados os desvios padrão e médias dos erros geométricos dos pontos nos seguintes casos:

- Média dos valores absolutos dos erros em x de um mesmo ponto em 10 imagens;
- Média dos valores absolutos dos erros em y de um mesmo ponto em 10 imagens;
- 3. Média aritmética dos erros em x de um mesmo ponto em 10 imagens;
- 4. Média aritmética dos erros em y de um mesmo ponto em 10 imagens;
- 5. Desvio padrão dos erros em x de um mesmo ponto em 10 imagens;
- 6. Desvio padrão dos erros em y de um mesmo ponto em 10 imagens;
- Desvio padrão dos erros em x de pontos pertencentes a uma mesma coluna do grid;
- Desvio padrão dos erros em y de pontos pertencentes a uma mesma coluna do grid.

Além da análise de variabilidade, esta etapa do estudo permitiu complementar a percepção do comportamento espacial das deformações. A visualização das resultantes dos erros geométricos do dispositivo tornou possível justificar a ineficiência de alguns dos modelos testados.

Tal análise atesta ainda a estabilidade geométrica do dispositivo antes da modelagem. Isto devido ao fato do número de imagens tomadas para verificação ser elevado (dez imagens) e em situações climáticas variadas (temperatura ambiente variando de 15°C a 25°C).

3.2.3 Parametrização (Calibração)

Neste trabalho, são estabelecidas duas grandes classes de parametrização: a parametrização com *grid on line* e com *grid off line*. Estas duas classes, por sua vez, foram subdivididas em: com observações na imagem deformada usando *grid on line* e *off line* e com reamostragem para correção usando somente *grid on line*.

3.2.3.1 Grid on line

A parametrização com grid on line consiste na utilização do grid como apoio. Este é digitalizado juntamente com o negativo ou diapositivo, permitindo a existência de pontos de controle na imagem para a obtenção de parâmetros do modelo matemático utilizado para correção.

Em um primeiro teste os 165 pontos do *grid* tiveram suas coordenadas observadas com o uso do foto-editor ADOBE PHOTOSHOP 6.0. Feitas as leituras, estas coordenadas passam por um primeiro ajustamento para detecção de erros grosseiros.

Este primeiro ajustamento é realizado utilizando-se o modelo matemático da transformação ortogonal. Dado o fato de conhecer-se através de dez imagens observadas o comportamento espacial das deformações (erros geométricos), é possível pela plotagem dos resíduos do modelo ortogonal em um gráfico de resultantes detectar-se os erros grosseiros. As observações eivadas de erros grosseiros terão o seu vetor resultante em discrepância do comportamento padrão. É usado ainda o gráfico de variáveis, que permite verificar se as observações estão dentro dos limites de controle.

Detectado o erro, o ponto tem suas coordenadas novamente observadas e um novo ajustamento é realizado. Desta maneira as observações são depuradas dos erros grosseiros, restando somente os erros sistemáticos. Estes últimos então são corrigidos com a aplicação do modelo matemático utilizando-se os parâmetros de correção. Estes parâmetros são provenientes de um novo ajustamento pelo método paramétrico utilizando-se como modelo matemático uma relação geométrica capaz de propiciar resíduos mínimos (abaixo de 15 µm).

3.2.3.1.1 grid on line com observações na imagem deformada

Esta parametrização tem duas finalidades. A primeira como o nome sugere, é de fornecer parâmetros para o uso da imagem deformada. As observações realizadas na

imagem deformada são utilizadas para fins fotogramétricos (orientação interior e exterior) após serem depuradas dos erros geométricos provocados pelo *scanner*.

Como a finalidade desta etapa é a determinação de parâmetros para relacionar o *grid* (considerado isento de erros) à imagem (eivada de erros sistemáticos) e para propiciar facilidade computacional, foi feita uma simplificação. Sabendo-se que a relação geométrica neste caso deve ser tal que:

$$\left|X_{gr}Y_{gr}\right|^{T} = f(X_{im}, Y_{im})$$
(65)

onde:

 $|X_{gr}Y_{gr}|^{T}$ = coordenadas observadas na imagem convertidas para o referencial do grid;

 $f(X_{im}, Y_{im}) =$ modelo matemático de correção;

é realizado o ajustamento considerando as coordenadas dos pontos no referencial de grid como observações (vetor Lb) e as coordenadas dos mesmos pontos na imagem como ponto de definição das derivadas parciais da matriz desenho (valores atribuídos às coordenadas x e y na matriz "A"). Este procedimento possibilita não somente o uso das coordenadas da imagem deformada como também torna possível o cálculo das dimensões da imagem corrigida, que será visto no item a seguir.

3.2.3.1.2 grid on line com reamostragem para correção

Para a realização da reamostragem com correção, como em toda reamostragem, é necessário saber-se quais as dimensões da nova imagem a ser gerada. Considerando-se que o *grid* é o referencial de apoio, as equações (65) permitem determinar as posições dos pontos da imagem corrigida na imagem deformada. Apesar de serem valores que provavelmente estarão fora dos limites da imagem original, permitem a determinação das dimensões da imagem corrigida, aplicando-se as mesmas aos *pixels* extremos da imagem. A figura 23 ilustra tal procedimento.

Seja a figura 23(a) a imagem original, com os erros geométricos e a figura 23(b) a imagem corrigida. O ponto 3 de (b) está interno ao espaço (a). Entretanto os pontos 1, 2 e 4 estão fora do espaço (a), implicando em coordenadas que não possuem em suas posições qualquer informação. Porém permitem-nos calcular as dimensões da nova imagem da forma:

FIGURA 23 – ESQUEMA DA REAMOSTRAGEM COM CORREÇÃO

$X_{\min} = \min[X_{\min}]$	(66)	
- min gr J		

$$X_{\max} = \max[X_{gr}] \tag{67}$$

$$Y_{\min} = \min[Y_{gr}] \tag{68}$$

$$Y_{\max} = \max[Y_{gr}] \tag{69}$$

$$\Delta_X = X_{\max} - X_{\min} \tag{70}$$

$$\Delta_{\rm Y} = Y_{\rm max} - Y_{\rm min} \tag{71}$$

Sendo:

 X_{gr} = vetor contendo as quatro coordenadas x dos quatro pontos extremos transformados para o referencial de placa (*grid*);

 Y_{gr} = vetor contendo as quatro coordenadas y dos quatro pontos extremos transformados para o referencial de placa (*grid*);

 Δ_x = dimensão na direção x da imagem corrigida;

 Δ_r = dimensão na direção y da imagem corrigida;

 X_{\min} = coordenada x da origem do referencial (b) no referencial (a);

 Y_{\min} = coordenada y da origem do referencial (b) no referencial (a).

Definidas as dimensões da imagem corrigida, é feito um novo ajustamento agora com o modelo assumindo a forma:

$$|X_{im}Y_{im}|^{T} = f(X_{gr}, Y_{gr})$$
(72)

Desta vez, as coordenadas observadas na imagem propiciam os valores do vetor Lb e as coordenadas do *grid*, os pontos de definição das derivadas parciais da matriz "A".

As observações são tratadas como não correlacionadas e a matriz dos pesos é a identidade. Como não é necessário estimar a precisão dos parâmetros calculados, mas sim determina-los, este procedimento não traz perdas e ainda tem a vantagem de simplificar o processo.

Ainda discutindo a hipótese de adoção de um único modelo, com inversão da matriz dos parâmetros, o mesmo traria inconvenientes à programação computacional. Isto se deve ao fato da matriz dos parâmetros em alguns modelos (polinômios de 3° grau, por exemplo) não admitir inversa ordinária. A solução então seria o algoritmo da pseudo-inversa aplicado a cada *pixel* da imagem corrigida. Conseqüentemente em uma aerofoto com resolução de 1600 dpi seriam calculadas aproximadamente 240 milhões de pseudo-inversas. Fica óbvio então, devido ao tempo de processamento, a desvantagem de adotar-se tal solução.

Para fins de notação, as equações (65) são denominadas "modelo direto" e têm função de relacionar os pontos da figura 23(a) com os da 23(b). Este procedimento consiste em calcular as dimensões da imagem corrigida. As equações (72) denominadas de "modelo inverso" relacionam pontos de 23(b) com os de 23(a). Neste caso o cálculo é da posição dos *pixels* que contém os níveis de cinza na imagem deformada para preenchimento de seus correspondentes na imagem corrigida.

3.2.3.2 Grid off line

A diferenciação deste método em relação ao grid on line consiste no procedimento de tomada das imagens e de obtenção de parâmetros. Imagens do grid com dimensões de 25 x 25 cm são tomadas para parametrização. Este tamanho de janela de seleção é mantido nas imagens subseqüentes, nas quais aerofotos serão digitalizadas.

Uma vez obtidos os parâmetros, estes são aplicados nos procedimentos de utilização da imagem deformada ou na geração de uma imagem corrigida. A vantagem deste método consiste na geração da imagem sem a presença do *grid*. No caso de geração de ortofotos, se for possível sua aplicação, pode ser vantajoso.

Entretanto a precisão tende em geral a ser menor, pois os erros em y podem variar. Isto pode ocorrer, por exemplo, por desgaste mecânico ou variações de tensão. A condição ideal é de uma calibração anterior a cada sessão de trabalho.

Os resíduos procedentes da transformação ortogonal são considerados valores a serem ajustados (vetor *Lb*). No caso de uso da imagem deformada, os valores que constituem os pontos de definição das derivadas parciais são do *grid*. Então os parâmetros são calculados pela forma:

$$\begin{bmatrix} D_{x} \\ D_{y} \end{bmatrix} = f(\bar{X}_{imagem}, \bar{Y}_{imagem})$$
(73)

onde:

 $|D_x D_y|^T$ = deformações (resíduos) provenientes do ajustamento da transformação ortogonal;

$$\left| \bar{X}_{imagem}, \bar{Y}_{imagem} \right|^{T}$$
 = média das coordenadas observadas nas imagens

O uso de coordenadas de pontos transladadas e rotacionadas é necessário e justifica-se pelo fato de tais diferenças não consistirem em erros geométricos. Estas diferenças são referentes a pequenos deslocamentos e imprecisão do posicionamento do *grid* sobre a plataforma de digitalização do *scanner* no momento da tomada das imagens.

Uma vez obtidos os parâmetros do modelo matemático de correção, este pode agir sobre as coordenadas observadas na imagem. Desta forma, qualquer ponto na imagem deformada que tenha suas coordenadas observadas pode ter sua correção calculada através da equação (73) e ser posteriormente corrigida. Esta correção é dada pela soma do valor encontrado pela equação (53) às coordenadas dos pontos, pela forma:

$$\begin{vmatrix} X_{corrigido} \\ Y_{corrigido} \end{vmatrix} = \begin{vmatrix} X_{observado} \\ Y_{observado} \end{vmatrix} + \begin{vmatrix} D_x \\ D_y \end{vmatrix}$$
(74)

Os testes de *grid off line* ainda tiveram outra função nesta pesquisa. Os valores das médias das imagens tomadas, bem como das médias dos resíduos possibilitaram a análise da capacidade de parametrização dos diferentes modelos matemáticos testados.

3.2.4 Modelos locais

A análise do comportamento das distorções mostrou a necessidade de regionalizar a determinação dos parâmetros de calibração. Desta maneira, o primeiro experimento foi feito com o ajustamento da transformação afim, considerando unidades de modelagem denominadas "células", que são sub-conjuntos de pontos do *grid*.

Estas células têm dimensões de 125 mm de largura por 20 mm de altura. Englobam 13 pontos nos extremos da placa e 14 nas regiões internas. Conseqüentemente, adotando-se o critério de no mínimo 4 graus de liberdade para análise de precisão dos parâmetros obtidos e variação aleatória da solução por mínimos quadrados, pode-se testar modelos matemáticos de até 22 parâmetros. A figura 24 ilustra as células de modelagem.

		1									
-	130	1301	1302	1303	1304	120	1201	1202	1203	1 294	110
14	13	1310	1320	1330	1340	12	1210	1220	1230	1240	11 10
141	131	1311	1312	1313	1314	121	1211	1212	1213	1 214	111 101
142	132	1 321	1322	1323	1324	122	1271	1222	1223	1 224	112 102
143	133	1331	1332	1333	1334	123	1231	1232	1233	1234	113 103
1++	134	1341	1342	1343	1344	124	1241	1242	1243	1244	114 104
24	13	2310	2320	2330	2340	11	2210	2220	2230	2240	21 20
2+1	231	2311	2312	2313	2314	111	2211	2212	2213	2214	211 201
242	131	2321	1312	DD	2324	111	m	12222	2223	2 224	212 202
243	233	2331	2332	2333	2334	123	2231	1231	1133	2 234	213 203
244	234	2341	2342	2343	2344	124	2241	2242	2243	2244	214 204
34	33	3310	3320	3330	3340	32	3210	3220	3230	3240	31 30
	331	3311	3312	3313	331+	321	3211	3212	3213	3214	311

FIGURA 24 – CÉLULAS DE MODELAGEM DE DISTORÇÕES

Este modelo em termos de valores dos resíduos da orientação interior e níveis de significância, bem como variância da unidade de peso *a posteriori* mostra em geral grande eficiência. Isto se deve ao fato do tamanho da região não permitir que se agrupem pontos com grande variação de direção e sentido de resultantes de resíduos. É vantajoso no quesito tempo de processamento. Entretanto no caso da necessidade de reamostragem da imagem apresenta os inconvenientes de marcas nas zonas de transição entre células. Isto ocorre porque a transição entre células não é "suavizada" pelos parâmetros os quais provocam pequenas rotações e translações de uma célula em relação à outra. Por ser um modelo local, que tem seus parâmetros alterados a cada célula, há ainda a maior complexidade na implementação de algoritmos.

3.2.5 Modelos globais

Nos modelos globais, todos os pontos pertencentes ao *grid* formam um único conjunto a ser ajustado. Para trabalhos com observações realizadas sobre a imagem deformada, com correção das coordenadas a *posteriori*, como dito anteriormente, modelos locais são teoricamente os mais eficientes. Entretanto, caso haja necessidade de correção geométrica da imagem, os modelos globais além de serem de implementação mais simples, apresentam resultados melhores. Constatou-se na tentativa de reamostragem de modelos globais, para o equipamento em estudo, que não ocorreram problemas de quebras e marcas na imagem, no caso do *desktop scanner* estudado.

A análise da capacidade de modelagem deve ser feita individualmente. Os equipamentos, ainda que de mesmo modelo e fabricante, podem apresentar comportamento diferenciado de deformações geométricas. Sendo assim, as soluções serão sempre específicas, tendo-se em um *desktop scanner* melhores resultados com modelos de calibração globais e outro idêntico apresentando melhores resultados com modelos locais.

3.2.6 Verificação da Eficiência da Metodologia Proposta

Uma vez obtidos os parâmetros do modelo de correção, no caso de utilização da imagem deformada, este passa a agir nas coordenadas lidas na imagem como uma etapa anterior à orientação interior. Isto implica na aplicação do mesmo antes da orientação interior, pois a mesma é feita a partir de foto-coordenadas das marcas fiduciais.

A verificação da eficiência dos modelos testados foi subdividida em duas etapas. A primeira denominada "eficiência de modelagem" e a segunda de "aplicabilidade".

3.2.6.1 Verificação da eficiência de modelagem

Uma vez corrigidas dos erros geométricos provocados pelo *scanner*, as coordenadas passam a ter somente os erros provenientes do processo fotográfico (deformação do filme, distorção radial simétrica, distorção descentrada, translação do ponto principal e refração atmosférica) além dos erros inerentes ao processo de observações.

Os autores consultados sugerem a utilização de uma transformação afim ou isogonal, utilizando-se quatro pontos de controle pertencentes ao grid. Os demais devem ser utilizados como verificação após aplicação dos parâmetros desta transformação. Entretanto os resíduos do ajustamento para modelagem (vetor V), são quantidades correspondentes à parcela do erro que os parâmetros não são capazes de eliminar. Desta forma a realização de um novo ajustamento para verificação da eficiência de modelagem é dispensável e inócua.

Os programas desenvolvidos no MATLAB possuem rotinas para geração de gráficos de resultantes e gráficos de variáveis. Os gráficos de variáveis possibilitam analisar se o modelo em estudo, dado um limite de especificação, é capaz de minimizar os resíduos ao limite desejado. Os gráficos de resultantes mostram se os resíduos

remanescentes apresentaram um comportamento aleatório, caracterizando então a eliminação da parte sistemática dos mesmos.

3.2.6.2 Verificação de aplicabilidade

Nesta fase dos testes o ajustamento simultâneo de fotos foi realizado. Esta análise teve a função de mostrar o efeito da aplicação do modelo.

As melhorias nas imagens ou coordenadas corrigidas pelo modelo foram avaliadas. Os pontos observados nas aerofotos possuem coordenadas conhecidas e obtidas por aerotriangulção analítica. Considerando tais valores como "corretos" (pois são os mais precisos e acurados), é possível calcular as discrepâncias dos demais valores obtidos nas orientações exteriores das aerofotos digitalizadas.

Esta avaliação é feita em função do aumento de pontos com valores de discrepâncias inferiores à precisão planialtimétrica pré-estabelecida. Tendo em vista que os pontos pertencentes às aerofotos utilizadas somente coincidirão com pontos pertencentes ao *grid* por mero acaso, este procedimento é de grande rigor na verificação da aplicabilidade da metodologia.

Este procedimento simula a atividade fim, ou seja o uso de aerofotos digitalizadas em um *desktop scanner* em um processo de orientação com resseção espacial. Então uma orientação interior e exterior de um par de aerofotos com e sem a utilização do modelo de correção proposto, pode apontar qual a melhoria propiciada pelo mesmo.

Após realizada a orientação interior, os resíduos nas coordenadas das marcas fiduciais foram analisados. Uma redução dos mesmos após aplicação do modelo indica melhoria em um dos quesitos do teste.

Procedeu-se então à orientação exterior e verificou-se inicialmente se houve redução dos resíduos das observações fotogramétricas. Posteriormente foram analisadas as discrepâncias dos pontos de verificação. Indicadores estatísticos também foram utilizados. O erro médio quadrático das coordenadas dos pontos e o desvio padrão dos parâmetros de orientação exterior, caso sejam reduzidos, também serão indicadores de aumento de precisão.

Para um comparativo, foi realizada a orientação exterior de um par de aerofotos, neste caso, observadas no estéreo restituidor analítico PLANICOMP C100. Adotou-se então estes valores como verdadeiros.

Com o objetivo de comparar as acurácias e precisões obtidas, foi realizada a orientação exterior de um par de aerofotos do campo de calibração de câmeras aéreas de São Luís do Purunã de um vôo de 1994, digitalizadas em um *scanner* fotogramétrico VEXCEL UMAX 5000, pertencente à empresa UNIVERSAL. Estas mesmas fotos, digitalizadas pelo equipamento em estudo, também tiveram seus parâmetros calculados.

Realizou-se ainda o teste de orientação exterior de três aerofotos de um vôo recente (2002) do campo de calibração de câmeras aéreas. Neste caso a câmera é uma ZEISS LMK JENA com oito fiduciais. Este teste possibilitou a verificação da influência de modelos matemáticos utilizados na orientação interior das aerofotos bem como a possibilidade destes corrigirem as distorções do EPSON na orientação interior (sem aplicação do modelo de correção).

4 RESULTADOS E DISCUSSÕES

4.1 VERIFICAÇÃO DA CONFIABILIDADE DO REFERENCIAL DE PLACA

Foram realizadas duas séries de observações utilizando o restituidor analítico PLANICOMP, por um mesmo operador e sob as mesmas condições. Desta maneira obteve-se um total de 18 observações em duas séries de 9. As leituras no sentido x têm os pontos denominados 11 a 33. As leituras no sentido y 110 a 330. Foram ajustadas pelo método paramétrico, utilizando o modelo matemático da transformação ortogonal no plano. O quadro 2 mostra valores de resíduos e erro médio quadrático obtidos (m) e a média dos erros absolutos (E), entre as coordenadas do certificado de calibração da placa e os valores obtidos no PLANICOMP C100.

1ª S	SESSÃO(m	um)	2°SESSÃO(mm)			
PONTO	V _X	V _Y	PONTO	V _X	V _r	
11	-0,003	-0,004	11	-0,013	-0,012	
12	-0,009	0,002	12	-0,003	-0,002	
13	-0,005	0,016	13	-0,013	0,002	
21	-0,002	-0,012	21	0,004	-0,012	
22	0,002	0,000	22	-0,004	-0,002	
23	0,008	-0,002	23	0,002	0,000	
31	0,013	0,001	31	0,003	-0,004	
32	0,002	0,001	32	0,008	-0,002	
33	0,007	0,015	33	0,009	0,004	
110	-0,011	-0,006	110	-0,004	-0,013	
120	-0,007	0,000	120	-0,005	-0,011	
130	-0,005	0,014	130	-0,009	-0,006	
210	0,001	-0,012	210	0,001	0,003	
220	0,002	-0,002	220	0,001	-0,004	
230	0,006	0,000	230	-0,004	0,000	
310	0,011	-0,008	310	0,000	-0,001	
320	0,000	0,014	320	0,003	0,007	
330	0,005	0,012	330	0,009	0,019	
Obs: Resíduos procedentes de						
ajustamento das observações das			m	±0.006	±0.008	
	duas sessõe	s	E	0,006		

QUADRO 2 - RESÍDUOS DA VERIFICAÇÃO DO REFERENCIAL DE PLACA

Os valores dos resíduos obtidos referem-se ao real deslocamento dos pontos observados em relação ao certificado de calibração da placa de cristal. Constatou-se que tais deslocamentos são desprezíveis, pois seus valores são muito inferiores ao erro presente nas imagens digitalizadas.

Percebe-se que os valores atestam grande confiabilidade ao referencial de placa. Esta constatação permitiu que os valores do referencial fossem considerados isentos de erros. Outra constatação é que o certificado de calibração expedido pelo fabricante da placa contém algum engano com relação aos valores dos erros médios quadráticos apresentados ($m_x = \pm 0,2 \ \mu m \ e \ m_y = \pm 1,2 \ \mu m$), pois os foram encontrados erros maiores ($m_x = \pm 6 \ \mu m \ e \ m_y = \pm 8 \ \mu m$).

4.2 DETERMINAÇÃO DOS ERROS GEOMÉTRICOS (DISTORÇÕES) PROVOCADAS PELO EPSON 1640 XL NO GRID DIGITALIZADO

Realizando-se o ajustamento conforme item 3.2.2.4 da metodologia constatouse que os resíduos apresentam característica sistemática, provavelmente devido ao sistema de lentes deficiente. As distorções têm um comportamento predominantemente axial, mas as pequenas componentes em y proporcionam um deslocamento tangencial que embora seja significativo é mascarado pela monta dos valores em x. O sentido da varredura é na direção y e a linha de sensores paralela a x.

As imagens que geraram os gráficos 2 e 3 foram obtidas com uma pausa de cinco minutos entre a primeira e segunda tomada, tempo em que o aparelho foi desligado. A resolução adotada foi 1600dpi pelos motivos já expostos. A placa foi posicionada com seu número de série para baixo e digitalizada como positivo.

Foi utilizado um opcional do dispositivo, chamado de "unidade de transparência", o qual permite pelo acréscimo de iluminação a digitalização de objetos translúcidos como filmes e diapositivos.

Percebe-se pelos gráficos a manutenção do comportamento em imagens tomadas no mesmo dia, pois o intervalo de tempo é suficiente para que sistema ópticomecânico volte à sua posição de origem. A variação de máximos deslocamentos em x de uma tomada à outra é de +1,55 μ m e em y de - 7,91 μ m. Considerando-se um tamanho de *pixel* de 15,88 μ m as variações máximas entre uma tomada e outra, tanto para x quanto para y podem ser desprezadas na análise.

No apêndice 1, os gráficos ilustram o comportamento em periodicidade semanal e mensal para os pares. O gráfico 13 mostra que uma semana após a primeira tomada, o comportamento sistemático se manteve, com pequenas variações entre os máximos das tomadas em x de 14 μ m e y de 2 μ m. Tal variação é menor que a dimensão do *pixel*.

GRÁFICO 2 - RESULTANTES DA IMAGEM 1 TOMADA EM 05/04/2002

A estabilidade de tais deformações foi investigada também para intervalos mensais e também para um grande intervalo de tempo (quatro meses). A temperatura ambiente também foi observada e variou de 15°C a 32°C.

Um outro fato que se pode aqui mencionar é que o *desktop scanner* foi intensamente utilizado pela empresa. Vários filmes foram digitalizados no período de realização dos testes.

GRÁFICO 3 - RESULTANTES DA IMAGEM 2 TOMADA EM 05/04/2002

Mesmo sob tais condições, não ocorreu variação significante nas distorções (máximos de x variando de 960 μ m a 980 μ m e de y de 158 μ m a 210 μ m). Fica então comprovada a estabilidade geométrica satisfatória do equipamento.

O quadro 3 apresenta valores estatísticos dos testes realizados. São tabulados sob a forma de erro médio quadrático nos eixos x e y (m_x, m_y) , valores médios dos resíduos considerados como erros verdadeiros (*E*) e valores máximos dos resíduos nos referidos eixos.

Os valores apresentados sintetizam 1650 observações realizadas (cento e sessenta e cinco por imagem). Cada observação no modelo ortogonal no plano dá origem a duas equações. O modelo possui 3 parâmetros. São totalizadas então 3300 equações, solucionadas em dez grupos de 330. Estes números atestam grande repetibilidade e elevado número de graus de liberdade (327 por imagem).

IMAGEM (DATA)	m _x (μm) +/-	$m_y (\mu m) +$	E _x (µm)	Е _у (µm)	MAX _x (µm)	MAX _y (μm)
l (05/04/2002)	529,726	60,261	4 55 ,8 30	48,700	979 ,512	157,808
2 (05/04/2002)	532,169	60,088	457,844	47,681	977,961	165,722
3 (12/04/2002)	532,938	67,941	458,814	55,266	964,299	167,635
4 (12/04/2002)	533,098	68,225	458,656	55,768	965,316	185,337
5 (19/04/2002)	532,140	71,337	458,022	59,051	979,569	208,665
6 (19/04/2002)	534,994	71,006	460,619	58,971	972,676	195,377
7 (19/05/2002)	534,505	77,080	459,412	63,926	971,534	210,295
8 (19/05/2002)	535,423	73,837	460,761	61,469	963,504	193,890
13 (09/09/2002)	531,035	79,788	456,748	65,791	960,009	209,435
14 (09/09/2002)	530,948	78,699	456,679	65,282	967,852	209,862

QUADRO 3 - VALORES DE RESÍDUOS ENCONTRADOS NAS IMAGENS TOMADAS NO EPSON 1640 XL EM DIFERENTES DATAS

Constam ainda no apêndice 1 os gráficos de variáveis, que foram utilizados para controle das observações. Estes gráficos associados aos gráficos de resultantes propiciam grande eficiência na verificação de erros.

4.3 DETERMINAÇÃO DE DISTORÇÕES PROVOCADAS PELO RM1

Conforme item 3.2.2.4 da metodologia, agora aplicada à imagem do grid gerada pelo scanner RM1 (fotogramétrico), constata-se que os resíduos obtidos na digitalização possuem resultantes indicadoras de baixa distorção geométrica (máximos de 16.92 μ m em x e 21.44 μ m em y) e total ausência de erros sistemáticos.

Este fato, além de atestar a qualidade do equipamento, indica os valores desejáveis de comportamento espacial de deformações (resíduos) tendo em vista que a resolução da digitalização é de 24µm. O gráfico 4 abaixo ilustra os comentários.

GRÁFICO 4 - RESULTANTES DA IMAGEM TOMADA PELO RM1

4.4 ANÁLISES DA EFICIÊNCIA DOS MODELOS

Os resultados dos testes de modelagem realizados estão divididos em dois grupos. O primeiro refere-se ao *grid off line*. O segundo *grid on line*. Ambos os grupos possuem resultados referentes a quatro alternativas testadas. Estas são: transformação afim local (por células), transformação afim global, projetiva e polinômio de 3° grau.

4.4.1 Grid off line

O primeiro teste realizado foi da transformação afim por célula. Os valores médios de coordenadas e resíduos dos pontos das dez imagens serviram de base para cálculo dos parâmetros das 24 regiões. O gráfico 5 a seguir ilustra as resultantes após a modelagem.

		1 30	1301	1902	"tapo	1304	าะอ	1201	1202	1203	1204	110	1	
	14 -	13	1310	1320	-1330	1340	12	1210	1220	1230	1240	11	/ 10	
50	141	131	1311	1312	1313	1314	121	1211	1212	1213	1214	111	101	
ł	142	132	1321	**1322	-1323	*1324	122	*1221	1222	1223	1224	**112		
	143	133	1331	1332	1333	1334	123	1231	1232	-1233	1234	113	103	
	144	134	1341	1342	1343	1344	124	1241	1242	1243	1244	► 114	- 104	>
	24	23	2310	2320	2330	2340	n	2210	2220	2230	2240	21	20	-
150	241	231	2311	2312	2313	2314	221	-2211	2212	2213	2214	211	201	
		232	2321	7322	2323	2324	m	2221		2223	2224	212	202	
	243	233	2331	2332	2333	2334	223	2231	12232	2233	2234	213	•203	
200	244	234	2341	2342	2343	2344	224	2241	2242	2243	2244	*214	\$204	1
	34	33	3310	3320	3330	3340	32	3210	3220	3230	3240	* 31	1 30	
250	_	331	3311	3312	3313	3314	321	3211	3212	3213	3214	311	->>	
			1			1		1			1			_

GRÁFICO 5 - RESULTANTES APÓS A MODELAGEM (TRANSFORMAÇÃO AFIM - CÉLULAS)

É possível perceber pelo gráfico a persistência de erros sistemáticos após a modelagem. Permanece uma distorção radial assimétrica que a transformação afim por células é incapaz de parametrizar. Além disso, os valores dos máximos de 87µm em x e 63µm em y indicam a presença de elevados erros posicionais após a modelagem. A percepção deste fato é complementada pelo gráfico de controle das amostras, também denominado gráfico de variáveis. O gráfico 6 apresenta o controle das amostras após a modelagem.

GRÁFICO 6 - CONTROLE DOS RESÍDUOS APÓS MODELAGEM (TRANSFORMAÇÃO AFIM-CÉLULAS)

As amostras referem-se aos pontos que tiveram suas coordenadas corrigidas pelo modelo afim por células.Os limites de especificação (USL e LSL) são de \pm 32µm. Os limites de controle (UCL e LCL) para \pm 3 σ (99,73%), utilizados em todos os testes não são ultrapassados pelas amostras, indicando que os erros presentes são inerentes ao processo. Por ser incapaz de manter as amostras dentro dos limites de especificação (USL e LSL) o modelo é inadequado. O segundo modelo testado foi o da transformação afim global. Apesar da incapacidade de modelagem desta transformação por células, havia a hipótese de obtenção de bons resultados. Esta hipótese foi levantada devido aos resíduos remanescentes nas diversas orientações interiores de aerofotos realizadas, que variavam de $\pm 30\mu$ m a $\pm 50\mu$ m. O gráfico 7 a seguir ilustra o comportamento das resultantes após a modelagem.

		120	1301	302	1303	1304	120	1201	1202	1203	\$204	110	
	and the	13	1310	1320	1330	1340	12	1210	1220	1230	1240		* 10
50	"Taka	121	1311	1312	a 1313		121	1211	1212	1213	1214	111	101
	142	132	1321	1372	1323	1324	122	1221	1222	1223	1224	112	102
	*143	133	1331	1332	1333	1334	123	1231	1232	1233	1234	113	103
100	144	134	1341	1342	1343	* 1344	\$124	1241	1242	1243	1244	114	104
(uu	24	23	2310	2320	2330	2340	1 22	2210	2220	2230	2240	21	20
⊃ ≻ ₁₅₀	241	231	2311	2312	2313	2314	221	2211	2212	2213	2214	211	201 _
	242	-*232	2321		2323	2324	m	2221	2222	¥ 2223	12224	1212	\$202
	243	233	2331	-2332	-2333	- 2334	- 223	-2231	-2232	2233	2234	213	203-
200	244	234	2341	***************************************	1343	2344	*** 224	2241	- 2242	2243	2744	212	204
	J ₃₄	1 33	3310	3320	3330	3340	32	3210	J~3220	3230	\$2.40	121	-50
250	-	331	3311	-3312	-3313	3314	321	3211	3212	2213	3214	311	_
	0		50			100		150			200		250

GRÁFICO 7 - RESULTANTES APÓS A MODELAGEM (TRANSFORMAÇÃO AFIM GLOBAL)

O comportamento espacial das deformações resultantes torna-se mais aleatório. Entretanto o efeito dos erros sistemáticos provocados pelas distorções tangenciais não foi totalmente parametrizado. Os máximos de 93,6 μ m para x e de 105,8 μ m para y, também são valores elevados. O gráfico 8 de controle das amostras indica que existem amostras que, apesar de estarem dentro da zona de controle (UCL,LCL), estão fora dos limites de especificação (USL,LSL).

GRÁFICO 8 - CONTROLE DOS RESÍDUOS APÓS MODELAGEM (TRANSFORMAÇÃO AFIM GLOBAL)

Ficou então evidenciado que relações geométricas de manutenção do paralelismo não foram capazes de modelar as deformações do *scanner*. Diante destas constatações a capacidade da transformação projetiva no plano foi testada. O gráfico 9 ilustra as resultantes após a modelagem. Os valores dos máximos elevados (52,2 μ m para *x* e 109,5 μ m para *y*) ainda persistem após a modelagem características de erros sistemáticos não modelados.

O gráfico 10 de controle mostra a situação das amostras em relação aos limites de controle e especificação. O limite superior de especificação é ultrapassado por várias amostras. O inferior por uma amostra. Fica evidente a necessidade de utilização de modelos matemáticos que parametrizem diferenças fora do domínio linear.

GRÁFICO 9 - RESULTANTES APÓS MODELAGEM (TRANSFORMAÇÃO PROJETIVA)

GRÁFICO 10 - CONTROLE DOS RESÍDUOS APÓS MODELAGEM (TRANSFORMAÇÃO PROJETIVA)

Tendo em vista a impossibilidade de modelagem adequada pelas transformações do domínio linear foi testado o modelo polinomial bivariado de 3° grau. Esta hipótese foi baseada no fato de que as distorções axiais, tangenciais e radiais presentes na imagem podem ser modeladas por esta relação funcional. O gráfico 11 ilustra as resultantes dos resíduos para o referido polinômio.

GRÁFICO 11 - RESULTANTES APÓS MODELAGEM (POLINÔMIO BIVARIADO DE 3º GRAU)

As deformações resultantes após a modelagem da transformação polinomial, alternam ora num sentido ora em outro. Formam um conjunto de comportamento espacial "ondular" e aleatório. Os valores dos máximos são os menores obtidos $(43,9\mu m \text{ para } x \text{ e } 31,7\mu m \text{ para } y)$.

O gráfico 12 mostra o controle das amostras com seus resíduos após a modelagem. É possível notar todas as amostras dentro dos limites de controle e especificação. Portanto o modelo polinomial de 3º grau foi capaz de parametrizar as

diferenças físicas entre os referencias e teoricamente corrigir as deformações do dispositivo em estudo.

GRÁFICO 12- CONTROLE DOS RESÍDUOS APÓS MODELAGEM (TRANSFORMAÇÃO POLINOMIAL DE 3º GRAU)

Em função dos resultados obtidos na modelagem das deformações com as transformações lineares e polinomiais, optou-se neste trabalho por utilizar o polinômio de 3° grau na correção das deformações do *desktop scanner* EPSON 1640 XL. Este modelo matemático foi utilizado na correção de fotocoordenadas observadas na imagem deformada e também para a obtenção de uma imagem corrigida a partir da reamostragem de *pixels*.

4.5 VERIFICAÇÃO DA EFICIÊNCIA DA METODOLOGIA PROPOSTA

Para efeito da verificação da eficiência da modelagem foi desenvolvido um programa de orientação exterior. O balizamento e classificação das discrepâncias em relação às coordenadas conhecidas provocadas pelo *desktop scanner*, bem como a verificação das melhorias propiciadas por um modelo de correção são a síntese desta pesquisa. Então orientação interior e exterior consistem em importantes aferidores, pois têm também a função de atestar a eficiência da modelagem.

A precisão e acurácia da orientação interior têm influência direta na orientação exterior. A obtenção de parâmetros de orientação exterior é etapa fundamental tanto na aerotriangulação, estéreo-restituição, monorestituição e na produção de ortofotos digitais. Conseqüentemente tais testes são de grande importância na comprovação de melhorias propiciadas pelos métodos analisados, bem como a possível utilização na fotogrametria do *desktop scanner* estudado.

4.5.1 Orientação Exterior de Duas Aerofotos com Observações Realizadas no PLANICOMP

Neste caso, somente a orientação exterior foi realizada. Isto se deve ao fato das coordenadas terem sido fornecidas no referencial fiducial. Com base nos parâmetros de calibração da câmera, o PLANICOMP C100 orienta a foto em relação à câmera.

As aerofotos são do campo de calibração de câmeras aéreas, escala 1:12000. O quadro 4 a seguir, apresenta os valores de coordenadas fotogramétricas ajustadas, resíduos das observações fotogramétricas e erros médios quadráticos obtidos.

Os resíduos variam de 1 μ m a 4 μ m, para ambas as aerofotos, indicando observações acuradas. O erro médio quadrático nulo para o eixo x e de 2 μ m para y atesta a grande precisão das observações fotogramétricas.

O quadro 5 apresenta as coordenadas no referencial geodésico local, calculadas pelo ajustamento simultâneo de fotos. Apresenta ainda suas discrepâncias

em relação aos valores conhecidos e o erro médio quadrático em cada eixo. Descreve por fim os parâmetros de orientação exterior das duas aerofotos e suas precisões.

COORDENADAS FOTOGRAMÉTRICAS AJUSTADAS, SEU RESÍDUOS E SUAS PRECISÕES										
				(PLAN	ICOMP)					
-	F	OTO 33 (n	am)			F	OTO 34 (m	m)		
PONTO	хр	ур	Vx	Vy	PONTO	хp	ур	Vx	Vy	
1	-10,628	-40,561	0,000	0,002	1	-55,500	-40,417	0,000	-0,002	
2	-29,176	-41,738	0,000	-0,002	2	-73,861	-41,550	0,001	0,002	
3	-22,221	-48,594	0,000	-0,001	3	-67,118	-48,422	0,000	0,001	
4	-11,822	-50,332	0,000	0,001	4	-56,856	-50,183	0,000	-0,001	
5	24,840	-62,048	0,000	0,003	5	-20,022	-61,939	0,000	-0,004	
6	10,240	-48,320	0,000	-0,003	6	-34,687	-48,214	0,000	0,003	
7	32,506	-25,123	0,000	-0,001	7	-11,878	-25,067	0,000	0,001	
8	29,755	-46,026	0,000	0,002	8	-15,050	-45,960	0,000	-0,002	
9	58,642	-12,478	0,000	0,003	9	14,473	-12,478	0,000	-0,003	
10	32,636	-55,896	0,000	0,000	10	-12,205	-55,816	0,000	0,000	
11	42,704	-69,395	0,000	-0,002	11	-1,946	-69,285	0,000	0,002	
12	50,161	-73,333	0,002	0,004	12	5,579	-73,215	-0,001	-0,004	
14	73,904	-68,994	0,000	-0,002	14	29,442	-68,928	0,000	0,002	
15	76,266	-74,262	0,000	0,002	15	31,908	-74,172	0,000	-0,002	
16	85,793	-54,007	0,000	-0,004	16	41,460	-54,017	0,000	0,004	
17	72,573	-25,430	0,000	0,000	17	28,248	-25,470	0,000	0,000	
18	90,992	21,186	0,000	-0,002	18	47,668	21,171	0,000	0,002	
19	98,111	25,513	-0,001	0,001	19	54,908	25,490	0,001	-0,001	
20	103,738	48,672	0,000	0,000	20	61,251	48,740	0,000	0,000	
21	95,508	64,746	0,000	0,000	21	52,903	64,943	0,000	0,000	
22	89,695	78,720	0,001	0,001	22	46,851	79,045	-0,001	-0,001	
23	80,358	94,258	0,000	0,001	23	37,381	94,767	0,000	-0,001	
24	68,452	110,191	0,000	-0,002	24	25,407	110,929	0,000	0,002	
25	30,862	91,769	0,000	0,000	25	-12,520	92,485	0,000	0,000	
29	-20,120	17,953	-0,001	0,001	29	-59,531	18,366	0,000	-0,001	
30	-39,908	15,071	0,000	-0,003	30	-79,423	15,534	0,000	0,003	
35	109,437	-49,094	0,000	-0,001	35	65,452	-49,156	0,000	0,001	
38	2,252	61,656	0,000	0,001	38	-39,950	62,228	0,000	-0,001	
E	ERRO MÉDIO QUADRÁTICO					ERRO MI	É DIO QU A	DRÁTIC)	
$m_X = \pm$	0,000		$m_{y}=\pm$	0,002	$m_X = \pm$	0,000		<i>m</i> _y =±	0,002	

QUADRO 4 - COORDENADAS FOTOGRAMÉTRICAS OBTIDAS NO PLANICOMP C 100

O quadro 6 apresenta a precisão de cada ponto, obtido a partir de valores da diagonal principal da matriz variância covariância dos parâmetros ajustados e as médias. Estes valores são considerados os "ideais" neste estudo.

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (PLANICOMP)										
DONTO	COORDE	NADAS CAL	CULADAS	INJUN-	DIS	CREPÂNCL	AS			
FONTO	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	Z (m)			
1	2552,794	2556,408	1199,852		0,157	0,094	-0,183			
2	2773,033	2551,919	1188,990	<i>x,y,z</i>	0,057	-0,017	0,039			
3	2697,363	2637,445	1198,769		0,130	-0,008	0,131			
4	2577,027	2667,298	1205,867		0,128	0,004	0,061			
5	2162,272	2846,959	1202,200		0,084	0,004	-0,031			
6	2317,663	2669,262	1204,571		0,128	-0,021	0,121			
7	2028,217	2426,939	1187,334		0,029	0,015	0,213			
8	2086,788	2665,484	1201,905		0,086	0,051	0,182			
9	1703,631	2308,013	1183,214		-0,076	0,067	-0,025			
10	2064,253	2783,883	1202,470		0,084	-0,018	0,134			
11	1959,450	2957,343	1193,597		0,091	-0,052	0,109			
12	1875,255	3013,780	1190,429	<i>x,y,z</i>	0,023	-0,002	-0,060			
14	1588,316	2992,325	1186,026		0,005	-0,010	-0,260			
15	1563,885	3060,099	1180,651		0,040	-0,001	-0,224			
16	1429,154	2830,176	1183,475		-0,021	0,012	-0,186			
17	1555,714	2475,973	1188,520		-0,133	0,014	-0,230			
18	1265,910	1944,175	1157,850		-0,231	-0,087	-0,060			
19	1172,933	1899,983	1154,538	<i>x</i> , <i>y</i> , <i>z</i>	-0,042	-0,064	0,069			
20	1060,576	1621,366	1130,115		-0,075	-0,025	-0,033			
21	1147,627	1418,628	1137,939		0,073	0,067	0,061			
22	1210,052	1247,927	1150,354		0,012	0,024	-0,044			
23	1308,942	1053,729	1157,141	<i>x,y,z</i>	-0,056	-0,113	-0,384			
24	1435,244	850,580	1159,652		-0,024	0,025	-0,298			
25	1907,747	1029,278	1158,651		-0,120	0,112	0,060			
29	2627,307	1828,917	949,449	<i>x,y,z</i>	-0,051	0,060	-0,003			
30	2894,813	1842,076	947,971		-0,281	0,020	0,134			
35	1133,075	2804,883	1169,288		-0,185	0,092	-0,533			
38	2281,659	1332,490	1094,565		-0,094	0,163	0,317			
				Médias	-0,009	0,014	-0,033			
	<u></u>	ERR	O MÉDIO QU	ADRÁTIC	O (m)	<u> </u>				
	$m_X = \pm$	0,113	$m_{y}=\pm$	0,062	$m_z = \pm$	0,197				
	<u> </u>									
	PARÂMET	ROS DE OF	RIENTAÇÃO	EXTERIO	R E SUAS P	RECISÕES				
		FOTO 33				FOTO 34				
		VALORES	· σ			VALORES	σ			
s	ĸ	-5,4639994	0,003	st	к	-5,3006106	0,003			
grau	φ	0,27391653	0,009	grau	φ	0,40619786	0,008			
	ω	-0,0469074	0,009		ω	0,35412788	0,009			
so	X0	2391,730	0,308	so	X0	1873,716	0,284			
netr	<u>Y0</u>	2095,568	0,306	letr	Y 0	2133,602	0,318			
me	ZO	2987,723	0,141	u	ZO	2985,967	0,111			

QUADRO 5 – RESULTADOS DA ORIENTAÇÃO EXTERIOR (PLANICOMP)

	PRECISA	O DAS CO	ORDENADA:	S CALCUL	ADAS (PLA	NICOMP)	
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)
1	0,085	0,086	0,202	16	0,110	0,106	0,238
2	0,075	0,077	0,096	17	0,092	0,074	0,206
3	0,096	0,096	0,211	18	0,114	0,071	0,207
4	0,088	0,094	0,205	19	0,073	0,068	0,092
5	0,075	0,103	0,208	20	0,139	0,093	0,227
6	0,075	0,089	0,200	21	0,133	0,108	0,225
7	0,066	0,070	0,196	22	0,082	0,082	0,097
8	0,070	0,087	0,200	23	0,127	0,145	0,242
9	0,079	0,065	0,197	24	0,123	0,169	0,262
10	0,073	0,097	0,206	25	0,089	0,146	0,264
11	0,079	0,114	0,220	29	0,072	0,071	0,099
12	0,075	0,079	0,099	30	0,120	0,087	0,282
14	0,100	0,121	0,240	35	0,144	0,112	0,270
15	0,104	0,130	0,249	38	0,078	0,113	0,257
				Média	0,094	0,098	0,203

QUADRO 6 - PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS

Tomando-se por base a precisão como função da escala das aerofotos e do máximo erro tolerável em um sistema analítico, pode-se seguramente adotar o valor de 0,050mm na escala da foto (MITISHITA, 1997, p. 240). O padrão de digitalização praticado pelas empresas de aerolevantamento no Brasil, atualmente é de um *pixel* de 20µm ou 0,020mm.

Para efeito deste estudo, considerou-se admissível o erro de até 2 *pixels* no padrão de digitalização. Isto equivale a 0,040mm na escala da foto. Então, para aerofotos na escala 1:12.000 tem-se um erro máximo tolerável de 0,48m.

Analisando-se as discrepâncias em X e Y para o caso do PLANICOMP, tem-se 100% dos pontos com erros dentro do limite tolerado. Para Z, 96,43% dos pontos atendem a estas condições.

Para a maior escala de restituição usual em vôos 1:12000, que é de 1:5000, pelo padrão de exatidão cartográfica, seriam admissíveis erros padrão de 1,5m para a planimetria e 0,7m na altimetria em cartas classe "A". O maior rigor justifica-se pelo fato da aerotriangulação ser uma etapa intermediária no processo de produção cartográfica.. Isto possibilita margens, para que o total destes erros não comprometa a qualidade e acurácia posicional das cartas ou ortofotos geradas.

4.5.2 Orientação Interior e Exterior de Duas Aerofotos Digitalizadas no VEXCEL

Ainda para efeito de comparação de valores obtidos, foi realizada a orientação exterior de duas aerofotos digitalizadas por um *scanner* fotogramétrico VEXCEL UMAX 5000. Assim, as mesmas fotos do campo de calibração (33 e 34) foram digitalizadas, com resolução de 9µm. O objetivo deste teste foi verificar o quão precisas podem ser as observações realizadas em meio digital, tendo-se uma imagem gerada em um equipamento de acurácia e precisão elevadas.

O quadro 7 a seguir apresenta os valores dos resíduos da orientação interior. Os valores dos resíduos são baixos (11 μ m em x e 1 μ m em y para a aerofoto 33;10 μ m em x e 4 μ m em y para a aerofoto 34). Estes valores são compatíveis com aerotriangulações realizadas no estéreo-restituidor analítico do laboratório de fotogrametria da UFPR.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (VEXCEL)										
	FOT	FOTO 34								
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)						
1	0,011	0,001	0,010	-0,004						
2	-0,011	-0,001	-0,010	0,004						
3	0,011	0,001	0,010	-0,004						
4	-0,011	-0,001	-0,010	0,004						

QUADRO 7 – RESÍDUOS DA ORIENTAÇÃO INTERIOR (VEXCEL)

O quadro 8 apresenta um comparativo entre distâncias das marcas fiduciais do certificado de calibração e as mesmas observadas na imagem gerada. Esta comparação tem a finalidade de apontar se na imagem gerada o paralelismo é mantido. Caso isto não ocorra, a transformação afim será incapaz de modelar tais deformações. Isto resulta na impossibilidade de uso de câmeras de quatro fiduciais. Em casos extremos, até mesmo o uso de câmeras de oito fiduciais e modelos polinomiais na orientação interior podem ser ineficientes. No entanto, com o *scanner* fotogramétrico, percebe-se

a manutenção do paralelismo através das diferenças $\Delta_{1-2} e \Delta_{3-4}$ (lados paralelos) que variam em 44µm na foto 33 e 38µm na foto 34. A manutenção também é constatada nos $\Delta_{2-3} e \Delta_{4-1}$ (também paralelos) que variam 3µm na foto 33 e 14µm na foto 34.

QUADRO 8 - COMPARAÇÃO DE DISTÂNCIAS ENTRE FIDUCIAIS (VEXCEL)

DIFERENÇAS CALCULADAS PARA DISTÂNCIAS ENTRE MARCAS FIDUCIAIS (VEXCEL)										
	OBSE	RVADAS NA	IMAGEM	[(mm)	CEDTIFIC			CÂMEDA		
FIDUCIAL	FOT	°O 33	FOTO 34		CENTER I CADO DE CALIBIC DA CAMENA					
	X	У	X	У	Data	Ponto	x (mm)	y (mm)		
1	5,288	4,514	5,481	3,933	4	1	-106,002	106,002		
2	217,328	4,617	217,521	3,663	1/9	2	105,996	105,996		
3	217,269 216,666		217,815	215,715	4/1	3	105,993	-105,993		
4	5,184 216,585		5,736	215,991		4	-106,006	-106,007		
DISTÂNCIA	FOTO 33 (mm) FOTO 34 (mm)				DISTÂN	CIAS DO C	ERTIFICA	DO (mm)		
1-2	212	2,040	212,040		1-2		211	,998		
2-3	212	2,049	212,052		2-3		211,989			
3-4	212	2,085	212,079		3-4		211,999			
4-1	212	2,072	212,058		4-1		212	,009		
DIFERENÇA		FOTO 3	53 (mm)			FOTO	34 (mm)			
Δ ₁₋₂		0,0	42			0,	042			
Δ ₂₋₃		0,0	60			0,	063			
Δ ₃₋₄		0,0	86		0,080					
Δ ₄₋₁		0,0	63			0,	049			

O quadro 9 apresenta os valores das observações fotogramétricas ajustadas e os resíduos das mesmas, bem como o erro médio quadrático para cada eixo.

COORDENADAS FOTOGRAMÉTRICAS AJUSTADAS, SEUS RESÍDUOS E SUAS										
	-1		<u> </u>	RECISÕE	ES (VEXC	EL)				
	F	OTO 33 (n	<u>nm)</u>			F	OTO 34 (m	m)		
PONTO	хр	ур	Vx	Vy	PONTO	хр	ур	Vx	Vy	
1	51,634	52,606	0,000	0,003	1	3,004	44,535	0,000	-0,003	
2	69,679	54,225	0,002	-0,001	2	21,291	46,071	-0,002	0,000	
3	62,819	60,910	0,000	-0,002	3	14,206	52,647	0,000	0,002	
4	52,654	62,409	0,000	0,000	4	3,883	54,143	0,000	0,000	
5	15,708	73,126	0,000	0,003	5	-32,634	64,747	0,000	-0,003	
6	30,771	59,805	0,000	0,000	6	-17,868	51,675	0,000	0,000	
7	8,875	35,875	0,000	0,002	7	-39,468	28,215	0,000	-0,002	
8	11,308	56,959	0,000	0,001	8	-37,182	48,960	0,000	-0,001	
9	-17,004	22,394	0,000	-0,001	9	-65,453	14,952	0,000	0,001	
10	8,125	66,757	0,000	0,002	10	-40,238	58,561	0,000	-0,002	
11	-2,618	79,969	0,000	0,000	11	-50,477	71,476	0,000	0,000	
12	-10,311	83,714	0,001	-0,001	12	-57,945	75,138	-0,001	0,001	
14	-34,162	78,738	0,000	-0,002	14	-81,504	70,395	0,000	0,002	
15	-36,863	83,940	0,000	0,001	15	-83,909	75,456	0,000	-0,001	
16	-45,750	63,334	0,000	-0,003	16	-93,246	55,435	0,000	0,003	
17	-31,324	35,009	0,000	-0,004	17	-79,671	27,521	0,000	0,004	
18	-49,108	-12,608	0,000	0,001	18	-97,763	-19,948	0,000	-0,001	
19	-56,253	-17,228	-0,003	0,004	19	-104,992	-24,577	0,003	-0,004	
20	-61,754	-40,857	0,000	-0,001	20	-110,554	-48,538	0,000	0,001	
21	-52,696	-56,641	0,000	0,002	21	-101,991	-64,786	0,000	-0,002	
22	-46,062	-70,344	0,003	-0,001	22	-95,909	-78,991	-0,002	0,002	
23	-35,968	-85,486	0,000	-0,006	23	-86,145	-94,799	0,000	0,006	
24	-23,407	-100,894	0,000	0,003	24	-73,635	-111,005	0,000	-0,003	
25	13,603	-80,929	0,000	0,002	25	-35,302	-90,361	0,000	-0,002	
29	57,412	-6,746	-0,004	-0,001	29	14,717	-14,300	0,004	0,002	
30	76,820	-3,224	0,000	-0,004	30	34,348	-10,842	0,000	0,004	
33	23,822	-97,142	0,001	0,000	33	-25,484	-107,406	-0,001	0,000	
38	39,620	-50,219	0,000	0,001	38	-6,784	-58,647	0,000	-0,001	
E	RRO M	ÉDIO QU	ADRÁTIC	20		ERRO MÉ	DIO QUA	DRÁTICO)	
$m_X = \pm$	0,001		$m_{Y} = \pm$	0,002	$m_X = \pm$	0,001		$m_{y}=\pm$	0,002	

QUADRO 9 – COORDENADAS FOTOGRAMÉTRICAS (VEXCEL)

Os resíduos são baixos e indicam elevada precisão das observações. Como foram realizadas observações monoscópicas, a verificação destes valores serve para garantir que não houve erro de posicionamento sobre a imagem.

O quadro 10 apresenta os resultados da orientação exterior calculada com observações realizadas nas fotos digitalizadas no VEXCEL.

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (VEXCEL)										
PONTO	COORDE	NADAS CAL	CULADAS	INJUN-	DIS	CREPÂNCIA	S			
TONIO	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	Z (m)			
1	2552,866	2556,518	1199,622		0,229	0,204	-0,412			
2	2773,005	2552,007	1188,911	<i>x,y,z</i>	0,029	0,071	-0,040			
3	2697,462	2637,675	1198,067		0,229	0,222	-0,571			
4	2577,015	2667,374	1205,659		0,116	0,080	-0,147			
5	2162,304	2847,255	1201,708		0,116	0,300	-0,523			
6	2317,678	2669,411	1204,395		0,143	0,128	-0,055			
7	2028,238	2426,979	1187,328		0,050	0,055	0,207			
8	2086,792	2665,637	1201,616		0,090	0,204	-0,107			
9	1703,761	2307,990	1183,534		0,054	0,044	0,295			
10	2064,302	2784,037	1202,010		0,133	0,136	-0,326			
11	1959,476	2957,377	1193,501		0,117	-0,018	0,013			
12	1875,271	3013,772	1190,434	<i>x,y,z</i>	0,039	-0,010	-0,055			
14	1588,628	2992,195	1186,359		0,317	-0,140	0,073			
15	1564,058	3060,072	1180,681		0,213	-0,028	-0,194			
16	1429,286	2830,269	1183,549		0,111	0,105	-0,112			
17	1555,874	2476,008	1188,925		0,027	0,049	0,175			
18	1266,086	1944,222	1158,010		-0,055	-0,040	0,100			
19	1172,973	1900,008	1154,579	<i>x,y,z</i>	-0,002	-0,039	0,110			
20	1060,558	1621,412	1130,150		-0,093	0,021	0,002			
21	1147,633	1418,602	1138,005		0,079	0,041	0,127			
22	1210,013	1247,896	1150,325	<i>x,y,z</i>	-0,027	-0,007	-0,073			
23	1309,018	1053,860	1157,593		0,020	0,018	0,068			
24	1435,107	850,318	1159,437		-0,161	-0,237	-0,513			
25	1907,850	1029,209	1158,828		-0,016	0,043	0,237			
29	2627,309	1828,820	949,564	<i>x,y,z</i>	-0,049	-0,037	0,112			
30	2895,084	1841,982	947,317		-0,010	-0,074	-0,521			
33	2003,726	830,352	1177,484	<i>x,y,z</i>	0,011	0,023	-0,054			
38	2281,774	1332,190	1094,348		0,021	-0,137	0,100			
		<u></u>		Médias	0,062	0,035	-0,074			
		ERR	O MÉDIO OU	ADRÁTIC	O (m)					
	$m_X = \pm$	0,123	$m_{Y} = \pm$	0,121	$m_z = \pm$	0,258				
	PARÂMET	TROS DE OF	RIENTAÇÃO	EXTERIO	R E SUAS P	RECISÕES				
		FOTO 33				FOTO 34				
		VALORES	σ			VALORES	σ			
S	к	-7,0537678	0,003	N	к	-7,3506354	0,003			
raus	φ	-0,687669	0,009	yrau	φ	-0,5913976	0,009			
cu)	ω	1,60618284	0,008	<u>(10)</u>	ω	-0,2861181	0,007			
sc	X0	2430,888	0,303	sc	X0	1851,040	0,309			
le fr	Y0	1985,867	0,283	letr	Y 0	2028,025	0,281			
me	ZO	2988,950	0,120	ц н	Z0	2989,438	0,146			

QUADRO 10 – RESULTADOS DA ORIENTAÇÃO EXTERIOR (VEXCEL)

Novamente considerando, como no item anterior, o máximo erro tolerável de $\pm 0,48$ m tem-se para o VEXCEL 100% dos pontos em X e Y com erros abaixo deste valor. No eixo Z, onde são absorvidos e se refletem os erros em X das observações fotogramétricas, os valores são de 85,71% dos pontos com erros dentro do limite aceitável.

A análise do erro médio quadrático das discrepâncias passa a diferenciar os processos de forma substancial. Os valores calculados para este dispositivo foram de $\pm 0,123$ m para X, enquanto no estéreo-restituidor analítico este valor é de $\pm 0,113$ m. Em Y o valor é de $\pm 0,121$ m e de $\pm 0,062$ m para os analíticos. No eixo Z, os valores são de $\pm 0,258$ m para o *scanner* contra $\pm 0,197$ dos analíticos.

O quadro 11 apresenta as precisões das coordenadas de terreno, obtidas no referencial geodésico local e suas respectivas médias.

	PRECISÃO DAS COORDENADAS CALCULADAS (VEXCEL)										
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)				
1	0,096	0,106	0,226	16	0,124	0,130	0,256				
2	0,088	0,090	0,116	17	0,103	0,093	0,226				
3	0,110	0,116	0,238	18	0,122	0,078	0,226				
4	0,101	0,116	0,231	19	0,084	0,076	0,112				
5	0,088	0,128	0,232	20	0,149	0,094	0,247				
6	0,086	0,111	0,224	21	0,140	0,106	0,239				
7	0,076	0,089	0,216	22	0,088	0,086	0,112				
8	0,082	0,109	0,223	23	0,130	0,139	0,237				
9	0,088	0,081	0,216	24	0,123	0,161	0,243				
10	0,086	0,121	0,229	25	0,087	0,138	0,235				
11	0,094	0,140	0,242	29	0,078	0,074	0,118				
12	0,090	0,095	0,118	30	0,130	0,089	0,304				
14	0,115	0,147	0,259	33	0,087	0,096	0,117				
15	0,120	0,157	0,266	38	0,077	0,109	0,242				
				Média	0,102	0,110	0,212				

QUADRO 11 - PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS (VEXCEL)

4.5.3 Orientação Interior e Exterior de Duas Aerofotos Digitalizadas no EPSON 1640 XL

Neste teste, as mesmas aerofotos empregadas nos dois testes anteriores (33 e 34) foram digitalizadas pelo operador da empresa AEROSAT nas condições físicas, operacionais e sem nenhuma correção. O quadro 12 apresenta os resíduos da orientação interior.

RESIDUOS DA ORIENTAÇÃO INTERIOR (EPSON)										
	FOT	0 33	FOTO 34							
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)						
1	0,033	-0,051	0,038	-0,044						
2	-0,033	0,051	-0,038	0,044						
3	0,033	-0,051	0,038	-0,044						
4	-0,033	0,051	-0,038	0,044						

QUADRO 12 - RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON)

A transformação afim utilizada no restabelecimento da geometria projetiva da aerofoto não foi capaz de modelar as deformações existentes na imagem gerada. O quadro 13 é parte da explicação para este fato.

DIFERF	ENÇAS CAI	LCULADAS	PARA DIST	TÂNCIAS E	NTRE MAI	RCAS FID	UCIAIS (EI	PSON)			
	OBSE	RVADAS NA	A IMAGEM	(mm)	CEDTIEIC			A CÂMED			
FIDUCIAL	FOT	FOTO 33		FOTO 34							
	X	у	x	у	Data	Ponto	x (mm)	y (mm)			
1	19,844	15,375	22,400	14,605	<u>त्र</u>	1	-106,002	106,002			
2	233,363	14,542	235,918	16,081	1/9	2	105,996	105,996			
3	233,736	226,679	234,013	228,235	14/1	3	105,993	-105,993			
4	20,082	227,330	20,344	226,600		4	-106,006	-106,007			
DISTÂNCIA	FOTO 33 (mm) FOTO 34 (mm)				DISTÂN	CIAS DO	CERTIFICA	DO (mm)			
1-2	213	3,520	213,524		1-	2	211	,998			
2-3	212	2,138	212,162		2-3		211,989				
3-4	213	3,655	213,676		3-4		211,999				
4-1	211	,955	212	,005	4-1		212	,009			
DIFERENÇA		FOTO 3	13 (mm)			FOTO	34 (mm)				
Δ ₁₋₂		1,5	22			1	,526				
Δ ₂₋₃	0,149					0	,173				
Δ ₃₋₄		1,6	56			1	,677				
Δ ₄₋₁		-0,0)54		-0.004						

QUADRO 13 – COMPARAÇÃO DE DISTÂNCIAS ENTRE FIDUCIAIS (EPSON)

Os valores das diferenças entre as distâncias calculadas com as observações realizadas sobre a imagem gerada pelo EPSON e as mesmas do certificado de calibração são demasiadamente elevadas para fins fotogramétricos. A falta de paralelismo é outro fator notável e justifica o valor dos resíduos da orientação interior serem tão elevados se comparados com métodos convencionais (*scanner* fotogramétrico e restituidor analítico).

O quadro 14 apresenta os valores das observações fotogramétricas ajustadas, seus resíduos e os valores de erro médio quadrático para cada eixo. Os valores de erro médio quadrático de $\pm 2,0\mu$ m para x e $\pm 7,0\mu$ m para y evidenciam que a precisão das observações fotogramétricas é satisfatória.

O quadro 15 apresenta resultados da orientação exterior destas aerofotos. Realizando-se um comparativo com a mesma foto digitalizada no VEXCEL, tem-se evidenciada a diferença entre estes dispositivos. O menor valor médio de discrepâncias em X de 0,019m contra os 0,062m do VEXCEL, justifica-se pela absorção de tais erros na altimetria. Entretanto em Y é possível constatar aumento significativo para 0,241m contra os 0,035m do VEXCEL. Em Z tem-se para o EPSON -0,223m, valores bem superiores aos -0,074m do VEXCEL. Isto denota a presença de erros sistemáticos que impedem que as amostras assumam característica normal.

Analisando-se sob o aspecto do máximo erro planialtimétrico admissível de 0,048m, tem-se para o EPSON 93,10% dos pontos EM X, 48,28% dos pontos em Y e 62,07% dos pontos em Z com valores de discrepâncias abaixo do limite préestabelecido.

O quadro 16 apresenta a precisão das coordenadas obtidas e suas médias. Comparando-se as precisões médias de X de 0,278m, de Y de 0,294m e de Z de 0,602m do EPSON com os 0,102m para X, 0,110m para Y e 0,202m para Z do VEXCEL, constata-se que a presença de erros sistemáticos comprometeu de maneira significativa a precisão dos valores. Outro fator importante é o modelo matemático de transformação geométrica utilizado para a orientação interior. Devido à câmera que gerou tais aerofotos (WILD RC 10) possuir quatro fiduciais, esta é limitada ao uso da transformação afim no plano. Conseqüentemente diferenças físicas fora do domínio linear não são parametrizadas.

COORDE	NADAS	FOTOGE	AMÉTRI	CAS AJUS	STADAS,	SEUS RES	SÍDUOS E	SUAS PR	ECISÕES
				<u>(EP</u>	SON)				
	F	ОТО 33 (п	nm)			F	OTO 34 (m	m)	
PONTO	хр	ур	Vx	Vy	PONTO	xp	ур	Vx	Vy
1	-10,656	-40,533	0,000	0,000	1	-55,491	-40,364	0,000	0,000
2	-29,192	-41,700	0,005	-0,003	2	-73,839	-41,484	-0,003	0,005
3	-22,241	-48,569	0,000	-0,006	3	-67,083	-48,369	0,000	0,006
4	-11,852	-50,319	0,000	0,010	4	-56,849	-50,143	0,000	-0,010
5	24,823	-62,014	0,000	0,012	5	-20,029	-61,882	0,000	-0,012
6	10,194	-48,305	0,000	0,002	6	-34,700	-48,176	0,000	-0,002
7	32,475	-25,094	0,000	-0,006	7	-11,903	-25,021	0,000	0,006
8	29,725	-46,001	0,000	-0,003	8	-15,073	-45,915	0,000	0,003
9	58,624	-12,415	0,000	-0,004	9	14,448	-12,402	0,000	0,004
10	32,601	-55,877	0,000	0,001	10	-12,208	-55,777	0,000	-0,001
11	42,681	-69,336	0,000	-0,005	11	-1,951	-69,206	0,000	0,005
12	50,151	-73,268	0,000	-0,015	12	5,569	-73,132	-0,001	0,015
14	73,873	-68,928	0,000	0,003	14	29,433	-68,848	0,000	-0,003
15	76,229	-74,196	0,000	0,005	15	31,892	-74,092	0,000	-0,005
16	85,728	-53,979	0,000	0,002	16	41,429	-53,977	0,000	-0,002
17	72,535	-25,393	0,000	-0,009	17	28,199	-25,420	0,000	0,009
18	90,919	21,242	0,000	-0,006	18	47,629	21,238	0,000	0,006
19	98,049	25,569	0,001	-0,004	19	54,872	25,557	-0,003	0,003
20	103,622	48,7 40	0,000	-0,003	20	61,181	48,820	0,000	0,003
21	95,357	64,795	0,000	0,009	21	52,814	65,004	0,000	-0,009
22	89,539	78,706	-0,001	0,011	22	46,739	79,042	0,004	-0,011
23	80,218	94,213	0,000	-0,005	23	37,271	94,730	0,000	0,005
24	68,336	110,106	0,000	-0,009	24	25,328	110,850	0,000	0,009
25	30,750	91,727	0,000	0,000	25	-12,586	92,446	0,000	0,000
29	-20,142	18,008	0,004	0,006	29	-59,506	18,432	-0,003	-0,012
30	-39,902	15,120	0,000	0,004	30	-79,359	15,596	0,000	-0,004
33	21,527	108,481	-0,007	-0,001	33	-22,285	109,430	0,006	0,003
35	109,350	-49,067	0,000	0,005	35	65,404	-49,120	0,000	-0,005
38	2,186	61,706	0,000	0,008	38	-39,960	62,283	0,000	-0,008
E	RRO MI	ÉDIO QU	ADRÁTIC	0	ERRO MÉDIO QUADRÁTICO				
$m_X = \pm$	0,002		$m_Y = \pm$	0,007	$m_X = \pm$	0,002		$m_{Y}=\pm$	0,007

QUADRO 14 – COORDENADAS FOTOGRAMÉTRICAS (EPSON)

	COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON)									
DONTO	COORDE	NADAS CAL	CULADAS	INJUN-	DIS	CREPÂNCIA	s			
FUNIO	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	Z (m)			
1	2552,977	2556,905	1199,569		0,340	0,591	-0,465			
2	2773,162	2552,204	1188,945	<i>x,y,z</i>	0,186	0,268	-0,006			
3	2697,668	2638,191	1197,839		0,435	0,739	-0,799			
4	2577,290	2668,052	1205,477		0,391	0,758	-0,329			
5	2162,218	2847,382	1202,222		0,030	0,427	-0,009			
6	2317,945	2670,044	1204,033		0,410	0,761	-0,417			
7	2028,266	2427,273	1187,890		0,078	0,349	0,769			
8	2086,864	2665,935	1202,160		0,162	0,502	0,437			
9	1703,605	2307,945	1184,278		-0,102	-0,001	1,039			
10	2064,222	2784,814	1201,625		0,053	0,913	-0,711			
11	1959,317	2957,714	1193,076		-0,042	0,319	-0,412			
12	1875,128	3013,786	1190,514	<i>x,y,z</i>	-0,104	0,004	0,025			
14	1588,000	2992,802	1185,124		-0,311	0,467	-1,162			
15	1563,654	3060,592	1179,707		-0,191	0,492	-1,168			
16	1428,924	2831,170	1182,237		-0,251	1,006	-1,424			
17	1556,063	2476,168	1189,516		0,216	0,209	0,766			
18	1265,596	1944,096	1157,585		-0,545	-0,166	-0,325			
19	1172,633	1899,940	1154,598	<i>x,y,z</i>	-0,342	-0,107	0,129			
20	1060,259	1620,750	1129,596		-0,392	-0,641	-0,552			
21	1147,325	1417,741	1136,927		-0,229	-0,820	-0,951			
22	1210,400	1247,925	1150,271	<i>x,y,z</i>	0,360	0,022	-0,127			
23	1309,539	1054,280	1157,876		0,542	0,438	0,351			
24	1435,488	851,316	1160,345		0,220	0,761	0,395			
25	1908,186	1029,331	1158,959		0,320	0,165	0,368			
29	2627,411	1828,303	949,454	<i>x,y,z</i>	0,053	-0,555	0,002			
30	2894,818	1841,488	947,763		-0,276	-0,568	-0,075			
33	2003,562	830,697	1177,515	<i>x,y,z</i>	-0,153	0,368	-0,023			
35	1132,819	2805,905	1167,918		-0,441	1,114	-1,903			
38	2281,881	1331,504	1094,370		0,128	-0,823	0,122			
				Médias	0,019	0,241	-0,223			
		ERRO) MÉDIO QU	JADRÁTIC	O (m)					
	$m_X = \pm$	0,297	$m_{\gamma} = \pm$	0,590	$m_z = \pm$	0,717				
	PARÂMET	FROS DE OF	LIENTAÇÃO	EXTERIO	R E SUAS P	RECISÕES				
	T T	FOTO 33				FOTO 34				
		VALORES	σ			VALORES	σ			
s	к	-5,4754887	0,009	s	к	-5,3086792	0,008			
rau	φ	0,25892653	0,024	jrau	φ	0,37451637	0,023			
<u></u>	ω	-0,0970614	0,020	<u> </u>	ω	0,30158521	0,021			
SO	X0	2390,957	0,840	so	X0	1872,449	0,814			
letr	Y0	2097,737	0,748	letr	Y0	2136,104	0,754			
а В	ZO	2988,917	0,383		ZO	2987,165	0,324			

QUADRO 15 – RESULTADOS DA ORIENTAÇÃO EXTERIOR (EPSON)

	PREC	SISÃO DAS C	COORDENA	DAS CALC	ULADAS (E	PSON)	
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)
1	0,258	0,262	0,634	17	0,280	0,233	0,644
2	0,230	0,230	0,301	18	0,341	0,210	0,648
3	0,296	0,290	0,663	19	0,219	0,200	0,292
4	0,271	0,289	0,645	20	0,415	0,273	0,707
5	0,233	0,322	0,651	21	0,388	0,316	0,688
6	0,229	0,277	0,629	22	0,226	0,227	0,290
7	0,200	0,219	0,612	23	0,354	0,418	0,681
8	0,217	0,272	0,630	24	0,332	0,485	0,694
9	0,237	0,201	0,616	25	0,225	0,415	0,666
10	0,227	0,304	0,646	29	0,202	0,195	0,305
11	0,247	0,357	0,681	30	0,359	0,246	0,847
12	0,237	0,243	0,307	33	0,223	0,256	0,302
14	0,312	0,381	0,730	35	0,444	0,347	0,800
15	0,325	0,408	0,751	38	0,200	0,326	0,683
16	0,341	0,332	0,725	Média	0,278	0,294	0,602

QUADRO 16 – PRECISÃO PONTUAL DAS COORDENADAS CALCULADAS (EPSON)

Os resultados a seguir apresentados tratam das mesmas condições mostradas no teste anterior, sendo a diferença que a digitalização foi realizada pelo autor e que a placa de calibração do A10 foi utilizada para planificar o negativo na plataforma de digitalização do *desktop scanner*. O quadro 17 apresenta os resíduos da orientação interior das imagens geradas com este procedimento.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-2										
	FOT	<u>°O 33</u>	FOTO 34							
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _x (mm)	V _Y (mm)						
1	0,024	-0,037	0,024	-0,036						
2	-0,024	0,037	-0,024	0,036						
3	0,024	-0,037	0,024	-0,036						
4	-0,024	0,037	-0,024	0,036						

QUADRO 17 – RESÍDUOS DA ORIENTAÇÃO INTERIOR USANDO A PLACA DE CALIBRAÇÃO PARA PLANIFICAR O NEGATIVO

É possível perceber, ainda sem nenhum procedimento de calibração, a redução dos resíduos de $\pm 33 \mu m$ a $\pm 51 \mu m$ (quadro12, página 105) para $\pm 24 \mu m$ a $\pm 36 \mu m$. Isto denota a necessidade e a influência de uma superfície plana na digitalização.

O quadro 18 apresenta as diferenças entre as distâncias das marcas fiduciais na imagem gerada e do certificado de calibração.

DIFERENÇAS CALCULADAS PARA DISTÂNCIAS ENTRE MARCAS FIDUCIAIS (EPSON-2)										
	OBSERVADAS NA IMAGEM (mm)					TIFICAI	O DE CAI	LIBR. DA		
FIDUCIAL	FOTO 33		FOTO 34			CÂMERA				
	x (mml)	y (mm)	x (mm)	y (mm)	Data	Ponto	x (mm)	y (mm)		
1	19,067	20,992	19,790	21,922	4	1	-106,002	106,002		
2	232,552	21,955	233,288	21,898	1/9	2	105,996	105,996		
3	231,187	234,073	232,941	234,047	4/1	3	105,993	-105,993		
4	17,604	232,981	19,347	233,948	1	4	-106,006	-106,007		
DISTÂNCIA	FOTO 33 (mm) FOTO 34 (mm)		34 (mm)	DIS	T. DO CI	ERTIFICA	DO (mm)			
1-2	213	,488	213,498		1-2		21	1,998		
2-3	212	,122	212,149		2-3		211,989			
3-4	213	,585	213	,594		3-4	211,999			
4-1	211	,993	212	,027		4-1	212	2,009		
DIFERENÇA		FOTO 3	33 (mm)		FOTO 34 (mm)					
Δ ₁₋₂		1,4	90				1,500			
Δ ₂₋₃		0,133			0,160					
Δ ₃₋₄		1,5	586				1,595			
Δ ₄₋₁		-0,0	016				0,018			

QUADRO 18 – DISTÂNCIAS ENTRE AS MARCAS FIDUCIAIS USANDO A PLACA DE CALIBRAÇÃO PARA PLANIFICAR O NEGATIVO

É possível constatar a diminuição das diferenças entre Δ_{1-2} e Δ_{3-4} (lados paralelos) na foto 33 que, com o vidro, era de 0,134mm (quadro 13 página 105) e passa a ser de 0,096mm. Para a diferença entre Δ_{2-3} e Δ_{4-1} ., é reduzida de 0,203mm para 0,149mm. Este é outro fato que comprova a influência da planificação na forma da imagem gerada.

O quadro 19 apresenta as observações fotogramétricas ajustadas e seus resíduos. Tais resíduos referem-se a erros de observação e, tanto na imagem digitalizada com o vidro ($\pm 2\mu m$ para x e $\pm 7\mu m$ para y), quanto na gerada com a placa ($\pm 1\mu m$ para x e $\pm 4\mu m$ para y na foto da esquerda; $\pm 2\mu m$ para x na foto da direita e $\pm 5\mu m$ para y), estão dentro de limites aceitáveis.

No quadro 20 pode ser percebida a melhora com relação às discrepâncias das coordenadas dos pontos obtidos. Os erros médios quadráticos em X,Y e Z eram respectivamente de ±0,297m, ±0,590m e ±0,717m são reduzidos para ±0,189m, ±0,410m e ±0,512m. As médias das discrepâncias sofrem aumento em X de 0,019m para 0,081m; entretanto, verifica-se a redução de 0,241m para 0,144m em Y e de -0,223m para 0,114m em Z.

Analisando-se novamente sob o aspecto do máximo erro planialtimétrico tolerado de $\pm 0,048$ m, tem-se 100% dos pontos em X e 75,86% dos pontos em Y e Z dentro dos limites. As causas destes resultados são a substituição de um vidro com irregularidades em sua face e retirada de uma fita de cartolina usada para delimitação de recortes de aerofotos. Esta cartolina, apesar de propiciar ganho em produtividade (pois as aerofotos eram recortadas na tela do computador, e não com tesoura) compromete de maneira significativa a acurácia das imagens geradas, pois prejudica ainda mais a planificação adequada do filme. Fica então comprovada a influência da regularidade da superfície do vidro na geração da imagem.

COORDE	CORDENADAS FOTOGRAMETRICAS AJUSTADAS, SEUS RESIDUOS E SUAS PRECISOES (FPSON-2)										
	F	OTO 33 (m			<u>()((-2)</u>		OTO 34 (m				
PONTO		<u>, 10 55 (II</u>	Vr		PONTO			I/~ 1	1/22		
10110	-10 657	-40 528	0.000	0.000	10110	-55 466	_40 389	0.000	0.000		
2	-29,184	-41,705	0.005	-0.002	2	-73 797	-41 523	-0.006	0.004		
3	-22,221	-48,574	0,000	0.001	3	-67.044	-48,406	0.000	-0.001		
4	-11,833	-50,318	0,000	-0,006	4	-56,806	-50,171	0,000	0,006		
5	24,804	-62,050	0,000	-0,003	5	-20,038	-61,936	0,000	0,003		
6	10,210	-48,304	0,000	0,001	6	-34,676	-48.201	0,000	-0,001		
7	32,462	-25,087	0,000	0,008	7	-11,904	-25,040	0,000	-0,008		
8	29,716	-46,006	0,000	-0,002	8	-15,050	-45,941	0,000	0,002		
9	58,591	-12,450	0,000	0,002	9	14,430	-12,460	0,000	-0,002		
10	32,606	-55,889	0,000	0,000	10	-12,214	-55,807	0,000	0,000		
11	42,658	-69,395	0,000	0,004	11	-1,968	-69,275	0,000	-0,004		
12	50,122	-73,319	0,001	0,006	12	5,561	-73,190	0,000	-0,004		
14	73,853	-68,993	0,000	0,002	14	29,403	-68,916	0,000	-0,002		
15	76,220	-74,246	0,000	0,004	15	31,883	-74,142	0,000	-0,004		
16	85,747	-54,003	0,000	-0,008	16	41,428	-54,007	0,000	0,008		
17	72,514	-25,402	0,000	0,004	17	28,197	-25,447	0,000	-0,004		
18	90,925	21,240	0,000	-0,003	18	47,620	21,213	0,000	0,003		
19	98,044	25,571	0,002	-0,004	19	54,869	25,536	-0,004	0,001		
20	103,651	48,714	0,000	0,003	20	61,192	48,771	0,000	-0,003		
21	95,381	64,737	0,000	0,004	21	52,816	64,923	0,000	-0,004		
22	89,563	78,677	-0,002	-0,006	22	46,765	78,992	0,004	0,008		
23	80,232	94,219	0,000	0,005	23	37,299	94,718	0,000	-0,005		
24	68,351	110,097	0,000	-0,001	24	25,331	110,827	0,000	0,001		
25	30,751	91,722	0,000	-0,005	25	-12,568	92,422	0,000	0,005		
29	-20,146	17,993	-0,005	0,000	29	-59,506	18,392	0,005	-0,005		
30	-39,925	15,109	0,000	0,002	30	-79,382	15,557	0,000	-0,002		
33	21,511	108,482	-0,002	0,000	33	-22,300	109,418	0,001	0,002		
35	109,388	-49,078	0,000	-0,010	35	65,418	-49,135	0,000	0,010		
38	2,177	61,649	0,000	0,006	38	-39,954	62,204	0,000	-0,005		
E	RRO M	ÉDIO QU	ADRÁTIC	co	ERRO MÉDIO QUADRÁTICO						
$m_{y} = \pm 0.001$ $m_{y} = \pm 0.004$					$m_{\rm Y} = \pm$	0.002		$m_{y} = \pm$	0,005		

QUADRO 19 – OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS E SUAS PRECISÕES USANDO A PLACA DE CALIBRAÇÃO PARA PLANIFICAR O NEGATIVO

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON-2)										
DONTO	COORDE	NADAS CAL	CULADAS	INJUN-	DIS	CREPÂNCIA	NS			
UTIO	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	Z (m)			
1	2552,763	2556,632	1199,672		0,126	0,318	-0,362			
2	2772,894	2552,159	1188,787	<i>x,y,z</i>	-0,082	0,223	-0,164			
3	2697,133	2637,965	1198,332		-0,100	0,512	-0,306			
4	2576,820	2667,791	1205,733		-0,079	0,497	-0,073			
5	2162,368	2847,229	1202,930		0,180	0,274	0,699			
6	2317,583	2669,570	1204,861		0,048	0,287	0,411			
7	2028,330	2426,881	1188,280		0,142	-0,043	1,159			
8	2086,739	2665,820	1201,872		0,037	0,387	0,149			
9	1703,915	2308,078	1184,209		0,208	0,133	0,970			
10	2064,260	2784,108	1203,134		0,091	0,207	0,798			
11	1959,639	2957,728	1193,795		0,280	0,333	0,307			
12	1875,367	3014,004	1190,564	x , y ,z	0,135	0,222	0,075			
14	1588,613	2992,706	1186,072		0,302	0,371	-0,214			
15	1563,934	3060,520	1180,209		0,089	0,420	-0,666			
16	1429,256	2830,642	1183,364		0,081	0,478	-0,297			
17	1556,090	2476,026	1189,187		0,243	0,067	0,437			
18	1266,024	1943,944	1158,341		-0,117	-0,318	0,431			
19	1172,719	1899,662	1154,554	<i>x,y,z</i>	-0,256	-0,385	0,085			
20	1060,600	1621,091	1130,378		-0,051	-0,300	0,230			
21	1147,867	1418,668	1137,931		0,313	0,107	0,053			
22	1210,241	1248,149	1150,288	<i>x,y,z</i>	0,201	0,246	-0,110			
23	1309,171	1053,830	1157,423		0,173	-0,012	-0,102			
24	1435,705	851,746	1160,960		0,437	1,191	1,010			
25	1908,004	1028,927	1158,375		0,138	-0,239	-0,216			
29	2627,357	1828,369	949,646	<i>x,y,z</i>	-0,001	-0,488	0,194			
30	2894,939	1841,521	948,126		-0,155	-0,535	0,289			
33	2003,717	830,511	1177,459	<i>x,y,z</i>	0,002	0,182	-0,079			
35	1133,010	2805,323	1168,822		-0,250	0,532	-0,999			
38	2281,958	1331,843	1093,859		0,205	-0,484	-0,389			
				Médias	0,081	0,144	0,114			
		ERRO	O MÉDIO QU	IADRÁTIC	: O (m)					
	$m_X = \pm$	0,189	$m_{y}=\pm$	0,410	$m_z = \pm$	0,512				
	PARÂMET	TROS DE OF	RIENTAÇÃO	EXTERIO	R E SUAS P	RECISÕES				
		FOTO 33				FOTO 34				
		VALORES	σ			VALORES	σ			
s	к	-5,4704829	0,006	N N	к	-5,310889	0,006			
jrau	φ	0,24960378	0,016	jrau	φ	0,37735261	0,016			
	ω	-0,0993353	0,014		ω	0,31865761	0,014			
sc	X0	2390,504	0,575	so	X0	1872,579	0,557			
letri	Y0	2097,638	0,511	letri	<u>Y0</u>	2135,009	0,516			
1 E	70	2988 811	0.262		70	2987 156	0 222			

..

QUADRO 20 – RESULTADOS DA ORIENTAÇÃO EXTERIOR USANDO A PLACA DE CALIBRAÇÃO PARA PLANIFICAR O NEGATIVO

A precisão pontual obtida é apresentada no quadro 21. Analisando-se os valores médios dos desvios padrão das coordenadas e comparando-se aos valores obtidos com a imagem gerada com o vidro, também é possível constatar melhoria significativa. O valor médio em X que era de 0,278m passa a ser de 0,19m. Em Y passa de 0,294m para 0,201m. Em Z passa de 0,602m para 0,412m.

	PRECISÃO DAS COORDENADAS CALCULADAS (EPSON-2)										
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σ Υ (m)	σZ (m)				
1	0,176	0,179	0,434	17	0,192	0,159	0,441				
2	0,157	0,157	0,206	18	0,233	0,144	0,443				
3	0,203	0,198	0,454	19	0,150	0,137	0,200				
4	0,185	0,197	0,441	20	0,284	0,186	0,484				
5	0,159	0,221	0,446	21	0,266	0,216	0,470				
6	0,157	0,190	0,430	22	0,155	0,155	0,198				
7	0,137	0,149	0,419	23	0,242	0,286	0,466				
8	0,148	0,186	0,431	24	0,227	0,331	0,475				
9	0,162	0,138	0,421	25	0,154	0,284	0,456				
10	0,155	0,208	0,441	29	0,138	0,133	0,209				
11	0,169	0,245	0,465	30	0,246	0,168	0,580				
12	0,162	0,166	0,210	33	0,152	0,175	0,206				
14	0,214	0,260	0,499	35	0,304	0,237	0,546				
15	0,222	0,279	0,513	38	0,136	0,223	0,467				
16	0,233	0,227	0,496	Média	0,190	0,201	0,412				

QUADRO 21 – PRECISÃO PONTUAL DAS COORDENADAS CALCULADAS USANDO A PLACA DE CALIBRAÇÃO PARA PLANIFICAR O NEGATIVO

O último teste realizado com câmeras de quatro fiduciais foi a aplicação do modelo de correção com polinômio bivariado de 3° grau, pela técnica *grid on line* nas mesmas observações do teste anterior. O quadro 22 apresenta os valores dos resíduos da orientação interior.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-3)											
	FOT	0 33	FOTO 34								
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)							
1	0,002	-0,010	0,007	-0,006							
2	-0,002	0,010	-0,007	0,006							
3	0,002	-0,010	0,007	-0,006							
4	-0,002	0,010	-0,007	0,006							

QUADRO 22 – RESÍDUOS DA ORIENTAÇÃO INTERIOR APÓS A APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E 34)

Neste caso a comparação a ser feita é com os valores da imagem digitalizada utilizando a placa de calibração para planificar o negativo (quadro 17). Fica evidente que o modelo atuou nas fotocoordenadas propiciando redução dos resíduos. Tais resíduos que eram de $\pm 24\mu$ m para x e $\pm 37\mu$ m para y na foto 33, após a correção são de $\pm 2\mu$ m e $\pm 10\mu$ m, respectivamente. Na foto 34 estes eram de $\pm 24\mu$ m para x e $\pm 36\mu$ m para y e passam a ser de $\pm 7\mu$ m em x e $\pm 6\mu$ m y. O quadro 23 apresenta uma comparação de distâncias entre fiduciais.

QUADRO 23 – DISTÂNCIAS ENTRE AS MARCAS FIDUCIAIS OBSERVADAS APÓS APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E 34)

DIFERENÇAS CALCULADAS PARA DISTÂNCIAS ENTRE MARCAS FIDUCIAIS (EPSON-3)										
	OBSEI	RVADAS N	A IMAGE	M (mm)	CERTI	FICADO	DE CALI	BR. DA		
FIDUCIAL	FOTO 33		FOTO 34			CÂMERA				
	X	у	X	у	Data	Ponto	x (mm)	y (mm)		
1	19,39	20,44	20,10	20,77	94	1	-106,002	106,002		
2	231,46	21,25	232,17	21,46	/19	2	105,996	105,996		
3	230,65	233,28	231,51	233,49	/11	3	105,993	-105,993		
4	18,57	232,44	19,42	232,79	14	4	-106,006	-106,007		
DISTÂNCIA	FOTO 33 (mm) FOTO 34 (mm)		DIST.	DO CER	TIFICAD) (mm)				
1-2	212	2,072	212,067		1-2		211,998			
2-3	212	2,023	212,029		2-3		211,989			
3-4	212	2,081	212	,094	3-	4	211,999			
4-1	212	2,003	212	,025	4-	1	212	,009		
DIFERENÇA		FOTO 3	33 (mm)			FOTO	34 (mm)			
Δ ₁₋₂		0,0	74			0	,069			
Δ ₂₋₃		0,0	34			0	,040			
Δ ₃₋₄		0,0	82			0	,095			
Δ_{4-1}		-0,0)06		0,016					

No quesito comparação de distâncias é possível a constatação de grande diferença, mostrando novamente forte atuação do modelo sobre as coordenadas dos pontos. O valor de Δ_{1-2} , por exemplo, para as coordenadas sem correção (quadro 18) é de 1,490mm para a foto 33 e 1,500 mm para a foto 34. Após a correção estes valores são reduzidos a 0,074mm e 0,069mm respectivamente. Os demais valores seguem sucessivamente a mesma tendência de redução e nas mesmas proporções. Este fato indica que o paralelismo foi melhorado.

A precisão das observações fotogramétricas é mantida. O quadro 24 apresenta seus valores, bem como seu erro médio quadrático.

O quadro 25 contém os valores das coordenadas calculadas após a correção das fotocoordenadas. Os valores dos erros médios quadráticos indicam pequena melhora de precisão se comparados aos do quadro 20. Os corrigidos são de $m_X=\pm 0,271$ m, $m_T=\pm 0,262$ m e $m_Z=\pm 0,487$. Os valores sem correção (quadro 20) são $m_X=\pm 0,189$ m, $m_T=\pm 0,410$ m e $m_Z=\pm 0,512$. O maior valor de erro médio quadrático em X para os valores corrigidos justifica-se pela imprecisão planimétrica do referencial dos pontos de controle. A média dos valores das discrepâncias em X aumenta de 0,081m para 0,130m. Entretanto em Y é reduzida de 0,144m para 0,084m e em Z de 0,114m para 0,106m.

Analisando-se a quantidade de pontos dentro do limite de máximo erro planialtimétrico tolerado de $\pm 0,48$ m constata-se que em X e Y 96,55% dos pontos possuem discrepâncias dentro do limite. Para Z tem-se 72,41% dos pontos nesta condição. Percebe-se um ganho na planimetria que anteriormente apresentava para Y 75,86% dos pontos atendendo a estas condições.

No tocante à precisão pontual, é possível constatar pequena perda se comparados os valores do quadro 26 (página 119) aos do quadro 21 (página 114). O desvio padrão médio aumenta de 0,190m para 0,200m em X. Em Y também ocorre aumento de 0,201m para 0,212m. O mesmo ocorre em Z aumentando de 0,412m para 0,433m. Conclui-se que as coordenadas dos pontos tornam-se mais acuradas, porém menos precisas.

COORDE	COORDENADAS FOTOGRAMETRICAS AJUSTADAS, SEUS RESIDUOS E SUAS PRECISÕES										
				(EPS	SON-3)				_		
	F	ОТО 33 (п	nm)			F	OTO 34 (m	im)			
PONTO	хр	ур	Vx	Vy	PONTO	хр	ур	Vx	Vy		
1	-10,614	-40,553	0,000	0,000	1	-55,443	-40,410	0,000	0,000		
2	-29,140	-41,732	0,004	-0,003	2	-73,782	-41,545	-0,004	0,004		
3	-22,177	-48,595	0,000	0,001	3	-67,026	-48,424	0,000	-0,001		
4	-11,790	-50,336	0,000	-0,006	4	-56,782	-50,187	0,000	0,006		
5	24,831	-62,055	0,000	-0,003	5	-20,007	-61,944	0,000	0,003		
6	10,245	-48,321	0,000	0,001	6	-34,647	-48,215	0,000	-0,001		
7	32,489	-25,119	0,000	0,008	7	-11,874	-25,067	0,000	-0,008		
8	29,740	-46,021	0,000	-0,002	8	-15,021	-45,955	0,000	0,002		
9	58,603	-12,490	0,000	0,002	9	14,456	-12,495	0,000	-0,002		
10	32,628	-55,897	0,000	0,000	10	-12,186	-55,816	0,000	0,000		
11	42,674	-69,392	0,000	0,005	11	-1,938	-69,278	0,000	-0,005		
12	50,135	-73,312	0,002	0,006	12	5,589	-73,190	0,000	-0,005		
14	73,842	-68,985	0,000	0,003	14	29,418	-68,915	0,000	-0,003		
15	76,208	-74,234	0,000	0,005	15	31,898	-74,138	0,000	-0,005		
16	85,725	-54,004	0,000	-0,008	16	41,432	-54,012	0,000	0,008		
17	72,509	-25,430	0,000	0,003	17	28,212	-25,473	0,000	-0,003		
18	90,926	21,178	0,000	-0,003	18	47,643	21,157	0,000	0,003		
19	98,041	25,507	0,002	-0,004	19	54,890	25,477	-0,004	0,001		
20	103,656	48,644	0,000	0,003	20	61,221	48,706	0,000	-0,003		
21	95,401	64,670	0,000	0,005	21	52,858	64,862	0,000	-0,005		
22	89,594	78,618	0,000	-0,006	22	46,813	78,940	0,002	0,007		
23	80,272	94,179	0,000	0,006	23	37,357	94,686	0,000	-0,006		
24	68,399	110,085	0,000	-0,002	24	25,393	110,825	0,000	0,002		
25	30,819	91,685	0,000	-0,006	25	-12,501	92,403	0,000	0,006		
29	-20,090	17,935	-0,009	0,003	29	-59,471	18,349	0,006	-0,003		
30	-39,869	15,050	0,000	0,002	30	-79,365	15,514	0,000	-0,002		
33	21,581	108,475	-0,001	-0,003	33	-22,237	109,431	0,000	0,003		
35	109,344	-49,080	0,000	-0,011	35	65,405	-49,141	0,000	0,011		
38	2,248	61,589	0,000	0,005	38	-39,897	62,163	0,000	-0,005		
E	RRO M	ÉDIO QU	ADRÁTIC	20	ERRO MÉDIO QUADRÁTICO						
$m_X = \pm$	0,002		$m_y = \pm$	0,005	$m_X = \pm$	0,002		$m_y = \pm$	0,005		

QUADRO 24 – VALORES DAS OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS APÓS A APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E 34)

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON-3)									
PONTO	COORDENADAS CALCULADAS			INJUN- DISCREPÂNCIAS			ls		
ronio	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	Z (m)		
1	2552,929	2556,460	1199,774		0,292	0,146	-0,260		
2	2773,033	2552,003	1188,853	<i>x,y,z</i>	0,057	0,067	-0,098		
3	2697,272	2637,742	1198,457		0,039	0,289	-0,181		
4	2576,992	2667,577	1205,801		0,093	0,283	-0,005		
5	2162,549	2847,095	1202,843		0,361	0,140	0,612		
6	2317,790	2669,401	1204,857		0,255	0,118	0,407		
7	2028,547	2426,817	1188,277		0,359	-0,107	1,156		
8	2086,959	2665,684	1201,834		0,257	0,251	0,111		
9	1704,124	2308,061	1184,192		0,417	0,115	0,953		
10	2064,459	2783,975	1203,064		0,290	0,074	0,728		
11	1959,765	2957,665	1193,671		0,406	0,270	0,184		
12	1875,460	3013,950	1190,497	x , <i>y</i> , <i>z</i>	0,228	0,169	0,008		
14	1588,688	2992,680	1186,020		0,377	0,345	-0,266		
15	1563,957	3060,537	1180,148		0,112	0,437	-0,727		
16	1429,394	2830,559	1183,393		0,219	0,395	-0,268		
17	1556,309	2475,955	1189,191		0,462	-0,004	0,441		
18	1266,097	1943,990	1158,308		-0,044	-0,272	0,398		
19	1172,761	1899,695	1154,528	<i>x,y,z</i>	-0,214	-0,352	0,059		
20	1060,507	1621,072	1130,281		-0,144	-0,319	0,134		
21	1147,746	1418,561	1137,770		0,192	0,000	-0,108		
22	1210,217	1248,011	1150,289	x , y ,z	0,177	0,108	-0,109		
23	1309,061	1053,402	1157,196		0,063	-0,440	-0,329		
24	1435,641	851,078	1160,732		0,373	0,523	0,782		
25	1907,933	1028,897	1158,305		0,067	-0,269	-0,286		
29	2627,133	1828,827	949,602	<i>x,y,z</i>	-0,225	-0,030	0,150		
30	2894,529	1842,099	948,541		-0,565	0,043	0,704		
33	2003,691	830,367	1177,529	x ,y,z	-0,024	0,038	-0,009		
35	1133,123	2805,223	1168,983		-0,137	0,433	-0,838		
38	2281,776	1332,303	1093,977		0,023	-0,024	-0,271		
				Médias	0,130	0,084	0,106		
		ER	RO MÉDIO Q	UADRÁTI					
	$m_X = \pm$	0,271	$m_{Y} = \pm$	0,262	$m_z = \pm$	0,487			
PARÂMETROS DE ORIENTAÇÃO EXTERIOR E SUAS PRECISÕES									
FOTO 33					FOTO 34				
		VALORES	σ			VALORES	σ		
graus	к	-5,4667076	0,006	N S	к	-5,3017984	0,006		
	φ	0,29663341	0,017	jrau	φ	0,43239387	0,017		
	ω	-0,0641148	0,014		ω	0,34759814	0,015		
so	X0	2392,626	0,604	metros	X 0	1874,870	0,586		
netri	Y0	2095,967	0,538		Y0	2133,613	0,543		
в	Z0	2988,952	0,275		Z0	2987,459	0,233		

QUADRO 25 – RESULTADOS DA ORIENTAÇÃO EXTERIOR APÓS APLICAÇÃO DO MODELO DE CORREÇÃO (FOTOS 33 E 34)

PRECISÃO DAS COORDENADAS CALCULADAS (EPSON-3)									
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)		
1	0,185	0,189	0,456	17	0,202	0,167	0,464		
2	0,165	0,165	0,217	18	0,245	0,151	0,467		
3	0,213	0,209	0,477	19	0,158	0,144	0,210		
4	0,194	0,208	0,464	20	0,299	0,196	0,509		
5	0,168	0,232	0,469	21	0,280	0,227	0,495		
6	0,165	0,200	0,452	22	0,163	0,163	0,209		
7	0,144	0,157	0,441	23	0,255	0,301	0,490		
8	0,156	0,196	0,453	24	0,239	0,349	0,499		
9	0,171	0,145	0,443	25	0,162	0,298	0,480		
10	0,163	0,219	0,465	29	0,145	0,140	0,219		
11	0,178	0,258	0,490	30	0,258	0,176	0,609		
12	0,170	0,175	0,220	33	0,160	0,184	0,217		
14	0,225	0,274	0,526	35	0,320	0,250	0,575		
15	0,234	0,294	0,540	38	0,143	0,234	0,491		
16	0,246	0,239	0,522	Média	0,200	0,212	0,433		

QUADRO 26 – PRECISÃO PONTUAL DAS COORDENADAS APÓS A APLICAÇÃO DO MODELO DE CORREÇÃO

Em câmeras de quatro fiduciais, há um fator de grande limitação a ser considerado. O modelo matemático possível de ser empregado na orientação interior é o da transformação afim no plano. Esta transformação parametriza deformações no domínio linear.

Com a aplicação do modelo polinomial de 3° grau as deformações são reduzidas. Estes valores ainda são significantes e situados fora do domínio linear. Entretanto os valores tornam-se mais acurados em planimetria.

Portanto no caso de câmeras com quatro fiduciais que tenham suas fotos digitalizadas pelo EPSON estudado, recomenda-se o uso do modelo de correção por *grid on line*. Esta aplicação ainda deve limitar-se à atividades de mapeamento planimétrico.

4.5.4 Orientação Interior e Exterior de Três Aerofotos

Nos testes a seguir apresentados optou-se por realizar a orientação exterior de três aerofotos (duplo modelo). Esta opção foi adotada devido ao maior rigor geométrico na determinação dos parâmetros.

Desta maneira, foi utilizada a placa de calibração para planificar os negativos. Procedeu-se a digitalização das aerofotos 73,74 e 75 do campo de calibração. Estas aerofotos pertencem a um vôo de calibração realizado em 2002 com uma câmera ZEISS LMK-JENA de 8 fiduciais. Neste caso, devido à câmera possuir um número maior de marcas fiduciais, dois modelos matemáticos foram testados na orientação interior: afim e polinomial bivariado de 2º grau, sem correção das deformações do *scanner*. O quadro 27 apresenta os valores dos resíduos da orientação interior do modelo afim e o 28 do polinomial.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-4) FOTO 73 FOTO 74 FOTO 75 FIDUCIAIS $V_{\rm X}$ (mm) V_v (mm) V_x (mm) V_v (mm) V_x (mm) V_v (mm) -0.002 0.033 -0,005 0,043 -0.005 0,028 1 2 0,004 0,047 -0,003 0,050 0,002 0,029 -0.058 -0,057 -0,050 3 0,052 0,064 0,060 4 0.053 -0,056 0,058 -0.058 0,058 -0,055 5 0,006 0.041 -0.006 0.037 0,009 0.035 6 -0.0010.024 -0,002 0,031 0,004 0.039 -0,026 7 -0.057 -0.022 -0,056 -0.068 -0.016 8 -0,049 -0,054 -0.010 -0,019 -0,061 -0,010

QUADRO 27 – RESÍDUOS DA ORIENTAÇÃO INTERIOR DO MODELO AFIM (FOTOS 73,74 E 75)

QUADRO 28 – RESÍDUOS DA ORIENTAÇÃO INTERIOR DO MODELO POLINOMIAL (FOTOS 73,74 E 75)

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-6)									
	FOTO 73		FOT	' O 74	FOTO 75				
FIDUCIAIS	$V_{\rm X}$ (mm) $V_{\rm Y}$ (mm)		V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)			
1	-0,007	-0,003	-0,003	-0,001	0,000	-0,003			
2	0,007	0,003	0,003	0,001	0,000	0,003			
3	-0,001	-0,001	0,000	0,003	0,003	0,001			
4	0,001	0,001	0,000	-0,003	-0,003	-0,001			
5	0,008	0,003	0,003	-0,002	-0,002	0,003			
6	-0,008	-0,003	-0,003	0,002	0,002	-0,003			
7	-0,006	-0,002	-0,004	-0,004	-0,003	-0,004			
8	0,006	0,002	0,004	0,004	0,003	0,004			

É fácil constatar que o modelo polinomial parametriza totalmente as diferenças físicas existentes entre os dois referenciais com muito mais eficiência do que a transformação afim.

O quadro 29 apresenta um comparativo das distâncias entre as marcas fiduciais do certificado de calibração e da imagem.

DIFERENÇAS CALCULADAS PARA DISTÂNCIAS ENTRE MARCAS FIDUCIAIS								
			ORSEE	N-4) VADAS N	AIMACE	 M (mm)		
FIDCUCIAL		FOTO 73		FOTO 74		FOTO 75		
		x	y	x	y	X	y	
1	·······	18,775	235,144	11,257	233,166	18,498	232,780	
2		240,550	14,702	234,025	13,713	238,546	10,662	
3	······································	18,943	15,073	12,444	13,095	16,966	12,693	
4		240,489	234,960	232,969	233,986	240,203	230,904	
5		16,828	125,058	9,803	123,080	15,702	122,709	
6		242,503	124,801	235,481	123,822	241,361	120,714	
7		129,661	12,900	123,157	11,421	127,641	9,679	
8		129,546	237,062	122,022	235,598	129,272	233,850	
CERTIFICA	DO DE CAI	LIBR. DA	CÂMERA	DISTÂNCIAS DO CERTIFICADO (mr				
Data	Ponto	<u>x (mm)</u>	y (mm)	ļ	-			
		-109,996	-109,998	1-2		311	,120	
	2	110,000	109,996	2-3		219,	,999	
02	3	-109,999	110,007	3-4		311,	,137	
11/	4	110,005	-110,003	4-5		247,	,760	
14/	<u> </u>	-111,994	0,004	5-6		223,995		
	6	112,001	-0,004	6-7		158,399		
	·	0,000	112,005	7-8		224,015		
	<u> </u>	0,000	-112,010	8-1			,014	
DISTÂNCIA		FOT	073	FOI	0 74	FOT	0 75	
1.	<u> </u>	VALUK	1.576	VALUK	1.596	VALUK		
1-2	<u></u>	221 609	1,370	312,7001	1,000	312,0019	1,542	
2-3	>	212 1425	1,009	221,3017	1,303	212 171	1,390	
 ۸_4	ł	240 2026	1,000	240 205	0,992	240 2121	1,034	
<u> </u>		249,2030	1,445	249,205	1,445	249,2121	1,432	
<u> </u>			1 1 1 1 1 1 1 1	LLJ.UI7L	1,004	223,0070	1,075	
6-1	7	158 0184	0.510	158 005	0.506	158 0275	0.529	
6-7	δ 7 {	158,9184	0,519	158,905	0,506	158,9375	0,538	

QUADRO 29 – DISTÂNCIAS ENTRE MARCAS FIDUCIAIS (FOTO 73,74 E 75)

Para efeito de comparação realizou-se a orientação exterior com observações realizadas na imagem e sem correção usando para orientação interior o modelo polinomial de 2° grau. O quadro 30 traz os valores das observações fotogramétricas ajustadas, seus resíduos e erros médios quadráticos.

O quadro 31 apresenta os resultados da orientação exterior. Verificando-se a média das discrepâncias apresentadas, para X esta é de 0,078m, para Y de 0,058m e para Z de 0,052m. O percentual de pontos dentro do limite planialtimétrico estabelecido de $\pm 0,48m$ é para X de 83,87% dos pontos, para Y de 100 % dos pontos e para Z de 90,32% dos pontos.

O quadro 32 apresenta a precisão pontual das coordenadas obtidas e suas médias. O desvio padrão médio para X é de 0,155m, para Y é de 0,168m e para Z de 0,267m.

Diante dos valores apresentados é possível constatar que o equipamento sem nenhum procedimento de calibração já oferece precisões adequadas ao uso para fins fotogramétricos.

QUADRO 30 – VALORES DAS OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS (FOTO 73, 74 E 75)

Vy 0,005 0,001 0,003 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,000 0,000 0,001 -0,004 -0,004 0,010 -0,006					
Vy 0,005 0,001 0,003 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,000 0,000 0,008 -0,001 -0,004 0,010 -0,006					
0,005 0,001 0,003 0,001 0,001 0,000 0,008 -0,001 -0,004 -0,002 -0,004 0,010 -0,006					
0,001 0,003 0,001 0,001 0,000 0,008 -0,001 -0,004 -0,002 -0,004 0,010 -0,006					
0,003 0,001 0,001 0,000 0,008 -0,001 -0,004 -0,002 -0,004 0,010 -0,006					
0,001 0,001 0,000 0,008 -0,001 -0,004 -0,004 -0,004 0,010 -0,006					
0,001 0,000 0,008 -0,001 -0,004 -0,002 -0,004 0,010 -0,006					
0,000 0,008 -0,001 -0,004 -0,002 -0,004 0,010 -0,006					
0,008 -0,001 -0,004 -0,004 -0,004 -0,004 0,010 -0,006					
-0,001 -0,004 -0,002 -0,004 0,010 -0,006					
-0,004 -0,002 -0,004 0,010 -0,006					
-0,002 -0,004 0,010 -0,006					
-0,004 0,010 -0.006					
0,010					
-0.006					
0.000					
0.002					
0.001					
-0.002					
-0.001					
-0.008					
-0.011					
-0.011					
-0.001					
0,007					
-0.011					
0.001					
-0.007					
-0.007					
-0.001					
0.003					
0,005					
55 -57,050 -70,701 0,004 0,000					
$= \pm 0.002$					
0,006					
					
- VV 0.012					
-0,013					
-0,005					
1 (1667)					
0,002					
-0,005					
-0,005					
-0,002 -0,010 -0,010					
-0,002 -0,005 -0,010 0,010					
-0,005 -0,010 0,010					

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON-6)									
	COORDE	NADAS CAL	CULADAS		DISCREPÂNCIAS				
PONTO	X (m)	Y (m)	Z (m)	CÕES	X (m)	Y (m)	 Z (m)		
1	2552 744	2556 569	1200 123		0.107	0.255	0.089		
$\frac{1}{2}$	2773 100	2550,565	1190.019		0,107	0,235	0,007		
2	2773,100	2532,104	1109,010	<i>x,y,z</i>	0,123	0,220	0,007		
	2097,233	2657,701	1205 767		0.022	0,248	-0,100		
	2162 174	2007,409	1203,707		0,037	0,195	-0,039		
	2102,174	2647,033	1202,272		-0,014	0.080	0,041		
	2078 740	2009,390	1197 601	{······	0,101	0,313	-0,040		
8	2026,740	2427,203	1201 803		0,332	0,279	0,370		
0	1704 368	2308 195	1183 366	<u> </u>	0,108	0,230	0.000		
10	2064 239	2784 030	1202 351		0.070	0,249	0,127		
10	1050 272	2764,030	1102 354	×117	0.097	0.050	0.015		
12	1875 027	3013 815	1190,334	<i>x,y,z</i>	-0,087	0,030	-0,155		
12	1696 120	3106 743	1190,333	x , y , 2	-0,203	0,055	-0,133		
14	1588 280	2002 220	1186 329		-0,141	-0,105	-0,122		
14	1563 772	2992,229	1100,320		-0,031	-0,100	0,042		
15	1420 207	2820 257	1100,013		-0,075	-0,040	-0,000		
10	1556 280	2630,337	1105,770		0,122	0.193	0,110		
19	1265 947	1044 564	1107,400		0.342	0,200	0,738		
10	1172 729	1944,304	1154 (61		-0,294	0,302	0.019		
19	10(115(1900,393	1134,001	<u>x, v, z</u>	-0,237	0,348	0,193		
20	1149 212	1021,093	1131,072		0,505	0.302	0,924		
$\frac{21}{22}$	1140,213	1410,314	1157,851		0,039	-0,247	-0,027		
22	1210,423	1247,573	1150,241	x,y,z	0.383	-0.330	-0,157		
23	1309,383	1033,512	1157,094		0,385	-0,330	-0,431		
24	1435,448	830,688	1159,908	 	0,180	0,133	-0,042		
23	2410 522	1028,911	052 524		0,333	-0,255	-0,074		
21	2419,332	1800,007	955,534	<u>x,y,z</u>	-0,324	-0,300	0,237		
28	2575,472	1891.222	934,013	<u> </u>	-0.284	-0.064	0.341		
29	2020,983	1828,392	949,334	<u>x,y,z</u>	-0,373	-0,265	0,082		
30	2094,030	1841,/30	947,030		-0,436	-0,300	-0,187		
32	1917,436	920.214	1173,032		-0,016	0,294	-0,222		
	2003,773	830,314	11//,2//	<u>X, V, Z</u>	0.038	-0,015	-0,261		
		ED		Medias	0,078	0,038	0,032		
	+	EK		<u>0 226</u>	<u>icu</u> m = +	0.285			
	$m_X - =$		my	U,230	m_Z	U.265	<u> </u>		
	PARAME		TEN IAÇAU	EATERIO	KE SUAS P	RECISUES			
<u> </u>		VALORES I		<i>J</i> / <i>J</i>		VALORES	σ		
	к	180 601 703	0.006	50	XO	1518 238	0 484		
aus		-0 2654596	0.013	Ë	<u>Y0</u>	1858 354	0.430		
50	() ()	-0 2967638	0.011	l e	<u> </u>	3134 421	0,450		
		0,270,020	FOT) 74		5151,121	0,231		
		VALORES	σ			VALORES	σ		
	к	181,152279	0,006	<u>v</u>	X0	2462.723	0.501		
au	φ	-0,2258663	0.014		Y0	1768.781	0.437		
ಮ	ω	-0,5097814	5097814 0,011 E Z0	ZO	3133.447	0.271			
FOTO 75									
<u> </u>		VALORES	σ	<u> </u>		VALORES	. σ		
s	к	181,135978	0,007	s	X0	3104.000	0,660		
an	φ	-0,193823	0,018	- ti	YO	1710,332	0,491		
50	ω	0,7226611	0,011	Ĭ	ZO	3133,561	0.426		

QUADRO 31 – RESULTADOS DA ORIENTAÇÃO EXTERIOR (FOTOS 73,74 E 75)
	PRECISÃO DAS COORDENADAS CALCULADAS (EPSON-6)											
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)					
1	0,136	0,153	0,234	17	0,146	0,162	0,318					
2	0,143	0,150	0,203	18	0,174	0,140	0,337					
3	0,149	0,166	0,253	19	0,149	0,137	0,215					
4	0,142	0,163	0,242	20	0,211	0,159	0,375					
5	0,139	0,166	0,226	21	0,204	0,169	0,367					
6	0,131	0,153	0,221	22	0,164	0,160	0,221					
7	0,119	0,129	0,200	23	0,201	0,204	0,365					
8	0,129	0,148	0,212	24	0,201	0,231	0,372					
9	0,118	0,115	0,171	25	0,160	0,168	0,259					
10	0,135	0,158	0,219	27	0,120	0,120	0,188					
11	0,140	0,152	0,185	28	0,122	0,121	0,244					
12	0,144	0,158	0,191	29	0,131	0,129	0,199					
13	0,168	0,249	0,354	30	0,161	0,152	0,309					
14	0,168	0,232	0,352	32	0,202	0,239	0,315					
15	0,174	0,244	0,361	33	0,165	0,170	0,216					
16	0,174	0,211	0,353	Média	0,155	0,168	0,267					

QUADRO 32 – PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS (FOTOS 73,74 E 75)

4.5.4.1 Coordenadas corrigidas pelo método grid off line

O quadro 33 traz os valores dos resíduos da orientação interior após a correção das coordenadas pelos parâmetros obtidos *off line*.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-8)										
	FOT	0 73	FOT	°O 74	FOTO 75					
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)				
1	-0,008	-0,003	-0,003	-0,001	-0,001	-0,003				
2	0,008	0,003	0,003	0,001	0,001	0,003				
3	-0,001	-0,003	0,001	0,001	0,003	-0,002				
4	0,001	0,003	-0,001	-0,001	-0,003	0,002				
5	0,008	0,006	0,002	0,000	-0,001	0,005				
6	-0,008	-0,006	-0 ,002	0,000	0,001	-0,005				
7	-0,007	0,000	-0,005	-0,002	-0,004	-0,002				
8	0,007	0,000	0,005	0,002	0,004	0,002				

QUADRO 33 – RESÍDUOS DA ORIENTAÇÃO INTERIOR COM *GRID OFF LINE* (FOTOS 73,74 E 75)

Comparando-se aos valores do quadro 28, os resíduos são equivalentes e situam-se na mesma faixa de variação (-1µm a 8µm). Portanto o *grid off line* não propicia melhora na orientação interior.

Para verificar a atuação do modelo nas fotocoordenadas, o quadro 34 apresenta os comparativos das distâncias entre marcas fiduciais. Pode-se perceber, pelos valores de Δ , uma forte atuação do modelo sobre as fotocoordenadas, se comparados ao do quadro 29 (página 121).

O quadro 35 traz os valores das observações fotogramétricas ajustadas, seus resíduos e suas precisões.Os valores de resíduos apresentados indicam a inexistência de erro significante de posicionamento sobre a imagem.

O quadro 36 apresenta os resultados da orientação exterior. As médias das discrepâncias não apresentam variação significativa. Analisando a quantidade de pontos com discrepâncias abaixo do limite de $\pm 0,48$ m constata-se uma aumento em X de 83,87% para 90,32% dos pontos. Os demais valores (Y e Z) são idênticos (100% e 90,32%).

O quadro 37 mostra a precisão pontual das coordenadas obtidas.

DIFERENÇ	CAS CALCI	JLADAS PA	ARA DIST (EPSO)	ÂNCIAS E N-8)	NTRE MA	RCAS FID	OUCIAIS	
			OBSEF	VADAS N	A IMAGE	 M (mm)		
FIDCU	CIAL	FOT	0 73	FOT	0 74	FOT	0 75	
		X	у	x	у	x	у	
1		19,609	235,047	12,133	233,067	19,331	232,683	
2		239,639	14,815	233,167	13,818	237,652	10,767	
3		19,573	14,958	13,110	12,969	17,607	12,571	
4		239,694	234,958	232,237	233,981	239,408	230,905	
5		17,556	125,010	10,569	123,029	16,434	122,661	
6		241,611	124,916	234,647	123,933	240,476	120,833	
7		129,592	12,891	123,133	11,402	127,586	9,661	
8		129,633	237,001	122,164	235,534	35,534 129,359 233,7		
CERTIFICA	DO DE CA	LIBR. DA (CÂMERA	DISTÂNC	CIAS DO C	ERTIFICA	DO (mm)	
Data	Ponto	x (mm)	y (mm)					
	1	-109,996	-109,998	1-2		311	,120	
	2	110,000	109,996	2-3		219	,999	
7	3	-109,999	110,007	3-4		311	,137	
1/0	4	110,005	-110,003	4	-5	247,760		
4/1	5	-111,994	0,004	5	-6	223	,995	
	6	112,001	-0,004	6	-7	158	,399	
	7	0,000	112,005	7	-8	224	,015	
	8	0,000	-112,010	8	-1	110	,014	
DISTÂ		FOT	O 73	FOI	`O 74	FOT	' 0 75	
DISTA		VALOR	Δ	VALOR	Δ	VALOR	Δ	
1-2	2	311,3124	0,193	311,3293	0,209	311,3049	0,185	
2-3	3	220,0664	0,067	220,0588	0,060	220,0528	0,054	
3-4	3-4		0,076	311,2281	0,091	311,2325	0,096	
4-:	5	247,8592	0,099	247,8849	0,125	247,8592	0,099	
5-0	5	224,0551	0,060	224,0791	0,084	224,0493	0,054	
6-	7	158,4232	0,024	158,4251	0,026	158,4402	0,041	
7-	8	224,1102	0,095	224,134	0,119	224,1356	0,121	
8-	1	110,0421	0,028	110,058	0,044	110,0334	0,019	

QUADRO 34 – DISTÂNCIAS ENTRE MARCAS FIDUCIAIS APÓS APLICAÇÃO DO *GRID OFF LINE* (FOTOS 73,74 E 75)

COORD	ENADAS	FOTOGR	AMÉTRI	CAS AJUS	STADAS, S	SEUS RES	ÍDUOS E	SUAS PR	ECISÕES	
				<u>(EPS</u>	<u>ON-8)</u>					
	F	OTO 73 (m	m)		FOTO 74 (mm)					
PONTO	хр	ур	Vx	Vy	PONTO	xp	ур	Vx	Vy	
1	81,238	54,835	-0,002	0,001	1	7,786	63,439	0,007	0,004	
2	97,947	53,973	-0,001	0,000	2	25,027	62,360	0,000	0,002	
3	92,583	61,039	-0,002	-0,005	3	19,317	69,568	0,004	0,003	
4	83,499	63,737	0,000	-0,003	4	9,909	72,406	-0,002	0,001	
5	50,906	78,224	-0,002	-0,001	5	-22,679	87,295	0,005	0,000	
6	63,036	64,113	0,001	-0,002	6	-10,640	72,975	-0,002	-0,001	
7	39,695	44,852	0,000	-0,002	7	-33,619	53,741	0,000	0,007	
8	44,785	63,945	0,000	-0,002	8	-28,916	72,970	0,000	-0,001	
9	14,201	35,751	-0,006	-0,018	9	-59,157	44,819	0,004	-0,004	
10	43,133	73,342	0,000	0,003	10	-30,541	82,452	0,001	-0,003	
11	34,859	86,773	0,002	0,005	11	-38,443	96,025	0,003	-0,005	
12	28,253	91,165	0,002	-0,003	12	-44,956	100,502	0,006	0,009	
13	14,247	98,334	0,001	0,006	13	-58,757	107,833	-0,001	-0,006	
14	5,721	89,580	0,000	-0,002	14	-67,501	99,100	0,000	0,002	
15	3,846	94,675	0,000	0,001	15	-69,152	104,230	0,000	0,001	
16	-6,864	76,917	0,000	0,002	16	-80,142	86,449	0,000	-0,002	
17	2,797	49,179	0,000	0,001	17	- 7 0,785	58,460	0,000	-0,001	
18	-20,082	7,642	0,001	0,008	18	-92,813	16,811	-0,001	-0,008	
19	-27,252	4,310	0,001	0,007	19	-99,913	13,523	0,002	-0,010	
20	-35,630	-16,821	0,001	0,005	20	-107,563	-7 ,683	-0,001	-0,005	
21	-29,248	-32,433	0,000	0,001	21	-101,474	<u>-23,359</u>	0,000	-0,001	
22	-24,779	-45,755	-0,002	-0,005	22	-97,499	-36,691	-0,002	0,006	
23	-17,393	-60,875	-0,001	-0,007	23	-90,417	-51,863	0,001	0,007	
24	-7,872	-76,615	0,001	0,012	24	-81,051	-67,682	-0,001	-0,012	
25	28,592	-63,204	0,000	-0,010	25	-44,351	-54,650	-0,002	0,000	
27	62,042	-3,930	0,000	0,004	27	-3,546	3,607	-0,002	0,012	
28	58,947	2,456	0,001	0,011	28	-6,641	10,047	0,000	-0,006	
29	76,345	-2,086	0,000	0,002	29	10,957	5,302	0,000	-0,001	
30	94,825	-1,304	0,003	0,003	30	29,589	5,838	-0,008	0,001	
32	29,064	-103,388	0,004	0,008	52	-44,680	-94,940	-0,006	0,003	
33	36,090	-79,236	-0,001	-0,015	33	-37,622	-70,676	0,003	0,006	
ER	RO MED	IO QUAD	RATICO	(mm)	ER	RO MEDI	O QUAD	<u>RATICO (</u>	<u>mm)</u>	
$m_X = \pm$	0,002		$m_Y = \pm$	0,007	$m_X = \pm$	0,003		$m_{Y} = \pm$	0,005	
		<u></u>		FOTO	<u>75 (mm)</u>					
PONTO	xp	<u>vp</u>		Vy	PONTO	xp	<u>vp</u>		Vy	
	-42,446	65,251	-0,004	-0,006	27	-48,246	5,301	0,005	-0,013	
$\frac{2}{2}$	-25,034	64,162	0,000	-0,003	28	-51,339	11,735	-0,001	-0,005	
3	-30,946	/1,269	-0,002	0,002	29	-33,637	6,989	0,002	0,002	
4	-40,463	/4,0/1	0,001	0,001	30	-14,944	7,524	0,004	-0,004	
3	-72,596	88,621	-0,003	0,001	$\frac{32}{22}$	-95,476	-94,054	0,003	<u>-0,010</u>	
	-00,809	74,020	0,002	0,005		-88,175	-09,185	-0,003	0,009	
<u> </u>	79 960	33,638	0,000	-0,005	ł			 		
	-18,809	14,002	0,000	0,003	ł	 				
y	-108,724	40,834	0,005	0,022	 					
	07 002	07.104	0,000	0,000	l					
	-01,092	97,104	-0,004	-0,001	ED.	DO MÉDI		L DÁTICO (<u> </u>	
25	-94,209	-52 012	-0,000	-0,007			U QUAD	m = +	<u>)</u>	
<u> </u>	1 -74,347	1 -22,912	0,005	1 0,002	m_{X}	0,002		m_y	0.000	

QUADRO 35 – OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS COM *GRID OFF LINE* (FOTOS 73,74 E 75)

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON-8)									
	COORDE	NADAS CAI	CULADAS	INJUN-	DIS	CREPÂNCL	AS		
PONTO	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	Z (m)		
1	2552.755	2556.416	1200.180	-	0 1 1 8	0.103	0.146		
2	2773 137	2552 022	1189 078	r 11 7	0.161	0,105	0.127		
3	2697 280	2637 552	1198 619	A, V, 2	0.101	0,080	019		
4	2576 951	2667 352	1205 834		0.052	0.059	0.028		
5	2162 155	2846 990	1202 275		-0.033	0.035	0.044		
6	2317 622	2669 472	1202,275		0.087	0,055	-0.022		
7	2028 685	2427 050	1187 688		0.497	0.105	0.567		
8	2086 763	2665 562	1201 803		0.061	0.120	0.080		
9	1704 278	2308 045	1183 367		0.571	0.099	0.128		
10	2064 198	2783 954	1202 346		0.029	0.053	0.010		
11	1959 240	2957 469	1193 343	r 1/7	-0119	0.074	-0 146		
12	1874 993	3013 879	1190 324	x, y, z	-0.239	0.097	-0.165		
13	1696.061	3106 995	1183 366		-0.200	0.147	-0.268		
14	1588 170	2992 369	1186 177		-0.141	0.034	-0.109		
15	1563 666	3060 275	1180 644		-0.179	0.176	-0.231		
16	1429 125	2830 374	1183 623	[-0.050	0,110	-0.038		
17	1556 254	2476 086	1189 413		0 407	0.127	0.663		
18	1265 736	1944 505	1157 913		-0.405	0.243	0.003		
19	1172.638	1900 349	1154 679	r 1/7	-0.337	0.302	0,005		
20	1061 086	1621 744	1131 115	x,y,2	0.435	0,352	0.967		
21	1148 193	1418 442	1137 925	1	0,639	-0119	0.047		
22	1210 408	1247 722	1150 271	r v 7	0.368	-0.181	-0 127		
23	1309 414	1053 715	1157 205	<u>,,,,,</u>	0,500	-0.127	-0.320		
24	1435 480	850 863	1160 014		0,110	0.308	0.064		
25	1908 289	1029 084	1158 549	<u> </u>	0.423	-0.082	-0.042		
27	2419 606	1800.007	953 481	r v z	-0.250	-0.299	0 184		
28	2373 530	1891 191	954 528		-0.226	-0.095	0.256		
29	2627.083	1828 585	949 495	<u>rv7</u>	-0.275	-0.272	0.043		
30	2894 781	1841 749	947 620	, <u>,,,,</u>	-0313	-0.307	-0.217		
32	1917,446	511.870	1173.680		-0.006	0.221	-0174		
33	2003.837	830.422	1177.284	x.v.z	0.122	0.093	-0.254		
				Médias	0,060	0,061	0,046		
	<u> </u>	ERR	O MÉDIO QU	ADRÁTIC	CO (m)		<u>_</u>		
	$m_X = \pm$	0,299	$m_{y}=\pm$	0,183	$m_z = \pm$	0,281			
	PARAMET	FROS DE OF	RIENTAÇÃO	EXTERIO	R E SUAS P	RECISOES			
		NATODDC	FOT	73		MALODEC			
		VALORES	σ	[VALORES	σ		
ST	к	180,603117	0,006	S S	<u>X0</u>	1518,250	0,476		
grai	φ	-0,2634136	0,013	let l	YO	1858,130	0,423		
	ω	-0,2909146			Z0	3134,860	0,250		
	1	IVALORES)/4 	I	IVAL OPES	<i>~</i>		
		181 152057	0.006		Y0	2462 592	0 402		
snt		-0 2320269	0,000	Ĭ		1769 020	0,435		
gr		-0 5161593	0,013	uei u	70	3133 008	0.766		
	L	0,0101070	FULL	75		5155,700	0,200		
├ ───		VALORES	σ		I	VALORES	σ		
	ĸ	181 137791	0.007	s	xo	3103 957	0 649		
aus	9	-0,1996138	0,018	E I	YÖ	1710.584	0,484		
59	ω	0,71650269	0,011	me	<u>Z0</u>	3134.034	0,419		
l				I			,		

QUADRO 36 – RESULTADOS DA ORIENTAÇÃO EXTERIOR COM *GRID OFF LINE* (FOTOS 73,74 E 75)

	PRECISÃO DAS COORDENADAS CALCULADAS (EPSON-8)										
PONTO	σX (m)	σY(m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)				
1	0,134	0,151	0,231	17	0,144	0,159	0,313				
2	0,140	0,147	0,200	18	0,171	0,138	0,332				
3	0,146	0,164	0,249	19	0,147	0,135	0,212				
4	0,140	0,160	0,238	20	0,207	0,157	0,369				
5	0,137	0,163	0,222	21	0,201	0,166	0,361				
6	0,129	0,151	0,218	22	0,162	0,158	0,217				
7	0,117	0,127	0,197	23	0,198	0,201	0,359				
8	0,127	0,145	0,208	24	0,198	0,227	0,366				
9	0,116	0,114	0,168	25	0,157	0,165	0,255				
10	0,133	0,156	0,216	27	0,119	0,118	0,185				
11	0,138	0,150	0,182	28	0,120	0,120	0,240				
12	0,142	0,155	0,188	29	0,129	0,127	0,196				
13	0,165	0,245	0,349	30	0,158	0,149	0,304				
14	0,165	0,228	0,346	32	0,198	0,235	0,310				
15	0,171	0,240	0,355	33	0,162	0,168	0,213				
16	0,171	0,208	0,348	Média	0,153	0,165	0,263				

QUADRO 37 – PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS COM *GRID OFF LINE* (FOTOS 73,74 e 75)

As médias dos desvios padrão para X, Y e Z que eram de 0,155m; 0,168m e 0,267m (quadro 32 página 125) são reduzidas a 0,153m; 0,165m e 0,263m respectivamente.

Tomando-se como outro exemplo de comparação a precisão dos parâmetros $\kappa, \varphi \in \omega$ da foto 73 indicada no quadro 36 que é de respectivamente 0,006°; 0,013° e 0,011° e comparando-se aos valores do quadro 31 percebe-se que a precisão é mantida. Com os centros perspectivos (*X0, Y0 e Z0*) ocorre melhora não significativa (de 0,484m; 0,430m e 0,254m para 0,476m, 0,423m e 0,250m, respectivamente).

Quanto ao erro médio quadrático das coordenadas dos pontos, também indicados no quadro 31 e 35 evoluem de $m_X=\pm 0,316$ m, $m_Y=\pm 0,236$ e $m_Z=\pm 0,285$ m para $m_X=\pm 0,299$ m, $m_Y=0,183$ m e $m_Z=\pm 0,281$ m.

Conclui-se, portanto, que o processo de *grid off line* não traz aumento significativo de precisão no dispositivo em estudo.

4.5.4.2 Coordenadas corrigidas pelo método grid on line

A seguir são apresentados valores obtidos pelo método grid on line. O quadro 38 apresenta os valores dos resíduos da orientação interior.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-7)										
	FOT	0 73	FOT	' O 74	FOTO 75					
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)				
1	-0,011	-0,003	-0,008	-0,001	-0,004	-0,006				
2	0,011	0,003	0,008	0,001	0,004	0,006				
3	-0,005	-0,005	-0,004	0,000	-0,001	-0,004				
4	0,005	0,005	0,004	0,000	0,001	0,004				
5	0,016	0,009	0,012	0,001	0,005	0,010				
6	-0,016	-0,009	-0,012	-0,001	-0,005	-0,010				
7	-0,006	0,002	-0,004	-0,001	-0,004	-0,002				
8	0,006	-0,002	0,004	0,001	0,004	0,002				

QUADRO 38 - RESÍDUOS DA ORIENTAÇÃO INTERIOR COM GRID ON LINE

Comparando-se a faixa de variação dos resíduos com *grid on line* (-16µm a 16 µm) aos valores sem correção (quadro 28, -8µm a 8µm) percebe-se uma perda em relação a acurácia. Como a modelagem resulta em máximos resíduos de até 30µm, esta pode introduzir erros nas coordenadas. Isto significa que apesar dos valores estarem mais próximos do valor tomado como correto (marcas fiduciais), estes apresentam diferenças físicas com relação ao referencial fiducial, que o polinômio de 2° grau utilizado na orientação interior tem menos eficiência em parametrizar.

O quadro 39 apresenta a comparação entre distâncias das marcas fiduciais. Neste caso também é possível constatar forte atuação do modelo, pela redução dos valores de Δ , se comparados aos do quadro 29.

O quadro 40 apresenta os valores das observações fotogramétricas ajustadas. O quadro 41 apresenta os valores das coordenadas dos pontos no referencial geodésico local, suas discrepâncias, parâmetros de orientação exterior e a precisão destes. O quadro 42 apresenta a precisão pontual das coordenadas calculadas.

DIFERENÇ	AS CALCU	ULADAS PA	ARA DIST.	ÂNCIAS E 1-5)	NTRE MA	RCAS FID	UCIAIS
			OBSER	VADAS N	A IMAGE	M (mm)	
FIDUC	CIAL	FOT	0 73	FOT	0 74	FOT	0 75
		X	у	X	у	X	у
1		20,447	236,087	12,635	233,561	21,048	233,886
2		238,756	14,225	232,945	13,696	237,609	10,353
3		18,670	16,036	12,871	13,514	17,534	13,862
4		240,550	234,323	232,762	233,800	241,156	230,398
5		17,515	126,054	10,687	123,516	17,259	123,894
6		241,580	124,283	234,782	123,768	241,315	120,348
7		128,696	13,130	122,905	11,610	127,534	10,113
8		130,505	237,202	02 122,690 235,688 131,129 2			
CERTIFICA	LIBR. DA	CÂMERA	DISTÂNCIAS DO CERTIFICADO			ADO (mm)	
Data	Ponto		<u>y (mm)</u>				100
		-109,996	-109,998	1-2		311	,120
	2	110,000	109,996	2-3		219	,999
002	3	-109,999	110,007	3-4		311	,137
1/2	4	110,005	-110,003	4	-5	247,760	
4/1	5	-111,994	0,004	5	-6	223,995	
-	6	112,001	-0,004	6	-/	158	,399
		0,000	112,005	7	-8	224	,015
	8	0,000	-112,010	8	-1	110	,014
DISTÂ	NCIA	FOT	<u>°O 73</u>	FOT	<u>°O 74</u>	FOT	0 75
1	<u> </u>	VALUK	Δ	VALOR	Δ	VALOR	
1	2	311,2572	0,137	311,2509	0,131	311,2329	0,113
2	<u>,</u>	220,0934	0,094	220,0747	0,076	220,1028	0,104
3-4	4 	311,2557	0,119	311,2525	0,116	311,2791	0,142
4-:	<u> </u>	247,9253	0,165	247,9511	0,191	247,938	0,178
5-0	b	224,0722	0,077	224,0955	0,100	224,085	0,090
6-	/	158,4219	0,023	158,4169	0,018	158,4234	0,024
7-	<u>× </u>	224,0787	0,064	224,0776	0,063	224,0658	0,051
8-	l	110,0638	0,049	110,075	0,061	110,0822	0,068

QUADRO 39 – COMPARAÇÃO DE DISTÂNCIAS ENTRE MARCAS FIDUCIAIS COM *GRID ON LINE* (FOTOS 73,74 E 75)

Г

٦

COORD	COORDENADAS FOTOGRAMÉTRICAS AJUSTADAS, SEUS RESÍDUOS E SUAS PRECISÕES										
	F	OTO 73 (m	m)	(121)	FOTO 74 (mm)						
PONTO	хр	ур	Vx	Vy	PONTO	хр	vp	Vx	Vy		
1	81,255	54,833	-0,001	0,001	1	7,810	63,443	0.004	0.004		
2	97,963	53,970	0,000	0,000	2	25,051	62,363	-0,002	0.000		
3	92,600	61,037	-0,001	-0,005	3	19,341	69,572	0,002	0.002		
4	83,515	63,736	0,001	-0,003	4	9,933	72,410	-0.004	0.000		
5	50,922	78,225	-0,002	-0,001	5	-22,658	87,300	0,005	0,000		
6	63,053	64,114	0,002	-0,002	6	-10,617	72,980	-0,005	-0.001		
7	39,711	44,853	0,001	-0,002	7	-33,597	53,748	-0.002	0.007		
8	44,803	63,947	0,001	-0,002	8	-28,892	72,976	-0.002	-0.001		
9	14,215	35,754	-0,006	-0,016	9	-59,135	44,828	-0,004	-0.003		
10	43,151	73,344	0,001	0,003	10	-30,518	82,457	-0.001	-0,003		
11	34,872	86,776	0,000	0,005	11	-38,425	96.028	0,006	-0.004		
12	28,264	91,168	-0,001	-0,003	12	-44,939	100,504	0,010	0.010		
13	14,258	98,335	0,001	0,005	13	-58,753	107,833	-0,001	-0.005		
14	5,736	89,582	0,000	-0,003	14	-67,488	99,102	0,000	0.003		
15	3,858	94,676	0,000	-0,002	15	-69,144	104,230	0,000	0.002		
16	-6,846	76,920	0,000	0,002	16	-80,122	86,453	0,000	-0.002		
17	2,814	49,182	0,000	0,002	17	-70,760	58,468	0.000	-0.002		
18	-20,078	7,644	0,001	0,008	18	-92,803	16,820	-0,001	-0.008		
19	-27,249	4,312	0,002	0,008	19	-99,905	13,533	0,001	-0.010		
20	-35,636	-16,820	0,001	0,005	20	-107,567	-7,674	-0.001	-0,005		
21	-29,260	-32,434	0,000	0,000	21	-101,486	-23,353	0,000	0,000		
22	-24,793	-45,757	-0,001	-0,005	22	-97,518	-36,686	-0,002	0,008		
23	-17,411	-60,878	-0,001	-0,008	23	-90,440	-51,861	0,001	0.008		
24	-7,890	-76,618	0,001	0,011	24	-81,076	-67.684	-0,001	-0.011		
25	28,572	-63,206	-0,001	-0,009	25	-44,373	-54.651	0,001	0,002		
27	62,039	-3,933	0,000	0,005	27	-3,543	3,607	-0,001	0.011		
28	58,946	2,454	0,001	0,012	28	-6,635	10,049	0.000	-0.006		
29	76,341	-2,090	0,000	0,003	29	10,962	5,301	0.002	-0.002		
30	94,821	-1,370	0,002	0,004	30	29,595	5,834	-0,004	-0.001		
32	29,057	-103,588	0,004	0,008	32	-44,697	-94,946	-0,007	0,000		
33	36,071	-79,238	-0,002	-0,015	33	-37.645	-70.680	0.006	0.006		
ERI	ro médi	O QUADI	RÁTICO (mm)	ER	RO MÉDI	O QUADI	RÁTICO (mm)		
$m_X = \pm$	0,002		$m_{Y} = \pm$	0,007	$m_X = \pm$	0,004		$m_{Y} = \pm$	0,005		
				FOI	r o 75						
PONTO	<u>xp</u>		<u> </u>	Vy	PONTO	хр	ур	Vx	Vy		
1	-42,431	65,252	-0,003	-0,005	27	-48,247	5,302	0,004	-0,013		
2	-25,020	64,164	-0,001	-0,002	28	-51,338	11,736	-0,001	-0,005		
3	-30,932	71,270	-0,001	0,003	29	-33,638	6,991	0,001	0,002		
4	-40,450	74,072	0,003	0,003	30	-14,944	7,526	0,002	-0,003		
5	-72,589	88,621	-0,003	0,001	32	-95,489	-94,054	0,003	-0,008		
6	-60,796	74,621	0,003	0,003	33	-88,193	-69,183	-0,004	0,009		
	-83,315	55,659	0.001	-0,005							
8	-78,856	74,603	0,002	0,003					-		
9	-108,708	46,835	0,004	0,018							
0	-80,409	83,886	0,001	0,000							
	-87,889	97,102	-0,005	-0,001							
12	-94,209	101,448	-0,007	-0,008	ERI	RO MÉDI	O QUADI	RÁTICO (I	nm)		
25	-94,364	-52,912	0,001	0,007	$m_x = \pm$	0,002		$m_{\rm F} = \pm$	0,005		

QUADRO 40 – VALORES DAS OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS COM *GRID* ON LINE

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON-7)									
	COORDE	NADAS CAL	CULADAS	INJUN-	DIS	CREPÂNCI	NCIAS		
PONTO	X (m)	Y (m)	Z (m)	ÇÕES	X (m)	Y (m)	 Z(m)		
1	2552.862	2556.500	1200.148		0.225	0.186	0.114		
2	2773 250	2552 120	1189 053	r 1/ 7	0 274	0 184	0 102		
3	2697 385	2637 660	1198 579	4,7,4	0 152	0 207	-0.059		
4	2577.041	2667.441	1205 812		0.142	0.147	0.006		
5	2162.184	2846.990	1202.319		-0,004	0.035	0.088		
6	2317.708	2669.519	1204.429		0,173	0,236	-0,021		
7	2028,804	2427,082	1187.650		0.616	0,158	0.529		
8	2086,857	2665,580	1201,808		0,155	0,147	0,085		
9	1704,399	2308,065	1183,280		0,692	0,119	0,041		
10	2064,258	2783,952	1202,377		0,089	0.051	0,041		
11	1959,221	2957,428	1193,394	<i>x, v, z</i>	-0,138	0,033	-0,094		
12	1874,944	3013,812	1190,385	x,y,z	-0,288	0,030	-0,104		
13	1695,979	3106,639	1183,764		-0,282	-0,209	0,130		
14	1588,188	2992,093	1186,477		-0,123	-0,243	0,191		
15	1563,653	3059,918	1181,029		-0,192	-0,182	0,154		
16	1429,245	2830,172	1183,817		0,070	0,008	0,156		
17	1556,392	2476,059	1189,358		0,545	0,100	0,608		
18	1265,795	1944,447	1157,826		-0,346	0,186	-0,084		
19	1172,700	1900,284	1154,628	x, y, z	-0,275	0,237	0,159		
20	1061,081	1621,658	1131,068		0,430	0,267	0,920		
21	1148,131	1418,356	1137,889		0,577	-0,205	0,011		
22	1210,334	1247,654	1150,285	<i>x,y,z</i>	0,294	-0,249	-0,113		
23	1309,310	1053,647	1157,206		0,312	-0,195	-0,319		
24	1435,403	850,827	1160,045		0,135	0,272	0,095		
25	1908,137	1029,088	1158,562		0,271	-0,078	-0,029		
27	2419,586	1800,041	953,463	x, y, z	<u>-0,270</u>	-0,265	0,166		
28	2373,541	1891,231	954,492		-0,215	-0,055	0,220		
29	2627,070	1828,630	949,477	x,y,z	-0,288	-0.227	0,025		
	2894,780	1841,810	947,584		-0,314	-0,247	-0,253		
32	1917,507	512,030	1173,870		0,055	0,381	0,016		
33	2003,715	830,468	1177,357	<u>x,v,z</u>	0,000	0,139	-0,181		
<u> </u>				Medias	0,080	0,031	0,084		
L		ERRO) MEDIO QU	ADRÁTIC	:O (m)				
	$m_X = \pm$	0,312	$m_{Y} = \pm$	0,195	$m_Z = \pm$	0,258			
	PARAMET	ROS DE OR	LIENTAÇÃO FOTO	EXTERIO	R E SUAS P	RECISOES			
		VALORES 1		<i>i</i> / 3		VALOPES	đ		
		180 610978	0.006	s		1518 066	0.460		
aus	<u>_</u>	-0 2690908	0.013	trö		1858 175	0 417		
19	<u>Ψ</u> ω	-0 2934201	0.011	me	70	3134 738	0 246		
	L ~~~	0,2237201	<u></u>) 74		5151,150	0,270		
	[VALORES	σ			VALORES	σ		
10	ĸ	181,1622	0.006	N.	X0	2462 508	0.485		
au	Φ	-0,2324098	0,013	, tro	YO	1768.763	0.423		
g	ω	-0.508048	0.011	n me	ZŐ	3133.771	0.262		
			FOTO) 75	L				
		VALORES	σ			VALORES	σ		
s	к	181,140089	0,007	s	X0	3103,746	0.639		
rau	φ	-0,2055561	0,018	etrc	YO	1710,486	0,476		
50)	ω	0,7201291	0,011	ĬĚ	ZO	3134,132	0,413		

QUADRO 41 – RESULTADOS DA ORIENTAÇÃO EXTERIOR COM *GRID ON LINE* (FOTOS 73,74 E 75)

	PRECISÃO DAS COORDENADAS CALCULADAS (EPSON-7)										
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)				
1	0,132	0,149	0,227	17	0,141	0,157	0,308				
2	0,138	0,145	0,197	18	0,168	0,136	0,327				
3	0,144	0,161	0,245	19	0,144	0,133	0,209				
_4	0,138	0,158	0,234	20	0,204	0,154	0,364				
5	0,134	0,161	0,219	21	0,197	0,164	0,355				
6	0,127	0,148	0,214	22	0,159	0,155	0,214				
7	0,115	0,125	0,194	23	0,195	0,198	0,354				
8	0,125	0,143	0,205	24	0,195	0,224	0,360				
9	0,114	0,112	0,165	25	0,155	0,163	0,251				
10	0,131	0,153	0,212	27	0,117	0,116	0,182				
11	0,135	0,148	0,179	28	0,118	0,118	0,237				
12	0,140	0,153	0,185	29	0,127	0,125	0,193				
13	0,163	0,241	0,343	30	0,156	0,147	0,299				
14	0,163	0,224	0,341	32	0,195	0,231	0,305				
15	0,169	0,236	0,350	33	0,160	0,165	0,209				
16	0,168	0,205	0,342	Média	0,151	0,163	0,259				

QUADRO 42 – PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS COM *GRID ON LINE* (FOTOS 73,74 E 75)

Analisando a média das discrepâncias em X de 0,080m; em Y de 0,031m e em Z de 0,084m percebe-se que não há variação significativa em relação aos valores sem correção (0,078m; 0,058m e 0,052m, respectivamente, no quadro 31 página 124). O percentual de pontos com discrepâncias abaixo do limite estabelecido de \pm 0,48m, tem pequeno aumento em X (de 83,87% sem correção para 87,10%), e os demais valores permanecem inalterados.

Pelos valores apresentados o método de *grid on line* também não apresenta aumento significativo de precisão. Neste *desktop scanner* em particular, constata-se que a parametrização do modelo matemático de orientação interior utilizando somente as marcas fiduciais foi suficiente para corrigir as deformações causadas pelo processo de digitalização.

4.5.4.3 Reamostragem com correção

As aerofotos 73,74 e 75 foram reamostradas com correção pelo método grid on line, conforme item 3.2.3.1.2 da metodologia. A imagem sofreu redução em torno de 1,5 mm em suas dimensões. A resolução de 1600 dpi foi mantida.

O quadro 43 apresenta os resíduos da orientação interior. Os valores são superiores aos apresentados para a orientação interior de aerofotos sem correção (quadro 28, -8 μ m a 8 μ m), entretanto encontram-se dentro da faixa de máximos resíduos da modelagem (±30 μ m).

O quadro 44 apresenta a comparação de distâncias entre fiduciais e mais uma vez é evidenciada a forte atuação do modelo, desta vez sobre a imagem. O quadro 45 apresenta valores das observações fotogramétricas ajustadas, seus resíduos e erro médio quadrático.

O quadro 46 apresenta os resultados da orientação exterior e o quadro 47 as precisões pontuais das coordenadas obtidas.

RESÍDUOS DA ORIENTAÇÃO INTERIOR (EPSON-9)										
	FOT	0 73	FOT	0 74	FOTO 75					
FIDUCIAIS	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)	V _X (mm)	V _Y (mm)				
1	-0,007	-0,003	-0,009	0,001	-0,016	-0,009				
2	0,007	0,003	0,009	-0,001	0,016	0,009				
3	-0,010	-0,006	-0,002	0,001	-0,007	-0,008				
4	0,010	0,006	0,002	-0,001	0,007	0,008				
5	0,017	0,009	0,010	-0,002	0,023	0,018				
6	-0,017	-0,009	-0,010	0,002	-0,023	-0,018				
7	0,002	0,002	-0,007	0,001	-0,008	-0,001				
8	-0,002	-0,002	0,007	-0,001	0,009	0,001				

QUADRO 43 – RESÍDUOS DA ORIENTAÇÃO INTERIOR PARA IMAGEM REAMOSTRADA COM CORREÇÃO

DIFERENÇAS CALCULADAS PARA DISTÂNCIAS ENTRE MARCAS FIDUCIAIS									
OBSERVADAS NA IMAGEM (mm)									
FIDUCIAL		FOTO 73		FOT	'O 74	FOTO 75			
		X	у	x y		x	у		
1		-105,059	-110,871	-113,038	-113,038 -108,918		-108,636		
2		113,250	110,978	107,277 110,954		111,250	114,920		
3		-106,840	109,172	-112,815 111,132		-108,826	111,413		
4		115,041	-109,116	107,082 -109,154		114,805	-105,124		
5		-107,990	-0,855	-114,998	1,128	-109,098	1,406		
6		116,075	0,908	109,111	0,886	114,948	4,908		
7		3,203	112,092	-2,772	113,045	1,171	115,148		
8		5,010	-111,998	-2,991	-111,026	4,764	-108,886		
CERTIFICA	DO DE CA	LIBR. DA	CÂMERA	DISTÂNCIAS DO CERTIFICADO (m					
Data	Ponto	x (mm)	y (mm)						
	1	-109,996	-109,998	1	-2	311,120			
	2	110,000	109,996	2	-3	219,999			
02	3	-109,999	110,007	3-4		311	,137		
/20	4	110,005	-110,003	4-5		247	,760		
11/1	5	-111,994	0,004	5-6		223,995			
4	6	112,001	-0,004	6-7		158,399			
	7	0,000	112,005	7	-8	224,015			
	8	0,000	-112,010	8-1		110,014			
DISTÂ	NCIA	FOT	O 73	FOTO 74		FOTO 75			
DISTA		VALOR	Δ	VALOR	Δ	VALOR	Δ		
1-2	2	311,2486	0,129	311,2595	0,140	311,2562	0,136		
2-3		220,0971	0,098	220,0922	0,093	220,1041	0,105		
3-4		311,2565	0,120	311,2562	0,119	311,2864	0,150		
4-5		247,9176	0,157	247,9549	0,195	247,9544	0,194		
5-6		224,0712	0,076	224,1094	0,114	224,0738	0,079		
6-7		158,4359	0,037	158,4217	0,023	158,4231	0,024		
7-8		224,0974	0,082	224,0706 0,056		224,0629	0,048		
8-1		110,0744	0,060	110,0677	0,053	110,0861	0,072		

QUADRO 44 – COMPARAÇÃO ENTRE DISTÂNCIAS DAS MARCAS FIDUCIAIS COM IMAGEM REAMOSTRADA (FOTOS 73,74 E 75)

COORDENADAS FOTOGRAMÉTRICAS AJUSTADAS, SEUS RESÍDUOS E SUAS PRECISÕES											
				(EPS	UN-9)						
FOTO 73 (mm)				FOTO 74 (mm)							
PONTO	хр	ур	Vx	Vy	PONTO	хр	ур	Vx	Vy		
1	81,241	54,836	-0,003	-0,006	1	7,804	63,418	0,006	0,004		
2	97,950	53,982	0,000	0,010	2	25,054	62,342	0,005	0,005		
3	92,588	61,039	-0,001	0,006	3	19,337	69,543	0,004	-0,005		
4	83,503	63,745	-0,005	-0,003	4	9,930	72,390	0,014	0,011		
5	50,908	78,229	-0,001	0,001	5	-22,654	87,284	0,003	-0,008		
6	63,038	64,115	-0,001	-0,003	6	-10,618	72,958	0,001	-0,003		
1	39,694	44,856	0,003	-0,007	1	-33,602	53,731	-0,009	-0,001		
8	44,771	63,946	-0,001	-0,002	8	-28,901	72,954	0,002	0,002		
9	14,184	35,763	0,003	-0,008	9	-59,147	44,820	-0,020	-0,005		
10	43,134	/3,343	-0,004	-0,011	10	-30,522	82,438	0,008	0,013		
11	34,838	86,779	-0,005	-0,001	10	-38,426	96,017	0,013	0,000		
12	28,252	91,162	0,001	0,000	12	-44,939	100,487	-0,002	0,002		
13	14,237	98,334	0,001	0,008	13	-38, /4/	107,824	-0,001	-0,008		
14	$\frac{3,18}{2,921}$	89,383	0,000	-0,001	14	-0/,48/	99,099	0,000	0,001		
15	3,831	94,007	0,000	0,001	15	-09,144	96 451	0,000	-0,001		
10	-0,802	/0,923	0,001	0,009	10	-80,111	80,431 59,454	-0,001	-0,009		
10	2,785	49,182	0,001	0,005	1/	-70,703	38,434	-0,001	-0,005		
10	-20,102	/,042	0,000	0,002	18	-92,813	10,804	0,000	-0,002		
19	-27,271	4,318	0,005	0,011	19	-99,908	13,320	-0,001	-0,014		
20	-33,033	-10,810	0,001	0,005	20	101,300	-7,078	-0,001	-0,005		
21	-29,270	-32,429	-0,001	-0,009	$\frac{21}{22}$	07 510	26 602	0,001	0,009		
22	-17 430	-60 870	0,002	0,001	22	-97,510	-51,870	0,004	0,003		
23	-7 916	-76 610	0,000	0,000	23	-90,433	-67 695	-0.001	-0.011		
25	28 556	-63 193	-0.003	-0.017	25	-44 374	-54 660	0.001	0.010		
27	62 023	-3 924	0.003	-0.008	27	-3 547	3 592	-0.011	0.014		
28	58,929	2,460	0.004	0.013	28	-6 639	10.031	-0.007	-0.010		
29	76.319	-2.089	0.000	0.000	29	10.951	5 276	0.003	0,010		
30	94.810	-1.359	0.002	0.000	30	29.587	5,817	-0.004	0.001		
32	29.044	-103.570	0.005	0.008	32	-44.696	-94.947	-0.009	0.006		
33	36.061	-79 224	-0.004	-0.011	33	-37 637	-70 687	0.005	0.003		
ERI	RO MÉDI	O OLIADI	RÁTICO ((mm)	ERRO MÉDIO OUADRÁTICO (mm)						
$m_X = \pm$	0,003	<u> </u>	$m_y = \pm$	0,007	$m_X = \pm$	0,007	<u> </u>	$m_y = \pm$	0,007		
				FO	го 75						
PONTO	хр	ур	Vx	Vy	PONTO	хp	VР	Vx	Vv		
1	-42,436	65,218	-0,003	0,002	27	-48,242	5,274	0,011	-0,004		
2	-25,010	64,134	-0,008	-0,017	28	-51,333	11,707	0,003	-0,002		
3	-30,935	71,233	-0,003	-0,001	29	-33,640	6,952	0,000	-0,003		
4	-40,452	74,044	-0,009	-0,008	30	-14,947	7,493	0,002	0,000		
5	-72,576	88,595	-0,001	0,008	32	-95,488	-94,071	0,004	-0,013		
6	-60,792	74,589	0,000	0,007	33	-88,182	-69,205	-0,003	0,006		
7	-83,316	55,634	0,006	0,009							
8	-78,851	74,571	-0,001	0,000							
9	-108,705	46,821	0,011	0,011							
10	-80,407	83,858	-0,004	-0,002	 						
	-87,881	97,080	-0,007	0,002							
12	-94,199	101,420	0,003	0,000	ER	KO MEDI	U QUADI	RATICO (mm)		
25	-94,364	-52,932	-0,001	0,007	$m_X = \pm$	0,004		$m_{\chi} = \pm$	0,006		

QUADRO 45 – VALORES DAS OBSERVAÇÕES FOTOGRAMÉTRICAS AJUSTADAS COM A IMAGEM REAMOSTRADA (FOTOS 73,74 E 75)

As médias das discrepâncias são de 0,057m para X, de 0,038m para Y e 0,087m para Z. Analisando-se novamente o percentual de pontos com discrepâncias dentro do limite estabelecido de $\pm 0,48$ m, observa-se que 90,32% em X, 100% em Y e 93,55% em Z atendem a esta condição.

Constata-se ainda, pequena redução do erro médio quadrático das coordenadas dos pontos no referencial geodésico local de $m_X=\pm 0,316$ m, $m_Y=\pm 0,236$ e $m_Z=\pm 0,285$ m (quadro 31) para $m_X=\pm 0,294$ m, $m_Y=\pm 0,203$ e $m_Z=\pm 0,234$ m.

COORDENADAS CALCULADAS E SUAS DISCREPÂNCIAS (EPSON-9)										
	COORDE	NADAS CAL	CULADAS	INTIN-	DISCREPÂNCIAS					
PONTO	X (m)	Y (m)	Z (m)	CÕES	X (m)	Y (m)	Z (m)			
1	2552 782	2556 422	1200 301		0 145	0.108	0.267			
2	2773 265	2552 220	1188 967	x 11 7	0.280	0.284	0.016			
3	2697 279	2637 522	1198 736	<u>x,y,z</u>	0.046	0,204	0,010			
4	2576.963	2667 398	1205 961		0,040	0,009	0,076			
	2162 236	2846 974	1202 275		0.048	0,104	0.044			
6	2317,711	2669.462	1202,275		0 176	0179	0.016			
7	2028.811	2427.086	1187.806		0.623	0 163	0.685			
8	2086,753	2665.612	1201.617		0.051	0.179	-0.106			
9	1704,286	2308,238	1183,243		0.579	0.292	0.004			
10	2064,259	2783,842	1202,476		0.090	-0.059	0.140			
11	1959.267	2957,328	1193,469	x, y, z	-0.092	-0.067	-0.019			
12	1875,028	3013,597	1190,469	<i>x</i> , <i>y</i> , <i>z</i>	-0,204	-0,185	-0.020			
13	1696,017	3106,746	1183,419		-0,244	-0,102	-0,215			
14	1588,250	2992,170	1186,341		-0,061	-0,165	0.055			
15	1563,598	3059,964	1180,650		-0,248	-0,136	-0,225			
16	1429,306	2830,430	1183,467		0,131	0,266	-0,194			
17	1556,300	2476,173	1189,160		0,453	0,214	0,410			
18	1265,716	1944,457	1157,932		-0,425	0,195	0,022			
19	1172,586	1900,406	1154,560	<i>x</i> , <i>y</i> , <i>z</i>	-0,389	0,359	0,091			
20	1060,902	1621,740	1130,839		0,251	0,349	0,691			
21	1148,035	1418,341	1137,928		0,481	-0,220	0,050			
22	1210,254	1247,627	1150,220	<i>x</i> , <i>y</i> , <i>z</i>	0,214	-0,276	-0,178			
23	1309,275	1053,734	1157,708		0,277	-0,108	0,183			
24	1435,256	850,606	1160,036		-0,012	0,051	0,086			
25	1908,211	1029,142	1158,764		0,345	-0,024	0,173			
27	2419,611	1800,080	953,455	<i>x</i> , <i>y</i> , <i>z</i>	-0,245	-0,227	0,158			
28	<u>2373,539</u>	1891,242	954,462		-0,217	-0,044	0,190			
29	2627,004	1828,555	949,445	<i>x,y,z</i>	-0,354	-0,302	-0,007			
30	2894,716	1841,870	947,753		-0,378	-0,186	-0,084			
32		511,983	1174,124		0,179	0,334	0,270			
33	2003.916	<u>830,451</u>	<u>1177,492</u>	<i>x</i> , <i>y</i> , <i>z</i>	0,201	0,122	<u>-0,046</u>			
	·····			Médias	0,057	0,038	0,087			
		ERR	O MÉDIO QU	ADRÁTIC	CO (m)					
	$m_X = \pm$	<u> </u>	$\underline{m_{Y}} = \pm$	0,203	$m_z = \pm$	0,234				
	PARAMET	ROS DE OF	RIENTAÇÃO	EXTERIO	R E SUAS P	RECISOES				
		VALORES	ron) /3	r	VALORES	<i>(</i> 7			
	к к	180 609337	0.008		<u>x0</u>	1518 744	0 608			
sne	K	-0.256588	0,000	lro	<u>- X0</u>	1858 000	0,000			
BL	<u>Ψ</u>	-0,230300	0.014	met	70	3135.034	0,340			
		-0,5155154	<u> </u>) 74		5155,054	0,317			
	·····	VALORES	σ			VALORES	σ			
sne.	к	181,169501	0,008	s	X0	2462,721	0,629			
	φ	-0,2290407	0,017	Str.	Y0	1770,058	0,549			
ත	ω	-0,5349948	0,014	Ĕ	ZO	3133,922	0,340			
			FOTO) 75		······				
$VALORES \sigma \qquad VALORES \sigma$										
<u>N</u>	к	181,153911	0,009	os	X0	3104,335	0,828			
rau	φ	-0,1891227	0,023	etr	Y0	1711,878	0,617			
හ	ω	0,69945653	0,014	E	ZO	3133,976	0,535			

QUADRO 46 – RESULTADOS DA ORIENTAÇÃO EXTERIOR COM IMAGEM REAMOSTRADA FOTOS (73,74 E 75)

PRECISÃO DAS COORDENADAS CALCULADAS (EPSON-9)									
PONTO	σX (m)	σY (m)	σZ (m)	PONTO	σX (m)	σY (m)	σZ (m)		
1	0,171	0,193	0,294	17	0,183	0,203	0,399		
2	0,179	0,188	0,255	18	0,218	0,176	0,424		
3	0,187	0,209	0,318	19	0,187	0,173	0,271		
4	0,179	0,204	0,303	20	0,265	0,200	0,472		
5	0,174	0,208	0,284	21	0,256	0,212	0,461		
6	0,165	0,192	0,278	22	0,206	0,201	0,277		
7	0,149	0,162	0,252	23	0,253	0,256	0,459		
8	0,161	0,185	0,266	24	0,253	0,290	0,467		
9	0,148	0,145	0,214	25	0,201	0,211	0,325		
10	0,170	0,199	0,275	27	0,151	0,150	0,236		
11	0,176	0,191	0,232	28	0,153	0,153	0,307		
12	0,181	0,198	0,240	29	0,165	0,162	0,250		
13	0,211	0,312	0,445	30	0,202	0,190	0,388		
14	0,211	0,291	0,442	32	0,253	0,300	0,396		
15	0,219	0,306	0,454	33	0,207	0,214	0,272		
16	0,218	0,265	0,444	Média	0,195	0,211	0,335		

QUADRO 47 – PRECISÃO PONTUAL DAS COORDENADAS OBTIDAS COM A IMAGEM REAMOSTRADA

A precisão pontual se comparada aos valores apresentados no quadro 32 permite constatar que não há aumento da mesma com a reamostragem. Entretanto, em ambos os casos têm-se valores que indicam possibilidade de uso do equipamento para fins fotogramétricos.

Pelos valores apresentados conclui-se que a reamostragem da imagem com correção pelo *grid on line* também não propicia aumento significativo de precisão. O quadro 48 apresenta em síntese, a descrição dos testes realizados. Para fins de comparação são também apresentados as médias das discrepâncias e o percentual de pontos com erros posicionais abaixo do valor admissível.

TESTES DE ERRO ADMISSÍVEL DAS ORIENTAÇÕES EXTERIORES										
TESTE	DESCRIÇÃO	MÉDIAS DAS DISCREPÂNCIAS (m)			PONTOS COM ERROS ABAIXO DO ERRO ADMISSÍVEL (0,48m)					
		X	Y	Z	X	Y	Z			
PLANICOMP	Duas fotos (vôo 1994) observadas em estéreo-resituidor analítico	-0,009	0,014	-0,033	100,00%	100,00%	96,43%			
VEXCEL	Duas fotos (vôo 1994) digitalizadas em <i>scanner</i> fotogramétrico	0,062	0,035	-0,074	100,00%	100,00%	85,71%			
EPSON	Duas fotos do (vôo 1994) digitalizadas no <i>desktop scanner</i> EPSON e planificadas pelo vidro.	0,019	0,241	-0,223	93,10%	48,28%	62,07%			
EPSON 2	Duas fotos (vôo 1994) digitalizadas no <i>desktop scanner</i> EPSON e planificadas pelo grid.	0,081	0,144	0,114	100,00%	75 <u>,</u> 86%	75,86%			
EPSON 3	Duas fotos (vôo 1994) digitalizadas no <i>desktop scanner</i> EPSON, planificadas pelo grid e coordenadas corrigidas pelo método grid on line.	0,130	0,084	0,106	96,55%	96,55%	72,41%			
EPSON 6	Três fotos (vôo 2002) digitalizadas no EPSON, planificadas pelo grid, orientação interior pelo modelo polinomial e sem correção	0,078	0,058	0,052	83,87%	100,00%	90,32%			
EPSON 7	Três fotos (vôo 2002) digitalizadas no EPSON, planificadas pelo grid, orientação interior pelo modelo polinomial e corrigidas por grid on line	0,080	0,031	0,084	87,10%	100,00%	90,32%			
EPSON 8	Três fotos (vôo 2002) digitalizadas no EPSON, planificadas pelo grid, orientação interior pelo modelo polinomial e corrigidas por grid off line	0,060	0,061	0,046	90,32%	100,00%	90,32%			
EPSON 9	Três fotos (vôo 2002) digitalizadas no EPSON, planificadas pelo grid, orientação interior pelo modelo polinomial e reamostradas com correção	0,057	0,038	0,087	90,32%	100,00%	93,55%			

QUADRO 48 – TESTES DE ERRO ADMISSÍVEL DAS ORIENTAÇÕES EXTERIORES

5 CONCLUSÕES E RECOMENDAÇÕES

Os resíduos ou deformações decorrentes da digitalização utilizando o *desktop scanner* EPSON 1640XL, seguem o comportamento descrito na bibliografia consultada.Ver por exemplo BALTSAVIAS (1994a) e BALTSAVIAS e WAEGLI (1996).

Os valores de deformação encontrados na presente pesquisa são bem maiores do que os encontrados em outros trabalhos consultados. Um dos fatores possíveis é o tipo de transformação utilizado pelos autores para o cálculo dos mesmos (afim no plano), que possivelmente modela parte dos erros geométricos devido a seus parâmetros de escala e rotação. Recomenda-se que tais deformações sejam determinadas com o uso da transformação ortogonal (de corpo rígido) e pela análise das resultantes dos resíduos.

O comportamento das deformações de EPSON 1640 XL é predominantemente axial convergente para o centro da imagem, caracterizando a baixa eficiência de seu sistema óptico – mecânico.

O scanner fotogramétrico testado (RM1) apresenta erros de característica aleatória e de valores abaixo da dimensão do *pixel* da imagem na qual efetuou-se as observações. Isto denota grande eficiência do equipamento e estabelece um padrão desejável de comportamento dos resíduos.

As aerofotos digitalizadas no VEXCEL apresentaram valores equivalentes em termos de precisão e acurácia aos valores obtidos pelo estéreo restituidor analítico PLANICOMP C100.

A planificação do filme no momento da digitalização exerce papel fundamental na acurácia da imagem gerada em *desktop scanners*. Recomenda-se o uso de vidro fabricado sob encomenda e testado quanto à regularidade (planicidade) de suas faces. A acurácia e precisão obtidas com câmeras de oito fiduciais são maiores do que as de câmeras com quatro fiduciais. Isto se deve à possibilidade do uso do modelo polinomial bivariado de 2° grau para a orientação interior.

Nesta pesquisa a modelagem realizada pelo polinômio de 2° grau na orientação interior das aerofotos foi suficiente para corrigir as deformações da imagem provocadas pelo processo de digitalização no *desktop scanner*.

Para utilização de câmeras de quatro fiduciais é recomendado o uso do modelo de correção com *grid on line* e pode-se considerar adequado para aplicações planimétricas.

Para câmeras de oito fiduciais, pelos critérios utilizados para análise de precisão planialtimétrica é possível afirmar que se utilizando o modelo polinomial para a orientação interior, o *desktop scanner* EPSON 1640 XL apresenta resultados que o classificam como compatível para aplicação em mapeamento planialtimético.

A metodologia empregada nesta pesquisa tem caráter geral e visa subsidiar conhecimento para análise da acurácia e precisão geométrica de *scanners*. Entretanto, os resultados obtidos não o são. Isto porque o mercado a que se destinam os *desktop scanners* não impõe aos fabricantes a necessidade de acurácia e precisão geométricas elevadas. Portanto recomendam-se estudos adicionais, ainda que de equipamentos do mesmo fabricante e modelo que o analisado. Recomenda-se também verificar as deformações existentes em outros *scanners*, utilizando a metodologia ora proposta.

Devido à característica sistemática dos erros geométricos do *desktop scanner* objeto de estudo, existe uma grande probabilidade de obtenção de um modelo eficiente de correção para as imagens digitalizadas por estes equipamentos. Então recomenda-se pesquisar outras formas de correção visando uma melhor aproximação com os resultados obtidos por *scanners* fotogramétricos.

Recomenda-se por fim realizar outras aplicações fotogramétricas com imagens geradas pelo equipamento, tais como formação analítica de modelos fotogramétricos, monorestituição e restituição estereoscópica, com análise dos resultados obtidos.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE, J. B.;OLIVAS, M. A. A. Calibração de Câmeras Aerofotogramétricas. Curitiba (1981). Boletim da Universidade Federal do Paraná. Curso de Pós-Graduação em Ciências Geodésicas. Geodésia Nº 26.

ANDRADE, J. B. Fotogrametria. Curitiba; 1998. SBEE.

BALTSAVIAS E. P. Test and Calibration Procedures for Image Scanners. Como, Itália, 1994a. Artigo apresentado na ISPRS Comissão I, Simpósio 12. – 16 de Setembro. Em IAPRS, Vol. 30, Parte 1, pp. 163 - 170.

BALTSAVIAS, E. P.; WAEGLI, B. Quality analysis and calibration of DTP *scanners*. Viena, Áustria, 1996. Artigo apresentado na ISPRS Comissão I, Working Group 5. Em IAPRS, Vol. 31, Parte B1, pp. 13 - 25.

BALTSAVIAS, E.P.; BILL R. Scanners – A survey of current technology and future needs. Como, Itália, 1994. Artigo apresentado na ISPRS Comissão I, Simpósio 12. – 16 de Setembro. Em IAPRS, Vol. 30, Parte 1, pp. 130 - 143.

BOLTE, U.; JACOBSEN, K.; WEHRMANN, H.. Geometric and Radio-metric Analysis of a Photogrammetric Image Scanner. Vienna, 1996. International Archives of Photogrammetry And Remote Sensing. Vol. XXXI, Part B1.

BOURROUGH, P.A.; McDONNEL, R.A. Principles of Geographical Information Systems. Oxford University Press. New York, 1998.

DAINTY, J.C.; SHAW, R. Image Science. London, 1974. Academic Press.

GEMAEL, C. Introdução à Geodésia Geométrica . Curitiba, 1988. Curso de Pós-Graduação em Ciências Geodésicas – UFPR.

GEMAEL, C. Introdução ao ajustamento de observações: aplicações geodésicas. Curitiba, 1994: Ed. UFPR.

JASC SOFTWARE 2001. Paint Shop Pro 7.04 – Getting Started Guide. Jasc Software inc.

KLEIN, F. Elementary Mathematics From an Advanced Standpoint. United States, 1939. Translated form german third edition. Dover Publications Inc.

LUGNANI, J. B. Introdução à fototriangulação. Curitiba: ed UFPR, 1987.

MERCHANT, D. C. Analytical Photogrammetry – Theory and Practice. Part I and II. Columbus, Ohio, 1979. Department of Geodetic Science, The Ohio State University.

MILLER, S.; DAM A. Standards for Image Scanners used in Digital Photogrammetry. Como, Itália, 1994. Proc. of ISPRS Com II Symposium. In IAPRS Vol. 30/2, pp 134-136.

MITISHITA, E. A. Detecção de Erros Grosseiros nas Aerotriangulações. Curitiba, 1986. Dissertação (Mestrado em Geociências) – Setor de Tecnologia, Universidade Federal do Paraná.

MITISHITA, E. A. Monorestituição Digital de Aerofotos, Associada com Sistema de Computação Gráfica C.A.D., para Fins de Mapeamento na área Florestal.

Curitiba, 1997. Tese (Doutorado em Ciências Florestais) – Setor de Ciências Agrárias, Universidade Federal do Paraná.

OLIVAS, M. A. de Azevedo. Fundamentos de Fotogrametria. Curitiba, 1999. Departamento de Geomática, Universidade Federal do Paraná.

RICHARDUS, P & ADLER, R.K. Map Projections. Amsterdam, 1972. North-Holland.

ROCHA, C. H. B. Geoprocessamento – Tecnologia Transdisciplinar. Juiz de Fora, 2000. Edição do autor.

SCHENK, T. Digital Photogrametry – Background, Fundamentals, Automatic Orientation Procedures. TerraScience. Laurelville, Ohio, 1999.

SOARES, J.F., FARIAS, A.A.de; CESAR, C.C. Introdução à estatística. Rio de Janeiro, 1991. Editora Guanabara Koogan S.A.

STUCKI, P. Image Processing for Document Reproduction. New York, USA, 1979. Em : Advances in Digital Image Processing.

SYMLEY, J. Improving The Quality of Mass Produced Maps. Cartography and Geographic Information Science, vol 28, No. 2, pp 97-110,2001.

ZEISS. **RMK TOP – Aerial Camera System.** Huntsville, 2002a. Z/I imaging corporation. <u>http://www.ziimaging.com/Products/AerialCameraSystems/RMK-top.htm.</u>

ZEISS. Digital Mapping Camera. Huntsville, 2002b. Z/I imaging corporation. <u>http://</u> www.ziimaging.com/Products/AuxilliaryContent/dmc.pdf.

7 BIBLIOGRAFIA CONSULTADA

BALTSAVIAS, E. P. The Agfa Horizon DTP Scanner - Characteristics, Testing and Evaluation. Paper presented at the ISPRS Commission I Symposium, 12. - 16. September, Como, Italien 1994b. In IAPRS, Vol. 30, Part 1, pp. 171 - 179.

BALTSAVIAS, E. P. Photogrammetric *scanners* - Technical/scientific aspects and perspectives. Keynote speech, *Scanner* Workshop, Zeiss Oberkochen, June 29 2000.

BALTSAVIAS, E.P.; CROSETTO, M. Test and Calibration of a DTP Scanner for GIS Data Acquisition. Udine, 1996. International Center for Mechanical Sciences.

BOCCARDO, P.; LINGUA, A.; RINAUDO, F. Geometric and radiometric calibration for low cost flatbed scanners for photogrammetric applications. Udine, Itália, 1996. Published in : Data Acquisition And Analysis For Multimedia GIS. International Centre for Mechanical Sciences. Courses and Lectures N° 365. Springer Wien New York; pp. 151-160.

CÂMARA et al. Introdução à Ciência da Geoinformação. <u>http://www.dpi.inpe.Br/</u> Gilberto/ livro/ introd/index.html. INPE. São José dos Campos, 2001.

DALMOLIN, Q. Ajustamento por Mínimos Quadrados. Curitiba, 2002. Imprensa Universitária – UFPR.

GHOSH, S. K. Phototriangulation. Lexington, 1975. Heath and company.

GHOSH, S. K. Analytical Photogrammetry. London, 1988. Pergamon Press, Headington Hill Hall, Oxford, England.

LONGLEY, P. A. et al. Geographical Information Systems – Principles and Technical Issues. New York, 1999. Vol. 1 pp 429-435;178-181. John Wiley & Sons.

MOTGOMERY, G. E.; SCUCH, H. C. Gis Data Conversion Handbook. Fort Collins, 1993. GIS World inc. and UCG Consulting.

NATIONAL MUSEUM OF NATURAL HISTORY. Requirements and Options for the Digitization of the Illustration Collections of the National Museum of Natural History. SantaMonica, California, 1996.

http://www.nmnh.si.edu/cris/techrpts/imagopts/contents.html

NOVAC, K. Analytical Photogrammetry (GS 628). Columbus, Ohio, 1991. Department of Geodetic Science and Surveying.

SARJAKOSKI, T. 1992 Suitability of the Sharp JX-600 desktop scanner for digitization of aerial colour photographs. International Archives of Photogrammetry and Remote Sensing 29(B2):79-86

SEYWALD, R. On the automated assessment of geometric *scanner* accuracy. Viena, Áustria, 1996. Artigo apresentado na ISPRS Comissão I, Working Group 5. Em IAPRS, Vol. 31, Parte B1, pp. 182 - 186.

APÊNDICE 1 - GRÁFICOS DE RESULTANTES E VARIÁVEIS DA ANÁLISE DAS DEFORMAÇÕES

GRÁFICO 13 - RESULTANTES DA IMAGEM 3 TOMADA EM 12/04/2002

GRÁFICO 14 – CONTROLE (VARIÁVEIS) DA IMAGEM 3 TOMADA EM 12/04/2002

GRÁFICO 15 - RESULTANTES DA IMAGEM 4 TOMADA EM 12/04/2002

GRÁFICO 16 - CONTROLE (VARIÁVEIS) DA IMAGEM 4 TOMADA EM 12/04/2002

GRÁFICO 17 - RESULTANTES DA IMAGEM 5 TOMADA EM 19/04/2002

GRÁFICO 18 - CONTROLE (VARIÁVEIS) DA IMAGEM 5 TOMADA EM 19/04/2002

GRÁFICO 19 - RESULTANTES DA IMAGEM 6 TOMADA EM 19/04/2002

GRÁFICO 20 - CONTROLE (VARIÁVEIS) DA IMAGEM 6 TOMADA EM 19/04/2002

GRÁFICO 21 – RESULTANTES DA IMAGEM 7 TOMADA EM 19/05/2002

GRÁFICO 22 – CONTROLE (VARIÁVEIS) DA IMAGEM 7 TOMADA EM 19/05/2002

GRÁFICO 23 – RESULTANTES DA IMAGEM 8 TOMADA EM 19/05/2002

GRÁFICO 25 - RESULTANTES DA IMAGEM 13 TOMADA EM 09/09/2002

GRÁFICO 26 - CONTROLE (VARIÁVEIS) DA IMAGEM 13 TOMADA EM 09/09/2002

GRÁFICO 27 - RESULTANTES DA IMAGEM 14 TOMADA EM 09/09/2002

GRÁFICO 28 – CONTROLE (VARIÁVEIS) DA IMAGEM 14 TOMADA EM 09/09/2002

APÊNDICE 2 – AEROFOTOS UTILIZADAS, ESQUEMAS DE PONTOS E FIDUCIAIS

FIGURA 24 -INVERSÃO DO NEGATIVO DA AEROFOTO 33 DO VÔO DE 1994 PARA CALIBRAÇÃO DA CÂMERA WILD RC 10 UTILIZADA NA CALIBRAÇÃO DO *SCANNER*

FIGURA 25 - INVERSÃO DO NEGATIVO DA FOTO 73 DO VÔO DE 2002 PARA CALIBRAÇÃO DA CÂMERA ZEISS LMK JENA UTILIZADA NA CALIBRAÇÃO DO *SCANNER* DIGITALIZADA COM *GRID*

FIGURA 26 - INVERSÃO DO NEGATIVO DA FOTO 73 REAMOSTRADA

FIGURA 27 - ESQUEMA DE PONTOS E FIDUCIAIS DA FOTO 33 (CÂMERA WILD RC 10)

FIGURA 28 - ESQUEMA DE PONTOS E FIDUCIAIS DA FOTO 73 (CÂMERA ZEISS LMK - JENA)

ANEXO 1 – CERTIFICADO DA PLACA DE CALIBRAÇÃO EXPEDIDO PELA WILD HEERBRUGG LTD., COM A POSIÇÃO DOS 9 PONTOS CALIBRADOS E SUAS COORDENADAS

Position of 9 calibrated grid points as seen on the graduated surface

The coordinates listed on the attached sheet are given in millimeters, rounded to 10^{-3} mm.

The coordinate errors and the mean square errors of measurement (computed from differences of two independent sets of measurements) are given in microns (10^{-3} mm) , rounded to the nearest tenth of a micron (10^{-4} mm) .

1 List with coordinates attached

WILD HEERBRUGG LTD.

GRID PLATE MEASUREMENT

PLATE NUMBER 116765 5094 7 5 74 FINAL COORDINATES (MM) AND ERRORS (MU) COL NO 3 2 1 ROW NO 1 X 600.000 -0.2 500.000 -0.2 400.000 0.2 Y 400.000 -0.5 400.000 -0.5 400.000 -0.2 2 X 599.999 -0.7 499.999 -1.2 400.000 0.2 Y 500.000 -0.2 500.000 -0.2 500.000 -0.5 3 X 600.000 0.0 499.999 -0.7 400.001 0.7 Y 600.000 0.5 600.000 0.0 600.000 0.2

MSE OF MEASUREMENT (MU)

X 0.2

Y 0.3

164