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RESUMO 
 

 
 

O conteúdo total do veneno das aranhas do gênero Loxosceles permanece ainda 

desconhecido, entretanto, muitos estudos têm mostrado que se constitui uma 

mistura complexa de compostos biologicamente ativos. Por meio de análises 

eletroforéticas, observa-se a predominância de moléculas de baixa massa 

molecular (3-45 kDa), enquanto moléculas de alta massa molecular são menos 

abundantes. Os venenos de aranhas estão funcionalmente relacionados à 

defesa contra predadores e também à paralisia e captura de presas, 

especialmente insetos. As aranhas desenvolveram um arsenal de moléculas 

inseticidas, resultando em uma biblioteca combinatória de peptídeos que tem 

sido aprimorada durante sua evolução. Comumente, tais peptídeos consistem 

em moléculas de cadeia única com massa molecular variando de 3 a 10 kDa, 

ricos em resíduos de cisteína, os quais estabelecem pontes dissulfeto 

intramoleculares características. Essas pontes se organizam em um motivo 

estrutural característico denominado “nó de cistina inibidor” ou ICK (Inhibitor 

Cystine Knot) e, por isso, os peptídeos que o contém são denominados peptídeo 

ICK ou notinas (“knottins”). Recentemente, análises do transcriptoma da glândula 

de veneno de L. intermedia (GREMSKI et al., 2010) revelaram ESTs com 

similaridade a peptídeos ICK previamente descritas como LiTx (De CASTRO et 

al., 2004). Sequências relacionadas à LiTx3, por exemplo, foram as mais 

abundantes no transcriptoma de L. intermedia, representando aproximadamente 

13,9% de todas as ESTs obtidas e compreendendo 32% dos mRNAs 

codificantes de toxinas; as sequências relativas aos demais grupos de peptídeos 

ICK, LiTx1, LiTx2 e LiTx4 representaram 6,2%, 11,4% e 3,8% de todos os 

transcritos codificantes de toxinas, respectivamente. Devido a alta proporção de 

sequências codificantes para peptídeos ICK os objetivos deste trabalho foram o 

rastreamento de sequências codificantes de peptídeos ICK em outras duas 

aranhas do gênero (Loxosceles gaucho e Loxosceles laeta), bem como a 

obtenção de um peptídeo ICK semelhante à LiTx3 de forma recombinante em 

Pichia pastoris e sua caracterização biológica. A partir do RNA total extraído das 

glândulas de veneno de L. laeta e L. gaucho, procedeu-se o rastreamento de 

sequências relacionadas a peptídeos ICK; sequências codificantes para todos



os grupos de peptídeos ICK já descritos (LiTx1-4) foram encontradas, algumas 

revelando sutis diferenças na sua estrutura primária, outras revelando 

divergências importantes como a não presença de sequências consenso para 

modificações pós-traducionais importantes para a atividade biológica dos 

mesmos. Quanto à produção do peptídeo recombinante, várias formas foram 

obtidas; entretanto, análises de SDS-PAGE e western blotting mostraram que os 

peptídeos obtidos ou não apresentavam a conformação nativa ou apresentavam 

glicosilação indesejada. A atividade biológica desses peptídeos foi testada in vivo 

em insetos e in vitro em cultura de células, contudo nenhum efeito tóxico pode 

ser comprovado. As sequências encontradas em L. laeta e L. gaucho 

representam potenciais moléculas a serem exploradas do ponto de vista 

biotecnológico, ao passo que o peptídeo recombinante estudado deve ser 

expresso em outros modelos com intuito de obtê-lo em conformação adequada 

e, assim, comprovar sua atividade biológica. 

 
 

Palavras-chave: Peptídeo ICK, notinas, Loxosceles, veneno, Pichia pastoris.



ABSTRACT 
 

 
 

The whole content of Loxosceles spider venom still remains unknown, but several 

studies have shown that is a complex mixture of biologically active and inactive 

components. By eletrophoretic analysis, the predominance of low molecular mass 

molecules (3-45kDa) can be observed, while high molecular mass ones are less 

abundant. Spider venoms are functionally related to defense against predators as 

well as to paralyze and capture a natural prey, especially insects. Spiders had 

developed an arsenal of insecticidal molecules, resulting in a combinatorial 

peptide library of peptides that has been improved during evolution. Commonly, 

such peptides consist in single chain molecules ranging between 3- 

10 kDa and are rich in cystein residues, which form intramolecular disulfide 

bridges. These bridges establish a structural motif “Inhibitor Cystine Knot” (ICK), 

then, these peptides are named ICK peptides or “knottins”. Recently, a 

transcriptome analysis of L. intermedia venomous gland (GREMSKI et al., 2010) 

has revealed ESTs with similarity to ICK peptides previously described as LiTx 

(De CASTRO et al., 2004). LiTx3-related sequences were the most abundant in 

the L. intermedia transcriptome representing about 13.9% of all ESTs obtained 

and comprise 32% of toxin-encoding messengers; the sequences related to the 

other groups of ICK peptides, LiTx1, LiTx2 e LiTx4, represented 6,2%, 11,4% and 

3,8% of all EST coding for toxins, respectively. Due to the high proportion of 

sequences encoding ICK peptides verified by the transcriptome analyses, the 

present study aimed screening ESTs related to these peptides in other two 

Loxosceles species (L. gaucho and L. laeta), as well as the obtainment of an ICK 

recombinant  peptide with  high  similarity  to  LiTx3  in  Pichia  pastoris  and  its 

biological activity characterization. From total RNA purified from the venom 

glands of L. gaucho and L. laeta, it was performed the screening of ICK peptides 

sequences. ESTs coding for all groups of ICK peptides already described were 

found (LiTx1-4), some of them revealed subtle differences in their primary 

structures while others showed important divergences, for example, the absence 

of consensus sequences for posttranslational modifications that are essential for 

biological activities. The recombinant peptide was produced in different forms, 

however, SDS-PAGE and western blotting analyses indicated that they were not 

properly folded or presented unwanted glycosylation. The biological activity of the



recombinant peptide was tested in insects microinjection’s assays and in vitro 

cultivated cells, nevertheless no toxic effects were proven. The sequences 

identified form L. laeta and L. gaucho RNA represent potential molecules to be 

biotechnologically explored, whereas the studied recombinant peptide must be 

expressed in other heterologous expressions models in order to obtain it in the 

native conformation and, thus, verify its biological activity. 

 
 

Keywords: ICK peptides, knottins, Loxosceles, venom, toxins, Pichia pastoris.
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REVISÃO BIBLIOGRÁFICA 
 

 
 

IDENTIFICAÇÃO E BIOLOGIA DAS ARANHAS DO GÊNERO Loxosceles 
 

 
 

As aranhas do gênero Loxosceles são enquadradas dentro da família 

Sicariidae, sub-ordem Araneomorphae, ordem Araneae, classe Arachnida, 

subfilo Chelicerata e filo Arthropoda (PLATNICK, 2013). Essas aranhas são 

popularmente conhecidas como aranhas-marrons, devido à sua coloração 

característica, ou como aranhas-violino, por apresentarem uma marca 

semelhante a esse instrumento na superfície dorsal do cefalotórax (Figura 1A e 

1B) (DA SILVA et al., 2004; GREMSKI et al., 2014). Outro método consistente 
 

de identificação das aranhas-marrons é o padrão dos olhos: elas exibem 6 olhos 

arranjados em pares sobre o cefalotórax, em uma disposição em semicírculo 

característica deste gênero (Figura 1B) (APPEL et al., 2005; GREMSKI et al., 

2014). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURA 1: IDENTIFICAÇÃO DAS ARANHAS-MARRONS (GÊNERO 
Loxosceles). (A) Espécimes adultos de L. intemerdia – uma fêmea, à esquerda, 
e um macho, à direita. (B) Em detalhe, desenho de violino sobre o cefalotórax 
(seta) e disposição característica dos olhos em pares formando um semicírculo 
(cabeças de setas), característico de aranhas do gênero Loxosceles. Adaptado 
de: CHAIM et al., 2011. 

 
 

As aranhas Loxosceles são pequenas, apresentando comprimento 

corporal médio que varia de 1 a 5 cm, incluindo as pernas (CHAIM et al., 2011). 

Apresentam acentuado dimorfismo sexual, sendo que as fêmeas, normalmente, 

apresentam corpo maior e pernas mais curtas que os machos (Figura 1B) (DA 

SILVA et al., 2004). Ambos os sexos são venenosos, mas acredita-se que em



5  

acidentes com humanos, o efeito tóxico do veneno das fêmeas é mais intenso, 

uma vez que estas produzem uma quantidade maior de veneno (OLIVEIRA et 

al., 1999). 

O gênero Loxosceles é amplamente distribuído pelo mundo, estando 

presente nas Américas, Europa, África, Ásia e Oceania (da SILVA et al., 2004). 

Possui mais de 100 espécies que têm como centro de origem a África e as 

Américas (MARQUES-DA-SILVA; FISCHER, 2005). Atualmente, verifica-se a 

existência de 12 espécies de aranha-marrom no Brasil (GREMSKI et al., 2014), 

sendo que quatro dessas espécies registradas estão presentes no estado 

Paraná: L. intermedia, L. laeta, L. gaucho e L. hirsuta (FISCHER; 

VASCONCELLOS-NETO, 2005; MARQUES-DA-SILVA; FISCHER, 2005). 

As aranhas-marrons são sedentárias e possuem hábitos noturnos 

(ANDRADE et al., 1999), alimentando-se de pequenos insetos e servindo de 

alimento para anfíbios, répteis e aves. Ao atingirem um ano de vida, adquirem 

maturidade sexual (FISCHER, 1996). Apresentam grande tolerância a 

temperaturas extremas e são encontradas em regiões frias e desérticas 

(FISCHER; VESCONCELLOS-NETO, 2005). Em habitat natural podem ser 

encontradas em lugares escuros como, por exemplo, em telhas empilhadas, em 

entulhos, em cavidades de rochas e em restos de vegetais. No ambiente 

intradomiciliar, essas aranhas podem ser encontradas atrás de quadros, sob a 

mobília, em gavetas e entre as roupas. Costumam se adaptar a lugares sombrios 

e com pouca higiene (FUTRELL,1992; FISCHER; VASCONCELLOS-NETO, 

2005). Essas aranhas não são agressivas e a maior incidência de acidentes com 

o homem deve-se ao fato da aranha marrom ter adquirido hábitos 

intradomiciliares. Grande parte dos acidentes ocorre quando as pessoas 

comprimem inadvertidamente a aranha ao vestir-se, enxugar-se ou durante o 

sono, ocorrendo a picada no homem apenas como forma de defesa (FUTRELL, 

1992; RIBEIRO et al., 1993). 
 
 
 

VENENO LOXOSCÉLICO 
 

 

O veneno loxoscélico consite em um líquido incolor e cristalino, produzido 

por um par de glândulas situadas no cefalotórax da aranha e que se comunicam 

com  o  exterior  através  do  aparelho  inoculador  constituído  por  um  par  de
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quelíceras (Figura 2A e 2B) (dos SANTOS et al., 2000; da SILVEIRA et al., 2002). 

O volume de veneno produzido pelas glândulas é variável de acordo com o 

animal (tamanho, sexo e outros fatores), mas dificilmente ultrapassa poucos 

microlitros e contém de 20 μg a 200 μg de proteínas totais (SAMS et al., 2001; 

BINFORD; WELLS, 2003). O conteúdo total do veneno loxoscélico ainda não é 

totalmente esclarecido, embora diversos estudos tenham comprovado que sua 

composição bioquímica consiste em uma mistura complexa de compostos 

biologicamente ativos, essencialmente proteínas, com ação tóxica e/ou 

enzimática. Em análises eletroforéticas, verifica-se a predominância de proteínas 

de baixa massa molecular (5-35 kDa) em detrimento das proteínas de alta massa 

molecular, as quais são bem menos expressas (Figura 3C) (VEIGA et al., 2000; 

da SILVEIRA et al., 2002; GREMSKI et al., 2010, 2014). Acredita-se que a 

toxicidade  do  veneno da  aranha  esteja associada  ao  efeito  combinado  ou 

sinérgico de seus constituintes (da SILVA et al., 2004; APPEL et al., 2005). 

 

 
 

 
 

 

FIGURA 2: VENENO DE ARANHAS DO GÊNERO Loxosceles. (A) Gotícula de 
veneno (seta) sendo coletada a partir de um espécime de L. intermedia 
submetido a eletrochoque; (B) Glândulas produtoras de veneno de L. intermedia 
vistas ao microscópio estereoscópico (40X); (C) Perfil eletroforético do veneno 
de L. intermedia (SDS-PAGE 8-18%). Nota-se a predominância de toxinas de 
baixa massa molecular (5-35 kDa); A – amostra não-reduzida e B – amostra 
reduzida. Adaptado de: CHAIM et al., 2011; GREMSKI et al., 2010.
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Diversas toxinas do veneno loxoscélico têm sido identificadas e 

caracterizadas do ponto de vista bioquímico, biológico e estrutural. O 

transcriptoma da glândula de veneno de  L. intermedia realizado  identificou 

sequências codificantes de vários grupos de toxinas, a exemplo de peptídeos da 

família das notinas (55,9%), fosfolipases-D (20,2%), metaloproteases da família 

das astacinas (22,6%), serinoprotease (0,5%), proteína tumoral controlada 

traducionalmente (0,4%), alérgeno (0,2%), inibidor de serinoprotease (0,1%) e 

hialuronidase (0,1%). 

As toxinas mais bem caracterizadas são as fosfolipases-D (CHAIM et al., 
 

2006; da SILVEIRA et al., 2006; 2007a; APPEL et al., 2008, VUITIKA et al., 
 

2013), metaloproteases, (TREVISAN-SILVA et al., 2010; FEITOSA et al., 1998; 

da SILVEIRA et al., 2007b) e hialuronidases (FERRER et al., 2013; da SILVEIRA 

et al., 2007c). 

A família de proteína mais estudada dos venenos loxoscélicos é a das 

toxinas dermonecróticas ou fosfolipases-D. Essas proteínas possuem massa 

molecular de, aproximadamente, 30 a 35 kDa, e estão associadas com a maioria 

dos efeitos deletérios decorrentes do envenenamento por aranhas Loxosceles. 

Estudos com fosfolipases-D nativas e recombinantes já mostraram que essas 

toxinas são capazes de induzir citotoxicidade em células em cultura, edema, 

ativação de citocinas, letalidade em camundongos, dermonecrose, hemólise, 

nefrotoxicidade, resposta  inflamatória, agregação  plaquetária  e aumento  da 

permeabilidade vascular (CHAIM et al., 2011; da SILVEIRA et al., 2006, 2007a; 

CHAVES-MOREIRA et al., 2009; APPEL et al., 2008; VUITIKA et al., 2013). 

Análises estruturais e das sequências primárias das fosfolipases-D revelam que 

essas toxinas apresentam resíduos de aminoácidos conservados em seus sítios 

catalíticos e estudos com isoformas recombinantes mutadas revelam que a 

atividade dessas toxinas é dependente da atividade catalítica das mesmas. O 

mecanismo de ação das fosfolipases-D ainda não é totalmente compreendido, 

mas evidências experimentais sugerem que a hidrólise de fosfolipídios acaba por 

gerar mediadores (ácido lisofosfatídico e ceramida-1-fosfato, por exemplo) que 

atuam como sinais para determinadas vias metabólicas, desencadeando efeitos 

patofisiológicos (CHAVES-MOREIRA et al., 2009; KUSMA et al., 2008; 

GREMSKI et al., 2014).
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Outra família de toxinas identificadas em venenos loxoscélicos é a família 

das metaloproteases (da  SILVEIRA  et al., 2007b; TREVISAN-SILVA et al., 

2010). Estas toxinas foram primeiramente descritas no veneno de L. intermedia 

por Feitosa e colaboradores (1998), sendo caracterizadas como moléculas de 

baixa massa molecular com atividade fibronectinolítica e fibrinogenolítica (20-28 

kDa) e gelatinolítica (32-35 kDa). A atividade dessas metaloproteases está 

possivelmente relacionada a distúrbios hemostáticos, tais como hemorragia da 

derme, injúria de vasos sanguíneos e como um fator de espalhamento 

gravitacional (característico do loxoscelismo) e sistêmico, facilitando a 

penetração dos outros componentes do veneno (ZANETTI  et al., 2002; da 

SILVEIRA et al., 2007b; SENFF-RIBEIRO et al., 2008). Da Silveira e 

colaboradores (2007b) caracterizaram uma isoforma de metaloprotease da 

família das astacinas (LALP,  Loxosceles Astacin-Like Protease) presente no 

veneno de L. intermedia e outras 2 isoformas (LALP2 e LALP3) foram 

recentemente  identificadas  por Trevisan-Silva  e  colaboradores  (2010).  Este 

último trabalho também identificou a presença de metaloproteases da família das 

astacinas no veneno de L. gaucho e L. laeta, indicando que essas moléculas 

constituem uma família conservada entre as espécies do gênero. 

Outra toxina descrita em venenos loxoscélicos é a hialuronidase. As 

hialuronidases são conhecidas como “fator de espalhamento gravitacional” e sua 

presença  pode ser potencializadora  de  outros  componentes do  veneno  no 

sentido de facilitar a penetração destes na corrente sanguínea e em vários 

tecidos (SENFF-RIBEIRO et al., 2008).  Em L. intermedia, foram identificadas 

duas prováveis isoformas de hialuronidases com massas de 41 e 43 kDa, as 

quais foram capazes de degradar ácido hialurônico e condroitin-sulfato, 

respectivamente (da SILVEIRA et al., 2007c). Ferrer e colaboradores (2013) 

recentemente obtiveram uma hialuronidase recombinante de L. intermedia, 

capaz de degradar os mesmos substratos antes relatados, e que potencializou 

os efeitos dermonecróticos promovidos pelas fosfolipases-D em experimentos 

conduzidos em coelhos. 

Uma proteína pertencente à família TCTP (Translationally Controlled 

Tumor Protein) do veneno de L. intermedia também já foi caracterizada. Essa 

toxina foi capaz de induzir edema em patas de camundongo e também 

permeabilidade microsvascular em vasos da pele, sendo que este último efeito
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apresentou padrão diferente em relação ao que é induzido pelo veneno total de 
 

L. intermedia (SADE et al., 2012). 
 

Acredita-se que a toxicidade do veneno da aranha esteja associada ao 

efeito combinado ou sinérgico de seus constituintes (GEREN et al., 1976; da 

SILVA et al., 2004; APPEL et al., 2005). Entretanto, pouco se sabe sobre os 

efeitos nocivos ocasionados por muitas toxinas. Dessa forma, torna-se 

importante a identificação e o estudo das atividades biológicas geradas por cada 

um dos componentes do veneno isoladamente. 

 

 
PEPTÍDEOS DA FAMÍLIA ICK OU NOTINAS 

 

 

Em termos evolutivos, as aranhas são os animais predadores mais bem- 

sucedidos e mantêm o maior “pool” de peptídeos tóxicos (SOLLOD et al., 2005). 

Tais peptídeos são considerados os principais componentes dos venenos de 

aranhas e, juntamente com as acilpoliaminas, parecem representar o seu 

principal arsenal tóxico (ESCOUBAS; DIOCHOT; CORZO, 2000). 

Apesar do maior conjunto de peptídeos tóxicos, os venenos de aranhas 

têm sido muito menos estudados em relação aos venenos de outros animais. 

Poucos estudos têm examinados os mecanismos genéticos subjacentes pelos 

quais as aranhas geram essa diversidade de peptídeos em seus venenos. Sollod 

e colaboradores (2005) sugerem, a partir de dados obtidos em trabalhos com 

aranhas australianas da família Hexathelidae (“funnel-web spiders”), que as 

aranhas, assim como os escorpiões e caramujos marinhos (“cone snails”), têm 

diversificado seu repertório de peptídeos tóxicos pela duplicação de genes 

ancestrais seguido de mutações nos loci relacionados à toxina madura. 

A análise das mais de 500 sequências aminoacídicas e das, 

aproximadamente, 30 estruturas tridimensionais de peptídeos de aranhas já 

descritas demonstram que esses peptídeos apresentam tipicamente massa que 

varia de 3 a 10 kDa e um alto número de resíduos de cisteína em sua estrutura 

primária. Na grande maioria dos peptídeos presentes nos venenos de aranhas, 

muitos desses resíduos estabelecem pontes dissulfeto intracadeia, as quais se 

organizam de forma a compor um motivo estrutural denominado “nó de cistina 

inibidor”, ICK (Inhibitor Cystine Knot) (Figura 3) (MAGGIO et al., 2004; FERRAT; 

DARBON, 2005; VASSILEVSKI; KOZLOV; GRISHIN, 2009). Esse motivo é
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caracterizado por cadeias β anti-paralelas estabilizadas por um nó de cistina, o 

qual compreende um anel formado pode duas pontes dissulfeto que são 

cruzadas por uma terceira, criando uma espécie de nó na estrutura do peptídeo 

(Figura  3) (CRAIK; DALY; WAINE, 2001). Devido  a  essa  conformação, os 

peptídeos ICK são também denominados notinas (do inglês, “knottins”, nó). 

 
 

 
 

FIGURA 3: Esquema do motivo estrutural Nó de Cistina Inibidor (ICK). (A) 
O motivo nó de cistina inibidor compreende as folhas β antiparalelas (setas 
laranjas) estabilizadas por um “nó” estabelecido pelas pontes dissulfeto 
intramoleculares (linhas verdes e vermelha) formadas pelos resíduos de cisteína 
(numerados de 1 a 6). (B) O nó de cistina é composto por um anel formado por 
duas pontes dissulfeto (em verde) e por seções intermediárias do esqueleto 
polipeptídico (em cinza), intercruzados por uma terceira ponte dissulfeto (em 
vermelho) que atravessa o anel para criar um pseudo nó. Adaptado de: SAEZ et 
al., 2010. 

 
 

As notinas são toxinas muito estudadas e exercem seus efeitos por meio 

da interação com canais iônicos e receptores específicos presentes nas junções 

neuromusculares e/ou sinapses do sistema nervoso central de insetos, causando 

paralisia. Embora dados farmacológicos ainda sejam escassos, toxinas 

inseticidas de artrópodes parecem afetar principalmente canais de sódio e cálcio. 

Entretanto, notinas atuando em canais de potássio também já foram descritas 

(de LIMA et al., 2007). 

Os canais de cálcio (Ca2+) dependentes de voltagem constituem um dos 

alvos para algumas notinas produzidas por aranhas. Esses canais permitem a 

entrada do Ca2+ na célula, em resposta à despolarização da membrana, de forma
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que esses íons possam exercer suas funções sobre processos fisiológicos 

específicos, tais como a secreção de neurotransmissores (BELEBONI et. al. 

2004).   Branton e colaboradores (1987) isolaram uma notina da aranha 

Plecteurys tristis, denominada PLTX-II, a qual demonstrou em ensaios 

eletrofisiológicos ser capaz de bloquear irreversivelmente canais de Ca2+ 

dependentes de voltagem do terminal pré-sináptico da junção neuromuscular de 

Drosophila. Esse bloqueio impede a entrada de íons Ca2+  e a consequente 

liberação de neurotransmissores, levando à paralisia. Os mesmos resultados 

descritos acima foram obtidos por meio de estudos com uma notina da aranha 

Hololena curta, em neurônios de Drosophila cultivados in vitro (LEUNG et al., 

1989). Concentrações nanomolares da notina ω-ACTX-Hv2a (Figura 4A e 4B) 

isoladas a partir do veneno da aranha australiana Hadronyche versuta foram 

capazes de inibir correntes através de canais de cálcio em neurônios de Apis 

mellifera de forma praticamente irreversível, evidenciando grande potencial como 

antagonistas desse tipo de canal (WANG et al., 2001). Estudos envolvendo a 

toxina Huwentoxina-V, purificada de forma nativa a partir do veneno da aranha 

Ornithoctonus huwena, mostraram que esta toxina foi capaz de inibir canais de 

cálcio voltagem-dependentes de neurônios dorsais isolados de baratas de forma 

tempo e concentração-dependentes (DENG et al., 2008). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A                                     B 
 

FIGURA 4: ω-ACTX-Hv2a – Notina de Hadronyche versuta. (A) Estrutura molecular. 
Em amarelo, as duas cadeias betas antiparalelas que são estabilizadas pelo nó de 
cistina, composto pelas pontes dissulfeto (em vermelho). Os números indicam a posição 
relativa dos resíduos de cisteínas que compõem as pontes dissulfeto na estrutura 
primária do peptídeo. (B) Modelo hipotético do mecanismo de ação de ω-ACTX-Hv2a 
com o canal de cálcio dependente de voltagem. Adaptado de: WANG et al., 2001. 

 
 

Os canais de sódio (Na+) dependentes de voltagem medeiam o aumento
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da condutância ao Na+ durante a rápida fase de despolarização do potencial de 

ação. Dessa forma, esse canal representa um elemento estrutural chave que 

controla a excitabilidade celular em sistemas biológicos. Não é surpreendente, 

portanto, que esse tipo de canal seja alvo de uma variedade de toxinas de 

animais que os auxilia no combate a predadores ou na captura de suas presas 

(NICHOLSON, 2007). Várias toxinas isoladas a partir de venenos de aranhas já 

foram caracterizadas como antagonistas de canais de sódio dependente de 

voltagem. Corzo e colaboradores (2000) isolaram e caracterizaram 4 notinas 

presentes no veneno de Paracoelotes luctuosos. Essas notinas foram 

denominadas δ-palutoxinas IT1 até IT4. Ensaios biológicos de microinjeção em 

larvas de Spodoptera litura revelaram alta toxicidade dessas toxinas para insetos. 

Ensaios eletrofisiológicos com δ-palutoxina IT1 sintética forneceram indícios de 

que essas notinas atuam in vivo retardando a inativação de canais de Na+  

dependentes de voltagem durante o potencial de ação, resultando em alta 

letalidade. Nottinas isoladas a partir do veneno de Agelenopsis aperta, 

denominadas µ-agatoxinas, apresentam atividade biológica semelhante às δ- 

palutoxinas de P. luctuosos, aumentando o influxo de sódio por retardar a 

inativação dos canais de Na+ dependentes de voltagem. Em experimentos com 

larvas de Manduca sexta (SKINNER et al., 1989) e Musca domestica (ADAMS 

et al., 1989) observou-se paralisia excitatória após microinjeção de µ-agatoxinas. 

Isso se deve à manutenção do influxo de Na+  por maior tempo, ocasionando 

maior liberação de neurotransmissores e freqüência aumentada de potenciais 

excitatórios em motoneurônios desses insetos (SKINNER et al., 1989; 

NICHOLSON, 2007). A partir de estudos eletrofisiológicos em axônios gigantes 

dissecados do cordão nervoso abdominal de baratas e sensibilizados por uma 

notina de Phoneutria nigriventer, Tx4(1-6), De Lima e colaboradores (2002) 

observaram a mesma manutenção prolongada do influxo de Na+ e geração de 

potenciais de ação repetitivos (KING et al., 2008). Wang e colaboradores (2012) 

verificaram que a toxina Huwentoxina-I de O. huwena, obtida por síntese química 

e submetida a redobramento in vitro, foi capaz de inibir correntes de Na+  em 

neurônios dorsais extraídos de espécimes adultos da barata Periplaneta 

americana. 

Até o momento, uma única família de notinas com ação sobre canais de 

potássio    inseto-específicos    foi    descrita.    As    J-ACTXs    (“Janus-faced
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atracotoxins”), extraídas de aranhas dos gêneros Atrax e Hadronyche, são 

neurotoxinas excitatórias que parecem atuar diretamente no sistema nervoso de 

insetos (TEDFORD et al., 2004). Estudos conduzidos por Wang e colaboradores 

(2000) e por Maggio e King (2002) caracterizaram as J-ACTXs como potentes 

toxinas contra uma ampla gama de insetos ortópteros e dípteros. Ensaios com 

aplicação direta da notina J-ACTX-Hv1c aos gânglios metatoráxicos resultaram 

em movimentos espontâneos descoordenados das pernas de P. americana. A 

interação com canais de potássio foi confirmada em ensaios eletrofisiológicos 

nos quais foi verificado que J-ACTX-Hv1c bloqueia especificamente correntes de 

K+ nos neurônios de baratas (TEDFORD et al., 2004). 

Muitos estudos têm mostrado que as neurotoxinas purificadas a partir de 

venenos apresentam alta especificidade a animais pertencentes a diversos filos. 

A existência de componentes tóxicos distintos com especificidade sobre 

mamíferos e insetos foi primeiramente mostrada em venenos de Latrodectus 

tredecimguttatus (viúva-negra) (FRONTALI; GRASSO, 1964) e mais tarde em 

vevenos dos escorpiões Leiurus quinquestriatus e Andrictinus australis 

(ZLOTKIN et al., 1972). Esses trabalhos discriminaram peptídeos com letalidade 

em camundongos e peptídeos com atividade biológica sobre insetos. Algumas 

proteínas, entretanto, foram caracterizadas como tóxicas ou apresentaram 

atividades farmacológicas sobre mais de um grupo de animais, não exibindo 

estrita especificidade (de LIMA et al., 2007). Assim, muitas notinas isoladas dos 

venenos de aranhas apresentam amplo espectro de ação sobre o sistema 

nervoso de mamíferos, por exemplo. Isso se deve às homologias existentes entre 

os canais iônicos/receptores de invertebrados e vertebrados (ESTRADA; 

VILLEGAS; CORZO, 2007). 

Muitos estudos caracterizaram a ação de peptídeos do tipo notina de 

aranhas em mamíferos. Guatimosin e colaboradores (1997) demonstraram que 

as notinas Tx3-3 e Tx3-4 de Phoneutria nigriventer inibiram o influxo de Ca2+ em 

sinaptossomas cerebrocorticais de ratos, sugerindo que essas toxinas são 

antagonistas de canais de Ca2+ do tipo P/Q em mamíferos. Outras toxinas de P. 

Nigriventer (Tx3-2 e Tx3-5) inibiram irreversivelmente canais de Ca2+ do tipo L 

em células pituitárias da linhagem GH3 (LEÃO et al., 1997; KALAPOTHAKIS et 

al., 1998). A notina SNX-325 presente no veneno da aranha Segestria florentina 

mostrou-se, em  concetrações nanomolares,  ser  um  bloqueador seletivo  de
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canais de Ca2+ do tipo N (NEWCOMB et al., 1995; RASH; HODGSON, 2002). 

Estudos também relatam a modulação de canais de Na+  de vertebrados por 

notinas isoladas de venenos de aranhas. Xiao e Liang (2003), estudando a notina 

Hainantoxina-IV (HNTX-IV) de Selenocosmia hainana, mostraram por meio da 

técnica de patch-clamp que essa toxina inibia canais de Na+ sensíveis a 

tetrodotoxina (TTX) em neurônios de ratos. Outra notina, TRTX-Tp2a do veneno 

de Thrixopelma pruriens, foi caracterizada como antagonistas de canais de Na+ 

dependentes de voltagem por Schmalhofer e colaboradores (2008); quando 

injetada via intravenosa ou por administração intratecal mostrou-se letal para 

ratos. A literatura também relata notinas que apresentam atividade biológica 

sobre canais de K+ de vertebrados. Diochot e colaboradores (1999) purificaram 

a notina PaTx1 a partir do veneno da aranha Phrixotrichus auratus e verificaram 

que essa toxina era capaz de bloquear correntes de K+ através de canais de K+ 

do tipo Kv4.3 e Kv4.2 por alterar sua dinâmica de ativação/inativação; quando 

injetada via intravenosa em camundongos, foram verificadas numerosas reações 

cardíacas adversas, a exemplo de taquicardia ventricular. PaTx1 também 

mostrou bloquear correntes de K+ em cardiomiócitos murinos cultivados in vitro. 

Outras notinas caracterizadas como antagonistas de canais de K+ foram isoladas 

do veneno de Grammostola spatulata por Swartz e Mackinnon (1995): HaTx1 e 

HaTx2 foram capazes de inibir canais de K+ dependentes de voltagem de cérebro 

de rato expressos em oócitos de Xenopus. 

 

 
NOTINAS EM VENENO DE L. intermedia 

 

 

Em 2004, De Castro e colaboradores, por meio de várias metodologias de 

cromatografia, purificaram 3 peptídeos a partir do veneno total de L. intermedia, 

os quais foram denominados LiTx1, LiTx2 e LiTx3; posteriormente, a sequência 

de  um quarto peptídeo foi depositada  no  GenBank.  As toxinas purificadas 

apresentaram massa molecular variando de 5,6 a 7,9 kDa e atividade inseticida 

contra as pragas de interesse econômico Spodoptera frugiperda e Spodoptera 

cosmioides. Análises de similaridade de sequências indicaram que essas 

moléculas atuam sobre canais iônicos específicos de membranas do sistema 

nervoso de insetos (de CASTRO et al., 2004; GREMSKI et al., 2010); essas 

análises de similaridade sugeriram que o peptídeo LiTx3 teria como alvo canais
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de sódio voltagem-dependentes, ao passo que para os peptídeos LiTx1 e LiTx2, 

não foi possível indicar se atuariam em canais de sódio ou canais de cálcio 

voltagem-dependentes. Os autores realizaram também a clonagem dos 

peptídeos e verificaram que estes continham muitos resíduos de cisteína (10, ao 

todo) e eram sintetizados como moléculas precursoras, contendo um peptídeo- 

sinal, um propeptídeo e uma cadeia madura. 

Mais tarde, com o propósito de determinar o perfil de moléculas expressas, 

Gremski e colaboradores (2010) produziram o  transcriptoma da glândula de 

veneno da aranha-marrom L. intermedia. Este estudo revelou que 

43,5% das ESTs (“Expression Sequence Tags”) anotadas eram codificadoras de 

toxinas (Figura 5A). Entre essas sequências relativas a toxinas, verificou-se a 

predominância de transcritos relacionados com os peptídeos descritos por De 

Castro e colaboradores (2004), perfazendo 53,5% das ESTs anotadas. Gremski 

e colaboradores (2010), diante das características dos peptídeos e em 

consonância com a literatura, adotaram a classificação desses peptídeos como 

notinas ou peptídeos ICK. As análises das sequências revelaram que os 

transcritos referentes ao peptídeo LiTx3 foram os mais abundantes, 

representando 13,9% de todas as ESTs anotadas (Figura 6). Tomando como 

referência somente as sequências codificadoras de toxinas, 32% apresentaram 

similaridade com LiTx3; 11,4%, 6,2% e 3,8% das ESTs anotadas estavam 

relacionadas aos peptídeos LiTx2, LiTx3 e LiTx4, respectivamente (Figura 5B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 5: TRANSCRIPTOMA DE L. intermedia. (A) Porcentagens dos transcritos 
agrupados de acordo com suas classes. (B) Proporções relativas de cada grupo de 
toxinas em relação ao total de transcritos codificadores de toxinas gerados. Adaptado 
de: GREMSKI et al., 2010.
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Matsubara e colaboradores (2013) produziram o primeiro peptídeo ICK 

recombinante derivado de aranhas do gênero Loxosceles. Este peptídeo, 

denominado U2-SCTX-Li1b, apresenta alta homologia com o peptídeo LiTx3 

descrito por De Castro e colaboradores (2004) e com outras prováveis isoformas 

de LiTx3 obtidas no estudo do transcriptoma da glândula de veneno de L. 

intermedia. 

Tendo em vista a propriedade das notinas de interagir com canais iônicos, 

torna-se clara a potencial utilização dessas toxinas em estudos estruturais e 

funcionais sobre esses canais, bem como o mapeamento de sítios específicos 

que podem ser de interesse como alvo para novas drogas. Além disso, o fato de 

muitas notinas serem inseto-específicas permite explorá-las como possíveis 

insumos no desenvolvimento de bioinseticidas para o controle de pragas de 

interesse econômico ou insetos vetores de doenças. 

Dessa forma, este trabalho visa contribuir com os estudos acerca dos 

peptídeos da família das notinas, dada a grande representatividade dessas 

moléculas verificada por meio do transcriptoma da glândula de veneno de L. 

intermedia e a escassez de dados na literatura, bem como o potencial de 

emprego dessas moléculas para fins biotecnológicos e terapêuticos.
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CAPÍTULO I – IDENTIFICAÇÃO DE PEPTÍDEOS DA FAMÍLIA ICK EM 

ARANHAS DO GÊNERO Loxosceles 

 

 
1 INTRODUÇÃO 

 

 

O veneno é uma importante aquisição evolutiva para as aranhas por 

possibilitar a defesa contra os predadores e, sobretudo, por permitir a 

imobilização e/ou morte das presas para fins de alimentação (WINDLEY et al., 

2012; VASSILEVSKI et al., 2009). Para a realização das tarefas citadas, o 

processo evolutivo selecionou uma ampla gama de moléculas tóxicas nos 

venenos das aranhas. Uma classe importante de toxinas de aranhas associadas 

à função de predação e defesa são os peptídeos da família ICK (KING et al., 

2013; DALY; CRAIK, 2011). 
 

Os peptídeos ICK são assim chamados por conter em sua estrutura um 

motivo denominado “Inhibitor Cystine Knot” (do inglês, nó de cistina inibidor), o 

qual é composto por duas ou três folhas-β antiparalelas estabilizadas por três 

pontes dissulfeto intramoleculares (NORTON; PALLAGHY, et al., 1994; CRAIK 

et al., 2001). Em geral, esses peptídeos são neurotoxinas que atuam em alvos 

presentes no sistema nervoso de diferentes animais, entre eles insetos e 

mamíferos. Devido à atuação em canais iônicos e receptores celulares, os 

peptídeos ICK têm sido extensivamente estudados para a compreensão de seus 

mecanismos moleculares básicos (dinâmica de ativação/inativação de canais 

iônicos, por exemplo) e para a geração de produtos biotecnológicos com 

aplicações agrícolas (bioinseticidas, por exemplo) e terapêuticas (drogas 

analgésicas, por exemplo) (ACKERMAN et al., 2014; SAEZ et al., 2010). 

As aranhas são consideradas um grupo animal notável devido à grande 

diversidade de peptídeos tóxicos produzidos em suas glândulas de veneno. Tal 

diversidade molecular está relacionada com variações estruturais 

conformacionais sutis e nas superfícies de interação resultantes, muitas vezes 

atribuídas à modificação de um único resíduo de aminoácido. Por consequência, 

o conhecimento a respeito da diversidade estrutural e farmacológica desses 

peptídeos é bastante limitado, uma vez que o número de peptídeos identificados 

é incrivelmente alto, podendo ser de até 1000 peptídeos diferentes em um
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mesmo veneno (GREMSKI et al., 2010; KING et al., 2008; SOLLOD et al., 2005; 

ESCOUBAS et al., 2000). 

A literatura a respeito dos peptídeos ICK em aranhas do gênero 

Loxosceles é bastante escassa. De Castro e colaboradores (2004) identificaram 

pela primeira vez esses peptídeos a partir do veneno de L. intermedia. Três 

peptídeos, denominados LiTx1, LiTx2 e LiTx3, foram purificados a partir do 

veneno bruto e foram caracterizados como tóxicos por promoverem a morte de 

insetos-pragas de interesse econômico. Posteriormente, a sequência de outro 

peptídeo, LiTx4, foi depositada nos bancos de dados, entretanto, esse peptídeo 

ainda não foi caracterizado do ponto de vista biológico. O estudo do 

transcriptoma da glândula de veneno de L. intermedia revelou ainda um grande 

número de transcritos relacionados a peptídeos ICK (53,5% dos transcritos 

referentes a toxinas obtidos), de todos os grupos até então descritos (LiTx1-4) 

(GREMSKI et al., 2010). Em 2013, Matsubara e colaboradores obtiveram o 

primeiro peptídeo ICK recombinante de  L. intermedia expresso em modelo 

procariótico; tal peptídeo recombinante apresenta alta homologia com o peptídeo 

LiTx3 descrito por De Castro e colaboradores (2004). 

Abordagens de rastreamento de sequências codificantes de toxinas a 

partir do RNA extraído das células da glândula produtora de veneno podem 

fornecer um panorama geral dos transcritos com informações a respeito de uma 

determinada família de moléculas. Os resultados possuem um importante valor 

preditivo de grupos de toxinas farmacológica e biologicamente distintos nos 

venenos e contribuem para o entendimento das relações evolutivas das toxinas 

de aranhas baseadas em diferentes aspectos: na diversificação das sequências 

de  cDNA, na  estrutura  primária  de  precursores de  peptídeos, na  estrutura 

tridimensional de motivos específicos e nas funções biológicas (JIANG et al., 

2008). Assim, este capítulo teve como objetivo rastrear sequências codificantes 

de peptídeos ICK em duas outras espécies de aranhas do gênero Loxosceles, 

L. gaucho e L. laeta, a partir do RNA extraído das respectivas glândulas de 

veneno, uma vez que nada a respeito desses peptídeos nessas espécies foi 

relatado na literatura até o presente momento.
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2 OBJETIVOS 

Objetivo Geral 

    Identificar a presença de  peptídeos ICK no  veneno  de  aranhas das 
 

espécies Loxosceles gaucho e Loxosceles laeta por meio de 

imunoensaios e análise de transcritos produzidos nas glândulas 

produtoras de veneno dessas aranhas. 

 

 
Objetivos Específicos 

 

 

 Avaliar a reatividade cruzada entre um peptídeo ICK recombinante e os 

soros hiperimunes anti-L. gaucho e anti-L. laeta; 

    Rastrear  transcritos  codificantes  de  peptídeos  ICK  a  partir  de  RNA 
 

extraído de glândulas de veneno de L. gaucho e L. laeta; 
 

    Comparar as sequências dos peptídeos ICK encontrados em L. gaucho e 
 

L. laeta com as sequências descritas para peptídeos ICK de L. intermedia.



21  

3 MATERIAL E MÉTODOS 
 

 
Obtenção Dos Venenos Loxoscélicos 

 

 

O veneno de L. intermedia foi obtido de aranhas adultas na cidade da 

Lapa-PR (Certificado IBAMA, em anexo). Após a captura, as aranhas foram 

mantidas em laboratório com troca de água semanal e alimentação mensal com 

tenébrios. Após duas semanas sem alimentação (para evitar contaminação com 

egesta) as aranhas foram submetidas à eletrochoque de 15V no cefalotórax 

(FEITOSA et al., 1998), a gotícula cristalina de veneno foi coletada das quelíceras 

com micropipeta, solubilizada em PBS (NaCl 100mM; Tampão Fosfato de Sódio 

10mM; pH 7,3) e mantida em gelo até o final da coleta. Os venenos de L. laeta e 

L. gaucho foram gentilmente cedidos pelo CPPI, Prof. Dr. João Carlos Minoso e 

Msc. Isolete de Pauli. Os venenos das três espécies foram dosados por meio do 

microensaio adaptado de Bradford (BRADFORD, 1976), diluídos com PBS para 

concentração final de 2 mg/mL, aliquotados em 50 μL e armazenados a -20ºC. 

 

 
Eletroforese Em Gel Desnaturante De Poliacrilamida (SDS-PAGE) 

 

 

Amostras de veneno extraído das glândulas de veneno de L. gaucho e L. 

laeta (5 ug) foram submetidas à eletroforese em gel gradiente (10-20%) de 

poliacrilamida com SDS (dodecil sulfato de sódio), sob condições redutoras (5% 

β-mercaptoetanol). A corrida eletroforética foi realizada com amperagem 

constante de 25 mA e para detecção de proteínas, o gel foi corado por 5 minutos 

com Azul Brilhante de Coomassie 0,02% (p/v) (dissolvido em metanol 50% (v/v), 

ácido acético 10% (v/v) e água deionizada quantidade suficiente para completar 

100% (v/v)) e, em seguida, descorado com metanol 50% (v/v). 
 
 
 

Imunoensaio De Reatividade Cruzada Com Antivenenos 
 

 

Amostras do peptídeo ICK de L. intermedia U2-SCTX-Li1b (5 ug) obtido 

de forma recombinante em bactéria (Matsubara et al., 2013) foram preparadas 

em  tampão  de  amostra  contendo  5%  de  β-mercaptoetanol,  fervidas  por  5
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minutos a 100°C e aplicadas em gel desnaturante de poliacrilamida 18%. Após 

o término da corrida, os perfis proteicos foram transferidos para membrana de 

nitrocelulose por uma hora, à voltagem constante de 100 V. Em seguida, as 

membranas foram coradas com o corante Ponceau-S para verificar a eficiência 

da transferência. Tiras individuais de nitrocelulose foram recortadas e incubadas 

com solução de bloqueio, constituída de leite desnatado em pó (Molico, Nestlé) 

3% (p/v) em PBS, por uma hora, à temperatura ambiente (T.A.). As tiras 

individuais foram incubadas separadamente, por duas horas, à temperatura 

ambiente e sob constante agitação, com 2 ml dos diferentes soros pré-imunes e 

hiperimunes anti-veneno total (diluídos 1:1000 na mesma solução de bloqueio): 

anti-L. intermedia, anti-L. laeta e anti-L. gaucho. Em seguida, todas as 

membranas foram lavadas 5 vezes por 3 minutos com PBS-leite e incubadas 

com anticorpos secundários anti-IgG de coelho conjugado à fosfatase alcalina 

(diluição de 1:8000) por uma hora (T.A.). Após 5 lavagens, as reações foram 

reveladas com o substrato BCIP (5-bromo-4-cloro-3indoil fosfato) e o cromógeno 

NBT (“nitro blue tetrazolium”) (Promega) em tampão ótimo para atividade de 

fosfatase alcalina (Tris-HCl 100mM pH 9,5; NaCl 100mM e MgCl2 5mM). 

 
 

Obtenção Das Glândulas Produtoras De Veneno de L. intermedia, L. gaucho 

e L. laeta E Extração Do RNA Total 

 
 

Cem espécimes adultas de L. intermedia e trinta espécimes adultas de L. 

laeta e L. gaucho foram submetidas à extração de veneno por eletrochoque. 

Após cinco dias foi realizada a extração de RNA das glândulas de veneno. As 

vidrarias, agulhas e lâminas de barbear utilizadas para a extração das glândulas 

foram esterilizadas a 200°C por 8 h; os microtubos de 2 mL e as ponteiras foram 

autoclavadas por 40 min. Para evitar a contaminação com RNAses, todo o 

procedimento foi realizado utilizando luvas e máscara em sala e bancada 

previamente limpas com solução de hipoclorito de sódio (3%) e álcool 70%. As 

aranhas foram anestesiadas em atmosfera de clorofórmio, e com auxílio da 

lâmina de bisturi e agulhas, os pares de glândulas foram coletados e congelados 

imediatamente em microtubos mantidos em gelo seco. 

A extração do RNA foi baseada no método de TRIzol® (Chomczynski, 
 

1993): 750 µL do reagente TRIzol® foram adicionados aos microtubos contendo
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as glândulas congeladas. O material foi então homogeneizado com auxílio de um 

homogeneizador de tecidos (Tecnal, São Paulo, Brasil) e, após incubação por 5 

min à temperatura ambiente, foram adicionados 150 μL de clorofórmio, seguido 

de vigorosa agitação por 15 s e centrifugação a 20.000xg por 20 min, a 

4°C. Após a centrifugação três fases foram formadas: a fase aquosa contendo 

RNA, a fase proteica e a fase orgânica contendo DNA genômico. A fase aquosa 

foi retirada cuidadosamente e 375 μL de isopropanol foram adicionados aos 

tubos, os quais foram mantidos à T.A. por 10 min para precipitação do RNA. 

Após a centrifugação (20.000xg, 30 min, 4°C), o sobrenadante foi descartado e 

1 mL de etanol 75% foi adicionado para lavar o pellet de RNA. Em seguida, 

procedeu-se nova centrifugação por 5 min. Após retirada do sobrenadante, os 

microtubos foram abertos em fluxo laminar e imersos em gelo até que o pellet 

estivesse seco, o qual foi ressuspendido em 10μL de água ultrapura tratada com 

DEPC (água ultrapura homogeneizada com 0,1% de DEPC por duas horas e 

autoclavada por 45 minutos). 

 

 
Quantificação E Análise Da Integridade Do RNA Total Extraído 

 

 

A concentração do RNA extraído e a relação de ácido nucleico em relação 

à contaminação por proteínas foram determinadas por meio de dosagem em 

Nanovue®  (GE LifeSciences), com a utilização de 1μL do RNA total extraído. 

Para saber a integridade do RNA extraído, foi realizada eletroforese em gel 

agarose 1% com brometo de etídio (0,5 µg/ml) em tampão TAE (Tris base 40 

mM/ acetato 20 mM/ EDTA 1 mM) e corrida eletroforética em cuba horizontal a 

5 V/cm de gel. O gel foi visualizado e a imagem foi registrada com auxílio de 

aparelho de análise de imagens Chemidoc – XRS e software Quantity One – SW 

(BioRad). 

 

 
Desenho Dos Primers Para A Amplificação Dos Peptídeos ICK 

 

 

Os primers específicos foram desenhados manualmente e analisados por 

meio do algoritmo OligoAnalyzer versão 3.1 (disponível no endereço 

https://www.idtdna.com/calc/analyzer). Para cada grupo de peptídeos ICK (LiTx1,  

2,  3  e  4)  foi  sintetizado  um  primer  específico  baseado  nas  ESTs

http://www.idtdna.com/calc/analyzer
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(“Expressed Sequence Tags”) obtidas no estudo do transcriptoma da glândula de 

veneno de L. intermedia por Gremski e colaboradores (2010). Para isso, as ESTs 

correspondentes a cada grupo de peptídeo ICK foram alinhadas por meio da 

ferramenta Clustal Omega (disponível no endereço 

http://www.ebi.ac.uk/Tools/msa/clustalo/) e as regiões de maior conservação no 

peptídeo-sinal ou propeptídeo, em termos de resíduos de nucleotídeos, foram 

selecionadas para a construção  dos  primers.  Os  primers  utilizados  para a 

amplificação de cada grupo de peptídeo estão relacionados na Tabela 1. 
 

 
 

Primer Sequência do Primer Temperatura de Anelamento 

LiTx1 ATGAGGTTTCTCGTTGGAGCA 56,7º C 

LiTx2 ATGAAGCTGCTGTTTGAAGGA 56º C 

LiTx3 CTAGCCATATATGTGGCGAC 54,6º C 

LiTx4 ATGAAGCTGTTGTTTGGAG 53,9º C 

 

Tabela   1:   Sequências   e   temperatura   de   anelamento   dos   primers 
sintetizados para a amplificação dos peptídeos ICK de L. laeta e L. gaucho. 

 
 

Transcrição Reversa Acoplada À Reação Em Cadeia Da Polimerase (RT- 

PCR) 

 
 

O RNA total de glândulas de veneno de L. laeta e L. gaucho foi submetido 

a reações de RT-PCR para a obtenção de cDNAs correspondentes aos mRNAs 

dos peptídeos ICK presentes nas glândulas de veneno de L. gaucho e L. laeta. 

Os microtubos de PCR contendo primer oligo(dT)17  adaptor (0,5 μg/μL), RNA 

total (1 μg de L. laeta ou L. gaucho) e água suficiente para 5 μL foram incubados 

no termociclador (My Cycler – Thermal Cycler, BioRad) a 72°C por 5 min para 

desnaturação da simples fita de RNA. Após, os microtubos foram retornados 

imediatamente ao gelo (3 a 5 min). Adicionou-se então tampão para a enzima 

transcriptase reversa (1x), 2,5 mM de MgCl2, 0,4 mM de dNTPs, 20 U de inibidor 

de RNAse e água DEPC-tratada suficiente para 10μL. Os tubos foram colocados 

novamente no termociclador a 42°C para anelamento do primer oligo(dT)17 

adaptor e após 1 min, foi adicionado 200 U de enzima transcriptase reversa. As

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/
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amostras foram submetidas aos ciclos de 25°C/5min, 42°C/60min, 70°C/10min 

e 4°C/∞ (ciclo de espera). Os cDNAs produzidos foram seletivamente 

precipitados com acetato de amônio (2,5 M) e etanol absoluto gelado (0,1v:3v de 

amostra). A mistura foi incubada a -20°C por 30 min. Procedeu-se então 

centrifugação a 4°C, 20.000xg, por 30 min. Após a retirada do sobrenadante, o 

pellet foi lavado com 750 µL de etanol 70% gelado e centrifugado a 4°C, 

20.000xg, por 5 min. Seguiu-se a retirada do sobrenadante e, por fim, o pellet foi 
 

ressuspenso em 12 μl de água ultrapura. 
 

 
 

Amplificação De Sequências Correspondentes Aos Peptídeos ICK DE L. 

gaucho E L. laeta 

 
 

Os cDNAs obtidos na reação de RT-PCR foram utilizados como molde em 

reações de PCR convencional de 30 µl. Como primer forward foram utilizados 

em cada reação conduzida separadamente um primer gene-específico para um 

grupo específico de peptídeo ICK (LiTx1, 2, 3 e 4) (0,4 µM). As reações continham 

ainda tampão da Taq DNA polimerase (1x), MgCl2 (1,5 mM), dNTPs (0,2 mM), 

primer reverse Oligo(dT)17-adaptor (0,4 µM), cDNA de L. gaucho ou L. laeta (3µ, 

equivalente a 10% do volume da reação) e Taq DNA polimerase (1,25U/50μL). 

As reações foram realizadas em termociclador pré-aquecido (“hot- start”) a 95°C 

seguido dos ciclos: 95°C/2 min (1 ciclo); 95°C/30 s, temperatura de anelamento 

média entre os primers específicos e Oligo(dT)17-adaptor/30 s, 

72°C/2 min (35 ciclos); 72°C/10 min (1ciclo); 4°C/∞ (ciclo de espera). 
 

 
 

Peptídeo Rastreado Temperatura de Anelamento 

LiTx1 55,8º C 

LiTx2 55,5º C 

LiTx3 54,8º C 

LiTx4 54,5º C 

 

Tabela 2: Temperatura de anelamento dos primers utilizadas para a 
amplificação das sequências codificantes dos 4 grupos de peptídeos 
estudados. A temperatura de anelamento indicada corresponde às médias das
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temperaturas de anelamentos dos primers forward gene-específicos (mostrados 
na tabela 1) e do primer reverse Oligo(dT)17-adaptor. 

 
 

A análise dos produtos de PCR amplificados foi realizada por meio de gel 

de agarose 1,5%. Em seguida, as bandas amplificadas foram recortadas e o DNA 

foi extraído com a utilização do kit Illustra GFX PCR DNA and Gel Band 

Purification Kit (GE Healthcare Life Sciences, Piscataway, NJ, USA). As amostras 

eluídas foram dosadas em aparelho NanoVue Plus® (GE Healthcare Life 

Sciences). 

 

 
Clonagem Dos Produtos Amplificados Em Vetor De pGEM-T Easy Vector 

 

 

Os produtos amplificados e purificados foram submetidos à ligação em 

vetor de clonagem pGEM-T (vetor A-T) (Promega) em uma proporção de 3:1 

(inserto:vetor). As reações apresentaram volume final de 10 µl, a qual continha 

tampão para a enzima T4 DNA Ligase (2X), T4 DNA Ligase (3 U/µl), vetor pGEM- 

T Easy Vector (50 ng) e as quantidades de inserto previamente calculadas de 

acordo com a concentração do inserto, considerando a proporção 3:1 

estabelecida. As reações foram incubadas em termociclador por 16 h, à 22°C. 

 

 
Transformação Das Construções Em Bactérias Por Eletroporação 

 

 

Uma alíquota de solução de bactérias da cepa DH5α eletrocompetentes 

(30 µl) foi retirada do freezer -80°C e mantida em gelo. Quando descongelada, 

foi adicionado 1µl da reação de ligação, a mistura foi homogeneizada e colocada 

em uma cubeta de eletroporação. Procedeu-se então a eletroporação em 

aparelho Gene Pulser X-Cell (BioRad). As bactérias foram recuperadas em meio 

SOC (triptona 20 g/L, extrato de levedura 5 g/L, NaCl 0,5 g/L, KCl 2,5 mM, MgCl2 

10mM, MgSO4 10 mM e glicose 0,2 M) e incubadas por uma hora sob moderada 

agitação (aproximadamente 100 rpm), a 37°C em agitador do tipo shaker. Após 

o período de recuperação  as bactérias foram  plaqueadas em duas placas 

diferentes contendo meio LB ágar (triptona 10 g/L, extrato de levedura 5 g/L, 

cloreto de sódio 10 g/L, agar-ágar 15 g/L) suplementado com ampicilina (100 

µg/ml) e previamente tratado com IPTG (100 mM) e X-GAL (20 mg/ml): uma das 

placas recebeu 100 µl da suspensão bacteriana e a outra recebeu o equivalente
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aos 900 µl restantes. O plaqueamento foi realizado com alça de Gauss estéril e 

as placas foram incubadas a 37°C em incubadora do tipo B.O.D. modelo 411 D 

(Nova Ética), por 16 h. 

 

 
PCR De Colônia 

 

 

Após observação das placas anteriormente citadas, foram escolhidas 

aleatoriamente colônias brancas (supostamente com inserto clonado) para a 

realização de PCR de colônia, a fim de identificar clones positivos. Foram 

testados 50 clones para cada grupo de peptídeos de cada uma das espécies em 

estudo (L. gaucho e L. laeta). As colônias escolhidas foram tocadas com auxílio 

de palito de madeira estéril; esse material coletado foi esfregado no fundo de um 

tubo de 0,2 mL e, em seguida, inoculado em uma “master plate” (placa 

quadriculada na qual os clones são numericamente identificados). Nos tubos 

foram acrescidos tampão para Taq DNA polimerase (1X), dNTPs (0,2 mM), 

MgCl2 (1,5 mM), primer T7 sense forward (0,2 µM), primer SP6 reverse (0,2 µM) 

e enzima Taq DNA polimerase (1,25U/50µl). As reações foram então incubadas 

em termociclador para amplificação do inserto de acordo com o seguinte 

protocolo: 95°C/5 min (1 ciclo); 95°C/30 s, média das Tm (temperatura de 

“melting”) dos primers diminuída de 5°C/30 s e 72°C/2 min (35 ciclos); 72°C/10 

min (1 ciclo); 4°C/infinito (ciclo de espera). Os produtos de amplificação do PCR 

de colônia foram analisados em gel de agarose 1,5%. O resultado foi visualizado 

e registrado em aparelho de captura de imagem Chemidoc (Bio-Rad) por meio 

do software Quantity One. 

 

 
Minipreparação Plasmidial 

 

 

A partir da “master plate”, os clones positivos selecionados foram picados 

com auxílio de pinça e palitos de madeira estéreis para um pré-inóculo de 5 mL, 

em meio LB líquido contendo ampicilina (100 µg/mL), realizado em tubos cônicos 

de 50 ml. Esses pré-inóculos foram incubados por 16 h, a 37°C, sob agitação 

constante de 200 rpm em incubadora do tipo “shaker” 430 RDB (Nova Ética). 

Cada cultura saturada foi então centrifugada (3.000xg, por 3 min) à temperatura 

ambiente para a obtenção do pellet bacteriano.  De cada um dos centrifugados
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bacterianos foi feita a extração das construções com auxílio do kit de Miniprep 

Pure Link Quick Plamid Miniprep Kit (Invitrogen), segundo as instruções do 

fabricante. As amostras foram submetidas à dosagem em aparelho NanoVue 

Plus® (GE Healthcare Life Sciences). 

 

 
PCR De Sequenciamento, Precipitação E Análise De Sequenciamento 

 

 

Para as reações de sequenciamento foram utilizados o reagente BigDye® 

Terminator v3.1 Cycle Sequencing (Life Technologies), 400 ng de DNA molde 

(construções constituídas pelas sequências codificantes dos peptídeos ICK 

amplificadas e clonadas no vetor pGEM-T Easy Vector), tampão de 

sequenciamento (1X) e primer forward T7 ou o primer reverse SP6 (0,8 pmol); 

para cada clone sequenciado as reações de PCR de sequenciamento foram 

conduzidas em duplicata, sendo uma delas realizada com o primer T7 e a outra 

com o primer SP6. As reações foram realizadas em termociclador MyCycler 

Thermal Cycler (Bio-Rad Laboratories) de acordo com a seguinte programação: 

95°C/20 min, 50°C/15 s e 60°C/4 min (35 ciclos); 4°C/infinito (ciclo de espera). 

Logo após, foram adicionados aos produtos do PCR de sequenciamento acetato 

de sódio-EDTA (1,5 M) e etanol absoluto gelado (proporção 0,1v:3v de amostra), 

seguido de precipitação em gelo por 10 minutos. A mistura foi então 

centrifugação a 4°C, 20.000xg, por 30 min. Após retirado o sobrenadante, o pellet 

foi lavado com 750 µl de etanol 70% gelado, centrifugado a 4°C, 20.000xg, por 

5 min e seco em fluxo laminar. Após precipitação e secagem do material, os 

produtos foram ressuspendidos em formamida para a leitura no sequenciador 

ABI PRISM 3500 Genetic Analyser (Applied Biosystems, Foster City, EUA). 

Os eletroferogramas gerados foram analisados com o auxílio do software 

FinchTV Version 1.4.0. As sequências nucleotídicas resultantes foram traduzidas 

e submetidas à verificação da fase de leitura correta por meio das ferramentas 

online Open Reading Frame Finder (disponível no endereço 

(http://www.ncbi.nlm.nih.gov/projects/gorf/) e Expasy Translate (disponível no 

endereço http://web.expasy.org/translate/); ambas as análises foram realizadas 

utilizando as configurações padrão dos programas. Os alinhamentos das 

sequências foram produzidos no algoritmo online Clustal Omega (disponível no 

endereço   http://www.ebi.ac.uk/Tools/msa/clustalo/)   tendo   como   base   as

http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://web.expasy.org/translate/
http://www.ebi.ac.uk/Tools/msa/clustalo/
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sequências dos peptídeos LiTx de L. intermedia descritos por De Castro e 

colaboradores (2004) e depositadas no banco de dados online GenBank 

(Números de acesso – LiTx1: Q6B4T5; Litx2: Q6B4T4; LiTx3: Q6B4T3; LiTx4: 

Q27Q53), e as sequências obtidas por Gremski e colaboradores (2010) no 

estudo do transcriptoma da glândula de veneno de L. intermedia. Os 

alinhamentos gráficos foram realizados por meio da ferramenta online 

BOXSHADE Server versão 3.21 (disponível no endereço 

http://www.ch.embnet.org/software/BOX_form.html). As porcentagens de 

identidade das sequências de L. gaucho e L. laeta em relação às sequências de 

LiTx descritas por De Castro e colaboradores (2004) foram determinadas por 

meio da ferramenta online BLASTp (disponível no endereço 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastS 

earch&LINK_LOC=blasthome).

http://www.ch.embnet.org/software/BOX_form.html
http://www.ch.embnet.org/software/BOX_form.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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4 RESULTADOS 
 

 

Perfil Proteico Eletroforético Dos Venenos De L. intermedia, L. gaucho E L. 

laeta Em SDS-PAGE 

 
 

Uma análise comparativa dos venenos brutos de L. intermedia, L. gaucho 

e L. laeta submetidos a SDS-PAGE revelou perfis protéicos eletroforéticos muito 

similares (Figura 7). Esse  perfil é  caracterizado  por duas regiões  bastante 

enriquecidas em proteínas ou peptídeos, as quais são, devido à mobilidade 

eletroforética apresentada, associadas às enzimas fosfolipases-D (faixa de 30 a 

35 kDa) e aos peptídeos de baixa massa (faixa de 5 a 10 kDa) presentes nesses 

venenos (Figura 7). A presença de bandas de alta intensidade na região 

correspondente aos peptídeos é um evidente indício da presença de peptídeos 

ICK em todos os venenos testados. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 7: Separação eletroforética dos venenos de L. intermedia, L. 
gaucho e L. laeta por meio de gel desnaturante de poliacrilamida (SDS- 
PAGE) gradiente 10-20%. Em destaque (seta), a região correspondente aos 
peptídeos presentes nos venenos. 

 
 

Reatividade Imunológica Cruzada De Um Peptídeo ICK Recombinante E 

Antivenenos De Diferentes Espécies De Aranhas Do Gênero Loxosceles 

 
 

Outra evidência da provável presença de peptídeos ICK em todos os 

venenos em estudo foi verificada por meio de imunoensaio de western blotting.
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O peptídeo recombinante U2-SCTX-Li1b, tanto na sua forma monomérica (~12 

kDa) quanto na sua forma dimérica (~24 kDa), foi reconhecido pelos soros 

hiperimunes que reconhecem o veneno de cada uma das espécies estudadas, 

sugerindo a presença de toxinas nativas com epítopos lineares relacionados com 

peptídeos da família ICK nestes venenos (Figura 8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 8: Reatividade imunológica cruzada dos soros hiperimunes que 
reconhecem o veneno total de diferentes espécies de aranhas do gênero 
Loxosceles com o peptídeo recombinante U2-SCTX-Li1b. Amostras 
purificadas do peptídeo recombinante U2-SCTX-Li1b (5 µg) foram submetidas a 
SDS-PAGE 18% sob condições redutoras e transferidas para membranas de 
nitrocelulose. Essas amostras foram expostas aos soros pré-imunes (1, 3 e 5) e 
hiperimunes que reconhecem o veneno total de L. intermedia (2), de L. gaucho 
(4) e L. laeta (6). Reações positivas podem ser verificadas tanto para as formas 
monoméricas (~12 kDa; seta) quanto para as formas diméricas (~24 kDa; cabeça 
de seta) do peptídeo recombinante. 

 
 

Rastreamento De Sequências Codificantes De Peptídeos ICK Em L. gaucho 
 

E L. laeta 
 

 
 

A partir do RNA total purificado das glândulas de veneno das aranhas L. 

gaucho e L. laeta foram realizadas reações de RT-PCR com o objetivo de obter 

os cDNAs relacionados às toxinas produzidas pelas células dessas glândulas. 

Após a obtenção dos cDNAs, reações de PCR foram conduzidas para a 

amplificação das sequências codificantes  de  peptídeos ICK; em  cada  uma
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dessas reações foi utilizado um par de primers, representado pelo primer gene- 

específico do grupo de toxina a ser rastreado e o primer oligo(dT)17-adaptor. 

Todas as reações de amplificação foram bem-sucedidas, como pode ser 

observado na figura 9 abaixo. As sequências relacionadas aos grupos dos 

peptídeos semelhantes  à  LiTx1, LiTx2  e  LiTx4  revelaram  um  tamanho  de, 

aproximadamente, 400 pb tanto para L. gaucho quanto para L. laeta. As 

sequências associadas às toxinas do grupo das LiTx3, por sua vez, revelaram 

um tamanho aproximado de 300 pb (Fig. 9) em ambas as espécies em estudo. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 9: Amplificação das sequências relativas aos diferentes grupos de 
LiTx (Litx1-4) analisadas por eletroforese em gel de agarose 1,5%. A 
amplificação foi realizada por meio de PCR convencional com a utilização de um 
par de primers composto pelo primer forward gene-específico do grupo de LiTx 
a ser rastreado e o primer reverse oligo(dT)17-adaptor. 

 
 

As bandas referentes às sequências dos peptídeos visualizadas no gel de 

agarose foram extraídas do gel, ressuspensas em água ultrapura e dosadas. Em 

seguida, o material foi utilizado para a clonagem no vetor pGEM-T Easy Vector 

(Promega) por meio de reação de ligação. Procedeu-se então a transformação 

dos produtos de ligação em bactérias da cepa DH5α, seguida de confirmação 

por PCR de colônia dos clones positivos. Para cada um dos grupos de peptídeo 

(LiTx1-4), no material proveniente de ambas as espécies estudadas, 50 clones 

foram testados no PCR de colônia. Em todos os casos, aproximadamente 45 

clones foram positivos, isto é, continham as sequências de interesse clonadas. 

Para os grupos de peptídeos semelhantes a LiTx1, LiTx2 e LiTx4 os fragmentos



33  

amplificados apresentaram tamanho aproximado de 600 pb, como esperado, 

sendo 400 pb referentes às sequências codificantes dos peptídeos e 200 pb 

referentes às porções do vetor amplificadas devido ao anelamento dos primers 

utilizados na reação (figuras 10, 11 e 12). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 10: Análise do perfil eletroforético dos produtos amplificados no 
PCR de colônia referente aos peptídeos semelhantes a LiTx1 em L. gaucho 
(à esquerda) e L. laeta (à direita) (gel de agarose 1,5%). Gel representativo de 
10 clones testados. Todos os clones foram positivos e demonstram banda na 
altura aproximada de 600 pb, sendo 400 pb relativos ao inserto e, 
aproximadamente, 200 pb referentes às porções do vetor amplificadas. Para a 
amplificação dos fragmentos no PCR de colônia foram utilizados o primer forward 
T7 sense e o primer reverse SP6. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 11: Análise do perfil eletroforético dos produtos amplificados no 
PCR de colônia referente aos peptídeos semelhantes a LiTx2 em L. gaucho 
(à esquerda) e L. laeta (à direita) (gel de agarose 1,5%). Gel representativo de 
10 clones testados. Todos os clones foram positivos e demonstram banda na 
altura aproximada de 600 pb, sendo 400 pb relativos ao inserto e, 
aproximadamente, 200 pb referentes às porções do vetor amplificadas. Para a 
amplificação dos fragmentos no PCR de colônia foram utilizados o primer forward 
T7 sense e o primer reverse SP6.



34  

 
 
 
 
 
 
 
 
 
 
 
 

Figura 12: Análise do perfil eletroforético dos produtos amplificados no 
PCR de colônia referente aos peptídeos semelhantes a LiTx4 em L. gaucho 
(à esquerda) e L. laeta (à direita) (gel de agarose 1,5%). Gel representativo de 
10 clones testados. Todos os clones foram positivos e demonstram banda na 
altura aproximada de 600 pb, sendo 400 pb relativos ao inserto e, 
aproximadamente, 200 pb referentes às porções do vetor amplificadas. Para a 
amplificação dos fragmentos no PCR de colônia foram utilizados o primer forward 
T7 sense e o primer reverse SP6. 

 
 

Para o grupo dos peptídeos semelhantes a LiTx3, os fragmentos 

amplificados apresentaram tamanho aproximado de 500 pb, como esperado, 

sendo 300 pb referentes às sequências codificantes dos peptídeos e 200 pb 

referentes às porções do vetor amplificadas devido ao anelamento dos primers 

utilizados na reação (figura 13). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 13: Análise do perfil eletroforético dos produtos amplificados no 
PCR de colônia referente aos peptídeos semelhantes a LiTx3 em L. gaucho 
(à esquerda) e L. laeta (à direita) (gel de agarose 1,5%). Gel representativo de 
10 clones testados. Todos os clones foram positivos e demonstram banda na 
altura aproximada de 600 pb, sendo 300 pb relativos ao inserto e, 
aproximadamente, 200 pb referentes às porções do vetor amplificadas. Para a 
amplificação dos fragmentos no PCR de colônia foram utilizados o primer forward 
T7 sense e o primer reverse SP6. 

 
 

Para a análise das sequências codificantes dos peptídeos nas duas 

espécies em estudo, dez clones positivos confirmados pelo PCR de colônia 

foram selecionados. Procedeu-se a realização de minipreps para a purificação



35  

das construções de cada um dos clones, seguida de PCR de sequenciamento e 

sequenciamento  pelo  método  dos  dideoxinucleotídeos  em  aparelho  3500 

Genetic Analyzer (Applied Biosystems). As sequências obtidas foram então 

trimadas e submetidas a análises bioinformáticas como descrito no tópico de 

métodos acima. 

Em todas as sequências preditas encontradas, os resíduos de cisteína 

mostraram-se conservados em relação aos peptídeos LiTx1, LiTx2, LiTx3 e LiTx4 

de L. intermedia, como pode ser verificado nas figuras 14, 15, 16 e 17 (marcados 

com asteriscos). Adicionalmente, os prováveis resíduos de cisteína que 

estabelecem as pontes dissulfeto que compõem o motivo estrutural “nó de cistina 

inibidor”, o qual confere nome a essa família de peptídeos (ICK), também estão 

conservados. 

Para a espécie L. gaucho, em relação aos peptídeos semelhantes a LiTx1, 

os clones sequenciados revelaram duas possíveis isoformas (figura 14): uma das 

sequências obtidas (Tx1_gauchoI) é a própria isoforma LiTx1 encontrada no 

veneno de L. intermedia por De Castro e colaboradores (2004) e por Gremski e 

colaboradores (2010). A outra sequência encontrada apresenta duas diferenças 

na sequência primária predita em relação a LiTx1, envolvendo a substituição de 

um resíduo lisina (K) por um resíduo de glutamina (Q) na posição 13 e a 

substituição de um resíduo de lisina (K) por um resíduo de arginina (R) na posição 

46; tal sequência apresenta identidade de 96% em relação a LiTx1. Para a espécie 

L. laeta, 6 possíveis isoformas do peptídeo LiTx1 foram encontradas (Tx1_laetaI-

VI), apresentando identidade que varia de 87% a 93% em relação à sequência 

do peptídeo LiTx1 (figura 14). Essas sequências encontradas para L. laeta 

apresentam aminoácidos conservados entre elas e que divergem dos resíduos 

encontrados na LiTx1: resíduos de alanina(A) (posição 1), de lisina (K) (posição 

21), de ácido aspártico (D) (posição 31) e de glutamina (Q) (posição 

39); nas mesmas posições, no peptídeo LiTx1, são encontrados resíduos de 

lisina (K) (posição 1), de arginina (N) (posição 21), de serina (S) (posição 31) e 

de metionina (M) (posição 39) (figura 14). 

Em relação ao grupo dos peptídeos LiTx2, para L. gaucho, duas prováveis 

isoformas foram encontradas, ambas apresentando identidade de 85% com o 

peptídeo LiTx2 de L. intermedia (figura 15); em ambas as sequências 

relacionadas, as divergências em relação a LiTx2 estão associadas aos resíduos
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de aminoácidos 11 a 14 (ADQP e AVQP) e aos resíduos nas posições 31 a 33 

(STS). Para L. laeta também foram encontradas duas prováveis isoformas, as 

quais apresentam 87% de identidade com LiTx2 (figura 15); assim como para L. 

gaucho, as diferenças nas sequências aminoacídicas preditas estão restritas às 

posições 11 a 14 (AAEP e ADEP) e às posições 31 a 33 (QTA e QTS). 

As isoformas relacionadas com o peptídeo LiTx3 em L. intermedia são 

muito diversas, como demonstrado pelo estudo do transcriptoma da glândula de 

veneno (Gremski et al., 2010) (figura 16). Para L. gaucho e L. laeta, por outro 

lado, as sequências rastreadas foram agrupadas em duas isoformas apenas para 

cada gênero, como mostrado na figura 16. Para L. gaucho, uma das sequências 

encontradas corresponde à própria LiTx3 de L. intermedia, o que se verifica pela 

identidade de 100% entre elas; a outra isoforma encontrada em L. gaucho 

apresenta 87% de identidade com LiTx3. As duas isoformas de LiTx3 

encontradas em L. laeta apresentam identidade de 90% e 92% com o peptídeo 

de L. intermedia. Uma importante diferença encontrada para as sequências em 

L. laeta em relação às sequências de LiTx3 das outras duas espécies é o número 

de resíduos de aminoácidos na sequência predita: 52 resíduos em L. laeta e 53 

resíduos tanto em L. gaucho e L. intermedia (figura 16). 

Por fim, para o grupo das LiTx4, tanto para L. gaucho quanto para L. laeta, 

os clones rastreados revelaram sequências que foram agrupadas em duas 

prováveis isoformas (figura 17). Em L. gaucho, uma das isoformas é a própria 

LiTx4 encontrada em L. intermedia (100% de identidade), e a outra apresenta 

83% de identidade com LiTx4. Para L. laeta, as duas isoformas encontradas 

apresentam identidade de 83% e 85% com a sequência do peptídeo LiTx4 (figura 

17).
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Figura 14: Sequências codificantes de peptídeos do grupo LiTx1 encontradas para L. gaucho e L. laeta e comparação com isoformas preditas 

para L. intermedia. Duas prováveis isoformas de LiTx1 foram encontradas para L. gaucho (Tx1_gauchoI-II) e cinco prováveis isoformas foram 

encontradas para L. laeta (Tx1_laetaI-VI). A sequência do peptídeo LiTx1 de L. intermedia já descrita na literatura também compõe o alinhamento 

aminoacídico. Os resíduos de cisteína conservados são indicados por asteriscos e os resíduos que estabelecem as pontes dissulfeto que compõem o 

“nó inibidor de cistina” são indicados por colchetes.
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Figura 15: Sequências codificantes de peptídeos do grupo LiTx2 encontradas para L. gaucho e L. laeta e comparação com isoformas preditas 
para L. intermedia. Duas prováveis isoformas de LiTx2 foram encontradas para L. gaucho (Tx2_gauchoI-II) e outras duas prováveis isoformas foram 
encontradas para L. laeta (Tx2_laetaI-II). A sequência do peptídeo LiTx2 descrito em L. intermedia também compõe o alinhamento aminoacídico. Os 
resíduos de cisteína conservados são indicados por asteriscos e os resíduos que estabelecem as pontes dissulfeto que compõem o “nó inibidor de 
cistina” são indicados por colchetes.
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Figura 16: Sequências codificantes de peptídeos do grupo LiTx3 encontradas para L. gaucho e L. laeta e comparação com isoformas preditas 
para L. intermedia. Duas prováveis isoformas de LiTx3 foram encontradas para L. gaucho (Tx3_gauchoI-II) e outras duas prováveis isoformas foram 
encontradas para L. laeta (Tx3_laetaI-II). Quatro prováveis isoformas de peptídeos LiTx3 já descritas na literatura também compõem o alinhamento 
aminoacídico. Os resíduos de cisteína conservados são indicados por asteriscos e os resíduos que estabelecem as pontes dissulfeto que compõem o 
“nó inibidor de cistina” são indicados por colchetes.
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Figura 17: Sequências codificantes de peptídeos do grupo LiTx4 encontradas para L. gaucho e L. laeta e comparação com isoformas preditas 
para L. intermedia. Duas prováveis isoformas de LiTx4 foram encontradas para L. gaucho (Tx4_gauchoI-II) e outras duas prováveis isoformas foram 
encontradas para L. laeta (Tx4_laetaI-II). A sequência do peptídeo LiTx4 descrito em L. intermedia também compõe o alinhamento aminoacídico. Os 
resíduos de cisteína conservados são indicados por asteriscos e os resíduos que estabelecem as pontes dissulfeto que compõem o “nó inibidor de 
cistina” são indicados por colchetes.
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5 DISCUSSÃO 
 

 

A função biológica primordial dos venenos de aranhas é a promoção da 

defesa frente a predadores e a paralise e/ou morte de presas para a alimentação 

(WINDLEY et al., 2012; SOLLOD et al., 2005). Assim sendo, durante a evolução, 

as aranhas desenvolveram um arsenal de moléculas tóxicas em seus venenos, 

as quais têm afinidade por diversos alvos (canais iônicos, receptores específicos 

para neurotransmissores, membrana celular, etc). Exemplos de moléculas 

capazes de desempenhar as funções relatadas são os peptídeos da família ICK, 

toxinas amplamente encontradas nos venenos de aranha  e que, em geral, 

apresentam massa molecular que varia de 3 a 15 kDa. Assim sendo, as bandas 

de grande intensidade verificadas no SDS-PAGE realizado refletem o grande 

conteúdo de peptídeos ICK presentes nos venenos testados. Esse resultado 

obtido está de acordo com dados da literatura, os quais revelam, por meio das 

mesmas análises qualitativas por eletroforese unidimensional, um 

enriquecimento de moléculas com massas correspondentes às dos peptídeos 

ICK em venenos provenientes de diversas espécies de aranhas (ESTRADA- 

GOMEZ et al., 2013; BINFORD, 2001; GREMSKI et al., 2014). 

O imunoensaio de reatividade cruzada realizado entre um peptídeo ICK 

recombinante de L. intermedia (U2-SCTX-Li1b) e os antivenenos das 3 espécies 

em análise, sugeriu a existência de epítopos lineares nesse peptídeo que são 

reconhecidos por anticorpos anti-veneno de cada uma das espécies estudadas. 

Esse resultado reforça a ideia de que os peptídeos ICK compõem uma família 

conservada de toxinas dentro do gênero Loxosceles. Essa inferência é reforçada 

pelos achados relacionados com outras toxinas presentes no veneno de 

diferentes espécies do gênero Loxosceles, a exemplo das fosfolipases-D e 

metaloproteases. Diversos estudos identificaram e caracterizaram 

estruturalmente, bioquimicamente e biologicamente fosfolipases-D provenientes 

de diferentes espécies de aranhas Loxosceles, estabelecendo um consenso de 

que essas moléculas compõem uma família de toxinas conservadas no gênero 

(GREMSKI et al., 2014; MACHADO et al., 2005; FERNANDES-PEDROSA et al., 

2002; KALAPOTHAKIS et al., 2002). Outro exemplo evidente de família de 

toxinas  conservadas  no  gênero  é  o  das  metaloproteases:  Da  Silveira  e
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colaboradores (2007a) obtiveram e caracterizaram uma isoforma de 

metaloprotease de L. intermedia, ao passo que Trevisan-Silva e colaboradores 

(2010) reportaram a identificação de mais duas isoformas de metaloproteases de 

L. intermedia e também a identificação de uma sequência codificante dessa 

toxina de L. gaucho e outra sequência de L. laeta. 

Devido ao fato de muitos venenos apresentarem uma grande 

predominância de peptídeos ICK, muitos estudos proteômicos e peptidômicos 

têm sido realizados com o intuito de conhecer essas moléculas e verificar o 

potencial de cada uma delas para aplicação biotecnológica  ou terapêutica. 

Entretanto, essas análises são frequentemente limitadas, uma vez que 

dependem de grande quantidade de veneno bruto e o rendimento das extrações 

costuma ser muito baixo. Além disso, dados proteômicos não refletem a 

totalidade de potenciais moléculas que são codificadas nas glândulas de veneno: 

Liao e colaboradores (2007) analisaram o veneno da tarântula chinesa 

Chilobrachys jingzhao por meio de métodos cromatográficos e de espectrometria 

de massas e identificaram apenas 60 peptídeos ICK; Cheng e colaboradores 

(2008), trabalhando com o mesmo veneno, identificaram 104 sequências 

codificantes de peptídeos ICK, o que representa 43% a mais de informação 

quando comparado ao primeiro estudo citado. Assim, estudos baseados no 

rastreamento de sequências codificadoras de peptídeos ICK, principalmente as 

abordagens de transcriptoma, têm sido frequentemente empregadas com o 

propósito de revelar o conteúdo de peptídeos dessa natureza nos venenos. 

Grande parte desses estudos confirmam a grande predominância dos transcritos 

referentes a peptídeos ICK em detrimento dos transcritos para as demais toxinas. 

No presente estudo, todas as sequências novas rastreadas em L. gaucho 

e L. laeta apresentaram 10 resíduos de cisteína, assim como descrito para os 

peptídeos ICK de L. intermedia (GREMSKI et al., 2010) e para os peptídeos ICK 

provenientes de outras famílias de aranha, a exemplo da família Oxyopidae. 

Além disso, todos esses resíduos estão dispostos em posição conservada, ou 

seja, não houve alteração do número de resíduos entre eles. Essa conservação 

no número e posição dos resíduos de cisteína entre as sequências obtidas e as 

anteriormente descritas para L. intermedia é um claro indicativo da relação 

estrutural e funcional existente entre esses peptídeos, o que já foi visto para
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peptídeos ICK de outras famílias de aranhas: por exemplo, os peptídeos ICK 
 

descritos para aranhas da família Sparassidae caracteristicamente apresentam 
 

6 resíduos de cisteína, bem como os da família Amaurobiidae apresentam 8 

resíduos de cisteína (KUHN-NENTWIG et al., 2011). Adicionalmente, por meio 

da ferramenta online KNOTTER 1D, disponível no banco de dados dos peptídeos 

ICK “Knotting Database”, foi verificado que todas as sequências conservam o 

arranjo do motivo estrutural ICK definido como C1-C4, C2-C5 e C3-C8, assim como 

já descrito para outros peptídeos, a exemplo da toxina ACTX-Hi:OB4219 da 

aranha australiana Hadronyche infensa (ROSENGREN et al., 2002). 

Kozlov e Grishin (2005), analisando a estrutura primária de vários 

peptídeos ICK com atividade biológica já comprovada, revelaram que as 

sequências aminoacídicas preditas podem fornecer importantes informações a 

respeito de suas funções. Segundo os autores, as sequências consenso 

denominadas “motivo estrutural principal” (MEP) e “motivo estrutural extra” (MEE) 

fornecem um indício confiável de atividade neurotóxica de inibição de canais 

iônicos nos peptídeos ICK que as contenham. O MEP é caracterizado pelo 

consenso C1X6C2UC3C4 (C representa os resíduos de cisteína e o número 

associado representa a ordem desse resíduo na sequência primária do peptídeo; 

X indica qualquer aminoácido e o número associdado representa a quantidade 

de resíduos entre as cisteínas), ao passo que o MEE é formado pelo consenso 

C5X1C6 e C7X1C8 (de acordo com as mesmas regras discriminadas para o MEE). 

Todas as sequências semelhantes a LiTx3 já descritas e também as encontradas 

no presente estudo contêm o MEP (figura 16), enquanto que as isoformas de 

LiTx1, LiTx2 e LiTx4 contêm o MEE (figuras 14, 15 e 17). Assim, baseado no que 

é proposto por Kozlov e Grishin (2005), após análise de múltiplas sequências, os 

peptídeos ICK de L. intermedia, L. gaucho e L. laeta são potenciais moléculas a 

serem exploradas do ponto de vista biológico e biotecnológico. 

Escoubas e colaboradores (2006), a partir dos venenos das tarântulas 

Atrax robustus e Hadronyche versuta, em análises de espectrometria de massas, 

verificaram a presença de aproximadamente 600 e 1000 peptídeos diferentes, 

respectivamente. Essa observação mostra a grande diversidade de moléculas 

nesses venenos, indicando a tradução efetiva de muita informação contida nos 

genes  das células da  glândula de  veneno.  Essa  complexidade  em  termos 

proteicos  é  um  reflexo  da  complexidade  do  que  é  codificado  nos  mRNAs
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correspondentes. O rastreamento de transcritos nas espécies L. gaucho e L. 

laeta realizado revelou pela primeira vez a presença de sequências codificantes 

de peptídeos ICK para todos os grupos (LiTx1, LiTx2, LiTx3 e LiTx4) 

anteriormente descritos para L. intermedia. Certamente, o sequenciamento de 

um maior número de clones positivos para L. gaucho e L. laeta revelará uma 

diversidade ainda maior de sequências para peptídeos ICK. 

Quanto  ao  grupo  da  LiTx1,  o  estudo  prévio  do  transcriptoma  de  L. 
 

intermedia revelou a presença de duas prováveis isoformas, sendo uma delas a 

própria LiTx1 identificada por De Castro e colaboradores (2004) e outra isoforma 

contendo duas substituições aminoacídicas (GREMSKI et al., 2010). Para L. 

gaucho, o resultado obtido foi semelhante ao descrito para L. intermedia, 

consistindo na identificação de duas prováveis isoformas: a própria LiTx1 e outra 

isoforma sutilmente diferente (duas substituições em relação à LiTx1). Isoformas 

muito semelhantes presentes no mesmo veneno são frequentemente relatadas 

na literatura. Vieira e colaboradores (2004) obtiveram cDNAs referentes a 3 

peptídeos ricos em resíduos de cisteína codificados na glândula de veneno da 

caranguejeira Lasiodora sp; os peptídeos foram identificados como LTx1, LTx2 

e LTx3 e a análises de suas sequências aminoacídicas preditas revelaram que 

tais peptídeos apresentam alta similaridade, diferindo um do outro em apenas 1 

a 3 resíduos. Essas pequenas diferenças na estrutura primária dos peptídeos 

ICK podem ter diversos significados biológicos. Muitos trabalhos relatam que 

pequenas diferenças podem estar associadas com atividades biológicas muito 

distintas, enquanto outros suportam  a  ideia  de  que  peptídeos com  grande 

identidade estão associados com o mesmo alvo. Os peptídeos homólogos Magi5 

e Magi11, derivados do veneno da aranha Macrotheles gigas, compartilham 

similaridade de 70% e induziram sintomas muito semelhantes quando injetados 

em camundongos, a exemplo de lacrimejamento, sugerindo similar modulação 

do sítio 4 de canais de sódio voltagem-dependentes (CORZO et al., 2003; 

SATAKE et al., 2004). Por outro lado, toxinas similares podem ter diferentes 

bioatividades, indicando que sutis diferenças na estrutura primária podem ser 

responsáveis por essa discrepância; exemplo disso são as toxinas HWTX-V e 

mHWTX-V isoladas a partir do veneno da aranha Selenocosmia huwena. 

mHWTX-V é uma versão natural truncada do peptídeo HWTX-V, diferindo 

apenas nos 2 últimos resíduos de aminoácidos na posição C-terminal. Embora
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ambos os peptídeos sejam muito similares, mHWTX-V não foi capaz de induzir 

paralise e morte de gafanhotos e grilos, ao contrário de HWTX-V (ZHANG et al., 

2003). O estudo, por consequência, sugere que os aminoácidos fenilalanina e 

serina em posição C-terminal são resíduos-chave para a atuação desses 

peptídeos em seu alvo específico. 

Para as sequências relativas ao grupo LiTx1 em L. laeta, 6 prováveis 

isoformas foram encontradas (Tx1_laetaI-VI). Levando em consideração apenas 

o grupo das LiTx1, esse resultado sugere que L. laeta e L. gaucho ao longo da 

evolução podem ter adotado estratégias diferentes para seu arsenal de toxinas: 

em L. gaucho as poucas isoformas presentes podem estar associadas com 

atividade promíscua, interagindo de forma menos específica com vários alvos. 

Em L. laeta, a grande diversidade de sequências sugere que cada uma possa 

estar relacionada com algum alvo em particular, ligando-se com grande afinidade 

a ele. Entretanto, a comprovação de tal hipótese depende de mais estudos 

bioquímicos, biológicos e toxicogenômicos. 

A grande diversidade de isoformas verificada para o grupo dos peptídeos 

LiTx1 de L. laeta é hipotetizada como estratégia evolutiva de alguns venenos, os 

quais incluem diferentes formas de um peptídeo devido a uma ação sinérgica 

dessas. Além desta provável atuação somatória, uma gama maior de peptídeos 

semelhantes está relacionada como mecanismo de defesa biológico às variações 

físico-químico-biológicas do meio, a exemplo de estabilidade térmica, alterações 

de pH, ação de agentes desnaturantes e mutagênicos, as quais poderiam inibir 

ou degradar apenas algumas isoformas, ao passo que outras se manteriam 

estáveis, impedindo que alguma função importante seja perdida. 

Em relação às sequências referentes aos peptídeos do grupo LiTx2, tanto 

em L. gaucho quanto em L. laeta, duas sequências com pequenas diferenças 

entre elas foram encontradas. Quando todas as sequências são comparadas em 

conjunto, inclusive as sequências de L. intermedia, verifica-se que as 

divergências estão confinadas a duas regiões específicas, sendo uma delas nas 

posições dos resíduos 11 a 14 e a outra nas posições dos resíduos 31 a 33. 

Essas divergências em regiões específicas podem estar associadas a alvos e/ou 

intensidades diferentes  em  relação  a  uma  determinada  atividade  biológica. 

Satake e colaboradores (2004), estudando duas toxinas de Macrotheles gigas 

com  alta  similaridade  (Magi15  e  Magi16),  verificaram  que  tais  peptídeos
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apresentavam diferenças moleculares significativas nos resíduos dispostos nas 

posições de 48 a 59; ensaios de microinjeção em grilos mostraram que as toxinas 

desencadeavam diferentes tipos de paralise nos insetos em análise: a toxina 

Magi15 gerava paralise prolongada por duas a três horas, não ocasionando 

morte aos insetos, ao passo que o peptídeo Magi16 originava uma paralise lenta 

após 5 ou 6 horas pós-injeção, resultando em morte tempo depois. A partir dessa 

observação, os autores hipotetizaram que a região de heterogeneidade na 

estrutura primária dos peptídeos possa estar relacionada com o perfil de 

toxicidade diferente resultante. 

Ainda para o grupo dos peptídeos LiTx2, ambos os estudos em L. 

intermedia (DE CASTRO et al., 2004; GREMSKI et al., 2010) revelaram a 

presença de uma única sequência, indicando que essa isoforma em particular é 

bastante conservada no veneno. As sequências obtidas para L. gaucho e L. laeta 

revelaram maior diversidade, uma vez que apenas 10 clones foram 

sequenciados, entretanto, duas sequências foram identificadas para cada 

espécie em estudo. 

Em relação aos peptídeos do grupo LiTx3, para L. intermedia, o trabalho 

do transcriptoma revelou uma grande diversidade de transcritos, os quais foram 

associados a possíveis 7 isoformas (GREMSKI et al., 2010). Para L. gaucho e L. 

laeta foram encontradas duas sequências relacionadas ao grupo dos peptídeos 

LiTx3 em cada uma das espécies. As sequências de L. gaucho, assim como 

algumas descritas para L. intermedia (GRESMKI et al., 2010; MATSUBARA et 

al., 2013), diferem do peptídeo LiTx3 descrito por não apresentar a terminação 

composta pelo dipeptídeo lisina-glicina na região C-terminal. Esse dipeptídeo já 

foi relatado com um consenso para a ocorrência de amidação C-terminal, uma 

modificação pós-traducional associada com, aproximadamente, 12% dos 

peptídeos presentes em venenos de aranhas e que teria a função de proteger o 

peptídeo contra degradação proteolítica (SAEZ et al., 2010; WINDLEY et al., 

2012). O mecanismo descrito especifica que o dipeptídeo citado sofreria 

clivagem proteolítica, resultando na remoção do resíduo de glicina e a 

subsequente amidação do resíduo de lisina (JOHNSON et al., 1998). Os 

peptídeos TalTX-1, TalTX-2 e TalTX-3 da aranha Tegenaria agrestis e o peptídeo 

JZTX-IV da aranha Chilobrachys jingzhao possuem o mesmo consenso e, por 

meio  de  análise  de  espectrometria  de  massas,  os  autores  presumem  a
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ocorrência da modificação pós-traducional relatada (JOHNSON et al., 1998; 

WANG et al., 2008). A literatura mostra que a amidação C-terminal parece ser 

importante para a atividade biológica dos peptídeos: Ostrow e colaboradores 

(2003), estudando a atividade do peptídeo GsMTx4 oriundo da tarântula 

Grammostola spatulata, verificaram que a forma recombinante do peptídeo em 

questão teve uma menor capacidade de inativar canais mecanossensitivos em 

relação à forma sintética e nativa da toxina, as quais possuíam a modificação. 

Assim, o fato de os peptídeos de L. gaucho não possuírem a sequência consenso 

de amidação sugere que estes possuam atividade biológica independente da 

modificação em questão. 

Duas sequências codificantes dos peptídeos do grupo LiTx4 foram 

encontradas para cada espécie aqui estudada. O peptídeo LiTx4 descrito para L. 

intermedia ainda não foi caracterizado; sua sequência apenas foi depositada no 

GenBank por De Castro e colaboradores (2004). Gremski e colaboradores (2010) 

relataram que o peptídeo LiTx4 apresenta 77% de similaridade com o peptídeo 

LiTx2, indicando que tais peptídeos estão estruturalmente relacionados. A 

comparação das sequências de prováveis isoformas de LiTx4 obtidas para L. 

gaucho e L. laeta com as isoformas de LiTx2 derivadas de todas as três espécies 

revelou similaridade mínima de 78%, corroborando os dados obtidos  por  

Gremski e  colaboradores  (2010)  para  L.  intermedia.  Essa  alta similaridade 

entre os grupos LiTx2 e LiTx4 suscita a ideia de que todas as sequências obtidas 

possam corresponder a isoformas de peptídeos pertencentes a um mesmo 

grupo. Entretanto, tal inferência depende de mais análises genômicas e 

estruturais. 

A análise geral das sequências de peptídeos ICK obtidas e a comparação 

com as sequências previamente identificadas para L. intermedia revelam que os 

peptídeos  LiTx1,  LiTx3  e  LiTx4  são  comuns  a  L.  gaucho  e  L. intermedia. 

Nenhuma das sequências codificantes dos peptídeos descritos para L. 

intermedia foram encontradas para L. laeta. Esses resultados indicam uma 

similaridade maior entre os venenos de L. gaucho e L. intermedia no que se 

refere a peptídeos ICK, podendo essas espécies estarem filogeneticamente mais 

próximas em relação à espécie L. laeta. A presença de peptídeos ICK idênticos 

em venenos de espécies de aranhas diferentes já foi relatada na literatura, a
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exemplo do peptídeo OxyTx1 que está presente tanto no veneno da aranha 
 

Oxyopes lineatus quanto em Oxyopes kitabensis (VILLEGAS et al., 2008). 
 

O rastreamento de sequências realizado permitiu identificar prováveis 

isoformas de peptídeos ICK até então desconhecidas em outras aranhas do 

gênero Loxosceles. Essas sequências constituem importantes informações que 

poderão ser exploradas por abordagens de biologia molecular e bioquímica de 

proteínas, a fim de caracterizar suas possíveis atividades biológicas e verificar 

suas potencialidades do ponto de vista biotecnológico e terapêutico.



49  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CAPÍTULO II 
 

CLONAGEM MOLECULAR, EXPRESSÃO 

HETERÓLOGA EM Pichia pastoris E 

CARACTERIZAÇÃO BIOLÓGICA DE UM 

PEPTÍDEO ICK PRESENTE NO VENENO DE 

L. intermedia



50  

 
 

 

CAPÍTULO II - CLONAGEM MOLECULAR, EXPRESSÃO HETERÓLOGA EM 

Pichia Pastoris E CARACTERIZAÇÃO BIOLÓGICA DE UM PEPTÍDEO ICK 

PRESENTE NO VENENO DE L. intermedia 

 
 
 

 
1 INTRODUÇÃO 

 

 

O estudo de toxinas nativas animais é bastante dificultado pelo fato de 

que as extrações de veneno costumam ser de baixo rendimento. Em relação às 

aranhas do gênero Loxosceles, especificamente, o volume de veneno produzido 

pelas glândulas é variável de acordo com o espécime (tamanho, sexo e outros 

fatores), mas dificilmente ultrapassa 4μl e contém de 20μg a 200μg de proteínas 

totais (SAMS et al., 2001; BINFORD; WELLS, 2003). O advento da biologia 

molecular, com os procedimentos de clonagem e expressão heteróloga de 

proteínas, facilitaram o estudo, uma vez que por meio dessas técnicas foi 

possível obter toxinas em quantidade razoável para análises bioquímicas, 

estruturais e biológicas (QUINTERO-HERNÁNDEZ et al., 2011). 

A expressão heteróloga de proteínas teve como primeiro modelo cepas da 

bactéria E. coli. Tal organismo apresenta muitas vantagens em relação aos 

demais modelos de expressão, a exemplo da genética bem conhecida e fácil 

manipulação, crescimento celular a partir de fontes de carbono de menor custo, 

rápido acúmulo de biomassa e processo de expressão mais simples e de maior 

controle. Entretanto, o modelo bacteriano apresenta a importante desvantagem 

de não propiciar/favorecer as modificações pós-traducionais, devido à ausência 

das organelas responsáveis por esses processos. A não ocorrência das 

modificações pós-traducionais pode gerar proteínas instáveis, insolúveis e 

inativas, inviabilizando o uso de células procarióticas como hospedeiras para a 

expressão heteróloga em alguns casos (BALAMURUGAN, REDDY, 

SURYANARAYANA, 2007, SAHDEV et al., 2008). 

Alternativamente às bactérias, muitos outros hospedeiros têm sido 

explorados para o processo de produção de proteínas recombinantes, como por



51  

exemplo, fungos, células de inseto, a planta do tabaco, protozoários e células de 

mamíferos. 

A levedura Pichia pastoris é um modelo muito utilizado como sistema de 
 

expressão eucariótico. Ela apresenta vantagens tanto sobre organismos 

procarióticos quanto organismos eucarióticos superiores. Ao contrário de 

sistemas de expressão procarióticos, essas leveduras são capazes de produzir 

modificações pós-traducionais em proteínas recombinantes, tais como a 

produção de pontes dissulfeto, o que favorece a estabilidade e a atividade das 

mesmas. Outros fatores que tornaram a Pichia pastoris um sistema de expressão 

popular incluem o AOX1, que é uns dos promotores mais fortes e melhor 

regulado, a capacidade dessa levedura de integrar o plasmídeo de expressão 

em um ou mais sítios específicos do genoma e a existência de um kit comercial 

simples (Invitrogen) para realizar a transformação de vetores nesse tipo de 

levedura (BALAMURUGAN, REDDY, SURYANARAYANA, 2007). 

O mecanismo de expressão de proteínas recombinantes em Pichia 

pastoris está relacionado com a expressão da enzima álcool oxidase, que pode 

ocorrer a partir da ativação dos promotores AOX1 ou AOX2. Esses genes são 

fortemente regulados e induzidos por metanol, quando este apresenta-se como 

única fonte de carbono para a célula. Por isso, esses promotores são utilizados 

amplamente em vetores de expressão para conduzir a obtenção da molécula 

recombinante de interesse. Desse modo, quando só resta o metanol como fonte 

de carbono no meio de expressão da Pichia pastoris, o promotor AOX1 e/ou 

AOX2 presente no vetor é ativado, liberando a expressão tanto da àlcool oxidase 

quanto da proteína recombinante. A enzima irá utilizar o oxigênio molecular para 

oxidar o metanol a formaldeído e também eliminará o peróxido de hidrogênio, 

para minimizar os efeitos tóxicos para a célula, processo esse que ocorre nos 

peroxissomos. Assim, enquanto a levedura consome a fonte de carbono, a 

proteína recombinante também é expressa (KRAINER et al., 2012). 

Os peptídeos ICK são ricos em resíduos de cisteína, os quais estabelecem 

pontes dissulfeto intramoleculares. Assim, o modelo de Pichia pastoris é ideal 

para expressão de tais moléculas, uma vez que alia baixos custos para a 

produção com o favorecimento das modificações pós-traducionais necessárias 

para o estabelecimento da conformação molecular correta.
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Este capítulo aborda a clonagem molecular, a expressão heteróloga de 

um peptídeo ICK presente no veneno de L. intermedia em P. pastoris e ensaios 

de caracterização biológica dessa molécula.
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2 OBJETIVOS 

OBJETIVO GERAL 

 

 Obter um peptídeo recombinante da família ICK presente no veneno de 

Loxosceles intermedia (expresso em Pichia pastoris) e caracterizar sua 

atividade biológica. 

 
 

OBJETIVOS ESPECÍFICOS 
 

 
 

 Clonar a sequência do peptídeo U2-SCTX-Li1b em vetor de expressão 

em Pichia pastoris (pPICZαC); 

 

 

    Expressar o peptídeo em questão em cepas da levedura P. pastoris (X- 
 

33, KM71H e GS115) e purificá-lo; 
 

 
 

 Verificar a atividade biológica do peptídeo U2-SCTX-Li1b por meio de 

ensaios in vivo, em insetos, e in vitro, em cultura de células.
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3 METODOLOGIA 
 

 

Clonagem Das Diversas Formas Do Peptídeo U2-SCTX-Li1b Em Vetor De 
 

Expressão Em Pichia pastoris pPICZαC. 
 

 
 

Durante o período do presente estudo, várias formas do peptídeo U2- 

SCTX-Li1b foram produzidas de acordo com os resultados obtidos a cada etapa. 

Essas formas são especificadas abaixo: 
 
 
 

FORMAS DO PEPTÍDEO U2-SCTX-Li1b 
 

PRODUZIDAS 

IDENTIFICAÇÃO DA FORMA 

PRODUZIDA 

Pró-forma Não-otimizada do Peptídeo 
 

(sequência do propeptídeo associada à sequência 

madura não-otimizada em termos de códons) 

 
 

pro-U2-SCTX-Li1b 

Pró-forma Otimizada do Peptídeo 
 

(sequência do propeptídeo associada à sequência 

madura otimizadas em termos de códons) 

 
 

pro-U2-SCTX-Li1b otimizado 

Peptídeo Maduro Otimizado 
 

(somente a sequência madura otimizada 

do peptídeo) 

 
 

U2-SCTX-Li1b 

Peptídeo Maduro Mutado 
 

(sequência madura otimizada com a mutação no 

resíduo de número 5 - troca de serina por tirosina) 

 
 

U2-SCTX-S5Y 

Peptídeo Maduro Com histag N-terminal 
 

(sequência madura otimizada com a mutação S5Y, 

com o histag em posição N-terminal) 

 
 

U2-SCTX-N-his 

Tabela 3: Designação das formas recombinantes produzidas no presente 

estudo. 
 
 
 
 

 
A sequência codificante da pró-forma do peptídeo sem otimização dos 

códons (pro-U2-SCTX-Li1b) foi amplificada a partir da construção U2-SCTX- 

Li1b/pET-14b (MATSUBARA et al., 2013); a sequência codificante da pró-forma
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do peptídeo com os códons otimizados (pro-U2-SCTX-Li1b otimizado) foi 

sintetizada pela empresa GenScript USA inc. (Piscataway, NJ); a sequência 

codificante da forma madura do peptídeo (U2-SCTX-Li1b) foi obtida a partir de 

amplificação que teve como molde a sequência otimizada descrita acima; a 

sequência codificante do peptídeo maduro com a mutação S5Y (U2-SCRTX- 

S5Y) foi amplificada a partir da construção U2-SCTX-Li1b/pPICZα C; a sequência 

codificante do peptídeo U2-SCRTX- N-his foi sintetizada e clonada no vetor 

pPICZα C pela empresa GenScript USA inc. (Piscataway, NJ, EUA). 

As reações de PCR foram realizadas em tubos contendo o par de primers 

específicos (0,4 μM), tampão para Pfu DNA polimerase(1x), DNA molde, dNTP 

mix (0,2 mM) e Pfu DNA Polimerase (1,25 U/μL). Os primers utilizados para a 

amplificação dos insertos específicos continham sítios de restrição para as 

enzimas ClaI e XbaI, os quais foram utilizados para a clonagem direcional dos 

fragmentos no vetor pPICZαC (Invitrogen) de acordo as recomendações do 

fabricante. 

A análise dos produtos de PCR foi realizada por meio de gel de agarose 
 

1,5%. Em seguida, a banda amplificada correspondente ao peptídeo a ser 

clonado foi recortada para a extração do DNA, com a utilização do kit Illustra GFX 

PCR DNA and Gel Band Purification Kit (GE Healthcare Life Sciences, 

Piscataway, NJ, USA). Após a gel extração, as amostras de DNA foram 

submetidas à leitura espectrofotométrica (A260/280) no aparelho NanoVue 

Plus® (GE Healthcare Life Sciences) para a determinação da concentração e do 

grau de pureza das mesmas (SAMBROOK; RUSSEL, 2001). 

As sequências obtidas foram submetidas à digestão com as enzimas de 

restrição ClaI e XbaI (Thermo Scientific) por 16 h a 37°C. Em seguida, as 

amostras foram analisadas em gel de agarose 1,5% para avaliar o sucesso dessa 

reação. A partir das bandas obtidas, foi realizada a purificação, dosagem, e 

avaliação do DNA quanto ao grau de pureza, como descrito acima. 

Posteriormente, foi realizada a ligação da sequência amplificada em vetor 

pPICZαC (Invitrogen) previamente digerido pelas mesmas enzimas de restrição 

ClaI e XbaI. A reação de ligação foi realizada a 22°C, durante 16 h, e continha 

tampão para a enzima T4 DNA ligase (1x), T4 DNA ligase (3 U/μL) (Invitrogen) 

e inserto e vetor na proporção 3:1 (inserto:vetor) (SAMBROOK; RUSSEL, 2001).
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Transformação  Das  Construções  U2-SCRTX-S5Y/  pPICZαC  Em  E.  coli 
 

TOP10F’ Por Eletroporação 
 
 
 

As construções foram transformadas em cepa de clonagem E. coli 

TOP10F’ (Invitrogen) por eletroporação através do aparelho Gene Pulser X- 

Cell® (Bio-Rad Laboratories, Hercules, USA) nas condições de 1.8kV, 25MF, 

200%. Em seguida, as bactérias foram ressuspendidas em meio LB low-salt 
 

(triptona 10 g/L, extrato de levedura 5 g/L, NaCl 5 g/L) e incubadas a 37°C, por 
 

1 h, sob rotação de 200 rpm, para o processo de recuperação das células. Após, 

as mesmas foram plaqueadas em meio LB-ágar low-salt (triptona 10 g/L, extrato 

de levedura 5 g/L, NaCl 5 g/L, agar-ágar 15 g/L) suplementado com zeocina (25 

µg/mL) (Invitrogen) e tetraciclina (10 µg/mL) (Invitrogen) (Sambrook & Russel, 
 

2001). 
 

 
 
 

PCR De Colônia 
 

 
As colônias obtidas após a etapa de transformação foram selecionadas 

aleatoriamente para a realização de PCR de colônia, a fim de identificar as 

bactérias que realmente possuíssem as construções de interesse. Às colônias 

selecionadas foram adicionados: tampão Taq DNA polimerase (1x), dNTPs (0,2 

mM), MgCl2 (1,5 mM), oligonucleotídeos iniciadores sense e antisense do vetor 

pPICZαC (Invitrogen) descritos no item 4.2.1 (0,2 μM), e Taq DNA Polimerase 

(1,25 U/μL). Após o preparo dessas amostras, as mesmas foram incubadas em 

um termociclador MyCycler Thermal Cycler (Bio-Rad Laboratories) para a 

amplificação do inserto sob as condições: 95°C/ 5 min (1ciclo); 95°C/ 30 s – 55°C/ 

30 s – 72°C/ 1 min (35 ciclos); 72°C/ 10 min (1ciclo); 4°C infinito. O produto de 

PCR foi analisado em gel de agarose 1,5% e os resultados foram visualizados e 

registrados em aparelho de captura de imagem Chemidoc (Bio-Rad).
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Miniprep, PCR De Sequenciamento E Sequenciamento Dos Insertos 
 
 
 

Para a realização do PCR de sequenciamento foi necessário obter as 

construções por meio de procedimento de minipreparação. Para isso foram 

preparados pré-inóculos contendo, em cada um, 10 ml de meio LB low-salt 

(triptona 10 g/L, extrato de levedura 5 g/L, NaCl 5 g/L), zeocina (25 µg/mL) 

(Invitrogen) e tetraciclina (10 µg/mL) (Invitrogen). Os mesmos permaneceram sob 

incubação por 16 h a 37°C e 200 rpm de agitação. Após, foi realizada a extração 

das construções através do kit para mini-extração plasmidial Pure Link Quick 

Plamid Miniprep Kit® (Qiagen). A concentração e o grau de pureza do produto 

obtido foi avaliado em NanoVue Plus® (GE Healthcare Life Sciences) (Sambrook 

& Russel, 2001). 

Às construções obtidas foram adicionados os primers que anelam em 
 

porções do vetor pPICZαC (Invitrogen) (primer forward α-factor ou primer reverse 
 

3’ AOX) e o reagente BigDye® Terminator v3.1 Cycle Sequencing Kit (Life 

Technologies). Em seguida, foi feito o PCR de sequenciamento em termociclador 

MyCycler Thermal Cycler (Bio-Rad Laboratories) de acordo com os seguintes 

ciclos: 95°C/ 20 min - 50°C/ 15 s - 60°C/ 4 min (35 ciclos); 4°C infinito (ciclo de 

espera). Posteriormente, os produtos de PCR foram precipitados com acetato de 

sódio-EDTA e etanol (0,1v:3v), secos à temperatura ambiente, ressuspendidos 

em formamida e sequenciados em aparelho ABI PRISM 3500 Genetic Analyser 

(Life Technologies). Os resultados dos sequenciamentos foram analisados por 

meio do software FinchTV para a verificar se a fase de leitura estava correta e 

se as sequências de cada construção estavam integras e sem mutações 

indesejadas. 

 
 
 

Subclonagem Das Construções inserto/pPICZαC Em Pichia pastoris 
 

 

Após a confirmação da integridade das sequências e da correta fase de 

leitura, foi realizada a linearização das construções para que estas pudessem ser 

integradas ao DNA de Pichia pastoris. Para isto, foi realizada a linearização na 

região 5’ do promotor da álcool oxidase 1 (AOX1), presente na construção, 

através da incubação com a enzima de restrição SacI (Fermentas), durante 16
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h, a 37°C. Após a precipitação e secagem dessas amostras, as mesmas foram 

ressuspendidas em água deionizada para avaliação do grau de pureza no 

aparelho NanoVue Plus® (GE Healthcare Life Sciences). 

Aproximadamente 10 µg de cada construção linearizada foi utilizada no 

processo de tranformação em Pichia pastoris X33 (Invitrogen) quimicamente 

competentes, que foi realizado através do kit comercial “Pichia Easy Comp Kit” 

(Invitrogen). Em seguida, as células transformadas foram selecionadas em meio 

YPDS-ágar (extrato de levedura 1%, peptona 2%, glucose 2%, sorbitol 1M, ágar 

2%) contendo zeocina (100 µg/mL) (Invitrogen). As placas foram incubadas por 

um período de 3 a 10 dias, a 30°C. 

 

 
 
 

Teste De Expressão Dos Peptídeos Em Pichia pastoris X33 
 

 

Para a padronização das condições ótimas de expressão do peptídeo em 

larga escala primeiramente foram realizados testes de expressão (mini- 

expressão). Uma colônia de P. pastoris da placa de transformação, escolhida de 

forma aleatória, foi utilizada para inocular 25mL de meio BMGY (peptona 2%; 

extrato de levedura 1%; fosfato de potássio 100mM, ph 6,0; YNB 1,34%; biotina 

4x10-5%; glicerol 1%), o qual foi incubado por 16 horas, a 30°C, sob agitação de 
 

200 rpm. Após o tempo especificado, o pré-inóculo foi diluído em 100mL de meio 

BMGY e a cultura incubada até atingir a D.O.600 de 2-6. As células foram então 

recuperadas por centrifugação por 5 minutos a 4000xg, à temperatura ambiente. 

A fase solúvel da centrifugação foi descartada e as células foram ressuspendidas 

em 100mL de meio BMMY (peptona 2%; extrato de levedura 1%; fosfato de 

potássio 100mM, ph 6,0; YNB 1,34%; biotina 4x10-5%; metanol 0,5%). A indução 

da expressão do peptídeo recombinante foi realizada através da incubação das 

culturas por 96 horas a 15°C ou 30°C sob agitação de 200 rpm. A indução foi 

mantida pelo acréscimo de metanol para uma concentração final de 0,5%, 1% ou 

3% a cada 24 horas de incubação.



59  

Expressão Do Peptídeo Recombinante Em Pichia Pastoris 
 

 

A expressão do peptídeo recombinante em larga escala nas cepas X-33 

e GS115 foram conduzidas de acordo com 2 protocolos diferentes: o protocolo 

convencional, sugerido pelo do manual do fornecedor do kit de transformação 

(Invtirogen) (disponível em http://products.invitrogen.com/ivgn/product/V19520) 

ou o protocolo em alta densidade, modificado a partir do trabalho de Anangi e 

colaboradores (2011). 

O protocolo convencional é semelhante ao descrito acima para o teste de 

expressão, exceto pelos volumes do pré-inóculo (250 ml) e do inóculo (1000 ml). 

O protocolo de alta densidade foi realizado da seguinte forma: uma colônia 

de P. pastoris da placa de transformação, escolhida de forma aleatória foi 

utilizada para a realização de um pré-inóculo contendo 250 mL de meio, o qual 

foi incubado por 24 h a 30°C e 225 rpm. Após esse período, as células do pré- 

inóculo foram centrifugadas e ressuspendidas em um pré-inóculo maior, 

contendo 1000 mL de meio BMGY; em seguida, o pré-inóculo maior foi dividido 

em duas partes iguais em erlenmeyers de 2000 mL e os mesmos foram 

incubados por 48 h, a 30°C e 225 rpm. Depois desse intervalo, foi realizada outra 

centrifugação e as células foram ressuspendidas em um inóculo contendo 1000 

mL de meio BMMY; o inóculo foi dividido em duas partes iguais em erlenmeyers 

de 2000 mL e incubados a 15°C, 225 rpm, durante 72 h, sendo suplementadas 

para a indução da expressão a cada 24 h. Nas primeiras 24 h essa indução foi 

realizada com 0,5% metanol, enquanto que nas 48 h seguintes a suplementação 

ocorreu com 1% metanol. 

Ao final da expressão, as culturas foram centrifugadas por 5 min a 9000 

xg a temperatura ambiente. As proteínas presentes na fase solúvel de cada 

cultura foram submetidas à precipitação pela adição de sulfato de amônio a 80% 

de saturação (500 g a cada 1000 ml de expressão) seguida de centrifugação por 

20 min a 9000 xg a 4°C. Os precipitados obtidos após a centrifugação foram 

ressuspendidos em 10 mL de tampão fosfato (fosfato de sódio 50 mM, pH 7,4, 

cloreto de sódio 500 mM), com posteriores diálises contra o mesmo tampão. A 

série de diálises foi composta por duas etapas de 2 h, seguida de uma etapa de 

16h, a 4°C. Após as diálises, à cada amostra foi adicionado imidazol para

http://products.invitrogen.com/ivgn/product/V19520
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concentração final de 10 mM, visando a posterior ligação em resina de Ni-NTA 

Agarose (Qiagen). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 18. Esquema demonstrando a dinâmica de expressão do peptídeo 
em Pichia pastoris X33 de acordo com o protocolo de alta densidade 
(modificado a partir de Anangi et al., 2011). 

 
 

Para a expressão do peptídeo recombinante na cepa de P. pastoris 

KM71H o seguinte protocolo foi realizado: uma colônia isolada foi utilizada para 

realizar um pré-inóculo contendo 125 mL de meio BMGY (peptona 2%; extrato 

de levedura 1%; fosfato de potássio 100 mM, pH 6,0; YNB 1,34%; biotina 4x 10- 

5%; glicerol 1%), o qual foi incubado por 16 h, a 30°C e 225 rpm. Após esse 

período, as células do pré-inóculo foram centrifugadas e ressuspendidas em um 

pré-inóculo maior, contendo 1000 mL de meio BMGY, em seguida, este foi 

dividido em duas partes iguais em erlenmeyers de 2000 mL de capacidade, os 

quais foram incubados por 24 h, a 30°C e 225 rpm. Depois desse intervalo, foi 

realizada outra centrifugação e as células foram ressuspendidas para compor 

um inóculo de 200 mL de meio BMMY, em um erlenmeyer de 1000 ml de 

capacidade; o inóculo foi incubado a 15°C e 225 rpm, durante 6 dias e 

suplementado para a indução da expressão com 0,5% metanol. 

Ao final da expressão, a cultura foi centrifugada por 5 min a 9000xg, à 

temperatura ambiente. As proteínas presentes na fase solúvel de cada cultura 

foram submetidas à precipitação pela adição de sulfato de amônio a 80% de 

saturação (500 g a cada 1000 ml de expressão) seguida por 20 min de 

centrifugação a 9000 xg a 4°C. Os precipitados obtidos foram ressuspendidos 

em 10mL de tampão fosfato (fosfato de sódio 50mM, pH 7,4, cloreto de sódio 

500mM), com posteriores diálises contra o mesmo tampão. A série de diálises
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foi composta por duas etapas de 2 h, seguida de uma etapa de 16 h, a 4°C. Após 

as diálises, à cada amostra foi adicionado imidazol para concentração final de 

10mM, para a posterior ligação em resina de Ni-NTA Agarose (Qiagen). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 9: Esquema demonstrando a dinâmica de expressão do peptídeo 
em Pichia pastoris KM71H de acordo com o protocolo proposto pelo kit de 
transformação “Pichia Easy Comp Kit” (Invitrogen). 

 
 
 

Purificação Dos Peptídeos Recombinantes Por Cromatografia De Afinidade 
 

Em Resina De Ni-NTA Agarose 
 

 
 

O material dialisado na etapa anterior foi incubado com resina de Ni-NTA 

Agarose (Qiagen) previamente equilibrada com tampão de ligação (fosfato de 

sódio 50 mM, pH 7,4, cloreto de sódio 500 mM e imidazol 10 mM) por 1 h a 4°C 

sob agitação suave. Posteriormente, cada amostra foi submetida a sucessivas 

lavagens com tampão de lavagem (fosfato de sódio 50 mM, pH 7,4, cloreto de 

sódio 500 mM, imidazol 20 mM). Por fim, os peptídeos recombinantes foram 

eluídos com tampão de eluição (fosfato de sódio 50 mM, pH 7,4, cloreto de sódio 

500 mM, imidazol 250 mM).
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Eletroforese De Proteínas Em Gel Desnaturante De Poliacrilamida (SDS- 

PAGE) 

 
 

Para avaliar os produtos da expressão, foram realizadas eletroforeses em 

géis de poliacrilamida (18%) contendo detergente aniônico Dodecil Sulfato de 

Sódio (SDS-PAGE), em condições redutoras e não-redutoras. Os géis foram 

preparados utilizando o aparato comercial (Bio-Rad Laboratories) e solução de 

poliacrilamida contendo os catalisadores APS e TEMED. A solução de 

empacotamento utilizada continha 5% de poliacrilamida e os catalisadores. A 

separação das proteínas foi obtida através da corrente de 25 mA constante, até 

a separação total das mesmas. Os géis foram corados em solução contendo Azul 

de Coomassie Brilhante R-250 a 0,25%, metanol 50% e ácido acético 10% em 

água deionizada, durante 10min à temperatura ambiente sob agitação constante. 

A descoloração foi realizada com metanol 50% em água deionizada, com 

sucessivas trocas da solução de metanol (HARLOW, LANE, 1988). 

 

 
 

Dosagem De Proteínas 
 

 

A dosagem do peptídeo expresso foi realizada pelo método adaptado de 

Bradford (1976), em leitor de microplacas (Meridian ELX 800). Esse método se 

baseia na diferença de coloração em que o Azul de Coomassie pode se 

encontrar. Quando esse reagente se liga às proteínas, o mesmo passa da 

coloração vermelha para azul, sendo sua absorbância determinada em 595 nm. 

A curva padrão foi construída com diferentes quantidades (0,25 μg – 2,00 μg) de 

Soro de Albumina Bovina (BSA) e as amostras foram diluídas para que se 

tornassem compatíveis com a linearidade da curva. O volume total de cada ponto 

da curva e das amostras foi de 20 μL. O reativo para dosagem de proteínas Dye 

Reagent Concentrate (Bio-Rad) foi diluído em água na proporção 1:4. Foram 

adicionados 200 μL do reativo diluído em cada ponto da curva e nas amostras, 

a placa foi incubada por 5 min e, posteriormente, as absorbâncias foram 

determinadas em 595 nm. Os pontos da curva e as amostras foram lidos em 

duplicata, sendo que o coeficiente de determinação aceitável da curva de BSA 

foi R2>0,99.
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Imunoensaios De Western Blotting 
 

 

O imunoensaio de western blotting foi realizado com o intuito de identificar 

a presença dos peptídeos após a expressão em larga escala e para avaliar se os 

mesmos encontravam-se bem purificados. Para isso, foi realizada uma corrida 

eletroforética em gel de poliacrilamida 18% (SDS-PAGE) com a amostra 

proveniente da purificação; em seguida, os peptídeos foram transferidos para 

membranas de nitrocelulose por 1 h a 100V. 

Na sequência, as membranas foram bloqueadas por 2 h com leite 

desnatado em pó diluído Molico® (Nestlé) em PBS (NaCl 100 mM; NaH2PO4 10 

mM - pH 7,4) 3% (p/v). O anticorpo primário α-Histag (GE Healthcare Life 

Sciences), que reconhece a sequência de 6 histidinas inserida nos peptídeos 

recombinantes, foi diluído (1:5000) na mesma solução de bloqueio. A membrana 

de nitrocelulose foi incubada nesta solução por 2 h à temperatura ambiente sob 

constante agitação e, posteriormente, a mesma foi lavada com o mesmo tampão 

na ausência de anticorpos e incubada com o anticorpo secundário IgG (α–IgG 

de camundongos, que reconhecem o α-Histag produzido em camundongos, na 

diluição de 1:10.000) conjugado com fosfatase alcalina (Sigma-Aldrich, St. Louis, 

MO, USA) por 1 h à temperatura ambiente. Em seguida, realizou-se a etapa de 

revelação por meio da reação com o substrato BCIP e o cromógeno NBT 

(Promega, Madson, USA) em tampão ótimo para atividade de fosfatase alcalina 

(Tris-HCl 100 mM - pH 9,5; NaCl 100 mM e MgCl2 5 mM). 

 
 
 

Ensaio De Deglicosilação Do Peptídeo U2-SCTX-S5Y 
 

 

A n-deglicosilação do peptídeo U2-SCTX-S5Y foi realizada através da 

enzima n-glicosidase. Enquanto que a o-deglicosilação foi realizada por beta 

eliminação, catalisada por base em condições redutoras. O peptídeo foi 

adicionado a uma solução contendo 0,2 M de NaOH e 1 % de NaBH4. Esta 

reação ficou incubando a 4°C overnight e posteriormente foi neutralizada com 

ácido clorídrico 1 M. Em seguida o resultado foi analisado por SDS-PAGE 15%.
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Ensaio De Atividade Inseticida 
 

 

Grilos adultos, tenébrios e larvas da laranja foram injetados 

intratoraxicamente, entre o segundo e o terceiro par de pernas, com uma solução 

contendo o peptídeo recombinante em diferentes concentrações (5 – 100 µg do 

peptídeo recombinante em massa) diluído em PBS. Foram usados três grupos 

com cinco animais para cada teste. O grupo controle negativo foi injetado apenas 

o veículo (PBS) e o grupo controle positivo foi tratado com veneno bruto de L. 

intermedia. Os animais foram observados em diversos intervalos de tempo após 

a injeção, determinando o tempo de 72 h como o final da análise. Animais mortos 

ou incapazes de se desvirarem quando colocados com o dorso no chão foram 

descartados. (Escoubas et al., 1995). 

 

 
 
 

Cultivo Celular E Ensaio De Viabilidade Com Azul De Trypan 
 
 
 

Células da linhagem SH-SY5Y de neuroblastoma humano foram 

cultivadas em meio DMEM, suplementado com 20% (v/v) de soro fetal bovino 

(SFB) e penicilina (5000 U/L) e estreptomicina (5000 µg/L), a 37 °C, em 

atmosfera úmida com 5% de CO2. As células da linhagem N2A de neuroblastoma 

murino foram cultivadas em meio DMEM, suplementado com 10% (v/v) de SFB, 

ácido pirúvico (1mM) e penicilina (5000 U/L) e estreptomicina (5000 µg/L), e 

incubadas da mesma forma que as células da linhagem SH-SY5Y.  Ambas as 

linhagens utilizadas foram adquiridas da ATCC (American Type Culture 

Collection, Rockville, MD). Para verificar a porcentagem de células viáveis após 

tratamento com a toxina, foi realizado o ensaio com o corante azul de Trypan. 

Para isso, 5 x 104 células foram plaqueadas em placa de 24 poços e incubadas 

por 24 h para aderência das mesmas. Procedeu-se então o tratamento das 

células com diferentes concentrações dos peptídeos recombinantes por 24 h; 

veneno total de L. intermedia foi utilizado como controle positivo e o veículo (PBS) 

foi utilizado como controle negativo. Após o tempo de tratamento, as células 

foram soltas com auxílio de scrapper e o corante azul de Trypan foi adicionado 

para uma diluição final de 0,04%. Em seguida, as células foram contadas com 

auxílio de Câmara de Neubauer. Os resultados foram submetidos
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à análise estatística, sendo as repetições e o tratamento avaliados. Os resultados 

foram submetidos à análise de variância (ANOVA - duplo sem repetição); e para 

avaliar as diferenças entre os tratamentos e controle foi utilizado o teste de 

Tuckey que permite estabelecer a diferença mínima significante entre duas 

médias. A significância foi definida como p < 0,01.
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4 RESULTADOS 
 
 
 

O peptídeo recombinante U2-SCTX-Li1b foi anteriormente obtido a partir 

de expressão heteróloga em modelo procarioto (E. coli AD494 (DE3)) 

(MATSUBARA et al., 2013), entretanto sua atividade biológica não foi 

caracterizada. Os autores hipotetizaram que a não verificação de atividade 

poderia estar associada com a estrutura incorreta do peptídeo, uma vez que 

bactérias não possuem  sistema  de  endomembranas  capaz de  promover  a 

realização de modificações pós-traducionais, a exemplo das pontes dissulfeto. 

Dessa forma, optou-se pela produção do peptídeo em modelo eucarioto (Pichia 

pastoris), capaz de estabelecer as modificações adequadas, com objetivo de 

obtê-lo com a conformação adequada e, assim, testar sua atividade. 

Para dar início aos procedimentos de clonagem da sequência do peptídeo 

em vetor de transformação em Pichia pastoris, a amplificação in vitro da 

sequência referente ao peptídeo U2-SCTX-Li1b precedida pelo seu propeptídeo 

(pro-U2-SCTX-Li1b) foi realizada por meio de PCR utilizando como molde uma 

construção prévia dessa sequência clonada no vetor de expressão em bactérias 

pET-14b (MATSUBARA et al., 2013). Essa amplificação foi realizada com a 

utilização de primers específicos para a sequência em questão contendo sítios 

de restrição para as enzimas ClaI e XbaI e resultou na visualização de um 

produto amplificado contendo, aproximadamente, 210 pares de base (pb) por 

meio de eletroforese em gel de agarose (figura 20A).
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FIGURA 20: ANÁLISE DO PERFIL ELETROFORÉTICO DOS PRODUTOS DE 
AMPLIFICAÇÃO DA SEQUÊNCIA E DO PCR DE COLÔNIA REFERENTE AO 
PEPTÍDEO pro-U2-SCTX-Li1b (gel de agarose 1,5%). (A) Amplificação da 
sequência do peptídeo pro-U2-SCTX-Li1b. Verificou-se a presença de uma 
banda específica em aproximadamente 210pb. (B) PCR de colônia. Gel 
representativo de 5 clones testados. O clone positivo demonstrou a banda na 
altura aproximada de 480pb, sendo 210 relativos ao inserto e 270 referentes às 
porções do vetor amplificadas. 

 
 

O produto amplificado foi extraído do gel, digerido com as enzimas já 

mencionadas e ligado ao vetor pPICZαC para expressão em Pichia pastoris. 

Essa construção gerada foi então transformada em cepa de clonagem E. Coli 

TOP 10F’ e um clone recombinante positivo foi obtido, como pode ser observado 

no gel realizado após PCR a partir das colônias de bactérias crescidas na placa 

de transformação (figura 20B). O clone positivo foi submetido a minipreparação 

para a extração do plasmídeo e sequenciamento, o qual verificou que a 

sequência clonada estava em fase com o fator de secreção α N-terminal e com 

o epítopo c-Myc e a cauda de poli-histidina C-terminais, além de indicar ausência 

de mutações na sequência. Uma alíquota contendo 10 ug da construção isolada 

foi então linearizada com a enzima SacI e transformada com a utilização do kit 

Pichia EasyCompTM Kit em cepa de levedura Pichia pastoris X-33 de acordo com 

as recomendações do fabricante. Os clones positivos de  P. pastoris foram 

obtidos mediante seleção pelo antibiótico zeocina (100 ug/ml). 

Um dos clones positivos foi selecionado para um teste em pequena escala 

com o intuito de avaliar e otimizar as condições de expressão. Esse teste foi 

realizado em 100 ml de meio BMMY, com 0,5% do indutor metanol (indutor 

adicionado a cada 24 horas durante os dias de expressão), à temperatura de 30° 

C, por 4 dias. Ao término do quarto dia de expressão, o sobrenadante da cultura 

foi submetido à precipitação por sulfato de amônio (90%) e diálise em tampão de 

ligação à resina de purificação Ni-NTA agarose. A purificação rendeu 55 ug do
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peptídeo purificado, sugerindo um baixo rendimento sob as condições utilizadas 

durante a expressão. O peptídeo recombinante eluído foi submetido à análise 

por western blotting com a utilização de anticorpo primário anti-histag em duas 

diferentes condições: redutora (presença do agente redutor β-mercaptoetanol) e 

não-redutora (ausência do referido agente redutor). Como pode ser observado 

na figura 6, sob condição redutora, uma única banda difusa foi verificada, na 

altura aproximada de 14  kDa,  indicando  a forma monomérica  do  peptídeo 

expresso. Entretanto, sob condições não-redutoras, observou-se uma grande 

variedade de bandas, representada por um grande arrastado, indicando formas 

com dobramento incorreto (peptídeos com estabelecimento incorreto das pontes 

dissulfeto) e agregação do peptídeo expresso (prováveis formas diméricas, 

triméricas, etc) (figura 21). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 21: ANÁLISE POR WESTERN BLOTTING DO PEPTÍDEO 

RECOMBINANTE PURIFICADO EXPRESSO EM CEPA DE P. pastoris X-33. 

Verificou-se um perfil diferente sob as condições redutoras (R) e não-redutoras 

(NR) de amostras do peptídeo, indicando dobramento incorreto e agregação do 

peptídeo expresso. 
 
 
 

Devido ao baixo rendimento de expressão verificado no teste 

anteriormente descrito, optou-se pela síntese da sequência do peptídeo com 

otimização de codons para a expressão em P. pastoris; a sequência codificante 

da pró-forma do peptídeo com os códons otimizados foi sintetizada e clonada no 

vetor pPICZα C pela empresa GenScript USA inc. (Piscataway, NJ). A otimização 

resultou na substituição de 38 codons na sequência do peptídeo, o que 

representa aproximadamente 57,5% dos codons totais (figura 22).
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FIGURA 22: SEQUÊNCIAS DOS PEPTÍDEOS pro-U2-SCTX-Li1b ORIGINAL 
E DO PEPTÍDEO COM CÓDONS OTIMIZADOS PARA A EXPRESSÃO EM P. 
pastoris. Em vermelho estão representados os códons otimizados. 

 
 
 

A sequência otimizada clonada em vetor pPICZαC foi transformada em 

cepa de E. coli TOP10 F’, seguido de minipreparação de plasmídio para obtenção 

de massa suficiente para a transformação de cepa de P. pastoris X- 

33. Novamente, clones positivos de P. pastoris foram selecionados em placa 

seletiva contendo o antibiótico zeocina (100 ug/ml) e um desses clones foi 

utilizado para teste de expressão em pequena escala. Nesse teste, o parâmetro 

temperatura de expressão foi alterado para 15°C, diferentemente do primeiro 

teste de expressão, no qual a temperatura utilizada foi de 30°C. Como pode ser 

observado na figura 8 abaixo, a expressão da sequência otimizada à 15°C, 

seguida de posterior purificação por cromatrografia de afinidade em resina de Ni- 

NTA agarose, resultou na obtenção do peptídeo recombinante 

predominantemente na sua forma monomérica (1,1 mg por litro de BMMY), o que 

pode ser deduzido a partir da análise por meio de eletroforese em gel de 

poliacrilamida que revelou uma banda marcante tanto sob condição redutora, 

quanto em condição não-redutora (figura 23).
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FIGURA 23: ANÁLISE POR ELETROFORESE EM GEL DE POLIACRILAMIDA 

DO PEPTÍDEO RECOMBINANTE PURIFICADO EXPRESSO EM CEPA DE P. 

pastoris X-33. Verificou-se perfis semelhantes do peptídeo recombinante sob 

condições redutoras (R) e não-redutoras (NR), indicando que o peptídeo se 

encontrava em sua forma monomérica. 
 
 
 

Uma vez que o peptídeo produzido se encontrava em sua forma 

monomérica, sugerindo que a conformação correta havia sido obtida, 

procederam-se ensaios preliminares de atividade biológica. Para a verificação da 

possível atividade inseticida, exemplares de grilos (Gryllus sp.) (5 para cada 

tratamento) foram injetados com diferentes massas do peptídeo pro-U2-SCTX- 

Li1b (5 µg, 15 µg, 30 µg e 50 µg). Veneno total de L. intermedia foi usado como 

controle positivo (2 ug), enquanto que o veículo (PBS) foi utilizado como controle 

negativo. O peptídeo pro-U2-SCTX-Li1b injetado, mesmo na mais alta massa 

inoculada, não causou nenhum efeito de parálise ou letalidade aos espécimes 

de grilo mesmo após 72 horas pós-injeção; para os espécimes inoculados com 

veneno total foi verificada 100% de morte, sendo esta instantânea; os grilos 

submetidos à inoculação apenas do veículo não apresentaram sinais de 

alteração. 

Diante dos resultados negativos obtidos no ensaio biológico de atividade 

inseticida, optou-se por produzir a forma recombinante madura do peptídeo (U2- 

SCTX-Li1b), ou seja, sem a sequência anterior do propeptídeo, preservando-se 

os codons otimizados. O fragmento correspondente à sequência madura foi 

amplificado com a utilização de primers específicos, resultando na obtenção de 

um produto de PCR com, aproximadamente, 190 pb. O fragmento foi então gel- 

extraído e a clonagem em vetor pPICZαC foi realizada como reportado 

anteriormente, resultando na obtenção de 2 clones positivos (figura 24). A
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análise do sequenciamento revelou que a sequência clonada preservou a fase 

de leitura (ORF) correta do peptídeo com as demais sequências do vetor (fator 

de secreção α, epítopo c-Myc e cauda de poli-histidina). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 24: ANÁLISE DO PERFIL ELETROFORÉTICO DOS PRODUTOS DE 

AMPLIFICAÇÃO DO PCR DE COLÔNIA REFERENTE AO PEPTÍDEO 

MADURO U2-SCTX-Li1b (gel de agarose 1,5%). Gel representativo de 5 clones 

testados. Os clones positivos demonstraram banda na altura aproximada de 

450pb, sendo 180 relativos ao inserto e 270 referentes às porções do vetor 

amplificadas. 
 

 
 

A construção pPICZαC/peptídeo U2-SCTX-Li1b maduro foi linearizada 

com a enzima de restrição SacI e então transformada em cepa de P. pastoris X- 

33. Um dos clones positivos selecionados a partir de placa contendo 100 ug/ml 

de zeocina foi submetido a expressão em larga escala pelo método convencional 

(1000 ml de meio de expressão BMMY) de acordo com os seguintes parâmetros: 

temperatura de expressão de 15°C e 0,5% de indutor, o qual foi adicionado à 

cultura a cada 24 horas, durante 4 dias consecutivos. Após a expressão, a fração 

do sobrenadante da cultura foi precipitada com sulfato de amônio e dialisada 

contra tampão de ligação à resina. 

 

A purificação resultou na obtenção de 1,6 mg de peptídeo por litro de 

cultura. O peptídeo foi obtido predominantemente em sua forma monomérica, 

entretanto, tanto no gel de poliacrilamida corado pelo corante azul brilhante de 

Coomasie, quanto em análise de western blotting utilizando anticorpo anti-histag, 

verificou-se a presença de uma segunda banda ligeiramente acima em relação 

a banda correspondente ao monômero do peptídeo. Essa banda sugere a 

ocorrência de uma forma com pontes dissulfeto incorretamente estabelecidas, 

ou seja, incorretamente dobrada (figura 25).
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Por meio de western blotting também foi avaliado se toda a massa de 

peptídeo produzida pela cultura estava sendo secretada ou se parte da produção 

estaria sendo retida dentro das células de levedura, o que seria responsável pelo 

baixo rendimento da expressão. Para isso, uma alíquota do pellet foi testada com 

anticorpo anti-histag (figura 25). A não marcação por meio do western blotting 

revelou que a secreção do peptídeo recombinante produzido foi eficiente sob as 

condições de expressão empregadas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 25: ANÁLISE DA EXPRESSÃO E DA PURIFICAÇÃO DO PEPTÍDEO 

RECOMBINANTE MADURO POR MEIO DE SDS-PAGE (M – 5) E WESTERN 

BLOTTING (6 – 8). Em (M) está representado o marcador de massa molecular. 

Em (1), verifica-se o sobrenadante da cultura antes da indução por metanol. Em 

(2), o sobrenadante da cultura após os 4 dias de indução por metanol. Em (3), o 

void da cromatografia de afinidade após incubação do sobrenadante com resina 

de Ni-NTA agarose. Em (4), o peptídeo recombinante purificado sob condições 

redutoras (5% de β-mercapetanol) e em (5), sob condições não-redutoras. Em 

(6), o pellet da cultura de P. pastoris, em (7) o peptídeo recombinante purificado 

sob condições redutoras (5% de β-mercapetanol) e em (8) sob condições não 

redutoras, todos incubados com anticorpo primário anti-histag. O padrão de 

marcação não esperado para o peptídeo recombinante purificado submetido a 

condições não-redutoras (8) sugere que o epítopo correspondente à cauda de 

poli-histidina possa estar sendo ocultado e por isso a marcação não é 

visualizada.
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Como o peptídeo obtido a partir da expressão em cepa de P. pastoris X- 
 

33 evidenciou dobramento inadequado, optou-se pela expressão em outras duas 

cepas de P. pastoris, denominadas GS115 e KM71H. A cepa GS115 é muito 

semelhante à cepa X-33, exceto pelo fato de que a primeira porta uma mutação 

no gene da enzima histidinol desidrogenase, resultando na incapacidade de 

sintetizar o aminoácido histidina. Já a cepa KM71H é deficiente em um dos genes 

AOX (AOX 1) que codifica a enzima responsável pela metabolização do metanol. 

Isso significa que essa cepa apresenta uma reduzida taxa de consumo de 

metanol, implicando em uma produção mais lenta da proteína recombinante. Em 

ambas as cepas, o peptídeo não foi expresso em somente uma forma. Análises 

por meio de SDS-PAGE (figura 26) e western blotting (dado não mostrado) 

revelaram mais de uma banda nas amostras do peptídeo purificado. A mesma 

banda em posição ligeiramente superior à forma monomérica do peptídeo 

observada na expressão do peptídeo maduro em cepa de P. pastoris X-33 foi 

observada quando o peptídeo foi expresso nas cepas GS115 e KM71H, 

sugerindo um folding incorreto das pontes dissulfeto do peptídeo produzido. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 26: ANÁLISE POR MEIO DE SDS-PAGE DO PEPTÍDEO 

RECOMBINANTE MADURO PURIFICADO EXPRESSO EM CEPAS DE  P. 

pastoris GS115 E KM71H. Em (A) está representado o peptídeo recombinante 

purificado expresso em GS115. Em (B) está representado o peptídeo 

recombinante purificado expresso em KM71H. (R) indica amostra sob condições 

redutoras (%5 de β-mercapetanol) e sob condições não-redutoras. 
 
 
 

A expressão em larga escala (1 litro de cultura) na cepa KM71H resultou 

na purificação de 900 µg de peptídeo recombinante (rendimento de 0,9 mg/L de
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meio BMMY). A expressão em GS115 foi realizada em menor escala (200 ml) e 

resultou na purificação de 175 µg do peptídeo maduro recombinante (rendimento 

de, aproximadamente, 0,88 mg/L de meio BMMY). 

As amostras purificadas do peptídeo U2-SCTX-Li1b obtidas a partir da 

expressão nas 3 cepas relatadas (X-33, GS115 e KM71H) foram utilizadas em 

ensaio biológico para verificar a atividade inseticida em grilos, em larvas de 

coleópteros (tenébrios) e em larvas da laranja. Cinco espécimes de cada inseto 

foram utilizados para cada tratamento. Para os grilos, o peptídeo U2-SCTX-Li1b 

foi testado de acordo com as seguintes massas injetadas: 10 µg, 50 µg e 100 µg 

por espécime; para os tenébrios, as massas do peptídeo U2-SCTX-Li1b 

utilizadas foram: 5 µg, 15 µg e 30 µg por espécime. Para as larvas da laranja 

foram utilizadas 5 µg, 20 µg e 50 µg de peptídeo recombinante por espécime. 

Como controle positivo foi utilizado veneno bruto de L. intermedia (1 µg) e como 

controle negativo foi utilizado o veículo (PBS). Nenhum efeito de paralise ou 

letalidade foi evidenciada mesmo após 72 h pós-injeção do peptídeo U2-SCTX- 

Li1b para todos os espécimes analisados. Os insetos inoculados com veneno 

bruto de L. intermedia apresentaram 100% de morte instantânea em todos os 

testes, bem como os animais submetidos à injeção pelo veículo não 

apresentaram sinais que pudessem ser associados a efeitos tóxicos. 

O peptídeo U2-SCTX-Li1b expresso na cepa X-33 também foi testado em 

ensaios in vitro em cultura de células, utilizando as linhagens N2A e SH-SY5Y, 

para verificar a viabilidade das células após 24 horas de tratamento pelo método 

de exclusão por azul de Trypan. Neste experimento o controle positivo foi 

realizado com veneno total de L. intermedia (10 µg/ml) e/ou com a toxina 

recombinante LiRecDT1 (isoforma 1 recombinante de fosfolipase-D do veneno 

de L. intermedia) (10 µg/ml), enquanto que e o controle negativo foi realizado 

com PBS e meio. Para a linhagem N2A foram testadas duas concentrações do 

peptídeo (10 µg/ml e 50 µg/ml) (figura 27) e para a linhagem SH-SY5Y foram 

testadas 3 concentrações (10 µg/ml, 25 µg/ml e 50 µg/ml) (figura 28). Nenhuma 

das concentrações do peptídeo U2-SCTX-Li1b testadas revelaram diferença 

estatisticamente significativa (p<0,01) em relação ao controle negativo.
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Figura 27: Avaliação da viabilidade celular por Azul de Trypan após 
tratamento com o peptídeo recombinante em sua forma madura (U2-SCTX- 
Li1b) na linhagem celular N2A de neuroblastoma murino. Experimento único, 
n=3 (***p<0,0001). O controle negativo foi realizado na presença de meio de 
cultura e PBS; veneno total de L. intermedia foi utilizado como controle positivo; 
as concentrações testadas do peptídeo foram de 10 e 50 µg/ml. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 28: Avaliação da viabilidade celular por Azul de Trypan após 
tratamento com o peptídeo recombinante em sua forma madura (U2-SCTX- 
Li1b) na linhagem celular SH-SY5Y de neuroblastoma humano. Experimento 
único, n=3 (***p<0,0001). O controle negativo foi realizado na presença de meio 
de cultura e PBS; veneno total de L. intermedia e uma fosfolipase-D 
recombinante (LiRecDT1) foram utilizados como controles positivos; as 
concentrações testadas do peptídeo foram de 10, 25 e 50 µg/ml.
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Os resultados descritos até aqui mostraram que o peptídeo recombinante 

U2-SCTX-Li1b expresso em P. pastoris em análise não revelou atividade 

inseticida e/ou citotóxica em ensaios in vivo (microinjeção em grilos, tenébrios e 

larvas da laranja) e in vitro (ensaios de citotoxicidade em células em cultura). 

Para avaliar detalhes estruturais que revelassem os motivos pelas quais a 

atividade biológica do peptídeo pode não ter sido comprovada, foi realizada uma 

comparação entre as estruturas dos peptídeos U2-SCTX-Li1b (MATSUBARA et 

al., 2013) e LiTx3 (DE CASTRO et al., 2004) por meio de uma modelagem 

molecular (Figura 29). A comparação dos peptídeos indicou uma importante 

diferença estrutural: em uma região de alça do peptídeo U2-SCTX-Li1b foi 

observada a presença de um aminoácido com cadeia lateral polar não-carregada 

(resíduo de serina), enquanto que nessa mesma posição na estrutura primária 

do peptídeo LiTx3, observou-se a presença de um aminoácido de cadeia lateral 

aromática (resíduo de tirosina). Além disso, análises das sequências das 

prováveis isoformas do peptídeo LiTx3, identificadas por meio do transcriptoma 

da glândula de veneno de L. intermedia (GREMSKI et al., 2010), revelaram que 

muitas delas apresentavam o resíduo de tirosina em posição equivalente. Dessa 

forma, optou-se por produzir uma forma mutada do peptídeo U2-SCTX-Li1b, 

denominado como U2-SCTX-S5Y, contendo o resíduo de tirosina na posição 

originalmente ocupada pelo resíduo de serina (Ser) (Figura 29).
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FIGURA 29:  Predição estrutural entre os peptídeos U2-SCTX-Li1b e LiTx3. 

Em cinza está representado o peptídeo U2-SCTX-Li1b com suas respectivas 

pontes dissulfeto destacadas em vermelho. Em azul está representado o 

peptídeo LiTx3 com suas respectivas pontes dissulfeto destacadas em amarelo. 

O resíduo de tirosina presente no peptídeo LiTx3 encontra-se marcado em verde, 

enquanto que o resíduo de serina presente no peptídeo U2-SCTX-Li1b está 

destacado na cor roxa. 
 
 
 

A sequência referente ao peptídeo U2-SCTX-S5Y foi amplificada in vitro 

por meio de PCR e como molde utilizou-se uma construção codificante do 

peptídeo U2-SCTX-Li1b clonada no vetor de expressão pPICZαC previamente 

obtida. Essa amplificação foi realizada com a utilização de primers específicos 

para a sequência em questão contendo sítios de restrição para as enzimas ClaI 

e XbaI. O resultado, visualizado por meio de eletroforese em gel de agarose, 

mostrou, como esperado, um produto amplificado contendo, aproximadamente, 

230 pb (Figura 30).



79  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURA 30: Análise eletroforética do produto de amplificação da sequência 

do peptídeo U2-SCTX-S5Y em gel de agarose 1,5%. Foi observada uma banda 

específica correspondente a altura aproximada de 230pb. (M) representa o 

marcador de massa molecular e (P) o produto amplificado. 
 

 
 

Após a gel-extração do produto amplificado, procedeu-se a digestão com 

as enzimas ClaI e XbaI e a posterior ligação do produto digerido no vetor pPICZα 

C. A construção obtida foi então transformada na cepa de clonagem E. coli 

TOP10F’ e um clone recombinante positivo foi confirmado através de um PCR 

de colônia realizado a partir das bactérias crescidas na placa resultante da 

transformação, como pode ser visualizado na figura 31. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURA 31: Análise do perfil eletroforético do PCR de colônia referente ao 
peptídeo U2-SCTX-S5Y em gel de agarose 1,5%. Gel representativo de 58 
clones testados, sendo o único clone positivo referente a banda presente na 
altura aproximada de 450pb, sendo 230pb relativos ao inserto e 270pb 
correspondentes às porções do vetor amplificadas.
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A partir do clone positivo foi realizada uma minipreparação para extração 

do plasmídeo e, em seguida, procedeu-se o sequenciamento, o qual revelou a 

integridade da sequência clonada, bem como a correta fase de leitura da mesma. 

Uma alíquota de 10 ug da construção isolada foi submetida à linearização com 

a enzima SacI e transformada em cepa de levedura Pichia pastoris X-33 por meio 

do kit Pichia EasyCompTM de acordo com as recomendações do fabricante. Os 

clones positivos de P. pastoris foram selecionados pelo antibiótico zeocina (100 

ug/ml). 

Posteriormente, um clone positivo isolado foi submetido ao processo de 

expressão na cepa X-33 de P. pastoris, seguido de purificação e dosagem do 

peptídeo U2-SCTX-S5Y obtido, de acordo com a metodologia anteriormente 

descrita. O procedimento relatado foi realizado duas vezes e os rendimentos 

foram de 4,5 mg/L e 5,7 mg/L de peptídeo U2-SCTX-S5Y. Amostras de 5 ug do 

peptídeo recombinante obtido foram submetidas à análise em SDS-PAGE 18%, 

sob condições redutoras (presença do agente redutor β-mercaptoetanol) e não- 

redutoras (ausência do referido agente redutor) (Figura 32). A banda 

correspondente ao peptídeo em estudo, verificada por meio de SDS-PAGE, 

apresentou aspecto difuso, com massa molecular entre 14k Da e 20 kDa. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 32: Análise por meio de SDS-PAGE 18% da expressão e da 

purificação do peptídeo U2-SCTX-S5Y expresso em Pichia pastoris X33. Em 

(M) está representado o marcador de massa molecular, em 1 está representada 

a amostra contendo o peptídeo na forma reduzida e em 2, a amostra contendo 

o peptídeo na forma não-reduzida.
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O peptídeo U2-SCTX-S5Y recombinante também foi analisado por 

Western Blotting com a utilização dos anticorpos primários anti-histag e anti-Myc, 

em condições redutoras e não-redutoras. Como mostra a figura 33, ambos os 

anticorpos permitiram a visualização, mesmo em condições redutoras, de bandas 

difusas correspondentes ao peptídeo U2-SCTX-S5Y em questão. Esse perfil de 

bandas difusas poderia ser atribuído à glicosilação/hiperglicosilação do peptídeo 

recombinante, modificação essa que poderia interferir no estabelecimento da 

correta conformação do mesmo, em especial, o estabelecimento das pontes 

dissulfeto. Sob condições não-redutoras, os dois anticorpos testados não 

permitiram a visualização de bandas. Esse resultado sugere o dobramento 

incorreto do peptídeo expresso, resultando no comprometimento da exposição 

dos epítopos de reconhecimento (epítopos c- Myc e histag) para a interação com 

os anticorpos específicos. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURA 33: Análise por meio de Western Blotting (utilizando os anticorpos 

anti-histag e anti- Myc) do peptídeo U2-SCTX-S5Y purificado expresso em 

Pichia pastoris X33.   Foi observada marcação específica nas alturas 

aproximadas de 14 kDa a 20 kDa nas amostras reduzidas. (1) representa o 

peptídeo U2-SCTX-S5Y sob condições redutoras e imunodetectado pelo 

anticorpo anti-histag; (2) representa o peptídeo U2-SCTX-S5Y sob condições 

redutoras e imunodetectado pelo anticorpo anti-Myc; (3) corresponde ao 

peptídeo U2-SCTX-S5Y sob condições não-redutoras e imunodetectado pelo 

anticorpo anti-histag; (4) representa o peptídeo U2-SCTX-S5Y sob condições 

não-redutoras e imunodetectado pelo anticorpo anti-Myc.
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Ensaios biológicos com o peptídeo U2-SCTX-S5Y obtido foram realizados 

por meio de microinjeção em grilos (Gryllus sp). Diferentes massas do peptídeo 

recombinante foram testadas (5 ug, 15 ug, 30 ug e 75 ug), entretanto, nenhum 

efeito tóxico foi observado nesses insetos mesmo após 72 horas de tratamento. 

Um ensaio de viabilidade celular após tratamento com o peptídeo também foi 

realizado em células da linhagem SH-SY5Y. Novamente, em nenhuma das 

concentrações testadas (10, 50 e 100 ug/ml) foi verificada atividade do peptídeo 

em questão (figura 34). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 34: Avaliação da viabilidade celular por Azul de Trypan após 
tratamento com o peptídeo recombinante mutado (U2-SCTX-S5Y) na 
linhagem celular SH-SY5Y de neuroblastoma humano. Experimento único, 
n=3 (***p<0,0001). O controle negativo foi realizado na presença de meio de 
cultura e PBS; veneno total de L. intermedia foi utilizado como controle positivo; 
as concentrações testadas do peptídeo U2-SCTX-S5Y foram de 10, 50 e 100 
µg/ml. 

 
 

Diante dos dados relatados acima (perfil difuso do peptídeo em SDS- 

PAGE, imunodetecções negativas do peptídeo sob condições não-redutoras 

visualizadas por Western Blotting e ausência de atividade biológica em insetos 

e em células em cultura), os quais sugerem o dobramento incorreto do peptídeo 

durante a sua produção em Pichia pastoris, optou-se por produzir uma nova 

forma do peptídeo U2-SCTX-S5Y. Dessa maneira, a sequência do peptídeo U2- 

SCTX-S5Y foi alterada retirando-se o epítopo c-Myc e alterando a posição da
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cauda de histidina da posição C-terminal para a posição N-terminal. Tais medidas 

foram implementadas com o objetivo de obter o peptídeo livre de glicosilação  e,  

assim, com  o  dobramento  correto.  A  cauda  de  histidina  foi mantida, pois ela 

é necessária para os procedimentos de purificação e imunodetecção,  além de  

auxiliar  na  solubilidade  do  peptídeo  recombinante produzido. O cDNA 

codificante dessa nova forma do peptídeo U2-SCTX-S5Y foi sintetizado pela 

empresa GenScript e então nomeado de U2-SCTX-N-his. 

A sequência codificante do peptídeo U2-SCTX-N-his, com 190pb foi 

adquirida em vetor pPICZαC e para a confirmação da correta fase de leitura e 

ausência de mutações, realizou-se um sequenciamento como descrito para a 

sequência do peptídeo U2-SCTX-S5Y. Em seguida, uma alíquota de 10 ug da 

construção isolada foi linearizada com a enzima SacI e transformada na cepa de 

Pichia pastoris X-33. Os clones positivos de P. pastoris foram selecionados pelo 

antibiótico zeocina (100 ug/ml). 

O processo de expressão ocorreu como descrito para o peptídeo U2- 

SCTX-S5Y. Um clone positivo isolado foi submetido ao processo de expressão 

para a obtenção do peptídeo U2-SCTX-N-his. O produto resultante da expressão 

foi purificado e quantificado pelo método de Bradford, como descrito na 

metodologia. O rendimento da expressão foi de 1,2 mg do peptídeo recombinante 

por litro de meio BMMY. Amostras de 5 ug foram analisadas por meio de SDS-

PAGE 18% sob condições redutoras e não-redutoras (Figura 36). O resultado da 

eletroforese mostrou que realmente houve expressão do peptídeo, porém este 

se apresentou com o mesmo perfil de banda difusa do peptídeo U2-SCTX-S5Y 

anteriormente obtido.
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FIGURA 36: Análise por meio de SDS-PAGE 18% da expressão e da 

purificação do peptídeo U2-SCTX-N-his expresso em Pichia pastoris X33. 

Foram visualizadas bandas específicas nas alturas aproximadas de 14 Kda e 20 

kDa em ambas as amostras. Em 1 está representada a amostra na forma 

reduzida e em 2 a amostra na forma não-reduzida. 
 
 
 

O peptídeo U2-SCTX-N-his purificado foi analisado por Western Blotting 

utilizando-se o anticorpo anti-histag como anticorpo primário, sob condições 

redutoras e não-redutoras. Como mostra a figura 37, em condições redutoras, foi 

visualizada a mesma banda de aspecto difuso correspondente ao peptídeo U2-

SCTX-S5Y e que aparenta ser característica de glicosilação/hiperglicosilação, 

modificação pós-traducional indesejada para o peptídeo produzido. Em condição 

não-redutora, o anticorpo anti-histag continuou não permitindo a visualização de 

bandas, mesmo com a alteração de posição da cauda de histidina. Esses 

resultados sugerem que as alterações realizadas na sequência do peptídeo U2-

SCTX-S5Y não foram suficientes para a obtenção do peptídeo em sua forma 

adequada.
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FIGURA 37. Análise através de Western Blotting do peptídeo U2-SCTX-S5Y 

N-his purificado expresso em Pichia pastoris X33. Foi observada uma 

marcação específica na altura aproximada de 190pb na amostra reduzida (1). 

Em (2) está representada a imunodetecção do peptídeo na forma não reduzida; 

nenhuma marcação foi visualizada. 
 

 
 

Ainda na tentativa de melhorar o dobramento do peptídeo U2-SCTX-N- 

his, optou-se pela expressão na cepa KM71H (MutS) de Pichia pastoris, que não 

apresenta um dos genes AOX1 responsáveis por codificar a enzima que 

metaboliza o metanol. Desse modo, essa cepa apresenta uma taxa de consumo 

de metanol reduzida, o que implica em uma síntese mais lenta do peptídeo 

recombinante. Essa produção mais lenta, por sua vez, poderia aumentar a 

probabilidade de obtenção do peptídeo U2-SCTX-N-his com sua conformação 

correta, uma vez que a expressão mais rápida poderia sobrecarregar as 

organelas responsáveis pela síntese e pela realização de modificações pós- 

traducionais do peptídeo, causando problemas estruturais no mesmo. 

As etapas anteriores à expressão (clonagem e transformação) ocorreram 

como descrito para o peptídeo U2-SCTX-N-his expresso na cepa X-33 de Pichia 

pastoris. A  partir de um  clone  recombinante  positivo  para  a  sequência  do 

peptídeo U2-SCTX-N-his foi preparado um inóculo menor, contendo 10 ml de 

meio BMGY. Após 16h as células de levedura da cepa KM71H crescidas nesse 

meio foram transferidas para um pré-inóculo maior contendo 1000 ml de meio 

BMGY, divididos em 2 erlenmeyers com 500 ml. Depois de 24h, essas células 

foram colocadas em um inóculo contendo 200 ml de meio BMMY, em que 

permaneceram por 6 dias expressando o peptídeo à 15°C, com 0,5% de metanol
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como indutor adicionado a cada 24 h. A etapa de purificação foi realizada como 

descrito para o peptídeo expresso em Pichia pastoris X33. O rendimento do 

peptídeo expresso na cepa KM71H foi de 270 µg para 200 ml de meio BMMY. O 

perfil eletroforético do peptídeo U2-SCTX-N-his expresso em Pichia pastoris 

KM71H não mostrou diferença do perfil apresentado por esse mesmo peptídeo 

quando expresso em  Pichia pastoris  X33 (figura  38), demonstrando  que a 

possível glicosilação/hiperglicosilação do peptídeo continuou acontecendo. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURA 38. Análise por meio de SDS-PAGE 18% da expressão e da 

purificação do peptídeo U2-SCTX-N-his expresso em Pichia pastoris 

KM71H. Foram visualizadas bandas específicas nas alturas aproximadas de 14 

Kda e 20 kDa em ambas as amostras. Em 1 está representada a amostra na 

forma reduzida e em 2 a amostra na forma não reduzida. 
 

 
 
 

O Western Blotting (figura 39) reproduziu a mesma situação encontrada 

na eletroforese em gel de poliacrilamida. Entretanto, ao contrário dos peptídeos 

U2-SCTX-S5Y e U2-SCTX-N-his expressos em Pichia pastoris X33, o peptídeo 

U2-SCTX-N-his expresso em Pichia pastoris KM71H foi identificado pelo 

anticorpo anti-histag tanto na amostra reduzida quanto na amostra não-reduzida. 

Este resultado sugere que o peptídeo obtido expresso na cepa MutS  KM71H 

apresentou conformação mais próxima do dobramento nativo, com a cauda de 

histidina exposta para imunodetecção pelo anticorpo específico.
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FIGURA 39. Análise através de Western Blotting do peptídeo U2-SCTX-N- 

his purificado expresso em Pichia pastoris  KM71H. Foi observada uma 

marcação específica na altura aproximada de 14 kDa em ambas as amostras. 

Em 1 está representado o peptídeo identificado pelo anti-his em amostra na 

forma reduzida e em 2 está representado o peptídeo identificado por esse mesmo 

anticorpo na forma não-reduzida. 
 
 
 

Um teste biológico piloto com o peptídeo U2-SCTX-N-his em grilos foi 

realizado (5 ug, 35 ug, 50 ug e 70 ug do peptídeo em estudo), entretanto, também 

não foi observada nenhum efeito tóxico nesses insetos, mesmo após 72 h pós- 

injeção. Foi realizado também um experimento de viabilidade por azul de Trypan 

após tratamento de 24 h das células da linhagem N2A com a toxina em duas 

diferentes concentrações (10 e 50 ug/ml), entretanto, nenhuma diferença 

estatística foi observada (figura 40).
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Figura 40: Avaliação da viabilidade celular por Azul de Trypan após 
tratamento com o peptídeo recombinante em sua forma madura (U2-SCTX- 
Li1b) na linhagem celular N2A de neuroblastoma murino. Experimento único, 
n=3 (***p<0,0001). O controle negativo foi realizado na presença de meio de 
cultura e PBS; veneno total de L. intermedia foi utilizado como controle positivo; 
as concentrações testadas do peptídeo foram de 10 e 50 µg/ml. 

 
 

Para confirmar se o perfil de banda (aspecto difuso) encontrado nos géis 

de poliacrilamida e nos resultados de Western Blotting dos peptídeos 

corresponderiam à glicosilação/hiperglicosilação, realizou-se um teste de 

deglicosilação do peptídeo U2-SCTX-S5Y (Figura 41). Os resultados, analisados 

através de um gel de poliacrilamida, revelaram uma diminuição da massa 

molecular do peptídeo quando realizado o procedimento de beta-eliminação para 

retirada de possíveis resíduos de açúcares o-ligados; além disso, o peptídeo teve 

uma redução no padrão difuso quando analisado por SDS-PAGE (Figura 19). 

Quando incubado com a enzima n-glicanase, que degrada açúcares n-ligados, 

não houve mudança na mobilidade eletroforética do peptídeo. Assim, pode-se 

afirmar que o peptídeo U2-SCTX-S5Y expresso em Pichia pastoris é produzido 

de forma glicosilada/hiperglicosilada (o-glicosilação), o que pode estar resultando 

no dobramento incorreto do mesmo. O estabelecimento de uma conformação 

incorreta, por sua vez, pode estar associada à não verificação da atividade 

biológica esperada.
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FIGURA 41: Análise por meio de SDS-PAGE 15% da deglicosilação do 

peptídeo U2-SCTX-N-his. (1) Peptídeo hiperglicosilado. (2) Peptídeo o- 

deglicosilado. (3) Peptídeo n-deglicosilado.
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5 DISCUSSÃO 
 

 

O peptídeo em estudo é caracterizado por conter 10 resíduos de cisteína, 

os quais estabelecem 5 pontes dissulfeto intramoleculares, e é enquadrado na 

família dos peptídeos ICK (Inhibitor Cystine Knot Peptides), também 

denominados notinas. O peptídeo pró-U2-SCTX-Li1b foi anteriormente obtido de 

forma recombinante em cepa de E. coli AD494(DE3) (MATSUBARA et al., 2013). 

Entretanto, o fato de bactérias não apresentarem sistema de endomembranas 

(retículo endoplasmático e complexo de Golgi) para a correta síntese e 

dobramento das moléculas nelas expressas, resultou na produção do peptídeo 

pró-U2-SCTX-Li1b sem atividade biológica nos testes in vivo em insetos e in vitro 

em cultura de células realizados. O ambiente redutor do citoplasma bacteriano é 

um forte impecilho para a correta formação das pontes dissulfeto, 

impossibilitando o estabelecimento da conformação ideal das moléculas 

produzidas nesse modelo. 

Dessa forma, a alternativa mais assertiva é a expressão do peptídeo em 

questão em modelos eucarióticos, como células de levedura, células de insetos 

ou células de mamíferos. A levedura Pichia pastoris tem sido extensivamente 

manipulada para a expressão de proteínas recombinantes, uma vez que, por se 

tratar de uma célula eucariótica, é capaz de promover as modificações co- 

traducionais e pós-traducionais necessárias para o folding adequado das 

moléculas estudadas (CREGG et al., 2000). Uma vantagem do modelo de P. 

pastoris é a expressão da proteína fusionada a um fator de secreção para o 

ambiente externo, tornando facilitado o processo de purificação a partir do 

sobrenadante do meio de cultura, sem a necessidade de metodologias de lise 

das células como ocorre nas bactérias. 

No presente trabalho, a primeira tentativa de expressão em P. pastoris foi 

da pró-forma do peptídeo U2-SCTX-Li1b (pró-U2-SCTX-Li1b), ou seja, da 

sequência madura do peptídeo associada ao propeptídeo. Essa estratégia foi 

utilizada pois na literatura é descrito que o propeptídeo pode auxiliar no 

estabelecimento do folding correto das proteínas, além de conferir maior 

eficiência à codificação de certas modificações pós-traducionais (WONG et al., 

2013;  BANDYOPADHYAY  et  al.,  1998).  Bruce  e  colaboradores  (2011) 
 

reportaram a necessidade da expressão do propeptídeo juntamente com o
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peptídeo maduro para a obtenção de um toxina peptídica rica em pontes 

dissulfeto (conotoxina) de um caramujo marinho (Conus textile) na sua forma 

biologicamente ativa; quando os autores desse trabalho expressaram o peptídeo 

em P. pastoris na sua forma madura (sem o propeptídeo), nenhum traço do 

peptídeo recombinante foi detectado por análises de western blotting, sugerindo 

a necessidade do propeptídeo tanto para a expressão quanto para a 

conformação adequada da toxina recombinante. Análises por western blotting 

revelaram que o peptídeo U2-SCTX-Li1b expresso na sua pró-forma (pró-U2- 

SCTX-Li1b) não foi bem sucedida, pois o peptídeo obtido se encontrava 

agregado e não em sua forma monomérica. Isso indica que o sistema de 

endomembranas das leveduras não funcionou de forma adequada, 

provavelmente falhando no estabelecimento da configuração correta das pontes 

dissulfeto. Em expressões a partir de culturas de P. pastoris conduzidas em 

biorreatores já foram relatados problemas de agregação das proteínas 

recombinantes secretadas, ainda mais quando essas contêm pontes dissulfeto 

intramoleculares (WU et al., 2012; TLEUGABULOVA et al., 1998; WOO et al., 

2006). 
 

Além do problema da agregação, o rendimento em massa do peptídeo 

pró-U2-SCTX-Li1b expresso foi baixo (aproximadamente 550 ug/L de cultura) 

quando comparado a outros peptídeos ricos em pontes dissulfeto presentes em 

venenos animais e também expressos em leveduras: o peptídeo neurotóxico 

HWTX-I da aranha Selenocosmia huwena rendeu 80 mg/L de cultura quando 

expresso em P. pastoris (Nie et al., 2002); Anangi e colaboradores (2012) 

relataram a expressão também em P. pastoris de peptídeos ricos em pontes 

dissulfeto provenientes do veneno de duas espécies de escorpião (peptídeo 

Agitoxina-2, da espécie Centruroides margaritatus, e peptídeo margatoxina, da 

espécie Leiurus quinquestriatus hebraeus) em níveis até 8 vezes mais elevados 

(de 12 a 18 mg de peptídeo recombinante por litro de cultura) em relação à 

expressão em bactérias (aproximadamente 2-3 mg/L de cultura); Yang e 

colaboradores (2009) obtiveram, a partir da expressão em P. pastoris, 500 mg 

do peptídeo analgésico BmK AngM1 do escorpião Buthus martensii por litro de 

cultura; a toxina peptídica denominada GsMTx4 presente no veneno da tarântula 

Grammostola spatulata rendeu cerca de 100 mg por litro de cultura quando 

expressa  em  P. pastoris  (PARK  et  al.,  2008).  A fim  de  suplantar  o  baixo
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rendimento em massa do peptídeo pró-U2-SCTX-Li1b expresso foi realizada a 

otimização dos códons para P. pastoris. Esse procedimento de seleção dos 

codons preferenciais para P. pastoris é importante pois a ocorrência de muitos 

códons raros pode afetar de forma crucial o processo de tradução de proteína 

(principalmente se ocorrem em tandem ou localizados na região N-terminal da 

proteína), resultando em baixos níveis de expressão dos produtos recombinantes 

(GUSTAFSSON et al., 2004; ANGOV, 2011). É sabido que a otimização de 

códons, em muitos casos, foi capaz de aumentar consideravelmente em uma ou 

até 10 vezes a expressão de proteínas heterólogas em P. pastoris sem alterar a 

biomassa durante a expressão e nem os níveis de RNAm e, por isso, tem sido 

prática recorrente nos estudos de expressão heteróloga de proteínas nesse 

organismo (HU et al., 2013). A síntese da sequência otimizada do peptídeo pró-

U2-SCTX-Li1b foi realizada pela empresa GENSCRIPT®, de acordo com o 

algoritmo OptimumGeneTM. Esse algoritmo leva em consideração um parâmetro 

definido como “índice de adaptação de códons” (CAI), que é uma medida 

baseada na correlação entre a preferência de códons de um gene e o seu 

respectivo nível de expressão. CAI igual a 1 é considerado como sequência 

perfeita para a expressão no hospedeiro desejado, enquanto que valores de CAI 

mais próximos de 0 sugerem a obtenção de baixos níveis de expressão na 

prática; CAI igual ou superior a 8 é desejável para a expressão em níveis 

razoáveis a altos. A otimização da sequência codificante do peptídeo pró-U2-

SCTX-Li1b determinou a elevação do CAI de 

0,75 para 0,86 e, na prática, embora o rendimento em massa tenha sido ainda 

baixo, observou-se um aumento de mais de 61% no nível de expressão desse 

peptídeo (sequência não-otimizada rendeu 550 ug/L, enquanto que a sequência 

otimizada rendeu 900 ug/L). 

A temperatura durante o tempo de indução da cultura também é um fator 

importante para a expressão de proteínas heterólogas em P. pastoris (WU et al., 

2012). Esse parâmetro influencia a produção de proteínas recombinantes de 

forma direta – por, em muitos casos, aumentar a quantidade de proteína 

sintetizada e secretada – e de forma indireta – regulando a taxa de proteólise. 

Estudos revelaram que os níveis de expressão de um receptor opióde humano 

dobraram quando essa molécula era expressa a 15-20°C, em comparação com 

os níveis apresentados quando a expressão era conduzida a 30°C. Da mesma
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forma, a redução da temperatura de indução durante a expressão de 30°C para 
 

23°C rendeu uma massa 10 vezes maior de uma proteína anticongelamento 

proveniente de um peixe popularmente conhecido como arenque; além disso, 

quando comparada a taxa de proteólise das culturas após 2 dias nas duas 

diferentes temperaturas citadas, verificou-se que na cultura a 23°C essa taxa foi 

menor (DALY; HEARN, 2005). Para o peptídeo pró-U2-SCTX-Li1b otimizado, a 

redução da temperatura de indução 30°C para 15°C foi importante para a 

produção do peptídeo na sua forma monomérica, sem a formação do agregado 

verificado quando a expressão foi realizada na maior temperatura. Assim, pode 

ser hipotetizado que a redução da temperatura tenha diminuído a sobrecarga da 

maquinaria envolvida com a síntese de proteína (retículo endoplasmático, 

principalmente), tornando a produção do peptídeo recombinante mais lenta e 

facilitando o folding correto. Outro fato observado foi que a taxa de crescimento 

da cultura de P. pastoris não foi afetada pela redução da temperatura, uma vez 

que as DO600  (absorbâncias a 600 nm) nas duas diferentes expressões não 

foram significativamente diferentes durante os 4 dias de indução. 

Embora as análises por SDS-PAGE tenham sugerido que o peptídeo 

produzido estava na sua conformação nativa, não foi verificada atividade 

biológica sobre grilos inoculados com a toxina em questão. Levantou-se a 

hipótese então de o propeptídeo estar influenciando de forma negativa a 

conformação e atividade do peptídeo recombinante e, como medida, a sequência 

otimizada madura do peptídeo foi clonada e expressa de acordo com os mesmos 

parâmetros já citados (temperatura de indução de 15°C, por 4 dias, em meio 

BMMY). Nas 3 cepas de P. pastoris utilizadas – X-33, GS115 e KM71H 

- o peptídeo purificado mostrou-se em pelo menos 2 formas diferentes, indicando 

que uma dessas formas deriva do estabelecimento incorreto das pontes 

dissulfeto. É intrigante o fato de peptídeos com pontes dissulfeto incorretas 

estarem sendo secretados para o meio externo, uma vez que P. pastoris 

conhecidamente possui um controle refinado das proteínas sintetizadas, 

direcionando as proteínas com folding incorreto para a degradação via 

proteossomo (BROOKS et al., 2005). Wu e colaboradores (2012) especularam 

que em culturas em rápido crescimento, muitas proteínas associadas com o 

folding possam estar sendo mobilizadas para a síntese de proteínas endógenas 

necessárias para suportar o crescimento da cultura. Assim, pouca maquinaria
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responsável pela síntese e dobramento das proteínas heterólogas, a exemplo 

das chaperonas, estaria disponivel, resultando em muitas proteínas mal 

formadas que então seriam secretadas para o ambiente externo. 

Através de técnicas de modelagem molecular, foram realizadas 

comparações entre os peptídeos U2-SCTX-Li1b (MATSUBARA et al., 2013) e 

LiTx3 (de CASTRO et al., 2004) as quais revelaram uma diferença estrutural em 

uma região de alça. O peptídeo U2-SCTX-Li1b possuía um aminoácido com 

cadeia lateral polar não carregada (resíduo de serina), enquanto que o peptídeo 

LiTx3 possuía, nessa mesma posição, um aminoácido de cadeia lateral 

aromática (resíduo de tirosina). Além disso, analisando a sequência das 

isoformas da LiTx3 (GREMSKI et al., 2010) verificou-se que muitas delas 

possuíam esse mesmo resíduo de tirosina. 

Devido à grande semelhança estrutural encontrada entre o peptídeo U2- 

SCTX-Li1b e o peptídeo LiTx3 acredita-se que ambos atuem no mesmo tipo de 

canal iônico, que de Castro e colaboradores (2004) e Matsubara e colaboradores 

(2013) demonstraram através de análises de bioinformática, ser o canal de sódio. 

Além disso, De Castro e colaboradores (2004) comprovaram por ensaios 

biológicos em larvas de Spodoptera frugiperda que o peptídeo LiTx3 apresentava 

atividade inseticida. 

Dessa maneira, adotou-se a estratégia de mutar o peptídeo U2-SCTX- 

Li1b, colocando-se um resíduo de aminoácido tirosina (aromático) na região 

originalmente ocupada pelo resíduo de serina (polar não carregado). Assim, a 

relação estrutura-atividade da LiTx3 seria conservada no peptídeo mutado 

(denominado como U2-SCTX-S5Y), e o mesmo poderia ser obtido em sua forma 

ativa. Essa mutação faz com que um resíduo de aminoácido carregado 

positivamente (lisina) anteceda um resíduo de aminoácido aromático (tirosina). 

Disposições de aminoácidos como esta podem ser encontradas em diversas 

neurotoxinas ativas de aranha e, embora a confirmação experimental ainda seja 

necessária, essa região conservada das neurotoxinas parece estar relacionada 

com a afinidade das mesmas por canais de sódio (WANG et al., 2000, CORZO 

et al., 2003, YAMAJI et al., 2009). 

A importância de resíduos aromáticos conservados para toxinas também 

foi confirmada por Sun e colaboradores (2003). Nesse estudo foram realizadas 

mutações sítio-dirigidas em resíduos aromáticos de uma toxina atuante em
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canais de sódio presente no veneno de escorpião Buthus martensii. Os ensaios 

biológicos revelaram que as moléculas mutadas tiveram sua toxicidade 

drasticamente reduzida. Além disso, nesse estudo foi identificado que as cadeias 

laterais aromáticas são responsáveis pela estabilização da conformação original 

da toxina e que elas estão envolvidas na interação com o canal de sódio regulado 

por voltagem. Desse modo, ficou estabelecido que esses resíduos aromáticos 

são indispensáveis para a estrutura e atividade dessa toxina (SUN et al., 2003). 

Sobre a relação estrutura-função de toxinas, Escoubas e colaboradores 

revelaram em 2003 que uma toxina de aranha pertencente à classe dos 

peptídeos ICK interagia com canais ASICs (canais iônicos ácido-sensíveis), 

possivelmente através de regiões de superfície e de resíduos de aminoácidos 

específicos. Por meio da técnica de ressonância magnética nuclear (NMR) e de 

comparações com outras toxinas foi demonstrado que existem regiões de díades 

de aminoácidos positivos e aromáticos (lisina/tirosina) conservadas em toxinas, 

que são importantes para a interação com os canais e para a função da toxina. 

Posteriormente, em 2014, Rodriguéz e colaboradores encontraram essas 

mesmas díades de (lisina/tirosina e lisina/fenilalanina) em toxinas de anêmona- 

do-mar que possivelmente interajam com sítios de reconhecimento de receptores 

ASICs e que se assemelham a estruturas funcionais de toxinas que inibem canais 

de potássio, presentes em anêmonas do mar e escorpiões (ESCOUBAS et al., 

2003, RODRIGUÉZ et al., 2014). 

Zhang e colaboradores (2003) demonstraram no veneno da aranha do 

gênero Selenocosmia huwena a presença de duas toxinas e que uma delas é a 

forma naturalmente mutada da outra. Através de ensaios biológicos em insetos 

detectou-se que os resíduos de aminoácidos mutados eram de grande 

importância para a atividade da mesma. Esses resíduos englobam um resíduo 

de serina (polar não carregado) e um resíduo de fenilalanina (aromático) na 

região C-terminal. Também foi notada grande semelhança entre essas moléculas 

e outras toxinas de aranha, com os resíduos citados anteriormente presentes de 

forma conservada nas mesmas. 

Dados da literatura também indicam que pequenas diferenças na 

superfície de peptídeos ICK poderiam explicar variações de afinidade e 

seletividade da ligação do peptídeo com seu receptor. Essas diferenças na 

estrutura da superfície do peptídeo dependem da orientação das cadeias laterais
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de resíduos aromáticos e/ou distribuição de resíduos carregados e/ou 

composição dos aminoácidos. Assim, uma pequena variação estrutural 

promovida por uma mutação poderia influenciar a interação do peptídeo com seu 

receptor e, assim, influenciar também a sua atividade (WANG et al., 2000, 

PIMENTEL et al., 2000). 

A grande diversidade de peptídeos tóxicos dentro de um mesmo veneno, 

principalmente encontrada em aranhas e caramujos marinhos, também parece 

basear-se em diferenças sutis na superfície da estrutura dos peptídeos que 

podem ser causadas por uma única variação de resíduo de aminoácido. Essas 

alterações podem provocar não só diferentes interações entre peptídeo e 

receptor, mas também diferentes seletividades (GREMSKI et al., 2010). 

Desse modo, a partir dos estudos citados anteriormente, dentre outros 

presentes na literatura, pode-se dizer que resíduos específicos de aminoácidos 

conservados, principalmente os resíduos aromáticos, têm se mostrado 

essenciais para a relação estrutura-atividade de toxinas e para a seletividade na 

interação das mesmas com seus respectivos receptores (GREMSKI et al., 2010, 

CORZO et al., 2003, ESCOUBAS et al., 2003, WANG et al., 2000, YAMAJI et al., 

2009, PEIGNEUR et al., 2012, RODRIGUÉZ et al., 2014). 
 

Com a expressão do peptídeo U2-SCTX-S5Y em Pichia pastoris X33 

foram obtidos aproximadamente 5 mg do peptídeo purificado por litro de 

expressão. Pode-se considerar este rendimento como razoável considerando 

resultados anteriores de aproximadamente 1mg/L, obtidos previamente para a 

U2-SCTX-Li1b expressa em Pichia pastoris X33. Entretanto, para obter esse 

rendimento mais elevado de 5 mg/L foi necessário realizar a expressão em 

modelo de alta densidade celular, como descrito na metodologia. Dados da 

literatura mostram rendimentos variáveis para proteínas ricas em pontes 

dissulfeto presentes em venenos e expressas nesta mesma cepa, desde 2-4 

mg/L até 500 mg/L. Desse modo, adaptações das condições de expressão 

seriam necessárias para o aumento do rendimento do peptídeo U2-SCTX-S5Y 

(TELANG, et. al., 2009, YANG et. al., 2009, ANANGI et. al., 2010, ANANGI et al., 

2012). 

As análises das eletroforeses em gel e dos imunoensaios de Western 

Blotting sugeriram que o peptídeo U2-SCTX-S5Y foi obtido de forma glicosilada, 

pois o perfil de bandas difusas que o mesmo apresentou condiz com o perfil
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eletroforético e as imunodetecções de outras proteínas recombinantes expressas 

na forma hiperglicosilada (PRATT e GERMINARIO, 1994, OTTERBEIN et. al., 

2000, NOURIZAD et. al, 2003, KIM et al., 2007). 

A hiperglicosilação mais extensa realizada por leveduras hospedeiras em 

proteínas recombinantes é a encontrada no Saccharomyces cerevisiae, porém 

ela também pode ocorrer em outras leveduras. Saccharomyces cerevisiae 

geralmente acrescenta de 50 a 150 resíduos de manose nas proteínas, enquanto 

que a Pichia pastoris e a Hansenula polymorpha podem acrescentar até 20 

resíduos (ÇELIK e ÇALIK, 2012). Há estudos que mostram a obtenção de 

enzimas e outras proteínas recombinantes hiperglicosiladas em Pichia pastoris, 

desse modo esse evento não é tão incomum (OTTERBEIN et. al., 2000, 

NOURIZAD et. al, 2003, KIM et al., 2007). Dados da literatura associam resíduos 

de serina com uma maior prevalência de O-glicosilação em proteínas 

(CHRISTLET e VELURAJA, 2001, GONZÁLEZ, BRITO e GONZÁLEZ, 2012). 

A glicosilação pode influenciar a solubilidade, susceptibilidade a 

proteólise, a estabilidade térmica, o dobramento, a ligação ao receptor e a 

atividade in vivo da proteína (DIXON, 1991, ÇELIK e ÇALIK, 2012). Assim, pode- 

se afirmar que a provável glicosilação/hiperglicosilação do peptídeo U2-SCTX- 

S5Y poderia interferir em sua conformação, alterando sua interação com o canal 

iônico e sua atividade biológica, o que poderia ter contribuído para a inatividade 

do peptídeo U2-SCTX-S5Y observada nos ensaios biológicos realizados em 

grilos e em cultura de células. 

Outro indício de que o peptídeo poderia estar com sua conformação 

alterada se baseia na análise do Western Blotting que revelou uma marcação 

correspondente ao peptídeo apenas na amostra que continha o agente redutor. 

Assim, é provável que na amostra não reduzida a conformação do peptídeo não 

esteja permitindo a exposição da cauda de histidina para o seu reconhecimento 

pelo anticorpo. 

A cauda de poli-histidina e o epítopo c-Myc não estarem sendo 

imunodetectados na forma não reduzida do peptídeo sugere que eles possam 

estar em uma região interna da molécula, causando perturbações na estrutura 

tridimensional ideal do peptídeo. Assim a estratégia foi eliminar o epítopo c-Myc 

e transferir a cauda de poli-histidina da posição C-terminal para a N-terminal, pois 

isso poderia resultar em uma não interferência desse epítopo na estrutura,
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o  que  poderia  ser  verificado  na  forma  não  reduzida  do  peptídeo  nos 

imunoensaios. 

Entretanto, o novo peptídeo obtido, denominado como U2-SCTX-N-his, 

apresentou como rendimento apenas 1,2 mg/L de expressão, o que significa uma 

redução de 76% no rendimento quando comparado com o peptídeo U2-SCTX- 

S5Y. Considerando que a expressão dos dois peptídeos foi realizada com a 

mesma cepa (Pichia pastoris X33) e nas mesmas condições, é provável que a 

alteração realizada tenha diminuído a solubilidade do peptídeo U2-SCTX-N-his, 

resultando em um rendimento menor de peptídeo obtido após purificação. 

O perfil em SDS-PAGE e no Western Blotting do peptídeo U2-SCTX-N- 

his expresso em P. pastoris X33 se manteve o mesmo do peptídeo U2-SCTX- 

S5Y expresso na mesma cepa, com bandas de aspecto difuso, demonstrando 

que a provável glicosilação/hiperglicosilação continuou ocorrendo. Além disso, o 

imunoensaio continuou sendo positivo apenas para a amostra de peptídeo U2- 

SCTX-S5Y N-his purificado na forma reduzida, sugerindo que a conformação do 

peptídeo provavelmente continuou alterada e não permitiu a exposição da cauda 

de histidina para o reconhecimento específico pelo anticorpo. Assim, a 

transposição da cauda de histag para a extremidade N-terminal do peptídeo U2- 

SCTX-S5Y parece não ter colaborado de modo significativo para a obtenção da 

conformação adequada. Essa hipótese condiz com o resultado obtido no ensaio 

biológico envolvendo grilos que receberam o peptídeo U2-SCTX-N-his, pois não 

foi observada atividade biológica. 

Ainda objetivando uma conformação mais adequada do peptídeo U2- 

SCTX-N-his, foi realizada a sua expressão em Pichia pastoris KM71H, uma cepa 

MutS que ao consumir menos metanol (indutor de expressão), poderia diminuir a 

velocidade de expressão do peptídeo, facilitando o folding correto do mesmo, 

pois a tendência de sobrecarga das organelas responsáveis pelas modificações 

pós-traducionais, que poderia provocar alterações estruturais no peptídeo, seria 

diminuída. Nesse caso o rendimento obtido foi de 270 µg para 200 ml de meio 

de expressão, o que corresponde a aproximadamente 1,35 mg/L, muito 

semelhante ao obtido na expressão desse mesmo peptídeo em Pichia pastoris 

X33. Desse modo, é provável que o baixo rendimento seja fortemente 

influenciado pela solubilidade diminuída do peptídeo que pode ter sido causada
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pela ausência do epítopo c-Myc e não tão influenciado pela diminuição da 

velocidade de expressão causada pela troca de cepa de expressão. 

O resultado da análise eletroforética e do Western Blotting demonstrou a 
 

mesma banda difusa encontrada para os peptídeos U2-SCTX-S5Y e U2- 

SCTXN-his expressos em Pichia pastoris X33, demonstrando que a provável 

glicosilação/hiperglicosilação continuava acontecendo. Entretanto, nesse 

imunoensaio foi verificada uma marcação referente ao peptídeo U2-SCTX-S5Y 

N-his tanto na amostra reduzida quanto na amostra não reduzida, possivelmente 

indicando que o dobramento ocorreu de maneira mais adequada, permitindo a 

exposição da cauda de histidina aos anticorpos específicos. 

No entanto, durante a realização do ensaio biológico piloto em que o 

peptídeo U2-SCTX-N-his foi injetado em grilos não foi possível observar a 

atividade do mesmo. Assim, pode-se sugerir que o favorecimento do dobramento 

do peptídeo realizado através da troca da cepa de expressão não foi suficiente 

para obter o peptídeo U2-SCTX-N-his na sua forma ativa. É possível que a 

provável glicosilação/hiperglicosilação do mesmo esteja interferindo em sua 

conformação de modo que as medidas de adequação da estrutura do peptídeo, 

testadas neste trabalho, não foram suficientes. 

Então, para confirmar se a cepa de expressão Pichia pastoris estava 

realmente hiperglicosilando os peptídeos, realizou-se um teste de deglicosilação 

do peptídeo U2-SCTX-N-his com as enzimas N-glicanase (retira açúcares N- 

ligados) e reação de β-eliminação (retira açúcares O-ligados). A análise do 

resultado realizada por meio da eletroforese em gel de acrilamida revelou que 

não houve N-deglicosilação, porém o peptídeo foi O-deglicosilado, apresentando 

maior mobilidade eletroforética em relação ao peptídeo original hiperglicosilado, 

demonstrando que as cepas de expressão Pichia pastoris X33 e KM71H 

promoveram a O-hiperglicosilação do peptídeo, o que veia a confirmar nossa 

hipótese sugerida pelo aspecto da banda difusa no gel. 

Há autores que consideram a expressão em alta densidade, geralmente 

realizada em Pichia pastoris, como prejudicial para as células hospedeiras e para 

a expressão de proteínas recombinantes. A elevada osmolaridade, alterações de 

pH, dentre outros fatores são causadores de estresse para a célula hospedeira, 

podendo causar a diminuição do rendimento da proteína recombinante. Wu e 

colaboradores (2012) relataram a obtenção de uma proteína
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com pontes dissulfeto mal formadas devido a sua expressão em alta densidade, 

sugerindo que proteínas envolvidas com o folding como, por exemplo, 

chaperonas poderiam estar sendo mobilizadas para a produção de proteínas 

endógenas necessárias para suportar o rápido crescimento da cultura. Dessa 

maneira, pouca maquinaria estaria disponível para a realização da síntese e do 

dobramento de proteínas heterólogas, o que sobrecarregaria esse sistema e 

causaria erros na conformação dessas proteínas. Esses autores relataram ainda 

a formação de agregados devido à má formação das proteínas recombinantes. 

Assim, a expressão em alta densidade realizada para a obtenção dos 

peptídeos U2-SCTX-S5Y e U2-SCTX-N-his também poderia estar diminuindo o 

rendimento dos mesmos, pois peptídeos agregados seriam perdidos no processo 

de purificação. Além disso, a elevada concentração celular poderia estar 

contribuindo para a má formação estrutural dos peptídeos. 

A partir dos resultados obtidos com a expressão dos peptídeos pode-se 

afirmar que o dobramento inadequado dos mesmos provavelmente está sendo 

causado por um conjunto de fatores, entre eles a glicosilação/hiperglicosilação, 

a sobrecarga de organelas e proteínas responsáveis por modificações pós- 

traducionais em cepas Mut+  e a expressão em alta densidade, resultando na 

produção de peptídeos inativos.
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CONCLUSÃO 
 

 
 

Os resultados obtidos e as discussões realizadas no presente estudo 

permitiram concluir que os peptídeos ICK são toxinas presentes em várias 

aranhas do  gênero  Loxosceles, fornecendo  um  claro  indício de  que essas 

moléculas constituem uma família conservada dentro do gênero. 

É possível afirmar também que os peptídeos ICK são produzidos pelas 

células da glândula de veneno na forma de várias prováveis isoformas, as quais 

apresentam,  na maioria  dos  casos,  similaridade  significativa  umas  com  as 

outras, mas também podem apresentar divergências importantes, a exemplo da 

presença ou ausência de sítios para modificações pós-traducionais (amidação C-

terminal, por exemplo). 

A análise comparativa das sequências obtidas suporta a ideia de que os 

peptídeos rastreados preservam o motivo estrutural “Nó de cistina inibidor” (ICK), 

indicado pela presença de todos os resíduos de cisteína que compõem este 

motivo em posição invariável e a conservação das prováveis pontes dissulfeto a 

serem formadas para o estabelecimento da conformação nativa dos mesmos. 

A respeito da obtenção recombinante do peptídeo U2-SCTX-Li1b, 

podemos concluir que a expressão em modelo eucarioto de Pichia pastoris não 

foi efetivo, uma vez que as várias formas de peptídeo obtidas frequentemente 

apresentaram-se mal-enoveladas, dando origem a agregação do peptídeo em 

estudo. Decorre desse resultado a ideia de que a caracterização biológica não 

pode ser verificada em ensaios in vivo de microinjeção nos insetos e in vitro em 

cultura de células, pois o não estabelecimento da conformação nativa influenciou 

de forma negativa a avaliação das atividades das várias formas produzidas do 

peptídeo. 

Os resultados e análises, por fim, sugerem que as aranhas do gênero 

Loxosceles possuem grande diversidade de peptídeos com potencial 

biotecnológico e/ou terapêutico a serem exploradas. Novos modelos de 

expressão heteróloga devem ser testados (células de insetos, plantas como o 

tabaco, etc) a fim de se obter o peptídeo em conformação ideal para a 

caracterização biológica.
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Cronograma de atividades 
 

# Descrição da atividade Início (mês/ano) Fim (mês/ano) 
1 Coleta de veneno, hemolinfa e glândulas produtoras de veneno 08/2011 12/2014 

2 Coleta dos espécimes de aranha-marrom 08/2011 12/2014 

3 Processamento das amostras coletadas (análises qualitativas e quantitativas do veneno e hemolinfa) 09/2011 12/2014 

4 Processamento das amostras coletadas (extração de RNA total das glândulas, análises qualitativas) 09/2011 12/2014 

5 Desenho de oligonucleotídeos específicos para as toxinas de interesse 10/2011 12/2013 

6 Obtenção das sequências completas das toxinas de interesse 10/2011 12/2013 

7 Clonagem das sequências das proteínas maduras em vetor 11/2011 12/2013 

8 Transfecção e Expressão das proteínas Recombinantes 12/2011 12/2014 

9 Confecção de artigos científicos e apresentação de trabalhos em congressos da área 12/2011 12/2014 

10 Purificação das Proteínas Recombinantes 12/2011 12/2014 

11 Transformação e Expressão das proteínas Recombinantes 12/2011 12/2014 

12 Análises de atividade biológica das proteínas recombinantes 02/2012 12/2014 

13 Análises em Microscopia Confocal, Citômetria de Fluxo e Espectropolarímetro 02/2012 12/2014 

14 Imunização de animais para verificação da imunogenicidade de toxinas recombinantes 04/2012 01/2014 

15 Realização de imunoensaios para pesquisa de terapias racionais 04/2014 07/2014 

16 experimentos de Cristalografia das toxinas recombinantes de interesse 05/2014 12/2014 

17 Análise dos dados cristalográficos 07/2014 12/2014 

 

Observações e ressalvas 
 

 
1 

As atividades de campo exercidas por pessoa natural ou jurídica estrangeira, em todo o território nacional, que impliquem o deslocamento de recursos humanos e 

materiais, tendo por objeto coletar dados, materiais, espécimes biológicos e minerais, peças integrantes da cultura nativa e cultura popular, presente e passada, 

obtidos por meio de recursos e técnicas que se destinem ao estudo, à difusão ou à pesquisa, estão sujeitas a autorização do Ministério de Ciência e Tecnologia. 

 
2 

Esta autorização NÃO exime o pesquisador titular e os membros de sua equipe da necessidade de obter as anuências previstas em outros instrumentos legais, bem 
como do consentimento do responsável pela área, pública ou privada, onde será realizada a atividade, inclusive do órgão gestor de terra indígena (FUNAI), da 

unidade de conservação estadual, distrital ou municipal, ou do proprietário, arrendatário, posseiro ou morador de área dentro dos limites de unidade de conservação 

federal cujo processo de regularização fundiária encontra-se em curso. 

 
3 

Este documento somente poderá ser utilizado para os fins previstos na Instrução Normativa IBAMA n° 154/2007 ou na Instrução Normativa ICMBio n° 10/2010, no que 

especifica esta Autorização, não podendo ser utilizado para fins comerciais, industriais ou esportivos. O material biológico coletado deverá ser utilizado para atividades 

científicas ou didáticas no âmbito do ensino superior. 

4 
A autorização para envio ao exterior de material biológico não consignado deverá ser requerida por meio do endereço eletrônico www.ibama.gov.br (Serviços on-line - 
Licença para importação ou exportação de flora e fauna - CITES e não CITES). 

 
5 

O titular de licença ou autorização e os membros da sua equipe deverão optar por métodos de coleta e instrumentos de captura direcionados, sempre que possível, 

ao grupo taxonômico de interesse, evitando a morte ou dano significativo a outros grupos; e empregar esforço de coleta ou captura que não comprometa a viabilidade 

de populações do grupo taxonômico de interesse em condição in situ. 

 
6 

O titular de autorização ou de licença permanente, assim como os membros de sua equipe, quando da violação da legislação vigente, ou quando da inadequação, 

omissão ou falsa descrição de informações relevantes que subsidiaram a expedição do ato, poderá, mediante decisão motivada, ter a autorização ou licença 

suspensa ou revogada pelo ICMBio e o material biológico coletado apreendido nos termos da legislação brasileira em vigor. 

 
7 

Este documento não dispensa o cumprimento da legislação que dispõe sobre acesso a componente do patrimônio genético existente no território nacional, na 

plataforma continental e na zona econômica exclusiva, ou ao conhecimento tradicional associado ao patrimônio genético, para fins de pesquisa científica, 

bioprospecção e desenvolvimento tecnológico. Veja maiores informações em www.mma.gov.br/cgen. 

8 
Em caso de pesquisa em UNIDADE DE CONSERVAÇÃO, o pesquisador titular desta autorização deverá contactar a administração da unidade a fim de CONFIRMAR 
AS DATAS das expedições, as condições para realização das coletas e de uso da infra-estrutura da unidade. 
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# Nome Função CPF Doc. Identidade Nacionalidade  
1 Andrea Senff Ribeiro Pesquisador 024.183.219-59 36797924 SSP-PR-PR Brasileira 

2 Olga Meiri Chaim Pesquisador 034.415.729-63 72178823 SSP-PR-PR Brasileira 
 

 

Locais onde as atividades de campo serão executadas 
 

# Município UF Descrição do local Tipo 
1 CURITIBA PR Curitiba e Regiao Metropolitana, Lapa Fora de UC Federal 

2 CURITIBA PR Curitiba, Lapa e Quitandinha Fora de UC Federal 
 

 

Atividades X Táxons 
 

# Atividade Táxons 
1 Captura de animais silvestres in situ Arachnida 

2 Coleta/transporte de espécimes da fauna silvestre in situ Arachnida (*Qtde: 1500) 

3 
Manutenção temporária (até 24 meses) de invertebrados 
silvestres em cativeiro 

Arachnida 

* Quantidade de indivíduos por espécie, por localidade ou unidade de conservação, a serem coletados durante um ano. 

Material e métodos 
1     Método de captura/coleta (Invertebrados Terrestres)                  Captura manual 

 

 

Destino do material biológico coletado 
 

# Nome local destino Tipo Destino 

1 UNIVERSIDADE FEDERAL DO PARANÁ  
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The  venom of a Loxosceles  spider is composed of a complex mixture of biologically active 

components, consisting predominantly  of  low molecular  mass  molecules (3–45 kDa). 

Transcriptome  analysis  of  the Loxosceles   intermedia venom  gland  revealed  ESTs  with 

similarity to the previously described LiTx peptides. Sequences similar to the LiTx3 isoform 

were the most abundant, representing approximately 13.9%  of  all  ESTs  and 32%  of  the 

toxin-encoding messengers. These peptides are grouped in the ICK (Inhibitor Cystine Knot) 

family, which contains single chain molecules with low molecular mass (3–10 kDa).  Due  to 

their high number of cysteine residues, ICK peptides form intramolecular disulfide bridges. 

The  aims of this study were to clone and express a novel ICK peptide isoform, as  well as 

produce specific hyperimmune  serum for  immunoassays. The  corresponding cDNA  was 

amplified by PCR using specific primers containing restriction sites for the XhoI and BamHI 

enzymes; this PCR product was then ligated in the pET-14b vector and transformed  into E. 

coli AD494 (DE3)  cells.  The  peptide was expressed by  IPTG induction for  4 h at 30   C and 

purified by  affinity chromatography with Ni-NTA  resin. Hyperimmune serum to the re- 

combinant peptide was produced in rabbits and was able to specifically recognize both the 

purified recombinant peptide and the native form present in the venom. Furthermore, the 

recombinant peptide was recognized by antisera raised against L. intermedia, L. gaucho and 

L. laeta whole venoms. The  recombinant peptide obtained will  enable future studies to 

characterize its  biological activity,  as  well as  investigations regarding possible biotech- 

nological applications.

  2013 Published by  Elsevier  Ltd. 
 

 
1.  Introduction 

 
The   development of  a  venom apparatus  extensively 

contributed to  the evolutionary success of  spiders.  This 

acquisition allowed spiders to  prey for  food   and defend 

themselves from predators (Rash  and Hodgson, 2002; King 
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and Hardy, 2013). Throughout their history, spiders became 

one of  the main terrestrial predators through the evolu- 

tionary improvement of  their  venom, which has   estab- 

lished itself  as a diverse library of high-potential lethal and/ 

or harmful toxins (Escoubas, 2006; Escoubas et al., 2008). 

The   venom  of  Loxosceles   spiders  is  a  colorless and 

crystalline liquid produced by a pair of glands situated on 

the cephalothorax (dos  Santos et al., 2000; da Silveira et al., 

2002). The volume of venom produced by these glands can 

be  influenced by many features, such as the sex,  size,  and
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nutritional state of the spider, as well  as the species type. 

Despite all of these factors, the volume rarely exceeds a few 

microliters, which can contain between 20 and 200  mg total 

protein (Sams et al.,  2001; Binford and Wells, 2003; de 

Oliveira et al., 2005). 

The  full  content of  Loxosceles  venom is  not yet fully 

understood, although many studies have shown that  it 

contains a heterogenous mixture of biologically active 

compounds, mainly proteins with toxic and/or enzymatic 

activities (da Silveira et al., 2002, 2007; da Silva et al., 2004; 

Chaim et al., 2006). Electrophoretic analysis showed that 

Loxosceles venom predominantly consists of low  molecular 

mass compounds (3–45 kDa),  with high molecular mass 

compounds present in smaller concentrations (Veiga  et al., 

2000; Gremski et al., 2010). Many toxins have already been 

identified, and some of  these have been characterized in 

terms of  biochemical and/or  biological aspects, such as 

phospholipases D (Chaim et al.,  2006; da  Silveira et  al., 

2006, 2007; Appel  et al., 2008), metalloproteases  (Feitosa 

et al., 1998; da  Silveira et al.,  2002; Trevisan-Silva  et al., 

2010), serine proteases (Veiga  et al., 2000), hyaluronidases 

(da   Silveira et  al.,  2002)  and  translationally-controlled 

tumor protein (TCTP) (Sade et al., 2012). 

Loxosceles  intermedia venom also  contains small pep- 

tides with a molecular mass range of 5–8  kDa, which pre- 

sent  insecticidal activity upon economic interest  larvae. 

These peptides were purified from venom in  their native 

form using a combination of chromatography methodolo- 

gies  and were submitted for  amino terminus sequencing 

and cloning. This previous study identified 3 putative iso- 

forms of  these peptides, which were named LiTx1, LiTx2 

and LiTx3 (de  Castro et al., 2004). Later,  a fourth isoform, 

named LiTx4, was identified and included in the GenBank 

Database (Accession Number: Q27Q53). Bioinformatic an- 

alyses suggest that these peptides possess a characteristic 

structural motif known as Inhibitor Cystine Knot; therefore, 

these peptides were named ICK peptides or  knottins 

(Pallaghy et al., 1994; Gremski et al., 2010; Daly and Craik, 

2011). This  class   of  peptides is  recognized as  important 

components in  the venom of marine cone snails (Oliveira 

et  al.,   1990;  Oliveira and  Cruz,   2001)  and  scorpions 

(Mosbah et al., 2000; Horita et al., 2011). These peptides are 

commonly single chain molecules ranging from 3 to 10 kDa 

and contain 6–14 cysteine residues in their primary 

sequence, which establish intramolecular disulfide bridges 

(Pallaghy et al., 1994; Grishin, 1999). Two of these disulfide 

bridges create a ring-like structure that is crossed by a third 

disulfide bridge, completing the knot structure that gives 

the motif its  name  (Norton  and  Pallaghy, 1998;  Windley 

et al., 2012). Most ICK peptides from spiders are  charac- 

terized by the neurotoxic properties they exhibit upon ion 

channels and receptors expressed in the nervous system of 

insects and  mammals (Dutertre and  Lewis,   2010).  This 

property has  been explored from both a biotechnological 

standpoint, in  the development of bioinsecticides to  con- 

trol  insect pests and insect vectors of diseases, as  well as 

from a therapeutic standpoint, as drugs with analgesic and 

antiarrhythmic  effects (Lewis  and Garcia,  2003; Escoubas 

and  Bosmans, 2007;  Saez   et al.,  2010;  Windley et  al., 

2012). Moreover,  because ICK peptides target ion  chan- 

nels and receptors, they make useful tools in understanding 

and  characterizing the  dynamic  mechanisms  of   these 

structures (Dutertre and Lewis,  2010). 

Recently,  Gremski et  al.   (2010) analyzed the  tran- 

scriptome of  the Loxosceles  intermedia venom gland and 

revealed the profile of expressed toxins. Indeed, sequences 

similar to  the 4  previously identified isoforms of  the ICK 

peptides were represented and corresponded to 53.5% of all 

the toxin-encoding messengers sequenced. The  high 

expression of LiTx transcripts corroborates with the venom 

purposes of  paralyzing and  killing preys and  predators 

(Rash   and  Hodgson, 2002; Escoubas, 2006). Particularly, 

ESTs similar to the LiTx3 isoform were the most abundant, 

comprising 13.9% of  the total toxin transcripts annotated 

(Gremski et al., 2010). The  LiTx3 sequence encodes a pep- 

tide of 53  amino acids,  with a molecular mass of 5.6  kDa, 

and a  pI  of  approximately 8.76.  Comparison of  the  LiTx3 

sequence with other characterized toxins indicated that 

LiTx3 putatively acts  upon voltage-gated Naþ  channels (de 

Castro et al., 2004). 

Here, we  describe the molecular cloning, heterologous 

expression, polyclonal antibody production and evaluation 

of  the cross-reactivity of a novel peptide with significant 

similarity to  the ICK family of  peptides  from Loxosceles 

venom. This  peptide was named U2-sicaritoxin-Li1b (U2- 

SCRTX-Li1b) according to  the rational nomenclature pro- 

posed  by   King   et al.  (2008).  Thus,   this  work  aims  to 

contribute to the lack  of literature about the ICK peptides 

from Loxosceles  spiders, as  well as  garner data that may 

lead to the generation of biotechnological products or tools 

for studying the molecules targeted by this toxin. 

 
2.  Material and methods 

 
2.1.  Reagents 

 
Salts   and  organic acids were  purchased  from Merck 

(Darmstadt, Germany). Molecular mass markers were 

purchased  from Sigma (St.  Louis,  USA). Wizard Plus   SV 

Miniprep Kit and the pGEM-T  vector were acquired from 

Promega (Madison, USA). IPTG and Trizol  were purchased 

from Invitrogen (Carlsbad, USA). We  acquired DNA molec- 

ular mass standards, X-Gal, Taq DNA polymerase, Pfu DNA 

polymerase, T4 DNA ligase, restriction enzymes and dNTPs 

from Fermentas (Hanover, MD, USA). Whole venom from L. 

intermedia was extracted from wild-caught spiders (Feitosa 

et al., 1998) in accordance with the Brazilian Federal System 

for Authorization and Information on Biodiversity (SISBIO- 

ICMBIO, N    29801-1). Hyperimmune sera against L.  laeta 

and L.  gaucho whole venom were gently donated by  Dr. 

Katia  C. Barbaro at  the Instituto Butantan (São  Paulo, São 

Paulo, Brazil). 

 
2.2.  Molecular  cloning of the U2-SCRTX-Li1b  cDNA: RACE and 

PCR reactions 

 
Basic molecular cloning techniques were performed ac- 

cording to the protocols described by Sambrook and Russell 

(2001) with some modifications. The  initial sequence  of 

interest,  an   isoform  of   the  LiTx3   peptide  previously 

described by de  Castro et al. (2004), was derived from the 

simultaneous study of the transcriptome of the venom gland
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of L. intermedia produced by Gremski et al. (2010). However, 

this annotated sequence was only  a partial one,  and there- 

fore  the RACE (Rapid Amplification of cDNA  Ends) method 

was employed to  obtain the complete sequence. For  this 

protocol, total RNA was extracted from L. intermedia venom 

glands using the TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA), and mRNA was purified using the FastTrack 2.0 mRNA 

Isolation Kit (Invitrogen). To obtain the complete 30  end of 

the cDNA sequence, first strand cDNA synthesis was per- 

formed using the  oligo(dT)17 primer  (50    CGGTACCATG- 

GATCCTCGAGTTTTTTTTTTTTTTTTTV  30 ) and the Improm-II 

Reverse Transcriptase Kit (Promega, Madison, WI, USA) ac- 

cording to  the manufacturer’s instructions. The  modified 

cDNA was recovered following ethanol precipitation in the 

presence of ammonium acetate. This sequence was ampli- 

fied  by  PCR with a forward gene-specific primer (50  ATG- 

CATTAAATCTGGTCAG 30 ) and the oligo  (dT) 17 primer. The 

resulting PCR product was gel-purified using the Gel Band 

Purification Kit (GE Healthcare Life Sciences, Piscataway, NJ, 

USA),  ligated  into  the  pGEM-T   vector  (Promega) and 

sequenced on  both strands by using BigDye  (Applied Bio- 

systems, Warrington, UK) on  a 3500 Genetic Analyzer 

automatic sequencer (Applied Biosystems). Sequence anal- 

ysis  revealed that the cloned product was an  ICK peptide. 

Based  on  this sequence, a 50  RACE gene-specific primer (50
 

ACTGCCGTCAAATTGTTGTG  30 ) was designed to  determine 

the 50  end of the U2-SCRTX-Li1b  cDNA sequence. For  this 

reaction, first strand synthesis was performed using the 50
 

RACE/U2-SCRTX-Li1b gene-specific primer and the Improm- 

II Reverse Transcriptase Kit. The  cDNA was precipitated as 

mentioned  above and was subsequently polyadenylated 

with  terminal  deoxynucleotidyl transferase  (Fermentas, 

Hanover,   MD,   USA)   following the  manufacturer’s   in- 

structions. The modified cDNA was amplified by PCR using 

the 50   RACE/U2-SCRTX-Li1b gene-specific primer and the 

oligo(dT)17 primer. The resulting PCR product reaction was 

gel-purified, cloned into the pGEM-T vector and sequenced 

as described above. Following the determination of the 30 

and 50   ends by  RACE, the complete cDNA  sequence was 

amplified  using  specific  primers   (primer  forward:  50
 

TCTTCAAGGCAGAAAGAAC   30 ;     primer     reverse     50
 

GTGATTCCTTTATTGTAAT  30 )  and then the construct was 

cloned and sequenced again for complete sequence confir- 

mation, as above mentioned. 

 
2.3.  Subcloning  and  recombinant expression  of U2-SCRTX- 

Li1b peptide 

 
The  cDNA sequence of the U2-SCRTX-Li1b mature pep- 

tide associated to the propeptide sequence was amplified 

using a  high fidelity PCR polymerase using the previous 

construct as a template. Primers were designed to contain a 

XhoI restriction site  (forward primer: 50  CCGCTCGAGGAA- 

GAGGTGATTGAAAGTGAC  30 )  and  a  BamHI   site   (reverse 

primer: 50   CGGGATCCTTAACCTTTTGTTCTATAGTC  30 ).  The 

PCR product was digested with XhoI and BamHI restriction 

enzymes  and  then  subcloned into  the  pET-14b vector 

(Novagen, Madison, USA) digested with the same enzymes. 

The   recombinant  construct  was  expressed  as  a  tagged 

protein, with a 6x His-Tag at the N-terminus and a 13 amino 

acid  linker including a thrombin cleavage site  between the 

6x   His-Tag  and   the   cloned   sequence.   The   expression 

construct was transformed into E. coli  AD494(DE3) cells 

and plated on  LB plates containing 100  mg/mL ampicillin 

and 15  mg/mL kanamycin. Single colonies containing  the 

U2-SCRTX-Li1b/pET-14b constructs were inoculated into LB 

broth (100 mg/mL ampicillin and 15 mg/mL kanamycin) and 

grown overnight at  37    C. This  culture was diluted 1:100 

into 1 L fresh LB broth plus ampicillin and kanamycin and 

incubated at  37    C until the OD550   was 0.5.  Recombinant 

expression was induced by the addition of IPTG (isopropyl 

b-D-thiogalactoside) to a final concentration of 0.5 mM and 

incubated for 3.5 h at  30  C. Cells were harvested by 

centrifugation  (4000    g,  7  min,  4      C),  resuspended  in 

40  mL of extraction buffer (50  mM  sodium phosphate, pH 

8.0, 500  mM  NaCl, 20 mM  imidazole) and frozen at    20    C 

overnight. 

 
2.4.  U2-SCRTX-Li1b recombinant peptide  purification 

 
Cell suspensions were thawed and disrupted by 8 cycles 

of 25 s sonication at high intensity. Cell lysates were 

centrifuged (9000   g, 30 min), and the supernatants were 

incubated with 500  mL  Ni2þ-NTA agarose beads for  1 h at 

4     C with gentle agitation. The  suspensions were loaded 

into a  column, and the packed gel  was washed with the 

appropriate  buffer (50   mM   sodium phosphate,  pH  8.0, 

500  mM NaCl, 40 mM imidazole). The recombinant protein 

was eluted with buffer containing 50  mM  sodium phos- 

phate, pH  8.0,  500  mM  NaCl and 250  mM  imidazole. The 

eluate  was collected, analyzed by  18%  SDS-PAGE  under 

reducing conditions and dialyzed against phosphate buff- 

ered saline (PBS). 

 
2.5.  Production of hyperimmune serum  against the U2- 

SCRTX-Li1b recombinant peptide 

 
New  Zealand rabbits (2–3 kg)  were used to  obtain hy- 

perimmune serum that recognized the U2-SCRTX-Li1b  re- 

combinant  peptide.  After   collection of  the pre-immune 

serum, each animal received an initial injection of 100  mg of 

the recombinant peptide and complete Freund’s adjuvant 

(Sigma; St Louis,  MO) distributed in  3 injection sites (one 

subcutaneous and two intramuscular). Three booster in- 

jections of 100  mg of peptide in incomplete Freund’s adju- 

vant were given at  3-week intervals. Blood  samples were 

withdrawn 12  days after the last  injection, and the pres- 

ence of  polyclonal antibodies against the U2-SCRTX-Li1b 

peptide was evaluated by  immunoblotting (Harlow and 

Lane,   1988).  All  experimental  protocols  using  animals 

were performed according to the “Principles of Laboratory 

Animal Care”  (NIH  Publication no.  85-23, revised 1985), 

“Brazilian Federal  Laws”  and the Ethical Committee 

Agreement number 256  of Federal University of Paraná. 

 
2.6.  Gel electrophoresis and  immunoblotting 

 
Peptide concentration was determined  using the Coo- 

massie  Blue   method (BioRad,   Hercules,  USA)  following 

Bradford (1976). Protein analysis was performed using 18% 

SDS-PAGE under  reducing conditions following Laemmli 

(1970),  and gels  were stained with Coomassie Blue  dye.
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For  immunoblotting, recombinant peptide sample (5  mg) 

was transferred onto nitrocellulose filters and immunode- 

tected  using the  hyperimmune  serum  against the  U2- 

SCRTX-Li1b peptide. Additionally, sample of L.  intermedia 

whole venom (15  mg) was examined using hyperimmune 

serum against the U2-SCRTX-Li1b.  Alkaline-phosphatase- 

conjugated anti-rabbit goat IgG was used as  a secondary 

antibody and the reaction was developed with BCIP/NBT as 

substrate. 

 
2.7.  Immunological cross-reactivity of the recombinant U2- 

SCRTX-Lib peptide  with  anti-whole venom  sera  from 

Loxosceles  spiders 

 
To evaluate the presence of denatured epitopes similar 

to those found in the U2-SCRTX-Lib peptide, samples of the 

purified recombinant peptide (5  mg)  were examined by 

immunoblotting using the hyperimmune antisera against L. 

intermedia, L. gaucho and L. laeta crude venoms as a primary 

antibody. The reaction was developed as described above. 

 
3.  Results 

 
3.1.  Molecular  cloning and  sequence  analysis  of U2-SCRTX- 

Li1b 

 
To determine the full  coding sequence for  the brown 

spider ICK peptide, 30   RACE and 50   RACE methods were 

performed. By overlapping the generated sequences, we 

obtained the  full   length-cDNA.  Analysis  based  on   the 

nucleotide and the deduced amino acid  sequences showed 

that the cDNA encoding a peptide which contains 3 distinct 

parts: a  50 -untranslated  region (UTR),  an   open reading 

frame, and a  30 -UTR. The  50 -UTR is  50  nucleotides long; 

the  30 -UTR   is   75   nucleotides  long    and  contains the 

polyadenylation  signal AATAAA with the polyadenylated 

region 14 nucleotides downstream of this signal (Fig. 1). 

The  open reading frame is  comprised of  258  nucleo- 

tides, and it encodes a precursor molecule of 86 amino acid 

residues.  The   predicted  peptide-encoded  sequence was 

submitted to the SignalP (Petersen et al., 2011) and SpiderP 

(Herzig et  al.,  2011) algorithms  to  predict the putative 

signal peptide and propeptide regions, respectively. These 

algorithms predicted that the first 20 amino acids residues 

correspond  to   a   hydrophobic signal peptide, and  the 

following 13  residues are  related to a glutamate-rich pro- 

peptide. Finally,  the remaining 53  residues make up  the 

mature peptide (Fig. 1). 

 
3.2.  Co-translational and  post-translational modification 

predictions 

 
Through a combination of bioinformatic predictions and 

sequence similarity,  the coding sequence for  the putative 

mature peptide was examined to  identify possible post- 

translational modifications. 

Consensus sites for  N-myristoylation were determined 

using the NMT – MYR Predictor algorithm (http://mendel. 

imp.ac.at/myristate/SUPLpredictor.htm) (Maurer-Stroh et 

al., 2002). This analysis showed that the first Gly residue in 

the deduced mature peptide formed after propeptide 

cleavage (GCIKSG) is a potential site  for  N-myristoylation 

(Fig. 1). 

C-terminal amidation is another recurring modification 

found in spider peptides (Windley et al., 2012). The TalTX-1, 

TalTX-2   and  TalTX-3   peptides  from  Tegenaria   agrestis 

possess a Lys–Gly dipeptide codified at the C-terminal end 

of the mature sequence. This sequence undergoes proteo- 

lytic  cleavage, resulting in  the removal of the Gly residue 

and the subsequent amidation of the Lys residue (Johnson

 

 
 

Fig. 1.  Molecular cloning of the recombinant U2-SCRTX-Li1b peptide from the L. intermedia venom gland. Nucleotide and deduced amino acid  sequences of the 

cloned cDNA. In the protein sequence, the predicted signal peptide is in  italic font, the propeptide is underlined and the mature sequence is grey shaded. The 

putative Gly residue for  N-myristoylation (highlighted in box) and the putative consensus Lys–Gly  for  C-amidation (highlighted in another box) are also  shown. 

Arrows show the annealing positions for  primers used for  subcloning into the pET-14b expression vector (including underlined restriction sites). The asterisk 

corresponds to the TAA stop codon.

http://mendel.imp.ac.at/myristate/SUPLpredictor.htm
http://mendel.imp.ac.at/myristate/SUPLpredictor.htm
http://mendel.imp.ac.at/myristate/SUPLpredictor.htm
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et al., 1998). The same consensus sequence was observed in 

the U2-SCRTX-Li1b sequence (Fig. 1). Based  on the sequence 

similarity and on  the presumption that this sequence is a 

signal for amidation (Johnson et al., 1998), we hypothesized 

a putative C-amidation site  in the U2-SCRTX-Li1b peptide. 

The  most striking characteristic of the ICK peptides is 

the  presence of  intramolecular disulfide bridges estab- 

lished between  cysteine residues (Vassilevski et al., 2009). 

The U2-SCRTX-Li1b peptide contains ten cysteine residues, 

which suggest the formation of five  disulfide bridges; 3 of 

these bridges are  involved in  the organization of the ICK 

motif.  The   Knoter1D algorithm available through  the 

KNOTTIN database (http://knottin.cbs.cnrs.fr/) was used to 

determine  which  three  disulfide bonds  form the  knot 

(Gracy et al.,  2008). This  analysis revealed that disulfide 

pairings between the Cys2 and Cys20, Cys9 and Cys29, and 

Cys19  and Cys38  residues (where the numbers correspond 

to  the relative position of the Cys residues in  the mature 

sequence of  the U2-SCRTX-Li1b)  are  associated with the 

knot structure. Furthermore, the cysteine residues that 

establish the predicted disulfide bonds of  the ICK motif 

showed the same pairing pattern found in  the d-AMATX- 

Pl1a  peptide from Pireneitega luctuosa (Corzo  et al., 2000) 

and in  the m-AGTX-Aa1a peptide from Agelenopsis  aperta 

(Skinner et al., 1989). The same pattern is also  predicted to 

the m-AGTX-Hc1a  and m-AGTX-Hc1b  peptides  from Hol- 

olena curta (Stapleton et al., 1990) and to the U3-AGTX-Ao1a 

from Agelena  orientalis (Kozlov  et al., 2005) (Fig. 2). 

 
3.3.  Multiple sequence  alignment analysis  and  sequence- 

structure relationship of the U2-SCRTX-Li1b peptide with other 

ICK peptides 

 
To  investigate the  similarities of  the U2-SCRTX-Li1b 

peptide with other sequences, we performed a BLAST search 

on  the ArachnoServer 2.0  Spider Toxin   Database Server 

(Altschul et al., 1997; Herzig et al., 2011) using the deduced 

amino acid  sequence of the mature peptide. As a result, a 

significant match of 86% identity was found with the LiTx3 

peptide (de  Castro et al.,  2004). Lower similarities  were 

observed with other sequences, such as U11-theraphotoxin- 

Hh1b,  U11-theraphotoxin-Hh1c,   U11-theraphotoxin-Hh1a 

and m/u-theraphotoxin-Hh1b  from Haplopelma huwenum 

(Jiang  et al., 2008a, 2008b), d-Amaurobitoxin-Pl1b and d- 

Amaurobitoxin-Pl1a from Pireneitega luctuosa (Corzo  et al., 

2000), U9-ctenitoxin-Pn1a, k-ctenitoxin-Pn1a and m-cteni- 

toxin-Pn1a from Phoneutria nigriventer (Diniz  et al., 1993; 

Kushmerick et al., 1999; Cardoso et al., 2003), U9-agatoxin- 

Ao1a  from Agelena  orientalis (Kozlov  et al., 2005) and U1- 

lycotoxin-Ls1z and U1-lycotoxin-Ls1mm from Lycosa sin- 

goriensis (Zhang et al.,  2010). The  similarity amongst  all 

these sequences is directly related to the conserved position 

of cysteine residues shared by most of them, which is rep- 

resented in Fig. 3. 

Based   on  the predicted mature sequence of  the  U2- 

SCRTX-Li1b peptide, we  also  assessed the relationship be- 

tween this peptide and other ICK peptides containing 10 

cysteine residues and with known target specificity from 

other spider species. The  resulting data were plotted in  a 

similarity cladogram and showed that the U2-SCRTX-Li1b 

sequence closely clustered with m-HXTX-Mg2a from Mac- 

rothele gigas (Corzo  et al., 2003) and with u-PLTX-Pt1a from 

Plectreurys tristis (Branton et al., 1987). Furthermore, it was 

observed that U2-SCRTX-Li1b  sequence is more internally 

positioned, showing closer relationship to  the d-ctenitox- 

ins, which act upon sodium channels, than to u-ctenitoxins 

and u-oxotoxins, which act upon calcium channels (Fig. 4). 

 
3.4.  U2-SCRTX-Li1b recombinant expression  and  purification 

 
We have subcloned the cDNA corresponding to the pre- 

dicted pro-form of the peptide for  posterior heterologous 

expression  in   bacteria (mature sequence including the 

propeptide segment of  the U2-SCRTX-Li1b  peptide).  This 

deduced  pro-form  has   a  calculated  molecular  mass  of 

9.4 kDa and a theoretical pI of 8.7. The U2-SCRTX-Li1b pro- 

form was expressed as  an  N-terminal 6     His-Tag fusion 

protein under the control of T7 promoter from the pET-14b 

plasmid. These expression experiments were performed in 

the E. coli strain AD494(DE3); this strain was chosen because 

it  is  thioredoxin reductase-deficient  (trxB-), which favors 

disulfide bridge formation in the E. coli cytoplasm. 

The optimal parameters for the heterologous expression 

of the recombinant peptide (temperature, amount of inducer 

IPTG and time of induction) were determined using a small 

scale  test, which revealed optimal expression with 0.5 mM 

IPTG for  3.5  h  at  30    C. By using these conditions, it  was 

possible to obtain the expressed peptide from the soluble 

fraction of cell lysates. Purification of the peptide was made 

under native conditions using Ni2þ-chelating  chromatog- 

raphy; large-scale purification resulted in a yield of 5.3 mg of 

recombinant peptide per  liter of culture. The peptide eluted 

was observed as both monomer and dimer in both SDS-PAGE 

and immunoblotting analyses. The electrophoretic mobility

 

 
 

Fig. 2.  Prediction of disulfide pairing pattern associated with the knot structure of the  U2-SCRTX-Li1b peptide by the Knoter1D algorithm from KNOTTIN database 

(http://knottin.cbs.cnrs.fr/). The  cysteine framework associated with U2-SCRTX-Li1b peptide (in  bold) is  similar to other ICK peptides from Hololena curta (m- 

AGTX-Hc1a and  m-AGTX-Hc1c),  Agelenopsis  aperta (m-AGTX-Aa1a),  Agelena  orientalis   (U3-AGTX-Ao1a) and  Pireneitega   luctuosa   (d-AMATX-Pl1a). Sequences 

accession numbers: m-AGTX-Hc1a (UniProt: P15967), m-AGTX-Hc1c (UniProt: P15968), m-AGTX-Aa1a (UniProt:  P11057),  U3-AGTX-Ao1a (UniProt:  Q5Y4V8) and d- 

AMATX-Pl1a (UniProt: P83256).

http://knottin.cbs.cnrs.fr/
http://knottin.cbs.cnrs.fr/
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Fig. 3.  Multiple sequence alignment analysis of the deduced amino acid  sequence of the  U2-SCRTX-Li1b peptide from L. intermedia venom glands and others ICK 

peptides. The  alignment was generated using CLUSTAL W2  with manually modified parameters (BLOSUM matrix with cysteine value of 100 and with both fixed 

gap open penalty and pairwise gap open adjusted to 8). Gaps (represented by dashes) were introduced to maximize the alignment of cysteine residues (asterisks). 

Amino acid  identities are highlighted in  black and conservative substitutions are shown in  gray. Sequences compared  and their accession numbers: U2-SCRTX- 

Li1a  (UniProt: Q6B4T3),  d-AMATX-Pl1b (UniProt:  P83257), d-AMATX-Pl1a  (UniProt:  P83256),  U9-AGTX-Ao1a (UniProt:  Q5Y4U3), U11-TRTX-Hh1b (UniProt: 

B2ZBA5), U11-TRTX-Hh1c (UniProt:  B2ZBA7), U11-TRTX-Hh1a (UniProt: B3FIU0), U1-LCTX-Ls1z  (UniProt: B6DCN1),  U1-LCTX-Ls1mm (UniProt:  B6DCP5),  U9-CNTX- 

Pn1a (UniProt:  P0C2S6), k-CNTX-Pn1a (UniProt:  O76200), m/u-TRTX-Hh1b (UniProt: B3FIR0)  and m-CTNX-Pn1a (UniProt: P17727). 

of the purified U2-SCRTX-Li1b peptide by SDS-PAGE, under 

reducing conditions, was around 12  kDa  for  the monomer 

and 24 kDa for the dimer (Fig. 5). 

 
3.5.  Immunological cross-reactivity of recombinant U2- 

SCRTX-Li1b and  native  venom  toxins of different  Loxosceles 

species 

 
Immunoblotting analysis was performed to evaluate the 

presence of similar epitopes to the U2-SCRTX-Li1b peptide 

in  the L.  intermedia whole venom by  using the hyperim- 

mune serum raised against the recombinant peptide. Two 

bands with mass of  w12 kDa  (monomer) and w24 kDa 

(dimer) were verified as expected (Fig. 6), revealing that the 

immunization process was successful and confirming the 

immunogenic  characteristic  of  the  peptide. We   further 

examined the antigenic cross-reactivity between the re- 

combinant U2-SCRTX-Li1b and L. intermedia whole venom. 

Through immunoblotting,  we  verified that the hyperim- 

mune serum raised against U2-SCRTX-Li1b peptide immu- 

nodetected a native venom toxin of approximately 10 kDa 

in  size  (Fig. 6).  These findings suggest that crude venom 

contains a peptide similar to U2-SCRTX-Li1b, which in turn 

resembles immunogenic epitopes. Additionally, hyperim- 

mune sera against L. intermedia, L. laeta and L. gaucho whole 

venom were able  to detect the recombinant U2-SCRTX-Li1b 

peptide (Fig. 7) in its both monomeric and dimeric forms. 

 
4.  Discussion 

 
Initially, we  aimed to clone a particular sequence of a 

novel ICK peptide family member from the L.  intermedia
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Fig. 4.  Similarity cladogram comparing the U2-SCRTX-Li1b peptide to ICK peptides containing 10 cysteine residues with known biological activity (available from 

ArachnoServer 2.0 Database Server). The deduced cladogram was created based on  the sequence alignment and percent identity generated by CLUSTAL W. Arrow 

indicates the U2-SCRTX-Li1b peptide. Sequences compared and their accession numbers: G-ctenitoxin-Pn1a (UniProt: P59367), d-ctenitoxin-Asp2e (UniProt: 

P84028), d-ctenitoxin-Pn1a (UniProt: P59368), d-ctenitoxin-Pn1b (UniProt: P84034), d-ctenitoxin-Pn2a (UniProt: P29425), d-ctenitoxin-Pn2c (UniProt: O76199), 

d-ctenitoxin-Pr2d (UniProt: P83904), u-ctenitoxin-Pn4a  (UniProt: P81792), u-ctenitoxin-Pr2a  (UniProt: P84014), u-oxotoxin-Ol1a (UniProt: P0C8M0), u-oxo- 

toxin-Ol1b (UniProt: P84756), u-oxotoxin-Ot1a  (UniProt: P83288), m-hexatoxin-Mg2a (UniProt: P83559) and u-plectoxin-Pt1a (UniProt: P34079). 

 

venom gland. A wide variety of homologous peptides have 

been found in  several different spider venoms, such as 

Phoneutria nigriventer (Kalapothakis et al., 1998; Cardoso 

et al.,  2003),  Chilobrachys jingzhao (Chen  et  al.,  2008), 

Ornithoctonus huwena (Jiang  et al., 2008a) and Agelenopsis 

aperta (Skinner et al., 1989; Adams, 2004). The diversity of 

these similar peptides in different species’ venoms can  be 

explained by  the strategy developed by  the spiders 

throughout their evolution. To prey and defend themselves 

more effectively, spiders have improved  their toxic arsenal 

over time by  generating a  wide range of  evolutionarily 

selected molecules, some of which diverge in  only  a few 

amino acid  residues, thus creating isoforms of a family of 

peptides (Tedford et al., 2004; Escoubas, 2006). The  tran- 

scriptome of the L. intermedia venom gland (Gremski et al., 

 
 

 
 

Fig.  5.  Expression and purification of recombinant U2-SCRTX-Li1b peptide. 

SDS-PAGE (18%) analysis of recombinant U2-SCRTX-Li1b peptide expression 

stained with Coomassie blue dye,  under reducing condition. Lanes 1 and 2 

show E. coli AD494 (DE3)  cells  resuspended in  SDS-PAGE gel  loading buffer 

before (1)  and after induction with 0.5 mM  IPTG for 3.5 h (2). Lane  3 depicts 

the supernatant from the cell  lysates obtained by  freezing and thawing in 

extraction buffer. Lane  4 shows eluted recombinant peptide from the Ni2þ- 

NTA beads (5  mg).  The  purified peptide can   be  seen as  both monomeric 

(approximately  12   kDa   –  arrow)  and  dimeric (approximately 24   kDa   – 

arrowhead) forms. 

2010) revealed that most of the transcripts encoding toxins, 

approximately 32%, were related to the LiTx3 peptide.  In 

total, 257   transcripts were annotated;  these transcripts 

were divided into groups, and seven possible isoforms were 

detected for this peptide family. According to Gremski et al. 

(2010), these seven isoforms undoubtedly explain the high 

expression  of   transcripts  similar  to  LiTx3.   The   novel 

sequence identified here was named U2-SCRTX-Li1b;  the 

lack  of identification of this peptide in  the transcriptome 

study  is   possibly because the  transcriptome refers to 
 

 
 

 
 
Fig. 6.  Recombinant U2-SCRTX-Li1b peptide immunoblotting. Proteins were 

separated by  SDS-PAGE  (18%)  and transferred onto nitrocellulose mem- 

branes.  Lanes 1  and 2  contain 5  mg  of  the  U2-SCRTX-Li1b recombinant 

peptide exposed to rabbit preimmune serum (1)  or  hyperimmune serum 

raised against recombinant U2-SCRTX-Li1b peptide (2). Positive reaction can 

be  seen for  both monomeric (w12 kDa  –  arrow) and dimeric (w24 kDa  – 

arrowhead) forms. Lanes 3 and 4 contain 15 mg of L. intermedia whole venom 

exposed to rabbit preimmune serum (3)  or  hyperimmune serum against 

recombinant U2-SCRTX-Li1b peptide (4).  Positive reaction can  be  seen only 

for  the monomer (w12 kDa  – arrow). Both sera were used at the dilution of 

1:1000. Alkaline-phosphatase-conjugated anti-rabbit goat IgG was used as a 

secondary antibody and the reaction was developed with BCIP/NBT as  sub- 

strate. Molecular mass markers are shown on  the left (size in  kDa).
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Fig. 7.  Immunological cross-reactivity of hyperimmune serum raised against 

different Loxosceles   spider venoms with the recombinant U2-SCRTX-Li1b 

peptide.  Samples of  purified recombinant U2-SCRTX-Li1b  peptide (5  mg) 

were separated by 18% SDS-PAGE under reducing conditions and transferred 

onto nitrocellulose membranes. These samples were exposed to preimmune 

serum (1,  3 and 5),  hyperimmune serum raised against L. intermedia whole 

venom (2),  hyperimmune serum raised against L. gaucho whole venom (4) 

and hyperimmune serum raised against L. laeta whole venom (6).  Positive 

reaction can   be  seen for  both monomeric (12   kDa  –  arrow) and dimeric 

(24  kDa  –  arrowhead)  forms. Alkaline-phosphatase-conjugated anti-rabbit 

goat IgG was used as a secondary antibody and the reaction was developed 

with BCIP/NBT as  substrate. Molecular mass markers are shown on  the left 

(size in  kDa). 

 

 
sequences randomly selected. Furthermore, the transcripts 

obtained indicate that the peptide was being synthesized in 

the glands at the time that they were extracted. 

Most of the spider peptides characterized to date were 

native toxins directly isolated from the venom glands. In 

recent years, however, molecular biology approaches have 

been widely used to overcome the low  extraction yields of 

some venoms (Senff-Ribeiro et al.,  2008). Moreover,  the 

identification of the peptide from the mRNA produced by 

the gland cells  allows us  to  obtain information about the 

manner in which the peptides are synthetized (if sequences 

for  signal-peptide and/or propeptide are  present), as  well 

as  predict the possible sites for  post-translational modifi- 

cations, such as C-terminal amidation (Chaim et al., 2011; 

Quintero-Hernández et al.,  2011). The  study of  a  specific 

peptide is  made difficult by  the small amount of  venom 

produced by spiders of the Loxosceles genus. Thus,  we  uti- 

lized cloning and sequencing methodologies to identify and 

heterologously express recombinant peptide in a prokary- 

otic  system. 

To  obtain the complete coding sequence for  the U2- 

SCRTX-Li1b  peptide, we   performed 30   and 50   RACE re- 

actions. The resulting sequences revealed that the peptide 

is expressed in a precursor form, which contains a signal- 

peptide and a  propeptide  segment.  Accurate analysis of 

the coding sequence for  the signal peptide showed that it 

contains all the segments required for  its  recognition and 

cleavage by signal peptidases: the N-terminal domain with 

a  positively charged amino acid   (MKIEL), a  hydrophobic 

central domain (FLVVIFALAI) and lastly, a neutral but polar 

C-terminal   domain   containing   the   Ala-X-Ala     motif 

(HMATA)  (von Heijne, 1990;  Tuteja, 2005). Furthermore, 

the predicted U2-SCRTX-Li1b  propeptide has  an  arginine 

residue preceded by  a  glutamic acid  residue at  its  C-ter- 

minal end  (EEVIESDIEPAER); this sequence has   already 

been described in other spider toxins as a recognition site 

for   enzymes  specialized  in   the  cleavage of   the  pro- 

sequence (Kozlov  et al., 2005; Kozlov  and Grishin, 2007). 

The   structural  organization of  the U2-SCRTX-Li1b   as   a 

prepropeptide is  in  accordance with the most common 

pattern of the spider toxins (Sollod et al., 2005; Escoubas 

et al., 2006). This  suggests that the release of the mature 

peptide depends on  the sequential proteolytic cleavage of 

the signal peptide and the propeptide sequences (Diniz 

et al., 1993; Sollod  et al., 2005; Kozlov  and Grishin, 2007). 

Concomitantly with and after the removal of the pro- 

peptide, some post-translational modifications of the 

resulting mature  peptide may occur.  Disulfide-rich pep- 

tides  from  marine  cone  snails, generally  termed  con- 

otoxins, are  known to undergo a wide range of 

posttranslational  modifications, such  as   O-glycosylation 

(Craig  et al., 1998), disulfide bond formation (Kaas  et al., 

2010), amino  acid   hydroxylation  (Aguilar et  al.,  2005), 

glutamic acid  carboxylation (Bandyopadhyay et al., 1998), 

C-terminal amidation (Kang  et al., 2005) and amino acid 

epimerization (Pisarewicz et al., 2005). On the other hand, 

few  posttranslational  modifications have been described 

for  spider ICK peptides to  date (de   Castro et al.,  2004; 

Vassilevski et al., 2009; Jungo  et al., 2010). Apart from di- 

sulfide bridge formation, serine residue epimerization 

(Heck   et al., 1994), C-terminal amidation  (Skinner et al., 

1989), pyroglutamic acid  formation (Satake et al.,  2004) 

and palmitoylation of a threonine residue (Bódi et al., 1995) 

have been reported for spider ICK peptides. Therefore, the 

deduced mature sequence of  the U2-SCRTX-Li1b  peptide 

was analyzed to predict possible modifications. Using 

appropriate  algorithms, specific signals for  N-myr- 

istoylation and C-terminal amidation were found in  the 

mature peptide. As mentioned previously, the first glycine 

residue of the mature U2-SCRTX-Li1b peptide is a putative 

site  for  N-myristoylation. This  modification is  a  covalent 

addition of the myristate moiety (14-carbon saturated fatty 

acid)   to the N-terminal glycine residue through a  stable 

amide bond, catalyzed by  myristoyl-Coa: protein N-myr- 

istoyltransferase (Farazi et al., 2001). The  incorporation  of 

myristate into proteins has   been associated with many 

biological   functions,   such   as    protein-membrane   in- 

teractions and subcellular targeting (Martin et al., 2011). A 

study reported by  de  Castro et al. (2004) indicated 3 pu- 

tative sites for  N-myristoylation in the LiTx3 peptide. This 

prediction was made using the PROSITE algorithm; how- 

ever, none of these sites were correlated to the N-terminal 

glycine following proteolytic cleavage, suggesting they may 

have been false  positives. Another possible modification to 

the U2-SCRTX-Li1b  peptide is  C-terminal  amidation.  This 

modification  occurs in  approximately 12%  of  the spider 

peptides, and it  functions to  protect the C-terminus from 

proteolytic degradation (Saez  et al., 2010). 

The   most important  and  widespread feature of  ICK 

peptides is the formation of intramolecular disulfide bonds. 

These structures are  established between cysteine residues 

of the peptides, which are  essential for the stabilization of
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the ICK motif. The  ICK motif, in  turn, is  composed of  an 

antiparallel b-sheet associated with a  molecular pseudo- 

knot formed by two disulfide bonds and an  interconnect- 

ing backbone crossed by a third disulfide bond (Norton and 

Pallaghy, 1998; Craik  et al., 2001). 

The  U2-SCRTX-Li1b  peptide contains 10  cysteine resi- 

dues in its primary sequence, which suggests the formation 

of 5 intramolecular disulfide bonds. The  3 disulfide struc- 

tures associated with the ICK motif in  the U2-SCRTX-Li1b 

peptide were predicted using the Knoter1D tool  available 

from the  KNOTTIN  Database  (http://knottin.cbs.cnrs.fr/) 

(Gracy et al., 2008). The predicted pairing pattern is Cys2- 

Cys20,  Cys9-Cys29 and Cys19-Cys38, and this pattern is in 

accordance with the disulfide pairing commonly found in 

ICK peptides, defined as  C1–C4,  C2–C5   and C3–C6,  with a 

consensus pattern of C1X2–7  C2X3–11 C3X0–7  C4X1–17 C5X1–19 

C6 (where C represents the cysteine residues and X repre- 

sents any amino acid  residue) (Vassilevski et al., 2009; Daly 

and Craik,  2011). Furthermore, the cysteine residues that 

establish the predicted disulfide bridges of  the ICK motif 

showed the same pairing pattern described in other spider 

peptides, such as m-AGTX-Aa1a from Agelenopsis aperta and 

d-AMATX-Pl1a  from Pireneitega luctuosa. 

A Blast  search made at the ArachnoServer 2.0 Database 

Server (http://www.arachnoserver.org/blastForm.html) 

(Herzig et al.,  2011) showed sequences with significant 

similarity to  the U2-SCRTX-Li1b  peptide. As expected, the 

highest similarity (86%) was found with the LiTx3 peptide. 

Of the 53 residues that comprise these two peptides, 47 are 

identical. Thus,  this finding suggests that the U2-SCRTX- 

Li1b peptide corresponds to a novel putative isoform of the 

ICK peptide  family. Following reverse  phase  HPLC chro- 

matography of the fraction venom with insecticidal activity 

obtained by  de  Castro et al.  (2004),  the chromatographic 

peak that corresponds to the LiTx3 peptide is symmetrical, 

indicating that  only   this  peptide  is  present.  However, 

though it is possible to control the stringency of this puri- 

fication method, the findings do  not preclude the possi- 

bility that the peak may contain other isoforms of the LiIx3 

peptide that were not separated due to their high similarity. 

Thus,  the peak representing the LiTx3 peptide may contain 

other  isoforms,  including  the  U2-SCRTX-Li1b   peptide, 

which themselves can   compose a  family of  related ICK 

peptides. In agreement with this,  other L. intermedia toxins 

have been shown to  have isoforms with significant simi- 

larity,  and  these  isoforms compose  families of  related 

toxins, such as  phospholipases D (da  Silveira et al., 2007; 

Kalapothakis et al., 2007). 

The ICK peptides from spider venoms exhibit neurotoxic 

properties, acting on ion channels and membrane receptors 

in the peripheral and/or central nervous system of animals 

(Escoubas et  al.,  2000; Rash   and  Hodgson, 2002).  This 

neurotoxic activity is usually specific to a particular subset 

of  target  molecules. In  addition, the  ICK peptides  may 

display  a   broad  spectrum  of   action  or   may  present 

restricted specificity to a particular phylum (de  Lima et al., 

2007; Vassilevski et al., 2009). Thus, ICK peptides have been 

shown to block or modulate voltage-gated sodium, calcium 

and potassium channels, act  upon mechanosensitive 

channels, and  inhibit  ionotropic  glutamate  receptors  of 

some insects or mammals (Windley et al., 2012; Rash  and 

Hodgson, 2002). Assuming that similar sequences may be 

associated with similar activities, we produced a cladogram 

of  similarity between U2-SCRTX-Li1b  and other ICK pep- 

tides with known biological functions to  investigate the 

putative targets of  this peptide. We   used ICK peptides 

containing  10   cysteine  residues  because  most  of   the 

cysteine residues were found at  conserved positions, and 

the similarity is directly related to the residues placed be- 

tween them. The generated cladogram showed that the U2- 

SCRTX-Li1b  peptide  forms  a  cluster with  u-PLTX-Pt1a, 

which has  been shown to  act  upon the voltage-gated cal- 

cium channels  of  Drosophila, and  m-HXTX-Mg2a,  which 

exerts its  activity upon voltage-gated sodium channels of 

insects. Furthermore, the three cited peptides showed a 

closer relationship with other toxins that act upon voltage- 

gated sodium channels (d-ctenitoxins) than toxins that act 

upon voltage-gated calcium channels (u-ctenitoxins and u- 

oxotoxins); these toxins were arranged more externally. 

Therefore, the high similarity of the U2-SCRTX-Li1b peptide 

to toxins that interact with sodium channels suggests that 

this peptide may act  upon sodium channels, corroborating 

the results obtained by de Castro et al. (2004) with regards 

to the LiTx3 peptide. 

The sequence encoding the propeptide and the mature 

peptide of U2-SCRTX-Li1b  was subcloned into the pET-14 

expression  vector  and  transformed  into  E.  coli 

AD949(DE3) cells  to  produce a  recombinant form of  the 

peptide. The  E. coli AD949(DE3) strain  is deficient in thio- 

redoxin reductase and is  therefore more suitable for  the 

expression of peptides rich  in disulfide structures. The  re- 

combinant peptide was obtained from the soluble fraction 

of the lysates and this finding is consistent with other two 

cysteine-rich peptides from scorpion venom described in 

the literature (Johnson et al., 2000; Banerjee et al., 2006), 

which are  also  obtained in soluble form when expressed in 

the same bacterial strain. The U2-SCRTX-Li1b recombinant 

peptide was the first ICK peptide from Loxosceles venom to 

be  heterologously expressed. The  production of  this re- 

combinant peptide contributes to  its  biological character- 

ization,  as   well  as   provides  enough  of   this  toxin  to 

determine whether its  mechanism of  action in  insects is 

similar to other families of toxins with proven insecticidal 

activity, such as phospholipase D enzymes (Zobbel-Thropp 

et al., 2012). 

Additional evidence of the existence of different toxins 

belonging to the ICK family in other Loxosceles species came 

from  the  antigenic  cross-reactivity  of   antisera  raised 

against crude venom of L. intermedia, L. gaucho and  L. laeta 

with the recombinant U2-SCRTX-Li1b  peptide. The  data 

suggest that  epitopes present  in   this  toxin  are   strong 

antigenic determinants; this cross-reactivity also  corrobo- 

rates the  presence of  ICK-like  toxin members  in  these 

Loxosceles  venoms, thus strengthening the idea that this 

toxin family is widespread throughout the genus. 

In   summary,  we   have  identified  a  novel   Loxosceles 

venom toxin from L. intermedia venom glands. We  cloned, 

performed   bioinformatic  analyses,  heterologously 

expressed, purified and immunologically studied this toxin, 

which  was  characterized  as   an    ICK  family  member. 

Together, these results provide insights and contribute to a 

deeper understanding of  loxoscelism. Furthermore, they

http://knottin.cbs.cnrs.fr/
http://www.arachnoserver.org/blastForm.html
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will  contribute  to future biotechnological applications of 

Loxosceles recombinant venom toxins, particularly to a new 

generation of biological insecticidal products, without the 

environmental side  effects such as chemical pesticides. 
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The Loxosceles  genus spiders (the brown spiders) are encountered in all the continents, and 

the clinical manifestations following spider bites include skin necrosis with gravitational 

lesion spreading and occasional systemic manifestations, such as  intravascular hemolysis, 

thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of 

toxins especially enriched in  three molecular families: the phospholipases D, astacin-like 

metalloproteases  and Inhibitor Cystine Knot  (ICK) peptides. Other toxins with low level 

of expression also present in  the venom include the serine proteases, serine protease in- 

hibitors,  hyaluronidases,  allergen factors and  translationally controlled tumor  protein 

(TCTP). The  mechanisms by  which the Loxosceles  venoms act  and exert their noxious ef- 

fects are not fully  understood. Except for the brown spider venom phospholipase D, which 

causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological 

activities of the other venom toxins remain unclear. The  objective of the present review is 

to provide insights into the brown spider venoms and loxoscelism based on  recent results. 

These insights include the biology of brown spiders, the clinical features of loxoscelism and 

the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this 

review includes a  description of  the novel toxins revealed by  molecular biology and 

proteomics techniques,  the data regarding three-dimensional toxin structures, and the 

mechanism of action of these  molecules. Finally, the biotechnological  applications  of  the
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venom components, especially for  those toxins reported as  recombinant molecules, and 

the challenges for  future study are discussed. 

  2014 Elsevier Ltd.  All rights reserved. 

 
 
 

1.  Introduction 

 
Spider bites of the genus Loxosceles  have been associ- 

ated with clinical manifestations characterized by dermo- 

necrosis with gravitational spreading near the lesion site 

and, to  a lesser extent, with systemic toxicity, such as the 

hematological disturbances of intravascular hemolysis, 

thrombocytopenia, disseminated intravascular coagulation 

and acute renal failure. The spiders of the genus Loxosceles 

are encountered in all continents and different species have 

been reported in  North America, Central America, South 

America, Europe, Africa, the Middle East, Oceania and Asia. 

Five   species  (Loxosceles   rufescens,  Loxosceles   laeta,  Lox- 

osceles intermedia, Loxosceles gaucho and Loxosceles reclusa) 

are  responsible for most cases of human envenomation by 

the Loxosceles  genus, and the pathology and clinical fea- 

tures of these spider bites are  termed loxoscelism. Never- 

theless, sporadic accidents caused by others Loxosceles 

species (Loxosceles  deserta, Loxosceles  arizonica,  Loxosceles 

anomala,   Loxosceles    similis,    for    instance)  have  been 

described around the world (da  Silva  et al., 2004; Hogan 

et al., 2004; Swanson  and Vetter,  2006; Bucaretchi et al., 

2010; Isbister and Fan, 2011; Chatzaki et al., 2012). 

The venom of the brown spider is a colorless and crys- 

talline  liquid, formed  by  a  complex mixture  of  toxins 

enriched in proteins, glycoproteins and low molecular mass 

peptides with a predominance of toxins in the range of 5– 

40  kDa (Sams et al., 2001; da  Silveira et al., 2002; da  Silva 

et al.,  2004; Machado et al.,  2005; Swanson and Vetter, 

2006). Previously published  data  have described  highly 

expressed molecules, such as  phospholipases D, astacin- 

like  metalloproteases and low  molecular mass insecticidal 

peptides (characterized as  ICK peptides) (da  Silva  et al., 

2004; de   Castro et  al.,  2004; da   Silveira et  al.,  2007a; 

Gremski et al.,  2010; Matsubara et al.,  2013). Together, 

these  three  toxin classes comprise the  majority of  the 

toxin-encoding transcripts in  the venom gland of L. inter- 

media (approximately  95%) (Gremski et al.,  2010). Other 

toxins with low  level  of expression, such as hyaluronidase, 

serine proteases, serine protease inhibitors, venom aller- 

gens and a TCTP family member, have been identified in the 

venom (de Castro et al., 2004; Barbaro et al., 2005; Gremski 

et al., 2010; Sade  et al., 2012; Ferrer et al., 2013). 

Regarding the hemolymph of brown spiders, no current 

description of its  molecular composition, biological activ- 

ities  or  even physical properties  exists. Nevertheless, the 

potential of the hemolymph to contain natural inhibitors, 

antifungals or antibiotics is significant and is based on  the 

environment in which the spiders live  and the toxins that 

the brown spiders produce. 

In recent years, knowledge of brown spider venoms has 

advanced  significantly  through  the  use    of   molecular 

biology techniques. The transcriptomes of the L. laeta and L. 

intermedia venom glands were analyzed for  the first time, 

and this analysis confirmed the complexity of  Loxosceles 

venoms (Fernandes-Pedrosa  et al.,  2008; Gremski et al., 

2010). Additionally,  by  using recombinant  DNA technol- 

ogy, heterologous toxins have been expressed and purified. 

These advances obtained with the recombinant Loxosceles 

venom toxins helped to overcome the obstacles to studying 

spider toxins, such as  the low   venom volumes and the 

difficulty in  the purification of  native toxins from crude 

venom. Moreover, these recent advances have enabled re- 

searchers to utilize cell biology, biochemistry, immunology, 

pharmacology and crystallography to clarify the general 

characteristics of Loxosceles toxins. 

By using proteomics approaches, such as  two-dimen- 

sional gel   electrophoresis,  N-terminal  amino  acid 

sequencing  and  mass  spectrometry,  the  venoms of   L. 

gaucho and  L. intermedia have been investigated (Machado 

et al., 2005; dos  Santos et al., 2009). 

Recent advances in protein purification techniques, the 

application of  different models for  the synthesis of  re- 

combinant toxins, the modeling of domains, the knowledge 

of the binding or catalytic sites of the toxins of interest and, 

finally,  the availability of  the varied cellular and animal 

models for  assessing the products obtained have created 

possibilities for  a  broad putative biotechnological use  of 

brown  spider  venom  toxins  as   important  tools (Senff- 

Ribeiro et al.,  2008; Gremski et al.,  2010;  Chaim et  al., 

2011a; Wille  et al., 2013). 

This  review focuses on  the most recent literature 

examining brown spider venom and loxoscelism. It  dis- 

cusses  the  molecular  biology techniques  used  for   the 

characterization of the molecules in brown spider venom, 

such as  transcriptome projects, as  well as  the production 

and evaluation of recombinant toxins. Furthermore, it also 

describes the recent advances in the molecular complexity 

of venom toxins, and finally, it  lists  the putative biotech- 

nological applications of several brown spider venom 

components. 

 
2.  Biology of  brown spiders 

 
The spiders of the Loxosceles genus belong to the Sicar- 

iidae  family, sub-order Labidognatha, order  Araneida, class 

Arachnida, and phylum Arthropoda (Platnick, 2013) (Fig. 1). 

In North America, this genus is popularly referred as recluse 

spiders, brown recluse spiders and violin spiders (fiddle 

back), due to  a  characteristic violin shape on  the dorsal 

surface of  the spider’s cephalothorax. In  South America, 

they are  called brown spiders (da  Silva et al., 2004; Vetter, 

2008). The name Loxosceles means “slanted legs” because of 

the way the spider positions its  legs  at rest (Vetter, 2008). 

Approximately 130  species of  the Loxosceles  genus have 

been described and are  extensively distributed worldwide 

(Platnick, 2013). The  majority of these spiders are  present 

in the Americas, West Indies and Africa, and some species
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Fig. 1.  Adult brown spiders. Loxosceles  gaucho female (A) and male (E); Loxosceles  intermedia female (B) and male (F); Loxosceles  laeta female (C) and male (G). An adult brown spider and an ootheca (arrow) (D). The classic 

violin pattern (arrow) appears on  the dorsal surface of the cephalothorax from Loxosceles  gaucho adult spider (H). Photos are courtesy of Denise Maria Candido from the Instituto Butantan, São  Paulo, Brazil.  The  colored 

figure refers to the on-line image. (For  interpretation of the references to colour in  this figure legend, the reader is referred to the web version of this article.)
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have been described in  Mediterranean  Europe and China 

(Binford et al., 2008). There is evidence that Loxosceles and 

Sicarius   originated  from a  common  sicariid ancestor  on 

Western Gondwana, before the separation of  the African 

and  South  American continents  (Binford et  al.,  2008). 

Currently,  in  Brazil,  12  known species of  spiders of  this 

genus  are   present  (Bertani et  al.,  2010;  Gonçalves-de- 

Andrade et al., 2012). 

They are  small spiders, varying from 1 to 5 cm in length, 

including the legs.  They  exhibit sexual dimorphism, with 

females usually larger than males. The  males have palps 

with modified tarsi with an additional structure specialized 

for  the transfer of  sperm, the spermophore (Gilbert and 

Raunio, 1997). The  spiders of the Loxosceles genus possess 

six  eyes arranged in  non-touching pairs and a  U-shaped 

pattern. This eye positioning has  been described as the best 

means to identify brown spiders (da   Silva  et al.,  2004; 

Appel  et al., 2005; Vetter, 2008; Chaim et al., 2011a). 

Brown spiders can survive several months without food 

or water and can withstand temperatures ranging from 8 to 

43   C (da Silva et al., 2004). The reported longevity for the L. 

intermedia is 1176    478 days for females and 557     87 days 

for  males  (Fischer and  Vasconcellos-Neto, 2005a). They 

construct irregular webs that resemble cotton threads (da 

Silva  et al., 2004). Other studies indicated the preference 

for  dead prey (Sandidge, 2004; Fischer and Vasconcellos- 

Neto,   2005b), although this preference depends  on  the 

size  and freshness of the live  or dead prey (Cramer, 2008; 

Vetter, 2011a). 

The  hemolymph of  arachnids and  insects has   many 

important  functions. It  participates in  homeostatic pro- 

cesses (Ruppert et al., 2004) in the transport of hormones, 

enzymes and nutrients, as  well as  metabolic residues for 

excretion; in the animal’s protection; and in the storage of 

water and lipids (Araújo, 2009). 

Although spiders  are   arachnids and  not  insects, in- 

secticides are  effective in reducing the brown spider pop- 

ulation. Many chemicals may not kill  the spider but will 

disrupt  the  nervous system and other  bodily functions 

(Sandidge and Hopwood, 2005). Lindane and chlordane are 

insecticides identified  as   effective,  lethal  substances  to 

Loxosceles  spiders, however, these products have carcino- 

genic effects and, therefore, are  no  longer used for  spider 

population control (Navarro-Silva et al., 2010). The  use  of 

pyrethroids for  spider population control has   also   been 

evaluated in  the field and the laboratory by  testing the 

susceptibility of  L.  intermedia specimens  to  this class   of 

insecticides.  In  laboratory  tests,  microencapsulated 

lambda-cyhalothrin (ME  lambda-cyhalothrin) demon- 

strated the highest toxicity.  A field test confirmed these 

laboratory  results, and  the  authors  concluded that  ME 

lambda-cyhalothrin  would be   useful  in  integrated pest 

management  programs  for   L.   intermedia  (Navarro-Silva 

et al., 2010). Sandidge (2004) investigated the potential to 

biologically control  L.  reclusa using the natural arachnid 

fauna found in most homes. Three common web-building 

cosmopolitan spiders, Achaearanea tepidariorum,  Steatoda 

triangulosa  and  Pholcus   phalangioides,  readily   feed    on 

cleaner use in the home has been considered as an effective 

tool  for  the integrated management of  L.  intermedia and 

other spider populations (Ramires et al.,  2007). Further- 

more, tolerance to the presence of geckos at  home, which 

are  considered a natural predator of spiders, has  also  been 

considered a promising tool (Ramires and Fraguas, 2004). 

 
3.  Clinical features of  loxoscelism 

 
The  number of  loxoscelism cases worldwide  is  likely 

underestimated  because most cases are  not reported (da 

Silva  et al.,  2004; Hogan et al.,  2004; Dyachenko et al., 

2006; Abdulkader et al., 2008; Makris et al., 2009; Pippirs 

et al.,  2009; Pernet et al.,  2010; Bajin  et al.,  2011;  Lane 

et al.,  2011;  Sanchez-Olivas et  al.,  2011;  Huguet et  al., 

2012; Ribuffo  et al.,  2012). Notwithstanding their preva- 

lence as an underreported condition, Loxosceles spider bites 

are considered a public health problem in countries such as 

Brazil,   Chile   and  Peru  because  of  their  frequency and 

associated morbidity (da  Silva  et al.,  2004; Hogan et al., 

2004; Zambrano et al., 2005; Swanson and Vetter,  2006; 

de  Souza et al., 2008; Manríquez and Silva,  2009; Vetter, 

2009; Isbister and Fan,  2011; Malaque et al.,  2011).  As 

shown in  Table   1,  since 2001,  Brazil   has   experienced a 

progressive increase in the number of reported loxoscelism 

cases. It  is  currently estimated that approximately 8000 

spider bites occur annually, and most of them are  reported 

in the southeastern and southern urban areas of Brazil. The 

increase in  loxoscelism reports in  recent years could be  a 

consequence  of  an   ecological imbalance  caused  by  the 

deforestation and extinction of natural predators, climate 

change, and pest management practices, which results in 

the adaptation of  spiders to  the urban environment (da 

Silva et al., 2004; Hogan et al., 2004; Swanson and Vetter, 

2006; Isbister and Fan,  2011; Saupe et al.,  2011; Vetter, 

2011a). 

Spiders displaced from their natural environment end 

up  inhabiting the breaches, fissures and orifices of human 

houses. They  also  seek shelter in  storage boxes or in  the 

corners of cupboards and drawers. Accordingly, they can be 

found inside clothes, towels and bedclothes. As a  result, 

 
 
 
Table 1 

Notifications of Loxosceles accidents occurred in Brazil from 2001 to 2012. 

 
Year            Notifications            Deaths            % (deaths/notifications) 

2012           7528                         2                  0.03 

2011           8033                         6                  0.08 

2010           7885                         2                  0.03 

2009           8472                         2                  0.02 

2008           7977                         3                  0.04 

2007           9277                       12                  0.13 

2006           7619                         5                  0.07 

2005           7702                         3                  0.04 

2004           8207                         1                  0.01 

2003           7806                         3                  0.04 

2002           6303                         3                  0.05 

2001           5011                         5                  0.01

 
control of  these populations; most importantly,  they are 

relatively  harmless  to  humans.  Additionally,   vacuum 

 

http://dtr2004.saude.gov.br/sinanweb/tabnet/dh?sinan/animaisp/bases/ 

animaisbr.def. 

Source: Brazilian Ministry of Health - SINAN/SVS:

http://dtr2004.saude.gov.br/sinanweb/tabnet/dh?sinan/animaisp/bases/animaisbr.def
http://dtr2004.saude.gov.br/sinanweb/tabnet/dh?sinan/animaisp/bases/animaisbr.def
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most spider bites occur when the victims press the spider 

against  their  body;  for   that  reason,  victims are   most 

frequently bitten on the trunk, thigh and arm. The fangs of 

the Loxosceles  spider are   small, and the venom is  likely 

injected by  intradermal injection. The  spider bites mainly 

occur during the warmest seasons (spring and summer) (da 

Silva et al., 2004; Hogan et al., 2004; Isbister and Fan, 2011; 

Vetter, 2011b; Rader et al., 2012). 

Loxosceles bites lead to a mild stinging with clinical signs 

and symptoms developing only  several hours afterward; 

consequently, the bite  is barely noticed, and the spider is 

rarely captured (w10% of  cases) at  the time of  the bite. 

Therefore, the  diagnosis of  loxoscelism  is  usually pre- 

sumptive and based on  the clinical and epidemiological 

features presented by  the patient at  the time of hospital 

admission, which usually occurs from 12  to 24  h after the 

bite,  when the skin  damage is more prominent (da  Silva 

et al., 2004; Hogan et al., 2004; Hubbard and James, 2011; 

Isbister and  Fan,  2011).  The  classical clinical symptoms 

caused by  Loxosceles  spider bites are  characterized by  an 

intense inflammatory reaction at  the bite  site  followed by 

local  necrosis and can  be  classified as cutaneous loxoscel- 

ism  (more than 70% of the cases). The cutaneous loxoscel- 

ism   is  characterized by  initial local   symptoms,  such as 

burning-stinging, undefined pain, and edema. Most of the 

time, the patients seek help only several hours after the bite 

when the signs and symptoms become more severe, such 

as  burning pain, edema, blister formation, erythema, 

ecchymosis, and paleness (called marble plaques) (Fig. 2 A– 

C). After  several days, a necrotic area forms, which is fol- 

lowed by  an  ulcer of  variable size   that  scabs over and 

frequently leaves a sharply defined area surrounded by the 

raised  edges  of  healthy skin   (Fig.  2  D).  These  necrotic 

wounds can  take several weeks to  heal. Other symptoms, 

such  as  a  scarlatiniform  or   morbilliform  rash,  malaise, 

nausea, vomiting, a low-grade fever or headache, can  also 

occur (da  Silva et al., 2004; Hogan et al., 2004; Isbister and 

Fan, 2011). 

Apart from the venom, many other factors associated 

with the spider (intra- and inter specific variations, the 

developmental stage and the amount of venom injected) or 

the patient (the adipose tissue at the bite  site,  the amount 

of tissue sphingomyelin, the patient’s age  and the individ- 

ual  genetic variance) can  influence the severity of the bite 

(da  Silva et al., 2004; Hogan et al., 2004; de  Oliveira et al., 

2005; Tambourgi et al., 2010). For  instance, terminal cir- 

culation areas or  adipose tissue are  more sensitive to  the 

venom’s  action, developing necrosis and  severe  tissue 

injury,   which  may  require  corrective  plastic  surgery. 

Despite the  severity of  the  injury caused by  Loxosceles 

venom at  the bite  site,  the development of secondary in- 

fections is rare (Hogan et al., 2004; Abdulkader et al., 2008; 

Isbister and Fan, 2011; Malaque et al., 2011; Huguet et al., 

2012; Ribuffo  et al., 2012). 

Severe cases can  be  classified as  viscerocutaneous or 

systemic loxoscelism and range from 0.7% to  27%  varying 

geographically or by the Loxosceles species responsible for 

the spider bite  (Barbaro and Cardoso, 2003; Hogan et al., 

2004; Abdulkader et al., 2008; Isbister and Fan, 2011). For 

instance, some data have demonstrated that viscerocuta- 

neous  loxoscelism  has   a   higher  prevalence  in   several 

countries, such as Chile (15.7%) and Peru (27.2%), as well  as 

in Santa Catarina state/Brazil (13.1%), where L. laeta is found 

(da  Silva et al., 2004; Hogan et al., 2004). 

Systemic loxoscelism is characterized by hematuria, 

hemoglobinuria, jaundice, fever, nausea and disseminated 

intravascular coagulation (da Silva et al., 2004; Hogan et al., 

2004; Isbister and  Fan,  2011).  Recently,  Malaque et  al. 

(2011) found that mild hemolysis is  frequent in  patients 

bitten by  L.  gaucho (present  in   one-third of  the  cases 

examined,  including  those  classified as   cutaneous  lox- 

oscelism). However, acute kidney injury occurred exclu- 

sively in  patients with extensive hemolysis. Oliguria and 

dark urine, which can  suggest extensive intravascular he- 

molysis or rhabdomyolysis, can result in acute renal failure, 

which is the primary cause of death associated with lox- 

oscelism. Nevertheless, the  level   of  mortality (Table   1) 

caused by Loxosceles spider bites is low (França et al., 2002; 

da  Silva et al., 2004; Hogan et al., 2004; Abdulkader et al., 

2008;  de   Souza et  al.,   2008;  Isbister  and  Fan,   2011; 

Malaque et al.,  2011). Although large case  studies report 

systemic loxoscelism across all age  groups, most cases are 

reported in children (Schenone et al., 2001; Hostetler et al., 

2003; da  Silva et al., 2004; Hogan et al., 2004; Elbahlawan 

et al.,  2005; Hubbard and James, 2011; Isbister and Fan, 

2011; Taskesen et al., 2011; Rosen et al., 2012). 

 
4.  Diagnosis and therapy 

 
No  consensus treatment  for   loxoscelism exists, and 

different therapies are  used in different parts of the world. 

In some countries, the therapy is based on  dapsone, anti- 

histamines, analgesics and corticosteroids. However, other 

treatments, such as  the use  of steroids, surgical excision, 

hyperbaric oxygen therapy, and negative pressure wound 

therapy (vacuum-assisted closure), have been employed in 

an attempt to remedy the effects of envenomation (da Silva 

et al., 2004; Hogan et al., 2004; Swanson and Vetter, 2005; 

Tutrone  et   al.,    2005;   Swanson   and   Vetter,    2006; 

Abdulkader et al., 2008; Vetter and Isbister,  2008; Wong 

et al., 2009; Tambourgi et al., 2010; Andersen et al., 2011; 

Hubbard   and   James,  2011;   Isbister  and   Fan,    2011). 

Another treatment  option is  the administration of  anti- 

venoms against the Loxosceles venoms, which are  available 

in   Brazil,   Argentina  and  Mexico [horse-derived  F(ab0 )2 

antivenoms]  and  Peru (whole  IgG  antivenom)  (Isbister 

et al., 2003; da  Silva et al., 2004; Hogan et al., 2004; Pauli 

et al.,  2009; Isbister and  Fan,  2011).  The  antivenom  is 

administered intravenously, and the number of vials  used 

varies according to  the clinical severity of  the envenom- 

ation (cutaneous loxoscelism) present at  hospital admis- 

sion   and  is  administered  to   all  patients with 

viscerocutaneous loxoscelism (Brasil,  2001). 

The delay in seeking medical care  by patients (approx- 

imately 24 h after the spider bite) can  further contribute to 

the extension of local tissue damage at the bite  site because 

the  cutaneous necrosis and  systemic clinical symptoms 

induced by  the venom are   irreversible and begin a  few 

hours after envenomation (da   Silva  et al.,  2004;  Hogan 

et al.,  2004).  Accordingly, the  type  and  effectiveness  of 

the treatment are influenced by  the amount of  time be- 

tween the spider bite  and the diagnosis.
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Fig.  2.  Cutaneous loxoscelism. A – A female patient bitten on  the thigh. The  lesion (2  days post-bite) is  characterized by  edema and erythema, paleness and 

hemorrhagic areas (marble plaque about 14  cm  in diameter), and blistering with hemorrhagic content. B – Male patient bitten on  the calf. Two  days after spider 

bite, the injury appeared with extensive bruising, serous blisters that progressed rapidly to hemorrhagic content and burning pain with the additional presence of 

a cutaneous rash, myalgia and dizziness. Twenty days after bite, the patient presented with desquamation at the injury site without ulcer formation. C and D – 

Male patient bitten on  the inner left thigh while wearing clothes. Four  days (C) after the bite, local damage is present and characterized by edema and erythema 

with ecchymotic, paleness and hemorrhagic areas (marble plaque) and the presence of necrosis 20 days after the bite (D). The presumptive cutaneous loxoscelism 

because the patient did  not bring the spider for  formal identification. [Photos are courtesy of Dr.  Marlene Entres, Centro de  Controle de  Envenenamentos de 

Curitiba, Secretaria de  Estado da  Saúde, Paraná, Brazil  (A, B), and Dr. Ceila  M. S. Malaque, Hospital Vital  Brazil  – Instituto Butantan, São  Paulo, Brazil  (C, D)]. The 

colored figure refers to the on-line image. (For  interpretation of the references to colour in  this figure legend, the reader is referred to the web version of this 

article.) 

 
However, the effectiveness of the treatments described 

in the international literature has been widely debated, and 

a definitive treatment has  not yet been established (Isbister 

et al., 2003; da  Silva et al., 2004; Hogan et al., 2004; Pauli 

et al.,  2009;  Isbister and  Fan,  2011).  The   bite   severity, 

however, can  be  estimated by laboratory tests and clinical 

characteristics, such as  evidence of  hemolysis (Malaque 

et al.,  2011) and the presence of  creatine kinase in  the 

serum,  which  indicates  rhabdomyolysis  (França   et  al., 

2002), that can  determine the presence of a viscerocuta- 

neous manifestation of  envenomation.  In  these  cases of 

systemic  loxoscelism, vigorous  hydration  and  urinary 

alkalinization   should   be    established   early   to    avoid 

pigment-induced renal failure (Hogan et al., 2004). 

Currently,  no  commercial test is  available to confirm 

loxoscelism, and most patients never see  or  capture the 

offending spider;  consequently,  the  diagnosis is  usually 

based on  the clinical features presented  by  the patient. 

Moreover,  the  epidemiological information, such as  the 

circumstances of the bite  (sleeping, dressing, etc.),  the site 

of  the  bite,   and  the  timing of  the  injury progression 

(because the  clinical signs and  symptoms  of  Loxosceles 

envenomation  occur slowly), can  aid  in  the diagnosis of 

loxoscelism. There are many other medical causes of focal 

skin  necrosis (as  described previously by  literature data) 

and laboratory tests can   be  helpful in  determining the 

presence of these other diseases. In addition, an  enzyme- 

linked immunosorbent assay has  been used to  detect the 

venom from patient  lesions and sera or the  circulating 

antibodies to the venom, but it is not in widespread clinical 

use  (Gomez et al., 2001, 2002; da  Silva et al., 2004; Hogan 

et al.,  2004; Stoecker et al.,  2006; Akdeniz et al.,  2007; 

Stoecker et al., 2009). 

 
5.  Brown spider venom 

 
Loxosceles  spider venom is  a  colorless and crystalline 

liquid produced from two bulbous glands situated in  the 

cephalothorax of the spider and flows through an  inocu- 

lator apparatus composed of a pair of chelicerae (dos Santos 

et al., 2000; da  Silveira et al., 2002; da  Silva  et al., 2004). 

Histological findings have revealed that these glands are 

made up  of two adjacent layers of striated muscles fibers, 

one external and the other internal, in  contact with an 

underlying basement membrane that separates the muscle 

cells  from the secretory epithelium and use   a  holocrine 

secretion mechanism (dos  Santos et al., 2000). 

The volume of venom produced by Loxosceles spiders is 

generally on the order of a few  microliters, and it contains 

approximately  20–200  mg  of  total protein (Binford and
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Wells, 2003; da Silva et al., 2004; Senff-Ribeiro et al., 2008). 

The   amount and  the  content  of  the  venom produced 

depend  on   several  factors associated with  the  spider 

specimen, including species, size,  sex, nutritional state and 

age.   Using   SDS-PAGE  analysis,  de   Oliveira et  al.  (2005) 

showed that significant variations occurred between the 

content of  the L.  intermedia and L.  laeta venoms. These 

variations in the venom content can  be enhanced by other 

differences in  their biological activities, such as  the more 

potent dermonecrotic activity (measured by the lesion size) 

of  L.  laeta venom  compared  with  L.  intermedia venom 

observed in  rabbits.  In  addition, the  lesions caused by 

venom from females were larger in area than those lesions 

caused by  venom from males (de   Oliveira et al.,  2005). 

Through 2D electrophoresis (IEF and SDS-PAGE), the venom 

of L. intermedia has  been found to  be  enriched mainly in 

two groups of proteins at 20–40 kDa and 2–5  kDa (Fig. 3). 

In vivo  experiments using a rabbit model have shown 

that  Loxosceles   spp.    venoms  are    associated with  the 

development of a characteristic dermonecrotic lesion with 

gravitational spreading and ecchymosis. Analyses of rabbit 

skin   exposed to Loxosceles  venoms shown the following 

characteristics:  an   initial edema  under  the  dermis, an 

increased vascular permeability, an  intravascular fibrin 

network deposition, the thrombosis of dermal blood ves- 

sels  and the degeneration of the blood vessel walls as well 

as the infiltration and aggregation of inflammatory cells. At 

longer exposure times, myonecrosis of the myofibrils and 

leukocyte infiltration in  the skeletal muscle occur. Finally, 

the destruction of epidermis integrity, massive hemorrhage 

and  the   necrosis  of   surrounding collagen near  the 

epidermis are  observed (Ospedal et al., 2002; Tavares et al., 

2004; Pretel et al.,  2005; Silvestre et al.,  2005; Chatzaki 

et al., 2012). The ability of the venom of Loxosceles spiders 

to  be  lethal to  mice has  also  been described. Mota and 

Barbaro (1995) reported  this  lethality  in  mice  injected 

with L. intermedia, L. gaucho and L. laeta venoms, and the 

LD50s determined were 0.48,  0.74  and 1.45  mg/kg, respec- 

tively. Appel  et al. (2008) found 100% mortality of the mice 

tested at  the concentrations of  50  and 100   mg/kg  of  L. 

intermedia venom after 16  h post-injection. Silvestre et al. 

(2005) found an  LD50  of 0.32  mg/kg for  L. similis  venom, 

and Pretel et al. (2005) indicated an LD50 of 0.696 mg/kg for 

Loxosceles adelaida venom.

 

 
 

 
 

Fig.  3.  Two-dimensional (2-DE) protein profile of Loxosceles  intermedia venom. Samples (150 mg) of Loxosceles  intermedia crude venom were separated by  iso- 

electric focusing (IEF) on  13-cm immobilized pH gradient (IPG) gel strips with a pH linear range of 3–10 or a pH linear range of 6–11 (GE Healthcare, Piscataway, 

NJ, EUA) in the first dimension. The  second dimension analysis was performed on a 20% polyacrylamide SDS-PAGE gel under reducing conditions. The  2-DE  gels 

were stained with colloidal Coomassie Brilliant Blue.  (A) Then, the gels  were maintained in  a 1%  acetic acid  solution and scanned using an  ImageScanner III 

LabScan 6.0  (GE Healthcare). The  detection of  the gel  spot and calculation of  the isoelectric point (pI)  and molecular mass (MM)  were obtained using Image 

Master 2D Platinum software (GE Healthcare). (A) The  protein profile of L. intermedia venom separated on  a pH linear range of 3–10. (B) In total, 97  spots were 

detected in the 20–40 kDa region, and the spots with pI values from 4.6 to 9.8  are highlighted in circles. (C) The  protein profile of L. intermedia venom separated 

on  a pH linear range of 6–11. (D) 40  spots were detected in  the 2–5 kDa  region, and the spots with pI values from 6.1  to 10.4 are highlighted in  circles.
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The  full venom content of the Loxosceles spiders is still 

under investigation; however, many studies have shown 

that its  biochemical composition  consists of  a  complex 

mixture of biologically active compounds, mainly proteins 

and peptides with toxic and/or enzymatic action (Veiga 

et  al.,  2000a;  Gremski et  al.,  2010).  HPLC  analysis  of 

whole  venom of  L.  intermedia showed  the  presence  of 

histamine. According results in a sufficient concentration to 

induce inflammatory responses (Paludo et al., 2009). 

Additionally,  NMR  spectroscopy and mass spectrometric 

analyses of L. reclusa crude venom pointed for the presence 

of sulfated guanosine derivatives as the major small- 

molecule components of the venom. Nevertheless, results 

were  restricted to   chemical analyses and  data  did   not 

describe for  a correlation with biological/pathological ac- 

tivities for these molecules (Schroeder et al., 2008). 

In   the  following sections, the  main  identified  and 

characterized molecules in the venom of Loxosceles spiders 

will be presented as well as the relevance of these toxins to 

the understanding of  the envenomation process and po- 

tential biotechnological applications. 

 
5.1.  Proteomic  analysis  of brown  spider  venom 

 
Proteomic analyses of brown spider venom are  scarce 

and, in general, are  focused on the phospholipase D family 

members. The first report using mass spectrometry for the 

identification of  the proteins in  Loxosceles  spider venom 

was in  2003 (Binford and  Wells, 2003). The  aim   of  this 

study was to identify the spider phylogenetic groups with 

sphingomyelinase and to identify the evolutionary origin of 

this toxin. Venoms from distinct spiders were analyzed, 

including L. laeta and 9 other Loxosceles species from Africa 

and  North America. Sphingomyelinase D  (SMD)  activity 

was identified in all surveyed Loxosceles species and in two 

Sicarius   species  (Loxosceles   sister  taxon), and  the  mass 

spectrometry analyses found several molecules corre- 

sponding to the known SMD size  range of 31–35 kDa. The 

Loxosceles  venom was first submitted to  two-dimensional 

electrophoresis in  2004 by  Luciano and colleagues. They 

demonstrated that  L.   intermedia venom  is  enriched  in 

cationic and low  molecular mass proteins  (20–35 kDa). 

Shortly  thereafter,  the  venoms from L.  adelaida and  L. 

gaucho were  subjected  to  2D   electrophoresis  analysis 

(Pretel et al., 2005). Although the toxins of these venoms 

displayed a similar distribution with regard to  the molec- 

ular mass of proteins, only  40% of the components exhibi- 

ted the same pI and molecular mass in the L. adelaida and L. 

gaucho venoms. L. similis  venom was also  analyzed by  2D 

gel  electrophoresis and exhibited protein bands ranging 

from 28 to 112  kDa, and the pI values were between 4.0 and 

7.0,  which matched previous profiles of  other  Loxosceles 

species (Silvestre et al., 2005). 

In 2005, the protein contents of the L. gaucho, L. laeta 

and L.  intermedia venoms were analyzed using 2D  elec- 

trophoresis. The  protein profiles of  these three different 

venoms were similar, possessing the majority of  protein 

bands in  the 30–35 kDa  range. All Loxosceles  species pre- 

sented protein bands of a high molecular mass (45–94 kDa) 

and exhibited few  proteins in the low  molecular mass re- 

gion  (14–25 kDa)  (Machado et al., 2005). 

To  identify the  dermonecrotic proteins  in  L.  gaucho 

venom, several protein bands present in  the 30–35 kDa 

range after separation by 2D electrophoresis were analyzed 

using mass spectrometry de  novo sequencing combined 

with  N-terminal chemical sequencing. Only   eight spots 

were identified as  sphingomyelinase D  (Machado et  al., 

2005).  The   low   abundance  of  all   other  protein  bands 

analyzed did  not enable their identification. In addition, by 

LC-MS analysis, 11  distinct proteins were detected in  the 

molecular mass range of  the dermonecrotic toxins, sug- 

gesting that more isoforms of sphingomyelinase D could be 

present in  L.  gaucho venom (Machado et al.,  2005). The 

difficulties  of   protein   identification  in   brown  spider 

venoms  using  MS  approaches  are   due  to   the  limited 

amount of Loxosceles protein sequences available in online 

data banks. Thus,  sequencing the Loxosceles genome is still 

an ongoing challenge in loxoscelism research that will help 

guide future studies in this area. More recently, a proteomic 

analysis was performed using the L. intermedia venom by 

MudPiT  (Multidimensional protein identification technol- 

ogy).  This  approach allowed the identification of 39  pro- 

teins; 14  proteins were grouped as toxins generally found 

in animal venoms and were considered responsible for the 

tissue damage observed in  loxoscelism (dos  Santos et al., 

2009). 

Thus,   mass spectrometry and proteomic analysis are 

underused in  the  investigation of  brown spider toxins. 

These approaches could be applied in many studies, such as 

a  complete analysis of  the protein content of  Loxosceles 

venoms to generate a Loxosceles protein data bank and the 

identification of the post-translational modifications of the 

to toxins. In addition, these techniques could be helpful in 

analyzing the in vivo effects of Loxosceles crude venom or a 

specific recombinant toxin on certain tissues by examining 

the protein content after treatments. 

 
5.2.  Molecular  biology approaches for studying  brown  spider 

venom 

 
The   advent  of   molecular   biology  has    allowed the 

development of numerous novel techniques and applica- 

tions that have enriched the knowledge in many scientific 

fields. Specifically, molecular  biology has  introduced new 

approaches for  studying venoms and insights into their 

mechanisms of action. 

One  of the most successful tools applied in the study of 

the Loxosceles  venoms is  undoubtedly the  cloning and 

heterologous expression of recombinant toxins, which 

circumvent the difficulties presented by the low amounts of 

venom that can   be  collected from these  spiders (Senff- 

Ribeiro et  al.,   2008;  Catalan et  al.,   2011).  Fernandes- 

Pedrosa et  al.  (2002) published the  first report  of  the 

cDNA cloning and expression of a Loxosceles toxin, in which 

a  functional phospholipase D (SMase I) obtained from a 

cDNA library of L. laeta venom glands was expressed. 

Thereafter, several recombinant phospholipases D of other 

Loxosceles   species were  produced  and  allowed  for   the 

complex  biological and  biochemical  characterization  of 

these toxins (Kalapothakis et al., 2002; Araújo et al., 2003; 

Lee and Lynch, 2005; Tambourgi et al., 2005; Chaim et al., 

2006; da  Silveira et al., 2006,  2007b; Olvera et al., 2006;
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Ribeiro et al., 2007; Appel  et al., 2008; Christoff et al., 2008; 

de Almeida et al., 2008; Kusma et al., 2008; Chaves-Moreira 

et al., 2009; de Santi Ferrara et al., 2009; Paludo et al., 2009; 

Catalan et al.,  2011; Chaim et al.,  2011b; Chaves-Moreira 

et al., 2011; Zobel-Thropp et al., 2012; Vuitika et al., 2013; 

Wille  et al., 2013). Recently, two recombinant phospholi- 

pases D (recLiD1  and LiRecDT1) were developed as tools to 

assay the sphingomyelinase D activity in crude venoms or 

recombinant enzymes (Gomes et al., 2011). Concurrently, 

these techniques also  revealed that phospholipases D 

comprise a  family of  toxins in  L.  intermedia venom, as 

several isoforms were described (Chaim et al.,  2006; da 

Silveira et al., 2006; da  Silveira et al., 2007b; Appel  et al., 

2008; Vuitika et al., 2013; Wille  et al., 2013). 

Site-directed mutagenesis of recombinant Loxosceles 

phospholipases D allowed for  the production of recombi- 

nant molecules with drastically decreased enzymatic ac- 

tivity used  as  tools to elucidate the  major role   of  the 

catalytic activity of this enzyme’s toxicity (Lee and Lynch, 

2005; Kusma  et al.,  2008; Chaim et al.,  2011b; Chaves- 

Moreira et al., 2009). 

In  addition, the  recombinant toxins allowed for  the 

resolution of  the crystal structures of  two  Loxosceles 

phospholipases D, SMase  I from L. laeta (class I PLD) and 

LiRecDT1 from L. intermedia (class II PLD) (Murakami et al., 

2005; de  Giuseppe et al., 2011; Ullah  et al., 2011). These 

studies were  fundamental in  the  understanding of  the 

toxins’ catalytic mechanisms. 

Recombinant toxins could be  used in  animal immuni- 

zation, thus eliminating the need of spiders as a source of 

venom (Gutiérrez et al., 2011). Recombinant phospholipases 

D have already been tested as antigens for the development 

of a polyvalent antivenom, which is effective in the 

neutralization of the crude venom and for understanding of 

antigenicity of toxins (Alvarenga et al., 2003; Olvera et al., 

2006; de Moura et al., 2011; Mendes et al., 2013). 

Although the vast majority of studies focus  on  produc- 

ing   phospholipases  D  as   recombinant molecules, more 

recent studies set  out  to  produce other recombinant Lox- 

osceles toxins. For instance, a recombinant metalloprotease 

from L. intermedia venom has  been produced and charac- 

terized (da  Silveira et al., 2007a). Additionally, a recombi- 

nant hyaluronidase from L. intermedia venom was recently 

produced and used to demonstrate the role  of this toxin in 

the venom (Ferrer et al., 2013). Moreover, a TCTP member- 

family toxin (Sade et al.,  2012) and an  Inhibitor Cystine 

Knot peptide (Matsubara et al., 2013) have also been cloned 

and expressed and will  enable functional and structural 

studies to further characterize these poorly studied brown 

spider venom toxins. As will  be  further discussed below, 

these recombinant toxins enabled additional insights into 

loxoscelism and will  also  be putatively useful as tools for a 

variety of biotechnological applications. 

The   evolutionary aspects concerning both  Loxosceles 

specimens and phospholipase D  toxins have been thor- 

oughly investigated by employing molecular biology tech- 

niques,  such  as   cDNA,  rRNA  and  genomic sequencing, 

analyses of positive selection, structural modeling of amino 

acid  conservation and phylogenetic analyses (Binford et al., 

2005, 2008; 2009; Cordes and Binford, 2006; Duncan et al., 

2010). 

Thus,  these molecular biology techniques underlie the 

recent  advances in  the understanding of  the  Loxosceles 

toxins that occurred in  the last  few  decades. Novel  tech- 

nologies not yet applied specifically to  the study of  Lox- 

osceles toxins are  promising, such as quantitative PCR, RNA 

interference and the expression of recombinant toxins in 

eukaryotic cells.   Molecular biology approaches  not  only 

expand the knowledge of  spider biology and the patho- 

physiology of loxoscelism but also  reveal novel molecules 

for biotechnological approaches. 

 
6.  Highly expressed toxin families 

 
Over  the last  few  years, several studies focusing on  the 

expression profiles of venomous glands of various organ- 

isms,   such as  snakes, scorpions and spiders, have been 

conducted. As expected, most of  the profiles showed the 

prevalence of the toxin families that have a direct role  in 

the main signs and symptoms observed in  envenomation 

with these animals. In addition, some profiles showed that 

the  highly expressed toxins are   mainly  involved in  the 

mechanisms of prey capture for  feeding purposes (Zhang 

et al., 2010; Rokyta et al., 2011; Ma et al., 2012). 

In Loxosceles  spider venom, the transcriptome analysis 

expression profiles of  the venomous glands of  different 

species showed different profiles of  the highly expressed 

toxin  families. On   one  hand,  Fernandes-Pedrosa  et  al. 

(2008) reported the prevalence of  transcripts  coding for 

phospholipase D  toxins in  the L.  laeta venomous  gland. 

Subsequently, Gremski et al. (2010) affirmed that in the L. 

intermedia venomous  gland,  transcripts  coding  for   ICK 

peptides  were  prevalent. This  observation  is  consistent 

with the fact that the primary role  of brown spider venom, 

as  in  all  arachnids, is to  paralyze or  kill  envenomed prey. 

Hypotheses supporting the differences in  the expression 

levels  of  these  toxins  have  been  discussed previously 

(Gremski et al., 2010). 

Both the L. laeta and L. intermedia transcriptomes exhibit 

high expression of the phospholipase D (PLDs) and metal- 

loprotease toxin families in  the venomous glands. In fact, 

PLDs (referred to as  sphingomyelinases D by  Fernandes- 

Pedrosa et  al.,  2008)  are   able   to   reproduce the  major 

symptoms of loxoscelism. Moreover, a recent study 

demonstrated that PLDs also  possess a potent insecticidal 

activity (Zobel-Thropp et  al.,  2012). Thus,   based on  the 

known activities of Loxosceles  PLDs in  vertebrates and ar- 

thropods, it is not surprising that this toxin family is highly 

expressed in brown spider venom glands. 

Metalloproteases are  also  highly expressed toxins in  L. 

laeta and L. intermedia venom glands (Fernandes-Pedrosa 

et al., 2008; Gremski et al., 2010). They  comprise a family 

of  venom enzymes and  may be   involved  in  the  initial 

digestion of prey. These toxins may also  have a role  in the 

hemorrhaging observed in loxoscelism and in the systemic 

spreading of  other toxins in  victims (da   Silveira et  al., 

2007a; Trevisan-Silva et al., 2010). 

Analyses of  venom gland expression profiles reveal a 

consistent redundancy of transcripts coding for  the toxins 

that are  highly expressed (Cidade et al., 2006; Neiva  et al., 

2009). Functional  redundancy in  proteins is  a  rare phe- 

nomenon;   venoms   represent   a    rare   case     of    this
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phenomenon (Morgenstern and King, 2013). Some authors 

argue that to  maintain effective toxins against prey and 

predators, the genes encoding venom peptides and pro- 

teins underwent multiple duplication events. In turn, the 

duplicated genes acquired related or even novel functions 

through  adaptive  evolution  (Ma   et  al.,   2012).  In   fact, 

because these highly expressed toxins are  often related to 

the venom’s main actions, the genes encoding these toxins 

can  be  assumed to  more likely  undergo multiple duplica- 

tion events, generating redundancy. 

 
6.1.  Phospholipases D 

 
The phospholipase D (PLD) family of toxins is the most 

studied  and  well-characterized component  in   the Lox- 

osceles   species venoms. These molecules have been re- 

ported to  play  an  important role   in  the development of 

clinical sign   and symptoms in  loxoscelism. Due  to their 

ability to  trigger dermonecrosis in vivo, the brown spider 

PLDs  are   also   known as  dermonecrotic toxins (da   Silva 

et al., 2004; Appel  et al., 2005; Swanson and Vetter, 2006). 

Dermonecrotic toxins are  soluble in  water or physio- 

logical buffers and  active enzymes  are   secreted by  the 

brown spider venom glands. These molecules catalyze the 

hydrolysis of  phospholipids, such as  sphingomyelin, at  a 

terminal phosphodiester bond to  release choline and pro- 

duce ceramide 1-phosphate  (C1P)  (da  Silva  et al.,  2004; 

Chaim et al., 2011b; Wille  et al., 2013). PLDs are  also  able 

to     hydrolyze    lysophosphatydilcholine    in     a     Mgþ2
 

dependent-manner  (van Meeteren et  al.,  2004;  Chaim 

et al., 2011b; Horta et al., 2013; Wille  et al., 2013). These 

toxins are  proteins which vary  in molecular mass from 30 

to 35 kDa, and include a signal peptide followed by a pro- 

peptide. The   amino acid   sequences  of  PLDs  are   highly 

conserved  (55–99%), especially in the residues around the 

catalytic cleft.  Based   on  phylogenetic studies, PLDs have 

been distributed in six different groups of the Loxtox  family 

(Loxosceles  toxin) (Chaim et al., 2006; Kalapothakis et al., 

2007). In  the same vein,  Binford et al.  (2009) have pro- 

posed a  new nomenclature based on  the evolution and 

phylogenetics of the PLD genes, termed the SicTox  family 

(Sicariidae Toxin). 

Gremski et al. (2010) revealed that 9% of the analyzed 

transcripts  from the  L.   intermedia venom  gland  corre- 

sponded  to   PLDs,  comprising  20.2%   of   all   the  toxin- 

encoding  ESTs  (Expressed  Sequence  Tags),   which  is  a 

very significant proportion of  the toxins. For  L.  laeta, the 

content of  the  PLD-encoding transcripts was present at 

higher levels (16.3%  of  all  ESTs present in  database hits). 

However,   the  transcriptome  analysis for   L.   laeta  had 

methodological limitations due to using only  female spec- 

imens, which  are   already known  to   produce  a  greater 

quantity  of  venom when  compared with  male spiders 

(Fernandes-Pedrosa  et al.,  2008;  Gremski et  al.,  2010). 

Moreover, the L. intermedia transcriptome analysis criteria 

for  bioinformatics screening provided new putative iso- 

forms of PLD (Vuitika et al., 2013), which can be included as 

novel groups  in  the LoxTox  family (Kalapothakis et  al., 

2007). These data  corroborate the  findings of  Machado 

et al.  (2005),  who identified at  least 11  PLD isoforms in 

the  venom of  L.   gaucho,  termed  Loxnecrogin,   or   data 

reported by Wille  et al. (2013), which showed by 2D elec- 

trophoresis at  least 25  spots immunologically related to 

PLD toxins in the L. intermedia crude venom. 

Several PLD isoforms were  also   characterized in  the 

venom of other Loxosceles species. In L. reclusa venom, the 

native PLDs were present at  molecular mass of  approxi- 

mately 32  kDa,  and the four  active isoforms were charac- 

terized as able  to induce dermonecrotic lesions, hemolysis, 

and platelet aggregation (da Silva et al., 2004; Vetter, 2011a, 

2011b). Two  PLD isoforms, SMase  I (32  kDa)  and SMase  II 

(35  kDa),  were also  described in  L.  laeta venom, which 

experimentally demonstrated complement-dependent 

hemolysis, dermonecrosis and hydrolysis of sphingomye- 

lin  (Fernandes-Pedrosa et al., 2002; de  Santi Ferrara et al., 

2009). Catalan et al.  (2011) reported two new PLD iso- 

forms in L. laeta, rLIPLD1 was dermonecrotic and active on 

sphingomyelin while rLIPLD2 seemed to  be  inactive; but 

rLIPLD2 was cloned and expressed and was missing a large 

portion of the PLD region, i.e., it did  not include the initial 

amino acids of  the catalytic site,   such as  His12.   From   L. 

intermedia   venom,   many   PLD   isoforms  have   been 

described, and nine isoforms have already been expressed 

as recombinant proteins. It has  been shown that recombi- 

nant isoforms of PLD are able to reproduce most of the toxic 

effects observed in loxoscelism and antigenic properties of 

the venom (Kalapothakis et al., 2002; Fernandes-Pedrosa 

et al., 2002; Chaim et al., 2006; da  Silveira et al., 2006; da 

Silveira et al., 2007b; Appel  et al., 2008; Vuitika et al., 2013). 

Several isoforms of PLD were also  very well  characterized 

and cloned from the venom of  other Loxosceles  species 

(Ramos-Cerrillo et   al.,    2004;   Barbaro  et   al.,    2005; 

Magalhães et al., 2013). 

The  PLDs are  responsible for  a  large variety of distur- 

bances in loxoscelism. Both native and recombinant forms 

of  PLDs have been reported to trigger dermonecrotic le- 

sions, an  increase in  vascular permeability, an  intense in- 

flammatory  response  at   the  inoculation site   and  at   a 

systemic  level,   platelet  aggregation, hemolysis, nephro- 

toxicity,  and  even  lethality  in   controlled  experiments 

(Cunha et al., 2003; Appel  et al.,  2005; da  Silveira et al., 

2006,  2007b; Swanson  and Vetter,  2006; Kusma  et  al., 

2008; Senff-Ribeiro et  al.,  2008;  Chaves-Moreira et  al., 

2009; Tambourgi et al., 2010; Chaim et al., 2011b). 

Toxicity to a variety of cell types and structures is often 

enzyme dependent. At the beginning of the Loxtox  protein 

family characterization,  it  was thought that these toxins 

were exclusively able  to  cleave the head-groups of sphin- 

gomyelin, the so-called sphingomyelinases. Further studies 

have described other substrates to  be  included as suscep- 

tible to catalysis by the PLDs, such as glycerophospholipids 

and lysophospholipids. Thus,  the term phospholipase D for 

brown spider dermonecrotic toxins is  more suitable (Lee 

and  Lynch,  2005;  Chaim et  al.,  2011a;  Chaves-Moreira 

et al., 2011; Wille  et al., 2013). 

Studies comparing recombinant isoforms with distinct 

capacities of degrading substrates have shown differences 

in the intensity of their effects (Gomez et al., 2002; Chaim 

et al., 2011b; Stock et al., 2012). Several recombinant  PLD 

isoforms from the Loxosceles  genus were heterologously 

produced in  Escherichia coli. These recombinant  PLDs are 

easily obtained in their soluble and active enzyme forms in
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large amounts,  which provided interesting  results  con- 

cerning the  structural  and  functional properties  of  the 

PLDs. For  example, critical data  examining the  putative 

enzyme mechanism and three-dimensional scaffold were 

obtained by  X-ray  crystallography (more details, see  Sec- 

tions 10 and 11). In summary, research into the catalytic site 

revealed important insights into the enzymatic capabilities 

of each isoform (Murakami et al., 2005, 2006; de Giuseppe 

et al., 2011; Ullah  et al., 2011). Recently, de  Giuseppe et al. 

(2011) published the crystal structure of LiRecDT1 from L. 

intermedia,  indicating that it  contained an  additional di- 

sulfide bond in the PLD structure catalytic loop compared 

with the previously described PLD from L. laeta. These de- 

tails  of PLD molecules can  explain the distinct enzymatic 

behaviors of the venom from different species. PLDs with 

different structures could have different substrate affinities 

or  enzymatic activities; therefore, these differences could 

explain the clinical symptoms or  severity observed at  the 

local  bite  site  or the systemic effects during envenomation 

by different species of the Loxosceles genus. 

Furthermore, there are clear differences in  the hydro- 

lytic  ability of  PLD isoforms within the Loxosceles  genus 

(Gomez et al., 2002; Chaim et al., 2011a; Stock et al., 2012). 

All  studies  with  the  named  LiRecDTs   (isoforms  1–7) 

showed dermonecrosis at  different levels in  rabbit skin, 

consistent with the results of the spectrofluorimetric 

analysis of  sphingomyelin hydrolysis (Appel et al.,  2008; 

Chaves-Moreira et al.,  2011; Vuitika et al.,  2013). Ribeiro 

et al.  (2007) reported that LiRecDT1  and LiRecDT2  were 

similar in  all  functional tests, such as  in  vivo  edema or 

cytotoxicity, while the LiRecDT3 effect was significantly less 

intense. The   amino acid   alignment  observed paralleled 

these results: LiRecDT1 and LiRecDT2 were very similar, but 

LiRecDT3  slightly was different. LiRecDT3  showed some 

important differences in hydrophobicity at the boundaries 

of  the  catalytic site,   which  can   explain  its   differential 

performance. 

Furthermore, site-directed mutagenesis of His12 of LiR- 

ecDT1, predicted to play  a central role  during catalysis, was 

not sufficient to  completely abolish its  catalytic activity. 

Moreover, the LiRecDT1H12A  mutant isoform has  a drastic 

reduction in  its  enzymatic activity, but with no  change in 

the secondary structure, compared with LiRecDT1.  Inter- 

estingly, the mutant isoform was unable to induce the same 

level  of any  activity examined, but the attachment to  the 

cell  surface or  to mobilized lipids was unaltered (Kusma 

et al., 2008; Paludo et al., 2009; Chaim et al., 2011b; Wille 

et al.,  2013). Most likely,   the other protein domains be- 

sides the catalytic cleft were preserved, as  they might be 

relevant  for   the  interaction of  the  toxin with  the  cell 

membrane or lipid  substrates. In general, the main value of 

PLD catalysis can  be  related to the release of lipid  metab- 

olites, which could modulate  a  wide range of  biological 

events, such as the cell  cycle,  cell  proliferation, cell  differ- 

entiation   processes  and   cell    death   (Marchesini  and 

Hannun, 2004; Tani et al., 2007). 

Studies have shown the upregulation of the expression 

of proinflammatory cytokines/chemokines after the expo- 

sure of human fibroblasts to the L. reclusa PLD (Dragulev 

et al., 2007), which hydrolyzes the cell  membrane sphin- 

gomyelin to ceramide 1-phosphate (C1P) and would lead to 

a  receptor-dependent  inflammatory response. This  idea 

challenged the hypothesis that lysophosphatidic acid  (LPA) 

was a preferential product and bioactive metabolite instead 

of C1P, due to the relative LPC abundance in the plasma as a 

substrate (van Meeteren et al., 2004, 2007). Recently, Horta 

et al. (2013) showed that cell death was induced by L. similis 

whole venom (LsV)  and especially with  a  recombinant 

isoform of L. intermedia PLD, recLiD1  (Kalapothakis et al., 

2002; Felicori et al., 2006). LPA released by the PLD activ- 

ity of LsV and recLiD1 was unable to activate LPA receptors 

in the presence of an LPA1/LPA3 antagonist. This effect was 

indirectly observed by  ELISA assays for  IL-6, IL-8, CXCL1, 

and CXCL2. Moreover, the authors did  not find that LPA 

played a role  in the apoptosis induced by LsV or recLiD1  in 

fibroblast and  endothelial  cells   in  vitro,   which  may  be 

related to  other LPA-independent stimuli or  to  C1P acting 

on  the cell  membrane receptors, as  has  been previously 

described (Horta et al.,  2013). The  variety of  molecular 

mechanisms triggered by  Loxosceles  PLDs and their lipid 

metabolites remains open  to  further  investigation as  a 

complex event dependent on  the cell types involved, lipid 

substrate  abundance  and  availability and  intracellular 

signaling cascades. PLDs can  serve as biotools for the study 

of  cell–cell communication   via   cell   membranes  in   the 

context of inflammation. PLD isoforms have been proposed 

as  potential models for  designer drugs or  other biotech- 

nological applications  (Senff-Ribeiro et  al.,  2008; 

Tambourgi  et al., 2010; Chaim et al., 2011a). The  produc- 

tion of more stable PLD isoforms with enhanced enzymatic 

activity would greatly contribute  to many areas of  tox- 

inology and to  the complete understanding of  the 

biochemical features of PLDs, their many biological impli- 

cations and their related molecular mechanisms. 

 
6.1.1.  Phospholipase D topology  and  structure 

The amino acid  sequence comparisons of spider venom 

phospholipases D indicate that they contain either 284  or 

285  amino acids and display a  significant degree of  ho- 

mology (de  Santi Ferrara et al.,  2009). This  single poly- 

peptide chain folds  to  form a  distorted barrel where the 

inner barrel surface is lined with eight parallel b-strands 

(termed A–H) linked by short flexible loops to eight a-he- 

lices (termed helices 1–8) that form the outer surface of the 

barrel (Murakami et al., 2005) (Figs.  4 and 5).  This  struc- 

tural motif was first observed in the structure of the triose 

phosphate  isomerase (TIM)  and is  referred to  as  a  TIM 

barrel or as an  (a/b)8 barrel. The topology diagram (Fig. 5) 

presents a structural schematic where the a-helices and b- 

strands are  depicted as cylinders and arrows, respectively, 

and the central region forms the (a/b)8 barrel. The  inter- 

connecting loops are  primarily hydrophilic and hydropho- 

bic in the upper and lower sections, respectively (Fig. 5). A 

short b strand (B0 ) is inserted between strand B and helix 2, 

and two short helices (30  and 40 ) are inserted between helix 

3 and strand D, and helix 4 and strand E. The catalytic loop 

is stabilized by  a disulfide bridge (Cys51 and Cys57)  and a 

second disulfide bridge (Cys53 and Cys201) is present only in 

the class  II enzymes (de  Giuseppe et al., 2011), which links 

the catalytic loop to the flexible loop to significantly reduce 

the flexibility of the latter loop,  as evidenced by the mean 

temperature factors (Figs. 4 and 6).
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Fig.  4.  Structural alignment between the class I and class II phospholipases D. (A) The  residues involved in the metal–ion binding and catalysis are highlighted. 

The  catalytic, flexible and variable loops are colored in  orange, blue and magenta, respectively.  The  dark and light colors refer to phospholipase D  II and 

phospholipase D I, respectively.  The  Mg
þ2  

ion  is  represented by  a green sphere. The  disulfide bridges are represented as  yellow-colored sticks. (B) The  coor- 

dination sphere of the Mg
2þ  

ion.  The figure color codes refer to the on-line images. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

Because the  a-helices,  b-strands  and  loops  vary   in 

length and character,  the barrel with a  surface area  of 

11,254 Å2  is significantly distorted (Fig. 4). The  interior of 

the barrel is densely packed with hydrophobic amino acids, 

and  the  short  N-terminal section and  the  C-terminal 

extension, which contains a short helix (80 ), a b-strand (H0 ) 

and a random coiled region, serve to cap the torus of the far 

side  of the barrel. The surface loops forming the near side  of 

the barrel are   mainly hydrophobic, and a  narrow cavity 

provides access to the catalytic site,  which is characterized 

by  a  ring   of  negatively charged amino acids (Murakami 

et al., 2005; de  Giuseppe et al., 2011). The  catalytic, vari- 

able  and flexible loops are  located on  the same face  of the 

barrel and are  colored orange, magenta and blue,  respec- 

tively (Fig.  4).  The  catalytic and Mg2þ   binding sites are 

located in  a shallow depression and contain His12,  Glu32, 

Asp34,  Asp91,  His47,  Asp52,  Trp230, Asp233, and Asn252, which 

are  fully  conserved in Loxosceles PLD isoforms (Figs. 4 and 

7) (Murakami et al., 2005; de  Giuseppe et al., 2011). 

Mutagenesis studies of PLDs (de  Giuseppe et al., 2011; 

Ullah   et al.,  2011) and  its   crystal structure  (Murakami 

et al.,  2005) indicate the involvement of  two histidines 

that are  in close proximity to the metal ion-binding site  in 

the acid-base catalytic mechanism. Based  on the structural 

results, His12 and His47 of PLD have been identified as the 

key  residues for  catalysis and are  assisted by  a hydrogen 

bond network that involves Asp52,  Asn252, and Asp233. The 

metal ion is coordinated by Glu32,  Asp34,  Asp91,  and solvent 

molecules (Fig. 4B). 

 
6.1.2.  Involvement of the Mg2þ  ion in the phospholipase D 

catalytic mechanism 

The  Mg2þ  ion  is essential for  catalysis, and its  binding 

site   is  completely conserved in  all  spider venom phos- 

pholipases D. Mg2þ  ion  is octahedrally coordinated (with a 

mean Mg2þ–O  distance of 1.98  A) (Fig. 4)  equatorially by 

the carboxylate oxygens of  the side   chains of  Glu32 and 

Asp34  and  by   two  tightly bound water  molecules and

 

 

 
 

Fig.  5.  Structural topology of L. laeta phospholipase D I and L. intermedia phospholipase D II. The  b-strands (arrows) and a-helices (cylinders) forming the (a/b)8 

barrel are labeled A–H and 1–8,  respectively. The b-strands and a-helices not belonging to the core are designated with a prime. The positions of the catalytic loop 

B (orange), variable loop E (magenta), flexible loop F (blue), and the disulfide bridge (S–S) are indicated. The  approximate relative positions of the amino acids 

involved in  the catalysis and Mg
2þ  

ion  binding are indicated. The  dashed line represents the additional disulfide bond in  phospholipase D II. Letters N and C 

represents the positions of amino- and carboxi-terminal domains of proteins. Figure color codes refer to the on-line images. (For  interpretation of the references 

to colour in  this figure legend, the reader is referred to the web version of this article.)
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Fig.  6.  Protein flexibility by B factor analysis. (A) Ribbon representations  of the phospholipase D structures colored to indicate the mean temperature factors as 

indicated by the bar  graph. A light blue surface indicates the cavity volume of the active site. (B) The mean temperature factors (blue, main chain; red, side chain) 

as a function of the amino acid  residues. The  inset highlights the flexible region as discussed in the text. 1XX1 and 3RLH are the protein data bank codes for  the 

Class  I and Class  II enzymes, respectively. Plot  performed by MSSP module of BlueStar STING (Neshich et al., 2005). Figure color codes refer to the on-line images. 

(For  interpretation of the references to colour in  this figure legend, the reader is referred to the web version of this article.) 

 

apically by the side-chain carboxylate oxygen atoms of the 

Asp91 and by  a  water  molecule, which is  also  hydrogen 

bonded  to   the  Glu32Oε1 atom.  The   enzyme  structure 

determined  in   the  presence  of   a   bound  sulfate  ion 

(Murakami et al., 2005), which is considered to occupy the 

position of the substrate phosphate moiety, is coordinated 

by  three solvent molecules, two of which also  coordinate 

the Mg2þ  ion.  The  indole ring  of Trp230  is partially disor- 

dered and likely  plays a role in stabilizing the choline head 

group of the substrate.

 

 

 
 

Fig.  7.  The  reaction mechanism of phospholipase D. The  acid-base catalytic mechanism involves His
12 

and His
47

. R and R0  indicate ceramide 10 -phosphate and 

choline, respectively.
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Based  on  the crystal structures of  phospholipase D, a 

two-step catalytic mechanism has  been suggested where 

His12 and His47 play important roles (Fig. 4). In the first step 

of this mechanism, His
47 

plays a role  as a nucleophile that 

initiates the attack on  the substrate scissile phosphodies- 

terase bond, which is followed by the formation of a penta- 

coordinated intermediate that is subsequently destabilized 

by the donation of a hydrogen atom by His12, leading to the 

formation of  a  choline molecule. In  the second reaction 

step, His12 abstracts a proton from a solvent molecule that 

then initiates a nucleophilic attack on  the stable covalent 

histidine intermediate, resulting in  the formation of  the 

second product, ceramide 1-phosphate, and a return to the 

initial state. The  Mg2þ  ion  is  important for  the substrate 

recognition and binding and for further stabilization of the 

intermediate state in the two-step catalytic mechanism. 

 
6.2.  Astacins 

 
The  astacins are  a family of proteases belonging to  the 

metzincin  super family, which are  grouped with the zinc- 

dependent  metalloproteases  (Gomis-Rüth, 2003; Sterchi 

et al., 2008). Many metalloproteases  are  characterized by 

a conserved pentapeptide HEXXH in the active site,  which 

is essential for metal ion coordination and catalysis (Sterchi 

et al., 2008). 

The  first report of  proteases in  Loxosceles  venom was 

described in L. reclusa venom, which showed protease ac- 

tivity  against  Heliothis virescens and  Musca   domestica 

larvae, as observed by histochemical techniques (Eskafi  and 

Norment, 1976). In addition, the L. reclusa venom protease 

activity was assayed on  L-aminoacyl-b-naphthylamide de- 

rivatives and was shown to act more efficiently on L-Leucyl- 

b-naphthylamide, although other derivatives were also 

susceptible (Jong  et al., 1979). 

In  L.   intermedia venom,  two  metalloproteases  were 

identified, Loxolysin A, a 20–28 kDa protease that degrades 

the Aa and Bb chains of  fibronectin and fibrinogen, and 

Loxolysin B, a  30–32 kDa  protease with gelatinolytic ac- 

tivity (Feitosa et al., 1998). Similarly, proteolytic enzymes 

were identified in L. rufescens venom: a 23  kDa  fibrinoge- 

nolytic protease  and  a  27.5   kDa   gelatinolytic  protease, 

which were both inhibited by  1,10-phenantroline (Young 

and  Pincus, 2001). The  fibrinogenolytic activity was re- 

ported in both L. reclusa venom and L. laeta venom, which 

showed the same partial effects that were observed in  L. 

intermedia venom (i.e.,  the degradation of the Aa and Bb 

fibrinogen chains) (Zanetti et al., 2002). L. deserta, L. gaucho 

and L. reclusa venoms were also  shown to include metal- 

loproteases (Barbaro et al., 2005). Other extracellular ma- 

trix  components were also  demonstrated as targets for the 

Loxosceles metalloproteases, such as entactin and heparan 

sulfate proteoglycans (Veiga et al., 2000b, 2001a). Although 

with the identification of  these Loxosceles  proteases, the 

proof that  proteases  are   venom  components  and  not 

contamination derived from gastric contents during venom 

extraction was reported in two crucial studies of L. rufescens 

venom and L. intermedia venom (Young and Pincus, 2001; 

da  Silveira et al., 2002). The  proteolytic effect of L. rufes- 

cens  venom discussed above was observed in  venom ob- 

tained  by    micro-dissection  of   the   venom  glands,  a 

procedure that ensures the absence of gastric contaminants 

(Young  and  Pincus, 2001). For  L.  intermedia venom, the 

protein profile and proteolytic activity were very similar 

between the venom collected by  electrostimulation 

(possible contamination)  and  macerated  venom  glands 

(free from gastric contaminants) (da  Silveira et al., 2002). 

A sequence encoding an  astacin-like metalloprotease 

was first identified in a cDNA library of L. intermedia venom 

glands (da   Silveira et  al.,  2007a).  Astacin-like proteases 

(Merops M12A  family) have a  consensus sequence of  18 

amino      acids     forming     the      catalytic     domain 

–HEXXHXXGXXHEXXRXDR – in which the three histidines 

are  involved in  zinc  binding, which is  necessary for  the 

catalytic activity. In addition, they have a conserved 

methionine residue involved in a sequence turn, termed a 

met-turn (MXY) (Gomis-Rüth, 2003; Sterchi et al., 2008; 

Gomis-Rüth et al., 2012). The identified L. intermedia asta- 

cin   sequence  was  named  LALP (Loxosceles   astacin-like 

protease) and possesses astacin family signatures (cata- 

lytic  domain and met-turn). LALP was shown to be  cyto- 

toxic upon rabbit subendothelial cells and able to hydrolyze 

fibrinogen and fibronectin (da  Silveira et al., 2007a). Asta- 

cin  family members have been described in  prokaryotes 

and eukaryotes and possess diverse and distinct biological 

functions. In general, they are  expressed in specific tissues 

of  mature  organisms, and during embryo development, 

they are  temporally and spatially regulated (Gomis-Rüth, 

2003; Mörhlen et al., 2003, 2006). The presence of astacin 

proteases in  animal venoms is rare because LALP was the 

first report in  the literature of  an  astacin molecule as  a 

constituent of animal venom (da  Silveira et al., 2007a). 

Recently,  two new isoforms of  astacin-like proteases 

were identified in L. intermedia venom (named LALP2 and 

LALP3) and in L. laeta venom (LALP4) and L. gaucho venom 

(LALP5). These findings demonstrate that astacin proteases 

are a family of toxins present in Loxosceles venoms and that 

they are important components of these venoms (Trevisan- 

Silva et al., 2010, 2013). Corroborating the biological 

importance of  the Loxosceles  astacin-like proteases, tran- 

scriptome   analyses   showed   that   astacins   are     high 

expressed  toxins  in   L.   laeta and  L.   intermedia  venoms 

(Fernandes-Pedrosa et al., 2008; Gremski et al., 2010). In L. 

laeta venom, astacin’s transcripts represents 8% of the total 

transcripts, and in L. intermedia venom, they represent 9.8% 

of  the  toxin transcripts, representing  the  second most 

expressed  toxin in  both  species (Gremski et  al.,  2010). 

Studies  concerning the  biological activities of  Loxosceles 

astacins are   essential to improve the knowledge of  lox- 

oscelism and to apply these toxins in biotechnology. 

 
6.3.  Brown spider  venom  Inhibitor  Cystine Knot (ICKs) 

 
In early the 1990s, many venom peptides from spiders, 

scorpions, cone snails and sea  anemones had their struc- 

tures solved using various techniques. A great number of 

cysteine-rich peptides were described, including a  com- 

mon structural  motif called the “Inhibitor Cystine Knot” 

(ICK) (Daly  and Craik,  2011). These peptides share a com- 

mon  structure   with   three   disulfide  bonds  and  are 

composed of three antiparallel b-sheets (Craik  et al., 2001; 

Zhu et al., 2003; Daly and Craik, 2011). Two disulfide bonds
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form a ring  that is crossed by the third bond, which forms 

the structural motif ICK. This same structural motif is found 

in  two other families: the Cyclic  Cystine Knot  (CCK) or 

cyclotide family and Growth Factor Cystine Knot  (GFCK) 

family (Vitt et al., 2001; Craik et al., 2010; Iyer and Acharya, 

2011). This molecular scaffold renders ICK peptides highly 

resistant to protease action, making them good targets for 

drug design (Daly and Craik, 2011; King, 2011; Moore et al., 

2011). The homology between ICK peptides is usually low, 

but the distribution of cysteine residues is often conserved. 

Further studies showed that ICK peptides have an  amino 

acid  consensus sequence of CX3–7CX3–6CX0–5CX1–4CX4–13C, 

where X can  be  any  amino acid  (Craik  et al.,  2001). ICK 

toxins are  quite diverse in their biological activity because 

they can act in voltage-gated sodium, potassium or calcium 

channels; mechanosensitive channels; nicotinic acetyl- 

choline receptors or ryanodine receptors (Nicholson et al., 

2004; Dutertre and Lewis,  2010). 

Among spiders, many ICK toxins have been described. 

One of the most well-studied families is the d-Atracotoxins 

(d-ACTX)  family isolated from the  venom of  Australian 

funnel-web spiders. d-ACTX show a similar action to the sea 

anemone and scorpion ICK toxins, binding at  site  3 of the 

sodium ion channel, which causes neurotransmitter release 

in the nerve endings and results in the disturbance of the 

autonomic and somatic nervous systems (Nicholson et al., 

2004). 

From    Loxosceles   venom,  three   insecticide  peptides 

named LiTx 1-3  have already been purified (de Castro et al., 

2004). These peptides  were  isolated  from L.  intermedia 

venom using a combination of chromatography techniques, 

and their activities were assessed in  Lepidoptera larvae, 

resulting in an LD50 of 0.90–1.92 mg/g insect. These authors 

proposed that LiTx 3 may act on NaV channels as with other 

toxins and that LiTx 2 and 3 may act  on  NaV or CaV chan- 

nels.   Furthermore,  Fernandes-Pedrosa  et al.  (2008) 

analyzed the L. laeta transcriptome and found that 0.2% of 

all toxin transcripts matched with the ICK neurotoxin Magi 

3 from Macrothele gigas  (Corzo  et al., 2003), which bind at 

site  3 of NaV channels. The transcriptome analysis of the L. 

intermedia venom gland showed that  55.5%  of  all  tran- 

scripts putatively encode for  toxins that potentially repre- 

sent  insecticide peptides  and  can   be   classified  as   ICK 

peptides. From   the 55.5%  of  transcripts, 2.3%  represent 

transcripts  similar to  Magi   3,  such as  those transcripts 

described for L. laeta. The most abundant venom transcripts 

found were transcripts similar to LiTx 3 (32%), LiTx 2 (11.4%) 

and  LiTx   1   (6.2%).   This    transcriptome   analysis  also 

described transcripts encoding LiTx 4, another ICK peptide 

not yet characterized, which represent 3.7% of  the toxin 

transcripts. Recently, it was described the cloning, recom- 

binant peptide production, polyclonal antibody obtention 

and evaluation of the cross-reactivity of a novel toxin with a 

great similarity to the ICK family of peptides from L. inter- 

media venom. This peptide was named U2-sicaritoxin-Li1b 

(U2-  SCRTX-Li1b) according to the nomenclature proposed 

by King et al. (2008) (Matsubara et al., 2013). 

The interest in ICK toxin class  is due to their targeting of 

ion channels, which are transmembrane protein complexes 

regulating ion  flux  and membrane potential. This ability of 

ICK peptides  to  specifically bind to  some ion   channels 

provides a great tool  not only  for electrophysiology and cell 

biology studies but also  for  drug design. In  addition, the 

high specificity of spider peptides for insect receptors leads 

to the proposal of using these peptides for developing novel 

insecticidal targets  or  for  the development of  new bio- 

pesticides (Estrada et al., 2007; Dutertre and Lewis,  2010; 

Klint  et al.,  2012). Currently, there is  no  evidence of  the 

involvement of brown spider ICKs in  the pathogenesis of 

spider bites. 

 
7.  Low  level of  expression toxin families 

 
Loxosceles venoms have demonstrated little variation in 

overall toxin  composition  (Ramos-Cerrillo et  al.,  2004; 

Barbaro et  al.,   2005;  Fernandes-Pedrosa et  al.,   2008; 

Gremski et al., 2010; Trevisan-Silva et al., 2010). The  high 

degree of intragenus toxin preservation is evidence of the 

evolutionary success of the venom formulation and is 

suggestive of  the important functions of  some  types  of 

toxins (Trevisan-Silva et al., 2010; Corrêa-Netto et al., 2011). 

However,  transcriptome  analyses of  L.  intermedia and L. 

laeta venoms indicate some differences in the level  of toxin 

expression in  this genus. In  the analyses of  the L.  laeta 

venom gland expression profile, relatively low  numbers of 

transcripts of serine proteases, enzymatic inhibitors, C-type 

lectin,  hyaluronidases,  50 -nucleotidases, chitinases  and 

venom  allergens  were  found  (Fernandes-Pedrosa  et  al., 

2008).  On   the  other  hand,  Gremski and  co-workers 

showed low  numbers of transcripts that coded for  serine 

proteases,  venom  allergen,  TCTP  (Translationally 

Controlled Tumor Protein), hyaluronidases and serine 

proteases inhibitors (Gremski et al., 2010). The hypotheses 

that may explain these differences in  the profile of toxins 

with low  level  expression include the different approaches 

and methodologies employed in the analyses. Additionally, 

these differences apply to different species, which reinforce 

the previous data that showed distinct behaviors among 

the venoms from distinct Loxosceles species. 

Venom variations occur at  all  taxonomical levels and 

can   significantly impact the  clinical manifestations and 

efficacy of  anti-venom  therapies  following a  spider bite. 

Cases  of incomplete intrageneric antivenom efficacy have 

been  documented,  implying a  high interspecies venom 

variation (Casewell et al., 2009). Abundant differences can 

be observed between the venom compositions of different 

genera, the venom compositions of different species within 

a  genus  and  the  venom  compositions of  different in- 

dividuals within a species (e.g.,  individuals from different 

geographical regions). Apparently, the venom composition 

is subject to strong natural selection pressure as a result of 

adaptation to  specific diets because the primary role   of 

venom is  to  aid  in  prey capture (Ruiming et al.,  2010). 

Additionally, toxins with low  level   of  expression do  not 

necessarily possess a  low  activity. On  the contrary, some 

types of these toxins have been postulated to  have a high 

activity and high stability (Morey et al.,  2006; Reitinger 

et al., 2008; Menaldo et al., 2012; Valeriano-Zapana et al., 

2012), and therefore,  these molecules would not be  syn- 

thesized in  large amounts. The  below sub-items further 

discuss some of these low  level  of expression toxin family- 

members.
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7.1.  TCTP 

 
The  L. intermedia venom gland transcriptome analysis 

described  the  sequence  of   a   protein  identified  as   a 

member of the TCTP family and revealed that this TCTP is 

present at relatively low  levels in the venom, only  0.4% of 

the transcripts that encoded toxins (Gremski et al., 2010). 

The   name  TCTP  stands   for  Translationally  Controlled 

Tumor  Protein, as this protein was described by scientists 

studying proteins that were regulated at the translational 

level.   The   tumor  is  derived from the  first TCTP cDNA 

sequence described, which was obtained from a  human 

mammary tumor (Bommer, 2012). This  protein was also 

shown   to     be     a    histamine-releasing    factor   (HRF) 

(McDonald et al., 1995) and a fortilin (Li et al., 2001). The 

L. intermedia TCTP was cloned and expressed as  a heter- 

ologous protein  in   an   E.  coli  expression  system.  The 

functional characterization  of  the recombinant protein, 

LiTCTP,   showed  that   this  toxin  caused  edema  and 

enhanced vascular permeability (Sade et al.,  2012). The 

cutaneous  symptoms  of  envenomation with  Loxosceles 

venoms  include  erythema,  itching  and  pain.  In  some 

cases, Loxosceles  spider bites can  cause hypersensitivity 

or even allergic reactions. These responses could be 

associated with histaminergic events, such as an  increase 

in  the vascular permeability and vasodilatation. LiTCTP 

could be  related to  these deleterious venom actions as  it 

was identified in  L. intermedia venom (Sade et al., 2012). 

Another Loxosceles TCTP has  been described in the venom 

gland of  L.  laeta by  transcriptome  analysis (Fernandes- 

Pedrosa et al.,  2008). Recently, a  transcriptome analysis 

revealed a TCTP protein (named GTx-TCTP) in the venom 

gland and the pereopodal muscle of the tarantula 

Grammostola rosea (Kimura  et al., 2012). 

Proteins of  the TCTP super family have already been 

described in  the  gland secretions of  many arthropods, 

such as  ixodid ticks, and in  the venom gland of the wolf 

spider (Lycosa  godeffroyi), where it was described as  the 

principal  pharmacological  toxin  (Mulenga  and  Azad, 

2005; Rattmann et al., 2008). TCTP family members  are 

described as  extracellular HRFs and are associated with 

the allergic reactions of parasites. Among species from the 

same   genus,   the   TCTPs   are   completely   conserved 

(Bommer and Thiele,  2004). A LiTCTP phylogeny tree 

demonstrates the similarities with the TCTPs from ixodid 

ticks, which  were  also  characterized as  HRFs  (Mulenga 

and Azad,  2005; Sade  et al., 2012). In the case  of the Lox- 

osceles  venom gland, the TCTP and other constituents of 

the whole venom are  secreted via a holocrine secretion as 

determined by ultrastructural studies of the L. intermedia 

venom  gland (dos   Santos  et  al.,  2000; Gremski et  al., 

2010).  TCTP secretion  from  cells   proceeds  via   an   ER/ 

Golgi-independent or non-classical pathway, most likely 

mediated by secreted vesicles called exosomes (Amzallag 

et al., 2004; Hinojosa-Moya et al., 2008). TCTP mRNAs  do 

not encode a  signal sequence, and no  precursor protein 

has  been described; however, a TCTP protein was found in 

the biological fluid of asthmatic or parasitized patients, in 

the saliva of  ticks  (Bommer and Thiele,  2004; Hinojosa- 

Moya   et al.,  2008) and in  the crude venom of  L.  inter- 

media. TCTPs represent a large protein family that is highly 

conserved and ubiquitous in  eukaryotes, and they mem- 

bers are widely expressed in various tissues and cell types. 

TCTP protein levels are  highly regulated in  response to a 

wide range of extracellular signals and cellular conditions, 

which points to an  involvement in  various participating 

biological functions at diverse biochemical and signaling 

pathways. In fact, a wide range of functions and different 

biochemical roles have already been examined in the TCTP 

family (Bommer and Thiele,  2004; Choi  and Hsu,  2007; 

Bommer, 2012). 

TCTP proteins have already been described as calcium- 

binding proteins  (Graidist et  al.,  2007) and  as  proteins 

that interact with the cytoskeleton by binding to and sta- 

bilizing microtubules (Bazile  et al., 2009). The involvement 

of  TCTP in  the mitotic spindle has  also  been shown, and 

TCTP is  now considered a  regulator of  mitosis  (Burgess 

et  al.,  2008).  The   crucial  role  of  TCTP  has   also   been 

described in  early development. The  loss  of TCTP expres- 

sion   in  mice leads to  increased spontaneous  apoptosis 

during  embryogenesis  and  causes lethality  (Chen et  al., 

2007; Susini et  al.,  2008).  TCTP can   be  described as  a 

multifunctional protein due to the high number of protein 

partners and the several areas/pathways of cell metabolism 

where it is involved (Amson et al., 2013a). 

The  downregulation of  TCTP has   been implicated in 

biological models of tumor reversion (Tuynder et al., 2002, 

2004), and the protein is the target of various anticancer 

drugs (Efferth, 2005; Telerman  and Amson, 2009; Amson 

et al., 2013b). 

Studying LiTCTPs can  elucidate the biological aspects of 

loxoscelism, especially those aspects related to the hista- 

minergic symptoms. Moreover,  LiTCTP investigation can 

provide new insights regarding the TCTP family and its 

different functions. LiTCTP is a promising subject for study 

in toxinology and in immunological, allergenic and exper- 

imental oncology. 

 
7.2.  Hyaluronidases 

 
Hyaluronidases are  a  group of  enzymes that degrade 

hyaluronic acid  (HA) and, to  a limited extent, chondroitin, 

chondroitin sulfate (CS) and dermatan sulfate (DS). HA is a 

ubiquitous component of the vertebrate extracellular ma- 

trix  where it  fills  the space between cells  and acts  as  a 

lubricant and a barrier to the penetration of foreign parti- 

cles  (Markovic-Housley et al., 2000). 

This  type of  matrix-degrading enzyme are   found in 

many animal venoms, such as  lizards, scorpions, spiders, 

bees, wasps, snakes and stingrays (Girish and Kemparaju, 

2005;  Kemparaju   and  Girish, 2006;  Magalhães  et  al., 

2008). These enzymes are  always reported as  “spreading 

factors”  in  the  venoms due to their  ability to  degrade 

extracellular matrix components and  to  increase the 

diffusion of other toxins from the inoculation site 

(Kemparaju and Girish, 2006). 

Wright et al.  (1973) were the first to describe hyal- 

uronidase activity in  the Loxosceles  genus. This  work was 

performed with L. reclusa venom, and the purified enzymes 

were estimated to  have molecular mass of 33  and 63  kDa 

(the 63  kDa  protein is thought to be  a 33  kDa-dimer) by 

SDS-PAGE.  These enzymes exhibited  activity against HA
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and CS types A, B, and C. (Wright et al., 1973). Although 

Loxosceles-derived hyaluronidases  alone  are   not able   to 

produce  necrosis, they are   thought to  be  an   important 

factor in the spread of these venoms. The detection by HA- 

substrate SDS-PAGE of a hyaluronidase of 32.5  kDa from L. 

rufescens venom  has   been reported (Young  and  Pincus, 

2001).   In   Loxosceles    envenomation,   the   presence   of 

edema, erythema and necrosis is common, which indicates 

extracellular matrix disturbances. 

Barbaro et al.  (2005) found hyaluronidase activity on 

hyaluronic acid in a 44 kDa protein in L. deserta, L. gaucho, L. 

intermedia, L. laeta and  L. reclusa venoms. Shortly after, da 

Silveira et al.  (2007c) showed that  L.  intermedia venom 

contained at least two hyaluronidase isoforms. This venom 

demonstrated lysis  of both HA and CS substrates at 41 and 

43  kDa. These authors also  showed, using biochemical as- 

says,   that  the hyaluronidases from this venom are   pH- 

dependent  endo-b-N-acetyl-D-hexosaminidase hydro- 

lases. L. intermedia venom was also  able  to degrade HA in 

rabbit skin  (da Silveira et al., 2007c). A proteomic study also 

corroborated the presence of hyaluronidases in  Loxosceles 

venoms (dos  Santos et al., 2009). 

Analyzing  the  transcriptome of  L.  laeta,  Fernandes- 

Pedrosa et  al.  (2008)  found  4  clones within  1  cluster 

with  similarity to   the  hyaluronidase from  Bos  taurus 

(gbjAAP55713.1),      which      represented      0.13%       of 

the  total  transcriptome.   In   addition,   Gremski  et  al. 

(2010) demonstrated  a  unique  partial sequence in  the 

L. intermedia transcriptome with similarity to  hyalurono- 

glucosaminidase  1   from  Rattus  norvegicus 

(gbjEDL77243.1).  Recently,  the  first  recombinant hyal- 

uronidase from the Loxosceles venom was produced from 

L.  intermedia venom  gland cDNA  (Dietrich’s  Hyaluroni- 

dase). The recombinant toxin was expressed in E. coli and 

had a  molecular mass of  approximately 45  kDa.  Hyal- 

uronidase activity of this recombinant toxin was detected 

on  HA and CS after refolding in  vitro. An  assessment of 

dermonecrosis in vivo showed that Dietrich’s Hyaluroni- 

dase  increased the  macroscopic erythema,  ecchymosis 

and  dermonecrotic  effect induced  by  the recombinant 

dermonecrotic toxin (LiRecDT1)  a  phospholipase D  ho- 

mologue in rabbit skin.  This work confirmed the hypoth- 

esis   that  hyaluronidase acts  as   a   spreading  factor  in 

Loxosceles venoms (Ferrer et al., 2013). 

HA levels are markedly increased during embryogen- 

esis,     inflammation,    malignant    transformation,    and 

wound healing and whenever  fast tissue turnover  and 

remodeling is  required.  The  occurrence of  various dis- 

eases related to  HA metabolism suggest that the level  of 

HA must be  tightly controlled (Markovic-Housley et al., 

2000; Girish and Kemparaju, 2007). The  process of 

degradation of  glycosaminoglycans from connective tis- 

sues is  related to bacterial pathogenesis,  the spread of 

toxins  and  venoms, fertilization processes,  and cancer 

progression (Hynes and Walton, 2000; Girish et al., 2004; 

Girish  and   Kemparaju,   2007;  Lokeshwar   and  Selzer, 

2008).  Therefore,  the identification and characterization 

of  hyaluronidase  inhibitors  could be   important in  the 

development of new drugs and biotechnological tools to 

be  applied in  the above-mentioned fields (Botzki et al., 

2004; Barla  et al., 2009). 

7.3.  Serine proteases 

 
Serine  proteases  were  first  identified  in   Loxosceles 

venom as  zymogens activated  by  trypsin (Veiga   et  al., 

2000a). In Veiga  et al. (2000a), using zymography assays 

with venom previously incubated with exogenous pro- 

teases,  trypsin was shown to activate two gelatinolytic 

molecules of 85 and 95 kDa in L. intermedia venom. Among 

the various protease inhibitors assayed, only  serine prote- 

ase  inhibitors were able  to  inactivate these enzymes. The 

activity of the assayed L. intermedia serine proteases were 

optimal in a pH range of 7.0–8.0, and no enzymatic activity 

was observed on  hemoglobin, immunoglobulin, albumin, 

fibrinogen or  laminin, suggesting the specificity of  their 

proteolytic actions. 

At the time, no  previous descriptions of proteases that 

behaved  as   zymogens  had  been  described  for   spider 

venoms. However,  as  this feature had already been re- 

ported for  several snake venom proteases, the  authors 

suggested that trypsin treatment could specifically degrade 

the pro-peptide domains of  the zymogen molecules and 

release the active proteases. As this activation was only 

observed after treatment with trypsin, even though various 

proteases were assayed, it  was suggested that the hydro- 

lysis of zymogen molecules of L. intermedia serine proteases 

was specific because trypsin hydrolyzes peptide  bonds 

immediately after a lysine or arginine (Veiga  et al., 2000a). 

Consistent with the results of the Veiga  et al. (2000a) 

study,  Machado et al.  (2005) also  found high molecular 

mass proteins at  85–95 kDa  in  2-DE  gels.  These protein 

spots were also  detected in L. laeta and L. gaucho venoms. 

The  transcriptome analysis of the L. laeta venom gland 

revealed twelve clusters that grouped fourteen ESTs puta- 

tively assigned as  serine proteases coding sequences 

(Fernandes-Pedrosa et al., 2008). All clusters are  similar to 

serine proteases described in  arthropods,  such as  ticks, 

spiders and crabs. Shortly thereafter, a proteome study of L. 

intermedia venom described five peptide sequences similar 

to snake venom serine proteases (dos  Santos et al., 2009). 

A transcriptome  analysis of  the L.  intermedia venom 

gland putatively assigned five  transcripts as  serine pro- 

teases (Gremski et al., 2010). The  ESTs were grouped into 

two clusters with no  sequence similarity with each other. 

One    of   the  sequences  significantly aligned  with  an 

arthropod serine protease that was most likely  synthesized 

as  an   inactive precursor  (Nene et  al.,  2007).  The  other 

cluster was similar to  a  serine protease sequence of  the 

spider Lycosa sigoriensis venom gland (Gremski et al., 2010; 

Zhang et al., 2010). As previously mentioned, L. intermedia 

venom demonstrated serine proteolytic activity at two high 

molecular mass proteins, suggesting that  two  or   more 

molecules in  the venom exhibit these particular charac- 

teristics (Veiga  et al., 2000a). Thus,  it is not surprising that 

both   transcriptome   and   proteome   studies   described 

distinct sequences coding for serine proteases (Fernandes- 

Pedrosa et al., 2008; dos  Santos et al., 2009; Gremski et al., 

2010). The  latter Loxosceles  venom proteome study noted 

that the serine proteases in venoms have also  been related 

to complement activation (dos  Santos et al., 2009). In fact, 

various studies have related the involvement of  comple- 

ment system factors in the pathological events triggered by
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Loxosceles  venom, such as  hemolysis and dermonecrosis 

(Lane  and Youse,  2004; Tambourgi et al., 2005). However, 

this feature is currently associated specifically with venom 

phospholipases D. 

Venom serine proteases, in  addition to their contribu- 

tion to  prey digestion, can  play  an  important role  in  local 

tissue destruction and interfere in  blood coagulation and 

fibrinolysis (Veiga  et al., 2000a; Kini, 2005; Devaraja et al., 

2010).  In   fact,    venom  serine  proteases   may  possess 

thrombin-like, fibrinogenase and plasminogen-activating 

activities, and they are  molecules with the potential to be 

novel diagnostic or anti-thrombotic agents (Muanpasitporn 

and Rojnuckarin, 2007). Snake venom serine proteases, in 

turn, have been used to determine fibrinogen levels in the 

presence of heparin (Reptilase   time, Funk  et al., 1971) and 

to  remove fibrinogen in  samples for  thrombin-dependent 

tests  (Mullin et  al.,   2000).  In   addition,  recombinant 

Ancrod  , a thrombin-like serine protease from the Agkis- 

trodon rhodostoma viper, improves the outcomes after ce- 

rebral stroke in  humans (Liu et al., 2011), and Defibrase  , 

from the Bothrops spp.,  is clinically beneficial in  ischemic 

stroke (Guo  et al., 2006). Thus,  further studies concerning 

Loxosceles  serine proteases are  imperative for  the devel- 

opment of potential novel therapeutic agents. 

 
7.4.  Serine protease inhibitors 

 
Proteinaceous  inhibitors  of  proteolytic  enzymes 

comprise the largest group of naturally occurring enzyme 

inhibitors. Their  vast structural diversity is detailed in the 

MEROPS  database  of  peptidase  inhibitors  (available in 

http://merops.sanger.ac.uk/inhibitors/). Recent work 

comprehensively listed 91  families of  protease inhibitors 

grouped based on  their homology. Some families of  the 

serine and cystein protease inhibitors stand out  for  their 

high frequency, such as the Kazal and Kunitz-type inhibitor 

families (e.g., I1 – I3 peptidase inhibitor families), serpins 

(e.g., I4 peptidase inhibitor family) and cystatins (e.g., I25 

peptidase inhibitor family) (Rawlings et al., 2012). 

The first report of the presence of protease inhibitors in 

Loxosceles venom glands was made in 2008 by Fernandes- 

Pedrosa and colleagues, who performed a  transcriptome 

analysis of  venom glands of  female L.  laeta spiders. The 

sequences that matched these molecules were described as 

“enzymatic inhibitors” and represented  0.6% of  the total 

number of sequences analyzed. 

Some transcripts of the L. laeta cDNA library are  related 

to serine (or cysteine) protease inhibitors of diverse species, 

which have been characterized and have been shown to 

have different functions and activities, such as  an  in vitro 

anticlotting activity and in  vivo  antithrombotic and anti- 

coagulant activities related to the inhibition of Factor-Xa. A 

proprotein-convertase (PC) inhibitor sequence of Bran- 

chiostoma lanceolatum (embjCAD68157.1) was also listed as 

similar to some of the L. laeta ESTs (Bentele et al., 2006; 

Fernandes-Pedrosa et al.,  2008). This  serpin,  termed  Bl- 

Spn1,  inhibits the proprotein processing proteases PC1/3 

and furin (Bentele et al., 2006). Analyses of some of the ESTs 

from the L. laeta cDNA library revealed a similarity with a 

cystatin sequence from the tick  Boophilus  microplus 

(gbjABG36931.1) that   was  found  to   inhibit the  human 

cathepsin L and vitellin degrading cysteine endopeptidase 

(VTDCE). More recently, the venom of the brown spider L. 

intermedia was subjected to proteomic analysis through the 

MudPIT   proteomic strategy,  and approximately a  dozen 

peptides were found to  be  similar to protease inhibitors 

(dos  Santos et al.,  2009). Three sequences showed simi- 

larity with an  inhibitor of  Oryza  sativa from the cystatin 

super family (P20907) (Kondo et al., 1990; dos  Santos et al., 

2009). On the other hand, other peptides sequenced in this 

proteomic analysis are  related to the Kunitz-type inhibitors 

(dos  Santos et al., 2009). Finally,  the L. intermedia proteome 

revealed some peptides related to  an  inhibitor from the 

serpin super family of  protease inhibitors (P07385) (dos 

Santos et al., 2009). Thus,  it  is possible that L. intermedia 

venom contains proteases inhibitors belonging to different 

groups (i.e.,  the serpins, Kunitz-type  and cystatin super 

families). 

A  transcriptome  analysis of  the  venom glands of  L. 

intermedia identified an  EST similar to protease inhibitors 

from the  serpin family (Gremski et al.,  2010). This  EST 

sequence is related to mammalian and arthropod serpins, 

such as  the human neuroserpin and the Ambliomma 

americanum tick  and Tachypleus tridentatus horseshoe crab 

serpins (Gremski et al., 2010). 

The   function  of  protease  inhibitors  in   L.   intermedia 

venom has been suggested to be related to the protection of 

the toxin integrity (dos  Santos et al., 2009). Some authors 

that have described serine protease inhibitors in  different 

venoms (snakes, spiders and scorpions) propose that one of 

the physiological roles of these molecules is to  resist prey 

proteases to protect their venom protein toxins (Zupunski 

et al., 2003; Yuan  et al., 2008; Zhao  et al., 2011). In addi- 

tion, these inhibitors may generate a synergistic effect with 

other neurotoxins, as  suggested by  other authors (Yuan 

et al., 2008; Zhao  et al., 2011). Because the proteases are 

involved in several physiological processes, they represent 

excellent therapeutic targets. Thus,  the protease inhibitors 

arising from venoms are  potential candidates to  mediate 

certain biological processes. The  Kunitz-type  protease in- 

hibitor isolated from Pseudonaja  textilis venom, textili- 

nin-1,   was  submitted  to  a   preclinical  developmental 

program and has  been shown to be  equally effective as 

aprotinin, an  anti-fibrinolytic agent that reduces the blood 

loss  associated with cardiac surgery, but with an enhanced 

safety profile (Flight et al., 2005). 

Certain serpins are  able  to  reduce the excess protease 

activity and consequent damage associated with inflam- 

matory diseases. SERP1  from the  myxoma poxvirus, for 

example, inhibits human coagulation and fibrinolytic pro- 

teases and has  been shown to  have potent anti- 

inflammatory  effects in  the treatment of  human inflam- 

matory diseases induced by  vascular injuries. Therefore, 

Loxosceles protease inhibitors emerge as compounds with 

potential  therapeutic  and  biotechnological applications, 

which, in  turn, depend on  the further characterization of 

their biochemical and biological features. 

 
7.5.  Venom allergen 

 
Hypersensitivity   reactions   from   arthropod    stings 

include  immediate   reactions,  such  as   local    swelling,

http://merops.sanger.ac.uk/inhibitors/
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generalized urticaria and anaphylaxis. The pathogenesis  is, 

in   many  cases,  most  likely   an   IgE-mediated  reaction. 

Delayed reactions  are   also   possible,  for   example,  local 

papules or  bullous, hemorrhagic  reactions, disseminated 

papules, generalized papular urticaria and general systemic 

symptoms, such as fever, myalgia and lymphadenopathy. In 

some studies, deposits of  complement components and 

immunoglobulins  have  also   been  found  (Arlian, 2002; 

Bircher, 2005). 

With the exception of bee and wasp venom allergies, the 

immediate type allergic reactions to arthropod stings and 

bites, such as  mosquitoes, flies,  ticks,   moths, caterpillars 

and spiders, are  rare  (Bircher, 2005). Indeed,  allergic re- 

actions to the Loxosceles genus have been postulated in only 

a few cases (Donepudi et al., 2005; Robb et al., 2007; Makris 

et al., 2009; Lane et al., 2011). In approximately 25% of the 

published  loxoscelism cases, a  fine   macular or  papular 

eruption  develops over the  entire  body (Pippirs et  al., 

2009). Cases  of  AGEP (Acute Generalized Exanthematous 

Pustulosis) following bites by L. reclusa and L. rufescens have 

also  been reported (Makris et al., 2009; Lane  et al., 2011). 

The pathogenesis of AGEP is not clear, but it is a rare and 

severe cutaneous reaction usually triggered by  drugs and 

viruses (Makris et al., 2009). Of note, several studies have 

shown that Loxosceles venom stimulates the release of large 

amounts of IL-8 and GM-CSF, in addition to other cytokines, 

such  as   the  growth-related  oncogene  and  protein-1 

(Gomez et  al.,  1999).  This   release  of  IL-8  and  GM-CSF 

could contribute to the development of  AGEP following 

Loxosceles envenomation (Lane et al., 2011). In addition, the 

ability of  this venom to  evoke inflammatory events was 

partially reduced in compound 48/80 –pretreated animals, 

suggesting that mast cells  may be  involved in  these re- 

sponses. Pre-treating  mice with  receptor  antagonists  of 

histamine (prometazine and cetirizine) and of  serotonin 

(methysergide) significantly attenuated  the  edema and 

vascular permeability  induced  by  toxins  (Paludo  et  al., 

2009). 

Corroborating the  hypothesis that  Loxosceles   venom 

may cause allergic reactions, two transcriptome studies on 

Loxosceles  venom glands found sequences similar to 

allergen-like toxins from other venoms. In  the case  of  L. 

laeta, transcripts similar to  venom allergen III 

(spjP35779jVA3_SOLRI)  represented 0.6% of  the total se- 

quences. The similarity of the putative amino acid sequence 

of an  allergen from L. laeta with known venom allergen III 

sequences includes the  presence  of  conserved  cysteine 

residues (Fernandes-Pedrosa et al., 2008). Data  from work 

with the cDNAs of the L. intermedia venom gland showed 

that some messages encode for  venom allergens that are 

cysteine-rich molecules. These RNA messages are  poorly 

expressed: two ESTs  are grouped in  one cluster repre- 

senting 0.2% of the toxin-encoding transcripts. These 

transcripts putatively encode for  allergens that show sig- 

nificant similarity to  allergens from another spider genus 

(Lycosa sigoriensis), scorpion species (Opisthacanthus caya- 

porum) and  some  mite  allergens (Ixodes   scapularis and 

Argas monolakensis) (Gremski et al., 2010). In addition, an L. 

intermedia venom proteomic study also  reported the 

presence of a putative allergenic protein similar to  a mite 

allergen (dos  Santos et al., 2009). 

Some of  the allergens have been characterized, and a 

few  of them have been synthesized through recombinant 

techniques (Bircher, 2005). An  isoform of  a  recombinant 

allergen from L. intermedia venom was cloned and had a 

calculated molecular mass of approximately 46.2  kDa and a 

predicted hydrophobic import signal (24  residues) to the 

endoplasmic reticulum (Ferrer,  V.P. and de  Mari,  T.L. per- 

sonal communication, 2013). With the availability of 

allergen sequences  and  purified  recombinant  allergens, 

allergen-specific cellular immune responses were investi- 

gated, and in  vivo  animal models based on  defined and 

clinically relevant allergens were established (Valenta et al., 

2011). In  this context, the  crystal structures  from some 

recombinant allergens derived from insect venoms (wasps, 

bees, and fire  ants) have been important in the search for 

specific or cross-reacted epitopes (Henriksen et al., 2001; 

Hoffman, 2008;  Padavattan  et  al.,   2008;  Borer   et  al., 

2012). Additionally,  recombinant allergens were applied 

for in vivo provocation testing in allergic patients with the 

aim  of comparing their biological activity to natural aller- 

gens and to  explore their usefulness for  in vivo diagnosis 

(Schmid-Grendelmeier and Crameri, 2001; van  Hage- 

Hamsten and Pauli,   2004). These studies confirmed the 

biological equivalence of most of the recombinant allergen 

preparations  with  the  corresponding natural  allergens, 

indicating that the recombinant allergens can substitute for 

natural allergen extracts for  in  vivo  applications (Valenta 

et al.,  2011). In  this way,   the allergen-like toxin from L. 

intermedia venom may be a useful tool  for investigating the 

underling mechanisms of allergic responses following spi- 

der  bites involving this venom and might serve biomedical 

purposes in this area. 

 
8.  Modulation of  cell  and tissue structures by  brown 

spider venom toxins 

 
Brown spider venom toxins have been implicated in  a 

number of  histological changes following spider bites or 

experimental envenomation under laboratory conditions 

(Ospedal et al.,  2002; da  Silva  et al.,  2004; Hogan et al., 

2004; Swanson and Vetter, 2006). The first and most 

characteristic tissue/cellular changes observed after brown 

spider venom exposure is  the massive infiltration of  in- 

flammatory cells  into the dermis and the generation of 

inflammatory mediators near the bite  site or toxin injection 

(Ospedal et al., 2002; Domingos et al., 2003; Barbaro et al., 

2010). Recombinant brown spider phospholipases D 

reproduce the above-mentioned histological changes 

(Chaim et al., 2006; da  Silveira et al., 2006, 2007b; Ribeiro 

et al., 2007; Appel  et al., 2008). 

Although the modulation of  leukocyte  activity is 

demonstrated by the massive infiltration of skin  structures, 

Loxosceles venom apparently has  no  direct stimulatory ef- 

fects on  leukocytes in  culture, and leukocyte activation 

represents an  indirect effect triggered by  the endothelial 

cells  of  blood vessels exposed to  the venom toxins. This 

hypothesis is  supported by  data from cell  culture assays 

using  human  umbilical vein  endothelial  cells   (HUVEC) 

treated with L. reclusa crude venom. The results pointed to 

a  potent  endothelial cell  agonist activity of  the venom, 

which stimulated  the  endothelial cell   expression  of  E-
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selectin and the secretion of the granulocyte macrophage 

colony-stimulating factor and interleukin-8, which resulted 

in a dysregulated inflammatory response (Patel et al., 1994). 

The treatment of HUVEC with L. deserta crude venom leads 

to the expression of a growth-related oncogene and to the 

synthesis and secretion of the monocyte chemoattractant 

protein-1 and interleukin-8 (Desai et al., 1999; Gomez et al., 

1999). In addition, L. deserta venom evokes the expression 

of  vascular endothelial  growth  factor (VEGF)  in  human 

keratinocytes (Desai et al.,  2000), suggesting that  VEGF 

may contribute to the endothelial activation observed after 

brown spider envenomation. Additional data from histo- 

pathological findings revealed that  L.  intermedia venom 

acts  in vivo (intradermally injected) on  rabbit vessel 

endothelial cells,  which causes an  endothelial-leukocyte 

adhesion, a  massive transmigration  of  leukocytes across 

the  endothelium, vessel instability,  the  degeneration  of 

blood vessels and vascular leakage (Veiga   et al.,  2001b; 

Ospedal et  al.,   2002;  Zanetti  et  al.,   2002).  Exposing 

cultured rabbit aorta endothelial cells  (RAEC) to  L.  inter- 

media crude venom evokes the disadhesion of the cells and 

the degradation of heparan-sulfate proteoglycans, nidogen/ 

entactin and fibronectin (Veiga  et al., 2001a; Paludo et al., 

2006). Moreover,  the direct binding of  the venom toxins 

on   the endothelial cell  surface has   also   been reported, 

which induces drastic morphological changes (Paludo et al., 

2006). These data are  supported by  the internalization of 

the toxins following endothelial cell  treatment with the L. 

intermedia crude  venom, the  involvement  of  endocytic 

vesicles and  the  final  homing  of  toxins  to   lysosomes, 

culminating in cell death by anoikis (Nowatzki et al., 2010). 

The  direct binding of a recombinant L. intermedia 

phospholipase D on  the surface of RAEC has  also  been re- 

ported, as  well as  the  catalytic activity of  this toxin to 

degrade RAEC membrane detergent-extracts, which gen- 

erates important  bioactive lipids and cell  morphological 

changes  (Chaim et  al.,   2011b).  Additionally,  by   using 

cultured  human  fibroblasts exposed  to   a   recombinant 

phospholipase D  isoform from the  L.  reclusa venom, an 

upregulation  of  the  human  cytokines genes  IL-6,  IL-8, 

CXCL1, CXCL2 that are  important inflammatory activators 

has  been demonstrated (Dragulev et al., 2007). The authors 

postulated that together with the endothelia, the fibro- 

blasts in  the dermis also  mediate the dysregulated leuko- 

cyte  activation involved in dermonecrosis and are  an 

additional cellular target for the venom toxins. 

Other cells   targeted by  Loxosceles  venom toxins are 

erythrocytes. The  hemolytic activity evoked by  Loxosceles 

venom was first demonstrated using clinical and laboratory 

observations from spider bite  victims, some of which had a 

lethal outcome. These observations included elevated cre- 

atine kinase levels, hemoglobinuria, bilirubinuria, protein- 

uria,  jaundice, acute hemolytic anemia, reticulocytosis, and 

shock  (Lung   and   Mallory,  2000;   França  et  al.,   2002; 

Zambrano et  al.,  2005; de   Souza et  al.,  2008;  McDade 

et al., 2010; Malaque et al., 2011). The  hemolytic activity 

is a conserved event because it has  also  been reported for 

the L. similis,  L. gaucho, L. laeta, L. reclusa and L. intermedia 

venoms  (da   Silva   et  al.,   2004;  Silvestre et  al.,   2005; 

Zambrano et  al.,  2005;  McDade et  al.,  2010;  Malaque 

et al.,  2011). The  lysis  of  erythrocytes is  associated with 

two  distinct  mechanisms, which  are   defined  as   direct 

(Chaves-Moreira et  al.,   2009, 2011)  and  complement- 

dependent   hemolysis  (Tambourgi   et  al.,   2002,  2005, 

2007; Pretel et al., 2005). Various studies have already re- 

ported that spider envenomation induces the activation of 

the alternative complement pathway facilitating 

complement-mediated  hemolysis (da   Silva  et al.,  2004; 

Swanson and Vetter, 2006). Tambourgi et al. (2002, 2005) 

evaluated the mechanism of hemolysis caused by L. inter- 

media venom and proposed the involvement of phospho- 

lipases  D  in  the  activation of  an   endogenous 

metalloprotease, which  then  cleaves glycophorins and 

causes erythrocyte susceptibility to  lysis  by  human com- 

plement. In another study, the functional changes of rabbit 

erythrocytes  were  described  following exposure  to  L. 

gaucho crude venom. The results pointed to an alteration of 

red  cell function using an osmotic fragility test and greater 

deformability after venom exposure (Barretto et al., 2007). 

Chaves-Moreira et al.  (2009) compared the hemolytic 

activities of a recombinant active phospholipase D from L. 

intermedia venom (LiRecDT1)  (Chaim et al., 2006) and its 

mutated  version (LiRecDT1H12A)  (Kusma  et al.,  2008). 

They  demonstrated the involvement of a direct molecular 

mechanism dependent on  the catalytic activity of  phos- 

pholipase D in hemolysis, strengthening previous data that 

reported the participation of dermonecrotic toxins in  red 

blood cell lysis. Furthermore, the metabolism of membrane 

phospholipids, such as  sphingomyelin and lysophosphati- 

dylcholine, and the influx of calcium mediated by an L-type 

channel in  human erythrocytes have been shown to be 

involved in hemolysis (Chaves-Moreira et al., 2011). 

Along   with erythrocytes, platelets represent another 

target of brown spider venom. Data indicating platelets as a 

target were first described in  biopsies of  animal models 

exposed to crude venom, which reported the intravascular 

coagulation and thrombosis inside the dermal blood ves- 

sels.  The  hypothesis of platelet involvement is also 

strengthened by the findings of the infiltration and aggre- 

gation of inflammatory cells  in the generated thrombus. In 

addition, clinical laboratory analysis of envenomed victims 

often reveals thrombocytopenia (Ospedal et al., 2002; da 

Silva et al., 2004; Hogan et al., 2004; Swanson and Vetter, 

2006). Cellular changes in  the bone marrow and periph- 

eral  blood of rabbits caused by L. intermedia venom include 

the marrow depression of megakaryocytes correlated with 

the thrombocytopenia in the peripheral blood observed in 

the early envenomation (da  Silva  et al., 2003). Similar re- 

sults were reported by  using L.  gaucho venom, where a 

decrease in  the platelet count in  rabbit peripheral blood 

after venom and/or  purified phospholipase D  exposure, 

without platelet aggregation and no  signs of platelet lysis, 

was observed. The activation of platelets after venom 

exposure  is  supported  by   the  increased  expression  of 

ligand-induced binding site  1 and P-selectin (Tavares et al., 

2004, 2011). 

By studying recombinant venom phospholipases D and 

using human platelet-rich plasma, in vitro  platelet aggre- 

gation activity has  been reported (da  Silveira et al., 2006, 

2007b; Appel  et al.,  2008), strengthening the hypothesis 

of  venom  activity on  platelets. However,  the molecular 

pathway by which the toxins cause platelet aggregation is
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not fully   understood.  In  the case   of  phospholipases D, 

catalysis  involvement  is   expected, such  that  it   would 

generate a broad range of bioactive lipids on  the platelet 

membrane and finally inducing aggregation. 

Renal  structures and kidney cells  represent other tar- 

gets for brown  spider venom toxins.  Renal   injury was 

previously described in clinical and laboratory data from 

injured patients (da  Silva et al., 2004; Hogan et al., 2004; 

Swanson  and Vetter,  2006).  Clinical   case   reports  have 

indicated a  direct correlation of  renal damage and he- 

molysis  induced  by   different  Loxosceles   venoms 

(Zambrano et al., 2005; Abdulkader et al., 2008; de  Souza 

et al.,  2008; Hubbard and James,  2011; Malaque et al., 

2011). By  studying experimental-induced  kidney injury 

in  rats exposed to  L.  gaucho crude venom, Lucato et al. 

(2011) concluded that  this  acute  injury was  a  conse- 

quence of the impaired renal blood flow associated with 

the   systemic   rhabdomyolysis.    Nevertheless,    animal 

models or  cultured MDCK epithelial cells  exposed to  L. 

intermedia crude venom or a recombinant phospholipase 

D have also  provided evidence for a direct renal cytotox- 

icity  (Luciano et al., 2004; Chaim et al., 2006; Kusma et al., 

2008). Using  mice exposed to  a recombinant phospholi- 

pase D and a mutated isoform exhibiting decreased 

phospholipase activity,  is  has   been shown that in  vivo 

nephrotoxicity and in vitro MDCK cytotoxicity depends on 

the catalytic activity of the phospholipases (Kusma et al., 

2008). 

The activities of Loxosceles venom have also  been 

demonstrated in  other tissues and organs,  such as  the 

heart  and  liver.  Dias-Lopes et  al.  (2010)  showed  car- 

diotoxic effects in mice administered L. intermedia venom. 

These  effects were observed through the increase of the 

levels of markers associated with heart lesions, indicating 

that the venom antigens can  reach the heart tissue and, 

thus, lead to cardiac dysfunction.  Christoff et al.  (2008) 

reported changes in histological and biochemical aspects 

of  the  liver in   rats  injected with  L.   intermedia  crude 

venom. In the venom-treated group, the plasma levels of 

enzymes, such as alanine aminotransferase, aspartate 

aminotransferase,   gamma-glutamyl-transferase  and 

lactate dehydrogenase, increased. Furthermore, histo- 

pathological changes indicating hepatic lesions were also 

observed. 

Finally,  the extracellular matrix and associated constit- 

uents represent a  key  histological structure  targeted  by 

Loxosceles  venom toxins, as  observed by  the histopatho- 

logical findings of hemorrhage into the dermis at  the bite 

site,  fibrin deposition inside the blood vessels, defective 

wound healing after bites, gravitational lesion spreading 

and the systemic dissemination of  toxins (da  Silva  et al., 

2004; Swanson and Vetter, 2006). Previous work also 

described the proteolytic activities of L. intermedia venom 

on  gelatin, fibronectin and fibrinogen (Feitosa et al., 1998; 

Veiga   et al.,  2001a; Zanetti et  al.,  2002;  Paludo  et  al., 

2006), the  disruption  of  EHS  basement structures,  the 

degradation of entactin/nidogen and the hydrolysis of 

heparan sulfate proteoglycan from endothelial cells  (Veiga 

et al.,  2001a, b)  and more recently the involvement of  a 

hyaluronidase in the noxius activity of venom (Ferrer et al., 

2013) (See  topic 7.2). 

9.  Loxosceles spider toxin immunology and 

perspectives for development of  a new generation of 

antivenoms 

 
Spiders and other venomous animals contain a  com- 

plex mixture of biologically active substances developed 

to block the vital  physiological and biochemical functions 

of the victims. Antidotes prepared from animal anti-sera 

are   effective against  all   species  of  Loxosceles   spiders; 

these antivenoms are less  complex than other spider or 

snake antivenoms because the major toxic components of 

these  spider venoms are   proteins known as  dermone- 

crotic toxins, sphingomyelinases D (SMases D), the phos- 

pholipase  D  family and  Loxtox  proteins  (Kalapothakis 

et al.,  2007;  Binford  et al.,  2009; Wood et  al.,  2009). 

Although significant progress has  been made in  immu- 

nological studies of  these groups of  toxins, few  medical 

and university centers are dedicated to  this subject of 

research. Novel  approaches based on  epitopes and mim- 

otopes selected from microarray peptides (Spot-synthe- 

sis)   or  from phage-displayed random  peptide  libraries 

have generated information sufficient to develop a  new 

generation of antivenoms for therapeutic or vaccines 

purposes. The  immunological investigation of  the phos- 

pholipase D of Loxosceles  spiders was mainly performed 

with LiD1, a dermonecrotic toxin from the venom of the L. 

intermedia, by Chávez-Olórtegui and his  collaborators 

(Kalapothakis  et al.,  2002;  Araújo et  al.,  2003; Felicori 

et al.,  2006,  2009; Dias-Lopes et  al.,  2010). The  cDNA 

encoding this protein was shown to  display a  similarity 

with the genes of the known Loxosceles  phospholipase  D 

toxins (Kalapothakis et al., 2007). The  recombinant pro- 

tein rLiD1 was strongly recognized by  anti-L. intermedia 

crude venom and was also  able  to  generate reactive an- 

tibodies against the native dermonecrotic proteins and 

whole L.  intermedia venom. Using  these antibodies and 

overlapping synthetic peptides covering the whole (LiD1) 

sequence, regions with an epitope function were revealed. 

The N-terminal (residues 13–27), central (residues 31–45, 

58–72, 100–114,  and 160–174) and C-terminal  (residues 

247–261) parts of the protein have been shown to contain 

continuous epitopes with neutralizing potential. The  an- 

tibodies elicited by  these epitopes were found to  protect 

against the  dermonecrotic-,  hemorrhagic- and  edema- 

forming activities induced by  LiD1 and whole venom. To 

visualize the  three-dimensional  position of  the experi- 

mentally determined epitopes, the LiD1 protein was 

modeled by  homology using the solved structure of 

phospholipase D from L. laeta as a template. The  localiza- 

tion  of   the  epitopes  in   the  context  of   the  three- 

dimensional structure  of  the  dermonecrotic protein  is 

shown in Fig. 8. As shown, most of epitope regions 

determined  were localized in  the a-helix-loop regions. 

However,  3  of  the 8  a-helix regions were not antigenic 

(Felicori et al., 2009). 

Studies using monoclonal antibodies raised against the 

toxins of the L. intermedia whole venom revealed that one 

antibody  (LimAb7) recognized  several  venom  proteins, 

including LiD1  (Alvarenga et al.,  2003).  Because LimAb7 

reacts with rLiD1, the LiD1 epitope recognized by LimAb7 

was  mapped.  None  of   the  overlapping peptides that
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Fig. 8.  LiD1 structural model indicating the position of the selected epitopes 

that reacted with the horse anti-L.  intermedia venom serum. In yellow,  the 

N-terminal epitope (residues 13–27); in  orange, the central epitope (resi- 

dues 31–45); in  green, the central epitope (residues 58–72); in  blue, the 

central epitope (residues 100–114); in  red, the central epitope (residues 

160–174);  and  in   purple,  the  C-terminal  epitope  (residues  247–261). 

Figure color codes refer to the on-line images. (For  interpretation of  the 

references to colour in  this figure legend, the reader is referred to the web 

version of this article.) 

 
 

 
covered the sequence of LiD1 were recognized, indicating 

that the epitope is not continuous but rather, discontinuous 

(de  Moura et al.,  2011). Consequently, the phage-display 

technique  was  used, and  this  method  allowed for   the 

identification of  mimotopes without homology between 

the amino acid  sequences of the phage-selected peptides 

and the sequence of LiD1 (de  Moura et al., 2011). The  po- 

tential epitope regions in  LiD1 based on  the amino acid 

sequences of the selected mimotopes and on  the 3D LiD1 

protein model were predicted, and the MIMOP  residues 

C197,  Y224, W225,  T226,  D228,  K229,  R230,  T232  and Y248  were 

identified as being the putative epitope bound by LimAb7 

(de  Moura et al., 2011). 

In a recent study, a chimeric protein (rCpLi) expressing 

the epitopes of LiD1 previously defined as residues 25–51 

and 58–72 and a conformational epitope identified by the 

phage display technique were generated  by  cloning the 

respective synthetic genes in  a pET 26b  vector. ELISA and 

immunoblot assays revealed that  the  mini-protein  dis- 

played antigenic activity against the antibodies of the anti- 

individual epitopes. Anti-Loxosceles sp. crude venoms also 

reacted with rCpLi. Because the protein is non-toxic, it  is 

considered to be  an  important immunogen target for vac- 

cines against this dangerous regional spider (Mendes et al., 

2013). 

 
10.   Biotechnological use of  brown spider venom 

components 

 
Spider venoms are   mixtures of  several hundred  bio- 

logically active proteins, glycoproteins and peptides  that 

act   synergistically  as   an   adaptation  to   defend  against 

predators and to  paralyze and kill  insect prey.  Because 

these toxins are  active on  different cells  and tissue struc- 

tures and effectively modulate  distinct physiological re- 

sponses  in   insects  and  vertebrates,  they  are   potential 

models to study the design of pharmacological tools, drugs 

and/or biochemical, immunological and cell  biology 

reagents. 

The  first biotechnological application of  brown spider 

venom constituents consisted of the antiserum-based 

products used for  the therapy of  spider bite  victims. For 

example, anti-arachnid serum (obtained using the venom 

of L. gaucho) was produced by the Butantan Institute, São 

Paulo, Brazil;  anti-Loxosceles serum using the L. intermedia, 

L. gaucho and  L. laeta crude venoms was produced by  the 

Production  Center of  Immunobiologic  Products,  Parana, 

Brazil;   and  anti-Loxosceles serum  raised  against  L.  laeta 

venom was produced by  the National Institute of  Health 

(Peru) (Roodt et al., 2002; da  Silva et al., 2004; Pauli  et al., 

2009). With the recombinant brown spider venom toxins 

available, a new generation of loxoscelic antiserum  could 

be  produced directly by using the antigenic active recom- 

binant toxins from different Loxosceles species or  by 

enriching the  crude  venom with  biologically active re- 

combinant molecules to increase antibody production and 

venom neutralization. In fact, a recombinant phospholipase 

D was used to  produce an  anti-Loxosceles serum  that  was 

able  to neutralize the toxic effects induced mainly by the L. 

intermedia and L. laeta or  slightly weaker the activity of L. 

gaucho venoms (de  Almeida et al.,  2008). Additional re- 

combinant antigens should be used as antigenic sources for 

vaccines or antivenom development (See  topic 10). 

Another Loxosceles venom-based product is named 

ARACHnase  (Hemostasis Diagnostics International  Co., 

Denver, CO, USA). It consists of plasma containing L. reclusa 

crude venom that mimics the presence of a lupus antico- 

agulant and should be  a useful positive control for  lupus 

anticoagulant testing (McGlasson et al., 1993). 

Based   on  their properties, brown spider recombinant 

phospholipases D could be used as putative models for the 

application in  the different areas of  cell  biology, immu- 

nology, pharmacology and biochemistry. They can  be used, 

for  example, as  reagents for  biochemical lipid   research 

protocols by generating bioactive lipids, such as ceramide- 

1-phosphate  from the  hydrolysis of  sphingomyelin and 

lysophosphatidic acid   from the  hydrolysis of  lysoglycer- 

ophospholipids (Lee and Lynch, 2005; Chaim et al., 2011b). 

In addition, they may be applied in cell biology studies that 

investigate the biological activities triggered by ceramide- 

1-phosphate, lysophosphatidic acid  and their derived 

molecules, such as  the control of cell  proliferation, death, 

differentiation and  migration  (Anliker and  Chun,   2004; 

Chalfant and Spiegel, 2005). Loxosceles recombinant phos- 

pholipases D  or mutated  isoforms (Kusma  et al.,  2008; 

Chaim et al.,  2011b; Mendes et al.,  2013) could also  be 

used as immunological adjuvant molecules for stimulating
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immunogenicity because they can  modulate inflammation 

and stimulate the production of cytokines in different cell 

models. Recombinant phospholipases D could be  used as 

standard laboratory reagents to investigate platelet aggre- 

gation, platelet receptor(s), and related molecular path- 

ways.  In  addition, these  recombinant  proteins could be 

used as reagents to induce hemolysis, possibly establishing 

a new model of hemolysis dependent on  phospholipase  D 

and bioactive lipids. Furthermore, recombinant phospho- 

lipases D could be used as reagents applied in the diagnosis 

of  loxoscelism because a  clinical laboratory  diagnosis  is 

currently unavailable. Because brown spider venom phos- 

pholipases D are  strong antigenic molecules and are  highly 

expressed molecules in crude venom (Ribeiro et al., 2007; 

Gremski et  al.,  2010;  Wille   et  al.,  2013),  recombinant 

phospholipases D could be used as antigens for generating 

polyclonal or  monoclonal antibodies for  the diagnosis of 

Loxoscelism (de  Moura et al., 2011). 

ICK peptides have been studied as potential insecticidal 

bioactive toxin molecules, and recombinant brown spider 

ICK toxins (Matsubara et al., 2013) could be  used as  sub- 

stitutes for  chemical defense products as well as in trans- 

genic agricultural  models, if  further studies show that 

they specifically act upon insect channels.  In  addition, 

brown spider ICK peptides could also  be useful reagents to 

probe ion  channel structures and functions, as  previously 

described for other similar molecules (Dutertre and Lewis, 

2010; Klint  et al., 2012). 

Recombinant   Loxosceles   hyaluronidase  (Ferrer  et  al., 

2013)  could  be   used  as   a  reagent  in   the  biochemical 

studies of  glycosaminoglycan hydrolases and as  a  tool to 

design specific inhibitors to reduce the spread of venom 

and toxins retaining  the  activity of  native hyaluroni- 

dases. Moreover, because hyaluronidases are  involved in 

bacterial pathogenesis, fertilization, and cancer progres- 

sion,   recombinant brown spider hyaluronidase could be 

utilized to  generate hyaluronidase inhibitors that regulate 

several pathological events involving the balance between 

the anabolism and catabolism of  HA. Finally,  it could be 

used as an  adjuvant molecule to  increase drug absorption 

through  increased  tissue  permeabilization  (da   Silveira 

et al., 2007c; Ferrer et al., 2013). 

Recombinant brown spider venom astacins (da Silveira 

et al., 2007a; Trevisan-Silva et al., 2010) could be  used as 

tools in the study of extracellular matrix remodeling, for 

the  generation of  proteolytic  inhibitors  and  as   direct 

thrombolytic  agents   for  the   treatment   of    vascular 

diseases. 

Finally,   other  brown  spider venom constituents  also 

have putative biological applications. These include serine 

protease inhibitors, which could be  useful agents for  the 

investigation of general proteolysis, and recombinant TCTP 

(Sade et al., 2012), which could be used to study tumor cell 

behavior in experimental oncology, to study cell prolifera- 

tion mechanisms, in the screening of anticancer drugs and 

as a model for  allergy screening. Recently, the N-terminal 

fragment of TCTP (MIIYRDLISH) was shown to function as a 

Protein Transduction Domain (PTD), which is cell- 

penetrating  peptide. This  new feature of  TCTP is  being 

studied  in   drug  delivery systems  development  (Maeng 

et    al.,     2013).    Detailed    data     on      the    putative 

biotechnological use  of  brown spider venom toxins have 

been provided in Senff-Ribeiro et al. (2008) and Chaim et al. 

(2011a). 

 
11.   Future directions 

 
Although many scientific studies have been published in 

recent years examining the brown spider venom and lox- 

oscelism that have brought insights and improved the 

knowledge base regarding these topics, there are  several 

opened questions still  to  be  answered, and the challenges 

and opportunities for researchers are  enormous. The use  of 

combined data from molecular biology techniques, bioin- 

formatics, proteomic studies, transcriptome analysis, and 

the expression of recombinant toxins will  open great pos- 

sibilities in this field. 

The  challenges concerning brown spiders and lox- 

oscelism can be divided into clinical and basic research. The 

first clinical challenge is the production of a new generation 

of antisera using purified recombinant brown spider 

bioactive and antigenic competent toxins individually or by 

enriching crude venoms with  recombinant  toxins. Such 

antisera would be monospecific and may be used at lower 

doses, thereby decreasing the deleterious side   effects  of 

serum therapy,  but with the same or  higher efficiency in 

neutralizing the noxious venom activities. 

A second clinical challenge hinges on the improvement 

of treatment of the injured victims. Currently, loxoscelism 

treatment is  empirical and  based on   clinical  signs,  as 

described above (topic 4). A molecular comprehension of 

brown spider venoms and the mechanism by  which the 

toxins trigger their effects, together by  obtaining recom- 

binant toxins and toxin 3D structural/biological data, will 

open to the possibility of  a  rational design of  synthetic 

inhibitors directed at the specific venom toxins involved 

in the local  and systemic effects. In addition, inhibitors for 

the receptors or cellular molecules involved in the meta- 

bolism  of  the  bioactive lipid   mediators  generated  by 

phospholipases D could also  produce novel and powerful 

tools for the treatment  of  loxoscelism.  Another clinical 

hurdle is the development of a clinical, in vitro diagnostic 

for loxoscelism with  the  sensitivity and  specificity for 

different brown spider species. This  diagnostic would be 

based on  low-invasive molecular biology techniques and 

would  provide  sensitivity  and  specificity  for  different 

brown  spider  species using blood or  even urine taken 

from exposed victims. 

Finally,  because loxoscelism is a public health problem 

around the world, the development of rational biological 

control  methods,  which  are   currently  not  available, is 

necessary to decrease the number of spiders and domicil- 

iary  infestations in  the endemic regions. Similar methods 

are  currently used for agricultural plagues, utilizing bacte- 

ria,  fungus or  other natural predators (Boyer et al., 2012; 

Lockett et  al.,  2012) to replace the  pesticides currently 

used as a nonspecific biological control method and which 

cause environmental and human hazards. 

The  future of basic research on  brown spider venoms 

and/or  loxoscelism represents  a   remarkable  challenge. 

Although considerable growth in this field has  occurred, a 

great number of molecules in brown spider venoms remain



 

114 
L.H. Gremski et  al. / Toxicon  83  (2014) 91–120

unidentified or  their  biological effects and mechanisms 

have not been described, especially for  toxins with low 

level  of  expression and/or novel toxin isoforms of  previ- 

ously described. In addition, a genomic project focusing on 

Loxosceles  species is  a  rational future direction that will 

bring novel insights  for  brown  spider biology and lox- 

oscelism and  that  will   create  access for   several  novel 

research tools. 

Another current challenge for the brown spider venom 

toxinologist is the access to purified recombinant toxins in 

models other  than  bacteria.  Currently,  all  recombinant 

brown spider venom toxins obtained have been produced 

in bacteria, an inexpensive expression model system that is 

simple  to   manipulate.  However,   because  it   does  not 

generate co-  and post-translational modifications, such as 

N-glycosylation and disulfide bonds, bacteria model sys- 

tems   often  produce  recombinant   molecules  in   their 

unfolded form, with incorrect conformations, water insol- 

ubility, and with no  biological function. The  synthesis  of 

brown spider venom recombinant toxins using alternative 

expression models with additional features that optimize 

and refine this process, such as the yeast Pichia pastoris, the 

insect Drosophila Schneider cells  and mammalian systems, 

is an  immediate challenge. 

Another  future  direction is  to   obtain  native brown 

spider venom toxins by  developing primary cultures of 

the venom secretory cells.  Similar approaches have been 

successfully established for other venomous animals. Ex- 

amples  include culturing the  secretory cells   from  the 

venom glands of  snakes  Crotalus durissus terrificus and 

Bothrops  jararaca (Duarte et al., 1999; Yamanouye  et al., 

2007) and from the  Phoneutria nigriventer spider (Silva 

et al.,  2008). These cultures could produce and secrete 

sufficient amounts of  native toxins to  be  useful for bio- 

logical and biotechnological evaluation. The  use  of mass 

spectrometry  analysis and  other  proteomic  protocols, 

such as 2-DE, N-terminal amino acid  sequencing and high 

efficiency chromatography, provide great promise for 

detailed studies of brown spider venoms and hemolymph 

proteins and peptides.  To  date,  only   two studies have 

addressed  this  topic: Machado et  al.  (2005)  described 

eleven isoforms of the phospholipase D toxin in L. gaucho 

venom, and dos  Santos et al. (2009) identified 39 proteins 

in L. intermedia venom. There are  no reports of this type of 

study for hemolymph. 

Additionally, in the near future, novel data will  provide 

information related to the tridimensional toxin structures, 

which will  require the experimental co-crystallization of 

putative ligands or  substrates to recombinant toxins. The 

tridimensional analysis of brown spider venom toxins will 

be critical to elucidate the location of the catalytic sites and 

sites that interact with natural substrates or ligands, and 

especially to show how the toxins interact with cell struc- 

tures. These analyses will  allow for  the  development  of 

synthetic ligands, analogs, or inhibitors. 

Finally,  an attractive and practically unknown model for 

studying Loxosceles  spiders is the analysis of hemolymph 

contents and its  relationship to  venom toxins and lox- 

oscelism.  From   such analysis, natural  inhibitors and/or 

other  important  molecules could be   discovered, which 

would add great value to the field of toxinology. 
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