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RESUMO

O algoritmo de Otimização por Enxame de Part́ıculas (PSO) é uma meta-heuŕıstica in-

spirada no comportamento de bandos de aves a procura de alimento. Os bons resultados

obtidos por esta técnica na otimização de problemas mono-objetivo incentivaram o estudo

de variações para problemas multi- objetivo (MOPSO), que também alcançaram bons re-

sultados. Para a adaptação do PSO para problemas multi-objetivo algumas modificações

foram necessárias, tais como o uso de um operador para seleção de ĺıder e a aplicação de

um operador de arquivamento. Entretanto, a qualidade do algoritmo diminui conforme o

aumento do número de objetivos. Encontrar, dentre os diferentes operadores de seleção

de ĺıder e de arquivamento, propostos na literatura, os mais apropriado para determi-

nada instância de um problema permite amenizar esta perda de qualidade. Porém esta

tarefa não é uma tarefa trivial. Em trabalhos anteriores o uso de hiper-heuŕıstica para a

seleção de uma combinação apropriada destes operadores é proposta. Hiper-heuŕısticas

são técnicas para a seleção, ou geração, de heuŕısticas para problemas de busca. Estas

técnicas visam a seleção, ou geração, de uma heuŕıstica apropriada para determinada

instância de um problema ou estágio da busca. Neste trabalho foi abordada a hipótese

de que, o uso de métodos de seleção mais avançados poderiam melhorar desempenho do

MOPSO baseado em Hiper-heuŕıstica (H-MOPSO). Para investigar esta hipótese quatro

métodos de seleção foram avaliados e comparados a um algoritmo multi-objetivo estado

da arte. Nos resultados apresentados o H-MOPSO obteve melhores resultados na maioria

dos problemas.
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ABSTRACT

Multi-objective Particle Swarm Optimization (MOPSO) is a promising meta-heuristic

to solve Many-Objective Problems (MaOPs), however, its performance decreases as the

number of objective functions increases. Selecting a good combination of leader and

archiving methods helps the algorithm to deal with the challenges caused by this increase

in the number of objectives, but finding the most appropriate combination for a given

problem is a hard task. To deal with this issue, previous works proposed the use of a

simple hyper-heuristic to select dynamically a good combination of leader and archiving

methods and achieved promising results. In this work, we hypothesize that by using more

advanced heuristic selection methods we could further improve the performance of the

algorithm. To investigate this hypothesis we conducted experimental studies comparing

four heuristic selection methods. After selecting the best performing variant from this

study, we conducted a second empirical study to compare this variant to a state-of-the-

art optimizer, where the resulting algorithm outperformed it in most of the problems

investigated.
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CHAPTER 1

INTRODUCTION

Several real world applications require the optimization of multi-objective problems (MOP).

In those problems the objectives can be conflicting, that means that the optimization of

one objective can degrade the optimization of others [3]. So, the simultaneous optimiza-

tion of the objectives is required. In this way, two solutions may be not comparable as one

can be better for one objective and a different one be better for another objective. The

purpose of the Multi-Objective Optimization (MOO) is to find the set of Pareto optimal

solutions. A solution is called Pareto optimal if one objective cannot be improved without

degrading any other. However, an MOP is frequently NP-hard, because of the huge num-

ber of possible solutions, sometimes infinite. Usually, the aim is to find an approximation

of the optimal set. The quality of this approximation is frequently evaluated by two mea-

sures, convergence, and diversity. The convergence evaluates the capability of generating

solutions as close as possible to the optimal set. The diversity intent for assessing the

ability to generate a set of solutions that well approximates the entire optimal set.

Nowadays, the optimization of multi-objective problems with two or three objectives

can be successfully achieved using the state-of-art algorithms such as SMPSO, NSGA-II,

and MOEA/D-DRA. However, problems with more than three objectives are present in

many real word applications [4], such as Engineering design; Air traffic control; Nurse

rostering; Car controlling optimization; and Water supply portfolio planning. Those

problems are called Many-Objective Problems (MaOP) [4]. In this kind of problems, the

state-of-art multi-objective algorithms fail to achieve convergence and diversity to the

Pareto front, due to the increasing of the number of objectives [4]. As most solutions gen-

erated become non-dominated, it reduces the convergence pressure, and as a consequence,

the selection operation can be a hard task [5]. Due to these challenges, many works have

addressed Many-Objective Optimization [4, 6, 7, 8].
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Another area that has drawn attention is Hyper-Heuristic (HH). HH are high-level

approaches that aim at selecting (or generating), from a pool of low-level heuristics (or

parts of heuristics), the most appropriate heuristic to apply given a problem instance

and the search stage. Despite the HH characteristics, there are still few works on multi-

objective hyper-heuristic [6, 9, 10, 11, 12].

MOPSO algorithms are Particle Swarm Optimization (PSO) algorithms adapted for

multi-objective problems [13]. In PSO, the set of solutions is called swarm, and its

solutions are called particles. Each particle has a velocity and a position, and for each

iteration it updates them. The particle position is an n-dimensional point in the search

space. The velocity is the size of the step, from one position to another. The particles

have the ability to remember their best visited position pBest and also the best position

visited by the swarm gBest. The velocity update is based on those previous positions,

which guide the search towards the best solutions found so far.

Some changes are needed to adapt the PSO for multi-objective optimization prob-

lems. One of them is how to store the best solutions found so far since there is a set of

incomparable solutions in the MOP (the Pareto approximation set). The non-dominated

solutions are stored in an external repository to solve this problem. However, the number

of solutions stored in the repository may increase quickly, increasing the computational

cost to maintain the repository and select solutions from it. In this case, a limited size

repository may be used to alleviate this problem. When the repository is full, an archiv-

ing method must be employed to decide if a new solution is accepted or not; and, which

solution to remove in case of acceptance. There are some archiving methods, such as

Multi-level Grid Archiving (MGA) [14, 15], Crowding Distance Archiving (CD) [16] and

Ideal Archiving [17], most of them proposed for MOEAs and adapted for MOPSO. Some

of these archiving methods aim at increasing the repository convergence, whereas others

aim at increasing diversity. The gBest is selected from the repository using some leader

selection method, such as Crowding Distance [18], NWSum [19], and Sigma [20]. Some

leader selection methods aims at promote a search diversity, favoring the less covered

areas. Other methods select solutions that are somehow similar to the current particle,
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to avoid the generation of erratic solutions. The empirical selection of methods for leader

selection and archiving may be critical. A method may be better than other depending

on the problem due to its different behavior [6, 21, 17].

In this work, it is proposed the use of Hyper-heuristic for automatic selecting archiv-

ing and leader selection methods in MOPSO. The objective is to reduce the performance

deterioration of MOPSO in Many-Objective problems, using hyper-heuristic to automatic

select leader selection and archiving methods. This work is based on related work [6, 22]

that proposes a simple roulette-based hyper-heuristic for selecting archiving and leader se-

lection methods in MOPSO (the H-MOPSO), and was able to obtain encouraging results.

The proposal is to study other heuristic selection methods to replace the roulette in the

H-MOPSO proposed by [22]. The purpose is to evaluate if more sophisticated methods

are capable of increasing the H-MOPSO quality, regarding convergence and diversity, for

MaOP. Two heuristic selection methods were selected due to its good results presented

in literature: a Choice Function (CF) based [9, 23, 24, 1, 12, 25, 11] and a Multi-Armed

Bandit (MAB) based [10, 26, 27]. Also, the heuristic selection methods are compared

to a simple random-based heuristic selection. Initially, the work of [22] is partially repli-

cated. Also, a deeper study was accomplished where different Choice Function based,

and Multi-Armed Bandit based methods were empirically evaluated. After selecting a

CF based method and an MAB-based method the parameters of them are configured.

The rest of the studies are divided into three parts. First, the selection of the archiving

method is evaluated, using as leader selection the method Crowding Distance. Then, for

each heuristic selection method, three H-MOPSO strategies were evaluated: the version

selecting just the archiving method, the previous version proposed by [22] that selects

both methods as a single low-level heuristic and a new version that selects leader selec-

tion methods and archiving separately. For each heuristic selection method, an H-MOPSO

strategy was chosen to be used. Then, the final four H-MOPSO (each one based on one

heuristic selection method) are compared against each other and a state-of-art algorithm

MOEA/D-DRA [28]. Finally, among the H-MOPSO variations evaluated, the one with

the best performance is compared against the MOEA/D-DRA.
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In this work, it was not possible to find strong evidence that a heuristic selection

method evaluated is better than any other with a statistical difference in both IGD and

HV. However, all H-MOPSO versions are capable of increasing MOPSO performance and

reaching competitive results against the state-of-art algorithm MOEA/D-DRA. The H-

MOPSO variation with the best results was the H-MOPSO-ACF. The H-MOPSO-ACF

variation selects both archiving and leader selection methods together as a single low-level

heuristic and employs the Adaptive Choice Function heuristic as the selection method.

When compared to the MOEA/D-DRA, the H-MOPSO-ACF had the best IGD and

Hypervolume values, with a statistical difference, in most cases. Moreover, it is possible

to conclude that the use of hyper-heuristic is capable of reducing the convergence and

diversity difficulty present in MaOP and achieving competitive results compared with a

state-of-art algorithm.

1.1 Motivation

Several real word problems have many objectives [4]. However, the multi-objective op-

timization techniques suffer a quality deterioration when applied to this kind of prob-

lem [4]. Some works have focused on Many-objective optimization algorithms, such as

MOEA/DD [7], MOMBI-II [8], and H-MOPSO [6]. Another motivation for this work

is the use of Hyper-heuristic. Despite the small number of works on multi-objective lit-

erature [9], the use of Hyper-heuristic has shown good results when compared with the

state-of-art multi-objective algorithms [9, 10, 6, 11]. In [6] a Hyper-heuristic strategy

using a roulette-based heuristic selection is used for improving an MOPSO and compared

to the state-of-art. The results in [6] were competitive against a state-of-art algorithm.

The simplicity of the used heuristic selection suggests that a more sophisticated method,

with another strategy of learning and selection, may increase the H-MOPSO quality.

In Hyper-heuristic and Adaptive Operator Selection literature, including some works on

multi-objective problems, two kinds of methods have shown competitive and efficient re-

sults: the Choice Function [9, 11, 12] based and the Multi-Armed Bandit based [10, 11, 26].

In this work, the evaluation of Choice Function based and MultiArmed Bandit based
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heuristic selection methods on H-MOPSO framework is proposed.

1.2 Objectives

The overall purpose of this work is to reduce the quality deterioration suffered by the

Multi-Objective Particle Swarm Optimization algorithms when applied in Many-objective

problems.

To accomplish the overall objective some specific objectives are proposed:

• The study and evaluation of other heuristic selection methods on the H-MOPSO

framework for Many-objective problems.

• The study and evaluation of different Choice Function based methods.

• The study and evaluation of different Multi-Armed Bandit based methods.

• The study and evaluation of different heuristic selection methods.

• The evaluation of a new structure for H-MOPSO that selects the archiving and

leader selection methods separately.

• The evaluation of the studied structures and methods compared to a state-of-art

algorithm.

1.3 Contributions

In this work, the H-MOPSO algorithm proposed by [22] is used. In an initial study,

that work is partially replicated, and the obtained results are favorable, supporting [22]

conclusions. In another study, two Choice Function based heuristic selection methods

are evaluated. There is no evidence that one outperforms the other with statistical dif-

ference. However, the Adaptive Choice Function had better results mainly for the IGD

quality indicator. Also, three MAB-based methods were evaluated. Any of them showed

statistical difference against the other two, but the FRRMAB-UCB1 method had the best

average ranking in both IGD and HV quality indicators. Three H-MOPSO strategies were
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evaluated: one selecting just archiving; one selecting both methods together; one select-

ing archiving and leader selection methods separately. The H-MOPSO strategies that

select both methods showed to be better when compared with the version selecting just

archiving. Also, all H-MOPSO variations were able to get competitive results against the

state-of-art algorithm MOEA/D-DRA. Moreover, the H-MOPSO-ACF was the variant

with better results, with a statistical difference to MOEA/D-DRA, in almost all cases.

Throughout the master degree, three papers were published: On the first publica-

tion [29], a case study of automatic parameter configuration, a related area to hyper-

heuristic, is presented. In the case study, two methods were evaluated to configure the

Boids algorithm parameters: the Iterated Racing and a Differential Evolution. The sec-

ond work [11], as co-author, published at the Genetic and Evolutionary Computation

Conference (GECCO 2015). In that work a Choice Function and a Multi-Armed Bandit

based heuristic selection methods are evaluated on a Hyper-heuristic for the Integration

and Test Order Problem. Also, a publication in proceedings [30] focused on detection and

representation of the interactions between the components of a multi-objective problem.

The detection was made during the optimization process, and three statistical correlation

methods were evaluated.

1.4 Organization

The remaining of this work is organized as follows:

First, in Chapter 2, related work is presented. Some recent proposals and comments for

many-objective optimization and hyper-heuristic fields are described. Then the theoretical

foundation for multi-objective optimization is presented in Chapter 3. Also, the many-

objective optimization and the Multi-Objective Particle Swarm Optimization (Section 3.1)

are described.

In Chapter 4, the hyper-heuristic concept is described. Two heuristic selection meth-

ods are detailed, the Choice Function based and the Multi-Armed Bandit based. The

proposal of this work is presented in Chapter 5. First, a related work is presented, used

as a base to this one. Then, the proposed studies are presented. Finally, the methodology
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used to evaluate the studies and hypotheses are described.

In Chapter 6, the experimental evaluation is presented. Nine studies are evaluated

to assess different heuristic selection methods and different hyper-heuristic strategies.

Finally, in Chapter 7, the conclusions are displayed and, as well as, some topics to be

considered in future works. The work has four appendices: the Appendix A presents the

extended results of a preliminary research. The detailed results for different parameter

configurations of ACF are presented in Appendix B. The Appendix C presents the detailed

results for different parameter configurations of UCB1. Finally, the detailed results for

different H-MOPSO strategies are presented in Appendix D.
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CHAPTER 2

RELATED WORK

In this chapter, related work to this proposal is presented. The primary basis of this work

is presented in [6]. In that work, the use of Hyper-heuristic to increase MOPSO per-

formance in Many-Objective Optimization is proposed (the H-MOPSO). The approach

described in [6], a low-level heuristic is a pair of an archiving with a leader selection.

A simple roulette-based hyper-heuristic is used to select the low-level heuristics. The

strategy selects, once for each iteration, a low-level heuristic to be applied. Due to the

multi-objective scenario, the hyper-heuristic is guided by a quality indicator. The R2

indicator is used, because of its desirable characteristics and low computational cost.

The experimental studies compare the H-MOPSO against a state-of-art multi-objective

algorithm MOEA/D-DRA. The results have shown that the H-MOPSO is competitive

against the state-of-art algorithm and that the use of hyper-heuristic is capable of in-

creasing the MOPSO performance for Many-Objective Optimization. No other work uses

Hyper-heuristic for selecting MOPSO operators for Many-objective optimization.

In [26], a new Adaptive Operator Selection (AOS) for MOEA/D has been proposed:

the Fitness-Rate-Rank-based Multi-Armed Bandit (FRRMAB). The objective is to select

the operators based on their recent performances. The results indicate that the AOS

with FRRMAB can significantly increase the performance of an MOEA/D. In [10], two

MOEA/D-FRRMAB variations are proposed based on Multi-Armed Bandit literature:

MOEA/D-UCB-Tuned and MOEA/D-UCB-V. Those proposed methods use the variance

of the operators’ reward to get a better evaluation of its performance. In that work, the

MOEA/D-UCB-Tuned gets favorable results when compared with the other two MAB-

based methods and other two state-of-art Adaptive Operator Selection MOEA/D.

Another heuristic selection method is the Choice Function (CF) [24]. In [12], a CF

variation is proposed. The main difference is the lack of the pair component. The objec-
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tive was to combine three multi-objective evolutionary algorithms to solve multi-objective

problems. The high-level approach demonstrated effectiveness when compared with each

low-level heuristic applied individually and an adaptive algorithm. In [11] a CF variation

that also does not use the pair component is proposed, based on [12]. Also, the elapsed

time is not counted in seconds but how many heuristic selections have passed since the

last time that the heuristic has been applied. In that way, a heuristic that takes more

time but improves the quality of the solution has higher probability of being selected than

a heuristic that takes less time but does not increase much the quality of the solution.

Another contribution of that work is a new measure to evaluate the quality of generated

solutions in multi-objective problems. The measure uses the relation of dominance be-

tween the generated solutions (or solution) with their parents to compute the quality. The

best value is reached when all offspring dominate all parents, and the worst value occurs

when all parents dominate all offspring. In this work, the CF proposed by [11] is referred

as Simplified Choice Function (SCF). It is used in a Hyper-heuristic framework for a

Search-Based Software Engineering problem. That framework also uses a Multi-Armed

Bandit heuristic selection method.

In [9], an Adaptive Choice Function (ACF) is proposed, to select mutation methods

in an MOEA/D framework. The ACF is proposed based on another CF variation called

Modified Choice Function (MCF). In MCF, the intensification and exploration parame-

ters are variable along the search. The intensification parameter is set to the maximum

value every time that a heuristic improves a solution and the value gradually decrease if

the heuristic does not improves the solution. The exploration parameter has an opposite

behavior, being set to a minimum value when the heuristic improves and increasing oth-

erwise. In ACF, a scale factor is added, to balance the measure of the heuristics reward

and the elapsed time, measured in seconds. Another difference is that the quality of a

heuristic is the mean of the previous rewards instead of the accumulated value as in MCF.

The proposal for this work is to evaluate the performance of other heuristic selection

methods on the framework proposed by [6, 22]. The objective is to assess if the use

of different methods increases the performance obtained by H-MOPSO. Two types of
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methods were elected to be studied: one based on Multi-Armed Bandit (MAB) and

other based on Choice Function. From MAB literature, the method FRRMAB [26] and

the variations proposed in [10] were selected. From CF literature, the Simplified Choice

Function proposed by [11] and the Adaptive Choice Function proposed by [9] were chosen.
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CHAPTER 3

MULTI-OBJECTIVE OPTIMIZATION

In this chapter, some theoretical foundations needed for a proper understanding of the

remainder of this work are presented. First, the Multi-Objective Optimization (MOO) is

described along with relevant definitions and difficulties. Then, the Many-Objective Op-

timization concept is explained. Also, the Multi-Objective Particle Swarm Optimization

is described.

Multi-Objective Problems (MOP) exist in many real-world applications. MOP, are

problems with more than one objective function, and its optimization is called Multi-

Objective Optimization (MOO). In an MOP the solution may not be unique, due to

objective conflicts, one solution may be better in one objective and other solution be

better in another one, being then not comparable [4]. A problem presents conflicted

objectives if the optimization of one objective degrades the optimization of the other.

Usually, in MOO, the concept of Pareto dominance is used. According to this concept

if a solution j is better than i in one objective and not worse in any other, the solution i

is dominated by j, and j dominates i (j ≺ i) [4]. A solution i is optimal if there is not

any other solutions that dominate it. The set of all optimal solutions is called Pareto set,

and its image in the objective space is called Pareto front [4].

The purpose of the MOO is to find an approximation set to the Pareto Front (PF). The

goals are to find an approximation (I) as close as possible to the PF, and (II) as diverse

as possible in the objective space. Based on these goals the quality of an approximation

set can be evaluated regarding two aspects: convergence, that measures how close the

approximation set is to the PF in the objective space, and diversity, that measures how

well distributed the approximation set is over the PF. Moreover, the decision about the

best solution is left to a decision maker, which decides based on his/her preferences.

In Figure 3.1 a representation for a Multi-Objective Problem is illustrated. On the left
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side, the decision space or the space of the solutions of the problem is represented. The

feasible decision space is represented by the gray area. A feasible solution is represented

by •. The objective space (right side) is the image of the decision space and represents

the objective values of the solutions. The dominated solutions are represented by ◦, and

the non-dominated solutions are represented by �.

x2

x1

f2(x)

f1(x)

Decision space                                                    Objective space

Figure 3.1: Multi-objective problem representation

Population-based meta-heuristics are widely used for solving multi-objective problems,

they allow to output a Pareto approximation in a single run. Besides, they are less sensi-

tive to different MOP characteristics than traditional Operational Research techniques [3].

Nowadays several problems with two or three objectives can be successfully solved by the

state-of-art algorithms such as Speed-constrained Multi-objective PSO (SMPSO) [18] and

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [16]. The Many-Objective Op-

timization (MaOO) is a sub-area that focuses on solving problems with more than three

objectives, which occur in several real world problems. The multi-objective techniques

have their search abilities degraded as the number of objectives increases [5]. It happens

because of [4]:

• Difficulty of convergence, as the result of increasing the portion of non-dominated

solutions, known as dominance resistance (DR) phenomenon. The convergence of

Pareto-based algorithms is affected since most solutions became not comparable, as

the result the search became random, losing convergence pressure. Another problem
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is related to the decision of which solutions keep and which discard because the newly

generated solutions tend to be non-dominated too.

• Difficulty of diversity, it is the difficulty of finding a solution set that represents the

characteristics of the true front. Due to the increase of the Pareto Front, a higher

solution set size is needed to describe such front.

• Difficulty of visualization of the solutions, since special techniques are required to

represent the solution set in the objective space.

Because of these challenges, there is an increasing number of works in past few years

focusing MaOO [21, 31, 7, 8]. In [4] the multi-objective approaches are categorized into

seven classes. The relaxed dominance based: that relaxes the dominance concept to en-

hance the convergence pressure, however, these techniques can make difficult the diversity

maintenance. The diversity-based that uses customized diversity maintenance strategies

to improve the performance. The aggregation-based that uses scalarizing functions and

a set of weighting vectors to rank the solutions. In that approach, the selection of the

scalarizing function and the weighting vectors could affect the algorithm performance.

The indicator-based guides the search using the indicator value of the solution set. The

Hypervolume Indicator has been widely used due to its consistency with the concept of

Pareto dominance. However, the high computational cost to compute the hypervolume

has encouraged the study of other indicators, such as the R2 [4]. The reference set tech-

niques uses a set of reference solutions to evaluate the solutions and guide the search. In

this approach, the choice of how to manage and how to use the reference set to assess

the solutions quality could affect the algorithm performance [4]. The preference-based

approaches tries to reduce the complexity of the problem, focusing on a subregion of the

Pareto front. That subregion is selected based on the decision maker preferences. The

dimensionality reduction approaches reduces the number of objectives to change the prob-

lem to another one with fewer objectives, easier to be optimized. However, that approach

can lose some information, as a consequence of the reduction.

Despite the increasing number of works, there are still many open problems and im-
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provements to be made. Such as the design of diversity maintaining methods for aggrega-

tion approaches; or the design of hybrid algorithms, combining different approaches [4].

3.1 Multi-objective Particle Swarm Optimization

This section presents the Particle Swarm Optimization (PSO) algorithm and its adapta-

tion for multi-objective optimization, the Multi-Objective Particle Swarm Optimization

(MOPSO). The Particle Swarm Optimization is an algorithm inspired by the behavior of

flocks of birds searching for food [32]. The PSO shares with the MOEA’s (Multi-objective

Evolutionary Algorithms) the concept of population, where each individual (in PSO is

called a particle) is a complete solution. The particles (solutions) move around the search

space using a simple velocity operator, composed of three components:

• Individual : the individual, or local, component represents the best solution found

by the particle. It computes the difference between the current position x and

the best position visited by the particle pBest; This component is responsible for

exploring the region of the best solutions discovered so far.

• Social: The social, or global, component represents the best solutions found by

any particle. It computes the difference between the current position x and the

best position discovered by any solution gBest. This component is responsible for

guiding the swarm towards the best solutions discovered so far;

• Inertia : the inertia component is a scale factor for how much from the previous

velocity will be considered to compute the new one. It is responsible for keeping

the particle moving towards the same direction that previously. That component

controls the swarm behavior, higher ω values will increase the search space explo-

ration; on the other hand, lower values will increase exploitation. To guarantee an

initial high exploration and, as the search goes on, increasing exploitation a variable

ω value can be used, starting with a high value and then decreasing it;

Each particle is composed of its position and velocity. The position of the particle

in the search space represents a solution, in other words, a vector of decision variables.
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The velocity v represents the size of particles step in the search space. v is computed

as the sum of the previous velocity with the social and individual components; then it

is scaled by an inertia factor ω. Both individual and social components are scaled by a

fixed factor (c1 for individual and c2 for social) and a random factor (ϕ1 for individual

and ϕ2 for social components). Each particle computes its new velocity and then updates

its position as the sum of its previous position and its velocity, according to Equations 3.1

and 3.2.

v =
inertia︷︸︸︷
ωv +

individual component︷ ︸︸ ︷
c1ϕ1(pBest− x) +

social component︷ ︸︸ ︷
c2ϕ2(gBest− x) (3.1)

The new position x is computed as the sum of the previous position and the new

velocity. Then, the particle moves to the new position x+ v.

x = x+ v (3.2)

Initially, the position and velocity of the particles are initialized. Then, until the stop

criteria is reached the algorithm does the following steps: first the particles fitness is

evaluated, and the individual and social components are updated. Then, the new velocity

is computed and the position updated. This iterative and cooperative swarm behavior

moves the search towards the best solutions of the search space.

Based on the PSO, a multi-objective version was proposed, the Multi-objective Par-

ticle Swarm Optimization (MOPSO) [33]. The population-based characteristic allows

the algorithm to output in a single run an approximation of the Pareto front. To work

with multi-objectives, some issues need to be considered: the selection of the global best

gBest is not trivial as for one objective since, in MOO, the algorithm may generate not-

comparable solutions. Another change is related to the storage of the best solutions,

and also the diversity maintenance. Some changes on original mono-objective PSO were

proposed to deal with those issues. The global best gBest solution is selected from a

set of non-dominated solutions (called leaders), using some leader selection rule. The

non-dominated solutions are stored in a repository (also called archive, usually based on
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MOEA’s archive) to be selected further; they are also the algorithm output. As the size

of this repository may be limited, some rule needs to be applied to select which solution

should be kept and which should be discarded when the number of non-dominated solu-

tions is higher than the repository capacity; The convergence of each particle depends on

the leader selection rule since the particles may select different leaders and converge to

different regions of the search space.

As shown in Algorithm 1, the main structure of the PSO does not change, but two

steps are included: the leader selection and the archiving (update repository) methods.

The MOPSO initially sets the position and velocity of the particles (same way as PSO),

evaluates the fitness of the particles for each objective, and initializes the repository with

the non-dominated solutions. Then, until the stop criterion is reached, the algorithm up-

dates the velocity and position of each particle, using a leader selection rule to select the

global best component for each particle. After the update of the position, some implemen-

tations may apply a “fly turbulence”, similar to a mutation method, to increase diversity.

Finally, the repository is updated with the non-dominated solutions, using some archiv-

ing rule to truncate the repository when the number of non-dominated solutions exceeds

the repository capacity. When the algorithm finishes the repository of non-dominated

solutions (leaders) is the algorithm output.

Algorithm 3.1: MOPSO

1 initialize the swarm;
2 evaluate the particles;
3 initialize the repository;
4 while not reached the stop criteria do
5 foreach particle ∈ swarm do
6 leader selection; // Section 3.1.2

7 update velocity; // Equation 3.1

8 update position; // Equation 3.2

9 turbulence;
10 fitness evaluation;
11 update pBest;

12 end
13 update repository (swarm); // Section 3.1.1

14 end
15 return repository;
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The use of leader selection and archiving methods for adaptation of the PSO was able

to produce good results for multi-objective problems. Moreover, it was the focus of several

works [21, 22, 18, 33]. However, the different leader selection and archiving rules show

different behavior (and quality) depending on the problem and the stage of the search.

3.1.1 Archiving methods

Usually, MOEA and MOPSO implementations use a repository to keep the non-dominated

solutions. Moreover, in general, the archiving methods employed in MOPSO were initially

proposed to MOEAs. A repository with limited capacity can be used to deal with that

problem, using a truncation strategy to filter the solutions. Usually, a precise archiving

is used, where each newly generated solution is compared against all solutions inside the

repository. If the new solution is dominated by some other, it is discarded. If the new

solution dominates one or more solutions in the repository, the new solution is inserted and

the solutions dominated are removed. If the new solution and those from the repository

are all non-dominated, and the repository is not full, the new solution is inserted. Finally,

if all solutions are non-dominated, and the repository is full then it is applied a method

to filter the repository and to decide if the new solution will be included and, if included,

which one will be removed. Some archiving methods are described below:

• Crowding Distance (CD):

The Crowding Distance archive, proposed by [16] for the NSGA-II algorithm, aims

for Diversity Preservation. The crowding distance value measures the perimeter of

the hypercube surrounding a solution using the nearest neighbors as vertices. A

solution in a region with a higher crowding distance value (low density of solutions)

is preferable. Then, when the repository capability exceeds the solution with the

lowest crowding distance value is removed.

To compute the crowding distance value, the sorting of the population is required.

Also, the objectives are normalized before computation. The boundary solutions

have an infinity value assigned to them. To the others, the CD value is the sum
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of the distance between two adjacent solutions for each objective. As shown in

Figure 3.2, the CD value of a solution (�) is the sum of the distance between two

adjacent solutions for each objective (dashed lines).
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Figure 3.2: Example of Crowding distance computation for four particles

• Ideal Archiving: This method aims to improve the convergence of the algorithm.

If the archive is full, an ideal point is computed. The ideal point is composed of

the best objective value discovered so far, for each objective. Then, the distance

for each solution to the ideal point is computed. Finally, the farthest solution is

removed [17]. The Figure 3.3 shows an example of it.
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Figure 3.3: Example of distance to Ideal point computation for four particles
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• Multilevel Grid Archiving (MGA): When the repository is full, the objective

space is divided into a grid, and each solution has a box index vector associated.

Then the dominance relation of the box index vectors is evaluated. If the box index

vector of the new solution is weakly dominated, the new solution is not accepted.

Otherwise, the new solution is included, and a solution from a weakly dominated

box index vector is removed randomly. If there are no weakly dominated box index

vectors, the objective space is divided into smaller boxes until a dominated box

index vector is found [14, 15]. In Figure 3.4 an example is illustrated. Initially,

the objective space is divided into boxes. Since no box index vector is weakly

dominated by any other, the objective space is divided into smaller boxes. Finally,

a set of weakly dominated box index vectors is found, and an arbitrary solution

from this set is removed.
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Figure 3.4: Example of Multi-Level Grid archiving

Different archiving methods have different behaviors and objectives. For example,

Ideal Archiving aims at convergence, while CD and MGA aims at diversity. Due to it,

different methods have different qualities depending on the problem, and the stage of

the search. Meanwhile, the number of non-dominated solutions may increase quickly,

specially for many-objective problems [4]. The high number of non-dominated solutions

may increase the computational cost to keep and maintain the repository.

3.1.2 Leader selection methods

The leader selection step is an important part in an MOPSO. It is responsible for guiding

the search and providing diversity. However, it is not a trivial task, since all solutions
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inside the repository are non-dominated and, from a dominance relationship point of view,

all equally good. Some leader selection techniques are presented below [22]:

• Crowding Distance (CD) [18] : The CD method aims at providing diversity,

trying to guide the search towards the less crowded areas. The crowding distance of

each leader candidate is computed as the sum of the distance between two adjacent

solutions for each objective. In this method, two solutions are randomly selected

from the repository, and then the one with the highest crowding distance value is

selected.

• NWSum [19]: The NWSum is a Weighted Sum (WSum) variant, but in NWSum,

the particle with the highest weighted sum value is selected instead of the smallest

value used in WSum. This method aims at providing a good spread of solutions.

The NWSum is found to be more efficient than the original WSum.

• Sigma [20]: In this method, for each possible candidate leader, a Sigma vector

(a vector from the origin to the leader candidate) is computed. Then the selected

leader is that one that generates a Sigma vector closer to the Sigma vector of the

particle that will be updated. In this method, the particle selects a leader that is

similar to it.

As the archiving methods, the leader selection methods may vary their performance

depending on the problem and the stage of the search. Previous works [6, 22] have shown

that the choice of leader selection and archiving methods may increase the convergence

and diversity of the algorithm considerably.

3.1.3 Speed-constrained Multi-objective PSO

Due to its good results in the literature the Speed-constrained Multi-objective Particle

Swarm Optimization (SMPSO) is the MOPSO used in [6] and in this work. In [18], the

SMPSO was compared with five multi-objective meta-heuristics and was able to obtain

remarkable results regarding the quality of the approximation set and the convergence
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speed. In that work, the SMPSO was the best or second best algorithm in all cases for

the Epsilon indicator, in ten of twelve for Spread and in nine of twelve for Hypervolume.

The SMPSO is based on the OMOPSO algorithm. The main difference between SMPSO

and OMOPSO is the strategy to limit the velocity of the particles. It avoids the velocity to

become too high and allows producing new effective particle positions inside the feasible

search space. In addition to the velocity constriction mechanism, the original SMPSO

uses polynomial mutation, Crowding Distance Archiver and Crowding Distance Leader

Selection. In the velocity constriction mechanism, first, the velocity is computed, as it

is in the original OMOPSO; then the velocity is multiplied by a constriction factor, and

finally it is constrained to a maximum velocity value delta.

Based on the SMPSO algorithm, Castro and Pozo [22] proposed the H-MOPSO. A

Hyper-heuristic Multi-Objective Particle Swarm Optimization that automatically selects

leader and archiving methods for an SMPSO algorithm. In this work, the study and

evaluation of other heuristic selection methods is proposed and compared to the roulette-

based used in [22]. The concept of Hyper-heuristic is detailed in the next chapter.
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CHAPTER 4

HYPER-HEURISTIC

In many cases, there is a set of algorithms that can be used to optimize a given problem.

In that situation there is a challenge: the selection of the best algorithm or combination of

algorithms, and the algorithm configuration to be used. That challenge becomes difficult

with the increase of possibilities and the lack of guidance on how to select an appropriate

algorithm. Also, there is a theorem, called No Free Lunch Theorem [34], that says: “If all

optimization algorithms were evaluated in all optimization problems, in average, they all

would have the same performance”. It means that the algorithms have different perfor-

mances depending on the problem, for instance: if an algorithm has excellent performance

in a given problem, there is another problem where it will perform poorly.

The Hyper-Heuristic (HH) techniques emerge as high level approaches intended to

select (or generate) algorithms, based on a pool of algorithms or parts of it. In other words,

HH is high-level techniques that, for a given problem instance, and a set of heuristics (or

parts of heuristics), produces a proper combination for the problem [1]. In that way,

hyper-heuristic operate over the heuristic space, rather than the solution space. The term

was first defined in 2000 [24]. However, it is possible to find related work on the topic

since the sixties, for instance, the work described in [35] that combines a set of rules for a

scheduling problem. In [35], it is concluded that a random combination of rules was best

than any rule applied individually, and it is commented that the use of learning could be

used. That work [35] and many other ones related with hyper-heuristic were applied for

scheduling problems [1].

It is possible to classify the hyper-heuristic approaches in two classes: generation

and selection techniques, that can be used together [1]. In Figure 4.1 a classification

scheme is shown, it is possible to classify the hyper-heuristic by the feedback source:

Online, the learning occurs during the optimization process; Offline, the learning is made
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in a training set of problem instances, the output is an algorithm trained to optimize

instances of the problem that was trained; the no-learning techniques do not use any

information about the heuristic performance, for example, a simple random heuristic

selection. Hyper-heuristic approaches can also be classified by the nature of the search

space: the selection or generation of construction heuristics, that incrementally generate

a solution; Alternatively, perturbation heuristics, that operate over a complete solution.

Feedback                                Nature of the heuristic search space

O ine 

Learning

Online 

Learning

No-

Learning

construction 

heuristics

• Choice Function
• Reinforcement Learning
• Genetic Algorithms

• Tabu search
• Genetic Programming

• Ant Colony Optimization
• Adaptative Operator Selection

• Genetic Programming

• Differential evolution
• Memetic Algorithms

Heuristic Selection

Hyper-

Heuristics
Heuristic Generation

construction

heuristics

perturbation

heuristics

perturbation

heuristics

Figure 4.1: Hyper-heuristic classification scheme and examples (Adapted from [1] and [2])

According to [1] the heuristic generation objective is to build complete heuristics from

a set of components. The heuristic generation can have a high computational cost. How-

ever, the generation of heuristics returns a new heuristic, specialized for the problem

instance which was designed for and other instances of the problem. Despite the compu-

tational cost, a heuristic generation is usually less time consuming than a manual heuristic

design. Additionally, a specialized heuristic is usually better than a general one regarding

the solution optimality. In heuristic generation literature, most works use Genetic Pro-

gramming [1]. The heuristic generation is not the focus of this work. The focus of this

work is the heuristic selection.

The heuristic selection methods are techniques that, for a given problem instance and
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a pool of heuristics, or heuristic components, is responsible for selecting an appropriated

heuristic to be applied. The objective is to get the best heuristic to be applied depending

on the search stage and the search space properties. Those techniques aims at handling the

Exploration vs Exploitation Dilemma (EvE). According to EvE, just as it is important to

apply more often operators (or heuristics) with better performance, it is also important to

employ those that have not been employed recently, to evaluate its current performance.

In heuristic selection hyper-heuristic, a domain barrier may be considered, to keep sep-

arated the heuristic selection from the problem properties. The objective of this barrier

is to allow the hyper-heuristic to be problem independent. The low-level heuristics are

responsible for dealing with the problem. This domain independence allows the heuris-

tic selection to be used in other domains, by changing the low-level heuristic pool. In

2011, a competition was created with the objective of encouraging the research on the

hyper-heuristic field, mainly the Cross-domain: the Cross-Domain Heuristic Search Chal-

lenge(CHeSH) [36]. In the competition, many hyper-heuristic were evaluated in different

combinatorial optimization problems.

According to [1] the selection of construction heuristics has been used for the follow-

ing problem domains: production scheduling; educational timetabling; 1D packing; 2D

cutting and packing; workforce scheduling; constraint satisfaction; vehicle routing. Using

in most the following selection methods: Variable Neighborhood Search; Tabu Search;

Artificial Neural Networks; Evolutionary Algorithms; Genetic Algorithms and variations;

Accuracy-based classifier system; Machine Learning and others. The selection of per-

turbation heuristics have been used for the following problems [1]: personal scheduling;

educational timetabling; space allocation; cutting and packing; vehicle routing; and sports

scheduling. There are also studies involving Cross-domain, it means, the application of a

hyper-heuristic method independent of the problem domain. Most works have focused on

discrete problems, and a few have used population-based low-level heuristics. In Figure 4.2

a generic heuristic selection framework is presented.

The Hyper-heuristic for perturbation heuristic selection usually works in two phases [1]:

1. Heuristic selection: In this phase, a low-level heuristic is chosen and applied.
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Figure 4.2: Generic scheme for heuristic selection

There are different heuristic selection methods, for instance: the Choice Func-

tion [12, 24]; Reinforcement learning; and Adaptive Operator Selection. Moreover,

even simple methods are usually better than apply any low-level heuristic individu-

ally. Also, the quality of the optimization depends directly on the quality of the pool

of low-level heuristics. The simplest are those with no learning, e.g. a random se-

lection. There is also rank-based heuristic selection methods where the best-ranked

heuristics are more likely to be selected. Those methods use an update rule to rank

the low-level heuristics, based on its performance. Some of them may use a memory

update that indicates how much the oldest performances will affect the selection.

2. Move acceptance: In this phase, the solution generated by the applied heuristic

is evaluated, using some quality information received from the problem domain,

usually the fitness value of the solution. Then the solution is accepted or rejected

depending on its performance and the move acceptance method rules. Normally,

if a solution is better than a previous one, it is accepted; otherwise, an acceptance

criterion is used. The use of an appropriate move acceptance method may increase

the optimization performance substantially. Some move acceptance methods are

presented in Section 4.1.

Due to their good results in the literature, two heuristic selection methods were selected

to be used: Choice Function [24] and Multi-armed Bandit [27]. They are described in

Sections 4.2 and 4.3.
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4.1 Move acceptance

According to Burke et. al., the decision of the move acceptance seems to be more impor-

tant than the heuristic selection. Some move acceptance methods are [1]:

• All Moves: The new solution always replaces the old one;

• Only Improvements: If the new solution is better than the old one, it replaces

the old one.

• Improving or Equal: If the new solution is better or equal to the old one, it

replaces the old one.

• Monte Carlo: Always accepts improving or equal solutions, otherwise an accep-

tance probability is applied;

• Simulated Annealing: The probability of acceptance is based on the search stage.

In that way, the initial probability of accepting bad solutions is higher and then

decreases as the search goes on. Improving or equal solutions are always accepted.

• Threshold acceptance: All improving or equal solutions are accepted; otherwise

the new solution is compared with a threshold solution. The threshold solution

starts with the best solution, if the threshold is not reached after a while, it is

updated to the next best solution (second best, third best, and so on) until a new

solution is accepted.

• Great deluge: Initially, all solutions are accepted, and then become more selective.

In the end, only improving or equal solutions are accepted.

• Late acceptance: The method keeps a limited size list of solutions. Each new

solution is compared against the oldest solution in the list. If it is better than the

oldest one it is accepted, and inserted on the list. In case the list is full, the oldest

solution is removed.
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4.2 Choice Function

The Choice Function method is an online learning heuristic selection based on ranking,

proposed by [24]. The ranking is made based on a function with three components [37]:

cf(hi) = αf1(hi) + βf2(hj, hi) + δf3(hi) (4.1)

1. The first component (f1) is the fitness of the low-level heuristic hi. It is responsible

for increasing exploitation, increasing the probability of the heuristics with the best

performance.

2. The second (f2) is the fitness of the pair of low-level heuristics (hi, hj) when applied

together. The objective is to find a cooperative behavior between heuristics that,

when applied together, have a good performance.

3. The function also has an exploration component (f3). The elapsed time since the

last time that the low-level heuristic hi was applied is computed. It increases the

probability of the low-level heuristics not recently applied, to evaluate its current

performance.

The function value cf(h) of the heuristic hi is the sum of the three components (f1,

f2 and f3), weighted by some scale factor parameters (α, β and δ). After updating the

ranking, the choice can be made using different ways, such as: to get the best-ranked

heuristic, or to use some simple roulette rule.

There is a Simplified Choice Function (SCF) version [12], that does not consider the

pair component (Equation 4.2). In [11] this simplified version is used, and the exploration

function (f3(hi)) is adapted to return how many operator applications have passed since

the last time when the operator (hi) was applied, instead of using the elapsed time in

seconds as the original choice function.

cf(hi) = αf1(hi) + δf3(hi) (4.2)
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With the objective of avoiding parameter configuration of α, β and δ, in [23] an

Adaptive Choice Function (ACF) is proposed:

cf(hi) = φf1(hi) + φf2(hj, hi) + δf3(hi) (4.3)

Where φ is an exploitation factor for the best-performed heuristics, and δ is an ex-

ploration factor, responsible for increasing the probability of the heuristics that have not

been applied recently. The parameter φ is set to 0.99 each time that the heuristic im-

proved the solution quality and decreased by 0.01, otherwise. The δ parameter is set to

(1− φ). The objective is to increase exploitation when the solution quality is improving,

and to increase exploration when the current best operators cannot increase the solution

quality. In [9] two modifications are proposed: the use of an scale factor (SF ) parameter,

since the measures used in f1 and f2 may be in different scales when compared with f3;

and the use of the mean values of f1 and f2, instead of the accumulated values.

In this work, the study of Simplified and Adaptive Choice Functions to select leader

selection and archiving methods in MOPSO is proposed. For this, the H-MOPSO frame-

work proposed in [6] is used.

4.3 Multi-armed Bandit

The Multi-armed Bandit is a problem that considers a set of K independent arms, with

unknown probability of being rewarded. The objective is, along the time, selecting the

arms that maximize the accumulated reward. The Multi-armed Bandit problem fits in the

Exploitation vs. Exploration (EvE) dilemma. According to EvE, it is important to apply

often the arm with the highest performance, but, it is also important to employ the other

arms once a while to evaluate its current performance since its quality may change. Many

algorithms have been proposed to tackle the MAB problem, one of them is the Upper

Confidence Bound (UCB), which provides asymptotic optimality guarantees. In UCB,

the selected arm is the one that maximizes the UCB function (Equation 4.4) [10, 26].
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q̂i + C ×

√
2× ln

∑
K nK,it

ni,it

(4.4)

Where each arm has an empirical quality estimated (q̂i). Same way as the f1 compo-

nent from Choice Function; the q̂i is responsible for increasing exploitation, i.e., enhance

the probability of the heuristics with the best performance. Moreover, a confidence in-

terval computed based on the number of times that the arm has been tried before. The

C parameter is a scale factor between exploration (the term right, that measures how

frequently the arm has been tried) and exploitation (the term left, that measures the arm

quality) [26, 10].

Some UCB-based algorithms have been proposed for Adaptive Operator Selection

(AOS), as it aims at handling the EvE dilemma. The objective is to select the operators

that increases the quality of the optimization solution output. One of the UCB-based

algorithms is the Sliding Multi-Armed Bandit (SlMAB) [38]. In the SlMAB the empirical

quality estimate (Equation 4.5) and the confidence interval (Equation 4.6) are computed

based on a sliding time window, to evaluate the operators based on the current search

stage.

q̂i,it+1 = q̂i,it ×
W

W + (t)
+ ri,it ×

1

ni,it + 1
(4.5)

ni,it+1 = ni,it ×
(

W

W + (t)
+

1

ni,it + 1

)
(4.6)

Where it is the current iteration. W is the sliding window size; it means that only the

last W fitness improvements will be considered. t is the elapsed number of iterations since

the previous time when the operator was applied; Moreover, r is the operator reward (it

can be computed using some criteria, such as the fitness obtained in the last time that the

operator was applied; or the accumulated fitness in the last W iterations). In a case of an

operator be often applied the n value increases quickly. Otherwise, its n value increases

slowly, increasing the probability of being selected.

In [38], it is also proposed a Rank-based Multi-Armed Bandit (RMAB). It also uses a
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sliding time window, but the q̂i is computed based on a ranking of the operators rewards.

Moreover, the n is the number of times that the operator has been applied in the last W

iterations.

In [26], a Fitness-Rate-Rank-Based Multi-Armed Bandit (FRRMAB) is proposed.

Usually, the gross value of the fitness improvements is used as the reward. However, the

range of these values may vary depending on the problem and the search stage. To deal

with that, FRRMAB uses a fitness improvement rate (FIR), defined as (Equation 4.7):

FIR =
pf − cf
pf

(4.7)

Where the FIR of the operator is the difference between the fitness of the solution

before (pf) and after (cf) applying the operator, divided by the old fitness (pf). The

FIR values of the last W applications are stored in a sliding time window. Moreover,

the Reward of an operator (i) is the sum of all FIR of that operator in the sliding

window. Then, all operators are ranked by reward, and a decaying factor (D) is applied,

(Equation 4.9) to increase the probability of the best-ranked operators:

Rewardi =
W∑

k←0


FIRop

k if op = i

0 otherwise

(4.8)

Decayi = DRanki ×Rewardi (4.9)

Finally, the credit value of the operator i is computed as (Equation 4.10):

FRRi =
Decayi∑K
j=1Decayj

(4.10)

To select the operators, the empirical reward q̂i is replaced by the FRRi value in

the UCB function. Moreover, ni indicates the number of times that the operator (i)

has been applied in the last W iterations. The FRRMAB uses the pure UCB function.

The use of two other functions from UCB literature, the UCB-V, and UCB-Tuned is

investigated in [10]. The classical UCB function and the UCB-V provide asymptotic
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optimality guarantees. Moreover, the UCB-V and UCB-Tuned use the reward’s variance

to obtain a better EvE trade off. In UCB-Tuned, the selected operator is the one that

maximizes the following function: (Equation 4.11)

FRRop + C ×

√
ln
∑K

i ni

nop

×min(
1

4
, Vop) (4.11)

Where Vop is:

Vop = σ2
op +

√
2× ln

∑K
i ni

nop

(4.12)

In the UCB-V function, the selected operator is the one that maximizes the following

function (Equation 4.13):

FRRop + C ×

√
2× ln

∑K
i ni × σ2

op

nop

+ 3×
∑K

i ni

nop

(4.13)

In this work, the study of the original FRRMAB(-UCB1) and its variants FRRMAB-

UCB-V and FRRMAB-UCB-Tuned to select leader selection and archiving methods in

MOPSO is proposed. For this, the H-MOPSO framework proposed in [6] is used.
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CHAPTER 5

HYPER-HEURISTIC GUIDED MANY-OBJECTIVE

PARTICLE SWARM OPTIMIZATION

In this chapter, the proposal for this work is presented. Initially, the motivation and objec-

tives for this proposal are described. Then, the base framework for this work is introduced:

the Hyper-heuristic Multi-Objective Particle Swarm Optimization (H-MOPSO), proposed

by [6]. Also, the studies and improvements proposed for H-MOPSO and the methodology

used are presented.

The motivation of this work is based on the fact that several real world problems are

many-objective. Besides, the algorithms designed for multi-objective optimization have

a deterioration of convergence and diversity when applied to problems with more than

three objectives [4]. Some many-objective algorithms have been proposed to solve this

kind of problems. One of those algorithms is the Hyper-heuristic Multi-objective Particle

Swarm Optimization (H-MOPSO) [6]. That work is based on studies that show that

different archiving and leader selection methods have different performance depending

on the problem and the search stage [21, 17]. Those characteristics indicated that the

use of hyper-heuristic to select automatically archiving and leader selection methods may

increase the MOPSO performance in different circumstances, including many-objective

optimization. The H-MOPSO proposed by [6] uses a simple roulette-based heuristic se-

lection, which obtained encouraging results. The results obtained by [6] shows that the

use of hyper-heuristic can improve MOPSO performance. Also, it is possible that the

use of more accurate methods may improve the selection and consequently the obtained

results. The aim of this work is to reduce the deterioration of convergence and diver-

sity present on many-objective optimization. To do so hyper-heuristic can be employed,

according to [6].

In this work it is proposed the study of other heuristic selection methods on the H-
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MOPSO framework. It is also proposed the evaluation of a new H-MOPSO structure.

5.1 Hyper-heuristic Multi-objective Particle Swarm Optimiza-

tion

The Hyper-heuristic Multi-objective Particle Swarm Optimization (H-MOPSO) is based

on the Speed-constrained Multi-objective PSO (SMPSO). The H-MOPSO selects, for

each iteration, a pair of archiving and leader selection methods to be applied. Then,

an iteration of the SMPSO using the methods previously selected is executed. When

the iteration finishes, the swarm is evaluated for acceptance for the next iteration. The

quality of the generated swarm is used to assess the performance of the pair of leader

selection and archiving methods selected.

H-MOPSO is illustrated in Algorithm 5.1. The highlighted steps are the hyper-

heuristic steps introduced in SMPSO. First the swarm is initialized, and then the particles

are evaluated and the repository is initialized with the non-dominated particles. Finally,

before the main loop starts, the hyper-heuristic strategy is initialized. Until the stop

criterion is reached the algorithm repeats the following steps: First, a low-level heuristic

is selected (a combination of archiving and leader selection methods) using some heuris-

tic selection method. Then, for each particle, the SMPSO steps are executed: first, the

leader selection method is applied; then the particle velocity and position are updated;

after updating the position, a turbulence method is applied (mutation); Finally, the fit-

ness of the particle is evaluated, and the local best component (pBest) is updated. After

computing those steps for each particle the algorithm updates the repository, using the

selected archiving method; then the reward of the applied low-level heuristic is computed.

Finally, the move acceptance method is applied, to verify if the new repository is going to

be accepted (to replace the old one) or discarded (to keep using the old one). When the

stop criterion is reached, the algorithm outputs the approximate Pareto front, i.e. the

repository.

In [6], the low-level heuristic selection was made using a simple roulette based method,
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Algorithm 5.1: H-MOPSO

1 initialize the swarm;
2 evaluate the particles;
3 initialize the repository;

4 initialize hyper-heuristic;

5 while not reached the stop criteria do

6 heuristic selection;

7 foreach particle ∈ swarm do
8 leader selection; // Section 3.1.2

9 update velocity; // Equation 3.1

10 update position; // Equation 3.2

11 turbulence; // mutation

12 fitness evaluation;
13 update pBest;

14 end
15 update repository (swarm); // Section 3.1.1

16 credit assignment;

17 move acceptance; // Section 4.1

18 end
19 return repository;

initially with same probability for all low-level heuristics. The selection was guided by the

quality indicator R2 [39]. The R2 quality indicator is based on the weighted Tchebycheff

function and allows evaluating both convergence and diversity with low computational

cost. A weight vector set is needed to compute the R2 value, a set of uniform distributed

weight vectors is frequently used. It also uses an ideal point; it means, a point that no

feasible solution dominates. The use of the R2 quality indicator instead of Hypervolume

is preferred. Since it has low computational cost, and prioritizes well-distributed fronts,

the Hypervolume biases to the knee of the front. According to [39], the R2 indicator

evaluates all desired aspects of a Pareto front approximation. The R2 indicator is weakly

monotonic and less time consuming when compared with Hypervolume indicator. Besides,

the R2 indicator is assumed to produce a more uniform distribution.

For each low-level heuristic applied, if the R2 value of the repository decreases, the

roulette portion of the applied low-level heuristic increases. On the other hand, if the

R2 value increases, the roulette portion decreases. The improving or equal acceptance

method was used, it means, if the old repository has a worse or equal R2 value than the
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new one, it is replaced, and the new one begins to be used. Another decision made by [6]

is related to performance estimation of the low-level heuristics. Unless the repository

size limit is exceeded, every archiving method will have the same behavior: to accept

all non-dominated solutions. So, at the initial stages, the quality of different archiving

methods cannot be estimated. To avoid this noise on learning the default SMPSO is used

until the repository size limit is exceeded (using Crowding Distance Archiver and Leader

Selection); just then, the selection of the methods and the learning process begins.

In [6], nine low-level heuristics are used. Each low-level heuristic is a combination of

three leader selection methods, with three archiving methods:

• Archiving methods: Crowding Distance Archiving (CD); Ideal Archiving; Multi-

level Grid Archiving (MGA).

• Leader selection methods: Crowding Distance Leader Selection (CD); NWSum;

Sigma.

The leader selection and archiving concepts have been described previously in Sections 3.1.2

and 3.1.1.

The turbulence method used was the polynomial mutation with probability pm =

1.0/L, where L is the number of decision variables, as proposed in [18]. Initially, the

probability of each low-level heuristic is the same. The credit assignment was fixed: if

the R2 value of the new repository is better than the value obtained by the previous one,

the probability of the low-level heuristic applied was incremented by 0.1 of the initial

probability. Otherwise, it was decreased by the same value. A minimum probability

of 0.5% was applied to guarantee that a low-level heuristic will not be removed of the

roulette (it means, 0% of probability).

5.2 Proposal

In this work different heuristic selection methods are investigated in the hyper-heuristic

strategy proposed by [22] with the focus on Many-objective Problems (MaOP). Also, the

study of a new structure for the H-MOPSO framework is proposed. The objective is to
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evaluate the performance of the H-MOPSO using other heuristic selection methods and to

compare to the roulette-based proposed by [6] and a state-of-art multi-objective algorithm.

The study of two methods based on Choice Function is proposed: the Adaptive Choice

Function [9] and the Simplified Choice Function [11]. Also, three Multi-armed Bandit

based methods, the FFRMAB [26], the FFRMAB-UCB-V [10] and the FFRMAB-UCB-

Tuned [10] are proposed. On the experiments, those heuristic selection methods replace

the roulette-based proposed by [6] on the H-MOPSO framework. Those methods were

selected based on Choice Function [22, 6, 11, 9, 12, 23] and Multi-Armed Bandit [26, 10,

22, 6, 11] literature.

Also, the study of a new H-MOPSO strategy is proposed. In this new strategy, the

selection of the archiving and the leader selection methods are made separately. The

archiving method still is selected for each iteration. However, the leader selection method

is selected for each particle. The objective is to compare the selection made separately to

the selection made together, as a single low-level heuristic. The aim of this new strategy

is to have a heuristic selection method specifically for archiving and another for leader

selection. In that way, the learning and the selection will be based only on the estimated

quality of the specific method. Also, the selection of the leader selection method is made

for each particle, which allows the algorithm to use different methods in a single iteration.

The proposed new strategy is illustrated by the Algorithm 5.2

On that new structure, the archiving method remains being selected iteratively. Con-

sequently, the credit assignment can be based on the quality of the repository. Therefore,

as in [6] the R2 indicator can be used. However, the leader selection method is selected

for each particle, so, the credit assignment should evaluate the quality of the updated

particle. In this work, a credit assignment rule based on [11] is used, that proposes an

equation based on the dominance relation between parents and offspring to evaluate the

reward of crossover operators. In this work, it is used to compare the dominance of the

new position of the particle with its previous position and with the leader selected from

the archive (Equation 5.1). However, other credit assignment rule could be used.



37

Algorithm 5.2: H-MOPSO-II

1 initialize the swarm;
2 evaluate the particles;
3 initialize the repository;

4 initialize hyper-heuristic for leader selection;

5 initialize hyper-heuristic for archiving methods;

6 while not reached the stop criteria do
7 foreach particle ∈ swarm do

8 selection of the leader selection method;

9 leader selection;
10 update velocity;
11 update position;
12 turbulence;
13 fitness evaluation;
14 update pBest;

15 credit assignment for leader selection;

16 move acceptance for leader selection;

17 end

18 selection of the archiving method;

19 update repository (swarm);

20 credit assignment for archiving;

21 move acceptance for archiving;

22 end
23 return repository;

r =


1.0 if xnew ≺ xold

0.0 if xold ≺ xnew

0.5 otherwise

+


1.0 if xnew ≺ gBest

0.0 if gBest ≺ xnew

0.5 otherwise

− 1 (5.1)

The reward r is the sum of two components, the first evaluates the dominance rela-

tion between the previous position xold with the new position xnew. If the new position

dominates the previous position then the first component value is 1.0, if the previous

dominates the new position, the value is 0.0, and 0.5 if both are non-dominated. The

second component evaluates the dominance between the new position and the selected

leader gBest. The value of the second component is 1.0 if the new position dominates

the leader gBest, it is 0.0 if gBest dominates the new position and it is 0.5 if they are

both non-dominated. The sum of the two components are in the range [0, 2], as it is

desirable to represent good performances with positive values and negative, otherwise, it
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is subtracted one to set the range [−1, 1]. The reward r is used to compute the quality

of a low-level heuristic, i.e., used to calculate the f1 component for Choice Function and

to calculate the FRR for FRRMAB. In other words, it replaces the FIR for the credit

assignment of leader selection methods.

5.3 Methodology

In this section, the methodology used and the proposed experiments are presented. In

this work several experiments are proposed. Initially, a preliminary study based on [6] was

made. In that experiment, the original H-MOPSO algorithm was evaluated. Then, differ-

ent Choice Function based heuristic selection methods were studied: the Adaptive Choice

Function and the Simplified Choice Function. After that, the parameters of the selected

CF are empirically configured. Then, the study of Multi-Armed Bandit (MAB) based

heuristic selection methods is performed. Moreover, the parameters of the selected MAB-

based are empirically set. Finally, the best MAB and CF based methods are compared to

each other, to the roulette-based method proposed by [6], to a simple random heuristic

selection, and to a state-of-art algorithm, MOEA/D-DRA. In this step, the selection was

made only for the archiving method.

Then, three H-MOPSO strategies were evaluated: the selection of only the archiving

method; the selection of both archiving and leader selection methods as a single low-level

heuristic; and the selection of both methods separately. Those strategies were evaluated

for each heuristic selection method. Moreover, for each heuristic selection method an H-

MOPSO strategy was chosen. Finally, each heuristic selection method with the selected

strategy is compared to each other and the MOEA/D-DRA algorithm. To conclude the

experiments, the best H-MOPSO variant is compared with the MOEA/D-DRA.

The H-MOPSO and the low-level heuristics are implemented using the jMetal frame-

work [40]. Except by the first study (Section 6.1), that replicates the related work [6], all

other studies follow the setup illustrated in Table 5.1. The experimental setup is based

on [31] and [7].

The benchmark problems used were the DTLZ1 to DTLZ4 functions from DTLZ test
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Table 5.1: Experimental studies configuration
Parameter value description
m 3, 5, 8, 10 and 15 objective number
problem DTLZ1 to 4 and WFG6 and 7 benchmark problems
popsize 91, 210, 156, 275 and 135 population size
repsize 91, 210, 156, 275 and 135 repository size
runs 20 independent runs

suite and WFG6 and WFG7 functions from WFG suite. Those benchmark problems

allows the configuration of the number of objectives and the number of decision variables.

For each objective number, the decision variables setup was used as suggested in [41]

and [42]. For the DTLZ suite the number of decision variables is suggested by [41] as

n = m + r − 1, where m is the number of objectives, r is set to 5 in DTLZ1, and 10 in

DTLZ2 to DTLZ4. For the WFG suite the suggestion for the number of decision variables

is n = l + k, where l is set to 20 and k is set to 4 if the number of objectives is 2, and k

is set to 2×m− 1 if the number of objectives m is higher than 2 [42].

The experiments were evaluated with five values for the objective number m =

{3, 5, 8, 10, 15}. The population size, popsize, and repository size, repsize, use the same

value and were set according to the number of objectives, 91, 210, 156, 275, 135, respec-

tively to 3, 5, 8, 10, and 15 objectives. The number of independent runs were set to 20.

The number of iterations was set for each test instance, according to Table 5.2.

Table 5.2: Number of iterations for different test instances
Number of objectives (m)

Problem 3 5 8 10 15
DTLZ1 400 600 750 1000 1500
DTLZ2 250 350 500 750 1000
DTLZ3 1000 1000 1000 1500 2000
DTLZ4 600 1000 1250 2000 3000
WFG6 3000 3000 3000 3000 3000
WFG7 3000 3000 3000 3000 3000

For each experiment and quality indicator, the average indicator value of the 20 inde-

pendent runs is presented, for each algorithm, benchmark problem, and objective number.

On the presented results, for each row (test instance), the best indicator value is high-

lighted with a bold face. It is presented with the gray background if it is the best value
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and has a statistical difference according to the Kruskal-Wallis statistical test [43], for

each quality indicator. The average ranking of the algorithms is also computed. The

best-ranked algorithm is highlighted with a bold face. It is presented with the gray back-

ground if it is the best ranked with a statistical difference according to the Friedman

statistical test [44].

To evaluate the proposed studies the following quality indicators were used:

• Hypervolume [45]: The Hypervolume quality indicator computes the multi-dimensional

volume of the objective space that is dominated by the Pareto front approximation.

It is used to measure both, convergence and diversity and its computation does not

require the knowledge of the true Pareto front. The Hypervolume is strictly mono-

tonic; it means if a Pareto front A dominates another front B, the Hypervolume

value of the front A will be better (higher) than B. Although, it is sensitive to the

number of objectives and extreme values. Its main weakness is its high computa-

tional cost; that increases with the number of objectives. Due to this, in this work

the Hypervolume quality indicator was not executed for m = 15.

• Inverted Generational Distance (IGD) [46]: The IGD quality indicator eval-

uates both convergence and diversity. It computes the distance between the true

Pareto front and the Pareto front approximation. However, some Pareto fronts have

an enormous number of solutions, sometimes infinity. To compute the IGD of such

front, a representative set of reference points can be used. Then, the IGD can be

computed as the average of the distance between each reference point to the closest

solution to the Pareto front approximation. In this work, a set of reference points

was used to represent the true Pareto front.

According to [47], the Hypervolume and IGD may disagree when the Pareto front

is concave, which is the case of most of the problems evaluated. It may occur because

the Hypervolume is biased to the knee of the front while IGD may favor a more uniform

distribution. In Figures 5.1 and 5.2 are shown two examples of Pareto front approxima-

tions. The first front (Figure 5.1) has a better Hypervolume value, due to having a better
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convergence towards the knee of the front. The second front (Figure 5.2) has a better

distribution over the true Pareto front, and due to it, has a better IGD value.

Figure 5.1: Example of Pareto front approximation with better Hypervolume and worse
IGD than the front from Figure 5.2

Figure 5.2: Example of Pareto front approximation with better IGD and worse Hyper-
volume than the front from Figure 5.1

Besides the decision of how to perform the experiments and analysis, some decisions

about the H-MOPSO framework were made, based on literature. In this work the credit

assignment used on H-MOPSO is based on the fitness improvement rate (FIR) proposed

in [26]. The FIR is used as the reward to compute the f1 component from Choice Function

and the FRR component from FRRMAB. Usually, the credit assignment is based on the
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raw fitness value, but it can vary for each problem, and depends on the search stage.

To alleviate this issue, the FIR computes the credit assignment of a low-level heuristic

as the difference between the previous fitness value and the current one, divided by the

previous value (Equation 4.7 of Section 4.3). In this work the FIR is computed as the

difference between the R2 value of the previous repository and the R2 value of the current

repository, divided by the previous R2 value:

FIR =
R2old −R2new

R2old

(5.2)

In this work, the same move acceptance method as [6] is used, the Improving or Equal

(IE) move acceptance. If the R2 value of the current repository is better or equal than

the R2 value of the previous repository then, the previous repository is discarded, and the

new repository is used in the next iteration. Otherwise, the new repository is discarded,

and the previous repository is used again. In some studies performed [6], the H-MOPSO

is compared to a state-of-art algorithm: the MOEA/D-DRA. The MOEA/D-DRA is a

multi-objective evolutionary algorithm based on decomposition with dynamic resource

allocation and winner of the CEC 2009 MOEA contest [28].
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CHAPTER 6

EXPERIMENTAL EVALUATION

In this section the experimental analysis is presented. First, a preliminary research was

made. That initial review partially reproduces the main related work. Then, a study

of different Choice Function based methods was performed. In that study, the Adaptive

Choice Function and the Simplified Choice Function were compared. After that, the Adap-

tive Choice Function was selected and then its parameters were empirically configured.

Also, three Multi-Armed Bandit based methods were evaluated: the FRRMAB-UCB1, the

FRRMAB-UCBV and the FRRMAB-UCB-Tuned. The FRRMAB-UCB1 was selected,

and its parameter configured empirically. The selected CF and MAB-based methods

were evaluated in the selection of MOPSO archiving methods, and compared to a random

selection, a roulette-based selection and a state-of-art multi-objective metaheuristic.

Also, a new H-MOPSO strategy was investigated. The new approach was evaluated

using the selected CF and MAB-based methods in addition to a random selection and

a roulette-based selection. Finally, the best version of each different heuristic selection

hyperheuristic was applied to the selection of archiving and leader selection methods and

compared to a state-of-art algorithm. To conclude the experiments, the hyperheuristic

with the best results was compared to a state-of-art algorithm.

6.1 Preliminary research

In this section, a preliminary analysis of related work [6] is conducted, where the use of

hyper-heuristic for solving many objective problems is proposed. This section is intended

to reproduce that work, and to evaluate the implementation of the roulette based selection

method. The goal is to investigate if the implementation is capable of reaching the

same results as in [6] and if a simple selection of low-level heuristics has a better overall

performance against each low-level heuristic individually.



44

In [6], nine low-level heuristics were used, as the combination of three archiving meth-

ods (Crowding Distance, Ideal and Multilevel Grid Archiving (MGA)) with three leader

selection methods (Crowding Distance, NWSum, and Sigma). The hyper-heuristic is then

compared with the nine low-level heuristics individually for the R2 indicator. In that pa-

per, the hyper-heuristic (called H-MOPSO) using a roulette-based selection method had

a better performance and the best overall ranking.

6.1.1 Experimental analysis

In this experiment, the same configurations than in [6] are used. Such configurations

are shown in Table 6.1. All algorithms were executed with m objectives, where m =

{2, 3, 5, 10, 15, 20}. The used benchmark problems were the DTLZ class (1 to 7). Both

population and repository size were set to 100; the algorithms were executed in 30 inde-

pendent runs with 100 iterations each. The ROULETTE was used as alias to describe the

implementation of the hyper-heuristic using a roulette-based selection method; for each

low-level heuristic, the concatenation of the archiving method acronym with the leader se-

lection method acronym was used as an alias. For instance: the CDNWSUM alias means

Crowding Distance Archiving with NWSum leader selection. Also, the implementation

used is based on the Java framework jMetal [40], the related work was originally imple-

mented in C++ using CUDA library. Besides some language and framework differences,

all the algorithm structures, parameters and methods were used as in [6].

Table 6.1: Preliminary experiments configuration
Parameter value description
m 2, 3, 5, 10, 15 e 20 objective number
problem DTLZ1 to 7 benchmark problems
popsize 100 population size
repsize 100 repository size
runs 30 independent runs

An overall analysis of the results is shown in Table 6.2. For each algorithm, it is shown

the mean ranking (and standard deviation): in that analysis the ROULETTE algorithm

had the best mean ranking, 1.667, with a standard deviation of 0.891, which means that
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the ROULETTE usually was the first or second ranked algorithm. In comparison, the

second best-ranked algorithm was the MGACD with 3.095 mean ranking, 1.428 higher

than the best ranked. The standard deviation of the second best ranked was 1.9, which

means that the algorithm usually was the first to the fifth best algorithm. A more detailed

analysis is presented in Appendix A.

Table 6.2: Mean ranking (and standard deviation) for each low-level heuristic and the
hyper-heuristic based on roulette for the R2 indicator

Algorithm Mean ranking (and standard deviation)
IDEALNWSUM 7.952(2.278)

MGACD 3.095(1.900)
MGANWSUM 6.119(1.854)
IDEALSIGMA 8.238(2.202)

CDSIGMA 5.095(1.810)
ROULETTE 1.667(0.891)

CDCD 3.976(3.043)
IDEALCD 6.976(2.464)

MGASIGMA 5.786(1.767)
CDNWSUM 6.095(1.849)

the best mean ranking is shown with bold face
Friedman test p-value: p = 3.355387e− 34

It is possible to evaluate the difference between the algorithms based on the Table 6.3,

where each algorithm is compared to the one with best mean ranking (ROULETTE).

The ROULETTE was statistically different in almost all cases, with critical difference of

90.48263, just MGACD had no statistical difference, with an observed difference between

the accumulated ranking of 60. The higher differences were against CDNWSUM (186),

IDEALCD (223), IDEALNWSUM (264), IDEALSIGMA (276) and MGANWSUM (187).

6.1.2 Discussion

In this experiment, it was reproduced a related work from [6]. The objective was to

evaluate the implementation of the method proposed in [6], and then, to reach the same

conclusions. It was compared a pool of nine low-level heuristics against a simple roulette

high-level that uses this pool. In that work, the author concludes that the proposed hyper-

heuristic (called H-MOPSO) did not achieve the best performances in all cases, but, in
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Table 6.3: Multiple comparisons between groups after Friedman test for the R2 indicator

Comparisons observed dif. critical dif. difference
ROULETTE CDCD 97 90.48263 X
ROULETTE CDNWSUM 186 90.48263 X
ROULETTE CDSIGMA 144 90.48263 X
ROULETTE IDEALCD 223 90.48263 X
ROULETTE IDEALNWSUM 264 90.48263 X
ROULETTE IDEALSIGMA 276 90.48263 X
ROULETTE MGACD 60 90.48263
ROULETTE MGANWSUM 187 90.48263 X
ROULETTE MGASIGMA 173 90.48263 X

Comparisons: comparison between the best ranked algorithm and the others
observed dif.: difference between the accumulated ranking of the compared al-
gorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

general, the proposed hyper-heuristic can properly select low-level heuristics increasing

performance. It is possible to conclude that, the hyper-heuristic (ROULETTE) in general,

had a better performance according to the R2 indicator in comparison with the low-level

heuristics and a better overall ranking for different problems and objective numbers;

supporting the conclusions of [6].

6.2 Study of Choice Function based methods

In this section it is shown the comparison between two Choice Function based meth-

ods: the Simplified Choice Function (SCF) [12, 11] and the Adaptive Choice Function

(ACF) [23, 9]. The methods were used to replace the roulette selection method on H-

MOPSO algorithm. The objective of this section is to evaluate the selection methods and

to select one to be employed in the next studies.

Initially, it was adapted the H-MOPSO algorithm to select just archiving methods,

the leader selection method selection will be introduced back in further sections. It is

used the alias ACFFIXED to reference the H-MOPSO using ACF to select the archiving

method with fixed leader selection (the default method: Crowding Distance). Moreover,

the alias SCFFIXED to describe the H-MOPSO using SCF with default leader selection
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method.

The ACF proposed by [9] has two parameters an Scale Factor SF and a boolean

parameter mean. In this study, the same parameter values as [9] are used: SF = 0.5

and mean = true. The Simplified Choice Function used in [11] has two scale factor

parameters, α and β. And the values used in [11] and also in this experiment are α = 1.0

and β = 0.00005.

In Table 6.4 is shown the average IGD value of the 20 independent runs, for each

algorithm, benchmark problem and objective number. According to the IGD quality

indicator, the H-MOPSO using ACF has a better performance than it using SCF for

most test instances, especially from eight or more objectives. In Table 6.5 is shown the

mean ranking of the algorithms. Where H-MOPSO-ACF had the best mean ranking

(1.3 against 1.7 from H-MOPSO using SCF), with a statistical difference. Those values

show that H-MOPSO-ACF was able to reach better results against H-MOPSO using SCF,

according to the IGD quality indicator.

According to the Hypervolume quality indicator average value (Table 6.6) and mean

ranking (Table 6.7), the H-MOPSO using SCF shows better average HV values than H-

MOPSO using ACF, mainly for 3 and 5 objectives. Consequently, it reached a better mean

ranking with a statistical difference according to Friedman statistical test (1.29 against

1.70 from ACF). It means that, in this study, the Hypervolume and IGD conclusions

disagree.

Then, it was investigated the average contribution of each reference point to the IGD

computation to evaluate the indicators disagreement. The more similar average contribu-

tion means that the fronts are more uniformly distributed. Moreover, the small average

contributions mean higher convergence. In Figures 6.1(a) and 6.1(b) it is shown the aver-

age distance from the reference points to the Pareto front approximation of two instances

(DTLZ2 with ten objectives and DTLZ2 with 15 objectives), which can be seen as the

contribution of each reference point to the IGD computation. It is possible to observe

that the H-MOPSO using ACF achieves more uniformly distributed fronts, with simi-

lar average contribution from the reference points. Also, the SCF version obtained a
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Table 6.4: Mean (and standard deviation) for ACFFIXED and SCFFIXED for the IGD
indicator

Obj. problem ACFFIXED SCFFIXED

3
DTLZ1 7.22E-3(1.48E-3) 6.56E-3(4.8E-4)
DTLZ2 9.47E-3(5.63E-4) 9.45E-3(8.43E-4)
DTLZ3 1.5E-2(1.26E-2) 9.01E-3(8.96E-4)
DTLZ4 1.33E-2(4.81E-3) 1.88E-2(4.9E-3)
WFG6 1.06E-2(1.66E-3) 1.07E-2(7.09E-4)
WFG7 1.4E-2(2.63E-3) 1.2E-2(9.43E-4)

5
DTLZ1 1.17E-2(8.84E-4) 1.21E-2(1.36E-3)
DTLZ2 1.88E-2(1.33E-3) 1.67E-2(4.83E-4)
DTLZ3 2.81E-2(3.12E-3) 2.77E-2(3.6E-3)
DTLZ4 2.25E-2(2.54E-3) 2.38E-2(2.48E-3)
WFG6 1.52E-2(5.96E-4) 1.53E-2(6.32E-4)
WFG7 1.95E-2(2.01E-3) 1.82E-2(1.46E-3)

8
DTLZ1 2.99E-2(2.85E-3) 3.01E-2(2.63E-3)
DTLZ2 5.26E-2(3.33E-3) 5.33E-2(3.85E-3)
DTLZ3 6.28E-2(4.29E-3) 6.88E-2(4.64E-3)
DTLZ4 4.05E-2(1.78E-3) 4.78E-2(2.35E-3)
WFG6 4E-2(4.08E-3) 3.95E-2(1.82E-3)
WFG7 4.41E-2(4.42E-3) 5.11E-2(5.44E-3)

10
DTLZ1 2.43E-2(1.66E-3) 2.55E-2(1.33E-3)
DTLZ2 4.49E-2(2.46E-3) 4.72E-2(1.98E-3)
DTLZ3 5.19E-2(1.98E-3) 5.34E-2(3.28E-3)
DTLZ4 3.25E-2(1.48E-3) 3.56E-2(2.46E-3)
WFG6 3.61E-2(2.78E-3) 3.61E-2(1.63E-3)
WFG7 5.41E-2(3.9E-3) 6.75E-2(3.34E-3)

15
DTLZ1 5.53E-2(2.16E-3) 5.7E-2(2.41E-3)
DTLZ2 9.06E-2(2.85E-3) 9.21E-2(3E-3)
DTLZ3 9.68E-2(3.17E-3) 1.01E-1(4.84E-3)
DTLZ4 5.36E-2(2.37E-3) 6.49E-2(6.87E-3)
WFG6 1.11E-1(1.05E-2) 1.06E-1(1.53E-2)
WFG7 1.64E-1(1.36E-2) 2.27E-1(2.1E-2)

for each problem the best mean performance is shown with bold
face
the best value with statistical difference is shown with bold face
and gray background

Table 6.5: Mean ranking for
ACFFIXED and SCFFIXED for
the IGD indicator

Algorithm Mean ranking
SCFFIXED 1.7
ACFFIXED 1.3

the best value with statistical
difference is shown with bold
face and gray background
Friedman test p-value: p =
0.02845974

better convergence in some parts of the front, but with a higher difference between the

contribution of the reference points.
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Table 6.6: Mean (and standard deviation) for ACFFIXED and SCFFIXED for the HV
indicator

Obj. problem ACFFIXED SCFFIXED

3
DTLZ1 7.71E-1(6.88E-3) 7.82E-1(4.35E-3)
DTLZ2 6.09E-1(7.49E-3) 6.21E-1(3.24E-3)
DTLZ3 9.99E-1(5.01E-3) 1E0(3.93E-7)
DTLZ4 4.7E-1(1.03E-2) 4.52E-1(1.83E-2)
WFG6 3.78E-1(1.04E-2) 3.8E-1(1.1E-2)
WFG7 4.1E-1(1.91E-2) 4.42E-1(1.32E-2)

5
DTLZ1 9.57E-1(8.97E-3) 9.69E-1(5.3E-3)
DTLZ2 9.89E-1(2.08E-3) 9.93E-1(4.89E-4)
DTLZ3 1E0(1.67E-8) 1E0(1.31E-8)
DTLZ4 9.98E-1(1.06E-4) 9.98E-1(1.42E-4)
WFG6 5.75E-1(2.21E-2) 6.13E-1(1.1E-2)
WFG7 5.65E-1(2.21E-2) 5.97E-1(2.13E-2)

8
DTLZ1 1E0(7.26E-8) 1E0(7.37E-10)
DTLZ2 9.93E-1(5.51E-3) 9.98E-1(1.15E-3)
DTLZ3 1E0(1.37E-8) 1E0(4.54E-9)
DTLZ4 1E0(6.96E-6) 1E0(3.24E-5)
WFG6 6.27E-1(3.97E-2) 7.01E-1(1.69E-2)
WFG7 4.44E-1(2.63E-2) 4.13E-1(3.07E-2)

10
DTLZ1 1E0(1.71E-9) 1E0(0E0)
DTLZ2 9.96E-1(1.91E-3) 9.98E-1(1.02E-3)
DTLZ3 1E0(9.89E-10) 1E0(2.12E-9)
DTLZ4 1E0(3.28E-7) 1E0(7.29E-7)
WFG6 7.47E-1(3.79E-2) 7.84E-1(1.9E-2)
WFG7 4.57E-1(2.76E-2) 4.04E-1(2.17E-2)

for each problem the best mean performance is shown with bold
face
the best value with statistical difference is shown with bold face
and gray background

Table 6.7: Mean ranking for
ACFFIXED and SCFFIXED for
the HV indicator

Algorithm Mean ranking
SCFFIXED 1.291667
ACFFIXED 1.708333

the best value with statistical
difference is shown with bold
face and gray background
Friedman test p-value: p =
0.04122683

In Figure 6.2, it is shown the boxplot of the average distance from the reference

points to the front approximations of some problem instances. H-MOPSO with SCF

(SCFFIXED) usually has a higher deviation of average distances, with some reference

points with a smaller distance and others with a higher distance. On the other hand,

ACFFIXED usually has a smaller deviation of the average distances.
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Figure 6.1: Average distance from the reference points to the Pareto front approximation
in different problem instances

6.2.1 Discussion

In this section, the H-MOPSO algorithm was evaluated using two different Choice Func-

tion based methods for archiving method selection. In this study, the leader selection

method used was the default SMPSO method: Crowding Distance. The results show that

none of the methods evaluated outperforms the other in both IGD and Hypervolume. In

a detailed evaluation of the results, it was possible to observe that the ACF results were

better distributed than the obtained by SCF, and with good convergence, this behavior

was able to get a better IGD value than SCF. On the other hand, H-MOPSO-SCF was

able to get a better convergence in some points of the front, in an expense of other points.

This behavior was able to get better Hypervolume values than ACF. The main difference

between both algorithms is the lack of the pair component in the SCF and the adaptive

parameter strategy used in ACF. Finally, it was decided to select H-MOPSO using ACF

to be the choice function based method used in subsequent studies due to a good conver-

gence and diversity and, consequently, better results in IGD indicator mainly when the

number of objectives increases.
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Figure 6.2: Boxplot of the average distance from the reference points to the Pareto front
approximation

6.3 Adaptive Choice Function parameter configuration

In previous Section 6.2 two Choice Function based methods were evaluated: Adaptive

Choice Function and Simplified Choice Function. Moreover, the Adaptive Choice Function
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was selected to be used in further studies. In this section, the parameters of the ACF

are configured. For the Scale Factor parameter SF it was tried six values and a version

based on normalization. For the boolean parameter mean it was tried both true and

false. Those sets of values were combined into ten configuration instances, illustrated in

Table 6.8.

Table 6.8: Configuration instances for Adaptive Choice Function
configuration SF mean

ACFFIXED001 0.01 true
ACFFIXED005 0.05 true
ACFFIXED01 0.1 true
ACFFIXED05 0.5 true
ACFFIXED1 1.0 true
ACFFIXED5 5.0 true
ACFFIXEDM01 0.1 false
ACFFIXEDM05 0.5 false
ACFFIXEDN based on normalization true
ACFFIXEDMN based on normalization false

The detailed results for each problem and the objective number is illustrated in Ap-

pendix B. In Table 6.9 is shown the mean ranking of the configuration instances for IGD,

no configuration is better than all others with a statistical difference, in fact, most con-

figuration instances had a similar mean ranking. The configuration with SF = 5.0 and

mean = true had the best mean ranking for IGD. Although, it had statistical difference

just against one configuration, the ACFFIXED with mean = false and using normaliza-

tion, according to Table 6.10. The configuration with SF = 0.1 and mean = false, had

the second best mean ranking for IGD.

When evaluated with the Hypervolume indicator the configuration instances had very

similar results, with no statistical difference against each other (according to Tables 6.11

and 6.12). The configuration with SF = 0.1 and mean = false, had the best mean ranking

for HV.

In this section, it was configured the parameters of the Adaptive Choice Function to

select a configuration to be used in further studies. The selected configuration is the

ACFFIXEDM01, it means, SF = 0.1 and mean = false. It was selected because it gets
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Table 6.9: Mean ranking for each con-
figuration instance for the IGD indica-
tor

Algorithm Mean ranking
ACFFIXED5 4.4

ACFFIXEDM05 5.3
ACFFIXED1 5.933333

ACFFIXED005 4.933333
ACFFIXED05 5.5
ACFFIXEDN 5.6

ACFFIXED001 5.5
ACFFIXED01 6.033333

ACFFIXEDM01 4.633333
ACFFIXEDMN 7.166667

the best mean ranking is shown with
bold face
Friedman test p-value: p =
0.03217689

Table 6.10: Multiple comparisons between groups after Friedman test for the
IGD indicator

Comparisons observed dif. critical dif. difference
ACFFIXED5 ACFFIXED001 33 76.47178
ACFFIXED5 ACFFIXED005 16 76.47178
ACFFIXED5 ACFFIXED01 49 76.47178
ACFFIXED5 ACFFIXED05 33 76.47178
ACFFIXED5 ACFFIXED1 46 76.47178
ACFFIXED5 ACFFIXEDM01 7 76.47178
ACFFIXED5 ACFFIXEDM05 27 76.47178
ACFFIXED5 ACFFIXEDMN 83 76.47178 X
ACFFIXED5 ACFFIXEDN 36 76.47178

Comparisons: comparison between the best ranked configuration instance and
the others
observed dif.: difference between the accumulated ranking of the compared al-
gorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

the best mean ranking for the HV indicator and the second best for IGD indicator, also,

getting the best accumulated mean ranking (IGD mean ranking plus HV mean ranking).
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Table 6.11: Mean ranking for each
configuration instance for the HV in-
dicator

Algorithm Mean ranking
ACFFIXED5 5.666667

ACFFIXEDM05 4.875
ACFFIXED1 6.375

ACFFIXED005 5.333333
ACFFIXED05 5.916667
ACFFIXEDN 5.166667

ACFFIXED001 6.041667
ACFFIXED01 6.083333

ACFFIXEDM01 4.375
ACFFIXEDMN 5.166667

the best mean ranking is shown with
bold face
Friedman test p-value: p = 0.420663

Table 6.12: Multiple comparisons between groups after Friedman test for the HV
indicator

Comparisons observed dif. critical dif. difference
ACFFIXEDM01 ACFFIXED001 40 68.39844
ACFFIXEDM01 ACFFIXED005 23 68.39844
ACFFIXEDM01 ACFFIXED01 41 68.39844
ACFFIXEDM01 ACFFIXED05 37 68.39844
ACFFIXEDM01 ACFFIXED1 48 68.39844
ACFFIXEDM01 ACFFIXED5 31 68.39844
ACFFIXEDM01 ACFFIXEDM05 12 68.39844
ACFFIXEDM01 ACFFIXEDMN 19 68.39844
ACFFIXEDM01 ACFFIXEDN 19 68.39844

Comparisons: comparison between the best ranked configuration instance and the
others
observed dif.: difference between the accumulated ranking of the compared algo-
rithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

6.4 Study of Multi-Armed Bandit based methods

In this section, three Multi-Armed Bandit based selection methods are evaluated. The

studied methods are: the method proposed in [26] UCB1, and two methods proposed

in [9], UCBV and UCBTuned. The objective is to evaluate the UCB methods on the

H-MOPSO algorithm proposed by [22]. On the experiments of this section, same as in
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Section 6.2, the selection method will be used just for selecting archiving methods, and

the leader selection method will be the default: Crowding Distance.

The selection methods parameters are used based on values proposed by [26, 9]. The

scale factor C is set to 0.5. The decay factor D is set to 1.0 and the sliding window size

W is set to 20. The W value proposed in the literature is half of population size, and the

selection is made for each individual in the population, although the selection is made

once for each iteration, in this section. Although, the literature value is not coherent to

this scenario. All three selection methods have the same parameters and use the same

values.

In Table 6.13 is shown the average IGD values of the three selection methods for each

problem and objective value. The UCB1 has the best average value in most cases, and it

has the best value with statistical difference against the two other methods in one instance

(DTLZ1 with ten objectives). The UCB1 method has also the best mean ranking (1.63)

with a statistical difference to UCBV (Table 6.14).

When evaluated with the HV indicator the methods had more similar results. The

UCB1 had the best mean value in more cases, on the other hand, UCBV had three best

values with statistical difference against the two other methods. When evaluated the

mean ranking, the UCB1 had the best value again, but with no statistical difference in

the other methods.

In this section, three selection methods based on UCB were evaluated. In general, the

methods had similar results, but the UCB1 method had the best average quality indicator

value in most cases, and it also had the best mean ranking for the two quality indicators.

Due to its good results, the UCB1 method is the Multi-Armed Bandit based method

selected to be used in further studies.

6.5 FRRMAB-UCB1 parameter configuration

The parameter configuration of the UCB1 selection method is presented in this Section.

It was selected after comparison against UCBV and UCBTuned, all three using default

parameter values. Three values were tried for the sliding window size parameter W : 10,
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Table 6.13: Mean (and standard deviation) for UCBTunedFIXED, UCB1FIXED and
UCBVFIXED for the IGD indicator

Obj. problem UCBTunedFIXED UCB1FIXED UCBVFIXED

3
DTLZ1 7.76E-3(1.29E-3) 7.5E-3(1.21E-3) 8.79E-3(6.07E-3)
DTLZ2 1.08E-2(1.12E-3) 1.05E-2(1.83E-3) 9.78E-3(8.17E-4)
DTLZ3 1.38E-2(4.84E-3) 1.52E-2(1.26E-2) 1.19E-2(6.51E-3)
DTLZ4 2.11E-2(8.83E-3) 1.94E-2(1.04E-2) 1.6E-2(8.2E-3)
WFG6 1.11E-2(1.5E-3) 1.11E-2(1.56E-3) 1.03E-2(1.14E-3)
WFG7 1.61E-2(3.04E-3) 1.75E-2(3.32E-3) 1.55E-2(2.8E-3)

5
DTLZ1 1.15E-2(1.26E-3) 1.18E-2(9.26E-4) 1.61E-2(1.61E-3)
DTLZ2 1.96E-2(1.08E-3) 1.89E-2(1.27E-3) 2.28E-2(3.93E-3)
DTLZ3 2.88E-2(2.43E-3) 2.8E-2(2.9E-3) 2.86E-2(3.2E-3)
DTLZ4 2.37E-2(2.12E-3) 2.31E-2(2.25E-3) 2.22E-2(2.12E-3)
WFG6 1.56E-2(8.54E-4) 1.52E-2(5.52E-4) 1.54E-2(6.85E-4)
WFG7 1.99E-2(1.73E-3) 1.93E-2(1.16E-3) 2.03E-2(1.84E-3)

8
DTLZ1 3.18E-2(2.7E-3) 3.11E-2(1.92E-3) 1.35E-1(2.71E-1)
DTLZ2 5.17E-2(3.06E-3) 5.09E-2(3.11E-3) 5.05E-2(3.1E-3)
DTLZ3 6.52E-2(4.69E-3) 6.21E-2(4.38E-3) 2.83E0(2.76E0)
DTLZ4 4.26E-2(2.04E-3) 4.23E-2(1.82E-3) 4.29E-2(2.07E-3)
WFG6 3.91E-2(3.03E-3) 3.95E-2(3.33E-3) 4.04E-2(3.13E-3)
WFG7 4.42E-2(4.11E-3) 4.45E-2(4.28E-3) 4.3E-2(3.06E-3)

10
DTLZ1 2.67E-2(1.62E-3) 2.45E-2(1.55E-3) 1.82E-1(2.67E-1)
DTLZ2 4.47E-2(2.25E-3) 4.51E-2(3.05E-3) 4.48E-2(2.95E-3)
DTLZ3 5.24E-2(1.5E-3) 5.19E-2(2.03E-3) 2.05E0(1.1E0)
DTLZ4 3.33E-2(1.09E-3) 3.24E-2(1.05E-3) 3.28E-2(1.15E-3)
WFG6 3.44E-2(2.33E-3) 3.51E-2(2.08E-3) 3.54E-2(2.72E-3)
WFG7 5.46E-2(4.18E-3) 5.28E-2(5.74E-3) 5.54E-2(4.91E-3)

15
DTLZ1 5.68E-2(1.59E-3) 5.66E-2(2.27E-3) 6.12E-1(9.05E-1)
DTLZ2 9.15E-2(2.56E-3) 9.09E-2(2.72E-3) 9.24E-2(2.68E-3)
DTLZ3 9.8E-2(3E-3) 9.66E-2(2.93E-3) 5.19E0(3.89E0)
DTLZ4 6.01E-2(5.75E-3) 5.54E-2(3.74E-3) 5.46E-2(2.04E-3)
WFG6 1.09E-1(1.26E-2) 1.08E-1(1.3E-2) 1.1E-1(1.41E-2)
WFG7 1.62E-1(1.75E-2) 1.67E-1(1.44E-2) 1.66E-1(1.04E-2)

for each problem the best mean performance is shown with bold face
the best value with statistical difference is shown with bold face and gray background

Table 6.14: Mean ranking for UCB-
TunedFIXED, UCB1FIXED and UCB-
VFIXED for the IGD indicator

Algorithm Mean ranking
UCB1FIXED 1.633333

UCBTunedFIXED 2.133333
UCBVFIXED 2.233333

the best value is shown with bold face
Friedman test p-value: p = 0.0450492

20 and 50. For the scale factor C parameter it was tried four values: 10, 5, 1 and 0.5.

Those two sets of values were combined into 12 configuration instances. In this section,

the UCB method is used to select just the archiving method, the leader selection method

was the default: Crowding Distance.
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Table 6.15: Mean (and standard deviation) for UCBTunedFIXED, UCB1FIXED and
UCBVFIXED for the HV indicator

Obj. problem UCBTunedFIXED UCB1FIXED UCBVFIXED

3
DTLZ1 9.99E-1(5.98E-4) 9.99E-1(4.32E-3) 9.99E-1(1.31E-3)
DTLZ2 6.77E-1(1.67E-2) 6.8E-1(1.54E-2) 6.83E-1(7.25E-3)
DTLZ3 1E0(9.14E-5) 1E0(1.52E-3) 1E0(8.11E-5)
DTLZ4 8.25E-1(8.69E-3) 8.28E-1(9.79E-3) 8.29E-1(1E-2)
WFG6 3.71E-1(6.67E-3) 3.73E-1(9.76E-3) 3.82E-1(1.08E-2)
WFG7 4.02E-1(2.18E-2) 4.04E-1(2.46E-2) 4.15E-1(2.03E-2)

5
DTLZ1 9.81E-1(5.71E-3) 9.79E-1(5.12E-3) 9.61E-1(1.11E-2)
DTLZ2 9.95E-1(1.58E-3) 9.94E-1(1.94E-3) 9.89E-1(5.88E-3)
DTLZ3 1E0(8.5E-9) 1E0(7.82E-9) 1E0(3.96E-8)
DTLZ4 9.98E-1(8.27E-5) 9.98E-1(9.06E-5) 9.98E-1(9.07E-5)
WFG6 5.54E-1(2.4E-2) 5.62E-1(2E-2) 5.51E-1(2.77E-2)
WFG7 5.53E-1(2.69E-2) 5.64E-1(2.26E-2) 5.55E-1(2.93E-2)

8
DTLZ1 1E0(3.08E-11) 1E0(1.74E-8) 1E0(1.77E-8)
DTLZ2 9.93E-1(3.58E-3) 9.93E-1(3.71E-3) 9.96E-1(1.31E-3)
DTLZ3 1E0(6.21E-8) 1E0(5.95E-9) 1E0(2.04E-6)
DTLZ4 1E0(1E-5) 1E0(5.3E-6) 1E0(1.09E-5)
WFG6 6.67E-1(3.41E-2) 6.82E-1(4.38E-2) 6.72E-1(3.66E-2)
WFG7 4.32E-1(2.59E-2) 4.38E-1(2.25E-2) 4.41E-1(1.99E-2)

10
DTLZ1 1E0(2.24E-11) 1E0(1.03E-9) 1E0(2.44E-7)
DTLZ2 9.96E-1(2.29E-3) 9.96E-1(2.02E-3) 9.95E-1(2.93E-3)
DTLZ3 1E0(2.61E-9) 1E0(3.1E-9) 1E0(3E-7)
DTLZ4 1E0(7.72E-7) 1E0(1.64E-7) 1E0(3.19E-7)
WFG6 7.65E-1(3.92E-2) 7.62E-1(3.39E-2) 7.58E-1(4.38E-2)
WFG7 4.52E-1(3E-2) 4.54E-1(3.27E-2) 4.47E-1(2.93E-2)

Table 6.16: Mean ranking for UCB-
TunedFIXED, UCB1FIXED and UCB-
VFIXED for the HV indicator

Algorithm Mean ranking
UCB1FIXED 1.708333

UCBTunedFIXED 2.166667
UCBVFIXED 2.125

the best value is shown with bold face
Friedman test p-value: p = 0.2140241

In Table 6.17 and 6.18 the results of the configurations for the IGD quality indicator

are shown. The configuration with C = 10 and W = 10 had the best mean ranking, with

statistical difference against all three configurations using C = 0.5 and two configurations

using C = 1.0. When evaluated the Hypervolume quality indicator the configuration with

the best mean ranking was the configuration with C = 10 and W = 20. The configuration

with C = 10 and W = 10 had the second best mean ranking. The best mean ranked

configuration also had statistical difference against all three configurations using C = 0.5

and one configuration using C = 1.0.
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Table 6.17: Mean ranking (and standard deviation) for each con-
figuration instance for the IGD indicator

Algorithm Mean ranking (and standard deviation)
UCBC1W20 7.633(1.516)

UCBC0.5W50 9.767(2.940)
UCBC1W10 5.667(1.758)

UCBC0.5W20 9.900(3.026)
UCBC10W20 4.333(3.399)
UCBC0.5W10 7.900(2.797)
UCBC10W10 4.100(2.663)
UCBC5W50 4.767(2.789)
UCBC10W50 4.933(2.250)
UCBC5W10 5.100(3.300)
UCBC1W50 9.000(2.898)
UCBC5W20 4.900(2.891)

the best mean ranking is shown with bold face
Friedman test p-value: p = 7.278681e− 21

Table 6.18: Multiple comparisons between groups after Friedman test for the
IGD indicator

Comparisons observed dif. critical dif. difference
UCBC10W10 UCBC0.5W10 114 94.05885 X
UCBC10W10 UCBC0.5W20 174 94.05885 X
UCBC10W10 UCBC0.5W50 170 94.05885 X
UCBC10W10 UCBC10W20 7 94.05885
UCBC10W10 UCBC10W50 25 94.05885
UCBC10W10 UCBC1W10 47 94.05885
UCBC10W10 UCBC1W20 106 94.05885 X
UCBC10W10 UCBC1W50 147 94.05885 X
UCBC10W10 UCBC5W10 30 94.05885
UCBC10W10 UCBC5W20 24 94.05885
UCBC10W10 UCBC5W50 20 94.05885

Comparisons: comparison between the best ranked configuration instance and
the others
observed dif.: difference between the accumulated ranking of the compared
algorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

The evaluation of the parameters of the UCB shows that some parameters are better

than others. The value of C = 10 was present in the best-ranked configuration in both

IGD and HV. Also, in three of the first fifth-best ranked configurations in both IGD

and HV. Due to that, and also due to be the first best-ranked configuration in IGD, the
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Table 6.19: Mean ranking (and standard deviation) for each con-
figuration instance for the HV indicator

Algorithm Mean ranking (and standard deviation)
UCBC1W20 7.542(1.707)

UCBC0.5W50 9.917(2.943)
UCBC1W10 6.125(2.006)

UCBC0.5W20 10.208(2.958)
UCBC10W20 4.125(2.368)
UCBC0.5W10 8.000(2.887)
UCBC10W10 4.292(2.700)
UCBC5W50 5.417(2.798)
UCBC10W50 4.375(2.463)
UCBC5W10 4.292(2.525)
UCBC1W50 9.083(2.660)
UCBC5W20 4.625(3.133)

the best mean ranking is shown with bold face
Friedman test p-value: p = 1.077046e− 18

Table 6.20: Multiple comparisons between groups after Friedman test for the
HV indicator

Comparisons observed dif. critical dif. difference
UCBC10W20 UCBC0.5W10 93 84.1288 X
UCBC10W20 UCBC0.5W20 146 84.1288 X
UCBC10W20 UCBC0.5W50 139 84.1288 X
UCBC10W20 UCBC10W10 4 84.1288
UCBC10W20 UCBC10W50 6 84.1288
UCBC10W20 UCBC1W10 48 84.1288
UCBC10W20 UCBC1W20 82 84.1288
UCBC10W20 UCBC1W50 119 84.1288 X
UCBC10W20 UCBC5W10 4 84.1288
UCBC10W20 UCBC5W20 12 84.1288
UCBC10W20 UCBC5W50 31 84.1288

Comparisons: comparison between the best ranked configuration instance and
the others
observed dif.: difference between the accumulated ranking of the compared
algorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

second best in HV and the best accumulated ranking (IGD ranking plus HV ranking) the

selected configuration is the C = 10, W = 10, with statistical difference against 5 of 11

other configurations.
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6.6 Study of archiving method selection in MOPSO

In this section four selection methods are evaluated in the H-MOPSO algorithm: i) the

ACF selected in Section 6.2 and configured in Section 6.3; ii) the FRRMAB-UCB selected

in Section 6.4 and configured in Section 6.5; iii) the Roulette based selection method

proposed in [6] (the original H-MOPSO selection method); and iv) a simple random

based selection, that does not use the information of the previous low-level heuristics

application to select the next low-level heuristic. The four different H-MOPSO algorithms

(ACF, UCB, ROULETTE and RANDOM) are compared with a state-of-art algorithm

MOEA/D-DRA.

The ACF parameters configured in Section 6.3 are SF = 0.1 and mean = false. The

UCB parameters configured in Section 6.5 are C = 10, D = 1.0 and W = 10. In this

section the selection methods will select just the archiving method. The leader selection

method used is the default Crowding Distance.

In Table 6.23 the average IGD value of the algorithms for each problem and objective

number is presented. The H-MOPSO using ACF had the best result in most cases,

on the other hand, the H-MOPSO using roulette was able to get the best result with

statistical difference against all other algorithms in DTLZ2 with five objectives. Besides,

the MOEA/D-DRA had the best average IGD with a statistical difference in DTLZ3 with

ten objectives, DTLZ2 with 15 objectives and WFG6 with 15 objectives.

The ACF get the best average ranking (2.067), with a standard deviation of 1.123.

That means that the H-MOPSO-ACF usually was the first to the third-ranked algorithm.

The UCB was the second best ranked with 2.733. The RANDOM method was the third

one (2.933). The fourth was the ROULETTE (3.033) and the MOEA/D-DRA the fifth

(4.233) according to Table 6.21. The H-MOPSO was able to get best average ranking with

statistical difference against the MOEA/D-DRA with all selection methods (Table 6.22).
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Table 6.21: Mean ranking (and standard deviation) for UCB, ACF, ROULETTE, RAN-
DOM and MOEADDRA for the IGD indicator

Algorithm Mean ranking (and standard deviation)
ROULETTE 3.033(1.329)
MOEADDRA 4.233(1.499)

UCB 2.733(1.093)
ACF 2.067(1.123)

RANDOM 2.933(1.031)

the best mean ranking is shown with bold face
Friedman test p-value: p = 5.83008e− 06

Table 6.22: Multiple comparisons between groups after Friedman test for IGD indicator
Comparisons observed dif. critical dif. difference
ACF UCB 20 34.379
ACF MOEADDRA 65 34.379 X
ACF RANDOM 26 34.379
ACF ROULETTE 29 34.379
UCB MOEADDRA 45 34.379 X
UCB RANDOM 6 34.379
UCB ROULETTE 9 34.379
MOEADDRA RANDOM 39 34.379 X
MOEADDRA ROULETTE 36 34.379 X
RANDOM ROULETTE 3 34.379

Comparisons: comparison between each algorithm and the others
observed dif.: difference between the accumulated ranking of the compared
algorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference
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Table 6.24: Mean ranking (and standard deviation) for UCB, ACF, ROULETTE, RAN-
DOM and MOEADDRA for the HV indicator

Algorithm Mean ranking (and standard deviation)
ROULETTE 2.625(1.679)
MOEADDRA 3.667(1.818)

UCB 3.292(1.020)
ACF 2.333(0.986)

RANDOM 3.083(0.862)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.02931538

According to the Hypervolume quality indicator, the H-MOPSO using roulette got the

best average in most cases (Table 6.26), and the best average with a statistical difference

in DTLZ2 with three objectives, DTLZ1 with five objectives and WFG6 with 5, 8 and

ten objectives. The MOEA/D-DRA had the best average Hypervolume with a statistical

difference in DTLZ3 with eight objectives, WFG7 with 8, DTLZ3 with ten objectives and

WFG7 with ten objectives. In Table 6.24 the mean ranking for the HV indicator is shown.

The H-MOPSO using ACF had the best mean ranking (2.333), with a standard deviation

of 0.986, what means that it usually was the first to third best algorithm; the H-MOPSO-

ROULETTE was the second best ranked (2.625), with 1.679 of standard deviation, what

means that it usually was the first to the fourth best algorithm; The RANDOM was the

third in the rank and UCB the forth; The MOEA/D-DRA was the fifth, with a standard

deviation of 1.818. For the Hypervolume quality indicator, only the H-MOPSO using

ACF was better with statistical difference against MOEA/D-DRA.

In both IGD and HV, the RANDOM method got the lowest standard deviation on

ranking, and the MOEA/D-DRA got the highest standard deviation. It means that the

MOEA/D-DRA was the algorithm with more irregular ranking, being the best in some

problem instances and the worst in others. It also shows that, the use of hyper-heuristic

in MOPSO, make possible to reach good results in almost all problem instances. That

behavior refers to the hyper-heuristic ability to deal with the No Free Lunch theorem.

According to No Free Lunch theorem, no algorithm outperforms others in all problems.

The hyper-heuristic ability is to select a proper algorithm to be used for each problem

instance and even a random selection usually is better than any low-level heuristic applied
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Table 6.25: Multiple comparisons between groups after Friedman test for HV indicator
Comparisons observed dif. critical dif. difference
ACF UCB 23 30.74951
ACF MOEADDRA 32 30.74951 X
ACF RANDOM 18 30.74951
ACF ROULETTE 7 30.74951
UCB MOEADDRA 9 30.74951
UCB RANDOM 5 30.74951
UCB ROULETTE 16 30.74951
MOEADDRA RANDOM 14 30.74951
MOEADDRA ROULETTE 25 30.74951
RANDOM ROULETTE 11 30.74951

Comparisons: comparison between each algorithm and the others
observed dif.: difference between the accumulated ranking of the compared
algorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

individually.

In this section, the H-MOPSO algorithm using four different heuristic selection meth-

ods is evaluated: ACF, UCB, ROULETTE and RANDOM. The H-MOPSO variations

were compared with a state-of-art algorithm MOEA/D-DRA. The H-MOPSO using ACF

had the best average ranking in both IGD and Hypervolume, although, all four selection

methods were statistically equivalent in both IGD and Hypervolume. When compared

with MOEA/D-DRA all H-MOPSO variations were able to get a better average rank-

ing with a statistical difference in IGD. In Hypervolume, all methods got better average

ranking than MOEA/D-DRA but just the H-MOPSO-ACF with statistical difference.

In general, it is possible to conclude that the H-MOPSO can get good results, being

able to outperforms a state-of-art algorithm regarding average ranking. It was not found

any strong evidence that one selection method is better than any other. Also, even the

H-MOPSO using a random selection was able to get better results when compared with

the MOEA/D-DRA (regarding average ranking).
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6.7 Study of different H-MOPSO strategies

In this section, three different H-MOPSO strategies are evaluated.

1. One is the H-MOPSO used in previous sections, for select just the archiving method

and using the leader selection method default Crowding Distance. For this strategy,

it is used as alias the name of the selection method plus a suffix “FIXED”, for

instance, the H-MOPSO using this first strategy and the random heuristic selection

method will be called RANDOMFIXED.

2. In a second strategy, differently from previous sections, selected both archiving and

leader selection methods are selected, as proposed in [22]. Each pair (archiving

and leader selection) is seen as a low-level heuristic and is selected once for each

iteration. That strategy is illustrated in Section 5.2, Algorithm 5.1. From now on,

it is used the capitalized selection method name (e.g. RANDOM) as the acronym

for this strategy using that method.

3. The third strategy is illustrated in Section 5.2, Algorithm 5.2. Where there are two

instances of the selection method. One of them is responsible for selecting the archive

method, once for each iteration. Moreover, the other is responsible for selecting the

leader selection method, for each particle of the swarm, every iteration. To describe

that strategy it is used as an alias the name of the method used to select archiving

methods plus the name of the method used to select leader selection methods, for

instance: RANDOMRANDOM. It is possible to use different heuristic selection

methods (one for archiving and other for leader selection), but in this section it was

used the same method in both.

In this section, each strategy for all four heuristic selection methods are compared

and the best strategy for each selection method is chosen. The detailed results, for

each problem instance and the objective number are presented in Appendix D. For

the random heuristic selection method the strategy proposed by [22] (of selecting both

methods together, once for each iteration) had the best IGD average ranking (Table 6.27),
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with statistical difference against the strategy selecting just the archiving method. The

second strategy also had the best HV average ranking (Table 6.28). Finally, the H-

MOPSO-RANDOM is the selected strategy for random heuristic selection, due to having

the best IGD and HV average ranking.

Table 6.27: Mean ranking (and standard deviation) for RANDOMRANDOM, RANDOM
and RANDOMFIXED for the IGD indicator

Algorithm Mean ranking (and standard deviation)
RANDOM 1.633(0.657)

RANDOMRANDOM 1.933(0.727)
RANDOMFIXED 2.433(0.844)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.007446583

Table 6.28: Mean ranking (and standard deviation) for RANDOMRANDOM, RANDOM
and RANDOMFIXED for the HV indicator

Algorithm Mean ranking (and standard deviation)
RANDOM 1.854(0.770)

RANDOMRANDOM 1.896(0.692)
RANDOMFIXED 2.250(0.878)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.3097335

The second strategy (ACF) also had the best IGD average ranking for the Adaptive

Choice Function heuristic selection method (Table 6.29), with statistical difference against

the strategy selecting both methods separately (ACFACF). It also had the best HV aver-

age ranking (Table 6.30). Due to it, the second strategy is the selected strategy for ACF

heuristic selection method.

Table 6.29: Mean ranking (and standard deviation) for ACFACF, ACF and ACFFIXED
for the IGD indicator

Algorithm Mean ranking (and standard deviation)
ACF 1.633(0.706)

ACFACF 2.567(0.667)
ACFFIXED 1.800(0.748)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.0005912135

When evaluated for the UCB heuristic selection the third strategy (selecting archiving

and leader selection separately — UCBUCB) had best average ranking with statistical
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Table 6.30: Mean ranking (and standard deviation) for ACFACF, ACF and ACFFIXED
for the HV indicator

Algorithm Mean ranking (and standard deviation)
ACF 1.708(0.676)

ACFACF 2.333(0.745)
ACFFIXED 1.958(0.889)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.09301449

difference against the strategy selecting just the archiving method for both IGD and HV

(Tables 6.31 and 6.32). Moreover, it is the selected strategy for UCB heuristic selection.

Table 6.31: Mean ranking (and standard deviation) for UCBUCB, UCB and UCBFIXED
for the IGD indicator

Algorithm Mean ranking (and standard deviation)
UCBUCB 1.700(0.690)

UCBFIXED 2.400(0.879)
UCB 1.900(0.700)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.02024191

Table 6.32: Mean ranking (and standard deviation) for UCBUCB, UCB and UCBFIXED
for the HV indicator

Algorithm Mean ranking (and standard deviation)
UCBUCB 1.708(0.720)

UCBFIXED 2.417(0.909)
UCB 1.875(0.582)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.03467619

For the roulette-based heuristic selection method the selected strategy is the second,

due to having the best average ranking with statistical difference against the third strategy

in both IGD and HV (Tables 6.33 and 6.34).

In this section, three different H-MOPSO strategies were evaluated. The objective

was to identify if there is some strategy that outperforms the others and to select the best

strategy for each heuristic selection method. For the random-based, ACF and roulette-

based heuristic selection methods, the strategy proposed in [22] has the best IGD and HV

average ranking, and it is the selected strategy: RANDOM, ACF, and ROULETTE. Only

for UCB method, the third strategy had the best IGD and HV average ranking, and in
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Table 6.33: Mean ranking (and standard deviation) for ROULETTEROULETTE,
ROULETTE and ROULETTEFIXED for the IGD indicator

Algorithm Mean ranking (and standard deviation)
ROULETTEROULETTE 2.833(0.373)

ROULETTEFIXED 1.867(0.562)
ROULETTE 1.300(0.586)

the best mean ranking is shown with bold face
Friedman test p-value: p = 1.473068e− 08

Table 6.34: Mean ranking (and standard deviation) for ROULETTEROULETTE,
ROULETTE and ROULETTEFIXED for the HV indicator

Algorithm Mean ranking (and standard deviation)
ROULETTEROULETTE 2.542(0.644)

ROULETTEFIXED 1.875(0.781)
ROULETTE 1.583(0.702)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.00305289

none method, the fourth strategy was the best. It is possible to conclude that no strategy

outperforms the other two in all heuristic selection methods, but it was found indications

that selecting both archiving and leader selection methods (together or separately) may

be better than selecting just archiving methods.

6.8 Selection of archiving and leader selection methods in MOPSO

In this section, four different H-MOPSO algorithms are compared to a state-of-art algo-

rithm MOEA/D-DRA. In the evaluated methods, one selects leader selection and archiv-

ing methods separately using the UCB; The other three versions select both leader selec-

tion and archiving methods together, once for each iteration. They are H-MOPSO-ACF,

H-MOPSO-ROULETTE and H-MOPSO-RANDOM.

In Table 6.39 the average IGD value of each algorithm for each problem instance

and objective value are detailed. The best average value is well distributed among the

algorithms, mainly for ACF, ROULETTE, and RANDOM. Usually, all five algorithms

were statistically equivalent according to Kruskal-Wallis test, except by WFG7 with 3

and 15 objectives.

The H-MOPSO using ACF got the best average ranking for IGD (Table 6.35). The
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Table 6.35: Mean ranking (and standard deviation) for UCBUCB, ACF, ROULETTE,
RANDOM and MOEADDRA for the IGD indicator

Algorithm Mean ranking (and standard deviation)
ACF 2.233(1.086)

MOEADDRA 4.567(1.116)
RANDOM 2.500(1.118)
UCBUCB 2.700(0.936)

ROULETTE 3.000(1.438)

the best mean ranking is shown with bold face
Friedman test p-value: p = 3.273113e− 08

Table 6.36: Multiple comparisons between groups after Friedman test for IGD indicator
Comparisons observed dif. critical dif. difference
ACF UCBUCB 14 34.379
ACF MOEADDRA 70 34.379 X
ACF RANDOM 8 34.379
ACF ROULETTE 23 34.379
UCBUCB MOEADDRA 56 34.379 X
UCBUCB RANDOM 6 34.379
UCBUCB ROULETTE 9 34.379
MOEADDRA RANDOM 62 34.379 X
MOEADDRA ROULETTE 47 34.379 X
RANDOM ROULETTE 15 34.379

Comparisons: comparison between each algorithm and the others
observed dif.: difference between the accumulated ranking of the compared
algorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

RANDOM was the second, and the UCBUCB the third. The ROULETTE algorithm got

the fourth average ranking for IGD, with the highest standard deviation. All H-MOPSO

variants got better average ranking than MOEA/D-DRA with a statistical difference for

IGD (Table 6.36).

For the Hypervolume quality indicator, the H-MOPSO-ROULETTE got the best av-

erage value, with a statistical difference in five problem instances: DTLZ1, WFG6, and

WFG7 with three objectives and WFG6 and WFG7 with five objectives. The MOEA/D-

DRA got best average value with a statistical difference in WFG7 with ten objectives

(Table 6.40). When evaluated the average ranking, the ROULETTE was the best al-

gorithm, the ACF was the second, and the H-MOPSO using a random based heuristic
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selection was the third. The fourth was the UCBUCB, and the MOEA/D-DRA got the

worst results. Although, just the H-MOPSO using ROULETTE got the best ranking

with statistical difference against MOEA/D-DRA. In this experiment, the H-MOPSO us-

ing ROULETTE was better than using UCB with statistical difference (Table 6.38), for

the Hypervolume quality indicator.

Table 6.37: Mean ranking (and standard deviation) for UCBUCB, ACF, ROULETTE,
RANDOM and MOEADDRA for the HV indicator

s

Algorithm Mean ranking (and standard deviation)
ACF 2.687(1.019)

MOEADDRA 3.896(1.744)
RANDOM 3.021(0.743)
UCBUCB 3.438(1.093)

ROULETTE 1.958(1.274)

the best mean ranking is shown with bold face
Friedman test p-value: p = 0.0002284456

Table 6.38: Multiple comparisons between groups after Friedman test for HV indicator
Comparisons observed dif. critical dif. difference
ACF UCBUCB 18.0 30.74951
ACF MOEADDRA 29.0 30.74951
ACF RANDOM 8.0 30.74951
ACF ROULETTE 17.5 30.74951
UCBUCB MOEADDRA 11.0 30.74951
UCBUCB RANDOM 10.0 30.74951
UCBUCB ROULETTE 35.5 30.74951 X
MOEADDRA RANDOM 21.0 30.74951
MOEADDRA ROULETTE 46.5 30.74951 X
RANDOM ROULETTE 25.5 30.74951

Comparisons: comparison between each algorithm and the others
observed dif.: difference between the accumulated ranking of the compared
algorithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference
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In this section, four H-MOPSO variants were evaluated. Those variants are based

on four heuristic selection methods, selected and configured in previous sections. The

H-MOPSO algorithms are compared against a state-of-art algorithm MOEA/D-DRA.

It is possible to conclude that no heuristic selection method outperforms any other in

both IGD and HV. Also, no method outperforms all others in any indicator. When

compared against a state-of-art algorithm the H-MOPSO variants got competing results.

For the IGD indicator, all methods got best average ranking than MOEA/D-DRA, with

statistical difference. All methods got best average ranking than MOEA/D-DRA, but

just ROULETTE with statistical difference.

6.9 Comparison between the H-MOPSO variant with the best

results and the state-of-art

In this section, a comparison between H-MOPSO variation that obtained the best results

in previous studies and a state-of-art algorithm, MOEA/D-DRA, is presented. To do so,

the H-MOPSO-ACF was selected. It is an H-MOPSO variant that selects both leader

selection and archiving methods as a single low-level heuristic using the Adaptive Choice

Function heuristic selection. It was chosen due to on a previous study when compared

with other three H-MOPSO variants and a state-of-art algorithm. In that study, H-

MOPSO-ACF had the best IGD mean ranking and the second best for the Hypervolume

quality indicator. Moreover, H-MOPSO-ACF had the best mean of IGD and Hypervolume

ranking. Despite its good results, it was statistically equivalent to the other H-MOPSO

variants in both IGD and Hypervolume mean ranking. This analysis is made to get a

detailed review of the best variant and highlight its results.

When evaluated the IGD indicator of H-MOPSO-ACF vs MOEA/D-DRA, illustrated

in Table 6.46, H-MOPSO-ACF had the best value, with a statistical difference in almost

all problem instances. Besides, MOEA/D-DRA had the best or equivalent result in four

problem instances, with a statistical difference in just one. When evaluated the mean

ranking for the IGD indicator H-MOPSO-ACF had a better value, with a statistical
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Table 6.41: Mean (and standard deviation) for H-MOPSO-ACF and MOEADDRA for
the IGD indicator

Obj. problem H-MOPSO-ACF MOEADDRA

3

DTLZ1 6.83E-3(3.75E-4) 4.89E-2(8.72E-2)
DTLZ2 9.56E-3(5.87E-4) 1.04E-2(5.71E-4)
DTLZ3 9.83E-3(2.19E-3) 7.77E-1(1.64E0)
DTLZ4 9.34E-3(1.2E-3) 2.53E-2(9.71E-3)
WFG6 1.06E-2(1.41E-3) 1.21E-2(5.51E-4)
WFG7 1.51E-2(2.06E-3) 1.48E-2(9.16E-4)

5

DTLZ1 1.19E-2(6.24E-4) 2.63E-2(1.16E-2)
DTLZ2 1.77E-2(7.89E-4) 2.17E-2(2.3E-4)
DTLZ3 1.85E-2(1.02E-3) 5.88E-2(4.45E-2)
DTLZ4 1.55E-2(4.73E-4) 2.4E-2(1.65E-3)
WFG6 1.57E-2(8.16E-4) 2.37E-2(2.28E-4)
WFG7 1.86E-2(6.25E-4) 3.27E-2(2.69E-3)

8

DTLZ1 2.52E-2(1.7E-3) 3.12E-2(1.35E-3)
DTLZ2 4.78E-2(2.44E-3) 5.22E-2(1.59E-3)
DTLZ3 5.14E-2(3.87E-3) 8.2E-2(8.05E-2)
DTLZ4 3.6E-2(2.86E-3) 5.81E-2(3.53E-3)
WFG6 4.14E-2(2.81E-3) 4.51E-2(3.06E-3)
WFG7 4.52E-2(2.95E-3) 6.03E-2(7.18E-3)

10

DTLZ1 2.03E-2(8.68E-4) 2.6E-2(3.47E-4)
DTLZ2 4.07E-2(2.74E-3) 4.44E-2(5.72E-4)
DTLZ3 4.18E-2(2E-3) 4.57E-2(1.48E-3)
DTLZ4 2.72E-2(1.22E-3) 4.91E-2(2.6E-3)
WFG6 3.68E-2(3.29E-3) 4.47E-2(2.2E-3)
WFG7 5.93E-2(4.77E-3) 6.62E-2(6.96E-3)

15

DTLZ1 5.02E-2(1.85E-3) 5.37E-2(1.37E-3)
DTLZ2 8.71E-2(3.54E-3) 8.6E-2(2.14E-3)
DTLZ3 4.56E-1(6.95E-1) 1.67E-1(2.53E-1)
DTLZ4 5.2E-2(2.81E-3) 8.99E-2(2.35E-3)
WFG6 1.07E-1(1.87E-2) 1.22E-1(1.72E-2)
WFG7 1.87E-1(1.53E-2) 1.18E-1(1.08E-2)

difference. H-MOPSO mean ranking was 1.133 as MOEA/D-DRA had 1.867, according

to Table 6.44.

Table 6.42: Mean ranking (and standard deviation) for H-MOPSO-ACF and MOEAD-
DRA for the IGD indicator

Algorithm Mean ranking (and standard deviation)
H-MOPSO-ACF 1.133(0.340)
MOEADDRA 1.867(0.340)

the best mean ranking with statistical difference is shown with bold
face and gray background
Friedman test p-value: p = 5.903578e− 05
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Table 6.43: Multiple comparisons between groups after Friedman test for IGD indicator
Comparisons observed dif. critical dif. difference
H-MOPSO-ACF MOEADDRA 22 10.73516 X

Comparisons: comparison between each algorithm and the others
observed dif.: difference between the accumulated ranking of the compared algo-
rithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

When evaluated the Hypervolume quality indicator, H-MOPSO-ACF had the best

value, with a statistical difference, in most cases. However, MOEA/D-DRA had more

best results in Hypervolume than in IGD, with six values better than or equivalent to H-

MOPSO-ACF, of which four with a statistical difference. As in IGD, H-MOPSO had the

best mean ranking in Hypervolume too, with a statistical difference. H-MOPSO ranking

was 1.25 while for MOEA/D-DRA it was 1.75.

Table 6.44: Mean ranking (and standard deviation) for H-MOPSO-ACF and MOEAD-
DRA for the HV indicator

Algorithm Mean ranking (and standard deviation)
H-MOPSO-ACF 1.250(0.433)
MOEADDRA 1.750(0.433)

the best mean ranking with statistical difference is shown with bold
face and gray background
Friedman test p-value: p = 0.01430588

Table 6.45: Multiple comparisons between groups after Friedman test for HV indicator
Comparisons observed dif. critical dif. difference
H-MOPSO-ACF MOEADDRA 12 9.601823 X

Comparisons: comparison between each algorithm and the others
observed dif.: difference between the accumulated ranking of the compared algo-
rithms
critical dif.: critical difference to consider the samples statistically different
difference: X if there is statistical difference

In this section, it was presented a comparison between H-MOPSO variant with the best

results so far and a state-of-art multi-objective algorithm. On the results, H-MOPSO had

the best value, with a statistical difference in most problem instances, for both IGD and

Hypervolume. When evaluated the mean ranking H-MOPSO also had the best value, with

a statistical difference. With values close to one, 1.133 for IGD and 1.25 to Hypervolume.
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Table 6.46: Mean (and standard deviation) for H-MOPSO-ACF and MOEADDRA for
the HV indicator

Obj. problem H-MOPSO-ACF MOEADDRA

3

DTLZ1 1E0(6.2E-5) 1E0(4.21E-4)
DTLZ2 8.03E-1(7.64E-3) 7.87E-1(4.09E-3)
DTLZ3 1E0(4.61E-6) 9.92E-1(2.29E-2)
DTLZ4 4.59E-1(4.07E-3) 3.93E-1(2.98E-2)
WFG6 3.8E-1(9.47E-3) 3.17E-1(9.6E-3)
WFG7 3.9E-1(1.63E-2) 3.61E-1(1.71E-2)

5

DTLZ1 1E0(8.11E-8) 1E0(4.79E-6)
DTLZ2 9.89E-1(5.93E-4) 9.9E-1(3.12E-4)
DTLZ3 1E0(0E0) 1E0(7.34E-6)
DTLZ4 9.86E-1(4.5E-4) 9.84E-1(9.76E-4)
WFG6 5.63E-1(3.38E-2) 3.61E-1(2.03E-2)
WFG7 5.19E-1(1.39E-2) 5.88E-1(4.64E-2)

8

DTLZ1 1E0(6.01E-6) 1E0(2.56E-9)
DTLZ2 9.97E-1(1.71E-3) 9.9E-1(1.44E-3)
DTLZ3 1E0(0E0) 1E0(3.81E-8)
DTLZ4 9.99E-1(4.72E-4) 9.32E-1(1.76E-2)
WFG6 5.58E-1(3.65E-2) 3.99E-1(5.08E-2)
WFG7 3.98E-1(2.95E-2) 4.2E-1(6.67E-2)

10

DTLZ1 1E0(3.17E-9) 1E0(3.66E-11)
DTLZ2 9.98E-1(7.84E-4) 9.85E-1(1.96E-3)
DTLZ3 1E0(0E0) 1E0(1.16E-10)
DTLZ4 1E0(4.65E-6) 9.75E-1(1.28E-3)
WFG6 6.34E-1(4.7E-2) 4.35E-1(8.35E-2)
WFG7 4.32E-1(2.92E-2) 4.8E-1(5.07E-2)

In other words, H-MOPSO obtained competitive results when compared with a state-of-

art algorithm.
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CHAPTER 7

CONCLUSIONS

In this work, the incorporation of hyper-heuristic on the MOPSO algorithm is evaluated.

The objective is to improve the MOPSO convergence and diversity for Many-Objective

problems and reduce the quality deterioration. The hypothesis of improving MOPSO

using hyper-heuristic is proposed in [22], and the results obtained are encouraging. Based

on [22] different hyper-heuristic approaches are studied, with focus on the Multi-Armed

Bandit and Choice Function based heuristic selection methods. Those two methods were

selected based on its good results presented in the literature.

In the first study, an experiment made in [22] is reproduced. That experiment com-

pares original H-MOPSO with each low-level heuristic. As [22], it is concluded that

H-MOPSO, in general, have a better performance than any low-level heuristic applied

individually. Also, H-MOPSO have a better average ranking than any low-level heuristic,

supporting the conclusions of [22]. In a second study, two different Choice-Function based

heuristic selection were compared: the Adaptive Choice Function (ACF) [9] and the Sim-

plified Choice Function (SCF) [11]. ACF had better IGD values, mainly for problems with

8 or more objectives, on the other hand, SCF had better Hypervolume values, primarily

for three and five objectives. Also, the average distance between the reference points and

the Pareto front was compared, to have a better evaluation of the algorithms. It was

evaluated mainly the instances where IGD and Hypervolume disagree. ACF usually had

a smaller deviation; it means that the Pareto front approximations generated by ACF

were more distributed. Also, both methods had a good convergence towards the true

Pareto front. However, SCF had a better convergence than ACF in some points of the

front, which is responsible for increasing its Hypervolume value. Finally, the ACF was

selected as the CF-based method to be used, due to its good convergence and diversity.

Also, three Multi-Armed Bandit based methods were evaluated: the FRRMAB that
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uses UCB1 function [26] and two variations, the FRRMAB-UCBV and FRRMAB-UCBTuned [10].

In general, all methods had similar performance. Although, the version using UCB1 had a

better average ranking in both IGD and Hypervolume and was selected to be used in other

studies. Then, the ACF and FRRMAB-UCB1 parameters were configured. When evalu-

ated in an H-MOPSO selecting just archiving the heuristic selection methods had similar

performance, with a slight advantage for H-MOPSO-ACF. Besides, all four heuristic se-

lection methods had better IGD and HV average ranking than the state-of-art algorithm

MOEA/D-DRA, with a statistical difference for IGD.

Also, different H-MOPSO strategies were studied: H-MOPSO selecting just the archiv-

ing method; H-MOPSO selecting both archiving and leader selection methods together,

once for each iteration; and the version that selects both methods separately. Moreover,

for each heuristic selection method, the best strategy was selected. Except by UCB, that

had better results with the third strategy, all other methods had better results with the

second strategy. It is possible to conclude then, that selection of archiving and leader

selection methods (independent of structure) is better than selecting just archiving.

Finally, the four H-MOPSO final versions were compared to each other and the

MOEA/D-DRA. It is possible to conclude that, no heuristic selection method outper-

forms any other in both IGD and Hypervolume. Also, no method outperforms all others

in IGD or Hypervolume. H-MOPSO (using any heuristic method) had better results

than MOEA/D-DRA, with a statistical difference for IGD. It is possible to conclude that

the use of hyper-heuristic is capable of increasing the MOPSO performance, achieving

competitive results against the state-of-art algorithm MOEA/D-DRA.

Also, it is possible that a better tuning of the algorithms, mainly the Choice Function

and Multi-Armed Bandit based (including a previous configuration for the studies that

select the CF and MAB-based methods to be used) may increase the algorithm’s perfor-

mance. However, usually on the studies, any evaluated method, with any configuration,

are statistically equivalent. This behavior supports that: a more refined tuning would

have high computational cost and potentially would not increase the algorithm’s perfor-

mance significantly. Another comment is about the roulette-based H-MOPSO. Usually,
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it had the highest standard deviation of the mean ranking among H-MOPSO variants. It

shows that H-MOPSO-ROULETTE had less uniform performance when compared with

other H-MOPSO, with excellent results in some problem instances, and performing poorly

in others. Also, H-MOPSO-ACF, that despite the statistical analysis, had the best IGD

average ranking and second best for Hypervolume.

Also, some topics to be considered in future works are proposed. The first of them is

to use some automatic tuning of the algorithms parameters, such as racing techniques,

to eliminate candidate configurations as soon as possible. The use of automatic tuning

can improve the configuration accuracy and reduce the effort spent on that task. Another

proposal is to evaluate the behavior of the heuristic selection methods along the search.

The objective is to use this information to increase H-MOPSO performance. Also, it

is possible to evaluate the selection of archiving and leader selection methods separately

using different heuristic selection methods. The objective is to assess if the use of different

heuristic selection methods, properly chosen and configured to select a specific method,

may increase H-MOPSO performance.
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APPENDIX A

R2 RESULTS OF THE PRELIMINARY RESEARCH

In Tables A.1 and A.2 are shown the mean (and standard deviation) for the R2 indica-

tor for each low-level heuristic and the hyper-heuristic method based on roulette. The

ROULETTE algorithm had the best mean performance based on the R2 indicator in most

cases (22 from 42 experiments): mainly in DTLZ1 and DTLZ4. It is used the Kruskal-

Wallis statistical test to evaluate if the best performance is statistically different from all

others algorithms performances: in all cases the best result had no difference to, at least,

some other algorithm.

Table A.1: Mean (and standard deviation) for each low-level heuristic and the hyper-
heuristic based on roulette for the R2 indicator (Part I)

Obj. problem ROULETTE CDCD CDNWSUM CDSIGMA IDEALCD

2

DTLZ1 1.23E-3(3.33E-4) 2.21E-3(5.85E-3) 4.04E-3(1.4E-2) 3.15E-3(9.34E-3) 2.96E-3(2.34E-3)
DTLZ2 1.5E-1(6.14E-5) 1.5E-1(6.71E-5) 1.53E-1(3.1E-3) 1.52E-1(2.1E-3) 2.47E-1(4.26E-2)
DTLZ3 2.31E-3(1.17E-3) 3.46E-3(6.39E-3) 4.46E-3(1.56E-2) 3.28E-3(9.33E-3) 3.44E-3(4.3E-3)
DTLZ4 1.34E-1(7.54E-5) 1.33E-1(5.59E-5) 1.4E-1(5.95E-3) 1.4E-1(6.54E-3) 2.03E-1(4.5E-2)
DTLZ5 1.47E-1(7.49E-5) 1.46E-1(4.4E-5) 1.49E-1(3.39E-3) 1.48E-1(2.3E-3) 2.49E-1(6.11E-2)
DTLZ6 2.68E-2(1.08E-2) 2.8E-2(2.27E-2) 3.57E-2(3.22E-2) 3.8E-2(2.86E-2) 5.14E-2(4.71E-2)
DTLZ7 5.72E-2(1.1E-4) 6.72E-2(5.47E-2) 7.11E-2(6.14E-2) 8.25E-2(5.96E-2) 1.12E-1(5.89E-2)

3

DTLZ1 5.28E-4(5.41E-5) 8.1E-4(1.47E-3) 3.81E-3(1.57E-2) 1.86E-3(6.13E-3) 1.71E-3(3.07E-3)
DTLZ2 2.16E-2(1.46E-4) 2.18E-2(1.17E-4) 2.29E-2(1.05E-3) 2.28E-2(1.58E-3) 6.97E-2(2.28E-2)
DTLZ3 2.88E-4(8.06E-5) 3.88E-4(4.26E-4) 1.44E-3(6.15E-3) 5.37E-4(1.6E-3) 3.9E-4(3.35E-4)
DTLZ4 2.84E-2(5.65E-4) 2.86E-2(6.01E-4) 3.13E-2(5.71E-3) 2.96E-2(6.02E-3) 8.11E-2(5.19E-2)
DTLZ5 1.25E-1(9.52E-5) 1.25E-1(4.45E-5) 1.28E-1(1.54E-3) 1.26E-1(1.11E-3) 2.73E-1(4.38E-2)
DTLZ6 2.03E-2(5.12E-3) 2.06E-2(1.05E-2) 3.5E-2(1.08E-2) 2.84E-2(1.21E-2) 2.9E-2(2.64E-2)
DTLZ7 4.37E-2(6.37E-3) 4.86E-2(3.67E-2) 8.94E-2(3.4E-2) 6.36E-2(3.69E-2) 5.98E-2(4.22E-2)

5

DTLZ1 5.47E-6(1.02E-6) 3.41E-5(8.26E-5) 1.41E-4(6.99E-4) 5.68E-5(2.61E-4) 3.33E-5(4.33E-5)
DTLZ2 7.59E-4(2.96E-5) 9.38E-4(2.93E-4) 2.15E-3(1.6E-3) 4.35E-3(2.17E-3) 4.86E-2(1.13E-2)
DTLZ3 2.56E-6(1.7E-6) 4.38E-5(3.71E-5) 1.63E-5(6.02E-5) 3.02E-5(6.5E-5) 3.1E-5(1.58E-5)
DTLZ4 8.63E-4(4.63E-5) 9E-4(4.07E-5) 1.51E-3(1.99E-3) 1.08E-3(8.85E-4) 2.79E-2(2.44E-2)
DTLZ5 2.07E-2(2.69E-4) 2.14E-2(7.3E-4) 2.4E-2(1.03E-3) 2.34E-2(1.1E-3) 5.6E-2(1.53E-3)
DTLZ6 7.82E-3(1.35E-3) 6.66E-3(1.9E-3) 1.01E-2(4.82E-3) 1.31E-2(3.98E-3) 1.62E-2(2.63E-2)
DTLZ7 4.27E-2(1.04E-2) 5.27E-2(1.55E-2) 7.17E-2(1.47E-2) 2.76E-2(2.03E-2) 3.22E-2(2.52E-2)

10

DTLZ1 1.25E-5(4.3E-6) 5.32E-4(2.76E-4) 1.85E-5(6.17E-6) 1.36E-5(2.97E-6) 1.58E-5(2.72E-5)
DTLZ2 2.39E-3(1.38E-4) 4.1E-3(5.07E-4) 3.81E-3(3.71E-4) 3.07E-3(2.13E-4) 2.12E-2(7.16E-3)
DTLZ3 5.24E-5(6.79E-5) 8.95E-4(3.06E-4) 1.09E-3(4.58E-4) 7.62E-4(2.27E-4) 3.1E-5(1.51E-5)
DTLZ4 2.08E-3(1.17E-4) 3.15E-3(3.83E-4) 3.72E-3(4.35E-4) 3.19E-3(4.07E-4) 2.54E-2(8.54E-3)
DTLZ5 6.84E-3(5.18E-4) 7.04E-3(4.8E-4) 7.94E-3(5.56E-4) 7.63E-3(6.53E-4) 2.85E-2(4.35E-4)
DTLZ6 3.06E-3(4.72E-4) 2.62E-3(1.16E-3) 4.02E-3(1.73E-3) 5.27E-3(1.52E-3) 1.35E-2(2.15E-2)
DTLZ7 2.73E-2(4.46E-3) 3.6E-2(3.21E-2) 4.05E-2(3.04E-2) 4.84E-2(2.22E-2) 2.85E-2(2.72E-2)

15

DTLZ1 5.12E-6(1.94E-6) 2.68E-4(1.38E-4) 3.64E-5(7.89E-5) 1.28E-5(2.05E-5) 1.95E-5(7.2E-5)
DTLZ2 7.76E-4(4.68E-5) 1.41E-3(1.72E-4) 1.17E-3(1.14E-4) 9.98E-4(1.12E-4) 1.27E-2(6.47E-3)
DTLZ3 1.12E-5(1.78E-5) 4.12E-4(9.98E-5) 3.96E-4(1.1E-4) 2.57E-4(8.66E-5) 1.95E-5(1.14E-5)
DTLZ4 7.4E-4(4.6E-5) 1.22E-3(1.51E-4) 1.38E-3(1.75E-4) 1.23E-3(1.59E-4) 1.52E-2(7.49E-3)
DTLZ5 2.15E-3(1.45E-4) 2.29E-3(2.56E-4) 2.47E-3(2.46E-4) 2.4E-3(2.77E-4) 1.9E-2(7.47E-15)
DTLZ6 9.03E-4(1.57E-4) 8.33E-4(4.52E-4) 1.25E-3(7.45E-4) 1.62E-3(7.09E-4) 7.61E-3(1.14E-2)
DTLZ7 1.74E-2(2.39E-3) 2.28E-2(4.3E-2) 2.89E-2(4.21E-2) 3.76E-2(3.57E-2) 2.78E-2(4.08E-2)

20

DTLZ1 2.89E-6(1.6E-6) 1.65E-4(8.69E-5) 7.53E-6(6.23E-6) 9.17E-6(1.41E-5) 2.43E-5(8.1E-5)
DTLZ2 4.49E-4(3.26E-5) 7.94E-4(9.46E-5) 6.65E-4(6.61E-5) 5.64E-4(7.66E-5) 1.06E-2(4.85E-3)
DTLZ3 1.48E-5(2.03E-5) 2.68E-4(6.19E-5) 2.38E-4(7.03E-5) 1.49E-4(5.54E-5) 1.61E-5(8.78E-6)
DTLZ4 4.41E-4(2.59E-5) 7.31E-4(8.6E-5) 8.2E-4(1.25E-4) 7.04E-4(1.01E-4) 1.14E-2(5.83E-3)
DTLZ5 1.24E-3(7.31E-5) 1.36E-3(1.5E-4) 1.43E-3(1.5E-4) 1.39E-3(1.82E-4) 1.43E-2(2.75E-17)
DTLZ6 5.39E-4(8.44E-5) 5.13E-4(2.71E-4) 8.56E-4(4.73E-4) 1.04E-3(4.34E-4) 6.45E-3(8.51E-3)
DTLZ7 1.31E-2(1.83E-3) 1.88E-2(4.61E-2) 2.36E-2(4.41E-2) 3.16E-2(3.97E-2) 2.49E-2(4.29E-2)

for each problem the best mean performance is shown with bold face
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Table A.2: Mean (and standard deviation) for each low-level heuristic and the hyper-
heuristic based on roulette for the R2 indicator (Part II)

Obj. problem IDEALNWSUM IDEALSIGMA MGACD MGANWSUM MGASIGMA

2

DTLZ1 4.05E-3(1.4E-2) 3.62E-3(9.27E-3) 1.84E-3(3.48E-3) 4.07E-3(1.4E-2) 3.13E-3(9.34E-3)
DTLZ2 1.78E-1(4.03E-2) 3.18E-1(3.95E-2) 1.5E-1(7.51E-5) 1.53E-1(3.13E-3) 1.53E-1(2.01E-3)
DTLZ3 4.52E-3(1.56E-2) 3.3E-3(9.32E-3) 2.46E-3(1.57E-3) 4.54E-3(1.56E-2) 3.28E-3(9.33E-3)
DTLZ4 1.41E-1(6.6E-3) 2.36E-1(1.14E-1) 1.34E-1(4.57E-4) 1.4E-1(6.11E-3) 1.41E-1(6.02E-3)
DTLZ5 1.86E-1(5.56E-2) 3.14E-1(6.04E-2) 1.47E-1(8.37E-5) 1.49E-1(3.35E-3) 1.49E-1(2.21E-3)
DTLZ6 4.06E-2(3.23E-2) 4.69E-2(4.95E-2) 3.04E-2(2.28E-2) 3.87E-2(3.27E-2) 3.35E-2(2.81E-2)
DTLZ7 7.78E-2(6.05E-2) 8.49E-2(6.48E-2) 6.8E-2(5.73E-2) 7.18E-2(6.11E-2) 8.16E-2(5.98E-2)

3

DTLZ1 3.8E-3(1.57E-2) 3.03E-3(5.87E-3) 9.72E-4(2.33E-3) 3.78E-3(1.57E-2) 1.84E-3(6.14E-3)
DTLZ2 4.37E-2(1.98E-2) 9.77E-2(6.84E-3) 2.16E-2(8.4E-5) 2.31E-2(1.02E-3) 2.34E-2(1.65E-3)
DTLZ3 1.65E-3(6.21E-3) 5.47E-4(1.6E-3) 3.33E-4(8.42E-5) 1.4E-3(6.15E-3) 5.24E-4(1.6E-3)
DTLZ4 3.67E-2(3.25E-2) 8.94E-2(3.9E-2) 2.92E-2(5.71E-4) 3.11E-2(5.73E-3) 3.05E-2(5.85E-3)
DTLZ5 1.54E-1(5.51E-2) 2.82E-1(3.51E-2) 1.25E-1(6.08E-5) 1.27E-1(1.55E-3) 1.27E-1(1.01E-3)
DTLZ6 4.44E-2(4.88E-2) 3.74E-2(4.61E-2) 2E-2(1.01E-2) 3.36E-2(1.1E-2) 2.75E-2(1.22E-2)
DTLZ7 1.01E-1(6.45E-2) 7E-2(3.93E-2) 5.18E-2(3.62E-2) 8.99E-2(3.58E-2) 6.53E-2(3.66E-2)

5

DTLZ1 1.48E-4(7.07E-4) 1.01E-3(1.13E-3) 1.25E-5(3.82E-5) 1.44E-4(6.99E-4) 6.53E-5(2.61E-4)
DTLZ2 4.19E-2(1.54E-2) 5.59E-2(4.21E-3) 9.94E-4(8.64E-4) 3.09E-3(2.16E-3) 5.92E-3(2.93E-3)
DTLZ3 1.99E-5(5.8E-5) 3.49E-5(5.22E-5) 3.58E-6(7.31E-6) 1.86E-5(6.19E-5) 9.99E-6(2.04E-5)
DTLZ4 3.06E-2(2.17E-2) 4.27E-2(1.93E-2) 1.06E-3(6.51E-5) 1.53E-3(1.99E-3) 1.2E-3(8.62E-4)
DTLZ5 5.61E-2(5.61E-3) 5.48E-2(6.1E-3) 2.12E-2(8.41E-4) 2.44E-2(9.86E-4) 2.45E-2(7.21E-4)
DTLZ6 3.25E-2(1.69E-2) 4.07E-2(2.99E-2) 8.31E-3(3.65E-3) 1.26E-2(4.11E-3) 1.22E-2(4.15E-3)
DTLZ7 7.88E-2(1.68E-2) 2.98E-2(2.36E-2) 4.65E-2(1.59E-2) 7.87E-2(1.37E-2) 2.85E-2(2.02E-2)

10

DTLZ1 1.81E-5(1.03E-5) 1.26E-4(6.22E-5) 1.11E-5(3.38E-6) 1.71E-5(4.32E-6) 1.5E-5(3.17E-6)
DTLZ2 2.28E-2(7.9E-3) 2.76E-2(4.74E-3) 2.22E-3(2.41E-4) 3.29E-3(5.16E-4) 3.22E-3(7.83E-4)
DTLZ3 2.48E-5(6.06E-5) 2.84E-4(4.97E-4) 3.32E-4(3.57E-4) 4.46E-5(6.82E-5) 3.28E-4(1.97E-4)
DTLZ4 2.77E-2(4.74E-3) 2.4E-2(9.4E-3) 3.22E-3(2.38E-4) 4.01E-3(1.07E-3) 4.9E-3(2.41E-3)
DTLZ5 2.8E-2(3.17E-3) 2.78E-2(3.52E-3) 6.69E-3(6.37E-4) 8.18E-3(6.94E-4) 8.9E-3(6.09E-4)
DTLZ6 2.08E-2(8.09E-3) 1.95E-2(6.61E-3) 3.25E-3(1.77E-3) 4.2E-3(1.68E-3) 4.75E-3(1.48E-3)
DTLZ7 3.95E-2(2.5E-2) 2E-2(3.88E-2) 3.77E-2(2.28E-2) 4.36E-2(2.23E-2) 6.71E-2(1.88E-2)

15

DTLZ1 2.53E-5(8.84E-5) 2.85E-4(1.88E-4) 5.98E-6(3.96E-6) 1.01E-5(7.36E-6) 1.03E-5(3.41E-6)
DTLZ2 1.57E-2(5.43E-3) 1.72E-2(4.24E-3) 7.78E-4(1.28E-4) 1.11E-3(2.41E-4) 9.58E-4(1.65E-4)
DTLZ3 1.04E-5(1.28E-5) 1.76E-4(3.33E-4) 1.58E-4(1.24E-4) 5.39E-5(8E-5) 1.68E-4(9.4E-5)
DTLZ4 1.81E-2(3.62E-3) 1.45E-2(7.65E-3) 2.63E-3(2.86E-3) 2.4E-3(1.74E-3) 4.83E-3(3.29E-3)
DTLZ5 1.86E-2(2.26E-3) 1.8E-2(3.91E-3) 2.14E-3(2.82E-4) 2.65E-3(4.02E-4) 3.15E-3(4.19E-4)
DTLZ6 1.47E-2(5.52E-3) 1.48E-2(3.94E-3) 1.12E-3(7.76E-4) 1.3E-3(7.45E-4) 1.57E-3(6.97E-4)
DTLZ7 3.36E-2(3.86E-2) 2.35E-2(4.77E-2) 4.23E-2(3.75E-2) 4.26E-2(3.65E-2) 6.07E-2(3.15E-2)

20

DTLZ1 1.65E-5(5.41E-5) 2.07E-4(1.49E-4) 3.86E-6(2.42E-6) 5.5E-6(5.07E-6) 5.91E-6(3.34E-6)
DTLZ2 1.22E-2(2.98E-3) 1.41E-2(2.83E-3) 4.45E-4(9.38E-5) 6.4E-4(1.24E-4) 7.04E-4(2.56E-4)
DTLZ3 8.97E-6(9.43E-6) 2.36E-4(4.54E-4) 1.48E-4(7.44E-5) 4.52E-5(4.62E-5) 1.23E-4(4.78E-5)
DTLZ4 1.38E-2(2.52E-3) 1.25E-2(4.52E-3) 1.72E-3(1.9E-3) 1.08E-3(7.61E-4) 2.05E-3(1.45E-3)
DTLZ5 1.4E-2(1.73E-3) 1.39E-2(2.22E-3) 1.27E-3(1.85E-4) 1.61E-3(2.31E-4) 1.91E-3(2.8E-4)
DTLZ6 1.04E-2(5.03E-3) 1.08E-2(2.61E-3) 6.55E-4(5.1E-4) 7.75E-4(4.79E-4) 9.24E-4(4.8E-4)
DTLZ7 3.39E-2(4.14E-2) 2.52E-2(4.74E-2) 5.64E-2(3.57E-2) 5.69E-2(3.52E-2) 5.94E-2(3.44E-2)

for each problem the best mean performance is shown with bold face
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APPENDIX B

DETAILED RESULTS FOR DIFFERENT PARAMETER

CONFIGURATIONS OF ACF

In Tables B.1 and B.2 are shown the detailed results for different parameter configurations

evaluated for the Adaptive Choice Function selection method. In general, most configu-

ration had similar results, and no one had the best value with a statistical difference in

any test instance.
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APPENDIX C

DETAILED RESULTS FOR DIFFERENT PARAMETER

CONFIGURATIONS OF UCB1

In Tables C.1 and C.2 are shown the detailed results for different parameter configurations

evaluated for the UCB1 selection method. In general, most configuration had similar

results, and no one had the best value with a statistical difference in any test instance.

Table C.1: Mean (and standard deviation) for each configuration instance for UCB1 for
the IGD indicator

Obj. problem UCBC10W10 UCBC10W20 UCBC10W50 UCBC5W10 UCBC5W20 UCBC5W50

3

DTLZ1 7.33E-3(1.42E-3) 8.72E-3(6.02E-3) 8.05E-3(2E-3) 7.25E-3(1.12E-3) 7.6E-3(1.3E-3) 7.37E-3(1.17E-3)
DTLZ2 1.03E-2(9.51E-4) 1.03E-2(1.09E-3) 1.01E-2(9E-4) 1.04E-2(1.45E-3) 9.91E-3(8.2E-4) 1.07E-2(1.98E-3)
DTLZ3 1.84E-2(1.36E-2) 1.51E-2(1.22E-2) 1.53E-2(9.03E-3) 1.95E-2(1.73E-2) 1.31E-2(8.83E-3) 1.64E-2(1.55E-2)
DTLZ4 1.56E-2(5.14E-3) 1.55E-2(6.34E-3) 1.8E-2(8.27E-3) 1.69E-2(8.87E-3) 2.03E-2(8.19E-3) 1.63E-2(8.13E-3)
WFG6 1.19E-2(1.96E-3) 1.06E-2(1.44E-3) 1.16E-2(2.08E-3) 1.2E-2(1.94E-3) 1.1E-2(1.46E-3) 1.1E-2(1.55E-3)
WFG7 1.58E-2(2.91E-3) 1.56E-2(2.69E-3) 1.67E-2(3.09E-3) 1.62E-2(3.3E-3) 1.81E-2(2.53E-3) 1.65E-2(3.1E-3)

5

DTLZ1 1.17E-2(7.95E-4) 1.16E-2(6.8E-4) 1.16E-2(7.69E-4) 1.19E-2(6.07E-4) 1.17E-2(9.3E-4) 1.17E-2(7.82E-4)
DTLZ2 1.94E-2(1.38E-3) 1.95E-2(1.22E-3) 1.94E-2(1.08E-3) 1.93E-2(1.13E-3) 1.93E-2(1.17E-3) 1.97E-2(1E-3)
DTLZ3 2.82E-2(2.54E-3) 2.87E-2(2.59E-3) 2.8E-2(2.2E-3) 2.86E-2(2.47E-3) 2.88E-2(2.5E-3) 2.8E-2(2.14E-3)
DTLZ4 2.16E-2(2.67E-3) 2.27E-2(2.84E-3) 2.34E-2(1.76E-3) 2.27E-2(1.78E-3) 2.28E-2(1.49E-3) 2.5E-2(1.98E-3)
WFG6 1.53E-2(4.57E-4) 1.54E-2(7.28E-4) 1.53E-2(5.25E-4) 1.52E-2(5.43E-4) 1.53E-2(6.36E-4) 1.57E-2(9.09E-4)
WFG7 1.95E-2(1.64E-3) 2.06E-2(2.53E-3) 1.94E-2(1.72E-3) 1.93E-2(1.69E-3) 1.97E-2(1.62E-3) 1.91E-2(1.07E-3)

8

DTLZ1 3.06E-2(2E-3) 3.08E-2(2.82E-3) 3.17E-2(2.16E-3) 3.14E-2(2.37E-3) 3.09E-2(2.53E-3) 3.18E-2(2.18E-3)
DTLZ2 5.1E-2(2.96E-3) 5.05E-2(3.2E-3) 5.3E-2(2.97E-3) 5.32E-2(2.24E-3) 5.19E-2(3.14E-3) 5.19E-2(2.76E-3)
DTLZ3 6.29E-2(3.93E-3) 6.33E-2(3.73E-3) 6.81E-2(2.29E-2) 6.46E-2(5.09E-3) 6.39E-2(3.51E-3) 6.42E-2(3.6E-3)
DTLZ4 4.25E-2(1.75E-3) 4.19E-2(1.74E-3) 4.25E-2(2.55E-3) 4.17E-2(1.67E-3) 4.17E-2(2.54E-3) 4.15E-2(1.99E-3)
WFG6 3.89E-2(2.71E-3) 3.93E-2(3.67E-3) 3.76E-2(2.72E-3) 4.08E-2(2.84E-3) 3.9E-2(3.31E-3) 3.83E-2(3.03E-3)
WFG7 4.46E-2(4.8E-3) 4.68E-2(4.94E-3) 4.48E-2(5.03E-3) 4.48E-2(3.8E-3) 4.39E-2(4.31E-3) 4.48E-2(3.38E-3)

10

DTLZ1 2.45E-2(2.26E-3) 2.44E-2(1.24E-3) 2.51E-2(1.62E-3) 2.52E-2(1.68E-3) 2.48E-2(1.86E-3) 2.52E-2(1.09E-3)
DTLZ2 4.55E-2(3.11E-3) 4.45E-2(2.77E-3) 4.42E-2(2.96E-3) 4.42E-2(3.27E-3) 4.57E-2(2.43E-3) 4.43E-2(2.5E-3)
DTLZ3 5.07E-2(2.26E-3) 5.08E-2(2.32E-3) 5.11E-2(2.27E-3) 5.19E-2(1.74E-3) 5.15E-2(1.95E-3) 5.12E-2(1.87E-3)
DTLZ4 3.23E-2(1.28E-3) 3.21E-2(1.14E-3) 3.32E-2(1.52E-3) 3.29E-2(1.13E-3) 3.28E-2(1.74E-3) 3.32E-2(1.27E-3)
WFG6 3.48E-2(2.72E-3) 3.52E-2(1.97E-3) 3.38E-2(1.67E-3) 3.49E-2(2.38E-3) 3.54E-2(1.75E-3) 3.5E-2(2.25E-3)
WFG7 5.5E-2(4.46E-3) 5.3E-2(5.35E-3) 5.37E-2(4.36E-3) 5.24E-2(3.84E-3) 5.55E-2(4.56E-3) 5.33E-2(4.59E-3)

15

DTLZ1 5.55E-2(2.05E-3) 5.59E-2(2.46E-3) 5.57E-2(2.16E-3) 5.62E-2(2.42E-3) 5.62E-2(1.71E-3) 5.55E-2(1.89E-3)
DTLZ2 9.17E-2(2.95E-3) 9.15E-2(2.26E-3) 9.2E-2(2.03E-3) 9.02E-2(3.2E-3) 9.16E-2(2.76E-3) 8.98E-2(3.78E-3)
DTLZ3 9.56E-2(2.18E-3) 9.57E-2(2.22E-3) 9.61E-2(3.16E-3) 9.74E-2(6.27E-3) 9.6E-2(2.14E-3) 9.5E-2(3.43E-3)
DTLZ4 5.27E-2(1.09E-3) 5.46E-2(3.18E-3) 5.62E-2(3.08E-3) 5.46E-2(1.56E-3) 5.44E-2(2.22E-3) 5.83E-2(6.17E-3)
WFG6 1.08E-1(8.7E-3) 1.09E-1(1.48E-2) 1.09E-1(1E-2) 1.14E-1(1.62E-2) 1.06E-1(1.2E-2) 1.1E-1(1.14E-2)
WFG7 1.65E-1(9.92E-3) 1.58E-1(9.25E-3) 1.66E-1(1.6E-2) 1.61E-1(1.31E-2) 1.65E-1(1.35E-2) 1.64E-1(1.15E-2)

Obj. problem UCBC1W10 UCBC1W20 UCBC1W50 UCBC0.5W10 UCBC0.5W20 UCBC0.5W50

3

DTLZ1 7.87E-3(1.32E-3) 8.38E-3(1.1E-3) 9.5E-3(5.72E-3) 8.26E-3(1.25E-3) 1.03E-2(5.67E-3) 9.47E-3(1.01E-3)
DTLZ2 1.03E-2(6.53E-4) 1.13E-2(1.28E-3) 1.15E-2(7.61E-4) 1.14E-2(1.26E-3) 1.22E-2(1.64E-3) 1.21E-2(1.76E-3)
DTLZ3 1.68E-2(1.19E-2) 1.69E-2(1.29E-2) 1.89E-2(1.2E-2) 1.85E-2(1.29E-2) 1.94E-2(1.27E-2) 1.61E-2(7.94E-3)
DTLZ4 2.05E-2(9.46E-3) 1.76E-2(9.01E-3) 2.27E-2(8.32E-3) 2.26E-2(8.09E-3) 2.72E-2(8.8E-3) 2.18E-2(9.22E-3)
WFG6 1.24E-2(1.96E-3) 1.25E-2(1.43E-3) 1.28E-2(1.25E-3) 1.26E-2(1.6E-3) 1.34E-2(1.02E-3) 1.38E-2(6.61E-4)
WFG7 1.86E-2(2.94E-3) 2.08E-2(2.57E-3) 2.12E-2(2.41E-3) 1.86E-2(3.02E-3) 2.21E-2(2.06E-3) 2.09E-2(1.35E-3)

5

DTLZ1 1.17E-2(8.9E-4) 1.17E-2(9.98E-4) 1.31E-2(1.98E-3) 1.18E-2(1.12E-3) 1.25E-2(1.68E-3) 1.28E-2(1.24E-3)
DTLZ2 2E-2(9.87E-4) 2.03E-2(1.76E-3) 2.19E-2(1.1E-3) 2.12E-2(1.54E-3) 2.32E-2(1.57E-3) 2.36E-2(1.4E-3)
DTLZ3 2.78E-2(3.77E-3) 2.83E-2(2.95E-3) 2.83E-2(3.59E-3) 2.8E-2(3.23E-3) 2.84E-2(2.06E-3) 2.84E-2(2.68E-3)
DTLZ4 2.34E-2(2.32E-3) 2.43E-2(2.1E-3) 2.4E-2(2.04E-3) 2.57E-2(2.39E-3) 2.53E-2(2.23E-3) 2.39E-2(2.8E-3)
WFG6 1.52E-2(5.98E-4) 1.55E-2(6E-4) 1.55E-2(5.13E-4) 1.52E-2(8.13E-4) 1.57E-2(8.52E-4) 1.59E-2(1.12E-3)
WFG7 2.01E-2(1.64E-3) 2.05E-2(1.27E-3) 2.1E-2(1.73E-3) 2.09E-2(1.3E-3) 2.17E-2(1.61E-3) 2.16E-2(1.37E-3)

8

DTLZ1 3.34E-2(3.27E-3) 3.23E-2(2.98E-3) 3.7E-2(6.01E-3) 3.46E-2(3.35E-3) 3.8E-2(4.9E-3) 3.86E-2(5.23E-3)
DTLZ2 5.22E-2(3.39E-3) 5.31E-2(2.12E-3) 5.37E-2(3.88E-3) 5.28E-2(2.8E-3) 5.5E-2(3.2E-3) 5.54E-2(2.4E-3)
DTLZ3 6.71E-2(5.23E-3) 6.67E-2(5.75E-3) 7.01E-2(6.62E-3) 1.46E-1(3.48E-1) 7.55E-2(8.25E-3) 1.44E-1(2.28E-1)
DTLZ4 4.2E-2(2.12E-3) 4.45E-2(2.98E-3) 4.64E-2(3.96E-3) 4.39E-2(3.62E-3) 4.77E-2(3.59E-3) 4.96E-2(4.15E-3)
WFG6 3.84E-2(3.28E-3) 3.82E-2(2.49E-3) 3.72E-2(2.2E-3) 3.72E-2(2.27E-3) 3.81E-2(2.89E-3) 3.78E-2(1.8E-3)
WFG7 4.48E-2(4.62E-3) 4.61E-2(5.31E-3) 4.46E-2(4.07E-3) 4.46E-2(3.92E-3) 4.74E-2(5.22E-3) 4.57E-2(5.25E-3)

10

DTLZ1 2.58E-2(2.17E-3) 2.7E-2(1.74E-3) 2.76E-2(2.67E-3) 2.72E-2(2.32E-3) 2.97E-2(2.68E-3) 6.92E-2(1.64E-1)
DTLZ2 4.49E-2(2.8E-3) 4.52E-2(2.1E-3) 4.62E-2(2.52E-3) 4.53E-2(2.45E-3) 4.53E-2(2.15E-3) 4.77E-2(1.79E-3)
DTLZ3 5.18E-2(2.02E-3) 5.35E-2(2.69E-3) 5.52E-2(2.32E-3) 5.51E-2(3.04E-3) 9.64E-2(1.76E-1) 5.78E-2(4.54E-3)
DTLZ4 3.32E-2(1.09E-3) 3.4E-2(1.96E-3) 3.68E-2(3.05E-3) 3.6E-2(3.04E-3) 4E-2(3.17E-3) 3.84E-2(3.42E-3)
WFG6 3.48E-2(2.01E-3) 3.49E-2(2.5E-3) 3.56E-2(2.11E-3) 3.55E-2(2.1E-3) 3.27E-2(1.63E-3) 3.36E-2(2.01E-3)
WFG7 5.52E-2(4.03E-3) 5.67E-2(6.14E-3) 5.76E-2(4.29E-3) 5.65E-2(5.97E-3) 5.48E-2(6.2E-3) 6.18E-2(6.24E-3)

15

DTLZ1 5.77E-2(2.79E-3) 5.81E-2(2.14E-3) 5.79E-2(3.43E-3) 5.88E-2(3.46E-3) 8.22E-2(1.01E-1) 7.5E-2(4.05E-2)
DTLZ2 9.13E-2(2.33E-3) 9.28E-2(2.2E-3) 9.33E-2(2.41E-3) 9.15E-2(2.76E-3) 9.27E-2(2.8E-3) 9.2E-2(3.5E-3)
DTLZ3 1.23E-1(8.47E-2) 1.04E-1(2.67E-2) 1.51E-1(1.59E-1) 2.93E-1(3.24E-1) 2.73E-1(5.41E-1) 1.64E-1(2.03E-1)
DTLZ4 5.61E-2(3.04E-3) 5.93E-2(7.15E-3) 7.49E-2(1.16E-2) 6.07E-2(9.63E-3) 6.93E-2(1.25E-2) 7.73E-2(1.44E-2)
WFG6 1.05E-1(1.16E-2) 1.07E-1(1.12E-2) 1.01E-1(1.23E-2) 1.06E-1(1.14E-2) 9.69E-2(8.62E-3) 9.84E-2(1.35E-2)
WFG7 1.64E-1(1.59E-2) 1.62E-1(1.49E-2) 1.61E-1(1.91E-2) 1.64E-1(1.54E-2) 1.67E-1(1.6E-2) 1.67E-1(1.73E-2)
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Table C.2: Mean (and standard deviation) for each configuration instance for UCB1 for
the HV indicator

Obj. problem UCBC10W10 UCBC10W20 UCBC10W50 UCBC5W10 UCBC5W20 UCBC5W50

3

DTLZ1 1E0(2.55E-4) 1E0(3.61E-4) 1E0(2.24E-4) 1E0(1.53E-4) 1E0(2.3E-4) 1E0(2.95E-4)
DTLZ2 8.2E-1(1.31E-2) 8.2E-1(1.91E-2) 8.2E-1(1.35E-2) 8.22E-1(6.4E-3) 8.25E-1(3.53E-3) 8.15E-1(2.94E-2)
DTLZ3 1E0(8.89E-5) 1E0(2.46E-4) 1E0(2.15E-5) 1E0(3.61E-4) 1E0(1.98E-5) 1E0(5.76E-4)
DTLZ4 9.47E-1(1.29E-3) 9.46E-1(1.94E-3) 9.45E-1(2.32E-3) 9.46E-1(2.73E-3) 9.45E-1(2.47E-3) 9.46E-1(2.34E-3)
WFG6 3.7E-1(1.1E-2) 3.78E-1(1.12E-2) 3.75E-1(1.1E-2) 3.75E-1(1.34E-2) 3.73E-1(8.85E-3) 3.72E-1(9.09E-3)
WFG7 4.86E-1(2.04E-2) 4.85E-1(1.62E-2) 4.82E-1(1.73E-2) 4.78E-1(2.53E-2) 4.77E-1(2E-2) 4.77E-1(1.97E-2)

5

DTLZ1 9.96E-1(1.86E-3) 9.96E-1(1.61E-3) 9.96E-1(2.08E-3) 9.96E-1(1.68E-3) 9.96E-1(1.75E-3) 9.96E-1(1.82E-3)
DTLZ2 9.95E-1(1.11E-3) 9.95E-1(1.37E-3) 9.95E-1(1.24E-3) 9.95E-1(7.49E-4) 9.94E-1(1.62E-3) 9.93E-1(2.09E-3)
DTLZ3 1E0(2.82E-9) 1E0(4.68E-9) 1E0(1.94E-9) 1E0(7.49E-9) 1E0(1.17E-8) 1E0(1.59E-9)
DTLZ4 9.99E-1(5.95E-5) 9.99E-1(7.09E-5) 9.99E-1(5.62E-5) 9.99E-1(6.85E-5) 9.99E-1(4.29E-5) 9.99E-1(6.75E-5)
WFG6 5.5E-1(2.54E-2) 5.56E-1(2.23E-2) 5.5E-1(3.02E-2) 5.55E-1(2.08E-2) 5.57E-1(2.41E-2) 5.46E-1(2.49E-2)
WFG7 5.64E-1(2.32E-2) 5.51E-1(2.54E-2) 5.69E-1(1.79E-2) 5.67E-1(2.84E-2) 5.65E-1(1.97E-2) 5.66E-1(1.33E-2)

8

DTLZ1 1E0(1.23E-8) 1E0(2.06E-9) 1E0(5.18E-10) 1E0(4.92E-10) 1E0(2.1E-8) 1E0(5.23E-11)
DTLZ2 9.96E-1(1.73E-3) 9.96E-1(2.32E-3) 9.95E-1(1.83E-3) 9.95E-1(1.91E-3) 9.93E-1(3.64E-3) 9.95E-1(1.8E-3)
DTLZ3 1E0(7.53E-9) 1E0(7.97E-9) 1E0(1.02E-8) 1E0(1.29E-8) 1E0(5.83E-9) 1E0(6.69E-9)
DTLZ4 1E0(6.72E-6) 1E0(3.68E-6) 1E0(1.28E-5) 1E0(4.36E-6) 1E0(3.61E-6) 1E0(3.45E-6)
WFG6 6.62E-1(2.21E-2) 6.83E-1(2.79E-2) 6.79E-1(2.76E-2) 6.82E-1(4.09E-2) 6.71E-1(3.06E-2) 6.64E-1(2.46E-2)
WFG7 4.8E-1(2.48E-2) 4.76E-1(1.71E-2) 4.71E-1(2.72E-2) 4.73E-1(2.39E-2) 4.8E-1(3.02E-2) 4.78E-1(2.78E-2)

10

DTLZ1 1E0(3.08E-11) 1E0(7.16E-11) 1E0(5.23E-11) 1E0(4.25E-10) 1E0(4.85E-9) 1E0(3.04E-9)
DTLZ2 9.96E-1(2.56E-3) 9.96E-1(2.29E-3) 9.95E-1(2.8E-3) 9.96E-1(2.64E-3) 9.97E-1(1.48E-3) 9.96E-1(2.53E-3)
DTLZ3 1E0(7.79E-10) 1E0(1.79E-9) 1E0(3.01E-10) 1E0(6.59E-10) 1E0(5.52E-10) 1E0(1.69E-9)
DTLZ4 1E0(3.27E-7) 1E0(1.31E-7) 1E0(3.8E-7) 1E0(2.49E-7) 1E0(4.24E-7) 1E0(4.16E-7)
WFG6 7.82E-1(2.83E-2) 7.82E-1(2.44E-2) 7.63E-1(2.17E-2) 7.76E-1(3.06E-2) 7.83E-1(2.8E-2) 7.88E-1(2.14E-2)
WFG7 4.86E-1(2.24E-2) 4.87E-1(3.11E-2) 4.85E-1(2.27E-2) 4.87E-1(2.12E-2) 4.94E-1(2.32E-2) 4.85E-1(1.87E-2)

Obj. problem UCBC1W10 UCBC1W20 UCBC1W50 UCBC0.5W10 UCBC0.5W20 UCBC0.5W50

3

DTLZ1 1E0(2.15E-4) 1E0(2.38E-4) 1E0(3.27E-4) 1E0(1.55E-4) 1E0(3.96E-4) 1E0(2.72E-4)
DTLZ2 8.16E-1(1.5E-2) 8.09E-1(3.15E-2) 8.01E-1(2.8E-2) 8.05E-1(2.43E-2) 7.89E-1(3.47E-2) 7.92E-1(3.35E-2)
DTLZ3 1E0(2.27E-4) 1E0(9.92E-4) 1E0(2.6E-5) 1E0(4.18E-4) 1E0(9.92E-5) 1E0(2.68E-5)
DTLZ4 9.44E-1(3.12E-3) 9.45E-1(2.86E-3) 9.44E-1(2.96E-3) 9.44E-1(2.82E-3) 9.41E-1(4.42E-3) 9.43E-1(3.48E-3)
WFG6 3.67E-1(1.24E-2) 3.67E-1(9.29E-3) 3.61E-1(7.94E-3) 3.6E-1(9.31E-3) 3.57E-1(7.99E-3) 3.56E-1(7.15E-3)
WFG7 4.6E-1(1.58E-2) 4.44E-1(1.14E-2) 4.35E-1(1.41E-2) 4.5E-1(1.54E-2) 4.24E-1(1.12E-2) 4.3E-1(1.17E-2)

5

DTLZ1 9.95E-1(2.31E-3) 9.94E-1(5.98E-3) 9.9E-1(6.01E-3) 9.93E-1(2.47E-3) 9.9E-1(7.35E-3) 9.91E-1(3.76E-3)
DTLZ2 9.93E-1(1.58E-3) 9.94E-1(1.29E-3) 9.92E-1(1.95E-3) 9.91E-1(2.3E-3) 9.9E-1(1.66E-3) 9.9E-1(2.87E-3)
DTLZ3 1E0(1.05E-8) 1E0(5.06E-9) 1E0(3.35E-8) 1E0(1.38E-8) 1E0(1.38E-9) 1E0(4.68E-9)
DTLZ4 9.99E-1(6.94E-5) 9.99E-1(5.34E-5) 9.99E-1(8.47E-5) 9.99E-1(7.61E-5) 9.99E-1(6.42E-5) 9.99E-1(9.21E-5)
WFG6 5.57E-1(2.15E-2) 5.55E-1(1.75E-2) 5.51E-1(1.97E-2) 5.55E-1(2.23E-2) 5.35E-1(3.8E-2) 5.28E-1(4.63E-2)
WFG7 5.46E-1(2.06E-2) 5.32E-1(2.15E-2) 5.15E-1(2.62E-2) 5.19E-1(2.76E-2) 5.02E-1(2.45E-2) 5.08E-1(2.02E-2)

8

DTLZ1 1E0(6.01E-10) 1E0(8.26E-10) 1E0(7.25E-9) 1E0(5.5E-11) 1E0(5.78E-9) 1E0(1.43E-9)
DTLZ2 9.92E-1(4.93E-3) 9.92E-1(4.5E-3) 9.89E-1(5.55E-3) 9.91E-1(4.09E-3) 9.87E-1(5.64E-3) 9.86E-1(5.2E-3)
DTLZ3 1E0(5.63E-9) 1E0(2.97E-8) 1E0(5.15E-8) 1E0(4.46E-8) 1E0(2.31E-8) 1E0(4.09E-8)
DTLZ4 1E0(1.4E-5) 1E0(2.32E-5) 1E0(9.34E-5) 1E0(3.76E-5) 1E0(7.36E-5) 1E0(8.76E-5)
WFG6 6.74E-1(2.96E-2) 6.69E-1(3.72E-2) 6.51E-1(1.92E-2) 6.65E-1(3.51E-2) 6.58E-1(3.39E-2) 6.33E-1(1.45E-2)
WFG7 4.77E-1(2.12E-2) 4.67E-1(2.82E-2) 4.57E-1(3.25E-2) 4.49E-1(3.06E-2) 4.48E-1(2.82E-2) 4.66E-1(4.28E-2)

10

DTLZ1 1E0(2.24E-11) 1E0(6.71E-11) 1E0(2.24E-11) 1E0(4.47E-11) 1E0(2.24E-11) 1E0(7.96E-8)
DTLZ2 9.96E-1(2.88E-3) 9.95E-1(2.49E-3) 9.93E-1(3.67E-3) 9.94E-1(3.32E-3) 9.92E-1(3.01E-3) 9.91E-1(4.6E-3)
DTLZ3 1E0(2.07E-9) 1E0(2.09E-9) 1E0(1.68E-9) 1E0(4.18E-9) 1E0(7.61E-9) 1E0(2.03E-8)
DTLZ4 1E0(7.29E-7) 1E0(1.71E-6) 1E0(6.51E-6) 1E0(8.45E-6) 1E0(1.09E-5) 1E0(1.63E-5)
WFG6 7.84E-1(2.73E-2) 7.88E-1(3.62E-2) 7.92E-1(3E-2) 7.92E-1(2.64E-2) 7.62E-1(2.17E-2) 7.63E-1(2.7E-2)
WFG7 4.83E-1(1.68E-2) 4.85E-1(2.06E-2) 4.82E-1(2.5E-2) 4.88E-1(2.15E-2) 4.75E-1(3.69E-2) 4.98E-1(5.47E-2)
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APPENDIX D

DETAILED RESULTS FOR DIFFERENT H-MOPSO

STRATEGIES

In this section it is illustrated the detailed results for different H-MOPSO strategy for

each problem instance and objective number (Tables 6.27 to D.8).

Table D.1: Mean (and standard deviation) for RANDOMRANDOM, RANDOM and
RANDOMFIXED for the IGD indicator

Obj. problem RANDOMRANDOM RANDOM RANDOMFIXED

3
DTLZ1 7.04E-3(5.42E-4) 6.76E-3(4.47E-4) 6.85E-3(8.65E-4)
DTLZ2 9.46E-3(5.64E-4) 9.89E-3(1.17E-3) 1.02E-2(1.51E-3)
DTLZ3 1.41E-2(1.26E-2) 1.21E-2(8.53E-3) 1.24E-2(5.12E-3)
DTLZ4 9.03E-3(5.95E-4) 8.99E-3(8.66E-4) 1.42E-2(4.89E-3)
WFG6 1.15E-2(1.72E-3) 1.11E-2(1.52E-3) 1.07E-2(1.44E-3)
WFG7 1.58E-2(2.45E-3) 1.62E-2(2.63E-3) 1.58E-2(2.5E-3)

5
DTLZ1 1.19E-2(5.96E-4) 1.16E-2(4.21E-4) 1.19E-2(9.33E-4)
DTLZ2 1.79E-2(5.3E-4) 1.77E-2(7.23E-4) 1.91E-2(1.32E-3)
DTLZ3 1.84E-2(1.52E-3) 1.8E-2(7.68E-4) 2.81E-2(1.9E-3)
DTLZ4 1.55E-2(7.75E-4) 1.55E-2(5.29E-4) 2.21E-2(2.54E-3)
WFG6 1.58E-2(6.93E-4) 1.58E-2(6E-4) 1.53E-2(8.66E-4)
WFG7 1.89E-2(9.9E-4) 1.92E-2(9.95E-4) 2E-2(1.94E-3)

8
DTLZ1 2.62E-2(1.47E-3) 2.64E-2(1.78E-3) 3.06E-2(2.53E-3)
DTLZ2 4.88E-2(2.9E-3) 4.79E-2(3.4E-3) 5.17E-2(3.93E-3)
DTLZ3 5.32E-2(3.93E-3) 5.47E-2(4.78E-3) 6.29E-2(3.45E-3)
DTLZ4 3.61E-2(3.47E-3) 3.56E-2(4.2E-3) 4.19E-2(2.5E-3)
WFG6 4.29E-2(2.95E-3) 4.28E-2(3.98E-3) 4.05E-2(2.75E-3)
WFG7 4.37E-2(3.95E-3) 4.34E-2(3.63E-3) 4.53E-2(4.85E-3)

10
DTLZ1 2.03E-2(1.12E-3) 2.05E-2(1.03E-3) 2.49E-2(1.3E-3)
DTLZ2 4.21E-2(2.51E-3) 4.17E-2(2.45E-3) 4.47E-2(2.48E-3)
DTLZ3 4.19E-2(2.51E-3) 4.39E-2(3.12E-3) 5.11E-2(2.64E-3)
DTLZ4 2.75E-2(1.2E-3) 2.74E-2(1.15E-3) 3.23E-2(1.51E-3)
WFG6 3.65E-2(2.29E-3) 3.64E-2(3.17E-3) 3.55E-2(2.04E-3)
WFG7 5.95E-2(3.75E-3) 6.05E-2(3.57E-3) 5.57E-2(3.97E-3)

15
DTLZ1 5.04E-2(2.25E-3) 4.98E-2(2.22E-3) 5.67E-2(1.87E-3)
DTLZ2 8.8E-2(3.08E-3) 8.86E-2(2.83E-3) 9.18E-2(2.52E-3)
DTLZ3 8.93E-2(4.04E-3) 8.95E-2(2.53E-3) 9.59E-2(2.69E-3)
DTLZ4 5.34E-2(2.7E-3) 5.3E-2(2.71E-3) 5.37E-2(2.18E-3)
WFG6 1E-1(1.5E-2) 9.87E-2(1.01E-2) 1.11E-1(1.29E-2)
WFG7 1.84E-1(1.74E-2) 1.8E-1(8.49E-3) 1.62E-1(1.55E-2)
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Table D.2: Mean (and standard deviation) for RANDOMRANDOM, RANDOM and
RANDOMFIXED for the HV indicator

Obj. problem RANDOMRANDOM RANDOM RANDOMFIXED

3
DTLZ1 7.64E-1(7.03E-3) 7.68E-1(3.85E-3) 7.69E-1(8.29E-3)
DTLZ2 7.93E-1(2.74E-3) 7.92E-1(4.96E-3) 7.84E-1(1.81E-2)
DTLZ3 1E0(5.51E-5) 1E0(9.1E-6) 1E0(5.61E-6)
DTLZ4 8.65E-1(1.17E-3) 8.65E-1(1.16E-3) 8.62E-1(3.94E-3)
WFG6 3.77E-1(9.79E-3) 3.8E-1(8.88E-3) 3.78E-1(8.52E-3)
WFG7 3.9E-1(1.81E-2) 3.9E-1(1.86E-2) 3.95E-1(1.56E-2)

5
DTLZ1 9.71E-1(4.12E-3) 9.73E-1(2.71E-3) 9.68E-1(9.94E-3)
DTLZ2 9.94E-1(4.65E-4) 9.94E-1(7.4E-4) 9.92E-1(2.08E-3)
DTLZ3 1E0(0E0) 1E0(0E0) 1E0(4.91E-9)
DTLZ4 9.99E-1(6.18E-5) 9.99E-1(8.45E-5) 9.99E-1(9.44E-5)
WFG6 5.38E-1(2.56E-2) 5.35E-1(1.58E-2) 5.59E-1(3.03E-2)
WFG7 5.52E-1(1.77E-2) 5.48E-1(1.56E-2) 5.25E-1(2.58E-2)

8
DTLZ1 1E0(4.07E-10) 1E0(1.74E-8) 1E0(1.44E-8)
DTLZ2 9.96E-1(1.52E-3) 9.97E-1(1.21E-3) 9.95E-1(5.51E-3)
DTLZ3 1E0(0E0) 1E0(0E0) 1E0(3.91E-9)
DTLZ4 1E0(1.59E-5) 1E0(8.49E-5) 1E0(8.43E-6)
WFG6 6.54E-1(3.12E-2) 6.55E-1(3.1E-2) 7.01E-1(2.74E-2)
WFG7 4.53E-1(3.85E-2) 4.78E-1(2.84E-2) 4.25E-1(1.85E-2)

10
DTLZ1 1E0(7.81E-10) 1E0(5.55E-8) 1E0(1.1E-9)
DTLZ2 9.98E-1(1.1E-3) 9.98E-1(1.39E-3) 9.96E-1(1.7E-3)
DTLZ3 1E0(0E0) 1E0(0E0) 1E0(1.39E-9)
DTLZ4 1E0(6.1E-7) 1E0(2.92E-6) 1E0(3.29E-7)
WFG6 6.8E-1(2.81E-2) 6.71E-1(4.4E-2) 7.3E-1(2.83E-2)
WFG7 4.51E-1(2.55E-2) 4.57E-1(2.71E-2) 4.38E-1(1.83E-2)
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Table D.3: Mean (and standard deviation) for ACFACF, ACF and ACFFIXED for the
IGD indicator

Obj. problem ACFACF ACF ACFFIXED

3

DTLZ1 9.98E-3(3.3E-3) 6.83E-3(3.75E-4) 6.63E-3(6.86E-4)
DTLZ2 1.11E-2(8.93E-4) 9.56E-3(5.87E-4) 9.57E-3(1.04E-3)
DTLZ3 1.75E-2(9.95E-3) 9.83E-3(2.19E-3) 1.32E-2(1.06E-2)
DTLZ4 1.5E-2(2.35E-3) 9.34E-3(1.2E-3) 1.41E-2(5.69E-3)
WFG6 1.12E-2(1.22E-3) 1.06E-2(1.41E-3) 1.02E-2(1.69E-3)
WFG7 1.74E-2(2.05E-3) 1.51E-2(2.06E-3) 1.34E-2(1.9E-3)

5

DTLZ1 1.31E-2(1.69E-3) 1.19E-2(6.24E-4) 1.13E-2(6.31E-4)
DTLZ2 2.04E-2(5.63E-4) 1.77E-2(7.89E-4) 1.81E-2(1.08E-3)
DTLZ3 2.98E-2(8.01E-3) 1.85E-2(1.02E-3) 2.84E-2(2.8E-3)
DTLZ4 1.98E-2(3.93E-3) 1.55E-2(4.73E-4) 2.22E-2(1.45E-3)
WFG6 1.65E-2(1.72E-3) 1.57E-2(8.16E-4) 1.49E-2(6.8E-4)
WFG7 2.02E-2(7.72E-4) 1.86E-2(6.25E-4) 1.78E-2(6.89E-4)

8

DTLZ1 3.59E-2(7.6E-3) 2.52E-2(1.7E-3) 2.94E-2(2.5E-3)
DTLZ2 4.75E-2(2.92E-3) 4.78E-2(2.44E-3) 5.08E-2(2.81E-3)
DTLZ3 1.68E-1(4.44E-1) 5.14E-2(3.87E-3) 6.19E-2(3.8E-3)
DTLZ4 4.03E-2(2.74E-3) 3.6E-2(2.86E-3) 4.19E-2(1.66E-3)
WFG6 4.08E-2(4.53E-3) 4.14E-2(2.81E-3) 3.92E-2(3.09E-3)
WFG7 4.66E-2(4.21E-3) 4.52E-2(2.95E-3) 4.3E-2(4.94E-3)

10

DTLZ1 2.51E-2(4.38E-3) 2.03E-2(8.68E-4) 2.33E-2(1.78E-3)
DTLZ2 4.02E-2(2.25E-3) 4.07E-2(2.74E-3) 4.52E-2(3.07E-3)
DTLZ3 5.22E-2(5.5E-3) 4.18E-2(2E-3) 5.16E-2(2.22E-3)
DTLZ4 3.06E-2(1.19E-3) 2.72E-2(1.22E-3) 3.23E-2(1.4E-3)
WFG6 3.68E-2(2.72E-3) 3.68E-2(3.29E-3) 3.55E-2(2.94E-3)
WFG7 6E-2(3.07E-3) 5.93E-2(4.77E-3) 5.43E-2(6.13E-3)

15

DTLZ1 5.76E-2(5.65E-3) 5.02E-2(1.85E-3) 5.56E-2(2.12E-3)
DTLZ2 8.76E-2(3.75E-3) 8.71E-2(3.54E-3) 9.25E-2(2.5E-3)
DTLZ3 1.03E-1(4.53E-3) 4.56E-1(6.95E-1) 3.22E-1(5.77E-1)
DTLZ4 5.42E-2(4.19E-3) 5.2E-2(2.81E-3) 5.31E-2(2.26E-3)
WFG6 1.04E-1(1.68E-2) 1.07E-1(1.87E-2) 1.03E-1(1.23E-2)
WFG7 1.79E-1(1.65E-2) 1.87E-1(1.53E-2) 1.78E-1(1.48E-2)
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Table D.4: Mean (and standard deviation) for ACFACF, ACF and ACFFIXED for the
HV indicator

Obj. problem ACFACF ACF ACFFIXED

3

DTLZ1 9.87E-1(4.09E-2) 9.9E-1(1.42E-2) 9.95E-1(1.02E-2)
DTLZ2 8.05E-1(3.49E-3) 8.07E-1(7.47E-3) 8.08E-1(9.3E-3)
DTLZ3 1E0(2.96E-5) 1E0(5.47E-6) 1E0(9.16E-4)
DTLZ4 6.46E-1(1.52E-2) 6.66E-1(2.51E-3) 6.6E-1(9.41E-3)
WFG6 3.83E-1(1.73E-2) 4.02E-1(9.28E-3) 4.05E-1(1.22E-2)
WFG7 4.63E-1(1.8E-2) 4.95E-1(1.35E-2) 5.18E-1(1.21E-2)

5

DTLZ1 9.96E-1(9.18E-3) 9.99E-1(1.83E-3) 9.97E-1(3.39E-3)
DTLZ2 9.97E-1(3.21E-4) 9.97E-1(1.5E-4) 9.96E-1(6.03E-4)
DTLZ3 1E0(4.08E-10) 1E0(0E0) 1E0(8.62E-10)
DTLZ4 9.98E-1(3.29E-4) 9.98E-1(6.96E-5) 9.98E-1(8.72E-5)
WFG6 5.78E-1(4.4E-2) 5.94E-1(2.9E-2) 6.13E-1(1.65E-2)
WFG7 5.32E-1(2.6E-2) 5.51E-1(1.53E-2) 5.51E-1(1.51E-2)

8

DTLZ1 1E0(1.7E-9) 1E0(3.51E-7) 1E0(9.87E-9)
DTLZ2 9.97E-1(3.1E-3) 9.97E-1(1.66E-3) 9.97E-1(1.73E-3)
DTLZ3 1E0(7.88E-8) 1E0(0E0) 1E0(1.98E-9)
DTLZ4 1E0(4.3E-5) 1E0(1.53E-5) 1E0(7.26E-6)
WFG6 6.02E-1(6.55E-2) 5.79E-1(3.79E-2) 6.42E-1(3.5E-2)
WFG7 4.91E-1(4.35E-2) 4.37E-1(3.32E-2) 4.19E-1(2.54E-2)

10

DTLZ1 1E0(2.61E-8) 1E0(2.61E-9) 1E0(1.27E-8)
DTLZ2 9.98E-1(2.28E-3) 9.99E-1(7.65E-4) 9.97E-1(1.75E-3)
DTLZ3 1E0(5.09E-10) 1E0(0E0) 1E0(8.74E-10)
DTLZ4 1E0(5.76E-6) 1E0(1.12E-6) 1E0(3.03E-7)
WFG6 7.09E-1(5.14E-2) 6.83E-1(4.3E-2) 7.46E-1(4.22E-2)
WFG7 5.06E-1(3.5E-2) 4.46E-1(3.06E-2) 4.36E-1(2.35E-2)
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Table D.5: Mean (and standard deviation) for UCBUCB, UCB and UCBFIXED for the
IGD indicator

Obj. problem UCBUCB UCB UCBFIXED

3

DTLZ1 6.94E-3(4.56E-4) 7.17E-3(8.31E-4) 7.33E-3(1.42E-3)
DTLZ2 9.67E-3(7.07E-4) 9.74E-3(9.24E-4) 1.03E-2(9.51E-4)
DTLZ3 1.19E-2(8.5E-3) 1.06E-2(2.37E-3) 1.84E-2(1.36E-2)
DTLZ4 9.42E-3(1.26E-3) 1E-2(2.35E-3) 1.56E-2(5.14E-3)
WFG6 1.15E-2(1.38E-3) 1.2E-2(1.75E-3) 1.19E-2(1.96E-3)
WFG7 1.6E-2(2.6E-3) 1.67E-2(2.76E-3) 1.58E-2(2.91E-3)

5

DTLZ1 1.19E-2(8.19E-4) 1.16E-2(5.27E-4) 1.17E-2(7.95E-4)
DTLZ2 1.77E-2(8.56E-4) 1.79E-2(6.57E-4) 1.94E-2(1.38E-3)
DTLZ3 1.8E-2(7.2E-4) 1.81E-2(9.4E-4) 2.82E-2(2.54E-3)
DTLZ4 1.56E-2(5.14E-4) 1.55E-2(6.95E-4) 2.16E-2(2.67E-3)
WFG6 1.57E-2(4.22E-4) 1.57E-2(7.61E-4) 1.53E-2(4.57E-4)
WFG7 1.9E-2(1E-3) 1.95E-2(1.24E-3) 1.95E-2(1.64E-3)

8

DTLZ1 2.52E-2(1.36E-3) 2.54E-2(2.26E-3) 3.06E-2(2E-3)
DTLZ2 4.74E-2(1.9E-3) 4.81E-2(2.97E-3) 5.1E-2(2.96E-3)
DTLZ3 5.22E-2(3.91E-3) 5.83E-2(8.88E-3) 6.29E-2(3.93E-3)
DTLZ4 3.57E-2(3.11E-3) 3.46E-2(2.89E-3) 4.25E-2(1.75E-3)
WFG6 4.25E-2(3.96E-3) 4.16E-2(3.1E-3) 3.89E-2(2.71E-3)
WFG7 4.62E-2(4.63E-3) 4.53E-2(3.63E-3) 4.46E-2(4.8E-3)

10

DTLZ1 2.05E-2(8.85E-4) 2.09E-2(1.43E-3) 2.45E-2(2.26E-3)
DTLZ2 4.12E-2(2.44E-3) 4.06E-2(1.65E-3) 4.55E-2(3.11E-3)
DTLZ3 4.34E-2(3.09E-3) 4.56E-2(5.94E-3) 5.07E-2(2.26E-3)
DTLZ4 2.7E-2(9.31E-4) 2.69E-2(1.05E-3) 3.23E-2(1.28E-3)
WFG6 3.69E-2(2.78E-3) 3.59E-2(2.51E-3) 3.48E-2(2.72E-3)
WFG7 5.91E-2(3.39E-3) 5.92E-2(3.84E-3) 5.5E-2(4.46E-3)

15

DTLZ1 5.04E-2(2.57E-3) 5.02E-2(1.47E-3) 5.55E-2(2.05E-3)
DTLZ2 8.82E-2(3.19E-3) 8.72E-2(2.62E-3) 9.17E-2(2.95E-3)
DTLZ3 8.9E-2(2.15E-3) 8.92E-2(3.84E-3) 9.56E-2(2.18E-3)
DTLZ4 5.31E-2(3.5E-3) 5.34E-2(3.31E-3) 5.27E-2(1.09E-3)
WFG6 9.72E-2(1.08E-2) 9.6E-2(8.81E-3) 1.08E-1(8.7E-3)
WFG7 1.84E-1(1.38E-2) 1.84E-1(1.21E-2) 1.65E-1(9.92E-3)



100

Table D.6: Mean (and standard deviation) for UCBUCB, UCB and UCBFIXED for the
HV indicator

Obj. problem UCBUCB UCB UCBFIXED

3

DTLZ1 7.75E-1(5.72E-3) 7.76E-1(5.38E-3) 7.74E-1(1.1E-2)
DTLZ2 6.95E-1(3.52E-3) 6.94E-1(5.03E-3) 6.84E-1(1.2E-2)
DTLZ3 1E0(8.66E-6) 1E0(1.02E-5) 1E0(8.89E-5)
DTLZ4 5.38E-1(4.75E-3) 5.35E-1(7.88E-3) 5.27E-1(1.14E-2)
WFG6 3.75E-1(6.14E-3) 3.73E-1(1.14E-2) 3.71E-1(1.1E-2)
WFG7 3.9E-1(1.56E-2) 3.87E-1(1.71E-2) 4.01E-1(2.25E-2)

5

DTLZ1 9.71E-1(3.79E-3) 9.71E-1(4.39E-3) 9.7E-1(5.91E-3)
DTLZ2 9.94E-1(1.25E-3) 9.94E-1(2.44E-3) 9.91E-1(1.85E-3)
DTLZ3 1E0(0E0) 1E0(0E0) 1E0(3.11E-9)
DTLZ4 9.99E-1(5.41E-5) 9.99E-1(5.09E-5) 9.99E-1(6.62E-5)
WFG6 5.43E-1(2.08E-2) 5.42E-1(1.83E-2) 5.49E-1(2.54E-2)
WFG7 5.34E-1(1.67E-2) 5.26E-1(1.77E-2) 5.14E-1(2.33E-2)

8

DTLZ1 1E0(2.43E-8) 1E0(4.2E-9) 1E0(4.01E-8)
DTLZ2 9.96E-1(2.32E-3) 9.97E-1(1.22E-3) 9.95E-1(1.76E-3)
DTLZ3 1E0(0E0) 1E0(1.13E-10) 1E0(1.9E-8)
DTLZ4 1E0(4.02E-5) 1E0(1.74E-5) 1E0(8.94E-6)
WFG6 5.91E-1(3.88E-2) 6.07E-1(4.33E-2) 6.3E-1(2.65E-2)
WFG7 4.81E-1(3.38E-2) 4.71E-1(3.3E-2) 4.52E-1(2.27E-2)

10

DTLZ1 1E0(3.71E-9) 1E0(7.63E-8) 1E0(1.4E-10)
DTLZ2 9.98E-1(8.8E-4) 9.98E-1(1.34E-3) 9.96E-1(2.57E-3)
DTLZ3 1E0(0E0) 1E0(0E0) 1E0(8.18E-10)
DTLZ4 1E0(1.51E-6) 1E0(1.17E-6) 1E0(3.81E-7)
WFG6 6.51E-1(6.19E-2) 6.69E-1(4.13E-2) 7.24E-1(3.49E-2)
WFG7 4.67E-1(2.26E-2) 4.59E-1(1.9E-2) 4.56E-1(2.45E-2)
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Table D.7: Mean (and standard deviation) for ROULETTEROULETTE, ROULETTE
and ROULETTEFIXED for the IGD indicator
Obj. problem ROULETTEROULETTE ROULETTE ROULETTEFIXED

3

DTLZ1 9.67E-3(1.59E-3) 6.69E-3(5.11E-4) 6.98E-3(7.16E-4)
DTLZ2 1.11E-2(1.43E-3) 9.66E-3(1.01E-3) 9.29E-3(7.06E-4)
DTLZ3 1.79E-2(1.25E-2) 1.35E-2(1.1E-2) 1.6E-2(1.48E-2)
DTLZ4 2.11E-2(4.47E-3) 1.14E-2(3.23E-3) 2.38E-2(5.25E-3)
WFG6 1.18E-2(1.52E-3) 1E-2(8.04E-4) 1.02E-2(1.03E-3)
WFG7 1.63E-2(3.1E-3) 1.3E-2(4.86E-4) 1.23E-2(7.38E-4)

5

DTLZ1 1.26E-2(1.96E-3) 1.08E-2(5.93E-4) 1.09E-2(8.37E-4)
DTLZ2 1.91E-2(3.07E-3) 1.71E-2(9.74E-4) 1.64E-2(3.88E-4)
DTLZ3 2.85E-2(4.68E-3) 1.98E-2(3.53E-3) 2.91E-2(2.96E-3)
DTLZ4 2.46E-2(4.84E-3) 1.68E-2(1.6E-3) 2.65E-2(4.59E-3)
WFG6 1.67E-2(1.6E-3) 1.55E-2(8.82E-4) 1.53E-2(4.47E-4)
WFG7 2.26E-2(3.62E-3) 1.83E-2(8.68E-4) 1.75E-2(7.06E-4)

8

DTLZ1 3.45E-2(4.57E-3) 2.47E-2(1.44E-3) 2.9E-2(3.11E-3)
DTLZ2 5.35E-2(4.5E-3) 5.08E-2(3.72E-3) 5.19E-2(3.84E-3)
DTLZ3 6.87E-2(8.4E-3) 5.35E-2(5.13E-3) 6.68E-2(4.67E-3)
DTLZ4 4.79E-2(3.17E-3) 3.84E-2(2.53E-3) 4.74E-2(2.24E-3)
WFG6 4.26E-2(4.2E-3) 4.36E-2(3.67E-3) 4.01E-2(2.84E-3)
WFG7 5.64E-2(5.36E-3) 4.75E-2(3.98E-3) 5.03E-2(6.09E-3)

10

DTLZ1 2.45E-2(4.05E-3) 1.93E-2(9.84E-4) 2.39E-2(1.68E-3)
DTLZ2 4.71E-2(2.11E-3) 4.46E-2(1.8E-3) 4.65E-2(2.08E-3)
DTLZ3 5.71E-2(4.81E-3) 4.45E-2(4.29E-3) 5.47E-2(3.69E-3)
DTLZ4 3.89E-2(2.93E-3) 2.97E-2(2.2E-3) 3.7E-2(1.05E-3)
WFG6 3.66E-2(2.54E-3) 3.82E-2(2.73E-3) 3.58E-2(2.35E-3)
WFG7 7.15E-2(9.05E-3) 6.46E-2(4.88E-3) 6.46E-2(3.47E-3)

15

DTLZ1 5.83E-2(4.4E-3) 5.17E-2(2.16E-3) 5.43E-2(2.49E-3)
DTLZ2 9.26E-2(2.46E-3) 9.03E-2(2.94E-3) 9.17E-2(2.39E-3)
DTLZ3 2.11E-1(4.75E-1) 9.27E-2(3.99E-3) 9.78E-2(3.48E-3)
DTLZ4 6.03E-2(7.1E-3) 5.47E-2(3.75E-3) 5.66E-2(4.04E-3)
WFG6 1.04E-1(8.87E-3) 9.52E-2(8.29E-3) 9.79E-2(7.75E-3)
WFG7 2.37E-1(7.12E-2) 2.05E-1(1.63E-2) 2.18E-1(1.97E-2)
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Table D.8: Mean (and standard deviation) for ROULETTEROULETTE, ROULETTE
and ROULETTEFIXED for the HV indicator
Obj. problem ROULETTEROULETTE ROULETTE ROULETTEFIXED

3

DTLZ1 7.53E-1(1.87E-2) 7.81E-1(6.55E-3) 7.81E-1(5.6E-3)
DTLZ2 4.39E-1(1.12E-2) 4.51E-1(6.73E-3) 4.58E-1(5.88E-3)
DTLZ3 1E0(9.08E-4) 1E0(1.31E-4) 1E0(6.74E-4)
DTLZ4 3.9E-1(2.17E-2) 4.33E-1(7.26E-3) 3.83E-1(2.89E-2)
WFG6 3.73E-1(1.48E-2) 3.93E-1(7.87E-3) 3.9E-1(1.29E-2)
WFG7 4.35E-1(4.08E-2) 4.66E-1(1.02E-2) 4.83E-1(1.59E-2)

5

DTLZ1 9.98E-1(6.3E-4) 9.98E-1(3.47E-4) 9.98E-1(2.23E-4)
DTLZ2 9.53E-1(6.25E-3) 9.58E-1(3.79E-3) 9.58E-1(2.06E-3)
DTLZ3 1E0(3.84E-9) 1E0(1.14E-9) 1E0(5.07E-8)
DTLZ4 9.92E-1(1.27E-3) 9.94E-1(4.73E-4) 9.92E-1(8.53E-4)
WFG6 5.9E-1(3.06E-2) 6.09E-1(1.32E-2) 6.21E-1(9.96E-3)
WFG7 5.41E-1(7.09E-2) 6.39E-1(1.61E-2) 6.34E-1(1.56E-2)

8

DTLZ1 1E0(1.23E-8) 1E0(1.47E-8) 1E0(3.74E-9)
DTLZ2 9.93E-1(3.25E-3) 9.94E-1(1.71E-3) 9.94E-1(2.55E-3)
DTLZ3 1E0(5.51E-8) 1E0(2.24E-11) 1E0(3.08E-7)
DTLZ4 1E0(8.26E-5) 1E0(2.1E-5) 1E0(8.28E-6)
WFG6 5.85E-1(9.04E-2) 5.66E-1(4.9E-2) 6.63E-1(3E-2)
WFG7 3.56E-1(4.08E-2) 4.34E-1(2.62E-2) 3.94E-1(2.44E-2)

10

DTLZ1 1E0(2.17E-10) 1E0(7.35E-9) 1E0(3.8E-8)
DTLZ2 9.98E-1(1.29E-3) 9.97E-1(1.82E-3) 9.98E-1(9.1E-4)
DTLZ3 1E0(1.81E-9) 1E0(4.89E-11) 1E0(1.43E-8)
DTLZ4 1E0(1.67E-5) 1E0(1.49E-6) 1E0(6.5E-7)
WFG6 6.17E-1(8.29E-2) 6.7E-1(5.63E-2) 7.64E-1(2.25E-2)
WFG7 4.08E-1(5.29E-2) 4.96E-1(3.86E-2) 4.52E-1(1.95E-2)


