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Resumo

Nesta tese consideramos dois tipos de problemas de convecgao-difusao, a saber, as
equacoes de Navier-Stokes para meios incompressiveis e dependentes do tempo e as
equacoes de conveccao-difusao espacgo-fracionaria em duas dimensoes.

Para as equagoes de Navier-Stokes usamos o método das caracteristicas para lin-
earizar equagoes nao-lineares e introduzimos uma variavel auxiliar para reduzir a equagao
de ordem alta a um sistema de primeira ordem. Escolhendo-se cuidadosamente os fluxos
numéricos e adicionando os termos de penalizacao propomos um método de Galerkin
descontinuo caracteristico local (CLDG) simétrico e estavel. Com essa simetria, é fcil
provar estabilidade numérica e estimativas de erros. Experimentos numéricos sao re-
alizados para verificar os resultados teéricos. Para os problemas de conveccao-difusao
espago-fraciondria ainda utilizamos o método das caracteristicas para tratar a derivada
no tempo e os termos convectivos conjuntamente. Para o termo fracionario introduz-
imos algumas varidveis auxiliares para decompor a derivada de Riemann-Liouville na
integral de Riemann-Liouville e na derivada de ordem inteira. Em seguida um método
de Galerkin descontinuo hibridizado (HDG) é proposto. Finalmente usamos os métodos
analiticos para realizar a andlise de estabilidade e estimativas de convergéncia do es-
quema HDG.

Pelo nosso conhecimento, este é o primeiro trabalho que combina o método de
Galerkin descontinuo caracteristico as equacoes de Navier-Stokes e as equagoes con-
veccao-difusao espago-fraciondria em 2D. Estes esquemas também podem ser aplicados
e estudados em outros problemas. Os resultados numéricos sao consistentes com os re-

sultados tedricos.

Palavras-chave: método das caracteristicas; método de Galerkin descontinuo; equagoes

de Navier-Stokes; equagoes de conveccao-difusao espaco-fracionaria.
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Abstract

In this thesis, we consider two kinds of convection-diffusion problems, namely the clas-
sical time-dependent incompressible Navier-Stokes equations and the space-fractional
convection-diffusion equations in two dimensions.

For Navier-Stokes equations, we use the method of characteristics to make nonlinear
equations linear, and we introduce an auxiliary variable to reduce high-order equation
to one order system. Carefully choosing numerical fluxes and adding penalty terms,
a stable and symmetric characteristic local discontinuous Galerkin (CLDG) method is
proposed. With this symmetry, it is easy to perform numerical stability and error es-
timates. Numerical experiments are performed to verify theoretical results. For the
space-fractional convection-diffusion problems, we still use the method of characteris-
tics to tackle the time derivative and convective terms together. For the fractional
term, we introduce some auxiliary variables to split the Riemann-Liouville derivative
into Riemann-Liouville integral and integer order derivative. Thus a hybridized discon-
tinuous Galerkin method (HDG) is proposed. Finally we use general analytic methods
to perform the stability analysis and convergence estimates of the HDG scheme.

As far as we know, this is the first time the discontinuous Galerkin method and the
method of characteristics are combined to numerically solve the Navier-Stokes equations
and space-fractional convection-diffusion equations in 2D. These schemes can be applied
and further studied into other problems as well. The numerical results are consistent

with theoretical results.

Keywords: method of characteristics; discontinuous Galerkin method; Navier-Stokes

equations; space-fractional convection-diffusion equations.
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Introduction

In this thesis, we mainly consider two kinds of convection-diffusion problems: the clas-
sical time-dependent incompressible Navier-Stokes equations and the space-fractional

convection-diffusion equations.

Model one

In 1755, Swiss mathematician Leonhard Euler derived the Euler equations to describe
an ideal fluid without consider the effects of viscosity. In 1821, French engineer Claude-
Louis Navier introduced the element of viscosity for the more realistic and more difficult
problem of viscous fluids. Because of the physical significance of the viscosity coefficient,
Claude-Louis Marie Henri Navier’s name is associated with the famous Navier-Stokes
equations. Untill 1845 Irish mathematician-physicist George Gabrid Stokes published
a derivation of the equations in a manner that is currently understood. Then, George
Gabrid Stokes’s name was attached with the Navier-Stokes equations.

Navier-Stokes equations are useful because they describe many scientific and engi-
neering phenomena. They are used to model weather, ocean currents, water flow in a
pipe and air flow around a wing. Navier-Stokes equations are still used to help with
the design of aircrafts and cars, the study of blood flow, the design of power stations,
the analysis of pollution [4, 6, 17, 18, 30, 37, 44, 46, 56]. The reciprocal of fluid vis-
cosity coefficient v is called Reynolds number. For very low Reynolds numbers and
simple geometries, it is often possible and easy to find explicit formulas for solutions
to Navier-Stokes equations in a computation. For high Reynolds numbers, in turbulent
flow there begin to be eddies with a wide range of sizes. To capture all these eddies
in a computation, one needs a large amount of information, for example, memory and
datum. Such flows can be described in many situations, for example, blood flow in large
caliber vessels, fluid-structure interaction, aerodynamics, geophysical and astrophysical

flow modeling. Despite of half a century of vigorous efforts, there is still a lack of sys-



tematic understanding how different scales interact to form the inertial range from a
smooth initial condition. Therefore, the description of the behavior of the solutions of
the Navier-Stokes equations at high Reynolds numbers is the heart of the problem. The
choice of the singularity problem for the incompressible Navier-Stokes equations as one
of the million prize problems highlight the fundamental role that mathematical analysis
may play in this topic.

In Chapter 2, we shall design a new scheme to recast the time-dependent incom-
pressible Navier-Stokes equations. Our scheme is based on standard local discontinuous
Galerkin method and the method of characteristics. In this work, we devote to recover
the solutions with high Reynolds numbers. For the sake of simplicity, we just consider
the full Navier-Stokes equations with Dirichlet boundary conditions: these equations can

be written by

ou+ (u-Vyu—vAu+Vp=f, (x,t)e€QxJ,

V-u=0, (z,t) € Q x J, 1)
u(x,t) =0, (xz,t) € 0Q x J,

u(zx,0) = ug(x), xeQ,

where © is a bounded polygonal domain in R? with Lipschitz continuous boundary 02
and J =1[0,7],0 < T < 0.

Because of the inherent performances of the Navier-Stokes or Stokes equations in
characterizing the turbulence in fluids or gases, from finite element method to discontin-
uous Galerkin method a lot of researches on these topics have been done [4, 15, 17, 18, 29,
31, 32, 37, 51]. As our knowledge, there are few works on discontinuous Galerkin method
for solving the time-dependent incompressible Navier-Stokes equations, and much less
on local discontinuous Galerkin method (LDG), which motivates us to consider LDG
method for the full Navier-Stokes equations. Splitting the nonlinearity and incompress-
ibility, and using discontinuous or continuous Galerkin method in space, Girault et al
[29] solved the time-dependent incompressible Navier-Stokes equations using penalty
discontinuous Galerkin method [50]. Comparing with the work [29], we use different DG
method to discretize spatial space and get better numerical results (see Chapter 2).

In Chapter 2 of this thesis, we use the local discontinuous Galerkin method to dis-
cretize the spatial space of the considered equation. It seems that the following ad-
vantages can be obtained: 1) by introducing local auxiliary variable, the order of the
diffusion term can be reduced. Arising from using penalty terms the symmetric formu-

lation makes stability and error analysis possible; 2) the introduced auxiliary variable



o = /vVu lessens challenges caused by big Reynolds numbers since /v is not as small
as v when v is small enough. The lucky thing is that we still keep the general advantages
of discontinuous Galerkin method, i.e., the high order accuracy, the hy,-adaptivity, and
the high parallelizability, etc..

Here we use the method of characteristics [6, 27] to tackle time derivative term and
nonlinear convective term together for the considered equation with first order accuracy
in time. The method of characteristics has many advantages compared to a high order
Runger-Kutta scheme or a high order finite difference scheme, such as 1) efficient in
solving the advection-dominated diffusion problems; 2) easily obtaining the existence
and uniqueness of the solutions of the discretized system; 3) making nonlinear equations
linear and conveniently tackling nonlinear obstacles; 4) easily performing numerical sta-
bility analysis.

In summary, the work described in Chapter 2 is an extension of local discontinuous
Galerkin methods for the Stokes system [15] with the characteristic local discontinuous

Galerkin scheme to the time-dependent incompressible Navier-Stokes equations.

Model two

In Chapter 3, we shall consider the time-dependent space-fractional convection-diffusion

problem for u in the form:

du+b-Vu—c Gt —c, 58 = f, (x,1) €QxJ,
u(zx,t) =0, (z,t) € 00 x J, (2)
u(x,0) = ug(x), x € €,

where © € R? is rectangular domain with Lipschitz continuous boundary 052, and J =
[0,7],0 < T < oo, the superdiffusion operators (%—aa and % will be defined in Chapter
3.

Let us briefly review the development of numerical methods for fractional convection-
diffusion equations. Several authors have proposed a variety of higher-order finite dif-
ference schemes for solving time-fractional convection-diffusion equations, for example
[23, 36, 58, 60], and solving space-fractional convection-diffusion equations [10, 38]. In
[40] and [42], W. Mclean and K. Mustapha have used piecewise-constant and piecewise-
linear discontinuous Galerkin (DG) methods to solve time-fractional diffusion and wave
equations, respectively. However, these methods require more computational costs (see

[41]). In order to tackle those problems, in [41] W. Mclean has proposed an efficient



scheme called fast summation by interval clustering to reduce the implementation mem-
ory. Furthermore, in [26] Deng and Hesthaven have developed discontinuous Galerkin
method for fractional spatial derivatives and given a fundamental frame to combine the
discontinuous Galerkin method with fractional operators in one dimension. In [59] Xu
and Hesthaven have applied the DG method to fractional convection-diffusion equations
in one dimension. In two dimensional case, Ji and Tang [34] have applied the DG method
to recast fractional diffusion equations in rectangular meshes with the optimal conver-
gence order O(h**1) numerically. However, there were no theoretical results. So far very
few works have considered fractional problems in triangular meshes. This motivates us
to consider a successful DG method for solving fractional problems in triangular meshes.

Fractional differential equations (FDEs) have become more and more popular in
applied science and engineering field recently. The history and mathematical background
of fractional differential operators are given in [45] with definitions and applications of
fractional calculus. This kind of equations has been used increasingly in many fields,
for example, in Nature [35] fractional operators applied in fractal stream chemistry and
its implications for contaminant transport in catchments, in [39] the fractional calculus
motivated in bioengineering, and its application as a model for physical phenomena
exhibiting anomalous diffusion, Lévy motion, turbulence [5, 8, 53], etc.

In Chapter 3, we shall design a stable and accurate discontinuous Galerkin method
for the considered equation (2). The stability and error analysis are proved in multi-
ple dimensions. This development is built on the extension work on DG for previous
work found in [26, 59], where a qualitative study of the high order local discontinuous
Galerkin method was discussed and some theoretical results were offered in one space
dimension. In order to perform the error analysis, the authors defined some projection
operators to prove error results. Unfortunately, we can not extend the defined projection
operators into two dimensional case easily (see [26, 59]). Hence, to avoid this difficulty,
a different DG method is obtained in Chapter 3 by carefully choosing numerical fluxes
and adding penalty terms. The presented hybridized discontinuous Galerkin (HDG)
method has the following attractive properties: 1) The HDG method can be used for
other fractional problems, for example, fractional diffusion equations; 2) It has excellent
provable stability. One can prove the stability in any space dimension; 3) Theoretically,
the error estimates are proved more easily with general analytical methods in any space

dimension.



The outline of thesis

Let us give a more detailed description of the content of this thesis.

In Chapter 1, firstly, we review some basic definitions of Sobolev spaces and broken
Sobolev spaces, some useful lemmas for discontinuous Galerkin method. Then we de-
scribe some definitions of fractional calculus and some fractional variational norms and
spaces. Finally, we shall introduce the method of characteristics with different cases:
the linear case and nonlinear case.

In Chapter 2, by combining the method of characteristics and the local discontinu-
ous Galerkin method and carefully constructing numerical fluxes, we design a variational
formulation for the time-dependent incompressible Navier-Stokes equation in R?. The
nonlinear stability of the proposed symmetric variational formulation is proved. More-
over, for general triangulations we derive an a priori estimate for the L?-norm of the
errors in both velocity and the pressure. The proposed scheme works well for a wide
range of Reynolds numbers such as Re = 10°, 108,102, 10, 10'S.

In Chapter 3, a hybridized discontinuous Galerkin method is proposed for solving
2D fractional convection-diffusion equations containing derivatives of fractional order in
space on a finite domain. The Caputo’s or Riemann-Liouville derivative is chosen as
the representation of spatial derivative. Combining the method of characteristics and
the hybridized discontinuous Galerkin method, the symmetric variational formulation is
constructed. The stability of the presented scheme is proved. An order of k + 1/2 is
established for some fractional convection-diffusion problems. Some numerical examples
are given to illustrate the numerical performance of our method. The first experiment
is performed to display the convergence order while the second experiment justifies the
benefits of this scheme. Both are tested with triangular meshes.

Finally, in Chapter 4 we conclude these works and give some future perspectives.



Chapter 1

Fundamental definitions and

lemmas

Discontinuous Galerkin method was introduced in 1973 by Reed and Hill [49], in the
framework of neutron transport (steady state linear hyperbolic equations). A major
development of the discontinuous Galerkin method was carried out by Cockburn and
collaborators. In a series of papers [15, 16, 19, 21, 22|, they established a framework
to easily solve nonlinear time-dependent hyperbolic conservation laws, using explicit,
nonlinearly stable high-order Runge-Kutta time discretization [22] and discontinuous
Galerkin spatial discretization [17, 18].

In this chapter, we shall review some basic definitions and results for mathematical
setting of the discontinuous Galerkin (DG) method. Firstly, we describe some Sobolev
spaces. Afterwards, we introduce broken Sobolev space, the natural working spaces for
DG.

1.1 Sobolev spaces and inequalities

Throughout this section, let  denote a bounded polygonal domain in R% d € N*t. The
L?(Q) and L>(Q) are the classical space of square integrable functions with the inner

product (f,g) = [, fg dx and the space of bounded functions, respectively [14, 50].
L) = {v:| v | oo ()< oo}, |lv | oo ()= €55 sup {|v(z)| : z € Q}.

It is well known that C'(2) and C§°(2) are the space of continuous functions and the

space of infinitely differentiable functions with compact support, respectively. Generally



the Sobolev space H*(f2) for integer s is denoted by
H*(Q)={ve LX) :YV 0 < |a| <s,D% € LQ(Q)}7

where Do = — 20 la] = Zle ;. Similarly, the space H'(f2) is defined by

02510250
HY(Q) = {ve L*Q): Dve L*Q)}.

HE () denotes the closure of C§°(2) in H'(Q), and H () is the dual space of HE(€2).
Assume that k is nonnegative integer, C*(Q) = {u : @ = R|D%u € C(Q),|a| < k}

is the space of k times continuously differentiable functions equipped with the norm

luller@= Y sup|Du(x)],
|a‘§k$EQ

where Q is the closure of .
kB(0) — k(D) « _ [Du(z)—Du(y)| _
Let 0 <8< 1, C*(Q)={ueC (Q)[sup, £y 2 yenr W < 400,|a| = k}
is the space of k 4+ § times Hdélder continuous functions equipped with the norm

|D%u(z) — D%u(y)|
|z —yl?

| ullers@=lullcr@ + sup
T#Y,T,yESL

For any Banach space X let LP[0,7;X],1 < p < oo, and L*°[0,T; X]| denote the

spaces of p—integrable functions with norms

T p \1/P
o lzsor= (| He@ & )™ Il leepr= esssumepr || v llx < co.

Let H'[0,T; X] denote the space of functions with square integral derivatives with norm

T T 1/2
o o= ([ oldes [ 1ol ae) ™
0 0

Here, we introduce some inequalities [14, 50] that are used many times in our analysis.

e Holder’s inequality:

fylees< ([ rere) : (/, o(@)|dz)",

where Il)—i—% =1 with 1 <p,g<ocand f € LP(Q),g € LI(Q). If p = ¢ = 2, this

inequality becomes Cauchy-Schwarz’s inequality.



Similarly, Holder’s inequality for sums states that
- " 1p /& 1/q
> |arbi| < (ka\p) (Z|bk|q) ;
k=1 k=1 k=1

where (a1, ,ay), (b1, - ,b,) € R™ or C™.

e Young’s inequality:

1
Ve >0, Va,b € R, ab< <a?+ —b>.
2 2e

Lemma 1.1. (Poincaré-Friedrichs inequality) [50] The classical Poincaré-Friedrichs in-

equality in H'(Q) says that there is a constant C such that
VoeHYQ), |vo< c(||w||0+|/mv\). (1.1)
Consequently, we have
VveHy(Q), [lvlo< ClIVulo. (1.2)

See Chapter 3 of [50].

1.2 Broken Sobolev spaces and fundamental lemmas

As we know, discontinuous Galerkin method is a type of finite element method. They
share many properties and results, however discontinuous Galerkin method uses com-
pletely discontinuous piecewise polynomial spaces for numerical solutions and test func-
tions. Comparing with classical finite element method, discontinuous Galerkin method

have the following attractive properties:

e It can be easily designed for any order of accuracy. In fact, the order of accuracy

can be locally determined in each simplex.

e It can handle complicated geometries, i.e, it can be used on arbitrary triangula-

tions, even those with hanging nodes.
e It has high parallelizability.

e [t has excellent provable nonlinear stability.



uniform mesh ‘nonuniform mesh

Fig. 1.1: Uniform triangular meshes. Fig. 1.2: Nonuniform triangular meshes.

The broken Sobolev spaces [50] are natural spaces to work with discontinuos Galerkin
method. These spaces depend strongly on the partition of the domain. Let Q be a
polygonal domain subdivided into elements E (see Figures 1.1-1.2). Here E is a triangle
or a quadrilateral in 2D. We assume that the intersection of two elements is either empty,

or an edge (2D). The mesh is called a regular mesh if

h
VEc &, -E<c,
PE

where &, is the subdivision of €2, C' is a constant, hg is the diameter of the element F,
ie, hg =sup, yep ||  —y || and pg is the diameter of the inscribed circle in element
E. Throughout this thesis h = maxges, hg.

We introduce the broken Sobolev space for any real number s,
HS(&,) ={v e L*Q): VE € &,v|g € H*(E)},

equipped with the broken Sobolev norm:

o hasa= (3 10 By )

Ecéy,

Jumps and averages: We denote by é"f the set of edges of the subdivision &j,.
Let & denote the set of interior edges, &Y = &P \& the set of edges on 9. With each
edge e, we have a unit normal vector n.. If e is on the boundary 95, then n. is taken

to be the unit outward vector normal to 92 [50].



If v belongs to H'(&},), the trace of v along any side of one element F is well defined.
If two elements FY and FES are neighbors and share one common side e, there are two
traces of v belonging to e. We assume that the normal vector n. is oriented from Ef to

L5, and an average and a jump for v can be defined by

1

{v} = 5 (vlorg +vlors), [v] = (vlop; —vlors), Ve & OE; (| OEs.

If e is on 0f2, we have
{v} =[] =vlgg, Vee GEﬂ(?Q.

Next, we shall recall some inequalities, which are important tools for theoretical

analysis.

Lemma 1.2. (Continuous Gronwall inequality) [50] Assume that f,g,h are piecewise
continuous non-negative functions defined on (a,b), and g is nondecreasing. If there

exists a positive constant C independent of t such that

Ve (ab), ft)+h(t)<gt)+ c/ F(s)ds,
then
Vte(ab), f(t)+h(t)<eVg).

See Chapter 3 of [50].
Lemma 1.3. (Discrete Gronwall inequality) [50] Let At,B,C > 0 and (ay), (bn), (¢n)

be sequences of non-negative numbers satisfying

V>0, an+AtY bi<B+CALY ai+AtY c,
=0 =0 =0
then, if CAt < 1,
YV n>0, a,+ Athi < ec("H)At(B + Athi).
i=0 i=0

See Chapter 3 of [50].

Theorem 1.4. (Approzimation property) [50] Assume that E is a triangle or parallelo-

10



gram in 2D or a tetrahedron or hexahedron in 3D. Let v € H¥1(E) for s > 0 and k > 0.
Then, there exists a constant C independent of v and hg and a function © € P*(E), such
that

V0<q<s, | v—17|gom< Chg BT o], (1.3)

(E)
where P*(E) is the space of polynomials of degree less than or equal to k.

See Chapter 2 of [50].

Trace inequalities: [50] Let E be a element with a diameter hg. Then, Ve C OF
for any function v € H*(E), there exists a constant C' independent of hg and v such
that

s2 L[ vllge< Clel2IBI7Y2 (11 v ll228) +he | VU llz2m) ),

52 2,]| Vo e 120 < Clel B2 (| Vo 2y +he | V20 llz2m) )-
See Chapter 2 of [50].

Lemma 1.5. (Inverse inequality) [50] There exists a constant C independent of hg such

that for any polynomial function v of degree k defined on E, we have
VO<j<k | Vvlm< Chy || v 22y - (1.5)

See Chapter 3 of [50].

Next, we shall review two lemmas for our analysis. The first one is the standard
approximation result for any linear continuous projection operator IT from H*T!(E)
onto Vi (E) = {v; 'U|E € P*(E)} satisfying Ilv = v for any v € P¥(E). The second one is

the standard trace inequality.

Lemma 1.6. [9] Let v € H*TY(E),s > 0 and II be a linear continuous projection
operator from H*TY(E) onto Vi(E) such that Tlv = v for any v € P*(E). Then, for

m = 0,1, we have

min(s,k)+1—m
|1) - HU|H"‘(E) < ChE (s:h)+ || v ”Hs+1(E),
(1.6)
min(s,k)+ %
|0 =100 [l z20m)< Chi ™2 v s sy -

11



Lemma 1.7. [9] There exists a generic constant C' which is independent of hg such that
for any v € Vi, (E) we have

1
| v llz20m)< Chg? || v llL2(m) - (1.7)

1.3 Fractional calculus

1.3.1 Definitions and properties

This section is devoted to definitions and properties in fractional calculus. The theory of
derivatives of non-integer order goes back to the Leibniz’s note in his list to L’Hospital
[45]. About three centuries, the theory of fractional derivatives developed mainly in a
pure theoretical field of mathematics. Until last few decades the integrals of non-integer
order were pointed out by many researchers. Those integrals are used for the description
of some properties of various real materials and many phenomena in physics, engineering,
chemistry [39, 45, 47, 52, 53], etc.

In Chapter 3, we will consider a hybridized discontinuous Galerkin (HDG) method for
solving 2D space-fractional convection-diffusion problems. Before giving the numerical
method for those fractional equations, we have to review several definitions and lemmas
for calculus. In the following we recall some definitions of fractional integrals, derivatives,

and their properties.

Definition 1.1. [28, 47, 59] For any p > 0, the left (right) Riemann-Liouville fractional
integral of function u(x) defined on (a,b) is denoted by

(1) Left Riemann-Liouville fractional integral:

T (g pn—1
Tu(z) = / %u@da

(2) Right Riemann-Liouville fractional integral:

b —x pu—1
Tiu(z) = / %u@d@

where I'() = [ e~ *t#dt, which is Euler’s gamma function.

Definition 1.2. [28, 47, 59] For any v > 0,n — 1 < v < n,n € N7, the left (right)

Riemann-Liouville fractional derivative of function u defined on (a,b) is denoted by

12



(1) Left Riemann-Liouville fractional derivative:

aDyu(x)

n T (p— n—v—1
[ e

T dan I'(n—v)
(2) Right Riemann-Liouville fractional derivative:
D¥u(z) = (_1)n£ /b wu(g)dg
vrb N dz" J, T(n-—v) ’

Definition 1.3. [59] For any v > 0,n — 1 < v < n,n € NT, Caputo’s left and right

fractional derivatives of function u(z) on (a,b) are defined by

T (p— n—v—1 o
Copute) = [T (15)
voon [P =) (=D d u(E)
ngu(x)—/m ) de d¢. (1.9)

Property 1. [206, 28, 59] (Adjoint property) For any p > 0, the left and right Riemann-
Liouville fractional integral operators are adjoints, namely
b b
/ Lhu(z)v(x)d :/ u(z) I v(z)dr, Yu,v € L*(a,b). (1.10)
a a

Property 2. [28] (Inverse property) For any p > 0, assume that the function u €
C>(a,b), where (a,b) C R. Then the following equalities hold

oDl Ihu(x) = u(x), D Iiu(x) = u(z),
oL DHu(z) = u(z), Y u(x) such that supp(u) C (a,c0),
oL Difu(z) = u(zx), ¥ u(z) such that supp(u) C (—o0,b).

Property 3. [28] (Semigroup property) For any p1, o > 0, assume that the function

13



u € LP(a,b),p > 1, where (a,b) C R. Then the following equalities hold

I I u(x) = I (), YV a € (a,b),
I u(e) = I (@), Ve € (a,b).
Property 4. [28] (Fourier transform property) For any p > 0, assume that the function

u € LP(R),p > 1. Then the Fourier transform of the left and right Riemann-Liouville

fractional integrals satisfy the following equations

Flocliu(w)) = (iw) " i(w),
FlLbou(x)) = (—iw) " a(w),

where 4(w) denotes the Fourier transform of u, i.e.

ﬂ(w)—/Re_i“zu(x)dx.

Property 5. [28] (Fourier transform property) For any v > 0, assume that the function
u e C3(Q), Q2 CR. Then the Fourier transform of the left and right Riemann-Liouville

fractional derivatives satisfy the following

F(—ocDzu(z)) = (iw)"i(w),
F(:Diu(z)) = (—iw) a(w).

1.3.2 Fractional spaces and lemmas

In this subsection, we will recall some fractional derivative spaces setting for variational
solutions. In order to define associated fractional derivative spaces, we assume that
u € C3°(a,b), (a,b) C R. We extend u by zero outside of the interval (a,b).

Definition 1.4. [28] (Fractional derivative spaces) For any v > 0, define the norms

(1) Left fractional derivative space:

D=

I |y @)= (oo Dyu() 72y + Il v 72w )%

where

[ul 7y @) =00 Dyu(2) l|z2(R) -

14



(2) Right fractional derivative space:

N

Il Nl @y= (Il eDsou(@) [Z2my + 1w 72y )2

where

ulr @) = 2Decu(®) | L2() -

Let J7(R) and J}(R) be the closures of C§°(R) with respect to the norms || - ||y (r)

and || - [| sy (w), respectively.
Next we review a norm whose definition is associated with the Fourier transform.

Definition 1.5. [28] For any v > 0, define the norm

SIS

I v @y:= ([ulF @y + | w 2@ )%
where
|ul v ) = 0|0 | L2 (w) -

In the analysis of finite element method or discontinuous Galerkin method, we gen-
erally make use of the formula (_sD%u,, D% u) r2(r)- For this case, we need the following

theorem which is important for combing the fractional spaces and variational spaces.

Theorem 1.8. [28] For any v > 0,n — 1 < v < n,n € N, assume that u is a real

valued function, then

(_ Dy D%u) = cos(vm) || oo Diyu ||2LQ(R) . (1.11)

L2(R)

Remark 1.1. Note that cos(vm) > 0 when v € (=% + 2mm, 3 + 2mn),m € N. In this

case, we can define a norm which is available.

Definition 1.6. [28] (Symmetric fractional derivative space) For any v > 0,v # m —
1/2,m € N. Define the norm

v 2 3
| w [y )= (| cos(vm) || D"u ”%Q(R) "+ u ”%Q(R) )2,

and

[N

|ul g () := | cos(vm) || D"u ||2L2(R) %,

15



where Jg(R) is the closure of C§°(R) with respect to || - ng(R).

Let Q = (a,b) be a bounded open subinterval of R. We now restrict the fractional

derivative spaces to €.

Definition 1.7. [28] Define the spaces J} (), Jf; o (2), Hy (€2), J§ 4(€2) as the closures

of C§°(2) under their respective norms.

Theorem 1.9. 28] (Fractional Poincaré-Friedrichs) For u € H{ (), we have

|'ullr2@)< Clulmy @), (1.12)

and for0 <s<v,s#n—1/2ne€ N

[ulms ) < Clulmy ) (1.13)

See the proof in [28].

1.4 The method of characteristics

The idea of the method of characteristics dates back to the work of Douglas and Russell
[27] in 1982. Later on Arbogast [2, 3] extended the method of characteristics to transport
problems. Recently Chen combined the method of characteristics with mixed discon-
tinuous Galerkin method and finite element method for advection-dominated diffusion
and degenerate parabolic problems, respectively [11, 12]. In many convection-diffusion
problems arising in physical phenomena, convection essentially dominates diffusion. In
general, we shall consider the method of characteristics to treat some convection-diffusion
problems to reflect the hyperbolic nature of models. The convection-diffusion problems
mainly contain two cases: One is the problem with linear convective term, another one
is the problem with nonlinear convective term. Next we shall introduce the method of

characteristics with those two cases.

1.4.1 The linear convective term

We shall consider applying the method of characteristics to the time-dependent advection

diffusion problem for u on the bounded domain Q@ C R?% d = 1,2,3, with Lipschtiz
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boundary 992 [2, 24, 27]:

POu+b-Vu—V-(aVu) = f, (z,t) € QxJ,
u(z,t) = gp, (z,t) € O x J, (1.14)

’U,(:E,O) = UO(CE)7 z €,

where J = [0,7],0 < T < o0, ¢(x) is a function bounded below and above by posi-
tive constants, b(x,t) is a bounded vector, a(x,t) is a positive semi-definite, bounded,
symmetric tensor, f € L2(J;Q),gp € L*(J; H/?(09Q)),uo € L*(Q).

For each positive integer N, let 0 =t° < t! < ... <t = T be a partition of J into
subintervals J* = (t"71,#"], At = t" — "1 1 < n < N, and v" = u(zx,t"). The time
interval of interest is J™, then the characteristic trace-back of the point € €2 is denoted

by &(x,t), and it satisfies the (time backward) ordinary differential equation

& — p(,t)/p(2), " <t<th
(1.15)

&(x, t") = .

From equality (1.15) we imply that

Let o(z,t) = (¢* + |b|2)1/27 |b]> = b} + --- +b2. Then the characteristic direction
associated with the hyperbolic operator ¢0iu + b - Vu can be denoted by 7(x,t), where

o(x) . bla.1)
e R S

0, = (1.16)

Ou(x,t)

Then the approximation of the directional derivative o@D at time t = t" can be

Qu(e, ") u(m, ") — u(@(x, t" 1), ")
or(z,t") (lz — & (2, t"—1)2 + Atz)l/Q '

17



Note that

d)atun + b7L . vun — ¢n au(m7tn)
ot (x,t™) (117)
N ¢u(:1:,t”) —u(®(x, " 1), ")
~ Az .
For the method of characteristics, we need the assumption
1,00 b 00 1,00 2
¢€W’ (Q)7 EEL (J;W’ (Q))7
b(, 1) b(z, 1) (1.18)
< < T ) ’ : - S ) ) Q )
0<a<o(@) <e <oo (m)\+)v(¢(w))( C, () eQx.J

where ¢, ¢, C' are some constants. See the details in [2, 3, 24, 27].
In Chapter 3 we will use the above method of characteristics to solve space-fractional

convection-diffusion equations in 2D. In this case, b satisfies the assumption (1.18) and

¢ =1

1.4.2 The nonlinear convective term

In this subsection, we focus on applying the method of characteristics to solve some
convection diffusion problems with nonlinear convective term. For the sake of simplicity,

we consider combining the method of characteristics to the Navier-Stokes equation, i.e.

ou+ (u-Viu —vAu+Vp=f, (x,t)€QxJ,
Vou=0 o) €QxJ,
(1) (1.19)
ulpn = gp(x,1), (z,t) € 00 x J,
U(SC,O) = ’U/()((B), T € Qa

where Q denotes a bounded open subset of R%,d = 2, 3 with Lipschitz continuous bound-
ary 0Q, u(x,t) is the velocity of the fluid, p(x,t) is the kinematic pressure, v is the
kinematic viscosity and f(x,t) is the body force.

Given a fluid flow with the velocity field u(x,t), the trajectory is a solution of the

18



following suitable differential equation

da(x,s; -
E = u(@(@,si0). 1),
(1.20)
&(x,s;8) = x,
where &(x, s;t) is the position at time of particle of fluid which is at point x at time

t=s,and & : (x,s;t) € QA x J x J = &(x,s;t).

Lemma 1.10. [55] Assume that w € C(COY Q) N C(V) (V = {v € H}Q)V -
v =0 1in Q}). If |s — t| is sufficiently small, then © — &(x,s;t) is a quasi-isometric

homomorphism of Q0 onto itself and its Jacobian equals to 1 a.e. on ).

Proof. See the proof in [55]. O
Define ¢ (x,t) = (1 + |ul?) 1/2, then the material derivative of w can be rewritten as
a derivative in the direction 7(x,t)

du+ (u-V)u = wg—’: (1.21)

For each positive integer N, let 0 = t° < t! < ... < t¥ = T be a partition of J
into subintervals J® = ("1, t"], At = t" — "1 1 < n < N, and u" = u(x,t"). For

x € ,s =t", with some deduction we have

tn
x — &(x, t" ") = / u(@(x,t";t), t)dt =~ Atu(x,t").
tn—1

Then, the backward difference approximation for direction 7(x,t") is that

Ou(w,t") (e, t") — w(@(x, "0 1), ")

- . (1.22)
ot (zx,tm) (|l — @ (e, tr; tn1)[2 —I-At?)l/Q
Combining equalities (1.21) and (1.22), yields
ny __ = n.n—1 n—1
O+ (- V) o HE ) — wl@(@ ), ) (1.23)

At

More details can be found in [1, 6, 13, 54, 55, 57].
In Chapter 2, we shall use the method of characteristics to recast the time-dependent

incompressible Navier-Stokes equations.
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Chapter 2

CLDG method for the
incompressible Navier-Stokes

equations

2.1 The incompressible Navier-Stokes equations

Based on the assumption that the fluid, at the scale of interest, is a continuum, and the
conservation of momentum (often alongside mass and energy conservation), the equation
to describe the motion of fluid substances can be derived, which is named after the French
engineer and physicist Claude-Louis Navier and the Irish mathematician and physicist
George Gabriel Stokes to memory their fundamental contributions. Nowadays, it is still
the central equation to fluid mechanics. Let Q be a bounded polygonal domain in R?
with Lipschitz continuous boundary 992 and J = [0,7] is time interval with " > 0
is finite quantity. The time-dependent Navier-Stokes equations for an incompressible

viscous fluid confined in © are [56]:

du+ (u-Vu—vAu+Vp=f, (x,t) € QxJ,
cu = t) e Q
V-u=0, (x,t) € QA x J, 2.1)
u(zx,t) =0, (xz,t) € 09 x J,
u(x,0) = ug(x), x €.

It is well known that the above problem has a unique solution w € L?(J; H}(€2)?) N
L®(J; L2(Q)?), p € WL(J; LE(Q)) for Opu € L2(J; X'), X = {v € HY(Q)?:V v =
0}, the body force function f € L?(J; H-1(Q)?) and ug € H(div,) [56]. The constant
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v is the fluid viscosity coefficient. Since p is uniquely defined up to an additive constant,

we also assume that [, p = 0. The (u - V)u is a nonlinear convective term and

ou ou
(u-V)u = Ul +uQa—y :

2.2 Derivation of the numerical scheme

We first introduce the notations, and then focus on deriving the fully discrete numerical

scheme of the time-dependent incompressible Navier-Stokes equations.

2.2.1 Mathematical setting of the Navier-Stokes equations

For the mathematical setting of the Navier-Stokes problems, we describe some Sobolev

spaces. The LZ(€2) is the subspace of L?({2) with zero mean value, namely
L2(Q) = {v e L2(Q) : /Qv - o}.
X denotes by the space of functions of H}(Q2)? with zero divergence, namely
x ={veHj(@?:v-v=0},

and X' is its dual space.
The fundamental work spaces for solving the Navier-Stokes equations are X and
M = LZ().

The inner product and norm of vector functions v = (v;)1<i<q are defined by

d 1/2
o) = [uev folo= (X lulim) "
i=1

The gradient of a vector function v : R% — R? and the divergence of a matrix function

& : R4 — R are given by

ov; _ : 95
Vv = (axj)lgz’,jgd’ Vo= <Z Ox; )19'5‘1.

Consequently, for a vector function v = (v;)1<i<q4, we have

Av =V Vv = (Av)i<i<a-
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The L?-inner product of two matrix functions & and 7 is defined by
(&ﬁ-):/&:i—:/ > 5T
2 Q1<z_7<d
equipped with the norm
- o 1/2 1/2
lol=(0=([o:0)"=(] ¥ |
Q Q1<7,]<d

Obviously, it is a norm. We just prove that it possesses the third property of a norm as

follows
|&+7|?= /(&+i-) (6 +7T)

/Q Z UZ] + 7'1]

1<i,5<d

o~ =2
/ j+20ij7ij+7ij)
1< <d

=l & |I* +2(e,7)+ || 7 |
e P +2la =1 +1+ |
<(al+17D

2.2.2 CLDG scheme

By introducing an auxiliary variable & = /vVu [4, 21], we rewrite (2.1) as a mixed

form:
ou+ (u-Viu—/vV-6+Vp=Ff, (,t) € Q x J,
o = /vVu, (z,t) € Q x J,
V-u=0, (x,t) € Q x J, (2.2)
u(x,t) =0, (z,t) € 09 x J,
u(z,0) = ug(x), x € (),

where v = 1/Re is the viscosity coefficient. Obviously, if /v is small enough we have
NI

Before presenting the variational form, let us clarify the notation: v -& -mn =
szzl v;0in; = & : (v ®@n). Multiplying the first, the second, and the third equation
of (2.2) by the smooth test functions v, T, ¢, respectively, and integrating by parts over

an arbitrary subset F € &}, we get the following weak variational formulation, i.e., find
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the solution (u,a,p) € V x V2 x Q for any functions (v,7,q) € V x V2 x Q, such that
JpOmu+ (u-Viu) - v+ [ve :Vo— [\ /vv-7 -ng
—JppV vt fyppv-np = [pf-ov,

[po:7— [LV/YVu:T =0, (23)

fEV ~uq =0,

where ng is the outward unit normal to 0F, and
V={vel?N)?:v|lpe H(E)’VE € &},

V2 ={o € (L*(0)?)?: o|p € (H(E)*)*VE € &},
Q={qeM:q|gp € H'(E),VE € &,} .

The exact solution (u, &, p) will be approximated by the functions (uy, &, pp) belonging
to the finite element spaces Vj, x V,Ql x Qp, :

V), = {'v € L3(Q)? : v|p € PK(E)2,VE € gh} ,

V2 = {& € (L2(Q)2)? : 6|p € (PF(E)?)?,VE € @%} ,

@ ={g€M: g5 €PY(E)VE € 6},
where P¥(E) denotes the set of all polynomials of degree at most k& > 1 on E. Let Q¥(E)
denote by the space of all polynomials which are of degree < k with respect to each
variable  or y. And note that P¥(F) c Q(E).

To find (up, 61, pn) € Vi x Vi xQy, for any functions (v, 7,q) € VyxVixQp,V E € &,
the following holds

Je@un + (un - Viun) - v+ [p/von : Vo = [yp/vo- 6, -np
_prhv'v'i'faEp;:’v'nE :fEf"Ua

Jgon:T— [pVVVuy : T =0,

gV -upg =0,

where o7 and p; are to be determined by numerical fluxes. By carefully adding the
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penalty terms and choosing the numerical fluxes:

o, ={on}, p,={pn} (2.5)
we develop the following numerical scheme:

(Bvun + (un - V)ur, v) + (@1, 7V0) — ({00}, /Lo @ 1) g
—(pr V- 0) + (o [o] - m) g + (funl. o)) 5 = (£.0),

2.6
(04, 7) = (VIVup, 7) + ({7} Volun] @ ne) g5 = 0, (2.6)

(¢, V -un) = ({a} [un] - ne) g5 + ([pnl; [a))g; = O,

for any functions (v, 7, q) € V, x V2 x Qp,. The exact solution (u, p) of (2.1) is expected
to be at least continuous and have homogeneous boundary values. So added penalty
terms ({7}, Vv[un]@ne) g, ([unl, [v])gp, ({a}, [un]-me)ge and ([p], [q]) s still keep the
consistency of the scheme. Moreover, the locality of the discontinuous Galerkin method
still remains since the penalty in the second equation is about uj, element-by-element
and it is independent of &5,. These additions make the variational formula symmetric.
Then this formula makes the stability and error analysis convenient.

The LDG method is one of several discontinuous Galerkin methods, which was in-
troduced by Cockburn and Shu in [21] as an extension to general convection-diffusion
problems of the numerical scheme for the compressible Navier-Stokes equations proposed
by Bassi and Rebay in [4].

e In LDG method, the original idea is applied to both w and Vu which are now con-
sidered independent unknowns. The basic idea for constructing the LDG method
is to suitably rewrite the considered equations into a larger, degenerate, first-order

System.

e The CLDG method considered in this chapter shares several properties with the
LDG method. On each element, both the approximation to w and the approx-
imations to each of the components of & belong to the same space. They use
discontinuous-in-space approximations, are locally conservative, and approximate
the diffusion fluxes with independent variables. The implementation of the LDG
method is much simpler than that of standard mixed methods, especially for high-

degree polynomial approximations (see [33]).
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e In LDG method, the local conservativity holds. In order to do that, suitable
discrete approximations of the traces of the fluxes on the boundary of the elements
are needed which are provided by the so-called numerical fluxes. These numerical
fluxes enhance the stability of the method, and the quality of its approximation

(see the proof of stability and the numerical experiments).

Throughout this chapter, we use the notations

('w’v) = Z (w’U)Ea (wav)é’é = Z(w7v)6’ (wvv)gf = Z (wvv)e'

Eeé, ety cc&B

Definitions of the bilinear forms:

a( hs ’U) = (Ul“n \/_V’U) ({671}7 \/;[’U] ® ne)é”f’

b(pn,v) = =(pn, V- v) + ({pn}, [v] - me) g5,
c(un,v) = ([un), [v]) g5,
d(pn, @) = ([pal; ld]) s:-

By integration by parts, the forms a(ay,v) and b(py,v) also can be rewritten as

a(oh,v) = =(V - &5, Vo) + ([o0], Vi{v} @ ne) g,

(2.7)
b(pn,v) = (Vpn,v) = ([pnl, {v} - ne)gi-

2.2.3 Time discretization

For each positive integer N, let 0 = t° < t! < ... < t¥ = T be a partition of T
into subintervals J" = ("' ¢"], with uniform mesh and the interval length At =
t" — "1 1 < n < N,u"” = u(x,t"). The characteristic tracing back along the field

n—1

u of a point & € Q at time " to "1 is approximated by [54]:
x(x, t" N =z — u" AL

Consequently, the approximation for the hyperbolic part of (1.1) at time ¢" can be

derived by

n - n—1
u —u

atu” + u" - Vu" =~ e E—
At

where 4" = u(x(x, t"1)).
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Lemma 2.1. (Time truncation error) [54] Let E(x,n) = wout (Ou" +u" - Vu),

Al
for uw € CH[At, T]; H3(Q)?) and t™ > At, we have
1d%g?  Ou n 9
E(z,n) = —At(§ L+ S Vu(a,t )) +O(AR), (2.8)

where g (t) = u(x — (" — t)u™"1,t).

So the fully discretized scheme, the CLDG scheme corresponding to the variational
formulation (2.6) is to find (u}, &7, pl) € V;, x V2 x Qy, for any functions (v,7,q) €
VYV, x V% X Qp, such that

(B v) + (o7, IV0) — (o Vi) @ 1) e
V- 0) + (o] - g + (). ol = (£7,0),

(&}ZL? f) - (\/ZVUZLW') + ({‘F}a \/;[um ® ne)g’}f? =0,

(¢, V- up) = ({a}, [up] - me)gp + ([p], [dl) g = 0,

where @) = wy, (%(z,1"7Y)) = up(x — u) T ALY, and @) = u.

We rewrite (2.9) as a compact formulation: Find (u}, a7, p}t) € Vi, x Vi x Qy, for
any functions (v, T,q) € Vj, x V}QL x Qp, such that

n__on—1
(uh—uh

A—,v) +a(a),v) + b(py, v) + c(u),v) = (f,v),

(ep,7) —a(T,u}) =0, (2.10)

For notational and analytic convenience, we define the following equality

=a(eay,v) + b(p),v) + c(uy,v) + (67, 7T) (2.11)
- 8(77 u;zl) - Ib(‘]a uh) + d(PZ» q)
and the right side hand
Z(v) = (f",v). (2.12)

Remark 2.1. We take (v,7,q) = (uj, o} ,p}) into (2.11), then a semi-norm can be

|'|¢
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obtained

(a3, 007,

= o/ (ujy, &5, pys Wy, O, hy)

= c(uf, up) + (57, 7)) + d(pf p7) (2:13)
= 7 b ey + 185 13+ D2 1 (oA I -
eEo“’f eeéafi

2.2.4 Existence and uniqueness of CLDG solution

In order to prove the existence and uniqueness of the approximation solution of the
CLDG scheme of problem (2.1), we shall introduce the following mild conditions on the

local spaces.

uc PH(E)?: /Vu:'t":O, vV 7 € (P*(E)?)?, then Vu =0 on E, (2.14)
E
qePHE): /v~Vq:0, Vv € PF(E)?, then Vg =0 on E. (2.15)
E

Obviously VP*(E)? C (P¥(E)?)2, VP*(E) c P*(E)2. See [9, 15], equations (2.14) and
(2.15) are satisfied with k& > 1.

Lemma 2.2. If the approximation spaces Vj, X V%L x Qp, are spanned by the polynomial
space P*(E) with k > 1, then there exists a unique solution (uy,a},py) € Vi, x V2 x Qy,
satisfying (2.9).

Proof. To ensure the computability of the CLDG scheme for problem (2.1), we begin
by showing that the variational formulation (2.9) is uniquely solvable for (u}, &}, p)) at
each time step n. As (2.9) represents a finite system of linear equations, the uniqueness
of (uy, o}, py) is equivalent to the existence.

Setting 11’,271 = f =0 and taking v = u}, T = 6,q¢ = pj in (2.10), we have

1 _ 2

which implies u}’ = 0,6} = 0, and [pZHe =0,V e € &. We go back to the equation
(2.10), there is
Yo € Vy, b(v,pp) =0.
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From identity (2.7), we get

b(v,pp) = Z /EVpZ'v—O, Vv eV

Eecéy,

We conclude from equation (2.15) that Vp} = 0 on each E € &}, and [pZHe =0,Veed&,
that p}! is a constant. Since p} € M|, i.e. [, pjide = 0, then we have p}! = 0. O

2.3 Stability analysis

In this subsection, before presenting and proving the numerical stability result, we shall

give the following lemma.

Lemma 2.3. [6, 12, 27, 54] Define X2(t) = x— (t" —t)u} 'Vt € " 2,#"],2 <n < N.
If At < i’l’” = maxi<i<n | U} |l1,00 on each time step t". Then for any function
v € L?(Q) the following inequality holds

1o 1I5 = Il v ll5< CAt ]| v II5, (2.17)
where ¥ = v(x — Atuz_l), uz_l €V, C Whe ()2
Proof. By the definition of X2(t""!) = 2 — Atu;:_l = %(z,t" 1), the Jacobian of this

transformation is that

- B 1— 0, uv 'ALt —9,ul AL
J(X;L(t’l’b 1)) _ ( h1 Y=hl ) ,

—Opuly 'AL 1 — Oyuly tAL

therefore,
(2| = 1+ O(A),

then, we have
151310l = [ vpde— [ viafde
:/v(m)2(1+(9(At))dw—/'U(:I:)de
Q

Q
—O(At)/ﬂv(az)de.
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Theorem 2.4. (Nonlinear stability) The CLDG scheme of (2.9) is nonlinear stable,
i.e., for any integer N = 1,2,3,---, such that

N N
_ 2 - —
Il (1§ +2A8 > |(up, o, o)L, + Y |l up — a5
n=1 n=1

N
<SOAtY | F I +C I I3,

n=1

where At < ﬁ,Ln = maxi<i<y || U [[1,00, u® =, |- | is defined by (2.13), C is a

generic constant.

Proof. Taking v = 2Atu}, T = 2Ate} and ¢ = 2Atp) in (2.10), respectively, we get the

following equations
2w} —ap~t ull) + 20| (uf, o )|, = 2080 F (ul),

and

20up —ap " up) =l g lf At IG A+ ug -y G

Now we estimate the bound of || @)~ " |2 — || u}~" ||3. Since V}, is a subset of W1>°(Q)?2,

from Lemma 2.3 we have
=t 5 — [l wp b < CAt | up™" IIF - (2.18)
It follows the definition of .%, Holder’s inequality and Young’s inequality, that

— _ 2 - n—
Fuh 15 — 1 p =" 115 +2A¢](uh, o, pi) [+ I wh — g~ 5

n—1 12 n |2 n |2 (2'19)
< CAt [ uy, g +AL || F™ 6 +AE | up |5 -

Summing up the above equation from n =1 to N, we have

N N
N _ 2 o
Fan 18— 1w 13 +280> " [(up ap, o), + > up —ap |13
n=1 n=1

N N N
<OMY Jupt B earY £ IR A g
n=1 n=1 n=1
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Then the following holds

N N
_ 2 - n—
i 11 +288 D [(uft, ok i)+ D i — g S
n=1 n=1

N N
<CALY (g [l +A8 D> £ 15 +(CAt+1) || uf |5 -
n=1 n=1

From the discrete Gronwall inequality, we have
N N
N (12 _ 2 o
g (1§ +2A8 Y |(up, o o)L, + Y |l wpp — a5
n=1 n=1

N
< CT(ALY | 7 IR +HCAt+1) [ uf 7).
n=1

Hence, the proof is completed.

2.4 Error analysis

In this section, we present and prove error estimates for the CLDG scheme of (2.9). For
the sake of simplicity, we introduce some notations:

n n n n n n
51 :Hu —uh7 52 :Hu —-—u -,
=N T~7 =N —n T~ —n
ny =lle" —o;, 1y =Ic"—-a",

¢ =1Mp" —pp, (o =1Ip" —p",

where IT : V — V;,, 11 : V2 — V%L and II : Q — Qp, are linear continuous L?-projection
operators onto the corresponding finite element spaces.

In this chapter, we assume that the solution (u,p) of (2.1) satisfies the following
regularity conditions:

w e L¥(J; Whe(Q)%) N L=(J; H*H(Q)?) n O (A, T); HP (2)%),

we H' (J;HH(Q)?), 0 € L2(J; HF1(Q)?), 0w € L2(J; L2(Q)?),
pe L*(J; H Q)

(2.20)
) N L2(J; L§(92)),

where k is the degree of polynomials approximation.

Lemma 2.5. [12, 27, 54] If At < ﬁn,Ln = maxi<i<n || U}, ||1,00, then for any function
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v € HY(Q) and each time step n there is a constant C, such that
lv(z) —v(x) [5< C(AD? || Vo |ff . (2.21)

where X = x — Atuz_l.

See the proof in page 12 of [54].

2.4.1 Error in velocity

Theorem 2.6. (Error estimate of the velocity) Let (u™,p™) be the solution of (2.1),
" € (H*H(2)%)? and (up, a7, plt) be the solution of the CLDG scheme of (2.9). If
At < ﬁ,Ln = maxi<i<n || U} ||1,00, with the regularity of (2.20) such that for any

integer N =1,2,---, we have

N N
_ 2 n—
led 5 +At> " |(enemep)l, +> ler—erIls
n=1 =1 (2.22)
< C(At)? + vCh?* + Ch?*,

where k > 1, C is a generic constant.

Proof. The exact solution (u",&"™,p") satisfies (2.6) because of the consistency of the
scheme. We take v = &', 7 = 0}, q = ¢} in (2.6) and (2.9), subtract (2.9) from (2.6) we
have

n ~n—1
uy,

(v + (- Wyur = 2= ) | €, )

= A&z, M3, ¢35 €711, ¢
= a(ny, &) + b(G, &7) + (€, &7) + (02, 77) (2.23)

—a(y, &) — b(({', &) +d(¢F, 1)

7
-yr.
i=1
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where

Iy = a(ny, &7),
Iy = b(C3, &1),
Iy = (&3, €1),
Iy = (03, 71),

Z5 = _a(ﬁ?agg)a
Zs = —b((T €3),
Ir = d(¢3,¢1)-

Now we estimate each term Z;, respectively. By the property of L?—projection operator

II, Holder’s inequality, and Lemma 1.7 we obtain

I, = (03, VvVET) — ({3} VVIET] @ me) g

<O VBB el (€7 @ ne N2
ec&B
<o vlm e ) (D0 N1 Bag )

ecsp ecsB

1 _
< VOB z| (€0, at, (),

Similarly, we deduce
Iy = _(Cgv V- 5?) + ({C;l}a [5?] : ’I’Le)(ghB

< (X146 ) (18 e )

ecsP ecspP

1 _
< CR**z|(€7, 77, ¢P)|

zo< (30 188 e ) (30 8] gy )’

ecsP ecsp

Note that Z4 = 0 because of the property of L?2—projection operator II. By the property

of L?—projection operator II, Young’s inequality, and trace inequality we imply
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Is = (V- a1, Vv€z) — (0], Viri€z } @ ne) g
= — (1], V&t @ me)si
< VY @ne 2l A7 2

eeé’ﬁ
< S Vo IHEY @ ne o (Chi® 18 g +Chigy 1107 llz2(ss) )
ecs}
. 1 ~N
— 4 2 _ _ 2
< VO3 (D IH4€8Y e ) (D0 (IR leeqon) + 18 lazqeg) )°)

eeﬁ}i eeé}i

From identity (2.7), with the same deduction there are
Ty = —(VC1€&5) + (P 4€8} - mo)sy
= ([G:{&5} - me) sy

<o( X & el ) (1 I )

ecs} ecé}

1 n =Sn n
< ChFte |( 1 G )}M»
and

Zr = (63 (6T
= (L€

eé&é
< 3718 ez 167 llzege
66(9@}5
< (11681 e ) (2 1t I3y )*
eed]} eed}

< Ch** 3 |(gr a7, ¢ -

Now let us tackle the first term of the left side of equation (2.23). It is easy to obtain
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~n—1

(o + (- wpur = M )

— (&gu" + (u" - V)u" — M_TW,E?) + (%’unl El) (2.24)

n 1

4
& — & — 52 _
+( At a£1> ( 751)2181
1=
From Lemma 2.1 and Holder’s inequality, there is

u™ — ,un—l

Br] = [ (" + (- vy - )
< CAL| & Jlo< C(AL? +C | & I3 -

By the definitions of x and x,
X —% = At(u) ! —u" ).
Using the Taylor formula, we have

= = ()~ ()
< AL VU o fup - Y
< CAL| Vu [l (€771 +1€571)).
Therefore,
=t —a

< CAL || V'™ [l poeqe (1 €77 llo + 1 €57 llo) (2.25)
< OAt(R 1+ || €77 [lo)-

From inequality (2.25) we deduce

“n—1 _ n—1
Bo| = | (B &1)
1 . _
< g It = ol &7 lo

SO +C &7 B+C &5
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By Lemma 3.1 there is

83:(51 At 7€1>
1 ,
= 2At( l€r 13— 16 IR) + 5 I € — &7 IR

ZzAt(H& B —1&"1I8)-Cllé 1||0+2At & — €& 15 -

From the definition, we can get

By = — (% E1>

() - ()

Consequently, from Taylor formula and Holder’s inequality, it follows that

‘(62 _At ’£1>

Using the Holder’s inequality, Young’s inequality and Lemma 2.5, we have

()=

Combining B;,i = 1,--- ,4, there is

n 1
<CO(II€ 113 A7 | 02 HQLQ(JTL;Q) ).

<C(IEr 15+ 1 ve 113 ).

n ~n—1
uh —

n u n
- Tth’sl)
> At( le B -1e I1B) -cle i

n N — n C
b 16 &R -C I 1~ 10 [agnoy
—C || V& g~ — o(an?.

(O + (u™ - V)u

(2.26)

Substituting Z;,7 = 1,--- , 7 and inequality (2.26) into (2.23). Equality (2.23) becomes

1 n an 2 1 n Fn—
2At( & 15— &1 15) + 2!( 17"71,C1){@/+m & — & " 1ls
<Ol +CIEr I +E | 9o [I72 (-0 (2.27)
+C || VEFTV 2 +C(AH)? + CRPFL L uCh?

Summing over n from 1 to N and multiplying 2A¢ from the both sides of (2.27), using
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discrete Gronwall inequality we finally obtain

N N
_ 2 Yy —
L&) 12 +ae S [erar. e’ + Sl - &)1
n=1 n=1

N ) N . (2.28)
SO N %€ IFa(mny +CALY || VET I
n=1 n=1
+ C(AL)? + CRZF L L o,
By the triangular inequality, the desired error bound of (2.22) is obtained. O
Remark 2.2. From (2.28) for any integer N = 1,2,---, we have
N ~
1€ 1< C((A? +h%F), S| &7 — &7 5< C((A1? + 1),
n=1
2.4.2 FError in pressure
Lemma 2.7. (Div-grad relation) [{4] If v € H}(Q)?, then
Vv o< Vo o (2:29)

Lemma 2.8. [12, 27, 54] If v € L*() and At < 57—, Ly, = maxi<i<n || @}, [l1,00, such

that for any time step n there exists a constant C
[o(@) = v(x) -1 CAL [ v o, (2.30)

where X = x — Atuz_l.

The proof can be found in [12, 27, 54].
To obtain the error estimate in the pressure, we shall recall the continuous inf-sup
condition for the spaces H} (€)% and L3(2).

Lemma 2.9. [15, 30, 50] There exists a positive constant 3, such that

inf osyp %D g (2.31)
a€L3(@) werrr ()2 |1 4 lloll Vv o

Equivalently, such that for any q € L3(Q) there is a function © € H}(12)?

/quﬁzm lal3, 1% < B Il ¢ llo, (2.32)
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where B1 > 0, B2 > 0 are positive constants independent of h, At,q and v.

Lemma 2.10. For any functions (v,7,q) € V), x V2 x Qp, there ezist a function © €
H&(Q)2 and two positive constants K1 and Ko independent of h, At and q,

_ ~ = _ 2 ~
Ky | q [3< Alv,7,¢:119,0,0) + K| (v, 7. 0)[,» | 119 1< C [| ¢ o, (2.33)

where TIv is the L?>—projection of © onto the finite element space Vy,, C is a generic

constant.

Proof. With similar deduction as [15], we fix ¢ € Q C L3(2). From Lemma 2.9, for
(v,7,q) € Vj, x V7 x Q, there is a function & € H}(Q2)? satisfying (2.32). From equality
(2.11) we have
A(v, T,q;119,0,0)
= a(7,I1?) + b(q, IIv) + c(v, IIv) (2.34)
=Ti+T+Ts.

Now we shall estimate 7; as follow

|T1| = |a(7,119)| < |a(+, 116 — )| + |a(T, D)
= | = (V- 7, Vv(IIo — ) + ([7], VV{IID — 0} @ ne) s
= [([7),vVATIS — 8} @ me) oo | + | (7, V0V D)

<CVI( S I B ) (0 I8 = 8} @ e 3y )™ + OV I 7 Dol 11

+ |(F, Vv VD)

el e
1
1 _ 2 ~ _ ~
< vk (3 17 Bagy ) 18 I +CVo 117 Joll & Il
eeéa;;

<CVV |7 ol @ [
< CV|(v.7,9)], I ¢ llo -

Then, we have
Ti 2 —vCOe | ¢ |f ~Cei'|(v. 7, )}, (2:35)
By the definition of 75 we obtain

T2 = b(q,119) = b(q, 1o — 0) + b(q, v).
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Since

[b(q. T8 — )] = |(a]. {T16 — 6} - 1)

<(X I 0 e ) (310 — 5} e [, )
e€d ecé} (2.36)
< Ch3|(v, 7. 9)|,, % I
< Chz|(v,7.9)],, |l ¢ llo:
and
b(q,®) =—(¢,V-9) =B |l ¢ - (2.37)

Combining (2.36) and (2.37) gives

_ _ 2
T2= Bl qlls —Ches || q |5 —Ce; ' |(v,7,9)|7,- (2.38)
Observe that

T3 = c(v, v — )

1 1
< (D Nl B )" (D0 18 = 9] I, )
eeéaf eEc(’B
< Ch|(v,7,9)|, || % |
< Ch3|(w,7a)|,, lalo-

Hence

T2 ~Ches | ¢ |5 —Ce3'|(v, 7, )2, (2:39)
Substituting 77, 72, T3 into (2.34), we deduce

A(v,7,¢;119,0,0)

(2.40)
> (81 — vCei — Ches — Ches) || q ||} —(Cert + Cey ' + Cez V) |(w, 7, q)}i{,

where €1, €9, €3 are chosen such that K1 = 81 — vCe; — Chey — Cheg > 0 and Ko =
Ce; '+ Cey' + Cezt > 0, and K7, K» are positive constants independent of .
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Furthermore, from Lemma 1.6 we have
[T 1< TIo =2 [ + o 1< C o 1< C g o - (2.41)

O

Theorem 2.11. ( Error estimate of the pressure ) Let (u",p") be the solution of (2.1),
" € (H1(Q)2)?2, and (u},al,p}) be the solution of the CLDG scheme of (2.9). If
At < ﬁ,Ln = maxi<i<n ||} ||1,00, with the regularity of (2.20) such that for any
integer N =1,2,--- the following holds

N
ALY ey [I5< C(AL+ 1% /At). (2.42)
n=1
Proof. From Lemma 2.9 and Lemma 2.10, for ¢ € Q) there exists a function w €
HE(2)? with its L?—projection ITw satisfying equation (2.33), i.e.
_ = _ 2
K|l ¢ II5< A€, a7, ¢ Tw, 0,0) + K| (&7, 417, ¢1)[ s | Tw [h< C | ¢ o -

From the first equation of (2.6) and the first equation of (2.10), we have

n ~n—1

uy —u B _
(atun + (un : v)un - hAith’Hw) + A( ??n?a Cina H’UJ, 070) (243)
= A(&, 73, (31w, 0,0).
By Lemma 2.10 and rearranging the identity (2.43),
_ = _ 2
o
up — 11271
< ‘(&gu” + (u" - V)u" — NI H'w)‘ (2.44)
_ = _ 2
+ A€, 75, (3w, 0,0)| + Ca| (€7, 27, (1],
With the same deduction of 77,75, 73, there is
|/ (&5, 75, (3 TTw, 0,0))|
< O 2 |(TTw, 0,0
- ( N (2.45)
< Ch* || Thw [|o
<CRM ¢ o -
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According to the deduction of the bound of the characteristic term, we obtain

n ~n—1
U — Uy
At

1 o
< AL Thw [lo +; | @~ =" [Jol| TTw lo

}(atu” + (u" - V)u" — ,Hw)‘

1 e Y
+E‘(£1 51 ' H'w)| + At|(£2 & ! Hw)}
S C(AL+ R €07 o) || T ||y + K 1 {loll TIaw o

A — & ! HoH Hw [o + ;& — &7 -1l Hw [

< O(At+h’“ + 5 || & - Ho) I TTw ||,
L
VAL
<c(At+hk+— Ier =& llo ) 1<t llo -

+( | 0:&2 ”L?(J”;Q) + & o) I Thw [l

From (2.44) and Young’s inequality, it follows that

Ky || ¢F 1§ < cat+nt t X || & =& lo) 1<t o
n n =n 2
+CRE || ¢F llo +K2|( L S,

- (2.46)
< C/K ((AY)? + h2k+—|| & -k

K
+ 2 IR K| (g A, <D

Rearranging above inequality, multiplying 2A¢ for both sides, and summing n from 1 to

N, using Remark 2.2 we have

N N n
ALY GG < CUAD® + 0%+ oar Yy | al ¢}, + AtZ [
n=1 n=1 n=1
< oA + 1)+ Z €& R
< C(At + h?* /At). i
Using triangular inequality, we complete the proof. O
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2.5 Numerical experiments

In this section, we give four test examples to verify our theoretical error estimates. Ini-
tially, we employ uniform triangular meshes. For numerical computation, the character-
istic part is calculated by the high-order accurate Gauss quadrature points, for example,
we choose the Gauss quadrature rule with 3 nodes when £ = 1 and the Gauss quadra-
ture rule with 7 nodes when k = 2. The CLDG scheme is performed with (P*, Pk, Pk)
finite element pair (k > 1). The time stepsize is taken as At = O(h) for the local
PL-DG scheme and At = O(h?) for the local P2-DG scheme. In Tabels 2.1-2.6 the k
denotes the degree of approximation polynomials. Comparing the numerical solutions
with the constructed analytical ones, we show that the suboptimal convergence rates are
obtained for the presented numerical scheme with a wide range of Reynolds numbers,
such as Re = 10,10%,10%,10%,105,10%,10'2,10'®,10'6. One of the striking benefits of
the proposed numerical scheme is that with the refining of the meshes the conditional
number of the matrix A of the equation Ax = b corresponding to the numerical scheme
almost does not increase.

In Figures 2.1-2.4, we numerically display one of the striking benefits of the proposed
scheme: the condition number of the corresponding matrix equation almost does not
increase with the refining of the meshes for different Reynolds numbers. Here the nodal

discontinuous Galerkin methods [33] are used to simulate the numerical examples.

X10° condition number vs 1 Re=10°

Fig. 2.1: Condition number of the corresponding matrix for the CLDG scheme for (2.9)
vs the reciprocal of spatial step h with At = 1073, Re = 106.
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<10 condition number vs L Re=10'2
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0 5 10 15 20 25 30

Fig. 2.2: Condition number of the corresponding matrix for the CLDG scheme for (2.9)
vs the reciprocal of spatial step h with At = 1073, Re = 102

x10" condiion number vs 1h Re=10>

Fig. 2.3: Condition number of the corresponding matrix for the CLDG scheme for (2.9)
vs the reciprocal of spatial step h with At = 1072, Re = 108.
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10" condition number vs 1 Re=10'%

J—Y
- - k2
25 -k

number

condition
\
\

Fig. 2.4: Condition number of the corresponding matrix for the CLDG scheme for (2.9)
vs the reciprocal of spatial step h with At = 1072, Re = 10'°.

Example 2.1. Consider the time-dependent incompressible Navier-Stokes equations in
a square domain € = [—~1,1]2. We choose the initial data so that the exact solution is
specified as
ui(z,t) = je’'y(y® — 1)(@* — 1),
up(,1) = —Lera(a? —1)(y? — 1)
pla.t) = e(a? — 1)(y? - 1).

Then the exact solution has homogenous boundary value and the forcing term f

(2.47)

can be determined for any given v. Tables 2.1-2.3 display the L?—norm errors and
convergence rates of velocity and pressure for Example 2.1 at time T' = 0.25 with different
choices of Reynolds numbers, such as Re = 102,106, 10'2.

h k=1 k=2 k=1 k=2
| ewllo | rate | || ewllo | rate | | epllo | rate | |l ep|lo | rate
1/2 | 7.33e-02 - 2.18e-02 - 7.44e-01 - 9.23e-02 -
1/4 | 3.01e-02 | 1.3 | 6.17e-03 | 1.8 | 1.71e-01 | 2.1 | 7.60e-03 | 3.6
1/8 | 1.17¢-02 | 1.4 | 8.07e-04 | 2.9 | 3.96e-02 | 2.1 | 9.11e-04 | 3.1
1/16 | 3.27¢-03 | 1.8 | 1.11e-04 | 2.9 | 9.10e-03 | 2.1 | 1.17e-04 | 3.0
1/32 | 8.49e-04 | 2.0 | 1.42e-05 | 3.0 | 2.14e-03 | 2.1 | 1.50e-05 | 3.0

Tab. 2.1: The L?—norm errors and convergence rates of velocity and pressure for Ex-

ample 2.1 with 7' = 0.25, Re = 103,
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h k=1 k=2 k=1 k=2

| euwllo | rate | || ewllo | rate | | ey, llo | rate | | epllo | rate
1/2 | 7.34e-02 - 2.18e-02 - 7.44e-01 - 9.23e-02 -
1/4 | 3.02e-02 | 1.3 | 6.24e-03 | 1.8 | 1.71e-01 | 2.1 | 7.60e-03 | 3.6
1/8 | 1.18e-02 | 1.4 | 8.38¢-04 | 2.9 | 3.97e-02 | 2.1 | 9.11e-04 | 3.1
1/16 | 3.38¢-03 | 1.8 | 1.25e-04 | 2.7 | 9.13e-03 | 2.1 | 1.16e-04 | 3.0
1/32 | 9.05e-04 | 1.9 | 2.06e-05 | 2.6 | 2.15e-03 | 2.1 | 1.48¢-05 | 2.0

Tab. 2.2: The L?—norm errors and convergence rates of velocity and pressure for Ex-
ample 2.1 with 7' = 0.25, Re = 10,

h k=1 k=2 k=1 k=2

| ewllo | rate | || ewllo | rate | | epllo | rate | |l ep|lo | rate
1/2 | 7.34e-02 - 2.18e-02 - 7.44e-01 - 9.23e-02 -
1/4 | 3.02e-02 | 1.3 | 6.24e-03 | 1.8 | 1.71e-01 | 2.1 | 7.60e-03 | 3.6
1/8 | 1.18e-02 | 1.4 | 8.38¢-04 | 2.9 | 3.97e-02 | 2.1 | 9.11e-04 | 3.1
1/16 | 3.38¢-03 | 1.8 | 1.25e-04 | 2.7 | 9.13e-03 | 2.1 | 1.16e-04 | 3.0
1/32 | 9.05e-04 | 1.9 | 2.06e-05 | 2.6 | 2.15e-03 | 2.1 | 1.48e-05 | 3.0

Tab. 2.3: The L?—norm errors and convergence rates of velocity and pressure for Ex-
ample 2.1 with 7' = 0.25, Re = 10'2.

Figures 2.5-2.10 display the contour figures of exact and numerical solutions. We
observe that the numerical solutions have efficient simulations with high Reynolds’s

number Re = 1012,

ul(t=0.25)

= L . L L i L L L L
-1 08 -06 -04 -02 0 02 04 06 08 1
X

Fig. 2.5: The contour of exact solution u;(t = 0.25) of Example 2.1, Re = 10'2.
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u1h(t=0.25)

Fig. 2.6: The contour of numerical solution uy,(t = 0.25) of Example 2.1, Re = 10'2.

u2(:=0.25)

Fig. 2.7: The contour of exact solution us(t = 0.25) of Example 2.1, Re = 10'2.

2h(t=0.25)

Fig. 2.8: The contour of numerical solution ugp(t = 0.25) of Example 2.1, Re = 10'2.
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P=0.25)

-1
-1 08 06 -04 -02 0 02 04 06 08 1
X

Fig. 2.9: The contour of exact solution p(t = 0.25) of Example 2.1, Re = 10'2.

Ph(=0.25)

-1
-1 08 06 -04 -02 0 02 04 06 08 1

Fig. 2.10: The contour of numerical solution py(t = 0.25) of Example 2.1, Re = 102

Example 2.2. We further verify theoretical results of the CLDG scheme (2.9) in the
domain Q = [0, 1]? for the exact solution defined by

up(x,t) = cos(vt)sin®(rx)sin(2ry),
ua(x,t) = —cos(vt)sin(2rx)sin?(ry), (2.48)
p(x,t) = cos(vt)sin(2nx)sin(2my).

The forcing term f can be determined for any given v. In Tables 2.4-2.6, we choose
big Reynolds numbers to demonstrate the efficiency of the presented scheme, such as
Re = 103,10%,10' . Note that errors and convergence rates for both velocity and
pressure almost do not change with Re = 10%, Re = 10%°, since cos(vt) does not change
when v is small enough (corresponding Re big enough). Comparing with the errors

and convergence rates for Example 2.1, even the errors and the convergence rates are
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not as good as Example 2.1, they still coincide with theoretical results. In order to

further observe the simulations of numerical solutions, we compare the figures of exact

and numerical solutions with Re = 10'® in Figures 2.11-2.16.

h k=1 k=2 k=1 k=2
| ewllo | rate | || ewllo | rate | | epllo | rate | |l ep|lo | rate
1/4 | 8.15e-02 - 4.63e-02 - 2.11e-01 - 3.26e-02 -
1/8 | 3.88¢-02 | 1.1 | 4.51e-03 | 3.4 | 4.17e-02 | 2.3 | 6.10e-03 | 2.4
1/16 | 1.35e-02 | 1.5 | 5.67e-04 | 3.0 | 9.89¢-02 | 2.1 | 1.05e-03 | 2.5
1/32 | 5.45e-03 | 1.3 | 1.01e-04 | 2.5 | 4.37e-03 | 1.2 | 2.34e-04 | 2.2

Tab. 2.4: The L?—norm errors and convergence rates of velocity and pressure for Ex-

ample 2.2 with 7' = 0.5, Re = 102.

h k=1 k=2 k=1 k=2

| ewllo | rate | || ewllo | rate | | epllo | rate | |l ep|lo | rate
1/4 | 1.08e-01 - 1.13e-01 - 2.10e-01 - 4.91e-02 -
1/8 | 7.65e-02 | 0.5 | 1.72e-02 | 2.7 | 4.02¢-02 | 2.4 | 1.29¢-02 | 1.9
1/16 | 2.95e-02 | 1.4 | 2.93e-03 | 2.6 | 1.79e-02 | 1.2 | 3.17e-03 | 2.0
1/32 | 1.33¢-02 | 1.1 | 1.01e-03 | 1.5 | 1.10e-02 | 0.7 | 7.38¢-04 | 2.1

Tab. 2.5: The L?—norm errors and convergence rates of velocity and pressure for Ex-

ample 2.2 with 7' = 0.5, Re = 10%.

h k=1 k=2 k=1 k=2
leullo | rate | [ ewllo | rate | eyl | rate | Ilep o | rate
1/4 1.08e-01 — 1.13e-01 - 2.10e-01 — 4.91e-02 -
1/8 | 7.65e-02 | 0.5 | 1.72e-02 | 2.7 | 4.02e-02 | 2.4 | 1.29e-02 | 1.9
1/16 | 2.91e-02 | 1.4 | 2.93e-03 | 2.6 | 1.80e-02 | 1.2 | 3.17e-03 | 2.0
1/32 | 1.33¢-02 | 1.1 | 1.01e-03 | 1.5 | 1.10e-02 | 0.7 | 7.38¢-04 | 2.1

Tab. 2.6: The L?—norm errors and convergence rates of velocity and pressure for Ex-

ample 2.2 with 7' = 0.5, Re = 10%°.
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ul(=1)

Fig. 2.11: Exact solution u; (¢ = 1) of Example 2.2, Re = 10'°.

uth(=1)

Fig. 2.12: Numerical solution uyj (¢t = 1) of Example 2.2, Re = 10'°.

u(=1)

Fig. 2.13: Exact solution us(t = 1) of Example 2.2, Re = 10%5.
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wh(t=1)

Fig. 2.14: Numerical solution ugy,(t = 1) of Example 2.2, Re = 10'°.

pED

Fig. 2.15: Exact solution p(t = 1) of Example 2.2, Re = 10'5.

p(=1)

05 '
~ Rl
b i V
1

E
1 05

Fig. 2.16: Numerical solution py(t = 1) of Example 2.2, Re = 10'°.
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Example 2.3. In this example we consider the exact solution with nonsymmetric for-

mulas in the domain [0, 1]2. The exact solution is specified as

up(x,t) = w(t)sin?(72) (2y — 6y% + 43°),
—w(t)msin(2rz)(y? — 21> + ), (2.49)

pla,t) = 220y cos() (z — 1)3(e” — 1),

Ug(m, t)

where w(t) = 1+ sin(27vt).

In Tables 2.7-2.9, we choose the exact solution of problem (2.1) with nonsymmetric
formulas for both velocity and pressure because in above two examples the exact solutions
have symmetric formulas with respect to variables  and y. In simulations, we use more
general triangular meshes (i.e. not the meshes with uniform triangulation of squares).
Note that the errors and rates change when Re = 10,10%, 10 at time T = 1, but they

still have some good results.

h k=1 k=2 k=1 k=2

| ewllo | rate | || ewllo | rate | | e, llo | rate | | epllo | rate
1/5 | 1.12e-02 - 1.84e-03 - 6.01e-03 - 1.04e-03 -
1/10 | 2.78e-03 | 2.0 | 1.70e-04 | 3.4 | 1.41e-03 | 2.1 | 9.98¢-05 | 3.4
1/20 | 7.01e-04 | 2.0 | 2.19e-05 | 3.0 | 3.33e-04 | 2.1 | 1.52e-05 | 2.7
1/40 | 2.00e-04 | 1.8 | 3.82e-06 | 2.5 | 8.83e-05 | 1.9 | 4.00e-06 | 1.9

Tab. 2.7: The L?—norm errors and convergence rates of velocity and pressure for Ex-
ample 2.3 with 7' = 0.5, Re = 10°.

h k=1 k=2 k=1 k=2

| ewllo | rate | || ewllo | rate | | epllo | rate | |l epllo | rate
1/5 | 1.05e-02 - 2.76e-03 - 5.37e-03 - 8.87e-04 -
1/10 | 2.81e-03 | 1.9 | 5.15e-04 | 2.4 | 1.05e-03 | 2.4 | 8.84e-05 | 3.3
1/20 | 6.99e-04 | 2.0 | 1.02e-04 | 2.3 | 2.18e-04 | 2.3 | 1.74e-05 | 2.3
1/40 | 2.17e-04 | 1.7 | 2.08e-05 | 2.3 | 4.86e-05 | 2.2 | 5.90e-06 | 1.6

Tab. 2.8: The L?>—norm errors and convergence rates of velocity and pressure for Ex-
ample 2.3 with 7' = 0.5, Re = 10%.
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h k=1 k=2 k=1 k=2

| euwllo | rate | || ewllo | rate | | ey, llo | rate | | epllo | rate
1/5 | 1.05e-02 | — | 2.76e-03 | — | 537e-03 | — |887e-04 | -
1/10 | 2.81e-03 | 1.9 | 5.15e-04 | 2.4 | 1.05e-03 | 2.4 | 8.84e-05 | 3.3
1/20 | 6.99e-04 | 2.0 | 1.02e-04 | 2.3 | 2.18e-04 | 2.3 | 1.74e-05 | 2.3
1/40 | 2.17e-04 | 1.7 | 2.08e-05 | 2.3 | 4.86e-05 | 2.2 | 5.90e-06 | 1.6

Tab. 2.9: The L?—norm errors and convergence rates of velocity and pressure for Ex-
ample 2.3 with 7' = 0.5, Re = 105,

Fig. 2.17: Error and rate of velocity in Example 2.3, Re = 10.

266k=2
0

Fig. 2.18: Error and rate of pressure in Example 2.3, Re = 10.
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Fig. 2.21: Error and rate of velocity in Example 2.3, Re = 10'6.
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Fig. 2.22: Error and rate of pressure in Example 2.3, Re = 10'°.

Example 2.4. In this example we will consider discontinuous solution in the domain

[—1,1]2. The exact solution is specified as

—e~4mvigin(2my), if |z] < 0.5,]y| < 0.5,

ul(mat) =
0, else,
(1) e~ risin(2ra), if |x] < 0.5, |y| < 0.5,
u2(x, =
0, else,
(1) e~8™ Vi gin(2mx) sin(2my), if |z| < 0.5, |y| < 0.5,
p\x,t) =

0, else.

The force function f can be determined by any v according to the above solution.

In this example, we choose the discontinuous solution to show the advantage of
discontinuous Galerkin method comparing with continuous finite element method that
discontinuous Galerkin method can simulate the discontinuous solutions very well. From
the Figures 2.17-2.22, we give the figures of exact and numerical ones to compare. Note
that the simulations can display the discontinuous parts and separate different values
clearly. Even for the pressure p, it still has a good approximation. Figures 2.23-2.25,
display the contour figures of numerical solutions to validate the efficiency of the CLDG

scheme we proposed.
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h k=1 k=2 k=1 k=2

eullo | lleullo | llepllo [l ep llo
1/4 | 2.93e-01 | 3.65e-01 | 6.08e-01 | 5.06e-01
1/8 | 3.37e-01 | 3.69¢-01 | 5.11e-01 | 4.50e-01
1/16 | 3.59¢e-01 | 3.73e-01 | 4.73e-01 | 4.23e-01
1/32 | 3.68e-01 | 3.74e-01 | 4.60e-01 | 4.11e-01

Tab. 2.10: The L?—norm errors and convergence rates of velocity and pressure for Ex-
ample 2.4 with 7' = 0.05, Re = 102,

| ewllo | |l €ullo I ep llo I ep llo
1/4 | 2.99e-01 | 3.71e-01 | 6.31e-01 | 5.25e-01
1/8 | 3.42¢-01 | 3.77e-01 | 5.33e-01 | 4.70e-01
1/16 | 3.66e-01 | 3.80e-01 | 4.89¢-01 | 4.43e-01
1/32 | 3.75e-01 | 3.81e-01 | 4.60e-01 | 4.30e-01

Tab. 2.11: The L?—norm errors of velocity and pressure for Example 2.4 with 7' = 0.05,
Re =108,

ul(t=0.01)

Fig. 2.23: Exact solution u; (¢ = 0.01) of Example 2.4, Re = 108.
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Fig. 2.24: Numerical solution uy;(t = 0.01) of Example 2.4, Re = 108.

u2(t=0.01)
1
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02 02
> 0 0
02 0.2
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-1

- 05 0 05 1

X
Fig. 2.25: Exact solution ug(t = 0.01) of Example 2.4, Re = 108.
u2hit=0.01)

1 1
08 0.8
06 06
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Fig. 2.26: Numerical solution ugy,(t = 0.01) of Example 2.4, Re = 108.
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Fig. 2.27: Exact solution p(t = 0.01) of Example 2.4, Re = 108.
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Fig. 2.28: Numerical solution py(t = 0.01) of Example 2.4, Re = 10%.
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Fig. 2.29: The contour of numerical solution uy,(t = 0.05) of Example 2.4, Re = 10.
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Fig. 2.30: The contour of numerical solution usgy (t = 0.05) of Example 2.4, Re = 10.

Pph(=0.05)
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Fig. 2.31: The contour of numerical solution py, (¢t = 0.05) of Example 2.4, Re = 10.
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Chapter 3

HDG method for fractional

convection-diffusion equations

3.1 Fractional convection-diffusion problem

Here, we shall consider time-dependent space-fractional convection-diffusion problem for
u in the form:

8tu+b~Vu—clg;—7j—02‘gﬁTg =f, (x,t) € QxJ,

u(z,t) = 0, (x,t) € 0Q x J, (3.1)

u(z,0) = uo(x), x e,

where Q = (a,b) X (¢,d) and J = [0,7] with the superdiffusion operators defined by

operators g;ff and gZ—}j,l < a, B < 2. The function f(x,t) € L?(J;L*(Q)) is a source

term, the diffusion coefficients ¢; and ¢y are supposed to be positive constants, the con-

vection coefficient b(x, t) is bounded vector function, and the solution u is also supposed
to satisfy u € L% (J; H%(Q)), 0pu € L2(J; HY(Q)), Oyu € L2(J; L2(Q)), ug € L*(9).

3.2 Fractional norms in variational norms

Lemma 3.1. /26, 59] Suppose that u(z) is a function defined in the interval (a,b). If
u(k)(a:) =0, whenz=aorxz=bV0<k<n-—1, then forn—1<v<n,née& NT, the
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following hold

Diu(z) = D" I} u(z) =, " (D"u(z)),

Diu(x) = (D) I u(z) = I (D) u(x)).

Note that, from Definition 1.2, Definition 1.3 and Lemma 3.1 if the solution u of
(3.1) satisfies u®) (x,y) = 0,k = 0,1 when & = a or y = ¢, then for any 1 < o, f < 2,
the fractional derivatives of function u(x,y) on Q = (a,b) X (¢,d) can be rewritten as (
see [47, 59]):

0%u 82 2—« 0 2—« 0 2—a 82
8? - wazq; u(m,y) - 8_xaI:r (a_xu(xvy)) - aIx (axgu(xvy))v (32)
85,“ 82 2-3 —5 2-3 —8 2-8 62
W = 8—y2 y u(x,y) = 8_yezy (@u(x,y)) =, (a_ygu<$7y)) (3.3)

Definition 3.1. [26] (The left and right fractional spaces ) For 0 < p < 1, extend u(x)
outside of J := (a,b) by zero. Then define the norm

| u ||JZ“(]R) = -0 Zhu ”L?(R)a (3.4)

[ w ||J};“(R) =l Thou ||L2(]R) . (3.5)
Let the two spaces J; ¥(R) and J;"(R) denote the closures of C§°(R) with respect
to || - HJZ“ and || - ||J§M, respectively.

Lemma 3.2. [26, 28, 59] For > 0, assume that w(x) is a real function. Then

L Hy — 2 — 2
(—OOZ-IUWIOO) - COS(ILL/]T) H u ||JEH(]R)7 COS(/”T) || u HJI;H(R) . (36)
Generally, we consider the case in which the problem in a bounded domain instead
of R. Then, we restrict the definitions to J = (a, b).

Definition 3.2. [26, 59] Define the spaces J; ((3) and J5{(3) as the closures of C§°(3J)

under their norms.

Theorem 3.3. [26, 59] If —po < —p1 < 0, then J; 5" (3) and Jg's'(3) are embedded
into JL_”(? (3) and ng’ég (3), respectively. Furthermore, L*(J) is embedded into both of

59



them.

Definition 3.3. [26, 59] By Lemma 1, Lemma 3.2, Definition 3.1 and Definition 3.2,
there are

d d
[ ZE )l s = costarm) [ uC)l v (1)

b b
[ (& a0 uw s eade = cos(Bim) [t )Py do (39
where the spaces J5{'(a,b) and Jﬁgl (¢,d) are the closures of C5°(a,b) and C3°(c,d)
under their norms, respectively, and a1 =1— 5,6 =1 — g, 0<a,pfr < %

Remark 3.1. It follows from Theorem 3.3 that

/ oI 0 < / 6o

b b
J IR e e < C [ty e

where C' is a generic constant.

3.3 Derivation of numerical scheme

We focus on deriving the fully discrete numerical scheme of two dimensional (2D) space-
fractional convection-diffusion equations.

As Ref. [11], let ¢(x,t) = (1 + |b(x, t)|2)%, where |b(zx,t)|?> = b2 + b3. Hence, the
characteristic direction associated with dyu + b - Vu is denoted by 9, = at + & V . Then

the original equation of (3.1) can be rewritten as a mixed form [21, 26, 59}.

Yoru—V o= f(x,t), (x,t) € QA x J.

o — (e, l? par e,y Ppy) =0, (1) €Qx ]

p—Vu=0, (x,t) € Q x J, (3.9)
u(x,t) =0, (x,t) € 0 x J.

u(x,0) = ug(x), x e,
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where afgfo‘ and Jgiﬁ are fractional operators of Definition 1.1.

For an arbitrary subset F € &),, we multiply the first, second, and the third equa-
tion of (3.9) by the smooth test functions (v, T, q), respectively. In order to obtain a
symmetric weak variational formulation, we only integrate the first equation of (3.9) by

parts, and obtain

[ ¥oruvdx + [, o - Vvde — [, 0 -ngvds = [, fude,
[po-Tde — [L(c, L2 Py, Ly py) - Tdx =0, (3.10)

Jpp-qdx — [, Vu-qdx =0,

where ng is the outward unit normal to OF. Note that the above equations are well

defined by any functions (u,o,p) and (v,7,q) in V x Q x Q, where
v :{u € L2(Q) : ulp € HY(E), VE € @@h},
Q ={pe (1%(Q)? :plp € (H'(E))?, VE € &}

Next we will approximate the exact solution (u, o, p) with the functions (uy, oy, py) in
the finite element spaces Vj, x Qp x Qp CV x Q x Q, where

Vi :{uh € L2(Q) : up|p € PF(E), VE ¢ @@h},
Qn I{Ph € (L*(Q))? : pulr € (PE(E))?, VE € é”h},

where the finite element space P*(E) denotes the set of polynomials of degree less than
or equal to k > 0.

Thus, the approximate solution (uy, o, pp,) satisfies the weak formulation, for all
(v,7,q) € Vi x Qp x Qp such that

[g Vorupvde + [, oy - Vode — [, 0% - npvds = [ fode,

[pon-Tde — [(c, L2 "Pen, Czefg_ﬁpyh) ~Tdx =0, (3.11)

[z pn - qde — [, Vuy, - qde =0,
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where the numerical fluxes are well chosen as o} = {o},}, Ve € &P in order to ensure
the stability of the scheme and its accuracy.

It is well known that the fluxes o} = {o},} are consistent. By inspiration in penalty
Galerkin methods [50], we naturally consider a fact that [u]’e =0,Ve € &P and [o] =
0,Ve € 5,3 Therefore, a symmetric and stable DG scheme is obtained as following.

Substituting the flux o} = {o},} into equation (3.11), summing over all the elements,
and adding the penalty terms, we observe that for (up, o, pp) € Vi X Qp X Qp, the semi-

discrete variational formulation is given by

(60rupv) + (0, Vo) — ({on} -1, o) g+ €1 ([un]. [e]) 2 = (F,0),

(o, ) — (12 pan, caZy "pyn), ) =0, (3.12)

(Pr. @) — (V. @) + (us]. {a} -n) s+ ex((on). [a]) s = 0.

For any (v,7,q) € Vi x Qp X Qp, the exact solution of (3.1) is expected to be at
least continuous and differentiable, which keeps the consistency of the scheme. The term
([u], {g} me) p vanishes since the exact solution u satisfies [u] ‘6 = 0,Ve € &P. Note that
e1([u], [v]) 5 penalizes the jump in the function u, whereas es([o], [q]) gi penalizes the
jump in the function o. Here ¢; and ey are chosen as positive numbers. Unfortunately
the third equation of (3.12) loses the locality of discontinuous Galerkin method. Since
pp, is function of wy, and o, py, can not be eliminated from the third equation. Finally
we have to obtain three unknowns uy, pun, pyn to be solved. Although such mixed DG
method does not eliminate many unknowns of the hybridized DG method, our choice of
fluxes makes the error analysis available.

Above and throughout this chapter, we use the notations

(w,v) = Z (wvv)Ev (wav)é"}f = Z(w’v)& (wvv)é”f = Z (wav)e'

E€é, e€s) ecsP

3.3.1 Dealing with time

We now discretize the time derivative with the method of characteristics based on hy-
bridized discontinuous Galerkin method.

For each positive integer N, let 0 = t° < t! < ... <t = T be a uniform partition
of J into subintervals J* = (t"~! #"] with time step At = t" — "1 1 < n < N. The

characteristic tracing back along the field b of a point € Q at time t” to t"! is
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approximated by [11, 27]
&(x, ") = x — b(x, t")At.

Therefore, the approximation for the hyperbolic part of (3.1) at time ¢ can be

approximated as follows:
u — U
wna‘run R — dnfl _ unil(;f))_

Remark 3.2. For the time truncation error, under the assumption of (3.17) and the

assumption of the solution u of (3.1) (see [27]), there is

u™ ~n—1

n n —u
| " 0ru™ — —Ar 16< C Nl 9™ llzoe(aipoo @) | Orrte 172 gm. 2y At

Thus, the fully discrete scheme corresponding to the variational formulation of (3.12)
is to find (up, o}, pp) € Vi x Qi x Qp, for any (v,7,q) € Vj, x Qp, x Qy, such that

n__~n—1

(Fgt—v) + (a7, Vo) = (o} - ne, [W]) g + a1 ([up] [ gm = (f"0),

(o5, 7) = (L2 Pl ey D), 7) =0, (3.13)

(P.a) — (Vaf.q) + (). {a) 1) s + (o] [a) s = 0,

where @) = up, (2, "), @) = uP.

Define the bilinear forms by:

a(oy,v) = (o, Vv) — ({og} - ne, [v]) g5,
e(ph,q) = (P, 9),

by, 7) = ((c1aZl v, c2y PP, ).
d(up, v) = e(fupl; [v]) gz,

e(o,q) = ex([o], [a]) e

and the linear form
F(v):=(f"v), YveW,.

We can rewrite (3.13) as a compact formulation: Find (u}, o}, p}) € Vi x Qp x Qy,
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at time ¢ = ¢"™ such that

(2xt—,v) +a(o],v) + d(up,v) = F(v), Yo €V,

c(of, ) = b(p},T) =0, V1 € Qp, (3.14)

c(py,q) — a(q,uy) +e(oy,q) =0, Vg € Q.

Now we introduce a semi-norm that appears in the analysis of these schemes, i.e.

|t o, )|

= d(up, up,) + b(py, pp) + e(oy;, 07)

d
—ccos(arm) [ 1 8C) Py it X 100 By (315)
¢ o eeé”f
b
tescos(arm) [ o) sy ot e 3 1107 [Bagy
a ’ ’ ees}

We end this section by showing that (3.13) is uniquely solvable for the solution

(uj, o), py) at each time step n.

Lemma 3.4. (well posedness of the HDG scheme). The HDG method of (3.13) defines

a unique approzimation solution (uy,o},py) € Vi x Qp X Q.

Proof. As (3.13) represents a finite system of linear equations, it is enough to show that
the unique solution to (3.13) with f = 0,4} " = 0.
Indeed, taking v = u}, 7 = —pJ!, ¢ = o} into the equations of (3.13), and adding the

equations, we get
1

At
which implies v} = 0,p}! =0, [o}}] =0 on é",ﬁ Next we go back to the second equation
of (3.13) and take 7 = o}, then

n n _n _ny|2
” Up H(% +‘(uhao'haph)|A =0, (316)

Ik ll5=o.

Hence, o} = 0, which completes the proof of the uniqueness of the solution. O
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3.4 Stability analysis and error analysis

3.4.1 Stability analysis

In the following, C' indicates a generic constant independent of A and At, which takes
different values in different occurrences.

Throughout this chapter we assume that
b e L>®(J; Wh*(Q)?). (3.17)
Lemma 3.5. [11] Under (3.17), for any function v € L*(Q) there is
Fo 1§ = Ilv < CAt [ v |5, (3.18)

where v(x) = v(x — b(x, t")At).

Theorem 3.6. (Numerical stability) Let (uy, o}, py) satisfy (3.13). With (3.17), the
scheme is stable for (3.13), i.e., for any integers N =1,2,---, there is

N
2
lui I3 +24¢8 Y [(ufr, ot i) 4

n=1

N (3.19)

<Aty | I +C Il s,

n=1
where the semi-norm |- |4 is defined by formula (3.15), and uf) = u®.

Proof. Let v = 2Atu}, T = —2Atp},q = 2Ato} in equations of (3.14), respectively. By

the symmetry of the bilinear forms, adding the above equations we obtain

2AtF (uy) = 2Atb(py, pyy) + 2Ate(oy,, 0},)
+ 2(upy — ap ) + 2A¢td (u)t, up).

It follows from

2(up — " up) =l i 15— 1y~ G,
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the Young’s inequality, the definition of F and | - |4, Lemma 3.5 that

_ 2
Il 15— 1w ™" 15 +24¢ (uy, o7 PR)[

< CAt [ up ™ [I§ +A( [ i 15+ 1 7115 )-

Summing from n =1,2,--- , N, we get

N
2
[l uif 113 +2A¢ Y [(uh, o, p})|

n=1

N N
< OAtY | up lI§ +(L+CA [ up [IF +AtY || £ 13 -

n=1 n=1

Using the discrete Gronwall inequality, with CAt < 1, VN > 1, there is

N
N 2
lup’ [IF +2A¢ Y | (uiy, o7 PR
n=1

N (3.20)
<Clupllg+CAtd> | " 1l5 -

n=1

3.4.2 Error analysis

In this subsection we state and discuss error bounds for the HDG method. The main

steps of our error analysis follow Galerkin orthogonality property. As usual, we denote

n

the error (€], e, el

760'7 yyg

)= (u" —up,o" — o, p" — p}) by the following

(euseq,ep) = (u" —TIu", 0" — Tlo™, p" — TIp") + (Iley, ey, Iley,),

where IT and IT = (I, II) are linear continuous projection operators from V and Q onto
the finite element spaces Vj, and Qy, respectively.

From equation (3.14), we obtain a compact form as follows:

n ~n—1
<“h Uy,

o v) + Alf o P v, T, @) = F(0), (3:21)
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by setting

A(up, oy, PR v, T,q)
=a(op,v) + d(up,v) +c(oy, ) — b(pp, T) (3.22)

c(py,q) — alq,up) + (o}, q).

+

Lemma 3.7. Let u € L>®(J; H2(Q)),0u € L*(J; HY(Q)), 0pu € L*(J; L*(Q)). Let 11
and II be linear continuous projection operators from V and Q onto the finite element
spaces Vi, and Qyp,, respectively. Then

n n UZ B {I‘Z_l n n n ny |2
(1/) oru" — 77571_[6“) + |(Heu,Hea,Hep)}A

A
= A(u" — ", Mo" — o", Ip" — p";1le};, —Ilep Tlel)).

(3.23)

Proof. Because of the consistency of the numerical fluxes, the exact solution (u, o, p)
satisfies equation (3.12) and the approximation solution (uj,o},p}) satisfies (3.13).
Then, subtracting (3.13) from (3.12) and taking v = Tlej;, 7 = —Ilep, q = Ileg, the

error satisfies

n __ ~n—1
(¢ oru" — %,Heﬁ) + Al el en: el —TTel, Telt) = 0, (3.24)
and
|(Ier, e, Tel)| % = A(lel, ITel, TTel; ek, —ITel, TTel). (3.25)

By Galerkin orthogonality, there is

n n n. n n n
Aley, ek, ep: ey, —lep Tley)

= A(Mey, ey, ep; Iey;, —Iep, Iley ) (3.26)
A(Ilu” — v To™ — ", Ip"™ — p™; e}, —Iley, Ile}).

Hence, equation (3.23) follows equalities (3.24), (3.25) and (3.26). O

Thus, in order to prove the error bound, all we need to do is to estimate the first

term of the left-side and the right term of equation (3.23), respectively.

The characteristic term

In this subsection, we will estimate the first left-side term of equation (3.23).
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Lemma 3.8. [11] With (3.17), for any function v € HY(Q)) and each n we have
[0 =2 o< CAE[| Vv [lo, (3.27)

where © = v(&) = v(x — b"AL).

The following result is a straightforward consequence of the estimate of the first

left-side term of equation (3.23).

Theorem 3.9. Let u € L>®(J; H*(2)), 0yu € L*(J; HY(Q)), 0w € L*(J;L*(Q)) and u}
solve equation (3.18). With (3.17), there is

up —a !
(zp”aTu” — hTtha Heﬁ)
1
S 1 e 112 — | TIe™ ! 12) — C || I |2
> oz (1T |5 = [ Teg ™ {15 ) — € | Teg ™ I3 (3.28)

c
— CAt H Orrul ||%2(Jn;L2(Q)) _Kt || at(Hu - u) ||%2(J";L2(Q))
—C || V(I —uh) I§ =C | Ty |3,

where 11 is linear continuous projection operator from V onto the finite element space
V.

Proof. From equation (3.23), we observe that

up — gt
(w"GTu” - _h Ath ,Heﬁ)
Iley —Tlep~! u" — !
= (uTtu’Hez) 4 (,(/JnaTun _ T’HeZ)

(Hun _ un) _ (Hanfl _ ,Lvllnfl (329)

( A7

3
= Z&.
=1

),Heﬁ)
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Using Lemma 3.5, we obtain

n sn—1
ITe;, — I1e7;

B - (M )
= o (e [ — e [ 4 ) e — ey R )
> o (Imes I3 - et )
> s (e I3 — e J3) — ¢ e I3

where ITe? ! = a1 — ay 1 Also by the Taylor expansion and Hélder’s inequality,

n __ 1
B2 = (90 - )|

< CAt| Orru ||%2(Jn;L2(Q)) +C' || ey, ||%’

and
™ — u”) — Hﬂn_l o ,&n—l
N
B (Hun _ un) _ (Hunfl _ unfl) N 3.30
- ( At ’He“) (3.30)
(Hun—l _ un—l) _ (Han_l _ ﬂn—l) 2\
+( N Tey) =81+,
where
_ (Hun _ un) _ (Hun—l _ un—l) "
S1= ( At ’HG“)
tn
< e g / | 00t — ) [ (331)
< C | ey |5 + || O (Mu — u) ”%,Q(J";LZ(Q))’
and

n—1 _ ,n—1\ _ ~n—1 _ ~n—1

((Hu u" ) — (Ta ") He")
At

< C | ey |5 +C || VI — ™1 |3,

52 = (3.32)

follow from Cauchy-Schwarz’s inequality, Young’s inequality and Lemma 3.8. Substitut-
ing By, Bg, Bs into (3.29), we finish the proof. O
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The right hand side term

In this subsection, we will use general analytic methods to get the bound of the right

hand side term of equation (3.23).

Theorem 3.10. Let u be sufficiently smooth and solve (3.9). Assume that (TTu", T1o™
,Ip") are standard L?-projection operators of (u™, o™, p™), and (u}, o}, p}) solves (3.13).
Under the assumption of (3.17), there is

‘A(Hu” —u", Ilo" — o", IIp" — p";Iley, —Iley, Iley )

d
C C
< Corca [T 0) [Py duo+ (6 o+ Cel?hl o St
. i Jro' (ab) €1 €a
b C C (3.33)
no )2 o 2%+1 . © okt
+ Coney [T (@) 12 o (S Ceal® 4
€1 €2
F LS e oy +2 3 I ] g,
eeéaf 36(5’;’;
Proof. From the definition of A, we have
A" —u™, Tle™ — o, TIp" — p"; Iley;, —Iep, Iley)
< la(Mle™ — o™, 1le)| + |b(IIp" — p”,HeZ)| + |d(Tu™ — u", ey)|
+ |e(Tlo™ — o™, Iel)| + |a(Ilel, Iu™ — u™)| + |c(Ile" — o™, —Ile})| (3.34)

+ |e(IIp" — p", Tel)|
7

=> T
=1

Using Holder’s, Young’s inequalities and the property of projection operator I, from

Lemma 1.6 we obtain

Ti = [a(lo™ — o 1el)| = |({Tlo" — o} - n, [Iel]) o5 |

< > e = o™} - me |20 || €] 12

e€dy
1 €1
<Y (0" — 0"} ne o+ | ITED] e )
eeg’f !
Cook1 €1 ny (12
<+ >l MeR] (172, -
1

B
eEsy;
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From the property of projection operator II and Lemma 1, Definition 3.1, Definition 3.3

Theorem 3.3, it follows that

= [en(Ip} — i Ty TIey, ) + ea(TIpy — py. Zg "TIe),)

d 1
<l = gl ([ 10D 1B, )
ben =0 bo ([ 1T, 12 )

< Cey || Tpl — p ey (y) 1Py, , d
= 0 || Py — Dy HO (/ H € JL( ’y) HJR701(a,b) y)

[V

SIS

N[

+Cey || T — P [lo / | TTef (x ||2_B1 ) &)
C . okto 2

<> +C’cl€a || Lep, (5 9) a1 () W
o 5 (a,b)

+ G2 | oy H Ie,, (z,-) H2 dz
o 2€8 py \ L Jpated) "

where €, and eg are chosen as sufficiently small numbers such that Ce, < cos(aqm) and

Ceg < cos(pim).
With the same deduction of 77, there is
Tz = [d(ITu™ — u”, Tlep)|
1
<a 0 (It =) o +5 1 0 1a))
eeé”‘f

€1
< Ch* e + n >N Meg] 72 -

eegf

By Lemma 1.6, there is

71 = |e(Ilo” — o", IIe})|
<e Y |[[Mo" — 0" |12 [Tex] [|z2)

ecs}
1
<e ) (Mo~ 0" |72 +7 | Megl 72 )
ecéi
k €2
< Ceah™ ' + 1 Z | [Meg] ||%2(e) .

ecé}

71



Integrating the first term of a(IIel, ITu™ — u™) by parts, and using the orthogonal prop-

erty of projection operator IT, we get

= |a(Iley, TIu™ — u™)|
— |([He§], {TTu™ — u”}ne)g’i

< D | [Meg] ol {Tlu” = wIne |2

ecs}
< Z — || {Tlu™ — u"}n (|72 + 2 || [rTe) 1720 )
eeé“
C €
—p2tt 4 2 Z | [Meg] (172 -

€2
ee/”

Note that Tg and 77 vanish because of the orthogonal property of projection II.
Substituting 7,7 = 1,--- , 7 into (3.34), we complete the proof. O

Error bound

Assume that the corresponding analytical solution is sufficiently regular and satisfies
u € L®(J; H3(Q)), 0pu € L2(J; HY(Q)), Oyu € L2(J; L2(2)).

Theorem 3.11. Let (u",0",p") be the exact solution of (3.9), and (u},o},p)) be
numerical solution of the HDG scheme corresponding to equation (3.13). Under the

assumption of (3.17), for any integer N = 1,2, -, the following inequality holds

= I3 +At2(q >l =] e +er D

eEéaB eeé“

2

d
I o" = o7l 1320, ) +2At201Ka/c I8 = P2 0) e ) W

2
+2AthQKﬁ / I (P — Pi) () ||J§%1 ) 0 (3.35)
N N
C(At)? Z | Orru ||%2(Jn;L2(Q)) +CZ | Op(Tu — u) ”%Z(J”;LQ(Q))
n=1 n=1
N
+ CethJrl + CAtZ | Hunfl - unfl |%’
n=1

where K, = cos(oaym) — Ceq > 0,Kpg = cos(fim) — Ceg > 0, Ce is dependent of €1, €2,
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and €, and eg are chosen as above.

Remark 3.3. Note that C. = C'eq + g + Cleg + % is independent on h for some suitable

choices of €1, €z. But if €7 = eo = h™1, then C. = O(h~1) (see next section).

Proof. Substituting the results of Theorem 3.9 and Theorem 3.10 into equation (3.23),

there is

1 _ €1 €2
E( [ Tegy 1§ — 1| e~ 13 ) + > > e (172 t3 > I Mg (72
e€£’hB eeéa}’;

d
+ c1(cos(aym) — Cea)/ | Hep (- y) ”?I,;%l(mb) dy

b
+ea(eos(im) — Cep) [T, (@) B, do
a R0 \&
<O Tl B +C || Tl B +CAL || Orrt B ageny

C n— n— k
t N | 8:(TTu = ) (|72 yn.p2(0y) +C | Mu"" = w1 [F +CRPHL

With ITe = 0, multiplying the above inequality by 2At for both sides, summing over n

from 1 to IV, and using the discrete Gronwall inequality, we obtain

N
| e I3 +At Y (e Y Il Mei] (o +e2 3 Il (TTeG] [17,) )

n=1 666”13 eeé@é

N d
n 2
2003 er(costonm) = Cea) [T (o) I,

n=1
N b
+ 2At; ca(cos(fym) — CGB)/Q | ey, (z,-) ||§};[31 (d) dx (3.36)
N N
< C(At)2 Z || Orr H%Q(Jn;LZ(Q)) +CZ H at(Hu - u) Hiz(Jn;Lz(Q))
n=1 n=1

N
+CALY [T — "t f +CR*

n=1

By the triangle inequality, we complete the proof. O
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3.5 Numerical experiments

In this section, we shall illustrate numerical performance of our proposed scheme by
numerical simulation of two examples. In the first example, we verify the accuracy of
our scheme with exact smooth solution u combining with fractional Riemann-Liouville
derivatives with respect to x-variable and y-variable, respectively. When computing the
fractional integral part in triangular meshes ( see Figures 3.1-3.2), we use Gauss points
and weights to deal with the terms relating with the fractional operators element-by-
element ( see [48]). Since this part needs more time and memory ( see [41]), we only
used the piecewise linear basis functions to simulate the solutions in triangular meshes.
TABLE 3.1 and TABLE 3.2 illustrate that our scheme has a good convergence order
with piecewise linear basis function. In the second example, Figures 3.3-3.10 justify that

our scheme simulates the solution very well.

rangular meshes

0 |
0 01 02 03 04 05 06 07 08 09 1
x-direction

Fig. 3.1: All triangles in x-direction affected by Gauss point (denoted by black square).

rangular meshes

07
L

L 06
9 1

R
%

L |

0 01 02 03 04 05 06 07 08 09 1
x-direction

Fig. 3.2: All triangles in y-direction affected by Gauss point (denoted by black square).
Example 3.1. Consider the two-dimensional space-fractional convection-diffusion prob-
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lem (3.1) in the unit square = [0, 1] x [0, 1]. The initial condition and the exact solution

are specified as:

u(z,t) = e 'z (z — 1%y (y — 1)%,
uo(x) = 2*(z — 1)%y*(y — 1)%, (3.37)
bz, t) = (0,0).

Then the exact solution has the homogeneous boundary value, and the force term
f(x,t) is determined accordingly from (3.1) for given ¢q,cs. For our numerical simu-
lation, in order to validate stability and accuracy of the presented HDG scheme, we
choose the time-step, At = O(h), used to advance the discrete formulation from ¢"~! to

t",n=1,2,--- ,N. The experimental convergence rate is given by

log (|| u(t) = un, () lz2(s,,) / | u(t) = uny(t) lz2(s,,) )
rate = .

log(h1/hz)
(avﬂ) = (127 14)3 €1 = ]-762 =1
h | eullo | rate | || ey |1 | rate || Ozey |lo | rate | || Oyey ||o
1/6 | 2.23e-04 - 1.28e-04 - 2.22e-03 - 6.52e-03

1/8 | 1.45e-04 | 1.5 | 8.12e-05 | 1.6 | 1.79e-03 | 0.8 | 6.77e-03
1/10 | 1.03e-04 | 1.5 | 5.67¢-05 | 1.6 | 1.45e-03 | 1.0 | 6.86e-03
1/12 | 7.83e-05 | 1.5 | 4.18¢-05 | 1.7 | 1.16e-03 | 1.2 | 6.90e-03
1/14 | 5.86e-05 | 1.9 | 3.21e-05 | 1.7 | 9.75e-04 | 1.1 | 6.94e-03
1/16 | 4.27e-05 | 2.4 | 2.41e-05 | 2.2 | 9.72e-04 | 0.2 | 6.98e-03
(a,8) = (1.2,1.4),e1 = h Y eg=h"!

h |l ewllo | rate | || ey |1 | rate || Ozey |lo | rate | || Oyey |lo
1/6 | 2.14e-04 - 1.28e-04 - 2.10e-03 - 6.50e-03
1/8 | 1.38e-04 | 1.5 | 7.95e-05 | 1.7 | 1.65e-03 | 0.8 | 6.74e-03
1/10 | 1.02e-04 | 1.4 | 6.25e-05 | 1.1 1.47e-03 | 0.5 | 6.88e-03
1/12 | 7.51e-05 | 1.7 | 4.65e¢-05 | 1.6 | 1.25e-03 | 0.9 | 6.92e-03
1/14 | 5.53e-05 | 2.0 | 3.47e-05 | 1.9 | 9.44e-04 | 1.8 | 6.94e-03
1/16 | 3.72e-05 | 3.0 | 2.27¢-05 | 3.2 | 7.83e-04 | 1.4 | 6.95e-03

Tab. 3.1: Errors and convergence orders of Example 3.1 with ¢, = F(FB(E)Q ) ,Cy = F(F?’(g)ﬁ 3

Table 3.1 and Table 3.2 display the numerical L?, L'-errors and derivative errors with

respect to z-variable and y-variable, respectively, at ¢ = 0.1. Note that with different
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choices of €1, €9, the HDG scheme has good errors ( i.e. 10e — 5), and almost has a
convergence of an order 1.5 in L?-norm. The errors and rates of Table 3.2 are better
than Table 3.1.

(o, B) = (1.9,1.6),e1 = 0.01, 2 = 0.01

h |l ewllo | rate | || ey |1 | rate | || Ozey |lo | Tate | || Oyey ||o
1/6 | 7.94e-05 - 4.87e-05 - 1.17e-03 - 6.38e-03
1/8 | 5.88¢-05 | 1.0 | 3.77e-05 | 0.9 | 7.52e-04 | 1.5 | 6.66e-03
1/10 | 4.49e-05 | 1.2 | 2.82¢-05 | 1.3 | 5.23e-04 | 1.6 | 6.78¢-03
1/12 | 3.61e-05 | 1.2 | 2.26e-05 | 1.2 | 4.02e-04 1.4 | 6.85e-03
1/14 | 2.98e-05 | 1.2 | 1.82e-05 | 1.4 | 3.20e-04 | 1.5 | 6.90e-03
1/16 | 2.42e-05 | 1.6 | 1.47¢-05 | 1.6 | 2.63e-04 | 1.5 | 6.93e-03
(a,B) = (1.9,1.6),e; =h ™t eg =h!

I |l eullo | rate | || ey |1 | rate || Ozey |lo | rate | || Oyey ||o
1/6 | 7.24e-05 - 3.60e-05 - 1.15e-03 - 6.39¢e-03
1/8 | 5.06e-05 | 1.2 | 2.39e-05 | 1.4 | 7.58¢-04 | 1.5 | 6.67¢-03
1/10 | 3.88¢-05 | 1.2 | 2.04e-05 | 0.7 | 5.43e-04 | 1.5 | 6.79¢-03
1/12 | 3.08e-05 | 1.3 | 1.72e-05 | 0.9 | 4.23e-04 | 1.4 | 6.86e-03
1/14 | 2.39¢-05 | 1.7 | 1.29¢-05 | 1.9 | 3.46e-04 | 1.3 | 6.90e-03
1/16 | 1.69e-05 | 2.6 | 8.54e-05 | 3.1 | 2.79e-04 | 1.6 | 6.93e-03

Tab. 3.2: Errors and convergence orders of Example 3.1 with ¢; = Fg(g)a ) ,Cy = Fg(g)ﬁ ),

Example 3.2. In this example, we shall investigate the approximation solution of
problem (3.1). For convenience, we still choose the domain is the unit square Q) =
(0,1) x (0,1), and the initial condition, exact solution u, the vector function b are given
by:

u(z,t) =e~ta?(x — 0.5)%(x — 1)%y%(y — 0.5)%(y — 1)?,

ug(x) = 2%(x — 0.5)%(x — 1)%y*(y — 0.5)%(y — 1)?, (3.38)

b(x,t) = ((x — 0.5), —(y — 0.5)).

For the second example, in order to further support the theoretical convergence
and justify the powerful HDG scheme, we give some approximation solutions with the
refining space-step h to compare with exact solutions. It is clear that the exact solution
of Example 3.2 is nonnegative with four hills. In our simulation, our P'-DG solution
recovers the exact solution perfectly with all four hills in coarse meshes.

In these numerical experiments, we choose At = O(h), e; = e = h~!. Figures 3.3-3.6
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give the exact solution v and the numerical solutions u; based on different space step

h=11 L att=005 a=128=14,¢ = Fﬁgf),@ = Fﬁ”(;)ﬂ). Figures 3.7-3.10 give

the exact solution u and the numerical solutions uj, based on different space step h = i,

§ 16 att =01a =196 = 16,¢; = Fg(g;l),@ = Fg@)ﬂ). Note that the numerical

results display that the approximations are more and more accurate with the refining of

the meshes.

u(i=005)

Fig. 3.3: Exact solution u(t = 0.05).

Uh(i=005)

Fig. 3.4: Numerical solution uy,(t = 0.05), h = 1.
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uh(=005)

ool—

uh(t=0.05)

Fig. 3.6: Numerical solution uy,(t = 0.05), h = 1-.

uli=0.1)

Fig. 3.7: Exact solution u(t = 0.1).
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un(t=0.1)

Fig. 3.8: Numerical solution up(t = 0.1),h = 1.

uh(=01)

Fig. 3.9: Numerical solution uy(t = 0.1), h = £.

uh(i=0.0)

Fig. 3.10: Numerical solution uy(t = 0.1),h = 15.
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Chapter 4
Conclusions and perspectives

In this thesis, we finished two work from two areas, i.e., characteristic local discontinuous
Galerkin method for the incompressible Navier-Stokes equations proposed in Chapter 2
and hybridized discontinuous Galerkin method for space-fractional convection-diffusion

equations in 2D shown in Chapter 3, respectively.

e S. Q. Wang, W. H. Deng, J. Y. Yuan, Y. J. Wu, Characteristic local discontinuous

Galerkin method for incompressible Navier-Stokes equations. submitted.

e S. Q. Wang, J. Y. Yuan, W. H. Deng, Y. J. Wu, A hybridized discontinuous

Galerkin method for 2D fractional convection-diffusion equations. submitted.

The first work is concerning on a problem of mathematical physical fluid computa-
tion. In this work we extended the work of local discontinuous Galerkin methods for
the Stokes system [15] with characteristic local discontinuous Galerkin (CLDG) method.
By carefully constructing the numerical fluxes, adding the penalty terms, and using
the method of characteristics to discretize the time derivative and nonlinear convective
term, we design the effective LDG scheme to solve the time-dependent incompressible
Navier-Stokes equations in R?. Besides the general advantages of the LDG scheme, the
proposed scheme is theoretically proved or numerically verified to have the following
benefits: 1) it is symmetric, so easy to do theoretical analysis and numerical computa-
tion; 2) theoretically proved to be nonlinear stable; 3) numerically verified to have the
suboptimal convergence rates; 4) the scheme is efficient for a wide range of Reynolds
numbers, such as Re = 102,103,109, 10%,10'2,10%,1016,

For the characteristic local discontinuous Galerkin method for the incompressible

Navier-Stokes equations, we did not complete all problems of considered equations. In
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our work, we just recasted the solutions with one time accuracy and obtained suboptimal
convergence by simulating some simple examples. In future work, we will consider com-
bining second order modified characteristics with some discontinuous Galerkin methods
to recast the time-dependent incompressible Navier-Stokes equations. In numerical im-
plementation, the benchmark problem which is fundamental problem in Navier-Stokes
equations will be performed.

The second work focus on numerical analysis and implementation of fractional equa-
tions with discontinuous Galerkin method. By carefully introducing the auxiliary vari-
ables and constructing the numerical fluxes, adding the penalty terms, and using the
method of characteristics to deal with the time derivative and convective term, we design
the effective HDG scheme to solve 2D space-fractional convection-diffusion equations
with triangular meshes. As we know, this work is the first time to deal 2D space-
fractional convection-diffusion equations with triangular mesh by the DG method. The
stability and error analysis are investigated. Besides the general advantages of HDG
method, the presented scheme is proved to have the following benefits: 1) it is symmet-
ric, so easy to deal with fractional operators; 2) theoretically, the stability was proved
more easily; 3) the penalty terms made the error analysis more convenient; 4) numeri-
cally verified to have efficient approximation; 5) the scheme was performed very well in
triangular meshes; 6) it is possible to use this scheme to solve nonlinear equations.

As our knowledge, there are few works on applying discontinuous Galerkin method
for fractional equations in 2D, and much less on fractional equations with complicated
domains. In the future, we will extend the work to some space-fractional equations
in some complicated domains, such as triangle, polygonal domains. As we stated that
we performed the simulations only with P'-DG method (linear piecewise polynomial
approximation) because of the expensive memory and time. In next work, the numeri-
cal performance will be improved up to simulate problems with quadratic piecewise or
cubic piecewise polynomial. T think some other interesting fractional problems will be

considered further.
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