GABRIEL PESCHL

COMPARING RESTRICTED PROPAGATION GRAPHS FOR THE SIMILARITY FLOODING ALGORITHM

Master's dissertation submitted to the Department of Informatics, Federal University of Parana in partial fulfillment of the requirements for the degree of Master in Informatics.

Supervisor: Prof. Ph.D. Marcos Didonet Del Fabro

CURITIBA

GABRIEL PESCHL

COMPARING RESTRICTED PROPAGATION GRAPHS FOR THE SIMILARITY FLOODING ALGORITHM

Master's dissertation submitted to the Department of Informatics, Federal University of Parana in partial fulfillment of the requirements for the degree of Master in Informatics.

Supervisor: Prof. Ph.D. Marcos Didonet Del Fabro

CURITIBA

P473c

Peschl, Gabriel

Comparing restricted propagation graphs for the similarity flooding algorithm/ Gabriel Peschl. – Curitiba, 2015. 54 f. : il. color. ; 30 cm.

Dissertação - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-graduação em Informática, 2015.

Orientador: Marcos Didonet Del Fabro . Bibliografia: p. 51-54.

1. Engenharia de software. 2. Algorítmo de computador. 3. Modelos. I. Universidade Federal do Paraná. II.Del Fabro, Marcos Didonet. III. Título.

CDD: 005.112

Ministério da Educação Universidade Federal do Paraná Programa de Pós-Graduação em Informática

PARECER

Nós, abaixo assinados, membros da Banca Examinadora da defesa de Dissertação de Mestrado em Informática, do aluno Gabriel Peschl, avaliamos o trabalho intitulado, *"COMPARING CONSTRAINED PROPAGATION GRAPHS FOR THE SIMILARITY FLOODING ALGORITHM"*, cuja defesa foi realizada no dia 26 de maio de 2015, às 14:00 horas, no Departamento de Informática do Setor de Ciências Exatas da Universidade Federal do Paraná. Após a avaliação, decidimos pela:

(Xaprovação do candidato. ()reprovação do candidato.

Curitiba, 26 de maio de 2015.

Prof. Dr. Marcos Didonet Del Fabro PPGInf/UFPR – Orientador

Prof⁴. Dra. Nádia Puchalski Kozievitch UTFPR - Membro Externo

Prof. Dr. Andrey Ricardo Pimentel

PPGInf/UFPR – Membro Interno

ACKNOWLEDGEMENTS

Gratitude is a noble virtue!

Firstly, I thank God. I owe my deepest gratitude to my mother, Valciria, and my father, Antonio, and all my family, who have supported me during these 2 years.

I would like to thank Professor Marcos Didonet Del Fabro for advising me in this work. Likewise, I thank the examining board, Professor Nádia Puchalski Kozievitch and Professor Andrey Ricardo Pimentel who have contributed valuable suggestions for this dissertation.

I thank my English teacher Marc, who patiently checked my doubts of English grammar in writing this dissertation.

I would like to thank Davi, Jackson and Walmir, who helped me with some experiments and some codifications. They gave me the strength to go ahead and inspired me in my master's.

I would like to thank my colleagues from the laboratory, especially, Mariana, Hegler, Junior, Marcela and Leandro.

CONTENTS

LI	ST (OF FIGURES	v
LI	ST (OF TABLES	vii
R	ESU	MO	viii
A	BST	RACT	ix
1	INT	RODUCTION	1
	1.1	Motivation	2
	1.2	Objective	2
	1.3	Outline	3
2	STA	ATE OF THE ART	4
	2.1	Model-Driven Software Engineering	4
	2.2	Eclipse Modeling Framework	6
	2.3	The match operator	8
	2.4	Weaving Metamodel and Model	10
	2.5	The Similarity Flooding algorithm	12
	2.6	Related works	16
		2.6.1 Discussion	18
3	ME	TAMODEL-BASED SIMILARITY PROPAGATION	22
	3.1	Methodology workflow	22
	3.2	Implemented methods	24
	3.3	Case study	29
		3.3.1 Propagation between Mantis and Bugzilla	30
		3.3.2 Propagation between AccountOwner and Customer	33
		3.3.3 Discussion	34

		iii
	3.4 Summary	37
4	CONCLUSION AND FUTURE WORKS	49
B	IBLIOGRAPHY	5 1

LIST OF FIGURES

2.1	3-level architecture in the MDSE	6
2.2	A model example according to the 3-level conformance of models	6
2.3	Main classes of the Ecore	7
2.4	A metamodel of Publication in an XMI file	8
2.5	A model of Publication in an XMI file	8
2.6	Matching example between Book and Publication model	9
2.7	Links filtered between models	10
2.8	The core of the Metamodel Weaving	11
2.9	Conformance to the weaving metamodel	12
2.10	Book metamodel	14
2.11	Publication metamodel	14
2.12	Partial links between Book and Publication	15
3.1	Methodology workflow	24
3.2	Propagation from links between Classes to links between Attributes	25
3.3	Propagation from links between Classes to links between References	25
3.4	Propagation from links between Classes to links between Attributes and	
	References	26
3.5	Propagation from links between Classes to links between References and	
	Attributes	27
3.6	Propagation from links between Attributes to links between their Instances	27
3.7	Propagation from links between Classes to links between types of the At-	
	tributes	28
3.8	Propagation from links between Classes to links between types of the Ref-	
	erences	29
3.9	Propagation from links between Classes to links between types of the At-	
	tributes and links between types of the References	29

3.10	0 Propagation from links between Classes to links between types of the Ref-		
	erences and links between types of the Attributes	30	
3.11	Main classes of Mantis metamodel	31	
3.12	Main classes of Bugzilla Metamodel	32	
3.13	AccountOwner Metamodel	33	
3.14	Customer Metamodel	33	

LIST OF TABLES

2.1	Partial match for Book and Publication	15
2.2	Propagation approaches	21
3.1	Amount of links generated in the matching phase: Mantis and Bugzilla	31
3.2	Amount of links of instances generated in the matching phase: Mantis and	
	Bugzilla	32
3.3	Propagations from links between Mantis and Bugzilla metamodels and models	39
3.4	Continuation - Propagation results from links between Mantis and Bugzilla	
	metamodels and models	40
3.5	Results comprising all the propagation methods between links of Mantis	
	and Bugzilla metamodel	41
3.6	Results of the propagation between types of links of Mantis and Bugzilla	
	metamodels	42
3.7	Results comprising all the propagation methods between types of links of	
	Mantis and Bugzilla	43
3.8	Amount of links generated in the matching phase: AccountOwner and	
	Customer	43
3.9	Amount of links of instances generated in the matching phase: Accoun-	
	tOwner and Customer	43
3.10	Propagation results from links between AccountOwner and Customer meta-	
	models using restrictive propagation methods	44
3.11	Propagation results comprising all the propagation methods from links be-	
	tween AccountOwner and Customer metamodels	45
3.12	Propagation results between types of links of AccountOwner and Customer	
	metamodels	46
3.13	Propagation results comprising all the propagation methods between types	
	of links of AccountOwner and Customer metamodels	47

3.14	A comparison between propagation methods of Mantis and Bugzilla meta-	
	models	47
3.15	A comparison between propagation methods of AccountOwner and Cus-	
	tomer metamodels	48

RESUMO

A Engenharia de Software Orientada a Modelos é uma metodologia que utiliza modelos no processo de desenvolvimento de software. Muitas operações sobre esse modelos são necessárias estabelecer *links* entre modelos distintos, como por exemplo, nas transformação de modelos, nas rastreabilidade de modelos e nas integração de modelos. Neste trabalho, os links são estabelecidos através da operação *matching*. Com os links estabelecidos é comum calcular os valores de similaridades a eles, a fim de se indicar um grau de igualdade entre esses *links*. O *Similarity Flooding* é um algoritmo bem estabelecido que pode aumentar a similaridade entre os *links*. O algoritmo é genérico e está provado sua eficiência. Contudo, ele depende de uma estrutura menos genérica para manter a sua eficiência.

Neste trabalho, foram codificados 9 métodos distintos de propagações para o Similarity Flooding entre os elementos de metamodelos e modelos. Esses elementos compreendem classes, atributos, referências, instâncias e o tipo dos elementos, por exemplo, *Integer*, *String* ou *Boolean*. A fim de verificar a viabilidade desses métodos, 2 casos de estudos são discutidos. No primeiro caso de estudo, foram executados os métodos entre os metamodelos e modelos de *Mantis* e *Bugzilla*. Em seguida, foram executados os métodos entre os metamodelos e modelos de *AccountOwner* e *Customer*. Por fim, é apresentado um estudo comparativo entre os métodos de propagações codificados com um método genérico, com o objetivo de verificar quais métodos podem ser mais (ou menos) eficiente para o Similarity Flooding, dentre os metamodelos e modelos utilizados. De acordo com os resultados, utilizando técnicas restritas de propagações do SF, as similaridades entre os links melhoraram em relação a execução genérica do algoritmo. Isso porque diminuindo a quantidade de links o SF pode ter um melhor desempenho.

ABSTRACT

In Model-Driven Software Engineering (MDSE), different approaches can be used to establish links between elements of different models for distinct purposes, such as serving as specifications for model transformations. Once the links have been established, it is common to set up a similarity value to indicate equivalence (or lack of) between the elements. Similarity Flooding (SF) is one of the best known algorithms for enhancing the similarity of structurally similar elements. The algorithm is generic and has proven to be efficient. However, it depends on graph-based structure and a less generic encoding.

We created nine generic methods to propagate the similarities between links of elements of models. These elements comprise classes, attributes, references, instances and the type of element, e.g., Integer, String or Boolean. In order to verify the viability of these methods, 2 case studies are discussed. In the first case study, we execute our methods between metamodels and models of Mantis and Bugzilla. In the following, the metamodels and models of AccountOwner and Customer are used.

At the end, a comparative study of the metamodel-based encoding is presented for the purpose of verifying whether a less generic implementation, involving a lesser number of model elements, based on the metamodel and model structures, might be a viable implementation and adaptation of the SF algorithm. We compare these methods with an implementation comprising all the propagation strutures (non-restricted propagation), which are more similar (though not equivalent) to the original SF implementation.

According to the results, using the restricted propagation graphs of the SF, the similarity values between the links has increased in relation to the non-restricted algorithm. This is because reducing the amount of links, will increase the propagation values between the links of elements.

CHAPTER 1

INTRODUCTION

In Model-Driven Software Engineering (MDSE) models are considered first-class entities [10] [5], i.e., they can be modified, updated or processed throughout software development processes [5]. A model, in the context of this work, represents a computational system. An example of a computational system is an academic system, where there could be one element *teacher* referring to a class and the elements *name* and *grade* as the attributes [14].

In MDSE scenarios, it is necessary to establish links (relationships) between elements belonging to different models, such as data interoperability, model transformation or model traceability. To establish and create these links, a match operator is often executed [23] [4]. A match may be performed manually; however, this task can be tedious or error prone in a large models [23]. Consequently, several works have proposed solutions to automate this process [23]. The matching returns sets of mappings, or alignments, with a similarity value indicating how one element relates to another element [23]. These similarity values can be discrete or continuous and it may be calculated using different methods, such as String Edit Distance [23].

To increase the initial link similarities, the Similarity Flooding algorithm (SF) [18] can be applied. This is one of the best know algorithms for improving links similarity. SF propagates the similarities of links models over all link models, considering a previously established alignment [18]. The link similarities 'flow' in two ways according to graph propagation structures: incoming propagation and outgoing propagation. The use of propagation algorithms may increase the similarities between the models elements [4] [8] [18]. For examples of propagation techniques, we can cite Del Fabro [4], Faller [8] and Melnik [18]. With the technique proposed by Del Fabro [4], after the matching execution, it is possible to propagate the similarities from links between classes to links between attributes.

1.1 Motivation

This work is motivated by the results reported by Didonet Del Fabro's [5] and Melnik's thesis [18]. Melnik [18] proposed the Similarity Flooding algorithm. However, Didonet Del Fabro [5], created restrictions to execute the propagations of SF [4]. Thus, one of the main advantage of this implementation is execution in generic metamodels.

Our work is not only executed in metamodel, but the method comprises instances of attributes of models. Applying the SF in metamodels, we have a set of results that could be used in model transformation or model traceability. Moreover, in the results from models we could be use their in data integration.

Most of the cited works do not report which propagation techniques are the most appropriate. However, we provide a discussion covering as much as possible the propagation technique between links of elements of models and metamodels. This enables the identification of the most suitable propagation technique for each especific use.

1.2 Objective

The objective of this dissertation is to implement different propagation methods for the SF in order to execute them between metamodels and models links. Thus, we compared to what extent the similarities of the links have increased (or decreased) in comparison with an implementation comprising all the propagation structures, which are more similar (though not equivalent) to the original SF implementation.

We present nine methods to propagate the similarities in links of metamodels and models below. This decomposition considers specific structures of (meta)models (e.g., attributes or references) or a type of a given element (e.g. String or Integer). These methods change the way as the propagation graphs are executed in a specific kind of link. In order to present a discussion at the end. Our contribution is to verify whether the development of restricted propagation methods is advised, which could be tailored and applied to several MDSE operations.

1.	Propagation from links between Classes to links between Attributes;
2.	Propagation from links between Classes to links between References;
3.	Propagation from links between Classes to links between Attributes and References;
4.	Propagation from links between Classes to links between References and Attributes;
5.	Propagation from links between Attributes to links between their Instances;
6.	Propagation from links between Classes to links between types regarding Attributes;
7.	Propagation from links between Classes to links between types regarding References;
8.	Propagation from links between Classes to links between types regarding Attributes
	and References;

9. Propagation from links between Classes to links between types regarding References and Attributes.

Outline 1.3

This dissertation is structured as follows. In chapter 2, we present the state of the art. Chapter 3 explains how we developed the techniques of the SF, when then go on to present a comparison of the results. In Chapter 4, we present the conclusions and future works.

CHAPTER 2

STATE OF THE ART

In this chapter, we present the literature review for this dissertation: Model-Driven Software Engineering, the Eclipse Modeling Framework, metamodel and model weaving, the match operator and the Similarity Flooding algorithm.

2.1 Model-Driven Software Engineering

Model-Driven Software Engineering (MDSE) is a paradigm that uses models as first-class entities [16] [3] [24]. Thus, developers specify software requirements using models and these models are then transformed into working software [16] [5].

According to Muller et al. [19], no consensus has yet been reach regarding the definition of model. Different authors provide their respective definitions [19] [14]. According to Guemhioui [6], Garces [10], and Jouault [13], a model represents a software, with notations and characteristics of interest. A model also can be describe as a directed labeled multigraph [13], providing a generic strucutre. We present a set of definitions regarding a directed labeled multigraph and model extracted from the work of Jouault [13].

Definition 2.1.1. (Directed Labeled Multigraph). A directed labeled multigraph G= (N_G, E_G, Γ_G) consists of sets of nodes N_G , sets of edges E_G and a mapping function $\Gamma_G : E_G, \longrightarrow N_G X N_G.$

Definition 2.1.2. (Model). A model M is a triple (G, ω, υ) , where G relates to a directed labeled multigraph; ω is itself a model called the reference model of M and ω associates with a multigraph $G_{\omega} = (N_{\omega}, E_{\omega}, \Gamma_{\omega}); \upsilon : N_G \cup E_G \longrightarrow N_{\omega}$ associates nodes and edges of G to nodes of G_{ω} .

MDSE proposes that developers define models by conforming to some more abstract models [3] [5]. This practice is called metamodeling, which consists of using constraints to express a model [6][5].

A model conforms to a metamodel, and this relationship is called *conformance* (this expression is often related as c2[5]). While a metamodel conforms to a model, we have the conformance relationship between a metamodel and its definition model, which is called metametamodel [3]. A metametamodel is a model that specifies constraints for all models and metamodels [5]. The metametamodel conforms to itself [5] [3]. The conformance relationships, at all levels, allows for the creation and expression of more accurate models [3]. If this levels are not sufficient, it is possible to create more levels to define the models [3]. However, 3 levels of model are frequently used [3].

The conformance level mentioned above gives the *3-level architecture*, as indicate in Figure 2.1: the 3rd level represents the metamodel; the 2nd level represents the metamodel, and the 1st level represents the model. Below, we present a formal definition of the 3-level conformance of models, according to Brambilla et al. [3], Del Fabro [5] and Jouault [13].

Definition 2.1.3. (Metametamodel). A metametamodel is a model that defines all other models and metamodels. A metametamodel conforms recursively to itself.

Definition 2.1.4. (Metamodel). A metamodel defines a set of constraints to define a model. A metamodel conforms to a metametamodel.

Definition 2.1.5. (Model). A terminal model represents a model and it conforms to a metamodel.

In order to clarify the concepts mentioned above, we present Figure 2.2, which illustrates a partial example of an academic system. In this example, we can see the *conformance* relationship between elements of the models. Thus, every entity of a given model (M) conforms to an entity in the model (M+1) [12]. The elements in Figure 2.2 are outlined below. The μ indicates the conformance relationship . At level M1 (model), the nodes *CalculusI* and *CalculusII* are of the *Subject* type, while the arrows between the nodes are of the *Depend* type. In other words, *CalculusI* and *CalculusII* are subjects and *CalculusI* depends on *CalculusII*. The M2 level represents the *Subject* and

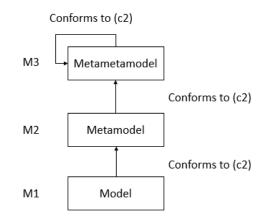


Figure 2.1: 3-level architecture in the MDSE , [5] [10].

Depend nodes, which are the Class type. The arrows between these nodes represents the conformance to Reference type. However, the next level, M3, represents the types of relationships of Class and Reference used in this (meta)model. This level ends relationships and conforms recursively to itself.

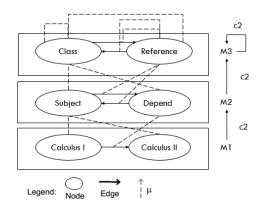


Figure 2.2: A model example according to the 3-level conformance of models

2.2 Eclipse Modeling Framework

In order to create and manage models and metamodels, it is necessary to use modeling tools [16]. There are several tools for this purpose, such as the NEO4Emf [1], which models and metamodels are stored in a graph database [1] and XML, which is frequently used to store data.

The Eclipse Modeling Framework (EMF)¹ enables modeling and generating codes from model [14]. This framework is used in this dissertation to manipulate models and metamodels. The EMF uses the ECORE as a metamodel. Its classes are shown in Figure 2.3 and discussed below.

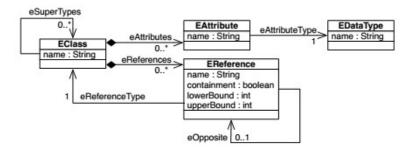


Figure 2.3: Main classes of the Ecore

- EClass: used to model classes [14]. EClass has *name* and it may have attributes and references. To support inheritance, one class may refer to many classes of supertype type [27].
- EAttribute: used to model attributes [14]. It has name and has a data type [27];
- EDatatype: used to represent atomic data [27]. Data types are identified by *name* [27];
- EReference: used to model references between a given class [14]. If a bidirectional association is required, this model can be modeled using two instances of EReference type, which are connected by opposing references [27] and multiplicities may be specified. EReference has *name*.

EMF uses XMI (XML Metadata Interchange) to serialize a model and metamodel. One example of metamodel using XMI is shown in Figure 2.4, which has a *title*, *author* and the *number of pages*. *EPackage* groups classes and data of the same types [26]. Figure 2.5 shows the model of the Publication instantiated.

 $^{^1{\}rm The}$ Eclipse Modeling Framework is a plug-in for Eclipse and is available at http://eclipse.org/modeling/emf/

```
1<?xml version="1.0" encoding="ISO-8859-1"??
 2 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
       xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore">
     <ecore:EPackage name="Publication" nsURI="http://ae.com/pub" nsPrefix="pub">
       <eClassifiers xsi:type="ecore:EClass" name="Publication">
         <eStructuralFeatures xsi:type="ecore:EAttribute" name="title" ordered="false"
              unique="false" lowerBound="1" eType="#/1/String"/>
         <eStructuralFeatures xsi:type="ecore:EAttribute" name="authors" ordered="false"
 8
             unique="false" lowerBound="1" eType="#/1/String"/>
 9
         <eStructuralFeatures xsi:type="ecore:EAttribute" name="nbPages" ordered="false"
              unique="false" lowerBound="1" eType="#/1/Integer"/>
       </eClassifiers>
12
13
    </ecore:EPackage>
     <ecore:EPackage name="PrimitiveTypes" nsURI="http://ae.com/primtypes" nsPrefix="primtypes">
14
15
     <eClassifiers xsi:type="ecore:EDataType" name="Integer" instanceClassName="java.lang.Integer"/>
16<eClassifiers xsi:type="ecore:EDataType" name="String" instanceClassName="java.lang.String"/>
17<eClassifiers xsi:type="ecore:EDataType" name="Boolean" instanceClassName="java.lang.Boolean"/>
18 </ecore:EPackage>
19</xmi:XMI>
```

Figure 2.4: A metamodel of Publication in an XMI file

Figure 2.5: A model of Publication in an XMI file

2.3 The match operator

The match operator performs semantics and syntactic correlations between (meta)models, ontology and schema database [10] [23] [18]. We consider this the first step to integrating data or to performing a model transformation [7]. In accordance with Del Fabro [4] and Melnik [18], we present the concept of *match* and *matching* as follows:

Definition 2.3.1. (Match). Match is an operator that takes two models as input and produces alignments (links) as output.

Definition 2.3.2. (Matching). Matching establishes semantic correlations between model elements belonging to different models.

A match system has two scenarios as input: metamodels or models. In the first scenario, we have to take metamodels into account as input. In the second one, we need a model as input [10]. A match generates alignments (or links) as output. Links have similarity values in a range from 1 to 0 [10][23], which means *in commom* or *not in commom* regarding 2 elements of model. This similarities can be calculated using an Edit

String Distance, Phonetic Similarity or similarity based on constraints [10] [23]. In the follow, we present the definition about similarity between 2 strings.

Definition 2.3.3. (Similarity between 2 strings). Given 2 strings: ω_1 and ω_2 , the similarity between them corresponds to a value indicating how equivalent ω_1 is to ω_2 .

We illustrate the matching of two models in Figure 2.6: *Book* and *Publication*. The links represent the correspondence between two elements [5], and they are assigned with a similarity value, for example, the link between "title x title" is 1. This value is calculated using the Levenshtein Edit Distance and it is normalized in relation to the all links. In Figure 2.6, the class *Book* matches to the class *Publication* and the same situation occurs with the elements of these classes.

A filter may be applied to select the best links. The most used filter technique is to set up a minimum treshold value and, then, the links that have the similarity value higher than this threshold are returned [5]. Below, we define the *filter*.

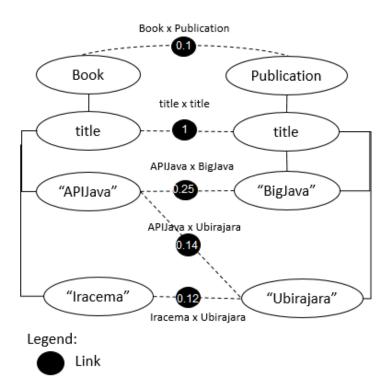


Figure 2.6: Matching example between Book and Publication model

Definition 2.3.4. (Filter). A filter is a method that receives a threshold as input to select the links with similarities higher than (or equal to) this threshold.

To follow, Figure 2.7 shows the filter aplication in the *Book* and *Publication* model. The threshold defined is 0.25, as it returns the links similarity value bigger than the threshold. These links are often called the best links. In works in the data interoperability domain, for example, the links with the highest similarity are frequently accepted [5]; Because we need the links that are as similar as possible for an accurate operation to be executed. The similarities were calculated using the Levenstein Edit Distance, then they are normalized to a value between 0 to 1.

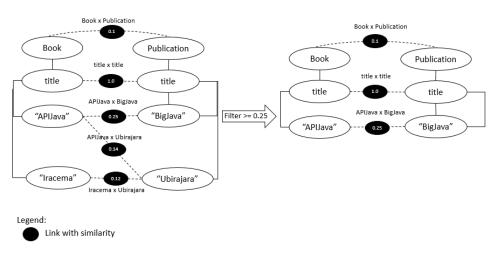


Figure 2.7: Links filtered between models

2.4 Weaving Metamodel and Model

After two models have matched in the matching phase, the links produced are stored in the weaving model. A weaving model [5] consists of a model to store correspondences between elements of models. A weaving model conforms to a weaving metamodel and it provides constraints to create links [5].

In accordance with Didonet del Fabro [5], definitions about the weaving metamodel and the weaving model are listed below.

Definition 2.4.1. (Weaving Metamodel). A weaving metamodel is a model $MM_W = (G_M, \omega_M, \mu_M)$ that defines link types:

• $G_M = (N_M, E_M, \Gamma_M)$, as already presented in definition 2.1.1.

- N_M = (N_L ∪ N_LE ∪ N_O), N_L is the link type; N_LE is the link endpoint type and N_O is the other auxiliary node.
- $\Gamma_M : E_M \longrightarrow (N_L X N_L E) \bigcup (N_O X N_M)$ is a link type that refers to multiple link endpoint types and the auxiliary node refers to any kind of node.

The definition mentioned above is an algebric representation of the weaving metamodel. However, the elements (core) of weaving metamodel are shown in Figure 2.8. The core has one link (WLink), and it contains two endpoints (WLinkEnd) - in which the first endpoint refers to an element in *LeftMM*, and the second endpoint refers to an element in *RightMM* [5]. These links are used for distinct purposes, such as the specification of model transformations, model traceability or data integration. The elements that compose the metamodel weaving are listed below:

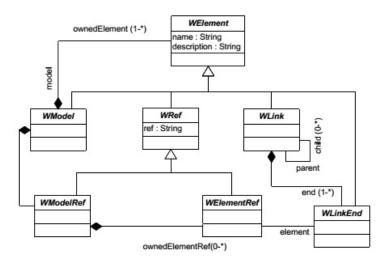


Figure 2.8: The core of the Metamodel Weaving

- WElement: the main element where all elements inherit [2]. It is composed by the weaving elements and the reference to corresponded models [5].
- WModel: this represents all model elements [5].
- WLink: this class represents links between model elements [5]. It also refers to multiple endpoints [2].
- WLinkEnd: this class represents the type of linked elements [2]. It allows the definition of N-ary links [5].

- WElementRef: this class sets an unique ID for a linked element [2].
- WModelRefs: this defines the WLinkEnd and the WElementRef for models as a whole [2].

Definition 2.4.2. (Weaving Model). A weaving model is a model $M_W = (G_W, \omega_W, v_W)$, a graph $G_W = (N_W, E_W, \Gamma_W)$, such that its reference model is a weaving metamodel (ω_W, MM_W) .

Figure 2.9: Conformance to the weaving metamodel , [2]

The composition of 2 different models produce a weaving model: a source metamodel (LeftMM) and a target metamodel (RightMM) [2] (Figure 2.9). Figure 2.9 shows the conformance to the model weaving in a generic way. The *LeftMM* and *RightMM* conform to the Weaving Model (WM) and Weaving Metamodel (WMM). The WM conforms to the WMM, which, in its turns, conforms to the Weaving Metametamodel (WMMM) [5]. The WMMM conforms itself.

The SF [18] attempts to increase the initial similarity and, consequently, better links are produced. This situation enables the production of better results in operations of the MDSE (e.g. model transformation). The SF [18] is explained as follows.

2.5 The Similarity Flooding algorithm

The Similarity Flooding algorithm (SF) [18] is a well-known algorithm that propagates the similarity between model elements in a graph form, which are connected by the same labeled-edge [4] in a fixed-point computation [18]. The SF is frequently used in matching between metamodels, models, ontologies and data-schemas. For example, consider two models: A and B. We perform the match between (A x B) in order to establish the links. The similarities between links may be calculated using an Edit String Distance, as presented in the previous sections. These values are the initial input for the SF. However, in an iterative sum, the values between these links are propagated until the minimum delta value is reached. At the end of this process, the similarities are normalized and filtered. We explain an example of the SF using real models at the end of this section.

Before executing SF, it is necessary to establish relationships between models elements to produce a *pairwise connectivity graph* (PCG). Each node of the PCG is a map pair -or link [18]. The SF depends on this structure to propagate the similarity values along the graph, through a propagation graph [18]. The propagation graph goes in opposite directions in the links: incoming propagation and outgoing propagation [18] [8]. In Figure 2.12 we can see the propagation graphs. According to Melnik [18], the propagation graph is defined below:

Definition 2.5.1. (**Propagation Graph**). The propagation graph is an auxiliary data structure that stores the propagation values (weights) used to propagate the similarities between links of matched models.

We work with the concept of the restricted propagation graph. The restricted propagation graph propapagates the similarities to an specific kind of link of a matched model, for example, the propagation only between links of attributes or the propagation only between links in references. The definition of the restricted propagation graph is given as follows [5]:

Definition 2.5.2. (Restricted Propagation Graph). The restricted propagation graph is an auxiliary data structure that stores the propagation values (weights) used to propagate the similarities between specific links of matched models.

Weights placed in the propagation graph (or in the restricted propagation graph) indicate the propagation coefficient, i.e., how much the similarity of a given link is propagated [18]. Melnik [18] defines 7 ways of calculating the propagation coefficients (π) of the propagation graphs. One of the fix-point formulas proposed by Melnik [18] is calculated over the inverse-product of the number of links of a matched class. It is used in this dissertation and shows more accurate results [18] [8].

The similarity propagation may be executed several times, until a given *delta* is no longer achieved. The *delta* is a treshold value previously defined between iterations, which allows the iteration of the SF to be stopped [18]. This treshold may be defined if the difference between the similarities regarding iterations is too small, we stop the execution of the SF. At the end of each iteration of SF, the values are normalized [18].

Finally, the generalized version of SF is $\sigma_{i+1} = targetLink_i + (sorceLink_i * \pi)$, where the σ relate as a link (alignment), the *targetLink* and the *sourceLink* indicate the incoming and outgoing propagation, respectively, and π indicates the propagation coefficient [18].

We illustrate one execution of the SF as follows. Consider 2 metamodels: *Book* and *Publication*. According to Figure 2.10, the *Book* metamodel contains the class *Book*, which has 1 attribute: *title*, and 1 reference *chapters* to class *Chapter*. The class *Chapter* contains the following attributes: *title*, *nbPages*, *author*, *book*. Class *Chapters* has one reference *book* to class *Book*. We present the metamodel of *Publication* in Figure 2.11, which has 3 attributes: *title*, *authors*, *nbPages*.

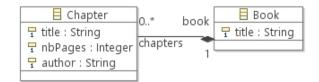


Figure 2.10: Book metamodel

Figure 2.11: Publication metamodel

To create the links, we execute a Cartesian Restrict Product. We calculated the similarities of these links using the Levenshtein Edit Distance [15]. These values initialize

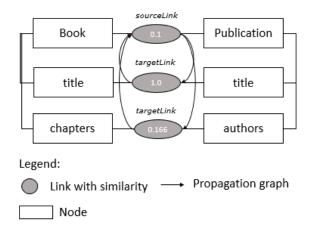


Figure 2.12: Partial links between Book and Publication

the SF. The Levenshtein Edit Distance is an algorithm frequently used in academia and several works. However, we chose this algorithm to illustrated the execution of the SF. Figure 2.12 provides an overview of the links that were created. As already stated, the formula for the SF is: $\sigma^{i+1} = targetLink^i + (sourceLink^i * \pi)$; where, targetLink refers to the links that receive the propagation graph and the *sourceLink* is the link that the propagation graph leaves.

Links	Initial Similarity	π	1st	3rd	6th
Book x Publication	0.1	0.16666	0.465	0.466	0.465
title x title	1	0.166	0.26	0.12	0.083
title x authors	0.142	0.1666	0.040	0.068	0.076
chapters x authors	0.1666	0.1666	0.046	0.069	0.076
Chapter x Publication	0.09	0.083	1	1	1
title x authors	0.142	0.083	0.038	0.072	0.081
authors x nbPages	0.125	0.083	0.033	0.070	0.081

Table 2.1: Partial match for Book and Publication

Now we execute the first iteration from the link *Book X Publication - sourceLink*, to *title X title - targetLink*. The iterations are important because they change the similarities between links. The *sourceLink* has similarity equal to 0.1, and the *targetLink* has similarity equal to 1. The propagation coefficient is 0.1666, as we have 6 links in the matched class, so, $\frac{1}{6} = 0.1666$. Replacing in the formula, $\sigma^1 = 1 + (0.1 * 0.1666)$, $\sigma^1 = 1.01666$. Thus, the new similarity of the link *title x title* is ≈ 1.01666 . We add all the similarity values that "arrive" at the link *Book x Publication*. This produces the new similarity value for the link of the matched class *Book X Publication*. Table 2.1 shows a partial result for the matching between *Book X Publication*, after executing the SF. We stopped the execution of the SF at the 6th iteration because the delta value was achieved in the links, valuing ≈ 0.001 . At the end of each iteration, the similarity values were normalized.

2.6 Related works

In this section, we explain different ways to encoded the propagation graphs of the SF, in addition to other algorithms to propagate similarities - beyond what has been proposed by Melnik [18].

Didonet del Fabro [4] [5] proposes the use of the variants for the propagations in links of metamodels. This approach allows different ways of propagating similarities considering structural relationships of different metamodels [4] [10]. The propagations techniques that were developed are listed below:

- Containment-tree propagation: this allows the propagation of the similarities from links between classes to links between attributes and/or from links between classes to links between references [4]. For example, consider two matched classes and the links between them. This method propagates the similarities between links of attributes and/or references [4].
- Relationship-tree propagation: this allows the propagation of the similarities to links of references between classes [4]. Consider two matched classes and the links between them. This methods only propagates between links of references [4].
- Inheritance-tree propagation: this allows the propagation of the similarities between links of references with inheritance relationship [4]. For example, this method extends the Relationship-tree propagation, however, it takes into account the inheritance of the references [4].

Falleri et al. [8] encoded metamodels into 6 different graph structures in order to execute the propagations of the SF algorithm. According to Falleri et al. [8], these approaches are more detailed than proposed in Didonet del fabro [4]. The implementations of the metamodels are:

- Minimal configuration: this requires that we have one labeled node of the graph created for each *EClass* [8]. The name of the nodes are the same of the elements, for example, an element X (an *Eclass*) with name m is represented by a node N with label m [8]. According to Falleri et al. [8], this configuration showed the worst result in the Similarity Flooding, due to its simplicity.
- Basic configuration: A labeled name is linked to a unique identified *ID* [8]. Thus, it allows frequency of a used given name to be know [8]. This frequency can be exploited by the SF [8]. For example, an Eclass *Ec* is presented by a node *N* labeled by a unique *ID*, and linked to a node labeled *n* with an arc *label* [8].
- Standard configuration: this obtain the similarities in types and attributes [8]. For example, a node that represents an element x is linked by a labeled node *kind* to a node x representing the type of this element [8].
- Full configuration: this extends the Standard configuration as it takes the EAttributes and EReferences into account [8]. For example, all the nodes that represent an EAttribute or EReference are included an node labeled called *derived*, giving this node Boolean conditions (true or false) as to whether the element is derived [8].
- Flattened configuration: this extends the Full configuration, although it deals with inheritance relationships [8]. For example, the nodes representing *supertypes* are deleted from the graph [8]. Thus, it is possible to connect nodes representing an *EClass* to nodes representing the *EAttributes* [8]. When an *EReference* is typed as an abstract *EClass*, a node *type* is created [8].
- Saturated configuration: this extends the Flattened configuration [8]. For example, the nodes that represent the *EClass* are linked in a *supertype* node [8]. It represents all the super-classes of this *EClass* [8]. *EClass* are also linked in nodes that represents *EAttributes*. The node that represents an *EReference* are created

and linked to the node representing the EClass, as well as the nodes representing the super-class of the EClass [8].

Zhang, Yuan and Huan [32] implemented the SF for the MapReduce. Thus, each iteractive sum of the Similarity Flooding is a MapReduce job. They applied it in a large-scale graph datasets. Experimental results show that this implementation can work in big graph datasets [32].

Truong et al. [29] implemented a new version for SF in the context of integration of the ontologies. This approach consists of three steps:

- 1. Ontologies models are encoded into a direct labeled graph [29];
- 2. The method of *concept classification* is applied to increase the precision and reduce the process of the SF [29]. According to Truong et al. [29] this method avoids an exhaustive comparison of all the nodes of the models;
- 3. Finally, the Similarity Flooding and a filter are applied [29].

The Uppropagation [7] - which is used in context of database schema and is implemented in Coma++, propagates the similarities in a bottom-up manner, i.e., from child-nodes to main-nodes [7]. The authors defend the idea that the similarity propagates directly to main-node because the child-nodes have a strong relationship [7]. The propagated similarity to the main-node is the average of the highest similarity for each child-nodes [7].

Lily [30] creates alignments between heterogeneous, distributed and large-scale ontologies. In the matching phase, Lily exploits both linguistic and structural information of ontology to generate initial alignments [30]. If it is necessary to produce more alignments, a strategy of similarity propagation is applied [17].

2.6.1 Discussion

We show a comparative table and discuss the propagation techniques presented in section 2.6. Table 2.2 summarizes how the propagation of the SF works in the presented approaches. Column *approach* mentions the author (or the proposed framework); The *Prop. Technique* elucidates the technique proposed; The *scope* shows the field of application; and the *Similarity Flooding* indicates whether the approach is the Similarity Flooding algorithm or a variant of it.

Del Fabro and Valduriez [4] proposed ways to propagate the link similarity in a metamodel. The authors proposed a propagation metamodel that is used to propagate the similarity in metamodels. On the other hand, Falleri et al. [8] proposed 6 strategies to encode a given metamodel in a graph structure. These methods may provide a better comprehension of the structure of the metamodel, as the metamodel elements are more detailed [8]. In the aproach of Del Fabro and Valduriez [4] the lower the quantity of links, the better the result of the SF, whereas the aproach of Faller et al. [8] may requires a large amount of elements for the SF to success.

Zhang, Yuan and Huan [32] used the MapReduce jobs to iterate the results of the SF. Truong et al. [29] presented a new version for the Similarity Flooding algorithm, in which they used the "classification concepts", thereby avoiding the exhaustive matching between elements in ontologies [29].

Other similarity propagation techniques, showing the close of the SF, have also been studied by researchers. Uppropagation [7], which is used in schema matching, attempts to minimize the maximum possible loss of similarities when executing the propagations, using the average of the highest similarity for each element [7]. The propagation is the type of bottom-up, i.e., from a child-node to a main-node of a given schema model, in a graph representation. Lily [30], applied to ontologies, uses a *decision-maker* in order to perform the propagation of similarity, i.e., if there are few alignments, the similarities are then propagated to obtain more alignments [30].

We note most of these implementations have a common goal: to attempt to produce the best alignments to integrate data or process models, and also to explore various elements present in the formalism in order to perform the best propagation of similarities [4] [8] [29] [7] [30] [18] [10]. To follow, we positioned our approach in comparison with the solutions mentioned above, reporting on the main differences between implementations:

- Melnik [18] proposes the SF. However, we create restricted propagation graphs for this algorithm. Therefore, we can verify whether it is suitable to execute the SF in a lesser amount of links;
- 2. As in Didonet del Fabro [4] [5], we create restricted propagation graphs in order to execute the SF. However, we developed the propagation less generically, i.e., involving less elements as possible. This granularity allows us to compare how the propagation technique may be advantageous for the SF;
- 3. Falleri et al. [8] indicated 6 ways to encode a metamodel in a graph structure, then, the SF is applyed. Unlike this approach, we considered one graph codification regarding a metamodel (or model) and 9 restricted propagation graphs to execute the SF;
- 4. Compared to Zhang, Yuan and Huan [32] and Coma++ [7], our approach deals with instances of a given model;
- 5. Unlike Truong et al. [29], we do not consider the use of "concept of classification". However, we apply a filter that returns the best links. This may avoid a repetitive matching task between metamodels and models;
- 6. Unlike Lily [30], we do not consider the use of a propagation method to create more links. Our approach attempts to increase the similarities between the links of metamodels and models.

According to our knowledge, these are between the most representative approaches in its field of study. Whereas they all have propagation similarities, it is difficult to compare them, because the scenarios, the model encodings and the propagation techniques have differences on the conceptual design and implementation. We gathered some simple techniques and provide a comparison.

Approach / Author	Prop. Technique	Scope	Similarity Flooding
Del Fabro and Valduriez [4]	This takes into account se- mantic and structural informa- tion of a metamodel. The technique may require a small number of elements for a bet- ter performance of the SF.	MDSE	X
Falleri et al. [8]	Encoded a metamodel in 6 graph manners: <i>minimal</i> , <i>ba-</i> <i>sic</i> , <i>standard</i> , <i>full</i> , <i>flattened</i> e <i>satured</i> . The configuration with more elements provides the best results for the SF.	MDSE	Х
Zhang, Yuan and Huan [32]	The algorithm is enconded into a MapReduce environ- ment. Each job of the Mapreduce is a new itera- tive sum of the algorithm.	Data Schema	Х
Truong et al. [29]	This consists of applying a concept of classification to increase precision and try to reduce the process- ment time of the algorithm.	Ontology	Х
UpPropagation [7]	This is used in propagating instances of scheme data. The algorithm propagates the average of the highest similarity values of the in- stances to the attributes.	Data schema	
Lily [30]	If the first step does not produce sufficient align- ments, a similarity propa- gation strategy is applied to obtain more alignments.	Ontology	

Table 2.2: Propagation approaches

CHAPTER 3

METAMODEL-BASED SIMILARITY PROPAGATION

In this chapter ¹, we present and discuss different ways to implement the propagation methods of the SF. In section 3.1, the methodology workflow of this work is given, in which the steps are sufficiently detailed to permit reproduction and enable a comparison with other propagation approaches. Following this, in section 3.2, we explain nine distinct ways of encoding the SF. For these codification, as already stated, we use information on the structures of metamodels and models to develop of the propagation methods. This could permit a reduction in the amount of links and number iterations of the SF in a single link, which increases the similarity of this related link in as litte iteration possible. In section 3.3, we present the metamodels and models used to execute the propagation methods. However, in subsection 3.3.3, we compare of how much these similarities have been increased (or reduce) in comparison with an implementation comprising all the propagation methods, which is more similar (though not equivalent) to the original SF implementation.

3.1 Methodology workflow

The methodology employed in this work is organized in accordance with to Figure 3.1 and may be outlined as follows:

- 1. Loading metamodels: we load pairs of models with their respective metamodels;
- 2. Matching: we execute the matching aiming for the creation of the links between the metamodels and models loaded in step 1. Our motivation is focused on the match operator, because it is the way to create links in a semi-automatic way. In addition to the match, there are several operations for establishing links, such as,

¹This chapter was partially published in the proceedings of the XVIII Ibero-American Conference on Software Engineering, 2015 [21]

diff, copy or merge [18] [5]. However, we use the match operator because it returns the alignments (links) between 2 models [18] [5];

- 3. Links creation: the links between (meta)models are established. Therefore, similarities can be assigned to them. These links can be stored in a weaving model to serve as input for the next steps [4];
- 4. Calculating the similarities: we calculate the similarities between links. There are various ways to calculate their similarities, such as using a String Edit Distance [23] [18]. In our work, we use a String Edit Distance, which provides the best sequence of edit operations to convert a string from x to y [31]. As edit operations, we can outline insertion, deletion and substitution [31]. There are several Edit Distance functions, e.g., Hamming Distances [11], Longest Commom Subsequence [20], Smith-Waterman distance [25], Jaro-Winkler distance [31] or String_{sim} function [28]. To calculate the similarities between links, we use a well-know String Edit Distance called the Levenshtein Edit Distance [15]. The values returned are the initial input values for the SF. We do not consider the similarities between synonyms. In this way, a dictionary should be implemented.
- 5. Link with similarity: the links are assigned to their respective similarity values. Thus, we can begin the propagation methods, which are explained below;
- 6. Executing the propagation methods of SF: the methods of the propagation are executed. We divided these executions into 2 groups according to the configuration of two filters. A filter only selects links with a similarity higher than a given value. According to Melnik [18], SF has a good performance when dealing with a fewer elements. Therefore, each filter configuration enables a reduction in the number of processed links. The filter settings can be described as follows. In the (I) first filter configuration, a filter is applied after running SF. This technique is related to the works of Falleri et al. [8], Del Fabro [4] and Melnik [18]. In the (II) second filter configuration, a filter is applied before the SF run. This allows the propagation methods to be applied to the fewest possible links and, thus, this

may increase the similarities in a fewest iterations of the SF due to the smallest number of links in a matched class. However, this implies that a good threshold value should be chosen. At the end, we compared to what extent the similarity of these elements has increased, taking into account the propagation methods used: restricted propagations X comprising all the propagations methods.

7. Storage in a weaving model: the links are stored in a weaving model. In this dissertation, the weaving model is persisted in the memory.

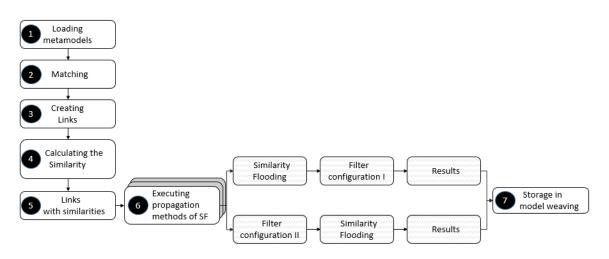


Figure 3.1: Methodology workflow

3.2 Implemented methods

We developed 9 ways of execute the restricted propagation according to the structural information of elements of a given (meta)model: classes, attributes, references, instances of attributes and the type of these elements (links between String or Integer). These methods change the direction of the propagation graphs. Then, it is created restriction on the propagation graphs. We implement the methods in Java language and the metamodels and the EMF is used to handle the metamodels and models.

We choose these methods because the links are created by matching the elements of a model and a metamodel as much as possible; giving a representative number of the links to be compared. This situation enables a comparison of the results at the end. Furthermore, we can verify if the restricted propagation graphs are viable in comparison to the non-restricted approach. Note that the propagation methods are restricted to a given type of element and, therefore, cannot be used in any situation.

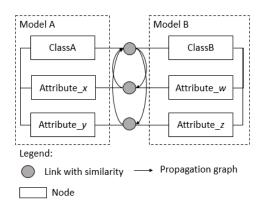


Figure 3.2: Propagation from links between Classes to links between Attributes

• Propagation from links between Classes to links between Attributes: this propagates the similarities from links between Classes to links between Attribute belonging to the same matched classes (Figure 3.2). The propagation is calculated as: $\pi = 1/L_x$, where L_x indicates the number of links between attributes belonging to Class A and Class B matched, with $L_x \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of attributes.

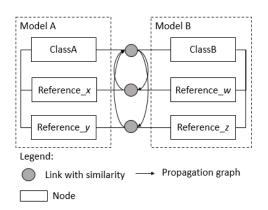


Figure 3.3: Propagation from links between Classes to links between References

• Propagation from links between Classes to links between References: this propagates the similarities from links between classes to links between references belonging to the same matched classes (Figure 3.3). This is very similar to the

previous propagation method but, in this related propagation, links between references are considered. The propagation is calculated as: $\pi = 1/L_y$, where L_y is the number of links between references of *Class A* and *Class B* matched, with L_y $\neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of references.

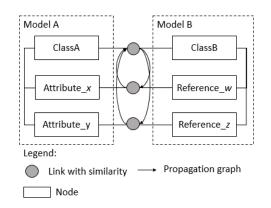


Figure 3.4: Propagation from links between Classes to links between Attributes and References

- Propagation from links between Classes to links between Attributes and References: this propagates the similarities from links between Classes to links between Attributes and References belonging to the matched class (Figure 3.4). The formula of the propagation is: $\pi = 1/L_{xy}$, where L_{xy} is the amount of the links between attributes and references of *Class A* and *Class B* matched, with $L_{xy} \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of attributes and references.
- Propagation from links between Classes to links between References and Attributes: this propagates the similarities from links between Classes to links between References matched with Attributes of the same class (Figure 3.5). It changes the propagation direction in comparison with the previous method. The propagation is $\pi = 1/L_{yx}$, where L_{yx} is the amount of links between references regarding *Class A* and *Class B* matched, with $L_{yx} \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of references and attributes.

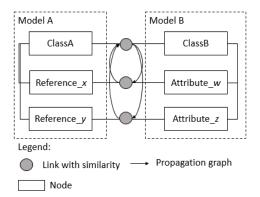


Figure 3.5: Propagation from links between Classes to links between References and Attributes

Propagation from links between Attributes to links between their Instances: the similarities between links of attributes are propagated to links of their respective instances (Figure 3.6). The propagation is π = 1/L_ι, where L_ι designates the amount of instances of a given attributes regarding Class A and Class B matched, with L_ι ≠ 0. For example, considering 2 matched models, this method propagates the similarities only in links of attributes to links of their instances.

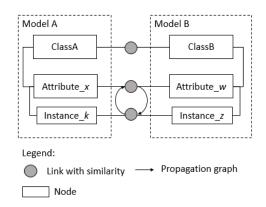


Figure 3.6: Propagation from links between Attributes to links between their Instances

The propagation between links of type belonging of a link are considerate, e.g. *Integer*, String or Float. In this case, the similarity of the link between classes is propagated to the link between types. The methods are detailed as follows:

• Propagation from links between Classes to links between types of the Attributes: this propagates the similarities from links between Classes to links between types of the Attributes (Figure 3.7). The propagation is calculated as:

 $\pi = 1/L_{type_x}$, where L_{type_x} indicates the number of links between types belonging to Attribute A and Attribute B matched, with $L_{type_x} \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of types of attribute.

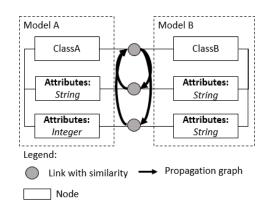


Figure 3.7: Propagation from links between Classes to links between types of the Attributes

- Propagation from links between Classes to links between types of the References: this propagates the similarities from links between Classes to links between types of the References (Figure 3.8). The propagation is calculated as: $\pi = 1/L_{type_y}$, where L_{type_y} indicates the number of links between a type belonging to *Reference A* and *Reference B* matched, with $L_{type_y} \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of types of references.
- Propagation from links between Classes to links between types of the Attributes and links between types of the References: this propagates the similarities from links between Classes to links between types of Attributes and References (Figure 3.9). The propagation is calculated as: $\pi = 1/L_{type_xy}$, where L_{type_xy} indicates the number of links between types belonging to Attribute A and Reference B matched, with $L_{type_xy} \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of types of attribute and types of references.

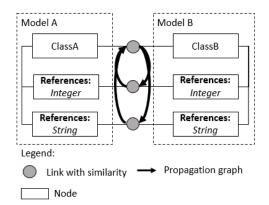


Figure 3.8: Propagation from links between Classes to links between types of the References

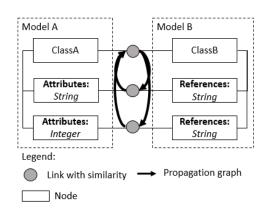


Figure 3.9: Propagation from links between Classes to links between types of the Attributes and links between types of the References

• Propagation from links between Classes to links between types of the References and links between types of the Attributes: this propagates the similarities from links between Classes to link between types belonging to References and Attributes (Figure 3.10). The propagation is calculated as: $\pi = 1/L_{type_yx}$, where L_{type_yx} indicates the number of links between types belonging to Reference A and Attribute B matched, with $L_{type_yx} \neq 0$. For example, considering 2 matched metamodels, this method propagates the similarities from links between classes to only links of types of references and types of attributes.

3.3 Case study

In this section, we present 2 case studies involving the methods of the propagation. The (meta)models were chosen because they are frequently used in academia [18] [5].

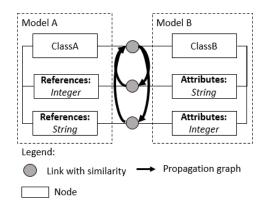


Figure 3.10: Propagation from links between Classes to links between types of the References and links between types of the Attributes

The first case study is related to the matching between partial (meta)models of the Mantis and Bugzilla. Mantis is a web-based bug-tracking system; Bugzilla serves the same purpose, although new modules can be added on it [5]. The objective of this matching is to illustrate the possibility of creating weaving models to integrate 2 different kinds of software. This practice is important when companies need to integrate their software or data [5]. This study is outlined in subsection 3.3.1.

In the second case study, we present the matching between two partial (meta)models: AccountOwner and Customer. These are used in electronic documents for e-business [18]. The objective of this matching is the same as given in sub-subsection 3.3.1: to produce a weaving model to integrate both (meta)models. We have outlined this study in sub-subsection 3.3.2.

3.3.1 Propagation between Mantis and Bugzilla

We have outlined the (meta)models as follows ². The Mantis' metamodel has 9 classes, 15 attributes and 10 references. The main classes of Mantis are shown in Figure 3.11. The Bugzilla's metamodel has 9 classes, 39 attributes and 8 references and the main classes of it are available in Figure 3.12.

According to Table 3.1, the amount of links generated in the matching of these metamodels and models is shown. We also indicate the number of links after the filter applica-

 $^{^2{\}rm The}$ metamodels of Mantis and Bugzilla are available at http://www.emn.fr/z-info/atlanmod/index.php/Ecore

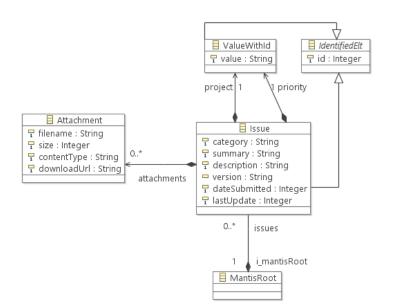


Figure 3.11: Main classes of Mantis metamodel

tion, which the threshold is 0.5. We selected this threshold because it returned the best links according to the calculus of the Levenshtein Edit Distance, after some executions of the SF. If another technique of the calculus of the similarity is applied, another threshold should be defined.

Links Matched	Amount of Links Generated	Amount of Links Filtered
Links between classes	81	11
Links between attributes	585	21
Links between references	80	2
Links between attributes and references	46,800	2
Links between references and attributes	46,800	10
Links between types of attributes	585	21
Links between types of references	80	2
Links between types of attributes and references	46800	2
Links between types of references and attributes	80	10

Table 3.1: Amount of links generated in the matching phase: Mantis and Bugzilla

Whereas an instance is explicitly related to a class, we make a distinction between the model elements representing a class (called a class instance) and the model elements representing the values of the attributes (called an attribute instance). The Mantis' model has 5 classes instances, 12 attributes with 1 attribute for each instance. The Bugzilla's model has 4 instances of a classes and 31 attributes instances with 1 attribute per instance. According to Table 3.2, the matching generated:

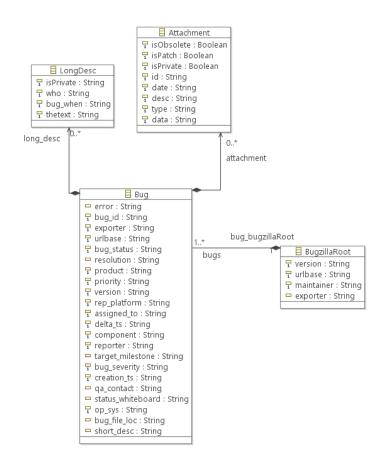


Figure 3.12: Main classes of Bugzilla Metamodel

Links Matched	Amount of Links Generated	Amount of Links Filtered
Links between instances of attributes	372	22

Table 3.2: Amount of links of instances generated in the matching phase: Mantis and Bugzilla

Table 3.3 and 3.4 show the results according to each propagation method and in Table 3.5 shows the results comprising all the propagation methods. Table 3.6 shows the propagation values according to the type of a given element and Table 3.7 shows the propagation comprising all the methods regarding the type of link. All the tables display the results of the (I) first filter and (II) filter configurations; π indicates the propagation coefficient; the link with (*) represents the links between classes or links between attributes. The settings of iterations for the Similarity Flooding are 1, 3 and 6.

The value of the π differs for the number of links according to the filter configuration. For example, the link of the class *IdentifiedElt x LongDesc* has 4 links in the first filter configuration; thus, $\pi = 1/L_x = \frac{1}{4} = 0.25$. On the other hand, the same link, in the second filter configuration, has 1 link to execute the propagation; thus, $\pi = 1/L_x = \frac{1}{1} = 1$. This logic ensues for all other links of model elements.

3.3.2 Propagation between AccountOwner and Customer

To follow, we present the elements of AccountOwner and Customer [18]. The AccountOwner's metamodel (Figure 3.13) has 2 classes, 7 attributes and 2 references. The Costumer's metamodel (Figure 3.14) has 2 classes, 5 attributes and 2 references. According to Table 3.8, the matching between both metamodels is shown. We also indicate the number of the links after the filter application, which the threshold is 0.25. We selected this threshold because it returned the best links according to the calculus of the Levenshtein Edit Distance, after some executions of the SF. If another technique of the calculus of the similarity is applied, another threshold should be defined.

Figure 3.13: AccountOwner Metamodel

CustomerAddress	Custome	erName	Customer
🗖 Street : String	*	01	🖵 Cname : String
City : String	CAddress		
🗖 USStates : String			
🗖 PostalCode : Integer			
	1		

Figure 3.14: Customer Metamodel

In the model of AccountOnwer, we have 2 instances of classes and 7 instances of attributes. In the model of Customer, we have 2 instances of classes and 5 instances of attributes. Table 3.9 shows the amount of links generated in the match phase. In this case, due to a limited number of elements, we do not use filters in the propagation.

Table 3.10 shows the results of restricted propagation between links of AccountOwner x Customer, according to the specific filter configuration. We set the threshold for the filter valuing 0.125. The propagation executing all the methods are shown in Table 3.11. The restricted propagation results between types of links are shown in Table 3.12 and the

propagation involving all the propagation methods is shown in Table 3.13.

3.3.3 Discussion

We implemented 9 restricted propagation graphs between structures based on the metamodel and model elements to propagate similarities between their links. In addition, we execute these propagations using two different filter configurations: after and before the execution of the SF (as illustrated in Figure 3.1).

We use 4 sets of metamodels in our experiments: Mantis x Bugzilla and AccountOwner x Customer. The methods and (meta)models are rather simple, but executing them enables some conclusions to be drawn regarding the propagation of similarity process. In the following case, we compared the restricted methods with a combined propagation. The combined propagation executes all the propagation methods together (non-restricted propagation). This method show close as proposed in Melnik [18].

We summarize the percentage of the gain of the similarities for the metamodels of Mantis x Bugzilla and AccountOwner x Customer in Table 3.14 and Table 3.15, respectively. We compare the mean of the similarities of each restricted propagation graph with the non-restricted propagation. Therefore, the higher the similarity percentage, the better the restricted propagation technique is in relation to non-restricted propagation.

We discuss the results of the propagation between links of *Mantis x Bugzilla*. Table 3.14 provides a big picture of the results of each propagation methods compared with a combined propagation method. This table shows the mean percentage gain over the iteration of the SF in accordance to the results of (I) filter configuration and (II) filter configuration. The best implementation for the SF are related to the propagation from links between Classes to links between References and propagation of (I) filter configuration, and in the 1st iteration of (I) filter configuration, respectively, due to the small number of the links. While the worst similarities avarege comes from the methods which were executed in a large number of the links in a matched classes, e.g., propagation from links between Classes to links between References and Attributes in any iteration of (II) filter

configuration and propagation from links between Classes to links between of types of References and Attributes in the 1st iteration of (II) filter configuration.

According to the AccountOwner x Customer metamodels and models, we have insights, which are disscused below. A summary of the percentage of the mean between the methods is provided in Table 3.15. The best propagation techique is the propagation from links between Classes to links between References. The avarege of the similarities values increased in the 6th iteration of (I) filter configuration. According to the propagation between the types of the links, the best propagation method is the propagation from links between Classes to links between types of References. The avarege of the similarities values increased in the 6th iteration of (I) filter configuration. In these configurations, the restricted propagation reduced the number of the links and then increased the average of the similarities. The worst results come from the propagation from links between Classes to links between Attributes and propagation from links between Classes to links between types of Attributes, in the 1st iteration of (II) filter configuration and in the 3rd iteration of (II) filter configuration, respectively, due to the high value of the total number of the links.

The second filter configuration acted as a constraint, reducing the number of the links. Therefore, we did not find a significant increase relative to the average of the similarity in comparison with the combined method, with the average of the similarities remaining constant for each iteration of the SF. However, by comparing the filter configurations, regardless of the propagation methods, there is an increase in the similarities between the links or no change in the similarities in the iterations of the SF.

In both metamodels (Mantis x Bugzilla or AccountOwner x Customer) in the propagation from links between Attributes to links between their Instances, we observed that the similarities are unable to 'flow' between links, where the propagation coefficient is equal to 1. For example, from the link 'version x version' to the link 'Beta x beta', the same similarity of the link of the attribute is equal to the similarity of the link of the instance, in any iteration (Table 3.14). Due to the reduced number of the links, the (II) filter configuration has no effect on the iterations. In all metamodels and models, from the 6th iteration, the values of the similarities between the links began to gradually decrease, when the delta value has a treshold value of $\cong 0.001$. Thus, we stopped the execution of the SF. The SF tends to propagate the similarity to a class or element that has the highest number of links. For this reason, after each iteration and normalization of the results, the similarity increased in a single kind of link, e.g., the link between classes Address x CustomerAddress in the propagation from links between Classes to links between Attributes or Issue x Bug in the propagation comprising all the propagation methods. Therefore, similarity values of 1 were assigned to these elements in every iteration. Due to this behavior of the SF, in some iterations the similarities between the links were reduced due to these (meta)models being more connected, e.g., the propagation from links between Classes to links between Attributes in the 3rd interation of Mantis x Bugzilla. By the best filter technique, it may be possible to disconnect the (meta)models. Thus, the results will not tend to be concentrated in a single link. However, it is important to know the nature of the metamodels and models in order to choose the best propagation method.

Analyzing the formula of the SF we can deduce the behavior of the algorithm in (meta)models in different situations. The formula returns the final similarity between links in accordance with the propagation coefficient multiplied by the similarity of the links between classes, plus the similarity of the links between attributes and/or references, thus SF = targetLink + (sourceLink * propagationCoefficient). The propagation coefficient is directly related to the inverse amount of links to a matched class, thus, 1/amountofLinks. However, the smaller the amount of links, the better the result of the SF may be. This situation is shown in both (meta)models used. It is also necessary take into account the similarity value of the sourceLink, because if this value equals 0, the result may be the targetLink. Nevertheless, if the targetLink is equal to 0, the result of SF may be the (sourceLink * propagationCoefficient). Consequently, it is necessary to apply the best filter techniques when the number of the links is unknown to return the links with the best similarities, which may increase the result of SF. In this work, we know the number of links prior to the filter application. However, when using large-scale (meta)models, it

is recommend that the number of the links of each matched class be reduced, which may improve their results.

The links and the weaving model are persisted in memory, which could allow the weaving model to be handled faster than a model stored in a file. The EMF has specific *classes* to persist the weaving model in an XMI file. The weaving model was implemented using Java language.

Our work does not target only MDSE applications. The methods developed may be used to discover mutual friends in a social network [18] or to unveil cartels in public bids [9]. The high similarity may indicates a strong friendship between people [18] or may indicate fraud in public tenders [9], respectively. This will depend on the enconding of the similarity values, for example, the use of the Edit Distance. The restricted propagation methods also may be applied to the Geographic Information System, in which it may be possible to match schemas of maps [22].

The advantage of the use of restricted propagation graphs is that they can be applied in different metamodels and models [4]. These methods also may reduce the links of a matched class, thus, enhancing the similarities between the links. A limitation of this study is that our implementation does not deal with links concerning inheritance propagation. However, it can be inferred that abstract classes with a generic structure (e.g. an 'Object' class), would have several links and the similarity of this class would greatly increase. The way the links were filtered is also a limitation. Del Fabro and Valduriez [4] show that such an implementation can be a disadvantage, since the limit value for the filter is known. After analysis, these values returned the links with a best match. The evaluation of the similarities should be calculated using Precision and Recall to ensure greater reliability. Finally, we could implement a dictionary, using ontology, in order to handle with synonyms.

3.4 Summary

In this chapter, we presented the methodology for comparing the executions of the SF. We compare the average of the similarity of each restricted propagation graph with the propagation executing all the methods (shown as closely as proposed by Melnik [18]). We utilize 4 metamodels to execute the propagation: matching between Mantis with Bugzilla and matching between AccountOwner x Customer. The propagation using the restricted propagation graphs increase the similarities between the links because they reduce the number of the links of a matched class.

We also apply 2 variants of filters configuration: before and after the execution of the SF, as in Figure 3.1. The application of the filter before of the SF enables a comparison if the number of the links of a matched class is diminished, it is possible increase the similarity between the links. Applying the filter after the SF only selects the links with the best similarities, and they have no effect on the propagations. According to our experiments, the choice of the filter configuration increases the similarities between links, mainly if we execute the filter after the execution of the SF, because this reduces the number of the links.

Tables 3.14 and 3.15 show the percent of the gain of similarity. The comparison is the average of the similarities of the restricted graph propagation with the average of the similarities of the non-restricted propagation. Therefore, the higher the percentage, the better the similarity improvement of the application of the restricted propagation graphs. We executed the iterations of the SF until the 50th iteration. However, the results are showed to be more appropriate up to the 6th iteration, due to the limit of the delta value. Therefore the similarities between the links has decreased progressively.

The advantage of using the restricted propagation graph is that this method may increase faster the similarities between the links, in comparison with a non-restricted propagation. On the other hand, we must know the features of the metamodels and models before apply the restricted propagation method in order to provide the best result.

T in her	π		<u>G''l't-'</u>	1	st	31	rd	61	th
Links	Ι	II	Similarities	Ι	II	Ι	II	Ι	II
Propagation	from links	betwee	en Classes to	links b	etweer	h Attri	butes		
IdentifiedElt x LongDesc*	0.25	1	0.091	0.047	0.195	0.047	0.195	0.047	0.195
id x who	0.25	1	0.250	0.019	0.195	0.014	0.195	0.012	0.195
IdentifiedElt x Attachment [*]	0.125	1	0.091	0.154	0.623	0.154	0.623	0.154	0.624
id x id	0.125	1	1.000	0.070	0.623	0.032	0.623	0.021	0.624
Issue x BugzillaRoot*	0.04166	1	0.083	0.244	0.619	0.244	0.619	0.244	0.619
version x version	0.04166	1	1.000	0.069	0.619	0.025	0.619	0.012	0.619
Issue x Bug [*]	0.007575	1	0.200	1.000	0.686	1.000	0.686	1.000	0.686
version x version	0.007575	1	1.000	0.069	0.686	0.023	0.686	0.009	0.686
ValueWithId x StringElt*	1	1	0.083	0.074	0.619	0.074	0.619	0.074	0.617
value x value	1	1	1.000	0.074	0.619	0.074	0.619	0.074	0.619
ValueWithId x Attachment*	0.125	1	0.091	0.100	0.195	0.100	0.195	0.100	0.195
value x date	0.125	1	0.250	0.018	0.195	0.014	0.195	0.013	0.195
Note x LongDesc [*]	0.25	1	0.143	0.056	0.225	0.056	0.225	0.056	0.225
text x thetext	0.25	1	0.250	0.020	0.225	0.015	0.225	0.014	0.225
Note x Attachment [*]	0.125	0.5	0.111	0.108	0.349	0.108	0.349	0.108	0.349
text x desc	0.125	0.5	0.250	0.018	0.175	0.014	0.175	0.014	0.175
text x type	0.125	0.5	0.25	0.018	0.175	0.015	0.174	0.014	0.175
Attachment x Attachment [*]	0.03125	0.333	1	0.348	1.000	0.348	1.000	0.348	1.000
size x id	0.03125	0.333	0.25	0.019	0.333	0.013	0.333	0.011	0.333
size x date	0.03125	0.333	0.25	0.019	0.333	0.013	0.333	0.011	0.333
size x type	0.03125	0.333	0.25	0.019	0.333	0.013	0.333	0.011	0.333
Propagation	from links	betwee	en Classes to	links b	etween	Refer	ences	1	1
Issue x Bug [*]	0.0142857	1	0.2	1.000	1.000	1.000	1.000	1.000	1.000
attachments _ attachment	0.0142857	1	0.5	0.065	1.000	0.027	1.000	0.016	1.000
Propagation from links	between C	lasses t	o links betwe	en Att	ributes	and F	Referen	ces	
IdentifiedElt x Bug [*]	0.142857	1	0.071	0.243	1	0.243	1.000	0.243	1.000
id_cc	0.142857	1	0.333	0.080	1	0.046	1.000	0.036	1.000
Propagation from li	nks betweer	n Class	es to links be	tween	Refere	nces ar	nd Attr	ibutes	
Issue x Bug [*]	0.0045	0.25	0.2	1.000	1.000	1.000	1.000	1.000	1.000
project x product	0.0045	0.25	0.333	0.013	0.162	0.007	0.228	0.005	0.247
priority x priority	0.0045	0.25	1	0.039	0.444	0.013	0.298	0.006	0.256
reporter x exporter	0.0045	0.25	0.333	0.013	0.162	0.007	0.228	0.005	0.247
assignedTo x assigned_To	0.0045	0.25	0.5	0.019	0.232	0.008	0.246	0.005	0.249
Issue x BugzillaRoot*	0.025	1	0.0833	0.183	0.176	0.183	0.176	0.183	0.176
reporter x exporter	0.025	1	0.333	0.013	0.176	0.007	0.176	0.005	0.176
Issue x Attachment	0.0125	1	0.1	0.373	0.148	0.373	0.148	0.373	0.148
notes x date	0.0125	1	0.25	0.010	0.148	0.006	0.148	0.005	0.148
Propagation	from links l	betweei	n Attributes t	to links	s betwe	en Ins	tances		
version x version *	1	-	1	1	-	1.000	-	1.000	-
Beta x beta	1	-	1	1	-	1.000	-	1.000	-
category x exporter *	1	-	0.111	0.180	-	0.181	-	0.181	-
website x teste	1	-	0.25	0.180	-	0.181	-	0.181	-
category x product [*]	1	-	0.111	0.555	-	0.556	-	0.556	-
website x website	1	-	1	0.555	-	0.556	-	0.556	-
version x exporter [*]	1	-	0.111	0.180	-	0.181	-	0.181	-
Beta x teste	1	-	0.25	0.180	-	0.181	-	0.181	-
version x version *	1	-	1	1	-	1.000	-	1.000	-
Beta x beta	1	-	1	1	-	1.000	-	1.000	-
value x component *	1	-	0.111	0.180	-	0.181	-	0.181	-
High x link	1	-	0.25	0.180	-	0.181	-	0.181	-
value x value *	1	-	1	0.625	-	0.625	-	0.625	-
High x link	1	-	0.25	0.625	-	0.625	-	0.625	-

Table 3.3: Propagations from links between Mantis and Bugzilla metamodels and models

Links		π	Similarities	1st		3rd	l	6th	1
Links	Ι	II	Similarities	Ι	II	Ι	II	Ι	II
Propagation from links	bet	weer	n Attributes t	to links	bety	ween tl	neir	Instan	\mathbf{ces}
value x exporter *	1	-	0.125	0.1875	-	0.188	-	0.188	-
low x abc	1	-	0.25	0.1925	-	0.188	-	0.188	-
value x bug_id *	1	-	0.143	0.196	-	0.196	-	0.196	-
low x 1	1	-	0.25	0.196	-	0.196	-	0.196	-
value x component *	1	-	0.111	0.180	-	0.181	-	0.181	-
low x link	1	-	0.25	0.180	-	0.181	-	0.181	-
value x target_milestone *	1	-	0.0714	0.160	-	0.161	-	0.161	-
low x v01	1	-	0.25	0.160	-	0.161	-	0.161	-
value x bug_severity *	1	-	0.083	0.541	-	0.542	-	0.542	-
low x low	1	-	1	0.541	-	0.542	-	0.542	-
value x value *	1	-	1	0.625	-	0.625	-	0.625	-
low x link	1	-	0.25	0.625	-	0.625	-	0.625	-
login x version [*]	1	-	0.1667	0.208	-	0.208	-	0.208	-
geor x beta	1	-	0.25	0.208	-	0.208	-	0.208	-
value x assigned_to*	1	-	0.0909	0.212	-	0.212	-	0.212	-
George x Jorge	1	-	0.333	0.212	-	0.212	-	0.212	-
login x version [*]	1	-	0.1667	0.208	-	0.208	-	0.208	-
geor x beta	1	-	0.25	0.208	-	0.208	-	0.208	-
login x bug_severity*	1	-	0.0909	0.170	-	0.170	-	0.170	-
geor x low	1	-	0.25	0.170	-	0.170	-	0.170	-
value x bug_status*	1	-	0.111	0.180	-	0.181	-	0.181	-
null x st_null	1	-	0.25	0.180	-	0.181	-	0.181	-
login x version [*]	1	-	0.1667	0.208	-	0.208	-	0.208	-
geor x beta	1	-	0.25	0.208	-	0.208	-	0.208	-
value x assigned_to*	1	-	0.0909	0.212	-	0.212	-	0.212	-
George x Jorge	1	-	0.333	0.212	-	0.212	-	0.212	-
login x version [*]	1	-	0.167	0.208	-	0.208	-	0.208	-
geor x beta	1	-	0.25	0.208	-	0.208	-	0.208	-
login x bug_severity*	1	-	0.0909	0.170	-	0.170	-	0.170	-
geor x low	1	-	0.25	0.170	-	0.170	-	0.170	-

Table 3.4: Continuation - Propagation results from links between Mantis and Bugzilla metamodels and models

Links	π		Similarities	1	\mathbf{st}	31	rd	61	th
Links	Ι	II	Similarities	I	II	Ι	II	Ι	II
IdentifiedElt x Bug*	0.34400	1.000	0.071	0.067	0.083	0.068	0.083	0.071	0.083
id x cc	0.34400	1.000	0.333	0.006	0.083	0.003	0.083	0.003	0.083
IdentifiedElt x LongDesc*	0.25000	1.000	0.091	0.013	0.070	0.013	0.070	0.014	0.070
id x who	0.25000	1.000	0.250	0.005	0.070	0.004	0.070	0.004	0.070
IdentifiedElt x Attachment*	0.12500	1.000	0.091	0.043	0.224	0.044	0.224	0.046	0.224
id x id	0.12500	1.000	1.000	0.019	0.224	0.009	0.224	0.006	0.224
Issue x Bug [*]	0.00202	0.143	0.200	1.000	1.000	1.000	1.000	1.000	1.000
project x product	0.00202	0.143	0.333	0.006	0.074	0.003	0.126	0.002	0.141
priority x priority	0.00202	0.143	1.000	0.019	0.211	0.006	0.160	0.003	0.145
reporter x exporter	0.00202	0.143	0.333	0.006	0.074	0.003	0.126	0.002	0.141
reporter x reporter	0.00202	0.143	1.000	0.019	0.211	0.006	0.160	0.003	0.145
version x version	0.00202	0.143	1.000	0.019	0.211	0.006	0.160	0.003	0.145
assigned To x assigned_to	0.00202	0.143	0.500	0.010	0.109	0.004	0.134	0.002	0.142
attachments x attachment	0.00202	0.143	0.500	0.010	0.109	0.004	0.134	0.002	0.142
Issue x BugzillaRoot*	0.11700	0.500	0.083	0.193	0.291	0.193	0.291	0.193	0.291
reporter x exporter	0.11700	0.500	0.333	0.006	0.077	0.003	0.128	0.002	0.143
version x version	0.11700	0.500	1.000	0.019	0.214	0.007	0.163	0.003	0.148
Issue x Attachment [*]	0.07350	1.000	0.100	0.292	0.072	0.292	0.072	0.292	0.072
notes x date	0.07350	1.000	0.250	0.005	0.072	0.003	0.072	0.002	0.072
ValueWithID x StringElt*	0.50000	1.000	0.083	0.021	0.223	0.018	0.223	0.012	0.223
value x value	0.50000	1.000	1.000	0.020	0.223	0.013	0.223	0.008	0.223
ValueWithID x Attachment*	0.06250	1.000	0.091	0.028	0.070	0.024	0.070	0.016	0.070
value x date	0.06250	1.000	0.250	0.005	0.070	0.003	0.070	0.001	0.070
Note x LongDesc [*]	0.08330	1.000	0.143	0.027	0.081	0.025	0.081	0.019	0.081
text x thetext	0.08330	1.000	0.250	0.005	0.081	0.003	0.081	0.002	0.081
Note x Attachment*	0.04166	0.500	0.111	0.051	0.126	0.048	0.126	0.037	0.126
text x desc	0.04166	0.500	0.250	0.005	0.063	0.003	0.063	0.002	0.063
text x type	0.04166	0.500	0.250	0.005	0.063	0.003	0.063	0.002	0.063
Attachment x Attachment*	0.02500	0.333	1.000	0.097	0.360	0.092	0.360	0.082	0.360
size x id	0.02500	0.333	0.250	0.005	0.120	0.003	0.120	0.002	0.120
size x date	0.02500	0.333	0.250	0.005	0.120	0.003	0.120	0.002	0.120
size x type	0.02500	0.333	0.250	0.005	0.120	0.003	0.120	0.002	0.120

Table 3.5: Results comprising all the propagation methods between links of Mantis and Bugzilla metamodel

From links between Classes to links between types of Attributes II III III III	Links	Type link element	π	-	Similarities	1:	st	31	rd	6	th
	LIIKS		1			-		Ι	II	Ι	II
id x who Integer x String 0.250 1.000 0.0143 0.002 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.011 0.513 0.001 0.513 0.001 0.513 0.001 0.513 0.001 0.517 0.007 0.517 0.07		From links between Clas						-			
IdentifiedElt x Attachment* - 0.125 1.000 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.012 0.111 0.002 0.111 0.012 0.112 0.125 1.000 1.000 0.011 0.513 0.018 0.568 version x version String x String 1.000 1.000 1.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0		-	1					1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Integer x String				0.002			-		-
Issue x BugzillaRoot* 0 0 0.042 1.000 0.083 0.182 0.513 0.182 0.513 0.182 0.513 0.083 0.182 0.513 0.008 0.513 0.008 0.513 0.008 0.513 0.008 0.513 0.008 0.513 0.008 0.513 0.008 0.513 0.008 0.568 0.000 0.558 0.000 0.558 Value WithId x StringElt* - 1.000 1.000 0.011 0.513 0.011 0.503 0.011 0.504 0.517 0.007 0.517 0	IdentifiedElt x Attachment [*]	-				0.012	0.111		0.111		-
version x version String x String 0.042 1.000 1.000 0.011 0.513 0.008 0.513 Issue x Bug* - 0.008 1.000 0.000 1.000 0.008 0.560 1.000 0.568 1.000 0.568 0.008 0.568 ValueWithId x StringElt* - 1.000 1.000 1.000 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 ValueWithId x Attachment* - 0.125 1.000 0.000 0.011 0.513 0.008 0.513 0.007 0.517 Value x date String x String 0.125 1.000 0.011 0.512 0.008 0.513 0.008 0.513 0.007 0.517 Value x date String x String 0.125 1.000 0.011 0.542 0.011 0.541 0.011 0.541 0.011 0.541 0.001 0.057 0.008 0.500 0.000 0.551 0.000 <t< td=""><td></td><td>Integer x String</td><td>1</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td></t<>		Integer x String	1				-		-		-
Issue x Bug* 0.08 1.000 0.200 1.000 0.568 1.000 0.568 1.000 0.568 1.000 0.568 1.000 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.008 0.568 0.001 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.001 0.011 0.513 0.001 0.011 0.513 0.001 0.011 0.513 0.001 0.011 0.542 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.043 0.033 0.011 0.531	Issue x BugzillaRoot*	-	0.042	1.000	0.083	0.182	0.513	0.182	0.513	0.182	0.513
version x version String x String 0.008 1.000 1.000 0.011 0.569 0.008 0.568 0.008 0.568 ValueWithId x StringEIt* - 1.000 1.000 0.003 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.001 0.513 0.001 0.513 0.001 0.513 0.001 0.513 0.007 0.517 0.058 0.517 0.058 0.517 0.008 0.517 0.008 0.517 0.007 0.511 0.001 0.541 0.041 0.541 0.041 0.541 0.041 0.541 0.041 0.541 0.011 0.558 1.000 0.008 0.000 0.008 0.000 0.008 0.000 0.008 0.000 0.001 0.500 0.000 0.000 0.000 0.000 0.000 0.000 <td< td=""><td>version x version</td><td>String x String</td><td>0.042</td><td>1.000</td><td>1.000</td><td>0.011</td><td>0.513</td><td>0.008</td><td>0.513</td><td>0.008</td><td>0.513</td></td<>	version x version	String x String	0.042	1.000	1.000	0.011	0.513	0.008	0.513	0.008	0.513
ValueWithId x StringElt* - 1.000 1.000 0.083 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.517 0.058 0.517 value x date String x String 0.125 1.000 0.011 0.543 0.004 0.541 0.044 0.541 0.044 0.541 Note x Atachment* - 0.250 1.000 0.011 0.550 0.000 0.058 1.000 0.058 1.000 0.051 0.000 0.581 1.000 1.011 0.541 0.541 0.541 0.500 1.000 1.011 0.541 0.541 0.501 0.007 0.500 1.000 1.000 1.000 1.000 1.000 1.007 0.501 0.226 0.005	Issue x Bug [*]	-	0.008	1.000	0.200	1.000	0.569	1.000	0.568	1.000	0.568
value x value String x String 1.000 1.000 1.000 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.011 0.513 0.001 0.513 0.005 0.517 0.058 0.517 0.058 0.517 0.058 0.517 0.058 0.517 0.058 0.517 0.058 0.517 0.058 0.517 0.058 0.517 0.001 0.513 0.004 0.541 0.014 0.541 0.004 0.541 0.004 0.541 0.011 0.542 0.004 0.541 0.011 0.542 0.004 0.541 0.001 0.541 0.001 0.541 0.001 0.500 0.008 0.500 0.007 0.500 text x type String x String 0.125 0.500 1.000 0.011 0.500 0.007 0.500 text x type String x String 0.031 0.333	version x version	String x String	0.008	1.000	1.000	0.011	0.569	0.008	0.568	0.008	0.568
ValueWithId x Attachment* - 0.125 1.000 0.091 0.058 0.513 0.058 0.517 0.058 0.517 value x date String x String 0.125 1.000 1.000 0.011 0.513 0.008 0.517 0.007 0.517 Note x LongDesc* - 0.250 1.000 1.010 0.011 0.542 0.044 0.541 0.014 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.541 0.011 0.542 0.044 0.541 0.011 0.542 0.044 0.541 0.011 0.542 0.041 0.541 0.011 0.542 0.041 0.541 0.011 0.542 0.044 0.541 0.011 0.542 0.041 0.541 0.001 0.001 0.008 0.500 0.007 0.501 0.502 0.500	ValueWithId x StringElt*	-	1.000	1.000	0.083	0.011	0.513	0.011	0.513	0.011	0.513
value x date String x String 0.125 1.000 1.000 0.011 0.513 0.008 0.517 0.007 0.517 Note x LongDese* - 0.250 1.000 0.143 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.044 0.541 0.011 0.552 0.011 0.552 0.011 0.554 0.004 0.551 0.000 0.011 0.554 0.001 0.551 0.000 0.058 1.000 0.011 0.550 0.007 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 text x type String x String 0.125 0.500 1.000 0.013 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193 0.677 0.193	value x value	String x String	1.000	1.000	1.000	0.011	0.513	0.011	0.513	0.011	0.513
Note x LongDesc*- 0.250 1.000 0.143 0.044 0.542 0.044 0.541 0.044 0.541 text x thetextString x String 0.250 1.000 0.011 0.542 0.011 0.541 0.011 0.541 Note x Attachment*- 0.125 0.500 0.111 0.058 1.000 0.000 0.008 0.500 0.007 0.500 text x typeString x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 Attachment x Attachment*- 0.031 0.333 0.100 0.011 0.500 0.026 0.006 0.226 size x idInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 size x typeInteger x String 0.011 0.031 0.002 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 Issue x Bug*- 0.0113 1 0.100 1.000 1.0	ValueWithId x Attachment*	-	0.125	1.000	0.091	0.058	0.513	0.058	0.517	0.058	0.517
text x thetextString x String 0.250 1.000 1.000 0.011 0.542 0.011 0.541 0.011 0.541 Note x Attachment*- 0.125 0.500 0.011 0.058 1.000 0.058 1.000 text x descString x String 0.125 0.500 1.000 0.011 0.050 0.008 0.500 0.007 0.500 text x typeString x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 text x typeString x String 0.125 0.500 1.000 0.011 0.500 0.006 0.206 0.006 0.206 size x idInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 type integer x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 string 0.031 0.333 0.143 0.002 0.226 0.006 0.226 string 0.031 0.333 0.143 0.002 0.226 0.006 0.226 string 0.031 0.333 0.143 0.002 1	value x date	String x String	0.125	1.000	1.000	0.011	0.513	0.008	0.517	0.007	0.517
Note x Attachment* - 0.125 0.500 0.111 0.058 1.000 0.058 1.000 0.058 1.000 text x desc String x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 text x type String x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 Attachment x Attachment* - 0.031 0.333 1.000 0.113 0.002 0.226 0.005 0.226 0.006 0.226 size x id Integer x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x date Integer x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 0.006 0.226 0.006 0.226 0.006 0.226 0.006 0.226 0.006 0.226 0.006 0.226 0.006 0.226 0.006 <td< td=""><td>Note x LongDesc[*]</td><td>=</td><td>0.250</td><td>1.000</td><td>0.143</td><td>0.044</td><td>0.542</td><td>0.044</td><td>0.541</td><td>0.044</td><td>0.541</td></td<>	Note x LongDesc [*]	=	0.250	1.000	0.143	0.044	0.542	0.044	0.541	0.044	0.541
text x descString x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 text x typeString x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 Attachment x Attachment*- 0.031 0.333 1.000 0.011 0.500 0.008 0.500 0.007 0.500 size x idInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x dateInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x typeInteger x Ctring 0.014 1 0.22 1.000	text x thetext	String x String	0.250	1.000	1.000	0.011	0.542	0.011	0.541	0.011	0.541
text x typeString x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500 Attachment x Attachment*- 0.031 0.333 1.000 0.193 0.677 0.226 0.006 0.226 size x dateInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 Issue x Bug*- 0.0143 1 0.22 1.000 </td <td>Note x Attachment[*]</td> <td>-</td> <td>0.125</td> <td>0.500</td> <td>0.111</td> <td>0.058</td> <td>1.000</td> <td>0.058</td> <td>1.000</td> <td>0.058</td> <td>1.000</td>	Note x Attachment [*]	-	0.125	0.500	0.111	0.058	1.000	0.058	1.000	0.058	1.000
Attachment*- 0.031 0.333 1.000 0.193 0.677 0.123 0.005 0.226 0.006 0.226 size x dateInteger x String 0.031 0.333 0.143 0.002 0.226 0.006 0.226 0.006 0.226 Issue x Bug* $ 0.0143$ 1 0.21 0.001 1.000 <td>text x desc</td> <td>String x String</td> <td>0.125</td> <td>0.500</td> <td>1.000</td> <td>0.011</td> <td>0.500</td> <td>0.008</td> <td>0.500</td> <td>0.007</td> <td>0.500</td>	text x desc	String x String	0.125	0.500	1.000	0.011	0.500	0.008	0.500	0.007	0.500
Attachment x Attachment*- 0.031 0.333 1.000 0.193 0.677 0.193 0.677 0.193 0.677 size x idInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x dateInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 From links between Classes to links between types of ReferencesIssue x Bug* $ 0.0143$ 1 1 0.100 1.000	text x type	String x String	0.125	0.500	1.000	0.011	0.500	0.008	0.500	0.007	0.500
size x dateInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 From links between Classes to links between types of ReferencesIssue x Bug* $ 0.0143$ 1 0.22 1.000 <th< td=""><td>Attachment x Attachment[*]</td><td>-</td><td>0.031</td><td>0.333</td><td>1.000</td><td>0.193</td><td>0.677</td><td>0.193</td><td>0.677</td><td>0.193</td><td>0.677</td></th<>	Attachment x Attachment [*]	-	0.031	0.333	1.000	0.193	0.677	0.193	0.677	0.193	0.677
size x typeInteger x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226 From links between Classes to links between types of ReferresIssue x Bug*- 0.0143 1 0.22 1.000 $1.$	size x id	Integer x String	0.031	0.333	0.143	0.002	0.226	0.005	0.226	0.006	0.226
From links between Classes to links between types of References Issue x Bug* - 0.0143 1 0.2 1.000 1.00	size x date	Integer x String	0.031	0.333	0.143	0.002	0.226	0.005	0.226	0.006	0.226
Issue x Bug*- 0.0143 1 0.2 1.000 1.00	size x type	Integer x String	0.031	0.333	0.143	0.002	0.226	0.005	0.226	0.006	0.226
Issue x Bug*- 0.0143 1 0.2 1.000 1.00		From links between Clas	ses to li	nks bet	ween types o	f Refer	ences				
From links between Classes to links between types of Attributes and ReferencesIdentifiedElt x Bug*- 0.143 1 0.071 0.171 1 0.171 1 0.171 1id.ccInteger x Cc 0.143 1 0.125 0.027 1 0.025 1 0.025 1From links between Classes to links between types of References and AttributesIssue x Bug*- 0.0045 0.2 0.200 1.000 <th< td=""><td>Issue x Bug[*]</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1.000</td><td>1.000</td><td>1.000</td><td>1.000</td></th<>	Issue x Bug [*]	-						1.000	1.000	1.000	1.000
IdentifiedElt x Bug* - 0.143 1 0.071 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.171 1 0.025 1 0.004	attachments _ attachment	Attachment x Attachment	0.0143	1	1	0.120	1.000	0.041	1.000	0.018	1.000
id.cc Integer x Cc 0.143 1 0.125 0.027 1 0.025 1 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.108 0.005 0.108 0.005 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.107 0.235	From li	nks between Classes to li	nks bet	ween ty	pes of Attrib	utes ar	d Refe	erences	3		I
id.cc Integer x Cc 0.143 1 0.125 0.027 1 0.025 1 0.005 0.00 1.000 1.000 1.000 1.000 1.000 0.005 0.105 0.105 0.108 0.005 0.108 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.107	IdentifiedElt x Bug [*]	-	0.143	1	0.071	0.171	1	0.171	1	0.171	1
Issue x Bug*- 0.0045 0.2 0.200 1.000 0.187 0.005 0.187 proter x exporterPerson x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 Issue x Attachment*- 0.0250 1 0.167 0.007 0.284 0.084 0.084 0.284 0.084 0.284 0.284 0.025 0.276 0.290 0.276 0.290 0.276 0.290 0.276 <td>id_cc</td> <td>Integer x Cc</td> <td></td> <td>1</td> <td>0.125</td> <td>0.027</td> <td>1</td> <td>0.025</td> <td>1</td> <td>0.025</td> <td>1</td>	id_cc	Integer x Cc		1	0.125	0.027	1	0.025	1	0.025	1
project x product ValueWithId x String 0.004/s 0.2 0.091 0.004 0.148 0.004 0.187 0.005 0.198 priority x priority ValueWithId x String 0.004/s 0.2 0.091 0.004 0.148 0.004 0.187 0.005 0.198 reporter x exporter Person x String 0.004/s 0.2 0.017 0.007 0.235 0.005 0.209 0.005 0.201 reporter x reporter Person x String 0.004/s 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 assignedTo x assigned.To Person x String 0.004/s 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 Issue x BugzillaRoot* - 0.0250 1 0.083 0.184 0.284 0.184 0.284 0.284 0.083 0.284 0.005 0.284 reporter x exporter Person x String 0.0250 1 0.1067 0.007 0.284 <	From li	nks between Classes to li	nks bet	ween ty	pes of Refere	nces ai	nd Att	ributes	5	1	1
priority x priority ValueWithId x String 0.0045 0.2 0.091 0.004 0.148 0.004 0.187 0.005 0.198 reporter x exporter Person x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 reporter x reporter Person x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 assignedTo x assigned.To Person x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 Issue x BugzillaRoot* - 0.0250 1 0.083 0.184 0.284 0.184 0.284	Issue x Bug [*]	-	0.0045	0.2	0.200	1.000	1.000	1.000	1.000	1.000	1.000
reporter x exporterPerson x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 reporter x reporterPerson x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 assigned To x assigned. ToPerson x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201 Issue x BugzillaRoot*- 0.0250 1 0.083 0.184 0.284 0.184 0.284 0.284 0.284 reporter x exporterPerson x String 0.0250 1 0.167 0.007 0.284 0.005 0.284 Issue x Attachment*- 0.0125 1 0.100 0.358 0.276 0.358 0.276 0.292 0.276	project x product	ValueWithId x String	0.0045	0.2	0.091	0.004	0.148	0.004	0.187	0.005	0.198
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	priority x priority	ValueWithId x String	0.0045	0.2	0.091	0.004	0.148	0.004	0.187	0.005	0.198
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	reporter x exporter	Person x String	0.0045	0.2	0.167	0.007	0.235	0.005	0.209	0.005	0.201
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1			0.2	0.167	0.007	0.235	0.005	0.209	0.005	0.201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	assignedTo x assigned_To	Person x String	0.0045	0.2	0.167	0.007	0.235	0.005	0.209	0.005	0.201
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Issue x BugzillaRoot*	-		1	0.083	0.184	0.284	0.184	0.284	0.184	0.284
	<u> </u>	Person x String	0.0250	1	0.167	0.007	0.284	0.005	0.284	0.005	0.284
notes x date Note x String 0.0125 1 0.143 0.006 0.276 0.005 0.276 0.005 0.276	Issue x Attachment*	-	0.0125	1	0.100	0.358	0.276	0.358	0.276	0.292	0.276
	notes x date	Note x String	0.0125	1	0.143	0.006	0.276	0.005	0.276	0.005	0.276

Table 3.6: Results of the propagation between types of links of Mantis and Bugzilla metamodels

Links	There a limba alarmant	π		Similarities	1:	\mathbf{st}	3	rd	6	th
Links	Type link element	Ι	II	Similarities	Ι	II	I	II	Ι	II
IdentifiedElt x Bug [*]	-	0.0344	1.000	0.071	0.030	0.140	0.031	0.140	0.032	0.140
id x cc	Integer x Cc	0.0344	1.000	0.333	0.001	0.140	0.001	0.140	0.001	0.140
IdentifiedElt x LongDesc [*]	-	0.2500	1.000	0.091	0.005	0.081	0.005	0.081	0.005	0.081
id x who	Integer x String	0.2500	1.000	0.143	0.001	0.081	0.001	0.081	0.001	0.081
IdentifiedElt x Attachment*	-	0.1250	1.000	0.091	0.009	0.081	0.009	0.081	0.009	0.081
id x id	Integer x String	0.1250	1.000	0.143	0.001	0.081	0.001	0.081	0.001	0.081
Issue x Bug [*]	-	0.0020	0.143	0.200	1.000	1.000	1.000	1.000	1.000	1.000
project x product	ValueWithId x String	0.0020	0.143	0.091	0.001	0.069	0.002	0.118	0.002	0.140
priority x priority	ValueWithId x String	0.0020	0.143	0.091	0.001	0.069	0.002	0.118	0.002	0.140
reporter x exporter	Person x String	0.0020	0.143	0.167	0.001	0.068	0.002	0.124	0.002	0.141
reporter x reporter	Person x String	0.0020	0.143	0.167	0.001	0.068	0.002	0.124	0.002	0.141
version x version	String x String	0.0020	0.143	1.000	0.008	0.357	0.003	0.196	0.002	0.150
assignedTo x assigned_to	Person x String	0.0020	0.143	0.167	0.001	0.068	0.002	0.124	0.002	0.141
attachments x attachment	Attachment x Attachment	0.0020	0.143	1.000	0.008	0.357	0.003	0.196	0.002	0.150
Issue x BugzillaRoot [*]	-	0.0118	0.500	0.083	0.180	0.434	0.180	0.434	0.180	0.434
reporter x exporter	Person x String	0.0118	0.500	0.167	0.001	0.072	0.002	0.181	0.002	0.212
version x version	String x String	0.0118	0.500	1.000	0.008	0.361	0.004	0.253	0.002	0.221
Issue x Attachment [*]	-	0.0074	1.000	0.100	0.247	0.084	0.247	0.084	0.247	0.084
notes x date	Note x String	0.0074	1.000	0.143	0.001	0.084	0.002	0.084	0.002	0.084
ValueWithID x StringElt [*]	-	0.5000	1.000	0.083	0.008	0.376	0.007	0.376	0.005	0.376
value x value	String x String	0.5000	1.000	1.000	0.008	0.376	0.005	0.376	0.003	0.376
ValueWithID x Attachment*	-	0.0625	1.000	0.091	0.041	0.379	0.036	0.379	0.024	0.379
value x date	String x String	0.0625	1.000	1.000	0.008	0.379	0.004	0.379	0.002	0.379
Note x LongDesc [*]	-	0.0833	1.000	0.143	0.036	0.397	0.033	0.397	0.026	0.397
text x thetext	String x String	0.0833	1.000	1.000	0.008	0.397	0.004	0.397	0.003	0.397
Note x Attachment [*]	-	0.0417	0.500	0.111	0.051	0.733	0.047	0.733	0.037	0.624
text x desc	String x String	0.0417	0.500	1.000	0.008	0.366	0.004	0.366	0.002	0.366
text x type	String x String	0.0417	0.500	1.000	0.008	0.366	0.004	0.366	0.002	0.366
Attachment x Attachment [*]	-	0.1250	0.333	1.000	0.137	0.496	0.131	0.496	0.117	0.496
size x id	Integer x String	0.1250	0.333	0.143	0.001	0.165	0.003	0.165	0.003	0.165
size x date	Integer x String	0.1250	0.333	0.143	0.001	0.165	0.003	0.165	0.003	0.165
size x type	Integer x String	0.1250	0.333	0.143	0.001	0.165	0.003	0.165	0.003	0.165

Table 3.7: Results comprising all the propagation methods between types of links of Mantis and Bugzilla

Links Matched	Amount of Links Generated	Amount of Links Filtered
Links between classes	2	2
Links between attributes	35	25
Links between references	4	1
Links between attributes with references	14	5
Links between references with attributes	10	4
Links between types of attributes	35	25
Links between types of references	4	1
Links between types of attributes	14	7
with reference		
Links between types of references	10	5
with attributes	10	3

Table 3.8: Amount of links generated in the matching phase: AccountOwner and Customer

Links Matched	Amount of Links Generated	Amount of Links Filtered
Links between instances of attributes	10	10

Table 3.9: Amount of links of instances generated in the matching phase: AccountOwner and Customer

Links	1	τ	Similarities		\mathbf{st}	31	d	61	th
	Ι	II		Ι	II	Ι	II	Ι	II
Propagation from	ı links	betweer	n Classes to l	inks be	etween	Attrib	utes		
AccountOwner x Customer *	0.333	0.500	0.143	0.203	0.196	0.203	0.196	0.203	0.196
name x Cname	0.333	0.500	0.500	0.126	0.146	0.082	0.110	0.069	0.099
birthdate x Cname	0.333	0.500	0.125	0.040	0.050	0.061	0.086	0.067	0.096
AccountOwner x CustomerAdress*	0.083	0.143	0.071	0.376	0.285	0.376	0.285	0.376	0.285
name x street	0.083	0.143	0.167	0.040	0.045	0.033	0.042	0.032	0.285
name x city	0.083	0.143	0.200	0.047	0.054	0.035	0.044	0.032	0.041
name x USStates	0.083	0.143	0.143	0.034	0.039	0.032	0.040	0.031	0.041
birthdate x street	0.083	0.143	0.125	0.030	0.034	0.031	0.039	0.031	0.041
birthdate x city	0.083	0.143	0.125	0.030	0.034	0.031	0.039	0.031	0.040
birthdate x USStates	0.083	0.143	0.143	0.034	0.039	0.032	0.040	0.031	0.041
taxExempt x street	0.083	0.143	0.143	0.034	0.039	0.032	0.040	0.031	0.041
Address x Customer *	0.250	0.250	0.111	0.206	0.228	0.206	0.228	0.206	0.228
street x Cname	0.250	0.250	0.167	0.045	0.050	0.050	0.055	0.051	0.057
city x Cname	0.250	0.250	0.200	0.053	0.058	0.052	0.057	0.052	0.057
state x Cname	0.250	0.250	0.250	0.053	0.058	0.055	0.060	0.052	0.057
ZIP x Cname	0.250	0.250	0.167	0.035	0.050	0.050	0.000	0.051	0.057
Address x CustomerAddress*	0.063	0.083	0.111	1.000	1.000	1.000	1.000	1.000	1.000
street x street	0.063	0.083	1.000	0.232	0.257	0.105	0.127	0.068	0.089
street x street	0.063	0.083	0.143	0.232	0.237	0.105	0.127	0.008	0.082
street x USStates	0.063	0.083	0.143	0.035	0.033	0.050	0.072	0.062	0.082
city x street	0.003	0.083 0.083	0.107	0.040	0.045	0.057	0.074	0.062	0.082
		0.083 0.083				0.050			
city x city	0.063		1.000	0.232	0.257		0.127	0.068	0.089
city x USStates		0.083	0.125	0.030	0.034	0.054	0.071	0.062	
state x street	0.063	0.083	0.250	0.059	0.066	0.062	0.079	0.062	0.083
state x city	0.063	0.083	0.200	0.048	0.053	0.059	0.076	0.062	0.082
state x USStates	0.063	0.083	0.250	0.059	0.066	0.062	0.079	0.062	0.083
state x postalCode	0.063	0.083	0.143	0.035	0.039	0.054	0.072	0.062	0.082
ZIP x street	0.063	0.083	0.143	0.035	0.039	0.056	0.072	0.062	0.082
ZIP x city	0.063	0.083	0.250	0.059	0.066	0.062	0.079	0.062	0.083
Propagation from									
AccountOwner x Customer*	1	1	0.143	1	1	1	1	1	1
address x Caddress	1	1	0.5	1	1	1	1	1	1
Propagation from links b									1
AccountOwner x Customer*	0.333	0.500	0.143	0.830	0.815	0.830	0.806	0.830	0.815
name x Caddress	0.333	0.500	0.143	0.310	0.425	0.285	0.412	0.278	0.408
TaxExempt x Caddress		0.500	0.125	0.281			0.403	0.277	
Address x Customer [*]	0.250	0.333	0.111	1.000	1.000	1.000	1.000	1.000	1.000
street x Caddress	0.250	0.333	0.143	0.277	0.357	0.257	0.339	0.251	0.334
city x Caddress	0.250	0.333	0.125	0.248	0.322	0.250	0.330	0.250	0.333
state x Cadress	0.250	0.333	0.125	0.248	0.322	0.250	0.330	0.250	0.333
Propagation from links b	etween	Classe	s to links bet	ween I	Referen	ces an		butes	
AccountOwner x Customer *	1	1	0.143	0.493	0.585	0.493	0.585	0.493	0.585
address x Cname	1	1	0.143	0.493	0.585	0.493	0.585	0.493	0.585
AccountOwner x CustomerAdress*	0.25	0.333	0.071	1.000	1.000	1.000	1.000	1.000	1.000
address x street	0.25	0.333	0.167	0.319	0.390	0.267	0.348	0.252	0.335
address x city	0.25	0.333	0.125	0.247	0.305	0.249	0.326	0.250	0.332
address x USStates	0.25	0.333	0.125	0.247	0.305	0.249	0.326	0.250	0.332
Propagation from lin									1
name x Cname*	1	-	0.5	1	-	1	-	1	-
João Silva x Joaquim Silva	1	-	0.2	1	-	1	-	1	-
	-		~	_ *	I			<u> </u>	L

Table 3.10: Propagation results from links between AccountOwner and Customer metamodels using restrictive propagation methods

Links	π		Similarities	1:	st	31	rd	61	h
Links	Ι	II		Ι	II	Ι	II	Ι	II
AccountOwner x Customer *	0.125	0.167	0.143	0.365	0.428	0.365	0.428	0.365	0.428
name x Cname	0.125	0.167	0.500	0.100	0.133	0.059	0.087	0.047	0.073
birthdate x Cname	0.125	0.167	0.125	0.028	0.038	0.041	0.063	0.045	0.070
address x Caddress	0.125	0.167	0.500	0.100	0.133	0.065	0.087	0.047	0.073
name x Caddress	0.125	0.167	0.143	0.031	0.042	0.042	0.064	0.045	0.070
TaxExempt x Caddress	0.125	0.167	0.125	0.028	0.038	0.041	0.063	0.045	0.070
adress x Cname	0.125	0.167	0.143	0.031	0.042	0.042	0.064	0.045	0.070
AccountOwner x CustomerAdress*	0.05	0.100	0.071	0.488	0.391	0.488	0.391	0.488	0.391
name x street	0.05	0.100	0.167	0.033	0.044	0.027	0.040	0.025	0.039
name x city	0.05	0.100	0.200	0.039	0.053	0.028	0.043	0.025	0.040
name x USStates	0.05	0.100	0.143	0.028	0.038	0.025	0.039	0.025	0.039
birthdate x street	0.05	0.100	0.125	0.025	0.034	0.025	0.038	0.024	0.039
birthdate x city	0.05	0.100	0.125	0.025	0.034	0.025	0.038	0.024	0.039
birthdate x USStates	0.05	0.100	0.143	0.028	0.038	0.025	0.039	0.025	0.039
taxExempt x street	0.05	0.100	0.143	0.028	0.038	0.025	0.039	0.025	0.039
adress x street	0.05	0.100	0.167	0.033	0.044	0.027	0.040	0.025	0.039
address x city	0.05	0.100	0.125	0.025	0.034	0.025	0.038	0.024	0.039
address x USStates	0.05	0.100	0.125	0.025	0.034	0.025	0.038	0.024	0.039
Address x Customer *	0.1	0.143	0.111	0.306	0.328	0.306	0.328	0.306	0.328
street x Cname	0.1	0.143	0.167	0.034	0.047	0.032	0.047	0.031	0.047
city x Cname	0.1	0.143	0.200	0.041	0.055	0.033	0.049	0.031	0.047
state x Cname	0.1	0.143	0.250	0.050	0.068	0.036	0.052	0.031	0.048
ZIP x Cname	0.1	0.143	0.167	0.034	0.047	0.032	0.047	0.031	0.047
street x Caddress	0.1	0.143	0.143	0.030	0.040	0.030	0.045	0.031	0.047
city x Caddress	0.1	0.143	0.125	0.026	0.036	0.030	0.044	0.030	0.047
state x Cadress	0.1	0.143	0.125	0.026	0.036	0.030	0.044	0.030	0.047
Address x CustomerAddress [*]	0.04	0.083	0.111	1.000	1.000	1.000	1.000	1.000	1.000
street x street	0.04	0.083	1.000	0.194	0.257	0.079	0.127	0.045	0.089
street x city	0.04	0.083	0.143	0.028	0.039	0.037	0.072	0.040	0.082
street x USStates	0.04	0.083	0.167	0.033	0.045	0.038	0.074	0.040	0.082
city x street	0.04	0.083	0.143	0.028	0.039	0.037	0.072	0.040	0.082
city x city	0.04	0.083	1.000	0.194	0.257	0.079	0.127	0.045	0.089
city x USStates	0.04	0.083	0.125	0.025	0.034	0.036	0.071	0.040	0.082
state x street	0.04	0.083	0.250	0.049	0.066	0.042	0.079	0.040	0.083
state x city	0.04	0.083	0.200	0.040	0.053	0.040	0.076	0.040	0.082
state x USStates	0.04	0.083	0.250	0.049	0.066	0.042	0.079	0.040	0.082
state x postalCode	0.04	0.083	0.143	0.028	0.039	0.037	0.072	0.040	0.083
ZIP x street	0.04	0.083	0.143	0.028	0.039	0.037	0.072	0.040	0.082
ZIP x city	0.04	0.083	0.250	0.049	0.066	0.042	0.079	0.040	0.083

Table 3.11: Propagation results comprising all the propagation methods from links between AccountOwner and Customer metamodels

T • 1		π		g. 1	1:	st	3rd		6th	
Links	Type link element	I II		Similarities			II I II		I II	
	om links between Classes									
AccountOwner x Customer [*]	-	0.333	0.333	0.143	0.130	0.130	0.130	0.130	0.130	0.130
name x cname	String x String	0.333	0.333	1.000	0.096	0.096	0.056	0.056	0.045	0.045
birthdate x cname	Integer x String	0.333	0.333	0.143	0.017	0.017	0.037	0.037	0.043	0.043
taxExempt x cname	Integer x String	0.333	0.333	0.143	0.017	0.017	0.037	0.037	0.043	0.043
AccountOwner x CustmerAddress*	-	0.083	0.083	0.071	0.554	0.554	0.554	0.554	0.554	0.554
name x street	String x String	0.083	0.083	1.000	0.092	0.092	0.058	0.058	0.048	0.048
name x city	String x String	0.083	0.083	1.000	0.092	0.092	0.058	0.058	0.048	0.048
name x USStates	String x String	0.083	0.083	1.000	0.092	0.092	0.058	0.058	0.048	0.048
name x postalCode	String x Integer	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
birthdate x street	Integer x String	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
birthdate x city	Integer x String	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
birthdate x USStates	Integer x String	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
birthdate x postalCode	Integer x Integer	0.083	0.083	1.000	0.092	0.092	0.058	0.058	0.048	0.048
taxExempt x street	Integer x String	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
taxExempt x city	Integer x String	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
taxExempt x USStates	Integer x String	0.083	0.083	0.143	0.014	0.017	0.038	0.038	0.045	0.045
taxExempt x postalCode	Integer x Integer	0.083	0.083	1.000	0.092	0.092	0.058	0.058	0.048	0.048
Address x Customer *	-	0.250	0.250	0.111	0.297	0.297	0.297	0.297	0.297	0.297
street x cname	String x String	0.250	0.250	1.000	0.094	0.094	0.079	0.079	0.075	0.075
city x cname	String x String	0.250	0.250	1.000	0.094	0.094	0.079	0.079	0.075	0.075
state x cname	String x String	0.250	0.250	1.000	0.094	0.094	0.079	0.079	0.075	0.075
ZIP x cname	Integer x String	0.250	0.250	0.143	0.016	0.016	0.060	0.060	0.072	0.072
Address x CustomerAddress [*]	-	0.063	0.063	0.111	1.000	1.000	1.000	1.000	1.000	1.000
street x street	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
street x city	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
street x USStates	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
street x postalCode	String x Integer	0.063	0.063	0.143	0.014	0.014	0.050	0.050	0.061	0.061
city x street	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
city x city	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
city x USStates	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
city x postalCode	String x Integer	0.063	0.063	0.143	0.014	0.014	0.050	0.050	0.061	0.061
state x street	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
state x city	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
state x USStates	String x String	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
state x postalCode	String x Integer	0.063	0.063	0.143	0.014	0.014	0.050	0.050	0.061	0.061
ZIP x street	Integer x String	0.063	0.063	0.143	0.014	0.014	0.050	0.050	0.061	0.061
ZIP x city	Integer x String	0.063	0.063	0.143	0.014	0.014	0.050	0.050	0.061	0.061
ZIP x USStates	Integer x String	0.063	0.063	0.143	0.014	0.014	0.050	0.050	0.061	0.061
ZIP x postalCode	Integer x Integer	0.063	0.063	1.000	0.092	0.092	0.070	0.070	0.064	0.064
	om links between Classes						1 000	1 000	1 000	1 000
Address x CustomerAddress*	-	1.000	1.000	0.111	1.000	1.000	1.000	1.000	1.000	1.000
accountOwner x CustomerName	AccountOwner x Customer	1.000	1.000	0.143	1.000	1.000	1.000	1.000	1.000	1.000
	between Classes to links							0 775	0 775	0 775
AccountOwner x CustomerAddress*	-	0.333	0.333	0.071	0.775	0.775	0.775	0.775	0.775	0.775
name x customerName	String x Customer	0.333	0.333 0.333	0.143	0.236	0.236	0.253	0.253	0.258	0.258
birthdate x customerName	Integer x Customer	0.333		0.167			0.261			0.259
taxExempt x customerName	Integer x Customer	0.333	0.333	0.167			0.261			
Address x CustomerAddress*	-	0.250	0.250	0.111	1.000	1.000	1.000	1.000	1.000	
street x customerName	String x Customer	0.250	0.250	0.143	0.242	0.242		0.248	0.250	
city x customerName	String x Customer	0.250	0.250	0.143	0.242	0.242		0.248	0.250	0.250
state x customerName	String x Customer	0.250	0.250	0.143	0.242	0.242		0.248	0.250	0.250
ZIP x customerName	Integer x Customer	0.250	0.250	0.167	0.275			0.256	0.251	0.251
From links between Classes to links between types of References and Attributes										
AccountOwner x Customer * address x Cname	- Address x String	1.000	1.000	0.143	0.457	0.457	0.457	0.457	0.457	0.457
	Address x String	1.000	1.000	0.143	0.457	0.457	0.457	0.457	0.457	0.457
AccountOwner x CustomerAddress*	- Address - Ctair -	0.250	0.250	0.071	1.000	1.000	1.000	1.000	1.000	1.000
address x street	Address x String	0.250	0.250	0.143	0.257	0.257	0.252	0.252	0.250	0.250
address x city	Address x String	0.250	0.250	0.143	0.257	0.257	0.252	0.252	0.250	0.250
address x USStates	Address x String	0.250	0.250	0.143	0.257	0.257	0.252	0.252	0.250	0.250
address x postalCode	Address x Integer	0.250	0.250	0.125	0.229	0.229	0.245	0.245	0.249	0.249

Table 3.12: Propagation results between types of links of AccountOwner and Customer metamodels

		π	-	~	1st		3rd		6th	
Links	Type link element	I	II	Similarities	I II		I II		I	II
AccountOwner x Customer [*]	-	0.125	0.25	0.14	0.1583	0.1342	0.1583	0.1342	0.1583	0.1342
name x cname	String x String	0.125	0.25	1.00	0.0842	0.0885	0.0359	0.0473	0.0218	0.0353
birthdate x cname	Integer x String	0.125	0.25	0.14	0.0133	0.0153	0.0182	0.0290	0.0196	0.0330
taxExempt x cname	Integer x String	0.125	0.25	0.14	0.0133	0.0153	0.0182	0.0290	0.0196	0.0330
address x Cname	Address x String	0.125	0.25	0.14	0.0133	0.0153	0.0182	0.0290	0.0196	0.0330
AccountOwner x CustmerAddress*	-	0.05	0.05	0.07	0.5965	0.6066	0.5965	0.6066	0.5965	0.6066
name x street	String x String	0.05	0.05	1.00	0.0830	0.0857	0.0431	0.0454	0.0315	0.0336
name x city	String x String	0.05	0.05	1.00	0.0830	0.0857	0.0431	0.0454	0.0315	0.0336
name x USStates	String x String	0.05	0.05	1.00	0.0830	0.0857	0.0431	0.0454	0.0315	0.0336
name x postalCode	String x Integer	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
birthdate x street	Integer x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
birthdate x city	Integer x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
birthdate x USStates	Integer x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
birthdate x postalCode	Integer x Integer	0.05	0.05	1.00	0.0830	0.0857	0.0431	0.0454	0.0315	0.0336
taxExempt x street	Integer x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
taxExempt x city	Integer x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
taxExempt x USStates	Integer x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
taxExempt x postalCode	Integer x Integer	0.05	0.05	1.00	0.0830	0.0857	0.0431	0.0454	0.0315	0.0336
name x customerName	String x Customer	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
birthdate x customerName	Integer x Customer	0.05	0.05	0.17	0.0141	0.0146	0.0259	0.0468	0.0293	0.0314
taxExempt x customerName	Integer x Customer	0.05	0.05	0.17	0.0141	0.0146	0.0259	0.0468	0.0293	0.0314
address x street	Address x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
address x city	Address x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
address x USStates	Address x String	0.05	0.05	0.14	0.0121	0.0125	0.0254	0.0271	0.0293	0.0313
address x postalCode	Address x Integer	0.05	0.05	0.13	0.0121	0.0110	0.0250	0.0267	0.0292	0.0313
Address x Customer *	-	0.1	0.25	0.10	0.3080	0.0110	0.3080	0.0201	0.3080	0.2780
street x cname	String x String	0.1	0.25	1.00	0.0836	0.0878	0.0440	0.0741	0.0325	0.0701
city x cname	String x String	0.1	0.25	1.00	0.0836	0.0878	0.0440	0.0741	0.0325	0.0701
state x cname	String x String	0.1	0.25	1.00	0.0836	0.0878	0.0440	0.0741	0.0325	0.0701
ZIP x cname	Integer x String	0.1	0.25	0.14	0.0000	0.00146	0.0263	0.0558	0.0302	0.0678
Address x CustomerAddress*		0.04	0.25	0.14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
street x street	String x String	0.04	0.05	1.00	0.0831	0.0859	0.0508	0.0572	0.0413	0.0488
street x street	String x String	0.04	0.05	1.00	0.0831	0.0859	0.0508	0.0572	0.0413	0.0488
street x USStates	String x String	0.04	0.05	1.00	0.0831	0.0859	0.0508	0.0572	0.0413	0.0488
street x obstates	String x Integer	0.04	0.05	0.14	0.0331	0.0333	0.0330	0.0372	0.0391	0.0465
city x street	String x String	0.04	0.05	1.00	0.0122	0.0127	0.0508	0.0572	0.0331	0.0403
city x city	String x String	0.04	0.05	1.00	0.0831	0.0859	0.0508	0.0572	0.0413	0.0488
city x USStates	String x String	0.04	0.05	1.00	0.0831	0.0859	0.0508	0.0572	0.0413	0.0488
city x postalCode	String x Integer	0.04	0.05	0.14	0.0331	0.0339	0.0330	0.0372	0.0413	0.0488
state x street	String x String	0.04	0.05	1.00	0.0122	0.0127	0.0508	0.0572	0.0391	0.0403
state x street	String x String	0.04	0.05	1.00	0.0831	0.0859	0.0508	0.0572	0.0413	0.0488
5	0 0			1.00		0.0859	0.0508	0.0572 0.0572		
state x USStates state x postalCode	String x String String x Integer	0.04	0.05	0.14	0.0831	0.0859 0.0127	0.0508	0.0572	0.0413	0.0488 0.0465
ZIP x street	0 0	0.04	0.05	0.14		0.0127	0.0330		0.0391	
ZIP x street ZIP x city	Integer x String Integer x String	0.04	0.05	0.14 0.14	0.0122	0.0127	0.0330	0.0389	0.0391	0.0465 0.0465
ZIP x USStates	Integer x String	0.04	0.05	0.14	0.0122	0.0127	0.0330	0.0389	0.0391	0.0405 0.0465
ZIP x USStates ZIP x postalCode	Integer x String Integer x Integer	0.04	0.05	0.14	0.0122	0.0127	0.0330	0.0389	0.0391	0.0465 0.0488
LIP x postalCode street x customerName	0 0	0.04	0.05	0.14	0.0831	0.0859	0.0508	0.0572	0.0413	
	String x Customer									0.0465
city x customerName	String x Customer	0.04	0.05	0.14	0.0122	0.0127	0.0330	0.0389	0.0391	0.0465
state x customerName	String x Customer	0.04	0.05	0.14	0.0122	0.0127	0.0330	0.0389	0.0391	0.0465
ZIP x customerName	Integer x Customer	0.04	0.05	0.17	0.0142	0.0147	0.0335	0.0394	0.0392	0.0466

Table 3.13: Propagation results comprising all the propagation methods between types of links of AccountOwner and Customer metamodels

Propagation methods		st	3rd		$6 \mathrm{th}$	
		II	Ι	II	Ι	II
Propagation from links between Classes to links between Attributes (%)	91.460	164.439	90.797	164.450	94.164	164.412
Propagation from links between Classes to links between References (%)	734.861	515.620	758.680	515.639	782.250	515.631
Propagation from links between Classes to links between Attributes and References (%)	153.394	515.620	141.988	515.639	142.778	515.631
Propagation from links between Classes to links between References and Attributes (%)	189.708	81.124	197.945	81.124	206.115	81.122
Propagation from links between Attributes to links between their Instances (%)	427.228	х	462.018	х	483.705	х
Propagation from links between Classes to links between types of Attributes (%)	38.198	63.950	40.828	65.098	45.132	67.259
Propagation from links between Classes to links between types of References (%)	884.425	278.437	833.999	280.933	841.704	285.919
Propagation from links between Classes to links between types of Attributes and References (%)	74.235	278.437	76.281	280.933	81.285	285.919
Propagation from links between Classes to links between types of References and Attributes (%)	177.990	18.087	182.809	18.865	179.094	20.421

Table 3.14: A comparison between propagation methods of Mantis and Bugzilla meta-models $% \mathcal{A}$

Propagation methods -		1st		3rd		h
		II	Ι	II	Ι	II
Propagation from links between Classes to links between Attributes (%)	17.933	6.619	21.823	7.008	23.288	13.909
Propagation from links between Classes to links between References (%)	938.113	808.441	1022.931	808.359	1052.649	802.457
Propagation from links between Classes to links between Attributes and References (%)	373.800	371.068	405.177	369.880	416.353	367.978
Propagation from links between Classes to links between References and Attributes (%)	384.291	380.070	415.136	380.027	426.157	376.909
Propagation from links between Attributes to links between their Instances (%)	938.113	х	1022.931	х	1052.649	х
Propagation from links between Classes to links between types of Attributes (%)	29.746	29.570	39.165	28.299	42.505	30.081
Propagation from links between Classes to links between types of References	1177.503 (%)	1167.095	1270.243	1163.257	1299.898	1177.843
Propagation from links between Classes to links between types of Attributes and References (%)	403.984	399.877	440.570	398.363	452.270	404.118
Propagation from links between Classes to links between types of References and Attributes (%)	431.859	189.622	470.468	425.927	482.815	432.000

Table 3.15: A comparison between propagation methods of Account Owner and Customer metamodels

CHAPTER 4

CONCLUSION AND FUTURE WORKS

We presented 9 propagation methods based on metamodel and model structures in order to execute a variant of the Similarity Flooding Algorithm [18]. Thus, we provided a comparative between the techniques in order to verify whether the development of restricted propagation methods are advised.

The methods may be handled by different existing approaches, although they are not executed separately in order to perform comparisons. The propagation is constituted between nine different kinds of elements, from metamodels or models. The propagations are codificated based on the structural information of a given (meta) model: *class, attribute* and *reference*, as well as its type: *Integer, String, Double*, etc.

The restricted propagation executions had a higher increase in the similarity values. Therefore, these techniques are shown to be feasible because they reduce the number of model elements and, also reduced the amount of iterations of the SF to achieve a better similarity result. In metamodels and models with more connected links, the similarity values tend to concentrate on the element with the highest amount of links.

We also implemented two filters on the Similarity Flooding algorithm results: (a) after executing the Similarity Flooding and, (b) before executing the Similarity Flooding. Both configuration enable a reduction in the number of links involved in the propagation process. However, the choice of the filter value remains empirical. We can clearly see that knowing the models and metamodels in advance may have an influence on the choice of propagation technique, especially to avoid the highly centralized elements. However, this should be tested and developed with bigger models and also models of a different nature.

Our major difficulty was finding large metamodels that comprised all nine techniques stabilized. Therefore, we focused on simple metamodels, but, they were sufficient to conclude this work. We can provide suggestions for future research:

- Structure of the graphs propagation: to help increase the similarities between links, emphasis can be placed on the weight of the similarities calculated previously from a String Distance. For example, the links that have the same cardinality are assigned with weight equaling 0.2 [4].
- Filter technique: the use of a right filter may increase the final similarity of the SF. Therefore, we should implement a filter based on the heuristics or Artifical Intelligence technique;
- Comparing with large models: we recommed testing the restricted propagations in large (meta)models and with differents natures, in order to analyse the behavior of the similarities in these environment;
- Graphical User Interface, G.U.I., and Plug-in: the use of a graphic user interface would improve user experience, showing the results over the iterations of the SF. Therefore, the user can stop the propagation in the best result. Furthermore, a user can easily customize settings related to the propagation method, filter configuration and export the results. The EMF permits the creation of plug-ins. However, it is possible to integrate the propagation methods in the EMF as a plug-in and making the tool more complete.

BIBLIOGRAPHY

- [1] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, David Launay, et al. Neo4emf, a scalable persistence layer for emf models. *ECMFA-European conference* on Modeling Foundations and applications, volume 8569, pages 230–241. Springer International Publishing, 2014.
- [2] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-Pierre Gervais, Frédéric Jouault, Dimitrios Kolovos, Ivan Kurtev, e Richard F Paige. A canonical scheme for model composition. *Model Driven Architecture–Foundations and Applications*, pages 346–360. Springer, 2006.
- [3] Marco Brambilla, Jordi Cabot, e Manuel Wimmer. Model-driven software engineering in practice. Morgan & Claypool Publishers, 2012.
- [4] Marcos Didonet Del Fabro e Patrick Valduriez. Towards the efficient development of model transformations using model weaving and matching transformations. Software & Systems Modeling:305-324, 2009.
- [5] Marcos Didonet del Fabro. Metadata management using model weaving and model transformations. Phd Thesis, Nantes, 2007.
- [6] Karim El Guemhioui. Considerations on modeling and model transformation in mde. Proceedings of the 10th WSEAS international conference on Computers, pages 27–32. World Scientific and Engineering Academy and Society (WSEAS), 2006.
- [7] Daniel Engmann e Sabine Massmann. Instance matching with coma++. pages 28–37.
 Verlagshaus Mainz, Aachen, 2007.
- [8] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, e Clémentine Nebut. Metamodel matching for automatic model transformation generation. *Model Driven Engineering Languages and Systems*, pages 326–340. Springer, 2008.

- [9] A.C. Gabardo e H.S. Lopes. Using social network analysis to unveil cartels in public bids. Network Intelligence Conference (ENIC), 2014 European, pages 17–21, 2014.
- [10] Kelly Garces. Adaptation and evaluation of generic model matching strategies. Phd Thesis, Université de Nantes, 2010.
- [11] Richard W Hamming. Error detecting and error correcting codes. Bell System technical journal:147–160, 1950.
- [12] Brian Henderson-Sellers. On the challenges of correctly using metamodels in software engineering. Proceedings of the 2007 Conference on New Trends in Software Methodologies, Tools and Techniques: Proceedings of the Sixth SoMeT₀7, pages3 – -35, Amsterdam, TheNetherlands, TheNetherlands, 2007.IOSPress.
- [13] Frédéric Jouault e Jean Bézivin. Km3: a dsl for metamodel specification. Formal Methods for Open Object-Based Distributed Systems, pages 171–185. Springer, 2006.
- [14] Mathias Kleiner, Marcos Didonet Del Fabro, e Davi Queiroz Santos. Transformation as search. Pieter Gorp, Tom Ritter, e Louis M. Rose, editors, *Modelling Foundations* and Applications, volume 7949 of Lecture Notes in Computer Science, pages 54–69. Springer Berlin Heidelberg, 2013.
- [15] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet physics doklady, volume 10, pages 707, 1966.
- [16] Daniel Lucrédio. Uma abordagem orientada a modelos para reutilização de software.Phd Thesis, Universidade de São Paulo, 2009.
- [17] Ming Mao. Ontology mapping: Towards semantic interoperability in distributed and heterogeneous environments. ProQuest, 2008.
- [18] Sergey Melnik. Generic model management: concepts and algorithms, volume 2967. Springer, 2004.
- [19] Pierre-Alain Muller, FrCédéric Fondement, Benoit Baudry, e Benoit Combemale. Modeling modeling modeling. Software Systems Modeling:347–359, 2012.

- [20] Mike Paterson e Vlado Dančík. Longest common subsequences. Springer, 1994.
- [21] Gabriel Peschl e Marcos Didonet Del Fabro. Restricted metamodel-based similarity propagation: a comparative study. XVIII Ibero-American Conference on Software Engineering, pages 25–38, Lima-Peru, 2015. UCSP.
- [22] Christoph Quix, Lemonia Ragia, Linlin Cai, e Tian Gan. Matching schemas for geographical information systems using semantic information. On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 1566–1575, 2006.
- [23] Erhard Rahm e Philip A. Bernstein. A survey of approaches to automatic schema matching. the VLDB Journal:334–350, 2001.
- [24] Bran Selic. The pragmatics of model-driven development. *IEEE software*:19–25, 2003.
- [25] Temple F Smith e Michael S Waterman. Identification of common molecular subsequences. Journal of molecular biology:195–197, 1981.
- [26] Dave Steinberg, Frank Budinsky, Ed Merks, e Marcelo Paternostro. EMF: eclipse modeling framework. Pearson Education, 2008.
- [27] Gábor Szárnyas, István Ráth, Benedek Izsó, e Dániel Varró. Superscalable modeling. Master´s Thesis, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 2013.
- [28] Hegler Tissot, Gabriel Peschl, e Marcos Didonet Del Fabro. Fast phonetic similarity search over large repositories. *Database and Expert Systems Applications*, pages 74– 81. Springer, 2014.
- [29] Hai Bang Truong, Quoc Uy Nguyen, Ngoc Thanh Nguyen, e Trong Hai Duong. A new graph-based flooding matching method for ontology integration. *Cybernetics* (CYBCONF), 2013 IEEE International Conference on, pages 86–91. IEEE, 2013.

- [30] Peng Wang e Baowen Xu. Lily: the results for the ontology alignment contest oaei
 2007. Proceedings of the Second International Workshop on Ontology Matching, pages
 179–187. Citeseer, 2007.
- [31] Cohen William W., Ravikumar Pradeep, e E. Fienberg Stephen. A comparison of string distance metrics for name-matching tasks. pages 73–78, 2003.
- [32] Jian Zhang, Chunfeng Yuan, e Yihua Huang. Parallelized similarity flooding algorithm for processing large scale graph datasets with mapreduce. Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2012 13th International Conference on, 2012.