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RESUMO

A Engenharia de Software Orientada a Modelos é uma metodologia que utiliza mode-

los no processo de desenvolvimento de software. Muitas operações sobre esse modelos

são necessárias estabelecer links entre modelos distintos, como por exemplo, nas trans-

formação de modelos, nas rastreabilidade de modelos e nas integração de modelos. Neste

trabalho, os links são estabelecidos através da operação matching. Com os links estab-

elecidos é comum calcular os valores de similaridades a eles, a fim de se indicar um grau

de igualdade entre esses links. O Similarity Flooding é um algoritmo bem estabelecido

que pode aumentar a similaridade entre os links. O algoritmo é genérico e está provado

sua eficiência. Contudo, ele depende de uma estrutura menos genérica para manter a sua

eficiência.

Neste trabalho, foram codificados 9 métodos distintos de propagações para o Similarity

Flooding entre os elementos de metamodelos e modelos. Esses elementos compreendem

classes, atributos, referências, instâncias e o tipo dos elementos, por exemplo, Integer,

String ou Boolean. A fim de verificar a viabilidade desses métodos, 2 casos de estudos são

discutidos. No primeiro caso de estudo, foram executados os métodos entre os metamod-

elos e modelos de Mantis e Bugzilla. Em seguida, foram executados os métodos entre os

metamodelos e modelos de AccountOwner e Customer. Por fim, é apresentado um estudo

comparativo entre os métodos de propagações codificados com um método genérico, com

o objetivo de verificar quais métodos podem ser mais (ou menos) eficiente para o Similar-

ity Flooding, dentre os metamodelos e modelos utilizados. De acordo com os resultados,

utilizando técnicas restritas de propagações do SF, as similaridades entre os links melho-

raram em relação a execução genérica do algoritmo. Isso porque diminuindo a quantidade

de links o SF pode ter um melhor desempenho.
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ABSTRACT

In Model-Driven Software Engineering (MDSE), different approaches can be used to es-

tablish links between elements of different models for distinct purposes, such as serving

as specifications for model transformations. Once the links have been established, it is

common to set up a similarity value to indicate equivalence (or lack of) between the el-

ements. Similarity Flooding (SF) is one of the best known algorithms for enhancing the

similarity of structurally similar elements. The algorithm is generic and has proven to be

efficient. However, it depends on graph-based structure and a less generic encoding.

We created nine generic methods to propagate the similarities between links of ele-

ments of models. These elements comprise classes, attributes, references, instances and

the type of element, e.g., Integer, String or Boolean. In order to verify the viability

of these methods, 2 case studies are discussed. In the first case study, we execute our

methods between metamodels and models of Mantis and Bugzilla. In the following, the

metamodels and models of AccountOwner and Customer are used.

At the end, a comparative study of the metamodel-based encoding is presented for

the purpose of verifying whether a less generic implementation, involving a lesser number

of model elements, based on the metamodel and model structures, might be a viable

implementation and adaptation of the SF algorithm. We compare these methods with

an implementation comprising all the propagation strutures (non-restricted propagation),

which are more similar (though not equivalent) to the original SF implementation.

According to the results, using the restricted propagation graphs of the SF, the sim-

ilarity values between the links has increased in relation to the non-restricted algorithm.

This is because reducing the amount of links, will increase the propagation values between

the links of elements.
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CHAPTER 1

INTRODUCTION

In Model-Driven Software Engineering (MDSE) models are considered first-class entities

[10] [5], i.e., they can be modified, updated or processed throughout software development

processes [5]. A model, in the context of this work, represents a computational system.

An example of a computational system is an academic system, where there could be one

element teacher refering to a class and the elements name and grade as the attributes

[14].

In MDSE scenarios, it is necessary to establish links (relationships) between elements

belonging to different models, such as data interoperability, model transformation or

model traceability. To establish and create these links, a match operator is often executed

[23] [4]. A match may be performed manually; however, this task can be tedious or error

prone in a large models [23]. Consequently, several works have proposed solutions to

automate this process [23]. The matching returns sets of mappings, or alignments, with

a similarity value indicating how one element relates to another element [23]. These

similarity values can be discrete or continuous and it may be calculated using different

methods, such as String Edit Distance [23].

To increase the initial link similarities, the Similarity Flooding algorithm (SF) [18] can

be applied. This is one of the best know algorithms for improving links similarity. SF

propagates the similarities of links models over all link models, considering a previously

established alignment [18]. The link similarities ’flow’ in two ways according to graph

propagation structures: incoming propagation and outgoing propagation. The use of

propagation algorithms may increase the similarities between the models elements [4] [8]

[18]. For examples of propagation techniques, we can cite Del Fabro [4], Faller [8] and

Melnik [18]. With the technique proposed by Del Fabro [4], after the matching execution,

it is possible to propagate the similarities from links between classes to links between
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attributes.

1.1 Motivation

This work is motivated by the results reported by Didonet Del Fabro's [5] and Melnik's

thesis [18]. Melnik [18] proposed the Similarity Flooding algorithm. However, Didonet

Del Fabro [5], created restrictions to execute the propagations of SF [4]. Thus, one of the

main advantage of this implementation is execution in generic metamodels.

Our work is not only executed in metamodel, but the method comprises instances of

attributes of models. Applying the SF in metamodels, we have a set of results that could

be used in model transformation or model traceability. Moreover, in the results from

models we could be use their in data integration.

Most of the cited works do not report which propagation techniques are the most

appropriate. However, we provide a discussion covering as much as possible the propa-

gation technique between links of elements of models and metamodels. This enables the

identification of the most suitable propagation technique for each especific use.

1.2 Objective

The objective of this dissertation is to implement different propagation methods for the

SF in order to execute them between metamodels and models links. Thus, we compared

to what extent the similarities of the links have increased (or decreased) in comparison

with an implementation comprising all the propagation structures, which are more similar

(though not equivalent) to the original SF implementation.

We present nine methods to propagate the similarities in links of metamodels and

models below. This decomposition considers specific structures of (meta)models (e.g.,

attributes or references) or a type of a given element (e.g. String or Integer). These

methods change the way as the propagation graphs are executed in a specific kind of link.

In order to present a discussion at the end. Our contribution is to verify whether the

development of restricted propagation methods is advised, which could be tailored and
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applied to several MDSE operations.

1. Propagation from links between Classes to links between Attributes;

2. Propagation from links between Classes to links between References;

3. Propagation from links between Classes to links between Attributes and References;

4. Propagation from links between Classes to links between References and Attributes;

5. Propagation from links between Attributes to links between their Instances;

6. Propagation from links between Classes to links between types regarding Attributes;

7. Propagation from links between Classes to links between types regarding References;

8. Propagation from links between Classes to links between types regarding Attributes

and References;

9. Propagation from links between Classes to links between types regarding References

and Attributes.

1.3 Outline

This dissertation is structured as follows. In chapter 2, we present the state of the art.

Chapter 3 explains how we developed the techniques of the SF, when then go on to present

a comparison of the results. In Chapter 4, we present the conclusions and future works.
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CHAPTER 2

STATE OF THE ART

In this chapter, we present the literature review for this dissertation: Model-Driven Soft-

ware Engineering, the Eclipse Modeling Framework, metamodel and model weaving, the

match operator and the Similarity Flooding algorithm.

2.1 Model-Driven Software Engineering

Model-Driven Software Engineering (MDSE) is a paradigm that uses models as first-class

entities [16] [3] [24]. Thus, developers specify software requirements using models and

these models are then transformed into working software [16] [5].

According to Muller et al. [19], no consensus has yet been reach regarding the defini-

tion of model. Different authors provide their respective definitions [19] [14]. According

to Guemhioui [6], Garces [10], and Jouault [13], a model represents a software, with no-

tations and characteristics of interest. A model also can be describe as a directed labeled

multigraph [13], providing a generic strucutre. We present a set of definitions regarding

a directed labeled multigraph and model extracted from the work of Jouault [13].

Definition 2.1.1. (Directed Labeled Multigraph). A directed labeled multigraph G

= (NG, EG, ΓG) consists of sets of nodes NG, sets of edges EG and a mapping function

ΓG : EG,−→ NGXNG.

Definition 2.1.2. (Model). A model M is a triple (G, ω, υ), where G relates to a

directed labeled multigraph; ω is itself a model called the reference model of M and ω

associates with a multigraph Gω = (Nω, Eω,Γω); υ : NG ∪ EG −→ Nω associates nodes

and edges of G to nodes of Gω.

MDSE proposes that developers define models by conforming to some more abstract

models [3] [5]. This practice is called metamodeling, which consists of using constraints
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to express a model [6][5].

A model conforms to a metamodel, and this relationship is called conformance (this

expression is often related as c2 [5]). While a metamodel conforms to a model, we have the

conformance relationship between a metamodel and its definition model, which is called

metametamodel [3]. A metametamodel is a model that specifies constraints for all models

and metamodels [5]. The metametamodel conforms to itself [5] [3]. The conformance

relationships, at all levels, allows for the creation and expression of more accurate models

[3]. If this levels are not sufficient, it is possible to create more levels to define the models

[3]. However, 3 levels of model are frequently used [3].

The conformance level mentioned above gives the 3-level architecture, as indicate in

Figure 2.1: the 3rd level represents the metametamodel; the 2nd level represents the

metamodel, and the 1st level represents the model. Below, we present a formal definition

of the 3-level conformance of models, according to Brambilla et al. [3], Del Fabro [5] and

Jouault [13].

Definition 2.1.3. (Metametamodel). A metametamodel is a model that defines all

other models and metamodels. A metametamodel conforms recursively to itself.

Definition 2.1.4. (Metamodel). A metamodel defines a set of constraints to define a

model. A metamodel conforms to a metametamodel.

Definition 2.1.5. (Model). A terminal model represents a model and it conforms to a

metamodel.

In order to clarify the concepts mentioned above, we present Figure 2.2, which il-

lustrates a partial example of an academic system. In this example, we can see the

conformance relationship between elements of the models. Thus, every entity of a given

model (M) conforms to an entity in the model (M+1) [12]. The elements in Figure 2.2

are outlined below. The µ indicates the conformance relationship . At level M1 (model),

the nodes CalculusI and CalculusII are of the Subject type, while the arrows between

the nodes are of the Depend type. In other words, CalculusI and CalculusII are sub-

jects and CalculusI depends on CalculusII. The M2 level represents the Subject and
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Figure 2.1: 3-level architecture in the MDSE
, [5] [10].

Depend nodes, which are the Class type. The arrows between these nodes represents the

conformance to Reference type. However, the next level, M3, represents the types of rela-

tionships of Class and Reference used in this (meta)model. This level ends relationships

and conforms recursively to itself.

Figure 2.2: A model example according to the 3-level conformance of models

2.2 Eclipse Modeling Framework

In order to create and manage models and metamodels, it is necessary to use modeling

tools [16]. There are several tools for this purpose, such as the NEO4Emf [1], which

models and metamodels are stored in a graph database [1] and XML, which is frequently

used to store data.
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The Eclipse Modeling Framework (EMF) 1 enables modeling and generating codes

from model [14]. This framework is used in this dissertation to manipulate models and

metamodels. The EMF uses the ECORE as a metamodel. Its classes are shown in Figure

2.3 and discussed below.

Figure 2.3: Main classes of the Ecore

• EClass: used to model classes [14]. EClass has name and it may have attributes

and references. To support inheritance, one class may refer to many classes of

supertype type [27].

• EAttribute: used to model attributes [14]. It has name and has a data type [27];

• EDatatype: used to represent atomic data [27]. Data types are identified by name

[27];

• EReference: used to model references between a given class [14]. If a bidirectional

association is required, this model can be modeled using two instances of EReference

type, which are connected by opposing references [27] and multiplicities may be

specified. EReference has name.

EMF uses XMI (XML Metadata Interchange) to serialize a model and metamodel.

One example of metamodel using XMI is shown in Figure 2.4, which has a title, author

and the number of pages. EPackage groups classes and data of the same types [26]. Figure

2.5 shows the model of the Publication instantiated.

1The Eclipse Modeling Framework is a plug-in for Eclipse and is available at
http://eclipse.org/modeling/emf/
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Figure 2.4: A metamodel of Publication in an XMI file

Figure 2.5: A model of Publication in an XMI file

2.3 The match operator

The match operator performs semantics and syntactic correlations between (meta)models,

ontology and schema database [10] [23] [18]. We consider this the first step to integrating

data or to performing a model transformation [7]. In accordance with Del Fabro [4] and

Melnik [18], we present the concept of match and matching as follows:

Definition 2.3.1. (Match). Match is an operator that takes two models as input and

produces alignments (links) as output.

Definition 2.3.2. (Matching). Matching establishes semantic correlations between

model elements belonging to different models.

A match system has two scenarios as input: metamodels or models. In the first

scenario, we have to take metamodels into account as input. In the second one, we need

a model as input [10]. A match generates alignments (or links) as output. Links have

similarity values in a range from 1 to 0 [10][23], which means in commom or not in

commom regarding 2 elements of model. This similarities can be calculated using an Edit
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String Distance, Phonetic Similarity or similarity based on constraints [10] [23]. In the

follow, we present the definition about similarity between 2 strings.

Definition 2.3.3. (Similarity between 2 strings). Given 2 strings: ω1 and ω2, the

similarity between them corresponds to a value indicating how equivalent ω1 is to ω2.

We illustrate the matching of two models in Figure 2.6: Book and Publication. The

links represent the correspondence between two elements [5], and they are assigned with a

similarity value, for example, the link between ”title x title” is 1. This value is calculated

using the Levenshtein Edit Distance and it is normalized in relation to the all links. In

Figure 2.6, the class Book matches to the class Publication and the same situation occurs

with the elements of these classes.

A filter may be applied to select the best links. The most used filter tecnhique is to

set up a minimun treshold value and, then, the links that have the similarity value higher

than this threshold are returned [5]. Below, we define the filter.

Figure 2.6: Matching example between Book and Publication model

Definition 2.3.4. (Filter). A filter is a method that receives a threshold as input to

select the links with similarities higher than (or equal to) this threshold.
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To follow, Figure 2.7 shows the filter aplication in the Book and Publication model.

The threshold defined is 0.25, as it returns the links similarity value bigger than the

threshold. These links are often called the best links. In works in the data interoperability

domain, for example, the links with the highest similarity are frequently accepted [5];

Because we need the links that are as similar as possible for an accurate operation to be

executed. The similarities were calculated using the Levenstein Edit Distance, then they

are normalized to a value between 0 to 1.

Figure 2.7: Links filtered between models

2.4 Weaving Metamodel and Model

After two models have matched in the matching phase, the links produced are stored in

the weaving model. A weaving model [5] consists of a model to store correspondences

between elements of models. A weaving model conforms to a weaving metamodel and it

provides constraints to create links [5].

In accordance with Didonet del Fabro [5], definitions about the weaving metamodel

and the weaving model are listed below.

Definition 2.4.1. (Weaving Metamodel). A weaving metamodel is a model MMW =

(GM , ωM , µM) that defines link types:

• GM = (NM , EM ,ΓM), as already presented in definition 2.1.1.
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• NM = (NL∪NLE ∪NO), NL is the link type; NLE is the link endpoint type and NO

is the other auxiliary node.

• ΓM : EM −→ (NLXNLE)
⋃

(NOXNM) is a link type that refers to multiple link

endpoint types and the auxiliary node refers to any kind of node.

The definition mentioned above is an algebric representation of the weaving meta-

model. However, the elements (core) of weaving metamodel are shown in Figure 2.8. The

core has one link (WLink), and it contains two endpoints (WLinkEnd) - in which the first

endpoint refers to an element in LeftMM, and the second endpoint refers to an element in

RightMM [5]. These links are used for distinct purposes, such as the specification of model

transformations, model traceability or data integration. The elements that compose the

metamodel weaving are listed below:

Figure 2.8: The core of the Metamodel Weaving

• WElement: the main element where all elements inherit [2]. It is composed by the

weaving elements and the reference to corresponded models [5].

• WModel: this represents all model elements [5].

• WLink: this class represents links between model elements [5]. It also refers to

multiple endpoints [2].

• WLinkEnd: this class represents the type of linked elements [2]. It allows the

definition of N-ary links [5].
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• WElementRef : this class sets an unique ID for a linked element [2].

• WModelRefs: this defines the WLinkEnd and the WElementRef for models as a

whole [2].

Definition 2.4.2. (Weaving Model). A weaving model is a model MW = (GW , ωW , υW ),

a graph GW = (NW , EW ,ΓW ), such that its reference model is a weaving metamodel

(ωW ,MMW ).

Figure 2.9: Conformance to the weaving metamodel
, [2]

The composition of 2 different models produce a weaving model: a source metamodel

(LeftMM) and a target metamodel (RightMM) [2] (Figure 2.9). Figure 2.9 shows the

conformance to the model weaving in a generic way. The LeftMM and RightMM conform

to the Weaving Model (WM) and Weaving Metamodel (WMM). The WM conforms to

the WMM, which, in its turns, conforms to the Weaving Metametamodel (WMMM) [5].

The WMMM conforms itself.

The SF [18] attempts to increase the initial similarity and, consequently, better links

are produced. This situation enables the production of better results in operations of the

MDSE (e.g. model transformation). The SF [18] is explained as follows.

2.5 The Similarity Flooding algorithm

The Similarity Flooding algorithm (SF) [18] is a well-known algorithm that propagates

the similarity between model elements in a graph form, which are connected by the same
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labeled-edge [4] in a fixed-point computation [18]. The SF is frequently used in matching

between metamodels, models, ontologies and data-schemas. For example, consider two

models: A and B. We perform the match between (A x B) in order to establish the

links. The similarities between links may be calculated using an Edit String Distance, as

presented in the previous sections. These values are the initial input for the SF. However,

in an iterative sum, the values between these links are propagated until the minimum

delta value is reached. At the end of this process, the similarities are normalized and

filtered. We explain an example of the SF using real models at the end of this section.

Before executing SF, it is necessary to establish relationships between models elements

to produce a pairwise connectivity graph (PCG). Each node of the PCG is a map pair

-or link [18]. The SF depends on this structure to propagate the similarity values along

the graph, through a propagation graph [18]. The propagation graph goes in opposite

directions in the links: incoming propagation and outgoing propagation [18] [8]. In Figure

2.12 we can see the propagation graphs. Acording to Melnik [18], the propagation graph

is defined below:

Definition 2.5.1. (Propagation Graph). The propagation graph is an auxiliary data

structure that stores the proapgation values (weights) used to propagate the similarities

between links of matched models.

We work with the concept of the restricted propagation graph. The restricted propa-

gation graph propapagates the similarities to an specific kind of link of a matched model,

for example, the propagation only between links of attributes or the propagation only

between links in references. The definition of the restricted propagation graph is given as

follows [5]:

Definition 2.5.2. (Restricted Propagation Graph). The restricted propagation graph

is an auxiliary data structure that stores the propagation values (weights) used to propagate

the similarities between specific links of matched models.

Weights placed in the propagation graph (or in the restricted propagation graph) indi-

cate the propagation coefficient, i.e., how much the similarity of a given link is propagated
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[18]. Melnik [18] defines 7 ways of calculating the propagation coefficients (π) of the prop-

agation graphs. One of the fix-point formulas proposed by Melnik [18] is calculated over

the inverse-product of the number of links of a matched class. It is used in this dissertation

and shows more accurate results [18] [8].

The similarity propagation may be executed several times, until a given delta is no

longer achieved. The delta is a treshold value previously defined between iterations,

which allows the iteration of the SF to be stopped [18]. This treshold may be defined

if the difference between the similarities regarding iterations is too small, we stop the

execution of the SF. At the end of each iteration of SF, the values are normalized [18].

Finally, the generalized version of SF is σi+1 = targetLinki + (sorceLinki ∗ π), where

the σ relate as a link (alignment), the targetLink and the sourceLink indicate the incoming

and outgoing propagation, respectively, and π indicates the propagation coefficient [18].

We illustrate one execution of the SF as follows. Consider 2 metamodels: Book and

Publication. According to Figure 2.10, the Book metamodel contains the class Book,

which has 1 attribute: title, and 1 reference chapters to class Chapter. The class Chapter

contains the following attributes: title, nbPages, author, book. Class Chapters has one

reference book to class Book. We present the metamodel of Publication in Figure 2.11,

which has 3 attributes: title, authors, nbPages.

Figure 2.10: Book metamodel

Figure 2.11: Publication metamodel

To create the links, we execute a Cartesian Restrict Product. We calculated the

similarities of these links using the Levenshtein Edit Distance [15]. These values initialize
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Figure 2.12: Partial links between Book and Publication

the SF. The Levenshtein Edit Distance is an algorithm frequently used in academia and

several works. However, we chose this algorithm to illustrated the execution of the SF.

Figure 2.12 provides an overview of the links that were created. As already stated, the

formula for the SF is: σi+1 = targetLinki + (sourceLinki ∗ π); where, targetLink refers

to the links that receive the propagation graph and the sourceLink is the link that the

propagation graph leaves.

Links Initial Similarity π 1st 3rd 6th
Book x Publication 0.1 0.16666 0.465 0.466 0.465
title x title 1 0.166 0.26 0.12 0.083
title x authors 0.142 0.1666 0.040 0.068 0.076
chapters x authors 0.1666 0.1666 0.046 0.069 0.076
Chapter x Publication 0.09 0.083 1 1 1
title x authors 0.142 0.083 0.038 0.072 0.081
authors x nbPages 0.125 0.083 0.033 0.070 0.081

Table 2.1: Partial match for Book and Publication

Now we execute the first iteration from the link Book X Publication - sourceLink, to

title X title - targetLink. The iterations are important because they change the similarities

between links. The sourceLink has similarity equal to 0.1, and the targetLink has simi-

larity equal to 1. The propagation coefficient is 0.1666, as we have 6 links in the matched

class, so, 1
6

= 0.1666. Replacing in the formula, σ1 = 1 + (0.1 ∗ 0.1666), σ1 = 1.01666.

Thus, the new similarity of the link title x title is ∼= 1.01666. We add all the similarity

values that ”arrive” at the link Book x Publication. This produces the new similarity value
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for the link of the matched class Book X Publication. Table 2.1 shows a partial result

for the matching between Book X Publication, after executing the SF. We stopped the

execution of the SF at the 6th iteration because the delta value was achieved in the links,

valuing ∼= 0.001. At the end of each iteration, the similarity values were normalized.

2.6 Related works

In this section, we explain different ways to encoded the propagation graphs of the SF, in

addition to other algorithms to propagate similarities - beyond what has been proposed

by Melnik [18].

Didonet del Fabro [4] [5] proposes the use of the variants for the propagations in links of

metamodels. This approach allows different ways of propagating similarities considering

structural relationships of different metamodels [4] [10]. The propagations techniques that

were developed are listed below:

• Containment-tree propagation: this allows the propagation of the similarities

from links between classes to links between attributes and/or from links between

classes to links between references [4]. For example, consider two matched classes

and the links between them. This method propagates the similarities between links

of attributes and/or references [4].

• Relationship-tree propagation: this allows the propagation of the similarities to

links of references between classes [4]. Consider two matched classes and the links

between them. This methods only propagates between links of references [4].

• Inheritance-tree propagation: this allows the propagation of the similarities

between links of references with inheritance relationship [4]. For example, this

method extends the Relationship-tree propagation, however, it takes into account

the inheritance of the references [4].

Falleri et al. [8] encoded metamodels into 6 different graph structures in order to

execute the propagations of the SF algorithm. According to Falleri et al. [8], these
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approaches are more detailed than proposed in Didonet del fabro [4]. The implementations

of the metamodels are:

• Minimal configuration: this requires that we have one labeled node of the graph

created for each EClass [8]. The name of the nodes are the same of the elements,

for example, an element X (an Eclass) with name m is represented by a node N

with label m [8]. According to Falleri et al. [8], this configuration showed the worst

result in the Similarity Flooding, due to its simplicity.

• Basic configuration: A labeled name is linked to a unique identified ID [8].

Thus, it allows frequency of a used given name to be know [8]. This frequency can

be exploited by the SF [8]. For example, an Eclass Ec is presented by a node N

labeled by a unique ID, and linked to a node labeled n with an arc label [8].

• Standard configuration: this obtain the similarities in types and attributes [8].

For example, a node that represents an element x is linked by a labeled node kind

to a node x representing the type of this element [8].

• Full configuration: this extends the Standard configuration as it takes the EAt-

tributes and EReferences into account [8]. For example, all the nodes that represent

an EAttribute or EReference are included an node labeled called derived, giving this

node Boolean conditions (true or false) as to whether the element is derived [8].

• Flattened configuration: this extends the Full configuration, although it deals

with inheritance relationships [8]. For example, the nodes representing supertypes

are deleted from the graph [8]. Thus, it is possible to connect nodes representing

an EClass to nodes representing the EAttributes [8]. When an EReferenceis typed

as an abstract EClass, a node type is created [8].

• Saturated configuration: this extends the Flattened configuration [8]. For ex-

ample, the nodes that represent the EClass are linked in a supertype node [8]. It

represents all the super-classes of this EClass [8]. EClass are also linked in nodes

that represents EAttributes. The node that represents an EReference are created
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and linked to the node representing the EClass, as well as the nodes representing

the super-class of the EClass [8].

Zhang, Yuan and Huan [32] implemented the SF for the MapReduce. Thus, each

iteractive sum of the Similarity Flooding is a MapReduce job. They applied it in a large-

scale graph datasets. Experimental results show that this implementation can work in

big graph datasets [32].

Truong et al. [29] implemented a new version for SF in the context of integration of

the ontologies. This approach consists of three steps:

1. Ontologies models are encoded into a direct labeled graph [29];

2. The method of concept classification is applied to increase the precision and reduce

the process of the SF [29]. According to Truong et al. [29] this method avoids an

exhaustive comparison of all the nodes of the models;

3. Finally, the Similarity Flooding and a filter are applied [29].

The Uppropagation [7] - which is used in context of database schema and is im-

plemented in Coma++, propagates the similarities in a bottom-up manner, i.e., from

child-nodes to main-nodes [7]. The authors defend the idea that the similarity propa-

gates directly to main-node because the child-nodes have a strong relationship [7]. The

propagated similarity to the main-node is the average of the highest similarity for each

child-nodes [7].

Lily [30] creates alignments between heterogeneous, distributed and large-scale ontolo-

gies. In the matching phase, Lily exploits both linguistic and structural information of

ontology to generate initial alignments [30]. If it is necessary to produce more alignments,

a strategy of similarity propagation is applied [17].

2.6.1 Discussion

We show a comparative table and discuss the propagation techniques presented in sec-

tion 2.6. Table 2.2 summarizes how the propagation of the SF works in the presented
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approaches. Column approach mentions the author (or the proposed framework); The

Prop. Technique elucidates the technique proposed; The scope shows the field of ap-

plication; and the Similarity Flooding indicates whether the approach is the Similarity

Flooding algorithm or a variant of it.

Del Fabro and Valduriez [4] proposed ways to propagate the link similarity in a meta-

model. The authors proposed a propagation metamodel that is used to propagate the

similarity in metamodels. On the other hand, Falleri et al. [8] proposed 6 strategies to

encode a given metamodel in a graph structure. These methods may provide a better

comprehension of the structure of the metamodel, as the metamodel elements are more

detailed [8]. In the aproach of Del Fabro and Valduriez [4] the lower the quantity of links,

the better the result of the SF, whereas the aproach of Faller et al. [8] may requires a

large amount of elements for the SF to sucess.

Zhang, Yuan and Huan [32] used the MapReduce jobs to iterate the results of the

SF. Truong et al. [29] presented a new version for the Similarity Flooding algorithm, in

which they used the ”classification concepts”, thereby avoiding the exhaustive matching

between elements in ontologies [29].

Other similarity propagation techniques, showing the close of the SF, have also been

studied by researchers. Uppropagation [7], which is used in schema matching, attempts

to minimize the maximum possible loss of similarities when executing the propagations,

using the average of the highest similarity for each element [7]. The propagation is the

type of bottom-up, i.e., from a child-node to a main-node of a given schema model, in a

graph representation. Lily [30], applied to ontologies, uses a decision-maker in order to

perform the propagation of similarity, i.e., if there are few alignments, the similarities are

then propagated to obtain more alignments [30].

We note most of these implementations have a common goal: to attempt to produce

the best alignments to integrate data or process models, and also to explore various

elements present in the formalism in order to perform the best propagation of similarities

[4] [8] [29] [7] [30] [18] [10]. To follow, we positioned our approach in comparison with the

solutions mentioned above, reporting on the main differences between implementations:



20

1. Melnik [18] proposes the SF. However, we create restricted propagation graphs for

this algorithm. Therefore, we can verify whether it is suitable to execute the SF in

a lesser amount of links;

2. As in Didonet del Fabro [4] [5], we create restricted propagation graphs in order

to execute the SF. However, we developed the propagation less generically, i.e.,

involving less elements as possbile. This granularity allows us to compare how the

propagation technique may be advantageous for the SF;

3. Falleri et al. [8] indicated 6 ways to encode a metamodel in a graph structure,

then, the SF is applyed. Unlike this approach, we considered one graph codification

regarding a metamodel (or model) and 9 restricted propagation graphs to execute

the SF;

4. Compared to Zhang, Yuan and Huan [32] and Coma++ [7], our approach deals with

instances of a given model;

5. Unlike Truong et al. [29], we do not consider the use of ”concept of classification”.

However, we apply a filter that returns the best links. This may avoid a repetitive

matching task between metamodels and models;

6. Unlike Lily [30], we do not consider the use of a propagation method to create

more links. Our approach attempts to increase the similarities between the links of

metamodels and models.

According to our knowledge, these are between the most representative approaches

in its field of study. Whereas they all have propagation similarities, it is difficult to

compare them, because the scenarios, the model encodings and the propagation techniques

have differences on the conceptual design and implementation. We gathered some simple

techniques and provide a comparison.
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Approach / Author Prop. Technique Scope Similarity
Flooding

Del Fabro and
Valduriez [4]

This takes into account se-
mantic and structural informa-
tion of a metamodel. The
technique may require a small
number of elements for a bet-
ter performance of the SF.

MDSE X

Falleri et al. [8] Encoded a metamodel in 6
graph manners: minimal, ba-
sic, standard, full, flattened
e satured. The configuration
with more elements provides
the best results for the SF.

MDSE X

Zhang, Yuan
and Huan [32]

The algorithm is enconded
into a MapReduce environ-
ment. Each job of the
Mapreduce is a new itera-
tive sum of the algorithm.

Data Schema X

Truong et al. [29] This consists of applying
a concept of classification
to increase precision and
try to reduce the process-
ment time of the algorithm.

Ontology X

UpPropagation [7] This is used in propagating
instances of scheme data.
The algorithm propagates
the average of the highest
similarity values of the in-
stances to the attributes.

Data schema

Lily [30] If the first step does not
produce sufficient align-
ments, a similarity propa-
gation strategy is applied
to obtain more alignments.

Ontology

Table 2.2: Propagation approaches
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CHAPTER 3

METAMODEL-BASED SIMILARITY PROPAGATION

In this chapter 1, we present and discuss different ways to implement the propagation

methods of the SF. In section 3.1, the methodology workflow of this work is given, in

which the steps are sufficiently detailed to permit reproduction and enable a comparison

with other propagation approaches. Following this, in section 3.2, we explain nine distinct

ways of encoding the SF. For these codification, as already stated, we use information on

the structures of metamodels and models to develop of the propagation methods. This

could permit a reduction in the amount of links and number iterations of the SF in a

single link, which increases the similarity of this related link in as litte iteration possible.

In section 3.3, we present the metamodels and models used to execute the propagation

methods. However, in subsection 3.3.3, we compare of how much these similarities have

been increased (or reduce) in comparison with an implementation comprising all the

propagation methods, which is more similar (though not equivalent) to the original SF

implementation.

3.1 Methodology workflow

The methodology employed in this work is organized in accordance with to Figure 3.1

and may be outlined as follows:

1. Loading metamodels: we load pairs of models with their respective metamodels;

2. Matching: we execute the matching aiming for the creation of the links between

the metamodels and models loaded in step 1. Our motivation is focused on the

match operator, because it is the way to create links in a semi-automatic way. In

addition to the match, there are several operations for establishing links, such as,

1This chapter was partially published in the proceedings of the XVIII Ibero-American Conference on
Software Engineering, 2015 [21]



23

diff, copy or merge [18] [5]. However, we use the match operator because it returns

the alignments (links) between 2 models [18] [5];

3. Links creation: the links between (meta)models are established. Therefore, sim-

ilarities can be assigned to them. These links can be stored in a weaving model to

serve as input for the next steps [4];

4. Calculating the similarities: we calculate the similarities between links. There

are various ways to calculate their similarities, such as using a String Edit Distance

[23] [18]. In our work, we use a String Edit Distance, which provides the best

sequence of edit operations to convert a string from x to y [31]. As edit operations,

we can outline insertion, deletion and substitution [31]. There are several Edit

Distance functions, e.g., Hamming Distances [11], Longest Commom Subsequence

[20], Smith-Waterman distance [25], Jaro-Winkler distance [31] or Stringsim function

[28]. To calculate the similarities between links, we use a well-know String Edit

Distance called the Levenshtein Edit Distance [15]. The values returned are the

initial input values for the SF. We do not consider the similarities between synonyms.

In this way, a dictionary should be implemented.

5. Link with similarity: the links are assigned to their respective similarity values.

Thus, we can begin the propagation methods, which are explained below;

6. Executing the propagation methods of SF: the methods of the propagation

are executed. We divided these executions into 2 groups according to the config-

uration of two filters. A filter only selects links with a similarity higher than a

given value. According to Melnik [18], SF has a good performance when dealing

with a fewer elements. Therefore, each filter configuration enables a reduction in

the number of processed links. The filter settings can be described as follows. In

the (I) first filter configuration, a filter is applied after running SF. This technique

is related to the works of Falleri et al. [8], Del Fabro [4] and Melnik [18]. In the

(II) second filter configuration, a filter is applied before the SF run. This allows

the propagation methods to be applied to the fewest possible links and, thus, this
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may increase the similarities in a fewest iterations of the SF due to the smallest

number of links in a matched class. However, this implies that a good threshold

value should be chosen. At the end, we compared to what extent the similarity of

these elements has increased, taking into account the propagation methods used:

restricted propagations X comprising all the propagations methods.

7. Storage in a weaving model: the links are stored in a weaving model. In this

dissertation, the weaving model is persisted in the memory.

Figure 3.1: Methodology workflow

3.2 Implemented methods

We developed 9 ways of execute the restricted propagation according to the structural

information of elements of a given (meta)model: classes, attributes, references, instances

of attributes and the type of these elements (links between String or Integer). These

methods change the direction of the propagation graphs. Then, it is created restriction on

the propagation graphs. We implement the methods in Java language and the metamodels

and the EMF is used to handle the metamodels and models.

We choose these methods because the links are created by matching the elements of

a model and a metamodel as much as possible; giving a representative number of the

links to be compared. This situation enables a comparison of the results at the end.

Furthermore, we can verify if the restricted propagation graphs are viable in comparison
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to the non-restricted approach. Note that the propagation methods are restricted to a

given type of element and, therefore, cannot be used in any situation.

Figure 3.2: Propagation from links between Classes to links between Attributes

• Propagation from links between Classes to links between Attributes: this

propagates the similarities from links between Classes to links between Attribute

belonging to the same matched classes (Figure 3.2). The propagation is calculated

as: π = 1/Lx, where Lx indicates the number of links between attributes belonging

to Class A and Class B matched, with Lx 6= 0. For example, considering 2 matched

metamodels, this method propagates the similarities from links between classes to

only links of attributes.

Figure 3.3: Propagation from links between Classes to links between References

• Propagation from links between Classes to links between References: this

propagates the similarities from links between classes to links between references

belonging to the same matched classes (Figure 3.3). This is very similar to the
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previous propagation method but, in this related propagation, links between ref-

erences are considered. The propagation is calculated as: π = 1/Ly, where Ly is

the number of links between references of Class A and Class B matched, with Ly

6= 0. For example, considering 2 matched metamodels, this method propagates the

similarities from links between classes to only links of references.

Figure 3.4: Propagation from links between Classes to links between Attributes and
References

• Propagation from links between Classes to links between Attributes and

References: this propagates the similarities from links between Classes to links

between Attributes and References belonging to the matched class (Figure 3.4).

The formula of the propagation is: π = 1/Lxy, where Lxy is the amount of the

links between attributes and references of Class A and Class B matched, with

Lxy 6= 0. For example, considering 2 matched metamodels, this method propagates

the similarities from links between classes to only links of attributes and references.

• Propagation from links between Classes to links between References and

Attributes: this propagates the similarities from links between Classes to links

between References matched with Attributes of the same class (Figure 3.5). It

changes the propagation direction in comparison with the previous method. The

propagation is π = 1/Lyx, where Lyx is the amount of links between references

regarding Class A and Class B matched, with Lyx 6= 0. For example, considering

2 matched metamodels, this method propagates the similarities from links between

classes to only links of references and attributes.
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Figure 3.5: Propagation from links between Classes to links between References and
Attributes

• Propagation from links between Attributes to links between their In-

stances: the similarities between links of attributes are propagated to links of their

respective instances (Figure 3.6). The propagation is π = 1/Lι, where Lι desig-

nates the amount of instances of a given attributes regarding Class A and Class B

matched, with Lι 6= 0. For example, considering 2 matched models, this method

propagates the similarities only in links of attributes to links of their instances.

Figure 3.6: Propagation from links between Attributes to links between their Instances

The propagation between links of type belonging of a link are considerate, e.g. Integer,

String or Float. In this case, the similarity of the link between classes is propagated to

the link between types. The methods are detailed as follows:

• Propagation from links between Classes to links between types of the

Attributes: this propagates the similarities from links between Classes to links

between types of the Attributes (Figure 3.7). The propagation is calculated as:
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π = 1/Ltypex , where Ltypex indicates the number of links between types belonging

to Attribute A and Attribute B matched, with Ltypex 6= 0. For example, considering

2 matched metamodels, this method propagates the similarities from links between

classes to only links of types of attribute.

Figure 3.7: Propagation from links between Classes to links between types of the At-
tributes

• Propagation from links between Classes to links between types of the

References: this propagates the similarities from links between Classes to links

between types of the References (Figure 3.8). The propagation is calculated as:

π = 1/Ltypey , where Ltypey indicates the number of links between a type belonging

to Reference A and Reference B matched, with Ltypey 6= 0. For example, considering

2 matched metamodels, this method propagates the similarities from links between

classes to only links of types of references.

• Propagation from links between Classes to links between types of the

Attributes and links between types of the References: this propagates the

similarities from links between Classes to links between types of Attributes and Ref-

erences (Figure 3.9). The propagation is calculated as: π = 1/Ltypexy, where Ltypexy

indicates the number of links between types belonging to Attribute A and Reference

B matched, with Ltypexy 6= 0. For example, considering 2 matched metamodels, this

method propagates the similarities from links between classes to only links of types

of attribute and types of references.
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Figure 3.8: Propagation from links between Classes to links between types of the Refer-
ences

Figure 3.9: Propagation from links between Classes to links between types of the At-
tributes and links between types of the References

• Propagation from links between Classes to links between types of the

References and links between types of the Attributes: this propagates the

similarities from links between Classes to link between types belonging to References

and Attributes (Figure 3.10). The propagation is calculated as: π = 1/Ltypeyx,

where Ltypeyx indicates the number of links between types belonging to Reference

A and Attribute B matched, with Ltypeyx 6= 0. For example, considering 2 matched

metamodels, this method propagates the similarities from links between classes to

only links of types of references and types of attributes.

3.3 Case study

In this section, we present 2 case studies involving the methods of the propagation. The

(meta)models were chosen because they are frequently used in academia [18] [5].
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Figure 3.10: Propagation from links between Classes to links between types of the Refer-
ences and links between types of the Attributes

The first case study is related to the matching between partial (meta)models of the

Mantis and Bugzilla. Mantis is a web-based bug-tracking system; Bugzilla serves the same

purpose, although new modules can be added on it [5]. The objective of this matching

is to illustrate the possibility of creating weaving models to integrate 2 different kinds of

software. This practice is important when companies need to integrate their software or

data [5]. This study is outlined in subsection 3.3.1.

In the second case study, we present the matching between two partial (meta)models:

AccountOwner and Customer. These are used in electronic documents for e-business

[18]. The objective of this matching is the same as given in sub-subsection 3.3.1: to

produce a weaving model to integrate both (meta)models. We have outlined this study

in sub-subsection 3.3.2.

3.3.1 Propagation between Mantis and Bugzilla

We have outlined the (meta)models as follows 2. The Mantis' metamodel has 9 classes, 15

attributes and 10 references. The main classes of Mantis are shown in Figure 3.11. The

Bugzilla's metamodel has 9 classes, 39 attributes and 8 references and the main classes

of it are available in Figure 3.12.

According to Table 3.1, the amount of links generated in the matching of these meta-

models and models is shown. We also indicate the number of links after the filter applica-

2The metamodels of Mantis and Bugzilla are available at http://www.emn.fr/z-
info/atlanmod/index.php/Ecore
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Figure 3.11: Main classes of Mantis metamodel

tion, which the threshold is 0.5. We selected this threshold because it returned the best

links according to the calculus of the Levenshtein Edit Distance, after some executions of

the SF. If another technique of the calculus of the similarity is applied, another threshold

should be defined.

Links Matched Amount of Links Generated Amount of Links Filtered
Links between classes 81 11
Links between attributes 585 21
Links between references 80 2
Links between attributes and references 46,800 2
Links between references and attributes 46,800 10
Links between types of attributes 585 21
Links between types of references 80 2
Links between types of attributes
and references

46800 2

Links between types of references
and attributes

80 10

Table 3.1: Amount of links generated in the matching phase: Mantis and Bugzilla

Whereas an instance is explicitly related to a class, we make a distinction between

the model elements representing a class (called a class instance) and the model elements

representing the values of the attributes (called an attribute instance). The Mantis' model

has 5 classes instances, 12 attributes with 1 attribute for each instance. The Bugzilla's

model has 4 instances of a classes and 31 attributes instances with 1 attribute per instance.

According to Table 3.2, the matching generated:
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Figure 3.12: Main classes of Bugzilla Metamodel

Links Matched Amount of Links Generated Amount of Links Filtered
Links between instances of attributes 372 22

Table 3.2: Amount of links of instances generated in the matching phase: Mantis and
Bugzilla

Table 3.3 and 3.4 show the results according to each propagation method and in

Table 3.5 shows the results comprising all the propagation methods. Table 3.6 shows

the propagation values according to the type of a given element and Table 3.7 shows

the propagation comprising all the methods regarding the type of link. All the tables

display the results of the (I) first filter and (II) filter configurations; π indicates the

propagation coefficient; the link with (∗) represents the links between classes or links

between attributes. The settings of iterations for the Similarity Flooding are 1, 3 and 6.

The value of the π differs for the number of links according to the filter configuration.

For example, the link of the class IdentifiedElt x LongDesc has 4 links in the first filter

configuration; thus, π = 1/Lx = 1
4

= 0.25. On the other hand, the same link, in the second

filter configuration, has 1 link to execute the propagation; thus, π = 1/Lx = 1
1

= 1. This
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logic ensues for all other links of model elements.

3.3.2 Propagation between AccountOwner and Customer

To follow, we present the elements of AccountOwner and Customer [18]. The Accoun-

tOwner's metamodel (Figure 3.13) has 2 classes, 7 attributes and 2 references. The

Costumer's metamodel (Figure 3.14) has 2 classes, 5 attributes and 2 references. Accord-

ing to Table 3.8, the matching between both metamodels is shown. We also indicate the

number of the links after the filter application, which the threshold is 0.25. We selected

this threshold because it returned the best links according to the calculus of the Leven-

shtein Edit Distance, after some executions of the SF. If another technique of the calculus

of the similarity is applied, another threshold should be defined.

Figure 3.13: AccountOwner Metamodel

Figure 3.14: Customer Metamodel

In the model of AccountOnwer, we have 2 instances of classes and 7 instances of

attributes. In the model of Customer, we have 2 instances of classes and 5 instances of

attributes. Table 3.9 shows the amount of links generated in the match phase. In this

case, due to a limited number of elements, we do not use filters in the propagation.

Table 3.10 shows the results of restricted propagation between links of AccountOwner

x Customer, according to the specific filter configuration. We set the threshold for the

filter valuing 0.125. The propagation executing all the methods are shown in Table 3.11.

The restricted propagation results between types of links are shown in Table 3.12 and the
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propagation involving all the propagation methods is shown in Table 3.13.

3.3.3 Discussion

We implemented 9 restricted propagation graphs between structures based on the meta-

model and model elements to propagate similarities between their links. In addition, we

execute these propagations using two different filter configurations: after and before the

execution of the SF (as illustrated in Figure 3.1).

We use 4 sets of metamodels in our experiments: Mantis x Bugzilla and AccountOwner

x Customer. The methods and (meta)models are rather simple, but executing them

enables some conclusions to be drawn regarding the propagation of similarity process. In

the following case, we compared the restricted methods with a combined propagation.

The combined propagation executes all the propagation methods together (non-restricted

propagation). This method show close as proposed in Melnik [18].

We summarize the percentage of the gain of the similarities for the metamodels of

Mantis x Bugzilla and AccountOwner x Customer in Table 3.14 and Table 3.15, respec-

tively. We compare the mean of the similarities of each restricted propagation graph with

the non-restricted propagation. Therefore, the higher the similarity percentage, the better

the restricted propagation technique is in relation to non-restricted propagation.

We discuss the results of the propagation between links of Mantis x Bugzilla. Table

3.14 provides a big picture of the results of each propagation methods compared with

a combined propagation method. This table shows the mean percentage gain over the

iteration of the SF in accordance to the results of (I) filter configuration and (II) filter

configuration. The best implementation for the SF are related to the propagation from

links between Classes to links between References and propagation from links between

Classes to links between types of References in the 6th iteration of (I) filter configuration,

and in the 1st iteration of (I) filter configuration, respectively, due to the small number

of the links. While the worst similarities avarege comes from the methods which were

executed in a large number of the links in a matched classes, e.g., propagation from links

between Classes to links between References and Attributes in any iteration of (II) filter
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configuration and propagation from links between Classes to links between of types of

References and Attributes in the 1st iteration of (II) filter configuration.

According to the AccountOwner x Customer metamodels and models, we have in-

sights, which are disscused below. A summary of the percentage of the mean between

the methods is provided in Table 3.15. The best propagation techique is the propagation

from links between Classes to links between References. The avarege of the similarities

values increased in the 6th iteration of (I) filter configuration. According to the propaga-

tion between the types of the links, the best propagation method is the propagation from

links between Classes to links between types of References. The avarege of the similarities

values increased in the 6th iteration of (I) filter configuration. In these configurations, the

restricted propagation reduced the number of the links and then increased the average of

the similarities. The worst results come from the propagation from links between Classes

to links between Attributes and propagation from links between Classes to links between

types of Attributes, in the 1st iteration of (II) filter configuration and in the 3rd iteration

of (II) filter configuration, respectively, due to the high value of the total number of the

links.

The second filter configuration acted as a constraint, reducing the number of the links.

Therefore, we did not find a significant increase relative to the average of the similarity

in comparison with the combined method, with the average of the similarities remaining

constant for each iteration of the SF. However, by comparing the filter configurations,

regardless of the propagation methods, there is an increase in the similarities between the

links or no change in the similarities in the iterations of the SF.

In both metamodels (Mantis x Bugzilla or AccountOwner x Customer) in the prop-

agation from links between Attributes to links between their Instances, we observed that

the similarities are unable to ’flow’ between links, where the propagation coefficient is

equal to 1. For example, from the link ’version x version’ to the link ’Beta x beta’, the

same similarity of the link of the attribute is equal to the similarity of the link of the

instance, in any iteration (Table 3.14). Due to the reduced number of the links, the (II)

filter configuration has no effect on the iterations.
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In all metamodels and models, from the 6th iteration, the values of the similarities

between the links began to gradually decrease, when the delta value has a treshold value

of ∼= 0.001. Thus, we stopped the execution of the SF. The SF tends to propagate the

similarity to a class or element that has the highest number of links. For this reason,

after each iteration and normalization of the results, the similarity increased in a single

kind of link, e.g., the link between classes Address x CustomerAddress in the propagation

from links between Classes to links between Attributes or Issue x Bug in the propagation

comprising all the propagation methods. Therefore, similarity values of 1 were assigned

to these elements in every iteration. Due to this behavior of the SF, in some iterations

the similarities between the links were reduced due to these (meta)models being more

connected, e.g., the propagation from links between Classes to links between Attributes in

the 3rd interation of Mantis x Bugzilla. By the best filter technique, it may be possible

to disconnect the (meta)models. Thus, the results will not tend to be concentrated in a

single link. However, it is important to know the nature of the metamodels and models

in order to choose the best propagation method.

Analyzing the formula of the SF we can deduce the behavior of the algorithm in

(meta)models in different situations. The formula returns the final similarity between

links in accordance with the propagation coefficient multiplied by the similarity of the links

between classes, plus the similarity of the links between attributes and/or references, thus

SF = targetLink + (sourceLink * propagationCoefficient). The propagation coefficient is

directly related to the inverse amount of links to a matched class, thus, 1/amountofLinks.

However, the smaller the amount of links, the better the result of the SF may be. This

situation is shown in both (meta)models used. It is also necessary take into account the

similarity value of the sourceLink, because if this value equals 0, the result may be the

targetLink. Nevertheless, if the targetLink is equal to 0, the result of SF may be the

(sourceLink * propagationCoefficient). Consequently, it is necessary to apply the best

filter techniques when the number of the links is unknown to return the links with the

best similarities, which may increase the result of SF. In this work, we know the number

of links prior to the filter application. However, when using large-scale (meta)models, it
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is recommend that the number of the links of each matched class be reduced, which may

improve their results.

The links and the weaving model are persisted in memory, which could allow the

weaving model to be handled faster than a model stored in a file. The EMF has specific

classes to persist the weaving model in an XMI file. The weaving model was implemented

using Java language.

Our work does not target only MDSE applications. The methods developed may be

used to discover mutual friends in a social network [18] or to unveil cartels in public

bids [9]. The high similarity may indicates a strong friendship between people [18] or may

indicate fraud in public tenders [9], respectively. This will depend on the enconding of the

similarity values, for example, the use of the Edit Distance. The restricted propagation

methods also may be applied to the Geographic Information System, in which it may be

possible to match schemas of maps [22].

The advantage of the use of restricted propagation graphs is that they can be applied

in different metamodels and models [4]. These methods also may reduce the links of a

matched class, thus, enhancing the similarities between the links. A limitation of this

study is that our implementation does not deal with links concerning inheritance prop-

agation. However, it can be inferred that abstract classes with a generic structure (e.g.

an ’Object’ class), would have several links and the similarity of this class would greatly

increase. The way the links were filtered is also a limitation. Del Fabro and Valduriez

[4] show that such an implementation can be a disadvantage, since the limit value for the

filter is known. After analysis, these values returned the links with a best match. The

evaluation of the similarities should be calculated using Precision and Recall to ensure

greater reliability. Finally, we could implement a dictionary, using ontology, in order to

handle with synonyms.

3.4 Summary

In this chapter, we presented the methodology for comparing the executions of the SF.

We compare the average of the similarity of each restricted propagation graph with the
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propagation executing all the methods (shown as closely as proposed by Melnik [18]). We

utilize 4 metamodels to execute the propagation: matching between Mantis with Bugzilla

and matching between AccountOwner x Customer. The propagation using the restricted

propagation graphs increase the similarities between the links because they reduce the

number of the links of a matched class.

We also apply 2 variants of filters configuration: before and after the execution of the

SF, as in Figure 3.1. The application of the filter before of the SF enables a comparison

if the number of the links of a matched class is diminished, it is possible increase the

similarity between the links. Applying the filter after the SF only selects the links with

the best similarities, and they have no effect on the propagations. According to our

experiments, the choice of the filter configuration increases the similarities between links,

mainly if we execute the filter after the execution of the SF, because this reduces the

number of the links.

Tables 3.14 and 3.15 show the percent of the gain of similarity. The comparison is

the average of the similarities of the restricted graph propagation with the average of the

similarities of the non-restricted propagation. Therefore, the higher the percentage, the

better the similarity improvement of the application of the restricted propagation graphs.

We executed the iterations of the SF until the 50th iteration. However, the results are

showed to be more appropriate up to the 6th iteration, due to the limit of the delta value.

Therefore the similarities between the links has decreased progressively.

The advantage of using the restricted propagation graph is that this method may

increase faster the similarities between the links, in comparison with a non-restricted

propagation. On the other hand, we must know the features of the metamodels and

models before apply the restricted propagation method in order to provide the best result.
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Links
π

Similarities
1st 3rd 6th

I II I II I II I II
Propagation from links between Classes to links between Attributes

IdentifiedElt x LongDesc* 0.25 1 0.091 0.047 0.195 0.047 0.195 0.047 0.195
id x who 0.25 1 0.250 0.019 0.195 0.014 0.195 0.012 0.195
IdentifiedElt x Attachment* 0.125 1 0.091 0.154 0.623 0.154 0.623 0.154 0.624
id x id 0.125 1 1.000 0.070 0.623 0.032 0.623 0.021 0.624
Issue x BugzillaRoot* 0.04166 1 0.083 0.244 0.619 0.244 0.619 0.244 0.619
version x version 0.04166 1 1.000 0.069 0.619 0.025 0.619 0.012 0.619
Issue x Bug* 0.007575 1 0.200 1.000 0.686 1.000 0.686 1.000 0.686
version x version 0.007575 1 1.000 0.069 0.686 0.023 0.686 0.009 0.686
ValueWithId x StringElt* 1 1 0.083 0.074 0.619 0.074 0.619 0.074 0.617
value x value 1 1 1.000 0.074 0.619 0.074 0.619 0.074 0.619
ValueWithId x Attachment* 0.125 1 0.091 0.100 0.195 0.100 0.195 0.100 0.195
value x date 0.125 1 0.250 0.018 0.195 0.014 0.195 0.013 0.195
Note x LongDesc* 0.25 1 0.143 0.056 0.225 0.056 0.225 0.056 0.225
text x thetext 0.25 1 0.250 0.020 0.225 0.015 0.225 0.014 0.225
Note x Attachment* 0.125 0.5 0.111 0.108 0.349 0.108 0.349 0.108 0.349
text x desc 0.125 0.5 0.250 0.018 0.175 0.014 0.175 0.014 0.175
text x type 0.125 0.5 0.25 0.018 0.175 0.015 0.174 0.014 0.175
Attachment x Attachment* 0.03125 0.333 1 0.348 1.000 0.348 1.000 0.348 1.000
size x id 0.03125 0.333 0.25 0.019 0.333 0.013 0.333 0.011 0.333
size x date 0.03125 0.333 0.25 0.019 0.333 0.013 0.333 0.011 0.333
size x type 0.03125 0.333 0.25 0.019 0.333 0.013 0.333 0.011 0.333

Propagation from links between Classes to links between References
Issue x Bug* 0.0142857 1 0.2 1.000 1.000 1.000 1.000 1.000 1.000
attachments attachment 0.0142857 1 0.5 0.065 1.000 0.027 1.000 0.016 1.000

Propagation from links between Classes to links between Attributes and References
IdentifiedElt x Bug* 0.142857 1 0.071 0.243 1 0.243 1.000 0.243 1.000
id cc 0.142857 1 0.333 0.080 1 0.046 1.000 0.036 1.000

Propagation from links between Classes to links between References and Attributes
Issue x Bug* 0.0045 0.25 0.2 1.000 1.000 1.000 1.000 1.000 1.000
project x product 0.0045 0.25 0.333 0.013 0.162 0.007 0.228 0.005 0.247
priority x priority 0.0045 0.25 1 0.039 0.444 0.013 0.298 0.006 0.256
reporter x exporter 0.0045 0.25 0.333 0.013 0.162 0.007 0.228 0.005 0.247
assignedTo x assigned To 0.0045 0.25 0.5 0.019 0.232 0.008 0.246 0.005 0.249
Issue x BugzillaRoot* 0.025 1 0.0833 0.183 0.176 0.183 0.176 0.183 0.176
reporter x exporter 0.025 1 0.333 0.013 0.176 0.007 0.176 0.005 0.176
Issue x Attachment 0.0125 1 0.1 0.373 0.148 0.373 0.148 0.373 0.148
notes x date 0.0125 1 0.25 0.010 0.148 0.006 0.148 0.005 0.148

Propagation from links between Attributes to links between Instances
version x version * 1 - 1 1 - 1.000 - 1.000 -
Beta x beta 1 - 1 1 - 1.000 - 1.000 -
category x exporter * 1 - 0.111 0.180 - 0.181 - 0.181 -
website x teste 1 - 0.25 0.180 - 0.181 - 0.181 -
category x product* 1 - 0.111 0.555 - 0.556 - 0.556 -
website x website 1 - 1 0.555 - 0.556 - 0.556 -
version x exporter* 1 - 0.111 0.180 - 0.181 - 0.181 -
Beta x teste 1 - 0.25 0.180 - 0.181 - 0.181 -
version x version * 1 - 1 1 - 1.000 - 1.000 -
Beta x beta 1 - 1 1 - 1.000 - 1.000 -
value x component * 1 - 0.111 0.180 - 0.181 - 0.181 -
High x link 1 - 0.25 0.180 - 0.181 - 0.181 -
value x value * 1 - 1 0.625 - 0.625 - 0.625 -
High x link 1 - 0.25 0.625 - 0.625 - 0.625 -

Table 3.3: Propagations from links between Mantis and Bugzilla metamodels and models
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Links
π

Similarities
1st 3rd 6th

I II I II I II I II
Propagation from links between Attributes to links between their Instances
value x exporter * 1 - 0.125 0.1875 - 0.188 - 0.188 -
low x abc 1 - 0.25 0.1925 - 0.188 - 0.188 -
value x bug id * 1 - 0.143 0.196 - 0.196 - 0.196 -
low x 1 1 - 0.25 0.196 - 0.196 - 0.196 -
value x component * 1 - 0.111 0.180 - 0.181 - 0.181 -
low x link 1 - 0.25 0.180 - 0.181 - 0.181 -
value x target milestone * 1 - 0.0714 0.160 - 0.161 - 0.161 -
low x v01 1 - 0.25 0.160 - 0.161 - 0.161 -
value x bug severity * 1 - 0.083 0.541 - 0.542 - 0.542 -
low x low 1 - 1 0.541 - 0.542 - 0.542 -
value x value * 1 - 1 0.625 - 0.625 - 0.625 -
low x link 1 - 0.25 0.625 - 0.625 - 0.625 -
login x version* 1 - 0.1667 0.208 - 0.208 - 0.208 -
geor x beta 1 - 0.25 0.208 - 0.208 - 0.208 -
value x assigned to* 1 - 0.0909 0.212 - 0.212 - 0.212 -
George x Jorge 1 - 0.333 0.212 - 0.212 - 0.212 -
login x version* 1 - 0.1667 0.208 - 0.208 - 0.208 -
geor x beta 1 - 0.25 0.208 - 0.208 - 0.208 -
login x bug severity* 1 - 0.0909 0.170 - 0.170 - 0.170 -
geor x low 1 - 0.25 0.170 - 0.170 - 0.170 -
value x bug status* 1 - 0.111 0.180 - 0.181 - 0.181 -
null x st null 1 - 0.25 0.180 - 0.181 - 0.181 -
login x version* 1 - 0.1667 0.208 - 0.208 - 0.208 -
geor x beta 1 - 0.25 0.208 - 0.208 - 0.208 -
value x assigned to* 1 - 0.0909 0.212 - 0.212 - 0.212 -
George x Jorge 1 - 0.333 0.212 - 0.212 - 0.212 -
login x version* 1 - 0.167 0.208 - 0.208 - 0.208 -
geor x beta 1 - 0.25 0.208 - 0.208 - 0.208 -
login x bug severity* 1 - 0.0909 0.170 - 0.170 - 0.170 -
geor x low 1 - 0.25 0.170 - 0.170 - 0.170 -

Table 3.4: Continuation - Propagation results from links between Mantis and Bugzilla
metamodels and models
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Links
π

Similarities
1st 3rd 6th

I II I II I II I II
IdentifiedElt x Bug* 0.34400 1.000 0.071 0.067 0.083 0.068 0.083 0.071 0.083
id x cc 0.34400 1.000 0.333 0.006 0.083 0.003 0.083 0.003 0.083
IdentifiedElt x LongDesc* 0.25000 1.000 0.091 0.013 0.070 0.013 0.070 0.014 0.070
id x who 0.25000 1.000 0.250 0.005 0.070 0.004 0.070 0.004 0.070
IdentifiedElt x Attachment* 0.12500 1.000 0.091 0.043 0.224 0.044 0.224 0.046 0.224
id x id 0.12500 1.000 1.000 0.019 0.224 0.009 0.224 0.006 0.224
Issue x Bug* 0.00202 0.143 0.200 1.000 1.000 1.000 1.000 1.000 1.000
project x product 0.00202 0.143 0.333 0.006 0.074 0.003 0.126 0.002 0.141
priority x priority 0.00202 0.143 1.000 0.019 0.211 0.006 0.160 0.003 0.145
reporter x exporter 0.00202 0.143 0.333 0.006 0.074 0.003 0.126 0.002 0.141
reporter x reporter 0.00202 0.143 1.000 0.019 0.211 0.006 0.160 0.003 0.145
version x version 0.00202 0.143 1.000 0.019 0.211 0.006 0.160 0.003 0.145
assignedTo x assigned to 0.00202 0.143 0.500 0.010 0.109 0.004 0.134 0.002 0.142
attachments x attachment 0.00202 0.143 0.500 0.010 0.109 0.004 0.134 0.002 0.142
Issue x BugzillaRoot* 0.11700 0.500 0.083 0.193 0.291 0.193 0.291 0.193 0.291
reporter x exporter 0.11700 0.500 0.333 0.006 0.077 0.003 0.128 0.002 0.143
version x version 0.11700 0.500 1.000 0.019 0.214 0.007 0.163 0.003 0.148
Issue x Attachment* 0.07350 1.000 0.100 0.292 0.072 0.292 0.072 0.292 0.072
notes x date 0.07350 1.000 0.250 0.005 0.072 0.003 0.072 0.002 0.072
ValueWithID x StringElt* 0.50000 1.000 0.083 0.021 0.223 0.018 0.223 0.012 0.223
value x value 0.50000 1.000 1.000 0.020 0.223 0.013 0.223 0.008 0.223
ValueWithID x Attachment* 0.06250 1.000 0.091 0.028 0.070 0.024 0.070 0.016 0.070
value x date 0.06250 1.000 0.250 0.005 0.070 0.003 0.070 0.001 0.070
Note x LongDesc* 0.08330 1.000 0.143 0.027 0.081 0.025 0.081 0.019 0.081
text x thetext 0.08330 1.000 0.250 0.005 0.081 0.003 0.081 0.002 0.081
Note x Attachment* 0.04166 0.500 0.111 0.051 0.126 0.048 0.126 0.037 0.126
text x desc 0.04166 0.500 0.250 0.005 0.063 0.003 0.063 0.002 0.063
text x type 0.04166 0.500 0.250 0.005 0.063 0.003 0.063 0.002 0.063
Attachment x Attachment* 0.02500 0.333 1.000 0.097 0.360 0.092 0.360 0.082 0.360
size x id 0.02500 0.333 0.250 0.005 0.120 0.003 0.120 0.002 0.120
size x date 0.02500 0.333 0.250 0.005 0.120 0.003 0.120 0.002 0.120
size x type 0.02500 0.333 0.250 0.005 0.120 0.003 0.120 0.002 0.120

Table 3.5: Results comprising all the propagation methods between links of Mantis and
Bugzilla metamodel
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Links Type link element
π

Similarities
1st 3rd 6th

I II I II I II I II
From links between Classes to links between types of Attributes

IdentifiedElt x LongDesc* - 0.250 1.000 0.091 0.007 0.111 0.007 0.111 0.007 0.111
id x who Integer x String 0.250 1.000 0.143 0.002 0.111 0.002 0.111 0.002 0.111
IdentifiedElt x Attachment* - 0.125 1.000 0.091 0.012 0.111 0.012 0.111 0.012 0.111
id x id Integer x String 0.125 1.000 0.143 0.002 0.111 0.002 0.111 0.002 0.111
Issue x BugzillaRoot* - 0.042 1.000 0.083 0.182 0.513 0.182 0.513 0.182 0.513
version x version String x String 0.042 1.000 1.000 0.011 0.513 0.008 0.513 0.008 0.513
Issue x Bug* - 0.008 1.000 0.200 1.000 0.569 1.000 0.568 1.000 0.568
version x version String x String 0.008 1.000 1.000 0.011 0.569 0.008 0.568 0.008 0.568
ValueWithId x StringElt* - 1.000 1.000 0.083 0.011 0.513 0.011 0.513 0.011 0.513
value x value String x String 1.000 1.000 1.000 0.011 0.513 0.011 0.513 0.011 0.513
ValueWithId x Attachment* - 0.125 1.000 0.091 0.058 0.513 0.058 0.517 0.058 0.517
value x date String x String 0.125 1.000 1.000 0.011 0.513 0.008 0.517 0.007 0.517
Note x LongDesc* - 0.250 1.000 0.143 0.044 0.542 0.044 0.541 0.044 0.541
text x thetext String x String 0.250 1.000 1.000 0.011 0.542 0.011 0.541 0.011 0.541
Note x Attachment* - 0.125 0.500 0.111 0.058 1.000 0.058 1.000 0.058 1.000
text x desc String x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500
text x type String x String 0.125 0.500 1.000 0.011 0.500 0.008 0.500 0.007 0.500
Attachment x Attachment* - 0.031 0.333 1.000 0.193 0.677 0.193 0.677 0.193 0.677
size x id Integer x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226
size x date Integer x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226
size x type Integer x String 0.031 0.333 0.143 0.002 0.226 0.005 0.226 0.006 0.226

From links between Classes to links between types of References
Issue x Bug* - 0.0143 1 0.2 1.000 1.000 1.000 1.000 1.000 1.000
attachments attachment Attachment x Attachment 0.0143 1 1 0.120 1.000 0.041 1.000 0.018 1.000

From links between Classes to links between types of Attributes and References
IdentifiedElt x Bug* - 0.143 1 0.071 0.171 1 0.171 1 0.171 1
id cc Integer x Cc 0.143 1 0.125 0.027 1 0.025 1 0.025 1

From links between Classes to links between types of References and Attributes
Issue x Bug* - 0.0045 0.2 0.200 1.000 1.000 1.000 1.000 1.000 1.000
project x product ValueWithId x String 0.0045 0.2 0.091 0.004 0.148 0.004 0.187 0.005 0.198
priority x priority ValueWithId x String 0.0045 0.2 0.091 0.004 0.148 0.004 0.187 0.005 0.198
reporter x exporter Person x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201
reporter x reporter Person x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201
assignedTo x assigned To Person x String 0.0045 0.2 0.167 0.007 0.235 0.005 0.209 0.005 0.201
Issue x BugzillaRoot* - 0.0250 1 0.083 0.184 0.284 0.184 0.284 0.184 0.284
reporter x exporter Person x String 0.0250 1 0.167 0.007 0.284 0.005 0.284 0.005 0.284
Issue x Attachment* - 0.0125 1 0.100 0.358 0.276 0.358 0.276 0.292 0.276
notes x date Note x String 0.0125 1 0.143 0.006 0.276 0.005 0.276 0.005 0.276

Table 3.6: Results of the propagation between types of links of Mantis and Bugzilla
metamodels
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Links Type link element
π

Similarities
1st 3rd 6th

I II I II I II I II
IdentifiedElt x Bug* - 0.0344 1.000 0.071 0.030 0.140 0.031 0.140 0.032 0.140
id x cc Integer x Cc 0.0344 1.000 0.333 0.001 0.140 0.001 0.140 0.001 0.140
IdentifiedElt x LongDesc* - 0.2500 1.000 0.091 0.005 0.081 0.005 0.081 0.005 0.081
id x who Integer x String 0.2500 1.000 0.143 0.001 0.081 0.001 0.081 0.001 0.081
IdentifiedElt x Attachment* - 0.1250 1.000 0.091 0.009 0.081 0.009 0.081 0.009 0.081
id x id Integer x String 0.1250 1.000 0.143 0.001 0.081 0.001 0.081 0.001 0.081
Issue x Bug* - 0.0020 0.143 0.200 1.000 1.000 1.000 1.000 1.000 1.000
project x product ValueWithId x String 0.0020 0.143 0.091 0.001 0.069 0.002 0.118 0.002 0.140
priority x priority ValueWithId x String 0.0020 0.143 0.091 0.001 0.069 0.002 0.118 0.002 0.140
reporter x exporter Person x String 0.0020 0.143 0.167 0.001 0.068 0.002 0.124 0.002 0.141
reporter x reporter Person x String 0.0020 0.143 0.167 0.001 0.068 0.002 0.124 0.002 0.141
version x version String x String 0.0020 0.143 1.000 0.008 0.357 0.003 0.196 0.002 0.150
assignedTo x assigned to Person x String 0.0020 0.143 0.167 0.001 0.068 0.002 0.124 0.002 0.141
attachments x attachment Attachment x Attachment 0.0020 0.143 1.000 0.008 0.357 0.003 0.196 0.002 0.150
Issue x BugzillaRoot* - 0.0118 0.500 0.083 0.180 0.434 0.180 0.434 0.180 0.434
reporter x exporter Person x String 0.0118 0.500 0.167 0.001 0.072 0.002 0.181 0.002 0.212
version x version String x String 0.0118 0.500 1.000 0.008 0.361 0.004 0.253 0.002 0.221
Issue x Attachment* - 0.0074 1.000 0.100 0.247 0.084 0.247 0.084 0.247 0.084
notes x date Note x String 0.0074 1.000 0.143 0.001 0.084 0.002 0.084 0.002 0.084
ValueWithID x StringElt* - 0.5000 1.000 0.083 0.008 0.376 0.007 0.376 0.005 0.376
value x value String x String 0.5000 1.000 1.000 0.008 0.376 0.005 0.376 0.003 0.376
ValueWithID x Attachment* - 0.0625 1.000 0.091 0.041 0.379 0.036 0.379 0.024 0.379
value x date String x String 0.0625 1.000 1.000 0.008 0.379 0.004 0.379 0.002 0.379
Note x LongDesc* - 0.0833 1.000 0.143 0.036 0.397 0.033 0.397 0.026 0.397
text x thetext String x String 0.0833 1.000 1.000 0.008 0.397 0.004 0.397 0.003 0.397
Note x Attachment* - 0.0417 0.500 0.111 0.051 0.733 0.047 0.733 0.037 0.624
text x desc String x String 0.0417 0.500 1.000 0.008 0.366 0.004 0.366 0.002 0.366
text x type String x String 0.0417 0.500 1.000 0.008 0.366 0.004 0.366 0.002 0.366
Attachment x Attachment* - 0.1250 0.333 1.000 0.137 0.496 0.131 0.496 0.117 0.496
size x id Integer x String 0.1250 0.333 0.143 0.001 0.165 0.003 0.165 0.003 0.165
size x date Integer x String 0.1250 0.333 0.143 0.001 0.165 0.003 0.165 0.003 0.165
size x type Integer x String 0.1250 0.333 0.143 0.001 0.165 0.003 0.165 0.003 0.165

Table 3.7: Results comprising all the propagation methods between types of links of
Mantis and Bugzilla

Links Matched Amount of Links Generated Amount of Links Filtered
Links between classes 2 2
Links between attributes 35 25
Links between references 4 1
Links between attributes with references 14 5
Links between references with attributes 10 4
Links between types of attributes 35 25
Links between types of references 4 1
Links between types of attributes
with reference

14 7

Links between types of references
with attributes

10 5

Table 3.8: Amount of links generated in the matching phase: AccountOwner and Cus-
tomer

Links Matched Amount of Links Generated Amount of Links Filtered
Links between instances of attributes 10 10

Table 3.9: Amount of links of instances generated in the matching phase: AccountOwner
and Customer
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Links
π

Similarities
1st 3rd 6th

I II I II I II I II
Propagation from links between Classes to links between Attributes

AccountOwner x Customer * 0.333 0.500 0.143 0.203 0.196 0.203 0.196 0.203 0.196
name x Cname 0.333 0.500 0.500 0.126 0.146 0.082 0.110 0.069 0.099
birthdate x Cname 0.333 0.500 0.125 0.040 0.050 0.061 0.086 0.067 0.096
AccountOwner x CustomerAdress* 0.083 0.143 0.071 0.376 0.285 0.376 0.285 0.376 0.285
name x street 0.083 0.143 0.167 0.040 0.045 0.033 0.042 0.032 0.285
name x city 0.083 0.143 0.200 0.047 0.054 0.035 0.044 0.032 0.041
name x USStates 0.083 0.143 0.143 0.034 0.039 0.032 0.040 0.031 0.041
birthdate x street 0.083 0.143 0.125 0.030 0.034 0.031 0.039 0.031 0.041
birthdate x city 0.083 0.143 0.125 0.030 0.034 0.031 0.039 0.031 0.040
birthdate x USStates 0.083 0.143 0.143 0.034 0.039 0.032 0.040 0.031 0.041
taxExempt x street 0.083 0.143 0.143 0.034 0.039 0.032 0.040 0.031 0.041
Address x Customer * 0.250 0.250 0.111 0.206 0.228 0.206 0.228 0.206 0.228
street x Cname 0.250 0.250 0.167 0.045 0.050 0.050 0.055 0.051 0.057
city x Cname 0.250 0.250 0.200 0.053 0.058 0.052 0.057 0.052 0.057
state x Cname 0.250 0.250 0.250 0.053 0.058 0.055 0.060 0.052 0.057
ZIP x Cname 0.250 0.250 0.167 0.045 0.050 0.050 0.055 0.051 0.057
Address x CustomerAddress* 0.063 0.083 0.111 1.000 1.000 1.000 1.000 1.000 1.000
street x street 0.063 0.083 1.000 0.232 0.257 0.105 0.127 0.068 0.089
street x city 0.063 0.083 0.143 0.035 0.039 0.056 0.072 0.062 0.082
street x USStates 0.063 0.083 0.167 0.040 0.045 0.057 0.074 0.062 0.082
city x street 0.063 0.083 0.143 0.035 0.039 0.056 0.072 0.062 0.082
city x city 0.063 0.083 1.000 0.232 0.257 0.105 0.127 0.068 0.089
city x USStates 0.063 0.083 0.125 0.030 0.034 0.054 0.071 0.062 0.082
state x street 0.063 0.083 0.250 0.059 0.066 0.062 0.079 0.062 0.083
state x city 0.063 0.083 0.200 0.048 0.053 0.059 0.076 0.062 0.082
state x USStates 0.063 0.083 0.250 0.059 0.066 0.062 0.079 0.062 0.083
state x postalCode 0.063 0.083 0.143 0.035 0.039 0.054 0.072 0.062 0.082
ZIP x street 0.063 0.083 0.143 0.035 0.039 0.056 0.072 0.062 0.082
ZIP x city 0.063 0.083 0.250 0.059 0.066 0.062 0.079 0.062 0.083

Propagation from links between Classes to links between References
AccountOwner x Customer* 1 1 0.143 1 1 1 1 1 1
address x Caddress 1 1 0.5 1 1 1 1 1 1

Propagation from links between Classes to links between Attributes and References
AccountOwner x Customer* 0.333 0.500 0.143 0.830 0.815 0.830 0.806 0.830 0.815
name x Caddress 0.333 0.500 0.143 0.310 0.425 0.285 0.412 0.278 0.408
TaxExempt x Caddress 0.333 0.500 0.125 0.281 0.390 0.278 0.403 0.277 0.407
Address x Customer* 0.250 0.333 0.111 1.000 1.000 1.000 1.000 1.000 1.000
street x Caddress 0.250 0.333 0.143 0.277 0.357 0.257 0.339 0.251 0.334
city x Caddress 0.250 0.333 0.125 0.248 0.322 0.250 0.330 0.250 0.333
state x Cadress 0.250 0.333 0.125 0.248 0.322 0.250 0.330 0.250 0.333

Propagation from links between Classes to links between References and Attributes
AccountOwner x Customer * 1 1 0.143 0.493 0.585 0.493 0.585 0.493 0.585
address x Cname 1 1 0.143 0.493 0.585 0.493 0.585 0.493 0.585
AccountOwner x CustomerAdress* 0.25 0.333 0.071 1.000 1.000 1.000 1.000 1.000 1.000
address x street 0.25 0.333 0.167 0.319 0.390 0.267 0.348 0.252 0.335
address x city 0.25 0.333 0.125 0.247 0.305 0.249 0.326 0.250 0.332
address x USStates 0.25 0.333 0.125 0.247 0.305 0.249 0.326 0.250 0.332

Propagation from links between Attributes to links between their Instances
name x Cname* 1 - 0.5 1 - 1 - 1 -

JoÃ£o Silva x Joaquim Silva 1 - 0.2 1 - 1 - 1 -

Table 3.10: Propagation results from links between AccountOwner and Customer meta-
models using restrictive propagation methods
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Links
π Similarities 1st 3rd 6th

I II I II I II I II
AccountOwner x Customer * 0.125 0.167 0.143 0.365 0.428 0.365 0.428 0.365 0.428
name x Cname 0.125 0.167 0.500 0.100 0.133 0.059 0.087 0.047 0.073
birthdate x Cname 0.125 0.167 0.125 0.028 0.038 0.041 0.063 0.045 0.070
address x Caddress 0.125 0.167 0.500 0.100 0.133 0.065 0.087 0.047 0.073
name x Caddress 0.125 0.167 0.143 0.031 0.042 0.042 0.064 0.045 0.070
TaxExempt x Caddress 0.125 0.167 0.125 0.028 0.038 0.041 0.063 0.045 0.070
adress x Cname 0.125 0.167 0.143 0.031 0.042 0.042 0.064 0.045 0.070
AccountOwner x CustomerAdress* 0.05 0.100 0.071 0.488 0.391 0.488 0.391 0.488 0.391
name x street 0.05 0.100 0.167 0.033 0.044 0.027 0.040 0.025 0.039
name x city 0.05 0.100 0.200 0.039 0.053 0.028 0.043 0.025 0.040
name x USStates 0.05 0.100 0.143 0.028 0.038 0.025 0.039 0.025 0.039
birthdate x street 0.05 0.100 0.125 0.025 0.034 0.025 0.038 0.024 0.039
birthdate x city 0.05 0.100 0.125 0.025 0.034 0.025 0.038 0.024 0.039
birthdate x USStates 0.05 0.100 0.143 0.028 0.038 0.025 0.039 0.025 0.039
taxExempt x street 0.05 0.100 0.143 0.028 0.038 0.025 0.039 0.025 0.039
adress x street 0.05 0.100 0.167 0.033 0.044 0.027 0.040 0.025 0.039
address x city 0.05 0.100 0.125 0.025 0.034 0.025 0.038 0.024 0.039
address x USStates 0.05 0.100 0.125 0.025 0.034 0.025 0.038 0.024 0.039
Address x Customer * 0.1 0.143 0.111 0.306 0.328 0.306 0.328 0.306 0.328
street x Cname 0.1 0.143 0.167 0.034 0.047 0.032 0.047 0.031 0.047
city x Cname 0.1 0.143 0.200 0.041 0.055 0.033 0.049 0.031 0.047
state x Cname 0.1 0.143 0.250 0.050 0.068 0.036 0.052 0.031 0.048
ZIP x Cname 0.1 0.143 0.167 0.034 0.047 0.032 0.047 0.031 0.047
street x Caddress 0.1 0.143 0.143 0.030 0.040 0.030 0.045 0.031 0.047
city x Caddress 0.1 0.143 0.125 0.026 0.036 0.030 0.044 0.030 0.047
state x Cadress 0.1 0.143 0.125 0.026 0.036 0.030 0.044 0.030 0.047
Address x CustomerAddress* 0.04 0.083 0.111 1.000 1.000 1.000 1.000 1.000 1.000
street x street 0.04 0.083 1.000 0.194 0.257 0.079 0.127 0.045 0.089
street x city 0.04 0.083 0.143 0.028 0.039 0.037 0.072 0.040 0.082
street x USStates 0.04 0.083 0.167 0.033 0.045 0.038 0.074 0.040 0.082
city x street 0.04 0.083 0.143 0.028 0.039 0.037 0.072 0.040 0.082
city x city 0.04 0.083 1.000 0.194 0.257 0.079 0.127 0.045 0.089
city x USStates 0.04 0.083 0.125 0.025 0.034 0.036 0.071 0.040 0.082
state x street 0.04 0.083 0.250 0.049 0.066 0.042 0.079 0.040 0.083
state x city 0.04 0.083 0.200 0.040 0.053 0.040 0.076 0.040 0.082
state x USStates 0.04 0.083 0.250 0.049 0.066 0.042 0.079 0.040 0.082
state x postalCode 0.04 0.083 0.143 0.028 0.039 0.037 0.072 0.040 0.083
ZIP x street 0.04 0.083 0.143 0.028 0.039 0.037 0.072 0.040 0.082
ZIP x city 0.04 0.083 0.250 0.049 0.066 0.042 0.079 0.040 0.083

Table 3.11: Propagation results comprising all the propagation methods from links be-
tween AccountOwner and Customer metamodels
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Links Type link element
π

Similarities
1st 3rd 6th

I II I II I II I II
From links between Classes to links between types of Attributes

AccountOwner x Customer* - 0.333 0.333 0.143 0.130 0.130 0.130 0.130 0.130 0.130
name x cname String x String 0.333 0.333 1.000 0.096 0.096 0.056 0.056 0.045 0.045
birthdate x cname Integer x String 0.333 0.333 0.143 0.017 0.017 0.037 0.037 0.043 0.043
taxExempt x cname Integer x String 0.333 0.333 0.143 0.017 0.017 0.037 0.037 0.043 0.043
AccountOwner x CustmerAddress* - 0.083 0.083 0.071 0.554 0.554 0.554 0.554 0.554 0.554
name x street String x String 0.083 0.083 1.000 0.092 0.092 0.058 0.058 0.048 0.048
name x city String x String 0.083 0.083 1.000 0.092 0.092 0.058 0.058 0.048 0.048
name x USStates String x String 0.083 0.083 1.000 0.092 0.092 0.058 0.058 0.048 0.048
name x postalCode String x Integer 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
birthdate x street Integer x String 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
birthdate x city Integer x String 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
birthdate x USStates Integer x String 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
birthdate x postalCode Integer x Integer 0.083 0.083 1.000 0.092 0.092 0.058 0.058 0.048 0.048
taxExempt x street Integer x String 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
taxExempt x city Integer x String 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
taxExempt x USStates Integer x String 0.083 0.083 0.143 0.014 0.017 0.038 0.038 0.045 0.045
taxExempt x postalCode Integer x Integer 0.083 0.083 1.000 0.092 0.092 0.058 0.058 0.048 0.048
Address x Customer * - 0.250 0.250 0.111 0.297 0.297 0.297 0.297 0.297 0.297
street x cname String x String 0.250 0.250 1.000 0.094 0.094 0.079 0.079 0.075 0.075
city x cname String x String 0.250 0.250 1.000 0.094 0.094 0.079 0.079 0.075 0.075
state x cname String x String 0.250 0.250 1.000 0.094 0.094 0.079 0.079 0.075 0.075
ZIP x cname Integer x String 0.250 0.250 0.143 0.016 0.016 0.060 0.060 0.072 0.072
Address x CustomerAddress* - 0.063 0.063 0.111 1.000 1.000 1.000 1.000 1.000 1.000
street x street String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
street x city String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
street x USStates String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
street x postalCode String x Integer 0.063 0.063 0.143 0.014 0.014 0.050 0.050 0.061 0.061
city x street String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
city x city String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
city x USStates String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
city x postalCode String x Integer 0.063 0.063 0.143 0.014 0.014 0.050 0.050 0.061 0.061
state x street String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
state x city String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
state x USStates String x String 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064
state x postalCode String x Integer 0.063 0.063 0.143 0.014 0.014 0.050 0.050 0.061 0.061
ZIP x street Integer x String 0.063 0.063 0.143 0.014 0.014 0.050 0.050 0.061 0.061
ZIP x city Integer x String 0.063 0.063 0.143 0.014 0.014 0.050 0.050 0.061 0.061
ZIP x USStates Integer x String 0.063 0.063 0.143 0.014 0.014 0.050 0.050 0.061 0.061
ZIP x postalCode Integer x Integer 0.063 0.063 1.000 0.092 0.092 0.070 0.070 0.064 0.064

From links between Classes to links between types of References
Address x CustomerAddress* - 1.000 1.000 0.111 1.000 1.000 1.000 1.000 1.000 1.000
accountOwner x CustomerName AccountOwner x Customer 1.000 1.000 0.143 1.000 1.000 1.000 1.000 1.000 1.000

From links between Classes to links between types of Attributes and References
AccountOwner x CustomerAddress* - 0.333 0.333 0.071 0.775 0.775 0.775 0.775 0.775 0.775
name x customerName String x Customer 0.333 0.333 0.143 0.236 0.236 0.253 0.253 0.258 0.258
birthdate x customerName Integer x Customer 0.333 0.333 0.167 0.270 0.270 0.261 0.261 0.259 0.259
taxExempt x customerName Integer x Customer 0.333 0.333 0.167 0.270 0.270 0.261 0.261 0.259 0.259
Address x CustomerAddress* - 0.250 0.250 0.111 1.000 1.000 1.000 1.000 1.000 1.000
street x customerName String x Customer 0.250 0.250 0.143 0.242 0.242 0.248 0.248 0.250 0.250
city x customerName String x Customer 0.250 0.250 0.143 0.242 0.242 0.248 0.248 0.250 0.250
state x customerName String x Customer 0.250 0.250 0.143 0.242 0.242 0.248 0.248 0.250 0.250
ZIP x customerName Integer x Customer 0.250 0.250 0.167 0.275 0.275 0.256 0.256 0.251 0.251

From links between Classes to links between types of References and Attributes
AccountOwner x Customer * - 1.000 1.000 0.143 0.457 0.457 0.457 0.457 0.457 0.457
address x Cname Address x String 1.000 1.000 0.143 0.457 0.457 0.457 0.457 0.457 0.457
AccountOwner x CustomerAddress* - 0.250 0.250 0.071 1.000 1.000 1.000 1.000 1.000 1.000
address x street Address x String 0.250 0.250 0.143 0.257 0.257 0.252 0.252 0.250 0.250
address x city Address x String 0.250 0.250 0.143 0.257 0.257 0.252 0.252 0.250 0.250
address x USStates Address x String 0.250 0.250 0.143 0.257 0.257 0.252 0.252 0.250 0.250
address x postalCode Address x Integer 0.250 0.250 0.125 0.229 0.229 0.245 0.245 0.249 0.249

Table 3.12: Propagation results between types of links of AccountOwner and Customer
metamodels
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Links Type link element
π

Similarities
1st 3rd 6th

I II I II I II I II
AccountOwner x Customer* - 0.125 0.25 0.14 0.1583 0.1342 0.1583 0.1342 0.1583 0.1342
name x cname String x String 0.125 0.25 1.00 0.0842 0.0885 0.0359 0.0473 0.0218 0.0353
birthdate x cname Integer x String 0.125 0.25 0.14 0.0133 0.0153 0.0182 0.0290 0.0196 0.0330
taxExempt x cname Integer x String 0.125 0.25 0.14 0.0133 0.0153 0.0182 0.0290 0.0196 0.0330
address x Cname Address x String 0.125 0.25 0.14 0.0133 0.0153 0.0182 0.0290 0.0196 0.0330
AccountOwner x CustmerAddress* - 0.05 0.05 0.07 0.5965 0.6066 0.5965 0.6066 0.5965 0.6066
name x street String x String 0.05 0.05 1.00 0.0830 0.0857 0.0431 0.0454 0.0315 0.0336
name x city String x String 0.05 0.05 1.00 0.0830 0.0857 0.0431 0.0454 0.0315 0.0336
name x USStates String x String 0.05 0.05 1.00 0.0830 0.0857 0.0431 0.0454 0.0315 0.0336
name x postalCode String x Integer 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
birthdate x street Integer x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
birthdate x city Integer x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
birthdate x USStates Integer x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
birthdate x postalCode Integer x Integer 0.05 0.05 1.00 0.0830 0.0857 0.0431 0.0454 0.0315 0.0336
taxExempt x street Integer x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
taxExempt x city Integer x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
taxExempt x USStates Integer x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
taxExempt x postalCode Integer x Integer 0.05 0.05 1.00 0.0830 0.0857 0.0431 0.0454 0.0315 0.0336
name x customerName String x Customer 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
birthdate x customerName Integer x Customer 0.05 0.05 0.17 0.0141 0.0146 0.0259 0.0468 0.0293 0.0314
taxExempt x customerName Integer x Customer 0.05 0.05 0.17 0.0141 0.0146 0.0259 0.0468 0.0293 0.0314
address x street Address x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
address x city Address x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
address x USStates Address x String 0.05 0.05 0.14 0.0121 0.0125 0.0254 0.0271 0.0293 0.0313
address x postalCode Address x Integer 0.05 0.05 0.13 0.0106 0.0110 0.0250 0.0267 0.0292 0.0313
Address x Customer * - 0.1 0.25 0.11 0.3080 0.2780 0.3080 0.2780 0.3080 0.2780
street x cname String x String 0.1 0.25 1.00 0.0836 0.0878 0.0440 0.0741 0.0325 0.0701
city x cname String x String 0.1 0.25 1.00 0.0836 0.0878 0.0440 0.0741 0.0325 0.0701
state x cname String x String 0.1 0.25 1.00 0.0836 0.0878 0.0440 0.0741 0.0325 0.0701
ZIP x cname Integer x String 0.1 0.25 0.14 0.0127 0.0146 0.0263 0.0558 0.0302 0.0678
Address x CustomerAddress* - 0.04 0.05 0.11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
street x street String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
street x city String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
street x USStates String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
street x postalCode String x Integer 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
city x street String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
city x city String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
city x USStates String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
city x postalCode String x Integer 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
state x street String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
state x city String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
state x USStates String x String 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
state x postalCode String x Integer 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
ZIP x street Integer x String 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
ZIP x city Integer x String 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
ZIP x USStates Integer x String 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
ZIP x postalCode Integer x Integer 0.04 0.05 1.00 0.0831 0.0859 0.0508 0.0572 0.0413 0.0488
street x customerName String x Customer 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
city x customerName String x Customer 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
state x customerName String x Customer 0.04 0.05 0.14 0.0122 0.0127 0.0330 0.0389 0.0391 0.0465
ZIP x customerName Integer x Customer 0.04 0.05 0.17 0.0142 0.0147 0.0335 0.0394 0.0392 0.0466

Table 3.13: Propagation results comprising all the propagation methods between types of
links of AccountOwner and Customer metamodels

Propagation methods
1st 3rd 6th

I II I II I II
Propagation from links between Classes to links between Attributes (%) 91.460 164.439 90.797 164.450 94.164 164.412
Propagation from links between Classes to links between References (%) 734.861 515.620 758.680 515.639 782.250 515.631
Propagation from links between Classes to links between Attributes and References (%) 153.394 515.620 141.988 515.639 142.778 515.631
Propagation from links between Classes to links between References and Attributes (%) 189.708 81.124 197.945 81.124 206.115 81.122
Propagation from links between Attributes to links between their Instances (%) 427.228 x 462.018 x 483.705 x

Propagation from links between Classes to links between types of Attributes (%) 38.198 63.950 40.828 65.098 45.132 67.259
Propagation from links between Classes to links between types of References (%) 884.425 278.437 833.999 280.933 841.704 285.919
Propagation from links between Classes to links between types of Attributes and References (%) 74.235 278.437 76.281 280.933 81.285 285.919
Propagation from links between Classes to links between types of References and Attributes (%) 177.990 18.087 182.809 18.865 179.094 20.421

Table 3.14: A comparison between propagation methods of Mantis and Bugzilla meta-
models
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Propagation methods
1st 3rd 6th

I II I II I II
Propagation from links between Classes to links between Attributes (%) 17.933 6.619 21.823 7.008 23.288 13.909
Propagation from links between Classes to links between References (%) 938.113 808.441 1022.931 808.359 1052.649 802.457
Propagation from links between Classes to links between Attributes and References (%) 373.800 371.068 405.177 369.880 416.353 367.978
Propagation from links between Classes to links between References and Attributes (%) 384.291 380.070 415.136 380.027 426.157 376.909
Propagation from links between Attributes to links between their Instances (%) 938.113 x 1022.931 x 1052.649 x

Propagation from links between Classes to links between types of Attributes (%) 29.746 29.570 39.165 28.299 42.505 30.081
Propagation from links between Classes to links between types of References 1177.503 (%) 1167.095 1270.243 1163.257 1299.898 1177.843
Propagation from links between Classes to links between types of Attributes and References (%) 403.984 399.877 440.570 398.363 452.270 404.118
Propagation from links between Classes to links between types of References and Attributes (%) 431.859 189.622 470.468 425.927 482.815 432.000

Table 3.15: A comparison between propagation methods of AccountOwner and Customer
metamodels
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CHAPTER 4

CONCLUSION AND FUTURE WORKS

We presented 9 propagation methods based on metamodel and model structures in order

to execute a variant of the Similarity Flooding Algorithm [18]. Thus, we provided a com-

parative between the techniques in order to verify whether the development of restricted

propagation methods are advised.

The methods may be handled by different existing approaches, although they are not

executed separately in order to perform comparisons. The propagation is constituted be-

tween nine different kinds of elements, from metamodels or models. The propagations are

codificated based on the structural information of a given (meta) model: class, attribute

and reference, as well as its type: Integer, String, Double, etc.

The restricted propagation executions had a higher increase in the similarity values.

Therefore, these techniques are shown to be feasible because they reduce the number of

model elements and, also reduced the amount of iterations of the SF to achieve a better

similarity result. In metamodels and models with more connected links, the similarity

values tend to concentrate on the element with the highest amount of links.

We also implemented two filters on the Similarity Flooding algorithm results: (a)

after executing the Similarity Flooding and, (b) before executing the Similarity Flooding.

Both configuration enable a reduction in the number of links involved in the propagation

process. However, the choice of the filter value remains empirical. We can clearly see that

knowing the models and metamodels in advance may have an influence on the choice of

propagation technique, especially to avoid the highly centralized elements. However, this

should be tested and developed with bigger models and also models of a different nature.

Our major difficulty was finding large metamodels that comprised all nine techniques

stabilized. Therefore, we focused on simple metamodels, but, they were sufficient to

conclude this work. We can provide suggestions for future research:
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• Structure of the graphs propagation: to help increase the similarities between

links, emphasis can be placed on the weight of the similarities calculated previously

from a String Distance. For example, the links that have the same cardinality are

assigned with weight equaling 0.2 [4].

• Filter technique: the use of a right filter may increase the final similarity of the

SF. Therefore, we should implement a filter based on the heuristics or Artifical

Intelligence technique;

• Comparing with large models: we recommed testing the restricted propagations

in large (meta)models and with differents natures, in order to analyse the behavior

of the similarities in these environment;

• Graphical User Interface, G.U.I., and Plug-in: the use of a graphic user in-

terface would improve user experience, showing the results over the iterations of the

SF. Therefore, the user can stop the propagation in the best result. Furthermore, a

user can easily customize settings related to the propagation method, filter configu-

ration and export the results. The EMF permits the creation of plug-ins. However,

it is possible to integrate the propagation methods in the EMF as a plug-in and

making the tool more complete.
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[13] Frédéric Jouault e Jean Bézivin. Km3: a dsl for metamodel specification. Formal

Methods for Open Object-Based Distributed Systems, pages 171–185. Springer, 2006.

[14] Mathias Kleiner, Marcos Didonet Del Fabro, e Davi Queiroz Santos. Transformation

as search. Pieter Gorp, Tom Ritter, e Louis M. Rose, editors, Modelling Foundations

and Applications, volume 7949 of Lecture Notes in Computer Science, pages 54–69.

Springer Berlin Heidelberg, 2013.

[15] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet physics doklady, volume 10, pages 707, 1966.

[16] Daniel Lucrédio. Uma abordagem orientada a modelos para reutilização de software.

Phd Thesis, Universidade de São Paulo, 2009.

[17] Ming Mao. Ontology mapping: Towards semantic interoperability in distributed and

heterogeneous environments. ProQuest, 2008.

[18] Sergey Melnik. Generic model management: concepts and algorithms, volume 2967.

Springer, 2004.

[19] Pierre-Alain Muller, FrCédéric Fondement, Benoit Baudry, e Benoit Combemale.

Modeling modeling modeling. Software Systems Modeling:347–359, 2012.



53
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