LUIZ FERNANDO MACEDO MORESCKI JUNIOR

MODELAGEM DA FORÇA DE RE-EMISSÃO TÉRMICA SOBRE O SATÉLITE GPS DURANTE SUA PASSAGEM PELA SOMBRA DA TERRA

Dissertação apresentada do Curso de Pós Graduação em Ciências Geodésicas, Departamento de Geomática, Setor de Ciências da Terra, Universidade Federal do Paraná, como requisito parcial à obtenção do grau de Mestre em Ciências Geodésicas.

Orientadores:

Prof. Dr. Luiz Danilo Damasceno Ferreira Prof. Dr. Germano Bruno Afonso

CURITIBA 2006

Há quase dez anos uma pessoa querida se foi.

Há quase um ano uma pessoa querida chegou.

Este trabalho é dedicado à minha família, especialmente à Luciana, minha esposa à Manuela, minha filha e a Luiz Fernando Macedo Morescki (*in memorian*)

AGRADECIMENTOS

Sinceros agradecimentos a todas as pessoas que contribuíram de alguma forma para a realização deste trabalho, em especial as aqui relacionadas.

Ao Prof. Dr. Luiz Danilo Damasceno Ferreira, do Curso de Pós-Graduação em Ciências Geodésicas, a orientação e a oportunidade de inserção no meio científico.

Ao Prof. Dr. Germano Bruno Afonso, do Departamento de Física, a co-orientação nas atividades.

Aos amigos do Curso de Pós-Graduação em Ciências Geodésicas Ângela Cararo, Alex Babinski, Glauber Acunha e Jorge Gomes, a disponibilidade em ajudar nas mais diversas situações.

À minha esposa Luciana Emilia Merlin, a paciência em momentos delicados.

Por último, mas não menos importante, ao amigo Pe. Ciríaco Bandinu, a confiança inesgotável depositada em minha pessoa.

SUMÁRIO

LISTA DE FIGURAS
LISTA DE TABELAS
RESUMO vii
ABSTRACT
1.0 INTRODUÇÃO
2.0 REVISÃO BIBLIOGRÁFICA
2.1 ELEMENTOS ORBITAIS
2.2 O MOVIMENTO PERTURBADO DO SATÉLITE
2.3 A RE-EMISSÃO TÉRMICA
2.4 MODELOS TÉRMICOS 12
2.4.1 Modelagem da Força de Re-emissão Térmica (Modelo I) 12
2.4.2 Distribuição de Temperaturas na Superfície Segundo o Modelo Esférico 12
2.4.3 Força Térmica Resultante (Modelo Esférico) 1'
2.4.4 Distribuição de Temperaturas Segundo o Modelo Cilíndrico
2.4.5 Força Térmica Resultante (Modelo Cilíndrico)
2.4.6 Modelo Plano
2.4.7 A Re-emissão Térmica Durante a Passagem do Satélite pela Sombra da Terra
(Modelo II)
3.0 A MODELAGEM DURANTE A SOMBRA
3.1 ENTRADA E SAÍDA DA SOMBRA
3.2 A FORÇA DE RE-EMISSÃO TÉRMICA NA SOMBRA DA TERRA 28
3.2.1 As Constantes C_C , C_P , f_{0_C} e f_{0_P}
3.3 A ACELERAÇÃO PERTURBADORA DURANTE A SOMBRA
3.3.1 O Tempo de Relaxação
4.0 APLICAÇÃO DA MODELAGEM
4.1 DADOS CONSIDERADOS E RESULTADOS
4.2 O MÓDULO DA ACELERAÇÃO DURANTE A SOMBRA
4.3 A ACELERAÇÃO EM COMPONENTES 40
4.3.1 As Componentes e o Módulo 42
4.4 ELEMENTOS ORBITAIS PERTURBADOS E NÃO PERTURBADOS 44
5.0 ANÁLISE DOS RESULTADOS
6.0 CONCLUSÕES E RECOMENDAÇÕES
7.0 REFERÊNCIAS BIBLIOGRÁFRICAS
APËNDICES

LISTA DE FIGURAS

FIGURA 2.1 -	ELEMENTOS ORBITAIS; X'Y'Z' – SISTEMA INERCIAL	5
FIGURA 2.2 -	PRINCIPAIS ACELERAÇÕES PERTURBADORAS ATUANTES EM UM	
	SATÉLITE	7
FIGURA 2.3 -	FORÇA DE RECUO AGINDO SOBRE O SATÉLITE DEVIDO À RE-	
	EMISSÃO DE FÓTONS	10
FIGURA 2.4 -	ÂNGULO ZENITAL DO SOL θ '	11
FIGURA 2.5 -	COMPONENTES NOITE-DIA E INVERNO-VERÃO	11
FIGURA 2.6 -	COORDENADAS DO PONTO 'P' NA SUPERFÍCIE DO SATÉLITE	13
FIGURA 2.7 -	REPRESENTAÇÃO ESQUEMÁTICA	19
FIGURA 2.8 -	REPRESENTAÇÃO CILÍNDRICA – CASO GPS	19
FIGURA 2.9 -	ELEMENTO DE ÁREA EM COORDENADAS CILÍNDRICAS – CASO	
	GPS	21
FIGURA 3.1 -	PARÂMETROS, VETORES E GEOMETRIA DA ÓRBITA DO SATÉLITE	
	GPS	25
FIGURA 3.2 -	LONGITUDES DE ENTRADA E SAÍDA DA SOMBRA	27
FIGURA 4.1 -	SATÉLITE GPS BLOCO IIA	36
FIGURA 4.2 -	MÓDULO DA ACELERAÇÃO SOBRE O CORPO-GPS	39
FIGURA 4.3 -	MÓDULO DA ACELERAÇÃO SOBRE OS PAINÉIS-GPS	40
FIGURA 4.4 -	COMPONENTES DA ACELERAÇÃO – CORPO-GPS	41
FIGURA 4.5 -	COMPONENTES DA ACELERAÇÃO – PAINÉIS-GPS	42
FIGURA 4.6 -	COMPONENTES E MÓDULO DA ACELERAÇÃO – CORPO-GPS	43
FIGURA 4.7 -	COMPONENTES E MÓDULO DA ACELERAÇÃO – PAINÉIS-GPS	43
FIGURA 4.8 -	DIFERENÇA SEMI-EIXO MAIOR – RESFRIAMENTO	45
FIGURA 4.9 -	DIFERENÇA SEMI-EIXO MAIOR – REAQUECIMENTO	45
FIGURA 4.10 -	DIFERENÇA ECXENTRICIDADE – RESFRIAMENTO	46
FIGURA 4.11 -	DIFERENÇA EXCENTRICIDADE – REAQUECIMENTO	46
FIGURA 4.12 -	DIFERENÇA INCLINAÇÃO – RESFRIAMENTO	47
FIGURA 4.13 -	DIFERENÇA INCLINAÇÃO – REAQUECIMENTO	47

FIGURA 4.14 -	DIFERENÇA	ASCENÇÃO	RETA	DO	NODO	ASCENDENTE -	-
	RESFRIAMEN	ТО					. 48
FIGURA 4.15 -	DIFERENÇA	ASCENÇÃO	RETA	DO	NODO	ASCENDENTE -	-
	REAQUECIMI	ENTO					. 48
FIGURA 4.16 -	DIFERENÇA A	ARGUMENTO	DO PER	IGEU	- RESFR	IAMENTO	. 49
FIGURA 4.17 -	DIFERENÇA A	ARGUMENTO	DO PERI	IGEU	– REAQU	JECIMENTO	49
FIGURA 4.18 -	DIFERENÇA A	ANOMALIA M	ÉDIA – F	RESFF	RIAMENT	0	50
FIGURA 4.19 -	DIFERENÇA A	ANOMALIA M	ÉDIA – F	REAQ	UECIME	NTO	50

LISTA DE TABELAS

TABELA 2.1 -	FORÇAS PERTURBADORAS PRINCIPAIS					
TABELA 2.2 -	EFEITOS DE PERTURBAÇÕES NA ÓRBITA DE UM					
	SATÉLITE GPS	8				
TABELA 2.3 -	EFEITOS DE PERTURBAÇÕES SOBRE SATÉLITES GPS					
	APÓS 4 HORAS	9				
TABELA 4.1 -	CONSTANTES INERENTES AOS SATÉLITES GPS					
	(BLOCOS II-IIA)	35				
TABELA 4.2 -	ELEMENTOS ORBITAIS DOS SATÉLITES					
TABELA 4.3 -	TEMPO DE PERMANÊNCIA NA SOMBRA					

RESUMO

Levando em conta a força de re-emissão térmica, os períodos em que o satélite encontra-se na sombra da Terra (eclipse) são tão importantes quanto aqueles em que ele se encontra iluminado pela luz do Sol. Neste trabalho modela-se e analisa-se a força perturbadora devido à re-emissão térmica durante a passagem do satélite GPS pela sombra da Terra, considerando o Sol como fonte principal de calor. O modelo proposto trata e analisa os painéis e o corpo-GPS separadamente. Compara-se o tempo que o satélite permanece na sombra com o tempo de relaxação do gradiente de temperatura para o corpo do satélite e para os painéis. Analisa-se também o comportamento dos elementos orbitais do satélite durante a entrada e a saída da sombra. Os resultados indicam que o semi-eixo maior da órbita do satélite apresenta os desvios mais significativos, os valores são comparáveis a 10^{-6} m durante o resfriamento (entrada na sombra) e a 10^{-3} m durante o reaquecimento (saída da sombra).

ABSTRACT

By taking into account the thermal re-emission force, the time intervals where the satellite is under the shadow of the Earth (eclipse) are so important as those time intervals where the satellite is hit by the sun light. In this work we model and analyze the perturbation force due to thermal re-emission during the GPS satellite shadow Earth transition, taking into account the Sun as the main heat source. The model that we propose treats and analyze the panels and the body of the GPS satellite separately. We compare the time that satellite lasts in the shadow to the body and panels relaxation time of the temperature gradient. We also analyze the satellite orbital elements behavior during the entrance in the shadow and the exit from the shadow. The outcomes indicate that the orbit's semi-major axis presents the more significant deviations, the values are comparable to 10^{-6} m during the cooling process (entrace in the shadow) and to 10^{-3} m during the heating process (exit from the shadow).