VICTOR HUGO SCHULZ

EMBEDDED LANDMARK ACQUISITION SYSTEM FOR
VISUAL SLAM USING STAR IDENTIFICATION BASED
STEREO CORRESPONDENCE DESCRIPTOR

Dissertacdo apresentada como requisito
parcial para obtencdo do grau de Mestre do
Programa de P6s-Graduacdo em Informatica,
apresentada ao Departamento de Informatica,
Setor de Ciéncias Exatas da Universidade
Federal do Parana.

Orientador: Prof. Dr. Eduardo Todt

CURITIBA
2015

VICTOR HUGO SCHULZ

EMBEDDED LANDMARK ACQUISITION SYSTEM FOR
VISUAL SLAM USING STAR IDENTIFICATION BASED
STEREO CORRESPONDENCE DESCRIPTOR

Dissertacdo apresentada como requisito
parcial para obtencdo do grau de Mestre do
Programa de P6s-Graduacdo em Informatica,
apresentada ao Departamento de Informatica,
Setor de Ciéncias Exatas da Universidade
Federal do Parana.

Orientador: Prof. Dr. Eduardo Todt

CURITIBA
2015

S388e Schulz, Victor Hugo
Embedded landmark acquisition system for visual slam using star
identification based stereo correspondence descriptor/ Victor Hugo Schulz. —
Curitiba, 2015.
162 f. : il. color. ; 30 cm.

Dissertagéo - Universidade Federal do Parana, Setor de Ciéncias Exatas,
Programa de Pés-graduagao em Informatica, 2015.

Orientador: Eduardo Todt .
Bibliografia: p. 158-162.

1. Visao por computador. 2. Sistemas embarcados (Computadores). 3.
Profundidade - Percepgéo. I. Universidade Federal do Parana. Il.Todt,
Eduardo. Ill. Titulo.

CDD: 006.37

T
Ministério da Educagdo

Universidade Federal do Parana

U F P R Programa de Pés-Graduagdo em Informatica

PARECER

Nds, abaixo assinados, membros da Banca Examinadora da defesa de
Dissertacio de Mestrado em Informdtica, do aluno Victor Hugo Schulz, avaliamos o
trabalho intitulado, “Embedded landmark acquisition system for visual SLAM using star
identification based stereo correspondence descriptor”, cuja defesa foi realizada no dia 13 de
abril de 2015, as 09:30 horas, no Departamento de Informdtica do Setor de Ciéncias Exatas
da Universidade Federal do Parand. Apds a avaliacdo, decidimos pela:

(0aprovacao do candidato. ()reprovacao do candidato.

Curitiba, 13 de abril de 2015.

T /////[\

Prof. Dr. Eduardo Todt
PPGInf/UFPR - Orientador

Prof. Dr. Eduardo Augusto Bezerra
UFSC - Membro Externo

e]rz —— . .‘I-

Prof Dr. Bruno Miiller
UFPR - Membro‘Externo /

\ '
Prof% Roberto An fé{exsel’
PPGInf/UFPR - Memﬂfo Interno

:" ' ",) 01
o Je o\’ B
: ePOS ra

DEDICATORIA

Dedico este trabalho ao meu pai, Jorge Gruhn Schulzinha mae, Lurdes Eumar
Schulz, e a minha namorada Leticia da Silva Aldo peentivo, amor e apoio durante as
diversas etapas do trabalho. Dedico também a mientador, Prof. Dr. Eduardo Todt, por
toda a ajuda e inspiracdo durante a elaboracadritigndo muito para um resultado que

nada mais € do que um reflexo de sua paixao sassumto.

AGRADECIMENTOS

Agradeco ao meu orientador, Prof. Dr. Eduardo Tpdlt,todo tempo que dedicou a
este trabalho e ao meu colega Leonardo de Amaidl \por ter compartilhado toda a
experiéncia de sua jornada no mestrado, o que mmitjpeir muito mais longe no meu
proprio caminho. Agradeco também a Jeferson Femdadardezi, Felipe Bombardelli,
Nathaly Gasparin, Nicole Salomons, Icaro Oliveilauez Augusto Volpi do Nascimento, que

me ajudaram diretamente ou discutiram ideias qtigueateram a qualidade deste trabalho.

ABSTRACT

The use of cameras as the main sensors in Simaliarieocalization and Mapping,
what is called Visual SLAM, has risen recently doe¢he fall in camera prices. While images
bring richer information than other typical SLAMms®rs, such as lasers and sonars, there is
significant extra processing cost when they arelusée extra depth information available
from stereo camera setups makes them preferablLfAM applications. In this particular
approach, great part of the added processing @rses from extracting unique points or
image patches in both stereo images and solvingdhrespondence problem between them.
With this information, the horizontal disparity laeten the pair can be used to retrieve depth

information.

This work explores the use of an embedded systeardnip (SoC) platform that
integrates a multicore ARM processor with FPGA i@alais a stereo vision processing
module. The Harris and Stephens corner detectorigH& Stephens, 1988) is used to find
Point of Interests (POIs) in stereo images in a\Wware soft co-processor synthesized in the
FPGA to speed up feature extraction and relieve highly parallelizable process from the
main embedded processor. Remaining tasks such ageintorrection from camera
calibration, finding unique descriptor for the d#é&xl features and the correspondence
between POls in the stereo pair are solved in sofwunning on the main processor. The
proposed architecture for the co-processor enahledorner extraction task to be performed

in about half the time taken by the main processtirout aid.

After finding the POls, for each point a unique agsor is needed for finding the
correspondent POI in the other image. This work al®poses an innovative descriptor that
considers a global two-dimensional spatial relaiop between the detected points to
describe them individually. In each image, everinpm the cloud of points detected by the
Harris and Stephens algorithm is described by densig only the relative position between
it and its neighbors. When position alone is coergd, a starry night pattern is formed by the
POls. With the POI pattern being considered assstae descriptors already used in star
identification problems can be reapplied to uniguelentify POIls. A prototype of the
descriptor based on the Padgett and KreutzDelgadod algorithm (Padgett &
KreutzDelgado, 1997) is written and the results garad with common descriptors used for
this purpose, showing that two-dimensional spati@rmation alone can be used to solve the

correspondence problem. The number of useful mateh@s comparable to what was

obtained with SIFT, the best performing descriptorthis matter, while the speed was
superior to BRIEF, the fastest descriptor usedhv@xdomparison, on the ARM platform, with
a speedup of 1.64 and 1.40 on the tested datasets.

Keywords: Harris; FPGA; SLAM; Reconfigurable Hardea VHDL; Image
Processing; Stereo Vision; Computer Vision; Hylkidhitecture; Embedded Systems; Point
Of Interest; Keypoints; Matching; Stereo Corresparge; Star ldentification; Feature
Description; Depth Perception.

RESUMO

O uso de cameras como sensores principais em kacab e Mapeamento
Simultaneos Simultaneous Localization and Mapp)n@ que é denominado SLAM Visual
(Visual SLAMN, tem crescido recentemente devido a queda nagpgrdas cameras. Ao
mesmo tempo em que imagens trazem informacdesrivassdo que outros sensores tipicos
empregados em aplicagbes SLAM, como lasers e synage um custo adicional de
processamento significativo quando elas sao uféiga A informacdo de profundidade
adicional proveniente de configuracfes estérecadeeras as fazem mais interessantes para
aplicacbes SLAM. Nesta abordagem em especial, graade do custo de processamento
adicional vem da extracdo de pontos Unicos ou psdam ambas as imagens em estéreo e da
solugdo do problema de correspondéncia entre €esa posse dessa informacdo, a
disparidade horizontal entre o par de imagens gedeitilizada para recuperar a informacgao

de profundidade.

Esse trabalho explora a utilizacdo de uma platedicembarcada do tiggystem-on-
a-chip (SoC) que integra um processador ARM multiniclem dogica FPGA como um
modulo de processamento para visdo estéreo. Otatetleccantos Harris e Stephens (Harris
& Stephens, 1988) é usado para encontrar pontastelesse Roints of InterestPOIs) em
imagens estéreo em um coprocessadftrsintetizado no FPGA para acelerar a extragéo de
caracteristicas e livrar o processador principatedgrocesso altamente paralelizavel. As
tarefas restantes tais como correcdo das imagéasg@liéoracdo de cameras, encontrar um
descritor Unico para as caracteristicas detec@dasorrespondéncia entre os POIs no par de
imagens estéreo sdo solucionadas em software areoutno processador principal. A
arquitetura proposta para o coprocessador permieaqtarefa de extracdo de cantos seja
executada em aproximadamente metade do tempo agogsslo processador principal sem

auxilio algum.

Apds encontrar os POls, para cada um dos pontodesaritor Unico € necessario
para que seja possivel encontrar o POl corresptadsn outra imagem. Esse trabalho
também propde um descritor inovador que consideedagionamento espacial bidimensional
global entre os pontos detectados para descrev@dsdualmente. Para cada imagem, cada
ponto da nuvem de pontos detectada pelo algoriteoHdrris e Stephens é descrito
considerando-se apenas as posi¢des relativas eate seus vizinhos. Quando somente a

posicdo € considerada, um padréo de céu estret#dona € formado pelos POls. Com o

padrdo de POls sendo considerado como estrelagjtdess ja utilizados em problemas de
identificacdo de estrelas podem ser reaplicadoa p#entificar unicamente POIs. Um
protétipo do descritor baseado do algoritmo de gyl Padgett e KreutzDelgado (Padgett &
KreutzDelgado, 1997) é escrito e seus resultados\pamados com o0s descritores
normalmente utilizados para este propdsito, modtramue a informacdo espacial
bidimensional pode ser utilizada por si s6 paralves o problema de correspondéncia. O
namero de correspondéncias uteis € comparavelirgidat com o SIFT, o descritor com
melhor desempenho neste quesito, enquanto a vattecidi superior ao BRIEF, o descritor
mais rapido utilizado na comparacéo, na platafoAR&1, com umspeedupde 1,64 e 1,40
nas bases de dados dos testes.

Palavras-chave: Harris; FPGA; SLAM; Hardware Reigurvel, VHDL,
Processamento de Imagem; Visdo Estéreo; Compusénrl/iArquitetura Hibrida; Sistemas
Embarcados; Pontos de Interesse; Keypoints; Camnemcia; Correspondéncia Estéreo;

Identificacédo de Estrelas; Descricdo de CaracieagstPercepcéo de Profundidade.

LIST OF FIGURES

FIGURE 1: LANDMARK ACQUISITION SYSTEM FOR VISUAL SLAM WITH STEREO FEATUREBASED
CORRESPONDENCEIN THIS WORK, THE POI DETECTOR STEP IS IMPLEMENTED IN THEEPGA, WHILE ALL
OTHER TASKS ARE DONE IN SOFTWARE ON THARM PROCESSORRESULTING IN HYBRID ARCHITECTURE
(AUTHOR'S FIGURE). .. e ettt ettt ettt ettt ettt e et e e e e e e e e e e e e e e e e e aa et et btesee e e e e eeeaeaaaaeesaaaannnnnnbnsbsnnneeeeeeas 21

FIGURE 2: STARRY NIGHT PATTERN POIS DETECTED WITHSURFARE PLOTTED FOR A PAIR OF IMAGHCALLET,
2010) AS CIRCLES WITH RADIUS PROPORTIONAL TO THE OCTAVE OF THE PYRWD WHERE THEY WERE
DETECTED. (AUTHOR'S FIGURE. ... iiiitiiiiiaiiititttt ettt ettt et e e eaaaaaaaaaaaaaaasaaaaa e annsbabbsseeeeeeeeeaaaaaaaaeaaaaannnnnnes 23

FIGURE 3: TYPICAL RANGE IMAGES OF2D LASER RANGE SENSOR WITH A ROTATION MIRROR(SIEEGWART ET AL.,
200 L) (P. 132) ..tttk et e e E e e et e e et e nn e et e e 26

FIGURE 4 : ILLUSTRATION OF THE SLAM PROBLEM (SIEGWART ET AL., 2011) (p. 350). IN (A), THE ROBOT
OBSERVES THE LANDMARKMp ; IN (B), THE ROBOT MOVES TO A NEW POSITIONAND CONSEQUENTLY THE
UNCERTAINTY ON ITS POSITION INCREASESIN (C), THE ROBOT OBSERVES TWO NEW LANDMARKSM; AND
My; IN (D), THE ROBOT MOVES AGAIN AND ITS POSITION UNCERTAINTY INCREASES AGAININ (E) THE
LANDMARK Mg IS SEEN A SECOND TIMEITS POSITION UNCERTAINTY IS REDUCEPAND SINCE THE POSITION
OF THE LANDMARKS AND THE ROBOT ARE ALL CORRELATED THE UNCERTAINTY OF THE WHOLE MAP
MEMBERS IS REDUCED UNCERTAINTIES OF POSITION IN LANDMARKS AND ROBOT ARIREPRESENTED BY THE

ELLIPSIS ENCIRCLING THEM ...uttiteiutiiteiieeessiteeeesisee e s st e essseeesnneesssneeeensne s e s nsneeeann e e e nnnn e e samneeennnenesnnneees 28
FIGURE 5: CONCEPTUAL STRUCTURE OF ANFPGADEVICE (PEDRONI, 2010). +.eeovvviieiiiieinireee e s 40
FIGURE 6: ZEDBOARD (AVNET INC.; 2014). ...eteeeieeiiiee e ettt et e e e e e e e e e e e e e e e et eeeeeeaaeeas 42

FIGURE 7: THE XILINX ZYNQ-7000 EXTENSIBLE PROCESSING PLATFORM. AX| CONNECTIONS CAN BE SEEN
BETWEEN THE APPLICATION PROCESSORUNIT AND THE CENTRAL INTERCONNECT WHICH IS THEN
CONNECTED TO THEPROGRAMMABLE L OGIC (THROUGH GENERAL-PURPOSEPORTS) (TAYLOR, 2015)....... 45

FIGURE 8: TYPICAL EKF-SLAM SYSTEM, AS DESCRIBED PREVIOUSLY ON SECTIOR.5.(AUTHOR'S FIGURB....... 50

FIGURE 9: PINHOLE CAMERA GEOMETRY (HARTLEY & ZISSERMAN, 2003)(P. 154).C IS THE CAMERA CENTERP IS
THE PRINCIPAL POINT(IMAGE CENTER) AND F IS THE FOCUS DISTANCE FRONC TO THE IMAGE PLANE 52

FIGURE 10: WORLD AND IMAGE PLANE COORDINATESctteitreeeisrreressretesssneeessnesesaneeessnesessneessnneesssnesessnees 53

FIGURE 11: EXAMPLES OF RADIAL LENS DISTORTION (A) NO DISTORTION (B) BARREL DISTORTION (C)
PINCUSHION(SIEGWART ET AL, 20L1)(P. 157). weetiiiiiiiieiiiiiee e e emmme ettt e e e e e e e e e e e e e e e e e as 54

FIGURE 12: CHESSBOARD PATTERN BEING USED FOR CALIBRATION AIDEBY THE OPENCV LIBRARY. OVERLAID IS

A PATTERN SHOWING DETECTED INNER CORNERS BEING USHX$ REFERENCE FOR CALIBRATION(AUTHOR'S

T U] S 56
FIGURE 13: VISUAL REPRESENTATION OF EPIPOLAR GEOMETR{HARTLEY & ZISSERMAN, 2003)(P. 240)............ 57
FIGURE 14: DISPARITY DO DEPTH GEOMETRIC REPRESENTATIO(BIEGWART ET AL., 2011)(P. 172). ..ccevvvvveeee. 58

FIGURE 15: NONPARALLEL STEREO CONFIGURATION USING TWA.OGITECH C525 CAMERAS (LOGITECH, 2014)
CONSTRUCTED IN THEVRI LAB. THE DISTANCE BETWEEN CAMERAS 125 CM. (AUTHOR'S FIGURB............ 58
FIGURE 16: ORIGINAL IMAGES WITH DETECTED CORNERS ON THE CHESSB®D PATTERN (ABOVE), AND RECTIFIED

IMAGES WITH HORIZONTAL EPIPOLAR LINES(BELOW). (AUTHOR'S FIGURB).uuuuiiiiiiiiiiiieeieiaeaaaaaaaaaaaeanns 59

FIGURE 17: FEATURE-BASED CORRESPONDENCHA) POIS BEING DETECTED IN THE IMAGE (B) MATCHED POINTS
BY THEIR DESCRIPTORS INPUT IMAGES BELONG TO THE DATABASE AVAILABLE ON (CALLET, 2010).
(AUTHOR'S FIGURE). ..uuuuuuuttnttttteeeeeeteettesaaeeasasssssasaaaasasssssssessssseeeereataaaaaaeaseessssaassnssssssssreeeeaaaaeeeneesanns 62

FIGURE 18: SOFTWARE STACK FOR THE COMPLETE LANDMARK ACQUISITIONSYSTEM FOR VISUAL SLAM.
(AUTHOR'S FIGURE. ..uuuuuuuttuttttteeeeeeeeettaeaaeeasasssssasaaaasassssnsssssasseseereaeaaaaaaeassessssaassnsssssssseeeeaaaaeaaeeensnnns 65

FIGURE 19: PROCESSINGSLIDING WINDOW FORHARRIS CORNERDETECTION(AMARICAI ET AL., 2014). 70

FIGURE 20: SIMPLIFIED BLOCK DIAGRAM FOR THE PROPOSED HARDWARE RCHITECTURE FOR THEHARRIS
ALGORITHM ON FPGA. THE GNU/LINUX LINARO DISTRIBUTION RUNS ON THE DUALCORE PROCESSOR
(FIRST BLOCK), WHICH CONNECTS TO THE REMAINING BLOCKYIMPLEMENTED ON FPGA LOGIC) THROUGH
THE AXI4 INTERFACE THE BLOCKS INSIDE THE GREY AREA BELONG TO THHARRIS ALGORITHM, WHICH IS
THE CORNER DETECTORTHE CORNERS THAT ARE DETERMINED BY THE ALGORITHM AREEOMBINED IN THE
SHIFT REGISTER AND THEN READ AGAIN THROUGH THE AX| INTERFACE BY THE MAIN PROCESSOR

(AUTHOR'S FIGURE). ..uuuuuuutuutttiteeteeeeeetteeaaeaasssssssasaaaasassssssssssasseseereaeaaasaaeassesasssassnssssssssreeeeaeaaeaeeeesnnns 71
FIGURE 21: ORDER OF ENTERING PIXELS FOR BX3 WINDOW. (AUTHOR'S FIGURB). ..ccceiieeeaaaaiaiaaiaiiiiieteeeeeeeeeens 74
FIGURE 22: MULTIPLEXING FOUR 7X7 WINDOW INPUT CONVERTERYIC(TOIC3). (AUTHOR'S FIGURB. 75
FIGURE 23: HARRIS IMAGE PATCH DESIGNED TO CAUSE A CORNER TO HEETECTED. (AUTHOR'S FIGURE). 81

FIGURE 24: DIGITAL TIMING DIAGRAM FOR INPUT, CONTROL SIGNALS AND OUTPUTSIGNAL CLK IS THE CLOCK RST
THE RESET LOAD INDICATES WHEN THE INPUT MATRIX IS COMPLETE AND T CIRCUIT CAN START
PROCESSING THE DATACRNINDICATES IF A CORNER WAS FOUND ANCSHRIS THE SHIFT REGISTER OUTPUT OF
THE CORNERS WITH DELAY AFTER THE MATRICES ARE LOADED INDICATED BY THE LOAD SIGNAL GOING
FROM ONE TO ZERQ THE CONTROL SIGNALEROM BOTTOM UP INDICATE WHEN EACH COMPOSING STAGEF
THE HARRIS COPROCESSOR IS ACTIVEEACH ONE IS ACTIVE ON4 PERIODY. EACH CONTROL SIGNAUS
BOUND TO A SINGLE STAGE WITH THE EXCEPTION OF THEHARRIS RESPONSE STAGE THAT IS DIVIDED IN TWO
PARTS AND RECEIVES2 SIGNALS. THE OUTPUT BIT THAT INDICATES A DETECTED CORNEKCRN) APPEARS
AFTER 8 TO 11 CLOCK PULSES SINCE THE INPUT MATRIX IS AVAILABLE | T SERVES AS THE INPUT OF THE SHIFT
REGISTER(SHR), AND THE OUTPUT IS DELAYED SO THAT IT IS AVAILABLEIN THE 14™ PULSE IMMEDIATELY
AFTER THE NEW MATRIX IS LOADED INTO THE CIRCUIT(AUTHOR SFIGURE).ccccvvieiirieenrnie e 28

FIGURE 25: THE TRIANGULAR FEATURE A: THE ANGULAR DISTANCE TO THE FIRST NEIGHBORINGSTAR; B: THE
ANGULAR DISTANCE TO THE SECOND NEIGHBORING STARC: THE ANGLE BETWEEN THE NEIGHBORING STARS
(== L 1) USROS 84

FIGURE 26: FEATURE EXTRACTION USING THEGRID ALGORITHM (PADGETT & KREUTZDELGADO, 1997)............ 85

FIGURE 27: CONSTRUCTION TO TEST THEEKF-SLAM C++ PORT WITH MATLAB SIMULATOR. (AUTHOR'S
FIGURED). .t tetettttttetteeee e eeeeeteaaeeeeaaesaaasssssaaaasaaseestesaeeeeeeeeeeeeeaaeeeeeesananseeneenesennneeeeaeaaeaeeeessesannnnnnnsnnd 87

FIGURE 28: VISUAL OUTPUT OF CORNERS DETECTED IKDPENCV (SOFTWARE AND IN THE FPGA (HARDWARE) ON
THE TEST IMAGE WHILE MEASURING THE EXECUTION TIME(LEFT AND RIGHT, RESPECTIVELY). (AUTHOR'S
T U] SRR 91

FIGURE 29: CORRECT MATCHES FOR THE SIMPLIFIEDGRID ALGORITHM DESCRIPTOR FOR THHRCCYN IVC
QUALITY ASSESSMENTOF STEREOSCOPIdMAGES DATABASE (CALLET, 2010),USING THESIFT DETECTOR
LIMITED TO 512 POINTS THE DASHED HORIZONTAL LINE REPRESENTS THE CORRECT ME&HES FOUND WITH

SIFT AS A REFERENCE FOR COMPARISONAUTHOR'S FIGURB). ..cccttitiiiiaaaaaaaaaaiaaaaiiiibibbeebeeeseeeseeeeeeeeaeas 95

FIGURE 30: CORRECT MATCHES FOR THE SIMPLIFIEDGRID ALGORITHM DESCRIPTOR FOR THHRCCYN IVC
QUALITY ASSESSMENTOF STEREOSCOPIdMAGES DATABASE (CALLET, 2010),USING THESIFT DETECTOR
(NO LIMITS). THE HORIZONTAL LINE REPRESENTS THE CORRECT MATCHESOBND WITH SIFT AS A
REFERENCE FOR COMPARISONAUTHOR'S FIGURB. ...uutvvtrtteititereeseeeaasaassssisssssssnnsnnsssnssnssnssresrrersaesaeeeaas 95
FIGURE 31: CORRECT MATCHES FOR THE SIMPLIFIEDGRID ALGORITHM DESCRIPTOR FOR THHRCCYN IVC
QUALITY ASSESSMENT OF STEREOSCOPIC IMAGES DATABASE (CALLET, 2010), USING THE HARRIS
DETECTOR THE HORIZONTAL LINE REPRESENTS THE CORRECT MATCHE®BND WITH SIFT AS A REFERENCE
FOR COMPARISON (AUTHOR'S FIGURB.ttttttittieteeteteaaaaaaaaaaaaaaasaaa s annsabssbesseseeeeeeaaaaaaaaaaaeasaesaaaannns 96
FIGURE 32: CORRECT MATCHES FOR THE SIMPLIFIEESRID ALGORITHM DESCRIPTOR FOR THEMIDDLEBURY 2006
STEREO DATASET (SCHARSTEIN, 2006), USING THE SIFT DETECTOR LIMITED TO512 POINTS (AUTHOR'S
T U] S EEPUUPRR: 97
FIGURE 33: CORRECT MATCHES FOR THE SIMPLIFIEESRID ALGORITHM DESCRIPTOR FOR THEMIDDLEBURY 2006
STEREODATASET (SCHARSTEIN, 2006),USING THESIFT DETECTOR (AUTHOR'S FIGURB. ..evvvvveeeeeeeeeeennn, 98
FIGURE 34: CORRECT MATCHES FOR THE SIMPLIFIEESRID ALGORITHM DESCRIPTOR FOR THEMIDDLEBURY 2006
STEREODATASET (SCHARSTEIN, 2006),USING THEHARRIS DETECTOR (AUTHOR'S FIGURB). ..ccvvvveeeeennnn. 98
FIGURE 35: CORRECT MATCHES FOR EACH USED PARAMETERS FOR TBR20X200IMAGES OF THEDISNEY DATASET
(GROSS 2012).AN INCREASE IN THEH PARAMETER MEANS A REDUCTION ON THE GRID RESOLUTIONWHILE
AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE S INCREASING ALSO THE
DESCRIPTOR LENGHT(AUTHOR'S FIGURE).ceiieeeeiitittettaeteeeereeseeaaeaeaaaasesassssssssssssssssssssssnssssenseesaeaeees 110
FIGURE 36: CORRECT MATCHES FOR EACH USED PARAMETERS FOR T8 0x400IMAGES OF THEDISNEY DATASET
(GROSS 2012).AN INCREASE IN THEH PARAMETER MEANS A REDUCTION ON THE GRID RESOLUTIONWHILE
AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE S INCREASING ALSO THE
DESCRIPTOR LENGHT(AUTHOR'S FIGURB.iiiiiiiitittitteeeeeeeteeeaaeaaaaaaaaaaaaaaasaaaaaaannnsbnsbessneeeeeeeaaaaaaaaans 20
FIGURE 37: CORRECT MATCHES FOR EACH USED PARAMETERS FOR TI9%60X600IMAGES OF THEDISNEY DATASET
(GROSS 2012).AN INCREASE IN THEH PARAMETER MEANS A REDUCTION ON THE GRID RESOLUTIONWHILE
AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE S INCREASING ALSO THE
DESCRIPTOR LENGHT(AUTHOR'S FIGURBE).eeiieeiiiiiiiietteeeeeeeeeesaaaaeaaeaaasesasssssssssasssssssssssssssneennsesaeaeees 210
FIGURE 38: CORRECT MATCHES FOR EACH USED PARAMETERS FOR THE28(X800 IMAGES OF THE DISNEY
DATASET (GROSS 2012). AN INCREASE IN THE H PARAMETER MEANS A REDUCTION ON THE GRID
RESOLUTION WHILE AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE SE7
INCREASING ALSO THE DESCRIPTOR LENGHAUTHOR'S FIGURB).cceeeiieeiieiiiiiiiiitieieeeeeeee e e e e aaaaaaa e 103
FIGURE 39: CORRECT MATCHES FOR EACH USED PARAMETERS FOR THE60(x1000 IMAGES OF THE DISNEY
DATASET (GROSS 2012). AN INCREASE IN THE H PARAMETER MEANS A REDUCTION ON THE GRID
RESOLUTION WHILE AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE S
INCREASING ALSO THE DESCRIPTOR LENGHKAUTHOR'S FIGURB). ...eeeeeeeeeeieeisiennennninenneeereeseeseeaaaaeaeeas 103
FIGURE 40: CORRECT MATCHES FOR EACH USED PARAMETERS FOR THE92(x1200 IMAGES OF THE DISNEY
DATASET (GROSS 2012). AN INCREASE IN THE H PARAMETER MEANS A REDUCTION ON THE GRID
RESOLUTION WHILE AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE SE7

INCREASING ALSO THE DESCRIPTOR LENGHTHAUTHOR'S FIGURB). ...ccieeieiieiie ittt ee e e e aeaaaaa e 104

FIGURE 41: CORRECT MATCHES FOR EACH USED PARAMETERS FOR THE24(x1400 IMAGES OF THE DISNEY
DATASET (GROSS 2012). AN INCREASE IN THE H PARAMETER MEANS A REDUCTION ON THE GRID
RESOLUTION WHILE AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE S
INCREASING ALSO THE DESCRIPTOR LENGHKAUTHOR'S FIGURB).eceeeeieeiieiseiininiinnnneeeeeeeeesaeaaaaaaaeas 104

FIGURE 42: CORRECT MATCHES FOR EACH USED PARAMETERS FOR THE56(k1600 IMAGES OF THE DISNEY
DATASET (GROSS 2012). AN INCREASE IN THE H PARAMETER MEANS A REDUCTION ON THE GRID
RESOLUTION WHILE AN INCREASE IN THEG PARAMETER MEANS AN INCREASE ON THE GRID SQUARE SE7

INCREASING ALSO THE DESCRIPTOR LENGHHAUTHOR'S FIGURB). ...cceeeiiiieiieiiiiiiiiitteieeeeeeeee e e e aaaaaaaae e 105

LIST OF TABLES

TABLE 1: MEMORY LAYOUT CONFIGURATION, ADAPTED FROM(XILINX INC., 2014B)c.ccvvviiirieeiiriieninene e 47
TABLE 2: GENERIC SYSTEM PROFILE. .. .utttettreteesiteeesasretesnseaessseesamseesssnneesasneesassneeesssneeessneeessnneesanneeesnneas 89
TABLE 3: INCREASE IN EXECUTION TIME OFEKF-SLAM UPDATE STEP DUE TO MAP SIZERUNNING IN THE DUAL-
COREARM CORTEX A9 PROCESSOR INEDBOARD.iiiiiiiiiiiiieiiiiities e e e et eeeeeee ettt e e e e e e e e eeeeenes 90
TABLE 4: EXECUTION TIME COMPARISON BETWEEN THE REFERENCEOPENCVY) AND THE HARDWARE CG
PROCESSOKFPGA).THE SPEEDUP REACHED WHEN USING THE HARDWARE IMPLEMEMTION COMPARED TO
THE REFERENCE IS ALSO SHOWNIESTS WERE DONE BOTH FOR THE INITIAL VERSION OF THEO-PROCESSOR
THAT DIDN’T USE A PIPELINE(1 PIXEL AT A TIME), AND THE FINAL VERSION OF THE CGPROCESSOK4 PIXELS
AT A TIME)t tetteeeee e et te s e et ettt ettt ettt e eeeeataaaaeaaaeesaassaaas s s seaeteseeeeeeeeeeeeaaaaeesaae e nnnnnEnnbnnteneeeeaeeaeaaaaeeaeean 91
TABLE 5: QUALITY COMPARISON BETWEEN THE RESULTS OBTAINED FROMTHE DESIGNED HARRIS CORNER
DETECTOR CGOPROCESSOR(HARDWARE) AND THE REFERENCE INOPENCV. ADDITIONALLY, A TIME OF
EXECUTION COMPARISON IS ALSO PROVIDED TO EXTEND THRESULTS FROM THE PREVIOUS TESTS IN
SECTION 6.3.1AND DESCRIPTOR EXECUTION TIME FORSECTION 6.4.2.coiiiiiiiiiiiiiiiiiee e 93
TABLE 6: COMPARISON BETWEEN THE SIMPLIFIEDGRID ALGORITHM AND SIFT FOR THEIRCCYN IVC QUALITY
ASSESSMENTOF STEREOSCOPIAMAGES DATABASE (CALLET, 2010). .oeiieiiiiiiiii it 97
TABLE 7: COMPARISON BETWEEN THE SIMPLIFIEDGRID ALGORITHM AND SIFT FOR THE MIDDLEBURY 2006
STEREODATASET (SCHARSTEIN, 2006).ce i iiiiitiritiieeieeeeeeeeeeesemmmmms s s s sbnseasaeeeeeeeeaaaaeaeeasssssannnnnes 99
TABLE 8: PERFORMANCE RATIO BETWEEN THE SIMPLIFIEDGRID ALGORITHM AND SIFT FOR THEIRCCYN IVC
QUALITY ASSESSMENTOF STEREOSCOPIAMAGES DATABASE (CALLET, 2010)AND THE MIDDLEBURY 2006
STEREODATASET (SCHARSTEIN, 2006),HERE DATABASEL AND 2, RESPECTIVELY. ...uuuuiiiiiiiiiiieeeeeeaeaaaaaanns 100
TABLE 9: CORRECT MATCHES AND TIME OF EXECUTION OF DESCRIPTORBOR THE IRCCYN IVC QUALITY
ASSESSMENTOF STEREOSCOPIAMAGES DATABASE (CALLET, 2010). ...t e e e e 106
TABLE 10: CORRECT MATCHES AND TIME OF EXECUTION OF DESCRIPTORSR THEMIDDLEBURY 2006 STEREO
DATASET (SCHARSTEIN, 2006).uuuuuuveiiiiiiieieeereeeeeseeeeessmmmmmssssstessssssseeesesaaaaeseesesssessnassnssssssssreeeeeees 107

1.

CONTENTS

INTRODUGCTION L.ttt ettt ettt e e sttt e e e s ettt e e e s s nbb et e e s sstsaeeaeesnnnneeeeas 18
1.1 GENERALOBUIECTIVES. . .tttttteeiittteteeesaautteeeeaesaatteeeeessaasseeeaessastsseeeeesansssseesesssnssseeesesanns 21
1.2 SPECIFICOBIECTIVES . ..ciiiutttttteeeiiuttteetaesaatttteeeeesantteeeaasansbeeeeeessansaseeeeesansbaneeaessannneeeanas 22
1.3 METHODOLOGYiiitititttutuia e eeeeaaeeeeeeetttbab e aa e e s e e e e e aaeeeeeastbabaaaa e e e eaaaaaeeeeanennntsnnnnnnns 22
SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) coccieeeee e 25
2.1 DEFINITION ..tttttttttuuuaa e e e e e e ee et eeeetbab s e e s e e e s e e e e e eeeeeeas e baba s s e e e e aeaeaeeeessbensnnsbannaaaeaeaaas 25
2.2 SENSORSEMPLOYED IN SLAM....uuitiiii ettt e e et e et aab bbb e e e e e e e e aaeaeees 25
2.3 STATISTIC MODEL ..tttttiiesiiittiieeeeestteeteaeeasitbeeeeeesausteeeeessnbbaeeeaessantbaeeeaesansbbeeeeessanseneeessns 27
2.3.1 Probabilistic Model fOr SLAMccoiiiiiiiiiee e 29
2.4 MAIN SOLUTIONS TO THESLAM PROBLEMctiiiiiiiiiiiiesiiiiieieee st eessineeeee s nneeeeeeees 30
2.4.1 Kalman Filter and itS VAriantSooiceeeeeeee i 30
2.4.2 Particle Filter based MethOodS..........eviiiiiiiiiiiiii e 32
2.4.3 Expectation Maximization methodsccceiiiiiiiiii e 33
P2 T 1] I N PSPPSR 33
2.5.1 Map definition in the context of EKF-SLAM ... oo 35
2.5.2 Map iNItIAlIZALIONeeeiiiiiiieee e e ———————————————————— 36
2.5.3 Robot motion: the prediCtion StEP.......c.uueeeeere it e e e e e e 36
2.5.4 Landmark observation: the update SteP......ccceeccvevieeeeee i 37
2.5.5 Landmark INtialiZationcccuueiuiiiicceeie et 38
2.6 DISCUSSION. .. .iiiiiiiitittt e e e e e ettt e ettt e e s e e e e e e e e e et et bbabaaoa e e e e aeaeeeeeebeennnbabann e e e aeeans 39
EMBEDDED SYSTEM ...oiiiiiiiiiiiiiiie sttt ettt e e e sttt e e e e s nattaeeaaessnsbaeeaasessbaeeaaesnnnes 40
3.1 SYSTEM ON ACHIP PLATFORMS WITHEMBEDDED FPGA ..o e 40
K 4 =) = Ta Y\] PP PRPPORTPPRRR 42
3.3 INTELLECTUAL PROPERTY(IP) DESIGN....utiuiitiiiiiietieaeeieeiesiissseciessinreneeeseaaeaeeeeseesanannnnnnns 43
3.4 AXI - ADVANCED EXTENSIBLE INTERFACE........uttttieeiiiiiiiieesaaiiieeeeesannsienesssnnsbneeeesesnnenns 45
3.5 FPGAMEMORY ARCHITECTURE......utttitttetitttteeeeesaiteeeeeesaastsseeassnsssseeeessansssseeeessansnseeeeess 46
3.6 CHAPTERDISCUSSION.cciiiiiiiiiitiitiae e e e e e e e et eeeeeteb s e e e e e e et e eeeetabbab e e e e e eaaaaeeeeanes 48
THE VISUAL SLAM SYSTEM ...utiiiiiiiiiiiite ettt e e siiaae e e e s snaae e s e e nnenaeas 49
4.1 PARTICULARITIES OF VISUAL SLAM SYSTEMS.....citiiiiiiiiiiiiiie ettt 49
4.2 THE CAMERA IMODEL ..citttttitiaa e e e eeee et eeeettatiaa e s e s e e e e e e e e e eeeeeesssbaba s e s e e e eaaaeeeeeesannbnnnnnnns 51
4.3 CAMERA CALIBRATION ...itiieiiittteteeesiaitieteeeesattteeeessssaneeessssstseeeessssnsbeeeeessanssseeeesssnnnens 55
4.4 AREABASEDALGORITHMS ..ociiiiiitiiiieeeiiitiieee e e s stttteae e s s sstteaessasstbeeeeesssnnbaeeaeessnbbeeeeessnnsenes 60
4.5 FEATURE-BASED ALGORITHMS ...iitiiieieeiitttteeaeesnittteeeeessnttteeesssntteeeeeessnsbbeeeeeessnnbneeeeessn 60

4.6

DISCUSSION. 1.ttt ettt oot e e e et e e e e e e e e e nernnn e a e r e e e e e e e e e e e e e n e e 63

5. IMPLEMENTATION ..oiiiiiiiitiit ettt e imte e e e e s sttt e e e s et e e e e s ansssaeeeeessnnsaeeeessnnsnaaeeeas 64
5.1 THE SOFTWARE STACK ...ttttieetiittieteee et itteteeeesaastteeeeessasseeeeesssnnteeeaesssnntneeeeessanssneesesssnneed 64
5.1.1 UVC —USB VIUEO ClASSctiieiiiutiiieeee s s eeeeeeessitteeeeeessttaeeeeessantbseeessssssneesessans 65
5.1.2 VAL — VidO TOF LINUX...ciiutviiiiieiiiiiiitieeeeee et e ettt e e snaeeee e s s nnnaneeeee s 65
5.1.3 The Mmap FUNCLONuuiiiiiiiiiiiiee e e e e e e e e e e s e e s e eaeeeeeees 66
5.1.4 LIDWEDCAM ...ttt ettt 66
LI ST © 1= o [PPSR OUPPPRR 66
5.1.6 HWHAITIS CIASS ..ottt e e e e e e e e e e as 67
N A €14 o @1 - T USSP 67
oI R T o T L O =] SRR 67
B5.1.9 Camera ClasSuueiiiieiiiiiiiie ettt ettt ettt e e et e e e e e e e e 68
B5.1.10 MACNEE ClaSS .. .uuuiiiieeiiiiiiiie ettt e sttt s b e e e e e bbe e e e e snnb e e e e e e e ennnees 68
5.2 DESIGN OF THEHARRIS COPROCESSORuuvvtiiieeiiiiieeeeessitteseeeesannseneeessnnssseeeesssnnnnneeess 69
N R © YT V1 U PUUPPPP 69
5.2.2 DUAI COre ARM ...ttt e e e e e e e e e e e e e e e nnaae 72
5.2.3 Multiplexed INPUL CONVEIETeiiiiiii ettt a e 74
B5.2.4 SODEI X @NA Yoottt e e e e e e e e e e 76
5.2.5 M MatriX COEfICIENTSvviiiiiiiiiiiie e 77
V2 T =1 (o Tox [(= PP EPRPPP 77
5.2.7 HarTiS RESPONSE ...ccoiiiiiiiiiiit ittt eeeeeer ittt e e e e e e e e e e aaeee e e e s e e s assasns s aeaaarereeeaaaaaeaeaens 78
V2 I T T I Y =] o 10 o OSSO PRRR 79
5.2.9 Adaptive TRreSholduueiiiiiiiiiii e 79
5.2.10 NON-Maximum SUPPIESSIONciuiueeeees s s o1 e e 1 e e amnnnbssbessseeeeeeeaaaaaaasasaaaannns 80
5.2.11 Shift register and delayooooi oo 80
5.2.12 SYNINESIS ..uutiiiiiiiiiiiiiiiit e e e e emmmmmma e e e e e e e e e e e e aaaaaaaaaaaaan 83
5.3 STAR-ID BASEDDESCRIPTOR. .. .tttttteetitttiteeeeaitttteeeeeanttteeesssataeeeesssassbeeeeessansneeeesssnsseees 83
5.3.1 ANQUIAI DIStANCEcvviiiiiiiee e e e e ce e cmmmmmr ettt et et e et e e e e e e e e e e s e e s s s s s aeeaar e e e e e aaaaaeaeaens 83
LSRG 7 €11 o 172N Fo To 1 11 1 2 PR 84
5.4 EKF-SLAM IMPLEMENTATION ...ciittttttttttuuuaaaaaaaaeaeaeeeasststunnaaaaaaeaaaaaeeesssssnnnnnnaaaaeaaeaans 86
6. TESTS AND RESULTS ..ottt e ettt e e e e sttt e e e e e s sntbeaeaesnstaneaaaesanes 88
6.1 SYSTEMPROFILEttt e e e e e e e et et et e bb e e e e e e e e e eeeeeeannnennnanan 88
6.2 EKF-SLAM PROFILE ONEMBEDDED HARDWAREcciiiiiiiiiiiiiiiiiiiaaaaeeeeeeeeeeeeeenssennnnns 89
6.3 HARRISHARDWARE IMPLEMENTATION ...cceiiiuttteteeesiitteeeeessasteseeeessnnsnneeessnnnsseeesssanssnseenns 90
6.3.1 Execution Time Comparison With OpPeNCVccceeiiiiiiiiiiieeee e 90
6.3.2 Quality Comparison With OPENCYuuiiiiiieiiieiiiieieeee e reeaaee e 92
6.4 SIMPLIFIED GRID ALGORITHM ..utttiieiittiteeteesiitteeeeessssttseeeeesassseeeesanessseeasssssssseesessnssseees 93
6.4.1 OPtMAl PATAMELEISttt ettt e et e e e e e e e e e e e e e e s aerb bbb eseeeeeeeas 94
6.4.2 EXeCUtion TiIMeE ANAIYSIS.......uuuiiiiiiiiii et e e e e e e e e e e 106
6.5 POWERREQUIREMENT .. uuituiittittttit ittt ettt e st e st e st s esteestestasstsanessnssnsesnessneesneasnsssnnns 107

7.

7.1
7.2
7.3

8.1
8.2
8.3

DISCUSSION ...ttt e+t e et e et e e e e e e s e e neeeee e 109

ST 7Y S AN 1Y 109
USING SOC PROCESSORS WITH EMBEDDEBPGAFABRIC.......civeeeiieeeeieeiveeee e 109
STAR-ID BASED DESCRIPTOR. ...uuiituteittteeitieeeeteeeeteseanesetaeesaseeernessseereneseaeereaeerannes 111
(O 1\ (O I 1] [] N 113
(O] N =111 T T 113
DIFFICULTIES FOUNDL. . .tuiit ittt e e e e e e e e et e e s et e e b e ea s et e eassnaranns 114
FUTURE WORK ...ttt it cii ettt ettt et e e e e e s s e e et e e et s e e e et e s b e e s e s aa e san st anasntanaans 114

APPENDIX A: MATHEMATICA SCRIPT FOR CALCULATING THE OPTIMAL BITSIZE
FOR INDIVIDUAL BLOCKS FROM HARRIS CO-PROCESSORot 116

APPENDIX B: SYNTHESIS LOG FOR THE FINAL VERSION OF THE HARRIS CO-

PROGCESSOR.....cceeeeiie ettt ettt s et e e s e e e s e et e e e e e e e e e e e e e e e s 120
APPENDIX C: C++ CLASS FOR I/O BETWEEN THE MAIN PROC ESSOR AND THE
HARRIS CO-PROCESSOR THROUGH AXIA-LITEcciiiiiiiiieiiiiiiee ettt e 123

A) HWHARRISH ittt e ee e e e ettt bttt ettt e et e e e e e e s e e s e e e annbae bt e ebe et e e eeeaeeaaaaaaeeeeaaaanneensensnnees 123
B) HWHARRIS.CPP...c ettt eee e ettt e oo ettt ettt e e e e e e e e e e e e e s e e nnneatb bt beeeeeeeeeeeaaaaaeeaeaaaannnnnnes 124

APPENDIX D: VHDL CODE FOR THE HARRIS CO-PROCESSOR........cccoviuiiiiieiiiiiiieeeeene 128
A) USER LOGIC.VHD ..eeiitttetee e e ettt e e e s sttt e e e e e e e e e e e e e s e e e e e e s e e e e e e e ssnnneeeeeennes 128
B) Y [N TR o SRR 129
C) LS 211 =LY AV T TSRS 130
D) LOAD CONTROLVHD ..ceteeiuttieeeiesiatteeeeeessissneee e e s smmneee e s s e nnnee e e s s asnnnee e e s s eenneeeee e s ennees 137
E) INPUTCONVERTERMUX.VHDcciiiiieiiiiiittita e e e e e e e e eeeeeetba e s e s e e e e e e e e e eeeeebabaaaa e e e eeaaaeas 138
F) INPUTCONVERTERVHDtititttttui e e e e e aeateeeetasttas s aaaaaaseeeaeaaaeeeessbsssnnnaaaaeaaaaaaeeeesssne 140
G) CONTROLVHD ..ttt ettt ettt e e e e e e e e e e e e e e s e e e aaabe e e et e eeeaeeaaaaaaaaeaaaaaaaaannnsbsbbssaeeaaaaaaaaaaans 141
H) LY@ =T =T OV T o T EESSRRR 142
ST] =1 =1 I 2V o SRR 143
J) MATRIXIVLVHD ...ttt et e e e e e e e e s e e st a e et e e e et aaaaeeaeaeesessanannnnnsnnnnneeeeees 144
K) BLOCKFILTER.VHD ...cctiiiiitiiieiee e s st e e e s sttt e e s e e e st e e s s e e e e s sennnn e e e e s nmnnneee s 145
L) HARRISRESPONSEVHD ...ttt e e e e e ee et eeetttata e e e e e e e e e e e e eeeeeeeessbab s e e e e e eeaaeeeeesnsennnnnnnans 146
M) FINDIMAX .VHD .ttiiiiieee e et e ettt e e e e e e e e a4 e e s s bbbt bbb e e e et et e e e eaaaaaeeaeeaaannnnnnnn 147
N) THRESHOLDNVHD ...ttt e e e e ettt ettt e e s e e e e e e e e e e eeeeeeebebb e e e e e e aeeeeeeesbnbabn e e e e aeaaaaeaaaens 148
0) LOCALMAXIMUM BIN.VHD ...ttt e e s e e e e e e e e e e eeetaabas s e e e e e e e e e eeeennnnes a4
P) CORNERSHIFTREGISTERVHDcutviiieiiiirieieeeseiinreeee s s annree e s ssnnnee e e s s esnnee e e e s nnnnneeee s e e e 150

APPENDIX E: MODIFIED GRID DESCRIPTORccoviiit it 152
A) L] 1 S 152
B) L] o = PP 152

APPENDIX F: CUSTOM METHODS FOR POI CORRESPONDENCE TESTS

A) 1 T R 1 SRS 154
B) SYMMETRY TEST.ttttttttteteeeeetetissiasasesssntestenserearaeaaaaaaessssaaaassnsssssssrssseseererraeeeeeeeeannanns 154
C) @ T I S S SRR 155
APPENDIX G: CLASS FOR CONTROLLING FOCUS AND EXPOSUR E THROUGH
LIBWEBCAMoiitiiiie ettt e e e e ettt e e ettt e e e+ 4 skt e e e e e s ast bt ee e e e e e es e baeeaeeaasaeeeeeeeansbaeeeaeesantbaaaaeessstaeeeennnns 156
A) L ToTU] PP PP 156
B) FOCUSCPP. ..ttt ettt ettt e e e e e e e e e oo oot ettt ettt e e e e e e e e e e e e e e aa e e naaebeebesteeeeeaeeaaaaaesaasaaaannnnnnns 156
158

9. REFERENCES

18

1. INTRODUCTION

Mobile robotics is a relatively young field, comged of multiple distinct disciplines,
from mechanical, electrical and electronic engimggito computer, cognitive and social
sciences. One of its main concerns is giving robdwsability of moving on their own, that is,
without human supervision, on varied environmefigdgwart, Nourbakhsh, & Scaramuzza,
2011).

Within this subject, one problem requires attentithe possibility of a robot being
placed in an unknown environment at an unknowntionaand being able to construct a
consistent map of its surroundings while localizitsg!f within it as it moves. This is known
as the Simultaneous Localization and Mapping prabler SLAM. While SLAM can be
considered a solved problem, some substantial 9seraain in the practical realization of
more general SLAM solutions, and using perceptualtyh maps as a part of a SLAM
algorithm (Durrant-Whyte & Bailey, 2006).

For SLAM, the information available to the robotaaty time comes from odometry
and exteroceptive sensors such as lasers, ultrdsand cameras. In real world, this
information is corrupted by noise, which increates difficulty of the problem (Siegwart et
al., 2011).

The most common solution for the SLAM problem isdzhon the Extended Kalman
Filter (EKF). In EKF-SLAM the map is modeled by a@sian distribution, where the robot
pose and landmark positions are represented lgt@ wtctor for the means and a matrix for
the covariance (Sola, 2013). When an observatiomaide, both the state vector and the joint
covariance matrix are updated. In practice, thedseto a quadratically growth on the

computation with the number of landmarks (Durrartyt¢ & Bailey, 2006).

The high complexity that arises from using rich sgpopulated with many
landmarks calls for implementations that benefinfrparallel architecture speedups. These
optimizations should be in specific parts of thedeothat can benefit from parallel
implementation. Recent examples of hybrid architest that can benefit from this offload
work to a GPU using solutions such as NVidia CUD®/(DIA Corp., 2014). This leaves the
inherently sequential part of the code to the CRhklch is better fitted for the job.

19

Other platforms that allow hybrid processing are tlew System on a Chip (SoC)
solutions that integrate dual-core ARM processath an FPGA fabric, such as Xilinx Zyng-
7000 (Xilinx Inc., 2014c) and Altera Arria V, Arrid0 and Stratix 10 SoC series (Altera
Corp., 2014b). While less powerful than CPU/GPGP&aLessing, SoC solutions require less
power, benefitting implementations for robot apglions that require embedded processing
in the robot itself.

When using a camera as a sensor for robots, thev@fdl is projected into a 2D
image plane. This process reduces information, am$equently depth perception is lost.
One of the ways to later recover that informatian by capturing different images
simultaneously with two cameras, when their re@gwsition is known. This is called stereo
vision, and by doing it, perceived horizontal disfyabetween images is used as a means to
retrieve depth information. Two major problems aris stereo vision, the correspondence
problem and 3D reconstruction. The first consiatsniatching the points of the two images
which are the projection of the same point in tteng. When the correspondence is done, it is
possible to reconstruct the structure of the scami/ing in the second problem. The solution
of both problems requires that intrinsic and esigrparameters about the cameras are known

through calibration (Siegwart et al., 2011).

Current solutions for the stereo correspondenchl@no can be distinguished in two
main categories, area-based and feature-basele lfotmer, a small patch (window) of the
image is looked for in the other image in orderfit@ the most similar one. In the latter,
Points of Interest (POIs) are found in both imagesl then matched according to local

descriptors (Siegwart et al., 2011).

For area based approaches, visual spatial infoomaised is limited within the
chosen window. Feature based approaches on the b#mel usually only consider the
immediate surroundings of a POI for describingMortensen, Deng, and Shapiro (2005)
expanded the local SIFT descriptor (Lowe, 2004hgisa global context vector similar to
shape contexts, adding curvilinear shape informatwhat increased its robustness to local

appearance ambiguity and non-rigid transformations.

This work is based on the same premises, that @ersg a larger neighborhood to
the POI could yield positive results when finditg ¢orrespondence. It differs by exploring a

different feature and descriptor and that the spwadence is found independently of any

20

other POI descriptors (including SIFT), so that gpatial information is used alone for
finding the correspondences.

In the proposed solution, POIs can be detectedyistandard algorithms such as the
Harris corner detector (Harris & Stephens, 1988pl& Invariant Feature Transform (SIFT)
(Lowe, 2004), Speeded Up Robust Features (SURHF), (Baytelaars, & Van Gool, 2006)
and Features from Accelerated Segment Test (FAR®stén & Drummond, 2006). The
proposed feature investigated in this work is bamedhe fact that POIls have intrinsically a
high repeatability property Therefore, POIs with 8Bordinates close to each other should
also produce 2D coordinates on both image plana® fhe stereo cameras with a high
probability of maintaining their relative positiongthin the small variation in the Point of

View of the two cameras.

For evaluating the use of a hybrid processing &chire, a Xilinx Zyng-7000 SoC
processor with a dual-core ARM processor and iategk FPGA was used. A hardware co-
processor was implemented in VHDL and synthesingtie FPGA to accelerate the detection
of POIs by using the Harris and Stephens cornegctlat (Harris & Stephens, 1988). The
processes of image acquisition, description ofhthelware-detected points and finding the
correspondence between them are performed in sefttmaning in GNU/Linux on the ARM

processor.

Figure 1 shows a simplified block diagram of thepst required in feature-based
landmark acquisition from a stereo camera setupyfeumal SLAM. As previously explained,
only the POI detector step was implemented as @waae co-processor, while all other tasks
run in software at the main processor. The left @giat images are processed sequentially on
the co-processor. The POI descriptor step is imetged using the new proposed solution,

and is also implemented as software.

21

Left Camera
Image

Right Camera
Image

POI Detectc POI Detectc
Rectificatior Rectificatior
POI Descriptc POI Descriptc

Stereo Corresponder

Depth Retrieve

Landmarks for
SLAM

Figure 1: Landmark acquisition system for Visual SLAM with stereo feature-based correspondence. In thisork, the
POI detector step is implemented in the FPGA, whilall other tasks are done in software on the ARM prcessor,
resulting in hybrid architecture. (Author's Figure) .

1.1 General Objectives

The objective of this work is to explore an innavat way to solve the
correspondence problem between two images, in dodeetrieve their 3D coordinates by
using the visual spatial relationship between thasirdd point and its neighbors as a global
context. These points are found using a standatlddBt@ctor to be used as landmarks for the
map construction and localization for SLAM applioas, relying on their properties of
repeatability and distinctiveness.

Also, this work in concerned with evaluating a hgtharchitecture System on a Chip
solution that integrates an FPGA fabric with a mmadembedded processor as an auxiliary
unit for stereo camera image pre-processing andiark extraction for Visual SLAM, and

proposing a solution that runs effectively on thels¢forms.

22

1.2 Specific Objectives

In order to verify if visual spatial relationshipetveen POIs can be used to
effectively produce relevant information for debamg those POIls with the stereo
correspondence problem in mind, a prototype ofva descriptor needs to be created, and its
speed, number of correct correspondences andrateocompared with existing solutions. If
the prototype to be produces useful results, tlohnigue can be incorporated in stereo

correspondence systems alone or coupled with egigéscriptors.

The proposed system is focused on balancing eeduction, i.e., false matching,
with improvements on execution time in order to tie algorithm effectively and efficiently

in embedded systems.

The hybrid architecture available on SoCs with ARW¥bcessors and integrated
FPGA allows for a co-processor to be designed deioto optimize existing software in
specific parts parallelization is possible. Thuseation of the process of obtaining landmarks
from POls for SLAM that is relevant for such optmation needs to be selected for hardware
implementation. Finally, the speed of execution gudlity of the implementation can be
compared with the original software alternative fraluating the applicability of the

optimizations.

A simple SLAM solution also needs to be implemerard tested to determine if the
SoC test platform can be used to process the lakdnudtained by the analysis of stereo

images in reasonable time.

1.3 Methodology

To ensure that the hardware co-processor designidsi work aids in solving a task
that takes significant execution time, a simplaeaysdesigned in software, comprising all of
the building blocks shown in Figure 1, has beenlemented in software that runs on the
main processor of the SoC. The execution time oheadividual block was measured and
the results substantiate the choice of developingaware co-processor to aid in POI

detection (Section 6.1).

23

After the co-processor synthesis, the executioe tivas again measured, to compare

with the software-based results and determinegbedup gain (Section 6.3.1).

The proposed solution uses POls initially as ineatudre-based correspondence
solution (instead of a small window as in area-tasbut differs in the fact that spatial
relationship between points is considered for fuigdtorrespondence. In a sense, it is a hybrid
solution. When only the POls are plotted white nneanpty black image, starry night patterns

emerge (Figure 2hese patterns can be used to develop a desdaptoratching POls for a

stereo pair of image, and techniques already infasdescribing star arrangements in star
identification problems (Ho, 2012; Spratling & Mart, 2009) can then be considered for
reapplication for the stereo matching problem.

Figure 2: Starry night pattern. POls detected withSURF are plotted for a pair of image (Callet, 2010as circles, with
radius proportional to the octave of the pyramid wtere they were detected. (Author’s figure).

24

After the implementation of a descriptor using theposed technique and its
subsequent use for finding correspondence betwé€ds, s performance is be compared
with other POI descriptors such as SIFT (Lowe, 20BURF (Bay et al., 2006), BRIEF
(Calonder, Lepetit, Strecha, & Fua, 2010), BRISKytenegger, Chli, & Siegwart, 2011),
ORB (Rublee, Rabaud, Konolige, & Bradski, 2011) aRREAK (Alahi, Ortiz, &
Vandergheynst, 2012) with respect to correct matcleeror and speed in the context of
SLAM.

25

2. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)

This chapter contextualizes the target application the work, presenting and
defining the SLAM problem. To understand why SLAMgions are based on probabilistic
models, it is important to review the sensors useslLAM applications because the nature of

the noise present in them is the key to the chaii@eprobabilistic model for SLAM.

While a statistical model, based on the Bayes rideshared among the most
common solutions (Kalman Filters, Particle Filtersd Expectation Maximization) it is
interesting to discuss in which point they diffeorh each other. The EKF-SLAM solution
was chosen to be used in this work for two reasdums to the extensive information available
on it for being the most popular tool to solve SLA&Ad for its implementation being
relatively simple when compared to particle filsmutions. EKF-SLAM is then explained in

detail by the end of this chapter.

2.1 Definition

As seen in the Introduction, SLAM stands for Sirao&ous Localization and
Mapping. In SLAM, the robot's task is to incremdigtareate a map of its surroundings while
localizing itself within it (Durrant-Whyte & Bailey2006). At any moment, the available
information comes from the proprioceptive and enteptive sensors, which are always
affected by noise in real environments. Propricgepsensors measure values internal to the
system, while exteroceptive sensors acquire infdomaabout the robot's environment
(Siegwart et al., 2011).

2.2 Sensors Employed in SLAM

There are many kinds of sensors used for mobiletsolihe most typical are optical
encoders, compasses, gyroscopes, accelerometasbal gpositioning system (GPS),
ultrasonic sensors, laser rangefinders and vissois@s (CMOS and CCD cameras). Sensors

are subject to errors, which can be systematicamdaomic. Random errors cannot be

26

corrected with deterministic approaches, therefarstatistical model is used, and error
propagation can be computed integrating data frofarednt kinds of sensors and be used to
guantify uncertainty on the robot system. The Giansdistribution is usually employed for
modeling sensors that have no specific modelst gaerforms well and is mathematically
advantageous to other models. (Siegwart et al1P@l 101-148)

Exteroceptive sensors are the robot’s way to detnmation about the environment,
which comes from the landmarks present on it. éndbntext of mobile robotics and SLAM,
landmarks can be defined as objects in the wodtl ¢hn be used as reference for retrieving
their relative position to the robot when in iteldi of view (Siegwart et al., 2011) (p. 344-
345). Interesting landmarks are ones that can kdyesegmented from the surrounding
environment, have unique features that can easfgrentiate them from each other and can
be perceived from different angles without confasi®hey can be purposely placed in the
environment (artificial) or objects already presentit (natural). Points of Interest can also be
used as landmarks, since they have by definitienctiaracteristics of being repeatable and
distinct from each other (Todt, 2005).

Early SLAM works focused on the use of range sensoch as sonar rings and laser
(Munguia, Castillo-Toledo, & Grau, 2013). Lasersgytularly, can be used to easily and
quickly retrieve spatial information of whole roorfms indoor use, making the mapping task
relatively easier. An example of laser reading loarseen in Figure 3.

G_

y [m]

Figure 3 : Typical range images of 2D laser range ssor with a rotation mirror. (Siegwart et al., 201] (p. 132)

27

Range sensor's main disadvantages are limited adlailinformation for data
association, high cost, limited working range, #mat some of them are limited to a 2D plane
scan only. These issues led to an increased movecent works towards the use of cameras
as a primary sensor, trend that is also motivatezltd the fall in prices of camera systems.
Besides that, relative to lasers, cameras provideer information, suitable for data
association needed for landmark matching and |léaguoe on SLAM applications (Munguia
et al., 2013). For embedded applications, modemecas are attractive for being small,
lightweight and having low power consumption. Fbede reasons, they can be easily
embedded in mobile robots (Lee & Lee, 2013; Muagatial., 2013).

These points led to the choice of using camerdabeamain sensors for SLAM in this
work. It's important to note that while the richeformation provided by cameras is useful
for the reasons cited above, it's processing requimore computing power, which is
particularly limited on embedded applications. Timsreases the importance on researching

optimizations for tasks specifically related tostubject.

2.3 Statistic model

Measurement noise is one of the key challengeshaitic mapping and localization.
Since noise is statistically dependent, repetithaasurements of the same landmarks are not
enough to cancel its effect. Accommodating thesgesyatic correlated errors is the key for a
successful SLAM algorithm (Sebastian Thrun, 2002).

A solution for the SLAM problem therefore requinesoper modelling of sensors,
explicitly including noise. This explains why thbarée dominating techniques in SLAM
(Kalman Filters, Particle Filters and ExpectatioaxXifnization) are all probabilistic in nature,
derived from the recursive Bayes rule. Probabdistigorithms explicitly model different
sources of noise and their effects in measuren{@utiinas, Petillot, Salvi, & Llado, 2008).
The three currently dominating techniques in SLAM hriefly explained further in Section
2.4.

In the context of mobile robotics, robot pose isirdel as its position coordinates
plus its orientation (angle) to some referenceSLAM, when the same landmarks are seen
from different robot poses (different perspectiyéisg¢ uncertainty is reduced for the landmark

28

itself and for the whole map, thus making the philstic model converge to a correct
estimation of the map, together with a more aceueatimation of the robot pose (Siegwart et
al., 2011) (p. 348-351). This reduction in uncertyis called loop closure, and is illustrated
in Figure 4.

mea Mo

W (@) (s) (b)

mo mo
XD RO
] [
ls] (c) ls] (d)

m:@ @ m:

Mo
(5] (e)

Figure 4 : lllustration of the SLAM problem (Siegwart et al., 2011) (p. 350). In (&), the robot obsersethe landmark
my ; in (b), the robot moves to a new position, andonsequently the uncertainty on its position increass; in (c), the
robot observes two new landmarks: mand my; in (d), the robot moves again, and its position ncertainty increases
again; in (e) the landmarkmg is seen a second time. Its position uncertainty ieduced, and since the position of the
landmarks and the robot are all correlated, the unertainty of the whole map members is reduced. Unctainties of
position in landmarks and robot are represented byhe ellipsis encircling them.

29

2.3.1 Probabilistic model for SLAM

The probabilistic SLAM model is presented in deai(Durrant-Whyte & Bailey,

2006), and is summarized in this section.

In probabilistic form, the SLAM problem can be eagpsed with the probability
distribution shown in eq. (2.1), which is the jopasterior density of the landmark locations.

P(R.M| %, Uy, R) (2.1)
Where:
R : state vector describing the pose of the robtitva t

M :a vector with the position of the landmarks:=[L, L, - Ln]T

L, : then landmark

T : transposed

Yyt : the set of all landmark observations from timeo timet
U, : the history of control inputs applied to the sbb

R, : the robot initial pose

The SLAM solution consists of computing the proligbgiven in eq. (2.1) for all
time instants since the beginning of the procesd un For this, a recursive solution is
desirable, so that if the probability distributioht —1is known, the next probability can be

computed directly from it without recalculating forevious instants.

Starting from the previous estimation as in theébphulity distribution in eq. (2.2), a

control U; is applied to the robot, and an observatipnis made.

P(Rs M1 ¥t-1r Usoo) 2.2)

30

The joint posterior as in eq. (2.1) is then comguising the Bayes' Theorem. For
that, both a motion model and an observation madeheeded. In probability notation, they
are expressed as the probabilities distributioreqjin(2.3) and eq. (2.4).

P(RIR,. v) (2.3)

P(y|R, M) (2.4)

The SLAM algorithm is then implemented in a twopstecursive prediction and
correction form, as shown in eq. (2.5) and eq.)(Be8pectively, which are called the time-

update and measurement update.

P(R.M| %ot U s Ro) = [A RIR.,)X B R, Ml Y., bk R) dR (25)

] A Rt’M P , M -1 0k
P(R,M|%:t’uat’R0): (yl P%M(lz-t-lldf) - RO)

(2.6)

2.4 Main Solutions to the SLAM Problem

Since the 90s, SLAM approaches are dominantly foitibic in nature (Sebastian
Thrun, 2002). They can be classified as derivatik@® Kalman Filters (KF), Particle Filters
(PF) and Expectation Maximization (EM). All of tleesre based on derivations of the
recursive Bayes rule. Comprehensive descriptiomscamparisons of these approaches can
be found in (Aulinas et al., 2008; Sebastian Th2002) while a brief discussion of the main

points, relevant to this work, are summarized mftillowing sections.

2.4.1 Kalman Filter and its Variants

Kalman filters are Bayes filters that representi@aars using Gaussian distributions.
There are two main variations of Kalman filtersShAM: the Extended Kalman Filter (EKF)

and the Information Filter (IF).

31

The standard Kalman Filter assumes that obsensioa linear functions of the
state, and that the next state is a linear funatiotine previous state. Since state transitions
and measurements are rarely linear in practicénearization through a first order Taylor
expansion can be applied to the nonlinear functioesulting in the EKF (Sebastian Thrun,
Burgard, & Fox, 2005) (p. 54-60).

The dual representation of the EKF, the IF, reprssbelief also as a Gaussian. The
main difference is in the way the Gaussians areesgmted, where instead of using their
moment (mean and covariance), they are representttd an information matrix and
information vector, which are obtained through anaracal parameterization of the
multivariate Gaussian distribution (Sebastian Thetial., 2005) (p. 71). On the update step
of the IF, an inversion of the information matrsx needed for recovering state, and further
inversions are needed in the prediction step. &bcalates poorly when the dimension of the
map increases with the increase of landmarks, treguih a poorer performance than EKF
(Aulinas et al., 2008).

IFs can be further extended for non-linear statengk functions similarly to KF
being extended into EKF. EIFs were further improbagdepresenting the information matrix
sparsely (S. Thrun et al., 2004), leading to constane use by the update equations,
regardless of the number of landmarks, in whataited the Sparse Extended Information
Filter (SEIF). Here, sparcity in the information tnais enforced to a certain level, reducing
the information kept by the filter with the intemti of trading it for speed gains as a mean to
guarantee the constant update time.

Another KF derivative, the Unscented Kalman FillgKF), addresses the possible

errors that come from the linearization step applbe EKF. This is done by selecting a
minimal set of carefully chosen sample points fog Gaussian Random Variable that when
propagated through non-linear systems results énptbsterior being captured with more

accuracy (Aulinas et al., 2008). UKF performs dligislower than EKF, but it has the same
asymptotic complexity. While it can perform bettarsome cases where the EKF Taylor
approximation leads to more errors in estimatiam, many practical applications, the

difference is negligible (Sebastian Thrun et @02 (p. 70).

The main disadvantage of EKF is that the computatieffort scales quadratically to
the number of landmarks on the map on the updap, sthere both the state vector
(representing the means of the pose of the robdtpmsition of the landmarks) and the

32

covariance matrix (representing the covariance éetwthe map constituents) need to be
updated once for every seen landmark. This makg horssions impractical because the
update step can become unfeasible to be executezhliiime when the landmarks become

too numerous (Aulinas et al., 2008).

In spite of this, EKF is the most popular tool &tate estimation in robotics. Its
strength lies in its simplicity and computationdficgency, when comparing with other
algorithms such as particle filters, which can regjexponential time growth in computation
with the size of the state vector (robot pose plusiber of landmark positions) (Sebastian
Thrun et al., 2005) (p. 61).

The dimensionality problem of EKF has been addrbdse employing strategies
such as limiting the size of the map to local areaducing computational cost to the square
of the number of landmarks on this reduced ared tlaen transferring the information to the
overall map in a single step at full SLAM computatl cost (Guivant & Nebot, 2001).
Another approach uses similar small metric mapsriakbn equally-spaced basis, but
integrates them using a higher level topologicapyrbased map that includes transformation
matrices and uncertainty information between loleeel maps (Schleicher, Bergasa, Ocana,
Barea, & Lopez, 2010). Strategies like these carrbployed to make EKF applicable to

higher scale problems.

2.4.2 Particle Filter based methods

The Particle Filter method is a recursive Bayesiger that is implemented in Monte
Carlo simulations. The Bayesian posterior is regmgsd as a series of samples drawn from
the probability distribution, the so called paeil By representing the posterior in this form,
the Particle Filter method handles better highip-finear sensors and noise that cannot be
successfully modeled by Gaussian distributions (g et al., 2008). The number of
particles needed for the update step to guarameeecgence of the map can, in worst case
scenarios, escalate exponentially with the sizeéhef map (Michael Montemerlo, Thrun,
Roller, & Wegbreit, 2003).

There are combinations of Particle Filter withestmethods which can get around the
dimensionality problem. Examples of these techrscare the FastSLAM (M. Montemerlo et

33

al., 2002) and it's enhanced version, the FastSLAM algorithm (Michael Montemerlo et
al., 2003). FastSLAM takes advantage of a chanatiteof SLAM problems in that landmark
estimates are conditionally independent given timt's path (Michael Montemerlo et al.,
2003). This is the key for the speed of the alpaonitinstead of a map being represented by a
covariance matrix where the robot and all landmares all dependent on each other (as in
EKF), in FastSLAM the map is represented as a batdependent Gaussians, with linear
complexity (Durrant-Whyte & Bailey, 2006).

2.4.3 Expectation Maximization methods

Expectation Maximization (EM) is a family of algthnins that was developed in the
context of Maximum Likelihood (ML) estimation withtent variables. It is based on the idea
that if the robot’s path is known (in expectatiot¢termining a map is relatively simple. EM
works in two steps: first the posterior for the ablpose is calculated for a given map (the
expectation step), then EM calculates the mostylikeap given the pose expectation (the
maximization step). The result is a series of iasmegly accurate maps (Sebastian Thrun,
2002).

EM algorithms perform well for determining largeake cyclic maps, as they solve
the correspondence problem for loop closure eveanwddometry errors accumulate over
large loops. The downside of the algorithms is tttety don't keep a full notion of
uncertainty, thus they are not able to produce niagementally, and run offline after all
sensor data is acquired and accumulated. Map gemecan take hours to complete on low-
end hardware (Sebastian Thrun, 2002).

2.5 EKF-SLAM

EKF-SLAM represents the motion eq. (2.3) and obas#on eq. (2.4) models with
the equations given in eq. (2.7) and eq. (2.8)edn (2.7), the functionf represents the

model for the kinematics (depending solely on thevipus state and the control vector) with
added noisen;, which is modeled by a zero mean, uncorrelateds&an distribution.

Similarly, in the observation model (2.8), the ftioo h describes the geometry of the

34

observation, again with added noiseg modeled by a zero mean uncorrelated Gaussian

distribution (Durrant-Whyte & Bailey, 2006).
R=f(Rwy)*+n (2.7)
% =h(R. L)+ ¥ (2.8)

In the motion model, the robot moves from positign, to R following a control

vector U;. The function f describes this movement, whilg is the noise intrinsic to the

movement.

In the observation model, the robot takes a measemey; of the landmarksL

when the robot is at posB. The geometric transformation that happens froe dglobal
frame coordinates into the actual measurement as dbserved in the robot frame of

reference as seen from the pd3eis represented by the functian. The added sensor noise

IS represented by .

The global frame of reference has its origin inaahitrary position in the world,
usually the starting pose of the robot, resultirapnt the map initialization process, and it is
the stationary frame of reference used for buildimg map. In contrast, the robot frame is
always relative to the robot pose. Since the builsensors of the robot move with it,
naturally, the measurements are always in the riolte. This brings the need for an inverse
observation model that can provide the world frasoerdinates of the landmarks when they

need to be first stored in the map. The functipnn eq. (2.9) is responsible for transforming

from the local coordinates to the world coordinates

L,=9(R. ¥) (2.9)

It is interesting to note that eq. (2.8) is notayw invertible. This is true in the cases
where not all the degrees of freedom of perceieedimarks are directly obtained from the
transformation (Sola, 2013). A practical examplehe case of monocular visual SLAM,
where a camera projects the 3D coordinates in an#ige plane, where it is impossible to
reconstruct the 3D scene from the information awdd on one frame alone, and this is

reflected mathematically as a non-invertible fumati

35

2.5.1 Map definition in the context of EKF-SLAM

In EKF-SLAM, the map is comprised of a large columattor, stacking the mean of
robot pose and landmark position states, modeleal Bgaussian variable. Accompanying the
state vector is a covariance matrix, represenheguncertainty referent to the members of the
map, and the correlation between them. The Exteridan Filter is responsible for
predicting the next state, given the control inputthe robot and correcting it using the

information about perceived landmarks coming frbm available sensors.

Thus, the internal map representation follows trenfin eq. (2.10).

R Prr PR& PRL,

- |R| |L Pr P Rr: P R
e o] S S S I R0

M : Pir Fum : : :

En L PLnR PLnIﬂ PLnLn_

Where the vertical vecto stores the mean of the robot poReand the mean of

landmark positionsLi---Ln . The covariance matri® stores the covariance between the

members of the map, keeping the uncertainty ofyiséem.

The goal of EKF-SLAM is to keep this map up to datell times. To achieve this,
there are two main steps: prediction and correcfldre prediction step occurs whenever the
robot moves, while the correction step happens vdmenbservation is made. There are also
auxiliary steps: map initialization and landmarktialization. The first is done at the
beginning to set the initial values to the map. Titer is made when a new landmark needs
to be added to the map. This gives the systemltiéyao expand its representation online,
turning the EKF into a filter of state of dynamiees (Sola, 2013). There are also optional
steps that add robustness to an EKF-SLAM systenh as removing landmarks that are no

longer perceived, thus recycling the space avalahlmemory to store the map.

36

2.5.2 Map initialization

In the beginning, there is usually no previous feaoh reference for the map being
created. In this case, it is usual procedure taiden the robot pose as the origin of the map.
If this supposition is made, and before any moveméthe robot, the certainty of its pose is
absolute, thus the covariance matrix that represantertainty is initialized with zeroes,
representing absolutely no uncertainty. Here thp omasists of only the robot pose, because

there are yet no perceived landmarks to populagsishown in eq. (2.11).

0 0 00
=|0 P=/0 0 0 (2.11)
0 00 0

X |
I
T < X

2.5.3 Robot motion: the prediction step

Following the model of robot motion presented in @j7), the robot knows both the
prior estimate of its pose and the control vecltat was applied to it. The true noise that
invariably exists in every movement is not knowat its distribution is internally modeled by
a Gaussian. The prediction step thus updates the ofethe robot pos® by considering the
noise’s mean value as zero in eq. (2.12), and ase®the uncertainty of the robot pose alone
based on the noise model. Landmarks are not supgoseove when the robot does, so no
update on their representation is required at fgusit. Mathematically, the increase in
uncertainty is calculated through the error progpiagaaw according to eq. (2.13) (Siegwart
et al.,, 2011) (p. 113-115), with the uncertainty tbé map modeled internally with the

covariance matrixP .

R« f(R,q)+O (2.12)

P — FyPF;+ F,NF (2.13)

Where:

FR : The Jacobian of the functioh with respecttoR: Fg =——+

37

: , _ of (ﬁ, u)
F, : The Jacobian of the functiof with respect ton: F, =a—

n
N : Covariance matrix of perturbatiam.

The superscript denotes a matrix transposition.

In many cases, it can also be said that the setacmbianF, is derived with respect

to the control vectou , since the noise could be considered as a distaebto the control
(Sola, 2013).

2.5.4 Landmark observation: the update step

The update step is performed whenever an obsenvaionade. Classically, it is

represented by the set of five equations (2.142 1t8).

z=y-HR) (2.14)
Z = HgPHL+V (2.15)
K=PHLZ™ (2.16)
X « X+ Kz (2.17)
P. P-KzK! (2.18)

The eq. (2.14) represents what is called the intimvaz , with the associated
uncertaintyZ represented by eq. (2.15). The mean of the infmvat the difference between

the noisy measurement of a landmark and the prediction of what the meswent would

be based on previous information about the landnpaidsent in the map, following the

observation model. The covariance is calculatedhbyequation (2.15), whene represents

the covariance matrix of the measurement noise ldpdis the Jacobian of the functiom

with respect to the robot pose.

The eq. (2.16) represents the Kalman Ga&n, which determines how much the

innovation is going to be weighted in relation be fpast information stored on the map. The

38

innovation and Kalman Gain calculations collect itfermation needed for the update step,

which is performed for the mean valoe in eg. (2.17), and its associated uncertaipty,in
eq. (2.18).

It is important to note that when a movement updatgerformed in eq. (2.12), the
uncertainty about the robot pose increases, asrsio®(q. (2.13). However, in eq. (2.18) the
minus signal represents a reduction in uncertafatythe whole map, meaning that the
uncertainties of both the robot pose and of allldmeimarks are reduced in the sequence of
the algorithm. An update step is performed onceefggry landmark that is observed, but
since in SLAM the error of measurement is correldte all landmarks and also depends on
the robot pose, the uncertainty of the whole mapdsiced. This particular point is the reason
why a map being constructed by EKF-SLAM can incretally converge into a more correct

representation with each iteration step of theralgm, as previously shown in Figure 4.

The last EKF-SLAM, eq. (2.18), defines the compexif O(I?) to the algorithm.
Since this operation is performed once for everycgiged landmark, the algorithm
complexity can be written a®(KIt), where k is the number of landmarks observed

simultaneously.

Eq. (2.14) also assumes that landmark corresporedsraown, that is, an observed
landmark has a specific map entry where its infdgimnawas previously stored in the map,
and this position is known for each landmark. Whammark correspondence is unknown,

extra steps are needed before the innovation caalbelated to infer the correspondence.

2.5.5 Landmark Initialization

Landmark initialization happens when new landmaaies discovered by the robot,

resulting in an increase on the size of the statgor X for every new landmark. The process
is relatively easy to perform as long as the oksteym functionh from eq. (2.8) is invertible

generating theg function in eq. (2.9). The procedure works by cllttag the landmark’s
position mearl,, and the Jacobiang with respect to the robot pose and the measurement

Yn as shown in eq. (2.19).

39

Ln =g(_R,){1)
sfm)
oy,

Then, the landmark’s covariandg, and cross-covariance with the rest of the map

R . is calculated as shown in eq. (2.20).

P = G PeGr+ G, R@n

(2.20)
Px = GrPry= GR[PRRPRI\]

P:r and Fgy, are slices from the covariance matfxpreviously defined on (2.10).

The results from eq. (2.20) are then appended @¢osthte mean and covariance

e
Xe|_
Ln
(2.21)

matrix as shown in eq. (2.21).

2.6 Discussion

This is the generic form of the EKF-SLAM algorithiBy using the appropriate
sensor models in the place of generic functions,possible to project a specific EKF-SLAM
system with many kinds of input sensors in twoloeé dimensional maps. As presented on
Section 2.5, for an EKF-SLAM system, the direct agnerse observation models are needed
for the chosen sensors. These transformationsheilperformed in an embedded system,
which is studied in Chapter 3. The models themseare presented in Chapter 4, with their

practical implementations shown in Chapter 5.

40

3. EMBEDDED SYSTEM

Departing from the general context of SLAM presdnie Chapter 2, here the
specific details for the hardware platform that whssen to implement the proposed system
are discussed. The SoC platform that integrateal-oore processor with an FPGA fabric is
introduced, including the development kit that waed.

The communication protocol standard between thegzsor and custom FPGA
peripherals is presented. Finally, details abouttlssizing a circuit written in hardware
description language are shown, along with the iBpememory architecture of Xilinx’s
FPGAs.

3.1 System on a Chip Platforms with Embedded FPGA

FPGA stands for Field-Programmable Gate Array.dhsists of a 2D array of
generic logic cells and programmable switches. feéiguidepicts a conceptual structure of an
FPGA, where a matrix of special cells are configute perform simple tasks, and by
combining them selectively with the aid of the slis, lead to a custom digital circuit
design. These cells are called CLBs (Configuraldgi¢ Blocks) by Xilinx, or LABs (Logic
Array Blocks) by Altera (Chu, 2008b; Pedroni, 2010)

programmable
interconnect array

cLe/ CLB/
LAB LAB [

cLe/ cLe/
LAB 4%’ LAB ™

CLB/ CLB/
LAB <$> LAB |-

Figure 5: Conceptual structure of an FPGA device (Bdroni, 2010).

41

In the context of programmable devices, digitatuits designed to solve a particular
problem or perform a particular task are calleellattual Properties (IPs).

It is very common for circuit designs to feature beriided processors to aid in
specific tasks, and part of FPGA logic fabric candonfigured to work as such. There are
commercial IP solutions to relieve the hardwareimegy from designing the processors,
adapted and optimized for each FPGA manufactur@ena processor is implemented within
the FPGA logic, they are called soft processor oiexamples are Xilinx MicroBlaze
processor core (Xilinx Inc., 2014a) and Altera qNib embedded processor (Altera Corp.,
2014a).

There are implementations in which the embeddedamiocessor speed becomes
the main factor in the speed of the whole systerthere is intention to reallocate the logic
cells consumed by the soft core processor for paifag other functions, when using an
external processor can aid. There is yet anotHatieo, the use of a System on a Chip (SoC)
platform that integrate the processors and FPGAdatithin a single chip. These processors

are called hard processor cores.

SoC platforms can reduce Printed Circuit Board (P§iace needed to integrate an
otherwise external microprocessor with the FPGAeylhan also benefit from high speed
interfaces between the nearer processor and FP{ghAter integration also results in reduced

power consumption.

Last generation SoCs from Xilinx and Altera providigh performance dual-core
ARM processors integrated with FPGA fabric. Exammee Xilinx Zyng-7000 (Xilinx Inc.,
2014c) and Altera Arria V, Arria 10 and Stratix $0C series (Altera Corp., 2014b).

SoC solutions provide a platform for the projecthajhly specialized hardware co-
processors on the FPGA fabric that exploit panabélon paradigms to provide hardware
acceleration for computation of specific tasks, levtiighly sequential code can still run on
the regular processors which are better fittedtiese tasks. The possibility of running a full-
featured GNU/Linux distribution on the main proaassallows for programming in many
different computer languages, while retaining tleeesive and expansible hardware driver
support on the Linux kernel.

By running the Linux kernel, the use of end-usarstomer hardware peripherals are
made easier with SoC platforms, being connecteautir standard personal computer 1/0

42

ports instead of FPGA specific expansion peripheratiules. This can potentially reduce

system cost by including external hardware thapaoduced in larger quantities.

3.2 ZedBoard

ZedBoard is a development kit for creating or estihg designs for the last
generation SoC solutions that integrate FPGA falmib a dual-core ARM processor in a
hybrid architecture. The board is manufactured bynes and Digilent. Its heart is the
XC7Z020 version of the Zing-7000 SoC, which featui@ dual-core ARM Cortex A9
processor running at 866MHz and an Artix-7 FPGAiegent in the same chip. There is
512MB of DDR3 RAM available to the processor angid¢pand storage can be done either in
the integrated 256MB flash or through a SD card @wnet Inc., 2014; Xilinx Inc., 2013b).

The board is available in the VRI laboratory, and be seen in Figure 6.

9200248

8
A
8

ZedBoard

Figure 6: ZedBoard (Avnet Inc., 2014).

43

There are many input/output ports available onbbard, such as gigabit Ethernet,
USB-UART and USB-OTG 2.0. For video output, VGA adBMI ports are present. (Avnet
Inc., 2014). Audio I/O is done through the ADAU17&0dio codec with integrated DSP
(Analog Devices Inc., 2010).

The FPGA part of the SoC is equivalent to a stamdalXilinx Artix-7 FPGA.
XC72020 has 6,650 Configurable Logic Blocks (CL83ach consisting of two slices, totaling
13,300 slices. Each slice is contains 8 Flip-FIgfs) and 4 6-input Look-Up Tables (LUT),
plus multiplexers and arithmetic carry logic (Xitilnc., 2013a, 2013b).

The common metric for comparing Xilinx's FPGAs e thumber of logic cells.
Classically, a logic cell is comprised of a 4-inhltT and a flip-flop. Xilinx series 7 FPGAs
(including Zyng-7000) have LUTs with more inputfuadant FFs and latches, additional
carry logic and about a third of its slices carcbefigured to create distributed RAM or shift
registers. For this reason, the ratio between Gtibp)Ts and classic logic cells is calculated
to be 1.6:1 (Xilinx Inc., 2013a). Since the XC7Z02&s 13,300 slices, with 4 6-input Look-
up tables each, the total of 6-input Look-up talb$e53,200. Adjusting this number by the
1.6:1 ratio, it can be said to have the equivatdn5,120 classic logic cells, as advertised
(Xilinx Inc., 2013b).

3.3 Intellectual Property (IP) Design

Hardware Description Languages (HDL) associated RBGA devices are
technologies that allow for quick development amausation of sophisticated digital circuits.
There are two widely used languages for projedtiggfal circuits: VHDL (IEEE, 2007) and
Verilog (IEEE, 2006). Despite drastic differencetvieen them, both are IEEE standards and
equally capable when used for hardware synthesisiamulation (Chu, 2008Db).

HDL code is used for describing the behavior arcttire of a digital circuit, that can
be later simulated or synthesized into a complcancuit in CPLDs (Complex Programmable
Logic Device), FPGAs or mask generation for ASI@ghAcation-Specific Integrated Circuit)
(Pedroni, 2010).

HDL languages can be used for purposes other frghesis. Many HDL constructs

are meant for circuit modeling, and if used naivfelycircuit synthesis, can cause unintended

44

and/or unnecessarily complex hardware implememstioln extreme cases, some
constructions can even result in non-synthesizaatdware (Chu, 2008b). Therefore, the use
of HDL languages must be taken with caution whea dibjective is not modeling and
simulation of circuits, but synthesizing actual wiag circuit for practical FPGA or ASIC

applications.

In order to ensure that HDL code is correctly ipteted and infers the appropriate
hardware when being synthesized by the Xilinx Sgsith Technology (XST), a user guide is
provided by Xilinx with examples that are guaradtée produce the desired optimized
hardware they depict (Xilinx Inc., 2009). Thesedglines are used whenever possible in this

work as the construct units for the proposed IP.

XST constructs are expanded in (Chu, 2008a, 20Q8byiding examples of both
VHDL and Verilog constructs specialized for the Sga-3 platform. While ZedBoard uses a
Zyng-7000 SoC that belongs to the latest serigsXiliox's FPGAs and Spartan-3 belongs to
the third series, these circuits can be adapted pamted for newer FPGAs. Xilinx also
provides a XST user guide with guidelines excludioeVirtex-6, Startan-6 and 7 series
devices (Xilinx Inc., 2012). A comprehensive texakaf VHDL constructs which explicitly
differentiate between code intended for synthesid simulation was written by Pedroni
(Pedroni, 2010), and serves as an adequate langeBgence. It discusses the synthesized
hardware from VHDL example constructs, clarifyimgitations in what can produce reliable

hardware for FPGAs while keeping code in industayndard form.

Strategies for designing parallel co-processorsirfage processing in FPGAs are
discussed in (Bailey, 2011), which further exparads the viability of solving image
processing problems within FPGA hardware platforoasisidering hardware limitations with

respect to the dimensionality of what can fit intourrent FPGA chip.

Since both VHDL and Verilog can be used for circsyjinthesis in this work,
language choice is merely a matter of preferen¢¢DV was chosen for describing designed

circuits since the language is widely used in tigtitution and by laboratory colleagues.

3.4 AXI - Advanced eXtensible Interface

45

The dual-core ARM microprocessor in Zyng-7000 comivates with the FPGA

fabric through the Advanced eXtensible Interfac&I)Aprotocol. AXI is part of the ARM

AMBA (Advanced Microcontroller Bus Architecture), family of microcontroller buses.
AMBA v.4.0 specifies the second version of AXI, #h¥14 protocol (Xilinx Inc., 2011).

For proper communication between the ARM proceasdrthe designed IP, the later

should be designed as a slave AXI4 IP device, wihiée processor acts as the master in

communication (Digilent Inc., 2013). The slave @evican be considered as a hardware

peripheral to the processor. Figure 7 shows a satenof the Zyng-7000 with AXI

connections between the processor and programr@ie through the central interconnect
(Red and blue connections for 32 and 64-bits, Esdy).

Zyng-7000 AP SoC
10 Processing System
Peripherals Application Processor Unit
Geﬁtla?glt(ion Reset il s
usB -Trc FPU and NEON Engine FPU and NEON Engine
USB | | 2xUSB mmu | ARM Cortex-A9 MMy | ARM Cortex-A9
" GigE | | 2x GigE System CPU CPU
GigE | | xsD Level 32KB 32KB 32KB 32KB
SD Control | | y.cache | D-Cache -Cache | D-Cache
SDIO IRQ Regs I 1
) = ac || Snoop Controller, AWDT, Timer |
SDIO Yvyy
GPIO omas | | 512 KB L2 Cache & Controller
Sl UART i Channel
UART — ‘
y oM | 256K
»-| Interconnect | SRAM /
12C
C A Memory
ss: Central »| Interfaces
AMEOnRaG Coresight DDR2/3. 3L
Im:?a%rgs — Components LPDDR2
SRAW - Controller
NOR D
LR e [om | } 4
NAND < @ Programmable Logic to Memory
Q-SPI Interconnect
RL
e v P 449
EMIO XADC General-Purpose DMA IRQ | Config High-Performance Ports ACP
; AES/ .
12 bitADC Borks Sy SHA Programmable Logic
Notes; Selectl0
1) Arrow direction shows control (master to slave) Resources
2) Data flows in both directions: AXI 32bit/64bit, AXI 64bit, AXI 32bit, , Custom

Figure 7: The Xilinx Zyng-7000 Extensible Processinglatform. AXI connections can be seen between thgpplication
Processor Unit and the Central Interconnect, whichs then connected to the Programmable Logic (throug General-
Purpose Ports) (Taylor, 2015).

46

There are three kinds of AXI4 interfaces specifiedhe standard: AX14, AXI4-lite
and AXl4-stream. The first is the full-featured lhigerformance, memory mapped interface.
Its second version has a simplified communicatioumcsure, with constructs acting analogous
to registers, which are also memory mapped. Thel thersion is designed for high speed
streaming data communication, where data is cootigly sent and received in a serial stream
(Xilinx Inc., 2011).

ZedBoard's manufacturer, Digilent, provides a dietiastep by step implementation
of both a hardware template for AXl4-lite IP anct@respondent Linux kernel driver. A
software example that uses the driver to commumieath the example hardware is also
provided, which is intended for the GNU/Linux dibtrtion running in the dual-core ARM
processor (Digilent Inc., 2013).

The availability of documentation and simplicity désigning AXl4-lite hardware
were the reasons of choosing the provided templgtine initial foundation for IP design in

this work.

3.5 FPGA Memory Architecture

There are two types of internal memory in Xilinx &R®s: distributed RAM and
block RAM. Distributed RAM is nothing more than FRGogic cells being configured to
function as a memory. This uses the logic cellekiop tables (LUTS), configured as a
synchronous RAM module. Multiple LUTs can be caschdo form a wider or deeper
memory module. The obvious downside of using disted RAM is that it competes for
resources with normal logic, so its use should éstricted to tasks that require relatively
small storage (Chu, 2008b).

Since processing tasks require memory to a cedegnee, special memory modules
are embedded in Xilinx FPGAs, separately from lagptis, called block RAM or BRAM in
short. These memory modules can be configured vatied dimensions, thus being easily
adapted to circuit requirements (Chu, 2008b).

The Zyng-7000 SoC model XC7Z020 that is used inBoedd has 140 blocks of
RAM distributed along the FPGA. Each block canest®88Kb of data, with a total of 560KB

of data. This assumes that an extra bit of pastysed for every 8-bit of data. Each block

47

memory can be read from two independent outputspéibr applications that need extra
memory, external RAM is needed. ZedBoard has 512i¥1Bxternal DDR3 memory that is
shared between the ARM processor and the FPGA (Amneg 2014; Xilinx Inc., 2013b).

Block memory can be instantiated in a variety ahfs. Each 36Kb block can be
divided in two independent blocks or used as alsiegtity. Supported configurations can

then take the forms described in Table 1.

Table 1: Memory layout configuration, adapted from ilinx Inc., 2014b)

36Kb block 2x18Kb block

32K x 1 16K x 1
16K x 2 8K x 2

8K x4 4K x 4

4K x 9 2K'x 9

2K x 18 1K x 18
1K x 36 512 x 36
512 x 72 -

A block can also be cascaded with an adjacentfonajng a special 64x1 construct

(Xilinx Inc., 2014b).

There are three ways to incorporate block RAM mesluhto HDL design: by
instantiation, through Xilinx's Core Generator parg and using the Behavioral HDL

inference template presented in the XST User GX{dmx Inc., 2009).

Instantiation is done by using HDL templates feamispecific entity names. These
templates lack an architecture body, since a rédRlock is being instantiated instead of

being synthesized. They are available directly e Xilinx ISE (Integrated Software
Environment) tool (Chu, 2008b).

Xilinx's Core Generator program automates the mghon process through a
graphical user interface. Since the program cretdeswn files that lie outside of the HDL
framework, compatibility problems are to be expédatden using 3rd party tools that are no

part of Xilinx developing environment (Chu, 2008b).

48

The closest solution to a portable solution is gdiehavioral templates as suggested
in (Xilinx Inc., 2009). Behavioral templates proeithoth an entity and architecture body in
VHDL. When using instantiation templates, on thieeothand, only the entity body is needed.
The extra architecture body present in behaviogaiplates describes a memory that is
analogous in function to the real block RAMs, arging them depends on the ability of
Xilinx Synthesis Tools for recognizing the hardwagagineer's intention of using real
BRAMs instead of wanting to construct a memory otitFGPA's logic cells. The clear
advantage is that these templates, having a futigtfional architecture description in VHDL,
can be used for simulation purposes even outsitiex’§ environment tools. This is desirable
for preserving the freedom to use simulation tomléside of Xilinx's environment. Since
there is only assurance of correct recognitioneofiglates within XST, porting the code to

FPGAs from different manufacturers still requiresrkv(Chu, 2008b).

3.6 Chapter Discussion

Considering the memory architecture of the FPGA #rel guidelines for correct
implementation in HDL, it is possible to write astom intellectual property peripheral
intended to accelerate the execution of algorithfles peripheral is connected through the
AXI interface to the ARM processor, which can exechigh level code supported by
GNU/Linux. In essence, this allows the project eflidated logic to speed up specific parts of
the algorithm by implementing them in circuit levah the FPGA fabric. Thus, it is not
necessary to write whole algorithms in low level HIanguage, along with drivers to
interface with external hardware which are alresdgported by the Linux kernel and can be
executed on the embedded processor, while keepargthing in a single chip in this hybrid

solution.

49

4. THE VISUAL SLAM SYSTEM

This chapter takes a step forward on the conceptepted in Chapter 2, introducing
the specific challenges of using cameras as tha s&isors for SLAM. Initially, the standard
EKF-SLAM system is briefly reintroduced, then itdservation model and reverse
observation model are rethought taking the camensa particularities into account. This
leads to the construction of a camera model, theding the camera parameters through
calibration.

A stereo camera configuration is needed in orderetwver the depth perception
intrinsically lost when the image is projected irft@o dimensions on the sensor plane.
Retrieving the depth information requires that teerespondence between the two image’s
contents are known, leading to a discussion on rtteen approaches for solving the
correspondence problem in order to provide subsitdiehe new proposed solution presented
in Chapter 5.

4.1 Particularities of Visual SLAM Systems

All EKF-SLAM systems, as described in Chapter reshsome essential steps: map
initialization, robot motion update, sensor obsgoraupdate and landmark initialization.

Figure 8 illustrates how these general steps wagkther in an EKF-SLAM system.

50

Map initialization

Robot motion

Read sensor data

Calculate a landmark
coordinate and
descriptor

Landmar
already on
map?

Map
update

Landmark
initialization

More
landmarks
available?

No Yes

Figure 8: Typical EKF-SLAM system, as described previosly on section 2.5. (Author’s figure).

Using a stereo camera setup for acquiring landm@arkSLAM requires some extra
processing to recover the 3D depth information frma image pair that was captured
simultaneously at a given time. When a point istwagal from a camera, its 3D coordinates

are projected into 2D pixel coordinates in the imag

When a landmark is present in the map, it is necgse emulate the transformations

that happen in the image captured by the cameisos@norder to predict where a landmark

51

will be seen by the robot before applying the upddeps. When initializing new landmarks
on the map it is required to do the opposite: recdkie 3D information that was lost when

projecting the image into the camera sensor, td@ipost properly on the map.

These requirements imply the use of both a camedehthat emulates the 3D to 2D
transformations that happen when using camerasaamslerse camera model to undo these

transformations.

4.2 The Camera Model

The general idea behind a camera model is to gredtiere a point being seen by the
camera in the world in some arbitrary 3D referecserdinate system appears in the image
plane in 2D discrete pixel coordinates.

In contrast, a reverse camera model would do thposife: recover the 3D
coordinates in the real world given an image wilh [@xel coordinates. Unfortunately this
becomes impossible when using a single image, atigetnature of scene projection in a 2D

plane, where information is lost.

Getting an invertible observation model then reggiimore information than that
provided by a single image. An invertible functioan be obtained by using more than one
image taken at different poses, either at diffetenés or simultaneously by means of using
multiple cameras. A stereo camera setup is onecpkat case that explores this ability. Two
calibrated cameras with known relative poses candeel to obtain enough information for

inverting the camera observation function.

The extra information comes from the differencewassin captured images, called
disparity. Depth information can be recovered umtoertain distance, proportional to the
distance between the cameras. In general, thisasgh for mapping the robot surroundings,
and presents no problem on performing obstacledance, as relevant obstacles are always

close to the robot (Siegwart et al., 2011).

For this work, the camera model used in the Openrcgo Computer Vision
(OpenCV) library is adopted (OpenCV, 2014). Open€afmera model is based on the

52

pinhole camera model (Hartley & Zisserman, 2003)1(p4). Figure 9 shows the pinhole

camera geometry that is used as the basis to tdelmo

\ =7
principal axis

image plane

camera
centre

Figure 9: Pinhole camera geometry (Hartley & Zisseman, 2003) (p. 154). C is the camera center, p iset principal
point (image center) and f is the focus distancedm C to the image plane.

The pinhole camera model is shown in Equation (4dnd is expanded to
incorporate cameras that use lenses to compensatkerfs distortion, and that is done

separately by Equation (4.2) and (4.3), respegtjvidr radial distortions and tangential

distortions. The parameters are defined in thewahg paragraphs.

wlxk fi 0 ¢ X
why =/ 0 f ¢ Y (4.1)
W 0 0 1|72
Xeorrected = (1+ Krz + kzr + k3r)
(4.2)
Yeorrected = (1+ Iirz + kzr + kSr)
Xeorrected — [2 R Xy+ Q F +2)g)]
(4.3)
Yeorrected = [Ar 2+ 2 y2 +2) Xy}

This model assumes that objects in the world avergcoordinates relative to the
central point in the image plane, while image cowtks start at the top left corner in the

image (Figure 10). The points in the real world goionally change their size in the

projection plane relative to the focus distarfgeand fy, and then are translated into this new

coordinate system by adding the center point coatdsC, andc, from Equation (4.1).

53

Pixel coordinates are obtained by normalizing tret fwo terms wXandwy) of the
column vector from the left side of the Equatioriljdy the third termw (here equal to the
Z coordinate, resulting in far objects appearingliEnan the projected image)f, and fy

are the same if the camera sensor aspect ratialis(hking geometrically a square).
Rectangular sensors will result in different valoégffective focus in each direction.

Figure 10: World and image plane coordinates.

Radial distortion, corrected by Equation (4.2),aigype of lens distortion that is
proportional to the radius distan€e from the image center. In practice, they appedraacel

distortion (also known as fish eye distortion) amqushion distortion (Siegwart et al., 2011)

(p. 157), represented in Figure X, k, andk; are constants, determined during calibration.

54

(b)

Figure 11: Examples of radial lens distortion: (a)no distortion, (b) barrel distortion, (c) pincushion (Siegwart et al.,
2011) (p. 157).

Tangential distortion occurs when the camera sef€@D or CMOS) is not
perfectly aligned with the lenses when the camerauild. Its effect is less expressive than

radial distortion. In many cases the constant patarsa), and P, obtained through software

camera calibration are null. Correction is perfadmising Equation (4.3).

When the reference coordinate system is arbitaguation (4.1) can be adapted to
include a rotation and translation matrix in ortterconvert to the previous used coordinate
reference frame, resulting in Equation (4.4). A @ifred form of writing it is shown in
Equation (4.5).

X
WIX| | f 0 Gl B hp g by v
Why (=] 0 fy Gl by Ny T 1 7 (4.4)
w 0 0 1T Tz ras tg 1

wp= ARl { Ruorid (4.5)

55

The A matrix from Equation (4.5) is said to contain ttaanera intrinsic parameters

(focus and center parameters). The rotation/tréinslanatrix [R| t| elements are called the

extrinsic camera parameters. In a stereo confi'@nr,at[th] matrices with extrinsic

parameters are used in many situations to encodemation for changing coordinates
system between the reference camera and the seg@mma

As a convention, the left camera used in this wergonsidered the reference camera
(camera 1), while the right camera is considereds#tondary (camera 2). ThereforéRit]
matrix is used to bring the coordinates from thghtricamera frame to the left camera

reference frame. In this case, extrinsic paramaigpsesent the relative spatial separation

between the cameras and the difference in theitivelalignments.

4.3 Camera Calibration

The process of determining the intrinsic and estanparameters (Matrix and

[R|t] from Equation (4.5)), and distortion correctioreffcients (used in Equations (4.2)

and (4.3)) is called camera calibration.

The camera calibration techniques mostly in usayaterive from the work of Tsai
(Tsai, 1987), which was further modified by Zha@#&ng, 2000) to enable quick calibration
through the use of a planar pattern in the placasuig a 3D calibration object, as in the
original approach. Both the Caltech MATLAB toolb@ouguet, 2013) and the OpenCV
library (OpenCV, 2014) are complete implementatiosamera calibration, allowing for
calibration of a single camera or a stereo pallpiong an approach very similar to Zhang's

proposed solution (Siegwart et al., 2011).

Figure 12 shows a chessboard-like pattern usedismwork as a planar pattern for

camera calibration.

56

Figure 12: Chessboard pattern being used for calitation aided by the OpenCYV library. Overlaid is a pdtern showing
detected inner corners being used as reference foalibration. (Author’s figure).

In stereo camera calibration, in addition to detenng the intrinsic parameters and
distortion correction coefficients for each camendividually, the [R|t] parameters for

converting between the coordinates of the secondaryera to the primary are also
determined. In addition, the Fundamental and Egdanatrices are also provided, and can be
used as long as the pose of the cameras don't €h@ngelation to each other. The
Fundamental Matrix is the algebraic representadbioepipolar geometry, while the Essential
Matrix is the specialization of the Fundamental h&ain which the assumption of calibrated

cameras is removed (Hartley & Zisserman, 2003).

Both the Essential and Fundamental matrices represlgebraically the epipolar
geometry, which is an interesting property existimgween the two stereo image that allows
for reducing the area of search for corresponddacea point in one image to a line in
another. Figure 13 shows a visual representatidheoépipolar geometry, where a plamas
traced between the chosen point x and both canestars C and C' in (a). When the depth of
the x point is not known, search for the corresgmhdooint X’ becomes restricted to the
epipolar line in (b); (Hartley & Zisserman, 2003he Essential matrix applies to calibrated
images while the Fundamental matrix incorporatesctilibration information on it, so it can

be applied to uncalibrated images directly.

57

"ol

epipolar plane 7T \

‘\,é/cpipolur line

\ i
\ / for x
\\ /

/
V

Figure 13: Visual representation of epipolar geomey (Hartley & Zisserman, 2003) (p. 240).

To facilitate the process of finding correspondeand recovering depth information,
a process can be applied to the distortion comlextages (either as a whole or to selected
points) to transform them so that epipolar linesdoee horizontal. Thus the search becomes
limited to the x coordinate only. This is knownthe stereo rectification process (in OpenCV
done through the stereoRectify method), and duthigprocess the coordinates of the stereo

camera setup converted to a single reference..

After the rectification step, the disparity —U, can be converted in the depth by

using Eq. (4.6), withy, being thex coordinate of the left image} the X coordinate of the

right image ancb the camera separation. Figure 14 shows the gecmeresentation of the

disparity to depth conversion.

(4.6)

58

3D Object

*

(x,,2)

LeftImage Right Image

b

Figure 14: Disparity do depth geometric represention (Siegwart et al., 2011) (p. 172).

OpenCV rectification process provides a dispamigéepth matrix Q), which can

convert disparity between correspondent points depth (thez coordinate) information,

which is analogous to equation (4.6). The ma@ixworks independently of which image is

chosen as a reference, so differently from the temju#4.6) there is no need to label left and

right.

Figure 16 shows a pair of original images with thetected corners on the chess

pattern and the subsequent rectified images usiaglisparity-to-deptlQ matrix provided

by OpenCV. The nonparallel camera configuratiorduseshown in Figure 15.

Figure 15: Nonparallel stereo configuration usingwo Logitech C525 cameras (Logitech, 2014) constructéa the VRI
lab. The distance between cameras is 25 cm. (Autherfigure).

59

Figure 16: Original images with detected corners orthe chessboard pattern (above), and rectified imag with
horizontal epipolar lines (below). (Author’s figure).

To recover depth, the disparity-to-depfh matrix is used as depicted in Equation
(4.7), wherex and y are the point pixel coordinate in the referencmea rectified image,

and the disparityd = x'- x ; with x' being the X coordinate of the secondary camera

rectified image. The equation is shown in reduagdhfin (4.8). The 3D coordinatesXx ,Y

and zZ are obtained by normalizing the left column ved%twend by w.

wiX 1 0 0 Qysllx
wlY 01 O
= Ja) Y 4.7)
wlZ 0 0 0 Qg|d
w 0 0 @, Q1
w E’world = Q~p (4.8)

Thus, for proper using the disparity-to-de@hmatrix in order to construct a reverse

camera model, it is necessary to have the systdiforatad and that the correspondence

between two given points in both pictures is known.

While the task of finding correspondent points nsagm easy, it is not trivial for a

machine. When considering the epipolar constréartseducing the correspondence search to

60

a line, many false positives can be avoided oerBdl when finding correspondence, but

ambiguity will still exist within the boundaries tie epipolar line.

Increasing the robustness of correspondence dlgwican potentially increase the
number of correct matches and reduce the incidehf@se positives. This work proposes the
use of extra information for finding correspondebetween images when matching Points of

Interest detected in them.

Traditional algorithms to find the correspondentestereo images can be classified

in two large groups: area based and feature badetions (Siegwart et al., 2011).

4.4 Area Based Algorithms

A region (or area) of an image that belongs toeaest pair can be chosen and a
correspondent region be searched on the other indagerrespondence is found by applying
techniques that select the most similar candidatdifnding the correspondence. The most
widely used techniques for finding similar imagegb@&s are Sum of Absolute Differences,
Normalized Cross-correlation, Sum of Squared Ddffiees and Census Transform (Siegwart
et al., 2011).

As mentioned before, the search can be confinet tarea surrounding a single line,
the epipolar line, as a mean to reduce the dimardfithe search.

4.5 Feature-Based Algorithms

In contrast to area based algorithms, these sakigxtract invariable features from
the image, for example corners, edges, line segorehlobs. Attributes associated to these
features are then used to perform the matchesfeHteres do not necessarily have a defined

geometric entity which they correspond to (Siegweasl., 2011).

In general, these algorithms are faster and mobaistothan area-based ones.
However, they provide only disperse maps, whichdrteebe interpolated to reconstruct the
whole scene depth map when this is required, al@mlthat doesn't exist on area based

approaches (Siegwart et al., 2011).

61

Some Visual SLAM works uses a hybrid technique fitst searching for corners
using the Harris corner detector (as in featuredamolutions), then using a patch of image
surrounding the chosen corners to describe thethil@n comparing these patches of image

using the tools for area based solutions (Paze®ifdiardos, & Neira, 2008).

After Lowe's SIFT algorithm appeared (Lowe, 20G#)s tendency evolved to the
use of a pure feature based solution, which cah Hetect and describe points of interest.
SIFT's detection portion of the algorithm was sames not used at first due to being slow
compared to corner detectors such as Harris’, whiehe used to detect the points before
being fed to the SIFT descriptor. The Multi-scaleriis corner (MSHC) variant of the Harris
corner detector has invariance to rotation, s@dfee and illumination changes, and in many
cases is more repeatable than SIFT, and is therefaysen in some implementations (S. H.
Ahn, Choi, Doh, & Chung, 2008; S. Ahn, Lee, Chu&dgOh, 2007; Choi, Lee, Ahn, Choi, &
Chung, 2006).

Later on, a trend started to improve the speedoardtturacy of the SIFT algorithm,
leading to a publication of a myriad of new aldomiis, such as: SURF (Bay et al., 2006),
FAST (Rosten & Drummond, 2006), ORB (Rublee et 2011), BRIEF (Calonder et al.,
2010), BRISK (Leutenegger et al., 2011) and FREAKali et al., 2012). Getting to know
what algorithm is optimal to each particular apgion is an open problem. An effort to
compare these detectors/descriptors for Visual SLAplications can be found in
(Hartmann, Klussendorff, & Maehle, 2013).

In general, feature based solutions work by fiedecting points in each image that
are both distinctive and have repeatability. Subeatly, the points are assigned an unique
identifier (a descriptor) that ideally would be amnant to viewpoint changes (such as camera
rotation or zoom) and changes in illumination af #tene (Siegwart et al., 2011). After a list
of descriptors is obtained for each image, they cnmpared and the descriptors that are
closer to each other on feature space are condidetee matches. A visual representation of
the detected points and the attempt to find theespondence between them can be seen in

Figure 17.

62

(b)

: TR W A =S ; :
Figure 17: Feature-based correspondence: (a) POlselmg detected in the image; (b) matched points byheir
descriptors. Input images belong to the database ailable on (Callet, 2010). (Author’s figure).

To reduce false positives, the pairs of matchedtpoihat don't conform to the
epipolar geometry constrains are discarded. Whetchimgy is performed, the ratio between
the first and second nearest neighbors (found udiagk nearest neighbor algorithm with
k=2) is considered as a parameter to exclude fadsatives. Lowe recommends that all
matches with a ratio larger than 0.8 be discardleavé, 2004). SURF tests were performed
eliminating ratios above 0.7 in the same fashioay(Bt al., 2006). Calculating cross matches,
that is, matching the elements from the first image the second, and then matching the
elements from the second with the first can alsoubed to eliminate pairs that are not

correspondent in both ways (Laganiére, 2011).

63

When POls are matched using k-NN algorithms, eaomtpis considered
individually, ignoring the potential spatial relatiship information that exists between points.
There are techniques that improve matching basedrounping near points and matching
them together: (Jung & Lacroix, 2001) and (Asc&ngntoni, Mancini, & Zingaretti, 2008).
Differently, extra information on the descriptor asided by considering curvilinear shape
information from a larger neighborhood as a glatmadtext, reducing ambiguities (Mortensen
et al., 2005).

The proposed solution also intends to consideaesfiatial information for matching
POls, but diverge from these two later techniquethat the formation of clusters for group
matching is not needed. It considers a global ctnli&e in the solution proposed in
(Mortensen et al., 2005), but the information usedsimpler to extract and use. After
detection of POI by using any technique that cavige high repeatability, a global context
is considered by treating the points as a stamgitnpattern, and describing each point as a

star belonging to a constellation. This proposdkailed in the next chapter.

4.6 Discussion

This chapter attempts to elucidate all the stepsaired from having the raw images
to providing the 3D coordinated of POls to be uasedandmarks for SLAM. In Chapter 5, the
generic system described in Chapter 2 is conventeda real system for obtaining landmarks
for SLAM, adapted to run in an embedded SoC prarcesgh a co-processor in FPGA logic,

with the hardware architecture previously showfhapter 3.

64

5. IMPLEMENTATION

In Chapter 1, a generic landmark acquisition sysiar Visual Slam was presented
in Figure 1. The designed system, based on thaesitbf the figure, is comprised of software
that runs on the Zyng-7000 SoC ARM processor amdwere implemented on the SOC'’s
FPGA.

The implementation of the proposed system is pteden this chapter. Section 5.1
describes the building blocks for the software Istétat runs on the dual-core ARM
processor. Following it, Section 5.2 describeshthelware co-processor designed in VHDL
and synthesized on the FPGA. The innovative desergpoposed in this work is explained in
detail on Section 5.2.12. Finally, Section 5.4 diéss the simulations done with EKF-SLAM

algorithm running on the embedded platform.

5.1 The Software Stack

The software part of the implemented landmark aitjon system is shown on
Figure 18. It runs on top of the Linaro GNU/Linuistdibution (version linaro-trusty-alip-
20141024-684) (Linaro, 2014), which is a port o thbuntu GNU/Linux distribution to the
ARM architecture.

Each building block from Figure 18 is explained detail in what follows. The

arrows in the figure depart from each segment fifveoe to their pre-requisites.

65

Main Program
2
‘g Matcher Class Camera Class
=
o
3 ¥ v v
Q ; Grid
o HwHarris Class
% Class Focus Class
>
(]
&)
2
5 V. Vv \ 2 v
Q
é OpenCV libwebcam
2
=
\ 4 \ 4 A\ 4
_ VAL - Video for Linux
g sys/mman.h \1'
q_) .
< mmap() function .
< UVC - USB Video
2
-

Figure 18: Software stack for the complete landmarlacquisition system for Visual SLAM. (Author’s figure).

5.1.1 UVC - USB Video Class

The USB Video Class (UVC) is contained inside tieuk kernel, and is a driver for
common consumer grade webcams, that supports théagitech C525 cameras (Logitech,
2014) used in this work.

5.1.2 VAL — Video for Linux

The Video for Linux (V4L) comprises of a device Afel video capture and output
and a driver framework for the Linux Kernel. Itaspart of the Linux kernel, and can be

compiled as a module when building it.

66

5.1.3 The mmap function

The mmap function, available in the sys/mman.h aedferrisk, 2015b), can be
used to map the Linux’s (real) memory devitkey/menpfile into the virtual address space of
the current process. Given that the created coegeme hardware address is set before
synthesis, it is known and can then be accessédanpbinter inside a C or C++ program.

5.1.4 Libwebcam

The libwebcam library (libwebcam, 2014), initialleveloped by Logitech, now a
community driven project, exposes controls for sowebcams, such as focus distance,
aperture and exposition time. It is used as a sudgwary in this work, as the OpenCV

library doesn’t support controlling these paranmetirectly from its methods.

5.1.5 OpenCV

The OpenCV library, Open Source Computer Visiorg lrary initially developed
by Intel and now maintained by Willow Garage (Op¥n@014). It is the main library used
in this work, providing various algorithms and irfieeges used for computer vision
applications.

In this work, it is used to capture images from tiv® webcams, abstracting the
interface provided by V4L (Section 5.1.2). Thigl@ne through the VideoCapture C++ class,

which can also be used to capture images from files

The Common Interface of Feature Detectors clasatif@Detector class) provides
wrappers that facilitate the switching between edéht algorithms that can be used for
solving the POI detection step, which natively suppthe detectors used in this work.

Simmilarly, the Common Interface of Descriptor Extior (DescriptorExtractor
class) also provides wrappers for easily switchiatyveen different POI descriptors used for

comparison within this work.

67

To undistort the POIs position, the camera calibratlata (Section 4.3) is used with
the cv::undistortPoints method.

The BFMatcher class is used for matching the detses using a k-NN approach.

5.1.6 HwHarris class

The HwHarris class is responsible for sending thmrages with the structures
compatible with OpenCV to the Harris co-proces3ais is accomplished by using the mmap
function (Section 5.1.3) to remap the memory adddvasere the AXI4-lite register lies to the
virtual address space within the class. It theniesoghe image pixels to this address
(represented in C++ as a pointer) in the corredenrThis process is explained within the
context of hardware in Section 5.2.2.

The HwHarris class can be seen in Appendix C.

5.1.7 Grid Class

The Grid class includes the code of the proposgariéhm for POI description based
on a Star-ID technique from the Grid Algorithm (Bet & KreutzDelgado, 1997). It is

explained in detail on Section 5.2.12.

The Grid class can be seen in Appendix E.

5.1.8 Focus Class

The Focus class is a simple wrapper for abstrathiedibwebcam camera controls in
a friendlier way for controlling the focus positiand exposure time that were relevant to the

work.

The focus distance needs to be constant for properera calibration using the
method presented on Section 4.3. By default, thgiteoh C525 webcams change the focus
automatically to focus the object in the centethaf image. Since this would be impractical

68

for the use in this work, it is set to a constaaitie before calibration and kept constant when

in use.

The exposure time is by default set to be automltidetermined by the image
intensities. Since it is calculated independerdlyeach image from the stereo setup webcams,
this can result in very different values due taatawns on the visible scene, which in practice
degrades performance by resulting in differentnaty and color values for objects in the
pictures to be compared. To solve this problemrestamt value is set when calibrating and

using the cameras.

The Focus class can be seen in Appendix G.

5.1.9 Camera Class

The Camera class abstracts the initialization ahboameras for capturing the
images. It turns them on by using the OpenCV VidguiGre class and sets the focus distance

and exposure time settings using the Focus clasgi¢d 5.1.8).

5.1.10 Matcher Class

The Matcher class encapsulates the OpenCV funcimergioned in Section 5.1.5,
providing POI detection, description, correspon@erand distortion correction through
camera calibration. It adds the ability to uselagris co-processor by uniting it with the POI
detectors already available in OpenCV by interfgeiith the HwHarris class (Section 5.1.6),
and the modified Grid descriptor by interfacinglwihe Grid class (Section 5.1.7).

Also, it provides its own methods to perform raggmmetry and epipolar constraint

tests, which can be seen in Appendix F.

The ratio test takes the 2 nearest neighbors usi@gNN matcher and compares
them, eliminating the point above a given ratio. aithe distances are similar, the ratio
approaches one. For SIFT, the author recommenasoaof 0.8. Points that exceed this ratio
are eliminated (Lowe, 2004). This test helps elatimg ambiguity.

69

The symmetry test verifies if the closest neighfoom the left to the right image are
the same when performing the test from right to IEfis also helps to eliminate ambiguity.

The epipolar test checks if the rectified pointeqi®n 4.3) from camera calibration

are lying on the same line (within a certain nundferertical pixels due to noise).

5.2 Design of the Harris co-processor

5.2.1 Overview

The task of detecting POls is, time wise, signifita taxing in the context of
landmark detection for Visual SLAM. It was found lbe the most time demanding task in
early analysis using software only in the main pssor, as described in Section 6.1.

The Harris and Stephens algorithm for corner detediHarris & Stephens, 1988)
was chosen to perform the POI detection in thiskwalue to the high repeatability of
detection, when compared with other widely used E&iectors (Siegwart et al., 2011)
(p.233). It is also simpler to implement than otR&1 detectors in hardware, since most of its
components require only local information for da¢gendency.

The FPGA part of Zyng-7000, available on the choseard, has 36Kb of Block
RAM. Since the addressing considers a byte to bgposed as 9 bits, 8 bits plus an extra bit
for parity, 4KB of memory are available. A gray-caixel is typically represented as a O-
255 decimal value representing its intensity, whgchepresented as a single byte. This limits
the pixels that can be stored in the board to 4,@2%ing a square 64x64 image as the upper
limit resolution to be processed if the whole imé&gstored into the FPGA block memory.

In contrast, the images acquired from the two Lleait C525 cameras (Logitech,
2014) have an upper limit of 1280x720. This is tedi in practice due to simultaneously
streaming in the same USB 2.0 controller to 640x3&@ls in stereo configuration at 30 fps
in ZedBoard, where only one of the two USB coné&ndlis accessible to the external USB

ports.

Since the image sizes are very large compared @t wén be stored locally for

processing in the FPGA, the proposed architecta® designed to avoid using Block RAM

70

and to rely in the minimum data dependency requfcedcalculating if a certain pixel is

considered a corner or not.

Due to the filters applied in different steps te image, the minimum square region
required was determined to be a 7x7 window. Thisumes that the non-maximum
suppression is searched in the smallest area p®ssib3x3, and considers all de data
dependencies of the filters that are componenthefHarris and Stephens algorithm. This
conclusion was independently determined in theslartof (Amaricai, Gavriliu, & Boncalo,
2014), that also explores an architecture thas tieeminimize the use of Block RAM on a
different FPGA. In the architecture used, slidingdow, the 7x7 window is processed then
moved to the right until it reaches the end oflthe, when it starts at the next line and so on

until the end of the image. An exemplification denseen in Figure 19.

==

Derivative -) .
Gaussian Harris

Smooth Measure

Threshold

Non-maximum

suppression
t P]

Corner Pixel

Figure 19: Processing Sliding Window for Harris Coner Detection (Amaricai et al., 2014).

The Harris and Stephens Corner detector algoriteed un OpenCV version 2.4.9
was chosen as a reference for the proposed dekigis avork (OpenCV, 2014). Its structure
can be seen in Figure 20. Six sequential steppaafermed in the six blocks within the gray
area, which correspond to the Harris algorithm.tReroutside blocks, the first one represents
the main processor, while the second and last a#iaay blocks that convert the input and

output information for optimal throughput.

71

Dual-core ARM
(Linaro
GNU/Linux)

l (AXI4)

Input converter

Harris

Sobel Filter
(xand y)

M Matrix

Block Filter

Harris
Response

Find
Maximum

Threshold /
Non-maximum
suppression

Corner

Shift register /
delay

Combined corners

Figure 20: Simplified block diagram for the proposel hardware architecture for the Harris Algorithm on FPGA. The
GNUY/Linux Linaro distribution runs on the dual-core processor (first block), which connects to the remaing blocks
(implemented on FPGA logic) through the AXI4 interface. The blocks inside the grey area belong to theakis
algorithm, which is the corner detector. The cornes that are determined by the algorithm are combinedn the shift
register, and then read again through the AXI inteface by the main processor. (Author’s figure).

12

The block architecture shown on Figure 20 and usethis work relates to the
elements shown in Figure 19 as follows: the dereatorresponds to the Sobel and M
Matrix blocks, the Gaussian Smooth was replacedhbyBlock Filter, the Harris Measure
corresponds to the Harris Response calculation,Ttireshold is replaced by an Adaptive
Threshold, which requires an extra block to keepntfaximum values and the Non-maximum

suppression remains unchanged.

The FPGA in Zyng-7000 operates at 100MHz, withdloek period being 10ns. Due
to propagation delay (gate delay), the whole Hammixessing cannot be performed in a single
FPGA clock period. In FPGA hardware synthesis ugheg Xilinx platform, implementing
designs that have operations where the propagdetay exceeds the clock period result in

timing constraints errors.

The initial solution to overcome timing constraiptoblems was to divide the
algorithm in 6 consecutive steps, each one perfdima single clock period, that correspond
to the 6 main steps in Harris (Figure 20). Thisrapph reduced timing constraints problems
significantly, and only localized problems in thears Response step remained due the
cascaded operations performed in this step (showatetail in Section 5.2.7). The further
division of the Harris Response in two periodseast of one solved the remaining problems
with timing constraints, with the algorithm beingrformed in a total of 7 clock cycles.

For this sliding window architecture, 7 new pix@ge required to slide the 7x7
window for each calculation, taking 7 clock steps ihput. The similarity with the 7 steps
required for performing the Harris algorithm wagleited to synchronize the active blocks

with the input data, which is explained later irc&mn 5.2.3.

The following sections explain each block of Fig@fein detail.

5.2.2 Dual Core ARM

The first block in Figure 20 corresponds to the gptg! main processor. The ARM
processor runs the Linaro GNU/Linux distributiorersion linaro-trusty-alip-20141024-684)

73

(Linaro, 2014), which is a port of the Ubuntu GNWx distribution to the ARM

architecture. The software that runs on the digtidn is detailed in Section 5.1.

Every block below the processor in Figure 20 islengented with FPGA logic as an
Intellectual Property (IP) and connected to thempaibcessor through the AXI4-lite interface.

Two approaches can be used to transfer data bets@#ware running on the
processor with a GNU/Linux distribution and the FPrough the AXI4 interface: using a

device driver and direct mapping the memory.

For the first approach, a kernel driver templaterisvided by Digilent in (Digilent
Inc., 2013), which exposes the AXl4-lite registassa file in the file system. Writing a 32-bit
value to this file is equivalent of writing the darare register, and reading it is correspondent
to reading the register itself. Using this driviéris possible to interface with the hardware
using any programming language that is supportedmumx on the ARM platform, as long as

it can read and write to files.

Alternatively, the second approach can be useddp the Linux’s (real) memory
device (dev/memfile into the virtual address space of the curngmcess. Given that the
created peripheral hardware address is knownnibeaaccessed with a pointer inside a C or
C++ program. This is accomplished by using rtm@apfunction available in theys/mman.h
Linux’s library (Kerrisk, 2015b).

A C++ program was written using the second appr@ach C++ library to send an
image to the hardware in the order that the Mudkpt Input Converter block expects, and
receive back the corner information (See Sectidn6b. The images sent to hardware can
either be read from the file system for test puegosr acquired from the two Logitech HD
C525 webcams (Logitech, 2014) used for stereo catatection in this work (See Section
5.1.5). This webcam has controllable focus distamzeexposure time, and these controls are
supported on Linux through the libwebcam C librérigpwebcam, 2014), which interfaces
with the USB Video Class (UVC) Linux Driver, avadla in the mainline Linux kernel
(Explained on Section 5.1.4 and 5.1.8).

74

5.2.3 Multiplexed Input Converter

Internally, the multiplexed input converter is camspd of four identical blocks
(Input converters). Each one receives a singlel mkea time serially and builds the 7x7

window required to determine if a pixel is or isa’torner.

The initial 7x7 matrix is initialized with zeroes i@set. A counter that goes from 1 to
the number of rows (7) is incremented after eackived pixel. The row corresponding to the
counter is shifted to the left, while simultanegusle received pixel is added to the rightmost
column at the row corresponding to the counter. MM counter reaches the last value, it
returns to 1. To exemplify the order in which thatnx is constructed, an equivalent 3x3
matrix showing the entering pixel order is presdnte Figure 21, which works similarly to

what a 7x7 matrix would.

41 7|10 1| 4| 7 o 1| 4 0O a 1
2| 5| 8 o 2| 5 0 0O 2 O 0 O
3|/ 6|9 0Of 3| 6 o0 0O 3 O 0 O
41 7|10 1] 4| 7 o 1 4 O 0 1
518|111 2| 5| 8 0 2/ 5 0 Q0 12
3169 Ol 3| 6 0 0 3 O 0 O
41 7|10 14| 7 o 1 4 O 0 1
518|111 2| 5| 8 0 2/ 5 0 Q0 12
6| 9|12 3|1 6| 9 0 3| 6 0 Q0 3

Figure 21: Order of entering pixels for a 3x3 windav. (Author’s figure).

For calculating if the first pixel is a border, thwole matrix must be filled. Once the
matrix is full, in order to compute the next pixelthe same row, just the next column needs

to be received, and the remaining values are shifbethe right. Therefore, for the first

75

calculation, 7x7=49 pixels are written into the matbut for the next calculation, only 7
more are needed. With this order, the window eifffety slides to the right.

While the matrix is filled for the first time, dtilocks that follow the input converter
remain still. After that, when each of the 7 neixieps of the same row are individually added,

one of the 7 steps of the calculation are execsjyadhronously.

The AXI4 lite interface works with 32-bit input amaitput registers. In the proposed
platform, a gray scale pixel uses only 8 bits, espnting the intensity in decimal value
between 0 and 255. By concatenating 4 pixels frofferdnt regions of the same image
together, 4 different 7x7 windows can be constiisienultaneously. The 4 different window
matrices are processed serially in the remainiogKsl that work as a pipeline. A multiplexer
selects each matrix when the matrix is needed éyéxt step (Figure 21). The output of the

multiplexer is connected to the input of the ne@ags, the Sobel x and y blocks.

32-bit input data

Pixel 2= | Pixelz | Pixell | PixelC Count (1-7)
//8 //8 //8 /’8
7X7Xx8
kK Reg.| okl Reg.| ckl\ Reg ICo # 1
48 48 48
48 18
7X7Xx8
okh Reg. | .kl Reg. IC4 # 2 To Sobel x
and y
48 48 processing
stage (see
A48 Figure 20)
7X7x8
ki Reg. IC, / 3
48
7X7x8
IC3 A 4
0 —5
0 —6
0—m7
/

Figure 22: Multiplexing four 7x7 window input converters (IC, to IC5). (Author’s figure).

76

Using this structure, it is possible to increase itput data being processed by a
factor of four without the need to change the bdotkat come after the multiplexed input
converter, except for doing a similar concatenatibthe output. This is further discussed in
Section 7.2.

By delaying the input being fed to the individuaput converters, the matrices are
correctly filled exactly when they are ready tolbaded into the pipeline by the multiplexer.
In contrast to delaying with registers the wholépoti matrix of the converters, this saves
logic elements in the FPGA.

The multiplexed input converter code can be see&ertion (e) from Appendix D.

5.2.4 Sobelxandy

Two blocks approximate the gradient functions & iflmage intensity functionl{
and |,) by convoluting the Sobel operator (mask) in theand y directions with the image

intensity (1), as shown in (5.1).

-1 0 +1

I,=|-2 0 +2|0]

-1 0 +1

o i (5.1)
I,={0 0 0|0

+1 +2 +1

A matrix of 5x5 of the Sobek block and another of 5x5 of the Sobglblock are

formed using the generate statement from VHDL. ifipet of both blocks is connected to the
7x7 8-bit unsigned values matrix from the MultipteixInput Converter. The output is two

5x5 11-bit signed matrices, one for each directibme calculations that determine the least
amount of bits needed for the output (11) were doreeWolfram Mathematica script and can

be seen in Appendix A. Botk and y directions are calculated concurrently in a siralbek

period.

The Sobel code can be seen in Section (h) andofy) Appendix D, for thex and
y directions, respectively.

77

5.2.5 M Matrix Coefficients

Harris and Stephens define the M matrix, shownqgn(g.2), as composed by three

coefficients, A, B and C, which are calculated frra gradient values, and |, as shown in

eg. (5.3) (Harris & Stephens, 1988).

I 5.2
“Ic B (5.2)
A=1,7
B=1,° (5.3)
C=1,0,

The gradient values are provided in two 5x5 masricme for each of the orthogonal
directions, and processed to calculate the A, B@n@lues in a 5x5 structure of blocks that
do the processing in parallel. The output is thb&B matrices with 16-bit signed values.
Internally, 21 bit signed values are used for thkwdation, which is the minimum required
(see Appendix A). To reduce the flip-flop usagerpthe 21-bit signed values have their 5
least significant bits truncated to 16-bit signedlues. All the calculations are done

concurrently in a single clock step.

The VHDL code can be seen in Section (j) from AgheD.

5.2.6 Block Filter

Harris and Stephens suggest the use of a Gaudseartd reduce noise in the A, B
and C coefficients calculated for the autocorrelatl Matrix (Harris & Stephens, 1988). The
OpenCV implementation of the corner detector usssnplified mask that averages the 3x3

neighborhood around the selected pixel, which ikeda Block Filter Bf), and shown in

eg. (5.4).

(5.4)

vs)

—

]
=
[S
e

78

Convoluting the three previous 5x5 16-bit signedrioas (A, B and C) with thBf

matrix, while ignoring the boundary values, resufighree 3x3 matrix with 20-bit signed
filtered values (Appendix A). All the steps needed the convolution are done in parallel.

The output values are again truncated to 16-brebyoving the 4 least significant bits.

The Block Filter code can be seen in Appendix tiSa (k).

5.2.7 Harris Response

The Harris ResponseR() is calculated using the determinamiet) and trace Tr)

of the M matrix, wherek has a typical value between 0.04 and 0.06 (Aydp@dumirci, &

Kasnakoglu, 2013), as seen in eq. (5A). B and C are the M matrix components filtered
by the block filter.

R= Det- kOT?
Det(M) = A(B- C (5.5)
Tr(M)=A+B

OpenCV Harris implementation usds=0.04 as the default value, which was

approximated ak :]/25 +1/2 [0 0.039 in this implementation. This approximation can use

two bit shifts followed by an adder to avoid thed®f a multiplication.

Making the substitutions in eq. (5.5) so that ih d@ written in a single equation

results in Equation (5.6).
R=AB-C - k{ A § (5.6)

Because the rightmost term of eq. (5.6) is syn#eesiin hardware as an adder
followed by a multiplier, this operation can't berformed in a single clock period in the
FPGA. This required the calculation of the HarrissRonse to be made in two steps,

increasing the needed steps for the Harris calounléitom 6 to 7.

The resulting calculations can be expressed asmglesBx3 32-bit signed integer
matrix, as seen in Appendix A. The correspondingd¥Hode for the Harris Response can

be seen in Section (I) from Appendix D.

79

5.2.8 Find Maximum

This step is concerned with keeping in memory tleimum value from the Harris
Response found within the whole image, so that &vailable to use in the next frame as a
reference for the adaptive threshold step that lsgwazero all values below the threshold
value, which is proportional to the maximum valegglained in Section 5.2.9). It reads the

center value(Rzlz) from the 3x3 32-bit signed matrix calculated poesly from the Harris

Response step. It is not necessary to look at dmecenter values because of the sliding
window behavior they eventually reappear at thetereposition. The code for this step is

shown in Appendix D, Section (m).

5.2.9 Adaptive Threshold

Although most Harris implementations in hardware adixed threshold value, this
approach doesn’t give efficient results when illnation changes in a large range (Birem &
Berry, 2012).

The approach followed in OpenCV uses by defaulbdaptive threshold 00.01
times the maximum value of the response found withe current image. This would require
the entire response being calculated within thelavitmage before the threshold could be
applied to the image, so an approach like the mepdere where just a 7x7 image window is
sent to the FPGA can’t benefit from an adaptiveshold like the one used in OpenCV.

To overcome this limitation, given that the appiica of the Harris Algorithm is a
sequence of frames in which the difference in iilation is small between consecutive
frames, instead of using the actual maximum vabrecélculating the threshold value, the
maximum value from the previous frame is used. Hilisws the adaptive threshold to be
calculated with only the 7x7 region being availafsten the second frame onwards. The use
of the previous image information to compute theshold for the next image was already

applied for space applications with success byd&io et al., 2013).

Again, avoiding using a floating point multiplighe constant used for calculating
the adaptive threshold is approximatedva~iue::l,/27 +1/2 [00.0097, using two bit shifts

followed by an adder. All values below the thresholultiplied by the maximum from the

80

previous frame are changed to zero. Adjusting tbisstant effectively changes how high a
response needs for an image pixel to be to be deresl a corner.

The Adaptive Threshold code can be seen in Se@tijoof Appendix D.

There is no change between the input and outpdémith (32 bits), and the matrix
is kept at size 3x3.

5.2.10 Non-maximum Suppression

From the output of the previous adaptive thresitdde, the center response value is
considered a corner if it is the maximum value whempared to its 8 neighbors. The output
from this stage is a single bit signaling if a aarmvas found. This step is taken in the same
clock period as the adaptive threshold step, thuspresented as a single block in Figure 20.
The VHDL code, however, is kept separate and isveha Section (0) from Appendix D.

5.2.11 Shift register and delay

This last step concatenates the 4 bits that sigaatorner was detected in one of the
4 windows processed by the pipeline. Due to thetgmequirements, the output will be ready
after 12 clock steps. To simplify the design of fudtware that controls the I/O in the main
processor, a delay is induced so the data willelaely within 14 clock steps. This allows the
corner status to be read after 7 write operatisasdane in the hardware. Thus, when the 7
pixels are written to apply the algorithm for eashthe 4 windows that are introduced
simultaneously, the corner status of the centeglk these windows will be ready after two
more windows are written to the hardware and soTd® code is shown in Appendix D,

Section (p).

To illustrate this delay in the context of the stminvolved, a simulation of the
complete system was run using the ISIM simulatomfthe Xilinx tools, and a time diagram
was obtained (Figure 24), where the delay betweda ithput and output is shown. The first
two signals correspond tdock andreset(negated). The third signdbad, indicates when the
input matrix is being filled. In this simulation,@rner image patch is loaded into the four

input converters (Figure 23).

[255 255 255 255 0 O
255 255 255 255 0 O
255 255 255 255 0 O
IM =255 255 255 255 0 O

0o o0 O o0 oo
O 0O O o0 oo

HENEEEEN (0 0 0 0 00

Figure 23: Harris image patch designed to cause @mer to be detected. (Author's Figure).

On Figure 24, theontrol signals from lower up, indicate when each block of the
Harris Algorithm (Figure 20) is active, with 2 s&a controlling the two parts of the Harris
Response block. Each block is activated for 4 clpekods, when they are processing the
four input matrices independently in the pipeliiéie output bit that indicates a detected
corner €rn) appears after 8 to 11 clock pulses since thetimairix is available. They serve
as input to the shift registest(), and the output is delayed so it is availablehim 14" pulse,
immediately after the new matrix is loaded into direuit. This helps synchronizing the 1/0

controller in software.

82

2,200 ns 2,400 ns 2,900 ns

l | l | 1

, | 1 | | l
l ' { T | ' i T l W I

55.255,0.0.0.255/255]) [0.0.0.0.0.0.0]) [255.0.0.0.255,255,25%]
55.0.0.0.255|255] (0.0.0.9.0.0.0) (255.0.0.0.255,255,253)
255,0,0.0.255|255] (0,0.0.9.0.0.0) [255.9.0.0.255.255.25%)
55.0.0.0,255|255] [0.0.0.9.0.0.0) (255.D.0.0,255.255,253)

ALl

[0.0.0,0,0,0,0]) [255,255.255.255.0.0,0] __[0,0.0,0,0,0,0] X [255,255.255,010.0,255] ¥ (0,0.0.0.0.0.0)
[0.0.0.0.0.0.0] X [255.255.255.255.0.0.0]) [0.0.0,0.0.0.0) % [255.255.255.0/0.0.255]) (0.0.0.0.0.0.0)
I0,0,0_0.0,0,0Z{ [255,255,25:5.255_0.0,0', }O,O,O,OAO,O,O] : [255.255,255,0,;0,0,2551 I0.0:,O_0,0,0,0)
[0.0.0.0.0.0.0) X([255.255.255.255.0.0.0]) [0.0.0,0.0.0.0) % [255.255.255.0,0.0.255]) (0.0.0.0.0.0.0)

| | 10.0.0.0.0,0.0] |

| [10.0.0.0.0.0.0] |

1 | 10.0.0.0.0.0.0)

N

aalinal
w

wwn

=lsli=ls
AR

N

Linal

{
$

4

control signals

Crn.
shr | [0000 | | 0001 (0011 #0111 1111 (11[10 (1100 (1000 } [000q

Figure 24: Digital timing diagram for input, control signals and output. Signaklk is the clock,rst the reset,load indicates when the input matrix is complete and ta circuit can start
processing the datagrn indicates if a corner was found andhr is the shift register output of the corners with @lay. After the matrices are loaded, indicated byhe load signal going
from one to zero, thecontrol signals from bottom up indicate when each composing stags the Harris co-processor is active (each one istive on 4 periods). Eactcontrol signal is
bound to a single stage, with the exception of thHearris response stage that is divided in two partand receives 2 signals. The output bit that indicats a detected cornercfn) appears
after 8 to 11 clock pulses since the input matrixsiavailable. It serves as the input of the shift gister (shr), and the output is delayed so that it is availaklin the 14" pulse,
immediately after the new matrix is loaded into thecircuit. (Author’s Figure).

83

5.2.12 Synthesis

With the architecture and configuration presentedhie previous sections of this
chapter, the design could be synthesized in theARGcupying 71% of the available slices

(The complete synthesis log can be seen in AppeBix

The synthesis is done within the Xilinx EDK prograimllowing the steps shown in
the Digilent documentation (Digilent Inc., 2013)uiing the creation of the custom IP, it is
necessary to keep note of the memory mapping asldfethe AXI4-lite register, which is
used in I/O communication in the HwHarris classc{®® 5.1.6). The default custom IP

user_logic.vhd file should be overwritten with MEIDL code shown in Appendix D, Section

().

5.3 Star-ID based Descriptor

The descriptor here proposed treats the pattemediby detected POIs analogous to
the star pattern used for matching in the problémutonomous star identification (Star-1D).
The problem of star identification consists in agtmg stars from an image acquired by a
CCD or CMOS sensor and, by matching the measuees with a catalog, identify what stars

are in the field of view of the sensor (Na & Jiap8).

There are many descriptors used in solutions ferStar-ID problem. The extracted
characteristics vary significantly between algaorith Surveys that summarize the field’s
scientific research are available in (Ho, 2012; & dia, 2006; Spratling & Mortari, 2009).
The following two Sections explain the most widabed characteristic, angular distance, and

the characteristic used in the prototype developedis work, the grid pattern.

5.3.1 Angular Distance

In Star-ID, the most widely used characteristic describing stars uniquely is the
angular distance between them, shown in Figurew2iich was first described by (Liebe,

1993). In astronomy, the angular distance corredpdn the angular separation between the

84

two stars originating from the same observer, dnd visually seen as the linear distance

between them.

Figure 25: The triangular feature. A: the angular distance to the first neighboring Star; B: the anguladistance to the
second neighboring star; C: the angle between theeighboring stars (Liebe, 1993).

5.3.2 Grid Algorithm

A different way of extracting features from the dafale scene is to use a star
pattern, a technique pioneered in the Grid AlgomnitfPadgett & KreutzDelgado, 1997). The
Grid Algorithm uses a loose grid to describe theesbed stars. A visual representation of the
extraction of the descriptor is shown in Figure 26.

r@ br .
................. .
. .
; ®
A

85

.............................. @°
B

Figure 26: Feature extraction using the Grid Algorthm (Padgett & KreutzDelgado, 1997).

The descriptor is extracted as follow, with relatto the subfigures from Figure 26:

a) Astarl' is selected as the reference to create the pattern

b) The I' star and a part of the surrounding sky with radius is translated to the

center.

c) A loose square grid of sidg is placed, with the pattern rotated so that the

closest neighbor star will lie in thex coordinate axis (achieving rotation

invariance).

86

d A g2 length bit vector is derived from the grid pattefine presence of a star in
a cell is represent linearly in the vector so tti bit kx g+i is 1, while its

absence is represented as thedhit

For example, considering the coordinates [0,0hasleéast significant bit (LSB), the

hexadecimal descriptor for the pattern on Figurev@ald be:
00.00.00.00.00.00.00.00.08.08.00.00.01.01.04.04000.

A simplification of Padgett and Kreutz-Delgado’galithm was implemented in this
work as the initial step for validating the appbday of Star-ID algorithms to the
correspondence problem in stereo images. The lgidgattern is extracted in both rectified
images. Since rectification was performed and dardmes are horizontal, the correspondent
features will not be rotated between the imagesth&o(c) step for achieving rotation
invariance was skipped, and the descriptors aratenlewithout any kind of rotation on the

input images. Instead of limiting the radius o , the pattern is limited in size only by the

grid square sidey . The resolution of the grid is reduced to achiheloose effect present in

the grid (as on Figure 26) by a factor 2t, where h={0,1,2,3,4,...). Increasing theh

parameter results in a lower resolution of the.grid

5.4 EKF-SLAM implementation

To evaluate whether a simple SLAM implementationldaalso run alongside the
pre-processing of landmarks on the embedded phajifer C++ implementation of EKF-
SLAM using a 2D top-view map approach was portesnfthe MATLAB implementation
available on (Sola, 2013). The Eigen C++ library lioear algebra was used to facilitate

matrix and vector operations (Jacob & GuennebaditiR

Since the original implementation included a sirtadawhich was responsible for
presenting sensor data to the system with addeddizaunoise, testing the system would
require that the simulator was either ported to @f+eft as MATLAB code. The second
approach was chosen, and the MATLAB C/C++ Engine used to transport data structures
between MATLAB and C++, and to call MATLAB routinesom the C++ code (The
Mathworks, 2014). To run the C++ code in the ARMgaassor of ZedBoard, data was

87

interchanged between the simulator running on MABL#% a standard PC and the C++ code
running in the ARM processor on the Linaro GNU/bindistribution through Ethernet using
the Qt 4.8 library QtNetwork module (Digia plc, 2)1Figure 27 shows the structure of the

test system.

PC ZedBoard
MATLA)
B C++ Ethernet C++
MATLAB TCP/IP TCP/IP EKF-
simulation . SLAM
Server Client

Figure 27: Construction to test the EKF-SLAM C++ portwith MATLAB simulator. (Author’s figure).

The simulator populates a 2D world with a numbetaoidmarks and adds random
noise when each landmark is measured by the seflserEKF-SLAM algorithm processes
these readings and creates a map. All landmarksupdated to test for the worst-case
scenario, where the main EKF-SLAM loop (Figure 8)profiled and its execution time

measured.

The EKF-SLAM system worked in the simulation enwmeent, but as predicted by
the complexity of the algorithm (Section 2.5.4)creasing the number of landmark quickly
renders the process too slow to be performed intirma due to the dimensionality problem.

The results can be seen in Section 6.2.

88

6. TESTS AND RESULTS

This chapter presents the tests and results pegtbicharing this work. On Section
6.1, a generic system for finding landmarks for 8LA&om stereo cameras is profiled, and
the results showed that the POI detector is thet mostly step involved. This lead to the
implementation of a hardware module to acceletasedetection, with the corresponding tests
being shown on Section 6.3. Section 6.2 shows fibidg of the EKF-SLAM implementation
running on the embedded system. Section 6.4 eeslutte optimal parameters for the
simplified grid algorithm implementation, used figscribing POIs, and compares the results
when running with these parameters with other detses. Finally, on Section 6.5 the power

requirement of the running system is measured.

6.1 System Profile

A simple system for finding the correspondencesSibAM was implemented using
OpenCV (OpenCV, 2014) to determine which portion af feature-based stereo
correspondence system (Section 4.5) would benefierftom optimizations.

Four elapsed time measurements were taken: imagesémn from both cameras,
POI detection, POI description and the comparisetwéen the descriptors for finding

correspondences.

The Harris and Stephens corner detector (Harristépl&ns, 1988) was chosen as
the POI detector because it has been used asaxeepdnt for SIFT in numerous works due

to speed reasons (see Section 4.5), which is riédemembedded applications.

The BRIEF descriptor (Calonder et al., 2010) waedudlue to empirical tests
showing it as a good performing descriptor for eddsel systems (Section 6.4.2).

The correspondence between descriptors is founty ube k nearest neighbor (k-
NN) algorithm (Fix & Hodges Jr, 1951). K-NN was exé&d in both sides, with non-
symmetrical matches discarded. After that, the ¢cl@sest matches (2-NN) are compared, and
if the ratio between them is less than 1 they #&8e eemoved. This eliminates cases where

there is ambiguity in the correspondences. Talsled?vs the results for the system profiling.

89

The images were acquired using the two LogitechSC&#neras (Logitech, 2014),
on the VRI laboratory, using a resolution of 640838l measurements were made using
GNU/Linux’s <time.h> library, with the clock gettenfunction (Kerrisk, 2015a), using the
CLOCK_MONOTONIC source, in the Zedboard’s ARM Cart&9 processor running at the
clock of 866MHz. The clock time was sampled befane after each portion of code shown
in Table 2.

Table 2: Generic system profile.

Task Time (ms)
Stereo camera image pair acquisition 53.32
POI Detector 295.33
POI Descriptor 40.01
Correspondence (k-NN) 17.79

Analyzing the data from Table 2, it is clear thia¢ tmost costly step in a feature-
based system for stereo correspondence is the €@ttdr. For this reason, this step was

chosen to be optimized with a hardware co-processor

6.2 EKF-SLAM Profile on Embedded Hardware

A simple EKF-SLAM implementation was ported to C+#hich was shown in
Section 5.4, to test if a simple SLAM solution abulin in reasonable time on the same
hardware as the stereo vision landmark acquisgystem.

Table 3 shows the execution time of the SLAM landm#date step, in worst case
scenario where the whole map is updated for eaahmark. Measurements were made in the
Zedboard’'s ARM Cortex A9 processor running at theckc of 866MHz. They were taken
using GNU/Linux’s<time.h> library, with theclock_gettimdunction (Kerrisk, 2015a), using
the CLOCK_MONOTONIGource. The clock time was sampled before and thgefunction,

with the results shown.

The Eigen C++ library, used for vector and matrpeations, supports multiple
threads using OpenMP. Since the hardware has acdualARM processor, two threads
could be run in parallel to speed up EKF-SLAM. Thsults of this configuration are shown

on the third column of Table 3.

90

Table 3: Increase in execution time of EKF-SLAM updatestep due to map size, running in the dual-core ARMCortex

A9 processor in ZedBoard.

Landmarks Time (ms) OpenMP time(ms)
50 22 20
100 170 130
150 550 500
200 1500 1300

6.3 Harris Hardware Implementation

In Section 6.1, it was determined that the bestickte step for optimization in
execution time of a landmark acquisition systemt thses a feature-based stereo
correspondence approach is the POI detection pkasehis reason, a Harris co-processor
was designed in the FPGA portion of the Zyng-700C Sas detailed in Section 5.2. The

measurements of the effective speedup in real reredare shown here in Section 6.3.1.

Section 6.3.2 is focused on ensuring that the tyuafi the optimizations remains

close to the reference implementation in OpenCV.

6.3.1 Execution Time Comparison with OpenCV

The Harris co-processor was designed to process dections of the image in
sequence inside the pipeline (as shown in Secti®3)6 At each write operation, four pixels
are sent to the co-processor simultaneously. Atyeseventh write operation, a read operation
is performed, and four bits are retrieved, sigralfra corner was detected in each of the four

sections of the image sent 14 clock periods egdigexplained in Section 5.2.11).

This architecture was designed to ensure the optinmaughput of the hardware,
since the AXI4-lite interface accepts up to 32 kitaultaneously for input and output, which
Is ensured by sending four pixels simultaneousigugh it. Since all the operations inside the
co-processor are synchronized with the write opmiatperformed by the CPU, the number

of write operations has the bigger impact in exiecutime.

Measurements were made in the Zedboard’s ARM Cdk@&xyrocessor running at
the clock of 866MHz. They were taken using GNU/su<time.h> library, with the

91

clock_gettimdunction (Kerrisk, 2015a), using t&. OCK_MONOTONIGsource. The clock
time is sampled before and after running the Hastgtector function in OpenCV and in
hardware. Table 4 shows the results for the exacutme. GNU/Linux caches are dropped
before each test. For comparison, the initial har@wersion that performed the operation
using only a single pixel at a time, with no pipeligain, was also evaluated (discussed on
Section 7.2). The image used on the tests is taken (Wikipedia, 2015), and the visual

output of the corners can be seen in Figure 28.

Table 4: Execution time comparison between the refenee (OpenCV) and the hardware co-processor (FPGAYhe
speedup reached when using the hardware implementah compared to the reference is also shown. Testewe done
both for the initial version of the co-processor tat didn’t use a pipeline (1 pixel at a time), andhe final version of the
co-processor (4 pixels at a time).

OpenCV time FPGA time Speedup
1 pixel at a time 198ms 343ms 0.58
4 pixels at a time 195ms 94ms 2.07
| X o Software <@linaro-alip> oA X O Hardware <@linaro-alip> (OXEI) |

Figure 28: Visual output of corners detected in OpeCV (software) and in the FPGA (hardware) on the tst image
while measuring the execution time (left and rightrespectively). (Author’s figure).

The measurements shown in Table 4 include theferanokthe images from the main
processor's DDR3 memory to the co-processor, thia gdeocessing and the transfer of the

results back from the co-processor to the maingesar.

Section 6.3.2 shows along with the detection gupadmparison the hardware and

software execution time for an image sequence.

92

6.3.2 Quality Comparison with OpenCV

In order to assess how well the hardware implentientaf the Harris Algorithm
performed in terms of quality, the OpenCV versidnhe algorithm was taken as a reference
(OpenCV, 2014). The KITTI Vision Benchmark Suitetatset (Fritsch, Kuehnl, & Geiger,
2013; Geiger, 2015; Geiger, Lenz, Stiller, & Urtas@013; Geiger, Lenz, & Urtasun, 2012)
was selected for providing real world stereo setjaeimages from a typical SLAM problem.
Both the standard OpenCV Harris corner detectoutimni and the designed FPGA co-
processor were used to detect the corners in thgamand the results between them were
compared for the whole dataset. Kitty is comprise&2 image sequences, labeled from 00 to
21. Only sequence number 00 was used from the Kdlfdset. On the dataset, each image in

the stereo pair has the resolution of 1241x376lgixe

In the FPGA implementation, the threshold valueakculated from the previous
image pair, as described on Section 5.2.9. Theifirage pair processed by the co-processor
is used for initializing the threshold value, thhe results from corners detected from them
are discarded. Results from corners from one inaageeturned with a 14 clock periods delay
due to the time taken to process them in hardw@eetion 5.2.11). Thus, the last corners
detected from an image are returned to the procesgben pixels from the next pair are
being loaded into the FPGA. For this reason, tmmulte from the last image pair are
incomplete, because there is no next image pa@mdwance the processing by 14 clock

periods, and are also discarded.

All pixels from the image pair are classified irethardware implementation as true
positiveTP), true negativedN), false positives(FP) and false negative§FN) in
relation with the results from OpenCV, and summpdar the whole image sequence. The
metrics recall(Rc), specificity (S and precision(Pc) were obtained from these values

according to (6.1).

TP
(TP+ FN)
TN
Sp=7———
P (FP+TN)
TP
(TP+FP)

(6.1)

93

Additionally, the amount of time spent in softwémethe OpenCV reference running
in the embedded ARM and the amount spent in haelwsirthe FPGA co-processor were
measured for each image pair, and their mean dwectime is shown, along with the
speedup of FPGA processing relative to the softwaneessing in embedded ARM. This can
be compared to the speedup measured in Sectidn &X8cution time for the simplified Grid

descriptor algorithm (running witth=3 and g=16) was also measured, and can be

compared with further tests shown in Section 6.AlRmeasurements were taken with the

same procedure described in Section 6.3.1. Thétsese shown in Table 5.

Table 5: Quality comparison between the results obtaed from the designed Harris corner detector co-pocessor
(hardware) and the reference in OpenCV. Additionaly, a time of execution comparison is also providew extend the
results from the previous tests in Section 6.3.1 drdescriptor execution time for Section 6.4.2.

True Positives 10,437,007
True Negatives 4,224,750,170
False Positives 372,423
False Negatives 380,448
Total Points 4,235,940,048
Recall 0.964830
Specificity 0.999912
Precision 0.965546

OpenCV Time 588ms
Hardware Time 332ms
Speedup 1.77
Descriptor Time 1304ms

6.4 Simplified Grid Algorithm

In this section, the optimal parameters for the psiired Grid algorithm are
determined (6.4.1), and then compared with otheraonly used descriptors (6.4.2).

94

6.4.1 Optimal parameters

The first test was performed with simplified Gridgarithm (Section 5.3.2) with the
intention of determining the optimal parameters t@uld be used for matching the POls.

These parameters consist of the grid sizewhich defines the future length of the generated

descriptor, and the factor of reduction of the hatson 2 (as described on last paragraph of
Section 5.3.2), which defines how loose is the ggdd to create the pattern seen on Figure
26.

The input POIs can be obtained by using many diffefeature detectors available
on OpenCV common interface of feature detectore(@y, 2015)such as SIFT and Harris.
The simplified Grid Algorithm then creates a dgsiwni for each point using only the

information of the star pattern of its surroundi®@ls.

For this initial test, two databases consistinglifferent stereo scenes were used to

avoid training the selected parameters biasedspeaific database.

The IRCCyN IVC Quality Assessment Of Stereoscopic Imataabase(Callet,

2010) is comprised of six stereo image pairs, egith 15 derived image pairs with added
noise. Only the six undistorted image pairs weedumn this test. All images have the size of
512x512 pixels. Both the OpenCV SIFT and Harriedeetrs were used to find POIs on the
image. Specifically to the SIFT detector, two tegése run: one with the points limited to the
512 best points according to the response paranagteéranother without such limitation. The
points are then described through the simplifietd @dgorithm descriptor. POI pairs that
don’t pass the k-NN cross-check and 2-NN ratio festratio<l are discarded in order to
remove POIs that have ambiguous correspondendd iather image. The resulting points
are then checked to respect the epipolar constematthose that comply are considered to be
correct matches The results for detected matches and correcthrestare summed for all 6
pairs of images, to avoid the descriptor to beiglaid any specific image pair on the set. The

results can be seen in Figure 29,

Figure 30 and Figure 31. The SIFT descriptor (lmobé confused with the SIFT
detector) is used here as a reference, and thete@tmatches are also discarded when not
passing the k-NN cross-check and the 2-NN ratibde8.8, as recommended by the author in
(Lowe, 2004).

95

1800

1600

1400

1200

1000

800

Correct matches

600

400

200

5 = i i I i i i
1 2 4 8 16 32 64 128 256

Figure 29: Correct matches for the simplified GridAlgorithm descriptor for the IRCCyN IVC Quality Ass essment Of
Stereoscopic Images database (Callet, 2010), usihg SIFT detector limited to 512 points. The dashetorizontal line
represents the correct matches found with SIFT as meference for comparison. (Author’s figure).

3500 ! ! ! ! ! ! !

3000

2500

2000

1500

Correct matches

1000

500

Figure 30: Correct matches for the simplified GridAlgorithm descriptor for the IRCCyN IVC Quality Ass essment Of
Stereoscopic Images database (Callet, 2010), usithg SIFT detector (no limits). The horizontal line epresents the
correct matches found with SIFT as a reference foramparison. (Author’s figure).

96

3000 T T T T T T T
—h= N H . N
—h=2|
—h=3]|
2500 h=4[
—h-s|
h=6|
—h=7|
2000 ———sIFT/
5 :
(4}
o’ / g
-8 / '
1] '/“ / " p:-\",""ﬁl
E 1500 / ot : .
O / 2/
£ / /
8 h=6
1000 =
- h=1 :
s j W
0 i i j i i
1 2 4 8 16 32 64 128 256

Figure 31: Correct matches for the simplified Grid Algorithm descriptor for the IRCCyN IVC Quality Ass essment Of
Stereoscopic Images database (Callet, 2010), usitige Harris detector. The horizontal line representsthe correct
matches found with SIFT as a reference for compariso (Author’s figure).

The descriptor size in bits ig2 (the grid is ag x g square), therefore low values of

g are desirable. For the 512x512 images with th& Sletector, an apparent good candidate

would be to choosé =4 andg =16. For g values higher than the selected, the size of the

descriptor increases significantly comparing to tlemefit gained in the number of correct
matches. Then value was simply chosen for having the highest memof correct matches

when g =16.

Similarly, for the Harris detector, a good candedatould beh =3 andg =16. In

both cases this would present a descriptor 16 tsnesler than SIFT while achieving similar

correct matches (Table 6). Heke represents how lower is the resolution of the gsdd in

relation to the image resolution, which is redubga factor of2" .

97

Table 6: Comparison between the simplified Grid Algathm and SIFT for the IRCCyN IVC Quality Assessment Of
Stereoscopic Images database (Callet, 2010) .

Descriptor Detector Correct Matches All Matches i®at Size
Grid (g=16, h=4) SIFT, 512 pts. 1623 1624 0.999 bhges
Grid (g=16, h=4) SIFT 2870 2870 1.000 32 bytes
Grid (g=16, h=3) Harris 2446 2450 0.998 32 bytes
SIFT SIFT, 512 pts. 1555 1564 0.994 512 bytes
SIFT SIFT 2605 2622 0.993 512 bytes
SIFT Harris 2322 2325 0.999 512 bytes

The same steps were applied to the Middlebury 28aeo Dataset (Scharstein,
2006), comprised of 21 pairs of stereo images, @herages range between the sizes of
413x370 and 465x370. Results can be seen in FRfyreigure 33 and Figure 34.

4000 T T T T T T T 7
h=1 : : : | T f‘
L T R AR
: : v:3300 : / : |
h=4| . : v" \III
h=5| | | -
3000 H "o E m.“.“”.”.“”?”.“”.”.“H.1.“H.” “.“”.?.“”.“.“”.nﬁun.“.“H.;f“?.“.uw.”.“.in.u.ﬁn.”.“_
h=7|] - h=3: : s o
| | o~ _ L h=5

2500

Correct matches
N
o
o
o

10107 ERCECIRPRORPRON SN

1 2 4 8 16 32 64 128 256

Figure 32: Correct matches for the simplified Grid Algorithm descriptor for the Middlebury 2006 Stereo Dataset
(Scharstein, 2006), using the SIFT detector limitetb 512 points. (Author’s figure).

98

6000

5000

4000

3000

Correct matches

2000

1000

1 2 4 8 16 32 64 128 256

Figure 33: Correct matches for the simplified Grid Algorithm descriptor for the Middlebury 2006 Stereo Dataset
(Scharstein, 2006), using the SIFT detector. (Authds figure).

6000

5000

4000

3000

Correct matches

2000

1000

i i i
1 2 4 8 16 32 64 128 256
9

Figure 34: Correct matches for the simplified Grid Algorithm descriptor for the Middlebury 2006 Stereo Dataset
(Scharstein, 2006), using the Harris detector. (Atior’'s figure).

99

The same optimal parameters found in the previess ¢an be used with this
database. The performance of the descriptor foMidelebury 2006 Stereo Dataset is shown
in Table 7.

Table 7: Comparison between the simplified Grid Algathm and SIFT for the Middlebury 2006 Stereo Datasé
(Scharstein, 2006).

Descriptor Detector Correct Matches All Matches i®kat Size
Grid (g=16, h=4) SIFT, 512 pts. 3300 3353 0.984 b@es
Grid (g=16, h=4) SIFT 4879 4964 0.983 32 hytes
Grid (g=16, h=3) Harris 5128 5177 0.991 32 bytes
SIFT SIFT, 512 pts. 3701 3750 0.987 512 bytes
SIFT SIFT 5702 5773 0.988 512 bytes
SIFT Harris 5379 5398 0.996 512 bytes

Analyzing the graphs from Figure 29 to Figure 34,a@&n see that the curves for low

values ofh=1, h=2 and, to some extenk = 3have a sweet spot arourg=16. Up to this

point there is an increase in the number of comatiches, that only get high again on much

larger values of the grid sizg. So, when reducing slightly the resolution of gre (by a

factor of 2h), increasing the area of the descriptor gets ncoreect matches only up to a
certain point. This means that points close toctiwsen reference have a higher probability of
having low disparity when comparing to the onegshieir from it. This effect diminishes for
higher values ofh , because the looseness of the grid allows poiitits larger disparities to
still fall within the same cell in the descript@n the other hand, increasing too much the
value reduces the useful information availablel@ndescriptor beyond the needed for finding
proper correspondences. The difference in the shapthe curves when comparing the two
datasets is related to the changes in image sidenathe content of the images. Also, the
number of images on the IRCCyN dataset is relativeahall when compared to the

Middlebury dataset, leading to outliers being man@nounced on the accumulated results.

Table 8 reorganizes the values from Table 6 andeTabshowing the difference in
performance between the proposed descriptor andl. $6r each database, the POls were
found using three detectors (SIFT limited to th@ pbints, SIFT with all points and Harris).
The correct matches for the simplified Grid Algbrit and SIFT are shown if%3and 4"

columns with the ratio between them shown on last.

100

Table 8: Performance ratio between the simplified Gid Algorithm and SIFT for the IRCCyN IVC Quality
Assessment Of Stereoscopic Images database (Calk10) and the Middlebury 2006 Stereo Dataset (Satstein,
2006), here database 1 and 2, respectively.

SIFT descriptor

Detector Grid descriptor (ref) Ratio
SIFT, 512 pts. 1623 1555 1.044
Database 1 SIFT 2870 2605 1.102
Harris 2446 2322 1.053
SIFT, 512 pts. 3300 3701 0.892
Database 2 SIFT 4879 5702 0.856
Harris 5128 5379 0.953

There was no significant difference on pairing tHarris detector or the SIFT
detector with the simplified Grid descriptor on Ihatatabases. The smaller complexity of the
Harris algorithm is more interesting for embeddgsteams, weighting for its choice within the
application of this work. When using Harris as thetector, the SIFT descriptor performs

better in both databases.

Since the resolution of the images acquired froemviliebcams used is 640x360, due
to limitations in the USB 2.0 bandwidth in ZedBod#sée section 5.2.1), and the images from
both databases are relatively close to this resoluthe parameters found in these tests could
be considered as valid for this implementation. sy, it is not clear which parameters
should be used with images of very different resohs. To answer this question, a dataset
from Disney Research (Gross, 2012) that providesgas with a much higher resolution, 21

megapixel, was used.

This dataset comprises 5 different scenes with @01151 pictures taken with
different separations. Only the extreme images wetected, and resized using tenvert
utility of the ImageMagick program version 6.5.4-7 (ImageMagick Studio LL@13),
without preserving the aspect ratio, to the resmhst of 320x200, 640x400, 960x600,
1280x800, 1600x1000, 1920x1200, 2240x1400 and 2B8IX On each pair of images, the
POI were found using the Harris detector from Opénthen described by the simplified
Grid Algorithm with different parameters for theidysize g, and the factor of reduction of

the resolution2". Again, POI pairs that didn’t pass the k-NN crobgck and 2-NN ratio test
for ratio<l were discarded. The resulting pointsravéhen checked with respect to the
epipolar constraint, and those that comply are idensd to be correct. The results for

detected matches and correct matches are summaedl fmpairs of images from the same

101

resolution, to avoid the descriptor to be part@lany specific image pair on the set. The

results can be seen from Figure 35 to Figure 42.

320X200
1800 T , 7 I

1600

1400

12001

1000

o0

Correct matches

600

4001

2001

1 4 16 64 25k 1024

Figure 35: Correct matches for each used parameterfer the 320x200 images of the Disney Dataset (G&<2012). An
increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means an
increase on the grid square size, increasing alsleet descriptor lenght. (Author’s figure).

102

640X400
2500 g ; ' T
—— h =
2000 h=-e f e
h =3 : : i

o h=5]) 5/, / |
g I ,f
£ _"h=z /
3 £ s /
o : / =L : /
5 1000f e h=:z 5 J .
[; / :

1024

Figure 36: Correct matches for each used parameterfer the 640x400 images of the Disney Dataset (G&<2012). An
increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means an
increase on the grid square size, increasing alslet descriptor lenght. (Author’s figure).

960X600
2000 : f ! |
——h=0| : ‘
1800 ——h =
16001 h=-e
h=73
140[]-7h=4 e
n h=5 h = }v4
£1200f—h=-6 L
2 S h=e
£ 1000 i a
3 //
5 800 = 1
[]
500 r
400)—
|
200 ’J .

1024

Figure 37: Correct matches for each used parameterfer the 960x600 images of the Disney Dataset (G&<2012). An
increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means an
increase on the grid square size, increasing alslet descriptor lenght. (Author’s figure).

103

1280X800
2000 1 :] :
——h=0| : E—
1800 ——h=1[" : ' [
h=3 i / »
h=5] : / . |
1200 ——h=5| h=t ,/ -
1000 1

goo0

Correct matches

600

1024

Figure 38: Correct matches for each used parameteffer the 1280x800 images of the Disney Dataset (Gg 2012). An
increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means an
increase on the grid square size, increasing alslet descriptor lenght. (Author’s figure).

1600X1000
1800 : , : .
——h=0
1600 —h = : [i
—h-2 r |
——h=4 : / |
$ -IZDD_ h=5 ,,,,,, [R I . v./l_y,‘ T v: S -
2 ——h=6 o
£ 1000f : h=£t | -
g :
8 800 h [
o] ~ ‘
|]
200 / .
/
//
. o
256 1024

Figure 39: Correct matches for each used parameterf®or the 1600x1000 images of the Disney Dataset (@&s, 2012).
An increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means
an increase on the grid square size, increasing althe descriptor lenght. (Author’s figure).

104

1920X1200
1800 . f ; ,
—h-o| | : ,
1600H —— h = e R /1
E—h=2| : f i
1400H h=3" : ; f 1
H : i {
T, h - 4 : § /
. 1200H h=s| | é /,/ .
S om0 o s E _—
o . o _ . _ ‘| N
£ h=7] h= E | [
© BOOF .
S
o
BOOF -
anot i
//
200 T
/
/
0)
1 1024

Figure 40: Correct matches for each used parameterf®or the 1920x1200 images of the Disney Dataset (@&s, 2012).
An increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means
an increase on the grid square size, increasing althe descriptor lenght. (Author’s figure).

2240X1400

1800 . : : .
—h=0| E i

1600H ——h = 30O OO Tt OO OUOP OO OO TS OT TNt OTTOT OO RUOTOTRIS SOOI =
——h=2| é ’(

1400H e SO DR R I N
—h=4 [}

-IZUD H h _ 5 B e : / Jj -
—h=8& : /

10000

Correct matches

16 64 25k 1024

Figure 41: Correct matches for each used parameterf®or the 2240x1400 images of the Disney Dataset (@&s, 2012).
An increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means
an increase on the grid square size, increasing althe descriptor lenght. (Author’s figure).

105

2560X1600
1600 . ; : ;
—h=0
14001 =11 ~ -
——h=2? “\
1ZDD.~ h=3 5 : . S——— 2 —
—h=4 |
$ 1000(
Loy
[=)
T
£ Boor
[}
2
S BO0f

4001

200

1 4 16 64 256 1024

Figure 42: Correct matches for each used parameterf®or the 2560x1600 images of the Disney Dataset (@&s, 2012).
An increase in theh parameter means a reduction on the grid resolutionwhile an increase in theg parameter means
an increase on the grid square size, increasing althe descriptor lenght. (Author’s figure).

With the curves from Figure 35 to Figure 42 it igspible to find the optimal
parameters for images of different sizes. As thagensize increases, highkr values start
producing progressively better results, with higtervalues implying a looser grid being
used to describe the points. Since the size ofiéseriptor only depends on tlge parameter,
the size of the descriptor can remain constanth witly the resolution of the grid being
adjusted accordingly to the image size.

It is interesting to note that the number of usét@Is with correct matches is the
highest when using images close to 640x400 piXéis.reduction in matches is related to the
way the Harris algorithm is implemented on Open@Nigere the size of the masks for the
Sobel and block filters and the size for the nondmam suppression are fixed and more
properly adapted for images around this range.

106

6.4.2 Execution Time Analysis

For this test, the two databases mentioned initsetivo tests from section 6.4.1
were again used to determine the execution timéhefsimplified Grid Algorithm, while
comparing to different descriptors available on Ip¥: SIFT (Lowe, 2004), SURF (Bay et
al., 2006), BRIEF (Calonder et al., 2010), BRISkK@tenegger et al., 2011), ORB (Rublee et
al., 2011) and FREAK (Alahi et al., 2012).

The execution time includes the extraction of tkesadiptors and the matching with
the k-NN algorithm. The detection of the POls wasfgrmed with the Harris Corner
Detector algorithm present in OpenCV. The time spenthe detection was not measured on
this test, but was measured earlier and can belfsu8ections 6.3.1 and 6.3.2.

Measurements were made in the Zedboard’s ARM Cdk@&xyrocessor running at
the clock of 866MHz with 512KB of L2 cache. They reetaken using GNU/Linux’s
<time.h> library, with the clock gettime function (Kerrisk, 2015a), using the
CLOCK_MONOTONICsource. The clock is sampled just before runnimg descriptor
function and just after finishing the k-NN matchjrand the difference of time is shown in
Table 9 and Table 10. For comparison the same ggaseexecuted in an Intel Core 2 Quad
Q9550 processor, with 2.83 GHz and 12 MB of L2 ea®orrect matches are also shown for

the selected descriptors.

Table 9: Correct matches and time of execution of deriptors for the IRCCyN IVC Quality Assessment Of
Stereoscopic Images database (Callet, 2010).

Mean correct matches ARM mean time (ms) Intel mean time (ms)
GRID 407.67 52.06 9.61
SIFT 387.00 1256.35 92.19
SURF 90.50 1183.40 59.65
BRIEF 388.00 85.18 5.57
BRISK 399.67 11623.80 1829.64
ORB 379.83 178.17 7.58

FREAK 316.33 1593.51 217.66

107

Table 10: Correct matches and time of execution ofescriptors for the Middlebury 2006 Stereo DatasetJcharstein,
2006).

Mean correct matches ARM mean time (ms) Intel mean time (ms)
GRID 244.19 30.97 6.77
SIFT 256.14 776.64 58.65
SURE 129.67 836.27 41.64
BRIEE 208.33 43.49 3.59
BRISK 248.62 11604.40 1647.11
ORB 201.95 108.75 5.30
FREAK 186.05 1574.38 218.51

By analyzing the data from Table 9 and Table 1@ dlear that using the proposed
algorithm brings a speedup comparing to the mdatiefit descriptor, BRIEF (Calonder et
al., 2010), while being executed in the ARM Cort&Q available in ZedBoard in both
databases, with the tasks being performed in O&d @71 times the best performing
descriptor. On the other hand, on the Intel Co@@uad Q9550 processor it performed slower,
taking 1.72 and 1.88 times the best performing rijgtec. In both databases the number of

correct detected matches is very close to thegeeftrming descriptors.

6.5 Power Requirement

ZedBoard has a current sensing resistot@h ohm (R292), accessed through the
J21 pins, which is used to determine the totalemurdraw of the board and peripherals
attached to the USB interface. The RMS voltage 882Rwas measured using an 0S-2062C
oscilloscope from ICEL, and the value was deterahiteebe11.05mV. By Ohm’s law, the
current can be calculated as shown on eq. (6.2¢. mkasurements were done with the
complete system running, using the FPGA Harris rozgssor and the simplified Grid

algorithm.

R 10mohm

The power supply voltage, rated at 12V, was medstoegreater accuracy on the
calculations and found to be running at 11.93V. sThihe total power can be determined

using eq. (6.3).

108

P=V0O=11.931.105 13.1& (6.3)

This value is within the limits of the power supjahgluded with ZedBoard, which is

able to supply up t@A at12v , leading to a maximum total power 86w .

109

7. DISCUSSION

This chapter presents some observations, problechgassible solutions related to
the construction of the landmark acquisition systn Visual SLAM. Section 7.1 is
concerned with the Visual SLAM problem, while Senti7.2 discusses the hardware used in
the implementation of the landmark acquisition eyst Finally, Section 7.3 relates to the

implementation of the Star-ID based descriptorstereo correspondence.

7.1 Visual SLAM

When feature detection was applied to the stereag@rdatasets used during the
tests, using the default parameters, hundredsnaiimarks were found, on average (Table 9
and Table 10). In contrast, the simulations of EREAM on the dual-core embedded ARM
processors shown that a parallel implementationgu€ipenMP reached the limits of real

time processing for a map of around 200 landmarks.

To reduce the number of detected landmarks withisingle stereo frame, the
adaptive threshold ratio could be tweaked (Sec&dh9), and only corners with a high
response value would be detected as such by tluithly. The use of an EKF-SLAM
algorithm with smaller local maps could improve tbh&al number of landmarks, as discussed
previously on Section 2.4.1. Particle Filter SLAMIgions that have linear complexity
relative to the number of landmarks, such as Fast§lcould also be used, as presented on
Section 2.4.2.

7.2 Using SoC processors with embedded FPGA fabric

Implementation of a single-purpose soft co-procesmt aids executing a
specialized task by a standard processor showetd itthaime of execution could be

significantly reduced when compared with the tigleeh when using the processor alone.

The main challenge of implementing a hardware swiuh VHDL is the increased

time and difficulty when compared with equivaleotutions written in software languages

110

used in embedded systems like C. This manifestff its the need to seek optimizations to
reduce the required logic so that the required rernalb logic elements used are within the
limitations of current FPGAs. In this work, speccare was taken to reduce the number of
multipliers used within code and avoid spending aoessary flip-flops to achieve the

solution.

Even if the hardware itself can be implementedhwithe limits of logic elements in
the FPGA used, there is no guarantee that it canubewithin timing constraints. Time
propagation of logic signals can't exceed the cloekod used in worst case scenarios. This
limits the number of cascaded operations that eaddme in a single clock period, increasing
the number of clock cycles needed to produce dtrdsBGA clock frequencies are much
lower than modern processors, in the particulae cdghis work, 100 MHz compared to 866
MHz.

On the first complete solution, there was onlyrgls pixel being sent at once during
I/O from the main processor to logic. Thus, ther@swo multiplexed input converter, and
only one 7x7 matrix was loaded into the FPGA. Aftenning the execution time tests with
this circuit, it took almost twice the time to seha circuit than the software reference in
OpenCV (Table 4), even including optimizations sashavoiding using a device driver for
AXI-4 communication and mapping the register diseehto the software process virtual

memory to speed-up copying (as discussed on Segtiod and 5.2.2).

The transactions using memory mapped addresseedretiie hard processor and
the soft co-processor within the AXI4 interface eound to be the main factor that
contributes to speed limitations for this particudachitecture. Increasing the throughput on
I/O transactions to use all the 32 bits availabtaild improve significantly the performance

of the co-processor.

The initial approach to achieve this was synthagiZour of the circuits designed at
the first complete solution, what in practice woulgsult in a four-core co-processor
architecture, being able to process 4 pixels semelbusly without any significant change in
code and use all the 32 bits available in the fater In simulations this approach was
successful, but in practice it consumed a numbelogic cells superior to the available
number on the FPGA. Only a dual-core solution wassible, but the speedup was only

enough to get even with the reference.

111

A naive solution would be to buy a larger FPGA tbatild fit the whole circuit, as
there are available chips that conform to the neédlsis circuit. Unfortunately, there were no
commercial boards featuring a Zyng-7000 SoC withda FPGAs available that could fit the

four co-processors, only one that could theordtiddla three core design was available.

A more elegant solution to this problem was to stedfour pixels simultaneously to
the board, creating four 7x7 matrices for procesaind exploiting the fact that each block on
the design was initially only active for a singleak period and would be inactive for other 6.
By allocating tasks to be done in their inactivedj the four 7x7 matrices could be processed
in series in a pipeline configuration, thus gettingpractice almost the same speedup gain
from a quad-core co-processor using a single omeliped. This was achieved by
multiplexing the input converters as shown in Set6.2.3. The only disadvantage is that the
pipeline postpones the output by a few clock periehen comparing to the quad-core

solution.

Use of local caching within BRAM modules was avaidiue to the low quantity
available on the particular FPGA model used. Howethe use of a smaller image size could
potentially enable caching to be used and redudetddnsactions and, consequently, the
execution time of the hardware implementation efegther. This would require significant
changes in the architecture used, mainly in theirement of a special memory controller to

be designed.

The power consumption of the SoC systems with anbeelsled FPGA
(measurements can be seen on Section 6.5) is dite grkatest advantages when compared
to using a standard personal computer alone or adftitional GPGPU hardware, where
power consumption is much higher. An estimative dam seen on (University of

Pennsylvania, 2013).

7.3 Star-ID based descriptor

The prototype of a descriptor aimed for stereoegpondence in SLAM showed that
the visual two-dimensional spatial information beémn Points of Interests can be extracted
successfully using approaches adopted from Stattifabation applications, and that this
information can be used to successfully solve threespondence problem. This feature was

112

used alone in this work to find the correspondetbeg,it could be integrated with existing
descriptors to reduce errors.

113

8. CONCLUSION

This chapter presents the contributions from thrkwand the suggestions for
improvements and further research that could beraptished with future work.

8.1 Contribution

This work produced two significant contributiong ¥isual SLAM applications. The
first was the proposition that treating Point delests as stars, and restricting the information
available only to their two-dimensional spatial itioss could be enough to solve the

correspondence problem.

A prototype of such a descriptor, based on teclesgalready used for Star
Identification problems, showed that this approamn indeed be used to solve the
correspondence problem, and that the performangpeaictical applications is comparable to
the best performing descriptors used for this psepm both speed and number of useful
correspondences. In the practical tests, it was/sho produce a speedup of 1.63 and 1.40 in
two different databases on an ARM Cortex A9 prooesshen compared to the fastest

descriptor analyzed, being especially interestingmthbedded applications.

The second significant contribution was a practeraalysis of a SoC architecture
that incorporates an FPGA with an embedded ARMgssar for Visual SLAM applications.
Within the tasks of acquiring landmarks for SLAMthvia visual system based on stereo
cameras, the slowest performing task for featusetbacorrespondence in software was
shown to be the detection of POIs. The reimpleniemtan hardware of this task, being
solved using the Harris and Stephens corner deteaigorithm, showed a significant
execution time improvement over software, arount thee time needed for the software

reference.

114

8.2 Difficulties Found

Two main difficulties have arisen during the woilkhe first difficulty is related to
the fact that the VRI research group, where thiskweas done, is relatively young. This
restricted the research to the foundation levelsao¥isual SLAM system, mainly the
landmark acquisition system, as most basic softwaoés and libraries for vision, camera

calibration and hardware interface had to be d@ezldefore they could be used.

The second difficulty is relative to the SoC witRGA platform used, Zyng-7000 on
ZedBoard, being released on June 2012, while thik wtarted 3 months later on October.
The documentation provided by Digilent (Digilentin2013) presented enough guidelines to
allow for the use of the hardware, but overall kiemlge about it was scarce or had to be
adapted from other FPGAs. The situation today iy déferent, the community use of the
board increased the information available abouant] Xilinx improved and released many
tools that make the use of Zyng-7000 systems simgleh as high level synthesis support on
the Vivado tools, with its use was documented ookbiorm (Crockett, Elliot, Enderwitz, &
Stewart, 2014). Later on March 2015 Xilinx introédadhe SDSoC development environment
(Xilinx Inc., 2015) that expands the capabilitidsHigh Level Synthesis. With these tools, it
is possible to develop software in C or C++ andnoge portions of it directly on FPGA
hardware without translating them to VHDL, usingredt compilation, which could

potentially lead to a much shorter development time

8.3 Future work

This work completed the development of the landnaajuisition task needed for
Visual SLAM. For a full Visual SLAM implementatioroth efforts to increase number of
landmarks that could be stored within the map andrit the number of landmarks acquired
from a single image to a smaller number needs todbee, since the EKF-SLAM
implementation used within this work couldn’t soliree SLAM problem in real time for a

large number of landmarks.

One of the features of EKF-SLAM is that it enablles fusion of different sensors.

The fusion of a stereo camera setup with diffesmmtsors, such as lasers, could enable rich

115

information to be used coming from the cameras eviibrking with a much larger range
available for the laser sensors.

Only a single descriptor was repurposed from Stentification to the Stereo
Correspondence problem. The positive results frbim work indicate that other solutions

could also potentially be repurposed in the sarskife.

The Harris and Stephens co-processor developeBHRGA in this work didn’t take
advantage from using small buffers to avoid copyimg same data from the main memory
when advancing lines with the sliding window. Thteuld potentially increase the
performance as the main limitation to the architexis from I/O transactions.

APPENDIX A: MATHEMATICA SCRIPT FOR CALCULATING THE
OPTIMAL BITSIZE FOR INDIVIDUAL BLOCKS FROM HARRIS

CO-PROCESSOR

-

bitSizeo = 8;

bitsi
maxg = 2 %0 -1,

116

Sx = {{-1an, 0az, 1ai3}, {-2 az, 0azx, 2az}, {-1as, 0asz, 1as}};
Sy = {{1an, 2 a2, 1a3}, {0az, 0az, 0az}, {-1as, -2 a3, -1as3}};

I, := Total[Total[Sx]];
pixels = {ai1, a2, a3, az, az, az, as;, ap, as};
area = Cuboidf[{0, 0, 0, 0, 0, 0, 0, 0, 0},
{maxp, maxp, maxp, maxp, maxp, maxp, maxp, maxg, maxp}l];
ArgMax[I., pixels € area]
Ix-mx = MaxValue[Ix, pixels € area]
ArgMin[I,, pixels € area]
Ix_min = MinValue[Ix, pixels € area]
I, := Total[Total[Sy]];
ArgMax[I,, pixels € area]
Iy mx = MaxValue[I,, pixels € area]
ArgMin[I,, pixels € area]

Iy_min = MinValue[I,, pixels € area]

bitSize; = Ceiling[Max[Log2[AbS [Ix-mx]], Log2[AbsS[Ix_-nin]]]] +1
bitSize; = Ceiling [Max[Log2 [Abs [Iy_mx]], Log2[Abs [Iy_nin]]]] +1

{0, 0, 255, 0, 0, 255, 0, 0, 255}

1020

{255, 0, 0, 255, 0, 0, 255, 0, 0}

-1020

{255, 255, 255, 0, 0, 0, 0, O, 0}

1020

{(0,0,0,0, 0,0, 255, 255, 255}

-1020
11

11

a, b and ¢ value of Matrix M

varg = {Ixo, Iyo}:

areap = Cuboid [{Ix-min, Iy-min}, {Ix-mxs, Iy-mx}]:

ArgMax [Ixoz, varg € areao]

amx = MaxValue [Ixoz, varg € areao]

Aquin[Ixoz, varg € areao]

apin = MinValue [Ixoz, varg € areao]

ArgMax[Ix Iyo, Varg € areap]

bmx = MaxValue [Ix; Iyo, varg € areag)

ArgMin[Ixo Iyo, varg € areag]

bnin = MinValue [Ixo Iyo, varp € areap]

ArgMax [Iyoz, varg € areao]

Cmx = MaxValue [Iyoz, varg € areao]

Aquin[Iyoz, varg € areao]

Cpin = MinValue [Iyoz, varg € areao]

bitSize, = Ceiling[Max[Log2[Abs[amx]], Log2[Abs[apnin]]]] +1
bitSizey = Ceiling [Max[Log2[Abs [bmx]], Log2[Abs[bpin]]]] +1
bitSize. = Ceiling [Max[Log2[Abs[Cmx]], Log2[Abs[Cpin]]]] +1

(-1020, 0}

1040400

{0, 0}

(-1020, -1020}

1040400

(-1020, 1020}

-1040 400

117

118

(0, -1020}
1040 400

{0, 0}

21
21
21

(*
Block filter:
*)

max; = 9 [Ceilinq[l;-;:-]) (*xRight shift to reduce word size to 16 bitssx)
bitSize; = Ceiling[Log2[max;]] + 1

292617

20

(*
Harris response:

*)

max;

max2=Ceilinq[](*Riqbt shift to reduce word size to 16 bitsx)

24

18 289

119

1 1
= T+

32 128
r:zac - bz-k(a+c)2;

var; = {a, b, c};

area; = Cuboid[{-max;, -max;, -maxz}, {maxz, maxz, maxz}];
ArgMax[r, var, € area;]

maxi; = Ceiling [MaxValue[r, var; € area;]]
Ceiling[Log2[max3]] +1

ArgMin([r, var; € area;]

min; = Ceiling [MinValue[r, var; € area;]]
Ceiling[Log2[Abs[min3]]] +1

(-18289, 0, -18289)

282223 846

30

(-18289, -18289, 18289

-668975 042

31

120

APPENDIX B: SYNTHESIS LOG FOR THE FINAL VERSION OF
THE HARRIS CO-PROCESSOR

Design Summary:
Number of errors: 0
Number of warnings: 31

Slice Logic Utilization:

Number of Slice Registers: 25,973 out of 106,400 24%
Number used as Flip Flops: 23,835
Number used as Latches: 0
Number used as Latch-thrus: 0
Number used as AND/OR logics: 2,138
Number of Slice LUTSs: 25,538 out of 53,200 48%
Number used as logic: 23,734 out of 53,200 44%
Number using O6 output only: 16,126
Number using O5 output only: 163
Number using O5 and O6: 7,445
Number used as ROM: 0
Number used as Memory: 851 out of 17,400 4%
Number used as Dual Port RAM: 116
Number using O6 output only: 92
Number using O5 output only: 5
Number using O5 and O6: 19
Number used as Single Port RAM: 0
Number used as Shift Register: 735
Number using O6 output only: 717
Number using O5 output only: 0
Number using O5 and O6: 18

Number used exclusively as route-thrus: 953
Number with same-slice register load: 729
Number with same-slice carry load: 224
Number with other load: 0

Slice Logic Distribution:

Number of occupied Slices: 9,462 out of 13,300 71%
Number of LUT Flip Flop pairs used: 30,696
Number with an unused Flip Flop: 8,197 out of 30,696 26%
Number with an unused LUT: 5,158 out of 30,696 16%
Number of fully used LUT-FF pairs: 17,341 out of 30,696 56%
Number of unique control sets: 974

Number of slice register sites lost
to control set restrictions: 2,709 out of 106,400 2%

A LUT Flip Flop pair for this architecture repres

one Flip Flop within a slice. A control setis a

clock, reset, set, and enable signals for a regis

The Slice Logic Distribution report is not meanin

over-mapped for a non-slice resource or if Placem
OVERMAPPING of BRAM resources should be ignored i
over-mapped for a non-BRAM resource or if placeme

10 Utilization:

Number of bonded IOBs:
Number of LOCed IOBs:
Number of bonded IOPAD:

IOB Flip Flops:

Specific Feature Utilization:

23

Number of RAMB36E1/FIFO36E1s:

Number using RAMB36EL1 only:
Number using FIFO36E1 only:

Number of RAMB18E1/FIFO18Els:

Number of BUFG/BUFGCTRLS:

Number used as BUFGs:

Number used as BUFGCTRLs:

94
94
130

0

Number of IDELAYE2/IDELAYE2_FINEDELAYSs: 0
Number of ILOGICE2/ILOGICE3/ISERDESE?2s: 0

Number of ODELAYE2/ODELAYE2_FINEDELAYS:
Number of OLOGICE2/OLOGICE3/OSERDESE?2s:
Number used as OLOGICEZ2s:
Number used as OLOGICES3s:

Number used as OSERDESEZ2s:

83
0
0

Number of PHASER_IN/PHASER_IN_PHYs: 0

Number of PHASER_OUT/PHASER_OUT_PHYs:

Number of BSCANSs:
Number of BUFHCEsS:
Number of BUFRs:

Number of CAPTUREsS:
Number of DNA_PORTSs:
Number of DSP48E1s:
Number of EFUSE_USRSs:
Number of FRAME_ECCs:
Number of ICAPs:

Number of IDELAYCTRLS:
Number of IN_FIFOs:
Number of MMCME2_ADVs:
Number of OUT_FIFOs:
Number of PHASER_REFs:

Number of PHY_CONTROLSs:

0
0

0
83

0

ents one LUT paired with
unique combination of
tered element.

gful if the design is

ent fails.

f the design is

nt fails.

outof 200 47%
outof 94 100%
outof 130 100%

outof 140 5%

outof 280 0%
outof 32 28%

outof 200 0%
outof 200 0%

outof 200 41%

outof 16 0%
outof 16 0%
out of 4 0%
outof 72 0%
outof 16 0%
out of 1 0%
out of 1 0%
outof 220 50%
out of 1 0%
out of 1 0%
out of 2 0%
out of 4 0%
outof 16 0%
out of 4 50%
outof 16 0%
out of 4 0%
out of 4 0%

121

122

Number of PLLE2_ADVs: 0 out of 4 0%
Number of PS7s: 1 out of 1 100%
Number of STARTUPs: 0 out of 1 0%
Number of XADCs: 0 out of 1 0%

Device Utilization Summary:

Number of BUFGs

Number of DSP48E1s

Number of External IOB33s
Number of LOCed IOB33s

Number of External IOPADs
Number of LOCed IOPADs

Number of MMCME2_ADVs

Number of OLOGICE2s

Number of PS7s

Number of RAMB36E1s

Number of Slices

Number of Slice Registers
Number used as Flip Flops
Number used as Latches

Number used as LatchThrus

Number of Slice LUTS

9 out

111 out
94 out
94 out

130 out
127 out

2 out
83 out
1 out
8 out
9462 out
25973 out
25973
0
0

25538 out

Number of Slice LUT-Flip Flop pairs 30287 out

Overall effort level (-ol): High
Router effort level (-rl): High

of 32 28%
of 220 50%
of 200 47%
of 94 100%

of 130 100%
of 130 97%

of4 50%

of 200 41%
of1 100%
of 140 5%
of 13300 71%
of 106400 24%

of 53200 48%
of 53200 56%

APPENDIX C: C++ CLASS FOR I/O0 BETWEEN THE MAIN
PROCESSOR AND THE HARRIS CO-PROCESSOR THROUGH

AXI4-LITE

a) hwharris.h

#ifndef HWHARRIS_H
#define HWHARRIS_H

#include <stdio.h>

#include <stdlib.h>

#include <vector>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

#include <opencv2/imgproc/imgproc.hpp>

#include <opencv2/features2d/features2d.hpp>

#define GPIO_BASE_ADDRESS 0x70400000
#define MAP_SIZE sizeof(int)
#define MAP_MASK (MAP_SIZE - 1)

using namespace cv;

class hwHarris
{
public:
hwHarris();
~hwHarris();
void apply(Mat &input, Mat &next_input, vector<

private:
int memfd,;
bool preload;
void *mapped_base, *mapped_dev_base;
off_t dev_base;
unsigned volatile int* hw;

#endif // HWHARRIS_H

KeyPoint> &output);

123

b) hwharris.cpp

#include "hwharris.h"

// Direct memory access based on

http://www.wiki.xilinx.com/file/view/usergpio.c/414

hwHarris::hwHarris()

{

dev_base = GPIO_BASE_ADDRESS,;
memfd = open("/dev/imem", O_RDWR | O_SYNC);
if (memfd ==-1) {
printf("Can't open /dev/mem.\n");
exit(0);
}
mapped_base = mmap(0, MAP_SIZE, PROT_READ | PRO

dev_base & ~MAP_MASK);

if (mapped_base == (void *) -1) {

printf("Can't map the memory to user space.

exit(0);
}
mapped_dev_base = mapped_base + (dev_base & MAP
hw = (unsigned volatile int *) (mapped_dev_base
preload = 1;

hwHarris::~hwHarris()

{

if (munmap(mapped_base, MAP_SIZE) == -1) {
printf("Can't unmap memory from user space.
exit(0);

}

close(memfd);

void hwHarris::apply(Mat &input, Mat &next_input, v

{

int rows = input.rows;

int cols = input.cols;

int i,j,k;

int px[] = {-1, -1, -1};

int py[] = {-1, -1, -1},

unsigned int pixel_valueO, pixel_valuel, pixel_

unsigned int corner_value;

351414/usergpio.c

T_WRITE, MAP_SHARED, memfd,

\n");

_MASK);

\n");

ector<KeyPoint> &output)

value2, pixel_value3;

124

const unsigned int di = rows/2 - 3;

const unsigned int dj = cols/2 - 3;

for(i=3;i<rows/2;i++){
for(j=0;j<(cols/2+3);j++){

px[2] = px[1];
py[2] = py[1];
px[1] = px[0];
py[1] = py[O];
px[0] = j-3;
py[0] = i;

if(i>3 || j>1 || preload){
if(i>3) preload = 0;
for(k=-3;k<4;k++){
pixel_valueO = input.at<uchar>(
pixel_valuel = input.at<uchar>(
pixel_value2 = input.at<uchar>(
pixel_value3 = input.at<uchar>(

*hw = (pixel_value3<<24) + (pix
(pixel_valuel1<<8) + pixel_value0;
}
if(px[2]>=3 && py[2]>=3)1

corner_value = *hw;

if(corner_value&0x1){
KeyPoint kp(px[2]+dj,py[2]+
output.push_back(kp);

}

if(corner_value&0x2){
KeyPoint kp(px[2]+dj,py[2],
output.push_back(kp);

}

if(corner_value&0x4){
KeyPoint kp(px[2],py[2]+di,
output.push_back(kp);

}

if(corner_value&0x8){
KeyPoint kp(px[2],py[2],3);
output.push_back(kp);

}
for(j=0;j<1;j++){

itk]);

i+k+di, j);
i+k, j+dj);
i+k+di, j+dj);

el_value2<<16) +

di,3);

3);

3);

125

126

for(k=0;k<7;k++){

pixel_value0O = next_input.at<uchar>(k,0);

pixel_valuel = next_input.at<uchar>(k+d i,0);

pixel_value2 = next_input.at<uchar>(k,d 0;

pixel_value3 = next_input.at<uchar>(k+d i,dj);

*hw = (pixel_value3<<24) + (pixel_value 2<<16) + (pixel_valuel<<8) +
pixel_value0;

}
}

corner_value = *hw;

if(corner_value&0x1){
KeyPoint kp(px[1]+dj,py[1]+di,3);
output.push_back(kp);

}

if(corner_value&0x2){
KeyPoint kp(px[1]+dj,py[1],3);
output.push_back(kp);

}

if(corner_value&0x4){
KeyPoint kp(px[1],py[1]+di,3);
output.push_back(kp);

}

if(corner_value&0x8){
KeyPoint kp(px[1],py[1],3);
output.push_back(kp);

}

for(j=0;j<1;j++){
for(k=0;k<7;k++){

pixel_value0O = next_input.at<uchar>(k,1);

pixel_valuel = next_input.at<uchar>(k+d i,1);

pixel_value2 = next_input.at<uchar>(k,1 +dj);

pixel_value3 = next_input.at<uchar>(k+d i,1+dj);

*hw = (pixel_value3<<24) + (pixel_value 2<<16) + (pixel_valuel<<8) +
pixel_value0;

}
}

corner_value = *hw;
if(corner_value&0x1){
KeyPoint kp(px[0]+dj,py[0]+di,3);
output.push_back(kp);
}
if(corner_value&0x2){
KeyPoint kp(px[0]+dj,py[0],3);
output.push_back(kp);
}

if(corner_value&0x4){

127

KeyPoint kp(px[0],py[0]+di,3);
output.push_back(kp);

}

if(corner_value&0x8){
KeyPoint kp(px[0],py[0],3);
output.push_back(kp);

128

APPENDIX D: VHDL CODE FOR THE HARRIS CO-PROCESSOR

a) user_logic.vhd

library ieee;
use ieee.std_logic_1164.all;

library proc_common_v3_00_a;

use proc_common_v3_00_a.proc_common_pkg.all;

entity user_logic is

generic(
C_NUM_REG :integer:=1;
C_SLV_DWIDTH : integer := 32

);

port(
Bus2IP_CIk :in std_logic;
Bus2IP_Resetn : in std_logic;
Bus2IP_Data :in std_logic_vector(31 downto 0) ;
Bus2IP_BE :in std_logic_vector(3 downto 0);
Bus2IP_RdCE :in std_logic_vector(0 downto 0);
Bus2IP_WrCE :in std_logic_vector(0 downto 0);
IP2Bus_Data : out std_logic_vector(31 downto 0) ;
IP2Bus_RdAck : out std_logic;
IP2Bus_WrAck : out std_logic;
IP2Bus_Error : out std_logic

attribute MAX_FANOUT : string;
attribute SIGIS : string;

attribute SIGIS of Bus2IP_Clk : signal is "CLK";
attribute SIGIS of Bus2IP_Resetn : signal is "RST" ;

end entity user_logic;

architecture IMP of user_logic is
component system
port(clk :in std_logic;
rst :in std_logic;

write :in std_logic;

begin

data :in std_logic_vector(31 downto 0);
corner : out std_logic_vector(31 downto 0));

end component system;

signal read_data : std_logic_vector(31 dow
signal slv_reg_write_sel : std_logic_vector(0 to O
signal slv_reg_read_sel : std_logic_vector(0 to O
signal slv_ip2bus_data : std_logic_vector(31 dow
signal slv_read_ack :std_logic;

signal slv_write_ack : std_logic;

sys : system
port map(clk => Bus2IP_CIKk,
rst =>Bus2IP_Resetn,
write => Bus2IP_WrCE(0),
data => Bus2IP_Data,
corner => read_data);

slv_reg_write_sel <= Bus2IP_WrCE(0 downto 0);
slv_reg_read_sel <= Bus2IP_RdCE(0 downto 0);
slv_write_ack <= Bus2IP_WrCE(0);
slv_read_ack <= Bus2IP_RdCE(0);

SLAVE_REG_READ_PROC : process(slv_reg_read_sel, re
begin
case slv_reg_read_sel is
when "1" =>slv_ip2bus_data <= read_data;
when others => slv_ip2bus_data <= (others =>'0’
end case;

end process SLAVE_REG_READ_PROC;

IP2Bus_Data <= slv_ip2bus_data when slv_read_ack =

IP2Bus_WrAck <= slv_write_ack;

IP2Bus_RdAck <= slv_read_ack;
IP2Bus_Error <="'0";

end IMP;

b) main.vhd

library ieee;

129

nto 0);
);
)i
nto 0);

ad_data) is

1" else (others =>'0");

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

package main is
constant width : integer := 640;
constant height : integer := 360;

type matrix3u8 is array (integer range 1 to 3, int
unsigned(7 downto 0);

type matrix5s11 is array (integer range 1 to 5, in
signed(10 downto 0);

type matrix7u8 is array (integer range 1 to 7, int
unsigned(7 downto 0);

type matrix3s16 is array (integer range 1 to 3, in
signed(15 downto 0);

type matrix5s16 is array (integer range 1 to 5, in
signhed(15 downto 0);

type matrix3s32 is array (integer range 1 to 3, in
signed(31 downto 0);

end main;

c) system.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.main.all;

entity system is

port(
clk :in std_logic;
rst :in std_logic;
write :in std_logic;
data :in std_logic_vector(31 downto 0);
corner : out std_logic_vector(31 downto 0)
);

end entity system;

architecture RTL of system is
signal loadt : std_logic;
signal readyt : std_logic;
signal t : std_logic_vector(5 downto 0);
signal icm I matrix7u8;

signal sxm : matrix5s11;

eger range 1 to 3) of

teger range 1 to 5) of

eger range 1to 7) of

teger range 1 to 3) of

teger range 1 to 5) of

teger range 1 to 3) of

130

signal sym : matrix5s11;

signal mam . matrix5s16;

signal mbm : matrix5s16;

signal mcm . matrix5s16;

signal bfam : matrix3s16;

signal bfbm > matrix3s16;

signal bfcm : matrix3s16;

signal hrm : matrix3s32;

signal trm : matrix3s32;

signal max : signed(31 downto 0);
signal thr : signed(31 downto 0);

signal cornerbit : std_logic;
signal corner_sr : std_logic_vector(3 downto 0);

component loadControl
port(clk :in std_logic;
write : in std_logic;
rst :in std_logic;
load : out std_logic);

end component loadControl;

component inputConverterMux
port(clk :in std_logic;

rst :in std_logic;
write : in std_logic;
load :in std_logic;
data :in std_logic_vector(31 downto 0);
a :out matrix7u8;
ready : out std_logic);

end component inputConverterMux;

component control
port(clk :in std_logic;
write : in std_logic;
rst :in std_logic;
ready : in std_logic;
t :outstd_logic_vector(5 downto 0));

end component control;

component sobelX
port(clk :in std_logic;
rst :in std_logic;
en :in std_logic;
write : in std_logic;
a :in matrix3u8;
ix :outsigned(10 downto 0));

131

end component sobelX;

component sobelY

port(clk :in std_logic;

end component

rst :in std_logic;

en :in std_logic;

write : in std_logic;

a :in matrix3u8;

iy :out signed(10 downto 0));
sobelY;

component matrixM

port(clk

1in std_logic;
rst :in std_logic;
en :in std_logic;
write :in std_logic;
ix, iy :in signed(10 downto 0);
a, b, ¢ : out signed(15 downto 0));

end component matrixM;

component blockFilter

port(clk

;in std_logic;

rst :in std_logic;

en :in std_logic;

write : in std_logic;
a :in matrix3sl6;

sum : out signed(15 downto 0));

end component blockFilter;

component harrisResponse

port(clk

1in std_logic;
rst :in std_logic;
en0 :in std_logic;
enl :in std_logic;
write :in std_logic;
a, b, c:in signed(15 downto 0);
r : out signed(31 downto 0));

end component harrisResponse;

component findMax

port(clk

:in std_logic;
rst :in std_logic;
en .in std_logic;

write :in std_logic;
response : in signed(31 downto 0);

max :out signed(31 downto 0));

132

begin

end component findMax;

component threshold
port(clk :in std_logic;

rst :in std_logic;
en :in std_logic;
write : in std_logic;
rO :in signed(31 downto 0);
thr :in signed(31 downto 0);
rl :outsigned(31 downto 0));

end component threshold;

component localMaximumBin
port(r :in matrix3s32;
corner : out std_logic);

end component localMaximumBin;

component cornerShiftRegister

port(clk in std_logic;
rst :in std_logic;
write :in std_logic;

corner :in std_logic;

corner_sr : out std_logic_vector(3 downto 0));

end component cornerShiftRegister;

Ic : loadControl
port map(clk => clk,
write => write,
rst =>rst,

load => loadt);

ic : inputConverterMux
port map(clk => clk,
rst =>rst,
write => write,
load => loadt,
data => data,
a =>icm,

ready => readyt);

crtl : control
port map(clk => clk,
write => write,
rst =>rst,

ready => readyt,

133

t =>1);

linesO : foriin 1 to 5 generate
begin
columnsO : forjin 1 to 5 generate
begin
Sx : sobelX
port map(clk =>clk,
rst =>rst,
en => readyt,
write => write,
a(1, 1) =>icm(i, j),
a(l, 2) =>icm(, j + 1),
a(l, 3) =>icm(, j + 2),
a(2, 1) =>icm(i + 1,),
a(2,2)=>icm(i+1,j+1),
a(2,3)=>icm(i+1,j+2),
a(3, 1) =>icm(i + 2, j),
a(3,2)=>icm(i+2,j+1),
a3,3)=>icm(i+ 2, + 2),

ix =>sxm(i,)));
sy : sobelY
port map(clk => clk,
rst =>rst,
en =>readyt,

write => write,
a(1, 1) =>icm(i, j),
a(l, 2) =>icm(i, j + 1),
a(1, 3) =>icm(i, j + 2),
a(2,1) =>icm(i + 1,),
a(2,2)=>icm(i+1,j+1),
a2,3)=>icm(i+1,j+2),
a3, 1) =>icm(i + 2,),
a3, 2)=>icm(i+2,j+1),
a(3,3)=>icm(i+ 2, + 2),
iy =>sym(,j);

mm : matrixM

port map(clk => clk,

rst =>rst,
en =>t(0),
write => write,
ix =>sxm(i, j),

y =>sym(i,),

a =>mam(,j),

o

=> mbm(i, j),

(9]

=>mem(i, j));

134

135

end generate columnsO;

end generate linesO;

linesl : foriin 1 to 3 generate
begin
columnsl : forjin 1 to 3 generate
begin
bfa : blockFilter
port map(clk => clk,
rst =>rst,
en =>t(1),
write => write,
a(1, 1) => mam(i, j),
a(l, 2) => mam(, j + 1),
a(l, 3) => mam(, j + 2),
a2, 1) =>mam(i + 1, j),
a(2,2)==>mam(i+1,j+1),
a2,3)=>mam(i+1,j+2),
a3, 1) => mam(i + 2, j),
a(3,2)==mam(+2,j+1),
a(3,3)=mam(i +2,j+2),
sum => bfam(j, j));
bfb : blockFilter
port map(clk => clk,
rst =>rst,
en =>t(1),
write => write,
a(1, 1) => mbm(i, j),
a(1, 2) => mbm(i, j + 1),
a(1, 3) => mbm(, j + 2),
a2, 1) => mbm(i + 1, j),
a(2,2)=>mbm(+1,j+1),
a(2,3)=>mbm(+1,j+2),
a(3, 1) => mbm(i + 2, j),
a(3,2)=mbm(i +2,j+1),
a(3,3)=mbm(+2,j+2),
sum => bfbm(i, j));
bfc : blockFilter
port map(clk => clk,
rst =>rst,
en =>t(1),
write => write,
a(1, 1) => mem(i, j),
a(l, 2) => mem(i, j + 1),
a(1, 3) => mem(i, j + 2),
a(2, 1) =>mem(i + 1, j),

136

a2,2)==mem(i+1,j+1),
a2,3)==mem(i+1,j+2),
a3, 1) =>mem(i + 2, j),

a3,2)=mem(i+2,j+1),
a(3,3)=mem(i+2,j+2),

sum => bfem(i, j));

hr : harrisResponse
port map(clk => clk,

rst =>rst,
en0 =>t(2),
enl =>t(3),

write => write,

a =>bfam(, j),

b =>Dbfbm(,j),
¢ =>bfem(, j),
r=>hrm(i, j));

tr : threshold
port map(clk => clk,

rst =>rst,

en =>t(5),
write => write,
r0 =>hrm(i, j),
thr =>thr,

ri =>trm(, j));
end generate columnsl;

end generate linesl;

fm : findMax
port map(clk =>clk,
rst =>rst,
en =>t(4),

write => write,
response => hrm(2, 2),

max => max);

thr <= resize(max(31 downto 7), 32) + resize(max(3 1 downto 9), 32);

Im : localMaximumBin
port map(r =>trm,
corner => cornerbit);

sr : component cornerShiftRegister
port map(clk => clk,
rst => rst,

write => write,

137
corner => cornerbit,
corner_sr => corner_sr);
corner <= "0000000000000000000000000000" & corner_ Sr;

end architecture RTL;

d) loadControl.vhd

library ieee;
use ieee.std_logic_1164.all;

use work.main.all;

entity loadControl is

port(
clk :in std_logic;
write : in std_logic;
rst :in std_logic;
load : out std_logic
);

end entity loadControl;

architecture RTL of loadControl is

signali :integer range 1 to (height/ 2 - 3) =1
signalj :integer range 1 to (width /2 + 3) *7:=1;
signal loadt : std_logic =1
begin
store : process(clk, write, rst) is
begin
if rst ='0" then
i <=1,
io<=1
loadt <="'1"
elsif (clk'event and clk = '1" and write = '1") t hen

if (j < (width/2 + 3)*7) then
if (j < 49) then

loadt <="'1"
else
loadt <="'0";
end if;
j<=j+ 1
else
<=1

if (i < (height/ 2 - 3)) then

138

loadt <="1";
i <=i+1;
else
i<=1;
end if;

end if;
end if;
end process store;
load <= loadt;

end architecture RTL;

e) inputConverterMux.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.main.all;

entity inputConverterMux is

port(
clk :in std_logic;
rst :in std_logic;
write : in std_logic;
load :in std_logic;
data :in std_logic_vector(31 downto 0);
a :out matrix7u8;
ready : out std_logic

);

end entity inputConverterMux;

architecture RTL of inputConverterMux is

signali :integerrange 1to 7 =1 ;
signali_1 :integerrange 1to7 =1 ;
signali_2 :integerrange 1to 7 =1 ;
signal i_3 :integerrange 1to 7 =1 ;

signal data_1 : std_logic_vector(31 downto 0) :=
"00000000000000000000000000000000";

signal data_2 : std_logic_vector(31 downto 0) :
"00000000000000000000000000000000";

signal data_3 : std_logic_vector(31 downto 0) :=
"00000000000000000000000000000000";

constantz : unsigned(7 downto 0) =" 00000000";

139

constant at : matrix7u8 =((z,2,2,2,2,2,2), (z,
2,2,2,2,2,2),(2,2,2,2,2, 2, 2), (2, 2, 2, 2,2,2,2),(2,2,2,2, 2, 2,
2),(2,2,2,2,2,2,2),(2,2,2,2, 2, 2, 2));

signal a_0 : matrix7u8;

signala_1 : matrix7u8;

signal a_2 : matrix7us8;

signal a_3 : matrix7u8;

component inputConverter
port(clk :in std_logic;
rst :in std_logic;
write : in std_logic;
i :in integerrange 1to 7;
data :in std_logic_vector(7 downto 0);
a :out matrix7u8);
end component inputConverter;
begin
icO : component inputConverter
port map(clk => clk,
rst =>rst,
write => write,
i =i,
data => data(7 downto 0),
a =>a0);
icl : component inputConverter
port map(clk => clk,
rst =>rst,
write => write,
i o=>i_1,
data => data_1(15 downto 8),
a =>a_l);
ic2 : component inputConverter
port map(clk => clk,
rst =>rst,
write => write,
i =>i 2,
data => data_2(23 downto 16),
a =>a_2);
ic3 : component inputConverter
port map(clk => clk,
rst =>rst,
write => write,
i =>i_3,
data => data_3(31 downto 24),

a =>a_3);

ctrl : process(clk, rst, write) is

begin
if rst ='0" then
i<=1;
elsif (clk'event and clk = '1" and write = '1") t

ifi =1 then
a<=a_0;

elsifi = 2 then
a<=a_l;

elsif i = 3 then
a<=a_2;

elsif i = 4 then
a<=a_3;

else
a<=at;

end if;

if (i <7) then
i<=i+1;

else
i<=1;

end if;

i1 <=i

i2 <=il;

i3 <=iz2;

end if;

data_1 <= data;
data_2 <=data_1;
data_3 <=data_2;

end process ctrl;

ready <="1'when (i>1 and i <=5 and load = '0’

--a <=a Owheni=1lelsea_1wheni=2else

when i =4 else at;
end architecture RTL;

f) inputConverter.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all

use work.main.all;

entity inputConverter is

port(
clk :in

1

std_logic;

hen

) else '0";

a 2wheni=3elsea_3

140

141

rst :in std_logic;
write : in std_logic;
i :in integerrange 1to 7;
data :in std_logic_vector(7 downto 0);
a :out matrix7u8
);

end entity inputConverter;

architecture RTL of inputConverter is
signal at : matrix7u8;
constant z : unsigned(7 downto 0) := "00000000";

begin
name : process(clk, rst, write) is
begin
if rst ='0" then
at<=((z, z, z, z, z, z, 2),
(z,2,2,2,2, 2, 2),
(z,2,2,2,2, 2, 2),
(z,2,2,2,2, 2, 2),
(z,2,2,2,2, 2, 2),
(z,2,2,2,2, 2, 2),
(z,2,2,2, 2,2, 2)),
elsif (clk'event and clk = '1" and write = '1") t hen
at(i, 1) <= at(i, 2);
at(i, 2) <= at(i, 3);
at(i, 3) <= at(i, 4);
at(i, 4) <= at(i, 5);
at(i, 5) <= at(i, 6);
at(i, 6) <= at(i, 7);
at(i, 7) <= unsigned(data);
end if;
end process name;
a <= at;

end architecture RTL;

g) control.vhd

library ieee;

use ieee.std_logic_1164.all;

entity control is

port(
clk :in std_logic;

write : in std_logic;

rst :in std_logic;

ready : in std_logic;

t :outstd_logic_vector(5 downto 0)
);

end entity control;

architecture RTL of control is

signal tt : std_logic_vector(5 downto 0);

begin
store : process(clk, write, rst) is
begin
if rst ='0" then
tt <= "000000";
elsif (clk'event and clk = '1" and write = '1") t
tt(5) <= tt(4);
tt(4) <= tt(3);
tt(3) <=tt(2);
tt(2) <= tt(1);
tt(1) <= tt(0);
tt(0) <= ready;
end if;
end process store;
t<=tt;

end architecture RTL;

h) sobelX.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.main.all;

~]-1 0 +1
~]-2 0+2|
~ -1 041

entity sobelX is
port(
clk :in std_logic;
rst :in std_logic;
en :in std_logic;
write : in std_logic;

a :in matrix3u8;

hen

142

ix :outsigned(10 downto 0)
)i
end entity sobelX;

architecture RTL of sobelX is
signal p11, p13, p31, p33 : signed(8 downto 0);
signal p21, p23 : signed(9 downto 0);
signal ixt : signed(10 downto 0);

begin

pll <= -signed(resize(a(l, 1), 9));

p21 <= -signed(resize(a(2, 1), 10)) - signed(resiz
p31 <= -signed(resize(a(3, 1), 9));

pl3 <= signed(resize(a(d, 3), 9));

p23 <= signed(resize(a(2, 3), 10)) + signed(resize
p33 <= signed(resize(a(3, 3), 9));

ixt <= resize(pll, 11) + resize(p13, 11) + resize(

+ resize(p31, 11) + resize(p33, 11);

reg : process(clk, rst, en, write) is
begin
if rst ="0" then
ix <=to_signed(0, 11);
elsif (clk'event and clk = '1' and write = '1" an
iX <= ixt;
end if;

end process reg;

end architecture RTL;

1) sobelY.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.main.all;

- |+1 +2 +1]
--10 0 0]
-|-1-2 -1

entity sobelY is

port(
clk :in std_logic;

e(a(2, 1), 10));

(a(2, 3), 10));

p21, 11) + resize(p23, 11)

den="1")then

143

rst :in std_logic;

en :in std_logic;

write : in std_logic;

a :in matrix3u8;

iy :out signed(10 downto 0)
);

end entity sobelY;

architecture RTL of sobelY is
signal p11, p13, p31, p33 : signed(8 downto 0);
signal p12, p32 : signed(9 downto 0);
signal iyt : signed(10 downto 0);

begin
pll <= signed(resize(a(d, 1), 9));
p12 <= signed(resize(a(l, 2), 10)) + signed(resize
p13 <= signed(resize(a(l, 3), 9));
p31 <= -signed(resize(a(3, 1), 9));
p32 <= -signed(resize(a(3, 2), 10)) - signed(resiz
p33 <= -signed(resize(a(3, 3), 9));
iyt <= resize(pll, 11) + resize(p12, 11) + resize(
+ resize(p32, 11) + resize(p33, 11);

reg : process(clk, rst, en, write) is
begin
if rst ="0" then
iy <=to_signed(0, 11);
elsif (clk'event and clk = '1' and write = '1" an
iy <= iyt;
end if;

end process reg;

end architecture RTL;

J) matrixM.vhd

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity matrixM is
port(
clk :in std_logic;

rst :in std_logic;

(a1, 2), 10));

e(a(s, 2), 10));

pl3, 11) + resize(p31, 11)

den="1")then

144

);

en :in std_logic;

write :in std_logic;

ix, iy :in signed(10 downto 0);
a, b, ¢ : out signed(15 downto 0)

end entity matrixM;

architecture RTL of matrixM is

signal at, bt, ct : signed(20 downto 0);

begin

at <= resize(ix * ix, 21);

bt <= resize(ix * iy, 21);

ct <= resize(iy * iy, 21);
-- division by 2”5 = 32

reg : process(clk, rst, en, write) is

begin

if rst ='0" then
a <=to_signed(0, 16);
b <=to_signed(0, 16);
¢ <=to_signed(0, 16);
elsif (clk'event and clk = '1' and write = '1' an
a <= at(20 downto 5);
b <= bt(20 downto 5);
¢ <= ct(20 downto 5);
end if;

end process reg;

end architecture RTL;

k) blockFilter.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.main.all;

entity blockFilter is

port(

=

clk :in std_logic;
rst :in std_logic;
en :in std_logic;
write : in std_logic;
a :in matrix3s16;

sum : out signed(15 downto 0)

den="1"then

145

146

)
end entity blockFilter;

architecture RTL of blockFilter is

signal sumt : signed(19 downto 0);
begin

sumt <= resize(a(l, 1), 20) + resize(a(l, 2), 20) + resize(a(1, 3), 20) +
resize(a(2, 1), 20) + resize(a(2, 2), 20) + resize(a(2, 3), 20) + resize(a(3, 1),
20) + resize(a(3, 2), 20) + resize(a(3, 3), 20);

-- division by 24 = 16

reg : process(clk, rst, en, write) is
begin
if rst ='0" then
sum <=to_signed(0, 16);
elsif (clk'event and clk = '1' and write = '1' an den="1")then
sum <= sumt(19 downto 4);
end if;
end process reg;

end architecture RTL;

l) harrisResponse.vhd

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
--k=1/32 +1/128
--r = det - k*tr"2

--r = a*c - b*b - k*(a+c)*2

entity harrisResponse is

port(

clk :in std_logic;

rst :in std_logic;

en0 :in std_logic;

enl :in std_logic;

write :in std_logic;

a, b, c:in signed(15 downto 0);

r : out signed(31 downto 0)
);

end entity harrisResponse;

147

architecture RTL of harrisResponse is
signal act, bbt : signed(31 downto 0);
signal ac, bb : signed(31 downto 0);
signal a_plus_c : signed(16 downto 0);
signal tr2 : signed(33 downto 0);
signal k_tr2t : signed(29 downto 0);
signal k_tr2 : signed(29 downto 0);
signal rt : signed(31 downto 0);
begin
act <z=a*c;
bbt <=b*b;
a_plus_c <=resize(a, 17) + resize(c, 17);
tr2 <=a_plus_c*a plus_c;
k_tr2t <=resize(tr2(33 downto 5), 30) + resize(tr2(33 downto 7), 30);
rt <=resize(ac, 32) - resize(bb, 32) - resi ze(k_tr2, 32);

reg0 : process(clk, en0, write) is

begin
if (clk'event and clk ='1"' and write ='1' and e n0 ='1") then
ac <= act;
bb <= bbt;

k_tr2 <= k_tr2t;
end if;

end process reg0;

regl : process(clk, rst, enl, write) is

begin
if rst ='0" then
r <=to_signed(0, 32);
elsif (clk'event and clk = '1' and write = '1' an denl ="1")then
r<=rt
end if;

end process regl;

end architecture RTL;

m) findMax.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.main.all;

entity findMax is

port(
clk :in std_logic;
rst :in std_logic;
en :in std_logic;

write :in std_logic;
response : in signed(31 downto 0);
max :out signed(31 downto 0)
);
end entity findMax;

architecture RTL of findMax is

constant npixel : integer := ((height/2-3)*(width/ 2+3))*4;
signal i :integer range 1 to npixel := 1;
signal internal_max : signed(31 downto 0) :=
"10000000000000000000000000000000";
begin
fm : process(clk, rst, en, write) is
begin
if rst ='0" then
max <= "10000000000000000000000000000000";
elsif (clk'event and clk = '1' and write = '1' an den="1")then
if response > internal_max then
internal_max <= response;
end if;
if (i < npixel) then
i<=i+1;
else
i <=1;
internal_max <= "100000000000000000000000000000 00";
max <= internal_max;
end if;

end if;
end process fm;

end architecture RTL;

n) threshold.vhd

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity threshold is

port(
clk :in std_logic;

148

rst :in std_logic;
en :in std_logic;
write : in std_logic;
rO :in signed(31 downto 0);
thr :in signed(31 downto 0);
rl :outsigned(31 downto 0)
);
end entity threshold;

architecture RTL of threshold is
signal r0_delay : signed(31 downto 0);
signal r1t : signed(31 downto 0);
begin
rlt <=r0_delay when r0_delay >= thr else to_signe

reg : process(clk, rst, write) is
begin
if rst ='0" then
rO_delay <=to_signed(0, 32);
rl <=to_signed(0, 32);
elsif (clk'event and clk = '1" and write = '1") t
r0_delay <= r0;
if en ='1"' then
rl <=rit;
else
rl <=to_signed(0, 32);
end if;
end if;
end process reg;
end architecture RTL;

0) localMaximumBin.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.main.all;

entity localMaximumBin is
port(
r :in matrix3s32;
corner : out std_logic
);

end entity localMaximumBin;

d(0, 32);

hen

149

150

architecture RTL of localMaximumBin is

begin

corner <="'1"when (r(2,2) > r(1,1)) and
(r(2,2) >r(1,2)) and
(r(2,2) >r(1,3)) and
(r(2,2) >r(2,1)) and
(r(2,2) >r(2,3)) and
(r(2,2) >r(3,1)) and
(r(2,2) >r(3,2)) and
(r(2,2) >r(3,3)) else '0;

end architecture RTL;

p) cornerShiftRegister.vhd

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity cornerShiftRegister is

port(
clk :in std_logic;
rst :in std_logic;
write :in std_logic;

corner :in std_logic;
corner_sr : out std_logic_vector(3 downto 0)
);

end entity cornerShiftRegister;

architecture RTL of cornerShiftRegister is
signal ¢ : std_logic_vector(5 downto 0);
begin
sr : process(clk, rst, write) is
begin
if rst ="'0" then
¢ <="000000";
elsif (clk'event and clk = '1" and write = '1") t hen
c(5) <= c(4);
c(4) <=c(3);
¢(3) <= ¢c(2);
¢(2) <=c(1);
c(1) <= c(0);

¢(0) <= corner;

151

end if;
end process st;
corner_sr <= ¢(5 downto 2);

end architecture RTL;

APPENDIX E: MODIFIED GRID DESCRIPTOR

a) grid.h

#ifndef GRID_H
#define GRID_H

#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>

using namespace cv;

namespace grid {
void posDesc(vector<KeyPoint> &kp, Mat &dp, int

#endif // GRID_H

b) grid.cpp

#include "grid.h"

void grid::posDesc(vector<KeyPoint> &kp, Mat &dp, i
int center = g/2+1;
int needed_bytes = ((g*(g+1))>>3) + 1;
dp = Mat::zeros(kp.size(), needed_bytes, CV_8U
vector<KeyPoint> ikp;
for(int i=0;i<(int)kp.size();i++){
ikp.push_back(kp.at(i));
ikp.at(i).pt.x = (kp.at(i).pt.x)/(1<<h);
ikp.at(i).pt.y = (kp.at(i).pt.y)/(1<<h);
}
for(int i=0;i<(int)ikp.size();i++){
KeyPoint selpoint = ikp.at(i);
int X, Y;
int tot;
uchar dsc[needed_bytes];
for(int k=0;k<(int)needed_bytes;k++){
dsc[k] = 0;

g, int h);
nt g, int h){
);

152

}

float Ix = center - selpoint.pt.x;
float ly = center - selpoint.pt.y;
for(int j=0;j<(int)ikp.size();j++){
X = ikp.at(j).pt.x + Ix;
Y = ikp.at(j).pt.y + ly;
if(X>=0 && Y>=0 && X<=g && Y<=g){
tot = g*Y+X;
dsc[tot>>3] = dsc[tot>>3]|(1<<(tot& 0x7));

}
for(int j=0;j<(int)needed_bytes;j++){
dp.at<uchar>(i,j) = dscfj];

153

154

APPENDIX F: CUSTOM METHODS FOR POl CORRESPONDENCE
TESTS

a) Ratio test

void Matcher::ratioTest(vector<vector<DMatch> > &ma tches, double maxRatio){
uint i;
double ratio;
for(i=0; ixmatches.size(); i++){
ratio = matches.at(i).at(0).distance / matc hes.at(i).at(1).distance;
if(ratio>maxRatio){

matches.at(i).clear();

b) Symmetry test

void Matcher::symmetryTest(vector<vector<DMatch> > &matchesl, vector<vector<DMatch>
> &matches2, vector<DMatch>& symMatches){
uint i;
DMatch local;
for(i=0;i<matchesl.size();i++){
if(matchesl.at(i).size()){
local = matches1.at(i).at(0);

if(matches?2.at(local.trainldx).size()){

if(local.queryldx == matches2.at(lo cal.trainldx).at(0).trainldx){
symMatches.push_back(DMatch(mat chesl.at(i).at(0).queryldx,
mat chesl.at(i).at(0).trainldx,
mat chesl.at(i).at(0).distance));
}

c) Epipolar test

void Matcher::rectifiedTest(const vector<DMatch>& m
vector<DMatch>& rectMat
vector<KeyPoint>& kpul,
vector<KeyPoint>& kpu2)

for (vector<DMatch>::const_iterator matchlterat
matchlteratorl!= matches.end(); ++matchlite
if (fabsf(kpu2[(*matchliteratorl).trainldx].
kpul[(*matchlteratorl).queryldx].pt.y) < 5) {
rectMatches.push_back(DMatch((*matchite
(*matchlte

(*matchlte

155

atches,

ches,

{

orl= matches.begin();
ratorl) {

pty -

ratorl).queryldx,
ratorl).trainldx,

ratorl).distance));

156

APPENDIX G: CLASS FOR CONTROLLING FOCUS AND
EXPOSURE THROUGH LIBWEBCAM

a) focus.h

#ifndef FOCUS_H
#define FOCUS_H

#include <webcam.h>
#include <iostream>

using namespace std;

class Focus

{

public:
Focus(const char*);
~Focus();
int setAutoFocus(int);
int setFocus(int);
int setAutoExposure(bool);
int setExposureTime(int);

int getExposureTime();
private:

int cam_id;

#endif // FOCUS_H

b) focus.cpp

#include "focus.h"

Focus::Focus(const char* device)
{
int ret = c_init();
if(ret) cerr << "Unable to c_init (%d)." << end l;

cam_id = c_open_device(device);

157

setAutoFocus(0);
setFocus(0); //Bug fix.

setAutoExposure(false);

Focus::~Focus()
{
c_close_device(cam_id);

c_cleanup();

int Focus::setAutoFocus(int val)
{
CControlValue value;
value.value = val;
int ret = c_set_control(cam_id, CC_AUTO_FOCUS, &value);

return ret;

int Focus::setFocus(int val)
{
CControlValue value;
value.value = val;
int ret = c_set_control(cam_id, CC_FOCUS_ABSOLU TE, &value);
return ret;

int Focus::setAutoExposure(bool status)

{
CcControlValue value;
if(status)
value.value = 3;
else
value.value = 1;
int ret = c_set_control(cam_id, CC_AUTO_EXPOSUR E_MODE, &value);
return ret;
}

int Focus::setExposureTime(int val)
{
CControlValue value;
value.value = val;
int ret = c_set_control(cam_id, CC_EXPOSURE_TIM E_ABSOLUTE, &value);
return ret;

158

9. REFERENCES

Ahn, S. H., Choi, J. W., Doh, N. L., & Chung, W. R008). A practical approach for EKF-
SLAM in an indoor environment: fusing ultrasonicnsers and stereo camera.
Autonomous Robots, @), 315-335. doi: 10.1007/s10514-007-9083-2

Ahn, Sunghwan, Lee, Kyongmin, Chung, Wan Kyun, & Ghang-Rok. (2007). SLAM with
visual plane: Extracting vertical plane by fusingreo vision and ultrasonic sensor for
indoor environmentProceedings of the 2007 leee International Confeeemmn
Robotics and Automation, Vols 1-(@p. 4787-4794).

Alahi, A., Ortiz, R., & Vandergheynst, P. (2012REAK: Fast Retina KeypoinR012 leee
Conference on Computer Vision and Pattern Recagn{ifCvpr) 510-517.

Altera Corp. (2014a). Nios Il Processor: The Warliflost Versatile Embedded Processor.
Retrieved April 28, 2014, from http://www.alteranstevices/processor/nios2/ni2-
index.html

Altera Corp. (2014b). SoC Overview. Retrieved raaby 25, 2014, from
http://www.altera.com/devices/processor/soc-fpgareew/proc-soc-fpga.html

Amaricai, A., Gauvriliu, C. E., & Boncalo, O. (2012;4 Sept. 2014)An FPGA sliding
window-based architecture harris corner detectétaper presented at the Field
Programmable Logic and Applications (FPL), 20124ternational Conference on.

Analog Devices Inc. (2010). ADAU1761 Datasheet. nfro
http://www.analog.com/static/imported-files/dataests/ ADAU1761.pdf

Ascani, A., Frontoni, E., Mancini, A., & ZingarettP. (2008).Feature group matching for
appearance-based localizatioNew York: leee.

Aulinas, J., Petillot, Y., Salvi, J., & Llado, X2@08). The SLAM problem: a survertificial
Intelligence Research and Development, ,1863-371. doi: Doi 10.3233/978-1-
58603-925-7-363

Avnet Inc. (2014). ZedBoard Getting Started Guide. from
http://www.zedboard.org/sites/default/files/docutadions/GS-AES-Z7EV-7Z2020-G-
V7.pdf

Aydogdu, M. F., Demirci, M. F., & Kasnakoglu, C.0®3, 12-14 Dec. 2013Ripelining
Harris corner detection with a tiny FPGA for a migbrobot. Paper presented at the
Robotics and Biomimetics (ROBIO), 2013 IEEE Inteimi@al Conference on.

Bailey, Donald G. (2011)Design for embedded image processing on FRPGINsgapore:
John Wiley & Sons (Asia).

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SEERSpeeded up robust featur€amputer
Vision - Eccv 2006 , Pt 1, Proceedings, 39804-417.

Birem, M., & Berry, F. (2012, 20-23 May 201FHPGA-based real time extraction of visual
features. Paper presented at the Circuits and Systems (I$CAR812 IEEE
International Symposium on.

Bouguet, J. (2013). Camera Calibration ToolboxMatlab. Retrieved May 14, 2014, from
http://www:.vision.caltech.edu/bouguetj/calib_doc/

Callet, P. L. (2010). IRCCyN IVC Quality AssessmeiftStereoscopic Images. Retrieved
May 15, 2014, from http://www.irccyn.ec-nantes.fecallet/platforms.htm

Calonder, M., Lepetit, V., Strecha, C., & Fua, B010). BRIEF: Binary Robust Independent
Elementary Features. In K. Daniilidis, P. Maragod\N& Paragios (Eds.)JComputer
Vision-Eccv 2010, Pt IVol. 6314, pp. 778-792).

159

Choi, Jinwoo, Lee, Kyoungmin, Ahn, Sunghwan, Chdinyong, & Chung, Wan Kyun.
(2006).A practical solution to SLAM and navigation in hoerezironment

Chu, Pong P. (2008al.PGA prototyping by Verilog examples : Xilinx Spart-3 version
Hoboken, N.J.: J. Wiley & Sons.

Chu, Pong P. (2008b}-PGA prototyping by VHDL examples : Xilinx Spartrversion
Hoboken, N.J.: Wiley-Interscience.

Crockett, Louise Helen, Elliot, Ross, Enderwitz,riitg & Stewart, Robert. (2014). The Zynq
Book: Embedded Processing with the Arm Cortex-AStta Xilinx Zyng-7000 All
Programmable SoC.

Di Carlo, S., Gambardella, G., Prinetto, P., Roldo, Trotta, P., & Lanza, P. (2013, 2-4 Sept.
2013).FEMIP: A high performance FPGA-based features esttra& matcher
for space applicationsPaper presented at the Field Programmable Logat an
Applications (FPL), 2013 23rd International Confeze on.

Digia plc. (2014). QtNetwork Module. Retrieved W25, 2014, from qt-project.org/doc/qt-
4.8/qtnetwork.html

Digilent Inc. (2013). Embedded Linux Hands-on Tigbr ZedBoard. Retrieved April 28,

2014, from
http://www.digilentinc.com/Products/Detail.cfm?NatR=2,400,1028&Prod=ZEDB
OARD

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneolocalization and mapping: Partiéee
Robotics & Automation Magazine, (B3, 99-108. doi: 10.1109/mra.2006.1638022

Fix, Evelyn, & Hodges Jr, Joseph L. (1951). Discnatory analysis-nonparametric
discrimination: consistency properties: DTIC Docunine

Fritsch, Jannik, Kuehnl, Tobias, & Geiger, Andre@013). A New Performance Measure
and Evaluation Benchmark for Road Detection Aldonis International Conference
on Intelligent Transportation Systems (ITSC)

Geiger, Andreas. (2015). The KITTI Vision Benchm&tite. Retrieved February 2, 2015,
from http://www.cvlibs.net/datasets/kitti/

Geiger, Andreas, Lenz, Philip, Stiller, ChristoghUrtasun, Raquel. (2013). Vision meets
Robotics: The KITTI Dataselmternational Journal of Robotics Research (IJRR)

Geiger, Andreas, Lenz, Philip, & Urtasun, Raqu2D12). Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suit€onference on Computer Vision and
Pattern Recognition (CVPR)

Gross, Changil Kim; Henning Zimmer; Yael Pritch;efander Sorkine-Hornung; Markus.
(2012). Scene Reconstruction from High Spatio-AaguResolution Light Fields.
Retrieved February 2, 2015, from http://www.disresgarch.com/project/lightfields/

Guivant, J. E., & Nebot, E. M. (2001). Optimizatioh the simultaneous localization and
map-building algorithm for real-time implementatidaee Transactions on Robotics
and Automation, 1(8), 242-257. doi: Doi 10.1109/70.938382

Harris, Chris, & Stephens, Mike. (1988). combined corner and edge detect®aper
presented at the Alvey vision conference.

Hartley, Richard, & Zisserman, Andrew. (200B)ultiple view geometry in computer vision
(2nd ed.). Cambridge ; New York: Cambridge UnivgrBiress.

Hartmann, J., Klussendorff, J. H., & Maehle, E.J2DA Comparison of Feature Descriptors
for Visual SLAMNew York: leee.

Ho, K. (2012). A survey of algorithms for star idiéication with low-cost star trackerécta
Astronautica, 73156-163. doi: DOI 10.1016/.actaastro.2011.10.017

IEEE. (2006). IEEE Standard for Verilog HardwaresBrgption LanguagelEEE Std 1364-
2005 (Revision of IEEE Std 1364-2001)1-560. doi: 10.1109/IEEESTD.2006.99495

160

IEEE. (2007). IEEE Standard VHDL Language RefereMesmual Amendment 1: Procedural
Language Application InterfaclEEE Std 1076¢-2007 (Amendment to IEEE Std 1076-
2002) c1-214. doi: 10.1109/IEEESTD.2007.4299594

ImageMagick Studio LLC. (2015). ImageMagick: CortyeEdit, Or Compose Bitmap
Images. Retrieved February 2, 2015, from httpuifimagemagick.org/

Jacob, B., & Guennebaud, G. (2014). Eigen is a @mplate library for linear algebra.
Retrieved May 25, 2014, from http://eigen.tuxfanolg/index.php?title=Main_Page

Jung, I. K., & Lacroix, S. (2001A robust interest points matching algorithhos Alamitos:
leee Computer Soc.

Kerrisk, Michael. (2015a). CLOCK_GETRES(2) - Linéxogrammer's Manual. Retrieved
February 2, 2015, from http://man7.org/linux/mamgsman2/clock _gettime.2.html

Kerrisk, Michael. (2015b). MMAP(2) - Linux Progranen's Manual. Retrieved February 17,
2015, from http://man7.org/linux/man-pages/man2/mpiaatml

Laganiére, Robert. (2011QpenCV 2 Computer Vision Application ProgrammingKklmok:
Over 50 Recipes to Master this Library of ProgramgniFunctions for Real-time
Computer VisionPackt Publishing Ltd.

Lee, S., & Lee, S. (2013). Embedded Visual SLAM HKggiions for Low-Cost Consumer
Robots. leee Robotics & Automation Magazine, (20 83-95. doi: Doi
10.1109/Mra.2013.2283642

Leutenegger, S., Chli, M., & Siegwart, R. Y. (201BRISK: Binary Robust Invariant
Scalable Keypoints2011 leee International Conference on Computeroviigiccv)
2548-2555.

libwebcam. (2014). libwebcam. Retrieved May 23,012 from
http://sourceforge.net/projects/libwebcam/

Liebe, Carl Christian. (1993). Pattern recognitioh star constellations for spacecraft
applicationsAerospace and Electronic Systems Magazine, |IEER, 81-39.

Linaro. (2014). Linaro: open source software forMBoCs. Retrieved May 23, 2014, from
http://www.linaro.org/

Logitech. (2014). HD Webcam C525. Retrieved May3, 22014, from
http://www.logitech.com/en-us/product/hd-webcam&52

Lowe, D. G. (2004). Distinctive image features freoale-invariant keypoint$nternational
Journal of Computer Vision, 6D, 91-110. doi: Doi
10.1023/B:Visi.0000029664.99615.94

Montemerlo, M., Thrun, S., Koller, D., Wegbreit,, BAaai, & Aaai. (2002)FastSLAM: A
factored solution to the simultaneous localizataod mapping problem

Montemerlo, Michael, Thrun, Sebastian, Roller, Dagh & Wegbreit, Ben. (2003).
FastSLAM 2.0: an improved patrticle filtering algimn for simultaneous localization
and mapping that provably converg&aper presented at the Proceedings of the 18th
international joint conference on Atrtificial intiglence, Acapulco, Mexico.

Mortensen, E. N., Deng, H., & Shapiro, L. (2005)SAT descriptor with global context. In
C. Schmid, S. Soatto & C. Tomasi (Ed2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, VaPdgceedinggpp. 184-190). Los
Alamitos: leee Computer Soc.

Munguia, R., Castillo-Toledo, B., & Grau, A. (2013 Robust Approach for a Filter-Based
Monocular Simultaneous Localization and MappingASL) System.Sensors, 13),
8501-8522. doi: Doi 10.3390/S130708501

Na, Meng, & Jia, Peifa. (2006) survey of all-sky autonomous star identificat@bgorithms

NVIDIA Corp. (2014). CUDA Parallel Computing Platfo Retrieved February 25, 2014,
from http://www.nvidia.com/object/cuda_home_new.htm

161

OpenCV. (2014). OpenCV Open Source Computer VisidRetrieved May 14, 2014, from
http://opencv.org/

OpenCV. (2015). Common Interfaces of Feature Detsct Retrieved February 2, 2015,
from
http://docs.opencv.org/modules/features2d/doc/comnmberfaces_of feature detect
ors.html

Padgett, C., & KreutzDelgado, K. (1997). A gridaithm for autonomous star identification.
leee Transactions on Aerospace and Electronic 8wyste331), 202-213. doi:
10.1109/7.570743

Paz, L. M., Pinies, P., Tardos, J. D., & Neira(2D08). Large-Scale 6-DOF SLAM With
Stereo-in-Hand. leee Transactions on Robotics, (84 946-957. doi:
10.1109/tr0.2008.2004637

Pedroni, Volnei A. (2010)Circuit design and simulation with VHD{nd ed.). Cambridge,
Mass.: MIT Press.

Rosten, Edward, & Drummond, Tom. (2006). Machinaréeng for high-speed corner
detectionComputer Vision—ECCV 20(pp. 430-443): Springer.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, (@011). ORB: an efficient alternative to
SIFT or SURF2011 leee International Conference on Computeroviiglccv) 2564-
2571.

Scharstein, D. (2006). Middlebury Stereo DatasetsRetrieved May 23, 2014, from
http://vision.middlebury.edu/stereo/data/

Schleicher, D., Bergasa, L. M., Ocana, M., Bareg, & Lopez, E. (2010). Real-time
hierarchical stereo Visual SLAM in large-scale eomiments. Robotics and
Autonomous Systems,(88 991-1002. doi: DOI 10.1016/j.robot.2010.03.016

Siegwart, Roland, Nourbakhsh, lllah Reza, & Scamrau Davide. (2011)introduction to
autonomous mobile robof&nd ed.). Cambridge, Mass.: MIT Press.

Sola, Joan. (2013, 01/17/2013). Simultaneous |patiiin and mapping with extended
Kalman filter. Retrieved March 7, 2014, from
http://www.iri.upc.edu/people/jsola/JoanSola/olgsetturs SLAM/SLAM2D/SLAM
%20course.pdf

Spratling, Benjamin B, & Mortari, Daniele. (2009) survey on star identification algorithms.
Algorithms, Z1), 93-107.

Taylor, Adam P. (2015). A Double-Barreled Way tot@Gee Most from Your Zynq SoC.
Xcell Journal, 190), 38-45.

The Mathworks, Inc. (2014). Introducing MATLAB Emgi. Retrieved May 25, 2014, from
http://mww.mathworks.com/help/matlab/matlab_ext&maoducing-matlab-
engine.html

Thrun, S., Liu, Y. F., Koller, D., Ng, A. Y., Ghamani, Z., & Durrant-Whyte, H. (2004).
Simultaneous localization and mapping with sparsteergled information filters.
International Journal of Robotics Research, (28), 693-716. doi: Doi
10.1177/0278364904045479

Thrun, Sebastian. (2002). Robotic mapping: A suré&yploring artificial intelligence in the
new millennium1-35.

Thrun, Sebastian, Burgard, Wolfram, & Fox, Diet€R005). Probabilistic robotics
Cambridge, Mass.: MIT Press.

Todt, Eduardo. (2005)Visual Landmark Detection for Navigation in Outddémvironments.
Institut d’Organitzacié i Control de Sistemes Inuliads, Barcelona.

Tsai, R. Y. (1987). A VERSATILE CAMERA CALIBRATIONTECHNIQUE FOR HIGH-
ACCURACY 3D MACHINE VISION METROLOGY USING OFF-THESHELF TV
CAMERAS AND LENSESIeee Journal of Robotics and Automatio(%)3323-344.

162

University of Pennsylvania. (2013). Computer PoWeage. Retrieved April 6, 2015, from
https://secure.www.upenn.edu/computing/resourctesjoay/hardware/article/comput
er-power-usage

Wikipedia. (2015). Lenna. Retrieved February 2, 012 from
http://en.wikipedia.org/wiki/Lenna

Xilinx Inc. (2009). UG627 - XST User Guide. v 11.3 from
http://www.xilinx.com/support/documentation/sw_matsixilinx11/xst.pdf

Xilinx Inc. (2011). UG761 - AXl Reference Guide. v13.1. from
http://www.xilinx.com/support/documentation/ip_doeentation/ug761_axi_referenc
e_guide.pdf

Xilinx Inc. (2012). UG687 - XST User Guide for \@t-6, Spartan-6 and 7 Series Devices.
14.1. Retrieved May 25, 2014, from

http://mwww.xilinx.com/support/documentation/sw_maitsixilinx14_2/xst_v6s6.pdf

Xilinx Inc. (2013a, August 6, 2013). UG474 - 7 ®sriFPGAs Configurable Logic Block -
User Guide. from
http://www.xilinx.com/support/documentation/useridgs/ug474_7Series_CLB.pdf

Xilinx Inc. (2013b). Zyng-7000 Combined Product Tab from
http://www.xilinx.com/publications/prod_mktg/zynqid@/Zyng-7000-combined-
product-table.pdf

Xilinx Inc. (2014a). MicroBlaze Soft Processor Core Retrieved April 28, 2014, from
http://www.xilinx.com/tools/microblaze.htm

Xilinx Inc. (2014b). UG473 - 7 Series FPGAs MemoResources. Vv 1.10. from
http://mwww.xilinx.com/support/documentation/usericgs/ug473_7Series_Memory _
Resources.pdf

Xilinx Inc. (2014c). Zyng-7000 All Programmable So(Retrieved February 25, 2014, from
http://mwww.xilinx.com/products/silicon-devices/seghg-7000/index.htm

Xilinx Inc. (2015). SDSoC Development Environment.Retrieved April 5, 2015, from
http://mwww.xilinx.com/products/design-tools/sdx/edshtml

Zhang, Z. Y. (2000). A flexible new technique faneera calibrationleee Transactions on
Pattern Analysis and Machine Intelligence, (2B, 1330-1334. doi:
10.1109/34.888718

