
TIAGO RODRIGO KEPE

A TUNING APPROACH BASED ON EVOLUTIONARY
ALGORITHM AND DATA SAMPLING FOR BOOSTING

PERFORMANCE OF MAPREDUCE PROGRAMS

Dissertation presented as partial requisite to
obtain the Master's degree. M.Sc. program
in Informatics, Federal University of Paraná.
Advisor: Prof. Dr. Eduardo C. de Almeida

CURITIBA

2013

TIAGO RODRIGO KEPE

A TUNING APPROACH BASED ON EVOLUTIONARY
ALGORITHM AND DATA SAMPLING FOR BOOSTING

PERFORMANCE OF MAPREDUCE PROGRAMS

Dissertation presented as partial requisite to
obtain the Master's degree. M.Sc. program
in Informatics, Federal University of Paraná.
Advisor: Prof. Dr. Eduardo C. de Almeida

CURITIBA

2013

K38t Kepe, Tiago Rodrigo
 A tuning approach based on evolutionary algorithm and data sampling for
boosting performance of mapreduce programs / Tiago Rodrigo Kepe. –
Curitiba, 2013.
 51f. : il. color. ; 30 cm.

 Dissertação - Universidade Federal do Paraná, Setor de Ciências Exatas,
Programa Interdisciplinar de Pós-graduação em Informática, 2013.

 Orientador: Eduardo C. de Almeida .
 Bibliografia: p. 47-51.

 1. Bancos de dados. 2. Processamento eletrônico de dados -
Processamento distribuído. 3. Algorítmos genéticos. I. Universidade Federal
do Paraná. II.Almeida, Eduardo C. de. III. Título.

CDD: 005.75

i

Digo ao Senhor: Tu és o meu Senhor,

outro bem não possuo, senão a ti somente.

O Senhor é a porção da minha herança

e o meu cálice; tu és o arrimo da minha sorte.

Tu me farás ver os caminhos da vida;

na tua presença há plenitude de alegria,

nas tua destra, delícias perpetuamente.

Salmos: 16:2,5,11.

Dedico esta dissertação ao Senhor, meu Deus,

que guiou todos os meus passos até esse momento.

ii

AGRADECIMENTOS

Agradeço primeiramente a Deus, autor e consumador da minha fé.

Sou grato pela vida da minha esposa por sua compreensão, apoio e

incentivo durante todo meu mestrado.

Ao Paulo Vinicius meu amável �lho que foi um presente de Deus

para me dar ânimo e, assim, concluir este trabalho.

Agradeço meus pais, dona Rosilene e seu Julio Kepe, pelos ensina-

mentos fundamentais para minha vida cristã, pelo amor e dedicação

incontestáveis.

Agradeço meus segundos pais, Marlene e Paulo Dourado, que

prontamente nos ajudaram inúmeras vezes, sem exitar.

Agradeço ao meu orientador Eduardo Almeida pela paciência, de-

dicação e valiosas dicas que conduziram à conclusão deste trabalho.

(Tiago Rodrigo Kepe)

iii

CONTENTS

LIST OF FIGURE v

LIST OF TABLES vi

RESUMO viii

ABSTRACT ix

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contribution . 3

1.4 Outline . 3

2 BACKGROUND AND RELATED WORK 5

2.1 Key-value model . 5

2.2 MapReduce . 5

2.3 Hadoop . 6

2.3.1 Job processing . 8

2.4 MapReduce related tuning techniques . 10

2.5 Sampling techniques . 12

2.5.1 Sampling approaches on MR . 12

3 GENETIC AND BACTERIOLOGIC ALGORITHMS FOR TESTING 14

3.1 Genetic Algorithm . 14

3.2 Algorithm for testing . 16

3.2.1 Context transformation . 17

3.2.2 Bacteriological Algorithm . 18

iv

4 SAMPLING ON HADOOP 21

4.1 Motivation for sampling . 21

4.2 Sampling applied by Big Data solutions . 22

4.2.1 Reservoir Sampling . 23

4.3 KSample - Dynamic Reservoir Sampling Algorithm 26

4.3.1 KSample on Hadoop (Distributed KSample) 30

5 FRAMEWORK FOR TESTING 32

5.1 Framework Overview . 32

5.2 Front-end . 33

5.2.1 DSL Design Methodology . 33

5.2.2 The DSL for tuning MapReduce programs 34

5.3 Engine . 37

5.3.1 Sampler component . 38

5.3.2 AutoConf component . 38

5.3.3 Core component . 38

5.4 Back-end . 39

6 EXPERIMENTS 40

6.1 Bacteriological Algorithm against Genetic Algorithm 40

6.2 Con�guration quality . 42

6.3 Cost of the tuning process . 43

7 CONCLUSION AND FUTURE WORK 45

BIBLIOGRAPHY 51

v

LIST OF FIGURES

2.1 MapReduce framework [13]. 7

3.1 Context transformation. 17

4.1 KSample's execution. 28

5.1 Framework's �ow. 32

5.2 Engine processing. 38

6.1 BA against GA. 41

6.2 WordCount's con�guration quality. 42

6.3 Grep's con�guration quality. 43

6.4 Cost of each generation. 44

6.5 Agregate cost per generation. 44

7.1 Case to study. 46

vi

LIST OF TABLES

2.1 MapReduce processing. 6

2.2 Regular expression example. 10

5.1 DSL design patterns [32]. 34

vii

NOMENCLATURE

BA - Bacteriological Algorithm

DBMS - Database Management Systems

DW - Data Warehouse

EA - Evolutionary Algorithms

GA - Genetic Algorithm

GPL - General-Purpose Language

HDFS - Hadoop Distributed File System

MR - MapReduce

viii

RESUMO

O software de processamento de dados Apache Hadoop está introduzido em um am-

biente complexo composto de enormes cluster de máquinas, grandes conjuntos de dados

e vários programas de processamento. Administrar tal ambiente demanda tempo, é dis-

pendioso e requer usuários experts. Por isso, falta de conhecimento pode ocasionar falhas

de con�gurações degradando a performance do cluster de processamento. Realmente,

usuários gastam muito tempo con�gurando o ambiente em vez de focar na análise dos

dados. Para resolver questões de má con�guração nós propomos uma solução, cujo ob-

jetivo é ajustar parâmetros de desempenho de programas executados sobre o Hadoop

em ambientes Big Data. Para alcançar isto, nosso mecanismo de ajuste de desempenho

inspira-se em duas ideias-chave: (1) um algoritmo evolucionário para gerar e testar novas

con�gurações de jobs, e (2) amostragem de dados para reduzir o custo do processo de

ajuste de desempenho. A partir dessas ideias desenvolvemos um framework para testar

con�gurações usuais de programas e obter uma nova con�guração mais ajustada ao es-

tado atual do ambiente. Resultados experimentais mostram ganho na performance de

jobs comparado com as con�gurações padrão e �regras de ouro� do Hadoop. Além disso,

os experimentos comprovam a acurácia da nossa solução no que se refere ao custo para

obter uma melhor con�guração e a qualidade da con�guração alcançada.

Palavras chaves: Big Data, MapReduce, Hadoop, Ajuste

ix

ABSTRACT

The Apache Hadoop data processing software is immersed in a complex environment

composed of huge machine clusters, large data sets, and several processing jobs. Managing

a Hadoop environment is time consuming, toilsome and requires expert users. Thus, lack

of knowledge may entail miscon�gurations degrading the cluster performance. Indeed,

users spend a lot of time tuning the system instead of focusing on data analysis. To

address miscon�guration issues we propose a solution implemented on top of Hadoop.

The goal is presenting a tuning mechanism for Hadoop jobs on Big Data environments.

To achieve this, our tuning mechanism is inspired by two key ideas: (1) an evolutionary

algorithm to generate and test new job con�gurations, and (2) data sampling to reduce

the cost of the tuning process. From these ideas we developed a framework for testing

usual job con�gurations and get a new con�guration suitable to the current state of the

environment. Experimental results show gains in job performance against the Hadoop's

default con�guration and the rules of thumb. Besides, the experiments prove the accuracy

of our solution which is the relation between the cost to obtain a better con�guration and

the quality of the con�guration reached.

Keywords: Big Data, MapReduce, Hadoop, Tuning

1

CHAPTER 1

INTRODUCTION

In this chapter we present our motivation and objectives for this work, and we present

the organization of the document.

1.1 Motivation

Currently, companies and research scienti�c institutes are awash in an ocean of data.

In that context �Big Data� has emerged, and important endeavors have been put into the

investigation of new technologies to handle massive data sets. Hence, those companies

and research institutes are investing a lot of research e�orts in distributed and parallel

computing to mine �Big Data�. The key-value model has been demonstrated as a powerful

solution to enable that applications enjoy data parallelism. For example, the MapReduce

(MR) programming model based on the key-value model has become the industry de facto

standard for parallel processing on Big Data. Attractive features such as scalability and

�exibility motivate many large companies such as Facebook, Google, Yahoo and research

institutes to adopt this new programming model.

The Google company in 2003 and 2004 disclosed the Google File System [19] and

the MapReduce programming framework [13] for storing and processing data on large

clusters. An open source implementation of the MR framework is the Apache Hadoop

which is a standardized solution to handle massive data sets. Besides Hadoop, several

other implementations are available: Greenplum MapReduce [36, 21], Aster Data [4],

Nokia Disco [35] and Microsoft Dryad [28].

MapReduce is a simpli�ed programming model where data processing algorithms are

implemented as instances of two higher-order functions: Map and Reduce. All complex

issues related to distributed processing, such as: scalability, data distribution and re-

conciliation, concurrence and fault tolerance are managed by the framework. The main

2

complexity, left to the developer of a MapReduce-based application (also called a job),

lies in design decisions to split the application-speci�c algorithm into the two higher-order

functions.

Indeed, Hadoop has an intuitive interface to implement MR jobs, but on the other

hand it has a complex environment which is composed of a cluster of machines, large

sets of data stored into the cluster and several MR jobs. A single MR job on Hadoop

has a large number of parameters to be con�gured, such as: memory allocation, I/O

controllers, network timeouts etc. Those parameters are bound to the available resources

(e.g. input data, online machines, network bandwidth, etc.). Thus, each MR job requires

proper con�gurations to obtain good performance. A relevant aspect is that the MR

jobs are expected to work with large amounts of data, which can be the main barrier

to �nd a con�guration [7] that adapts to the current state of the environment. We call

such con�guration as adaptive con�guration. Therefore, data sampling can be useful to

improve the testing time of new con�guration parameters, instead of processing all the

data set. But, generating a representative and relevant data sampling is hard and a bad

sampling may not represent several aspects related to the computation in large-scale, such

as e�cient resource usage, correct merge of data and intermediate data.

1.2 Objectives

Our objective is to present a tuning approach for MR jobs. The success of a tuning

approach for Hadoop depends on reaching a con�guration suitable to the current state

of the environment. Thus, new job con�gurations have to be explored and tested with

respect to some quality criteria, for example the job response time. Normally this process

is done manually. The challenge mainly lies in two issues: (1) the large amount of stored

data that can exponentially increase the time needed to test new job con�gurations, and

(2) the large number of con�guration parameters to explore.

3

1.3 Contribution

We present an original solution to automate con�guration of long-lived jobs on Hadoop.

Our approach is based on the Bacteriological Algorithm [5] using the job response time

as the �tness value. The BA allows to create new job con�gurations, but they must be

tested in order to select which one is suitable for the current state of the MR environment.

To achieve testing automation, it is crucial to apply techniques to e�ciently reduce the

amount of data to be processed. A common approach used on DBMS (Database Man-

agement Systems) is data sampling. However, in the Big Data context, data sampling is

challenging due to the large amount of data: not only the sampling must be done in a

distributed fashion, but also data storage. Hence, we created a novel sampling algorithm

called KSample based on the Reservoir Sampling Algorithm. KSample requires as pa-

rameter a percentage of the population to be sampled, and we proved, mathematically,

that it samples at least this percentage of the population. We implemented KSample on

MapReduce to perform distributed data sampling on unstructured data, without knowl-

edge of the data set size. Also, we provide a user interface to facilitate the iteraction with

the tuning process and data sampling through a domain-speci�c language (DSL).

In summary, our proposal intends to establish a framework to automate Hadoop job

con�guration, through the following contributions:

• an evolutionary algorithm on Hadoop context to obtain a better job con�guration

driven by the job execution time;

• a distributed data sampling algorithm on Hadoop clusters, considering the row as

data sampling unit;

• a domain speci�c language for users to iteract with the tuning process.

1.4 Outline

Chapter 2 introduces the fundamental concepts of the key-value model, the MR pro-

gramming model and the Hadoop framework, as well some related work. Chapter 3

4

presents the evolutionary algorithm to choose job con�gurations. Chapter 4 presents the

distributed algorithm to generate data sampling. Chapter 5 presents our framework with

its modules. Chapter 6 discusses the experiments and results reached by our solution.

Chapter 7 concludes this work bringing some topics for discussion and future work.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter introduces some concepts that are used in the subsequent sections: the

key-value model, the MapReduce programming model and the Hadoop framework. It also

discusses about some related work on tuning MR jobs and data sampling.

2.1 Key-value model

The key-value model is a simple model for data storage that forgoes any aggregation

or creation of data schema. The key-value model stores data in an unstructured way, thus

all details of data is done at runtime by the running jobs. It thus contrast with other

models that store data intrinsically structured, such as the relational model [11], in which

the simplistic notion of tables, attributes and relations de�ne the data structure for the

storage, and the hierarchical data model [40], in which the links that connect the records

de�ne a data structure. The key-value model doesn't have an elaborated data structure

in order to enjoy data parallelism.

2.2 MapReduce

In 2003 and 2004 Google company disclosed the Google File System [19] and the

MapReduce programming framework [13] for storing and processing data on large clusters.

The MapReduce is inspired by the Map and Reduce primitives present in Lisp and

Haskell. Hence, programmers can focus only on the creation of the two higher-order

functions to solve a speci�c problem and to handle the data. The map function receives

a set of 〈key, value〉 pairs and produces an intermediate set of 〈key, value〉 pairs. The

framework is responsible for aggregating all intermediate values which share the same

key, putting them in a list, forming new pairs 〈key, list(values)〉 and passing them to the

6

reduce function which processes these values in order to form a new smaller set of values:

map k1, v1 → set(k2, v2)
reduce k2, list(v2) → set(v3)

Table 2.1: MapReduce processing.

When the map results are already available in memory, a local function Combiner

may be used for optimization reasons. Such function combines all values for a given key,

resulting in a local set 〈k2, list(v2)〉. This function runs after the Map and before the

Reduce functions on every node that runs map functions. The Combiner may be seen as

a mini-reduce function, which operates only on data generated by one machine.

We de�ne the MapReduce as programming model and its implementation as the

MapReduce framework, this solution allows many database processes to be written in

a simple way, [29]. Vast amount of data is splitted and assigned to a set of computers,

called computer cluster, to improve performance through parallelism. The goal is to re-

duce the complexity, thus users can focus on the main problem that is the data processing.

The MR framework, see Figure 2.1, delegates nodes in the cluster to execute the map and

reduce functions, splits the input �les, and distributes the �les to the respective nodes.

The map computing is run in parallel. As mappers terminate their outputs are gathered

to form the intermediate 〈key, value〉 pairs. After that the reducers receive those pairs

as input and run the reduce function (the reducers also operate in parallel). All steps are

orchestrated by a master machine.

2.3 Hadoop

Recently, the MapReduce programming model have been implemented by several

frameworks such as Greenplum MapReduce [36, 21], Aster Data [4], Nokia Disco [35],

Microsoft Dryad [28], and Hadoop [25].

The introduction of the MR framework boosted the creation of an open source alter-

native to Google's solutions. The most popular open source MapReduce implementation

7

Figure 2.1: MapReduce framework [13].

is the Apache Hadoop framework. It implements an engine of MapReduce and its own

system �le called Hadoop Distributed File System (HDFS) . Hadoop is a framework for

reliable, scalable and distributed computing. It provides an intuitive interface to create

MR programs (the jobs), by de�ning the map and reduce functions (the tasks). It was

designed to allow users to focus on the implementation of those functions, without wor-

rying about issues involving the distributed computing, such as: �le splitting, replication,

fault tolerance and task distribution.

Hadoop is composed of two main components:

• Hadoop Distributed File System (HDFS);

• MapReduce Engine.

The HDFS stores all �les in blocks. The block size is con�gurable per �le, and all

blocks of a �le must have the same block size except for the last block. It is divided

into two components: the NameNode and the DataNode . The NameNode is placed

in the master machine. It stores all the metadata and manages all the DataNodes. The

DataNode stores the data. When a DataNode starts it connects to the NameNode, then

8

responds to requests from the NameNode for �le system operations.

The MapReduce engine is responsible for parallel processing. It is composed of a

JobTracker which lies into the master machine, and several TaskTrackers which lie

into the slave machines, also known as workers. The JobTracker receives job submissions

from users, and it designates TaskTrackers to compute map and reduce tasks with its

respective input blocks. A worker that processes a map task is called mapper and a

worker that processes a reduce task is called reducer.

2.3.1 Job processing

A job is a program in a high-level language such as Java, Ruby or Python which im-

plements the map and reduce functions. Users submits jobs to the master machine with

its input directory stored into the HDFS which contains all �les to be processed (inserted

previously in the HDFS). Hadoop respects the premise minimal data motion which con-

sists in moving the computation where the data are stored, thus reducing network I/O

to ensure local disk I/O as much as possible. The data distribution amongst nodes occur

while the �les are stored into the HDFS, whether new data nodes are added to the cluster

Hadoop doesn't rebalance the data automatically, but it provides the balancer tool to

perform data rebalance manually.

Thus, the master requests information to the NameNode about the blocks and �le

locations, and then deploys copies of the job across several workers. With the block

information the map task is scheduled to a set of workers with its respective input blocks,

respecting the feature minimal data motion. Mappers process each input blocks, generate

key/value intermediate pairs and append them to intermediate �les. When the mapper

instance terminate it noti�es the master who splits the intermediate �les in blocks and

shu�es them for the reducers to process. When all reducer instances terminate the

processing, they append their results to the �nal output �le.

A well known example of a MapReduce job is the Grep application, present in Listing 1,

which receives as input several textual documents and generates as output a set of pairs

〈Key, V alue〉, where each key is a di�erent pattern found and the value is the number of

9

occurrences of the pattern in the �les. The responsibility of the Mapper is to �nd patterns

in the �les. The reducer is responsible for summing the number of occurrences for each

pattern.

The map() method has four parameters: key; value (one line that contains the text

to be processed); the output (which will receive the output pairs); and reporter (for

debug purposes). The body of the method uses the class Pattern to describe a desired

pattern, and the class Matcher to �nd this pattern. For each pattern match found the

pair 〈matching, 1〉 is emited to output.

public class RegexMapper<K> extends MapReduceBase
implements Mapper<K, Text, Text, LongWritable> {

private Pattern pattern;
private int group;

public void configure(JobConf job)
{

pattern = Pattern.compile(job.get("mapred.mapper.regex"));
}

public void map(K key, Text value, OutputCollector<Text, LongWritable> output,
Reporter reporter) throws IOException {

String text = value.toString();
Matcher matcher = pattern.matcher(text);
while (matcher.find())
{

output.collect(new Text(matcher.group()), new LongWritable(1));
}

}
}

Listing 1: Class RegexMapper packed in Hadoop [25].

The implementation of the reduce function is presented in Listing 2. The reduce()

method has also four parameters: key (which contains a single matching string); values

(a set containing all values associated to the key, i.e. the matching); output pair (the

resultant pair 〈matching, total〉); and reporter (for debug purposes). The behavior of

the method is straightforward: it sums all values associated to the key and then writes a

pair containing the same key and the total of matchings found.

10

public class LongSumReducer<K> extends MapReduceBase
implements Reducer<K, LongWritable, K, LongWritable> {

public void reduce(K key, Iterator<LongWritable> values,
OutputCollector<K, LongWritable> output, Reporter reporter)

throws IOException {

// sum all values for this key
long sum = 0;
while (values.hasNext())
{

sum += values.next().get();
}

// output sum
output.collect(key, new LongWritable(sum));

}

}

Listing 2: Class LongSumReducer packed in Hadoop [25].

An example of inputs and outputs of both functions when applied to a simple sentence

is presented in Table 2.2. We applied the following regular expression:

�[a-z]∗o[a-z]∗� , which �nds the words that contains the vowel o.

map �Test for hadoop regular expression
inside hadoop�

→ 〈for, 1〉,〈hadoop, 1〉,
〈expression, 1〉,
〈hadoop, 1〉

reduce 〈for, {1}〉, 〈hadoop, {1, 1}〉,
〈expression, {1}〉

→ 〈for, 1〉,〈hadoop, 2〉,
〈expression, 1〉

Table 2.2: Regular expression example.

2.4 MapReduce related tuning techniques

Simulators have been used to predict job behaviors. The MRPerf [43] is one simulator

to comprehend the MapReduce sensibility of job performance while applying platform

parameters, network topology, node resources and failure rates. It was implemented

using Network Simulator 2 (NS-2) for network emulation, and the DiskSim simulator for

advanced disk simulation. Another simulator is the WaxElephant [39] proposed to build

a more complex MR simulation environment based on the following capabilities: (1) load

real MapReduce workloads derived from logs belonging to production Hadoop clusters,

and replaying the job for these workloads; (2) auto con�gure Hadoop parameters which

11

a�ect the job performance; (3) executing job simulation at the task-level; (4) comparing

di�erent job scheduling policies in Hadoop; and (5) simulating and analysing Hadoop

clusters.

Simulators emulate big data environments, thus they can be used to �nd job proper

settings. Nevertheless, they are based on models to predict job behavior using informa-

tion provided by users, existing workloads, log �les and other relevant sources. Since,

models try to abstract away from details of systems, they may present representativeness

limitations, by not simulating events that only happen in the real world.

Another solution branch is pro�le-driven tuning, as used in [24, 26]. The Star�sh

system generates statistical summaries from a MR job execution using dynamic instru-

mentation. This is a technique that injects additional bytecodes in runtime to monitor

speci�c Hadoop Java classes. Job pro�les are generated from resultant statistics of the

monitoring data during full or partial job execution. New pro�les are generated from exis-

ting ones using estimation techniques based on modeling and simulation of MapReduce

job execution [26]. The pro�le contains summary information about the runtime behavior

of the job being tuned, and it is assumed to come from a previous execution of the same

job. Another technique correlated to pro�ling was proposed by Popescu et al. [37], in

which statistics from input data and log information about a prior job execution are used

for predicting job behavior using machine learning models.

Pro�le-driven tuning requires a previous job execution. When a new job is submitted,

Star�sh runs it and uses dynamic instrumentation to collect statistical data which may

cause overload in the job execution. Furthermore, statistical data might not re�ect the

real data and may contain biases. For instance, they may have been collected from a

partial job execution at the moment that it was processing �les composed of large lines,

but most of job input �les might be composed of short lines. Hence the statistical data are

biased because they don't represent the real data, thus some IO and memory controllers

may be miscon�gured.

An alternative is the rules of thumb which have been created to adjust Hadoop envi-

ronments. They were created based on administrators and developers knowledge [44, 27,

12

8, 10]. This approach is simple and fast to be applied, but not individually accurate, be-

cause these rules are generic, aiming to be applied in all jobs without considering speci�c

job behaviors.

2.5 Sampling techniques

Data sampling is a popular approach to improve analysis of huge data sets. It has

been applied over relational databases to infer information on entire data population. One

of the most used data sampling techniques is Random Sampling [38], which consists in

selecting a pre-determined amount of data randomly. In the literature there are several

other techniques such as Strati�ed Random Sampling, which splits data into strata where

each element in a stratum has the same chance of being selected [12]. Another technique

is Systematic Sampling, which consists in �rstly selecting randomly one element of the

population, then from this element the next K elements are selected in sequence, the

number K may being either choosen randomly or based on some criteria. The systematic

process continues until the sample is completed [17].

2.5.1 Sampling approaches on MR

This section presents data sampling approaches on Hadoop for di�erent purposes. All

of them performs data sampling on Big Data, considering aspects related to distributed

computing and storage, which aspects we are interested.

BlinkDB is a query engine for running interactive SQL queries on large volumes of

data. It focuses on running short exploratory queries to provide trade-o� query accuracy

for response time [1]. To achieve that goal BlinkDB is composed of two main modules: (i)

Sample Creation, which creates sets of strati�ed samples based on past queries behaviors.

The idea is to cache samples for future queries considering query history. (ii) Sample

Selection chooses dynamically the best sample that satis�es query's error/response time

constraints.

Liven and Kanza [31] designed a distributed algorithm based on the strati�ed sample

13

technique using MR. It aims to create multi-survey strati�ed samples over online social

networks, considering speci�c constraints and costs to share individuals among surveys.

The reduce function implements the uni�ed-sampler algorithm and performs the selection

of elements from strata created by the map and combiner functions. The uni�ed-sampler

algorithm depicted requires the population size from where the stratum was extracted.

EARL [30] is a framework for Hadoop to run queries on samples, thus reducing the

query response time constrained by user thresholds. The framework is based on the boot-

strapping sample technique, which consists in creating samples following a error threshold.

If the current sample achieves a high error, then a new sample is created with an increased

sample size. This process continues until reaching user thresholds. That technique is

known as resampling. On each created sample a function of interest is computed in order

to estimate accuracy. To generate samples the algorithm depicted needs the sample size

and the number of resamples.

Those data sampling approaches require prior knowledge about the data or the query

history. BlinkDB needs the queries history to build the strati�ed samples, the uni�ed-

sampler algorithm presented by Liven and Kanza requires the population size, and EARL

requires the sample size and the number of resamples. However, for our data sampling

approach we are interested in using naive input parameters in order to abstract the com-

plexity away from the users, like a percentage of the data population.

14

CHAPTER 3

GENETIC AND BACTERIOLOGIC ALGORITHMS FOR

TESTING

In this chapter we �rstly present the Genetic Algorithm which is the base for the

Bacteriological Algorithm (BA) used to generate and select Hadoop's job con�gurations.

Second, we present the BA and a context transformation to accomplish it on Hadoop's

context.

3.1 Genetic Algorithm

The Genetic Algorithm (GA) is a search heuristic which mimics the process of natural

selection. It belongs to the large family of the Evolutionary Algorithms (EA) . The GA

has been adopted to solve problems in many �elds involving search, optimization and

machine learning [20]. It generates solutions by applying evolutionary mechanisms or

operators, such as reproduction, crossover and mutation which aim to adapt individuals

to a certain environment.

GA is an iterative algorithm that starts from an initial population of candidate solu-

tions (individuals) evolving this population toward a better solution. In each iteration of

the algorithm the �tness of every individuals are computed. The �tness is a speci�c func-

tion belonging to the optimization problem and drives the GA toward a better solution.

Then the natural operators are put in practice to generate a new population, which also

is called a new generation. The �tness of the previous individuals are evaluated, and the

algorithm terminates by reaching a desired �tness or a certain number of generations.

The natural operators perform changes on individuals in the gene level, a well known

example of individual is a string composed of the characters 0s and 1s, and a gene is a

speci�c character. The GA process is implemented by the Algorithm 1 and the natural

operators are explained below:

15

• Reproduction: copies the individuals to participate at the next stage (the crossover

step). They are chosen based on their ability to adapt to the environment, which

can be calculated according with a function F(x), also known as the �tness of the

individual. The individual's �tness measures how much that individual is adapted

to the environment.

The reproduction process aims to �ll an empty population that will be the next

generation. Based on the previous generation the best individuals are selected to

form a set of prospective individuals that may be propagated to the next generation.

New individuals are randomly chosen from the set of propective individuals and

copied to the new population. The addition of a new individual is in�uenced by the

�tness value, i.e., as the individual �tness is greater as its number of copies tends

to be greater into the next generation.

For example, the reproduction could be similar to create a roulette whose size is

the sum of the �tness values of all prospective individuals. Each prospective indi-

vidual receives roulette's slots according to its �tness value. For instance, the set

of prospective individuals is composed of the individuals A and B whose �tnesses

are F(A)=10 and F(B)=20, hence the roulette's size is F(A) + F(B) = 30, with

A receiving 10 slots and B 20. Thus, the probability to clone A is 10
30

= 1
3
and B

is 20
30

= 2
3
, as the individual �tness is greater as its number of copies tends to be

greater. The roulette wheel is spin and an individual is cloned according to the slot

that the roulette stopped, and that individual is added to the new population. The

roulette continues to spin until �lling the next generation.

• Crossover: the crossover is similar to the natural process called chromosomal

crossover. This process is based on genetic recombination of chromosomes to pro-

duce new genetic combinations. The genes of two individuals are genetically com-

bined to generate another resultant individual, thus the new individual inherits

characteristics of both parents. More precisely, in the genetic algorithm two indi-

viduals are chosen randomly (A,B), and an integer k between 1 and the individual's

16

gene number (n) is also chosen randomly. The new individual A′ is composed by

the �rst k genes of A and the last k - n genes of B. The individual B′ consists of the

�rst k genes of B and the last k - n genes of A.

• Mutation: occurs after the crossover on genes of the new individuals. The natural

process consists basically in changing enzymes or proteins of genes in order to create

new individuals. The mutation process of GA is simple, one or more genes are

randomly selected and then are changed (e.g. change one or more nucleotides of the

DNA of one chromosome).

Algorithm 1: Genetic Algorithm

Input : Pop Initial population
Input : NumberGen Number of generations
Input : Fitness Desired �tness value
Output: BestIndiv The best individual reached
repeat

for each indiv ∈ Pop do
CalcFitness(indiv)

Reproduction(Pop)
Crossover(Pop)
Mutation(Pop)

until NumberGen ∨ Fitness ;
BestIndiv ← getBestIndividual(Pop)
return BestIndiv

3.2 Algorithm for testing

To perform tuning of MR jobs we inspired on the Bacteriological Algorithm (BA),

which is an adaptation of the GA to improve its convergence, and was empirically proved

that the BA has a greater convergence than the GA, according with Baudry et al [5].

Thus that is the reason for us in adopting the BA. The BA implemented by Baudry et

al [5] works at the individual level, our contribuition was to adapt the BA on the gene

level. Therefore, our BA implementation has the gene as the atomic unit, a group of

genes forming an individual (bacterium), and a group of individuals forming a population

(bacteria).

17

3.2.1 Context transformation

Our context is focused on the Hadoop environment which has its particularities. Thus,

a context transformation is mandatory to implement the BA on Hadoop. The transfor-

mation is based on the following de�nitions:

De�nition 1 (Knob): a speci�c Hadoop's con�guration parameter such as:

mapred.reduce.tasks.

De�nition 2 (Set of Knobs): a set of Hadoop's con�guration parameter to set up a MR

job.

De�nition 3 (Sets of Knobs): di�erent con�guration alternatives to set up a job (com-

posed of one or more set of knobs).

Figure 3.1: Context transformation.

In the context tranformation, each component of genetic context was translated to

one component of Hadoop environment. Figure 3.1 shows that a gene is transformed

18

in a knob, an individual (which is a set of genes) is transformed in a set of knobs, and

an individuals population is transformed in sets of knobs. An interesting characteristic

of that tranformation is its bijection property, a component in the genetic domain is

translated to another component in the Hadoop domain. Besides, the transformation

also has an inversion property, i.e, all components in Hadoop domain can be translated

to the respective components in genetic domain.

3.2.2 Bacteriological Algorithm

The BA was implemented by Baudry et al. [5] to improve the convergence of the GA.

It introduces a new mechanism called Memorization that is responsible for memorizing

the best individuals created along the generations. This new mechanism might appear as

a small modi�cation, but actually re�ects a crucial change on GA behavior. Besides, the

crossover operator is absent from BA because of the peculiar biological behavior of the

bacteria. In terms of natural process a bacterium reproduces itself asexually, consequently

there is not crossover between two individuals, because the reproduction process consists

in duplicating the DNA of a bacterium followed by a division to form two new bacteria.

Our BA's implementation has four mechanism: Fitness computation, Memorization,

Reproduction and Mutation:

• Fitness computation: the �tness as in GA is one way to di�erentiate the abilities

of each individual to adapt to the environment. The calculation depends on several

criteria de�ned by the programmer, and it is used to select the best individuals for

the next generation. We used as �tness value the job execution time, i.e. the job

is con�gured with a con�guration generated by the BA and it runs on the cluster,

after �nishing its execution time is assigned to the individual's �tness value.

• Memorization: is the main mechanism introduced by the BA. It is responsible

for memorizing the best individual generated by the process of adaptation. As the

process continues, the population improves more quickly its capacity of adaptation.

If a generation generates bad individuals, i.e. individuals with low �tness values, it

19

means individuals couldn't adapt well to the environment, then the memorization

operator ignores this generation, and uses the best individual from past generations

to the next generation in order to avoid regressions in the process.

• Reproduction: a new empty population is created, the best individual is cloned

as many times as the last generation size and put into the new population. This

population is then passed for the mutation operator.

• Mutation: is responsible for generating new individuals. Each individual created

for the reproduction operator is mutated. The mutation operator changes one or

several genes in order to improve the adaptation of the bacteria population to the

environment. These new individuals are evaluated by their �tness against the �tness

value of the overall best individual.

The algorithm in high-level of abstraction is described by the Algorithm 2. It requires

as input an initial sets of knobs, the number of generations to be reached and the desired

�tness value. The initial population could be composed of the latest job settings, and

other settings of interest. The number of generations is freely de�ned by the user, and the

desired �tness value could be the last job execution time. For each set of knobs belonging

to the current population is calculated its �tness value (in our case the �tness value is

the job execution time when con�gured with this set of knobs), after the best set of

knobs reached is memorized, then the reproduction creates a new population composed of

clones of the best set of knobs. The mutation operator interacts with the new population,

and for each set of knobs one or more knobs are randomly selected and changed. The

bacteriologial process continues until the number of generations or the desired �tness

value is reached.

20

Algorithm 2: Bacteriological Algorithm

Input : Pop Initial population

Input : NumberGen Number of generations

Input : Fitness Desired �tness value

Output: BestIndiv The best individual reached

repeat

for each indiv ∈ Pop do
CalcFitness(indiv)

Memorization(Pop, BestIndiv)

Pop← Reproduction(BestIndiv)

Pop←Mutation(Pop)

until NumberGen ∨ Fitness ;

return BestIndiv

21

CHAPTER 4

SAMPLING ON HADOOP

In this chapter we present in the Section 4.1 our motivation and challenges for data

sampling on Big Data. Section 4.2 shows some data sampling methods already applied by

Big Data solutions. Section 4.2.1 introduces the reservoir sampling method. In Section 4.3

we present our dynamic reservoir sampling algorithm (KSample), and Section 4.3.1 shows

the distributed KSample implemented using the MR programming model.

4.1 Motivation for sampling

One of the most highlighted property on Big Data environments is the massive amount

of data that is handled. The data is gathered in a continuous and frequent �ow, and new

data might constantly comes from new sources in new formats. There are challenges not

only in volume, but also in variety and velocity in how the data arrive. These challenges

may a�ect the job behavior causing di�erent patterns of resources usage. For instance, new

data formats might lead the job to make more IO operations, hence the IO controllers

con�guration needs to be adjusted. This kind of issue is also very challenging from a

testing point of view [7].

The BA process allows to create new con�gurations, but they must be tested in order

to select which one is suitable for the current state of the MR environment. To achieve

testing automation, it is crucial to apply techniques to e�ciently reduce the amount of

data to be processed. A common approach used on DBMS is data sampling. However, in

the Big Data context, data sampling is challenging due to the large amount of data: not

only the sampling must be done in a distributed fashion, but also data storage.

Therefore, we created a data sampling algorithm robust enough to be distributed

and to work on unstructured data. The data sampling is essential to improve the BA's

response time. Whilst the BA generates new settings along the execution, our data

22

sampling approach reduces the cost to test these settings.

4.2 Sampling applied by Big Data solutions

On Big Data environments there are some implementaions of data sampling. One

example is MonetDB which is a column-oriented database management system designed

to hold data in main-memory, and a scalable solution to process large sets of data [34].

This DBMS supports data sample and uses the algorithm A, which is based on a random

sample technique [33].

Algorithm A selects n records from a data set of size N such that 0 ≤ n ≤ N . For

each record that will be inserted in the sample, it chooses randomly a number V that is

uniformly distributed between 0 and 1. Based on V, n and N, a number s is calculated.

A set of records called S is created from the s �rst records of the data set. From S a

record is randomly chosen and put into the sample. After, the records present in S are

skipped from the data set, and this process continues until completing the sample [42].

That algorithm behaves as the strati�ed random sampling. The creation of the set S can

translate to a stratum that contains neighbors records where a record is chosen.

Hive is another database management system that performs data sampling based on

random methods. It was created to manage the data stored on Hadoop, allowing ad-hoc

queries (which are translated to Hadoop MR jobs), data summarization, and analysis of

large data sets. Thus, Hive is considered a Data Warehouse (DW) for Hadoop [3]. It

samples at row or block size level. The row level consists in choosing randomly the rows

according with the column name. If the column name is not de�ned, then the entire row

is selected. If it is de�ned the choice can be driven by the Bucketized Table in which the

sample is done only on the buckets that contain the speci�ed column [2]. The block size

sample is also perfomed ramdomly and consists in selecting the blocks that match with

the speci�ed block size.

Those sample methods on Hive are based on random sample and handle structured

data. Hive stores the Hadoop data as a data warehouse suiting queries submitted by

users. Moreover, the clustering by bucket and block size requires a prior structuring of

23

data, hence several information about the data are previously known by Hive.

4.2.1 Reservoir Sampling

Hadoop adopts the key-value model to store data. Initially, pure data are stored, i.e.,

the data are stored without any handling. The data are inserted into �les, where the key

is a sequential line number and the value is the own line content. There is no prede�ned

schema on Hadoop. Thus, it stores unstructured data, hence is challenging to develop

data sampling methods on it. According to [41, 9, 23] that challenge about unstructured

data stream can be addressed with Reservoir Sampling.

The Reservoir Sampling algorithm is also a random algorithm. It aims to process

a stream of items of large and unknown length, randomly it chooses item(s) from this

stream, each item is equally likely to be selected and it has to be iterated only once [9],

i.e. it randomly chooses k elements from a stream containing N items which is either

unknown or too large to �t in memory.

To understand the solution an example can clarify the idea. Suppose we have a

reservoir sampling of size equal 1 (i.e. K = 1), and we have to get one item such that all

items have the same probability to be choosen.

In the �rst round, when the �rst item comes, the probability is P (1st)1stRound = 1,

because the stream length is 1 at the moment and we do not know if the stream �nished.

Thus, the �rst element always will be caught. When the next element comes (2nd item),

the �rst element has been holding and we need to choose in continuing to hold it or

replacing the 1st by the 2nd. So, the probability in choosing the 2nd element is P (2nd) = 1
2

because the stream length is 2 at the moment. On the other hand, the probability

P (1st)2ndRound to continue holding the 1st is the probability in choosing it in the last

round multiplied by the probability of not choosing the 2nd, which is P (1st)2ndRound =

P (1st)1stRound × P (2) = 1× (1− P (2)) = 1×
(
1− 1

2

)
= 1× 1

2
= 1

2
. Thus, the probability

of the 1st and the 2nd element in the second round is 1
2
.

In the next round, when the third element comes, we need to decide if we continue

holding the chosen element in the last round or if we'll choose the third element. The

24

probability to choose the third element is P (3) = 1
3
, because the stream length at the

moment is 3. Now, we need to calculate the probability to continue holding the element

chosen in the last round. Considering that it is the �rst element, its probatility in the

third round is the probability of it in the second round multiplied by the probability of

not choosing the third element: P (1)3rdRound = P (1)2ndRound × P (3) = 1
2
× (1− P (3)) =

1
2
×

(
1− 1

3

)
= 1

2
× 2

3
= 1

3
. So, the probability of the �rst, second and third element in

the third round is the same, i.e. 1
3
. In sequence, for the Nth round the probability of all

elements is 1/N . We can prove that idea by induction using a reservoir of K size:

• We want to prove that the probability of any element in being in the

reservoir after N rounds is K
N
.

• Base Case: N = K.

The probability of the Kst elements is P (Kst) = K
N

= 1.

• Induction Hypothesis (I.H.):

Suppose the probability of the N st elements in the round N th is

P (N st) = K
N
, N > K.

• Induction Step: round N + 1.

P ((N + 1)th) = K
N+1

is the probability in choosing the (N + 1)th element

to put into the reservoir, because the reservoir size is K and the

stream length is N + 1 at the moment.

The probability to remove an element (Eremove) already inserted in the

reservoir is:

P (Eremove) = (the probability in choosing the (N + 1)th element)

× (the probability in removing an element

of the reservoir)

P (Eremove) = P ((N + 1)th) × 1

K
=

K

N + 1
× 1

K
=

1

N + 1

25

Hence, the probability of any element kept in the reservoir:

P (Ekeep) = 1− P (Eremove) = 1− 1

N + 1
=

N

N + 1

Thus, the probability of any previous element being in the reservoir

after the round (N + 1)th is:

P (Ebeing) = (probability of any previuos element

has been chosen in the last N st rounds)

× (P (Ekeep))

P (Ebeing) =
K

N
× N

N + 1
, by the I.H.

P (Ebeing) =
K

N + 1

Then, the probability of the (N+1)st elements in the round N+1 is K
N+1

.

An implementation of the reservoir algorithm is presented in the Algorithm 3. The

goal is to build a reservoir which is smaller than the memory. It receives as parame-

ter the number K that is the resultant sample size and the data stream that cons-

tantly receives new data. Initially, the resultant sampling is assigned with the �rst

Kelements. Then the algorithm aims to calculate the probability of the ith element to

be inserted into the reservoir starting from the (K + 1)th, that probability is P (ith) = K
i
.

After a random number (rand) uniformly distributed between 0 and 1 is chosen, if

rand < P (ith), then the ith element is added to a random position in the resultant sample.

26

Algorithm 3: Reservoir Sample Algorithm

Input : k: sample size

Input : stream: data stream with unde�ned length

Output: reservoir[k]

for i = 1→ k do

reservoir[i]← stream[i]

numElements← k

while stream != EOF do

numElements← numElements+ 1

probability ← k/numElements

rand← Random(0, 1)

if rand < probability then

pos← Random(1, k)

reservoir[pos]← stream[numElements]

return reservoir

4.3 KSample - Dynamic Reservoir Sampling Algorithm

As de�ning the reservoir sample size (i.e. the number K) is hard on unstructured

data, because the large amount of data may hinder choosing a representative reservoir

sample. Therefore, our approach consists of receiving a percentage as parameter of the

population to be sampled. For instance, 10% is received as input, then our algorithm will

create a reservoir sample that represents 10% of the input data records.

KSample works on unstructured data, the atomic unit for the algorithm freely can be

de�ned such as: record, row, byte, �le, etc. The K-Sample is inspired on the reservoir

sample technique and works with an unde�ned reservoir size.

27

Algorithm 4: K-Sample Algorithm

Input : percentage: percentage for sampling

Input : stream: data stream with unde�ned length

Output: reservoir[]

sLength← 0

slotRound← 0

while stream != EOF do

sLength++

if reservoir.size() < (percentage× sLength) then

reservoir.newSlot()

slotRound← 0
slotRound++

probability ← 1
slotRound

rand← Random(0, 1)

if rand ≤ probability then

reservoir.currentSlot← stream[sLength]

return reservoir

The Algorithm 4 receives a percentage number to represent the population (which is

converted to the interval]0, 1]) and the data stream. It starts with an empty reservoir. As

needed a new slot is added to the sample reservoir, thus the reservoir grows dynamically

and on demand. If the reservoir size is less than percentage multiplied by the stream

length (sLength), then a new slot is created into the reservoir, and new elements will be

addressed for this slot following the Algorithm 3 (with the reservoir size equal 1) until a

new slot being created. We thus treat any slot as a mini-reservoir with K = 1.

The �gure 4.1 shows an example of the KSample's execution with a sample percentage

of 30%. In the �rst round, when the �rst element (E1) comes, a new slot (slot1) is created

and E1 �lls it. In the second round is not needed to create a new slot because the reservoir

is containing at least 30% of the population, then E1 is replaced by E2. In the third round

also is not needed to create a new slot, so E3 is discarded. When E4 comes KSample

detects that is needed to create the slot2 because if it was not created the reservoir will not

contain at least 30% of the population. After that, E4 is assigned to the slot2. Then E5

28

Figure 4.1: KSample's execution.

comes and replaces E4, and the process continues until all elements arrive. The diagram

contains every statistical calculations, and conditional decisions to create a new slot and

to replace elements inserted in the reservoir.

KSample is based on the fact that the reservoir always holds at least the percentage of

elements, in our execution example 30%. That is the invariant property of the KSample,

i.e. independent of the current stream length, it ensures that at any step the reservoir

will always hold at least the percentage (as example 30%) of elements that arrived. Also,

the KSample ensures that every element has the same probability to be inserted into

the current slot, that is inherited from the reservoir algorithm as can see in the prove of

Section 4.2.1, as long as it treats any slot as a mini-reservoir of size 1. We can prove the

invariant property by proving that the KSample creates a new slot in the right moment,

i.e. if the KSample didn't create a new slot, the reservoir wouldn't contain less than the

percentage of elements from the stream. Let's prove that property by induction:

• Notations :

R: reservoir size.

P: percentage of the stream.

L: stream length.

29

• Base Case: When E1 comes.

R = 0, the algorithm has to decide in creating or not a new slot, for

this it checks the condition (R < (P × L)).

As P ∈]0, 1] and L = 1, then (P × L) ∈]0, 1].

Consequently, R < (P × L) is true and a new slot is created, thus the

reservoir will hold E1 and it will have at least P percentage of

elements from the stream.

• Induction Hypothesis (I.H.):

Suppose in the step #N after the En element arriving the reservoir

holds at least P percentage of elements from the stream.

• Induction Step: step #(N + 1).

We have to prove two cases:

1. Create a new slot :

For this case the condition: R < (P × L) has to be true. By the

I.H., in the last step (step #N) the reservoir holds at least P%

of elements from the stream, as the KSample will create a new slot

and it will hold the element En+1 (following the reservoir sample

algorithm), then, certainly, adding a new slot the reservoir size

will increase, thus it will continue holding at least P% of

elements from the stream.

2. Don't create a new slot :

The KSample decided not creating a new slot, then R ≥ (P×L), means

that the reservoir is holding P% or more elements from the stream,

otherwise would be the case 1.

Therefore, after the step #(N + 1) the reservoir size is invariant in

any round of the KSample, because it will contain at least P% of

elements from the stream.

30

For any slot the KSample follows the Algorithm 3 with a reservoir size 1. For each

element which competes by the same slot, its probability in keeping in this slot is the

same. Globally, the probability of all elements might be di�erent, one example could be

the last slot, if the stream length is odd and the sample percentage is 50%, then the last

element will insert in the last slot with probability 1, all other previous elements were

inserted into the reservoir with probability 1
2
. However, that fact isn't a problem in our

context, i.e. Big Data, because we expect to sample large data sets, and, among countless

elements, an unique element must not cause major impacts.

4.3.1 KSample on Hadoop (Distributed KSample)

We built the KSample on Hadoop to take advantage of its architecture for distributed

computing and storage. We considered a row as atomic unit for data sampling. Algo-

rithm 5 depicts the map function. It receives as input a set of �les (∆) stored in the

cluster. The map processes each �le (δ) ∈ ∆, and for each line (`) ∈ δ a random number

(Γ) uniformly distributed between 0 and 1, i.e. Γ ∈]0, 1], is selected and an intermediate

〈Γ, `〉 pair is emitted.

The reduce function, depicted in Algorithm 6, receives the key emitted by the map

function and a list of values aggregated by the shu�e phase. A sample percentage (ρ) is

obtained from either the context or con�guration �le. The KSample is run using ρ and

values as input, the KSample's reservoir resultant is returned as output of the reduce

function.

Algorithm 5: Map function

Input : ∆ = {δ0, δ1, δ2...δn} set of �les.
Output: map < key, value > resultant list of key-value.
map← {}
for each δ ∈ ∆ do

for each ` ∈ δ do
Γ← Random(0, 1)
map.put(Γ, `)

return map

After the map phase, Hadoop sorts the intermediate keys and merges the values which

31

share the same key. As map keys are randomly chosen, the lines of �les are automatically

dispersed in the Hadoop �ow, that fact avoids the neighboring lines compete by the same

slot when reducers run the KSample. The MR KSample can be classi�ed as a Strati�ed

Random Sampling, because each reservoir belonging to a reduce instance can be seen as

a random stratum. After the reduce phase, Hadoop gathers all reducers' reservoirs and

creates a global reservoir that contains at least ρ% of the input data. That property is

guaranteed by the KSample's proof, which ensures that each reducer reservoir contains

at least ρ% of the stream.

Algorithm 6: KSample's reduce function

Input : key key emited by the map function.
Input : values list of values aggregated by shu�e phase.
Output: R list of resultant values.
ρ← get sample percentage from context or con�g �le.
R ← KSample(ρ, values)
return R

32

CHAPTER 5

FRAMEWORK FOR TESTING

In this chapter we present our implementation composed of three modules: the front-

end for users to iteract with the system, the engine to choose job con�gurations called

tuning-by-testing and the back-end to report new job con�gurations.

5.1 Framework Overview

In �gure 5.1 we show all components together. First of all, the user creates a �le

containing the properties, arguments and the initial population of set of knobs. The �le

is submitted to the front-end which performs lexical, syntatic and semantic analysis to

validate it. After that, the �le is parsed and the information sent to the engine component.

The engine actives the BA to genere and test new job con�gurations until it reaches the

desired criteria. The resultant con�guration is saved in a �le by the back-end component.

Figure 5.1: Framework's �ow.

33

An interesting feature is that the resultant �le can be used as input for the next round

of the tuning process, the user could only submit it as input. Therefore, the framework

can work as an incremental software to improve its last result.

5.2 Front-end

Our front-end is inspired by a DSL, which is a way to elucidate a speci�c context

through appropriate notations and abstractions [15]. A DSL transforms a particular

problem domain into a context intelligible for expert users that can work in a familiar

environment.

Problem domain is a crucial term of DSL that requires prior background of the deve-

lopers in the speci�c context. The developers must be expert in the domain in order to

develop a DSL that cover the features required for users. There are a lot of examples of

DSLs in di�erents domains: LEX, YACC, Make, SQL, HTML, CSS, LATEX, etc. [6].

A DSL normally focuses on a speci�c domain. But it can also cover di�erent domains

or a single, yet broader domain. Such DSL is called general-purpose language (GPL) ,

because its expressiveness power is not restrict to an exclusive domain. Examples of such

GPLs are Cobol and Fortran, which could be viewed as languages focused on the broader

domains of business and scienti�c programming, respectively [15].

5.2.1 DSL Design Methodology

The �rst step to create a new DSL consists of identi�ng the problem domain. De-

pending on the context, it is not trivial to abstract the complete knowledge about the

domain, because developers must have a deep prior knowledge on the context, and they

have to consider all variables and intrinsics aspects belonging to the domain. Further-

more, sometimes the context can cover more than one domain (for example the GPLs). In

other cases, the domain is simple, and performing appropriate notations and abstractions

is trivial. In both cases, the foreknowledge of the developers is the factor that in�uences

the quality of the resulting DSL.

34

After identifying the problem domain developers must abstract all relevant aspects

from it. For example VHDL, which groups basic logical components like: gates circuits,

bus, control signals and logical operators. From these components is possible to create

complex logic circuits since a ALU (Arithmetic Logic Unit), register bank until a complex

microprocessor.

The next step consists in designing a DSL that expresses applications in the domain.

A DSL will have limited concepts which are all focused on the speci�c domain. To design

a DSL, it is necessary to analyse the relationship between it and the existing languages.

According to [32], there are some design patterns to develop a DSL based on existing

languages. These are represented in Table 5.1.

Pattern Description

Language exploitation DSL uses (part of) existing GPL or DSL. Important subpatterns:
• Piggyback: Existing language is partially used;
• Specialization: Existing language is restricted;
• Extension: Existing language is extended.

Language inventation A DSL is designed from scratch with no commonality with
existing languages.

Informal DSL is described informally.
Formal DSL is described formally using an existing semantics de�nition

method such as attribute grammars, rewrite rules, or abstract
state machines.

Table 5.1: DSL design patterns [32].

In the implementation, a library with the semantic notations is built together with a

compiler that perfoms the lexical, syntactic and semantic analysis, after converting the

DSL programs to a sequence of library calls. Generally the library and the compiler

are built with support of tools or framework developed for this purpose. Xtext [16] and

Groovy [22, 14] are examples of tools to develop DSLs.

5.2.2 The DSL for tuning MapReduce programs

We designed a DSL from scratch based on the Xtext framework [16]. This framework

requires the de�nition of a grammar and rules for the speci�c domain. As our domain is

35

the tuning process of Hadoop jobs, we put e�orts to describe rules to represent all aspects

and components required for the job tuning. Then, our DSL is presented in Listing 3 and

has the following components:

• The job with its properties and its arguments to be executed;

• The initial sets of knobs;

• The knob with own type, minimum and maximum thresholds and its initial value.

Then a user can write a .job �le following our DSL, as can see by the action 0 -

Create .job �le in Figure 5.1, for instance the �le presented in Listing 4. This �le

provides all information needed by the job �grep-search� described in Section 2.3.1. The

tuning process requires some properties like: the path to the MR job jar �le, the job

class name, the HDFS directory path to store the data sample, the sample percentage,

the algorithm (BA or GA), the number of generations to use as criteria for the algorithm

and the population size. The grep-search job requires three argumemts: the HDFS input

directory path, the HDFS output directory path and the regular expression.

After the arguments there are two sets of knobs composing the initial population for

the algorithm. The �rst one could be the current job con�guration, and the second one

could be the rules of thumb.

Each set of knobs is composed of knobs type: integer and �oat, which need of the

maximum, minimum and the initial value. For instance, the knob mapred.reduce.tasks

has the minimum value = 1, the maximum = 10 and the initial value = 5.

Also, users might be interested in testing new con�gurations that would be easy to

accomplish, they just can add a new set of knobs, hence the front-end covers as much use

cases as the user needs.

36

DomainModel:
job=Job;

Job:
’Job’ name=STRING ’{’

properties+=Properties
arguments+=Arguments
setKnobs+=Knobs*

’}’
;

Properties:
’Properties’ ’{’

properties+=Property*
’}’

;

Property:
name=ID Value

;

Value: STRING;

Arguments:
’Arguments’ ’{’

args+=Argument*
’}’

;

Argument:
Value

;

Knobs:
’Knobs’ ’{’

knobs+=Knob*
’}’

;

Knob:
Type

;

Type:
IntType | FloatType | BoolType

;

IntType:
’int’ name=STRING MinInt MaxInt ’=’ INT

;
MaxInt: INT;
MinInt: INT;

FloatType:
’float’ name=STRING MinFloat MaxFloat ’=’ Float

;
MaxFloat: Float;
MinFloat: Float;

Float:
INT*’.’INT*

;

BoolType:
’boolean’ name=STRING ’=’ Boolean

;
Boolean:

’true’ | ’false’
;

Listing 3: Our DSL.

37

Job "grep-search" {
Properties {

jarPath "/home/tkepe/bin/hadoop-1.2.0/hadoop-examples-1.2.0-SNAPSHOT.jar"
jobClassName "grep"
pathSampleDirHDFS "/kepe/grep/sample"
samplePercent "0.0"
algorithm "BA"
numGenerations "10"
populationSize "4"

}
Arguments {

"/kepe/grep/in"
"/kepe/grep/out"
"[a-z]*o[a-z]*"

}

Knobs {
int "mapred.reduce.tasks" 1 10 = 5
int "io.sort.mb" 1 100 = 90
int "io.sort.factor" 1 100 = 90
int "mapred.inmem.merge.threshold" 0 1000 = 90
float "io.sort.record.percent" 0.0 1.0 = 0.9
float "io.sort.spill.percent" 0.0 1.0 = 0.9
float "mapred.job.reduce.input.buffer.percent" 0.0 1.0 = 0.9
float "mapred.job.shuffle.input.buffer.percent" 0.0 1.0 = 0.9
float "mapred.job.shuffle.merge.percent" 0.0 1.0 = 0.9

}
Knobs {

int "mapred.reduce.tasks" 1 10 = 5
int "io.sort.mb" 1 100 = 50
int "io.sort.factor" 1 100 = 50
int "mapred.inmem.merge.threshold" 0 1000 = 50
float "io.sort.spill.percent" 0.0 1.0 = 0.5
float "io.sort.record.percent" 0.0 1.0 = 0.5
float "mapred.job.shuffle.merge.percent" 0.0 1.0 = 0.5
float "mapred.job.shuffle.input.buffer.percent" 0.0 1.0 = 0.5
float "mapred.job.reduce.input.buffer.percent" 0.0 1.0 = 0.5

}
}

Listing 4: .job �le example.

After, users can submit the .job �le to our framework, represented by the action 1 -

Submit .job �le. For this, they can just run a jar �le and passing as parameter the .job

�le. Then the framework will invoke the Analyser, action 2 - Run Analyser, who will

perform lexical, syntatic and semantic analysis to validate the �le, and the Analyser also

will parse it, action 3 - Parsed �le, to send to the Engine.

5.3 Engine

The engine is divided in three components: the component to generate data samples,

the component to auto con�gure Hadoop, and the core component which generates job

con�gurations based on the BA.

38

Figure 5.2: Engine processing.

5.3.1 Sampler component

The sampler is responsible for generating data samples. It sends a command to Hadoop

in order to run the sampling job, with its output being stored in the pathSampleDirHDFS

de�ned by the user in the .job �le. This step is represented by the action 4 - Sampling

Job.

5.3.2 AutoConf component

The AutoConf is responsible for saving new con�gurations generated by the Core (5

- New Conf). It receives resquests from Hadoop to provide the current con�guration

that the job will use, as seen in the action 7 - Get Conf. Although users can assign con-

�gurations directly in Hadoop con�g �les (core-site.xml, mapred-site.xml, hdfs-site.xml,

etc), runing our framework Hadoop only will use the job con�guration provide by the

AutoConf.

5.3.3 Core component

The core component generates job con�gurations using the BA or GA. Each new job

con�guration (5 - New Conf) is saved in the AutoConf component. After that, the job

is submited to the Hadoop through the action 6 - Run Job. Hadoop requests to the

39

AutoConf the current job con�guration and runs the job. In the end the job execution

time is assigned to the �tness value, and the new con�guration may be added or not to

the list of best con�gurations reached. The actions 5, 6 and 7 in Figure 5.2 occur until

the algorithm �nishes, i.e., until a criteria is reached.

5.4 Back-end

The back-end, at the moment, is just saving the best con�guration reached in a �le

with the same format of the input �le.

40

CHAPTER 6

EXPERIMENTS

In this chapter we present the experimental validation of our work. The Section 6.1

presents a comparison between the GA and BA. Section 6.2 exposes the quality of the

resultant con�gurations reached by our solution. Section 6.3 reveals the bene�t of using

data sampling which is corroborated by the cost to obtain a new con�guration.

All experiments were done in a cluster composed of three machines, where one machine

is the master and the other two the slaves. The machines' settings are: Linux Mint 13

Maya SO, 3GB of ram memory, Sata Disk with at least 250GB.

The cluster was populated using the job randomtextwriter embedded in the Hadoop's

example jar �le. It generates 10GB of random text into each slave machine, totalizing

20GB of data stored on the cluster. All experiments were executed using 10 generations

as criteria to the algorithm. For the tests based on data sampling (BA + Sampling

and GA + Sampling), we �rst ran our approach on 20% of the whole data. Second,

the purpose has been to use the best con�guration reached in each generation of the

algorithm, and executed the job con�gured with them on all data. Other tests (BA +

All Data and GA + All data) were performed directly on the entire data.

6.1 Bacteriological Algorithm against Genetic Algorithm

We executed the BA and GA in order to confront the quality of the con�gurations

reached by both. We used the WordCount job to perform this comparison. Figure 6.1

presents results of six experiments:

1. BA + All data: experiment using our approach BA without data sampling, i.e.

it was applied on all data.

2. BA + Sampling: experiment using our approach BA and data sampling.

41

3. GA + All data: experiment using GA without data sampling, i.e. it was applied

on all data.

4. GA + Sampling: experiment using GA and data sampling.

5. Defaulf Con�g: Hadoop's default con�guration.

6. Rules of thumb: the rules of thumb [10, 8, 27, 44].

Figure 6.1: BA against GA.

The X axis contains the number of generation and the Y axis the job execution time.

The points in the chart express the quality of the con�guration in each generation, the

quality is measured by the job execution time. We can see that the last con�gurations

reached by both experiments using BA were better than the con�gurations reached by the

experiments using GA. The GA contains regressions in the quality of the con�gurations

reached. For instance the GA without sampling (GA + All data) reached its best con�-

guration in the generation 7, but the generations 8, 9 and 10 worsened that con�guration.

On the other hand, the BA based on all data (BA + All data) didn't regress. The best

con�guration was reached in the generation 9, and in the generation 10 a worse con�gu-

ration was generated, but the BA memorized the con�guration of the 9th generation and

avoided the regression in the process.

42

In the next section we bring up a discussion about the con�guration quality against

the Hadoop's default con�guration.

6.2 Con�guration quality

In this section we present the quality of the con�guration reached for the jobs: Word-

Count and Grep compared against their default con�guration and the rules of thumb

presented in [10, 8, 27, 44]. For the WordCount, see Figure 6.2. The con�gurations

reached in every generation were better than Hadoop's default con�guration and the

rules of thumb. In the last generation the job execution time using the con�guration

reached is 3 minutes less than the default con�guration, which represents a gain of almost

10%. We can observe that the rules of thumb reached the worst performance. It is worth

noting that they were worse than the default con�guration, re�ecting that the rules of

thumb are generic and they may not be accurate for all jobs.

As can see in the Figure 6.3, the con�gurations reached by our approach using data

sampling improved the grep job execution time in almost 1 minute.

Figure 6.2: WordCount's con�guration quality.

43

Figure 6.3: Grep's con�guration quality.

6.3 Cost of the tuning process

We measured the cost to run the tuning process using the WordCount job. Figure 6.4

shows the cost per generation using our approach on all data and on the samples. Our

approach applied on data samples in every generation was at least 1 hour less costly than

applied on all data.

The agregate cost in Figure 6.5 reveals a foremost result to justify the usage of data

sampling. With data sampling our approach was almost 20 hours faster than the tuning

process on all data. Also, as we can see on the graphics in the Section 6.2 the quality of

the WordCount and Grep job con�guration reached by our approach using BA and data

sampling was better than the approach applied on all data.

44

Figure 6.4: Cost of each generation.

Figure 6.5: Agregate cost per generation.

45

CHAPTER 7

CONCLUSION AND FUTURE WORK

Hadoop is a popular data processing solution for Big Data purposes. In the last

years it has been adopted for many companies to handle massive data sets in order to

infer information from their databases. The open source community, research scienti�c

institutes, and several enterprises are spending e�orts to enhance Hadoop, due to the

inherent complexity present in Big Data solutions, i.e. large machine clusters, massive

amount of data that grow up in volume, variety and velocity, several processing jobs etc.

The Hadoop's performance is quite sensitive to changes in the environment aggravated

for the large number of con�guration parameters, greater than 250. Our solution aims

to tuning Hadoop jobs, considering the fact that data engineers and Hadoop users have

wasted too much time con�guring jobs instead of focusing on data analysis.

With our solution Hadoop users will not worry about tuning every speci�c parameter

for each MR job. Our evolutionary algorithm can generate new tuning con�gurations

and test them by runing the jobs on data samples. Data sampling is a proven technique

to reduce cost when querying data. Our KSample algorithm is a robust data sampling

algorithm which doesn't depend of complex knowledge about the data set, queries history

and even its structure. It allows that users just provide an intuitive parameter of input (a

percentual number of the population) without worrying about complex parameters, such

as: resultant sample size, population size, number of samples etc. Using our framework

users can just create a .job �le following our DSL, as decribed in the Section 5.2.2, that

our framework undertakes in choosing a better con�guration for the job according to the

current state of the MR environment.

Experimental investigation showed, as can be seen in Chapter 6, the accuracy of our

solution, i.e. the relation between the quality of the con�guration reached and the cost

to obain it, which reveals a gain in jobs performance with a relatively low cost.

46

During the experiments we realized that some con�gurations reached from data sam-

pling didn't obtain a expected performance when applied on the whole data. For instance

the WordCount, as shown the Figure 7.1, reveals two discrepant points meaning that the

generation 7 and 8 reached good con�gurations when applied on the samples, but they

don't re�ect the expected performance when applied on all data. We have to investigate

why these con�gurations had a di�erent behavior when applied on all data.

Figure 7.1: Case to study.

In this work we considered just the job execution time as �tness value. In the future

we should be considering other metrics, like: IO operation, CPU, Memory and Network

usage. Due users might be more concerned in resource usages than in response time, as

cloud service providers o�er plans based on �pay as you go�, such as Amazon EC2 [18].

In addition, we can implement and test a new algorithm composed of a mix of GA

and BA, i.e. implementing the GA using the BA's memorization operator, thus we can

use the features of both algorithms.

47

BIBLIOGRAPHY

[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. Blinkdb: Queries with bounded errors and bounded response times

on very large data. Proceedings of the 8th ACM European Conference on Computer

Systems, EuroSys '13, New York, NY, USA, 2013. ACM.

[2] apache.org. Language manual sampling. https://cwiki.apache.org/confluence/

display/Hive/LanguageManual+Sampling, 2013. Accessed on 11th July 2013.

[3] apache.org. Welcome to hive! http://hive.apache.org/, 2013. Accessed on 23th

September 2013.

[4] Inc. Aster Data Systems. In-database mapreduce for rich analytics. http://www.

asterdata.com/resources/mapreduce.php, 2013. Accessed on 3rd October 2013.

[5] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. From ge-

netic to bacteriological algorithms for mutation-based testing: Research articles. Soft-

ware, Testing, Veri�cation & Reliability (STVR), 15:73�96, June 2005.

[6] J. L. Bentley. Programming pearls: Little languages. Communications of the ACM,

29(1):711�721, August 1986.

[7] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical processing

in big data systems: a cross-industry study of mapreduce workloads. PVLDB,

5(12):1802�1813, August 2012.

[8] Cloudera. 7 tips for improving mapreduce performance. http://blog.cloudera.

com/blog/2009/12/7-tips-for-improving-mapreduce-performance, 2014. Ac-

cessed at 17th August 2014.

[9] Cloudera, Inc. Algorithms every data scientist should know:

Reservoir sampling. http://blog.cloudera.com/blog/2013/04/

48

hadoop-stratified-randosampling-algorithm, 2013. Accessed on 14th July

2013.

[10] cloudera.org. Con�guration parameters: What can you

just ignore? http://blog.cloudera.com/blog/2009/03/

configuration-parameters-what-can-you-just-ignore, 2014. Accessed on

17th August 2014.

[11] Edgar Frank Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377�387, 1970.

[12] P.G. de Vries. Sampling theory for forest inventory: a teach-yourself course. Springer-

Verlag, 1986.

[13] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on large

clusters. OSDI. USENIX Association, 2004.

[14] Fergal Dearle. Groovy for Domain-Speci�c Languages. june 2010.

[15] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-speci�c languages: An

annotated bibliography. ACM SIGPLAN NOTICES, 35:26�36, 2000.

[16] eclipse.org. Xtext. http://www.eclipse.org/Xtext, 2013. Accessed on 1st April

2013.

[17] explorable.com. Systematic sampling. https://explorable.com/

systematic-sampling, 2014. Accessed on 5th September 2014.

[18] Daniela Florescu and Donald Kossmann. Rethinking cost and performance of

database systems. SIGMOD Rec., 38(1):43�48, junho 2009.

[19] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �le system.

SIGOPS Oper. Syst. Rev., 37(5):29�43, outubro 2003.

49

[20] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,

1989.

[21] Greenplum. A uni�ed engine for rdbms and mapreduce. http://docs.huihoo.com/

greenplum/Greenplum-MapReduce-Whitepaper.pdf, 2013. Accessed on 3rd Octo-

ber 2013.

[22] groovy.codehaus.org. Domain-speci�c languages with groovy. http://groovy.

codehaus.org/Writing+Domain-Specific+Languages, 2013. Accessed on 1st April

2013.

[23] Greg Grothaus. Reservoir sampling - sampling from a stream of elements. http://

gregable.com/2007/10/reservoir-sampling.html, 2013. Accessed on 6th August

2013.

[24] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin and S. Babu.

Star�sh: A self-tuning system for big data analytics. In Proc. of the 5th Conference

on Innovative Data Systems Research (CIDR '11), January 2011.

[25] hadoop.apache.org. Apache hadoop. http://hadoop.apache.org/, 2013. Accessed

on 24th March 2013.

[26] Herodotos Herodotou and Shivnath Babu. Pro�ling, what-if analysis, and cost-based

optimization of mapreduce programs. PVLDB, 4(11):1111�1122, 2011.

[27] Intel. Optimizing hadoop* deployments. Technical report, 2010.

[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:

distributed data-parallel programs from sequential building blocks. EuroSys, 2007.

[29] Jennifer Widom Je�rey D. Ullman, Hector Garcia-Molina. Database systems - the

complete book. Prentice Hall PTR Upper Saddle River, NJ, USA, 2009.

[30] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early accurate results for advanced

analytics on mapreduce. Proc. VLDB Endow., 5(10):1028�1039, junho 2012.

50

[31] Roy Levin and Yaron Kanza. Strati�ed-sampling over social networks using mapre-

duce. Proceedings of the 2014 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD '14, New York, NY, USA, 2014. ACM.

[32] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop

domain-speci�c languages. ACM Computing Surveys (CSUR), 37(4):316�344, 2005.

[33] monetdb.org. Database sampling. http://www.monetdb.org/Documentation/

Cookbooks/SQLrecipes/Sampling, 2013. Accessed on 6th August 2013.

[34] monetdb.org. Monetdb. http://www.monetdb.org, 2013. Accessed on 2nd July

2013.

[35] Prashanth Mundkur, Ville Tuulos, and Jared Flatow. Disco: a computing platform

for large-scale data analytics. Proceedings of the 10th ACM SIGPLAN workshop on

Erlang, Erlang '11, New York, NY, USA, 2011. ACM.

[36] Pivotal. Pivotal greenplum database. http://gopivotal.com/pivotal-products/

data/pivotal-greenplum-database, 2013. Accessed on 3rd October 2013.

[37] Adrian Daniel Popescu, Vuk Ercegovac, Andrey Balmin, Miguel Branco, and Anas-

tasia Ailamaki. Same queries, di�erent data: Can we predict runtime performance?

Anastasios Kementsietsidis and Marcos Antonio Vaz Salles, editors, ICDE Work-

shops. IEEE Computer Society, 2012.

[38] Randomsampling.org. Random sampling. http://www.randomsampling.org, 2013.

Accessed on 2nd July 2013.

[39] Zujie Ren, Zhijun Liu, Xianghua Xu, Jian Wan, Weisong Shi, and Min Zhou. Wax-

elephant: A realistic hadoop simulator for parameters tuning and scalability analysis.

Proceedings of the 2012 Seventh ChinaGrid Annual Conference, CHINAGRID '12,

Washington, DC, USA, 2012. IEEE Computer Society.

[40] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-

cepts, 5th Edition. McGraw-Hill Book Company, 2005.

51

[41] Je�rey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,

11(1):37�57, 1985.

[42] Je�rey Scott Vitter. Faster methods for random sampling. Commun. ACM,

27(7):703�718, 1984.

[43] Guanying Wang, Ali Raza Butt, Prashant Pandey, and Karan Gupta. A simulation

approach to evaluating design decisions in mapreduce setups. 17th Annual Meeting

of the IEEE/ACM International Symposium on Modelling, Analysis and Simulation

of Computer and Telecommunication Systems, MASCOTS 2009, September 21-23,

2009, South Kensington Campus, Imperial College London. IEEE, 2009.

[44] Tom White. Hadoop: The De�nitive Guide. O'Reilly Media, Inc., 1st edition, 2009.

TIAGO RODRIGO KEPE

A TUNING APPROACH BASED ON EVOLUTIONARY
ALGORITHM AND DATA SAMPLING FOR BOOSTING

PERFORMANCE OF MAPREDUCE PROGRAMS

Dissertation presented as partial requisite to
obtain the Master's degree. M.Sc. program
in Informatics, Federal University of Paraná.
Advisor: Prof. Dr. Eduardo C. de Almeida

CURITIBA

2013

