RENATO ROXO COUTINHO DUTRA

COMPARAÇÃO DA ENTOMOFAUNA DE NOVE LOCALIDADES DO ESTADO DO PARANÁ (BRASIL), COM ESPECIAL REFERÊNCIA À DA ILHA DO MEL (BAÍA DE PARANAGUÁ)

Tese aprovada no Curso de Pós-Graduação em Ciências Biológicas da Universidade Federal do Paraná, como parte dos requisitos para a obtenção do título de Doutor em Ciências na área de Zoologia.

Orientador: Dr. Renato Contin Marinoni

COMPARAÇÃO DA ENTOMOFAUNA DE NOVE LOCALIDADES DO ESTADO DO PARANÁ (BRASIL), COM ESPECIAL REFERÊNCIA À ILHA DO MEL (BAÍA DE PARANA-GUÁ).

por

RENATO ROXO COUTINHO DUTRA

Tese aprovada como requisito parcial para a obtenção do Grau de Doutor no Curso de Pós-Graduação em Ciências - Zoologia da Universidade Federal do Paraná, pela Comissão formada pelos professores

são formada	pelos professores
0	Ruceone
Orientador:	
	Prof. Dr. Renato Contin Marinoni
	Mallo AU/
	Profa. Dra. Miriam Becker
	ints.
	Prof. Dr. Sinval Silveira Neto
	Lymice
	Prof. Dr. José Henrique Pedrosa Macedo
	V
	Delina Jalane 5 970
	Profa. Dra. Dilma Solange Napp

"Sentido do número, que descubra e aprecie sem pestanejar a multidão alucinante de elementos materiais ou vivos implicados na menor transformação do Universo.

Sentido da proporção, que avalie tanto quanto possível a diferença de escala física que separa, nas dimensões e nos ritmos, o átomo da nebulosa, o ínfimo do imenso.

Sentido da qualidade, ou da novidade, que chegue, sem destruir a uni - dade física do Mundo, a distinguir na Natureza escalões absolutos de per - feição e de crescimento.

Sentido do movimento, capaz de perceber os irresistíveis desenvolvimentos que se ocultam nas mais frouxas lentidões, — a extrema agitação que se dissimula sob um véu de repouso, — o inteiramente novo que se insinua no intimo da repetição monótona das mesmas coisas.

Sentido do orgânico, enfim, que descubra as ligações físicas e a unida de estrutural sob a justaposição superficial das sucessões e das colectivi dades."

(TEILHARD DE CHARDIN)

AGRADECIMENTOS

Ao Prof.Dr. Renato Contin Marinoni pela orientação do presente trabalho.

Ao Prof.Dr. Jayme de Loyola e Silva, coordenador do Curso de Pós-Graduação em Zoologia da Universidade Federal do Paraná quando de meu ingresso no mesmo, pelo apoio recebido.

à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES) pela bolsa concedida.

Aos seguintes especialistas que colaboraram com a identificação ou confirmação de identificação: M.Sc. Alice F. Kumagai(subfamílias de Ichneumonidae), Dra. Keti M.R. Zanol(famílias de Homoptera), M.Sc. Rosina D. Miyazaki(famílias de Coleoptera), Dr. Inocêncio S. Gorayeb(espécies de Tabanidae), Dr. Miguel A. Monné(espécies de Cerambycidae), Dr. Renato C. Marinoni(espécies de Cerambycidae), Dr. Rodney R. Cavichioli(famílias de Hemiptera), Dr. Ubirajara R.M. Souza(espécies de Cerambycidae).

à Prof<u>a</u> Dr<u>a</u> Dilma S. Napp, Diretora do Centro de Identificação de Insetos Fitófagos(CIIF) da Universidade Federal do Paraná, pelas facilidades na utilização das dependências do mesmo.

Aos amigos Jacqueline Pietras e Irineu G. Gusso, técnicos do CIIF, pela colaboração.

às bibliotecárias do Setor de Ciências Biológicas da Universidade Federal do Paraná e às(aos) secretárias(os) do Departamento de Zoologia, pela solicitude.

SUMÁRIO

1.	INTRODUÇÃO	
	1.1. Sobre os levantamentos entomológicos realizados no Estado do Paraná	
	1.2. Sobre o PROFAUPAR e a inclusão da Ilha do Mel	3
	1.3. Histórico da armadilha Malaise	
2	RELEVÂNCIA E OBJETIVOS DO TRABALHO	۶
-	2.1. Relevância do Trabalho	
	2.2. Objetivos do Trabalho	
	2.2.1. Objetivos gerais	
	2.2.2. Objetivos específicos	
	L.L.L. Gujetivoj especificos	•
2	MATERIAL E MÉTODOS	5
J.	3.1. Descrição dos locais amostrados	
	3.1.1 PROFAUPAR	
	3.1.1. Antonina	
	3.1.1.2. São José dos Pinhais	
	3.1.1.3. Colombo	
	3.1.1.4. Ponta Grossa	
	3.1.1.5. Guarapuava	
	3.1.1.6. Fênix	
	3.1.1.7. Jundiaí do Sul2	
	3.1.1.8. Telêmaco Borba2	
	3.1.2. ILHA DO MEL2	4
	3.1.2.1. Clima	
	3.1.2.2. Localização dos pontos amostrados e respectivas situações florísticas	
	2	
	3.2. Sobre os dados meteorológicos2	9
	3.3. Sobre o material biológico3	0
4.	RESULTADOS E DISCUSSÃO	
	4.1. Clima	8
	4.1.1 PROFAUPAR	8
	4.1.1.1. Temperatura máxima(^O C)	8
	4.1.1.2. Temperatura minima(^O C)	8
	4.1.1.3. Umidade relativa(%)	
	4.1.1.4. Precipitação(mm)4	0
	4.1.2. ILHA DO MEL	
	4.2. Os grupos de Insecta	
	4.2.1. PROFAUPAR	
	4.2.1.1. Sobre a captura de Insecta, amostrada em oito localidades pelo PROFAUPAR	
	nos diferentes meses do ano4	
	4.2.1.2. Presença das Ordens de Insecta	
	4.2.1.3. Sobre a captura de Hemiptera, nos diferentes meses do ano4	
	4.2.1.4. Sobre a captura de Homoptera, nos diferentes meses do ano	
	4.2.1.5. Sobre a captura de Coleoptera, nos diferentes meses do ano, e constânci	
	e dominância das famílias5	
	4.2.1.5.1. Sobre a captura de Cerambycidae, Chrysomelidae, Curculionida	
	e Staphylinidae, nos diferentes meses do ano5	
	4.2.1.6. Sobre a captura de Lepidoptera, nos diferentes meses do ano	
	4.2.1.7. Sobre a captura de Diptera, nos diferentes meses do ano	
	4.2.1.8. Sobre a captura de Hymenoptera, nos diferentes meses do ano	
	4.2.1.8.1. Sobre a captura de Ichneumonidae, nos diferentes meses do ano	
	e constância e dominância das subfamílias7	
	4.2.2 ILHA DO MEL	
	4.2.2.1. Sobre a quantidade de Insecta capturada nas duas localidades da Ilha d	
	Mel, durante o período amostrado	
	4.2.2.2 Presença das Ordens de Insecta	
	4.2.2.3. Sobre a frequência relativa(%) das Ordens de Insecta mais abundantes	
	i.e.e.o. oobie a ilequencia letactvalni das bidens de insecta mais abundantes	,

4.2.2.4. Sobre a quantidade de Insecta e de algumas Ordens, capturadas nas duas localidades da Ilha do Mel, nos diferentes meses do ano	- • ·	uradas nas duas localidades da Ilha do Mel , nos diferentes me	
4.3. Sobre a quantidade de Cerambycidae, capturada nas nove localidades, e constância e dominância das espécies 124 4.3.1. Antonina 124 4.3.2. São José dos Pinhais 125 4.3.3. Colombo 125 4.3.4. Ponta Grossa 126 4.3.5. Guarapuava 127 4.3.6. Fênix 127 4.3.7. Jundiai do Sul 128 4.3.8. Telêmaco Borbá 129 4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e Árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271	4.2.2.4. Sobre	e a quantidade de Insecta e de algumas Ordens, capturadas na	as duas
nância das espécies 124 4.3.1. Antonina 124 4.3.2. São José dos Pinhais 125 4.3.3. Colombo 125 4.3.4. Ponta Grossa 126 4.3.5. Guarapuava 127 4.3.6. Fênix 127 4.3.7. Jundiaí do Sul 128 4.3.8. Telêmaco Borba 129 4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e Árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.1. Antonina. 124 4.3.2. São José dos Pinhais. 125 4.3.3. Colombo. 125 4.3.4. Ponta Grossa. 126 4.3.5. Guarapuava. 127 4.3.6. Fênix. 127 4.3.7. Jundiaí do Sul. 128 4.3.8. Telêmaco Borba. 129 4.3.9. Ilha do Mel. 130 4.4. Análise de agrupamento. 132 4.5. Análise por coordenadas principais e Árvore de conexão mínima. 138 4.6. Diversidade. 139 4.7. Uniformidade. 141 5. CONCLUSÕES. 143 TABELAS. 146 FIGURAS. 235 SUMMARY. 269 REFERÊNCIAS BIBLIOGRÁFICAS. 271			
4.3.2 São José dos Pinhais 125 4.3.3 Colombo 125 4.3.4 Ponta Grossa 126 4.3.5 Guarapuava 127 4.3.6 Fênix 127 4.3.7 Jundiaí do Sul 128 4.3.8 Telêmaco Borba 129 4.3.9 Ilha do Mel 130 4.4 Análise de agrupamento 132 4.5 Análise por coordenadas principais e Árvore de conexão mínima 138 4.6 Diversidade 139 4.7 Uniformidade 141 5 CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.3. Colombo 125 4.3.4. Ponta Grossa 126 4.3.5. Guarapuava 127 4.3.6. Fênix 127 4.3.7. Jundiaí do Sul 128 4.3.8. Telêmaco Borba 129 4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.4. Ponta Grossa 126 4.3.5. Guarapuava 127 4.3.6. Fênix 127 4.3.7. Jundiaí do Sul 128 4.3.8. Telêmaco Borba 129 4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e Árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.5. Guarapuava 127 4.3.6. Fênix 127 4.3.7. Jundiai do Sul 128 4.3.8. Telêmaco Borba 129 4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.6 Fênix 127 4.3.7 Jundiai do Sul 128 4.3.8 Telêmaco Borba 129 4.3.9 Ilha do Mel 130 4.4 Análise de agrupamento 132 4.5 Análise por coordenadas principais e Árvore de conexão mínima 138 4.6 Diversidade 139 4.7 Uniformidade 141 5 CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.7. Jundiaí do Sul 128 4.3.8. Telêmaco Borba 129 4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271	· · · · · · · · · · · · · · · · · · ·		
4.3.8 Telêmaco Borba 129 4.3.9 Ilha do Mel 130 4.4 Análise de agrupamento 132 4.5 Análise por coordenadas principais e Árvore de conexão mínima 138 4.6 Diversidade 139 4.7 Uniformidade 141 5 CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.3.9. Ilha do Mel 130 4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.4. Análise de agrupamento 132 4.5. Análise por coordenadas principais e Árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.5. Análise por coordenadas principais e Árvore de conexão mínima 138 4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.6. Diversidade 139 4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
4.7. Uniformidade 141 5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271	•		
5. CONCLUSÕES 143 TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271			
TABELAS 146 FIGURAS 235 SUMMARY 269 REFERÊNCIAS BIBLIOGRÁFICAS 271	4.7. Uniformidade		141
FIGURAS	5. CONCLUSÕES		143
FIGURAS	TABELAS		146
SUMMARY			
REFERÊNCIAS BIBLIOGRÁFICAS			

RESUMO

Oito áreas representativas de alguns dos vários ambientes naturais ainda existentes no Estado do Paraná foram selecionadas para captura de Insecta, como parte do Projeto "Levantamento da Fauna Entomológica do Estado do Paraná"(PROFAUPAR). Os pontos de amostragem escolhidos foram: a) Antonina (planície litorânea); b) São José dos Pinhais (Serra do Mar); c) Colombo (primeiro planalparanaense); d) Ponta Grossa, Jundiaí do Sul e Telêmaco Borba (segundo planalto paranaense); e) Guarapuava e Fênix (terceiro planalto paranaense). Durante um ano(52 semanas), de agosto de 1986 a julho de 1987, utilizando-se armadilhas Malaise(modelo 1972), estas áreas foram amostradas continuamente. Aprometodologia desenvolvida durante o PROFAUPAR, foram instaladas duas armadilhas Malaise na Ilha do Mel(Baía de Paranaguá), no período de setembro de 1988 a agosto de 1989, em dois pontos denominados Fortaleza e Praia Grande. Se por um lado as capturas realizadas durante o PROFAUPAR possibilitaram um estudo comparativo de entomofaunas amostradas durante o mesmo período, porém em diferentes regiões geomorfológicas e florísticas. capturas realizadas na Ilha do Mel permitiram a realização de um estudo comparativo de entomofaunas amostradas dentro de um mesmo ambiente e durante um mesmo período, além de possibilitar comparações entre áreas geograficamente próximas(Antonina e Ilha Mel), porém amostradas em períodos distintos. Das amostras PROFAUPAR, além do conjunto dos Insecta, que totalizaram 832.542 exemplares, apenas seis Ordens(aproximadamente 95,84% do total de indivíduos capturados) tiveram suas flutuações de captura analisadas graficamente: Hemiptera(1.362 indivíduos), Homopte-Coleoptera(21.457), Lepidoptera(42.322), ra(25.673), ra(649.753) e Hymenoptera(57.366), além da família Ichneumonidae(Hymenoptera)(15.499). Das amostras realizadas na Ilha do Mel(Fortaleza - 62.924 indivíduos e Praia Grande - 38.868 indivísó foram analisadas graficamente as Ordens que foram capturadas concomitantemente nos dois pontos amostrados, e em pelo menos cinco meses; entre os Hemiptera, somente os Miridae, que os mais abundantes, foram analisados graficamente, o mesmo ocorrendo com os Cicadellidae(Homoptera), Tabanidae(Diptera) e espécies, das quais a mais abundante foi Dichelacera alci-<u>cornis</u> (Wiedemann) e Ichneumonidae(Hymenoptera). Quanto aos Coleoptera, só foram analisadas graficamente, no caso do PROFAUPAR, as famílias consideradas comuns(pela classificação de PALMA) para as oito localidades: Chrysomelidae, Curculionidae e Staphylinidae, além de Cerambycidae. No caso da Ilha do Mel, foram analisadas graficamente as famílias consideradas comuns e intermediárias(pela classificação de PALMA) para cada um dos dois pontos Nyssodrysina lignaria (Bates, 1864) foi a mais abundante dentre as 151 espécies de Cerambycidae encontradas para as nove localidades estudadas. Tendo como atributo as espécies de Cerambycidae, procedeu-se à Análise de agrupamento das localidaestudadas(com os pontos de amostragem do PROFAUPAR e da Ilha do Mel sendo analisados simultaneamente). O coeficiente de similaridade utilizado foi o de Dice e o método de agrupamento foi o UPGMA. Foi possível estabelecer uma maior semelhança entre 4 grupos/núcleos de localidades: 1) Antonina/Ilha do Mel; 2) Colombo/Ponta Grossa; 3) Fênix/Jundiaí do Sul e 4) Guarapuava/Telêmaco Borba. São José dos Pinhais ficou distanciada das demais localidades, apresentando baixa similaridade em relação às mesmas. Este estudo foi complementado pela Análise por coordenadas princi -

pais e as ligações entre as localidades feitas com os dados indicados para a Árvore de conexão mínima, que indicou o núcleo Colombo/Ponta Grossa como elemento de ligação entre o grupo Guarapuava/Telêmaco Borba e o núcleo Fênix/Jundiaí do Sul. Ainda com base nas espécies de Cerambycidae, foram obtidos os índices de Diversidade e Uniformidade de Shannon. Ponta Grossa(2,72) e Praia Grande(1,55) apresentaram os valores extremos de Diversidade, sendo os únicos valores considerados estatisticamente diferentes dos demais Fortaleza(0,966) e Praia Grande(0,605) apresentaram os valores extremos de Uniformidade. A relação de dominância entre as espécies foi fator preponderante no cálculo do índice de Diversidade, manifestando-se claramente nos valores da Uniformidade. Concluiu-se que a armadilha Malaise é seletiva para Diptera, Hymenoptera e Lepidoptera, mostrando-se bastante eficiente para medir a abundância relativa, na obtenção de informações sobre a variação sazonal dos Insecta e na comparação de entomofaunas de diferentes localidades. Também, a sincronização imposta aos. Insecta pela troca de estações e o aparecimento de condições propícias para oviposição e crescimento larval, indicou o fim da primavera/início do verão como o período de maior atividade dos Insecta.

1. INTRODUÇÃO

1.1. Sobre os levantamentos entomológicos realizados no Estado do Paraná

No que se refere aos levantamentos da entomofauna no Estado do Paraná, apesar de orientados para alguns poucos grupos taxonômicos e concentrados no leste paranaense, destacam-se: LAROCA (1974), LAROCA, CURE & BORTOLI (1982), CURE-HAKIM (1983) e ZANEL-LA (1991), que tiveram os Apoidea(Hymenoptera) como elemento principal dos trabalhos e as capturas realizadas com rêde entomológica; RHIES (1982) e MARQUES (1989), este último no segundo planalto paranaense, que estudaram respectivamente os Scarabaeidae e Scolytidae(Coleoptera) capturados com armadilha luminosa e etanólica, respectivamente. LAROCA & MIELKE (1975) e LAROCA, BEC-KER & ZANELLA (1989), que estudaram os Sphingidae(Lepidoptera) da Serra do Mar atraídos por fonte luminosa; YAMAMOTO (1984), que estudou comparativamente a Ichneumofauna(Hymenoptera) capturada com armadilha "Malaise" em dois ambientes(urbano e rural) da região de Curitiba, e finalmente DELLOME FILHO (1985), que estudou a Simuliofauna(Diptera) capturada no Rio Marumbi(Morretes, planície litorânea).

Em agosto de 1986 teve início o Projeto "Levantamento da Fauna Entomológica do Estado do Paraná" (PROFAUPAR), sob responsabilidade do Centro de Identificação de Insetos Fitófagos (CIIF) do Departamento de Zoologia da Universidade Federal do Paraná. Este Projeto visou estender estes estudos para outras áreas do Estado, através da captura sistemática de insetos em oito localidades. Dois métodos de captura foram utilizados: armadilha Malaise (modelo TOWNES, 1972) (Fig.1), com as modificações na adaptação do

frasco coletor propostas por YAMAMOTO (1984), e armadilha luminosa tipo "ESALQ"(SILVEIRA NETO & SILVEIRA, 1969).

A importância da obtenção destas informações podendo ser avaliada pelo fato do número e tamanho das populações existentes, e sua condição estável, em diminuição ou ascenção, além da área de distribuição das espécies, ser um dos critérios adotados para a composição da nova "Lista das espécies da fauna brasileira ameaçadas de extinção" (BERNARDES et al., 1990). Segundo SOLOMON (1980), conquanto variem em abundância de geração a geração, as populações tendem a manter, ao longo do tempo, um nível de abundância característico e, enquanto o habitat conservar suas características essenciais, a população geralmente retornará à sua característica de abundância ou raridade.

Apesar das duas armadilhas serem consideradas seletivas, nossa preferência pela utilização no presente trabalho, dos dados coligidos pela Malaise, foi devida às seguintes características que lhes são atribuídas:

- funcionamento tanto em dias chuvosos quanto ensolarados, além da função de capturar continuamente(GRESSITT & GRESSITT, 1962);
 representou para os estudiosos dos insetos voadores o que o funil de Berlese representou para os estudiosos de solo(TOWNES, 1962);
- a facilidade de se manter a armadilha por longos períodos a torna muito eficiente para se obter uma informação segura sobre a sazonalidade dos insetos, também sendo bastante valiosa para se medir a abundância relativa e proporções sexuais(EVANS & OWEN, 1965);
- por não utilizar nenhum tipo de atrativo(luz ou iscas), é completamente imparcial na amostragem, sendo comparável a uma teia de aranha(BREELAND & PICKARD, 1965); porém, para os insetos que

voam neste âmbito.

- eficiente para a obtenção de informações sobre a abundância relativa das diferentes espécies e comparação da entomofauna de diferentes localidades(CHANTER, 1965) e,
- uma das vantagens na sua utilização para estudos quantitativos dos insetos, reside no fato de que todos os espécimes capturados são estritamente do local da armadilha, sendo representativos dos insetos que voaram na área durante o período de amostragem (OWEN & CHANTER, 1970).

Deve-se salientar, que uma das desvantagens na sua utilização reside no fato desta armadilha medir apenas a atividade de
vôo dos insetos, o que não significa que os indivíduos capturados
em maior número sejam necessariamente os mais abundantes no local
amostrado.

Quanto à utilização da rêde entomológica, além da dificuldade de se obter concomitantemente dados de oito pontos de amostragem distintos, ela tem sido utilizada basicamente em levantamentos de abelhas, com vários aspectos desta metodologia sendo discutidos em LAROCA (1974) e CURE et al. (1990).

1.2. Sobre o PROFAUPAR e a inclusão da Ilha do Mel

Com o início do PROFAUPAR, oito pontos de amostragem foram estabelecidos(Fig.2):

- a. Um na área litorânea(Antonina);
- b. Um na crista da Serra do Mar(São José dos Pinhais);
- c. Um no primeiro planalto(Colombo);
- d. Três no segundo planalto(Ponta Grossa, Jundiaí do Sul e Telêmaco Borba) e,

e. Dois no terceiro planalto(Guarapuava e Fênix).

Segundo MAACK (1981), o traço mais evidente no aspecto da superfície do Estado do Paraná é a sua divisão em duas grandes regiões naturais: o litoral e os planaltos do interior. Referindo-se ao revestimento florístico da região litorânea, subdivide-a em duas zonas paisagísticas naturais: a)Orla marítima e, b)Orla da Serra. Associações florísticas regionais típicas destacam a presença de formações psamófitas, halófitas e xerófitas na Orla marinha, enquanto na Orla da Serra predomina a mata pluvial-tropical. Segundo Hatschbach (in MARINONI & DUTRA, 1993), Antonina caracteriza-se por apresentar mata pluvial da vertente atlântica, com a presença de elevado número de epífitas, o que a separa da mata pluvial da planície litorânea.

Apesar do ponto de amostragem em Antonina estar localizado na região litorânea, ele dista alguns quilômetros do litoral propriamente dito. A ação direta do mar faz-se mais branda a esta distância, levando a que florística e faunisticamente diferenciese da Ilha do Mel(Baía de Paranaguá)(Fig.3).

Aproveitando o material já amostrado pelo PROFAUPAR e considerando as características florísticas diferenciadas da área litorânea, foram instaladas duas armadilhas Malaise(modelo TOWNES, 1972) na Ilha do Mel(Fig.4), no período de setembro de 1988 a agosto de 1989.

A inclusão das amostras realizadas na Ilha do Mel, cujas características geomorfológicas são encontradas em BIGARELLA (1946), FERNANDES (1947), MAACK (1981) e HERRMANN & ROSA (<u>in</u> IB-GE, 1990), abriu uma nova perspectiva de estudos comparativos de entomofaunas capturadas com Malaise em diferentes localidades.

Se por um lado as capturas realizadas durante o PROFAUPAR possibilitaram um estudo comparativo de entomofaunas capturadas

durante o mesmo período, porém em diferentes regiões geomorfológicas e florísticas, as capturas realizadas na Ilha do Mel permitiram a realização de um estudo comparativo de entomofaunas capturadas dentro de um mesmo ambiente e durante um mesmo período, além de possibilitar comparações entre áreas geograficamente próximas(Antonina e Ilha do Mel), porém amostradas em períodos distintos.

1.3. Histórico da armadilha Malaise

Partindo da constatação de que, desde o tempo de Linnaeus a técnica de capturar insetos não havia progredido muito, MALAISE (1937) desenvolveu a partir de observações realizadas em trabalhos de campo, e mais especificamente no interior de sua barraca de acampar, um novo tipo de armadilha. Observando que os insetos eventualmente penetravam na barraca costumavam acumular-se que nos ângulos do teto e que em determinada ocasião lograram escapar um furo existente no tecido, desenvolveu a armadilha que viria consagrar-se com a denominação "Malaise". A primeira versão armadilha consistiu de uma rede de pescar negra e um cilindro receptor de latão; apresentava uma forma piramidal composta de vários compartimentos, com o recipiente coletor contendo a substância letal localizado no seu ápice. Observou que era eficiente principalmente para a captura de Diptera, Hymenoptera, Noctuidae e Sphingidae, além de Coleoptera. Eliminou algumas desvantagens como a entrada unilateral e a entrada do cilindro coletor com diâmetro muito pequeno, desenvolvendo um novo modelo com entradas pelos dois lados e com uma abertura maior para entrada no cilindro.

GRESSITT & GRESSITT (1962) compararam a eficiência de três versões aperfeiçoadas da armadilha Malaise, sendo as principais modificações a utilização de dois cilindros coletores feitos de plástico, a cor do tecido utilizado na sua confecção, suas dimensões e as dimensões interiores do funil coletor. Discutiram sobre a localização ideal da armadilha para aumentar sua eficiência.

Entendendo que a Malaise poderia ser objeto de infinitas modificações para adaptá-la à captura de determinados insetos em habitats particulares, TOWNES (1962) desenvolveu um novo modelo para capturar Ichneumonidae, o qual funcionou muito bem, capturando também outros tipos de insetos voadores ativos. Observou que os tipos de insetos capturados dependeram em alto grau do local onde a armadilha foi montada; modificações no seu tamanho, forma e disposição influenciando na quantidade e frequência relativa das várias espécies capturadas, com a cor do tecido podendo exercer algum efeito.

JUILLET (1963) comparou as capturas de Hymenoptera, Diptera, Lepidoptera, Coleoptera e Homoptera-Hemiptera através de quatro tipos de armadilhas: "glass-barrier", Malaise, "rotary" e "sticky". Observou que Malaise foi o segundo melhor tipo de armadilha para todas as Ordens estudadas, exceto Coleoptera, concluindo que a tendência dos indivíduos pertencentes a esta Ordem era de cair ao solo após chocarem-se a um objeto, o que aumentava suas chances de escapar.

EVANS & OWEN (1965) estudaram a atividade de vôo dos insetos utilizando uma Malaise (modelo Townes). Observaram que a armadilha mostrou ser particularmente satisfatória na coleta de Hymenoptera, Diptera e Lepidoptera. Constataram que, como muitos métodos de captura, a Malaise era seletiva e devería ser utlizada conjuntamente com outras técnicas quando se desejava uma amostra-

gem da fauna total de insetos.

BREELAND & PICKARD (1965) utilizaram o modelo Townes para capturar Diptera. Observaram ser uma armadilha que capturava eficientemente tanto à noite quanto de dia, sob condições de tempo variáveis.

BUTLER JR. (1965) redesenhou o modelo Townes, tornando-o de confecção mais barata e fácil; utilizou um mosquiteiro na sua forma original e um recipiente plástico coletor. Segundo o autor, o desenho básico oferecia um ponto de partida para muitas modificações em função de capturas especializadas.

CHANTER (1965) sugeriu a utilização de álcool no recipiente coletor, apesar de não considerá-lo favorável aos Lepidoptera.

MARSTON (1965) forneceu informações para a construção de uma nova versão do modelo Townes. Constatou que, se montada em um local durante toda uma estação, poderia fornecer informações valiosas sobre a dinâmica das populações dos insetos.

PRUESS & PRUESS (1966) utilizaram dois modelos experimentais de Malaise para determinar a direção de vôo dos insetos, instalando-as em locais sem a inconveniência da presença de possíveis obstáculos que pudessem modificar sua direção de vôo. Observaram que muitos grupos de insetos mostraram uma forte tendência na direção de vôo quando relacionada com a direção do vento. Estas tendências sendo mais marcantes em ventos com velocidades entre 5 e 15 milhas por hora. Em velocidades maiores as capturas eram menores, sugerindo uma diminuição da atividade e em velocidades menores os vôos tendendo ser mais ao acaso.

SOUTHWOOD (1966) considerou a armadilha Malaise imparcial na captura de Hymenoptera e Diptera, porém insatisfatória para Coleoptera e Hemiptera; observou serem necessários testes que determinassem o potencial desta armadilha para estudos ecológicos.

PECHUMAN & BURTON (1969) testaram vários métodos para a captura dos Tabanidae em uma determinada área de estudo. Observaram que a colocação de gelo seco embaixo da armadilha Malaise aumentou bastante a captura de muitas espécies. Concluíram serem as armadilhas Malaise um eficiente meio de se capturar Tabanidae.

MATTHEWS & MATTHEWS (1970) utilizaram quatro armadilhas Malaise, modelo Cornell*, pelo período de treze semanas. Observaram que a temperatura e a precipitação, particularmente, exerceram forte influência nas capturas, com grandes capturas ocorrendo em dias quentes e ensolarados, seguidos de chuva; o vento não tendo sido uma variável muito importante.

ROBERTS (1970) comparou as capturas de Tabanidae realizadas com três armadilhas Malaise(modelo Townes), confeccionadas com tecidos de cores diferentes(branca, cinza, branca e verde). Observou que o número de indivíduos capturados aumentou com o grau de contraste entre a armadilha e o solo; o contraste envolvendo dois fatores: a diferença entre a cor da armadilha e o solo e a diferença na reflexão da luz entre armadilha e solo. Concluiu que o ingresso dos Tabanidae na armadilha Malaise é determinado pela percepção visual da cor da armadilha e da luz refletida, e não ao acaso.

TOWNES (1971) a partir de observações realizadas diretamente no campo, estimou em 20% do total dos indivíduos que ali penetravam, o percentual de Ichneumonidae capturados pela armadilha Malaise.

ROBERTS (1971) estudando a possibilidade da utilização da armadilha Malaise, modelo Townes, para o estudo da sazonalidade dos Tabanidae, observou que a sua confiabilidade para determinar

^{*} Produzida comercialmente pela Cornell Equipment Co., Inc.

a exata distribuição das populações de Tabanidae é afetada pela localização, cor e número de armadilhas. Concluiu que a utilização de atrativos, por exemplo CO₂, pode ser útil na pesquisa, especialmente para detectar aquelas espécies com poucos exemplares e que ocorrem por períodos relativamente curtos.

TOWNES (1972) forneceu informações para a construção da armadilha Malaise(modelo Townes, 1962), com algumas modificações, principalmente no seu peso final, o que facilitava o seu transporte e manejo. Considerou as cores das diversas peças muito importante, podendo incrementar as capturas em até 180%, além de sua localização; preferencialmente armada ao longo de trilhas, clareiras ou bordas de matas, a parte de trás deve ficar voltada para a vegetação e a parte da frente, contendo o frasco coletor, voltada para a luz.

ROBERTS (1975) estudou os efeitos da ação do tempo sobre a armadilha Malaise, modelo Townes (1962), fazendo comparações entre armadilhas com diferentes anos de uso e de diferentes cores. Observou que a eficiência de captura da armadilha vai diminuindo com o tempo, devido ao escurecimento que o tecido sofre; esta perda de eficiência devendo ser considerada quando estas armadilhas são utilizadas para estudos ecológicos dos Tabanidae.

ROBERTS (1976) comparou seis tipos de armadilhas(Stoneville, California, Canopy, Canopy modificada, Pexiglas modificada e Manning modificada), todas baseadas nos princípios da Malaise, que vinham sendo utilizadas para a captura de Tabanidae. Concluiu que a armadilha mais eficiente, baseado no total de indivíduos capturados(apenas fêmeas), foi a modelo Stoneville iscada com CO₂; a menos eficiente foi a modelo Pexiglas não iscada.

WALKER (1978) utilizou quatro armadilhas Malaise para monitorar o vôo dos insetos, até uma altura de dois metros do solo. pelo período de um ano. Concluiu que armadilhas Malaise podem monitorar continuamente e efetivamente a migração de insetos dentro dos limites de um estrato.

STEYSKAL (1981) revisou a bibliografia sobre a armadilha Malaise. Das 62 referências apresentadas, quatorze têm como principal objeto de estudo os Tabanidae.

MATTHEWS & MATTHEWS (1983) estudaram comparativamente as armadilhas Malaise(modelo Townes, 1972) e o modelo Cornell produzido comercialmente. Neste estudo, dos 69.247 insetos capturados no período de quatro semanas, 90% foram capturados pelo modelo Townes; esta armadilha capturou dez vezes mais Diptera, seis vezes mais Hemiptera, três e meia vezes mais Lepidoptera e 88,7% de todos os Hymenoptera. Chamaram a atenção para a cor da armadilha e sua localização, o que provavelmente incrementou a sua eficiência.

Segundo OWEN (1983), a idéia inicial de MALAISE (1937) não absorveu muito os entomologistas até que TOWNES (1962) explicou detalhadamente como fazer a armadilha; revisou os tipos de informações ecológicas que tinham sido obtidas através da utilização da Malaise, concluindo ser um excelente meio para comparar locais e estações do ano.

HUTCHESON (1990) estudou comparativamente duas localidades, utilizando em cada uma delas três armadilhas Malaise(modelo TOW-NES, 1972) para monitorá-las. Observou que as localidades possuíam claramente diferentes comunidades, concluindo que o local de amostragem era de importância primária, com a estação do ano e a posição da armadilha tendo importância secundária e terciária, respectivamente.

No Brasil, BOTELHO <u>et al</u> (1972) sugeriram modificações na armadilha Malaise(modelo Health EEX, produzido comercialmente),

tornando-a utilizável em diversas culturas.

BOTELHO <u>et al</u>. (1974) utilizaram a armadilha Malaise, com as modificações propostas por BOTELHO <u>et al</u>. (1972), na determinação da flutuação populacional de <u>Silba pendula</u>(Bezzi)(Diptera, Lonchaeidae), que se destaca como uma das mais importantes pragas na cultura da mandioca.

PENNY & ARIAS (1982), utilizaram-se de cinco tipos de armadilhas, entre elas a do tipo Malaise, para estudar as populações de Arthropoda da Amazônia; o trabalho foi realizado por um período de treze meses, na Reserva Florestal "Ducke", localizada a aproximadamente 26 Km de Manaus. Inicialmente utilizaram uma Malaise com 3 m X 2 m, substituindo-a posteriormente por uma com 6 m X 3 m, dificultando uma avaliação dos resultados.

YAMAMOTO (1984) realizou um ciclo anual de capturas periódicas com armadilhas Malaise(modelo Townes, 1962), em ambientes urbano e rural da região de Curitiba(Paraná). Apresentou modificações no feitio dos potes coletores, o que facilitou o manuseio dos mesmos.

2. RELEVÂNCIA E OBJETIVOS DO TRABALHO

2.1. Relevância do Trabalho

Segundo BROWN Jr.(1977), a vasta dominância de pequenos invertebrados nos sistemas de Floresta Neotropical, faz com que qualquer esquema de conservação desses ambientes não possa deixar de considerar esses organismos.

HOLDRIDGE (1987) considera imperativo entender muito claramente o "modus vivendi" e as causas que produzem as diferenças fisionômicas e estruturais das associações naturais. Segundo o autor, deve-se trabalhar muito rápido no estudo das comunidades naturais virgens, antes que sejam alteradas pelo homem, como também é necessário assegurar a conservação de suficientes áreas não alteradas, para estudos a longo prazo e para que sirvam como bancos de germoplasma e de formas biológicas.

Durante o Ciclo de Debates "O Problema das Espécies Exóticas", realizado em outubro de 1990, em Porto Alegre(RS), e promovido por quatorze entidades ligadas direta ou indiretamente à questão ambiental, entre as quais a Sociedade Brasileira de Zoologia, uma das conclusões apresentadas foi considerar: "Os inventariamentos da fauna e da flora nativas, como base essencial para a elaboração de RIMAs qualitativamente aceitáveis" (CICLO DE DEBATES "O PROBLEMA DAS ESPÉCIES EXÓTICAS", 1990).

As "Diretrizes para o Desenvolvimento da Zoologia" priorizam, entre as várias necessidades que se apresentam, os "Levantamentos de Diversidade" principalmente para as "Áreas sujeitas a impacto", sem os quais, "toda e qualquer conclusão obtida com base em levantamento feito às pressas é, pelo menos, imprudente e condenável"(DIRETRIZES para o desenvolvimento da Zoologia, 1990).

Uma política de preservação ambiental deve contemplar a diversidade biológica com áreas representativas dos vários ambientes naturais ainda existentes. No caso do Estado do Paraná, que apresenta aproximadamente 5% de sua cobertura vegetal original (ITCF, 1990), o conhecimento do potencial faunístico de diferentes áreas preservadas apresenta-se como fator fundamental para que se avalie suas condições como mantenedoras da biodiversidade, capazes de servir como estoque para repovoamentos (MARINONI & DUTRA, 1993).

2.2. Objetivos do Trabalho

2.2.1. Objetivos gerais(cf. MARINONI & DUTRA, 1993)

- a. Conhecimento de áreas faunísticas representativas dos vários ambientes naturais ainda existentes no Estado do Paraná.
- b. Aplicação de metodologia para captura de entomofaunas, de forma a possibilitar comparações dentro e entre ecossistemas, ava liando o alcance do método como definidor de parâmetros comparativos.

2.2.2. Objetivos específicos

- a. Obter a composição quantitativa dos Hemiptera, Homoptera, Co leoptera, Lepidoptera, Diptera e Hymenoptera capturados durante o PROFAUPAR, e das diversas Ordens capturadas na Ilha do Mel, descrevendo a flutuação anual dos valores médios de captura.
- b. Obter a composição quantitativa e qualitativa das famílias de

Coleoptera das nove localidades amostradas, além de classifi - cá-las quanto à constância e dominância, e das famílias de He miptera e Homoptera capturadas na Ilha do Mel, descrevendo a flutuação anual da captura média das mais abundantes

- c. Obter a composição quantitativa e qualitativa dos Tabanidae da Ilha do Mel, descrevendo a flutuação anual da captura média das espécies.
- d. Obter a composição quantitativa e qualitativa dos Ichneumoni dae das nove localidades amostradas, além de classificá-las quanto à constância quanto à constância e dominância.
- e. Comparar os vários pontos amostrados tendo como atributo as es pécies de Cerambycidae, além de classificá-las quanto à cons tância e dominância, procurando identificar as espécies que caracterizam os agrupamentos formados; estabelecer a relação entre estes agrupamentos e as informações bióticas/abióticas disponíveis.

3. MATERIAL E MÉTODOS

3.1. DESCRIÇÃO DOS LOCAIS AMOSTRADOS

3.1.1. PROFAUPAR

As indicações a seguir sobre pluviosidade, temperatura e classificações climáticas de Koeppen foram obtidas em MAACK (1981) e no ATLAS DO ESTADO DO PARANÁ (ITCF, 1990). As identificações das Zonas de Vida(=Biomas), de Holdridge, para os locais foram anotados de MILANO et al. (1987), ou definidas a partir dos dados históricos encontrados no Atlas do ITCF (op.cit.)(segundo metodologia proposta por HOLDRIDGE, 1987). As situações florísticas, resultado de observações realizadas pelo Dr. Gert Hatschbach(Museu Botânico Municipal — MBM), e segundo a classificação de VELOSO & GÓES (1982), foram transcritas de MARINONI & DUTRA (1993), onde também são encontradas descrições pormenorizadas dos locais amostrados, e indicadas as suas relações obtidas com base em dados meteorológicos do período amostrado.

Durante a descrição dos locais amostrados, utilizou-se quatro tipos de classificações: 1) Zonas de vida, segundo o sistema de Holdridge, obtidas por MILANO <u>et al</u>., 1987; 2) Zonas de vida (Holdridge) utilizando os dados históricos obtidos no Atlas do Estado do Paraná (ITCF, 1990); 3) Situações florísticas segundo VELOSO & GÓES (1982) e, 4) Classificações climáticas de Koeppen (MAACK, 1981).

Segundo SCHULZE & McGEE (apud BROWN & GIBSON, 1983), o modelo de Holdridge não foi suficientemente testado para determinar o seu valor por inteiro; argumentam que a deficiência do modelo pode ser o uso de valores anuais de temperatura e precipitação, os quais não representam o importante fator sazonal influenciando o crescimento das plantas, além das críticas às quais o conceito

biotemperatura está sujeito. Por outro lado, CAMPOS (1973) argumenta que o sistema de Holdridge fundamenta-se no princípio de que, geralmente, a ação do clima sobressai dentre os demais fatores do meio, procurando evitar a subjetividade na definição de áreas ecológicas, e utiliza dados quantitativos que são definidos pelos valores dos parâmetros climáticos de precipitação e biotemperatura.

Para LEITE & KLEIN (<u>in</u> IBGE, 1990), o uso de sensoreamento remoto para levantamento dos recursos naturais revolucionou a metodologia de mapeamento da vegetação a partir dos anos 70, no País, principalmente com o emprego das imagens de radar e satélite, permitindo a uniformização de critérios, conceitos e métodos de levantamento florístico-vegetacional e resultou na criação de um sistema de classificação fisionômica-ecológica(VELOSO & GóES, op.cit.), adaptado a conceitos fitogeográficos internacionais.

Quanto ao sistema de Koeppen, MILANO <u>et al</u> (1987) observaram uma estreita coincidência entre seus tipos climáticos e as
zonas de vida de Holdridge.

3.1.1.1. ANTONINA - Área litorânea

(Lat. $25^{\circ}28' S - Long. 48^{\circ}50' W$)

O ponto de amostragem localizou-se na Reserva Biológica de Sapitanduva, Estrada Velha de Morretes a Antonina, em propriedade particular pertencente ao Dr. Gert Gunther Hatschbach, com cerca de 50 hectares.

Altitude aproximada: 60 metros

Pluviosidade: 1900-2000 mm/ano

Temperatura média anual: 20-21°C

Classificação de Holdridge (MILANO <u>et al</u>., 1987): Transição Floresta úmida subtropical/muito úmida subtropical

Holdridge com dados históricos: Transição de Floresta úmida subtropical e Floresta muito úmida subtropical

VELOSO & GÓES (1982): Floresta Ombrófila Densa Submontana Classificação de Koeppen: Af(t)

Situação florística:

"Mata pluvial de vertente atlântica. Caracterizada pela presença de elevado número de epífitas, principalmente Bromeliaceae. Araceae e Polypodiaceae. Pobre em Orchidaceae, o que a separa da mata pluvial da planície litorânea. Árvores de grande porte que são exclusivas desta mata: bucuva(<u>Virola oleifera</u>), nhotinga(<u>Cryptocarya moschata</u>), etc. Maior característica fisionômica é dada pelo palmiteiro(Euterpe edulis) que cobre, em todos os seus estágios, toda área que se acha em regeneração. Como as demais áreas escolhidas para implantação das estações de coleta de insetos, também sofreu ação parcial do homem com retirada de alguns exemplares de madeira de lei(década de 1940), porém todas as espécies estão regenerando. Praticamente não ficaram grandes clareiras que pudessem ser invadidas por elementos secundários. Destas espécies, as consideradas secundárias são encontradas mais na orla, como é o caso da quaresmeira(Tibouchina pulchra), caapororoca(Rapanea ferruginea), etc."

3.1.1.2. SÃO JOSÉ DOS PINHAIS - Crista da Serra do Mar (Lat. 25°34′S - Long. 49°01′W)

O ponto de amostragem localizou-se no município de São José dos Pinhais, a 4 Km de distância do Km 54 da Br-277(Rodovia Para-naguá-Curitiba).

Altitude aproximada: 1050 metros

Pluviosidade: 1900-2000 mm/ano

Temperatura média anual: 17-18°C

Classificação de Holdridge (MILANO <u>et al</u>, 1987): Floresta úmida temperada

Holdridge com dados históricos: Transição de Floresta úmida subtropical baixomontana e Floresta muito úmida subtropical baixomontana

VELOSO & GóES (1982): Transição de Floresta Ombrófila Densa Montana e Floresta Ombrófila Mista Montana

Classificação de Koeppen: Cfb

Situação florística:

"Mata característica de transição da mata pluvial para a de Como em Sapitanduva, também rica em epífitas, porém Araucaria. sempre diferente em espécies, mesmo quando de gêneros iguais. Mais rica em Orchidaceae que Sapitanduva, devido ao mais teor de umidade, o que a leva a aproximar-se da matinha nebular do alto dos morros da Serra do Mar. Espécies arbóreas mais características: couvatã(<u>Matayba cristae</u>), <u>Ouratea vaccinifolia</u>, miguel-pintado(<u>Cupania vernalis</u>), o caingá(<u>Myrcia hatschbachii</u>), etc. Diversos gêneros de árvores são idênticos aos de Sapitanduva porém com espécies diferentes, como é o caso do miguel-pintado em Sapitanduva é <u>Cupania oblongifolia</u>. Sofreu ação do homem com retirada de árvores para lenha e indústria madereira. Com a abertura de grandes clareiras penetrou violentamente a taquara(Merostachys multiramea) o que impede uma regeneração adequada das espécies originais."

3.1.1.3. COLOMBO - Primeiro Planalto

(Lat. $25^{\circ}20' S - Long. 49^{\circ}14' W$)

O ponto de amostragem localizou-se no município de Colombo, junto à rodovia Curitiba-Adrianópolis, antiga Estrada da Ribeira, no Km 19 da Br-476.

Altitude aproximada: 915 metros

Pluviosidade: 1400-1500 mm/ano

Temperatura média anual: 16-17°C

Classificação de Holdridge (MILANO <u>et al.</u>, 1987): Floresta úmida temperada

Holdridge com dados históricos: Floresta úmida subtropical baixomontana

VELOSO & GóES (1982): Floresta Ombrófila Mista Montana

Classificação de Koeppen: Cfb

Situação florística:

"Típico erval do Primeiro Planalto com erva-mate(<u>Ilex para-guariensis</u>), pinheiro(<u>Araucaria angustifolia</u>), vassourão(<u>Pipto-carpha angustifolia</u>), caapororocão(<u>Rapanea umbellata</u>), etc. Mato muito destruído, tendo sido invadido pela bracatinga(<u>Mimosa sca-brella</u>), caapororoca(<u>Rapanea ferruginea</u>), etc."

3.1.1.4. PONTA GROSSA - Segundo Planalto

Zona ondulada do Paleozóico

(Lat. $25^{\circ}14' S - Long. 50^{\circ}03' W$)

O ponto de amostragem localizou-se no Parque Estadual de Villa Velha, município de Ponta Grossa, junto à rodovia do Café, no Km 83 da Br-376.

Altitude aproximada: 880 metros

Pluviosidade: 1500-1600 mm/ano

Temperatura média anual: 16-17°C

Classificação de Holdridge (MILANO <u>et al</u>., 1987): Floresta úmida temperada

Holdridge com dados históricos: Floresta úmida subtropical baixomontana

VELOSO & GóES (1982): Floresta Ombrófila Mista Montana

Classificação de Koeppen: Cfb

Situação florística:

"Capão natural de campo com presença de pinheiro(Araucaria angustifolia), diversas canelas(Nectandria grandiflora, Ocotea puberula), imbuia(Ocotea porosa), guamirim(Myrcia breviramis), congonha(Ilex dumosa), etc. Pobre em epífitas. Sofreu ação do homem com retirada de madeiras de lei, principalmente canelas e imbuia."

3.1.1.5. GUARAPUAVA - Terceiro Planalto
Planalto de Guarapuava

(Lat. $25^{\circ}40' S - Long. 52^{\circ}01' W$)

O ponto de amostragem localizou-se na Estância Santa Clara, município de Guarapuava, com cerca de 120 hectares, no vale do rio Jordão, a 12 Km da rodovia Pr-373(Três Pinheiros-Pato Branco).

Altitude aproximada: 740 metros

Pluviosidade: 1600-1700 mm/ano

Temperatura média anual: 18-19°C

Classificação de Holdridge (MILANO <u>et al</u>, 1987): Floresta úmida temperada

Holdridge com dados históricos: Floresta úmida subtropical

VELOSO & GóES (1982): Floresta Ombrófila Mista com transição para

Floresta Estacional Semidecidual

Classificação de Koeppen: Cfb

Situação florística:

"Situada na orla dos Campos gerais do Terceiro planalto paranaense, é uma típica transição dos capões de campo com a mata de galeria do rio Iguaçú, que sobe pelo rio Jordão. Na parte mais alta predomina o pinheiro, ao lado das leguminosas de grande porte, como a gorocaia(Parapiptadenia rigida), diversas lauráceas(canelas - Ocotea e Nectandra), etc. Em direção ao vale, diminui o pinheiro e aparecem os elementos de galeria como o bronquilho(Sebastiana klotzschiana), o vacunzeiro(Allophylus edulis), a Myrtaceae(Myrrhymium loranthoides) que chega até Curitiba, etc. Bastante destruída a mata sofreu retirada de pinheiros e canelas, principalmente. Há, no entanto, algumas pequenas áreas de mata bem conservada."

3.1.1.6. FÊNIX - Terceiro Planalto

Planalto de Campo Mourão

(Lat. 23054'S - Long. 51058'W)

O ponto de amostragem localizou-se na Reserva Estadual de Vila Rica, no município de Fênix, com cerca de 360 hectares, às margens dos rios Ivaí e Corumbataí.

Altitude aproximada: 350 metros

Pluviosidade: 1400-1500 mm/ano

Temperatura média anual: 21-22°C

Classificação de Holdridge (MILANO <u>et al</u>., 1987): Floresta úmida subtropical premontana

Holdridge com dados históricos: Transição de Floresta seca tropical premontana para Floresta úmida tropical premontana

VELOSO & GÓES (1982): Floresta Estacional Semidecidual

Classificação de Koeppen: Cfa

Situação florística:

"Mata pluvial de terra roxa do Oeste paranaense. As árvores de grande porte remanescentes são, em sua maioria, de pequeno valor comercial, destacando-se a gororema ou pau-de-alho(Gallesia gororema), a canafístula(Peltophorum dubium), o alecrim(Holocalyx glaziovii), diversas figueiras(Ficus sp), etc. Evidentemente foram retiradas as espécies de lei de alto valor comercial como o pau-marfim(Balfourodendron riedelianum), a peroba(Aspidosperma polyneuron), o ipê(Tabebuia sp), etc. Rica em trepadeiras lenhosas das famílias Bignoniaceae e Sapindaceae. Muito característica a presença do mamão do mato(Jacaratia spinosa), etc. Como epífita mais importante e abundante, a Orchidaceae - Miltonia flavescens, que também ocorre em Jundiaí do Sul."

3.1.1.7. JUNDIAÍ DO SUL - Segundo Planalto

Zona de mesetas do Mesozóico

(Lat. 23º26' S - Long. 50º16' W)

O ponto de amostragem localizou-se na Fazenda Monte Verde, município de Jundiaí do Sul, com cerca de 400 hectares.

Altitude aproximada: 500 metros

Pluviosidade: 1300-1400 mm/ano

Temperatura média anual: 21-22°C

Classificação de Holdridge (MILANO <u>et al</u>, 1987): Floresta úmida tropical premontana

Holdridge com dados históricos: Transição de Floresta úmida tropical premontana para Floresta seca tropical premontana

VELOSO & GóES (1982): Floresta Estacional Semidecidual

Classificação de Koeppen: Cfa

Situação florística:

"Mata pluvial do norte pioneiro e representante da área paranaense menos levantada floristicamente já que suas matas foram destruídas há muito tempo. Entre as árvores de grande porte são encontradas: o pau-de-alho, o alecrim, a canafístula, como em Fênix. Grande número de canelas(Ocotea tweediei), não observadas em Fênix. Bastante invadida por elementos secundários, ainda assim é importante para estudos de endemismos e ocorrências geográficas. Como em Fênix, é abundante o pau-jacaré(Anadenanthera), etc., ocorrendo ainda a gorocaia(Parapiptadenia rigida)) comum a Fênix e Santa Clara."

3.1.1.8. TELÊMACO BORBA - Segundo Planalto

Zona ondulada do Paleozóico

(Lat. 24º17' S - Long. 50º37' W)

O ponto de amostragem localizou-se na Reserva Biológica Samuel Klabin, município de Telêmaco Borba, com cerca de 200 hectares.

Altitude aproximada: 750 metros

Pluviosidade: 1300-1400 mm/ano

Temperatura média anual: 18-19°C

Classificação de Holdridge (MILANO <u>et al</u>., 1987): Floresta úmida temperada

Holdridge com dados históricos: Floresta úmida subtropical

VELOSO & GóES (1982): Floresta Ombrófila Mista Montana

Classificação de Koeppen: Cfa

Situação florística:

"Típica mata de araucária com elementos de galeria ao longo de um córrego no fundo do vale. Ao lado da araucária, a canafístula(Peltophorum dubium), o mandioqueiro brabo(Didymoponax morototoni), o pau-marfim(Balfourodendron riedelianum), a sapuva(Machaerium stipitatum). Elementos de porte menor, a Monimiaceae, Mollinedia elegans, o manacá(Brunfelsia brasiliensis) que também ocorre em Santa Clara, Guarapuava. Bastante destruída com a retirada de pinheiros para a indústria de papel, deixaram muitas clareiras que foram ocupadas pela taquara(Merostachys multiramea), a mesma do Alto da Serra, o que, sem dúvida, dificulta imensamente a regeneração das espécies primitivas. Ao longo do córrego aparecem elementos idênticos à galeria do rio Iguaçú, com o bronquilho(Sebastiana klotzschiana), e a Myrrhynium loranthoides(Myrtaceae), etc."

3.1.2. ILHA DO MEL

Localizada na entrada da Baía de Paranaguá, entre a Ilha das Peças e Pontal do Sul(Fig.3), a Ilha do Mel possui uma área total de 2762 hectares dos quais, 2585 hectares são de reserva ecológica. Possui um perímetro total de 35 Km(perímetro parte Norte: 22 Km e perímetro parte Sul: 13 Km) e a altitude máxima é de 151 metros(Boletim Informativo, ITCF).

Pluviosidade: 1900-2000 mm/ano

Temperatura média anual: 20-21°C

Classificação de Holdridge (MILANO <u>et al.</u>, 1987): Transição Floresta úmida subtropical/muito úmida subtropical

Holdridge com dados históricos: Transição de Floresta úmida subtropical e muito úmida subtropical

VELOSO & GóES (1982): Floresta Ombrófila Densa Submontana

Classificação de Koeppen: Af(t)

Situação florística:

Como esta localidade não foi visitada pelo Dr.Gert Hatschbach, os elementos aqui apresentados foram anotados de MAACK (1981) e LEITE & KLEIN (<u>in</u> IBGE, 1990); outras informações podendo ser obtidas em BIGARELLA (1946), FERNANDES (1947) e KLEIN (<u>in</u> BIGARELLA, 1978). Todos estes trabalhos relacionados à parte continental da planície litorânea.

Segundo MAACK (op. cit.), quando a planície arenosa se eleva de 5 a 7,5 metros s.n.m., a estrutura xerofítica predomina em todas as plantas, com os componentes mais importantes pertencendo às famílias das mirtáceas, euforbiáceas, melastomatáceas, mirsináceas e cactáceas; a alternância entre restinga e mata costeira não se verificando apenas na planície litorânea, mas também nas grandes ilhas: Pecas, Pinheiros, Comprida e Ilha do Mel. "As palmeiras são ricamente representadas por várias espécies, que dão à mata do litoral um cunho tropical característico, constituindo uma região singular entre a restinga e a mata pluvial-tropical"; a influência climática do Oceano Atlântico, com a corrente brasileira quente, ostentando formas superficiais particulares e uma vegetação tropical-subtropical peculiar à zona litorânea.

Segundo LEITE & KLEIN (<u>op</u>. <u>cit</u>.), embora a Floresta Ombrófila Densa detenha elevado contingente de espécies e de formas de vida em suas diversas formações, apenas reduzido número de arbóreas marca-lhe significativamente a fisionomia, compondo entre 70 e 80% da cobertura superior. Há uma grande variação de ambientes circunscritos às formações vegetais sob influência direta do mar,

dentre as quais merecem destaque, pela maior importância fisionômica, os seguintes: a faixa da praia, as dunas instáveis, as dunas fixas e as áreas aplainadas e/ou plano-deprimidas e os costões rochosos.

Nas dunas fixas destacam-se: aroeira-vermelha(Schinus tere-<u>binthifolius</u>), guamirim-do-miúdo(<u>Eugenia</u> <u>catharinae</u>), biguaçu(<u>En</u>genia umbelliflora), guamirim-da-folha-miúda(Myrcia rostrata), pau-de-bugre(<u>Lythraea brasiliensis</u>), a capororoca-da-praia(<u>Rapa</u>-<u>nea parvifolia</u>) e maria-mole(<u>Guapira opposita</u>). Nas áreas aplainadas e/ou plano-deprimidas: juncos(<u>Juncus</u> spp), grama-branca(<u>Pa</u>-<u>nicum reptans</u>), taboa(<u>Typha dominguensis</u>), rainha-dos-lagos(<u>Pon</u>tederia lanceolata), vacunzeiro(Allophylus edulis), canela-dobrejo(<u>Ocotea pulchella</u>), tapiá-guaçu(<u>Alchornea triplinervia</u> var. <u>janeirensis</u>), cambuí(<u>Myrcia multiflora</u>), olandi(<u>Calophylum brasi</u>liensis) e a cupiúva(Tapirira guianensis). Nos ambientes mais adequados, com solo mais bem estruturado, a vegetação já apresenta porte arbóreo ou sub-arbóreo, destacando-se: capororocão(Rapanea umbellata), camboatá-vermelho(<u>Cupania vernalis</u>), figueira-mata-pau(Coussapoa schottii), baga-de-pombo(Byrsonima ligustrifolia), gerivá(Arecastrum romanzoffianum) e muitas outras espécies características da Floresta Ombrófila Densa Submontana.

3.1.2.1. CLIMA

DUQUIA & COSTA (1987), estudando o comportamento médio das grandezas meteorológicas para a região litorânea do Estado do Paraná, observaram que as maiores concentrações de precipitação foram nos meses de verão: janeiro, fevereiro e março. As temperaturas médias mais baixas ocorrem durante o inverno(trimestre de junho a agosto) e as mais elevadas no trimestre de janeiro a março;

a proximidade do oceano ameniza as variações térmicas, razão pela qual Paranaguá e Guaraqueçaba apresentam amplitude térmica média menor do que Morretes e Antonina, com as maiores frequências ocorrendo na faixa de 23,0°C a 24,9°C(Paranaguá).

Quanto à umidade, observaram um alto índice médio mensal durante todo ano, com a maior frequência ocorrendo na faixa de 84% a 89%; atribuem o fato a influência do anticiclone semipermanente tropical do Atlântico que desloca umidade do oceano para o continente.

3.1.2.2. LOCALIZAÇÃO DOS PONTOS AMOSTRADOS E RESPECTIVAS SITUA - CÕES FLORÍSTICAS

Ilha do Mel foram escolhidos dois pontos de amostragem(Fig.4) para instalação das armadilhas Malaise. O ponto(A) foi estabelecido no setor Norte(planície sedimentar quaternária, originada principalmente de depósitos marinhos)(FIGUEI-1954), próximo à Fortaleza de Nossa Senhora dos Prazeres, REDO. Reserva Ecológica com 2240 hectares, num ponto distando aproximadamente 400 metros da linha da maré mais alta, em um local menos sujeito à ação direta dos ventos. Segundo MAACK (1981), os ventos vindos do setor Sul dominam com frequência de 22,8% sobre os ventos do setor Leste(20,3%), e os ventos continentais dos setores SW, W e NW com frequência de 33,2%; a forte ação dos ventos oceânicos fazendo-se notar nas pitangueiras e aroeiras da praia, através da distribuição das suas folhas e na modificação do córtex de seus caules(FERNANDES, 1947).

Segundo SILVA (1990), como espécies importantes na floresta arenosa(região mais alta, com solo de maior drenagem) predominam:

Ocotea pulchella, Clusia parviflora, Ilex pseudobuxus, Ternstroe-

mia brasiliensis, Erytroxylum amplifolium, Myrcia multiflora e Psidium cattleianum.

O segundo ponto de amostragem(B) foi estabelecido no setor Sul(formado basicamente por afloramentos do complexo cristalino, de origem pré-cambriana, intercalados por pequenas planícies arenosas quaternárias)(FIGUEIREDO, 1954), na Praia Grande(Reserva Natural com 345 hectares), bem na base do morro do Joaquim, em um local que no decorrer do trabalho mostrou-se sujeito a alagamento por vários dias, em decorrência da alta precipitação ocorrida em determinadas épocas. Distava aproximadamente 150 metros da linha da maior preamar e mostrava-se bastante exposto à ação dos ventos, se comparado ao outro ponto amostrado.

Segundo SILVA (1990), como espécies importantes na floresta paludosa(que na época de maior pluviosidade permanece encharcada) destacam-se: Callophylum brasiliense, Tabebuia cassinoides, Pouteria beaurepeirei, Myrcia grandiflora, Myrcia racemosa var gaudichaudiana, Coussapoa microcarpa, Marlierea tomentosa e Myrcia insularis.

3.2. Sobre os dados meteorológicos

Os dados meteorológicos (Tabelas 1 a 9) utilizados foram obtidos junto às estações meteorológicas oficiais ou oficiosas localizadas próximas aos locais de coleta. A seguir são listadas as fontes dos dados utilizados:

ANTONINA - Estação Meteorológica da Estação Experimental de Frutas(Instituto Agronômico do Paraná - IAPAR - Morretes).

SÃO JOSÉ DOS PINHAIS - A ausência de estação meteorológica oficial próxima ao local de coleta obrigou-nos a instalar uma "caixa meteorológica" (modelo DELLOME FILHO, 1985), composta de um psicrômetro (termômetros de bulbo seco e bulbo úmido) e um termômetro para registro de temperaturas máxima e mínima, além de um pluviômetro. Foram desprezados os dados de temperatura mínima (ausentes na Tabela 2 e Figura 5) e de pluviometria, com estes últimos sendo substituídos pelos dados obtidos junto à Companhia Paranaense de Eletricidade (COPEL).

COLOMBO - Centro Nacional de Pesquisas Florestais(Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA - Colombo).

PONTA GROSSA - Instituto Agronômico do Paraná(IAPAR - Ponta Grossa).

GUARAPUAVA - Mesmo procedimento adotado para São José dos Pinhais, sem apresentar falhas na coleta dos dados. FÊNIX - Estação meteorológica de Ivaiporã(Secretaria de Agricultura do Paraná).

JUNDIAÍ DO SUL - Estação meteorológica de Cambará(Secretaria de Agricultura do Paraná).

TELÊMACO BORBA - Estação meteorológica de Lagoa(Indústria Klabin de Papel e Celulose).

ILHA DO MEL - Estação meteorológica de Paranaguá(Secretaria de Agricultura do Paraná).

3.3. Sobre o material biológico

INSTALAÇÃO DA MALAISE E COLETA DAS AMOSTRAS OBTIDAS. Em cada um dos pontos de amostragem do PROFAUPAR foi instalada uma armadilha Malaise(modelo TOWNES, 1972), com as modificações no frasco-coletor propostas por YAMAMOTO (1984). Os critérios utilizados para a definição do local de amostragem e fixação da armadilha foram:

- Que fosse local pouco perturbado pelo homem, por ações anteriores ou a serem desenvolvidas durante o período amostrado.
- O maior eixo da armadilha colocado paralelo ao sentido Norte-Sul, perpendicular a caminho(trilha, picada) existente na mata, com o frasco-coletor voltado para o Norte.

Todas as segundas-feiras, o material do PROFAUPAR era retirado do frasco-coletor(contendo álcool hidratado a 70%), por indivíduos residentes nos locais, devidamente instruídos para este fim, e transferido para recipiente plástico devidamente rotulado (procedência e data de retirada). Os locais de amostragem eram

visitados e vistoriados, com os recipientes sendo transportados para Curitiba.

As amostras foram agrupadas mensalmente, de acordo com a data de retirada do material do frasco-coletor, o que fez com que alguns meses tivessem cinco amostras enquanto outros apenas quatro(Tabela 10); a primeira amostra datada de 04 de agosto de 1986 e a última de 27 de julho de 1987, perfazendo um total de 52 semanas amostradas.

O mesmo procedimento foi utilizado para as amostras da Ilha do Mel, com a retirada do material do frasco-coletor ocorrendo aos domingos; a primeira amostra datada de 04 de setembro de 1988 e a última de 27 de agosto de 1989.

TRIAGEM, ARMAZENAMENTO DOS DADOS OBTIDOS E IDENTIFICAÇÃO DO MATERIAL. O material amostrado foi triado a nível de Ordem em laboratório, sob microscópio estereoscópico, após o que foi acondicionado em recipientes de vidro(contendo álcool 70%) devidamente rotulados que, por sua vez, foram guardados em recipientes plásticos(também contendo álcool 70%) rotulados e codificados, para posterior acesso ao material.

Os dados obtidos foram transferidos para fichas(a sequência utilizada para as Ordens foi aquela proposta por BORROR & DELONG, 1969) e posteriormente introduzidos em Banco de Dados, utilizando-se o programa DBase III.

Para a identificação dos Hemiptera(montados e etiquetados) e Homoptera(no álcool), a nível de família, seguiu-se FROESCHNER (1981 e 1985) e BORROR & DELONG (1969).

Os Coleoptera foram identificados a nível de família, seguindo-se BORROR & DELONG (1969) e COSTA-LIMA (1952, 1953, 1955 e 1956).

Os Ichneumonidae foram identificados a nível de subfamília seguindo-se TOWNES (1969).

CLASSIFICAÇÃO DO MATERIAL QUANTO à CONSTÂNCIA E DOMINÂNCIA. A classificação das famílias de Coleoptera, das subfamílias de Ichneumonidae e das espécies de Cerambycidae(Coleoptera) quanto à constância(e.g. [número de amostras em que Cerambycidae ocorreu/total de amostras realizadas] X 100) e dominância(e.g. [total de Cerambycidae/total de Coleoptera] X 100) seguiu a proposta de PALMA(apud ABREU & NOGUEIRA, 1989). Isto fez com que os taxa acima citados fossem classificados conforme apresentado abaixo:

CONSTÂNCIA

Até 25% - acidental

De 25,01% a 50% - acessória

> 50% - constante

DOMINÂNCIA

Até 2,5% - acidental

De 2.51% a 5% - acessória

> 5% - dominante

A classificação final foi obtida através da combinação destas classificações. Assim, ser "constante" e "dominante" concomitantemente definiam a família Cerambycidae, por exemplo, como "comum"; ser "acidental" nas duas classificações definiam-na como "rara", com todas as outras combinações possíveis definindo-a como "intermediária".

Esta classificação é resultado de uma combinação entre os índices de "constância" e "frequência" apresentados por DAJOZ (1973), com o índice de constância sendo considerado suficiente por alguns autores para definir o "status" (acidental, acessória ou constante) dos grupos animais que estudam (CIVIDANES, 1979;

CHAGAS & SILVEIRA NETO, 1985 e TEIXEIRA, 1989, entre outros).

Mais adiante, quando da avaliação dos valores das Uniformidades obtidos através do estudo da Diversidade, será possível avaliar o alcance do método empregado.

AGRUPAMENTO ENTRE AS LOCALIDADES. Tendo como ANALISE DE atributo as espécies de Cerambycidae(Coleoptera), procedeu-se Análise de agrupamento das localidades estudadas(com os pontos de amostragem do PROFAUPAR e da Ilha do Mel sendo analisados simultaneamente). Neste estudo, as duas localidades da Ilha do constituiram um único vetor na matriz de dados. Em decorrência do método aplicado para obtenção do coeficiente de semelhança entre localidades, não foram incluídas na matriz de dados as espécies que foram capturadas em um único local ou que foram capturadas em todas as localidades simultaneamente. O coeficiente de similaridade utilizado foi o de Dice (in ROMESBURG, 1990) e o método de agrupamento foi o UPGMA(Unweighted Pair-Group Method Using Arithmetic Averages(in SNEATH & SOKAL, 1973). O programa utilizado foi o NTSYS-pc(versão 1.50)(ROHLF, 1989). Este programa também permite o reordenamento da matriz de dados a partir do dendrograobtido, opção esta que também foi utilizada para um melhor compreensão do resultado final da Análise de agrupamento.

Segundo CURE-HAKIM (1983), uma forma de nos aproximarmos de uma melhor compreensão dos padrões de organização das comunidades bióticas é a comparação entre áreas mais ou menos semelhantes e o estudo dos componentes que de alguma maneira reflitam propriedades do sistema como um todo.

Para CURI (1985), a Análise de agrupamento é uma das melhores maneiras de se descrever padrões de similaridade para um conjunto de unidades conhecidas. Vários índices de similaridade já foram utilizados em estudos semelhantes: o de Baroni-Urbani e Buser(ABSALÃO, 1988), o de Jaccard(CASTRO & ARCIFA, 1989) e o de Morisita(BARCELLOS <u>et al., 1989)</u>, entre outros. A escolha do índice de Dice(=Sorensen) justifica-se segundo ROMESBURG (1990) pelo fato da técnica de amostragem não capturar todas as espécies existentes nos diversos pontos amostrados, sendo, portanto, desaconselhável agrupá-los com base na ausência de espécies; entre os vários trabalhos que utilizaram este índice podemos citar: LANZER & SCHAFFER, 1987; ANJOS & SEGER, 1988; ROCHA & COSTA, 1988 e GONÇALVES, 1989, entre outros.

ANÁLISE POR COORDENADAS PRINCIPAIS E ÁRVORE DE CONEXÃO MÍNI-MA. Utilizou-se: medida de similaridade entre os pares de localidades pelo coeficiente de similaridade de Dice e as ligações entre as localidades feitas com os dados indicados para a árvore de Conexão Mínima(cf. GOWER & ROSS, 1969). O programa utilizado também foi o NTSYS-pc.

DIVERSIDADE E UNIFORMIDADE. Apesar dos vários índices de similaridade existentes, utilizou-se no presente trabalho o de Shannon(in MAGURRAN, 1988). Os índices obtidos para as localidades estudadas foram posteriormente comparados segundo o teste proposto por HUTCHESON (1970), com α =0,05(cf VALENTI & FROEHLICH, 1986).

A uniformidade foi obtida conforme metodologia apresentada em PIELOU (1966a).

A opção pela utilização do índice de Shannon(H,) foi devido ao fato dele levar em consideração não somente o número de espécies, mas a relação de dominância entre elas(WHITTAKER, 1972 e

VALENTI & FROEHLICH, 1986). Entretanto, como foi enfatizado por GOLDMAN (apud PIELOU, op.cit.), o H, de Shannon só é definido para condições médias de uma população grande; logo, o valor de H, está baseado nas proporções das várias espécies de uma população de tamanho desconhecido, não podendo ser calculado com exatidão, mas apenas estimado(PIELOU, 1966b). Ainda, segundo MAGURRAN (1988) o índice também assume que todas as espécies estão representadas na amostra. Apesar disso, o que conflita com a aplicação do índice de Dice, optou-se pela sua utilização. Para PIANKA (1966), o fato do índice pesar igualmente espécies raras e comuns é bastante lógico para se estimar a diversidade em situações com muitas espécies raras, porém regulares.

APRESENTAÇÃO DOS RESULTADOS E ANÁLISE GRÁFICA. A apresentação dos resultados obtidos durante o PROFAUPAR seguiu a sequência do percurso realizado quando do recolhimento do material, ou seja: Antonina, São José dos Pinhais, Colombo, Ponta Grossa, Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba; esta sequência desprezando quaisquer similaridades geomorfológicas ou fitogeográficas entre as localidades.

Das amostras do PROFAUPAR, apenas seis Ordens tiveram suas flutuações de captura média(número médio de indivíduos/semana) analisadas graficamente: Hemiptera, Homoptera, Coleoptera, Lepidoptera, Diptera e Hymenoptera, além dos Ichneumonidae.

Das amostragens realizadas na Ilha do Mel, só foram analisadas graficamente as Ordens capturadas concomitantemente nos dois pontos amostrados, e em pelo menos cinco meses; entre os Hemiptera, somente os Miridae foram analisados graficamente, o mesmo ocorrendo com os Cicadellidae(Homoptera), Tabanidae(Diptera) e Ichneumonidae(Hymenoptera).

A reta da tendência da captura média dos Insecta(PROFAUPAR e Ilha do Mel), obtida através do método dos mínimos quadrados, em função da distribuição mensal do número médio de indivíduos/semana, seguiu a metodologia proposta por SPIEGEL (1976).

Quanto aos Coleoptera, só foram analisadas graficamente, no caso do PROFAUPAR, as famílias consideradas comuns(pela classificação de PALMA) para as oito localidades, com exceção dos Cerambycidae cuja análise gráfica fazia-se necessária devido ao estudo a nível específico realizado com esta família. No caso da Ilha do Mel, foram analisadas graficamente as famílias consideradas comuns e intermediárias(pela classificação de PALMA) para cada um dos dois pontos amostrados.

Após o estudo de cada uma das Ordens(além do conjunto dos Insecta, das famílias de Coleoptera citadas acima e dos Ichneumonidae), no caso do PROFAUPAR, e das Ordens e famílias de Coleoptera(comuns e intermediárias) da Ilha do Mel, foi feita uma tentativa de visualização das relações entre os dados a partir das figuras feitas pelo método da Neográfica(=Graphique) e do tratamento gráfico da informação(BERTIN, 1986). Este tratamento permite transformar gráficos "para ler" em gráficos "para ver"(CARDO-SO, 1984), substituindo gráficos ilustrativos por gráficos operacionais. Nesta análise, consideramos: primavera(setembro a novembro), verão(dezembro a fevereiro), outono(março a maio) e inverno(junho a agosto), segundo metodologia utilizada por NIMER (in IBGE, 1990).

MATERIAL-TESTEMUNHA. Encontra-se depositado na Coleção de Entomologia "Pe. Jesus Santiago Moure", do Departamento de Zoologia da Universidade Federal do Paraná.

4. RESULTADOS E DISCUSSÃO

4.1. Clima

4.1.1. PROFAUPAR

4.1.1.1. Temperatura máxima(°C)

Janeiro foi o mês mais quente nas oito localidades estudadas. Três localidades apresentaram temperaturas médias acima dos 30°C: Jundiaí do Sul(31,79°C), Antonina(31,46°C) e Fênix(30,71°C). Quatro localidades apresentaram temperaturas médias entre 27°C e 29°C: Telêmaco Borba(28,72°C) e Ponta Grossa(28,71°C), com temperaturas médias praticamente iguais, Colombo(27,67°C) e Guarapuava(27,39°C). São José dos Pinhais apresentou a média mais baixa(21,77°C)(Fig.5 e Tabs.1 a 8).

Os resultados obtidos concordam com as observações de NIMER (in IBGE, 1990), segundo o qual janeiro, mês representativo do solstício de verão, é sempre o mais quente; esta coerência no tempo e no espaço sendo característica de latitudes extratropicais.

4.1.1.2. Temperatura minima(OC)

Junho foi o mês mais frio nas sete localidades onde esta variável foi registrada. Para São José dos Pinhais aceitamos maio como o mês mais frio do ano. Três localidades apresentaram temperaturas médias acima dos 10°C: Antonina(11,01°C), Jundiaí do Sul(10,55°C) e Fênix(10,51°C). Três localidades apresentaram temperaturas médias entre 5 e 10°C: Telêmaco Borba(9,90°C), Ponta Grossa(7,86°C) e Guarapuava(5,74°C). Colombo(4,29°C) apresentou o valor mais baixo, sendo a única localidade com média abaixo dos

 $5^{\circ}C(Fig.5 e Tabs.1 a 8)$.

A constatação de junho como o mês mais frio discorda de NI-MER (in IBGE, 1990), para quem em todas as regiões extratropicais o mês mais frio é aquele que sucede imediatamente o solstício de inverno, ou seja, julho. Concorda, entretanto, com a afirmação de que, não obstante o inverno climático da região possuir, em média, uma duração de quatro meses, os meses de junho e julho são sensivelmente mais frios que os de maio e agosto, embora, como ocorreu em Telêmaco Borba, a mínima absoluta possa ocorrer em um destes dois últimos meses.

4.1.1.3. Umidade relativa(%)

Duas localidades apresentaram seus maiores valores médios acima dos 90%: Guarapuava(95,81% - maio) e São José dos Pinhais(93,25% - dezembro). Quatro localidades apresentaram os maiores valores médios entre 80 e 90%: Colombo(88,96% - abril), Antonina(86,72% - abril), Telêmaco Borba(82,17% - dezembro) e Jundiaí do Sul(81,98% - maio). Fênix(71,12% - dezembro) e Ponta Grossa(71% - fevereiro) destacaram-se por serem as localidades que apresentaram seus maiores valores médios abaixo de 75%.

Três localidades apresentaram seus menores valores médios acima de 80%: São José dos Pinhais(82,26% - junho), Colombo(81,87% - outubro) e Guarapuava(81,12% - agosto), enquanto três localidades apresentaram os menores valores médios abaixo de 60%: Jundiaí do Sul(59,67% - outubro), Ponta Grossa(54,44% - outubro) e Fênix(53,40% - outubro). Antonina(75,19% - outubro) e Telêmaco Borba(63,70% - outubro), apresentaram valores intermediários aos anteriores(Fig.6 e Tabs.1 a 8).

Com exceção de São José dos Pinhais e Guarapuava, as demais localidades tiveram em comum o mês de outubro como o de menor umidade relativa média.

4.1.1.4. Precipitação(mm)

São José dos Pinhais (402,0mm - dezembro) foi a única localidade que apresentou seu maior valor mensal acima de 400mm. Quatro localidades apresentaram seus maiores valores mensais acima de 300 e abaixo de 400mm: Guarapuava (384,1mm - maio), Ponta Grossa (359,0mm - dezembro), Antonina (320,4mm - dezembro) e Fênix (300,5mm - maio), enquanto três localidades apresentaram seus maiores valores mensais abaixo de 300mm: Telêmaco Borba (299,4mm - maio), no mesmo mês e com valor praticamente igual ao de Fênix, Colombo (286,2mm - maio) e Jundiaí do Sul (237,3mm - agosto).

Fênix(62,8mm - julho) foi a única localidade que apresentou o menor valor mensal acima de 60,0mm, enquanto apenas duas localidades apresentaram seus menores valores mensais abaixo de 20,0mm: Ponta Grossa(19,4mm - março) e Antonina(14,5mm - julho). As demais localidades apresentaram valores intermediários aos anteriores: Guarapuava(46,2mm - março), Colombo(45,7mm - julho), Telêmaco Borba(41,6 mm - março), São José dos Pinhais(38,4mm - julho) e Jundiaí do Sul(27,7mm - julho)(Fig.6 e Tabs.1 a 8).

São José dos Pinhais(2.651,8mm) foi a localidade com o maior volume acumulado de chuvas ao final do período de coleta, enquanto Colombo(1.476,5mm) foi a localidade que apresentou o menor volume.

MARINONI & DUTRA (1993), apoiados em dados climatológicos do período amostrado, procuraram estabelecer uma relação de seme-

entre as localidades amostradas, utilizando a metodologia Taxonomia Numérica(<u>cf</u>. SNEATH & SOKAL, 1973). Utilizaram a Análise de agrupamento e, para comparar os agrupamentos conforme delineados pelas diferentes árvores, produtos das análises das diferentes variáveis(temperatura máxima e mínima, umidade relativa do ar e pluviometria, a partir das médias mensais), foram produzidas Árvores de Consenso pelo método de STINEBRICKNER (1984). Comparando as duas árvores(com valores médios mensais e semanais) das variáveis meteorológicas analisadas simultaneamente, observaram a existência de três pares das mesmas localidades: Colombo/Guarapuava, Ponta Grossa/Telêmaco Borba e Fênix/Jundiaí estas relações concordando com a Árvore de Conexão Minima("Prim Network"), que ainda indicou a relação do grupo Grossa/Telêmaco Borba ao grupo Jundiaí do Sul/Fênix, além de mostrar categoricamente o isolamento de Antonina(única localidade da planície litorânea) e São José dos Pinhais.

Segundo MARINONI & DUTRA (1993), Antonina apresenta altas temperaturas, o que a aproxima das localidades de Fênix e Jundiaí do Sul, mas a alta umidade e a alta pluviosidade levam a um afastamento bastante notável das mesmas. Também observaram que Colombo e Guarapuava constituem o grupo mais distanciado das demais localidades. possuindo os mais baixos valores de temperatura(máximas e mínimas) e os mais altos valores de umidade: destacada destas, porém a elas relacionada, aparece a localidade de São José dos Pinhais Concluíram, confrontando as árvores obtidas a partir dos valores médios semanais das temperaturas máxima e mínima, que Colombo, Ponta Grossa, Guarapuava e Telêmaco Borba(localidades onde a Araucaria encontra condições propícias de desenvolvimento) formam um grupo, mostrando-se mais assemelhadas entre si que às localidades de Antonina, Fênix e Jundiaí do Sul(maiores

médias das temperaturas máxima e mínima).

4.1.2. ILHA DO MEL

Fevereiro(30,51°C - 23,4°C a 36,0°C) foi o mês mais quente e julho(13,06°C - 6,8°C a 17,8°C) o mais frio; setembro(85,63% - 70,7% a 98,5%) foi o mês com a umidade relativa média mais alta e novembro(67,84% - 49,0% a 87,3%) com a mais baixa. O mês de janeiro(498,6mm) foi aquele com maior precipitação e agosto(29,9mm) com a menor; apresentou um volume acumulado de 1.931,8mm ao final do período amostrado(Fig.7 e Tab.9).

A constatação de fevereiro e julho como os meses mais quente e frio, respectivamente, concorda com as observações feitas por DUQUIA & COSTA (1987), para a região litorânea do Estado, de que as temperaturas médias mais elevadas ocorrem no trimestre de janeiro a março, e as baixas de junho a agosto.

Quanto à umidade relativa média, um alto índice mensal durante todo o ano, com maior frequência ocorrendo na faixa de 84% a 89%(cf. DUQUIA & COSTA, op.cit.), discorda dos resultados do presente trabalho que constatou uma maior frequência, também observada para Antonina, ocorrendo na faixa de 81% a 85%(seis meses), com cinco meses apresentando valores entre 75% e 79% e apenas um mês com valor abaixo de 70%.

Segundo NIMER (<u>in</u> IBGE, 1990), uma área que possui um regime anual de precipitação, cujo ritmo estacional é de certa forma regular, é representada pela faixa litorânea do Paraná e Santa Catarina; o máximo pluviométrico, nesta área restrita, pertencendo geralmente ao trimestre janeiro-fevereiro-março(DUQUIA & COSTA, <u>op.cit.</u>), enquanto o mínimo incide, na maioria das vezes, no in-

verno, tratando-se portanto de um ritmo estacional característico das regiões de clima tropical.

Durante o período de amostragem na Ilha do Mel, janeiro e agosto foram, respectivamente, os meses com maior e menor precipitação, concordando com os dados acima apresentados, e também muito próximos dos resultados obtidos para Antonina, que teve em dezembro e julho os meses com maior e menor precipitação, respectivamente; o volume acumulado de 1.931,8mm, obtido ao final do período amostrado, também está relativamente próximo da média anual obtida por MAACK (1981) para a cidade de Paranaguá(região litorânea), que foi de 1.867,2mm, e abaixo dos 2.073,9mm obtidos para Antonina durante o PROFAUPAR.

4.2. Os grupos de Insecta

4.2.1. PROFAUPAR

4.2.1.1. Sobre a captura de Insecta, amostrada em oito localidades pelo PROFAUPAR, nos diferentes meses do ano

Foram capturados 832.542 indivíduos nas oito localidades, sendo mais abundantes em Jundiaí do Sul(261.425 indivíduos - 31,40% do total) e em Ponta Grossa(232.083 indivíduos - 27,88% do total); os menores valores de Insecta foram registrados em Colombo(26.121 indivíduos - 3,14% do total) e em São José dos Pinhais(39.224 indivíduos - 4,71% do total)(Tab.11).

Em Antonina, os Insecta(51.959 indivíduos - 6,24% do total) apresentaram uma variação da captura média de 541,50 a 1.811,25 indivíduos/semana, registradas em agosto e julho respectivamente(Fig.8 e Tabs.11 e 12).

Em São José dos Pinhais apresentaram uma variação da captura média de 143,00 a 1.697,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.8 e Tab.12).

Em Colombo apresentaram uma variação da captura média de 149,33 a 751,50 indivíduos/semana, registradas em maio e novembro respectivamente(Fig.8 e Tab.12).

Em Ponta Grossa apresentaram uma variação da captura média de 921,20 a 10.078,50 indivíduos/semana, registradas em junho e janeiro respectivamente(Fig.8 e Tab.12).

Em Guarapuava(55.917 indivíduos - 6,72% do total) apresentaram uma variação da captura média de 149,20 a 1.833,25 indivíduos/semana, registradas em junho e outubro respectivamente(Fig.8
e Tabs.11 e 12).

Em Fênix(80.104 indivíduos - 9,62% do total) apresentaram uma variação da captura média de 387,00 a 3.390,75 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.8 e Tabs.11 e 12).

Em Jundiaí do Sul apresentaram uma variação da captura média de 1.439,50 a 9.387,50 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.8 e Tab.12).

Em Telêmaco Borba(85.709 indivíduos - 10,29% do total) apresentaram uma variação da captura média de 59,20 a 4.060,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.8 e Tabs.11 e 12).

Colombo foi a única localidade que apresentou a menor captura média no mês de maio, que foi o de maior precipitação pluviométrica. São José dos Pinhais, Ponta Grossa, Guarapuava e Telêmaco Borba apresentaram as menores capturas médias em junho, que foi o mês mais frio do ano(provavelmente também para São José dos

Pinhais, apesar de aceitarmos maio como o mês mais frio).

Fênix e Jundiaí do Sul, os dois pontos de amostragem localizados mais ao norte do Estado, também enquadrados nas mesmas categorias dos vários sistemas(Maack, Veloso & Góes, Koeppen e Holdridge)(cf. MARINONI & DUTRA, 1993), e cujas semelhanças na situação florística foram destacadas por Hatschbach, além de juntamente com Antonina serem as localidades de maior temperatura mínima média, apresentaram as menores capturas médias em julho, que foi o mês de menor precipitação pluviométrica.

Somente Antonina, único ponto de amostragem localizado na planície litorânea, apresentou a menor captura média em agosto.

Todas as localidades apresentaram suas menores capturas médias nos meses de maio a agosto, que são os meses do inverno climático da região(NIMER <u>in</u> IBGE, 1990), mostrando nestes locais uma relação positiva entre as menores capturas médias e as baixas temperaturas.

Antonina foi a única localidade que teve a sua maior captura média no mês de julho, que foi o de menor precipitação pluviométrica. Em Guarapuava os Insecta apresentaram sua maior captura média em outubro. Cinco localidades apresentaram suas maiores capturas médias em novembro: São José dos Pinhais, Colombo, Fênix, Jundiaí do Sul e Telêmaco Borba, enquanto somente em Ponta Grossa os Insecta apresentaram sua maior captura média em janeiro, que foi o mês mais quente do ano.

MARINONI & DUTRA (1993) estudando comparativamente os valores mensais de captura média dos Insecta(PROFAUPAR), em relação a
cada uma das variáveis meteorológicas utilizadas, observaram que,
na maioria das localidades, os maiores valores de correlação das
capturas médias foram com as temperaturas máxima e mínima média.
Os valores negativos mais altos de correlação foram com as umida-

des relativas médias, apesar de Jundiaí do Sul e Ponta Grossa, as duas localidades onde os Insecta foram mais abundantes, apresentarem em comum, juntamente com Fênix, os mais baixos valores médios de umidade relativa do ar, sendo os únicos pontos de amostragem com os menores valores médios abaixo de 60%, e em outubro

A representação neográfica mostra(Apêndice 1, Insecta) que em cinco localidades (São José dos Pinhais, Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto em Colombo e Ponta Grossa, no verão; em Antonina, o outono foi a estação em que os Insecta foram mais abundantes, apesar do maior valor ter sido registrado no inverno, o que, provavelmente, definiu a reta de tendência da captura média (Fig. 8) numa posição inversa àquela obtida para as outras sete localidades.

Segundo MATTHEWS & MATTHEWS (1970), o fato da primavera ser a estação do ano em que os Insecta apresentam uma maior atividade, sendo capturados em maior número, deve ser atribuído a uma combinação de fatores: a sincronização imposta ao desenvolvimento dos Insecta pela troca de estações, e o aparecimento de uma folhagem primaveril bastante fresca para oviposição e crescimento larval, podendo naturalmente indicar que o fim da primavera/início do verão seria o período de maior atividade dos Insecta adultos.

Outra implicação sazonal, aventada por MATTHEWS & MATTHEWS (1983), refere-se à altura do vôo dos Insecta variando em relação ao solo em função da temperatura da estação, com a diferença na eficiência da armadilha Malaise sendo acentuada durante os períodos mais quentes, quando o vôo dos Insecta está concentrado em estratos superiores àqueles utilizados durante a primavera; por capturar insetos que voam nos extratos mais próximos ao solo,

sendo esta uma de suas características, a armadilha Malaise pode estar sendo mais eficiente durante a primavera, apesar da maior atividade dos Insecta poder estar ocorrendo no verão.

4.2.1.2. Presença das Ordens de Insecta

Foram registradas 21 Ordens: Thysanura, Collembola, Ephemeroptera, Odonata, Orthoptera, Isoptera, Plecoptera, Dermaptera, Embioptera, Psocoptera, Thysanoptera, Hemiptera, Homoptera, Neuroptera, Coleoptera, Strepsiptera, Mecoptera, Trichoptera, Lepidoptera, Diptera e Hymenoptera. As Ordens Collembola, Orthoptera, Isoptera, Psocoptera, Hemiptera, Homoptera, Coleoptera, Trichoptera, Lepidoptera, Diptera e Hymenoptera foram registradas nas oito localidades, enquanto Mecoptera foi registrada em apenas duas(São José dos Pinhais e Ponta Grossa); o maior número de Ordens(19) foi registrado em Ponta Grossa e Fênix e o menor(14) em Telêmaco Borba(Tab.13).

As seis Ordens(Hemiptera, Homoptera, Coleoptera, Lepidoptera, Diptera e Hymenoptera), cuja sazonalidade foi estudada, perfizeram 95,84% do total de indivíduos capturados.

MARINONI & DUTRA (1993), a partir de um estudo baseado em valores percentuais de cada uma das Ordens de Insecta capturadas nas diferentes localidades do PROFAUPAR, utilizando a Análise por Coordenadas Principais com matriz de semelhança obtida pelo Coeficiente de Morisita(cf. HORN, 1966) e ligações entre localidades feitas como as indicadas para a Árvore de Conexão Mínima, posicionaram Guarapuava como intermediária de três ramos, ou seja: um com Antonina, São José dos Pinhais e Telêmaco Borba, outro com Jundiaí do Sul, Fênix e Colombo e, isolada no terceiro ramo, a

localidade de Ponta Grossa. Chamam atenção para o fato de locais com capturas médias díspares, como Colombo/Jundiaí do Sul e Telêmaco Borba/São José dos Pinhais, aparecerem relacionadas. Observaram que, da mesma forma que não é constatado um relacionamento com base em zonas climáticas e ecológicas, os valores percentuais entre as Ordens não mostram uma associação de localidades em razão da captura média e das variáveis climáticas, exceto por Fênix e Jundiaí do Sul.

Outro fato bastante interessante é a relativa proximidade entre os valores de PROFAUPAR, quando as frequências percentuais das seis Ordens estudadas são computadas simultaneamente para as oito localidades, perfazendo 95,84% do total de Insecta capturado, e os resultados obtidos por CANCELADO & YONKE (1969), onde estas seis Ordens perfizeram 99,10% do total de Insecta capturado nas pradarias americanas.

4.2.1.3. Sobre a captura de Hemiptera, nos diferentes meses do ano

Foram capturados 1.362 indivíduos(0,16% do total de Insecta capturado) para as oito localidades, sendo mais abundantes em Jundiaí do Sul(525 indivíduos - 38,55% do total de Hemiptera e 0,20% do total de Insecta desta localidade) e em Fênix(193 indivíduos - 14,17% do total de Hemiptera e 0,24% do total de Insecta desta localidade). Os menores valores de Hemiptera foram registrados em Colombo(35 indivíduos - 2,57% do total de Hemiptera e 0,13% do total de Insecta desta localidade) e em São José dos Pinhais(45 indivíduos - 3,30% do total de Hemiptera e 0,11% do total de Insecta desta localidade)(Tab.14).

Em Antonina, os Hemiptera(90 indivíduos - 6,61% do total de Hemiptera e 0,17% do total de Insecta desta localidade) apresentaram uma variação da captura média de 1,00 a 5,25 indivíduos/semana, registradas em setembro/dezembro/janeiro/fevereiro/março e agosto respectivamente(Fig.9 e Tabs.14 e 15).

Em São José dos Pinhais não foram capturados no mês de marco. Apresentaram uma variação da captura média de 0,25 a 2,75 indivíduos/semana, registradas em fevereiro e abril respectivamente(Fig.9 e Tab.15).

Em Colombo não foram capturados nos meses de agosto e setembro. Apresentaram uma variação da captura média de 0,25 a 1,80 indivíduos/semana, registradas em outubro/novembro/abril e dezembro respectivamente(Fig.9 e Tab.15).

Em Ponta Grossa(171 indivíduos - 12,55% do total de Hemiptera e 0,07% do total de Insecta desta localidade) apresentaram uma variação da captura média de 1,00 a 7,25 indivíduos/semana, registradas em agosto e janeiro respectivamente(Fig.9 e Tabs.14 e 15)

Em Guarapuava(145 indivíduos - 10,65% do total de Hemiptera e 0,26% do total de Insecta desta localidade) apresentaram uma variação da captura média de 1,00 a 6,80 indivíduos/semana, registradas em maio/junho e setembro respectivamente(Fig.9 e Tabs.14 e 15).

Em Fênix apresentaram uma variação da captura média de 0,20 a 9,00 indivíduos/semana, registradas em março e agosto/novembro respectivamente(Fig.9 e Tab.15).

Em Jundiaí do Sul apresentaram uma variação da captura média de 2,80 a 22,20 indivíduos/semana, registradas em junho e setembro respectivamente(Fig.9 e Tab.15).

Em Telêmaco Borba(158 indivíduos - 11,60% do total de Hemiptera e 0,18% do total de Insecta desta localidade) não foram capturados no mês de junho. Apresentaram uma variação da captura média de 0,25 a 10,75 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.9 e Tabs.14 e 15).

A representação neográfica mostra(Apêndice 1, Hemiptera) que em quatro localidades (Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto para Colombo e Ponta Grossa foram no verão, São José dos Pinhais no outono e Antonina no inverno.

O pequeno número de indivíduos capturados torna difícil estabelecer qualquer relação entre a flutuação da captura média e as variáveis ambientais, com os valores máximos ocorrendo em agosto(Antonina e Fênix), setembro(Guarapuava e Jundiaí do Sul), novembro(também em Fênix e Telêmaco Borba), dezembro(Colombo), janeiro(Ponta Grossa) e abril(São José dos Pinhais).

4.2.1.4 Sobre a captura de Homoptera, nos diferentes meses do ano

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 25.673 indivíduos(3,08% do total de Insecta capturado), sendo mais abundantes em Jundiaí do Sul(9.426 indivíduos ~ 36,72% do total de Homoptera e 3,61% do total de Insecta desta localidade) e em Fênix(6.684 indivíduos ~ 26,04% do total de Homoptera e 8,34% do total de Insecta desta localidade). Os menores valores de Homoptera foram registrados em Colombo(407 indivíduos ~ 1,59% do total de Homoptera e 1,56% do total de Insecta desta localidade).

secta desta localidade) e em Guarapuava(928 indivíduos - 3,61% do total de Homoptera e 1,66% do total de Insecta desta localidade)(Tab.16).

Em Antonina, os Homoptera(1.648 indivíduos - 6,42% do total de Homoptera e 3,17% do total de Insecta desta localidade) apresentaram uma variação da captura média de 15,75 a 63,25 indivíduos/semana, registradas em junho e abril respectivamente(Fig.10 e Tabs.16 e 17).

Em São José dos Pinhais(1.250 indivíduos - 4,87% do total de Homoptera e 3,19% do total de Insecta desta localidade) apresentaram uma variação da captura média de 2,00 a 76,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.10 e Tabs.16 e 17).

Em Colombo apresentaram uma variação da captura média de 1,67 a 19,50 indivíduos/semana, registradas em maio e novembro respectivamente(Fig.10 e Tab.17).

Em Ponta Grossa(3.289 indivíduos - 12,81% do total de Homoptera e 1,42% do total de Insecta desta localidade) apresentaram uma variação da captura média de 8,20 a 205,50 indivíduos/semana, registradas em junho e outubro respectivamente(Fig.10 e Tabs. 16 e 17).

Em Guarapuava apresentaram uma variação da captura média de 1,50 a 56,50 indivíduos/semana, registradas em maio e outubro respectivamente(Fig.10 e Tab.17).

Em Fênix apresentaram uma variação da captura média de 15,20 a 320,00 indivíduos/semana, registradas em junho e setembro respectivamente(Fig.10 e Tab.17).

Em Jundiaí do Sul apresentaram uma variação da captura média de 23,50 a 450,80 indivíduos/semana, registradas em julho e setembro respectivamente(Fig.10 e Tab.17).

Em Telêmaco Borba(2.041 indivíduos - 7,95% do total de Homoptera e 2,38% do total de Insecta desta localidade) apresentaram uma variação da captura média de 1,00 a 148,25 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.10 e Tabs.16 e 17).

Nas oito localidades, como já havia sido constatado para o conjunto dos Insecta, os Homoptera apresentaram suas menores capturas médias nos meses de maio a junho, meses do inverno climático da região(NIMER <u>in</u> IBGE, 1990), mostrando uma relação positiva entre as menores densidades e as baixas temperaturas.

Note-se(Apêndice 1, Homoptera) que quase todas as capturas médias máximas ocorreram nos meses da primavera; somente Antonina apresentou sua captura média máxima no outono, em abril, fugindo ao padrão das outras localidades e demonstrando que este é um dos grupos de Insecta que influenciou a posição da reta de tendência da captura média obtida para o conjunto dos Insecta desta localidade(Fig.8).

O fato da primavera ser a estação do ano em que os Homoptera apresentaram uma maior atividade pode ser atribuído a uma combinação de fatores(MATTHEWS & MATTHEWS, 1970), já mencionados anteriormente quando da análise da flutuação populacional dos Insecta.

4.2.1.5. Sobre a captura de Coleoptera, nos diferentes meses do ano, e constância e dominância das famílias

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 21.457 indivíduos(2,58% do total de Insecta capturado), sendo mais abundantes em Jundiaí do Sul(6.454 indivíduos - 30,08% do total de Coleoptera e 2,47% do total de Insecta desta localidade) e em Ponta Grossa(4.662 indivíduos - 21,73% do total de Coleoptera e 2,01% do total de Insecta desta localidade). Os menores valores de Coleoptera foram registrados em Colombo(1.277 indivíduos - 5,95% do total de Coleoptera e 4,89% do total de Insecta desta localidade) e em São José dos Pinhais(1.337 indivíduos - 6,23% do total de Coleoptera e 3,41% do total de Insecta desta localidade)(Tab.18).

Em Antonina, os Coleoptera(1.799 indivíduos - 8,38% do total de Coleoptera e 3,46% do total de Insecta desta localidade) apresentaram uma variação da captura média de 15,00 a 64,50 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.11 e Tabs. 18 e 19). Foram capturadas 48 famílias, das quais, pela classificação de Palma, 4 são consideradas comuns: Chrysomelidae, Curculionidae, Mordellidae e Staphylinidae; 16 são consideradas intermediárias e 28 são consideradas raras(Tabs.20 e 21).

Em São José dos Pinhais apresentaram uma variação da captura média de 3,00 a 96,20 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.11 e Tab.19). Foram capturadas 47 famílias, das quais 3 são consideradas comuns: Chrysomelidae, Curculionidae e Staphylinidae; 8 são consideradas intermediárias e 36 são consideradas raras(Tabs.22 e 23).

Em Colombo apresentaram uma variação da captura média de 4,67 a 53,80 indivíduos/semana, registradas em maio e dezembro respectivamente(Fig.11 e Tab.19). Foram capturadas 53 famílias, das quais 4 são consideradas comuns: Cerambycidae, Chrysomelidae, Curculionidae e Staphylinidae; 7 são consideradas intermediárias e 42 são consideradas raras(Tabs.24 e 25).

Em Ponta Grossa apresentaram uma variação da captura média de 15,60 a 220,60 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.11 e Tab.19). Foram capturadas 64 famílias, das quais 6 são consideradas comuns: Cerambycidae, Chrysomelidae, Curculionidae, Elateridae, Mordellidae e Staphylinidae; 23 são consideradas intermediárias e 35 são consideradas raras(Tabs.26 e 27).

Em Guarapuava(1.343 indivíduos - 6,26% do total de Coleoptera e 2,40% do total de Insecta desta localidade) apresentaram uma variação da captura média de 3,00 a 86,50 indivíduos/semana, registradas em maio e novembro respectivamente(Fig.11 e Tabs.18 e 19). Foram capturadas 49 famílias, das quais 3 são consideradas comuns: Cerambycidae, Curculionidae e Staphylinidae; 10 são consideradas intermediárias e 36 são consideradas raras(Tabs.28 e 29).

Em Fênix(1.951 indivíduos - 9,09% do total de Coleoptera e 2,44% do total de Insecta desta localidade) apresentaram uma variação da captura média de 10,00 a 124,50 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.11 e Tabs.18 e 19). Foram capturadas 57 famílias, das quais 6 são consideradas comuns: Cerambycidae, Chrysomelidae, Curculionidae, Elateridae, Mordellidae e Staphylinidae; 10 são consideradas intermediárias e 41 são consideradas raras(Tabs.30 e 31).

Em Jundiaí do Sul apresentaram uma variação da captura média de 30,80 a 245,00 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.11 e Tab.19). Foram capturadas 64 famílias, das quais 5 são consideradas comuns: Cerambycidae, Chrysomelidae, Curculionidae, Elateridae e Staphylinidae; 27 são consideradas intermediárias e 32 são consideradas raras(Tabs.32 e 33).

Em Telêmaco Borba(2.634 indivíduos - 12,28% do total de Coleoptera e 3,07% do total de Insecta desta localidade) apresentaram uma variação da captura média de 7,40 a 208,50 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.11 e Tabs.18 e 19). Foram capturadas 55 famílias, das quais 5 são consideradas comuns: Chrysomelidae, Curculionidae, Elateridae, Scolytidae e Staphylinidae; 13 são consideradas intermediárias e 37 são consideradas raras(Tabs.34 e 35).

É interessante notar que as capturas médias máximas, nas oito localidades, ocorreram nos dois meses que precedem o mês mais quente do ano(janeiro), com este fato sendo justificado pelos argumentos apresentados por MATTHEWS & MATTHEWS (1970 e 1983) e já mencionados anteriormente quando do estudo dos Insecta(p.46). As menores capturas médias ocorreram nos meses frios(maio e junho), evidenciando uma relação positiva entre os Coleoptera e a temperatura.

Somente Colombo e Guarapuava, locais com características meteorológicas mais assemelhadas pelas Análises de agrupamento(<u>cf</u>. MARINONI & DUTRA, 1993), registraram as menores capturas médias em maio, que foi nas duas localidades o mês de maior precipitação pluviométrica.

A representação neográfica mostra(Apêndice 1,Coleoptera) que em cinco localidades(Antonina, Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto em São José dos Pinhais, Colombo e Ponta Grossa, no verão; exceto por Antonina e São José dos Pinhais, os Coleoptera apresentaram resultados semelhantes àqueles observados para o conjunto dos Insecta(Apêndice 1,Insecta).

Três famílias destacaram-se por serem consideradas comuns, pela classificação de Palma, nos oito pontos amostrados: Chrysomelidae (que não foi comum em Guarapuava, mas cujos valores de constância e dominância, Tabela 29, permitem caracterizá-la como tal), Curculionidae e Staphylinidae. PENNY & ARIAS (1982) encontraram Chrysomelidae e Curculionidae representando 16% e 7%, respectivamente, do total de Coleoptera por eles capturado, utilizando uma armadilha Malaise que foi montada numa reserva biológica localizada nas proximidades de Manaus; os Staphylinidae representaram 40% de todos os Coleoptera capturados, quando considerados os cinco tipos de armadilhas (entre elas a do tipo Malaise) por eles utilizadas.

Os valores acima obtidos reforçam as observações sobre o potencial de utilização da armadilha Malaise para estudos comparativos de entomofaunas amostradas em diferentes localidades; é notável a coincidência entre os valores de Chrysomelidae(16,44% do total de Coleoptera), em particular, e já um pouco mais distante dos Curculionidae(11,37% do total de Coleoptera), encontrados no PROFAUPAR, com aqueles obtidos para Manaus, não sendo possível estabelecer este tipo de comparação para os Staphylinidae.

A família Cerambycidae foi considerada comum em cinco localidades: Colombo, Ponta Grossa, Guarapuava, Fênix e Jundiaí do Sul; a família Elateridae foi considerada comum em Ponta Grossa, Fênix e Jundiaí do Sul e Telêmaco Borba; Mordellidae foi considerada comum em Antonina, Ponta Grossa e Fênix, enquanto Scolytidae só foi considerada comum em Telêmaco Borba.

Ponta Grossa e Fênix apresentaram o mesmo número(6) e as mesmas famílias comuns(Cerambycidae, Chrysomelidae, Curculionidae, Elateridae, Mordellidae e Staphylinidae), apesar de Ponta Grossa ter registrado 64 famílias contra 57 de Fênix. Diferenciaram-se de Jundiaí do Sul, que juntamente com Ponta Grossa foi a localidade onde se registrou o maior número de indivíduos e de famílias de Coleoptera(64), além do maior número de Insecta, pois em Jundiaí do Sul a família Mordellidae, apesar dos altos valores de constância e dominância, foi considerada intermediária.

O número de famílias intermediárias e raras, registrado para Jundiaí do Sul, é bem mais próximo daquele obtido para Ponta Grossa do que aquele obtido para Fênix, apesar das Análises de agrupamento com base nos dados abióticos terem definido Fênix e Jundiaí do Sul como mais assemelhadas entre si(cf. MARINONI & DU-TRA, 1993).

Colombo e Guarapuava apresentaram as mesmas famílias comuns, e suas semelhanças a partir das características meteorológicas já foram mencionadas anteriormente.

Colombo, que foi a localidade que apresentou o menor número de Insecta e Coleoptera, está representada por 53 famílias de Coleoptera. Este número de famílias é maior do que aquele encontrado em Guarapuava(49), Antonina(48) e São José dos Pinhais(47). Entretanto, foi a localidade que apresentou o menor número de famílias intermediárias(7) e o maior número de famílias raras(42).

Foi possível constatar uma relação positiva entre a quantidade de Insecta e Coleoptera, não sendo possível estabelecer esta relação entre a quantidade de Coleoptera e o número de famílias que representam esta Ordem. A relação mais próxima da quantidade de Coleoptera, por localidade, é com o número de famílias indicadas como intermediárias.

Apesar de representarem apenas 2,58% do total de Insecta capturado durante o PROFAUPAR, em termos de biomassa dos Arthropoda, Coleoptera é um importante componente do Ecossistema Floresta Tropical(PENNY & ARIAS, 1982). Segundo HUTCHESON (1990), muitos pesquisadores têm sugerido que os Coleoptera, os quais utilizam muitos nichos tróficos e compreendem não menos que 40% de todas as espécies de Insecta, são geralmente representativos da riqueza da entomofauna.

Segundo PENNY & ARIAS (<u>op.cit.</u>), 88% dos Coleoptera capturados nas proximidades de Manaus foram com Malaise, dentre cinco tipos de armadilhas utilizadas para captura de insetos. Os fatos anteriormente descritos permitem afirmar que a armadilha Malaise captura Coleoptera com relativa eficiência, o que discorda de JUILLET (1963) que concluiu terem estes Insecta características próprias que aumentam suas chances de escapar desta armadilha.

4.2.1.5.1. Sobre a captura de Cerambycidae, Chrysomelidae, Curculionidae e Staphylinidae, nos diferentes meses do ano

a) Cerambycidae

Esta família é considerada comum, pela classificação de Palma, em cinco localidades: Colombo, Ponta Grossa, Guarapuava, Fênix e Jundiaí do Sul. é considerada intermediária em Antonina e
Telêmaco Borba e rara em São José dos Pinhais.

Foram capturados 1.272 indivíduos (5,93% do total de Coleoptera) para as oito localidades, sendo mais abundantes em Jundiaí do Sul (367 indivíduos - 28,85% do total de Cerambycidae e 5,69% do total de Coleoptera desta localidade) e em Fênix (314 indivíduos - 24,68% do total de Cerambycidae e 16,09% do total de Coleoptera desta localidade). Os menores valores de Cerambycidae foram registrados em São José dos Pinhais (20 indivíduos - 1,57% do total de Cerambycidae e 1,66% do total de Coleoptera desta localidade) e em Antonina (64 indivíduos - 5,03% do total de Cerambycidae e 3,56% do total de Coleoptera desta localidade) (Tab.36).

Em Antonina, os Cerambycidae não foram capturados nos meses de agosto e junho. Apresentaram uma variação da captura média de 0,25 a 4,00 indivíduos/semana, registradas em maio e dezembro/janeiro respectivamente(Fig. 12 e Tab. 37).

Em São José dos Pinhais não foram capturados nos meses de agosto, setembro, abril, maio, junho e julho. Apresentaram uma variação da captura média de 0,25 a 1,25 indivíduos/semana, registradas em outubro e novembro/janeiro respectivamente(Fig.12 e Tab.37).

Em Colombo(66 indivíduos - 5,19% do total de Cerambycidae e 5,17% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 0,20 a 2,50 indivíduos/semana, registradas em junho e novembro/janeiro respectivamente(Fig.12 e Tabs.36 e 37).

Em Ponta Grossa(255 indivíduos - 20,05% do total de Ceramby-cidae e 5,75% do total de Coleoptera desta localidade) apresenta-ram uma variação da captura média de 0,20 a 9,25 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.12 e Tabs. 36 e 37).

Em Guarapuava(108 indivíduos - 8,49% do total de Cerambycidae e 8,04% do total de Coleoptera desta localidade) não foram capturados no mês de agosto. Apresentaram uma variação da captura média de 0,20 a 5,80 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.12 e Tabs.36 e 37).

Em Fênix apresentaram uma variação da captura média de 1,50 a 19,00 indivíduos/semana, registradas em abril e novembro respectivamente(Fig.12 e Tab.37).

Em Jundiaí do Sul apresentaram uma variação da captura média de 0,25 a 28,25 indivíduos/semana, registradas em janeiro e novembro respectivamente(Fig.12 e Tab.37).

Em Telêmaco Borba(78 indivíduos - 6,13% do total de Cerambycidae e 3,01% do total de Coleoptera desta localidade) não foram
capturados nos meses de maio a julho. Apresentaram uma variação
da captura média de 0,25 a 4,75 indivíduos/semana, registradas em
agosto e outubro respectivamente(Fig.12 e Tabs.36 e 37).

A representação neográfica mostra(Apêndice 1, Cerambycidae) que em cinco localidades (Colombo, Ponta Grossa, Fênix, Jundiaí do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto em Antonina, São José dos Pinhais e Guarapuava, no verão. Quatro localidades (São José dos Pinhais, Fênix, Jundiaí do Sul e Telêmaco Borba) apresentaram resultados semelhantes àqueles observados para os Coleoptera (Apêndice 1, Coleoptera) enquanto nas outras quatro (Antonina, Colombo, Ponta Grossa e Guarapuava) esta relação não foi observada.

Enquanto em Antonina, São José dos Pinhais e Guarapuava apresentaram uma queda nos valores de captura média do mês de fevereiro para março, nas demais localidades apresentaram um aumen-

to de captura média bastante evidente entre estes meses; apenas Jundiaí do Sul(ponto de amostragem mais ao norte do Estado) não apresentou um aumento tão acentuado. Por outro lado, enquanto em Antonina, São José dos Pinhais e Colombo(pontos de amostragem mais a leste do Estado), houve um aumento de captura média ou a sua permanência em valores altos, do mês de dezembro para janeiro, nas demais localidades houve uma queda. Fênix e Jundiaí do Sul(enquadradas nas mesmas categorias dos vários sistemas)(cf. MARINONI & DUTRA, 1993) apresentaram uma queda muito brusca de novembro para dezembro.

b) Chrysomelidae

Esta família é considerada comum, pela classificação de Palma, em sete localidades, exceto em Guarapuava, onde é considerada intermediária(capturada em 50% das amostras e representando 10,65% do total de Coleoptera desta localidade). Foi a mais abundante entre as famílias de Coleoptera capturadas durante o PRO FAUPAR

Foram capturados 3.527 indivíduos(16,44% do total de Coleoptera) para as oito localidades, sendo mais abundantes em Ponta Grossa(1.203 indivíduos - 34,11% do total de Chrysomelidae e 27,11% do total de Coleoptera desta localidade) e em Jundiaí do Sul(801 indivíduos - 22,71% do total de Chrysomelidae e 12,41% do total de Coleoptera desta localidade). Os menores valores de Chrysomelidae foram registrados em Guarapuava(143 indivíduos - 4,05% do total de Chrysomelidae) e em Fênix(151 indivíduos - 4,28% do total de Chrysomelidae e 7,74% do total de Coleoptera desta localidade)(Tab.38).

Em Antonina, os Chrysomelidae(472 indivíduos - 13,38% do total de Chrysomelidae e 26,24% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 3,50 a 17,25 indivíduos/semana, registradas em maio e novembro respectivamente(Fig.13 e Tabs.38 e 39).

Em São José dos Pinhais(303 indivíduos - 8,59% do total de Chrysomelidae e 25,19% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 0,50 a 25,75 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.13 e Tabs.38 e 39).

Em Colombo(211 indivíduos - 5,98% do total de Chrysomelidae e 16,52% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 0,33 a 11,75 indivíduos/semana, registradas em maio e janeiro respectivamente(Fig.13 e Tabs.38 e 39).

Em Ponta Grossa apresentaram uma variação da captura média de 4,40 a 49,25 indivíduos/semana, registradas em junho e janeiro respectivamente(Fig.13 e Tab.39).

Em Guarapuava não foram capturados nos meses de abril a junho. Apresentaram uma variação da captura média de 0,25 a 12,75 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.13 e Tab.39).

Em Fênix apresentaram uma variação da captura média de 0,20 a 11,50 indivíduos/semana, regsitradas em março/junho e outubro respectivamente(Fig.13 e Tab.39).

Em Jundiaí do Sul apresentaram uma variação da captura média de 5,80 a 28,25 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.13 e Tab.39).

Em Telêmaco Borba(243 indivíduos - 6,89% do total de Chryso-melidae e 9,37% do total de Coleoptera desta localidade) apresen-

taram uma variação da captura média de 0,20 a 23,25 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.13 e Tabs.38 e 39).

A representação negráfica mostra(Apêndice 1,Chrysomelidae) que em cinco localidades(Antonina, Guarapuava, Fênix, Jundiai do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto em São José dos Pinhais. Colombo e Ponta Grossa, no verão.

É interessante notar que este mesmo padrão foi observado para Coleoptera, mostrando que Chrysomelidae foi uma das famílias
que determinou o padrão desta Ordem.

c) Curculionidae

Família considerada comum, pela classificação de Palma, para as oito localidades.

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 2.440 indivíduos(11,37% do total de Coleoptera), sendo mais abundantes em Jundiaí do Sul(589 indivíduos – 24,14% do total de Curculionidae e 9,13% do total de Coleoptera desta localidade) e em Ponta Grossa(423 indivíduos – 17,37% do total de Curculionidae e 9,53% do total de Coleoptera desta localidade). Os menores valores de Curculionidae foram registrados em São José dos Pinhais(120 indivíduos – 4,92% do total de Curculionidae e 9,98% do total de Coleoptera desta localidade) e em Antonina(175 indivíduos – 7,17% do total de Curculionidae e 9,73% do total de Coleoptera desta localidade).

Em Antonina, os Curculionidae apresentaram uma variação da captura média de 1,20 a 8,25 indivíduos/semana, registradas em

setembro e fevereiro respectivamente(Fig.14 e Tab.41).

Em São José dos Pinhais apresentaram uma variação da captura média de 0,25 a 9,50 indivíduos/semana, registradas em agosto e novembro respectivamente(Fig.14 e Tab.41).

Em Colombo(319 indivíduos - 13,07% do total de Curculionidae e 24,98% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 0,67 a 17,50 indivíduos/semana, registradas em maio e novembro respectivamente(Fig.14 e Tabs.40 e 41).

Em Ponta Grossa apresentaram uma variação da captura média de 1,25 a 18,00 indivíduos/semana, registradas em agosto e dezembro respectivamente(Fig.14 e Tab.41).

Em Guarapuava(236 indivíduos - 9,67% do total de Curculionidae e 17,57% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 0,40 a 11,00 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.14 e Tabs.40 e 41).

Em Fênix(264 indivíduos - 10,82% do total de Curculionidae e 13,53% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 2,00 a 13,50 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.14 e Tabs.40 e 41).

Em Jundiaí do Sul apresentaram uma variação da captura média de 3,75 a 26,80 indivíduos/semana, registradas em julho e setembro respectivamente(Fig.14 e Tab.41).

Em Telêmaco Borba(314 indivíduos - 12,87% do total de Curculionidae e 12,11% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 1,00 a 25,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.14 e Tabs. 40 e 41).

A representação neográfica mostra(Apêndice 1, Curculionidae) que em cinco localidades(São José dos Pinhais, Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto em Antonina, Colombo e Ponta Grossa, no verão.

Em relação a Coleoptera, em geral, e a Chrysomelidae, em particular, houve uma inversão entre Antonina e São José dos Pinhais quanto à estação do ano em que os maiores valores de captura média foram registrados, demonstrando, apesar disto, um padrão bastante semelhante.

d) Staphylinidae

Família considerada comum, pela classificação de Palma, para as oito localidades.

Foram capturados 2.209 indivíduos(10,30% do total de Coleoptera) para as oito localidades, sendo mais abundantes em Jundiaí do Sul(921 indivíduos - 41,69% do total de Staphylinidae e 14,27% do total de Coleoptera desta localidade) e em Ponta Grossa(348 indivíduos - 15,75% do total de Staphylinidae e 7,84% do total de Coleoptera desta localidade). Os menores valores de Staphylinidae foram registrados em Colombo(65 indivíduos - 2,94% do total de Staphylinidae e 5,09% do total de Coleoptera desta localidade) e em Guarapuava(92 indivíduos - 4,16% do total de Staphylinidae e 6,85% do total de Coleoptera desta localidade).

Em Antonina, os Staphylinidae(230 indivíduos - 10,41% do total de Staphylinidae e 12,78% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 2,50 a 10,75 indivíduos/semana, registradas em agosto/junho e maio respectivamente(Fig.15 e Tabs.42 e 43).

Em São José dos Pinhais(145 indivíduos - 6,56% do total de Staphylinidae e 12,05% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 0,25 a 8,00 indivíduos/semana, registradas em abril/julho e novembro respectivamente(Fig. 15 e Tabs. 42 e 43).

Em Colombo não foram capturados no mês de agosto. Apresentaram uma variação da captura média de 0,20 a 3,20 indivíduos/semana, registradas em setembro e dezembro respectivamente(Fig.15 e
Tab.43).

Em Ponta Grossa apresentaram uma variação da captura média de 1,50 a 23,00 indivíduos/semana, registradas em agosto e dezembro respectivamente(Fig.15 e Tab.43).

Em Guarapuava apresentaram uma variação da captura média de 0,20 a 4,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.15 e Tab.43).

Em Fênix(176 indivíduos - 7,97% do total de Staphylinidae e 9,02% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 1,00 a 8,50 indivíduos/semana, registradas em fevereiro e janeiro respectivamente(Fig.15 e Tabs.42 e 43).

Em Jundiaí do Sul apresentaram uma variação da captura média de 4,60 a 45,20 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.15 e Tab.43).

Em Telêmaco Borba(232 indivíduos - 10,50% do total de Staphylinidae e 8,95% do total de Coleoptera desta localidade) apresentaram uma variação da captura média de 1,00 a 12,50 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.15 e Tabs.42 e 43).

As menores capturas médias foram registradas nos meses de agosto(Antonina e Ponta Grossa), setembro(Colombo), fevereiro(Fênix), abril(São José dos Pinhais), junho(Guarapuava, Jundiaí do Sul e novamente Antonina) e julho(Telêmaco Borba e novamente São José dos Pinhais). As maiores capturas médias foram registradas em novembro(São José dos Pinhais, Guarapuava e Telêmaco Borba), dezembro(Colombo, Ponta Grossa e Jundiaí do Sul), janeiro(Fênix) e maio(Antonina).

A representação neográfica mostra(Apêndice 1, Staphylinidae) que em duas localidades(Guarapuava e Telêmaco Borba), que pela classificação de Holdridge têm as mesmas características(<u>cf</u> MARINONI & DUTRA, 1993), os maiores valores de captura média, por estação, foram registrados na primavera, enquanto para São José dos Pinhais, Colombo, Ponta Grossa, Fênix e Jundiaí do Sul no verão e Antonina, no outono. Note-se que o padrão foi diferente daquele obtido para os Coleoptera em Antonina, Fênix e Jundiaí do Sul, com Antonina mostrando o mesmo padrão apresentado para o conjunto dos Insecta e para Homoptera.

4.2.1.6. Sobre a captura de Lepidoptera, nos diferentes meses do ano

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 42.322 indivíduos(5,08% do total de Insecta capturado), sendo mais abundantes em Jundiaí do Sul(20.450 indivíduos - 48,32% do total de Lepidoptera e 7,82% do total de Insecta desta localidade) e em Ponta Grossa(6.250 indivíduos - 14,77% do total de Lepidoptera e 2,69% do total de Insecta desta localidade). Os menores valores de Lepidoptera foram registrados em Antonina(1.649 indivíduos - 3,90% do total de Lepidoptera e

3,17% do total de Insecta desta localidade) e em Telêmaco Borba(1.770 indivíduos - 4,18% do total de Lepidoptera e 2,07% do total de Insecta desta localidade)(Tab.44).

Em Antonina, os Lepidoptera apresentaram uma variação da captura média de 14,25 a 46,50 indivíduos/semana, registradas em junho e outubro respectivamente(Fig.16 e Tab.45).

Em São José dos Pinhais(1.846 indivíduos - 4,36% do total de Lepidoptera e 4,71% do total de Insecta desta localidade) apresentaram uma variação da captura média de 7,25 a 101,50 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.16 e Tabs.44 e 45).

Em Colombo(2.570 indivíduos - 6,07% do total de Lepidoptera e 9,84% do total de Insecta desta localidade) apresentaram uma variação da captura média de 18,00 a 97,00 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.16 e Tabs.44 e 45).

Em Ponta Grossa apresentaram uma variação da captura média de 22,00 a 213,25 indivíduos/semana, registradas em junho e janeiro respectivamente(Fig. 16 e Tab. 45).

Em Guarapuava(3.018 indivíduos - 7,13% do total de Lepidoptera e 5,40% do total de Insecta desta localidade) apresentaram uma variação da captura média de 7,20 a 132,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.16 e Tabs.44 e 45).

Em Fênix(4.769 indivíduos - 11,27% do total de Lepidoptera e 5,95% do total de Insecta desta localidade) apresentaram uma variação da captura média de 6,20 a 187,25 indivíduos/semana, registradas em junho e agosto respectivamente(Fig.16 e Tabs.44 e 45).

Em Jundiaí do Sul apresentaram uma variação da captura média de 97,33 a 1.352,75 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.16 e Tab.45).

Em Telêmaco Borba apresentaram uma variação da captura média de 1,60 a 78,75 indivíduos/semana, registradas em junho e outubro respectivamente(Fig.16 e Tab.45).

Note-se que os menores valores de captura média foram registrados, para as oito localidades, nos meses de junho ou julho, inverno, enquanto os maiores valores foram registrados em meses diversos(agosto, outubro, novembro, dezembro, janeiro e abril, evidenciando-se uma relação positiva entre os menores valores de captura média e a temperatura.

A representação neográfica mostra(Apêndice 1,Lepidoptera) que os Lepidoptera apresentaram os maiores valores de captura média, por estação, exatamente como o conjunto dos Insecta. Em Antonina, Lepidoptera apresentou os maiores valores no outono, como já foi observado para Homoptera e Staphylinidae, sendo um dos grupos que determinou a direção da reta de tendência da captura média obtida para o conjunto dos Insecta desta localidade(Fig.8).

4.2.1.7. Sobre a captura de Diptera, nos diferentes meses do ano

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 649.753 indivíduos(78,04% do total de Insecta capturado), sendo mais abundantes em Ponta Grossa(202.187 indivíduos - 31,12% do total de Diptera e 87,12% do total de Insecta desta localidade) e em Jundiaí do Sul(198.739 indivíduos - 30,59% do total de Diptera e 76,02% do total de Insecta desta localidade)

calidade). Os menores valores foram registrados em Colombo(18.248 indivíduos - 2,81% do total de Diptera e 69,86% do total de Insecta desta localidade) e em São José dos Pinhais(29.058 indivíduos - 4,47% do total de Diptera e 74,08% do total de Insecta desta localidade)(Tab.46).

Em Antonina, os Diptera(39.951 indivíduos - 6,15% do total de Diptera e 76,89% do total de Insecta desta localidade) apresentaram uma variação da captura média de 329,25 a 1.528,50 indivíduos/semana, registradas em agosto e julho respectivamente(Fig.17 e Tabs.46 e 47).

Em São José dos Pinhais apresentaram uma variação da captura média de 51,50 a 1.295,25 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.17 e Tab.47).

Em Colombo apresentaram uma variação da captura média de 75,67 a 651,00 indivíduos/semana, registradas em maio e julho respectivamente(Fig.17 e Tab.47).

Em Ponta Grossa apresentaram uma variação da captura média de 829,60 a 9.088,75 indivíduos/semana, registradas em junho e janeiro respectivamente(Fig.17 e Tab.47).

Em Guarapuava(44.992 indivíduos - 6,92% do total de Diptera e 80,46% do total de Insecta desta localidade) apresentaram uma variação da captura média de 110,00 a 1.432,00 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.17 e Tabs.46 e 47).

Em Fênix(58.861 indivíduos - 9,06% do total de Diptera e 73,48% do total de Insecta desta localidade) apresentaram uma variação da captura média de 300,00 a 2.632,75 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.17 e Tabs.46 e 47).

Em Jundiaí do Sul apresentaram uma variação da captura média de 1.129,25 a 7.159,00 indivíduos/semana, registradas em julho e outubro respectivamente(Fig.17 e Tab.47).

Em Telêmaco Borba(57.717 indivíduos - 8,88% do total de Diptera e 67,34% do total de Insecta desta localidade) apresentaram
uma variação da captura média de 38,40 a 2.458,00 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.17 e
Tabs.46 e 47).

Os menores valores de captura média, para as oito localidades, foram registrados nos meses de maio a agosto, apesar dos maiores valores em Antonina e Colombo terem sido registrados em julho, evidenciando uma relação positiva entre estes baixos valores e a temperatura.

A representação neográfica mostra(Apêndice 1, Diptera) que os Diptera apresentaram os maiores valores de captura média sazonal seguindo um padrão semelhante àquele observado para o conjunto dos Insecta(Apêndice 1, Insecta), excetuando o valor de captura média de Colombo. Seis localidades (São José dos Pinhais, Colombo, Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba) apresentaram os maiores valores de captura média, por estação, na primavera, enquanto Ponta Grossa, no verão e Antonina, no outono. Evidentemente, como grupo mais abundante nas amostras, determinou a direção da reta de tendência da captura média obtida para o conjunto dos Insecta desta última localidade.

As capturas médias registradas para Antonina, máxima em julho e mínima em agosto, parecem ter sido determinantes na definição da direção da reta de tendência da captura média do conjunto dos Insecta desta localidade(Fig.8). O mesmo fato foi observado em Colombo, cuja captura média máxima também ocorreu em julho.

Entretanto, os baixos valores de captura média observados de mar
co a junho, parecem ter sido importantes para que a reta de ten
dência obtida para Colombo apresentasse a mesma direção daquelas
obtidas para as outras localidades, e não como a de Antonina

4.2.1.8. Sobre a captura de Hymenoptera, nos diferentes meses do ano

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 57.366 indivíduos(6,89% do total de Insecta coletado), sendo mais abundantes em Jundiaí do Sul(19.642 indivíduos - 34,24% do total de Hymenoptera e 7,51% do total de Insecta desta localidade) e em Ponta Grossa(12.491 indivíduos - 21,77% do total de Hymenoptera e 5,38% do total de Insecta desta localidade). Os menores valores foram registrados em São José dos Pinhais(1.402 indivíduos - 2,44% do total de Hymenoptera e 3,57% do total de Insecta desta localidade) e em Colombo(2.610 indivíduos - 4,55% do total de Hymenoptera e 9,99% do total de Insecta desta localidade)(Tab.48).

Em Antonina, os Hymenoptera(3.827 indivíduos - 6,67% do total de Hymenoptera e 7,37% do total de Insecta desta localidade)
apresentaram uma variação da captura média de 34,25 a 221,50 indivíduos/semana, registradas em junho e abril respectivamente(Fig.18 e Tabs.48 e 49).

Em São José dos Pinhais apresentaram uma variação da captura média de 1,25 a 90,00 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.18 e Tab.49).

Em Colombo apresentaram uma variação da captura média de 6,67 a 117,50 indivíduos/semana, registradas em maio e outubro respectivamente(Fig.18 e Tab.49).

Em Ponta Grossa apresentaram uma variação da captura média de 30,40 a 435,00 indivíduos/semana, registradas em junho e janeiro respectivamente(Fig.18 e Tab.49).

Em Guarapuava(3.551 indivíduos - 6,19% do total de Hymenoptera e 6,35% do total de Insecta desta localidade) apresentaram
uma variação da captura média de 7,00 a 190,50 indivíduos/semana,
registradas em junho e outubro respectivamente(Fig.18 e Tabs.48 e
49).

Em Fênix(6.024 indivíduos - 10,50% do total de Hymenoptera e 7,52% do total de Insecta desta localidade) apresentaram uma variação da captura média de 17,25 a 272,00 indivíduos/semana, registradas em julho e dezembro respectivamente(Fig.18 e Tabs.48 e 49).

Em Jundiaí do Sul apresentaram uma variação da captura média de 138,50 a 675,00 indivíduos/semana, registradas em julho e outubro respectivamente(Fig.18 e Tab.49).

Em Telêmaco Borba(7.819 indivíduos - 13,63% do total de Hymenoptera e 9,12% do total de Insecta desta localidade) apresentaram uma variação da captura média de 3,20 a 387,00 indivíduos/scmana, registradas em junho e novembro respectivamente(Fig.18 e Tabs.48 e 49).

A representação neográfica mostra(Apêndice 1, Hymenoptera) que em cinco localidades(São José dos Pinhais, Colombo, Guarapua-va, Jundiaí do Sul e Telêmaco Borba) os maiores valores de captura média, por estação, foram registrados na primavera, enquanto para Ponta Grossa e Fênix, no verão, e Antonina, mais uma vez, no outono.

Lepidoptera, Diptera e Hymenoptera, Ordens que perfizeram 95,19% do total de Insecta capturado em Ponta Grossa, sendo as três mais abundantes, tiveram suas capturas médias máximas registradas no mês mais quente do ano(janeiro), enquanto as menores foram registradas no mês mais frio(junho). Evidenciou-se, assim, uma relação positiva bastante evidente, nesta localidade, entre a atividade de vôo dos representantes destes grupos e as temperaturas médias mensais.

4.2.1.8.1. Sobre a captura de Ichneumonidae, nos diferentes meses do ano, e constância e dominân-cia das subfamílias

Foram capturados em todos os meses estudados, nas oito localidades, com um total de 15.449 indivíduos(26,93% do total de Hymenoptera coletado), sendo mais abundantes em Ponta Grossa(4.165 indivíduos - 29,96% do total de Ichneumonidae e 33,34% do total de Hymenoptera desta localidade) e em Jundiaí do Sul(3.619 indivíduos - 23,43% do total de Ichneumonidae e 18,42% do total de Hymenoptera desta localidade). Os menores valores de Ichneumonidae foram registrados em São José dos Pinhais(521 indivíduos - 3,37% do total de Ichneumonidae e 37,16% do total de Hymenoptera desta localidade) e em Antonina(834 indivíduos - 5,40% do total de Ichneumonidae e 21,79% do total de Hymenoptera desta localidade)(Tab.50).

Em Antonina, os Ichneumonidae apresentaram uma variação da captura média de 8,50 a 29,00 indivíduos/semana, registradas em junho e outubro respectivamente(Fig.19 e Tab.51). Foram capturadas 17 subfamílias, das quais, pela classificação de Palma, 6 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae, Orthocentrinae, Porizontinae e Tersilochinae; 6 são consideradas intermediárias e 5 são consideradas raras(Tabs.52 e 53).

Em São José dos Pinhais apresentaram uma variação da captura média de 0,25 a 44,50 indivíduos/semana, registradas em maio/junho e novembro respectivamente(Fig.19 e Tab.51). Foram capturadas 14 subfamílias, das quais somente Gelinae é considerada comum; 5 são consideradas intermediárias e 8 são consideradas raras(Tabs.54 e 55).

Em Colombo(837 indivíduos - 5,42% do total de Ichneumonidae e 32,07% do total de Hymenoptera desta localidade) apresentaram uma variação da captura média de 2,00 a 47,00 indivíduos/semana, registradas em maio e janeiro respectivamente(Fig.19 e Tabs.50 e 51). Foram capturadas 16 subfamílias, das quais 4 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae e Porizontinae; 4 são consideradas intermediárias e 8 são consideradas raras(Tabs.56 e 57).

Em Ponta Grossa apresentaram uma variação da captura média de 10,20 a 179,50 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.19 e Tab.51). Foram capturadas 17 subfamílias, das quais 5 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae, Orthocentrinae e Porizontinae; 6 são consideradas intermediárias e 6 são consideradas raras(Tabs.58 e 59).

Em Guarapuava(1.066 indivíduos - 6,90% do total de Ichneumonidae e 30,02% do total de Hymenoptera desta localidade) apresentaram uma variação da captura média de 1,40 a 58,50 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.19 e Tabs.50 e 51). Foram capturadas 16 subfamílias, das quais 6 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae, Orthocentrinae, Porizontinae e Tryphoninae; 4 são consideradas intermediárias e 6 são consideradas raras(Tabs. 60 e 61).

Em Fênix(1.059 indivíduos - 6,85% do total de Ichneumonidae e 17,58% do total de Hymenoptera desta localidade) apresentaram

uma variação da captura média de 3,00 a 60,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.19 e Tabs.50 e 51). Foram capturadas 16 subfamílias, das quais 5 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae, Orthocentrinae e Porizontinae; 3 são consideradas intermediárias e 8 são consideradas raras(Tabs.62 e 63).

Em Jundiaí do Sul apresentaram uma variação da captura média de 27,50 a 174,50 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.19 e Tab.51). Foram capturadas 17 subfamílias, das quais 5 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae, Orthocentrinae e Porizontinae; 9 são consideradas intermediárias e 3 são consideradas raras(Tabs.64 e 65).

Em Telêmaco Borba(3.348 indivíduos - 21,67% do total de Ichneumonidae e 42,82% do total de Hymenoptera desta localidade)
apresentaram uma variação da captura média de 1,20 a 207,00 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.19 e Tabs.50 e 51). Foram capturadas 17 subfamílias, das
quais 6 são consideradas comuns: Ephialtinae, Gelinae, Ichneumoninae, Orthocentrinae, Porizontinae e Tersilochinae; 5 são consideradas intermediárias e 6 são consideradas raras(Tabs.66 e 67).

A representação neográfica mostra(Apêndice 1, Ichneumonidae) que, com exceção de Colombo, onde os maiores valores de captura média foram registrados no verão, as demais localidades tiveram seus valores máximos registrados na primavera.

Ichneumonidae representou, aproximadamente, 27% dos Hymenoptera capturados durante o PROFAUPAR, o que difere significativamente dos resultados obtidos por MARSTON (1965) e YAMAMOTO (1984) que encontraram valores bem maiores. YAMAMOTO (op.cit.) também concluiu que as maiores frequências dos Ichneumonidae ocorreram

relacionadas às altas temperaturas associadas a precipitações elevadas. No presente trabalho, esta relação com a associação temperatura/pluviosidade pode ser observada em cinco localidades: Ponta Grossa, Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba. Em Colombo, apesar da maior captura média ter sido registrada no mês mais quente do ano(janeiro), esta relação não pode ser estabelecida já que janeiro foi um mês de baixa pluviosidade se comparado aos demais. Em Antonina e São José dos Pinhais esta relação não foi tão evidente.

Gelinae foi a subfamília mais abundante em sete das oito localidades estudadas, exceto em Ponta Grossa, onde Orthocentrinae foi a mais representativa. De uma forma geral, 4 subfamílias destararam-se pelo número de indivíduos: Gelinae, Orthocentrinae, Porizontinae e Ichneumoninae, confirmando em parte a tendência observada por YAMAMOTO (1984), que encontrou Gelinae, Ichneumoninae e Orthocentrinae como as mais abundantes.

4.2.2. ILHA DO MEL

4.2.2.1. Sobre a quantidade de Insecta capturada nas duas localidades da Ilha do Mel, durante o período amostrado

Foram capturados 101.792 indivíduos nas duas localidades, sendo mais abundantes na Fortaleza(62.924 indivíduos - 61,82% do total). Na Praia Grande foram capturados 38.868 indivíduos, que representaram 38,18% do total de Insecta capturado na Ilha do Mel(Tabs.68 e 69).

maior número de indivíduos capturados na Fortaleza, comparada à Praia Grande, pode ser justificado de duas formas. Inicialmente, como foi observado por SILVA (1990), a região jeita a inundações periódicas(Praia Grande no caso) apresenta árvores relativamente mais altas e com troncos mais grossos, assim espaçamento maior entre elas, enquanto a região livre destas inundações(Fortaleza) pode ser caracterizada por apresentar indivíduos menores, mais agrupados, sendo muitos destes bastante ramificados desde a sua base; as características estruturais desta última podendo, em nossa opinião, aumentar a captura média dos Insecta naquele estrato onde a ação da armadilha Malaise se faz presente(<u>cf</u>. HUTCHENSON, 1990). Estas mesmas características associadas ao fato da armadilha montada na Fortaleza estar mais no interior da mata do que aquela na Praia Grande, sugerem a maior exposição desta última à ação dos ventos(cf. Figura numa região onde os ventos vindos do setor Sul dominam sobre os ventos do setor Leste(MAACK, 1981), podendo interferir na atividade de vôo dos Insecta(PRUESS & PRUESS, 1966).

4.2.2.2. Presença das Ordens de Insecta

Nas duas localidades, em conjunto, foram registradas 19 Ordens: Thysanura, Collembola, Ephemeroptera, Odonata, Orthoptera, Isoptera, Plecoptera, Dermaptera, Psocoptera, Thysanoptera, Hemiptera, Homoptera, Neuroptera, Coleoptera, Strepsiptera, Trichoptera, Lepidoptera, Diptera e Hymenoptera. Destas, Plecoptera e Dermaptera foram capturadas apenas na Fortaleza, enquanto Ephemeroptera e Trichoptera só foram capturadas na Praia Grande (Tabs. 68 e 69).

Na Fortaleza, as 9 Ordens capturadas todos os meses foram Collembola, Orthoptera, Psocoptera, Hemiptera, Homoptera, Coleoptera, Lepidoptera, Diptera e Hymenoptera; Plecoptera e Dermaptera estiveram representadas em um único mês. Novembro e dezembro foram os meses em que foi registrado o maior número de Ordens: foi assinalada a presença de 15 das 17 Ordens encontradas nesta localidade, enquanto em junho e agosto apenas 9 Ordens foram registradas(Fig.20 e Tab.68).

Na Praia Grande, as 7 Ordens capturadas todos os meses foram Collembola, Hemiptera, Homoptera, Coleoptera, Lepidoptera, Diptera e Hymenoptera; Trichoptera esteve representada em um único mês. Outubro e março foram os meses em que foi registrado o maior número de Ordens: foi assinalada a presença de 14 das 17 Ordens encontradas nesta localidade, enquanto em junho apenas 7 Ordens foram registradas(Fig.21 e Tab.69).

4.2.2.3. Sobre a frequência relativa(%) das Ordens de Insecta mais abundantes, capturadas nas duas localidades da Ilha do Mel, nos diferentes meses do ano

Na Fortaleza, as 6 Ordens mais abundantes foram Diptera (53.574 indivíduos), Lepidoptera (3.605), Hymenoptera (1.990), Homoptera (1.572), Coleoptera (1.083) e Collembola (605), perfazendo respectivamente 85,14%, 5,73%, 3,16%, 2,50%, 1,72% e 0,96% do total de Insecta capturado; as 6 Ordens perfizeram 99,21% do total de Insecta capturado nesta localidade (Tab.68).

A variação da frequência relativa dos Diptera foi de 60,83% a 91,63%, registradas em dezembro e maio respectivamente(Fig.22 e Tab.70). Para os Lepidoptera, foi de 2,28%(maio) a 20,01%(dezembro); para os Hymenoptera, foi de 1,23%(outubro) a 8,65%(dezembro); para os Homoptera, foi de 0,76%(abril) a 7,46%(setembro); para os Coleoptera, foi de 0,82%(julho) a 5,07%(dezembro) e para os Collembola, foi de 0,48%(março) a 1,96%(junho)(Tab.70).

Na Praia Grande, as 6 Ordens mais abundantes foram Diptera(28.074 individuos), Lepidoptera(5.373), Collembola(2.091), Hymenoptera(1.272), Coleoptera(1.030) e Homoptera(480), perfazendo respectivamente 72,23%, 13,82%, 5,38%, 3,27%, 2,65% e 1,23% do total de Insecta capturado; as 6 Ordens perfizeram 98,58% do total de Insecta capturado nesta localidade(Tab.69).

A variação da frequência relativa dos Diptera foi de 47,38% a 83,71%, registradas em dezembro e fevereiro respectivamente(Fig.22 e Tab.71). Para os Lepidoptera, foi de 8,42%(fevereiro) a 24,29%(dezembro); para os Collembola, foi de 0,19%(março) a 16,09%(dezembro); para os Hymenoptera, foi de 1,36%(outubro) a 12,89%(julho); para os Coleoptera, foi de 1,16%(agosto) a

4,32%(janeiro) e para os Homoptera, foi de 0,60%(fevereiro) a 3,77%(junho).

O Apêndice 2 apresenta um Quadro comparativo sumarizando os valores das frequências percentuais dos Hemiptera, Homoptera, Coleoptera, Lepidoptera, Diptera e Hymenoptera obtidos no presente trabalho(PROFAUPAR e Ilha do Mel), acrescido dos resultados obtidos por MARSTON (1965), CANCELADO & YONKE (1969), MATTHEWS & MATTHEWS (1970) e YAMAMOTO (1984). Neste Quadro, fica evidente a semelhança nas frequências percentuais dos grandes grupos, conforme observado por YAMAMOTO (op.cit.).

4.2.2.4. Sobre a quantidade de Insecta e de algumas Ordens, capturadas nas duas localidades da
Ilha do Mel, nos diferentes meses do ano

a. Insecta

Na Fortaleza, os Insecta apresentaram uma variação da captura média de 421,00 a 2.055,60 indivíduos/semana, registradas em junho e abril respectivamente(Fig.23 e Tab.72).

Na Praia Grande apresentaram uma variação da captura média de 99,50 a 1.773,00 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.23 e Tab.73).

Nas duas localidades, os menores valores de captura média foram registrados em junho, mês do trimestre em que ocorrem as temperaturas médias mais baixas da região(DUQUIA & COSTA, 1987), mostrando uma relação positiva entre as menores capturas médias e as baixas temperaturas. Quanto aos maiores valores de captura mé-

dia, não foi possível estabelecer nenhuma relação com os dados climatológicos.

Na Fortaleza, apesar da captura média máxima do conjunto dos Insecta ter ocorrido em abril, outono, que foi a estação do ano em que foram mais abundantes em Antonina(Apêndice 1,Insecta), a reta de tendência da captura média(Fig.23) apresentou um padrão diferente daquele observado para Antonina, assemelhando-se ao padrão obtido para Colombo, no que tange à sua inclinação e direcão.

Na Praia Grande, a reta de tendência da captura média(Fig.23) apresentou o mesmo padrão observado para a Fortaleza, porém com inclinações distintas, já que a maior atividade na Praia Grande foi registrada na primavera.

Quando comparamos os pontos de amostragem da Ilha do Mel àqueles do PROFAUPAR localizados mais a Leste do Estado(Antonina São José dos Pinhais e Colombo), em função do número total de indivíduos capturados ao final do período amostrado. Antonina posiciona-se como intermediária entre a Fortaleza e a Praia Grande, sendo marcante a proximidade dos valores entre a Praia Grande(38.868 indivíduos) e São José dos Pinhais(39.224). Quando comparadas em função dos menores e maiores valores de captura média, e os meses em que foram registrados, novamente existem coincidências marcantes entre Praia Grande e São José dos Pinhais: as duas localidades apresentam os menores valores em junho e os maiores em novembro, e estes valores também estão relativamente próximos. Uma forma de explicar este fato é estabelecer um paralelo entre as características climatológicas de São José dos Pinhais(cf. MA-RINONI & DUTRA, 1993) e as características do local onde a armadilha está montada na Praia Grande, interferindo de maneira semelhante na atividade de vôo dos Insecta destas duas localidades.

Entre a Fortaleza e Antonina chamam atenção a proximidade entre os valores(menores e maiores) de captura média e o mês de abril com uma captura média bastante alta nestas duas localidades.

b. Thysanura

Na Fortaleza foram capturados em cinco dos doze meses estudados(novembro, fevereiro, abril, maio e julho), com um total de 6 indivíduos, que representaram 0,01% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 0,20 a 0,50 indivíduos/semana, registradas em abril/julho e fevereiro respectivamente(Fig.23 e Tab.72).

Na Praia Grande foram capturados em sete dos doze meses estudados (não foram capturados em fevereiro e de maio a agosto), com um total de 13 indivíduos, que representaram 0,03% do total de Insecta capturado nesta localidade (Tab.69). Apresentaram uma variação da captura média de 0,20 a 1,00 indivíduos/semana, registradas em abril e dezembro respectivamente (Fig.23 e Tab.73).

Esta Ordem foi capturada em quatro localidades do PROFAUPAR, não sendo capturada em Guarapuava, Fênix, Jundiaí do Sul e Telêmaco Borba. Foi mais abundante em São José dos Pinhais(34 indivíduos) e em Antonina(31 indivíduos), apresentando, entretanto, valores percentuais e de captura média bem baixos(cf. MARINONI & DUTRA, 1993).

c. Collembola

Na Fortaleza foram capturados em todos os meses estudados, com um total de 605 indivíduos, que representaram 0,96% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 6,20 a 24,60 indivíduos/semana, registradas em julho e abril respectivamente(Fig.23 e Tab.72).

Na Praia Grande foram capturados em todos os meses estudados, com um total de 2.091 indivíduos, que representaram 5,38% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 0,75 a 192,00 indivíduos/semana, registradas em maio e dezembro respectivamente(Fig.23 e Tab.73).

A maior incidência de Collembola na Praia Grande deu-se exatamente quando do início das chuvas primavera, logo após um inverno normalmente seco, fazendo com que a partir de outubro o local, onde a armadilha estava montada, permanecesse totalmente encharcado por vários meses, chegando a apresentar uma lâmina d'água de aproximadamente 20 cm ao final de janeiro; esta relação entre o volume da precipitação e a quantidade de Collembola capturada concorda com as observações de MATTHEWS & MATTHEWS (1970), que também capturaram a maioria dos exemplares em dias chuvosos, quando as armadilhas estavam totalmente molhadas. A incidência de Collembola na Fortaleza sendo bem menor devido, provavelmente, ao fato deste local não ficar encharcado em momento algum.

Esta Ordem foi capturada nas oito localidades do PROFAUPAR, com a Fortaleza apresentando valores totais muito próximos daqueles obtidos para Fênix(616 indivíduos) e Colombo(623). O número de indivíduos capturados na Praia Grande foi bem próximo daquele registrado para Antonina(2.457)(cf. MARINONI & DUTRA, 1993). Os

valores percentuais confirmam as observações feitas com os valores totais, aproximando a Fortaleza(0,96%) de Fênix(0,8%) e a Praia Grande(5,38%) de Antonina(4,7%).

d. Ephemeroptera

Esta Ordem foi capturada apenas na Praia Grande, em três dos doze meses estudados(outubro, março e abril), com um total de 6 indivíduos, que representaram 0,01% do total de Insecta capturado nesta localidade(Tab.69).

Não foram capturados em três localidades do PROFAUPAR(Antonina, São José dos Pinhais e Colombo)(<u>cf</u>. MARINONI & DUTRA, 1993)
e o número de indivíduos capturados na Praia Grande foi próximo
daquele registrado para Fênix(5 indivíduos).

e. Odonata

Na Fortaleza foram capturados três dos doze meses estudados (dezembro, março e abril), com um total de 4 indivíduos, que representaram 0,01% do total de Insecta capturado nesta localidade (Tab.68).

Na Praia Grande foram capturados em quatro dos doze meses estudados(janeiro a abril), com um total de 23 indivíduos, que representaram 0,06% do total de Insecta capturado nesta localidade (Tab.69).

No PROFAUPAR esta Ordem foi capturada em apenas três localidades: Colombo, Ponta Grossa e Fênix, com 2, 1 e 2 indivíduos respectivamente(cf. MARINONI & DUTRA, 1993). O grande número de

indivíduos capturados na Praia Grande, se comparado aos valores das demais localidades, pode ser atribuído às características físicas do local onde a armadilha estava montada, e já mencionadas anteriormente.

f. Orthoptera

Na Fortaleza foram capturados em todos os meses estudados, com um total de 112 indivíduos, que representaram 0,18% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 1,00 a 4,50 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.24 e Tab.72).

Na Praia Grande foram capturados em dez dos doze meses estudados (ausentes em junho e agosto), com um total de 122 indivíduos, que representaram 0,31% do total de Insecta capturado nesta localidade (Tab. 69). Apresentaram uma variação da captura média de 0,20 a 11,00 indivíduos/semana, registradas em julho e dezembro respectivamente (Fig. 24 e Tab. 73).

Nas duas localidades foi possível estabelecer uma relação positiva entre a captura dos representantes desta Ordem e as baixas temperaturas, com os menores valores de captura média sendo registrados nos meses mais frios do ano. Em função dos valores totais, Fortaleza aproxima-se de Colombo(109 indivíduos), enquanto Praia Grande apresentou um valor intermediário entre Colombo e Guarapuava; em valores percentuais, Fortaleza aproxima-se de Guarapuava, Fênix e Jundiaí do Sul, enquanto Praia Grande aproxima-se de Antonina(cf. MARINONI & DUTRA, 1993).

g. Isoptera

Na Fortaleza foram capturados em cinco dos doze meses estudados(setembro a janeiro), com um total de 51 indivíduos, que representaram 0,08% do total de Insecta capturado nesta localidade (Tab.68).

Na Praia Grande foram capturados em quatro dos doze meses estudados(outubro e de dezembro a fevereiro), com um total de 14 indivíduos, que representaram 0,04% do total de Insecta capturado nesta localidade(Tab.69).

Quando comparamos os valores totais Isoptera obtidos nas duas localidades da Ilha do Mel àqueles registrados durante o PROFAUPAR, a maior proximidade da Fortaleza é com Guarapuava, enquanto a Praia Grande é com São José dos Pinhais(cf. MARINONI & DUTRA, 1993).

h. Plecoptera

Esta Ordem foi capturada apenas na Fortaleza, somente no mês de novembro, com um total de 2 indivíduos, que representaram 0,003% do total de Insecta capturado nesta localidade(Tab.68).

Pouco representada nas amostras do PROFAUPAR, não foi capturada em São José dos Pinhais, Ponta Grossa e Jundiai do Sul(<u>cf</u>. MARINONI & DUTRA, 1993).

i. Dermaptera

Como Plecoptera, esta Ordem foi capturada apenas na Fortaleza, no mês de dezembro, com 1 indivíduo, que representou 0,001% do total de Insecta capturado nesta localidade(Tab.68).

Nas amostras do PROFAUPAR, só não foi capturada em Colombo, e o maior número de indivíduos(52) foi registrado em Fênix(<u>cf</u>. MARINONI & DUTRA, 1993).

j. Psocoptera

Na Fortaleza foram capturados em todos os meses estudados, com um total de 254 indivíduos, que representaram 0,40% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 3,00 a 9,20 indivíduos/semana, registradas em fevereiro/julho e outubro respectivamente(Fig.24 e Tab.72).

Na Praia Grande foram capturados em onze dos doze meses estudados(não foram capturados em junho), com um total de 275 indivíduos, que representaram 0,71% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 0,50 a 16,20 indivíduos/semana, registradas em maio e outubro respectivamente(Fig.24 e Tab.73).

Quando comparamos os valores totais de Psocoptera obtidos nas duas localidades da Ilha do Mel àqueles registrados durante o PROFAUPAR, observamos uma proximidade dos valores das duas localidades da Ilha do Mel com o valor obtido para Antonina, que foi de 227 indivíduos(cf. MARINONI & DUTRA, 1993). Em termos percen-

tuais, a Fortaleza mostra-se mais assemelhada à Antonina e Telêmaco Borba, enquanto a Praia Grande à Colombo.

k. Thysanoptera

Na Fortaleza foram capturados em sete dos doze meses estudados(não foram capturados em fevereiro, abril e de junho a agosto), com um total de 14 indivíduos, que representaram 0,02% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 0,25 a 1,00 indivíduos/semana, registradas em dezembro/março/maio e setembro respectivamente(Fig.24 e Tab.72).

Na Praia Grande foram capturados em sete dos doze meses estudados(não foram capturados em janeiro e de maio a agosto), com um total de 16 indivíduos, que representaram 0,04% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 0,20 a 1,25 indivíduos/semana, registradas em outubro e setembro respectivamente(Fig.24 e Tab.73).

O número de meses, em que Thysanoptera foi capturada na Fortaleza e Praia Grande, foi sete para as duas localidades, além de apresentarem valores totais muito próximos. Quando comparados aos valores totais registrados durante o PROFAUPAR, as duas localidades da Ilha do Mel apresentaram valores semelhantes àquele registrado para São José dos Pinhais, que foi de 15 indivíduos(cf. MARINONI & DUTRA, 1993).

1. Hemiptera

Na Fortaleza foram capturados em todos os meses estudados, com um total de 35 indivíduos, que representaram 0,05% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 0,25 a 1,75 indivíduos/semana, registradas em dezembro/junho e novembro respectivamente(Fig.25 e Tab.72). Foram capturadas 9 famílias, sendo que Corimelaenidae e Isometopidae só foram capturadas nesta localidade(Tab.74).

Miridae(12 indivíduos - 34,29% do total de Hemiptera capturado nesta localidade) foi capturada em sete(não foi capturada em janeiro, março, maio, junho e agosto) dos doze meses estudados, apresentando uma variação da captura média de 0,20 a 1,25 indivíduos/semana, registradas em outubro/julho e novembro respectivamente(Fig.25 e Tab.75).

Na Praia Grande os Hemiptera foram capturados em todos os meses estudados, com um total de 65 indivíduos, que representaram 0,17% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 0,25 a 3,25 indivíduos/semana, registradas em maio e novembro/dezembro respectivamente(Fig.25 e Tab.73). Foram capturadas 11 famílias, sendo que Cydnidae, Hydrometridae, Neididae e Reduvildae só foram capturadas nesta localidade(Tab.76).

Miridae(40 indivíduos - 61,54% do total de Hemiptera capturado nesta localidade) foi capturadae em nove(não foi capturada de maio a julho) dos doze meses estudados, apresentando uma variação da captura média de 0,20 a 2,50 indivíduos/semana, registradas em outubro e novembro respectivamente(Fig.25 e Tab.77).

Quando comparamos os valores totais de Hemiptera obtidos nas duas localidades da Ilha do Mel àqueles registrados durante o PROFAUPAR, a maior semelhança da Fortaleza é com Colombo, que também registrou 35 indivíduos, enquanto a Praia Grande é com São José dos Pinhais(cf. MARINONI & DUTRA, 1993).

Na Fortaleza, Miridae representou 34,29% dos Hemiptera ali capturados, enquanto na Praia Grande o percentual registrado é quase o dobro, ou seja, 61,54%. CANCELADO & YONKE (1969), encontraram Lygaeidae(33,70%) como a família mais representativa de Hemiptera, seguida por Miridae(27,80%).

Os valores percentuais de Hemiptera, nas duas localidades da Ilha do Mel, em relação ao conjunto dos Insecta, mostraram semelhança com os resultados obtidos durante o PROFAUPAR, e já mencionados anteriormente(p.81) quando da análise do Apêndice 2.

m. Homoptera

Na Fortaleza foram capturados em todos os meses estudados, com um total de 1.572 indivíduos, que representaram 2,50% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 8,00 a 78,25 indivíduos/semana, registradas em junho e fevereiro respectivamente(Fig.25 e Tab.72). Foram capturadas 8 famílias(Tab.78)

Cicadellidae(1.335 indivíduos - 84,92% do total de Homoptera capturado nesta localidade) foi a família mais abundante e foi capturada em todos os meses estudados, apresentando uma variação da captura média de 3,75 a 71,25 indivíduos/semana, registradas em junho e fevereiro respectivamente(Fig.26 e Tab.79).

Na Praia Grande, os Homoptera foram capturados em todos os meses estudados, com um total de 480 indivíduos, que representa-

ram 1,23% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 2,25 a 20,75 individuos/semana, registradas em maio e novembro respectivamente(Fig.25 e Tab.73). Foram capturadas 13 famílias, sendo que Acanaloniidae, Cercopidae, Clastopteridae, Flatidae e Issidae só foram capturadas nesta localidade(Tab.80).

Cicadellidae(210 indivíduos - 43,75% do total de Homoptera capturado nesta localidade) foi a família mais abundante e foi capturada em onze dos doze meses estudados(não foi capturada em julho), apresentando uma variação da captura média de 0,50 a 11,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.26 e Tab.81).

Nas duas localidades, Cicadellidae apresentou seus maiores valores de captura média nos mesmos meses em que foram registrados os valores máximos para a Ordem Homoptera, sendo a família que determinou a variação da captura média desta Ordem nestas localidades, foi possível constatar uma relação positiva entre as baixas temperaturas e as menores capturas médias.

Os valores percentuais obtidos para Miridae(34,29% e 61,54% para Fortaleza e Praia Grande, respectivamente) invertem-se quando observamos os valores de Cicadellidae, 84,92% e 43,75%, para Fortaleza e Praia Grande respectivamente. A inversão observada é de difícil explicação, já que as flutuações das capturas médias dos Miridae são semelhantes nas duas localidades, enquanto as dos Cicadellidae são bastante diferentes.

CANCELADO & YONKE (1969) e MATTHEWS & MATTHEWS (1970) também encontraram Cicadellidae como a família mais abundante, representando, respectivamente, 93,70% e 52,80% do total de Homoptera por eles capturado.

Quando comparamos os valores totais de Homoptera obtidos nas duas localidades da Ilha do Mel, àqueles registrados durante o PROFAUPAR, é possível observar semelhanças entre a Fortaleza e Antonina, enquanto o valor da Praia Grande é próximo do valor obtido para Colombo(cf. MARINONI & DUTRA, 1993).

n. Neuroptera

Na Fortaleza, foram capturados em sete dos doze meses estudados (não foram capturados de abril a agosto), com um total de 13 indivíduos, que representaram 0,02% do total de Insecta capturado nesta localidade (Tab. 68). Apresentaram uma variação da captura média de 0,20 a 0,60 indivíduos/semana, registradas em janeiro e outubro respectivamente (Fig. 26 e Tab. 72).

Na Praia Grande foram capturados em cinco dos doze meses estudados(não foram capturados de fevereiro a agosto), com um total de 9 indivíduos, que representaram 0,02% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 0,25 a 0,50 indivíduos/semana, registradas em dezembro e setembro/novembro respectivamente(Fig.26 e Tab.73).

Quando comparamos os valores totais de Neuroptera obtidos nas duas localidades da Ilha do Mel àqueles registrados durante o PROFAUPAR, a Fortaleza posiciona-se como intermediária entre São José dos Pinhais e Colombo, enquanto a Praia Grande apresenta um valor próximo àqueles registrados para Colombo e Guarapuava(cf. MARINONI & DUTRA, 1993).

o. Coleoptera

Fortaleza

Na Fortaleza foram capturados em todos os meses estudados, com um total de 1.083 indivíduos, que representaram 1,72% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 5,50 a 48,75 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.26 e Tab.72). Foram capturadas 35 famílias(Tab.82), das quais, pela classificação de Palma, 6 são consideradas comuns: Chrysomelidae, Curculionidae, Helodidae, Mordellidae, Phengodidae e Scarabaeidae; 9 são consideradas intermediárias e 20 são consideradas raras(Tab.84). Cantharidae, Colydiidae, Euglenidae, Leiodidae, Lymexylidae, Melandryidae e Platypodidae só foram capturadas nesta localidade.

o1 SOBRE A QUANTIDADE DAS FAMÍLIAS COMUNS E INTERMEDIÁRIAS DE COLEOPTERA, PELA CLASSIFICAÇÃO DE PALMA, CAPTURADAS NA FORTALEZA, NOS DIFERENTES MESES DO ANO

1. ANTHRIBIDAE

Família intermediária, foi capturada em nove dos doze meses estudados(não foi capturada em maio, julho e agosto), com um total de 15 indivíduos, que representaram 1,39% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 1,20 indivíduos/semana, registradas em outubro/abril e janeiro respectivamente(Fig.27 e Tab.83).

2. CERAMBYCIDAE

Família intermediária, foi capturada em oito dos doze meses estudados(não foi capturada em setembro, outubro, abril e junho), com um total de 18 indivíduos, que representaram 1,66% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 1,50 indivíduos/semana, registradas em julho e novembro respectivamente(Fig.27 e Tab.83).

3. CHRYSOMELIDAE

Família comum, foi capturada em todos os meses estudados, com um total de 105 indivíduos, que representaram 9,70% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,50 a 3,50 indivíduos/semana, registradas em agosto e novembro respectivamente(Fig.27 e Tab.83).

4. COCCINELLIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em setembro, março e de maio a julho), com um total de 16 indivíduos, que representaram 1,48% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 1,50 indivíduos/semana, registradas em outubro/janeiro e dezembro respectivamente(Fig.27 e Tab.83).

5. CURCULIONIDAE

Família comum, foi capturada em todos os meses estudados, com um total de 93 indivíduos, que representaram 8,59% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 4,50 indivíduos/semana, registradas em julho e dezembro respectivamente(Fig.27 e Tab.83).

6. DYTISCIDAE

Família intermediária, foi capturada em apenas quatro dos doze meses estudados(janeiro a abril), com um total de 32 indivíduos, que representaram 2,95% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,25 a 4,00 indivíduos/semana, registradas em março e fevereiro respectivamente(Fig.27 e Tab.83).

7. ELATERIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em setembro e de abril a julho), com um total de 39 indivíduos, que representaram 3,60% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 4,75 indivíduos/semana, registradas em outubro e novembro respectivamente(Fig.27 e Tab.83).

8. HELODIDAE

Família comum, foi capturada em todos os meses estudados, com um total de 172 indivíduos, que representaram 15,88% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 9,75 indivíduos/semana, registradas em julho e março respectivamente(Fig.27 e Tab.83).

9. MORDELLIDAE

Família comum, foi capturada em sete dos doze meses estudados (não foi capturada em setembro e de maio a agosto), com um total de 148 indivíduos, que representaram 13,67% do total de Coleoptera capturado nesta localidade (Tabs. 82 e 84). Apresentaram uma variação da captura média de 0,20 a 13,50 indivíduos/semana, registradas em outubro/fevereiro e novembro/dezembro respectivamente (Fig. 27 e Tab. 83).

10. NITIDULIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em setembro, outubro e de maio a julho), com um total de 11 indivíduos, que representaram 1,02% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,25 a 0,50 indivíduos/semana, registradas em novembro/dezembro/agosto e fevereiro/marco respectivamente(Fig.27 e Tab.83).

11. PHENGODIDAE

Família comum, foi capturada em nove dos doze meses estudados(não foi capturada em dezembro, junho e julho), com um total de 94 indivíduos, que representaram 8,68% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,75 a 5,00 indivíduos/semana, registradas em maio e março respectivamente(Fig.27 e Tab.83).

12. PTILODACTYLIDAE

Família intermediária, foi capturada em oito dos doze meses estudados(não foi capturada em setembro e de junho a agosto), com um total de 46 indivíduos, que representaram 4,25% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,25 a 3,75 indivíduos/semana, registradas em fevereiro e novembro respectivamente(Fig.27 e Tab.83).

13. SCARABAEIDAE

Família comum, foi capturada em nove dos doze meses estudados(não foi capturada de junho a agosto), com um total de 82 indivíduos, que representaram 7,57% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,25 a 6,75 indivíduos/semana, registradas em setembro/maio e novembro respectivamente(Fig.27 e Tab.83).

14. STAPHYLINIDAE

Família intermediária, foi capturada em nove dos doze meses estudados (não foi capturada de março a maio), com um total de 52 indivíduos, que representaram 4,80% do total de Coleoptera capturado nesta localidade (Tabs. 82 e 84). Apresentaram uma variação da captura média de 0,25 a 2,80 indivíduos/semana, registradas em fevereiro e outubro respectivamente (Fig. 27 e Tab. 83).

15. TENEBRIONIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em setembro, fevereiro, março, maio e junho), com um total de 80 indivíduos, que representaram 7,39% do total de Coleoptera capturado nesta localidade(Tabs.82 e 84). Apresentaram uma variação da captura média de 0,20 a 16,00 indivíduos/semana, registradas em abril e agosto respectivamente(Fig.27 e Tab.83).

Praia Grande

Na Praia Grande, os Coleoptera foram capturados em todos os meses estudados, com um total de 1.030 indivíduos, que representaram 2,65% do total de Insecta capturado nesta localidade (Tab.69). Apresentaram uma variação da captura média de 2,25 a 41,60 indivíduos/semana, registradas em agosto e janeiro respectivamente(Fig.26 e Tab.73). Foram capturadas 37 famílias(Tab.85), das quais, pela classificação de Palma, 3 são consideradas comuns: Chrysomelidae, Curculionidae e Phengodidae; 12 são consideradas intermediárias e 22 são consideradas raras(Tab.87). Anobiidae, Bostrychidae, Bruchidae, Chelonariidae, Cleridae, Dryopidae, Monommidae, Phalacridae e Scydmaenidae foram capturadas somente nesta localidade.

o2. SOBRE A QUANTIDADE DAS FAMÍLIAS COMUNS E INTERMEDIÁRIAS DE COLEOPTERA. PELA CLASSIFICAÇÃO DE PALMA, CAPTURADAS NA PRAIA GRANDE, NOS DIFERENTES MESES DO ANO

1. CARABIDAE

Família intermediária, foi capturada em seis dos doze meses estudados(não foi capturada de março a agosto), com um total de 30 indivíduos, que representaram 2,91% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,25 a 2,75 indivíduos/semana, registradas em setembro/fevereiro e dezembro respectivamente(Fig.28 e Tab.86).

2. CERAMBYCIDAE

Família intermediária, foi capturada em onze dos doze meses estudados(não foi capturada em julho), com um total de 50 indivíduos, que representaram 4,85% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,25 a 2,40 indivíduos/semana, registradas em agosto e janeiro respectivamente(Fig.28 e Tab.86).

3. CHRYSOMELIDAE

Família comum, foi capturada em dez dos doze meses estudados (não foi capturada em julho e agosto), com um total de 91 indivíduos, que representaram 8,83% do total de Coleoptera capturado nesta localidade (Tabs. 85 e 87). Apresentaram uma variação da captura média de 0,25 a 7,00 indivíduos/semana, registradas em

junho e dezembro respectivamente(Fig.28 e Tab.86).

4. CURCULIONIDAE

Família comum, foi capturada em todos os meses estudados, com um total de 165 indivíduos, que representaram 16,02% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,50 a 5,80 indivíduos/semana, registradas em agosto e outubro respectivamente(Fig.28 e Tab.86).

5. DRYOPIDAE

Família intermediária, foi capturada em três dos doze meses estudados(janeiro a março), com um total de 28 indivíduos, que representaram 2,72% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 1,00 a 3,50 indivíduos/semana, registradas em março e fevereiro respectivamente(Fig.28 e Tab.86).

6. DYTISCIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em setembro, novembro e de junho a agosto), com um total de 161 indivíduos, que representaram 15,63% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,50 a 17,00 indivíduos/semana, registradas em dezembro/maio e fevereiro respectivamente(Fig.28 e Tab.86).

7. ELATERIDAE

Família intermediária, foi capturada em seis dos doze meses estudados(não foi capturada em setembro, março e de maio a agosto), com um total de 21 indivíduos, que representaram 2,04% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,20 a 1,75 indivíduos/semana, registradas em abril e dezembro respectivamente(Fig.28 e Tab.86).

8. HELODIDAE

Família intermediária, foi capturada em dez dos doze meses estudados(não foi capturada em novembro e agosto), com um total de 64 indivíduos, que representaram 6,21% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,20 a 3,25 indivíduos/semana, registradas em julho e março respectivamente(Fig.28 e Tab.86).

9. HYDROPHILIDAE

Família intermediária, foi capturada em oito dos doze meses estudados(não foi capturada em setembro, dezembro, julho e agosto), com um total de 29 indivíduos, que representaram 2,82% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,20 a 1,60 indivíduos/semana, registradas em outubro e janeiro respectivamente(Fig.28 e Tab.86).

10. MORDELLIDAE

Família intermediária, foi capturada em cinco dos doze meses estudados(outubro a fevereiro), com um total de 56 indivíduos, que representaram 5,44% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,60 a 6,50 indivíduos/semana, registradas em outubro e dezembro respectivamente(Fig.28 e Tab.86).

11. PHENGODIDAE

Família comum, foi capturada em onze dos doze meses estudados(não foi capturada em junho), com um total de 150 indivíduos, que representaram 14,56% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,25 a 8,80 indivíduos/semana, registradas em dezembro/maio/agosto e outubro respectivamente(Fig.28 e Tab.86).

12. PTILODACTYLIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em janeiro e de abril a julho), com um total de 21 indivíduos, que representaram 2,04% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,25 a 1,40 indivíduos/semana, registradas em fevereiro/agosto e outubro respectivamente(Fig.28 e Tab.86).

13. SCARABAEIDAE

Família intermediária, foi capturada em nove dos doze meses estudados(não foi capturada em abril, junho e julho), com um total de 29 indivíduos, que representaram 2,82% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,25 a 2,00 indivíduos/semana, registradas em setembro/fevereiro/maio/agosto e novembro respectivamente(Fig.28 e Tab.86).

14. STAPHYLINIDAE

Família intermediária, foi capturada em sete dos doze meses estudados(não foi capturada em janeiro e de abril a julho), com um total de 12 indivíduos, que representaram 1,17% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,20 a 1,00 indivíduos/semana, registradas em outubro e novembro respectivamente(Fig.28 e Tab.86).

15. TENEBRIONIDAE

Família intermediária, foi capturada em oito dos doze meses estudados(não foi capturada em novembro, janeiro, junho e julho), com um total de 12 indivíduos, que representaram 1,17% do total de Coleoptera capturado nesta localidade(Tabs.85 e 87). Apresentaram uma variação da captura média de 0,20 a 0,75 indivíduos/semana, registradas em outubro e fevereiro respectivamente(Fig.28 e Tab.86).

Nas duas localidades amostradas na Ilha do Mel, Chrysomelidae, Curculionidae e Phengodidae foram as famílias consideradas comuns, pela classificação de Palma. Chrysomelidae e Curculionidae também foram consideradas comuns nas oito localidades do PROFAUPAR, já havendo sido mencionadas anteriormente.

A representatividade de Dytiscidae(15,63%), Hydrophilidae(2,82%) e Dryopidae(2,72%) nas amostras da Praia Grande, quando comparada aos valores obtidos para a Fortaleza, além da relação positiva entre suas capturas médias e a época de maior precipitação pluviométrica, refletem, sem dúvida, os hábitos aquáticos destas famílias associados às características físicas do local onde a armadilha estava montada, reforçando a eficiência da armadilha Malaise na captura de Coleoptera e caracterização das comunidades estudadas, conforme observado por HUTCHESON (1990).

A representação neográfica mostra(Apêndice 3,Fortaleza) que na Fortaleza, quando as famílias comuns e intermediárias de Coleoptera, pela classificação de Palma, são dispostas sequencialmente em função dos meses em que apresentaram seus maiores valores de captura média, seis famílias(Staphylinidae, Cerambycidae, Chrysomelidae, Elateridae, Ptilodactylidae e Scarabaeidae) tiveram seus maiores valores registrados na primavera; quatro famílias(Coccinellidae, Curculionidae, Anthribidae e Dytiscidae) no verão, duas(Helodidade e Phengodidae) no outono e Tenebrionidae no inverno. Mordellidae apresentou os mesmos valores máximos na primavera(novembro) e verão(dezembro), enquanto Nitidulidae no verão(fevereiro) e outono(marco).

Na Praia Grande(Apêndice 3,Praia Grande), cinco famílias(Curculionidae, Phengodidae, Ptilodactylidae, Scarabaeidae e Staphylinidae) tiveram seus maiores valores registrados na primavera; nove famílias(Carabidae, Chrysomelidae, Elateridae, Mordellidae, Cerambycidae, Hydrophilidae, Dryopidae, Dytiscidae e Tenebrionidae) no verão, e apenas Helodidade no outono.

Entre estas duas localidades, constatou-se a sobreposição dos maiores valores de captura média, em função das estações do ano, para cinco famílias: Ptilodactylidae, Scarabaeidae e Staphy-linidae, na primavera, Dytiscidae no verão e Helodidae no outono

Quando comparamos os valores totais de Coleoptera obtidos nas duas localidades da Ilha do Mel àqueles registrados durante o PROFAUPAR, observamos que a Fortaleza e a Praia Grande apresentaram valores próximos entre si e menores do que aqueles obtidos para todas as localidades do PROFAUPAR, estando mais próximos do valor obtido para Colombo(1.277 indivíduos). Em relação ao número de famílias capturadas também seguiram esta mesma tendência: valores próximos entre si e menores do que aqueles obtidos para todas as localidades do PROFAUPAR, estando mais próximos do número de famílias(47) registradas para São José dos Pinhais.

Na Fortaleza, o número de famílias comuns(6), pela classificação de Palma, foi igual àquele obtido para Ponta Grossa e Fênix. Entretanto, 3 destas famílias só foram consideradas comuns nesta localidade: Helodidae, Phengodidae e Scarabaeidae. Na Praia Grande, o número de famílias comuns(3) foi igual àquele obtido para São José dos Pinhais e Guarapuava; entretanto, Phengodidae só foi considerada comum nesta localidade.

Em relação ao PROFAUPAR, Phengodidae foi considerada rara em Ponta Grossa e Guarapuava, sendo considerada intermediária nas demais localidades.

p. Strepsiptera

Na Fortaleza foram capturados em dois dos doze meses estudados (novembro e dezembro), com um total de 3 individuos, que representaram 0,005% do total de Insecta capturado nesta localidade (Tab.68).

Na Praia Grande foram capturados em três dos doze meses estudados(maio, julho e agosto), com um total de 4 indivíduos, que representaram 0,01% do total de Insecta capturado nesta localidade (Tab.69).

Esta Ordem não foi capturada am apenas duas localidades do PROFAUPAR(Jundiaí do Sul e Telêmaco Borba)(<u>cf</u>. MARINONI & DUTRA, 1993) e, com exceção de Antonina(22 indivíduos), as demais localidades também estiveram representadas por poucos indivíduos.

q. Trichoptera

Como Ephemeroptera, esta Ordem foi capturada apenas na Praia Grande, no mês de março, com 1 indivíduo, que representou 0,002% do total de Insecta capturado nesta localidade(Tab.69).

Esta Ordem foi capturada em todas as localidades do PROFAU-PAR(<u>cf</u>. MARINONI & DUTRA, 1993), sendo que somente em Colombo foi capturado um único indivíduo.

r. Lepidoptera

Na Fortaleza foram capturados em todos os meses estudados, com um total de 3.605 indivíduos, que representaram 5,73% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 16,50 a 152,00 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.29 e Tab.72).

Na Praia Grande foram capturados em todos os meses estudados, com um total de 5.373 indivíduos, que representaram 13,82% do total de Insecta capturado nesta localidade(Tab.69). Apresentaram uma variação da captura média de 15,00 a 322,25 indivíduos/semana, registradas em junho e novembro respectivamente(Fig.29 e Tab.73).

É interessante notar que nas duas localidades da Ilha do Mel, as flutuações das capturas médias apresentaram tendências muito semelhantes, apesar dos valores totais e percentuais serem maiores na Praia Grande do que na Fortaleza.

As menores capturas médias ocorreram no inverno, demonstrando uma relação positiva com as baixas temperaturas. As maiores capturas médias ocorreram em novembro(fim da primavera/início do verão) e podem ser atribuídas à sincronização imposta ao desenvolvimento dos Insecta pela troca de estações, aparecimento de uma folhagem primaveril bastante fresca para oviposição e crescimento larval(MATTHEWS & MATTHEWS, 1970), como já foi discutido anteriormente(p.46).

Quando comparamos os valores totais da Ilha do Mel com aqueles obtidos durante o PROFAUPAR, a Fortaleza apresenta um valor próximo ao de Guarapuava(3.018 indivíduos), enquanto o valor da

Praia Grande assemelha-se ao de Fênix(4.769)(<u>cf</u>. MARINONI & DU-TRA, 1993). Quando comparamos os valores percentuais, a relação entre a Fortaleza e Guarapuava é mantida, enquanto a Praia Grande apresenta um valor bem maior que as demais localidades(<u>cf</u>. Apêndice 2), estando mais próximo do de Colombo(9,8%).

s. Diptera

Fortaleza

Na Fortaleza foram capturados em todos os meses estudados, com um total de 53.574 indivíduos, que representaram 85,14% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 363,50 a 1.876,00 indivíduos/semana, registradas em junho e abril respectivamente(Fig.30 e Tab.72).

51. SOBRE A QUANTIDADE DE TABANIDAE E DE SUAS ESPÉCIES, CAPTURA-DAS NA FORTALEZA, NOS DIFERENTES MESES DO ANO

Esta família foi capturada em sete dos doze meses estudados (ausente em setembro e de maio a agosto), com um total de 1.715 indivíduos, que representaram 3,20% do total de Diptera capturado nesta localidade. Apresentaram uma variação da frequência relativa de 0,08% a 24,42%, registradas em abril e novembro respectivamente (Tab.88), e a variação da captura média foi de 1,40 a 367,00 indivíduos/semana, registradas em abril e novembro respectivamente (Fig.31 e Tab.88).

Está representada por 10 espécies: <u>Catachlorops</u> (<u>Psalidia</u>)

<u>furcatus</u> (Wiedemann), <u>Catachlorops fuscinevris</u> (Macquart), <u>Chry-</u>

<u>sops</u> sp. <u>Diachlorus bivitatus</u> (Wiedemann), <u>Dichelacera alcicornis</u>

(Wiedemann), <u>Phaeotabanus litigiosus</u> Walker, <u>Poeciloderas</u> sp, <u>Pseudacanthocera sylverii</u> (Macquart), <u>Stenotabanus</u> (<u>Stenotabanus</u>) sp e <u>Tabanus occidentalis</u> Linnaeus.

1. Catachlorops (Psalidia) furcatus

Foi capturada em quatro dos doze meses estudados(outubro a dezembro e abril), com um total de 13 indivíduos, que representaram 0,76% do total de Tabanidae capturado nesta localidade (Tab.90). Apresentou uma variação da captura média de 0,25 a 1,20 indivíduos/semana, registradas em dezembro e outubro respectivamente(Fig.32 e Tab.91).

2. Catachlorops fuscinevris

Foi capturada apenas em novembro, com um total de 28 indivíduos(7,00 indivíduos/semana), que representaram 1,63% do total de Tabanidae capturado nesta localidade(Fig.32 e Tabs.90 e 91).

3. Chrysops sp

Foi capturada apenas na Fortaleza, em dezembro, com um único indivíduo(0,25 indivíduos/semana), que representou 0,06% do total de Tabanidae capturado nesta localidade(Fig.32 e Tabs.90 e 91).

4. Diachlorus bivitatus

Foi capturada em cinco dos doze meses estudados(novembro a março), com um total de 70 indivíduos, que representaram 4,08% do total de Tabanidae capturado nesta localidade(Tab.90). Apresentou

uma variação da captura média de 0,40 a 10,50 indivíduos/semana, registradas em janeiro e novembro respectivamente(Fig.32 e Tab.91).

5. Dichelacera alcicornis

Foi capturada em três dos doze meses estudados(outubro a dezembro), com um total de 1.501 indivíduos, que representaram 87,52% do total de Tabanidae capturado nesta localidade(Tab.90). Apresentou uma variação da captura média de 6,00 a 340,50 indivíduos/semana, registradas em dezembro e novembro respectivamente(Fig.32 e Tab.91).

6. Phaeotabanus litigiosus

Foi capturada apenas na Fortaleza, em dezembro, com um único indivíduo(0,25 indivíduos/semana), que representou 0,06% do total de Tabanidae capturado nesta localidade(Fig.32 e Tabs.90 e 91).

7. Poeciloderas sp

Foi capturada apenas no mês de novembro, com um total de 3 indivíduos(0,75 indivíduos/semana), que representaram 0,17% do total de Tabanidae capturado nesta localidade(Fig.32 e Tabs.90 e 91).

8. Pseudacanthocera sylverii

Foi capturada apenas em dezembro, com um único indivíduo(0,25 indivíduos/semana), que representou 0,06% do total de Tabanidae capturado nesta localidade(Fig.32 e Tabs.90 e 91).

9. <u>Stenotabanus</u> (<u>Stenotabanus</u>) sp

Foi capturada em seis dos doze meses estudados(novembro a abril), com um total de 61 indivíduos, que representaram 3,56% do total de Tabanidae capturado nesta localidade(Tab.90). Apresentou uma variação da captura média de 0,20 a 5,50 indivíduos/semana, registradas em abril e fevereiro respectivamente(Fig.32 e Tab.91).

10. Tabanus occidentalis

Foi capturada em seis dos doze meses estudados(novembro a abril), com um total de 36 indivíduos, que representaram 2,10% do total de Tabanidae capturado nesta localidade(Tab.90). Apresentou uma variação da captura média de 0,25 a 3,00 indivíduos/semana, registradas em março e novembro respectivamente(Fig.32 e Tab.91).

Praia Grande

Na Praia Grande, os Diptera foram capturados em todos os meses estudados, com um total de 28.074 indivíduos, que representaram 72,23% do total de Insecta capturado nesta localidade (Tab.69). Apresentaram uma variação da captura média de 70,25 a 1.293,60 indivíduos/semana, registradas em junho e outubro respectivamente(Fig.30 e Tab.73).

52. SOBRE A QUANTIDADE DE TABANIDAE E DE SUAS ESPÉCIES, CAPTURA-DAS NA PRAIA GRANDE, NOS DIFERENTES MESES DO ANO

Esta família foi capturada em oito dos doze meses estudados (não foi capturada de maio a agosto), com um total de 1.420 indivíduos, que representaram 5,06% do total de Diptera capturado nesta localidade. Apresentaram uma variação da frequência relativa de 0,06% a 23,23%, registradas em setembro e novembro respectivamente(Tab.89), e a variação da captura média foi de 0,25 a 277,50 indivíduos/semana, registradas em setembro e novembro respectivamente(Fig.33 e Tab.89).

Está representada por 9 espécies: Catachlorops (Psalidia) furcatus (Wiedemann), Catachlorops fuscinevris (Macquart), Chlorotabanus inanis (Fabricius), Diachlorus bivitatus (Wiedemann), Dichelacera alcicornis (Wiedemann), Poeciloderas sp., Pseudacanthocera sylverii (Macquart), Stenotabanus (Stenotabanus) sp. e. Tabanus occidentalis Linnaeus.

1. Catachlorops (Psalidia) furcatus

Foi capturada em quatro dos doze meses estudados(outubro a dezembro e março), com um total de 96 indivíduos, que representaram 6,76% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 0,25 a 12,50 indivíduos/semana, registradas em março e novembro respectivamente(Fig.34 e Tab.93).

2. Catachlorops fuscinevris

Foi capturada em dois dos doze meses estudados(novembro e dezembro), com um total de 53 indivíduos, que representaram 3,73% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 0,25 a 13,00 indivíduos/semana, registradas em dezembro e novembro respectivamente(Fig.34 e Tab.93).

3. Chlorotabanus inanis

Foi capturada apenas na Praia Grande, em dezembro, com um único indivíduo(0,25 indivíduos/semana), que representou 0,07% do total de Tabanidae capturado nesta localidade(Fig.34 e Tabs.92 e 93).

4. Diachlorus bivitatus

Foi capturada em três dos doze meses estudados(novembro a janeiro), com um total de 11 indivíduos, que representaram 0,77% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 0,20 a 2,00 indivíduos/semana, registradas em janeiro e novembro respectivamente(Fig.34 e Tab.93).

5. Dichelacera alcicornis

Foi capturada em três dos doze meses estudados(outubro a dezembro), com um total de 947 indivíduos, que representaram 66,69% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 1,00 a 221,50 indivíduos/semana, registradas em dezembro e novembro respectivamente(Fig.34 e Tab.93).

6. Poeciloderas sp

Foi capturada em quatro dos doze meses estudados(outubro a janeiro), com um total de 15 indivíduos, que representaram 1,06% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 0,20 a 1,40 indivíduos/semana, registradas em janeiro e outubro respectivamente(Fig.34 e Tab.93).

7. <u>Pseudacanthocera</u> <u>sylverii</u>

Foi capturada apenas em janeiro, com um único indivíduo(0,20 indivíduos/semana), que representou 0,07% do total de Tabanidae capturado nesta localidade(Fig.34 e Tabs.92 e 93).

8. <u>Stenotabanus</u> (<u>Stenotabanus</u>) sp

Foi capturada em seis dos doze meses estudados(novembro a abril), com um total de 139 indivíduos, que representaram 9,79% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 0,75 a 13,00 indivíduos/semana, registradas em janeiro e novembro respectivamente(Fig.34 e Tab.93).

9. Tabanus occidentalis

Foi capturada em sete dos doze meses estudados(setembro a março), com um total de 157 indivíduos, que representaram 11,06% do total de Tabanidae capturado nesta localidade(Tab.92). Apresentou uma variação da captura média de 0,25 a 14,25 indivíduos/semana, registradas em setembro e novembro respectivamente(Fig.34 e Tab.93).

A frequência percentual dos Diptera, nas duas localidades, confirmam a seletividade da armadilha para esta Ordem.

Quando as flutuações das capturas médias são analisadas, verificamos que na Fortaleza o mês de abril foi aquele em que Diptera apresentou maior atividade, contrastando com a Praia Grande, que teve no mês de outubro a maior frequência; as duas localidades registrando a menor atividade no mês de junho.

Segundo ARAGÃO (1968), em trabalho realizado em diversas matas do município de Brusque(SC), a curva de captura média dos Anopheles (Culicidae) é um pouco atrasada em relação à da temperatura, com a atividade máxima verificando-se sempre em fevereiro ou março; tudo parecendo indicar que a população só vai atingir o máximo no outono, quando a queda da temperatura começa a freiar sua atividade.

Este fato explica, em parte, apesar da participação percentual de Culicidae não ter sido avaliada, a maior atividade dos Diptera, em abril, na Fortaleza. Não explica, porém, o porquê da queda na atividade que foi verificada na Praia Grande.

Uma análise mais detalhada das flutuações das capturas médias dos Diptera(Fig.30), mostra que até o mês de março as tendências das mesmas, nas duas localidades, foram muito semelhandos

tes, diferenciando-se em abril, para retornar a tendências semelhantes adiante. Anteriormente, quando abordamos a diferença entre o número total de indivíduos encontrados nas duas localidades, atribuímos à ação do vento uma grande importância, a qual
parece salientar-se agora, visto que os Diptera praticamente determinaram as flutuações observadas para os Insecta.

A partir do mês de março, quando o final do verão determina uma maior frequência e intensidade dos ventos vindos do setor Sul, existe a possibilidade de migração dos Diptera das regiões mais expostas(Praia Grande no nosso caso) para o interior da mata, além da queda na atividade de vôo em decorrência destes ventos(PRUESS & PRUESS, 1966). A armadilha armada na Fortaleza, bem protegida no meio da mata, parece não sofrer a ação direta dos ventos, somando-se a isto a possibilidade de ter capitalizado o aumento da atividade possível nesta época do ano(cf. ARAGÃO, 1968) e/ou provenientes das regiões mais expostas, até o mês seguinte, quando a queda da temperatura determina efetivamente a redução de sua atividade.

As 11 espécies de Tabanidae capturadas na Ilha do Mel representam um número bem menor que as 23 espécies capturadas por FRANÇA (1975), para a região litorânea do Estado do Paraná, o qual utilizou equídeos como atrativos durante as capturas.

Segundo ROBERTS (1970 e 1971) a cor e a localização da armadilha Malaise podem afetar a captura de Tabanidae, sugerindo a utilização de atrativos(CO₂, por exemplo) para detectar as espécies que ocorrem em pequeno número e/ou por períodos relativamente curtos.

Outra possibilidade foi postulada por MacARTHUR & WILSON (apud CURE-HAKIM, 1983), segundo a qual a distância entre uma ilha e a fonte de espécies, assim como a área da ilha, são fato-

res que influenciam a diversidade; a área raramente exercendo um efeito direto sobre a presença de uma espécie mas determinando, geralmente, uma maior variabilidade de habitats, os quais influem na ocorrência das espécies(LANZER & SCHAFER, 1987).

Se por um lado SOUTHWOOD (1961) demonstra que a grande maioria dos Insecta, até mesmo Collembola, são carregados pelas correntes aéreas por grandes distâncias, BERRY (1983) confirma a tendência das ilhas de possuírem um menor número de espécies que áreas continentais, de dimensões similares. Segundo ZIMMERMAN & BIERREGAARD (1986) a relação espécies-área tem promovido as bases teóricas para o desenho das reservas naturais, podendo predizer a área mínima necessária para preservar um certo número de espécies(cf. SULLIVAN & SHAFFER, 1975; DIAMOND, 1976; SIMBERLOFF & ABELE, 1976 E LEWIN, 1984, entre outros).

FRANÇA (1975) observou que, durante o inverno no litoral, a atividade dos Tabanidae cessou, apesar de registrar que a temperatura muito alta também atuou como fator limitante da atividade; os resultados do presente trabalho também apresentam esta tendência. Três espécies, comprovadamente, foram comuns aos dois trabalhos em questão: Diachlorus bivitatus, Dichelacera alcicornis e Phaeotabanus litigiosus; as frequências percentuais e os meses de maior atividade destas espécies diferindo entre os dois trabalhos, sugerindo a existência de características estruturais próprias das comunidades insulares.

Um dos objetivos do presente trabalho é avaliar o alcance da metodologia utilizada nas amostragens, para comparações dentro e entre ecossistemas, e de imediato dois fatos chamam a atenção. Inicialmente, o número de exemplares de Tabanidae, capturados nas duas localidades da Ilha do Mel, é bastante semelhante, apesar do número de Diptera capturados na Fortaleza ser praticamente o do-

bro daquele obtido para a Praia Grande. Em segundo lugar, as flutuações das capturas médias dos Tabanidae e de suas espécies mais representativas apresentaram a mesma tendência nas duas localidades, sendo notável as semelhanças observadas quando comparados os meses em que foram capturadas <u>Catachlorops furcatus</u>, <u>Catachlorops fuscinevris</u>, <u>Dichelacera alcicornis e Stenotabanus</u> sp. Estas coincidências confirmam a eficiência da armadilha Malaise para comparações dentro de um mesmo ecossitema, e contrastam com os resultados obtidos por FRANÇA (1975), principalmente no que se refere à pouca representatividade de <u>D. alcicornis</u> nas suas amostragens, enquanto esta foi a mais abundante no ambiente insular.

Quando comparou-se os valores totais de Diptera obtidos nas duas localidades da Ilha do Mel àqueles registrados durante o PROFAUPAR, é possível observar semelhanças entre a Fortaleza e Fênix/Telêmaco Borba, enquanto o valor obtido na Praia Grande aproximam-na de São José dos Pinhais(<u>cf. MARINONI & BUTRA, 1993</u>). Em função dos valores percentuais, a maior semelhança da Fortaleza é com Ponta Grossa, enquanto a Praia Grande mostra-se mais assemelhada à Fênix.

t. Hymenoptera

Fortaleza

Na Fortaleza foram capturados em todos os meses estudados, com um total de 1.990 indivíduos, que representaram 3,16% do total de Insecta capturado nesta localidade(Tab.68). Apresentaram uma variação da captura média de 10,50 a 85,20 indivíduos/semana, registradas em setembro e janeiro respectivamente(Fig.35 e Tab.72).

t1. SOBRE A QUANTIDADE DE ICHNEUMONIDAE E DAS SUBFAMÍLIAS COMUNS E INTERMEDIÁRIAS, PELA CLASSIFICAÇÃO DE PALMA, CAPTURADAS NA FOR-TALEZA. NOS DIFERENTES MESES DO ANO

Na Fortaleza, os Ichneumonidae foram capturados em todos os meses estudados, com um total de 215 indivíduos, que representaram 10,80% do total de Hymenoptera capturado nesta localidade(Tab.94). A variação da frequência relativa foi de 3,76% a 32,73%, registradas em janeiro e junho respectivamente e a variação da captura média foi de 1,75 a 6,20 indivíduos/semana, registradas em setembro e abril respectivamente(Fig.36 e Tab.94). Foram capturadas 11 subfamílias(Anomaloninae, Banchinae, Microleptinae, Ophioninae e Tersilochinae só foram capturadas nesta localidade)(Tab.96), das quais, pela classificação de Palma, 2 são consideradas comuns: Gelinae e Orthocentrinae; 4 são consideradas intermediárias e 5 são consideradas raras(Tab.97).

Praia Grande

Na Praia Grande, os Hymenoptera foram capturados em todos os meses estudados, com um total de 1.272 indivíduos, que representaram 3.27% do total de Insecta capturado nesta localidade (Tab.69). Apresentaram uma variação da captura média de 3,00 a 62,50 indivíduos/semana, registradas em junho e dezembro respectivamente(Fig.35 e Tab.73).

t2. SOBRE A QUANTIDADE DE ICHNEUMONIDAE E DAS SUBFAMÍLIAS COMUNS E INTERMEDIÁRIAS, PELA CLASSIFICAÇÃO DE PALMA, CAPTURADAS NA PRAIA GRANDE, NOS DIFERENTES MESES DO ANO

Na Praia Grande, os Ichneumonidae foram capturados em todos os meses estudados, com um total de 158 indivíduos, que representaram 12,42% do total de Hymenoptera capturado nesta localidade (Tab.95). A variação da frequência relativa foi de 3,03% a 25,00%, registradas em março e junho respectivamente e a variação da captura média foi de 0,50 a 10,80 indivíduos/semana, registradas em março/maio e janeiro respectivamente(Fig.36 e Tab.95). Foram capturadas 8 subfamílias(Cremastinae e Tryphoninae só foram capturadas nesta localidade)(Tab.98), das quais, pela classificação de Palma, somente Gelinae é considerada comum; 4 são consideradas intermediárias e 3 são consideradas raras(Tab.99).

ZANELLA (1991), estudando a estrutura da comunidade de abelhas da Ilha do Mel, capturadas com rede de varredura, registrou a maior atividade no final do mês de março e durante o mês de abril. No presente trabalho, utilizando outro método de amostragem, a maior atividade de Hymenoptera foi registrada, para a Fortaleza, no mês de janeiro, enquanto para a Praia Grande foi no mês de dezembro, sendo difícil estabelecer uma relação entre estes resultados.

Quando comparamos os valores totais de Hymenoptera obtidos na Ilha do Mel àqueles registrados durante o PROFAUPAR, observamos que o valor da Fortaleza é intermediário àqueles obtidos para São José dos Pinhais(1.402 indivíduos) e Colombo(2.610), enquanto a Praia Grande mostra-se mais assemelhada à São José dos Pinhais. Em termos percentuais, as duas localidades da Ilha do Mel aproxi-

mam-se de São José dos Pinhais(3,6%).

Quanto aos Ichneumonidae, Gelinae, Orthocentrinae e Porizontinae, subfamílias mais abundantes na Ilha do Mel, também foram as mais abundantes em Antonina. Apesar dos valores das frequências percentuais dos Ichneumonidae, entre os Hymenoptera capturados na Ilha do Mel, serem bastante parecidos entre as duas localidades, eles estiveram abaixo de todos os valores obtidos durante o PROFAUPAR e muito abaixo daqueles obtidos por MARSTON (1965) e YAMAMOTO (1984).

Finalmente, a representação neográfica mostra(Apêndice 4,Fortaleza) que, quando as Ordens de Insecta são dispostas na ordem cronológica dos meses em que apresentaram seus maiores valores de captura média, nove Ordens(Thysanoptera, Psocoptera, Neuroptera, Orthoptera, Isoptera, Plecoptera, Hemiptera, Coleoptera e Lepidoptera) tiveram seus maiores valores registrados na primavera; seis(Odonata, Dermaptera, Strepsiptera, Hymenoptera, Thysanura e Homoptera) no verão e apenas duas(Collembola e Diptera) no outono.

Na Praia Grande(Apêndice 4,Praia Grande), seis Ordens(Thysanoptera, Neuroptera, Psocoptera, Diptera, Homoptera e Lepidoptera) na primavera; seis(Thysanura, Collembola, Orthoptera, Hymenoptera, Isoptera e Coleoptera) no verão e quatro(Odonata, Trichoptera, Ephemeroptera e Strepsiptera) no outono Hemiptera
apresentou os mesmos valores máximos na primavera(novembro) e verão(dezembro).

Os resultados até aqui obtidos concordam com as observações de muitos autores, anteriormente apresentadas na Introdução deste trabalho, quanto à capacidade seletiva da armadilha Malaise, no-

tadamente para Diptera, Hymenoptera e Lepidoptera, além de se mostrar bastante eficiente para medir a abundância relativa(CHAN-TER, 1965; EVANS & OWEN, 1965), na obtenção de informações sobre a variação sazonal dos insetos e comparação da entomofauna de diferentes localidades(CHANTER, op.cit.; MARSTON, 1965).

4.3. Sobre a quantidade de Cerambycidae, capturada nas nove localidades, e constância e dominância das espécies

Foram capturadas 151 espécies de Cerambycidae nas nove localidades(Fortaleza e Praia Grande reunidas em Ilha do Mel), durante os períodos amostrados. Destas, 104 espécies só foram capturadas em uma única localidade(cf. Apêndice 5), enquanto Nyssodrysina lignaria (Bates, 1864) foi a única espécie capturada nas nove localidades, com um total de 416 indivíduos, que representaram 31,04% dos 1.340 Cerambycidae capturados.

O maior número de espécies foi capturado em Jundiaí do Sul(50 espécies, 33,11% do total de espécies) e o menor em São José dos Pinhais(13 espécies, 8,61% do total de espécies). Jundiaí do Sul também foi a localidade onde foi registrado o maior número de espécies cuja captura só se deu ali(27 espécies), enquanto Antonina e Telêmaco Borba foram as duas localidades onde foi registrado o menor número de espécies cuja captura só se deu ali(5 espécies)(Apêndice 5).

4.3.1. Antonina

Foram capturadas 21 espécies, com um total de 64 individuos(Tab.100), que representaram 4,78% do total de Cerambycidae capturado nas nove localidades.

Aerenica albicans (Guerin, 1844), Esthlogena maculifrons
Thomson, 1868, Lesbates sp1, Nyssodrystes bella (Melzer, 1927) e

Ommata (Eclipta) signaticollis Melzer, 1922, foram as 5 espécies

capturadas somente nesta localidade(Apêndice 5). Quatorze espécies estiveram representadas por um único indivíduo, enquanto

N.lignaria (32 indivíduos) representou 50% do total de Cerambycidae capturado nesta localidade, sendo a espécie mais abundante(Tab.100).

Pela classificação de Palma, 7 espécies foram consideradas intermediárias e 14 raras, não havendo nenhuma comum(Tab.101).

4.3.2. São José dos Pinhais

Foram capturadas 13 espécies, com um total de 20 indivíduos(Tab.102), que representaram 1,49% do total de Cerambycidae capturado nas nove localidades.

Adesmus ventralis Gahan, 1894, Anisopodus phalangodes (Erichson, 1847), Coleoxestia spó, Epopretes zonula Martins & Napp, 1984, Myzomorphus quadripunctatus (Gray, 1832), Oncideres dejeani Thomson, 1868, Onocephala obliquata Lacordaire, 1872, Spathoptera albilatera Serville, 1835 e Irichillurges fasciatus Gilmour, 1961, foram as 9 espécies capturadas somente nesta localidade (Apêndice 5). Dez espécies estiveram representadas por um único indivíduo, enquanto Batus hirticornis (Gyllenhal, 1817) e N.lignaria, ambas com 4 indivíduos, foram as espécies mais abundantes, cada uma delas representando 20% do total de Cerambycidae capturado nesta localidade (Tab.102).

Pela classificação de Palma, todas as espécies foram consideradas intermediárias(Tab.103).

4.3.3. Colombo

Foram capturadas 23 espécies, com um total de 66 indivíduos(Tab.104), que representaram 4,93% do total de Cerambycidae capturado nas nove localidades.

Colobothea subcincta Castelnau, 1840, Falsamblesthis ibiyara Marinoni, 1978, Lesbates sp2, Nealcidion simillimum (Melzer, 1932), Poeciloxestia dorsalis (Thomson, 1860) e Rosalba smaradigma Breuning, 1940, foram as 6 espécies capturadas somente nesta localidade(Apêndice 5). Doze espécies estiveram representadas por um único indivíduo, enquanto N.lignaria(32 indivíduos) representou 48,48% do total de Cerambycidae capturado nesta localidade, sendo a espécie mais abundante(Tab.104).

Pela classificação de Palma, 11 espécies foram consideradas intermediárias e 12 raras, não havendo nenhuma comum(Tab.105).

4.3.4. Ponta Grossa

Foram capturadas 41 espécies, com um total de 255 indivíduos(Tab.106), que representaram 19,03% do total de Cerambycidae capturado nas nove localidades.

Alampyris sp1, Callideriphus flavicollis Fisher, 1938, Colobothea sp1, Distenia columbina Serville, 1828, Euryptera latipennis Serville, 1825, Isthmiade braconides (Perty, 1830), Lygrocharis nigripennis Mendes, 1938, Neocorus zikani Melzer, 1920, Ommata (Eclipta) eirene (Newman, 1841), Ommata (Eclipta) eunonia (Newman, 1841), Ommata (Ommata) maia (Newman, 1841), Orthoschema sp1, Oxathres implicatus Melzer, 1926, Phespia simulans Bates, 1873, Probatiominus schwarzeri Melzer, 1926, Pseudolepturges sp1 e Tomopterus sp1, foram as 17 espécies capturadas somente nesta localidade (Apêndice 5). Vinte e duas espécies estiveram representadas por um único indivíduo, enquanto N.lignaria (53 indivíduos) e Heterachthes flavicornis sexsignatus Thomson, 1865 (50 indivíduos), foram as duas espécies mais abundantes, representando respectivamente 20,78% e 19,61% do total de Cerambycidae capturado

nesta localidade(Tab.106).

Pela classificação de Palma, 9 espécies foram consideradas intermediárias e 32 raras, não havendo nenhuma comum(Tab.107).

4.3.5. Guarapuava

Foram capturadas 26 espécies, com um total de 108 indivíduos(Tab.108), que representaram 8,06% do total de Cerambycidae capturado nas nove localidades

Acanthoderes analis Melzer, 1935, Dihammaphora signaticollis Chevrolat, 1859, Ethemon lepidum Thomson, 1860, Ommata sp1, Oreodera sp1, Pachypeza marginata Pascoe, 1888 e Rosalba cordifera (Aurivillius, 1914), foram as 7 espécies capturadas somente nesta localidade(Apêndice 5). Dezessete espécies estiveram representadas por um único indivíduo, enquanto N.lignaria(49 indivíduos) representou 45,37% do total de Cerambycidae capturado nesta localidade, sendo a espécie mais abundante(Tab.108).

Pela classificação de Palma, 7 espécies foram consideradas intermediárias e 19 raras, não havendo nenhuma comum(Tab.109).

4.3.6. Fênix

Foram capturadas de 42 espécies, com um total de 314 indivíduos(Tab.110), que representaram 23,43% do total de Cerambycidae capturado nas nove localidades.

Blabia tigrinata (Thomson, 1864), Coleoxestia sp3, Erana ciliata Fisher, 1938, Hippopsis guinquelineata Aurivillius, 1920, Lepturges unicolor Gilmour, 1959, Midamus hecabe Dillon & Dillon, 1945, Nealcidion bicristatum (Bates, 1863), Odontocera sanguinolenta rufifrons Fisher, 1937, Oedepeza umbrosa (German, 1824),

Ozineus sp2, Ozineus sp5, Pachypeza teres Pascoe, 1888, Parischnolea excavata Breuning, 1942, Rosalba approximata Melzer, 1934, Rosalba consobrina Melzer, 1934, Sphecomorpha murina (Klug, 1825), Sporetus colobotheoides (White, 1855), Sydax straminea Lacordaire, 1869 e Trichonyssodrys maculata Gilmour, 1957, foram as 19 espécies capturadas somente nesta localidade(Apêndice 5). Dezenove espécies estiveram representadas por um único indivíduo, enquanto N.lignaria(132 indivíduos) representou 42,04% do total de Cerambycidae capturado nesta localidade, sendo a espécie mais abundante(Tab.110).

Pela classificação de Palma, <u>N.lignaria</u> foi a única espécie considerada comum; 4 espécies foram consideradas intermediárias e 37 raras(Tab.111).

4.3.7. Jundiaí do Sul

Foram capturadas 50 espécies, com um total de 367 indivíduos (Tab.112), que representaram 27,39% do total de Cerambycidae capturado nas nove localidades.

Acestrilla laterifusca (Breuning, 1939), Achryson setosum Zajciw, 1963, Achryson surinamum (Linnaeus, 1767), Adetus analis (Haldeman, 1847), Carterica sp1, Compsibidion vanum (Thomson, 1867), Ctenoplon x-littera (Thomson, 1865), Eburodacrys sp1, Estola albostictica Breuning, 1940, Estola nigropunctata Breuning, 1940, Estola obscuroides Breuning, 1942, Hesychotypa subfasciata Dillon & Dillon, 1945, Hexoplon ctenostomoides Thomson, 1867, Hexoplon iuno Thomson, 1865, Laraesima scutelaris Thomson, 1868, Leptostylus sp2, Malacopterus pavidus (Germar, 1824), Mallocera glauca Serville, 1833, Nyssodrystes pleuriticus (White, 1855), Odontocera virgata Gounelle, 1911, Ozineus sp3, Paramallocera la-

cordairei (Lacordaire, 1869), Parandra sp1, Rosalba digna (Melzer, 1934), Thoracibidion lineaticolle (Thomson, 1865), Tropidozineus vicinus (Melzer, 1931) e Urgleptes sp3, foram as 27 espécies capturadas somente nesta localidade(Apêndice 5). Vinte e oito espécies estiveram representadas por um único indivíduo, enquanto Compsa albopicta Perty, 1830(132 indivíduos) e N.lignaria(61 indivíduos), foram as espécies mais abundantes, representando respectivamente 35,97% e 16,62% do total de Cerambycidae capturado nesta localidade(Tab.112).

Pela classificação de Palma, <u>N.lignaria</u> foi a única espécie considerada comum; 5 espécies foram consideradas intermediárias e 44 raras(Tab.113).

4.3.8. Telêmaco Borba

Foram capturadas 19 espécies, com um total de 78 indivíduos(Tab.114), que representaram 5,82% do total de Cerambycidae capturado nas nove localidades.

Adesmus amoenoides Fisher, 1938, <u>Dodecosis serotina</u> Bates, 1867, <u>Lophopoeum</u> sp1, <u>Mygalobas ferruginea</u> Chevrolat, 1862 e <u>Odontocera</u> sp2, foram as 5 espécies capturadas somente nesta localidade(Apêndice 5). Dez espécies estiveram representadas por um único indivíduo, enquanto <u>Chariergus signaticornis</u> (Lucas, 1857)(22 indivíduos) e <u>N.lignaria</u>(20 indivíduos), foram as espécies mais abundantes, representando respectivamente 28,21% e 25,64% do total de Cerambycidae capturado nesta localidade(Tab.114).

Pela classificação de Palma, 9 espécies foram consideradas intermediárias e 10 raras, não havendo nenhuma comum(Tab.115).

4.3.9. Ilha do Mel

Quando computadas simultaneamente as amostras da Fortaleza e Praia Grande, foi registrada a presença de 20 espécies, com um total de 68 indivíduos, que representaram 5,07% do total de Cerambycidae capturado nas nove localidades(Tabs.116 e 118).

Desmiphorini sp1, Estola microphthalma Breuning, 1942, Methiini sp1, Neoestola sp1, Obereoides jorgenseni (Bruch, 1911), Ommata (Eclipta) nigriventris impunctata Fuchs, 1961, Oreodera ohausi Melzer, 1930, Oreodera quinquetuberculata (Drapiez, 1820) e Ornistomus bicinctus Thomson, 1864, foram as 9 espécies capturadas somente nesta localidade (Apêndice 5), com Orguinquetuberculata sendo a única espécie que além de só ter sido capturada na Ilha do Mel, foi capturada tanto na Fortaleza quanto na Praia Grande, apesar de representada por um único indivíduo em cada um destes dois pontos amostrados.

Desmiphora intonsa (Germar, 1824), Eburodacrys luederwaldti Melzer, 1922, Heterachthes flavicornis sexsignatus e N.lignaria, além de O.quinquetuberculata, foram as 5 espécies capturadas tanto na Fortaleza quanto na Praia Grande.

Fortaleza

Na Fortaleza, foram capturadas 12 espécies, com um total de 18 indivíduos(Tab.116), que representaram 1,34% do total de Cerambycidae capturado nas nove localidades e 26,47% do total de Cerambycidae capturado na Ilha do Mel.

Methiini sp1, <u>Obereoides jorgenseni</u> e <u>Ommata</u> (<u>Eclipta</u>) <u>ni</u><u>griventris impunctata</u>, foram as 3 espécies capturadas somente
neste ponto de amostragem. Sete espécies estiveram representadas

por um único indivíduo, enquanto <u>Chidarteres</u> <u>dimidiatus taeniatus</u> (Germar, 1824)(3 indivíduos) representou 16,67% do total de Cerrambycidae capturado neste ponto de amostragem, sendo a espécie mais abundante(Tab.116).

Pela classificação de Palma, todas as espécies foram consideradas intermediárias(Tab.117).

Praia Grande

Na Praia Grande, foram capturadas 13 espécies, com um total de 50 indivíduos(Tab.118), que representaram 3,73% do total de Cerambycidae capturado nas nove localidades e 73,53% do total de Cerambycidae capturado na Ilha do Mel.

Desmiphorini sp1, <u>Estola microphthalma</u>, <u>Neoestola sp1</u>, <u>Oreodera ohausi</u> e <u>Ornistomus bicinctus</u>, foram as 5 espécies capturadas somente neste ponto de amostragem. Oito espécies estiveram representadas por um único indivíduo, enquanto <u>N.lignaria</u>(31 indivíduos) representou 62% do total de Cerambycidae capturado neste ponto de amostragem, sendo a espécie mais abundante(Tab.118).

Pela classificação de Palma, 5 espécies foram consideradas intermediárias e 8 raras, não havendo nenhuma comum(Tab.119).

SOBRE A DOMINÂNCIA DE Nyssodrysina lignaria

Nyssodrysina lignaria foi destacadamente a mais abundante das espécies de Cerambycidae, representando desde 11,11%(Fortaleza) a 62%(Praia Grande) do total de indivíduos desta família, nestas localidades. Em São José dos Pinhais, Jundiaí do Sul e Telêmaco Borba, apesar de não ser a espécie mais abundante, esteve entre as mais representativas. No caso da Fortaleza, onde Chidar-

teres dimidiatus taeniatus(16,67%) foi a mais abundante, a homogeneidade das espécies reveste-se de importância particular, sendo abordada e discutida adiante.

COSTA & LINK (1988), comparando qualitativa e quantitativamente as espécies de Cerambycidae que ocorreram em dez bosques formados por diferentes espécies florestais, no Rio Grande do Sul, encontraram N. lignaria representando 80,21% do total de indivíduos capturados.

4.4. Análise de agrupamento

A Figura 37 apresenta o dendrograma de similaridade entre os nove locais amostrados(Ilha do Mel constituindo um único vetor na matriz de dados). As espécies utilizadas no agrupamento aparecem assinaladas por um asterisco no Apêndice 5 e acompanhadas pelo número correspondente àquele utilizado na matriz de dados(matriz com 9 OTU's = localidades e 46 caracteres = espécies)(Apêndice 6) para identificar cada espécie.

Constatou-se a formação de três grupos de localidades, a saber:

grupo a) formado por Antonina e Ilha do Mel;

grupo b) formado por Colombo, Ponta Grossa, Fênix e Jundiai do Sul, com dois núcleos distintos - b1) formado por Colombo e Ponta Grossa e, b2) formado por Fênix e Jundiaí do Sul e,

grupo c) formado por Guarapuava e Telêmaco Borba.

São José dos Pinhais ficou distanciada das demais localidades, apresentando baixa similaridade em relação às mesmas.

é necessário notar que das 151 espécies de Cerambycidae registradas neste trabalho, apenas 46 foram utilizadas na Análise de agrupamento e que, um maior esforço de amostragem, provavelmente alteraria esta situação. Ainda, durante o PROFAUPAR, dois tipos de armadilhas foram utilizadas: Malaise e Luminosa(<u>cf</u>. MARINONI & DUTRA, 1993). Se computadas as espécies de Cerambycidae capturadas pelas duas armadilhas, haveria um total de 265 espécies, sendo 40 espécies comuns às duas, o que reforça a afirmação anterior.

O Apêndice 7 apresenta a matriz de dados reordenada a partir do dendrograma, evidenciando as espécies que caracterizaram cada um dos grupos e núcleos, a saber:

grupo a) <u>Acyphoderes aurulenta</u> (Kirby, 1818), <u>Eburodacrys lueder-waldti</u> e <u>Nyssodrysternum</u> sp1;

grupo b) Compsa albopicta;

núcleo b1) <u>Hyperplatys</u> sp1 e <u>Mecometopus insignis</u> Chevrolat, 1862;

núcleo b2) <u>Chlorida festiva</u> (Linnaeus, 1758), <u>Eutrypanus dorsalis</u> (Germar, 1824), <u>Plerodia syrinx</u> (Bates, 1865) e <u>Probatiominus</u> <u>signiferus</u> (Thomson, 1865) e,

grupo c) Parandra sp4.

O núcleo b2, formado por Fênix e Jundiaí do Sul, foi o que apresentou o maior número de espécies(4) caracterizando-o; este fato sendo, provavelmente, um dos fatores determinantes da maior similaridade entre estas localidades, expressa no dendrograma(Fig.37). Por outro lado, São José dos Pinhais se destaca no dendrograma pela baixa similaridade com as outras localidades, possivelmente por estar representada na matriz de dados por apenas 3 dentre as 46 espécies utilizadas, enquanto Ilha do Mel por 10; Telêmaco Borba, 13; Antonina, 15; Colombo, 16; Guarapuava, 18; Fênix e Jundiaí do Sul, 22 e Ponta Grossa por 23.

O grupo a, formado por Antonina e Ilha do Mel, era de certa forma esperado. As duas localidades encontram-se na região litorânea, muito próximas geograficamente, e quando têm suas classificações climáticas e fitoecológicas comparadas(cf. Apêndice 8), todas elas são iguais; também é exclusiva destas duas localidades a média do mês mais frio acima de 11°C. Foram registradas 3 espécies cuja presença só foi assinalada para este grupo(cf. Apêndice 7)

ZANELLA (1991), apesar de trabalhar com abelhas e com outro método de captura, demonstra que a Ilha do Mel apresenta características próprias ao nível de estrutura, com parte delas devendo ser gerais das comunidades insulares e outras exclusivas da Ilha do Mel e similares.

O núcleo bi é formado por Colombo e Ponta Grossa. Ambas as localidades estão arroladas na mesma categoria pela classificação de Holdridge(MILANO <u>et al</u>, 1987), Floresta úmida temperada, que também é a de Guarapuava, Telêmaco Borba e São José dos Pinhais(Apêndice 8). Porém, com os dados climatológicos históricos(ITCF, 1990), foram as duas únicas localidades identificadas como Floresta úmida subtropical baixomontana. Pela classificação de VELOSO & GÓES (1982), estão localizadas em Floresta Ombrófila Mista Montana, categoria na qual somente estas duas localidades se enquadram, e pela classificação de Koeppen(MAACK, 1981), apesar de comum para as duas(Cfb), estão na mesma categoria de Guarapuava e São José dos Pinhais.

Além das 2 espécies, cuja presença só foi registrada para este núcleo(<u>cf</u>. Apêndice 7), o Apêndice 1 mostra que dos 12 grupos de Insecta estudados no PROFAUPAR, 9 tiveram os seus períodos de maior atividade comuns às duas localidades.

O núcleo b2, formado por Fênix e Jundiai do Sul, foi aquele que apresentou o maior nível de similaridade entre seus componentes.

Pela classificação de Holdridge(MILANO et al., 1987), são identificadas como Floresta úmida subtropical premontana e Floresta úmida tropical premontana, respectivamente(cf. Apêndice 8). Com os dados climatológicos históricos(ITCF, 1990), Fênix é identificada como transição de Floresta seca tropical premontana para Floresta úmida tropical premontana, enquanto Jundiaí do Sul é identificada como transição de Floresta úmida tropical premontana para Floresta seca tropical premontana. Na classificação de VELOSO & GÓES (1982), são as duas únicas localidades identificadas como Floresta Estacional Decidual e pela classificação de Koeppen MAACK, 1981), são identificadas como Cfa, que foi a mesma na qual Telêmaco Borba se posicionou. Pelas observações de Hatschbach é notória a semelhança entre suas situações florísticas.

Além de ter sido o núcleo que apresentou o maior número de espécies, cuja presença somente nele foi assinalada(4)(cf. Apêndice 7), as duas localidades que o formam estiveram representadas na matriz de dados pelo mesmo número de espécies(22). O Apêndice 1 também mostra que dos 12 grupos de Insecta estudados no PROFAUPAR, 11 tiveram os seus períodos de maior atividade comuns às duas localidades. Também é importante salientar que os valores médios das temperatuas máxima e mínima nestas duas localidades foram muito semelhantes.

O grupo c é formado por Guarapuava e Telêmaco Borba. Ambas as localidades estão arroladas na mesma categoria pela classificação de Holdridge(MILANO <u>et al</u>., 1987), Floresta úmida temperada, que também é a de Colombo, Ponta Grossa e São José dos Pi-

nhais(cf. Apêndice 8). Porém, com os dados climatológicos históricos(ITCF, 1990), foram as duas únicas localidades identificadas Floresta úmida subtropical. Pela classificação de VELOSO Guarapuava é identificada como Floresta Ombrófila GóES Mista com transição para Floresta Estacional Semidecidual, quanto Telêmaco Borba é identificada como Floresta Ombrófila Mista Montana, que é a mesma categoria na qual estão arroladas. Colombo e Ponta Grossa. Pela classificação de Koeppen(MAACK, 1981), Guarapuava é identificada como Cfb, a mesma obtida para Colombo, Ponta Grossa e São José dos Pinhais, enquanto Telêmaco Borba é identificada como Cfa, a mesma obtida para Fênix e Jundiaí do Pelas observações de Hatschbach, também é possível detectar algumas semelhanças entre as situações florísticas destas duas localidades.

Este grupo apresentou uma única espécie, cuja presença somente nele foi assinalada(<u>cf</u>. Apêndice 7), com o Apêndice 1 mostrando, como foi observado anteriormente para o núcleo Fênix/Jundiaí do Sul, que 11 dos 12 grupos de Insecta estudados durante o PROFAUPAR apresentaram o período de maior atividade comum às duas localidades.

Quanto à São José dos Pinhais, localidade que se mostrou isolada das demais, está localizada na mesma classificação de Holdridge(MILANO et al., 1987), Floresta úmida temperada, que foi registrada para Colombo, Ponta Grossa, Guarapuava e Telêmaco Borba. Nas classificações de Holdridge, com os dados climatológicos históricos(ITCF, op.cit.), transição de Floresta úmida subtropical baixomontana, e VELOSO & GÓES (op.cit.), transição de Floresta Ombrófila Densa Montana e Floresta Ombrófila Mista Montana, diferenciou-se das demais localidades, ficando bem caracterizada a sua condição de

transição. Pelo sistema de Koeppen (MAACK, 1981), apresentou a mesma identificação de Colombo, Ponta Grossa e Guarapuava, Cfb, (cf. Apêndice 8). Hatschbach também chama atenção para a característica de transição da mata desta localidade.

Os valores de temperatura média mostram como esta localidade é bem mais fria que as demais, além de apresentar uma umidade relativa média bastante alta e uma precipitação pluviométrica maior do que a registrada para as demais localidades.

Outro fato que se destaca é o pequeno número de espécies de Cerambycidae com que esta localidade está representada na matriz de dados(apenas 3), sendo que das 13 espécies registradas para esta localidade, 9 tiveram sua presença assinalada somente nela e 10 estiveram representadas por um único indivíduo.

Quando as observações acima apresentadas são comparadas com os resultados obtidos por MARINONI & DUTRA (1993), apoiados nos dados climatológicos do período amostrado(PROFAUPAR), observam-se as seguintes coincidências:

- a) o isolamento de São José dos Pinhais, resultante da sua condição de transição;
- b) as peculiaridades da região litorânea e,
- c) a consistência do núcleo Fênix/Jundiaí do Sul.

Segundo NOGUEIRA <u>et al</u>.(1987), o sistema de Holdridge abrange três níveis principais para um zoneamento ecológico: a Zona de vida, A Associação e a Sucessão e Uso da terra. A Associação sendo concebida como uma unidade natural na qual vegetação, atividade animal, clima, fisiografia, formação ecológica e solo interrelacionam-se numa combinação única, definida por observações feitas no campo(CAMPOS, 1973).

Assim, as diferenças entre as Zonas de vida de Holdridge, obtidas através dos dados climatológicos históricos, e que aparentemente melhor explicam os grupos obtidos através da Análise de agrupamento, tendo como atributo as espécies de Cerambycidae, se comparadas às classificações obtidas por MILANO et al (1987), e as classificações de VELOSO & GÓES(1982), tidas como as mais refinadas dentre as utilizadas neste trabalho, podem ter refletido o caráter mais abrangente da primeira e mais refinado da segunda.

4.5. Análise por coordenadas principais e árvore de conexão mínima

A projeção tridimensional dos grupos de localidades através da Análise por coordenadas principais(Fig.38), ligadas entre si pelos valores da Árvore de conexão mínima, mostra que a ligação de São José dos Pinhais se faz com o grupo Guarapuava/Telêmaco Borba, através da união de São José dos Pinhais a Telêmaco Borba. O núcleo Colombo/Ponta Grossa é o elemento de ligação entre o grupo Guarapuava/Telêmaco Borba e o núcleo Fênix/Jundiaí do Sul, através da união entre Ponta Grossa/Jundiaí do Sul e Ponta Grossa/Guarapuava. O grupo Antonina/Ilha do Mel aparece ligado ao grupo Guarapuava/Telêmaco Borba através da união entre Antonina e Guarapuava.

O Apêndice 9 apresenta a Análise por coordenadas principais incluindo as 151 espécies de Cerambycidae. Observa-se que os grupos encontrados anteriormente permaneceram inalterados, e que a única alteração significativa é que a união entre o núcleo Fênax/Jundiaí do Sul e o grupo Guarapuava/Telêmaco Borba passa a

ter Colombo como elemento de ligação, e não mais Ponta Grossa como anteriormente. Além disso, Colombo une-se a Fênix e não mais a Jundiaí do Sul, e a Telêmaco Borba e não mais a Guarapuava.

O distanciamento de São José dos Pinhais, observado no dendrograma e nas Análises por coordenadas principais, parece reflitir as peculiaridades desta localidade. Dentre as quatro classificações utilizadas, somente pela de Holdridge(MILANO et al., 1987), é que São José dos Pinhais e Telêmaco Borba aparecem relacionadas.

4.6. Diversidade

Ponta Grossa(2,72), Jundiaí do Sul(2,42) e Fortaleza(2,40) foram os três pontos amostrados que apresentaram os maiores valores de diversidade, enquanto Praia Grande(1,55), Antonina(2,07) e Guarapuava(2,23) foram os três pontos amostrados que apresentaram os menores valores. Ainda, Guarapuava e Telêmaco Borba apresentaram valores praticamente idênticos(Tab.120).

Quando as diversidades foram comparadas, Praia Grande(menor diversidade) e Ponta Grossa(maior diversidade) apresentaram diferenças significativas($\alpha=0.05$) com todas as outras localidades, exceção feita à comparação entre Antonina e Praia Grande que, entretanto, apresentaram os valores do $t_{\rm calculado}(1.954)$ e $t_{\rm criti}-c_0(1.980)$ bastante próximos. As demais localidades não apresentaram diversidades com diferenças significativas entre si(Fig.39).

Uma primeira análise da Tabela 120 mostra que as maiores diversidades foram registradas em Ponta Grossa e Jundiaí do Sul(as duas no segundo planalto paranaense), enquanto os menores valores de diversidade foram registrados na Praia Grande e Antonina(as duas na região litorânea). É interessante notar que apesar de ser a localidade com o maior número de espécies e indivíduos, Jundiaí do Sul apresentou um valor de diversidade bem menor que aquele obtido para Ponta Grossa, e bastante semelhante àquele obtido para a Fortaleza, demonstrando que a relação de dominância entre as espécies foi fator preponderante no cálculo das diversidades. Os valores extremos de diversidade, encontrados para Ponta Grossa e Praia Grande, foram estatisticamente diferentes dos demais que, por sua vez, não apresentaram diferenças significativas entre si, evidenciando a sensibilidade moderada do índice de Shannon ao tamanho da amostra (MAGURRAN, 1988).

Antonina e Praia Grande, dois pontos de amostragem localizados na região litorânea, podem ter suas baixas diversidades explicadas pela proximidade do mar, corroborando as afirmações de WHITTAKER (1972) de que ambientes pouco favoráveis, com condições extremas, têm uma tendência a diminuir a diversidade específica. Não explica, porém, a maior diversidade encontrada na Fortaleza.

SILVA (1990), encontrou para a estrutura da comunidade vegetal da Ilha do Mel, um índice de Diversidade de Shannon considerado baixo, se comparado a estudos realizados em outras formações florestais do Brasil. Concluiu que os valores relativamente baixos de diversidade específica, em florestas instaladas sobre as planícies costeiras, podem ser explicadas, em parte, pelas condições físicas destes sistemas, especialmente no que diz respeito ao solo.

Na área estudada(Ilha do Mel), o solo é do tipo podzol hidromórfico, com textura arenosa, fortemente ácido, oligotrófico, distrófico, com altos teores de matéria orgânica e saturação em alumínio, apresentando sérias limitações em termos de fertilidade

para a vegetação(SILVA, 1990).

A baixa diversidade da comunidade vegetal, com reduzido número de arbóreas compondo entre 70% e 80% da cobertura superior(LEITE & KLEIN <u>in</u> IBGE, 1990), refletindo-se, possivelmente, na diversidade da entomofauna, conforme as observações de SOUTH-WOOD (1961).

A diferença entre os valores de diversidade, obtidos para Fortaleza e Praia Grande, parece ser consequência da participação percentual de <u>N.lignaria</u> nesta última, representando 62% das espécies de Cerambycidae ali capturadas.

Outro fato interessante é Colombo, mato muito destruído segundo as considerações de Hatschbach, ter apresentado uma diversidade maior do que aquela observada para Antonina, Guarapuava; Telêmaco Borba e Praia Grande.

Finalmente, merecem atenção os valores de diversidade muito semelhantes encontrados para Guarapuava e Telêmaco Borba, localidades com número de espécies e indivíduos bem diferentes e que formaram um dos grupos obtidos através da Análise de agrupamento.

4.7. Uniformidade

Fortaleza(0,966) foi o ponto de amostragem que apresentou a maior uniformidade, seguido de São José dos Pinhais(0,925) e Tellêmaco Borba(0,758). Praia Grande(0,604), Jundiaí do Sul(0,618) e Fênix(0,622) foram os pontos de coleta que apresentaram os menores valores(Tab.120).

As altas uniformidades obtidas para São José dos Pinhais(13 espécies, 20 indivíduos) e Fortaleza(12 espécies, 18 indivíduos) refletem o resultado da classificação geral de Palma, com todas

as espécies destas duas localidades sendo consideradas como intermediárias. Isto porque, a relação de dominância entre as espécies interfere diretamente no índice de Shannon, manifestando-se claramente no valor da uniformidade.

Na Fortaleza, <u>N. lignaria</u> representou apenas 11,11% do total de Cerambycidae capturado nesta localidade(menor valor percentual entre os dez pontos amostrados), enquanto na Praia Grande, local que apresentou a menor uniformidade, <u>N. lignaria</u> representou 62% do total de Cerambycidae ali capturado, sendo o maior valor percentual desta espécie entre os dez pontos amostrados.

5. CONCLUSÕES

A) OS GRUPOS DE INSECTA

PROFAUPAR

- 1. O maior número de exemplares de Insecta foi capturado em Jundiai do Sul(261.425 indivíduos) e o menor em Colombo(26.121 indivíduos).
- 2. No geral, observou-se uma relação positiva entre as capturas médias dos vários grupos de Insecta estudados e as temperaturas, sendo que em Ponta Grossa existiu uma relação positiva bastante evidente entre a atividade de vôo de Lepidoptera, Diptera e Hymenoptera e as temperaturas médias mensais.
- 3. Chrysomelidae, Curculionidae e Staphylinidae foram as famílias mais abundantes de Coleoptera e as únicas consideradas comuns para as oito localidades.
- 4. O maior número de famílias de Coleoptera foi registrado em Ponta Grossa e Jundiaí do Sul, ambas com 64, e o menor em São José dos Pinhais(47).
- 5. Houve uma relação positiva entre a quantidade de Insecta e a quantidade de Coleoptera. Entretanto, não foi possível estabelecer qualquer relação entre o número de Coleoptera e o número de famílias com as quais esta Ordem estava representada.
- 6. Gelinae foi a subfamília mais abundante de Ichneumonidae(Hyme-noptera), exceto em Ponta Grossa, onde Orthocentrinae foi a mais representativa.

ILHA DO MEL

- 7. O maior número de Insecta capturado na Fortaleza, se comparada à Praia Grande, parece ser consequência das características estruturais das matas destas localidades associadas ao grau de exposição das mesmas à ação dos ventos.
- 8. Collembola, Hemiptera, Homoptera, Coleoptera, Lepidoptera, Diptera e Hymenoptera foram as Ordens capturadas constantemente nos dois pontos amostrados, sendo capturadas em todos os meses.
- 9. Diptera, Lepidoptera e Hymenoptera foram as 3 Ordens com o maior número de indivíduos capturados na Fortaleza, enquanto na Praia Grande foram Diptera, Lepidoptera e Collembola.
- 10. Na Praia Grande houve uma relação positiva entre o volume da precipitação e a quantidade de Collembola capturada.
- 11. Nas duas localidades houve uma relação positiva entre as capturas médias das várias Ordens estudadas e as temperaturas.
- 12. Miridae(Hemiptera) e Cicadellidae(Homoptera) foram as famílias com o maior número de indivíduos capturados nestas Ordens, nos dois pontos amostrados.
- 13. Na Fortaleza foram registradas 35 famílias de Coleoptera, das quais Chrysomelidae, Curculionidae, Helodidae, Mordellidae, Phen-

- godidae e Scarabaeidae foram consideradas comuns. Na Praia Grande, das 37 famílias registradas, somente Chrysomelidae, Curculionidae e Phengodidae foram consideradas comuns.
- 14. <u>Dichelacera alcicornis</u> (Wiedemann) foi a espécie mais abundante de Tabanidae(Diptera) nos dois pontos amostrados.
- 15. Gelinae e Orthocentrinae foram as duas subfamílias de Ichneumonidae(Hymenoptera) consideradas comuns na Fortaleza, enquanto na Praia Grande somente Gelinae foi considerada comum.

B) CERAMBYCIDAE E OS HABITATS

- 16. O maior número de espécies de Cerambycidae foi capturada em Jundiaí do Sul(50 espécies) e o menor em São José dos Pinhais(13 espécies), que foram respectivamente as localidades com maior e menor valores médios de temperatura máxima. Nyssodrysina lignaria (Bates, 1864) foi a única espécie capturada nas nove localidades.
- 17. Nyssodrysina lignaria foi a espécie mais abundante de Cerambycidae em cinco localidades do PROFAUPAR(Antonina, Colombo, Ponta Grossa, Guarapuava e Fênix) e na Praia Grande. Em São José dos Pinhais, foi tão abundante quanto <u>Batus hirticornis</u> (Gyllenhal, 1817). Em Jundiaí do Sul foi <u>Compsa albopicta</u> Perty, 1830; em Telêmaco Borba foi <u>Chariergus signaticornis</u> (Lucas, 1857) e na Fortaleza foi <u>Chidarteres</u> <u>dimidiatus taeniatus</u> (Germar, 1824).
- 18. Pela Análise de agrupamento, com base nas espécies de Cerambycidae, foi possível estabelecer uma maior semelhança entre 4 grupos/núcleos de localidades: 1) Antonina/Ilha do Mel; 2) Colombo/Ponta Grossa; 3) Fênix/Jundiaí do Sul e 4) Guarapuava/Telêmaco Borba. Ressaltamos: a) O núcleo Colombo/Ponta Grossa é o elemento de ligação entre o grupo Guarapuava/Telêmaco Borba e o núcleo Fênix/Jundiaí do Sul; b) O isolamento de São José dos Pinhais é resultante da sua condição de transição.
- 19. As classificações das Zonas de Vida de Holdridge, e a classificação fisionômica-ecológica de Veloso & Góes, foram as que melhor explicaram os grupos de localidades obtidos através da Análise de agrupamento.
- 20. Ponta Grossa(2,72) e Praia Grande(1,55), respectivamente o ponto de amostragem mais central no Estado e o mais exposto à ação dos ventos marinhos, apresentaram os valores extremos do índice de Diversidade de Shannon, sendo os únicos valores considerados estatisticamente diferentes dos demais.
- 21. Fortaleza(0,966) e Praia Grande(0,605) apresentaram os valores extremos de Uniformidade. Nestas duas localidades, <u>Nyssodrysina lignaria</u> apresentou, respectivamente, seu menor(11,11%) e maior(62%) valores percentuais.
- 22. A relação de dominância entre as espécies foi fator preponderante no cálculo do índice de Diversidade, manifestando-se claramente nos valores da Uniformidade.

CONCLUSÕES GERAIS

23. A armadilha Malaise é seletiva para Diptera, Hymenoptera e Lepidoptera, mostrando-se eficiente para medir a abundância relativa, na obtenção de informações sobre a variação sazonal dos Insecta e na comparação de entomofaunas de diferentes localidades

24. A sincronização imposta ao desenvolvimento dos Insecta pela troca de estações e o aparecimento de condições propícias para oviposição e crescimento larval indicam o fim da primavera/início do verão como o período de maior atividade dos Insecta. Antonina foi a única localidade que fugiu a este padrão, com a maior atividade registrada no outono/inverno.

Tabela 1. PROPAUPAR. Antonina. Dados meteorológicos obtidos para o período amostrado.

	TEHP.HAX. (HÉDIA)	DESVIO Padrão	VALOR Hax.	VALOR MIN.	TEMP.HIN. (MÉDIA)	DESVIO Padrão	valor Kax.	VALOR Hin.	UKID.RELAT. (HÉDIA)	DESVIO Padrão	VALOR Max.	VALOR Hin.	PRECI.
AGO(86)	23,85	3,64	29,2	16,6	i5,i0	i,76	18, 2	ii, 0	84,86	9,99	1 00 ,0	62,7	98,7
SET	22,78	3,00	27,8	i7,4	15,56	2,26	22,0	12,0	81,36	10,46	94.3	54,5	78,6
OUT	25,76	3,63	31,8	16,6	16,15	2,83	20,ē	8,8	75,19	10,54	94,5	51,3	153,6
MON	27,85	4,28	37,€	20,8	19,12	2,46	22,8	14,2	79,33	ii,3i	94,7	51,0	i77,5
DEZ	28,44	3,59	37,2	20,8	20,36	1,35	23,2	18,2	83,62	8,38	96,0	65,€	320,4
JAN (87)	31,46	2,64	37.8	27,2	21,97	1,45	26,6	19,2	86,95	9,03	95,3	63,3	305,4
FEV	30,02	3,57	35,9	23,7	21,00	2,13	23,5	16,9	83,15	9,08	95, 3	61,5	21 3, i
HAR	29,46	2,7€	34,2	21.6	19,64	2,54	22,5	12,4	77,97	9,36	97,∜	59,€	140.8
ABR	27,76	3,46	35,4	20,0	19,68	2,05	24,8	16,€	86,72	8,15	95,3	57,0	198,4
HAI	22,62	3,41	31,2	i7 ,0	14,57	3,63	22,3	4,8	83,16	10,33	97,0	59,5	229,6
JUN	21,11	3,98	31,2	14,6	ii,0i	4,40	18,0	1,6	82,7 3	10,88	97,0	65,7	143,3
JUL	23,29	4,82	34,2	14,6	15,05	2,40	19,6	9,0	8 0 ,5i	15,18	96,7	35,0	14,5

Tabela 2. PROFAUPAR. São José dos Pinhais. Dados meteorológicos obtidos para o período amostrado.

	TEMP.	DESVIO	VALOR	VALOR	UMID.RELAT.	DESVIO	VALUE	VALOR	PRECI
	(MÉDIA)	PADRÃO	HAX.	MIN.	(KÉDIA)	PADRÃO	HAX.	NIN.	(RE)
AGO(86)	16.22	3,41	. 25,€	10,0	82,77	14,62	100,0	50.0	120,5
SET	14,87	3,74	25,₽	9,0	91,96	13,20	100,0	58,0	182,5
OUT	16.16	3,92	27,0	10.0	92.32	9,99	100,0	64,6	184,5
NOV	18,3€	4,24	26,0	11,0	92,13	5,51	100,0	82,0	237,5
DEZ	19,97	2,24	25.0	15,0	93,25	6.10	100,0	82,0	402,0
JAN(87)	21,77	2,14	28,0	18,0	90,43	8,58	100,0	6 5,6	245,5
FEV	19.82	2,11	23,0	15,9	92,14	5,27	100.0	82,0	367,4
MAR	19,58	2,59	23,∉	12,4	89,58	5,24	100,9	76,€	74.4
ABR	19,20	2,92	25,0	14,0	91,33	6,92	100.0	70,0	271,9
MA1	15,4 2	2,95	21,0	9,6	91,51	4,54	100,0	81,6	276,3
HUL.	16.13	2.74	20,0	10,€	82,26	ii,6i	i00.9	59,∌	161,3
JUL	17,48	4,66	23,€	10,0	82,38	14,61	100,6	54,6	38,4

Tabela 3. PROFAUPAR. Colombo. Dados meteorológicos obtidos para o período amostrado.

	TEHP.MAX. (MÉDIA)	DESVIO Padrão	VALOR Hax.	VALOR HIH.	TEMP.MIN. (MÉDIA)	DESVIO Padrão	VALOR Max.	VALOR Min.	UMID.RELAT. (Média)	DESVIO Padrão	VALOR Hax.	VALOR HIH.	PRECI.
 AGD(86)	21,26	4,26	28,4	i4,9	7,69	3,57	13,4	-0,2	85,68	5,75	97,7	76,♦	96,2
SET	20,20	4,73	29,5	11,6	10,02	2,50	14,7	5,5	84,83	7,99	95,2	68, ê	66,8
OUT	23,46	5,09	31,8	ii,i	9,32	4,13	i 5,4	-i,0	81,87	8,16	98,5	65,5	101,4
MOV	25,0 3	5,42	32,4	13,6	14,08	3,63	18, i	8,6	86,00	6,9 3	100,€	73,2	188, 3
DEZ	24,82	3.22	30,2	16,6	15,73	1,82	18,6	11,0	88,10	5,45	97,7	77,7	175,5
JAN(87)	27,67	2,35	31,7	23,4	16,32	2,21	20,3	i 3, i	84,54	3,95	93,0	76,5	98,7
FEV	25,63	3,56	31,8	19,1	16,52	2,17	20,0	10,3	87,70	5,36	96,€	73,5	115,9
HAR	25,96	3,38	31,2	19,0	12,98	3,58	18,€	1,0	82,86	5,69	96,€	66,5	50,8
ABR	23 ,93	3,60	29,i	18,i	13,80	3,07	18.6	7,4	88,96	4,21	98,0	82,0	120,9
MAI	19,37	3,55	25,8	14,3	8,53	5,41	17, 0	-3,2	87,99	6,96	98,0	75,0	286,2
HUL	19.5€	3,64	24,5	10,8	4,29	5,29	13,7	-3,5	85,13	7,61	98,2	68,7	130,9
JUL	22,44	4,49	27,4	12,8	8,00	3,21	12,8	-i,4	82,33	6,38	95,6	65,€	45,7

Tabela 4. PROFAUPAR. Ponta Grossa. Dados meteorológicos obtidos para o período amostrado.

	TEMP.MAX. (Média)	DESVIO Padrão	VALOR Max.	VALOR HIN.	TEMP.HIN. (MÉDIA)	DESVIO PADRÃO	VALOR Hax.	VALOR HIN.	UMID.RELAT. (Média)	DESVIO PADRÃO	VALOR Hax.	VALOR Min.	PRECI.
AGO(86)	21,49	4,35	28,9	14,5	ii,35	2,71	16,4	4,6	62,97	14,07	89,0	42,5	128,4
SET	21,33	4,54	29,€	13,0	11.92	2,74	18,4	6,1	63,06	13,42	88 ,ĉ	34,€	8,88
OUT	25,12	4,65	31,8	13 ,6	13,37	3,56	19,4	6,0	54,44	16,11	9 2,5	35, %	110,3
MOń	26.68	4,35	32,4	17,2	16,22	3,58	8,55	7,4	57,9t	14.07	90,0	33,2	143,8
DEZ	26,25	3,03	30,9	18,3	17,0 5	1,72	29,2	12,6	69,8i	13,06	95.∉	39,2	359,0
JAN(87)	28,71	1,81	31.4	23,2	18,42	1,29	20,4	15,€	67,21	9,86	87,5	52,5	96,5
FEV	26,65	2,88	31,6	21,4	16,85	2,47	19,9	10,0	71,00	9,55	87,5	51,2	156,6
HAR	28,2€	3,13	32,4	20.0	i 5,5i	3,41	18,6	4,1	56,38	10,90	86.2	41,2	19,4
ABR	24,66	3,60	36,4	17 ,8	15,64	2,46	19,6	11,4	70,5 9	9,17	92,5	50,0	145,4
MAI	18,70	3,80	25,6	12,6	10.38	4,75	18,6	-0,6	70,76	i3, 56	95,0	43,7	340,7
JUR	19,47	4,00	26,4	12,4	7,86	5,44	17,€	-1,3	65,74	14 ,51	96,5	40,€	136,6
JUL	22,81	4,66	27.6	13,4	13, 30	3,52	22,0	3,2	59,12	13.81	85,€	37 ,5	55 .5

Tabela 5. PROFAUPAR. Guarapuava. Dados meteorológicos obtidos para o período amostrado.

	TEMP.MAX. (Média)	DESVIO Padrão	VALOR Hax.	VALOR HIN.	TEMP.MIN. (MÉDIA)	DESVIO PADRÃO	VALOR Kax.	VALOR MIN.	UNID.RELAT. (MÉDIA)	DESVIO PADRÃO	valor Kax.	VALOR Mir.	PRECI
AGO(86)	20,62	3,29	28, €	14,0	13,62	3,10	20,0	7,0	81,12	9,82	99,0	61,6	118,6
SET	22.00	4,00	29,0	12,€	10,90	4,17	18,0	0,0	83,54	12,42	100,0	60,0	165,0
OUT	24,48	3,8i	30,0	16,0	ii,5 8	3,30	16,0	2,0	81,97	13,47	100,0	52,0	126,9
MOV	26,00	3,52	32,0	20,0	14,74	3, 37	19,0	7,0	84,03	12,65	100,0	58,0	143,5
DEZ	25,77	1,31	29,0	23,∜	16,32	1,60	19,0	12,0	89,45	7,41	100,0	76,0	212,5
JAN(87)	27.39	1,56	31,0	24,0	17.42	i,50	20,0	14,0	89,52	9.20	100,0	71.0	120,7
FEV	24,14	1,94	28,6	21,0	15,35	1,89	19,0	10,6	94,51	7,90	100,0	73,6	239,7
HAR	25.81	2,39	29,0	18,0	13.45	4,65	18.€	3.0	85,32	8,08	100.0	71.0	46,2
ABR	23, 27	i,87	26,0	20,0	14,19	2,12	19,€	11,6	94,00	5,76	100,0	82,0	315,6
MAI	17,87	2,76	23,€	13,6	9,84	4.80	i7.€	-i.0	95,8i	5.39	100,0	88,€	384,i
JUK	18,60	3,19	23,€	12,4	5,74	5,20	16,0	-2,0	92,19	5,89	100,0	8í, e	97,8
JUL.	21.55	3,11	26,∜	15,0	9,25	5.43	14,0	-2, i	90,74	6,20	100,0	78,0	123,9

Tabela 6. PROFAUPAR. Fênix. Dados meteorológicos obtidos para o período amostrado.

	TEMP.MAX. (Media)	DESVIO Padrão	VALOR Max .	VALOR MIN.	TEMP.MIN. (MÉDIA)	DESVIO PADRÃO	VALOR Max.	VALOR HIN.	UMID.RELAT. (Média)	DESVIO Padrão	VALOR Max.	VALOR Min.	PRECI

A60(86)	24,19	5,14	30,0	15,0	i5,32	2,29	19,0	10,0	65,69	12,38	88,€	44.€	254,9
SET	25,5 0	3,78	30,0	17,6	15, 53	2,22	19,0	11,∉	62, 6 7	10,99	86,€	47,€	74,1
OUT	27,13	4,03	34,∳	15,€	17,61	2,72	22,0	14,€	53,40	10,69	83,0	37,∜	?9, 0
NOV	30,17	3,39	35,0	23,0	20,67	2,59	25,0	13,€	61,23	8,46	79,0	47,0	117,9
DEZ	29,42	2,12	33,0	25,∉	20,42	2.03	23,€	12,0	71,12	6,60	83,∳	59,€	142,2
JAN(87)	30,71	1,86	33,€	26,€	22,10	0,83	24,€	21,0	64,67	7,30	79,€	5 5,4	2 04 ,0
FEV	26,77	2,29	32,0	23,0	19,96	1,64	22,0	16,€	68,35	8,69	80,0	50,0	261,i
HAR	29,06	2,73	32,4	22,∳	17 ,97	2,98	23,0	13,0	58,06	i0 , i 7	80,0	37,0	6 5,8
abr	27,17	2.60	32,∳	21.0	i 7,7 3	2,41	22,0	14,€	67.57	6,40	79.0	57,0	233,4
MAI	21,10	2,97	26,0	14,€	ii ,97	4,38	20,0	2,€	68,29	12,22	87,€	30,5	300,5
JUN	20,8 3	4,36	28,0	9,0	10,51	4,57	17,ê	₩,4	70,03	14,34	93.€	43,∌	86,8
JUL	24.26	3,24	29,6	i 7, e	13,93	2,46	17,0	8,6	67,49	10,25	95,6	50.7	62,8

Tabela 7. PROFAUPAR. Jundiaí do Sul. Dados meteorológicos obtidos para o período amostrado.

	TEMP.MÁX. (MÉDIA)	DESVIO Padrão	valor Kax.	VALOR MIN.	TEMP.HIN. (MÉDIA)	DESVIO Padrão	VALOR Hax.	VALOR KIN.	UKID.RELAT. (NÉDIA)	DESVIO Padrao	VALOR Hax.	VALOR MIN.	PRECI.
 AGD(86)	25,98	5,49	33,5	16,i	14,01	1,96	16,4	8,9	72,9i	17 ,62	96,7	47,5	237 ,3
SET	27,84	4,28	34,4	16,6	14,92	2,35	21,0	i0,8	63,82	13,45	88,7	41,0	86,2
OUT	39,29	4,64	37,9	19,3	16,03	2,85	20,5	10,2	59,67	13,61	88,7	38,0	57 ,5
NOV	31,77	4,24	37,€	21,7	19,35	2,88	22,8	12,5	65,60	13,22	93,5	41,7	158,6
DEZ	29,7 7	2,34	34,0	23,5	20,17	1,50	22,€	i6, i	80,8 3	8,08	94,7	65,7	219,7
JAN (87)	31,79	2,49	35,0	26,4	20,57	1,33	22,5	17,0	78,i4	7,43	90,5	62,5	161,7
FEV	29,61	2,48	34,€	24,5	19,39	2,11	22,5	13,7	8 0 ,21	7,79	93,∜	65,3	183,5
MAR	30,92	2,77	35,3	24,4	17,23	3,63	20,9	8,6	71,54	8,42	89,0	60,7	61,1
ABR	29,56	2,72	34,€	24,2	18,18	1,92	21,3	13,5	75, 8 9	7,51	87,7	62,5	57,4
HAI	23,96	3,92	30,6	18,2	13,58	4,02	20,7	4,5	81,98	ii,i 0	96,2	48,7	186,7
JUK	23,57	3,17	28,4	17,9	10,55	3,87	18, i	2,7	81,11	7,81	97,7	68,5	213,6
JL.	27,77	3,08	31,3	20,i	13,81	i,87	17,0	9,5	70,16	8,66	90,5	54,0	27,7

Tabela 8. PROFAUPAR. Telêmaco Borba. Dados meteorológicos obtidos para o período amostrado.

	TEHP.MAX. (Média)	DESVIO PADRÃO	VALOR Hax.	VALOR Hin.	TEHP.HIN. (HÉDIA)	DESVIO Padrão	valor Max.	VALOR Min.	UMID.RELAT. (MÉDIA)	DESVIO PADRÃO	valor Kax.	VALOR HIN.	PRECI
AGD(86)	23.81	3,79	29,€	13,4	11,79	2,62	16,4	2,0	73,49	19,18	1 00 ,0	40,0	220,6
SET	23,5 3	3,78	29,€	14,8	11,07	2,83	16,2	7,€	69,38	15,91	94,€	36,2	73 ,8
OUT	27.19	3,46	32,0	16,0	12,30	3,54	20,2	4,6	63,7€	16,66	98,2	36,5	68,€
NOV	27,62	3,95	32,4	18,2	15,25	3,41	20,0	8,0	69,12	12,40	100,0	50 ,5	186,8
DEZ	26,83	2,37	31,6	23,4	16,68	1,79	19,4	ii,€	82,17	10,32	97,5	59,2	143,0
JAN(87)	28,72	2,17	32,4	23,8	17,62	1,63	20,6	14,4	75,22	9,85	95,7	54,7	142,3
FEV	26,51	2,96	32,0	21.2	16,27	2.07	18,8	10,0	79,60	11,76	92,2	58,5	237,8
MAR	28,66	2,96	31,8	26,6	15,50	3,02	20,6	6,8	64,27	12,87	92,0	44,2	41,6
ABR	25,74	2.68	29,4	19,4	16,01	2,33	21,2	12,0	74,88	10.57	90,7	40,0	79,€
MAI	19,06	3,38	25,6	10,4	ii ,29	3,68	18,4	3,6	77,04	9,18	95,2	5 3,5	299,4
JUN	20,11	3,36	25, 2	9,4	9,90	3,48	16,0	3,0	75,6 3	13.15	99.0	42,5	131,2
JUL	23,7 5	3,11	27, <i>&</i>	i5,8	13,28	2,39	18,0	8,∉	73,08	8,66	92,5	59,2	44,2

Tabela 9. Ilha do Mel. Dados meteorológicos obtidos para o período amostrado.

	TEMP.MAX. (MÉDIA)	DESVIO PADRÃO	VALOR Max.	VALOR MIN.	TEMP.HIN. (HÉDIA)	DESVIO Padrão	VALOR Max.	VALOR MIN.	UMID.RELAT. (HÉDIA)	DESVIO Padrão	valor Kax.	VALOR HIN.	PRECI.
SET(88)	22,15	3,45	28,4	15,6	16,11	2,01	20,0	12,7	85,63	7,76	98,5	70,7	126,3
OUT	23,94	3,11	32,6	17,9	16,52	1,66	19,4	ii ,8	81,46	10,55	96,8	59,7	168,5
NOV	27,66	3,77	35,4	26.6	17,66	2,13	21,9	13.8	67,84	9,49	87,3	49,0	54,2
DEZ	29,36	3,46	36,∳	22,0	19,95	i,8i	22,9	16,4	75, 0 6	ii,77	94,5	58,5	144,2
(98) MAL	29,07	4,32	38,2	21.4	20,51	1,98	23,2	14,4	82,42	8,23	94,5	6 2,5	498,6
FEV	3 \$,5i	3,18	36,0	23,4	21,12	1,49	24,0	18,0	79,56	9,96	94,6	61,3	29 5,8
HAR	29.04	2,44	33,2	23,8	20,34	1.30	82,6	i 7,0	91,38	6,44	93,7	7€ ,3	209,7
ABR	27,69	2,41	34,6	22,5	19,59	2,14	23,0	i5, 2	81,79	5,64	93,0	70, 7	15 5,7
MAI	24,22	2,27	29,2	19.8	15.7 3	2,78	20,8	i0 ,8	78,72	9,44	93,0	50,5	141,9
JUN	22,72	2,59	27,4	1 5,€	15,07	1,91	18,2	ii,0	81,27	8,17	93,3	58,7	43,€
JUL	21,40	3,31	28,8	14,6	13,06	2,36	17,8	8,89	75,15	10,8 0	92,7	52,0	154,0
A 60	22,73	2,85	27,4	15 ,6	15,76	2, 0 2	19,8	10,2	78, 92	6,71	9 2,5	65,€	29,9

Tabela 10. PROFAUPAR. Número de amostras, por localidade, nos meses amostrados.

	AGO(86)	SET	TUO	NOV	DEZ	JAN(87)	FEV	HAR	ABR	MAI	HUL	JUL
ANTONINA	Å	5	4	4	5	3	4	5	4	4	4	4
S.J.PINHAIS	4	5	4	4	5	4	4	5	4	4	4	4
COLONBO	Ą	ij	Ė	4	5	4	4	5	4	3	5	4
P.GROSSA	4	5	4	4	5	4	4	5	3	4	5	4
GUARAPUAVA	4	5	4	4	5	4	4	5	4	4	5	4
FÊNIX	4	5	4	4	5	4	4	5	4	4	5	4
J. SUL	4	5	4	4	5	Ą	4	5	4	4	5	4
T.BORBA	4	5	4	4	5	4	4	5	4	4	5	4

Tabela 11. PROFAUPAR. Insecta. Número total de indivíduos, por l<u>o</u> calidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	jan(87)	FEV	MAR	ABR	MAI	MUL	JUL	TOTAL
ANTONINA	2166	2828	3087	3432	5425	2915	4298	4157	6338	5564	4 5 0 4	7245	51959
S.J.PINHAIS	3891	4223	5 655	67 91	8475	2878	1683	1814	1646	760	57 2	836	39224
COLOMBO	i854	2253	2927	3006	3459	2841	2148	1673	7 78	448	1730	3904	26121
P. GROSSA	921 <i>6</i>	168 26	23 393	18398	39920	40314	31377	25505	6932	725 2	4606	8344	23208 3
Guarapuava	5382	79 12	733 3	6921	8664	5285	5255	4297	2148	943	746	1031	55917
FÉNIX	65 66	11499	11687	13563	19643	475i	6714	3535	2482	43 0 5	2811	1548	89104
J.SUL	12891	35466	36295	375 5€	31484	31031	1977 8	20387	9033	1359i	8161	57 58	261425
T.BORBA	8868	13115	14406	16243	8514	6399	4542	6817	3349	1920	296	1249	8576 9
TOTAL	50834	94122	104783	105904	116584	96414	75 795	68185	32706	34783	23426	29006	832542

Tabela 12. PROFAUPAR. Insecta. Captura média(no médio de indivídu os/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	TUO	VOM	DEZ	JAN(87)	FEV	HAR	ABR	MAI	JUN	JUL
ANTONINA	541,50	565,60	<i>7</i> 71,75	858,00	1085,00	971,67	1074,50	831,40	1584,5¢	1391,00	1126.00	1811,25
S.J.PINHAIS	972,7 5	844,6€	1413,75	1697,75	1695,00	7 1 9,5 0	420,75	362,80	411,50	190,00	143,60	269,00
COLOHBO	463,56	450,60	731,75	751,50	691,80	710,25	537,00	334,60	194.5 0	149,33	346,00	751,00
P. GROSSA	2304,00	3365,20	5848 ,25	4599,50	7984, 80	10078,50	7844,25	5101,00	2310,67	1813,00	921,20	2086,09
GUARAPUAVA	1345.50	1582,40	1833,25	1730, 25	1732,80	1321,25	i3i3.7 5	859,40	537,00	235,75	149.20	257,75
FÉNIX	i64 i ,50	2299,80	2922,75	3390,75	2128,60	1187,75	i678,5 0	707,00	62 0 ,5€	1076,25	562,20	387, 00
J.SUL	3222,75	7093,20	9073,75	9387,50	6296,80	7757,75	4944,50	4077,40	2258,25	3397 ,75	1632,20	1439,50
T.BORBA	2217,00	2623,00	3601,50	4068,75	1702,80	1599,75	1135,50	1363,40	837,25	480,00	59,20	310,00

Tabela 13. PROFAUPAR. Captura das diversas Ordens, nos locais amostrados. AN=Antonina, SJ=São José dos Pinhais, CO=Colombo, PG=Ponta Grossa, GU=Guarapuava, FE=Fênix, JS=Jundiaí do Sul e TB=Telêmaco Borba.

	AN -	SJ	CO	PG	GU .	FE	JS 	TE
thys anu ra	X	χ	χ	X				
COLLENBOLA	X	X	X	X	X	X	X	X
EPHEMEROPTERA				X	X	X	X)
DDONATA			X	X		X		
ORTHOPTERA	Х	X	χ	χ	X	χ	X	ķ
ISOPTERA	X	X	X	X	X	X	X)
PLECOPTERA	Х		. Х		X	X		Ì
DERMAPTERA	X	X.		X	. X	X	X)
ENBIOPTERA					X	X	χ	
PSOC opte ra	X	χ	X	X	X	X	χ)
THYSANOPTERA	X	χ	χ	X	χ	X	X	
HEMIPTERA	X	X	X	X	X	X	X)
HOMOPTERA	Х	Х	X	X	X	X	X)
NEUROPTERA	X	X	X	X	X	X	X	
COLEOPTERA	X	X	X	X	X	X	X)
STREPSIPTERA	X	X	X	X	X	X		
HECOPTERA		X		X				
TRICHOPTERA	X	X	X	X	X.	X	X	}
LEPIDOPTERA	X	X	X	X	X	X	χ)
DIPTERA	χ	χ	X	X	χ	X	X)
HYMENOPTERA	X	X	χ	X	X	X	X)

Tabela 14. PROFAUPAR. Hemiptera. Número total de indivíduos, por localidade, nos meses amostrados.

	A60(86)	SET	OUT	HOV	DEZ	JAN (87)	FEV	KAR	ABR	HAI	JUN	JIL 	TOTAL
ANTONINA	21	5	8	5	5	3	4	5	6	7	ii	iė	90
S.J.PINHAIS	3	3	ĉ	6	4	7	i	ē	ii	4	2	ĉ	45
COLOMBO	*	8	i	i	9	6	6	3	i	i	5	5	35
P. GROSSA	4	i₽	ii	16	35	29	20	i 5	15	8	9	5	171
Guarapuava	20	34	9	ió	18	9	i@	ó	á	4	5	8	145
FËNIX	36	33	i 5	36	24	16	6	i	7	10	7	ŝ	193
J.SUL	65	iii	66	78	37	20	13	49	19	37	14	ib	525
T.BORBA	ii	26	56	43	i 7	12	8	7	3	4	6	í	158
TOTAL	160	22 2	138	195	149	102	68	86	68	75	54	49	1368

Tabela 15. PROFAUPAR. Hemiptera. Captura média(no médio de indivíduos/semana), por localidade, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JJM	JUL
ANTONINA	5,25	1,00	2,00	1,25	i,00	1,60	1,00	1,00	1,50	i,75	2,75	2,5%
S.J.PINHAIS	0,7 5	0,66	0,50	i,50	1,25	i,75	0,25	0,00	2,75	1,00	0 ,50	9 ,50
COLOMBO	9.00	0,00	0 ,25	€,25	i,80	1,50	i,50	9,66	0,25	0,33	0.40	1,25
P. GROSSA	1,00	2,00	2,75	2,50	7,00	7,25	5,00	3,44	5,00	2,00	1,80	1,25
GUARAPUAVA	5,00	6,80	2,25	4,00	3,60	2,25	2,5♦	i,20	i,50	1,00	1.00	2,00
FÉNIX	9,00	6,60	3,75	9,00	4,88	4,66	1,5€	0,24	1,75	2,50	1,40	0 ,5 6
J.SUL	16,25	22,20	16,50	19,5%	7,40	5.00	3,25	9,80	4,75	9,25	2,80	4,00
T.BORBA	2,75	5,20	6,5%	10,75	3,40	3,00	2,00	1,40	0,75	1,00	0,00	6,2 5

Tabela 16. PROFAUPAR. Homoptera. Número total de indivíduos, por localidade, nos meses amostrados.

					-							
AGO(86)	SET	TUO	NOV	DEZ	JAN(87)	FEV	HAR	ABR	KAI	HUL	JUL	TOTAL
65	82	122	130	165	113	159	190	253	170	63	126	1648
94	124	160	307	257	8i	18	36	114	31	8	24	1250
Ÿ	i 7	37	78	65	45	25	34	22	5	39	31	407
85	35 3	855	60 3	509	237	196	215	97	62	41	69	3289
38	75	226	153	117	i i5	104	6€	17	6	8	9	928
762	1699	825	881	918	3 36	5 95	32 3	123	177	76	68	6684
624	2254	1748	1009	894	1347	497	538	249	322	150	94	9426
84	216	335	59 3	226	174	ii 7	137	96	43	5	19	2041
17 57	4717	42 75	3754	3151	2448	172i	1233	97 i	81 6	390	440	2567 3
	65 94 9 85 38 762 624	65 82 94 12 0 9 17 85 353 38 75 762 16 00 624 2254 89 216	65 82 122 94 126 166 9 17 37 85 353 822 38 75 226 762 1666 825 624 2254 1748 89 216 335	65 82 122 130 94 120 160 307 9 17 37 78 85 353 822 603 38 75 226 153 762 1600 825 881 624 2254 1748 1009 80 216 335 593	65 82 122 130 165 94 120 160 307 257 9 17 37 78 65 85 353 822 603 509 38 75 226 153 117 762 1600 825 881 918 624 2254 1748 1009 894 80 216 335 593 226	65 82 122 130 165 113 94 120 160 307 257 81 9 17 37 78 65 45 85 353 822 603 509 237 38 75 226 153 117 115 762 1600 825 881 918 336 624 2254 1748 1009 894 1347 80 216 335 593 226 174	65 82 122 130 165 113 169 94 126 166 307 257 81 18 9 17 37 78 65 45 25 85 353 822 603 509 237 196 38 75 226 153 117 115 104 762 1600 825 881 918 336 595 624 2254 1748 1009 894 1347 497 80 216 335 593 226 174 117	65 82 122 130 165 113 169 190 94 126 166 307 257 81 18 36 9 17 37 78 65 45 25 34 85 353 822 603 509 237 196 215 38 75 226 153 117 115 104 60 762 1600 825 881 918 336 595 323 624 2254 1748 1009 894 1347 497 238 80 216 335 593 226 174 117 137	65 82 122 130 165 113 169 190 253 94 120 160 307 257 81 18 36 114 9 17 37 78 65 45 25 34 22 85 353 822 603 509 237 196 215 97 38 75 226 153 117 115 104 60 17 762 1600 825 881 918 336 595 323 123 624 2254 1748 1009 894 1347 497 238 249 80 216 335 593 226 174 117 137 96	65 82 122 130 165 113 169 190 253 170 94 120 160 307 257 81 18 36 114 31 9 17 37 78 65 45 25 34 22 5 85 353 822 603 509 237 196 215 97 62 38 75 226 153 117 115 104 60 17 6 762 1600 825 881 918 336 595 323 123 177 624 2254 1748 1009 894 1347 497 238 249 322 80 216 335 593 226 174 117 137 96 43	65 82 122 130 165 113 169 190 253 170 63 94 120 160 307 257 81 18 36 114 31 8 9 17 37 78 65 45 25 34 22 5 39 85 353 822 603 509 237 196 215 97 62 41 38 75 226 153 117 115 104 60 17 6 8 762 1600 825 881 916 336 595 323 123 177 76 624 2254 1748 1009 894 1347 497 238 249 322 150 80 216 335 593 226 174 117 137 96 43 5	65 82 122 130 165 113 169 190 253 170 63 126 94 120 160 307 257 81 18 36 114 31 8 24 9 17 37 78 65 45 25 34 22 5 39 31 85 353 822 603 509 237 196 215 97 62 41 69 38 75 226 153 117 115 104 60 17 6 8 9 762 1600 825 881 918 336 595 323 123 177 76 68 624 2254 1748 1009 894 1347 497 238 249 322 150 94 80 216 335 593 226 174 117 137 96 43 5 19

Tabela 17. PROFAUPAR. Homoptera. Captura média(n<u>o</u> médio de indiv<u>í</u> duos/semana), por localidade, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	KAR	ABR	MAI	JUN	JUL
ANTONINA	16,25	16,40	30,50	32,50	33,0¢	37,67	42,25	38,00	63,25	42,50	15,7 5	31,50
S.J.PINHAIS	23,50	24,00	40,00	76,75	51,40	20,25	4,5 0	7,20	28,5∉	7,75	2,00	6,40
COTORBO	2,25	3,40	9,25	19.50	13,00	11,25	6,25	6,80	5,59	i,67	7,80	7,75
P. GROSSA	21,25	70,60	205,50	159 ,75	101,89	59, 25	49,00	43,00	32,33	i5,5€	8,20	17,25
Guarapuava	9,50	15.00	56, 50	38,25	23,49	28,75	26,00	12,00	4,25	i,5€	1,60	2,25
FËNIX	199,58	320,00	206,25	220,25	183,60	64,00	148,75	64,6€	30,7 5	44,25	i5,2 0	17,00
J.SUL	156,00	450 ,80	437,00	2 52, 25	i78,8 0	336,75	124,25	47,60	62,25	80,50	30,00	23,5%
T.BORBA	20,00	43,20	83,75	148,25	45,20	43,50	29,25	27,40	24,68	10,7 5	1,00	4,75

Tabela 18. PROFAUPAR. Coleoptera. Número total de indivíduos, por localidade, nos meses amostrados.

	ASO(86)	SET	OUT	MOV	DEZ	JAN(87)	FEV	HAR	AB R	MAI	JUK	JUL	TOTAL
ANTONINA	108	138	201	258	i 83	10 7	175	184	140	103	60	142	1799
S.J.PINHAIS	52	97	108	296	481	124	55	49	21	16	iĉ	56	1337
COLONBO	57	93	75	201	269	216	114	81	24	14	64	75	1277
P. GROSSA	7 7	254	47 3	562	1103	79i	436	414	159	133	78	18 2	4662
guarapuava	36	150	143	346	311	i32	66	52	27	12	33	35	1343
FÊNIX	115	211	33 i	498	318	120	64	58	49	75	50	62	1951
J.SUL	380	873	998	980	1999	544	434	513	190	220	154	159	6454
T . BORBA	10 3	272	403	834	386	159	109	180	74	40	37	37	2634
TOTAL	928	208 8	2642	397 5	4150	2187	1453	1 531	684	613	488	7 1 8	21457

Tabela 19. PROFAUPAR. Coleoptera. Captura média(no médio de indivíduos/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	KAR	ABR	HAI	NUL	JUL
ANTONINA	27.00	27,6€	50, 25	64,5 0	36,60	35,67	43,75	36,80	35,00	25,75	15, 00	35,5%
S.J.PINHAIS	13,00	19,40	27,00	74,00	96,20	31,00	13,75	9,80	5,25	4,00	3,00	6,50
COLOMBO	14,25	18,56	18,75	50,25	53,80	52,50	28,5#	16,20	6,00	4,67	12,86	18,7 5
P. GROSSA	19,25	50,80	118,25	140,50	220,60	197,75	199,00	82,89	53,00	33,25	15,60	45,50
Guarapuava	9,69	30,00	35,75	86.50	42,20	33,00	16.5 0	10,40	6,75	3,46	6.69	8,75
FÊNIX	28,75	42,20	82, 75	124,50	63,6 0	30,00	16,00	11,60	12,25	18,7 5	10,00	15,58
J.SUL	95, 0 0	174,50	227,00	245.00	219,80	136,00	108,50	102,60	47,50	55,00	30,80	39,75
T.BORBA	25,75	54,46	100 ,75	208,50	77,26	39,75	27,25	36, 6 0	i8,5 0	10,00	7,40	9,25

Tabela 20. Antonina. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

	AGO (86)	SET	TUO	HOV	DEZ	JAN(87)	FEV	MAR	ABR	IAI	JUN	JUL	TOTAL
ADERIDAE	0	0	í	•	Ŷ	Ý	•	ê	· Ø	•	í	í	;
ALLECULIDAE	9	i	í	0	0	•	•	é	6	6	0	é	í
ANISOTOHIDAE	Ŷ	0	Ą	ê	i	9	0	•	•	0	0	•	
ANOBIIDAE	é	e	ě	0	i	i	í	ė	Ą	é	6	i	
ANTHRIBIDAE	2	•	i	4	2	i	4	4	ē	•	ė	3	23
BRUCHIDAE	ķ	6	9	•	€.	í		ė	- e	9	6	0	-
BUPRESTIDAE	Ą	ě	ġ	2	9	i	ø	i	0	ě	è	ě	
CANTHARIDAE	ů.	é	í	3	5	•	6		9	ě	ě	ě	
CARABIDAE	9	•	Ş	i	i	1	5	3	3	ě	6	ž	2:
CERAMBYCIDAE	ý,	5	5	ii	54	i2	4	3	5	i	é	4	6
CHELONARIIDAE	v Ř	9	i	₽	e e	4	9	g g	8	ė	6	Ŷ	0.
CHRYSOMELIDAE	33	36	46	69	49	29	46	76	27	14	55 A	3i	47
CICINDELIDAE	ja A	90	70 Ø	67 €	7	E7 Ø		7₽					
CLERIDAE	V	i7	•		-	•	1	-	6	•	•	•	
	4		14	10	4	2	i	10	12	2	i	4	8:
COCCINELLIDAE	6	13	53	29	i	i	0	3	i	•	•	i	5
CORYLOPHIDAE	0	6	Ð	i	ě	é	•	9	ŧ	6	9	6	
CRYPTOPHAGIDAE	9	•	9	Ø	1	0	9	é	•	•	0	0	
CUCUJIDAE	9	Ą	9	ė	•	0	0	•	ø	i	e	9	
CURCULIONIDAE	55	6	13	21	13	12	33	14	i 7	6	7	ii	17
DYTISCIDAE	e	Ą	Ą	6	ø	6	ê	0	2	Ø	0	0	
ELATERIDAE	5	5	2	4	7	5	5	3	0	€	9	•	2
EROTYLIDAE	i	5	i	8	i	i	9	ĉ	Û	•	3	i	2
EUCNEHIDAE	•	ø	8	5	í	i	3	0	5	i	•	0	5
HELMINTHIDAE	ě	€	0	Ģ	7	• 🍖	0	e	•	9	6	é	
HELODIDAE	è	ŧ	4	3	ø	i	3	2	í	í	9	3	í
HYDROPHILIDAE	i	Ą.	i	5	0	ě	í	2	b	Ą	Ŷ	í	i
LAMPYRIDAE	3	í∜	13	3	2	ė	è	ø	ė	Ą	÷	5	3
LANGURIIDAE	é	9	Ė	Ð	0	6	Ą	i	ŧ	ŧ	6	4	
LATHRIDIIDAE	4	ø	ø	9	0	Ą	ė	Ð	Ą	6	i	ė	
LYCIDAE	í	2	3	ě	ê	ė	í	i	5	i	ŧ	6	Í
MELANDRYIDAE	Ą	ė	ė		i	ŷ	Ġ	i	i		i	1	•
KELOIDAE	G.	5	ě	i	9	9		9		ě	ę	Ú	
HORDELLIDAE	è	2	15	48	14	9	13	23	6	Ş	0	i	13
HYCETOPHAGIDAE	i	i	i	2	6	3	6	6	3	6	í	i	i
NITIDULIDAE	i	i	ė	i	ó	i	3	3	2	4	2	í	2
DEDEMERIDAE		6	9	ó	i	6	g.	(4	6	6	ę.	6	E
PHALACRIDAE	i	i	í	· i	ş	5	4	5	5	į	6	e 0	
PHENGODIDAE	3	5	4	3	í	<u>.</u>	3	4	j (t				5
PLATYPODIDAE	á	3	5	i	9					1	í	4	2
PSELAPHIDAE		ت ∲	ų.	l Ú	i2	∳	4	5	i	i	0	á	ã,
	Ý					6	ð.	ė	Ą.	Ą	Ą	9	Í
PTILIIDAE	9	9	ė	4	ě	•	i	ŧ	•		Ø	•	
PTILODACTYLIDAE	ý	ě	5	í	İ	٤	3	4	2	i	Ê	2	Ĉ
SCAPHIDIIDAE	ý A	•	i	0	₽	6			0	ø	ŧ	ě	
SCARABAEIDAE	Ą	2	0	4	ĝ	6	ų	Ą	ŧ	₽	ę	Ģ	
GCOLYTIDAE	2	í	5	2	7	i	10	5	4	21	5	12	7
GCYDHAENIDAE	9	÷	0	Í	5	ę	i	0	6	Ŷ	Ŷ	₩	
STAPHYLINIDAE	i♥	16	14	13	14	9	ii	i 5	37	43	16	38	23
TENEBRIONIDAE	Đ	Ø	Ê	3	ð	i	æ	é	Ġ	ĝ	ē	Ŷ	
NÃO IDENTIF.	5	İ	3	€	ě	9	Ø	4	i	9	9	Ė	i
DANIFICADOS	4	9	3	ý	ė	13	έø	Ġ	i	2	9	8	Ġ
 Total	1 0 8	138	 201	258	18 3	1 9 7	i75	184	140	1 0 3	60	142	179

Tabela 21. Antonina. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS . PALHA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS. GERA
ADERIDAE	6.00	ACIDENTAL	0,17	ACIDENTAL	rar
ALLECULIDAE	4,00	ACIDENTAL	0,11	ACIDENTAL	RAR
ANISOTOMIDAE	2,66	ACIDENTAL	0.06	ACIDENTAL	RAR
ANOBIIDAE	8,00	ACIDENTAL	0,22	ACIDENTAL	RAR
ANTHRIBIDAE	34,00	ACESSÓRIA	1,28	ACIDENTAL	INTERHEDIÁRI
BRUCHIDAE	2,66	ACIDENTAL	0,06	ACIDENTAL	RAR
BUPRESTIDAE	6.00	ACIDENTAL	0,22	ACIDENTAL	RAR
CANTHARIDAE	10,00	ACIDENTAL	9,3 3	ACIDENTAL	RAR
CARABIDAE	30.00	ACESSÓRIA	1,17	ACIDENTAL	
CERAMBYCIDAE	52,00	CONSTANTE	3,56	ACESSÓRIA	INTERKEDIARI
CHELONARIIDAE	2,00	ACIDENTAL	0,06 0,06	ACIDENTAL	RAR
CHRYSOMELIDAE	98, 00	CONSTANTE	26,24	DOMINANTE	COMU
CICINDELIDAE	8.00	ACIDENTAL	0,44	ACIDENTAL	RAR
CLERIDAE	62, 64	CONSTANTE	4,5 0	ACESSÓRIA	
COCCINELLIDAE	42,00	ACESSÓRIA	3.84	ACESSÓRIA	
CORYLOPHIDAE	2,66	ACIDENTAL	9, 0 6	ACIDENTAL	
CRYPTOPHAGIDAE	2,00	ACIDENTAL	9.86	ACIDENTAL	RAR
CUCUJIDAE	2,09	ACIDENTAL	9.06	ACIDENTAL	RAR
CURCULIONIDAE	94,00	CONSTANTE	9,73	DOMINANTE	rar Coku
DYTISCIDAE	4,00	ACIDENTAL	0,11	ACIDENTAL	RAR
ELATERIDAE	38,00	ACESSÓRIA	1,33	ACIDENTAL	
EROTYLIDAE	28,66	ACESSÓRIA	1,33 1,11	ACIDENTAL	INTERNEDIARI
EUCNEHIDAE	26,00	ACESSÓRIA	i,i7	ACIDENTAL	INTERNEDIARI
HELMINTHIDAE	2,00	ACIDENTAL	9, 39	ACIDENTAL	RAR
ELODIDAE	28,00	ACESSORIA	1,00	ACIDENTAL	INTERHEDIÁRI
HYDROPHILIDAE	22,00	ACIDENTAL	0,78	ACIDENTAL	
LAMPYRIDAE	30,00	ACESSÓRIA	2.00		RAR Interhediari
LANGURIIDAE	2,00 2,00	ACIDENTAL		ACIDENTAL ACIDENTAL	
LATHRIDIIDAE	2,00	ACIDENTAL	0 , 0 6	ACIDENTAL	RAR
LYCIDAE	20,00	ACIDENTAL	0,06	ACIDENTAL	RAR
	10,00	ACIDENTAL	0,61 A 30	ACIDENTAL	RAR
HELANDRYIDAE HELANDRYIDAE	4,02	ACIDENTAL	0,28 A 20	ACIDENTAL	RAR
KELOIDAE KODDELLIDAE	4, u t 60, 00		0,3 3	ACIDENTAL	RAR
MORDELLIDAE MYCETOPHAGIDAE	24,00	CONSTANTE	7,39 A 79	DOMINANTE	COMU
KYCETOPHAGIDAE NITIDULIDAE	36,00	ACIDENTAL ACESSÓRIA	0,72 1.50	ACIDENTAL	RAR
OEDEMERIDAE		ACIDENTAL		ACIDENTAL	INTERMEDIÁRI
	10,00		0 ,39	ACIDENTAL	RAR
PHALACRIDAE	30,00	ACESSÓRIA ACESSÓRIA	i,ii	ACIDENTAL	INTERMEDIÁRI
PHENGODIDAE	42,00		1,61	ACIDENTAL	INTERHEDIÁRI
PLATYPODIDAE PSELAPHIDAE	40.00	ACESSÓRIA	1,61	ACIDENTAL	INTERMEDIÁRI
	2,90	ACIDENTAL	0 ,67	ACIDENTAL	RAR
PTILIIDAE	4.00	ACIDENTAL	0,28	ACIDENTAL	RAR
PTILODACTYLIDAE		ACESSÓRIA	1,28	ACIDENTAL	INTERHEDIÁRI
SCAPHIDIIDAE	2,00	ACIDENTAL	€,€6	ACIDENTAL	RAR
SCARABAEIDAE	14,00	ACIDENTAL	9,44	ACIDENTAL	RAR
SCOLYTIDAE	58, 00	CONSTANTE	4,00	ACESSÓRIA	INTERHEDIÁRI
SCYDHAENIDAE	6, 0 0	ACIDENTAL	4 ,22	ACIDENTAL	RAR
STAPHYLINIDAE	90.60	CONSTANTE	12,78	DOMINANTE	COMU
TENEBRIONIDAE	10,00	ACIDENTAL	0,3 3	ACIDENTAL	RAF

Tabela 22. São José dos Pinhais. Coleoptera. Número total de ind<u>i</u> víduos, por família, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	MAI	JUN	JUL	TOTA
ALLECULIDAE	ð	i	Ą.	2	5	i	0	í		i	ŧ	i	
ANOBIIDAE	4	Ą	6		i	0	6	0		0	ą	0	
ANTHRIBIDAE	ė	0	9	ē	í	3	0	i	A	é		ě	
BIPHYLLIDAE	0	3	9	4	ē		0	ě	ð	6	Ą	9	
BUPRESTIDAE	9	4	i	5	í	é	8		0	•	0	8	:
CANTHARIDAE		9	4	15	3 i	ž	4	ii	ě	ė	0	4	6
CARABIDAE		2	9	3	3	3	9	i	v A	2	6	Ý	i.
CERAMBYCIDAE	e		i	5	3	5	4	ż	€.	ě	ě	Ą	5
CHELONARIIDAE	è	Ą.	ė.	0	í	2	Ä	•	4	ė	•	ě	C
CHRYSOHELIDAE	9	34	23	8 <u>1</u>	103	56	6	5	8	3	2	3	30
CLERIDAE	,	9	5	5	i	€	Ú	ð.	e)	8	ė,		
COCCINELLIDAE	9	5	5	J 5	ě	₹	Ŷ	₩	6	•	•	()	
CORYLOPHIDAE	₹ 9	1	.; ()	6	6	e 0	€	ų.	v Ø	0	ŧ	é	i
CRYPTOPHAGIDAE	₩ 5	1	ė	ê	ē	• •	-	-	•	•	0	0	
CUCUJIDAE	₹ Ď	T G	V A	-	-	•	é	i	6	6	6	Ø.	
	•	-		3	3	•	6	€ =	•	0	0	ø	
CURCULIONIDAE	í	13	18	38	55	8	3	v	3	2	4	3	12
DASCILLIDAE	0	0	0	Ą	1	6	Ø	Ŷ	0	•	ø	0	
DERMESTIDAE	6	ø	ě	0	i	Q.	e	Ø	e	e	0	ø	
DRYOPIDAE	•	ę	e	í	•	€	÷	€	ŧ	0	ě	•	
ELATERIDAE	ę	i	i	ii	9	i	i	i	i	æ	ê	Ð	5
ENDOMYCHIDAE	ŧ	Ð	Ŷ	9	0	0	i	0	0	ŧ	ø	0	
ERŪTYLIDAE	⊕	Í	i	ě	i	i	i	<u> 0</u>	9	ê	Ð	0	
HELKINTHIDAE	₽	i	•	è	€	Ÿ	0	Q	Ŷ	ŧ	Ŷ	•	
HELODIDAE	•	ø	i	28	14	i	Ŷ	i	•	Ą	9	9	4
HYDROPHILIDAE	ø	0	0	2	7	5	4	5	3	6	•	•	5
LAGRIIDAE	ě	é	e	2	Í	•	ě	Ŷ	•	0	0	6	
LAMPYRIDAE	6	7	ø	9	6	3	•	í	•		0	•	3
LUCANIDAE	9	0	ė	6	0	2	ø	0	0	e	e	0	
LYCIDAE	Ŷ	4	i	i	•	0	ě	€	0	0	0	•	
KELOIDAE	ę.	ē	i	ě	0	9	ê	Ą	9	Ą	9	ð	
HORDELLIDAE	9	ė	i	14	5	5	ė	0	0	ø	6	1	2
KYCETOPHAGIDAE	÷	ē	4	2	3	5	0	4	i	6	i	8	5
NITIDULIDAE	6	0	0	i	i	i	2	i	i	i	ÿ	9	
DEDEHERIDAE	ė	6	6	ė	8	i	ě	6	ė	ė	ě	9	
PEDILIDAE	9		6	0	9	i	0	9	ø	ğ	ê	0	
PHALACRIDAE	· ·	3	ě	6	ě	6	ė	ą.	Q.	i	6	ě	
PHENGODIDAE	ě Š	4	2	7	9	i	i	í	0	ė.	6	¥	ĉ
PLATYPODIDAE	v O	₹ (†	6		i	ę.	Ŷ.	t fi	• €	ē.	• 9	ų ų	
PSELAPHIDAE	v 9	r Ġ	v Ø	i	i	i	e O	€	€ 8	e O	-		
PTILODACTYLIDAE	₹ (*	5	2	7	40	1 19	•	-	ð		0	Λ ()	
							8	∳		ě	é	6	6
RIPIPHORIDAE	ø	Ø A	i	ø	6	4	6	Ą	4	6	9	6	
SCAPHIDIIDAE SCARABAEIDAE	Ģ	f ě	i 2	Ą	Ť.	(()	1 0	ý A	Ą	Ą.	Đ.	
		i		4	6	5	5	i	•	0	•	i	2
COLYTIDAE	1	2	í	3	5	6	4	Ê	3	2	5	Ę	Ë
CYDHAENIDAE	€	€	6)	6	i		•	6	ø	9	0	€,	
STAPHYLINIDAE	10	3	12	32	29	30	13	9	1	3	2	İ	14
TENEBRIONIDAE	€	0	i	ø	1	Ġ	•	ě	ę	0	•	9	
NÃO IDENTIF.	i	4	3	5	6	0	ø	Ð	4	ø	ø	i	í
DANIFICADOS	23	9	19	i 	55	i	i 	ė		i	í	2	7
TOTAL	52	97	108	296	347*	124	55	49	21	16	12	26	126

^{*} COLETA EXTRAVIADA(01/12/86 - 134 EXEMPLARES)

Tabela 23. São José dos Pinhais. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS. GERA
ALLECULIDAE	16,00	ACIDENTAL	0,7 5	ACIDENTAL	rar
ANOBIIDAE	2,00	ACIDENTAL	9,08	ACIDENTAL	RAR
ANTHRIBIDAE	12,00	ACIDENTAL	0,58	ACIDENTAL	RAR
BIPHYLLIDAE	6,69	ACIDENTAL	0,58	ACIDENTAL	RAR
DUPRESTIDAE	10.00	ACIDENTAL	€,58	ACIDENTAL	RAR
CANTHARIDAE	30,00	ACESSÓRIA	5,57	DOMINANTE	INTERHEDIÁRI
CARABIDAE	24,00	ACIDENTAL	1,16	ACIDENTAL	RAR
CERAMBYCIDAE	20,00	ACIDENTAL	1,66	ACIDENTAL	RAF
CHELONARIIDAE	4.00	ACIDENTAL	9,25	ACIDENTAL	RAR
CHRYSOHELIDAE	76,0€	CONSTANTE	25,19	DOMINANTE	COMU
CLERIDAE	14.00	ACIDENTAL	0.75	ACIDENTAL	RAF
COCCINELLIDAE	18,00	ACIDENTAL	i,25	ACIDENTAL	RAF
CORYLOPHIDAE	2.00	ACIDENTAL	0.08	ACIDENTAL	RAR
CRYPTOPHAGIDAE	2,00	ACIDENTAL	0,08	ACIDENTAL	RAF
CUCUJIDAE	16,66	ACIDENTAL	0.50	ACIDENTAL	RAR
CURCULIONIDAE	76,00	CONSTANTE	9,98	DOMINANTE	COMU
DASCILLIDAE	2,00	ACIDENTAL	0,08	ACIDENTAL	RAF
DERMESTIDAE	2,00	ACIDENTAL	0,08	ACIDENTAL	RAF
DRYOPIDAE	2,00	ACIDENTAL	0.0 8	ACIDENTAL	ran Raf
ELATERIDAE	26,00	ACESSÓRIA	2,16	ACIDENTAL	INTERHEDIÁRI
ENDOMYCHIDAE	2,00	ACIDENTAL	0.08	ACIDENTAL	RAF
EROTYLIDAE	10,00	ACIDENTAL	0,42	ACIDENTAL	RAF
HELMINTHIDAE	2,00	ACIDENTAL	0,4C	ACIDENTAL	RAF
HELODIDAE	22,00	ACIDENTAL	3,74	ACESSÓRIA	INTERHEDIÁRI
HYDROPHILIDAE	24,00	ACIDENTAL	3,74 2,16		
LAGRIIDAE	6,00	ACIDENTAL		ACIDENTAL	RAF
LAMPYRIDAE			0 ,25	ACIDENTAL	RAF
	32, 00	ACESSÓRIA	2,66	ACESSÓRIA	INTERHEDIÁRI
LUCANIDAE	4,00	ACIDENTAL	0,17	ACIDENTAL	RAF
LYCIDAE	4,00	ACIDENTAL	0,17	ACIDENTAL	RAF
KELOIDAE	2,00	ACIDENTAL	0,0 8	ACIDENTAL	RAF
HORDELLIDAE	18,60	ACIDENTAL	2,16	ACIDENTAL	RAR
HYCETOPHAGIDAE	24,06	ACIDENTAL	2,00	ACIDENTAL	RAF
NITIDULIDAE	16,00	ACIDENTAL	0,67	ACIDENTAL	RAR
DEDEMERIDAE	8,00	ACIDENTAL	0,7 5	ACIDENTAL	RAR
PEDILIDAE	2,00	ACIDENTAL	0,08	ACIDENTAL	RAR
PHALACRIDAE	4,06	ACIDENTAL	0,3 3	ACIDENTAL	RAR
PHENGODIDAE	34,00	acessória	2,41	ACIDENTAL	INTERMEDIÁRI
PLATYPODIDAE	2,00	ACIDENTAL	0,6 8	ACIDENTAL	RAR
PSELAPHIDAE	6,00	ACIDENTAL	0,25	ACIDENTAL	raf
PTILODACTYLIDAE	· ·	ACESSÓRIA	5,74	DOMINANTE	INTERMEDIÁRI
RIPIPHORIDAE	2.00	ACIDENTAL	0.08	ACIDENTAL	rar
SCAPHIDIIDAE	2,00	ACIDENTAL	0, €8	ACIDENTAL	RAF
SCARABAEIDAE	30,00	ACESSÓRIA	1,83	ACIDENTAL	INTERMEDIÁRI
SCOLYTIDAE	36,00	ACESSÓRIA	2,00	ACIDENTAL	INTERMEDIÁRI
SCYDHAENIDAE	2,00	ACIDENTAL	0,08	ACIDENTAL	RAF
STAPHYLINIDAE	68, 0 6	CONSTANTE	12, 0 5	DOMINANTE	COKL
TENEBRIONIDAE	4,00	ACIDENTAL	0,17	ACIDENTAL	RAF

Tabela 24. Colombo. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	HAI	MUL	JUL	TOTA
ALLECUL IDAE	6	•	Ŷ	2	5	i	2	2	i	e	e	ŧ	i
ANOBIIDAE	í	í	i		0	•	0	0	6	9	é	i	
ANTHRIBIDAE	ė	0	ė	3	7	0	i	i	í	0	ě		í
BIPHYLLIDAE	•	í	0	7	0	ø	0	0	ē	•	ė	0	•
BRUCHIDAE	6	•	•	•		ė	0	ø	•	ė	ė	Ş	
BUPRESTIDAE	ě	é	í	í	i	•		ė		6	6	9	
CANTHARIDAE	ě	.0	•	ė	5	2	5	5	ě	0	ě	i	i
CARABIDAE	ě	6	í	í	0	í	ø	9	í	6	0	9	•
CERAMBYCIDAE	3	5	9	10	10	10	ž	ş	i	2	í	4	6
CHELONARIIDAE	ð	0	é	i	i	0	6	é	6	6	6	•	0
CHRYSOHELIDAE	7	10	8	19	41	47	20	19	4	í	16	19	
CICINDELIDAE	<i>;</i> 4	6	_										51
CLERIDAE	ē	•	e	9	i	4	0	•	0	ê	ė	6	
	•	i	i	3	5	5	9	•	0	i	0	1	i
COCCINELLIDAE	3	6	3	6	0	i	6	6	0	0	9	0	i
CORYLOPHIDAE	0	9	0	9	0	0	6	ė	0	e	•	1	
CRYPTOPHAGIDAE	0	3	6	ě	9	0	•	0	0	ě	9	9	
CUCUJIDAE	9	0	i	5	5	5	i	•	¢	•	i	•	i
CURCULIONIDAE	10	13	7	70	76	65	27	14	6	Ē	18	ii	31
ELATERIDAE	5	5	5	5	8	13	5	3	3	i	3	5	5
ENDOKYCHIDAE	6	•	i	•	0	0	ð	9	ě	0	Ŷ	•	
EROTYLIDAE	0	5 ,	. 2	5	5	0	1	0	•	•	0	i	j
EUCNEHIDAE	6	0	0	2	2	5	Q	0	0	0	0	5	
HELODIDAE	6	ŧ	Ø	0	5	i	0	•	0	Ŷ	Ê	0	
HISTERIDAE		•	€	ø	i	9	e	e	•	0	0	0	
HYDROPHILIDAE	•	0	•	i	0	ė	0	•	e	ę	0	•	
LAGRIIDAE	0	0	ê	i	6	9	0	é	ě	ø	é	Ø	
LAMPYRIDAE	1	23	5	•	4	i	i	i	0	0	ė	0	3
LATHRIDIIDAE	6	0	ē	è		ē	ē	ė	ě	ě	i	Ŷ	•
LUCANIDAE	0		9		i		9	0	i	0	é	•	
LYCIDAE	ø	9	ě	é	0	í	i	i	6	é	ě	ě	
HELANDRYIDAE	9	é	i	i	i	9	í	•	0	0	9	0	
KELYRIDAE	ě	ě	ė	6	٤	v 1	i	è	Ø.	ě	é	6	
HONNOHIDAE	v B	i	2	0	9	è	6	Ý	6	e 6	Û	0	
HORDELLIDAE	ē.	5	8	28	16	13	5	_	•	•	•	•	
		í						6	6	•	ê		7
HYCETOPHAGIDAE	i	_	€	Ď	5	i	4	5	i	i	5	ii	â
HYCTERIDAE	6	()	•	6	•	•	•	•	•	6	í	í	
NITIDULIDAE	Ý	2	2	5	3	3	23	5	0	4	5	₩	4
DEDEHERIDAE	Ø	0	0	2	i	é	0	3	Í	Ø	e	•	
PHALACRIDAE	0	1	6	0	ø	•	Ą	Ø	9	ø	i	0	
PHENGODIDAE	5	٤	5	2	İ	i	i	0	0	•	2	3	1
PLATYPODIDAE	i	•	6	€	9	9	0	Q.	ø	ø	3	4	
PSELAPHIDAE	•	Ø	Ø	0	e	6	0	í	Ŷ	é	e	9	
PTILODACTYLIDAE	i	ø	0	5	16	12	4	3	•	0	ė	ø	3
RHIPICERIDAE	e	₹	Ð	Ø	i	9	ē	ê	Ŷ	0	ě	6	
RHIPIPHORIBAE	Ŷ	•	ě	0	6	6	0	i	0	Ø	ė	0	
RHIZOPHAGIDAE	Ü	Í	i	3	i	5	6	0	0	0	i	i	1
SCAPHIDIIDAE	•	0	9	i	6	9	í	•	ė	0	ę	6	
SCARABAEIDAE	₽	0	ø	i	7	Ą	ê	ø	6	9	Ģ	ø	1
SCOLYTIDAE	6	2	2	5	3	i	i	2	ě	ě	ē	5	j

Tabela 24. Continuação. Colombo. Coleoptera. Número total de ind<u>i</u> víduos, por família, nos meses amostrados.

	AGO(86)	SET	OUT	VOV	DEZ	JAN(87)	FEV	MAR	ABR	KAI	JUN	JUL	TOTAL
SCYDHAENIDAE	0	·G	ę	0	0	0	0	•	0	0	ė	í	i
STAPHYLINIDAE	6	i	6	ii	16	12	6	5	2	i	4	4	65
TENEBRIONIDAE	. 0	ø	i	3	i	0	1	0	•	0	0	0	6
TROGOSITIDAE	ø	Û	0	Ŷ	i	0	0	0	ø	•	6	0	i
NÃO IDENTIF.	i	6	7	2	i	ý	0	i	•	•	ê	0	18
DANIFICADOS	18	4	i	ĉ	55	4	3	5	Ş	i	i	3	66
TOTAL	57	93	75	201	269	210	114	8i	24	14	64	75	1277

Tabela 25. Colombo. Coleoptera. Constância e dominância(pela cla<u>s</u> sificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS . PALHA	DOMINÂNCIA(X)	CLASS.PALKA	CLASS. GERA
ALLECULIDAE	15,69	ACIDENTAL	0,78	ACIDENTAL	rar
ANOBIIDAE	7,84	ACIDENTAL	0,3 i	ACIDENTAL	RAR
ANTHRIBIDAE	13,73	ACIDENTAL	1,02	ACIDENTAL	RAR
BIPHYLLIDAE	7,84	ACIDENTAL	0,63	ACIDENTAL	RAR
BRUCHIDAE	1,96	ACIDENTAL	0,16	ACIDENTAL	RAR
BUPRESTIDAE	5,88	ACIDENTAL	0,23	ACIDENTAL	RAR
CANTHARIDAE	19,61	ACIDENTAL	i, i7	ACIDENTAL	RAR
CARABIDAE	7,84	ACIDENTAL	0,31	ACIDENTAL	RAR
CERAMBYCIDAE	66,67	CONSTANTE	5,17	DOMINANTE	COMU
CHELONARIIDAE	3,92	ACIDENTAL	0,16	ACIDENTAL	RAR
CHRYSOMELIDAE	82,35	CONSTANTE	16,52	DOMINANTE	COMU
CICINDELIDAE	5,88	ACIDENTAL	0,39	ACIDENTAL	RAR
CLERIDAE	17,65	ACIDENTAL	0,86	ACIDENTAL	RAR
COCCINELLIDAE	21,57	ACIDENTAL	1,49	ACIDENTAL	RAR
CORYLOPHIDAE	1.96	ACIDENTAL	0,08	ACIDENTAL	RAR
CRYPTOPHAGIDAE	5,88	ACIDENTAL	0,2 3	ACIDENTAL	RAR
CUCUJIDAE	15,69	ACIDENTAL	1.17	ACIDENTAL	RAR
CURCULIONIDAE	88,24	CONSTANTE	24,98	DOMINANTE	COMU
ELATERIDAE	52,94	CONSTANTE	4,07	ACESSÓRIA	INTERHEDIÁRI
ENDONYCHIDAE	1,96	ACIDENTAL	0,08	ACIDENTAL	
EROTYLIDAE	17,65	ACIDENTAL		ACIDENTAL	RAR
EUCNEHIDAE	17,65	ACIDENTAL	1,02		RAR
HELODIDAE	11,70 9,8 0		0,63 a 20	ACIDENTAL	RAR
	•	ACIDENTAL	0,39	ACIDENTAL	RAR
HISTERIDAE	1,96	ACIDENTAL	0,08	ACIDENTAL	RAR
HYDROPHILIDAE	1,96	ACIDENTAL	9,0 8	ACIDENTAL	RAR
LAGRIIDAE	1,96	ACIDENTAL	0,0 8	ACIDENTAL	RAR
LAMPYRIDAE	19,61	ACIDENTAL	2,82	ACESSORIA	INTERMEDIARI
LATHRIDIIDAE	1,96	ACIDENTAL	0,08	ACIDENTAL	RAR
LUCANIDAE	3,92	ACIDENTAL	0.16	ACIDENTAL	rar
LYCIDAE	5,88	ACIDENTAL	0,23	ACIDENTAL	RAR
ELANDRYIDAE	7,84	ACIDENTAL	0 ,3i	ACIDENTAL	raf
HELYRIDAE	7,84	ACIDENTAL	0,31	ACIDENTAL	RAR
HONNOHIDAE	5,88	ACIDENTAL	0 ,3i	ACIDENTAL	RAR
KORDELLIDAE	47,66	ACESSÓRIA	6,11	DOMINANTE	INTERHEDIARI
HYCETOPHAGIDAE	33,33	ACESSÓRIA	2,27	ACIDENTAL	INTERMEDIARI
HYCTERIDAE	3,92	ACIDENTAL	0,16	ACIDENTAL	RAR
NITIDULIDAE	37,25	ACESSÓRIA	3,60	ACESSÓRIA	INTERHEDIÁRI
OEDEMERIDAE	11,76	ACIDENTAL	0,5 5	ACIDENTAL	RAR
PHALACRIDAE	3,92	ACIDENTAL	0,16	ACIDENTAL	rar
PHENGODIDAE	29,41	ACESSÓRIA	1,49	ACIDENTAL	INTERHEDIÁRI
PLATYPODIDAE	7,84	ACIDENTAL	₩,63	ACIDENTAL	rar
PSELAPHIDAE	1,96	ACIDENTAL	0,08	ACIDENTAL	RAR
PTILODACTYLIDAE	25,49	ACESSÓRIA	2.98	ACESSÓRIA	INTERMEDIÁRI
RHIPICERIDAE	1,96	ACIDENTAL	0,08	ACIDENTAL	RAR
RHIPIPHORIDAE	1,96	ACIDENTAL	0,08	ACIDENTAL	RAR
RHIZOPHAGIDAE	19,61	ACIDENTAL	0,78	ACIDENTAL	RAR
SCAPHIDIIDAE	3,92	ACIDENTAL	6,16	ACIDENTAL	RAR
SCARABAEIDAE	13,73	ACIDENTAL	€,94	ACIDENTAL	RAS
SCOLYTIBAE	21,57	ACIDENTAL	1,33	ACIDENTAL	RAS
SCYDMAENIDAE	1,96	ACIDENTAL	9,08	ACIDENTAL	RAF
STAPHYLINIDAE	59,98	CONSTANTE	5,09	DOMINANTE	COMU
TENEBRIONIDAE	9.80	ACIDENTAL	6,47	ACIDENTAL	RAR
TROGOSITIDAE	1,96	ACIDENTAL	0,0 8	ACIDENTAL	RAR

Tabela 26. Ponta Grossa. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

***********	460(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUH	JUL	TOTA
ADERIDAE	6	2	3	3	0	í	2	4	0	2	0	4	2:
ALLECULIDAE	i	0	15	5	12	5	i	4	ė	i	0		4
ANISOTOMIDAE	0	•	0	0	0	0	è	0	0	ė	i	6	•
ANOBIIDAE	í	ė	2	10	3	10	8	ii	3	4	ė	i	5
ANTHICIDAE		4	•	8	0		0	•	0		6	•	
ANTHRIBIDAE	0			6	ç	7	3	5	ě	ě	9	i	3
BOSTRYCHIDAE	0	0	6	8	i	. 0	ý	0	9		ě	ė	ú
BRUCHIDAE	í	ė	i	6	•		ě	í	ě	í	0	6	
BUPRESTIDAE	•	0	i	ě	i	5	0	i	8	6	0	9	
CANTHARIDAE	ę	ě	i	í	55	42	ii	3	0	6	ě	ě	ii
CARABIDAE	Š	ě	5	i	18	i d	2	4	i	•	6	5	
CERAMBYCIDAE	6	16	34	56	37	27	ii	33	10	6		i8	4
CHELONARIIDAE	ð	9		i	22	i5	e ê	აა ∯	10	0	1		25
CHRYSOMELIDAE	18	8i	190	125	158	197	143	127	₹ 52	45	0	•	3
CIIDAE	10	91	170 0	15.3	170						55	45	120
CLERIDAE	7 0	i	18	44	20	0	•	•	0	i	0	0	
COCCINELLIDAE	-					17	ii	Ý	i	Ø	9	5	12
	6	6	4	10	0	•	5	ė	ø	•	9	0	2
CORYLOPHIDAE	•	3	Ē	2	5	•	0	2	i	i	0	5	i
CRYPTOPHAGIDAE	9	0	•	•	i	9	0	i	•	6	•	•	
CUCUJIDAE	ķ	7	2	i	i	. 6	•	i	i	0	0	í	í
CURCULIONIDAE	5	31	19	44	72	71	61	47	17	6	10	40	42
DERMESTIDAE	e	•	i	6	0	•	Ø	Ø	0	•	ŧ	0	
DYTISCIDAE	0	ě	•	•	5	0	0	€	0	•	0	0	
ELATERIDAE	i	15	7	35	80	110	58	32	4	í	0	0	34
ENDOHYCHIDAE	i	•	6	ŧ	•	•	í	5	0	0	Ŷ	0	
EROTYLIDAE	0	5	3	8	3	5	6	3	0	•	í	0	3
EUCNEMIDAE	ø	5	İ	9	Í	9	i	5	0	6	0	0	2
HELHINTHIDAE	*	6	0	Ú	í	•	Ý	ė	0	é	Ŷ	9	
HELODIDAE	i	5	3	5	5	5	•	•	•	0	•	i	i
HISTERIDAE	Ø	é	0	é	ŧ	i	ě	Ø	é	9	ě	6	
HYDROPHILIDAE	Ú	Ą	•	•	5	i	i	ė	i	ė	Ŷ	Ø	
LAGRIIDAE	€	0	•	i	5	3	5	€	Ø	í	i	ø	i
LAMPYRIDAE	6	0	•	4	6	i	ø	0	•	0	€	0	i
LANGURIIDAE	0	ě	i	•	e	. 🖸	0	5	P	•	e	e	
LATHRIDIIDAE	5	5	5	0	i	i	Í	ø	6	5	i	0	i
LIHNICHIDAE	•	0	0	0	•	6	í	0	e	é	ė	ø	
LUCANIDAE	•	Û	0	ė	0	Ŷ	ė,	9	í	é	0	0	
LYCIDAE	ê	3	3	6	•	6	2	3	2	í	6	2	2
HELANDRYIDAE	i	4	ø	ē	9	16	i	0	í	í	•	ê	3
MELYRIDAE	0	€	ø	ě	10	4	18	5	ė	2	ė	•	3
HONOMHIDAE	()	ġ	0	•	0	Ŷ	•	0	0	í	0	ê	-
HORDELLIDAE	í	7	44	128	83	93	ii	16	0	0	é	6	38
YCETOPHAGIDAE	3	4	4	i	9	8	12	3	5	1	i	6	5
MYCTERIDAE	e	5	•	ę	4	i	é	0	0	æ	0	ě	
WITIDULIDAE	2	2	7	•	21	14	14	19	17	23	10	13	14
NOTERIDAE	0	0	0	•	í	9	0	9	ě	6	6	0	• '
DEDEMERIDAE	Ġ	6	0	2	i	1	0		0	9	0	9	
DSTOHATIDAE	0	é	0	ė	9	2	6	ė	ě	9	é	9	
PEDILIDAE	9	9	e	4	6	ý	0	6	0	0	Ġ	Ġ	
PHALACRIDAE	ø	5	5	4	75	3	ě	2	i	2	5	4	10
PHENGODIDAE	ė	•	2	í	, s 0	9	ė	•	0	9	ę.	9	1.6

Tabela 26. Continuação. Ponta Grossa. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTAL
PLATYPODIDAE	0	ė	2	e	i	i	Ŷ	•	Ė	•	•	i	
PSELAPHIDAE	Ø	0	0	0	3	5	í	•	i	0	i	•	
PTILODACTYLIDAE	i	9	2	2	13	16	7	i	i		í	í	45
PTINIDAE	0	i	ø	i	i	i	í	ė	0	e	í	é	ě
RHIZOPHAGIDAE	Û	0	i	i	i	•	0	0	Û	0	i	5	9
SCAPHIDIIDAE	0	•	0	i	Ġ	5	4	5	0	0	i	0	15
SCARABAEIDAE	2	i	14	3	12	8	2	2	2	•	e	í	47
SCOLYTIDAE	ė	i	5	3	8	i	•	0	3	í	5		27
SCYDHAENIDAE	ė	e	0	0	•	é	2	i	0	5	0	•	
STAPHYLINIDAE	6	13	14	i 7	92	42	23	57	29	24	13	18	348
TENEBRIONIDAE	•	6	5	2	3	3	i	0	í	e	e	í	19
TRIXAGIDAE	6	7	5	3	i	i	5	5	4	í	4	6	36
TROGOSITIDAE	ė	5	e	e	•	0	0	0	0	0	0		E
NÃO IDENTIF.	4	5	20	Ġ	0	2	i	i		i	i	í	42
DANIFICADOS	•	i 7	28	12	•	25	ó	9	3	ā	0	6	108
TOTAL	7 7	254	47 3	562	87 8*	79i	436	414	159	133	78	182	4437

^{*} COLETA EXTRAVIADA(08/12/86 - 225 EXEMPLARES)

Tabela 27. Ponta Grossa. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALMA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS. GERA
ADERIDAE	40,00	ACESSÓRIA	0,6i	ACIDENTAL	INTERNEDIÁRI
ALLECULIDAE	40,00	ACESSÓRIA	9,99	ACIDENTAL	INTERHEDIÁRI
ANISOTOMIDAE	2,00	ACIDENTAL	9,02	ACIDENTAL	RAR
ANOBIIDAE	52,00	CONSTANTE	1,19	ACIDENTAL	INTERNEDIÁRI
ANTHICIDAE	6,00	ACIDENTAL	0,69	ACIDENTAL	RAR
ANTHRIBIDAE	32,00	ACESSÓRIA	0,70	ACIDENTAL	INTERNEDIARI
BOSTRYCHIDAE	2,00	ACIDENTAL	0,02	ACIDENTAL	RAR
BRUCHIDAE	8,00	ACIDENTAL	0,09	ACIDENTAL	RAR
BUPRESTIDAE	i0,00	ACIDENTAL	0,11	ACIDENTAL	RAR
CANTHARIDAE	32,00	ACESSÓRIA	2,55	ACESSÓRIA	INTERMEDIÁRI
CARABIDAE	42,00	ACESSÓRIA	0,92	ACIDENTAL	INTERHEDIÁRI
CERAMBYCIDAE	82,00	CONSTANTE	5,75	DOMINANTE	COMU
CHELONARIIDAE	18,60	ACIDENTAL	0,86	ACIDENTAL	RAR
CHRYSOMELIDAE	100,00	CONSTANTE	27,ii	DOMINANTE	COKU
CIIDAE	2,66	ACIDENTAL	50,0	ACIDENTAL	RAR
CLERIDAE	56,00	CONSTANTE	2,77	ACESSÓRIA	INTERHEDIÁRI
COCCINELLIDAE	26,66	ACESSÓRIA	0,63	ACIDENTAL	INTERNEDIÁRI
CORYLOPHIDAE	26,00	ACESSÓRIA	0,34	ACIDENTAL	INTERMEDIÁRI
CRYPTOPHAGIDAE	4,00	ACIDENTAL	0,05	ACIDENTAL	RAR
CUCUJIDAE	20,00	ACIDENTAL	0,32	ACIDENTAL	KAR
CURCULIONIDAE	96, 00	CONSTANTE	9,53	DOKINANTE	COMU
DERMESTIDAE	2,66	ACIDENTAL	0,02	ACIDENTAL	RAR
DYTISCIDAE	4,00	ACIDENTAL	0,ii	ACIDENTAL	RAR
ELATERIDAE	64,00	CONSTANTE	7,66	DOMINANTE	COMU
ENDOKYCHIDAE	6,00	ACIDENTAL	0,09	ACIDENTAL	RAR
EROTYLIDAE	38,00	ACESSÓRIA	0,76	ACIDENTAL	INTERHEDIÁRI
EUCNEHIDAE	26,00	ACESSÓRIA	0,56	ACIDENTAL	INTERMEDIARI
HELMINTHIDAE	2,00	ACIDENTAL	0,42	ACIDENTAL	RAR
ELODIDAE	22,00	ACIDENTAL	€,43	ACIDENTAL	RAR
HISTERIDAE	2,00	ACIDENTAL	9,02	ACIDENTAL	RAF
YDROPHILIDAE	8,00	ACIDENTAL	0,18	ACIDENTAL	RAR
AGRIIDAE	20,00	ACIDENTAL	0,29	ACIDENTAL	RAR
AMPYRIDAE	16,00	ACIDENTAL	0,38	ACIDENTAL	RAR
ANGURIIDAE	6,00	ACIDENTAL	0,07	ACIDENTAL	RAR
ATHRIDIIDAE	20,00	ACIDENTAL	0,27	ACIDENTAL	RAR
.IKNICHIDAE	2,00	ACIDENTAL	6,02	ACIDENTAL	RAR
UCANIDAE	2,00	ACIDENTAL	9,02	ACIDENTAL	RAR
YCIBAE	40,60	ACESSÓRIA	0,63	ACIDENTAL	INTERMEDIÁRI
(ELANDRYIDAE	26,88	ACESSÓRIA	0,74	ACIDENTAL	INTERHEDIÁRI
ELYRIDAE	28,00	ACESSÓRIA	0,81	ACIDENTAL	INTERHEDIÁRI
ONOHKIDAE	2,00	ACIDENTAL	0,65	ACIDENTAL	RAR
ORDELLIDAE	54,êê	CONSTANTE	8,63	DOMINANTE	COMU
YCETOPHAGIDAE	50,00	ACESSÓRIA	1,22	ACIDENTAL	INTERHEDIÁRI
YCTERIDAE	10,00	ACIDENTAL	0,16	ACIDENTAL	RAR
VITIDULIDAE	66,00	CONSTANTE	3,2€	ACESSÓRIA	INTERHEDIÁRI
OTERIDAE	2,00	ACIDENTAL	0,42	ACIDENTAL	RAR
DEDEKERIDAE	8,00	ACIDENTAL	0,09	ACIDENTAL	RAR
STOKATIDAE	2,00	ACIDENTAL	0,05	ACIDENTAL	RAR
EDILIDAE	4,69	ACIDENTAL	0,09	ACIDENTAL	RAR
PHALACRIDAE	48,00	ACESSÓRIA	2,37	ACIDENTAL	INTERHEDIÁRI

Tabela 27. Continuação. Ponta Grossa. Coleoptera. Constância e d<u>o</u> minância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALHA	DOMINĀNCIA(X)	CLASS.PALMA	CLASS. GERAL
PHENGODIDAE	6,00	ACIDENTAL	0,67	ACIDENTAL	rara
PLATYPODIDAE	10,00	ACIDENTAL	0,11	ACIDENTAL	RARA
PSELAPHIDAE	10,00	ACIDENTAL	0,18	ACIDENTAL	RARA
PTILODACTYLIDAE	38,00	ACESSÓRIA	i,0i	ACIDENTAL	INTERMEDIÁRIA
PTINIDAE	12,00	ACIDENTAL	0,14	ACIDENTAL	RARA
RHIZOPHAGIDAE	14,00	ACIDENTAL	0,20	ACIDENTAL	RAR
SCAPHIDIIDAE	26, 0 0	ACESSÓRIA	0,43	ACIDENTAL	INTERMEDIÁRIA
SCARABAEIDAE	42,00	ACESSÓRIA	1,66	ACIDENTAL	INTERMEDIÁRIA
SCOLYTIDAE	26, 00	ACESSÓRIA	0,61	ACIDENTAL	INTERHEDIÁRIA
SCYDHAENIDAE	10, 00	ACIDENTAL	0,ii	ACIDENTAL	RAR
STAPHYLINIDAE	92, 0 0	CONSTANTE	7,84	DOKINANTE	COMUN
TENEBRIONIDAE	32,00	ACESSÓRIA	0,43	ACIDENTAL	INTERHEDIÁRI
TRIXAGIDAE	44,00	ACESSÓRIA	0,81	ACIDENTAL	INTERMEDIÁRI
TROGOSITIDAE	4.00	ACIDENTAL	0.05	ACIDENTAL	RAR

Tabela 28. Guarapuava. Coleoptera. Número total de indivíduos,por família, nos meses amostrados.

445550000000000000000000000000000000000	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	MAI	MUR	JUL	TOTAL
ALLECULIDAE	é	0	0	i	í	i	i	2	i	9	8	0	7
ANOBIIDAE	ŧ	•	0	Ø	•	i	6	9	•	0	0	ê	i
ANTHICIDAE	0	i	0	ė	•	•	0	0	0	0	0	i	2
ANTHRIBIDAE	é	•	9	2	4	4	i	i	0	0	0	•	12
BIPHYLIDAE	0	ø	•	5	0	0	•	•	•	e	0	e	5
BRENTHIDAE	•	0	9	•	i	0	0	i	0	0	é	0	5
BRUCHIDAE	i	Ŷ	0	ę	i	9	•	0	•	•	0	•	5
CANTHARIDAE	9	ø	e	0	e	5	0	5	•	ø	•	•	4
CARABIDAE	2	5	5	6	0	5	•	0	i	0	6	ø	9
CERAMBYCIDAE	9	3	10	18	29	i 5	í€	9	ii	í	i	i	10 8
CHELONARIIDAE	•	ø	0	í	14	3	i	6	€.	. 0	•	•	19
CHRYSOMELIDAE	3	۶	28	51	39	7	3	5	0	0	0	i	143
CLERIDAE	0	i	4	8	7	5	i	i	0	€	0	ø	24
COCCINELLIDAE	0	5	3	5	9	i	Í	ŧ	0	6	0	ę	12
COLYDIIDAE	0	0	0	•	0	0	0	i	Ü	•	0	•	i
CRYPTOPHAGIDAE	. •	ii	Ø.	e	0	0	Ø	ě	Ð	0	0	6	ii
CUCUJIDAE	0	0	i	6	í	0	0	i	0	6	0	i	í₿
CURCULIONIDAE	8	37	24	39	5 5	32	13	7	5	3	ĉ	ii	536
ELATERIDAE	0	18	i	5	20	ii	5	i	0	0	í	ę	56
ENDOHYCHIDAE	0	•	9	6	i	0	í	•	6	9	0	•	£
EROTYLIDAE	Ø	í	i	3	3	i	2	0	•	•	0	i	12
EUCNEHIDAE	•	0		5	ę	2	0	0	•	0	ė	ø	4
LAGRIIDAE	0	ė.	0	. 5	5	4	0	0	0	0	5	e	10
LAMPYRIDAE	0	0	7	10	18	i	i	•	ø	0	Ø	•	37
LANGURIIDAE	0	0	0	i		0	i	i	9	0	0	•	3
LUCANIDAE	6	6	6	9	i	1	0	•	é	•	Ø	•	2
LYCIDAE	ø	5	ŧ	5	7	5	i	0	5	ŧ	•	1	20
LYCTIDAE	Ø	9	9	•	i	•	9	é	-0	•	0	ė	i
LYKEXYLIDAE	9	9	•	•	i	€,	9	0	•	•	•	0	1
HELANDRYIDAE	(A	•	2	6	5	1	9	ĺ	0	é	9	1	10
HELYRIDAE	9	0	6	ý na	5		0	0	0	•	0	•	2
MORDELLIDAE MYCETOPHAGIDAE	v 0	í	8 #	3€	24	8	5	2	0	•	@	(7 5
HYCTERIDAE	9	i	ø Ø	Ø A	3		2 8	í	Ø a	Ş	ê A	í	10
HITIDULIDAE	6	6 3	6	∲ 3	i 8	é 6	iê	0 i	i	é	∲ 5	3	1
OEDEHERIDAE	6	9	i	(4	0	e e	i	1	9	i Õ	9		41
PHALACRIDAE	9	í	i	0	í	5	9	0	0	e e	6	í	3 5
PHENGODIDAE	9	5	3	5	2	£	ě.	0	é	•	0	v V	5 1 5
PLATYPODIDAE	v	ý	9		i	v 0	Ŷ	Ŷ	ę.	€ ÷	ě	6	
PTILIIDAE	ě	9	€	6	5	6	9	Ð	0	ě	ę	0	i 2
PTILODACTYLIDAE	í	13	15	36	21	6	5	5	é	6	6	6	<u>-</u> 96
RHIPIPHORIDAE	9	ě	0	2	6	i	Ģ	Ę.	v (ŧ	ų (4	•	v Q	
RHIZOPHAGIDAE	6	ė	ě	ě	₹	ė	i	í	v e	6	6	í	3
SCAPHIDIIDAE	ė	0	i	ě	í	6	ě	6	v e	e e	v G	1 0	3 2
SCARABAEIDAE	í	13	11	16	ii	5	ě	¥	₹	ø	0	ė	57
SCOLYTIDAE	9	10	i	15 6	9	3	3	4	i	3	ii	6	37 38
STAPHYLINIDAE	7	10	16	19	12	i	3	ii	5	5	i	5	92 92
TROGOSITIDAE		0	0	i	•	6	9	ē	0	9	é	6	í
TENEBRIONIDAE	9	2	6	3	ž	. 4	3	ij	è	•	6	0	14
NÃO IDENTIF.	ě	í	3	3	4	6	9	9	(4	9	0	ě	íi
DANIFICADOS	13	10	0	67	5	3	0		0	0	í¢	6	108
TOTAL	34	i50	i43	346	31i	i32		52	27	12	33	35	1343

Tabela 29. Guarapuava. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS . PALMA	CLASS. GERA
ALLECULIDAE	13,46	ACIDENTAL	0,52	ACIDENTAL	RAR
ANOBIIDAE	1,92	ACIDENTAL	0,07	ACIDENTAL	RAR
ANTHICIDAE	3,85	ACIDENTAL	0,15	ACIDENTAL	RAR
ANTHRIBIDAE	21,15	ACIDENTAL	0,89	ACIDENTAL	RAR
BIPHYLIDAE	1,92	ACIDENTAL	0,15	ACIDENTAL	RAR
BRENTHIDAE	3,85	ACIDENTAL	0,15 0,15	ACIDENTAL	RAR
BRUCHIDAE	3,85	ACIDENTAL	0,15	ACIDENTAL	RAR
CANTHARIDAE	5, 7 7	ACIDENTAL	0,36	ACIDENTAL	RAR
CARABIDAE	ii,54	ACIDENTAL	0,5 ₹	ACIDENTAL	RAR
CERAMBYCIDAE	61,54	CONSTANTE	8,04	DOMINANTE	COMU
CHELONARIIDAE	19,23	ACIDENTAL			
			1,41	ACIDENTAL	RAR
CHRYSOMELIDAE	50,00	ACESSÓRIA ACESSÓRIA	10,65	DOMINANTE	
CLERIDAE	32,69		1,79	ACIDENTAL	
COCCINELLIDAE	19,23	ACIDENTAL	€,89	ACIDENTAL	RAR
COLYDIIDAE	1,92	ACIDENTAL	0,07	ACIDENTAL	RAR
CRYPTOPHAGIDAE	5,77	ACIDENTAL	0,82	ACIDENTAL	RAR
CUCUJIDAE	i5,38	ACIDENTAL	0,74	ACIDENTAL	rar
CURCULIONIDAE	78,8 5	CONSTANTE	17,57	DOMINANTE	COKU
ELATERIDAE	40,38	ACESSÓRIA	4,17	ACESSÓRIA	INTERMEDIÁRI
ENDOHYCHIDAE	3,8 5	ACIDENTAL	0,15	ACIDENTAL	rar
EROTYLIDAE	21,15	ACIDENTAL	0,89	ACIDENTAL	rar
EUCHEHIDAE	5, 7 7	ACIDENTAL	0,30	ACIDENTAL	RAR
LAGRIIDAE	ii,54	ACIDENTAL	0,74	ACIDENTAL	rar
LAMPYRIDAE	25,00	ACIDENTAL	2,76	ACESSÓRIA	INTERHEDIÁRI
LANGURIIDAE	5, 77	ACIDENTAL	0,22	ACIDENTAL	RAR
LUCANIDAE	3,85	ACIDENTAL	0,15	ACIDENTAL	RAR
LYCIDAE	26,92	ACESSÓRIA	1,49	ACIDENTAL	INTERHEDIARI
LYCTIDAE	1,92	ACIDENTAL	0,07	ACIDENTAL	RAR
LYMEXYLIDAE	1,92	ACIDENTAL	0,07	ACIDENTAL	RAR
KELANDRYIDAE	15,38	ACIDENTAL	0,74	ACIDENTAL	RAR
HELYRIDAE	1,92	ACIDENTAL	0,15	ACIDENTAL	RAR
HORDELLIDAE	32,69	ACESSÓRIA	5,58	DOMINANTE	INTERHEDIÁRI
HYCETOPHAGIDAE	13,46	ACIDENTAL	0,74	ACIDENTAL	RAR
HYCTERIDAE	1,92	ACIDENTAL	0,07	ACIDENTAL	
RITIDULIDAE	50,00	ACESSÓRIA			RAR
DEDEKERIDAE	5,77		3, 0 5	ACESSÓRIA	INTERHEDIARI
		ACIDENTAL	0, 22	ACIDENTAL	RAR
PHALACRIDAE	9, 6 2	ACIDENTAL	0,37	ACIDENTAL	RAR
PHENGODIDAE	15,38	ACIDENTAL	1,12	ACIDENTAL	RAR
PAGIGORYTAL	1,92	ACIDENTAL	0,07	ACIDENTAL	RAR
PTILIIDAE	1,92	ACIDENTAL	6,15	ACIDENTAL	RAR
PTILODACTYLIDAE	48, 0 8	ACESSÓRIA	7,15	DOMINANTE	INTERMEDIÁRI
RHIPIPHORIDAE	3,85	ACIDENTAL	0,22	ACIDENTAL	rar
RHIZOPHAGIDAE	5,77	ACIDENTAL	0,22	ACIDENTAL	rar
SCAPHIDIIDAE	3,85	ACIDENTAL	0,15	ACIDENTAL	RAR
SCARABAEIDAE	40,38	ACESSÓRIA	4,24	ACESSÓRIA	INTERHEDIÁRI
SCOLYTIDAE	44,23	ACESSÓ RIA	2,83	ACESSÓRIA	INTERHEDIÁRI
STAPHYLINIDAE	75.00	CONSTANTE	6,85	DOKINANTE	COMU
TENEBRIONIDAE	19,23	ACIDENTAL	1,04	ACIDENTAL	RAR
TROGOSITIDAE	1,92	ACIDENTAL	0,07	ACIDENTAL	RAR

Tabela 30. Fênix. Coleoptera. Número total de indivíduos, por f<u>a</u> mília, nos meses amostrados.

w = = = = = = = = = = = = = = = = = = =	AGD(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTAL
ADERIDAE	i	ė	•	0		i	0	0	0	0	0	e	í
ALLECULIDAE	•	•	ê	0	0	6	í	0	0	0	•	0	:
ANOBIIDAE	i	3	4	9	5	2	4	0	0	0	0	ŧ	28
ANTHRIBIDAE	í	2	3	4	ii	5	2	5	7	í	0	5	46
BIPHYLLIDAE	ė	0	0	i	0	ē	0	ø	0	0	9	•	1
BRENTHIDAE	•	4	ø	0	i	i	0	•	0	0	i	•	;
BUPRESTIDAE	0	ø	7	3	í	5	6	0	0	0	0	0	i:
CARABIDAE	4	2	9	2	4	e	ŧ	2	•	í	0	0	í
CERAMBYCIDAE	17	29	67	76	56	17	8	19	6	16	8	25	314
CHELONARIIDAE	0	0	5	3	3	6	ė	0	0	0	•	•	i
CHRYSOKELIDAE	13	22	46	24	23	7	2	í	4	4	i	4	15:
CICINDELIDAE	0	4		•	i		•	0	ė	•	9	ė	10.
CLERIDAE	0	8	8	š	7	9	5	é	9	ě	0	ě	34
COCCINELLIDAE	6	4	4	9		0		6	6	i	•	ě	5,
CORYLOPHIDAE	i	ű.	i	i	0	2	•	0	i	6		0	
CRYPTOPHAGIDAE	i	13	9	2	é	i	•	0	9	0	0	v (e	2
CUCUJIDAE	3	8	5	14	ii	i	4	6	é	0	9	9	61
CURCULIONIDAE	ş	33	35	54	45	9	13	13	16	16	i3	8	264
DERMESTIDAE	1	i	J J	e (i	9	13	13	10	10	13	0	504
DYTISCIDAE	1 A		9	9	i	0	0	0	6		-	-	
ELATERIDAE	4	5	23	63	52	7	3	v Ø	-	. 0	6	9	45
ENDOMYCHIDAE	7 6	i	£3 ()	03 (f	JE Ø	, e	ა ∲	ą.	i	-	•	•	159
EROTYLIDAE	. 0	5		3	5	2	₽			9	9	6	3
EUCNEHIDAE	•	9	i e	3 4	2		•	1	i	5	•	i	21
LAGRIIDAE	. v			-	-	•	•	0	9	•	6	e	Ć
		9	6	4	0	•	•	0	0	6	•	0	4
LAMPYRIDAE		6	í	1	0	•	0	0	0	0	6	0	í
LATHRIDIIDAE	0	4	•	i	é	0	i	0	•	0	0	0	(
LISSOHIDAE	•	0	•	0	•	i	9	•	9	0	0	ę	1
LYCIDAE	1	5	4	8	3	i	9	0	0	3	6	Ø	28
LYCTIDAE	9	ø	₽	•	i	4	6	9	6	•	Ø	0	:
LYMEXYLIDAE		0	0	0	0	0	ŧ	0	i	0	•	•	1
HELANDRYIDAE	•	9	0	3	0	•	9	Ø	0	0	5	0	,
MELOIDAE	0	0	Ø	•	í	•	ø	0	0	Ŷ	0	€	:
HELYRIDAE	•	ė	ě	6	0	Ą	0	e	0	3	ø	0	,
HORDELLIDAE	ě	i	58	98	44	ii	ii	0	e	€	•	0	193
HYCETOPHAGIDAE	i	i	0	í	3	4	0	í	0	í	i	0	í
HYCTERIDAE	0	Ŷ	Ŷ	ø	6	i	i	6	0	Ŷ	€	0	8
NILIONIDAE	i	ŧ	•	6	•	0	Ø	0	0	ŧ	(9	:
NITIDULIDAE	3	3	ė	ii	i 7	3	1	•	0	5	1	9	4
OSTOMATIDAE	Ą	Ø	é	ė	e	0	0	ê	5	ě		0	;
PEDILIDAE	ě	e	3	21	•	0	ê	0	Ú	ė	è	Ġ	24
PHALACRIDAE	9	12	5	4	4	4	2	e	•	0	9	6	3
PHENGODIDAE	8	ii	28	13	9	0	•	Ó	0	2	2	i	65
PLASTOCERIDAE	. 0	ě	í	é	•	ð	9	@	æ	0	6	ė	1
PLATYPODIDAE	•	i	ø	3	Û	ġ	9	9	ø	0	•	•	2
PSELAPHIDAE	0	0	é	i	ě	0	e	0	9	0	6	0	:
PTILODACTYLIDAE	i	0	3	2	9	9	i	5	ø	i	0	0	i
PTINIDAE	0	8	3	5	0	0	6	0		@	ě	é	
RHIZOPHAGIDAE	ġ	ŧ	•	ė	0	0	ě	9		è	i	0	Ì
SCAPHIDIIDAE	6	3	ė	ė	9	9	è	ø	ě	6	é	ě	

Tabela 30. Continuação. Fênix. Coleoptera. Número total de indiv \underline{i} duos, por família, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	KAI	JUN	JUL	TOTAL
SCARABAEIDAE	ê	0	í	ê	6	ġ	8	ė	é	í	ø	e	i
SCOLYTIDAE	i	i	i	0	5	0	í	ž	Ş	i	i	ě	18
SCYDHAENIDAE	e	ė	0	0	0	i	ē	ė	ě		ē	ė	
STAPHYLINIDAE	10	16	15	16	19	34	4	9	ó	17	9	21	17
TENEBRIONIDAE	i	í	i 6	ii	4	5	9	•	•	•	•	ê	29
TRIXAGIDAE	9	0	é	3	e	i	0	•	0	•	i	0	;
TROGOSITIDAE	•	0	0	2	0	9	•	ė	0	0	0	ê	i
NÃO IDENTIF.	13	10	9	4	2	ø	0	0	Ą	é	0	0	36
DANIFICADOS	4	8	4	ii	13	6	9	•	•	€	e	•	4
TOTAL	ii5	211	331	498	318	120	64	 58	49	75	5 0	62	195

Tabela 31. Fênix. Coleoptera. Constância e dominância(pela class<u>i</u> ficação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS.PALMA	CLASS. GERAL
ADERIDAE	3,85	ACIDENTAL	0,10	ACIDENTAL	RARA
ALLECULIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RARA
ANOBIIDAE	32,69	ACESSÓRIA	1,44	ACIDENTAL	INTERMEDIÁRIA
ANTHRIBIDAE	44,23	ACESSÓRIA	2,05	ACIDENTAL	INTERHEDIÁRIA
BIPHYLLIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
BRENTHIDAE	5,77	ACIDENTAL	0,15	ACIDENTAL	RAR
BUPRESTIDAE	17,31	ACIDENTAL	0,67	ACIDENTAL	RAR
CARABIDAE	28,85	ACESSÓRIA	0,77	ACIDENTAL	INTERHEDIÁRI
CERAHBYCIDAE	94,23	CONSTANTE	16,09	DOMINANTE	COMU
CHELONARIIDAE	9,62	ACIDENTAL	0, 56	ACIDENTAL	RAR
CHRYSOMELIDAE	73,68	CONSTANTE	7,74	DOMINANTE	COHUI
CICINDELIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
CLERIDAE	32,69	ACESSÓRIA	1,74	ACIDENTAL	INTERMEDIÁRIA
COCCINELLIDAE	25,00	ACIDENTAL	1,23	ACIDENTAL	RAR
CORYLOPHIDAE	11,54	ACIDENTAL	0,31	ACIDENTAL	ran Rari
CRYPTOPHAGIDAE	19,23	ACIDENTAL	1,33	ACIDENTAL	
CUCUJIDAE	67,31	CONSTANTE			RAR
CURCULIONIDAE			3,13	ACESSÓRIA	INTERMEDIÁRI
	94,23	CONSTANTE	13,53	DOMINANTE	COMU
DERHESTIDAE	5,77	ACIDENTAL	0,15	ACIDENTAL	RAR
DYTISCIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
ELATERIDAE	55,77	CONSTANTE	8,15	DOMINANTE	COMU
ENDOKYCHIDAE	5,77	ACIDENTAL	0,15	ACIDENTAL	RAR
EROTYLIDAE	26,92	ACESSÓRIA	1,08	ACIDENTAL	INTERHEDIARI
EUCNEMIDAE	9,62	ACIDENTAL	0,31	ACIDENTAL	RAR
LAGRIIDAE	5, <i>7</i> 7	ACIDENTAL	0,21	ACIDENTAL	RAR
LAMPYRIDAE	3,85	ACIDENTAL	0,10	ACIDENTAL	RAR
LATHRIDIIDAE	7,69	ACIDENTAL	0,31	ACIDENTAL	rari
LISSOHIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
LYCIDAE	25,00	ACIDENTAL	1,13	ACIDENTAL	RAR
LYCTIDAE	1,9ĉ	ACIDENTAL	0,05	ACIDENTAL	RARi
LYMEXYLIDAE	i,92	ACIDENTAL	0,65	ACIDENTAL	RAR
KELANDRYIDAE	9,62	ACIDENTAL	0, 26	ACIDENTAL	RAR
ŒLOIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
HELYRIDAE	3,85	ACIDENTAL	0,15	ACIDENTAL	RAR
ORDELLIDAE		CONSTANTE		DOMINANTE	COMU
YCETOPHAGIDAE		ACIDENTAL	0,67	ACIDENTAL	RARI
YCTERIDAE	9.62	ACIDENTAL	0,41	ACIDENTAL	RARA
VILIONIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
VITIDULIDAE	40,38	ACESSÓRIA	2,26	ACIDENTAL	INTERMEDIÁRIA
STOKATIDAE	3,85	ACIDENTAL	0,10	ACIDENTAL	RARI
EDILIDAE	9,62	ACIDENTAL	1,23	ACIDENTAL	
PHALACRIDAE	38,46	ACESSÓRIA	1,23	ACIDENTAL	RARI
HENGODIDAE	34,62	ACESSÓRIA	3.33	ACESSÓRIA	INTERMEDIÁRIO
PLASTOCERIDAE					INTERHEDIÁRIA
	1,92	ACIDENTAL	0,05	ACIDENTAL	RARI
PLATYPODIDAE	7,69	ACIDENTAL	•	ACIDENTAL	RAR
PSELAPHIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
PTILODACTYLIDAE			0,5i	ACIDENTAL	RAR
PTINIDAE	7,69	ACIDENTAL	€,26	ACIDENTAL	RAR
RHIZOPHAGIDAE	1,92	ACIDENTAL	0,05	ACIDENTAL	RAR
SCAPHIDIIDAE	3,85	ACIDENTAL	0,15	ACIDENTAL	RAR

Tabela 31. Continuação. Fênix. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

****	CONSTÂNCIA(X)	CLASS.PALKA	DOMINĀNCIA(X)	CLASS.PALKA	CLASS. GERAL
SCARABAEIDAE	3,85	ACIDENTAL	0,10	ACIDENTAL	rara
SCOLYTIDAE	21,15	ACIDENTAL	0,62	ACIDENTAL	RARA
SCYDHAENIDAE	1,92	ACIDENTAL	0.05	ACIDENTAL	rara
STAPHYLINIDAE	82,69	CONSTANTE	9,02	DOMINANTE	COKUK
TENEBRIONIDAE	28,85	ACESSÓRIA	1,49	ACIDENTAL	INTERHEDIÁRIA
TRIXAGIDAE	7.69	ACIDENTAL	₹.26	ACIDENTAL	RARA
TROGOSITIDAE	1,92	ACIDENTAL	0.10	ACIDENTAL	RARA

Tabela 32. Jundiaí do Sul. Coleoptera. Número total de indivídu - os, por família, nos meses amostrados.

ALLECULIDAE		AGO (86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	HAI	JUN	JUL	TOTAL
ANISOTOMIDAE Part	ADERIDAE	28	44	47	19	12	7	7	i 3	5	3	2	2	189
ANDRIIDAE 6 13 28 7 11 8 3 3 3 2 2 1 1 1 8 6 ARTHICIDAE 6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	ALLECULIDAE	•	0	0	4	ii	3	6	21	0	i	i	i	48
ANTINITIDAE 0	ANISOTOHIDAE	•	•	i	i	0	3	i	i	5	1	0	i	ii
ANTHRIBIDAE 1 1 8 1 3 0 1 3 5 2 1 0 2 2 1 0 2 2 2 1 0 0 2 2 0 0 0 0 0	ANOBIIDAE	6	13	28	7	ii	8	3	3	2	2	Í	í	85
BOSTRYCHIDAE 0 13 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANTHICIDAE	0	•	•	•	Û	•	0	i	0	9	e		í
BOSTRYCHIDAE 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	ANTHRIBIDAE	i	í	8	i	3	0	i	3	5	2	í	0	26
RECHINDRE 8 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	BOSTRYCHIDAE	•	13	i	5	•	è	ø	0		0	ė	e	16
BRUCHIDAE 3 3 3 6 8 4 6 1 6 1 6 1 6 1 6 1 6 2 2 8 8 1 1 6 2 8 8 1 1 6 2 8 8 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 2 8 8 1 1 1 6 1 1 6 1 1 6 1 1 6 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BRENTHIDAE	ē	i	0	i	i	•	í	0	ø	ê	0	0	4
BUPRESTIDAE 0 0 0 7 39 6 1 2 0 0 0 1 1 CARTINARIDAE 14 29 11 15 20 17 30 21 13 1 0 0 17 CERAMBTOLIDAE 12 79 83 113 24 1 9 112 6 5 8 15 36 CHELOMARITIMAE 0 0 0 3 18 17 0 0 0 0 0 0 3 CHELOMARITIMAE 0 0 13 18 17 0 0 0 0 0 0 0 3 CHELOMARITIMAE 0 0 13 18 17 0 0 0 0 0 0 0 3 CHELOMARITIMAE 0 0 13 18 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BRUCHIDAE	3	3	6	8	4	6	i	0	i	0	i		27
CANTHARIBAE 0 0 0 7 39 6 1 2 0 0 0 0 5 CARASIDAE 14 27 11 15 20 17 30 21 13 1 0 0 17 CHELOMARIIDAE 12 79 83 113 24 1 9 9 12 6 5 8 15 CHELOMARIIDAE 0 0 3 18 17 0 0 0 0 0 0 0 0 0 0 CHERIDAGE 14 27 13 16 17 0 0 0 0 0 0 0 0 0 0 CHERIDAGE 17 38 10 11 13 163 75 76 84 44 70 29 26 00 COCCINELLIDAE 17 38 10 14 5 0 1 0 0 0 0 0 0 0 0 0 COCCINELLIDAE 17 38 10 14 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CONTYPTOPHAGIDAE 0 0 0 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BUPRESTIDAE	0	5	3	3	0	ø	0	í	Ê	0	9	í	12
CARABIDAE 14 29 11 15 20 17 30 21 13 1 0 0 17 12 CERAMSTORE 12 79 83 113 24 1 9 12 6 5 8 15 36 CHRISTORE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CANTHARIDAE	0	0	0	7	39	6	i	2	0	ø	•	0	55
CERAMSYCIDAE 12 79 83 113 24 1 9 12 6 5 8 15 36 CHELONARIDAE 0 0 3 18 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CARABIDAE	14	29	ii	15	20	17	30	21	13	i	0	9	171
CHELONARIIDAE 6 6 3 18 17 6 6 6 6 6 6 6 6 6 8 3 3 68 17 7 7 7 8 84 44 7 7 2 9 2 6 88 CORYSORLIONE 24 56 101 113 163 75 76 84 44 7 6 2 9 26 88 CORYCOPHIBAE 7 38 16 14 5 6 1 6 0 6 6 6 8 8 CORYLOPHIDAE 7 38 16 14 5 6 1 6 0 6 6 6 8 8 CORYLOPHIDAE 7 38 16 14 5 6 1 6 6 6 6 8 8 CORYLOPHIDAE 7 15 7 2 2 2 2 15 2 4 5 1 5 5 CORYTOPHAGIDAE 9 0 6 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CERAMBYCIDAE	12	79	83	113	24	í	9	12	6	5	8	15	367
CHRYSOMELIDAE 24 56 101 113 103 75 76 84 44 70 29 26 80 CLERIDAE 0 5 13 24 12 9 3 1 1 0 1 1 7 7 8 10 1 1 7 7 2 5 3 1 1 0 1 1 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1	CHELONARIIDAE	6	0	3	18	17		é		0		6		38
CLERIDAE 0 5 13 24 12 9 3 1 1 0 1 1 7	CHRYSOHELIDAE	24	56	101	113	103	75	76	84	44	7€	29	-	801
COCCINELLIDAE 17 38 10 14 5 0 1 0 0 0 0 8 CONTYOPHIDAE 2 15 7 2 2 2 2 15 2 4 5 1 5 5 CUCULIDAE 47 51 32 22 18 10 0 2 4 11 10 15 24 CUCRULIDAE 47 51 32 22 18 10 0 25 34 40 16 25 24 15 38 DERMESTIDAE 66 134 99 48 63 25 34 40 16 25 24 15 38 DERMESTIDAE 6 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLERIDAE	•	5	13		12			i					76
CORYLOPHIDAE 2 15 7 2 2 2 2 15 2 4 5 1 5 5 CRYPTOPHAGIDAE 0 0 0 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COCCINELLIDAE	17	38		14				-	_	-		_	85
CRYPTOPHAGIDAE 47 51 32 22 18 10 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ž	15				5	2		-	-	-	-	59
CUCUJIDAE 47 51 32 22 18 10 0 20 4 11 10 15 24 CURCULIONIDAE 66 134 99 48 63 25 34 40 16 25 24 15 58 DERNESTIDAE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				ė									_	12
CURCULIONIDAE 66 134 99 48 63 25 34 40 16 25 24 15 58 DERMESTIDAE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DYTISCIDAE 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 DYTISCIDAE 5 71 75 110 141 78 44 26 2 6 5 1 56 EMDONYCHIDAE 1 2 1 4 3 1 2 2 0 0 0 1 1 0 7 EUCNEHIDAE 2 19 11 10 16 7 4 7 1 1 1 0 7 EUCNEHIDAE 0 0 0 2 0 0 0 0 0 0 1 1 0 7 EUCNEHIDAE 1 1 2 1 4 3 1 2 2 0 0 0 0 0 0 1 1 EROTYLIDAE 0 1 1 17 7 2 5 3 1 1 0 0 33 HELINITATIDAE 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 HELINITATIDAE 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		47		-			_			_	_	-	-	
DERMESTIDAE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•••						-	-	•				
DRYOPIDAE 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								-						107
DYTISCIDAE 0		-	_	_	-	-	•	-	-		-	•		i
ELATERIDAE 5 71 75 110 141 78 44 26 2 6 5 1 56 ENDOKYCHIDAE 1 2 1 4 3 1 2 2 0 0 0 1 1 1 EROTYLIDAE 1 2 19 11 10 16 7 4 7 1 1 1 1 0 7 EUCKEMIDAE 0 1 1 17 7 2 5 3 1 1 0 0 0 3 HELKINTHIDAE 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	-	-		-		-		-	-	-	-	2
ENDOMYCHIDAE 1 2 1 4 3 1 2 2 0 0 0 1 1 1 EROTYLIDAE 2 19 11 10 16 7 4 7 1 1 1 1 0 7 7 EUCNEMIDAE 0 1 1 17 7 2 5 5 3 1 1 1 0 0 33 HELMINTHIDAE 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	_	_	-		-		•		-			
EROTYLIDAE 2 19 11 10 16 7 4 7 1 1 1 0 7 7 EUCNEMIDAE 0 1 1 17 7 2 5 3 1 1 0 0 3 3 1 1 0 0 0 3 1 1 0 0 0 3 1 1 0 0 0 3 1 1 0 0 0 0														17
EUCREMIDAE 1		-			•					-	-			79
HELMINTHIDAE O O O O O O O O O								-			-		-	38
HELODIDAE 3 0 2 1 2 0 1 0 4 2 0 1 1 1 HISTERIDAE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-										-	_	5
HISTERIBAE 0 0 0 0 0 0 0 0 0		•	•				•	-	-			_	-	
HYDROPHILIDAE 0		-	-				-	_	-	-			_	5
LAGRIIDAE		•	-	-	-	-	•			_	-	-	_	
LAMPYRIDAE 0 6 18 11 23 15 3 2 2 6 6 16 8 LANGURIDAE 1 6 6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		-	-	_		1			_			-	-	
LANGURIIDAE 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-								
LATHRIDIIDAE 7 17 6 1 0 0 0 0 1 1 2 2 3 3 LYCIDAE 2 8 6 24 10 10 3 7 3 9 3 2 8 LYCIDAE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
LYCIDAE 2 8 6 24 10 10 3 7 3 9 3 2 80 LYCTIDAE 0 0 1 0 0 0 0 0 0 0 0 0 LYMEXYLIDAE 0 0 1 0 0 0 0 0 0 0 0 0 MELANDRYIDAE 0 3 10 15 2 0 5 2 1 1 1 1 0 4 MELOIDAE 0 0 0 0 0 0 0 0 0 0 0 MELANDRYIDAE 0 0 0 0 0 0 0 0 0 0 0 MELYRIDAE 0 0 0 0 0 0 0 1 0 0 0 0 0 MELYRIDAE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 MONOMHIDAE 0 0 0 0 0 0 1 0 0 0 0 0 0 0 MORDELLIDAE 2 14 29 83 65 21 9 34 12 0 0 0 266 MYCETOPHAGIDAE 3 3 0 2 2 1 7 1 0 3 2 4 26 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 0 1 0 1 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														2
LYCTIDAE														
LYMEXYLIDAE														
MELANDRYIDAE 0 3 10 15 2 0 5 2 1 1 1 0 44 MELOIDAE 0							_							i
MELOIDAE 0 0 0 0 0 2 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0		-		-										Í
MELYRIDAE 0 6 6 6 0 3 0 0 0 1 0 0 1 MONOMHIDAE 0														
MONOMMIDAE 0			-					-						4
MORDELLIDAE 2 14 29 83 65 21 9 34 12 0 0 0 26 HYCETOPHAGIDAE 3 3 0 2 2 1 7 1 0 3 2 4 21 MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0								_	-					
MYCETOPHAGIDAE 3 3 0 2 2 1 7 1 0 3 2 4 21 MYCTERIDAE 0 1 0			-	-			_	_	-		-			1
MYCTERIDAE 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0														
NITIDULIDAE 5 3 4 16 38 16 10 4 3 6 2 2 105 DEDEMERIDAE 6 0 1 2 6 0 1 0 1 0 0 1 PHALACRIDAE 31 25 26 26 52 17 12 12 2 16 12 10 225 PHENGODIDAE 2 36 5 10 2 2 6 0 0 0 0 1 56 PLATYPODIDAE 0 2 1 3 0 1 0 0 0 0 0 1 PSELAPHIDAE 0 1 3 6 5 6 2 5 1 0 6 0 17				-										
DEDEMERIDAE 0 1 2 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 2 2 1 1 2 2 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>2</td></th<>				-	-			-						2
PHALACRIDAE 31 25 26 20 52 17 12 12 2 16 12 10 225 PHENGODIDAE 2 36 5 10 2 2 6 0 0 0 0 1 58 PLATYPODIDAE 0 2 1 3 0 1 0			-											
PHENGODIDAE 2 36 5 10 2 2 6 0 0 0 0 1 51 PLATYPODIDAE 0 1 3 0 1 0 0 0 0 0 7 PSELAPHIDAE 0 1 3 0 5 0 2 5 1 0 0 0 17														6
PLATYPODIDAE														229
PSELAPHIDAE 0 1 3 0 5 0 2 5 1 0 0 0 17													-	58
										-				7
PTILITIAE	PSELAPHIDAE PTILIIDAE	€								_		_	-	17 1

Tabela 32. Continuação. Jundiaí do Sul. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

*****	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	MAR	ABR	MAI	MUL	JUL	TOTAL
PTILODACTYLIDAE	9	2	4	, 5	6	14	22	9	3	0	0	í	63
PTINIDAE	Ø	ø	3	ii	5	0	6	í	•	0	9	0	2€
RHIZOPHAGIDAE	9	ě	7	3	•	ø	i	2	0	0		0	13
SCAPHIDIIDAE	Ŷ	ii	30	i8	46	36	14	2	Ŷ	6	6	0	i 57
SCARABAEIDAE	ð	23	43	17	37	5	4	5	3	0	e	e	134
SCOLYTIDAE	i	14	32	ii	2	5	6	5	4	2	6	3	88
SCYDHAENIDAE	9	2	i	i	i	0	•	1	ĉ	i	i	i	ii
STAPHYLINIDAE	4ÿ	8₽	68	6 i	226	114	77	115	36	48	23	24	921
TENEBRIONIDAE	ė	3	21	8	9	5	19	5	5	0	•	0	69
TRIXAGIDAE	i	3	3	4	i	ê	ø	6	i	ð	•	é	19
TROGOSITIDAE	Ø	ð	3	5	•	0	0	•	e	0	•	i	ŧ
NÃO IDENTIF.	7	10	5	10	4	5	é	9	0	9	3	4	57
DANIFICADOS	38	34	32	62	3€	24	ė	9	6	6	6	10	245
TOTAL	380	873	968	980	1099	544	434	513	190	220	154	159	6454

Tabela 33. Jundiaí do Sul. Coleoptera. Constância e dominância(p<u>e</u> la classificação de PALMA) das famílias.

######################################	CONSTÂNCIA(X)	CLASS.PALKA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS. GERAL
ADERIDAE	75. 00	CONSTANTE	2,93	ACESSÓRIA	INTERHEDIÁRIA
ALLECULIDAE	40,38	ACESSÓRIA	0,74	ACIDENTAL	INTERHEDIÁRIA
ANISOTOMIDAE	19,23	ACIDENTAL	0,17	ACIDENTAL	RAR
ANOBIIDAE	51,92	CONSTANTE	1,32	ACIDENTAL	INTERHEDIÁRI
ANTHICIDAE	1,92	ACIDENTAL	9,02	ACIDENTAL	RAR
ANTHRIBIDAE	36,54	ACESSÓRIA	0,40	ACIDENTAL	INTERHEDIÁRI
BOSTRYCHIDAE	9,62	ACIDENTAL	0,25	ACIDENTAL	RAR
BRENTHIDAE	7,69	ACIDENTAL	0,06	ACIDENTAL	RAR
BRUCHIDAE	30,77	ACESSÓRIA	0,42	ACIDENTAL	INTERHEDIARI
BUPRESTIDAE	19,23	ACIDENTAL	0,19	ACIDENTAL	RAR
CANTHARIDAE	23,08	ACIDENTAL	0,85	ACIDENTAL	RAR
CARABIDAE	78 ,85	CONSTANTE	2,65	ACESSÓRIA	INTERHEDIARI
CERAMBYCIDAE	76,92	CONSTANTE	5,69	DOMINANTE	COMU
CHELONARIIDAE	19,23	ACIDENTAL	0,59	ACIDENTAL	RAR
CHRY SOMEL IDAE	96,15	CONSTANTE	12,41	DOKINANTE	COMU
CLERIDAE	46,15	ACESSÓRIA	1,08	ACIDENTAL	INTERHEDIARI
COCCINELLIDAE	36,54	ACESSÓRIA	i,32	ACIDENTAL	INTERHEDIÁRI
CORYLOPHIDAE	51,92	CONSTANTE	0,91	ACIDENTAL	INTERHEDIÁRI
CRYPTOPHAGIDAE	19,23	ACIDENTAL	0,19	ACIDENTAL	RAR
CUCUJIDAE	84,62	CONSTANTE	3,72	ACESSÓRIA	INTERHEDIARI
CURCULIONIDAE	96,15	CONSTANTE	9,13	DOMINANTE	COMU
DERMESTIDAE	1,92	ACIDENTAL	0,02	ACIDENTAL	RAR
DRYOPIDAE	1,92	ACIDENTAL	9,02	ACIDENTAL	RAR
DYTISCIDAE	1,92	ACIDENTAL	0,03	ACIDENTAL	RAR
ELATERIDAE	82,69	CONSTANTE	8,74	DOMINANTE	COMU
ENDOKYCHIDAE	23,08	ACIDENTAL	9,26	ACIDENTAL	RAR
EROTYLIDAE	55,77	CONSTANTE	1,22	ACIDENTAL	INTERMEDIÁRI
EUCHEHIDAE	36,54	ACESSÓRIA	0 ,59	ACIDENTAL	INTERHEDIÁRI
HELMINTHIDAE	1,92	ACIDENTAL	0,03	ACIDENTAL	RAR
HELODIDAE	25,00	ACIDENTAL	0,25	ACIDENTAL	RAR
HISTERIDAE	3,85	ACIDENTAL	0,03	ACIDENTAL	RAR
HYDROPHILIDAE	17,31	ACIDENTAL	0,26	ACIDENTAL	RAR
LAGRIIDAE	15,38	ACIDENTAL	0,34	ACIDENTAL	RAR
LAMPYRIDAE	42,31	ACESSÓRIA	1,30	ACIDENTAL	INTERHEDIÁRI
LANGURIIDAE	3,85	ACIDENTAL	0,03	ACIDENTAL	RARA
LATHRIDIIDAE	30,77	ACESSÓRIA	0,57	ACIDENTAL	INTERHEDIARI
LYCIDAE	63,46	CONSTANTE	1,35	ACIDENTAL	INTERMEDIÁRI
LYCTIDAE	1,92	ACIDENTAL	0,02	ACIDENTAL	RAR
LYMEXYLIDAE	1,92	ACIDENTAL	0,02	ACIDENTAL	RAR
MELANDRYIDAE	36,54	ACESSÓRIA	9,62	ACIDENTAL	INTERHEDIÁRI
ELOIDAE	5,77	ACIDENTAL	9,06	ACIDENTAL	RAR
KELYRIDAE	9,62	ACIDENTAL	0,17	ACIDENTAL	RAR
ONOMMIDAE	1,92	ACIDENTAL	0,02	ACIDENTAL	RAR
ORDELLIDAE	67,3i	CONSTANTE	4,17	ACESSÓRIA	INTERHEDIARI
KYCETOPHAGIDAE KYCTERIDAE	36,54 2.05	ACESSÓRIA	0,43 6,43	ACIDENTAL	INTERMEDIÁRIA
HICIEKIDAE HITIBULIDAE	3,85 44.54	ACIDENTAL	0,0 3	ACIDENTAL	RAR
EDEMERIDAE DEDEMERIDAE	61,54 11,54	CONSTANTE ACIDENTAL	1,60 0,09	ACIDENTAL	INTERMEDIÁRIO
HALACRIDAE	11,54 88,46	CONSTANTE	₹,₹7 3,55	ACIDENTAL	RARI
PHENGODIDAE	32,69	ACESSÓRIA		ACESSÓRIA	INTERHEDIARIA
			0,90	ACIDENTAL	INTERMEDIÁRIO
PLATYPODIDAE	11,54 21,15	ACIDENTAL	0,11	ACIDENTAL	RARA
PSELAPHIDAE	21,13 1,92	ACIDENTAL	0,2 6	ACIDENTAL	RARA

Tabela 33. Continuação. Jundiaí do Sul. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS. GERAL
PTILODACTYLIDAE	42,31	ACESSÓRIA	0,98	ACIDENTAL	INTERHEDIÁRIA
PTINIDAE	21,15	ACIDENTAL	0,31	ACIDENTAL	RARA
RHIZOPHAGIDAE	i7,3i	ACIDENTAL	0,20	ACIDENTAL	RARA
SCAPHIDIIDAE	48,0€	ACESSÓRIA	2,43	ACIDENTAL	INTERHEDIÁRIA
SCARABAEIDAE	51,92	CONSTANTE	2,08	ACIDENTAL	INTERMEDIARIA
SCOLYTIDAE	57,69	CONSTANTE	1,36	ACIDENTAL	INTERHEDIÁRIA
SCYDHAENIDAE	21,15	ACIDENTAL	0,17	ACIDENTAL	RARA
STAPHYLINIDAE	100,00	CONSTANTE	14,27	DOMINANTE	COKUR
TENEBRIONIDAE	40,38	ACESSÓRIA	i, 0 7	ACIDENTAL	INTERMEDIARIA
TRIXAGIDAE	30,7 7	ACESSÓRIA	0,29	ACIDENTAL	INTERHEDIARIA
TROGOSITIDAE	5,77	ACIDENTAL	0.09	ACIDENTAL	RARA

Tabela 34. Telêmaco Borba. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	MAI	JUN	JUL	TOTAL
ADERIDAE	0	Ŷ	8	0	i	e	0	í	•	0	0	è	2
ANISOTOHIDAE	5	•	0	í	e	í	0	0	Q	0	0		4
ANOBIIDAE	1	Í	5	3	ó	i	•	i	0	i	6	e	16
ANTHICIDAE	0	0	0	í	0	6	ê	é	3	Ø	ø	0	3
ANTHRIBIDAE	•	0	•	í	7	0	i	2	0	•	0	•	ii
BIPHYLLIDAE	• 0	Ø	0	1.	0	0	Ø	ē	0	0	0	0	i
BOSTRYCHIDAE	ø	i	0	ø	Ŷ	•	0	€	0	0	0	0	i
BUPRESTIDAE	6	3	5	16	3	4	ê	ě	é	9	0	0	31
CANTHARIDAE	5	0	i	6	3	2	i	6	•	ø	0	•	21
CARABIDAE	0	5	3	7	3	i	0	0	i	•	0	0	20
CERAMBYCIDAE	1	18	19	12	9	5	5	9	3	ø	0	Û	78
CHELONARIIDAE	Ø	ø	0	•	i	2	0	6	ê	0	0	0	3
CHRYSOMELIDAE	8	16	25	93	5i	20	6	14	3	5	i	i	243
CICINDELIDAE	0	ę	ě	7	14	2	i	3	0	ð	0	0	27
CLERIDAE	i	9	12	18	•	i	i	5	ė	0	6	0	44
COCCINELLIDAE	3	37	18	36	5	ę	0	ė	0	0	4	ė	96
CORYLOPHIDAE	ė	ø	ė	i	÷	0	Ġ	9	6	6	0	e	i
CRYPTOPHAGIDAE	i	í	i	i	0	9		i	ė	9	Q.	Ö	5
CUCUJIDAE	0	0	2	Ø	0	Ü	6	i	8	1	i	6	5
CURCULIONIDAE	ii	27	25	103	39	15	14	41	19	10	5	5	314
DERMESTIDAE	í	2	i	•	e	é	0	ý	ė	0	9	0	4
DRYOPIDAE	6	<u>.</u>	•	ě	0	Ą	0	ě	6	6	9	i	i
ELATERIDAE	á	17	53	93	28	10	i7	12	3	é	ė	9	218
EROTYLIDAE	•	6	4	8	3	í	9	í	0	ě	ø	e e	24
EUCNEHIDAE	ė	9		4	3	4	é	é	9	ě	é		ii
HELODIDAE	í	i	i	ė	e		0	ě		6	ě	0	3
HISTERIDAE	9	ø	ė	4	i	ě	è	ě	ě	é	6	6	5 5
HYDROPHILIDAE	ě	9	ě	ė	i	ę	6	6	Q.	0	0	ě	i
LAGRIIDAE	9	0	ě	3	ė	ė	é	9	ĝ	6	9	9	3
LAMPYRIDAE	Q.	ě	8	55	40	5	6	i	ě	é	0	ð	68 8
LANGURIIDAE	i	4	3	3	0	6	í	2	6	6	9	i	15
LATHRIDIIDAE	5		5	2	ě	3	9	6	i	2	9	i	22
LISSOHIDAE	ú	ê	A	A	•	٥ ۵	ė	e e	a	0	¥ Δ	ı A	i
LYCIDAE	i	7	7	13	4	2	é	4	5	6	é	i	41
LYCTIDAE	9	0		0	i	6	0	6	9	0	9	6	i
KELANDRYIDAE	9	i	i	è	ě	e.	6	0	Ģ.	6	0	0	2
HELOIDAE	é	Ė	6	6	3	ė	9	0	6	0	Ú	6	3
MELYRIDAE	6	6	ě	6	i	ė	e	9	0	ě	ě	6	i
HORDELLIDAE	6	4	42	125	48	16	3	5	5	€	6	8	_
KYCETOPHAGIDAE	ę.	و	2	1	2	19 1	3	5	E (€	ę.	v ě		245
NILIONIDAE	9	Ġ	•	ė	6	ě	9	2	e ∳	0	e H	ę A	ii
NITIDULIDAE	į	7	6	41	1 5	íi	5	4	4	í	2	0 3	5
OEDEHERIDAE	9	0	Ą	2	4	6	7 (ě	•	6	e e		105
PEDILIIDAE	0	ę.	3	i	9	e e	e e	v 8	Ŷ	ę	6	0	6
PHALACRIDAE	i0	i9	10	20	Ĉ	2	5	ų.	í		0	6	4 70
PHENGODIDAE	4	30	1V 20	29 7	c Ø	Ē.	0 (4	5		i	-	•	70
PSELAPHIDAE	ŧ	90	6 C&	2	₽	₹ 6	6	9	i e	0 0	6	ą a	67
PTILODACTYLIDAE	v i	ě	i8	23	ii	v 4	5		_	-	0	•	5
RHIPIPHORIDAE	1 Ğ	i	10	E.3 0	i	9	ວ 0	0 €	i 0	9	ê	ê A	63
MITTER HOUTENE	2	1	Ø.	v	ı	₹	v	v	₹	٧	Ð	•	. 5

Tabela 34. Continuação. Telêmaco Borba. Coleoptera. Número total indivíduos, por família, nos meses amostrados.

	AGD(86)	SET	OUT	MOV	DEZ	JAN(87)	FEV	MAR	ABR	HAI	JUN	JUL	TOTAL
SCARABAEIDAE	0	2	3	9	Δ	5	2	e	Λ	Δ	Α		٠
		-	-	-	0	-	-	7	•	•	•	4	12
SCOLYTIDAE	4	11	16	36	8	3	10	7	ii	ii	56	8	145
STAPHYLINIDAE	20	17	25	5₩	2 2	24	55	දිරි	8	7	8	4	23 2
TENEBRIONIDAE	6	ê	Ø	í	e	i	e	9	Ø	í	•	ø	3
TRIXAGIDAE	. 0	0	0	6	5	Ŷ	ê	0	0	0	0	0	5
NÃO IDENTIF.	i	3	16	7	•	0	e	0	0	ŧ	0	•	27
DANIFICADOS	1 5	14	86	55	5	12	ó	, 29	12	•	•	3	234
TOTAL	103	272	403	834	345*	15 9	109	180	74	40	37	37	2593

^{*} COLETA EXTRAVIADA(22/12/86 - 41 EXEMPLARES)

Tabela 35. Telêmaco Borba. Coleoptera. Constância e dominância(p<u>e</u> la classificação de PALMA) das famílias.

******	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS.PALMA	CLASS. GERA
ADERIDAE	3,92	ACIDENTAL	0,08	ACIDENTAL	RAR
ANISOTOHIDAE	5,88	ACIDENTAL	0,15	ACIDENTAL	RAR
ANOBIIDAE	23,53	ACIDENTAL	6,62	ACIDENTAL	RAR
ANTHICIDAE	5,88	ACIDENTAL	0,12	ACIDENTAL	RAF
ANTHRIBIDAE	9,80	ACIDENTAL	0,42	ACIDENTAL	RAF
BIPHYLLIDAE	1,96	ACIDENTAL	0,04	ACIDENTAL	RAF
BOSTRYCHIDAE	1,96	ACIDENTAL	0.04	ACIDENTAL	RAF
BUPRESTIDAE	25,49	ACESSÓRIA	1,20	ACIDENTAL	INTERNEDIAR
CANTHARIDAE	21,57	ACIDENTAL	0,81	ACIDENTAL	RAI
CARABIDAE	23,53	ACIDENTAL	0,77	ACIDENTAL	RAF
CERAMBYCIBAE	53,85	CONSTANTE	3,01	ACESSÓRIA	INTERHEDIÁRI
CHELONARIIDAE	5,88	ACIDENTAL	0,12	ACIDENTAL	RAF
CHRYSOMELIDAE	74,5i	CONSTANTE	9,37	DOMINANTE	COMI
CICINDELIDAE	17,65	ACIDENTAL	1,64	ACIDENTAL	RA
CLERIDAE	33,33	ACESSÓRIA	1,70	ACIDENTAL	INTERMEDIÁR)
COCCINELLIDAE	29,41	ACESSÓRIA	3,70	ACESSÓRIA	INTERHEDIAN
CORYLOPHIDAE	1,96	ACIDENTAL	9,04	ACIDENTAL	
CRYPTOPHAGIDAE	1,70 9,8 0	ACIDENTAL			RAF
			0 ,19	ACIDENTAL	RAI
CUJIDAE	7,84	ACIDENTAL	0,19	ACIDENTAL	RAF
CURCULIONIDAE	94,12	CONSTANTE	12,11	DOMINANTE	COK
DERHESTIDAE	7,84	ACIDENTAL	0,15	ACIDENTAL	RAF
PRYOPIDAE	1,96	ACIDENTAL	0,64	ACIDENTAL	RA
LATERIDAE	74,51	CONSTANTE	8,41	DOMINANTE	COM
ROTYLIDAE	27,45	ACESSÓRIA	0,93	ACIDENTAL	INTERHEDIÁR
EUCNEMIDAE	15,69	ACIDENTAL	0,42	ACIDENTAL	RAF
ELODIDAE	5,88	ACIDENTAL	0,12	ACIDENTAL	RAF
(ISTERIDAE	5,88	ACIDENTAL	0,19	ACIDENTAL	RAF
YDROPHILIDAE	1,96	ACIDENTAL	0,04	ACIDENTAL	RAI
AGRIIDAE	3,9 2	ACIDENTAL	0,12	ACIDENTAL	RAI
.AKPYRIDAE	21,57	ACIDENTAL	2,62	ACESSÓRIA	INTERNEDIAR
LANGURIIDAE	23 ,53	ACIDENTAL	0,58	ACIDENTAL	rai
ATHRIDIIDAE	35, 29	ACESSÓRIA	0,8 5	ACIDENTAL	INTERNEDIÁR
.ISSOHIDAE	1,96	ACIDENTAL	0,04	ACIDENTAL	raf
YCIDAE	41,18	ACESSÓRIA	i,58	ACIDENTAL	INTERHEDIAR
YCTIDAE.	1,96	ACIDENTAL	0,04	ACIDENTAL	RAF
TELANDRYIDAE	3,92	ACIDENTAL	0,9 8	ACIDENTAL	RAF
ŒLOIDAE	1,96	ACIDENTAL	0,12	ACIDENTAL	RAF
(ELYRIDAE	1,96	ACIDENTAL	0,04	ACIDENTAL	RAF
ORDELLIDAE	49,02	ACESSÓRIA	9,45	DOKINANTE	INTERMEDIÁR
YCETOPHAGIDAE	17,65	ACIDENTAL	0,42	ACIDENTAL	RA
(ILIONIDAE	1,96		0.08		RAF
	62,75		4,05		
EDEKERIDAE	5,88		0,2 3		RAF
EDILIIDAE			0,i5		RAF
	49,62		2,70		
	35,29		2,58		
	1,96		0,08		RAF
	1,70 35,29				
ATTORNOTIFIEDRE	JJ , C7	いってうりいばずけ	C, 40	HU LUER I HL	INTERCEDIAN

Tabela 35. Continuação. Telêmaco Borba. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

	CONSTÂNCIA(X)	CLASS.PALKA	DOMINÂNCIA(X)	CLASS.PALMA	CLASS. GERA
SCAPHIDIIDAE	17,65	ACIDENTAL	0,42	ACIDENTAL	rar
SCARABAEIDAE	17,65	ACIDENTAL	0,46	ACIDENTAL	RAR
SCOLYTIDAE	80,39	CONSTANTE	5.59	DOMINANTE	COMU
STAPHYLINIDAE	94,12	CONSTANTE	8,95	DOKINANTE	COMU
TENEBRIONIDAE	5,88	ACIDENTAL	9.12	ACIDENTAL	RAR
TRIXAGIDAE	1,96	ACIDENTAL	9,08	ACIDENTAL	RAR

Tabela 36. Coleoptera. Cerambycidae. Número total de indivíduos, por localidade, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTAL
ANTONINA	•	5	5	ii	20	12	4	3	2	i	6	4	64
S.J.PINHAIS	6	ē	i	5	3	5	4	5	ė	6	0	0	20
COLOMBO	3	5	9	10	iē	10	ŝ	9	i	5	í	4	66
P. GROSSA	6	íć	34	56	37	27	ii	33	16	6	i	18	255
Guarapuava	Ŷ	3	10	18	29	15	10	9	ii	i	i	i	108
FÉNIX	i 7	29	67	76	26	1 7	8	19	6	16	8	25	314
J.SUL	12	79	83	113	24	i	9	12	Ġ	5	8	15	367
T .BORBA	i	18	19	iĉ	٩	5	ŝ	9	3	0	6	•	78
TOTAL	39	15 2	226	301	158	92	50	96	39	31	19	67	1278

Tabela 37. Coleoptera. Cerambycidae. Captura média(no médio de indivíduos/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	MAI	JUN	JUL
ANTONINA	0,00	0,40	i,25	2,75	4,00	4,00	1,00	0,60	0,50	0,25	0,00	1,00
S.J.PINHAIS	0,00	9.00	0,25	1,25	0,75	1,25	1,00	0,40	0,00	0.00	0,00	0,66
COLOMBO	0,75	1,00	2,25	2,50	2,00	2,50	0,50	1,80	0,25	0,67	0,20	1,00
P. GROSSA	1,50	3,20	8,50	14,00	9,25	6,75	2,75	6,69	3,33	1,50	0,20	4,50
GUARAPUAVA	0,06	0,6€	2,50	4,50	5,8€	3,75	2,50	1,80	2,75	0,25	0,20	0,25
FÊNIX	4,25	5,80	16,75	19,60	5,20	4,25	2,00	3,80	1,50	4,66	1,6è	6,25
J.SUL	3,00	1 5,8€	20,75	28,25	4,80	0,25	2,25	2,40	1,50	1,25	1,64	3,75
T.BORBA	0,25	3,60	4,75	3,00	2,25	i,25	0,50	1,80	0,75	9,00	0,00	0,00

Tabela 38. Coleoptera. Chrysomelidae. Número total de indivíduos, por localidade, nos meses amostrados.

A4-00-00-00-00-00-00-00-00-00-00-00-00-00	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	MAI	JUN	JUL	TOTAL
ANTONINA	33	36	46	69	49	29	46	70	27	14	22	3i	472
S.J.PINHAIS	9	34	53	13	103	26	٤	5	8	3	5	3	30 3
COLOKBO	7	10	8	19	41	47	20	19	4	i	16	19	211
P. GROSSA	18	81	190	125	158	197	143	127	52	45	22	4 5	120 3
Guarapuava	3	Ģ	28	51	39	7	3	2	0	0	ė	í	143
FÊNIX	13	2 2	46	24	23	7	2	í	4	4	i	4	i 5i
J.SUL	24	56	iØi	113	103	7 5	76	84	44	70	29	26	801
T.BORBA	8	16	25	9 3	51	20	6	14	3	5	i	i	243
TOTAL	115	264	467	57 5	567	468	302	322	142	142	93	130	3 527

Tabela 39. Coleoptera. Chrysomelidae. Captura média(n<u>o</u> médio de indivíduos/semana), por localidade, nos meses amostrados.

	AGŪ(86)	SET	OUT	KOV	DEZ	JAN(87)	FEV	HAR	ABR	HAI	JUK	JUL
ANTONINA	8 ,25	7,20	11,50	17,25	9,80	9,67	11,50	14,00	6,7 5	3,50	5,50	7,75
S.J.PINHAIS	2.25	6,50	5,75	20,25	25,75	6,5€	i,50	1,00	2.00	€,75	0,50	€,75
COLOMBO	1,75	2,00	2,00	4,75	8,20	ii,7 5	5,00	3,80	1,00	0,33	3,20	4,75
P. GROSSA	4,50	16,20	47,50	31,25	39,5 0	49,25	35,75	25,40	17.33	11,25	4,40	11,25
GUARAPUAVA	0,7 5	1,80	7,00	i2,7 5	7,80	i,75	0,75	0,40	6,00	0,66	0,00	0,25
FÊNIX	3.25	4,40	11,50	6.00	4,60	1,75	0,50	0,20	1,00	1,00	0,20	1,00
J.SUL	6,49	11,20	25,25	28,25	20,60	18,7 5	19,00	16,80	11,00	17,50	5,80	6,50
T.BORBA	2,00	3,20	6,25	23,25	12,75	5, e e	1,50	2,89	0,75	i,25	0,20	0, 25

Tabela 40. Coleoptera. Curculionidae. Número total de indivíduos, por localidade, nos meses amostrados.

	AGO(86)	SET	0 UT	WOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI 	JUN 	JUL 	TOTAL
ANTONINA	22	6	13	21	13	12	33	14	i 7	6	7	ii	175
S.J.PINHAIS	i	i 3	18	38	55	8	3	5	3	5	4	3	120
COLOMBO	10	13	7	70	76	65	27	14	6	5	18	ii	319
P. GROSSA	5	31	19	44	7 2	7 i	61	47	17	ć	10	46	423
Guarapuava	8	37	24	39	5 5	32	13	7	5	. 3	5	ii	236
FÊNIX	ç	33	35	54	45	9	13	13	16	16	13	8	26
J. S UL	66	134	99	48	63	25	34	40	16	25	24	15	589
T . BORBA	ii	27	25	103	39	i 5	14	41	19	10	5	5	31
TOTAL	132	294	240	417	385	237	198	18 1	99	70	83	104	244

Tabela 41. Coleoptera. Curculionidae. Captura média(n<u>o</u> médio de indivíduos/semana) por localidade, nos meses amostra - dos.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR:	ABR	KAI	JUK	JUL
ANTONINA	5,5€	1,20	3,25	5,25	2,60	4,66	8,25	2,80	4,25	1,5 0	1,75	2,75
S.J.PINHAIS	0,25	2,60	4,50	9,5€	5,50	2,00	0,75	1,00	0,75	0 ,50	1,00	€,75
COLONBO	2,50	2,60	1,75	17,50	15,20	16,25	6,75	2,8%	1,50	0,67	3,60	2,75
P. GROSSA	1,25	6,20	4,75	11,60	18,00	i7,7 5	15,25	9,40	5,67	1,59	2,00	10,00
Guarapuava	2,00	7,40	6,00	9,75	11,00	8,00	3,25	1,49	1,25	6,75	0,40	2,75
FÊNIX	2,25	6,60	8,75	13,50	9,00	2,25	3,25	2,60	4,66	4,00	2,60	2,00
J.SUL	16,50	26,80	24,75	12,00	12,60	6,25	8,5@	8,00	4,00	6,25	4,80	3,75
T.BORBA	2.75	5,40	6,25	25,75	9,75	3,75	3,50	8,20	4,75	2,59	1,00	1,25

Tabela 42. Coleoptera. Staphylinidae. Número total de indivíduos, por localidade, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	MAI	JUN	JUL	TOTAL
ANTONINA	i0	16	14	13	14	9	ii	15	37	43	10	38	230
S.J.PINHAIS	10	3	12	32	29	36	13	۶	i	3	2	i	145
COLONBO	Ŷ	i	6	ii	íó	í2	6	2	5	i	4	4	65
P. GROSSA	έ	13	14	17	92	4 2	23	57	29	24	i 3	ie	348
Guarapuava	7	10	16	íŸ	12	i	3	ii	5	5	i	5	92
FÊNIX	10	16	i 5	16	19	34	4	۶	Ġ	17	9	21	176
J.SUL	49	8₩	88	61	559	. i14	77	115	36	48	23	24	921
T . Bor ba	20	17	25	50	22	24	22	25	8	7	8	4	23 2
TOTAL	112	156	170	219	430	266	159	243	124	145	70	115	2209

Tabela 43. Coleoptera. Staphylinidae. Captura média (n<u>o</u> médio de indivíduos/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	AUT									
			OUT	NOV.	DEZ	JAN(87)	FEV	MAR	ABR	HAI	JUN	JUL
ANTONINA	2,50	3,20	3,50	3,25	2,8∳	3,00	2,75	3,00	9,25	10,75	2,50	9,56
S.J.PINHAIS	2,50	0,60	3.00	8,00	7,25	7,50	3,25	1.89	0,25	e.7 5	6,50	0,25
COLOHBO	0,00	0,20	1,50	2,75	3,20	3,60	i,50	0,44	0,50	0,33	0,86	1,00
P. GROSSA	i,5 0	2,60	3,50	4,25	23,00	10,50	5,75	11,40	9,67	6,00	2,69	4,5∂
Guarapuava	i,75	2,66	4,00	4,75	2,40	0,25	0,75	2,20	1,25	0,50	0,20	1,25
FÊNIX	2,5€	3,20	3,75	4,00	3,80	8,5%	1,00	1,80	1,50	4,25	1,8€	5,25
J.SUL	12,25	16,00	17,00	15,25	4 5,2 0	28,50	19,25	23,00	9,00	12,00	4,69	6,00
T.BORBA	5.00	3,40	6,25	12,50	5,50	6,00	5,50	5,00	2,00	i,75	1,6€	1,00

Tabela 44. PROFAUPAR. Lepidoptera. Número total de indivíduos, por localidade, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	KAR	ABR	MAI	JUN	JUL	TOTAL
ANTONINA	ii€	122	186	152	144	98	118	173	26 ¢	128	57	10 1	1649
S.J.PINHAIS	127	130	200	406	381	130	i 15	113	88	74	29	53	1846
COLOMBO	128	205	191	316	485	278	218	161	246	134	90	118	2570
P. GROSSA	297	65€	538	65 2	811	85 3	7 5i	835	337	156	110	260	625 0
Guarapuava	229	314	35 5	531	398	291	247	269	179	5 0	36	99	3018
FÉNIX	749	582	552	684	728	418	448	350	88	54	31	85	4769
J.SUL	828	1979	1358	5411	3680	2184	1540	1650	563	1050	830	29 2	20450
T.BORBA	194	1 8i	315	261	109	202	7 8	205	114	29	8	74	1770
TOTAL	2656	3254	369 5	8413	6736	44 54	351 5	3776	1875	1675	1191	1082	42322

Tabela 45. PROFAUPAR. Lepidoptera. Captura média(no médio de indi víduos/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	MAR	ABR	KAI	JUN	JUL
ANTONINA	27,50	24,40	46,50	38,00	28,80	32,67	29,50	34,60	65,00	32,00	14,25	25,25
S.J.PINHAIS	31,75	26,00	50,00	101 ,50	76,20	32,50	28,7 5	22,6€	22,00	18,50	7,25	13,25
COLOMBO	32,00	41,00	63,67	79,00	97,00	69,50	54,50	32,20	6i,5 0	44,67	18,00	29,50
P. GROSSA	74,25	130,00	134,50	163,00	162,20	213,25	187,75	167,00	112,33	39,00	22,00	65,00
GUARAPUAVA	57,25	62,8 €	88,75	132,75	79,6 0	72,7 5	61,75	57,8 0	44,75	12,50	7,20	24,75
FÊNIX	187,25	116,49	138,00	171,00	145,60	104,50	112,00	70,00	22,00	13,59	6,20	21,25
J.SUL	205,50	214,00	339,50	1352,75	736,00	546,00	385,00	330,00	140,75	262,50	166,00	97,33
T.BORBA	48,50	36,20	78,7 5	65 ,25	21,80	50,50	19,50	41,00	28,50	7,25	1,60	18,50

Tabela 46. PROFAUPAR. Diptera. Número total de indivíduos, por l<u>o</u> calidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	HAI	JUN	JUL	TOTAL
ANTONINA	1317	1890	1953	2413	4312	233 3	3469	3130	4553	45 33	3934	6114	3 99 51
S.J.PINHAIS	3249	328 5	4709	5 1 8i	633 5	1962	1094	1084	1058	425	206	470	2905 8
COLOMBO	1467	1618	2054	1 9 58	2243	1860	1357	1078	37 3	227	1409	2604	18248
P. GROSSA	795 5	13734	19898	14899	35154	36355	28337	22374	5584	6438	4148	73 11	202187
Guarapuava	4722	65 €2	5686	515 0	7160	4271	4351	35i 0	1611	74 i	55€	738	44992
FÉNIX	4459	850 5	930 6	105 3i	69 3i	30 34	4829	237 3	182i	3483	2389	1200	58861
J.SUL	8859	27647	28636	26996	22273	24792	1556 0	15876	678 6	10657	6140	4517	198739
T.BORBA	64 99	9377	9627	98 32	4730	410 6	3399	5288	242 3	1258	192	9 86	57717
TOTAL	38527	725 58	81869	7 6 960	89138	7871 3	623 96	5471 3	24209	27762	18968	23940	649753

Tabela 47. PROFAUPAR. Diptera. Captura média(no médio de indivídu os/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	VON	DEZ	JAN (87)	FEV	MAR	ABR	MAI	JUN	JUL
ANTONINA	329.25	378,00	488,25	603,25	862,40	777,67	867 ,25	626,09	1138,25	1133,25	983,5€	1528,50
S.J.PINHAIS	812,25	657,00	1177,25	1295 ,25	1267,00	490,50	273,50	216,86	264,50	196,25	51,50	ii7,5€
COLOHBO	366,75	323,6%	513,50	489,50	448,60	465,60	339 ,25	215,60	93,25	75,67	281,80	65i,0€
P. GROSSA	198 8,75	2746,80	4974,50	3724,75	7030,80	9088,75	7084,25	4474,80	1861,33	1609,50	829,60	1827 ,75
GUARAPUAVA	1180.50	1300,40	1421,5 0	1287,50	1432,00	1067,75	1 087, 75	702,00	402,75	185, 25	110,00	184,50
FÊNIX	iii4,75	1701,00	2326,5%	2632,75	1386,20	75 8,5 0	1207,25	474,60	455 ,25	870,75	477,80	300,00
J.SUL	2214.75	5529.40	7159.00	6749,00	4454,60	5198,00	3890,00	3175,20	1696,50	2664,25	1228,00	1129,25
T.BORBA	1624,75	1875,48	2406,75	2458,00	946,00	1026,50	849,75	1057,60	6 05 ,75	314,50	38,40	246,50

Tabela 48. PROFAUPAR. Hymenoptera. Número total de indivíduos,por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	VOV	DEZ	JAN(87)	FEV	KAR	ABR	HAI	JUN	JUL	TOTAL
ANTONINA	187	210	342	269	492	205	242	329	886	25 1	137	277	3827
S.J.PINHAIS	84	120	2 00	360	300	135	44	80	43	10	5	21	140 2
COLONBO	65	212	470	396	253	3 55	300	229	68	56	82	160	2610
P. GROSSA	552	1450	1408	138 2	1854	1740	1387	132 2	536	298	15 2	410	12491
Guarapuava	239	694	762	584	345	259	292	224	127	41	35	39	3551
FÊNIX	237	423	532	7 21	1360	73 9	692	365	363	379	153	69	6024
J.SUL	1198	2498	2700	2532	2322	1522	1487	18 52	1124	1104	749	554	19642
T.BORBA	482	8 3í	1100	1548	1627	839	3 56	53 5	295	100	16	96	7819
TOTAL	3044	6348	7514	77 92	8553	578 5	4800	49 36	3442	2203	1329	1620	57 366

Tabela 49. PROFAUPAR. Hymenoptera. Captura média(n<u>o</u> médio de ind<u>i</u> víduos/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	MAI	JUN	JUL
ANTONINA	46,75	42,00	85,5 0	67,25	98,40	68,3 3	60,50	65,8€	221,50	62,7 5	34,25	69,25
S.J.PINHAIS	21,00	24,00	50,00	90,00	60,00	33,75	11,00	16,00	10,75	2,50	1,25	5,25
COLOMBO	16,25	42,40	117,50	99,00	54,60	88,75	75,0 0	45,80	17,00	6,67	16,40	40,00
P. GROSSA	138,00	290,00	352,00	345,50	370,80	435,00	346,75	264,40	178,67	74,5 0	30,46	102,50
GUARAPUAVA	59,75	120,80	190,50	146,00	69,00	64,75	73,0€	44,89	31,75	10,25	7,00	9,75
FÊNIX	59,25	84,60	133,00	180,25	272,00	182,50	173, 0 6	73,00	90,75	94,75	30,60	17,25
J.SUL	299,50	499,60	675, 00	633,00	464,40	380,50	371,75	370,40	281,00	276,00	149,80	138,50
T.BORBA	120,50	166,20	275,0€	387,66	325,40	209,75	89,00	107,00	73,7 5	25,00	3,20	22,50

Tabela 50. PROFAUPAR. Hymenoptera. Ichneumonidae. Número total de indivíduos, por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	HAI	JUN	JUL	TOTAL
ANTONINA	73	102	116	91	69	33	37	66	48	59	34	88	834
S.J.PINHAIS	19	32	54	178	160	48	7	8	5	i	í	8	521
COLOMBO	22	6 5	86	158	109	141	70	91	55	8	iê	53	837
P. GROSSA	224	440	642	718	7 32	496	263	297	i2i	79	51	i¢ó	4165
Guarapuava	79	173	189	234	119	76	55	64	48	iê	7	12	1066
FÊNIX	47	108	21 2	243	165	63	64	44	50	35	1 5	13	1059
J.SUL	295	488	598	698	272	263	181	243	146	184	141	iiê	3619
T.BORBA	179	369	43 i	828	628	356	170	200	123	35	6	23	3348
TOTAL	934	17 75	2328	3148	2274	1476	847	1013	563	411	267	413	15449

Tabela 51. PROFAUPAR. Hymenoptera. Ichneumonidae. Captura média (no médio de indivíduos/semana), por localidade, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	KAI	JUK	JUL
ANTONINA	18,25	20,00	29,00	22,75	17,80	11,00	9,25	13,20	12,00	14,75	8,50	22,00
S.J.PINHAIS	4,75	6.40	13,50	44.50	32,00	12,00	1,75	i.60	i,25	0,25	0 ,25	2,00
COLOMBO	5,50	13,00	21,50	39,50	21,80	47,00	17,50	i8,20	5,5€	2,00	3,00	13,25
F. GROSSA	55,60	88,00	160,50	179,50	146,40	124,00	65,7 5	59,40	40,33	19,75	10,20	26,50
GUARAPUAVA	19,75	34,60	47,25	58,50	23,80	19,00	13,75	12,80	12,00	2,50	1,40	3,%
FÊNIX	11,75	21,60	53, 00	6€,7 5	33,00	15,75	16,0∂	8,86	12,50	8,75	3,00	3,25
J.SUL	73, 75	97,6€	149,50	174,50	54,46	65 ,75	45,25	48,60	36,50	46,00	28,20	27,50
T.BORBA	44,75	73,8€	107 ,75	207,00	125,60	89,00	42,50	40,00	30,75	8,75	1,2 0	5,75

Tabela 52. Antonina. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

*********	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	HAR	ABR	KAI	JUN	JUL	TOTAL
ANOHALINAE	0	i	e	· 1	2	0	0	ė	0	í	•	0	
BANCHINAE	i	i	7	3	4	í	í	4	4	í	í	í	29
CREMASTINAE	2	7	7	3	2	5	í	3	i	í	i	•	30
EPHIALTINAE	9	9	14	12	7	5	0	2	4	3	4	6	78
GELINAE	8	19	29	32	34	i♥	17	21	12	2	3	ь	193
ICHNEUKONINAE	6	7	16	6	9	6	i	10	3	4	0	4	77
LABIINAE	0	ę	•	5	0	•	•	i	9	0	0	•	,
LYCORININAE	0	0	í	0	0	•	i	ø	0	0	e	0	i
HESOCHORINAE	3	3	i	1	i	2	1	ø	0	5	i	i	í
METOPIINAE	3	É	5	í	3	i	0	6	2	2	í	2	2
MICROLEPTINAE	i	3	5	i	í	e	i	i	i	5	i	5	i*
OPHIONINAE	5	i	3	i	3	e	i	5	0	5	í	i	2
ORTHOCENTRINAE	23	18	10	2	4	5	3	8	13	25	13	47	161
PORIZONTINAE	i 2	50	17	21	íi	3	5	9	3	3	í	ii	ii:
SCOLOBATINAE	9	0	Ą	ę	3	•	0	0	ė	0	€	9	
TERSILOCHINAE	•	3	5	3	4	3	8	5	5	5	7	4	4
TRYPHONINAE	0	5	i	í	i	i	•	•	0	•	0	3	•
DUVIDOSOS	•	0	i	i	4	0	0	8	0	0	0	9	i
TOTAL	73	100	116	91	89	33	37	66	48	59	34	88	83

Tabela 53. Antonina. Ichneumonidae. Constância e dominância(pela classificação de PALMA) das subfamílias.

SUBFAMÍLIA	CONSTÂNCIA(X)	CLASS . PALMA	DOMINÂNCIA(X)-	CLASS PALMA	CLASS . GERAL
ANOMALINAE	10,00	ACIDENTAL	0,60	ACIDENTAL	RARi
BANCHINAE	38,00	ACESS ÓRIA	3,48	ACESSÓRIA	INTERHEDIARIA
CREMASTINAE	38,00	ACESSÓRIA	3,60	ACESSÓRIA	INTERMEDIÁRIA
EPHIALTINAE	58,00	CONSTANTE	8,63	DOKINANTE	COMU
GELINAE	84,00	CONSTANTE	23,14	DOMINANTE	COKU
ICHNEUMONINAE	64,00	CONSTANTE	8,63	DOMINANTE	COMU
LABIINAE	5,00	ACIDENTAL	€,36	ACIDENTAL	RAR
LYCORININAE	4,00	ACIDENTAL	0,24	ACIDENTAL	RAR
HESOCHORINAE	30,00	ACESSÓRIA	2,28	ACIDENTAL	INTERMEDIÁRIA
KETOPIINAE	34,00	ACESSÓRIA	3,12	ACESSÓRIA	INTERMEDIARI
MICROLEPTINAE	30,00	ACESSÓRIA	2,28	ACIDENTAL	INTERMEDIARIA
OPHIONINAE	34,00	ACESS ÓRIA	2,40	ACIDENTAL	INTERHEDIARIA
ORTHOCENTRINAE	80,00	CONSTANTE	20,14	DOMINANTE	COMU
PORIZONTINAE	80,00	CONSTANTE	13,55	DOMINANTE	COMU
SCOLOBATINAE	4,00	ACIDENTAL	0.36	ACIDENTAL	RAR
TERSILOCHINAE	56,00	CONSTANTE	5,8 8	DOMINANTE	COMU
TRYPHONINAE	16,00	ACIDENTAL	1.08	ACIDENTAL	RAR

Tabela 54. São José dos Pinhais. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

	AGO(86)	SET	OUT	HOV	DEZ	JAN(87)	FEV	HAR	ABR	KAI	JUN	JJL	TOTA
ANOHALINAE	0	0	0	i	•	0			*	. 0	8		;
BANCHINAE	i	5	4	7	4	i	í	3	0	0	0	ě	26
EPHIALTINAE	í	•	3	i	5	í	9	9	ø	•	•	0	(
GELINAE	5	íí	13	57	3 <u>i</u>	16	5	i	4	í	0	4	145
ICHNEUMONINAE	3	2	5	16	14	5	3	0	•	•	0	3	59
HESOCHORINAE	•	0	•	0	0	i	0	0	0	0	í		í
METOPIINAE	0	í	Ø	6	i	4	í	0	0	•	0	0	13
HICROLEPTINAE	•	ø	0	2	4	2	9	•	0	0	0	6	8
DPHIONINAE	0	9	•	•	0	1	•	•	i	0	•	0	â
ORTHOCENTRINAE	5	9	19	48	58	4	0	0	é	0	0	0	143
PORIZONTINAE	3	4	í€	23	27	ii	•	3	0	0	0	i	88
SCOLOBATINAE	•	•	0	5	9	•	0	e	0	0	0	0	14
TERSILOCHINAE	•	0	0	5	4	5	0	1	0	•	0	0	9
TRYPHONINAE	í	0	0	4	6	0	•	0	6	₽	0	•	11
DUVI DOS OS	•	0	•	ó	•	9	•	9	9	•	0	0	(
TOTAL	i9	32	54	178	160	48	7	8	5	í	í	8	52:

Tabela 55. São José dos Pinhais. Ichneumonidae. Constância e dom<u>i</u> nância(pela classificação de PALMA) das subfamílias.

SUBFAMÍLIA	CONSTÂNCIA(X)	CLASS . PALKA	DOMINÂNCIA(%)	CLASS . PALMA	CLASS . GERAL
ANOKALINAE	1,96	ACIDENTAL	0,19	ACIDENTAL	RAR
BANCHINAE	31,37	ACESSÓRIA	4,99	ACESSÓRIA	INTERMEDIÁRIA
EPHIALTINAE	13,72	ACIDENTAL	1,54	ACIDENTAL	RAR
GEL INAE	60,78	CONSTANTE	27,83	DOMINANTE	COHUI
ICHNEUMONINAE	43,14	ACESSÓRIA	9,79	DOMINANTE	INTERHEDIARI
HESOCHORINAE	3, 9 2	ACIDENTAL	0 ,38	ACIDENTAL	RAR
METOPIINAE	11,76	ACIDENTAL	2,50	ACIDENTAL	RAR
MICROLEPTINAE	ii,76	ACIDENTAL	1,54	ACIDENTAL	RAR
OPHIONINAE	3, 9 2	ACIDENTAL	0,3 8	ACIDENTAL	RAR
ORTHOCENTRINAE	43,14	ACESSÓRIA	27,45	DOKINANTE	INTERHEDIÁRIA
PORIZONTINAE	35, 29	ACESSÓ RIA	15,74	DOMINANTE	INTERHEDIÁRI
SCOLOBATINAE	11,76	ACIDENTAL	2,69	ACESSÓRIA	INTERMEDIÁRI
TERSILOCHINAE	15,69	ACIDENTAL	1,73	ACIDENTAL	RAR
TRYPHONINAE	11.76	ACIDENTAL	2,11	ACIDENTAL	RAR

Tabela 56. Colombo. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	KAR	ABR	KAI	AR	JUL	TOTAL
ANOHALINAE	0	0	i	0	i	2	· i	5	i	i	0	ę	ç
BANCHINAE	6	•	4	14	5	5	7	8	3		í	2	49
CREMASTINAE	i	0	•	•	1	13	0	i	•	0	0	•	i
EPHIALTINAE	6	ii	12	9	ь	17	12	12	2	3	0	14	104
GELINAE	5	24	31	64	39	5€	15	21	6	í	i	9	263
ICHNEUMONINAE	4	7	8	15	20	23	12	9	3	í	•	5	107
LABIINAE	0	0	0	i	•	•	•	0	0	•	0	0	Í
HESOCHORINAE	.i	í	0	2	i	@	i	í	í	0	i	0	9
METOPIINAE	0	1	í	0	0	0	0	2	0	0	0	i	
HICROLEPTINAE	0	í	í	í	2	@	0	0	6	0	6	0	
OPHIONINAE	0	0	•	0	0	0	í	ė	0	•	1	i	3
ORTHOCENTRINAE	i	2	í	0	i	2	i	0	i	2	3	8	28
PORIZONTINAE	6	13	17	37	16	i 5	17	29	2	0	4	8	164
SCOLOBATINAE	i	6	í	9	í	3	0	5	i	0	6	0	ç
TERSILOCHINAE	0	2	7	10	8	9	i	5	i	•	i	4	45
TRYPHONINAE	ę.	3	i	4	7	5	2	5	í	0	0	i	23
DUVIDOSOS	•	•	i	i	i	0	9	•	•	•	•	. 0	3
TOTAL	55	6 5	86	158	109	141	70	91	22	8	12	53	837

Tabela 57. Colombo. Ichneumonidae. Constância e dominância(pela classificação de PALMA) das subfamílias.

Subfamilia 	CONSTÂNCIA(X)	CLASS . PALHA	DOMINÂNCIA(X)	CLASS PALHA	CLASS.GERAL
ANOKALINAE	15,69	ACIDENTAL	1,08	ACIDENTAL	RARA
BANCHINAE	43,14	ACESSÓRIA	5,85	DOMINANTE	INTERMEDIARIA
CREMASTINAE	ii,76	ACIDENTAL	1,91	ACIDENTAL	RARA
EPHIALTINAE	68,63	CONSTANTE	12,42	DOKINANTE	COHUR
GELINAE	76,47	CONSTANTE	31,42	DOMINANTE	COHUR
ICHNEUMONINAE	60,7 8	CONSTANTE	12,78	DOHINANTE	COMUN
LABIINAE	1,96	ACIDENTAL	0,12	ACIDENTAL	RAR
MESOCHORINAE	17,65	ACIDENTAL	1, 0 8	ACIDENTAL	RARA
METOPIINAE	7,84	ACIDENTAL	0,60	ACIDENTAL	RARA
HICROLEPTINAE	9.80	ACIDENTAL	9,60	ACIDENTAL	RARA
OPHIONINAE	5,77	ACIDENTAL	0,36	ACIDENTAL	RARA
DRTHOCENTRINAE	27,45	ACESSÓRIA	2,63	ACESSÓR IA	INTERMEDIÁRIA
PORIZONTINAE	80,3 9	CONSTANTE	19,59	DOHINANTE	COMUN
SCOLOBATINAE	15,69	ACIDENTAL	i,08	ACIDENTAL	RARA
TERSILOCHINAE	35,29	ACESSÓRIA	5,38	DOKINANTE	INTERHEDIÁRIA
TRYPHONINAE	37,2 5	ACESSÓRIA	2.75	ACESSÓRIA	INTERMEDIARIA

Tabela 58. Ponta Grossa. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

~~~~~~	AGD(86)	SET	OUT	VOV	DEZ	JAN (87)	FEV	HAR	ABR	MAI	JUN	JUL	TOTAL
ANOHALINAE	0	i	•	i	0	5	•	•	e	9	0	•	7
BANCHINAE	í	9	18	41	20	13	4	13	4	0	0	2	125
CREHASTINAE	0	i	0	i	10	9	3	i	5	•	0	0	18
EPHIALTINAE	12	35	32	60	67	39	29	32	21	5	6	8	346
GELINAE	41	105	162	256	164	84	34	78	19	12	10	28	993
ICHNEUMONINAE	9	28	82	120	174	124	<b>3</b> 3	35	10	7	i	13	626
LABIINAE	0	0	3	9	6	6	0	0	0	0	0	9	3
LYCORININAE	9	0	0	i	•	9	ø	ě	6	6	0	0	1
<b>HESOCHORINAE</b>	i	4	3	5	15	8	5	8	i	4	3	1	58
HETOPIINAE	4	í€	10	7	8	9	ii	9	4	5	ē	1	78
HICROLEPTINAE	3	3	6	4	5	6	6	5	2	5	0	ė	39
OPHIONINAE	6	0	e	í	0	e	í	ą.	í	0	0	4	3
ORTHOCENTRINAE	139	212	243	81	99	89	55	18	18	29	15	29	1027
PORIZONTINAE	ė.	<b>i</b> 5	59	124	124	80	42	8í	22	10	12	22	597
SCOLOBATINAE	0	0	0	0	5	0	í	4	i	0	0	•	8
TERSILOCHINAE	2	i	5	6	37	3€	35	12	15	5	3	í	146
TRYPHONINAE	2	4	<b>i</b> 3	9	7	9	4	4	i	3	í	i	58
DUVIDOSOS	0	0	ę	i	0	0	•	<b>?</b>	0	Ø	ě	Ą	í
DANIFICADOS		12	9	•	0	•	0	Ą	9	0	0	•	21
TOTAL	220	440	642	718	732	496	263	297	121	79	5 <u>í</u>	106	4165

Tabela 59. Ponta Grossa. Ichneumonidae. Constância e dominância (pela classificação de PALMA) das subfamílias.

SUBFAMilia 	CONSTÂNCIA(X)	CLASS . PALKA	DOMINÂNCIA(X)	CLASS PALHA	CLASS . GERAL
ANOKALINAE	9,80	ACIDENTAL	0,17	ACIDENTAL	RAR
BANCHINAE	64,7€	CONSTANTE	3,00	ACESSÓRIA	INTERMEDIARIA
CREMASTINAE	23,53	ACIDENTAL	0,43	ACIDENTAL	RAR
EPHIALTINAE	84,3í	CONSTANTE	8,3i	BOHINANTE	COMU
GELINAE	96,08	CONSTANTE	23,84	DOKINANTE	COMUN
ICHNEUHONINAE	<b>86,</b> 27	CONSTANTE	<b>15,0</b> 3	DOMINANTE	COMU
LABIINAE	1,96	ACIDENTAL	0,07	ACIDENTAL	RARI
LYCORININAE	1,96	ACIDENTAL	9,02	ACIDENTAL	RARA
KESOCHORINAE	64,70	CONSTANTE	1,39	ACIDENTAL	INTERHEDIÁRIA
METOPIINAE	<b>68</b> ,63	CONSTANTE	i,87	ACIDENTAL	INTERMEDIÁRIA
MICROLEPTINAE	47,06	ACESSÓRIA	0,94	ACIDENTAL	INTERMEDIARIA
OPHIONINAE	5,88	ACIDENTAL	0.07	ACIDENTAL	RAR
DRTHOCENTRINAE	98,04	CONSTANTE	24,66	DOMINANTE	COMUN
PORIZONTINAE	92,16	CONSTANTE	14,33	DOMINANTE	COMUN
SCOLOBATINAE	13,72	ACIDENTAL	0,19	ACIDENTAL	RAR
TERSILOCHINAE	60,78	CONSTANTE	3.5♥	<b>ACESSÓRIA</b>	INTERMEDIÁRIA
TRYPHONINAE	50,98	CONSTANTE	1,39	ACIDENTAL	INTERMEDIARIA

Tabela 60. Guarapuava. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	HUL	JUL	TOTAL
ANOHALINAE	•	0	2	5	í	í	9	0	0	0	0	0	ç
BANCHINAE	5	6	9	8	5	3	3	5	i	•	0	i	4(
CREHASTINAE	ø	à	A	i	,	1		4	9	•	Ø	0	
DIPLAZONTINAE	0	0	ě	i	0	0		ę	0	•	•	•	:
EPHIALTINAE	5	18	55	20	6	3	7	8	4	2	i	5	98
GELINAE	14	35	42	64	30	<b>i</b> 5	8	13	10	5	í	5	236
ICHNEUHONINAE	3	12	19	23	ii	13	5	ii	7	i	•	5	107
MESOCHORINAE	3	4	4	7	6	4	2	0	í	i	9	Ŷ	3
METOPIINAE	i	0	2	i	0	•	0	í	•	•	0	•	,
HICROLEPTINAE	25	36	14	16	í	ę	0	ø	2	0	i	0	9
OPHIONINAE	•	. 0	i	0	3	Ŷ	0	0	i	0	. 0	•	1
ORTHOCENTRINAE	<b>1</b> 5	38	34	í€	5	3	4	0	2	0	5	0	ii
PORIZONTINAE	4	10	22	53	3∳	24	2€	23	18	3	i	4	213
SCOLOBATINAE		6	í	í		e	ę	0	ø	•	0	0	1
TERSILOCHINAE	i	3	2	3	5	3	2	í	i	0	0	0	i
TRYPHONINAE	6	ii	13	21	<b>18</b>	5	4	4	í	i	í	í	8
DUVIDOSOS	9	ė	9	ě	0	i	0	0	ø	ø	0	0	
DANIFICADOS	0	0	5	•	•	ø	6	0	•	•	0	0	;
TOTAL	<b>7</b> 9	173	189	234	119	76	 55	64	48	ie	7	12	106

Tabela 61. Guarapuava. Ichneumonidae. Constância e dominância(pela classificação de PALMA) das subfamílias.

SUBFAMÍLIA	CONSTÂNCIA(X)	CLASS . PALMA	DOMINÂNCIA(X)	CLASS . PALHA	CLASS.GERAL
ANOMAL INAE	ii,54	ACIDENTAL	€,84	ACIDENTAL	rar
BANCHINAE	46,15	<b>ACESSÓRIA</b>	3,75	ACESSÓRIA	INTERMEDIÁRI
CREKASTINAE	7,70	ACIDENTAL	<b>9,38</b>	ACIDENTAL	RAR
DIPLAZONTINAE	1,92	ACIDENTAL	0,09	ACIDENTAL	RAR
EPHIALTINAE	65,38	CONSTANTE	9,19	DOMINANTE	COMUI
GELINAE	75, <del>0</del> 0	CONSTANTE	22,14	DOHINANTE	COHU
ICHNEUMONINAE	69,23	CONSTANTE	10,04	DOMINANTE	COKU
MESOCHORINAE	40,38	ACESSÓRIA	3,00	<b>ACESSÓRIA</b>	INTERMEDIÁRI
HETOPIINAE	9,62	ACIDENTAL	0.47	ACIDENTAL	RAR
HICROLEPTINAE	34,62	ACESSÓRIA	8,91	DOKINANTE	INTERNEDIÁRI
OPHIONINAE	7,70	ACIDENTAL	0,47	ACIDENTAL	RARA
ORTHOCENTRINAE	<b>53,8</b> 5	CONSTANTE	10,60	DONTHANTE	COKU
PORIZONTINAE	78.85	CONSTANTE	19,89	DOMINANTE	COMU
SCOLOBATINAE	3,85	ACIDENTAL	0,19	ACIDENTAL	RAR
TERSILOCHINAE	30,77	ACESSÓRIA	1.69	ACIDENTAL	INTERMEDIARI
TRYPHONINAE	55,77	CONSTANTE	8,07	DOMINANTE	CONU

Tabela 62. Fênix. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	HAI	JUN	JUL	TOTAL
ANOHALINAE	0	0	2	i	2	i	5	0	6	0	1	6	Ş
BANCHINAE		4	7	.5	í	3	ø	i	3	3	0	0	27
CREMASTINAE	i	i	3	4	i	í	7	2	7	4	0	i	38
EPHIALTINAE	4	15	18	22	12	5	3	3	ė	4	5	3	94
GELINAE	<b>i</b> 5	29	83	103	76	41	42	26	3€	14	i	2	468
ICHNEUHONINAE	3	ii	31	15	í€	4	3	4	í	0	i	6	83
LABIINAE	0	0	9	i	0	i	0	0	è	0	ė	0	i
<b>HESOCHORIN</b> AE	0	6	í	0	í	0	í	0	0	í	0	í	
METOPIINAE	i	0	3	4	í₿	5	Í	i	•	0	0	0	22
HICROLEPTINAE	6	í	6	e	2	0	0	•	í	0	•	0	16
OPHIONINAE	i	9	0	3	0	i	0	í	0	0	0	8	i
ORTHOCENTRINAE	14	23	25	42	25	5	5	i	2	3	5	i	148
PORIZONTINAE	8	2€	21	35	19	i	2	2	4	4	4	3	114
SCOLOBATINAE	0	<b>@</b>	2	í	4	ė	0	•	•	ø	0	0	,
TERSILOCHINAE	0	3	9	16	í	ê	i	0	5	í	Ø	i	34
TRYPHONINAE	@	0	í	0	0	0	ø	2	0	i	í	i	- (
DUVIDOSOS	0	i	•	9	0	0	0	0	•	0	e	0	1
DANIFICADOS	•	•	ŧ	•	i	í	<b>(</b>	í	•	6	0	•	;
TOTAL	47	108	212	243	165	63	64	44	50	35	<u>1</u> 5	<u>1</u> 3	105

Tabela 63. Fênix. Ichneumonidae. Constância e dominância(pela classificação de PALMA) das subfamílias.

SUBFAHÍLIA	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS PALMA	CLASS . GERAL
ANOMALINAE	13,46	ACIDENTAL	0,85	ACIDENTAL	RARI
BANCHINAE	36,54	ACESSÓRIA	2,55	ACESSÓRIA	INTERHEDIÁRIA
CREHASTINAE	38,46	<b>ACESSÓRIA</b>	3,02	ACESSÓRIA	INTERMEDIÁRIA
EPHIALTINAE	61,54	CONSTANTE	8,88	DOMINANTE	COKU
GELINAE	82,69	CONSTANTE	43,63	DOMINANTE	COKUH
ICHNEUMONINAE	51,92	CONSTANTE	7,84	DOKINATE	COMUM
LABIINAE	3,85	ACIDENTAL	0,19	ACIDENTAL	RARA
M <b>ESOCH</b> ORINAE	9,62	ACIDENTAL	0,47	ACIDENTAL	RARA
METOPIINAE	26,92	ACESSÓRIA	2,08	ACIDENTAL	INTERHEDIÁRIA
HICROLEPTINAE	15,38	ACIDENTAL	<b>9</b> ,94	ACIDENTAL	RARA
OPHIONINAE	11,54	ACIDENTAL	0,57	ACIDENTAL	RARA
DRTHOCENTRINAE	59,62	CONSTANTE	13,41	DOMINANTE	COMU
PORIZONTINAE	57,69	CONSTANTE	10,76	DOMINANTE	COMUM
SCOLOBATINAE	5,77	ACIDENTAL	0,66	ACIDENTAL	RARA
TERSILOCHINAE	28,85	ACESSÓRIA	3,21	ACESSÓRIA	RARA
TRYPHONINAE	9,62	ACIDENTAL	0,57	ACIDENTAL	RARA

Tabela 64. Jundiaí do Sul. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

****	AGD (86)	SET	OUT	HOV	DEZ	JAN (87)	FEV	MAR	ABR	HAI	JUN	JUL	TOTAL
ANOHALINAE	•	•	13	7	0	. 4	6	e	0	0	•	0	24
BANCHINAE	5	5	13	ii	0	3	•	0	i		4	i	40
CREHASTINAE	5	8	17	56	4	21	13	25	9	ii	5	2	137
EPHIALTINAE	23	41	33	35	24	6	ii	4	6	4	8	19	214
GELINAE	102	141	265	258	65	77	24	86	47	31	28	24	1148
ICHNEUHONINAE	19	64	62	95	44	37	10	14	ii	9	7	8	380
LABIINAE	0	1	2	3	5	i	0	0	0	•	•	•	۶
LYCORININAE	0	i	6	0	0	•	•	0	•	ø	0	Ą	i
HESOCHORINAE	25	20	20	17	10	4	7	0	5	9	9	7	133
METOPIINAE	ø	4	3	12	4	4	9	4	5	7	6	2	60
HICROLEPTINAE	6	9	3	i	6	5	20	12	0	5	5	i	70
OPHIONINAE	3	2	0	í	i	0	•	0	í	í	9	0	9
ORTHOCENTRINAE	84	105	69	78	30	46	43	44	32	74	43	25	673
PORIZONTINAE	26	63	76	12 <b>i</b>	64	39	19	34	17	10	<b>i</b> 8	íí	498
SCOLOBATINAE	•	₽	4	3	í	2	i	í	3	5	2	0	55
TERSILOCHINAE	6	5	5	10	3	4	5	5	5	e	0	0	33
TRYPHONINAE	3	14	10	15	13	í₩	22	17	7	21	6	i₩	148
DUVI DOSOS	0	ě	9	5	i	0	0	(¢	6	•	0	0	3
DANIFICADOS		5	3	9	0	•	•	0	0	•	8	0	17
TOTAL	295	488	5 <b>9</b> 8	698	272	593	181	243	146	184	141	110	3619

Tabela 65. Jundiaí do Sul. Ichneumonidae. Constância e dominância (pela classificação de PALMA) das subfamílias.

SUBFAMilia 	CONSTÂNCIA(X)	CLASS.PALMA	DOMINÂNCIA(X)	CLASS . PALMA	CLASS . GERAL
ANOKALINAE	21,15	ACESSÓRIA	0,66	ACIDENTAL	INTERMEDIÁRI
BANCHINAE	36,54	ACESSÓRIA	1,10	ACIDENTAL	INTERMEDIÁRI
CREMASTINAE	75, <del>00</del>	CONSTANTE	3,78	ACESSÓRIA	INTERMEDIÁRI
EPHIALTINAE	84,62	CONSTANTE	5,91	DOKINANTE	COMU
GELINAE	<b>98,0</b> 8	CONSTANTE	<b>3i,7</b> 2	DOKINANTE	COKU
ICHNEUHONINAE	86,54	CONSTANTE	10,50	DOMINANTE	COHU!
LABIINAE	11,54	ACIDENTAL	0,25	ACIDENTAL	RAR
LYCORININAE	1,92	ACIDENTAL	0,03	ACIDENTAL	RAR
<b>MESOCHORINAE</b>	75,00	CONSTANTE	3,68	ACESSÓRIA	INTERHEDIÁRI
METOPIINAE	67,3i	CONSTANTE	1,66	ACIDENTAL	INTERMEDIARIA
KICROLEPTINAE	55, <b>7</b> 7	CONSTANTE	1,93	ACIDENTAL	INTERHEDIÁRI:
OPHIONINAE	17,31	ACIDENTAL	0,25	ACIDENTAL	RAR
ORTHOCENTRINAE	94,23	CONSTANTE	18,6 <del>0</del>	DOMINANTE	COMU
PORIZONTINAE	94,23	CONSTANTE	13,76	DOMINANTE	COMU
SCOLOBATINAE	<b>30,77</b>	ACESSÓRIA	0,61	ACIDENTAL	INTERMEDIARI
TERSILOCHINAE	40,38	ACESSÓRIA	0.91	ACIDENTAL	INTERMEDIARI
TRYPHONINAE	<b>94,2</b> 3	CONSTANTE	4,09	ACESSÓRIA	INTERHEDIARIA

Tabela 66. Telêmaco Borba. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTAL
ANDMALINAE	0	0	Ŷ	5	4	8	0	Ò	i	ŧ	•	0	18
BANCHINAE	. 5	12	12	34	35	13	14	19	۶	3	i	i	158
CREMASTINAE	i	2	3	i	4	i	0	0	0	0	0	•	18
EPHIALTINAE	2	10	29	53	41	21	12	<b>2</b> 2	22	6	5	8	228
GELINAE	22	109	128	295	157	65	25	46	25	4	í	4	881
ICHNEUMONINAE	4	10	33	47	59	57	<b>i</b> 8	36	8	i	í	3	277
LABIINAE	•	•	•	•	i	2	0	í	0	9	•	•	4
LYCORININAE	ě	0	ø	0	0	0	0	i	6	0	e	0	í
HESOCHORINAE	7	3	2	3	6	5	4	0	0	0	ø	e	36
METOPIINAE	0	5	3	8	7	7	2	ē.	Í	i	0	0	31
MICROLEPTINAE	8	38	56	13	4	0	. 0	•	0	0	0	0	89
OPHIONINAE	Q.	Ø	e	0	e	0	e	0	í	0	0	Q.	í
ORTHOCENTRINAE	113	95	5i	44	13	8	12	16	10	12	0	2	376
PORIZONTINAE	12	46	95	175	188	119	45	5i	30	8	i	4	774
SCOLOBATINAE	0	0	1	3	í	0	0	0	•	0	0	0	5
TERSILOCHINAE	8	25	37	129	99	43	35	4	8	9	0	i	386
TRYPHONINAE	0	12	í₿	14	i0	7	í	4	6	9	0	0	64
DUVI <b>dos</b> os	9	ě	6	i	5	0	2	4	٤	0	0	0	7
DANIFICADOS	0	8	i	3	0	0	0	ę	0	0	•	•	12
TOTAL	179	369	431	858	628	356	170	200	123	35	6	23	3348

Tabela 67. Telêmaco Borba. Ichneumonidae. Constância e dominância (pela classificação de PALMA) das subfamílias.

SUBFAMILIA	CONSTÂNCIA(X)	CLASS.PALMA	DOMINÂNCIA(X)	CLASS.PALMA	CLASS.GERAL
ANOKALINAE	17,31	ACIDENTAL	0,54	ACIDENTAL	RARI
BANCHINAE	<i>7</i> 3, <i>0</i> 8	CONSTANTE	4,54	ACESSÓRIA	INTERHEDIÁRI/
CREHASTINAE	17,31	ACIDENTAL	0,36	ACIDENTAL	RAR
EPHIALTINAE	<i>76,9</i> 2	CONSTANTE	6,81	DOMINANTE	COMU
GELINAE	80,77	CONSTANTE	26,31	DOKINANTE	COMU
ICHNEUMONINAE	73,08	CONSTANTE	8,27	DOMINANTE	COMU
LABIINAE	7, <b>70</b>	ACIDENTAL	0,12	ACIDENTAL	RAR
LYCORININAE	1,92	ACIDENTAL	0.03	ACIDENTAL	RARA
<b>HESOCHORIN</b> AE	3 <b>0,7</b> 7	ACESSÓRIA	0,90	ACIDENTAL	INTERMEDIÁRIA
METOPIINAE	<b>30,77</b>	ACESSÓRIA	€,92	ACIDENTAL	INTERMEDIÁRIA
HICROLEPTINAE	32,69	ACESSÓRIA	2,66	<b>ACESSÓRIA</b>	INTERMEDIÁRIA
OPHIONINAE	1,92	ACIDENTAL	0,03	ACIDENTAL	RARA
ORTHOCENTRINAE	<b>78,</b> 85	CONSTANTE	ii,23	DOKINANTE	COMUR
PORIZONTINAE	<b>78,8</b> 5	CONSTANTE	23,12	DOMINANTE	COHUH
SCOLOBATINAE	9,62	ACIDENTAL	<b>0</b> , <b>i</b> 5	ACIDENTAL	RAR
TERSILOCHINAE	65,38	CONSTANTE	11,53	DOMINANTE	COMU
TRYPHONINAE	51,92	CONSTANTE	1,91	ACIDENTAL	INTERHEDIARIA

Tabela 68. Ilha do Mel. Fortaleza. Número total de indivíduos,por Ordem, nos meses amostrados e número de amostras por mês.

	SET(88)	OUT	MOV	DEZ	JAN(89)	FEV	HAR	ABR	MAI	JUN	JUL	AGO	TOTAL
fhy <b>sa</b> nura	Ŷ	0	í	•	0	5	ę	i	í	e	i	•	6
COLLEMBOLA	5 <b>i</b>	67	42	41	64	37	28	123	60	33	31	28	6 <b>0</b> 5
PHEMEROPTERA	0	6	•	0	<b>6</b>	•	6	. 6	0	é	0	0	9
)DO <del>NA</del> TA	•	•	ø	2	•	6	i	i	0	•	9	•	4
ORTHOPTERA	7	9	<b>18</b>	12	<b>i</b> 3	9	7	16	5	6	5	5	112
SOPTERA	i	5	55	ii	12	0	¢	0	0	•	0	0	51
PLECOPTERA	6	0	5	6	0	6	6	6	0	6	0	0	2
DERHAPTERA	0	<del>\$</del>	•	i	•	0	0	ę	9	9	0	0	i
SOCOPTERA	27	46	26	<b>i</b> 3	18	i2	<b>i</b> 7	29	16	<b>1</b> 5	15	20	254
THYSANOPTERA	4	5	5	i	3	. 6	i	•	i	0	0	0	14
IEHIPTERA	2	4	7	í	5	b	4	2	5	Í	5	5	35
IOMOPTERA	218	173	171	61	162	313	<b>8</b> 5	78	40	32	84	<b>i5</b> 5	1578
VEUROPTERA	2	3	5	i	i	5	5	0	0	0	0	0	13
COLEOPTERA	40	104	195	136	iii	95	<b>10</b> 1	115	42	55	30	92	1083
ETREPSIPTERA	•	Ø	i	5	Ü	0	0	6	0	•	•	¢	3
TRICHOPTERA	0	•	0	0	0	•	0	é	•	0	0	•	Q
.EPIDOPTERA	172	470	8 <b>96</b>	537	446	<b>3</b> 37	260	339	110	66	99	161	3605
DIPTERA	2357	6012	6012	1632	5712	<b>549</b> 5	5179	9380	4413	1454	3282	2646	53574
IYKENOPTERA	42	86	<b>26</b> 2	<b>23</b> 2	426	196	165	194	126	<b>5</b> 5	<b>8</b> 5	<b>i</b> 2i	1990
TOTAL	<b>29</b> 23	6981	<b>737</b> 1	<b>268</b> 3	6970	6504	<b>58</b> 50	10278	4816	1684	3634	3230	62924
 ≀º amostras	4	 5	4	4	 5	4	4	 5	4	4	 5	4	 58

Tabela 69. Ilha do Mel. Praia Grande. Número total de indivíduos, por Ordem, nos meses amostrados e número de amostras por mês.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUN	JUL	AGO	TOTAL
THYS <b>an</b> ura	i	5	5	4	2	ė	i	í	6	0	0	9	<b>i</b> 3
COLLEHBOLA	171	363	542	768	<b>17</b> 2	12	5	10	3	14	ii	20	2091
E <b>PHEKERO</b> PTERA	. 6	i	6	•	•	6	2	3	6	0	ę	9	6
ODONATA	9	•	•	•	i	i	12	9	•	•	•	9	53
ORTHOPTERA	5	ė	ii	44	29	8	7	13	i	6	í	ø	122
ISOPTERA	0	5	•	ĉ	Ģ	i	0	9	ė	6	0	•	14
PLECOPTERA	0	0	ę	ŧ	9	0	ê	•	•	6	0	6	6
DERMAPTERA	9	0	<b>4</b>	9	ŷ	0	0	ę	ė	•	0	8	•
PSOCOPTERA	39	81	43	46	25	16	9	5	5	e	5	4	275
THYSANOPTERA	5	i	3	3	0	i	i	5	0	0	ę	•	16
HEMIPTERA	5	3	13	13	8	۶	6	5	i	3	3	5	65
HOMOPTERA	58	61	83	72	70	56	26	19	٩	15	56	<b>i</b> 5	480
NEUROPTERÁ	5	£	£	i	2	0	0	9	Ą	6	ø	Û	۶
COLEOPTERA	52	141	117	149	208	<b>i5</b> 5	82	59	31	13	14	9	1030
STREPSIPTERA	9	0	6	9	6	6	•	0	2	0	i	i	4
TRICHOPTERA	•	Ŷ	ģ	9	9	6	i	0	•	9	6	0	i
LEPIDOPTERA	238	<b>92</b> 6	1289	1159	<b>47</b> 6	<b>36</b> 5	299	<b>27</b> 8	86	60	93	104	<b>537</b> 3
DIPTERA	1748	<b>64</b> 68	<b>477</b> 9	2261	3599	3627	2079	1480	<b>65</b> 5	281	515	582	28074
HYMENOPTERA	<b>8</b> 2	iii	<b>20</b> 8	250	211	112	66	37	43	12	99	41	1272
TOTAL	2400	<b>81</b> 68	<b>70</b> 92	4772	4812	<b>433</b> 3	2596	1918	<b>83</b> 3	398	768	778	<b>388</b> 68
 Nº amostras	 4	5	4	4	 5	 4	 4	5		4	 5		56

Tabela 70. Ilha do Mel. Fortaleza. Frequência relativa(%) das Ordens, nos meses amostrados.

	SET(88)	OUT	VOM	DEZ	JAN(89)	FEV	KAR	<b>AB</b> R	KAI	MUL	JUL	<b>AG</b> O
THYSANURA	0.00	0,00	0,01	0,00	0,00	<b>0,</b> €3	0,00	0,01	0,02	0,00	0,03	0,00
COLLEHBOLA	1,74	<b>0</b> ,97	0,57	i,53	0,92	0,57	9,48	1,20	1,24	1,96	<b>0,8</b> 5	0,87
EPHENEROPTERA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ODONATA	0,00	0,00	0,00	0,07	0,00	0,66	0,02	0,01	0,00	0,00	0,00	0,08
ORTHOPTERA	0,24	0,13	0,24	0,45	0,19	0,14	<b>e</b> ,12	0,16	0,10	9,36	0,14	0,15
ISOPTERA	0,03	0,07	<b>0</b> ,30	0,41	0,17	0,00	0,00	0,00	0,00	0,00	0,00	0,09
PLECOPTERA	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0.00	0.00	0,00	0,00	0.00
DERMAPTERA	0,00	0,00	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PS0C0PTERA	0,92	6,66	0,35	0,48	0,26	0,18	0,29	0,28	0,33	€,89	0,41	9,62
THYSANOPTERA	0,14	0,03	0,03	0,04	0,04	0,00	0,02	0,00	0,02	0,00	0,00	0,00
HEMIPTERA	0,07	0,06	0,09	0,04	0,03	0,09	0,07	9,02	0,04	0,06	0,06	<b>0</b> ,06
HOHOPTERA	7,46	2,48	2,32	2,27	2,32	<b>4,</b> 8i	1,45	0,76	<b>0,8</b> 3	1,90	2,31	4,80
NEUROPTERA	0,07	0,64	0,03	0,04	0,01	0,03	0,03	0,00	0,00	0,00	0,00	0,00
COLEOPTERA	1,37	1,49	2,64	5,07	1,59	1,46	i,73	1,12	0,87	1,31	0,82	<b>2,</b> 85
STREPSIPTERA	0.00	0,00	0,01	0,07	0,00	0,00	0,00	0,00	0.00	0,00	0.00	0.00
TRICHOPTERA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LEPIDOPTERA	5,88	6,73	8,25	20,01	6,40	5,18	4,44	3.30	2,28	3,92	2,72	4,98
DIPTERA	80,64	86,12	81,56	60,83	81,95	84,49	<b>88,5</b> 3	91,26	91,63	86,34	90,31	81,92
HYMENOPTERA	1,44	1,23	3,55	8,65	6,11	3,0i	2,82	1,89	2,62	3,27	2,34	3,75

Tabela 71. Ilha do Mel. Praia Grande. Frequência relativa(%) das Ordens, nos meses amostrados.

	SET(88)	OUT	VOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUN	JIL	AGO
THYSANURA	0,04	9,02	<b>6,6</b> 3	0,08	0,04	0,00	0,04	0,65	0,00	0,00	0,00	0,00
COLLEMBOLA	7,12	4,44	7,64	16, <b>0</b> 9	3,57	<b>e</b> ,28	0,19	0,52	0,36	3,52	1,43	2,57
EPHENEROPTERA	0.00	0,01	0,00	0,00	0,00	0,00	0,08	0,16	0,00	0,00	0,00	0,00
ODONATA	0,00	0,00	0,00	0,00	0,02	0,02	0,46	0,47	0,00	0,00	0,00	0,00
ORTHOPTERA	0,08	0,97	0,16	0,92	0,60	0,18	0,27	0,68	0,12	0,00	0,13	0,00
ISOPTERA	0,00	0,02	0,00	0,04	0,19	0,02	0,00	0,00	0,00	0,00	0,0∂	0,00
PLECOPTERA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	8,00	0,00
DERMAPTERA	0,00	0,00	0,00	<b>e</b> ,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PSOCOPTERA	1,62	0,99	0,61	0,96	0,52	0,37	0,35	0,26	9,24	0,00	0,65	<b>0,</b> 5i
THYSANOPTERA	0,21	0,01	0,04	0,06	0,00	0,02	0,04	0,10	0,00	0,00	0,00	0,00
HEMIPTERA	<b>0,0</b> 8	0,04	0,18	0,27	0,17	0,21	0,23	0,10	0,12	0,75	0,39	9,26
HOMOPTERA	2,42	0,75	<b>i,i</b> 7	<b>i,</b> 5i	1,45	0,60	1,00	0,99	1,08	3,77	3,38	i, <b>9</b> 3
NEUROPTERA	<b>6,6</b> 8	0,02	0,03	0,02	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00
COLEOPTERA	2,17	1,73	1,65	3,12	4,32	3,58	3,16	3,08	3,72	3,27	1,82	1,16
STREPSIPTERA	0,00	0,00	0,00	0,00	6,66	0,00	0,00	0,00	0,24	0,00	0,13	0,13
TRICHOPTERA	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,66	0,00	0,00	0,00
LEPIDOPTERA	9,92	11,34	18,18	24,29	9,89	8,42	11,52	14,49	10,32	15,€8	12,11	13,37
DIPTERA	<b>72,8</b> 3	79,19	67,38	47,38	74,79	83,71	80,08	77,16	78,63	70,60	<b>67,6</b> 6	74,8i
HYMENOPTERA	3,42	1,36	2.93	5,24	4,38	2,58	2,54	1,93	5,16	3,02	12,89	5,27

Tabela 72. Ilha do Mel. Fortaleza. Captura média(n<u>o</u> médio de ind<u>i</u> víduos/semana), por Ordem, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	HAI	JUN	JUL	<b>A</b> G0
THYSANURA	0,00	0,00	<b>0</b> ,25	0,00	0,00	0,50	0,00	0,20	0,25	0,09	0,20	0,00
COLLEMBOLA	12,75	13,40	10,50	10,25	12,80	9,25	7,00	24,60	15,00	8,25	6,20	7,00
EPHEHEROPTERA	0,00	0,00	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00
ODONATA	0,00	0,00	0,00	0,5€	0,00	0,0ê	0,25	0,20	0,00	0,00	0,60	0,00
ORTHOPTERA	i.75	1,80	4,50	3,00	2,60	2,25	1,75	3,20	1,25	1,50	1,00	1,25
ISOPTERA	0,25	1,00	5,50	2,75	2,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PLECOPTERA	0,00	0,00	0,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90	0,00
DERMAPTERA	0,00	0,00	0,00	0,25	6,60	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PSOCOPTERA	6,75	9,20	6,5€	3,25	3,60	3,00	4,25	5,8 <del>0</del>	4.00	3,75	3,00	5,00
THYSANOPTERA	1,00	0,40	0,50	0,25	0,60	0,00	<b>0,2</b> 5	0,00	0,25	0,00	0,00	0,00
HEMIPTERA	0.50	<b>6,8</b> 0	1,75	0,25	0,40	i,50	1,00	0,40	0,50	0,25	0,40	0,5 <del>0</del>
HOMOPTERA	54,50	34,60	42,75	15,25	32,40	<b>78,2</b> 5	21,25	<b>15,</b> 8€	10,00	8,00	16,80	38,75
NEUROPTERA	0,50	0,60	<b>0</b> ,50	0,25	0,20	0,50	0,50	0,00	0,00	0,00	0,00	0,00
COLEOPTERA	10,00	20,80	48,75	34,00	22,20	23,75	25,25	23,00	10,50	5,50	6,00	23,00
STREPSIPTERA	0,00	0,00	0,25	0,50	0,00	0,00	9,09	0,00	0,00	0,00	0,00	0,00
TRICHOPTERA	0,96	0,00	0,00	0,00	0.06	0,00	0,00	0,00	<b>0</b> ,00	0,00	0,00	<b>0</b> ,06
LEPIDOPTERA	43,00	94,06	152,00	134,25	89,20	84,25	65,00	67,80	27,50	16,5€	19,80	40,25
DIPTERA	589,25	1202,40	1503,00	498,00	1142,40	1373,75	1294,75	1876,00	1103,25	363,50	656,40	661,50
HYMENOPTERA	10,50	17,20	65,50	58,00	85,2 <del>0</del>	49,00	41,25	38,80	31,50	13,75	17,00	30,25
TOTAL	730,75	1396,20	1842,75	670.75	1394.00	1626,00	1462,50	2055,60	1204,00	421,00	726,80	8 <b>07</b> ,50

Tabela 73. Ilha do Mel. Praia Grande. Captura média(n<u>o</u> médio de indivíduos/semana), por Ordem, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUN	JUL	AGO
THYSANURA	0,25	0,40	0,50	1,00	0,40	0,00	0,25	0,20	0,00	0,00	0,00	0,00
COLLEMBOLA	42,75	72,60	135,50	192,00	34,40	3,00	1,25	2,00	0,75	3,50	2,20	5,00
EPHENEROPTERA	0,00	0,20	0,00	0,00	0,00	0,00	0,50	0,60	0,00	0,00	0,00	0,00
ODONATA	0,00	0,00	0,00	0,00	<b>0,</b> 20	0,25	3,00	1,80	0,00	0,00	0,00	0,00
ORTHOPTERA	0,50	1,20	2,75	11,00	5,8€	2,00	1,75	2,60	0,25	0,00	0,20	0,00
ISOPTERA	0,00	0,40	9,00	<b>e</b> ,50	1,80	0,25	0,00	0,00	0,00	0,00	0,00	0,00
PLECOPTERA	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9,00	0,06
DERMAPTERA	0,00	9,00	0,00	0,00	0,00	0,00	0,60	0,6€	<b>6</b> ,68	0,00	0,00	0,00
PSOCOPTERA	9,75	16,20	10,75	11,50	5,00	4,00	2,25	1,00	0,50	0,00	1,00	1,00
THYSANOPTERA	1,25	0,20	0,75	0,75	0,00	0,25	<b>0</b> ,25	0,40	0,00	0,00	0,00	0,00
HEMIPTERA	0,50	0,60	3,25	3,25	1,60	2,25	1,50	0,40	0,25	<b>0,7</b> 5	0,60	0,50
HOMOPTERA	14,50	12,20	<b>20,7</b> 5	18,00	14,00	6,50	6,50	3,80	2,25	3,75	5,20	3,75
NEUROPTERA	0,50	0,40	0,50	<del>0</del> ,25	8,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00
COLEOPTERA	13,00	28,20	29,25	37,25	41,60	38,75	20,50	ii,8 <b>0</b>	7,75	3,25	2,80	2,25
STREPSIPTERA	0,00	0,00	0,00	0,00	0,00	0,00	0.60	0.00	0,50	0,00	0,20	0,25
TRICHOPTERA	0,00	<b>0</b> ,68	0,00	<b>0</b> , <b>6</b> 6	0,00	0,00	0,25	0,00	<b>0</b> ,00	0,00	0,00	0,08
LEPIDOPTERA	59,50	185,20	322,25	289,75	95,20	91,25	74,75	55,60	21,50	15,00	18,60	26,60
DIPTERA	437,00	1293,60	1194,75	<b>565,</b> 25	719,80	906,75	519,75	296,00	163,75	70,25	103,00	145,50
HYMENOPTERA	<b>20</b> ,50	22,20	52,00	62,5 <del>0</del>	42,20	28,00	16,50	7,40	10,75	3,00	19.8€	10,25
TOTAL	600.00	1633,60	1773,00	1193,00	962,40	1083,25	649,00	383,60	208,25	99,5€	153,60	194,50

Tabela 74. Ilha do Mel. Fortaleza. Hemiptera. Número total de indivíduos, por família, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	AU.	JUL	AGO	TOTA
COREIDAE	9	e	0	•	i	i	•	•	Ð	•	0	ę	
CORIHELAENIDAE	9	0	0		9	3	i	ę.	0	Ø	Q.	6	
CORISCIDAE	9	6	0	•	0	ø	i	•	0	0	é	9	
CYDNIDAE	<b>@</b>	0	0	9	Q.	6	e	0	9	0	•	0	
HYDROHETRIDAE	9	9	0	0	•	0	0	0	0	0	6	•	
ISOHETOPIDAE	i	0	i	•	í	0	0	0	0	0	•	9	
LYGAEIDAE	0	5	i	•	0	•	9	Ø	€	6	0	0	
MIRIDAE	í	í	5	i	6	í	0	2	•	0	i	Ø	Í
MEIDIDAE	•	0	•	0	0	0	•	0	•	6	•	0	
PENTATOHIDAE	•	6	e	₽	0	ė	0	ē	i	•	0	í	
REDUVIIDAE	0	ø	0	0	6	0	•	6	0	€	0	0	
SCHIZOPTERIDAE	6	í	0	6	0	0	9	æ	0	0	Ø	0	
TINGIDAE	6	•	0	ė	6	i	5	0	0	í	i	í	
DANIFICADOS	Ą	6	•	0	6	6	0	6	i	0	0	0	
rotal	2	4	7	i	2	i	4	2	2	i	2	2	

Tabela 75. Ilha do Mel. Fortaleza. Hemiptera. Captura média(n<u>o</u> m<u>é</u> dio de indivíduos/semana), por família, nos meses amo<u>s</u> trados.

	SET(88)	OUT	VOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	MUL -	JUL	AG
COREIDAE	0,00	0,00	<b>6</b> ,60	0,00	0,20	0,25	0,00	6,66	0,00	0,00	0,00	0,0
CORIMELAENIDAE	0,00	0,00	0,00	0,00	0,00	0,75	0,25	0,60	0.00	0,00	0,00	0,0
CORISCIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,25	0,00	0,00	0,60	0,00	0,0
CYDNIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
HYDROMETRIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0,00	0,00	0,0
ISOMETOPIDAE	<b>0</b> ,25	0,00	0,25	0,00	0.20	0,00	0,00	0,00	0,00	0,00	0.00	0,0
LYGAEIDAE	0,00	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,4
MIRIDAE	₹.25	0,20	1,25	0,25	0,00	0,25	0,00	0,40	0,00	0,00	9,20	0.0
NEIDIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,0
PENTATOHIDAE	0,00	0,00	0,00	0.00	0.00	0,00	€,00	0,00	0,25	0,00	0,00	0,2
REDUVIIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,0
SCHIZOPTERIDAE	0.00	0,20	0,00	0.00	9,00	0.00	0.00	0.00	0,00	0,00	0,00	0.€
TINGIDAE	0.00	0,00	0,00	0.00	0.00	0.25	0,50	0.00	0.00	0.25	0.20	0.2

Tabela 76. Ilha do Mel. Praia Grande. Hemiptera. Número total de indivíduos, por família, nos meses amostrados.

	SET (88)	TUO	NOV	DEZ	JAN(89)	FEV	HAR	ABR	MAI	MUL	JUL	AGO	TOTAL
COREIDAE	0	í	0	0	6		9	0	ę	0	•	8	;
CORIMELAENIDAE	0	0	0	•	0	ě	0	9	0	0	6	ø	(
CORISCIDAE	0	ø	6	0	í	9	•	•	0	ė	i	0	ä
CYDNIDAE	i	Ģ	i	0	6	0	Í	Ģ	4	6	0	•	;
HYDROMETRIDAE	•	ŧ	0	0	e	i	0	ø	6	•	0	0	1
ISOMETOPIDAE	ø	•	0	0	0	0	0	9	•	0	0	0	(
LYGAEIDAE	•	•	2	í	Ù	•	ø	ē	0	i	í	i	ŧ
HIRIDAE	i	í	10	9	6	7	3	2	9	e	6	i	4(
NEIDIDAE	e	0	0	i	i	0	0	€	9	•	0	•	í
PENTATOKIDAE	9	í	0	í	0	i	1	0	0	í	0	0	,
REDUVIIDAE	•	9	•	0	è	•	•	0	i	0	₽	•	:
<b>S</b> CHIZOPTERIDAE	ŷ	0	9	ø	6	0	Í	ė	<b>@</b>	6	Q.	0	1
TINGIDAE	9	9	9	0	0	•	•	0	0	i	i	•	i
DANIFICADOS	0	0	0	i	6	•	•	0	6	•	9	0	;
TOTAL	5	3	<b>i</b> 3	<b>1</b> 3	8	9	6	2	í	3	3	2	6

Tabela 77. Ilha do Mel. Praia Grande. Hemiptera. Captura média(no médio de indivíduos/semana), por família, nos meses amostrados.

	SET(88)	OUT	VOV	DEZ	JAN(89)	FEV	HAR	ABR	HAI	MUL	JUL	AG
COREIDAE	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
CORIMELAENIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0.00	9,00	0,00	0,0
CORISCIDAE	0,00	0,00	0,00	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,20	0,0
CYDNIDAE	€,25	0,00	€,25	0.00	0,00	0,00	0,25	0,00	0,00	0,00	0,00	0,0
HYDROKETRIDAE	9,09	0,00	0,00	0,00	0,00	0,25	0,00	0,00	0,00	0,00	0,00	0.0
ISOMETOPIDAE	9.00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0.00	0.0
LYGAEIDAE	0,00	0,00	0,50	0,25	0,00	0,00	0,00	0,00	0,00	0,25	0,20	9,8
HIRIDAE	0,25	0,20	2,50	2,25	1,20	1,75	0,75	0,40	0,00	0,00	0.00	0.6
NEIDIDAE	0,00	0,00	0,00	0,25	0,20	0,00	0,00	0,00	0,00	0,00	0.00	0.0
PENTATOHIDAE	0,00	05.9	0,00	0,25	0,00	0,25	0,25	0,00	0,00	<b>9</b> ,25	0.00	0.0
REDUVIIDAE	0,00	0,00	0,90	0,00	0,00	0,00	0,00	0,00	0.25	0.00	0.00	0.0
SCHIZOPTERIDAE	0.66	0,00	0,00	0,00	0.00	0.00	0.25	0,00	0.00	0.00	0.00	6.4
TINGIDAE	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0,25	0.20	0.0

Tabela 78. Ilha do Mel. Fortaleza. Homoptera. Número total de indivíduos, por família, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	HAI	JUN	JUL	<b>A6</b> 0	TOTAL
ACANALONIIDAE	0	ę	0	0	θ	0	0	0	0	0	0	0	
APHIDIDAE	é	í	i	0	2	i	ę	0	0	0	6	0	5
CERCOPIDAE	0	0	<b>₽</b>	0	0	•	0	0	0	0	•	0	•
CICADELLIDAE	211	158	155	52	iii	285	<b>7</b> 3	58	19	15	58	140	1335
CICADIDAE	•	0	0	0	í	0	€	8	0	0	0	9	í
CIXIIDAE	i	i	i	i	43	<b>2</b> 2	ii	14	17	16	55	9	158
CLASTOPTERIDAE	6	0	•	0	e	0	0	0	0	0	0	6	0
DELPHACIDAE	0	6	•	9	<b>@</b>	0	ø	i	0	0	0	6	i
FLATIDAE	0	0	6	0	0	0	0	0	0	•	0	0	0
FULGORIDAE	6	ii	ii	5	3	. 0	0	0	ê	9	•	0	36
ISSIDAE	ę	0	•	•	Ŷ	0	0	0	0	0	6	0	0
MEMBRACIDAE	0	•	0	i	6	i	0	0	0	9	æ	0	2
PSYLLIDAE	0	1	i	0	i	i	•	i	0	0	9	6.	5
NÃO IDENTIF.	6	í	5	2	i	3	i	4	4	i	4	6	29
TOTAL	218	<b>17</b> 3	17i	61	162	313	85	<b>7</b> 8	46	<b>3</b> 2	84	<b>i5</b> 5	1572

Tabela 79. Ilha do Mel. Fortaleza. Homoptera. Captura média(n<u>o</u> m<u>é</u> dio de indivíduos/semana), por família, nos meses amo<u>s</u> trados.

	SET(88)	OUT	NOV	DEZ	JAN(89)	FEV	HAR	ABR	HAI	JUN	JUL	AGO
ACANALONIIDAE	0,00	0,66	0,00	0,00	0,00	0,00	0,00	9,00	0,00	0,00	0.06	0,00
APHIDIDAE	0,00	0,20	0,25	0,00	0,40	0.25	0,00	0.00	0,00	0.00	0.00	0,00
CERCOPIDAE	0,00	0,00	0,00	0,00	0,00	0,60	0,00	0,00	0,00	0,00	0,00	0,00
CICADELLIDAE	52,75	31,60	38,75	13,00	22,20	71,25	18,25	11,60	4.75	3,75	11.60	35.00
CICADIDAE	0,00	0,00	0,00	0,00	0,20	0,60	0,60	0,00	0.00	0.60	0.00	0,00
CIXIIDAE	€,25	0,20	0.25	0,25	8,60	5,50	2,75	2,80	4,25	4,00	4.40	2,25
CLASTOPTERIDAE	<b>0</b> ,00	0,00	0,60	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0.00	0,00
DELPHACIDAE	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,20	0,00	0,00	0.00	0,00
FLATIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0.00
FULGORIDAE	i,50	2,20	2,75	1,25	0,60	0,00	0,00	0.00	0,00	0.00	0.00	0,00
ISSIDAE	0,00	0,00	0,00	0,00	<b>e</b> ,00	0,00	0,00	0,00	0.00	0.00	0,00	0,00
MEMBRACIDAE	0.00	0,00	0,00	€,25	0,00	0,25	0,00	0,00	0.00	0,00	0.00	0.00
PSYLLIDAE	0,00	0,20	0,25	0,00	0,20	0,25	0,00	0,20	0,00	0,00	0,00	0.00

Tabela 80. Ilha do Mel. Praia Grande. Homoptera. Número total de indivíduos, por família, nos meses amostrados.

	SET (88)	OUT	VOV	DEZ	JAN(89)	FEV	MAR	abr	HAI	JUN	JUL	AGO	TOTAL
ACANALONIIDAE	0	0	9	ę	í	0	0	9	0	0	6	0	1
APHIDIDAE	7	i	16	8	3	0	0	i	•	0	i	•	31
CERCOPIDAE	•	0	2	0	. 0	2	ě	0	6	0	0	0	1
CICADELLIDAE	13	34	47	35	27	32	14	12	7	5	0	3	216
CICADIDAE	æ	0	, <b>6</b>	0	0	0	i	0	•	6	0	•	j
CIXIIDAE	3	8	8	8	12	4	4	2	6	i	0	<b>6</b>	5(
LASTOPTERIDAE	i	3	i	4	2	e	6	6	0	ø	0	0	11
DELPHACIDAE	2	7	4	6	13	•	2	i	5	8	23	12	86
FLATIDAE	i	ē	4	6	7	i	2	2	0	i	i	0	27
FULGORIDAE	i	e	6	9	Ą	•	0	0	0	í	6	•	í
ISSIDAE	6	•	0	2	3	6	0	•	9	i	0	ø	
MEMBRACIDAE	Ģ	6	2	6	i	í	0	í	ę	í	í	0	•
PSYLLIDAE	28	3	1	9	•	0	0	0	ė	0	ę	ė	38
NÃO IDENTIF.	5	3	4	3	i	5	3	<b>6</b>	6	ø	•	0	19
TOTAL	58	61	83	<b>7</b> 2	70	26	26	19	ç	<b>1</b> 5	26	i5	48

Tabela 81. Ilha do Mel. Praia Grande. Homoptera. Captura média(no médio de indivíduos/semana), por família, nos meses amostrados.

	SET(88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUN	JUL	AGO
ACANALONIIDAE	0,00	0,00	0,00	0,00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	0,00
APHIDIDAE	1,75	0,20	2,50	2,00	0,60	0,00	0,00	0,20	0,00	0,00	0,20	0,00
CERCOPIDAE	0,00	0,00	0,40	0,00	0,00	0,50	0,00	0,00	0,00	0,00	0,00	0,00
CICADELLIDAE	3,25	6,8€	ii,75	8,75	5,40	4,00	3,50	2,40	1,75	0,50	0,00	0,75
CICADIDAE	0,00	0,00	0,06	0,00	0,00	0.00	0,25	0,00	0,00	0,00	0,00	0,00
CIXIIDAE	0,75	1,60	2,00	2,00	2,40	1,00	1,00	0,40	0,00	0,25	0.00	0.00
CLASTOPTERIDAE	0,25	0,60	0,25	1,00	0,40	0,00	0,00	0,00	0,00	0,00	0.00	0,00
DELPHACIDAE	0.50	1,40	1,00	1,50	2,60	0,00	0,50	0,26	0,50	2,00	4,60	3,00
FLATIDAE	0,25	0,40	1,00	1,50	1,40	0,25	<b>0</b> ,50	0,49	0,00	0,25	0,20	0,00
FULGORIDAE	0,25	0,00	0,60	0,00	0,00	0,00	0,00	0,66	0.00	9,25	0,00	0,00
ISSIDAE	0,00	0,00	0,00	0,50	<b>0</b> ,60	0,00	0,00	0,00	0,00	0,25	0,00	0,00
MEMBRACIDAE	0,00	0,00	0.50	0,00	0,20	0,25	0,00	0,20	0,00	0,25	0,20	0,00
PSYLLIDAE	7.00	0,69	0,25	0,60	0,60	0,00	0,40	0,60	0,00	0,60	6,00	0,00

Tabela 82. Ilha do Mel. Fortaleza. Coleoptera. Número total de i<u>n</u> divíduos, por família, nos meses amostrados.

	SET (88)	OUT	VOV	DEZ	JAN(89)	FEV	KAR	ABR	HAI	JUN	JUL	A60	TOTA
ALLECULIDAE	0	9	0	•	0	e	ě	0	0	•		í	
ANOBIIDAE	6	•	ě	6		ė	é	ě	ė		ě	9	
ANTHRIBIDAE	í	i	i	ž	6	i	i	i	8	i	ø	0	í
BOSTRYCHIDAE	û	ė	ė	0		•	ė	ė	ē	9	0	v A	1
BRUCHIDAE	9	0	ŧ	0			e	ě	0	0	•	V A	
BUPRESTIDAE	ů	ž	é	í	9	i	í	2	9	8	8		
CANTHARIDAE	ů	í	i	0	9		i	4	8	ø	. <b>(</b> )	3	i
CARABIDAE	v A	4	4	9	0	5	0	9	v ₩	i	0	e e	1
CERAMBYCIDAE	ě	8	ó	3	3	i	i	0	5	6	i	e i	í
CHELONARIIDAE		ě	•	é	<b>9</b>			ě	6	8	6	9	1
CHRYSOMEL I DAE	7	9	14	8	ii	ii	10	i€	3	ii	9	2	10
CLERIDAE	í.	ė	•	•		ů.	6	4	6	Ú.	•	6	10
COCCINELLIDAE	Ā	{	2	6	i	5	ě	2	0	6	ě	5	i
COLYDIIDAE	Å	<u> </u>		ø	0	9	v	•	•	8	0	£	1
CURCULIONIDAE	10	10	íê	18	7	9	9	13	í	i	v i	4	9
DERMESTIDAE		3	0	10 (6	r Ži	, 6	6	13	6	6	6	₹	7
DRYOPIDAE	a	ė	•	0	9	8	6	ě	v A	ě	0	•	,
DYTISCIDAE	ν Δ	•	6	ø	iž	16	i	3	ě	4	6	₩	3
ELATERIDAE	a a	i	19	7	3	5	3	9	9	0	8	i	3:
EROTYLIDAE	•	1	. 0	6	9	0	9	ě	9	9	V A	i	3
EUCHEHIDAE	· 1	<b>₽</b>	í	0	4	í	0	v ė	Ů	₹	8	1 0	,
EUGLENIDAE	Δ.	6	ė	0	0	9	. 0	i	•	0	•	6	
HELODIDAE	v Ę	16	i5	ii	ó	i3	39	36	28	í	1	r i	<b>1</b> 7
HYDROPHILIDAE	a A	io Ø	5	é		5	9	JO ∯	<b>6</b>	0	0	6	
LAMPYRIDAE	ě.	0	í	8	Ý	•	Ò	6	9	0	v Ø	6	•
LATHRIDIIDAE	0	i	6	i	Q.	v Q	ø	é	0	6	ø	<b>6</b>	
LEIODIDAE	0	2	ě		6	6	ė	8	9	8	é	6	i
LYCIDAE	A	6	é	0	2	ė	2	í	6	i	i	ě	1
LYMEXYLIDAE	ů.	0	ė	0	9	i	9	ě	ě	0	9	ě	
MELANDRYIDAE	<i>e</i>	i	í	í	6	0	í	6	6	0	0	<b>(</b>	
HONOMMIDAE	0	•	0	6	0	ð	0	€	¥	0	0	6	
HORDELLIDAE	Ŷ	í	54	54	24	8	2	5	6	ų ė	v €	Ŷ	14
NITIDULIDAE	. 6	9		i	5	5	5					· ·	
OEDEHERIDAE	6	6	3	i	6	Ý	6	2 0	ę Ø	9 e	e E	1	i
PHALACRIDAE	v V	ě	6		ę	0	ø	6	ø	0	¥	0	
PHENGODIDAE	8	<b>1</b> 5	ç	0	ě.	7	56	26	3	v (e	Ø	8	
PLATYPODIDAE	<b>e</b>	9	ě	0	8	, 0	0	ė	i	i	÷	0	<b>9</b> .
PSELAPHIDAE	ė	6	í	Ģ.	2	i	0	9	1 6	ě	6	8	
PTILODACTYLIDAE	•	8	15	š 5	5	i	3	Ģ	3	é é	9	9	4.
SCARABAEIDAE	i	<b>i</b> 3	27	8	i é	8	3	5	i	v e	Ø.	Ø	8
SCOLYTIDAE	0	i	<u>,</u>	í	i	í	ê	ĝ.	•	i	e.	€ #	0:
SCYDHAENIDAE	é	•	6	6	ů.	. 6	ě	6	ę.	6	ě	ø	•
STAPHYLINIDAE	5	14	5	5	4	í	ě	v Ø	0	4	ii	3	5
TENEBRIONIDAE		2	4	. 2	2	ě	Ø.	í	0	0	5	5 64	J:
DANIFICADOS	2	•	i		i	i	ė	ě	ě	v ∳	j B	04 Ø	10 1
NÃO IDENTIF.	0	Ŷ	5	i	i	6	2	ę	ė	ě	0	Ģ	(
TOTAL	46	194	195	136	iii	95	10i	115	42	22	36	92	108
 Nº amostras	4	 5	4	4	 5	4	4	 5	4	4	5	4	58

Tabela 83. Ilha do Mel. Fortaleza. Coleoptera. Captura média(n<u>o</u> médio de indivíduos/semana), por família, nos meses amostrados.

	SET(88)	OUT	MOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	AUL	JUL	AG
ALLECULIDAE	0,00	9,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00	0,00	<b>6</b> ,2
ANOBIIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ANTHRIBIDAE	0,25	0,20	0,25	0,50	1,20	0,25	0,25	0,20	0,00	0,25	0,00	0,0
BOSTRYCHIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0,00	0,00	0,0
BRUCHIDAE	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04
BUPRESTIDAE	0,00	9,40	0,00	0,25	0,00	0,25	0,25	0,40	0,00	0,00	0,00	0,0
CANTHARIDAE	0,00	0,20	0,25	0,00	0,00	0,00	0,25	0,80	0,00	0,00	0,00	e,7
CARABIDAE	0,00	0,00	0,00	0,00	0,00	0,5€	0.00	0,00	0,00	0,25	0,00	0,0
CERAMBYCIDAE	0,00	0,00	1,50	0,75	0,60	0,25	0,25	0,00	0,50	0,00	0,20	0,2
CHELONARIIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
CHRYSOMELIDAE	1,75	1,80	3,50	2,00	2,20	2,75	2,50	2,00	<b>0</b> ,75	2,75	1,80	0,5
CLERIDAE	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
COCCINELLIDAE	0,00	0,26	0,50	i,50	0,20	0,50	0,00	0,40	0,00	<b>0</b> ,00	0,00	ê,5
COLYDIIDAE	0,00	0,20	0,00	0,00	0,00	0,00	0,66	0,00	0,00	0,00	0.00	0,0
CURCULIONIDAE	2,5 <del>0</del>	2,00	2,50	4,50	1,40	2,25	2,25	2,60	0,25	0,25	0,20	1,0
DERMESTIDAE	0,00	0,60	0,00	0,00	9,00	0,00	9,00	0,00	0,00	0,00	0,00	0,0
DRYOPIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
DYTISCIDAE	0,00	0,00	0,00	0,00	2,40	4,00	0,25	0,60	0,00	0,00	0,00	0,00
ELATERIDAE	0,00	0,20	4,75	i,75	0,69	i,25	0,75	0,00	0,00	0,00	0,00	Ø, 2:
EROTYLIDAE	ø,25	0,20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,25
EUCNEHIDAE	0,00	0,00	0,25	0,00	0,20	0,25	0,00	0,00	0,00	0,00	0,00	0,0
EUGLENIDAE	0,00	0,66	0,00	0,00	0,00	0,00	0,00	0,20	9,99	<b>0</b> ,60	<b>0</b> ,20	0,00
HELODIDAE	1,25	3,20	3,75	2,75	1,20	3,25	9,75	7,20	7,00	<b>0</b> ,25	0,20	
HYDROPHILIDAE	0,00	0,00	0,50	0,00	0,00	0,50	0,00	0,00	0.00	0,69	0,EV	0,2
LAMPYRIDAE	0,00	0,00	0,25	9,00	0,00	<b>0</b> ,00	0,00 0,00	0,00				0,00
LATHRIDIIDAE	0,00	<b>9</b> ,20	0,00	0,00 0,25	9,00	9,00	0,00	0,00	0,00 a aa	0,00	0,00	0,0
LEIODIDAE	0,00	<b>0</b> ,46	0,00	0,00	0,00	0,0¢		0,00 0,00	0,00	0,00	0,00	0,0
LYCIDAE	0,00	6.66	<b>0</b> ,00	0,00	<b>0</b> ,40	0,00	<b>6</b> ,00		0,00	0,00	9,09	0,0
LYMEXYLIDAE		0,00		0,00			0,59	0,20	0,00	0,25	0,20	0,00
HELANDRYIDAE	0,66 a aa	0,20	0,00		0,00	<b>0</b> ,25	0,00	6,00 A AA	0,00	0,00	0,60	0,00
HONONNIDAE	9,00	0,60 0,00	<b>0</b> ,25	0,25 A AA	<b>0</b> , <b>0</b> 0	0,00	9,25	9,99	0,00	0,00	0,00	0,00
	0,00 0,00	9,20 8,00	0,00	<b>0</b> ,00	9,00 4 CA	0,00	0,00	0,00	6,00	6,00	0,00	0,0
MORDELLIDAE NITIDULIDAE	0,00	0,60	13,50 <b>0,2</b> 5	13,50 0,25	4,8ĕ <b>0</b> ,4€	2,00 <b>0</b> ,50	<b>9</b> ,5 <del>0</del>	1,00	0,00	0,00	0,00	8.00
OEDEMERIDAE	0,00	0,00	-		=	•	<b>0</b> ,50	0,40	0,00	0,00	0,00	6,2
PHALACRIDAE	<b>0</b> ,00		0,75 4 44	0,25 A 44	<b>0</b> ,00	<b>0,0</b> 0	0,00	00,0	<b>6</b> , <b>6</b> 6	6,66	0,00	9,90
PHENGODIDAE		0,00 3,00	0,00 2.25	<b>6</b> ,66	Ø,00	0,00	6,00	0,66	0,00	0,00	0,00	0,00
	2,00		2,25	0,00	<b>0</b> ,80	1,75	5,00	4,00	0,75	0,00	0,00	2,00
PLATYPODIDAE	<b>0,0</b> 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,25	<b>0,2</b> 5	0,00	0,00
PSELAPHIDAE	<b>9.0</b> 0	<b>0</b> ,00	<b>0</b> ,25	0,00	<b>9,46</b>	<b>0</b> ,25	0,00	0,00	0,00	0,00	0,00	0,00
PTILODACTYLIDAE	<b>0</b> ,00	1,60	3,75	1,25	<b>6</b> ,46	<b>0</b> ,25	<b>0,7</b> 5	1,80	<b>0,7</b> 5	6,66	0,00	0,0
SCARABAEIDAE	<b>0</b> ,25	2,60	<b>6,7</b> 5	2,00	3,2€	2,00	<b>9</b> ,75	1,00	0,25	6,00	0,00	0.00
SCOLYTIDAE	0,00	<b>0</b> ,2€	0,00	0,25	0,26	<b>0</b> ,25	0,66	0,00	0,00	0,25	0,00	0,0
SCYDMAENIDAE	0,00	0,00	0,00	0,00	0,00	9.00	9,00	0,00	0,00	0,00	0,00	0,00
STAPHYLINIDAE	1,25	2,80	1,25	1,25	0,80	0,25	0,00	0,00	0,00	1,00	2,20	€,75
TENEBRIONIDAE	0.00	0,40	1,00	0,50	0.40	0,00	0,00	0,20	0,00	0.00	1,60	16,00

Tabela 84. Ilha do Mel. Fortaleza. Coleoptera. Constância e dominância(pela classificação de PALMA) das famílias.

FAMÍLIA	CONSTÂNCIA(X)	CLASS.PALMA	DOMINÂNCIA(%)	CLASS . PALKA	CLASS . GERAL
ALLECULIDAE	2,5€	ACIDENTAL	0,09	ACIDENTAL	RARA
ANOBIIDAE	0,00	-	0,00	-	1000
ANTHRIBIDAE	27,50	ACESSÓRIA	1,39	ACIDENTAL	INTERHEDIÁRIA
BOSTRYCHIDAE	0,00	-	0,00	-	IN CHILDINAL
BRUCHIDAE	0,00	-	0,00	-	-
BUPRESTIDAE	i5,00	ACIDENTAL	0,65	ACIDENTAL	RARA
CANTHARIDAE	17,50	ACIDENTAL	0,92	ACIDENTAL	RARA
CARABIDAE	5,00	ACIDENTAL	0,28	ACIDENTAL	RARA
CERAMBYCIDAE	30,00	ACESSÓRIA	1,66	ACIDENTAL	INTERMEDIÁRIA
CHELONARIIDAE	0,00	-	0,00	-	
CHRYSOMELIDAE	90,00	CONSTANTE	9,70	DOMINANTE	COKU
CLERIDAE	0,00	•	0,00	-	-
COCCINELLIDAE	30,00	ACESSÓRIA	1,48	ACIDENTAL	INTERMEDIARIA
COLYDIIDAE	2,50	ACIDENTAL	0,09	ACIDENTAL	RARA
CURCULIONIDAE	80,00	CONSTANTE	8,59	DOKINANTE	COMUH
DERMESTIDAE	5,00	ACIDENTAL	0,28	ACIDENTAL	RARA
DRYOPIDAE	0,00	-	0,00	-	-
DYTISCIDAE	27,50	ACESSÓRIA	2,95	ACESSÓRIA	INTERMEDIÁRIA
ELATERIDAE	35,00	ACESSÓRIA	3,60	ACESSÓRIA	INTERHEDIÁRIA
EROTYLIDAE	7,50	ACIDENTAL	9,28	ACIDENTAL	RARA
EUCNEHIDAE	7,50	ACIDENTAL	9,28	ACIDENTAL	RARA
EUGLENIDAE	5,00	ACIDENTAL	0,18	ACIDENTAL	RARA
HELODIDAE	80,00	CONSTANTE	15,88	DOMINANTE	COHUH
HYDROPHILIDAE	7,50	ACIDENTAL	0,36	ACIDENTAL	RARA
LAMPYRIDAE	2,50	ACIDENTAL	0,69	ACIDENTAL	RARA
LATHRIDIIDAE	5,00	ACIDENTAL	0.18	ACIDENTAL	RARA
LEIODIDAE	5,00	ACIDENTAL	0,18	ACIDENTAL	RARA
LYCIDAE	<b>15,0€</b>	ACIDENTAL	<b>0,6</b> 5	ACIDENTAL	RARA
LYMEXYLIDAE	2,50	ACIDENTAL	0,09	ACIDENTAL	RARA
HELANDRYIDAE	10,00	ACIDENTAL	<b>0,3</b> 6	ACIDENTAL	RARA
HONOMHIDAE	0,00	-	0,00	-	-
HORDELLIDAE	55, <del>00</del>	CONSTANTE	13,67	DOKINANTE	COKUK
NITIDULIDAE	27,50	ACESSÓRIA	i,02	ACIDENTAL	INTERMEDIÁRIA
OEDEHERIDAE	5,00	ACIDENTAL	€,36	ACIDENTAL	RARA
PHALACRIDAE	0,00	-	0,00	-	-
PHENGODIDAE	70,00	CONSTANTE	8,68	DOMINANTE	COMUN
PLATYPODIDAE	5.00	ACIDENTAL	0,18	ACIDENTAL	RARA
PSELAPHIDAE	10,00	ACIDENTAL	0,36	ACIDENTAL	RARA
PTILODACTYLIDAE	47,50	ACESSÓRIA	4,25	ACESSÓRIA	INTERMEDIÁRIA
SCARABAEIDAE	62,5€	CONSTANTE	<b>7,5</b> 7	DOMINANTE	CONUR
SCOLYTIDAE	12,50	ACIDENTAL	0,46	ACIDENTAL	RARA
SCYDHAENIDAE	0,00	-	0,00	-	-
STAPHYLINIDAE	<b>50,00</b>	CONSTANTE	4,8€	<b>ACESSÓRIA</b>	INTERHEDIÁRIA
TENEBRIONIDAE	3 <b>0,0</b> 0	ACESSÓRIA	7,39	DOMINANTE	INTERMEDIÁRIA

Tabela 85. Ilha do Mel. Praia Grande. Coleoptera. Número total de indivíduos, por família, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	HAR	ABR	HAI	MUL	JUL	AGO	TOTA
ALLECULIDAE	í	i	2	2	ę	0	•	θ	ø	9	0	0	
ANOBIIDAE	•	0	•	7	7	3		•	0	0	0	0	Í
ANTHRIBIDAE	1	•	0	5	•	•	í	0	•	0	0	i	-
BOSTRYCHIDAE	1	ė	ŧ		9	ė		0	6	ě	0		
BRUCHIDAE	ě	í	ø	Û	0	é	0	ě	0	ė	•	ē	
BUPRESTIDAE	•	0	3	2	2	6	ě	6		i		ě	
CANTHARIDAE	0	0	9	0	ð	•	ė	é	ø	6	ě	à	
CARABIDAE	í	6	7	ii	4	i	ė	0	0		6	è	3
CERAMBYCIDAE	3	5	7	8	12	5	Ş	4	2	4	ě	•	5
CHELONARIIDAE	6		2	5		0	ē		9	•	6	ė	•
CHRYSOHELIDAE	3	12	9	28	20	8	5	3	5	i	0	ø	9
CLERIDAE	6	5	ę.	í	6	0		ě	0	0	0	0	,
COCCINELLIDAE	3	i	0	4	3	é	í	é	•	ê	v Ø	6	í
COLYDIIDAE	6	6	ě	4	4	v Q	•	6	9	•	_	•	1
CURCULIONIDAE	13	29	ii	55	58	10	v 7	i5	-	6	•	9	
DERMESTIDAE	13				€ 20				14	5	9	5	16
	-	5	•	<b>(</b>	•	0	ė	•	•	•	0	ě.	
DRYOPIDAE	0	9	0	•	10	14	4	•	•	ø	Ý	•	2
DYTISCIDAE	•	4	0	2	76	68	4	ii	. 2	•	0	•	ić
ELATERIDAE	Ø	2	5	7	4	2	0	í	0	Ý	0	0	2
EROTYLIDAE	•	í	i	9	0	0	0	Ą.	0	•	0	Ø.	
EUCNEHIDAE	0	•	5	i	0	0	0	0	0	ø	0	•	
EUGLENIDAE	•	0		•	•	0	Ģ	ě	ø	6	Ģ	9	
HELODIDAE	i	9	0	i	15	11	13	10	2	i	i	0	É
HYDROPHILIDAE	ŧ	Í	i	<b>(</b>	8	6	i	5	6	i	é	Ø	8
LAMPYRIDAE	•	ø	Ó	3	5	i	•	•	9	•	<b>∂</b>	0	i
LATHRIDIIDAE	6	1	Ø	Ø	9	i	ø	Ą	0	0	é	6	
LEIODIDAE	0	9	Ø	•	ě	•	•	Ð	•	ø	0	0	
LYCIDAE	Ą	í	ŧ	•	ę	•	ĉ	(¢	0	ě	ø	6	
LYMEXYLIDAE	₩	•	<b>∲</b>	•	0	•	0	0	•	e	•	9	
HELANDRYIDAE	0	ø	9	•	0	6	ė	0	6	•	Ŷ	0	
HONOHHIDAE	0	ė	1	0	Ø	i	ė	0	0	. 0	ě	9	
MORDELLIDAE	6	3	17	26	6	4	6	¢	¢	(4	6	ě	5
NITIDULIDAE	₽	3	2	i	i	í	i	0	9	0	é		
OEDEHERIDAE	ę	<b>e</b>	5	ķ	0	•	•	•	0	0	Ą	6	
PHALACRIDAE	0	•	ø	i	0	i	•	. 0	9	9	ø	0	
PHENGODIDAE	<b>i</b> 8	44	24	i	ć	15	30	7	i	•	3	í	<b>i</b> 5
PLATYPODIDAE	•	0	9	e	0	ě	0	0	•	9	0	9	•
PSELAPHIDAE	<b>(</b>	0	é	. 6	í	Ŷ	è	ě	ė	6	6	0	
PTILODACTYLIDAE	3	7	3	Š	Ġ	į	4	9	0	0	Ġ	i	2
SCARABAEIDAE	1	2	8	7	6	i	ė	9	í	ě	9	i	2
SCOLYTIDAE	ě	9	9	•	i	ė	5	ø	è	ø	ě	9	_
SCYDMAENIDAE	1	6	ŧ	û	ě	ų.	ė	ě	6	ė	ē	<b>Q</b>	•
STAPHYLINIDAE	i	1	4	2	6	i	2	¥. ⊕	ę.	v Ø	-	-	
TENEBRIONIDAE	i	4	Ü	2	9	3			-	-	<b>6</b>	1	i
DANIFICADOS	ę.	į	ų ė	L A	₩ 4	ن 9	i ê	2	i	•	6	1	í
NÃO IDENTIF.	6	1	Ø	ě	i	Ø Ø	0	į	e e	<b>€</b>	9 1	<b>0</b>	
TOTAL	52	<b>1</b> 41	<b>117</b>	149	208	<b>15</b> 5	<b>8</b> 2	 59	3 <u>i</u>	<b>1</b> 3	14	 ۶	103
Nº AMOSTRAS	4	5	4	4	5	4	4	 5	 4	  4	 5	4	5

Tabela 86. Ilha do Mel. Praia Grande. Coleoptera. Captura média (no médio de indivíduos/semana), por família, nos me ses amostrados.

	SET(88)	OUT	NOV	DEZ	JAN(89)	FEV	HAR	ABR	KAI	JUN	JUL	AG
ALLECULIDAE	0,25	0,20	0,50	<b>0</b> ,50	0,00	0,00	0,00	0,00	0,00	<b>0</b> ,00	0,00	•,0
ANOBIIDAE	0,00	0,00	0,00	1,75	1,40	0,75	0,00	0,00	0,00	0,00	0,00	0,0
ANTHRIBIDAE	0,25	0,00	0,00	0,50	0,00	0,00	0,25	0,00	0,00	0,00	0,00	9,2
BOSTRYCHIDAE	0,25	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,0
BRUCHIDAE	0,00	0,20	0,00	0,00	0,00	0,00	6,00	0,00	0,00	0,00	0,00	0,0
BUPRESTIDAE	0,00	0,00	6,75	0,50	0,40	0,00	0,66	0,00	0,00	0,25	0,00	0,0
CANTHARIDAE	0,00	0,00	<b>0</b> ,44	0,00	0,00	0,00	0,00	6,00	0,00	0,00	0,00	0,0
CARABIDAE	0,25	1,20	1,75	2,75	0,80	0,25	0,00	0.00	0,00	0.00	0,00	0,0
CERAMBYCIDAE	0,75	1,00	1,75	2.00	2,40	€,5€	<b>0</b> ,50	0,80	0,50	1,00	0,0€	0,2
CHELONARIIDAE	0.00	0,00	0,50	1,25	9,00	0.00	0,00	0,00	0,00	0,00	0,00	0,0
CHRYSOHELIDAE	0,75	2,40	2,25	7,00	4,00	2,00	1,25	9,60	0,50	0,25	0,00	0,0
CLERIDAE	0,00	0,40	0,00	0,25	0,0€	9,00	0,00	0,00	0,00	0,00	0,00	0,0
COCCINELLIDAE	0,75	0,20	0,0€	1,00	0,60	0,00	0,25	0,00	0,00	0,00	0,00	0,0
COLYDIIDAE	0.00	0,00	0,00	0,60	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,0
CURCULIONIDAE	3,25	5,80	2,75	5,50	5,60	2,50	1,75	3,00	3,50	1,25	1,80	0,5
DERMESTIDAE	0.00	0,40	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
DRYOPIDAE	0,00	0,00	0,00	0,00	2,00	3,50	1,00	0,00	0,00	0,00	0,00	0,0
DYTISCIDAE	0,00	0,8€	0,00	0,50	14,00	17,00	1,00	2,20	0.50	0,00	0,00	0.0
ELATERIDAE	0,00	0,40	1,25	1,75	0,80	0,50	0,00	0,20	0,00	0,00	0,00	0,0
EROTYLIDAE	0,00	0,20	0,25	0,00	0,66	0,00	0,00	0,00	0,00	0,00	0,00	0,0
EUCNEHIDAE	0,00	0,00	0,50	0,25	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,0
EUGLENIDAE	9,60	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9,00	0,0
HELODIDAE	0,25	1,80	0,00	0,25	3,00	2,75	3,25	2,00	0,50	0,25	0,20	0,0
HYDROPHILIDAE	0,00	0,20	0,25	0,00	1,60	1,50	0,25	1,00	1,50	0,25	0,00	0,0
LAMPYRIDAE	0,00	0,00	1,50	€,75	0,40	0,25	0,00	0,00	0,00	0,00	0,00	0,0
LATHRIDIIDAE	0,00	0,20	0,00	0,00	9,60	0,25	0,00	0,00	0,00	0,00	0,00	0,0
LEIODIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
LYCIDAE	0,06	0,20	0,00	0,00	0,00	0,00	0.50	0,00	0,00	0,00	0.00	0,0
LYKEXYLIDAE	0,66	0,00	0,00	0,00	0,00	0,60	0,00	0,00	0,00	0,00	0,00	0,0
HELANDRYIDAE	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
MONOKHIDAE	0,00	0,00	0,25	0,00	6,66	0,25	0,00	0,00	0,00	0,00	0,00	0,0
MORDELLIDAE	0,00	0,60	4,25	6,5 <del>0</del>	1,20	1,00	0,00	0,00	0,00	0,00	0,00	0,0
NITIDULIDAE	0,00	0,60	0,50	0,25	4,20	0,25	0,25	0,00	0,00	0,00	0,00	0,0
OEDEHERIDAE	0.00	0,00	0,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
PHALACRIDAE	0,00	0,00	0,00	0,25	0,00	0,25	0,00	6,60	0,00	0,00	0,00	0,0
PHENGODIDAE	4,50	8,80	6.00	0,25	1,20	3,75	7,50	1,40	0,25	0,00	0,60	0,0
PLATYPODIDAE	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0,00	0,00	0,00	0,0
PSELAPHIDAE	0,00	0,00	0,00	9.00	0,20	0,00	0,00	0,00	0,00	0,00	0,00	0,0
PTILOBACTYLIDAE	0,75	1,40	0,75	0,56	0,00	0,25	1,60	0,00	0,00	<b>0</b> ,00	0,00	0,0
SCARABAEIDAE	0,25	0.40	2,00	1,75	1,20	<b>0</b> ,25	0,50	0,00	0,25	0.00	0,00	0,2
SCOLYTIDAE	0,00	0,40	0,00	<b>0</b> ,25	0,20	0,00	<b>0</b> ,50	0,00	0,60	0.00 0,00	0,00	0,C
SCYDHAENIDAE	€,25	0,00	0,00	0,00	Ø,00	0,00	0,00	0.00	0,00	0.00	0,66	0,0
STAPHYLINIDAE	0,25	0,20	1,60	0,50	0,00	0,25	<b>0</b> ,50	0,00	0,00	0,00	<b>0</b> ,00	0,0 0,2
TENEBRIONIDAE	0,25	0,20	0,00	0,50	9,00	0,25	<b>0</b> ,30	0,40	<b>0</b> ,25	0,00	0,00	0,2

Tabela 87. Ilha do Mel. Praia Grande. Coleoptera. Constância e d<u>o</u> minância(pela classificação de PALMA) das famílias.

FAMÍLIA	CONSTÂNCIA(X)	CLASS.PALMA	DOMINÂNCIA(X)	CLASS . PALKA	CLASS . GERAL
ALLECULIDAE	12,5 <del>0</del>	ACIDENTAL	0,58	ACIDENTAL	Rara
ANOBIIDAE	25,00	ACIDENTAL	1,65	ACIDENTAL	RARA
ANTHRIBIDAE	12,50	ACIDENTAL	0,48	ACIDENTAL	RARA
BOSTRYCHIDAE	2,50	ACIDENTAL	0,10	ACIDENTAL	RARA
BRUCHIDAE	2,50	ACIDENTAL	0,10	ACIDENTAL	RARA
BUPRESTIDAE	17,50	ACIDENTAL	<b>0</b> ,78	ACIDENTAL	RARA
CANTHARIDAE	0.00	-	ĕ,00	-	Knikn
CARABIDAE	35,00	ACESSÓRIA	2,91	ACESSÓRIA	INTERMEDIÁRIA
CERAMBYCIDAE	70,00	CONSTANTE	4,85	ACESSÓRIA	INTERMEDIÁRIA
CHELONARIIDAE	12,50	ACIDENTAL	6,68	ACIDENTAL	RARA
CHRYSOMELIDAE	72,50	CONSTANTE	8,83	DOKINANTE	COMUM
CLERIDAE	7,50	ACIDENTAL	0,29	ACIDENTAL	RARA
COCCINELLIDAE	20,00	ACIDENTAL	1,16	ACIDENTAL	RARA
COLYDIIDAE	0,00	-	0,00	NOIDERINE	nan.
CURCULIONIDAE	100.00	CONSTANTE	16,02	DOKINANTE	COMUM
DERMESTIDAE	2,50	ACIDENTAL	0,19	ACIDENTAL	RARA
DRYOPIDAE	22,50	ACIDENTAL	2,72	ACESSÓRIA	INTERMEDIARIA
DYTISCIDAE	42,5 <del>0</del>	ACESSÓRIA	15,63	DONINANTE	INTERNEDIARIA
ELATERIDAE	30,00	ACESSÓRIA	2,04	ACIDENTAL	INTERMEDIARIA
EROTYLIDAE	5,06	ACIDENTAL	<b>0,1</b> 9	ACIDENTAL	RARA
EUCNEHIDAE	5,00	ACIDENTAL	0,29	ACIDENTAL	rara R <b>a</b> ra
EUGLENIDAE	0,00	-	0,00	UCIDEM INC	нлнл
HELODIDAE	45,00	ACESSÓRIA	6,21	DOMINANTE	INTERHEDIÁRIA
HYDROPHILIDAE	27,50	ACESSÓRIA	2,82	ACESSÓRIA	INTERNEDIARIA
LAMPYRIDAE	17,50	ACIDENTAL	1,16	ACIDENTAL	RARA
LATHRIDIIDAE	5,40	ACIDENTAL	0,19	ACIDENTAL	RARA
LEIODIDAE	0,00	-	0,06	HOIDERINE	нлил
LYCIDAE	5, <del>0</del> 0	ACIDENTAL	<b>0</b> ,29	ACIDENTAL	DADA
LYMEXYLIDAE	0.00	-	0,00	HOTDERINE	RARA
HELANDRYIDAE	0,00	_	0,00	_	-
HONOHHIDAE	5, <del>0</del> 0	ACIDENTAL	0,19	ACIDENTAL	DADA
MORDELLIDAE	35,00	ACESSÓRIA	5,44		RARA
NITIDULIDAE	22,5 <del>0</del>	ACIDENTAL	€,87	DOMINANTE	INTERMEDIÁRIA
OEDEMERIDAE	2,50	ACIDENTAL		ACIDENTAL	RARA
PHALACRIDAE	5, <b>0</b> 6	ACIDENTAL	0,19	ACIDENTAL	RARA
PHENGODIDAE	72,5 <del>0</del>	CONSTANTE	0,19	ACIDENTAL	RARA
PLATYPODIDAE	72,3 <del>0</del> <b>0,0</b> 0	CORSTANTE	14,56	DOMINANTE	COHUN
PSELAPHIDAE		ACTRENTAL	0,00	ACTREUTA	
PTILODACTYLIDAE	2,5% 37,5%	ACIDENTAL ACESSÓRIA	0,1¢	ACIDENTAL	RARA
SCARABAEIDAE	37,5 <del>0</del> 47,5 <del>0</del>	ACESSÓRIA	2, <b>6</b> 4	ACIDENTAL	INTERMEDIÁRIA
SCOLYTIDAE	10.00	ACIDENTAL	2,82 4 30	ACESSÓRIA	INTERMEDIÁRIA
SCYDMAENIDAE			0,39	ACIDENTAL	RARA
STAPHYLINIDAE	2,5 <del>0</del> 27,50	ACIDENTAL	0,10	ACIDENTAL	RARA
		ACESSÓRIA	1,17	ACIDENTAL	INTERMEDIÁRIA
TENEBRIONIDAE	27,50	ACESSÓRIA	i,i7	ACIDENTAL	INTERMEDIÁRIA

Tabela 88. Ilha do Mel. Fortaleza. Tabanidae. Número total, frequência relativa(%) e captura média(no médio de indivíduos/semana), nos meses amostrados.

					NúHERO TI	DTAL							
	SET (88)	דניס	NOV	DEZ	JAN(89)	FEV	HAR	ABR	MAI	JUN	JUL	AGO	TOTAL
	2357 0	121	1468	49	14	27	29	7	0	•	•	0	51859 1715
	2357	6012	6012	1632	5712	5495	5179	9380	4413	1454	3585	2646	53574
				FREQU	JÊNCIA REI	LATIW							
	SET (88)	<b>0</b> UT	NOV	DEZ	JAN(8	9)		MAR	ABR				
OUTROS DIPTERA TABANIDAE													
		CA	PTURA H	féDIA(Ng	MÉDIO D								
	SET (88)	TUO	VOM	DEZ	JAN(8							JUL	
TABANIDAE	0.00	24.20	367.00	12.25	۶.	RA .	. 75	7 25	1 40	A AA	<b>a</b> aa	0,00	0.0

Tabela 89. Ilha do mel. Praia Grande. Tabanidae. Número total, frequência relativa(%) e captura média(no médio de indivíduos/semana), nos meses amostrados.

					NúMERO T	OTAL							
	SET (88)	OUT	NOV	DEZ	JAN(89)	FE	V MAF	R ABR	HAI	JUN	JUL	AGO	TOTAL
OUTROS DIPTERA TABANIDAE	<b>174</b> 7		3669 1110	22 <b>0</b> 3 58	357 <b>i</b> 28	357 ⁶ 57				281 0	515 €	582 Ø	26654 1420
TOTAL	1748	6468	4779	2261	3599	362	7 2079	7 1480	655	281	515	582	28674
				FREQ	UÊNCIA RE	LATI	VA(%)						
	SET (88)	OUT	NOV	DEZ	JAN(8	9)	FEV	MAR	ABR	MAI	MUL	JUL	AGO
OUTROS DIPTERA TABANIDAE	99,94 0.06				99, 0,								100,00 0,00
		CA	PTURA I	MÉDIA(N	o MéDIO I	E IN	DIVÍDUC	os/semai	NA)				
	SET (88)	OUT	VON	DEZ	JAN(8	9)	FEV	MAR	ABR	HAI	HUL	JUL	AGO
TABANIDAE	0,25	24,60	<b>27</b> 7,50	14,5€	5,	60	14,25	8,50	i,80	0,06	0,00	0,00	0,66

Tabela 90. Ilha do Mel. Fortaleza. Tabanidae. Número total de indivíduos, por espécie, nos meses amostrados.

SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	HUL	JUL	<b>AG</b> 0	TOTAL
•	ó	2	i	0	9	•	4	Ÿ	•	•	0	13
è	•	28	•	•	e	ė	•	0	•	₽	0	21
0	0	•	•	6	ė	Ġ	*)	0	ø	ę	Û	(
0	₽	•	i	0	9	0	0	•	Ŷ	0	Û	:
0	0	42	6	5	3	17	9	4	•	•	•	7
ė	115	1362	24	•	ě	•	•	8	•	•	•	150
ø	•	•	i	9	Ą	•	0	0	0	•	•	
•	ę	3	Ą	0	4	Ŷ	9	ė	9	0	0	
9	ę	0	i	ę	0	ė	•	ø	9	Û	•	
0	9	i9	6	5	22	ii	i	è	•	•	•	6
0	0	12	9	iê	5	í	2	ġ	0	0	ŧ	3
0	121	1468	49	14	27	29	7	ę	0	0	0	<b>i7i</b>
	e e e e e e e e e e e e e e e e e e e	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 2 6 6 28 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 6 2 i 0 0 0 0 0 0 0 i 0 0 42 6 0 115 1362 24 0 0 0 i 0 0 12 9	0 6 2 i 0 0 28 0 0 0 0 0 0 0 0 0 0 i 0 0 0 42 6 2 0 115 1362 24 0 0 0 0 i 0 0 0 i 0 0 0 i 0 0 0 2 4 0 0 0 12 9 10	0       6       2       1       0       0         0       0       28       0       0       0         0       0       0       0       0       0         0       0       0       1       0       0         0       0       42       6       2       3         0       115       1362       24       0       0         0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       19       6       2       22         0       0       12       9       10       2         0       121       1468       49       14       27	0       6       2       1       0       0       0         0       0       28       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0        0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	0       6       2       1       0       0       0       4         0       0       28       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>0       6       2       1       0       0       0       4       0         0       0       28       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td> <td>0       6       2       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td> <td>0       6       2       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td> <td>0       6       2       i       0       0       0       4       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td>	0       6       2       1       0       0       0       4       0         0       0       28       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	0       6       2       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	0       6       2       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	0       6       2       i       0       0       0       4       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0

Tabela 91. Ilha do Mel. Fortaleza. Tabanidae. Captura média(no médio de indivíduos/semana), por espécie, nos meses amostrados.

	SET(88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUK	JUL	AGO
Catachlorops furcatus	0,00	1,20	0,50	<b>0</b> ,25	0,00	0,00	<b>0</b> ,60	0,80	0,66	0,00	0,00	0,00
Catachlorops fuscinevris	0,00	0,60	7,0∂	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00
Chlorotabanus inanis	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00
Chrysops sp	0,00	0,00	0,66	<b>0</b> ,25	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00
Diacklorus bivitatus	0,00	0.00	10,50	1,50	0.49	<b>0,7</b> 5	4,25	0,00	0,00	0,00	0,00	0,00
Dichelacera alcicornis	0,00	23.00	340,50	6,00	0,00	0.00	0,00	0,00	0,00	0.00	0,00	0,00
Phaeotabanus litigiosus	9,00	0,00	0,00	0,25	0,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Poeciloderas sp	0,00	0,00	€.75	0,00	0,66	0,66	0,00	0,00	0.00	0,00	0,00	0.09
Pseudacanthocera sylverii	0,00	0,00	0.00	<b>0</b> ,25	0,00	0,00	0,00	0,00	0.00	6.00	0,00	0,60
Stenotabanus sp	0,00	0,00	4,75	1,50	0,40	5,50	2,75	0,20	0,66	0,9∂	0,00	0,00
Tabanus occidentalis	0.00	0,00	3,00	2,25	2,00	0,50	0,25	€,4€	0,0€	0,00	0,00	0.00

Tabela 92. Ilha do Mel. Praia Grande. Tabanidae. Número total de indivíduos, por espécie, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	KAR	ABR	HAI	JUN	JUL	AGO	TOTAL
Catachlorops furcatus	0	39	50	6	0	0	i	0	0	9	•	•	90
Catachlorops fuscinevris	9	•	52	i	ė	ė	•	•	0	•	ø	•	5
Chlorotabanus inanis	Ŷ	8	ŧ	i	9	8	ê	0	•	9	0	0	
Chrysops sp	e	0	Ą	•		0	ê	0	•	•	•	9	
Diachlorus bivitatus	0	•	8	5	i	0	è	Ġ	0	0	•	0	i
Dichelacera alcicornis	e	57	886	4	0	Ü	ė	0	0	0	Ŷ	0	94
Phaeotabanus litigiosus	•	8	•	0	Ð	•	Ą	9	0	0	ŷ	6	
<b>Poeciloderas</b> sp	ė	7	5	5	i	•	•	0	ė	•	0	0	í
Pseudacanthocera sylverii	ė	•	0	•	i	Ŷ	Ŷ	•	0	0	•	•	
Stenotabanus sp	9	0	52	10	3	38	27	Ŷ	0	0	0	•	13
Tabanus occidentalis	i	20	57	32	22	19	6	0	•	0	0	•	iS
 Total	i	123	1110	58	28	57	34	9	0		6	0	146

Tabela 93. Ilha do Mel. Praia Grande. Tabanidae. Captura média(no médio de indivíduos/semana), por espécie, nos meses amostrados.

	SET(88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUN	JUL	AGO
Catachlorops furcatus	0,00	7,80	12,50	1,50	0,00	0,00	0,25	0,00	<b>0</b> ,00	<b>6</b> ,00	0,00	6,00
Catachlorops fuscinevris	0,00	0,00	13,00	0,25	0,00	0,00	0,00	0,00	0,00	0,00	0,0ê	0,00
Chlorotabanus inanis	0,00	0,00	0,00	<b>0</b> ,25	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Chrysops sp	0,00	9,00	0.00	0,00	0,60	0.00	0,00	0,00	0,00	0,00	0,00	0,00
Diachlorus bivitatus	0,00	0,0€	2,60	0,50	0,20	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Dichelacera alcicornis	0,00	11,40	221,50	1,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0.00
Phaeotabanus litigiosus	0,00	0,00	0,60	0.60	0.00	0,00	0,00	0,00	0,00	0,00	0,60	0,00
<i>Poeciloderas</i> sp	0.00	1,40	1,25	0,50	0,20	0,00	0,00	0.60	0,00	0.00	0,00	0,00
Pseudacanthocera sylverii	0,00	0,00	0.00	0,00	0.20	0,00	0,60	0,00	0,00	0,69	0.00	0,66
Stenotabanus sp	0.00	0,00	13,66	2,50	0,75	9,5€	6,75	i,80	0,00	0,00	0.00	0,0€
Tabanus occidentalis	0,25	4,00	14,25	8,00	5,50	4,75	1,50	0,00	0,00	0,00	0,00	0,00

Tabela 94. Ilha do Mel. Fortaleza. Ichneumonidae. Número total, frequência relativa(%) e captura média(no médio de indivíduos/semana), nos meses amostrados.

					HUMERO TOT	AL							
	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	MAR	ABR	MAI	JUN	JUL	AGO	TOTAL
OUTRAS FAMÍLIAS	35			216		183 13	149			37		102	1775
ICHNEUMONIDAE			24 		10		16			18 			215
TOTAL	42				426							121	1990
					JÉNCIA RELA								
	SET (88)	OUT	NOV	DEZ			ΕV		ABR	IAN			AGO
OUTRAS FAMÍLIAS	83,33	87,21	90,84	93,10	96,24	93,	,37	90,30	84,02	84,13	67,27	71,76	84,36
ICHNEUHONIDAE					3,76								
		CA	PTURA H	(ÉIDA(N	o HÉDIO DE	INDIV	/iDUO	s/seha					
	SET(88)	OUT	NOV	DEZ	JAN(89)	F	EV	MAR	ABR	MAI			AGO
ICHNEUKONIDAE	1,75			4,00	3,20	3,	.25	4,00	6,20	5,00	4,50	4,80	4,75

Tabela 95. Ilha do Mel. Praia Grande. Ichneumonidae. Número total, frequência relativa(%) e captura média(no médio de indivíduos/semana), nos meses amostrados.

		NOV										TOTAL
i@	26*	36	37	23	7	2	4	2	3	4	4	iii4 i58
82	iii	<b>56</b> 8	250	211	112	66	37	43	12	99	41	1272
		VOV										
12,20	23,42	17,31	14,80	10,90	6,25	5 3,€	3 i€	,8i	4,65	25,00	4,04	9,75
	CA	PTURA M	léDIA(Kr	g Médio de 1	INDIVi	DUOS/SE	HANA)	:				
SET (88)	CUT	NOV	DEZ	JAN(89)	FE	/ KA	Ŕ	ABR	HAI	HUL	JUL	AGO
2,50	5,20	9,00	9,25	10,80	1,7	5 6.5	0 6	).80	6.50	0.75	0.80	1.00
	SET(88)  82  SET(88)  87,80 12,20  SET(88)	SET(88) OUT  72 85 10 26*  82 111  SET(88) OUT  87,80 76,58 12,20 23,42  CA  SET(88) OUT	SET(88) OUT NOV  72 85 172 10 26* 36  82 111 208  SET(88) OUT NOV  87,80 76,58 82,69 12,20 23,42 17,31  CAPTURA M  SET(88) OUT NOV	SET(88) OUT NOV DEZ  72 85 172 213 10 26* 36 37  82 111 208 250  FREQU  SET(88) OUT NOV DEZ  87,80 76,58 82,69 85,20 12,20 23,42 17,31 14,80  CAPTURA MÉDIA(NO  SET(88) OUT NOV DEZ	SET(88) OUT NOV DEZ JAN(89) 8  72 85 172 213 188 1 10 26* 36 37 23  82 111 208 250 211 1  FREQUÊNCIA RELAT  SET(88) OUT NOV DEZ JAN(89)  87,80 76,58 82,69 85,20 89,10 12,20 23,42 17,31 14,80 10,90  CAPTURA MÉDIA(NO MÉDIO DE 1  SET(88) OUT NOV DEZ JAN(89)	SET(88) OUT NOV DEZ JAN(89) FEV N 72 85 172 213 188 105 10 26* 36 37 23 7 82 111 208 250 211 112 FREQUÊNCIA RELATIVA(X) SET(88) OUT NOV DEZ JAN(89) FEV 87,80 76,58 82,69 85,20 89,10 93,73 12,20 23,42 17,31 14,80 10,90 6,25 CAPTURA MÉDIA(NQ MÉDIO DE INDIVÍD SET(88) OUT NOV DEZ JAN(89) FEV	SET(88) OUT NOV DEZ JAN(89) FEV MAR A  72 85 172 213 188 105 64 10 26* 36 37 23 7 2  82 111 208 250 211 112 66  FREQUÊNCIA RELATIVA(X)  SET(88) OUT NOV DEZ JAN(89) FEV MA  87,80 76,58 82,69 85,20 89,10 93,75 96,9 12,20 23,42 17,31 14,80 10,90 6,25 3,0  CAPTURA MÉDIA(NQ MÉDIO DE INDIVÍDUOS/SE  SET(88) OUT NOV DEZ JAN(89) FEV MA	SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR  72 85 172 213 188 105 64 33 10 26* 36 37 23 7 2 4  82 111 208 250 211 112 66 37  FREQUÊNCIA RELATIVA(X)  SET(88) OUT NOV DEZ JAN(89) FEV MAR  87,80 76,58 82,69 85,20 89,10 93,75 96,97 89 12,20 23,42 17,31 14,80 10,90 6,25 3,03 10  CAPTURA MÉDIA(No MÉDIO DE INDIVÍDUOS/SEMANA)  SET(88) OUT NOV DEZ JAN(89) FEV MAR	SET(88)         OUT         NOV         DEZ         JAN(89)         FEV         MAR         ABR         MAI           72         85         172         213         188         105         64         33         41           10         26*         36         37         23         7         2         4         2           82         111         208         250         211         112         66         37         43           FREQUÊNCIA RELATIVA(X)           SET(88)         OUT         NOV         DEZ         JAN(89)         FEV         MAR         ABR           87,80         76,58         82,69         85,20         89,10         93,75         96,97         89,19           12,20         23,42         17,31         14,80         10,90         6,25         3,03         10,81           CAPTURA MÉDIA(NQ         MÉDIO DE INDIVÍDUOS/SEMANA)    SET(88)  OUT NOV DEZ JAN(89) FEV MAR ABR	SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI JUN  72 85 172 213 188 105 64 33 41 9 10 26* 36 37 23 7 2 4 2 3  82 111 208 250 211 112 66 37 43 12  FREQUÊNCIA RELATIVA(X)  SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI  87,80 76,58 82,69 85,20 89,10 93,75 96,97 89,19 95,35 12,20 23,42 17,31 14,80 10,90 6,25 3,03 10,81 4,65  CAPTURA MÉDIA(NQ MÉDIO DE INDIVÍDUOS/SEMANA)  SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI	SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI JUN JUL  72 85 172 213 188 105 64 33 41 9 95 10 26* 36 37 23 7 2 4 2 3 4  82 111 208 250 211 112 66 37 43 12 99  FREQUÊNCIA RELATIVA(X)  SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI JUN  87,80 76,58 82,69 85,20 89,10 93,75 96,97 89,19 95,35 75,00 12,20 23,42 17,31 14,80 10,90 6,25 3,03 10,81 4,65 25,00  CAPTURA MÉDIA(NQ MÉDIO DE INDIVÍDUOS/SEMANA)  SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI JUN	SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI JUN JUL AGO  72 85 172 213 188 105 64 33 41 9 95 37 10 26* 36 37 23 7 2 4 2 3 4 4  82 111 208 250 211 112 66 37 43 12 99 41  FREQUÊNCIA RELATIVA(X)  SET(88) OUT NOV DEZ JAN(89) FEV MAR ABR MAI JUN JUL  87,80 76,58 82,69 85,20 89,10 93,75 96,97 89,19 95,35 75,00 95,96 12,20 23,42 17,31 14,80 10,90 6,25 3,03 10,81 4,65 25,00 4,04

^{* - 25} INDIVÍDUOS MONTADOS E 1 DANIFICADO

Tabela 96. Ilha do Mel. Fortaleza. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	HAR	ABR	MAI	JUN	JUL	AGO	TOTAL
ANOMALINAE	0	0	Ø	0	i	ø	0	0	0	ė	ø	0	i
BANCHINAE	6	0	0	6	2	i	•	•	Ŷ	0	0	•	3
CREHASTINAE	e	•	é	•	•	0	0	Ø	•	•	•	•	ę
EPHIALTINAE	ø	0	í	0	3	0	é	3	0	0	i	3	ii
GELINAE	0	4	9	4	3	5	2	4	4	4	5	5	49
ICHNEUHONINAE	0	•	í	2	4	í	2	2	í	i	5	0	15
HETOPIINAE	0	ė	3	3	3	0	i	i	•	2	•	0	13
KICROLEPTINAE	ø	0	2	5	Ø	ě	0	i	i	e	0	0	ŧ
OPHIONINAE	Ð	•	9	•	ę	2	i	0	9	0	i	•	4
ORTHOCENTRINAE	ć	5	7	i	5	4	6	9	9	2	5	Ŀ	62
PORIZONTINAE	i	í	í	3	2	€	4	í€	4	9	7	5	47
TERSILOCHINAE	0	ų.	0	6	•	0	9	í	í	6	0	0	2
TRYPHONINAE	•	ę	<b>₽</b>	ê	€	€	ė	0	0	ø	•	e	•
DANIFICADOS	Q.	í	Ø	í	•	•	€	ø	Ø	ė	6	ķ	Ē
TOTAL	7	ii	24	ić	16	13	16	31	20	i8	24	19	215

Tabela 97. Ilha do Mel. Fortaleza. Ichneumonidae. Constância e do minância(pela classificação de PALMA) das subfamílias.

SUBFAMÍLIA	CONSTÂNCIA(X)	CLASS.PALMA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS GERAL
ANOMAL INAE	1,92	ACIDENTAL	0.46	ACIDENTAL	RARA
Banchinae	5,77	ACIDENTAL	1,40	ACIDENTAL	rara
CREMASTINAE	0,00	-	0.00	-	-
EPHIALTINAE	ii,54	ACIDENTAL	5,12	DOMINANTE	INTERMEDIARIA
GELINAE	51,92	CONSTANTE	22.79	DOMINANTE	COMUH
ICHNEUHONINAE	23,08	ACIDENTAL	6,98	DOKINANTE	INTERMEDIÁRIA
HETOPIINAE	19,23	ACIDENTAL	6,65	DOMINANTE	INTERHEDIÁRIA
HICROLEPTINAE	7,69	ACIDENTAL	2,79	ACIDENTAL	RARA
OPHIONINAE	5,77	ACIDENTAL	1,86	ACIDENTAL	RARA
ORTHOCENTRINAE	55,77	CONSTANTE	28.84	DOMINANTE	COMUN
PORIZONTINAE	38,46	ACESSÓRIA	21,86	DOMINANTE	INTERMEDIÁRIA
TERSILOCHINAE	3,85	ACIDENTAL	0,93	ACIDENTAL	RARA
TRYPHONINAE	0.00	-	0.00	-	-

Tabela 98. Ilha do Mel. Praia Grande. Ichneumonidae. Número total de indivíduos, por subfamília, nos meses de amostrados.

	SET(88)	OUT	MOV	DEZ	JAN(89)	FEV	HAR	ABR	MAI	JUN	JUL	<b>AG</b> 0	TOTAL
ANOMALINAE	0	Ŷ	6	ø	6	0	ę.	0	Ø	ę	ø	6	(
BANCHINAE	6	6	•	0	0	•	ě	0	•	6	•	0	(
CREHASTINAE	2	7	0	ě	0	0	e	e	0	0	0	6	9
EPHIALTINAE	0	Û	è	1	0	e	ø	•	0	0	0	0	:
GELINAE	ć	13	29	<b>i</b> 5	<b>i</b> 5	3	í	i	5	i	5	5	96
ICHNEUMONINAE	0	3	ø	i	5	Ŷ	i	5	<b>@</b>	•	0	0	9
HETOPIINAE	ę	i	0	2	i	ě	0	ŧ	•	9	ě	0	
HICROLEPTINAE	0	ė	0	0	0	ě	9	Û	0	0	•	0	(
OPHIONINAE	4	ė	9	0	0	0	æ	0	ê	Ģ	ĝ	0	(
ORTHOCENTRINAE	i	•	9	Û	Ø	0	•	0	0	0	0	í	i
PORIZONTINAE	i	i	6	18	5	4	0	i	0	2	2	í	45
TERSILOCHINAE	e	9	¢	0	0	0	Ŷ	0	0	ø	•	0	(
TRYPHONINAE	<b>€</b>	6	Í	0	6	ð	0	0	Ø	0	0	0	:
DANIFICADOS	0	i	0	ŧ	•	•	0	•	6	•	•	•	;
TOTAL	i0	26	36	37	23	7	2	4	2	3	4	4	15

Tabela 99. Ilha do Mel. Praia Grande. Ichneumonidae. Constância e dominância(pela classificação de PALMA) das subfamílias.

CLASS.GERAL	CLASS.PALMA	DOMINÂNCIA(X)	CLASS.PALMA	CONSTÂNCIA(X)	SUBFAHİLIA
	-	e,00	-	0,00	ANOHALINAE
-	-	0,00	-	0.00	BANCHINAE
INTERHEDIARIA	DOMINANTE	5,7 <del>0</del>	ACIDENTAL	5,77	CREMASTINAE
RARA	ACIDENTAL	0,63	ACIDENTAL	1,92	EPHIALTINAE
COMUN	DOHINANTE	5 <b>6</b> ,96	CONSTANTE	<b>53,8</b> 5	GELINAE
INTERMEDIÁRIA	DOMINANTE	5,7 <del>0</del>	ACIDENTAL	ii,54	ICHNEUMONINAE
INTERHEDIÁRIA	ACESSÓRIA	2,53	ACIDENTAL	7,69	KETOPIINAE
•	-	0.00	-	0.00	HICROLEPTINAE
-	-	0,00	-	0,00	OPHIONINAE
RARA	ACIDENTAL	1,26	ACIDENTAL	3,85	ORTHOCENTRINAE
INTERMEDIARIA	ACESSÓRIA	25,95	ACESSÓRIA	30,77	PORIZONTINAE
-	-	0.00	-	0.00	TERSILOCHINAE
RARA	ACIDENTAL	₹,63	ACIDENTAL	1,92	TRYPHONINAE

Tabela 100. Antonina. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	HAI	JUN	JUL	TOTA
Acanthoderes jaspidea	0	0		0	i	ė	0	0	0	0	0	0	
Acyphoderes aurulenta	ė	•	Ø	1	5	i	0	0	•	•	9	0	
Aerenica albicans	•	0	i	•	ě	0	0	0	•	₽,	0	•	
Alcidion ludicrus	0	0	ø	•	•	i	0	6	0	•	•	0	
Batus hirticornis	Ŷ	0	i	i	0	0	é	ŧ	0	0	•	•	i
Chariergus tabidus	•	•	0	i	i	0	€	•	0	•	9	0	;
Compsocerus violaceus	ė	•	0	•	i	•	0	•	0	•	9	•	
Desmiphora intonsa	•	0	0	0	0	0	0	i	•	0	ě	ě	1
Eburodacrys luederwaldti	ø	0	0	i	0	•	ė	6	•	ē	0	0	
Esthlogena maculifrons	ė	•	•	Ø	ė	ė	0	0	i	0	ø	ė	:
Heterachthes flavicornis	è	0	0	9	2	•	0	ø	0	i	e	0	;
Lesbates spi	0	. 0	•	0	0	0	0	0	i	•	Ø	0	;
Hegacyllene falsa	0	0	€	•	i	•	•	e	0	•	0	0	1
Hyssodrysina lignaria	Ø	5	3	5	4	9	3	2	è	ě	0	4	36
Hyssodrysternum spi	0	0	•	€	•	•	í	0	0	0	0	0	1
Hyssodrystes bella	0	0	•	0	í	•	•	•	•	•	•	•	1
Ommata signaticollis	0	•	Ŷ	0	0	i	9	ŧ	0	0	•	0	1
Ophistomis fulvicornis	0	0	0	5	0	ê	0	•	ø	0	0	ė	â
Paramallocera hirta		0	0	0	i	•	•	ø	0	0	•	•	•
Paromoeocerus barbicornis	ė	•	0	0	5	Ú	è	0	0	0	•	0	í
Polyoza lacordairei	0	Ø	ė	•	i	•	•	•	Ø	•	0	0	1
TOTAL	0	2	5	ii	20	12	4	3	2	í	·	4	6

Tabela 101. Antonina. Cerambycidae. Constância e dominância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS.PALKA	DOMINÂNCIA(X)	CLASS . PALHA	CLASS . GERAL
Acanthoderes jaspidea	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Acyphoderes aurulenta	8,00	ACIDENTAL	10,94	DOMINANTE	INTERMEDIARIA
Aerenica albicans	2,00	ACIDENTAL	1,56	ACIDENTAL	rara
Alcidion ludicrus	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Batus hirticornis	4.00	ACIDENTAL	3,13	ACESSÓRIA	INTERNEDIÁRIA
Chariergus tabidus	4,00	ACIDENTAL	3,13	ACESSÓRIA	INTERMEDIÁRIA
Compsocerus violaceus	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Deswiphora intonsa	2,60	ACIDENTAL	1,56	ACIDENTAL	RARA
Eburodacrys luederwaldti	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Esthlogena maculifrons	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Heterachthes flavicornis	4,00	ACIDENTAL	4,69	ACESSÓRIA	INTERMEDIARIA
<i>Lesbates</i> spi	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Hegacyllene falsa	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Myssodrysina lignaria	32,00	ACESSÓRIA	50,00	DOMINANTE	INTERHEDIARIA
Hyssodrysternum spi	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Hyssodrystes bella	2,00	ACIDENTAL	i,56	ACIDENTAL	RARA
Ommata signaticollis	2,00	ACIDENTAL	1,56	ACIDENTAL	<b>RA</b> RA
Ophistomis fulvicornis	4,00	ACIDENTAL	3,13	ACESSÓRIA	INTERMEDI <b>Á</b> RIA
Paramallocera hirta	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA
Paromoeocerus barbicornis	2,00	ACIDENTAL	3,13	ACESSÓRIA	INTERMEDIÁRIA
Polyoza lacordairei	2,00	ACIDENTAL	1,56	ACIDENTAL	RARA

Tabela 102. São José dos Pinhais. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGD(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	HAI	ML	JUL	TOTA
desmus ventralis	0	0	ø	i	ê	Ŷ	8	0	ø	•	0	0	
anisopodus phalangodes	9	•	•	•	ė	•	i	•	0	0	ě	ø	
atus hirticornis	9	0	i	2	9	i	0	9	0	0	•	•	
hariergus quadripunctatus	€	ė	0	•	0	i	0	0	ŧ	•	Ŷ	0	
Coleoxestia spó	8	6	€	0	•	i	•	•	0	0	•	•	
popetres zonula	•	•	•	i	0	•	•	•	•	•	0	Û	
lemilophus leucogramma	é	ě	Ø	0	i	0	ø	0	•	0	e	•	
iyzomorphus quadripunctatus	€	€	•	0	•	i	ė	0	ė	•	0	•	
yssodrysina lignaria	0	•	0	0	2	•	. 🔞	2	e	ē	•	0	
Incideres dejeani	€	0	•	9	0	•	i	0	•	0	•	•	
Inocephala obliquata	0	0	0	0	•	9	2	0	•	•	0	0	
Spathoptera albilatera	0	ě	ė	0	Û	i	•	0	0	0	9	ė	
Trichillurges fasciatus	0	ŧ	•	i	•	9	ø	0	0	•	ŧ	•	
OTAL		0	í	5	3	5	4	2	0	0	0	• •	

Tabela 103. São José dos Pinhais. Cerambycidae. Constância e dom<u>i</u> nância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS.PALKA	DOMINÂNCIA(X)	CLASS.PALKA	CLASS . GERAL
adesmus ventralis	2,00	ACIDENTAL	5,00	ACESSÓRIA	INTERMEDIÁRIA
Anisopodus phalangodes	2,00	ACIDENTAL	5,00	ACESSÓRIA	INTERMEDIÁRIA
Batus hirticornis	8,00	ACIDENTAL	20,00	DOMINANTE	INTERHEDIARIA
Chariergus quadripunctatus	2,00	ACIDENTAL	5.00	ACESSÓRIA	INTERMEDIÁRIA
<b>Coleoxestia</b> spó	2,00	ACIDENTAL	5,00	ACESSÓRIA	INTERHEDIARIA
Epopetres zonula	2.0¢	ACIDENTAL	5.00	ACESSÓRIA	INTERMEDIARIA
Hemilophus leucogramma	2,00	ACIDENTAL	5,00	ACESSÓRIA	INTERMEDIÁRIA
Hyzomorphus quadripunctatus	2,00	ACIDENTAL	5,00	ACESSÓRIA	INTERMEDIÁRIA
Myssodrysina lignaria	4,00	ACIDENTAL	20,ēē	DOMINANTE	INTERMEDIÁRIA
Oncideres dejeani	2,00	ACIDENTAL	5, <del>00</del>	<b>ACESSÓRIA</b>	INTERMEDIARIA
Onocephala obliquata	4,00	ACIDENTAL	10,00	DOKINANTE	INTERMEDIÁRIA
Spathoptera albilatera	2,00	ACIDENTAL	5,00	ACESSÓRIA	INTERHEDIÁRIA
Trichillurges fasciatus	2,00	ACIDENTAL	5.00	ACESSÓRIA	INTERMEDIÁRIA

Tabela 104. Colombo. Cerambycidae. Número total de indivíduos,por espécie, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	HAR	ABR	MAI	JUN	JUL	TOTAL
Aerenea posticalis	0	9	ę	0	0	0	9	0	0	0	0	2	2
Bactriola vittulata	0	ė	ě	0	i	0	ė	ø	ð	0	•	0	í
Batus hirticornis	0	i	4	ø	Ø	0	0	ė	Ŷ	•	0	•	í
Chariergus signaticornis	0	i	ø	0	•	•	0	0	0	•	0	•	i
Colobothea subcincta	0	0	•	0	ø	6	9	i	•	•	ŧ	•	í
Compsa albopicta	5	ė	ø	ê	0	ě	Ú	•	Ŷ	•	ę	0	â
Desmiphora cirrosa	i	9	0	0	ě	ġ	•	i	•	0	•	ø	â
Desmiphora intonsa	8	ė	•	•	i	0	0	•	í	Ŷ	9	ŧ	a
Estola trucantella	ŧ	ė	•	ŧ	i	9	0	ę	6	í	i	0	3
Falsamblesthis ibiyara	ý	ġ	0	•	0	ė	Û	ė	8	•	0	i	Í
Heterachthes flavicornis	ø	ġ	•	i	Ŷ	i	•	•	0	•	•	. 0	â
Hyperplatys spi	0	•	•	•	i	5	Ú	•	•	9	0	0	3
Lesbates sp2	ė	•	¢	0	0	0	•	•	•	i	8	i	â
Hecometopus insignis	•	•	Ŷ	i	•	Ŷ	0	0	9	•	•	0	i
Hegacyllene acuta	Û	ě	ø	è	i	•	0	Ø	•	•	•	0	i
Heroscelisus violaceus	0	Ŷ	Ŷ	e	i	i	ø	•	Ø	•	Ġ	6	a
Healcidion bispinum	Ø	Ą	9	Ø	Ą	9	0	i	9	•	9	•	i
Mealcidion simillimum	9	ý	0	i	0	ð	Ø	ě	Ŷ	Ŷ	•	0	í
Myssodrysina lignaria	Ŷ	3	8	5	3	ś	i	6	Ŷ	0	•	0	38
Odontocera nigriclavis	ŧ	ŧ	i	i	0	9	ė	•	Ŷ	0	6	•	ä
Paramallocera hirta	<b>(4)</b>	ė	9	•	i	Ŷ	0	0	0	6	ē	0	i
Poeciloxestia dorsalis	Û	Ą	0	0	Ó	9	1	6	9	ø	0	0	Í
Rosalba swaradigwa	Ð	0	0	i	0	6	0	0	Ů	0	Ŷ	ě	i
TOTAL	3	5	9	10	10	i∳	2	 9	i	2	i	4	66

Tabela 105. Colombo. Cerambycidae. Constância e dominância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS PALMA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS . GERAL
herenea posticalis	1,96	ACIDENTAL	3,03	ACESSÓRIA	INTERMEDIÁRIA
Bactriola vittulata	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Batus hirticornis	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Chariergus signaticornis	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Colobothea subcincta	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Compsa albopicta	3,92	ACIDENTAL	3,03	ACESSÓRIA	INTERHEDIÁRIA
Desmiphora cirrosa	3,92	ACIDENTAL	3,03	<b>ACESSÓRI</b> A	INTERHEDIÁRIA
Deswiphora intonsa	3,92	ACIDENTAL	3,03	ACESSÓRIA	INTERMEDIÁRIA
Estola trucantella	5,88	ACIDENTAL	4,55	ACESSÓRIA	INTERMEDIÁRIA
alsamblesthis ibiyara	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Heterachthes flavicornis	3,92	ACIDENTAL	3,03	ACESSÓRIA	INTERHEDIÁRIA
iyperplatys spi	5,88	ACIDENTAL	4,55	ACESSÓRIA	INTERHEDIÁRIA
esbates sp2	3,92	ACIDENTAL	3,03	ACESSÓRIA	INTERHEDIÁRIA
decometopus insignis	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Megacyllene acuta	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
teroscelisus violaceus	3,92	ACIDENTAL	3,03	ACESSÓRIA	INTERMEDIARIA
Healcidion bispinum	1,96	ACIDENTAL	<b>i,5</b> 2	ACIDENTAL	RARA
Mealcidion simillimum	1.96	ACIDENTAL	1,52	ACIDENTAL	RARA
Myssodrysina lignaria	39.22	ACESSÓRIA	48,48	DOMINANTE	INTERMEDIÁRIA
Montocera nigriclavis	3,92	ACIDENTAL	3,∲3	ACESSÓRIA	INTERMEDIÁRIA
Paramallocera hirta	1,98	ACIDENTAL	i,52	ACIDENTAL	RARA
Poeciloxestia dorsalis	1,96	ACIDENTAL	1,52	ACIDENTAL	RARA
Rosalba swaradigwa	1,96	ACIDENTAL	1,52	ACIDENTAL	rara

Tabela 106. Ponta Grossa. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGO (86)	SET	OUT	HOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTA
Acanthoderes jaspidea	0	0	0	0	8	i	ø	0	0	0	0	0	****
Alampyris spi	•	•	•	0	i	0	ė	Ŷ	è	•	ŧ	0	
Callideriphus flavicollis	0	0	i	0	0	0	6	0	0	0	0	0	
Chariergus quadripunctatus	5	Ø	9	•	•	0	Ð	•	•	•	•	0	
Chariergus signaticornis	0	•	Ŷ	0	0	•	0	i	•	•	0	0	
Chariergus tabidus	•	•	9	i	i	i	•	•	•	0	0	•	
Chlorida costata	9	•	•	3	0	ø	9	2	i	0	0	3	
Colobothea schwidti	€	0	0	Ŷ	è	4	2	ę	0	•	•	•	
Colobothea spi	0	•	Ø	•	ø	•	•	í	•	0	•	•	
Compsa albopicta	i	8	14	7	0	0	è	0	0	0	0	0	3
Compsocerus violaceus	•	•	0	0	•	0	i	0	0	ø	0	0	
Desmiphora intonsa	9	i	0	0	i	0	2	0	í	3	í	2	1
Distenia columbina	0	ę	0	e	i	ø	0	0	ø	0	9	•	•
Estola trucantella	í	í	i	•	5	ė	0	3	ė	9	•	5	
Euryptera latipennis	ø	0	0	i	0	9	0	9	•		è	6	•
Heterachthes flavicornis	•	i	5	17	17	8	2	i	í	i		ě	ļ
Hyperplatys spi	é	ø	0	•	í	0	í	0	ē	0	e	0	
Isthmiade braconides	è	è	9	0	1	•	0	e	0	0	9	ė	
Lygrocharis nigripennis	ě	9	0	i	è	ė	é	9	ė	ė	ė	ø	
Hacropophora accentiter	0	6	0	í	0	ø	ė	ė	ė	0	è	ð	
Hecometopus insignis	è	6	•	i	ě	e	ė	0	ė	ě	é	ě	
Hegacyllene falsa	•	0	0	i	ė	•	ė	í	ė	ø	ě	ě	
Hionochroma vittatum	9	0	0	0	0	i	é	0	ė	e	ė	ø	
Healcidion bispinum	•	0	Ŷ	0	i		ė	ė	ě	0	ě	ě	
Heociytus curvatus	9	í	1	í	0	0	9	í	0	•	ě	8	
Keocorus zikani	1	9	ē	•	ě	ė	ø	ě	0	0	•	ě	
Hyssocarinus bondari		•	•	9	0	ţ	9	9	ø	0	è		
Hyssodrysina lignaria	ò	4	ii	9	8	i	5	14	í	ě	ø	3	
Odontocera nigriclavis	ě	è	0	i	0	é	<u>.</u>	ě	è	ě	ě	•	•
Ommata bipunctata	0	ė		2	0	ě	ė	ě	ø	9	9	0	
Ommata eirene	ě	ý	0	i	ø	6	Ú	9	6	6	. 6	è	
Ommata eunonia	Ą	0	3	4	0	6	ě	9	9	ě	0	ě	
Ommata maia	À	ě	ú	i	•	é	ø	ě	Ĝ	0	ě	v A	
Orthoschema spi	9	ø	9	i	í	ž	ē	8	0	8	Q.	T A	
Oxathres implicatus	0	9	é	0	i	i	ė	Ý	ě	0	ě	ě	
Paramallocera hirta	í	ě	•	i	. 6	À	0	5	i	•	ě	₹ 5	:
Paromoeocerus barbicornis	è	è	ě	â	i	4	i	ر. إد	5	5	6	Û	
Phespia simulans	Ý		i	A	è	A	Ĝ	•	ù	6	ę.	8	
Probatiominus schwarzeri	Â	ě	ė	A	ø	•	ų.	9	V A	ŧ	V A	ê	
Pseudolepturges spi	v ė	ě	ě	Ā	8	<u>.</u>	•	Ŷ	V ∆	Ð	6	6	
Tomopterus spi	0	ė	6	5	è	i	6	6	0	€	9	8	
 Total		<b>1</b> 6	 34	56	 37	27	ii	<b>3</b> 3	i#	 6	i	18	 2:

Tabela 107. Ponta Grossa. Cerambycidae. Constância e dominância (pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS . PALMA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS. GERAL
Acanthoderes jaspidea	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Alampyris spi	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Callideriphus flavicollis	2,00	ACIDENTAL	0,39	ACIDENTAL	RAR
Chariergus quadripunctatus	2,00	ACIDENTAL	<b>0,7</b> 8	ACIDENTAL	RAR
Chariergus signaticornis	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Chariergus tabidus	6,00	ACIDENTAL	i,18	ACIDENTAL	RARA
Chlorida costata	14,00	ACIDENTAL	3,53	ACESSÓRIA	INTERHEDIÁRIA
Colobothea schwidti	6.00	ACIDENTAL	2,35	ACIDENTAL	RARA
Colobothea spi	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Compsa albopicta	20,00	ACIDENTAL	11,76	DOKINANTE	INTERHEDIÁRIA
Compsocerus violaceus	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Desmiphora intonsa	18,00	ACIDENTAL	4,31	ACESSÓRIA	INTERHEDIÁRIA
Distenia columbina	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Estola trucantella	18,00	ACIDENTAL	5,10	DOMINANTE	INTERMEDIÁRIA
Euryptera latipennis	2,00	ACIDENTAL	0,39	ACIDENTAL	RAR
Heterachthes flavicornis	3 <b>4,00</b>	ACESSÓRIA	19,61	DOMINANTE	INTERMEDIARIA
Hyperplatys spi	4,00	ACIDENTAL	<b>0,7</b> 8	ACIDENTAL	RARA
Isthmiade braconides	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Lygrocharis nigripennis	2,00	ACIDENTAL	0.39	ACIDENTAL	RARA
Macropophora accentifer	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Hecometopus insignis	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Kegacyllene falsa	4,00	ACIDENTAL	€,78	ACIDENTAL	RARA
Hionochroma vittatum	2.00	ACIDENTAL	0,39	ACIDENTAL	RARA
Mealcidion bispinum	2.00	ACIDENTAL	0,39	ACIDENTAL	RARA
Heociytus curvatus	8,00	ACIDENTAL	1,57	ACIDENTAL	RARA
Heocorus zikani	2,00	ACIDENTAL	0,39	ACIDENTAL	RAR
Myssocarinus bondari	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Hyssodrysina lignaria	46,00	ACESSÓRIA	20,78	DOMINANTE	INTERHEDIÁRIA
Odontocera nigriclavis	2,00	ACIDENTAL	0.39	ACIDENTAL	RARA
Ommata bipunctata	2,00	ACIDENTAL	0,78	ACIDENTAL	RARA
Ommata eirene	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Ommata eunonia	10.00	ACIDENTAL	2,75	ACESSÓRIA	INTERMEDIARIA
Ommata maia	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Orthoschema spi	8.00	ACIDENTAL	1,57	ACIDENTAL	RARA
Dxathres implicatus	4,00	ACIDENTAL	ē,78	ACIDENTAL	RARA
Paramallocera hirta	20,00	ACIDENTAL	5, i <del>0</del>	DOMINANTE	INTERMEDIÁRIA
Paromoeocerus barbicornis	20,00	ACIDENTAL	6,67	DOMINANTE	INTERHEDIARIA
Phespia simulans	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Probatiominus schwarzeri	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Pseudolepturges spi	2,00	ACIDENTAL	0,39	ACIDENTAL	RARA
Tomapterus spi	5.00	ACIDENTAL	1,18	ACIDENTAL	RARA

Tabela 108. Guarapuava. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGO(86)	SET	OUT	MOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTA
Acanthoderes analis	0	0	ė	ø	i	0	Ą	6	6	0	8	•	
Acanthoderes jaspidea	0	6	0	i	0	ě	Ŷ	0	•	•	•	•	
Alcidion ludicrus	•	•	ø	ė	ė	•	i	•	ě	0	0	•	
Bactriola vittulata	6	0	i	0	e	0	Û	0	0	•	•	•	
Batus hirticornis	9	0	i	0	e	9	ð	•	ė	•	9	•	
Chariergus signaticornis	Ŷ	e	4	4	9	•	i	•	ė	0	•	•	
Chlorida costata	•	i	9	0	0	0	•	6	0	•	•	•	
Cometes hirticornis	0	ø	ė	0	2	0	•	0	6	0	0	•	
Compsocerus violaceus	9	9	9	ė	•	i	ė	•	0	•	0	•	
Diha <b>mm</b> aphora signaticollis	•	0	0	i	•	0	•	•	0	0	0	ŧ	
Ethemon lepidum	0	0	•	0	0	0	ė	ø	i	•	•	0	
Estola obscura	•	•	0	i	3	0	•	•	•	0	0	•	
Estola trucantella	ė	•	0	0	2	ė	0	ø	0	i	i	0	
leterachthes flavicornis	0	•	i	3	i	ę	•	0	e	•	•	•	
falacoscylus cirratus	•	•	0	ŧ	i	. •	ě	9	é	ê	•	•	
degacyllene acuta	ė	ø	ø	i	ę	ę	ŧ	0	•	9	0	9	
Weoclytus curvatus	ė	0	ě	i	2	0	0	•	0	ø	0	ě	
Myssodrysina lignaria	6	ê	3	3	14	7	4	8	10	•	•	ê	
Demata bipunctata	*	ė	Ģ	i	ø	9	0	•	ė	•	•	•	
<b>Demata</b> spi	•	ŧ	•	i	ð	•	•	•	9	ė	•	Ŷ	
<b>Dreodera</b> spi	ø	0	Ŷ	Ŷ	•	i	9	0	0	ę	•	0	
Pachypeza <b>w</b> arginata	Û	i	e	0	ė	6	•	•	•	ę	0	ě	
Paramallocera hirta	9	•	ė	9	3	ŝ	9	Ø	0	ě	ė	i	
Parandra sp4	0	è	Ą	•	ø	0	i	0	ė	6	•	9	
Paromoeocerus barbicornis	•	9	•	i	ę	4	3	1	9	Ø	e	ė	
Rosalba cordifera	0	i	ė	0	ė	ė	Ŷ	ø	0	0	ø	•	
TOTAL	0	3	1€	18	29	i5	10	9	ii	i	<u>-</u>	í	<u> </u>

Tabela 109. Guarapuava. Cerambycidae. Constância e dominância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS.PALKA	DOMINÂNCIA(X)	CLASS.PALMA	CLASS . GERAL
Acanthoderes analis	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Acanthoderes jaspidea	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Alcidion ludicrus	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Bactriola vittulata	1,92	ACIDENTAL	₩,93	ACIDENTAL	RARA
Batus kirticornis	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Chariergus signaticornis	ii,54	ACIDENTAL	8,33	DOMINANTE	INTERHEDIÁRIA
Chlorida costata	1,92	ACIDENTAL	€,93	ACIDENTAL	RARA
Cometes hirticornis	1,92	ACIDENTAL	1,85	ACIDENTAL	RARA
Compsocerus violaceus	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Dihammaphora signaticollis	1,92	ACIDENTAL	0,93	ACIDENTAL	INTERMEDIÁRIA
Ethemon lepidum	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Estola obscura	5,77	ACIDENTAL	3,70	ACESSÓRIA	INTERMEDIÁRIA
Estola trucantella	7,69	ACIDENTAL	3,70	ACESSÓRIA	INTERMEDIÁRIA
Heterachthes flavicornis	5,77	ACIDENTAL	4,63	ACESSÓRIA	INTERMEDIÁRIA
Malacoscylus cirratus	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Megacyllene acuta	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
Heociytus curvatus	5,77	ACIDENTAL	2,78	<b>ACESS</b> ÓRIA	RARA
Hyssodrysina lignaria	44,23	ACESSSÓRIA	45,37	DOMINANTE	INTERMEDIÁRIA
Ommata bipunctata	1,92	ACIDENTAL	<b>0,9</b> 3	ACIDENTAL	RARA
<b>Omma</b> ta spi	1,92	ACIDENTAL	0,93	ACIDENTAL	RARA
<b>Oreodera</b> spi	1.92	ACIDENTAL	<b>0,9</b> 3	ACIDENTAL	RARA
Pachypeza warginata	1,92	ACIDENTAL	<b>0,9</b> 3	ACIDENTAL	RARA
Paramallocera hirta	9,62	ACIDENTAL	5.56	DOKINANTE	INTERMEDIÁRIA
Parandra sp4	1.92	ACIDENTAL	0,93	ACIDENTAL	RARA
Paromoeocerus barbicornis	ii,54	ACIDENTAL	8,33	DOMINANTE	INTERMEDIÁRIA
Rosalba cordifera	1,92	ACIDENTAL	<b>0,9</b> 3	ACIDENTAL	RARA

Tabela 110. Fênix. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGO(86)	SET	OUT	MOV	DEZ	JAN (87)	FEV	MAR	ABR	HAI	JUN	JUL	TOTAL
 Aerenea posticalis	ý	0	0	í	9	0	0	0	0	0	e	0	
Ataxia obtusa	4	0	4	5	i	i	0	0	0	ê	ė	0	i
Bactriola vittulata	0	•	i	0	•	•	ė	0	•	0	0	0	:
Blabia tigrinata	ę	0	i	0	0	•	0	0	0	0	0	0	j
Chidarteres di <b>n</b> idiatus	0	•	0	i	í	0	ø	ø	0	0	0	e	í
Chlorida festiva	•	ø	í	0	í	•	0	0	0	0	0		í
Coleoxestia sp3	ø	ė	0	0	Û	í	ø	0	0	9	ė		
Cometes hirticornis	Ŷ	0	i	2	•	6	0	ø	0	e	0	0	
Compsa albopicta	•	i	0	0	•	0	e	ė	ė	0	0	ė	
Compsocerus violaceus	0	0	i	i	ø	Ó	0	ė	0	0		ė	i
Desmiphora cirrosa	ė	3	0	i	í	0	Ġ	Ù	ė	ė		8	
Desmiphora intonsa	0	4	4	ó	i	2	0	5	i	6	í	í	20
Erana ciliata	•	ě	i	é	Ð	0	•	0	•	6	ē	ē	-
Estola obscura	9	0	i	2	•	í	ø	e	•	e	•	0	
Estola trucantella	12	6	8	3	2	i	Ü	0	i	3	3	12	5:
Eutrypanus dorsalis	0	i	•	ė	0	ė	ė	ė	6	0	ė		
Hemilophus leucogramma	ě	ē	i	3	0	9	í	•	0		0	0	i
Hippopsis quinquelineata	9		5	6	•	ė	0	0	ø	9	ø	ė	,
Lepturges unicolor	0	0	9	í	0	ė	9	ě	0	0	ě	ě	•
Kalacoscylus cirratus		ė	ø	5	ě	0	0	ě	ø	0	0	9	:
Kegacyllene falsa		9	í	3		i	ě	i	0	0	6	ð	,
Kida <b>n</b> us hecabe	•	é	ē	A	i	9	ě		6	ě	0	ě	,
Hionochroma vittatum	•	ė	ě	í	i	i	0	9	0	0	é	ė	
Healcidion bicristatum	ê	0	1	•		9	0	ě	0	0	è	9	,
Healcidion bispinum	ě	ě	0	i	é	9	ě	9	0	. 0	ě	í	
Myssodrysina lignaria	5	12	28	29	13	7	4	12	3	4	4	ii	13
Odontocera nigriclavis	0	0	i	0	Ø			•	•	9	•		100
Odontocera sanguinolenta	0	Û	í	ø	9	9	ě	0	0	0	0	•	
Dedepeza umbrosa	ò	ė	8	i	i	ė	6	9	6	ė	é	ø	i
Ozineus spê	ā	í	i	ė	é	1	í	ø	8	0	2	ě	
Ozineus sp5	9	ė	ė	0	5	ě	ė	ø	0	Ý	ø	ě	
Pachypeza teres	û	é	i	é	9	Ŷ	Û	ø	ø	ě	0	• •	
Parischnolea excavata	4	ė	i	à	Q.	9	ě	ý ý	9	v Ø	0	v ê	
Paromoeocerus barbicornis	ě.	ů.		7	A.	V A	v i	A A	¥	Q A	⊽ A	<b>V</b>	1.
Plerodia syrinx	v A	ė	5	í	0	•	Ġ	9	6	٧	v	<b>₹</b>	•
Probatiominus signiferus	ν 4	9	ê	9	6	i	9	6	v ė	í	<b>0</b>	<b>₽</b>	4
Rosalba approxi <b>a</b> ata	V à	9	0	6	9	i Ø	9	e 0	v •	e i	0	0	
Rosalba consobrina	v A	í	0	ě	ě	v è	ė	é	<b>₽</b>	i	• •	v 0	i
Sphecomorpha murina	ν Δ		0	1	0	0	ě	9	9	1	₹ ê	9	i
Sporetus colobotheoides	¥	6	9	3	v i	9	<b>₹</b>	<b>₹</b>	9	<b>♥</b>	₹ ê	0	
Sydax straminea	v A	€	è	Ą	4	₹ 6	í	ę.	0	9	9	v €	•
Trichonyssodrys maculata	9	ė	ê	i	₽	0	0	ø	€	€	6	v e	
 Total	i7	 29	67	76	26	i7	8	<u>1</u> 9		16	8	25	314

Tabela 111. Fênix. Cerambycidae. Constância e dominância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS.PALMA	CLASS . GERA
Aerenea posticalis	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Ataxia obtusa	13,46	ACIDENTAL	3,5♥	ACESSÓRIA	INTERHEDIÁRI
Bactriola vittulata	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Blabia tigrinata	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Chidarteres di <b>m</b> idiatus	3,85	ACIDENTAL	0,64	ACIDENTAL	RAR
Chlorida festiva	3,85	ACIDENTAL	0,64	ACIDENTAL	rar
Coleoxestia sp3	1,92	ACIDENTAL	0,32	ACIDENTAL	rar
Cometes hirticornis	3,85	ACIDENTAL	₩,96	ACIDENTAL	rar
Compsa albopicta	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Compsocerus violaceus	3,85	ACIDENTAL	€,64	ACIDENTAL	RAR
Desmiphora cirrosa	7,69	ACIDENTAL	1,59	ACIDENTAL	RAR
Desmiphora intonsa	34,62	ACESSÓRIA	8.92	DOMINANTE	INTERHEDIÁRI
Erana ciliata	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Estola obscura	7.69	ACIDENTAL	1,27	ACIDENTAL	RAR
Estola trucantella	42,3i	ACESSÓRIA	16,24	DOMINANTE	INTERMEDIARI
Eutrypanus dorsalis	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Hemilophus leucogramma	7,69	ACIDENTAL	1,59	ACIDENTAL	RAR
Hippopsis quinquelineata	5,77	ACIDENTAL	i,59	ACIDENTAL	RAR
Lepturges unicolor	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Halacoscylus cirratus	3,85	ACIDENTAL	0,64	ACIDENTAL	RAR
Hegacyllene falsa	9,62	ACIDENTAL	1,91	ACIDENTAL	RAR
Kidamus hecabe	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Hionochroma vittatum	5,77	ACIDENTAL	0,96	ACIDENTAL	RAR
Healcidion bicristatum	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Healcidion bispinum	3,85	ACIDENTAL	0,64	ACIDENTAL	RAR
Hyssodrysina lignaria	73,08	CONSTANTE	42,04	DOMINANTE	COKU
Odontocera nigriclavis	1.92	ACIDENTAL	0,32	ACIDENTAL	RAR
Odontocera sanguinolenta	1,92	ACIDENTAL	9,32	ACIDENTAL	RAR
Oedepeza umbrosa	3,85	ACIDENTAL	0,64	ACIDENTAL	RAR
Ozineus sp2	7,69	ACIDENTAL	1,27	ACIDENTAL	RAR
Ozineus sp5	3,85	ACIDENTAL	0,64	ACIDENTAL	RAR
Pachypeza teres	1,92	ACIDENTAL	0.32	ACIDENTAL	RAR
Parischnolea excavata	1,98	ACIDENTAL	0.32	ACIDENTAL	RAR
Paromoeocerus barbicornis	17,31	ACIDENTAL	4,46	ACESSÓRIA	INTERMEDIÁRI
Plerodia syrinx	5,77	ACIDENTAL	1,27	ACIDENTAL	RAR
Probatiominus signiferus	1,92	ACIDENTAL	0,32	ACIDENTAL	RAR
Rosalba approximata	i,92	ACIDENTAL	<b>0</b> ,32	ACIDENTAL	RAR
Rosalba consobrina	3,85	ACIDENTAL	0,64	ACIDENTAL	RAR
Sphecomorpha murina	1.92	ACIDENTAL	0,32	ACIDENTAL	RAR
Sporetus colobotheoides	5,77	ACIDENTAL	i,27	ACIDENTAL	RAR
Sydax stra <b>m</b> inea	i,92	ACIDENTAL	0,32	ACIDENTAL	ran. Rar
Trichonyssodrys maculata	1,72	ACIDENTAL	0,32	ACIDENTAL	ran Rar

Tabela 112. Jundiaí do Sul. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN(87)	FEV	MAR	ABR	MAI	JUN	JUL	TOT
cestrilla laterifusca	0	Ŷ	í	0	0	0	0	9	9	0	0	0	
ichryson setosum	€	0	0	1	9	•	6	•	0	•	•	•	
chryson surinamum	•	9	0	0	0	• €	0	0	i	Ø	0	•	
detus analis	•	1	Ŷ	0	ø	0	€	0	ê	0	9	. 0	
erenea posticalis	0	19	7	5	•	•	<b>€</b>	0	ŧ	0	É	3	
licidion ludicrus	€	6	0	i	•	0	9	•	•	0	0	•	
itaxia obtusa	•	•	•	i	i	i	•	0	•	ø	Ø	0	
Carterica spi	ě	Ú	0	€	0	ø	0	0	i	0	ŧ	9	
hlorida costata	•	i	€	•	i	9	€	•	•	0	ė	0	
hlorida festiva	•	0	i	0	•	•	Ø	•	•	•	0	0	
olobothea schwidti	6	Ŷ	ø	ŧ	i	ŧ	•	0	ŧ	•	₽	•	
ompsa albopicta	1	55	36	64	8	•	ė	0	i	•	0	€	
ompsibidion vanum	0	€	5	0	•	•	. 🛭	0	¢	•	€	e	
tenoplon x-littera	0	0	9	i	ę	<b>€</b>	Ą	ø	ŧ	9	e	€	
esmiphora cirrosa	€	ŧ	. !	Û	•	Ŷ	€	i	è	•	0	ø	
esmiphora intonsa	5	Ē	0	0	•	ø	€	5	i	İ	i	0	
<b>Burodacrys</b> spi	•	Ø	Ģ	•	i	9	í	0	0	ė	•	0	
stola albostictica	0	i	€)	0	0	Ø	ŧ	i	ě	0	0	ŧ	
stola nigropunctata	. 0	•	0	i	Ý	0	•	0	6	ė	•	Ŷ	
stola obscura	ø	0	3	8	í	0	0	•	0	0	•	•	
stola obscuroides	•	0	9	0	i	ĝ	6	0	0	0	0	•	
stola trucantella	3	19	8	3	•	Ŷ	i	í	9	•	3	4	
utrypanus dorsalis	0	Ą	Á	3	İ	ø	5	i	•	•	0	0	
lesychotypa subfasciata	0	6	0	0	i	•	ė	ŧ	€	€	0	0	
eterachthes flavicornis	Ø	9	3	5	i	Ġ	•	•	ę	•	•	ŧ	
lexaplan ctenastamaides	Ø	•	ý	0	8	ė.	i	ě	e	9	9	•	
exoplan juno	Ũ	0	9	i	ø	9	•	0	0	0	e	0	
araesima scutelaris	Ģ	€	€	€	0	•	0	0	€	í	í	8	
eptostylus sp2	Ð	6	€	Ø	•	0	•	ė	6	i	0	ě	
acropophora accentifer	•	6	i	2	0	0	€	Ø	•	Ą	0	0	
falacopterus pavidus	Ý	ę	í	9	Ø	Ģ	ø	€	₽	•	0	0	
iallocera glauca	ę	<b>∲</b>		i	0	€	€	6	ŧ	Ø	0	0	
iegacyllene falsa	€	Ģ	Ą	0	Ŷ	€	i	0	♦	•	•	0	
eroscelisus violaceus	6	é	9	i	Ø	0	0	<b>e</b>	ê	0	Ø	€	
lealcidion bispinum	i	₽	0	0	€	Ø	ŧ	i	•	0	•	5	
yssodrysina lignaria	5	11	12	13	5	0	i	3	5	i	3	5	
yssodrystes pleuriticus	<b>₽</b>	i	ě	5	0	6	ø	Ģ	ø	Û	0	0	
Montocera virgata	Ą	0	•	i	₩	•	ø	9	•	€	€	ê	
wwata bipunctata	0	•	i	i	•	9	9	0	Ü	ē	Ø	0	
<b>zineus</b> sp3	₽	Ð	ø	<b>₽</b>	i	•	0	₽	•	€	ė	0	
aramallocera hirta	ė	€	0	i	•	9	<b>₽</b>	i	•	0	•	•	
aramallocera lacordairei	9	0	0	•	ė	0	i	9	•	•	9	₹	
arandra spi	•	9	0	0	Ø	0	í	ø	Ø	6	Ø	•	
lerodia syrinx	•	0	í	0	Ŷ	9	Ø	ø	8	•	0	0	
olyoza lacordairei	•	9	0	0	Ø	9	0	i	ė	0	€	•	
robatiominus signiferus	0	•	i	ø	ė	0	ø	Ŷ	6	•	₽	•	
osalba digna	¢	ø	Ē	9	0	•	ŧ	0	0	í	<b>₽</b>	•	
horacibidion lineaticolle	•	•	9	3	0	9	ė	9	8	ø	0	0	
ropidazineus vicinus	0	2	ę	ė	9	Ŷ	ø	ø	ę	₹	€	i	
frgleptes sp3			9	0	1	9	Ŷ	9	ę	6	ė	ė	
otal	12	<b>7</b> 9	83	113	24	í	Ģ	i2		<b></b> . 5	8	£5	

Tabela 113. Jundiaí do Sul. Cerambycidae. Constância e dominância (pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS . PALHA	DOMINÂNCIA(X)	CLASS.PALHA	CLASS . GERA
Acestrilla laterifusca	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Achryson setosum	1,92	ACIDENTAL	₩,27	ACIDENTAL	rar
Achryson surinamum	1,92	ACIDENTAL	0,27	ACIDENTAL	rar
Adetus analis	1,92	ACIDENTAL	0,27	ACIDENTAL	rar
Aerenea posticalis	21,15	ACIDENTAL	8,45	DOMINANTE	INTERMEDIÁRI
Alcidion ludicrus	i,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Ataxia obtusa	5,77	ACIDENTAL	9,82	ACIDENTAL	RAR
Carterica spi	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Chlorida costata	3,85	ACIDENTAL	0,54	ACIDENTAL	RAR
Chlorida festiva	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Colobothea schmidti	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Compsa albopicta	32,69	ACESSÓRIA	35,97	DOKINANTE	INTERMEDIÁRI
Compsibidion vanum	3,85	ACIDENTAL	€,54	ACIDENTAL	RAR
Ctenoplon x-littera	1,92	ACIDENTAL	€,27	ACIDENTAL	RAR
Desmiphora cirrosa	3,85	ACIDENTAL	<del>0</del> ,54	ACIDENTAL	RAR
Desaiphora intonsa	15,38	ACIDENTAL	2,45	ACIDENTAL	nan Rar
Eburodacrys spi	3,85	ACIDENTAL	0.54	ACIDENTAL	ran Rar
Estola albostictica	3,85	ACIDENTAL	₩,54	ACIDENTAL	
Estola nigropunctata	i,92	ACIDENTAL	<b>0</b> ,27	ACIDENTAL	RAR
Estola obscura	11,54	ACIDENTAL	3,27	ACESSÓRIA	RAR
Estola obscuroides	1,92	ACIDENTAL	0,27	ACIDENTAL	INTERMEDIÁRI
Estola trucantella	38.46	ACESSÓRIA			RAR
Eutrypanus dorsalis	15,38	ACIDENTAL	11,44 2 ee	DOMINANTE	INTERMEDIARI
=:	1.92		3,00	ACESSÓRIA	INTERMEDIÁRI
Hesychotypa subfasciata		ACIDENTAL	<b>9</b> ,27	ACIDENTAL	RAR
Heterachthes flavicornis	11,54	ACIDENTAL	1,63	ACIDENTAL	RAR
Hexoplon ctenostomoides	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Hexoplan juno	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Laraesima scutelaris	3,85	ACIDENTAL	0,54	ACIDENTAL	rar
Leptastylus sp2	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Hacropophora accentifer	5,77	ACIDENTAL	<b>0,8</b> 2	ACIDENTAL	RAR
Halacopterus pavidus	1,92	ACIDENTAL	<b>0</b> ,27	ACIDENTAL	RARI
Hallocera glauca	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Hegacyllene falsa	1,92	ACI <b>DENTA</b> L	0.27	ACIDENTAL	RARi
Heroscelisus violaceus	1,9ê	ACIDENTAL	0,27	ACIDENTAL	RARI
Healcidion bispinum	7,69	ACIDENTAL	1,09	ACIDENTAL	RAR
Myssodrysina lignaria	<b>53,8</b> 5	CONSTANTE	16,62	DOMINANTE	COKU
Hyssodrystes pleuriticus	3,85	ACIDENTAL	<b>9,8</b> 2	ACIDENTAL	RAR
Odontocera virgata	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Ommata bipunctata	3,85	ACIDENTAL	<b>0</b> ,54	ACIDENTAL	RAR
<b>Ozineus</b> sp3	1,92	ACIDENTAL	<del>0</del> ,27	ACIDENTAL	RAR
Paramallocera hirta	3.85	ACIDENTAL	0,54	ACIDENTAL	RAR
Paramallocera lacordairei	1.92	ACIDENTAL	0.27	ACIDENTAL	RAR
Parandra spi	i,92	ACIDENTAL	€,27	ACIDENTAL	RAR
Plerodia syrinx	i.92	ACIDENTAL	<b>9,2</b> 7	ACIDENTAL	RAR
Polyoza lacordairei	1.92	ACIDENTAL	0.27	ACIDENTAL	RAR
Probatiominus signiferus	1,98	ACIDENTAL	<b>0</b> ,27	ACIDENTAL	RAR
Rosalba digna	1,92	ACIDENTAL	0,27	ACIDENTAL	RAR
Thoracibidion lineaticolle	1,92	ACIDENTAL	0,82	ACIDENTAL	RARI
Tropidozineus vicinus	5.77	ACIDENTAL	9.82	ACIDENTAL	RARA
Urgleptes sp3	1.92	ACIDENTAL	0,27	ACIDENTAL	RARA

Tabela 114. Telêmaco Borba. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	AGO(86)	SET	OUT	NOV	DEZ	JAN (87)	FEV	MAR	ABR	MAI	JUN	JUL	TOTAL
Adesmus amoenoides	0	Û	0	0	i	i	0	0	0	0	0	0	;
Alcidion ludicrus	9	•	0	0	í	•	0	9	€	•	0	ø	- ;
Batus hirticornis	0	í	1	•	•	0	9	0	0	•	•	0	į
Chariergus signaticornis	•	7	14	i	0	0	ŧ	•	0	0	e	•	2
Chariergus tabidus	<b>♦</b>	€	•	i	•	€	•	0	0	0	•	0	
Chlorida costata	0	6	i	0	0	0	0	0	0	0	9	0	
Dodecosis serotina	•	0	e	0	Ŷ	ŧ	•	í	0	0	0	0	:
Estola trucantella	i	5	i	i	•	é	0	ė	0	0	8	0	
Heterachthes flavicornis	0	ē	0	0	i	e	•	0	•	0	8	0	
Lophopoeum spi	. 0	0	9	0	è	5	2	9	0	0	e	0	
Malacoscylus cirratus	•	0	•	3	3	2	0	0	0	0	e	0	
Megacyllene acuta	•	0	0	i	0	ė	0	€	. 0	ŧ	ē	0	
Hygalobas ferruginea	•	i	í	•	ê	ø	ė	0	0	0	ø	ė	
Healcidion bispinum	Ŷ	6	0	i	ě	0	•	2	0	6	ė	0	
Hyssocarinus bondari	0	•	0	•	i		0	0	0	0	0	ė	
Myssodrysina lignaria	•	7	í	5	2	0	*	5	3	0	•	0	5
Odontocera sp2	•	•	•	í	0	€	Ŷ	0	0	6	0		
Ophistomis fulvicornis 🕟	0	9	9	i	0	é	Û	0	0	•	0	•	
Parandra sp4	9	ŧ	•	•	•	•	•	i	9	•	•	0	
 Total	i	18	19	12	9	5	 2	ç	3	·		û	 7

Tabela 115. Telêmaco Borba. Cerambycidae. Constância e dominância (pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÂNCIA(X)	CLASS.PALNA	CLASS . <del>G</del> ERAL
Adesmus amoenoides	3,92	ACIDENTAL	2,56	ACESSÓRIA	INTERMEDIÁRIA
Alcidion ludicrus	1,96	ACIDENTAL	1,28	ACIDENTAL	RAFA
Batus hirticornis	3,92	ACIDENTAL	2,56	ACESSÓRIA	INTERMEDIARIA
Chariergus signaticornis	15,69	ACIDENTAL	28,21	DOMINANTE	INTERMEDIÁRIA
Chariergus tabidus	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Chlorida costata	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Dodecosis serotina	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Estola trucantella	7,84	ACIDENTAL	6,41	DOMINANTE	INTERHEDIARIA
Heterachthes flavicornis	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Lophopoeum spi	7.84	ACIDENTAL	5,13	DOMINANTE	INTERHEDIARIA
Malacoscylus cirratus	5,88	ACIDENTAL	10,26	DOMINANTE	INTERMEDIÁRIA
Megacyllene acuta	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Hygalobas ferruginea	3,92	ACIDENTAL	2,56	ACESSÓRIA	INTERHEDIÁRIA
Healcidion bispinum	5,88	ACIDENTAL	3,85	ACESSÓRIA	INTERMEDIARIA
Nyssocarinus bondari	1.96	ACIDENTAL	i,28	ACIDENTAL	RARA
Hyssodrysina lignaria	21,57	ACIDENTAL	25,64	DOMINANTE	INTERHEDIARIA
<b>Odontocera</b> sp2	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Ophistomis fulvicornis	1,96	ACIDENTAL	1,28	ACIDENTAL	RARA
Parandra sp4	1,96	ACIDENTAL	i,28	ACIDENTAL	RARA

Tabela 116. Ilha do Mel. Fortaleza. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	HAR	ABR	HAI	JUN	JUL	<b>A</b> GO	TOTA
Acyphoderes aurulenta	0	0	i	i	0	0	9	0	0	0	0	0	
Ataxia obtusa	Ě	. 0	0	0	6	•	0	€	•	0	0	•	
Chidarteres di <b>n</b> idiatus	•	Ø	3	Ü	9	0	Ø	0	•	•	0	•	
Chlorida costata	0	0	0	•	i	9	0	Ý	0	₽	0	•	
Deswiphora intonsa	₩)	•	0	•	0	9	0	0	0	0	0	i	
Desmiphorini spi	9	0	0	•	0	•	•	ø	Ø	0	0	0	
Eburodacrys luederwaldti	<b>@</b>	0	0	ê	i	6	i	ø	0	ø	•	ø	
Estola microphthalma	Ø	Ŷ	€	0	0	0	0	0	0	Ò	0	•	
Estola obscura	•	•	0	0	<b>₽</b>	<b>₽</b>	e	0	•	•	•	0	
Stola trucantella	9	0	9	•	9	0	è	•	•	0	0	Û	
Heterachthes flavicornis	ø	•	•	0	•	•	0	•	i	ø	i	0	
Methiini spi	. ♦	0	i	ø	0	Ŷ	0	0	₽	e	0	0	
Heoestola spi	ę.	9	é	6	e	6	e	9	¢	Ŷ	0	0	
Myssodrysina lignaria	Ŷ	0	i	0	9	i	•	€	9	0	9	ø	
Vyssodrysternum spi	0	•	Ŷ	•	€	ø	Ŷ	0	i	0	0	0	
Obereaides jargenseni	ø	•	•	i	9	ø	0	0	0	ø	•	0	
Damata nigriventris	8	ė	•	i	ė.	0	¢	•	e	•	Ą	0	
Oreodera ohausi	Ý	•	₽	0	9	ŧ	•	0	0	•	0	0	
Preodera quinquetuberculata	•	•	9	0	i	è	9	0	9	9	0	•	
Ornistomus bicinctus	•	Ý	•	•	0	9	0	₽	ø	•	0	0	
rotal	e		<del></del> -	3	3	i	i	<b>e</b>	2	0	i	<u> </u>	

Tabela 117. Ilha do Mel. Fortaleza. Cerambycidae. Constância e d<u>o</u> minância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS. PALMA	DOMINÂNCIA(X)	CLASS . PALHA	CLASS . GERAL
Acyphoderes aurulenta	3,85	ACIDENTAL	ii,ii	DOMINANTE	INTERMEDIÁRIA
Ataxia obtusa	0,00	-	0,00	· -	-
Chidarteres dimidiatus	5,77	ACIDENTAL	16,67	DOMINANTE	INTERMEDIÁRIA
Chlorida costata	1,92	ACIDENTAL	5,56	DOMINANTE	INTERMEDIÁRIA
Desaiphora intonsa	1,92	ACIDENTAL	5,56	DOMINANTE	INTERMEDIARIA
Desmiphorini spi	0,00	-	0,00	-	-
Eburodacrys luederwaldti	3,85	ACIDENTAL	ii,ii	DOMINANTE	INTERMEDIÁRIA
Estola microphthalma	0,00	-	0.06	-	-
Estola obscura	0,00	-	0,00	-	-
Estola trucantella	0,00	-	0,00	-	-
Heterachthes flavicornis	3,85	ACIDENTAL	ii,ii	DOMINANTE	INTERHEDIARIA
Methiini spi	1,92	ACIDENTAL	5,56	DOHINANTE	INTERMEDIÁRIA
<b>Heoestola</b> spi	0,00	<b>-</b> ·	0,00	-	-
Nyssodrysina lignaria	3,85	ACIDENTAL	ii,ii	DOMINANTE	INTERMEDIÁRIA
Nyssodrysternum spi	1,98	ACIDENTAL	5.56	DOMINANTE	INTERHEDIÁRIA
Obereoides jorgenseni	1,92	ACIDENTAL	5,56	DOMINANTE	INTERMEDIÁRIA
Ommata nigriventris	1.92	ACIDENTAL	5,56	DOMINANTE	INTERMEDIÁRIA
Oreodera ohausi	0,00	-	0.00	-	-
Oreodera quinquetuberculata	1,92	ACIDENTAL	5,56	DOMINANTE	INTERMEDIÁRIA
Ornistomus bicinctus	0.00	-	0,00	-	-

Tabela 118. Ilha do Mel. Praia Grande. Cerambycidae. Número total de indivíduos, por espécie, nos meses amostrados.

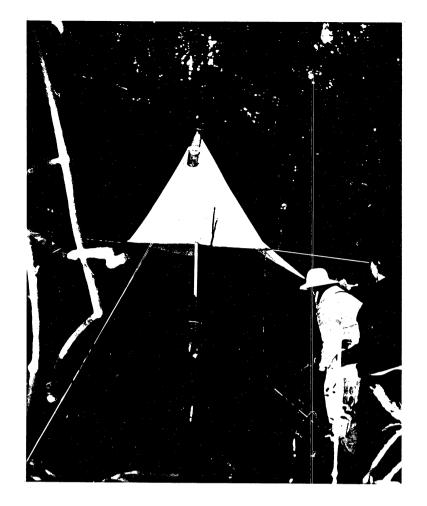

	SET (88)	OUT	NOV	DEZ	JAN(89)	FEV	HAR	ABR	MAI	JUN	JUL	AGO	TOTA
Acyphoderes aurulenta	ė	ý	0	9	6	0	e	0	ø	0	ė	0	
Ataxia obtusa	•	è	•	6	i	•	•	0	•	•	ě	•	
Chidarteres dimidiatus	•	0	ė	0	9	ŧ	0	8	0	0	•	0	
Chlorida costata	0	•	0	0	0	0	•	9	0	0	0	ě	
Desmiphora intonsa	•	Ø	•	0	í	Ø	€	0	i	i	•	i	
Desmiphorini spi	ŧ	Ą	9	•	0	0	€	2	0	ė	•	Ŷ	
Eburodacrys luederwaldti	•	0	í	Ģ	0	Ø	0	ø	ė	0	Ŷ	•	
Estola microphthalma	e	i	•	0	ť	9	ø	6	•	0	ŧ	0	
Estola obscura	0	€	Ą	6	0	ø	0	i	6	•	•	•	
Estola trucantella	Ŷ	i	0	0	i	0	e	ę	0	•	•	•	
Heterachthes flavicornis	•	0	0	5	ė	e	0	ŧ	ŧ	1	₽	0	
Methiini spi	•	È	9	Ŷ	ė	0	0	0	ė	•	0	•	
Neoestola spi	é	ė	0	Ģ	í	<b>@</b>	0	0	0	0	é	ø	
Myssodrysina lignaria	3	3	6	4	8	2	2	i	i	i	•	ę	
Hyssodrysternum spi	€	ě	0	0	0	0	0	€	0	0	0	•	
Übereoides jorgenseni	9	9	0	ø	Ð	0	ø	•	•	ě	ė	Ą	
Ommata nigriventris	0	ø	Ð	•	0	Ŷ	0	₽	€	è	ø	•	
Oreodera okausi	0	ø	0	€	€	0	ė	₩	ġ	i	0	Ą.	
Oreodera quinquetuberculata	ě	•	Ŷ	i	0	0	•	•	0	•	ø	•	
Ornistomus bicinctus	9	ø	0	i	ê	Ŷ	0	•	0	ŧ	•	ŧ	
TOTAL	3	5	7	8	<b>i</b> 2	2	2	4	2	4	0	í	

Tabela 119. Ilha do Mel. Praia Grande. Cerambycidae. Constância e dominância(pela classificação de PALMA) das espécies.

ESPÉCIE	CONSTÂNCIA(X)	CLASS.PALHA	DOMINÁNCIA(X)	CLASS.PALHA	CLASS.GERAL
Acyphoderes aurulenta	0.00	-	0,00	-	
Ataxia obtusa	1,92	ACIDENTAL	2,00	ACIDENTAL	rara
Chidarteres dimidiatus	0.00	-	0,00	-	-
Chlorida costata	9,00	-	9,00	-	-
Desmiphora intonsa	7.69	ACIDENTAL	8,00	DOMINANTE	INTERMEDIÁRIA
Desmiphorini spi	3,85	ACIDENTAL	4,00	ACESSÓRIA	INTERMEDIÁRIA
Eburodacrys luederwaldti	1,92	ACIDENTAL	2,00	ACIDENTAL	RARA
Estola wicrophthalwa	1,92	ACIDENTAL	2,00	ACIDENTAL	rara
Estola obscura	1,92	ACIDENTAL	2,00	ACIDENTAL	RARA
Estola trucantella	3,85	ACIDENTAL	4,00	ACESSÓRIA	INTERMEDIÁRIA
Heterachthes flavicornis	3,85	ACIDENTAL	ó,0€	DOMINANTE	INTERMEDIÁRIA
Methiini spi	6,66	-	0,00	-	-
<i>Neoestola</i> spi	1,92	ACIDENTAL	2,00	ACIDENTAL	RARA
Nyssodrysina lignaria	38,46	<b>ACESSÓRIA</b>	62,00	DOMINANTE	INTERMEDIARIA
Hyssodrysternum spi	0,00	-	0,00	-	-
Obereoides jorgenseni	0,00	-	0,00		-
Ommata nigriventris	0,00	-	0,00	-	-
Oreodera ohausi	1,92	ACIDENTAL	2,00	ACIDENTAL	rara
Oreodera quinquetuberculata	1,92	ACIDENTAL	2,00	ACIDENTAL	RARA
Ornistomus bicinctus	i,92	ACIDENTAL	2.00	ACIDENTAL	RARA

Tabela 120 Número de espécies(S) e de indivíduos(N) de Cerambyc $\underline{i}$  dae, diversidade(H´), uniformidade(U) e variância (S²) encontrados nos dez pontos amostrados.

LOCAL	S	N	Н′	U	S ₂
ANTONINA S.J.PINHAIS COLOMBO P.GROSSA GUARAPUAVA FÊNIX J.SUL T.BORBA	21 13 23 41 26 42 50	 64 20 66 255 108 314 367 78	2,0746 2,3721 2,2426 2,7222 2,2325 2,3233 2,4178 2.2329	0,6814 0,9248 0,7152 0,7330 0,6852 0,6216 0,6180 0.7584	0,03306 0,01383 0,03290 0,00623 0,01932 0,00822 0,00665 0.01567
FORTALEZA P. GRANDE	12 13	18 50	2,4000 1,5505	0,9658 0,6045	0,01387 0,00096 0,03881



В




FIGURA 1. Armadilha "Malaise". A - Vista Frontal e B - Vista Lateral




Figura 2. PROFAUPAR. Localização dos pontos amostrados no Estado do Paraná(ITCF, 1990). 1. Antonina, 2. São José dos Pinhais, 3. Colombo, 4. Ponta Grossa, 5. Guarapuava, 6. Fênix, 7. Jundiaí do Sul e 8. Telêmaco Borba.



Figura 3. Porção oriental do Estado do Paraná. Localização da Ilha do Mel(seta) na entrada da Baía de Paranaguá(BIGARE -LLA, 1978 e INPE/LANDSAT - 1976).

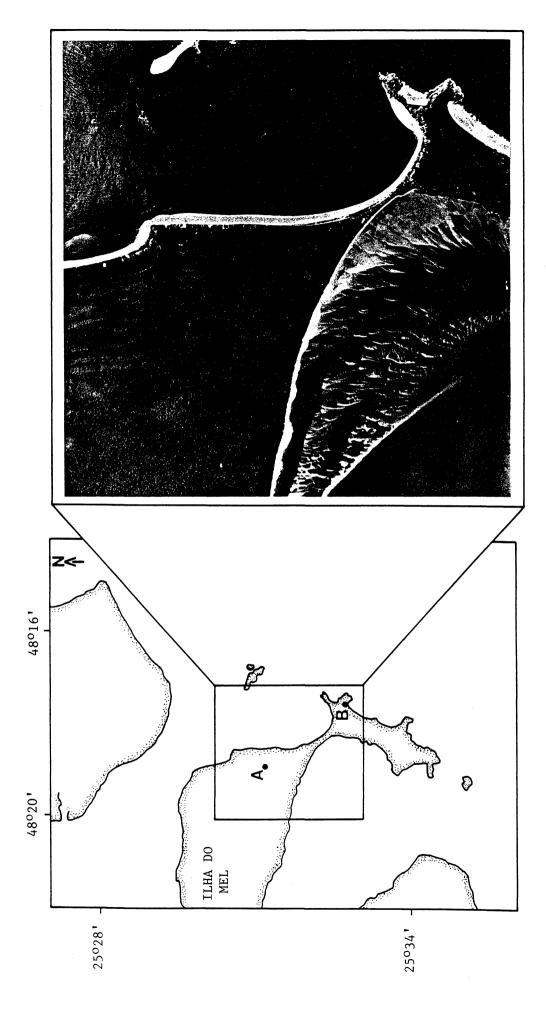



Figura 4. Ilha do Mel. Localização dos pontos amostrados. A - Fortaleza e B - Praia Grande(Carta nº 1821 - DHN, Marinha do Brasil e ITCF/PR - 1980).

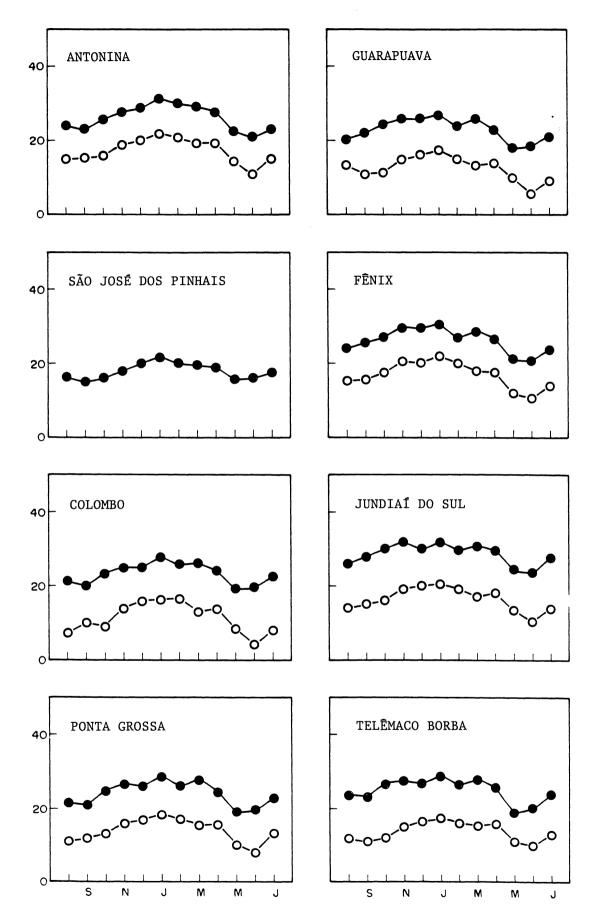



Figura 5. PROFAUPAR. Flutuação anual das temperaturas(médias) mensais máxima(●) e mínima(●), em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

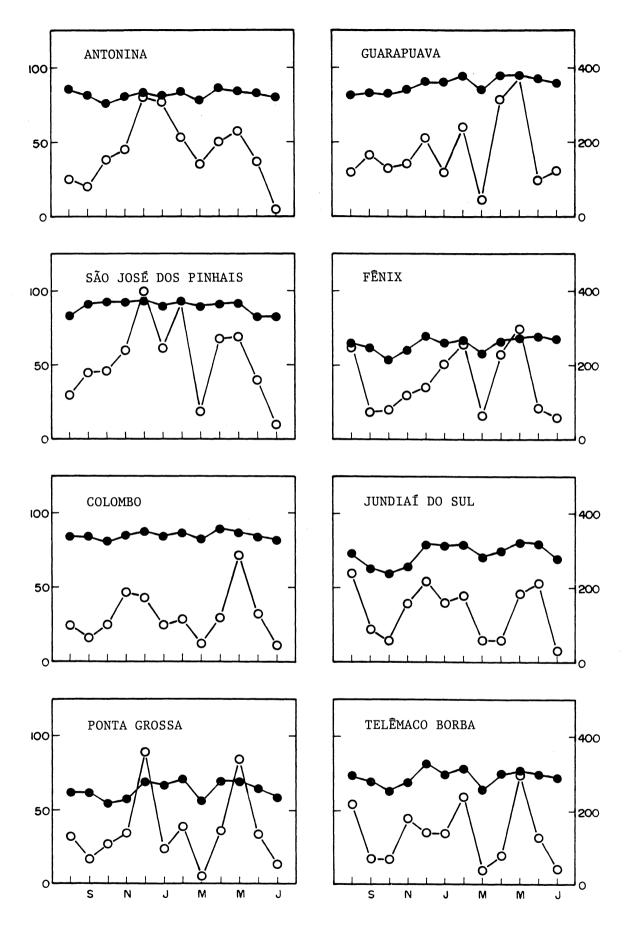



Figura 6. PROFAUPAR. Flutuação anual da umidade relativa(média) mensal(●) e da precipitação(O)total, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

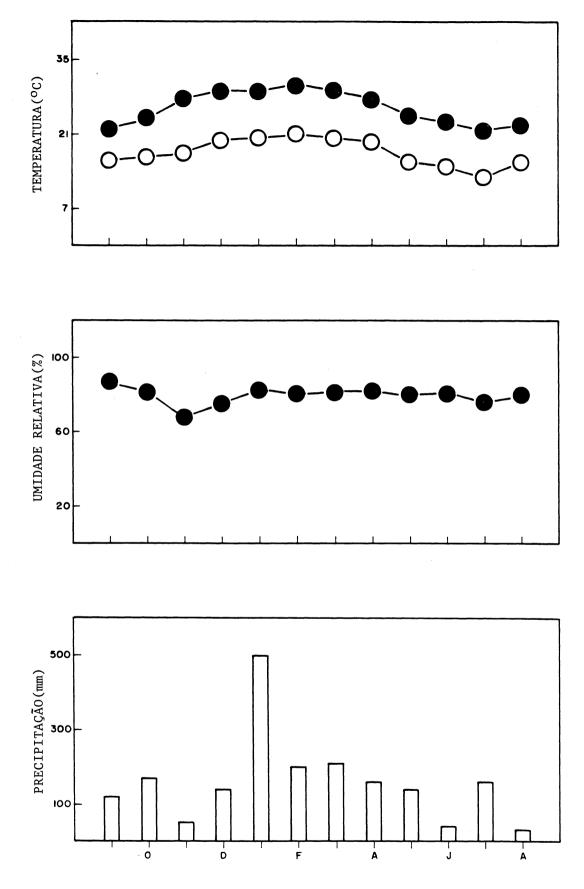



Figura 7. Ilha do Mel. Flutuação anual das temperaturas(médias) mensais máxima e mínima, umidade relativa(média) mensal e precipitação to tal, no período de setembro de 1988 a agosto de 1989.

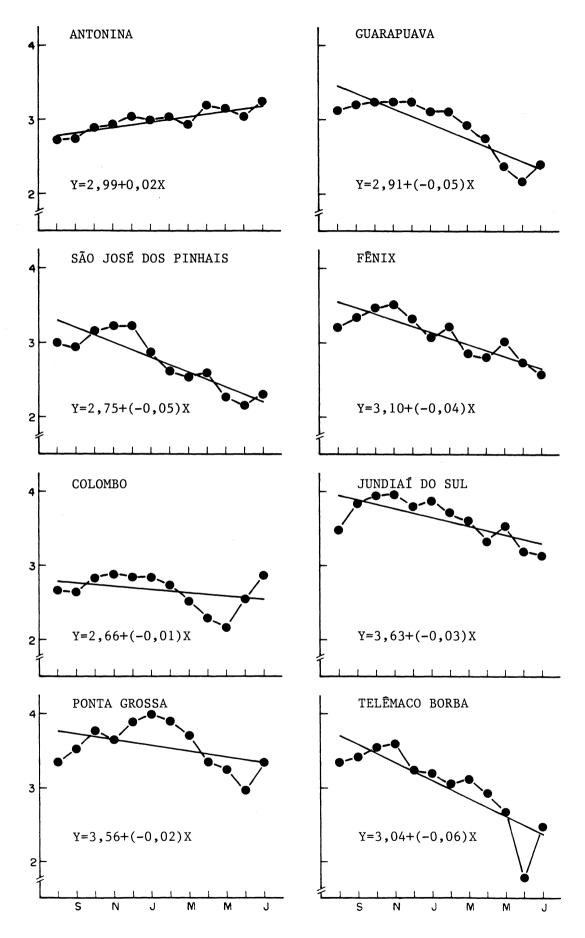



Figura 8. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº mé - dio de indivíduos/semana) dos Insecta e reta de tendência, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

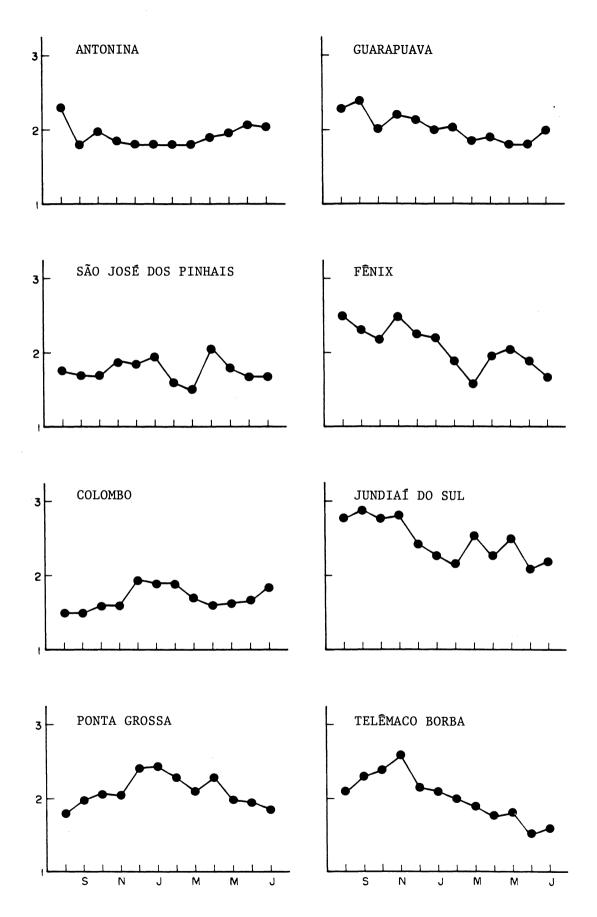



Figura 9. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de indivíduos/semana + 1) + 1,5 dos Hemiptera, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

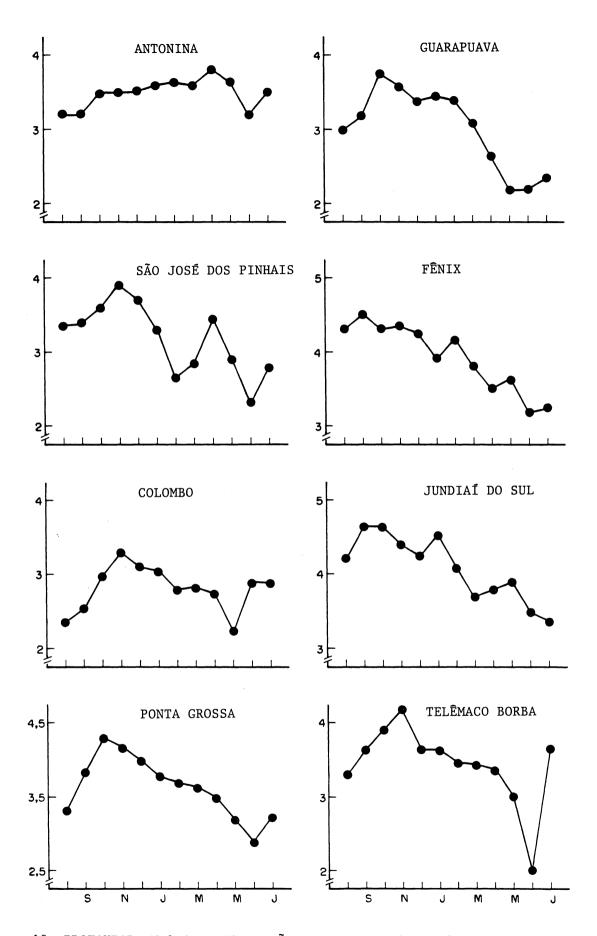



Figura 10. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de indivíduos/semana) + 2 dos Homoptera, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987

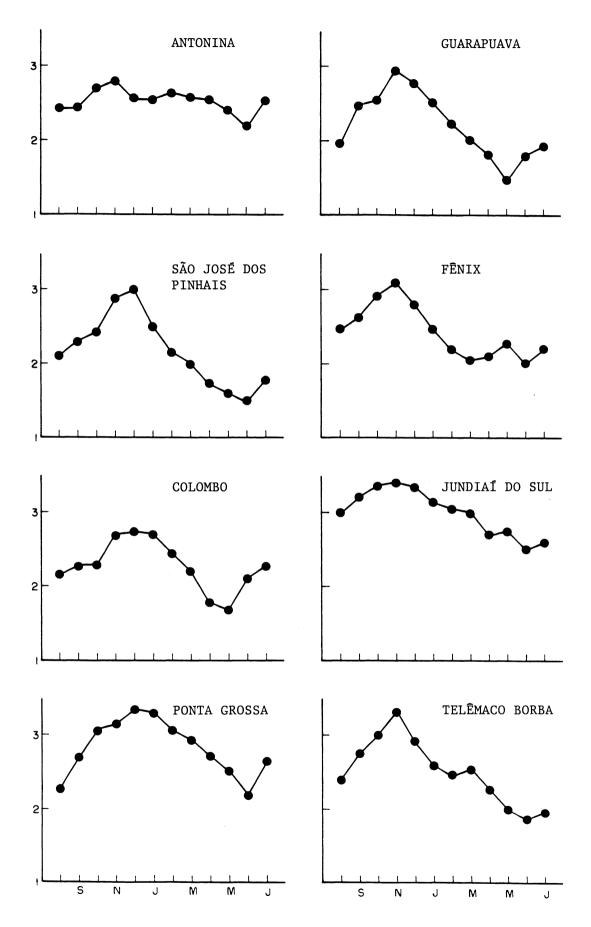



Figura 11. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de individuos/semana) + 1 dos Coleoptera, em oito localidades do Estado do Parana, no período de agosto de 1986 a julho de 1987

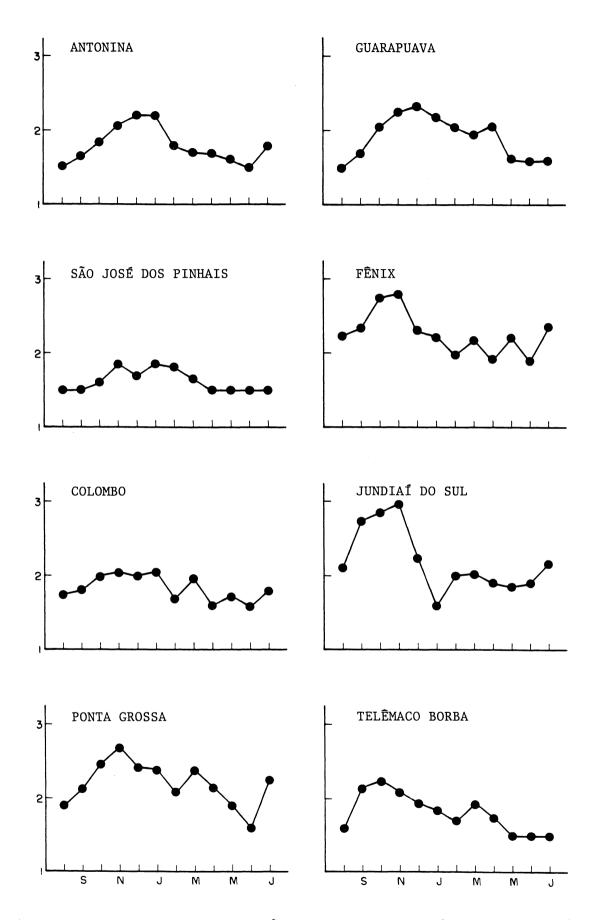



Figura 12. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de individuos/semana + 1) + 1,5 dos Cerambycidae, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

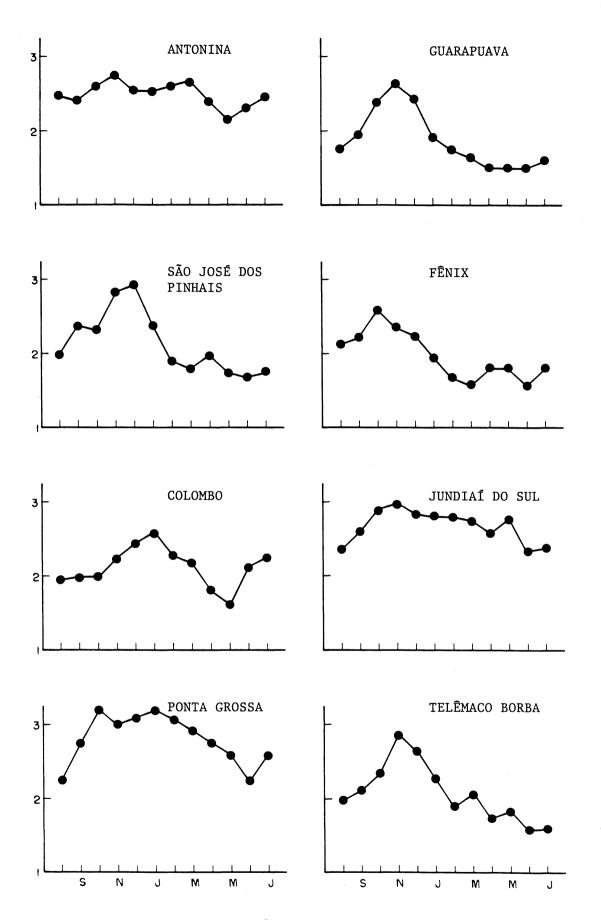



Figura 13. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de indivíduos/semana + 1) + 1,5 dos Chrysomelidae, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

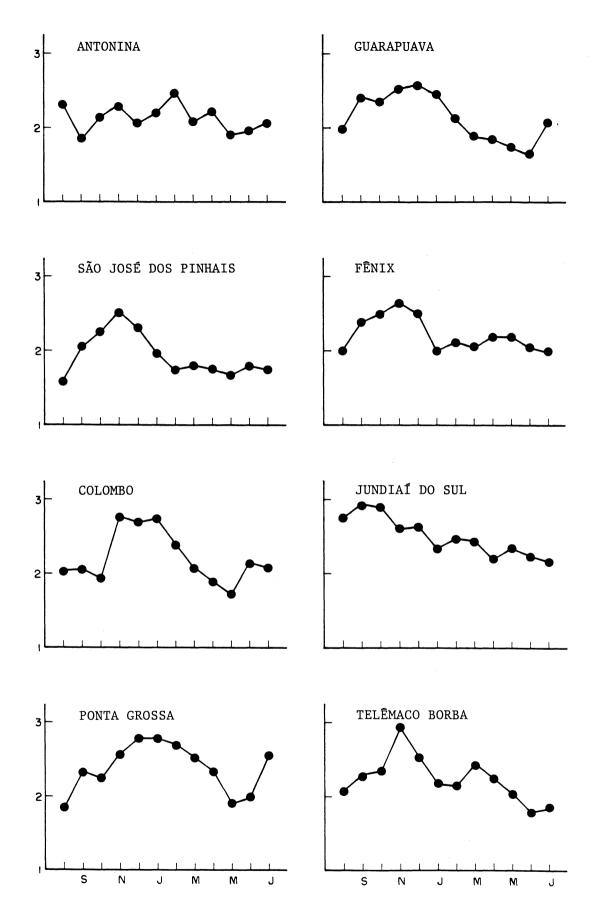



Figura 14. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de indivíduos/semana + 1) + 1,5 dos Curculionidae, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

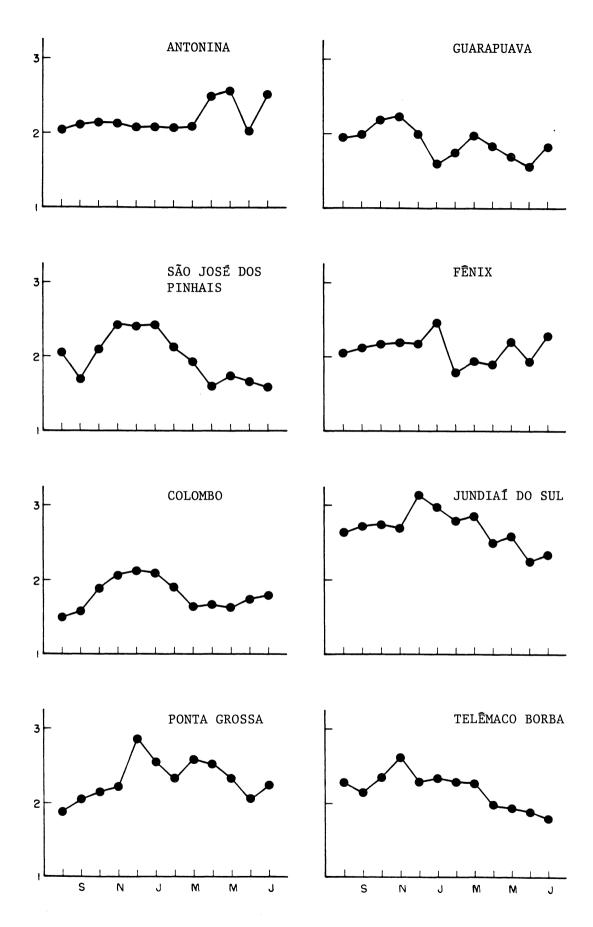



Figura 15. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de indivíduos/semana + 1) + 1,5 dos Staphylinidae, em oito localidades do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

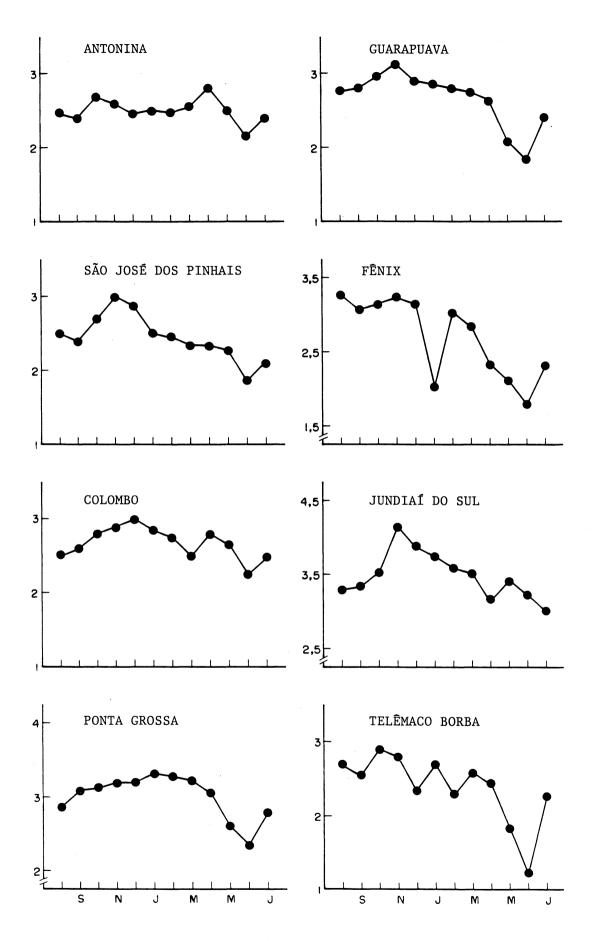



Figura 16. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº medio de indivíduos/semana) + 1 dos Lepidoptera, em oito localida des do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

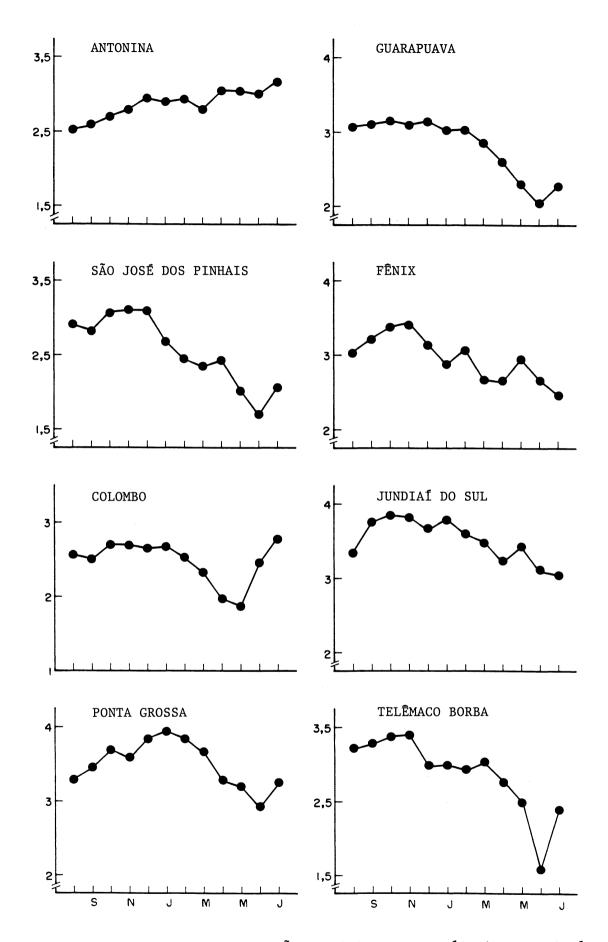



Figura 17. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº medio de individuos/semana) dos Diptera, em oito localidades do Estado do Parana, no período de agosto de 1986 a julho de 1987.

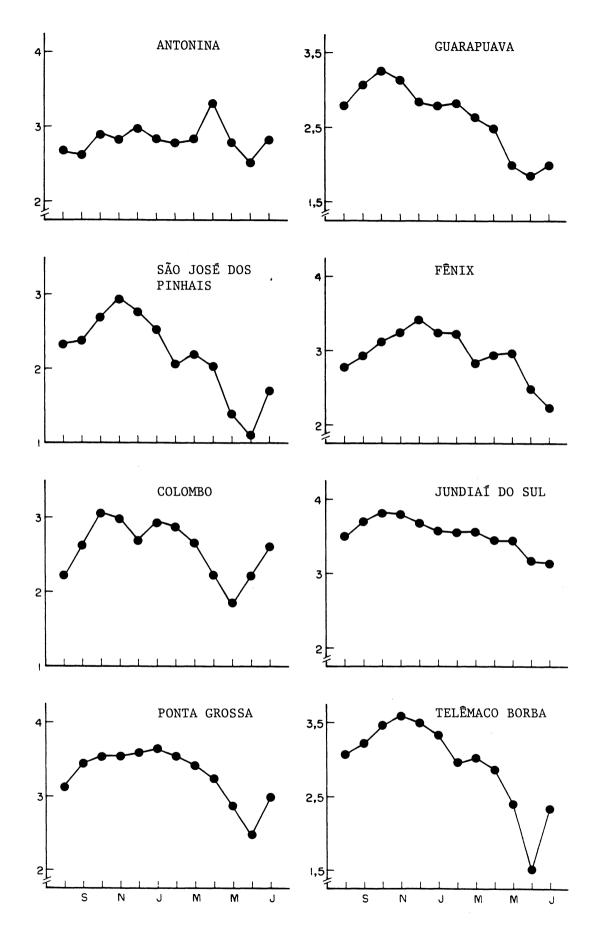



Figura 18. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de indivíduos/semana) + l dos Hymenoptera, em oito localida - des do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

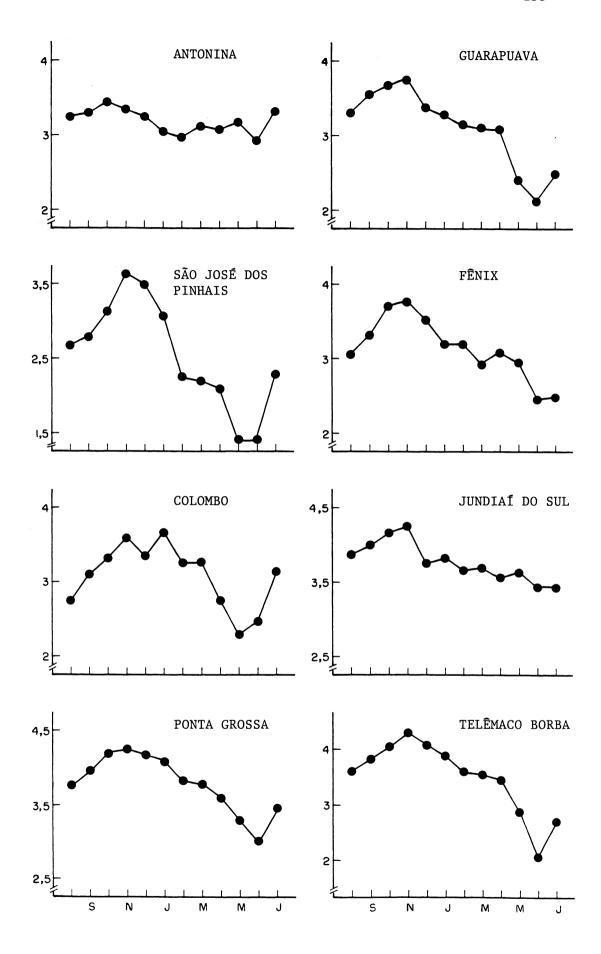



Figura 19. PROFAUPAR. Malaise. Flutuação anual da captura média(log do nº médio de individuos/semana) + 2 dos Ichneumonidae, em oito localida des do Estado do Paraná, no período de agosto de 1986 a julho de 1987.

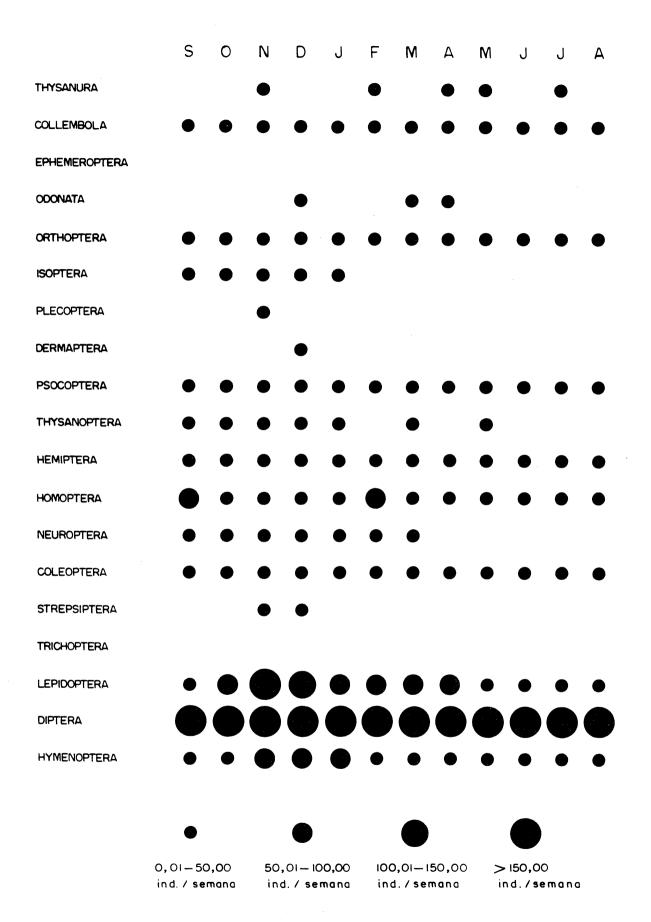



Figura 20. Ilha do Mel. Fortaleza. Malaise. Captura média(nº médio de indivíduos/semana) das Ordens de Insecta, no período de setembro de 1988 a agosto de 1989.

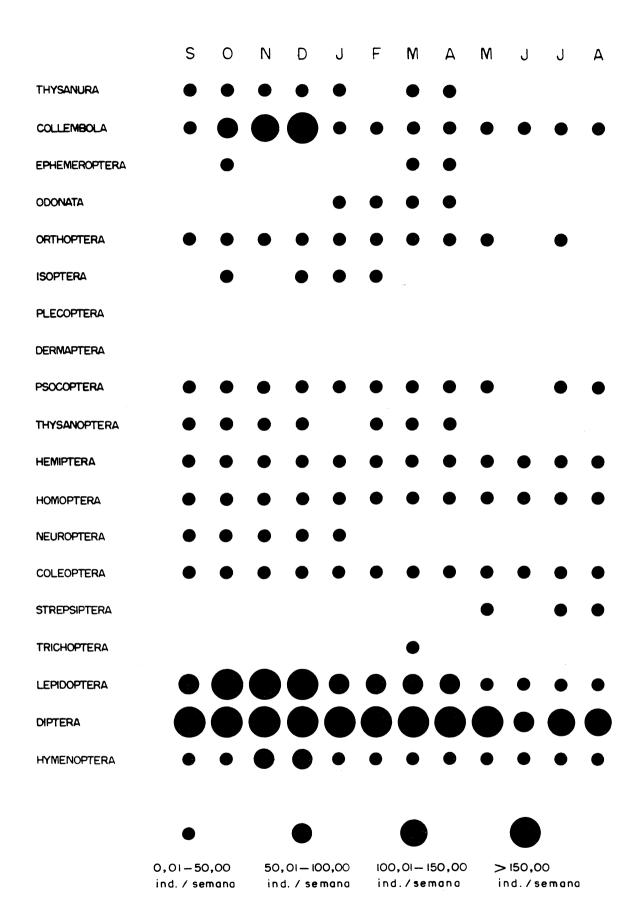



Figura 21. Ilha do Mel. Praia Grande. Malaise. Captura média(nº médio de indivíduos/semana) das Ordens de Insecta, no período de setembro de 1988 a agosto de 1989.

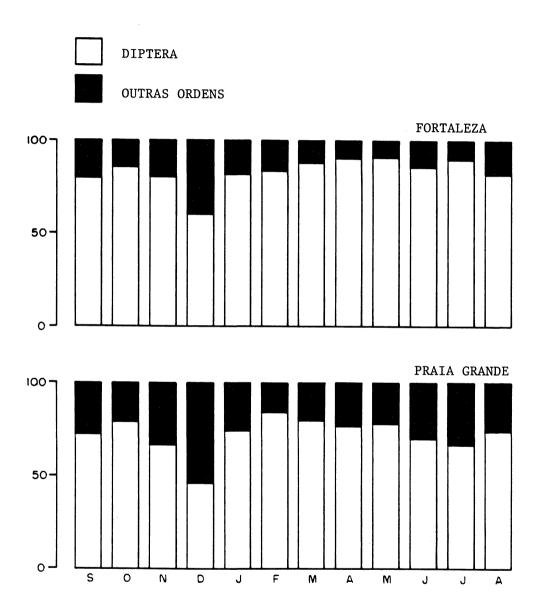
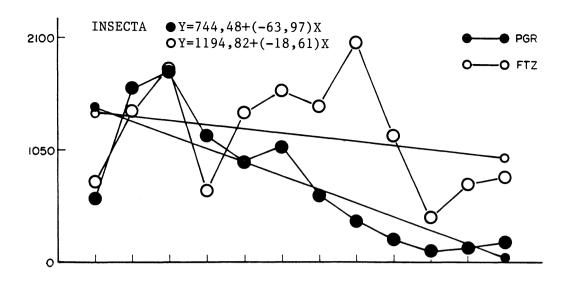
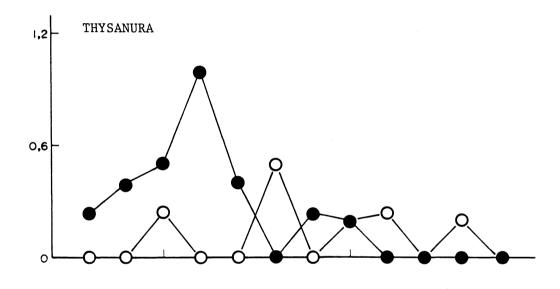





Figura 22. Ilha do Mel. Malaise. Frequência relativa(%) dos Diptera e outras Ordens de Insecta, nos dois pontos amostrados, no período de se-tembro de 1988 a agosto de 1989.





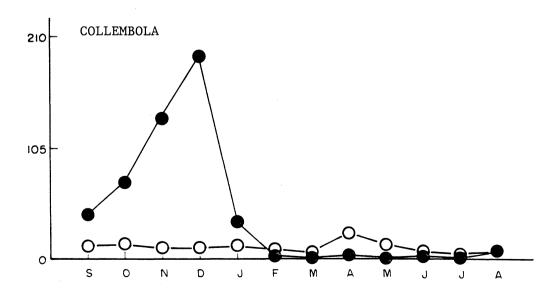
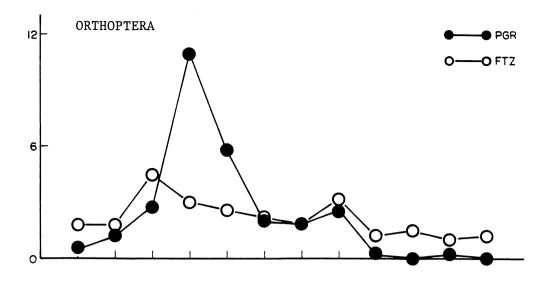
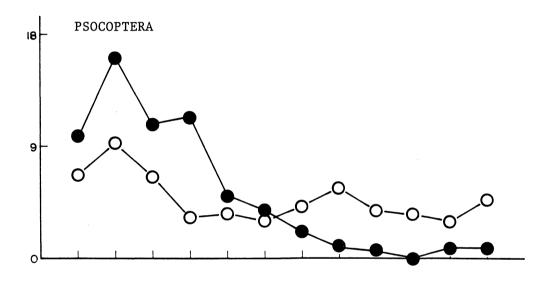





Figura 23. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Insecta, Thysanura e Collembola, e reta de tendência dos Insecta, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.





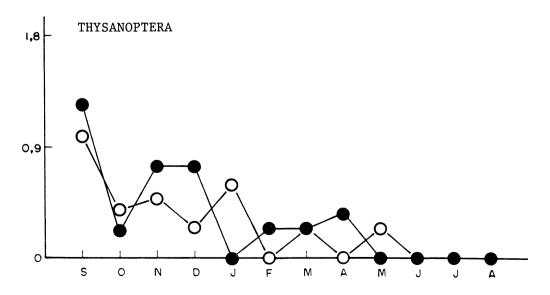
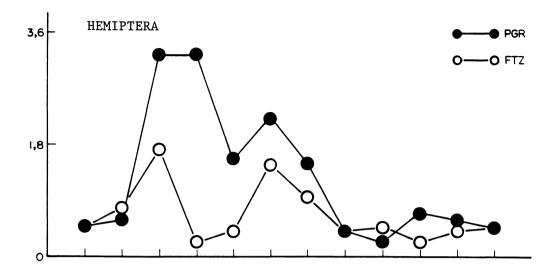
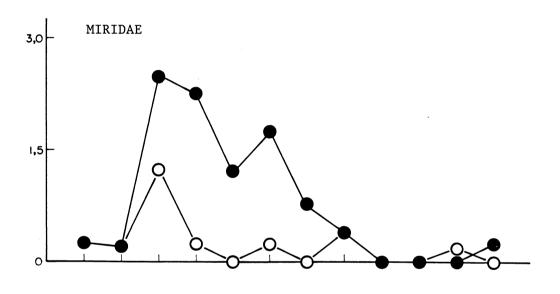





Figura 24. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Orthoptera, Psocoptera e Thysanoptera, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.





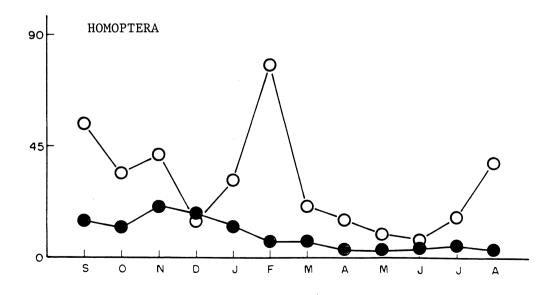
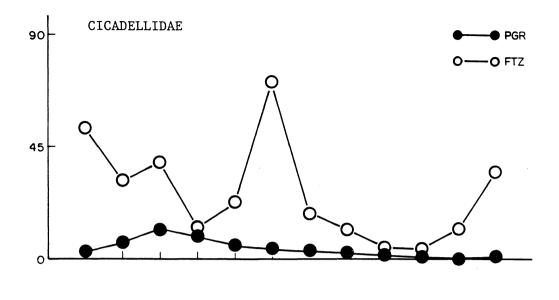
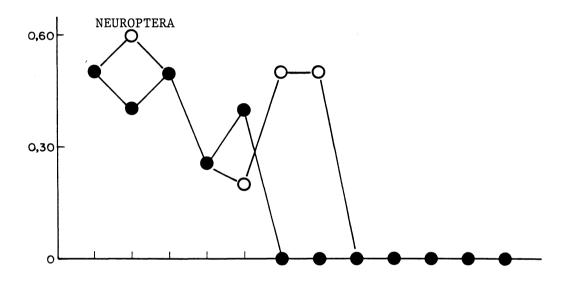





Figura 25. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de individuos/semana) dos Hemiptera, Miridae e Homoptera, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande, FTZ = Fortaleza.





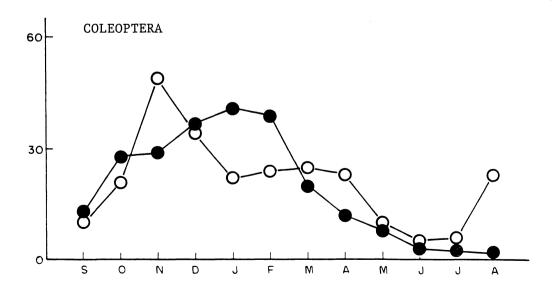



Figura 26. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Cicadellidae, Neuroptera e Coleoptera,no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.

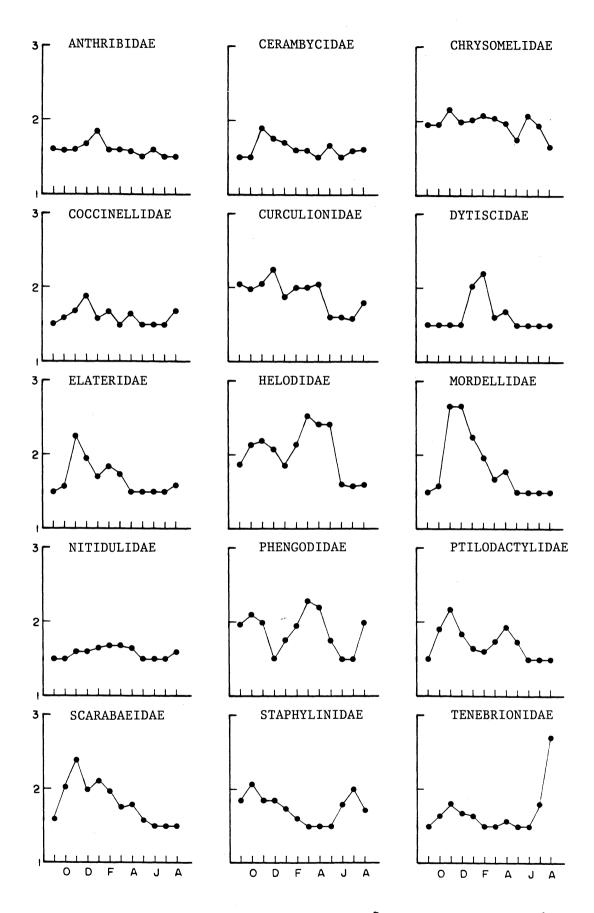



Figura 27. Ilha do Mel. Fortaleza. Malaise. Flutuação anual da captura média (log do nº médio de indivíduos/semana + 1) + 1,5 das famílias comuns e intermediárias(pela classificação de Palma) de Coleoptera, no período de setembro de 1988 a agosto de 1989.

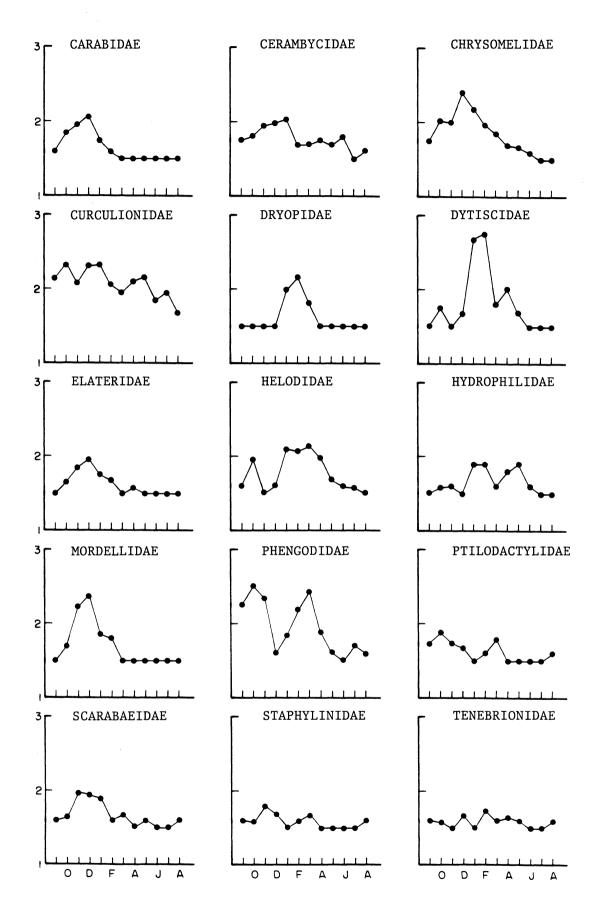



Figura 28. Ilha do Mel. Praia Grande. Malaise. Flutuação anual da captura média (log do nº médio de indivíduos/semana + 1) + 1,5 das famílias comuns e intermediárias (pela classificação de Palma) de Coleoptera, no período de setembro de 1988 a agosto de 1989.

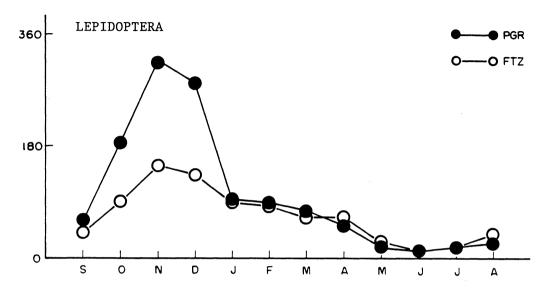



Figura 29. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Lepidoptera, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.

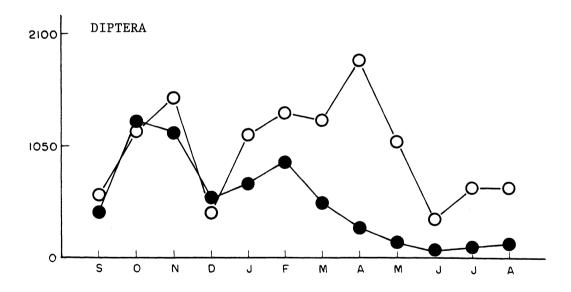



Figura 30. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Diptera, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.

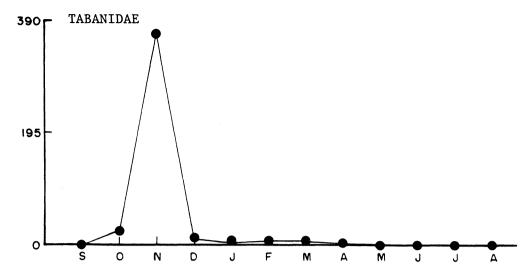



Figura 31. Ilha do Mel. Fortaleza. Malaise. Flutuação anual da captura média (nº médio de indivíduos/semana) dos Tabanidae, no período de se-tembro de 1988 a agosto de 1989.

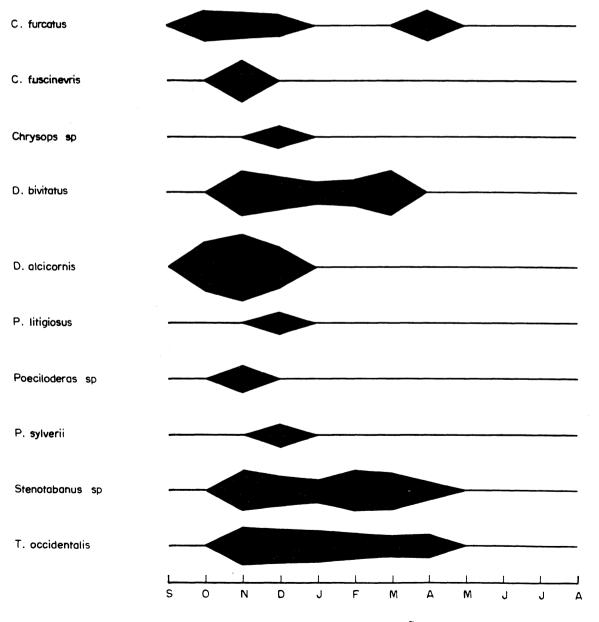



Figura 32. Ilha do Mel. Fortaleza. Malaise. Flutuação anual da captura média (nº médio de indivíduos/semana) das dez espécies de Tabanidae, no período de setembro de 1988 a agosto de 1989.

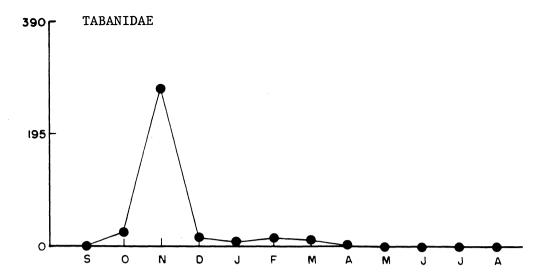



Figura 33. Ilha do Mel. Praia Grande. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Tabanidae, no período de se tembro de 1988 a agosto de 1989.

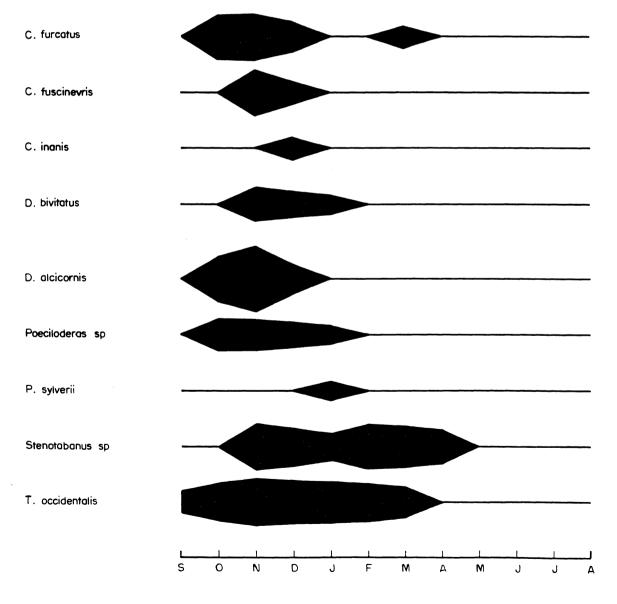



Figura 34. Ilha do Mel. Praia Grande. Malaise. Flutuação anual da captura média(nº médio de individuos/semana) das nove espécies de Tabanidae, no período de setembro de 1988 a agosto de 1989.

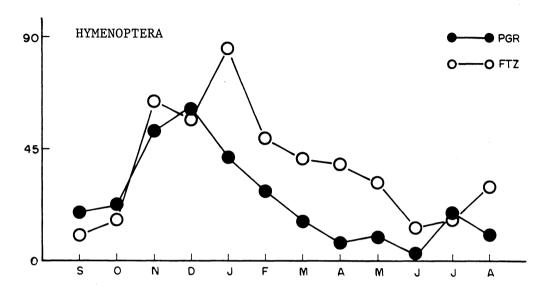



Figura 35. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Hymenoptera, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.

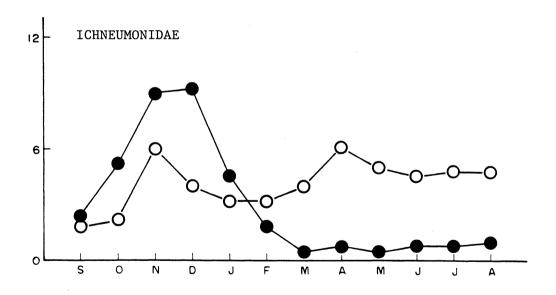



Figura 36. Ilha do Mel. Malaise. Flutuação anual da captura média(nº médio de indivíduos/semana) dos Ichneumonidae, no período de setembro de 1988 a agosto de 1989. PGR = Praia Grande e FTZ = Fortaleza.

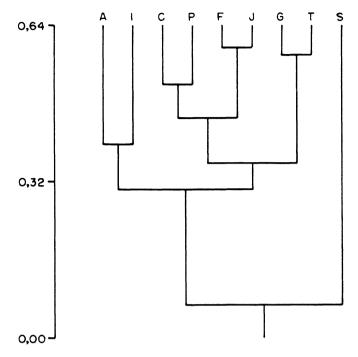



Figura 37. Dendrograma de similaridade(com base em Cerambycidae) entre os pontos amostrados com armadilha Malaise. Matriz de dados com 9 OTU's e 46 caracteres; matriz de semelhança com base no coeficiente de Dice; CC=0,91. A=Antonina, C=Colombo, F=Fênix, G=Guarapuava, I=Ilha do Mel, J=Jundiaí do Sul, P=Ponta Grossa,S=São José dos Pinhais e T=Telêmaco Borba.

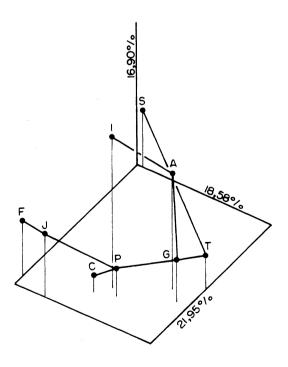



Figura 38. Análise por Coordenadas Principais. Locais amostrados com armadilha Malaise X presença/ausência das espécies de Cerambycidae. Legenda na Figura anterior.

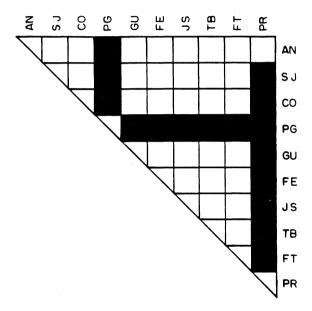



Figura 39. Diagrama indicando a existência de diferença significativa(•) ou não significativa(•) (α = 0,05) entre os valores de diversi dade(com base em Cerambycidae) dos dez pontos amostrados com armadilha Malaise. AN = Antonina, CO = Colombo, FE = Fênix , FT = Fortaleza, GU = Guarapuava, JS = Jundiaí do Sul, PG= Ponta Grossa, PR = Praia Grande, SJ = São José dos Pinhais e TB= Telêmaco Borba.

#### SUMMARY

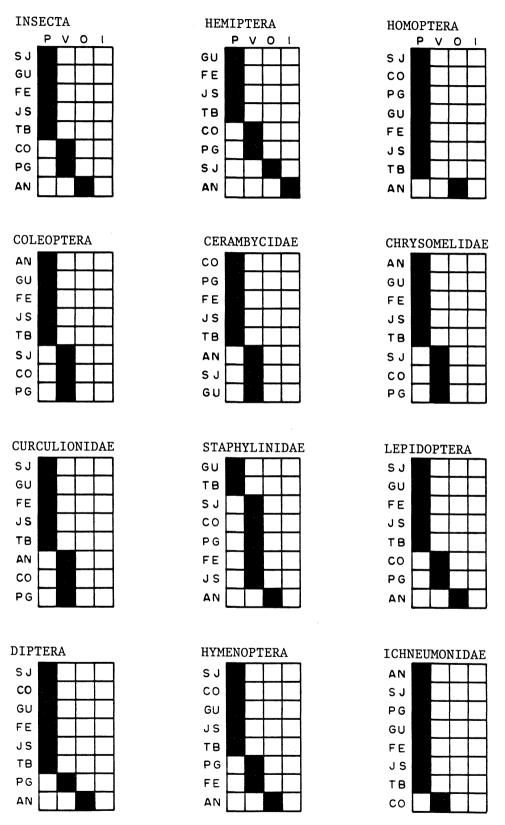
Eight geographical areas, considered as representative of the several natural environments which still exist in the state Paraná, in southern Brazil, were selected for the collection of insects. This data collection formed part of the "Survey of the Entomological Fauna in Paraná State" (henceforth PROFAUPAR). The selected points for collection were: a) Antonina (on the coastal plain); b) São José dos Pinhais (on the coastal mountain range); c) Colombo (on the first plateau); d) Ponta Grossa, Jundiaí do Sul e Telêmaco Borba (on the second plateau); e) Guarapuava e Fênix (on the third plateau). These areas were continually sampled using a Malaise trap (Townes' 1972 model) throughout a single year (52 weeks) from August, 1986, until July 1987. Taking advantage of the methodological framework of the PROFAUPAR survey, two further Malaise traps were installed on an island (the "Ilha do Mel") in the Bay of Paranaguá, from September, 1988 to August, 1989, at two sites denominated "Fortaleza" and "Praia Grande". The sampling carried out during the PROFAUPAR survey allowed for a comparative study of the entomofanuna collected during the same time span, albeit in different geographical regions. While the sampling on the island allowed for a comparative study of the entomofauna collected within both the same environment and within the same time span; the collection also provided the means for a comparison between geographically close areas (i.e. the "Antonina" and "Ilha do Mel" sites), albeit within different time spans. Among the PROFAUPAR samples, apart from the collection of insects, which totalled 832,542 examples, no more than six Orders, representing 95.8% of the total individuals collected, had their density fluctuations analyzed graphically, namely: Hemiptera (1,362 individuals), Homoptera (25,673), Coleoptera (21,457), Lepidoptera (42,322), Diptera (649,753), Hymenoptera (57,366), in addition to the Ichneumonidae (Hymenoptera) (15,499) family. Within the collections carried out on the island (Fortaleza:62,924 individuals; Praia Grande: 38.868 individuals), graphical analyses were limited to those Orders which occurred concomitantly at the two collection points and in no less than five months. Within the Hemiptera, only the Miridae, which were the most abundant family, were analyzed graphically. The same procedure was adopted with the Cicadellidae (Homoptera), the Tabanidae (Diptera) and their species, of wich the most abundant was <u>Dichelacera</u> <u>alcicornis</u> (Wiedemann) and Ichneumonidae (Hymenoptera). Of the Coleoptera sampled in the PROFAUPAR collections, only those families considered common (according to Palma's classification), namely Chrysomelidae, Curculionidae, Staphylinidae, in addition to Cerambycidae, were analyzed graphically for all eight sites. In the case of the two islands sites, only those families considered both common as well as intermediary (according to Palmas' classification) were analyzed graphically. Nyssodrysina lignaria (Bates, 1864) proved to be the most abundant within the 151 species of Cerambycidae found at the nine sites studied. Cluster Analysis of the sites under study (both the PROFAUPAR and island samples points were studied simultaneously) taking the species Cerambycidae as attributive. The Dice similarity coefficient was adopted and the UPGMA grouping method was employed. A major similarity was established among four groups/locality nucleii as follows: 1)Antonina/Ilha do

Colombo/Ponta Grossa; 3) Fênix/Jundiaí do Sul 4)Guarapuava/Telêmaco Borba. The coastal mountain range site (São José dos Pinhais) demonstrated few similarities with the other sites and was therefore isolated from the alternative graphically speaking. The study was completed by Principal Coordinate Analysis, and the links between the sites was made using the relevant data according to the Minimun Spanning Tree. This tree highlighted the Colombo/Ponta Grossa nucleus as a linking element between the Guarapuava/Telêmaco Borba group and Fênix/Jundiai do Sul nucleus. Using as a basis the Cerambycidae species, Shannon Indices of Diversity and Evenness were also Ponta Grossa (2.72) and Praia Grande (1.55) presented obtained. extreme Diversity values as these were the only values considered statistically different from the alternative sites. The island sites of Fortaleza (0.966) and Praia Grande (0.605) presented Evenness values. The dominant relation among the species was the preponderate factor in the calculation of the Diversity Index, which was clearly seen in the Evenness values. It was concluded that the Malaise trap is selective for Diptera, Hymenoptera and Lepidoptera, and proved to be highly efficient in measuring in obtaining information regarding the seasonal abundance, variation of insects, and in the comparison of entomofauna of different geographical localities. In addition. the syncronisation imposed upon the insects by change of seasons and the appearance of conditions favourable for oviposition and larval growth indicated that the end of spring/beginning of summer is the period of major activity among the insects.

## REFERÊNCIAS BIBLIOGRÁFICAS

- ABREU, P.C.O.V. & NOGUEIRA, C.R. 1989. Spatial distribution of Siphonophora species at Rio de Janeiro coast, Brazil. <u>Ciência e Cultura</u> 41(9):897-902.
- ABSALÃO, R.S. 1988. Associação de moluscos de um costão rochoso intertidal em Ponta de Itaipu, Rio de Janeiro, Brasil. <u>Rev. Brasil.Biol.</u> 48(1):51-58.
- ANJOS, L. & SEGER, C. 1988. Análise da distribuição das aves em um trecho do Rio Paraná, divisa entre os estados do Paraná e Mato Grosso do Sul. <u>Arq.Biol.Tecnol.</u> 31(4):603-612.
- ARAGÃO, M.B. 1968. O ciclo anual de <u>Anopheles</u> do subgênero <u>Kerte</u> <u>zia</u>, no Sul do Brasil. <u>Mem.Inst.Oswaldo Cruz</u> <u>66</u>(1):85-106.
- BARCELLOS, L.J.P.; RIOS, E.C. & ABSALÃO, R.S. 1989. Micromoluscos do substrato inconsolidado do Atol das Rocas, RN, Brasil: a diversidade como fator de inferência ambiental. <u>Rev.Brasil.</u> <u>Biol.</u> 49(2):545-552.
- BERNARDES, A.T.; MACHADO, A.B.M. & RYLANDS, A.B. 1990. <u>Fauna bra sileira ameaçada de extinção</u>. Fundação Biodiversitas para a Conservação da Diversidade Biológica. Belo Horizonte, Minas Gerais, Brasil. 65p.
- BERRY, R.J. 1983. Diversity and differentiation: the importance of island biology for general theory. <u>Oikos</u> 41:523-529.
- BERTIN. J. 1986. <u>A neográfica e o tratamento gráfico da informa-</u>
  <u>ção</u>. Editora da Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 273p.
- BIGARELLA, J.J. 1946. Contribuição ao estudo da planície litorânea do Estado do Paraná. Arq.Biol.Tecnol. 1:75-111.
- BIGARELLA, J.J. 1978. <u>A Serra do Mar e a porção Oriental do Esta do do Paraná</u>. Paraná, Brasil, ADEA. 248p.
- BORROR, D.J. & DELONG, D.M. 1969. <u>Estudo dos Insetos</u>. São Paulo, Ed. Edgard Blucher. 653p.
- BOTELHO, P.S.M.; ROBELLA, R.J. & SILVEIRA NETO, S. 1972. Novas modificações na armadilha de Malaise e suas possibilidades na coleta de insetos. <u>O Solo</u> <u>64</u>(2):21-26.
- BOTELHO, P.S.M.; YOKOYAMA, M. & SILVEIRA NETO, S. 1974. Determinação da flutuação populacional de **Silba pendula** (Bezzi) com auxílio da armadilha de Malaise. <u>O Solo 66</u>(1):23-29.
- BREELAND, S.G. & PICKARD, E. 1965. The Malaise trap-an efficient and unbiased mosquito collecting device. <u>Mosquito News</u> <u>25</u>(1): 19-21.
- BROWN, J.H. & GIBSON, A.C. 1983. <u>Biogeography</u>. The C.V.Mosby Company. St.Louis, Missouri, USA. 643p.
- BROWN Jr., K.S. 1977. Heterogeneidade: fator fundamental na teoria e prática de conservação em ambientes tropicais.  $\underline{In}$ :  $\underline{EN}$  -

- CONTRO NACIONAL SOBRE CONSERVAÇÃO DA FAUNA E RECURSOS FAUNÍS-TICOS. Brasília, D.F., Instituto Brasileiro de Desenvolvimento Florestal, 175-183.
- BUTLER Jr., G.D. 1965. A modified Malaise Insect trap. <u>The Pan Pacific Entomologist</u> 41(1):51-53.
- CAMPOS, J.C.C. 1973. Considerações sobre o sistema de classificação ecológica proposto por Holdridge. <u>Rev.Ceres</u> <u>20</u>(108): 87-96.
- CANCELADO, R. & YONKE, T.R. 1969.Collecting prairie insects with malaise traps. <u>Transactions Missouri Academy of Science</u> 3:83-88.
- CARDOSO, J.A. 1984. Construção de gráficos e linguagem visual. <u>História: questões e debates</u> 5(8):37-58.
- CASTRO, R.M.C. & ARCIFA, M.S. 1987. Comunidades de peixes de reservatórios no Sul do Brasil. Rev. Brasil. Biol. 47(4):493-500.
- CHAGAS, E.F. & SILVEIRA NETO, S. 1985. Uso de coletor de sucção no estudo da entomofauna em um pomar cítrico. <u>Pesg.agropec.</u> <u>bras.</u> 20(10):1125-1141.
- CHANTER, D.O. 1965. The Malaise trap. <u>Entomologist's Record</u> <u>77</u>: 224-226.
- CICLO DE DEBATES "O PROBLEMA DAS ESPÉCIES EXÓTICAS"(1990 : UFR GS). <u>Síntese das conclusões</u>. Porto Alegre:[s.n.], 1990.
- CIVIDANES, F.J. 1979. <u>Análise faunística de coleópteros coleta</u> <u>dos com armadilhas luminosas, em três regiões canavieiras do Estado de São Paulo</u>. Tese, Mestrado, Escola Superior de Agricultura "Luiz de Queiroz" USP. Piracicaba, São Paulo, Bra sil. 81p.
- COSTA, E.C. & LINK, D. 1988. Levantamento populacional de Cerambycidae em bosques de diferentes espécies florestais na região central do Rio Grande do Sul. <u>In: ANAIS DO VI CONGRESSO FLORESTAL ESTADUAL</u>. Nova Prata, RS, Brasil, 589-597.
- COSTA-LIMA, A. 1952. <u>Insetos do Brasil. Coleópteros</u>. Rio de Janeiro, Escola Nacional de Agronomia. Série didática n<u>o</u> 9. 372_P.
- COSTA-LIMA, A. 1953. <u>Insetos do Brasil. Coleópteros</u>. Rio de Janeiro, Escola Nacional de Agronomia. Série didática n<u>o</u> 10. 323p.
- COSTA-LIMA, A. 1955. <u>Insetos do Brasil. Coleópteros</u>. Rio de Janeiro, Escola Nacional de Agronomia. Série didática n<u>o</u> 11. 289_P.
- COSTA-LIMA, A. 1956. <u>Insetos do Brasil. Coleópteros</u>. Rio de Janeiro, Escola Nacional de Agronomia. Série didática n<u>o</u> 12. 373p.
- CURE, J.R.; BASTOS FILHO, G.S.; OLIVEIRA, M.J.F. & SOUZA, O.F. 1990. Influência do tamanho da amostra na estimativa da riqu<u>e</u>


- za em espécies em levantamentos de abelhas silvestres(Hymenoptera, Apoidea). <u>Revta bras. Zool.</u> 7(1/2):101-110.
- CURE-HAKIM, J.R. 1983. <u>Estudos ecológicos de comunidade de abelhas silvestres(Hymenoptera, Apoidea) do Parque da Cidade, comparado ao de outras áreas de Curitiba, Paraná</u>. Tese, Mestrado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 96p.
- CURI, P.R. 1985. Análise de agrupamento complementada com orden<u>a</u> cão pelos componentes principais e análise de variância mult<u>i</u> variada. Um exemplo biológico. <u>Ciência e Cultura</u> <u>37</u>(6): 879-888.
- DAJOZ, R. 1973. <u>Ecologia Geral</u>. Editora da Universidade de São Paulo. São Paulo, Brasil. 472p.
- DELLOME FILHO, J. 1985. <u>Simuliofauna do Rio Marumbi(Morretes,Paraná)</u>: <u>Aspectos Bionômicos com Enfase na Alimentação de Larvas de Simulium incrustatum(Diptera, Simuliidae)</u>. Tese, Douto rado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 126p.
- DIAMOND, J.M. 1976. Island Biogeography and Conservation: Strate gy and Limitations. <u>Science</u> 193:1027-1029.
- DIRETRIZES para o desenvolvimento da Zoologia(DPDZ). <u>Boletim Informativo da Sociedade Brasileira de Zoologia</u>, Rio de Janei ro, n.30, p.1-10, 1990.
- DUQUIA, C.G. & COSTA, T.V. 1987. Comportamento médio das grandezas meteorológicas para a região litorânea do Estado do Paraná. <u>Floresta</u> 17(1/2):95-102.
- EVANS, F.C. & OWEN, D.F. 1965. Measuring insect flight activity with a Malaise trap. <u>Papers of the Academy of Science, Arts</u>, and <u>Letters</u> 50:89-94.
- FERNANDES, L. 1947. Contribuição à Geografia da Praia de Leste. Arquivos do Museu Paranaense 6:3-44.
- FIGUEIREDO, J.C. 1954. <u>Contribuição à Geografia da Ilha do Mel</u> (<u>Litoral do Estado do Paraná</u>). Tese, Cátedra, Universidade F<u>e</u> deral do Paraná. Curitiba, Paraná, Brasil. 61p.
- FRANÇA, J.M. 1975. Sobre o comportamento de alguns tabanídeos do litoral e do primeiro planalto do Estado do Paraná, Brasil (Diptera, Tabanidae). Tese, Mestrado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 63p.
- FROESCHNER, R.C. 1981. Heteroptera or True Bugs of Ecuador: A Partial Catalog. <u>Smithsonian Contributions to Zoology</u> 322:1-147.
- FROESCHNER, R.C. 1985. Synopsis of the Heteroptera or True Bugs of the Galapagos Islands. <u>Smithsonian Contributions to Zoology</u> 407:1-84.
- GONÇALVES, E.M. 1989. <u>Padrões de Distribuição de Bivalvia e Gastropoda na Plataforma Continental da Costa Sudeste do Brasil</u> (24º08'S 27º23'S). Tese, Mestrado, Universidade Federal do

- Paraná, Curitiba, Paraná, Brasil, 76p.
- GOWER, J.C. & ROSS, G.J.S. 1969. Minimum spanning trees and single-linkage cluster analysis. Applied Statistics 18:54-64.
- GRESSITT, J.L. & GRESSITT, M.K. 1962. An improved Malaise trap. Pacific Insects 4(1):87-90.
- HOLDRIDGE, L.R. 1987. <u>Ecologia basada en Zonas de Vida</u>.San José, Costa Rica, IICA. 216.
- HORN, H.S. 1966. Measurement of "overlap" in comparative ecological studies. The American Naturalist 100(914):419-424.
- HUTCHESON, J. 1990. Characterization of terrestrial insect communities using quantified, Malaise-trapped Coleoptera. <u>Ecological Entomology</u> 15:143-151.
- HUTCHESON, K. 1970. A test for comparing diversity based on Shan non formula. <u>J.Theor.Biol.</u> 29(1):151-154.
- IBGE. 1990. <u>Geografia do Brasil. Região Sul</u>. Fundação Instituto Brasileiro de Geografia e Estatística. 420p.
- ITCF. 1990. <u>Atlas do Estado do Paraná</u>. Instituto de Terras, Cartografia e Florestas, Curitiba, Paraná. 74p.
- JUILLET, J.A. 1963.A comparasion of four types of traps used for capturing flying insects. <u>Canadian Journal of Zoology</u> 41:219-223.
- LANZER, R.M. & SCHAFER, A.E. 1987. Moluscos dulceaquícolas como indicadores de condições tróficas em Lagoas costeiras do Sul do Brasil. Rev.Brasil.Biol. 47(1/2):47-56.
- LAROCA, S. 1974. Estudo feno-ecológico em Apoidea do litoral e primeiro palnalto paranaenses. Tese, Mestrado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 62p.
- LAROCA, S. & MIELKE, O.H.H. 1975. Ensaios sobre ecologia de com<u>u</u> nidade em Sphingidae da Serra do Mar, Paraná, Brasil (Lepidoptera). <u>Rev.Brasil.Biol.</u> <u>35</u>(1):1-19.
- LAROCA, S.; CURE, J.R. & BORTOLI, C. 1982. A associação das abelhas silvestres(Hymenoptera, Apoidea) de uma área restrita no interior da Cidade de Curitiba(Brasil): uma abordagem biocenótica. <u>Dusenia</u> 13(3):93-117.
- LAROCA, S.; BECKER, V.O. & ZANELLA, F.C.V. 1989. Diversidade, abundância relativa e fenologia em Sphingidae(Lepidoptera) na Serra do Mar(Quatro Barras, PR), Sul do Brasil. <u>Acta Biológica Paranaense</u> 18(1/4):13-54.
- LEWIN, R. 1984. Parks: How big is big enough? <u>Science</u> <u>225</u>:611-612.
- LOPES, J. 1992. <u>Ecologia de mosquitos(Diptera, Culicidae) que procriam em criadouros naturais e artificiais em área rural. Lon drina e Cambé, Paraná, Brasil</u>. Tese, Doutorado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 234p.

- MAACK, R. 1981. <u>Geografia Física do Estado do Paraná</u>. José Olympio Editora, Rio de Janeiro. 450p.
- MAGURRAN, A.E. 1988. <u>Ecological diversity and its measurement</u>. Princeton University Press. Princeton, New Jersey, USA. 179p.
- MALAISE, R. 1937. A new insect=trap. <u>Entomologisk Tidskrift</u> <u>58</u>: 148-160.
- MARINONI, R.C. & DUTRA, R.R.C. 1993. Levantamento da fauna entomológica no Estado do Paraná. I. Introdução. Situação climá tica e florística dos oito pontos de coleta. Dados faunísti cos de agosto de 1986 a julho de 1987. <u>Revta bras.Zool.</u> <u>8</u>(1-4):31-73.
- MARQUES, E.N. 1989. <u>Índices faunísticos e grau de infestação por Scolytidae em madeira de Finus spp</u>. Tese, Doutorado, Univers<u>i</u> dade Federal do Paraná. Curitiba, Paraná, Brasil. 103p.
- MARSTON, N. 1965. Recent modifications in the design of Malaise Insect traps with a summary of the insects represented in collections. <u>Journal of Kansas Entomological Society</u> 38(2):154-162.
- MATTHEWS, R.W. & MATTHEWS, J.R. 1970. Malaise traps studies of flying insects in a New York mesic forest. I. Ordinal composition and Seasonal abundance. New York Entomological Society 78:52-59.
- MATTHEWS, R.W. & MATTHEWS, J.R. 1983. Malaise traps. The Townes model catches more insects. <u>Contrib.Amer.Ent.Inst.</u> <u>20</u>: 428 432.
- MILANO, M.S.; BRASSIOLO, M.M. & SOARES,R.V. 1987. Zoneamento eco lógico experimental do Estado do Paraná segundo o Sistema de Zonas de Vida de Holdridge. <u>Floresta</u> <u>17</u>(1/2):65-72.
- NOGUEIRA, A.C.; KUNIYOSHI, Y.S. & SOARES, R.V. 1987. Zonas de Vida para o Estado de Santa Catarina segundo a classificação das formações vegetais de Holdridge. Floresta 17(1/2): 103-112.
- OWEN, D.F. 1983. A hole in a tent or how to explore insect abundance and diversity. <u>Contrib.Amer.Ent.Inst.</u> 20:33-47.
- OWEN, D.F. & CHANTER, D.O. 1970. Species diversity and seasonal abundance in tropical Ichneumonidae. <u>Oikos</u> <u>21</u>:142-144.
- PECHUMAN, L.L. & BURTON, J.J.S. 1969. Seasonal distribution of Tabanidae(Diptera) at Texas Hollow, New York in 1968. <u>Mosquito</u> <u>News</u> 29(2):216-220.
- PENNY, N.D. & ARIAS, J.R. 1982. <u>Insects of an Amazon Forest</u>. Columbia University Press, New York, USA: 269p.
- PIANKA, E.C. 1966. Latitudinal gradients in species diversity: a review of concepts. The American Naturalist 100(910):33-46.
- PIELOU, E.C. 1966a. The measurement of diversity in different types of biological collections. <u>J.Theoret.Biol.</u> 13:131-144.

- PIELOU, E.C. 1966b. Shannon's formula as measure of specific diversity: it's use and misuse. The American Naturalist 100(914): 463-465.
- PRUESS, K.P. & PRUESS, N.C. 1966. Note on a Malaise trap for determining flight direction of insects. <u>Journal of Kansas Entomological Society</u> 39(1):98-102.
- RHIES, P.J. 1982. <u>Fenologia de Dinastíneos(Coleoptera, Scarabaei dae) Noturnos Fototácticos do Leste Paranaense</u>. Tese, Mestrado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 77p.
- ROBERTS, R.H. 1970. Color of Malaise traps and the collection of Tabanidae. Mosquito News 30(4):567-571.
- ROBERTS, R.H. 1971. The seasonal appearance of Tabanidae as determined by Malaise trap collections. <u>Mosquito News</u> <u>31</u>(4): 509-512.
- ROBERTS, R.H. 1975. Influence of trap screen age on collections of tabanids in Malaise traps. Mosquito News 35:538-539.
- ROBERTS, R.H. 1976. The comparative efficiency of six trap types for the collection of Tabanidae(Diptera). Mosquito News 36(4): 530-535.
- ROCHA, C.T. & COSTA, C.S.B. 1988. Ordenação e distribuição das macrófitas vasculares de um pequeno lago de águas doces e rasas em Rio Grande(RS). <u>Ciência e Cultura</u> 40(2):164-172.
- ROHLF, F.J. 1989. <u>NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System(version 1.50)</u>. Exeter Publishing, Ltd. New York, USA.(sem numeração)
- ROMESBURG, H.C. 1990. <u>Cluster analysis for researches</u>. Robert E. Krieger Publishing Company. Malabar, Florida, USA. 334p.
- SILVA, S.M. 1990. <u>Composição florística e fitossociologia de um trecho de Floresta de Restinga na Ilha do Mel, município de Paranaguá, PR</u>. Tese, Mestrado, Universidade Estadual de Camp<u>i</u> nas. Campinas, São Paulo, Brasil. 146p.
- SILVEIRA NETO, S. & SILVEIRA, A.C. 1969. Armadilha luminosa mode lo "Luiz de Queiroz". <u>O Solo 61</u>(2):19-21.
- SIMBERLOFF, D.S. & ABELE, L.G. 1976. Island Biogeography Theory and Conservation Practice. <u>Science</u> 191:285-286.
- SNEATH, P.H.A. & SOKAL, R.R. 1973. <u>Numerical Taxonomy</u>. W.H.Freeman and Company, San Francisco, USA. 573p.
- SOLOMON, M.E. 1980. <u>Dinâmica de populações</u>. Editora Pedagógica e Universitária. São Paulo, Brasil. 78p.
- SOUTHWOOD, T.R.E. 1961. The number of species of insect associated with various trees. <u>Journal of Animal Ecology</u> 30:1-8.
- SOUTHWOOD, T.R.E. 1966. Ecological methods, with particular reference to the study of insect populations. London: Chapman and

- Hall. 391p.
- SPIEGEL, M.R. 1976. <u>Estatística</u>. Editora Mc Graw-Hill do Brasil, Ltda. 580p.
- STEYSKAL, G.C. 1981. A bibliography of the Malaise trap. <u>Proc.</u> <u>Entomol.Soc.Wash.</u> 83(2):225-229.
- STINEBRICKNER, R. 1984. S⁻ Consensus trees and indices. <u>Bulletin of Mathematical Biology</u> 46(5/6):923-935.
- SULLIVAN, A.L. & SHAFFER, M.L. 1975. Biogeography of the Megazoo. Science 189:13-17.
- TEIXEIRA, R.L. 1989. Aspectos da ecologia de alguns peixes do Arroio Bom Jardim, Triunfo-RS. Rev. Brasil. Biol. 49(1):183-192.
- TOWNES, H. 1962. Design for a Malaise trap. <u>Proc. Entomol. Soc.</u> Wash. 64(4):253-262.
- TOWNES, H. 1969. Genera of Ichneumonidae(Part 1). Mem.Amer.Ent. Inst. 11:1-300.
- TOWNES, H. 1971. Ichneumonidae as Biological Control Agents. Proceedings tall timbers conference on ecological animal control by habitat manegement 3:235-248.
- TOWNES, H. 1972. A light-weight Malaise trap. Ent.News 83:239 247.
- VALENTI, W.C. & FROEHLICH, O. 1986. Estudo da diversidade da taxocenose de Chironomidae de dez reservatórios do Estado de São Paulo. <u>Ciência e Cultura</u> <u>38</u>(4):703-707.
- VELOSO, P.H. & GÓES FILHO, L. 1982. Fitogeografia Brasileira. Classificação fisionômica-ecológica da vegetação neotropical. Boletim Técnico Projeto RADAMBRASIL. Série Vegetação. 85p.
- WALKER, T.J. 1978. Migration and re-migration of butterflies through north peninsular Florida: quantification with malaise traps. <u>Journal of the Lepidopterists' Society</u> 32(3):178-190.
- WHITTAKER, R.H. 1972. Evolution and measurement of species diversity. Taxon 21(2/3):213-251.
- YAMAMOTO, A.F. 1984. <u>Fauna urbana e rural de Ichneumonidae(Hyme-noptera) da região de Curitiba, Paraná</u>. Tese, Mestrado, Uni-versidade Federal do Paraná. Curitiba, Paraná, Brasil. 116p.
- ZANELLA, F.C.V. 1991. Estrutura da comunidade de abelhas silvestres(Hymenoptera, Apoidea) da Ilha do Mel, planície litorânea paranaense, Sul do Brasil. Tese, Mestrado, Universidade Federal do Paraná. Curitiba, Paraná, Brasil. 88p.
- ZIMMERMAN, B.L. & BIERREGAARD, R.O. 1986. Relevance of the equilibrium theory of island biogeography and species-area relations to conservation with a case from Amazonia. <u>Journal of Biogeography</u> 13:133-143.

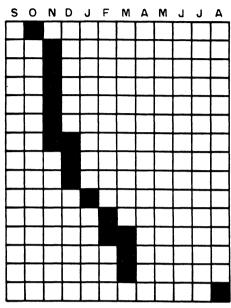


Apêndice 1. PROFAUPAR. Malaise. Representação neográfica das estações do ano, no período de agosto de 1986 a julho de 1987, em que os grupos de Insecta apresentaram maior atividade de vôo. AN=Antonina, CO=Co-lombo, FE=Fênix, GU=Guarapuava, JS=Jundiaí do Sul, PG=Ponta Grossa, SJ=São José dos Pinhais e TB=Telêmaco Borba. P=Primavera, V=Verão, O=Outono e I=Inverno.

Apêndice 2. Quadro comparativo das frequências relativas(%) dos Hemiptera(HEMI), Homoptera(HOMO), Coleoptera(COLE), Lepidoptera(LEPI), Diptera(DIPT) e Hymenoptera(HYME) coletados em várias localidades do Paraná(Brasil) e dos Estados Unidos da América.

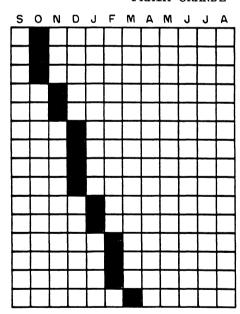
***************************************	HEHI	KOKO	COLE	LEPI	DIPT	HYKE
ANTONINA	6,2	3,2	3,5	3,2	<b>7</b> 6,9	7,4
S.J.PINHAIS	<b>0</b> ,i	3,2	3,4	4,7	74,i	3,6
COLOMBO	0,i	1,6	4,9	9,8	69,9	10,0
P. GROSSA	ė,i	1,4	2,0	2,7	87,i	5,4
GUARAPUAVA	<b>0</b> ,3	i,7	2,4	5,4	80,5	6,4
FÊNIX	6,2	8,3	2,4	6,0	73,5	7,5
J.SUL	0,2	3,6	2,5	7,8	76,0	7,5
T.BORBA	0,2	2,4	3, í	2,1	67,3	9,1
FORTALEZA	0,i	2,5	i,7	5,7	<b>8</b> 5,i	3,2
P. GRANDE	0,2	i,2	2,7	13,8	72,2	3,3
KANSAS (USA) ¹	0,6	6,2	5,6	4,8	66,4	12,3
HISSOURI(USA) ²	0,7	5,0	5,8	8,4	70,5	8,7
NEW YORK (USA)3	-	6,9	2,4	7,2	45,0	14,7
CURITIBA URBANA ⁴	-	2.8	2,1	3,6	80,8	7,i
CURITIBA RURAL ⁵	<b>-</b>	6.9	2,2	8,5	75,2	6,9

Fontes: 1. MARSTON, 1965:156.


^{2.} CANCELADO & YONKE, 1969:85-86.

^{3.} MATTHEWS & MATTHEWS, 1970:57.

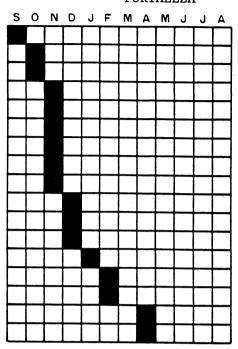
⁴ g 5. YAMAMOTO, 1984:21.


# FORTALEZA

STAPHYLINIDAE CERAMBYCIDAE CHRYSOMELIDAE ELATERIDAE PTILODACTYLIDAE SCARABAEIDAE MORDELLIDAE COCCINELLIDAE CURCULIONIDAE ANTHRIBIDAE DYTISCIDAE **NITIDULIDAE** HELODIDAE PHENGODIDAE TENEBRIONIDAE

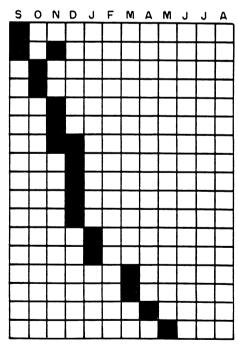


#### PRAIA GRANDE


CURCULIONIDAE PHENGODIDAE PTILODACTYLIDAE SCARABAEIDAE STAPHYLINIDAE CARABIDAE CHRYSOMELIDAE ELATERIDAE MORDELLIDAE CERAMBYCIDAE HYDROPHILIDAE DRYOPIDAE DYTISCIDAE **TENEBRIONIDAE** HELODIDAE



Apêndice 3. Ilha do Mel. Malaise. Representação neográfica dos meses em que as famílias comuns e intermediárias(pela classificação de Pal ma) de Coleoptera apresentaram maior atividade de voo, no perío do de setembro de 1988 a agosto de 1989.


### FORTALEZA

**THYSANOPTERA PSOCOPTERA NEUROPTERA** ORTHOPTERA ISOPTERA **PLECOPTERA** HEMIPTERA COLEOPTERA **LEPIDOPTERA ODONATA** DERMAPTERA **STREPSIPTERA HYMENOPTERA** THYSANURA HOMOPTERA COLLEMBOLA **DIPTERA** 



# PRAIA GRANDE

THYSANOPTERA NEUROPTERA **PSOCOPTERA** DIPTERA HOMOPTERA LEPIDOPTERA **HEMIPTERA** THYSANURA COLLEMBOLA ORTHOPTERA **HYMENOPTERA ISOPTERA** COLEOPTERA ODONATA TRICHOPTERA **EPHEMEROPTERA STREPSIPTERA** 



Apêndice 4. Ilha do Mel. Malaise. Representação neográfica dos meses em que as Ordens de Insecta foram capturadas em maior número, no perío do de setembro de 1988 a agosto de 1989.

Apêndice 5. Lista das espécies de Cerambycidae presentes(1) ou au sentes(0) nas nove localidades; * = espécies utilizadas na Análise de agrupamento precedidas pelo respectivo número na matriz de dados.

Tara Hamera Ha macrizz de dados.		٨	0	_	P	C	_		т	т
Acanthoderes analis Melzer, 1935					0					
Acanthoderes jaspidea (Germar, 1824)	1×									
Acestrilla laterifusca (Breuning, 1939)	T×				0					
Achryson setosum Zajciw, 1963					0					
Achryson surinamum (Linnaeus, 1767)										
	٥.,				0					
Acyphoderes aurulenta (Kirby, 1818)	2∗									
Adesmus amoenoides Fisher, 1938					0					
Adesmus ventralis Gahan, 1894					0					
<u>Adetus analis</u> (Haldeman, 1847)					0		-		-	-
<u>Aerenea</u> <u>posticalis</u> Thomson, 1857	3 <b>*</b>	0	0	1	0	0	1	1	0	0
<u>Aerenica albicans</u> (Guerin, 1844)		1	0	0	0	0	0	0	0	0
<u>Alampyris</u> sp1		0	0	0	1	0	0	0	0	0
Alcidion ludicrus (Germar, 1824)	4 <del>*</del>	1	0	0	0	1	0	1	1	0
Anisopodus phalangodes (Erichson, 1847)					0					
Ataxia obtusa Bates, 1866	5*									
Bactriola vittulata Bates, 1885	6 <b>*</b>									
Batus hirticornis (Gyllenhal, 1817)	7*									
Blabia tigrinata (Thomson, 1864)	,				Ö					
Callideriphus flavicollis Fisher, 1938					1		_		_	
Carterica spi					0					
<u>Chariergus quadripunctatus</u> Lucas, 1857	8*	-	-	-	-	-	-	_	-	-
	9*						-		-	-
Chariergus signaticornis (Lucas, 1857)		-	-	_	_	_	-	-	_	-
Chariergus tabidus (Klug, 1825)	10*	_	-	-	_	-	-	-	_	-
Chidarteres dimidiatus taeniatus (Germar, 1824)	11*						_	-	-	-
Chlorida costata Serville, 1834	12*				_	-	-	_	_	_
<u>Chlorida</u> <u>festiva</u> (Linnaeus, 1758)	13*					-		_	-	-
<u>Coleoxestia</u> sp3					0				-	-
<u>Coleoxestia</u> sp6					0					
<u>Colobothea schmidti</u> Bates, 1865	14*						_	_	-	-
<u>Colobothea</u> sp1		0	0	0	1	0	0	0	0	0
<u>Colobothea</u> <u>subcincta</u> Castelnau, 1840		0	0	1	0	0	0	0	0	0
<u>Cometes hirticornis</u> Serville, 1825	15*	0	0	0	0	1	1	0	0	0
Compsa albopicta Perty, 1830	16*	0	0	1	1	0	1	1	0	0
Compsibidion vanum (Thomson, 1867)		0	0	0	0	0	0	1	0	0
Compsocerus violaceus White, 1853	17*	1	0	0	1	1	1	0	0	0
Ctenoplon x-littera (Thomson, 1865)		0	0	0	0	0	0	1	0	0
Desmiphora cirrosa Erichson, 1847	18*	0	0	1	0	0	1	1	0	0
Desmiphora intonsa (Germar, 1824)	19*									
Desmiphorini sp1					0					
Dihammaphora signaticollis Chevrolat, 1859					0					
Distenia columbina Serville, 1828					1					
Dodecosis serotina Bates, 1867					0					
Eburodacrys luederwaldti Melzer, 1922	20*									
Eburodacrys sp1	CV×				0					
<u>Epopetres zonula</u> Martins & Napp, 1984 <u>Ethemon lepidum</u> Thomson, 1860					0					
					0					
Erana ciliata Fisher, 1938					0					
Esthlogena maculifrons Thomson, 1868					0					
Estola albostictica Breuning, 1940					0					
Estola microphthalma Breuning, 1942					0					
Estola nigropunctata Breuning, 1940		Ø	Ø	Ø	0	0	0	1	0	0

Legenda: A=Antonina, S=São José dos Pinhais, C=Colombo, P=Ponta Grossa, G=Guarapuava, F=Fênix, J=Jundiaí do Sul, T=Telêmaco Borba e I=Ilha do Mel.

Apêndice 5. Continuação. Lista das espécies de Cerambycidae presentes(1) ou ausentes(0) nas nove localidades;*= es pécies utilizadas na Análise de agrupamento preced<u>i</u> das pelo respectivo número na matriz de dados.

			_	_		_	_		_	
Estola obscura Thomson, 1868	54		S							
Estola obscuroides Breuning, 1942	21*									
Estola trucantella Bates, 1866	224		0							
Eutrypanus dorsalis (Germar, 1824)	22×									
Euryptera latipennis Serville, 1825	23*									
Falsamblesthis ibiyara Marinoni, 1978			0							
Hemilophus leucogramma Bates, 1881	244		0							
Hesychotypa subfasciata Dillon & Dillon, 1945	24 <b>*</b>									
	OF.,		0	-	-	-	-	_	-	-
Heterachthes flavicornis sexsignatus Thomson, 1865 Hexoplon ctenostomoides Thomson, 1867	25*									
Hexoplon juno Thomson, 1865			0							
Hippopsis quinquelineata Aurivillius, 1920			0					-	-	-
Hyperplatys sp1	2/4		0							
<u>Isthmiade braconides</u> (Perty, 1830)	26*									
Laraesima scutelaris Thomson, 1868			0							
			0						-	
Leptostylus sp2			0							
Lepturges unicolor Gilmour, 1959			0		-	-	_	-	-	-
Lesbates sp1			0							
Lesbates sp2			0						-	
Lygrocharis nigripennis Mendes, 1938			0							
Lophopoeum sp1	0.5		0							
Macropophora accentifer (Olivier, 1795)	27*			-	_	_	-	_	-	-
Malacopterus pavidus (German, 1824)	00		0							
Malacoscylus cirratus (Germar, 1824)	28*									-
Mallocera glauca Serville, 1833	204		0							
Mecometopus insignis Chevrolat, 1862	29*									
Megacyllene acuta (Germar, 1821) Megacyllene falsa (Chevrolat, 1862)	30*									
Meroscelisus violaceus Serville, 1832	31*									
Methiini sp1	32*									
•			0							
Midamus hecabe Dillon & Dillon, 1945	00		0							
Mionochroma vittatum (Fabricius, 1775)	33*									
Mygalobas ferruginea Chevrolat, 1862			0							
Myzomorphus quadripunctatus (Gray, 1832)			1							
Nealcidion bicristatum (Bates, 1863)	04		0							
Nealcidion bispinum (Bates, 1863)	34 <b>*</b>									
Nealcidion simillimum (Melzer, 1932)	0E v		0							
Neoclytus curvatus (Germar, 1821)	35 <b>*</b>									
Neocorus zikani Melzer, 1920			0							
Necestola spi	2/4		0							
Nyssocarinus bondari (Melzer, 1927)	36*									
Nyssodrysina lignaria (Bates, 1864)	00		1							
Nyssodrysternum sp1	37 <b>*</b>								-	_
Nyssodrystes bella (Melzer, 1927)			0			_	_	_	-	-
Nyssodrystes pleuriticus (White, 1855)			0						_	-
Obereoides jorgenseni (Bruch, 1911)	20		0					-	-	_
Odontocera nigriclavis Bates, 1873	38*					-	-	-	-	-
Odontocera sanguinolenta rufifrons Fisher, 1937			0							
Odontocera sp2			0							
Odontocera virgata Gounelle, 1911		Ø	0	Ø	Ø	Ø	Ø	1	Ø	Ø

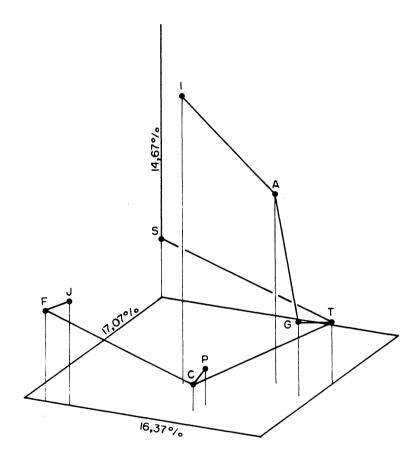
Legenda: A=Antonina, S=São José dos Pinhais, C=Colombo, P=Ponta Grossa, G=Guarapuava, F=Fênix, J=Jundiaí do Sul, T=Telêmaco Borba e I=Ilha do Mel.

Apêndice 5. Continuação. Lista das espécies de Cerambycidae presentes(1) ou ausentes(0) nas nove localidades;*= es pécies utilizadas na Análise de agrupamento preced<u>i</u> das pelo respectivo número na matriz de dados.

			_	_		_	_		_	_
<u>Oedepeza umbrosa</u> (Germar, 1824)								J		
Ommata(Eclipta)bipunctata Melzer, 1934	20.4							0		
Ommata(Eclipta)eirene (Newman, 1841)	39*									
Ommata(Eclipta)eunonia (Newman, 1841)								0		
Ommata(Eclipta)nigriventris impunctata Fuchs, 1	0/4	0						0		
Ommata(Eclipta)signaticollis Melzer, 1922	701 .							0		
Ommata(Ommata) maia (Newman, 1841)								0		
Ommata sp1								0		
<u>Oncideres dejeani</u> Thomson, 1868								0	-	-
Onocephala obliquata Lacordaire, 1872					-	_	-	0	-	_
Ophistomis fulvicornis (Bates, 1872)	40 4							0		
Oreodera ohausi Melzer, 1930	40*									
								0	-	_
Oreodera quinquetuberculata (Drapiez, 1820)								0		
Oreodera sp1								0		
Ornistomus bicinctus Thomson, 1864								0		
Orthoschema sp1								0		
Oxathres implicatus Melzer, 1926								0		
Ozineus sp2								0		
<u>Ozineus</u> sp3 <u>Ozineus</u> sp5								1		
Pachypeza marginata Pascoe, 1888								0	-	-
Pachypeza teres Pascoe, 1888								0		
Paramallocera hirta (Kirby, 1818)	41×							0		
Paramallocera lacordairei (Lacordaire, 1869)										
Parandra spi								1		
Parandra sp4	40 4							1		
<u>Parischnolea excavata</u> Breuning, 1942	42 <b>*</b>									
Paromoeocerus barbicornis (Fabricius, 1792)	42 ×							0		
Phespia simulans Bates, 1873	43 <b>*</b>							0		
Plerodia syrinx (Bates, 1865)	A A w									
Poeciloxestia dorsalis (Thomson, 1860)	44*							0		
Polyoza lacordairei Serville, 1832	45*									
Probatiominus schwarzeri Melzer, 1926	40×							0		
Probatiominus signiferus (Thomson, 1865)	46*									
Pseudolepturges spi	40×							0		
Rosalba approximata Melzer, 1934								0	-	_
Rosalba consobrina Melzer, 1934						-		0	-	-
Rosalba cordifera (Aurivillius, 1914)								0		
Rosalba digna (Melzer, 1934)						-	-	1	-	-
Rosalba smaradigma Breuning, 1940								0		
Spathoptera albilatera Serville, 1835								0		
Sphecomorpha murina (Klug, 1825)								0	-	
Sporetus colobotheoides (White, 1855)								0	-	-
Sydax straminea Lacordaire, 1869								0	-	
Thoracibidion lineaticolle (Thomson, 1865)					-	-	-	1	-	-
Tomopterus spi								0		
Trichillurges fasciatus Gilmour, 1961								0		
Trichonyssodrys maculata Gilmour, 1957								0		
Tropidozineus vicinus (Melzer, 1931)								1		
Urgleptes sp3								1		
		·	- 		- 			<u>.</u> _		

Legenda: A=Antonina, S=São José dos Pinhais, C=Colombo, P=Ponta Grossa, G=Guarapuava, F=Fênix, J=Jundiaí do Sul, T=Telêmaco Borba e I=Ilha do Mel.

Apêndice 6. Matriz de dados com 9 OTU's e 46 caracteres(vide Apêndice 5 - espécies precedidas por "*") utilizada na Análise de agrupamento.


	10	20	30 40
No DA ESPÉCIE	123456789 1234	56789 123456789	9 123456789 123456
ANTONINA	110100100100000	001011000010000	0010000001001101010
S.J.PINHAIS	0000000110000000	000000000100000	$0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \;$
COLONBO	001001101000000	010110010011001	1101010000100100000
P. GROSSA	10000001110101	011010010011101	10101111011010101000
Guarapuava	10010110100100:	101000110010011	010000100010111000
FÊNIX	00101100001010	111110111100011	001011000100001101
J.SUL	001110000000111	01011011101010101	001101000010100111
T.BORBA	00010010110101	0000000010010010	01000101000101010000
I.HEL	010010000001100	00001111001000	0000000010000000000

Apêndice 7. Matriz de dados reordenada a partir do dendrograma de similaridade entre os pontos amostrados("0" substitu $\underline{i}$  do por ".").

	10	20 30	40
No DA ESPÉCIE		66789 123456789 123	
ANTONINA I.Hel		. i . i i i i	
COLOMBO P. Grossa		i . i i i i i i i . i . i .	
FÊNIX J.SUL		i i i i i i i i i i i i . i .	
GUARAPUAVA T.Borba		i i i i i . i	
S.J.PINHAIS	<b>. i i</b>	<b>. i</b>	

Apêndice 8. Quadro comparativo das classificações de Holdridge (MILANO <u>et al</u>., 1987), Holdridge (dados históricos), VELOSO & GóES(1982) e Koeppen(MAACK, 1981) para as nove localidades amostradas e reposicionadas pelo dendrograma.

	Holdridge (MILANO <i>et al.</i> )	Holdridge (dados históricos)	VELOSO & GÓES	Ko <b>eppen</b>
ANTONINA	Trans. Flor. úmida subtro- pical/muito úmida subtrop <u>i</u> cal	Trans. de Flor. úmi- da subtropical e mu <u>i</u> to úmida subtropical	Floresta Ombrófila Densa Submontana	Af(t)
I MEL	Trans. Flor. úmida subtro- pical/muito úmida subtropi cal	Trans. de Flor. úmi- da subtropical e mu <u>i</u> to úmida subtropical	Floresta Dæbrófila Densa Submontana	Af(t)
COLOMBO	Floresta úmida temperada	Flor. úmida subtrop <u>i</u> cal baixomontana	Floresta Ombrófila Mista Montana	Cfb
P.GROSSA	Floresta úmida temperada	Flor. úmida subtropi cal baixomontana	Floresta Ombrófila Hista Hontana	Cfb
FÊNIX	Floresta úmida subtropi- cal premontana	Trans. de Flor. seca tropical premontana para Flor. úmida tr <u>o</u> pical premontana	Floresta Estacional Sem <u>i</u> deci <b>d</b> ual	Cfa
j. SUL	Floresta úmida tropical premontana	Trans. de Flor. úmida tropical premonta na para Flor. seca tropical premontana	Floresta Estacional Semi decidual	Cfa
Guarapuava	Floresta úmida temperada	Floresta úmida sub- tropical	Flor. Ombrófila Mista c/ transição para Flor. Es- tacional Semidecidual	Cfb
T.BORBA	Floresta úmida temperada	Floresta úmida sub- tropical	Floresta Ombrófila Hista Hontana	Cfa
S.J.PINHAIS	Floresta úmida temperada	Trans. de Flor. úmi- da subtropical baixo montana e Flor. mui- to úmida subtropical baixomontana	Trans. de Flor. Ombrófi- la Densa Montana e Flor. Ombrófila Mista Montana	Cfb



Apêndice 9. Análise por Coordenadas Principais. Locais amostrados com armadilha Malaise X presença/ausência das espécies de Cerambycidae.

A=Antonina, C=Colombo, F=Fênix, G=Guarapuava, I=Ilha do Mel, J=Jundiaí do Sul, P=Ponta Grossa, S=São José dos Pinhais e T=Telêmaco Borba.