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Abstract

Acoustic predictions usually suffer from uncertainties in ocean forecasts, due

to the extreme sensitivity of acoustic propagation to the ocean environment.

In this regard, the acoustic prediction systems require the best possible spec-

ification of initial conditions, demanding high accuracy and synopticity on

the ocean circulation modeling. The current work assesses the feasibility

of combining a Feature-Oriented Regional Modeling System (FORMS) with

acoustic inversion outcomes, for acoustic prediction in the Cabo Frio (Brazil)

coastal area. First, the oceanographic prediction model is tested for acoustic

applications. Two numerical acoustic simulations were performed, with an

acoustic model having as input two different initial fields: i) in situ hydro-

graphic data from the OAEx10 sea trial, and ii) the oceanographic modeling

system outputs. The simulations were compared in terms of transmission

loss (TL), detection probability and acoustic channel impulse response. The
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TL differences exhibit standard deviations ranging between 2.29 and 4.32

dB, demonstrating the feature-oriented regional model skill for sonar appli-

cations. The quality of the results degrades with distance, as observed in

correlations between the impulse responses. This can be explained by an ac-

cumulation of forecast error effects during propagation. Another interesting

result is that the coastal upwelling may prevent the detection of submarine

targets. The second stage of this work concerned acoustic data-model com-

parison, for OAEx10. Experimental impulse responses correlated fairly well

with modeled ones corresponding to the forecasts, with values between 0.72

and 0.89. In an attempt to increase these values, the acoustic data was

inverted, for the basement compressional speed, whose estimates led to in-

creased impulse response correlations of as high as 0.96. In summary, the

prediction of the acoustic field can be well accomplished by combining a

FORMS technique with an acoustic inversion scheme.

Keywords: Acoustic prediction, feature model, acoustic inversion, coastal

upwelling, model validation

1. Introduction and background

Acoustic propagation is extremely sensitive to the physical oceanographic

environment, through the sound speed field. The latter is set as a function

of density in sea water, which forces the temperature and salinity distri-

bution, stratification and dynamics, to play a key role on the propagation

of acoustic energy. Furthermore, multiple interactions of sound waves with

the seabed lead to peculiar propagation effects, especially in shallow wa-

ters (Kuperman and Lynch, 2004). A significant research effort has been
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triggered in this respect, recognizing ocean-acoustics as an interdisciplinary

science. In particular, there is a special interest in understanding the impact

of environmental variability on acoustic predictions and sonar performance.

This question has been adressed in past work (Robinson et al., 2002; Abbot

and Dyer, 2002; Robinson and Lermusiaux, 2004; Lam et al., 2009). Acous-

tic prediction uncertainties have been quantified, with the results explained

through dynamical sensitivities (Lermusiaux et al., 2002, 2010). In sum-

mary, the above studies emphasized that the error of the predicted acoustics

is highly dependent on the ocean forecast error and the accuracy of bathy-

metric/geoacoustic properties. For this reason, methods and systems built

to forecast the acoustic field, must be sustained by increasingly sophisticated

oceanographic modeling systems, and reliable bottom data.

This work aims to evaluate the feasibility of combining a Feature-Oriented

Regional Modeling System (FORMS) with acoustic inversion outcomes, for

acoustic prediction in the Cabo Frio – Brazil (23◦S) coastal area. The

FORMS consists of a technique which is based on the construction of realis-

tic oceanic structures, using a ‘feature model’ approach (Gangopadhyay and

Robinson, 2002). Feature models are simple mathematical representations

of the ocean features (e.g. currents, fronts, eddies), which are parameterized

in terms of their synoptic characterists: temperature (T), salinity (S), and

velocity components (u,v). The philosophy of this approach is to develop

a first-order system for a very complex nonlinear system such as a regional

ocean, where most processes strongly interact and where processes cannot be

studied separately. Once the first-order structures are placed within a numer-

ical models dynamical framework, the nonlinearity stimulates further inter-
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action among features and should create realistic four-dimensional complex

fields (Calado et al., 2008). In this regards, the feature modeling technique is

widely used to supply nowcasting and forecasting systems with realistic ocean

data (Robinson et al., 1988; Spall and Robinson, 1990; Cummings et al., 1997;

Gangopadhyay et al., 1997; Shaji and Gangopadhyay, 2007; Calado et al.,

2008, 2010; Gangopadhyay et al., 2011).

In the past, feature models were also pointed out as a feasible means

of interfacing ocean dynamical models to underwater-acoustic propagation

models (Robinson and Lee, 1997). It was shown that the feature models

can reproduce the main acoustic properties of the ocean environment (Small

et al., 1997). In the current study, an ocean forecasting model was initialized

by a parametric feature model for the Cabo Frio coastal upwelling system.

The guidelines of the present approach are to represent the dynamics of the

Cabo Frio coastal region in a realistic fashion. In that region, the upwelling

is of utmost importance, both in oceanographic and acoustic terms, due to

the induction of strong horizontal temperature gradients. The latter cause

a strong impact on the acoustic pressure field, as shown in previous works

(Carriére et al., 2009; Codato et al., in press.). In the present work, the effect

of upwelling on the prediction of transmission loss (TL), detection probabil-

ity (DP) and the acoustic channel impulse response was investigated, the

former two being fundamental for tactical purposes. The channel impulse

response, though not commonly considered in the majority of acoustic pre-

diction studies, is a standard tool in signal processing and acoustic inversion

approaches, hence considered here.

The first stage of the present work quantifies the skill of the feature-
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oriented ocean forecast system for acoustical applications. Two numerical

acoustic simulations were performed, with a propagation model having as

input: (i) the in situ oceanographic data from the Ocean Acoustic Explo-

ration 2010 (OAEx10) sea trial, and (ii) the oceanographic modeling system

output. In the second stage, the acoustic predictions are compared with

acoustic data acquired on the OAEx10 experiment, in order to quantify the

forecast uncertainty. In predicting the acoustic field, an acoustic inversion

technique is used to provide accurate ocean bottom information for the pur-

pose. In general, inversion techniques are employed in acoustical oceanogra-

phy, to infer parameters which characterize the environment. In the context

of acoustic prediction, the inversion techniques are valuable in providing en-

vironmental information, in at least two possible situations: i) the knowledge

of geologic/geometric properties is incomplete/uncertain; ii) the environmen-

tal information is accurate, with the exception of some properties which are

important to define the acoustic field, and whose erroneous values are used to

predict that field (e.g. bathymetry, sedimentary layers, compressional sound

speeds, etc.). In the past, it was already observed, through data/model

comparisons, that acoustic inversion methods can play an important role

in minimizing the variance of sonar performance prediction (Martins et al.,

2008; Martins and Jesus, 2009). In the current study, the acoustic data was

inverted for the basement compressional speed, in an attempt to ’fine tune’

the geoacoustic parameters on the subjacent acoustic prediction system.

This article is organized as follows: Section 2 describes the OAEx10

experiment and the oceanographic-acoustical prediction system; Section 3

presents numerical simulation results and data/model comparisons; Section
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4 concludes the paper.

2. In situ dataset and coupled oceanographic-acoustical prediction

system

2.1. The OAEx10 experiment

The OAEx10 sea trial occurred along the coast of Cabo Frio (southeast-

ern Brazil), during the period of November 19–21, 2010. It was a multi-

institutional and multi-disciplinary exercise, involving oceanographical and

acoustical surveys aboard of two Brazilian Navy’s vessels (R/V ’Aspirante

Moura’ and ’Embarcação de Desembarque de Carga Geral–EDCG Guara-

pari’). The region around Cabo Frio provides a unique environment, where

the coast orientation changes and continental shelf break topography re-

inforces the interaction between the oceanic and coastal systems (Calado

et al., 2006). The region can have different wind and waves regimes, depend-

ing upon the presence of meteorological frontal systems and of mesoscale

oceanographic features (e.g. upwelling, eddies, meanders, etc.). In summary,

the physical setting makes this area a very interesting site for ocean-acoustic

research, where diverse sound-speed profiles can be found.

The oceanographical cruise was designed to obtain a synoptic horizontal

grid covering the coastal upwelling feature around Cabo Frio. A complete

CTD (conductivity, temperature and depth) sampling was performed along

the experiment, yielding vertical profiles of temperature and salinity (Fig. 1).

The combination of such profiles on a T-S diagram (see Fig. 1 – right panel)

allowed to confirm the occurrence of an upwelling phenomenon during the

surveys. It was found that the thermohaline index from CTD casts corre-
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sponded to the South Atlantic Central Water (SACW) water mass index,

as proposed in Miranda (1985). The SACW is a water mass characterized

by temperatures lower than 18 ◦C and salinity of 34.6–36, which rises at the

surface in the vicinity of Cabo Frio, and can be a proxy to track an upwelling

near the coast (Calado et al., 2010). In particular, a temporal evolution of an

upwelling process was observed for three days, during the trial period. This

was recorded by the displacement of the upwelling front toward the ocean

and the cooling of surface waters at stations closer to the coast, which can be

observed on the interpolated sea surface temperature (SST) maps generated

from CTD data, shown in Fig. 2.

Figure 1: CTD profiles collected during OAEx10 sea trial. (Left) Temperature vs. depth.

(Center) Salinity vs. depth. (Right) T-S diagram, where the green points correspond to

the SACW water mass, which is an upwelling indicator.
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Processed CTD data were interpolated using a multiscale Objective Anal-

ysis (OA) scheme, with horizontal resolution of 1 km and 30 vertical lev-

els. The correlation length was 5 km for synoptic-scale, and 50 km for

climatogical-scale, according to the methodology presented in Calado et al.

(2008). For the first stage of this paper, the objectively analyzed T-S fields

allowed to derive sound-speed sections, to use as environmental parameters

for acoustic model initialization. From now on, this dataset is referred as the

OAEx10 ocean-data.

Figure 2: SST snapshots based on the interpolated OAEx10 ocean-data, showing the

coastal upwelling registered on November 19th, 20th and 21th, respectively. The black

points represent the CTD sampling stations.

The acoustic propagation experiments were conducted by a sound source

emitting sequences of continuous waves (CW) signals and linearly frequency

modulated (LFM) signals. Focus is given to the data acquired on November

19, 2010, during the active acoustic measurements on the upwelling front.

The R/V Aspirante Moura was the transmitting ship, and deployed the sound

source at 10 m depth. The EDCG Guarapari contained a receivers in a

vertical array of 8 hydrophones 3 m equally spaced from 10 m to 31 m

depth. The distance between source and hydrophone array was 1395 m. The
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OAEx10 acoustic-data is composed by a sequence of ten LFM signals from

500Hz to 1kHz (lower frequencies), a sequence of LFM signals from 1 to

2kHz (higher frequencies) and a CW multi-tone from 500Hz to 2kHz with

nine intermediate frequencies.

2.2. Oceanographic modeling system

The oceanographic modeling system was based on the achievements of

methodology presented in Calado et al. (2008), which was derived from the

FORMS initialization technique developed by Gangopadhyay and Robinson

(2002). This latter study have generalized feature modeling approach for

strategic application to any oceanic region. The generalization can be sum-

marized as a three-step procedure: i) a regional synoptic feature-oriented

circulation template is developed via a synthesis of past observational stud-

ies in the region; ii) individual feature models for each of the features are

developed from synoptic observational studies; iii) the feature model profiles

on the template locations are interpolated with appropriate background cli-

matology to obtain a three-dimensional synoptic grid ready for the numerical

model applications. The present work had applied a variation of this tech-

nique for the coastal upwelling associated with the SACW water mass in the

vicinity of Cabo Frio coast. The FORMS methodology employed here will

be described below.

2.2.1. The Feature-Oriented Regional Model

The feature-oriented regional model consisted of the combination of a

coastal upwelling parametric feature model with a background climatological

thermohaline structure from the World Ocean Atlas – WOA’05 (Locarnini
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et al., 2006). The synoptic water mass (T-S) structures used for the upwelling

parametrization were characterized from the ’Dinâmica do Ecossistema da

Plataforma da Região Oeste do Atlântico Sul – DEPROAS’ dataset, which

was described in more detail in a previous work (Calado et al., 2008).

A schematic representation of the proposed feature model is shown in

Fig. 3. It is derived from the continental shelf-slope front feature model

developed by Gangopadhyay and Robinson (2002), and updated by Shaji and

Gangopadhyay (2007) and Calado et al. (2008), respectively. The upwelling

frontal temperature distribution T (η, z) is parameterized as:

T (η, z) = To(z) + [Ti(z) − To(z)]m(η, z), (1)

where

m(η, z) = 0.5 + 0.5 tanh

[
η − Θz

χ

]
(2)

is a meld function, η is the cross-frontal distance from the axis of the front,

and z is positive vertically upward. Ti(z) is the inshore temperature profile,

and To(z) is the offshore temperature profile. Θ is the slope of the front, and

χ is the e-folding half-width of the front (= r/2).

Ti To
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Figure 3: A schematic representation of the feature model structure and its parameters.
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Using multiscale objective analysis, this theoretical structure for the coastal

upwelling was melded with the climatological temperature, resulting in a

three-dimensional thermal field (Fig. 4). However, this field wasn’t an ac-

curate representation of the real thermal field during OAEx10 experiment.

In order to solve this, we considered that the climatological thermal field

correctly describes the vertical variability. Therefore, it is possible to obtain

the desired thermal field with a best vertical position of the SACW loca-

tion (i.e. the one representing the experiment days), by using the vertical

information from climatology in tandem with surface information from re-

mote sensing. This basically means that the temperature is considered the

following function as:

T (x, y, z) = [Ts(x, y) − Tb(x, y)]φ(x, y, z) + Tb(x, y), (3)

where the subindices s and b refer to surface and bottoms values, and φ are

the non-dimensional vertical profiles, which can be obtainable by solving the

equation for φ using the climatological values. Obtaining φ is the process

of adimensionalization. This process was applied to build non-dimensional

profiles which hold the shapes of the typical coastal upwelling temperature

profiles, being able to be rescaled accordingly near-real-time synoptic data.

In the case of this work, the thermal field was redimensionalized using

satellite SST data as Ts, and the bottom data from the previous thermal field

as Tb. The input SST used was for November 18th of 2010, obtained from

the GHRSST–Group of High Resolution Sea Surface Temperature. Since

there were no previous salinity in situ data, it was used as the final three-

dimensional haline field the meld between climatology and feature model for

coastal upwelling, obtained in an analogous form as the temperature.
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Figure 4: Three-dimensional thermal field after the interpolation between the climatology

and the coastal upwelling feature model.

The FORMS final product was a 3-D thermohaline field that accurately

assimilated the SST conditions for the period of 1 day before the OAEx10

experiment (November 18th). This 3-D thermohaline field was employed

to initialize a numerical ocean model, in order to forecast the circulation

dynamics for the next three days, corresponding to the OAEx10 experiment

time (November 19th, 20th and 21th).

2.2.2. The Numerical Ocean Model

ROMS – Regional Ocean Modeling System (Shchepetkin and McWillians,

2005) was the numerical model chosen to provide the ocean forecasts. ROMS

is a free-surface, hydrostatic, primitive equation ocean model that uses stretched,

terrain-following coordinates in the vertical and orthogonal curvilinear coor-

dinates in the horizontal. This model solves the Reynolds averaged form of

the Navier Stokes equations and can be configured in several different ways.

12



In this work, it was used a grid with horizontal resolution of ≈ 800 m and

25 vertical sigma layers. The bathymetry was extracted from digital nautical

charts for the region, interpolated to 1 minute of degree resolution. An open

boundary condition was applied on the experiment, with the climatology

from Boyer et al. (2005) continuously nudging the domain.

Both wind stress and tides were used to force the model. The wind stress

was derived from the level 2 along-track Advanced Scatterometer–ASCAT

(O&SI SAF Project, 2011) dataset, and was calculated using bulk formula

(Large and Yeager, 2004). The tidal forcings were obtained from the global

model of ocean tides TPXO v7.2 (Egbert and Erofeeva, 2002).

The numerical model had as initial condition the 3-D mass field resulted

from FORMS, and therefore was started for November 18th of 2010, as pre-

viously said. A prognostic run was performed to predict the fluid state into

the future time, and the outputs of this simulation were used as environmen-

tal inputs to an acoustic propagation model, which is described in the next

section. Specifically, these envinronmental inputs were based on a study case

for November, 19th, using a 24-hour ocean forecast.

2.3. Oceanographic-model-driven acoustic propagation modeling

The acoustic simulations were performed using the BELLHOP propaga-

tion model (Porter and Bucker, 1987). BELLHOP is a model for predicting

acoustic pressure fields, based on the Gaussian beam tracing method. This

model is particularly interesting for range-dependent problems where normal

mode, Fast Field Program, or parabolic models are not practical alternatives,

due to computational costs.

The feature-oriented ocean forecasts provide the necessary range-dependent
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water column component of the environmental model to initialize the BELL-

HOP propagation model. To accomplish this, the predicted T-S fields from

the oceanographic modeling system outputs were transformed into sound-

speed, using the UNESCO 1983 polynomial (Fofonoff and Millard, 1983).

Afterwards, the sound speed was interpolated into the transect containing

the acoustic source and hydrophone array, with a suitable grid for acoustic

modeling. The acoustic source was located at 10 m depth, emitting sound

signals in the frequency of 1500 Hz. The bathymetry used here was the same

as for the oceanographic model. The considered boundaries consisted of a

free-surface, and an acousto-elastic bottom halfspace.

2.4. Acoustic inversion

As previously said, this work uses an inversion technique to fine tune the

geoacoustic model — namely, through the basement compressional speed —

for the acoustic prediction system. The inversion strategy resorts to matched-

field processing, consisting of the correlation of acoustic field measures at

an hydrophone array, with a number of fields, each one corresponding to

a candidate value of the compressional speed. The processor assumes the

structure of a broadband frequency-incoherent Bartlett processor:

P (θ) =
1

K

K∑
k=1

wH(fk, θ)RXX(fk)w(fk, θ), (4)

where w(fk, θ), function of the frequency fk and the candidate compressional

speed θ, is a vector of complex acoustic pressures at the hydrophone array,

and RXX(fk, θ0) is an estimate of the hydrophone correlation matrix at fre-

quency fk (Martins et al., 2008). An exhaustive search on the solution space
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of the basement compressional speed is carried out, in order to find the value

that maximizes P (θ).

3. Results and discussion

Numerical simulation results are presented in this section, where the fore-

casted oceanographic field is compared to the ocean truth field observed on

the OAEx10 experiment. The aim is to evaluate the skill of feature-oriented

modeling approach for sonar applications. Additionally, the effects of coastal

upwelling on the propagation of acoustic energy is also assessed here.

After validation of the ocean forecasts, a new comparison is made between

the predicted acoustic field and the OAEx10 in situ acoustic-data. The cor-

relations obtained in such comparison are described in the present section.

At the end, the predicted acoustic field is analyzed before and after the use of

acoustic inversion, in order to evaluate the gains achieved by this technique.

3.1. Feature-oriented modeling skill for acoustic prediction

As said in the Sec. 2.2, the initial mass field for ROMS experiments was

built upon a regional climatology background melded with the coastal up-

welling feature model, consisting in a FORMS initialization scheme. For this

reason, the outputs of the ROMS simulations are referred as feature-oriented

ocean forecasts. The current section contains the results of two acoustic sim-

ulations with BELLHOP, fed with the two different physical fields: (i) the

OAEx10 ocean-data and (ii) the feature-oriented ocean forecasts. Four 10-km

long transects were defined with basis on the OAEx10 ocean-data SST map

shown in Fig. 5, in order to observe the influence of different physical pat-

terns on sound propagation characteristics relevant for sonar applications.
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The ROMS outputs were interpolated for the same transects, and sound-

speed sections were derived from the ocean-data and the feature-oriented

ocean forecasts, respectively (see Fig. 6). Such sections were computed to

serve as the initial fields to BELLHOP propagation model. The sections

contrast in the range-dependence of bathymetry and sound-speed: section 1

is almost range-independent; sections 2 and 3 are slightly range-dependent;

and section 4 is strongly upslope and crosses the upwelling front.

Figure 5: OAEx10 ocean-data SST map. The transects 1, 2, 3, and 4 represent the

sound-speed sections employed in BELLHOP simulations. The triangle symbol denotes

the source (S) position, and circle the receivers.

The difference between the transmission loss (TL) computed with BELL-

HOP, using the two different sound-speed fields, is plotted in Fig. 7, for each

section. The acoustic field is best modeled for the first 5-km range (area in

orange), and the error acumulates with distance. The TL differences exhibit

standard deviations ranging between 2.29 and 4.32 dB, acceptable for some

sonar applications (Robinson et al., 2002). In particular, in section 4, no error

exists at ranges greater than 7.5 km, due to vanishing acoustic signals pre-

dicted with both the in situ data and the skilled ocean forecasts. This pattern

is the result of the interaction between the acoustic signals and the strong
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Figure 6: Sound speed sections for the transects in Fig. 5, derived from (A) OAEx10

ocean-data, and (B) feature-oriented ocean forecasts.

temperature gradient in the upwelling front. Apart from refraction mecha-

nisms, the energy conservation law implies that a decrease in sound speed,

along a ray trajectory, will cause the ray’s amplitude to decrease (Jensen

et al., 1994). As compared to the other sections, the upslope bathymetry

is also a determining factor in reducing the range of the acoustic signals,

by inducing much significant bottom interaction and consequent signal loss

(Lermusiaux et al., 2010).

��������� ��������� ������������������

Figure 7: TL errors [dB] for the sections in Fig. 6.
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In order to evaluate the relevance of the TL errors for an operational ap-

plication, the TL predictions are used to calculate the detection probability

(DP). To do so, a hypothetical scenario with a passive sonar was considered,

using the simulated TL field and typical values for environmental noise and

figure of merit (Urick, 1983), to solve the signal excess equation, as proposed

in Ferla and Porter (1991). The BELLHOP calculated the DP ranging be-

tween 0 (no detection capability) and 1 (certain detection). The DP for each

section, computed from both the OAEx10 ocean-data and the ocean fore-

casts, is shown in Fig. 8. An interesting result is that, though the subtle

differences in the TL fields, the main features of the detection probability

were successfully predicted for all sections. It is evident that the simulations

using the ocean forecasts had produced a satisfactory spatial distribution of

the DP zones, notably matching the simulations initialized by the in situ

data.

���������

�

�

��������� ��������� ���������

Figure 8: Detection probabilities for the sections in Fig. 6. BELLHOP initialized by (A)

OAEx10 ocean-data, and (B) feature-oriented ocean forecasts.
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Additionaly, it is noted that the coastal upwelling phenomenon imposes

severe changes on the detection pattern (Fig. 8 - Section 4). It is clear that the

DP becomes close to zero when the acoustic energy crosses the upwelling front

(after 7.5-km range), representing the inability of detecting the hypothetical

underwater target. This inability is probably a combination of the thermal

front effects with the strong upslope bathymetry. The thermal front changes

the propagation trajectories, turning the acoustic ray’s directions closer to the

horizontal, as shown in Fig. 9. This fact implies in a decrease of the vertical

insonification of the water column. Thus, if the hydrophones are deployed

at randomly chosen depths, the probability of receiving the acoustic signal

should be lower. This explains how the coastal upwelling acts to reduce the

DP, and how important is the synoptic monitoring of such feature for guiding

tactical/operational decisions.

Range

D
ep

th Front

Figure 9: Acoustic ray paths through: i) an homogeneous water column (green line), and

ii) an hypothetical upwelling front (blue line).

Considering the correlations between impulse responses (IR), it is revealed

that the ocean forecasts lead to acoustic fields whose accuracy degrades with

distance, as shown in Fig. 10. This can be explained by an accumulation

of propagation erros induced by ocean forecast erros, as the energy travels.

In zoom, Fig. 11 shows the IR envelopes corresponding to the highest (0.98)
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and the lowest (0.34) cross-correlation peaks. Interestingly, even in the lowest

correlation case, the ray arrival times are very similar for the OAEx10 ocean-

data and the ocean forecasted fields, indicating that the error in the IR

prediction is defined mainly by a ray amplitude error.

��������� ��������� ��������� ���������

Figure 10: Correlations between IR envelopes modeled with BELLHOP, having as input

either the OAEx10 ocean-data or the ocean forecasts.

Figure 11: Impulse responses computed from the OAEx10 ocean-data (in situ – black

line), and the ocean forecasts (model – red line), which show the highest and lowest

correlation peaks (left and right panels, respectively).

3.2. Acoustic prediction in the OAEx10 experiment

Having at hand a reliable ocean forecasting system as the one initialized

by FORMS, the next important step is to gather environmental informa-

tion regarding geological/geometric properties, and then to use all the above

information as environmental inputs for an acoustic propagation model of

choice. As a preliminary study, attention was given only to the geological
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properties. In this regard, it is a common practice to use data from ge-

ological archives, nautical charts or historical databases, as inputs to the

acoustic propagation model. Nevertheless, such data can lack accuracy, due

to the sparsity of bottom measurements, or to the sometimes merely indica-

tive character of these data (Martins et al., 2008). Here, acoustic inversion

can play an important role on determining optimal values for the geological

(geoacoustic) parameters to use when modeling acoustic propagation. The

complete coupled prediction system proposed in the present work is depicted

in Fig. 12.

Re-dimensionalization 
(Satellite SST)

Feature-Oriented Regional Modeling System
                            (FORMS)

Feature-oriented
ocean forecasts

Basement compressional speed
estimated by acoustic inversion

Remaining environmental
parameters

Predicted acoustic field

Acoustic propagation model

Climatology + Feature Model

Numerical ocean model

Tidal and wind forcings

Figure 12: Complete coupled oceanographic-acoustic prediction system.
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In summary, the components of the environmental model to serve as in-

put for the acoustic propagation model, come from three different sources.

The water column component is the output of the oceanographic forecast

system; the geometric and majority of the geological properties are given

by GPS and depth sensory, nautical charts, geological cores, etc.; the base-

ment compressional speed is determined by acoustic inversion, by processing

acoustic measures on the oceanic area in which to predict the acoustic field.

In order to quantify the effectiveness of acoustic inversion in determining

optimal values for the environmental model, two experiments with BELL-

HOP were carried out using different geoacoustic parametrizations: one from

a geological database, and the other from the inversion outcomes. These

predictions were compared with acoustic data from the OAEx10 sea trial, in

terms of correlations between IR envelopes. In Fig. 13 are plotted the in-

version results in contrast to the baseline values, from geological cores. The

spatial distribution of the inversion results agree fairly well with the core

values.

Figure 13: Inversion results for the basement compressional speed (in blue), using 9 tones

in the band [500, 2000] Hz. The transmissions covered two different areas, as seen by the

two different values given by geological cores (in green).
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The compressional speed values obtained from acoustic inversion were

used to compute impulse responses for each hydrophone channel, at the same

time samples for which the inversion was performed. These impulse responses

were correlated with the impulse response estimates computed from the ex-

perimental data, with the correlation peaks shown in Fig. 14, right panel.

The results show that the basement compressional speed estimates led to

increased IR correlation peaks in general (as high as 0.96), as compared to

the corresponding values, before the inversion (between 0.72 and 0.86 —see

Fig. 14, left panel). It can be seen that the improvements on the acoustic

prediction were satisfactory, even when only the compressional speed was

inverted for, in other words, tuned for the prediction of the acoustic field.

Figure 14: Correlations between predicted and experimental IR envelopes, before (left

panel) and after (right panel) the acoustic inversion.
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4. Conclusions

A coupled ocean-acoustic prediction approach was presented, for the

coastal area of Cabo Frio - Brazil, in the context of the OAEx10 sea trial.

This approach combines two robust characteristics, regarding the oceanog-

raphy and the acoustics. First, a feature-oriented regional modeling system

was used in the initialization of the circulation model at hand. Second, the

environmental parametrization of an acoustic propagation model was defined

according to both ocean model outcomes and acoustic inversion outcomes.

The feature-oriented ocean forecasts provided a realistic representation

of the ocean variability. The inclusion of the upwelling feature in the ROMS

initial conditions led to an estimated oceanographic field which matches well

with the observed in situ structure. Simple climatological fields would not in-

clude this feature, which would imply a less accurate forecast of the acoustic

field, by not representing the impact of the upwelling on the strong refrac-

tion of acoustic energy. We also found that the inversion technique allowed

to calibrate the environmental model parameters of the acoustic propaga-

tion model, by acting as a correlator between observed and modeled acoustic

fields, whose optimal point gives the parameter values that best model the

observed fields. These parameter values allowed to improve the quality of

modeled impulse responses, as compared to counterparts computed from his-

torical geological data. In summary, the prediction of the acoustic field can be

well accomplished by combining a feature-oriented ocean modeling approach

with an acoustic inversion scheme, with important scientific/operational con-

sequences.

In the present feasibility study, the environmental outcomes from acoustic
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inversion were used to make synchronous acoustic predictions. Future work

will use the acoustic inversion outcomes at present times, to predict the

acoustic field at future times. Moreover, work should be done in order to

use the acoustic inversion outcomes to be inserted into the ocean dynamic

modeling system, in a way to minimize the overall acoustic errors.
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