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RESUMO 

 

Os sistemas de produção devem atender a demandas quantitativas e qualitativas na produção 

de alimentos. Contudo, devem também contemplar exigências de sustentabilidade. Nos 

arranjos produtivos existem diversas formas e estratégias de cultivo, dentre elas a integração 

de cultivos numa mesma área e ao mesmo tempo. Entretanto, as diferentes espécies competem 

pelos recursos do ambiente, dentre eles a luz, que é considerada um dos principais fatores que 

interferem na arquitetura das plantas e na dinâmica do dossel vegetal. Deste modo, o objetivo 

central deste trabalho foi de estudar os processos de crescimento e desenvolvimento de 

espécies forrageiras em ambientes com alterações das condições de luz. Os primeiros dois 

capítulos da tese avaliam o efeito das árvores, em integração lavoura-pecuária, sobre o 

crescimento e desenvolvimento de: Axonopus catharinensis, Brachiaria brizantha cv. 

Marandu, Megathyrsus maximus cv. Aruana, Hemarthria altissima cv. Flórida, Cynodon spp. 

hibrido Tifton 85 e Paspalum notatum cv. Pensacola. O terceiro capítulo aborda o efeito da 

luz azul no crescimento e desenvolvimento de genótipos de alfafa (Medicago sativa). O 

quarto capítulo avalia os efeitos da competição por luz em estandes puros e mistos de alfafa 

com festuca, verificando quais processos mais interferem na expansão da área foliar da alfafa. 

Foi possível concluir que os mecanismos de resposta ao efeito de árvores em interação com 

nitrogênio são espécie-dependentes e apresentam consequências para o manejo do pasto em 

sistemas integrados com árvores. O efeito da luz azul foi mais significativo nas alterações das 

características morfológicas quando o genótipo de alfafa tinha hábito de crescimento ereto, 

que apresenta características de mecanismo de escape a sombra. As diferenças na área foliar 

total de plantas de alfafa é dependente principalmente da ramificação lateral dos ramos 

principais e do número de ramos, mais do que do tamanho específico de cada folha.  

 

Palavras chave: integração lavoura-pecuária; manejo de pastagens; dossel forrageiro; 

competição; interceptação luminosa  



ABSTRACT 

 

Production systems should meet the quantity and quality demands on food production. 

However, should include the maintenance of production sustainability requirements. There 

are several ways and strategies for production systems, some types of them is the consortium 

of species in the same area and in the same temporal scale. However, different species 

compete for environmental resources, including light, which is considered one of the main 

factors that affect plant architecture and dynamics of plant canopy, and may have 

consequences for production and also for the management strategies. Thus, the aim of this 

study was to evaluate the growth and development of forage species in different light 

environmental conditions. The first two chapters of this thesis evaluates the effect of trees and 

nitrogen in an integrated crop-livestock system, on the growth and development of tropical C4 

grasses: Axonopus catharinensis, Brachiaria brizantha cv. Marandu, Megathyrsus maximus 

cv. Aruana, Hemarthria altíssima cv. Flórida, Cynodon spp. hibrido Tifton 85 e Paspalum 

notatun cv. Pensacola. The third chapter discusses the effect of blue light on the growth and 

development of contrasting genotypes of alfalfa (Medicago sativa). The fourth chapter 

evaluates the effects of competition for light in pure and mixed stands of alfalfa with grass, 

and which processes more interfere in the expansion of alfalfa leaf area. It was possible to 

conclude that there is species dependence for the responses of growth and development due to 

the effect of shading by trees and nitrogen, with consequences for the management of these 

species in a integrated system with trees. The blue light effect resulted in more significant 

changes of the morphological characteristics on the genotype of erect growth habit, showing 

the trend that this genotype has characteristics to escape shade. The effect of light competition 

in pure stand of alfalfa is greater than in consortium with grass, differences in leaf area of 

alfalfa is dependent mainly on lateral branching and number of shoots, harder than the leaf 

size. 

 

Key words: integrated crop-livestock system; pasture management; forage canopy; 
competition; light interception  
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1. INTRODUÇÃO 

 

Sistemas intensivos de produção requerem altos níveis de energia na forma de trabalho 

e insumos. Contudo, muitos desses sistemas apresentam respostas incompatíveis com as 

emergentes demandas por sustentabilidade.  

O uso de sistemas integrados de produção agrícola e pecuária1 constituem a melhor 

alternativa para atingir a sustentabilidade, segundo a FAO (Food and Agriculture 

Organization of the United Nations –  2010). A característica diferencial é que estes sistemas 

de produção são planejados para explorar sinergismos e propriedades emergentes frutos de 

interações nos compartimentos solo-planta-animal-atmosfera de áreas que integram atividades 

de produção agrícola e pecuária (Moraes et al., 2012).  

Entre as principais peculiaridades que conferem esse predicado aos sistemas 

integrados estão: redução da degradação química, física e biológica do solo; aumento da 

atividade microbiológica e taxa de mineralização e reestruturação do solo; aumento da 

matéria orgânica do solo; equilíbrio no ciclo de pragas e doenças; redução de uso de 

agrotóxicos; maior ciclagem de nitrogênio e outros nutrientes; aumento do índice de conforto 

térmico animal; melhor retenção da umidade solo; proteção contra erosão; sequestro de 

carbono atmosférico; aumento da biodiversidade e da resiliência dos agroecossistemas 

(Pagiola et al, 2007; Bernardino e Garcia, 2009; Balbino, 2011; Moraes et al., 2014). 

Sendo assim, o aproveitamento das interações em sistemas de produção integrados é 

chave para obtenção de sucesso, tendo como resultado final maior sustentabilidade e 

produtividade total por unidade de área (Nair, 2011). Nesse sentido, as interações devem ser 

planejadas em diferentes escalas espaço-temporais e abranger a exploração de cultivos 

agrícolas e produção animal na mesma área de forma concomitante ou sequencial, entre áreas 

distintas ou em sucessão (Moraes et al., 2012).  

Porém, é necessário o conhecimento e entendimento dos efeitos das interações entre os 

fatores bióticos e abióticos envolvidos e, também, considerar sua dinâmica e as características 

peculiares de cada ambiente, analisando-os de forma sistêmica. Quando as plantas estão 

crescendo em comunidade, experimentam ambiente luminoso heterogêneo em termos de 

quantidade e qualidade de luz. A luz é considerada um dos principais fatores que interferem 
                                                           

1 Nesta Tese adotou-se a terminologia Sistemas Integrados de Produção Agropecuária (Moraes et al., 2012) para 
designar sistemas que conjugam os componentes pecuária e lavoura, o primeiro sendo obrigatório e o segundo 
podendo se constituir de diferentes cultivos, árvores inclusive. São concebidos para explorar sinergismos e 
propriedades emergentes e conhecidos comumente como Integração Lavoura-Pecuária. Diferem dos sistemas 
Silvipastoris e Agrosilvipastoris.   
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na arquitetura das plantas e dinâmica do dossel vegetal, podendo trazer conseqüências para a 

produção e também para o manejo das pastagens. 

Por exemplo, no caso de sistemas integrados com a presença do componente arbóreo, 

o ambiente luminoso no interior do sub-bosque é continuamente modificado. São relatadas 

reduções na produção de biomassa e alterações na qualidade da forragem com a redução da 

intensidade luminosa, pois o sombreamento imposto a pastagem é considerado o fator isolado 

que mais reduz o desempenho produtivo do componente forrageiro (Lin et al., 1999; Feldhake 

et al., 2009). Associado aos efeitos do sombreamento, a ocupação de nichos ecológicos 

similares que são disputados pelas diversas espécies envolvidas pode gerar diferentes níveis 

de competição entre plantas, caso não sejam adequadamente planejados. 

Muitos trabalhos desenvolvidos a partir de 1980 já se concentravam na busca de 

informações sobre interceptação e uso da radiação em sistemas silvipastoris (Rao et al., 1998). 

Alterações na quantidade de radiação solar incidente em sub-bosques silvipastoris têm sido 

estudadas por vários grupos de pesquisa no mundo (Bergez et al., 1997; Knowles, 1999; 

Silva-Pando et al., 2002; Burner e Belesky, 2004; Feldhake et al., 2009; Lacorte e Esquivel, 

2009; Varella et al., 2010).  

Em termos qualitativos, a radiação que atinge o estrato herbáceo do sub-bosque, após 

a absorção ou reflexão pela copa e tronco das árvores, também é alterada, pois há absorção 

preferencial das porções vermelha e azul do espectro solar pelo dossel arbóreo. Assim, a 

radiação incidente no sub-bosque apresenta maior proporção de comprimentos de onda cor-

de-laranja, amarelos, verdes e vermelho distante. Essas alterações qualitativas no espectro da 

radiação que atinge o estrato herbáceo são as principais responsáveis pelas respostas 

morfofisiológicas das plantas crescendo em sub-bosques, em comparação com o crescimento 

em ambiente aberto (Cruz, 1997; Healey et al., 1998; Varella et al., 2010). Sob esse cenário, a 

plasticidade e / ou adaptação morfofisiológica das plantas assumem papel fundamental na 

persistência das espécies neste ambiente. 

Portanto, a escolha das espécies forrageiras que irão compor os sub-bosques em 

sistemas integrados com componente arbóreo é fundamental, pois aquelas espécies serão 

submetidas a condições de luminosidade reduzida e desfolha freqüente, tendo que manter 

produção e valor nutritivo para que sejam viáveis agronômica e economicamente. 

A composição genética e a flexibilidade fenotípica irão determinar a capacidade das 

espécies em se adaptar ao estresse oriundo do processo de competição. Dentre algumas das 

respostas gerais das plantas a alterações da quantidade e da qualidade da luz estão os efeitos 

que maximizam a captação da luz, a otimização da estrutura em relação parte aérea:raiz, 
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aumento no comprimento dos colmos, além de alterações na morfologia e anatomia das folhas 

(aumento da área da folha, maior área foliar específica). Todas essas alterações podem levar, 

por exemplo, a mudanças na composição da comunidade vegetal, ou também diminuição da 

persistência das pastagens, com reflexos no manejo e na produtividade. 

 Está tese está organizada em capítulos que tratam, de diferentes formas, o objetivo 

geral de avaliar o efeito das mudanças do ambiente luminoso sobre o crescimento e o 

desenvolvimento de espécies forrageiras.  

Os objetivos específicos referentes a cada capítulo são: 

• Capítulo 1: Verificar como às árvores, em sistema integrado, afetam a estrutura do 

dossel forrageiro de gramíneas C4 tropicais; 

• Capítulo 2: Avaliar a dinâmica dos processos morfogênicos e de crescimento de 

gramíneas C4 tropicais sob árvores em sistema integrado; 

• Capítulo 3: Mensurar o efeito da luz azul na morfologia e no crescimento da alfafa; 

• Capítulo 4: Determinar quais os processos morfogênicos mais afetados e que 

influenciam a área foliar total da alfafa em estandes puros ou em consórcio com 

gramínea. 
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2. CAPÍTULO 1 

Trees canopy and N supply effect on sward height of tropical C4 grasses1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Elaborado de acordo com as normas da Revista Agroforestry Systems. 
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Abstract 

A study was conducted over two years to determine the influence of shading provided 

by trees (Eucalyptus dunnii) canopy and nitrogen availability (0 and 300 kg N ha-1 year-

1) on pasture sward height at 95% light interception (LI), since this is a valuable strategy 

of defoliation frequency to deal with the variability of herbage accumulation throughout 

the year, particularly with C4 grass pastures. Six perennial tropical forage species were 

compared. Plots were cut at 95% LI, and the residual kept was  50% of the sward height 

at 95% of LI. The effect of trees caused increases in stem and leaf size, and decreases in 

tiller density and leaf stem ratios. Therefore, species growing in the system with trees 

showed taller sward heights, except Paspalum notatum and Megathyrsus maximus that 

did not show differences between treatments, particularly in the first year of evaluations. 

As sward height at 95% of LI was variable as a function of shading and nitrogen 

fertilization, and showing species-dependency, caution is deserved to management 

targets based on LI. Results suggest that in integrated crop-livestock systems with trees 

the sward height would be higher for species that are influenced by shading or nitrogen. 

 

Key words: management; light; integrated crop-livestock systems; shade avoidance 

syndrome 

 

1. Introduction 

 

The global features are in a transition state with regards to land use and natural 

resources, turning attention to production systems that meet quantitative and qualitative 

standards for food production and energy generation, without excluding the 

environment preservation (Malézieux et al. 2009). In this context, the integrated crop-
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livestock systems (ICLS) appear to be an interesting alternative to enhance productivity 

and provide environmental services (O´Mara, 2012; Sanderson et al. 2013).  

The renewed interest in ICLS is primarily because they provide opportunities for 

the diversification of rotations, perenniality, nutrient recycling, and greater energy use 

efficiency (Entz et al. 2005). So, since middle 80’s, these production systems are 

receiving increasing attention as a sustainable land-management option worldwide (Nair 

et al. 2011). Due to its ecological, economic, and social attributes, ICLS can positively 

change the biophysical and socio-economic dynamics of farming systems (Keulen and 

Schiere 2004), becoming more efficient systems than monocrops (Nair, 2011). 

ICLS are systems that can intentionally integrate trees, forage crops, and 

livestock into a structural practice of planned interactions (Clason and Sharrow, 2000). 

These integrated systems can promote biodiversity, for example, via organic matter 

provided by pastures (Lemaire et al. 2003), and especially on no-till systems (Carvalho 

et al. 2011).  

An important aspect associated with the incorporation of tree species in pastures 

(or vice-versa) is microclimate changes imposed by trees canopy, which can affect plant 

growth and, consequently, the sward dynamics. For instance, the light quantity (i.e. 

photon flux density) and quality (e.g. changes in red: far-red ratios) is dependent of trees 

canopy (Beaudet et al. 2011). On ICLS with trees, the light environment is continuously 

changed by the tree component and, in general, reductions on light intensity are related 

to changes on dry matter production and nutritive value of forage (Varella et al. 2010).  

In sustainable ICLS, the success in the integration of herbaceous and woody 

components depends on the use of adapted forage genotypes that show good yield 

performance and persistence under shading (Nair, 1993). In general, the lower is the 



 24 

incoming radiation level in systems with trees, the lower is forage production (Feldhake 

and Belesky, 2009; Paciullo et al. 2008; Devkota et al. 2009; Soares et al. 2009).  

Nowadays, methods and models to estimate plant growth in monospecific 

cropping systems are well developed (Robertson et al. 2002; Fourcaud et al. 2008), but 

its suitability for multispecies systems is unclear. Sward height and leaf area index 

(LAI) are the most commonly variables used as tools for grassland management, due to 

their high correlation with forage production and sward structure (Laca and Lemaire, 

2000; Hammer et al. 2002). Plant growth is primarily conditioned by leaf area, which 

largely determines light interception and transpiration in plants, and the consequent net 

photosynthesis assimilations (Monteith, 1977). Therefore, sward height (or LAI) can be 

used as a cutting criterion, since it reflects the canopy light interception (LI) (Mesquita 

et al. 2010).  

Several recent studies in Brazil with C4 grass species showed high correlation 

between LI and sward height for grasses growing in full sun (Fagundes et al. 1999; 

Carnevalli et al. 2006; Trindade et al. 2007). The maximum leaf accumulation had been 

observed at 95% LI, which allows high herbage intake rate and animal production 

(Trindade et al. 2007, Zanini et al. 2012). Consequently, sward management targets had 

been proposed based on sward heights corresponding to the 95% LI momentum. 

However, at shading conditions, plants can show mechanisms to tolerate to, or escape 

from, a reduced light condition (Ballaré and Casal, 2000; Valladares and Niinemets, 

2008). These mechanisms can promote different responses, as higher sward height due 

to the stem elongation (Belesky et al. 2011). Further, changes in tiller dynamics (i.e. 

reduction in the number of tillers per plant), in the leaf expansion rate, and in specific 

leaf area can also occur (Smith and Whitelam, 1997; Ballaré et al. 1997; Kebrom and 

Brutnell, 2007; Stamm e Kumar, 2010).  
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Moreover, since nitrogen (N) interferes directly in the capture and use of light 

(Lemaire et al. 2007), the N deficit can magnify the responses of plants to shade, 

altering their capacity to tolerate low light (Valladares and Niinemets, 2008). Therefore, 

due to these plant responses that modulate plant growth as a function of shade or 

nitrogen (Jones et al. 1984; Brisson et al. 2008), the relationship between sward height 

and LI can be modified.  Hence, these relationships need to be measured accurately 

when light is a limited resource, in order to contribute to refining management practices 

for ICLS with trees.  

Additionally, few studies in ICLS had evaluated forage crops growth by using IL 

as a criterion of defoliation in order to support management targets. In most rotational 

stocking systems, standard pre-defined resting periods are usually adopted (e.g. Paciullo 

et al. 2008), in disagreement with the dynamics of plant physiology and growth. So, 

decreased pasture production and persistence, as well as reduction of forage quality, can 

occur.  

We investigate the hypothesis that changes in sward structure due to the 

interactive effect of trees and N supply can change the relation between LI and sward 

height, and, consequently, the leaf canopy height at the target 95% LI. Therefore, we 

compare the interactive effect of shading from Eucalyptus dunnii trees and two nitrogen 

levels, upon the sward height at the 95% of LI, for six C4 tropical forage species.  

 

2. Materials and Methods 

 

2.1 Site characteristics  
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The experimental site was located at the Agronomic Institute of Paraná (IAPAR), Ponta 

Grossa-PR (25°07’22’’S, 50°03’01’’W), at 880 m altitude. The climate is Cfb according 

to Köppen classification, with no dry season, annual precipitation of 1400 mm, more 

frequent during spring-summer and scarce in autumn. The soil is an Oxisoil, and texture 

is around 30% of clay. The average values of chemical soil analysis during the 

experiment period were: P = 4.23 mg dm-3; C = 22.2 g dm-3; pH = 5.14; Al = 0.025 

cmolc
 dm-3; H + Al = 4.23 cmolc

 dm-3; Ca = 2.95 cmolc
 dm-3; Mg = 2.15 cmolc

 dm-3; K = 

0.16 cmolc
 dm-3. 

 

2.2 Establishment of the experiment and treatments 

 

Six perennial C4 grasses mostly used in Brazil were studied (Axonopus 

catharinensis (Ac), Brachiaria brizantha cv. Marandu (Mb), Megathirsus maximus cv. 

Aruana (Mm), Hemarthria altissima cv. Flórida (Ha), Cynodon spp. hybrid Tifton 85 

(Cc) and Paspalum notatum cv. Pensacola (Pn)). Most of them hold characteristics 

recommended to face shade conditions (see Soares et al. 2009).  

Eucalyptus dunnii were planted in 2007, fitting to an east – west orientation, 

following the contour, in a double row arrangement using 3m between plants within 

rows and 4 m between rows, spaced 20 m apart (3x4x20 m). The initial population was 

267 trees ha-1. In the winter – autumn 2011 a thinning management was done and 

reduced the population to 155 trees ha-1.  

Forage species were planted in pure stands from January 2010: plots of 4.5 m² 

(1,5 x 3 m) in full sun (no tree integration) vs. 100 m² (5 x 20 m) in the shaded area. The 

trees shading condition will be referred as the Integrated Crop-Livestock System 
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treatment (ICLS). For all species, a standardization cut was performed at 10 cm above 

soil level in the beginning of the experimental period.    

Treatments were arranged in a randomized block design, with three replicates. 

Two system types, ICLS (i.e. shaded) vs. full sun, and two nitrogen levels (0 and 300 kg 

ha-1 year-1) were defined as treatments. Nitrogen was applied as urea in the beginning of 

the growing season (early spring). Each year, in early spring, calcareous, P2O5 and K2O 

were supplied according to soil analysis to ensure these nutrients did not limit plant 

growth. Soil water content (%) was measured using the HFM2010 - HidroFarm® in the 

20 cm top soil layer for 2012 and 2013 every ~15 days.    

  

2.3 Plant measurements 

 

The light interception (LI) and sward height were measured weekly using a 

ceptometer (AccuPAR LP-80) and a sward stick, respectively. At the ICLS, measures 

with ceptometer were assessed at five positions, i.e. 2, 4, 10, 16 and 18 m from one of 

the trees rows to compose the mean of the plot. Concerning sward height, 20 measures 

per plot were performed. In the full sun, 3 and 10 measurements were performed with 

ceptometer and sward stick, respectively. The pastures were mechanically harvested 

when its canopy reached 95% of LI (cutting frequency). The stubble height 

corresponded to a 50% reduction in the cutting height (cutting intensity). Residues were 

removed from the site.   

 Two functional plant traits, sheath length (SL) and mean leaves length (LL) per 

tiller, were measured in summer 2012. Ten and 25 tillers were randomly collected in 

each plot of the full sun and ICLS treatments, respectively, then traits measures were 

taken in the laboratory.   
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 The tillers density was assessed in summer 2012 and 2013. Tiller population was 

performed by counting tillers number in a 0,0625 m2 square and using 5 and 1 sample 

units per plot for ICLS and full sun, respectively. 

 The leaf:stem ratio was measured in spring and summer 2012, samples were 

taken in a 0,0625 m2 square at soil level when the canopy reached 95% of LI. Samples 

were manually separated in leaves and stems, so they were dried at 65 ºC until constant 

weight. 

 

2.4 Meteorological measurements and thermal time calculation 

 

Photosynthetic photon flux density (PPFD - µmol cm-2 s-1) in full sun and in the ICLS 

was measured using a ceptometer (AccuPAR LP-80) for the summer (beginning of the 

year) 2011 and 2013. The measurements were taken in the same positions described in 

item 2.2, every 30 min from 8:00 to 18:00 o’clock. From December 2011 to July 2012, 

the PPFD was measured using bars containing five cells of amorphous silicon in parallel 

of 15 x 15 cm, connected to a datalogger (CR1000; Campbell Scientific® Ltda). The 

data were collected every 30 s, and mean values were calculated and stored every 5 min. 

Hence, light reduction in the ICLS could be calculated as the difference between sensors 

at both systems.   

Air temperature (Tm) was collected and stored every 5 min in 3 individual 

dataloggers (HOBBO U10 - 001 - Onset®) placed at positions 2, 10 and 18 m from one 

of the trees rows in the ICLS, and one datalogger in full sun.  

 

2.5 Statistical analyses 
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Statistical analyses were performed using R software (R Development Core Team, 

2014). Analyses of covariance (ANCOVA, glm procedure) were performed using the 

Tukey method for multiple mean comparison tests in post-ANOVA/ANCOVA. Data 

were transformed when necessary to reach the normality of residues. Transformations 

were performed using the procedure Box Cox (package MASS). Species were analyzed 

separately, since the response of sward height in function of LI is specie-dependent. 

Year, season, nitrogen and system effects on sward height were analyzed at the cutting 

date (i.e. 95% of LI). Data analyzed using ANCOVA analysis was performed using LI 

as a covariant variable. This type of analyses was used because for ICLS it was the LI 

average, in distinction to different distances from the tree row, which was used to set the 

moment of cut. The actual LI ranged from 91 to 99.5 %. Only interactions that 

explained more than 6.5% of the variance were discussed. Regression analyses were 

performed between sward height and LI for the longer growing season (i.e. summer). 

This analysis was performed with data obtained in the first year. Regression curves 

were fitted for each species in each system, then analyses of covariance (ANCOVA, lm 

procedure) were used to compare regression curves. 

 

3. Results 

 

3.1 Environment and trees canopy 

 

The mean daily temperature during the experimental period was 1 ºC warmer in full sun 

than ICLS (Figure 1). Year 2 was 0.8 ºC warmer than year 1, except during the summer 

period (December-March), which was 0.6 ºC colder than first year. The mean of 

maximum temperatures was 1.7 ºC higher in full sun, however, the maximum absolute 
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temperature recorded was 36.1 ºC in ICLS and 34.9 ºC in full sun. The mean of minimal 

temperatures was 0.2 colder in ICLS than full sun, but the minimum absolute 

temperature recorded was -2.9 ºC in full sun and -1.4 ºC in the ICLS. These lower 

minimal temperatures are probably due to frozen, which resulted in differences for the 

beginning of regrowth in the spring between systems. For instance, in ICLS, pastures 

reached 95% of LI almost one month earlier than full sun (data not showed). 

 Soil moisture (%) was measured from December 2011 until June 2013, and it 

was significantly (P<0.05) lower in the ICLS than full sun (Figure 2). However, in the 

driest period (November 2012) ICLS area presented a higher percentage of soil moisture 

(16.7 ± 2.69%) than full sun (9.37 ± 1.46%).    

 The percentage of shade increased along the experimental period, from ~ 40 % 

in the spring 2011, the beginning of the experiment, to ~ 59 % in the end of summer 

2013, due to trees growth. In the summer of the first year, trees presented a height of 

17.58 ± 2.4 m and 21.50 ± 3.24 cm of diameter at the breast height. One year later, trees 

reached 22.57 ± 2.6 m of height and 27.38 ± 3.04 cm of diameter.     

 

3.2 Sward height 

 

3.2.1 Sward height at the cutting date 

 

Outputs of the ANCOVA for sward height at the cutting date are shown in Table 1. 

ANCOVA reveled that for almost all species, the system and seasonal variations had the 

greatest effects on sward surface height (Table 1) in terms of variance explained (VE). 

For all species the sward height was higher in the summer and spring and lower in the 

autumn (Table 2). The highest differences in sward height between systems were 
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observed for H. altissima (+23 cm on ICLS conditions, Table 2). Only cultivar P. 

notatum was not affected by integrated crop-livestock system (ICLS) (P > 0.07).  

After these variables, the factor year was an important source of variation, 

mainly for B. brizantha (VE = 13%). For this species, the sward height increased 4.6 cm 

in the second year. N supply effect was significant for M. maximus, H. altissima and 

Cynodon spp., accounting for a maximum of 23% of total variance. Sward height was 

higher in N0 than N300 (Table 2), and M. maximus was the species with the highest 

increase (+8.4 ± cm) due N fertilizer application.  

Some significant interactions were found between the factors analyzed (Table 1). 

The most important interactions were between Year x Season, for M. maximus and P. 

notatum, and between system x year x season for A. catharinensis, H. altissima and 

Cynodon spp.. Means for the interaction Year x Season are showed in Table 3. For M. 

maximus, while in the first year the sward height was higher during the summer, in the 

second year highest height value was observed during the spring. For P. notatum this 

interaction was significant due differences in order of magnitude in all seasons with an 

increase in height values from the first to the second year (Table 3). The interaction 

system x nitrogen is not showed because presented values than 6.5% in terms of V.E. 

 

3.2.2 Sward height x Light interception 

 

A significant linear regression was observed between sward height and LI for all 

species and independent of the system (Figure 3). Since no differences between slopes 

(P > 0.15) were observed in ANCOVA for ICLS vs. full sun, the distances between 

intercepts could be compared. It means that the higher sward height in ICLS for some 

species is independent of LI level (Figure 3). Height values obtained from regressions 



 32 

(Figure 3) were similar to the means found using only the data at the cutting date. The 

relative increase of sward height was 37, 36, 32 and 22 % for H. altissima, Cynodon 

spp., B. brizantha and A. catharinensis, respectively. The relationship between sward 

height and LI of M. maximus and P. notatum was similar (i.e. no differences in slopes 

and intercepts) in ICLS and full sun.  

 

3.3 Plant traits 

 

Leaf length (LL) increased for A. catharinensis, B. brizantha, H. altissima and P. 

notatum in ICLS when compared with full sun (Table 4). Nitrogen fertilization had also 

a significant effect on leaf length, i.e. it increased on N300 treatment for all species, 

except for P. notatum (Table 4). 

Sheath length also increased in ICLS, except with M. maximus (Table 4). Further, 

plants without N fertilization (i.e. N0) exhibited longer sheaths (Table 4), except P. 

notatum. 

Nitrogen supply had the strongest effect on tiller density for all species (P < 

0.01), except for species H. altissima (P = 0.54). The N input (i.e N300) increased the 

number of tillers (Table 4). In relationship to the systems, a reduction on tiller density 

was observed in ICLS only for H. altissima (< 34%) and Cynodon spp. (< 47%, Table 

4).  

Leaf:Stem ratio was mainly affected by season (in terms of V.E.). For all species, 

the leaf:stem ratio was higher in spring compared to the summer period (data not 

showed). B. brizantha, P. notatum and Cynodon spp. showed higher leaf:stem ratio in 

the full sun (Table 4). The opposite was observed for M. maximus and P. notatum, i.e. 
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leaf:stem ratio was higher in ICLS (Table 4). N supply tended to increase leaf:stem ratio, 

except for Cynodon spp.  (Table 4).   

 

4. Discussion 

 

Our hypothesis that changes in sward structure due to the interactive effect of 

trees and N supply can change the relation between LI and sward height was confirmed 

by our controlled experiment. Further, important variations on leaf canopy height at 

95% LI, mainly across seasons, were observed. Therefore, in order to maintain  95% as 

a target LI level, grassland managers should cut or graze each species at different height, 

for example, for systems with trees, in conditions of nitrogen limitation and across 

seasons (i.e. for swards being vegetative or reproductive).  

 

4.1 Alterations in plant morphology 

 

For the species studied here, changes in plant morphology due the treatments 

resulted in changes in sward height at 95% LI (Table 4). For instance, shading increased 

the sward height of most species and reduced the tiller density of H. altissima and 

Cynodon spp. (Table 2). These are key characteristics of shade avoidance plants, due to 

changes in red:far red light. Plants tend to avoid the new tillers production in order to 

maintain the allocation of photoassimilates to the existents tillers (Casal, 2000; Wherley 

et al. 2005; Evers et al. 2007, Belesky et al. 2011). The effect of light on stems by the 

extension of internodes is well demonstrated in the literature for species that presents 

shade avoidance strategies (Casal, 2000; Valladares and Niinemets, 2008; Zhu et al. 
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2014). Navas and Garnier (2002) also showed that this effect is independent of other 

stresses (i.e. water or nutrient).    

The increase on sward height due to an increase in leaf size with shading is 

controversy, since other morphological characteristics of leaves can be associated to an 

increase in the light capture (Lin et al. 2001), such as leaf angle (Fernández et al. 2004, 

Peri et al. 2007a). For instance, P. notatum did not showed differences in sward height 

due to the ICLS, despite an increase in leaf length. On the other hand, A. catharinensis, 

B. brizantha and H. altissima showed higher sward height and longer leaves (Table 4) 

in ICLS. This shade effect on leaf length could be a plant strategy in order to increase 

light capture (Dale, 1988). 

Leaf length and tiller density increased for all species with N fertilizer 

application, except P. notatum, and H. altissima, respectively (Table 4). For leaf length, 

this pattern is expected (Lemaire and Chapmman, 1996), since N increases the leaf 

expansion rate (Gastal et al. 1992). However, according to Sbrissia and Silva (2001), 

sward height is maintained constant despite an increase in leaf size with an increase in 

N availability, since heavier leaves alter the leaf angle in the sward structure.  

Further, diverse authors (Simon and Lemaire, 1987; Duru and Ducrocq, 2000; 

Singer, 2002, Gatti et al. 2013) showed that the bigger importance of N is on leaf 

appearance and expansion. Tiller dynamic is much more variable in function of light 

and pasture management (Kephart and Buxton, 1993; Sbrissia et al., 2010).    

 

4.2 The differences in sward height per se 

 

There was an increase in the sward height in function of year, mainly for species 

cultivated in the ICLS. This effect can be explained by the decrease of light reaching on 
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forage sward (~ 40% in summer of 2012 to ~ 59% in the end of summer 2013). The 

magnitude of these differences can be increased throughout the years if the shading 

effect increases. Lin et al. (2001) showed, with various C3 and C4 forages species, an 

increase in sward height with the increase of shade. In this way it is important the 

management of trees in order to reduce the variability on forage growth and 

development over time. 

Seasonal effects were important in the sward height at 95% LI (Table 1). In 

general, there was a decrease from spring and summer to autumn, which could be in 

turn explained by stem formation due to plant maturity developmental stage, since 

during the fall all species were in vegetative stage (data not shown). A similar pattern in 

sward height between seasons was observed by Giacomini et al. (2009) with B. 

brizantha and by Medinilla-Salinas et al. (2013) with M. maximus. However, they did 

not attribute these differences on sward height to plant maturity. 

 The relative increase in sward height from full sun to SS was 52, 50, 43, 24 and 

7% for H. altissima, Cynodon spp., B. brizantha, A. catharinensis and M. maximus 

respectively. Gobbi et al. (2009) showed that reductions on light availability increase 

the height of B. brizantha cv. Basilisk. The same pattern was found for Dactylis 

glomerata (Peri et al. 2007b), and with a diverse range of C3 and C4 species (Lin et al. 

2001). For M. maximus, Medinilla-Salinas et al. (2013) showed that plants growing 

without trees were 12.5% taller than in the shaded condition. However, they measured 

the plants in a fixed period of regrowth. In a shaded condition, plants can exhibit lower 

growth rates (Valladares and Niinemets, 2008), and this can lead to differences in sward 

height.   

 According to Mesquita et al. (2010), N affects only the time and not the height 

that swards reaches 95% of LI, due to the acceleration on appearance and tissue 
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expansion of plants with higher amounts of nitrogen (Gastal and Nelson, 1994; Duru 

and Ducrocq, 2000; Alexandrino et al. 2005; Paiva et al. 2012). However, a decrease in 

sward height at 95% LI for A. catharinensis, M. maximus and H. altissima (Table 2) 

with N fertilization was observed, which in turn could be explained by changes in plant 

morphology as the increase in sheath length for plants without N nutrition (Table 4). 

Since no significant differences were observed in slopes for the regression 

analysis for A. catharinensis, B. brizantha, H. altissima and Cynodon spp. between 

sward height and light interception (Figura 3), the increase in sward height was 

independent of the level of LI. It suggests that an early signal of changes in light quality 

is perceived by plants (Ballaré et al. 1987; Aphalo et al. 1999), before the pasture 

canopy closure (i.e. 95% of LI). Then, changes in the understory occurred probably due 

to changes in light quantity, but also in light quality due to the trees canopy (Varella et 

al. 2010; Beaudet et al. 2011). This results can interferes directly in the pasture 

management due to the changes in plant morphology related to alterations in light 

quality. For example, B. brizantha and Cynodon spp. presented lower values of 

leaf:stem ratio in ICLS, which means higher levels of stems in the sward structure.  

In full sun canopies, it has been showed that an increase in sward height leads to 

a decrease in the leaf:stem ratio (Fonseca et al. 2012), which is directly correlated with 

the light competition in the canopy. When LI levels are higher than 95%, there is a 

faster increase in stem elongation. In this way, our results can help to target the pre-

grazing sward height in function of shade. However, advances are still necessary about 

the post-grazing height. In this work, it was used 50% of the initial height for the cutting 

intensity, because follows the pattern of animal behavior. The level of cutting intensity 

also has interference on sward structure (Silveira et al. 2010). Belesky et al. (2011) 

showed that the long-term of tiller production was compromised for the higher cutting 
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intensity in shaded condition. In this way, studies of leaf lifespan, forage quality and 

animal behavior (Fonseca et al. 2013) can help to define better management strategies 

for cutting intensities. 

To sum up, the response of pasture sward height as a function of shading and 

nitrogen fertilization are variable depending on the grass species evaluated. The 

management using LI in integrated systems can be used, but the cutting height can be 

higher for species that are influenced by shading and by nitrogen. 
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Table 1 – Proportion of variance explained (VE) and statistical significance of F ratios from analysis of covariance for sward height and for each 
C4 forage species. Ac – Axonopus catharinesnis, Bb – Brachiaria brizantha, Mm – Megathyrsus maximus, Ha – Hemarthria altissima, Cc – 
Cynodon spp., Pn – Paspalum notatum. 
 

 
 
 
 
 
 
 
 
 
 
 
*P<0.05; **P<0.01; ***P<0.001; ns, not significant.  

 Ac Bb Mm Ha Cc Pn 
 F % F % F % F % F % F % 

LI  3.6ns 1.6 57.7***  11.7 0.6ns 0.3 12.3***  3.9 5.9* 1.7 0.01ns 0.01 
System 56.6***  25.3 186.9***  38.0 6.1* 2.4 127.0***  39.9 135.0***  38.1 3.42ns 2.63 
Year 22.9***  10.2 44.1***  9.0 7.5**  3.0 13.9***  4.4 22.1***  6.3 19.6***  15.1 
N 11.0**  4.9 1.7ns 0.3 22.7***  9.0 10.9**  3.4 6.6* 1.9 0.27ns 0.21 
Season 11.1***  9.9 25.3***  10.3 43.3***  34.1 18.8***  11.8 33.9***  19.2 22.2***  34.3 
Block 2.2ns 4.0 5.4***  4.4 3.0* 4.7 1.6ns 2.1 0.1ns 0.2 0.72ns 2.21 
System x Year - - 4.8* 1.0 - - 6.8* 2.2 - - - - 
Year x Season - - - - 8.5***  6.8 - - - - 9.8***  15.1 
N x Season - - - - - - - - 6.0**  3.4 - - 
System x Year x N - - 3.46* 2.1 - - - - - - - - 
System x Year  x Season 2.5* 7.9 - - - - 4.2***  8.0 4.3***  8.6 - - 
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Table 2 – Sward height means (cm) and standard error (se) at cutting date within each 
year, season, nitrogen level and system for the six C4 forage species. See Table 1 for 
species codes. 
 

Means with the same letter for each variable analyzed are not significantly different according to the 
Tukey test (P>0.05).  
 
 
Table 3 - Sward height means (cm) and standard error (se) for M. maximus (Mm) and P. 
notatum (Pn). Data show Year x Season interaction. 
  Mm se Pn se 
Spring x Year 1 57.6 b 2.22 31.05 cd 2.47 
Spring x Year 2 68.2 a 2.46 37.09 ab 2.35 
Summer x Year1 61.1 b 1.61 35.99 bc 1.31 
Summer x Year2 56.9 b 1.92 42.02 a 1.61 
Autumn x Year1 38.6 d 2.31 25.81 d 1.73 
Autumn x Year2 48.3 c 2.44 31.84 bc 1.81 
Means with the same letter in the column are not significantly different according to the Tukey test (P > 
0.05).  

 Ac se Bb se Mm se Ha se Cc se Pn Se 
Year 1 38.7 b 1.0 25.4 b 0.5 52.4 b 1.2 51.1 b 1.3 36.0 b 0.8 29.2 b 1.1 
Year 2 43.2 a 1.4  30.0 a 0.5 57.8 a 1.3 59.5 a 1.3 41.1 a 1.6 36.8 a 1.1 
             
Spring 40.8 ab 2.0 30.2 a 0.6 62.9 a 1.6 50.6 b 1.7 37.6 b 1.8 32.5 b 1.8 
Summer 44.9 a 1.0 28.7 a 0.5 59.0 a 1.2 63.0 a 1.5 44.7 a 1.0 38.3 a 1.0 
Autumn 37.1 b 1.0 24.3 b 0.7 43.5 b 1.6 52.5 b 1.7 33.6 b 1.6 28.3 b 1.2 
             
N- 43.5 a 1.5 28.3 a 0.5 59.3 a 1.3 58.5 a 1.4 36.9 a 1.6 33.4 a 1.3 
N+ 38.4 b 0.7  27.2 a 0.5 50.9 b 1.1 52.1 b 1.2 40.2 a 0.9 32.6 a 0.9 
             
Full Sun 36.5 b 1.2 22.8 b 0.5 53.2 b 1.1 43.8 b 1.2 30.8 b 1.0 33.7 a 0.9 
ICLS 45.4 a 1.1  32.6 a 0.5 57.1 a 1.3 66.8 a 1.5 46.3 a 1.4 32.4 a 1.2 
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Table 4 – Means and standard error (se) of Leaf Length (LL – cm), Sheath Length (SL – cm), Tiller Density (TD) and leaf:stem ratio for six C4 
forage species  within each system and nitrogen treatment. See Table 1 for species codes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Means with the same letter for each variable analyzed in function of systems and nitrogen effects are not significantly different according to the Tukey test (P > 0.05). ICLS, 
integrated crop-livestock system. 

 Ac se Bb Se Mm se Ha se Cc se Pn Se 
LL Full Sun 22.1 b 2.3 18.0 b 0.6 26.1 a 2.1 14.9 b 0.9 14.9 a 1.2 34.8 b 1.3 
LL ICLS 26.2 a 0.9 22.7 a 1.1 27.3 a 1.5 20.0 a 0.7 15.0 a 0.5 42.3 a 1.1 
LL N0 22.1 b 0.9 19.4 b 1.2 24.7 b 0.6 18.1 b 0.6 13.4 b 0.4 41.5 a 1.4 
LL N300 28.4 a 1.0 24.4 a 1.2 28.9 a 2.1 20.2 a 1.1 16.6 a 0.7 40.5 a 1.5 
             
SL Full Sun 17.8 b 0.7 12.4 b 1.0 25.3 a 1.4 37.6 b 2.1 20.8 b 0.7 11.2 b 0.3 
SL ICLS 28.5 a 0.8 16.8 a 0.4 24.4 a 0.7 50.1 a 1.3 31.3 a 0.7 13.1 a 0.1 
SL N0 30.7 a 1.2 18.2 a 0.5 25.8 a 0.8 54.5 a 1.8 32.3 a 1.0 12.1 b 0.2 
SL N300 21.5 b 0.6 13.9 b 0.6 23.8 b 1.0 41.6 b 1.4 26.8 b 0.6 13.6 a 0.2 
             
TD Full sun 808 a 46 1141 a 46 1351 a 150 952 a 161 3074 a 648 - - 
TD ICLS 856 a 25 1117 a 56 1435 a 68 707 b 45 1643 b 138 - - 
TD N0 786 b 37 1022 b 63 1221 b 76 721 a 79 1256 b 159 - - 
TD N300 911 a 18 1220 a 64 1620 a 72 775 a 56 2508 a 239 - - 
             
Leaf:Stem Full Sun 0.90 a 0.12 2.4 a 0.3 0.65 b 0.12 0.34 a 0.05 0.87 a 0.12 1.7 b 0.2 
Leaf:Stem  ICLS 0.94 a 0.06 1.8 b 0.1 0.91 a 0.06 0.31 a 0.02 0.56 b 0.03 3.7 a 0.5 
Leaf:Stem N0 0.74 b 0.04 1.9 a 0.1 0.73 b 0.06 0.26 b 0.02 0.55 a 0.05 4.5 a 0.7 
Leaf:Stem N300 1.04 a 0.08 1.9 a 0.2 0.94 a 0.08 0.35 a 0.02 0.67 a 0.05 2.5 b 0.4 
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Figure 1 – Mean (circle), maximum (triangle) and minimal (square) average monthly air 
temperatures from September 2011 to May 2013. Open symbols and short dash lines for 
full sun and closed symbols solid lines for integrated crop-livestock system. 
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Figure 2 – Monthly mean soil volumetric water content in the top 200 mm (measured 
every 15 days).  
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Figure 3 – Relationship between sward height (cm) and light interception (%) for six C4 
forage species at the integrated crop-livestock system (closed symbols and solid lines) 
and full sun (open symbols and short dash lines). Ac – Axonopus catharinesnis, Bb – 
Brachiaria brizantha, Mm – Megathyrsus maximus, Ha – Hemarthria altissima, Cc – 
Cynodon spp., Pn – Paspalum notatum. ANCOVA results are presented in each panel: 
two lines in the case of no interaction and difference between intercepts between the 
categorical independent variable (i.e. sward height), and a single line in the case of no 
significant effect of the continuous variable. (*P<0.05; **P<0.01; ***P<0.001; ns, not 
significant). 
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3. CAPÍTULO 2 

Morphogenesis and growth dynamics of tropical forage species according to shade and 

nitrogen1

                                                 
1 Elaborado de acordo com as normas da Revista Agroforestry Systems 
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 Abstract  

Monocultures of six C4 tropical forage species that are widely used in Brazilian 

livestock were compared in an experimental field with two systems, i.e. open pasture vs. 

under tree canopy (i.e. an integrated crop-livestock system, ICLS), and two levels of N 

supply (zero vs. 300 kg of N ha-1 year-1). Our aim was to determine the interactive 

shading effect from trees (i.e. Eucalyptus dunnii) canopy, and nitrogen supply on 

morphogenetic characteristics and growth parameters of six C4 grass species in order to 

assess their potential for use as a component of ICLS. 95% of light interception was 

used as a cutting frequency and 50% of initial height as cutting intensity. The shading 

effect from trees canopy was specie-dependent. For instance, B. brizantha, M. maximus 

and Cynodon spp. had a decrease on leaf growth rates in ICLS with trees, while the 

opposite was observed with A. catharinensis. H. altissima maintained the same leaf 

growth rates in the two systems, i.e. with and without trees. However, even for species 

that showed decreases on values of morphogenetic variables (e.g. phyllochron) and leaf 

growth rates, they maintained a satisfactory development and growth in ICLS. The N 

supply helps the maintenance of a satisfactory development and growth of forages 

species in the ICLS.      

 

Key words:  integrated crop-livestock systems; management; light interception; 

competition  

 

1. Introduction 

 

Since intensive production systems require high amounts of energy by labor and inputs, 

their results become incompatible with the emergent demands that aim to ensure the 
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sustainability of agroecosystems (Carvalho and Moraes, 2011). Integrated crop-

livestock systems (ICLS) appears, therefore, as a good option to increase the overall 

land productivity and/or its sustainability by making best use of the environmental 

resources and, at the same time, by generating environmental services (O´Mara, 2012; 

Sanderson et al. 2013). Further, several reports have demonstrated the value of 

including trees in these systems because the integrated timber and livestock production 

can generate higher profits, which provide farmers with a means of surviving markets 

that fluctuate through time (Zhai et al. 2006).  

However, in the ICLS, that can intentionally integrates trees, forage crops, and 

livestock into a structural practice of planned interactions (Clason and Sharrow, 2000), 

the pasture component is affected by changes in the understory, mainly due changes in 

light quantity and quality. The amount of light in an ICLS depends on tree species, tree 

density and tree management. Further, the response to shading depends on the forage 

species and on soil fertility, especially nitrogen (Paciullo et al. 2011). Therefore, a better 

understanding about plant responses to interactive shading and N availability and the 

consequent growth dynamics in ICLS is essential to enhance our ability to forecast 

management practices and biomass production in order to ensure pasture persistence 

and a sustainable production (Hodgson and Silva, 2000). 

Morphogenetic processes, like the rate of appearance of new organs, control the 

growth and development of plants in a specific environment. These processes determine 

sward structural characteristics, as the leaf area index which allows light interception by 

the sward, and consequently, the biomass production (Lemaire and Chapman, 1996). 

However, management practices, like cutting frequency and intensity and fertilization, 

interferes on the plant morphogenesis (Duru and Ducrocq, 2000, Peri et al. 2007b; 

Sbrissia et al. 2010). Further, in a system with trees, shade appears like another 
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management effect, as it is possible to manage in a certain way the shade produced by 

trees (Combes et al. 2002).  

 When forage grass plants are growing in association with trees, grass tolerance 

depends on the physiological and morphological adaptations for irradiance reduction. 

Different hypothesis on the suite of characteristics responsible for species' shade 

tolerance have been recognized on the literature as, for example, carbon gain vs. stress 

tolerance hypothesis (see Valladares & Niinemets, 2008 for a review). However, most 

studies reporting these differing views about shade tolerance were done on woody 

species (Seidlova et al. 2009). Further, Valladares & Niinemets (2008) argued that 

shade tolerance could depend both on the efficiency of carbon gain in low light and on 

the tolerance of stresses interacting with light availability. Therefore, different plant 

features can be associated to shading tolerance and N availability, with different 

consequences for plant growth dynamic; hence, they need to be identified for a broader 

range of forage species. 

 For instance, shading effect can has a strong influence on morphogenetic 

variables by, for example, reductions on leaf appearance, leaf elongation rate and tiller 

appearance (Gautier et al. 1999; Granier and Tardieu, 1999; Bos et al. 2000, Casal, 

2000), which in turn affect the pasture biomass accumulation. Under moderate shading, 

some grass species have the capacity to maintain growth at satisfactory levels (Paciullo 

et al. 2008; Soares et al. 2009; Pachas et al. 2013). However, in general, the lower is the 

incoming radiation level in systems with trees, the lower is the forage production 

(Feldhake and Belesky, 2009; Paciullo et al. 2008; Devkota et al. 2009; Soares et al. 

2009). Therefore, detailed studies of tissue dynamic can provide new insights for 

changes in sward state variables in response to variation in shading and in N level.  
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The objective of this study was to compare interactive effect of shading, 

provided by Eucalyptus dunnii, and two nitrogen levels on the morphogenetics 

variables, sward structural characters and growth and senescence fluxes of six C4 

tropical forage species.  

 

2. Materials and Methods 

 

2.1 Site characteristics  

 

The experimental site was located at the Agronomic Institute of Paraná (IAPAR), Ponta 

Grossa-PR (25°07’22’’S, 50°03’01’’W), at 880 m altitude. The climate is Cfb according 

to Köppen classification, with no dry season, annual precipitation of 1,400 mm, more 

frequent during spring-summer and scarce in autumn. The soil is an Oxisoil, and texture 

is around 30% of clay. The average values of chemical soil analysis during the 

experiment period were: P = 4.23 mg dm-3; C = 22.2 g dm-3; pH = 5.14; Al = 0.025 

cmolc
 dm-3; H + Al = 4.23 cmolc

 dm-3; Ca = 2.95 cmolc
 dm-3; Mg = 2.15 cmolc

 dm-3; K = 

0.16 cmolc
 dm-3. 

 

2.2 Establishment of the experiment and treatments 

 

Six perennial C4 grasses widely used in Brazilian livestock were studied 

(Axonopus catharinensis (Ac), Brachiaria brizantha cv. Marandu (Mb), Megathirsus 

maximus cv. Aruana (Mm), Hemarthria altissima cv. Flórida (Ha), Cynodon spp. hybrid 

Tifton 85 (Cc) and Paspalum notatum cv. Pensacola (Pn)). Most of them hold 

characteristics recommended to face shade conditions (see Soares et al. 2009).  
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Eucalyptus dunnii' trees were planted in 2007, fitting to an east – west 

orientation, following the contour, in a double row arrangement using 3m between 

plants within rows and 4 m between rows, spaced 20 m apart (3x4x20 m). The initial 

population was 267 trees ha-1. In the winter – autumn 2011 a thinning management was 

done and reduced the population to 155 trees ha-1.  

Forage species were planted in pure stands from January 2010: plots of 4.5 m² 

(1,5 x 3 m) in full sun (no trees integration) vs. 100 m² (5 x 20 m) in the shaded area. 

The trees shading condition will be referred as the Integrated Crop-Livestock System 

treatment (ICLS). Plant measurements were done in December of 2011 and 2012.  

Treatments were arranged in a randomized block design, with three replicates. 

Two system types, ICLS (i.e. shaded) vs. full sun, and two nitrogen levels (0 and 300 kg 

ha-1 year-1) were defined as treatments. Nitrogen was applied as urea in the beginning of 

the growing season (in early spring). Each year, in early spring, calcareous, P2O5 and 

K2O were supplied according to soil analysis to ensure that these nutrients did not limit 

plant regrowth. Soil water content (%) was measured in the top 20 cm soil layer, using 

the equipment HFM2010 - HidroFarm during the morphogenesis analysis.  

The pastures were mechanically harvested when its canopy reached 95% of LI 

(cutting frequency). The stubble height corresponded to a 50% reduction in the cutting 

height (cutting intensity). Residues were removed from the site. The light interception 

in each plot was monitored every week, using a ceptometer (AccuPAR LP 80).    

 

2.3 Leaf and Plant measurements 

 

Measurements at leaf and plant level were done in 25 and 10 tillers per plot in the full 

sun and ICLS, respectively. Only tillers on vegetative stage were marked. For both 
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treatments, marked tillers were located along 2 transects in full sun and 5 in ICLS, 

distanced 50 cm between each tiller. The distances of transects in ICLS corresponded to 

2,4,10,16 and 18 m from one of the trees rank. Every 2-3 days, during 20 days, the 

following measurements were done: the lengths of green and senescing (green parts 

only) laminae were measured from the ligule for mature leaves (i.e. those with a visible 

ligule) and from the ligule of the last mature leaf for growing leaves; the length of the 

pseudostem of vegetative tillers or stem of reproductive tillers (measured from the 

ligule of the last mature leaf or the flag leaf to the ground); the appearance of new 

leaves.  

These measurements were used to calculate the following parameters per plant 

part: phyllochron (Phyl – calculated as the inverse of the linear regression between 

number of leaves in function of thermal-time); leaf elongation rate (LER – cm tiller-1 

ºCd-1); duration of leaf elongation (DLE - ºCd); leaf length (LL – cm); leaf lifespan 

(LLS - ºCd); stem elongation rate (SER – cm tiller-1 ºCd-1); leaf blade senescence rate 

(LSR – cm tiller-1 ºCd-1); number of green leaves (NGL – leaves tiller-1); final leaf 

length (LL – cm). 

For each measurement period, destructive samples were collected, at random 

and within each plot, to estimate weight per unit length (g DM cm-1) of each plant part. 

In the end of each measurement period, the tiller density (TD – tiller m2) per unit 

ground area was determined by counting in 1 or 5 samples of 0,0625 m2 per plot in full 

sun and ICLS, respectively. 

A growth flux (GF – kg ha-1 day-1) was calculated by the following equation: 

GF = LER x SWEL x Tm x NEL x TD x 10  Eq. 1 

Where: SWEL is the specific weight of expanding leaves (g-1 cm-1); Tm (ºC) is the daily 

mean temperature of the experimental period; NEL is the number of expanding leaves 
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per tiller; and the factor 10 is in order to transform in kg ha-1. Senescence flux (SF – kg 

ha-1 day-1) was calculated by the following equation: 

    SF = LSR x SWML x Tm x TD x 10   Eq. 2 

Where: SWML is the specific weight of mature leaves (g-1 cm-1); Tm (ºC) is the daily 

mean temperature of the experimental period; and the factor 10 is in order to transform 

in kg ha-1. The tissue turnover fluxes were calculated per population unit and then per 

area (ha), by multiplying the mean tissue fluxes per population unit by the mean density 

of these units (i.e. TD). 

    

2.4 Meteorological measurements and thermal time calculation 

 

Photosynthetic photon flux density (PPFD µmol cm-2 s-1) in full sun and in the ICLS 

was measured at the same positions described in item 2.3. For the summer 2012, the 

PPFD was measured using bars containing five cells of amorphous silicon in parallel of 

15 x 15 cm, connected to a datalogger (CR1000; Campbell Scientific® Ltda). The data 

were collected every 30 s, and mean values were calculated and stored every 5 min. 

Hence, light reduction in the ICLS could be calculated as the difference between sensors 

at both systems. For the summer 2013, measurements were taken using a ceptometer 

(AccuPAR® LP-80), every 30 min from 8:00 to 18:00 o’clock.  

Air temperature (Tm) was collected and stored every 5 min in 3 individuals 

dataloggers (Hobbo) located at 2, 10 and 18 m from one of the trees rows in the ICLS, 

and one datalogger in full sun. Thermal-time was calculated for integrated and full sun 

systems from the daily integration of air temperatures minus the base temperature (Tb): 

TT = ∫ −
h

bm dtTT
0

)](;0max[    Eq. 3 
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where TT is thermal time expressed in cumulative degree days (°Cd, Bonhomme, 2000). 

TT is expressed in degree-days, calculated as the sum of the mean daily temperature 

minus the base temperature (Tb). During this study, the Tb value used was 10ºC for all 

species. 

 

2.5 Statistical analyses 

 
Statistical analyses were performed using R software (R Development Core Team, 

2014). Analyses of variance (ANOVA, glm procedure) were performed using the Tukey 

method for multiple mean comparison tests in post-ANOVA. Data were transformed 

when necessary to reach the normality of residues. Transformations were performed 

using the procedure Box Cox (package MASS). 

 

3. Results 

 

3.1 Environmental and tree measurements 

 

The mean daily temperature during the experimental period was 20.2 ºC in ICLS, 

created by eucalyptus trees, and 21.0 ºC in full sun treatment in the first year. During 

the second year, temperatures increased 2 ºC. Although there was an increase on 

temperature from the first to second year, the differences between ICLS and full sun 

treatments remained similar (Figure 1).    

 Soil moisture percentage was also monitored during the experimental period. 

Soil moisture was lower in the first year (15±5.42 % and 18±6.48 % in ICLS and full 

sun, respectively) when compared to the second year (26±5.46 % and 24±8.60 % in 

ICLS and full sun, respectively).   
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 Mean trees height ranged from 17.6 ± 2.4 m in summer 2012, with a diameter at 

breast height of 21.5 ± 3.24 cm, until 22.6 ± 2.6 m at the end of summer 2013 (27.4 ± 

3.04 cm of diameter), which gave tree canopy closures (i.e. % of photosynthetic photon 

flux reduction) of ~40 % and ~59 %, respectively.  

  

3.2 Morphogenical and structural characteristics 

 

Outputs of the ANOVA for morphogenical and structural characteristics and growth 

fluxes are show in Table 1. ANOVA reveled that species had the greatest effect on all 

variables (Table 1), in terms of variance explained (VE). Means per species are showed 

in Figure 2. There were significant effects of system, N and year for almost all 

variables. Further, interactions of second and third order were also observed (see Table 

1). Therefore, interactions between species x system (Figure 2) and species x N levels 

(Figure 3) are showed, since they were significant for almost all variables analyzed. 

Further, means for the interactions species x year are available in supplementary 

material.  

The faster species on leaf appearance (i.e. lower Phyllochron) was H. altissima, 

and the slowest were M. maximus and B. brizantha (Figure 2). On average, N 

fertilization decreased Phyl. (132 ± 4.99 ºCd and 109 ± 3.86 ºCd at N0 and N300, 

respectively). Forage species showed a significant higher Phyllochron (Phyl.) in ICLS 

(Figure 2). However, H. altissima had a higher Phyl. in full sun, and  Cynodon spp. not 

showed differences between systems (Figure 2).   

 Leaf elongation rate (LER) ranged between 0.14 ± 0.007 cm tiller-1 ºCd-1 for B. 

brizantha to 0.24 ± 0.01 cm tiller-1 ºCd-1 for H. altissima (Figure 2). Only H. altissima 

had a significant higher LER in ICLS (Figure 2). The N fertilization increased LER, 
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except for M. maximus and H. altissima, which not showed significant differences 

between N levels (Figure 3). H. altissima displayed the highest duration of leaf 

elongation (DLE), while similar values were observed between the others species 

(Figure 2). Further, this species and Cynodon spp. were not affected by system (Figure 

2). N input decreased the DLE (211 ± 6.87 ºCd and 195 ± 5.87 ºCd at N0 and N300, 

respectively). B. brizantha had leaves with longer lifespan than the other species 

(Figure 2). Only A. catharinesnis had significant differences on LLS in function of 

system (Figure 2). Further, N fertilization decreases the LLS of B. brizantha and 

Cynodon spp. (Figure 3).   

The stem elongation rate (SER) was higher for A. catharinensis, H. altissima and 

Cynodon spp. (Figure 2). ICLS significantly increases the SER for B. brizantha, H. 

altissima and Cynodon spp., and decreases the SER for M. maximus (Figure 2). Only A. 

catharinensis did not showed differences between systems. The N effect was significant 

(Table 1). On average, N fertilization increases the SER (0.020 ± 0.001 cm tiller-1 ºCd-1 

and 0.024 ± 0.001 cm tiller-1 ºCd-1 at N0 and N300, respectively).  

H. altissima displayed 8.5 ± 0.22 green leaves per tiller (NGL), while M. 

maximus displayed a maximum of 3.63 ± 0.08 leaves per tiller (Figure 2). M. maximus 

and Cynodon spp. were the species that not exhibited differences for NGL in function of 

system. A higher NGL was observed in full sun only for A. catharinensis, the others 

species showed higher NGL in ICLS. However, the magnitude of these differences was 

small. For instance, A. catharinensis had 4.9 ± 0.28 leaves in full sun and 5.5 ± 0.17 

NGL in ICLS, i.e. the difference was only 0.6 leaves. Higher differences were observed 

for H. altissima (+1.33 ± 0.41 leaves in full sun, Figure 2). The N fertilization increases 

the NGL, mainly for A. catharinensis and H. altissima (Figure 3).  
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The species evaluated increased significantly the leaf length (LL) in ICLS, 

except M. maximus and Cynodon spp. (Figure 2). M. maximus has longer leaves 

compared to the other species, independently of the system (Figure 2), and also it was 

the only species to reduce LL due N fertilization (Figure 3).  

Lower tiller density (TD) was observed in ICLS for H. altissima and mainly for 

Cynodon spp. (Figure 2). N fertilization significantly increased the number of tillers for 

all species (Table 2). This increase ranged between +154 tiller for A. catharinesnis and 

+982 tillers for Cynodon spp..  

 

3.3 Explanatory variables  

 

Leaf senescence rate (LSR) and specific leaf weight (SLW) were used for growth and 

senescence fluxes’ calculations.  

 LSR was lower in full sun for H. altissima (Figure 4). The N fertilization 

decreased LSR for A. catharinensis, M. maximus and Cynodon spp. (Figure 4). SLW 

was significant different only for B. brizantha and M. maximus due to the system, these 

species showed a higher SLW in the full sun (Figure 4). The N input decreased SLW for 

B. brizantha and increased for M. maximus and Cynodon spp., the other species did not 

show significant differences (Figure 4).   

 

3.4 Growth and senescence fluxes     

 

The growth flux (GF) ranged between 46 ± 7.8 kg DM ha-1 day-1 for H. altissima and 

105 ± 5.9 kg DM ha-1 for Cynodon spp. (Figure 5). The GF was higher in the full sun, 

but A. catharinensis showed the opposite response, with a higher GF in ICLS. No 
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significant differences were observed with H. altissima (Figure 5). N300 treatment 

increased GF for all species. Further, the magnitude of these responses was very 

different, varying from +11.8 kg ha-1 day-1 for H. altissima and +88.3 kg ha-1 day-1 for 

Cynodon spp. that was the species with highest growth flux (GF). The SF was 

significantly lower in the ICLS for M. maximus and Cynodon spp (Figure 5). For N 

fertilization, differences were observed for A. catharinensis with a lower SF in the 

treatment N300 while B. brizantha had a higher SF in the treatment N300 (Figure 5).  

 

3.5 Year effect on variables 

 

Significant differences between years were observed for Phyl., LER, DLE, LSR, SER 

and growth and senescence fluxes (Table 1). On average, higher values were observed 

in the first year than in the second (Table 2), except for LER, SER and GF.  

 In general, significant year x species interactions showed significant effects for 

some species, while the others remained with similar values between years. For 

instance, only B. brizantha had lower NGL in the first year when compared to the 

second year, and only H. altissima showed shorter leaves in the second year (see 

supplementary material). With Phyl. an opposite response was found. Phyl. was higher 

for all species in the first year, except for A. catharinensis (90 ± 16.1 and 131 ± 5.22 

ºCd for the first and second year, respectively). 

 

4. Discussion 

 

Phyllochron (Phyl.) was higher in ICLS, except for Cynodon spp. and H. altissima that 

not showed differences. Further, this last species had the fast leaf appearance rate (i.e. 
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lower Phyl.), showing values higher than those reported by Oliveira et al. (2000). The 

effect of light on Phyl. is divergent on the literature. While some authors indicate that 

the competition for light increases the Phyl. (Duru et al. 1993; Gatti et al. 2013), others 

results appoints for a reduction (Gautier et al. 1999). A possibility for the increase found 

for three species in our study (Figure 2) is a probably lower carbon production and 

allocation in ICLS, which in turn affected the Phyl. (Gautier et al. 1999).  

Some authors reported that the leaf elongation rate (LER) is directly correlated 

with the amount of radiation (i.e. photosynthetic photon flux density - PPFD), and 

linked with photoassimilates production (Granier and Tardieu, 1999; Bos et al. 2000). 

For instance, Paciullo et al. (2008), observed a higher LER for Brachiaria decumbens 

Stapf. growing in a system with 50% of shade. In our study, the effect of shade by trees 

on LER was observed only for H. altissima, with an increase on LER in ICLS (Figure 

2) when compared to full sun. Further, H. altissima was the only specie with higher leaf 

senescence rate in the ICLS (Figure 4). According to Hirosaka (2005), since higher 

senescence can provide a faster N remobilization from leaves, this response could be 

correlated to a better N condition in shade for the expanding leaves, despite no 

significant effects of N inputs for this species (Figure 3) in both light conditions. N has 

a markedly effect on LER, mainly by an acceleration on cell division (Gastal and 

Nelson, 1994; Duru and Ducrocq, 2000; Alexandrino et al. 2005)  

 The N input decreases DLE. Further, the duration of leaf elongation was higher 

in ICLS, except for H. altissima and Cynodon spp. These results are directly correlated 

with the LER increase/decrease by N and shade, since these characteristics are 

correlated (Gastal and Nelson, 1999; Duru and Ducrocq, 2000; Vos et al. 2005; Corré, 

1983; Tardieu et al. 1999; Cookson and Granier, 2006).   
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 Small differences were found in the total number of green leaves in function of 

treatments (Figures 2, 3) and year (Figure 6). This characteristic is relatively constant 

within a species, but with large variations between species (Lemaire and Chapman, 

1996). Only A. catharinensis showed a significant increase on LLS in ICLS (Figure 2).   

LLS is the product of phyllochron and the number of mature leaves. As the 

number of leaves had a small change in ICLS, the differences observed on LLS could be 

related to the lower leaf appearance rate (i.e. higher phyllochron) for this species in 

ICLS. This response could be explained by an adaptive process, i.e. plants increase the 

leaf lifespan in order to increase the time for doing photosynthesis, since photosynthetic 

rates are lower with a light restriction. Also, this response can be just correlated to the 

carbon balance and nutrient utilization (e.g. N remobilization) (Chabot and Hicks, 

1982). The use of LLS is important as a management tool, because can be used to 

define the cutting frequency. Lower LLS means a more frequent cutting regime, 

otherwise higher losses in pasture can occur due to senescence (Lemaire and Chapman, 

1996). Hence, in relationship to the results observed with LLS, cut frequency can be 

similar for all species independently of the system, except for A. catharinensis, which 

can be cut lees frequently in ICLS. 

Final leaf length (LL) is a function of LER and DLE. Therefore, a higher LL for 

H. altissima was probably due a higher LER in ICLS (Figure 2), and the higher LL for 

A. catharinensis and B. brizantha can be explained by the higher DLE (Figure 2). An 

increase in leaf size due to shade can be a plant strategy in order to increase light 

capture (Givnish, 1988). 

 H. altissima and Cynodon spp. showed lower tiller density (TD) in the ICLS 

(Figure 2). TD is an important mechanism to optimize sward leaf area and production 

(Matthew et al. 2000). The reduction of light and specially changes in red:far red can 
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avoid the production of new tillers in order to maintain the allocation of 

photoassimilates to the existents tillers (Casal, 2000). The effect of N is the opposite of 

the light, an increase in N fertilization tends to increase the number of tillers (Cruz and 

Boval, 1999). 

 Stem elongation rate (SER) is an important morphogenical process that has a 

large interference on the structure of tropical grass species (Sbrissia and Silva, 2001). 

Species showed a higher SER in the ICLS, except M. maximus and A. catharinesnis 

(Figure 2). The effect of light on stem elongation is one of the most typical responses of 

shade avoidance plants, due to reductions on light quantity and changes in light quality, 

plants increase internodes to reach a better light condition (Ballaré et al. 1987; Ballaré et 

al. 1997; Casal, 2000).  

While shade tended to increase Phyl., N input decreased the Phyl for all species 

in a similar way, since no significant interactions between N x system were found for 

this variable. The N effect on the increase of leaf appearance is well reported for 

tropical species (Garcez Neto et al. 2002; Alexandrino et al. 2004; Pereira et al. 2011). 

The N input reduced LLS for all species (Figure 3), similar results were found for two 

species of Brachiaria by da Silva et al. (2009), and for Dactylis glomerata by Duru and 

Ducrocq (2000). 

LER and DLE were lower in the second year, except A. catharinensis (Figure 6). 

However, SER was higher in the second year, but not for A. catharinensi species 

(Figure 6). These results could be explained by a probable water stress (Granier and 

Tardieu, 1999), as the first year was dryer compared to the second year (see section 

3.1), or also due to the increase (see section 3.1) in the shade by trees canopy (Lin et al. 

2001). Granier and Tardieu (1999) reported that water stress not affect DLE.  
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4.1 Growth and senescence fluxes     

 

The growth flux (GF) was higher in the full sun for B. brizantha, M. maximus and 

Cynodon spp.. Only A. altissima showed higher GF in the ICLS and only H. altissima 

did not showed significant differences between systems (Figure 5). It was expect a 

reduction for all species in the GF in function of reductions in the light quantity by the 

trees canopy. However, the responses were species-dependent, i.e. probably due 

different species strategies in response to shade (Givnish, 1988; Cruz, 1997).  

There was an effect of increase on GF due to N input for all species (Figure 5), 

this is an expected response, since N had an impact on LER, DLE and TD as reported 

before. 

In the second year all species presented a higher GF (Figure 6). Although the 

reduction on PPFD reaching the forage canopy due to the trees canopy (see section 3.1), 

in the second year, the main daily temperature for the experimental period was higher 

compared to the first year (Figure 1), also first year was drier than second year (see 

section 3.1). These factors (i.e. water and temperature) could explain the differences 

between years for GF, beside the tree growth. 

The senescence flux (SF) was significant different for M. maximus and Cynodon 

spp., with lower values in the ICLS (Figure 5). A parameter that could explain these 

variations in SF is the leaf senescence rate (LSR), however, only H. altissima showed 

differences in the LSR.  

The N input reduced senescence flux for A. catharinensis and increased for B. 

brizantha (Figure 5), the effect of N is expect to reduce the senescence flux, as the plant 

necessities a lower remobilization of N from old leaves to produce new leaves 

(Hikosaka, 2005). 
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4.2 Relations between morphogenenis and growth fluxes for each species 

 

In general, there was not an exclusive morphogenetic or structural characteristic that 

better explain differences in growth flux due to the system or nitrogen, but there is a 

specie dependency.  

A. catharinensis showed higher GF in the ICLS. Pachas et al. (2013) showed 

that the growth rate of A. catharinenis was higher in a silvopastoral system (38% of 

PPFD reduction) than full sun. These results could be explained by the higher LER and 

higher DLE in the ICLS (Figure 2). 

 B. brizantha is considered as tolerate to moderate levels of shade (Paciullo et al. 

2011). Here, we observed a reduction of 28% on GF in the ICLS. M. maximus and 

Cynodon spp. showed also reductions in the GF in ICLS, both of -41%. These results 

could be explained by a higher phyllochron in the ICLS (Figure 2) and by a lower 

specific leaf weigh (SLW) in this system. Results of Paciullo et al. (2007) shows a 

reduction on leaves biomass production with 65% of shade, and no differences with 

35% of shade. In the work of Araújo et al. 2011, B. brizantha showed high morphogenic 

rates with higher intervals of cutting frequency in a study with coconut trees. For 

Cynodon spp. the reduction is also attributed to the drastic reduction on tiller density 

(Figure 2), as the other parameters (i.e. Phy. and SLW) did not showed significant 

variations from full sun to ICLS. 

 No differences were found for H. altissima in the GF between treatments. This 

species had higher rates for all morphogenical parameters evaluated and longer leaves in 

ICLS (Figure 2). However, there was a great reduction in the number of tillers (Figure 

2). It is supposed that the higher rates in ICLS compensated the reduction on tillers 

density and maintained similar GF.  H. altissima had also a negative balance (i.e. SF > 
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GF, see Figure 5) in both systems. Hence, a management with higher cutting frequency 

(i.e. lower than 95% of LI) will be probably necessary for this species in order to avoid 

losses by senescence. 

 To sum up, the effect of trees in the growth of tropical forage is specie-

dependent, while B. brizantha, M. maximus and Cynodon spp. had a decrease on growth 

rates in ICLS, H. altissima did not changed and A. catharinensis increased leaf growth 

rates. However, even the species that showed decreases on leaves growth rates; they 

maintained a satisfactory development and growth at the ICLS. Also, the balance of GF 

and SF was positive, except for H. altissima that had a negative balance for both 

systems (-14.1 and -25.2 kg ha-1 day-1 in full sun and ICLS respectively, Figure 5). 

Further, the N supply contributes to the maintenance of a satisfactory development and 

growth of forages species in ICLS.      
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Table 1 - Percentage of variance explained (VE) and statistical significance from the ANOVA for phyllochron (Phyl.), leaf elongation rate 
(LER), duration of leaf elongation (DLE), leaf lifespan (LLS), leaf senescence rate (LSR), stem elongation rate (SER), number of green leaves 
(NGL), specific leaf weight (SLW), leaf length (LL), tiller density (TD), growth flux (GF) and senescence flux (SF).   
 

 

 

 

 

 

 

 

 

 

*P< 0.05; **P < 0.01; ***P < 0.001; ns, not significant. 

 
 
 

 Specie  System N Year Sp x 
System 

Sp x N Sp x 
Year 

N x 
Year 

Sp x N 
x Year 

Sp x 
System x 

Year 
 Morphogenical characteristics 
Phyl. 45.16***  0.85* 3.73***  1.00**  2.83***  - 2.89***  - - - 
LER 15.77***  2.43***  6.77***  5.79***  7.85***  2.41**  - 1.01* - 3.49* 
DLE 13.03***  3.55***  1.18* 2.85***  2.75* - 5.50***  - - - 
LLS 16.61***  2.19**  1.03* 0.33ns 2.14* 3.28**  2.55* - 5.17***  - 
LSR 31.29***  1.09**  4.49***  1.51**  3.61***  5.15***  2.92***  4.25***  3.14***  - 
SER 21.98***  1.26**  1.20**  9.19***  7.68***  - 6.31***  - - - 
 Structural characteristics 
NGL 75.49***  0.03ns 1.50***  0.02ns 1.23***  1.21***  0.75* - 1.46***  - 
SLW 74.87*** 3.01*** 0.37** 0.02ns 3.70*** 4.66*** - - - - 
LL 42.73*** 3.32*** 0.41ns 0.21ns 2.20** 4.24*** 1.50* 0.57* 2.34** - 
TD 42.96*** 4.39*** 10.49*** 0.01ns 7.57*** 3.42*** - - - 1.70** 

 Growth and senescence fluxes 
GF 20.77*** 1.88*** 15.84*** 5.18*** 4.69*** 3.98*** - - - 2.52* 

SF 13.09***  0.36ns 0.04ns 1.43* 2.96* 3.36**  2.59* 2.91***  4.28**  - 
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Table 2 – Means and standard error (se) for morphogenetic characteristics and growth 
and senescence fluxes for the years 2011 and 2012. 

Means with the same letter in the line are not significantly different according to the Tukey test (P > 
0.05). 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1 – Daily Mean air temperatures during 2011 and 2012 for the experimental 
period.  

 2011 se 2012 se 
Leaf Elongation rate (cm tiller-1 ºCd-1) 0.16 b 0.007 0.20 a 0.005 
Duration of leaf elongation (ºCd) 220.5 a 8.47 189.2 b 4.28 
Leaf senescence rate (cm tiller-1 ºCd-1) 0.07 a 0.006 0.06 b 0.003 
Stem elongation rate 0.017 b 0.001 0.027 a 0.001 
Growth flux (kg ha-1 day-1) 78.2 b 4.68 97.4 a 3.93 
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Figure 2 – Means for the morphogenical and structural parameters for each species and 
also within each system (i.e. data shown the species x system interaction). Means with 
the same capital letters compares systems, means with small letters compares species 
within each system and means with capital letters with * compares species according to 
the Tukey test (P >0.05). Bars indicate the standard error of the mean. Species code: 
Axonopus catharinensis (Ac); Bb – B. brizantha; Mm – Megathyrsus maximus Ha – 
Hemarthria  altissima; and Cc – Cynodon spp. Variables code: phyllochron (Phyl.); leaf 
elongation rate (LER); duration of leaf elongation (DLE), leaf lifespan (LLS; leaf 
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senescence rate (LSR); stem elongation rate (SER); number of green leaves (NGL); leaf 
length (LL); tiller density (TD).  

 
 
Fig. 3 - Means for the morphogenical and structural characteristics for the interaction 
species x nitrogen. Means with the same capital letters compares systems, means with 
small letters compares species within each system according to the Tukey test (P >0.05). 
Bars indicate the standard error of the mean. Species code: Axonopus catharinensis 
(Ac); Bb – B. brizantha; Mm – Megathyrsus maximus Ha – Hemarthria  altissima; and 
Cc – Cynodon spp. Variables code: leaf elongation rate (LER); leaf lifespan (LLS); leaf 
senescence rate (LSR); number of green leaves (NGL); leaf length (LL); tiller density 
(TD). 
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Fig. 4 – Means for the morphogenical and structural parameters for each species and 
also within each system (i.e. data shown the species x system interaction). Means with 
the same capital letters compares systems, means with small letters compares species 
within each system and means with capital letters with * compares species according to 
the Tukey test (P >0.05). Bars indicate the standard error of the mean. Species code: 
Axonopus catharinensis (Ac); Bb – B. brizantha; Mm – Megathyrsus maximus Ha – 
Hemarthria  altissima; and Cc – Cynodon spp. Variables code: specific leaf weight 
(SLW); leaf senescence rate (LSR). 
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Fig. 5 – A) Means for the growth and senescence fluxes for each species and also within 
each system (i.e. data shown the species x system interaction).. B) Means for growth 
and senescence fluxes for the interaction species x nitrogen. Means for the 
morphogenical and structural parameters for each species and also within each system 
(i.e. data shown the species x system interaction). Means with the same capital letters 
compares systems, means with small letters compares species within each system and 
means with capital letters with * compares species according to the Tukey test (P 
>0.05). Bars indicate the standard error of the mean. Species code: Axonopus 
catharinensis (Ac); Bb – B. brizantha; Mm – Megathyrsus maximus Ha – Hemarthria  
altissima; and Cc – Cynodon spp.  
 

 

S
F

 (
kg

 h
a-1

 d
ay

-1
)

0

50

100

150

200

250

S
F

 (
kg

 h
a-1

 d
ay

-1
)

0

50

100

150

200

250

G
F

 (
kg

 h
a-1

 d
ay

-1
)

0

50

100

150

200

250

N0 
N300 

B

A

ab

a

B

A

a

a

B

A

ab

a

B
A

c
b

B

A

b

a

B

Ac Bb Mm Ha Cc

G
F

 (
kg

 h
a-1

 d
ay

-1
)

0

50

100

150

200

250

Full sun
ICLS
Species

Bb
A

A

B

A

B

A A

A

Ba

a

a

a

a

c b

a

aA*
A*

A*

B*

A*

Ab
A

A

A

A

B

A
A

A

B

b

ab

b

ab

b

b
a

a

a

B*
B* B*

A* A*

A

B

b

c
B

A
b

b A Bb b

A

A

a

a

A

A
a

a

B

Ac Bb Mm Ha Cc

A A



 80 

 
Supplementary data Fig S1 – Means for morphogenical and structural characteristics 
and the interaction species x year condition. Means with the same capital letters 
compares light condition, means with small letters compares species within each light 
condition according to the Tukey test (P >0.05). Species code: Axonopus catharinensis 
(Ac); Bb – B. brizantha; Mm – Megathyrsus maximus Ha – Hemarthria  altissima; and 
Cc – Cynodon spp. Variables code: phyllochron (Phyl.); duration of leaf elongation 
(DLE); leaf lifespan (LLS); leaf senescence rate (LSR); stem elongation rate (SER); 
number of green leaves (NGL); leaf length (LL); senescence flux (SF).  
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4. CAPÍTULO 3 

Effect of blue light on two alfalfa morphotypes contrasting on their growth habits1 

                                                 
1 Elaborado de acordo com as normas da Revista Agronomy journal. 
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Abstract 

Light is considered the major resource driving plant architecture and vegetation 

dynamic. Different species and even different genotypes of the same species can exhibit 

contrasted strategies to capture and use light. These strategies in the context of light 

competition could determine plant's capacity to grow in monoculture or/and in mixtures. 

Than, understand morphological responses to blue light could be particularly helpful for 

that. The present study aimed to determine the effect of blue less light on the 

development and growth of two morphologically contrasted genotypes of Medicago 

sativa, that exhibit contrasted growth habits, an erected and other a prostrated 

morphotype. During the experimental period, 60 clones of each genotype were grown 

under 380 µmol m-2 s-1 of photosynthetic activated radiation (PAR) and 14h 

photoperiod. Two light conditions were simulated in growth cabinets: low blue light 

level (B-) and neutral light (B+). The differences in the response to blue light of several 

morphological parameters (internodes and petiole length, leaf area) between the two 

genotypes strongly suggest difference in the strategy for light foraging with genotype 

B4 (erect) presenting more trends to escape and genotype D3 (prostated) to tolerate 

shade. 

 

Key words: competition; crop mixtures; light quality; pasture canopy; shade-avoidance 

 

1. Introduction 

 
When plants are growing in a canopy, they experience a heterogeneous light 

environment in terms of light quantity and also light quality (Varlet-Grancher et al., 

1993a; Ballaré et al., 1997, Holmes and Smith, 1977; Werger et al., 2002). This is 

mainly due to interactions of light with plant organs characterized by the capacity to 
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absorb, transmit and reflect solar radiations within the range of 350nm to 800nm 

(Smith, 1982).  

Both differences in the photon flux density (400-700nm) and changes in light 

quality (i.e. Blue, Red and Far red wavebands) induce morphogenetic responses that 

affect the capacity of plants to capture light (Tardieu et al., 1999; Lötscher and 

Nösberger, 1997; Gautier et al., 2000; Cookson and Granier, 2006). However, light 

quality is considered as principal cue driving plant architecture and vegetation dynamic 

(Ballaré et al., 1997; Kasperbauer and Hunt, 1992).  

Specifically, blue light in the range of 350-500 nm regulates important aspects of 

plant development and growth (Varlet-Grancher et al., 1993b). In shade-avoidance 

plants, the effects of blue light is well known to trigger a variety of photomorphogenic 

responses such changes in stem and leaf length due to the increase in internodes lengths 

and leaf elongation rate (Gautier and Varlet-Grancher, 1996; Ballaré and Casal, 2000). 

Indeed, blue light can interfere on plant function, due to the influence on gas exchange 

through stomatal functioning (Zeiger et al., 1987; Talbott et al., 2002; Barillot et al., 

2010). However, some studies suggest that amplitude and capacity of plants to respond 

to blue light depends on the stage of development and species (Casal and Smith, 1988; 

Drumm-Herrel and Mohr, 1991; Mitchell and Woodward, 1988).  

The enhancement of stem and leaf elongation are due to decrease of blue light 

within a plant canopy. The changes in blue light are sensed mainly by two types of 

receptors, cryptochromes and the phototropins (Christie and Briggs, 2001; Lin, 2002) 

that allow plants to characterize their nearby environment and particularly the intensity 

of light competition.  

It is well known that light is a major factor of competition between individuals 

in growing stands as grasslands, monocultures or in intercropping systems (Wedin and 
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Tilman 1993; Ballaré et al., 1997; Lemaire et al., 2005; Baldissera et al., 2014).  

Depending on plant density, genetic heterogeneity (even intra-specific) and the 

constraints imposed by the operating mode in these systems (plants density or 

diversity/cut/pasture), the lighting conditions of individual plants and light partitioning 

between species vary significantly. Consequently, the changes in mass of individuals as 

well the proportion of each species and its contribution the overall leaf area index in the 

in the stand are related to experienced light conditions (Barilllot et al., 2011). Thus, 

different species and even different genotypes of the same species can exhibit contrasted 

strategies to capture and use light. These strategies in the context of light competition 

could determine plant's capacity to grow in monoculture or/and in mixture and the 

morphological responses to blue light could be particularly helpful for that. 

The present study aimed to determined the effect of blue less light on the 

development and growth of two morphologically contrasted genotypes of Medicago 

sativa, that exhibit contrasted growth habits, an erected and a prostrated morphotype 

respectively. 

 

2. Material and Methods  

 

The experiments were performed in the laboratory at the INRA Lusignan research 

station France. Two morphologically contrasted genotypes of Medicago sativa were 

used in this experiment: B4 and D3 an erected and a prostrated morphotype, 

respectively. 60 clones of each genotype were prepared in October 2011. During 

December 2011 clones were transferred from nursery to greenhouse into 2L individual 

plastic pots filled with sand. Clones were maintained in the greenhouse at 15°C during 2 

months under additional light sources and were watered 8 times a day. Plants were then 



 86 

transferred into two growth cabinets for three weeks of pre-treatment at 17°C night and 

day. During this period clones were grown under 380 µmol m-2 s-1 of photosynthetic 

activated radiation (PAR)  and 14h photoperiod provided by 6 metallic iodure lamps 

(HQI 400W, Osram, France) at 80 % of relative humidity and were automatically 

watered 8 times a day with a complete nutrient solution containing 1.9 mol m-3 KNO3, 

0.55 mol m-3 Ca(NO3)2, 2.5 mol m-3 NH4NO3, 0.5 mol m-3 CaCl2, 0.1 mol m-3 NaCl, 0.5 

mol m-3 MgSO4, 0.4 mol m-3 KH2PO4, 0.3 K2HPO4, 25 10-3 mol m-3 H3BO3, 2 10-3 mol 

m-3 MnSO4, 2 10-3 mol m-3 ZnSO4, 0.5 10-3 mol m-3 CuSO4, 0.5 10-3 mol m-3 H2MoO4 

and 20 10-3 mol m-3 Fe-HEDTA. Finally, 40 clones of each genotype were selected on 

the base of the total number of stems and theirs length. Clones were then cut at 8cm 

from the collet (collar) and were randomly distributed under two light treatments in two 

others growth cabinets (T°C=17°C, 14h photoperiod, 80% HR, full nutrient solution). 

Plants were grown under these conditions until the beginning of flowering (around 2 

months) and during this period depending on their developmental stage they received 

from 80 to 520 ml per day of full nutrient solution.  

 

2.1 Light treatment 

 

Two light conditions were simulated in the growth cabinets: low blue light level (B-) 

and neutral light (B+). The low blue light level (5 µmol m-2 s-1) was thus obtained with 

a Lee Filter HT 015 (Lee Filter, Hampshire, England) associated to 9 metallic iodure 

lamps (HQI 400W, Osram, France) which supplied high PAR levels. The neutral light 

was obtained by using the Lee 216 filter associated to 6 metallic iodure lamps. This 

filter provided a neutral shade as it identically lowered the energy from all wavelengths 

of the incident light (around 25%). The distance between plants and light sources + 
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filters was adjusted in both growth cabinets in order to provide photon flux with the 

same photosynthetic efficiency in B+ (PAR= 407 µmol/m2/s; YPF= 379 µmol/m2/s) 

and B- (PAR= 438 µmol/m2/s ; YPF= 383 µmol/m2/s) treatments.  

 

2.2 Morphological measurements 

 

The measurements were done around two months after the beginning of the light 

treatments. On each clone a main vigorous growing shoot (main axis) was identified 

and it length measured with a ruler. The number of nodes on this shoot as well the 

number of associated leaves was reported. For each node rank of this shoot the length of 

internodes and petioles were measured with a ruler. Other shoots were cut at 8 cm from 

collet, their number reported and total leaf area measured (once leaves separated from 

shoots), using a  planimeter (LI-3100, LI-Cor, inc, Lincoln, NE, USA).  

For the end of regrowth (i.e. after first cut), plant biomass was determined. 

Plants were separated in above ground and roots components for total above ground and 

roots biomass analysis. Roots were carefully removed from the pot and washed. To 

measure dry mass, all samples were dried in the oven for 48h at 60°C.  

From the measurements of the main axis it were calculated specific leaf area 

(SLA – cm2 g-1), specific stem weight (SSW – g-1 cm-1), leaf:stem ratio of the main axis 

(leaves dry weight / stem dry weight). For the biomass measurements from the regrowth 

period it was calculated shoot:roots ratio (above ground dry weight / roots dry weight). 

 

2.3 Statistical analyses 
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Statistical analysis were performed using R software (R Development Core Team, 

2014). For each node position on the mains axis, T test (t.test procedure) was used to 

compare internode and petiole lengths between light treatments for each genotype. The 

effects of light treatment, genotype and their interaction on shoot number, total leaf 

area, specific leaf area, leaves dry weight of main axis, stem dry weight, of the main 

axis, specific stem weight, leaves:stem ratio, total plant dry weight, above ground dry 

weight and above ground:roots dry weight ratio were tested by analysis of variance 

(ANOVA, aov procedure), and Tukey (HSD.test package AGRICOLAE) method for 

multiple mean comparison tests in post-ANOVA. Data were transformed when 

necessary to reach the normality of residues, transformations were performed using the 

procedure Box Cox (package MASS). 

 

3 Results 

 

3.1 Internodes and petioles lengths  

 

Irrespective of light condition, there were differences in morphological plant 

development as described for internode and petiole appearance probability and 

evaluated for each genotype and light treatment (Figure 1). All plants presented at least 

three nodes, except for genotype D3 growing without blue light. 80% of the plants 

showed seven nodes, and the biggest plants reached 14 nodes. 

 There was a significant (P < 0.04) increase of internode lengths from the 2nd to 

the 6th for genotype B4 under blue less  (B-) light,  whereas no significant (P > 0.29) 

changes were observed for D3 genotype (Figure 2). For genotype B4, the length of 

petioles was ranged from the maximum of 50 mm and 30 mm in B- and B+ treatments, 
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respectively to around 7mm for both treatments. The genotype D3 exhibited lower 

values, ranging for both light treatments from 7mm to 33mm.   

 For the petiole lengths there was minor effect for genotype B4 compared to the 

responses on internode lengths (Figure 3) and  significant difference between light 

treatments occurred only in the 2nd (P = 0.02) and the 4th node (P = 0.005). As occurred 

for internodes length, B- light treatment did not have effect on petioles lengths (P > 

0.09) in genotype D3(Figure 3).     

 

3.2 Number of shoots 

 

The total number of shoots was not affected by the blue light treatment, differences 

were observed only for genotype (Table 1). The genotype D3 showed a higher average 

number of shoots (6.45 shoots) compared to genotype B4 (5.33 shoots) (Table 2). 

 

3.3 Plant leaf area and specific leaf area 

 

The ANOVA outputs showed a significant genotype x blue light treatment interaction 

for the leaf area of main axis (Table 1). This interaction was due to the increase in leaf 

area for the genotype B4 in the absence of blue light. This genotype exhibited 107 cm2 

of leaf area on the main axis under B- conditions whereas only 73 cm2 were measured 

under B+ conditions. Genotype D3 did not change main axis leaf area under B- 

treatment (49 cm2) and exhibited  64 cm2 on main shoot in the B+ treatment that was 

similar to genotype B4 (Table 3). Leaf area of main axis for D3 genotype was slightly 

higher in B+ but was not significantly different between light treatments. Consequently, 
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the specific leaf area was affected only by light treatment (Table 1), showing an 

increase under B- light conditions (Table 2).  

 

3.4 Dry weight and its partition 

 

The dry weight of leaves and stems were evaluated for the main axis in the first growth 

period. The biomass of leaves from the main axis was also higher when exposed to the 

treatment with blue light, and genotype B4 showed higher leaves dry weight compared 

to genotype D3 (Table 2). For stems, ANOVA results showed an interaction between 

light treatment x genotype (Table 1). This interaction was mainly due to the increase of 

stem dry weight for plants of genotype B4 growing in B-.  

Under B+ treatment the stem weight was similar for both genotypes whereas it 

was significantly different under B- treatment (Table 3).The differences in stem weight 

can be explained by the specific stem weight (SSW) and stem height (Table 1). 

Genotype B4 showed similar SSW (Table 3), but had higher internodes lengths (Figure 

2) in the treatment B-, producing longer stems. For genotype D3, there was no 

difference in lengths (Figure 2), however the SSW was lower for plants growing 

without blue light.     

   For the regrowth period (i.e. after first cut) it was analyzed the total plant 

biomass and its partition between above ground and roots biomass. Total dry weights of 

plants were higher with the B+, and there was no difference between genotypes (Table 

2).   

 For above ground and roots biomass the same pattern of total biomass occurred, 

where it was affected only by light treatment, with an increase on dry weight for the 

plants growing under blue light (B+). 



 91 

 

4. Discussion 

 

The objective of our study was to analyze the effect of blue less light on the 

development and growth of two morphologically contrasted genotypes of Medicago 

sativa. The differences in the response to blue light of several morphological parameters 

(internodes and petiole length, leaf area) between the two genotypes strongly suggest 

difference in the strategy for light foraging with genotype B4 (erect) presenting more 

trends to escape and genotype D3 (prostated) to tolerate shade (Givnish, 1988).  

 

4.1 Effects of blue light on Elongation and Leaf area 

 

The effect of light quality (Red:Far Red) on stem elongation is well reported in the 

literature, plants trying to escape shade tend to increase stems to reach a better light 

condition (Morgan and Smith, 1981; Morgan 1982, Child and Smith, 1987). Our results 

demonstrate that the isolated effect of blue light also has an impact on the stem 

elongation (Figure 2). In contrast, petiole elongation was slight affected by blue light 

treatment on genotype B4 and genotype D3 was not affected at all (Figue 3). The effect 

of light quality in petiole elongation is expected to be higher in plants that exhibit a 

prostrated pattern of growth, however this was not the case in this work. For white 

clover petiole elongation and inclination is affected by blue light (Gautier et al., 1997, 

Christophe et al., 2006). Low blue light change petiole inclination and helps to position 

leaves in the upper layers of the canopy interfering in light capture. Gautier et al. (2001) 

also showed that in the case of white clover, the response of petioles was independent of 

the plant position. For the estoloniferous species Potentilla reptans, the response to 
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shade occurred more in a vertical way, due to the increase of petioles lengths, rather 

than internodes lengths (Huber and Stuefer, 1997).   

The increase in the leaf area of main stem occurred only for genotype B4 in the 

absence of blue light (Table 3). Plant leaf area on a stem is dependent of the total 

number of leaves and leaf size. According to Gautier et al. (1997), modifications in light 

quality can leads to increases of leaf size. However, Baldissera et al. (2014) showed that 

in alfalfa competing for light, there was a reduction in final plant leaf area due to plant 

density, and this reduction was referred to plant development (i.e. branches appearance, 

number of shoots), harder than the size of leaves.  

Blue light did not affected total leaf area, but changed specific leaf area, that was 

higher for both genotypes (Table 1). In general, plants growing in a reduced light 

condition exhibit thinner leaves compared to high light condition, also various authors 

showed that the response of SLA is highly correlated with photosynthetic photon flux 

density (Tucker et al., 1987; Dale, 1988; Niinemets and Kull, 1998; King, 2003, Petritan 

et al., 2009), also the response of SLA can be linked with the species tolerance to shade. 

However, some investigations show that more shade-tolerant species tend to show a 

higher SLA with the decrease in light availability (Niinemets and Kull, 1997; Barthod 

and Epron, 2005; Klooster et al., 2007). But others did not confirm this pattern 

(DeLucia et al., 1998; Stancioiu and O’Hara, 2006).  

Due to the results found on total leaf area of the main axis (Table 3), it could be 

hypothesized that blue light may does not interfere in leaves appearance, but only on 

leaf morphology as it has been shown for other forage species (Gautier and Varlet-

Grancher, 1996) 

 

4.2 Effects of blue light on biomass partitioning between leaves and stems 
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The decrease in leaves dry weight (Table 2) corroborates with the results obtained by 

Lin et al. (2001), for fifteen forage species including alfalfa, these authors also showed 

an increase in total leaf area, decreases on leaves dry weight are directly correlated with 

SLA (see section 4.1)  

On the other hand, stem weight of the main axes was higher for the genotype B4 

for the treatment B- (Table 4), whereas the SSW did not changed, than the increase on 

stem weight can be correlated with the increase in internodes lengths (Figure 2), 

resulting in longer stems. In the case of genotype D3, the stem weight of main axis 

tended to be lower under B- treatment, mainly due to the lower SSW (Table 4), as there 

were no changes in internodes lengths (Figure 2). The modulation of carbon allocation 

to leaves and stems depends on species and light conditions (Samarakoon et al., 1990) 

and often result in distinct leaf:stem ratios between genotypes. Finally in our 

experiment, D3 genotype did not changed leaf:stem in response to light treatments 

whereas genotype B4 reduced its ratio under B- treatment. This higher leaf:stem ratio 

can be positive response, because it trigger a better forage quality (Lin et al., 2001).  

 This differences in biomass allocation to leaves and stems also agrees with 

distinct strategies between genotypes to capture light, that was already commented in 

the topic 4.1, and the results showed in our work for the blue light effect are similar 

from those reported for changes in red:far-red or in the reduction of photosynthesis 

photon fluxes density (Corré 1983; Keiller and Smith, 1989; Fortnum and Kasperbauer 

1992, Kasperbauer and Hunt 1992 a,b). While genotype B4 (erect habit of growth) 

tended to elevate leaves by increase of stem height, and changing biomass allocation to 

stems, genotype D3 (prostrated habit of growth), maintained allocation to leaves and 
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reduced for stems, than we could hypothesize this is correlated with the plagiotropic 

pattern of growth of this genotype. 

    

4.3 Effects of blue light on total plant biomass and root-shoot ratio 

 

Total biomass production was reduced by the lack of blue light, also total above ground 

and roots biomass followed the same pattern, resulting in no differences for the ratio 

above ground:roots dry weight (Table 2). The reduction on biomass can be an effect of 

blue light on stomata opening (Smith, 1982; Fankhauser and Chory, 1997; Kinoshita et 

al., 2001; Talbott et al., 2002; Barillot et al., 2010). Blue light stimulated stomata 

opening, when stomata are closed, it prevents the CO2 passage to the interior of the 

cells, resulting in a decrease of photosynthesis. Barillot et al. (2010) showed that under 

a decrease level of blue light, there is a instantaneous closure of stomata, and a gradual 

reopening after 20 min, but leading to a new steady-state, never reaching the initial 

state. 

 

4. 4 summarizing 

  

      To sum up, morphological and growth process are affected on alfalfa by blue light, 

however contrasting genotypes in their habit of growth showed distinct responses to 

light and distinct strategies to capture light. These findings should help in define 

management strategies, mainly for consortiums. Baldissera et al. (2014) evaluated the 

same erected morphotype, and showed that when growing in a consortium with tall 

fescue (Festuca arundineacea), alfalfa tended to overlap the graminea species.    
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Table 1 – F-ratios and statistical significance of ANOVAs of plant traits in function of 
blue light and contrasted genotypes of Medicago sativa. 

*, P < 0.05; **, P < 0.01; ***, P < 0.001; n.s., not significant. 
 
 
Table 2 – Plant traits in function of blue light (B- less bluelight; B+ neutral blue light) 
and contrasted genotypes of Medicago sativa (B4 prostrate; D3 erect). 

 B- B+ B4 D3 
Shoot number 5.7 (0.24) a 5.9 (0.26) a 5.3 (0.20) b 6.4 (0.26) a 
Specific leaf area 
(cm2 g-1) 

329.1 (10.9) a 238.3 (11.84) b 284.4 (13.1) a 280.1 (14.6) a 

Leaves dry 
weight of the 
main axis (g) 

231.31 b 312.63 a 315.21 a 22.51 b 

Total dry weight 
(g) 

6402.8 (347.5) b 10297.8 (654.3) a 8860.7 (561.5) a 7953.4 (673.5) a 

Above ground dry 
weight (g) 

3687.5 (209.7) b 5715.2 (384.9) a 4996.2 (328.1) a 4341.0 (361.1) a 

Root dry weight 
(g) 

2691.8 (147.2) b 4421.4 (254.3) a 3801.7 (230.5) a 3360.5 (272.6) a 

Ratio Shoot:Root 
dry weight (g) 

1.3 (0.04) a 1.31 (0.03) a 1.3 (0.03) a 1.3 (0.04) a 

Means with the same letters for light treatment and for genotype treatment are not significantly different 
according to the Tukey test (P . 0.05). standard error of the mean in parenthesis.  
 
 
Table 3 – Leaf area of main (cm2) axis in function of blue light (B- less bluelight; B+ 
neutral blue light) and contrasted genotypes of Medicago sativa (B4 prostrate; D3 
erect). 
 B4 D3 

B- 107.36 (14.0) Aa 49.08 (7.0) Ab 
B+ 72.81 (10.1) Ba 64.63 (7.0) Aa 

Means with the same capital letters in the column and small letters in the lines are not significantly 
different according to the Tukey test (P . 0.05). standard error of the mean in parenthesis. 
 
 

 Treatment Genotype Treatment x Genotype 
Shoot number n.s. 11.47** n.s. 
Leaf area of main axis n.s. 7.9** 6.86* 
Specific leaf area 30.77*** n.s. n.s. 
Leaves dry weight of the 
main axis 

4.89* 4.91* n.s. 

Stem dry weight of the 
main axis 

n.s. 9.02** 7.65* 

Leaf:stem ratio 10.68** 5.30* 8.12** 
Specific stem weight 8.70** 15.26*** 5.17* 
Total dry weight 23.37*** n.s. n.s. 
Above ground weight 17.99*** n.s. n.s. 
Roots dry weight 31.17*** n.s. n.s. 
Above ground:roots ratio  n.s n.s n.s 
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Table 4 - Stem dry weight of the main axis (g) and specific stem weight (g. cm-1) in 
function of blue light (B- less bluelight; B+ neutral blue light) and contrasted genotypes 
of Medicago sativa (B4 prostrate; D3 erect). 
Stem weight of main axis B4 D3 

B- 310.5 (46.0) Aa 111.88 (21.7) Ab 
B+ 210.61 (31.3) Ba 200.52 (32.5) Aa 

Specific stem weight B4 D3 
B- 0.844 (0.07) Aa 0.44 (0.05) Ab  
B+ 0.881 (0.05) Aa 0.772 (0.08) Ba  

Means with the same capital letters in the column and small letters in the lines are not significantly 
different according to the Tukey test (P . 0.05).  
 
 
Table 5  – Leaf:stem in function of blue light (B- less bluelight; B+ neutral blue light) 
and contrasted genotypes of Medicago sativa (B4 prostrate; D3 erect). 
 B4 D3 

B- 1.260 (0.10) Bb 1.671 (0.09) Aa 
B+ 1.814 (0.12) Aa 1.757 (0.16) Aa 

Means with the same capital letters in the column and small letters in the lines are not significantly 
different according to the Tukey test (P . 0.05).  
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Figure 1 – Probability of internode and petiole appearance in respect to each node 
position in the main axis of contrasted genotypes of Medicago sativa. (B- less bluelight; 
B+ neutral blue light). (B4 prostrate; D3 erect). 
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Figure 2 – Internod lengths in respect to each node position in the main axis. of 
contrasted genotypes of Medicago sativa. (B- less bluelight; B+ neutral blue light). (B4 
prostrate; D3 erect)  (*P< 0.05; **P < 0.01; ***P<0.001; ns, not significant). 
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Figure 3 - Petiole lengths in respect to each node position in the main axis of contrasted 
genotypes of Medicago sativa. (B- less bluelight; B+ neutral blue light). (B4 prostrate; 
D3 erect) (*P< 0.05; **P < 0.01; ***P<0.001; ns, not significant). 
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5. CAPÍTULO 4 

Plant development controls leaf area expansion in alfalfa plants competing for light
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Table S1. Environmental conditions experienced for the different growth periods 

studied during the two experiments. Tm, PPFD and VPD refer to daily average 

temperature (°C), daily average photon flux density (µmole PAR.m-2) and daily average 

vapour pressure deficit (kPa), respectively. Values in parenthesis are for minimum and 

maximum values over the period. 

 
Year Growth period PPFD

Exp 1 2009 1 (Growth) 14.5 (7.2 - 23.6) 1018 1.3 (0.9 - 2)
2 (Regrowth) 18.9 (14.3 - 25.1) 1064 1.4 (1.1 - 1.9)

2012 1 (Growth) 16.0 (9.9 - 22.7) 934 1.4 (0.7 - 2)
2 (Regrowth) 18.4 (15.4 - 26.5) 981 1.5 (1.1 - 2.1)

Exp 2 2009 1 (Growth) 14.5 (7.2 - 23.6) 1018 1.3 (0.9 - 2)
2 (Regrowth) 18.9 (14.3 - 25.1) 1064 1.4 (1.1 - 1.9)

2010 1 (Growth) 15.1 (7.8 - 22.5) 919 1.4 (0.8 - 1.8)
2 (Regrowth) 21.0 (13.1 - 26.5) 1136 1.7 (1.1 - 2.2)

Tm VPD
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Fig. S1. Diagrams of a) the arrangement of the main axis, secondary and tertiary axes on 

a seedling plant (initial growth cycle) and b) the types of main axes emerging either 

from the taproot (T2) or  from the axil of a leaf just below the cutting height (T1) of a 

mature plant during a regrowth cycle.  Redrawn from Moreau et al. (2007) and Gosse et 

al.(1988). 
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Fig. S2. Number of leaves on branches as a function of thermal-time accumulation 

expressed in cumulative degree-days from shoot emergence during  the growth phases 

of Exp. 1. Open and closed symbols indicate 2012 and 2009 data, respectively. Date of 

branch appearance (DA) and phyllochron  (RLa-1) estimated from linear regressions are 

indicated in each panel. 
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Fig. S3. Dynamics of canopy light interception efficiency measured in the different pure 

and mixture stands studied.  
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6. CONSIDERAÇÕES FINAIS 
 
 

Os resultados observados nos diferentes trabalhos desenvolvidos demonstram 

que existe grande espécie dependência em função dos efeitos da luz, havendo até 

distintas respostas em função de diferentes genótipos de uma mesma espécie, como é o 

caso da alfafa. Tal fator dificulta a predição do comportamento das espécies e, 

consequentemente, o manejo em função de alterações da luz. Contudo, é possível 

apontar alguns mecanismos de alteração das plantas que podem ser utilizados como alvo 

da pesquisa e deste modo facilitar a avaliação do comportamento de cada espécie em 

relação a luz.  

Um dos mecanismos de resposta das plantas comumente observado nos 

resultados aqui apresentados, e que já havia sido reportado inúmeras vezes na literatura, 

é a elongação do colmo em função das alterações na quantidade e/ou qualidade da luz. 

Nos trabalhos realizados com alfafa, os resultados obtidos resultaram em 

importantes informações, as quais ajudam na construção de modelos de interceptação da 

luz pelo dossel vegetal e, portanto, a predição da produção. Tais resultados também têm 

enorme importância para o manejo da alfafa em consórcio com gramíneas. Por 

exemplo,... 

No caso das espécies tropicais C4 avaliadas sobre o efeito de árvores, A. 

catharinensis, B. brizantha, H. altíssima e Cynodon cpp. demonstraram claramente que 

as alturas atingidas aos 95% de interceptação luminosa são maiores do que aquelas 

obtidas a pleno sol. Para as espécies M. maximus e P. notatum não ocorreram variações 

importantes. Demonstrando assim a variabilidade comentada acima para diferentes 

espécies, ainda as dificuldades de utilizar o critério de altura como estratégia de manejo 

nesses sistemas.  

Neste sentido, poderia se sugerir que a pesquisa avance na busca de facilitar o 

uso diretamente da medição da interceptação luminosa, como controle da entrada de 

animais em pastejo e não do uso da altura. 

Outro aspecto importante do manejo a ser abordado é a intensidade de corte. No 

trabalho com as espécies arborizadas, foi utilizada uma intensidade de 50% de corte da 

altura em que a pastagem atingia 95% de interceptação luminosa, contudo este corte foi 

realizado mecanicamente. É necessário deste modo, aliar o comportamento animal nos 

estudos de intensidade de manejo de espécies em sistemas integrados com árvores. 
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Ainda, é necessário entender como o efeito da sombra das árvores vai interferir no 

comportamento animal. Sugere-se que, principalmente em lugares com altas 

intensidades de radiação, os animais iriam pastejar mais nos lugares com maior sombra 

ao longo do dia, isso poderia resultar em diferenças na estrutura do dossel da pastagem 

ao longo do gradiente de sombra.         

Nas metodologias propostas para avaliações das espécies em sistema integrado 

com árvores, existe grande importância em separar os diferentes fatores que interferem 

no crescimento e no desenvolvimento das plantas. Neste estudo, tentou-se objetivar o 

efeito do sombreamento. Contudo, não é possível fazer a completa separação dos efeitos 

de água, por exemplo. Inicialmente era pretendida a irrigação das áreas com árvores e a 

pleno sol, mas não foi possível realizar em função de custos e logística dos 

experimentos. 

Por fim, informações a respeito do manejo de espécies forrageiras nos mais 

variados tipos de consórcio são de extrema importância, pois auxiliam a técnicos e 

produtores na tomada de decisões e também são determinantes para aumentar a adesão 

destes tipos de sistemas.  

  



 124 

7. REFERÊNCIAS 

 

BALBINO, L.C.; CORDEIRO, L.A.M.; PORFÍRIO-DA-SILVA, V.; MORAES, A.; 

MARTÍNEZ, G.B.; ALVARENGA, R.C.; KICHEL, A. N.; FONTANELI, R.S.; 

SANTOS, H.P.; FRANCHINI, J.C.; GALERANI, P.R. Evolução tecnológica e arranjos 

produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesq. 

Agropec. bras., v.46, n.10, p.1-12, 2011. 

 

BALLARE, C.L.; CASAL, J.J. Light signals perceived by crop and weed plants. Field  

Crops Research, v.67, p.149–160, 2000. 

 

BALLARÉ, C.L.; SCOPEL, A.L.; SANCHEZ, R.A. Foraging for light: Photosensory 

ecology and agricultural implications. Plant, Cell and Environment, v.20, p.820-825, 

1997. 

 

BERNARDINO, F.S.; GARCIA, R. Siltemas silvipastoris. Pesquisa Florestal 

Brasileira, n.60, p.77-87, 2009. 

 

BURNER, D.M.; BELESKY, D.P. Diurnal effects on nutritive value of alley-cropped 

orchardgrass herbage. Crop Science, v.44, p.1776-1780, 2004. 

 

CASAL, J.J. Phytochromes, cryptochromes, phototropin: photoreceptor interactions  

in plants. Photochemistry and photobiology, v.71, p.1–11, 2000. 

 

CRUZ, P. Effect of shade on the growth and mineral nutrition of a C4 perennial grass 

under field conditions. Plant and Soil, v.188, p.227–237, 1997. 

 

FELDHAKE, C.M.; BELESKY D.P. Photosynthetically active radiation use efficiency 

of Dactylis glomerata and Schendonorus phoenix along a hardwood tree-induced light 

gradient. Agroforestry Systems, v.75, p.189–196. 2009. 

 

GIVNISH, T.J. Adaptation to Sun and Shade: A whole-plant perspective. Australian  

Journal of Plant Physiology, v.15, p.63–92, 1988. 

 



 125 

HEALEY, K.D.; RICKERT, K.G.; HAMMER, G.L.; BANGE, M.P. Radiation use 

efficiency increases when the diffuse component of incident radiation is enhanced under 

shade. Australian Journal of Agricultural Research, v.49, p.665–672. 1998. 

 

KNOWLES, R.L. et al. Developing canopy closure model to predict 

overstorey/understorey relationships in Pinus radiata silvopastoral systems. 

Agroforestry Systems, v.43, p.109-119. 1999. 

 

LACORTE S.M., ESQUIVEL J.L. Sistemas silvopastoriles en la mesopotamia 

argentina. Reseña del conocimiento, desarrollo y grado de adopción. In: 

CONGRESO NACIONAL DE SISTEMAS SILVOPASTORILES, Posadas 

(Misiones, Argentina). Actas. Posadas (Misiones, Argentina), 2009. p. 70-82 

 

LIN, C.H.; MCGRAW, R.L.; GEORGE, M.F.; GARRETT, H.E. Shade effects on 

forage crops with potential in temperate agroforestry practices. Agroforestry Systems, 

v.44, p.109–119, 1999. 

 

MORAES, A.; CARVALHO, P.C.F.; BARRO, R.S.; LUSTOSA, S.B.C.; PORFÍRIO-

DA-SILVA, V.; REISENDORF-LANG, C.. Perspectivas da pesquisa em sistemas 

integrados de produção agrícola e pecuária no Brasil e os novos desafios. In: ANAIS 

REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA. Brasilia, DF, 

2012. 

 

MORAES, A.; CARVALHO, P.C.F.; ANGHINONI, I.; LUSTOSA, S.B.C.; COSTA, 

S.E.V.G.A.; KUNRATH, T.R. Integrated crop-livestock systems in the Brazilian 

subtropics. European Journal of Agronmy, 2014. In press. 

 

NAIR, P.K.R. Carbon sequestration studies in agroforestry systems: a reality-check 

Agroforestry Systems, 2011. 

 

PAGIOLA, S.; RAMÍREZ, E.; GOBBI, J.; HAAN, C.; IBRAHIM, M.; MURGUEITIO, 

E.; RUÍZ, J.P. Paying for environmental services of silvopastoral practices in 

Nicaragua. Ecological Economics, v. 64, p.374-385, 2007. 

 



 126 

RAO, M.R.; NAIR, P.K.R.; ONG, C. K. Biophysical interactions in tropical 

agroforestry systems. Agroforestry Systems, Dordrecht , v. 38, p. 3–50, 1998. 

 

SILVA-PANDO, F.J.; GONZALEZ-HERNANDEZ, M.P.; ROZADOS-LORENZO, 

M.J. Pasture production in a silvopastoral system in relation with microclimate 

variables in the Atlantic coast of Spain. Agroforestry Systems, v.56, p.203-

211, 2002. 

 

VARELLA, A.C.; MOOT, D.J.; POLLOCK, K.M. Do light and alfalfa responses  

tocloth and slatted shade represent those measured under an agroforestry system?  

Agroforestry Systems, v.81, p.157–173, 2010. 

 

 

 

 



 127 

8. ANEXOS



 128 



 129 



 130 



 131 



 132 



 133 



 134 



 135 



 136 

 
 
 
 
 
  



 137 

Instructions to Authors 
Articles for Agronomy Journal (AJ) must be original reports of research not simultaneously submitted to or previously published 
in any other scientific or technical journal and must make a significant contribution to the advancement of knowledge or toward a 
better understanding of existing agronomic concepts. The study reported should be applicable to a sizable geographic area or 
an area of ecological or economic significance and of potential interest to a significant number of scientists. 
 
Original research articles are grouped by subject matter into the following categories: Agronomic Application of Genetic 
Resources; Crop Ecology & Physiology; Crop Economics, Production & Management; Climatology & Water Management; 
Biometry, Modeling & Statistics; Soil Fertility & Crop Nutrition; Organic Agriculture & Agroecology; Soil Tillage, Conservation & 
Management; Agronomy, Soils & Environmental Quality; Urban Agriculture; Biofuels; and Pest Interactions in Agronomic 
Systems. 
 
This "Instructions to Authors" is a summary of style and preparation guidelines. For a complete document on style, consult 
ourPublications Handbook and Style Manual. 
Membership is not a requirement for publishing in AJ. Consult the ASA–CSSA–SSSA style manual and recent issues of AJ for 
guidance. For questions not answered in the style manual, consult the Managing Editor.  
 
Scope 
 
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant 
relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture 
production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural 
systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as 
applied to production agriculture. 
 
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies 
and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, 
subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, 
thought-provoking form. Such papers are reviewed by the Editor in consultation with the editorial board. 
 
Statistical Methods 
 
Report enough details of your experimental design so that the results can be judged for validity and so that previous 
experiments may serve as a basis for the design of future experiments. 
Means separation procedures are frequently misused. Such misuse may result in incorrect scientific conclusions. Pairwise 
multiple comparison tests (LSD) should be used only when the treatment structure is not well understood (e.g., studies to 
compare cultivars). 
 
Authors should be aware of the limitations of multiple comparison tests when little information exists on the structure of the 
treatments (Carmer and Walker, 1985; Chew, 1980; Little, 1978; Nelson and Rawlings, 1983; Petersen, 1977; see also Chew, 
1976; Miller, 1981). When treatments have a logical structure, orthogonal contrasts among treatments should be used. 
 
Validation of Field Results 
 
Experiments that are sensitive to environmental interactions, such as crop performance, usually should be repeated over time or 
space or both. 
  

Symposia Series 
 
Manuscripts resulting from symposia having appropriate subject matter will be considered for publication as a compilation in a 
single issue of AJ. Sets of manuscripts considered may originate from ASA, CSSA, or SSSA sponsored symposia or from 
appropriate subject matter symposia sponsored by other organizations. 
 
Symposia organizers desiring to publish a compilation of manuscripts in AJ must solicit the Editor with the following prospectus 
materials: (i) title, location, and date of the symposium; (ii) the organization affiliated with the symposium; (iii) names, addresses, 
telephone numbers, and email addresses of the solicitors; (iv) a short abstract (~250 words) outlining the overall purpose of the 
symposium and reasons justifying why the manuscripts should be published as a compilation; and (v) titles and abstracts, 
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written according to the Publications Handbook and Style Manual, for each paper to be considered for publication. Prospectus 
materials may be submitted to the Editor during any time of the year. Symposia papers are subject to the usual page and 
production charges for the journal. 
  

Style 
 
• Use a comma before the final item in a list of three or more items. For example: “Cores were inside plastic liners, capped, and 
stored on ice…” 
• Define all abbreviations at first mention in the abstract or text and again in the tables and figures. Once an abbreviation is used, 
it should be used throughout the entire article, except at the beginning of a sentence. 
• The Latin binomial or trinomial and authority must be shown for all plants, insects, pathogens, and animals at first listing. 
• Both the common and chemical name of pesticides must be given when first mentioned. For example: “Atrazine (2-chloro-4-
ethylamino-6-isopropylamino-1,3,5-triazine) was included…” 
• Identify soils at the series and family level, or at least the Great Group, at first mention. For soils outside the United States, 
give both the local identification and the U.S. equivalent. Up-to-date 
U.S. soil descriptions may be checked online (http://soils.usda.gov/technical/classification/osd/index.html). 
• SI units must be used in all manuscripts. Non-SI units may be added in parentheses. 
• Spell out numbers one through nine, except when used with units. For decimal quantities <1, place a zero before the decimal 
point. Use commas for the decimal separator. The comma is not 
necessary for four-digit numbers (e.g., 73,722, but 7372). 
• Use the 24-h time system, with four digits for hours and minutes (e.g., 1430 h for 2:30 p.m.). Report dates with the day first, 
then the month, and the year last. Abbreviate months with more 
than four letters (e.g., 14 May 2005, 7 June 2007, 10 Aug. 2000, or 26 Sept. 2007). 
  

Manuscript Preparation 
 
Submissions 
  
Manuscript Central: Complete manuscripts should be submitted as Microsoft Word files at Manuscript Central. New users will 
be asked to register at this site and will receive a User Name and Password. 
Format: MS Word files may be submitted. File sizes are restricted to 15 MB. All sections of the manuscript should be double-
spaced. Use the page-numbering and line-numbering functions in your original file to allow discussion of particular sections of 
the manuscript. TeX files are not accepted for review or production of accepted manuscripts. 
Plagiarism: Authors, be aware that your papers may be screened for plagiarism. Our software product evaluates papers to find 
significant duplication. If there appears to be major repetition from other sources, we will forward those papers to the AJ Editor 
for further evaluation and action if warranted, and you may be informed as well. 
Peer Review: All manuscripts submitted undergo peer review. Agronomy Journal has a double-blind review in that the 
reviewers do not know the author names and the authors do not know the reviewer names. Therefore, authors should prepare 
the manuscript with no author information (e.g., no byline, addresses/affiliations, acknowledgments, etc.; these items are 
entered into the Manuscript Central metadata at submission and are hidden from reviewers. They will be added to a manuscript 
at acceptance—see Final Accepted Manuscripts). 
Take care to label tables and figures with reference to the paper’s title, not author names. Reviewers will be able to download 
any files that you upload to the system, but will not have access to the protected metadata that you enter into text boxes upon 
submission. Any identification in headers or footers should be similarly anonymous. 

As a last consideration, authorship may be unintentionally revealed through such software features as document summaries. If 
this is a concern, consult your local software experts. When authors submit, they will be asked to enter author and contact 
information into the system database, and the Editor and Headquarters Staff will have access to this information so that they 
can contact the authors about the outcome of the review and will use this information for processing accepted files. 

See the Editors and Reviewers information page and the Policy for Appeal of Manuscript Review for additional information on 
review policy. 
Reviewers: Authors using Manuscript Central will be prompted to provide a list of potential reviewers. These reviewers must not 
have a conflict of interest involving the authors or paper, and the editorial board has the right to not use any reviewers 
suggested by authors. 
Internal Reviews: If internal reviews are required at your research institution, these reviews must be completed prior to 
submission to the journal. If a manuscript is altered on the basis of an internal review after acceptance, publication will be 
delayed and the manuscript may be returned to the editorial board for an additional review. 
Revision of Manuscripts: Authors have four weeks to review and return their manuscript following reviewer and associate 
editor comments. Manuscripts may be released if revisions are not received, and the paper will have to be submitted as a new 
manuscript. 
Supplemental Material: Supplemental material may be included with articles at the discretion of the journal editor and 
production editor. Authors are encouraged to submit material that contributes to the content and quality of the article. The 
material must must be submitted along with the original manuscript for peer review. The production editor may limit the quantity 
of supplemental material posted per issue. Extra images, video, or large tables are examples of appropriate supplemental 
material. A supplement may consist of one or multiple files; pdf is recommended. If submitting videos please use the 
format .FLV (Flash Video) with 640 x 480 or 720 x 480 (widescreen) as the resolution. If you do not have this format available to 
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you please contact the Managing Editor. The following are not allowed: executables (.exe) of any kind, java script, TeX, or 
PowerPoint. Additional figure and/or table charges will be applied for the supplemental material. 
 
  
Manuscripts 
  
Format: Manuscripts submitted for review should be MS Word files. File sizes are restricted to 15 MB. All sections of the 
manuscript should be double-spaced. Use the page-numbering and line-numbering functions in your original file to allow 
discussion of particular sections of the manuscript. When your paper is accepted you will need to submit a set of final files for 
production. See Final Accepted Manuscript below for formatting requirements for those files. 
Title: A short title, not exceeding 12 words, is required. It must accurately describe the manuscript contents. 
Author-Paper Documentation: The submitting author should have sent each living co-author a draft copy of the manuscript 
and have obtained the co-author’s assent to co-authorship of it. In a footnote on the title page, include all authors' names and 
complete mailing addresses. Use an asterisk in the author byline to identify the corresponding author. Professional titles are not 
listed. Other information, such as grant funding, may be included here or placed in an acknowledgment. From time to time, 
author names are either added or deleted from a given manuscript between the time of submission and publication. In situations 
such as this the ethical and responsible manner of handling this type of change is for the lead author to advise the author being 
added or deleted of the addition or deletion and to notify, in writing, the Editor and Managing Editor of the journal. 
Abbreviations: Include an "Abbreviations" footnote, which is an alphabetical list of abbreviations used in the article. Elemental 
abbreviations and variables from equations should not be included. Example: Abbreviations: LAI, leaf area index; PAR, 
photosynthetically available radiation; RUE, radiation use efficiency. 
Abstract: An informative, self-explanatory abstract, not exceeding 250 words (150 words for notes), must be included. It should 
state specifically why and how the study was made, what the results were, and why they are important. 
Tables: Each table must be on a separate page and numbered consecutively. Do not duplicate matter presented in figures. Use 
the following symbols for footnotes in the order shown: †, ‡, §, ¶, #, ‡‡, ..., etc. The symbols *, **, and *** are used to show 
statistical significance at 0.05, 0.01, and 0.001 levels, respectively, and are not used for other footnotes. 
Figures: Authors are responsible for obtaining all permissions for use of figures from other publishers; supply these releases at 
the time the accepted manuscript is forwarded for production. Authors are also responsible for obtaining permission from 
individuals whose images are included in photographs. Please note that ASA-CSSA-SSSA reserves the right to publish and 
republish any images you submit. Type figure captions in the word-processing file following the references. Authors can publish 
color photos, figures, and maps. Label all figure parts. Prepare graphs and charts that will read well both on screen and as a 
PDF file printed from an office-quality printer. The final journal will include a PDF version of each article that closely resembles a 
printed journal; thus, make the figure type large enough to be legible after reduction to a final width of 8.5 cm (1 column) or 18 
cm (2 columns). Authors can test a figure's legibility by reducing it to this size on a copy machine. Use open style or block letters 
and heavy lines that don't disappear with reduction. Any legend for graph lines or symbols should appear in the figure itself 
rather than in the captions. 
References: The author-year system is required; numbered references are not allowed. Single-authored articles should 
precede multiple-author articles for which the individual is senior author. Two or more articles by the same author(s) are listed 
chronologically; two or more in the same year are indicated by the letters a, b, c, etc. The reference list can include theses, 
dissertations, abstract publications, and accessible online material. Material such as personal communications or privileged data 
should be cited in the text in parentheses. For chapters from books, include author(s), year, chapter title, editor(s), book title, 
publisher's name and location, and pages. For proceedings references, include author(s), year, article title, editor(s), 
proceedings' title, location, date, publisher's name and location, and pages. Authors should make sure that all references cited 
in the text, tables, and figure captions are listed in the reference section and vice versa. Authors should also be sure that 
spellings of names and dates of the references listed match the citations. 
Nomenclature: Both the accepted common name and the chemical name of pesticides must be given upon first mention in the 
manuscript. Use chemical symbols for elements and ions, except at the beginning of a sentence or in a title or heading. The 
Latin binomial or trinomial and authority must be included with the common name for all plants, insects, pathogens, and animals 
at first mention. When referring to soils, give at least the subgroup in accord with the U.S. system of soil taxonomy. Ideally, both 
the series and complete family name should be given. 
SI Units: The International System of Units (SI) must be used. Corresponding English or metric units may be included in 
parentheses after the SI value. 
 
  
Official Sources 
  
Spelling: Webster's New Collegiate Dictionary. 
Soil: For soil series names see the "Official Soil Series Descriptions" websitefrom the USDA-NRCS 
(http://soils.usda.gov/technical/classification/osd/index.html). Amendments to the U.S. system of soil taxonomy (Soil Survey 
Staff, 1975) have been issued in the National Soil Survey Handbook (NRCS, 1982-1996) and in Keys to Soil Taxonomy (Soil 
Survey Staff, 1996). Updated versions of these and other resources are available at http://soils.usda.gov/. The Glossary of Soil 
Science Terms (SSSA, 2001) is available online (https://www.soils.org/publications/soils-glossary). It contains definitions of 
more than 1800 terms, a procedural guide for tillage terminology, an outline of the U.S. soil classification system, and the 
designations for soil horizons and layers. 
Scientific Names of Plants: A Checklist of Names for 3000 vascular plants of Economic Importance (USDA Agric. Handb. 505, 
see also the USDA Germplasm Resources Information Network database, http://www.ars-grin.gov/npgs/searchgrin.html). 
Chemical Names of Pesticides: Farm Chemicals Handbook (Meister Publishing, revised yearly). 
Fungal Nomenclature: Fungi on Plants and Plant Products in the United States (APS Press). 
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Journal Abbreviations: Chemical Abstracts Service Source Index (American Chemical Society, revised yearly). 
 
  
Manuscript Publication Fees 
  
Membership in ASA is not a requirement for publication in Agronomy Journal. Page charges are as follows: No charge for pages 
1 to 7. Pages 8+ $100/page members, $200/page nonmembers. No charge for tables and figures. Authors may purchase 
reprints and PDF files. Reprint orders and publication charges are invoiced after the author returns corrected galley proofs. 
 
  
Open Access Option 
  
Authors may choose to make their paper open access for an additional fee of $800, above the usual publication fee. Authors 
may purchase reprints and PDF files. Reprint orders and publication charges are invoiced after the complete issue goes online. 
 
  
Final Accepted Manuscript 
  
Sending the Final Manuscript: When your paper is accepted, the following are needed for production: 
Word File for Editing (MS Word). TeX files are not accepted because they are not compatible with our copyediting and layout 
system. Use keyboard formatting if possible (i.e., bold, super-/subscripts, simple variables, Greek font, etc.) and use MathType 
or the Word equation editor for display equations. Submit tables in a word-processing format, not as graphics. *Notice for Word 
2007 users: If you have equations, they must be composed using the Microsoft Equation 3.0 editor found under INSERT 
OBJECT, or with another MathML format such as MathType. Do not use INSERT EQUATION, which creates images (when 
converted) that cannot be used for typesetting. Regrettably, we will need to return any files created with Word 2007 that contain 
equations created with INSERT EQUATION to the authors for resetting. 
Figure Files. Files accepted are pdf, TIF, or EPS. Be sure to check the quality of the file before you send it. A single pdf file with 
all figures is acceptable. If sending TIF or EPS files, please send one for each figure, joining multi-panel figures into one image. 
EPS files often do not work if the fonts have not been converted to graphics. Name files with the manuscript number, figure 
number, and file type extension. Artwork files should adhere to the following resolution settings: 300 dpi for line art; 150 for 
photos. Color should be RGB rather than CMYK. Do not include figure legends or other extraneous text in a graphic file. Please 
do not submit graphics as PowerPoint or Excel. 
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