LEILA TERESINHA MARANHO

EFEITOS DA POLUIÇÃO POR PETRÓLEO NA ESTRUTURA DA FOLHA E DO LENHO DE *Podocarpus lambertii* KLOTZSCH EX ENDL. (PODOCARPACEAE)

Tese apresentada como requisito parcial à obtenção do grau de Doutor, pelo Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Florestais da Universidade Federal do Paraná.

Orientador: Prof. Dr. Franklin Galvão Co-orientadoras: Prof^a. Dr^a. Graciela I. B. Muñiz Prof^a. Dr^a. Yoshiko S. Kuniyoshi

CURITIBA 2004

Por todo amor, carinho e compreensão, dedico... Aos grandes amores de minha vida, Meu filho, Gabriel e... Meu esposo, Jayme.

AGRADECIMENTOS

Um trabalho científico sempre resulta de um esforço conjunto e não apenas de ações isoladas.

A todos aqueles que de um modo ou de outro contribuíram para a realização dessa tese, quero expressar minha gratidão e meu carinho.

Agradeço especialmente, meu orientador, Prof. Dr. Franklin Galvão, pela orientação, oportunidade e amizade, e principalmente, por toda a sua compreensão.

À Prof^a. Dr^a. Graciela Inês Bolzon de Muñiz, pela orientação, por seu estímulo, paciência e amizade.

À Prof^a. Dr^a. Yoshiko Saito Kuniyoshi, pela orientação e apoio.

Agradeço de forma muito especial, à Dr^a. Solange Mazzoni-Viveiros, do Instituto de Botânica de São Paulo, pela valiosa orientação. Acredito que esta seja uma pessoa iluminada que surgiu, na hora do desespero, para iluminar o meu caminho.

Em especial, aos amigos Cíntia, Fábio, Karla e Nicole, não é possível agradecer aqui, por todas as vezes que me ajudaram, nem por todos os tipos de ajuda, pois só isso já mereceria uma tese, e mesmo assim seria cometida alguma injustiça. Assim agradeço-lhes por serem tão leais e generosos comigo, amigos como poucas pessoas no mundo têm o privilégio de possuir.

À Ana Tereza que por sua gentileza e amizade, esteve sempre disponível para realização dos testes estatísticos e para responder as minhas dúvidas.

Ao Marco Aurélio pela amizade e por ser a pessoa mais prestativa para a solução de problemas laboratoriais de qualquer natureza.

À Prof^a. Maria Elisa Giacomazzi Ribas pela amizade, Coordenadora de Ciências Biológicas do Centro Universitário Positivo, ajuda e incentivo.

A Prof^a. Márcia Itiberê da Cunha, Coordenadora de Farmácia e Bioquímica do Centro Universitário Positivo, pela amizade e confiança.

Aos meus pais, Alceu e Lucia, pelo amor e compreensão em mais essa etapa de minha vida.

Aos meus irmãos, Luiz, Liamar, Neide e Veridiana. Vocês, realmente, conhecem toda minha luta para chegar até aqui.

iii

À Universidade Federal do Paraná (UFPR), em especial ao Setor de Ciências Agrárias e Departamento de Engenharia Florestal, pela oportunidade de realização de meu doutorado.

Ao Centro Universitário Positivo (UnicenP), em especial ao Núcleo de Ciências Biológicas e da Saúde por dispor de toda a sua infraestrutura, laboratórios e equipamentos, para realização desse trabalho.

SUMÁRIO

Lista de figuras	vi
Lista de tabelas	ix
Resumo	xi
Abstract	xii
1 INTRODUÇÃO	1
2 REVISÃO DA LITERATURA	4
2.1 ANATOMIA ECOLÓGICA	4
2.2 PLANTAS E POLUIÇÃO	7
2.3 ESTUDOS DE POLISSACARÍDEOS DE PAREDES CELULARES	10
2.4 A ESPÉCIE Podocarpus lambertii Klotzsch ex Endl	11
2.4.1 Características da planta	11
2.4.2 Características da madeira	13
2.4.3 Composição monossacarídica da parede celular	14
3 MATERIAL E MÉTODOS	16
3.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO	16
3.1.1 Localização geográfica	16
3.1.2 Clima	17
3.1.3 Geologia	17
3.1.4 Solos e geomorfologia	18
3.1.5 Vegetação natural	18
3.2 COLETA DO MATERIAL	19
3.3 ANÁLISE MORFO-ANATÔMICA DAS FOLHAS	22
3.3.1 Dimensões foliares em cm ² (determinação do comprimento, largura e área	
foliar)	22
3.3.2 Densidade estomática por mm ² (contagem de estômatos)	22
3.3.3 Estrutura e espessura (μ m) dos tecidos do limbo foliar	23
3.4 ANÁLISE MORFO-ANATÔMICA DO LENHO	23
3.4.1 Mensuração dos traqueídes em material dissociado	24
3.4.2 Estrutura do lenho	24
3.4.3 Composição polissacarídica da parede celular dos traqueídes	25

3.5 PRESENÇA DE PETRÓLEO E/OU SEUS COMSPOSTOS NAS AMOSTRAS	27
3.6 ANÁLISE ESTATÍSTICA	27
4 RESULTADOS E DISCUSSÃO	28
4.1 ANATOMIA DAS FOLHAS DE Podocarpus lambertii	28
4.1.1 Descrição geral	29
4.1.2 Comparação entre as folhas dos indivíduos expostos à poluição e controle	31
4.2 ANATOMIA DO LENHO DE Podocarpus lambertii	51
4.2.1 Descrição geral (macroscópica)	51
4.2.2 Descrição microscópica	51
4.2.3 Comparação entre o lenho dos indivíduos expostos à poluição e controle	52
4.2 PRESENÇA DE PETRÓLEO E/OU SEUS COMSPOSTOS NAS AMOSTRAS	88
4.3 COMPOSIÇÃO POLISSACARÍDICA DA PAREDE CELULAR	90
5 CONSIDERAÇÕES FINAIS	94
6 CONCLUSÃO	97
6.1 FOLHAS DE Podocarpus lambertii	97
6.2 LENHO DE Podocarpus lambertii	97
6.3 CONCLUSÃO GERAL	98
7 REFERÊNCIAS	100
ANEXO I	113
ANEXO II	122
ANEXO III	142

LISTA DE FIGURAS

Figura 1 –	Localização da Refinaria Presidente Getúlio Vargas no Município de	
	Araucária – PR	16
Figura 2 –	Fotografia aérea com a localização da área de coleta na Refinaria	
	Presidente Getúlio Vargas	19
Figura 3 –	Local de coleta, vegetação secundária de encosta	20
Figura 4 –	Esquema de retirada das amostras de discos de madeira e amostras	
	das camadas de crescimento de Podocarpus lambertii na superfície	
	do solo, a um metro e a dois metros de altura	21
Figura 5 –	Comparação entre as folhas de indivíduos de Podocarpus lambertii	
	expostos à poluição e controle	32
Figura 6 –	Secções paradérmicas e transversais de folhas de indivíduos de	
	Podocarpus lambertii controle	33
Figura 7 –	Secções transversais de folhas de indivíduos controle de Podocarpus	
	lambertii	34
Figura 8 –	Média e desvio-padrão do comprimento, largura e área das folhas de	
	indivíduos de <i>P. lambertii</i> expostos à poluição e controle	35
Figura 9 –	Secções transversais da folha de indivíduos de Podocarpus lambertii	
	expostos ao petróleo	37
Figura 10 –	Secções transversais da folha de indivíduos de Podocarpus lambertii	
	expostos ao petróleo	38
Figura 11 –	Secções transversais das folhas de indivíduos de Podocarpus	
	lambertii expostos ao petróleo	39
Figura 12 –	Média e desvio-padrão da espessura dos tecidos foliares, (a)	
	nervura, (b) limbo, (c) mesofilo e (d) cutícula de indivíduos de P.	
	lambertii expostos à poluição e de indivíduos controle	42
Figura 13 –	Secção transversal da folha de indivíduos de Podocarpus lambertii	
	controle (a) e expostos à poluição (b)	44
Figura 14 –	Média e desvio-padrão da densidade estomática dos indivíduos de P.	
	lambertii expostos à poluição e controle	47
Figura 15 –	Secção paradérmica da folha de indivíduos de Podocarpus lambertii	
	controle (a) e expostos à poluição (b)	48
	controle (a) e expostos a poluição (b)	48

Figura 16 – Secções do lenho de indivíduos controle de *Podocarpus lambertii......* 58

- Figura 17 Comparação dos traqueídes em material dissociado do lenho dos indivíduos de *Podocarpus lambertii* expostos ao petróleo e controle.... 59
- Figura 18 Comparação dos traqueídes em material dissociado do lenho dos indivíduos de *Podocarpus lambertii* expostos ao petróleo e controle.... 60

- Figura 22 Média, erro e desvio-padrão do comprimento dos traqueídes axiais (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle e expostos à poluição coletados na superfície do solo (base). 68

- Figura 27 Média, erro e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle e expostos à poluição coletados a dois metros da superfície do solo...... 78

LISTA DE TABELAS

Tabela 1 -	Dimensões foliares (comprimento, largura e área foliar) de P. lambertii	
	entre os indivíduos controle e expostos ao petróleo	31
Tabela 2 –	Medidas da espessura dos tecidos foliares de P. lambertii entre os	
	indivíduos expostos ao petróleo e controle	40
Tabela 3 -	Comparação entre os dados da espessura dos tecidos foliares de P.	
	lambertii entre os indivíduos expostos ao petróleo e controle	41
Tabela 4	- Densidade estomática das folhas de P. lambertii dos indivíduos	
	expostos ao petróleo e indivíduos controle	47
Tabela 5 –	Média e desvio-padrão do comprimento dos traqueídes (μ m) entre as	
	camadas de crescimento dos indivíduos de P. lambertii expostos à	
	poluição e controle, em amostras coletadas na superfície do solo	
	(base)	64
Tabela 6 –	Média e desvio-padrão do comprimento dos traqueídes ($\mu m)$ entre as	
	camadas de crescimento dos indivíduos de P. lambertii expostos à	
	poluição e controle, em amostras coletadas a um metro da superfície	
	do solo	65
Tabela 7 –	Média e desvio-padrão do comprimento dos traqueídes (μ m) entre as	
	camadas de crescimento dos indivíduos de P. lambertii expostos à	
	poluição e controle, em amostras coletadas a dois metros da superfície	
Tabala 0	do solo	65
	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento	65
Tabela 8 –	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição	65 66
Tabela 9 –	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as	65 66
Tabela 8 –	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à	65 66
Tabela 8 –	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo	65 66
Tabela 9 –	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo (base)	65 66 72
Tabela 9 – Tabela 10 -	do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo (base)	65 66 72
Tabela 9 – Tabela 10 -	 do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo (base) Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo (base) 	65 66 72
Tabela 9 – Tabela 10 -	 do solo Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de <i>P. lambertii</i> e expostos à poluição Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo (base) Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de <i>P. lambertii</i> expostos à poluição e controle, em amostras coletadas na superfície do solo (base) 	65 66 72

RESUMO

O presente estudo teve como objetivo investigar, por meio de parâmetros morfológicos, anatômicos e fisiológicos, o impacto da poluição por petróleo em Podocarpus lambertii Klotzsch ex Endl. (Podocarpaceae), espécie popularmente conhecida por pinheiro-bravo. P. lambertii foi selecionado, porque além de ser uma espécie nativa, apresentou um comportamento diferenciado dentre as demais espécies diante do derramamento de petróleo. Folhas e amostras de madeira de nove indivíduos (seis expostos ao petróleo e três controles), foram coletadas. A metodologia usada para desenvolver o trabalho foi aquela tradicionalmente recomendada para estudos em anatomia vegetal. As lâminas das amostras de folhas e de madeira foram preparadas para análises quantitativa e qualitativa. Os dados quantitativos foram analisados por estatística descritiva e testes não paramétricos. As amostras das folhas foram empregadas para analisar a superfície foliar (comprimento, largura e área foliar), a espessura dos tecidos e densidade estomática. As amostras de madeira foram empregadas para analisar o comprimento e o diâmetro dos traqueídes, a espessura e grau de lignificação da parede celular dos traqueídes e composição polissacarídica do lenho. Os resultados demonstram que P. lambertti reagiu quando de sua exposição à poluição por petróleo, devido às alterações observadas tanto na estrutura das folhas, como do lenho. Nas folhas e no sentido radial do lenho, todas as características anatômicas analisadas, mostraram diferenças significativas quando utilizado o teste não paramétrico "Wilcoxon Matched Pairs Test". São elas: nas folhas, nos indivíduos expostos à poluição, a superfície foliar foi menor, a densidade estomática e espessura dos tecidos foliares foram maiores guando comparados ao controle. No lenho, nos indivíduos expostos ao petróleo, o comprimento, o diâmetro dos traqueídes, assim como a espessura e grau de lignificação da parede celular dos traqueídes foram menores quando comparados ao controle. Diferenças na composição polissacarídica foi demonstrada entre os dois locais de coleta. Essas tendências foram observadas, principalmente, nos traqueídes da última camada de crescimento, correspondente ao ano em que os indivíduos sofreram exposição ao petróleo.

ABSTRACT

The current research has had as an objective to investigate through morphological, anatomical and physiological parameters, the impact of the oil pollution in *Podocarpus lamberti* Klotzsch ex Endl. (Podocarpaceae), the species popularly known as "pinheiro-bravo". P. lamberti was chosen because besides being a native species, it presented a diferent behaviour among the other species concerning the spilling of oil. Leaves and samples of wood from nine individuals (six being exposed to oil and three controls) were collected. The method used to develop the work was the one traditionally recommended for plant anatomy studies. Slides of leaves and wood samples were prepared for qualitative and quantitative analyses, the quantitative data had been analysed by descriptive statistics and non-parametric tests. The leaf samples were used to analyse the foliar surface (length, width and foliar area), the tissues thickness and stomata density. The wood samples were used in the analyses of the length and diameter of the traqueids, the thickness and lignification degree of the cellular wall of the traqueids and the monosaccharide composition of the wood. The outcome shows that *P. lamberti* reacted when it was exposed to the oil pollution, due to the changes observed on the leaves structures as well on the wood. On the leaves and on the radial direction of the wood, all the anatomical characteristics analysed showed significant differences when the "Wilcoson Matched Pairs Test" was used. The differences are: on the leaves, concerning the individuals that were exposed to the pollution, the foliar surface was smaller, the stomata density and the thickness of the foliar tissued were larger when compared to the control. On the wood, concerning the individuals exposed to the oil, the length, the diameter of the traqueids, as well as the thickness and degree of lignification of the cellular wall were smaller when compared to the control. Differences in the monosaccharide composition were showed between the two gathering sites. These tendencies were mainly observed on the tragueids of the last layer of growth, corresponding to the year in which the individuals were exposed to the oil.

1 INTRODUÇÃO

Em relação às pesquisas em anatomia ecológica, vários são os estudos realizados que visam entender a relação existente entre a estrutura anatômica e os diversos fatores ambientais. Esses estudos podem ser divididos, basicamente, de acordo com duas linhas de abordagem, uma que analisa as floras de uma ou mais regiões, e atualmente, é cada vez mais crescente, uma outra linha que analisa os grupos taxonômicos próximos que estão expostos às diversas condições ambientais.

As abordagens taxonômicas visam analisar alguns, ou todos os componentes da flora de uma formação vegetal de determinada localidade, na tentativa de observar a freqüência em que as características anatômicas ocorrem e estabelecer tendências evolutivas que sejam comuns às diferentes espécies, isto é, encontrar características anatômicas comuns às diversas espécies das floras, na tentativa de se fazer uma associação aos fatores ambientais dos locais de procedência. Por exemplo, estabelecer tendências gerais da organização estrutural dos diferentes órgãos das plantas que habitam diferentes ambientes, altitudes, latitudes, climas, tipos de formação florestal, entre outros. Posteriormente, essas freqüências podem ser comparadas com àquelas encontradas nas floras de outras formações.

Já na abordagem sistemática, os trabalhos voltam-se para os estudos das variações das estruturas anatômicas em vegetais pertencentes a grupos taxonômicos próximos, sendo os de maior freqüência àqueles no nível de gênero. Nestes trabalhos, os dados obtidos são analisados sob uma perspectiva filogenética, levando-se em conta a relação entre a ecologia e a evolução, uma vez que é impossível determinar, até onde diferenças anatômicas encontradas dependem da influência de fatores ambientais ou da distância evolutiva das espécies.

Diversos outros estudos têm sido realizados sobre anatomia ecológica, mas que não se enquadram nas duas linhas mencionadas. Dentre eles, podem ser citados: o uso da estatística em anatomia ecológica e caráter adaptativo dos elementos de vaso e traqueídes; e as influências da organização do xilema secundário na dinâmica e fitossociologia de comunidades florestais, segundo o gradiente de umidade do solo. E uma linha de abordagem que atrai cada vez mais pesquisadores e que está relacionada com a análise das influências da poluição atmosférica na estrutura das plantas. No Brasil, a maioria dos trabalhos apresenta caráter descritivo, não informa sobre a padronização de coleta de amostras, utilizando pequena quantidade de amostras de cada procedência, o que limita bastante as conclusões a serem obtidas. Outros, porém, analisam vários órgãos de uma mesma planta, mas muitas vezes a abordagem estatística se restringe apenas a um desses órgãos, enquanto os outros são tratados apenas qualitativamente.

Recentemente, trabalhos também pertencentes à anatomia ecológica, vêm sendo realizados sobre espécies florestais que crescem em diferentes espaçamentos em plantios de reflorestamento. Na maioria dos casos, os resultados são excelentes, devido à facilidade de coleta e a disponibilidade de um grande número de amostras em indivíduos que crescem praticamente sob as mesmas condições ambientais.

Os diversos estudos anatômicos ecológicos brasileiros são incluídos na categoria da abordagem taxonômica. Ao considerar a linha da abordagem florística, o que se observa é que um menor número de trabalhos têm sido realizados.

O conhecimento acumulado sobre as influências de fatores ambientais na estrutura das plantas é considerável, porém para uma melhor compreensão dessas correlações, torna-se importante que a estrutura das plantas seja analisada como um todo, especialmente no que se refere à estrutura das folhas. Raros são os estudos que associam a anatomia ecológica do caule e/ou raiz com as características morfológicas das folhas e, quando isso acontece, é apenas de forma qualitativa, não permitindo verificar se existem correlações matemáticas entre as estruturas dos diferentes órgãos.

Em 16 de julho de 2000 na refinaria Presidente Getúlio Vargas (REPAR), unidade de Petróleo Brasileiro S. A. (PETROBRAS), localizada em Araucária-PR, ocorreu um incidente onde foram derramados quatro milhões de litros de petróleo, afetando diretamente a bacia hidrográfica do rio Barigüi, principal afluente do terço superior do rio Iguaçu, um dos mais importantes cursos hídricos do Sul do Brasil.

Os impactos negativos ao componente biótico foram mais expressivos junto ao arroio Saldanha, localizado inteiramente na área contígua à REPAR, através do qual o óleo foi inicialmente drenado, desde uma de suas nascentes até a sua foz, na margem direita do rio Barigüi, sendo, parte do petróleo, carreado por este até o rio Iguaçu. Foram intensamente contaminados os solos, as águas e as comunidades bióticas dependentes das encostas próximas à conexão dos ductos com o complexo da refinaria ("scraper"), onde ocorreu o vazamento, além dos ambientes ripários adjacentes ao arroio e da extensa várzea formada pelo aplainamento deste, antes de sua influência no rio Barigüi.

Na área de encosta, próxima aos ductos, onde o relevo é ondulado e os solos mais ressecados, houve a infiltração de petróleo em profundidade e o escoamento até a planície, onde o relevo é plano. A vegetação desta região é constituída por estágios sucessionais secundários da Floresta Ombrófila Mista, e parte dela que foi atingida diretamente pelo vazamento teve seus estratos arbóreo, arbustivo e herbáceo quase que integralmente mortos, como conseqüência, possivelmente, do efeito físico do petróleo, envolvendo o sistema de raízes e impedindo a absorção de água e sais minerais.

Surpreendentemente, *Podocarpus lambertii*, o pinheiro-bravo, uma espécie importante desta formação, sobreviveu, enquanto que a maioria das outras espécies não suportou a exposição ao petróleo e morreu, grupo esse constituído por espécies, principalmente, de Magnoliophyta.

Na tentativa de entender o comportamento diferenciado de *P. lambertii* diante do derramamento de petróleo, este estudo foi desenvolvido com o objetivo geral de demonstrar os efeitos da poluição por petróleo na estrutura da folha e do lenho de *Podocarpus lambertii*. Para tanto foram estabelecidos os seguintes objetivos específicos:

- analisar, de forma comparada, a morfologia foliar (quantitativa e qualitativa);
- verificar a ocorrência de modificações na estrutura do lenho (quantitativa e qualitativa);
- determinar a ocorrência de alterações na composição monossacarídica da parede celular;
- verificar se as possíveis diferenças existentes entre os grupos estudados estão associadas a fatores ambientais ou não;
- correlacionar a anatomia do lenho com a morfologia das folhas.

2 REVISÃO DA LITERATURA

2.1 ANATOMIA ECOLÓGICA

CUTTER (1978) define anatomia ecológica como a relação entre a estrutura da planta e o ambiente. As influências do ambiente podem resultar em mudanças sobre o comportamento da estrutura anatômica e morfológica das plantas. Essa afirmativa representa a definição de anatomia ecológica, como uma categoria da anatomia vegetal que apresenta como objetivo principal o estudo dos caracteres morfo-anatômicos visando compreender a influência dos fatores do meio na expressão das características fenotípicas.

Os fatores ambientais, especialmente os climáticos, exercem grande influência sobre a estrutura anatômica e morfológica das plantas, sendo que os mesmos podem atuar em menor prazo apenas sobre a variação fenotípica, ou podem atuar em maior prazo durante o processo seletivo de evolução, com o favorecimento de algumas características anatômicas funcionalmente mais bem adaptadas, fixando-as geneticamente (BAAS, 1973).

O grande desafio dos estudos de anatomia ecológica é conseguir estabelecer com segurança quando a alteração anatômica reflete as características do ambiente, ou quando é controlada geneticamente, isto é, existe a dificuldade de se avaliar quais são os caracteres verdadeiramente adaptativos e quais são puramente hereditários (METCALFE, 1983). Ainda dentro deste contexto, CARLQUIST (1975) considera que a variação fenotípica encontrada na anatomia do lenho entre populações da mesma espécie, entre espécies em um mesmo gênero ou família, é uma adaptação ecológica que resultará na evolução.

METCALFE & CHALK (1950) afirmam que a sazonalidade é um importante fator ecológico, pois influencia diretamente sobre a estrutura da madeira, e que quando associada aos fatores genéticos da planta, determina à formação de anéis de crescimento. Esses mesmos autores indicam também que o solo influi sobre a estrutura anatômica, no entanto, o consideram como um fator de difícil determinação.

Dentre os diversos fatores ambientais, a latitude e a disponibilidade hídrica foram bastante analisadas e discutidas por autores como BASS (1973), GRAAF &

BAAS (1974), BAAS et al. (1983), GOMES & MUÑIZ (1986) e BAAS & SCHWERINGRUBER (1987).

GRAFF & BAAS (1974) analisando o efeito da latitude e da altitude sobre a estrutura do lenho, verificaram fracas tendências para agrupamento dos vasos em espécies de regiões temperadas e em montanhas, não encontraram tendências nas placas de perfuração, constataram um espessamento nas paredes celulares dos vasos em espécies de regiões temperadas e a presença de camadas de crescimento bem demarcadas nas espécies de regiões temperadas.

No estudo realizado por BARAJAS-MORALES (1985) sobre a influência da umidade na estrutura do lenho de árvores de florestas tropicais no México, as tendências encontradas foram a presença de vasos múltiplos e abundância de cristais em ambiente mais seco.

LINDORF (1994) em um estudo sobre anatomia ecológica realizado com o objetivo de verificar o efeito da umidade em Florestas Tropicais secas na Venezuela observou como características mais marcantes nas espécies coletadas nas regiões mais secas, o maior agrupamento dos vasos e presença de pontoações guarnecidas.

A anatomia do lenho vem se consolidando como um importante instrumento para se entender a relação entre a estrutura anatômica, e diversos fatores ambientais, assim como estabelecer tendências gerais para a sua variação. De acordo com CECCANTINI (1996), os trabalhos realizados nessa área podem ser divididos em duas linhas de abordagem: uma que analisa as floras de uma ou mais áreas, onde é observada a freqüência em que as características anatômicas ocorrem, estabelecendo desta maneira, as tendências evolutivas comuns às diversas espécies; e outra, que estuda a variação da estrutura anatômica em plantas pertencentes a grupos taxonômicos próximos, principalmente ao nível genérico.

Um trabalho pioneiro considerando a abordagem florística no Brasil é o de LUCHI (1990), onde se realizou um amplo estudo sobre a anatomia do lenho de espécies de floresta ciliar que ocorrem na região de campos rupestres, na Serra do Cipó, em Minas Gerais. Em estudo mais recente, ALVES & ANGYALOSSY-ALFONSO (2000) apresentam um trabalho muito extenso, onde as autoras traçaram tendências ecológicas no que se refere ao tipo de clima, temperatura, umidade, altitude e tipo de vegetação, analisando 491 espécies, incluídas em 133 gêneros e em 22 famílias, pertencentes a 132 localidades e inseridas nas cinco regiões

5

geográficas do território brasileiro. As relações ecológicas mais claras ocorridas referem-se principalmente à latitude.

Até o presente momento, é possível observar que já existe considerável quantidade de conhecimentos acumulados referentes às adaptações do sistema condutor aos fatores ambientais, no entanto, CARLQUIST (1977) destaca que para uma melhor compreensão dessas correlações, é muito importante, que se analise a estrutura das plantas como um todo, especialmente no que diz respeito ao aparato foliar.

Nos últimos anos, o estudo da anatomia da madeira começou a ser direcionado para o estudo das células individualmente, buscando uma melhor avaliação das propriedades da madeira. BAAS et al. (1983), METCALFE & CHALCK (1988) e CARLQUIST (1988) recomendam que a anatomia da madeira não seja usada sozinha na determinação da influência do ambiente sobre uma planta, mesmo que esteja combinada com outros elementos relacionados à absorção, condução e transpiração de água, como as raízes e folhas, ou com associações micorrízicas.

De acordo ainda com ESAU (1985), CUTTER (1986-1987), MAUSETH (1988) e FAHN (1989), dentre os órgãos vegetativos, a folha é a que possui o maior número de variações, tanto morfológicas como anatômicas e reflete mais facilmente as interferências ambientais, principalmente a intensidade luminosa, fotoperiodismo, temperatura, água e aos fatores pedológicos.

Estudos pioneiros de ecologia, WARMING (1892) já questionava a influência das condições ambientais sobre a morfologia foliar, principalmente no que diz respeito ao tamanho das folhas e a sua rigidez. Em relação à anatomia ecológica da folha, a rigidez foliar, mais propriamente chamada de esclerofilia, é um aspecto muito controverso, e ainda pouco estudado. TURNER (1994) em ampla revisão sobre o assunto relata que a esclerofilia depende de fatores nutricionais (N, P e Ca) e da luminosidade, mas não menciona qualquer relação com o sistema condutor.

Características foliares tais como espessura da lâmina foliar, da epiderme, da cutícula e da camada subepidérmica, além da área específica foliar, da quantidade de tecido esclerenquimático, do número de estratos compondo o parênquima clorofiliano paliçádico e de teores de N e P (os quais podem ser utilizados para avaliar o grau de esclerofilia da vegetação), se alteram ao longo de um processo sucessional, conforme mencionado por BOEGER (2000).

RURY (1985) em estudo realizado sobre a anatomia do lenho de 67 espécies de Erythroxylaceae, tentou associar a anatomia ecológica do lenho com as características morfológicas das folhas, porém em sua análise, a rigidez das folhas foi comparada apenas qualitativamente, não permitindo verificar se existiam correlações matemáticas com as características do lenho. O mesmo pode ser mencionado sobre os trabalhos de PEREIRA (1990) e de MINA-RODRIGUES (1986). No primeiro, em análise realizada sobre a anatomia do lenho, da casca e das folhas de duas variedades de *Sclerolobium paniculatum*, ocorrentes em floresta ciliar e cerrado, o autor, na sua abordagem estatística, restringiu-se apenas aos resultados de anatomia foliar, sendo os dados referentes ao lenho e casca tratados apenas qualitativamente; e no segundo, sobre o estudo da anatomia do lenho e das folhas de *Pera glabrata* Baill. tanto, em floresta ciliar, como em cerrado, também não foram relacionadas as duas variáveis, pois, não se conseguiu demonstrar diferenças consideráveis no lenho.

2.2 PLANTAS E POLUIÇÃO

Os sintomas visíveis de injúria nas plantas expostas à poluição aguda freqüentemente variam de acordo com o poluente específico (MACKERSIE & LESHEM, 1994). As injúrias visíveis são caracterizadas de duas formas: a injúria aguda que é severa e causada por uma absorção alta de poluente, suficiente para causar a necrose dos tecidos; estas respostas aparecem em um tempo pequeno de exposição a elevadas concentrações de poluente. E a injúria crônica onde ocorre a perda da produtividade associada com injúrias menos severas, tal como a clorose ou abscisão prematura das folhas, tais respostas aparecem durante um longo tempo de exposição sob baixas concentrações de poluente. As injúrias não visíveis ocorrem como resposta a alterações bioquímicas e fisiológicas apresentando perda da produtividade na ausência de sintomas visíveis (KOZLOWSKI, 1971; KOZLOWSKI & PALLARDY, 1997).

Os critérios para um reconhecimento inicial de danos causados por poluição incipiente são a acumulação de substâncias tóxicas ou de seus derivados nos tecidos vegetais, a redução da capacidade de tamponamento, erosão da cera epicuticular das acículas devido à emissão de ácidos, a diminuição ou aumento da atividade de certas enzimas, alterações quantitativas e qualitativas entre metabólitos,

aparecimento de hormônios vegetais relacionados ao estresse (em especial o etileno), aumento ou diminuição da respiração, distúrbios na fotossíntese e alterações na abertura e fechamento estomático e na diminuição dos assimilados pelo sistema radicial (LARCHER, 2000).

De acordo como LEVITT (1980), um organismo pode exibir três tipos de respostas às condições a que foi submetido: resistente, quando o desenvolvimento não chega a ser afetado; tolerante, quando o desenvolvimento é alterado, porém consegue sobreviver às condições impostas pelo estresse; e sensível, quando esse não consegue sobreviver a essas condições. KOZLOWSKI & CONSTANTINIDOU (1986) afirmam que os mecanismos de resistência envolvem diferentes capacidades em evitar o estado de tensão, anulando o efeito dos poluentes ou metabolizando-os em substâncias menos tóxicas, diluindo-os pela rápida redistribuição dentro do organismo ou devolvendo-os ao ambiente.

A resposta das plantas aos poluentes varia de acordo com as espécies, com o patrimônio genético presente, com a dosagem de poluente, com os tipos de combinações dos poluentes, com os parâmetros de respostas, com o estágio de desenvolvimento da planta, com os fatores ambientais, com a ocorrência de doenças e ataque de insetos ou agentes patogênicos (TRESHOW, 1985; MARTOS & MAIA, 1997). De maneira geral, as Pinophyta são mais sensíveis do que as Magnoliophyta, podendo o grau de resistência variar bastante entre os dois grupos (KOZLOWSKI & CONSTANTINIDOU, 1986). Para avaliação do impacto causado na vegetação o órgão mais estudado tem sido a folha, abordando-se principalmente, abscisão, manchas, clorose, necrose e herbivoria (MAZZONI-VIVEIROS, 1996; DOMINGOS et al., 1998; FURLAN et al., 1999); desenvolvimento e alteração nas taxas fotossintética e respiratória (MORAES, 1999); deposição e acúmulo de bioelementos e metais na superfície foliar, assim como o tipo de cera epicuticular e alterações causadas na topografia da mesma (MAZZONI-VIVEIROS, 1996); aspectos estruturais, ultraestruturais e histoquímicos como reflexo das alterações metabólicas (SCHMITT & RUTZE, 1990; MATYSSEK et al., 1991; AZEVEDO, 1995). Além das folhas tem-se estudado rizomas, frutos, estrutura xilemática e floemática, desenvolvimento dos ramos, caule, raiz e casca. Estudos relacionados, especialmente com a estrutura xilemática, foram incrementados após congresso realizado em 1986 (BAAS & BAUCH, 1986). Bauch apud BAAS & BAUCH (1986) cita que já existiam estudos na década de setenta afirmando haver redução da

densidade do lenho tardio em plantas jovens tratadas com fumigação de SO₂. Os sintomas do lenho podem ser mais ou menos evidentes dependendo do solo considerado, uma vez que tanto a acidez como, a redução de nutrientes, são tão importantes quanto à poluição aérea na degradação de florestas (FINK, 1989).

As alterações ultraestruturais, citológicas e/ou estruturais, provocadas por poluentes, têm sido preciosas na avaliação do impacto, principalmente porque podem detectar degradação da área quando injúrias visíveis estão, ainda, ausentes. No Brasil esses estudos têm abordado tanto o efeito da poluição em plantas cultivadas (ALVES, 1988; ALVES & OLIVA, 1993; BUSTAMANTE et al., 1993; AZEVEDO, 1995), como em áreas urbanas (FLORES, 1987; INOUE et al., 1990, 1992; BATALHA et al., 1999; BÜNDCHEN, 2000; BUJOKAS, 2001) e áreas de vegetação nativa, como a Floresta Atlântica (ALVES, 1995; MAZZONI-VIVEIROS, 1996).

Algumas espécies vegetais têm-se mostrado eficientes na absorção de poluentes, dentre elas podem ser citadas àquelas pertencentes ao grupo das coníferas que têm mostrado maior eficiência como limpadoras de partículas de chumbo do que plantas decíduas, pois absorvem os poluentes pelas folhas e depois deixam-nas cair, repassando as partículas sólidas para o solo, causando outros danos fisiológicos, principalmente no sistema radicial. No entanto, as coníferas mantêm suas folhas durante todo o inverno, continuando a transpiração e com isso acumulando as substâncias tóxicas atmosféricas. Dessa maneira, pode-se observar dois efeitos: primeiro, a quantidade de partículas de chumbo presente nas coníferas é em geral, superior ao das plantas decíduas, fazendo com que esse grupo de plantas seja mais eficiente na melhoria da qualidade do ar nas cidades e segundo, como resultado do primeiro efeito, quantidades superiores de toxinas nas coníferas podem resultar em danos fisiológicos prolongados e mais severos. Cabe ressaltar que o valor das coníferas na absorção de poluentes, em relação às árvores decíduas, resulta também, de outros fatores, principalmente a sua rápida adaptação em se estabelecer em áreas elevadas e sua particular eficiência na absorção de partículas (GODZICK et al., 1979).

9

2.3 ESTUDOS DE POLISSACARÍDEOS DE PAREDES CELULARES

Os estudos envolvendo a análise dos polissacarídeos presentes nas paredes celulares são aqueles que têm, como objetivo principal, a abordagem taxonômica, uma vez que, esses componentes químicos podem ser considerados como indicadores taxonômicos.

LUFRANO & CAFIINI (1981) compararam a composição da mucilagem das folhas de quatro diferentes espécies de Chorisia por análise fitoquímica, sugerindo uma classificação quimiotaxionômica para os gêneros e espécies. REID & EDWARDS (1995) sugeriram que baixos conteúdos de galactose galactomananas estão presentes nas sementes de espécies pertencentes à Caesalpinaceae primitivas e médio a altos conteúdos estão presentes em Fabaceae mais recentes. A estrutura fina de galactomananas e arabinanas das sementes de Schizolobium parahybae e S. amazonicum tem sido também usada como um parâmetro químico (PETKOWICZ et al., 1998), os resultados só confirmam o que RIZZINI (1986) sugere, que o que se considera como duas espécies, na verdade seria uma só. CARPITA & GIBEAUT (1993) propõem um modelo molecular para paredes celulares primárias, envolvendo seus muitos polissacarídeos e proteínas constituintes, e consideram àqueles provenientes de espécies de dicotiledôneas como paredes celulares Tipo I e os de monocotiledôneas do grupo das gramíneas como Tipo II. CARPITA, McCANN & GRIFFING (1996) mostraram que os componentes das paredes celulares primárias compreendem caracteres taxonômicos nas espécies de monocotiledôneas, ordenando diferentes grupos. As hemiceluloses de paredes celulares secundárias também têm este potencial, uma vez que polissacarídeos estruturalmente distintos são componentes de paredes celulares de gimnopermas e angiospermas. Tecidos lenhosos de coníferas contém principalmente galactoglucomananas com um baixo conteúdo de arabinoglucoronoxilana, enquanto às angiospermas contém alto conteúdo de glucoroxilanas (FENGEL & WEGENER, 1989; KUBACKOVA, KARACSONYI & BILISICS, 1992; SJÖNTRÖM, 1993). Em uma publicação clássica, TIMELL (1964) relata que em gimnospermas, a proporção relativa de arabino-(4-O-metilglucorono)-xilana varia consideravelmente, mesmo em espécies pertencentes ao mesmo gênero, consistindo aproximadamente de um terço, a um quarto do total de hemiceluloses no lenho, enquanto a maior parte é constituída por O-acetil-galactoglucomananas.

2.4 A ESPÉCIE Podocarpus lambertii Klotzsch ex Endl.

P. lambertii pertence à família Podocarpaceae, família essa que apresenta 17 gêneros e mais de 125 espécies, sendo a maioria em Floresta Montana Tropical-Subtropical, dominante no Hemisfério Sul (KRAMER & GREEN, 1990).

No Brasil, a família Podocarpaceae é uma das marcantes em sub-bosque, com três espécies representantes no país: *Podocarpus brasiliensis*, *Podocarpus sellowii* e *Podocarpus lambertii* (PAULA & ALVES, 1997).

2.4.1 Características da planta

Podocarpus lambertii, conhecida popularmente pelos nomes, pinheirinho, pinheiro-bravo ou pinho-bravo, pertence à família Podocarpaceae, e juntamente com o *Podocarpus selowii* e a *Araucaria angustifolia*, o pinheiro do Paraná, uma Araucariaceae, formam o grupo de coníferas característico do Sul do Brasil.

É uma árvore dióica da Floresta Ombrófila Mista (F.O.M.) de tamanho variável (de 8-14 m de altura), o tronco pode apresentar de 30-60 cm de diâmetro, às vezes alcança 100 cm de diâmetro, ou um arbusto de 1-4 m de altura (zona campestre). As raízes são finas e cobertas por micorrizas esféricas, com ca. 1 mm de diâmetro. A casca é parda, descamando em lâminas delgadas, que ficam mais ou menos soltas na árvore, caindo aos poucos, e com as pontas dobradas para cima. As folhas são coriáceas, lineares, agudas, nítidas, marginadas, com 3-5 cm de comprimento e 3-5 mm de largura; flor feminina é solitária e axilar; o pedúnculo com 4-15 mm de comprimento; o receptáculo é espessado, carnoso com 6-8 mm de comprimento e com 1-2 óvulos no ápice e duas brácteas abaixo destes; óvulo esférico, com ca. 1,5-2 mm de diâmetro, coberto de induto ceroso azulado (como o receptáculo); na maioria dos casos, sempre permanece um só óvulo, caindo o outro quando existe. Cone masculino cilíndrico, com 8-12 mm de comprimento, em número de 3-6, reunidos no ápice do pedúnculo axilar, o qual mede ca. 10 mm. Semente imatura globosa, ca. 3-4 mm de diâmetro, quando madura elipsóide, medindo até 10/7mm, contendo endosperma farináceo (RIZZINI, 1995 e LORENZI, 1999).

Segundo ESAU (1990), as folhas de *P. lambertii*, do ponto de vista anatômico, apresentam uma única nervura, a epiderme possui uma parede espessa, provida de cutícula grossa e estômatos em depressões profundas, com células parcialmente

sobrepostas. O mesofilo é formado por células parenquimáticas com invaginações que se estendem em direção ao lume celular. Uma característica anatômica marcante desta espécie é a presença de ductos resiníferos, localizados entre a nervura e a epiderme da face abaxial.

De acordo com BACKES (1973) e MAUSETH (1988), as espécies do gênero *Podocarpus* possuem o mesofilo dividido em parênquima paliçádico e lacunoso, diferente do *Pinus* que consiste apenas de duas ou três camadas de células. Na posição mediana do mesofilo, é observada uma nervura de onde partem traqueídes de transfusão e traqueídes acessórios que o percorrem em toda a sua extensão até as proximidades da região marginal da lâmina foliar (BACKES, 1973). Como todas as coníferas, o *Podocarpus* possui canais de resina em suas folhas, estes são circundados por células parenquimáticas de parede delgada, e em algumas espécies por uma bainha fibrosa com parede lignificada (MAUSETH, 1988).

P. lambertii caracteriza-se por ocorrer sempre formando grandes populações, quando comparado com o *P. selowii*, que aparece em pontos esparsos, e quase sempre representado por indivíduos isolados. Desta maneira, esta espécie é de grande interesse na recuperação de áreas degradadas, diminuindo o impacto ambiental causado por fatores antropogênicos (INOUE, 1972).

Sob o ponto de vista da distribuição geográfica, *P. lambertii* ocorre desde Minas Gerais e Rio de janeiro até o Rio Grande do Sul, sobretudo nas Serras do Mar e da Mantiqueira (INOUE, 1972; RIZZINI, 1995 e LORENZI, 1999). Segundo Inoue et al. (1984) conforme citado por GALVÃO (1986), é uma espécie dispersa no primeiro e segundo planalto paranaense, limitada à leste pela Serra do Mar e a oeste pela Serra da Esperança, no município de Guarapuava.

Do ponto de vista ecológico, LORENZI (1999) cita que esta é uma espécie perenifólia, heliófita, pioneira, característica da floresta de altitude. REITZ, KLEIN & REIS (1983) citam que se trata de uma espécie umbrófila e heliófila, isto é, tanto ocorre em áreas sombrias quanto expostas ao sol. Apresenta dispersão descontínua e irregular, ocorrendo em determinados pontos em agrupamentos quase puros, e faltando completamente em outros. É encontrada principalmente em associações secundárias, sendo menos freqüente no interior da floresta primária densa (LORENZI, 1999). Produz anualmente moderada quantidade de sementes viáveis, que de acordo com KUNIYOSHI (1983), são disseminadas por pássaros, pois se encontram sobre um pedúnculo carnoso. Floresce durante os meses de setembro a

REVISÃO DA LITERATURA

dezembro. Os frutos amadurecem nos meses de fevereiro a maio. De acordo com DUARTE (1973), *P. lambertii* cresce em solos de arenito e quartzito, com índice de umidade elevado e acúmulo de matéria orgânica não mineralizada, ou onde o fenômeno se realiza com extrema lentidão. Suas raízes assim como de outras espécies do gênero apresentam micorrizas sob a forma de nódulos enfileirados e dispostos lateralmente nas últimas ramificações (Hueck, 1972 apud GALVÃO, 1986). Isto explica o fato de esta planta ser preferencialmente cultivada em regiões elevadas e de temperatura amena ou mesmo baixa. Segundo REITZ, KLEIN & REIS (1983), o pinheiro-bravo desenvolve-se tanto em solos férteis quanto solos pobres, rasos e rochosos.

P. lambertii como outras coníferas, é indicado na absorção de poluentes, pois quando comparado a outras árvores do grupo das Magnoliophyta, mostra uma rápida adaptação para se estabelecer nas áreas expostas, sendo também, eficiente na absorção de partículas (GODZICK et al., 1979; CECY, 2001).

CECY (2001) em estudo realizado sobre os efeitos da poluição aérea e da chuva ácida em folhas de *Podocarpus lambertii*, concluiu que essa espécie demonstrou ser resistente quando sujeita a ambientes com alto teor de poluentes e que pode ser usada na arborização ao redor de indústrias siderúrgicas e parques urbanos para bloquear a passagem de poluição.

2.4.2 Características da madeira

A madeira, segundo LORENZI (1999), é leve (densidade 0,45 g/cm³), macia, textura fina, grã direita, de baixa resistência ao apodrecimento e ao ataque de cupins de madeira seca; e segundo RIZZINI (1995), é branco-amarelada com manchas escuras; a superfície é lisa, pouco lustrosa. Leve e macia, fácil de deteriorar-se. Em material procedente da floresta, Melo (1950) apud RIZZINI (1995) observou traqueídes com comprimentos entre 1,2-1,8 mm. Em árvore cultivada no Rio de Janeiro, Almeida & Araújo (1950) verificaram que os traqueídes medem entre 1,3-2,8 mm, sendo os mais freqüentes entre 1,8-2,5 mm, com predominância de 2,5 mm. Empregada na carpintaria comum, na fabricação de compensados, palitos de fósforo, caixotaria e lápis. A árvore é bem menor do que *A. angustifolia*, razões pelas quais não a pode substituir.

De acordo Inoue et al. (1984) apud GALVÃO (1986), a madeira do pinhobravo é de fácil laminação e as lâminas produzidas são de boa aparência. O compensado obtido é de baixa resistência mecânica, dessa forma é indicada para a produção de compensados mistos e miolo.

2.4.3 Composição monossacarídica da parede celular

Trabalhos relacionados à composição monossacarídica de paredes celulares estão relacionados principalmente com a obtenção de caracteres que possam ser utilizados como uma ferramenta diferencial em estudos taxonômicos, uma vez que polissacarídeos estruturalmente distintos são componentes de paredes celulares de Pinophyta e Magnoliophyta.

A composição monossacarídica de paredes celulares de coníferas deve apresentar altos teores de manose e glucose, pois as hemiceluloses desse grupo de plantas, de maneira genérica são constituídas por um polissacarídeo principal, *O*acetil-galactoglucomanana (20-25%), onde grupos de *O*-acetil e galactose substituem unidades de glucose e manose da cadeia principal (BOCHICCHIO & REICHER, 2000).

BOCHICCHIO (1999) relata que as hemiceluloses do xilema secundário de *Podocarpus lambertti* são constituídas por galactoglucomananas, com cadeia principal formada por unidades de D-manopiranose e D-glucopiranose ligadas glicosidicamente $\beta(1\rightarrow 4)$ e substituições simples de D-galactopiranose (1 \rightarrow 6), além de arabino-4-*O*-metilglucuronoxilana, com cadeia principal de unidade D-xilopiranose ligadas glicosidicamente $\beta(1\rightarrow 4)$ e ramificações simples de L-arabinofuranose substituída em *O*-3 e ácido 4-*O*-metilglucurônico e, *O*-2.

Em um outro estudo realizado em 2000 por BOCHICCHIO & REICHER, as hemiceluloses presentes nas paredes celulares das células do lenho de *P. lambertii* e *A. angustifolia* foram caracterizadas estruturalmente.

De acordo ainda com os mesmos autores, as hemiceluloses de *Podocarpus lambertii* e *Araucaria angustifolia* possuem galactoglucomanas:arabinoxilanas na proporção de 1:1 e 2,3:1 respectivamente. Esta proporção encontrada para a *A. angustifolia* é comum para outras gimnospermas. Entretanto, o conteúdo de arabinoxilanas em *P. lambertii* é maior que o esperado, visto que essa conífera contém principalmente galactoglucomanas e uma baixa proporção de arabinoglucoronoxilanas ácidas. Esta discrepância, associada às características morfológicas peculiares ao gênero *Podocarpus* segundo os autores, mostram ser significante no processo evolucionário.

3 MATERIAL E MÉTODOS

3.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO

3.1.1 Localização geográfica (fig. 1)

A refinaria Presidente Getúlio Vargas localiza-se em Araucária, município da Região Metropolitana de Curitiba, aproximadamente 20 km da capital do Estado do Paraná. Situa-se na porção centro-sul do primeiro planalto paranaense, próxima às coordenadas 25°34'02,5" S e 49°20'53,5" W, e em uma altitude de 920 m s.n.m.

A área de abrangência do vazamento, no entanto, se estende desde a refinaria até a localidade de Porto Amazonas, ao longo do curso de rio Iguaçu, cerca de 50 km à jusante da fonte do derrame, no limite entre o primeiro e segundo planaltos paranaenses.

Figura 1 – Localização da Refinaria Presidente Getúlio Vargas no Município de Araucária – PR.

3.1.2 Clima

Segundo a classificação de Koeppen, o clima regional é do tipo Cfb, ou seja, temperado, com verões frescos, as geadas são freqüentes, sem estação seca definida, com médias anuais de temperatura do mês mais quente inferior a 22°C e do mês mais frio inferior a 18°C.

Com base nos registros dos últimos 30 anos, obtidos da estação meteorológica de Piraquara, cuja localização retrata a região estudada, a temperatura média anual é de 16,5°C, a temperatura média do mês mais frio é de 12,7°C (julho) e do mês mais quente 20,3°C (fevereiro), com temperaturas mínimas podendo atingir valores inferiores a – 5°C e com máximas superiores a 33°C. De acordo com MAACK (1981), a formação de geadas é bastante comum na região, embora o número de ocorrências possa variar muito de um ano para o outro, indo desde duas até valores superiores a 20.

A precipitação média anual é de 1400 mm, no entanto, observam-se variações importantes, com valores anuais tão baixos quanto 936 mm, ocorridos no ano de 1985, e tão altos quanto 2009 mm, registrados em 1983. Historicamente, os meses de maior precipitação coincidem com o verão, e os valores são, em média, pelo menos duas vezes maiores que os de meses mais secos, os quais ocorrem no inverno, tendo julho ou agosto os de menor precipitação. Mas como a precipitação nesse período é, em média, superior a 70 mm, considera-se que as chuvas na região são bem distribuídas durante o ano, o que em parte determina uma umidade relativa do ar média em torno de 85%.

Os ventos predominantes são dos quadrantes setentrionais, com 52,7%, registrando-se os ventos portadores de chuvas de NW com 20,9% e de NE com 18,8%. Os ventos de bom tempo originam-se nos quadrantes meridionais SW, S e SE, sendo sua freqüência de apenas 30,6%, assinalando-se 15,5% de calmarias (MAACK, 1981).

3.1.3 Geologia

A base geológica da área de coleta é constituída por migmatitos pertencentes ao complexo cristalino de idade Pré-cambriana, onde estão entalhadas as áreas de encostas da região sobre as quais assentaram-se os sedimentos da formação Guabirotuba, do Pleistoceno, constituídos principalmente por argilitos e arcósios. As planícies aluvionares são mais recentes (holoceno), comandadas pela influência do rio Barigüi, apresentando, de um modo geral, sedimentos argilo-síltico-arenosos (SALAMUNI, 1998).

3.1.4 Solos e geomorfologia

Sobre a formação Guabirotuba, encontram-se distribuídos de uma maneira ampla em toda a região os Latossolos Vermelhos e Vermelhos-Amarelos, os Argissolos Vermelhos e Vermelhos-Amarelos, e os Cambissolos, todos com características não-hidromórficas. Nas planícies encontram-se os Neossolos Flúvicos, os Organossolos Háplicos e os Gleissolos Melânicos e Háplicos, todos com elevado grau de hidromorfia (EMBRAPA, 1999).

O relevo das encostas é dominantemente suave ondulado a ondulado e os da planície suave ondulado a plano (BIGARELLA et al., 1961).

Quanto à paisagem regional, MAACK (1981) destaca que o primeiro planalto caracteriza-se por ser uma extensa zona de eversão entre a Serra do Mar e a Escarpa Devoniana (limites, respectivamente, leste e oeste do primeiro planalto), apresentando relevo mais entalhado a norte (vale do rio Ribeira) e suave ondulado ao sul, onde as altitudes médias oscilam entre 850 e 950 m s.n.m.

3.1.5 Vegetação natural

A região de Curitiba e arredores era recoberta, originalmente, por uma vegetação de constituição fisionômica herbáceo-graminóide, denominada pelo IBGE (1992) de Estepe Gramíneo-Lenhosa, os conhecidos campos limpos com capões e com florestas ripárias (vegetação arbórea ao redor das nascentes e ao longo dos rios e córregos) constituídas de espécies típicas da Floresta Ombrófila Mista (floresta com araucária), formação característica dos planaltos sul-brasileiros.

Na área de estudo, nos locais de encostas, destacam-se dois tipos principais de vegetação natural remanescente: as formações secundárias da Floresta Ombrófila Mista, em vários estágios sucessionais, e os núcleos de campos limpos naturais, em diferentes graus de alterações antrópicas, estando, em alguns setores, muito descaracterizados.

Complementando este quadro, nas planícies junto ao arroio Saldanha e ao rio Barigüi, observa-se um complexo vegetacional diferenciado, adaptado às condições de saturação hídrica (várzeas hidromórficas), denominado de Formações Pioneiras com Influência Flúvio-lacustre (IBGE, 1992) que, conforme seu desenvolvimento, pode ter fisionomia exclusivamente herbácea (campos higrófilos) ou com elementos arbóreos (*Erythrina crista-galli, Sebastiania* spp.). Finalmente, em condições pedológicas específicas, ocorre a Floresta Ombrófila Mista Aluvial (floresta ripária), onde o substrato é bem melhor drenado, quando comparado ao das várzeas.

3.2 COLETA DE MATERIAL

A coleta do material foi efetuada no dia 17 de julho de 2001, exatamente um ano após a ocorrência do vazamento, na Refinaria Presidente Getúlio Vargas, Araucária – PR (fig. 2 e 3).

Figura 2 – Fotografia aérea com a localização da área de coleta na Refinaria Presidente Getúlio Vargas. Legenda: △ ponto de coleta. Escala: 1:15.000. Fonte: UFPR.

Figura 3 – Local de coleta, vegetação secundária de encosta (a) fragmento de floresta próximo à região onde iniciou o vazamento, área atingida pelo vazamento () e área onde não houve contato da vegetação com o petróleo e foram coletados indivíduos controle (); (b) *P. lambertii* destaca-se como uma das espécies mais importantes; (c) indivíduo da região atingida com rebrotas no caule após a queda das folhas; (d) indivíduos da região atingida, um deles com várias rebrotas no caule.

Foram selecionados nove indivíduos de *P. lambertii* com idade aproximada de 10 anos, medindo de 6-8 cm diâmetro e 5-7 m de altura. Os critérios para seleção foram o porte, a idade e a localização (em área atingida e não atingida pelo vazamento e respeitando-se a distância entre os indivíduos de pelo menos 50 m).

Destes indivíduos, foram coletadas amostras de folha e de madeira, separando-se seis indivíduos atingidos e três indivíduos não atingidos pelo vazamento, que no presente estudo são denominados, respectivamente, por "poluição" e controle".

Em ambos os ambientes, para a análise da morfologia foliar, foram coletadas 20 folhas de cada indivíduo, selecionando-se as folhas posicionadas a partir do 4º ramo e na região mediana dos ramos (no sentido ápice-base) e sob as mesmas condições luminosas.

O material para a análise das dimensões foliares foi prensado e depois processado. As amostras para estudo da estrutura anatômica da folha e determinação da densidade estomática foram selecionadas e acondicionadas em vidros contendo F.A.A. 70 para a fixação (JOHANSEN, 1940). Posteriormente, este material foi armazenado em uma solução de álcool etílico 70% (BERLYN & MIKSCHE, 1976).

A madeira (xilema secundário), foi coletada retirando-se amostras por meio de secções paralelas ao longo do caule na base e a um e dois metros acima da superfície do solo (conforme esquema da fig. 4) e sempre na mesma posição no tronco, ou seja, lado voltado para o sentido leste.

Figura 4 – Esquema de coleta das amostras de madeira e retirada das amostras de camadas de crescimento de *Podocarpus lambertii* na superfície do solo, a um metro e a dois metros de altura. Fonte: adaptado de URBINATI et al. (2003).

3.3 ANÁLISE MORFO-ANATÔMICA DAS FOLHAS

Das folhas coletadas, além da caracterização interna das mesmas, foram levantados os seguintes parâmetros de comparação: comprimento, largura, área foliar (dimensões foliares em cm²), espessura e estrutura dos tecidos do limbo foliar e densidade estomática.

3.3.1 Dimensões foliares em cm² (determinação do comprimento, largura e área foliar)

Para obtenção dos dados da superfície foliar foram utilizadas 20 folhas de cada indivíduo. Essas folhas foram prensadas e secas em estufa 65°C por 48 horas. Posteriormente, cada folha foi desenhada em papel milimetrado, onde fez-se a contagem do número de milímetros quadrados equivalentes às áreas, comprimentos e larguras foliares, considerando-se os quadrados cobertos de 50% até a totalidade pelas folhas KRAUS & ARDUIM (1997). Os valores foram convertidos para centímetros quadrados e os resultados foram submetidos ao teste estatístico "t-student".

3.3.2 Densidade estomática por mm² (contagem de estômatos)

Para obtenção dos dados da densidade estomática foram selecionadas amostras da região mediana de 20 folhas de cada indivíduo, essas amostras foram preparadas de acordo com o método de FRANKLIN (1946), ou seja, uma solução de ácido acético glacial e água oxigenada 30 volumes (1:1).

As amostras com essa solução foram colocadas em estufa a 60°C, onde permaneceram por 48 horas, até a diafanização completa. Em seguida foram colocadas em placa de petri com água destilada e com o auxílio de um pincel retirouse todo o mesofilo. Posteriormente foram submetidas a uma desidratação em série alcoólico-etílica crescente até álcool 50%. Finalmente fez-se a coloração com safranina a 1% e azul de toluidina 0,05% (SAKAI 1973).

As lâminas foram montadas com glicerina e a lutagem foi feita com esmalte incolor. A densidade estomática foi realizada apenas na face abaxial da folha, uma vez que *P. lambertii* é uma espécie hipoestomática. As imagens foram projetadas por meio de microscópio fotônico (OLYMPUS – CX41RF) acoplado à câmara clara, com campo de 1 mm². Posteriormente foram calculadas as médias aritméticas e os resultados foram submetidos ao teste estatístico "t-student".

3.3.3 Estrutura e espessura (µm) dos tecidos do limbo foliar

Foram selecionadas amostras da região mediana de 20 folhas de cada indivíduo, previamente fixadas em F.A.A. 70 e conservadas em álcool etílico 70%.

Para a confecção das lâminas permanentes, fez-se a inclusão do material em meta-acrilatoglicol (JB-4) de acordo com GUERREIRO (1995) e de acordo com as especificações do fabricante (POLYSCIENCES INC.) constantes no "kit" do produto. As secções transversais com espessura de 7µm foram feitas em micrótomo de rotação (LEICA RM2125). O corante utilizado foi o azul de toluidina (O' BRIEN et al., 1965) 0,05% em tampão fosfato 0,1 M e pH 6,8. As lâminas com as secções em resina foram coradas por um período de 2 a 3 minutos e lavadas em água destilada. Depois de coradas foram secas ao ar livre e montadas em resina sintética ("Entellan").

Microscópio fotônico (OLYMPUS – CX41RF) foi utilizado para descrição das secções transversais e paradérmicas, e fotomicroscópio (OLYMPUS - BX 41) foi utilizado para obtenção das ilustrações. As escalas foram obtidas nas mesmas condições das fotos.

As mensurações dos caracteres morfométricos das folhas foram realizadas em microscópio invertido (OLYMPUS – IX50/IX70) com captura de imagem, pelo software (IMAGE – PROPLUS). Para as medições foram consideradas as seguintes camadas: <u>nervura</u>, <u>epiderme</u> (face adaxial e abaxial) + <u>mesofilo</u>, <u>mesofilo</u> e <u>cutícula</u> (face adaxial). Foi efetuada uma mensuração por folha, totalizando 20 medições por indivíduo. Posteriormente, foram calculadas as médias aritméticas e os resultados foram submetidos ao teste estatístico "Mann-Whitney U".
3.4 ANÁLISE MORFO-ANATÔMICA DO LENHO

As amostras das camadas de crescimento foram obtidas a partir de madeira normal, ou seja, sem lenho de compressão. Destas amostras, foram feitas as análises da estrutura do lenho e levantados os seguintes parâmetros de comparação entre, a última camada de crescimento (no presente estudo, referida pelo número 1) com as demais camadas (no presente estudo, referidas no sentido câmbio-medula, pelos números 2 ao 7): <u>comprimento, diâmetro e espessura da parede celular</u> dos traqueídes, observação da <u>morfologia das células parenquimáticas</u>, ocorrência de <u>espaços intercelulares</u>, tamanho da <u>camada de crescimento, grau de lignificação da parede celular dos traqueídes, determinação da <u>composição polissacarídica</u> da parede celular dos traqueídes e análise da <u>presença de petróleo e/ou seus compostos</u> nas amostras.</u>

3.4.1 Mensuração dos traqueídes axiais em material dissociado

Para avaliar a variação no sentido radial, amostras de madeira foram obtidas separando-se as camadas de crescimento no sentido câmbio-medula conforme esquema da fig. 4 (7 subamostras). As subamostras provenientes das camadas de crescimento foram dissociadas pelo método de FRANKLIN (1946), coradas com safranina 0,5% em solução alcoólico-etílica 50%, montadas em glicerina e a lutagem com esmalte incolor.

As mensurações do diâmetro e espessura da parede celular dos traqueídes foram realizadas em 50 desses elementos, em microscópio invertido (OLYMPUS – IX50/IX70) com captura de imagem, pelo software (IMAGE – PROPLUS), e as mensurações de comprimento foram realizadas em 50 desses elementos, em microscópio fotônico (OLYMPUS – CX41RF) com ocular micrometrada. Posteriormente foram calculadas as médias aritméticas e os resultados foram submetidos ao teste estatístico não paramétrico "Wilcoxon Matched Pairs Test".

As células parenquimáticas foram analisadas em microscópio fotônico (OLYMPUS – CX41RF) e as ilustrações dos traqueídes foram realizadas em fotomicroscópio (OLYMPUS - BX 41).

3.4.2 Estrutura anatômica do lenho

A preparação das lâminas para análise da estrutura anatômica do lenho seguiu as técnicas apresentadas por JOHANSEN (1940) e SASS (1951).

Para o estudo no sentido radial foram obtidos corpos de prova de aproximadamente 2 cm², no sentido câmbio-medula, de tal maneira que a região mais externa, em contato com a região cambial, apresentava a camada mais recente do lenho, formada na última estação de crescimento, e as mais internas, apresentavam àquelas formadas anteriormente ao vazamento.

Os corpos de prova foram amolecidos por cozimento em água e glicerina (FERREIRINHA, 1958), durante um período que variou de três a cinco dias, e seccionados nos sentidos transversal, longitudinal radial tangencial, em micrótomo de deslize. Para a preparação de lâminas permanentes foram confeccionadas secções histológicas com espessura de 20 micrômetros. Obtidas as secções histológicas, foi efetuada a coloração, utilizando-se primeiramente, em algumas secções, o método de MÄULE, para verificação do grau de lignificação das paredes celulares; e, posteriormente, Safrablau (Safranina 30% e Azul de Astra 70%) alcoólico-etílica 95%. Após coloração fez-se a desidratação das secções em série alcoólico-etílica, álcool etílico 95% (uma vez), álcool etílico absoluto (2 vezes) e xilol. Como meio de montagem foi empregada resina sintética ("Entellan").

Microscópio fotônico (OLYMPUS – CX41RF) foi utilizado para descrição das secções do lenho, e fotomicroscópio (OLYMPUS - BX 41) foi utilizado para obtenção das ilustrações. As escalas foram obtidas nas mesmas condições das fotos.

3.4.3 Composição polissacarídica da parede celular dos traqueídes

Para a análise da composição polissacarídica da parede celular dos traqueídes foram selecionadas, em cada dos indivíduos e nas três alturas coletadas, duas amostras (no sentido câmbio-medula): uma primeira amostra, contendo a última camada de crescimento, e uma segunda amostra, contendo as seis camadas de crescimento de anos anteriores. Posteriormente, procedeu-se a preparação destas amostras obedecendo a seguinte seqüência de procedimentos:

<u>Pré-hidrólise</u>: aproximadamente 5 mg de cada sub-amostra foram colocadas em tubos hermeticamente fechados (tubos de hidrólise), com 0,5 mL de H_2SO_4 (ácido

sulfúrico) 72% (p/p), a 0º C, por uma hora, com constante agitação em vortex (SAEMAN et al., 1954).

<u>Hidrólise</u> <u>ácida</u> <u>total</u>: a cada material submetido à pré-hidrólise foram acrescentados 6,7 mL de água destilada, para então, ser submetidos à hidrólise ácida total em estufa a 100°C, por cinco horas. O objetivo dessa hidrólise foi quebrar as ligações glicosídicas dos polissacarídeos e/ou oligossacarídeos, obtendo-se dessa forma, apenas monossacarídeos (SAEMAN et al., 1954).

<u>Neutralização</u>: os conteúdos dos tubos de hidrólise foram neutralizados com a adição de BaCO₃ (carbonato de bário) até aproximadamente pH 7. O sal resultante foi removido por filtração (SAEMAN et al., 1954).

<u>Redução</u>: os monossacarídeos foram reduzidos na presença de NaBH₄ (borohidreto de sódio) por quatro horas em meio aquoso a 25°C (WOLFROM & THOMPSON, 1963). A reação foi interrompida por meio da adição de ácido acético glacial. As soluções foram concentradas até secura, e o ácido bórico remanescente foi removido por co-destilação, utilizando-se 2 mL de MeOH (metanol), sob a forma de borato de trimetila.

<u>Acetilação</u>: os alditóis secos foram acetilados com 1 mL de anidro acético durante 1 hora a 120°C. Esse processo foi interrompido com a adição de gelo moído e os acetatos de alditóis, extraídos com 2 mL de CHCl₃ (clorofórmio). A fase aquosa foi removida e a fase clorofórmica foi tratada com solução de NaHCO₃ (bicarbonato de sódio) a 2%.

<u>Análise por</u> <u>Cromatografia</u> <u>Líquido-Gasosa</u> (<u>GLC</u>): os acetatos de alditóis foram submetidos à Cromatografia Líquido-Gasosa (GLC), comparando-se com padrões de ramnose, fucose, arabinose, xilose, manose, galactose e glucose.

As análises por GLC foram realizadas em cromatógrafo SHIMADZU® equipado com detector de ionização de chama, utilizando N₂ (nitrogênio) como gás de arraste, com fluxo de 2 mL/min a uma temperatura do detector de 300°C e do injetor de 250°C. Utilizou-se uma coluna capilar [30 mm x 0,25 mm (d.i.)] DB-225,

com espessura de filme 0,25 µm (SLONEKER, 1972). Os resultados foram expressos em porcentagem.

3.5 PRESENÇA DE PETRÓLEO E/OU SEUS COMPOSTOS NAS AMOSTRAS

As amostras para a observação da presença de petróleo e/ou seus compostos foram obtidas adotando-se o mesmo procedimento citado no item anterior. Em seguida, procedeu-se a extração do petróleo e/ou seus componentes utilizando-se n-hexano. As amostras de madeira foram fragmentadas e colocadas em tubos de ensaio com 20 mL de n-hexano por 24 horas e aquecidas em banhomaria a 50° C. Os extratos foram filtrados e submetidos à análise em Cromatografia em Camada Delgada (CCD) comparando-se com amostras de petróleo coletadas na região atingida pelo derramamento e utilizando n-hexano como fase móvel.

3.6 ANÁLISE ESTATÍSTICA

Para a análise estatística foram utilizados nove indivíduos, três do ambiente controle e seis do ambiente exposto à poluição. Após a observação do material e coleta dos dados, foram calculados, a média, o desvio padrão e variância para todas as variáveis analisadas. A estatística descritiva foi realizada utilizando-se o programa Excel, da Microsoft®, 2000.

Para o estudo estatístico dos resultados foi utilizado o programa STATISTICA for Windows da Stasoft, Inc. (1999). Para todas as variáveis, foi primeiramente, verificado o padrão das distribuições, através do teste Shapiro-Wilk. Para as variáveis apresentaram distribuição normal, foi então possível a realização de inferências por meio de testes paramétricos. Em todas as análises foi aplicado o teste "t-student", para verificar se as medidas morfo-anatômicas e fisiológicas das plantas expostas à poluição por petróleo eram equivalentes àquelas obtidas nas plantas coletadas no ambiente controle. Todas as premissas para o uso deste teste foram aplicadas. Para as variáveis sem distribuição normal, foram realizados testes nãoparamétricos, verificando sempre se a média, das medidas morfo-anatômicas das plantas expostas à poluição por petróleo, era equivalente a obtida nas plantas coletadas no ambiente controle.

Os dados brutos das mensurações realizadas nas folhas e lenho constam nos anexos I e II, respectivamente, e os cromatogramas da análise da composição polissacarídica da parede celular constam no anexo III.

4.1 ANATOMIA DAS FOLHAS DE Podocarpus lambertii

4.1.1 Descrição geral

A folha de *Podocarpus lambertii* é simples, glabra, de forma lanceolada, com ápice obtuso e com ca. 2 cm de comprimento e 0,5 cm de largura. A textura é coriácea e a venação uninérvea, sendo a filotaxia, espiralada.

Em vista frontal, a epiderme de ambas as faces da folha é recoberta por uma espessa cutícula de natureza cerosa. A epiderme da face adaxial encontra-se constituída somente por células longas com paredes anticlinais primárias retas e espessas, com muitos campos primários de pontoações (fig. 6a). Esse mesmo aspecto foi observado na epiderme da face abaxial, além da presença de estômatos dispostos em fileiras longitudinais descontínuas, caracterizando a folha desta espécie como hipoestomática (fig. 6b). A densidade estomática média das folhas é de 84,6 e 124,76 estômatos por mm² nos indivíduos controle e poluição, respectivamente (tabela 4).

Em secção transversal, as células da epiderme das faces adaxial e abaxial, tanto da região do mesofilo como da região da nervura, apresentam-se bastante cutinizadas e têm paredes celulares muito espessas, ficando o lume da célula reduzido. Os estômatos situam-se em depressões ficando no nível da camada subepidérmica e são parcialmente recobertos pelas células subsidiárias. Abaixo dos estômatos há uma ampla câmara subestomática adentrando o parênquima clorofiliano (fig. 6d). Internamente à epiderme da face adaxial observa-se uma camada de fibras composta por um ou dois estratos de células com paredes celulares espessas. Internamente à epiderme da face abaxial observa-se a presença de camada de fibras semelhante, interrompida somente na região dos estômatos. Nas margens foliares essa camada chega a apresentar até três estratos de células (figs. 6c, 6d, 6e, 6f e 7c).

O mesofilo é isolateral. Na face adaxial, o parênquima paliçádico possui células de formato cônico, maiores e mais justapostas do que as células desse mesmo tecido na face abaxial. O restante do mesofilo é formado pelo parênquima lacunoso constituído por células de tamanhos variados, alongadas no sentido transversal, com poucos espaços intercelulares, ricas em gotas lipídicas. No mesofilo, pode-se observar ainda, a presença de tecido de transfusão acessório, formado por células alongadas. Estas células são consideradas como traqueídes (figs. 6c, 6d e 7a).

A nervura única mostra o sistema vascular constituído por um só feixe mediano, com os elementos de xilema e de floema dispostos em séries radiais. Associado ao tecido vascular, identifica-se um tecido de transfusão que é constituído principalmente de dois tipos de células: parenquimáticas com paredes não lignificadas e traqueídes de paredes delgadas, porém, lignificadas e com pontoações areoladas. Próximo ao floema é possível observar a presença de canal resinífero e cristais de oxalato de cálcio (figs. 6e, 6f, 7b e 7c).

No que se refere à anatomia foliar das coníferas, grande é a literatura relacionada, que foram sumarizadas por Napp-zinn citado por PAGE (1990). De um modo geral, as características observadas nas folhas de *P. lambertii* estão presentes nas folhas de outras coníferas, dentre elas podem ser citadas: a cutícula espessa, as células epidérmicas bastante cutinizadas e as paredes celulares periclinais externas muito espessas, ficando o lúmen da célula bem reduzido; as fibras em posição subepidérmica, os estômatos localizados em pequenas depressões na epiderme e a presença de tecido de transfusão.

Como nas folhas de outras coníferas e de muitas espécies adaptadas à seca e forte luminosidade, os estômatos são afundados no parênquima (BUVAT, 1989).

A presença de cutícula espessa, especialmente em torno das células subsidiárias e epiderme esclereificada (não observada em *P. lambertii*), assim como camada subepidérmica fibrosa, composta por células esclereificadas, situadas internamente à epiderme, exceto na região abaixo dos estômatos, nas folhas de coníferas é citada por THOMSON (1913), FAHN (1989), BELL (1988) e GIFFORD & FOSTER (1998).

As características observadas nas folhas de *Podocarpus lambertii* corroboram com àquelas citadas por ESAU (1990), onde a autora revela que do ponto de vista anatômico, as folhas desta espécie possuem uma única nervura, a epiderme tem uma parede periclinal externa espessa, provida de cutícula grossa e estômatos em depressões profundas, com células parcialmente sobrepostas. O mesofilo é formado por células parenquimáticas com invaginações que se estendem em direção ao lume

celular. Uma característica anatômica marcante desta espécie é a presença de ductos resiníferos, localizados entre a nervura e a epiderme da face abaxial. Concordam ainda, com BACKES (1973) e MAUSETH (1988), uma vez que esses autores citam que as espécies do gênero *Podocarpus* possuem o mesofilo dividido em parênquima paliçádico e lacunoso, diferente das espécies do gênero *Pinus* que possuem apenas de duas ou três camadas de células. Como ocorre em todas as coníferas, *Podocarpus lambertii* possui canais resiníferos em suas folhas, estes se apresentam circundados por células parenquimáticas de parede delgada (MAUSETH, 1988).

Uma das peculiaridades das folhas de coníferas é a presença de tecido de tranfusão, que acompanha os feixes vasculares e é composto por traqueídes, parênquima e células albuminosas (THOMSON, 1913; BACKES, 1973; FAHN, 1989; MAUSETH, 1988; ESAU, 1990; GIFFORD & FOSTER, 1998).

Em adição ao tecido de transfusão associado ao feixe vascular, foi referido por GRIFFITH (1957) e por ESAU (1965) para *Podocarpus*, por LEE (1952) para *Dacrydium* e para as *Cycas* por LEREDER (1955), a presença de tecido de transfusão acessório, constituído por células alongadas e de paredes espessas que se estendem para fora da bainha do feixe em direção ao mesofilo mantendo contato com o tecido de transfusão junto ao feixe vascular. Não existem estudos ainda que relacionem a origem e função deste tecido, portanto tais observações não estão bem definidas, porém supõe-se que o mesmo um papel importante na translocação de nutrientes entre os feixes vasculares e o tecido adjacente.

4.1.2 Comparação entre as folhas dos indivíduos expostos à poluição e controle

Dimensões foliares em cm² (comprimento, largura e área foliar)

As mensurações de comprimento, largura e área foliar foram realizadas em 20 folhas de cada indivíduo e os resultados são apresentados nas tabela 1.

A partir destes dados, foram testadas as hipóteses de que a média dos comprimentos, larguras e áreas das folhas são iguais tanto nos indivíduos expostos à poluição como nos indivíduos controle. Os resultados podem ser observados nas figuras 8a, 8b e 8c, respectivamente.

Tabela 1 – Dimensões foliares (comprimento, largura e área foliar) de *P. lambertii* entre os indivíduos controle e expostos ao petróleo.

	DIMENSÕES FOLIARES (cm²)					
	comprime	ento (cm)	largura (cm)		área (cm²)	
	Poluição	Controle	Poluição	Controle	Poluição	Controle
n	120	60	120	60	120	60
Média	2,83	8,03	0,34	0,55	0,98	4,46
Desvio padrão	0,71	0,64	0,84	0,05	0,33	0,06

Comparando-se as dimensões foliares entre os dois locais de coleta, constatou-se diferença significativa (p<0,05) entre o comprimento, a largura e a área foliar. Sendo que as folhas coletadas no ambiente onde houve exposição ao petróleo possuem, aproximadamente, comprimento 75%, largura 40% e área foliar 78% menores do que as folhas controle. Qualitativamente, as diferenças entre as dimensões foliares podem ser observadas na figura 5. Cabe ressaltar, que não foram observadas diferenças na coloração das folhas.

Figura 5 – Comparação entre as folhas de indivíduos de *Podocarpus lambertii* expostos à poluição e controle.

Nos indivíduos coletados na área poluída a redução do comprimento, da largura e da área das folhas, foi acompanhada pelo aumento na espessura dos tecidos foliares, sendo os parênquimas clorofilianos, em média 44%, mais espessos que nas folhas dos indivíduos controle (tabelas 2 e 3). Esse fato pode ser observado ainda, quando da comparação do parênquima paliçádico, porque nos indivíduos controle, este tecido é formado por um estrato, sendo as células curtas e largas, enquanto que nos indivíduos expostos à poluição, esse mesmo parênquima aparece em até duas camadas, com células mais alongadas e estreitas. O parênquima esponjoso no grupo controle possui células mais estreitas e alongadas, já no grupo coletado em ambiente exposto ao petróleo, essas células são curtas e cônicas, com as paredes celulares levemente sinuosas e com maiores espaços intercelulares (figs. 6 c, 6 d, 9a, 9b, 9c, 10a, 10b e 10c).

Figura 6 – Secções paradérmicas e transversais de folhas de indivíduos de *Podocarpus lambertii* controle.

a - vista frontal da epiderme da face adaxial, células epidérmicas, (P) campos primários de pontoação;

 b - vista frontal da epiderme da face abaxial, células epidérmicas e estômatos dispostos em fileiras longitudinais;

c - seção transversal do mesofilo, epiderme das faces adaxial e abaxial cutinizadas e com paredes celulares espessas; camadas de fibras com paredes espessas; estômatos em pequenas depressões; células do tecido paliçádico volumosas e com pequenos espaços intercelulares; células do tecido esponjoso de diferentes tamanhos; (T) tecido de transfusão acessório;

 d - seção transversal do mesofilo, epiderme da face abaxial cutinizada e com paredes celulares periclinais espessas; camadas de fibras com paredes espessas; estômatos em pequenas depressões; (T) detalhe do tecido de transfusão acessório;

 e - secção transversal da nervura, sistema vascular consituído por um único feixe mediano; xilema e o floema em séries radiais; associado ao tecido vascular, tecido de transfusão; junto ao floema, canal resinífero (R);

f- secção transversal da nervura principal, sistema vascular com um único feixe mediano; xilema e o floema em séries radiais; associado ao tecido vascular, tecido de transfusão; junto ao floema, canal resinífero (R).

Figura 7 – Secções transversais de folhas de indivíduos controle de *Podocarpus lambertii.*

a - células de parênquima clorofiliano esponjoso e tecido de transfusão acessório (T);

b - nervura com o sistema vascular composto de único feixe mediano; xilema e floema dispostos em séries radiais; associado ao tecido vascular, tecido de transfusão; junto ao floema, canal resinífero (R);

c – nervura com células de ambas as epidermes da folha cutinizadas e com paredes celulares espessas; camadas de fibras com paredes periclinais externas espessas; sistema vascular constituído por um único feixe mediano; xilema e floema dispostos em séries radiais; associado ao tecido vascular, tecido de transfusão; junto ao floema, canal resinífero (R).

A diferença nas dimensões foliares entre os dois locais de coleta, refere-se ao fato da capacidade de otimização do "tamanho" foliar em relação ao meio, adaptando as folhas nos locais que foram atingidos pelo petróleo à redução da superfície de perda de água por transpiração, uma vez que esses indivíduos foram submetidos à escassez de água. Por outro lado, a redução de superfície foliar foi compensada pelo maior espessamento das folhas, os parênquimas clorofilianos encontram-se mais desenvolvidos, aumentando assim, a eficiência fotossintética.

Esse fato concorda com FAHN (1989), onde o autor afirma que a redução da área foliar é compensada pelo maior espessamento da folhas, o parênquima clorofiliano paliçádico torna-se mais desenvolvido do que o esponjoso. Essa alteração pode influir no processo fotossintético, aumentando a sua eficiência, uma vez que a grande maioria dos cloroplastos se encontra nas células em paliçada.

A tendência à redução foliar observada em indivíduos de *P. lambertii* na área poluída, corrobora com INOUE & REISSMANN (1993) quando da observação de plantas de *Ligustrum lucidum* em ambientes poluídos. Segundo ESAU (1990), a relação volume-superfície em folhas de ambientes onde ocorre escassez de água é elevada, ou seja, elas são pequenas e compactas. Esse caráter pode ser determinado por alguns tecidos internos, como por exemplo, mesofilo espesso, com parênquima paliçádico bem desenvolvido e menor volume de espaços intercelulares.

a - células da epiderme da face adaxial com parede periclinais externas bastante cutinizadas; fibras com paredes espessas em camada compacta; parênquima paliçádico com duas camadas e parênquima esponjoso com células de vários tamanhos e formatos;

b - células da epiderme da face adaxial com paredes periclinais externas bastante cutinizadas; internamente à epiderme, camada de fibras com paredes espessas e parênquima paliçádico; parênquima paliçádico da face adaxial com duas camadas e o da abaxial com uma camada apenas e amplos espaços intercelulares; parênquima esponjoso formado por células de vários tamanhos, formatos e com amplos espaços intercelulares; tecido de transfusão acessório;

c - células da epiderme de ambas as faces com paredes periclinais externas cutinizadas; internamente camada de fibras com paredes espessas e parênquima paliçádico; parênquima paliçádico da face adaxial com duas camadas e o da abaxial com uma camada apenas e amplos espaços intercelulares; parênquima esponjoso exibindo células de vários tamanhos e formatos e amplos espaços intercelulares; tecido de transfusão acessório.

Figura 10 – Secções transversais da folha de indivíduos de *Podocarpus lambertii* expostos ao petróleo.

a e b - internamente à epiderme presença de fibras com paredes espessas; parênquima paliçádico exibindo duas camadas; parênquima esponjoso com células de vários tamanhos e formatos, com espaços intercelulares; tecido de transfusão acessório;

c - parênquima esponjoso exibindo células com alterações nos formatos e paredes celulares e com amplos espaços intercelulares.

Figura 11 – Secções transversais das folhas de indivíduos de *Podocarpus lambertii* expostos ao petróleo.

a, b - nervura com células epidérmicas de pequenos tamanhos; internamente à epiderme da face adaxial ocorre a presença de camadas de fibras e parênquima clorofiliano paliçádico; o parênquima clorofiliano esponjoso exibe células irregulares que atingem o sistema vascular; feixe vascular reduzido com elementos do xilema e floema dispostos em séries radiais; associado ao tecido vascular, tecido de transfusão; junto ao floema, canal resinífero (R);

c - detalhe do feixe vascular; elementos traqueais com espessamentos espiralados; associado ao tecido vascular é bem visível o tecido de transfusão; junto ao floema ocorre a presença de canal resinífero (R).

Espessura dos tecidos foliares

Para análise da espessura dos tecidos foliares (espessura da nervura, do limbo, do mesofilo e da cutícula). Os resultados referentes às mensurações dos tecidos foliares são apresentados na tabela 2.

Tabela 2 –	Medidas	da	espessura	dos	tecidos	foliares	de	Ρ.	lambertii	entre	os
	indivíduo	s ex	postos ao p	etról	eo e con	trole.					

	ESPESSURA NERVURA (μm)						
	n	Média	Desvio padrão				
Poluição	120	603,61	139,19				
Controle	60	410,54	24,06				
	ESPESSURA DO LIMBO (μm)						
	n	Média	Desvio padrão				
Poluição	120	413,18	103,04				
Controle	60	236,50	22,48				
	ESPESSURA DO MESOFILO (µm)						
	n	Média	Desvio padrão				
Poluição	120	395,65	101,93				
Controle	60	221,12	23,08				
	ESPESSURA DA CUTÍCULA (µm)						
	n	Média	Desvio padrão				
Poluição	n 120	Média 4,89	Desvio padrão 1,27				

Esses dados foram testados admitindo-se a hipótese de que a média da espessura dos tecidos foliares (espessura da nervura, do limbo, do mesofilo e da cutícula) é igual tanto nos indivíduos expostos à poluição como nos indivíduos controle. Porém, os dados não apresentaram normalidade, por isso empregou-se o teste não paramétrico "Mann-Whitney U" e os resultados são apresentados na tabela 3.

Tabela 3 – Comparação entre os dados da espessura dos tecidos foliares de *P. lambertii* entre os indivíduos expostos ao petróleo e controle.

ESPESSURA NERVURA (μm)								
Z calculado	Р	Z crítico	Р	n controle	n poluição			
-10,00	0,00	-10,00	0,00	60	120			
ESPESSURA DO LIMBO (µm)								
Z calculado	Р	Z crítico	Р	n controle	n poluição			
-10,44	0,00	-10,44	0,00	60	120			
ESPESSURA DO MESOFILO (µm)								
Z calculado	Р	Z crítico	Р	n controle	n poluição			
-10,36	0,00	-10,36	0,00	60	120			
ESPESSURA DA CUTÍCULA (µm)								
Z calculado	Р	Z crítico	Р	n controle	n poluição			

	I		I		n poluiçao
9,63	0,00	9,63	0,00	120	60

Obs.: Z calculado e Z crítico do teste não paramétrico "Mann-Whitney U".

A análise estatística para comparação da espessura dos tecidos foliares demonstrou diferença significativa (p<0,05). A espessura da nervura é ca. 32%; do limbo é ca. 42,7%; do mesofilo é ca. 44% e da cutícula é ca. 42% superior nos indivíduos expostos à poluição em relação aos indivíduos controle. Esses resultados são apresentados na fig. 12.

Figura 12 – Média e desvio-padrão da espessura dos tecidos foliares, (a) nervura,
(b) limbo, (c) mesofilo e (d) cutícula de indivíduos de *P. lambertii* expostos à poluição e de indivíduos controle.

Mesofilo + epidermes

A redução das dimensões foliares dos indivíduos coletados na região onde ocorreu a exposição ao petróleo foi acompanhada pelo maior espessamento da região da nervura, da cutícula, do limbo, e principalmente, do mesofilo, quando são comparados os parênquimas paliçádico e esponjoso de indivíduos controle e de indivíduos expostos à poluição (figs. 13a e 13b). É interessante salientar que as

alterações na espessura do mesofilo são dadas, por diferenças no tamanho das células e por diferentes números de camadas de parênquima.

Figura 13 – Secção transversal da folha de indivíduos de *Podocarpus lambertii* controle (a) e expostos à poluição (b).

а

70 um

O maior espessamento da cutícula (tabela 2) nas folhas de indivíduos coletados na região de exposição ao petróleo reflete uma adaptação desses vegetais em evitar a evapotranspiração excessiva, pois essas plantas sofreram um impedimento à passagem de água e sais causado pelo petróleo em suas raízes.

Vários são os autores, dentre eles, MAUSETH (1988); FAHN (1989); ESAU (1990); GIFFORD & FOSTER, (1998), que afirmam que a cutícula desempenha papel importante na redução da transpiração em plantas e é variável e influenciada pelas condições ambientais.

Em relação ao maior espessamento da parede da células epidérmicas, ESAU (1990) revela ainda que as folhas de plantas que crescem em ambientes onde há escassez de água, podem apresentar as paredes das células mais espessas, especialmente às da epiderme, como um impedimento a evapotranspiração excessiva.

Durante o período de estresse hídrico, segundo LARCHER (2000) os mecanismos que asseguram a sobrevivência da planta são acionados em detrimento do trabalho de produção de matéria seca. Algumas estruturas que contribuem para a redução da transpiração, como por exemplo, o aumento da espessura da epiderme e a maior cutinização das estruturas da epiderme, exercem seu efeito total. Dessa forma, o perigo de dessecação pode ser evitado, mesmo sob uma intensa capacidade evaporativa.

O fato das folhas coletadas em ambiente onde houve exposição ao petróleo demonstrarem maior espessamento em relação às folhas de indivíduos controle, visa compensar (balancear) a disposição dos componentes foliares (células e outros) devido a uma otimização das dimensões foliares em relação ao estresse hídrico, causado nas plantas pela poluição, pois as folhas dos indivíduos controle, onde as áreas, comprimentos e larguras são maiores, possuem menor espessura, enquanto que as folhas do ambiente poluído, de menores áreas, comprimento e larguras possuem maior espessura. Portanto, essa tendência ao aumento da espessura do parênquima paliçádico pode implicar no aumento da eficiência fotossintética.

EVANS & TING (1974) sugeriram que o parênquima lacunoso oferece menos resistência às trocas gasosas quando comparado às camadas do parênquima paliçádico, que dificulta as trocas gasosas da folha por apresentar células com maior dimensão, maior densidade e menores espaços intercelulares. As células do parênquima paliçádico de espécies sensíveis à poluição são maiores quando comparadas às espécies não sensíveis (EVANS, ALBURY & JENNINGS, 1996).

De acordo com KLICH (2000), o aumento da espessura da folha está relacionado ao aumento dos tecidos do mesofilo. Essa característica é citada como

um mecanismo estrutural que potencializa a fotossíntese por unidade de área foliar e habilita a uma maior eficiência no uso da água.

O aumento na espessura das folhas afeta as propriedades do mesofilo. Estudo realizado com folhas de *Quercus petrae* revela que o alongamento das células no parênquima paliçádico reduz, em aproximadamente 35%, os espaços intercelulares no mesofilo. A difusão através de espaços intercelulares pode ser importante na assimilação fotossintética de carbono, especialmente em folhas hipoestomáticas, resultando na redução de 25% ou mais no ganho de carbono (KÜRSCHNER et al., 1998).

ESAU (1990) afirma que fatores ambientais podem induzir alterações estruturais nas folhas, sendo a deficiência hídrica um desses fatores. Desta maneira, a tendência observada tanto nas dimensões como nos tecidos foliares dos indivíduos expostos à poluição, foram modificações estruturais, que possibilitaram a planta sobreviver em ambiente onde as deficiências hídricas foram mais severas, pois o petróleo presente no solo pode funcionar como uma barreira impedindo a absorção de água pelas raízes.

O maior espessamento da nervura pode ser explicado ao considerar o que LARCHER (2000), expõe sobre o evite à dessecação em plantas submetidas ao estresse hídrico, ou seja, nessas folhas a capacidade de condução é aumentada pela ampliação da área de condução do sistema (maior quantidade de xilema) e redução da distância de transporte (internos mais curtos). Dessa maneira, se a superfície de transpiração é reduzida, simultaneamente, a área do sistema condutor é aumentada.

Densidade estomática

A densidade estomática foi mensurada na epiderme da face abaxial dos indivíduos expostos ao petróleo e indivíduos controle. Os resultados referentes às análises de densidade estomática podem ser verificados na tabela 4.

Tabela 4 – Densidade estomática das folhas de *P. lambertii* dos indivíduos expostos ao petróleo e indivíduos controle.

	DENSIDADE ESTOMÁTICA (mm ²)			
	n	Média	Desvio padrão	
POLUICAO	120	124,76	23,64	
CONTROLE	60	84,60	10,55	

A partir desses dados, foi testada a hipótese de que a densidade estomática é igual, tanto nos indivíduos expostos à poluição, como nos indivíduos controle. A análise estatística demonstrou que houve diferença significativa (p<0,05) na densidade estomática quando da comparação entre os dois ambientes e os resultados são apresentados na fig. 14.

Figura 14 – Média e desvio-padrão da densidade estomática dos indivíduos de *P. lambertii* expostos à poluição e controle.

O aumento no número de estômatos foi de aproximadamente 33% nas folhas dos indivíduos expostos à poluição (figs. 15a e 15b). De acordo com MAUSETH (1988) quanto maior a densidade estomática, maior é a eficiência de trocas gasosas no período em que os estômatos estão abertos.

Figura 15 – Secção paradérmica da folha de indivíduos de *Podocarpus lambertii* controle (a) e expostos à poluição (b).

Um fato ainda importante a ser citado, é que apesar das folhas de *P. lambertii* serem hipoestomáticas, foram encontrados na epiderme da face adaxial da folha de apenas um indivíduo coletado no local atingido pelo petróleo três estômatos.

O aumento de densidade estomática nas folhas dos indivíduos expostos à poluição revela que houve uma adaptação às condições locais, indicando a ocorrência de um reajuste (alteração) com esses indivíduos.

De acordo com LARCHER (2000), essa é uma alteração adaptativa, e ocorre quando as folhas crescem sob condições de deficiência hídrica, onde os estômatos presentes são menores, mas a densidade estomática é maior. Essa modificação oferece condições para uma redução mais rápida da transpiração por meio da regulação do fechamento estomático. E segundo MAUSETH (1988), o número elevado de estômatos permite maior eficiência na troca gasosa sob condições de suprimento de água.

O tamanho e a densidade de estômatos têm sido amplamente estudados e relacionados a muitos fatores ambientais (SALYSBURY, 1927; KLICH, 2000). A freqüência estomática não pode ser relacionada apenas com a transpiração e sim com as condições ecológicas em que as plantas se encontram como, por exemplo, a umidade (SALYSBURY, 1927), a alta concentração de poluentes (WOODWARD, 1987; MUSSELMAN & MINNICK, 2000) e a temperatura (MOMEN et al., 1999) entre outros.

Com relação à densidade estomática, pode-se sugerir que *P. lambertii* apresenta uma alteração devido ao estresse ambiental. Algumas dessas alterações correlaciona-se ao aumento no número de estômatos associado a adaptações xeromórficas das plantas. Esse grau de xeromorfia das folhas altera-se quando a planta está sujeita à poluição, podendo ser observado tanto no aumento do número de estômatos como na profundidade da câmara subestomática (BALAGANSKAYA & KUDRJAVTSEVA, 1998).

A alta freqüência estomática, assim como o posicionamento característico dos estômatos, conteúdos celulares densos e cutícula mais espessa observados nas folhas, é indicação de uma maior reação à deficiência hídrica (ESAU, 1990). Podese sugerir então que conforme os resultados obtidos no presente estudo, *P. lambertii* apresenta mecanismos de defesa relacionados à deficiência hídrica.

A tolerância das plantas à poluição está rigorosamente correlacionada com a condutância estomática, e refere-se ao tamanho e freqüência dos estômatos (KOZLOWSKI & PALLARDY, 1997).

LARCHER (2000) cita que as coníferas possuem baixos valores de condutância estomática devido a presença de cera no átrio do aparato estomático, a qual diminui para um terço em relação ao valor máximo possível de condutância. Segundo FERDINAND et al. (2000), a elevada densidade estomática pode conduzir

ao aumento das taxas de condutância estomática, e ao aumento da absorção de dióxido de carbono dentro das folhas.

Esse mesmo autor relata que as partes aéreas de plantas que estão expostas ao ambiente atmosférico perdem água constantemente por transpiração, sendo que esta água deve ser reposta com novos suprimentos hídricos provenientes do solo. As coníferas transpiram em média, com os estômatos abertos, entre 1400-1700 µmol H₂O m⁻². s⁻¹. Em condições de déficit hídrico a planta pode sofrer alterações estruturais com o objetivo de reduzir a perda de água, seja pela redução da superfície transpirante e/ou pelo aumento da capacidade de condução de água, devido a ampliação da área xilemática. No presente estudo observou-se essa ampliação na área xilemática ao comparar-se as dimensões da nervura das plantas coletadas nos dois ambientes (figs. 6e, 6f, 7b, 7c, 11a, 11b e 11c). Os indivíduos coletados na área poluída possuem nervura maior do que os indivíduos controle (tabela 2).

Respostas similares às encontradas no presente estudo, em relação às camadas de mesofilo e densidade estomática foram observadas por CECY (2001). A autora verificou que as folhas de *P. lambertii* quando expostas à poluição aérea possuem maior densidade estomática e maior espessura no mesofilo.

Possivelmente, a exposição destes indivíduos ao poluente, causou reajustes bioquímicos e fisiológicos que refletiram em alterações morfológicas. Porém, no presente estudo, outras variáveis, como por exemplo, a transpiração, a respiração, temperaturas e exposição à radiação solar, não foram comparadas, o que impossibilita concluir se a exposição ao petróleo foi responsável por esse reajuste.

4.2 ANATOMIA DO LENHO DE Podocarpus lambertii

4.2.1 Descrição geral (macroscópica)

A descrição macroscópica do lenho foi realizada com uma lupa de 10 vezes de aumento, seguindo as normas do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA (1992). Pelo aspecto geral de uma secção transversal do lenho de *P. lambertii* foi possível observar que a madeira é brancoamarelada, com alguns pontos, manchas escuras. É leve e macia, a grã é direita, a superfície é uniforme e a textura fina. O contraste gradual e suave entre as zonas de lenho inicial e tardio é formado, principalmente, pela diferença no espessamento das paredes celulares dos traqueídes, no entanto, as camadas de crescimento são pouco evidentes. As camadas de crescimento podem ser evidenciadas pelo espessamento das paredes celulares dos traqueídes dos traqueídes do lenho tardio. Não há distinção entre cerne e alburno.

As camadas de crescimento produzidas no período juvenil da árvore e localizadas próximo à medula possuem maior largura, do que aquelas produzidas durante a idade adulta da mesma árvore e que estão localizadas próximo ao câmbio vascular. Esse mesmo aspecto, que se refere à largura das camadas de crescimento foi também observado por URBINATI et al., 2003, em estudo realizado sobre a variação estrutural quantitativa no lenho de *Terminalia ivorensis*.

4.2.2 Descrição microscópica

A descrição da estrutura do lenho seguiu as orientações propostas pelo IAWA Committee (2004).

O conhecimento dos tipos celulares que constituem o lenho, assim como à sua organização e peculiaridades estruturais é de fundamental importância, pois permite compreender o comportamento da estrutura anatômica frente às adversidades ambientais. Dessa forma, no lenho de *P. lambertii,* foram observados, qualitativamente, os seguintes caracteres anatômicos do lenho (fig. 16, letra a até i):

Em secção transversal, as camadas de crescimento apresentam-se distintas, pois o lenho inicial apresenta seus elementos com paredes celulares delgadas e lume grande, e é menos denso; já o lenho tardio tem suas células com paredes espessas e lume pequeno, sendo mais denso. Os traqueídes são menos regulares, muito unidos e com o lume celular mais arredondado. As pontoações areoladas são freqüentemente observadas nas paredes radiais dos traqueídes. O parênquima axial é difuso.

Em material dissociado, os traqueídes são longos, apresentando um comprimento que varia de 1510 a 2593 μ m, sendo a média de 2238 μ m, o diâmetro variando de 25,31 a 32,32 μ m, sendo a média de 30,17 μ m, e a espessura da parede celular variando de 4,76 a 5,22 μ m, sendo a média de 4,99 μ m.

Os raios são homogêneos, constituídos por células parenquimáticas de paredes finas. Raios unisseriados. Nos campos de cruzamento ocorrem muitas pontoações, próximas entre si e do tipo piceóide. Ainda é possível observar nas células de parênquima radial a presença de depósitos de resina.

4.2.3 Comparação entre o lenho dos indivíduos expostos à poluição e controle

As mensurações foram realizadas entre as camadas de crescimento, tanto do grupo controle, quanto do exposto à poluição, selecionando-se sete amostras da região mais externa em direção a mais interna (sentido câmbio-medula), ou seja, da camada de crescimento do último ano, que no presente estudo é designada pelo número um (1), e mais seis camadas de crescimento, correspondentes aos anos anteriores, e que foram designadas pelos números dois (2) ao sete (7).

As ilustrações foram realizadas comparando-se sempre a última camada de crescimento, tanto do grupo controle, quanto do grupo exposto à poluição.

Estrutura anatômica

As secções transversais (X), longitudinais tangenciais (T) e radiais (R) do lenho de *P. lambertii*, tanto dos indivíduos do grupo controle, quanto dos indivíduos coletados em área atingida pelo petróleo, podem ser observadas nas figuras 16, 17, 18, 19, 20 e 21.

Qualitativamente, as amostras da última camada de crescimento, dos indivíduos expostos ao petróleo quando comparadas às amostras do grupo controle, mostram-se muito variáveis em características como: camadas de crescimento,

forma e tamanho dos traqueídes, morfologia das células parenquimáticas, máculas medulares, número e dimensão das pontoações areoladas e grau de lignificação das paredes celulares dos traqueídes.

Camadas de crescimento

Qualitativamente, a última camada de crescimento dos indivíduos expostos ao petróleo é menor quando comparada a dos indivíduos controle. É possível observar ainda, um menor espessamento nas paredes celulares dos traqueídes do grupo exposto à poluição. Tais características podem ser observadas nas figuras 16 (a - c), 19 (a, f), 20 (a, d, g, j).

As características acima mencionadas podem estar relacionadas à poluição do solo por petróleo, uma vez que LEVITT (1980), afirma que tanto a análise dos anéis de crescimento como a dos elementos vasculares, fornecem informações importantes sobre o comportamento das plantas em casos de exposição à poluição, pois a atividade cambial é sensivelmente influenciada pelas condições ambientais.

De acordo ainda com KOSLOWSKY & PALLARDY (1997), a largura das camadas de crescimento varia de uma fração de milímetros a até alguns centímetros, dependendo de muitos fatores ambientais, dentre eles, a disponibilidade hídrica.

LARCHER (2000) afirma que a duração da atividade cambial e o tipo de formação da madeira são afetados por fatores ambientais que podem exercer influências diretas ou indiretas sobre a largura e a aparência das camadas de crescimento. Dentre os vários fatores, esse autor, cita o suprimento hídrico e todos os tipos de injúrias causados pelo ambiente, incluindo a ação de poluentes. Nas plantas expostas ao estresse hídrico, a divisão celular é mais lenta, como conseqüência menos traqueídes são formados e menor é a espessura da camada de crescimento.

Considerando os aspectos acima relacionados, sugere-se que provavelmente, diferenças na disponibilidade hídrica possam ter provocado essa variação quando da análise da última camada de crescimento, porque os indivíduos que sofreram a exposição ao petróleo, passaram por deficiências hídricas severas, não pela falta de água no ambiente, mas pelo fato do petróleo presente em todo o sistema radicial
formar um impedimento à passagem da água. MORALES et al. (2001) em trabalho realizado sobre a potencialidade de *Prosopis ferox* concluem que o fator que controla o crescimento das camadas de crescimento seria o balanço hídrico.

Segundo ZOBEL & TALBERT (1984), as camadas de crescimento produzidas próximo à medula (lenho juvenil) têm características muito diferentes daquelas localizadas perto do câmbio (lenho adulto), pois aquelas camadas localizadas próximo à medula foram formadas durante o período de juvenilidade da árvore, no qual o ritmo de crescimento é mais acentuado. As camadas localizadas próximas ao câmbio foram formadas durante o período de maturidade da árvore. Além das diferenças anatômicas entre os lenhos juvenil e adulto, outros fatores como a idade, o vigor, as características genéticas do indivíduo e os fatores climáticos podem influenciar na variação da dimensão dos elementos celulares (VYSOTSKAYA & VAGANOV, 1989).

Forma e tamanho dos traqueídes

Ao comparar a morfologia desses elementos entre os dois locais de coleta, constatou-se que no grupo exposto à poluição, as paredes celulares são deformadas e as extremidades mais arredondadas, enquanto que no grupo controle, as paredes celulares são retas, as células alongadas e as extremidades afinadas. Essas características podem ser visualizadas na figura 17 (a - k).

Em relação ao comprimento, diâmetro e espessura da parede celular dos traqueídes, as figuras 17 e 18, ilustram os resultados obtidos quantitativamente pelas análises estatísticas e que podem ser observados nas tabelas 8, 12 e 16, isto é, que houve uma diminuição nos comprimentos, diâmetros e espessura das paredes celulares dos traqueídes nas amostras obtidas na última camada de crescimento dos indivíduos coletados na região poluída.

Segundo BAAS *et al.* (1983), vasos de maior diâmetro e mais curtos são mais eficientes, porém menos seguros devido ao maior risco de embolia. Ainda, segundo os mesmos autores, as espécies que se desenvolvem em ambientes onde ocorrem deficiências hídricas, tendem a reunir os fatores segurança e eficiência.

Em relação à menor espessura da parede celular observada nesse estudo, esse resultado, não concorda com a maior parte dos estudos feitos sobre a

influência do estresse hídrico na estrutura do lenho das plantas, pois os relatos são de paredes mais espessas em ambiente mais seco, o que pode sugerir a interferência de um outro fator ambiental qualquer sob tal característica.

Morfologia das células parenquimáticas

Ao comparar a morfologia das células de parênquima radial entre as amostras coletadas nos dois ambientes, foram observadas alterações no tamanho e forma dessas células no grupo exposto à poluição (figs. 19 e 20).

Quanto aos menores tamanhos e às alterações morfológicas sofridas pelas células que constituem o lenho (traqueídes e células parenquimáticas), o déficit hídrico pode estar influenciando nas suas morfologias, uma vez que LEVITT (1980), afirma que a distensão da célula vegetal depende do turgor celular, conseqüentemente a manutenção da disponibilidade hídrica permite que células cambiais em diferenciação cresçam mais regularmente.

WILKES (1988) relata que a variação no tamanho e na forma dos elementos celulares, no sentido axial, é aparentemente menos consistente do que no sentido radial do caule. Segundo DIGBY & WAREING (1966), uma das causas que pode levar à variação longitudinal, está relacionada à concentração de reguladores de crescimento, os quais têm importante participação na atividade cambial. Entretanto, os dados existentes envolvem poucas espécies.

Máculas

Embora tenham sido observadas máculas, tanto em amostras do grupo controle, como do grupo exposto à poluição essa foi uma característica muito contrastante entre os dois ambientes, uma vez que notadamente as máculas são maiores e mais freqüentes nas amostras provenientes do grupo exposto ao petróleo. Essas máculas, que se originam da formação de pequenas áreas de xilema, de células ou faixas hipertrofiadas que aparentemente compreendem células colapsadas, apresentam dimensões muito variáveis e se encontram em diferentes estágios de desenvolvimento (fig. 19b, 19c e 19d).

Quanto à presença das máculas, essa é uma característica que não despertou muito a atenção dos autores em trabalhos comparativos, sendo apenas citada excepcionalmente em trabalhos descritivos que têm como objetivo a identificação de madeiras. KOSLOWSKY (1971); BURGER & RICHTER (1991) afirmam que as máculas são porções de tecido anômolo, freqüentemente de origem traumática provocada pela escavação de galerias próximas ao câmbio, por insetos. CARLQUIST (1988) acredita que máculas possam ser formadas através de injúrias causadas por frio ou calor. Entretanto a coincidência de várias máculas nos indivíduos coletados na região do derrame sugere que essas sejam causadas por algum evento de ação mais ampla, e não a ação local e isolada de um inseto. As várias máculas observadas na última camada de crescimento e a ocorrência em várias árvores evidenciam que essas se formaram no mesmo período e possivelmente foram desencadeadas pelo mesmo evento, nesse caso, o vazamento de petróleo.

A maior ocorrência de máculas nas árvores da área atingida pelo petróleo, pode ser ainda explicada, pelo local mais aberto onde essas se encontravam, uma vez que as outras espécies da formação morreram, tornado-as mais susceptíveis às mudanças de temperatura (LEVITT, 1980).

Número e dimensão das pontoações

A análise das pontoações, aparentemente, revelou uma pequena tendência com relação aos dois ambientes, pois as amostras da última camada de crescimento do grupo exposto ao petróleo demonstram que as paredes celulares dos traqueídes possuem maior número de pontoações (fig. 18).

CARLQUIST (1975), ZWEYPFENNING (1978) e ZIMMERMANN (1983) questionam o papel dessas pontoações no aumento de eficiência no transporte hídrico. Até o presente, não há explicações concordantes a respeito do funcionamento dessas estruturas tão especializadas.

Grau de lignificação das paredes celulares dos traqueídes

Para observação do grau de lignificação de paredes celulares do lenho de indivíduos controle e indivíduos expostos ao petróleo, utilizou-se o método

microquímico de MÄULE, onde as paredes celulares dos traqueídes que possuem maior grau de lignificação adquirem coloração mais intensa.

De acordo com o método empregado, observou-se que as paredes celulares de amostras da última camada de crescimento do grupo exposto à poluição possuem menor grau de lignificação, devido à coloração menos intensa em relação às paredes celulares da mesma camada de crescimento dos traqueídes do grupo controle. Esses resultados podem ser observados na figura 21 (a - o).

Considerando o menor grau de lignificação apresentado pelas paredes celulares dos traqueídes do grupo exposto à poluição, sugere-se que, o impedimento causado pelo petróleo presente nas raízes, à passagem da água e, principalmente, de nutrientes, possa ter provocado essa variação.

Apesar de não se entender, completamente, o papel fisiológico dos nutrientes nas plantas, sabe-se da importância de alguns nutrientes na formação da parede celular, mais especificamente na síntese dos seus componentes, como a pectina, a celulose e a lignina. Na ausência de nutrientes, ocorre uma redução dessas substâncias na parede das células do lenho, que se tornam mais finas (MORAES, 2002).

O boro, por exemplo, atua na síntese de lignina pela formação de complexos de boratos com certos fenóis, regulando a taxa de fenóis livres e aumentando os fenóis, precursores da síntese de lignina (LEWIS, 1980; PILBEAM & KIRKBY, 1983; SHKOLNIK, 1984). Estudos de partes de plantas deficientes em B mostraram deslignificação das paredes das células do esclerênquima (MARSCHNER, 1995). Em plantas de girassol deficientes em B, observou-se redução sensível no conteúdo total de lignina e da enzima peroxidase, catalisadora da síntese de lignina (DUTTA & MCILRATH, 1964).

Figura 16 – Secções do lenho de indivíduos controle de Podocarpus lambertii.

a, b, c - secção transversal do lenho; delimitação da camada de crescimento em conseqüência do maior espessamento e achatamento da parede celular e diminuição do lume dos traqueídes no lenho tardio; parênquima axial é difuso;

d, e, f - traqueíde axial em material dissociado evidenciando parede celular com pontoações areoladas;

g - secção longitudinal tangencial; com traqueídes e raios homogêneos unisseriados;

h, i - secção longitudinal radial; com traqueídes axiais; raios constituídos de células parenquimáticas; campos de cruzamento com pontoações do tipo piceóide.

Figura 17 – Comparação dos traqueídes em material dissociado do lenho dos indivíduos de *Podocarpus lambertii* expostos ao petróleo e controle.

a, b, c - traqueídes axiais de indivíduos controle; células longas e com as extremidades afiladas;

d, e, f, g, h, k, j - traqueídes axiais de indivíduos expostos ao petróleo; células curtas e com paredes celulares deformadas.

Figura 18 – Comparação dos traqueídes em material dissociado do lenho dos indivíduos de *Podocarpus lambertii* expostos ao petróleo e controle.

a, b - traqueídes axiais de indivíduos controle; células com paredes retas e pontoações areoladas;

c, d, e - traqueídes axiais de indivíduos expostos ao petróleo; células com paredes deformadas e estreitas, e com muitas pontoações.

Figura 19 – Secções do lenho de indivíduos de *Podocarpus lambertii* expostos ao petróleo.

a - secção transversal onde são observados os traqueídes axiais;

b - secção longitudinal tangencial; com traqueídes, raios homogêneos unisseriados e pontoações areoladas;

c, d - secção longitudinal tangencial; com traqueídes, raios homogêneos unisseriados, pontoações areoladas e mácula medular (M);

e - secção longitudinal radial; com traqueídes, raio com células parenquimáticas de paredes delgadas e pontoações areoladas visíveis;

f - secção transversal; com traqueídes e delimitação de camada de crescimento;

g - secção longitudinal tangencial; com traqueídes, raios homogêneos e unisseriados e pontoações areoladas;

h - pormenor da secção longitudinal tangencial; com traqueídes, raios homogêneos e unisseriados e pontoações areoladas;

 i - pormenor da secção longitudinal radial; com traqueídes, pontoações areoladas evidentes e raio de células parenquimáticas com paredes delgadas; nos campos de cruzamento, pontoações do tipo piceóide.

Figura 20 – Secções do lenho de indivíduos de *Podocarpus lambertii* expostos ao petróleo.

a, d, g, j - secção transversal onde são observados os traqueídes axiais e parênquima radial;

b, e, h, k - secções longitudinais tangenciais; com traqueídes, raios homogêneos e unisseriados, e pontoações areoladas em secção transversal;

c, f, i, l - secções longitudinais radiais; com traqueídes, raios de células parenquimáticas com paredes delgadas e pontoações areoladas em vista frontal;

- Figura 21 Secções transversais da última camada de crescimento do lenho de indivíduos de *Podocarpus lambertii* expostos ao petróleo e controle que demonstram o grau de lignificação das paredes celulares dos traqueídes do lenho inicial.
- a, b, c secção transversal do lenho de indivíduos controle;

d, e, f, g, h, i, j, k, l, m, n, o - secção transversal do lenho de indivíduos expostos ao petróleo.

4.2.4 Medidas microscópicas

Comprimento dos traqueídes

As mensurações de comprimento foram realizadas em 50 destes elementos, em microscópio fotônico (OLYMPUS – CX41RF), com ocular micrometrada. A partir dos dados obtidos, realizou-se a análise estatística para comparação do comprimento dos traqueídes axiais, entre as camadas de crescimento, dos indivíduos expostos ao petróleo e indivíduos controle, em amostras coletadas nas três alturas, superfície do solo (base), um metro e dois metros. Os resultados da mensuração estão expressos nas tabelas 5, 6 e 7.

Tabela 5 – Média e desvio-padrão do comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas na superfície do solo (base).

	BASE								
Camadas de crescimento	Ambiente	n	Média	Desvio padrão					
	Controle	150	1903,16	220,83					
18	Poluição	300	1065,41	465,01					
	Controle	150	1881,83	221,92					
2	Poluição	300	2046,66	271,77					
	Controle	150	1804,83	298,58					
3	Poluição	300	2097,00	315,61					
	Controle	150	1859,66	260,46					
4	Poluição	300	2160,41	300,94					
	Controle	150	1987,66	236,54					
5	Poluição	300	2051,33	348,51					
	Controle	150	1802,3	285,81					
6	Poluição	300	1939,44	351,57					
	Controle	150	1690,33	322,81					
7	Poluição	300	1917,66	347,83					

Tabela 6 – Média e desvio-padrão do comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a um metro da superfície do solo.

	1 m								
Camadas de crescimento	Ambiente	n	Média	Desvio padrão					
	Controle	150	1981,50	220,65					
1	Poluição	300	1196,83	266,74					
	Controle	150	1955,66	147,46					
2	Poluição	300	2061,91	288,97					
	Controle	150	1889,33	213,26					
3	Poluição	300	2050,75	235,31					
	Controle	150	1946,50	312,00					
4	Poluição	300	2042,16	234,76					
	Controle	150	1986,50	201,60					
5	Poluição	300	2055,33	321,02					
	Controle	150	1749,00	236,12					
6	Poluição	300	2026,66	395,49					
	Controle	150	1896,50	197,19					
7	Poluição	300	1982,16	397,77					

Tabela 7 – Média e desvio-padrão do comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a dois metros da superfície do solo.

2 m								
Camadas de crescimento	Ambiente	n	Média	Desvio padrão				
	Controle	150	1971,33	206,36				
1	Poluição	300	1331,83	271,81				
	Controle	150	1887,33	188,70				
2	Poluição	300	2034,58	315,77				
	Controle	150	2016,00	166,29				
3	Poluição	300	2054,16	269,33				

(cont.) Tabela 7 – Média e desvio-padrão do comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a dois metros da superfície do solo.

	Controle	150	2031,50	199,42
4	Poluição	300	2043,50	295,59
	Controle	150	1945,83	187,13
5	Poluição	300	2074,41	259,93
	Controle	150	1934,50	218,93
6	Poluição	300	2017,58	381,42
	Controle	150	1776,00	265,30
7	Poluição	300	1898,75	517,08

A partir desses dados, foram testadas as hipóteses de que a média do comprimento dos traqueídes axiais, nas alturas, superfície do solo (base), um metro e dois metros da superfície do solo, entre as camadas de crescimento, são iguais tanto nos indivíduos expostos à poluição, como nos indivíduos controle. Os dados não apresentaram normalidade, por isso foi utilizado o teste não paramétrico "Wilcoxon Matched Pairs Test", obtendo os resultados apresentados na tabela 8.

Tabela 8 – Comprimento dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de *P. lambertii* e expostos à poluição.

		CO	NTROL	E					POLU	IÇÃO			
Camada 1/2 1/3 1/4 1/5 1/6 1/7 2/3 2/4	base		1 m		2	2 m		base		1 m		2 m	
	Ζ	р	Z	р	z	р	Z	р	Z	р	Z	р	
1/2	1,34	0,17	1,29	0,19	3,83	0,00	15,01 0,00 15,0	15,00	0,00	15,01	0,00		
1/3	3,83	0,00	3,46	0,00	2,66	0,00	15,01	0,00	14,98	0,00	15,01	0,00	
1/4	2,03	0,04	1,27	0,20	2,63	0,00	15,01	0,00	14,98	0,00	14,98	0,00	
1/5	3,02	0,00	0,34	0,72	1,18	0,23	14,98	0,00	15,01	0,00	15,01	0,00	
1/6	4,47	0,00	7,24	0,00	0,73	0,46	15,01	0,00	14,91	0,00	14,93	0,00	
1/7	6,85	0,00	3,60	0,00	6,16	0,00	15,01	0,00	14,59	0,00	13,82	0,00	
2/3	3,57	0,00	3,41	0,00	5,34	0,00	2,78	0,00	0,81	0,41	1,19	0,23	
2/4	1,60	0,10	0,31	0,74	5,80	0,00	6,10	0,00	1,20	0,22	0,41	0,67	

(cont.) Tabela 8 –	Comprimento	dos	traqueídes	(µm)	entre	as	camadas	de
	crescimento de	os inc	livíduos cont	role de	P. lan	nbert	ii e exposto	os à
	poluição.							

_	2/5	3,51	0,00	1,61	0,10	2,89	0,00	0,05	0,96	0,31	0,75	2,15	0,03
_	2/6	3,87	0,00	7,84	0,00	2,02	0,04	5,38	0,00	2,41	0,01	1,42	0,15
_	2/7	6,59	0,00	3,12	0,00	3,91	0,00	6,23	0,00	3,61	0,00	5,80	0,00
_	3/4	1,75	0,07	1,39	0,16	0,67	0,49	3,43	0,00	0,37	0,70	0,91	0,35
_	3/5	6,41	0,00	3,73	0,00	3,12	0,00	3,38	0,00	0,01	0,99	1,41	0,15
_	3/6	0,08	0,93	5,29	0,00	4,33	0,00	9,68	0,00	2,19	0,02	2,25	0,02
_	3/7	4,22	0,00	0,12	0,89	7,52	0,00	9,94	0,00	3,41	0,00	5,66	0,00
_	4/5	4,89	0,00	0,94	0,34	2,75	0,00	5,76	0,00	0,76	0,44	1,85	0,06
_	4/6	2,68	0,00	5,60	0,00	3,56	0,00	10,38	0,00	1,85	0,06	1,82	0,06
_	4/7	5,41	0,00	1,56	0,11	7,72	0,00	10,85	0,00	3,50	0,00	5,95	0,00
	5/6	6,56	0,00	8,01	0,00	0,60	0,54	7,68	0,00	2,48	0,01	3,68	0,00
	5/7	7,95	0,00	3,64	0,00	5,62	0,00	9,17	0,00	4,69	0,00	7,37	0,00
_	6/7	5,11	0,00	5,74	0,00	5,02	0,00	1,48	0,13	3,03	0,00	6,54	0,00
_	_								-			-	

Onde: os números da coluna **camada** referem-se às comparações feitas entre as camadas de crescimento; "**Z**" refere-se ao Z calculado do teste não paramétrico "Wilcoxon Matched Pairs Test" e "**p**" refere-se ao nível de significância.

Na comparação de medidas do comprimento dos traqueídes axiais entre as camadas de crescimento dos indivíduos controle e expostos ao petróleo, estatisticamente, a maioria das médias mostrou-se diferente. Porém, as diferenças entre essas médias são mais marcantes, quando da comparação, nos indivíduos coletados na região atingida pelo petróleo, da última camada de crescimento (correspondente ao ano em que os indivíduos ficaram expostos à poluição) com as demais camadas. Tais resultados podem ser observados nas figs. 22, 23 e 24.

Nos indivíduos do grupo controle observou-se que os menores valores de comprimento dos traqueídes estão localizados próximo à medula (figs. 22a, 23a e 24a). Na direção medula-câmbio observa-se que houve aumento e tendência à estabilização. Os traqueídes próximos à medula diferiram estatisticamente daqueles localizados próximos ao câmbio quanto ao comprimento. Essa diferença, no sentido medula-câmbio, foi significativa ao nível de 5% de probabilidade. Essa mesma tendência foi observada nas três alturas onde as amostras foram coletadas.

Os resultados obtidos quanto ao grupo controle, foram semelhantes àqueles encontrados por GIROUD (1977) e FOEKEL et al. (1983). FUKAZAWA & OHTANI (1982) estudando a variação anatômica em *Tilia japonica* (Miq.) Simonk. (Tiliaceae), observaram que a 5,30 m de altura do caule, o comprimento dos elementos vasculares aumentou no sentido medula-câmbio e, depois de alcançar valor máximo, estabilizou. Em outras alturas, a variação foi muito pequena. Por outro lado, SILVA (1992) encontrou em *Andira parvifolia* Ducke (Leguminosae Papilionoideae) maior comprimento dos elementos vasculares nas proximidades da medula do que próximo ao câmbio. IQBAL & GHOUSE (1983) avaliaram a média do comprimento dos elementos inicial a partir do câmbio em direção à medula, e declínio gradual, com algumas flutuações, próximo à medula. URBINATI et al. (2003), encontrou no lenho de *Terminalia ivorensis* a mesma tendência de variação encontrada no presente estudo.

Figura 22 – Média, erro e desvio-padrão do comprimento dos traqueídes axiais (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados na superfície do solo (base).

Figura 23 – Média, erro e desvio-padrão do comprimento dos traqueídes axiais (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a um metro da superfície do solo.

(cont.) Figura 23 – Média, erro e desvio-padrão do comprimento dos traqueídes axiais (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a um metro da superfície do solo.

Figura 24 – Média, erro e desvio-padrão do comprimento dos traqueídes axiais (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a dois metros da superfície do solo.

Em relação ao comprimento dos traqueídes das plantas expostas à poluição, observou-se que houve um comportamento semelhante ao grupo controle no sentido medula-câmbio e nas seis primeiras camadas de crescimento.

Embora sejam vários os autores que afirmem que a separação entre as causas genéticas ou ambientais é difícil de ser distinguida, quando são observados, os resultados obtidos com o comprimento dos traqueídes na última camada de crescimento, revelam uma certa tendência de redução no comprimento devido ao petróleo (figs. 22b, 23b e 24b), uma vez que possuem comprimentos aproximadamente 50% menores que as demais camadas.

Assim, nos traqueídes da última camada de crescimento, correspondente ao ano em que os indivíduos sofreram exposição ao petróleo e, onde as deficiências hídricas foram mais severas, não pela falta de água no ambiente, mais pelo fato do petróleo presente nas raízes formar um impedimento à passagem da água e, portanto tensões xilemáticas maiores, a tendência observada foi a presença de traqueídes mais curtos. Possibilitando, provavelmente, dessa maneira, a maior segurança na garantia da manutenção do transporte hídrico.

Apesar dos trabalhos citados a seguir terem sido realizados com estrutura do lenho de Magnoliophyta, neles constam algumas observações que valem a pena ser citadas no presente estudo, pois relatam de maneira geral, resultados esperados com as diferentes espécies de plantas. De acordo com URBINATI et al. (2003), os diferentes estudos realizados com elementos vasculares revelam que, cada espécie, dada as suas características genéticas e às condições ambientais nas quais se desenvolvem, apresentam padrões anatômicos diferentes. TRUGILHO et al. (1996) afirma que as variações na composição química, física e anatômica da madeira são grandes entre espécies, embora ocorram dentro da mesma espécie, em função da idade, de fatores genéticos e, principalmente, ambientais.

Diâmetro dos traqueídes

As mensurações do diâmetro dos traqueídes foram realizadas em 50 destes elementos, em microscópio invertido (OLYMPUS – IX50/IX70), com captura de imagem, pelo software (IMAGE – PROPLUS), obtendo os resultados apresentados nas tabelas 9, 10 e 11.

Tabela 9 – Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas na superfície do solo (base).

	D.	ASE		
Camadas de crescimento	Ambiente	n	Média	Desvio padrão
	Controle	150	27,27	5,16
1	Poluição	301	24,49	6,12
	Controle	150	26,19	4,26
2	Poluição	301	26,00	5,38
	Controle	150	26,88	5,01
3	Poluição	301	28,27	6,73
	Controle	150	25,8	4,02
4	Poluição	301	26,22	5,69
	Controle	150	25,31	4,26
5	Poluição	301	26,68	5,89

(cont.) Tabela 9 – Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas na superfície do solo (base).

	Controle	150	27,1	4,6
6	Poluição	301	26,47	5,12
	Controle	150	24,3	4,75
7	Poluição	301	25,69	5,57

Tabela 10 – Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a um metro da superfície do solo.

	1 m							
Camadas de crescimento	Ambiente	n	Média	Desvio padrão				
	Controle	150	27,16	4,88				
1	Poluição	300	25,02	5,19				
	Controle	150	26,81	4,97				
2	Poluição	300	26,89	7,0				
	Controle	150	27,28	4,49				
3	Poluição	300	26,43	5,03				
	Controle	50	26,19	5,29				
4	Poluição	300	26,54	5,45				
	Controle	150	28,11	4,61				
5	Poluição	300	25,45	5,66				
	Controle	150	28,11	4,42				
6	Poluição	300	25,62	5,63				
	Controle	150	28,29	5,27				
7	Poluição	300	25,93	5,33				

Tabela 11 – Média e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a dois metros da superfície do solo.

2 m								
Camadas de crescimento	Ambiente	n	Média	Desvio padrão				
	Controle	150	25,04	4,27				
1	Poluição	300	24,33	6,65				
	Controle	150	26,65	5,16				
2	Poluição	300	26,44	5,27				
	Controle	150	27,88	4,94				
3	Poluição	300	26,36	5,65				
	Controle	150	24,75	4,83				
4	Poluição	300	25,62	5,98				
	Controle	150	24,44	4,27				
5	Poluição	300	26,03	5,79				
	Controle	150	26,15	3,47				
6	Poluição	300	26,08	5,03				
	Controle	150	23,01	3,98				
7	Poluição	300	25,75	6,04				

A partir desses dados, foram testadas as hipóteses de que a média do diâmetro dos traqueídes, nas alturas, superfície do solo (base), um metro e dois metros da superfície do solo, entre as camadas de crescimento, são iguais tanto nos indivíduos expostos à poluição como nos indivíduos controle. Os dados não apresentaram normalidade, por isso foi utilizado o teste não paramétrico "Wilcoxon Matched Pairs Test". Os resultados estão apresentados nas tabela 12.

Tabela 12 –	Diâmetro	dos	traqueídes	(µm)	entre	as	camadas	s de	crescimento	dos
	indivíduos	s con	ntrole de P. I	lambe	ertii e e	хро	stos à po	luiçâ	io.	

CONTROLE						POLUIÇÃO						
Camada	base		1 m		2 m		base		1 m		2 m	
	Z	р	Z	р	z	р	Z	р	Z	Р	Z	р
1/2	2,07	0,03	0,31	0,74	2,78	0,00	4,00	0,00	3,65	0,00	4,27	0,00
1/3	0,86	0,38	0,32	0,74	5,23	0,00	7,44	0,00	3,20	0,00	4,38	0,00
1/4	2,67	0,00	1,80	0,07	0,56	0,57	3,74	0,00	3,19	0,00	1,60	0,10
1/5	3,21	0,00	1,49	0,13	0,82	0,40	4,35	0,00	0,95	0,34	3,22	0,00
1/6	0,41	0,67	1,63	0,10	2,74	0,00	4,20	0,00	1,31	0,18	3,28	0,00
1/7	4,65	0,00	1,77	0,07	3,53	0,00	2,33	0,01	2,14	0,03	2,48	0,01
2/3	1,76	0,07	0,83	0,40	2,39	0,01	5,39	0,00	0,38	0,69	0,35	0,72
2/4	0,75	0,44	1,03	0,30	2,98	0,00	0,72	0,46	0,16	0,87	2,04	0,04
2/5	1,31	0,18	2,46	0,01	4,21	0,00	1,50	0,13	3,13	0,00	0,83	0,40
2/6	1,88	0,05	2,60	0,00	0,75	0,45	1,45	0,14	2,36	0,01	0,52	0,59
2/7	3,92	0,00	2,51	0,01	5,73	0,00	0,69	0,48	1,86	0,06	1,71	0,08
3/4	1,97	0,04	2,01	0,04	5,32	0,00	4,77	0,00	0,04	0,96	1,72	0,08
3/5	2,64	0,00	2,00	0,04	5,93	0,00	3,76	0,00	2,88	0,00	0,94	0,34
3/6	0,00	0,99	1,48	0,13	3,22	0,00	3,87	0,00	2,30	0,02	0,40	0,68
3/7	3,79	0,00	1,81	0,07	7,50	0,00	5,38	0,00	1,05	0,29	1,91	0,05
4/5	0,77	0,43	3,52	0,00	0,49	0,61	1,15	0,24	2,15	0,03	1,48	0,13
4/6	2,31	0,02	3,79	0,00	3,16	0,00	0,69	0,48	1,99	0,04	1,84	0,06
4/7	2,53	0,01	2,61	0,00	3,96	0,00	1,21	0,22	1,20	0,22	0,64	0,51
5/6	3,64	0,00	0,38	0,69	3,48	0,00	0,25	0,79	0,35	0,72	0,31	0,75
5/7	1,80	0,07	0,04	0,96	3,14	0,00	2,79	0,00	1,45	0,14	0,70	0,48
6/7	4,48	0,00	0,03	0,97	6,13	0,00	1,93	0,05	1,02	0,30	0,50	0,61

Onde: os números da coluna **camada** referem-se às comparações feitas entre as camadas de crescimento; "**Z**" refere-se ao Z calculado do teste não paramétrico "Wilcoxon Matched Pairs Test" e "**p**" refere-se ao nível de significância.

Na comparação do diâmetro dos traqueídes, entre as camadas de crescimento dos indivíduos controle e expostos ao petróleo, mais uma vez, observou-se que as diferenças mais marcantes foram àquelas obtidas, quando da

comparação nos indivíduos coletados na região do derramamento de petróleo, entre a última camada de crescimento (correspondente ao ano em que os indivíduos ficaram expostos à poluição) com as outras seis. Esses resultados podem ser observados nas figuras 25, 26 e 27.

Figura 25 – Média, erro e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados na superfície do solo (base).

Figura 26 – Média, erro e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a um metro da superfície do solo.

Figura 27 – Média, erro e desvio-padrão do diâmetro dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a dois metros da superfície do solo.

Em relação às medidas de diâmetro dos traqueídes, tanto nos indivíduos controle, quanto nos expostos à poluição, observou-se que houve variação radial mínima entre as camadas de crescimento, poucas diferem estatisticamente ao nível

de 5% de probabilidade. Ao longo do caule essa estrutura apresentou também, variações mínimas (figs. 25, 26 e 27).

A mesma tendência encontrada no sentido radial do caule para os indivíduos controle, foi observada por GIROUD (1977), FUKAZAWA & OHTANI (1982), BOSMAN et al. (1994), HELINSKA (1995), BOSMAN (1994) e URBINATI et al. (2003). A distinção entre os lenhos juvenil e adulto pode em algumas espécies, ser impossível de definir com base no diâmetro dos elementos vasculares. BUTTERFIELD et al. (1993) não observaram variação no diâmetro dos elementos de Hieronyma alchorneoides Allemao (Euphorbiaceae) e Vochvsia vaso em guatemalensis Donn. Sm. (Vochysiaceae). BOSMAN (1994) analisando a variação longitudinal em Shorea leprosula Mig. e S. pauciflora King. (Dipterocarpaceae), observou que a média no diâmetro dos elementos vasculares também seguiu padrão pouco consistente, mas muitas árvores mostraram aumento a partir da base em direção ao ápice, e somente duas das árvores analisadas apresentaram redução em torno de 10 m de altura do caule.

Nos indivíduos coletados na área do derrame contatou-se que na direção medula-câmbio, nas seis primeiras camadas de crescimento houve um comportamento dos traqueídes semelhante ao grupo controle em relação ao diâmetro, no entanto, quando da comparação da última camada de crescimento com as demais camadas, o que se observa é que houve maior variação no diâmetro dos traqueídes e que, portanto, esses foram afetados pela exposição ao petróleo, pois possuem diâmetros aproximadamente 7% menores em relação aos das camadas de crescimento anteriores e do grupo controle.

De acordo OEVER et al. (1981), a tendência mais marcante encontrada ao analisar a influência da disponibilidade hídrica sobre o lenho, é uma diminuição no tamanho dos elementos vasculares, principalmente no diâmetro desses elementos, em regiões mais secas.

Para o entendimento da relação entre a organização do sistema condutor e fatores ambientais, como a poluição do solo por petróleo, dois conceitos são aplicados: "eficiência" e "segurança" (ZIMMERMANN & BROWN, 1974; ZIMMERMANN, 1983).

O sistema condutor é condicionado pela disponibilidade hídrica do ambiente, desta forma, ele permite a melhor condutividade possível (eficiência), sem risco de ocorrer embolia (segurança). A seiva sobe à medida que é estabelecido um gradiente de pressão da base para o ápice da planta, uma vez que os líquidos não sofrem expansão de volume. Se a pressão é excessivamente negativa, a água passa para o estado de vapor formando bolhas, que continuam a crescer, devido à difusão de outros gases como, N₂, O₂ e CO₂, que estão dissolvidos na água, e à expansão volumétrica a que todos os gases são suscetíveis. Quando há a formação de bolhas, a pressão xilemática sobe até quase entrar em equilíbrio com a pressão atmosférica, parando por completo, o transporte hídrico (ZIMMERMANN & BROWN, 1974; ZIMMERMANN, 1983).

Dessa forma quanto maior o diâmetro dos elementos vasculares, maior a condutividade hidráulica e maior a eficiência na condução, por outro lado, mais suscetível para a formação de bolhas, que também, apresentam maior tamanho. Quanto maior o tamanho da bolha menor é a possibilidade dela voltar a se dissolver e, dessa forma, restabelecer a coluna d'água. Por outro lado, quanto menores os diâmetros dos elementos vasculares, maior é a resistência ao fluxo, maior é a adesão capilar da água às paredes celulares e, portanto menor é a probabilidade de ocorrer o rompimento da coluna d'água e formação de bolhas. Nos capilares mais finos, as bolhas são menores e mais fáceis de serem dissolvidas (ZIMMERMANN & BROWN, 1974; ZIMMERMANN, 1983).

As diferenças encontradas nos diâmetros do traqueídes quando comparadas às camadas de crescimento, podem ser ainda explicadas ao considerar o que LARCHER (1995; 2000), expõe sobre "o caminho da água na planta". A maior velocidade do fluxo transpiracional depende da estrutura anatômica do sistema de vasos condutores. Em situações de aumento de tensão no sistema condutor, como por exemplo, dificuldade na absorção de água, a coesão da coluna de água pode ser rapidamente rompida. Com a quebra da coluna de água e a perda da pressão negativa dos vasos condutores ocorre entrada do ar no xilema (embolia), interrompendo no local o fluxo transpiracional. O lenho que possui alta condutividade hidráulica específica no xilema é suscetível ao embolismo se comparado com elementos condutores com diâmetro pequeno no lume.

Espessura da parede celular

As mensurações da espessura da parede celular dos traqueídes foram realizadas em 50 destes elementos, em microscópio invertido (OLYMPUS – IX50/IX70), com captura de imagem, pelo software (IMAGE – PROPLUS), obtendo os resultados apresentados nas tabelas 13, 14 e 15.

Tabela 13 – Média e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas na superfície do solo (base).

BASE											
Camadas de crescimento	Ambiente	n	Média	Desvio padrão							
	Controle	150	4,52	1,17							
1	Poluição	300	2,75	0,79							
	Controle	150	4,67	0,91							
2	Poluição	300	4,12	0,97							
	Controle	150	4,62	1,09							
3	Poluição	300	4,60	1,00							
	Controle	150	4,69	0,95							
4	Poluição	300	4,16	1,02							
	Controle	150	4,45	1,04							
5	Poluição	300	4,53	1,19							
	Controle	150	4,64	1,09							
6	Poluição	300	4,24	1,05							
	Controle	150	4,52	1,15							
7	Poluição	300	4,27	1,06							

Tabela 14 – Média e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a um metro da superfície do solo.

1 m										
Camadas de crescimento	Ambiente	n	Média	Desvio padrão						
	Controle	150	4,99	1,19						
1	Poluição	300	0,88	2,81						
	Controle	150	4,94	1,06						
2	Poluição	300	1,13	4,34						
	Controle	150	4,85	1,04						
3	Poluição	300	1,15	4,41						
	Controle	150	4,74	1,20						
4	Poluição	300	1,06	4,47						
	Controle	150	4,90	1,08						
5	Poluição	300	0,93	4,19						
	Controle	150	4,99	1,13						
6	Poluição	300	0,96	4,33						
	Controle	150	4,97	1,09						
7	Poluição	300	0,89	4,17						

Tabela 15 – Média e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a dois metros da superfície do solo.

2 m										
Camadas de crescimento	Ambiente	n	Média	Desvio padrão						
	Controle	150	5,06	1,20						
1	Poluição	300	2,69	0,73						
	Controle	150	4,89	1,06						
2	Poluição	300	4,18	1,02						
	Controle	150	4,86	1,07						
3	Poluição	300	4,40	1,11						

(cont.) Tabela 15 – Média e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento dos indivíduos de *P. lambertii* expostos à poluição e controle, em amostras coletadas a dois metros da superfície do solo.

	Controle	150	4,74	1,10
4	Poluição	300	4,32	1,05
	Controle	150	4,75	1,11
5	Poluição	300	4,27	0,92
	Controle	150	5,13	1,01
6	Poluição	300	4,01	0,92
	Controle	150	4,69	1,20
7	Poluição	300	4,10	0,94

A partir destes dados, foram testadas as hipóteses de que a média da espessura da parede celular dos traqueídes, nas alturas, superfície do solo (base), um metro e dois metros da superfície do solo, entre as camadas de crescimento, não são estatisticamente diferentes, tanto nos indivíduos expostos à poluição, como nos indivíduos controle. Os dados não apresentaram normalidade, por isso foi utilizado o teste não paramétrico "Wilcoxon Matched Pairs Test", obtendo os resultados apresentados nas tabela 16.

Tabela 16 – Espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de *P. lambertii* e expostos à poluição.

CONTROLE							POLUIÇÃO					
Camada	Base		1 m		2 m		base		1 m		2 m	
	Ζ	Р	Z	Р	z	р	Z	р	Z	р	Z	р
1/2	0,89	0,37	0,45	0,65	1,52	0,12	12,35	0,00	12,62	0,00	13,77	0,00
1/3	1,17	0,24	1,06	0,28	1,45	0,14	14,19	0,00	12,84	0,00	13,69	0,00
1/4	1,62	0,10	1,57	0,11	2,34	0,01	13,13	0,00	13,52	0,00	13,77	0,00
1/5	0,65	0,51	0,82	0,41	2,42	0,01	14,44	0,00	12,76	0,00	14,26	0,00
1/6	0,95	0,33	0,00	0,99	0,71	0,47	13,58	0,00	13,76	0,00	13,74	0,00
1/7	0,03	0,97	0,27	0,77	3,01	0,00	13,50	0,00	13,17	0,00	13,50	0,00
2/3	0,48	0,62	0,65	0,51	0,32	0,74	6,47	0,00	0,70	0,47	3,05	0,00
2/4	0,40	0,68	1,36	0,17	0,98	0,32	1,04	0,29	1,53	0,12	1,82	0,06
-----	------	------	------	------	------	------	------	------	------	------	------	------
2/5	2,22	0,02	0,21	0,82	1,26	0,20	4,31	0,00	2,22	0,02	1,49	0,13
2/6	0,01	0,98	0,68	0,49	1,88	0,05	1,02	0,30	0,01	0,98	2,29	0,02
2/7	1,42	0,15	0,07	0,93	1,77	0,07	2,09	0,03	2,04	0,04	1,13	0,25
3/4	0,44	0,65	0,46	0,64	1,03	0,30	6,05	0,00	0,89	0,37	1,00	0,31
3/5	1,55	0,11	0,32	0,74	0,84	0,39	1,67	0,09	2,86	0,00	2,00	0,04
3/6	0,20	0,83	1,34	0,17	2,02	0,04	5,05	0,00	0,93	0,34	4,60	0,00
3/7	1,10	0,27	0,98	0,32	1,64	0,09	4,83	0,00	3,13	0,00	4,03	0,00
4/5	1,94	0,05	1,18	0,23	0,32	0,74	4,13	0,00	4,44	0,00	0,60	0,54
4/6	0,63	0,52	1,95	0,05	3,11	0,00	0,89	0,37	2,57	0,00	3,99	0,00
4/7	1,28	0,19	1,67	0,09	0,39	0,68	1,86	0,06	4,26	0,00	2,78	0,00
5/6	1,58	0,11	0,99	0,31	3,06	0,00	2,76	0,00	2,58	0,00	3,60	0,00
5/7	0,59	0,55	0,46	0,64	0,45	0,64	3,51	0,00	0,07	0,94	2,09	0,03
6/7	0,90	0,36	0,03	0,97	3,12	0,00	0,26	0,78	2,25	0,02	0,98	0,32

(cont.) Tabela 16 – Espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento dos indivíduos controle de *P. lambertii* e expostos à poluição.

Onde: os números da coluna **camada** referem-se às comparações feitas entre as camadas de crescimento; "**Z**" refere-se ao Z calculado do teste não paramétrico "Wilcoxon Matched Pairs Test" e "**p**" refere-se ao nível de significância.

A análise da espessura da parede celular dos traqueídes nos indivíduos do grupo controle revelou que não houve variação entre as camadas de crescimento (figs. 28a, 29a e 30a). As médias não diferem estatisticamente ao nível de 5% de probabilidade, enquanto nas plantas coletadas na região poluída o que se observou, foi que na direção medula-câmbio, nas seis primeiras camadas de crescimento houve um comportamento dos traqueídes semelhante ao grupo controle. Porém quando comparada a última camada de crescimento com as demais, constatou-se com que intensidade, a parede das células dessas plantas, foram afetadas pela exposição ao petróleo, sendo aproximadamente 50% menos espessas do que as camadas de crescimento anteriores e o grupo controle (figs. 28b, 29b e 30b).

Segundo TSOUMIS (1968), a variação na estrutura anatômica da madeira é influenciada pela idade do câmbio vascular. Assim, três períodos de desenvolvimento do câmbio são reconhecidos: 1º período de juvenilidade, 2º período

de maturidade ou fase adulta, e 3º período de senescência. Para ZOBEL & TALBERT (1984), a duração desses períodos é difícil de ser determinada e, em algumas espécies, a mudança do lenho juvenil para o adulto pode ser abrupta, enquanto que em outras, pode ser muito gradual.

Figura 28 – Média, erro e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados na superfície do solo (base).

Figura 29 – Média, erro e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a um metro da superfície do solo.

Figura 30 – Média, erro e desvio-padrão da espessura da parede celular dos traqueídes (μm) entre as camadas de crescimento de indivíduos de *P. lambertii* controle (a) e expostos à poluição (b) coletados a dois metros da superfície do solo.

A tendência observada nos traqueídes axiais da última camada de crescimento do grupo exposto à poluição, correspondente ao ano em que os indivíduos sofreram exposição ao petróleo, onde as deficiências hídricas foram mais

severas, pelo fato do petróleo presente nas raízes formar um impedimento à passagem da água foi a ocorrência de traqueídes com as paredes celulares menos espessas. Esse resultado não concorda com aqueles encontrados por BARAJAS-MORALES (1985) e LINDORF (1994), pois esses autores, na realização de estudos sobre a influência da disponibilidade hídrica na estrutura do lenho, revelaram como tendências mais marcantes, a presença de maior espessamento nas paredes celulares dos elementos vasculares em ambiente mais seco.

Liese et al. (1975), Keller (1980), Halbwachs & Wimmer (1987) e Wimmer & Halbwachs (1992) citados por LARCHER (2000), relatam que a alteração que pode ocorrer no lenho de coníferas expostas ao estresse da poluição é a diminuição da espessura e densidade da parede celular.

Muitos autores defendem a hipótese de que, em condições de deficiência de nutrientes, ocorre uma redução no transporte da sacarose das folhas para outras partes da planta, pela maior produção de calose, a qual provoca a obstrução do floema, principal via de transporte da sacarose (VENTER & CURRIER, 1977; LOUÉ, 1993), ou pela redução da síntese de sacarose por inibição da ação de fosforilases ou redução na síntese de uracila, precursor da uridina difosfato glucose, coenzima essencial na formação da sacarose (LOUÉ, 1993; MARSCHNER, 1995). Nesse caso, a menor espessura das paredes poderia ser conseqüência da menor disponibilidade de carboidratos no xilema, uma vez que essas substâncias são à base dos constituintes da parede do xilema.

4.3 PRESENÇA DE PETRÓLEO E/OU SEUS COMPOSTOS NAS AMOSTRAS

A realização de Cromatografias em Camada Delgada (CCD), utilizando o petróleo que vazou, mais o produto da extração com solvente químico do lenho dos indivíduos coletados na região do derrame (nas três alturas, superfície do solo, a um metro e dois metros da superfície do solo), demonstrou que tanto o petróleo, quanto os produtos que fazem parte de sua constituição, não foram absorvidos pelas plantas. Desta maneira, pode-se aliar este fato aos resultados obtidos no presente estudo reafirmando a possibilidade do petróleo ter formado uma barreira impermeabilizante na superfície das raízes, impedindo a entrada de água. Conseqüentemente os indivíduos expostos à poluição sofreram alterações

estruturais tanto nas folhas como no lenho, de tal forma a minimizar as pressões causadas pelas condições de estresse hídrico. No início, essas alterações, podem causar um estado no qual o aumento na demanda leva a perda de estabilidade das funções, seguida pela normalização e aumento da resistência.

O resultado obtido não concorda com o proposto por Ranwell (1968) e Cowell (1969) citados PEZESHIKI et al. (1999), afirmando que o principal impacto físico do óleo sobre a superfície do solo está relacionado com a restrição do movimento de oxigênio no solo, podendo resultar em mais condições anaeróbicas do solo, deste modo agravando o estresse de oxigênio sobre as raízes das plantas. Importante ressaltar ainda, as alterações que foram observadas no lenho, não foram citadas para os casos de plantas que crescem em solos com deficiências de oxigênio.

Dessa forma, a tendência observada nos traqueídes da última camada de crescimento, correspondente ao ano em que os indivíduos sofreram exposição ao petróleo, sob condições de estresse hídrico, foi a ocorrência de traqueídes mais curtos, com menores diâmetros e a espessura das paredes celulares acompanhando o tamanho desses elementos. Possibilitando desta maneira, a maior segurança na garantia da manutenção do transporte hídrico. Impedindo à formação de bolhas e, conseqüentemente o rompimento da coluna d'água.

Liese et al. (1975), Keller (1980), Halbwachs & Wimmer (1987) e Wimmer & Halbwachs (1992) citados por LARCHER (2000), relatam que as possíveis alterações no lenho de coníferas expostas ao estresse da poluição são, diminuição do crescimento cambial, diminuição da espessura e densidade das paredes celulares, redução do tamanho dos traqueídes, redução do diâmetro dos traqueídes, redução do diâmetro das pontoações areoladas e diminuição na produção de substâncias de reserva e na proporção de lignina; aumento da proporção de tecidos esclerenquimáticos, maior número de traqueídes por unidade de área, aumento no número de pontoações areoladas por traqueíde, aumento no número de raios por unidade de área transversal e aumento de outras incrustações celulares.

Embora essas alterações sejam citadas pelos autores para coníferas expostas à poluição atmosférica, principalmente pela emissão de dióxido de enxofre (SO₂), muitas dessas alterações foram observadas na estrutura do lenho dos indivíduos expostos à poluição por petróleo.

3.2 COMPOSIÇÃO POLISSACARÍDICA DA PAREDE CELULAR

Para análise da composição polissacarídica da parede celular, as amostras foram submetidas à Cromatografia Líquido-Gasosa (GLC), comparando-se com padrões de ramnose, fucose, arabinose, xilose, manose, galactose e glucose e os resultados estão expressos nas tabelas 18, 19 e 20.

Tabela 17 – Média dos monossacarídeos da parede celular, entre as camadas de crescimento, de indivíduos de *P. lambertii* expostos ao petróleo e controle, coletados na superfície do solo (BASE).

	BASE										
Indivíduos	Camadas	CARBOIDRATOS (%)									
mainados	Cumadas	Ram	Fuc	Ara	Xil	Man	Gal	Glu			
CONTROLE	1	8,2	2,2	9,2	26,4	10,8	22,1	21,1			
POLUIÇÃO	1	17,8	12,4	11,4	25,8	18,6	9,8	4,2			
CONTROLE	2 a 7	7,8	1,2	11,6	29,7	21,2	19,0	9,6			
POLUIÇÃO	2 a 7	7,5	6,1	13,0	29,0	24,8	13,2	6,3			

Onde: Ram = ramnose; Fuc = fucose; Ara = arabinose; Xil = xilose; Man = manose; Gal = galactose; Glu = glucose.

Tabela 18 – Média dos monossacarídeos da parede celular, entre as camadas de crescimento, de indivíduos de *P. lambertii* expostos ao petróleo e controle, coletados a um metro da superfície do solo.

	1 METRO											
Indivíduos	Camadas											
		Ram	Fuc	Ara	Xil	Man	Gal	Glu				
CONTROLE	1	9,3	0,3	9,5	27,1	30,7	17,9	5,1				
POLUIÇÃO	1	16,4	19,3	12,7	25,5	13,8	8,5	3,8				

(cont.) Tabela 18 – Média dos monossacarídeos da parede celular, entre as camadas de crescimento, de indivíduos de *P. lambertii* expostos ao petróleo e controle, coletados a um metro da superfície do solo.

CONTROLE	2 a 7	9,2	1,6	12,8	34,5	23,8	11,2	6,9
POLUIÇÃO	2 a 7	5,9	14,4	14,3	26,2	18,4	14,2	6,7

Onde: Ram = ramnose; Fuc = fucose; Ara = arabinose; Xil = xilose; Man = manose; Gal = galactose; Glu = glucose.

Tabela 19 – Média dos monossacarídeos da parede celular, entre as camadas de crescimento, de indivíduos de *P. lambertii* expostos ao petróleo e controle, coletados a dois metros da superfície do solo.

	2 METROS										
Indivíduos	Camadas			CAR	BOIDRATOS (%)						
	Camadao	Ram	Fuc	Ara	Xil	Man	Gal	Glu			
CONTROLE	1	9,6	1,9	11,6	33,4	20,0	16,5	7,0			
POLUIÇÃO	1	12,4	11,3	16,9	31,8	13,5	10,5	3,7			
CONTROLE	2 a 7	22,3	1,0	10,0	24,9	18,1	16,9	6,9			
POLUIÇÃO	2 a 7	14,8	4,8	12,7	28,3	20,9	12,6	5,8			

Onde: Ram = ramnose; Fuc = fucose; Ara = arabinose; Xil = xilose; Man = manose; Gal = galactose; Glu = glucose.

A partir desses dados, foi calculada a média dos monossacarídeos presentes nas paredes celulares dos traqueídes dos indivíduos expostos à poluição e controle. Foi calculada ainda, a média dos monossacarídeos presentes nas paredes celulares dos traqueídes da última camada de crescimento (1) e das demais camadas de crescimento (2 a 7) dos indivíduos expostos à poluição e dos indivíduos controle. Os resultados podem ser visualizados nas figuras 31 e 32, respectivamente.

Na comparação das porcentagens dos monossacarídeos presentes nas paredes celulares entre os indivíduos controle e expostos à poluição, constatou-se um aumento nos teores de ramnose, fucose e arabinose, e uma redução nos teores de xilose, manose, galactose e glucose (fig. 31). Fato semelhante ocorreu quando foram comparadas as camadas de crescimento, porém uma redução ainda mais acentuada nas porcentagens de manose e glucose na última camada de crescimento (fig. 32).

Importante destacar a redução de manose e glucose na última camada de crescimento, correspondente ao ano em que os indivíduos estiveram expostos ao petróleo, porque BOCHICCHIO (1999), em estudo realizado sobre as hemiceluloses de *Podocarpus lambertti*, cita que a composição monossacarídica de coníferas deve apresentar teores mais elevados de manose e glucose, pois as hemiceluloses desse grupo de plantas, de maneira genérica, são constituídas por um polissacarídeo principal, *O*-acetil-galactoglucomanana (20-25%), onde grupos de *O*-acetil e galactose substituem unidades de glucose e manose da cadeia principal.

O menor grau de lignificação das paredes celulares dos traqueídes dos indivíduos expostos ao petróleo pode estar refletindo também na redução de glucose e manose, ou vice-versa, porque alguns autores (AZUMA et al., 1981; DAS et al., 1981; DAS et al., 1984 a e b; JOSELEAU et al., 1993; REICHER, 1984; SJÖSTRÖM,

1993), avaliaram e confirmaram a existência de interações entre as hemiceluloses e outros componentes da parede celular secundária, principalmente a lignina.

Figura 32 – Média das porcentagens de monossacarídeos do lenho de indivíduos de *P. lambertii* expostos ao petróleo e controle, entre as camadas de crescimento.

SJÖSTRÖM (1993) confirma o tipo de interação envolvendo as hemiceluloses e a lignina. A lignina é um biopolímero estrutural, formado por unidades de fenilpropano, constituinte da parede celular dos vegetais vasculares e que se reproduzem por sementes. Em Pinophyta, podem ser chamadas de "guaiacil lignina", referência ao produto de polimerização do álcool coniferílico, facilmente identificada quando se realiza a oxidação com nitrobenzeno que resulta, principalmente, na vanilina e pequenas quantidades de hidrobenzaldeído. De acordo com os resultados obtidos no presente estudo sugere-se que, no período em que os indivíduos de *Podocarpus lambertii* ficaram expostos à poluição (de um ano), não ocorreu absorção de petróleo e/ou seus compostos. Dessa maneira, o que se pode concluir é que o petróleo, realmente formou uma barreira impermeabilizante na superfície das raízes restringindo e/ou dificultando a entrada de água, conseqüentemente os indivíduos expostos à poluição sofreram alterações estruturais tanto nas folhas como no lenho de tal forma a minimizar as pressões causadas pelas condições de estresse hídrico. Porém com o passar do tempo, se os limites de tolerância ou capacidade de adaptação forem transgredidos, pode ocorrer injúria permanente ou mesmo a morte desses indivíduos.

A deficiência hídrica resulta em uma diminuição no volume celular, um aumento na concentração e progressiva desidratação do protoplasto. Não há processo vital que não seja afetado de alguma forma pela diminuição do potencial hídrico. No entanto, algumas plantas têm a capacidade minimizar os efeitos da dessecação por vários mecanismos que as capacitam a manter um potencial hídrico favorável nos tecidos pelo maior tempo possível, apesar do déficit hídrico. Este evite ou adiamento pode ser alcançado por meio de uma absorção de água mais eficiente, pela redução da superfície transpirante e pela alta capacidade de condução de água.

No presente estudo foram observadas várias alterações nas folhas e no xilema secundário de *Podocarpus lambertii* para evitar ou adiar o estado de dessecamento das células ou tecidos. Em relação à superfície foliar, mais precisamente, à redução da área foliar e ao maior espessamento da folhas, devido aos aumentos ocorridos nas espessuras da cutícula e do mesofilo foliar, quando comparados os parênquimas clorofilianos, principalmente, do parênquima clorofiliano paliçádico, FAHN (1989) afirma, que essa alteração, pode influir no processo fotossintético, aumentando desta forma, a eficiência das folhas.

Talvez essa tendência ocorrida nas folhas dos indivíduos expostos ao petróleo seja uma resposta ao estresse da poluição, e reflita uma compensação das folhas, pois houve redução da área foliar e aumento na espessura da cutícula para evitar a transpiração, devido à restrição de água, porém aumentou-se a espessura

do parênquima, principalmente do tecido paliçádico, uma vez que a grande maioria dos cloroplastos se encontra nas células deste tecido, ampliando assim, em menor área foliar, o tamanho relativo da área assimilatória.

Ainda em relação às folhas, o aumento no número de estômatos nos indivíduos expostos à poluição pode ser considerado como uma forma de compensação à menor área foliar, porém sem aumentar o volume de água perdida por transpiração. LARCHER (2000) afirma que em condições de deficiência hídrica, os estômatos presentes nas folhas são menores, mas a densidade estomática é maior. Essa modificação oferece condições para uma redução mais rápida da transpiração por meio da regulação do fechamento estomático.

Em relação às modificações estruturais ocorridas nas células dos tecidos do lenho, é preciso lembrar mais uma vez que esse é condicionado pela disponibilidade hídrica do ambiente e que pode sofrer alterações com o objetivo de permitir a melhor condutividade possível (eficiência), sem risco de ocorrer embolia (segurança).

Assim, a tendência observada nos elementos de condução da última camada de crescimento foi a ocorrência de traqueídes axiais mais curtos, com menores diâmetros e a espessura das paredes celulares, mais delgadas, acompanhando o tamanho desses elementos. Possibilitando, dessa maneira, a maior segurança na garantia da manutenção do transporte hídrico, impedindo à formação de bolhas e, conseqüentemente, o rompimento da coluna d'água.

Para o xilema secundário do caule, já é consenso que fatores ambientais afetam as dimensões e até o arranjo dos elementos vasculares (BAAS & SCHWEINGRUBER, 1987; CARLQUIST, 1988; ALVES & ANGYALOSSY-ALFONSO, 2000). Comparativamente, elementos traqueais de menor diâmetro estão associados a ambientes menos favoráveis (BAAS & SCHWEINGRUBER, 1987), pois implicam num aumento na segurança no transporte, situação desejável quando a planta está submetida a algum tipo de estresse.

Sabendo então, que o sistema condutor é condicionado pela disponibilidade hídrica do ambiente, permitindo a melhor condutividade possível (eficiência), sem risco de ocorrer embolia (segurança). O fato de *Podocarpus lambertii* ter permanecido após a exposição ao petróleo, quando comparada, à maioria das outras espécies, que foi eliminada, é possível de ser explicado ao considerar à sua estrutura xilemática, que é relativamente simples, apresentando traqueídes como células condutoras de água e sais minerais. O lenho das Magnoliophyta é

constituído por elementos de vaso, esses elementos são, em geral, considerados mais eficientes na condução de água do que os traqueídes, uma vez que a água flui, relativamente livre, de um elemento de vaso ao outro por meio das placas de perfuração. Porém a água, ao passar de um traqueíde ao outro, atravessa as membranas das pontoações de um par de pontoações. Essas membranas oferecem resistência à passagem de água, bloqueando a passagem de até as menores bolhas de ar que podem se formar em um traqueíde, por exemplo, diante da deficiência hídrica, ficando essas, restritas àquele traqueíde e qualquer obstrução resultante do fluxo de água é limitada também.

Portanto os traqueídes de coníferas oferecem mais segurança na condução de água do que os elementos de vasos de Magnoliophyta, pois a passagem de ar pode ser evitada pelo deslocamento lateral da membrana de pontoação, de tal maneira que o toro bloqueia uma das aberturas do par de pontoações areoladas, impedindo a passagem da bolha de ar. E, além disso, quanto menor é o diâmetro dos elementos condutores, como é o caso dos traqueídes, maior é a coesão da água na passagem pelo xilema, sendo menor então, o risco de ocorrer embolia.

6.1 FOLHAS DE Podocarpus lambertii

- As superfícies das folhas variam quando ocorre a exposição dos indivíduos ao petróleo, sendo assim, as folhas destes indivíduos possuem comprimentos, larguras e áreas, respectivamente, ca. 75%, 40% e 78%, menores do que as folhas dos indivíduos coletados fora da região do derrame, visando reduzir a taxa de transpiração;
- A cutícula das folhas dos indivíduos coletados na região exposta à poluição por petróleo apresenta-se, em média, 75% com maior espessura do que a cutícula das folhas dos indivíduos controle;
- Outra característica que variou nos indivíduos coletados na área onde ocorreu o vazamento do petróleo foi a densidade estomática, em torno de 67% maior;
- A espessura dos tecidos foliares variou de maneira inversa às dimensões foliares (comprimento, largura e área);
- As folhas dos indivíduos coletados na região exposta ao vazamento por petróleo possuem maior espessura quando comparada às folhas dos indivíduos controle.

6.2 LENHO DE Podocarpus lambertii

- Qualitativamente, as amostras da última camada de crescimento dos indivíduos expostos ao petróleo mostram-se muito variáveis em características como:
 - Redução na largura das camadas de crescimento;
 - Paredes celulares dos traqueídes axiais deformadas e com as extremidades arredondadas;

• Diminuição no comprimento, diâmetro e espessura das paredes celulares dos traqueídes axiais;

As células parenquimáticas demonstram alterações em sua morfologia;

- Paredes celulares dos traqueídes com maior número de pontoações;
- Maior freqüência de máculas;
- As paredes celulares dos traqueídes com menor grau de lignificação.
- Quantitativamente, nas análises realizadas no lenho, as amostras, principalmente da última camada de crescimento, demonstram variação nas mensurações dos traqueídes entre os dois ambientes. Esses elementos, nas alturas, superfície do solo, um e dois metros apresentam diminuição na média, dos comprimentos de 44%, 39,83% e 32,44%, respectivamente; nos diâmetros de 10,2%, 7,9% e 2,9%, respectivamente; e nas espessuras das paredes celulares de 40%, 42,9% e 48%, respectivamente;
- A composição polissacarídica das paredes celulares varia entre os indivíduos coletados nos dois ambientes e entre as camadas de crescimento;
- Na comparação das porcentagens dos monossacarídeos entre os indivíduos controle e expostos à poluição, constatou-se um aumento nos teores de ramnose, fucose e arabinose, e uma redução nos teores de xilose, manose, galactose e glucose;
- Fato semelhante ocorreu quando da comparação entre as camadas de crescimento, porém havendo uma redução ainda maior nas porcentagens de manose e glucose.

6.3 CONCLUSÃO GERAL

- As alterações ocorridas, tanto nas folhas, como no lenho dos indivíduos expostos à poluição por petróleo, podem estar refletindo os efeitos e/ou as adaptações das plantas para a sobrevivência sob condições de estresse hídrico;
- Os resultados do presente estudo se assemelham à maioria daqueles obtidos por vários pesquisadores quando da análise da influência do déficit hídrico sobre a estrutura das plantas;
- Existe correlação entre a anatomia do lenho com as características morfológicas das folhas;

- A estrutura do lenho demonstra, principalmente, uma modificação para condução de menores volumes de água sem o risco de ocorrer embolia;
- As folhas demonstram alterações estruturais visando reduzir a perda de água por transpiração, sem comprometer a superfície assimilatória.

7 REFERÊNCIAS

ALVES, E. S. & ANGYALOSSY-ALFONSO, V. Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. **IAWA Journal**, v. 21, n. 1, p. 3-30, 2000.

ALVES, E. S. The effects of the pollution on wood of *Cecropia glazioui* (Cecropiaceae). **IAWA Journal**, v. 16, n. 1, p. 69-80, 1995.

ALVES, P. L. C. A. Efeitos nutricionais, fisiológicos e bioquímicos da chuva ácida simulada e do latossolo vermelho-amarelo de Cubatão – SP em soja (*Glycine max* (L.) Merril). Viçosa, 1988. Tese de doutorado, Universidade Federal de Viçosa.

ALVES, P. L. C. A.; OLIVA, C. M. A. Reações da soja à chuva ácida e solo contaminado. **Ambiente**, v. 7, n. 1, p. 34-39, 1993.

AZEVEDO, A. A. **Ação do flúor em chuva simulada sobre a estrutura foliar de** *Glycine max* (L.) Merril). São Paulo, 1995. Tese de doutorado, Universidade de São Paulo.

AZUMA, J. I.; TAKAHASHI, N. & KOSHIJIMA, T. Isolation and characterization of lignin-carbohydrate complex from the milled-wood lignin fraction of *Pinus densiflora* Sieb *et* Zucc. **Carbohydr. Res.**, Amsterdã, v. 93, p. 91-104, 1981.

BAAS, P. & BAUCH, J. The effects of environmental pollution on wood structure and quality. **IAWA Bull**, v. 7, n. 4, p. 267-415, 1986.

BAAS, P. & SCHWEINGRUBER, F. H. Ecological trends in wood anatomy of trees, shrubs and climbers from Europe. **IAWA Bull**., v. 8, n. 3, p. 245-274, 1987.

BAAS, P. The wood anatomical range in *llex* (Aquifoliaceae) and its ecological and phylogenetic significance. **Blumea**, n. 21, p. 193-258. 1973.

BAAS, P., WERKER, E. & FAHN, A. Some ecological trends in vessel characters. **IAWA Bul**., v. 4, n. 2, p. 141-159, 1983.

BAAS, P., WHEELER, E. & FAHN, A. Some ecological trends in vessel characters. **IAWA Bulletin**, v. 4, p.141-159, 1983.

BACKES, A. **Contribuição ao conhecimento da Ecologia da Mata de Araucária**. São Paulo, 1973. Tese (Doutorado em Botânica) – Instituto de Biociências – Universidade Federal de São Paulo. BALAGANSKAYA, E. D.; KUDRJAVTSEVA, O. V. Change of the morphological structure of leaves of *Vaccinium vitisidaea* caused by heavy metal pollution. **Chemosphere**, v. 36, n. 4-5, p. 721-726, 1998.

BARAJAS-MORALES, J. Wood structural differences between trees of two tropical forests in Mexico. **IAWA Bull**. v. 6, n. 4, p. 355-364, 1985.

BATALHA, J. R. F.; GUIMARÃES, E. T.; LOBO, D. J. A.; LICHTENFELDS, A. J. F. C.; DEUR, T.; CARVALHO, H. A.; DOMINGOS, M.; RODRIGUES, G. S.; SALDIVA, P. H. N. Exploring the clastogenic effects of air pollutants in São Paulo (Brazil) using the *Tradescantia* micronuclei assay. **Mutation Research**, n. 426, p. 229-232, 1999.

BELL, P. R. Green plants – Their origin and diversity. Cambridge: Cambridge, 1998.

BERLYN, G. P. & MIKSCHE, J. P. **Botanical microtechnique and cytochemistry**. Iowa : Iowa University, 1976. 326 p.

BIGARELLA, J. J.; MARQUES FILHO, P. L. & AB'SÁBER, A. 1961. Origem e ambiente de deposição da bacia de Curitiba. **Boletim Paranaense de Geografia**. Curitiba, n. 4 e 5, p. 71-81.

BOCHICCHIO, R. **Hemiceluloses do xilema do gênero** *Podocarpus*. Curitiba, 1999. 128 f. Dissertação (Mestrado em Bioquímica) – Setor de Ciências Biológicas, Universidade Federal do Paraná.

BOCHICCHIO, R.; GANTER, J. L. M. S. & REICHER, F. Isolation of hemicelluloses from the xylem of *Podocarpus lambertii*: deslignification process. In: Proceedings from the third International Symposium on Natural Polymers and Composites. **Anais...** São Pedro, 2000. p. 189-193.

BOEGER. M. R. T. Morfologia foliar e aspectos nutricionais de espécies arbóreas em três estádios sucessionais de Floresta Ombrófila Densa de Terras Baixas, Paranaguá – PR. Curitiba, 2000, 150 f. Tese (Doutorado em Engenharia Florestal) – Setor de Ciências Agrárias, Universidade Federal do Paraná.

BOSMAN, M. T. M.; KORT, I. DE; GENDEREN, M. K. VAN & BAAS, P. Radial variation in wood properties of naturally and plantation grown light red meranti (*Shorea* sp., Dipterocarpaceae). **IAWA Journal**, n.15, p. 111-120, 1994.

BUJOKAS, W. M. **O impacto da poeira de cimento em Schinus terebinthifolius Radd (Anacardiaceae)**. Curitiba, 2001. 95 f. Dissertação (Mestrado em Botânica) – Setor de Ciências Biológicas, Universidade Federal do Paraná. BÜNDCHEN, M. Respostas morfo-anatômicas e fisiológicas em folhas de *Araucaria angustifolia* (Bertol.) Kuntze (ARAUCARIACEAE) sujeitas à poluição urbana. Curitiba, 2000. 147 f. Dissertação (Mestrado em Botânica), Setor de Ciências Biológicas, Universidade Federal do Paraná.

BURGER, L. M. & RICHTER, H. G. Anatomia da madeira. São Paulo: Nobel, 1991. 154 p.

BUSTAMANTE, M; OLIVA, C. M. A.; SANT'ANNA, R.; LOPES, N. F. Sensibilidade da soja ao flúor. **Rev. Bras. Fisiol. Veg.**, v. 5, n. 2, p. 151-157, 1993.

BUTTERFIELD, R. P.; CROOK, R. P.; ADANS, R. & MORRIS, R. Radial variation in wood specific gravity, fibre length and vessel area for two Central American hardwoods: *Hyeronima alchorneoides* and *Vochysia guatemalensis*: natural and plantation - grown trees. **IAWA Journal**, n. 14, p. 153-161, 1993.

BUVAT, R. **Ontogeny, cell diferentiation and structure of vascular plants**. Berlin: Springer – Verlag, 1989.

CARLQUIST, S. Ecological strategies of xylem evolution. Berkeley: University of California, 1975. 259 p.

CARLQUIST, S. Ecological factors in wood evolution: a floristic approach. **Amer. J. Bot.**, v. 64, p. 887- 869, 1977.

CARLQUIST, S. Comparative wood anatomy – systematic ecological and evolutionary aspects of Dicotiledonean wood. Berlin: Springer Verlag, 1988. 436 p.

CARPITA, N. & GIBEAUT, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. **Plant Journal**, v. 3, n. 1, p. 1-30, 1993.

CARPITA, N.; McCANN, M. & GRIFFING, L. R. The plant extracellular matrix: news from the cell's frontier. **Plant Cell**, v. 8, n. 9, p. 1451-1463, 1996.

CECCANTINI, G. Anatomia ecológica do lenho de espécies de cerrado e de mata: *Casearia sylvestris* Sw. e *Machaerium villosum* Vog. São Paulo, 1996. 117 f. Dissertação (Mestrado em Botânica) - Instituto de Biociências, Universidade de São Paulo.

CECY, A. T. Efeitos da poluição aérea e da chuva ácida em folhas de *Podocarpus lambertii* Klotzch ex Endch. (Podocarpaceae), na região metropolitana de Curitiba, PR. Curitiba, 2001. 89 f. Dissertação (Mestrado em Botânica) – Setor de Ciências Biológicas, Universidade Federal do Paraná. CUTTER, E. G. Anatomia vegetal - Parte I: células e tecidos. 2. ed. São Paulo: Rocca, 1986-1987. 336p.

CUTTER, E. G. Importance and state of ecological anatomic studies. In: 2^o Congresso Latino-Americano de Botânica; XXIX Congresso Nacional de Botânica. **Anais...** Brasília, Sociedade Botânica do Brasil. 1978.

DAS, N. N.; DAS, S. C.; DUTT, A. S.; ROY. A. Lignin-xylan linkage in jute fiber (*Corchorus capsularis*). **Carbohydr. Res.**, Amsterdã, v. 94, p. 73-82, 1981.

DAS, N. N.; DAS, S. C.; SARKAR. A. K. & MUKHERJEE, K. Lignin-xylan ester linkage in mesta fiber (*Hibiscus cannabinus*). **Carbohydr. Res.**, Amsterdã, v. 129, p. 197-207, 1984b.

DAS, N. N.; DAS, S. C. & MUKHERJEE, K. On the linkage between lignin and 4-Ometil-D-glucurono-D-xylan in jute fiber (*Corchorus capsularis*). **Carbohydr. Res.**, Amsterdã, v. 127, p. 345-348, 1984a.

DIGBY, J.; WAREING, P. F. The relationship between endogenous hormone levels in the plant and seasonal aspects of cambial activity. **Annals of Botany**, v. 120, p. 607-622, 1966.

DOMINGOS, M.; KLUMPP, A.; KLUMPP, G. Air pollutants impact on the Atlantic Forest in the Cubatão region. **Ciência e Cultura**, São Paulo, v. 50, n. 4, p. 230-236, 1998.

DUARTE, A. P. Tentativa para explicar a ocorrência de duas espécies de *Podocarpus* no Brasil. **Brasil Florestal**, v. 4, p. 53-66, 1973.

DUTTA, T.R. & McILRATH, J. Effects of boron on growth and lignification in sunflower tissue and organ cultures. **Botanical Gazette**, Chicago, v. 125, p. 89-96, 1964.

EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema brasileiro de classificação de solos – 5**^a aproximação. Rio de Janeiro, 1999. 412 p.

ESAU, K. Anatomia das plantas com sementes. São Paulo : Edgard Blücher, 1990. 293 p.

ESAU, K. Anatomia Vegetal. 3. ed. Barcelona : Omega, 1985. 160 p.

EVANS, L. S.; ALBURY, K. & JENNINGS, C. Relationships between anatomical characteristics and ozone sensitivity of leaves os several herbaceous dicotylenonous plants species at Great Smoky Mountains National Park. **Environmental and Experimental Botany**, v. 36, p. 413-420, 1996.

EVANS, L. S. & TING, I. P. Ozone sensitivity of leaves: relationship to leaf water content, gas transfer resistance, and anatomical characteristics. **American Journal of Botanic**, v. 61, p. 592-597, 1974.

FAHN, A. Plant Anatomy. 3. ed. Oxford : Pergamon, 1989. p. 208-250.

FENGEL, D. & WEGENER, G. Polyoses (hemicelluloses) In: **Wood Chemistry**, **Ultrastructure**, **Reaction**. Water de Gruyter, 1989. p. 106-127.

FERDINAND, J. A.; FREDERICKSEN, T. S.; KOUTERICK, K. B. & SKELLY, J. M. Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (*Prunus serotina*) seedlings. **Environmental Pollution**, Pennsylvania, v. 108, p. 297-302, 2000.

FERREIRINHA, M. P. Elementos de anatomia de madeiras folhosas portuguesas. **Memórias da Junta de Investigações do Ultramar**, 3, Segunda série, Lisboa. 1958.

FINK, S. Pathological anatomy of conifer needles subjected to gaseous air pollutants or mineral deficiencies. **Aquilo Ser. Bot.**, n. 27, p. 1-6, 1989.

FLORES, F. E. V. O uso das plantas como bioindicadores de poluição no ambiente urbano-industrial: experiências em Porto Alegre – RS, Brasil, **Tübinger Geogr. Stud.**, n. 96, p. 79-86, 1987.

FOEKEL, C. E. B.; BUSNARDO, C. A.; DIAS, C.; SCHMIDT, C.; SILVA, R. M. R. & VESZ, J. B. V. Variabilidade radial da madeira de *Eucalyptus saligna*. **Silvicultura**, n. 28, p. 726-731, 1983.

FRANKLIN, G. L. **A rapid method of softering wood for microtome sectioning**. Trop. Woods. 88:35, 1946.

FUKAZAWA, K. & OHTANI, J. Within a tree variation of wood element size in *Tilia japonica*. **IAWA Bulletin**, n. 3, p. 201-205, 1982.

FURLAN, C. M.; SALATINO, A.; DOMINGOS, M. Leaf contents of nitrogen and phenolic compounds and their bearing with the herbivore damage to *Tibouchina pulchra* Cogn. (Melastomataceae) under the influence of air pollutants from industries of Cubatão, São Paulo, **Rev. Bras. Bot.**, v. 22, n.2, p. 317-323, 1999.

GALVÃO, F. Variação Sazonal da Fotossíntese Líquida e Respiração de *Cabralea canjerana* (Vell.) Mart. *Ilex paraguariensis* St. Hil. e *Podocarpus lambertii* KI. em Função da Intensidade Luminosa e Temperatura. Curitiba, 1986, 116 f. Tese (Doutorado em Ciências Florestais) – Setor de Ciências Agrárias, Universidade Federal do Paraná.

GIFFORD, E. M. & FOSTER, A. S. **Morphology and evolution of vascular plants**. 3. ed. New York : Freeman and Company, 1998.

GIROUD, B. Statistical analysis of wood structure variation as related to distance from the pith in *Entandrophragma utile* (Meliaceae). **IAWA Bulletin**, n. 4, p. 71-75,1977.

GODZICK, S.; FLORKOWSKI, T.; PIOREK, S. & SASSEN, M. M. A. An attempt determine the tissue contamination of *Quercus robur* L. and *Pinus silvestris* L. foliage by particulate from zinc and lead smelter. **Environmental Pollution**, v. 18, p. 97-106, 1979.

GOMES, A. V.; MUÑIZ, G. I. B. Wood structure and ultrastructure of *Prosopis* caldenia, *P. chilensis* and *P. juliflora* and influence of ecological factors. In: Prosopis International Conference, **Anais**...FAO, 1986.

GRAAF, N. A. van der & BAAS, P. Wood anatomical varition in relation to latitude an altitude. **Blumea**, v. 22, p. 101-121, 1974.

GRIFFITH, M. M. Foliar ontogeny in *Podocarpus macrophyllus* with special reference to the transfusion tissue. **Amer. Jour. Bot.**, v. 44, p. 705-715, 1957.

GUERREIRO, S. M. **Técnica de inclusão de material vegetal em historresina**. Palestra proferida no I Encontro Regional de Anatomistas do Estado de São Paulo, Universidade Estadual Paulista - UNESP, Rio Claro, 1995. 7p.

HELINSKA, R. L. Variation of vessel lumen diameter in radial direction as an indication of the juvenile wood growth in oak (*Quercus petraea* Liebl.). Forestry Abstracts, n. 56, p. 610, 1995.

IAWA COMMITTEE, IAWA list of microscopic features for softwood identification. **IAWA Bull.**, v. 25, n. 1, p. 1-70, 2004.

INOUE, M. T. Estudo das coníferas potencialmente econômicas para o Brasil. Faculdade de Florestas – UFPR, 1972.

INOUE, M. T. & REISSMANN, C. B. Efeitos da poluição na fotossíntese, dimensões da folha, deposição de particulados e conteúdo de ferro e cobre em alfeneiro (*Ligustrum lucidum*) da arborização urbana de Curitiba, PR. **Floresta**, Curitiba, v. 21, n. ½, p. 3-11, 1993.

INOUE, M. T.; REISSMANN, C. B.; WANDEMBRUCK, A.; MORES, M. & CONEGLIAN, S. Efeitos da poluição na fotossíntese, conteúdo de ferro e cobre e dimensões das folhas de alfeneiro (*Ligustrum lucidum*) da arborização urbana de

Curitiba, PR. In: III ENCONTRO NACIONAL SOBRE ARBORIZAÇÃO URBANA, Curitiba - PR, **Anais**... p. 1990. p. 170-180.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Manual técnico da vegetação brasileira. **Série manuais técnicos em Geociências**. Rio de Janeiro, n. 1, 1992. 92 p.

INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS - IBAMA. Normas para procedimentos em estudos de anatomia de madeira: I. Angiospermae, II. Gimnospermae. Brasília, Série Técnica, 1992. 15 p.

JOHANSEN, D. A. Plant microtechnique. New York : Mc Graw Hill Book, 1940.

JOSELEAU, J. P.; COMTAT, J. & RUEL, K. Chemical structure and their interaction in the plant cell walls. **Xylans and xylanases**. Elsevier, Amsterdã, p. 1-15, 1993.

KLICH. M. G. Leaf variations in *Elaeagnus angustifolia* related to environmental heterogeneity. **Environmental and Experimental Botany**, Oxon, v. 44, p. 171-183, 2000.

KOZLOWSKI, T. T. & CONSTANTINIDOU, H. A. Environmental pollution and tree growth. **For. Abstr.**, v. 47, n. 2, p. 105-132, 1986.

KOZLOWSKI, T. T. & PALLARDY, S. G. **Physiology of woody plants**. San Diego: Academic Press, 1997. 411 p.

KOZLOWSKI, T. T. Growth and development of trees. **Cambial growth, root** growth, and reproductive growth. New York : Academic Press, v. 2, 1971. 514 p.

KRAMER, K. U. & GREEN, P. S. **The Families and Genera of Vasculçar Plants. I. Pteridophytes and Gymnosperms**. Berlin: Kubitski, Springer-Verlag, 1990.

KRAUS, J. E. & ARDUIM, M. **Manual básico de métodos em morfologia vegetal**. Rio de Janeiro: Edur, 1997.

KUBACKOVA, M.; KARACSONYI, S. & BILISICS, L. Structure of galactoglucomannan from *Populus molinifera* H. **Carbohydrate Polymers**, v. 19, p. 125-129, 1992.

KUNIYOSHI, Y. S. Morfologia da semente e da germinação de 25 espécies arbóreas de uma Floresta de Araucária. Curitiba, 1983. 233 f. Dissertação (Mestrado em Engenharia Florestal). Setor de Ciências Agrárias. Universidade Federal do Paraná.

KÜRSCHNER, W. M.; STULEN, I.; WADNER, F.; KUIPER, P. J. Comparison of Paleobotanical Observations with Experimental Data on the Leaf Anatomy of Durmast Oak, *Quercus petraea* (FAGACEAE) in Reponse to Environmental Change. **Annals of Botany**, v. 81, p. 657-664, 1998.

LARCHER, W. **Ecofisiologia Vegetal**. São Carlos: Rima Artes e Textos, 2000. 531 p.

LARCHER, W. **Physiological plant ecology**. 3. ed. New York: Springer-Verlag, 1995. 505 p.

LEE, C. L. The anatomy and ontogeny of the leaf of *Dadrydium taxoides*. **Amer. Jour. Bot**. v. 39, p. 393-398, 1952.

LEREDER, B. Vergleichende untersuchungen über das transfuions-gewebw einiger rezenter Gymnospermen. **Bot. Studien Heft**, v. 4, p. 1-42, 1955.

LEVITT, J. **Responses of plants to environmental stress**. Chilling, freezing, and high temperature stresses. Physiological Ecology – a series of monographs, texts, and treatises. New York : Academic Press, 1980. 497 p.

LEWIS, O. H. Boron, lignification and the origin of vascular plants: a unified hypothesis. **New Phytologist**, Cambridge, Inglaterra, v. 84, p. 209-229, 1980.

LINDORF, H. Eco-anatomical wood features of species from a very dry tropical forest. **IAWA Journal**, v. 15, n.4, p. 361-376, 1994.

LORENZI, H. Árvores Brasileiras. São Paulo: Plantarum, v. 1, 1999.

LOUÉ, A. Oligo-éléments en agriculture. Antibes: Nathan, 1993. 557 p.

LUCHI, A. E. Estudo anatômico de lenho em espécies de mata ciliar da Serra do Cipó (MG). São Paulo, 1990. 138 f. Dissertação (Mestrado em Botânica) - Instituto de Biociências, Universidade de São Paulo.

LUFRANO, N. S. P. & CAFFINI, N. O. Mucílagos foliares de *Chorisia* H. B. K. (Bombacaceae): analisis fitoquimico y enfoque quimiotaxonômico. **Phyton**, n. 40, p. 13-20, 1981.

MAACK, R. **Geografia física do estado do Paraná**. Curitiba: José Olympio, 1981. 450 p.

MARCATI, C. R., ANGYALOSSY-ALFONSO, V. & BENETATI, L. Anatomia comparada do lenho de *Copaifera langsdorffii* Desf. (Leguminosae-Caesalpinoideae) de floresta e cerradão. **Rev. Bras. Bot.** São Paulo, v. 24, n. 3, 2001.

MARSCHNER, H. Mineral nutrition of higher plants. London: Academic, 1995. 889 p.

MARTOS, H. L.; MAIA, N. B. **Indicadores Ambientais**. Divisão de Sistema e Documentação – Escola Superior de Agricultura Luís de Queiroz da Universidade de São Paulo, São Paulo, 1997.

MATYSSEK, R.; GÜNTHARDT – GEORG, M. S.; KELLER, T.; SCHEIDEGGER, C. Impairment of gas exchange and structure in birch leaves (*Betula pendula*) caused by low ozone concentrations. **Trees**, n. 5, p. 5-13, 1991.

MAUSETH, J. D. Plant Anatomy. Menlo Park : Benjamin/Cummings, 1988.

MAZZONI-VIVEIROS, S. C. Aspectos estruturais de *Tibouchina pulchra* Cogn. (Melastomataceae) sob o impacto de poluentes atmosféricos provenientes do complexo industrial de Cubatão, SP-Brasil. São Paulo, 1996. Tese (Doutorado em Botânica) - Instituto de Biociências, Universidade de São Paulo.

METCALFE, C. R. & CHALK, L. **Anatomy of the Dicotyledons**. Oxford : Claredon, v. 1 e 2, 1950.

METCALFE, C. R. & CHALK, L. **Anatomy of the Dicotyledons**. Oxford : Claredon, v. 1, 1988.

METCALFE, C. R. Anatomy, phylogeny and taxonomy. *In*: METCALFE, C. R. & CHALK, L. **Anatomy of the dicotyledons**. 2. ed. Oxford : Claredon, v. 2. 1983.

MINA-RODRIGUES. E. M. C. 1986. Estudo morfo-anatômico dos órgãos vegetativos de *Pera glabrata* Baill. (Euphorbiaceae) em material procedente de mata mesófila semidecídua e de cerrado. Rio Claro, 1986. 123 f. Dissertação (Mestrado em Botânica) - Instituto de Biociências, UNESP.

MOMEN, B.; ANDERSON, P. D. & HELMS, J. A. Temperature dependency of acidrain effect on photosynthesis of *Pinus ponderosa*. **Environmental Pollution**, v. 113, p. 223-230, 1999.

MORAES, L. A. C., MORAES, V. H. F. & MOREIRA, A. Relação entre a flexibilidade do caule de seringueira e a carência de boro. Brasília. **Pesq. Agropec. Bras.** v. 37, n.10, 2002.

MORAES, R. M. Fotossíntese líquida e respostas bioindicadoras da poluição aérea em indivíduos jovens de *Tibouchina pulchra* Cogn. (Melastomataceae) em Cubatão-SP. São Paulo, 1999. Tese de doutorado. Instituto de Biociências da Universidade de São Paulo.

MORALES, M. S., RICARDO VILLALBA, R., GRAU, H. R., VILLAGRA, P. E., BONINSEGNA, J. A., RIPALTA, A. & PAOLINI, L. Potential of *Prosopis ferox* Griseb (Leguminosae ,subfamily: Mimosoideae) for dendrochronological studies in high-montane subtropical deserts. Santiago. **Rev. Chil. Hist. Nat.** v. 74, n. 4, 2001.

MUSSELMAN. R. C.; MINNICK, T. J. Nocturnal stomatal condutance and ambient air quality standards for ozone. **Atmospheric Environment.**, v. 34, p. 719-733, 2000.

NAPP-ZINN, K. Anatomie des Blattes. I. Blattanatomie der Gymnospermen. Handbuch der Pflanzenatomie. 2. ed. Spec. Pt. 8. 2. Berlin : Bornträger. 1966. Citado por PAGE, C. N. General Traits of Conifers. In: **The Families and Genera of Vascular Plants**. K. Kubitzki, 1990.

O'BRIEN, T. P.; FEDER, N.; MCCULLY, M. Polychromatic staining of cell walls by toluidine blue. **Protoplasma**, v. 59, n. 2, p. 368-373, 1965.

OEVER, L. van den; BASS, P. & ZANDEE, M. Comparative wood anatomy of *Symplocus* and latitude and altitude of provence. **IAWA Bull**. n. s., v. 2, n. 1, p. 3-24, 1981.

PAGE, C. N. General Traits of Conifers. *In*: **The Families and Genera of Vascular Plants**. K. Kubitzki, 1990.

PAULA, J. E. & ALVES, J. L. Madeiras nativas - anatomia, dendrologia, dendrometria, produção e uso. Brasília: Fundação Mokiti Okada, 1997.

PEREIRA, B. A. S. Estudo morfo-anatômico da madeira, casca e folhas de duas variedades vicariantes de *Sclerolobium paniculatum* Vogel (Leguminosae, Caesalpinoideae) dos cerrados. Piracicaba, 1990. 179 f. Dissertação de Mestrado, Escola Superior de Agricultura Luiz de Queiróz – Universidade de São Paulo.

PETKOWICZ, C. L. O.; SIERAKOWSKI, M. R.; GANTER, J. L. M. S. & REICHER, F. Galactomanannans and arabinans from seeds Caesalpinaceae. **Phytochemistry**, Oxford, v. 49, n. 3, p. 737-743, 1998.

PEZESHKI, S. R.; HESTER, M. W.; LIN, Q. & NYMAN, J. A. The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. **Environmental Pollution**. n. 108, p. 129-139, 1999.

PILBEAM, D. J. & KIRKBY, E. A. The physiological role of boron in plants. **Journal of Plant Nutrition**, New York, v. 6, p. 563-582, 1983.

REICHER, F. Estudos sobre a localização de grupos O-acetílicos e de complexo lignina-xilana em hemicelulose nativa de *Mimosa scabrella*. Curitiba, 1984. Tese (Doutorado em Bioquímica) – Setor de Ciências Biológicas, Universidade Federal do Paraná.

REID, J. S. & EDWARDS, M. E. Galactomannans and other cell wall polysaccharides in seeds. *In*: STEPHEN, A. M. Food Polysaccharides and their Applications. New York : Marcel Decker, p. 155-186, 1995.

REITZ, R.; KLEIN, R. M. & REIS, A. Projeto madeira do Rio Grande do Sul. **Sellowia**. 1983. 525 p.

RIZZINI, C. T. Árvores e madeiras úteis do Brasil – manual de dendrologia. São Paulo: Edgard Blücher, 1995. 296 p.

RIZZINI, C. T. Árvores e madeiras úteis do Brasil. São Paulo: Edgard Blücher, 1986. 296 p.

RURY, P. M. Systematic and ecological wood anatomy of the Erythroxylaceae. **IAWA Bull**. n. s., v. 6, n. 4, p. 365-397, 1985.

SAEMAN, J. F.; MOORE, W. E.; MITCHELL, R. L. & MILLET, M. A. Techniques for determination of pulp constituents by quantitative paper chromatography. **Tech. Assoc. Pulp. Pap. Ind.**, v. 37, n. 8, p. 336-343, 1954.

SAKAI, W. S. Simple method for differential staining of parafin embedded plant material using toluidine blue. **Stain Technol.**, v. 43, n. 5, p. 247-249, 1973.

SALAMUNI, E. **Tectônica da bacia sedimentar de Curitiba (PR)**. Rio Claro. 1998, 211 f. Tese (Doutorado em Geociências) - Instituto de Geociências de Ciências Exatas, Universidade Estadual Paulista.

SALISBURY, E. J. On the causes and ecological significance of frequency with special reference to the woodland flora. **Roy Soc. (Lond.) Phil. Trans**., v. 216b, p. 1-65, 1927.

SASS, J. E. **Botanical microtechnique**. 2. ed. Iowa : The Iowa State College, Ames, 1951. 326 p.

SCHIMITT, U. & RUETZE, M. Structural changes in spruce and fir needles. **Environ. Pollut.**, n. 68, p. 345-354, 1990.

SHKOLNIK, M. Y. Trace elements in plants. Amsterdam: Elsevier, 1984. 463 p.

SILVA, C. A. Variação dimensional dos elementos xilemáticos em duas espécies madeireiras da Amazônia. **Acta Amazônica**, n. 22, p. 261-274, 1992.

SJÖSTRÖM, E. **Wood chemistry. Fundamentals and Applications**. 2. ed. São Diego : Academic Press, 1993.

SLONEKER, J. H. Gas-liquid chromatography of alditol acetates. **Methods Carbohyd. Chem.**, v. 6, p. 20-24, 1972.

THOMSON, R. B. On the comparative anatomy and affinities of the Araucarineae. **Philosophical transactions of the Royal Society of London Biological Series**, London, v. 204, n. 303, p. 1-50, 1913.

TIMELL, T. E. Galactoglucomannans. **Methods in Carbohydrate Chemistry**, n. 5, p. 134-137, 1964.

TRESHOW, M. Air pollution and plant life. Chichester: John Wiley & Sons, 1985.

TRUGILHO, P. F.; LIMA, J. T. & MENDES, L. M. Influência da idade nas características físico-químicas e anatômicas da madeira de *Eucalyptus saligna*. **Revista Cerne**, n. 2, p. 94-11, 1996.

TSOUMIS, G. Wood as raw material. Oxford: Pergamon Press, 1968.

TURNER, I. M. Sclerophylly: Primarily protective? **Functional Ecology**, n. 8, p. 669-675, 1994.

URBINATI, C. V.; AZEVEDO, A. A.; MONTEIRO DA SILVA, E. A. & LISBOA, P. L. B. Variação estrutural quantitativa no lenho de *Terminalia ivorensis* A. Chev., Combretaceae. **Acta Bot. Bras.**, São Paulo, v. 17, n. 3, 2003.

VENTER, H. A. & CURRIER, H. B. The effect of boron deficiency on callose formation and ¹⁴C translocation in bean (*Phaseolus vulgaris* L.) and cotton (*Gossypium hirsutum* L.). **American Journal of Botany**, Columbus, v. 64, p. 861-865, 1997.

VYSOTSKAYA, L. G. & VAGANOV, E. A. Components of the variability of radial cell size in tree rings of conifers. **IAWA Bulletin**, n. 10, p. 417-428, 1989.

WARMING, E. Lagoa Santa. *In*: WARMING, E.; FERRI, M. G. 1973. Lagoa Santa/ A vegetação dos cerrados brasileiros. São Paulo : EDUSP/ livraria Itatiaia, 362 p. 1892.

WILKES, J. Variations of wood anatomy within species of *Eucalyptus*. **IAWA Bulletin**, n. 9, p. 13-23, 1988.

WOLFROM, M. L. & THOMPSON, A. Reduction with sodium borohydride. **Methods Carbohyd. Chem.**, v. 2, p. 65-68, 1963. In: BUSATO, A. P. In: Polissacarídeos de folhas de *Hymenaea courbaril* (jatobá). 1999. Dissertação (Mestrado em Bioquímica) – Setor de Ciências Biológicas, Universidade Federal do Paraná.

WOODWARD, F. I. Stomatal numbers are sensitive to increases in CO₂ from preindustrial levels. **Nature**, v. 327, p. 617-618, 1987.

ZIMMERMANN, M. H. & BROWN, C. L. **Trees structure and function**. 2. ed. New york : Springer Verlag, 1974. 336p.

ZIMMERMANN, M. H. **Xylem structure and the ascent of sap**. Berlin : Springer Verlag, 1983. 143 p.

ZOBEL, B. & TALBERT, J. **Applied forest tree improvement**. New York: John Wiley & Sons, 1984.

ZWEYPFENNING, R. C. V. J. A hypothesis on the function of vestured pits. **IAWA Bull.**, v. 1, p. 13-15, 1978.

ANÁLISES ESTATÍSTICAS DAS FOLHAS - SUPERFÍCIE FOLIAR E DENSIDADE ESTOMÁTICA

Lipansau	Iolial - LAN	GUNA							
FOLHAS	Indivíduo 1	Indivíduo 2	Indivíduo 3	Indivíduo 4	Indivíduo 5	Indivíduo 6	C1	C2	C3
1	0,3	0,55	0,35	0,3	0,35	0,25	0,5	0,5	0,55
2	0,25	0,5	0,35	0,25	0,35	0,2	0,6	0,6	0,5
3	0,3	0,45	0,35	0,35	0,45	0,3	0,6	0,6	0,6
4	0,25	0,45	0,35	0,45	0,35	0,3	0,55	0,55	0,6
5	0,25	0,5	0,35	0,4	0,35	0,3	0,65	0,65	0,55
6	0,35	0,5	0,35	0,45	0,4	0,3	0.55	0,55	0,45
7	0,25	0,5	0,4	0,5	0,45	0,25	0,6	0,6	0,5
8	0,35	0,45	0,4	0,3	0,45	0,25	0,55	0,55	0,5
9	0,35	0,45	0,4	0,35	0,45	0,3	0,5	0,45	0,55
10	0,35	0,35	0,35	0,3	0,4	0,2	0,55	0,55	0,55
11	0,2	0,4	0,3	0,35	0,45	0,25	0,55	0,6	0,5
12	0,25	0,35	0,4	0,35	0,35	0,25	0,45	0,55	0,6
13	0,2	0,5	0,45	0,5	0,4	0,25	0,55	0,65	0,6
14	0,35	0,45	0,2	0,4	0,35	0,25	0,55	0,55	0,55
15	0,25	0,4	0,25	0,4	0,3	0,25	0,5	0,6	0,45
16	0,3	0,45	0,35	0,35	0,4	0,25	0,6	0,6	0,6
17	0,3	0,35	0,3	0,25	0,45	0,25	0,6	0,6	0,6
18	0,2	0,35	0,3	0,3	0,5	0,25	0,55	0,55	0,55
19	0,25	0,35	0,3	0,35	0,45	0,25	0,45	0,45	0,6
20	0,2	0,4	0,4	0,3	0,4	0,25	0,5	0,65	0,55
Média	0,275	0,435	0,345	0,36	0,4025	0,2575	0,548	0,57	0,5475
Desv Pad	0,055012	0,063037	0,058264	0,073628	0,052503	0,029357	0,053	0,0571	0,0499
Variância	0,003026	0,003974	0,003395	0,005421	0,002757	0,000862	0,003	0,0033	0,0025

Expansão	foliar -	LARGURA
----------	----------	---------

Expansão foliar – COMPRIMENTO

FOLHAS	Indivíduo 1	Indivíduo 2	Indivíduo 3	Indivíduo 4	Indivíduo 5	Indivíduo 6	C1	C2	C3
1	2,8	3	3,8	2,15	2,3	2,2	7,3	7,3	7,6
2	3,1	2,8	4	2,9	2,6	2,5	8,1	8,1	7,8
3	3,9	2,8	4,6	2,5	2,9	3	8,9	8,9	8,5
4	3,2	2,4	4,4	3	3,1	3,1	8,9	8, 9	7,3
5	3,5	2,5	5	2,2	2,9	3,3	7,5	7,5	6,8
6	4,3	2,7	4	3,3	3,4	3,5	9,1	9,1	7,6
7	3,2	2,8	3,9	3	2,9	2,5	8	8	8,3
8	3,9	2,8	5	2,3	3	2,4	8,9	8,2	7,5
9	4,1	2,6	5,1	2,85	2,8	2,9	8,6	8,2	9,1
10	4	1,8	4,5	2,75	3,1	1,9	8,7	8,7	8,1
11	3,2	3	2,2	2	2,5	2	8,2	9	7,2
12	2,8	2,1	2,1	2,55	2,4	1,9	8,2	8,1	8
13	2,6	2,9	2,5	2,75	2,6	1,9	8,7	7,7	7,5
14	3	2,6	2,5	2,05	2,6	2,5	7,6	9,3	7,8
15	3,3	2,4	2,7	2,45	3	2,2	7,8	7,5	7,5
16	3,3	2,4	2,9	2,15	2,4	1,9	8,5	7,7	8,3
17	3,4	2	3	2,05	2,9	1,7	7,3	7,6	7,5
18	2,5	2,2	3	1,7	2,9	2,1	6,8	7,9	9,1
19	2,7	2,1	3	2,2	3,3	2,3	7,6	7,3	7,1
20	2,4	1,9	3,1	1,8	2, 9	2,5	8,3	7,5	8

Média	3,26	2,49	3,565	2,4325	2,825	2,415	8,15	8,13	7,83
Desv Pad	0,553838	0,3712	0,981554	0,441968	0,298901	0,512245	0,648	0,64	0,61
Variância	0,306737	0,137789	0,963447	0,195336	0,089342	0,262395	0,421	0,41	0,37
Expansão	foliar – ÁRE	A							
FOLHAS	Indivíduo 1	Indivíduo 2	Indivíduo 3	Indivíduo 4	Indivíduo 5	Indivíduo 6	C1	C2	C3
1	0,84	1,65	1,33	0,645	0,805	0,55	3,65	4,8	3,65
2	0,775	1,4	1,4	0,725	0,91	0,5	4,86	4,895	4,86
3	1,17	1,26	1,61	0,875	1,305	0,9	5,34	4,3	5,34
4	0,8	1,08	1,54	1,35	1,085	0,93	4,895	4,785	4,9
5	0,875	1,25	1,75	0,88	1,015	0,99	4,875	4,51	4,88
6	1,505	1,35	`1,4	1,485	1,36	1,05	5,005	3,69	5,01
7	0,8	1,4	1,56	1,5	1,305	0,625	4,8	4,785	4,8
8	1,365	1,26	2	0,69	1,35	0,6	4,895	4,18	4,9
9	1,435	1,17	2,01	0,9975	1,26	0,87	4,3	4,38	4,18
10	1,4	0,63	1,575	0,825	1,24	0,38	4,785	3,74	3,9
11	0,64	1,2	0,66	0,7	1,125	0,5	4,51	4,62	4,6
12	0,7	0,735	0,84	0,8925	0,84	0,475	3,69	3,78	4,88
13	0,52	1,45	1,125	1,375	1,04	0,475	4,785	4,785	4,9
14	1,05	1,17	0,5	0,82	0,91	0,625	4,18	4,37	4,54
15	0,825	0,96	0,675	0,98	0,9	0,55	3, 9	4,55	4,13
16	0,99	1,08	1,015	0,7525	0,96	0,475	5,1	3,82	3,98
17	1,02	0,7	0,9	0,5125	1,305	0,425	4,38	3,998	4,78
18	0,5	0,77	0,9	0,51	1,45	0,525	3,74	4,33	4,08
19	0,675	0,735	0,9	0,77	1,485	0,575	3,42	4,854	4,65
20	0,48	0,76	1,24	0,54	1,16	0,625	4,15	4,405	4,33
Média	0,91825	1,1005	1,2465	0,89125	1,1405	0,63225	4,463	4,379	4,56
Desv Pad	0,317408	0,294979	0,441556	0,308485	0,210387	0,200607	0,557	0,398	0,44
Variância	0,100748	0,087013	0,194971	0,095163	0,044263	0,040243	0,31	0,159	0,2

Comparação da área de folhas de plantas expostas à poluição e controle

Estatística descritiva

	Valid N	Mean	Minimum	Maximum.	Std.Dev	Standard
						Error
POLUICAO	120	,988208	,380000	2,010000	,361556	,033005
CONTROLE	60	4,468217	3,420000	5,340000	,469525	,060615

 H₀ rejeitada. As áreas das folhas das plantas expostas à poluição são diferentes às das plantas controle (p < 0,05).

Comparação do <u>comprimento</u> de folhas de plantas expostas à poluição e controle Estatística descritiva

	Valid N	Mean	Minimum	Maximum	Variance	Std.Dev.
POLUICAO	120	2,831250	1,700000	5,100000	,508952	,713409
CONTROLE	60	8,035000	6,800000	9,300000	,410110	,640398

 H₀ rejeitada. Os comprimentos das folhas das plantas expostas à poluição são diferentes às das plantas controle (p < 0,05).

Comparação da largura de folhas de plantas expostas à poluição e controle

Estatística descritiva

	Valid N	Mean	Minimum	Maximum	Variance	Std.Dev.
POLUICAO	120	,345833	,200000	,550000	,007167	,084660
CONTROLE	60	,555000	,450000	,650000	,002856	,053441

 H₀ rejeitada. As larguras das folhas das plantas expostas à poluição são diferentes às das plantas controle (p < 0,05).

FOLHAS	Indivíduo 1	Indivíduo 2	Indivíduo 3	Indivíduo 4	Indivíduo 5	Indivíduo 6	C1	C2	C3
1	114	122	135	103	169	157	85	95	97
2	123	117	129	91	97	100	93	94	96
3	120	100	159	107	101	109	87	89	86
4	147	121	128	111	126	146	85	102	87
5	112	127	164	128	165	96	90	97	78
6	80	102	106	110	138	91	87	87	75
7	115	122	136	129	139	147	102	103	68
8	112	94	138	140	98	117	78	76	101
9	129	115	142	110	120	152	77	87	102
10	96	125	128	144	131	127	73	74	75
11	88	106	160	120	115	88	85	75	87
12	134	119	138	115	112	106	79	76	66
13	100	95	139	116	145	140	86	76	86
14	114	101	172	114	105	141	79	77	78
15	92	107	198	123	103	147	65	75	66
16	162	132	147	108	118	173	87	77	78
17	102	108	194	113	201	115	66	76	87
18	100	117	146	108	142	163	101	95	83
19	121	113	156	107	149	130	74	81	100
20	117	111	145	106	131	127	101	99	89
Média	113,9	112,7	148	115,15	130,25	128,6	84	85,6	84,3
Desv Pad	19,70546	10,83416	22,1787	12,60441	26,93047	25,06497	10,5	10,4	11,3
Variância	388,3053	117,3789	491,8947	158,8711	725,25	628,2526	110	107	127

Densidade estomática – epiderme abaxial – número de estômatos por mm²

Comparação do <u>número de estômatos</u> na face abaxial de plantas expostas à poluição e controle

Estatística descritiva

	Valid N	Mean	Minimum	Maximum	Variance	Std.Dev.
POLUICAO	120	124,7667	80,00000	201,0000	558,8527	23,64006
CONTROLE	60	84,6000	65,00000	103,0000	111,4983	10,55928

 H₀ rejeitada. O número de estômatos na face abaxial das folhas das plantas expostas à poluição é diferente ao das plantas controle (p < 0,05).

ANÁLISES ESTATÍSTICAS - ESPESSURA DOS TECIDOS FOLIARES

_		Poluição	o 1			Poluiçã	02	
FOLHAS	Nerv central	Mesóf+epid	Mesófilo	Cutícula	Nerv central	Mesóf+epid	Mesófilo	Cutícula
1	489,6749	352,6395	331,1268	5,2898	584,5196	386,7066	373,6611	6,3696
2	446,2291	330,8710	305,9111	5,3467	575,0245	369,8576	352,8648	5,2428
3	607,2789	419,9709	397,8393	4,2269	486,4325	327,1765	314,0456	3,3571
4	397,2354	298,2364	284,3075	5,9037	555,8150	555,8150	420,2510	4,2786
5	564,3324	369,6779	351,0775	3,0571	639,8567	407,9990	392,4823	2,1617
6	419,6341	390,4372	377,4057	5,8004	651,5623	576,8721	556,3748	3,9304
7	438,5242	359,9155	341,0743	4,6065	547,3293	382,9884	368,0797	3,5866
8	476,4839	331,0468	312,1696	3,8669	563,8137	416,6654	406,4104	4,7418
9	555,6643	392,5630	377,4195	4,8337	629,3649	484,9416	469,1140	4,7127
10	435,5440	394,7269	374,5280	5,9777	533,9461	400,6828	393,2326	4,4610
11	583,5606	492,1300	473,5637	4,4795	622,0206	455,6687	437,0396	4,2786
12	641,1391	475,1370	459,4262	4,4610	609,3286	416,0972	408,4436	4,2204
13	427,3268	348,4410	329,8463	5,7671	633,0706	521,1284	503,4323	3,8669
14	579,5990	433,2674	419,1431	4,4795	631,6991	438,0190	423,1296	4,2786
15	527,8629	424,4736	407,4783	4,1481	663,2459	341,4190	324,7043	5,3569
16	537,3922	369,5194	355,0480	5,2 428	703,9898	454,2326	432,1578	6,6026
17	507,3760	416,3527	402,2270	5,5187	531,2038	385,2669	378,8878	4,2786
18	501,1539	443,9779	421,5949	4,6185	558,3229	375,5976	366,5893	4,0475
19	440,4268	307,0613	291,4468	3,8669	596,3912	360,6036	347,6627	4,2269
20	597,7844	498,0534	479,3942	4,0948	694,5969	353,2632	340,4104	3,9859
MÉDIA	508,711	392,425	374,601	4,779315	600,577	420,550	400,449	4,399270
DESVPAD	72,400	58,022	58,128	0,801507	57,206	69,490	59,971	0,980229
VARIÂNCIA	5.241,752	3.366,542	3.378,902	0,642414	3.272,568	4.828,877	3.596,524	0,960849

Espessura dos tecidos foliares - Indivíduos 1 e 2 expostos ao petróleo

Espessura dos tecidos foliares - Indivíduos 3 e 4 expostos ao petróleo

	Poluição 3			Poluição 4				
FOLHAS	Nerv central	Mesóf+epid	Mesófilo	Cutícula	Nerv central	Mesóf+epid	Mesófilo	Cuticula
1	479,9969	323,7858	309,7823	7,0691	492,8660	286,5601	273,4825	6,8639
2	580,4276	439,8163	418,7773	3,5481	475,2777	313,5254	299,7001	5,6321
3	431,8020	296,5195	272,0102	4,6065	512,3978	286,5965	271,7675	4,4052
4	499,9857	387,4188	371,8068	6,4850	559,0922	227,1368	213,3869	6,9948
5	563,9915	460,3796	442,6774	5,9037	430,9908	247,1082	220,9122	5,0506
6	562,0391	480,1190	462,4543	7,0962	626,9379	433,1512	414,4925	5,5732
7	585,5103	473,8790	460,2325	6,31 32	531,1450	285,1386	266,5071	3,5481
8	599,1634	470,6809	458,6412	6,4733	561,8823	400,2903	386,9557	3,7588
9	637,1233	462,2289	445,4189	8, 4408	579,8626	338,0145	320,8833	6,5020
10	403,4879	314,1617	288,9605	8,5989	486,2781	324,9208	312,4726	6,3696
11	578,0599	544,1903	530,2132	7,0496	494,7334	266,6830	247,3189	7,0340
12	549,1996	366,6414	348,7362	5,2060	442,3468	272,3611	253,8403	7,9856
13	599,6501	444,5574	429,6056	4,7127	455,8745	265,5426	246,7002	5,8004
14	641,9269	485,3147	463,3734	6,8 959	488,7218	294,4788	277,7075	6,0281
15	444,5398	330,2971	317,2708	5,4737	469,6412	272,1059	257,1976	5,6321
16	52 8,0726	426,4287	411,5926	4,4795	401,3134	195,7022	177,0679	5,7480

-
9
2
)1
'21
70
<u>′18</u>

Espessura dos tecidos foliares - Indivíduos 5 e 6 expostos ao petróleo

_		Poluiçã	o 5			Poluiçã	ão 6	
FOLHAS	Nerv central	Mesóf+epid	Mesófilo	Cutícula	Nerv central	Mesóf+epid	Mesófilo	Cutícula
1	792,8749	472,3236	462,9722	4,0948	834,3758	444,4532	426,6675	3,2909
2	755,3454	437,2184	422,2884	3,5248	874,5638	582,0212	558,5986	3,2909
3	823,0957	454,6567	440,8288	5,8664	931,8924	635,6434	617,1281	3,9859
4	559,0208	476,4236	459,5726	5,0123	776,4393	529,4603	512,8626	3,7807
5	646,8955	428,6870	414,6768	5,0614	828,7172	801,0018	783,1819	2,6785
6	664,4307	505,5836	484,8699	4,3802	850,2061	492,5041	471,7623	3,6399
7	640,5163	430,6462	416,6738	4,3234	773,2557	438,7255	423,4334	4,5525
8	538,6212	357,0733	341,0259	5, 3978	827,6774	524,8012	505,8703	3,9023
9	561,0054	362,5727	346,2976	4,2786	828,2352	431,4691	414,8014	4,2204
10	557,2481	413,6327	398,1404	4,6893	852,8478	546,6546	534,5759	4,6893
11	800,5303	606,6730	588, 9 171	3,9928	811,1934	479,8368	456,7869	4,4549
12	603,6334	358,6201	344,3073	3,9859	884,6664	586,7613	567,0347	4,1548
13	624,1284	399,8888	383 ,9 744	4,4795	871,1307	543,9437	527,1172	4,0948
14	529,8716	373,3438	354,7973	4,7127	910,8007	496,5200	475,5422	4,0948
15	784,0542	549,6200	531,7299	3,58 66	850,9822	451,6821	434,3722	4,7476
16	551,9878	373,7169	350,4091	3,9928	922,0126	784,8057	766,8383	3,0571
17	511,6644	306,7515	291,5451	3,8455	846,6069	632,9364	606,6365	3,7807
18	525,3228	360,0663	347,1541	2,8136	792,8920	399,6266	382,4667	3,5481
19	593,2348	384,2367	365,5409	4,2204	878,3568	489,8895	465,5885	4,4759
20	524,8829	345,2077	324,3873	4,7127	858,5698	462,4666	474,5669	3,4551
MÉDIA	629,418	419,847	403,505	4,348584	850,271	537,760	520,292	3,894746
DESVPAD	105,521	74,572	74,642	0,691759	43,814	108,833	107,611	0,562869
VARIÂNCIA	11.134,637	5.561,013	5.571,443	0,478530	1.919,709	11.844,657	11.580,111	0,316822

Espessura dos tecidos foliares – Controles 1 e 2

	Controle 1			Controle 2				
FOLHAS	Nerv central	Mesóf+epid	Mesófilo	Cutícula	Nerv central	Mesóf+epid	Mesófilo	Cutícula
1	385,0629	240,5554	223,8902	4,6185	385,0629	240,5554	223,8902	4,6185
2	417,4555	212,0511	199,8804	2,8234	417,4555	212,0511	199,8804	2,8234
3	404,2855	241,9694	226,9920	3,780 7	404,2855	241,9694	226,9920	3,7807
4	370,0817	223,4334	203,8633	2,81 36	370,0817	223,4334	203,8633	2,8136
5	442,7128	195,5680	180,6146	4,2204	442,7128	195,5680	180,6146	4,2204
6	453,1388	248,8580	229,3301	2,6214	453,1388	248,8580	229,3301	2,6214
7	392, 9 874	220,3775	202,2072	1,8757	392,9874	220,3775	202,2072	1,8757
8	416,9831	244,7585	223,9880	2,3447	416,9831	244,7585	223,9880	2, 344 7
9	455,0042	281,3176	263,4025	3,0571	447,2980	298,7796	281,5212	2,8234
10	378,1170	234,8229	220,8601	2,3564	410,0179	232,6959	209,5685	3,5248
11	447,2980	298,7796	281,5212	2,8234	387,4665	232,3611	238,1547	2,1140

12	410,0179	232,6959	209,5685	3,5248	401,3855	242,8984	249,4560	2,4564
13	400,8388	249,1378	235,1808	3,7515	395,0817	221,4134	221,9911	2,4564
14	398,8235	275,5180	257,0693	2,4140	445,722 8	235,1268	245,1286	2,1279
15	398,0389	218,1196	202,4270	2,3564	420,1388	242,8569	230,4561	2,4223
16	421,2859	262,1332	249,7296	2,3564	422,9874	228,3598	227,6633	3,2364
17	404,2683	222,8298	201,3271	2,4479	436,7831	215,7586	212,2551	2,4588
18	404,4143	220,0695	205,0767	2,8234	437,2984	247,7590	213,9559	3,1122
19	408,1543	246,9377	228,3720	3,2825	405,2356	239,5684	247,5214	2,7900
20	328,1913	196,8811	178,5257	2,3564	415,1556	212,4878	219,4457	2,5650
MÉDIA	406,858	238,341	221,191	2,932409	415,36395	233,8818526	224,3942	2,85929
DESVPAD	29,954	26,774	26,763	0,718935	23,22937583	20,85597497	21,83964	0,710693
VARIÂNCIA	897,255	716,367	716,242	0,516867	539,6039014	434,971692	476,97	0,505085

Espessura dos tecidos foliares - Controle 3

	Cont	role 3	
Nerv central	Mesóf+epid	Mesófilo	Cuticula
385,0629	400,8388	249,1378	235,1808
417,4555	398,8235	275,5180	257,0693
404,2855	398,0389	218,1196	202,4270
370,0817	421,2859	262,1332	249,7296
442,7128	404,2683	222,8298	201,3271
453,1388	404,4143	220,0695	205,0767
392,9874	442,7128	195,5680	180,6146
416,9831	453,1388	248,8580	229,3301
455,0042	392,9874	220,3775	202,2072
378,1170	443,0222	250,4458	206,5545
447,2980	395,5556	238,6866	245,1556
410,0179	401,0007	235,1589	202,1556
400,8388	398,5892	220,0256	199,5699
398,8235	400,8388	262,3664	200,2599
398,0389	398,8235	246,0025	245,5645
421,2859	398,0389	212,0225	232,2656
404,2683	421,2859	223,4589	204,2666
404,4143	404,2683	256,5255	222,2656
408,1543	393,0885	243,5656	210,5660
328,1913	416,9831	244,7585	223,9880
406,858	409,40017	237,28141	217,7 7871
29,954	17,93826525	20,17023525	20,932761
897,255	321,78136	406,8383899	438,1805

Comparação da nervura central de plantas expostas à poluição e controle

	controle	poluição
Média	410,541	603,613
Desvio padrão	24,068	139,198
Variância da amostra	579,266	19376
Mínimo	328,1 9 1	364,818

> Estatística descritiva - controle e poluição
Máximo	455,004	931,892
n	60	120

Estatística inferencial

_H_o: O tamanho da nervura central das folhas das plantas controle é igual, ao tamanho da nervura das folhas plantas expostas à poluição.

Os dados não se apresentaram em normalidade, por isso foi utilizado o teste Mann-Whitney U, obtendo-se os seguintes resultados:

	Rank Sum - c	Rank Sum - p	U	Z	p- level	Z adjusted	p- level	N C	N P
NERVURA CENTRAL	2133,000	14157,00	303,00	-10,0047	,00,	-10,0049	,00	60	120

Rejeita-se H_o.

Comparação do mesófilo+epiderme de plantas expostas à poluição e controle

> Estatística descritiva - controle e poluição

	controle	poluição
Média	236,5013	413,1808
Desvio padrão	22,48613	103,0 473
Variância da amostra	505,626	10618,74
Mínimo	195,568	195,7022
Máximo	298,77 9 6	801,0018
n	60	120

> Estatística inferencial

H_O: O tamanho da nervura central das folhas das plantas controle é igual, ao tamanho da nervura das folhas plantas expostas à poluição.

Os dados não se apresentaram em normalidade, por isso foi utilizado o teste Mann-Whitney U, obtendo-se os seguintes resultados:

	Rank Sum c	Rank Sum P	U	Z	p-level	Z adjusted	p-level	N C	N p
MÊS+EPI	1 9 89,000	14301,00	159,0000	-10,4417	,00	-10,4418	,00	60	120

Rejeita-se Ho.

Comparação do mesófilo de plantas expostas à poluição e controle

> Estatística descritiva - controle e poluição

	controle	poluição
Média	221,1214	395,651
Desvio padrão	23,08212	101,9382
Variância da amostra	532,784	10391,4
Mínimo	178,5257	177,0679
Máximo	281,5212	783,18 19
n	60	120

> Estatística inferencial

H_O: O tamanho da nervura central das folhas das plantas controle é igual, ao tamanho da nervura das folhas plantas expostas à poluição.

Os dados não se apresentaram em normalidade, por isso foi utilizado o teste Mann-Whitney U, obtendo-se os seguintes resultados:

	Rank Sum c	Rank Sum p	U	z	p- level	Z adjusted	p- level	N C	N P
MESOFILO	2013,000	14277,00	183,00	-10,3688	,00,	-10,369	00,	60	120

Rejeita-se H_o.

Comparação da cutícula de plantas expostas à poluição e controle

Estatística descritiva – controle e poluição

	controle	poluição
Média	2,839346	4,896393
Desvio padrão	0,669042	1,276786
Variância da amostra	0,447617	1,630182
Mínimo	1,875733	2,161675
Máximo	4,618456	8,598884
n	60	120

Estatística inferencial

H_o: O tamanho da nervura central das folhas das plantas controle é igual, ao tamanho da nervura das folhas plantas expostas à poluição.

Os dados não se apresentaram em normalidade, por isso foi utilizado o teste Mann-Whitney U, obtendo-se os seguintes resultados:

	Rank Sum P	Rank Sum c	U	Z	p- level	Z adjusted	p- level	N P	N C
CUTIC.	14035,50	2254,500	424,5000	9,636009	00,	9,637348	,00,	120	60

Rejeita-se Ho.

ANÁLISES ESTATÍSTICAS DO LENHO - COMPRIMENTO DOS TRAQUEÍDES

SUPERFÍCIE DO SOLO (BASE)

	Valid N	Mean	Minimum	Maximum	Std.Dev.
Controle 1	150	1903,167	1300,000	2450,000	220,8376
Controle 2	150	1881,833	1475,000	2575,000	221,9290
Controle 3	150	1804,833	1250,000	2750,000	298,5802
Controle 4	150	1859,667	1400,000	2875,000	260,4653
Controle 5	150	1987,667	1475,000	2625,000	236,5465
Controle 6	150	1802,333	1450,000	3125,000	285 ,8 131
Controle 7	150	1690,333	1350,000	2875,000	322,8151
Poluição 1	300	1065,417	375,000	2075,000	465,0155
Poluição 2	300	2046,667	1475,000	2750,000	271,7721
Poluição 3	300	2097,000	1525,000	2875,000	315,6180
Poluição 4	300	2160,417	1575,000	3000,000	300,9423
Poluição 5	300	2051,333	1500,000	3075,000	348,5192
Poluição 6	300	1939,440	1368,000	3120,000	351,5782
Poluição 7	300	1917,667	1375,000	2875,000	347,8319

> Estatística descritiva - controle e poluição

> Estatística inferencial

H_o: O comprimento dos traqueídes nos 7 anéis de crescimento é igual nos indivíduos controle.

Valid	N	Т	Z	p-level
Controle 1 & Controle 2	150	4877,00	1,34647	,178162
Controle 1 & Controle 3	150	3191,00	3,83970	,000123
Controle 1 & Controle 4	150	4076,00	2,03746	,041613
Controle 1 & Controle 5	150	3817,00	3,02516	,002487
Controle 1 & Controle 6	150	3173,50	4,47844	,000008
Controle 1 & Controle 7	150	1932,00	6,85500	,000000,
Controle 2 & Controle 3	150	3588,00	3,57941	,000345
Controle 2 & Controle 4	150	4287,00	1,60777	,107896
Controle 2 & Controle 5	150	3459, 50	3,51097	,000447
Controle 2 & Controle 6	150	2972,00	3,87547	,000107
Controle 2 & Controle 7	150	1911,50	6,59816	,000000,

Controle 3 & Controle 5 150 2161,50 6,41568 ,000000 Controle 3 & Controle 6 150 5324,50 ,08010 ,936160 Controle 3 & Controle 7 150 3103,00 4,22194 ,000024 Controle 4 & Controle 5 150 2629,00 4,89099 ,000001 Controle 4 & Controle 6 150 3646,00 2,68122 ,007339 Controle 4 & Controle 7 150 2594,50 5,41344 ,000000 Controle 5 & Controle 7 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 2164,50 5,11553 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 1,00 15,01141 0,000000	Controle 3 &	Controle 4	150	4403,00	1,75568	,079153
Controle 3 & Controle 6 150 5324,50 ,08010 ,936160 Controle 3 & Controle 7 150 3103,00 4,22194 ,000024 Controle 4 & Controle 5 150 2629,00 4,89099 ,000001 Controle 4 & Controle 6 150 3646,00 2,68122 ,007339 Controle 5 & Controle 6 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 2194,50 5,41344 ,000000 Controle 6 & Controle 7 150 2166,00 6,56027 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 3 300 0,00 15,0114 ,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 ,0000000 Poluição 1 & Poluição 5 300 0,00 15,01247 ,0000000 Poluição 1 & Poluição 5 300 1,00 15,01141 ,0000000 Poluição 1 & Poluição 3 300 1,6741,50 2,78739 ,006317	Controle 3 &	Controle 5	150	2161,50	6,41568	,000000,
Controle 3 & Controle 7 150 3103,00 4,22194 ,000024 Controle 4 & Controle 5 150 2629,00 4,89099 ,000001 Controle 4 & Controle 6 150 3646,00 2,68122 ,007339 Controle 4 & Controle 7 150 2594,50 5,41344 ,000000 Controle 5 & Controle 6 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 1198,50 7,95898 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 2 300 2,00 15,01114 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 4 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 1,00 15,01141 0,000000 Poluição 2 & Poluição 6 300 16741,50 2,78739 ,005317 <td< td=""><td>Controle 3 &</td><td>Controle 6</td><td>150</td><td>5324,50</td><td>,08010</td><td>,936160</td></td<>	Controle 3 &	Controle 6	150	5324,50	,08010	,936160
Controle 4 & Controle 5 150 2629,00 4,89099 ,000001 Controle 4 & Controle 6 150 3646,00 2,68122 ,007339 Controle 4 & Controle 7 150 2594,50 5,41344 ,000000 Controle 5 & Controle 6 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 1198,50 7,95898 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 3 300 0,00 15,01144 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 2 & Poluição 7 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 <td< td=""><td>Controle 3 &</td><td>Controle 7</td><td>150</td><td>3103,00</td><td>4,22194</td><td>,000024</td></td<>	Controle 3 &	Controle 7	150	3103,00	4,22194	,000024
Controle 4 & Controle 6 150 3646,00 2,68122 ,007339 Controle 4 & Controle 7 150 2594,50 5,41344 ,000000 Controle 5 & Controle 6 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 1198,50 7,95898 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 2 300 2,00 15,01114 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 2 & Poluição 7 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863	Controle 4 &	Controle 5	150	2629,00	4,89099	,000001
Controle 4 & Controle 7 150 2594,50 5,41344 ,000000 Controle 5 & Controle 6 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 1198,50 7,95898 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 2 300 2,00 15,01114 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 4 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 7 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 <td< td=""><td>Controle 4 &</td><td>Controle 6</td><td>150</td><td>3646,00</td><td>2,68122</td><td>,007339</td></td<>	Controle 4 &	Controle 6	150	3646,00	2,68122	,007339
Controle 5 & Controle 6 150 2166,00 6,56027 ,000000 Controle 5 & Controle 7 150 1198,50 7,95898 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 2 300 2,00 15,01114 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 14,98747 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 7 300 1,00 15,01247 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 4 300 12376,00 6,10187 ,000000 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 3 & Poluição 5 300 16434,50 3,43085 ,000602 <	Controle 4 &	Controle 7	150	2594,50	5,41344	000000,
Controle 5 & Controle 7 150 1198,50 7,95898 ,000000 Controle 6 & Controle 7 150 2564,50 5,11553 ,000000 Poluição 1 & Poluição 2 300 2,00 15,01114 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 14,98747 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 2 & Poluição 7 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000602 <td< td=""><td>Controle 5 &</td><td>Controle 6</td><td>150</td><td>2166,00</td><td>6,56027</td><td>,000000,</td></td<>	Controle 5 &	Controle 6	150	2166,00	6,56027	,000000,
Controle 6 & Controle 71502564,505,11553,000000Poluição 1 & Poluição 23002,0015,011140,000000Poluição 1 & Poluição 33000,0015,012470,000000Poluição 1 & Poluição 53000,0014,987470,000000Poluição 1 & Poluição 63000,0015,012470,000000Poluição 1 & Poluição 63000,0015,012470,000000Poluição 1 & Poluição 63000,0015,012470,000000Poluição 2 & Poluição 73001,0015,011810,000000Poluição 2 & Poluição 330016741,502,78739,005317Poluição 2 & Poluição 530021172,50,04907,960863Poluição 2 & Poluição 630014362,005,38881,000000Poluição 2 & Poluição 53001203,506,23022,000000Poluição 3 & Poluição 530015311,503,38518,000712Poluição 3 & Poluição 63008010,509,68546,000000Poluição 3 & Poluição 63006960,5010,38371,000000Poluição 4 & Poluição 73005648,0010,85472,000000Poluição 5 & Poluição 630011014,007,68812,000000Poluição 5 & Poluição 730020346,001,48229,138272	Controle 5 &	Controle 7	150	1198,50	7,95898	000000,
Poluição 1 & Poluição 2 300 2,00 15,01114 0,000000 Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 14,98747 0,000000 Poluição 1 & Poluição 6 300 0,00 14,98747 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 7 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 4 300 12376,00 6,10187 ,000000 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 3 & Poluição 5 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000	Controle 6 &	Controle 7	150	2564,50	5,11553	,000000,
Poluição 1 & Poluição 3 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 4 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 5 300 0,00 14,98747 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 7 300 1,00 15,01247 0,000000 Poluição 2 & Poluição 3 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 5 300 21376,00 6,10187 ,000000 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 3 & Poluição 7 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000	Poluição 1 &	Poluição 2	300	2,00	15,01114	0,000000
Poluição 1 & Poluição 4 300 0,00 15,01247 0,00000 Poluição 1 & Poluição 5 300 0,00 14,98747 0,000000 Poluição 1 & Poluição 6 300 0,00 15,01247 0,000000 Poluição 1 & Poluição 7 300 1,00 15,01181 0,000000 Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 4 300 12376,00 6,10187 ,000000 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 3 & Poluição 7 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 5 300 15311,50 3,43085 ,000602 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000	Poluição 1 &	Poluição 3	300	0,00	15,01247	0,000000
Poluição 1 & Poluição 53000,0014,987470,000000Poluição 1 & Poluição 63000,0015,012470,000000Poluição 1 & Poluição 73001,0015,011810,000000Poluição 2 & Poluição 330016741,502,78739,005317Poluição 2 & Poluição 430012376,006,10187,000000Poluição 2 & Poluição 530021172,50,04907,960863Poluição 2 & Poluição 630014362,005,38881,000000Poluição 2 & Poluição 730012093,506,23022,000000Poluição 3 & Poluição 530015311,503,38518,000712Poluição 3 & Poluição 63008010,509,68546,000000Poluição 3 & Poluição 530012852,505,76850,000000Poluição 4 & Poluição 63006960,5010,38371,000000Poluição 5 & Poluição 73005648,0010,85472,000000Poluição 5 & Poluição 73007984,509,17432,000000Poluição 5 & Poluição 730020346,001,48229,138272	Poluição 1 &	Poluição 4	300	0,00	15,01247	0,000000
Poluição 1 & Poluição 63000,0015,012470,000000Poluição 1 & Poluição 73001,0015,011810,000000Poluição 2 & Poluição 330016741,502,78739,005317Poluição 2 & Poluição 430012376,006,10187,000000Poluição 2 & Poluição 530021172,50,04907,960863Poluição 2 & Poluição 630014362,005,38881,000000Poluição 2 & Poluição 730012093,506,23022,000000Poluição 3 & Poluição 530015311,503,43085,000602Poluição 3 & Poluição 63008010,509,68546,000000Poluição 3 & Poluição 530012852,505,76850,000000Poluição 4 & Poluição 530012852,505,76850,000000Poluição 4 & Poluição 63006960,5010,38371,000000Poluição 5 & Poluição 630011014,007,68812,000000Poluição 5 & Poluição 730020346,001,48229,138272	Poluição 1 &	Poluição 5	300	0,00	14,98747	0,000000
Poluição 1 & Poluição 73001,0015,011810,000000Poluição 2 & Poluição 330016741,502,78739,005317Poluição 2 & Poluição 430012376,006,10187,000000Poluição 2 & Poluição 530021172,50,04907,960863Poluição 2 & Poluição 630014362,005,38881,000000Poluição 2 & Poluição 730012093,506,23022,000000Poluição 3 & Poluição 530016434,503,43085,000602Poluição 3 & Poluição 630015311,503,38518,000712Poluição 3 & Poluição 63008010,509,68546,000000Poluição 3 & Poluição 530012852,505,76850,000000Poluição 4 & Poluição 63006960,5010,38371,000000Poluição 5 & Poluição 630011014,007,68812,000000Poluição 5 & Poluição 730020346,001,48229,138272	Poluição 1 &	Poluição 6	300	0,00	15,01247	0,000000
Poluição 2 & Poluição 3 300 16741,50 2,78739 ,005317 Poluição 2 & Poluição 4 300 12376,00 6,10187 ,000000 Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 2 & Poluição 7 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 4 300 16434,50 3,43085 ,000602 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 <tr< td=""><td>Poluição 1 &</td><td>Poluição 7</td><td>300</td><td>1,00</td><td>15,01181</td><td>0,000000</td></tr<>	Poluição 1 &	Poluição 7	300	1,00	15,01181	0,000000
Poluição 2 & Poluição 430012376,006,10187,000000Poluição 2 & Poluição 530021172,50,04907,960863Poluição 2 & Poluição 630014362,005,38881,000000Poluição 2 & Poluição 730012093,506,23022,000000Poluição 3 & Poluição 430016434,503,43085,000602Poluição 3 & Poluição 530015311,503,38518,000712Poluição 3 & Poluição 63008010,509,68546,000000Poluição 3 & Poluição 73007098,509,94617,000000Poluição 4 & Poluição 530012852,505,76850,000000Poluição 4 & Poluição 63006960,5010,38371,000000Poluição 5 & Poluição 73005648,0010,85472,000000Poluição 5 & Poluição 73007984,509,17432,000000Poluição 5 & Poluição 730020346,001,48229,138272	Poluição 2 &	Poluição 3	300	16741,50	2,78739	,005317
Poluição 2 & Poluição 5 300 21172,50 ,04907 ,960863 Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 2 & Poluição 7 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 4 300 16434,50 3,43085 ,000602 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 2 &	Poluição 4	300	12376,00	6,10187	,000000
Poluição 2 & Poluição 6 300 14362,00 5,38881 ,000000 Poluição 2 & Poluição 7 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 4 300 16434,50 3,43085 ,000602 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 2 &	Poluição 5	300	21172,50	,04907	,960863
Poluição 2 & Poluição 7 300 12093,50 6,23022 ,000000 Poluição 3 & Poluição 4 300 16434,50 3,43085 ,000602 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 5 & Poluição 6 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 5 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 2 &	Poluição 6	300	14362,00	5,38881	,000000,
Poluição 3 & Poluição 4 300 16434,50 3,43085 ,000602 Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 2 &	Poluição 7	300	12093,50	6,23022	000000,
Poluição 3 & Poluição 5 300 15311,50 3,38518 ,000712 Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 3 &	Poluição 4	300	16434,50	3,43085	,000602
Poluição 3 & Poluição 6 300 8010,50 9,68546 ,000000 Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 3 &	Poluição 5	300	15311,50	3,38518	,000712
Poluição 3 & Poluição 7 300 7098,50 9,94617 ,000000 Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 3 &	Poluição 6	300	8010,50	9,68546	,000000,
Poluição 4 & Poluição 5 300 12852,50 5,76850 ,000000 Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 3 &	Poluição 7	300	7098,50	9,94617	,000000,
Poluição 4 & Poluição 6 300 6960,50 10,38371 ,000000 Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 4 &	Poluição 5	300	12852,50	5,76850	,000000,
Poluição 4 & Poluição 7 300 5648,00 10,85472 ,000000 Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 4 &	Poluição 6	300	6960,50	10,38371	000000,
Poluição 5 & Poluição 6 300 11014,00 7,68812 ,000000 Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 4 &	Poluição 7	300	5648,00	10,85472	,000000,
Poluição 5 & Poluição 7 300 7984,50 9,17432 ,000000 Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 5 &	Poluição 6	300	11014,00	7,68812	,000000,
Poluição 6 & Poluição 7 300 20346,00 1,48229 ,138272	Poluição 5 &	Poluição 7	300	7984,50	9,17432	,000000,
	Poluição 6 &	Poluição 7	300	20346,00	1,48229	,138272

A 1 METRO DA SUPERFÍCIE DO SOLO

Estatística descritiva – contu e poluição

	Valid N	Mean	Minimum	Maximum	Std.Dev.
Controle 1	150	1981,500	1525,000	2775,000	220,6502
Controle 2	150	1955,667	1625,000	2400,000	147,4659

Controle 3	150	1889,333	1400,000	2500,000	213,2630
Controle 4	150	1946,500	1475,000	2700,000	312,0084
Controle 5	150	1986,500	1625,000	2675,000	201,6008
Controle 6	150	1749,000	1350,000	2575,000	236,1229
Controle 7	150	1896,500	1525,000	2450,000	197,1915
Poluição 1	300	1196,833	625,000	2050,000	266,7436
Poluição 2	300	2061,917	1450,000	2875,000	288,9725
Poluição 3	300	2050,750	1525,000	2750,000	235,3160
Poluição 4	300	2042,167	1550,000	2600,000	234,7638
Poluição 5	300	2055,333	1550,000	2875,000	321,0245
Poluição 6	300	2026,667	1500,000	3375,000	395,4979
Poluição 7	300	1982,1 67	1250,000	3100,000	397,7764

> Estatística inferencial

H_o: O comprimento dos traqueídes nos 7 anéis de crescimento é igual nos indivíduos controle.

Valid	N	Т	Z	p-level
Controle 1 & Controle 2	150	4503,000	1,299796	,193680
Controle 1 & Controle 3	150	3592, 500	3,463741	,000533
Controle 1 & Controle 4	150	4982,000	1,276781	,201689
Controle 1 & Controle 5	150	5117,500	,345411	,729787
Controle 1 & Controle 6	150	165 6,500	7,245920	,000000
Controle 1 & Controle 7	150	3464,500	3,608069	,000309
Controle 2 & Controle 3	150	3560,000	3,419574	,000628
Controle 2 & Controle 4	150	5060,000	,319089	,749661
Controle 2 & Controle 5	150	4095,000	1,618910	,105476
Controle 2 & Controle 6	150	1195,000	7,842249	,000000
Controle 2 & Controle 7	150	3599,000	3,121525	,001801
Controle 3 & Controle 4	150	4520,500	1,395016	,163021
Controle 3 & Controle 5	150	3346, 000	3,737326	,000186
Controle 3 & Controle 6	150	2344,500	5,299304	,000000
Controle 3 & Controle 7	150	4944,000	,126571	,899281
Controle 4 & Controle 5	150	4812,000	948401	,342932
Controle 4 & Controle 6	150	2540, 500	5,605036	,000000
Controle 4 & Controle 7	150	3937,000	1,566137	,117326
Controle 5 & Controle 6	150	1360,000	8,011519	000000,
Controle 5 & Controle 7	150	3607,000	3,648600	,000264

	Controle 6 &	Controle 7	150	2424,000	5,746529	000000,
	Poluição 1 &	Poluição 2	300	12,00	15,00449	0,000000
	Poluição 1 &	Poluição 3	300	0,00	14,98747	0,000000
	Poluição 1 &	Poluição 4	300	6,00	14,98346	0,000000
	Poluição 1 &	Poluição 5	300	1,00	15,01181	000000,0
	Poluição 1 &	Poluição 6	300	103, 00	14,91864	0,000000
	Poluição 1 &	Poluição 7	300	585,00	14,59650	0,000000
	Poluição 2 &	Poluição 3	300	19659,50	,81190	,416854
	Poluição 2 &	Poluição 4	300	18965,00	1,20734	,227312
	Poluição 2 &	Poluição 5	300	20650,00	,31309	,754217
	Poluição 2 &	Poluição 6	300	17016,50	2,41352	,015805
	Poluição 2 &	Poluição 7	300	16052,50	3,61279	,000303
	Poluição 3 &	Poluição 4	300	19709, 00	,37971	,704162
	Poluição 3 &	Poluição 5	300	21227,00	,01114	,991114
	Poluição 3 &	Poluição 6	300	18356,00	2,19047	,028497
	Poluição 3 &	Poluição 7	300	16452,00	3,41874	,000630
	Poluição 4 &	Poluição 5	300	19042,50	,76236	,445853
	Poluição 4 &	Poluição 6	300	17155,50	1,85414	,063728
	Poluição 4 &	Poluição 7	300	16202,00	3,50873	,000451
	Poluição 5 &	Poluição 6	300	16423,00	2,48458	,012975
	Poluição 5 &	Poluição 7	300	14714,50	4,69923	,000003
	Poluição 6 &	Poluição 7	300	16388,50	3,03824	,002382
-						

A 2 METROS DA SUPERFÍCIE DO SOLO

> Estatística descritiva – controle e poluição

·	Valid N	Mean	Minimum	Maximum	Std.Dev.	
Controle 1	150	1971,333	1475,000	2375,000	206,3665	
Controle 2	150	1887,333	1550,000	2300,000	188,7069	
Controle 3	150	2016,000	1475,000	2450,000	166,2930	
Controle 4	150	2031,500	1550,000	2450,000	199,4209	
Controle 5	150	1945,833	1500,000	2425,000	187,1370	
Controle 6	150	1934,500	1475,000	2375,000	218,9371	
Controle 7	150	1776,000	1350,000	2350,000	265,3015	
Poluição 1	300	1331,833	725,000	2125,000	271,8141	
Poluição 2	300	2034,583	1500,000	2750,000	315,7744	
Poluição 3	300	2054,167	1550,000	2875,000	269,3346	
Poluição 4	300	2043,500	1575,000	2900,000	295,5909	
Poluição 5	300	2074,417	1550,000	2750,000	259,9397	

Poluição 6	300	2017,583	1450,000	3300,000	381,4265
Poluição 7	300	1898,750	1000,000	3250,000	517,0833

> Estatística inferencial

H_o: O comprimento dos traqueídes nos 7 anéis de crescimento é igual nos indivíduos controle.

Os dados não apresentaram normalidade, por isso foi utilizado o teste Wilcoxon Matched Pairs Test, obtendo-se os seguintes resultados:

Valid	N	Т	Z	p-level
Controle 1 & Controle 2	150	3296,000	3,837042	,000125
Controle 1 & Controle 3	150	3827,500	2,661055	,007794
Controle 1 & Controle 4	150	3958,500	2,633022	,008467
Controle 1 & Controle 5	150	4893,500	1,185891	,235674
Controle 1 & Controle 6	150	4384,500	,734794	,462470
Controle 1 & Controle 7	150	1931,500	6,167628	,000000,
Controle 2 & Controle 3	150	2320,500	5,349763	,000000,
Controle 2 & Controle 4	150	2571,000	5,800395	,000000,
Controle 2 & Controle 5	150	3541,000	2,899624	,003739
Controle 2 & Controle 6	150	4327,000	2,028819	,042485
Controle 2 & Controle 7	150	3308,500	3,915979	,000090
Controle 3 & Controle 4	150	5017,500	,679854	,496602
Controle 3 & Controle 5	150	3431, 500	3,127392	,001765
Controle 3 & Controle 6	150	2850,000	4,336955	,000014
Controle 3 & Controle 7	150	1615,000	7,528270	,000000,
Controle 4 & Controle 5	150	3553,000	2,758455	,005811
Controle 4 & Controle 6	150	3596, 500	3,562973	,000367
Controle 4 & Controle 7	150	1132,000	7,722856	,000000,
Controle 5 & Controle 6	150	4985,500	,605950	,544552
Controle 5 & Controle 7	150	2488,500	5,620521	,000000,
Controle 6 & Controle 7	150	2747,000	5,024256	,000001
Poluição 1 & Poluição 2	300	2,50	15,01081	0,000000
Poluição 1 & Poluição 3	300	0,00	15,01247	0,000000
Poluição 1 & Poluição 4	300	2,50	14,98580	0,000000
Poluição 1 & Poluição 5	300	0,00	15,01247	0,000000
Poluição 1 & Poluição 6	3 00	10, 50	14,93026	0,000000
Poluição 1 & Poluição 7	300	1695,50	13,82357	0,000000
Poluição 2 & Poluição 3	300	18317,50	1,19211	,233228
Poluição 2 & Poluição 4	300	20648,50	,41380	,6 790 27
Poluição 2 & Poluição 5	300	18142,00	2,15842	,030903

Poluição 2 &	Poluição 6	300	18519,50	1,42939	,152901
Poluição 2 &	Poluição 7	300	13008 ,00	5,80361	,000000,
Poluição 3 &	Poluição 4	300	19097, 00	,91952	,357830
Poluição 3 &	Poluição 5	300	19481,00	1,41542	,156955
Poluição 3 &	Poluição 6	300	17612,50	2,25897	,023892
Poluição 3 &	Poluição 7	300	13098,50	5,66889	,000000,
Poluição 4 &	Poluição 5	300	17925,50	1,85371	,063790
Poluição 4 &	Poluição 6	300	17577,00	1,82588	,067878
Poluição 4 &	Poluição 7	300	12895,50	5,95241	,000000,
Poluição 5 &	Poluição 6	300	15943, 00	3,68901	,000226
Poluição 5 &	Poluição 7	300	10832,50	7,37369	,000000,
Poluição 6 &	Poluição 7	300	11545,00	6,54823	,000000,

ANÁLISES ESTATÍSTICAS DO LENHO - DIÂMETRO DOS TRAQUEÍDES

SUPERFÍCIE DO SOLO (BASE)

¥	Estatística descritiva - controle
---	-----------------------------------

	1	2	3	4	5	6	7
Média	27,27455	26,19379	26,8804	25,80364	25,31859	27,1012	24,30223
Desvio padrão	5,162669	4,265195	5,016197	4,027696	4,266662	4,609763	4,750284
Variância da amostra	26,65315	18,19189	25,16224	16,22233	18,20441	21,24992	22,5652
Mínimo	16,84886	16,0138	16,1275	15,69245	15,94116	17,5716	15,08148
Máximo	38,52503	39,39324	37,35924	36,7005	33,99538	40,08888	38,52503
n	150	150	150	150	150	150	150

Estatística descritiva – poluição

	1	2	3	4	5	6	7
Média	24,49718	26,00988	28,2765	26,22859	26,68264	26,47348	25,69545
Desvio padrão	6,121451	5,381332	6,737839	5,694116	5,89117	5,127426	5,576147
Variância da amostra	37,47216	28,95873	45,39847	32,42295	34,70588	26,2905	31,09342
Mínimo	13,51177	14,00814	13,50375	13,17047	15,14604	12,4946	12,84543
Máximo	43,4825	44,10878	65,19715	42,23287	48,44737	44,09895	42,1069
Contagem	301	301	301	301	301	301	301

> Estatística inferencial

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos controle.

Controle 1	150	1903,167	1300,000	2450,000	220,8376
Controle 2	150	1881,833	1475,000	2575,000	221,9290
Controle 3	150	1804,833	1250,000	2750,000	298,5802
Controle 4	150	1859,667	1400,000	2875,000	260,4653
Controle 5	150	1987,667	1475,000	2625,000	236,5465
Controle 6	150	1802,333	1450,000	3125,000	285,8131
Controle 7	150	1690,333	1350,000	2875,000	322 ,8 151
Poluição 1	300	1065,417	375,000	2075,000	465,0155
Poluição 2	300	2046,667	1475,000	2750,000	271,7721
Poluição 3	300	2097,000	1525,000	2875,000	315,6180
Poluição 4	300	2160,417	1575,000	3000,000	300,9423
Poluição 5	300	2051,333	1500,000	3075,000	348,5192
Poluição 6	300	1939,440	1368,000	3120,000	351,5782
Poluição 7	300	1917,667	1375,000	2875,000	347,8319

> Estatística inferencial

H_o: O comprimento dos traqueídes nos 7 anéis de crescimento é igual nos indivíduos controle.

Os dados não apresentaram normalidade,	por isso foi utilizado o teste	Wilcoxon Matched Pairs	Test,
obtendo-se os seguintes resultados:			

Valid	N	Т	Z	p-level
Controle 1 & Controle 2	150	4559,00	2,070430	,038420
Controle 1 & Controle 3	150	5201,00	,865885	,386560
Controle 1 & Controle 4	150	4236,00	2,676455	,007444
Controle 1 & Controle 5	150	3949,00	3,214936	,001306
Controle 1 & Controle 6	150	5439,00	,419340	,67 497 1
Controle 1 & Controle 7	150	3182,50	4,653074	,000003
Controle 2 & Controle 3	150	4721,00	1,766479	,077325
Controle 2 & Controle 4	150	5258, 00	,758939	,447895
Controle 2 & Controle 5	150	4895,00	1,312354	,189410
Controle 2 & Controle 6	150	4595,00	1,880883	,059997
Controle 2 & Controle 7	150	3572,00	3,922279	880000,
Controle 3 & Controle 4	150	4420,00	1,970513	,048788
Controle 3 & Controle 5	150	4255,00	2,640807	,008275
Controle 3 & Controle 6	150	5658,0 0	,008443	,993264
Controle 3 & Controle 7	150	3585,00	3,794930	,000148
Controle 4 & Controle 5	150	5247, 00	,779577	,435645
Controle 4 & Controle 6	150	4430,00	2,312465	,020758
Controle 4 & Controle 7	150	4311,00	2,535738	,011226

Controle 5 & Controle 6	150	3718,00	3,648348	,000264
Controle 5 & Controle 7	150	4700,00	1,805881	,070946
Controle 6 & Controle 7	150	4559,00	2,070430	,038420

Para as plantas expostas a poluição, foi proposta a seguinte hipótese:

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos expostos à poluição.

Valid	N	Т	Z	p-level
Poluição 1 & Poluição 2	301	16668,00	4,008240	,000061
Poluição 1 & Poluição 3	301	11471,00	7,447087	,000000,
Poluição 1 & Poluição 4	301	16936,00	3,749960	,000177
Poluição 1 & Poluição 5	301	16138,00	4,358940	,000013
Poluição 1 & Poluição 6	301	16245,00	4,209478	,000026
Poluição 1 & Poluição 7	301	18928,00	2,337177	,01 9 436
Poluição 2 & Poluição 3	301	14567,00	5,398468	,000000,
Poluição 2 & Poluição 4	301	21629,00	,725553	,468118
Poluição 2 & Poluição 5	301	20445,00	1,509004	,131308
Poluição 2 & Poluição 6	301	20387,00	1,455030	,145671
Poluição 2 & Poluição 7	301	21676,00	,694453	,487403
Poluição 3 & Poluição 4	301	15513,00	4,772501	,00002
Poluição 3 & Poluição 5	301	17039,00	3,762749	,000168
Poluição 3 & Poluição 6	301	16751,00	3,872986	,000108
Poluição 3 & Poluição 7	301	14589,00	5,383911	000000,
Poluição 4 & Poluição 5	301	20690,00	1,159566	,246234
Poluição 4 & Poluição 6	301	21669,00	,699085	,484504
Poluição 4 & Poluição 7	301	20888,50	1,215540	,224169
Poluição 5 & Poluição 6	301	22341,00	,254423	,799170
Poluição 5 & Poluição 7	301	18504,00	2,793361	,005219
Poluição 6 & Poluição 7	301	19659,00	1,939153	,052492

1 METRO DA SUPERFÍCIE DO SOLO

	1	2	3	4	5	6	7
Média	27,16337	26,81291	27,2836	26,19462	28,1142	28,11867	28,29782
Desvio padrão	4,884422	4,970783	4,492535	5,290435	4,616924	4,425625	5,271816
Variância da amostra	23,85758	24,70869	20,18287	27,9887	21,31599	19,58616	27,79205
Mínimo	16,93058	17,38552	18,12566	16,93058	15,42615	18,90891	18,25548
Máximo	39,91815	41,70071	44,96563	42,89258	41,70071	44,96563	42,89258
n	150	150	150	149	149	149	149

> Estatística descritiva - controle

Estatística descritiva – poluição

	1	2	3	4	5	6	7
Média	25,0214	26,89521	26,43494	26,54699	25,45225	25,62772	25,93972
Desvio padrão	5,195958	7,087581	5,038778	5,455482	5,662243	5,630792	5,330212
Variância da amostra	26,99798	50,23381	25,38928	29,76229	32,06099	31,70582	28,41116
Mínimo	13,07132	14,16208	13,17047	14,25365	11,03886	12,425	13,34221
Máximo	42,07341	65,85234	45,1749	40,53264	50,15165	43,03389	42,27392
n	300	300	300	300	300	300	300

Estatística inferencial

H₀: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos controle.

Valid	N	Т	Z	p-level
Controle 1 & Controle 2	150	5492,00	,319899	,749047
Controle 1 & Controle 3	150	5491,00	,321775	,747625
Controle 1 & Controle 4	149	4636,00	1,803184	,071369
Controle 1 & Controle 5	149	4796,00	1,499969	,133632
Controle 1 & Controle 6	149	4659,50	1,633830	,102304
Controle 1 & Controle 7	149	4651,00	1,774758	,075947
Controle 2 & Controle 3	150	5219,00	,832112	,405352
Controle 2 & Controle 4	149	4974,00	1,031792	,302177
Controle 2 & Controle 5	149	4225,00	2,465581	,013684

Controle 2 &	Controle 6	149	4214,00	2,602915	,009248
Controle 2 &	Controle 7	149	4259,00	2,517635	,011819
Controle 3 &	Controle 4	149	4522,00	2,019225	,043472
Controle 3 &	Controle 5	149	4527,00	2,009749	,044466
Controle 3 &	Controle 6	149	4806,00	1,481018	,138612
Controle 3 &	Controle 7	149	4632,00	1,810764	,070187
Controle 4 &	Controle 5	149	3727,00	3,525826	,000423
Controle 4 &	Controle 6	149	3583,00	3,798720	,000146
Controle 4 &	Controle 7	149	4206,00	2,618075	,008847
Controle 5 &	Controle 6	149	5384,00	,385652	,699757
Controle 5 &	Controle 7	149	5488,00	,047857	,961831
Controle 6 &	Controle 7	149	5569,00	,035059	,972033

Para as plantas expostas à poluição, foi proposta a seguinte hipótese:

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos expostos à poluição.

Valid	N	Т	Z	p-level
Poluição 1 & Poluição 2	300	16957,00	3,654471	,000258
Poluição 1 & Poluição 3	300	17762,00	3,200666	,001372
Poluição 1 & Poluição 4	300	17646,50	3,193652	,001406
Poluição 1 & Poluição 5	300	21146,00	,950291	,341971
Poluição 1 & Poluição 6	300	20590,50	1,319701	,186944
Poluição 1 & Poluição 7	300	19215,00	2,145364	,031931
Poluição 2 & Poluição 3	300	21995,00	,385703	,699720
Poluição 2 & Poluição 4	300	22329,00	,163591	,87 00 54
Poluição 2 & Poluição 5	300	17858,00	3,136826	,001709
Poluição 2 & Poluição 6	300	18887,00	2,364579	,018057
Poluição 2 & Poluição 7	300	19773,00	1,863342	,062423
Poluição 3 & Poluição 4	300	22509,00	,043890	,964992
Poluição 3 & Poluição 5	300	18244,00	2,880134	,003978
Poluição 3 & Poluição 6	300	19104,00	2,308230	,020993
Poluição 3 & Poluição 7	300	20984,00	1,058022	,290053
Poluição 4 & Poluição 5	300	19331,00	2,157274	,030992
Poluição 4 & Poluição 6	300	19576,00	1,994348	,046122
Poluição 4 & Poluição 7	300	20759,00	1,207648	,227192
Poluição 5 & Poluição 6	300	22039,00	,356442	,721512
Poluição 5 & Poluição 7	300	20383,00	1,457690	,144936
Poluição 6 & Poluição 7	300	20745,00	1,028035	,303941

2 METROS DA SUPERFÍCIE DO SOLO

	1	2	3	4	5	6	7
Média	25,0425	26,65179	27,88094	24,7555	24,44182	26,15182	23,01938
Desvio padrão	4,272801	5,16471	4,947545	4,83042	4,276478	3,477835	3,984094
Variância da amostra	18,25683	26,67423	24,47821	23,33296	18,28826	12,09533	15,873
Mínimo	18,77081	17,13427	13,2361 6	16,82137	15,37338	17,13427	13,23616
Máximo	38,39818	39,77667	40,83376	39,77667	38,11764	34,92658	36,9742
Contagem	150	150	150	150	150	150	150

Estatística descritiva - controle

Estatística descritiva – poluição

	1	2	3	4	5	6	7
Média	24,33005	26,44567	26,36652	25,62357	26,0342	26,08825	25,75419
Desvio padrão	6,654318	5,273441	5,653746	5,988416	5,797937	5,036634	6,043 525
Variância da amostra	44,27995	27,80918	31,96485	35,86112	33,61607	25,36768	36,5242
Mínimo	11,57467	14,00814	10,75028	11,67835	2,779094	13,17047	12, 94 631
Máximo	46,8293	45,76856	48,99698	46,8293	46,09664	48,15108	48,99698
Contagem	300	300	300	300	300	300	300

Estatística inferencial

Ho: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos controle.

Valid	N	т	Z	p-level
Controle 1 & Controle 2	150	4177,00	2,787154	,005320
Controle 1 & Controle 3	150	2873,00	5,233770	,000000,
Controle 1 & Controle 4	150	5362,00	,563810	,572887
Controle 1 & Controle 5	150	5221,00	,828360	,407473
Controle 1 & Controle 6	150	4200,00	2,744000	,006073
Controle 1 & Controle 7	150	3780,00	3,532021	,000413
Controle 2 & Controle 3	150	3407,00	4,231858	,000023
Controle 2 & Controle 4	150	4384,00	2,398772	,016456

Controle 2 &	Controle 5	150	4074,00	2,980407	,002881
Controle 2 &	Controle 6	150	3312,00	4,213310	,000025
Controle 2 &	Controle 7	150	5189,00	,755196	,450137
Controle 3 &	Controle 4	150	2605,00	5,736602	,000000,
Controle 3 &	Controle 5	150	2826,00	5,321953	,000000,
Controle 3 &	Controle 6	150	2499,00	5,935483	,000000,
Controle 3 &	Controle 7	150	3946,00	3,220565	,001281
Controle 4 &	Controle 5	150	1660,00	7,509648	,000000,
Controle 4 &	Controle 6	150	5397,00	,498142	,618388
Controle 4 &	Controle 7	150	3978,00	3,160525	,001576
Controle 5 &	Controle 6	150	3550,00	3,963556	,000074
Controle 5 &	Controle 7	150	3804,00	3,486991	,000489
Controle 6 &	Controle 7	150	3815,00	3,140445	,001688
C6 &	C7	150	2394,00	6,132489	,000000,

Para as plantas expostas à poluição, foi proposta a seguinte hipótese:

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos expostos à poluição.

Valid	N	Т	Z	p-level
Poluição 1 & Poluição 2	300	16152,00	4,271323	,000019
Poluição 1 & Poluição 3	300	15984,50	4,382711	,000012
Poluição 1 & Poluição 4	300	20169,00	1,600001	,109608
Poluição 1 & Poluição 5	300	17725,00	3,225271	,001260
Poluição 1 & Poluição 6	300	17636,00	3,284457	,001023
Poluição 1 & Poluição 7	300	18844,00	2,481131	,013102
Poluição 2 & Poluição 3	300	22040,00	,355777	,722010
Poluição 2 & Poluição 4	300	19499,50	2,045221	,040841
Poluição 2 & Poluição 5	300	21319,00	,835245	,403586
Poluição 2 & Poluição 6	300	21 635,00	,527987	,597512
Poluição 2 & Poluição 7	300	20003,00	1,710391	,087203
Poluição 3 & Poluição 4	300	19981,00	1,725021	,084533
Poluição 3 & Poluição 5	300	21150,50	,947299	,343494
Poluição 3 & Poluição 6	300	21965,00	,405653	,685001
Poluição 3 & Poluição 7	300	19555,00	1,918129	,055103
Poluição 4 & Poluição 5	300	20210,00	1,480368	,138785
Poluição 4 & Poluição 6	300	19803,00	1,843392	,065281
Poluição 4 & Poluição 7	300	21603,50	,646052	,518250

Poluição 5 & Poluição 6	300	22105,00	,312552	,754623
Poluição 5 & Poluição 7	300	21519,00	,702245	,482532
Poluição 6 & Poluição 7	300	21817,00	,504073	,614213

ANÁLISES ESTATÍSTICAS DO LENHO - ESPESSURA DA PAREDE CELULAR

SUPERFÍCIE DO SOLO (BASE)

Estatística descritiva – controle									
······································	1	2	3	4	5	6	7		
Média	4,525021	4,670602	4,626064	4,691369	4,458689	4,643034	4,52241		
Desvio padrão	1,172366	0,913205	1,099197	0,959457	1,04176	1,097943	1,150075		
Variância da amostra	1,374442	0,833943	1,208234	0,920557	1,085263	1,205478	1,322672		
Mínimo	2,024866	2,981592	2,04456	2,309186	2,1466	2,05433	2,112116		
Máximo	8,12566	6,618079	8,145485	6,45668	7,264631	7,451363	6,792026		
n	150	150	150	150	150	150	150		

Estatística descritiva – poluição

	1	2	3	4	5	6	7
Média	2,750033	4,121962	4,609137	4,163596	4,535024	4,243146	4,276206
Desvio padrão	0,795324	0,975933	1,000195	1,024894	1,192866	1,055879	1,060044
Variância da amostra	0,632541	0,952446	1,0003 9	1,050407	1,422929	1,114881	1,123694
Mínimo	1,015165	2,082434	2,082434	1,862586	2,082434	1,919909	1,909718
Máximo	5,430323	6,922331	7,508322	8,661523	8,661523	8,145485	8,145485.
Contagem	300	300	300	300	300	300	300

> Estatística inferencial

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos controle.

Os dados não apresentaram normalidade, por isso foi utilizado o teste Wilcoxon Matched Pairs Test, obtendo-se os seguintes resultados:

Estatística inferencial

Ho: O comprimento dos traqueídes nos 7 anéis de creacimento é igual nos indivíduos controle.

Valid	N	Т	Z	p-level
Controle 1 & Controle 2	150	4977,50	,89244	,372166
Controle 1 & Controle 3	150	4833,50	1,17090	,241648
Controle 1 & Controle 4	150	4664,00	1,62522	,104126
Controle 1 & Controle 5	150	5244,00	,65097	,515073
Controle 1 & Controle 6	150	5012,00	,95905	,337541
Controle 1 & Controle 7	150	5496,50	,03159	,974803
Controle 2 & Controle 3	150	5259,50	,48527	,627490
Controle 2 & Controle 4	150	5230, 00	,40416	,686099
Controle 2 & Controle 5	150	4413,00	2,22579	,026035
Controle 2 & Controle 6	150	5655,00	,01407	,988773
Controle 2 & Controle 7	150	4837,50	1,42132	,155233
Controle 3 & Controle 4	150	5353,00	,44440	,656756
Controle 3 & Controle 5	150	4700,00	1,55630	,119646
Controle 3 & Controle 6	150	5477,00	,20941	,834131
Controle 3 & Controle 7	150	5006,00	1,10200	,270471
Controle 4 & Controle 5	150	4368,00	1,94872	,051337
Controle 4 & Controle 6	150	5252,00	,63580	,524908
Controle 4 & Controle 7	150	4908,00	1,28772	,197854
Controle 5 & Controle 6	150	4753, 00	1,58146	,113783
Controle 5 & Controle 7	150	5204, 00	,59151	,554183
Controle 6 & Controle 7	150	5181,00	,90341	,366315

Para as plantas expostas a poluição, foi proposta a seguinte hipótese:

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos expostos à poluição.

Valid	N	Т	Z	p-level
Poluição 1 & Poluição 2	300	3877,50	12,35792	0,000000
Poluição 1 & Poluição 3	300	1224,00	14,19851	0,000000
Poluição 1 & Poluição 4	300	2621,50	13,13352	0,000000
Poluição 1 & Poluição 5	300	849,00	14,44789	0,000000
Poluição 1 & Poluição 6	300	2091,00	13,58998	0,000000
Poluição 1 & Poluição 7	300	2163,00	13,50955	0,000000
Poluição 2 & Poluição 3	300	12237,00	6,47423	000000,
Poluição 2 & Poluição 4	300	20160,00	1,04357	,296693
Poluição 2 & Poluição 5	300	15390,50	4,31273	,000016
Poluição 2 & Poluição 6	300	20747,00	1,02669	,304573

Poluição 2 & Polu	iição 7	300	18501,00	2,09058	,036574
Poluição 3 & Polu	iição 4	300	13048,00	6,05907	,000000,
Poluição 3 & Polu	iição 5	300	19516,50	1,67014	,094901
Poluição 3 & Polu	iição 6	300	14306,50	5,05573	,000000,
Poluição 3 & Polu	iição 7	300	14524,00	4,83048	,000001
Poluição 4 & Polu	lição 5	300	15881,50	4,13652	,000035
Poluição 4 & Polu	iição 6	300	19132,50	,89403	,371313
Poluição 4 & Polu	iição 7	300	17144,50	1,86226	,062576
Poluição 5 & Polu	iição 6	300	17526,50	2,76195	,005749
Poluição 5 & Polu	lição 7	300	10196,50	3,51636	,000438
Poluição 6 & Polu	lição 7	300	20856,00	,26937	,787649

Praticamente todos os anéis se mostraram diferentes.

1 METRO DA SUPERFÍCIE DO SOLO

> Estatística descritiva - controle

	1	2	3	4	5	6	7
Média	4,99228	4,943639	4,852343	4,742715	4,900205	4,994428	4,975093
Desvio padrão	1,198754	1,067843	1,047351	1,202028	1,084405	1,135409	1,091745
Variância da amostra	1,43701	1,140289	1,096945	1,444872	1,175935	1,289154	1,191906
Minimo	2,42465	2,832416	2,41656	2,02466	2,84499	2,16566	2,155323
Máximo	7,228776	6,89723	7,707819	8,12363	8,41066	8,15466	7,707819
N	150	150	150	150	150	150	150

Estatística descritiva – poluição

······································	1	2	3	4	5	6	7
Média	2,813462	4,342342	4,416838	4,476896	4,193907	4,335824	4,178512
Desvio padrão	0,883002	1,138943	1,158004	1,068779	0,932513	0,96241	0,899483
Variância da amostra	0,779692	1,29719	1,340974	1,142288	0,86958	0,926233	0,809069
Mínimo	1,041217	1,472503	1,875733	1,919909	1,97557	2,082434	1,468966
Máximo	5,75972 8	6,978484	7,7499	7,522748	6,667042	7,288519	7,288519
n	300	300	300	300	300	300	300

Estatística inferencial

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos controle.

Valid	N	т	Z	p-level
Controle 1 & Controle 2	150	5134,00	,45226	,651085
Controle 1 & Controle 3	150	5023,50	1,06883	,285152
Controle 1 & Controle 4	150	4688,50	1,57832	,114503
Controle 1 & Controle 5	150	5224,00	,82273	,410667
Controle 1 & Controle 6	150	5510,00	,00574	,995418
Controle 1 & Controle 7	150	5440,00	,27953	,779842
Controle 2 & Controle 3	150	5169,50	,65755	,510831
Controle 2 & Controle 4	150	4935,00	1,36496	,172274
Controle 2 & Controle 5	150	5325,50	,21948	,826275
Controle 2 & Controle 6	150	5296,00	,68764	,491683
Controle 2 & Controle 7	150	5547,50	,07580	,939576
Controle 3 & Controle 4	150	5414,00	,46625	,641043
Controle 3 & Controle 5	150	5490,50	,32271	,746915
Controle 3 & Controle 6	150	4945,50	1,34526	,178550
Controle 3 & Controle 7	150	5069,00	,98261	,325808
Controle 4 & Controle 5	150	5032,00	1,18297	,236830
Controle 4 & Controle 6	150	4554,00	1,95858	,050170
Controle 4 & Controle 7	150	4702,00	1,67811	,093336
Controle 5 & Controle 6	150	5061,00	,99777	,318399
Controle 5 & Controle 7	150	5271,50	,46230	,643872
Controle 6 & Controle 7	150	5570,50	,03222	,974299

Os dados não se apresentaram em normalidade, por isso foi utilizado o teste Wilcoxon Matched Pairs Test, obtendo-se os seguintes resultados:

Para as plantas expostas à poluição, foi proposta a seguinte hipótese:

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos expostos à poluição.

Valid	N	т	Z	p-level
Poluição 1 & Poluição 2	301	3374,00	12,62294	0,000000
Poluição 1 & Poluição 3	301	3258,50	12,845 56	0,000000
Poluição 1 & Poluição 4	301	2230,00	13,52951	0,000000
Poluição 1 & Poluição 5	301	3221,00	12,76289	0,000000
Poluição 1 & Poluição 6	301	1921,50	13,76598	0,000000
Poluição 1 & Poluição 7	301	2664,00	13,17303	0,000000

Poluição 2 &	Poluição 3	301	21221,00	,70831	,478760
Poluição 2 &	Poluição 4	301	19845,50	1,53988	,123600
Poluição 2 &	Poluição 5	301	18431,00	2,22868	,025842
Poluição 2 &	Poluição 6	301	21949,50	,01934	,984572
Poluição 2 &	Poluição 7	301	18572,50	2,04132	,041227
Poluição 3 &	Poluição 4	301	20661,00	,89359	,371546
Poluição 3 &	Poluição 5	301	17629,50	2,86455	,004179
Poluição 3 &	Poluição 6	301	21164,00	,93832	,348086
Poluição 3 &	Poluição 7	301	17603,50	3,13818	,001702
Poluição 4 &	Poluição 5	301	15204,00	4,44056	,000009
Poluição 4 &	Poluição 6	301	17663,50	2,57981	,009890
Poluição 4 &	Poluição 7	301	15578,00	4,26358	,000020
Poluição 5 &	Poluição 6	301	17405,00	2,58341	,009787
Poluição 5 &	Poluição 7	301	21287,00	,07063	,943691
Poluição 6 &	Poluição 7	301	17615,50	2,25685	,024024

Praticamente todos os anéis se mostraram diferentes.

2 METROS DA SUPERFÍCIE DO SOLO

> Estatística descritiva - controle

	1	2	3	4	5	6	7
Média	5,060216	4,892875	4,867819	4,744166	4,75857	5,131768	4,691408
Desvio padrão	1,203685	1,06463	1,074954	1,106199	1,116983	1,019543	1,207615
Variância da amostra	1,448857	1,133438	1,155526	1,223677	1,247651	1,039468	1,458335
Mínimo	2,15563	2,41556	2,42266	2,02436	2,51563	2,41253	2,1579
Máximo	8,859527	7,707819	7,915989	7,4163	7,956969	7,637169	6,981592
Contagem	150	150	150	150	150	150	150

> Estatística descritiva - poluição

	1	2	3	4	5	6	7
Média	2,699209	4,187635	4,40753	4,321411	4,277312	4,019606	4,106066
Desvio padrão	0,730184	1,026287	1,118872	1,054557	0,928265	0,921213	0,946464
Variância da amostra	0,533169	1,053265	1,251875	1,112091	0,861577	0,848633	0,895794
Mínimo	1,164868	2,328232	2,328232	1,862586	2,37434	2,082434	2,082434
Máximo	6,618079	8,748701	8,748701	7,7499	7,464879	7,288519	8,39456
Contagem	300	300	300	300	300	300	300

> Estatística inferencial

H_o: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos controle.

	Valid	N	Т	Z	p-level
Controle 1 &	Controle 2	150	4850,50	1,52351	,127642
Controle 1 &	Controle 3	150	4887,00	1,45502	,145672
Controle 1 &	Controle 4	150	4350,00	2,34518	,019024
Controle 1 &	Controle 5	150	4183,50	2,42785	,0151 94
Controle 1 &	Controle 6	150	5138,00	,71785	,472854
Controle 1 &	Controle 7	150	3996,50	3,01510	,002571
Controle 2 &	Controle 3	150	5345,50	,32064	,748485
Controle 2 &	Controle 4	150	5066,00	,98829	,323017
Controle 2 &	Controle 5	150	4919,50	1,26592	,205549
Controle 2 &	Controle 6	150	4657,00	1,88656	,059229
Controle 2 &	Controle 7	150	4719,00	1,77023	,076698
Controle 3 &	Controle 4	150	4903,50	1,03553	,300427
Controle 3 &	Controle 5	150	5139,00	,84995	,395359
Controle 3 &	Controle 6	150	4519,00	2,02491	,042885
Controle 3 &	Controle 7	150	4521,50	1,64884	,099190
Controle 4 &	Controle 5	150	5345,00	,32160	,747760
Controle 4 &	Controle 6	150	3944,50	3,11364	,001850
Controle 4 &	Controle 7	150	5376,50	,39987	,689258
Controle 5 &	Controle 6	150	4031,00	3,06108	,002207
Controle 5 &	Controle 7	150	5345,50	,45861	,646515
Controle 6 &	Controle 7	150	3937,00	3,12786	,001762

Os dados não se apresentaram em normalidade, por isso foi utilizado o teste Wilcoxon Matched Pairs Test, obtendo-se os seguintes resultados:

Para as plantas expostas à poluição, foi proposta a seguinte hipótese:

H₀: O diâmetro nos 7 anéis de crescimento é igual nos indivíduos expostos à poluição.

Valid	N	Т	Z	p-level
Poluição 1 & Poluição 2	300	1868,00	13,77025	0,000000
Poluição 1 & Poluição 3	300	193 1,00	13,69691	0,000000
Poluição 1 & Poluição 4	300	1722,50	13,77451	0,000000
Poluição 1 & Poluição 5	300	990,00	14,26901	0,000000
Poluição 1 & Poluição 6	300	1817,00	13,74195	0,000000

Poluição 1 &	Poluição 7	300	2221,00	13,50310	0,000000
Poluição 2 &	Poluição 3	300	16361,00	3,05778	,002232
Poluição 2 &	Poluição 4	300	19022,00	1,82359	,068224
Poluição 2 &	Poluição 5	300	17905,50	1,49269	,135529
Poluição 2 &	Poluição 6	300	18201,00	2,29726	,021610
Poluição 2 &	Poluição 7	300	20020,50	1,13919	,254634
Poluição 3 &	Poluição 4	300	20925,00	1,00251	,316107
Poluição 3 &	Poluição 5	300	17973,00	2,00413	,045065
Poluição 3 &	Poluição 6	300	14848,50	4,60692	,000004
Poluição 3 &	Poluição 7	300	15674,00	4,03820	,000054
Poluição 4 &	Poluição 5	300	21081,50	,60828	,543005
Poluição 4 &	Poluição 6	300	15975,50	3,99250	,000066
Poluição 4 &	Poluição 7	300	18000,00	2,78575	,005343
Poluição 5 &	Poluição 6	300	16065,50	3,60374	,000314
Poluição 5 &	Poluição 7	300	18494,50	2,09506	,036174
Poluição 6 &	Poluição 7	300	19959,50	,98989	,322236

Praticamente todos os anéis diferiram entre si comparando-se a espessura da parede celular.

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.828	114814	4.5154	ppm	Ramnose
2	9.293	425073	16.7171	ppm	Fucose
3	11.324	61612	2.4231	ppm	Arabinose
4	14.058	753642	29.6389	ppm	Xilose
5	26.026	1038767	40.8522	ppm	Manose
6	28.121	27842	1.0950	ppm	Galactose
7	30.881	120993	4.7584	ppm	Glucose
Total		2542743	100.0000		

Chromatogram - Channel 1 Padrão26-11

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	14.749	12196420	100.0000	ppm	Xilose
Total		12196420	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	32.000	3523216	52.1196	ppm	Glucose
2	32.062	633917	9.3777	ppm	Glucose
3	32.166	962397	14.2369	ppm	Glucose
4	32.306	1640336	24.2658	ppm	Glucose
Total		6759866	100.0000		

Chromatogram - Channel 1 glucosefim

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	11.498	943728	100.0000	ppm	Arabinose
Total		943728	100.0000	••	

Chromatogram - Channel 1 arabinose

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.833	51734	16.6846	ppm	Ramnose
2	9.278	18636	6.0103	ppm	Fucose
3	11.431	43200	13.9323	ppm	Arabinose
4	14.11 8	131829	42.5158	ppm	Xilose
5	25.932	36685	11.8313	ppm	Manose
6	28.309	15707	5.0656	ppm	Galactose
7	31.105	12280	3.9602	ppm	Glucose
Total		310071	100.0000	•••	

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.796	56044	3.2916	ppm	Ramnose
2	9.220	2733	0.1605	ppm	Fucose
3	11.273	73807	4.3349	ppm	Arabinose
4	13.897	211866	12.4435	ppm	Xilose
5	25.649	129063	7.5802	ppm	Manose
6	28.069	356208	20.9210	ppm	Galactose
7	30.945	872911	51.2683	ppm	Glucose
Total		1702633	100.0000	••	

Chromatogram - Channel 1 C2-B-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.800	20832	4.4961	ppm	Ramnose
2	9.241	1754	0.3786	ppm	Fucose
3	11.278	43477	9.3832	ppm	Arabinose
4	13.889	112182	24.2114	ppm	Xilose
5	25.631	60745	13.1101	ppm	Manose
6	28.023	186578	40.2678	ppm	Galactose
7	30.643	37775	8.1527	ppm	Glucose
Total		463343	100.0000	• •	

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.913	19654	2.0893	ppm	Ramnose
2	11.451	131951	14.0271	ppm	Arabinose
3	14.170	334827	35.5938	ppm	Xilose
4	26.042	204698	21.7604	ppm	Manose
5	28.420	181233	19.2660	ppm	Galactose
6	31.142	68325	7.2633	ppm	Glucose
Total		940689	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.859	27170	6.4726	ppm	Ramnose
2	9.287	21128	5.0331	ppm	Fucose
3	11.467	60041	14.3033	ppm	Arabinose
4	14.161	118291	28.1797	ppm	Xilose
5	26.040	105702	25.1809	ppm	Manose
6	28.415	64571	15.3823	ppm	Galactose
7	31.176	22869	5.4480	ppm	Glucose
Total		419772	100.0000	••	

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.833	28236	31.6109	ppm	Ramnose
2	9.293	16340	18.2935	ppm	Fucose
3	11.888	5828	6.5247	ppm	Arabinose
4	14.107	15444	17.2903	ppm	Xilose
5	25.963	23475	26.2806	ppm	Manose
Total		89323	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.857	124230	42.0384	ppm	Ramnose
2	9.306	42925	14.5256	ppm	Fucose
3	11.448	18486	6.2555	ppm	Arabinose
4	14.123	64697	21.8928	ppm	Xilose
5	25.985	14976	5.0676	ppm	Manose
6	28.052	27724	9.3814	ppm	Galactose
7	31.110	2478	0.8386	ppm	Glucose
Total		295516	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.881	174838	15.7576	ppm	Ramnose
2	9.429	362044	32.6299	ppm	Fucose
3	11.476	86965	7.8379	ppm	Arabinose
4	14.166	182013	16.4043	ppm	Xilose
5	26.095	191711	17.2783	ppm	Manose
6	28.390	51065	4.6024	ppm	Galactose
7	31.193	60911	5.4897	ppm	Glucose
Total		1109548	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.880	159225	8.5487	ppm	Ramnose
2	9.375	77029	4.1356	ppm	Fucose
3	11.509	367420	19.7265	ppm	Arabinose
4	14.242	665518	35.7311	ppm	Xilose
5	26.122	296251	15.9055	ppm	Manose
6	28.478	187029	10.0414	ppm	Galactose
7	31.242	110101	5.9112	ppm	Glucose
Total		1862574	100.0000		

Chromatogram - Channel 1 6-B-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.885	63692	2.9460	ppm	Ramnose
2	9.372	59041	2.7309	ppm	Fucose
3	11.501	250294	11.5770	ppm	Arabinose
4	14.243	656225	30.3528	ppm	Xilose
5	26.176	384802	17.7985	ppm	Manose
6	28.627	568909	26.3141	ppm	Galactose
7	31.293	179030	8.2808	ppm	Glucose
Total		2161994	100.0000		

Chromatogram - Channel 1 C-B-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.807	91102	1.6367	ppm	Ramnose
2	9.246	22839	0.4103	ppm	Fucose
3	11.344	656054	11.7862	ppm	Arabinose
4	14.078	1785832	32.0831	ppm	Xilose
5	25. 948	1177422	21.1528	ppm	Manose
6	28.355	1149392	20.6492	ppm	Galactose
7	30.960	683629	12.2816	ppm	Glucose
Total		5566270	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.796	27028	18.6905	ppm	Ramnose
2	9.226	693	0.4790	ppm	Fucose
3	11.263	16525	11.4277	ppm	Arabinose
4	13.873	38667	26.7397	ppm	Xilose
5	25.610	35612	24.6270	ppm	Manose
6	27.951	14379	9.9437	ppm	Galactose
7	30.618	11702	8.0924	ppm	Glucose
Total		144606	100.0000		

Peak#	Ret. I ime	Area	Area%	Unit	Cmpa Name
1	8.825	1936	26.0478	ppm	Ramnose
2	11.321	1280	17.2214	ppm	Arabinose
3	13.961	1320	17.7681	ppm	Xilose
4	25.746	1422	19.1400	ppm	Manose
5	28.207	1473	19.8227	ppm	Galactose
Total		7431	100.0000	••	

Chromatogram - Channel 1 1-B-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.958	242107	2.5200	ppm	Ramnose
2	11.601	1311921	13.6554	ppm	Arabinose
3	14.472	3368058	35.0572	ppm	Xilose
4	26.484	1763095	18.3516	ppm	Manose
5	29.031	2240272	23.3184	ppm	Galactose
6	31.596	681868	7.0974	ppm	Glucose
Total		9607320	100.0000	•••	

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.817	4279	6.1430	ppm	Ramnose
2	11.384	10187	14.6232	ppm	Arabinose
3	14.041	26544	38.1033	ppm	Xilose
4	25.858	16997	24.3986	ppm	Manose
5	28.196	6150	8.8285	ppm	Galactose
6	30.964	5506	7.9034	ppm	Glucose
Total		69664	100.0000		

Chromatogram - Channel 1 3-B-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.817	14890	6.8638	ppm	Ramnose
2	9.352	77867	35.8936	ppm	Fucose
3	11.389	11899	5.4849	ppm	Arabinose
4	14.043	39025	17.9892	ppm	Xilose
5	26.059	58717	27.0664	ppm	Manose
6	28.206	6423	2.9608	ppm	Galactose
7	30.895	8116	3.7413	ppm	Glucose
Total		216938	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.893	52266	1.8570	ppm	Ramose
2	9.342	18675	0.6635	ppm	Fucose
3	11.453	404967	14.3886	ppm	Arabinose
4	14.205	1008776	35.8421	ppm	Xilose
5	26.096	723850	25.7186	ppm	Manose
6	28.438	400217	14.2198	ppm	Galactose
7	31.118	205745	7.3102	ppm	Glucose
Total		2814498	100.0000		

Chromatogram - Channel 1 4-B-2-7

Intensity 135000 Xilose/14.205 115000 Arabinose/11.453 75000 70000 Manose/26.096 Galactose/28.438 35000 Glucose/31.118 Ramose/8.893 Fucose/9.342 0--5000 -10000 -15000 min

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.801	2 8794	1.7299	ppm	Ramnose
2	9.234	5172	0.3107	ppm	Fucose
3	11.298	214336	12.8771	ppm	Arabinose
4	13.952	488548	29.3514	ppm	Xilose
5	25.809	563712	33.8672	ppm	Manose
6	28.045	167810	10.0819	ppm	Galactose
7	30.739	196105	11.7818	ppm	Glucose
Total		1664477	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.803	1285	10.2918	ppm	Ramnose
2	13.975	2521	20.1992	ppm	Xilose
3	25.783	4725	37.8519	ppm	Manose
4	28.161	3951	31.6570	ppm	Galactose
Total		12482	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.786	34773	8.2838	ppm	Ramnose
2	9.225	1560	0.3717	ppm	Fucose
3	11.259	59263	14.1182	ppm	Arabinose
4	13.868	131526	31.3332	ppm	Xilose
5	25.618	117486	27.9884	ppm	Manose
6	27.936	41774	9.9516	ppm	Galactose
7	30.595	33385	7.9531	ppm	Glucose
Total		419766	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.810	52794	9.3909	ppm	Ramnose
2	9.232	3123	0.5554	ppm	Fucose
3	11.284	81062	14.4193	ppm	Arabinose
4	13.904	168017	29.8867	ppm	Xilose
5	25.677	147660	26.2656	ppm	Manose
6	27.992	68338	12.1559	ppm	Galactose
7	30.671	41187	7.3262	ppm	Glucose
Total		562181	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.838	11242	20.9492	ppm	Ramonse
2	9.347	11859	22.0996	ppm	Fucose
3	14.066	18120	33.7667	ppm	Xilose
4	25.923	12442	23.1844	ppm	Manose
4 Total	25.923	12442 53663	23.1844 100.0000	ppm	Manose

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.844	72891	22.8767	ppm	Ramnose
2	9.645	88982	27.9266	ppm	Fucose
3	11.385	28523	8.9517	ppm	Arabinose
4	14.031	63739	20.0044	ppm	Xilose
5	25.895	27709	8.6965	ppm	Manose
6	28.300	27353	8.5846	ppm	Galactose
7	30.993	9430	2.9595	ppm	Glucose
Total		318627	100.0000		

Chromatogram - Channel 1 2-1M-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.851	67306	5.4405	ppm	Ramnose
2	9.423	301361	24.3597	ppm	Fucose
3	11.422	194041	15.6848	ppm	Arabinose
4	14.116	376345	30.4209	ppm	Xilose
5	25.959	148856	12.0324	ppm	Manose
6	28.296	108593	8.7778	ppm	Galactose
7	31.033	40627	3.2840	ppm	Glucose
Total		1237127	100.0000		

Chromatogram - Channel 1 3-1M-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.818	17095	37.8990	ppm	Ramnose
2	9.328	15664	34.7263	ppm	Fucose
3	11.958	12348	27.3747	ppm	Arabinose
Total		45108	100.0000		

Chromatogram - Channel 1 4-1M-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.823	15500	9.0618	ppm	Ramnose
2	9.353	10637	6.2189	ppm	Fucose
3	11.395	20331	11.8861	ppm	Arabinose
4	14.060	62722	36.6684	ppm	Xilose
5	25.884	27764	16.2316	ppm	Manose
6	28.254	19691	11.5117	ppm	Galactose
7	30.980	14405	8.4215	ppm	Glucose
Total		171051	100.0000		

Chromatogram - Channel 1 5-1M-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.802	79610	1.8842	ppm	Ramnose
2	9.243	13549	0.3207	ppm	Fucose
3	11.330	530455	12.5546	ppm	Arabinose
4	14.042	1363677	32.2749	ppm	Xilose
5	25.900	955195	22.6071	ppm	Manose
6	28.279	927500	21.9517	ppm	Galactose
7	30.854	355206	8.4069	ppm	Glucose
Total		4225193	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.818	38287	13.4069	ppm	Ramnose
2	9.321	13056	4.5717	ppm	Fucose
3	11.396	39595	13.8652	ppm	Arabinose
4	14.071	122080	42.7491	ppm	Xilose
5	25.873	30145	10.5558	ppm	Manose
6	28.226	27165	9.5124	ppm	Galactose
7	31.033	15247	5.3390	ppm	Glucose
Total		285574	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.803	54460	2.8294	ppm	Ramnose
2	9.235	6710	0.3486	ppm	Fucose
3	11.300	250264	13.0020	ppm	Arabinose
4	13.965	634793	32.9796	ppm	Xilose
5	25.810	579325	30.0978	ppm	Manose
6	28.050	244027	12.6780	ppm	Galactose
7	30.716	155228	8.0646	ppm	Glucose
Total		1924806	100.0000		

Chromatogram - Channel 1 C3-1M-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.848	58521	8.4269	ppm	Ramnose
2	9.397	139414	20.0754	ppm	Fucose
3	11.415	49207	7.0857	ppm	Arabinose
4	14.098	177372	25.5412	ppm	Xilose
5	25.944	128316	18.4774	ppm	Manose
6	28.258	74038	10.6613	ppm	Galactose
7	31.030	67584	9.7320	ppm	Glucose
Total		694452	100.0000		

Chromatogram - Channel 1 1-1M-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.881	13581	2.2138	ppm	Ramnose
2	9.316	13978	2.2784	ppm	Fucose
3	11.410	76368	12.4480	ppm	Arabinose
4	14.092	179231	29.2148	ppm	Xilose
5	25.929	200260	32.6425	ppm	Manose
6	28.264	82371	13.4266	ppm	Galactose
7	31.007	47704	7.7757	ppm	Glucose
Total		613493	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.832	16283	8.5427	ppm	Ramnose
2	9.402	15661	8.2160	ppm	Fucose
3	11.407	19994	10.4895	ppm	Arabinose
4	14.073	65284	34.2498	ppm	Xilose
5	25.913	42593	22.3456	ppm	Manose
6	28.233	14542	7.6289	ppm	Galactose
7	30.974	16254	8.5275	ppm	Glucose
Total		190611	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.864	87241	2.6372	ppm	Ramnose
2	9.343	200838	6.0710	ppm	Fucose
3	11.448	481067	14.5419	ppm	Arabinose
4	14.196	1157912	35.0019	ppm	Xilose
5	26.079	832853	25.1758	ppm	Manose
6	28.350	325517	9.8399	ppm	Galactose
7	31.096	222716	6.7323	ppm	Glucose
Total		3308144	100.0000	•••	

Chromatogram - Channel 1 4-1M-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.814	7811	9.5160	ppm	Ramnose
2	9.357	40366	49.1802	ppm	Fucose
3	11.986	25666	31.2702	ppm	Arabinose
4	14.055	8235	10.0335	ppm	Xilose
Total		82078	100.0000		

Chromatogram - Channel 1 5-1M-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.794	30631	3.9469	ppm	Ramnose
2	9.224	2708	0.3489	ppm	Fucose
3	11.271	75857	9.7745	ppm	Arabinose
4	13.894	181221	23.3508	ppm	Xilose
5	25.645	93119	11.9986	ppm	Manose
6	28.084	336835	43.4022	ppm	Galactose
7	30.644	55707	7.1780	ppm	Glucose
Total		776078	100.0000	••	

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.831	59146	3.4125	ppm	Ramnose
2	9.315	91562	5.2827	ppm	Fucose
3	11.426	216020	12.4635	ppm	Arabinose
4	14.153	679798	39.2215	ppm	Xilose
5	25.938	274851	15.8577	ppm	Manose
6	28.329	299223	17.2639	ppm	Galactose
7	31.035	112629	6.4982	ppm	Glucose
Total		1733228	100.0000		

Chromatogram - Channel 1 C-2M-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.804	73689	10.5047	ppm	Ramnose
2	9.239	3256	0.4642	ppm	Fucose
3	11.285	89867	12.8109	ppm	Arabinose
4	13.915	240845	34.3336	ppm	Xilose
5	25.683	187911	26.7876	ppm	Manose
6	27.983	55305	7.8840	ppm	Galactose
7	30.664	50611	7.2149	ppm	Glucose
Total		701484	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.801	30756	14.9628	ppm	Ramnose
2	11.261	19582	9.5267	ppm	Arabinose
3	13.871	54554	26.5409	ppm	Xilose
4	25.602	35650	17.3440	ppm	Manose
5	27.939	49749	24.2032	ppm	Galactose
6	30.591	15256	7.4224	ppm	Glucose
Total		205546	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.844	55642	12.0726	ppm	Ramnose
2	9.433	140957	30.5834	ppm	Fucose
3	11.407	50452	10.9465	ppm	Arabinose
4	14.079	120194	26.0786	ppm	Xilose
5	25.903	30571	6.6330	ppm	Manose
6	28.260	45457	9.8628	ppm	Galactose
7	30.975	17621	3.8232	ppm	Glucose
Total		460893	100.0000		

Chromatogram - Channel 1 1-2M-1A

Peak# Ket. Time Area Area% Unit Chipu Nar	ne
1 8.817 27174 6.1230 ppm Ramnose	
2 9.323 16358 3.6858 ppm Fucose	
3 11.403 72082 16.2418 ppm Arabinose	
4 14.087 165788 37.3562 ppm Xilose	
5 25.900 93641 21.0996 ppm Manose	
6 28.234 48019 10.8198 ppm Galactose	
7 30.994 20742 4.6737 ppm Glucose	
Total 443804 100.0000	

Chromatogram - Channel I 2-2M-1A

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.824	35628	5.8259	ppm	Ramnose
2	9.378	76653	12.5342	ppm	Fucose
3	11.396	109162	17.8501	ppm	Arabinose
4	14.071	255881	41.8415	ppm	Xilose
5	25.881	89882	14.6974	ppm	Manose
6	28.221	29518	4.8268	ppm	Galactose
7	30.955	14824	2.4240	ppm	Glucose
Total		611549	100.0000		

1 8.812 29628 33.4661 ppm Ramnose 2 11.937 21425 24.2008 ppm Arabinose 3 14.048 20930 23.6414 ppm Xilose 4 27.963 16548 18.6916 ppm Galactose	Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
2 11.937 21425 24.2008 ppm Arabinoso 3 14.048 20930 23.6414 ppm Xilose 4 27.963 16548 18.6916 ppm Galactose	1	8.812	29628	33.4661	ppm	Ramnose
3 14.048 20930 23.6414 ppm Xilose 4 27.963 16548 18.6916 ppm Galactose	2	11.937	21425	24.2008	ppm	Arabinose
4 27.963 16548 18.6916 ppm Galactose	3	14.048	20930	23.6414	ppm	Xilose
Tatal 99521 100 0000	4	27.963	16548	18.6916	ppm	Galactose
10tal 88531 100.0000	Total		88531	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.797	33990	5.0606	ppm	Ramnose
2	9.228	5394	0.8031	ppm	Fucose
3	11.27 8	116623	17.3634	ppm	Arabinose
4	13.899	211484	31.4869	ppm	Xilose
5	25.667	180055	26.8075	ppm	Manose
6	27.981	74723	11.1251	ppm	Galactose
7	30.677	49390	7.3534	ppm	Glucose
Total		671658	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.826	80 8 9	4.4284	ppm	Ramnose
2	9.289	4524	2.4765	ppm	Fucose
3	11.406	26990	14.7762	ppm	Arabinose
4	14.069	60194	32.9544	ppm	Xilose
5	25.871	32162	17.607 8	ppm	Manose
6	28.240	40179	21.9968	ppm	Galactose
7	31.007	10521	5.7599	ppm	Glucose
Total		182660	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.792	48283	3.1938	ppm	Ramnose
2	9.225	5746	0.3801	ppm	Fucose
3	11.278	172245	11.3936	ppm	Arabinose
4	13.927	472030	31.2237	ppm	Xilose
5	25.725	429204	28.3908	ppm	Manose
6	28.038	265636	17.5712	ppm	Galactose
7	30.657	118626	7.8468	ppm	Glucose
Total		1511770	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.797	26507	59.1900	ppm	Ramnose
2	11.268	1713	3.8254	ppm	Arabinose
3	13.871	4668	10.4233	ppm	Xilose
4	25.576	3722	8.3102	ppm	Manose
5	27.956	5045	11.2658	ppm	Galactose
6	30.653	3128	6.9853	ppm	Glucose
Total		44783	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.743	832	56.6266	ppm	Ramnose
2	11.243	208	14.1477	ppm	Arabinose
3	13.827	196	13.3312	ppm	Xilose
4	25.496	125	8.4825	ppm	Manose
5	27.954	27	1.8358	ppm	Galactose
6	30.558	82	5.5762	ppm	Glucose
Total		1469	100.0000	••	

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.915	93908	1.5764	ppm	Ramnose
2	9.355	134220	2.2532	ppm	Fucose
3	11.489	592623	9.9484	ppm	Arabinose
4	14.263	1520154	25.5189	ppm	Xilose
5	26.204	1199393	20.1342	ppm	Manose
6	28.745	1846539	30.9979	ppm	Galactose
7	31.294	570144	9.5710	ppm	Glucose
Total		5956980	100.0000		

Chromatogram - Channel 1 2-2M-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd	Name
1	1.438	161349018	100.0000			
Total		161349018	100.0000			

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.844	39879	2.9913	ppm	Ramnose
2	9.331	23680	1.7762	ppm	Fucose
3	11.442	204096	15.3093	ppm	Arabinose
4	14.151	484351	36.3311	ppm	Xilose
5	25.999	321978	24.1515	ppm	Manose
6	28.356	173710	13.0300	ppm	Galactose
7	31.096	85463	6.4105	ppm	Glucose
Total		1333157	100.0000		

Chromatogram - Channel 1 4-2M-2-7

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.853	49177	4.5237	ppm	Ramnose
2	9.438	83958	7.7231	ppm	Fucose
3	11.431	184519	16.9736	ppm	Arabinose
4	14.132	441403	40.6038	ppm	Xilose
5	25.972	206347	18.9815	ppm	Manose
6	28.270	63851	5.8735	ppm	Galactose
7	31.006	57843	5.3208	ppm	Glucose
Total		1087097	100.0000		

Peak#	Ret.Time	Area	Area%	Unit	Cmpd Name
1	8.813	3923	8.4057	ppm	Ramnose
2	9.334	5647	12.0995	ppm	Fucose
3	11.402	3438	7.3651	ppm	Arabinose
4	14.057	11994	25.6967	ppm	Xilose
5	25.883	15295	32.7704	ppm	Manose
6	28.211	5353	11.4698	ppm	Galactose
7	31.018	1023	2.1926	ppm	Glucose
Total		46674	100.0000	••	

