MICHELA CARBONI

MÁXIMOS SUBSUPERFICIAIS DE CLOROFILA NA PLATAFORMA CONTINENTAL DA REGIÃO SUESTE DO BRASIL: COMPOSIÇÃO ESPECÍFICA E DINÂMICA SAZONAL.

Monografia apresentada ao Curso de Graduação em Ciências Biológicas do Setor de Ciências Biológicas da Universidade Federal do Paraná, como requisito parcial à obtenção do grau de Bacharel em Ciências Biológicas.

Orientador: Dr. Frederico P. Brandini

Dedico este trabalho ao "planetinha azul", que por ser azul faz valer a minha existência.

Agradecimentos

Ao Prof. Dr. Frederico P. Brandini pela orientação, incentivo, amizade, paciência e apoio nos momentos mais difíceis da minha graduação.

Ao Centro de Estudos do Mar pelo apoio logístico e a todo pessoal pela maravilhosa e deliciosa convivência.

Aos integrantes do projeto DEPROAS do Instituto Oceanográfico da Universidade de São Paulo, pelo apoio logístico e companhia agradabilíssima durante os cruzeiros oceanográficos.

Aos oficiais e tripulantes do N/Oc. Prof. W. Besnard pelo êxito nos cruzeiros.

Ao CNPq pelas bolsas de Iniciação Científica.

Aos meus pais, pelo amor, confiança e incentivo sempre e por terem me colocado no mundo. Especialmente à minha mãe, Lúcia, meu porto seguro.

Ao Dr. Rodrigo S. Godefroid, pela amizade e apoio imensuráveis sem os quais essa Monografía não existiria!

À família Ruaro, Roberto, Marisa, Eduardo e Bruna, D. Izabel, Mariano, Dulce, Maria e Márcia, pela amizade, confiança e incentivo.

Ao MSc Fabian Sá, que acompanhou e ajudou tanto nesse trabalho, agüentando minhas insanidades com paciência e carinho.

À Dr. Hedda Kolm, pelo exemplo de responsabilidade e dedicação, pela confiança, amizade, incentivo e por manter-me a par de toda burocracia envolvida no fim do curso.

Ao Prof. Dr. Luciano Fernandes, pelo auxílio na taxonomia e por ceder seu laboratório para as contagens em Curitiba quando o dinheiro estava curto.

Aos queridos amigos Marcinha e André, pela amizade tão bonita e pelo apoio extra com uma culinária inacreditável.

À MSc Nilva Brandini, pela amizade e auxílio nas correções.

Ao Dr. Ricardo Queiroz pela paciência em sanar minhas dúvidas.

Ao MSc Juan C. Ugaz, pela divertidíssima companhia durante as contagens.

À Kelly F. Cottens pela sua amizade incontestável e ajuda em todas as etapas da minha graduação.

À querida amiga Michelli C. Thomas, por partilharmos juntas das alegrias e dificuldades enlouquecedoras envolvidas nas nossas monografias.

Aos meus irmãos, Nicolau, Francesco e Giuliano pela amizade ímpar e por suportarem minhas lamentações com tanto bom humor.

À toda minha família, principalmente aos mais próximos Tio Osmar, Tia Inês, Marine, Antonio e Lucas, pelo imenso carinho. E uma especial lembrança ao meu querido Vô Careca.

Aos amigos e companheiros do CAEB, pelas discussões nada científicas. Em especial à "Tia do CAEB" pelo exemplo de vida.

Ao meu avô, Dr. Eurípedes Malavolta, que admiro tanto e sempre me serviu de referencial.

Sumário

Introdução		1
Objetivos		4
Material e N	létodos	5
Resultados		6
Verão		7
Inverno		8
Discussão		10
Figuras		14
Tabelas		30
	Bibliográficas	

Resumo

A hidrografía da Região Sueste tem sido amplamente estudada desde a década de 1950, onde têm sido descritos processos oceanográficos em grande escala que afetam a estrutura e dinâmica do ecossistema pelágico na plataforma continental. A penetração de águas profundas da Água Central do Atlântico Sul no assoalho da plataforma, gera uma camada intermediária na coluna de água, geralmente na base da zona eufótica, que coincide com o início da termoclina, onde luz e nutrientes são suficientes para a formação de máximos subsuperficiais de clorofila (MSC). Existem fortes evidências sobre o seu papel no recrutamento de larvas de peixes de interesse comercial. Para compreender o papel dos MSC no funcionamento de todo o ecossistema de plataforma, incluindo os compartimentos bênticos e pelagiais, é necessário esclarecer as características básicas desses máximos, tais como a composição taxonômica, magnitude, espessura, e como essas características são controladas pelo regime hidrográfico. O objetivo desse trabalho é analisar a dinâmica sazonal e a composição fitoplanctônica dos MSC na Região Sueste do Brasil. As amostras de fitoplâncton total, localizadas com base em registros verticais e contínuos de clorofila na zona eufótica, foram coletadas na zona de mistura e MSC. As concentrações de clorofila a nos MSC variaram de 0,2 a 1,81 µg.l⁻¹ com máximos na isóbata de 50 m e mínimos no talude continental. Isso representa até três vezes a concentração média da zona de mistura na capa superior da zona eufótica. Foram identificadas aproximadamente 140 espécies de fitoplâncton nos MSC pertencentes a vários grupos taxonômicos. As diatomáceas foram o grupo dominante nesses máximos, os quais podem ter espessuras entre 10 e 30 m. Os gêneros mais frequentes e dominantes no inverno foram Nitzschia, Thalassionema (cf. nitzschioides) e Chaetoceros. No verão, Nitzschia spp. e Navicula spp. foram os gêneros mais frequentes e dominantes.

Introdução

A plataforma continental da Região Sueste do Brasil é dominada pela Água de Plataforma (AP) resultante da mistura entre a Água Tropical (AT) transportada pela Corrente do Brasil (CB), Água Central do Atlântico Sul (ACAS) e Água Costeira (AC). Próximo ao talude continental, predomina a AT (T > 20°C e S > 36,40) da Corrente do Brasil, ocupando a capa superficial até 200 m acima da termoclina permanente. A ACAS (T < 20°C e S < 36,4) ocupa a camada abaixo da AT entre 200 e 500 metros (Brandini *et al.*, 1989; Castro & Miranda, 1998) e representa a principal fonte de nutrientes de origem oceânica para a zona eufótica da plataforma continental (Brandini *et al.*, 1989).

A circulação da plataforma é controlada basicamente pelo regime de ventos, marés, e pela dinâmica da Corrente do Brasil (Castro *et al.* 1987). Durante o verão, ventos predominantes de nordeste induzem o transporte de Ekman, da água superficial para fora da costa. Esse processo é compensado pela penetração da ACAS em direção à costa na camada de fundo.

Em determinadas ocasiões as intrusões da ACAS aproximam-se até 30 km da costa, formando uma termoclina acentuada e uma frente térmica na plataforma interna (Brandini, 1990a, 1990b; Castro *et al.*, 1987; Castro & Miranda, 1998). Durante o inverno, os ventos freqüentes de sudoeste transportam e acumulam AT sobre a plataforma, impedindo as intrusões da ACAS e mantendo-a próxima ao talude continental. Nesses períodos, a mistura vertical devido aos ventos de sudoeste fortes e constantes, e quedas de temperatura na superfície, geram condições físico-químicas quase homogêneas das águas costeiras e regiões de plataforma rasa (Castro *et al.*, 1987; Castro & Miranda, 1998). A Figura 1 ilustra tais mecanismos de forma esquemática.

As alterações sazonais da estrutura física da coluna de água, estratificada no verão e homogênea no inverno, têm implicações diretas no regime de produção biológica do habitat pelágico. No verão uma coluna de água de, no mínimo, 40 metros divide-se em três setores (Fig. 2):

- (A) A camada superficial acima da termoclina, bem iluminada mas carente em nutrientes:
- (B) Uma camada intermediária na base da zona eufótica, que coincide com o início da termoclina, onde luz e nutrientes são suficientes para a formação de máximos subsuperficiais de clorofila (MSC);
- (C) A camada afótica abaixo da termoclina, (i.é. ACAS) rica em nutrientes mas limitada pela ausência de luz.

Estrutura semelhante foi proposta por Dugdale (1967) para áreas de plataforma de regiões temperadas no verão.

Em setores mais rasos, a zona de mistura turbulenta, induzida por ventos e correntes de maré, atinge o fundo com maior freqüência. Nesse caso, padrões de estratificação vertical são difíceis de ser observados. De qualquer modo, zonas de máxima turbidez são freqüentemente observadas próximas ao fundo, devido ao material particulado em suspensão associado aos máximos de fitoplâncton e microfitobentos, formando também MSC na interface água-sedimento (Pellizzari, 2000).

Os primeiros registros de ocorrência de MSC de verão na Plataforma da Região Sueste foram feitos por Brandini (1990a) e Brandini *et al.*(1989), incluindo áreas rasas, intermediárias e externas da Plataforma Continental de São Paulo, Paraná e Santa Catarina. Grandes extensões geográficas da Plataforma Continental das regiões sueste e sul brasileiras são sítios potenciais de formação de MSC.

Existem fortes evidências sobre o papel dos MSC no recrutamento de larvas de sardinha, cuja desova coincide com a formação e permanência dos MSC entre outubro e abril (Matsuura & Kitahara, 1995). Além de sustentar populações pelágicas, os MSC podem ser importantes como alimento para larvas meroplanctônicas, para invertebrados filtradores de substratos consolidados e suspensívoros de fundo arenoso. Em resumo, o papel ecológico dos MSC estende-se além do compartimento pelágico, sendo crucial no desenvolvimento de comunidades planctônicas, bênticas e nectônicas.

Portanto, para compreender o papel dos MSC no funcionamento de todo o ecossistema de plataforma, incluindo os compartimentos bênticos e pelagiais, é necessário esclarecer as características básicas desses máximos, tais como a composição taxonômica, magnitude, posição na zona eufótica e suas relações com o regime hidrográfico.

Objetivos

O objetivo desse trabalho é analisar a composição fitoplanctônica dos máximos subsuperficiais de clorofila na plataforma continental da Região Sueste do Brasil.

Objetivos específicos

- > Estudar a dinâmica sazonal dos MSC;
- > Determinar diferenças geográficas na composição taxonômica dos MSC;
- > Comparar a estrutura taxonômica dos MSC em diferentes isóbatas.

Material e Métodos

O estudo baseia-se em dados oceanográficos e amostras de fitoplâncton total obtidas no âmbito do projeto DEPROAS - Dinâmica do Ecossistema de Plataforma da Região Oeste do Atlântico Sul (Instituto Oceanográfico da USP).

Durante as expedições sazonais a bordo do N/Oc. "Prof. W. Besnard" (Fig. 3) foram realizadas coletas de água do mar e dados ambientais, descritas a seguir, na plataforma rasa, intermediária e externa (talude continental), em 7 estações entre SP e RJ (Fig. 4). Foram amostradas duas estações na isóbata de 50 m, duas na de 100 m e três estações na isóbata de 200 m (Tabela 1), em dezembro de 2001 e julho de 2002.

Dados de clorofila, fotossíntese e penetração de radiação fotossinteticamente ativa (RFA) foram obtidos com um perfilador de fluorescência natural Biospherical PNF – 300.

Com base nos registros verticais e contínuos de clorofila na zona eufótica, foram coletadas amostras de fitoplâncton total na zona de mistura e MSC com garrafa Hydrobios. As amostras foram fixadas com solução de Lugol imediatamente após a coleta. Em laboratório, uma alíquota de 25 ml de cada amostra foi corada com Rosa de Bengala e acondicionada em câmara de sedimentação por 12 horas. Posteriormente foram feitas análises da composição e densidade celular de fitoplâncton total.

As contagens foram realizadas em microscópio invertido (ZEISS, modelo 03), seguindo a técnica de Utermöhl (1958). O procedimento de contagem e análise seguiu a orientação de Hasle (1978). As células ou cadeias maiores que 15 μm foram quantificadas em toda a área da cuba de sedimentação, em aumento de 200x. Células ou cadeias entre 5 e 15 μm foram contadas em um transecto com aumento de 320x.

Para a identificação dos organismos foi utilizada bibliografia especializada (Cupp, 1943; Drebes, 1974; Richard, 1987; Tomas, 1997; Yamaji, 1986) e sempre que possível as células foram identificadas ao nível específico. As densidades foram expressas em células por litro.

Resultados

Foi analisado um total de 28 amostras nas quais foram identificadas aproximadamente 140 espécies (Tabela 2), pertencentes aos seguintes grupos taxonômicos: Bacillariophyceae, Dinophyceae, Cyanophyceae, Dictyochophyceae.

Dados de temperatura revelam a estrutura oceanográfica bem conhecida na Plataforma da Região Sueste. Temperaturas acima de 20° C observadas na zona eufótica (ZE) tanto no verão quanto no inverno evidenciaram a presença da Água de Plataforma fortemente influenciada pela Água Tropical da Corrente do Brasil, dominando a zona de mistura (ZM) na porção superior. A porção inferior da coluna d'água foi dominada por águas mais frias afetadas pela Água Central do Atlântico Sul, principalmente no verão, quando foram observadas temperaturas abaixo de 20° C na maioria das estações.

A termoclina sazonal foi mais desenvolvida no verão. No inverno a distribuição vertical da temperatura foi mais homogênea e a termoclina ficou restrita às áreas mais afastadas da costa, evidenciando a menor influência da ACAS sobre a plataforma interna nesses períodos.

A concentração média de clorofila *a* na ZM variou de 0,06 a 1,08 μg.l⁻¹, com valores maiores na isóbata de 50 m, decrescendo nas áreas oceânicas.

As diatomáceas foram o grupo dominante em todos os MSC identificados. O número de espécies foi maior em regiões mais próximas da costa, decrescendo em áreas oceânicas. Valores máximos foram observados no verão na radial em frente à Ubatuba, e no inverno na radial de Cabo Frio.

A taxa de fotossíntese na Zona Eufótica (ZE) variou de mínimos inferiores a 0,01 até máximos de 14,5 μgC.l⁻¹.h⁻¹, obtidos na ZM superficial decrescendo em direção à base da ZE. O perfil vertical acompanhou o decréscimo exponencial da radiação fotossinteticamente ativa (RFA) que exibiu valores de superfície no verão variando entre 156 e 1.243 μE.m⁻².s⁻¹. Picos secundários de fotossíntese associados aos MSC também ocorreram em subsuperfície nas três isóbatas da radial de Ubatuba e na isóbata de 100 m da radial de Cabo Frio.

Foram observados MSC em todas as radiais, exceto na isóbata de 50 m em frente a Cabo Frio, onde as maiores densidades fitoplanctônicas e concentrações de clorofila *a* foram observadas próximo à superfície.

Na isóbata de 50 m o MSC foi observado por volta de 28 m na radial de Ubatuba (Fig. 5), com concentração de 1,81 μg.l⁻¹. Densidades celulares máximas de 149.000 céls.l⁻¹, foram, no entanto, encontradas na superfície. No MSC a densidade celular foi em torno de 97.000 céls.l⁻¹. As espécies mais abundantes foram uma diatomácea cêntrica não identificada (Cêntrica sp.2) e *Leptocylindrus danicus*, com densidades em torno de 34.000 e 7.000 céls.l⁻¹, respectivamente. Na radial Cabo Frio, onde o pico de clorofila *a* foi observado mais próximo à superfície (Fig. 6), as concentrações variaram entre 0,11 μg.l⁻¹ e 1,22 μg.l⁻¹, a 45 e 5 m de profundidade, respectivamente.

Na isóbata de 100 m, máximos de clorofila *a* de 0,45 e 0,33 μg.l⁻¹ foram observados a cerca de 37 e 45 m de profundidade nas radiais de Ubatuba e Cabo Frio (Fig. 7 e 8), respectivamente. Espécies do gênero *Navicula* dominaram o MSC, com aproximadamente 11.000 céls.l⁻¹ na radial de Ubatuba. Não foram obtidas amostras de fitoplâncton total no MSC da radial de Cabo Frio. Entretanto, amostras analisadas na ZM revelaram que essa mesma espécie dominou a coleção fitoplanctônica nessa radial.

Na isóbata de 200 m, MSC foram identificados a 73 m na radial Ubatuba (Fig. 9), a 74 m na radial Baía de Guanabara (Fig. 10) e a 57 m na radial Cabo Frio (Fig. 11), com concentrações de 0,25, 0,33 e 0,48 μg.Γ¹, respectivamente. A densidade celular do MSC observado na radial Ubatuba foi 6.200 céls.Γ¹, dominando uma diatomácea cêntrica não identificada (Cêntrica sp.4) e uma espécie de *Gyrodinium* sp. também não identificada. Os taxa *Gymnodinium* spp., *Navicula* spp. e *Guinardia striata* foram as espécies mais abundantes do total de 4.800 céls.Γ¹ observadas no MSC da radial Baía de Guanabara. Na radial Cabo Frio, a densidade celular total do MSC esteve em torno de 2.400 céls.Γ¹, com predominância de *Navicula* spp., *Nitzschia seriata* e *Gymnodinium* spp.

Inverno

A taxa de fotossíntese na zona eufótica variou entre < 0,01 e 47,58 μgC.l⁻¹.h⁻¹, com máximos na ZM superficial, seguindo o padrão vertical observado no verão. A RFA na superfície variou de 569 a 2.616 μE.m⁻².s⁻¹ durante o período. Picos secundários de fotossíntese associados aos MSC também ocorreram em subsuperfície, tendo sido observados na radial de Ubatuba nas isóbatas de 50 e 200 m e na radial de Cabo Frio, na isóbata de 200 m.

Como observado no verão, MSC ocorreram em todas as radiais, exceto na isóbata de 50 m na região de Cabo Frio, onde as maiores densidades fitoplanctônicas e concentrações de clorofila *a* também foram observadas próximo à superfície.

Na isóbata de 50 m o MSC ocorreu entre 22 e 27 m na radial Ubatuba (Fig. 12), com concentração média de clorofila de 0,53 μg.l⁻¹ e densidade celular superior a 19.000 céls.l⁻¹. Dominaram *Nitzschia seriata* e *Thalassionema nitzschioides*. Na radial Cabo Frio, onde o pico de clorofila *a* foi observado próximo à superfície (Fig. 13), as concentrações variaram entre 0,29 e 1,16 μg.l⁻¹, a 45 e 3 m de profundidade, respectivamente.

Na isóbata de 100 m o MSC da radial Ubatuba foi observado a 26 m (Fig. 14), enquanto que em Cabo Frio ocorreu abaixo dos 70 m (Fig. 15). Em ambas as radiais as concentrações de clorofila nesses máximos subsuperficiais foram superiores a 0,7 μg.l⁻¹. A densidade celular no MSC da radial Ubatuba foi 12.560 céls.L⁻¹. *Thalassionema nitzschioides, Nitzschia seriata* e *Gymnodinium* spp. foram os taxa dominantes com densidades superiores a 1.000 céls.l⁻¹. A densidade celular na radial de Cabo Frio foi em torno de 300.000 céls.l⁻¹. Os gêneros predominantes foram Nitzschia, Leptocylindrus, Chaetoceros e Guinardia com densidades superiores a 10.000 céls.l⁻¹.

Na isóbata de 200 m foi identificado um pico de clorofila *a* na radial de Ubatuba a 47 m em torno de 0,7 μg.Γ⁻¹ (Fig. 16) com densidade celular superior a 4.000 céls.Γ⁻¹. *Nitzschia seriata* e *Gymnodinium* spp. foram dominantes, com 1.080 e 720 céls.Γ⁻¹, respectivamente. MSC superiores a 0,25 μg.Γ⁻¹ foram observados a 35 m na radial Baía de Guanabara (Fig. 17), com densidade celular em torno de 18.000 céls.Γ⁻¹. *Nitzschia seriata* foi a diatomácea mais abundante, com densidade superior a 5.000 céls.Γ⁻¹. Na radial Cabo Frio ocorreram máximos de clorofila *a* em torno de 0,4 μg.Γ⁻¹, entre 50 e 60 m de profundidade (Fig. 18), com densidade celular superior a 3.000 céls.Γ⁻¹. Os taxa *Nitzschia seriata* e *Gyrodinium* sp. dominaram com densidades de 960 e 800 céls.Γ⁻¹, respectivamente.

Discussão

Os resultados deste estudo elucidam um dos principais mecanismos de produção nova (baseada no nitrato) sobre a plataforma continental da Região Sueste do Brasil. A importância da ACAS como fonte oceânica de nutrientes para a zona eufótica foi revista por Gaeta & Brandini (2003).

Podemos considerar como MSC camadas em determinados níveis da zona eufótica onde as concentrações médias de clorofila são maiores do que as concentrações médias obtidas na zona de mistura (ZM). Gaeta (1999) detectou MSC na mesma região com picos de clorofila entre 0,15 e 0,30 μg.l⁻¹ localizados entre 25 e 100 metros. Na isóbata de 100 m da radial de Ubatuba a concentração de clorofila *a* média na ZM (10 m) foi de 0,18 μg.l⁻¹, enquanto que a concentração média do MSC com espessura em torno de 25 m foi de 0,33 μg.l⁻¹. Portanto, os MSC na plataforma da Região Sueste podem ter diferentes espessuras variando entre 10 e 30 m. Espessuras semelhantes foram detectadas por Gaeta (1999).

As Tabelas 3, 4 e 5 resumem as características principais de cada um dos MSC observados em todas as isóbatas em ambos os períodos sazonais. MSC foram identificados na base da Zona Eufótica (ZE) em quase todas as estações representativas das 3 isóbatas estudadas na Região Sueste em ambos os períodos sazonais. No verão a ACAS aproxima-se da costa e, conseqüentemente, as concentrações subsuperficiais de clorofila deveriam ser maiores o que foi observado apenas na isóbata de 50 m. Ao contrário, em algumas ocasiões como, por exemplo, na isóbata de 100 m na radial em frente à Ubatuba as concentrações no MSC foram maiores (quase o dobro) no inverno (0,74 μ.l⁻¹) se comparadas com a mesma estação no verão (0,45 μ.l⁻¹). Situação semelhante foi observada na isóbata de 200 m da mesma radial. Já na radial de Cabo Frio na quebra do talude, a concentração nos MSC no inverno foi ligeiramente maior do que no verão. Entretanto, esses máximos ocorreram em profundidades semelhantes em torno dos 60 m. Mais ao sul, na mesma

isóbata em frente à Baía de Guanabara, as concentrações foram semelhantes e as posições dos MSC foram diferentes, i. é., a 74 m em dezembro e a 35 m em julho. No inverno os vórtices ciclônicos na quebra da plataforma, que ascendem a ACAS, são mais frequentes do que no verão (Kampel *et al.*, 1997) e podem explicar a diferença de posição dos picos.

Era de se esperar que profundidades de ocorrência desses picos variassem em função da profundidade local e extensão da ZE associadas à magnitude da intrusão da Água Central do Atlântico Sul (ACAS) no assoalho da plataforma continental, como observado na isóbata de 100 m, tanto na radial de Ubatuba quanto na de Cabo Frio e na isóbata de 200 m nas radiais de Ubatuba e Baía de Guanabara.

Na isóbata de 50 m da radial em frente a Cabo Frio não foram identificados MSC. Essa região sofre forte influência de ressurgências que viabilizam a chegada de nutrientes nas camadas mais superficiais (Gonzalez *et al.* 1992). Esse enriquecimento associado à maior disponibilidade de RFA favorecem o desenvolvimento fitoplanctônico nessas camadas.

As densidades celulares acompanharam os máximos de clorofila em algumas estações, porém não foram observados padrões nem sazonal nem referente às isóbatas. Vale ressaltar que em baixas concentrações de clorofila, tais como as obtidas na zona de mistura, normalmente dominam células do nanoplâncton ou dinoflagelados. Esses organismos são heterótrofos e, portanto, o conteúdo intracelular de clorofila é menor nessas comunidades, mascarando os resultados. Por essa razão não foi observada relação direta entre a concentração de clorofila e a densidade celular. Por outro lado, ficou evidente a relação direta entre as taxas de fotossíntese e a radiação fotossinteticamente ativa (RFA). A fotossíntese é o fator essencial na origem dos MSC, seguida da sedimentação das células ao nível da termoclina/picnoclina (Brandini et al. 1989). Os resultados indicam que a importância relativa desses dois processos varia. A fotossíntese é mais importante em um nível superior da ZE, tendo em vista a

ocorrência de picos secundários de produção quase sempre imediatamente acima do pico máximo, mas ainda coincidindo com concentrações elevadas de clorofila *a*, e níveis satisfatórios de RFA. Nos níveis dos MSC as condições de RFA parecem ser insuficientes para manter altas taxas de fotossíntese, o que sugere a sedimentação como o fator primordial para o acúmulo de clorofila nesses níveis. De fato, sedimentação é uma conseqüência natural das células em suspensão conforme vão se multiplicando e senescendo, ou incorporadas em macroagregados (Smetacek, 1985). Isso é particularmente evidente no caso das diatomáceas, cuja frústula silicosa torna as células mais pesadas principalmente em condições fisiológicas desfavoráveis, como nos níveis de RFA mais baixos na base da ZE.

Foram observadas diferenças na composição fitoplanctônica dos MSC com relação à ZM em todas as estações estudadas, sendo que de 11 a 68 % das espécies identificadas nos MSC eram exclusivas (Tabelas 6 e 7). Brandini (1990a) e Brandini *et al.*(1989) sugeriram as intrusões da ACAS na plataforma continental como responsáveis por essas alterações da composição específica nos máximos subsuperficiais.

Diatomáceas foram indubitavelmente as microalgas responsáveis pela formação dos MSC. As Tabelas 8, 9 e 10 revelam a contribuição relativa das diatomáceas em relação aos dinoflagelados (outros grupos taxonômicos foram inexpressivos). Em todas as isóbatas, as diatomáceas representam de 52 a 98 % da comunidade fitoplanctônica. Diatomáceas são algas típicas de regiões fertilizadas por nutrientes novos (sensu Dugdale & Goering, 1967) representado pelo nitrogênio sob a forma de nitrato. No caso da Região Sueste a principal fonte de nutrientes novos é de origem oceânica, i. é., a ACAS (Gaeta & Brandini, 2003). Portanto, adaptam-se facilmente à baixas intensidades de RFA sob condições ainda satisfatórias de nutrientes. Menores contribuições relativas de diatomáceas foram observadas nos MSC das áreas oceânicas mais distantes da costa em todas as radiais, principalmente na de Cabo Frio, onde foram observadas as menores densidades celulares.

Considerando todas as espécies de diatomáceas identificadas, a estrutura taxonômica dos MSC foi irregular, comparando-se as estações/isóbatas e os períodos sazonais, apesar de alguns gêneros dominantes. Por exemplo, os gêneros *Nitzschia* e *Thalassionema* (cf. *nitzschioides*) ocorreram em todos os MSC identificados no cruzeiro de inverno. *Nitschia* spp. também foi frequente e dominante nos MSC das isóbatas de 50 e 200 m durante o verão. O gênero *Chaetoceros* também foi importante na formação dos MSC em ambos os períodos sazonais, principalmente na isóbata de 50 m no verão e nas isóbatas de 100 e 200 m no inverno. Dinoflagelados foram importantes apenas na zona de mistura na maioria das estações, contribuindo apenas na formação do MSC na isóbata de 200 m da radial Cabo Frio.

Esse trabalho confirmou a importância relativa dos MSC na estrutura trófica das águas de plataforma intermediária e externa da Região Sueste do Brasil. O papel das diatomáceas na formação desses máximos caracteriza um sistema de produção nova na base da ZE, baseada no nitrato da ACAS. Essa camada subsuperficial de produção nova ocupa extensas áreas geográficas sobre a plataforma continental. Portanto, seu papel ecológico deve ser melhor elucidado para que a estrutura e o funcionamento do ecossistema de plataforma da Região Sueste possa ser melhor compreendido.

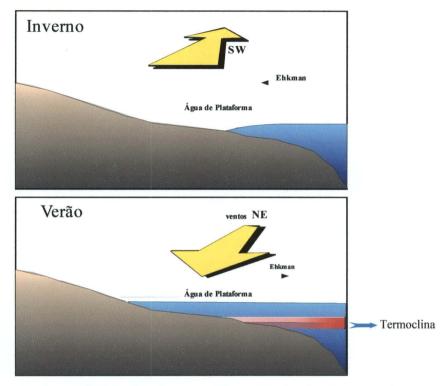


Fig. 1: Estrutura oceanográfica na plataforma continental da Região Sueste no inverno e verão.

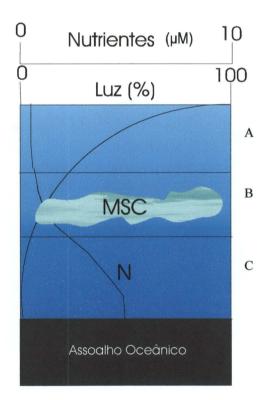


Fig. 2: Estrutura trófica em uma coluna de água fisicamente estratificada (N = nutrientes). A: camada acima da termoclina carente em nutrientes, B: camada intermediária com luz e nutrientes suficientes para a formação de máximos subsuperficiais de clorofila (MSC) e C: camada abaixo da termoclina, (i.é. ACAS) rica em nutrientes mas limitada pela ausência de luz.

Fig 3: Navio Oceanográfico "Prof. W. Bersnard" – IO USP. Foto: Francisco L. Vicentini Neto

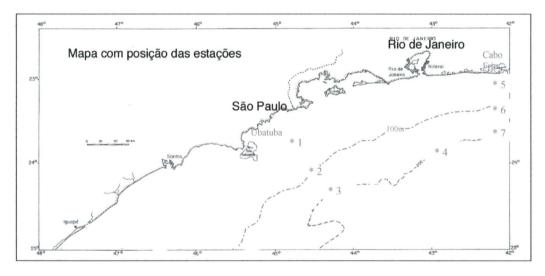


Fig. 4: Estações de coleta na Plataforma Continental da Região Sueste do Brasil

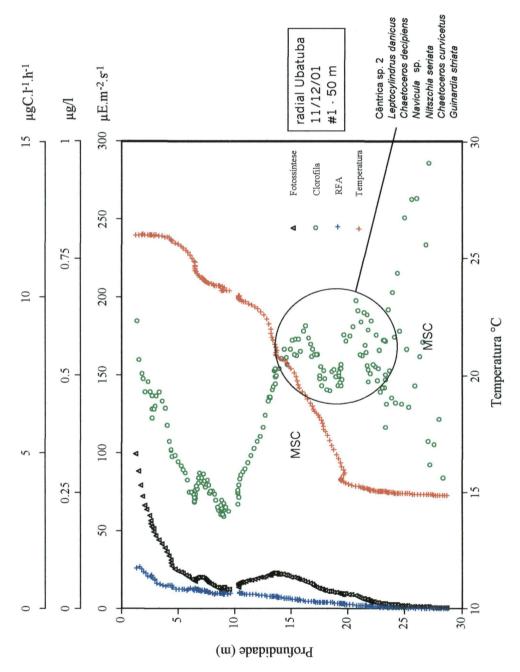


Fig. 5: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 50 m na radial Ubatuba, no cruzeiro de verão.

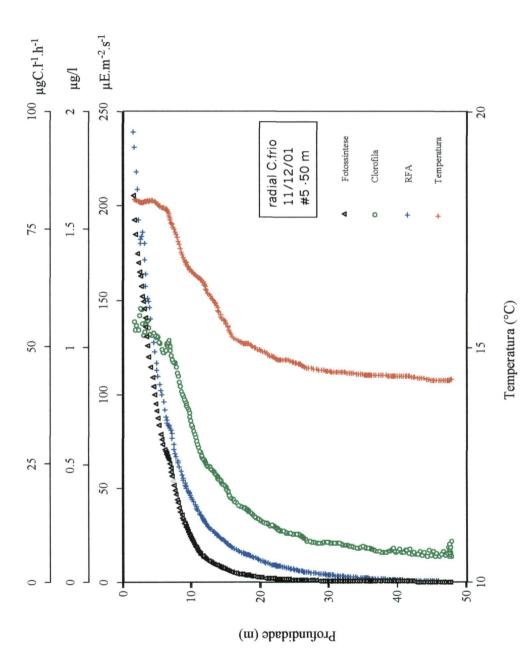


Fig. 6: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila e taxa de fotossíntese sobre a isóbata de 50 m na radial Cabo Frio, durante o cruzeiro de verão. Os máximos de clorofila ocorreram na superficie.

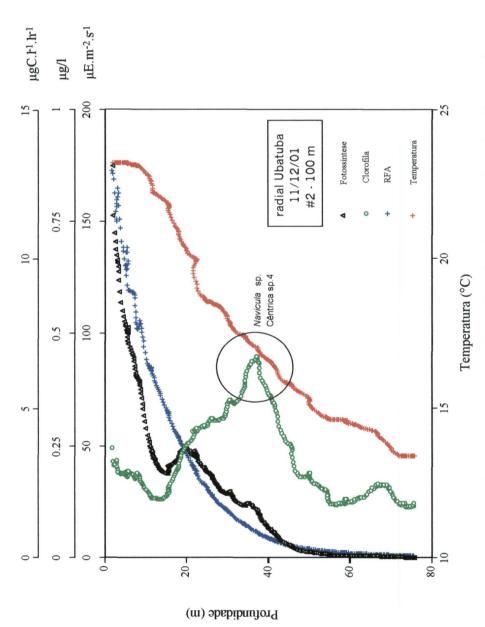


Fig. 7: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 100 m, na radial Ubatuba, durante o cruzeiro de verão.

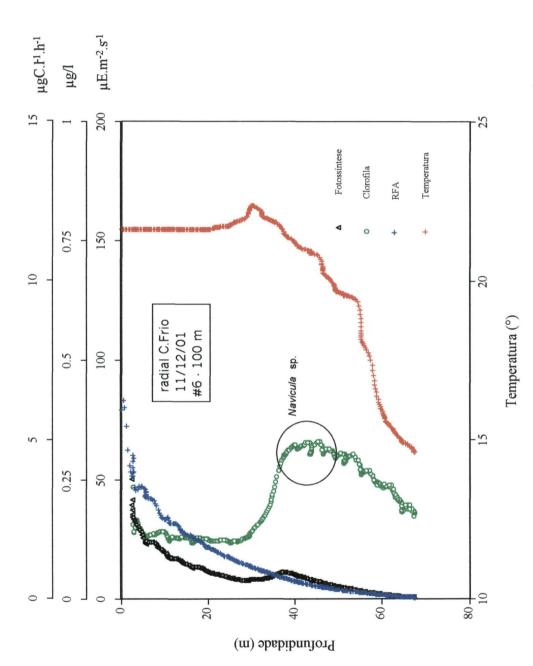


Fig. 8. Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 100 m, na radial Cabo Frio, durante o cruzeiro de verão.

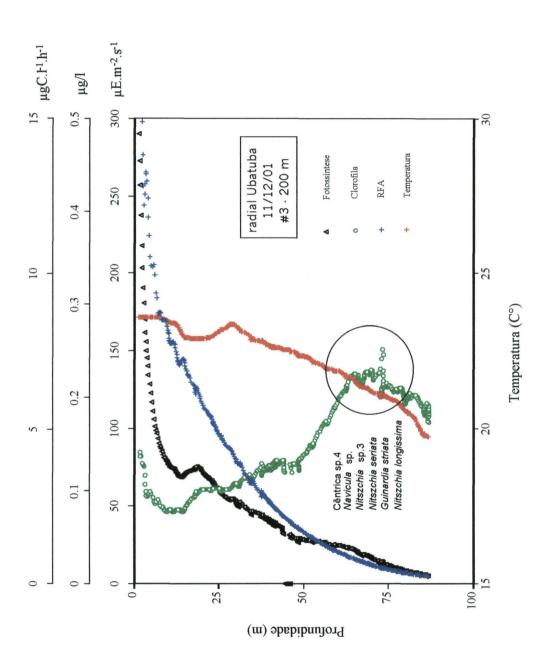


Fig. 9: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 200 m, na radial Ubatuba, durante o cruzeiro de verão.

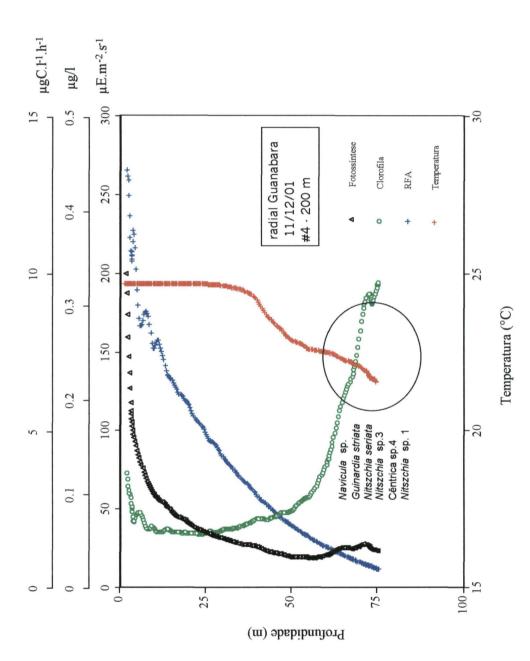


Fig. 10: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de $200 \,\mathrm{m}$, na radial Baía de Guanabara, durante o cruzeiro de verão.

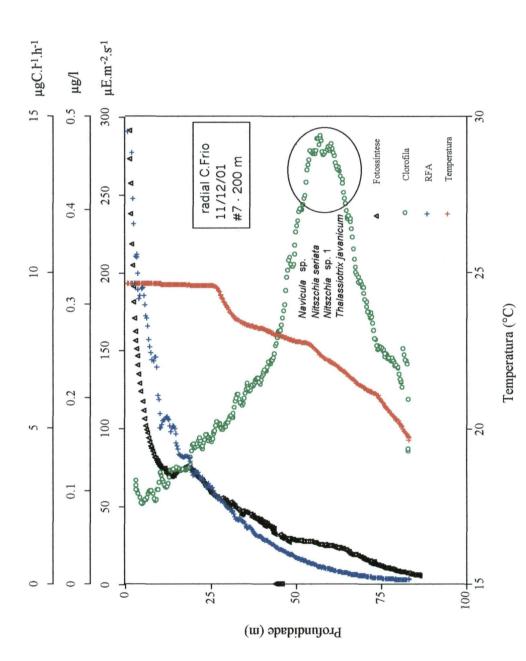


Fig. 11: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 200 m, na radial Cabo Frio, durante o cruzeiro de verão.

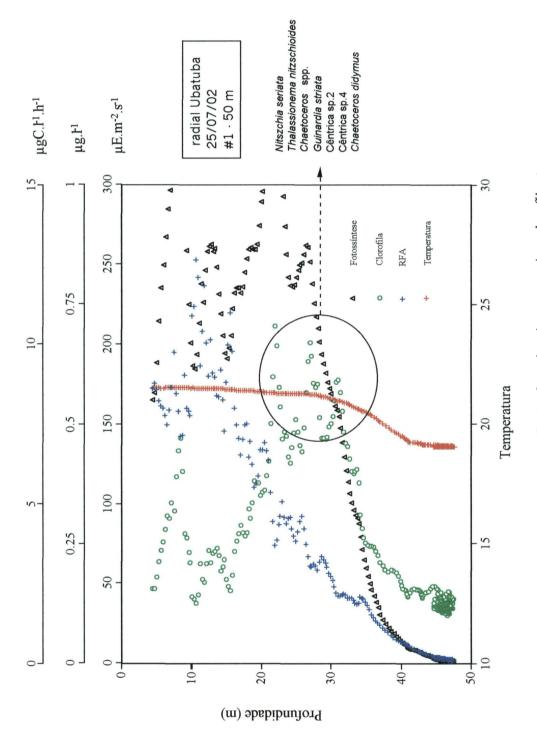


Fig. 12: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de $50 \, \mathrm{m}$, na radial Ubatuba, durante o cruzeiro de inverno.

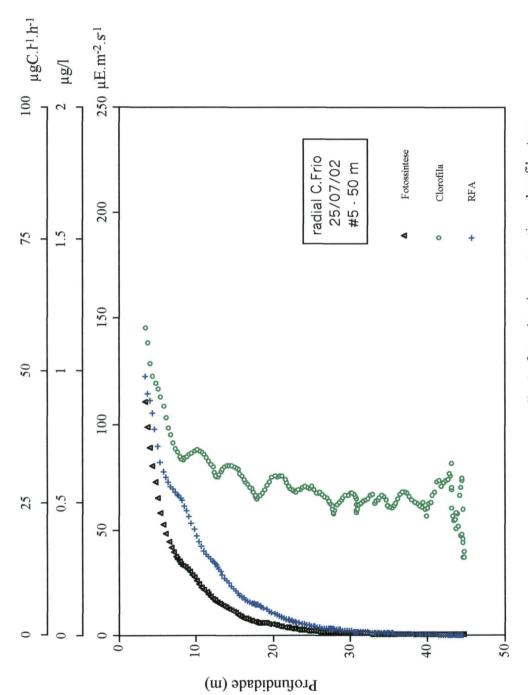


Fig. 13: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 50 m, na radial Cabo Frio, durante o cruzeiro de inverno (sem dados de temperatura).

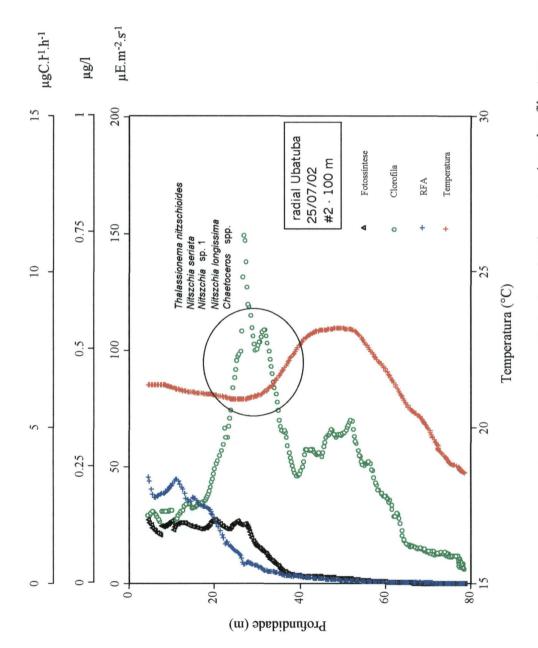


Fig. 14: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 100 m, na radial Ubatuba, no cruzeiro de inverno.

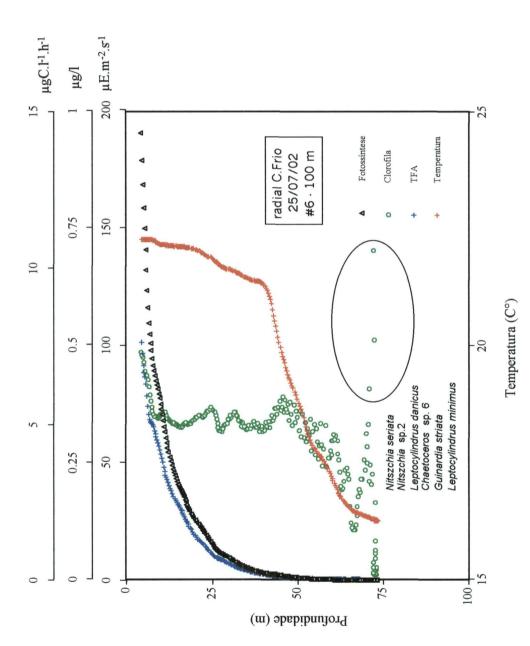


Fig. 15: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 100 m, na radial Cabo Frio, no cruzeiro de inverno.

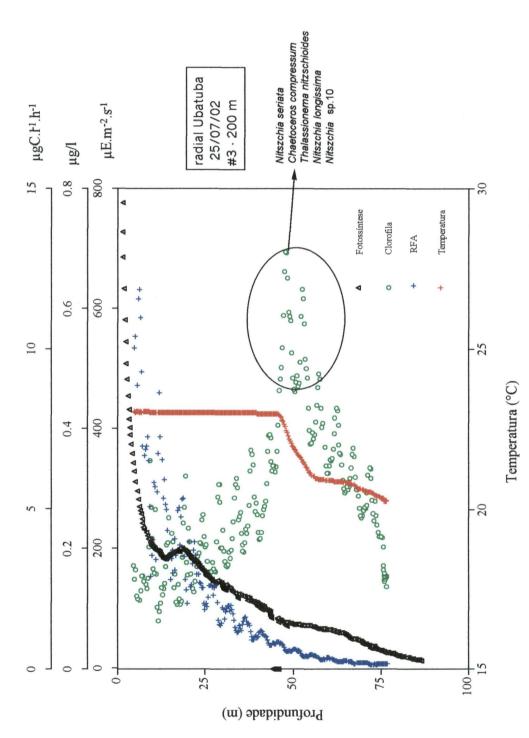


Fig. 16: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 200 m, na radial Ubatuba, no cruzeiro de inverno.

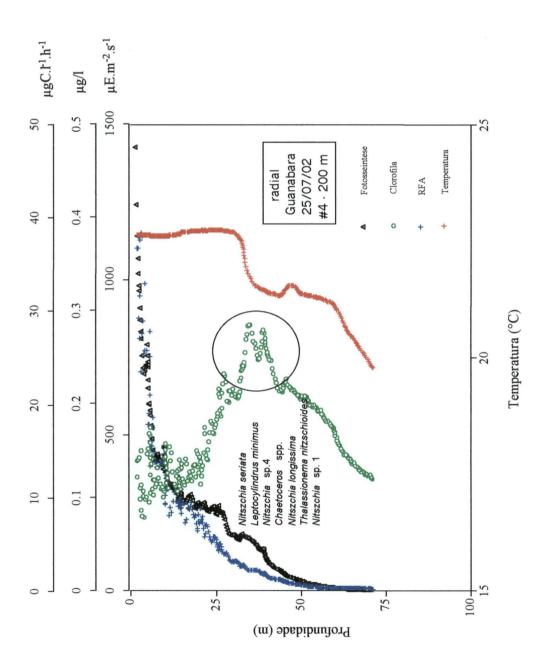


Fig. 17: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 200 m na estação do talude continental em frente a Baía de Guanabara durante o cruzeiro de inverno.

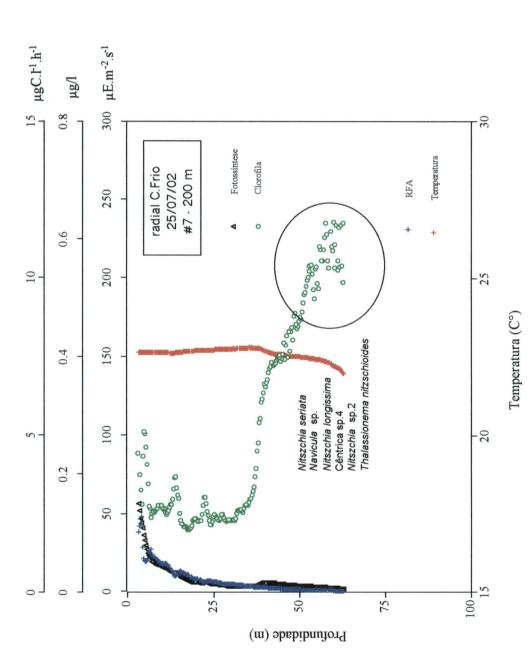


Fig. 18: Distribuição vertical da temperatura, radiação fotossinteticamente ativa, clorofila, taxa de fotossíntese e diatomáceas dominantes nos MSC na zona eufótica sobre a isóbata de 200 m, na radial Cabo Frio, durante o cruzeiro de inverno.

Tabela 1: Coordenadas geográficas das 7 estações em cada um dos cruzeiros oceanográficos.

Bd1: cruzeiro de verão Bd3: cruzeiro de inverno.

	Bd 1	Bd 3
# 1	LAT 23° 42,0' S	LAT 23° 43,3' S
50 m	LONG 44° 55,9' W	LONG 44° 53,5' W
# 2	LAT 24° 4,42' S	LAT 24° 4,42' S
100 m	LONG 44° 38,0' W	LONG 44° 38,8' W
# 3	LAT 24° 23,0' S	LAT 24° 24,06' S
200 m	LONG 44° 22,6' W	LONG 44° 23,7' W
# 4	LAT 23° 45,0' S	LAT 23° 43,72' S
200 m	LONG 42° 33,5' W	LONG 42° 34,65' W
# 5	LAT 22° 59,2085' S	LAT 22° 58,90' S
50 m	LONG 42° 06,733' W	LONG 42° 6,75' W
# 6	LAT 23° 5,4065' S	LAT 23° 05,088' S
100 m	LONG 41° 54,565' W	
# 7	Sem dados exatos	LAT 23° 44,52' S
200 m	das coordenadas.	LONG 41° 44,55' W

Tabela 2: Lista dos grupos taxonômicos identificados nos MSC sobre a plataforma continental da Região Sueste do Brasil

Divisão Cromophyta Classe Bacillariophyceae **Ordem Biddulphiales** Actinoptychus sp. Bacteriastrum hyalinum Cerataulina pelagica Chaetoceros aequatorialis Chaetoceros atlanticus Chaetoceros pendulum Chaetoceros affinis Chaetoceros cf. brevis Chaetoceros coarctatus Chaetoceros compressum Chaetoceros curvicetus Chaetoceros dadayi Chaetoceros decipiens Chaetoceros didymus Chaetoceros didymus var. anglica Chaetoceros laevis Chaetoceros lorenziannus Chaetoceros messanensis Chaetoceros não identificado sp. 1 Chaetoceros não identificado sp. 2 Chaetoceros não identificado sp. 3 Chaetoceros não identificado sp. 4 Chaetoceros não identificado sp. 5 Chaetoceros não identificado sp. 6 Chaetoceros não identificado sp. 7 Chaetoceros spp. Climacodium frauenfeldianum Cêntrica não identificada sp. 1 Cêntrica não identificada sp. 2 Cêntrica não identificada sp. 3 Cêntrica não identificada sp. 4 Cêntrica não identificada sp. 5 Cêntrica não identificada sp. 6 Cêntrica não identificada sp. 7 Cêntrica não identificada sp. 8 Cêntrica não identificada sp. 9 Cêntrica não identificada sp. 10 Cêntrica não identificada sp. 11 Corethron hystrix Cyclotella sp.

Corethron hystrix
Cyclotella sp.
Dactyliosolen fradilissimus
Ditylum brightwllii
Eucampia zodiacus
Eucampia cf. cylindrocornis
Guinardia delicatula
Guinardia flaccida

Guinardia striata

Helicotheca tamesis

Hemiaulus hauckii Hemiaulus membranaceus Hemiaulus sinensis Lauderia annulata Leptocylindrus danicus Leptocylindrus minimus Odontella mobiliensis Odontella sinensis Proboscia alata Rhizosolenia bergonii Rhizosolenia castrocanei Rhizosolenia imbricata Rhizosolenia robusta Rhizosolenia setigera Rhizosolenia styliformes Skeletonema costatum Stephanopyxis cf palmata Stephanopyxis turris Thalassiosira sp.

Ordem Bacillariales

Triceratium favus

Asterionella sp.

Cylindroteca closterium
Diploneis sp.
Fragilaria sp.
Meuniera membranacea
Navicula sp.
Nitzschia longissima
Nitzschia longissima var reversa
Nitzschia sp. 1
Nitzschia sp. 2
Nitzschia sp. 3
Nitzschia sp. 4
Plagiogrammopsis vanheurckii
Pleurosigma sp.
Thalassionema nitzschioides

Classe Dinophyceae
Ceratium fusus
Ceratium lineatum
Ceratium macroceros
Ceratium carriense
Ceratium contortum
Ceratium horridum
Ceratium tricoceros
Ceratium tripos
Ceratium spp.
Dinophysis spp.
Gonyaulax sp.

Thalassiotrix javanicum

Gymnodinium spp. Gyrodinium sp. Oxytoxum sp. Prorocentrum gracile Prorocentrum micans Prorocentrum minimus Prorocentrum rostratum Prorocentrum sp. 1 Prorocentrum sp. 2 Protoperidinium oceanicum Protoperidinium sp. 8 Protoperidinium sp. 9 Protoperidinium sp. 10 Protoperidinium sp. 11 Protoperidinium sp. 12 Protoperidinium sp. 13 Pyrocistis lunula

Classe Dictyochophyceae

Dictyocha fibula Dictyocha speculum Mesocena sp.

Divisão Cyanophyta Classe Cyanophyceae

Anabaena sp. Merismopedia sp. Trichodesmium erythraeum

Tabela 3 - Caracterísiticas sazonais dos MSC na zona eufótica sobre a isóbata de 50m nas radiais de Ubatuba e Cabo Frio

RADIAL		VERÃO	INVERNO
Ubatuba	Clorofila a média na Zona de Mistura (ug/L)	0,57	0,26
# 1	Profundidade da Zona de Mistura (m)	5	20
	MSC (ug/L)	1,81	0,53
	Profundidade do MSC (m)	28	22 - 27
	Densidade Celular Total no MSC (cél/L)	97.040	19.840
Cabo	Clorofila a média na Zona de Mistura (ug/L)	1,08	_
Frio	Profundidade da Zona de Mistura (m)	5	-
# 5	MSC (ug/L)	1,22	1,16
	Profundidade do MSC (m)	5	3
	Densidade Celular Total no MSC (cél/L)	376.800	651.880

Tabela 4 - Caracterísiticas sazonais dos MSC na zona eufótica sobre a isóbata de 100m nas radiais de Ubatuba e Cabo Frio

RADIAL		VERÃO	INVERNO
Ubatuba	Clorofila a média na Zona de Mistura (ug/L)	0,18	0,17
#2	Profundidade da Zona de Mistura (m)	10	20
	MSC (ug/L)	0,45	0,74
	Profundidade do MSC (m)	37	26
	Densidade Celular Total no MSC (cél/L)	9.400	12.560
Cabo	Clorofila a média na Zona de Mistura (ug/L)	0,14	0,36
Frio	Profundidade da Zona de Mistura (m)	25	20
#6	MSC (ug/L)	0,33	0,7
	Profundidade do MSC (m)	45	72
	Densidade Celular Total no MSC (cél/L)		301.440

Tabela 5 - Caracterísiticas sazonais dos MSC na zona eufótica sobre a isóbata de 200m nas radiais de Ubatuba, Baía de Guanabara e Cabo Frio

RADIAL		VERÃO	INVERNO
Ubatuba	Clorofila a média na Zona de Mistura (ug/L)	0,09	0,2
#3	Profundidade da Zona de Mistura (m)	10	40
	MSC (ug/L)	0,2	0,7
	Profundidade do MSC (m)	60	47
	Densidade Celular Total no MSC (cél/L)	6.200	4.960
Baía de	Clorofila a média na Zona de Mistura (ug/L)	0,06	0,13
Guanabara	Profundidade da Zona de Mistura (m)	35	25
# 4	MSC (ug/L)	0,33	0,28
	Profundidade do MSC (m)	74	35
	Densidade Celular Total no MSC (cél/L)	4.800	18.080
Cabo	Clorofila a média na Zona de Mistura (ug/L)	0,1	0,14
Frio	Profundidade da Zona de Mistura (m)	25	35
# 7	MSC (ug/L)	0,48	0,55
	Profundidade do MSC (m)	57	50 - 60
	Densidade Celular Total no MSC (cél/L)	2.440	3.400

Tabela 6 - Número de espécies exclusivas dos MSC identificados no cruzeiro de verão e sua contribuição relativa

Isóbata	Radial	spp no MSC	Exclusivas	%
50 m	UBATUBA	58	28	48,3
	C. FRIO	42	7	16,7
100 m	UBATUBA	7	1	14,3
	C. FRIO			
200 m	UBATUBA	16	11	68,8
	B.GUANABARA	18	2	11,1
	C. FRIO	10	. 5	50,0

Tabela 7 - Número de espécies exclusivas dos MSC identificados no cruzeiro de inverno e sua contribuição relativa

Isóbata	Radial	spp no MSC	Exclusivas	%
50 m	UBATUBA	27	11	40,7
	C. FRIO	48	8	16,7
100 m	UBATUBA	25	15	60,0
	C. FRIO	44	11	25,0
200 m	UBATUBA	16	7	43,8
	B.GUANABARA	36	12	33,3
	C. FRIO	19	13	68,4

Tabela 8 - Contribuição relativa de diatomáceas e dinoflagelados na ZM e MSC da isóbata de 50 m nas radiais de Ubatuba e Cabo Frio

RADIAL	%	VERÃO	INVERNO
	Z. M. Diatomáceas	91	69
Ubatuba	Dinoflagelados	8	29
# 1	MSC Diatomáceas	98	88,5
	Dinoflagelados	1	10
Cabo	Z. M. Diatomáceas	39	98
Frio	Dinoflagelados	60	2
# 5	MSC Diatomáceas	97	98
	Dinoflagelados	1	1

Tabela 9 - Contribuição relativa de diatomáceas e dinoflagelados na ZM e MSC da isóbata de 100 m nas radiais de Ubatuba e Cabo Frio

Oa	00 1 110				
RADIAL		%	,	VERÃO	INVERNO
	Z. M.	Diatomáceas		73	65
Ubatuba		Dinoflagelados		25	32,5
#2	MSC	Diatomáceas		93	81
		Dinoflagelados		6	16
Cabo	Z. M.	Diatomáceas		48	98
Frio		Dinoflagelados		32	2
#6	MSC	Diatomáceas			96
		Dinoflagelados			3

Tabela 10 - Contribuição relativa de diatomáceas e dinoflagelados na ZM e MSC da isóbata de 200 m nas radiais de Ubatuba, Baía de Guanabara e Cabo Frio

RADIAL		%	VERÃO	INVERNO
	Z. M. [Diatomáceas	42	65
Ubatuba	[Dinoflagelados	57	33
#3	MSC I	Diatomáceas	68	72,5
	Ι	Dinoflagelados	21	27
Baía de	Z. M. [Diatomáceas	98	90
Guanabara	Γ	Dinoflagelados	1,5	8
# 4	MSC [Diatomáceas	92	86,5
	[Dinoflagelados	3	13
Cabo	Z. M. [Diatomáceas	34	43
Frio	[Dinoflagelados	66	45
#7	MSC [Diatomáceas	52	81,5
		Dinoflagelados	34	18,5

Referências Bibliográficas

BRANDINI, F.P. (1988). Composição e distribuição do fitoplâncton na região sueste do Brasil e suas relações com as massas de água (Operação sueste - julho/agosto 1982). Cienc. Cult., São Paulo, v. 40, n.4, p. 334-341.

_____. (1990 a). Hydrography and characteristics of the phytoplankton in shelf and oceanic waters off Southeastern Brazil during winter (July/August 1982) and summer (February/March 1984). **Hydrobiologia**, Dordrecht, v. 196, n. 2, p. 111-148.

. (1990 b). Primary production and phytoplankton photosynthetic characteristics in the southeastern Brazilian coast. **Bol. Inst. Oceanogr.**, São Paulo, v. 38, n. 2, p. 147-159.

BRANDINI, F.P.; LOPES, R.M.; GUTSEIT, K.S.; SPACH, H.L.; SASSI, R. (1997). A planctonologia na plataforma continental do Brasil: diagnose e revisão bibliográfica. [S.l.]: Ministério do Meio Ambiente e da Amazônia Legal :IBAMA, 196 p.

BRANDINI, F.P.; MORAES, C.L.B.; THAMM, C.A.C. (1989). Shelf break upwelling, subsurface maxima of chlorophyll and nitrite, and vertical distribution of a subtropical nano-microplankton community off southeastern Brazil. In: ENCONTRO BRASILEIRO DE PLÂNCTON, 3, Caiobá, Paraná. **Memórias...** Curitiba: Fundação da UFPR. p.47-55.

CASTRO FILHO, B.M.; MIRANDA, L.B.; MIYAO, S.Y. (1987). Condições hidrográficas na plataforma continental ao largo de Ubatuba: variações sazonais e em média escala. **Bol. Inst. Oceanogr.**, São Paulo, v. 35, n. 2, p. 135-151.

CASTRO FILHO, B.M.; MIRANDA, L.B. (1998). Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S. In: Robinson, A.R.; Brink, K.H. (Eds.). **The Sea**. [S.l.]: John Wiley & Sons, cap. 8, p. 209-251.

CUPP, E.E. (1943). Marine Plankton Diatoms of the West Coast of North America. Berkley: University of California Press. 237 p.

DREBES, G. (1974). Marines Phytoplankton: Eine Auswahl der Helgoländer Planktonalgen (Diatomeen, Peridineen). [S.l.]: Georg Thieme Verlag Stuttgart.

DUGDALE, R. C. (1967). Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr., Waco, v. 12, p. 685-695.

DUGDALE, R. C.; GOERING, J.J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. **Limnol. Oceanogr.**, Waco, v. 12, p. 196-206.

GAETA, S.A. (1999). **Produção Primária na Região Oeste do Atlântico Sul**. São Paulo, 140 f. Tese (Livre Docência) — Instituto Oceanográfico, Universidade de São Paulo.

GAETA, S.A.; BRANDINI, F.P. (2003). Diagnóstico sobre o atual conhecimento da produção primária do fitoplâncton entre o Cabo de São Tomé (RJ) e o Chuí (RS). [S.1.]: REVIZEE, FUNDESPA, p. 49-99.

GIANESELLA-GALVÃO, S.M.F. (2000). Variabilidade da camada de clorofila máxima na região de quebra da Plataforma Continental Sudeste Brasileira. São Paulo, 92 f. Tese (Livre docência) - Instituto Oceanográfico, Universidade de São Paulo.

GONZALES-R, E.; VALENTIN, J. L.; ANDRÉ, D. L.; JACOB, S. A. (1992). Upwlling and downwelling at Cabo Frio (Brazil): Compariso of biomass and primary production responses. J Plank. Res., [S.1.], v. 14, p. 289-306.

HASLE, G.R. (Ed). (1978). Phytoplankton Manual. [S.1.]: UNESCO. p. 191-196

KAMPEL, M.; LORENZZETTI, J.A.; SILVA JUNIOR, C.L. (1997). Observações por satélite de ressurgências da Costa Brasileira. CONGRESSO LATINOAMERICANO DE CIÊNCIAS DO MAR – COLACMAR, 7., Santos. Anais... São Paulo: IOUSP, v. 2, p. 38-40.

MATSUURA, Y.; KITAHARA, E.M. (1995). Horizontal and vertical distribution of anchovy *Engraulis anchoita* eggs and larvae off Cape Santa Marta Grande in southern Brazil. **Arch. Fish. Mar. Res.**, [S.l.], v. 42, n. 3, p. 239-250.

PELLIZZARI, F.M. (2000). Composição geral e biomassa do microfitobentos no sedimento arenoso da plataforma continental do sul do Brasil (SP, PR e SC). Curitiba, 70 f. Dissertação (Mestrado) — Setor de Ciências Biológicas, Universidade Federal do Paraná.

RICHARD, M. (1987). Atlas du phytoplancton marin: diatomophycées. [S.l.]: Centre National de la Recherche Scientifique, v.2.

TOMAS, C.R. (1997). Identifying Marine Phytoplankton. Florida Marine Research. [S.l.]: Academic Press.

UTERMÖHL, (1958). Zur Vervollkommung des quantitativen Phytoplankton-Methodik. Mitt. Ver. Limonol., [S.1.], v. 9, p. 1 – 38.

YAMAJI, I. (1986). **Ilustrations of the Marine Plankton of Japan.** [S.l.]: Hoikusha Publishing CO.

Anexo I
Dados quali/quantitativos do fitoplâncton

Verão

Bd1#1 - 2m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Chaetoceros sp. 2	94560	69,59
Leptocylindrus danicus	22960	16,90
Leptocylindrus minimus	5240	3,86
Nitszchia seriata	3720	2,74
Chaetoceros sp. 3	1200	0,88
Climacodium frauenfeldianum	1160	0,85
Cêntrica sp. 4	1080	0,79
Chaetoceros sp. 4	1000	0,74
Nitszchia sp.3	1000	0,74
Navicula sp.	760	0,56
Guinardia striata	520	0,38
Chaetocero s sp. 1	400	0,29
Cêntrica sp. 2	400	0,29
Nitszchia longissima	360	0,26
Pleurosigma sp.	280	0,21
Rhizosolenia bergonii	200	0,15
Rhizosolenia hebetata	200	0,15
Dactyliossolen fragilissimus	160	0,12
Cêntrica sp. 9	160	0,12
Rhizosolenia setigera	120	0,09
Rhizosolenia styliformes	80	0,06
Penada sp. 5	80	0,06
Chaetoceros pendulum	40	0,03
Corethron hystrix	40	0,03
Hemiaulus hauckii	40	0,03
Meuniera membranacea	40	0,03
Cêntrica sp. 6	40	0,03
	40	0,03
TOTAL	135880	
Classe Dinophyceae	W.10.5	00.00
Gyrodinium sp.	7120	62,02
Gymnodinium spp.	3680	32,06
Prorocentrum sp.	320	2,79
Prorocentrum gracile	120	1,05
Ceratium carriense	80	0,70
Oxytoxum sp.	80	0,70
Protoperidinium sp.11	80	0,70
TOTAL	11480	

Bd1#1 - 25m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Cêntrica sp. 2	34640	36,46
Leptocylindrus danicus	6960	7,33
Chaetoceros decipiens	4680	4,93
Navicula sp.	4160	4,38
Nitszchia seriata	4160	4,38
Chaetoceros curvicetus	3680	3,87
Guinardia striata	3280	3,45
Chaetoceros sp. 2	2920	3,07
Skeletonema costatum	2560	2,69
Chaetoceros sp. 4	2200	2,32
Dactyliossolen fragilissimus		
	2160	2,27
Chaetoceros didymus	2000	2,11
Chaetoceros affinis	1960	2,06
Cêntrica sp. 1	1920	2,02
Nitszchia sp. 1	1560	1,64
Pleurosigma sp.	1560	1,64
Chaetoceros compressum	1480	1,56
Melosira sulcata	1480	1,56
Guinardia flaccida	1440	1,52
Nitszchia longissima	1200	1,26
Thalassiotrix javanicum	1080	1,14
Cêntrica sp. 4	920	0,97
Leptocylindrus minimus	800	0,84
Guinardia delicatula	680	0,72
Bacteriastrum hyalinum	640	0,67
Nitszchia sp.3	640	0,67
Penada sp. 21	600	0,63
Cêntrica sp. 6	520	0,55
Cerataulina pelagica	480	0,51
Hemiaulus hauckii	440	0,46
Rhizosolenia setigera	360	0,38
Thalassionema nitzschioides	320	0,34
Diploneis sp.	280	0,29
Cêntrica sp.7	240	0,25
	200	
Penada sp. 5		0,21
Melosira nummuloides	160	0,17
Cêntrica sp.10	120	0,13
Penada sp. 4	120	0,13
Corethron hystrix	80	0,08
Cêntrica sp.3	80	0,08
Cêntrica sp.20	80	0,08
Odontella mobiliensis	40	0,04
Rhizosolenia hebetata	40	0,04
Penada sp.1	40	0,04
Penada sp.3	40	0,04
TOTAL	95000	
Classe Dinophyceae		
Gymnodinium spp.	520	40,63
Protoperidinium sp.11	320	25,00
Gyrodinium sp.	240	18,75
Prorocentrum sp.	120	9,38
Ceratium horridum	80	6,25
TOTAL	1280	

Bd1#2 - 2m			
Divisão Cromophyta			
Classe Bacillariophy	ceae	CÉL/L	%
Cêntrica sp.4		2320	56,86
Navicula sp.		1680	41,18
Nitszchia longissima		80	1,96
	TOTAL	4080	
Classe Dinophyceae			
Gyrodinium sp.		560	40,00
Gymnodinium spp.		440	31,43
Prorocentrum sp.		280	20,00
Oxytoxum sp.		120	8,57
	TOTAL	1400	

Bd1#2 - 40m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Navicula sp.	4920	74,55
Cêntrica sp.4	1680	25,45
TOTAL	6600	
Classe Dinophyceae		
Gyrodinium sp.	1160	56,86
Gymnodinium spp.	840	41,18
Oxytoxum sp.	40	1,96
TOTAL	2040	

Bd1#3 - 10m				
Divisão Cromophyta				
Classe Bacillariophyceae	CÉL/L	%		
Cêntrica sp.4	920	69,70		
Navicula sp.	320	24,24		
Nitszchia sp.3	80	6,06		
TOTAL	1320			
Classe Dinophyceae				
Gymnodinium spp.	1200	66,67		
Prorocentrum sp.	360	20,00		
Gyrodinium sp.	240	13,33		
TOTAL	1800			

Bd1#2 - 80m			
Divisão Cromo	phyta		
Classe Bacillar	iophyceae	CÉL/L	%
Navicula sp.		11600	86,57
Cêntrica sp.4		760	5,67
Pleurosigma sp.		360	2,69
Penada sp.5		280	2,09
Cêntrica sp.1		160	1,19
Diploneis sp.		80	0,60
Nitszchia longissi	ima	80	0,60
Penada sp.3		40	0,30
Penada sp.7		40	0,30
	TOTAL	13400	
Classe Dinophy	yceae		
Gyrodinium sp.		680	77,27
Gymnodinium sp	p.	200	22,73
	TOTAL	880	

Bd1#3 - 60m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	
Cêntrica sp.4	1400	33,02
Navicula sp.	800	18,87
Nitszchia sp.3	640	15,09
Nitszchia seriata	360	8,49
Guinardia striata	320	7,55
Nitszchia longissima	240	5,66
Rhizosolenia styliformes	160	3,77
Chaetoceros decipiens	80	1,89
Penada sp.3	80	1,89
Penada sp.21	80	1,89
Cêntrica sp.1	40	0,94
Penada sp.7	40	0,94
TOTAL	4240	
Classe Dinophyceae		
Gyrodinium sp.	840	65,63
Gymnodinium spp.	400	31,25
Protoperidinium sp.11	40	3,13
TOTAL	1280	

Bd1#4 - 10 m			
Divisão Cromophyta			
Classe Bacillariophyc	eae	CÉL/L	%
Nitszchia sp. 1		600	39,47
Cêntrica sp.4		320	21,05
Navicula sp.		280	18,42
Rhizosolenia styliforme	S	80	5,26
Thalassionema nitzschi	ioides	80	5,26
Penada sp.3		80	5,26
Nitszchia sp.3		40	2,63
Penada sp.21		40	2,63
	TOTAL	1520	
Classe Dinophyceae			
Gymnodinium spp.		1200	51,72
Prorocentrum sp.		640	27,59
Gyrodinium sp.		400	17,24
Protoperidinium sp.11		40	1,72
Protoperidinium sp.		40	1,72
	TOTAL	2320	

Bd1#4 - 80m			
Divisão Cromophyta			
Classe Bacillariophyce	ae	CÉL/L	%
Navicula sp.		760	23,46
Guinardia striata		640	19,75
Nitszchia seriata		480	14,81
Nitszchia sp.3		280	8,64
Cêntrica sp.4		240	7,41
Nitszchia sp. 1		200	6,17
Chaetoceros sp. 4		160	4,94
Cêntrica sp.10		160	4,94
Thalassionema nitzschio	ides	120	3,70
Nitszchia longissima		80	2,47
Triceratium sp.		40	1,23
Cêntrica sp.1		40	1,23
Penada sp.21		40	1,23
-	TOTAL	3240	
Classe Dinophyceae			
Gymnodinium spp.		920	58,97
Gyrodinium sp.		280	17,95
Prorocentrum sp.		240	15,38
Protoperidinium sp.11		80	5,13
Ceratium fusus		40	2,56
	TOTAL	1560	

Bd1#5 - 2m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Chaetoceros sp. 6	155760	42,31
Chaetoceros curvicetus	64000	17,39
Chaetoceros decipiens	30640	8,32
Chaetoceros sp. 2	18080	4,91
Leptocylindrus danicus	12560	3,41
Skeletonema costatum	12000	3,26
Chaetoceros didymus	11440	3,11
Cêntrica sp.2	8960	2,43
Bacteriastrum hyalinum	8760	2,38
Rhizosolenia setigera	7600	2,06
Nitszchia longissima	7360	2,00
Navicula sp.	6480	1,76
Guinardia striata	4320	1,17
Chaetoceros sp. 3	3760	1,17
Chaetoceros affinis	2480	0,67
Nitszchia sp.4	2400	0,67
•	1280	0,85
Nitszchia sp.3 Chaetoceros sp. 4	1200	0,35
Schroederella schroederi		
Nitszchia seriata	1040	0,28
	960	0,26
Dactyliossolen fragilissimus	880	0,24
Cêntrica sp.1	800	0,22
Nitszchia sp. 1	640	0,17
Chaetoceros compressum	560	0,15
Guinardia flaccida	560	0,15
Hemiaulus hauckii	480	0,13
Cêntrica sp.4	480	0,13
Lauderia sp.	320	0,09
Rhizosolenia bergonii	320	0,09
Rhizosolenia imbricata	320	0,09
Thalassiotrix javanicum	320	0,09
Rhizosolenia styliformes	240	0,07
Thalassionema nitzschioides	240	0,07
Diploneis sp.	160	0,04
Ditylum brightwellii	160	0,04
Cêntrica sp.20	160	0,04
Penada sp.5	160	0,04
Penada sp.8	160	0,04
Pleurosigma sp.	80	0,02
TOTAL	368120	
Classe Dinophyceae	2000	26.26
Gymnodinium spp.	2080	36,36
Prorocentrum sp.	2000	34,97
Gyrodinium sp.	1040	18,18
Ceratium lineatum	240	4,20
Protoperidinium sp.11	160	2,80
Prorocentrum gracile	80	1,40
Protoperidinium sp.12	80	1,40
Protoperidinium oceanicum	40	0,70
TOTAL	5720	

Bd1#5 - 30m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Chaetoceros sp. 6	9760	17,38
Chaetoceros curvicetus	7840	13,96
Chaetoceros sp. 2	7760	13,82
Nitszchia longissima	3440	6,13
Nitszchia seriata	3280	5,84
Cêntrica sp.2	3040	5,41
Chaetoceros decipiens	2560	4,56
Navicula sp.	2240	3,99
Chaetoceros didymus	1440	2,56
Dactyliossolen fragilissimus	1440	2,56
Leptocylindrus danicus	1440	2,56
Bacteriastrum hyalinum	1360	2,42
Nitszchia sp. 1	1360	2,42
Nitszchia sp.4	1360	2,42
Asterionellopsis glacialis	1280	2,28
Rhizosolenia setigera	1120	1,99
Skeletonema costatum	1040	1,85
Chaetoceros compressum	720	1,28
Nitszchia sp.3	480	0,85
Pleurosigma sp.	480	0,85
Melosira sulcata	320	0,57
Schroederella schroederi	320	0,57
Cêntrica sp.4	320	0,57
Penada sp.5	320	0,57
Chaetoceros sp. 4	240	0,43
Thalassionema nitzschioides	240	0,43
Guinardia striata	160	0,28
Cêntrica sp.1	160	0,28
Penada sp.8	160	0,28
Penada sp.21	160	0,28
Rhizosolenia styliformes	80	0,14
Thalassiotrix javanicum	80	0,14
Cêntrica sp.20	80	0,14
Penada sp.6	80	0,14
TOTAL	56160	
Classe Dinophyceae		
Prorocentrum sp.	800	44,44
Gymnodinium spp.	560	31,11
Gyrodinium sp.	320	17,78
Protoperidinium sp 10	120	6 67

Protoperidinium sp.10 120 6,67 TOTAL 1800

Divisão Cromophyta			
Classe Bacillariophyceae	•	CÉL/L	%
Navicula sp.		1520	70,37
Skeletonema costatum		480	22,22
	C4	160	7,41
TOT	AL	2160	
Classe Dinophyceae			
Gymnodinium spp.		720	50,00
Gyrodinium sp.		400	27,78
Prorocentrum sp.		240	16,67
Protoperidinium sp.		80	5,56
TOT	AL	1440	

Bd1#6 - 30m			
Divisão Cromophyt	a		
Classe Bacillarioph	yceae	CÉL/L	
Navicula sp.		240	
	TOTAL	240	
Classe Dinophycea	e		
Gymnodinium spp.		400	45,45
Prorocentrum sp.		320	36,36
Gyrodinium sp.		160	18,18
	TOTAL	880	

Bd1#7 - 2m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	
Navicula sp.	240	60,00
Nitszchia sp. 1	80	20,00
Rhizosolenia styliformes	80	20,00
TOTAL	400	
Classe Dinophyceae		
Gymnodinium spp.	320	42,11
Prorocentrum sp.	240	31,58
Ceratium lineatum	80	10,53
Gyrodinium sp.	80	10,53
Ceratium carriense	40	5,26
TOTAL	760	

Bd1#7 - 55m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Navicula sp.	720	56,25
Nitszchia seriata	400	31,25
Nitszchia sp. 1	80	6,25
Thalassiotrix javanicum	80	6,25
TOTAL	1280	
Classe Dinophyceae		
Gymnodinium spp.	400	47,62
Prorocentrum sp.	240	28,57
Gyrodinium sp.	120	14,29
Oxytoxum sp.	80	9,52
TOTAL	840	

Inverno

Bd3#1 - 10m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Leptocylindrus sp.2	3440	40,57
Nitszchia seriata	1000	11,79
Chaetoceros decipiens	640	7,55
Leptocylindrus danicus	560	6,60
Thalassionema nitzschioides	560	6,60
Meuniera membranacea	520	6,13
Chaetoceros spp.	360	4,25
Nitszchia longissima	280	3,30
Chaetoceros sp. 4	200	2,36
Navicula sp.	160	1,89
Thalassiosira sp.	160	1,89
Bacteriastrum hyalinum	120	1,42
Nitszchia sp.3	120	1,42
Skeletonema costatum	120	1,42
Cêntrica sp.4	120	1,42
Chaetoceros pendulum	40	0,47
Thalassiotrix javanicum	40	0,47
Penada sp.3	40	0,47
TOTAL	8480	
Classe Dinophyceae		
Gymnodinium spp.	2000	55,56
Gyrodinium sp.	1440	40,00
Protoperidinium sp.	80	2,22
Prorocentrum gracile	40	1,11
Protoperidinium sp.11	40	1,11
TOTAL	3600	

Bd3#2 - 25m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	2360	43,07
Thalassionema nitzschioides	1680	30,66
Nitszchia longissima	360	6,57
Leptocylindrus danicus	240	4,38
Cêntrica sp.4	240	4,38
Nitszchia sp.3	160	2,92
Navicula sp.	120	2,19
Nitszchia sp. 1	120	2,19
Cêntrica sp.1	80	1,46
Cêntrica sp.5	80	1,46
Penada sp.3	40	0,73
TOT	AL 5480	
Classe Dinophyceae		
Gymnodinium spp.	1480	53,62
Gyrodinium sp.	1240	44,93
Oxytoxum sp.	40	1,45
TOT	AL 2760	

Bd3#1 - 30m			
Divisão Cromophyta			
Classe Bacillariophyceae	•	CÉL/L	%
Nitszchia seriata		6200	35,31
Thalassionema nitzschioid	des	3160	18,00
Chaetoceros spp.		1760	10,02
Guinardia striata		1440	8,20
Cêntrica sp.2		960	5,47
Cêntrica sp.4		680	3,87
Chaetoceros didymus		600	3,42
Cêntrica sp.1		600	3,42
Nitszchia longissima		520	2,96
Bacteriastrum hyalinum		440	2,51
Navicula sp.		360	2,05
Meuniera membranacea		280	1,59
Chaetoceros decipiens		160	0,91
Cêntrica sp.7		120	0,68
Cyclotella sp.		80	0,46
Nitszchia sp.3		80	0,46
Diploneis sp.		40	0,23
Pleurosigma sp.		40	0,23
Thalassiotrix javanicum		40	0,23
Т	OTAL	17560	
Classe Dinophyceae			
Gyrodinium sp.		1280	64,00
Gymnodinium spp.		600	30,00
Ceratium lineatum		40	2,00
Ceratium sp.1		40	2,00
Prorocentrum sp.		40	2,00
T	OTAL	2000	

Bd3#2 - 50m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Thalassionema nitzschioides	2600	25,49
Nitszchia seriata	2520	24,71
Nitszchia sp. 1	920	9,02
Nitszchia longissima	920	9,02
Chaetoceros spp.	480	4,71
Guinardia striata	480	4,71
Cêntrica sp.4	360	3,53
Chaetoceros decipiens	320	3,14
Thalassiosira sp.	320	3,14
Navicula sp.	280	2,75
Chaetoceros sp. 4	240	2,35
Fragilaria sp.	240	2,35
Dactyliossolen fragilissimus	120	1,18
Corethron hystrix	80	0,78
Helicotheca tamesis	80	0,78
Penada sp.3	80	0,78
Chaetoceros pendulum	40	0,39
Diploneis sp.	40	0,39
Pleurosigma sp.	40	0,39
Rhizosolenia styliformes	40	0,39
TOTAL	10200	
Classe Dinophyceae		
Gymnodinium spp.	1080	54,00
Gyrodinium sp.	880	44,00
Protoperidinium sp.	40	2,00
TOTAL	2000	

Bd3#3 - 10 m			_
Divisão Cromophyta			
Classe Bacillariophyc	eae	CÉL/L	%
Nitszchia seriata		600	27,27
Chaetoceros sp. 7		320	14,55
Nitszchia sp.10		320	14,55
Nitszchia longissima		240	10,91
Cêntrica sp.4		200	9,09
Leptocylindrus danicus		160	7,27
Navicula sp.		80	3,64
Nitszchia sp.3		80	3,64
Penada sp.3		80	3,64
Rhizosolenia alata		40	1,82
Penada sp.10		40	1,82
Penada sp.12		40	1,82
	TOTAL		
Classe Dinophyceae		CÉL/L	%
Gymnodinium spp.		2160	68,35
Gyrodinium sp.		840	26,58
Ceratium fusus		40	1,27
Ceratium horridum		40	1,27
Prorocentrum sp.		40	1,27
Prorocentrum gracile		40	1,27
	TOTAL	3160	

Bd3#3 - 50m				
Divisão Cromophyta				
Classe Bacillariophyceae	CÉL/L	%		
Nitszchia seriata	1080	30,00		
Chaetoceros compressum	560	15,56		
Thalassionema nitzschioides	560	15,56		
Nitszchia longissima	440	12,22		
Nitszchia sp.10	320	8,89		
Cerataulina pelagica	160	4,44		
Navicula sp.	120	3,33		
Nitszchia sp. 1	120	3,33		
Chaetoceros pendulum	80	2,22		
Nitszchia sp.3	80	2,22		
Corethron hystrix	40	1,11		
Rhizosolenia bergonii	40	1,11		
TOTAL	3600			
Classe Dinophyceae				
Gymnodinium spp.	720	52,94		
Gyrodinium sp.	560	41,18		
Prorocentrum sp.	40	2,94		
Prorocentrum gracile	40	2,94		
TOTAL	1360			

Bd3#3 - 100m			
Divisão Cromophyta			
Classe Bacillariophyc	eae	CÉL/L	%
Leptocylindrus danicus		320	36,36
Chaetoceros sp. 4		200	22,73
Penada sp.3		160	18,18
Navicula sp.		80	9,09
Diploneis sp.		40	4,55
Thalassiosira sp.		40	4,55
Penada sp.13		40	4,55
	TOTAL	880	
Classe Dinophyceae			
Gyrodinium sp.		480	92,31
Protoperidinium sp.		40	7,69
	TOTAL	520	

Bd3#4 - 20m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	9360	43,90
Vitszchia sp.4	1840	8,63
eptocylindrus danicus	1600	7,50
eptocylindrus minimus	1440	6,75
Nitszchia longissima	1440	6,75
Vitszchia sp.3	640	3,00
Chaetoceros spp.	560	2,63
Bacteriastrum hyalinum	480	2,25
Chaetoceros didymus	400	1,88
Guinardia striata	400	1,88
Chaetoceros affinis	360	1,69
Vavicula sp.	360	1,69
Thalassionema nitzschioides	360	1,69
Dactyliossolen fragilissimus	320	1,50
litszchia sp.10	280	1,31
Rhizosolenia setigera	240	
Cêntrica sp.4	200	0,94
lemiaulus hauckii	160	0,75
halassiotrix javanicum	160	0,75
êntrica sp.7	160	0,75
Penada sp.12	160	0,75
Chaetoceros pendulum	120	0,56
Rhizosolenia styliformes	120	0,56
Cyclotella sp.	80	0,38
Corethron hystrix	40	0,19
litszchia sp. 1	40	0,19
TOTAL	21320	
lasse Dinophyceae		
yrodinium sp.	1040	53,06
Symnodinium spp.		40,82
Prorocentrum sp.	80	4,08
Ceratium lineatum	40	2,04
TOTAL	1960	

Bd3#4 - 40m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	5120	32,74
Leptocylindrus minimus	1680	,
Nitszchia sp.4	1360	8,70
Chaetoceros spp.	1320	-,
Nitszchia longissima	960	
Thalassionema nitzschioides	920	,
Nitszchia sp. 1	720	4,60
Navicula sp.	520	3,32
Meuniera membranacea	360	2,30
Leptocylindrus danicus	320	2,05
Thalassiosira sp.	320	2,05
Cêntrica sp.2	320	2,05
Bacteriastrum hyalinum	280	1,79
Guinardia striata	200	1,28
Cêntrica sp.1	200	1,28
Chaetoceros pendulum	160	1,02
Cêntrica sp.6	160	1,02
Nitszchia sp.3	120	0,77
Penada sp.4	120	0,77
Pleurosigma sp.	80	0,51
Thalassiotrix javanicum	80	0,51
Cêntrica sp.4	80	0,51
Cyclotella sp.	40	0,26
Rhizosolenia bergonii	40	0,26
Rhizosolenia styliformes	40	0,26
Cêntrica sp.7	40	0,26
Penada sp.12	40	0,26
Penada sp.21	40	0,26
TOTAL	15640	
Classe Dinophyceae		
Gyrodinium sp.		61,02
Gymnodinium spp.	760	32,20
Prorocentrum sp.	40	1,69
Prorocentrum gracile	40	1,69
Protoperidinium sp.13	40	1,69
Protoperidinium sp.	40	1,69
TOTAL	2360	

Bd3#5 - 20m		
Divisão Cromophyta		20.00
Classe Bacillariophyceae	CÉL/L	%
Chaetoceros sp. 6	155040	24,21
Nitszchia seriata	113120	17,67
Leptocylindrus danicus	110880	17,32
Leptocylindrus minimus	55440	8,66
Guinardia striata	45760	7,15
Chaetoceros spp.	20240	3,16
Thalassiosira sp.	16960	2,65
Chaetoceros decipiens	14240	2,22
Nitszchia sp4	12720	1,99
Chaetoceros curvicetus	10240	1,60
Cêntrica sp.2	10000	1,56
Hemiaulus hauckii	8640	1,35
Nitszchia longissima	8000	1,25
Thalassionema nitzschioides	6480	1,01
Asterionellopsis glacialis	5960	0,93
Chaetoceros compressum	5360	0,84
Stephanipyxis turris	4640	0,72
Nitszchia sp. 1	3760	0,59
Bacilaria paradoxa	3360	0,52
Chaetoceros sp. 3	3040	0,47
Dactyliossolen fragilissimus	2880	0,45
Nitszchia sp.3	2720	0,42
Guinardia flaccida	2320	0,36
Bacteriastrum hyalinum	2240	0,35
Rhizosolenia setigera	1920	0,30
Skeletonema costatum	1840	0,29
Guinardia delicatula	1680	0,26
Chaetoceros affinis	1440	0,22
Leptocylindrus mediterraneos	1200	0,19
Thalassiotrix javanicum	1200	0,19
Hemiaulus sp.1	1040	0,16
Navicula sp.	880	0,14
Chaetoceros sp. 4	720	0,11
Fragilaria sp.	720	0,11
Rhizosolenia styliformes	640	0,10
Chaetoceros pendulum	560	0,09
Meuniera membranacea	480	0,07
Pleurosigma sp.	480	0,07
Cyclotella sp.	400	0,06
Cêntrica sp.7	240	0,04
Corethron hystrix	160	0,02
Diploneis sp.	160	0,02
Penada sp.5	160	0,02
Ditylum brightwellii	80	0,01
Penada sp.3	80	0,01
Penada sp.7	80	0,01
Penada sp.12	80	0,01

TOTAL

640280

 Classe Dinophyceae

 Gyrodinium sp.
 6160 53,85

 Gymnodinium spp.
 3680 32,17

 Protoperidinium sp.
 1200 10,49

 Prorocentrum gracile Protoperidinium sp.8 8 80 0,70
 80 0,70

 Protoperidinium sp.12 80 0,70
 80 0,70

 TOTAL 11440
 11440

B3#5 - 48m	_	
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Leptocylindrus danicus	177600	17,71
Chaetoceros sp. 6	172320	17,18
Nitszchia seriata	160640	16,02
Thalassiosira sp.	118400	11,81
Leptocylindrus minimus	88320	8,81
Chaetoceros spp.	65760	6,56
Guinardia striata	60480	6,03
Asterionellopsis glacialis	24640	2,46
Chaetoceros compressum	14480	1,44
Nitszchia sp.4	14240	1,42
Nitszchia longissima	14160	1,41
Chaetoceros curvicetus	12960	1,29
Hemiaulus hauckii	12880	1,28
Chaetoceros decipiens	9920	0,99
Skeletonema costatum	8720	0,87
Bacteriastrum hyalinum	5200	0,52
Guinardia flaccida	4400	0,44
Cêntrica sp.4	4000	0,40
Thalassionema nitzschioides	3440	0,34
Dactyliossolen fragilissimus	3200	0,32
Schroederella schroederi	2880	0,29
Nitszchia sp. 1	2640	0,26
Nitszchia sp.3	2480	0,25
Rhizosolenia setigera	2080	0,21
Chaetoceros sp. 4	2000	0,20
Melosira sulcata	1920	0,19
Navicula sp.	1520	0,15
Chaetoceros affinis	1360	0,14
Meuniera membranacea	1360	0,14
Chaetoceros sp. 2	1040	0,10
Hemiaulus sinensis	880	0,09
Pleurosigma sp.	880	0,09
Cerataulina pelagica	800	0,08
Chaetoceros pendulum	720	0,07
Diploneis sp.	720	0,07
Thalassiotrix javanicum	640	0,06
Nitszchia sp.10	560	0,06
Guinardia sp.1	480	0,05
Rhizosolenia alata	480	0,05
Cêntrica sp.11	400	0,04
Cêntrica sp.5	240	0,02
Ditylum brightwellii	160	0,02
Melosira nummuloides	160	0,02
Corethron hystrix	80	0,01
Cyclotella sp.	80	0,01
Odontella sinensis	80	0,01
Rhizosolenia robusta	80	0,01
Rhizosolenia styliformes	80	0,01
Penada sp.3	80	0,01
Penada sp.4	80	0,01
Penada sp.5	80	0,01
Penada sp.6	80	0,01

 Classe Dinophyceae

 Gyrodinium sp.
 7360 58,23

 Protoperidinium sp.
 3280 25,95

 Gymnodinium spp.
 1440 11,39

 Prorocentrum sp.
 400 3,16

 Protoperidinium sp.11
 160 1,27

 TOTAL
 12640

TOTAL 1002880

Bd3#6 - 20m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	107040	37,14
Leptocylindrus danicus	73840	25,62
Guinardia striata	26800	9,30
Nitszchia sp.4	15120	5,25
Chaetoceros spp.	13520	4,69
Chaetoceros sp. 6	8040	2,79
Chaetoceros curvicetus	7480	2,60
Thalassiosira sp.	6440	2,23
Asterionellopsis glacialis	2640	0,92
Hemiaulus hauckii	2480	0,86
Bacilaria paradoxa	2280	0,79
Dactyliossolen fragilissimus	2240	0,78
Bacteriastrum hyalinum	2200	0,76
Thalassionema nitzschioides	2200	0,76
Chaetoceros decipiens	2160	0,75
Stephonopyxis turris	1840	0,64
Nitszchia sp. 1	1760	0,61
Nitszchia sp.3	1720	0,60
Nitszchia longissima	1480	0,51
Chaetoceros sp. 7	1160	0,40
Leptocylindrus mediterraneos	1000	0,35
Meuniera membranacea	680	0,24
Leptocylindrus minimus	600	0,21
Chaetoceros affinis	520	0,18
Chaetoceros compressum	520	0,18
Rhizosolenia setigera	520	0,18
Navicula sp.	480	0,17
Pleurosigma sp.	360	0,12
Guinardia flaccida	160	0,06
Thalassiotrix javanicum	160	0,06
Cêntrica sp.7	160	0,06
Cyclotella sp.	120	0,04
Penada sp.12	120	0,04
Chaetoceros pendulum	80	0,03
Penada sp.3	80	0,03
Corethron hystrix	40	0,01
Diploneis sp.	40	0,01
Rhizosolenia bergonii	40	0,01
Rhizosolenia robusta	40	0,01
Penada sp.5	40	0,01
Penada sp.9	40	0,01
TOTAL	288240	-101
Classe Dinophyceae		
Gyrodinium sp.	2520	48,84
Gymnodinium spp.	2000	38,76
Protoperidinium sp.	600	11,63
Prorocentrum gracile	40	0,78
TOTAL	5160	-1. 5
IOTAL	0100	

Bd3#6 - 44m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	82480	35,07
Leptocylindrus danicus	35600	15,14
Leptocylindrus mediterraneos	25840	10,99
Chaetoceros sp. 6	20720	8,81
Guinardia striata	17200	7,31
Thalassiosira sp.	12720	5,41
Chaetoceros spp.	9440	4,01
Thalassionema nitzschioides	8320	3,54
Skeletonema costatum	4320	1,84
Asterionellopsis glacialis	2840	1,21
Nitszchia sp.4	2080	0,88
Nitszchia longissima	1680	0,71
Nitszchia sp. 1	1640	0,70
Hemiaulus hauckii	1320	0,56
Cêntrica sp.4	1160	0,49
Chaetoceros curvicetus	1040	0,44
Chaetoceros compressum	960	0,41
Navicula sp.	800	0,34
Dactyliosolen fragilissimus	680	0,29
Nitszchia sp.3	600	0,26
Guinardia delicatula	560	0,24
Schroederella schroederi	520	0,22
Penada sp.12	400	0,17
Helicotheca tamesis	320	0,14
Meuniera membranacea	320	0,14
Chaetoceros decipiens	240	0,10
Diploneis sp.	240	0,10
Pleurosigma sp.	160	0,07
Rhizosolenia setigera	160	0,07
Cêntrica sp.5	160	0,07
Penada sp.10	160	0,07
Chaetoceros pendulum	120	0,05
Chaetoceros sp. 4	80	0,03
Cyclotella sp.	80	0,03
Penada sp.9	80	0,03
Rhizosolenia alata	40	0,02
Thalassiotrix javanicum	40	0,02
Cêntrica sp.7	40	0,02
TOTAL	235160	0,02
Classe Dinophyceae	200100	
Gyrodinium sp.	5280	75,43
Gymnodinium spp.	1200	17,14
Protoperidinium sp.	480	6,86
Ceratium fusus	40	0,57
TOTAL	7000	

Bd3#6 - 80m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	71400	24,56
Nitszchia sp.2	50640	17,42
Leptocylindrus danicus	43200	14,86
Chaetoceros sp. 6	37200	12,79
Guinardia striata	17760	6,11
Leptocylindrus minimus	12600	4,33
Chaetoceros spp.	8760	3,01
Thalassiosira sp.	6960	2,39
Chaetoceros decipiens	6840	2,35
Nitszchia sp. 1	3600	1,24
Chaetoceros curvicetus	2760	0,95
Thalassionema nitzschioides	2280	0,78
Dactyliosolen fragilissimus	2160	0,74
Hemiaulus hauckii	2160	0,74
Nitszchia longissima	1920	0,66
Chaetoceros affinis	1800	0,62
Lauderia annulata	1800	0,62
Navicula sp.	1800	0,62
Actinoptychus sp.	1560	0,54
Chaetoceros compressum	1440	0,50
Rhizosolenia setigera	1440	0,50
Bacteriastrum hyalinum	1320	0,45
Chaetoceros didymus	1200	0,41
Chaetoceros cf. brevis	1080	0,37
Cêntrica sp.4	1080	0,37
Chaetoceros sp. 7	960	0,33
Leptocylindrus mediterraneos	960	0,33
Meuniera membranacea	840	0,29
Hemiaulus sinensis	720	0,25
Nitszchia sp.3	720	0,25
Chaetoceros pendulum	240	0,08
Corethron hystrix	240	0,08
Diploneis sp.	240	0,08
Pleurosigma sp.	240	0,08
Cyclotella sp.	120	0,04
Rhizosolenia alata	120	0,04
Thalassiotrix javanicum	120	0,04
Cêntrica sp.6	120	0,04
Penada sp.3	120	0,04
Penada sp.5	120	0,04
Penada sp.8	120	0,04
TOTAL	290760	0,04
Classe Dinophyceae	290700	
Gymnodinium spp.	6840	66,28
Gyrodinium sp.	2880	27,91
Protoperidinium sp.	360	3,49
Ceratium lineatum	120	1,16
Protoperidinium sp.11	120	1,16
TOTAL	10320	-1.0
. 31712	. 5020	

B3#7 - 20			
Divisão Cromophyta			
Classe Bacillariophyc	eae	CÉL/L	%
Navicula sp.		280	26,92
Cêntrica sp.2		200	19,23
Guinardia striata		120	11,54
Nitszchia sp.10		120	11,54
Nitszchia sp. 1		80	7,69
Nitszchia sp.3		80	7,69
Nitszchia longissima		80	7,69
Chaetoceros pendulum		40	3,85
Penada sp.3		40	3,85
	TOTAL	1040	
Classe Dinophyceae			
Gyrodinium sp.		560	51,85
Gymnodinium spp.		480	44,44
Protoperidinium sp.12		40	3,70
	TOTAL	1080	

B3#7 - 55m		
Divisão Cromophyta		
Classe Bacillariophyceae	CÉL/L	%
Nitszchia seriata	960	45,28
Navicula sp.	320	15,09
Nitszchia longissima	240	11,32
Cêntrica sp.4	160	7,55
Nitszchia sp.2	80	3,77
Thalassionema nitzschioides	80	3,77
Thalassiotrix javanicum	80	3,77
Cêntrica sp.7	80	3,77
Penada sp.3	80	3,77
Nitszchia sp.3	40	1,89
TOTAL	2120	
Classe Dinophyceae		
Gyrodinium sp.	800	62,50
Gymnodinium spp.	280	21,88
Prorocentrum sp.	120	9,38
Protoperidinium sp.	80	6,25
TOTAL	1280	

CÉL/L	%
1880	48,45
320	8,25
280	7,22
280	7,22
240	6,19
200	5,15
160	4,12
120	3,09
80	2,06
80	2,06
80	2,06
40	1,03
40	1,03
40	1,03
40	1,03
3880	
360	40,91
280	31,82
160	18,18
80	9,09
880	
	320 280 280 240 200 160 120 80 80 40 40 40 40 3880 360 280 160 80