UNIVERSIDADE FEDERAL DO PARANÁ

GABRIELA DECKER

MACROECOLOGIA DA DIVERSIDADE DE CANTOS DE THAMNOFILÍDEOS (AVES)

CURITIBA

GABRIELA DECKER

MACROECOLOGIA DA DIVERSIDADE DE CANTOS DE THAMNOFIILÍDEOS (AVES)

Monografia apresentada à disciplina Estágio em Zoologia como requisito parcial à conclusão do Curso de Ciências Biológicas, Setor de Ciências Biológicas, Departamento de Zoologia, Universidade Federal do Paraná.

Orientador: Prof. Marcio R. Pie

Co-orientadora: Viviane Deslandes

CURITIBA

À quem muito amei meu exemplo de vida, minha querida tia Lurdes *(in memoriam)*.

AGRADECIMENTOS

Ao Marcio, pela oportunidade e orientação durante este trabalho, por todo apoio, confiança, tempo e paciência dedicados durante seus ensinamentos. Agradeço também a amizade e conselhos ofertados nos momentos em que passei por dificuldades. Por ser para mim inspiração, não somente pela excelente atuação profissional como também pela grande pessoa que é.

A Vivi, por ter me acolhido em seu projeto e por ter se dedicado a mim durante o processo de aprendizado de muitas análises. Certamente, sua ajuda e paciência foram componentes fundamentais para elaboração deste trabalho e para o que aprendi até hoje.

Aos meus pais, pela dedicação de suas vidas ao meu crescimento e aprendizado. Por nunca medirem esforços para que eu pudesse atingir meus objetivos. Por todo amor, paciência, carinho, dedicação e amizade. Tudo que sou devo a vocês.

Ao Ronan, meu grande amor e melhor amigo. Por ser essa pessoa que me inspira e que faz tudo valer a pena. A sua família, que se tornou minha, por ter me acolhido.

A todo pessoal do Laboratório de Sistemas Complexos e Dinâmica Evolutiva, pela amizade e companheirismo.

RESUMO

O entendimento dos processos ecológicos que atuam estruturando comunidades em diferentes escalas é uma das principais questões da ecologia de comunidades. Dois mecanismos comumente invocados para explicar a estruturação de comunidades são a filtragem ambiental e a competição. Padrões de agrupamento fenotípico seriam gerados por filtros ambientais, enquanto que a competição geraria uma super dispersão de caracteres. Apesar da importância destes processos, análises que elucidam seus efeitos foram realizadas considerando poucas características. O canto de aves está sujeito a pressões de seleção natural e sexual formando um modelo ideal para estudo de variação de caracteres ecológicos. A hipótese de adaptação acústica prevê que a filtragem ambiental é o principal processo que molda sinais acústicos em aves e que cada ambiente favorece características especificas para o canto, por outro lado, a hipótese de competição prevê que as espécies partilham o espaço acústico e possuem canto dissimilares. Este estudo analisou padrões de diversidade em thamnofilídeos para investigar como processos ecológicos interferem na estruturação do canto em diferentes comunidades. Ao contrário do que é previsto por estudos clássicos, os padrões de agrupamento e super dispersão fenotípica ocorrem simultaneamente em células de mesma escala. A diversidade filogenética das comunidades apresentou uma complexa relação com o processo de competição e filtragem ambiental. A competição gerou diversidades de canto maiores do esperado em comunidades com diferentes riquezas, evidenciando partilha de nicho acústico. Entretanto, comunidades com alta diversidade filogenética apresentaram uma diversidade de cantos menor do que o esperado, sugerindo que a filtragem ambiental esteja atuando que nessas comunidades, isso pode ser evidência para as premissas da hipótese de adaptação acústica.

SUMÁRIO

INTRODUÇÃO	7
MATERIAIS E MÉTODOS	10
Tabela 1	12
Figura 1	25
Figura 2	26
Figura 3	14
Figura 4	15
Figura 5	16
Figura 6	17
Figura 7	18
DISCUSSÃO	19
REFERÊNCIAS	21
ANEXOS	25

INTRODUÇÃO

Um dos desafios da ecologia de comunidades é compreender a relação entre a variação dos caracteres das espécies e a organização das comunidades ecológicas (CAVENDER-BARES et al., 2004). As comunidades podem ser simultaneamente estruturadas por dois processos ecológicos principais: (1) a filtragem de espécies que podem persistir dentro de uma comunidade baseando-se na sua tolerância ao ambiente abiótico (WEIHER et al., 1998),e (2) as interações competitivas entre espécies que limitam a sua coexistência e geram comunidades com espécies particularmente distintas (MACARTHUR; LEVINS, 1967; CHESSON, 1985). Estes dois processos geram predições distintas quanto à similaridade fenotípica de espécies que co-ocorrem: o processo de filtro ambiental gera um padrão de aglomeração fenotípica, com espécies que compartilham o mesmo habitat sendo mais similares do que se espera ao acaso. Por outro lado, a competição gera um padrão oposto, de super-dispersão fenotípica (WEBB, 2000). Ainda pouco se conhece sobre a contribuição relativa de cada um destes processos na variação fenotípica observada nas comunidades, mas é provável que ambos ocorram, particularmente em diferentes escalas temporais e espaciais (ACKERLY, , 2003).

Comunidades ecológicas resultam não somente de processos ecológicos atuais, como a competição e os filtros ambientais, mas também de processos evolutivos passados e contínuos (WEBB, et al., 2002). Porque espécies próximas tendem a ser mais semelhantes ecologicamente do que espécies distantes, as espécies não são unidades estatisticamente independentes, e as relações filogenéticas devem ser levadas em consideração em estudos ecológicos (FELSENSTEIN, 1985). O uso de padrões de estrutura filogenética para fazer inferências sobre processo de filtragem ambiental e competição se baseia na premissa de que a similaridade filogenética reflete similaridade ecológica e que parentes próximos são fortes competidores (GÓMEZ et al., 2010). Devido a nem sempre estas premissas serem encontradas (LOSOS, 2008), análises em escalas regionais da estrutura filogenética aliadas a estudos de distribuição fenotípica podem fornecer um entendimento mais claro dos processos ecológicos (GÓMEZ et al., 2010).

O advento da macroecologia tem possibilitado a incorporação das perspectivas geográfica e histórica no estudo da composição regional e continental de faunas (BROWN, 1995). Esta abordagem tem revolucionado o estudo de questões ecológicas clássicas, como o gradiente latitudinal de riqueza de espécies (HAWKINS et al., 2007)e mais recentemente, conservação filogenética de nicho (HAWKINS et al., 2006; WIENS et al., 2006; RANGEL et al., 2007). Entretanto, pouco é conhecido sobre a macroecologia de outros caracteres fenotípicos além do tamanho do corpo. O canto é uma característica chave na evolução de aves, já que desempenha um papel importante no isolamento reprodutivo e influencia diretamente aspectos do comportamento como territorialidade, estando fortemente sujeito a seleção (CATCHPOLE; SLATER, 2008). Investigar como o canto de aves está distribuído através de amplas escalas espaciais pode fornecer uma importante ferramenta para o entendimento da dinâmica evolutiva deste caráter.

Como sinal de comunicação, o canto das aves pode ser modificado pelo ambiente (BARKER, 2008). A Hipótese de Adaptação Acústica (HAA) prevê como o ambiente acústico molda as características do canto (MORTON, 1975). Por exemplo, a transmissão do canto pode sofrer interferência de elementos do solo e da vegetação, e algumas freqüências sonoras podem experimentar atenuações pelo vento, umidade e temperatura (RICHARDS; WILEY 1980). Como conseqüência, a seleção natural em florestas tende a favorecer cantos longos, com baixas freqüências e pouca repetição de notas. Ambientes abertos, ao contrário, favorecem cantos mais curtos, com frequências elevadas e repetições mais frequentes (BARKER, 2008). Consequentemente, estruturação de comunidades por filtragem ambiental prevê um padrão de aglomeração fenotípica (VERDÚ; PAUSAS, 2007), com a coexistência espécies que possuem cantos com frequência, duração e repetição similares. Por outro lado, sinais acústicos semelhantes sofrem interferências entre si, afetando o reconhecimento inter e intraespecífico. A eficácia da comunicação sonora entre as aves depende da detecção e distinção correta dos sinais. Distorções causadas por interferências de ruídos de fontes bióticas e abióticas conduzem a erros como respostas inapropriadas a rivais, machos, ou falta de respostas adequadas (WILEY, 1994). Para evitar a sobreposição de sinais e consequentes erros na comunicação, as espécies necessitam diversificar seus sinais (WILEY, 1994; BRUMM; SLABBEKOORN, HANS, 2005; WILEY, 2006)e,portanto, o canto pode potencialmente ser moldado por interações interespecíficas. Comunidades estruturadas por competição por espaço acústico favorecem a coexistência de espécies

com cantos dissimilares, desta forma, os sinais estariam super dispersos (CARDOSO; PRICE, 2009) e o padrão de partilha de nicho acústico emergiria nestas comunidades.

Apesar das claras premissas e do número significante de estudos testando a HAA, os resultados obtidos não são conclusivos. Alguns suportam algumas predições da hipótese (BADYAEV et al., 1997; BERTELLI; TUBARO, 2002; SLABBEKOORN; SMITH, 2002; PATTEN et al., 2004; SEDDON, 2005; DERRYBERRY, 2009; KIRSCHEL et al., 2009), enquanto outros fornecem evidências conflitantes (TUBARO; SEGURA, 1994; BLUMSTEIN; TURNER, 2005; BONCORAGLIO; SAINO, 2007). A hipótese de partilha de nicho acústico tem sido levantada para diferentes taxa e evidenciada em alguns estudos de comunidades de insetos (TISHECHKIN; BUKHVALOVA, 2009), anfíbios (LÜDDECKE et al., 2000; CHEK et al., 2003) e aves (BRÉMOND, 1977; LUTHER, 2009; HENRY; WELLS, 2010). Entretanto nenhum estudo evidenciou partilha de nicho acústico em amplas escalas.

Thamnofilídeos formam um modelo ideal para o estudo de evolução do canto, pois como Suboscines, o desenvolvimento do canto é completamente inato (ISLER et al., 1998) e por não ser dependente de aprendizado não sofre a influência confusa evolução cultural (SEDDON, 2005). Além disso, muitos thamnofilídeos têm uma fraca diferenciação de plumagem e habitam florestas com condições de luz escassa, o que aumenta a importância dos sinais acústicos (ZIMMER; ISLER, 2003). Sua distribuição geográfica é bem estudada e uma hipótese filogenética abrangente para a família foi disponibilizada recentemente (GÓMEZ et al., 2010), permitindo assim o controle da não independência dos dados durante as análises. O objetivo do presente estudo é fazer inferências sobre os processos ecológicos que atuam na estruturação do canto de thamnofilídeos. Para isso foram analisados os padrões de diversidade de cantos e de diversidade filogenética utilizando uma abordagem comparativa e a escala macroecológica.

MATERIAIS E MÉTODOS

Os cantos utilizados no presente estudo foram obtidos junto ao banco de dados Xeno-Canto (http://www.xeno-canto.org/) e complementados com gravações pessoais de Jeremy Minns e do Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, Colômbia. Foram incluídas na análise todas espécies para as quais havia cantos e polígonos de distribuição disponíveis, com um total de 1042 gravações e 168 espécies (\bar{x} =6,2 cantos/espécie, n=1-33). Foram excluídas da amostra respostas a playback, chamados e gravações com taxa de amostragem e resolução menores que 44100 Hz e 16 bits. A análise dos parâmetros acústicos foi realizada no software Avisoft-SASLab Pro 5.1 utilizando-se as seguintes especificações: Window: FlatTop, FFT: 256, Frame Size: 100%, e Overlap: 50%. Os parâmetros acústicos mensurados estão descritos na Tabela 1. Através da visualização dos espectrogramas, cada nota também foi classificada qualitativamente quanto a sua forma em assovio, trinado ou "buzz". Apenas um canto por indivíduo foi utilizado para evitar pseudo-replicação. Os dados finais incluíram apenas as médias de cada parâmetro por espécie (Tabela 2, anexo 3).

As áreas de distribuição geográfica das espécies foram obtidas da base de dados NatureServe (http://www.natureserve.org/) e sobrepostas em um grid de 6343 células de 0.5° de lado para gerar uma matriz binária de ocupância de espécies por célula utilizando o software SAM v4.0 (RANGEL et al., 2010). Uma espécie foi considerada presente em uma célula se sua distribuição possuía com ela qualquer percentagem de sobreposição. Embora esta abordagem possa superestimar as distribuições das espécies estudadas, análises posteriores utilizando outros níveis de corte foram qualitativamente idênticas (resultados não apresentados).

A distribuição espacial da diversidade de cantos (DC) foi caracterizada por uma medida análoga à mensuração de diversidade filogenética e funcional em diversos estudos recentes (ex: FAITH, 1992; PODANI; SCHMERA, 2006) e envolveu dois passos básicos. Primeiro, o padrão de similaridade das propriedades acústicas de cada espécie foi descrito na forma de dendrograma (Fig. 1, anexo 1) com agrupamento hierárquico baseado na distância de Gower, utilizando-se a função HCLUST no software R (R DEVELOPMENT CORE TEAM 2011). Em seguida, o dendrograma foi utilizado para obter-se a diversidade de cantos em cada célula, através da exclusão das espécies que não estivessem presentes na célula e subseqüente soma dos comprimentos dos ramos

remanescentes do dendrograma. Os resultados obtidos foram comparados com a diversidade de cantos esperada em cada célula. Esta foi gerada amostrando-se aleatoriamente do dendrograma original em 500 vezes pelo mesmo número de espécies presentes e calculando em cada interação a soma dos comprimentos de ramos remanescentes. Posteriormente, a diversidade corrigida de cantos foi gerada pela subtração do valor de diversidade observada de cada célula pelo seu respectivo valor de diversidade esperada. Para análise de seus padrões geográficos, a riqueza de espécies e a diversidade de cantos foram mapeadas no software SAM v4.0 (RANGEL et al., 2010).

A abordagem indicada acima implicitamente considera que as espécies estudadas são estatisticamente independentes. Contudo, é esperado que o grau de variação nas propriedades do canto de uma amostra de espécies seja proporcional aos seus respectivos tempos de divergência(FELSENSTEIN, 1985; MARTINS; HANSEN, 1997). Para levar em consideração a não-independência das espécies e sua influência nos padrões observados, os valores de DC de cada comunidade foram comparados com seus respectivos valores de diversidade filogenética (DF). Os cálculos de DF e de DF esperada foram realizados de maneira similar à DC e DC esperada, utilizando-se a árvore de distância filogenética entre as espécies (GÓMEZ et al., 2010)(Fig. 2, anexo2) Contudo, o cálculo de diversidade filogenética foi baseado em 123 espécies, pois foram excluídas as espécies para as quais não havia informação filogenética.

A diversidade de cantos corrigida (DCc) e a diversidade filogenética corrigida (DFc) foram utilizadas para gerar modelos nulos para os valores esperados de DC e DF. O padrão encontrado de DF foi utilizado como um modelo nulo para o padrão esperado de DC, assumindo a premissa de que a variação fenotípica entre as espécies é proporcional ao tamanho dos ramos que a separam na árvore filogenética (PAGEL, 1999). Regressão linear foi utilizada para testar se a DCc varia com DFc. Os valores de DC e DF utilizados nesta regressão foram re-calculados através da utilização do dendrograma de cantos e da árvore filogenética re-escalonados para ter o mesmo tamanho final. Essa regressão foi contrasta com um modelo nulo (inclinação=1 e intercepto=0). Este modelo evidencia o esperado para evolução de caracteres por Movimento Browniano, no qual a variância aumenta linearmente com o tempo de divergência, o que geraria uma inclinação de 1. Para uma melhor análise dos padrões encontrados, um teste mais foi rigoroso foi realizado através da classificação dos valores de DF em três grupos e foi calculada uma nova regressão para cada um destes grupos.

Tabela 1. Descrição dos parâmetros acústicos quantitativos

Paramêtros	Descrição
quantitativos	
Frequência de pico	Frequência no ponto de máxima amplitude do elemento inteiro.
Frequência fundamental	A mais baixa e a mais forte frequência componente da série harmônica.
Frequência máxima	A frequência máxima de pico sobre um elemento inteiro.
Fequência mínima	A frequência mínima de pico sobre um elemento inteiro.
Duração do canto	Intervalo entre o início e o término do canto.
Número de notas	Número de componentes do canto separados por um intervalo de tempo distinguível no sonograma.
Número de elementos	Número de sub-elementos dentro de um elemento.
Taxa de elementos	Taxa média de sub-elementos dentro de um elemento.
Taxa de repetição de	Razão entre o número de notas (nn) e a duração do canto (s)
notas	
Taxa de	Razão entre energia harmônica e não-harmônica
harmônico/ruído	
(HNR)	
Entropia	Quantifica a pureza do som. Este parâmetros é (teoricamente) 0 pra sinais de tom puro e 1 para ruídos randômicos.
	pui o e 1 para i uiuos ranuonnicos.

RESULTADOS

A distribuição geográfica da espécies de Thamnophilidae não se adapta a um simples gradiente latitudinal de riqueza de espécies (Fig 3a). Ao invés disso, as espécies apresentam média riqueza na Floresta Atlântica, particularmente dos estados da Bahia ao Paraná, e alta riqueza na floresta Amazônica, mais notavelmente através da margem do rio Amazonas e nos Andes. Existem poucas espécies ao longo dos biomas Caatinga/Cerrado/Chaco que formam a "diagonal árida" composta por vegetações abertas e semi-abertas que separam a Amazônia e a Floresta Atlântica. Tal variação na riqueza de espécies fornece confiança na avaliação da relação entre número de espécies e diversidade de cantos em escala geográfica. A DC acompanha o padrão geográfico da riqueza de espécies (Fig 3b).

Através do contraste entre o padrão de DC (Fig 4a, pontos em cinza) e o modelo de DC esperado (Fig 4a, linha de pontos pretos) observa-se que desde as comunidades com baixa riqueza até aquelas com alta riqueza os valores de DC tendem a ser maiores do que seria esperado ao acaso. Este padrão é melhor visualizado na figura 4c, na qual DCc é plotada contra a riqueza mostrando que a maioria dos pontos estão concentrados acima da linha do esperado. O contraste dos valores de DF observados (Fig. 4b, pontos em cinza) com seu respectivo modelo nulo (Fig. 4b, linha de pontos em preto) apresentou um padrão de distribuição distinto daquele de DC, sendo que o aumento dos valores de DF parece não ser linear. Em comunidades com riqueza relativamente baixa de espécies (i.e., células com menos de 15 espécies), os valores de DFc estão concentrados abaixo do esperado pelo modelo nulo, indicando menor diversidade filogenética do que se esperaria ao acaso (Fig. 4d). Em comunidades com riqueza intermediária (i.e., entre 15 e 30 espécies), os resíduos são em média indistinguíveis do modelo nulo (Fig. 4d). Finalmente, em comunidades com grande riqueza (i.e., células com mais de 30 espécies) há um aumento pronunciado na DF, apresentando valores de resíduos significativamente maiores do que seria esperado ao acaso (Fig. 4d).

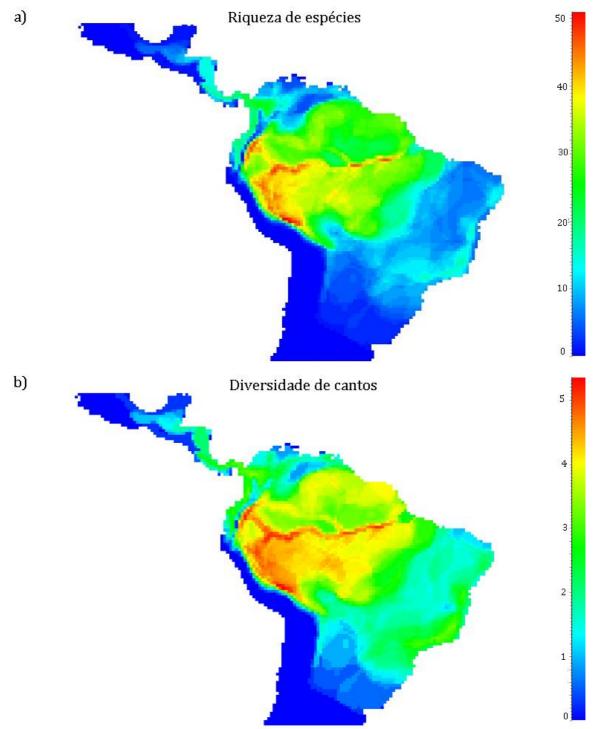


Figura 3. a) Distribuição espacial da riqueza de espécies. b) Distribuição espacial de diversidade de cantos.

Visto que os padrão de DF e DC não são congruentes, estas duas variáveis foram comparadas entre si através de uma regressão linear (inclinação=0.8263, R2=0.9648, p<2e-16, Fig. 5a). O modelo nulo para os valores esperados DC baseado na hipótese de evolução de caracteres por movimento Browniano é representado pela reta em preto. O resultado obtido é distinto desta idéia, em comunidades com baixa DF os valores de DC encontram-se acima da linha proposta pelo modelo nulo, e este padrão se inverte em

comunidades com altos valores de DF, com os pontos concentrando-se claramente abaixo da linha do esperado. Comunidades com baixos valores de DF (Fig. 5b, valores de DF até aproximadamente 8), representadas pelos pontos em vermelho, apresentaram uma reta de regressão com inclinação superior ao do modelo nulo, enquanto que comunidades com DF intermediária (Fig. 5b, valores de DF entre 8 e 20) e comunidades com alta DF (Fig. 5b, valores de DF >20) apresentaram inclinação das retas de regressão abaixo do esperado.

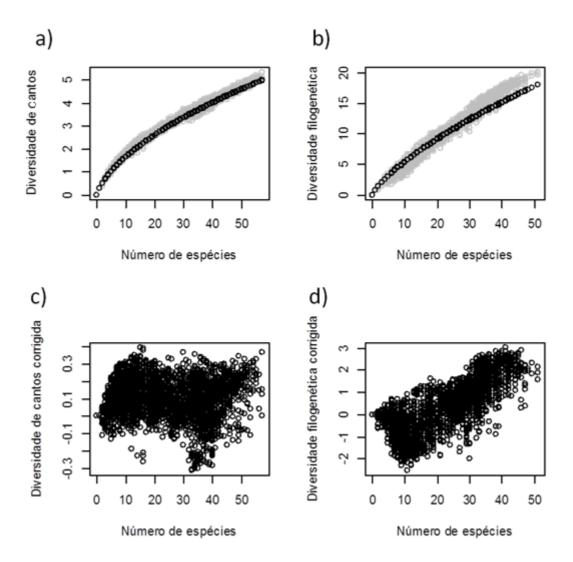


Figura 4. a) Relação entre diversidade de cantos (eixo y) e riqueza (eixo x). Os pontos em cinza representam os valores observados de diversidade de cantos e a linha de pontos em preto representa os valores esperados segundo o modelo nulo. b) Relação entre diversidade filogenética (eixo y) e riqueza de espécies (eixo x). Os pontos em cinza representam os valores observados de diversidade de filogenética enquanto a linha de pontos em preto representa os valores esperados segundo o modelo nulo. c) Relação entre de diversidade de cantos corrigida (eixo y) e número de espécies (eixo x). d) Relação entre de diversidade filogenética corrigida (eixo y) e número de espécies (eixo x).

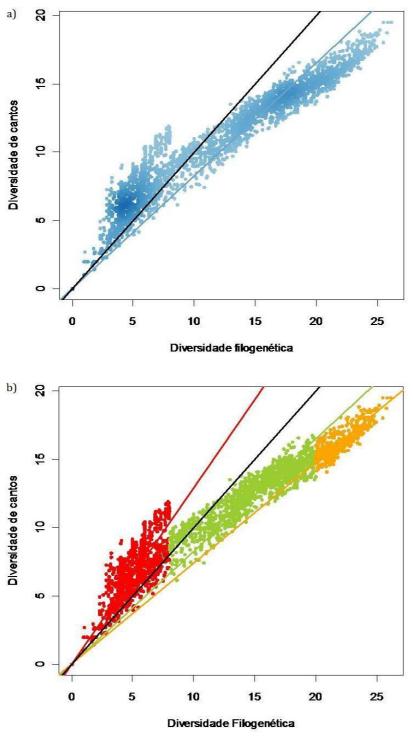


Figura 5. a) Regressão forçada pela origem para valores de diversidade de cantos contrastados com os valores de diversidade filogenética, representada pela linha em azul (inclinação=0.8263, R^2 =0.9648, p<e2e-e16). A reta em preto representa os valores esperados no caso de uma relação perfeita entre as duas variáveis (inclinação=e1, intercepto=e0). b) Contrastes entre regressões para 3 grupos de diversidade filogenética (Grupo vermelho: e0</br> e1. Grupo verde: e2. Grupo laranja: e3. Reta vermelha (inclinação=e4. e2. Reta verde (inclinação=e6. Reta verde), reta verde (inclinação=e6. Reta verde) e reta laranja (inclinação=e6. Reta verde). A reta em preto representa os valores esperados no caso de uma relação perfeita entre as duas variáveis (inclinação=e1, intercepto=e0).

Uma área no gráfico de regressão entre DC e DF apresentou uma intrigante concentração de pontos fora do padrão geral . E estas células foram mapeadas afim de determinar a distribuição geográfica destas comunidades com DC muito maior do que o restante das comunidades (Fig. 6). Uma interessante distribuição emerge no mapa, com as comunidades com altíssima DC concentrando-se na região da Floresta Atlântica.Quando este mapa é comparado ao mapa de altitude (Fig. 7a) e de resíduos da regressão (Fig. 7b), nota-se que estas comunidades encontram-se em regiões montanhosas e que são as comunidades com valores de resíduos que mais desviam do esperado. Além disso, o gradiente de valores de resíduos é muito similar ao gradiente de altitude (Fig. 7a e 7b).

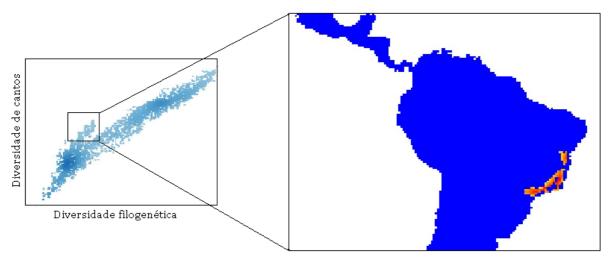


Figura 6. Mapa da área selecionada do gráfico de relação entre diversidade cantos e diversidade filogenética que representa valores muito distintos do padrão geral de distribuição de pontos

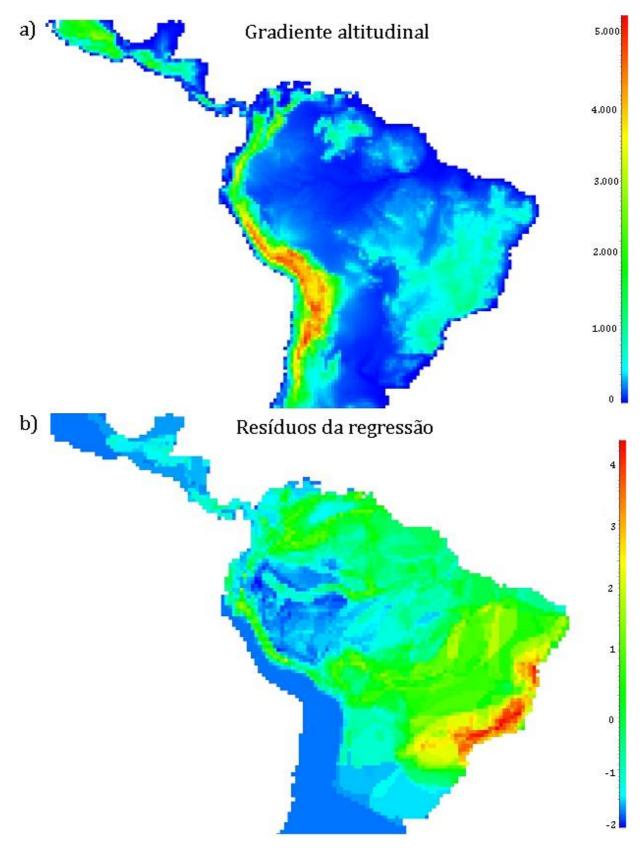


Figura 7. a) Gradiente altitudinal. a) Resíduos da regressão de diversidade de cantos e diversidade filogenética.

DISCUSSÃO

Comumente, acredita-se que filtros ambientais e competição sejam dois mecanismos alternativos que atuam na estruturação de comunidades (WEBB et al., 2002). Em particular, hipotetiza-se que filtros ambientais ocorrem predominantemente em escalas regionais e geram padrão de agrupamento fenotípico (CAVENDER-BARES et al., 2004; SWENSON et al., 2007) e a competição em escalas locais gerando super dispersão fenotípica (WEBB et al., 2002). Entretanto, os resultados do presente estudo indicam que esta dicotomia parece ser uma abordagem muito simplista. O contraste entre DC e DF não apresenta uma relação linear simples (Fig. 5b), com comunidades com baixa DF evidenciando super dispersão fenotípica por apresentarem índices de DC maiores do que o esperado. Com o aumento da DF as espécies passam a apresentar valores menores de DC evidenciando agrupamento fenotípico. Ao contrário do que sugerem outros estudos, os padrões de agrupamento e super dispersão fenotípica emergiram mesmo em se tratando de uma mesma escala espacial.

Baixos valores de DF representam comunidades com espécies filogeneticamente próximas. Como espera-se que estas espécies sejam também similares ecologicamente, a competição entre elas deve ser mais forte, podendo levar a um padrão mais acentuado de partilha de nicho acústico.(LUTHER, 2009; GÓMEZ et al., 2010), como detectado no presente estudo (Fig. 5b). Contudo, o aumento da DF não é acompanhado por um aumento de DC... É possível que a diversificação gerada pelas interações competitivas seja limitada pelo ambiente (os cantos podem se diversificar mas precisam manter as características que permitem a eficiência da sua propagação em determinado ambiente) evidenciando a filtragem ambiental em comunidades com alta DF. Possivelmente, o padrão de agrupamento que evidencia filtro ambiental não emerge em comunidades com baixa DF, porque como nestas áreas número de espécies em geral é menor, o espaço acústico a ser compartilhado é comparativamente maior.

Os maiores valores relativos de diversidade de canto (Fig. 6) concentraram-se em áreas da Floresta Atlântica do sudeste brasileiro. Duas hipóteses podem ser abordadas para explicar os altos valores de DC nesta região especifica. A primeira é que esta seria uma região onde há mais espécies proximamente relacionadas do que o esperado, possivelmente por isolamento pelas regiões montanhosas, o que acarretaria em fortes interações competitivas e uma partilha de nicho acústico mais acentuada do que em

outras comunidades. Esta hipótese pode ser corroborada através da comparação de distribuição geográfica dos resíduos da regressão e o mapa de altitude(Fig. 7a e 7b): nota-se que os maiores valores de resíduos estão presentes em comunidades de aves que concentram-se em regiões montanhosas. Outra hipótese é que estas regiões montanhosas da Floresta Atlântica possuem um gradiente altitudinal com ambientes que são diversificados. Diferentes extratos forneceriam maior possibilidade de nichos fazendo com que a seleção favorecesse cantos diferentes em um espaço geográfico relativamente menor. Uma evidência simples para esta hipótese é a comparação entre as regiões montanhosas da Floresta Atlântica e regiões da Amazônia de baixa altitude. Apesar do potencial das regiões amazônicas em apresentar altos valores de DC, comparativamente os valores de DC em regiões montanhosas da Floresta Atlântica são maiores. Mais estudos em escalas geográficas distintas serão fundamentais para discriminar estas duas hipóteses.

Contradizendo as premissas de hipóteses ecológicas clássicas, este estudo demonstrou que mecanismos de filtragem ambiental e competição podem ocorrer simultaneamente em uma mesma escala geográfica. Além disso, os padrões de distribuição fenotípica que emergem destes mecanismos apresentam uma complexa relação com a composição filogenética das comunidades. Os resultados apresentados elucidam questões importantes da ecologia de aves, demonstrando que há um padrão geral de partilha de nicho acústico e que está partilha pode ser limitada pelo ambiente em comunidades com alta DF, suportando também as premissas da hipótese de adaptação acústica.

REFERÊNCIAS

ACKERLY, D. Community assembly, niche conservatism, and the adaptive evolution in changing environments. **International Journal of plant science**, v. 164, 2003.

BADYAEV, A. V.; SCIENCES, B.; COOPERATIVE, M. Habitat associations of song characteristics in *Phylloscopus* and *Hippolais Warblers*. **Oikos**, v. 114, n. 1, p. 40-46, 1997.

BARKER, N. K. Bird song structure and the transmission in the neotropics: trends, methods and the future directions. **Ornitologia Neotropical**, p. 175-199, 2008.

BERTELLI, S.; TUBARO, P. L. Body mass and habitat correlates of song structure in a primitive group of birds. **Biological Journal of the Linnean Society**, v. 77, p. 423-430, 2002.

BLUMSTEIN, DANIEL T; TURNER, A. C. Can the acoustic adaptation hypothesis predict the structure of Australian birdsong? **Acta Ethologica**, v. 8, n. 1, p. 35-44, 2005.

BONCORAGLIO, G.; SAINO, N. Habitat structure and the evolution of bird song: a metaanalysis of the evidence for the acoustic adaptation hypothesis. **Functional Ecology**, v. 21, n. 1, p. 134-142, 2007.

BROWN, J. H. **Macroecology**. 1st ed. Chicago: The University of Chicago Press, 1995.

BRUMM, H.; SLABBEKOORN, HANS. Acoustic Communication in Noise. **Adv Study Behav**, v. 35, n. 05, p. 35004, 2005.

BRÉMOND, J.-C. Acoustic competition between the song of the wren (Troglodytes troglodytes) and the song of other species. **Behaviour**, v. 25, n. 8, p. 89-97, 1977.

CARDOSO, G. C.; PRICE, T. D. Community convergence in bird song. **Evolutionary Ecology**, v. 24, n. 2, p. 447-461, 2009.

CATCHPOLE, C. K.; SLATER, P. J. B. **Bird Song: Biological themes and variations**. New York: Cambridge University Press, 2008.

CAVENDER-BARES, J.; ACKERLY, D D; BAUM, D. A; BAZZAZ, F. A. Phylogenetic overdispersion in Floridian oak communities. **The American Naturalist**, v. 163, n. 6, p. 823-43, 2004..

CHEK, A. A.; BOGART, J. P.; LOUGHEED, S. C. Mating signal partitioning in multi-species assemblages: a null model test using frogs. **Ecology Letters**, v. 6, n. 3, p. 235-247, 2003.

CHESSON, P. L. Coexistence of Competitors in Spatially and Temporally Varying Environments: A Look at the Combined Effects of Different Sorts of Variability. **Theoretical Population Biology**, v. 287, p. 263-287, 1985.

DERRYBERRY, E. P. Ecology shapes birdsong evolution: variation in morphology and habitat explains variation in white-crowned sparrow song. **The American Naturalist**, v. 174, n. 1, p. 24-33, 2009.

FAITH, D. P. Conservation evaluation and phylogenetic diversity. **Biological Conservation**, v. 61, p. 1-10, 1992. Disponível em:

FELSENSTEIN, J. Phylogenies and the Comparative Method. **The American Naturalist**, v. 125, n. 1, p. 1-15, 1985.

GÓMEZ, J. P.; BRAVO, G. A; BRUMFIELD, R. T.; TELLO, J. G.; CADENA, C. D. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds. **The Journal of Animal Ecology**, v. 79, n. 6, p. 1181-92, 2010.

HAWKINS, B. A.; DINIZ-FILHO, JOSE ALEXANDRE F.; BINI, LUIS M.; ARAÚJO, M. B. Metabolic theory and diversity gradients: where do we go from here? **Ecology**, v. 88, n. 8, p. 1898-1902, 2007.

HAWKINS, B. A.; DINIZ-FILHO, JOSE ALEXANDRE FELIZOLA; JARAMILLO, C. A.; SOELLER, S. A. Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. **Journal of Biogeography**, v. 33, n. 5, p. 770-780, 2006.

HENRY, C. S.; WELLS, M. M. Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. **Animal Behaviour**, v. 80, n. 6, p. 991-1003, 2010. Elsevier Ltd.

ISLER, M.; ISLER, P.; WHITNEY, B. Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). **Auk**, v. 115, n. 3, p. 577-590, 1998.

KIRSCHEL, A. N. G.; BLUMSTEIN, D. T.; COHEN, R. E. et al. Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. **Behavioral Ecology**, v. 20, n. 5, p. 1089-1095, 2009.

LOSOS, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. **Ecology letters**, v. 11, n. 10, p. 995-1003, 2008.

LUTHER, D. The influence of the acoustic community on songs of birds in a neotropical rain forest. **Behavioral Ecology**, v. 20, n. 4, p. 864-871, 2009.

LÜDDECKE, H.; A, A.; XIMENA, B.; FRANCISCO, G. Partitioning of vocal activity in a Neotropical highland-frog community. **Stud Neotrop Fauna & Environm**, v. 194, p. 185-194, 2000.

MACARTHUR, R.; LEVINS, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species. **The American Naturalist**, v. 101, n. 921, p. 377-385, 1967.

MARTINS, E. P.; HANSEN, T. F. Phylogenies and the Comparative Method: A general approach to incorporating phylogenetic information into the analysis of interespecific data. **The American Naturalist**, v. 149, n. 4, p. 646-667, 1997.

MORTON, E. S. Ecological sources of selection on avian sounds. **The American Naturalist**, v. 109, n. 965, p. 17-34, 1975.

PAGEL, M. Inferring the historical patterns of biological evolution. **Nature**, v. 401, n. 6756, p. 877-84, 1999.

PATTEN, M. A; ROTENBERRY, J. T.; ZUK, M. Habitat selection, acoustic adaptation, and the evolution of reproductive isolation. **International Journal of Organic Evolution**, v. 58, n. 10, p. 2144-55, 2004..

PODANI, J.; SCHMERA, D. On dendrogram-based measures of functional diversity. **Oikos**, v. 115, n. 1, p. 179-185, 2006.

RANGEL, T. F.; DINIZ-FILHO, JOSE ALEXANDRE F.; BINI, LUIS MAURICIO. SAM: a comprehensive application for Spatial Analysis in Macroecology. **Ecography**, v. 33, n. 1, p. 46-50, 2010.

RANGEL, T. F.; DINIZ-FILHO, JOSE ALEXANDRE F; COLWELL, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. **The American Naturalist**, v. 170, n. 4, p. 602-16, 2007.

RICHARDS, D. G.; WILEY, R.H. Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. **The American Naturalist**, p. 381–399, 1980.

SEDDON, N. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. **International Journal of Organic Evolution**, v. 59, n. 1, p. 200-15, 2005.

SLABBEKOORN, H; SMITH, T. B. Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals. **International Journal of Organic Evolution**, v. 56, n. 9, p. 1849-58, 2002.

SWENSON, N. G.; ENQUIST, B. J.; THOMPSON, J.; ZIMMERMAN, J. K. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. **Ecology**, v. 88, n. 7, p. 1770-80, 2007.

TISHECHKIN, D YU; BUKHVALOVA, M. A. Acoustic communication in grasshopper communities (Orthoptera: Acrididae: Gomphocerinae): segregation of acoustic niches. **Russian Entomol. J**, v. 18, n. 3, 2009.

TUBARO, P. L. .; SEGURA, E. T. Dialect Differences in the Song of Zonotrichia capensis in the Southern Pampas: A Test of the Acoustic Adaptation Hypothesis. **The Condor**, v. 96, n. January, p. 1084-1088, 1994.

VERDÚ, M.; PAUSAS, J. G. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. **Journal of Ecology**, v. 95, n. 6, p. 1316-1323, 2007.

WEBB, C. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. **The American Naturalist**, v. 156, n. 2, p. 145-155, 2000.

WEBB, C. O.; ACKERLY, DAVID D.; MCPEEK, M. A.; DONOGHUE, M. J. Phylogenies and Community Ecology. **Annual Review of Ecology and Systematics**, v. 33, n. 1, p. 475-505, 2002.

WEIHER, E.; CLARKE, G. D. P.; KEDDY, P. A.; MAR, N.; COMMUNITY, P. A. Community assembly rules, morphological dispersion, and the coexistence of plant species. **Coexistence**, v. 81, n. 2, p. 309-322, 1998.

WIENS, J. J.; GRAHAM, C. H.; MOEN, D. S.; SMITH, S. A; REEDER, T. W. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. **The American Naturalist**, v. 168, n. 5, p. 579-96, 2006.

WILEY, R H. Signal Detection and Animal Communication. **Adv Study Behav**, v. 36, n. January, p. 217–247, 2006.

WILEY, R.H. Errors, exaggeration, and deception in animal communication. **Behavioral Mechanisms in Evolutionary.**, p. 157–189, 1994.

ZIMMER, M. G.; ISLER, M. L. Family Thamnophilidae. **Handbook of the Birds of the World**. p.448-681, 2003.

ANEXOS

Figura 1. Dendrograma de cantos

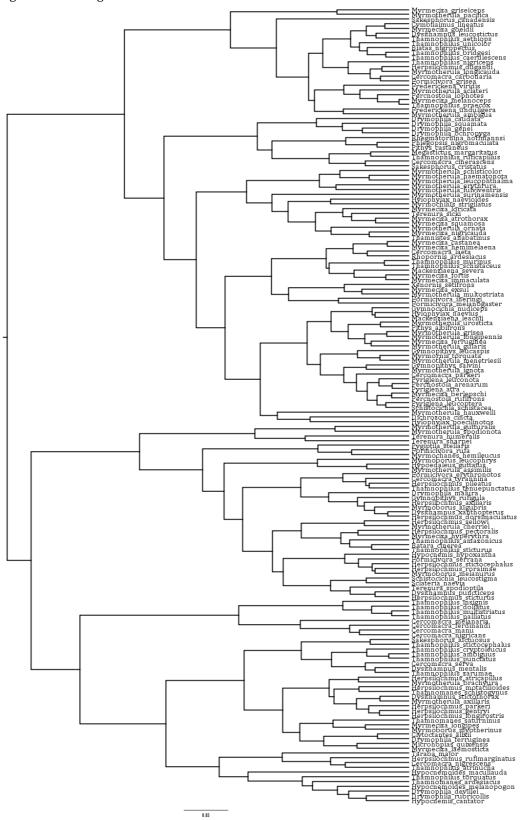


Figura 2. Árvore de distância filogenética para espécies da família Thamnophilidae (GÓMEZ et al., 2010).

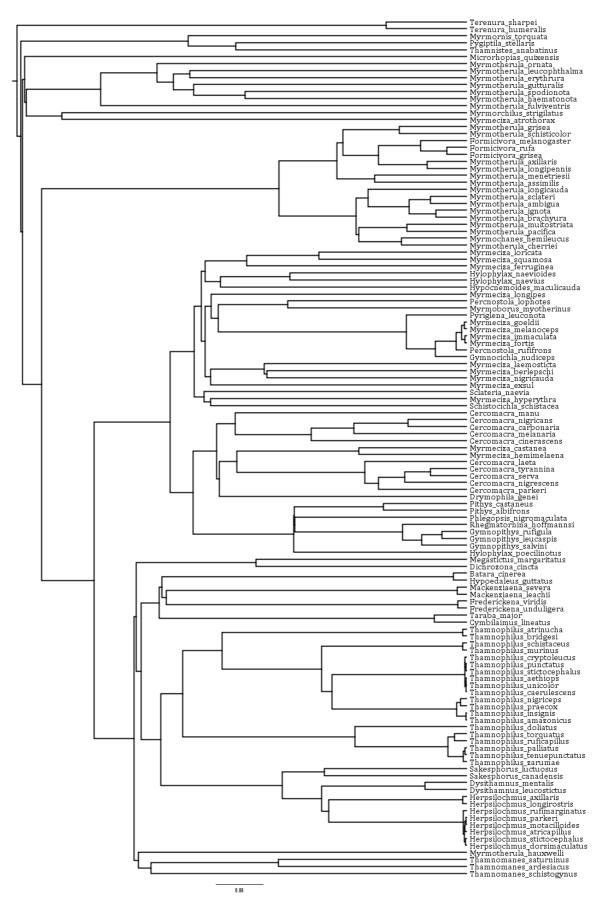


Tabela 2. Médias dos parâmetros acústicos das espécies.

		de	de		, is					de de	de			
Espécie	Duração	Número elementos	Taxa elementos	Frequência de pico	Frequência fundamental	Máxima frequência	Mínima frequência	Entropia	HNR	Taxa repetição notas	Número notas	Assovio	Trinado	"Buzz"
Batara cinerea	2.850	71.889	0.050	1787.778	1704.444	3746.667	1752.222	0.528	12.936	8.853	25.667	0	1	0
Biatas nigropectus	2.887	14.000	0.256	1633.077	1448.462	3274.615	1486.154	0.666	12.037	3.072	8.769	1	0	0
Cercomacra carbonaria	2.173	22.000	0.103	1800.000	1700.000	3600.000	1400.000	0.726	8.670	4.602	10.000	1	0	0
Cercomacra cinerascens	5.307	55.000	0.120	1600.000	1333.333	6983.333	1166.667	0.649	10.423	2.628	13.500	1	0	1
Cercomacra ferdinandi	3.918	39.000	0.103	1500.000	1300.000	4000.000	600.000	0.661	9.500	6.126	24.000	0	0	1
Cercomacra laeta	1.528	29.000	0.053	3000.000	3000.000	8166.667	2400.000	0.384	18.590	5.200	8.000	1	0	0
Cercomacra manu	2.754	26.333	0.145	1255.000	955.000	5376.667	570.000	0.734	10.760	3.655	10.667	0	0	1
Cercomacra melanaria	1.479	9.000	0.175	1700.000	1390.000	1135.000	2360.000	0.626	18.570	2.030	3.000	0	0	1
Cercomacra nigrescens	1.399	17.462	0.100	2040.769	1773.077	4646.154	1511.538	0.600	11.999	8.830	11.231	1	1	1
Cercomacra nigricans	1.494	15.000	0.100	1700.000	1400.000	3400.000	900.000	0.748	7.790	4.016	6.000	0	0	1
Cercomacra parkeri	2.238	37.429	0.087	2700.000	2257.143	3114.286	3028.571	0.622	22.914	4.344	9.714	1	0	0
Cercomacra serva	2.646	38.000	0.085	2136.667	1813.333	7420.000	1356.667	0.537	14.763	3.035	8.000	1	1	0
Cercomacra tyrannina	1.895	41.810	0.050	2377.143	2140.476	6950.476	1661.905	0.517	14.420	7.410	13.571	0	1	0
Clytoctantes alixii	1.298	26.600	0.063	2790.000	2764.000	4218.000	2636.000	0.533	12.802	4.797	6.200	1	1	0
Cymbilaimus lineatus	2.919	32.500	0.119	1475.000	1433.333	3300.000	1666.667	0.552	13.535	2.038	5.833	1	0	0
Dichrozona cincta	11.92 5	78.750	0.174	2922.500	2631.250	3827.500	3110.000	0.538	19.067	1.077	12.750	1	0	0
Drymophila caudata	1.259	22.000	0.061	4071.000	3379.000	8462.000	2905.000	0.570	12.266	4.486	5.600	1	0	1
Drymophila devillei	2.926	54.533	0.072	3668.667	3004.667	10161.333	2247.333	0.485	18.518	6.800	19.667	1	1	1
Drymophila ferruginea	0.928	15.200	0.083	3300.000	2687.000	5000.000	2832.000	0.619	13.341	5.446	5.400	1	1	0
Drymophila genei	1.714	10.750	0.257	5180.000	3432.500	6107.500	4242.500	0.575	12.140	2.761	4.750	1	0	1
Drymophila malura	2.243	30.000	0.237	4038.824	3249.412	8817.059	2660.588	0.533	13.941	9.365	21.353	0	1	0
Drymophila ochropyga	1.140	20.571	0.116	4452.381	3270.952	5696.190	4282.381	0.550	11.008	1.943	2.238	1	0	1
Drymophila rubricollis	1.349	29.000	0.063	3680.000	3378.000	6758.000	2758.000	0.528	17.806	6.406	8.600	1	1	1
Drymophila														
squamata Dysithamnus	3.970	31.000	0.241	4692.857	4171.429	6635.714	4650.000	0.536	15.172	1.482	5.857	1	0	1
leucostictus Dysithamnus	2.037	17.000	0.120	1400.000	1100.000	1100.000	2100.000	0.623	14.320	3.927	8.000	1	0	0
mentalis Dysithamnus	2.514	45.758	0.072	1684.545	1490.000	5843.030	1376.667	0.559	15.254	6.961	17.545	1	1	0
puncticeps Dysithamnus	2.964	85.000	0.035	2328.571	2242.857	3128.571	2342.857	0.658	12.494	9.539	28.429	0	1	0
stictothorax Dysithamnus	2.117	35.478	0.070	1968.261	1734.783	3884.783	1950.870	0.591	13.067	6.769	14.174	1	1	0
xanthopterus Formicivora	2.124	68.750	0.031	2740.000	2317.500	4935.000	2335.000	0.486	12.425	10.259	21.750	0	1	0
erythronotos Formicivora	3.427	28.667	0.122	2166.667	1633.333	8600.000	1166.667	0.556	17.367	8.192	28.000	0	1	0
grisea Formicivora	3.507	31.800	0.120	2260.000	1740.000	3840.000	1640.000	0.764	10.892	4.410	11.800	1	0	0
iheringi Formicivora	3.880	12.250	0.357	2237.500	1767.500	7482.500	1285.000	0.556	15.058	2.459	9.500	1	0	0
melanogaster	2.940	14.000	0.223	2460.000	860.000	6380.000	1190.000	0.726	10.830	2.381	7.000	1	0	0

Famulaina														
Formicivora serrana	3.354	49.500	0.072	2100.000	1550.000	4700.000	1075.000	0.765	8.590	4.875	16.500	0	1	0
Frederickena unduligera	4.533	37.800	0.152	2040.000	1740.000	1600.000	2480.000	0.612	16.838	3.349	15.200	1	0	0
Frederickena	4.555	37.000	0.152	2040.000	1740.000	1600.000	2400.000	0.012	10.030	3.349	15.200	1	U	U
viridis Gymnocichla	6.095	95.000	0.066	1750.000	1550.000	2800.000	1650.000	0.565	12.095	1.567	9.500	1	0	0
nudiceps	3.898	74.333	0.059	3433.333	3233.333	4933.333	2266.667	0.614	10.873	3.166	12.333	1	0	0
Gymnopithys salvini	3.856	52.000	0.073	3020.000	2655.000	2690.000	3555.000	0.681	9.435	1.200	4.500	1	0	0
Gymnopithys														
leucaspis Gymnopithys	4.175	113.000	0.037	3400.000	3000.000	3950.000	2950.000	0.659	13.270	4.141	17.000	1	0	0
rufigula Herpsilochmus	3.653	49.000	0.077	3033.333	2333.333	5033.333	2700.000	0.539	14.677	5.342	19.667	0	1	0
atricapillus	2.365	64.000	0.049	2101.818	1562.727	5850.000	1469.091	0.614	15.833	13.457	30.818	1	1	0
Herpsilochmus axillaris	2.111	55.000	0.045	3020.000	2540.000	4500.000	2720.000	0.656	11.316	11.680	23.800	0	1	0
Herpsilochmus dorsimaculatus	2.569	69.000	0.038	2800.000	2100.000	4700.000	2200.000	0.525	15.640	9.020	23.500	0	1	0
Herpsilochmus	2.309	09.000	0.030	2000.000	2100.000	4700.000	2200.000	0.323	13.040	9.020	23.300	U	1	U
dugandi Herpsilochmus	2.057	29.000	0.077	2366.667	1633.333	4533.333	1333.333	0.700	9.290	7.310	15.000	1	0	0
gentryi	1.609	53.250	0.031	2275.000	1825.000	3125.000	1925.000	0.705	9.263	7.793	12.500	1	1	0
Herpsilochmus longirostris	2.190	53.250	0.044	1800.000	1525.000	3975.000	1450.000	0.658	8.765	7.455	16.250	1	1	0
Herpsilochmus													_	
motacilloides Herpsilochmus	1.832	39.667	0.047	2900.000	2200.000	4566.667	2133.333	0.663	9.480	13.890	25.667	1	1	0
parkeri	2.185	62.000	0.035	2100.000	2000.000	3300.000	2000.000	0.585	10.320	10.069	22.000	1	1	0
Herpsilochmus pectoralis	2.050	57.000	0.042	1475.000	1300.000	1875.000	1500.000	0.730	11.315	12.403	25.500	0	1	0
Herpsilochmus	2.128	35.000	0.066	2171.429	1885.714	5942.857	1642.857	0.567	15.116	11.803	25.000	0	1	0
pileatus Herpsilochmus	2.120	33.000	0.000	21/1.429	1005./14	3942.037	1042.037	0.507	15.116	11.003	25.000	U	1	U
roraimae Herpsilochmus	2.066	35.000	0.060	2500.000	2200.000	5000.000	1800.000	0.663	10.540	8.228	17.000	0	1	0
rufimarginatus	1.521	43.222	0.039	2255.556	1981.667	3569.444	2025.556	0.659	9.824	14.934	22.278	1	1	1
Herpsilochmus sellowi	2.150	54.500	0.041	2150.000	1750.000	4070.000	1700.000	0.646	8.000	26.106	56.500	0	1	0
Herpsilochmus stictocephalus	1.804	53.000	0.043	2193.333	1913.333	3996.667	1486.667	0.676	8.723	6.655	12.000	0	1	0
Herpsilochmus sticturus	3.326	98.000	0.034	2400.000	2000.000	5500.000	2000.000	0.659	8.590	8.419	28.000	0	1	0
Hylophylax														
naevioides Hylophylax	3.471	29.286	0.149	3932.857	3255.714	3707.143	4372.857	0.533	19.711	5.061	17.429	1	0	0
naevius	4.052	68.333	0.069	4003.333	3533.333	5216.667	3223.333	0.580	10.260	5.201	20.667	1	0	0
Hylophylax poecilinotos	6.067	79.000	0.098	3388.000	3096.000	8718.000	2564.000	0.374	22.006	1.930	12.400	1	0	0
Hypocnemis	2.252	E4 200			2602 500		2207.000	0.512	15.002		0.450	1	1	1
cantator Hypocnemis	2.352	54.300	0.048	2953.500	2693.500	6502.500	2386.000	0.513	15.903	4.046	9.450	1	1	1
hypoxantha	4.133	76.857	0.089	2857.143	2328.571	4871.429	1914.286	0.643	10.550	2.314	9.286	0	1	0
Hypocnemoide s maculiauda	13.87 3	103.000	0.047	3200.000	2900.000	4350.000	2600.000	0.644	14.598	5.143	27.250	1	1	1
Hypocnemoide s melanopogon	2.809	75.400	0.039	3150.000	2806.000	5360.000	2670.000	0.555	11.302	6.235	17.400	1	1	1
Hypoedaleus guttatus	4.106	80.545	0.066	2762.727	2625.455	4790.909	2424.545	0.502	14.371	13.200	54.273	0	1	0
Mackenziaena						4505.4.40						4	0	0
leachii Mackenziaena	3.599	66.000	0.073	3298.571	2802.857	4797.143	2907.143	0.524	11.240	4.617	16.714	1	0	0
severa	3.347	32.765	0.179	2568.824	2414.118	4362.353	2464.706	0.481	16.697	1.941	6.471	1	0	0
Megastictus margaritatus Microhopias	2.761	59.667	0.057	2666.667	2066.667	3300.000	2100.000	0.655	15.640	3.908	10.667	1	0	1
quixensis	2.304	50.750	0.057	3735.000	3400.000	8890.000	2410.000	0.462	15.730	5.446	12.250	1	1	0
Myrmeciza atrothorax	1.745	27.250	0.078	4275.000	3762.500	6315.833	3236.667	0.541	13.663	4.772	8.333	1	0	0
Myrmeciza berlepschi	2.299	30.000	0.086	2900.000	2700.000	3750.000	2500.000	0.675	11.325	3.698	8.500	1	0	0
Myrmeciza														
castanea	1.488	27.500	0.057	3306.250	3078.750	4731.250	3100.000	0.540	15.516	4.362	6.625	1	0	0

Myrmeciza														
exsul	1.276	14.000	0.181	2404.545	2157.273	4170.000	2167.273	0.754	7.425	1.638	2.091	1	0	0
Myrmeciza ferruginea	1.829	41.100	0.054	3619.000	3191.000	3790.000	3563.000	0.611	12.656	6.396	11.700	1	0	0
Myrmeciza														
fortis Myrmeciza	3.259	69.167	0.050	2433.333	2366.667	4466.667	2066.667	0.529	17.128	3.323	10.833	1	0	0
goeldii Myrmeciza	2.490	32.167	0.110	1850.000	1760.000	2850.000	1553.333	0.585	12.288	3.557	8.833	1	0	0
griseiceps	0.860	27.000	0.032	3270.000	2390.000	3870.000	2210.000	0.754	6.060	30.233	26.000	1	0	0
Myrmeciza hemimelaena	1.403	25.929	0.072	3436.429	3171.429	5728.571	3170.000	0.509	13.786	5.824	8.143	1	0	0
Myrmeciza hyperythra	2.789	43.917	0.082	1998.333	1649.167	2515.833	1941.667	0.684	9.103	13.445	38.000	0	1	0
Myrmeciza immaculata	2.950	59.000	0.059	2685.714	2185.714	4871.429	2114.286	0.557	14.044	2.971	8.857	1	0	0
Myrmeciza laemosticta	2.080	36.000	0.065	4341.250	3508.750	7561.250	3205.000	0.571	12.141	3.499	7.125	1	1	0
Myrmeciza longipes	3.136	80.000	0.045	2971.667	2633.333	5408.333	2716.667	0.599	9.955	8.554	26.000	1	1	0
Myrmeciza loricata	2.215	60.000	0.038	4690.000	4292.500	5197.500	4320.000	0.572	22.203	5.819	12.750	1	0	0
Myrmeciza														
melanoceps Myrmeciza	2.480	40.000	0.075	1925.000	1875.000	2475.000	1775.000	0.661	12.200	2.623	6.500	1	0	0
nigricauda Myrmeciza	1.993	48.667	0.041	4933.333	3666.667	9666.667	4033.333	0.471	11.627	3.349	6.667	1	0	0
squamosa Myrmoborus	1.698	33.909	0.054	4887.273	4081.818	6467.273	4210.000	0.558	10.560	5.960	10.000	1	0	0
leucophrys	4.239	119.952	0.037	2719.048	2636.190	4470.952	2457.619	0.568	12.591	11.813	48.857	0	1	1
Myrmoborus lugubris	3.120	82.000	0.038	2900.000	2800.000	4900.000	2500.000	0.571	12.445	6.829	21.500	0	1	0
Myrmoborus melanurus	3.128	57.000	0.065	2350.000	2225.000	3800.000	1800.000	0.621	11.735	6.388	20.250	0	1	0
Myrmoborus myotherinus	3.010	72.529	0.045	3070.588	2982.353	4111.765	2747.059	0.613	13.205	3.956	11.647	1	1	0
Myrmochanes hemileucus	0.649	17.333	0.039	1953.333	1753.333	2756.667	1656.667	0.683	7.750	17.379	11.333	0	1	1
Myrmochilus strigilatus	0.878	8.750	0.144	3800.000	3730.000	4577.500	4045.000	0.364	13.660	2.289	2.000	1	0	0
Myrmornis torquata	4.726	107.000	0.044	2566.667	2366.667	3600.000	1900.000	0.691	10.667	2.697	13.000	1	0	0
Myrmotherula ambigua	6.002	41.500	0.173	2475.000	2100.000	2200.000	3150.000	0.809	9.060	1.825	10.750	1	0	0
Myrmotherula assimilis	3.766	96.250	0.040	2327.500	2085.000	4455.000	1940.000	0.575	12.510	13.123	48.500	0	1	0
Myrmotherula axillaris	2.849	45.222	0.075	2285.556	1972.222	4636.667	1728.889	0.618	15.594	5.930	16.667	1	1	0
Myrmotherula brachyura	2.274	53.600	0.054	2621.000	2252.000	7603.000	1768.000	0.569	14.575	9.691	22.000	1	1	0
Myrmotherula cherriei	2.275	58.000	0.039	2760.000	1860.000	3505.000	2535.000	0.742	6.780	21.559	49.000	0	1	0
Myrmotherula erythrura	4.324			5950.000	3600.000	5350.000	6250.000	0.542		2.473		1	0	0
Myrmotherula		34.500	0.153						12.055		11.000			
fulviventris Myrmotherula	1.751	22.333	0.130	7200.000	4166.667	6766.667	7933.333	0.534	18.813	4.211	7.333	1	0	0
grisea Myrmotherula	2.510	49.000	0.052	3200.000	2900.000	3500.000	3100.000	0.661	11.030	3.187	8.000	1	0	0
gularis Myrmotherula	2.249	56.300	0.057	3927.000	3526.000	5092.000	3356.000	0.604	16.486	3.685	8.300	1	0	0
gutturalis Myrmotherula	2.041	78.500	0.026	5980.000	5110.000	6200.000	5265.000	0.648	10.920	17.947	36.000	0	1	0
haematonota Myrmotherula	1.973	48.000	0.041	6200.000	5700.000	6800.000	5600.000	0.583	10.920	5.575	11.000	1	0	0
hauxwelli Myrmotherula	8.971	151.200	0.149	4160.000	2940.000	5320.000	2940.000	0.653	13.316	2.714	25.000	1	0	0
leucophthalma Myrmotherula	1.691	40.500	0.045	5705.000	5100.000	6395.000	5275.000	0.522	9.350	2.705	4.500	1	0	0
longicauda Myrmotherula	3.422	39.333	0.091	2266.667	1700.000	4966.667	1733.333	0.722	8.887	5.202	17.333	1	0	0
longipennis	2.582	53.250	0.051	3475.000	2850.000	4075.000	3150.000	0.703	16.278	3.005	7.250	1	0	0
Myrmotherula menetriesii	6.203	95.000	0.070	2700.000	2400.000	3600.000	2325.000	0.676	13.855	1.768	10.750	1	0	0

Myrmotherula multostriata	1.611	20.500	0.089	2925.000	2265.000	4485.000	2610.000	0.653	7.030	3.700	6.000	1	0	0
Myrmotherula	1.011	20.300	0.007	2723.000	2203.000	1103.000	2010.000	0.033	7.030	3.700	0.000	1	U	U
ignota Myrmotherula	3.008	53.500	0.070	3150.000	2433.333	2900.000	3000.000	0.701	12.035	6.537	19.500	1	0	0
ornata Myrmotherula	1.123	21.500	0.072	5275.000	4825.000	7425.000	4775.000	0.476	13.793	12.112	13.250	1	0	0
pacifica	1.663	42.000	0.040	3100.000	2500.000	3800.000	2500.000	0.785	8.220	8.419	14.000	1	0	0
Myrmotherula schisticolor	1.835	29.000	0.064	6260.000	3770.000	7380.000	5670.000	0.747	5.340	3.815	7.000	1	0	0
Myrmotherula sclateri	3.669	58.500	0.064	2000.000	1650.000	2600.000	1950.000	0.788	12.295	1.497	5.500	1	0	0
Myrmotherula spodionota	1.560	46.667	0.034	5733.333	5226.667	7623.333	5246.667	0.452	17.740	15.186	23.667	0	1	0
Myrmotherula surinamensis	1.113	38.000	0.027	4250.000	3090.000	8230.000	3620.000	0.306	37.700	2.695	3.000	1	0	0
Myrmotherula urosticta	2.885	65.000	0.046	3500.000	2100.000	3950.000	3500.000	0.679	11.095	1.387	4.000	1	0	0
Percnostola arenarum	2.348	57.000	0.041	2600.000	2400.000	3400.000	2400.000	0.605	13.250	5.111	12.000	1	0	0
Percnostola lophotes	2.387	44.500	0.061	2000.000	1600.000	3700.000	1300.000	0.645	11.100	4.602	11.000	1	0	0
Percnostola rufifrons	2.307	38.000	0.084	2526264	2427.273	2245 455		0.680	11.966	3.374	7.727	1	0	0
Phlegopsis				2536.364		3245.455	2200.000							
nigromaculata Pithys	2.490	28.500	0.112	2875.000	2425.000	2550.000	3425.000	0.672	12.735	1.220	3.000	1	0	1
albifrons Pithys	2.737	66.000	0.042	3800.000	2700.000	4300.000	3500.000	0.739	17.050	1.461	4.000	1	0	0
castaneus Pygiptila	1.006	11.857	0.093	2724.286	2710.000	2330.000	3398.571	0.737	11.306	1.018	1.000	1	0	1
stellaris	0.821	22.167	0.044	2445.000	2370.000	2891.667	2363.333	0.758	6.978	12.337	10.000	0	1	0
Pyriglena atra Pyriglena	2.047	47.333	0.045	2566.667	2400.000	3566.667	2533.333	0.578	12.560	4.077	8.333	1	0	0
leuconota Pyriglena	2.449	49.357	0.059	2442.857	2335.714	3564.286	2328.571	0.647	11.684	7.019	17.286	1	0	0
leucoptera Rhegmatorhina	1.975	37.833	0.060	2291.667	2283.333	2525.000	2391.667	0.695	12.842	3.531	6.917	1	0	0
hoffmannsi Rhopornis	3.612	25.333	0.186	3211.667	2756.667	2960.000	3728.333	0.641	14.342	2.135	7.667	1	0	1
ardesiacus Sakesphorus	2.542	27.000	0.097	3200.000	2950.000	8750.000	2450.000	0.479	11.970	3.351	8.500	1	0	0
canadensis Sakesphorus	3.160	38.200	0.094	1600.000	1440.000	2480.000	1380.000	0.785	9.244	4.574	14.600	0	0	0
cristatus Sakesphorus	2.998	48.500	0.063	1250.000	1150.000	7050.000	850.000	0.544	11.320	4.339	13.000	1	0	1
luctuosus	3.765	38.333	0.125	1366.667	1266.667	2233.333	900.000	0.748	10.393	3.347	12.667	1	1	0
Schistocichla leucostigma	2.515	84.600	0.039	3560.000	3440.000	3820.000	3300.000	0.735	12.538	12.772	32.000	0	1	0
Schistocichla schistacea	2.677	50.000	0.060	2700.000	2600.000	3075.000	2350.000	0.716	13.780	2.778	7.500	1	0	0
Sclateria naevia	3.540	101.692	0.046	3684.615	3523.077	5115.385	3300.000	0.595	12.748	9.675	33.846	0	1	0
Taraba major Terenura	5.813	92.857	0.082	1142.857	1042.857	2342.857	685.714	0.768	11.006	5.801	33.286	1	1	1
humeralis Terenura	2.248	25.333	0.083	5600.000	3500.000	5266.667	6466.667	0.654	21.920	11.680	26.667	1	1	0
sharpei	1.967	53.000	0.037	5600.000	5000.000	7300.000	3400.000	0.605	9.830	15.760	31.000	1	1	0
Terenura sicki Terenura	2.385	58.000	0.041	4300.000	3700.000	6900.000	2600.000	0.644	12.620	7.128	17.000	1	0	0
spodioptila Thamnistes	2.705	95.000	0.028	2900.000	2800.000	3000.000	2900.000	0.817	8.380	9.242	25.000	0	1	0
anabatinus	1.883	32.000	0.060	4600.000	4200.000	10400.000	3400.000	0.400	14.740	3.717	7.000	1	0	0
Thamnomanes saturninus	4.378	116.250	0.038	2825.000	2575.000	7225.000	2200.000	0.511	14.715	5.281	22.500	1	1	0
Thamnomanes schistogynus	1.590	49.000	0.037	3305.000	2525.000	4705.000	2610.000	0.679	21.275	11.293	17.500	1	1	0
Thamnomanes ardesiacus	4.373	59.375	0.106	3435.000	2455.000	3036.250	4092.500	0.611	17.973	3.710	16.125	1	1	1
Thamnophilus aethiops	2.573	21.250	0.125	1100.000	1075.000	2700.000	1000.000	0.647	12.840	2.531	6.250	1	0	0
Thamnophilus amazonicus	3.042	50.000	0.066	1375.000	1275.000	4525.000	1075.000	0.628	15.013	9.895	30.250	0	1	0

Thamnophilus														
ambiguus Thamnophilus	2.054	18.333	0.125	1233.333	1033.333	7733.333	1000.000	0.508	12.033	6.493	13.333	1	1	0
atrinucha	2.397	24.800	0.112	1342.000	1054.000	1816.000	1376.000	0.728	9.538	7.990	17.600	1	1	1
Thamnophilus bridgesi	1.918	14.000	0.147	1800.000	1600.000	3200.000	1200.000	0.628	13.640	6.257	12.000	1	0	0
Thamnophilus caerulescens	1.751	14.273	0.150	1493.636	1309.091	2856.364	1659.091	0.616	11.285	4.736	8.364	1	0	0
Thamnophilus cryptoleucus	2.595	20.000	0.140	1033.333	966.667	5000.000	866.667	0.601	10.657	6.125	16.000	1	1	0
Thamnophilus doliatus	2.693	37.125	0.093	1437.500	1275.000	6000.000	1237.500	0.515	11.065	7.741	21.625	0	1	1
Thamnophilus insignis	2.472	25.250	0.115	1500.000	1400.000	7850.000	1325.000	0.440	12.595	5.056	12.500	0	1	1
Thamnophilus multistriatus	2.312	31.400	0.089	1444.000	1276.000	3752.000	1362.000	0.637	10.338	7.078	16.400	0	1	1
Thamnophilus murinus	2.004	24.500	0.089	1800.000	1725.000	7025.000	1600.000	0.420	15.918	2.746	5.500	1	0	0
Thamnophilus nigriceps	3.567	35.000	0.104	1100.000	1100.000	1900.000	800.000	0.740	11.290	4.486	16.000	1	0	0
Thamnophilus palliatus	2.535	34.167	0.104	1450.000	1366.667	3300.000	1266.667	0.615	12.267	7.994	20.333	0	1	1
Thamnophilus														
praecox Thamnophilus	2.203	33.500	0.069	2000.000	2000.000	2450.000	2000.000	0.657	11.555	2.951	6.500	1	0	0
punctatus Thamnophilus	2.541	22.500	0.120	1500.000	1337.500	7625.000	950.000	0.549	12.360	4.674	11.750	1	1	0
ruficapillus Thamnophilus	3.373	37.222	0.113	2077.778	1855.556	3711.111	1988.889	0.646	12.959	4.105	13.778	1	0	1
schistaceus Thamnophilus	2.265	25.750	0.115	1712.500	1662.500	6250.000	1625.000	0.380	13.929	4.009	9.125	1	0	0
stictocephalus Thamnophilus	4.095	27.000	0.157	1500.000	1400.000	2900.000	900.000	0.708	9.450	6.105	25.000	1	1	0
sticturus Thamnophilus	2.150	56.500	0.038	1550.000	1550.000	2650.000	1650.000	0.480	10.805	12.764	27.000	0	1	0
tenuepunctatu s	2.271	42.000	0.069	1550.000	1500.000	5050.000	1325.000	0.525	12.555	8.583	19.500	0	1	0
Thamnophilus torquatus	3.364	24.571	0.165	2128.571	1728.571	5957.143	2185.714	0.385	13.901	4.887	16.286	1	1	1
Thamnophilus													_	
unicolor Thamnophilus	2.188	19.000	0.150	1577.143	1422.857	2332.857	1394.286	0.788	9.689	2.402	5.286	1	0	0
zarumae Xenornis	2.135	30.000	0.081	1800.000	1700.000	6850.000	1300.000	0.492	16.190	9.603	20.500	1	1	0
setifrons	1.261	7.000	0.209	3330.000	2430.000	5620.000	3530.000	0.529	8.400	3.172	4.000	1	0	0