UNIVERSIDADE FEDERAL DO PARANÁ

JULIANA HELENA TIBÃES

APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA ANOTAÇÃO AUTOMÁTICA DE GENOMAS BACTERIANOS

CURITIBA 2012

JULIANA HELENA TIBÃES

APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA ANOTAÇÃO AUTOMÁTICA DE GENOMAS BACTERIANOS

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Bioinformática, Setor de Educação Profissional e Tecnológica, da Universidade Federal do Paraná como requisito parcial para a obtenção do grau de Mestre em Bioinformática.

Orientador: Prof. Dr. Fábio de Oliveira Pedrosa Co-orientador: Prof. Dr. Roberto Tadeu Raittz

CURITIBA

2012

TERMO DE APROVAÇÃO

JULIANA HELENA TIBÃES

APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA ANOTAÇÃO AUTOMÁTICA DE GENOMAS BACTERIANOS

Dissertação aprovada como requisito parcial para obtenção do grau de Mestre em Bioinformática, pelo Programa de Pós-Graduação em Bioinformática, Setor de Educação Profissional e Tecnológica, Universidade Federal do Paraná, pela seguinte banca examinadora:

Orientador: Prof. Dr. Fábio de Oliveira Pedrosa

Co-orientador: Prof. Dr. Roberto Tadeu Raittz

Prof Dr João Carlos Marques Magalhães

Universidade Federal do Paraná

Prof. Dr. Emanuel Maltempi de Souza

Universidade Federal do Paraná

Dedico esse trabalho ao meu irmão e meus pais, que sempre deram apoio e incentivo aos meus estudos.

AGRADECIMENTOS

Ao meu orientador, Prof. Dr. Fábio de Oliveira Pedrosa, por acreditar no projeto, pelas discussões e apoio.

Ao meu co-orientador, Prof. Dr. Roberto Tadeu Raittz, por todo ensinamento, apoio, incentivo e dedicação durante todos esses anos.

Ao prof. Mtr. Dieval pelos ensinamentos, discussões e auxílio durante todo o percurso da minha graduação até hoje.

Ao prof. Dr. Emanuel pelas discussões, correções e auxílios durante o desenvolvimento do meu projeto.

À Prof. Dr. Jeroniza e à prof. Dr. Berenice por acreditarem no meu trabalho, e também pelo apoio.

Aos demais professores do programa, em especial ao prof. Dr. Adriano, ao prof.Dr. Lucas e ao prof. Dr. Neves pelas agradáveis conversas e auxílio em diversos assuntos.

Aos meus amigos e colegas da bioinformática, em especial para Vanely, Sérgio, Lucas, Alysson, Rafaela, Gustavo, Leviston, Paula, Ricardo e Rodrigo pelo companheirismo nos dias alegres e também nos não tão fáceis.

As secretárias do departamento, Suzana e Léa, pela dedicação e incontáveis ajudas.

Aos meus amigos da graduação, Aline, Angélica, Letícia e Vanely por todo apoio durante os dias conturbados e companheirismos nos dias felizes.

Ao meu irmão Rafael, que me atura todo dia e pelas discussões de informática sem fim.

Aos meus tios, Gina, Lena e Philip, por serem segundos pais durante esses os últimos anos.

Ao meu avô Manuel, que me ensinou inúmeros conhecimentos e nos deixa saudades.

A minha avó Guilhermina, por todo apoio e dedicação durante todos esses anos e por ser quem ela é.

Aos meus amigos Jong, Marília, Dyan, Camila e Fernanda pelas horas agradáveis de diversão.

Ao Fauler por tentar me fazer ter uma nova perspectiva sobre tudo.

Ao Núcleo de Fixação de Nitrogênio do departamento de Bioquímica e Biologia Molecular, da Universidade Federal do Paraná.

Ao Instituto Nacional de Ciência e Tecnologia de Fixação Biológica de Nitrogênio.

Aos órgãos fomentadores: CAPES, CNPq e REUNI.

As todas as formas divinas que de algum modo me trouxeram até aqui.

RESUMO

O propósito da anotação é identificar seguências de DNA codificadoras de RNAs ou proteínas, esse processo é importante porque atribuem funções moleculares aos produtos gênicos. Para isso, são utilizadas ferramentas computacionais de anotação de genes que usam alinhamentos de sequência de proteína ou de DNA com o propósito de identificar genes homólogos e utilizar as informações de banco de dados de domínio público para inferir a função do gene. Embora sejam técnicas eficientes, elas podem estar sujeitas a erros quando realizada sem curadoria de um perito, em particular quando ocorre inexistência de grau de similaridade significativo de uma sequência comparada com outras sequências ou quando o banco de dados é composto por seguências parciais. Além disso, a taxa de erro de anotação pode ser significativamente aumentada quando a sequência de proteína de consulta é nova, compartilhando nenhuma semelhança com qualquer sequência disponível em bases de dados. Por esses motivos, neste trabalho desenvolveu-se uma ferramenta para verificar anotação de genes em genomas completos de bactérias, o programa Bioinformatics Tool Based on Bacterial Genomes Comparison (BOBBLES). Ele realiza a verificação da predição de genes computacionalmente propostos pelo programa Hybrid-Gene Finder (HGF). O programa BOBBLES compara a anotação de um genoma de referência completo de bactérias com os genes identificados pelo programa HGF. Este programa utiliza duas abordagens de comparação de seguências, uma utilizando pesquisas de similaridade de seguência através do programa BlastP e a outra utilizando o programa SILA. Ambas as abordagens servem para decidir se as seguências sugeridas pelo programa HGF foram anotadas corretamente. Para testar a ferramenta BOBBLES, utilizou-se um conjunto composto por 14 genomas bacterianos completos. Foram encontrados 365 novos genes e 101 genes com melhor ou similar grau alinhamento em fase de leitura diferente do de referência, resultando em uma porcentagem de acerto aproximadamente 76 % para esse conjunto de genomas, utilizando o alinhamento das seguências com o programa SILA. Já com o alinhamento realizado pelo programa Blastp obteve-se 529 novos genes. No entanto, o tempo médio estimado de execução do programa BOBBLES tendo em seu algoritmo a ferramenta SILA é de pelo menos cinco vezes mais rápido do que utilizando o programa BlastP. Essa diferença de tempo é justificada pelo fato do programa SILA realizar os alinhamentos das sequências com indexação recursiva em um banco de dados local, o banco de dados de proteínas não redundantes do NCBI, conhecido por NR.

Palavras-chave: Bioinformática. Anotação genômica. Blast. Reanotação genômica.

ABSTRACT

The annotation purpose is to identify DNA sequences coding for proteins or RNAs, this process is important because it gives the molecular function for the genes products. For that, it's used Gene Annotation tools using protein or DNA sequences alignments to identify homologous genes and use information from the public database to infer gene function. Although these are efficient techniques, they can be error-prone when performed without curation of an expert, particularly in cases of similarity sequence with no degree of similarity with other sequences that may be relevant or when the database is composed by partial sequences. In addition, annotation error rate can be significantly increased when it's a new query protein sequence, sharing no similarity with anv available sequence in developed a tool databases. Therefore, this work has to verify annotation in complete bacterial genomes, the Bioinformatics Tool Based on Bacterial Genomes Comparison program (BOBBLES). It realizes the computationally gene Hybrid-Gene performed bν Finder (HGF). The compares a previous complete bacterial genome annotation with the genes identified by HGF program. This program uses two sequence comparison approaches, the first one using the BlastP program, and another approach using the SILA program, to decide whether they were recorded correctly. The BOBBLES was tested using a set composed of 14 complete bacterial genomes. These tests obtained 365 new genes and 101 genes with better or similar alignment in process of reading different from the reference genome, resulting in 76% of correct results for genomes set which used the alignment of sequences with program. But using the BlastP program, 529 new genes were obtained. However, the estimated average execution time for the BOBBLES program using SILA program was at least five times faster than using the BlastP program. This time difference is justified by the fact that the SILA program performs the alignments of the sequences with recursive indexing into a local database, the NCBI's non-redundant protein sequence (NR) database.

Keyword: Bioinformatics. Genomic annotation. Blast. Genomic re-annotation.

LISTA DE FIGURAS

FIGURA 1.1 - ETAPAS DE UM PROCESSO DE SEQUENCIAMENTO E MONTAGEM GENÔMICA 18
FIGURA 1.2 - ETAPAS DO PROCESSO DE ANOTAÇÃO GENÔMICA20
FIGURA 1.3 - ILUSTRALÇÃO DE ALINHAMENTO ENTRE DUAS SEQUÊNCIAS21
FIGURA 1.4 - ALGORITMO DE PESQUISA DO BLAST26
FIGURA 1.5 - MODELO DE MATRIZ BLOSUM27
FIGURA 1.6 - CHAVES DE CORES PARA AS PONTUAÇÕES DE ALINHAMENTO DO BLAST [®] 28
FIGURA 1.7 - REPRESENTAÇÃO DE DOIS NEURÔNIO30
FIGURA 1.8 - MODELO DO NEURÔNIO DE MCCULLOCH32
FIGURA 1.9 - MODELO GERAL DE UMA REDE NEURONAL ARTIFICIAL
FIGURA 1.10 – EXEMPLO DE CABEÇALHO DE ANOTAÇÃO GENÔMICA NO ARQUIVO DA
EXTENSÃO GBK
FIGURA 1.11 – EXEMPLO DE <i>FEATURES</i> E <i>QUALIFIRES</i>
FIGURA 1.12 – EXEMPLO DO SEQUÊNCIA GENÔMICA CONTIDA NA ANOTAÇÃO GENÔMICA
EM UM ARQUIVO DA EXTENSÃO GBK
FIGURA 2.1 - MODELO GERAL DA METODOLOGIA DE COMPARAÇÃO DOS GENOMAS 46
FIGURA 2.2 - PROGRAMA ARTEMIS® MOSTRANDO O "ARQUIVO GENBANK", EM AZUL, E C
"ARQUIVO HGF", EM VERMELHO47
FIGURA 2.3 - FLUXOGRAMA DA DIVISÃO DOS LOCAIS DE CDS (SEQUÊNCIA DE REGIÃO
CODIFICANTE) NOS ARQUIVOS GENBANK E HGF49
FIGURA 2.4 - TIPOS DE LOCAIS ONDE PODEM OCORRER CONFLITO DE FASE DE LEITURA
ENTRE OS ARQUIVOS GENBANK E HGF. A) SEQUÊNCIA MENOR NAS DUAS EXTREMIDADES
DA SEQUÊNCIA DO QUE A INFERIOR; B) SEQUÊNCIA MAIOR NAS DUAS EXTREMIDADES DA
SEQUÊNCIA DO QUE A INFERIOR; C) PARALELA EM APENAS UMA DAS PONTAS DO GENE . 49
FIGURA 2.5 - REPRESENTAÇÃO DO ALGORITMO DE COMPARAÇÃO DOS GENES
CONCORRENTES
FIGURA 2.6 - EXEMPLO DE NOVOS GENES ENCONTRADOS PELO PROGRAMA HGF E
VISUALIZADO ATRAVÉS DO PROGRAMA ARTEMIS [®] 52
FIGURA 2.7 – FLUXOGRAMA DE IDENTIFICAÇÃO DE NOVOS GENES CONTIDOS NO "ARQUIVO
HGF"53
FIGURA 2.8 - VISÃO GERAL DO ALGORITMO DO PROGRAMA BOBBLES57
FIGURA 2.9 - INTERFACE DO PROGRAMA BOBBLES59
FIGURA 2.10 - INTERFACE DO PROGRAMA HGF60
FIGURA 2.11 - EXEMPLO DO ARQUIVO DE SAÍDA DO PROGRAMA BOBBLES VISTO NO
FORMATO TEXTO
FIGURA 2.12 - ARQUIVOS DOS GENOMAS MOSTRADOS NO ARTEMIS PARA CONFERÊNCIA
DOS GENES

LISTA DE TABELAS

TABELA 1 - CLASSIFICAÇAO TAXONOMICA DOS GENOMAS BACTERIANOS UTILIZADOS NOS
TESTES DO PROGRAMA BOBBLES44
TABELA 2 – NÚMERO DE PB E CONTEÚDO DE GC DOS GENOMAS BACTERIANOS UTILIZADOS
NOS TESTES DO PROGRAMA BOBBLES45
TABELA 3 - NÚMERO DE NOVOS GENES VERDADEIROS64
TABELA 4 – GENES DO ARQUIVO DE REFERÊNCIA DO GENOMA BACTERIANO COMPARADO
COM OS GENES OBTIDOS ATRAVÉS DO PROGRAMA HGF66
TABELA 5 – NÚMERO DE GENES AVALIADOS PELO PROGRAMA BOBBLES67
TABELA 6 – GENES ENCONTRADOS PELO PROGRAMA HGF E VALIDADOS ATRAVÉS DO
PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA
SILA
TABELA 7 – NOVOS GENES ENCONTRADOS PELO PROGRAMA HGF E VALIDADAS ATRAVÉS
DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA
SILA E CONFERIDAS ATRAVÉS DO PROGRAMA BLASTP69
TABELA 8 - GENES ENCONTRADOS PELO PROGRAMA HGF COM DIVERGÊNCIA DE FASE DE
LEITURA E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE
SEQUÊNCIA ATRAVÉS DO PROGRAMA SILA E CONFERIDAS ATRAVÉS DO PROGRAMA
BLASTP70
TABELA 9 - NÚMEROS TOTAIS DE GENES ENCONTRADOS E QUANTOS DELES SÃO
VERDADEIROS E A PORCENTAGEM DE ACERTO POR GENOMA BACTERIANO71
TABELA 10 - COMPARAÇÃO DA PORCENTAGEM DE ACERTO COM O CONTEÚDO DE GC 72
TABELA 11 - COMPARAÇÃO DA PORCENTAGEM DE ACERTO COM O NÚMERO DE PB DO
GENOMA
TABELA 12 - COMPARAÇÃO DA PORCENTAGEM DE ACERTO COM O GRUPO TAXONÔMICO
DO GENOMA74
TABELA 13 – NOVOS GENES ENCONTRADOS PELO PROGRAMA HGF E VALIDADAS ATRAVÉS
DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA
SILA COMPARADOS COM PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE
SEQUÊNCIAS PELO PROGRAMA BLASTP75

LISTA DE SIGLAS

A – Adenina

BLAST[®] – Basic Local Alignment Search Tool

BLASTP - Protein BLAST

BLOSUM – Blocks Substitution Matrix

BOBBLES - Bioinformatics Tool Based on Bacterial Genomes Comparison

C – Citosina

CDS – (Coding Sequence) Sequência de Região Codificante

DDBJ – DNA *Data Bank of Japan*DNA – Ácido Desoxirribonucleico

EMBL – European Molecular Biology Laboratory

ENA – European Nucleotide Archive

E-Value – (Expectation Value) Valor Provável

G – Guanina

GBK – Guojia biaozhun kuozhan

GenBank® – Banco de Dados de Sequência Genética

GFFF - GenBank Flat File Format

Glimmer[®] – Gene Locator and Interpolated Markov ModelER

HGF – Hybrid-Gene Finder

HSP - Height-scoring Segment Pair

IA – Inteligência Artificial

IAC – Inteligência Artificial Cognitiva ou Simbólica

IAS – Inteligência Artificial Conexionista ou Subsimbólica

IMM – Modelo de Markov Interpolado

INREC – Indexação Recursiva

MATLAB[®] – Matrix Laboratory

MLP – Multilayer Perceptron

NCBI[®] – National Center for Biotechnology Information

NR – Banco de Dados de Sequências de Proteínas Não Redundantes

ORF – (Open Reading Frame) Fase ou quadro de leitura aberta

PAM - (Percent Accepted Mutation) Reconhecimento por Porcentagem de

Mutação

pb – Pares de Base

RBS – (Ribosome-Binding Site) Sítio de Ligação de Ribossomos

ANN – (Artificial Neural Network) Rede Neuronal Artificial

rRNA – (Ribosomal Ribonucleic acid) Ácido Ribonucleico Ribossomal

SILA – Sequence-Indexed Local Aligner

T – Timina

TIGR - The Institute for Genomic Research

tRNA – (*Transfer Ribonucleic acid*) Ácido Ribonucleico Transportador

UFPR – Universidade Federal do Paraná

SUMÁRIO

1 IN	FRODUÇÃO	15
1.1	GENÔMICA	15
1.2	BIOINFORMÁTICA	16
1.2.1	Sequenciamento e Montagem Genômica	17
1.2.2	Anotação Genômica	18
1.2.2.1	Etapas do processo de anotação	19
1.2.2.2	Obtenção das informações contidas nos genomas	20
1.2.3	Reanotação genômica	22
1.2.4	Falhas de predição e anotação genômica	23
1.2.5	Glimmer	23
1.2.6	Banco de Dados Biológicos	24
1.2.6.1	GenBank [®]	25
1.2.7	BLAST	25
1.2.7.1	Matrizes de substituição	26
1.2.7.2	Bit Score	28
1.2.7.3	E-Value	29
1.3	INTELIGÊNCIA ARTIFICIAL	29
1.3.1	Redes Neuronais Artificiais	30
1.4	HYBRID-GENE FINDER	33
1.4.1	GBK	34
1.5	SEQUENCE-INDEXED LOCAL ALIGNER	37
1.6	JUSTIFICATIVA	38
1.7	OBJETIVOS	39
1.7.1	Objetivo Geral	39
1.7.2	Objetivos Específicos	39
2 MA	ATERIAIS E METODOLOGIA	41
2.1	HYBRID-GENE FINDER	41
2.2	BANCO DE DADOS	41
2.3	BLASTP	41
2.4	SILA	42
2.5	MATLAB [®]	42
2.6	ARTEMIS®	42

2.7	GENOMAS BACTERIANOS	42
2.8	BIBLIOTECAS	45
2.9	PERIFÉRICOS	45
2.10	METODOLOGIA GERAL	46
2.10.1	Comparação manual dos genomas	47
2.10.2	Comparação automatizada dos genomas	48
3 RE	SULTADOS E DISCUSSÃO	64
3.1	COMPARAÇÃO MANUAL DO GENOMA	64
3.2	COMPARAÇÃO AUTOMATIZADA DO GENOMA	65
3.2.1	Conjunto de dados da pesquisa	65
3.2.2	Comparação automatizada utilizando o programa SILA	67
3.3	AVALIAÇÃO DE DESEMPENHO DO PROGRAMA BOBBLES	76
4 CO	NCLUSÕES	78
5 PE	RSPECTIVAS FUTURAS	79
REFER	RÊNCIAS	80
APÊNI	DICES	86

1 INTRODUÇÃO

1.1 GENÔMICA

Genômica é uma área da biologia que estuda os genes de um genoma, incluindo a interação desses genes entre si e com o ambiente. Tem o objetivo de descobrir as funções gênicas e com isso estudar cientificamente problemas, como doenças complexas, por exemplo: cardíacas, asma, diabetes e câncer, outras doenças (NATIONAL HUMAN GENOME RESEARCH INSTITUTE, 2010).

Ela pode ser dividida em duas principais vertentes: genômica estrutural e genômica funcional. A primeira caracteriza a natureza física dos genomas completos. Já a segunda, distingue as regiões codificadoras e padrões globais de expressão de genes (GRIFFITHS *et al*, 1999). A caracterização de genomas completos é uma tarefa importante, pois proporciona uma maneira de conseguir uma visão global da arquitetura genética de um organismo, além de prover todos os dados para a descoberta de novos genes, como os envolvidos em doenças. A caracterização de sequências expressas fornece uma representação dos componentes funcionais, os quais são determinantes para a fisiologia celular de um organismo (LIBERMAN, 2004; BROWN *et al*, 2002).

Hoje, existem mais de 2680 sequências completas de DNA de genoma bacteriano e mais de 130 sequências de *archea* no banco de dados genômico de domínio público, os quais são atualizados diariamente (NCBI, 2012). Isso é possível devido aos programas de sequenciamento de genomas que geram grande quantidade de sequências inferidas de aminoácidos. Essas sequências são utilizadas por pesquisadores em análises genômicas. Para a obtenção automatizada de parte dessas análises, em específico a predição de estrutura primária de proteínas ou até mesmo para a obtenção de parceiros de interações é necessário grande esforço computacional, tanto a parte de algoritmo quanto a parte de máquinas computacionais potentes, além de um grupo de pesquisadores para fazer a acurácia de cada informação obtida. Por isso, a caracterização completa de uma proteína em um organismo sempre exigirá investigações experimentais adicionais

nas proteínas purificadas *in vitro* assim como estudos *in vivo* (PETSKO e RINGE, 2003; LIBERMAN, 2004).

1.2 BIOINFORMÁTICA

A partir das últimas décadas o número de informações biológicas expandiu de tal forma começou precisar de mais cuidado em relação ao armazenamento desses conhecimentos. Isso exigiu o aprimoramento de técnicas computacionais para que esses dados pudessem ser mais bem compartilhados pela comunidade científica de forma eficaz e eficiente. Com isso, a Bioinformática, segundo (SETUBAL et al, 2004), pode ser definida como o estudo da biologia através de técnicas das ciências da informação. Ela tem o objetivo de permitir a descoberta de novos conhecimentos biológicos, bem como criar uma perspectiva global de princípios unificadores da biologia que podem ser discernidos (NCBI, 2004).

No início, sua principal preocupação era com a criação e manutenção de um banco de dados para armazenamento de informações biológicas, como as sequências de nucleotídeos e aminoácidos. O desenvolvimento desse tipo de banco de dados exigiu questões como uma interface eficiente para que os pesquisadores pudessem ter acesso sem grandes dificuldades, além de permitir a possibilidade de acrescentar ou revisar algum dado contido nesse banco. Essas informações também deveriam ser combinadas para formar uma imagem completa das atividades celulares, com o objetivo de permitir aos pesquisadores acesso a essas informações a fim de que eles pudessem estudar como essas atividades são alteradas de acordo com o objeto de estudo (NCBI, 2004).

Por isso, outro ponto importante na evolução dos estudos na área da Bioinformática foi o desenvolvimento de ferramentas computacionais capazes de realizar análises e interpretações de vários tipos de dados, incluindo as sequências de aminoácidos e nucleotídeos, os domínios de proteínas. Para tal feito, foi necessário desenvolver um conjunto de procedimentos computacionais e métodos estatísticos para avaliar as relações entre os membros de grandes conjuntos de dados, tais como métodos para localizar um gene dentro de uma sequência, prever estrutura e funções de proteína, além de relacionar as famílias de sequências de proteínas (NCBI, 2004).

1.2.1 Sequenciamento e Montagem Genômica

Sequenciamento é um processo utilizado para montagem de sequências de DNA em que o genoma deve ser dividido em fragmentos e estes fragmentos sequenciados precisam ser remontados em uma sequência contínua (SANGER *et al*, 1977). A representação dessa sequência contínua é dada na forma de uma cadeia de letras que correspondem às bases da sequência, A, T, C ou G, correspondendo às bases adenina, timina, citosina e guanina, respectivamente. Na estrutura em dupla fita antiparalela do DNA essas bases são pareadas, sendo A com T e C com G.

O sequenciamento e a montagem genômica podem ser divididos em duas fases: fase experimental e fase de análise, FIGURA 1.1. Na fase experimental, as bactérias são cultivadas e seus DNAs são extraídos e fragmentados, esses fragmentos são clonados; e por fim, ocorre o sequenciamento destes. Na fase de análise computacional, as sequências individuais ou leituras, originadas na fase anterior, são ordenadas e montadas por identidade parcial de suas extremidades; são realizadas estratégias de finalização destas sequencias com o propósito de obter uma única sequência representando o genoma. Então, são buscadas e anotadas genes e regiões de interesse com o intuito de poder servir para novos estudos.

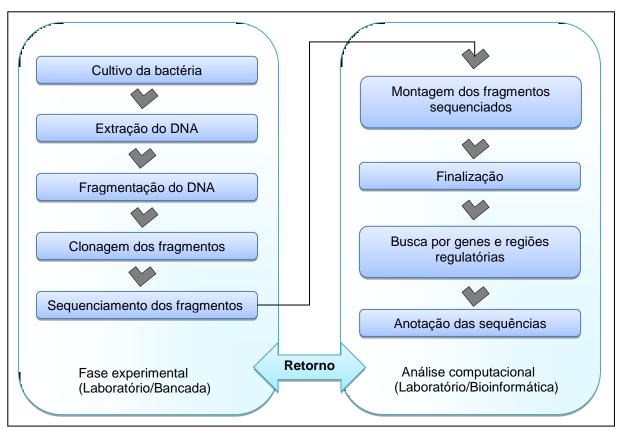


FIGURA 1.1 - ETAPAS DE UM PROCESSO DE SEQUENCIAMENTO E MONTAGEM GENÔMICA FONTE: Adaptação de GENOMAR. Disponível em: <nfn.genopar.org/nfn/genopar/>. Acesso em: 19/01/2012.

1.2.2 Anotação Genômica

Após os processos de sequenciamento e montagem genômica é necessário identificar as características do genoma, ou seja, quais são genes e sua função provável. Para isso, é realizada a identificação através do processo de anotação genômica. Esse processo evolve a organização de um organismo com o objetivo de extrair informações biológicas úteis sobre a sequência estudada e com isso, por exemplo, identificar genes, elementos funcionais em DNA genômico ou inferências de funções dos genes nos genomas (GIBAS et al, 2002; STEIN, 2001; WESTHEAD et al, 2002).

1.2.2.1 Etapas do processo de anotação

Pode-se dizer que a anotação de um genoma é um processo dividido em várias etapas e três categorias: anotação de nucleotídeos de nível superior, nível de proteína e nível de processo, como mostra a FIGURA1.2 (STEIN, 2001).

A etapa inicial para a realização da anotação do genoma, FIGURA 1.2(A), consistem em identificar os padrões das sequências, como o reconhecimento dos códons de início (*start*) e final (*stop*) de tradução, regiões codificadoras de proteínas, sítios de ligação de ribossomos (RBSs), regiões reguladoras e promotoras, e outros. Também existem regiões conservadas ou previamente conhecidas que devem ser mapeadas. Por exemplo, ácido ribonucleico transportador (tRNA), ácido ribonucleico ribossomal (rRNA) e elementos repetitivos (STEIN, 2001).

Com as regiões de interesse na sequência identificadas, é necessário abranger o máximo de informações possíveis referentes a essas sequências, FIGURA 1.2(B). Esse processo é feito através de análises com o intuito de obter uma relação completa das proteínas contidas no organismo em estudo, contendo os nomes e funções de cada uma delas. Isso é feito por meio de comparações com genes conhecidos de organismos normalmente próximos taxonomicamente do genoma estudado. Nesse processo de identificação apenas parte do conjunto de genes codifica proteínas com funções conhecidas, os outros genes geralmente codificam proteínas hipotéticas ou conservadas sem função claramente definidas, o que torna esse processo bastante complicado (STEIN, 2001).

Após a definição identificação das proteínas é possível realizar a inferência de suas funções e as relações com processos biológicos, FIGURA 1.2(C). Um conjunto de genes pode ser associado a funções, o que permite agrupar essas proteínas em categorias, como em processamento e armazenamento de informações, processos celulares e sinalização, metabolismo, e outras. Também se podem reconstituir as vias metabólicas, caracterizar sistemas de transporte e secreção, entre outras (STEIN, 2001).

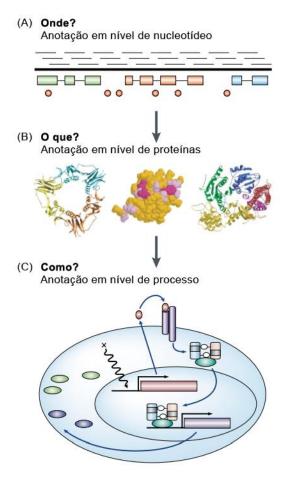


FIGURA 1.2 - ETAPAS DO PROCESSO DE ANOTAÇÃO GENÔMICA FONTE: Adaptação (STEIN, 2001)

1.2.2.2 Obtenção das informações contidas nos genomas

Uma das subdivisões da anotação genômica é a anotação funcional que é a predição ou determinação das sequências de aminoácidos (LIBERMAN, 2004). Ela designa como e quando estes genes serão expressos e quais as suas interações com outros genes.

Para a obtenção dessas informações contidas nos genomas, existem diversos programas computacionais os quais auxiliam no processo de anotação. "Eles devem ter modelados tanto as anotações externas, armazenadas em fontes de dados públicas externas, quanto as anotações internas, armazenadas no *data warehouse* sob controle do sistema, além de oferecer mecanismos de extensão do modelo para acomodar novas anotações" (LEMOS, 2004).

De acordo com (LEMOS *et al*, 2004), as anotações internas podem ser classificadas em:

- Importada: que é aquela obtida através de banco de dados de domínio público, como o GenBank[®] (BENSON et al, 2004), NodMutDB (MAO et al, 2005) e o Swiss-Prot (BOECKMANN et al, 2003);
- Automática: corresponde a anotação produzida através de programas analíticos disponíveis na área de Bioinformática, como o Gendb (MEYER et al, 2003) e o Blast2go (CONESA et al, 2005);
- Manual: é a anotação criada diretamente pelo pesquisador.

As ferramentas mais utilizadas para auxiliar no processo de anotação são aquelas cujo algoritmo procure sequências com similaridade contra sequências de um banco de dados escolhido, que pode ser uma ou um conjunto de sequências determinado ou um banco de dados de domínio público. A similaridade é baseada no alinhamento de sequências que pode ser definido "pela forma de colocar uma sequência sobre a outra, de modo a obter uma correspondência entre cada base" da sequência a ser comparada e cada base da sequência que está comparando. Esse alinhamento pode conter espaços entre as bases das sequências para proibir uma correspondência ou completar posições faltantes (SETUBAL, 2004).

A FIGURA 1.3 ilustra um alinhamento entre duas sequências, onde as barras verticais indicam as posições onde as bases são iguais. Quando não ocorre alinhamento, ou seja, as bases são diferentes ou inexistentes na sequência correspondente, as barras verticais não são apresentadas (SETUBAL, 2004).

FIGURA 1.3 - ILUSTRALÇÃO DE ALINHAMENTO ENTRE DUAS SEQUÊNCIAS FONTE: Adaptação (SETUBAL, 2004)

Além disso, existem dois tipos de alinhamento de sequências: alinhamento global e alinhamento local (WESTHEAD et al, 2002). No alinhamento global, as duas sequências são conhecidas e todo o seu comprimento deve ser alinhado. Já no alinhamento local, não existe necessidade de estender toda a sequência para o alinhamento. No processo de alinhamento, cada par de sequências recebe uma nota

de pontuação, que pode ser positiva ou negativa. Caso a pontuação negativa exceda o limite estabelecido pelo algoritmo, esse alinhamento pode ser interrompido e reiniciado em outro trecho da sequência. Isso caracteriza um alinhamento parcial, ou seja, cobre apenas um local da sequência.

Esses alinhamentos são feitos através de programas que realizam busca por similaridade entre uma sequência em estudo, alvo ou *query*, com uma ou várias sequências presentes em um banco de dados. O resultado varia de zero até um conjunto de sequências similares à sequência *query*, e cada sequência similar, *hit* ou *subject*, mostrará um valor (*score*) que indicará quanto essa sequência é similar à sequência *query*. Quanto maior esse valor, maior o grau de similaridade. Entre essas ferramentas, as mais utilizadas pelos pesquisadores da área de Bioinformática, são o *Basic Local Alignment Search Tool* (BLAST, que em português significa Ferramenta de Busca Básica de Alinhamento Local) (ALTSCHUL *et al*, 1990), e o FASTA (LIPMAN e PEARSON, 1985). Ambos realizam buscas rápidas em bancos de dados de sequências de nucleotídeos ou de proteínas utilizando tanto o alinhamento global ou o local.

1.2.3 Reanotação genômica

A reanotação genômica consiste em anotar novamente uma proteína utilizando um banco de dados mais recente. Existem vários motivos que levam um genoma a ser reanotado, como o aumento significativo do banco de dados com sequências homólogas, a descoberta experimental da função de novos genes ou até mesmo a utilização de algoritmos de anotação mais eficientes. Durante esse processo, é possível realizar testes e comparações com os meios diferentes de anotação, quais genes foram perdidos e quais foram obtidos através da nova abordagem. A reanotação é uma tarefa importante principalmente em casos onde a anotação original foi baseada em baixo grau de similaridade na comparação das sequências ou quando a anotação do banco de dados era precária (OUZOUNIS e KARP, 2002).

1.2.4 Falhas de predição e anotação genômica

Devido à velocidade com que pesquisadores geram sequências de DNA atualmente, anotar os dados automaticamente tornou-se um desafio computacional, e a análise humana cuidadosa é cada vez mais difícil (LEMOS *et al*, 2004).

A similaridade de sequências possui grande potencial de incorrer em falsos positivos, apesar da anotação funcional automática de genoma ser realizada com grande eficiência, (SANTOS et al, 2011; WONG et al, 2010; LORENZI et al, 2010). Isso acontece porque dado um grau de similaridade suficiente, geralmente assumese que a funcionalidade do novo gene provavelmente seja a mesma que a dos seus melhores vizinhos resultantes da busca por similaridade. No entanto, esses genes homólogos podem ter sido adquiridos através de similaridade com outras proteínas que não correspondem corretamente, ou seja, "existe possibilidade de ocorrer cadeias de anotações erradas" (LEVY et al, 2005), esse processo é conhecido por "Error Percolation" (GILKS et al, 2002).

Outro problema apontado por (WARREN et al, 2010) é a não anotação de vários genes pequenos, ou seja, genes com menos de 100 pares de base (pb), contidos no genoma. Isso ocorre possivelmente porque os programas mais utilizados para a detecção de quadros de leitura aberta; do inglês open reading frame (ORFs) que são sequências de DNA que não contém um códon de parada em um determinado quadro de leitura (DEONIER et al, 2005), não são capazes de encontrar boa parte esses genes pequenos. Exemplo desses programas são o Glimmer (SALZBERG et al, 1998) e o Genemark (SHULAEV et al, 2010). Além disso, na pesquisa realizada por (WARREN et al, 2010), foram encontrados 1153 genes candidatos faltantes nas anotações de genomas os quais são semelhantes entre si e que não constam em bancos de dados de domínio público, o que implica que essas ORFs, pertencem a famílias de genes ainda não anotadas. Também foram encontrados 38895 ORFs em regiões intergênicas, a maioria com menos de 100 pb, identificadas como genes prováveis pela semelhança com genes anotados.

1.2.5 Glimmer

Gene Locator and Interpolated Markov ModelER (Glimmer), que em português significa Localizador de Gene e Interpolador do Modelo de Markov ER, é

um sistema para encontrar genes em DNA microbiano, especialmente nos genomas de bactérias, archaea, e vírus. Ele utiliza Modelos de Markov Interpolados (IMM) como uma estrutura para captar dependências entre os nuvleotídeos próximos, em uma sequência de DNA (SALZBERG *et al*, 1998).

O modelo IMM faz previsões com base em um contexto variável, ou seja, uma variável de comprimento variável oligômero (fragmentos curtos de DNA) em uma sequência de DNA. Nesse programa, ele realiza alterações dependendo da composição local da sequência, como resultado, ele é mais flexivel e mais poderoso do que métodos de Markov de fixa ordem para encontrar genes em DNA microbianos. Utilizando essa técnica, ele provou ser capaz de localizar praticamente todos os genes nas sequências testadas, com uma estimativa de mais de 97% dos genes em *Haemophilus influenzae* e *Helicobacter pylori* (SALZBERG *et al*, 1998).

1.2.6 Banco de Dados Biológicos

Banco de dados biológicos constitui um grande conjunto de dados persistentes, geralmente associado a um programa projetado para atualizar, consultar e recuperar os dados armazenados no sistema. Um banco de dados simples pode ser um arquivo contendo muitos registros, cada um dos quais inclui o mesmo conjunto de informações. Um exemplo disso é um registro associado a um banco de dados de sequências de nucleotídeos que normalmente contém informações como a sequência de entrada, com uma descrição do tipo e do nome do organismo (NCBI, 2004).

Para os pesquisadores poderem se beneficiar desses dados contidos no banco, ele necessita atender os seguintes requisitos:

- Fácil acesso à informação;
- Método eficiente para extrair apenas as informações que o pesquisador precisa.

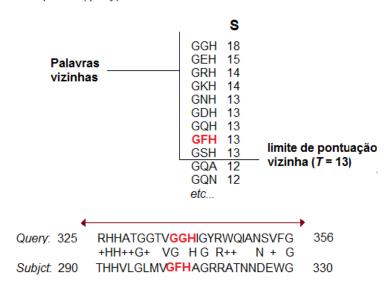
Um exemplo disso são os vários bancos de dados biológicos contidos no NCBI os quais são ligados através de uma pesquisa única e um sistema de recuperação, o Entrez (GEER *et al*, 2003), que permite ao usuário processar e recuperar as informações específicas a partir de um único banco de dados que está no NCBI. Por exemplo, um cruzamento do banco de dados de Proteínas Entrez com

o de Taxonomia Entrez, permite a um pesquisador encontrar as informações taxonômicas para espécies a partir de uma sequência de proteínas (NCBI, 2004).

1.2.6.1 GenBank®

O GenBank® (BENSON et al, 2010) é um banco de dados de seguência de nucleotídeos de domínio público que atualmente é um dos bancos de dados biológicos contidos no NCBI. Ele contém mais de 380 mil organismos nomeados em nível de gênero ou inferior, obtidos principalmente através de observações produzidas por diversos pesquisadores e submetidas em lotes de projetos de sequenciamento em larga escala. Ele realiza a troca diária de dados com o Arquivo Europeu de Nucleotídeos (tradução de European Nucleotide Archive (ENA)) (BRUNAK et al, 2002) e o Banco de Dados de DNA do Japão (tradução de DNA Data Bank of Japan (DDBJ); disponível em http://www.ddbj.nig.ac.jp) para assegurar a cobertura completa de sequências existentes pelo mundo. Além disso, é acessível através do sistema de recuperação Entrez (GEER et al, 2003), do NCBI, o qual integra os principais dados de DNA e bancos de dados de sequências de proteína junto com a taxonomia, estrutura do genoma, proteína de mapeamento e informações de domínio e a leitura biomédica através da revista PubMed. Outra vantagem da utilização desse banco é que o BLAST®, um dos programas mais utilizados para alinhamento de sequências, fornece buscas por similaridade de sequências contra banco de dados GenBank[®]. As atualizações diárias desse banco estão disponíveis em ftp://ftp.ncbi.nih.gov/genbank/ (BENSON et al, 2010).

1.2.7 BLAST


Basic Local Alignment Search Tool (BLAST), que em português significa Ferramenta de Busca Básica de Alinhamento Local, é uma ferramenta para encontrar regiões com similaridade entre sequências (ALTSCHUL et al, 1990). O programa consiste em fazer comparações entre uma sequência (query) de nucleotídeos ou proteínas contra um banco de dados de sequência, utilizando em sua tecnologia o algoritmo Smith-Waterman (SMITH e WATERMAN, 1981) e realiza a significância estatística de cada sequência alinhada. Dessa forma, pode ser

utilizado para inferir relações funcionais e evolutivas entre essas sequências e também auxiliar a identificar membros de famílias de genes (FASSLER e COOPER, 2011).

O algoritmo, FIGURA 1.4, realiza a busca inicial do alinhamento através uma palavra de comprimento "W" em que as pontuações sejam pelo menos "T" quando comparadas com a consulta usando uma matriz de substituição, BLOSUM ou PAM. Quando encontrada essa palavra, a sequência é estendida em qualquer direção na tentativa de gerar um alinhamento com uma pontuação superior ao limiar de "S". O "T" parâmetro dita a velocidade e sensibilidade da pesquisa (FASSLER e COOPER, 2011).

Algoritmo de Pesquisa do BLAST palavra chave (W = 3)

Sequência (query) = MGRHHATGGTVGGHIGYRWQIANSVFGLETTG

Altíssima pontualção por par de segmento High-scoring Segment Pair (HSP)

FIGURA 1.4 - ALGORITMO DE PESQUISA DO BLAST FONTE: Adaptação (FASSLER e COOPER, 2011)

1.2.7.1 Matrizes de substituição

Blocks Substitution Matrix (BLOSUM), que em português significa Matriz de Substituição em Blocos, é uma matriz de pontuação de substituição. Cada posição da matriz possui um valor de pontuação derivados a partir do valor de variação das

frequências de substituições em blocos de alinhamentos locais em proteínas relacionadas. Cada matriz é adaptada a uma determinada distância evolutiva. Por exemplo, a matriz BLOSUM62, FIGURA1.5, a possui o alinhamento com o valor de avaliação (*score*) derivados de sequências as quais partilham não mais do que 62% de identidade. E as sequências com mais de 62% de identidade são representadas por uma única sequência no alinhamento (FASSLER e COOPER, 2011).

```
С
  -1
  -1
      1
P
  -3 -1 -1
Α
  0
         0
      1
           -1
  -3
G
      0
        -2
           -2
               0
  -3
         0
           -2
              -2
D
      0 -1 -1
              -2
 -3
                 -1
                      1
        -1 -1
 -4
              -1
                     0
Ε
                  -2
     0
     0 -1 -1 -1 -2
                         0
                            2
 -3
 -3
    -1 -2 -2
              -2
                 -2
                      1 -1
                            0
                               0
                     0 -2
                            0
                               1
                                  0
 -3 -1 -1 -2 -1 -2
                       -1
 -3
     0 -1 -1 -1 -2
                     0
                            1
                               1
                                 -1
                                         5
    -1 -1 -2
              -1 -3
                     -2
                       -3
                          -2
                               0
                                 -2
 -1
 -1
     -2 -1 -3 -1 -4
                    -3 -3 -3
                              -3
                                 -3
                                    -3
 -1 -2 -1 -3 -1 -4
                    -3 -4 -3
                              -2
                                 -3
                                               2
              0 -3 -3 -3 -2
 -1
    -2
        0 -2
                                               0
                                                  0
                                                    -1
    -2 -2 -4 -2 -3 -3 -3
                             -3 -1
                                    -3 -3
                                  2
                                    -2 -2
                                                 -1
                                                        3
 -2 -2 -2 -3 -2 -3 -2 -1
                                          -1
                                              -1
                                                    -1
 -2 -3 -2 -4 -3 -2 -4 -4
                           -3 -2 -2
                                    -3 -3 -1
                                              -3
                                                 -2
                                                    -3
                                                        1
                                                            2
                                                              11
           P
               Α
                  G
                     N
                        D
                            Ε
                               Q
                                 H
                                     R K
```

FIGURA 1.5 - MODELO DE MATRIZ BLOSUM FONTE: Adaptação (FASSLER e COOPER, 2011)

A Percent Accepted Mutation (PAM), que em português significa Reconhecimento por Porcentagem de Mutação, é uma metodologia capaz de identificar a quantidade de mudança evolutiva em uma sequência de proteínas. A matriz PAM(x) constitui-se de uma tabela de procura, em que a pontuação para cada substituição de aminoácido é calculado com base na frequência em que a substituição próxima das proteínas relacionadas sofreu uma quantidade "X" de divergência evolutiva (FASSLER e COOPER, 2011).

Segundo (HENIKOFF et al, 1997), as matrizes de BLOSUM possuem melhor desempenho em alinhamentos e buscas de homologia do que as baseadas em mutações aceitas em grupos intimamente relacionados, como a PAM. Pode-se dizer que essas matrizes de segmentos alinhados em blocos, que representam as regiões mais conservadas em proteínas, são mais apropriadas para pesquisas e alinhamentos do que as do tipo PAM.

1.2.7.2 Bit Score

O *bit score*, (S'), é derivado da pontuação de alinhamento bruto (S), tendo as propriedades estatísticas do sistema de pontuação em conta. Ou seja, é o valor do escore bruto normalizado. Isso porque essa normalização leva em consideração a escala da matriz de escores utilizada (λ) e a escala do tamanho do espaço de busca (K) (FASSLER e COOPER, 2011; LIBERMAN, 2004). Sendo assim, o *bit score* é dado por:

$$S' = \frac{(\lambda S - \ln K)}{\ln 2}.$$

Segundo Liberman (LIBERMAN, 2004), o *bit score* não possui dependência com o tamanho do banco de dados usado e, por isso, pode ser mais confiável do que o uso do *E-Value* para analisar os resultados da plataforma BLAST[®]. Ele também sugere um valor em torno de 100 para o limiar de *bit-socre*.

A plataforma BLAST[®] remoto apresenta cinco faixas de pontuação, FIGURA1.6, divididas por conjuntos de valores de *bit score*, onde cada conjunto é representado por uma cor. São elas:

- Inferior a 40 em preto,
- De 40 até 50 em azul,
- De 50 até 80 em verde,
- De 80 até 200 em rosa,
- E 200 ou superior em vermelho.

Distribution of 50 Blast Hits on the Query Sequence

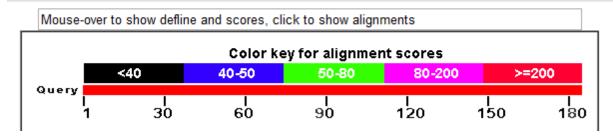


FIGURA 1.6 - CHAVES DE CORES PARA AS PONTUAÇÕES DE ALINHAMENTO DO BLAST® FONTE: NCBI (<www.ncbi.nlm.nih.gov/blast/Blast.cgi>)

1.2.7.3 E-Value

O *Expectation Value* (E-Value), que em português significa Valor Provável, corresponde à probabilidade de se obter por acaso, com outra sequência aleatória de mesmo tamanho e composição de letras, outro alinhamento de *score* igual ou superior no banco de dados pesquisado. Esse valor é obtido através da seguinte fórmula: $E = mn2^{-S'}$, onde m é o tamanho do banco de dados (quantidade de caracteres), n é o tamanho da sequência de entrada e S' é o valor de *bit score*. Quanto menor esse valor mais significativo é o *score* (FASSLER e COOPER, 2011; LIBERMAN, 2004).

Pode-se dizer que quando uma sequência de entrada alinhada com alguma sequência de um banco de dados cujo E-Value for superior a 1 possivelmente esse alinhamento ocorreu por acaso, ou seja, existe grande indício dessa sequência não possuir valor de representatividade biológico significativo. No entanto, o tamanho da sequência de entrada e o tamanho do banco causam grande impacto no resultado desse cálculo. Por exemplo, quanto menor o tamanho da sequência, maiores são as chances de obter o valor de E-Value próximo ou superior a 1. Por essa razão devem-se observar outros fatores calculados pela plataforma BLAST[®], como o *bit score*, percentual de identidade e o percentual de similaridade.

1.3 INTELIGÊNCIA ARTIFICIAL

A Inteligência Artificial (IA) é uma área da computação que visa resolver problemas computacionalmente quando a abortagem analítica computacional convencional não é viável.

Ela é dividida em duas abordagens: Inteligência Artificial Simbólica (IAS) ou Cognitiva e Inteligência Artificial Conexonista (IAC) ou Subsimbólica. A primeira tem o objetivo de simular o comportamento da mente humana através de símbolos, que são interpretações de entidades com algum significado dentro da lógica do algoritmo (RUSSELL e NOVIG, 1995; NEWELL e SIMON, 1976). Já a segunda, busca modelar a estrutura cerebral humana simulando o cérebro humano. Neste sistema, o algoritmo é capaz de assimilar, errar e aprender com seus erros (HAYKIN, 2001).

Um dos melhores exemplos de uma IAC é uma Rede Neuronal, ou Neural, Artificial (ANN).

1.3.1 Redes Neuronais Artificiais

Rede Neuronal Artificial (ANN) é uma subárea da IA inspirada no modelo neuronal humano. Nesse modelo, FIGURA 1.7, cada neurônio é representado por uma unidade de processamento e as sinapses correspondem às várias interligações de conexões entre um processamento e outro. De acordo com (HAYKIN, 2001):

"Uma rede neural é um processador maciçamente paralelamente distribuído constituído de unidades de processamentos simples que tem a propensão natural para armazenar conhecimento experimental e torna-lo disponível para o uso."

Uma ANN assemelha-se ao cérebro humano no que diz respeito ao conhecimento que é adquirido pela rede a partir do ambiente de aprendizado e pela conexão entre os neurônios e que são utilizados para armazenar o conhecimento adquirido (HAYKIN, 2001).

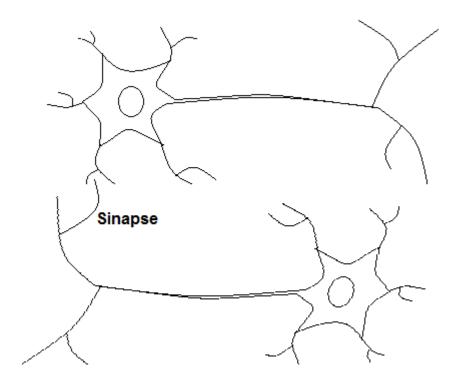


FIGURA 1.7 - REPRESENTAÇÃO DE DOIS NEURÔNIO FONTE: Adaptação (WASSERMAN, 1989) (2012)

A estrutura computacional de uma ANN é baseada em:

- Estudo do problema;
- Modelos de estruturas e conexões sinápticas;
- Escolha de um algoritmo de aprendizado;
- Construção de um conjunto de treinamento;
- Treinamento da rede;
- Fase de testes:
- Utilização da rede (PAULA, 2000).

Dessa maneira, as ANN possuem a capacidade de tratar sistemas não lineares, ser tolerantes a falhas, adaptáveis a situações diversas, aprender a resolver o problema proposto baseado em modelos, generalização, ou seja, não é necessário saber todos os parâmetros do problema para poder resolvê-lo, e abstração.

1.3.1.1 Neurônio Artificial

Um neurônio artificial, assim como um neurônio biológico, possui um ou mais sinais de entrada e um sinal de saída. O primeiro modelo de uma rede neuronal foi proposta por (MCCULLOCH e PITTS, 1943), FIGURA 1.8. Eles elaboraram um modelo matemático para aproximar do comportamento de um neurônio. Esse modelo possui um dispositivo binário em que os dados passam pelos sinais de entrada, que podem vir de sensores ou de outros neurônios os quais fazem parte da ANN. Essas entradas têm um ganho arbitrário podendo ser excitatórias ou inibitórias. Depois, esses dados são processados e enviados para a saída, com o resultado de pulso ou não pulso, ou seja, ativo ou inativo. Essa saída é determinada de acordo com a soma ponderada das entradas com os respectivos ganhos como fatores de ponderação, excitatórios ou inibitórios. Caso o resultado atinja um determinado limiar, a saída pode ser ativo ou, caso contrário, não ativo.

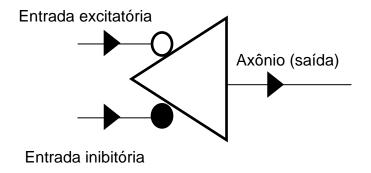


FIGURA 1.8 - MODELO DO NEURÔNIO DE MCCULLOCH FONTE: Adaptação (PAULA, 2000)

Existem também os pesos que, fazendo uma analogia com um neurônio natural, eles são os representantes das sinapses, ou sinais sinápticos. Cada um deles, no modelo ANN, possui um valor que é alterado em função da intensidade do sinal de entrada, mudando o seu valor representativo para a rede. Esse processo também é conhecido como processo de aprendizagem da ANN. Sendo assim, quanto mais o valor de entrada for estimulado, mais estimulado será o peso correspondente, e quanto mais estimulado for esse peso, mais significante e influente ele será para o resultado do sinal de saída do neurônio. Além disso, os neurônios e os pesos são organizados na rede em forma de camadas, podendo ter uma ou mais camadas. E cada neurônio é conectado a um ou mais neurônios através das sinapses (HAYKIN *et al*, 1999). A FIGURA 1.9 ilustra esse esquema.

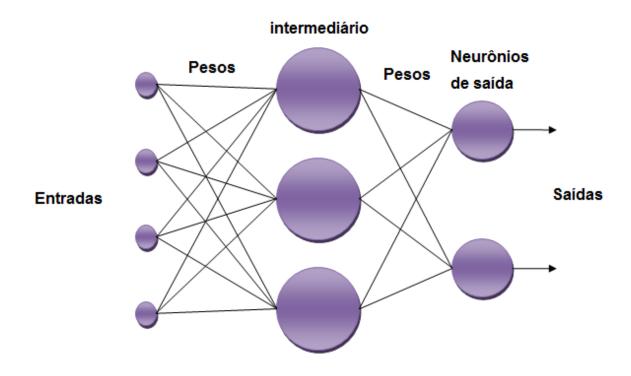


FIGURA 1.9 - MODELO GERAL DE UMA REDE NEURONAL ARTIFICIAL FONTE: Adaptação (GEHLEN, 2011)

As ANN podem ser classificadas em (i) redes supervisionadas de aprendizado e (ii) redes não supervisionadas de aprendizado. No primeiro, a metodologia, designada por metodologia adaptativa, tenta reduzir do erro da saída. Esse aprendizado é feito com base em informações sobre um problema específico, geralmente através de um conjunto modelos. Enquanto no segundo, a metodologia foca no desenvolvimento de representações internas sem amostras de saídas (ELMASRI e NAVATHE, 2005).

1.4 HYBRID-GENE FINDER

O *Hybrid-Gene Finder* (HGF) realiza buscas de genes em sequências genômicas, ou seja, é capaz de realizar predição gênica. Ele está sendo desenvolvido pelo grupo de pesquisa de Bioinformática da Universidade Federal do Paraná (UFPR), o qual a autora faz parte, orientado pelo professor Dr. Roberto Tadeu Raittz, que é o precursor e o principal desenvolvedor dessa ferramenta.

Essa ferramenta faz uso de técnicas de Inteligência Artificial (IA) para detectar os prováveis *stop códons*, ou códons de parada, de sequências de regiões

codificantes (CDS). E a partir dessa detecção esse programa prevê uma posição para os *start* códons, ou códons de início, aproximando-se da posição real de início do gene (RAITTZ, R.T. dados não publicados, 2011).

Para o desenvolvimento do HGF foi utilizado um conjunto de genomas bacterianos completos a fim de treinar uma Rede Neuronal Artificial (ANN). Com o conjunto de dados treinados, foi utilizado outro conjunto de genomas, os mesmos utilizados na publicação do software Glimmer[®], apresentado em 1.2.5, com o objetivo de comparar as duas ferramentas, detectar as variações de resultados e tentar encontrar a causa dessas variações. Nessa comparação foi observada que esta nova ferramenta de detecção de genes consegue detectar praticamente todos os genes que o Glimmer[®] propõe, além de detectar com eficiência novos genes, destacando-se por encontrar genes pequenos (RAITTZ, R.T. dados não publicados, 2011).

O funcionamento dessa ferramenta é realizado através da inserção do conjunto de dados de treinamento e um arquivo contendo a sequência completa de um genoma no formato FASTA. Os dados são processados e o retorno dele é um arquivo na extensão GBK desse genoma com a marcação dos prováveis CDS nas cores (i) vermelho, (ii) rosa claro e (iii) cinza. Essa diferença de cores serve para classificar o quão provável o gene é verdadeiro, sendo o primeiro com alto grau de chances, o segundo, possui menos chances, e o terceiro com menos chances que o segundo (RAITTZ, R.T. dados não publicados, 2011).

Esse programa está em desenvolvimento e é uma ferramenta promissora para detecção de genes, com diferencial na detecção de genes pequenos. No entanto, ele ainda não está disponível para toda a comunidade científica (RAITTZ, R.T. dados não publicados, 2011).

1.4.1 GBK

O Guojia biaozhun kuozhan (GBK), que é o chinês para "Regras ou especificações as quais definem as extensões de códigos internos de ideogramas chineses" (ORACLE, 2010; HP, 2012), em Bioinformática é uma extensão utilizada como parte de uma das especificações estabelecidas pelo GenBank[®] para conter

todo o genoma de um organismo anotado no formato GenBank *Flat File Format* (GFFF), que em português significa Formato de Arquivo Plano GenBank.

1.4.1.1 GFFF

A especificalção GFFF do GenBank é dividida em duas partes: (i) cabeçalho e (ii) sequência de nucleotídeos (GENBANK, 2011).

O primeiro contém os dados do genoma, como nome científico, projeto, citações para os artigos que contém relatos dos dados, lista de autores, título da citação, periódico em que foi publicado, identificação para o PubMed e características do organismo, exemplificado na FIGURA 1.10. Em especial, as características do organismo, também conhecidas por *features* constituem a maior parte do cabeçalho, por exemplo: CDS, gene, rRNA e outras. Isso ocorre poque existirem diversas *features* e cada uma contém diversas informações por *qualifires*. Cada *qualifire* inicia-se na coluna 22 do arquivo com uma "/" seguida por um nome qualificador, como /códon_start, /function e /note; e, se aplicável, um sinal de igual (=), exemplificado na FIGURA 1.11 (GENBANK, 2011).

Já o segundo, refere-se à sequência de nucleotídeos do organismo. Essa sequência é iniciada após a palavra ORIGIN e é relatada na direção 5' para 3'. Nessa parte do arquivo, existem sessenta bases de nucleotídeos por linha, listadas em grupos de dez seguidas por um espaço em branco e são sempre iniciadas na coluna 11. As colunas de 4 a 9 contêm o número da posição do nucleotídeo referente à coluna 11, exemplificado na FIGURA 1.12 (GENBANK, 2011).

```
NC 010473
                               4686137 bp
                                             DNA
                                                      circular BCT 23-JAN-2012
DEFINITION Escherichia coli str. K-12 substr. DH10B chromosome, complete
            genome.
ACCESSION NC_010473
VERSION
           NC 010473.1 GI:170079663
           Project: 58979
DBLINK
KEYWORDS
SOURCE
           Escherichia coli str. K-12 substr. DH10B
  ORGANISM Escherichia coli str. K-12 substr. DH10B
           Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
           Enterobacteriaceae; Escherichia.
REFERENCE
           1 (bases 1 to 4686137)
 AUTHORS Durfee, T., Nelson, R., Baldwin, S., Plunkett, G. III, Burland, V.,
           Mau, B., Petrosino, J.F., Qin, X., Muzny, D.M., Ayele, M., Gibbs, R.A.,
           Csorgo, B., Posfai, G., Weinstock, G.M. and Blattner, F.R.
 TITLE
           The complete genome sequence of Escherichia coli DH10B: insights
           into the biology of a laboratory workhorse
  JOURNAL
          J. Bacteriol. 190 (7), 2597-2606 (2008)
   PUBMED
           18245285
REFERENCE
           2 (bases 1 to 4686137)
 AUTHORS Plunkett, G. III.
  TITLE
           Direct Submission
  JOURNAL Submitted (20-FEB-2008) Department of Genetics and Biotechnology,
           University of Wisconsin, 425G Henry Mall, Madison, WI 53706, USA
REFERENCE 3 (bases 1 to 4686137)
  CONSRTM NCBI Genome Project
  TITLE
           Direct Submission
  JOURNAL
          Submitted (01-OCT-2007) National Center for Biotechnology
           Information, NIH, Bethesda, MD 20894, USA
COMMENT
           PROVISIONAL REFSEQ: This record has not yet been subject to final
           NCBI review. The reference sequence was derived from CP000948.
           DH10B and DH10B-T1R are available from Invitrogen Corporation
            (http://www.invitrogen.com).
            COMPLETENESS: full length.
FEATURES
                    Location/Qualifiers
```

FIGURA 1.10 – EXEMPLO DE CABEÇALHO DE ANOTAÇÃO GENÔMICA NO ARQUIVO DA EXTENSÃO GBK

FONTE: (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__DH10B_uid58979/NC_010473.gbk, Acessado em 26/01/2012)

```
source
                1..4686137
                organism="Escherichia coli str. K-12 substr. DH10B"
                /mol type="genomic DNA"
                /strain="K-12"
                /sub strain="DH10B"
                /db_xref="taxon:316385"
                190..255
gene
                /gene="thrL"
                /locus_tag="ECDH10B 0001"
                /db_xref="GeneID:6058969"
CDS
                190..255
                /gene="thrL"
                /locus tag="ECDH10B 0001"
                /note="involved in threonine biosynthesis; controls the
                expression of the thrLABC operon"
                /codon start=1
                /transl_table=11
                /product="thr operon leader peptide"
                /protein_id="YP_001728984.1"
                /db xref="GI:170079664"
                /db xref="ASAP:AEC-0000073"
                /db xref="GeneID:6058969"
                /translation="MKRISTTITTTITITGNGAG"
```

FIGURA 1.11 – EXEMPLO DE FEATURES E QUALIFIRES

FONTE: (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__DH10B_uid58979/NC_010473.gbk, Acessado em 26/01/2012)

ORIGIN

```
1 agetttteat tetgaetgea aegggeaata tgtetetgtg tggattaaaa aaagagtgte
  61 tgatagcagc ttctgaactg gttacctgcc gtgagtaaat taaaatttta ttgacttagg
 121 tcactaaata ctttaaccaa tataggcata gcgcacagac agataaaaat tacagagtac
 181 acaacatcca tgaaacgcat tagcaccacc attaccacca ccatcaccat taccacaggt
 241 aacggtgcgg gctgacgcgt acaggaaaca cagaaaaaag cccgcacctg acagtgcggg
 301 cttttttttt cgaccaaagg taacgaggta acaaccatgc gagtgttgaa gttcggcggt
 361 acatcagtgg caaatgcaga acgttttctg cgtgttgccg atattctgga aagcaatgcc
 421 aggcaggggc aggtggccac cgtcctctct gcccccgcca aaatcaccaa ccacctggtg
 481 gcgatgattg aaaaaaccat tagcggccag gatgctttac ccaatatcag cgatgccgaa
 541 cgtatttttg ccgaactttt gacgggactc gccgccgccc agccggggtt cccgctggcg
 601 caattgaaaa ctttcgtcga tcaggaattt gcccaaataa aacatgtcct gcatggcatt
 661 agtttgttgg ggcagtgccc ggatagcatc aacgctgcgc tgatttgccg tggcgagaaa
 721 atgtcgatcg ccattatggc cggcgtatta gaagcgcgcg gtcacaacgt tactgttatc
 781 gatccggtcg aaaaactgct ggcagtgggg cattacctcg aatctaccgt cgatattgct
 841 gagtccaccc gccgtattgc ggcaagccgc attccggctg atcacatggt gctgatggca
901 ggtttcaccg ccggtaatga aaaaggcgaa ctggtggtgc ttggacgcaa cggttccgac
 961 tactctgctg cggtgctggc tgcctgttta cgcgccgatt gttgcgagat ttggacggac
1021 gttgacgggg tctatacctg cgacccgcgt caggtgcccg atgcgaggtt gttgaagtcg
1081 atgtcctacc aggaagcgat ggagctttcc tacttcggcg ctaaagttct tcaccccgc
1141 accattaccc ccatcgccca gttccagatc ccttgcctga ttaaaaatac cggaaatcct
1201 caagcaccag gtacgctcat tggtgccagc cgtgatgaag acgaattacc ggtcaagggc
1261 atttccaatc tgaataacat ggcaatgttc agcgtttctg gtccggggat gaaagggatg
1321 gtcggcatgg cggcgcgt ctttgcagcg atgtcacgcg cccgtatttc cgtggtgctg
1381 attacgcaat catcttccga atacagcatc agtttctgcg ttccacaaag cgactgtgtg
```

FIGURA 1.12 – EXEMPLO DO SEQUÊNCIA GENÔMICA CONTIDA NA ANOTAÇÃO GENÔMICA EM UM ARQUIVO DA EXTENSÃO GBK

FONTE: (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__DH10B_uid58979/NC_010473.gbk, Acessado em 26/01/2012)

1.5 SEQUENCE-INDEXED LOCAL ALIGNER

O Sequence-Indexed Local Aligner (SILA), que em português significa Indexador de Sequências de Alinhamento Local (VIALLE, 2011), foi desenvolvido pelo Ricardo Assunção Vialle com a orientação do professor Doutor Roberto Tadeu Raittz, que fazem parte do grupo de pesquisa em Bioinformática da Universidade Federal do Paraná, o qual a autora também faz parte.

É um programa capaz de realizar alinhamentos em sequências de DNA contra um banco de dados. Para o desenvolvimento dessa ferramenta foi utilizada uma técnica conhecida por Indexação Recursiva (INREC) (SOUZA, 1999), que é uma técnica usada em reconhecimento de padrões com a finalidade de reduzir a dimensão dos atributos por meio do cálculo de um único índice para o padrão de características. A ferramenta em questão utiliza essa técnica para indexar as sequências de DNA do banco de dados a ser utilizado. Uma vez que esse banco é indexado, o número de comparações realizadas na busca por similaridade de sequências é reduzido, evitando o alinhamento de todas as sequências do banco de dados. Além disso, essa ferramenta utiliza o algoritmo de Smith-Waterman (SMITH e

WATERMAN, 1981) para alinhar as sequências do banco de dados que são representados por índices encontrados na sequência de consulta.

A principal vantagem da utilização desse programa está na velocidade dos alinhamentos. Em um conjunto de testes realizados para a comparação deste programa com o programa BLAST[®] utilizou 1000 sequências aleatórias do banco de dados NR e as 4146 sequências da *Escherichia coli* K 12. Para a realização dos alinhamentos via BLAST[®] utilizou-se duas configurações distintas em relação ao tamanho das palavras, uma padrão, com tamanho 3 e outra customizada, com tamanho 7, seguindo os padrões sugeridos por (SHIRYEV S.A *et al* , 2007). Com isso, o tempo de espera para obter os alinhamentos com as 100 sequências aleatórias do NR foi necessário:

- 18406,2592 segundos (5 horas e 6 minutos) seguindo a configuração padrão do BLAST[®];
- 12164,1018 segundos (3 horas e 23 minutos) seguindo a configuração customizada do BLAST[®];
- 2373,3 (aproximadamente 40 minutos) segundos com o programa SILA.
 E para o conjunto de sequências da *Escherichia coli* K 12:
 - 65781,534 segundos (18 horas e 16 minutos) seguindo a configuração padrão do BLAST[®];
 - 41118,259 segundos (18 horas e 16 minutos) seguindo a configuração customizada do BLAST[®];
 - 6435,0865 segundos (1 hora e 47 minutos) com o programa SILA.

Esse programa está em fase de desenvolvimento, por isso ainda não está disponível para toda a comunidade científica (VIALLE, R.A. dados não publicados, 2011).

1.6 JUSTIFICATIVA

Um estudo feito por (WARREN et al, 2010) demonstrou que um conjunto de genes sem anotação provou ser verdadeiro por serem semelhantes entre si, no entanto esses genes não continham indícios nos bancos de dados de domínio público. Uma justificativa para esse resultado foi que um número elevado dos genes anotados utiliza os mesmos programas para detecção de ORFs e tais programas

não são capazes de detectar com eficiência genes pequenos (WARREN *et al* , 2010), uma vez que boa parte dos genes desse resultado continha menos de 100 pares de base (pb).

Além disso, as anotações genômicas mais antigas contidas nos bancos de dados genômicos de domínio público, que utilizaram genes homólogos como base para a validação das sequências, provavelmente estão desatualizadas. Isso ocorre porque esses bancos de dados são atualizados diariamente e novas sequências genômicas são inseridas frequentemente. De modo que, se uma sequência genômica cuja única forma de validação foi homologia de sequências, ela pode não ter sido válida na época em que foi encontrada. No entanto, com a atualização do banco de dados ela pode ser validada utilizando a mesma técnica de validação de sequencias.

Com o desenvolvimento da ferramenta HGF para detecção de genes cujo diferencial é a detecção de genes pequenos tornou-se necessário o desenvolvimento de uma ferramenta capaz de facilitar a comparação da eficiência do HGF em relação aos genes já anotados e, assim, comprovar a eficiência da ferramenta HGF.

1.7 OBJETIVOS

1.7.1 Objetivo Geral

Desenvolver uma ferramenta de bioinformática que visa encontrar automaticamente novos genes em um genoma anotado.

1.7.2 Objetivos Específicos

- Testar e utilizar o Hybrid-Gene Finder (HGF) um programa de predição de sequências regiões codificantes de proteínas (CDS) em procariotos;
- Comparar as predições de CDS do HGF com os genomas anotados disponíveis em bancos de dados públicos internacionais;

- Identificar e validar os novos genes descobertos utilizando alinhamento de sequências com os programas BlastP e SILA;
- Desenvolver uma ferramenta *Bioinformatics tool based on bacterial genomes comparison* (BOBBLES) para sistematizar e automatiza as etapas anteriores utilizando o Matlab[®];
- Realizar estudos de caso de uma lista de genomas completos préselecionados;
- Avaliar o desempenho da ferramenta desenvolvida, comparando o desempenho utilizando os programas BlastP e SILA.

2 MATERIAIS E METODOLOGIA

Nesta sessão serão apresentados os materiais e as estratégias utilizadas para a comparação e validação do resultado do *Hybrid-Gene Finder* (HGF) com os genomas bacterianos completos anotados e depositados no GenBank[®] através do programa *Bioinformatics Tool Based on Bacterial Genomes Comparison* (BOBBLES).

2.1 HYBRID-GENE FINDER

Neste trabalho, o *Hybrid-Gene Finder* (HGF) foi utilizado para realizar a predição de prováveis genes através da marcação de sequência de região codificante (CDS) em genomas bacterianos completos já anotados e disponíveis no GenBank[®].

2.2BANCO DE DADOS

O banco de dados utilizado para o desenvolvimento e testes de alinhamento das sequências *query* foi o banco de dados de sequências de proteínas não redundantes (NR), localizado no NCBI (http://www.ncbi.nlm.nih.gov).

2.3BLASTP

As pesquisas de alinhamento das sequências *query* com as sequências alvo do banco de dados NR foram realizadas utilizando a ferramenta Protein Blast (BlastP). Que é um programa pertencente ao *Basic Alignment Search Tool* (BLAST), o qual faz pesquisas por proteínas no banco de dados de sequências de proteínas.

A versão utilizada foi a BLASTP 2.2.26+ e a configuração foi a padrão dessa ferramenta, ou seja:

Banco de Dados do NCBI (NCBI Database): NR;

- Matriz (Matrix): BLOSUM62;
- Número de acessos para manter (Number of hits to keep): 500;
- Filtro (*Filter*): nenhum (*none*);
- Serviço Blast (Blast service): simples (plain).

2.4 SILA

O programa Sequence-Indexed Local Aligner (SILA) foi utilizado neste trabalho para a realização dos alinhamentos de sequências, como alternativa ao programa BlastP com o intuito de testar essa ferramenta e conferir se os resultados são semelhantes ao programa BlastP, porém mais rápido.

2.5 MATLAB®

O aplicativo, os *scripts* de desenvolvimento e testes deste projeto foram desenvolvidos utilizando a linguagem Matlab (*Matrix Laboratory*) no ambiente de desenvolvimento Matlab, na versão 2010a.

2.6 ARTEMIS®

O programa Artemis[®] (RUTHERFORD *et al*, 2000) foi utilizado para auxiliar na comparação manual dos genes, por ser um visualizador de genomas com atalhos para acessar ao programa BlastP. Neste projeto foi utilizada a versão 12.0.

2.7 GENOMAS BACTERIANOS

Foram utilizados 14 genomas bacterianos completos para base para testar a ferramenta BOBBLES, proposta em 1.9.1. Eles foram retirados do banco de dados GenBank[®] do NCBI e serviram como genomas de referência, são eles: *Bradyrhizobium japonicum* USDA 110, *Burkholderia mallei* SAVP1, *Cyclobacterium*

marinum DSM, Escherichia coli K 12 substr DH10B, Herbaspirillum seropedicae SmR1, Methanocaldococcus fervens AG86, Ralstonia solanacearum CFBP2957, Streptococcus agalactiae NEM316, Streptococcus mutans UA159, Streptococcus pneumoniae Hungary19A 6, Treponema pallidum Nichols, Pseudomonas fluorescens Pf-5, Thermotoga maritima MSB8 e Treponema denticola ATCC 35405. E esses mesmos genomas foram submetidos ao programa HGF para obter-se uma nova marcação dos genes.

O genoma *Escherichia coli* K 12, foi escolhido por ser um organismo modelo. O genoma *Herbaspirillum seropedicae* SmR1 foi escolhido por ser um organismo seqüenciado, montado e anotado pelo grupo de pesquisa da UFPR e, por isso, existe grande interesse em detectar possíveis falhas de anotação para corrigir a anotação. E os demais genomas foram escolhidos por apresentarem maior índice de variabilidade em testes realizados entre o HGF e o programa Glimmer[®] (DELCHER, 2007) pelo grupo de pesquisa em Bioinformática da UFPR.

A TABELA 1 exibe a classificação taxonomica de cada um desses genomas. Ela mostra a diversidade taxonômica deles, por conter proteobacteria, bacteioidetes, euryarchaeotes, firmicutes, thermotogales e spirochetes.

TABELA 1 - CLASSIFICAÇÃO TAXONÔMICA DOS GENOMAS BACTERIANOS UTILIZADOS NOS TESTES DO PROGRAMA BOBBLES

TEGTEG DOT ROCKAMA BO	
GENOMA BACTERIANO	CLASSIFICAÇÃO TAXONÔMICA
Bradyrhizobium japonicum USDA 110	cellular organisms; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; Bradyrhizobium; Bradyrhizobium japonicum
Burkholderia mallei SAVP1	cellular organisms; Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia; pseudomallei group; Burkholderia mallei
Cyclobacterium marinum DSM 745	cellular organisms; Bacteria; Bacteroidetes/Chlorobi group; Bacteroidetes; Cytophagia; Cytophagales; Cyclobacteriaceae; Cyclobacterium; Cyclobacterium marinum
Escherichia coli K 12 substr DH10B	cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia; Escherichia coli; Escherichia coli O17
Herbaspirillum seropedicae SmR1	cellular organisms; Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Oxalobacteraceae; Herbaspirillum; Herbaspirillum Seropedicae
Methanocaldococcus fervens AG86	cellular organisms; Archaea; Euryarchaeota; Methanococci; Methanococcales; Methanocaldococcaceae; Methanocaldococcus; Methanocaldococcus fervens
Pseudomonas fluorescens Pf-5	cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas; Pseudomonas fluorescens group; Pseudomonas fluorescens
Ralstonia solanacearum CFBP2957	cellular organisms; Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Ralstonia; Ralstonia solanacearum
Streptococcus agalactiae NEM316	cellular organisms; Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; Streptococcus agalactiae; Streptococcus agalactiae serogroup III
Streptococcus mutans UA159	cellular organisms; Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; Streptococcus mutans
Streptococcus pneumoniae Hungary19A 6	cellular organisms; Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; Streptococcus pneumoniae
Thermotoga maritima MSB8	cellular organisms; Bacteria; Thermotogae; Thermotogae (class); Thermotogales; Thermotogaceae; Thermotoga; Thermotoga maritime
Treponema denticola ATCC 35405	cellular organisms; Bacteria; Spirochaetes; Spirochaetia; Spirochaetales; Spirochaetaceae; Treponema; Treponema denticola
Treponema pallidum Nichols	cellular organisms; Bacteria; Spirochaetes; Spirochaetia; Spirochaetales; Spirochaetaceae; Treponema; Treponema pallidum; Treponema pallidum subsp. Pallidum

FONTE: (NCBI, 2012)

A TABELA 2 mostra o número de pares de base (pb) em cada genoma e o conteúdo de GC. Como mostra nesta tabela, tanto o tamanho dos genomas quanto ao conteúdo de GC variam de 22190pb até 9105828pb e de 32,2% até 68,4%, respectivamente. Assim, a diversidade tanto em tamanho quanto em conteúdo de GC podem ser testadas para avaliar a capacidade do programa HGF de encontrar os genes e poderem ser conferidos pelo programa BOBBLES.

TABELA 2 – NÚMERO DE pb E CONTEÚDO DE GC DOS GENOMAS BACTERIANOS UTILIZADOS NOS TESTES DO PROGRAMA BOBBLES

GENOMA BACTERIANO	TAMANHO EM pb	CONTEÚDO DE GC (%)
Bradyrhizobium japonicum USDA 110	9105828	64,1
Burkholderia mallei SAVP1	3497479	68,4
Cyclobacterium marinum DSM 745	6221273	38,1
Escherichia coli K 12 substr DH10B	4686137	50,8
Herbaspirillum seropedicae SmR1	5513887	63,4
Methanocaldococcus fervens AG86	22190	32,2
Pseudomonas fluorescens Pf-5	7074893	63,3
Ralstonia solanacearum CFBP2957	3417386	66,5
Streptococcus agalactiae NEM316	2211485	35,6
Streptococcus mutans UA159	2032925	36,8
Streptococcus pneumoniae Hungary19A 6	2245615	39,6
Thermotoga maritima MSB8	1860725	46,2
Treponema denticola ATCC 35405	2843201	37,9
Treponema pallidum Nichols	1138011	52,8
FONTE: (NODL 0040)		

FONTE: (NCBI, 2012)

2.8 BIBLIOTECAS

As bibliotecas utilizadas para o desenvolvimento foram:

- Bibliotecas do Matlab[®]: Bioinformatics e Matlab;
- Biblioteca desenvolvida pelo laboratório de Bioinformática da Universidade Federal do Paraná (UFPR).

2.9 PERIFÉRICOS

Os periféricos utilizados para o desenvolvimento e testes deste projeto foram:

- Fabricante Dell:
 - Modelo: Studio 1450 (notebook);
 - o Processador: Pentium Dual-Core CPU T4400 @2.20GHz 2.20GHz;
 - Memória: 4GB;
 - Sistema Operacional: Windows Seven;

- Tipo de Sistema Operacional: 64bits.
- Fabricante Lenovo:
 - Modelo ThinkCentre M90P(desktop);
 - Processador: Intel Core i5 CPU 650 @ 3.20GHz x4;
 - Memória: 8GB;
 - Sistema Operacional: Ubuntu 11.10;
 - Tipo de Sistema Operacional: 64bits.

2.10 METODOLOGIA GERAL

A metodologia, esquematizada na FIGURA 2.1, foi divida em duas fases: manual e automatizada. Ambas realizaram a comparação entre um determinado genoma completo de bactéria, um disponibilizado pelo banco de dados GenBank® do NCBI, o qual será chamado de "arquivo GenBank" e o outro produzido através do HGF, o qual será chamado de "arquivo HGF".

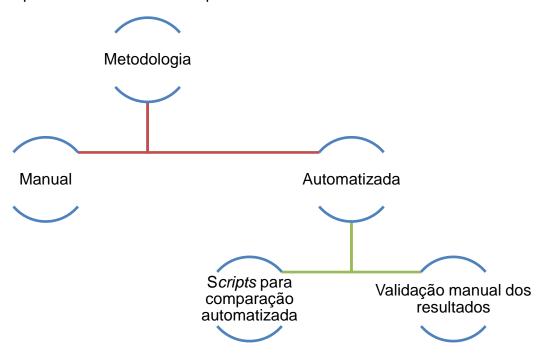


FIGURA 2.1 - MODELO GERAL DA METODOLOGIA DE COMPARAÇÃO DOS GENOMAS FONTE: O autor (2012)

A fase manual consistiu em comparar alguns genomas do grupo de genomas de teste. Portanto, cada um dos genes alvo foram analisados um a um utilizando o visualizador de genomas Artemis[®] e o programa BlastP. Dessa forma

puderam-se entender quais as necessidades que a próxima fase, chamada de automatizada, deveria solucionar.

A fase automatizada foi dividida em duas etapas: Testes com *scripts* através do Matlab[®] e a validação desses testes manualmente. Esses *scripts* foram criados com o objetivo de realizar as mesmas tarefas da fase manual e a etapa de validação consistiu em analisar os resultados obtidos na etapa anterior.

2.10.1 Comparação manual dos genomas

Nessa fase, os arquivos são comparados manualmente utilizando o programa Artemis[®]. Para isso, ambos os arquivos são abertos em uma mesma camada desse programa. A FIGURA 2.2 mostra os genes do "arquivo GenBank", em azul, e os genes do "arquivo HGF", em vermelho, rosa e cinza. Eles estão abertos em uma mesma camada do programa Artemis[®], e dispostos nas seis fases de leitura que estão destacadas pelas linhas pretas na lateral esquerda da figura.

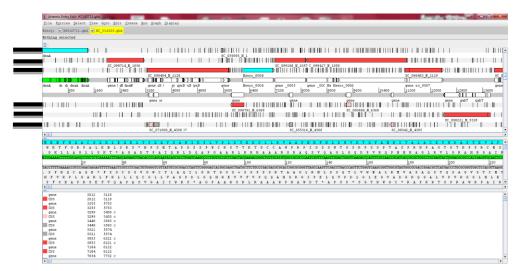


FIGURA 2.2 - PROGRAMA ARTEMIS[®] MOSTRANDO O "ARQUIVO GENBANK", EM AZUL, E O "ARQUIVO HGF", EM VERMELHO, ROSA E CINZA FONTE: O autor (2012)

Nesse caso foram avaliadas todos os genes novos encontrados pelo programa HGF e todos aqueles cujas fases de leitura do "arquivo HGF" estejam divergendo em uma fase de leitura do "arquivo GenBank", ou seja quando uma sequência foi anotada em um arquivo numa fase de leitura e pelo outro arquivo em

na fase de leitura diferente. Cada um deles foi submetido ao programa BlastP para encontrar as sequências homólogas. Foram anotadas em uma planilha eletrônica, para posteriormente serem avaliadas por um especialista, as sequências as quais apresentaram resultados cujo valor de *bit score* fosse superior a 80 ou mais do que seis sequências com algum grau de similaridade. Esse valor de corte com o valor de *bit score* superior a 80 foi escolhido por estar presente na faixa de valores de *scores* da plataforma BLAST, mostrado em 1.2.2.2, em que o valor de *bit score* de 100, sugerida por (LIBERMAN, 2004).

2.10.2 Comparação automatizada dos genomas

A segunda fase da metodologia teve o objetivo de automatizar o processo da primeira fase e, para isso, foi dividida em duas etapas. Na primeira, os arquivos foram processados através de *scripts* no Matlab[®] com o intuito de obter todos os genes candidatos a serem verdadeiros. O resultado dessa etapa foi um arquivo na extensão GBK, também conhecido como formato GFFF ou formato GenBank, contendo todos esses candidatos. E, na segunda etapa, o arquivo gerado na etapa anterior foi validado manualmente utilizando o programa Artemis[®] para a visualização dos genes e submetidos ao programa BlastP para conferir se o resultado está correto. Dessa forma pode-se analisar a eficiência do *script*.

2.10.2.1 Estratégia de identificação dos genes sobrepostos nos arquivos dos genomas

Na primeira etapa, da segunda fase, cada gene é detectado através das sequências de regiões codificantes (CDS) contidos no arquivo da extensão GBK referente ao genoma bacteriano estudado. Assim, além da localização, é possível saber a orientação deles. Essas localizações são divididas de acordo com a orientação, ou seja, 5' para 3' e 3' para 5' em cada um dos arquivos, como mostram os esquemas da FIGURA 2.3.



FIGURA 2.3 - ESQUEMAS DA DIVISÃO DOS LOCAIS DE CDS (SEQUÊNCIA DE REGIÃO CODIFICANTE) NOS ARQUIVOS GENBANK E HGF. FONTE: O autor (2012)

Foram considerados genes idênticos somente os possuíssem localizações análogas de *stop códon*, podendo ou não ter o mesmo *start códon*. Isso porque não é o objetivo do HGF localizar o exato o *start códon* dos genes. No "arquivo HGF", são retirados esses genes idênticos para não gerar redundância de dados. Em seguida, foram localizados todos os genes com divergência de fase de leitura. Isso acontece quando, em fases de leitura diferentes, existem dois ou mais genes paralelos. Esses genes podem ser menores do que o outro gene nas duas extremidades da sequência genômica, FIGURA 2.4 (A), maiores do que o outro gene nas duas extremidades da sequência genômica, FIGURA 2.4 (B), ou paralela em fase de leitura apenas em uma das pontas do genoma, FIGURA 2.4 (C).

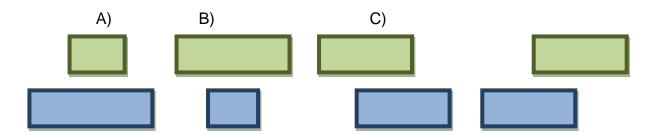


FIGURA 2.4 - TIPOS DE LOCAIS ONDE PODEM OCORRER CONFLITO DE FASE DE LEITURA ENTRE OS ARQUIVOS GENBANK E HGF. A) SEQUÊNCIA MENOR NAS DUAS EXTREMIDADES DA SEQUÊNCIA DO QUE A INFERIOR; B) SEQUÊNCIA MAIOR NAS DUAS EXTREMIDADES DA SEQUÊNCIA DO QUE A INFERIOR; C) PARALELA EM APENAS UMA DAS PONTAS DO GENE

FONTE: O autor (2012)

Portanto, foram comparados:

- Sequências do sentido 5'-3' do "arquivo GenBank" com as sequências do sentido 5'-3' do "arquivo HGF",
- Sequências do sentido 5'-3' do "arquivo GenBank" com as sequências do sentido 3'-5' do "arquivo HGF",
- Sequências do sentido 3'-5' do "arquivo GenBank" com as sequências do sentido 5'-3' do "arquivo HGF" e
- Sequências do sentido 3'-5' do "arquivo GenBank" com as sequências do sentido 3'-5 do "arquivo HGF".

2.10.2.2 Estratégia de análise dos genes sobrepostos realizado pelo programa BOBBLES

Depois de identificadas todas as sequências conflitantes entre os dois arquivos, através do método explicado em 2.10.2.1, cada sequência de gene com divergência em fase de leitura é analisada. Para isso, ambas as sequências concorrentes foram submetidas ao programa BlastP ou ao programa SILA para serem comparados contra o banco de dados NR, FIGURA 2.5.

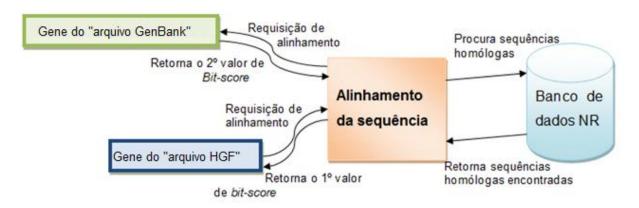


FIGURA 2.5 - REPRESENTAÇÃO DO ALGORITMO DE COMPARAÇÃO DOS GENES CONCORRENTES

A avaliação das sequencias de genes com divergência em fase de leitura consistiu em comparar o segundo maior valor de *bit score* de retorno do "arquivo GenBank" com o primeiro maior valor de *bit score* do "arquivo HGF". Optou-se descartar o maior valor do "arquivo GenBank" porque ele consiste no resultado do

alinhamento dessa sequência contra ela mesma, podendo causar inconsistência com as demais respostas, o que não ocorre com outro arquivo. Com esses resultados, o algoritmo verifica qual deles é maior. Se o valor do "arquivo HGF" fosse superior ele o manteria na lista com os candidatos a genes verdadeiros, senão essa sequência seria descartada. Quando a sequência do "arquivo HGF" cujo valor de *bit score* fosse superior a 80, independente se o valor do "arquivo GenBank", elas também seriam inseridas nessa lista de candidatos a genes verdadeiros. Dessa forma, foi possível encontrar os genes cujas sobreposições ocorressem apenas nas pontas dos genes, o que não seria possível se fosse atribuído um valor de corte único porque as sequências possuem tamanhos diferentes e uma quantidade de bases pode ser significativa em determinadas sequências e em outra não. Outro motivo para isso foi uma segunda avaliação manual da qualidade de ambas as sequências.

2.10.2.3 Estratégia de análise dos novos genes contidos no "arquivo HGF" realizado pelo programa BOBBLES

Além dos genes concorrentes, o "arquivo HGF" apresentou novos genes, ou seja, genes que estão presentes no "arquivo HGF" que não estão contidos no "arquivo GenBank". A FIGURA 2.6 mostra um exemplo desses genes encontrados pelo HGF e vistos através do programa Artemis[®], eles são os que estão contornados em preto na imagem. O "arquivo GenBank" também apresentou genes os quais não continham no outro genoma. No entanto, o foco dessa pesquisa é identificar novos genes e não validar novamente os que já estavam anotados, por isso eles não foram avaliados.

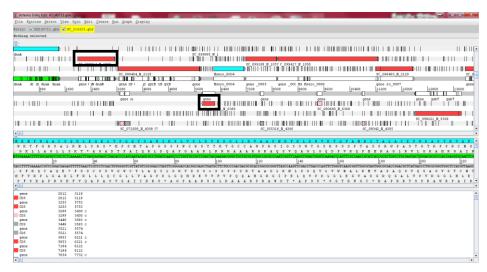


FIGURA 2.6 – EXEMPLO DE NOVOS GENES ENCONTRADOS PELO PROGRAMA HGF E VISUALIZADO ATRAVÉS DO PROGRAMA ARTEMIS® FONTE: O autor (2012)

Para identificar esses novos genes foram retirados do "arquivo HGF" todos os casos com conflito de fase de leitura e todos os genes classificados como idênticos ao "arquivo GenBank", FIGURA 2.7. Ou seja, a função dessa detecção foi constituída através:

- Entrada dos dois arquivos do genoma, na extensão GBK;
- Entrada de todas as sequências do "arquivo GenBank" e "arquivo HGF", explicado em 2.10.2.1;
- Obtenção das sequências alvo através do cálculo: R = A B, onde R representa todas as sequências novas contidas no "arquivo HGF", A representa todas ORFs contidas no "arquivo HGF" e B o cálculo:

B = ORFs com divergência + ORFs consideradas idênticas;

- Alinhamento das sequências alvo, R, contra o banco de dados NR;
- Caso o valor de *bit score* for maior do que 80 a posição da sequência será anotada em uma lista de sequências novas prováveis verdadeiras.

Dessa forma, todas as sequências com chances de serem novos genes foram encontradas. Optou-se por descartar aquelas cujo valor fosse inferior a 80, assim somente aquelas com grandes chances de serem verdadeiras foram gravadas no arquivo de genes para serem avaliados na etapa de validação manual dos resultados.

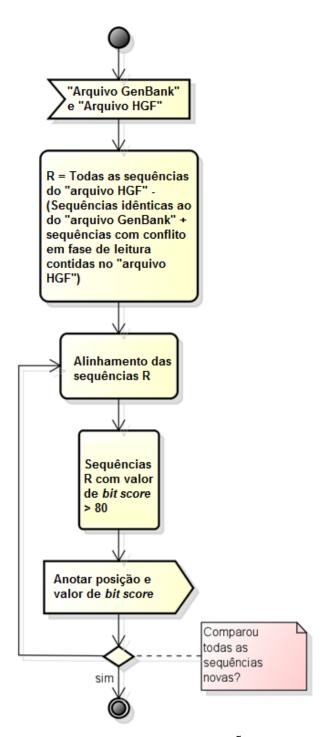


FIGURA 2.7 – FLUXOGRAMA DE IDENTIFICAÇÃO DE NOVOS GENES CONTIDOS NO "ARQUIVO HGF"

2.10.2.4 Alinhamento das sequências através do programa BlastP

O alinhamento das sequências, tanto nas sequências concorrentes quanto nas novas, foram um ponto chave no desenvolvimento do programa BOBBLES. Por

isso, foram realizados vários testes utilizando o programa BlastP, tanto o executável local quanto por acesso remoto.

Foram realizados testes do funcionamento do programa BlastP local tanto no sistema operacional Seven, do Windows[®], quanto no Ubuntu 10.11, distribuição Linux. Em ambos os casos foram testados a usabilidade através do terminal com chamada da função no Matlab[®], Shell no Ubuntu e Prompt de Comando no Windows[®], e através das funções da biblioteca Bioinformatics do Matlab[®]. Em todos os casos foi necessário obter a última versão da base de dados de sequências de proteínas não redundantes (NR) e montar o banco de dados, que via terminal foi utilizado o seguinte comando:

```
$makeblastdb -in nr -dbtype prot
```

Onde, nr é o nome do banco de dados e prot é o tipo de banco de dados, no caso banco de dados de proteínas. Para montar o banco dentro da plataforma Matlab[®] foi utilizada a seguinte função (RAITTZ, R.T. dados não publicados, 2011):

```
criaBDparaBlastp(nr);
```

Onde, nr é o arquivo contendo as sequências que estarão no banco de dados. Para a execução do alinhamento de cada sequência executada localmente através de terminal Shell foi elaborado um *script* contendo a seguinte função:

```
./bin/blastp -query \ -db ./db/nr -outfmt 6 | awk 'NR==1 {print $12 }' > result.txt
```

Onde, ./bin/blastp é a chamada para executar o programa BlastP e os parâmetros na frente dele serão utilizados por ele, \$* é o arquivo com a sequência para o alinhamento, ./db/nr indica o local e o nome do banco de dados, -outfmt 6 indicando a escolha do formato tabular de saída dos resultados do alinhamento, (MORGULIS, 2008), e | awk 'NR==1 {print \$12 }' > result.txt para adicionar o primeiro valor de *bit score* no arquivo result.txt E para o alinhamento dentro da plataforma Matlab[®] foi utilizada a seguinte função (RAITTZ, R.T. dados não publicados, 2011):

```
blastpseqbd(seq,nr);
```

Onde, seq é a sequência que irá para alinhamento contra o banco de dados nr. Para a utilização do BlastP remoto, ou seja, fazendo solicitação via internet para o BLAST[®] online¹, na plataforma Matlab[®] foi utilizada as seguintes funções da biblioteca Bioinformatics do Matlab[®]:

```
arqBlast = nt2aa(setGene);
RID = blastncbi(arqBlast, 'blastp');
blast = qetblast(RID, 'WAITTIME', 2);
```

Onde arqBlast recebe a sequência do gene em formato de nucleotídeos e a transforma em sequência aminoácido, RID envia essa sequência para o BLAST[®] para realizar o alinhamento da sequência contra o banco de dados NR utilizando o programa BlastP e, blast recebe o retorno do BLAST[®] contendo o resultado do alinhamento. Na versão final do BOBBLES foi utilizado essa opção de alinhamento das sequências por apresentar melhor desempenho em relação ao programa BlastP executado localmente, utilizando os periféricos descritos em 2.9.

2.10.2.5 Alinhamento das sequências através do programa SILA

O programa SILA realiza o alinhamento das sequências de forma local, ou seja, não existe necessidade de se estabelecer conexão com outro computador ou na internet. Para executá-lo foi necessário carregar o arquivo dadosindice.mat que é um arquivo resultado de uma rede neuronal previamente treinada contendo os índices necessários para a execução desse programa. No Matlab[®] esse arquivo é carregado com o comando:

load dadosindice.mat

¹ Link de acesso do BLAST[®] online para executar o programa BlastP: http://blast.ncbi.nlm.n ih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHO W_DEFAULTS=on&BLAST_SPEC=&LINK_LOC=blasttab&LAST_PAGE=blastn

Para a execução do alinhamento da sequência foram utilizadas as seguintes funções pertencentes à biblioteca Bioinformatics do Matlab[®] e ao programa SILA, respectivamente:

```
arqBlast = nt2aa(setGene);
blastAuxRef = getalignindx(arqBlast, dadosindice, 1);
```

Onde, arqBlast recebe a sequência do gene (setGene) em formato de nucleotídeos e a transforma em sequência aminoácido, e blastAuxRef recebe o resultado do alinhamento dessa sequência.

2.10.2.6 Estratégia de execução do programa BOBBLES para encontrar os genes alvo

Depois de concluídas as duas formas de pesquisa dos genes, tanto as sequências concorrentes do "arquivo HGF" com o "arquivo GenBank" quanto as sequências novas contidas no "arquivo HGF" foram elaboradas funções para validação dessas sequências em uma interface amigável para facilitar a utilização do BOBBLES. Essa interface possui as opções de alinhamento das sequências utilizando o programa BlastP ou o programa SILA. Tanto essas funções quanto a interface foram elaboradas utilizando a plataforma Matlab[®].

A FIGURA 2.8 mostra a visão geral do funcionamento do programa BOBBLES, onde:

- 1. São inseridos os arquivos a serem comparados, ou seja, o arquivo do genoma marcado pelo HGF e o do genoma de referência, ambos na extensão GBK:
- 2. Escolher entre realizar a comparação utilizando o alinhamento das sequências pelo programa SILA ou pelo programa BlastP;
- 3. Processos das sequências, utilizando o programa SILA ou o programa BlastP:
- 4. Arquivo na extensão GBK contendo os potenciais novos genes.

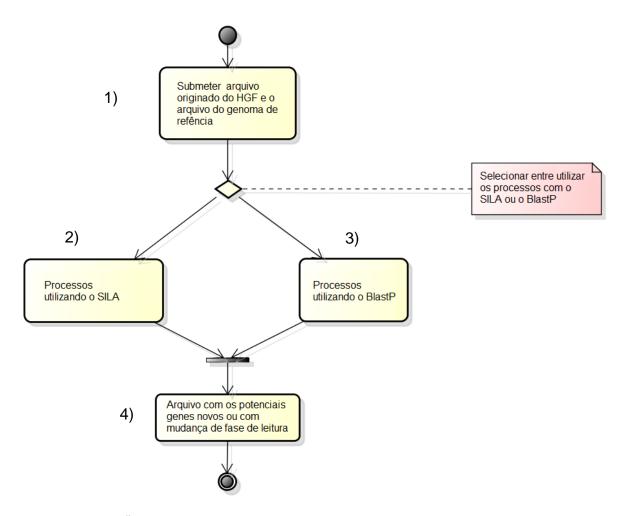


FIGURA 2.8 - VISÃO GERAL DO ALGORITMO DO PROGRAMA BOBBLES FONTE: O autor (2012)

Esses processos, utilizando o programa SILA ou o programa BlastP, são executados de forma semelhante, diferenciando-se apenas no programa utilizado para o alinhamento das sequências alvo, ou seja as que estão com divergência de fase de leitura e as novas.

2.10.2.7 Interface e execução do programa BOBBLES para encontrar os genes alvo

Optou-se pelo desenvolvimento de uma interface amigável ao usuário, que no caso é o pesquisador o qual irá comparar dois arquivos de genomas para descobrir onde existem divergência em fase de leitura e novos genes. Essa interface, FIGURA 2.9, possui o mínimo de botões possíveis e não é necessário entrar em mais de uma tela do programa para executá-lo. Na parte superior do

programa estão os botões referentes à aplicação (*Aplication*) e os referentes ao contato e manual de instrução, contidos no botão *Help*. Abaixo está o botão de atalho para o programa HGF, FIGURA 2.10, seguido dos botões de inserção: do "arquivo GenBank" (primeiro botão *Search*), do "arquivo HGF" (segundo botão *Search*) e do nome do arquivo de saída (terceiro botão *Search*). No lado esquerdo de cada botão *Search* existe um campo que mostrará o caminho da localização do arquivo selecionado. Abaixo, estão os botões SILA e BLAST, ao usuário escolher o botão SILA o programa será executado e o alinhamento das sequências para validação dos dados será feito utilizando o programa SILA. Se for escolhido o botão BLAST o programa será executado e o alinhamento das sequências para validação dos dados será feito utilizando o programa BlastP. O próximo item desta figura é o campo *Status* o qual serve para mostrar o que está ocorrendo no programa seguido pelo botão *Exit* que serve para fechar o programa.

FIGURA 2.9 - INTERFACE DO PROGRAMA BOBBLES FONTE: O autor (2012)

Além disso, todos os itens foram escritos na língua inglesa para facilitar o entendimento das suas funções por qualquer pesquisador, independente da nacionalidade. Outro ponto importante é que ele segue os mesmos padrões de interface do programa HGF, FIGURA 2.10, fazendo com que o usuário não precise entender mais de um tipo de interface.

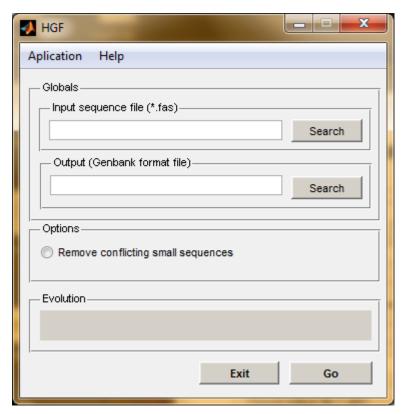


FIGURA 2.10 - INTERFACE DO PROGRAMA HGF FONTE: O autor (2012)

Após a execução do programa, é gerado um arquivo na extensão GBK, no formato GFFF, FIGURA 2.11, com nome e local escolhidos pelo usuário e uma mensagem de término é exibida no campo *Status*.

```
829
                           8445188..8445574
          gene
830
          CDS
                           8445188..8445574
                           /gene="SC_-897 N 206"
831
832
                           /color=6
                           9041530..9041760
833
          gene
834
          CDS
                           9041530..9041760
                           /gene="SC -145 N 207"
835
836
                           /color=6
                           9103397..9103639
837
          gene
838
          CDS
                           9103397..9103639
                           /gene="SC -132 N 208"
839
840
                           /color=6
841
          gene
                           complement (5742815..5743459)
842
          CDS
                           complement (5742815..5743459)
843
                           /gene="SC -142 N 209"
844
                           /color=6
845
          gene
                           complement (7285423..7285656)
                           complement (7285423..7285656)
846
          CDS
847
                           /gene="SC -124 N 210"
848
                           /color=6
849 ORIGIN
850
           1 TTAATTAATA GTCTTTGACT GCAATACTGG GCGATATGAT CCGGAAGCGC CGATAGCGGC
851
          61 GCCCGCTTGG CTTCTTCCCG TACTCGCGCT CCCACGTCGA AGTGTCAATC CGCACATCCG
         121 TCATGTTCGC TGATCGCCTC AAAGATTACA ACCTTGCCCT AGCGACCGTG CTTCAGAGCG
852
853
         181 TCAATTCCTT CGAGCTGGTC GGGGTTGGGC TCGTCCTTGA TGTTCCAACG GATATCGCAA
         241 GCCGCCGAAT CTTCTCCAAT CGAACAAGCG CCTCTTGGAG TAACGAGGCT CGGAATTTGC
854
855
         301 AAGTCGTCGG CGCGGGGTGG CGCTGCTCAG CCGTCCTTCG GAAATCCCTC CGTTCAATGC
856
         361 AGAAACACCA TAGCGGCGGC ACGCCTGACA GCTCTTTATT TCCGTCAGCT ACAAATTCTT
857
         421 GTAGTTGACC CGCGCGGTGT CCTCCGGGCT GAATCGCGAT CAACCCCACA GGAGAGCAAA
```

FIGURA 2.11 - EXEMPLO DO ARQUIVO DE SAÍDA DO PROGRAMA BOBBLES VISTO NO FORMATO TEXTO FONTE: O autor (2012)

2.10.2.8 Validação manual dos resultados obtidos pelo programa BOBBLES

Depois de obtidos todas as sequências com divergência e novas no "arquivo HGF" com potencial a serem verdadeiras através de um arquivo na extensão GBK, foi necessário conferir todas as sequências e descobrir qual delas era ou não falsopositivo. Essa análise foi feita manualmente utilizando programa Artemis[®]. Assim como na fase de comparação manual dos genomas, em 2.10.2, cada um dos arquivos foi aberto em uma mesma aba desse programa. A diferença dessa etapa esteve na adição do arquivo contendo somente os genes do "arquivo HGF" com potencial a serem verdadeiras.

Essa foi uma etapa importante no processo de validação do programa BOBBLES, pois permite a validação de um novo gene e verifica se as nomenclaturas e a localizações exatas desses genes foram mantidas.

Os genes marcados pelo BOBBLES são mostrados no Artemis[®] na cor magenta, A FIGURA 2.12, distinguindo-se das marcadas pelo programa HGF, que são as em vermelho, rosa claro e cinza, e as do genoma de referência, em azul.

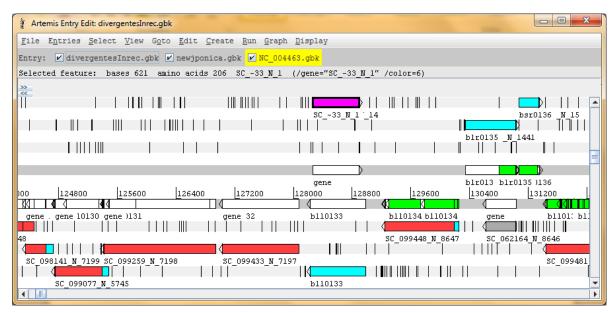


FIGURA 2.12 - ARQUIVOS DOS GENOMAS MOSTRADOS NO ARTEMIS PARA CONFERÊNCIA DOS GENES

FONTE: O autor (2012)

Além disso, para os casos em que a validação das sequências por alinhamento delas realizadas pelo programa SILA foi atribuído um cálculo de porcentagem de acerto:

$$Porcentagem \ de \ acerto = \frac{\textit{N\'umero total de genes verdadeiros} * \ 100}{\textit{N\'umero total de genes}}$$

Onde, *Número total de genes verdadeiros* corresponde ao número total de genes novos somados ao número total de sequências de genes divergência em fase de leitura com valor de *bit score* superior a 80 ou, no caso das sequências de genes divergêntes em fase de leitura, as sequências com valor de *bit score* superior ou próximo ao valor de *bit score* do gene de referêcia. O *Número total de genes* corresponde ao número total de genes novos somados ao número total de genes

concorrentes marcados pelo programa HGF e identificados pelo programa BOBBLES. Esse cálculo serviu para mostrar a confiabilidade do alinhamento das sequências através do programa SILA comparando-a com o programa BlastP.

Para a porcentagem média de acerto do programa SILA foi utilizado o seguinte cálculo:

$$Porcentagem\ m\'edia\ de\ acerto = \frac{\sum Porcentagem\ de\ acerto}{\mbox{N\'umero}\ de\ genomas\ utilizados}$$

Onde, \(\sumeq Porcentagem de acerto \) corresponde à somatória da porcentagem utilizados dividida dos genomas pelo número de geomas utilizados, Número de genomas utilizados, resulta porcentagem média de na acerto. Porcentagem média de acerto.

Também foi aplicado o cálculo de coeficiente de correlação de Pearson (ρ) para medir a relação das *Porcentagem de acerto* com o conteúdo de GC e *Porcentagem de acerto* com o tamanho dos genomas em pb. Calculado na planilha eletrônica Excel através do comando:

=correl(matrizA;matrizB)

Onde, =correl é a chamada para o cálculo de ρ, matrizA corresponde aos valores de cada Porcentagem de acerto , (para ambos os cálculos) e matrizB é a seleção de conteúdo de GC ou o tamanho do genoma em pb.

A interpretação do valor de ρ pode ser representada por:

- (0,0 > | ρ | > 0,19) indica correlação muito fraca;
- (0,20 > | ρ | > 0,39) indica correlação fraca;
- (0,40 > | ρ | > 0,69) indica correlação moderada;
- (0,70 > | ρ | > 0,89) indica correlação forte;
- (0,90 > | ρ | > 1,0) indica correlação muito forte.

3 RESULTADOS E DISCUSSÃO

Assim como na sessão 2.10, os resultados foram obtidos em duas fases diferentes: manual e automatizada. Na fase automatizada, os resultados foram obtidos utilizando programa BlastP e também o programa SILA. Os resultados obtidos através do programa SILA foram conferidos manualmente utilizando a ferramenta BlastP através do visualizador de genomas Artemis[®].

3.1 COMPARAÇÃO MANUAL DO GENOMA

Esta fase foi uma etapa experimental com o intuito de entender a problemática e elaborar um algoritmo capaz de auxiliar nessa atividade. Por essa razão nem todos os genomas bacterianos listados em 2.7 foram analisados.

A TABELA 3 mostra o resultado da comparação manual feita em uma amostra de genomas completos bacterianos cujos genes foram preditos pelo programa HGF e comparados com o genoma de referência disponível no banco de dados GenBank[®].

TABELA 3 - NÚMERO DE NOVOS GENES VERDADEIROS

TABLEAGO HOMERO DE NOVOS SENES VERDADEIROS					
GENOMA BACTERIANO	NÚMERO DE NOVOS GENES		NÚMERO DE SEQUÊNCIAS COM DIVERGENCIA EM FASE DE LEITURA		
	POSITIVO	FALSO POSITIVO	POSITIVO	FALSO POSITIVO	
Escherichia coli K 12 substr DH10B	256	00	03	00	
Herbaspirillum seropedicae SmR1	22	02	16	00	
Ralstonia solanacearum CFBP2957	19	00	00	00	
Rhizobium leguminosarum viciae 3841	55	00	25	00	
TOTAL	352	02	44	00	

FONTE: O autor (2012)

Notou-se que os números de novos genes e de genes com divergência de fase de leitura em relação ao genoma de referência não contemplam um padrão numérico, isso ocorre porque cada genoma de referência foi anotado de uma maneira diferente e por grupos de pesquisa diferentes. Foi observado que três dos quatro genomas avaliados não apresentaram números de novos genes

proporcionais aos números de sequências de regiões codificantes (CDS). No entanto, a quantidade total de novos genes foi considerada suficiente para justificar a continuidade deste trabalho com a automatização deste processo.

3.2 COMPARAÇÃO AUTOMATIZADA DO GENOMA

A comparação automatizada dos genomas bacterianos foi realizada pelo programa BOBBLES que em sua interface tem as opções de alinhamento das sequências utilizando o programa BlastP ou utilizando o programa SILA. O resultado do alinhamento das sequências foi utilizado como validador dessas sequências, tanto as novas quanto aquelas que apresentaram divergência em fase de leitura em relação ao gene contido no genoma de referência. Foram realizados testes utilizando ambos os programas de alinhamento para posteriormente analisar os resultados, principalemente os resultados obtidos através do programa SILA.

3.2.1 Conjunto de dados da pesquisa

A TABELA 4 mostra o conjunto de genomas de referência comparado com os genomas obtidos através do programa HGF. Pode se observar que para esse conjunto o número mínimo de genes com o mesmo *stop* códon contido na anotação do genoma de referência e no arquivo gerado pelo programa HGF foi de 820 genes e o máximo 7321 genes. No entanto, não é possível fazer uma estimativa de acertos utilizando o número de genes contidos no arquivo de referência com o número de genes obtidos através do programa HGF porque cada um dos genomas utilizados para esta pesquisa foi originado através de uma metodologia diferente.

TABELA 4 – GENES DO ARQUIVO DE REFERÊNCIA DO GENOMA BACTERIANO COMPARADO COM OS GENES OBTIDOS ATRAVÉS DO PROGRAMA HGF

GENOMA BACTERIANO	NÚMERO DE GENES NO ARQUIVO DE REFERÊNCIA	NÚMERO DE GENES NO ARQUIVO HGF	NÚMERO DE GENES COM O MESMO <i>STOP</i> CÓDON
Bradyrhizobium japonicum USDA 110	8317	8667	7321
Burkholderia mallei SAVP1	1734	1394	1201
Cyclobacterium marinum DSM 745	4998	6276	4733
Escherichia coli K 12 substr DH10B	4127	5380	3940
Herbaspirillum seropedicae SmR1	4735	6369	4296
Methanocaldococcus fervens AG86	1545	2335	1494
Pseudomonas fluorescens Pf-5	6107	6638	5875
Streptococcus agalactiae NEM316	2094	2554	2046
Streptococcus mutans UA159	1960	2379	1866
Streptococcus pneumoniae Hungary19A 6	2155	2730	2019
Thermotoga maritima MSB8	1854	2063	1716
Treponema denticola ATCC 35405	2767	3002	2527
Treponema pallidum Nichols	1034	955	820

A TABELA 5 mostra o conjunto de genes avaliados nesta pesquisa, conforme apresentado em 2.10.2. Nota-se que o conjunto mínimo de genes para serem avaliados pelos programas SILA e BlastP através da ferramenta BOBBLES varia de 193 genes até 2073 genes. Isso justifica a variação de tempo de execução do programa BOBBLES.

TABELA 5 – NÚMERO DE GENES AVALIADOS PELO PROGRAMA BOBBLES

GENOMA BACTERIANO	NÚMERO DE GENES NO ARQUIVO HGF	NÚMERO DE GENES COM O MESMO STOP CÓDON	NÚMERO DE GENES AVALIADOS
Bradyrhizobium japonicum USDA 110	8667	7321	1346
Burkholderia mallei SAVP1	1394	1201	193
Cyclobacterium marinum DSM 745	6276	4733	1543
Escherichia coli K 12 substr DH10B	5380	3940	1440
Herbaspirillum seropedicae SmR1	6369	4296	2073
Methanocaldococcus fervens AG86	2335	1494	841
Pseudomonas fluorescens Pf-5	6638	5875	763
Streptococcus agalactiae NEM316	2554	2046	508
Streptococcus mutans UA159	2379	1866	513
Streptococcus pneumoniae Hungary19A 6	2730	2019	711
Thermotoga maritima MSB8	2063	1716	347
Treponema denticola ATCC 35405	3002	2527	475
Treponema pallidum Nichols	955	820	135

3.2.2 Comparação automatizada utilizando o programa SILA

Os testes utilizando o programa Sequence-Indexed Local Aligner (SILA), explicado em 1.6, foram aplicados para os seguintes genomas: Bradyrhizobium japonicum USDA 110, Cyclobacterium marinum DSM, Escherichia coli K 12 substr DH10B, Herbaspirillum seropedicae SmR1, Ralstonia solanacearum CFBP2957, Streptococcus agalactiae NEM316, Streptococcus mutans UA159, Streptococcus pneumoniae Hungary19A 6, Treponema pallidum Nichols, Pseudomonas fluorescens Pf-5, Thermotoga maritima MSB8 e Treponema denticola ATCC 35405.

A TABELA 6 mostra os genomas, obtidos através do programa HGF, com os seus respectivos números totais de genes novos e com divergência em fase de leitura em relação ao genoma de referência. E também a soma de todos os genes novos e os com divergência em fase de leitura, mostrado na última linha da tabela.

TABELA 6 – GENES ENCONTRADOS PELO PROGRAMA HGF E VALIDADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA

GENOMA BACTERIANO	TOTAL	NOVOS GENES	GENES COM DIVERGENCIA EM FASE DE LEITURA
Bradyrhizobium japonicum USDA 110	65	25	40
Burkholderia mallei SAVP1	33	11	22
Cyclobacterium marinum DSM 745	26	12	14
Escherichia coli K 12 substr DH10B	154	138	16
Herbaspirillum seropedicae SmR1	44	03	41
Methanocaldococcus fervens AG86	16	08	08
Pseudomonas fluorescens Pf-5	59	31	28
Ralstonia solanacearum CFBP2957	36	22	14
Streptococcus agalactiae NEM316	30	21	09
Streptococcus mutans UA159	19	07	12
Streptococcus pneumoniae Hungary19A 6	102	89	13
Thermotoga maritima MSB8	28	12	16
Treponema denticola ATCC 35405	21	06	15
Treponema pallidum Nichols	19	01	18
TOTAL	652	386	266

Os novos genes encontrados pelo programa HGF e avaliados pelo programa BOBBLES, utilizando o alinhamento das sequências através do programa SILA, foram novamente avaliados manualmente utilizando o programa BlastP remoto. Isso gerou os genes classificados em (i) positivo e (ii) falso positivo. O primeiro são aqueles que obtiveram valor de bit score superior a 80 pelo programa BlastP. Já o segundo, corresponde a aqueles que não conseguiram atingir esse valor. Foram observados, na TABELA 7, que os falsos positivos correspondem a um número inferior em relação aos genes classificados como positivo. Isso acontece porque o programa SILA possui um algoritmo diferente do programa BlastP. No entanto, essa diferença não se apresentou significativa. Além disso, foi notado que quase todos os genes, classificados como falso positivo, apresentaram pouca diferença no valor da linha de corte ou quase nenhuma ou nenhuma similaridade com o banco de dados NR. Nos casos em que houve pouca diferença entre o limite da linha de corte os genes classificados pelo programa SILA também estavam pouco acima da linha de corte estabelecida para ele, que era o mesmo valor 80 que foi designado para o programa BlastP. Já os genes que obtiveram quase nenhuma ou nenhuma similaridade com o banco de dados NR apresentaram em sua maioria a

classificação deles pelo programa HGF de muito provável, e isso pode significar genes novos ainda não disponíveis no banco de dados.

TABELA 7 – NOVOS GENES ENCONTRADOS PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E CONFERIDAS ATRAVÉS DO PROGRAMA BLASTP

CENIONA DACTEDIANO	TOTAL	NOVOS GENES		
GENOMA BACTERIANO	TOTAL	POSITIVO	FALSO POSITIVO	
Bradyrhizobium japonicum USDA 110	26	22	04	
Burkholderia mallei SAVP1	11	09	02	
Cyclobacterium marinum DSM 745	12	11	01	
Escherichia coli K 12 substr DH10B	138	134	04	
Herbaspirillum seropedicae SmR1	03	02	01	
Methanocaldococcus fervens AG86	08	08	00	
Ralstonia solanacearum CFBP2957	22	22	00	
Streptococcus agalactiae NEM316	21	18	03	
Streptococcus mutans UA159	07	07	00	
Streptococcus pneumoniae Hungary19A 6	89	85	04	
Treponema pallidum Nichols	01	01	00	
Pseudomonas fluorescens Pf-5	31	30	01	
Thermotoga maritima MSB8	12	11	01	
Treponema denticola ATCC 35405	06	06	00	
TOTAL	386	349	19	

FONTE: O autor (2012)

A TABELA 8 mostra os genes encontrados pelo programa HGF e com divergência de fase de leitura, avaliados pelo programa BOBBLES utilizando o alinhamento das sequências através do programa SILA foram novamente avaliados manualmente utilizando o programa BlastP remoto. Isso gerou os genes classificados em (i) positivo, (ii) falso positivo, (iii) neutro e (iv) genes com valor de *bit score* menor que o obtido pelo gene concorrente do genoma de referência e com valor de *bit score* superior a 80. (i) são referentes a aqueles que apresentaram valor de *bit score* superior a 80. (ii) refere-se aos genes com divergência e não obtiveram valor de *bit score* superior a 80 e também não apresentaram esse valor maior do que o segundo valor do gene concorrente. Já o (iii), corresponde aos genes cujos valores de *bit score* apresentaram pouca ou nenhuma diferença entre os genes sobrepostos. E o (iv) apresenta todos os genes com valor de *bit score* menor que o obtido pelo gene concorrente do genoma de referência, mas com valor de *bit score* superior a 80. Esta é uma característica do programa BOBBLES, para os genes com

valor de *bit score* superior a 80 pudessem ser avaliados posteriormente, uma vez que existem outros fatores que podem ser levados em consideração na hora de anotar um gene. Apesar da quantidade de genes falso positivo ser elevada em relação aos outros itens, deve-se levar em consideração que o algoritmo do programa SILA é diferente do algoritmo do programa BlastP e também que parte dos genes avaliados com divergência não apresentaram valor de *bit score* superior a 80.

TABELA 8 - GENES ENCONTRADOS PELO PROGRAMA HGF COM DIVERGÊNCIA DE FASE DE LEITURA E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIA ATRAVÉS DO PROGRAMA SILA E CONFERIDAS ATRAVÉS DO PROGRAMA BLASTP

	TOTAL	GENES COM DIVERGÊNCIA EM FASE DE LEITURA			
GENOMA BACTERIANO		POSITIVO	FALSO POSITIVO	NEUTRO	VALOR DE BIT SCORE < X* > 80
Bradyrhizobium japonicum USDA 110	40	16	14	04	06
Burkholderia mallei SAVP1	22	09	07	00	06
Cyclobacterium marinum DSM 745	14	01	10	03	00
Escherichia coli K 12 substr DH10B	16	04	04	00	08
Herbaspirillum seropedicae SmR1	41	13	21	06	01
Methanocaldococcus fervens AG86	08	00	07	01	00
Pseudomonas fluorescens Pf-5	28	11	11	02	04
Ralstonia solanacearum CFBP2957	14	02	11	00	01
Streptococcus agalactiae NEM316	09	02	07	00	00
Streptococcus mutans UA159	12	05	06	01	00
Streptococcus pneumoniae Hungary19A 6	13	05	05	00	03
Thermotoga maritima MSB8	16	04	12	00	00
Treponema denticola ATCC 35405	15	04	09	02	00
Treponema pallidum Nichols	18	06	11	00	01
TOTAL	266	82	135	19	30

X* gene do genoma de referência

FONTE: O autor (2012)

A TABELA 9 mostra as quantidades totais de genes encontrados por genoma estudado e a quantidade desses genes que foram classificados como positivo, assim, pôde-se obter a porcentagem de acerto mostrada na última coluna dessa tabela. O valor médio de acerto foi de 76,073%.

TABELA 9 - NÚMEROS TOTAIS DE GENES ENCONTRADOS E QUANTOS DELES SÃO VERDADEIROS E A PORCENTAGEM DE ACERTO POR GENOMA BACTERIANO

GENOMA BACTERIANO	NÚMEROS DE GENES ENCONTRADOS	NÚMEROS DE GENES POSITIVOS	PORCENTAGEM APROXIMADA DE ACERTO (%)
Bradyrhizobium japonicum USDA 110	65	47	72
Burkholderia mallei SAVP1	33	24	73
Cyclobacterium marinum DSM 745	26	15	58
Escherichia coli K 12 substr DH10B	154	146	95
Herbaspirillum seropedicae SmR1	44	22	50
Methanocaldococcus fervens AG86	16	09	56
Pseudomonas fluorescens Pf-5	59	47	80
Ralstonia solanacearum CFBP2957	36	25	49
Streptococcus agalactiae NEM316	30	20	67
Streptococcus mutans UA159	19	13	68
Streptococcus pneumoniae Hungary19A 6	102	93	91
Thermotoga maritima MSB8	28	15	53
Treponema denticola ATCC 35405	21	12	57
Treponema pallidum Nichols	19	08	42
TOTAL	652	496	76

A TABELA 10 mostra a comparação da porcentagem de acerto do programa BOBBLES utilizando o alinhamento das sequências com o programa SILA com o conteúdo de GC contido em cada genoma do grupo de teste. Foi observado que todos os genomas na faixa de 70% de acerto continham a faixa de 60% do conteúdo de GC no genoma, porém nessa mesma faixa de conteúdo de GC apresentou um genoma cuja porcentagem de acerto foi de 49,44%, a *Ralstonia solanacearum* CFBP2957. Na faixa de 30 % do conteúdo de GC no genoma, nota-se que apresentaram a maioria das porcentagens de acerto de 57% e 68%, menos o genoma *Streptococcus pneumoniae* Hungary19A 6 que apresentou 91,176% de acerto. Nas faixas de 40% e 50% do conteúdo de GC os resultados foram discrepantes, variando de 42,105% a 94,805% de acerto.

O coeficiente de variação aplicado para os dados desta tabela resultou em aproximadamente 0,05, provando a correlação muito fraca para esses dados.

TABELA 10 - COMPARAÇÃO DA PORCENTAGEM DE ACERTO COM O CONTEÚDO DE GC

GENOMA BACTERIANO	PORCENTAGEM APROXIMADA DE ACERTO (%)	CONTEÚDO DE GC (%)
Bradyrhizobium japonicum USDA 110	72	64,1
Burkholderia mallei SAVP1	73	68,4
Cyclobacterium marinum DSM 745	58	38,1
Escherichia coli K 12 substr DH10B	95	50,8
Herbaspirillum seropedicae SmR1	50	63,4
Methanocaldococcus fervens AG86	56	32,2
Pseudomonas fluorescens Pf-5	80	63,3
Ralstonia solanacearum CFBP2957	49	66,5
Streptococcus agalactiae NEM316	67	35,6
Streptococcus mutans UA159	68	36,8
Streptococcus pneumoniae Hungary19A 6	91	39,6
Thermotoga maritima MSB8	53	46,2
Treponema denticola ATCC 35405	57	37,9
Treponema pallidum Nichols	42	52,8

FONTE: O autor (2012) e (NCBI, 2012)

A TABELA 11 exibe a comparação da porcentagem de acerto do programa BOBBLES utilizando o alinhamento das sequências com o programa SILA com o número de pares de base (pb) do arquivo do genoma. Notou-se a porcentagem de acerto não possui relação com o número de pb do arquivo do genoma, o que caracteriza que o programa BOBBLES quanto os periféricos utilizados não apresentaram problemas em relação a capacidade computacional para realizar a comparação dos arquivos.

O coeficiente de variação aplicado para os dados desta tabela resultou em aproximadamente 0,28, provando a correlação fraca para esses dados.

TABELA 11 - COMPARAÇÃO DA PORCENTAGEM DE ACERTO COM O NÚMERO DE pb DO GENOMA

GENOMA BACTERIANO	PORCENTAGEM APROXIMADA DE ACERTO (%)	TAMANHO EM pb
Bradyrhizobium japonicum USDA 110	72	9105828
Burkholderia mallei SAVP1	73	3497479
Cyclobacterium marinum DSM 745	58	6221273
Escherichia coli K 12 substr DH10B	95	4686137
Herbaspirillum seropedicae SmR1	50	5513887
Methanocaldococcus fervens AG86	56	22190
Pseudomonas fluorescens Pf-5	80	7074893
Ralstonia solanacearum CFBP2957	49	3417386
Streptococcus agalactiae NEM316	67	2211485
Streptococcus mutans UA159	68	2032925
Streptococcus pneumoniae Hungary19A 6	91	2245615
Thermotoga maritima MSB8	53	1860725
Treponema denticola ATCC 35405	57	2843201
Treponema pallidum Nichols	42	1138011

FONTE: O autor (2012) e (NCBI, 2012)

A TABELA 12 apresenta a comparação da porcentagem de acerto do programa BOBBLES utilizando o alinhamento das sequências com o programa SILA com a grupo taxonômico dos genomas utilizados para teste. Foi observado que os genomas cujos grupos taxonômicos são proteobacteria, enterobacteria e firmicutes apresentaram mais genomas com os maiores valores de porcentagem de acerto. Enquanto os genomas cujos grupos taxonômicos são bacterioidetes. euryarchaeotes, thermotogales e spirochetes mais genomas com os menores valores de porcentagem de acerto. Isso pode caracterizar um indício dos genomas em que o programa SILA obtém melhores resultados.

TABELA 12 - COMPARAÇÃO DA PORCENTAGEM DE ACERTO COM O GRUPO TAXONÔMICO DO GENOMA

GENOMA BACTERIANO	PORCENTAGEM APROXIMADA DE ACERTO (%)	GRUPO TAXONÔMICO
Bradyrhizobium japonicum USDA 110	72	Proteobacteria
Burkholderia mallei SAVP1	73	Proteobacteria
Cyclobacterium marinum DSM 745	58	Bacterioidetes
Escherichia coli K 12 substr DH10B	95	Proteobacteria
Herbaspirillum seropedicae SmR1	50	Proteobacteria
Methanocaldococcus fervens AG86	56	Euryarchaeota
Pseudomonas fluorescens Pf-5	80	Proteobacteria
Ralstonia solanacearum CFBP2957	49	Proteobacteria
Streptococcus agalactiae NEM316	67	Firmicutes
Streptococcus mutans UA159	68	Firmicutes
Streptococcus pneumoniae Hungary19A 6	91	Firmicutes
Thermotoga maritima MSB8	53	Thermotogae
Treponema denticola ATCC 35405	57	Spirochetes
Treponema pallidum Nichols	42	Spirochetes

FONTE: O autor (2012) e (NCBI, 2012)

A TABELA 13 exibe os novos genes encontrados pelo programa HGF e avaliados pelo programa BOBBLES utilizando o alinhamento das sequências com o programa SILA comparado com o alinhamento das sequências com o programa BlastP. Foi observado que a maioria dos casos não apresentam muita diferença no número de genes utilizando os programas de alinhamento de sequência diferentes.

TABELA 13 – NOVOS GENES ENCONTRADOS PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA COMPARADOS COM PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

CENOMA PACTEDIANO	NOVOS GENES		
GENOMA BACTERIANO	SILA	BLASTP	
Bradyrhizobium japonicum USDA 110	22	61	
Burkholderia mallei SAVP1	09	06	
Cyclobacterium marinum DSM 745	11	30	
Escherichia coli K 12 substr DH10B	134	122	
Herbaspirillum seropedicae SmR1	02	06	
Methanocaldococcus fervens AG86	08	12	
Pseudomonas fluorescens Pf-5	30	51	
Ralstonia solanacearum CFBP2957	22	19	
Streptococcus agalactiae NEM316	18	15	
Streptococcus mutans UA159	07	07	
Streptococcus pneumoniae Hungary19A 6	85	79	
Thermotoga maritima MSB8	11	21	
Treponema denticola ATCC 35405	06	09	
Treponema pallidum Nichols	01	08	
TOTAL	366	529	

FONTE: O autor (2012)

Os anexos de 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 e 27 mostram todos os genes novos marcados pelo programa HGF e avaliados pelo programa BOBBLES utilizando o alinhamento de sequência pelo programa SILA desses 14 genomas avaliados. Foram observados que praticamente todos os genes de referência obtidos por esse processo pertencem a organismos do mesmo gênero e inclusive alguns desses com organismos da mesma espécie. Sendo os anexos 1, 3, 5, 7, 9, 13 e 15 apresentam genes pertencentes ao grupo taxonômico Proteobacteria: 5 apresenta genes pertencentes ao grupo taxonômico 11 genes Bacterioidetes: apresenta pertencentes ao taxonômico grupo Euryarchaeota; 17, 19, e 21 apresentam genes pertencentes ao grupo taxonômico Firmicutes; 23 apresenta genes pertencentes ao grupo taxonômico Thermotogae; 25, e 27 apresentam genes pertencentes ao grupo taxonômico Spirochaetes.

Já os anexos 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 e 28 mostram todos os genes com divergência em fase de leitura marcados pelo programa HGF e avaliados pelo programa BOBBLES utilizando o alinhamento de sequência através do programa SILA desses 14 genomas avaliados. Estes anexos mostram que existe mais discrepância em relação aos gêneros e espécies obtidos através do

alinhamento das sequências. E os anexos de 29 até o 41 mostram todos os novos genes encontrados pelo programa BOBBLES utilizando o alinhamento de sequências pelo programa BlastP. Em todos os anexos são apresentados a localização dos gene e o valor de *bit score* apresentado pelo alinhamento utilizando o programa BlastP, dessa forma é possível notar quais desses genes possuem ou não grau de similaridade significativo para ser considerado um gene verdadeiro.

3.3 AVALIAÇÃO DE DESEMPENHO DO PROGRAMA BOBBLES

A primeira versão do BOBBLES utilizava o programa BlastP local com o banco de dados NR e todas as suas funções eram feitas na linguagem Matlab[®]. O banco de dados NR demorou quatro horas para ser montado utilizando as funções descritas em 2.10.2.4. Nessa versão, foram realizados testes com as sequências do *Herbaspirillum seropedicae* SmR1 e cada consulta ao banco de dados demorou de seis a 10 minutos, por essa razão foi descartada essa versão.

A partir disso foram realizados testes com esse mesmo genoma utilizando o alinhamento das sequências pelo programa BlastP local via terminal e remotamente. Observou-se que o acesso do Matlab[®] para alinhamentos de sequências via terminal e remotamente não apresentavam diferença significativa de tempo para consulta das sequências. Apesar dos alinhamentos feitos diretamente no terminal demorarem frações de segundo, via termal Shell do Linux, quando esses *scripts* eram acessados via plataforma Matlab[®] eles perdiam em desempenho, pois o tempo de espera para a realização dos alinhamentos aumentava significativamente, passando a ser tão demorado quanto em acesso via acesso remoto, o qual variou de cinco segundos até dois minutos por alinhamento. Além disso, o acesso local de alinhamento via terminal Windows[®] nos computadores utilizados demoravam de quatro até 10 minutos para realizar cada alinhamento de sequência contra o banco de dados NR.

Por essa razão a versão final do programa BOBBLES possui a opção de alinhamento via BlastP remoto. Mesmo que a utilização do programa BlastP remoto tenha se apresentado diretamente afetada de acordo com a qualidade da conexão com a internet, ou seja, se o programa BOBBLES fosse desconectado da internet ele não conseguia obter os resultados corretos. Entretanto, cada alinhamento

demorou de cinco segundos até dois minutos para ser executado, sendo que quanto mais sequências precisassem ser alinhadas mais era o tempo necessário para alinhar cada uma delas. Isso aconteceu porque o programa BlastP remoto impõe tempo de espera maior quando as solicitações de alinhamento vindo de um mesmo local são muitas.

Outro fator é que o programa SILA foi utilizado como uma opção de alinhamento nas sequências por ser pelo menos cinco vezes mais rápido que o programa BLAST e isso fez com que reduzisse o tempo de execução do programa BOBBLES, que foram de acordo com os testes apresentados em 1.7. Mesmo os resultados da comparação dos alinhamentos deste com o programa BLASTP não serem idênticos, o programa SILA ainda não se encontra em sua versão final, o que torna essa opção para a utilização do BOBBLES promissora.

4 CONCLUSÕES

- A ferramenta, Bioinformatics tool based on bacterial genomes comparison, BOBBLES, foi testada em 14 genomas bacterianos de diferentes tamanhos e grupos taxonômicos e mostrou-se eficiente na detecção de novos genes e genes erroneamente localizados.
- A ferramenta HGF mostrou-se eficiente na detecção de novos genes não apresentando tendência relevante em relação ao grupo taxonômico, conteúdo de GC e tamanho do genoma bacteriado.
- A maioria dos novos genes encontrados pelo programa HGF e analisados pelo programa BOBBLES pertencem ao mesmo gênero do organismo avaliado.
- A execução do programa BOBBLES utilizando alinhamento de sequências com o programa SILA foi pelo menos cinco vezes a execução mais rápida do que utilizando o alinhamento com o programa BLASTP.
- O programa SILA é uma ferramenta promissora para realizar alinhamento de sequências e pode ser utilizada em conjunto com o programa BLASTP.

5 PERSPECTIVAS FUTURAS

Como perspectiva futura, é sugerida a elaboração de novas técnicas utilizando outros algoritmos para comparar os genomas a fim de diminuir a taxa de erro e o tempo de execução do programa BOBBLES, mesmo ele tendo apresentado bom desempenho de execução. Essa técnica pode consistir em utilizar o programa SILA e o programa BLASTP em conjunto. Sendo, o programa SILA para a verificação dos genes mais prováveis por homologia com outros genes e os outros genes serem submetidos ao programa BLASTP.

Além disso, neste trabalho não foi contemplado o estudo dos genes não localizados pelo programa HGF contidos nos genomas de referência. Esse estudo pode verificar se esses genes possuem homologia com outros genes e identificar aqueles que podem ter sido anotados erroneamente. E, assim, identificar novos padrões para identificação de genes e, se possível, contemplá-la em uma nova versão do programa HGF.

REFERÊNCIAS

ALMEIDA, A.C.B. de. **BIOANOT: um sistema multi-agentes para notificação de (re) anotações de sequências em bancos de dados genômicos**. Rio de Janeiro: Curso de Mestrado em Sistemas e Computação do Instituto Militar de Engenharia, 2006.

ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.W.; LIPMAN, D.J. **Basic Local Alignment Search Tool**. Bethesda: National Center for Biotechnology Information. Jornal of Molecular Biology, vol 215, páginas 403 até 410, 1990.

BENSON, D.A.; KARSCH-MIZRACHI, I.; LIPMAN, D.; OSTELL, J.; WHEELER, D. **Genbank: update**. Bethesda: Nucleic Acids Research, volume 32, Database Issue D23 – D26, Oxford University Press, 2004.

BENSON, D.A.; KARSCH-MIZRACHI, I.; LIPMAN, D.; OSTELL, J.; SAYERS, E.W. **Genbank**. Bethesda: Nucleic Acids Research, volume 39, Database Issue D32 – D37, DOI:10.1093/nar/gkq107, 2010.

BOECKMANN, B.; BAIROCH, A.; APWEILER, R.; BLATTER, M.C.; ESTREICHER, A.; GASTEIGER, E.; MARTIN, M.J.; MICHOUD, K.; O'DONOVAN, C.; PHAN, I.; PILBOUT, S.; SCHNEIDER, M. **The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003**, Geneva: Nucleic Acids Research, volume 31, páginas 365 até 370, 2003.

BROWN, T.A.; **Genomes**. New York: Wiley-Liss, 2ºed., 2002.

BRUNAK, S.; DANCHIN, A.; HATTORI, M.; NAKAMURA, H.; SHINOZAKI, K.; MATISE, T.; PREUSS, D. **Nucleotide Sequence Database Policies**. Science 298 (5597): 1333, 2002.

CHARNIAK, E.; MCDERMOTT, D. Introduction to Artificial Intelligence. Addison: Wesley, Reading, MA, 1985.

CONESA, A.; GÖTZ, S.; GARCÍA-GÓMEZ, J.M.; TEROL, J.; TALÓN, M.; ROBLES, M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Valencia: Centro de Genomica. Bioinformatics

Applications Notes. Volume 21 nº 18, páginas 3674 até 3676. DOI:10.1093/bioinformatics/bti610, 2005.

DELCHER, A.L.; BRATKE, K.A.; POWERS, E.C.; SALZBERG, S.L. **Identifying bacterial genes and endosymbiont DNA with Glimmer**. Bioinformatics volume 23, no 6, páginas 673 até 679, 2007.

DEONIER, R.C.; TAVARÉ, S.; WATERMAN, M.S. **Computational Genome Analysis: an introduction**. New York: Springer-Verlag. ISBN 0387987851, 2005.

ELMASRI, E.; NAVATHE, S. **Sistemas de Bancos de Dados**. São Paulo: Addison Wesley, Pearson, 4^a ed., 2005.

FASSLER, J.; COOPER, P. **BLAST Glossary**. Disponível em: http://www.ncbi.nlm.nih.gov/books/NBK62051/. Último acesso: 19/01/2012. Última atualização: 2011.

GEER, R.C.;SAYERS, E.W. **Entrez: Making use of its power**. Briefings in Bioinformatics. Henry Stewart Publications 1467-5463. volume 4, no 2, páginas 179 até 184. Junho de 2003.

GEHLEN, M.A.C. Estudo e levantamento dos genes nif publicados no NCBI usando conceitos de mineração de dados e Inteligência Artificial. Curitiba: Universidade Federal do Paraná, 2011.

GENBANK. **Genetic Sequence Data Bank**. Disponível em: <ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt>. Último acesso: 26/01/2012. Última atualização: 2011.

GIBAS, C.; JAMBECK, P. **Desenvolvendo Bioinformática**. São Paulo: Editora Campus, 2002.

GILKS, W.R.; AUDIT, B.; DE ANGELIS, D.; TSOKA, S.; OUZOUNIS, C.A. **Modeling the percolation of annotation errors in a database of protein sequences**. Bioinformatics, volume 12, páginas 1641 até 1649, 2002. GRIFFITHS, A.J.F.; MILLER,, J.H.; GELBART, W.M.; LEWOTIN, R.C. **Modern genetic analysis**. New York: W. H. Freeman & Co, 1999.

HAYKIN, S. **Neural Networks – A Compreensive Foundation**. New Jersey: Prentice-Hall, 2nd edition, 1999.

HAYKIN, S. Redes Neurais Princípios e Prática. Tradução de: Paulo Martins Engel. Porto Alegre: Bookman, 2001.

HENIKOFF, S. et al. Gene families: the taxonomy of protein paralogs and chimeras. Science, volume 278, páginas 609 até 614, 1997.

HP. **GBK (5)**. Disponível em http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51_HTML/MAN/MAN5/0020____.HTM. Acessado em: 26/01/2012.

LATIMER, K. Improving the detection of orthologs by altering and comparing various methods in bioinformatics. Waterloo: Wilfrid Laurier University, 2007.

LEMOS, M. Workflow para Bioinformática. Rio de Janeiro: Programa de Pósgraduação em Informática da PUC-Rio, 2004.

LEVY, E.D.; OUZOUNIS, C.A.; GILKS, W.R.; AUDIT, B. **Probabilistic annotation of protein sequences based on functional classifications**. Cambridge: BMC Bioinformatics. DOI: 10.1186/1471-2105-6-302, 2005.

LIBERMAN, F. **Análise dos fatores determinantes para a qualidade da anotação genômica automática**. Brasília: Programa de Pós- Graduação "*Strictu Sensu*" em Biotecnologia e Ciências Genômicas da Universidade Católica de Brasília, 2004

LIPMAN, D.J.; PEARSON, W.R. **Rapid and sensitive protein similarity searches**. Science 22, volume 227 nº 4693 páginas 1435 até 1441. DOI: 10.1126/science.2983426, 1985.

LORENZI, H.A.; PUIU, D.; MILLER, J.R.; BRINKAC, L.M.; AMEDEO, P.; et al. New assembly, reannotation and analysis of the Entamoeba histolyca genome reveal new genomic features and protein content formation. PLoS Negl Trop Dis., 4:e716, 2010.

MAO, C.; QIU, J.; WANG, C.; CHARLES, T.C.; SOBRAL, B.W.S. **NodMutDB: a database for genes and mutants involved in symbiosis**. Virginia: Virginia Bioinformatics Institute of Virginia Polytechnic and State University, Blacksburg. Volume 21 no 12, páginas 2927 até 2929. DOI:10.1093/bioinformatics/bti427, 2005

MCCULLOCH, W.S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, vol. 5, páginas 115 até 133, 1943.

MEYER, F.; GOESMANN, A.; MCHARDY, A.C.; BARTELS, D.; BEKEL, T.; CLAUSEN, J.; KALINOWSKI, J.; LINKE, B.; RUPP, O.; GIEGERICH R.; PUÈHLER, A. **GenDBĐan open source genome annotation system for prokaryote genomes**. Bielefeld: Center for Genome Research. Nucleic Acids Research, volume 31, nº 8, páginas 2187 até 2195. DOI: 10.1093/nar/gkg312, 2003.

MORGULIS, A. **Database indexing for production MegaBLAST searches**. USA: National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human. Volume 24, no 16, páginas 1757 até 1764. DOI:10.1093/bioinformatics/btn322, 2008

NATIONAL HUMAN GENOME RESEARCH INSTITUTE. **Frequently asked questions about genetic and genomic science**. Disponível em: < http://www.genome.gov/190 16904>. Último acesso: 19/01/2012. Última atualização: 2010.

NCBI. Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources. Disponível em: <ncbi.nlm.nih.gov/About/primer/bioinformatics.html>. Último acesso: 19/01/2012. Última atualização: 2004.

NCBI. **Browse Genomes**. Disponível em: < http://www.ncbi.nlm.nih.gov/genomes/MI CROBES/microbial_taxtree.html>. Último acesso: 19/01/2012. Última atualização: 2012.

NEWELL, A.; SIMON, H.A. Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM, volume 19, no 3, páginas 113 até 126, DOI:10.1145/360018.360022, 1976.

ORACLE. GB18030-2000 – **The New Chinese National Standart**. Disponível em: http://developers.sun.com/dev/gadc/technicalpublications/articles/gb18030.html. Último acesso: 26/01/2012. Última atualização: 2010.

OUZOUNIS, C.A.; KARP, P.D. **The past, present and future of genome-wide reannotation**. Cambridge: Genome Biology, volume 3, páginas 1 até 6, 2002.

PAULA, M.G. Reconhecimento de palavras faladas utilizando Redes Neurais Artificiais. Pelotas: Universidade Federal de Pelotas, 2000.

PETSKO, G.A.; RINGE, D. **Protein structure and function**. Waltham: New Science Press Ltd, 2003.

RAUBER, T.W. **Redes Neurais Artificiais**. Vitória: Universidade Federal do Espírito Santo: 2006.

RUSSELL S.; NORVIG P. **Artficial Intelligence: A Modern Approach**. Prentice-Hall, Saddle River, NJ, 1995.

RUTHERFORD, K.; PARKHILL, J.; CROOK, J.; HORSNELL, T.; RICE, P.; RAJANDREAM, M.A.; BARRELL, B. **Artemis: sequence visualization and annotation**. England: Bioinformatics, volume16 no 10, páginas 944 até 945, 2000.

SANGER, F.; NICKLEN, S.; COULSON, A.R. **DNA Sequencing with Chain-Terminating Inhibitors**. Cambridge: Medical Research Council Laboratory of Molecular Biology. PNAS, volume 74, no 12, páginas 5463 até 5467, 1977.

SALZBERG, S.L; DELCHER, A.L.; KASIF, S.; WHITE, O. **Microbial gene identification using interpolated Markov models**. Chicago: Nucleic Acids Research, volume 26, no 2, páginas 544 até 548, 1998.

SANTOS, A.; AZEVEDO, V.; SCHNEIDER, M.P.; SILVA, A.C DA.; MIYOSHI A.; BORÉM, A. **Manual prático-teórico: sequenciamento, montagem e anotação de genomas bacterianos**. Belo Horizonte: Suprema. ISBN: 978.85.60249-83-4, páginas 91 até 109, 2011.

SETUBAL, J.C.; et al. **Genômica**. São Paulo: Editora Atheneu, páginas 107 até 118, 2004.

Shiryev S.A.; PAPADOPOULOS J.S.; SCHÄFFER A.A.; AGARWALA R. **Improved BLAST searches using longer words for protein seeding**. Bioinformatics. Volume 23, no 21, páginas 2949 até 2951, 2007.

SHULAEV, V.; SARGENT, D.J.; CROWHURST, R.N.; MOCKLER, T.C.; et al. The genome of woodland strawberry (Fragaria vesca). Nature Genetics, Nature America, Inc., 2010.

SMITH, T.F.; WATERMAN, M.S. **Identification of Common Molecular Subsequences**. London: Jornal of Molecular Biology, volume147, páginas 195 até197, 1981.

SOUZA, J. A. **Reconhecimento de padrões usando indexação recursiva**. Florianópolis: Universidade Federal de Santa Catarina, 1999.

STEIN, L. **Genome annotation: from sequence to biology**. New York: Nature Reviews Genetics, volume 2, páginas 493 até 503, 2001.

VIALLE, R.A.; SOUZA, E.M.; PEDROSA, F.O.; MARCHAUKOSKI, J.N.; STEFFENS, M.B.R.; GUIZELINI, D.; TIBÃES J.H.; SOUZA, V.; RAITTZ, R.T. **Recursive indexing (INREC) applied to sequence similarity searches in large databases**. Florianopolis: 7th International Conference of the Brazilian Association for Bioinformatics and Computational Biology (AB3C) and 3rd International Conference of the IberoAmerican Society of Bioinformatics (SolBio), 2011.

WARREN, A.S; ARCHULETA, J.; FENG, W.; SETUBAL, J.C. **Missing genes in the annotation of prokaryotic genomes**. BMC Bioinformatics 2010, 11:131. DOI:10.1186/1471-2105-11-131, 2010.

WASSERMAN, P.D. **Neural Computing: Theory and Practice**. New York: Van Nostrand Reinhold, 1989.

WESTHEAD, D.R.; PARISH, J.H.; TWYMAN, R.M. Instant Notes: Bioinformatics. Cambridge: BIOS Scientific Publishers Limited, 2002.

WONG, W.; MAURER-STROH, S.; EISENHABER, F. More than 1,001 problems with protein domain databases: transmembrane regions, signal peptides and the issue of sequence homology. PLoS Comput Biol.,6:e1000867, 2010.

APÊNDICES

APÊNDICE 1 – GENES NOVOS ENCONTRADOS NO GENOMA *Bradyrhizobium japonicum* USDA 110 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE DO BLAST	GENOMA DE REFERÊNCIA
539055539441	207	hypothetical protein BJ6T_04720 [Bradyrhizobium japonicum USDA 6]
19606041960807	136	ID204 [Bradyrhizobium japonicum]
19890911989420	207	hypothetical protein bll1960 [Bradyrhizobium japonicum USDA 110]
20231352023596	293	ID344 [Bradyrhizobium japonicum]
20693692069698	207	hypothetical protein BJ6T_88720 [Bradyrhizobium japonicum USDA 6]
23646902365223	288	hypothetical protein BJ6T_76610 [Bradyrhizobium japonicum USDA 6]
24533132453525	115	hypothetical protein BJ6T_75630 [Bradyrhizobium japonicum USDA 6]
26779872678196	140	hypothetical protein BJ6T_73800 [Bradyrhizobium japonicum USDA 6]
27695492769740	120	ypothetical protein BJ6T_72860 [Bradyrhizobium japonicum USDA 6]
28487562848950	117	hypothetical protein BJ6T_72050 [Bradyrhizobium japonicum USDA 6]
30734973073937	36,2	hypothetical protein PaTRP_07219 [Paracoccus sp. TRP]
42506414250967	198	hypothetical protein BJ6T_60230 [Bradyrhizobium japonicum USDA 6]
43329294333168	156	hypothetical protein BJ6T_59350 [Bradyrhizobium japonicum USDA 6]
46346604635250	365	hypothetical protein BJ6T_56010 [Bradyrhizobium japonicum USDA 6]
46734474673761	34,5	erminase small subunit [Proteus mirabilis ATCC 29906]
48599674860221	156	hypothetical protein BJ6T_54070 [Bradyrhizobium japonicum USDA 6]
51859985186216	144	hypothetical protein BJ6T_50420 [Bradyrhizobium japonicum USDA 6]
54586685458871	116	hypothetical protein BJ6T_47610 [Bradyrhizobium japonicum USDA 6]
57246355724883	104	hypothetical protein blr4764 [Bradyrhizobium japonicum USDA 110]
complement(57428155743459)	317	transposase [Bradyrhizobium japonicum USDA 110]
complement(57747315775075)	66	hypothetical protein BJ6T_20380 [Bradyrhizobium japonicum USDA 6]
complement(60389056039423)	276	hypothetical protein BJ6T_15570 [Bradyrhizobium japonicum USDA 6]

77612267761519	170	hypothetical protein BJ6T_23640 [Bradyrhizobium japonicum USDA 6]
complement(81766648176810)	85,5	hypothetical protein BJ6T_18640 [Bradyrhizobium japonicum USDA 6]
83929068393514	40	cob(I)yrinic acid a,c-diamide adenosyltransferase [Frankia sp. EAN1pec]

APÊNDICE 2 – GENES COM SOBREPOSIÇÃO DE FASE DE LEITURA NO GENÔMA *Bradyrhizobium japonicum* USDA 110 ENCONTRADOS PELO PROGRAMA HGF E VALIDADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE DO BLAST	GENOMA DE REFERÊNCIA
128266128886	305	hypothetical protein BJ6T_01470 [Bradyrhizobium japonicum USDA 6]
complement(529569529919)	35,8	thymidine phosphorylase [Verrucosispora maris AB-18-032]
16914431691619	32,7	hypothetical protein MCAG_03089 [Micromonospora sp. ATCC 39149]
17006081700907	202	hypothetical protein BJ6T_82900 [Bradyrhizobium japonicum USDA 6]
18184391818723	147	hypothetical protein Nham_1349 [Nitrobacter hamburgensis X14]
18279911828356	40	phosphopantethieneprotein transferase domain [Desulfuromonas acetoxidans DSM 684]
19244111924770	248	hypothetical protein BJ6T_80570 [Bradyrhizobium japonicum USDA 6]
21053502105646	36,2	neuregulin 3 variant 9 [Homo sapiens]
21408512141612	124	hypothetical protein F11_12550 [Rhodospirillum rubrum F11]
complement(23320042332108)	29	hypothetical protein amb0401 [Magnetospirillum magneticum AMB-1]
23477552348552	38,2	hypothetical protein Caur_0152 [Chloroflexus aurantiacus J-10-fl]
27440612744900	429	hypothetical protein BJ6T_73100 [Bradyrhizobium japonicum USDA 6]
28385362838811	119	hypothetical protein BJ6T_72130 [Bradyrhizobium japonicum USDA 6]
29125282912860	35	hypothetical protein [Plasmodium vivax Sal-1]
30098203009996	35	hypothetical protein PPSIR1_29835 [Plesiocystis pacifica SIR-1]
33117343311967	152	hypothetical protein BJ6T_67670 [Bradyrhizobium japonicum USDA 6]
40773974077705	179	hypothetical protein BJ6T_61590 [Bradyrhizobium japonicum USDA 6]
41795804180041	233	hypothetical protein BJ6T_61110 [Bradyrhizobium japonicum USDA 6]

42889204289195	36,6	hypothetical protein AURANDRAFT_61023 [Aureococcus anophagefferens]
44029444403873	519	hypothetical protein BJ6T_58710 [Bradyrhizobium japonicum USDA 6]
45939974594254	35,4	hypothetical protein Rvan_2791 [Rhodomicrobium vannielii ATCC]
complement(46101994610477)	36	glycosyl hydrolase, family 25 [Prevotella veroralis F0319]
50137525014453	308	unknown [Bradyrhizobium japonicum]
52203555220828	160	hypothetical protein BJ6T_50090 [Bradyrhizobium japonicum USDA 6]
53364305336750	33,5	hypothetical protein Gobo1_18286 [Gluconacetobacter oboediens]
55488205549206	35,8	predicted protein [Streptomyces sp. C]
55513845551629	57	acyltransferase [Ahrensia sp. R2A130]
56637295663935	32,7	hypothetical protein CGSSp14BS69_02514 [Streptococcus pneumonia]
57012865701741	37,4	hypothetical protein Acid345_0226 [Candidatus Koribacter versatilis Ellin345]
66088126609108	36	histidine ammonia-lyase [Taylorella asinigenitalis MCE3]
69572366957547	34,5	hypothetical protein [Entamoeba dispar SAW760]
70351687035983	145	6-pyruvoyl-tetrahydropterin synthase [Rothia mucilaginosa DY-18]
73461077346655	139	Collagen triple helix repeat [Rhodopseudomonas palustris TIE-1]
73486967349049	220	hypothetical protein BJ6T_27450 [Bradyrhizobium japonicum USDA 6]
75849887586121	703	hypothetical protein BJ6T_24880 [Bradyrhizobium japonicum USDA 6]
80840868084448	102	hypothetical protein RPE_1043 [Rhodopseudomonas palustris BisA53]
81773128178403	189	hypothetical protein BJ6T_18610 [Bradyrhizobium japonicum USDA 6]
87755678776439	41,2	hypothetical protein RSPO_m00435 [Ralstonia solanacearum Po82]
88279278828355	105	hypothetical protein blr7656 [Bradyrhizobium japonicum USDA 110]
88576568857967	34,3	hypothetical protein Cpin_0029 [Chitinophaga pinensis DSM 2588]
89826618983215	378	hypothetical protein BJ6T_87830 [Bradyrhizobium japonicum USDA 6]
90721719072449	33,1	hypothetical protein [Arabidopsis thaliana]

APÊNDICE 3 – GENES NOVOS ENCONTRADOS NO GENOMA Burkholderia mallei SAVP1 PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SOCRE</i> DO SILA	VALOR <i>BIT-SCORE</i> DO BLAST
4051 4324	80,33333	174
120353 121583	893,6667	802
208762 209932	865,3333	806
264988 265129	98,33333	94
688284 688461	133,6667	119
800849 801089	183	169
1245846 1246050	149	138
1376855 1376984	91	84
1410339 1410537	137,3333	43,9
complement(153663 158316)	86,66667	3096
complement(1646557 1646821)	143	53,3

APÊNDICE 4 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Burkholderia mallei* SAVP1 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SOCRE</i> DO SILA	VALOR <i>BIT-SCORE</i> DO BLAST
491647 491851	155,6667	133
686892 687123	127,6667	120
798044 799712	813	828
848871 849123	101,6667	95,9
1279435 1281925	1801,333	1585

123224 123476	191,3333	166
242401 242506	79	67,4
316031 317033	106	102
439726 441187	1028	955
491647 491851	155,6667	132
553687 553975	208	186
848871 849123	101,6667	95
868462 868624	22	31,6
918830 921131	51	57,8
1095064 1095298	21	59,7
1279435 1281925	1801,333	1585
1340227 1341649	52,33333	39,7
1464128 1464893	562,6667	521
1610523 1610643	63,66667	47,8
complement(516639 517455)	112	3,5
complement(1332624 1333059)	137,6667	160
complement(979442 979877)	266,6667	289

APÊNDICE 5 – GENES NOVOS ENCONTRADOS NO GENOMA *Cyclobacterium marinum* DSM 745 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
584003584656	213	cytochrome-c peroxidase [Dyadobacter fermentans DSM 18053]
677806678099	58,9	putative transcriptional regulator [Mucilaginibacter paludis DSM 18603]
17743831775456	247	hypothetical protein Cycma_0840 [Cyclobacterium marinum DSM 745]
18878911888427	365	hypothetical protein Cycma_1596 [Cyclobacterium marinum DSM 745]

25448012545067	175	excinuclease ABC subunit C [Cyclobacterium marinum DSM 745]
25687832568986	97,1	Orn/DAP/Arg decarboxylase 2 [Cyclobacterium marinum DSM 745]
38918603892063	122	hypothetical protein Cycma_3309 [Cyclobacterium marinum DSM 745]
40586374059221	397	transposase IS4 family protein [Cyclobacterium marinum DSM 745]
43885834389935	548	iduronate-2-sulfatase [Maribacter sp. HTCC2170]
45352944536886	774	TonB-dependent receptor plug [Dyadobacter fermentans DSM 18053]
49425504943686	795	putative transposase [Cyclobacterium marinum DSM 745]
49435954943903	152	putative transposase [Cyclobacterium marinum DSM 745]

APÊNDICE 6 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Cyclobacterium marinum* DSM 745 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
90919279	31,2	unnamed protein product [Tetraodon nigroviridis]
268704268889	Sem resultado	
299511299708	33,1	hypothetical protein KAOT1_18542 [Kordia algicida OT-1]
981840982007	34,3	conserved hypothetical protein [Capsaspora owczarzaki ATCC 30864]
20208682021290	36,6	5-methyltetrahydropteroyltriglutamatehomocysteine S-methyltransferase [<i>Megasphaera sp.</i> UPII 199-6]
complement(34923003492452)	31,2	DHHA1 domain protein [Megasphaera sp. UPII 199-6]
complement(38014393801603)	32,6	FHA domain-containing protein [Cyanothece sp. PCC 8802]
41304244130771	Sem resultado	
41558214155982	Sem resultado	
41563574156635	35,8	hypothetical protein ECA0083 [Pectobacterium atrosepticum SCRI1043]
complement(46085324608825)	36,2	unnamed protein product [Oikopleura dioica]
54550765455384	35,8	hypothetical protein MICPUN_50172 [Micromonas sp. RCC299]

54797625479935	33,2	hypothetical protein SYNPCC7002_A2695 [Synechococcus sp. PCC 7002]
58600015860084	Sem resultado	

APÊNDICE 7 – GENES NOVOS ENCONTRADOS NO GENOMA *Escherichia coli* str. K-12 substr. DH10B ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
5847459125	448	conserved hypothetical protein [Escherichia coli DH1]
6245063136	470	fructose repressor [Escherichia coli RN587/1]
196792196905	80,1	hypothetical protein ECH7EC4486_2746 [Escherichia coli O157:H7 str. EC4486]
213294213482	125	putative transposase [Escherichia coli XH140A]
224428224931	348	MbhA [Escherichia coli]
227571227837	183	hypothetical protein E4_12150 [Escherichia sp. 4_1_40B]
246190247320	773	RNA-directed DNA polymerase [Escherichia coli DH1]
262073262594	353	transposase protein A [Escherichia coli]
262837263442	422	putative transposase insK for insertion sequence element IS150 [Shigella flexneri 2a str. 2457T]
265284265412	90,1	CP4-57 prophage; predicted protein [Escherichia coli str. K-12 substr. MG1655]
323343323450	69,3	hypothetical protein EcE24377A_0387 [Escherichia coli E24377A]
328806330266	965	outer membrane autotransporter barrel domain protein [Escherichia coli MS 146-1]
331777332973	789	hypothetical protein [Escherichia coli str. K-12 substr. MG1655]
390467390610	87,4	hypothetical protein EcSMS35_0473 [Escherichia coli SMS-3-5]
467428467685	176	hypothetical protein ECSE_0527 [Escherichia coli SE11]
505030505242	140	putative replication protein [Escherichia coli XH140A]
520089520652	385	putative tail fiber assembly protein [Escherichia coli DH1]
521430521615	127	hypothetical protein ECO7815_15338 [Escherichia coli O55:H7 str. 3256-97 TW 07815]
596586596813	150	hypothetical protein [Escherichia coli]

596810597373	386	predicted amidase [Escherichia coli O103:H2 str. 12009]
633349633912	385	putative tail fiber assembly protein [Escherichia coli DH1]
634690634875	127	hypothetical protein ECO7815_15338 [Escherichia coli O55:H7 str. 3256-97 TW 07815]
709846710073	150	hypothetical protein [Escherichia coli]
710070710633	386	amidase [Escherichia coli O103:H2 str. 12009]
788919789776	581	H repeat-associated protein in rhsC-phrB intergenic region [Escherichia coli STEC_EH250]
11320881132297	139	hypothetical protein ECs5411 [Escherichia coli O157:H7 str. Sakai]
11346051135336	482	probable peroxidase b1017 - Escherichia coli (strain K-12)
11455631145691	89,4	hypothetical protein HMPREF9540_04559 [Escherichia coli MS 115-1]
11460271146686	410	diguanylate cyclase domain protein [Escherichia coli MS 116-1]
11467281147093	244	IS2 ORF1 [Shigella sonnei Ss046]
11471651147956	557	IS2 orfB [Shigella boydii ATCC 9905]
11480831148721	440	diguanylate cyclase domain protein [Escherichia coli STEC_S1191]
12590651260585	993	conserved hypothetical protein [Escherichia coli MS 187-1]
12607931261686	620	putative part of putative ATP-binding component of a transport system [Escherichia coli H736]
12630841263371	160	RecName: Full=Putative uncharacterized protein ycgl
12795161279665	101	hypothetical protein EschWDRAFT_0296 [Escherichia coli W]
13171081317326	151	hypothetical protein Ec53638_4583 [Escherichia coli 53638]
13395731340076	348	IS1 transposase B [Escherichia coli str. K-12 substr. MG1655]
13583411358550	130	hypothetical protein SentesT_29900 [Salmonella enterica subsp. enterica serovar Typhi str. M223]
14682411469209	666	predicted sugar transporter subunit [Escherichia coli str. K12 substr. W3110]
15135681513708	96,7	hypothetical protein ECDH1ME8569_1311 [Escherichia coli DH1]
15217991522815	708	IS5 transposase and trans-activator [Escherichia coli str. K-12 substr. MG1655]
15540111556569	1659	conserved hypothetical protein [Escherichia coli DH1]
15594771562632	2082	EntS/YbdA MFS transporter [Escherichia coli XH140A]
complement(15785801578957)	254	glyceraldehyde 3-phosphate dehydrogenase protein [Escherichia coli MS 116-1]
16165091618557	1414	RecName: Full=Putative protein rhsE

16194691619951	330	transposase [Escherichia coli TA007]
16200701620195	85,9	hypothetical protein ECSE_0238 [Escherichia coli SE11]
17391581739682	Sem resultado	
17407551741693	612	predicted defective integrase [Escherichia coli str. K12 substr. W3110]
18008811801081	132	hypothetical protein ECSE_1756 [Escherichia coli SE11]
18096291809856	149	putative inner membrane protein [Escherichia coli BW2952]
18262271826451	155	predicted protein [Escherichia coli B354]
18264391827464	712	DNA-binding transcriptional repressor PurR [Escherichia coli O157:H7 str. EDL933]
18641821865777	1084	fused putative acetyl-CoA:acetoacetyl-CoA transferase: alpha subunit/beta subunit [Escherichia coli BW2952]
18924191893588	800	hypothetical protein b1721 - Escherichia coli (strain K-12)
19834001984761	943	para-aminobenzoate synthase subunit I [Escherichia coli ATCC 8739]
complement(20659382066453)	324	ranscriptional activator FlhC [Escherichia coli O104:H4 str. LB226692]
21230532123568	345	outer membrane porin truncated homolog b1964 precursor [similarity]
21238862124275	265	outer membrane porin truncated homolog b1966 [similarity] - Escherichia coli (strain K-12)
21285102129514	688	oxidoreductase, molybdopterin binding [Escherichia coli 101-1]
21592672159536	168	predicted disrupted hemin or colicin receptor [Escherichia coli str. K12 substr. W3110]
21598632160243	251	putative GTP-binding protein [Escherichia coli DH1]
22855042286328	568	WGR domain protein [Escherichia coli MS 116-1]
22867852288377	1075	molR_2 protein - Escherichia coli (strain K-12)
22886072289299	475	WGR domain-containing protein [Escherichia coli DH1]
23110202311178	106	conserved hypothetical protein [Escherichia coli H736]
24468262447011	122	conserved hypothetical protein [Escherichia coli MS 116-1]
24706182471547	621	RNase BN, tRNA processing enzyme [Escherichia coli str. K-12 substr. MG1655]
24717752472278	348	IS1 transposase B [Escherichia coli str. K-12 substr. MG1655]
25175932517754	94,4	hypothetical protein HMPREF9345_03164 [Escherichia coli MS 107-1]
25741612577754	2485	hybrid sensory histidine kinase in two-component regulatory system with EvgA [Escherichia coli BW2952]
	95,1	conserved hypothetical protein [Escherichia coli MS 153-1]

28194642819601	93,6	conserved hypothetical protein, partial [Escherichia coli TA206]
28376742838540	579	hypothetical protein Z3905 [Escherichia coli O157:H7 str. EDL933]
28459462847187	853	P4-57 prophage; integrase [Escherichia coli str. K-12 substr. MG1655]
28761842876516	225	conserved hypothetical protein [Escherichia coli MS 196-1]
28765352877221	475	conserved hypothetical protein [Escherichia coli MS 116-1]
28773932878025	441	hypothetical protein EC_CP1639_04 [Enterobacteria phage CP-1639]
28810602882508	983	succinate-semialdehyde dehydrogenase I, NADP-dependent [Escherichia coli str. K-12 substr. MG1655]
28899212890262	228	hypothetical protein Z3972 [Escherichia coli O157:H7 str. EDL933]
28944852895624	760	glycine betaine/L-proline transport ATP binding subunit [Escherichia coli MS 107-1]
28958472896350	348	IS1 transposase B [Escherichia coli str. K-12 substr. MG1655]
28988802899146	175	predicted transporter [Escherichia coli str. K12 substr. W3110]
28991402900057	601	putative transport protein [Escherichia coli UMN026]
29013342901864	361	transcriptional repressor MprA [Escherichia coli O157:H7 str. Sakai]
29098202909936	80,1	hypothetical protein EcSMS35_2819 [Escherichia coli SMS-3-5]
29541572954795	437	predicted class II aldolase [Escherichia coli str. K-12 substr. MG1655]
29961212996261	91,7	hypothetical protein EcHS_A2919 [Escherichia coli HS]
29966622997147	332	ygcG [Escherichia coli E1520]
30612293061375	98,6	ypothetical protein NRG857_13983 [Escherichia coli O83:H1 str. NRG 857C]
30858313086307	328	putative peptidoglycan-binding-like protein [Escherichia coli IAI1]
30906173090754	94	hypothetical protein ECSTECDG1313_3894 [Escherichia coli STEC_DG131-3]
31527423154886	1476	methylmalonyl-CoA mutase, large subunit [Escherichia coli DH1]
31566943158172	1015	succinate CoA transferase [Escherichia coli DH1]
31706513171667	708	IS5 transposase and trans-activator [Escherichia coli str. K-12 substr. MG1655]
31748343174977	96,7	hypothetical protein HMPREF9536_04465 [Escherichia coli MS 84-1]
31813753182769	939	sugar transporter [Escherichia coli 'BL21-Gold(DE3)pLysS AG']
31834383184145	494	deoxyribonuclease I [Escherichia coli 'BL21-Gold(DE3)pLysS AG']
31987573199506	484	transport of nucleosides [Shigella dysenteriae Sd197]

31995763200784	833	transposase [Plasmid R100]
32007813203747	2054	conserved domain protein [Escherichia coli MS 116-1]
32063273207169	570	putative general secretion pathway protein L [Salmonella enterica subsp. enterica]
32120363213244	832	transposase [Plasmid R100]
34635943464721	778	conserved protein [Escherichia coli str. K-12 substr. MG1655]
35230493523186	93,6	conserved hypothetical protein, partial [Escherichia coli TA206]
36389343639812	605	predicted transposase [Escherichia coli str. K-12 substr. MG1655]
37196403719900	176	conserved hypothetical protein [Escherichia sp. 1_1_43]
37492993749481	124	hypothetical protein EcE24377A_3991 [Escherichia coli E24377A]
37651373765256	83,2	conserved hypothetical protein [Escherichia sp. 1_1_43]
37922263793797	1075	cellulose production protein [Escherichia coli str. K-12 substr. MG1655]
38147843814948	Sem resultado	
38501423850354	142	hypothetical protein SFV_3946 [Shigella flexneri 5 str. 8401]
38577833861916	2828	rhsA element core protein RshA [Escherichia coli str. K-12 substr. MG1655]
38650653865280	146	hypothetical protein ECs4472 [Escherichia coli O157:H7 str. Sakai]
39356833935817	Sem resultado	
39649663966048	753	putative protein CbrA [Escherichia coli MS 116-1]
40338434034772	524	transcriptional repressor RbsR [Escherichia coli UTI89]
40475034048486	668	acetolactate synthase II [Escherichia coli DH1]
40486384049147	353	acetolactate synthase II, large subunit, C-ter fragment, truncated protein [Escherichia coli DH1]
40504214052271	1268	dihydroxyacid dehydratase [Escherichia coli str. K-12 substr. MG1655]
40881744090642	1714	adenylate cyclase [Escherichia coli str. K-12 substr. MG1655]
41081994108918	487	putative inner membrane protein [Escherichia coli BW2952]
41665804167083	348	IS1 transposase B [Escherichia coli str. K-12 substr. MG1655]
41765184176676	86,2	no significant matches domain protein [Escherichia coli G58-1]
41906004190731	88,6	hypothetical protein HMPREF9346_03596 [Escherichia coli MS 119-7]
43731904374776	1095	predicted cyclic-di-GMP phosphodiesterase [Escherichia coli str. K-12 substr. MG1655]
43874254387928	348	IS1 transposase B [Escherichia coli str. K-12 substr. MG1655]

complement(44210464421666)	416	phnE [Escherichia coli str. K-12 substr. MG1655]
45351404535880	509	PAPS (adenosine 3'-phosphate 5'-phosphosulfate) 3'(2'),5'-bisphosphate nucleotidase [Escherichia coli str. K-12 substr. MG1655]
45511364551657	353	transposase protein A [Escherichia coli]
45519004552505	422	putative transposase insK for insertion sequence element IS150 [Shigella flexneri 2a str. 2457T]
45593844559686	204	cytochrome b(562) [Escherichia coli O157:H7 str. Sakai]
46017634601906	99,4	hypothetical protein ECIAI39_4746 [Escherichia coli IAI39]
46067374606940	132	predicted protein [Escherichia coli FVEC1412]
46188464619055	142	conserved hypothetical protein [Escherichia sp. 3_2_53FAA]
46256624625787	86,3	hypothetical protein HMPREF9348_05336 [Escherichia coli MS 145-7]
46348464635862	702	putative frameshift suppressor; KpLE2 phage-like element [Escherichia coli UMN026]

APÊNDICE 8 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Escherichia coli* str. K-12 substr. DH10B ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
1689217032	69,7	ypothetical protein ECP_0016 [Escherichia coli 536]
109045109305	86,3	putative transcriptional regulator [Salmonella enterica subsp. enterica serovar Typhi str. E98-2068]
236652236759	Sem resultado	
596156596404	166	CrcB [Escherichia coli]
709416709664	166	CrcB [Escherichia coli]
complement(894478894837)	43,1	glycoside hydrolase family 2 sugar binding [Mucilaginibacter paludis DSM 18603]
18526041852855	32,7	PREDICTED: uncharacterized protein LOC100811133 [Glycine max]
complement(19505591950729)	103	hypothetical protein SD1617_5381 [Shigella dysenteriae 1617]
20764762076814	229	conserved hypothetical protein [Shigella sonnei Ss046]
23691132369616	350	RecName: Full=Putative uncharacterized protein BicB

33764683376869	258	RecName: Full=Putative N-acetylgalactosamine permease IIC component 2; AltName: Full=EIIC-Aga'; AltName: Full=PTS system N-acetylgalactosamine-specific EIIC component 2
complement(34017283401943)	32,7	hypothetical protein Shew185_3298 [Shewanella baltica OS185]
35322853533661	925	potassium transporter peripheral membrane component [Escherichia coli O157:H7 str. EDL933]
35737343574276	316	GTG start codon, orf159 [Escherichia coli]
36801723680327	105	hypothetical protein ECIAI1_3589 [Escherichia coli IAI1]
36982493698521	38,1	hypothetical protein BuboB_13967 [Burkholderia ubonensis Bu]

APÊNDICE 9 – GENES NOVOS ENCONTRADOS NO GENOMA Herbaspirillum seropedicae SmR1 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
complement(12364791236688)	33,9	phosphorylcholine phosphatase [Verticillium albo-atrum VaMs.102]
19973981997772	154	IISP family preprotein translocase auxillary membrane component [Herminiimonas arsenicoxydans]
44852134485821	407	0S ribosomal subunit protein L25 [Herbaspirillum seropedicae]

APÊNDICE 10 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA Herbaspirillum seropedicae SmR1 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR BIT-SCORE DO BLAST	GENOMA DE REFERÊNCIA
complement(4361443865)	34,3	hypothetical protein MGG_14565 [Magnaporthe oryzae 70-15]
8074380823	Sem Resultado	
203037203966	48,5	hypothetical protein BCAL0353 [Burkholderia cenocepacia J2315]
complement(203117203611)	Sem Resultado	

complement(219133220704)	544	hypothetical protein Hsero_0205 [Herbaspirillum seropedicae SmR1]
612920613150	33,9	conserved hypothetical protein [Prevotella copri DSM 18205]
840881841798	Sem Resultado	
complement(12904361290693)	Sem Resultado	
14789291479987	520	hypothetical protein mma_1009 [Janthinobacterium sp. Marseille]
15320101532381	45,8	hypothetical protein BURPSS13_C0160 [Burkholderia pseudomallei S13]
17113581711651	33,9	onserved hypothetical protein [Veillonella sp. oral taxon 158 str. F0412]
17842561784774	36,6	diguanylate cyclase/phosphodiesterase [Rhodopseudomonas palustris HaA2]
18209701821320	34,7	hypothetical protein CLOSTASPAR_03270 [Clostridium asparagiforme DSM 15981]
complement(18767071877051)	54,7	hypothetical protein BamIOP4010DRAFT_5511 [Burkholderia ambifaria IOP40-10]
20284712028923	177	outer membrane lipoprotein [Collimonas fungivorans Ter331]
20297862029971	Sem Resultado	
complement(20513682051697)	36,2	hypothetical telomeric Sfil fragment 20 protein 3 [Theileria parva]
22770642277924	147	hypothetical protein Mmol_1216 [Methylotenera mobilis JLW8]
complement(23366262336976)	60,5	hypothetical protein SFxv_4749 [Shigella flexneri 2002017]
23883802388796	35,8	PREDICTED: RING finger protein 213 [Bos taurus]
24049862406029	415	hypothetical protein Daro_1870 [Dechloromonas aromatica RCB]
25578822558586	471	conserved hypothetical protein [Ricinus communis]
25797552580219	Sem Resultado	
30511663051795	91,3	hypothetical protein BamMEX5DRAFT_6990 [Burkholderia ambifaria MEX-5]
32388003239123	36,6	hypothetical protein CHLNCDRAFT_57702 [Chlorella variabilis]
32630783263302	Sem Resultado	
33683433368837	Sem Resultado	
35686443569210	203	hypothetical protein Hsero_3114 [Herbaspirillum seropedicae SmR1]
36714803672160	256	hypothetical protein IMCC9480_3649 [Oxalobacteraceae bacterium IMCC9480]
38389853839071	Sem Resultado	
41237834124112	35,8	ABC transporter, ATP-binding protein [Prevotella disiens FB035-09AN]
41598624160560	71,6	hypothetical protein Plav_2239 [Parvibaculum lavamentivorans DS-1]
-		

42899474290501	34,7	hypothetical protein OB2597_13493 [Oceanicola batsensis HTCC2597]
43017064302164	39,7	hypothetical protein [Podospora anserina S mat+]
43368424337318	37,4	hypothetical protein SORBIDRAFT_02g021220 [Sorghum bicolor]
complement(44526864452910)	31,6	hypothetical protein [Paramecium tetraurelia strain d4-2]
44981074498427	35	hypothetical protein SINV_03763 [Solenopsis invicta]
47156764717007	602	hypothetical protein PFLU2000 [Pseudomonas fluorescens SBW25]
complement(48231384823518)	34,3	hypothetical protein TcasGA2_TC008372 [Tribolium castaneum]
50362235036411	33,9	hypothetical protein glr1449 [Gloeobacter violaceus PCC 7421]
50955325095843	39,3	hypothetical protein CRE_05854 [Caenorhabditis remanei]

APÊNDICE 11 – GENES NOVOS ENCONTRADOS NO GENOMA Methanocaldococcus fervens AG86 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SOCRE</i> DO SILA	VALOR <i>BIT-SCORE</i> DO BLAST
159220 159721	246	294
158904 159176	105	135
358592 359135	166	276
528342 528513	107,6667	107
complement(982133 982993)	91,33333	92,8
complement(982972 984927)	398	392
complement(984927 986099)	258	246
complement(986224 986910)	192	188

APÊNDICE 12 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Methanocaldococcus fervens* AG86 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SOCRE</i> DO SILA	VALOR <i>BIT-SCORE</i> DO BLAST
324713 325016	17,33333	41,6
433501 433831	20,66667	Sem resultado
763725 763881	20,66667	Sem resultado
874848 874980	17,66667	32
1090988 1091315	27	38,1
complement(414250 414358)	88,66667	Sem resultado
complement(990977 991049)	21,66667	Sem resultado
complement(1293701 1293776)	60	Sem resultado

APÊNDICE 13 – GENES NOVOS ENCONTRADOS NO GENOMA *Pseudomonas fluorescens* pf 5 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
8281883108	190	cytochrome c [Pseudomonas brassicacearum subsp. brassicacearum NFM421]
210719212467	877	von Willebrand factor, type A [Pseudomonas fluorescens Pf0-1]
764081765394	587	precorrin-3B synthase [Pseudomonas brassicacearum subsp. brassicacearum NFM421]
934135934989	445	Helix-turn-helix domain-containing protein [Pseudomonas putida BIRD-1]
935147935521	242	DNA-binding protein [Pseudomonas fluorescens Pf-5]
971334971810	318	RecName: Full=Ribosome maturation factor rimP
13044621305304	580	peptide chain release factor 2 [Pseudomonas fluorescens Pf-5]
17513131751525	111	transposase IS4 family protein [Pseudomonas syringae pv. japonica str. M301072PT]

18889331890144	653	cytochrome c-type biogenesis protein [Pseudomonas fluorescens Pf0-1]
19333651933841	272	phenylacetic acid degradation-like protein [Pseudomonas fluorescens Pf0-1]
19338381934290	262	hypothetical protein PFLU1829 [Pseudomonas fluorescens SBW25]
22436682244222	246	ultraviolet light resistance protein RulA [Pseudomonas fluorescens Pf-5]
22950082297608	956	motility protein [Pseudomonas brassicacearum subsp. brassicacearum NFM421]
23454932346008	73,9	hypothetical protein PFLU3398 [Pseudomonas fluorescens SBW25]
24731762473346	94,7	RelE/ParE family plasmid stabilization system protein [Pseudomonas aeruginosa PA7]
26189042619257	92,8	hypothetical protein PFLU2998 [Pseudomonas fluorescens SBW25]
29758722976165	142	hypothetical protein PFL_1012 [Pseudomonas fluorescens Pf-5]
29927102994809	1120	acyl-CoA synthetase [Pseudomonas putida KT2440]
39816793981948	92	site-specific recombinase [Pseudomonas entomophila L48]
46723444672838	143	LysE family transporter [Cupriavidus metallidurans CH34]
48106224810750	88,6	cell wall-associated hydrolase [Vibrio cholerae B33]
48292564831094	984	unnamed protein product [Pseudomonas aeruginosa LESB58]
49121984912419	144	hypothetical protein Pfl01_3963 [Pseudomonas fluorescens Pf0-1]
50224725022957	321	short chain dehydrogenase [Pseudomonas fluorescens Pf0-1]
54393505439766	684	hypothetical protein PputGB1_2994 [Pseudomonas putida GB-1]
56507425652934	1256	hypothetical protein PSEBR_a4519 [Pseudomonas brassicacearum subsp. brassicacearum NFM421]
57311665731420	131	prophage CP4-57 regulatory [Pseudomonas putida S16]
57322525732536	143	hypothetical protein PFWH6_0199 [Pseudomonas fluorescens WH6]
60095746009702	88,6	cell wall-associated hydrolase [Vibrio cholerae B33]
62771646278216	355	diguanylate cyclase [Pseudomonas entomophila L48]
63833946383522	88,6	cell wall-associated hydrolase [Vibrio cholerae B33]

APÊNDICE 14 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Pseudomonas fluorescens* pf 5 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
99941101506	81,3	putative D-methionine ABC transporter, ATP-binding protein [Streptomyces sp. Tu6071]
547476548792	40,4	hypothetical protein MGG_07681 [Magnaporthe oryzae 70-15]
12539441254684	258	thioesterase superfamily protein [Pseudomonas fluorescens Pf0-1]
14322671432665	57,8	hypothetical protein MEALZ_0705 [Methylomicrobium alcaliphilum]
17526461753101	140	hypothetical protein PFL_1557 [Pseudomonas fluorescens Pf-5]
complement(25786032579052)	137	hypothetical protein PFL_2019 [Pseudomonas fluorescens Pf-5]
25858992586201	36,2	peptidase, putative [Pseudoalteromonas tunicata D2]
27321642732769	37,4	PREDICTED: protein SHORT-ROOT-like [Glycine max]
27719932772385	94	hypothetical protein PSEEN0542 [Pseudomonas entomophila L48]
28150122815545	54,7	hypothetical protein CATMIT_01619 [Catenibacterium mitsuokai DSM 15897]
32424653243046	234	hypothetical protein Pfl01_2555 [Pseudomonas fluorescens Pf0-1]
37932403793899	45,4	ypothetical protein PSYCIT7_35427 [Pseudomonas syringae Cit 7]
39525453952970	37	NADH:flavin oxidoreductase [Marinobacter sp. Mnl7-9]
39555943956022	119	hypothetical protein Psefu_2852 [Pseudomonas fulva 12-X]
41334404133922	47,4	hypothetical protein PFL_4188 [Pseudomonas fluorescens Pf-5]
complement(42870274287371)	36,6	PDR-like ABC transporter, putative, expressed [Oryza sativa Japonica Group]
43653524365819	58	hypothetical protein BpseB_41036 [Burkholderia pseudomallei B7210]
43780554378561	124	hypothetical protein CTS44_06238 [Comamonas testosteroni S44]
47924024792521	Sem resultado	
complement(48232984823558)	107	lipoprotein [Pseudomonas fluorescens Pf0-1]
57709495771485	36,2	hypothetical protein TGME49_062450 [Toxoplasma gondii ME49]
60888706089901	117	hypothetical protein PSYPI_40379 [Pseudomonas syringae pv. pisi str. 1704B]
60950316095375	38,9	Hypothetical protein [Corynebacterium glutamicum ATCC 13032]

61018046102160	36,6	Transporter, MFS superfamily [Bacillus thuringiensis serovar israelensis ATCC 35646]
63009786302588	73,9	hypothetical protein c0526 [Escherichia coli CFT073]
63616836362258	105	hypothetical Protein PANA_3622 [Pantoea ananatis LMG 20103]
65153476515832	40,4	psbO [Microcystis aeruginosa PCC 7806]
68784186879056	80,9	exonuclease III [Xanthomonas oryzae pv. oryzae KACC10331]

APÊNDICE 15 – GENES NOVOS ENCONTRADOS NO GENOMA Ralstonia solanacearum CFBP2957 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST
4258943170	395
4443244626	116
8114481578	277
8160882198	378
421079421231	86,7
950478950732	134
964390964827	214
11449201145333	265
11451971145595	216
12399001240256	218
15126961513061	211
15370571537272	139
18584711858998	268
18796921880591	441
24596172459805	115
25608842561420	196

25809772581729	503
25818232582062	168
29041532904413	119
31467413146956	624
32472213249294	1323
32495573249892	181

APÊNDICE 16 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Ralstonia solanacearum* CFBP2957 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR <i>BIT-SCORE</i> DO BLAST
complement(4892749181)	33,5
198556199062	35,4
268006268464	37,7
complement(821094821336)	34,3
860871861311	35,8
13437001344083	37,4
18571031857240	85
21950722195611	Sem resultado
25606002560983	213
26956302696694	38,9
27530332753332	35,4
29298742930899	43,1
32722993272502	31,6
34105523410854	35,4

APÊNDICE 17 – GENES NOVOS ENCONTRADOS NO GENOMA Streptococcus agalactiae NEM316 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
247762247935	109	putative transporter [Streptococcus agalactiae 515]
457984458118	87	hypothetical protein SAG0401 [Streptococcus agalactiae 2603V/R]
507764508303	367	DNA integration/recombination/invertion protein [Streptococcus pyogenes MGAS6180]
614158614415	177	transposase [Streptococcus agalactiae 18RS21]
614541614750	145	ISPsy9, transposase OrfB [Streptococcus agalactiae H36B]
622249622518	134	conserved hypothetical protein [Streptococcus agalactiae 18RS21]
652566653135	386	sortase family protein [Streptococcus agalactiae 2603V/R]
656398656517	78,6	hypothetical protein HMPREF9171_1434 [Streptococcus agalactiae ATCC 13813]
673222673632	266	putative permease [Streptococcus agalactiae 515]
857993858151	99	hypothetical protein SAG0813 [Streptococcus agalactiae 2603V/R]
909831910067	152	hypothetical protein SAK_0988 [Streptococcus agalactiae A909]
953122953265	89	conserved hypothetical protein [Streptococcus agalactiae 515]
10035141003867	242	nisin-resistance protein, putative [Streptococcus agalactiae CJB111]
13469131347293	258	IS861, transposase OrfB [Streptococcus agalactiae COH1]
13473371347597	182	transposase OrfB, IS3 family, truncation [Streptococcus agalactiae CJB111]
13572911358052	523	ISSag4, transposase orfB [Streptococcus agalactiae A909]
16244211624597	219	hypothetical protein SAG1492 [Streptococcus agalactiae 2603V/R]
18610641861198	84,3	hypothetical protein HMPREF9171_0481 [Streptococcus agalactiae ATCC 13813]
19005201900639	79,3	hypothetical protein HMPREF9171_0252 [Streptococcus agalactiae ATCC 13813]
20077982007947	78,2	hypothetical protein SAG1798 [Streptococcus agalactiae 2603V/R]
21504742150974	276	phage integrase family domain-containing protein [Streptococcus anginosus 1_2_62CV]

APÊNDICE 18 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA Streptococcus agalactiae NEM316 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENOMA DE REFERÊNCIA
197055197138	Sem resultado	
778934779104	33,5	hypothetical protein HMPREF9467_04030 [Clostridium clostridioforme 2_1_49FAA]
11004031100549	32	branched-chain amino acid transport ATP-binding protein [Renibacterium salmoninarum ATCC 33209]
11732911173557	32,3	hypothetical protein Phep_2013 [Pedobacter heparinus DSM 2366]
15062011506368	32,3	hypothetical protein GOPIP_019_00080 [Gordonia polyisoprenivorans NBRC 16320]
15891001590638	422	hypothetical protein SAL_1538 [Streptococcus agalactiae 515]
16945641694719	30,8	Hypothetical protein GL50581_2446 [Giardia intestinalis ATCC 50581]
17091231709440	203	hypothetical protein SAN_1714 [Streptococcus agalactiae COH1]
18688871869042	Sem resultado	

APÊNDICE 19 — GENES NOVOS ENCONTRADOS NO GENOMA Streptococcus mutans UA159 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
858919859035	77,4	acetyltransferase [Streptococcus mutans NN2025]
11763071176609	147	hypothetical protein STRMA_1081 [Streptococcus macacae NCTC 11558]
13080231308691	464	transposase, ISSmu1 [Streptococcus mutans UA159]
13730261373340	215	hypothetical protein SmuNN2025_0661 [Streptococcus mutans NN2025]
17912931791631	224	hypothetical protein SmuNN2025_0242 [Streptococcus mutans NN2025]
19152621915399	89,4	hypothetical protein SmuNN2025_1787 [Streptococcus mutans NN2025]
19779731978122	100	50S ribosomal protein L33 [Streptococcus thermophilus LMG 18311]

APÊNDICE 20 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Streptococcus mutans* UA159 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
596428596739	34,7	hypothetical protein Shewmr7_0132 [Shewanella sp. MR-7]
741927742055	70,1	hypothetical protein SmuNN2025_1216 [Streptococcus mutans NN2025]
complement(883032883331)	Sem resultado	
931808931987	31,6	CDP-diacylglycerol synthase, putative [Ixodes scapularis]
complement(10304951030653)	Sem resultado	
11712561171435	31,6	hypothetical protein BRAFLDRAFT_87520 [Branchiostoma floridae]
12531881253409	Sem resultado	
13040841304179	88,2	transposase [Streptococcus mutans UA159]
15399991540253	36,2	PREDICTED: WD repeat-containing protein 75-like [Anolis carolinensis]
complement(17811741781269)	Sem resultado	
17905571790733	168	hypothetical protein SmuNN2025_0256 [Streptococcus mutans NN2025]
17912931791631	35	hypothetical protein TRIVIDRAFT_178072 [Trichoderma virens Gv29-8]

APÊNDICE 21 – GENES NOVOS ENCONTRADOS NO GENOMA Streptococcus pneumoniae Hungary19A 6 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
2690027061	107	hypothetical protein SPAP_0029 [Streptococcus pneumoniae AP200]
9805898573	270	lytic amidase [Streptococcus pneumoniae GA11426]

9869999013	211	lytic amidase (N-acetylmuramoyl-L-alanine amidase) [Streptococcus pneumoniae CDC3059-06]
157122157661	372	hypothetical protein spr0072 [Streptococcus pneumoniae R6]
157728158138	280	hypothetical protein spr0074 [Streptococcus pneumoniae R6]
219764220144	242	hypothetical protein CGSSp9BS68_03268 [Streptococcus pneumoniae SP9-BS68]
277068277211	98,6	hypothetical protein spr0181 [Streptococcus pneumoniae R6]
complement(301034301174)	87,4	iron(III) ABC transporter, permease protein [Streptococcus pneumoniae SP9-BS68]
323553323717	94,4	ypothetical protein SpneCMD_03115 [Streptococcus pneumoniae str. Canada MDR_19F]
420048420359	214	Transposase, uncharacterized, truncation [Streptococcus pneumoniae SP18-BS74]
420628420879	147	hypothetical protein HMPREF0837_11111 [Streptococcus pneumoniae TCH8431/19A]
420950421108	105	transposase-like protein [Streptococcus pneumoniae GA19077]
442677442871	127	hypothetical protein SPAR74_0357 [Streptococcus pneumoniae GA41688]
450588450764	122	hypothetical protein SPAR31_0417 [Streptococcus pneumoniae GA13494]
451198451842	403	choline binding protein G, truncation [Streptococcus pneumoniae R6]
451935452063	85,5	choline binding protein G [Streptococcus pneumoniae R6]
495269495418	106	glycosyl transferase, family 8 [Streptococcus pneumoniae GA11184]
complement(528483529010)	348	transposase [Streptococcus pneumoniae 670-6B]
578591578947	242	hypothetical protein CGSSp6BS73_05270 [Streptococcus pneumoniae SP6-BS73]
590829590990	92	hypothetical protein [Streptococcus pneumoniae]
594091594324	152	hypothetical protein SP_0546 [Streptococcus pneumoniae TIGR4]
614698615843	784	hypothetical protein SPCG_0538 [Streptococcus pneumoniae CGSP14]
616059616601	371	hypothetical protein SPCG_0540 [Streptococcus pneumoniae CGSP14]
616817617257	298	hypothetical protein SPCG_0541 [Streptococcus pneumoniae CGSP14]
674275674400	85,5	hypothetical protein HMPREF0837_10925 [Streptococcus pneumoniae TCH8431/19A]
685082685252	75,9	Glycero-transferase [Streptococcus pneumoniae INV200]
686432686644	143	hypothetical protein SPAR91_0825 [Streptococcus pneumoniae GA47283]
686787686972	79	hypothetical protein CGSSp6BS73_11426 [Streptococcus pneumoniae SP6-BS73]
689746689937	122	hypothetical protein CGSSp6BS73_02535 [Streptococcus pneumoniae SP6-BS73]

698336698944	412	hypothetical protein SPCG_0607 [Streptococcus pneumoniae CGSP14]
700842701312	306	putative membrane protein [Streptococcus pneumoniae GA41410]
701300702301	666	putative membrane protein [Streptococcus pneumoniae GA41410]
731288731821	326	hypothetical protein SPN23F_06190 [Streptococcus pneumoniae ATCC 700669]
731826733307	991	hypothetical protein spr0601 [Streptococcus pneumoniae R6]
749085749654	387	lactate oxidase [Streptococcus pneumoniae GA41688]
767638768249	398	phosphosugar-binding transcriptional regulator, RpiR family protein [Streptococcus pneumoniae SP19-BS75]
780453780776	220	transposase [Streptococcus pneumoniae GA07228]
780859781257	268	mobile genetic element [Streptococcus pneumoniae JJA]
845512845898	231	Transposase [Streptococcus pneumoniae SP18-BS74]
845876846058	128	transposase family protein [Streptococcus pneumoniae TCH8431/19A]
849195849611	291	IS630-Spn1, transposase Orf1 [Streptococcus pneumoniae CGSP14]
874001874213	138	hypothetical protein SPAR87_0356 [Streptococcus pneumoniae GA47033]
complement(887309887836)	351	transposase [Streptococcus pneumoniae GA04375]
complement(931820931987)	65,1	peptidase S24-like family protein [Streptococcus pneumoniae GA41410]
941519941629	76,6	hypothetical protein CGSSp6BS73_05940 [Streptococcus pneumoniae SP6-BS73]
complement(948435948926)	309	transposase [Streptococcus pneumoniae Taiwan19F-14]
10097051010070	256	degenerative transposase [Streptococcus pneumoniae R6]
10219801022183	113	histidine triad protein [Streptococcus mitis SK1080]
10424471042680	158	Type I restriction-modification system methylation subunit [Streptococcus pneumoniae SP19-BS75]
10590521059333	193	hypothetical protein CGSSp14BS69_02901 [Streptococcus pneumoniae SP14-BS69]
10594381059632	128	IS1381, transposase OrfA [Streptococcus pneumoniae SP6-BS73]
complement(10747431075270)	350	Transposase, orf 2 [Streptococcus pneumoniae INV104]
10812441081915	449	mobile genetic element [Streptococcus pneumoniae Taiwan19F-14]
10820151082329	217	transposase (IS4 family) [Streptococcus pneumoniae CDC1087-00]
11192481119619	248	phosphopyruvate hydratase [Streptococcus pneumoniae SP18-BS74]
11197681119893	84,3	Phosphoserine phosphatase, truncation [Streptococcus pneumoniae SP9-BS68]

11236301123890	139	hypothetical protein SPAP_0788 [Streptococcus pneumoniae AP200]
11623201163963	1127	SNF2 family protein [Streptococcus sanguinis SK49]
12888841289582	481	LICD family protein [Streptococcus pneumoniae GA44511]
14429831443195	137	hypothetical protein HMPREF0837_11116 [Streptococcus pneumoniae TCH8431/19A]
14432451443427	122	Type II restriction endonuclease, uncharacterized, truncation [Streptococcus pneumoniae R6]
15866911587302	389	hypothetical protein SP70585_1652 [Streptococcus pneumoniae 70585]
15874731587745	175	hypothetical protein SPAR22_1643 [Streptococcus pneumoniae GA11304]
16644851664787	175	3-ketoacyl-(Acyl-carrier-protein) reductase [Streptococcus pneumoniae GA47388]
16784521678763	204	transcriptional activator, Rgg/GadR/MutR family protein [Streptococcus pneumoniae SP23-BS72]
16965371696848	206	periplasmic binding s and sugar binding domain of the LacI family protein [Streptococcus pneumoniae GA44500]
17212681721711	283	dicarboxylate/amino acid:cation (Na+ or H+) symporter (DAACS) family protein [Streptococcus pneumoniae SP9-BS68]
17611441761569	287	transcriptional regulator [Streptococcus pneumoniae CGSP14]
18428911843592	482	NAD-dependent epimerase/dehydratase family protein [Streptococcus pneumoniae SP19-BS75]
18437191843850	84,2	UDP-glucose 4-epimerase [Streptococcus mitis NCTC 12261]
18592011859719	356	ribonuclease III [Streptococcus pneumoniae GA41301]
18597101860003	196	transposase [Streptococcus pneumoniae TCH8431/19A]
18600001860527	350	transposase [Streptococcus pneumoniae GA47373]
18782461878764	354	ribonuclease III [Streptococcus pneumoniae GA41437]
18787551879513	491	IS1167, transposase [Streptococcus pneumoniae SP18-BS74]
18899471890465	354	transposase [Streptococcus pneumoniae 670-6B]
18904561890749	196	transposase [Streptococcus pneumoniae TCH8431/19A]
18907461891264	335	transposase [Streptococcus pneumoniae GA17227]
19150981915487	266	putative IS1381 transposase [Streptococcus pneumoniae GA44511]
19941371994397	161	hypothetical protein SPT_2011 [Streptococcus pneumoniae Taiwan19F-14]
20280162029311	850	putative IS1167 transposase [Streptococcus pneumoniae]
20462212046439	128	hypothetical protein smi_0187 [Streptococcus mitis B6]

20552222055467	166	hypothetical protein CGSSp3BS71_05184 [Streptococcus pneumoniae SP3-BS71]
20862452087183	143	hypothetical protein CGSSp23BS72_01442 [Streptococcus pneumoniae SP23-BS72]
21000462100498	312	ypothetical protein CGSSp6BS73_12286 [Streptococcus pneumoniae SP6-BS73]
21339172134114	125	IS1381, transposase OrfA [Streptococcus pneumoniae SP6-BS73]
21340592134493	290	mobile genetic element [Streptococcus pneumoniae str. Canada MDR_19F]
21345292134765	165	transposase (IS4 family) [Streptococcus pneumoniae CDC1087-00]
complement(22239982224807)	550	ABC transporter, ATP-binding protein [Streptococcus pneumoniae SP3-BS71]

APÊNDICE 22 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Streptococcus pneumoniae* Hungary19A 6 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
200755200922	112	hypothetical protein CGSSp6BS73_10106 [Streptococcus pneumoniae SP6-BS73]
241673241840	31,2	protein of unknown function DUF88 [Desulfovibrio fructosovorans JJ]
362704362874	116	hypothetical protein SPAR123_0281 [Streptococcus pneumoniae 4027-06]
391442391813	82,4	OrfC [Streptococcus pneumoniae]
460432460665	154	hypothetical protein CGSSp23BS72_07066 [Streptococcus pneumoniae SP23-BS72]
464746465042	37,4	strongly similar to elongation factor Ts (EF-Ts) [Candidatus Kuenenia stuttgartiensis]
509314509499	81,6	hypothetical protein CGSSp11BS70_09170 [Streptococcus pneumoniae SP11-BS70]
946258946407	93,2	hypothetical protein HMPREF0837_11572 [Streptococcus pneumoniae TCH8431/19A]
966278966427	41,2	hypothetical protein HMPREF1042_0479 [Streptococcus constellatus subsp. pharyngis SK1060]
complement(12148351215041)	39,9	hypothetical protein BJ6T_82530 [Bradyrhizobium japonicum USDA 6]
14811981481521	35	type IV pilus assembly PilZ [Sulfurospirillum deleyianum DSM 6946]
18108871811117	44,3	hypothetical protein SpneCM_00672 [Streptococcus pneumoniae str. Canada MDR_19A]
complement(19653121965503)	118	hypothetical protein SpneC19_09726 [Streptococcus pneumoniae CCRI 1974M2]

APÊNDICE 23 – GENES NOVOS ENCONTRADOS NO GENOMA *Thermotoga maritima* MSB8 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
291472291750	179	hypothetical protein Tpet_0647 [Thermotoga petrophila RKU-1]
291764292783	696	extracellular solute-binding protein family 1 [Thermotoga maritima MSB8]
399656399880	135	alkylhydroperoxidase like protein, AhpD family [Thermotoga maritime MSB8]
409601409858	45,1	hypothetical protein CTN_0086 [Thermotoga neapolitana DSM 4359]
701680703326	1077	flagellar hook-basal body protein [Thermotoga maritimaMSB8]
703313703549	160	flagellar hook-basal body protein [Thermotoga maritima MSB8]
895085896029	615	ATPase AAA-2 domain protein [Thermotoga maritima MSB8]
896068897462	917	ATPase AAA-2 domain protein [Thermotoga maritima MSB8]
11834601185085	1097	alpha-glucan phosphorylase [Thermotoga petrophila RKU-1]
13375051338665	785	Xenobiotic-transporting ATPase [Thermotoga marítima MSB8]
13496231349742	162	hypothetical protein Tpet_1440 [Thermotoga petrophila RKU-1]
17358741736434	377	Pyruvate/ketoisovalerate oxidoreductase [Thermotoga marítima MSB8]

APÊNDICE 24 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Thermotoga maritima* MSB8 ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
4382844376	360	hypothetical protein ThemaDRAFT_1453 [Thermotoga maritima MSB8]
complement(346968347735)	40	ABC transporter, multidrug resistance associated protein [Chlamydomonas reinhardtii]

32	AGAP009030-PA [Anopheles gambiae str. PEST]
40,4	hypothetical protein AURANDRAFT_37344 [Aureococcus anophagefferens]
181	hypothetical protein ThemaDRAFT_0709 [Thermotoga maritima MSB8]
36,2	Protein C54D10.4 [Caenorhabditis elegans]
37,4	predicted protein [Physcomitrella patens subsp. patens]
34,7	DHH family protein [Clostridium botulinum E1 str. 'BoNT E Beluga']
34,7	PREDICTED: major facilitator superfamily domain-containing protein 6-like [Apis mellifera]
33,1	hypothetical protein NCU05190 [Neurospora crassa OR74A]
67	137aa long hypothetical protein [Pyrococcus horikoshii OT3]
34,7	oligopeptidase A [Endoriftia persephone 'Hot96_1+Hot96_2']
Sem resultado	
35	ypothetical protein BATDEDRAFT_92259 [Batrachochytrium dendrobatidis JAM81]
32,7	aminotransferase, DegT/DnrJ/EryC1-family protein [Desulfobacterium autotrophicum HRM2]
34,4	TPA_inf: HDC02996 [Drosophila melanogaster]
	40,4 181 36,2 37,4 34,7 34,7 33,1 67 34,7 Sem resultado 35 32,7

APÊNDICE 25 – GENES NOVOS ENCONTRADOS NO GENOMA *Treponema pallidum* Nichols ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
624365625738	127	hypothetical protein TP0409 [Treponema pallidum subsp. pallidum str. Nichols]

APÊNDICE 26 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Treponema pallidum* Nichols ENCONTRADOS PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
68327074	159	putative ABC antibiotics transporter [Treponema pallidum subsp. pallidum str. Chicago]
134772135653	40,4	DNA (cytosine-5-)-methyltransferase [Bacteroides ovatus SD CMC 3f]
151011151853	40,4	DNA (cytosine-5-)-methyltransferase [Bacteroides ovatus SD CMC 3f]
155702156379	265	hypothetical protein TPCCA_0133b [Treponema paraluiscuniculi Cuniculi A]
171783172025	33,5	TonB-dependent receptor [Brenneria sp. EniD312]
196333196635	34,3	hypothetical protein HMPREF9093_00469 [Fusobacterium sp. oral taxon 370 str. F0437]
429611429853	166	putative ectonucleoside triphosphate diphosphohydrolase 6 [<i>Treponema pallidum</i> subsp. pallidum str. Chicago]
435074435460	261	reprotein translocase subunit YajC [Treponema paraluiscuniculi Cuniculi A]
797592797996	35	DNA-directed RNA polymerase II subunit two [Leucogyrophana olivascens]
915955916515	36,6	PREDICTED: tRNA (uracil-5-)-methyltransferase homolog-B-like [Oreochromis niloticus]
934095934304	143	hypothetical protein TPCCA_0856 [Treponema paraluiscuniculi Cuniculi A]
965519966076	Sem resultado	
979939980205	31,6	hypothetical protein MSWAN_1123 [Methanobacterium sp. SWAN-1]
10007811001605	560	onserved hypothetical protein [Treponema pallidum subsp. pallidum str. Chicago]
10243981024598	33,1	radical SAM domain-containing protein [Syntrophobacter fumaroxidans MPOB]
10367221037015	202	hypothetical protein TPCCA_0954a [Treponema paraluiscuniculi Cuniculi A]
11166801117093	36,2	sulfate permease family protein [Porphyromonas endodontalis ATCC 35406]
complement(11171391117276)	Sem resultado	

APÊNDICE 27 – GENES NOVOS ENCONTRADOS NO GENOMA *Treponema denticola* ATCC 35405 PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-</i> <i>SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA	
721437721832	270	single-stranded DNA-binding protein [Treponema denticola F0402]	
802042804342	1497	serine protease Treponema denticola [Treponema denticola F0402]	
884374884595	147	nypothetical protein HMPREF9353_02308 [Treponema denticola F0402]	
10088351009599	372	binding-protein-dependent transport system inner membrane component [Treponema denticola F0402]	
10463851048073	734	ATP-dependent protease LA [Treponema vincentii ATCC 35580]	
20938982094086	139	DNA mismatch repair protein [Treponema denticola F0402]	

APÊNDICE 28 – GENES COM SOBREPOSIÇÃO EM FASE DE LEITURA NO GENÔMA *Treponema denticola* ATCC 35405 PELO PROGRAMA HGF E LOCALIZADOS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA SILA E VALIDADOS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE <i>BIT-SCORE</i> DO BLAST	GENÔMA DE REFERÊNCIA
275101275427	35	glutaminescyllo-inositol transaminase [Desulfomicrobium baculatum DSM 4028]
327930328055	31,6	hypothetical protein TTHERM_00242550 [Tetrahymena thermophila]
559000559074	sem blast	
complement(566782566982)	32	XRE family transcriptional regulator [Burkholderia phytofirmans PsJN]
874843875076	146	hypothetical protein HMPREF9353_02295 [Treponema denticola F0402]
974262974354	sem blast	
complement(11959321196264)	35	poly-beta-hydroxybutyrate polymerase [Aeromonas hydrophila subsp. hydrophila ATCC 7966]
14529861453267	33,1	hypothetical protein HMPREF0988_01647 [Lachnospiraceae bacterium 1_4_56FAA]
17623891762679	37	FMN-binding domain-containing protein [Syntrophobacter fumaroxidans MPOB]
complement(17653771765460)	sem blast	

18476151847776	31,2 hypothetical protein SINV_04347 [Solenopsis invicta]	
18752781875532	33,9	PREDICTED: similar to CG3168 CG3168-PA, partial [Hydra magnipapillata] Length=238
18868261887026	102	hypothetical protein HMPREF9353_01922 [Treponema denticola F0402]
complement(19181961918432)	34,7	F5/8 type C domain containing protein [Trichomonas vaginalis G3]
19404851940808	36,2	glycoside hydrolase clan GH-D [Paenibacillus sp. JDR-2]

APÊNDICE 29 – GENES NOVOS ENCONTRADOS NO GENOMA *Bradyrhizobium japonicum* USDA 110 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
529253529463	131
539055539442	178
757372757786	145
910182910461	102
920756921083	194
12010461201274	94,4
14467291446978	162
17966421797083	207
17980291798245	143
18441941844428	169
18554141855636	153
19890911989421	169
20231352023597	242
20693692069699	191
22378382238027	126
23370472337455	144

23797632380855	443
26326772632923	120
26779872678197	142
27695492769741	119
27864862786720	142
28216292821860	110
28487562848951	117
34454553445611	94,4
35744803574690	94,4
41874904187790	177
42506414250968	196
42805104280747	144
42853534285602	148
43329294333169	150
44133484413657	108
46346604635251	360
46390984639356	159
46772304677527	162
48599674860222	152
48652224865426	120
49496394950008	236
50142905014614	129
50222065022452	99
50445805044784	94
50449235045085	90,1
51452095145422	92,4
51859985186217	147
55091325509477	189

57246355724884	105
complement(57428155743460)	144
63303736330562	118
63528046353041	141
67507316750932	130
67539716754193	103
67877216787970	161
complement(72854237285657)	126
73425737342825	124
77612267761520	168
81683128168537	107
81685678168798	125
83655238366030	253
84057208406245	150
84451888445575	91,7
90415309041761	147
91033979103640	134

APÊNDICE 30 – GENES NOVOS ENCONTRADOS NO GENOMA Burkholderia mallei SAVP1 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
40514324	178
208762209932	763
264988265129	92,8
800849801089	169

12458461246050	135
complement(16684651668948)	94

APÊNDICE 31 – GENES NOVOS ENCONTRADOS NO GENOMA *Escherichia coli K 12* substr DH10B PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
5847459125	399
213294213483	122
227571227838	155
246190247321	736
262073262595	343
262837263443	411
331777332974	767
467428467686	176
505030505243	137
520089520653	379
521430521616	126
596586596814	90,5
596810597374	356
633349633913	379
634690634876	126
709846710074	90,5
710070710634	356
788919789777	572
11320881132298	137

11346051135337	417
11455631145692	90,5
11460271146687	346
11467281147094	237
11480831148722	424
12590651260586	979
12607931261687	591
12630841263372	163
12795161279666	99
13171081317327	155
13395731340077	349
13518421352037	90,1
13583411358551	127
14682411469210	631
15135681513709	95,9
15217991522816	687
16194691619952	267
17391581739683	197
17407551741694	585
18008811801082	133
18096291809857	130
18262271826452	158
18641821865778	1054
18924191893589	736
19834001984762	913
21230532123569	287
21238862124276	271
21285102129515	689

21592672159537	169
21598632160244	247
22855042286329	506
22867852288378	990
22886072289300	474
23110202311179	105
24468262447012	123
24706182471548	613
24717752472279	349
25175932517755	99
27107682710966	95,1
28194642819602	96,3
28376742838541	440
28459462847188	820
28761842876517	226
28765352877222	474
28773932878026	388
28810602882509	954
28899212890263	224
28944852895625	724
28958472896351	349
28988802899147	169
28991402900058	489
29013342901865	353
29541572954796	394
29961212996262	94,7
29966622997148	174
30858313086308	303

30906173090755	95,1
31706513171668	687
31748343174978	95,5
31813753182770	887
31834383184146	474
31987573199507	477
31995763200785	818
32007813203748	1986
32063273207170	526
32120363213245	819
33764683376870	170
34635943464722	721
35230493523187	96,3
35322853533662	884
36389343639813	585
36801723680328	105
37196403719901	173
37492993749482	128
38501423850355	139
38577833861917	2724
38650653865281	122
40338434034773	503
40475034048487	597
40504214052272	1220
40881744090643	1623
41665804167084	349
41906004190732	91,7
43731904374777	1006

43869644387198	148
43874254387929	349
45351404535881	469
45511364551658	343
45519004552506	411
45593844559687	198
46017634601907	99
46067374606941	135
46188464619056	145
46348464635863	674
complement(894478894838)	139
complement (15785801578958)	91,7
complement (20672502068267)	111
complement (29132722914349)	99,4
complement (31270763127958)	93,6
complement (39581043959472)	114
complement (39733123975727)	93,6
complement (43687684371591)	102
complement (44210464421667)	97,1

APÊNDICE 32 – GENES NOVOS ENCONTRADOS NO GENOMA *Herbaspirillum seropedicae* SmR1 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
523229523409	100
30154033015601	109

38698953870360	107
44852134485822	370
complement(920849921080)	99,4
complement(49921024992252)	91,7

APÊNDICE 33 – GENES NOVOS ENCONTRADOS NO GENOMA Methanocaldococcus fervens AG86 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
157779157986	105
158476158740	99
158904159177	95,5
159220159721	293
358592359135	286
398800399202	205
528342528513	105
10495021049982	273
12837921283981	112
complement(391331391870)	355
complement(982972984480)	293
complement(992328992528)	97,1

APÊNDICE 34 – GENES NOVOS ENCONTRADOS NO GENOMA *Pseudomonas fluorescens* Pf-5 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
8281883109	193
206003206585	123
206557206944	108
210719212468	796
934135934990	432
935147935522	231
971334971811	266
980650981211	159
13044621305305	527
17513131751526	109
19333651933842	268
19338381934291	253
19882401988591	137
22950082297609	721
23416902341924	126
23432402344092	267
24731762473347	99,8
26204402620812	103
29758722976166	105
29927102994810	998
31356283140014	802
31402243141334	438
34606293461034	97,8
35202273520932	328

36809413681349	166
39810993981510	214
39816793981949	91,7
43935284393771	113
46723444672839	144
48106224810751	94
49121984912420	107
50224725022958	286
54393505439767	175
54574555457977	164
56498115651101	467
56507425652935	1231
56887715689491	107
57311665731421	128
57313755731723	169
57322525732537	141
57379615738777	121
59408725941712	353
60095746009703	94
60832786083854	144
62771646278217	311
62793316280414	163
63833946383523	94
complement(42870274287372)	91,7
complement(48232984823559)	114
complement(68310566831482)	129
complement(69317586932352)	266

APÊNDICE 35 – GENES NOVOS ENCONTRADOS NO GENOMA Ralstonia solanacearum CFBP2957 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE	GENE DE REFERÊNCIA
4258943170	396	transposase, IS256 family [Ralstonia solanacearum CFBP2957]
4443244626	116	Hypothetical Protein RRSL_04194 [Ralstonia solanacearum UW551]
8114481578	277	hypothetical protein RSIPO_00004 [Ralstonia solanacearum IPO1609]
8160882198	378	hydrolase protein [Ralstonia solanacearum MolK2]
complement(868788869180)	242	DNA-3-methyladenine glycosylase II [Ralstonia solanacearum UW551]
complement(870580871107)	314	Hypothetical Protein RRSL_01228 [Ralstonia solanacearum UW551]
950478950732	174	conserved hypothetical protein [Ralstonia solanacearum Po82]
964390964827	214	conserved hypothetical protein [Ralstonia syzygii R24]
11449201145333	265	transposase [Ralstonia solanacearum CFBP2957]
11451971145595	216	isrso16-transposase orfb protein [Ralstonia sp. 5_7_47FAA]
12399001240256	218	glycosyl transferase, family 2; protein [Ralstonia solanacearum MolK2]
complement(13053301305587)	34,7	FAT domain-containing protein [Glomerella graminicola M1.001]
15126961513061	211	hypothetical protein RSc1491 [Ralstonia solanacearum GMI1000]
15370571537272	139	Hypothetical Protein RRSL_02186 [Ralstonia solanacearum UW551]
18584711858998	268	fad dependent oxidoreductase protein [Ralstonia solanacearum Po82]
24596172459805	115	hypothetical protein RRSL_04418 [Ralstonia solanacearum UW551]
25809772581729	503	Hypothetical cytosolic protein [Ralstonia solanacearum UW551]
31467413146956	62,4	protein of unknown function duf1328 [Ralstonia solanacearum MolK2]
32495573249892	181	hypothetical protein RS06029 [Ralstonia solanacearum GMI1000]

APÊNDICE 36 – GENES NOVOS ENCONTRADOS NO GENOMA Streptococcus agalactiae NEM316 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
6925669424	103
507764508304	337
614158614416	176
614541614751	145
652566653136	341
673222673633	256
857993858152	101
909831910068	155
953122953266	90,1
10035141003868	233
13469131347294	263
13473371347598	182
13572911358053	490
16244211624598	124
21504742150975	269

APÊNDICE 37 – GENES NOVOS ENCONTRADOS NO GENOMA Streptococcus mutans UA159 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
complement(883032883332)	93,6
923185923320	90,5

11763071176610	142
13080231308692	449
13730261373341	237
complement(17342951734487)	126
19779731978123	101

APÊNDICE 38 – GENES NOVOS ENCONTRADOS NO GENOMA *Streptococcus pneumoniae* Hungary19A 6 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
9805898574	268
9869999014	232
157122157662	329
157728158139	271
219764220145	252
277068277212	99,4
323553323718	101
420048420360	189
420628420880	142
420950421109	109
complement(421237422191)	107
442677442872	127
450588450765	122
451198451843	395
451935452064	92,4
495269495419	105

529058529388	121
578591578948	240
594091594325	153
614698615844	766
616059616602	334
616817617258	287
674275674401	90,9
686432686645	139
689743689938	128
700842701313	198
701300702302	643
731288731822	267
731826733308	844
748519749182	351
749085749655	381
767638768250	381
780453780777	213
845876846059	129
849195849612	290
874001874214	142
887690887900	92
10097051010071	256
10219801022184	111
10424471042681	163
10594381059633	124
10812441081916	427
10820151082330	209
11192481119620	244
	· · · · · · · · · · · · · · · · · · ·

11236301123891	95,1
11577251162330	2798
11623201163964	1081
complement(12148351215042)	129
12888841289583	482
14429831443196	146
14432451443428	124
15866911587303	388
15874731587746	177
16644851664788	187
16778931678475	390
16784521678764	201
16965371696849	202
17212681721712	229
17611441761570	281
18428911843593	469
18592011859720	352
18597101860004	191
18600001860528	318
18782461878765	350
18787551879514	485
18899471890466	349
18904561890750	191
18907461891265	339
19150981915488	251
complement(19653121965504)	132
19941371994398	120
20280162029312	837

20552222055468	169
20862452087184	243
21000462100499	229
21339172134115	125
21340592134494	276
21345292134766	159
complement(22239982224808)	98,2

APÊNDICE 39 – GENES NOVOS ENCONTRADOS NO GENOMA *Thermotoga maritima* MSB8 PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
241493241718	113
264809265193	214
265947266634	414
291472291751	144
291764292784	696
344045344306	127
359486359663	117
396013396163	92
397237397867	355
397878398208	219
399656399881	103
703313703550	154
895085896030	567
896068897463	780

10246761025624	523
11827141183452	444
11834601185086	1108
13093371310105	470
13375051338666	752
13618091362058	168
17358741736435	333

APÊNDICE 40 – GENES NOVOS ENCONTRADOS NO GENOMA *Treponema denticola* ATCC PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
721437721833	243
884374884596	151
1008835.,1009600	333
10456691046401	414
10463851048074	699
10848461085185	102
20922942093242	618
20938982094087	132
complement(566782566983)	99

APÊNDICE 41 – GENES NOVOS ENCONTRADOS NO GENOMA *Treponema pallidum* Nichols PELO PROGRAMA HGF E VALIDADAS ATRAVÉS DO PROGRAMA BOBBLES UTILIZANDO O ALINHAMENTO DE SEQUÊNCIAS PELO PROGRAMA BLASTP

LOCAL (CDS)	VALOR DE BIT-SCORE
221129221750	377
221860222025	105
623682624330	395
624365625739	820
complement(331225332320)	115
complement(577970578171)	121
complement(729643729820)	91,7
complement(945872946820)	204