UNIVERSIDADE FEDERAL DO PARANÁ

CHARLES ANTONIO RODRIGUES

GASEIFICAÇÃO INTEGRADA AO CICLO COMBINADO COMO ALTERNATIVA PARA A PRODUÇÃO DE ELETRICIDADE E HIDROGÊNIO EM REFINARIAS DE PETRÓLEO

Curitiba 2010

UNIVERSIDADE FEDERAL DO PARANÁ Programa de Pos-Graduação em Engenharia Química - PPGEQ Sefor de Tocnologia

ATA DE DEFESA DE DISSERTAÇÃO

Aos vinte e oito dias do mês de julho de 2010, na Sala de Aula do PPGEQ/UFPR na Usina Piloto A, no Centro Politécnico - UFPR, foi instalada pelo Prof. Dr. Luiz Fernando de Lima Luz Júnior, coordenador do Programa de Pós-Graduação em Engenharia Química, a Banca Examinadora para a décima segunda defesa de dissertação de mestrado na área de concentração: Desenvolvimento de Processos Químicos. Estiveram presentes no ato, professores, alunos e visitantes. A Banca Examinadora, atendendo a determinação do colegiado do Programa de Pós-Graduação em Engenharia Química, foi constituída pelos professores doutores: Carlos Itsuo Yamamoto (PPGEQ/UFPR); Alexandre Knesebeck (PPGEQ/UFPR); Marcelo Risso Errera (PPGERHA/UFPR) às 16:00 horas, a banca iniciou os trabalhos, convidando o candidato Charles Antonio Rodrigues a fazer a apresentação da dissertação de mestrado intitulada "Gaseificação Integrada ao Ciclo Combinado como Alternativa para a Produção de Eletricidade e Hidrogênio em Refinarias de Petróleo". Encerrada a apresentação, iniciou-se a fase de arguição pelos membros participantes. Tendo em vista a dissertação e a arguição, a banca decidiu pela APROVAÇÃO candidato, (de acordo com a determinação dos artigos 62 e 63 da resolução 62/03 de 22.07.2003).

Curitiba, 28 de julho de 2010.

Prof. Dr. Garlos Itsuo Yamamoto

(PPGEQ/UFPR) - Orientador

Prof. Dr. Alexandre Knesebeck (PPGEQ/UFPR) – Membro

Prof. Dr. Marcelo Risso Errera (PPGERHA/MFPR) – Membro

Dedico aos meus pais, à minha querida irmã, à minha amada esposa e aos meus grandes amigos.

AGRADECIMENTOS

Presto meus agradecimentos primeiramente a Deus, por sempre me guiar nos caminhos da vida.

Agradeço minha família e meus amigos pelo apoio diário durante a elaboração desta dissertação.

Agradeço à empresa Petróleo Brasileiro S.A. – PETROBRAS – por ter me concedido esta oportunidade de crescimento técnico. Especial agradecimento presto ao Eng. Francisco de Oliveira Leme, que me incentivou a desenvolver este estudo. Também agradeço o Eng. Eduardo Coelho, pela inestimável ajuda prestada na elaboração deste trabalho.

Por fim, agradeço meu orientador Prof. Dr. Carlos Itsuo Yamamoto pelo auxílio prestado na produção desta dissertação.

RESUMO

A gaseificação integrada ao ciclo combinado (IGCC) é uma associação de processos que permite gerar vapor d'água, eletricidade e hidrogênio. Estes insumos são de grande importância para diversas plantas industriais. especialmente para as refinarias de petróleo. Isto ocorre em função da necessidade de unidades industriais que produzam derivados de petróleo menos poluentes. Tipicamente a geração destas matérias primas em refinarias de petróleo ocorre em plantas de potência (eletricidade e vapor d'água) e em unidades de reforma a vapor (hidrogênio). Do ponto de vista energético, a associação destas unidades em um IGCC torna o sistema mais eficiente e, consequentemente, menos impactante ao meio ambiente. Outra vantagem das plantas de gaseificação integradas ao ciclo combinado é o uso de matérias primas residuais (óleos combustíveis pesados, coque, entre outras), as quais possuem baixo valor agregado. Um IGCC que utiliza estas matérias primas tem maior facilidade de abatimento de emissões do que uma planta de potência típica. Contudo, as vantagens energéticas e ambientais de um IGCC podem ser prejudicadas pelo elevado custo de implantação da unidade. Para avaliar em detalhes as vantagens e desvantagens deste tipo de tecnologia, foi realizado um estudo comparativo entre plantas de potência tradicionais e IGCCs. Dados de processo da planta de gaseificação da refinaria Pernis (Shell) foram utilizados para subsidiar o estudo. Esta análise comparativa, associada a diversos cenários econômicos, mostrou que o elevado custo construtivo dos IGCCs e o menor know-how desta tecnologia os tornam menos competitivos do que as tecnologias atualmente utilizadas. Todavia, alguns cenários econômicos como, por exemplo, o de elevação do custo do gás natural, podem viabilizar a implantação de um IGCC.

Palavras-chave:

IGCC; gaseificação; ciclo combinado; plantas de potência; geração de hidrogênio; refinarias de petróleo.

ABSTRACT

The integrated gasification combined cycle (IGCC) is an association of processes that allows to generate steam, electricity and hydrogen. These inputs are of great importance for several industrial plants, especially for petroleum refineries. For the case of oil plants, the demand for steam, electricity and hydrogen is growing. This occurs due to the need of industrial plants that produce cleaner petroleum products. Typically, the generation of these raw materials in oil refineries occur in power plants (electricity and steam) and in steam reforming units (hydrogen). From the energy point of view, the association of these units in an IGCC makes the system more efficient and therefore less harmful to the environment. Another advantage of integrated gasification combined cycle units is the use of residual raw materials (heavy oils, petroleum coke, and others), which have low added value. An IGCC using these raw materials have greater ease of emissions reduction than a typical power plant. However, the energy and environmental advantages of an IGCC may be hampered by high costs for the unit. To evaluate in details the advantages and disadvantages of this type of technology, it was done a study comparing traditional power plants and IGCCs. Process information from Pernis refinery gasification unit (Shell) was used as base line of this study. This comparative analysis, associated with various economic scenarios, showed that the high cost of IGCCs constructive and less know-how of this technology makes them less competitive than the technologies currently used. However, some economic scenarios, for example, lifting the cost of natural gas, can enable the deployment of an IGCC plant.

Keywords:

IGCC, gasification, combined cycle, power plants, hydrogen generation, oil refineries.

LISTA DE FIGURAS

FIGURA 2.1 – BALANÇO DE ENERGIA EM UM SISTEMA	20
FIGURA 2.2 – DIAGRAMA T-S DE UM CICLO TERMODINÂMICO (RANKINE SIMPLES) [7]	21
FIGURA 2.3 – DIAGRAMA ENERGÉTICO DO CICLO DE CARNOT	22
FIGURA 2.4 – DIAGRAMA T-S DO CICLO DE CARNOT [7]	23
FIGURA 2.5 – CICLO REAL COMPARADO COM CICLO DE CARNOT [7]	25
FIGURA 2.6 – DIAGRAMA T-S DE UM CICLO REAL [7]	25
FIGURA 2.7 – ESQUEMA DO CICLO RANKINE	26
FIGURA 2.8 – COMPARAÇÃO DA PERFORMANCE DE TURBINAS REAIS COM A IDEAL [7]	29
FIGURA 2.9 – ESQUEMA DO CICLO BRAYTON	31
FIGURA 2.10 – DIAGRAMA T-S DO CICLO BRAYTON IDEAL [7]	32
FIGURA 2.11 – ESQUEMA DE UMA PLANTA TERMOELÉTRICA COM CICLO COMBINADO	34
FIGURA 2.12 – EXEMPLOS DE APLICAÇÃO DO GÁS DE SÍNTESE [13]	37
FIGURA 2.13 – ESQUEMA DE UMA REFINARIA DE PETRÓLEO	47
FIGURA 2.14 – ESQUEMA DE GASEIFICADOR DO TIPO MOVING-BED (LURGI) [14]	50
FIGURA 2.15 – ESQUEMA DE GASEIFICADOR DO TIPO FLUID-BED (LURGI) [14]	51
FIGURA 2.16 – ESQUEMA DE GASEIFICADOR DO TIPO ENTRAINED-FLOW (GSP) [14]	52
FIGURA 2.17 – ESQUEMA DO PROCESSO SHELL DE GASEIFICAÇÃO DE CARVÃO/COQUE (SCGP) [13]	54
FIGURA 2.18 – ESQUEMA DO PROCESSO TEXACO DE GASEIFICAÇÃO DE CARVÃO/COQUE [13]	56
FIGURA 2.19 – IMPACTOS DAS OTIMIZAÇÕES NO CICLO RANKINE [3]	63
FIGURA 2.20 – RELAÇÃO ENTRE EFICIÊNCIA E EMISSÃO DE CO ₂ [3]	64
FIGURA 2.21 – ESQUEMA DE UMA PLANTA DE <i>IGCC</i> COM UNIDADES AUXILIARES	67
GRÁFICO 2.1 – EFEITO DA PRESSÃO SOBRE A COMPOSIÇÃO DO GÁS DE SÍNTESE (T = 1000 °C) [14]	41
GRÁFICO 2.2 – EFEITO DA TEMPERATURA SOBRE A COMPOSIÇÃO DO GÁS DE SÍNTESE (P = 30 BAR = 3 MF	
GRÁFICO 4.1 – COMPARATIVO DOS CUSTOS DE IMPLANTAÇÃO (PLANTAS DE POTÊNCIA E GERAÇÃO DE HIDE	
GRÁFICO 4.2 – EXEMPLO DE BALANÇO ECONÔMICO OPERACIONAL – IGCC SEM CCS	
GRÁFICO 4.3 – DIAGRAMA DE CONVERSÃO ENERGÉTICA PARA O CICLO RANKINE SIMPLES	
GRÁFICO 4.4 – DIAGRAMA DE CONVERSÃO ENERGÉTICA PARA O CICLO COMBINADO	
GRÁFICO 4.5 – DIAGRAMA DE CONVERSÃO ENERGÉTICA PARA O IGCC DO CENÁRIO 25	
GRÁFICO 4.6 – DIAGRAMA DE CONVERSÃO ENERGÉTICA PARA O IGCC DO CENÁRIO 30	
GRÁFICO 7.1 – BALANÇO ECONÔMICO OPERACIONAL – IGCC SEM CCS	
GRÁFICO 7.2 – BALANÇO ECONÔMICO OPERACIONAL – IGCC COM CCS	
GRÁFICO 7.3 – BALANÇO ECONÔMICO OPERACIONAL – CR SEM CCS	119
GRÁFICO 7.4 – BALANÇO ECONÔMICO OPERACIONAL –CR COM CCS	
GRÁFICO 7.5 – BALANÇO ECONÔMICO OPERACIONAL – CC SEM CCS	121
GRÁFICO 7.6 – BALANÇO ECONÔMICO OPERACIONAL – CC COM CCS	122

LISTA DE TABELAS

TABELA 2.1 – COMPARAÇÃO ENTRE EFICIÊNCIAS TEÓRICAS E REAIS PARA DIFERENTES CICLOS DE PLANTAS DE	
POTÊNCIA [9]	
Tabela 2.2 – Composição do gás de síntese em função da pressão (1500 °C = 1773 K) [14]	41
TABELA 2.3 – COMPARAÇÃO ENERGÉTICA DA COMPRESSÃO EM GASEIFICADORES A BAIXA E A ALTA PRESSÃO [14]42
TABELA 2.4 – EFEITO PROVOCADO POR CONTAMINANTES PRESENTES NA MATÉRIA PRIMA DE GASEIFICADORES [1	4]48
TABELA 2.5 – COMPARATIVO DE PERFORMANCE DE GASEIFICADORES SHELL E TEXACO [13]	57
TABELA 2.6 – PADRÃO DE EMISSÕES ATMOSFÉRICAS – ESTADO DO PARANÁ [22]	
TABELA 2.7 – COMPARAÇÃO ENTRE PLANTAS COM E SEM CCS[3]	
TABELA 2.8 – COMPARAÇÃO ENTRE PLANTAS COM E SEM ASU[15]	
TABELA 3.1 – PRINCIPAIS CARACTERÍSTICAS DE PROJETO DO IGCC DA REFINARIA DE PERNIS [12]	72
TABELA 4.1 – CENÁRIOS DE CAPACIDADE DAS PLANTAS	75
TABELA 4.2 – CENÁRIOS ECONÔMICOS PARA MATÉRIAS PRIMAS E PRODUTOS	75
TABELA 4.3 – PERFIL DE PRODUÇÃO DAS PLANTAS EM AVALIAÇÃO	79
TABELA 4.4 – BASE DE DADOS PARA ESTUDO DE CASO [12]	80
Tabela 4.5 – Eficiência energéticas típicas das plantas de potência [13]	81
TABELA 4.6 – CONSUMO DE MATÉRIAS PRIMAS E COMBUSTÍVEIS PARA AS PLANTAS EM ESTUDO	82
TABELA 4.7 – CUSTO DE IMPLANTAÇÃO DE PLANTAS DE POTÊNCIA [25], [13]	83
TABELA 4.8 – CUSTO DE IMPLANTAÇÃO DE UNIDADES PARA GERAÇÃO DE HIDROGÊNIO [18]	83
TABELA 4.9 – CUSTO DE IMPLANTAÇÃO (PLANTA DE POTÊNCIA E GERAÇÃO DE HIDROGÊNIO)	84
TABELA 4.10 – TENDÊNCIA DE MAIOR LUCRO OPERACIONAL	87
TABELA 4.11 – CENÁRIOS DE MAIOR LUCRO OPERACIONAL	87
Tabela 4.12 – Balanço econômico operacional das plantas de potência	89
TABELA 4.13 – VPL DAS PLANTAS DE POTÊNCIA AVALIADAS	89
TABELA 4.14 – TIR DAS PLANTAS DE POTÊNCIA AVALIADAS	90
TABELA 4.15 – VPL DAS PLANTAS AVALIADAS (CONSIDERANDO ABATIMENTO DE EMISSÕES)	91
TABELA 4.16 – TIR DAS PLANTAS AVALIADAS (CONSIDERANDO ABATIMENTO DE EMISSÕES)	92
TABELA 7.1 – BASE DE DADOS PARA ESTUDO DE CASO – PARTE 1	102
TABELA 7.2 – BASE DE DADOS PARA ESTUDO DE CASO – PARTE 2	103
TABELA 7.3 – BASE DE DADOS PARA ESTUDO DE CASO – PARTE 3	104
TABELA 7.4 – CUSTO DE IMPLANTAÇÃO (PLANTA DE POTÊNCIA E GERAÇÃO DE HIDROGÊNIO) – PARTE 1	105
TABELA 7.5 – CUSTO DE IMPLANTAÇÃO (PLANTA DE POTÊNCIA E GERAÇÃO DE HIDROGÊNIO) – PARTE 2	106
TABELA 7.6 – CUSTO DE IMPLANTAÇÃO (PLANTA DE POTÊNCIA E GERAÇÃO DE HIDROGÊNIO) – PARTE 3	107
TABELA 7.7 – CONSUMO DE MATÉRIAS PRIMAS E COMBUSTÍVEIS PARA OS CASOS EM ESTUDO – PARTE 1	108
TABELA 7.8 – CONSUMO DE MATÉRIAS PRIMAS E COMBUSTÍVEIS PARA OS CASOS EM ESTUDO – PARTE 2	109
TABELA 7.9 – CONSUMO DE MATÉRIAS PRIMAS E COMBUSTÍVEIS PARA OS CASOS EM ESTUDO – PARTE 3	110
TABELA 7.10 – MATRIZ DE BALANÇO ECONÔMICO OPERACIONAL PARA OS CASOS EM ESTUDO (US\$/H) – IGCC SI	EM
CCS	111
TABELA 7.11 – MATRIZ DE BALANÇO ECONÔMICO OPERACIONAL PARA OS CASOS EM ESTUDO (US\$/H) – IGCC CO	ОМ
CCS	112
TABELA 7.12 – MATRIZ DE BALANÇO ECONÔMICO OPERACIONAL PARA OS CASOS EM ESTUDO (US\$/H) – CR SEM	
CCS	113

TABELA 7.13 – MATRIZ DE BALANÇO ECONÔMICO OPERACIONAL PARA OS CASOS EM ESTUDO (US\$/H) – CR COM	
CCS114	
TABELA 7.14 — MATRIZ DE BALANÇO ECONÔMICO OPERACIONAL PARA OS CASOS EM ESTUDO (US\$/H) — CC SEM	
CCS115	
TABELA 7.15 — MATRIZ DE BALANÇO ECONÔMICO OPERACIONAL PARA OS CASOS EM ESTUDO (US\$/H) — CC COM	
CCS116	

LISTA DE SÍMBOLOS

Símbolos latinos

PΑ Pressão do estado de referência p_0 S Entropia J/kg.K SCF Unidade inglesa para volume (standard cubic feet) ft³ (60°F, 30 inHg) T_0 Temperatura do estado de referência Κ T_{F} Temperatura da fonte fria Κ T_{Q} Temperatura da fonte quente Κ U Energia Interna J/kg V Volume m³ X_i Fração ,molar do componente j

Símbolos gregos

Potencial químico do componente j, no estado de referência $\mu_{j,0}$ Eficiência do Ciclo de Carnot η_c Eficiência do Ciclo Combinado η_{CC} Eficiência do Ciclo Rankine

Abreviações

 η_{CR}

ASU Air Separation Unit **BFW** Boiler feed water CB Ciclo Brayton CC Ciclo Combinado CR Ciclo Rankine

CCS Carbon Capture and Sequestration

ΕE MWh Energia elétrica

GTL Gas to liquid

(Processo Fischer-Tropsch "gás para líquido")

HRSG Heat recovery steam generator

(gerador de vapor recuperador de calor)

IGCC Integrated gasification combined cycle

(Gaseificação integrada ao ciclo combinado)

PCI Poder calorífico inferior kJ/kg

RTL Residue to liquid

(Processo Fischer-Tropsch "resíduo para líquido")

SCGP Shell Coal Gasification Process

SGP Shell Gasificatio Process

TG Turbina a gás
TV Turbina a vapor

UGH Unidade de geração de hidrogênio

UTE Unidade Termoelétrica

VAP Vapor de alta pressão t/h

VMP Vapor de média pressão

SUMÁRIO

1	INTRODUÇÃO		
	1.1 Мот	IVAÇÃO	14
	1.2 Овје	TTIVOS	15
		ESENTAÇÃO DO TRABALHO	
2	REVISÃO	BIBLIOGRÁFICA	18
	2.1 Funi	DAMENTAÇÃO TEÓRICA	18
		iclos termodinâmicos	
	2.1.1.1	Primeira lei da termodinâmica	
	2.1.1.2	Segunda lei da termodinâmica	
	2.1.1.3	Ciclo de Carnot	
	2.1.1.4	Ciclo Rankine (CR)	
	2.1.1.5	Ciclo Brayton (CB)	
	2.1.1.6	Ciclo Combinado (CC)	33
	2.1.2 P	lantas de potência	35
		aseificação	
	2.1.3.1	Termodinâmica da gaseificação	
	2.1.3.2	Cinética da gaseificação	
	2.1.3.3	Características das matérias primas	
	2.1.3.4	Características do gaseificador e equipamentos auxiliares	
	2.1.4 A	nálise Ambiental	57
	2.1.5 A	nálise econômica	60
	2.1.5.1	Valor presente líquido – VPL	60
	2.1.5.2	Taxa interna de retorno – TIR	61
	2.2 ESTA	DO DA ARTE	62
		ermoelétricas de elevada eficiência	
	2.2.1.1	Ciclo Rankine Avançado	62
	2.2.1.2	Ciclo Combinado	64
	2.2.2 G	aseificação integrada ao ciclo combinado - IGCC	66
3	ESTUDO	DE CASO	72
4	COMPAR	ATIVO ENTRE PLANTAS TRADICIONAIS E IGCCS	74
	4.1 EQUA	ACIONAMENTO PARA OS <i>IGCCS</i> :	76
		ACIONAMENTO PARA AS PLANTAS DE CR E CC	
	4.3 Aná	LISE ECONÔMICA	82
		usto de implantação	
		alanço econômico operacional	
		PL e TIR	

	4.4	Análise ambiental	90
	4.5	Análise energética	92
5	CC	ONCLUSÕES	96
6	RE	EFERÊNCIAS BIBLIOGRÁFICAS	98
7	ΔN	NEXOS	102

1 INTRODUÇÃO

1.1 MOTIVAÇÃO

O hidrogênio é uma matéria prima de grande importância para uma refinaria de petróleo. Sua utilização está associada à crescente demanda por derivados de petróleo menos poluentes e maior oferta de petróleos pesados. O hidrogênio, tipicamente gerado em unidades de reforma a vapor de gás natural ou nafta, promove a redução de compostos de enxofre, nitrogênio e aromáticos nos combustíveis. Este processo, que ocorre nas unidades de hidrotratamento, permite que os derivados de petróleo atendam legislações ambientais cada vez mais rigorosas.

As ampliações do parque de hidrotratamento das refinarias também implicam em aumento das demandas de eletricidade e vapor d'água. Para que a oferta destes dois insumos seja satisfatória, investimentos em centrais termoelétricas precisam ser realizados. Tradicionalmente, as tecnologias adotadas nestas centrais são do tipo Ciclo Rankine ou Ciclo Combinado. Do ponto de vista energético, estas duas rotas tecnológicas possuem baixa eficiência, o que encarece o custo de refino.

Ao mesmo tempo em que as refinarias de petróleo precisam investir nestas mudanças de seu parque industrial, também necessitam adequar suas emissões atmosféricas. Estas emissões, provenientes basicamente de fornos e caldeiras, estão associadas à queima de resíduos do petróleo. A combustão destes resíduos é, muitas vezes, a maneira mais adequada para se gerar energia e eliminar grandes volumes do chamado "fundo de barril" [12].

Uma antiga tecnologia, associada a conceitos modernos, pode ser a solução para a destinação destes resíduos de petróleo, geração de energia e produção de hidrogênio. Trata-se da gaseificação, processo que pode ser vinculado a uma planta de potência para geração de hidrogênio, vapor e energia elétrica. Esta promissora tecnologia, que pode atender necessidades

energéticas e ambientais, é conhecida como gaseificação integrada ao ciclo combinado. Este tipo de unidade é capaz de utilizar frações de petróleo com menor valor agregado para gerar vapor, energia elétrica e hidrogênio. Por possuir interessantes recursos para abatimento de emissões atmosféricas, esta rota tecnológica está sendo adotada em projetos recentes, os quais têm por premissa a redução dos impactos ambientais provocados pela indústria.

O uso da gaseificação integrada ao ciclo combinado como fonte energética vai de encontro ao atendimento de três importantes necessidades dos refinadores de petróleo:

- Processos energeticamente mais eficientes, possibilitando menores emissões atmosféricas e redução do custo de processamento de petróleo;
- Processos com facilidade de abatimento das emissões atmosféricas:
- Geração de hidrogênio para elevar a produção de combustíveis tratados.

1.2 OBJETIVOS

Para subsidiar tecnicamente futuros estudos de investimentos em centrais termoelétricas e unidades geradoras de hidrogênio em refinarias de petróleo, será conduzida uma avaliação de tecnologias disponíveis para estas unidades. As plantas que serão avaliadas são do tipo:

- Ciclo Rankine;
- Ciclo combinado;
- Gaseificação integrada ao ciclo combinado.

Especial atenção será dada à tecnologia de Gaseificação Integrada ao Ciclo Combinado (*IGCC*¹). Quando comparada às outras tecnologias, esta possui vantagens quanto à eficiência energética e facilidade de abatimento de

_

¹ Do inglês Integrated Gasification Combined Cycle (IGCC).

emissões atmosféricas. Além disso, algumas plantas de *IGCC* permitem a geração de hidrogênio, o qual pode ser utilizado em unidades de hidrotratamento de derivados de petróleo.

Como metodologia de comparação destas diferentes tecnologias, serão feitas as seguintes avaliações:

- > Balanço econômico operacional e de implantação;
- Eficiência energética;
- Emissões atmosféricas.

Efetuadas estas avaliações, será possível verificar as vantagens técnicas, econômicas e ambientais de cada tipo de unidade.

1.3 APRESENTAÇÃO DO TRABALHO

A apresentação desta dissertação é feita através dos seguintes capítulos:

Seção 2 - Revisão bibliográfica

Aborda a termodinâmica dos ciclos relacionados ás plantas de potência, as plantas de potência propriamente ditas, o processo de gaseificação e as metodologias para análise econômica e ambiental. Além disso, esta seção também apresenta o estado da arte em relação às plantas de potência e gaseificação integrada ao ciclo combinado;

Seção 3 - Estudo de caso

Nesta seção é apresentada a tecnologia e as condições operacionais de uma planta de *IGCC* presente na refinaria de petróleo *Pernis*, da empresa Shell;

Seção 4 - Comparativo entre plantas de potência e IGCCs.

A análise comparativa, do ponto de vista econômico, energético e ambiental, é apresentada nesta seção;

- > Seção 5 Conclusões;
- > Seção 6 Referências bibliográficas;
- ➤ Seção 7 Anexos.

2 REVISÃO BIBLIOGRÁFICA

Neste capítulo serão abordados os conceitos básicos envolvendo plantas de potência e gaseificação, os quais darão subsídio para a compreensão do assunto principal deste trabalho, a Gaseificação Integrada ao Ciclo Combinado. Também serão abordadas as técnicas disponíveis para a comparação energética, ambiental e econômica das plantas. O desenvolvimento deste capítulo será feito em dois tópicos principais:

Fundamentação teórica

- Conceitos termodinâmicos relacionados às plantas de potência;
- Conceitos de gaseificação;
- Análise ambiental;
- Análise econômica.

> Estado da arte

- Termoelétricas de elevada eficiência;
- Gaseificação integrada ao ciclo combinado.

2.1 FUNDAMENTAÇÃO TEÓRICA

A análise da alternativa do *IGCC* como planta termelétrica exige um aprofundamento teórico de alguns conceitos. Primeiramente, será estudada a termodinâmica dos processos utilizados nestas unidades, ou seja, os ciclos termodinâmicos. Na sequência, será visto como os diversos tipos de ciclos termodinâmicos estão presentes na unidade industrial, a chamada planta de potência.

Buscando direcionar o estudo para a planta de *IGCC*, será visto o processo de gaseificação e, posteriormente, como este processo pode ser associado a uma planta de potência.

Além disso, também serão abordados tópicos para comparação das plantas: eficiência energética, emissões atmosféricas e balanço econômico.

2.1.1 Ciclos termodinâmicos

O estudo de ciclos termodinâmicos está diretamente relacionado com a primeira e a segunda leis da termodinâmica, as quais tratam da conservação de energia e da não idealidade dos processos, respectivamente. Estes dois conceitos fundamentais serão brevemente abordados a seguir.

2.1.1.1 Primeira lei da termodinâmica

A energia não pode ser criada nem destruída, pode apenas ser transformada.

Para qualquer sistema, a transferência de energia está associada com fluxos de massa, calor e trabalho, que cruzam as fronteiras do sistema, além das variações de energia provocadas internamente no sistema em análise. Sendo assim, surge a expressão básica de conservação de energia:

$$\sum E_{ENTRA} - \sum E_{SAI} = \Delta E_{ACUMULADA}$$
 Eq. 2.1

O termo *E* (energia), indicado na Eq. 2.1, refere-se aos diversos tipos de energia apresentados por um sistema:

- Cinética;
- Potencial;
- Interna (U);

A Figura 2.1 mostra como estes fluxos energéticos estão presentes em um volume de controle (V.C.) de um sistema.

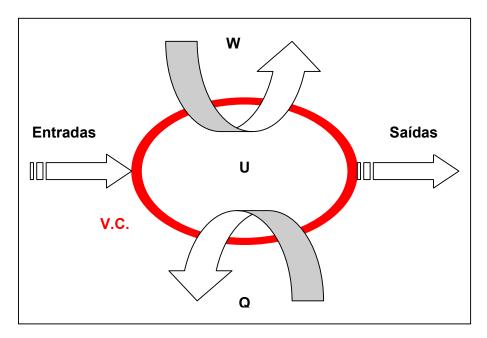


Figura 2.1 – Balanço de energia em um sistema

Aplicada a uma planta de potência, esta lei da termodinâmica mostra que a energia inserida na forma de combustão resulta em:

- Calor (vapor), posteriormente convertido em eletricidade através de um gerador elétrico;
- Calor (perdas térmicas nos equipamentos);
- Atrito nos mecanismos de transmissão de energia;
- Ruído.

Este processo de transformação da energia está associado às mudanças de propriedades (temperatura, pressão, volume) de um fluido. Estas mudanças são provocadas pelos fluxos de trabalho e/ou calor através das fronteiras do sistema. Quando um fluido sofre alterações consecutivas de suas propriedades, de modo a retornar à condição inicial, diz-se que ocorreu um ciclo termodinâmico. A representação destes ciclos pode ser feita através de um diagrama temperatura-entropia (T-S), como pode ser visto na Figura 2.2. Nesta figura, as transformações indicadas se referem ao Ciclo Rankine Simples. São elas:

- → 1 → 2 Pressurização do líquido (bombeio W_B);
- → 2 → 3 Aquecimento e vaporização (Q_H);

- ➤ 3 → 4 Expansão e geração de trabalho (turbina W_T);

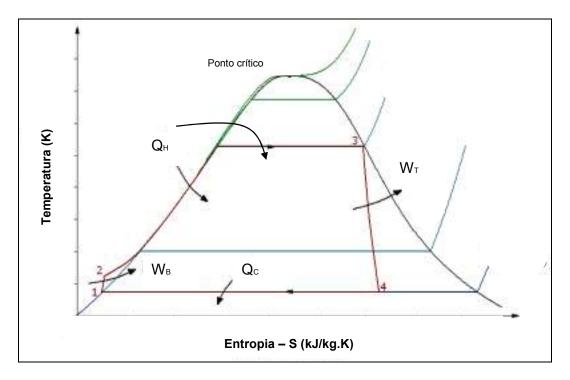


Figura 2.2 – Diagrama T-S de um ciclo termodinâmico (Rankine Simples) [7]

2.1.1.2 Segunda lei da termodinâmica

Nenhum processo cíclico é possível caso o único resultado seja a absorção de calor de um reservatório e sua conversão completa em trabalho.

Este enunciado para a segunda lei, também conhecido como Postulado de Kelvin², reflete a inexistência de máquinas térmicas ideais. Esta situação é claramente evidenciada em motores de combustão interna e plantas de potência, os quais apresentam eficiências térmicas típicas de 30 – 50 %.

² Barão William Thomson **Kelvin** (1824 - 1907) foi um físico, matemático e engenheiro britânico que gerou grandes avanços no tratamento matemático da termodinâmica e da eletricidade. Desenvolvou também a escala absoluta de temperatura (K).

A segunda lei da termodinâmica surge para aprimorar os conhecimentos das transformações termodinâmicas de um sistema. Isto porque a primeira lei não é capaz de evidenciar a direção natural destas transformações. Surge então o conceito de entropia, capaz de avaliar a tendência espontânea e a eficiência de um processo termodinâmico. Estas avaliações são realizadas com auxílio de diagramas T-S, os quais permitem a quantificação da energia perdida em um processo cíclico.

Os primeiros estudos relativos a ciclos termodinâmicos foram realizados por Sadi Carnot³, dando origem ao conhecido Ciclo de Carnot. Este ciclo, que é teórico, e suas derivações aplicáveis à realidade das plantas termoelétricas, serão tratados a seguir.

2.1.1.3 Ciclo de Carnot

Um dos métodos para se avaliar a eficiência de plantas térmicas é através do Ciclo de Carnot. Este indica a máxima eficiência de um ciclo térmico, pois trata todas as transformações termodinâmicas como ideais e reversíveis. O diagrama energético deste ciclo é mostrado na Figura 2.3.

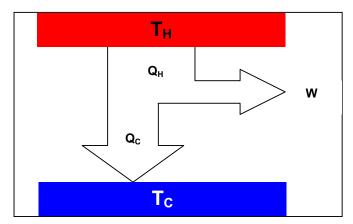


Figura 2.3 – Diagrama energético do Ciclo de Carnot

Onde: T_H e T_C são as temperaturas das fontes quente e fria, respectivamente;

Q_H é o calor liberado pela fonte quente;

22

³ Nicolas Léonard Sadi **Carnot** (1796 - 1832) foi um físico, matemático e engenheiro francês que demonstrou o primeiro modelo teórico de sucesso sobre as máquinas térmicas, o ciclo de Carnot.

 $Q_{\mathbb{C}}$ é o calor rejeitado pelo processo para a fonte fria; W é o trabalho gerado no sistema.

Como discutido anteriormente, uma das formas de representação de um ciclo termodinâmico é o diagrama T-S. Para o ciclo de Carnot, este diagrama (Figura 2.4) revela as seguintes transformações:

- ➤ 1 → 2 Compressão isentrópica e adiabática, entre os níveis T_C e T_H de temperatura, devido ao trabalho realizado sobre o fluido (bomba ideal);
- ➤ 2 → 3 Expansão isotérmica na T_H devido ao fornecimento de energia (Q_H) para o fluido;
- ➤ 3 → 4 Expansão isentrópica e adiabática com geração de trabalho
 (W), passando de T_H para T_C (turbina ideal);
- ightharpoonup 4 ightharpoonup 1 Compressão isotérmica na T_C devido à remoção de calor (Q_C) do fluido (condensador).

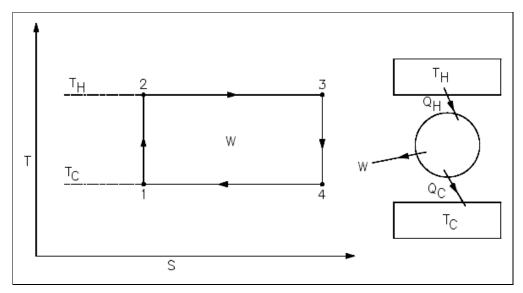


Figura 2.4 – Diagrama T-S do Ciclo de Carnot [7]

Uma importante informação deste gráfico T-S é a quantidade de energia inserida (Q_H) e rejeitada (Q_C). Estas são, respectivamente, representadas pelas

áreas abaixo da linha 2 - 3 e 1 - 4. Sendo assim, conclui-se que uma das formas de se elevar a eficiência de um ciclo termodinâmico é através da redução da T_C , o que reduz a rejeição de calor solicitada pelo sistema.

Através da análise deste gráfico T-S é possível definir a equação básica para a eficiência do Ciclo de Carnot:

$$\eta_C = \frac{(Q_H - Q_C)}{Q_H} = \frac{(T_H - T_C)}{T_H} = 1 - \frac{T_C}{T_H}$$
 Eq. 2.2

Onde:

η_c é a eficiência de Carnot;

T_C é a temperatura da fonte fria;

T_H é a temperatura da fonte quente.

A Eq. 2.2, que pode ser utilizada para caracterizar qualquer Ciclo Térmico, mensura a máxima eficiência teórica do sistema. Observa-se por esta equação que a eficiência depende exclusivamente das temperaturas das fontes quente e fria, entre as quais ocorre a troca de calor e, consequentemente, geração de trabalho.

Diferentemente do Ciclo de Carnot (ideal), os ciclos térmicos reais possuem características que os impedem de atingir a máxima eficiência (eficiência de Carnot). Isto porque os processos não são adiabáticos e nem reversíveis. Além disso, também existem limitações por parte dos equipamentos, os quais não podem trabalhar em certas condições operacionais (exemplo: bombeio na pressão de saturação do fluido). A Figura 2.5 faz uma comparação dos diagramas T-S de um ciclo real, mais especificamente o ciclo vapor, com o ciclo ideal (Carnot). Nesta figura ficam nítidas as diferenças entre os dois tipos de ciclo. No caso real, a compressão e a expansão não são isentrópicas. Além disso, surge a necessidade de subresfriamento do fluido para realização da compressão (1 → 2), de modo a evitar cavitação no equipamento de bombeio. Em um ciclo real, operando com turbinas de alta eficiência, também é necessário superaquecer o vapor que será admitido nas turbinas, a fim de evitar danos às palhetas do equipamento pela incidência de gotículas de água. Esta condição é mostrada pelos pontos $3 \rightarrow 4 e 3' \rightarrow 4'$ na Figura 2.6.

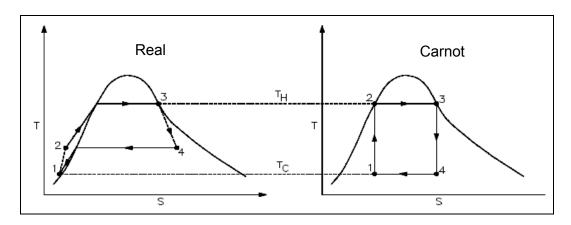


Figura 2.5 – Ciclo Real comparado com Ciclo de Carnot [7]



Figura 2.6 – Diagrama T-S de um ciclo real [7]

Com relação aos ciclos termodinâmicos reais, a tecnologia atual utiliza como base os seguintes processos:

- Ciclo Rankine;
- Ciclo Brayton;

Ciclo Combinado.

Estes ciclos termodinâmicos, que são as bases de uma planta de IGCC, serão abordados na sequência.

2.1.1.4 Ciclo Rankine (CR)

O Ciclo Rankine⁴, também conhecido como Ciclo Simples ou Ciclo a Vapor, é a base da maioria das centrais termoelétricas de refinarias de petróleo no Brasil. Tais sistemas, geradores de energia elétrica e vapor d'água superaquecido (caso de cogeração), têm eficiência térmica global da ordem de 30%, podendo chegar a 40% em unidades com projetos mais modernos. A Figura 2.7 mostra um esquema deste tipo de planta de potência.

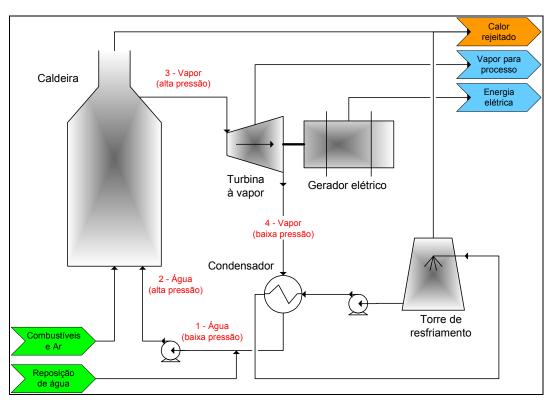


Figura 2.7 - Esquema do Ciclo Rankine

Este tipo de planta é constituído por:

26

⁴ William John Macquorn **Rankine** (1820 - 1872), engenheiro e físico escocês, foi um dos fundadores da termodinâmica, tendo desenvolvido uma teoria completa para motores a vapor.

- Bomba Eleva a pressão da água até a condição operacional da caldeira. Em geral, são bombas de múltiplos estágios;
- Caldeira: Gerador aquatubular de vapor de alta pressão (40 barg a 150 barg). O vapor gerado é superaquecido, de modo a permitir seu uso em turbinas de alta performance;
- ➤ **Turbina:** Elemento que converte a energia cinética e térmica do vapor em trabalho, o qual será transmitido para o gerador de energia elétrica. Dois arranjos são possíveis:
 - Extração condensação: parte do vapor de alta pressão admitido é condensado e outra parte gera vapor de pressão inferior (extração). Eventualmente, pode operar na condição de condensação total. É o principal elemento de ajuste das demandas de energia elétrica e vapor de uma planta industrial (balanço termoelétrico);
 - <u>Contra-pressão</u>: todo o vapor de alta pressão é convertido em vapor de pressão inferior. Este, por sua vez, será utilizado em outros processos ou turbinas, podendo ser reaproveitado (condensado) para geração de vapor;
- Condensador: Elemento responsável pelo fechamento do ciclo termodinâmico (rejeição de calor). Opera em condição de pressão sub atmosférica;
- ➤ Economizador: Trocador de calor localizado entre a bomba e a caldeira. É responsável pelo pré-aquecimento da água a ser admitida no gerador de vapor. Contribui para a elevação da eficiência global do sistema. Não está presente em todas as plantas e, por isso, não foi representado na Figura 2.7.

As quatro transformações termodinâmicas do ciclo Rankine, mostradas anteriormente na Figura 2.2, são: compressão $(1 \rightarrow 2)$, aquecimento e vaporização em alta pressão $(2 \rightarrow 3)$, expansão $(3 \rightarrow 4)$, condensação em baixa pressão $(4 \rightarrow 1)$.

Com relação à avaliação da eficiência energética deste ciclo termodinâmico, quatro equipamentos básicos devem ser considerados:

- ➤ Caldeira e pré aquecedores de água (calor inserido Q_H)
- ➤ Turbina (trabalho gerado W_T)
- Bomba (trabalho inserido W_B)
- ➤ Condensadores (Calor rejeitado Q_C)

No caso da turbina, a eficiência é definida pela relação entre o trabalho real produzido e o trabalho ideal isentrópico. Como as variações de energia cinética, potencial e perdas térmicas podem ser desprezadas, a equação para a eficiência da turbina se torna:

$$\eta_{t} = \frac{W_{real}}{W_{ideal}} = \frac{\left(h_{admissão} - h_{exaustão}\right)_{real}}{\left(h_{admissão} - h_{exaustão}\right)_{ideal}}$$
Eq. 2.3

Onde: η_t é a eficiência da turbina;

 $W_{\text{real / ideal}}$ são os trabalhos de eixo produzidos pela turbina (real / ideal);

h_{admissão / exaustão} são as entalpias específicas das correntes de entrada e de saída.

Na prática, os valores típicos de eficiência de turbinas a vapor variam de 60% a 80%, podendo chegar a 90% no caso de turbinas de grande porte. Em um diagrama T-S, a condição não isentrópica de turbinas reais pode ser visualizada, conforme mostra a Figura 2.8.

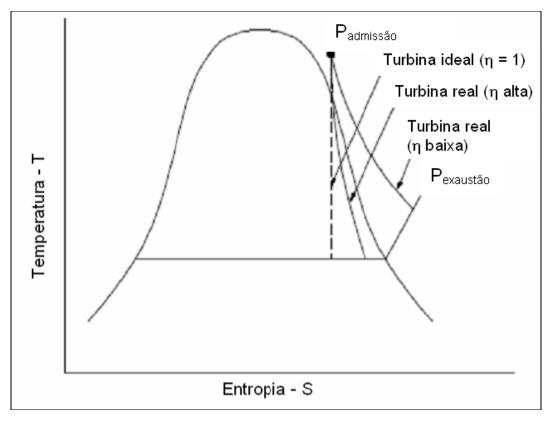


Figura 2.8 – Comparação da performance de turbinas reais com a ideal [7]

Quanto à eficiência da bomba, esta é definida pela relação entre o trabalho ideal solicitado pelo fluido e o trabalho real, que é superior ao anterior. A equação que representa esta eficiência é dada por:

$$\eta_b = \frac{W_{ideal}}{W_{real}} = \frac{\left(h_{exaust\~ao} - h_{admiss\~ao}\right)_{ideal}}{\left(h_{exaust\~ao} - h_{admiss\~ao}\right)_{real}}$$
 Eq. 2.4

Onde:

η_b é a eficiência da bomba;

 $W_{\text{real / ideal}}$ são os trabalhos de eixo solicitados pela bomba (real / ideal);

h_{exaustão / admissão} são as entalpias específicas das correntes de saída e de entrada.

Assim como assumido para a turbina, as variações de energia potencial, cinética e perdas térmicas são desprezíveis na análise da maioria das bombas reais.

Tanto para a turbina quanto para a bomba, também devem ser consideradas, na análise de eficiência da planta termoelétrica, as ineficiências

de acoplamento entre elemento inicial e final. Assim, para o conjunto turbina/gerador elétrico, existem ineficiências de acoplamento e do próprio gerador. Para o caso da bomba, devem ser contabilizadas as perdas de eficiência do acionador (motor elétrico ou turbina a vapor) e do acoplamento.

Por último, na análise de eficiência, surgem os trocadores de calor, presentes na forma de caldeiras e/ou condensadores. Estes apresentam ineficiências devido às dificuldades de transferência de calor entre os fluidos (gasosos X líquidos) e através das barreiras físicas impostas (paredes dos tubos e fuligem). Em teoria, a eficiência de troca térmica poderia ser elevada com o aumento da temperatura da fonte quente e redução da temperatura da fonte fria. Contudo, existem alguns limitantes para esta otimização:

- Características e materiais de construção da caldeira, que não permitem elevar a temperatura da fonte quente (vapor) acima de 600 °C;
- Temperatura do reservatório frio determinada pelas características ambientais (ar, rios e mares). Em geral, a temperatura da fonte fria não é inferior a 30 °C.

A eficiência máxima teórica de um Ciclo Rankine, dada pela Eq. 2.2, é de aproximadamente 63 % [9]. Na prática, valores da ordem de 30 a 40 % são obtidos. Isto ocorre devido à ineficiência do processo de troca térmica entre gases de combustão e água e devido à necessidade de rejeição térmica do processo. A Eq. 2.5, que representa o cálculo aproximado da eficiência do CR, considera a relação entre o trabalho de eixo gerado na TV e a energia que seria fornecida por uma queima ideal dos combustíveis. O termo relativo ao trabalho de eixo consumido no processo de bombeio é desprezado, dada a magnitude do trabalho na turbina.

$$\eta_{CR} = rac{W_{TURBINA} - W_{BOMBA}}{Q_{COMBUST\~AO}} \cong rac{W_{TURBINA}}{Q_{COMBUST\~AO}}$$
 Eq. 2.5

Onde: 1

η_{CR} é a eficiência do Ciclo Rankine;

W_{TURBINA} é o trabalho gerado pela turbina;

W_{BOMBA} é o trabalho consumido pela bomba de condensado (desprezível frente ao trabalho da turbina);

Q_{COMBUSTÃO} é o calor disponível pela queima ideal do combustível (PCI x W, onde W é a vazão mássica de combustível).

As perdas térmicas ocorridas no CR são computadas pelo próprio trabalho da turbina, que é reduzido à medida em que o sistema perde energia (calor) através de suas fronteiras.

2.1.1.5 Ciclo Brayton (CB)

O Ciclo Brayton⁵ foi originalmente concebido para aplicações aeronáuticas. Contudo, seu uso se expandiu para plantas termoelétricas, onde foi associado ao Ciclo Rankine e deu origem ao Ciclo Combinado.

O Ciclo Brayton é composto pelos seguintes equipamentos:

- Compressor de ar;
- Combustor;
- Turbina a gás.

Um arranjo esquemático deste ciclo pode ser visto na Figura 2.9.

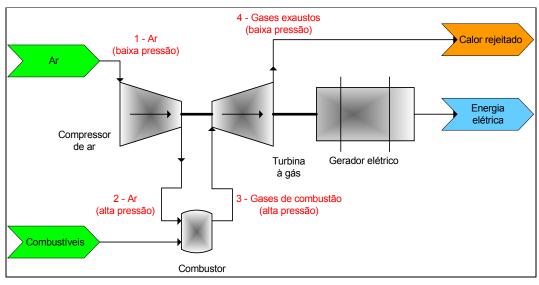


Figura 2.9 - Esquema do Ciclo Brayton

-

⁵ George **Brayton** (1830 – 1892) foi um engenheiro mecânico que elaborou os conceitos de combustão contínua, base para as atuais turbinas.

Os processos mostrados na Figura 2.9 são visualizados no diagrama T-S do Ciclo Brayton (Figura 2.10). Nesta figura, as transformações termodinâmicas indicadas pelos números de 1 a 4 são:

- ightharpoonup 1
 ightharpoonup 2 Compressão do ar;
- \triangleright 2 \rightarrow 3 Combustão;
- $ightharpoonup 3 \rightarrow 4$ Expansão na turbina à gás;
- ightharpoonup 4 o 1 Rejeição de gases quentes para a atmosfera.

A passagem 4 → 1, que torna o ciclo fechado, não se verifica no ciclo Brayton real, visto que a rejeição de calor ocorre para a atmosfera e, portanto, sem retorno para a condição 1.

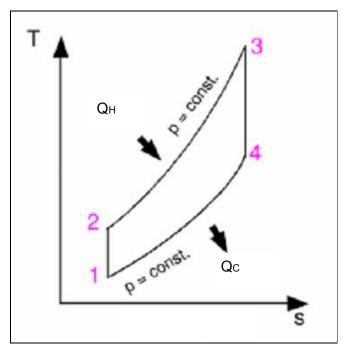


Figura 2.10 – Diagrama T-S do Ciclo Brayton ideal [7]

A eficiência deste ciclo é aumentada quando se eleva a temperatura dos gases de combustão que entram na turbina. Todavia, existe uma limitação para isto, já que as palhetas das turbinas se danificam em altas temperaturas. Atualmente, os avanços tecnológicos permitem que os gases de combustão sejam admitidos com temperaturas da ordem de 1350 °C. Contudo, esta aparente elevação de eficiência acarreta aumento das perdas através dos

gases de combustão que são enviados para a atmosfera. Surge neste ponto a necessidade de integração energética do Ciclo Brayton com o Ciclo Rankine. À esta associação dá-se o nome de Ciclo Combinado.

2.1.1.6 Ciclo Combinado (CC)

O Ciclo Combinado, que é uma associação dos Ciclos Rankine e Brayton, faz uso das vantagens energéticas de cada um destes processos. A transferência de calor entre as fontes quente e fria, por exemplo, é feita sem intermediários (água/vapor) como ocorre no CR. O CC utiliza a sistemática do CB para transformar calor em trabalho, de modo direto com os gases de combustão acionando uma turbina. Além disso, o ciclo combinado possibilita que os gases de combustão da turbina a gás tenham sua energia recuperada em uma caldeira. Esta, por sua vez, irá gerar vapor para acionamento de outra turbina que gerará mais trabalho. Sendo assim, o ciclo combinado é composto por:

- Compressor de ar;
- Combustor:
- Turbina a gás (TG);
- ➤ Caldeira recuperadora de calor (em inglês, *HRSG Heat Recovery Steam Generator*);
- Turbina a vapor (TV);
- Condensador;
- Bomba de pressurização de água.

O esquema de uma planta de potência que utiliza este tipo de ciclo térmico é apresentado na figura a seguir.

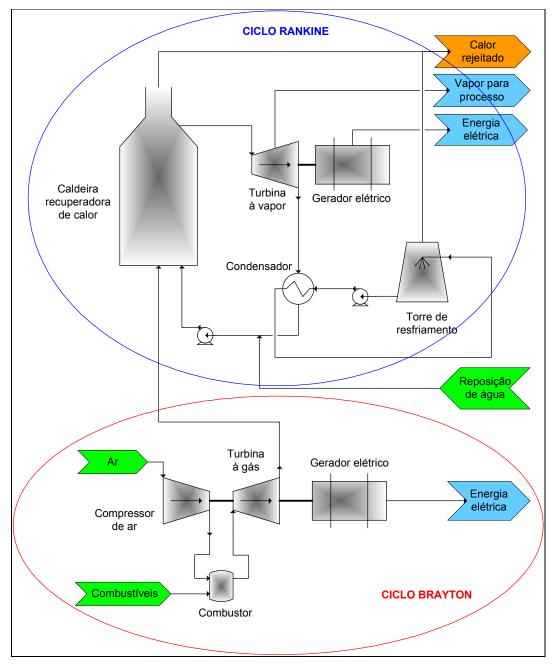


Figura 2.11 – Esquema de uma planta termoelétrica com Ciclo Combinado

Esta integração energética permite que a eficiência da planta, dada pela Eq. 2.6, atinja valores de até 60 %.

$$\eta_{CC} = rac{W_{TG} + W_{TV} - W_{COMPRESSOR}}{Q_{COMBUSTÃO}}$$
 Eq. 2.6

Onde: η_{CC} é a eficiência do Ciclo Combinado;

W_{TG} é o trabalho gerado pela turbina a gás;

W_{TV} é o trabalho gerado pela turbina a vapor;

Q_{COMBUSTÃO} é o calor disponível pela queima ideal do combustível (PCI x W, onde W é a vazão mássica de combustível).

Para estes três ciclos, uma interessante avaliação pode ser previamente feita através da comparação das eficiências de Carnot com as reais. Isto está descrito na Tabela 2.1, onde também foram incorporados dados da planta de *IGCC*, foco desta dissertação.

Tabela 2.1 – Comparação entre eficiências teóricas e reais para diferentes ciclos de plantas de potência [9]

	Temperat	emperaturas (°C) Efi		ciência (% PCI)	
Ciclo	T_{F}	TQ	Carnot	Real	Real como % de Carnot
Rankine	27	540	63	40	63
Brayton	27	1210	80	43	54
Combinado	27	1350	82	58	71
IGCC	27	1350	82	46	56

Os dados mostrados na Tabela 2.1 indicam que o Ciclo Combinado (Rankine + Brayton) permite a elevação da eficiência pela associação do potencial energético do Ciclo Brayton (maior T_Q) com a viabilidade de recuperação de calor do Ciclo Rankine. Outra informação mostrada pela tabela anterior é que a eficiência do *IGCC* é menor do que a de um ciclo combinado. Contudo, existem outras vantagens do *IGCC*, quando comparado ao ciclo combinado, que podem viabilizar esta tecnologia. Estes assuntos serão tratados em maiores detalhes na sequência.

2.1.2 Plantas de potência

A transformação de energia térmica, oriunda de combustão ou fissão nuclear, em eletricidade (e eventualmente outras formas de energia térmica) é comumente realizada em unidades industriais conhecidas como plantas de potência. Estas plantas de potência, também conhecidas como plantas

termoelétricas, fazem uso dos ciclos termodinâmicos para a geração de trabalho.

As plantas de potência têm como característica baixas eficiências energéticas. Isto é resultado de inúmeros fatores, entre os quais estão: perda de calor para o meio ambiente, uso de fluido intermediário para transporte da energia de combustão, uso de turbinas a vapor com baixa eficiência, limitações construtivas e de materiais.

Na busca pelo aumento destas eficiências, melhorias pontuais têm sido buscadas. Neste sentido, foram feitos grandes avanços, por exemplo, nos projetos de turbinas a vapor, que passaram de simples mecanismos de pistão para turbinas de alta performance. Melhorias construtivas e de materiais também estão possibilitando incrementos no aproveitamento de energia [9]. Contudo, eficiências da ordem de 50 % (em relação ao PCI do combustível) ainda são comuns, mesmo em projetos modernos.

Quanto às matérias primas para as unidades termoelétricas, diversas substâncias são utilizadas. Em função da disponibilidade mundial de carvão mineral, este é o combustível de maior consumo. Contudo, outras matérias primas como o gás natural, o óleo combustível e a biomassa também compõem o conjunto de combustíveis para estas unidades.

2.1.3 Gaseificação

A gaseificação é um processo de oxidação parcial, ou seja, uma combustão incompleta realizada em ambiente com teor controlado de oxigênio. Os produtos desejados em uma reação de gaseificação são monóxido de carbono e hidrogênio. Estes compõem o chamado gás de síntese, o qual possui aplicações diversas na indústria petroquímica (vide Figura 2.12).

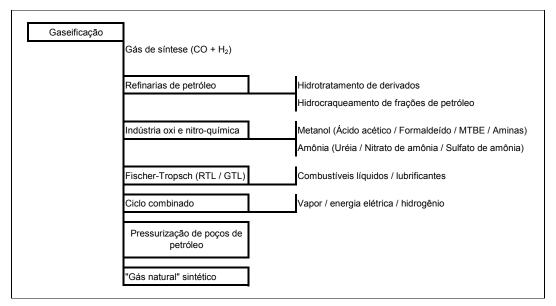


Figura 2.12 – Exemplos de aplicação do gás de síntese [13]

O processo de gaseificação foi concebido para a produção do chamado "gás das cidades", que era utilizado para aquecimento, iluminação e uso doméstico. Este desenvolvimento inicial data da primeira metade do século XIX. Todavia, aplicações não comerciais da gaseificação já eram conhecidas no final do século XVIII. Em meados do século XIX, boa parte da cidade de Londres era iluminada com este combustível. Da mesma forma que ocorria nas cidades, o uso industrial também se ampliava. Na época, as principais matérias primas para os gaseificadores eram o carvão mineral e a madeira [28].

Em 1881, foi registrado o primeiro uso de um gaseificador como fonte de combustível para um motor de combustão interna. No início do século XX, diversas aplicações da gaseificação foram feitas para acionamento de caminhões, tratores e automóveis. Um dos grandes estudiosos deste processo foi o francês Georges Imbert⁶.

Com o início da Segunda Guerra Mundial, a escassez de petróleo fez com que os gaseificadores de biomassa se tornassem mais comuns em processos de geração de eletricidade. Esta forma de aplicação da gaseificação se difundiu pela Europa, Ásia, América Latina e Austrália. Apenas na Europa, cerca de um milhão de veículos eram acionados por gaseificadores naquela época, usando carvão vegetal ou madeira como combustível. Com o término

⁶ Georges Christian Peter Imbert (1884 – 1950): engenheiro químico francês que desenvolveu o processo para geração do gasogênio (gás de síntese), combustível substituto da gasolina.

da guerra, esta tecnologia deixou de ser utilizada em veículos. Nas décadas de 1970 e 1980, as crises energéticas fizeram com que a gaseificação, em especial a de biomassa, voltasse a ser foco de diversos estudos [24].

O processo de gaseificação utiliza matérias primas diversas: carvão, coque, frações pesadas de petróleo ou biomassa. A conversão destas substâncias é feita através de uma combustão parcial controlada, de modo a gerar o gás de síntese. Esta corrente gasosa é rica em monóxido de carbono e hidrogênio, o que a torna uma importante intermediária na indústria petroquímica. Entre as inúmeras aplicações do gás de síntese, encontram-se:

- Geração de hidrogênio via reação com vapor d'água (shift). Este, por sua vez, pode ser utilizado para o hidrotratamento e hidrocraqueamento de derivados de petróleo;
- Produção de amônia, metanol e outros químicos correlatos;
- Produção de uréia;
- Produção de gás natural sintético;
- Produção de hidrocarbonetos superiores sintéticos via processo Fischer-Tropsh⁷;
- Recuperação da produtividade de poços petrolíferos através da repressurização pela injeção do dióxido de carbono;
- Geração de eletricidade e vapor em plantas termelétricas.

A Figura 2.12 mostra, simplificadamente, estas alternativas para aproveitamento do gás de síntese.

A seguir serão abordadas informações sobre a termodinâmica e a cinética das reações de gaseificação, assim como características das matérias primas e tecnologias disponíveis para projeto de reatores.

⁷ **Fischer-Tropsch** – Processo químico para produção de hidrocarbonetos líquidos (da faixa da gasolina, querosene, gasóleo, lubrificantes), desenvolvido pelos químicos alemães Franz Joseph Emil **Fischer** (1877 – 1947) e Hans **Tropsch** (1989 – 1935).

2.1.3.1 Termodinâmica da gaseificação

O processo de oxidação que ocorre em um reator de gaseificação pode ser resumido pela seguinte reação global:

$$C_n H_m + \frac{n}{2} O_2 \to n \cdot CO + \frac{m}{2} H_2$$
 Eq. 2.7

Esta reação indica a formação dos principais produtos de um gaseificador. Contudo, além da geração de CO e H₂, também são formados CO₂, H₂O, CH₄ e subprodutos derivados dos contaminantes presentes na matéria prima (nitrogênio, enxofre, entre outros). As principais reações do processo de gaseificação são [14]:

$$C + \frac{1}{2}O_2 \rightarrow CO$$

$$\Delta H = -111 \frac{MJ}{kmol}$$
Reação de oxidação parcial
$$C + 2H_2 \longleftrightarrow CH_4$$

$$\Delta H = -75 \frac{MJ}{kmol}$$
Reação de metanação
$$C + CO_2 \longleftrightarrow 2CO$$

$$\Delta H = +172 \frac{MJ}{kmol}$$
Reação de Bouduard
$$C + H_2O \longleftrightarrow CO + H_2$$

$$\Delta H = +131 \frac{MJ}{kmol}$$
Reação com vapor d'água

As reações mostradas são heterogêneas, ocorrendo entre a fase gasosa e a superfície do combustível (líquido ou sólido). Além destas, também ocorrem reações homogêneas. São elas:

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \qquad \Delta H = -242 \frac{MJ}{kmol} \qquad \qquad \text{Reação de combustão}$$

$$CO + \frac{1}{2}O_2 \rightarrow CO_2 \qquad \qquad \Delta H = -283 \frac{MJ}{kmol} \qquad \qquad \text{Reação de combustão}$$
 Reação de combustão

$$CO + H_2O \longleftrightarrow CO_2 + H_2$$
 $\Delta H = -40.9 \frac{MJ}{kmol}$ Reação de reforma a vapor

As reações de combustão parcial ou total (equações 2.8, 2.12, 2.13 e 2.15) são responsáveis pela geração do calor que propicia o desenvolvimento das reações de gaseificação (equações 2.10 e 2.11).

Quanto aos contaminantes, o enxofre presente na matéria prima é convertido, principalmente, em H_2S e COS. Traços de S_2 e CS_2 também podem encontrados entre os produtos do reator. Já o nitrogênio é convertido em N_2 , e, em pequena extensão, HCN, NH_3 e NO_x . No caso de presença de compostos clorados, o principal produto gerado é o HCI [18].

A análise termodinâmica das reações mostradas anteriormente gera as seguintes conclusões a respeito da influência das variáveis de projeto:

> Efeito da pressão:

O aumento desta variável implica em maior produção de metano, água e dióxido de carbono, reduzindo assim a geração de gás de síntese. Esta relação entre produtos gerados e pressão do gaseificador pode ser vista no Gráfico 2.1,

que mostra a composição do gás de síntese para gaseificação de óleo combustível.

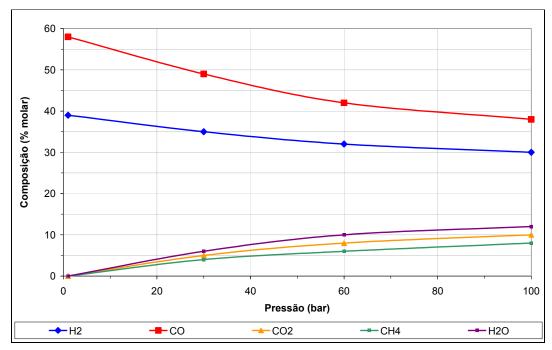


Gráfico 2.1 – Efeito da pressão sobre a composição do gás de síntese (T = 1000 °C) [14]

Caso uma avaliação similar a do Gráfico 2.1 seja feita para uma temperatura de 1500 °C (1.773 K), o efeito da pressão sobre a composição dos gases efluentes do reator se torna desprezível, como pode ser constatado na Tabela 2.2.

Tabela 2.2 – Composição do gás de síntese em função da pressão (1500 °C = 1773 K) [14]

	Fração molar				
	1 bar (0,1 MPa)	30 bar (3 MPa)	60 bar (6 MPa)	100 bar (10 MPa)	
CO ₂	0	0,01	0,21	0,34	
CO	63,42	63,33	62,88	62,88	
H_2	34,37	33,89	33,07	33,07	
CH₄	0,01	0,27	0,85	0,85	
H ₂ O	0,01	0,21	0,67	0,67	

A redução na geração de CO e H₂, à medida que a pressão é aumentada, ocorre devido ao caráter expansivo das reações de gaseificação, o que reduz a extensão das reações em pressões mais elevadas.

A pressão de operação do gaseificador dependerá da finalidade do gás de síntese gerado. Apesar de trazer prejuízo à geração de CO e H₂, pressões mais elevadas tendem a ser utilizadas comercialmente, pois diminuem de forma significativa os gastos com a compressão dos produtos e o tamanho dos equipamentos. Dessa forma, é possível assumir que a pressão de operação do gaseificador deva ser, no mínimo, igual à necessária no processo que faz uso do gás de síntese. Elevações ainda maiores na pressão podem ser necessárias para reduzir dimensões e custos de equipamentos. A Tabela 2.3 evidencia a vantagem da operação em pressões mais elevadas.

Tabela 2.3 – Comparação energética da compressão em gaseificadores a baixa e a alta pressão [14]

		Energia gasta em cada gaseificador (MW)	
	Canacidado	5 bar	50 bar
	Capacidade	(0,5 MPa)	(5 MPa)
Bombeio da carga	35 t/h	0,03	0,09
Compressão do oxigênio	21.120 Nm³/h	2,85	4,97
Compressão do gás de síntese	100.000 Nm³/h	19,7	0
Energia total utilizada		22,6	5,0

Efeito da temperatura:

A elevação desta variável implica em redução da eficiência de geração de gás de síntese, devido ao aumento da combustão completa (maior consumo de O₂). Uma análise minuciosa da termodinâmica destas reações indica que a maximização do gás de síntese ocorre em temperaturas na faixa de 1200 °C a 1300 °C (1.473 K a 1.573 K), embora existam gaseificadores que operem numa faixa mais ampla, de 800 °C a 1800 °C (1.073 K a 2.073 K) como temperatura máxima no reator [14]. Elevações ainda maiores de temperatura propiciam a formação de monóxido de carbono, conforme reação endotérmica mostrada pela Eq. 2.10.

Os efeitos da variação da temperatura em um processo de gaseificação podem ser observados no Gráfico 2.2, com dados de gaseificação de óleo

combustível. Neste caso, foi considerado um gaseificador operando em pressão de 30 bar (3 MPa).

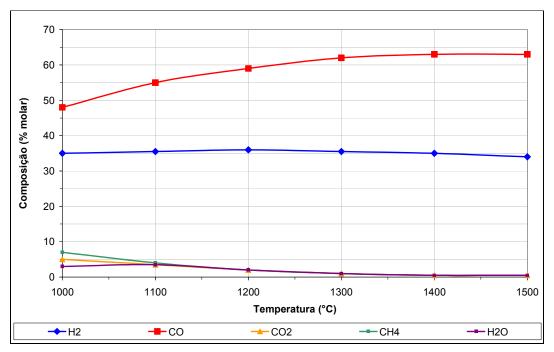


Gráfico 2.2 – Efeito da temperatura sobre a composição do gás de síntese (P = 30 bar = 3 MPa) [14]

Razão vapor d'água / carga:

A termodinâmica das reações que ocorrem em um gaseificador indica que, para razões vapor/carga maiores, ocorre aumento na produção do gás de síntese. Além disso, outro benefício gerado pela injeção de vapor d'água é o controle da extensão das reações, impedindo excessivo consumo de oxigênio e disparos de temperatura.

A otimização dos processos de gaseificação, utilizando como parâmetros pressão, temperatura e razão vapor/carga, depende da aplicação que será dada ao gás efluente do reator. Basicamente, o uso deste gás pode ser:

o Como gás de síntese:

Uso na geração de hidrogênio e produção de compostos na indústria química. Neste caso o reator deve operar em temperaturas mais baixas e

maiores razões vapor/carga, de modo a minimizar a geração de metano e maximizar monóxido de carbono e hidrogênio.

o Como combustível de plantas de potência:

A aplicação dos produtos de um gaseificador em uma planta de potência é feita através de uma turbina a gás, presente em um ciclo combinado (Brayton + Rankine). Para este uso, é interessante que o produto de reação possua metano, o que eleva o seu poder calorífico. Portanto, maiores pressões podem ser utilizadas neste tipo de gaseificador.

2.1.3.2 Cinética da gaseificação

Diferentemente da termodinâmica de gaseificação, a cinética destas reações não possui teoria plenamente desenvolvida, principalmente no caso da gaseificação de materiais sólidos. Por este motivo, o desenvolvimento de gaseificadores é, em muitos casos, resultado de testes práticos realizados em escala laboratorial e piloto. Oriundos destes estudos, alguns importantes conceitos da cinética de gaseificação serão abordados a seguir [14].

O processo de gaseificação pode ser dividido em duas etapas, ditas gaseificação primária e secundária:

Primeira etapa:

Fase na qual ocorre a volatilização da matéria prima. Caso esta seja sólida (carvão, coque, biomassa), uma etapa anterior deve ser considerada, a chamada desvolatilização. Nesta etapa preliminar os compostos voláteis são eliminados pelo aquecimento.

Segunda etapa:

Nesta fase ocorrem as reações de gaseificação propriamente ditas. O contato eficiente dos agentes oxidante e gaseificante com a matéria prima quente é fundamental para se alcançar as temperaturas necessárias para o

processo de gaseificação. Estas reações ocorrem numa ampla faixa de temperatura (800°C a 1800°C = 1073 K a 2073 K), dependendo do tipo de matéria prima e do produto desejado. É nesta etapa que ocorrem as reações heterogêneas que regulam a velocidade da gaseificação: reação de Boudouard, reação com vapor d'água e reação de hidrogenação. As teorias desenvolvidas para explicar a cinética destas reações indicam a existência de uma etapa lenta de desorção de compostos intermediários formados na superfície da matéria prima.

2.1.3.3 Características das matérias primas

As matérias primas tipicamente utilizadas para a produção de gás de síntese são:

- Sólidas carvão, coque de petróleo, biomassa;
- Líquidas frações pesadas de petróleo;
- Gasosas gás natural, gás de refinaria, gases residuais dos processos Fischer-Tropsch e Coqueamento Retardado.

Matérias primas sólidas:

A matéria prima mais utilizada é o carvão mineral. Cerca de 1,5% do carvão produzido no mundo é gaseificado, o que gera aproximadamente 150x10⁶ Nm³/d de gás de síntese. Cerca de metade deste gás é gerado nas plantas da SASOL na África do Sul, com a finalidade de produzir hidrocarbonetos líquidos (tecnologia GTL – gas to liquid) e outros compostos químicos. Devido à grande disponibilidade desta matéria prima (reserva mundial para 216 anos em consumo estável), seu uso em plantas de potência para geração de eletricidade tende a aumentar. Neste sentido, o consumo de carvão em termoelétricas tradicionais pode ser associado com o processo de gaseificação (*IGCC*), o que traria ganhos energéticos e ambientais às plantas térmicas [13].

Devido à existência de diferentes tipos de carvão, sua aplicação em processos de gaseificação exige que uma série de parâmetros seja considerada no projeto. Alguns destes parâmetros são: teor de umidade, matéria volátil, carbono fixo e teor de cinzas. Estas características afetam desde a pré gaseificação (desvolatilização) até o tratamento de gases da planta. No caso da desvolatilização, alguns tipos de carvão perdem até 10% da massa como matéria volátil. Além disso, análises elementares do carvão também são necessárias para o projeto (carbono, hidrogênio, oxigênio, enxofre e nitrogênio). Em relação ao enxofre, os teores típicos desse elemento nos diversos tipos de carvão ficam na faixa de 0,5 % a 6 % (m/m).

Outro insumo sólido para o processo de gaseificação é o coque de petróleo. Com produção mundial em ascensão devido ao crescente número de plantas de coqueamento para processar petróleos mais pesados, o coque pode se tornar uma importante matéria prima de gaseificadores, especialmente para aqueles associados a plantas de potência em refinarias de petróleo.

O uso de carvão mineral e coque de petróleo em termoelétricas apresenta limitações ambientais devido ao elevado teor de enxofre. Por este motivo, sua utilização em plantas de gaseificação, que possuem maior praticidade de abatimento de emissões, torna-se uma vantagem técnica e ambiental interessante.

Matérias primas líquidas:

As frações de petróleo conhecidas como resíduo de vácuo, resíduo de vácuo viscorreduzido e resíduo asfáltico (ver Figura 2.13) são as matérias primas com maior tendência de terem seu uso expandido em gaseificadores. O *IGCC* permite, portanto, gerar hidrogênio e outros insumos termoelétricos a partir de correntes que, inicialmente, iriam gerar óleos combustíveis e cimentos asfálticos, os quais possuem baixo valor agregado. Outras possíveis destinações para estas correntes seriam as unidades de Coqueamento Retardado e Hidrocraqueamento Catalítico, as quais possuem foco na produção de cortes médios, como é o caso do óleo Diesel.

Estas matérias primas possuem características que facilitam sua aplicação para gaseificação. Além de se tratar de insumos líquidos, o que

facilita o transporte e suprimento ao gaseificador, também são produzidos em elevadas temperaturas, o que reduz a necessidade de pré aquecimento da carga do gaseificador.

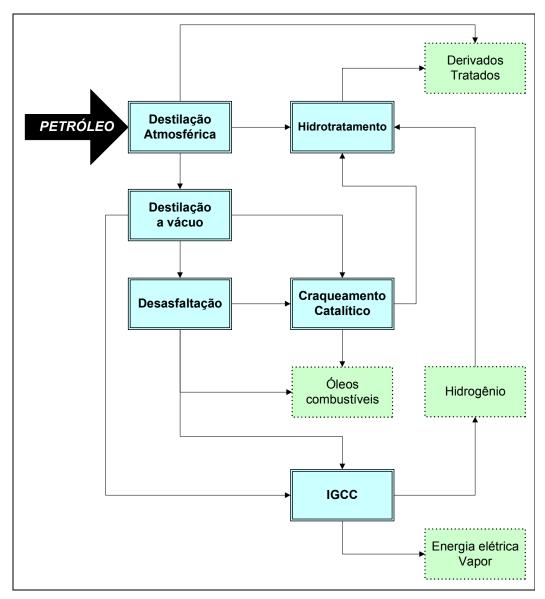


Figura 2.13 – Esquema de uma refinaria de petróleo

Um importante parâmetro destas cargas líquidas é a relação carbono/hidrogênio (C/H). Esta característica, que costuma variar entre 7 e 10, afeta diretamente a produção de CO e H₂. Sendo assim, quanto maior a relação C/H, maior será a produção de CO e CO₂, em detrimento à geração de H₂ [14].

Outra relevante informação a ser considerada em projetos é a composição das cinzas geradas. Formadas basicamente por SiO₂, Al₂O₃, Fe_XO_Y, CaO e NaO, as cinzas possuem pontos de fusão variando em função da composição. A maior presença de óxidos de cálcio e sódio reduz a temperatura de fusão, impactando na formação de incrustações. Esta condição pode, inclusive, inviabilizar a utilização de resfriadores de gás de síntese.

Outros compostos presentes na carga líquida de um gaseificador e seus respectivos efeitos deletérios são apresentados a seguir.

Tabela 2.4 – Efeito provocado por contaminantes presentes na matéria prima de gaseificadores [14]

Substância	Efeito
Enxofre	- Teor típico: 1 a 7% (m/m).
	- Afeta o dimensionamento e a tecnologia do sistema de tratamento de
	gases.
Nitrogênio	- Teor típico: < 1 % (m/m). Pode atingir 3% (m/m) em função do tipo de
	petróleo.
	- Impacta na geração indesejada de amônia e ácido cianídrico.
Vanádio	- Em condições de temperatura entre 700 °C (973 K) e 2.000°C (2273
	K), ou seja, em partidas da planta, o vanádio permanece na forma
	V ₂ O ₅ , o qual afeta os materiais refratários do reator.
Sódio	- Provoca incrustações na forma de sais na superfície do resfriador de
	gás de síntese.
	- Difunde-se no material refratário do reator, alterando a estrutura
	cristalina da alumina e, consequentemente, fragiliza o refratamento.
	- Exige o uso de resfriamento de gás de síntese via quench quando
	presente em grande quantidade na matéria prima (> 50 mg/kg).
Ácidos naftênicos	- Quando presentes na carga da unidade, exigem o uso de metalurgia
	especial no sistema de transporte da matéria prima, de modo a evitar
	corrosão acentuada dos metais.

Matérias primas gasosas:

Entre as matérias primas gasosas utilizadas na produção de gás de síntese, o gás natural (GN) se destaca. A oxidação parcial do GN com foco na produção de CO é interessante economicamente. Contudo, para a produção de H₂ o processo mais vantajoso é a reforma a vapor d'água. A única vantagem

da geração de H₂ via oxidação parcial do GN é a flexibilidade em relação à presença de enxofre na matéria prima. Isto porque o processo de reforma não suporta tal contaminante [14].

> Matérias primas diversas:

Outro tipo de matéria prima, que pode ser sólida ou líquida, é a biomassa. Entre seus representantes estão: o licor negro da indústria papeleira, o bagaço de cana da industrial sucroalcooleira, o lodo de estações de tratamento de esgoto urbano, os resíduos da indústria madeireira, entre outros [14].

O uso da biomassa como carga para gaseificadores tem forte apelo ambiental, impactando diretamente na redução de emissão de CO₂ devido à não utilização de combustíveis fósseis.

> Agente oxidante:

Quanto ao agente oxidante utilizado na reação, este tem um grande impacto sobre o poder calorífico (PCI) dos produtos da gaseificação. Quando o ar é usado, produtos com baixos PCI são obtidos por causa do efeito de diluição. Ao suprir o gaseificador com ar enriquecido ou oxigênio concentrado, seus produtos passam a ter um poder calorífico mais elevado. Contudo, este benefício precisa ser avaliado economicamente, já que implica na necessidade de uma unidade de separação de ar. Nessa análise também deve ser considerado que o uso de oxidante concentrado possibilita a redução das dimensões dos equipamentos [14].

O uso de oxidante concentrado também permite que elevadas temperaturas sejam atingidas, o que auxilia o processo de gaseificação. Para auxiliar o controle desta temperatura, é usual a injeção de vapor d'água, o qual também participa das reações de gaseificação.

2.1.3.4 Características do gaseificador e equipamentos auxiliares

Os variados tipos de reatores gaseificadores podem ser classificados em três categorias básicas: leito móvel, leito fluidizado e fluxo concorrente.

Nos gaseificadores do tipo leito móvel (*moving-bed*) há um fluxo contracorrente entre matéria prima (descendente pela ação da gravidade) e oxidante (Figura 2.14). Este tipo de reator gera gás de síntese com baixa temperatura devido à troca térmica contra corrente com a matéria prima. Além disso, o gás efluente do reator arrasta compostos orgânicos não gaseificados, o que pode ser problemático conforme a aplicação do gás de síntese. O processo de gaseificação com leito móvel é o mais antigo dos três tipos. Sua operação é atmosférica e utiliza, essencialmente, coque de petróleo e carvão antracito [13].

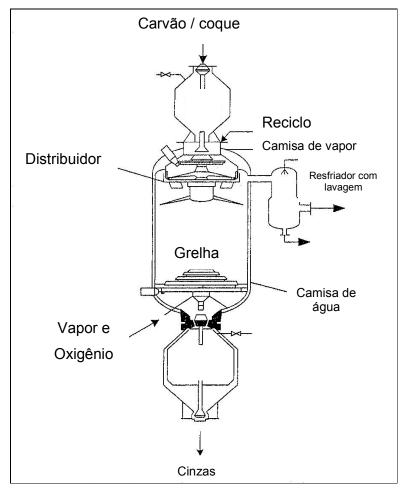


Figura 2.14 – Esquema de gaseificador do tipo moving-bed (LURGI) [14]

O gaseificador com leito fluidizado (*fluid-bed*) permite melhor transferência de massa e calor entre o combustível e o oxidante (Figura 2.15). Todavia, este tipo de reator possui restrições quanto à temperatura operacional. Pontos quentes no leito reacional podem propiciar a fusão das cinzas, o que afetará o escoamento do oxidante à medida que esta solidifique. Este tipo de reator é comumente utilizado para gaseificação de biomassa [13].

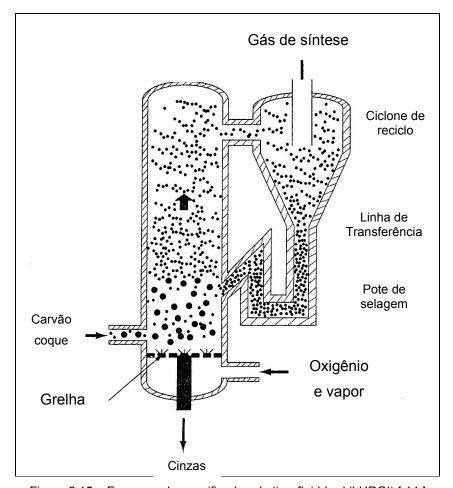


Figura 2.15 – Esquema de gaseificador do tipo fluid-bed (LURGI) [14]

Para o caso de gaseificadores do tipo concorrente (entrained-flow), a injeção de oxidante juntamente com a matéria prima permite a geração de gás de síntese puro, ou seja, isento de material não gaseificado (Figura 2.16). Todavia esta característica, não atingida nos demais tipos de gaseificador, implica em maior demanda de oxidante. Por se tratar da tecnologia consolidada para aplicações em *IGCCs* [13], será dada atenção especial para este tipo de reator.

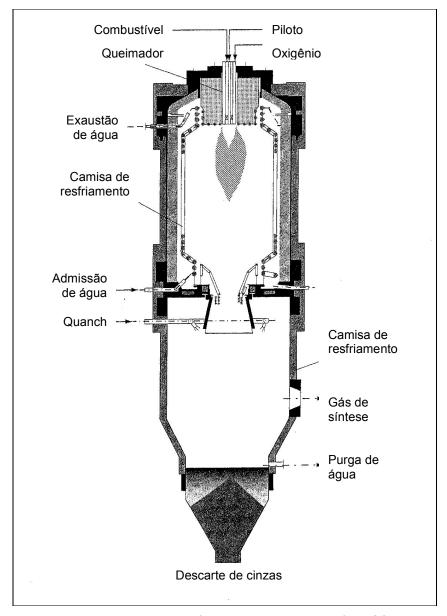


Figura 2.16 – Esquema de gaseificador do tipo entrained-flow (GSP) [14]

O gaseificador de fluxo concorrente opera em condições de temperatura e pressão mais elevadas (20 bar a 70 bar e acima de 1400 °C / 2 MPa a 7 MPa e acima de 1673 K). Estas condições permitem o processamento das diversas matérias primas mencionadas no item 2.1.3.3.

Algumas das características que permitem maior flexibilidade de processamento para esta tecnologia são: alimentação (seca ou lama), fluxo no reator (ascendente ou descendente), resfriamento do gás de síntese (permutador de calor, *quench* com água ou *quench* com gás) e oxidante (ar ou oxigênio enriquecido). Estas flexibilidades operacionais, associadas a um

projeto adequado, permitem que este tipo de gaseificador converta até 99 % do carbono da matéria prima.

As tecnologias mais conhecidas para o gaseificador do tipo *entrained-flow* são da Shell e da Texaco. No primeiro caso tem-se a combustão lateral e, no caso da Texaco, queima de topo (*top-fired* como na Figura 2.16). Outras variações destes processos residem na metodologia de resfriamento do reator e do gás de síntese.

> Processo Shell de gaseificação:

O Processo Shell de Gaseificação de Carvão (SCGP – Shell Coal Gasification Process) [13], que é similar para utilização de coque, inicia-se em um gaseificador vertical com queimadores laterais na parte inferior do reator, o qual opera com pressões entre 30 e 40 bar. A matéria prima pulverizada (< 90 μm), transportada em uma corrente com nitrogênio, é misturada com o oxigênio na admissão do gaseificador. Os gases gerados na reação são resfriados de 1500 °C (1773 K) para 900 °C (1173 K) no topo do gaseificador, com auxílio de um quench com gás de síntese a 280 °C (553 K). Em seguida estes gases são encaminhados para um resfriador que utiliza a energia para gerar vapor. As cinzas geradas no processo de gaseificação recebem um quench com água, provocando sua solidificação e facilitando a remoção. As paredes deste gaseificador são do tipo membrana (tubos interligados por chapas metálicas), o que possibilita a geração de vapor d'água. Perdas térmicas típicas deste tipo de reator são da ordem de 2 a 4 % da carga térmica total. A Figura 2.17 mostra o esquema do SCGP.

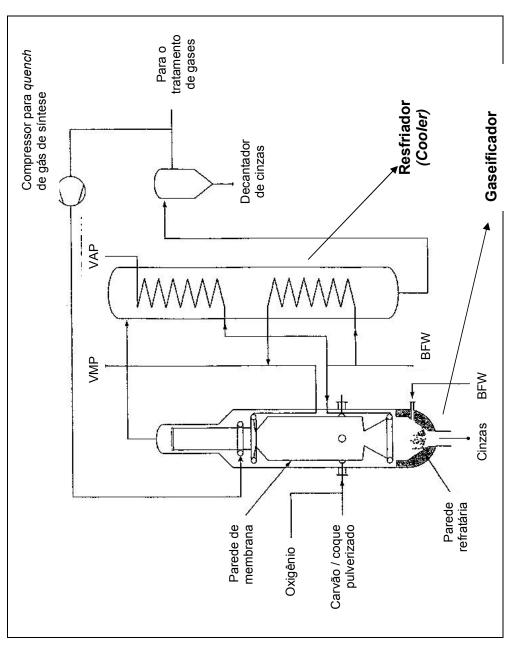


Figura 2.17 – Esquema do Processo Shell de gaseificação de carvão/coque (SCGP) [13]

Em se tratando de matérias primas líquidas, o Processo Shell de Gaseificação (SGP) é aplicado em mais de 150 unidades em todo o Mundo. Em relação ao SCGP, as principais diferenças do SGP são: temperatura de reação (1250 °C a 1450 °C, ou seja, 1523 K a 1723 K) e forma de resfriamento do reator (possui refratário em substituição à parede de membrana).

> Processo Texaco de gaseificação:

Os gaseificadores de carvão e coque com tecnologia Texaco (Figura 2.18) consomem a matéria prima na forma de lama (partículas menores que 100 µm aglutinadas com água). A combustão é feita em queimadores do tipo top-fired (queima descendente). Para os casos de utilização em *IGCCs*, a pressão de operação fica em torno de 30 bar (3 MPa). Caso a gaseificação tenha como finalidade gerar gás de síntese para plantas químicas, a pressão de operação deve ficar na faixa de 70 a 80 bar, de modo a atender o nível de pressão dos processos subsequentes. Assim como ocorre no Processo Shell de Gaseificação, a temperatura é de aproximadamente 1500 °C (1773 K). Como mecanismo de refrigeração do reator, o processo Texaco utiliza dois métodos: *quench* com água ou camisa de água/vapor.

No caso de gaseificadores de líquidos e gases, o processo Texaco disponibiliza duas opções para resfriamento do gás de síntese: *quench* com água ou resfriador gerador de vapor. No caso de aplicações que visam a geração de H₂, as quais exigem a passagem do gás de síntese por um reator de *shift*, a melhor opção de resfriamento é através do *quench*. Neste arranjo, ocorrerá a remoção de particulados oriundos da combustão, o que irá proteger o catalisador de *shift*.

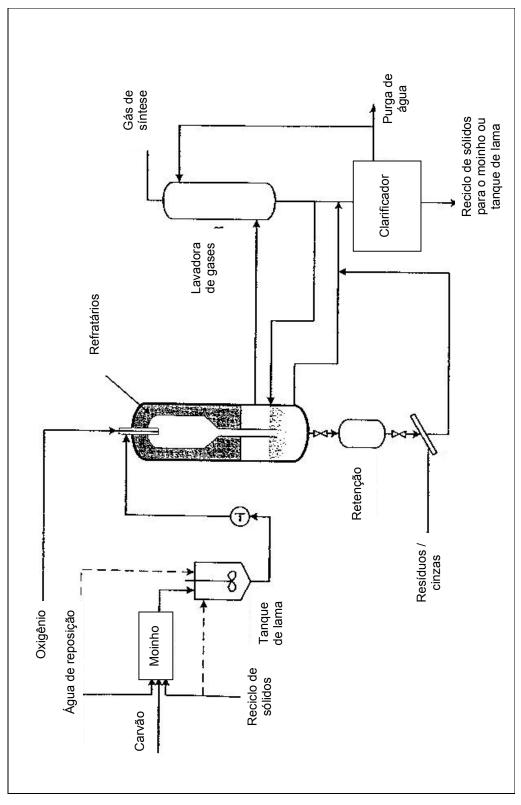


Figura 2.18 – Esquema do Processo Texaco de gaseificação de carvão/coque [13]

Em termos de performance, as tecnologias Shell e Texaco apresentam as seguintes características:

Tabela 2.5 – Comparativo de performance de gaseificadores Shell e Texaco [13]

	Tecnologia / matéria prima			
	Gás natural		Óleo combustível pesado	
	Shell	Texaco	Shell	Texaco
C/H (carga) m/m	3,17	3,22	7,90	8,81
CO ₂ (produto) % m/m	1,71	2,6	2,75	5,7
CO (produto) % m/m	34,9	35,0	49,5	47,4
H ₂ (produto) % m/m	61,4	61,1	46,4	45,8

Obs.: Processo Shell com pressão de 56 bar e Processo Texaco com pressão de 25 bar.

Como pode ser visto na Tabela 2.5, apesar da diferença operacional (pressão) dos dois processos, o perfil de produtos é similar. A diferença de pressão de operação gera vantagem à tecnologia Shell (maior pressão \rightarrow menor gasto energético global). Além disso, a disponibilidade operacional do processo Texaco é menor, o que exige o uso de mais um gaseificador (*stand-by*) para garantir a produção.

Quanto às definições para o projeto de um gaseificador, estas dependem, em grande parte, das características da matéria prima utilizada. Um exemplo é a escolha pelo modo *quench* de resfriamento dos gases de combustão. Esta tecnologia é obrigatória nos casos em que o teor de cinzas na matéria prima é superior a 0,4 % (m/m) e/ou quando o teor de sódio supera 50 ppm [13].

2.1.4 Análise Ambiental

A legislação ambiental, cada vez mais restritiva, está exigindo que as novas plantas de potência utilizem sistemas de abatimento de emissões

atmosféricas. Os principais parâmetros controlados e que exigem formas de abatimento são:

- Material particulado;
- Monóxido de carbono;
- Óxidos de nitrogênio.

A emissão de material particulado está associada à qualidade do processo de combustão e à presença de cinzas no combustível. Quanto menor o excesso de ar adotado no processo ou quanto maior o teor de cinzas, maior será a emissão deste poluente. A maior emissão de monóxido de carbono também é associada à má qualidade de queima e baixo excesso de ar. Quanto aos óxidos de nitrogênio, estes são gerados de duas maneiras:

> Oxidação de compostos nitrogenados do combustível:

Neste caso considera-se que ocorre conversão de 5 % a 25 % [5] do nitrogênio do combustível para NO_X . Isto porque a reação de formação de N_2 a partir de óxidos de nitrogênio também ocorre.

> NO_x térmico:

O NO_X térmico é originário da oxidação do nitrogênio do ar. Este processo, que gera essencialmente NO, é afetado pela temperatura de combustão. Acima de 1.400 °C, a formação de NO tem crescimento exponencial. Por esse motivo, é usual adotar, como forma de reduzir a emissão de NO_X, queimadores do tipo *low-NOX* (baixa emissão de NO_X). Estes queimadores fazem com que a combustão seja realizada em estágios, o que diminui a temperatura da chama. A formação de NO_X térmico ocorre segundo as seguintes reações:

$$N_2 + O_2 \longleftrightarrow 2NO$$
 Eq. 2.16

No Brasil, uma das legislações ambientais mais restritivas para emissões atmosféricas é a do Estado do Paraná. A chamada SEMA 54 [22] traz limitações conforme o tipo de combustível, fonte geradora e capacidade do processo. A Tabela 2.6 mostra as exigências de emissão para plantas geradoras de energia que utilizam óleos combustíveis.

Tabela 2.6 – Padrão de emissões atmosféricas – Estado do Paraná [22]

Potência Térmica	Material particulado	СО	NOx		SOx
(MW)	mg/Nm³	mg/Nm³	OC até 1% de N mg/Nm³	OC acima de 1% de N mg/Nm³	mg/Nm³
< 10	NA	500	NA	NA	NA
10 a 50	250	250	820	820*(0,4+0,6*N)	
50 a 100	100	250	620	620*(0,4+0,6*N)	1800
> 100	75	175	320	323 (3,1.0,0.14)	

N representa o teor de nitrogênio (mg/Nm³)

NA - Não aplicável

Os óleos combustíveis utilizados no Brasil possuem, de modo geral, teores de nitrogênio acima de 1 % (m/m). Isto implica na necessidade de abatimento pelo uso de queimadores *low-NO*_X, aditivos de combustão e processos catalíticos de conversão de NO_X em N₂. Estes processos, juntamente com o abatimento de particulados via precipitador eletrostático, geram grande impacto no custo da central termoelétrica.

As plantas de potência que utilizam o processo do *IGCC* têm vantagem no que diz respeito à emissão de NO_X. Isto porque o processo de gaseificação utiliza, geralmente, comburente do tipo ar enriquecido. Desta forma, a menor concentração de nitrogênio implica em reduzida geração de NO_X térmico.

2.1.5 Análise econômica

A avaliação econômica de uma determinada tecnologia deve levar em consideração a flutuação de preços de suas matérias primas e produtos. Uma análise de sensibilidade econômica típica estabelece um caso base e, no mínimo, mais dois valores para suas matérias primas e produtos. Dessa forma são constituídos os cenários econômicos de análise. Determinadas estas faixas de flutuação de preços, segue-se então o cálculo do VPL (valor presente líquido) e da TIR (taxa interna de retorno). Estes dois itens, que serão discutidos a seguir, proporcionam ao investidor uma visão de quão rentável é o projeto.

2.1.5.1 Valor presente líquido – VPL

O VPL é utilizado para valorar, no momento atual, todos os gastos e ganhos de um empreendimento. Sendo assim, o cálculo do VPL nada mais é do que a atualização, segundo uma taxa pré-definida, do balanço econômico de receitas e despesas em um certo período. Tipicamente utiliza-se o período de depreciação do empreendimento para cálculo da VPL. No caso de plantas de potência, o período de análise típico é de 20 anos.

O cálculo do VPL é feito através da seguinte equação:

$$VPL = C_0 + \sum_{n=0}^{n} \left(\frac{C_n}{(1+i)^n} \right)$$
 Eq. 2.17

Onde:

 C_0 é o fluxo de caixa no momento zero (investimento inicial na planta;

C_n é o fluxo de caixa feito no período n;

n é o número do período em que foi feito determinado fluxo de caixa;

i é a taxa de juros correspondente ao período n. Em avaliações de projetos, é comum utilizar i = 12 % (a.a.).

2.1.5.2 Taxa interna de retorno – TIR

A taxa interna de retorno, também conhecida como taxa de rentabilidade interna, corresponde à taxa de juros que zera o valor presente líquido. Isto implica dizer que a TIR é a taxa que iguala despesas e receitas no período analisado. Para avaliar a viabilidade de um projeto, o empreendedor compara a TIR com a chamada taxa mínima de atratividade (TMA), a qual pode variar de 8 % a 12 % (a.a.) conforme o tipo de projeto. Uma TIR superior à TMA sugere que o projeto é viável economicamente.

2.2 ESTADO DA ARTE

2.2.1 Termoelétricas de elevada eficiência

Projetos modernos de unidades termoelétricas operam com variantes dos ciclos vistos no item 2.1.1, de modo a elevar a eficiência energética e reduzir emissões atmosféricas. Atualmente, três categorias são as principais [3]:

- > Plantas com Ciclo Rankine Avançado;
- Plantas com Ciclo Combinado;
- ➤ Plantas com abatimento de CO₂ (CCS Carbon capture and separation).

A seguir será feita uma breve explanação sobre as tecnologias inseridas nessas três categorias.

2.2.1.1 Ciclo Rankine Avançado

Conforme mencionado no item 2.1.1.4, a elevação da temperatura da fonte quente (vapor) contribui para o aumento da eficiência da planta. Nesta linha tecnológica, iniciou-se na década de 1930 o uso de plantas supercríticas, ou seja, com temperatura e pressão acima dos valores críticos da água (Tc = 374 °C e Pc = 220 bar). Esta condição operacional é uma das mais importantes para o incremento de eficiência da planta. Outras variáveis que contribuem para isto são:

- Redução do excesso de ar para a combustão
 - Limitada conforme o tipo de combustível e por questões de segurança.
- Redução da temperatura dos gases enviados para a chaminé
 - Limitada pela presença de enxofre e condensação ácida dos gases de combustão em equipamentos.

- Reaquecimento do vapor extraído das turbinas
 - Limitações econômicas.
- Aumento do vácuo do condensador
 - Limitado pela temperatura da fonte fria.

Uma visão bastante interessante dos impactos causados por estas ações é retratada na Figura 2.19.

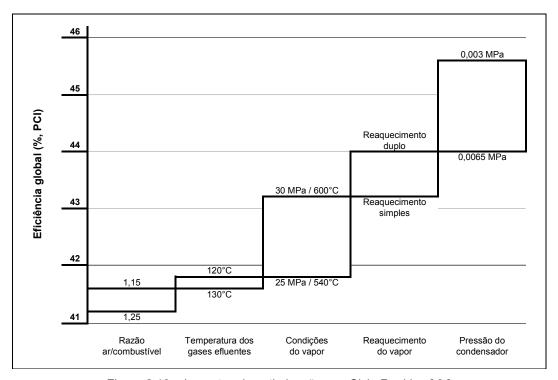


Figura 2.19 – Impactos das otimizações no Ciclo Rankine [3]

Com a operação em condições supercríticas, o Ciclo Rankine passou a apresentar valores de eficiência de até 45 % (em relação ao PCI). Desta forma, as emissões atmosféricas sofreram grande redução. Isto é evidenciado quando se faz a comparação entre eficiência e emissão de CO₂, como mostra a Figura 2.20. Nesta figura, eficiência e emissão de dióxido de carbono são comparadas para diferentes plantas do tipo PC (*Pulverized Coal*), que utiliza carvão como combustível em um Ciclo Rankine. Observa-se que, para um aumento de 10 pontos percentuais na eficiência da planta, cerca de 22 % a menos de CO₂ é emitido (aproximadamente 0,175 t/h.MW de CO₂ não emitido).

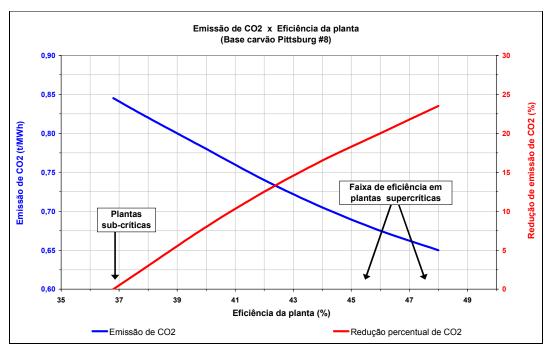


Figura 2.20 – Relação entre eficiência e emissão de CO₂ [3]

Contudo, o Ciclo Rankine Avançado ainda não é competitivo energeticamente com outro tipo de planta, a de Ciclo Combinado.

2.2.1.2 Ciclo Combinado

A utilização de plantas de potência dotadas de turbina a gás e turbina a vapor (Ciclo Combinado), quando comparada àquelas com Ciclo Rankine, já pode ser tratada como planta de alta eficiência. Como pode ser visto na Tabela 2.1, são típicos os incrementos de 50 % na eficiência, passando de 40 % no CR para 60 % no CC.

Contudo, o uso de CC implica na necessidade de combustíveis especiais: gasosos (gás natural ou GLP) ou líquido (querosene, diesel ou óleo combustível leve). ou seja, a combustão em ciclos Combinados não permite o uso de combustíveis de baixo valor agregado, como é o caso dos óleos pesados utilizados no Ciclo Rankine. Com isto, o aumento de eficiência pode impactar o custo final da energia elétrica, uma vez que o custo destes combustíveis leves é, normalmente, maior do que o custo do carvão ou dos óleos combustíveis pesados.

Para viabilizar a utilização de combustíveis mais baratos, como é o caso das correntes de "fundo de barril de petróleo", surge a opção do *IGCC*, onde é feita a gaseificação prévia destes líquidos para posterior passagem pela turbina a gás.

Uma planta termoelétrica com *IGCC* possui elevado custo de implantação, quando comparada com as plantas vistas anteriormente. Este custo se deve aos equipamentos extras necessários para o *IGCC*:

- Gaseificador;
- Tratamento de gases;
- Unidade de separação de ar (N₂/O₂).

Porém, num cenário de fortes restrições ambientais, o *IGCC* adquire certa vantagem quando comparado com as plantas de CR e CC [3]. Esta vantagem se deve aos seguintes fatores:

- Alta pressão dos gases de combustão, permitindo a redução de tamanho dos equipamentos para tratamento de gases;
- Uso de N₂ da Unidade de Separação de Ar para redução da emissão de NO_X na turbina a gás, em substituição ao vapor d'água;
- CO₂ efluente pressurizado, eliminando a necessidade de compressores para o abatimento de dióxido de carbono.

2.2.2 Gaseificação integrada ao ciclo combinado - IGCC

Como mencionado no item 2.1.3, uma das possibilidades de aproveitamento do gás de síntese (CO + H₂) é na geração de vapor, energia elétrica e hidrogênio. Para este fim adota-se a tecnologia de gaseificação integrada ao ciclo combinado, ou *IGCC* (*Integrated Gasification Combined Cicle*). Este processo, como o próprio nome diz, consiste na associação de uma gaseificação com uma tradicional planta termoelétrica, a de ciclo combinado. A Figura 2.21 mostra um diagrama de blocos de um *IGCC* e possíveis equipamentos/unidades auxiliares.

A tecnologia de *IGCC* é uma interessante alternativa de utilização de combustíveis de baixo valor agregado para atender demandas energéticas. RAO (2007) [20] cita o *IGCC* como uma das maneiras de se transformar carvão, biomassa ou resíduos de petróleo, os quais não podem ser enviados diretamente para uma turbina a gás, em combustível gasoso que atende especificações ambientais e de processo.

Outra importante funcionalidade das unidades de *IGCC*, ressaltada por DESCAMPS *et al.* (2008) [6], é o abatimento de CO₂, também conhecido como *CCS* (*carbon capture and sequestration*). As condições operacionais destas plantas facilitam o abatimento de CO₂, quando comparado com a implantação de uma tecnologia *CCS* em outros tipos de plantas termoelétricas. Como pode ser visto na Tabela 2.7, uma planta de *IGCC* com *CCS* é mais eficiente, emite menos CO₂ e produz energia mais barata do que plantas com ciclo Rankine.

Comparativamente com os demais ciclos termodinâmicos, as vantagens apresentadas pelo *IGCC* (maior eficiência energética, menor emissão atmosférica, flexibilidade no uso de combustíveis) tornam esta tecnologia foco de diversos estudos. Sua aplicação principal tem sido com queima de carvão mineral, dada a disponibilidade deste combustível e a necessidade de redução de emissões.

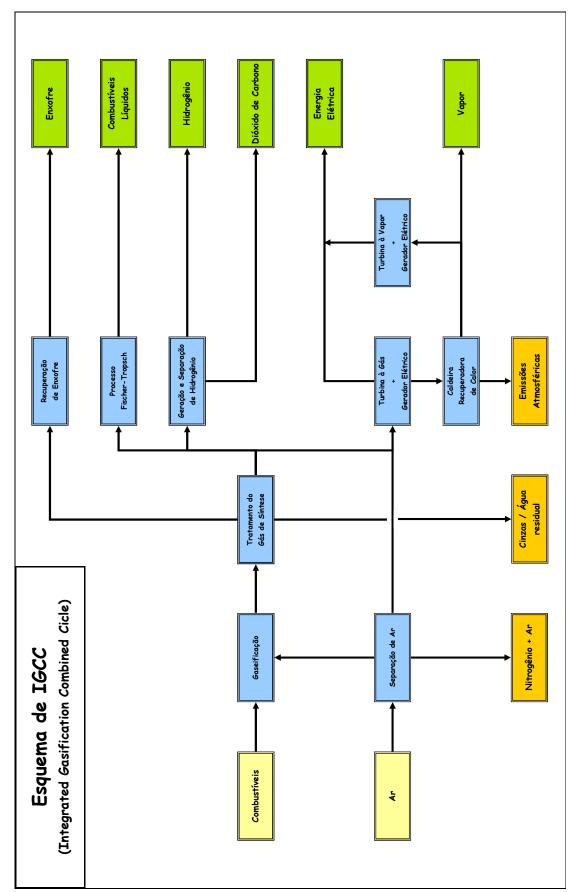


Figura 2.21 – Esquema de uma planta de /GCC com unidades auxiliares

	. , .					
	CR Sub-crítico		CR Supercrítico		IGCC	
	Sem CCS	Com CCS	Sem CCS	Com CCS	Sem CCS	Com CCS
Eficiência (%)	34,3	25,1	38,5	29,3	38,4	31,2
Emissão de CO ₂ (g/kWh)	913	127	830	109	824	101
US\$/MWh	48	82	48	77	51	65

Tabela 2.7 – Comparação entre plantas com e sem CCS [3]

Mundialmente o *IGCC* tem se tornado uma planta atrativa energeticamente [17]. No ano de 2008, 18 unidades estavam em operação e 12 em construção. Algumas destas plantas têm especial importância, como é o caso da FutureGen™, uma planta localizada no Estado de Illinois (EUA) e que entrará em operação em 2012. Este *IGCC* irá utilizar carvão mineral como matéria prima para a produção de 275 MWh de energia elétrica e geração de hidrogênio. Outra importante característica desta unidade é o seqüestro de carbono. Através da injeção de CO₂ em camadas profundas do solo, este *IGCC* permitirá a emissão quase zero de dióxido de carbono. Sua construção, com custo total estimado de US\$ 1,5 bilhão (cerca de 5.450 US\$/kWh), é uma parceria público-privada, envolvendo EUA, China, Índia, Austrália, Coréia do Sul e Japão [10].

Quanto às unidades em operação, nos EUA existem apenas duas, ambas utilizando carvão mineral como combustível. São elas:

- ➤ Tampa Electric's Polk Power Station (Flórida 250 MW em operação desde 1997);
- Wabash River Coal Gasification Repowering project (Indiana 262
 MW em operação desde 1995).

Outra importante unidade em operação se encontra no Japão. Esta utiliza como matéria prima o resíduo asfáltico, o que a torna referência no uso de frações pesadas de petróleo.

Na Holanda, a refinaria Pernis, da Shell, possui uma unidade de *IGCC* que consome resíduo da destilação a vácuo. Esta planta, que apresenta eficiência global de 79,7 % (PCS), produz 285 t/d de hidrogênio e 117 MW de potência. A tecnologia adotada é a SGP – Shell Gasification Process, compatível com a transformação de resíduos líquidos de petróleo. No caso do *IGCC* da refinaria de Pernis, foram adotados três gaseificadores SGP, associados a dois geradores de vapor recuperadores de calor (HRSG) [12].

LIU et al. (2008) [17], em seu artigo que defende o desenvolvimento do *IGCC* como planta de potência na China, mencionam algumas importantes vantagens do *IGCC* frente às unidades termoelétricas tradicionais. São elas:

- Maior eficiência energética;
- Emissões atmosféricas (material particulados) até 90 % menores do que em unidades termoelétricas tradicionais (UTEs) atuais;
- ➤ Emissões de NO_x 15 % a 20 % menores do que nas atuais UTEs;
- Menor custo de remoção de poluentes, devido às altas pressões de operação;
- ➤ Facilidade na destinação de CO₂;
- Uso de diferentes combustíveis:
- Menor uso de água de resfriamento;
- ➤ Flexibilidade de produtos (H₂, vapor, energia elétrica, gás de síntese para Fischer-Tropsch e indústrias de fertilizantes).

O mesmo autor também aponta algumas desvantagens do *IGCC* frente às demais tecnologias de plantas de potência:

- Maior tempo de construção;
- Menor experiência operacional;
- Maior custo de implantação.

Apesar do grande desenvolvimento de *IGCC*s para aplicações com carvão mineral, eles também têm potencial uso em refinarias de petróleo, uma

vez que os *IGCC*s permitem a geração de hidrogênio, energia elétrica e vapor, insumos fundamentais para as petroquímicas.

DOMENICHINI et al. (2008) [7] consideram que a planta de IGCC é uma potencial solução para as frações pesadas de petróleo. Segundo os autores, a geração de energia elétrica, associada à produção de hidrogênio, pode ser um meio econômico e ambientalmente eficiente para utilizar produtos ditos de "fundo de barril".

O uso do *IGCC* na indústria do petróleo vem de encontro à crescente demanda por combustíveis que gerem menor impacto ambiental (menor teor de enxofre, menor emissão de material particulado) e crescente disponibilidade de petróleos mais pesados. Segundo DOMENICHINI, as plantas com maiores capacidades de geração de hidrogênio possuem menor custo para geração de energia elétrica, o que torna os *IGCC*s com geração de H₂ uma alternativa interessante para as refinarias de petróleo.

Um atrativo ambiental do *IGCC*, indicado por XAVIER *et al.* (2008) [26], é o menor impacto de emissão de CO₂ para a produção de H₂. Segundo os autores, hoje existe um paradoxo ambiental para realizar o hidrotratamento de combustíveis (remoção de enxofre e nitrogênio). Isto porque grandes quantidades de CO₂ são emitidas para a geração do H₂ necessário no tratamento. No caso do *IGCC*, a emissão de CO₂ também está associada à geração de energia elétrica, o que reduz o seu impacto ambiental.

HOLOPAINEN (1993) [15] menciona em seu artigo que as plantas de *IGCC* que operam com óleos pesados são mais econômicas do que as que operam com carvão. Em sua avaliação econômica, HOLOPAINE utilizou o resíduo de vácuo viscorreduzido como matéria prima. Uma produção de aproximadamente 4 MW por tonelada óleo foi obtida na planta em questão, além da geração de 4,1 toneladas de vapor por tonelada de óleo consumida.

Alguns dos processos contidos em uma planta de *IGCC*, mostrados na Figura 2.21, podem ser simplificados ou alterados, conforme demandas ambientais, tipo de combustível e produtos solicitados. Contudo, algumas seções são fundamentais ou mais econômicas para o projeto, conforme estudo

feito por HOLOPAINE [15]. Basicamente, as seguintes unidades apresentam algum tipo de flexibilidade:

Unidade de Separação de Ar (ASU – Air Separation Unit)

- Possibilita que o gaseificador utilize oxigênio enriquecido, reduzindo o tamanho dos equipamentos;
- A vazão volumétrica dos gases efluentes do gaseificador a ar praticamente dobra em relação ao processo que utiliza oxigênio enriquecido;
- O custo do IGCC que utiliza oxigênio enriquecido é cerca de 17 % menor quando comparado ao IGCC que utiliza ar;
- Permite o uso de N₂ para controle de temperatura na admissão da turbina a gás (TG);
- A emissão de NO_x é reduzida com a diluição do gás de síntese com N₂ na admissão da TG;

> Tratamento do gás de síntese

- Necessária para proteção da TG;
- Permite remoção de até 99 % dos compostos de enxofre, tornando o IGCC uma planta de grande atratividade ambiental;

A Tabela 2.8 compara os custos de implantação das plantas com e sem Unidade de Separação de Ar.

Tabela 2.8 – Comparação entre plantas com e sem ASU [15]

% do custo

Seção

Com ASU

Sem

Caasa	/8 do custo			
Seção	Com ASU	Sem ASU		
Estrutura civil	1	1		
Separação de ar e/ou	12	9		
compressão	12	9		
Gaseificador	16	28		
Tratamento de gases	13	17		
Bloco de geração de energia	42	46		
Sistemas elétrico, de água e	16	16		
auxiliares	10	10		
TOTAL	100	117		

3 ESTUDO DE CASO

A refinaria Pernis da Shell, localizada na Holanda, foi a primeira a possuir um *IGCC* que utiliza óleos pesados (resíduos de petróleo) como matéria prima. Operando desde 1997, este *IGCC* consome 1.650 t/d de resíduo de petróleo e produz 285 t/d de hidrogênio (98,4 % v/v de pureza) e 117 MW de potência elétrica. O vapor d'água produzido (93 bar abs. / 9,3 MPa abs. e 500 °C / 773 K) é consumido pelos processos da unidade.

Esta planta consiste de três gaseificadores em paralelo, de modo a possibilitar a manutenção de um deles sem prejuízo para a produção. A carga da unidade, uma corrente de resíduo de vácuo, consome cerca de 1.600 t/d de oxigênio enriquecido (99,5 % v/v). O gás de síntese produzido, após ser resfriado e lavado, é encaminhado para dois sistemas: turbina a gás e geração de hidrogênio. A produção de hidrogênio é feita em dois estágios de *shift* (alta e baixa temperatura). Caso o hidrogênio, que é consumido nas unidades de hidrotratamento da refinaria, tenha sua demanda reduzida, o gás de síntese será encaminhado preferencialmente para a turbina a gás, de modo a gerar mais energia elétrica. A Tabela 3.1 mostra as principais características deste projeto.

Tabela 3.1 – Principais características de projeto do IGCC da refinaria de Pernis [12]

	Unidade	
Carga oleosa		
- Vazão	t/h	68,8
 Composição elementar 		
С	% (m/m)	83,7
Н	% (m/m)	8,6
N	% (m/m)	0,5
S	% (m/m)	6,8
0	% (m/m)	0,3
Cinzas	% (m/m)	0,1
PCS	kJ/kg	39.680
Oxidante		
- Tipo		Oxigênio
- Pureza	% (v/v)	99,5

Gaseificador		
- Tecnologia		SHELL SGP
- Pressão	bar / MPa	65 / 6,5
- Temperatura	°C / K	1300 / 1673
- Vazão	t/h	168,4
- Razão vapor / carga	kg/kg	0,50
- Razão oxigênio / carga	kg/kg	0,95
- Produtos de reação		
CO	% (m/m)	79,7
H_2	% (m/m)	4,7
N_2	% (m/m)	0,2
CO_2	% (m/m)	11,9
H ₂ S	% (m/m)	2,9
COS	% (m/m)	0,3
CH₄	% (m/m)	0,3
H₂O	% (m/m)	0,1
- Vazão de gás de síntese tratado	t/h	153,3
Vapor d'água de alta pressão		
- Produzido no gaseificador	t/h	161,7
- Produzido no reator de shift	t/h	16,0
- HRSG (geração e	t/h	204,7
- Consumo no gaseificador	t/h	34,4
- Consumo no reator de shift	t/h	44,0
- Consumo na turbina a vapor	t/h	126,3
- Vapor exportado	t/h	0
Potência elétrica		
- Potência gerada		
Turbina a gás	MW	86,1
Turbina a vapor	MW	40,4
- Potência consumida	MW	10,0
- Potência exportada	MW	116,5
Hidrogênio		
- Vazão	t/h	11,9
- Pureza	% V/V (base seca)	98,4

As informações de processo do *IGCC* da refinaria de Pernis serão utilizadas como caso base no estudo de plantas com diferentes capacidades. Esta planta foi escolhida como fonte de dados devido à similaridade com o estudo proposto, ou seja, mesma matéria prima (resíduo de vácuo) e mesmos produtos (H₂ e eletricidade).

4 COMPARATIVO ENTRE PLANTAS TRADICIONAIS E IGCCs

A alternativa do *IGCC* para uso em refinarias de petróleo deve ser confrontada com as opções tradicionais de geração de vapor, energia elétrica e hidrogênio. No caso de vapor e eletricidade, as fontes usuais são os Ciclos Rankine ou Combinado. Para o hidrogênio, habitualmente é feita a reforma a vapor de gás natural ou nafta.

Para este estudo comparativo, foram considerados diversos cenários de capacidade das plantas (produção de H₂ e eletricidade - Tabela 4.1) e cenários econômicos (custos de matérias primas e preços de produtos - Tabela 4.2). Resumidamente, os cenários adotados foram:

> Capacidades produtivas:

Potência elétrica: 10 / 20 / 30 / 40 / 50 MW

o Hidrogênio: 0,5 / 1,0 / 1,5 / 2,0 / 5,0 / 10,0 t/h

o Vapor d'água: variável para permitir o fechamento do

balanço energético das plantas.

> Custo de matérias primas:

Óleo (RV): 100 / 200 / 300 US\$/t
 Gás natural: 200 / 350 / 500 US\$/t

Oxigênio: 200 US\$/t

Preço de produtos:

Energia elétrica: 50 / 75 / 100 US\$/MWh

Hidrogênio: 1.000 / 1.150 / 1.300 US\$/t

Vapor d'água: 20 US\$/t

As capacidades de produção de energia elétrica e hidrogênio, mostradas anteriormente, representam escalas tipicamente utilizadas em indústrias petrolíferas.

Tabela 4.1 – Cenários de capacidade das plantas

	H ₂	EE		H ₂	EE
Cenário	t/h	MW	Cenário	t/h	MW
CASO 1	0,5	10,0	CASO 16	2,0	30,0
CASO 2	1,0	10,0	CASO 17	5,0	30,0
CASO 3	1,5	10,0	CASO 18	10,0	30,0
CASO 4	2,0	10,0	CASO 19	0,5	40,0
CASO 5	5,0	10,0	CASO 20	1,0	40,0
CASO 6	10,0	10,0	CASO 21	1,5	40,0
CASO 7	0,5	20,0	CASO 22	2,0	40,0
CASO 8	1,0	20,0	CASO 23	5,0	40,0
CASO 9	1,5	20,0	CASO 24	10,0	40,0
CASO 10	2,0	20,0	CASO 25	0,5	50,0
CASO 11	5,0	20,0	CASO 26	1,0	50,0
CASO 12	10,0	20,0	CASO 27	1,5	50,0
CASO 13	0,5	30,0	CASO 28	2,0	50,0
CASO 14	1,0	30,0	CASO 29	5,0	50,0
CASO 15	1,5	30,0	CASO 30	10,0	50,0

Tabela 4.2 – Cenários econômicos para matérias primas e produtos

	H2	EE	ÓLEO	GN	O ₂	VAP exp
CASO	US\$/t	US\$/MW	US\$/t	US\$/t	US\$/t	US\$/t
Α	1000	50	100	200	200	20
В	1000	75	100	200	200	20
С	1000	100	100	200	200	20
D	1000	50	200	200	200	20
E	1000	75	200	200	200	20
F	1000	100	200	200	200	20
G	1000	50	300	200	200	20
Н	1000	75	300	200	200	20
	1000	100	300	200	200	20
J	1150	50	100	350	200	20
K	1150	75	100	350	200	20
L	1150	100	100	350	200	20
M	1150	50	200	350	200	20
N	1150	75	200	350	200	20
0	1150	100	200	350	200	20
Р	1150	50	300	350	200	20
Q	1150	75	300	350	200	20
R	1150	100	300	350	200	20
S	1300	50	100	500	200	20
T	1300	75	100	500	200	20
U	1300	100	100	500	200	20
V	1300	50	200	500	200	20
W	1300	75	200	500	200	20
X	1300	100	200	500	200	20
Υ	1300	50	300	500	200	20
Z	1300	75	300	500	200	20
AA	1300	100	300	500	200	20

As capacidades produtivas de H₂ e eletricidade foram adotadas de modo a abranger uma ampla faixa de plantas de potência e unidades de geração de

hidrogênio, presentes atualmente em refinarias de petróleo. Quanto aos valores de custo de matérias primas e preços de produtos, estes foram adotados conforme flutuações históricas observadas no Brasil.

A combinação dos 30 cenários de capacidade $(1 \rightarrow 30)$ com os 27 cenários econômicos $(A \rightarrow AA)$ foi feita para 6 diferentes arranjos produtivos. Estes arranjos consideraram a presença ou não de CCS (sequestro e captura de carbono), uso de UGH (unidade de geração de hidrogênio) no caso de CR e CC e uso de Shift de CO no caso de SIGCC. Sendo assim, as 6 opções de planta são:

- ➤ CR sem CCS + UGH
- ➤ CR com CCS + UGH
- ➤ CC sem CCS + UGH
- ➤ CC com CCS + UGH
- > IGCC sem CCS + Shift de CO
- IGCC com CCS + Shift de CO

Com isso, surgem 4.860 casos (30 x 27 x 6) para comparação de custos, impactos ambientais e eficiência energética.

Para iniciar a análise comparativa, foram determinadas as condições operacionais das plantas (*IGCC*, CR e CC). No caso do *IGCC*, os dados de processo foram obtidos a partir do caso base, ou seja, o *IGCC* da refinaria de *Pernis* descrito no item 3 (Estudo de caso). Para as plantas de Ciclo Rankine e Ciclo Combinado, os dados de processo foram gerados a partir de algumas informações constantes nos respectivos *IGCCs*. Toda esta metodologia, que foi desenvolvida em planilha eletrônica (*MS Excel*), é descrita pelo equacionamento a seguir.

4.1 EQUACIONAMENTO PARA OS *IGCCS*:

Este equacionamento foi realizado através de relações entre o *IGCC* do caso base (Pernis) e as capacidades produtivas das plantas.

Vazões de gás de síntese (GS):

Para turbina a gás (GS – TG):

$$(GS - TG)_{IGCC} = (GS - TG)_{IGCC-casobase} \cdot \frac{(EE)_{IGCC}}{(EE)_{IGCC-casobase}}$$
 Eq. 4.1

Onde: EE é a energia elétrica gerada na planta.

Para shift de CO (GS – CO):

$$(GS-CO)_{IGCC} = (GS-CO)_{IGCC-casobase} \cdot \frac{(Ger-H2)_{IGCC}}{(Ger-H2)_{IGCC-casobase}}$$
 Eq. 4.2

Onde: Ger – H2 é a geração de hidrogênio da planta.

Vazão de vapor (93 bar abs. / 500 °C ou 9,3 MPa abs. / 773 K) gerado no gaseificador (VAP - G):

$$(VAP - G)_{IGCC} = (VAP - G)_{IGCC-casobase} \cdot \frac{(GS)_{IGCC}}{(GS)_{IGCC-casobase}}$$
 Eq. 4.3

Vazão de vapor gerado no reator de shift (VAP - S):

$$(VAP - S)_{IGCC} = (VAP - S)_{IGCC-casobase} \cdot \frac{(H2)_{IGCC}}{(H2)_{IGCC-casobase}}$$
 Eq. 4.4

Vazão de vapor consumido no reator de shift (VAPC - S):

$$(VAPC - S)_{IGCC} = (VAPC - S)_{IGCC-casobase} \cdot \frac{(H2)_{IGCC}}{(H2)_{IGCC-casobase}}$$
 Eq. 4.5

Relação entre geração de eletricidade através da turbina a gás (EE -TG) e da turbina a vapor (EE - TV):

$$\left(\frac{EE-TG}{EE-TV}\right)_{IGCC} = \left(\frac{EE-TG}{EE-TV}\right)_{IGCC-casobase}$$
 Eq. 4.6

Vazão de matéria prima oleosa (OC):

$$(OC)_{IGCC} = (OC)_{IGCC-casobase} \cdot \frac{(GS)_{IGCC}}{(GS)_{IGCC-casobase}}$$
 Eq. 4.7

Vazão de oxigênio (O2):

$$(O2)_{IGCC} = (O2)_{IGCC-casobase} \cdot \frac{(GS)_{IGCC}}{(GS)_{IGCC-casobase}}$$
 Eq. 4.8

> Vazão de vapor consumido no gaseificador (VAPC - G):

$$(VAPC - G)_{IGCC} = (VAPC - G)_{IGCC-casobase} \cdot \frac{(OC - G)_{IGCC}}{(OC - G)_{IGCC-casobase}}$$
 Eq. 4.9

Consumo interno de energia (EE - C):

$$(EE-C)_{IGCC} = (EE-C)_{IGCC-casobase} \cdot \frac{(OC-G)_{IGCC}}{(OC-G)_{IGCC-casobase}}$$
 Eq. 4.10

Produção de eletricidade na TV (EE - TV) — conforme relação de geração entre a TV e a TG do IGCC de Pernis:

$$(EE - TV)_{IGCC} = \frac{(EE)_{IGCC} + (EE - C)_{IGCC}}{\left(1 + \left(\frac{EE - TG}{EE - TV}\right)_{IGCC - casobase}\right)}$$
Eq. 4.11

Consumo de vapor para geração de eletricidade na TV (VAP - TV) — considerada relação de 3,1 t/h de vapor para cada MW de potência produzida:

$$(VAP - TV)_{IGCC} = 3.1 \cdot (EE - TV)_{IGCC}$$
 Eq. 4.12

O balanço entre as gerações e consumos de vapor foi tratado como variável independente do *IGCC* de Pernis. Com isso, surgiram casos onde houve excedente e outros com falta de vapor. Estas quantidades foram tratadas, no momento do balanço econômico, como exportação ou importação

de vapor. Como isso, os 30 casos de *IGCCs* ficaram configurados conforme mostra a Tabela 4.3 a seguir.

Tabela 4.3 – Perfil de produção das plantas em avaliação

	H ₂	EE	VAP
	t/h	MW	t/h
Pernis	11,9	116,5	0
CASO 1	0,5	10,0	-2,5
CASO 2	1,0	10,0	-0,1
CASO 3	1,5	10,0	2,3
CASO 4	2,0	10,0	4,6
CASO 5	5,0	10,0	18,8
CASO 6	10,0	10,0	42,4
CASO 7	0,5	20,0	-7,3
CASO 8	1,0	20,0	-4,9
CASO 9	1,5	20,0	-2,5
CASO 10	2,0	20,0	-0,2
CASO 11	5,0	20,0	14,0
CASO 12	10,0	20,0	37,6
CASO 13	0,5	30,0	-12,1
CASO 14	1,0	30,0	-9,7
CASO 15	1,5	30,0	-7,4
CASO 16	2,0	30,0	-5,0
CASO 17	5,0	30,0	9,2
CASO 18	10,0	30,0	32,8
CASO 19	0,5	40,0	-16,9
CASO 20	1,0	40,0	-14,5
CASO 21	1,5	40,0	-12,2
CASO 22	2,0	40,0	-9,8
CASO 23	5,0	40,0	4,4
CASO 24	10,0	40,0	28,0
CASO 25	0,5	50,0	-21,7
CASO 26	1,0	50,0	-19,4
CASO 27	1,5	50,0	-17,0
CASO 28	2,0	50,0	-14,6
CASO 29	5,0	50,0	-0,5
CASO 30	10,0	50,0	23,2

Todos os dados de processo gerados para os *IGCCs*, a partir do equacionamento mostrado anteriormente, são apresentados na Tabela 4.4. Nesta tabela estão exemplificados 8 *IGCCs*. Os dados completos para as 30 plantas em avaliação são apresentados no item 7 (Anexos).

Tabela 4.4 - Base de dados para estudo de caso [12]

		Pernis	CASO 1	CASO 2	CASO 3	CASO 4	CASO 5	CASO 6	CASO 7	CASO 8
Hidrogênio	τ'n	11,9	0,5	1,0	1,5	2,0	5,0	10,0	0,5	1,0
Energia elétrica	MM	116,5	10,0	10,0	10,0	10,0	10,0	10,0	20,0	20,0
Vapor de alta pressão exportado	τ/h	0	-2,5	-0,1	2,3	4,6	18,8	42,4	-7,3	-4,9
Matérias primas										
Óleo	t/h	8,89	3,7	5,8	6,7	10,0	22,4	43,2	5,4	7,5
Oxigênio (99,5% vol)	t/h	65,3	3,6	5,5	7,5	9,5	21,3	1,14	5,1	7,1
Vapor d'água	t/h	34,4	1,9	2,9	3,9	5,0	11,2	21,6	2,7	3,7
Gás de síntese (após cooler)										
Vazão	t/h	168,4	9,2	14,3	19,3	24,4	55,0	105,9	13,2	18,3
Gás de síntese tratado										
Vazão	τ⁄h	153,3	8,3	13,0	17,6	22,2	50,0	6,3	12,1	16,7
Vazão para turbina a gás	τ⁄h	43,3	3,7	3,7	3,7	3,7	3,7	3,7	7,4	7,4
Vazão para shift	τ⁄h	110,0	4,6	6,9	13,9	18,5	46,3	92,6	4,6	6,3
Geração de hidrogênio (Shift)										
H2 da gaseificação	t/h	5,0	0,2	0,4	9,0	8,0	2,1	4,2	0,2	0,4
H2 do shift	t/h	9,1	4,0	8,0	1 ,	1,5	3,8	2,6	0,4	8,0
Consumo de vapor	t/h	44,0	1,9	3,7	5,6	7,4	18,5	37,1	1,9	3,7
Vapor de alta pressão - PRODUÇÃO										
- Gaseificador e cooler (saturado)	τ'n	161,7	8,8	13,7	18,6	23,5	52,8	101,6	12,7	17,6
- Reator de shift (saturado)	t/h	16,0	0,7	1,3	2,0	2,7	6,7	13,4	0,7	1,3
- HRSG *	Λh	27,0	2,3	2,3	2,3	2,3	2,3	2,3	4,6	4,6
Total superaquecido na HRSG	τ'n	204,7	11,8	17,4	22,9	28,5	61,8	117,4	18,0	23,6
Vapor de alta pressão - CONSUMO										
- Gaseificador	t/h	34,4	1,9	2,9	3,9	5,0	11,2	21,6	2,7	3,7
- Reator de <i>shift</i>	t/h	4 4 ,0	ر 9,	3,7	5,6	7,4	18,5	37,1	0,1	3,7
- Turbina a vapor	t/h	126,3	10,5	10,8	1,1	1. 4,	13,2	16,3	20,7	21,0
Total	Λh	204,7	14,2	17,4	20,6	23,8	43,0	75,0	25,3	28,5
Energia elétrica - PRODUÇÃO										
- Turbina a gás	MM	86,1	7,2	7,4	9,2	7,8	0,6	11,1	14,1	4,4
- Turbina a vapor	MW	40,4	3,4	3,5	3,6	3,7	4,2	5,2	9,9	6,7
Energia elétrica - CONSUMO										
- Consumo interno	MW	10,0	0,5	0,8	1,1	1,5	3,3	6,3	9,0	1,1
Produtos										
Hidrogênio (98,4% v/v base seca)	τ⁄h	11,9	0,5	1,0	1,5	2,0	5,0	10,0	0,5	1,0
Energia elétrica	MW	116,5	10,0	10,0	10,0	10,0	10,0	10,0	20,0	20,0
Vapor de alta pressão	t/h	0,0	-2,5	-0,1	2,3	4,6	18,8	42,4	-7,3	6,4
		30	9			1000	30		3 3 3 3 4 3 4	1
ଂ vazao gerada na HKSG, sem contabilizar as vazoes		sao superad	uecidas neste	equipamento	valores neg	ativos indicam	produção ex	que sao superaquecidas neste equipamento. Valores negativos indicam produção excedente (exportação de vapor)	rração de vap	or).

4.2 EQUACIONAMENTO PARA AS PLANTAS DE CR E CC

Este equacionamento foi efetuado com base nos *IGCCs* de capacidades equivalentes e nas eficiências dos ciclos Rankine e Combinado.

Vazão de combustível para o ciclo Rankine (OC - CR):

$$(OC - CR)_{CR} = (OC)_{IGCC} \cdot \frac{(\eta)_{CR}}{(\eta)_{IGCC}}$$
 Eq. 4.13

Onde: η é a eficiência térmica do ciclo (*IGCC* ou CR).

Vazão de combustível para o ciclo Combinado (OC - CC):

$$(OC - CC)_{CR} = (OC)_{IGCC} \cdot \frac{(\eta)_{CC}}{(\eta)_{IGCC}}$$
 Eq. 4.14

Onde: η é a eficiência térmica do ciclo (/GCC ou CC).

No caso das Eq. 4.13 e Eq. 4.14, as eficiências adotadas para os Ciclos Rankine e Combinado foram as constantes na Tabela 4.5 a seguir.

Tabela 4.5 – Eficiência energéticas típicas das plantas de potência [13]

		Eficiência térmica
		típica (% do PCI)
Ciclo Rankine	Sem CCS	30
Ciolo I tallitillo	Com CCS	25
Ciclo Combinado	Sem CCS	50
Olcio Gombinado	Com CCS	35
IGCC	Sem CCS	40
	Com CCS	35

Como principal resultado do levantamento de dados de processo das plantas em estudo (*IGCC*, CR e CC), surgem as necessidades de matérias primas. Estas demandas, associadas às produções das unidades, serão fundamentais para a sequência de comparação entre as plantas. A Tabela 4.6

exemplifica estas demandas de matérias primas. No caso dos CR e CC, que devem ser associados a uma Unidade de Geração de Hidrogênio (reforma de GN), a vazão de gás obedece a relação de 2,2 t de GN para geração de 1 t de H₂.

Tabela 4.6 – Consumo de matérias primas e combustíveis para as plantas em estudo

		Matéria prima	Pernis	CASO 1	CASO 2	CASO 3
	Sem CCS	h/l- 00	04.7	5.0	7.0	40.5
	Selli CCS	t/h OC	91,7	5,0	7,8	10,5
Ciclo		t/h GN	26,4	1,1	2,2	3,3
Rankine	ĺ					
	Com CCS	t/h OC	110,0	6,0	9,3	12,6
		t/h GN	26,4	1,1	2,2	3,3
	Sem CCS	t/h OC	55,0	3,0	4,7	6,3
Ciclo		t/h GN	26,4	1,1	2,2	3,3
combinado	•					
Combinado						
	Com CCS	t/h OC	78,6	4,3	6,7	9,0
		t/h GN	26,4	1,1	2,2	3,3
	Sem CCS					
	caso base	t/h OC	68,8	3,7	5,8	7,9
IGCC	ĺ					
	Com CCS	t/h O2	74,6	4,1	6,3	8,6
		t/h OC	78,6	4,3	6,7	9,0

4.3 ANÁLISE ECONÔMICA

Com as informações identificadas até o momento, ou seja, preços de matérias primas e produtos e consumos individuais das plantas, foram feitas as seguintes avaliações econômicas:

- Custo de implantação de plantas de diferentes bases tecnológicas (IGCC / Ciclo Rankine / Ciclo Combinado), com e sem CCS;
- Lucratividade das plantas. Neste caso foi considerado um balanço econômico entre matérias primas e produtos. Os gastos com manutenção e operação não foram considerados devido à similaridade das plantas;

- Valor presente líquido VPL;
- > Taxa interna de retorno.

4.3.1 Custo de implantação

Tradicionalmente, plantas de potência podem ter seus custos de implantação estimados conforme a capacidade de geração de eletricidade das mesmas. A Tabela 4.7 mostra os custos, em US\$/kW, para construção dos três tipos de planta em avaliação. Estes valores tratam, todavia, apenas da parte termoelétrica. Os custos para implantação de UGHs (caso dos CR e CC) e *shift* (caso dos IGCC) devem ser acrescentados. OGDEN (2001) [18], em sua revisão sobre plantas para geração de hidrogênio, menciona algumas relações entre custo e capacidade de gerar hidrogênio. Estas informações, mostradas na Tabela 4.8, tratam da UGH como um todo. Para o caso dos *IGCCs*, que necessitam apenas do reator de *shift*, foi adotada uma fração (20 %) do custo da UGH como custo da geração de hidrogênio.

Tabela 4.7 – Custo de implantação de plantas de potência [25], [13]

		US\$/kW
Ciclo Rankine	Sem CCS	500
CICIO IVALINITE	Com CCS	800
Ciclo Combinado	Sem CCS	800
	Com CCS	1.200
1000	Sem CCS	1.300
IGCC	Com CCS	1.800

Tabela 4.8 – Custo de implantação de unidades para geração de hidrogênio [18]

Capacidade (t/h de H₂)	Capacidade energética (kW de H ₂)	Custo da planta (US\$/kW de H ₂)	Custo da planta US\$ por t/h de H ₂
0,1	3.350	3.000	100.833.333,00
2,0	67.000	800	26.888.889,00
20,0	670.000	320	10.755.556,00

Com estas informações foram determinados os custos de implantação, para cada caso de demanda H₂ x EE, dos seis tipos de planta em avaliação (CR, CC e *IGCC*; todos com e sem *CCS*). A Tabela 4.9 exemplifica estes custos, os quais estão apresentados em sua totalidade no item 7 (Anexos).

Tabela 4.9 – Custo de implantação (planta de potência e geração de hidrogênio)

			Pernis	CASO 1	CASO 2
		Planta	58.250.000	5.000.000	5.000.000
	Sem CCS	UGH	132.219.367	33.090.256	54.135.000
Ciclo		Total	190.469.367	38.090.256	59.135.000
Rankine		Planta	93.200.000	8.000.000	8.000.000
	Com CCS	UGH	132.219.367	33.090.256	54.135.000
		Total	225.419.367	41.090.256	62.135.000
		Planta	93.200.000	8.000.000	8.000.000
	Sem CCS	UGH	132.219.367	33.090.256	54.135.000
Ciclo		Total	225.419.367	41.090.256	62.135.000
combinado		Planta	139.800.000	12.000.000	12.000.000
	Com CCS	UGH	132.219.367	33.090.256	54.135.000
		Total	272.019.367	45.090.256	66.135.000
		Planta	536.640.751	29.218.558	45.437.116
	Sem CCS	Shift	26.443.873	6.618.051	10.827.000
		Total	563.084.625	35.836.609	56.264.116
IGCC		_			
		Planta	743.041.040	40.456.465	62.912.930
	Com CCS	Shift	26.443.873	6.618.051	10.827.000
		Total	769.484.914	47.074.516	73.739.930

A análise destes valores, mostrados graficamente no Gráfico 2.1, indica que as plantas de *IGCC* são competitivas, no quesito custo de implantação, apenas nos casos de geração de hidrogênio menor do que 5 t/h. Além disso, *IGCCs* solicitados a produzir maior potência elétrica (> 20 MW) passam a ter seus custos de construção mais elevados. Tais características podem ser associadas à maior demanda de gás de síntese e, consequentemente, maiores dimensões dos gaseificadores. Estes, por sua vez, tendem a apresentar custos muito elevados devido à condição de alta pressão de operação.

Contudo, vale ressaltar que os custos construtivos apresentados não levam em consideração necessidades de abatimento de emissões (NOx, SOx e material particulado). Caso estes equipamentos sejam necessários em função da legislação aplicável na região, os *IGCCs* poderão ser vantajosos, tendo em vista que seu processo já possui equipamentos para remoção de particulados

(lavadora de gás de síntese) e remoção de compostos ácidos (tratamento de gás de síntese). Maiores detalhes quanto à emissões atmosféricas serão tratados no item 4.4 (Análise ambiental).

Quanto aos demais tipos de plantas de potência, a associação CR + UGH apresenta menores custos de implementação em todos os cenários avaliados.

4.3.2 Balanço econômico operacional

A primeira análise econômica realizada, de custo de implantação, mostrou que o *IGCC* pouco tem a competir com as associações CR ou CC com UGH. Todavia, as condições operacionais das plantas, dadas suas eficiências energéticas distintas, podem alterar esta situação, tornando os *IGCCs* ou a associação CC + UGH competitiva com o arranjo CR + UGH.

Para esta análise, foi realizado um balanço econômico com os gastos com matérias primas e ganhos obtidos com produtos. A Tabela 4.3 (demandas de EE e H₂) e a Tabela 4.6 (demandas de matérias primas), associadas à Tabela 4.2 (cenários econômicos), geraram matrizes com os lucros/prejuízos operacionais das plantas. Estes cálculos foram feitos para as seis plantas em avaliação (CR, CC, IGCC; com e sem CCS). Estas matrizes encontram-se no item 7 (Anexos).

Gráficos de superfície, feitos com os dados destas matrizes, facilitam a visualização das condições de maior ou menor lucratividade das plantas (ver Gráfico 4.2). Os gráficos para todas as plantas estão presentes no item 7 (Anexos). A análise destas informações permite identificar em quais cenários de demanda (1 a 30) e em quais cenários econômicos (A a AA) as plantas tendem a gerar maiores lucros. A Tabela 4.10 identifica estas situações de maior lucratividade.

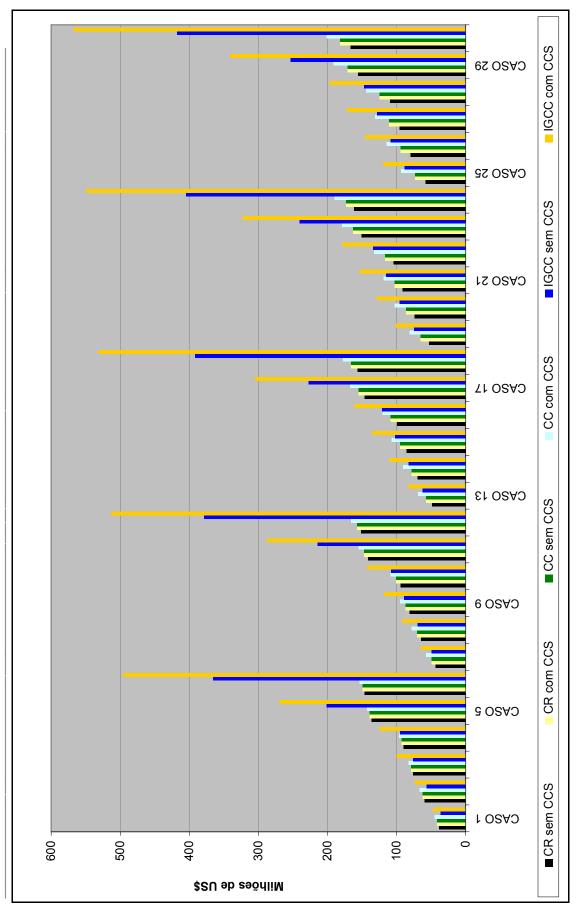


Gráfico 4.1 – Comparativo dos custos de implantação (plantas de potência e geração de hidrogênio)

T30

L25

L30

C25

3° C30 L25 U25 Sem CCS Ciclo Rankine Com CCS C25 L25 U25 Sem CCS C30 B30 L30 Ciclo combinado Com CCS C30 B30 L25

U30

U30

Tabela 4.10 – Tendência de maior lucro operacional

A análise da Tabela 4.10, associada com a Tabela 4.11, gera as seguintes conclusões:

Sem CCS

Com CCS

IGCC

- ➤ O fator que mais impacta a lucratividade das plantas é a exportação de energia elétrica. Todos os cenários de maior lucro foram obtidos para as plantas de maior potência elétrica, ou seja, 50 MW (cenários 25 a 30);
- Como esperado, os maiores lucros foram obtidos em cenários de baixo custo do óleo combustível (cenários A, B, C, J, K, L, S, T e U);
- ➤ No caso das plantas de IGCC, estas tendem a ser mais lucrativas em cenários de preço elevado do H₂ e energia elétrica, alto custo do gás natural e baixo custo do óleo combustível (cenários T e U). Nestas condições, a geração de hidrogênio via gaseificação de óleos pesados passa a ser mais atrativa do que a geração via reforma de gás natural (UGH).

Tabela 4.11 – Cenários de maior lucro operacional

	H ₂	EE
	t/h	MW
2 22	- 40	=-
Caso 30	10	50
Caso 25	0.5	50
	0,5	50
· · · · · · · · · · · · · · · · · · ·		

	H ₂	EE	VAP exp	ÓLEO	O2	GN
	US\$/t	US\$/MW	US\$/t	US\$/t	US\$/t	US\$/t
Caso B	1000	75	20	100	200	200
Caso C	1000	100	20	100	200	200
Caso L	1150	100	20	100	200	350
Caso T	1300	75	20	100	200	500
Caso U	1300	100	20	100	200	500

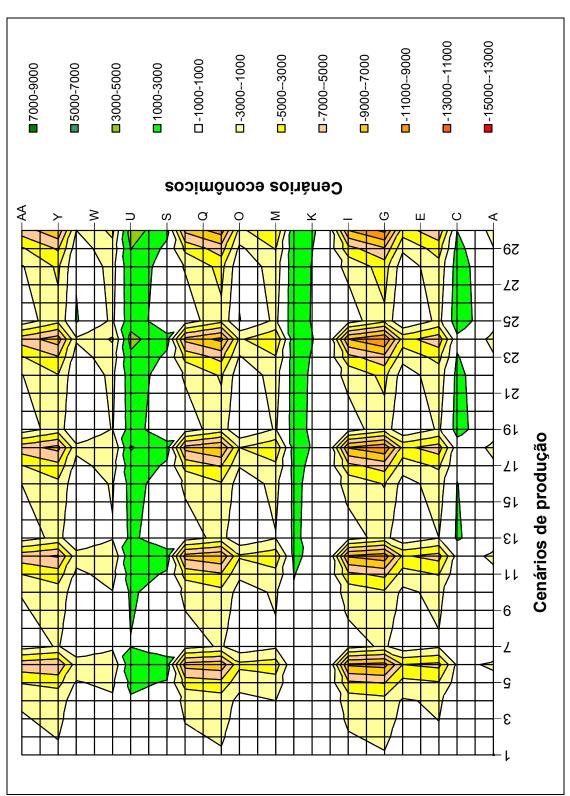


Gráfico 4.2 – Exemplo de balanço econômico operacional – IGCC sem CCS

-2.319

2.747

681

3.997

1.931

Outra forma de comparação é entre plantas de mesma capacidade. Para isso, a Tabela 4.12 compara os cenários mais promissores identificados na Tabela 4.11.

Cenários (US\$/h) C30 **C25** T30 **U30** L25 **B30** Sem CCS 4.368 3.456 2.023 3.273 3.364 3.118 Ciclo Rankine Com CCS 3.038 3.179 3.087 1.788 -1.879-629 Sem CCS 7.028 4.011 3.919 5.778 2.112 3.362 Ciclo combinado Com CCS 5.318 3.654 3.563 4.068 401 1.651

2.123

1.692

2.048

1.617

Tabela 4.12 – Balanço econômico operacional das plantas de potência

A análise desta tabela confirma o sugerido anteriormente, ou seja, em condições de alto custo do gás natural (T30 e U30), o *IGCC* é vantajoso em termos de lucratividade operacional. Nas demais situações (casos B, C e L), a associação CC + UGH é mais favorável, seguido por CR + UGH.

4.3.3 VPL e TIR

IGCC

Sem CCS

Com CCS

997

-1.069

As análises de valor presente líquido e taxa interna de retorno, essenciais para tomada de decisão em investimentos, foram realizadas para os cenários de maior lucratividade operacional. A Tabela 4.13 mostra, para cada tipo de planta de potência, os resultados de VPL nos cenários econômico e de demanda avaliados. Nesta análise foi considerada uma taxa de desconto de 12 % a.a. Observa-se que a associação CR + UGH e CC + UGH são vantajosas frente ao *IGCC*. Isto se deve, principalmente, ao menor investimento inicial destes ciclos termodinâmicos tradicionais.

VPL (milhões de US\$) C30 C25 L25 **B30** T30 U30 Sem CCS 103 31 -180 147 142 -108 Ciclo Rankine Com CCS 13 118 113 -59 -270 -198 Sem CCS 243 166 161 171 -40 **32** Ciclo combinado Com CCS 100 95 -77 -288 -216 Sem CCS -315 40 44 -387 -215 -143 **IGCC** Com CCS -568 -13 -640 -467 -395

Tabela 4.13 – VPL das plantas de potência avaliadas

A Tabela 4.14, que apresenta os valores de TIR para os investimentos em questão, corrobora o que foi verificado na análise de VPL. Considerando um valor de TIR mínimo de 12 %, tipicamente adotado em projetos comerciais, novamente CR + UGH e CC + UGH se sobressaem frente ao IGCC.

É importante observar que alguns dos valores de TIR obtidos são excessivamente elevados, o que revela possíveis excessos na determinação dos cenários econômicos. É provável que alguns dos cenários avaliados tenham supervalorizado os produtos (H₂ e EE) ou subvalorizado os custos de implantação das plantas.

C30 C25 L25 **B30** T30 **U30** Sem CCS 22% **50%** 15% 51% 8% 3% Ciclo Rankine 13% 38% 36% 6% Com CCS < 0 < 0 27% 8% 15% Sem CCS 33% 47% 46% Ciclo combinado Com CCS 34% 33% Sem CCS 20% 20% **IGCC** Com CCS 10% 11% < 0 < 0 < 0

Tabela 4.14 - TIR das plantas de potência avaliadas

4.4 ANÁLISE AMBIENTAL

A gaseificação de matérias primas residuais é uma forma ambientalmente interessante de destinação de alguns derivados de petróleo. A presença de uma unidade como o *IGCC* no parque de refino (Figura 2.13) proporciona um papel mais nobre às correntes de resíduo de vácuo e resíduo asfáltico. O que a princípio daria origem a produtos de baixo valor agregado, como por exemplo o cimento asfáltico e os óleos combustíveis, passaria a gerar insumos altamente valorados, ou seja, hidrogênio e energia elétrica. Esta característica torna o *IGCC* uma planta de grande atratividade ambiental.

As plantas de *IGCC* possuem grande vantagem ambiental quando comparadas às unidades do tipo Ciclo Rankine ou Ciclo Combinado. As exigências mecânicas da turbina a gás que recebe o gás de síntese no *IGCC* tornam necessário o uso de unidades de tratamento deste gás, de forma a quase eliminar compostos ácidos (H₂S, SO_X e mercaptanos) e remover particulados. Com isso, as emissões de SO_X e material particulado são

severamente reduzidas. No caso do NO_X , o ganho do *IGCC* ocorre devido à reduzida geração de NO_X térmico, conforme discutido no item 2.1.4 (Análise ambiental).

Para que os *IGCCs* em avaliação sejam comparados com as plantas de CR e CC, considerando emissões atmosféricas similares, torna-se necessário incorporar aos custos dos CR e CC os valores referentes à construção e operação dos respectivos sistemas de abatimento de emissões. Com auxílio das metodologias propostas por COFAL (1998) [5], foram obtidos custos de abatimento de NO_X e material particulado para as plantas dos cenários 25 e 30, identificadas como sendo as mais promissoras em termos de lucratividade. Em relação ao custo global de implantação, os sistemas de abatimento para estes cenários foram responsáveis por cerca de 25 % e 45 % dos investimentos, respectivamente. Com isso, novos VPL e TIR foram calculados, resultando em redução dos cenários favoráveis para os Ciclos Rankine e Ciclos Combinados e consequente redução da vantagem frente ao *IGCC*.

Como pode ser observado com os valores de VPL da Tabela 4.15 e TIR da Tabela 4.16, os cenários C25 e L25, que consideram baixa produção de H_2 (0,5 t/h) e alto preço da energia elétrica (100 US\$/MWh), são os mais favoráveis para as três plantas avaliadas. Apesar do aumento de custo do CR e do CC, estes ainda possuem maior retorno financeiro do que os *IGCCs* equivalentes.

Tabela 4.15 – VPL das plantas avaliadas (considerando abatimento de emissões)

			,	VPL (milhõ	es de US\$)	
	•	C30	C25	L25	B30	T30	U30
Ciclo Rankine	Sem CCS	-25	120	115	-97	-309	-237
CICIO Rankine	Com CCS	-115	91	86	-187	-399	-327
Ciclo combinado	Sem CCS	115	139	134	43	-169	-97
Cicio combinado	Com CCS	-133	73	68	-205	-417	-345
IGCC	Sem CCS	-315	40	44	-387	-215	-143
1000	Com CCS	-568	-13	-9	-640	-467	-395

91

⁸ Abatimento de emissões atmosféricas considerando, para cada kW de potência global instalada, custo de implantação de US\$ 150,00 e custo operacional de US\$ 7,50 [5][25]. Esta potência global considera a carga térmica inserida na forma de combustível (vazão x PCI).

	-	C30	C25	L25	B30	T30	U30
Ciclo Rankine	Sem CCS	10%	37%	36%	4%	< 0	5%
Cicio Rankine	Com CCS	3%	28%	27%	< 0	< 0	< 0
Ciclo combinado	Sem CCS	19%	36%	36%	15%	< 0	5%
Cicio combinado	Com CCS	12%	27%	26%	7%	< 0	< 0
IGCC	Sem CCS	< 0	20%	20%	< 0	1%	5%
IGCC	Com CCS	< 0	10%	11%	< 0	< 0	< 0

Tabela 4.16 – TIR das plantas avaliadas (considerando abatimento de emissões)

Com relação à emissão de CO_2 , o uso de sistemas de CCS pode gerar redução de até 75 % do CO_2 emitido por IGCCs [11]. Reduções acima deste valor tornam o projeto excessivamente caro.

Em termos de efluentes líquidos, a unidade de *IGCC* gera água contaminada com cinzas e compostos orgânicos. Esta corrente pode ser aproveitada no processo de dessalgação do petróleo. Outra alternativa é o envio da mesma para tratamento na unidade de despejos industriais, juntamente com as demais correntes oleosas da refinaria.

4.5 ANÁLISE ENERGÉTICA

A avaliação energética das plantas em estudo revela a qualidade do aproveitamento da energia em cada caso. Os diagramas a seguir mostram esquematicamente de que forma a energia é convertida em um sistema.

Para os sistemas do tipo Ciclo Rankine, o diagrama de conversão energética (Gráfico 4.3), mostra que a principal perda de energia ocorre através do condensador, necessário para a operação da turbina a vapor que aciona o gerador elétrico.

Ao comparar o Ciclo Combinado (Gráfico 4.4) com o Ciclo Rankine, nota-se que a eficiência energética da planta aumenta. Isto ocorre basicamente por dois motivos:

A geração de energia elétrica pela turbina a vapor, a qual necessita de elevada rejeição térmica para sua operação, é reduzida. Isto ocorre pois a turbina a gás assume grande parte da conversão de energia térmica em mecânica, restando para a turbina a vapor apenas o aproveitamento da energia residual rejeitada pela turbina a gás;

➤ A fonte quente assume um patamar mais elevado de energia, quando comparado ao nível energético do Ciclo Rankine. No Ciclo Combinado a temperatura da fonte quente situa-se próximo a 1.400 °C, que é o limite de operação das turbinas a gás. Dessa forma, para uma rejeição térmica similar à do Ciclo Rankine, o Ciclo Combinado converte maior quantidade de calor em trabalho.

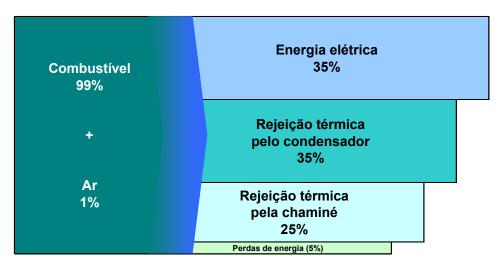


Gráfico 4.3 – Diagrama de conversão energética para o Ciclo Rankine Simples

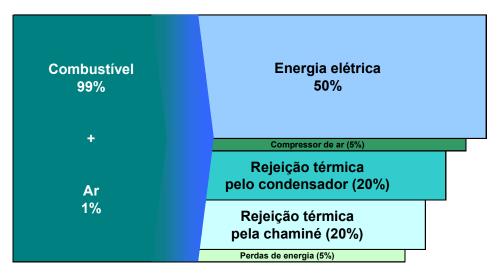


Gráfico 4.4 – Diagrama de conversão energética para o Ciclo Combinado

Caso as plantas de CR ou CC passem a exportar energia térmica na forma de vapor, num arranjo dito de cogeração, a eficiência energética do ciclo aumenta, pois parte da energia de condensação passa a ser exportada. Todavia, este vapor será utilizado para aquecimento ou acionamento de outras turbinas, o que implicará dizer que a eficiência global praticamente não se altera.

Para as plantas de *IGCC*, uma das formas de exportar energia é através da produção de hidrogênio. O Gráfico 4.5 mostra o diagrama energético para a planta do cenário 25 (0,5 t/h de H₂ e 50 MW de EE). Nota-se que a eficiência energética relativa à geração de eletricidade é similar à de um Ciclo Combinado. Contudo, devido à produção de hidrogênio, a eficiência global do *IGCC* aumenta 15 %. Para IGCCs com maior produção de hidrogênio, como no cenário 30 (10 t/h de H₂ e 50 MW de EE), ocorre inversão da distribuição de eficiências. O Gráfico 4.6 mostra que o *IGCC* do cenário 30 tem uma eficiência global de 70 % (PCI), superior à planta do caso 25. Isto ocorre porque, para uma mesma perda de energia com condensação (mesma geração de EE), maior quantidade de H₂ é produzida no cenário 30.

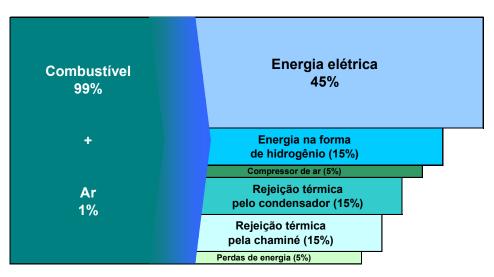


Gráfico 4.5 – Diagrama de conversão energética para o IGCC do cenário 25

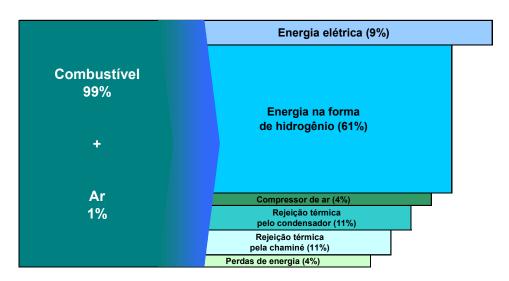


Gráfico 4.6 – Diagrama de conversão energética para o IGCC do cenário 30

5 CONCLUSÕES

Para atender às necessidades energéticas dos refinadores de petróleo, as novas centrais termoelétricas deverão ter maiores eficiências e emitir menor quantidade de poluentes atmosféricos. A opção do *IGCC* vai de encontro a estas duas necessidades. Contudo, esta planta possui uma grande desvantagem frente aos demais processos, que é o seu custo de implantação.

Nos cenários econômicos avaliados, a planta de *IGCC* demonstrou ser competitiva, em termos de custo de implantação, apenas nos casos de produção de hidrogênio inferior a 5 t/h e geração de eletricidade inferior a 20 MWh. Para maiores capacidades, o Ciclo Rankine e o Ciclo Combinado, associados a uma Unidade de Geração de Hidrogênio, são menos onerosos.

Também foi observado que, para tornar o *IGCC* mais competitivo, os cenários econômicos devem ser de elevado preço do gás natural. Esta condição prejudica os custos operacionais das UGHs e torna interessante a geração de hidrogênio a partir de resíduos de petróleo.

A análise econômica comparativa das unidades de *IGCC*, CR + UGH e CC + UGH, mostrou que o *IGCC* não é vantajoso em termos de VPL e TIR. O arranjo economicamente mais promissor é o CC + UGH. Quando o cenário ambiental exige investimentos em abatimento de emissões, o que é uma tendência mundial, o *IGCC* passa a apresentar vantagens. Contudo, esta planta continua sendo menos interessante do que as demais.

Em termos gerais, os cenários com maior venda de eletricidade, menor geração de hidrogênio e elevado custo da energia elétrica são os mais favoráveis, em termos de lucratividade operacional, para os três tipos de plantas avaliadas.

Com relação à eficiência energética, é nítida a vantagem do *IGCC*. Esta condição ocorre devido à possibilidade de exportar energia na forma de hidrogênio, ao mesmo tempo em que é gerada eletricidade.

Outros pontos que afetam negativamente a decisão pela implantação de um *IGCC* é o prazo de construção e o *know-how* deste processo. Comparativamente com as plantas de potência tradicionais, o *IGCC* tem maior prazo construtivo e não se trata de tecnologia plenamente consolidada.

Contudo, uma unidade de *IGCC* pode se tornar promissora na medida em que os cenários econômicos e de custos de materiais se alterarem. Em um caso de economia mais favorável, o *IGCC* seria bastante interessante, devido à sua versatilidade de processamento de matérias primas e geração de insumos para as refinarias de petróleo. Além disso, avanços tecnológicos no sistema de gaseificação, que é a parte mais onerosa da planta de *IGCC*, podem tornar o custo de implantação menos impactante na viabilidade da unidade.

Uma possível condição favorável ao *IGCC* é a utilização de coque de petróleo ou carvão mineral como matérias primas. O menor custo destes insumos elevaria a atratividade da planta. Estudo similar ao que foi realizado poderia avaliar esta opção por matérias primas sólidas.

6 REFERÊNCIAS BIBLIOGRÁFICAS

- [1] ABADIE, L. M.; CHAMORRO, J. M. Valuing flexibility: the case of an integrated gasification combined cycle power plant. Energy Economics 30, p. 1850 – 1881, 2008. Spain.
- [2] ASHIZAWA, M.; HARA, S.; KIDOGUCHI, K.; INUMARU, J. **Gasification** characteristics of extra-heavy oil in a research-scale gasifier. Energy 30, p. 2194 2205, 2005. Japan.
- [3] BEÉR, J. M. High efficiency electric power generation: The environment role. Progress in Energy and Combustion Science 33, p. 107 – 134, 2007. USA.
- [4] British Petroleum web site (www.bp.com). 24/02/2009.
- [5] COFALA, J., SYRI, S. Nitrogen oxides emissions, abatement technologies and related costs for Europe in the RAINS model database. IIASA – International Institute for Applied Systems Analysis. Luxemburg, 1998.
- [6] DESCAMPS, C; BOUALLOU, C.; KANNICHE, M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO₂ removal. Energy 31, p. 874 – 881, 2008. France.
- [7] DOE FUNDAMENTALS HANDBOOK. Thermodynamics, heat transfer and fluid flow. U. S. Department of Energy, Volume 1, p. 53-96. Washington:1992.
- [8] DOMENICHINI, R.; MANCUSO, L. Foster Wheeler Italiana SPA, Milan Italy. Consider gasification to meet electrical power needs. Hydrocarbon Processing, p. 71 – 78, July 2008.

- [9] FÜRNSINN, S; GÜNTHER, M.; STUMMER, C. Adopting energy flow charts for the economic analysis of process innovations. Technovation 27, p. 693 703, 2007.
- [10] FutureGen Alliance web site (www.futuregenalliance.org). 01/08/2009
- [11] GARCIA, G. O., DOUGLAS, P., CROISET, E., ZHENG, L. Technoeconomic evaluation of IGCC power plants for CO₂ avoidance. Energy Conversion & Manahement, 47, p. 2250 – 2259. Canada, 2006.
- [12] GASIFICATION AND HYDROGEN MANUFACTURING DEPARTMENT – Shell International Oil Products. The Shell gasification process for power and hydrogen from residue at the Pernis Refinery. Shell Research and technology Centre. Amsterdam, 1997.
- [13] HARTMAN, R. S., WHEELER, D., SINGH, M. The cost of air pollution abatement. 1994.
- [14] HIGMAN, C.; van der BURGT, M. **Gasification.** Gulf Professional Publishing Elsevier. USA: 2003.
- [15] HOLOPAINEN, OLLI. **IGCC** plant employing heavy-petroleum residues. Bioresource Technology 46, p. 125 128, 1993. Porvoo, Finland.
- [16] KREUTZ, T.; WILLIAMS, R.; CONSONNI, S.; CHIESA, P. Coproduction of hydrogen, electricity and CO₂ from coal with commercially ready technology. Part B: economic analysis. International Journal of Hydrogen Energy 30, p. 769 784, 2005.
- [17] LIU, H.; NI, W.; LI, Z.; MA, L. Strategic thinking on IGCC development in China. Energy Policy 36, p. 1 11, 2008. China.

- [18] OGDEN, J. M. Review of small stationary reformers for hydrogen production. Center for energy and environment studies – Princeton University. 2001.
- [19] PETROBRAS AB-RE/TR/STCE. Avaliação da Gaseificação como Alternativa Tecnológica para Aproveitamento de Resíduos de Petróleo nas Refinarias. 08/04/2009
- [20] RAO, A. D. Integrated gasification combined cycle (IGCC): coal- and biomass-based. Encyclopedia os Energy Engineering and Technology, p. 906 – 913, volume II. 2007.
- [21] ROJAS, S. P. Análise exergética, termoeconômica e ambiental de um sistema de geração de energia. Estudo de caso: Usina Termoelétrica UTE – Rio Madeira. Brasília, 2007.
- [22] SEMA Secretaria do Estado do Meio Ambiente e Recursos Hídricos. Resolução SEMA nº 054/06. Paraná, 2006.
- [23] SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à termodinâmica da engenharia química. Editora LTC, Quinta edição, p. 240 – 260. Rio de Janeiro: 2000.
- [24] STASSEN, H. E. Small scale biomass gasifiers for heat and power. A global review. World Bank Technical Paper, n. 296, Energy Series.
- [25] US Energy Information Administration EIA web site (www.eia.doe.gov) 05/11/2009.
- [26] XAVIER, G., M.; BOAVENTURA, K. M.; FARIA, M. D. C.; BERNARDO, L. F. J. On the use of H₂ from renewable sources in the refinery of the future. XVII Congresso Brasileiro de Engenharia Química, 2008.

- [27] ZAPAROWSKI, B. Analysis of energy-conversion processes in gassteam power-plants integrated with coal gasification. Applied Energy 74, p. 297 – 304, 2003. Poland.
- [28] WEISHAUPT, R. Consider updates for gasification process: improvements for purification and CO conversion increase reliability of syngas process. Hydrocarbon Processing, p. 47-50. July 2006.
- [29] WINTERBONE, D. E. **Advanced thermodynamics for engineers.**UMIST Department of Mechanical Engineering. Chaps. 2 and 4.

 London: 1997.

7 ANEXOS

Tabela 7.1 – Base de dados para estudo de caso – Parte 1

		Pernic	1000	0.020.2	5080	CASOA	2020	9080	7 0800	8 0800	0000	0480 10	CASO 11
Hidroagnio	t/h	110	0.5	101	ر 1 م	20	50	10.0	0.5	10	1.5	20	50
Energia elétrica	N N	116.5	10,01	001	10.0	10.0	10.0	0,0	200	20.0	20.0	20.0	200
Vapor de alta pressão exportado	굳	0	-2,5	-0,1	2,3	9,4	18,8	42,4	-7,3	6, 4	-2,5	0,5	14,0
Matérias primas													
Óleo	ζĻ	8,89	3,7	2,8	6,7	10,0	22,4	43,2	5,4	7,5	9,6	11,6	24,1
Oxigênio (99,5% vol)	ţ,	65,3	3,6	5,5	7,5	9,5	21,3	41,1	5,1	7,1	9,1	11,1	22,9
Vapor d'água	ţ,	34,4	0,1	2,9	3,9	5,0	11,2	21,6	2,7	3,7	8,4	5,8	12,1
Gás de síntese (após cooler)													
Vazão	ц	168,4	9,2	14,3	19,3	24,4	55,0	105,9	13,2	18,3	23,4	28,5	59,0
Gás de síntese tratado													
Vazão	ζĻ	153,3	8,3	13,0	17,6	22,2	20,0	96,3	12,1	16,7	21,3	26,0	53,7
Vazão para turbina a gás	ζĻ	43,3	3,7	3,7	3,7	3,7	3,7	3,7	7,4	7,4	7,4	7,4	7,4
Vazão para shift	ţ	110,0	9,4	6,9	13,9	18,5	46,3	92,6	9,4	6,9	13,9	18,5	46,3
Geração de hidrogênio (Shift)													
H2 da gaseificação	τ'n	5,0	0,2	0,4	9,0	0,8	2,1	4,2	0,2	0,4	9,0	8,0	2,1
H2 do shift	ζĻ	9,1	4,0	8,0	1,1	1,5	3,8	2,6	0,4	8,0	, 1	7,5	3,8
Consumo de vapor	ţ,	0,44	1,9	3,7	5,6	7,4	18,5	37,1	1,9	3,7	5,6	7,4	18,5
Vapor de alta pressão - PRODUÇÃO													
- Gaseificador e cooler (saturado)	τŅ	161,7	8,8	13,7	18,6	23,5	52,8	101,6	12,7	17,6	22,5	27,4	56,7
- Reator de shift (saturado)	ζþ	16.0	0,7	1.3	2.0	2.7	6.7	13,4	0.7	1,3	2.0	2.7	6.7
- HRSG *	ţ,	27,0	2,3	2,3	2,3	2,3	2,3	2,3	9,4	4,6	4,6	4,6	9,4
Total superaquecido na HRSG	ţ,	204,7	11,8	17,4	22,9	28,5	61,8	117,4	18,0	23,6	29,1	34,7	68,1
Vapor de alta pressão - CONSUMO													
- Gaseificador	τ'n	34,4	1,9	2,9	3,9	5,0	11,2	21,6	2,7	3,7	4,8	5,8	12,1
- Reator de <i>shift</i>	ţ	4, 0,	1,9	3,7	5,6	7,4	18,5	37,1	1,9	3,7	5,6	7,4	18,5
- Turbina a vapor	۲µ	126,3	10,5	10,8	11,1	11,4	13,2	16,3	20,7	21,0	21,3	21,7	23,5
Total	Ę,	204,7	14,2	17,4	20,6	23,8	43,0	75,0	25,3	28,5	31,7	34,9	54,1
Energia elétrica - PRODUÇÃO													
- Turbina a gás	ΜW	86,1	7,2	7,4	7,6	7,8	0,6	11,1	14,1	14,4	14,6	14,8	16,0
- Turbina a vapor	ΜM	40,4	3,4	3,5	3,6	3,7	4,2	5,2	9,9	6,7	8,9	6,9	7,5
Energia elétrica - CONSUMO													
- Consumo interno	MW	10,0	0,5	8,0	1,1	1,5	3,3	6,3	8,0	1,	4,1	1,7	3,5
Produtos													
Hidrogênio (98,4% v/v base seca)	Ę,	11,9	0,5	1,0	ر, ئ	2,0	5,0	10,0	0,5	1,0	1,5	2,0	5,0
Energia elétrica	Μ	116,5	10,0	10,0	10,0	10,0	10,0	10,0	20,0	20,0	20,0	20,0	20,0
Vapor de alta pressão	ζĻ	0,0	-2,5	-0,1	2,3	4,6	18,8	42,4	-7,3	4 6,	-2,5	-0,5	14,0

Tabela 7.2 - Base de dados para estudo de caso - Parte 2

		CASO 12	CASO 13	CASO 14	CASO 15	CASO 16	CASO 17	CASO 18	CASO 19	CASO 20	CASO 21
Hidrogênio	t/h	10.0	0.5	1.0	5.5	2.0	5.0	10.0	0.5	1.0	5.
Energia elétrica	MW	20,0	30,0	30,0	30,0	30,0	30,0	30,0	40,0	40,0	40,0
Vapor de alta pressão exportado	t/h	37,6	-12,1	-9,7	-7,4	-5,0	9,2	32,8	-16,9	-14,5	-12,2
Matérias primas											
Óleo	ţ	44,9	7,1	9,2	11,2	13,3	25,8	46,6	8,7	10,8	12,9
Oxigênio (99,5% vol)	ţ,	42,6	6,7	8,7	10,7	12,6	24,5	4 2,	8,3	10,3	12,3
Vapor d'água	t/h	22,4	3,5	4,6	5,6	6,7	12,9	23,3	4,4	5,4	6,4
Gás de síntese (após cooler)											
Vazão	t,h	109,9	17,3	22,4	27,5	32,6	63,1	114,0	21,4	26,5	31,6
Gás de síntese tratado											
Vazão	t/h	100,1	15,8	20,4	25,0	29,7	57,5	103,8	19,5	24,1	28,7
Vazão para turbina a gás	ţ	7,4	11,1	11,1	1,1	11,1	11,1	11,1	14,8	14,8	14,8
Vazão para shift	ζŲ	92,6	4,6	6,9	13,9	18,5	46,3	92,6	4,6	6,9	13,9
Geração de hidrogênio (Shift)											
H2 da gaseificação	t⁄h	4,2	0,2	0,4	9,0	8,0	2,1	4,2	0,2	0,4	9,0
H2 do shift	t/h	2,6	4,0	8,0	L, T	7,5	8 8 8	2,6	0,4	8,0	<u>, L</u>
Consumo de vapor	tγ	37,1	0,1	3,7	5,6	7,4	18,5	37,1	0,1	3,7	5,6
Vapor de alta pressão - PRODUÇÃO											
- Gaseificador e cooler (saturado)	ţ	105,5	16,6	21,5	26,4	31,3	9'09	109,5	20,6	25,4	30,3
- Reator de shift (saturado)	ţ,	13,4	0,7	٦, ٢	2,0	2,7	6,7	13,4	0,7	٦, د	2,0
- HRSG *	τ'n	4,6	7,0	7,0	7,0	7,0	7,0	7,0	6,9	6,9	6,3
Total superaquecido na HRSG	t,	123,6	24,3	29,8	35,4	40,9	74,3	129,9	30,5	36,1	41,6
Vapor de alta pressão - CONSUMO											
- Gaseificador	t/h	22,4	3,5	4,6	5,6	6,7	12,9	23,3	4,4	5,4	6,4
- Reator de <i>shift</i>	ţ,	37,1	1,9	3,7	5,6	7,4	18,5	37,1	0,1	3,7	5,6
- Turbina a vapor	t/h	26,5	31,0	31,3	31,6	31,9	33,7	36,7	41,2	41,5	41,8
Total	ţ	86,0	36,4	39,6	42,7	45,9	65,1	97,1	47,4	9'09	53,8
Energia elétrica - PRODUÇÃO											
- Turbina a gás	Μ	18,1	21,1	21,3	21,5	21,7	23,0	25,0	28,1	28,3	28,5
- Turbina a vapor	ΜW	8,5	6,6	10,0	10,1	10,2	10,8	11,7	13,2	13,3	13,4
Energia elétrica - CONSUMO											
- Consumo interno	ΜM	6,5	1,0	1,3	1,6	1,9	3,7	8,9	1,3	1,6	ر. 9,
Produtos											
Hidrogênio (98,4% v/v base seca)	ţ	10,0	0,5	1,0	1,5	2,0	5,0	10,0	0,5	1,0	ر. تر
Energia elétrica	MΜ	20,0	30,0	30,0	30,0	30,0	30,0	30,0	40,0	40,0	40,0
Vapor de alta pressão	ţ,	37,6	-12,1	-9,7	-7,4	-5,0	9,2	32,8	-16,9	-14,5	-12,2

Tabela 7.3 – Base de dados para estudo de caso – Parte 3

		CASO 22	CASO 23	CASO 24	CASO 25	CASO 26	CASO 27	CASO 28	CASO 29	CASO 30
Hidrogênio	ημ	2,0	5,0	10,0	0,5	1,0	1,5	2,0	5,0	10,0
Energia elétrica	MM	40,0	40,0	40,0	20,0	20,0	20,0	20,0	20,0	50,0
Vapor de alta pressão exportado	t/h	8'6-	4,4	28,0	-21,7	-19,4	-17,0	-14,6	-0,5	23,2
Materias primas										
Óleo	ζĻ	15,0	27,4	48,2	10,4	12,5	14,6	16,6	29,1	49,9
Oxigênio (99,5% vol)	ζĻ	14,2	26,1	45,8	6,6	11,9	13,8	15,8	27,6	47,4
Vapor d'água	ζĻ	7,5	13,7	24,1	5,2	6,2	7,3	8,3	14,6	24,9
Gás de síntese (após cooler)										
Vazão	μ	36,7	67,2	118,1	25,5	30,6	35,7	40,8	71,3	122,2
Gás de síntese tratado										
Vazão	Λ'n	33,4	61,2	107,5	23,2	27,8	32,5	37,1	64,9	111,2
Vazão para turbina a gás	ζĻ	14,8	14,8	14,8	18,6	18,6	18,6	18,6	18,6	18,6
Vazão para shift	Ļμ	18,5	46,3	92,6	4,6	6,9	13,9	18,5	46,3	92,6
Geração de hidrogênio (Shift)										
H2 da gaseificação	Λh	8,0	2,1	4,2	0,2	0,4	9,0	8,0	2,1	4,2
H2 do shift	Ļμ	1,5	3,8	2,6	0,4	8,0	1,1	7,5	3,8	7,6
Consumo de vapor	ζĻ	7,4	18,5	37,1	1,9	3,7	5,6	7,4	18,5	37,1
Vapor de alta pressão - PRODUÇÃO										
- Gaseificador e cooler (saturado)	ζĻ	35,2	64,5	113,4	24,5	29,4	34,2	39,1	68,4	117,3
- Reator de shift (saturado)	4,h	2,7	6,7	13,4	2,0	1,3	2,0	2,7	6,7	13,4
- HRSG *	ζĻ	6,3	6,3	6,9	11,6	11,6	11,6	11,6	11,6	11,6
Total superaquecido na HRSG	ζĻ	47,2	80,5	136,1	36,7	42,3	47,9	53,4	86,8	142,3
Vapor de alta pressão - CONSUMO										
- Gaseificador	Λ'n	7,5	13,7	24,1	5,2	6,2	7,3	8,3	14,6	24,9
- Reator de shift	Ļμ	7,4	18,5	37,1	1,9	3,7	5,6	7,4	18,5	37,1
- Turbina a vapor	Ļγ	42,1	43,9	46,9	51,4	51,7	52,0	52,3	5 4 ,1	57,1
Total	μ	67,0	76,2	108,1	58,5	61,7	64,9	68,1	87,2	119,2
Energia elétrica - PRODUÇÃO										
- Turbina a gás	M	28,7	29,9	32,0	35,1	35,3	35,5	35,7	36,9	39,0
- Turbina a vapor	M	13,5	14,0	15,0	16,5	16,5	16,6	16,7	17,3	18,3
Energia elétrica - CONSUMO										
- Consumo interno	MW	2,2	4,0	2,0	1,5	1,8	2,1	2,4	4,2	7,3
Produtos										
Hidrogênio (98,4% v/v base seca)	ų,	2,0	5,0	10,0	0,5	1,0	1,5	2,0	5,0	10,0
Energia elétrica	M	40,0	40,0	40,0	20,0	20,0	20,0	50,0	20,0	50,0
Vapor de alta pressão	ζĻ	8,6-	4 4,	28,0	-21,7	-19,4	-17,0	-14,6	-0,5	23,2

Tabela 7.4 – Custo de implantação (planta de potência e geração de hidrogênio) – Parte 1

Pienta 58250 000 5.000 0				Pernis	CASO 1	CASO 2	CASO 3	CASO 4	CASO 5	CASO 6	CASO 7	CASO 8	CASO 9	CASO 10
Sem CCS UGH 132.219.367 33.090.256 54.135.000 70.633.241 84.178.977 130.830.940 141.206.763 33.090.256 54.135.000 70.633.241 84.178.977 130.830.940 141.206.763 33.090.256 54.135.000 70.633.241 84.178.977 136.830.940 142.06.763 33.090.256 64.135.000 70.633.241 84.178.977 130.830.940 142.06.763 33.090.256 64.135.000 70.633.241 84.178.977 130.830.940 142.06.763 33.090.256 64.135.000 70.633.241 84.178.977 130.830.940 142.06.763 33.090.256 64.135.000 70.633.241 92.178.977 130.830.940 142.06.763 33.090.256 64.135.000 70.633.241 92.178.977 130.830.940 141.206.763 33.090.256 64.135.000 70.633.241 92.178.977 130.830.940 142.06.763 33.090.256 64.135.000 70.633.241 92.178.977 130.830.940 142.06.763 33.090.256 64.135.000 70.633.241 92.178.977 130.830.940 142.06.766 64.135.000 70.633.241 92.178.977 13			Planta	58.250.000	5.000.000	5.000.000	5.000.000	5.000.000	5.000.000	5.000.000	10.000.000	10.000.000	10.000.000	10.000.000
Total 190.469.367 38.090.256 59.135.000 8.000.000 8.00		Sem CCS	ИGН	132.219.367	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977
Com CCS UgH 132219.367 33.090.266 54.135.000 8.000.000 8.000.000 8.000.000 16.000.000	Ciclo		Total	190.469.367	38.090.256	59.135.000	75.633.241	89.178.977	135.830.940	146.206.763	43.090.256	64.135.000	80.633.241	94.178.977
Com CCS UGH 32219.387 33.090.256 624.135.000 70.633.241 92.178.97 138.830.940 141.206.763 33.090.256 70.135.000 70.633.241 718.830.940 141.206.763 33.090.256 70.135.000 70.633.241 718.830.940 141.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 70.135.000 70.633.241 718.830.940 74.206.763 74.206.763 74.1	Rankine		otacl0	000 000 80	000 000 8	000 000 8	000000	000 000 8	000 000 8	000 000 8	16,000,000	16,000,000	16,000,000	16,000,000
Total 225.419.367 41.090.256 62.135.000 78.633.241 92.178.977 138.830.940 149.206.763 49.090.256 70.135.000 86.633.241 17.000 Sem CCS UGH 132.219.367 33.090.256 54.135.000 8.000.000 8.000.000 16.00		Com CCS	DGH DGH	132.219.367	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977
Sem CCS UGH 132219.367 33.090.266 64.135.000 8.000.000 8.000.000 8.000.000 16.000.000			Total	225.419.367	41.090.256	62.135.000	78.633.241	92.178.977	138.830.940		49.090.256	70.135.000	86.633.241	100.178.977
Sem CCS UGH 132.219.367 33.090.256 54.135.000 70.633.241 84.178.977 130.830.940 141.206.763 33.090.256 54.135.000 70.633.241 70.633.241 130.830.940 141.206.763 33.090.256 54.135.000 70.633.241 92.178.977 138.830.940 142.066.763 49.090.256 54.135.000 24.000.000 12.000.000			Planta	93.200.000	8.000.000	8.000.000	8.000.000	8.000.000	8.000.000	8.000.000	16.000.000	16.000.000	16.000.000	16.000.000
Com CCS Intal 132.219.367 41.090.256 62.135.000 12.000.000 <th></th> <th>Sem CCS</th> <th>ИGН</th> <th>132.219.367</th> <th>33.090.256</th> <th>54.135.000</th> <th>70.633.241</th> <th>84.178.977</th> <th>130.830.940</th> <th>141.206.763</th> <th>33.090.256</th> <th>54.135.000</th> <th>70.633.241</th> <th>84.178.977</th>		Sem CCS	ИGН	132.219.367	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977
Com CCS UGH 139.800.000 12.000.000 12.000.000 12.000.000 12.000.000 12.000.000 12.000.000 12.000.000 12.000.000 24.000.000	Ciclo		Total	225.419.367	41.090.256	62.135.000	78.633.241	92.178.977	138.830.940	149.206.763	49.090.256	70.135.000	86.633.241	100.178.977
Com CCS Light 139.800.000 12.000.000 12.000.000 12.000.000 12.000.000 12.000.000 12.000.000 24.000.000 <th>Obonidado</th> <th></th>	Obonidado													
Com CCS UGH 132.219.367 36.09.266 54.135.000 70.633.241 84.178.977 130.830.940 141.206.763 33.090.266 54.135.000 70.633.241 94.178.977 130.830.940 141.206.763 33.090.266 54.135.000 70.633.241 94.178.977 142.830.940 142.06.763 57.090.266 54.135.000 94.633.241 96.178.977 142.830.940 152.206.763 57.090.266 78.135.000 94.633.241 96.178.977 142.830.940 152.06.763 57.090.266 54.135.000 94.633.241 96.178.977 178.742.32 175.185.880 337.371.159 42.218.558 58.437.116 74.655.674 77.874.232 77.874.335 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 75.782.385 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 </th <th>compinado</th> <th></th> <td>Planta</td> <td>139.800.000</td> <td>12.000.000</td> <td>12.000.000</td> <td>12.000.000</td> <td>12.000.000</td> <td>12.000.000</td> <td>12.000.000</td> <td>24.000.000</td> <td>24.000.000</td> <td>24.000.000</td> <td>24.000.000</td>	compinado		Planta	139.800.000	12.000.000	12.000.000	12.000.000	12.000.000	12.000.000	12.000.000	24.000.000	24.000.000	24.000.000	24.000.000
Total 272.019.367 45.090.266 66.135.000 82.633.241 96.178.977 142.830.940 153.206.763 57.090.266 78.135.000 94.633.241 Planta 536.640.751 29.218.558 45.437.116 61.655.674 77.874.232 175.185.80 337.371.159 42.218.558 58.437.116 74.655.674 Sem CCS Shift 26.443.873 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 10.827.005 20.1351.768 365.612.51 48.836.09 69.264.116 75.782.325 94.710.027 201.351.768 365.612.51 48.836.09 69.264.116 85.389.395 107.825.869 261.66.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 <th></th> <th>Com CCS</th> <th>ИGН</th> <th>132.219.367</th> <th>33.090.256</th> <th>54.135.000</th> <th>70.633.241</th> <th>84.178.977</th> <th>130.830.940</th> <th>141.206.763</th> <th>33.090.256</th> <th>54.135.000</th> <th>70.633.241</th> <th>84.178.977</th>		Com CCS	ИGН	132.219.367	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977
Planta 536.40.751 29.218.558 45.437.116 61.655.674 77.874.232 175.185.580 337.371.159 42.218.558 58.437.116 74.655.674 Sem CCS Shift 26.443.873 6.618.051 10.827.000 14.126.448 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.488 Total 563.084.625 35.836.09 56.264.116 75.782.322 94.710.027 201.351.768 365.612.512 48.836.09 69.264.116 88.782.322 Planta 743.041.040 40.456.465 62.912.930 85.389.395 107.825.859 242.564.649 467.129.297 58.456.465 80.912.930 14.126.648 Com CCS Shift 28.443.873 6.618.051 10.827.000 14.126.648 16.835.795 261.66.188 28.241.353 6.618.051 10.827.000 14.126.648 12.827.005 26.913.937 99.496.043 12.4661.655 268.730.837 495.370.650 65.074.516 91.739.930 17.496.043			Total	272.019.367	45.090.256	66.135.000	82.633.241	96.178.977	142.830.940	153.206.763	57.090.256	78.135.000	94.633.241	108.178.977
Sem CCS Shift 26.443.873 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 Total 563.04.625 35.836.09 56.264.116 75.782.32 94.710.027 201.351.768 366.12.512 48.836.09 69.264.116 87.782.32 Planta 743.041.040 40.456.465 62.912.930 85.389.395 107.825.859 242.564.649 467.129.297 58.456.465 80.912.930 14.126.48 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 12.825.395 268.730.837 495.370.650 65.074.516 91.739.930 17.496.443			Planta	536.640.751	29.218.558	45.437.116	61.655.674	77.874.232	175.185.580	337.371.159	42.218.558	58.437.116	74.655.674	90.874.232
Total F63.084.625 35.836.609 56.264.116 75.782.322 94.710.027 201.351.768 365.612.512 48.836.609 69.264.116 88.782.322 87.782.322 94.710.027 201.351.768 365.612.512 48.836.609 69.264.116 88.782.322 88.782.322 88.366.649 467.129.297 58.456.465 80.912.930 103.369.395 107.825.859 242.564.649 467.129.297 58.456.465 80.912.930 103.369.395 103.369.3		Sem CCS	Shift	26.443.873	6.618.051	10.827.000	14.126.648	16.835.795	26.166.188	28.241.353	6.618.051	10.827.000	14.126.648	16.835.795
Planta 743.041.040 40.456.465 62.912.930 85.369.395 107.825.859 242.564.649 467.129.297 58.456.465 80.912.930 103.369.395 Com CCS Shift 26.443.873 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 170.825.395 117.486.443 11			Total	563.084.625	35.836.609	56.264.116	75.782.322	94.710.027	201.351.768	365.612.512	48.836.609	69.264.116	88.782.322	107.710.027
Planta 743.041.040 40.456.465 62.912.930 85.369.395 107.825.859 242.564.649 467.129.297 58.456.465 80.912.930 103.369.395 Shift 26.443.873 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648 1701.827.000 14.126.648 10.8	၁၁၅		ı											
Shift 26.443.873 6.618.051 10.827.000 14.126.648 16.835.795 26.166.188 28.241.353 6.618.051 10.827.000 14.126.648			Planta	743.041.040	40.456.465	62.912.930	85.369.395	107.825.859	242.564.649	467.129.297	58.456.465	80.912.930	103.369.395	125.825.859
769 484.914 47.074.516 73.739.930 99.496.043 124.661.655 268.730.837 495.370.650 65.074.516 91.739.930 117.496.043		Com CCS	Shift	26.443.873	6.618.051	10.827.000	14.126.648	16.835.795	26.166.188	28.241.353	6.618.051	10.827.000	14.126.648	16.835.795
			Total	769.484.914	47.074.516	73.739.930	99.496.043	124.661.655	268.730.837	495.370.650	65.074.516	91.739.930	117.496.043	142.661.655

Tabela 7.5 – Custo de implantação (planta de potência e geração de hidrogênio) – Parte 2

			CASO 11	CASO 12	CASO 13	CASO 14	CASO 15	CASO 16	CASO 17	CASO 18	CASO 19	CASO 20
		Planta	10.000.000	10.000.000	15.000.000	15.000.000	15.000.000	15.000.000	15.000.000	15.000.000	20.000.000	20.000.000
	Sem CCS	ИGН	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000
Ciclo		Total	140.830.940	151.206.763	48.090.256	69.135.000	85.633.241	99.178.977	145.830.940	156.206.763	53.090.256	74.135.000
2												
Kankine		Planta	16.000.000	16.000.000	24.000.000	24.000.000	24.000.000	24.000.000	24.000.000	24.000.000	32.000.000	32.000.000
	Com CCS	ИGН	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000
		Total	146.830.940	157.206.763	57.090.256	78.135.000	94.633.241	108.178.977	154.830.940	165.206.763	65.090.256	86.135.000
		Planta	16.000.000	16.000.000	24.000.000	24.000.000	24.000.000	24.000.000	24.000.000	24.000.000	32.000.000	32.000.000
	Sem CCS	ИĞН	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000
Ciclo		Total	146.830.940	157.206.763	57.090.256	78.135.000	94.633.241	108.178.977	154.830.940	165.206.763	65.090.256	86.135.000
Compinado		Planta	24.000.000	24.000.000	36.000.000	36.000.000	36.000.000	36.000.000	36.000.000	36.000.000	48.000.000	48.000.000
	Com CCS	ИGН	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000
		Total	154.830.940	165.206.763	69.090.256	90.135.000	106.633.241	120.178.977	166.830.940	177.206.763	81.090.256	102.135.000
		Planta	188.185.580	350.371.159	55.218.558	71.437.116	87.655.674	103.874.232	201.185.580	363.371.159	68.218.558	84.437.116
	Sem CCS	Shift	26.166.188	28.241.353	6.618.051	10.827.000	14.126.648	16.835.795	26.166.188	28.241.353	6.618.051	10.827.000
		Total	214.351.768	378.612.512	61.836.609	82.264.116	101.782.322	120.710.027	227.351.768	391.612.512	74.836.609	95.264.116
၁ <u>၁</u>												
		Planta	260.564.649	485.129.297	76.456.465	98.912.930	121.369.395	143.825.859	278.564.649	503.129.297	94.456.465	116.912.930
	Com CCS	Shift	26.166.188	28.241.353	6.618.051	10.827.000	14.126.648	16.835.795	26.166.188	28.241.353	6.618.051	10.827.000
		Total	286.730.837	513.370.650	83.074.516	109.739.930	135.496.043	160.661.655	304.730.837	531.370.650	101.074.516	127.739.930

Tabela 7.6 – Custo de implantação (planta de potência e geração de hidrogênio) – Parte 3

			CASO 21	CASO 22	CASO 23	CASO 24	CASO 25 CASO 26	CASO 26	CASO 27	CASO 28	CASO 29	CASO 30
		Planta	20.000.000	20.000.000	20.000.000	20.000.000	25.000.000	25.000.000	25.000.000	25.000.000	25.000.000	25.000.000
	Sem CCS	ПGН	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763
Ciclo		Total	90.633.241	104.178.977	150.830.940	161.206.763	58.090.256	79.135.000	95.633.241	109.178.977	155.830.940	166.206.763
Darking												
LAIINIIE		Planta	32.000.000	32.000.000	32.000.000	32.000.000	40.000.000	40.000.000	40.000.000	40.000.000	40.000.000	40.000.000
	Com CCS	ПGН	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763
		Total	102.633.241	116.178.977	162.830.940	173.206.763	73.090.256	94.135.000	110.633.241	124.178.977	170.830.940	181.206.763
		Planta	32.000.000	32.000.000	32.000.000	32.000.000	40.000.000	40.000.000	40.000.000	40.000.000	40.000.000	40.000.000
	Sem CCS	ПGН	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763
Ciclo		Total	102.633.241	116.178.977	162.830.940	173.206.763	73.090.256	94.135.000	110.633.241	124.178.977	170.830.940	181.206.763
compinado		Planta	48.000.000	48.000.000	48.000.000	48.000.000	60.000.000	60.000.000	60.000.000	60.000.000	60.000.000	60.000.000
	Com CCS	ИGН	70.633.241	84.178.977	130.830.940	141.206.763	33.090.256	54.135.000	70.633.241	84.178.977	130.830.940	141.206.763
		Total	118.633.241	132.178.977	178.830.940	189.206.763	93.090.256	114.135.000	130.633.241	144.178.977	190.830.940	201.206.763
		Planta	100.655.674	116.874.232	214.185.580	376.371.159	81.218.558	97.437.116	113.655.674	129.874.232	227.185.580	389.371.159
	Sem CCS	Shift	14.126.648	16.835.795	26.166.188	28.241.353	6.618.051	10.827.000	14.126.648	16.835.795	26.166.188	28.241.353
		Total	114.782.322	133.710.027	240.351.768	404.612.512	87.836.609	108.264.116	127.782.322	146.710.027	253.351.768	417.612.512
<u>၁၁၅</u>		,										
		Planta	139.369.395	161.825.859	296.564.649	521.129.297	112.456.465	134.912.930	157.369.395	179.825.859	314.564.649	539.129.297
	Com CCS	Shift	14.126.648	16.835.795	26.166.188	28.241.353	6.618.051	10.827.000	14.126.648	16.835.795	26.166.188	28.241.353
		Total	153.496.043	178.661.655	322.730.837	549.370.650	119.074.516	145.739.930	171.496.043	196.661.655	340.730.837	567.370.650

Tabela 7.7 - Consumo de matérias primas e combustíveis para os casos em estudo - Parte 1

Anexos

Sem Ciclo Rankine	Sem CCS	30%											
	soot												
Ciclo Rankine	<u> </u>	vh oc	91,7	5,0	7,8	10,5	13,3	29,9	9'29	7,2	10,0	12,8	15,5
Rankine	•	NP dN	26,4	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4
אמוועווע													
		72%											
Com	Com CCS	vh oc	110,0	6,0	6,9	12,6	16,0	35,9	69,2	8,7	12,0	15,3	18,6
		Vh GN	26,4	1,1	2,2	8,8	4,4	11,1	22,2	1,1	2,2	3,3	4,4
		20%											
Sem	Sem CCS	vh oc	55,0	3,0	7,4	6,3	8,0	18,0	34,6	6,4	0,9	7,7	6,9
Ciclo		Vh GN	26,4	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4
combinado		35%											
Com	Com CCS	vh oc	78,6	4,3	6,7	0,6	11,4	25,6	49,4	6,2	9,8	10,9	13,3
		Vh GN	26,4	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4
Sem	Sem CCS	40 %											
caso	caso base	Vh OC	8,89	3,7	5,8	6,7	10,0	22,4	43,2	5,4	7,5	9,6	11,6
JJJ													
2		35%											
Com	Com CCS	t/h 02	74,6	1,4	6,3	9,8	10,8	24,4	46,9	5,9	8,1	10,4	12,6
		Vh OC	78,6	4,3	6,7	0,6	11,4	25,6	49,4	6,2	8,6	10,9	13,3

Tabela 7.8 – Consumo de matérias primas e combustíveis para os casos em estudo – Parte 2

			CASO 11	CASO 12	CASO 13	CASO 14	CASO 15	CASO 16	CASO 17	CASO 18	CASO 19	CASO 20
		30%										
	Sem CCS	t/h OC	32,1	59,8	9,4	12,2	15,0	17,7	34,4	62,1	11,7	14,4
Ciclo		t/h GN	1,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2
Ranking		_										
Malikila		72%										
	Com CCS	th oc	38,6	71,8	11,3	14,6	18,0	21,3	41,2	74,5	14,0	17,3
		t/h GN	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2
		20%										
	Sem CCS	√h OC	19,3	35,9	5,7	7,3	0,6	10,6	20,6	37,2	2,0	8,7
oloio		√h GN	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2
Olono Obenidane												
Compinado		35%										
	Com CCS	√h OC	27,6	51,3	8,1	10,5	12,8	15,2	29,5	53,2	10,0	12,4
		t/h GN	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2	1,1	2,2
	Sem CCS	40%										
	caso base	th oc	24,1	44,9	7,1	9,2	11,2	13,3	25,8	46,6	8,7	10,8
טט												
2		35%										
	Com CCS	th O2	26,2	48,7	7,7	6,6	12,2	14,4	28,0	50,5	9,5	11,7
		∆h OC	27,6	51,3	8,1	10,5	12,8	15,2	29,5	53,2	10,0	12,4
												Ī

Tabela 7.9 - Consumo de matérias primas e combustíveis para os casos em estudo - Parte 3

Sem CCS W o				CASO 21	CASO 22	CASO 23	CASO 24	CASO 25	CASO 26	CASO 27	CASO 28	CASO 29	CASO 30
Sem CCS th oc 17,2 20,0 36,6 64,3 13,9 16,6 19,4 22,2 38,8 Vh GN 3,3 4,4 11,1 22,2 1,1 22,2 3,3 4,4 11,1 Com CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1			30%										
Com CCS Wh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh OC 20,6 24,0 43,9 77,1 16,6 20,0 23,3 26,6 46,6 Sem CCS Wh OC 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 Wh OC 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 Wh CN 14,7 17,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS Wh OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Sem CCS 40% 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40,6 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Sem CCS		Sem CCS	t/h OC	17,2	20,0	36,6	64,3	13,9	16,6	19,4	22,2	38,8	66,5
Com CCS th OC 20,6 24,0 43,9 77,1 16,6 20,0 23,3 26,6 46,6 brown CCS th OC 10,3 12,0 22,0 11,1 22 3,3 4,4 11,1 22,2 1,1 22 3,3 4,4 11,1 Sem CCS th OC 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 4,4 11,1 Sem CCS th Con CCS	Ciclo		th GN	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2
Com CCS th Oc 20,6 24,0 43,9 77,1 16,6 20,0 23,3 26,6 46,6 som CCS th GN 3.3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS th OC 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 Vh OC 14,7 17,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS th CN 14,7 17,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS th CN 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 19,0 33,3 Sem CCS th OC 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 19,0 33,3 Som CCS th OC 14,7 16,1 31,4 55,1 11,3 13,6 14,6 16,6 </th <th>Rankine</th> <th></th> <th>25%</th> <th></th>	Rankine		25%										
sem CCS wh CN 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 Sem CCS wh CC 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 Ab Com CCS wh CC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Sem CCS wh CC 12,9 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS wh CC 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Sem CCS 40% 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Sem CCS 40 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Sem CCS 14,0 16,3 29,8 52,4 11,3 16,6 19,0 33,3 Sem CCS 14,0 <t< th=""><th></th><th>Com CCS</th><th>t/h oc</th><th>20,6</th><th>24,0</th><th>43,9</th><th>77,1</th><th>16,6</th><th>20,0</th><th>23,3</th><th>26,6</th><th>46,6</th><th>79,8</th></t<>		Com CCS	t/h oc	20,6	24,0	43,9	77,1	16,6	20,0	23,3	26,6	46,6	79,8
Sem CCS th Oc 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 th CN 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 th CN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Com CCS th Oc 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Sem CCS 40°A 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40°C 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Com CCS th Oc 12,9 16,3 29,8 52,4 11,3 13,6 16,6 19,0 33,3 Com CCS th Oc 14,7 17,1 31,4 56,1 11,9 14,3 16,6 19,0 33,3			t/h GN	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2
Sem CCS th Oc 10,3 12,0 22,0 38,6 8,3 10,0 11,6 13,3 23,3 th GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Com CCS th OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Sem CCS 40% 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40% 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Com CCS th OC 12,9 16,3 29,8 52,4 11,3 16,6 19,0 33,3 th OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3			%09										
Sem CCS 4,0 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Com CCS observed CS who occord CS who occord CS observed CS who occord C		Sem CCS	th oc	10,3	12,0	22,0	38,6	8,3	10,0	11,6	13,3	23,3	39,9
Com CCS th Oc 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Vh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40% 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40% 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 caso base th OC 14,0 16,3 29,8 52,4 11,3 13,6 15,8 18,1 31,6 Vh OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3	Ciclo		th GN	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2
Com CCS th Oc 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Vh Oc 14,7 17,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40% 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 caso base 40 kn Oc 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Com CCS 4h Oz 14,0 16,3 29,8 52,4 11,3 13,6 15,8 18,1 31,6 Vh Oc 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3	Obonidado												
Com CCS th OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3 Yh GN 3,3 4,4 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40% 40,0 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 caso base Wh OZ 14,0 16,3 29,8 52,4 11,3 13,6 18,1 31,6 Wh OZ 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3	COLLIDINADO		35%										
Sem CCS 40% 11,1 22,2 1,1 2,2 3,3 4,4 11,1 Sem CCS 40% 40% 40% 48,2 10,4 12,5 14,6 16,6 29,1 caso base Wh OZ 14,0 16,3 29,8 52,4 11,3 13,6 15,8 18,1 31,6 Com CCS Wh OZ 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3		Com CCS	th oc	14,7	17,1	31,4	55,1	11,9	14,3	16,6	19,0	33,3	57,0
Sem CCS 40% 27,4 48,2 10,4 12,5 14,6 16,6 29,1 caso base th OC 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 Com CCS th O2 14,0 16,3 29,8 52,4 11,3 13,6 18,1 31,6 th OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3			t/h GN	3,3	4,4	11,1	22,2	1,1	2,2	3,3	4,4	11,1	22,2
Com CCS th OC 12,9 15,0 27,4 48,2 10,4 12,5 14,6 16,6 29,1 16,8 18,1 17,1 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3		Sem CCS	40 %										
Com CCS th 16,3 29,8 52,4 11,3 13,6 15,8 18,1 31,6 th OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3		caso base	t/h OC	12,9	15,0	27,4	48,2	10,4	12,5	14,6	16,6	29,1	49,9
35% 52,4 11,3 13,6 15,8 18,1 31,6 Com CCS th O2 14,0 16,3 29,8 52,4 11,3 13,6 18,1 31,6 th OC 14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3	טט												
th O2 14,0 16,3 29,8 52,4 11,3 13,6 15,8 18,1 31,6 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3	2		35%										
14,7 17,1 31,4 55,1 11,9 14,3 16,6 19,0 33,3		Com CCS	t/h 02	14,0	16,3	29,8	52,4	11,3	13,6	15,8	18,1	31,6	54,2
			th oc	14,7	17,1	31,4	55,1	11,9	14,3	16,6	19,0	33,3	67,0

Tabela 7.10 – Matriz de balanço econômico operacional para os casos em estudo (US\$/h) − IGCC sem CCS

-135 115 365 -509 -259 -9 -883 -633 -883 -693 -9 -884 -60 190 440 -190 60 310 -772 -522 -272 -134 -1104 -854 -40 210 480 -245 5 255 -1036 -786 -586 -1826 -1756 -1326 -79 480 -301 -51 199 -1298 -1048 -798 -2206 -2046 -1796 -1 249 499 -432 -382 -635 -5607 -5267 -5267 -507 -980 -980 -988 936 618 -1 499 -179 -179 -179 -189 -188
-190 60 310 -772 -522 -272 -1154 -1104 -854 -40 210 460 -245 5 255 -1035 -785 -1825 -1575 -1325 -20 230 480 -301 -5 1035 -786 -1036 -785 -1826 -1756 -1325 -20 230 480 -301 -5 1039 -1298 -1048 -798 -2046 -1796
-245 5 255 -1035 -785 -1825 -1825 -1825 -1826 </th
-301 -51 199 -1298 -1048 -798 -2046 -1796 -1 249 499 -632 -382 -132 -877 -2627 -5077 -5121 -4871 -4621 118 368 618
-382 -382 -132 -2877 -2627 -5027 -5121 -4871 -4621 118 368 618 -512 -5267 -5607 -9830 -9860 -9330 315 566 815
-1185 -935 -685 -5267 -5267 -980 -9980 -9380 315 566 815 -81 -214 286 776 -756 -256 245 -1296 -796 -296 -139 361 861 -269 231 731 -1018 -518 -126 -796 -296 -139 361 861 -326 175 675 -1281 -781 -1267 -767 -119 381 881 -380 120 675 -1281 -781 -228 -1297 -1737 -109 400 900 900 -380 120 620 -1544 -1044 -544 -2708 -1737 -1237 -129 38 538 1038 -176 -176 -265 -5753 -5253 -5033 -5042 -504 -504 -504 -504 -504 -504 -504 -504 -504 -504 -
-214 286 786 775 -255 -255 -255 -255 -256 -129 -796 -796 -139 361 861 -269 231 731 -1018 -518 -16 -1767 -1267 -767 -119 381 881 -326 175 675 -1281 -781 -281 -1267 -767 -119 381 881 -380 120 60 -1544 -1044 -544 -2708 -1737 -103 -60 -90
-269 231 731 -1018 -518 -1767 -1267 -767 -1967 -1767 -1169 -381 881 -326 175 675 -1281 -781 -2237 -1737 -169 -00 -00 -380 120 620 -1544 -1044 -544 -2708 -1737 -100 400 900 -0 -712 -212 288 -3123 -2623 -273 -593 -453 -89 538 1038 -100 -1266 -765 -5263 -5263 -503 -452 -894 -208
-326 175 675 -1281 -781 -2237 -1737 -1237 -100 400 900 -380 120 620 -1544 -1044 -544 -2708 -1737 -103 400 900 900 -712 -212 288 -3123 -5633 -5033 -6533 -8533 38 538 1038 -1266 -765 -5263 -5263 -5033 -6732 -535 -535 1038 103
-380 120 620 -1544 -1044 -544 -2708 -2208 -1708 -80 420 920 -920 -712 -212 288 -3123 -5633 -5633 -5033 -5633 -8533 38 538 1038 1038 -1266 -765 -5263 -5263 -5033 -5033 -535 36 538 1038 1038 -293 -765 -5263 -7624 -9742 -9242 236 736 1286 1286 -208 -208 1286 1286 1286 -208 1286 1286 1286 1286 1286 -208 -208 1286 1301 13
-712 -212 288 -3123 -2623 -2123 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5633 -5634 -5633 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -5634 -56
-1265 -765 -265 -5753 -5253 -4753 -10242 -9742 -9242 236 736 1236 -1286 -283 457 1264 -514 -283 -1708 -968 -208 -218 532 1282 1282 -349 401 1151 -1264 -514 236 -1709 -479 -679 -199 551 1301 -182 404 346 1096 -1527 -777 -27 -2650 -1900 -1150 -179 1321 -183 -1621 -183 -183 -183 -183 -183 -183 -183 -183 -184 -184 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -194 -195 -195 -195 -195 -195 <t< th=""></t<>
-293 457 1207 -1001 -251 499 -1708 -958 -208 -218 532 1282 1282 -349 401 1151 -1264 -514 236 -2179 -1429 -679 -199 551 1301 -1 404 346 1096 -1527 -777 -27 -2650 -1900 -1150 -179 571 1321 -189 551 1331 -1 -791 41 709 -1040 -290 -371 -1621 -169 591 1459 -189 -519 -446 -179 -169 -189
-349 401 1151 -1264 -514 236 -2179 -1429 -679 -199 551 1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -1301 -2701 -1420 -1301
404 346 1096 -1527 -777 -27 -2650 -1900 -1150 -179 571 1321 459 291 1041 -1790 -1040 -290 -3321 -2371 -1621 -159 591 1341 -194 -791 41 709 -3368 -2618 -1868 -5946 -5196 -4446 -41 709 1459 -186 -1344 -594 156 -5899 -5249 4499 -10654 -9904 -9154 156 906 1656 -966 -5909 -5249 -4499 -1067 -120 -120 -120 -120 -120 -120 -120 -120 -120 -288 702 1702 - -373 627 1672 -510 -490 -2591 -1591 -598 702 1702 - - -1722 - -1722 - - -428 -727 1722 - <t< th=""></t<>
459 291 1041 -1790 -1040 -290 -3371 -2371 -1621 -159 591 1341 -791 41 709 -3368 -2618 -1868 -5946 -5196 -4446 -41 709 1459 -189 -1344 -594 156 -5899 -5249 4499 -10654 -9904 -9154 156 906 1656 -8904 -373 627 1627 -1247 -247 753 -2120 -1120 -120 -298 702 1702 - -428 572 1572 -1510 -510 490 -2591 -1591 -591 -578 722 1722
-791 41 709 -3368 -2618 -1868 -5946 -5196 -4446 41 709 1459 -1344 -594 156 -5999 -5249 4499 -10654 -9904 -9154 156 906 1656 -373 627 1627 -1247 -247 753 -2120 -1120 -120 -298 702 1702 -428 572 1572 -1510 -510 490 -2591 -1591 -591 -278 722 1722 -
-1344 -594 156 -5999 -5249 4499 -10654 -9904 -9154 156 906 1656 - 373 627 1627 -1247 -247 753 -2120 -1120 -120 -298 702 1702 - 428 572 1572 -1510 -510 490 -2591 -1591 -591 -278 722 1722 -
-373 627 1627 -1247 -247 753 -2120 -1120 -120 -298 702 1702 - 428 572 1572 -1510 -510 490 -2591 -1591 -591 -278 722 1722 -
428 572 1572 -1510 -510 490 -2591 -1591 -591 -278 722 1722 -
21 483 517 1517 -1773 -773 227 -3062 -2062 -1062 -258 742 1742 -1548
22 -538 462 1462 -2036 -1036 -36 -3533 -2533 -1533 -238 762 1762 -1736
23 -870 130 1130 -3614 -2614 -1614 -6358 -5358 -4358 -120 880 1880 -2864
-1423 -423 577 -6245 -5245 -4245 -11067 -10067
25 452 798 2048 -1492 -242 1008 -2533 -1283 -33 -377 873 2123 -1417
26 -507 743 1993 -1755 -505 745 -3004 -1754 -504 -357 893 2143 -1605
27 -563 687 1937 -2019 -769 481 -3475 -2225 -975 -338 912 2162 -1794
28 -618 632 1882 -2282 -1032 218 -3945 -2695 -1445 -318 932 2182 -1982
29 -950 300 1550 -3860 -2610 -1360 -6771 -5521 -4271 -200 1050 2300 -3110
30 -1503 -253 997 -6491 -5241 -3991 -11479 -10229 -8979 -3 1247 2497 -4991

Tabela 7.11 − Matriz de balanço econômico operacional para os casos em estudo (US\$/h) − IGCC com CCS

	-281 -31 <u>219</u> -946 -596 -446 -1612 -1362 -1112 -131 119 369 -746 -347 -97 153 -1250 -1000 -756 -2153 -1963 -1653 -122 128 378 -1025 -1025 -1414 -164 86 -1554 -1304 -1054 -2694 -2444 -2194 -114 136 386 -1254 -262 -312 -3377 -3127 -2877 -5942 -5692 -5462 -66 -976 -6416 -6166 -5916 -11355 -11105 -10855 <u>224 274 524 4916 -4756 -375 -373 -373 -373 -373 -373 -373 -373</u>	-281 -31 -219 -940 -090 -440 -1012 -1302 -1112 -131 119 309 -190 -190 -1912 -1312 -1	-281 -31 -219 -940 -090 -440 -1012 -1302 -1112 -131 119 369 -790 -440 -1012 -1302 -1112 -131 119 369 -790 -440 -1014 -104 86 -1554 -1300 -750 -2153 -1903 -1653 -122 128 378 -1025 -4144 -144 -164 86 -1554 -1304 -1054 -2694 -2494 -2194 -114 136 386 -1254 -1476 -1226 -312 -3377 -3127 -2877 -5942 -5692 -5442 -62 188 438 -2627 -2477 -1226 -376 -6416 -6166 -5916 -11355 -11105 -10855 -249 12 774 -524 -4916 -429 771 -1285 -785 -285 -2141 -1641 -1141 -279 -221 772 -906 -496 4504 -4569 -589 -2682 -2182 -1622 -271 -229 -1364 -4562 -438 -1393 -4393 -2223 -2223 -222 -223 -238 738 -1593 -1306 -406 -40 -3716 -3716 -3716 -4771
	-281 -31 <u>219</u> -946 -696 -446 -1612 -1362 -1112 -131 119 -347 -97 153 -1250 -1000 -750 -2153 -1903 -1653 -122 128 -414 -164 -86 -1554 -1304 -1054 -2694 -2444 -2194 -114 136 -812 -562 -312 -3377 -3127 -2877 -5942 -5692 -5442 -62 188 - -1476 -1226 -976 -6416 -6166 -5916 -11355 -11105 -10855 <u>24</u> <u>274</u>	-281 -31 219 -946 -696 -446 -1612 -1382 -1112 -131 119 -347 -97 153 -1250 -1000 -750 -2153 -1903 -1623 -122 128 414 -164 -86 -1554 -1304 -1054 -2894 -2444 -2194 -114 136 -812 -562 -312 -3377 -3127 -2877 -5894 -5492 -662 188 -1476 -1256 -6416 -6166 -5916 -1105 -1089 -599 -282 274 -274 -274 -274 -274 -274 -274 -274 -274 -274 -274 -274 -274 -274 -62 188 -188 -188 -188 -188 -188 -188 -188 -188 -174 -174 -184 -174 -174 -174 -174 -174 -174 -174 -174 -174 -174	-31 219 -946 -696 -446 -1612 -1382 -1112 -131 119 -37 153 -1250 -1000 -750 -2153 -1903 -1653 -122 128 -164 86 -1654 -1304 -1054 -2694 -2444 -2194 -114 136 -562 -312 -3377 -3127 -2877 -5942 -5692 -5442 -62 188 -1256 -976 -6416 -6166 -5916 -11355 -11105 -10855 24 274 137 637 -981 -481 19 -1599 -1099 -599 -288 212 71 571 -1285 -785 -285 -2141 -1641 -1141 -279 221 74 504 -1589 -1089 -589 -2682 -2182 -1682 -271 229 -62 438 -1383 -1393 -1393 -3223 -2723 -2223 -222
-1262 -281 -31 219 -946 -696 -446 -1612 -1362 -1112	-347 -97 153 -1250 -1000 -750 -2153 -1903 -1653 -1414 -164 86 -1554 -1304 -1054 -2894 -2444 -2194 -2152 -562 -312 -3377 -3127 -2877 -5942 -5692 -5442 -1476 -1226 -976 -6416 -6166 -5916 -11355 -11105 -10855 -353 137 637 -084 -484 10 -1500 -1000 -500 -10	-414 -164 -86 -1554 -1304 -1054 -2694 -2444 -2194 -164 -162 -312 -3377 -3127 -2877 -5942 -5692 -5442 -1476 -1226 -976 -6416 -6166 -5916 -11355 -11105 -10855 -363 -137 -637 -1981 -199 -1099 -599 -429 -71 -571 -1285 -785 -285 -2141 -1641 -1141 -496 -4 504 -1589 -1089 -589 -285 -2141 -1641 -1141 -429 -429 -429 -4289 -429 -4289 -429	-414 -164 -86 -1554 -1304 -1054 -2694 -2444 -2194 -164 -162 -312 -3377 -3127 -2877 -5942 -5692 -5442 -1947 -1286 -1526 -976 -6416 -6166 -5916 -11355 -11105 -10855 -363 -137 -637 -1981 -481 -19 -1599 -1099 -599 -429 -71 -571 -1285 -785 -285 -2141 -1641 -1141 -429 -71 -571 -1285 -785 -285 -2141 -1641 -1141 -426 -42 -548 -1893 -1393 -893 -3223 -2723 -2223 -660 -460 -460 -460 -460 -460 -460 -460
-1262 -281 -31 219 -946 -696 -446 - -1878 -347 -97 153 -1250 -1000 -750 -	- 414 - 164 - 86 - 1554 - 1304 - 1054	414 -164 86 -1554 -1304 -1054 - 812 -562 -312 -3377 -3127 -2877 - 1476 -1226 -976 -6416 -6166 -5916 -1 -363 137 637 -981 -481 19 - 429 71 571 -1285 -785 -285 - 496 4 504 -1689 -1089 -689 -	414 - 164 - 86 - 1554 - 1304 - 1054 - 1412 - 562 - 312 - 3377 - 3127 - 2877 - 1426 - 1562 - 377 - 3127 - 2877 - 1426 - 1562 - 316 - 16166 - 5916 - 16166 - 5916 - 16166 - 5916 - 16166 - 5916 - 16166 - 5916 - 16166 -
-2494 414 -164 86 -1554 -	-812 -562 -312 -3377 - -1476 -1226 -976 -6416 - -363 137 637 -081	-812 -562 -312 -3377 -1476 -1226 -976 -6416 -363 137 637 -981 429 71 571 -1285 496 4 504 -1589 -1285	-812 -562 -312 -3377 -1476 -1226 -976 -6416 -363 137 637 -981 429 71 571 -1285 496 4 504 -1589 -562 -62 438 -1893 -060 460 40 3716 -
-1878 -347 -2494 -414 -	-1476 -	-1476 -363 -429 -496	-1476363363496562562
	, P	9 4 6	19 17 19 19
-1762 - -2378 - -2994 - -6692 -	1174	-1174	
	25	-56 -435 -814	-56 -435 -814 -1193
-431 -181 -572 -322 -714 464 -1562 -1312 -2976 -2726 -438 62		-579 -79 -721 -221	-79 -221 -362

Tabela 7.12 – Matriz de balanço econômico operacional para os casos em estudo (US\$/h) – CR sem CCS

	A	В	၁	٥	В	ш	ŋ	Ξ	-	٦	×	_	Σ	z	0	۵	ø	æ	s	L	n	>	Ν	×	>	Z	₹
-	230	480	730	-270	-20	230	692-	-519	-269	138	388	889	-361	-111	139	-860	-610	-360	46	296	546 -4	-453 -2	-203	- 44	-952 -7	-702 -	452
7	278	528	778	499	-249	-	-1275	-1025	-775	96	344	594	-682	-432	-182 -	1458 -	1208	-958	-89	161 4	411 -8	-865 -6	-615 -:	365 -16	1641 -1391	Ė	1141
က	326	929	826	-728	478	-228	-1781	-1531	-1281	51	301	- 129	-1003	-753	-503 -	2056 -	1806 -1	1556 -	-224	26	276 -12	1278 -10	1028	-778 -2	2331 -2081	Ė	-1831
4	374	624	874	-957	-707	-457	-2287	-2037	-1787	7	257	- 205	-1323	-1073	-823 -	2654 -:	2404	2154 -	- 098-	. 110	140 -16	1690 -14	1440 -1	1190 -30	3020 -2770		-2520
2	662	912	1162	-2331	-2081	-1831	-5323	-5073	-4823	-255	ιģ	245	-3248	-2998 -:	2748 -(6240 -	- 2669	5740 -1	1172 -	-925 -(-672 -41	4164 -39	3914 -36	3664 -7	7157 -690		-6657
9	1142	1392	1642	4621	4371	4121	-10384 -	-10134	-9884	-692	442	-192	-6455	-6205 -	5955 -12	2217 -1	11967 -11	11717 -2	2525 -2	2275 -20	2025 -82	8288 -80	8038 -7	7788 -140	14051 -13801	9	13551
7	411	911	1411	-310	190	069	-1031	-531	-31	320	820	1320	-402	86	869	1123	-623	-123	. 822	728 12	12284	-493	7	507 -12	-1214 -7	-714 -	-214
80	459	959	1459	-539	-39	461	-1537	-1037	-537	276	2776	1276	-722	-222	278 -	1721 -	1221	-721	93	593 10	1093 -6	7 906-	406	94 -18	-1904 -1404		-904
6	205	1001	1507	-768	-268	232	-2043	-1543	-1043	232	732	1232	-1043	-543	43	2318 -	-1818 -1	-1318	43	457 (957 -13	1318 -8	-818	-318 -2	2593 -2093		-1593
10	222	1055	1555	-997	497	က	-2549	-2049	-1549	189	689	1189 -	-1364	-864	-364 -	2916 -2	2416 -1	-1916	-178	322 8	822 -17	1730 -12	1230	-730 -32	-3283 -2783		-2283
7	843	1343	1843	-2371	-1871	-1371	-5586	-5086	-4586	-74	426	926	-3288	-2788 -:	2288 -(.6503 -6	-6003	-5503	7 066-	490	10 -42	4205 -37	3705 -3;	3205 -74	-7419 -6919		-6419
12	1323	1823	2323	4662	4162	-3662	-10647 -	-10147	-9647	-510	-10	490	-6495	- 2669-	5495 -12	12480 -17	11980 -11	-11480 -2	2344 -18	1844 -13	1344 -83	8328 -78	7828 -7;	7328 -143	14313 -13813		-13313
13	293	1343	2093	-350	400	1150	-1294	-544	206	501	1251	2001	-442	308	1058 -	-1385	-635	115	409	1159 18	1909	-534	216	966 -14	-1477 -727		23
4	641	1391	2141	-579	171	921	-1800	-1050	-300	457	1207	1957	-763	-13	737	.1983 -	-1233	483	274 1	1024 17	1774 -9	-946 -1	-196	554 -2	-2166 -1416		999-
15	689	1439	2189	-809	-59	691	-2306	-1556	908-	414	1164	1914 -	-1084	-334	416 -2	.2581 -	-1831 -1	-1081	139	889 16	1639 -13	1359 -6	609-	141 -28	-2856 -2106		-1356
16	737	1487	2237	-1038	-288	462	-2812	-2062	-1312	370	1120	1870 -	-1404	-654	96	.3179 -2	.2429 -1	-1679	ღ	753 1	1503 -17	1771 -10	.1021	-271 -3	-3545 -2795		-2045
11	1025	1775	2525	-2412	-1662	-912	-5848	-5098	-4348	108	828	1608 -	-3328	82578	.1828 -(-6765 -6	-6015 -6	-5265	-809	-29	691 -42	4245 -34	3495 -2	2745 -76	-7682 -6932		-6182
18	1505	2255	3002	-4702	-3952	-3202	- 10909	-10159	-9409	-329	421	- 1171	-6536	9876	5036 -12	12743 -1	11993 -11	11243 -2	2162 -1	1412 -6	-662 -83	8369 -76	-7619 -6	6869 -14	14576 -13826	26 -13076	920
19	774	1774	2774	-391	609	1609	-1556	-556	444	683	1683	2683	-483	217	1517 -	-1648	-648	352	591	1591 28	2591 -6	-574	426 14	1426 -17	-1739 -7	-739	261
20	822	1822	2822	-620	380	1380	-2062	-1062	-62	639	1639	2639	-803	197	1197 -	.2246 -	-1246	-246	456 1	1456 24	2456 -6	-987	13 10	1013 -24	-2429 -1429		429
21	870	1870	2870	-849	151	1151	-2568	-1568	-568	269	1595	2595	-1124	-124	876	.2843 -	.1843	-843	320 1:	1320 23	2320 -13	1399 -3	-399	601 -3	-3118 -2118		-1118
52	918	1918	2918	-1078	-78	922	-3074	-2074	-1074	552	1552	2552	-1445	-445	555 -	3441 -	2441 -1	-1441	185 1	1185 2	2185 -18	-1811	-811	189 -38	-3808 -2808		-1808
23	1206	2206	3206	-2452	-1452	-452	-6111	-5111	-4111	290	1290	2290	-3369	- 5369	1369 -7	-7028	-6028 -4	-5028	-627	373 13	1373 -42	4286 -32	3286 -2;	2286 -79	-7944 -6944		-5944
24	1686	2686	3686	-4743	-3743	-2743	-11172 -	-10172	-9172	-147	853	1853 -	- 9259-	9253	4576 -13	3005 -12	12005 -11	1005 -1	1980 -	-980	20 -84	8409 -74	7409 -6	6409 -148	4838 -13838	- 1	.12838
25	926	2206	3456	431	819	2069	-1819	-569	681	864	2114	3364	-523	727	7761	.1910	099-	290	773 2	2023 33	3273 -6	-615	635 18	1885 -20	2002 -7	-752	498
56	1004	2254	3504	099-	290	1840	-2325	-1075	175	821	2071	3321	-844	406	1656 -	.2508 -	1258	φ	637 1	1887 3	3137 -10	1027	223 14	1473 -26	-2691 -1441		-191
27	1052	2302	3552	-889	361	1611	-2831	-1581	-331	111	2027	3277	-1164	98	1336 -	3106 -	1856	909-	502 1	1752 30	3002 -14	1439 -1	-189 10	1061 -33	3381 -2131		-881
78	1100	2350	3600	-1118	132	1382	-3337	-2087	-837	733	1983	3233	-1485	-235	1015 -	3704 -:	2454 -1	1204	367 1	617 28	2867 -18	1852 -6	-602	648 4(4070 -2820	Ċ	.1570
59	1388	2638	3888	-2493	-1243	7	-6373	-5123	-3873	471	1721	2971	-3409	-2159	·- 606-	.7290 -6	-6040	- 4790	445	805 20	2055 -43	4326 -30	3076 -18	1826 -82	8207 -6957	Ċ	-5707
30	1868	3118	4368	-4783	-3533	-2283	-11434 -	-10184	-8934	35	1285	2535	-6616	2366	4116 -13	3268 -12	12018 -10	10768 -1	- 66∠	549	701 -84	8450 -72	7200 -58	5950 -15	5101 -13851	21	12601

Tabela 7.13 – Matriz de balanço econômico operacional para os casos em estudo (US\$/h) – CR com CCS

17. 17.		A	0	٥	ш	ш	ჟ	Ξ	-	7	×	7	Σ	z	0	۵	ø	œ	s	F	n	^	٨	×	>	z	[₹
115 365 615 -1140 629 649 -2413 -1160 6191 610 410 410 -1100 61 189 649 -4213 -1100 61 189 640 -4414 -1100 61 189	1			469	-219	31	-1068	-818	-568	38	288	238	-561	-311											251 -100	_	-751
115 365 616 1144 289 649 2431 2163 1919 190 9 34 1424 1174 928 2382 2382 628 64 149 1199 1199 1199 1199 1199 1199 11	2			-809	-559	-309	-1740	-1490	-1240	-61	189	439	-992	-742		1	Ċ	Ċ	244	9					107 -1857	ď	1607
100 358 600 4490 - 1239 690 900 900 9019 654 - 904 - 1465 4105 4105 945 6 902 770 1520 - 1270 220 1972 - 1772 949 9020 6070 6426 1934 - 1394 - 1394 1949 1949 1949 1949 1949 1949 1949	3			-1149	-899	-649	-2413	-2163	-1913	-160	06	340	-1424	-1174	1	1				185	1	1			Ċ	-2713 -24	-2463
65 313 65 3563 3569 6510 6710 689 6610 689 6610 689 6610 689 6610 689 6610 736 770 780 770 770 780 770 770 780 770 770 780 780 770 770 780 780 770 770 780 780 780 780 770 780 780	4			-1489	-1239	-989	-3085	-2835	-2585	-259	တု	241	-1855	-1605 -		Ċ					Ċ		<u>'</u>			-3568 -33	-3318
41 289 689 687 6487 6482 134 878 850 1667 1683 1684 1684 1684 1684 1684 1684 1684 1684 1684 1684 1684 1684 1684 1684 1686 1138 76 76 176 200 1690	2			-3528	-3278	-3028	-7119	-6869	-6619	-854	-604	-354	4445	-4195	1	1	1		1	_	Ė	Ċ	Ė	Ė	952 -8702	Ċ.	8452
267 767 1267 588 588 498 412 4184 4284 4175 4175 4189<	9			-6926	9299-	-6426	-13842		-13342	-1844	-1594	-1344	-8760	1	7		1	1	1	1	T	'n	T	7	509 -17259		17009
26 760 780 438 438 62 2136 -1136 112 -62 -124 -139 -138 -138 -138 -139 -139 -130 <th>7 2</th> <th></th> <th>•</th> <th>-598</th> <th>-98</th> <th>402</th> <th>-1464</th> <th>-964</th> <th>464</th> <th>175</th> <th>675</th> <th>1175</th> <th>069-</th> <th>-190</th> <th></th> <th>347 -1147</th> <th></th> <th>-647</th>	7 2		•	-598	-98	402	-1464	-964	464	175	675	1175	069-	-190											347 -1147		-647
25 752 1262 1276 778 278 2808 1808	8			-938	438	62	-2136	-1636	-1136	92	929	1076	-1122	-622	ί.						Ċ				503 -2003	Ċ	-1503
245 745 1245 1465 1469 1469 1489 1494 1	9		•	-1278	-778	-278	-2808	-2308	-1808	-23	477	226	-1553	-1053	Ċ	Ċ					Ċ				358 -2858		-2358
200 700 1200 3667 3167 2657 7761 6516 770 4074 4574 4931 7892 7892 78	10 2		•	-1618	-1118	-618	-3481		-2481	-122	378	878	-1985	-1485	1	Ţ,	Ċ						ď		214 -3714		-3214
126 626 1126 7056 6656 -606 -1423 -1373 -1207 -1207 -1889 </th <th></th> <th></th> <th></th> <th>-3657</th> <th>-3157</th> <th>-2657</th> <th>-7515</th> <th></th> <th>-6515</th> <th>-716</th> <th>-216</th> <th>284</th> <th>4574</th> <th>Ċ</th> <th>Ċ</th> <th></th> <th></th> <th>Ċ</th> <th>Ċ</th> <th></th> <th></th> <th>Ė</th> <th>Ė</th> <th>Ė</th> <th>348 -8848</th> <th></th> <th>-8348</th>				-3657	-3157	-2657	-7515		-6515	-716	-216	284	4574	Ċ	Ċ			Ċ	Ċ			Ė	Ė	Ė	348 -8848		-8348
404 1154 1904 772 2 2772 180 1110 360 112 102 1812 819 69 681 1951 1201 451 221 37 1721 911 161 589 1339 1494 684 68 68 1812 1414 1884 1414 1884 1414 1414 141				-7056	-6556	-6056	-14238		-13238	-1707	-1207	-707	-8889		Ď.	_	Ė	Ė		ď				1	904 -17404	04 -16904	904
397 1147 1897 -1068 -318 -422 -2522 -1792 -1794 -1862 -2715 -1996 -161 589 -1479 -162 -2715 -1996 -161 589 -1479 -162 -379 -161 -899 -161 589 -1479 -162 -379 -161 -899 -161 -162 -180 -180		•	•	-728	22	772	-1860	-1110	-360	312	1062	1812	-819	69-											1293 -1293		-543
382 1132 1889 -1407 -657 93 -2204 -1404 </th <th></th> <th></th> <th>į</th> <th>-1068</th> <th>-318</th> <th>432</th> <th>-2532</th> <th></th> <th>-1032</th> <th>213</th> <th>963</th> <th>1713</th> <th>-1251</th> <th>-501</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>684</th> <th></th> <th>399 -2149</th> <th></th> <th>-1399</th>			į	-1068	-318	432	-2532		-1032	213	963	1713	-1251	-501									684		399 -2149		-1399
382 1132 1882 -1747 -997 -247 -3876 -3156 -5156 -5146 -614 -4243 -3493 -243 -351 -399 -1747 -387 -496 -746 -746 -476 -476 -476 -476 -516 -476		•		-1407	-657	93	-3204		-1704	114	864	1614	-1682		Ċ.										754 -3004		-2254
337 1087 1837 -3786 -3036 -2286 -7910 -7160 -6410 -579 171 921 4703 -3953 -3203 -8827 -8077 -7327 -1496 -746 4 -5620 -4870 -4870 -4910 -3952 -1920 -2952 -1920 -9410 -570 -9018 -8286 -7518 -14967 -15717 -14967 -3403 -2653 -1903 -10852 -10102 -9352 -1920 -9410		•		-1747	-997	-247	-3876		-2376	15	292	1515	-2114												310 -3860		-3110
263 1013 1763 -7185 -6435 -5685 -14633 -1571 -14967 -15717 -14967 -3673 -1503 -1002 -3952 -100 -9018 -8268 -70 -9018 -8268 -7518 -1547 -347 -	17 3.		Ì	-3786	-3036	-2286	-7910		-6410	-579	171	921	4703					Ċ		746	4 -5				744 -8994		-8244
541 1541 2541 -857 143 -2255 -1255 -1255 -1255 -1255 -1255 -1256 -2450 -949 51 161 -241 -347 -347 -347 -347 -347 -347 -347 -347 -347 -347 -348 -369 -150 -448 -554 -448 -548 -1347 -347 -347 -347 -347 -347 -347 -348 -369 -348 -369 -347 -347 -347 -348 -358 -1436 -544 -348 -369 -347 -347 -347 -347 -347 -348 -369 -369 -349				-7185	-6435	-5685	-14633		-13133	-1570	-820	-70	-9018		9			Ċ							300 -17550	50 -16800	000
534 1534 2534 -197 -197 -197 -197 -198 -2928 -1928 -351 1351 2351 -1380 -380 620 -3111 -1111 167 1167 -1564 -564 436 -564 436 -564 436 -564 -187 -574 -187 <th< th=""><th></th><th></th><th>.,</th><th>-857</th><th>143</th><th>1143</th><th>-2255</th><th>-1255</th><th>-255</th><th>450</th><th>1450</th><th>2450</th><th>-949</th><th></th><th>Ė</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>139 -1439</th><th></th><th>-439</th></th<>			.,	-857	143	1143	-2255	-1255	-255	450	1450	2450	-949		Ė										139 -1439		-439
527 1527 2527 -1537 5-37 463 -3800 -2800 -1800 252 1252 2181 -812 188 -3875 -1875 -2875 187 -2875 -1877 -2087 -1087 -877 -877 -877 -1877 -2087 -1087 -877 -877 -1877 -2087 -1087 -877 -877 -1877 -2872 -1872				-1197	-197	803	-2928	-1928	-928	351	1351	2351	-1380	-380	Ċ										94 -2294		-1294
519 1519 2519 -1877 -1877 -1877 -1877 -1877 -1877 -1877 -1877 -1879 -2272 -2272 -2272 -1283 -2233 -2639 -214 788 -789 -3639 -214 788 -789 -369 -369 -214 788 -1879 -3749 -179 -3749 -179 -3749 -179 -3749 -179 -3749 -179 -3749 -178 -4749 -3749 -179 -3749 -178 -4749 -3749 -179 -3749 -178 -3749 -178 -188 -188 -178 -178 -1882 -1882 -1882 -188 -178 -178 -178 -1882 -188 -178 -178 -178 -188 -178 -188 -189 -178 -178 -188 -188 -189 -189 -189 -189 -189 -189 -189 -189 -189 -189 -189 -189 -189		•		-1537	-537	463	-3600	-2600	-1600	252	1252	2252	-1812	-812	Ċ							Ċ	780		150 -3150		-2150
475 1475 2476 -3916 -2916 -1916 -8306 -7306 -6306 -442 558 1558 4832 -3832 -2832 -9223 -8223 -7223 -1359 -359 641 -5749 4749 -3749 -1789 1401 2401 -7314 -6314 -2651 -14012 -1512 867 1438 2988 -1509 -259 991 -3507 -1493 -2243 -495 1745 2995 -1170 80 1330 -239 179 -986 284 -1666 416 834 -3996 -2746 -1496 389 1639 2889 1941 -691 569 4271 -3021 -1771 114 1364 284 -1666 284 -1692 -3769 1969 1969 1969 1969 1969 1969 1969 1			•	-1877	-877	123	-4272	-3272	-2272	152	1152	2152	-2243	-1243	Ċ		Ċ					Ċ			900 -4006		-3006
401 1401 2401 -7314 -6314 -5314 -15029 -14029 -13029 -1433		•		-3916	-2916	-1916	-8306	-7306	-6306	-442	228	1558	-4832	1				1							139 -9139		-8139
679 1929 3179 -986 264 1514 -2651 -1401 -151 587 1837 3087 -1078 172 1422 -2743 -1493 -245 495 1745 2995 -1170 80 1330 .		•		-7314	-6314	-5314			-13029	-1433	433	292	-9148		Ŧ	2	1	<u>.</u>	77	1	9	Ė	Ċ	4	396 -17696	96 -16696	96
671 1921 3171 -1326 -76 1174 -3323 -2073 -823 488 1738 2988 -1509 -259 991 -3507 -2257 -1007 304 1554 2804 -1693 443 807 - 824 466 416 834 -3996 -2746 -1496 889 1639 2889 -1941 -691 559 4271 -3021 -1771 114 1364 2614 -2216 -966 284 -824 1914 3164 -1666 416 834 -3996 -2746 -1496 889 1639 2889 1941 -691 559 4271 -3021 -1771 114 1364 2614 -2216 -966 284 -824 1948 -239 -1489 -239 -239 -239 -239 -239 -239 -239 -23			•	-986	264	1514	-2651	-1401	-151	282	1837	3087	-1078		<u>'</u>	Ċ			•		Ċ	170		Ċ	334 -1584		-334
664 1914 3164 -1666 416 834 -3996 -2746 -1496 389 1639 2889 -1941 -691 559 4271 -3021 -1771 114 1364 2614 -2216 -966 284 . 656 1906 3156 -2006 -756 494 4668 -3418 -2168 290 1540 2790 -2373 -1123 127 -5035 -3785 -2535 -77 1173 2423 -2739 -1489 -239 . 612 1862 3112 4045 -2795 -1545 -8702 -7452 -6202 -305 945 2195 4962 -3712 -2462 -9618 -8368 -7118 -1222 28 1278 -5878 -4628 -3378 -1 638 1788 3038 -744 6104 6104 15425 -1475 13055 -196 45 1304 5077 -8077 -8077 -8777 -1758 16008 -1475 -349 -1417 -0660 -8610 -8610 -1476 -349 -1476 -059 -1411 -0660 -8610 -1417 -0660 -8610 -0660 -1417 -0660 -8610 -0660 -1411 -0660 -8610 -0660 -1411 -0660 -8610 -0660 -1411 -0660 -8610 -0660 -1411 -0660 -8610 -0660 -1411 -0660 -8610 -0660 -1411 -0660 -8610 -066		•		-1326	-76	1174	-3323	-2073	-823	488	1738	2988	-1509	-259	Ċ	Ċ	Ċ					Ċ		Ċ	390 -2440		-1190
656 1906 3156 -2006 -756 494 -4668 -3418 -2168 290 1540 2790 -2373 -1123 127 -5035 -2535 -77 1173 2423 -2739 -1489 -239 - 612 1862 3112 -4045 -2795 -1545 -8702 -7452 -6202 -305 945 2195 4962 -3712 -2462 -9618 -8368 -7118 -1222 28 1278 -5878 -4628 -3378 -7 678 -778 -778 -778 -778 -778 -778				-1666	416	834	-3996	-2746	-1496	389	1639	2889	-1941	-691		Ė	Ċ				Ċ					-329620	-2046
612 1862 3112 4045 -2795 -1545 -8702 -7452 -6202 -305 945 2195 4962 -3712 -2462 -9618 -8368 -7118 -1222 28 1278 -5878 -4628 -3378 -7 578 -1778 -17758 -14078 -14778 -3129 -14171 -0860 -8610 -1777 -17758 -16008 -14778 -3129 -1879 -879 -14110 -0860 -8610 -1				-2006	-756	494	-4668	-3418	-2168	290	1540	2790	-2373	-1123	ľ	Ċ	7					1		Ċ	101 4151	Ė	2901
538 1788 3038 -7444 6194 4644 15425 -14175 -12926 -46 1204 -0277 -8777 -17258 -16008 -1475 -1220 -629 -11110 -9860 -8610 -		•		4045	-2795	-1545		-7452	-6202	-305	945	2195	4962	Y				1	222					7		-9285 -80	-8035
. 0100- 00005- 01111- 620- 6210- 6210- 00011- 00001- 00211- 1200- 1200- 1021- 04- 0621- 02621- 0211- 1200- 4441- 0000 0011 000	30 5	38 1788	3 3038	-7444	-6194	4944	-15425	-14175 -	-12925	-1296	-46	1204	-9277	-8027 -	6777 -17	7258 -16	0		7	879 -	629 -11	- '			192 -17842	42 -16592	392

Tabela 7.14 – Matriz de balanço econômico operacional para os casos em estudo (US\$/h) – CC sem CCS

	⋖	B	ပ	۵	ш	ш	ဗ	Ŧ	-	-	×	_	Σ	z	0	<u> </u>	ø	~	s	 -	_	>	>	×	>	z	₹
-	429	629	929	130	380	630	-170	80	330	338	288	838	38	288	- 889	.261						-54 1	96 4	446 -3	353 -1	-103 1	147
2	288	838	1088	122	372	622	-343	-93	157	405	929	902	-61	189	439 -	Ċ	277			47.1 7	721 -2	244	9	256 -7	710 4	460 -2	210
က	747	. 266	1247	115	365	615	-517	-267	-17	472	722	972	-160	06	340	-792	-545	292			697 -4	435 -1	.185	65 -10	8- 2901	-817 -	-567
4	906	1156	1406	108	358	809	-691	-441	-191	539	789	1039	-259	6	241 -1	1057	- 408-	-557	172 4		672 -6	.626 -3	-376 -1	-126 -14	1424 -1174	Ĺ	-924
ıç	1859 2	2109	2359	63	313	- 293	1732 -	.1482	-1232	942	1192	1442	-854	-604	-354 -2	2649 -2	2399 -2	2149			525 -17	1770 -15	1520 -12	1270 -35	3566 -3316	Y	3066
9	3447 3	3697	3947	-	239	489	3469 -	.3219	-2969	1613	1863	2113 -1	844	1594 -1	1344 -5	5302 -5	5052 -4	4802		30 2	280 -36	3678 -343	3428 -31	3178 -71	7135 -6885		6635
7	700	1200	1700	267	191	1267	-166	334	834	809	1108				1175	-257	243	743				84 5	584 10	1084	-349	151 6	651
80	858	1358	1858	260	160	1260	-339	161	199	675	1175		92	576	- 9201	-523	-23			992 14	492 -1		393 8	893 -7	-706 -206		294
6			2017	252	752	1252	-513	-13	487	742	1242	1742		477		- 887-	-288	212	467 9		1467 -2	-298 2	202 7	702 -10	1063 -563		-63
10		1676	2176	245	745	1245	-687	-187	313	808	1309			378		1053	-553	-53		•	1443 -4	-489	11	511 -14	1420 -920		420
7		.,	3129	200	200	1200 -	-1728 -	.1228	-728	1212	1712	2212		-216	284 -2	2645 -2	2145 -1	1645		796 12	1296 -1633	33 -1133		-633 -35	3562 -3062	ĺ.	2562
12	Ċ	4217 4	4717	126	929	1126 -	-3465 -	.2965	-2465	1884	2384	2884 -1	1			5298 -4	4798 4	4298			1050 -3541	41 -3041	T	2541 -71	7131 -66		31
13			2470	404	1154	1904	-162	288	1338	878	1628	2378		1062	1812	-253	1 13		787 15		2287 2			1721 -3	-345 405		1155
4	1129 1	1879	2629	397	1147	1897	-335	415	1165	946	1696		213		1713 -	-519	231	981	•		2262	30 7	780 15	1530 -7	-702		862
15			2788	389	1139	1889	-509		991	1013	1763	2513	114	864 1					•	•				1339 -10	1059 -309		144
16		•	2947	382	1132	1882	-683	29	817	1080	1830				1515 -1	1049	-299				2213 -351		399 11	1149 -14	1416 -666		84
17			3899	337	1087	1837 -	.1724	-974	-224	1483	2233	2983		171	1	2641 -1			566 13	1316 20	2066 -14		-746	4 -36	3558 -28		2058
18	Ť		5487	263	1013	1763 -	3461 -	. 2711	-1961	2154	2904				-20 -2	5294 -4			•	1071 18	1821 -3403	03 -2653		1903 -71	7128 -63		-5628
19			3241	541	1541	2541	-158	842	1842	1149	2149	3149		1450 2			751 1	1751 1		2057 30	3057 3			2358 -3	-341 659		1659
70	1399 2	2399	3399	534	1534	2534	-331	699	1669	1216	2216	3216	351	1351 2	2351 -	-515		1485 1	1033 20	2033 30	3033 1	167 1167		2167 -6	-698		1302
71	•		3558	527	1527	2527	-505	495	1495	1283	2283	3283		1252 2	2252		220 1	1220 1	•	2008 30	3008			1977 -10	1055	-55 6	945
22			3717	519	1519	2519	-649	321	1321	1350	2350	3350	152	1152 2	2152 -1	1045	45	922		1984 29	2984 -2	-214 7	786 17	1786 -14	1412 412		588
23		Ť	4670	475	1475	2475 -	1721	-721	279	1753	2753	3753	-442	558 1	1558 -2	2637 -1	1637	-637	836 18	1836 28	2836 -1359		-359	641 -35	3554 -2554	Ċ	1554
24	-	Ĭ	6258	401	1401	2401 -	-3457 -	. 2457	-1457	2425	3425	4425 -1	433	-433	567 -5	5290 -4;	4290 -3;	3290		1591 25	2591 -3266	77	2266 -12	1266 -71	7124 -6124	24 -5124	24
25	.,	Ì	4011	629	1929	3179	-154	1096	2346	1419	5669	3919	285	1837	3087	-246	1004 2	2254 1:	1328 25	2578 38	3828 4	495 17	1745 29	2995 -3	-337 9		2163
56	1670 2	2920	4170	671	1921	3171	-328	922	2172	1486	2736	3986	488	1738 2	- 8863	-511	739 1	1989 1	1303 25	2553 38	3803 3	304 1554		2804 -6	-694 5	556 18	1806
27	1829	3079	4329	. 664	1914	3164	-501	749	1999	1554	2804	4054	389	1639 2	- 6883	- 922-	474 1	1724 1	1279 25	2529 37	3779 1	114 13	1364 26	2614 -10	1051	199 14	1449
28	.,	3237	4487	. 959	1906	3156	-675	212	1825	1621	2871	4121	290	1540 2	2790 -1	1041	209 1	1459 1	1254 25	2504 37	3754	-77 11	1173 24	2423 -14	1408 -158	_	1092
59		-	5440	612	1862	3112 -	1717	-467	783	2024	3274	4524	-305	945 2	2195 -2	2633 -1	- 8881	-133	107 23	2357 36	3607 -12	1222	28 12	278 -35	3550 -2300	1	1050
90	4528	5778	7028	238	1788	3038 -	3453 -	.2203	-953	2692	3945	5195 -1	296	46 1	204 -5	286 -4	.036 -2	5786	862 21	2112 33	3362 -31	29 -18	79 -6	329 -71	7120 -58	70 46	1620

Tabela 7.15 – Matriz de balanço econômico operacional para os casos em estudo (US\$/h) – CC com CCS

		4	В	C	Ш	-	g	Ξ	-	-	×	_	Σ	z	0	۵	ø	œ	s	-		>	>	×	>	z AA
	_				123	373		-305	-55	209	459	602	-219	31	281	-646		146			318 -3	310			38 488	18 -238
4.7 7. 8. 9.7 4.7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2					223		-692	442	205	455	202	-460	-210	40	1125	-875	625			Ċ	i	_	``	99 -1058	608- 69
564 144 106 477 277 717 7147 4467 217 447 687 488 4183 4183 4183 4183 4183 4183 4184	က				Ċ	73	1	-1079	-829	201	451	701	-702	-452	-202 -	4091	1	104			Ċ	Ĺ	Ĺ	ď	79 -1629	9 -1379
1488 1352 1463 1475 1426 1475 1426 1475 1427 1427 1427 1428 1436 1468 1476	4			_		-77		-1467	-1217	197	447	269	-943	-693	-443	2083	ì	Ċ			1	1		T	50 -2200	00 -1950
1466 2116 2464 2496 2497 2794	5			_	Ċ	-976		-3791	-3541	172	422	672	-2393	-2143 -	1893 -	4958	4	_	Ċ	Ċ	Υ -	7	.,		74 -562	4 -5374
514 1014 1514 104 396 372 222 272 472 495 496 472 422 476 496 494 414 497 497 416 </th <th>9</th> <th></th> <th>•</th> <th></th> <th>Ċ</th> <th>-2475</th> <th>1</th> <th>-7664</th> <th>-7414</th> <th>131</th> <th>381</th> <th>631</th> <th>4808</th> <th>-4558 -</th> <th>4308 -</th> <th>1</th> <th>Y</th> <th>Ċ</th> <th>1</th> <th>1</th> <th>ī</th> <th>_</th> <th>Ė</th> <th>7</th> <th>81 -1133</th> <th>11081</th>	9		•		Ċ	-2475	1	-7664	-7414	131	381	631	4808	-4558 -	4308 -	1	Y	Ċ	1	1	ī	_	Ė	7	81 -1133	11081
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	7	•	Ċ			896		-222	278	423	923	1423	-196	304	804	-814	-314			•					05 -405	95
1189 1889 404 98 586 1497 -997 -497 414	80		·			746		609-	-109	418	918	1418	-437	63		1293				•		_			926- 92	6 476
	6	•	•					-997	497	414	914	1414	-679	-179	Ė	01		772					1 54	Ċ	47 -1547	17 -1047
1302 1802 2302 1453 953 455 4503 4508 2308 2308 1388 1388 2370 1870 1870 5128 9415 9415 9415 9415 9415 1489 948 968 1489 1689 1499 1489 1489 1489 1489 1489 1489 14						446		-1384	-884	410	910	1410	-920	-420	80	1	ď	251		ì	Ċ			Ţ,	17 -2117	7 -1617
217 268 218 2982 2462 1982 1982 1984 478 278 9915 9915 9915 9416 9916 9418 9916 9418 9916 9418 9916 9418 9918 9418 9418 9418 9418 1948						-453		-3708	-3208	386	988	1386	-2370	-1870 -	_	1	Ċ			_	_		Ċ	Ċ	42 -5542	12 -5042
7.8 1.4 2.2 8.4 6.6 1.4 2.89 1.39 6.14 1.39 6.14 1.39 1.4 1.2 5.4 1.294 2.04 2.64 1.0 4.6 1.2 4.4 1.8 1.4 2.64 2.0 1.4 1.6 2.8 1.3 1.3 1.3 1.4 1.6 2.3 1.3 1.2 4.4 1.8 1.4 1.6 2.8 1.4 1.8 1.4 1.6 2.0 1.4 1.6 2.3 1.3 1.6 2.4 1.9 1.6 2.4 1.6 2.8 1.4 1.6 1.6 2.3 1.4 1.6 6.2 1.3 1.6 1.4 1.6 6.2 1.3 1.6 1.4 1.6 6.2 1.3 1.6 1.4 1.6 2.3 4.4 1.8 1.6 2.4 1.4 1.6 2.3 1.4 1.6 2.3 1.4 1.6 2.3 1.4 1.6 2.3						-1952		-7582	-7082	345	845	1345	4785	-4285 -	Ċ				Ċ	Ċ	Ė			7	48 -11248	18 -10748
815 1565 231 519 1269 1277 -527 223 138 148 438 148 438 148 438 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 148 439 448 148 439 148 528 448 148 439 448 448 439 448 448 439 448 448 458 448 448 458 448			•					-139	611	989	1386	2136	-173	211	1327	-981	-231		ì						73 -323	3 427
903 1653 2403 -381 369 1119 -1164 -914 -1164 628 1378 2128 -656 94 844 -1939 -1189 439 353 1103 1853 -931 1103 1851 -124 -134 140 140 140 140 140 140 140 140 140 14								-527	223	632	1382	2132	-414	336	Ċ		-710			•				Ċ		
90 1740 2490 531 219 969 2051 1301 551 624 1374 2124 897 147 603 2418 1668 918 155 1007 1757 1264 514 236 2788 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-					-914	-164	628	1378	2128	-656	96	Ċ	_			•					Ċ	14 -1464	-714
1516 2266 3016 -1430 -680								-1301	-551	624	1374	2124	-897	-147		1				Ì	Ċ				85 -2035	1285
2391 3141 3891 2929 -2179 1-1429 -8249 -7499 -6749 558 1308 2058 4762 4012 -3262 -10082 9332 8682 1-2575 625 225 6595 5845 5095 1-1916 1-1916 1-1928 2028 3028 2-08 792 1-144 4-44 556 845 1849 2849 1849 2845 1850 1850 1850 1850 1850 1850 1850 185	17		•					-3626	-2876	669	1349	2099	-2347	-1597	Ċ	Ĺ	1				Ĺ.				09 -5459	9 4709
941 1941 2941 - 58 942 1942 - 1057 - 57 943 849 1849 2849 - 150 850 1850 - 1148 852 758 1758 2758 - 241 759 1759 1740 1470 1470 1470 1470 1470 1470 1470					1			-7499	-6749	228	1308	2058	4762	-4012 -	<u>)</u>		Ċ	Ċ			Ċ	Ċ	Ċ	'n	16 -11166	6 -10416
126 2028 3028 - 2.08 792 1792 - 1444 556 845 1845 5845 - 391 609 1609 - 1627 677 677 677 678 682 1662 5662 - 574 426 - 1811 1841 566 845 1845 - 381 689 189 189 189 189 189 189 189 189 189 1						1942		-57	943	849	1849	2849	-150	820					•	•	_				40 -240	092 01
1116 2116 3116 -358 642 1642 -1831 -831 169 841 1841 -633 367 1367 -2106 -1106 -106 566 1566 266 908 92 1092 -2381 -831 -831 169 841 1841 -633 367 1367 -2106 -1106 -106 566 1566 566 908 92 1022 -2381 -241 759 -2562 -1582 1407 -241 -241 759 -2562 -1582 1407 -241 -241 759 -2562 -1582 1407 -241 -241 759 -2562 -1582 1407 -241 -241 759 -2562 -1582 1407 -241 -241 759 -2562 -1582 1407 -241 -241 -241 759 -2562 -1582 1407 -241 -241 -241 -241 -241 -241 -241 -241						1792		-444	929	845	1845	2845	-391	609	Ċ	1627									11 -811	1 189
1204 2204 3604 402 1407 407 503 4543 -2543 812 1817 2813 -814 126 1126 -2586 -1585 -1585 -1585 -1585 -1585 -1585 -1585 -1585 -1587 -1407 407 503 4543 -2543 -1219 -219 817 1812 2812 -1324 -1324 -1324 -1324 -1326 -1360 -106 -106 -106 -106 -106 -106 -106 -1						1642		-831	169	841	1841	2841	-633	367	Ċ				•	•		808		Ċ	81 -1381	.381
1729 2729 3729 -1407 407 593 -4543 -2543 812 1812 2812 -1324 -1324 -1324 -3460 -3460 -3460 -104 896 1896 -3240 -1224 -1240 -3576 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1263 -1240 -3573 -1240 -3573 -1240 -3573 -1240 -3573 -1242 -345 -1242 -345 -1242 -345 -1242 -345 -1242 -345 -345 -345 -345 -345 -345 -345 -345						1492		-1219	-219	837	1837	2837	-874	126	Ċ	5852			•		_			Ė	52 -1952	.2 -952
2605 3605 4605 -2906 -1906 -9906 -1906 -9906 -1906 -9906 -1906 -9906 -1906 -9906 -1906 -900 -8416 -7416 -6416 771 1771 2771 4739 -2739 -10250 -9250 -9250 -1062 -62 938 -6573 -5573 -1407 1154 2404 3654 -124 26 1276 1068 2308 3558 -388 882 2132 -1795 -545 705 875 2125 377 -1795 -545 705 875 -552 698 1948 -1978 1329 2579 3829 -335 -161 -80 730 3554 -610 640 1890 -2774 -1024 226 779 2029 -386 -1196 -149 200 -851 -867 -1563 -867 -179 -2753 -1603 -2753 -1603 -2753 -1603 <th></th> <th>•</th> <th></th> <th></th> <th></th> <th>593</th> <th></th> <th>-3543</th> <th>-2543</th> <th>812</th> <th>1812</th> <th>2812</th> <th>-2324</th> <th>-1324</th> <th>Ċ</th> <th>į</th> <th>Y</th> <th></th> <th></th> <th></th> <th>Ċ</th> <th>1</th> <th>1</th> <th>Ċ</th> <th>76 -5376</th> <th>6 4376</th>		•				593		-3543	-2543	812	1812	2812	-2324	-1324	Ċ	į	Y				Ċ	1	1	Ċ	76 -5376	6 4376
154 2404 3654 -35 1215 2465 -1224 26 1276 1063 2313 3563 -127 1123 2373 -1316 -66 1184 971 2221 3471 -218 1032 2282 -1407 1242 2492 3742 -185 1065 2315 -1611 -361 889 1058 2308 3558 -368 882 2132 -1795 -545 705 875 2125 3375 -552 698 1948 -1978 1329 2579 3829 335 915 2165 -1999 -749 501 1054 2304 3554 -610 640 1890 -2274 -1024 226 779 2029 3279 -885 365 1615 -2549 -1797 1417 2667 3917 485 765 2015 -2386 -1136 114 1050 2300 3550 -861 399 1649 -2753 -1503 -253 684 1334 -1218 32 1282 -3119 -1797 1417 1416 -4710 -3460 -2210 1026 2276 3262 -2301 -1051 199 -5527 3127 109 1359 2609 3217 -1967 717 -5544 3192 1418 1416 -4710 -3460 2210 1261 236 249 342 3192 442 3182 3192 442 3184 3184 3184 3184 3184 3182 32 32 32 32 32 32 32 32 32 32 32 32 32			Ť			906-		-7416	-6416	771	1771	2771	4739	-3739	Ŧ	_	-	1			Ċ	1	ď	7	83 -11083	3 -10083
1242 2492 3742 -185 1065 2315 -1611 -361 889 1058 2308 3558 -368 882 2132 -1795 -545 705 875 2125 3375 -552 698 1948 -1978 1329 2579 3829 -335 915 2165 -1999 -749 501 1054 2304 3554 -610 640 1890 -2274 -1024 226 779 2029 3279 -885 365 1615 -2549 -740 1417 2667 3917 485 765 2015 -2386 -1136 114 1050 2300 3550 -861 399 1649 -2753 -1503 -253 684 1934 1144 -1218 32 1282 -3119 -1141 1164 1164 1164 1164 1164 1165 1165								26	1276	1063	2313	3563	-127	1123		1316		_	_	_				<u>.</u>	07 -157	57 1093
1329 2579 3829 -335 915 2165 -1999 -749 501 1054 2304 3554 -610 640 1890 -2274 -1024 226 779 2029 3279 -885 365 1615 -2549 1417 2667 3917 485 765 2015 -2386 -1136 114 1050 2300 3550 -851 399 1649 -2753 -1503 -255 684 1934 3184 -1218 32 1282 -3119 1942 3192 4442 -1384 -134 1116 -4710 -3460 -2210 1026 2276 3526 -2301 -1051 199 -5627 -4377 -3127 109 1359 2609 -3217 -1967 -717 -6544 3109 1369 1369 1369 1369 1369 1369 1369 136		•	.,				ď.	-361	889	1058	2308	3558	-368	882	Ċ	1795	-545		•	.,			•	Ċ.	78 -728	8 522
1417 2667 3917 485 765 2015 -2386 -1136 114 1050 2300 3550 -851 399 1649 -2753 -1503 -253 684 1934 3184 -1218 32 1282 -3119 1342 3192 4442 -1384 -134 1116 -4710 -3460 -2210 1026 2276 3526 -2301 -1051 199 -5627 -4377 -3127 109 1359 2609 -3217 -1967 -717 -6544 100 100 100 100 100 100 100 100 100 1		•	.,			2165	Ċ	-749	501	1054	2304	3554	-610	640	1890	1	024	226	•	.,				1	49 -1299	9 49
1942 3192 4442 -1384 -134 1116 -4710 -3460 -2210 1026 2276 3526 -2301 -1051 199 -5627 -4377 -3127 109 1359 2609 -3217 -1967 -717 -6544						2015		-1136	114	1050	2300	3550	-851	399	1649	2753 -	203	253	Ϊ.		_	218	` 	Ċ	19 -1869	9 -619
000 000 000 000 000 000 000 000 000 00	•		•	1		1116		-3460	-2210	1026	2276	3526	-2301	-1051	1	į	Ĺ	127		.,	1	Ċ		Ċ	44 -5294	4044
2010 4006 3310 -2003 -305 -305 -2004 -0004 305 2233 3403 -4710 -3400 -1201 -1201 -1201 -1001 -0020 -3000 4000 3010 -1201 -1201 -0004 -2000 4000 3010 -1201 -1	30 2	2818 400	4068 5318	3 -2883	-1633	-383	-8584	-7334	-6084	982	2235	3485	4716	-3466	2216 -1	0417 -	9167 -7	- 2162	849	401 16	1651 -65	6550 -53	5300 -40	050 -122	50 -11000	00 -9750

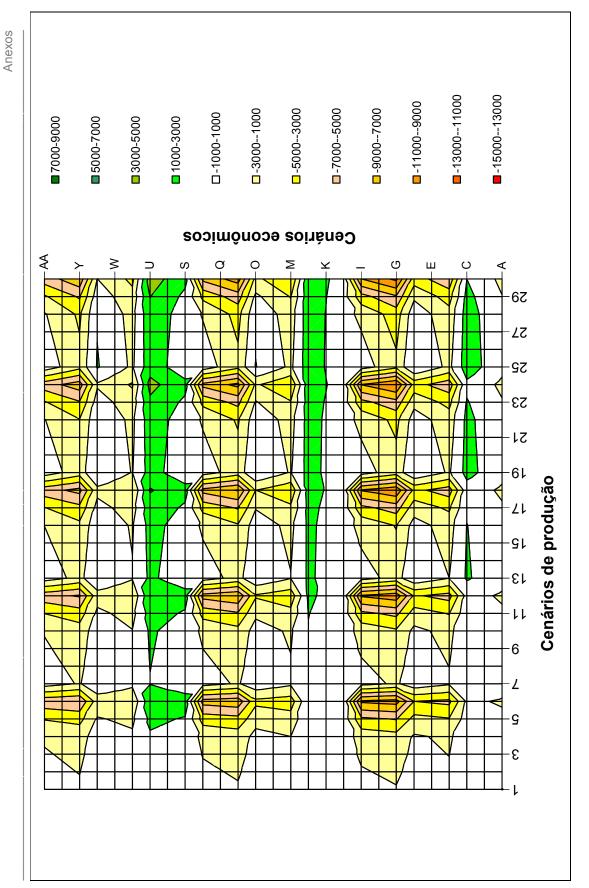


Gráfico 7.1 – Balanço econômico operacional – IGCC sem CCS

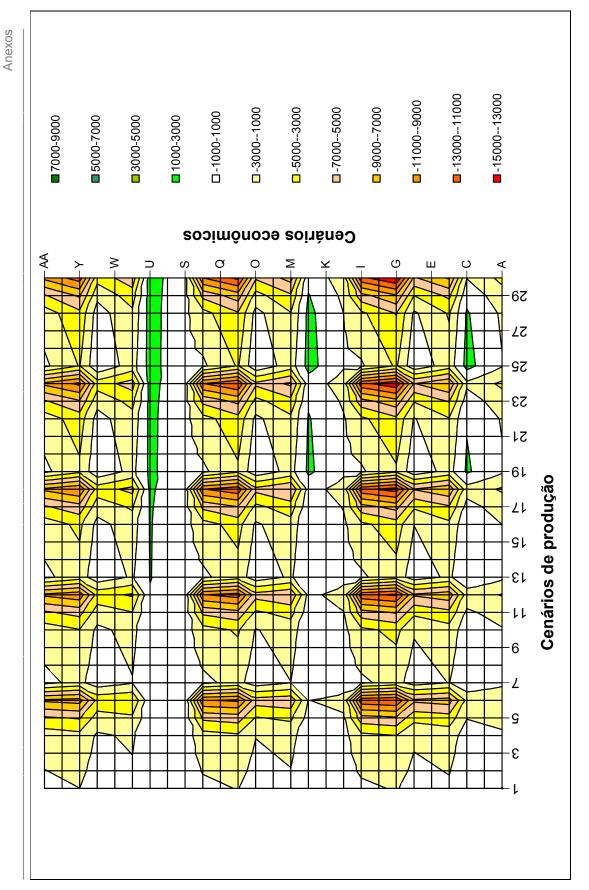


Gráfico 7.2 – Balanço econômico operacional – IGCC com CCS

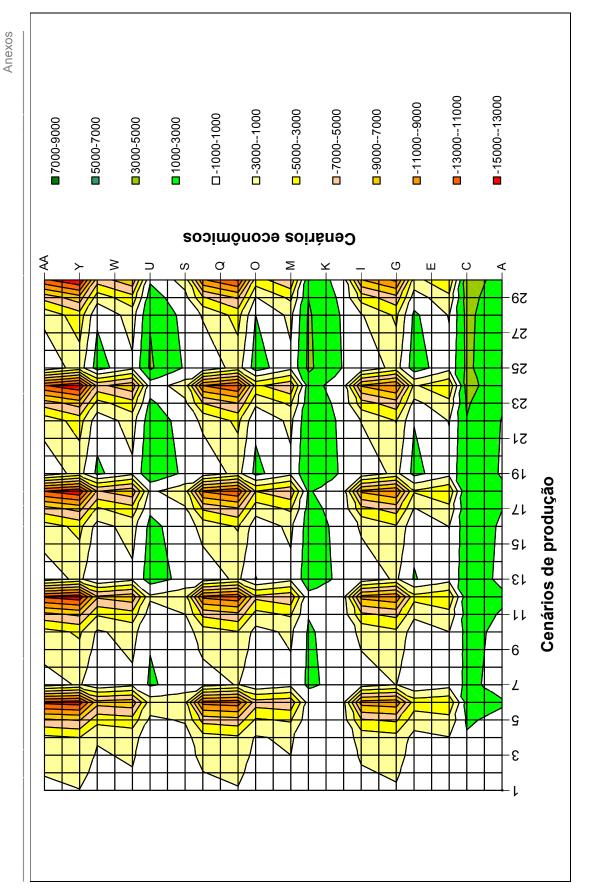


Gráfico 7.3 – Balanço econômico operacional – CR sem CCS

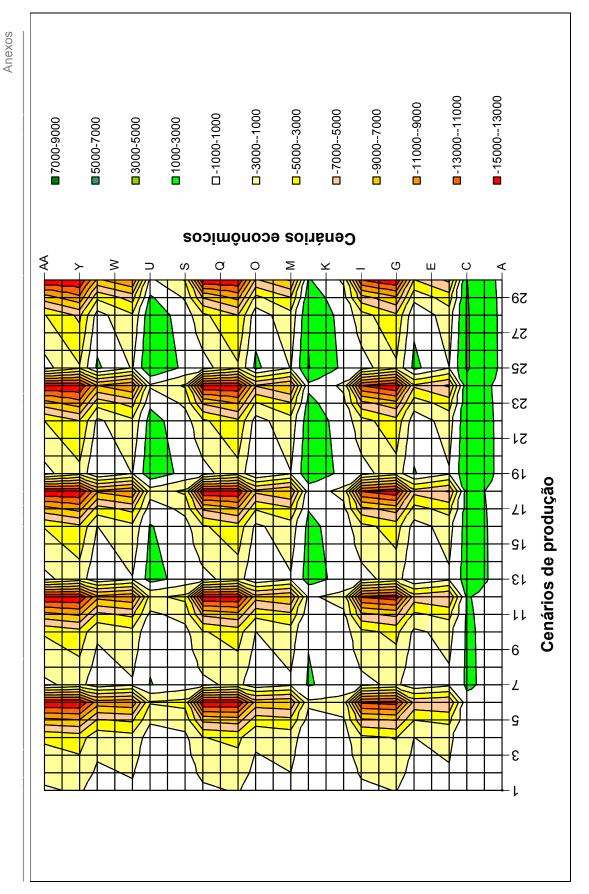


Gráfico 7.4 - Balanço econômico operacional -CR com CCS

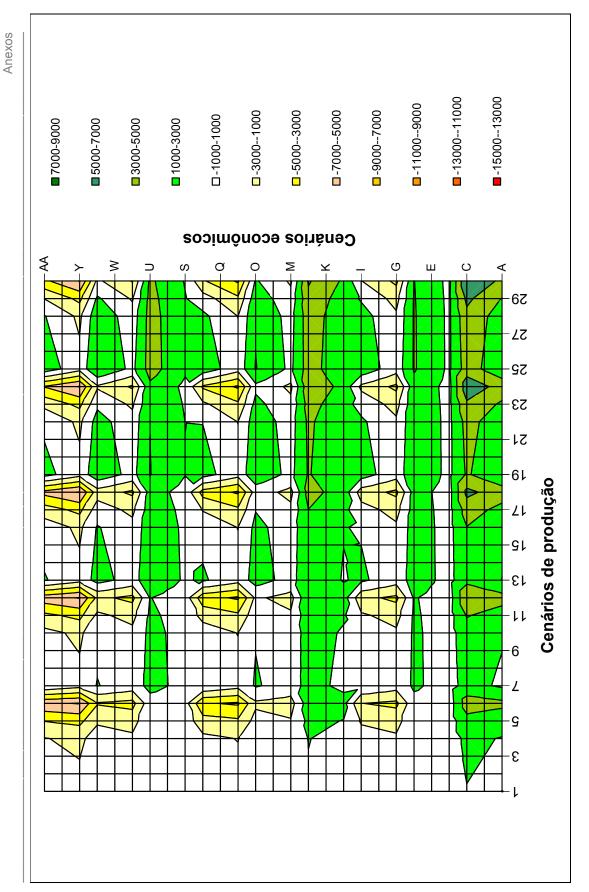


Gráfico 7.5 – Balanço econômico operacional – CC sem CCS

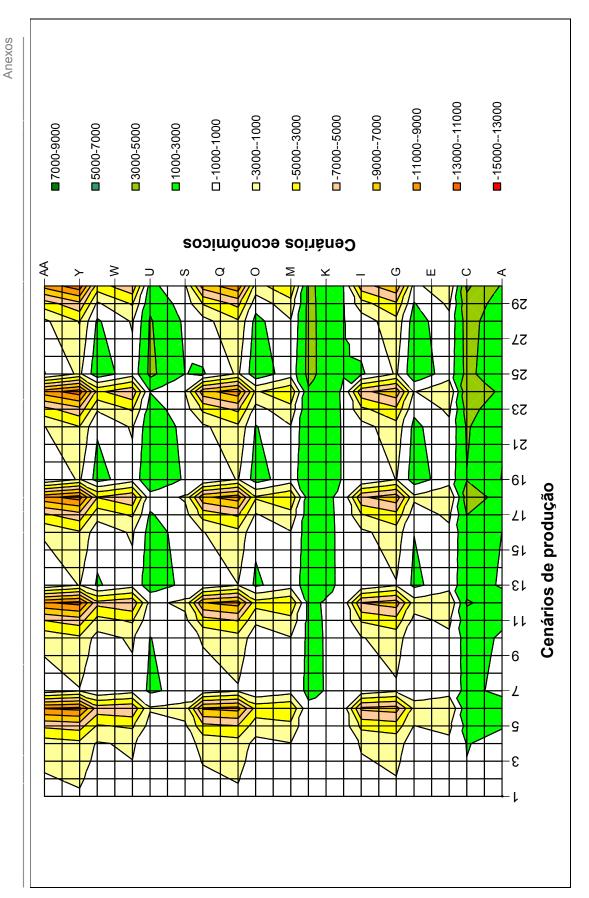


Gráfico 7.6 – Balanço econômico operacional – CC com CCS

Anexos