FERNANDO ANTONIO SOUZA BEMERGUI

RELAÇÕES HIPSOMÉTRICAS E RELAÇÃO ENTRE ALTURA TOTAL E ALTURA COMERCIAL, NA FLORESTA TROPICAL DO CENTRO FLORESTAL HERRERA, IQUITOS - PERU

Dissertação submetida à consideração da Comissão Examinadora, como requisito parcial na obtenção do Título de "Mestre em Ciências — M. Sc.", no Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Agrárias da Universidade Federal do Paraná.

FERNANDO ANTONIO SOUZA BEMERGUI

RELAÇÕES HIPSOMÉTRICAS E RELAÇÃO ENTRE ALTURA TOTAL E ALTURA

COMERCIAL, NA FLORESTA TROPICAL DO CENTRO FLORESTAL HERRERA,

IQUITOS - PERU

Dissertação submetida à consideração da Comissão Examinadora, como requisito parcial da obtenção do Título de "Mestre em Ciências - M.Sc.", no Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Agrárias da Universidade Federal do Paraná.

CURITIBA 1980

COORDENAÇÃO DO CURSO DE POS-GRADUAÇÃO EM ENGENHARIA FLORESTAL

PARECER-

Os membros da Comissão Examinadora designada pelo Colegiado do Curso de Pós-Graduação em Engenharia Florestal para realizar a arguição da Dissertação de Mestrado apresentada pelo candidato FERNANDO ANTONIO SOUZA BEMERGUI, sob o título "RELAÇÕES HIPSOMÉTRICAS E RELAÇÃO ENTRE ALTURA TOTAL E ALTURA COMERCIAL, NA FLORESTA TROPICAL DO CENTRO FLORESTAL HERRERA, IQUITOS-PERÜ", para obtenção do grau de Mestre em Ciências - Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Agrárias da Universidade Federal do Paraná, área de concentração MANEJO FLORESTAL, após haver analisado o referido trabalho e arguido o candidato, são de parecer pela "APROVAÇÃO" da Dissertação, completando assim os requisitos necessários para receber o grau e o Diploma de Mestre em Ciências Florestais.

Observação: O critério de avaliação da Dissertação e defesa da me<u>s</u> ma a partir de novembro de 1980 é apenas APROVADA ou NÃO APROVADA.

Curitiba, 02 de dezembro de 1980.

Professor Wa

Ciencias

Idenei Travassos de Queiroz, M.Sc

Primeiro Examinador

Professor Sergio Ahrens, M.Sc

Segundo Examinador

1. Soon

Professor Dietrich Burger, Dr.

Presidente -

Aos meus pais e irmãs,

à Fabiola, Fernanda e Lourdes,

DEDICO

BIOGRAFIA

Fernando Antonio Souza Bemergui, filho de Elias Bemergui e Catarina Souza Bemergui, nasceu em Santarém, Estado do Pará, no dia 10 de abril de 1948.

Concluiu o primeiro grau no Grupo Escolar Frei Ambrósio, na Cidade de Santarém.

Em 1962 iniciou o estudo secundário no Seminário São Pio X, concluindo o mesmo no Colégio Dom Amando de Santarém, em 1968.

Em 1970 iniciou o Curso de Engenharia Florestal na Universidade Federal do Paraná, graduando-se em dezembro de 1973.

Em 1974 ingressou no PRODEPEF/IBDF, da Delegacia do Parã.

Em 1978 iniciou atividades no Projeto Radambrasil, Divisão de Vegetação, Base de Apoio em Goiânia - Goiás, onde exerceu função no setor de Processamento e Análise de Dados.

Em 1979 iniciou o Curso de Mestrado em Engenharia Florestal na Universidade Federal do Paraná na Área de Manejo Florestal, concluindo os créditos para o grau de M.Sc. em junho de 1980.

Em maio de 1980 ingressou no Departamento Florestal da Faculdade de Ciências Agrárias do Pará.

AGRADECIMENTO

O autor deseja expressar seus agradecimentos ao orientador Professor Dr. Dietrich Burger, por sua dedicação e estímulo.

Aos co-orientadores Professores Dr. Sebastião do Amaral Machado e Dr. Roberto Tuyoshi Hosokawa, pelas sugestões e orientações apresentadas.

A Faculdade de Ciências Agrárias do Pará pela licença e suporte financeiro concedidos, na conclusão de estudo na Escola de Florestas da Universidade Federal do Paraná.

Aos colegas do Departamento Florestal da Faculdade de Ciências Agrárias do Pará, pelos encargos a mais de trabalho na ausência do autor.

Aos técnicos da Divisão de Vegetação do Projeto Radambrasil, por tudo e pela grande amizade.

Ao curso de Pós-Graduação em Engenharia Florestal da Universidade Federal do Paraná, por possibilitar a realização deste estudo.

Ao Professor Waldenei Travassos de Queiroz, da Faculdade de Ciências Agrárias do Pará pela ajuda e estímulo.

Ao Engenheiro Florestal Hugo Barbosa Amorim, pela amizade e convivência diāria.

Ao Engenheiro Florestal Pedro Paulo Imbiriba e Arlete Imbiriba, pela força e amizade, nesta jornada.

Ao Revmo. Frei Nestor Windolph, Ofm por suas orações e amizade.

Ao Engenheiro Florestal Grimaldo Villanueva pelos dados fornecidos, para o presente estudo.

Aos demais Professores e colegas do curso que, direta ou indiretamente colaboraram na realização do presente trabalho.

SUMÁRIO

		Pāgina
	LISTA DE FIGURAS	viii
	LISTA DE QUADROS	ix
1.	INTRODUÇÃO	1
1.1.	Importância da avaliação quantitativa e quali-	
	tativa da produção florestal	1
1.2.	Natureza e implicações do problema	1
1.3.	Objetivos	4
2.	REVISÃO DE LITERATURA	6
3.	MATERIAL E MÉTODOS	20
3.1.	Material	20
3.1.1.	Localização, limites e extensão da área	20
3.1.2.	Vegetação	22
3.1.3.	Clima e hidrologia	22
3.1.4.	Solos	22
3.1.5.	Geomorfologia e relevo	23
3.1.6.	Dados utilizados	23
	3.1.6.1. Amostragem	23
	3.1.6.2. Dados coletados no espaço amostral	24
3.2.	Métodos	24
3.2.1.	Processamento de dados	24
3.2.2.	Análise de correlação	25
3.2.3.	Equações de regressão para estimar a altura to-	
	tal a altuma comorcial	7.7

		Página
3.2.4.	Seleção dos melhores modelos	33
4.	RESULTADOS E DISCUSSÃO	3.9
4.1.	Correlação simples	39
4.2.	Modelo de equação de regressão	48
4.3.	Seleção dos melhores modelos para estimar altu-	
	ra total e altura comercial	48
4.4.	Tabelas para determinar altura total e altura	
	comercial	54
5.	CONCLUSÕES	61
6.	RESUMO	64
	SUMMARY	66
	REFERÊNCIAS BIBLIOGRÁFICAS	68
	APÊNDICE	72

LISTA DE FIGURAS

		Página
FIGURA		
01.	Curvas de altura em povoamentos de <u>Pinus</u> <u>sil-</u>	
	vestris em idades diferentes	15
02.	Gráfico de 5 funções diferentes com os mesmos	
	dados	16
03.	Estrato de altura de diferentes espécies	17
04.	Local de coleta de dados	21
05.	Relação entre classes de DAP c/c e altura total	
	com a função ajustada	44
06.	Relação entre classes de DAP c/c e altura co-	
	mercial com a função ajustada	45
07.	Relação entre classes de altura total e altura	
	comercial com a função ajustada	46
08.	Relação entre classes de altura comercial e al-	
	tura total com função ajustada	47

LISTA DE QUADROS

QUADRO		Página
01.	Distribuição das árvores em classes de alturas.	26
02.	Distribuição das árvores em classes de DAP c/c	
	e altura total	28
03.	Distribuição das árvores em classes de DAP c/c	
	e altura comercial	30
04.	Modelos de equações de regressões testados para	
	a relação hipsométrica	34
05.	Modelos de equações de regressões testadas par	a
	a relação altura total/altura comercial	. 35
06.	Modelos de equações de regressões testadas para	
	a relação altura total/DAP c/c, altura comer-	
	cial	. 36
07.	Relação das variáveis dependentes e independen-	
	tes utilizadas nos modelos de regressão	37
08.	Coeficientes de correlação simples do DAP com	•
	as variáveis estudadas, para toda a floresta, pa	-
	ra os 3 estratos e para as 5 especies mais fre-	
	quentes	40
09.	Coeficientes de correlação simples da altura tota	1
	com as variáveis estudadas, para toda floresta,	
	para os 3 estratos e para as 5 espécies mais	
	frequentes	41
10.	Coeficientes de correlação simples da altura co	_
	mercial com as variáveis estudadas, para toda	
	floresta, para os 3 estratos e para as 5 espé-	
	cies mais frequentes	42

QUADRO		Pāgina
11.	Equações com erro-padrão residual da relação	
	hipsométrica para estimar a altura total	50
12.	Equações com erro-padrão residual da relação	·
	hipsométrica para estimar a altura comercial	51
13.	Equações com erro-padrão residual da relação	
	altura total/altura comercial para estimar a	
	altura total	52
14.	Equações com erro-padrão residual da relação	
	altura total/altura comercial para estimar a	
	altura comercial	52
15.	Equações com erro-padrão residual da relação	
	altura total/DAP e altura comercial para esti-	
	mar a altura total	52
16.	Estimativa da altura total através da relação	
	hipsométrica	55
17.	Estimativa da altura comercial através da re-	
	lação hipsométrica	57
18.	Estimativa da altura total através da relação	
	altura total/altura comercial	58
19.	Estimativa da altura comercial através da re-	
	lação altura comercial/altura total	59
20.	Floristica	73
21.	Coeficientes de correlação simples entre as va-	•
	riaveis estudadas para toda a floresta	82
22.	Coeficientes de correlação simples entre as va-	
	riaveis estudadas para o estrato 1	84
23.	Coeficientes de correlação simples entre as $v\underline{a}$	
	riavais astudadas para o astrato ?	86

QUADRO		Página
24.	Coeficientes de correlação simples entre as va-	
	riáveis estudadas para o estrato 3	88
25.	Coeficientes de correlação simples entre as va-	
	riáveis estudadas para a espécie cumala colora-	
	da	90
26.	Coeficientes de correlação simples entre as va-	
	riáveis estudadas para a espécie Machimango	
	blanco	92
27.	Coeficientes de correlação simples entre as va-	
	riáveis estudadas para a espécie Parinari	94
28.	Coeficientes de correlação simples entre as va-	
	riáveis estudadas para a espécie Shimbillo	96
29.	Coeficientes de correlação simples entre as va-	·
	riáveis estudadas para a espécie Tangarana	98
30.	Coeficientes e estatística básica da relação	
	hipsométrica dos modelos de regressão testados	
	para estimar a altura total do Centro Herrera	100
31.	Coeficientes e estatística básica da relação	
	hipsométrica dos modelos de regressão testados	
•	para estimar a altura comercial do Centro Her-	
	rera	104
32.	Coeficientes e estatística básica da relação al	
	tura total/altura comercial dos modelos de re-	
	gressão testados para estimar a altura total do	
	Centro Herrera	107
33.	Coeficientes e estatística básica da relação	
	altura total/altura comercial dos modelos de re-	
	gressão testados para estimar a altura comer-	
	cial do Centro Herrera	108

1. INTRODUÇÃO

1.1. IMPORTÂNCIA DA AVALIAÇÃO QUANTITATIVA E QUALITATIVA DA PRODUÇÃO FLORESTAL

A preocupação mundial e nacional, na atual conjuntura político-social de todo o mundo está voltada à paz mundial, problemas nucleares e à crise do ouro negro: petróleo.

Assim sendo, as atenções de todos os povos estão voltadas para os problemas energéticos, suas formas alternativas e possíveis substituições do petróleo por outras fontes energéticas.

Dentre as possíveis opções encontra-se a floresta, seus produtos florestais, sua produção madeireira, suas resinas, seus benefícios diretos e indiretos, oxigênio, sua fonte de alimentos, seu refúgio ecológico na conservação e preservação da flora e fauna, seus óleos energéticos, metanol, etanol e hidrocarbonetos carburentes, sua volumetria, seus incrementos dendrométricos e suas alturas

1.2. NATUREZA E IMPLICAÇÕES DO PROBLEMA

As relações estudadas no presente trabalho são:

a) A relação altura/diâmetro, denominada relação hipsométrica e definida conforme o I ENCONTRO NACIONAL DE PES-QUISADORES PARA PADRONIZAÇÃO DA TERMINOLOGIA FLORESTAL¹⁶, como a regressão da altura sobre o diâmetro em povoamentos, em determinada data. A relação altura/diâmetro é muito importante e usada no manejo florestal, como também no estudo da estrututa do povoamento.

- b) A relação altura total/altura comercial, do mesmo modo que altura comercial/altura total é o estudo de regressão entre as duas alturas em determinada época. Esta relação é importante no estudo da estrutura do povoamento e na estimativa de volume não comerciável da biomassa florestal, mas de aproveitamento nas alternativas energéticas, como carvão vegetal.
- c) A relação dupla entre altura total/DAP e altura comercial é o estudo de regressão da altura total como função do DAP e altura comercial, variáveis coletadas quase sempre em qualquer levantamento, inventário e experimento florestal, como opção de alguns pesquisadores no estudo da volumetria total das árvores individuais, como também de povoamentos.

Para HUSCH et al²⁶, a relação hipsométrica serve para classificar povoamentos em diferentes categorias, com fins de preparar tabelas do volume do povoamento, ou transformar tabelas de volume regionais em tabelas de volume local.

Segundo GOMES²⁰, a medição de altura em povoamentos naturais ou artificiais com instrumento apropriado, não há dúvida de que apresentam resultados satisfatórios, porém não são econômicos, devido ao tempo que se gasta na medição de cada indivíduo.

De acordo com BRUCE & SCHUMACHER³, dentro da área do manejo florestal, sente-se a necessidade de encontrar, um método para estimar o estoque atual, bem como prognosticar a produção de anos subsequentes.

HUSCH et al²⁶ afirmam que levantamentos de experimentos que impliquem em aumento dendrométrico, necessitam, sempre, medições precisas, com mínimo custo, redução no tempo de trabalho e mínimos erros.

De acordo com CHAPMAN & MEYER⁷, a relação hipsométrica é muito importante no manejo florestal, porém possui baixa correlação, inclusive em povoamentos homogêneos.

Segundo HEINSDIJK & BASTOS²³, estudar e planejar o manejo de uma floresta tropical qualquer, sem o conhecimento prévio de suas variáveis básicas, altura total, altura comercial e diâmetro à altura do peito, bem como estudo das relações: altura/DAP, altura total/altura comercial e altura total/DAP, altura comercial, torna-se muito difícil e oneroso.

Em vista de tais considerações, é de suma importância o estudo das associações básicas existentes entre as variáveis: altura total, altura comercial e DAP, denominada correlação simples, como também um estudo da dependência das referidas variáveis, nos modelos matemáticos e procedimentos estatísticos propostos, segundo FREESE 17, definida como regressões lineares simples ou múltiplas, reduzindo, assim, na área do manejo florestal o tempo e custos na coleta de dados para determinada informação.

Em virtude de tais ponderações, precisa-se estudar, inicialmente, as correlações básicas entre as referidas va-

riáveis. Em seguida, conhecer melhor a relação hipsométrica, a relação entre altura total e altura comercial e a relação entre altura total como função do DAP e altura comercial, para se estudar a estrutura do povoamento e estruturar com segurança um plano de manejo sustentado.

Todas estas razões mencionadas anteriormente, indicam a necessidade de se encontrar a melhor relação altura/DAP, altura total/altura comercial e a relação dupla entre as variáveis básicas: altura total, altura comercial e DAP. Assim, através das correlações e regressões, busca-se alcançar resultados próximos dos parâmetros verdadeiros, das variáveis estimadas, altura total e altura comercial, com bom grau de precisão e baixo erro-padrão da estimativa.

1.3. OBJETIVOS

O presente estudo pretende alcançar os seguintes objetivos:

- a) Analisar as correlações existentes entre os seguintes parâmetros dendrométricos: altura total, altura comercial e diâmetro à altura do peito.
- b) Analisar 21 modelos para a relação hipsométrica, usando como variável dependente, tanto altura total como altura comercial, parâmetros de difícil obtenção em inventários, levantamentos e pesquisas florestais, em função do diâmetro à altura do peito, variável fácil de ser medida no campo.

- c) Analisar 7 modelos para a relação altura total/altura comercial.
- d) Analisar 3 modelos para a relação dupla entre altura total, DAP e altura comercial.
- e) Confeccionar tabelas de estimativas para altura total e altura comercial.

2. REVISÃO DE LITERATURA

TROREY 41 , através de estudos da relação altura/diâmetro para diferentes espécies com um grande número de árvores concluiu que o modelo parbólico da forma H = a + b D + cD 2 expressa uma exata representação da relação altura/diâmetro.

KORSUN²⁹, usando uma formulação diferente introduziu no modelo, como variáveis independentes o fator de forma (K) e o diâmetro a metade da altura (DAP 1/2) e o próprio comprimento do tronco.

$$H = b_0 + b_1 K + b_2 D + b_3 D1/2 + b_4 L$$

H = altura total

K = fator de forma

D = DAP

D1/2 = diâmetro à metade do comprimento aproveitável

L = comprimento aproveitavel do fuste

 b_0 , b_1 , b_2 , b_3 , b_4 = coeficiente a estimar

MEYER³² também sugere que a altura pode ser expressa em função do diâmetro ou idade.

$$Ye = H(1 - e^{-ax})$$

Ye = altura estimada

H = altura máxima medida

e = base do logaritmo natural

x = diâmetro ou idade

a = coeficiente a ser estimado

MICHAILLOF 33 estudou a equação n = a e $^{-b/x}$ ou transformando em logaritmo Ln n = Ln a - b 1/x. É mais adequada na determinação da regressão curvilínea entre altura/diâmetro.

n = altura total - 1,3

x = DAP

a,b = coeficiente a estimar

Ln = logaritmo natural

PRODAN, citado por LOETSCH et al³¹, estudando a relação hipsométrica, propôs a função hiperbólica para povoamentos multianos.

$$h - 1,3 = \frac{D^2}{b_0 + b_1 D + b_2 D^2}$$

CHAPMAN & MEYER⁷ dizem que a relação altura/diâmetro não é explicada, como sendo uma relação biológica definida, como altura/idade ou diâmetro/idade, apresentando grande variabilidade em altura para um mesmo diâmetro em sítios e idades diferentes.

HENRICKSEN²⁴ demonstra que a relação altura/logaritmo do diâmetro é aproximadamente linear e é expressa pela equação geral:

$$h = a Log DAP + b$$

^{*} PRODAN, M. Zuwachs und Ertragsuntersuchungen im Plenterwald. Thesis. Univ. Freiburg i. Br. 1944.

Quando testada para "Norway Spruce", "Beech", a inclinação tendeu a crescer com o aumento da altura, enquanto que
o ponto de interseção com o eixo dos Y permanece mais ou menos constante com o desenvolvimento do povoamento.

PETTERSON³⁶, estudando a relação altura/diâmetro, propôs a seguinte equação:

$$\frac{1}{\sqrt[3]{H - 1.3}} = b_0 + \frac{b_1}{D}$$

A curva é forçada a passar pelos pontos (0, 1,3), e tendo altura assintótica definida por:

$$\frac{1}{b_0^3} + 1,3$$

BRUCE & SCHUMACHER³ dizem que nem sempre às maiores alturas correspondem os maiores diâmetros e por isso há uma tendência da curva se inclinar para baixo.

EMROVIC¹⁵, estudando a relação altura/diâmetro, considera as influências do solo e tipo da parcela na coleta de dados, e propôs a seguinte equação:

$$Y = a + (\frac{X}{1 + x}) b$$

Y = altura - 1,3

x = diâmetro

a,b = coeficientes

Com os levantamentos realizados pela missão FAO na Amazônia (SUDAM⁴⁰), foram feitos estudos sobre a relação da altura média, comercial e classe de diâmetro para a

espécie <u>Sweetenia macrophylla</u> King-Mogno. Sendo testadas as 4 equações que seguem:

1)
$$Y = 7,50 + 0,345 x$$

2)
$$Y = 10,546 - 0,6824 \times + 0,0773 \times^2$$

3)
$$Y = 0.914 + 4.0966 \times -0.5086 \times^2 + 0.0214 \times^3$$

4)
$$Y = 0.0550 + 4.0908 \times -0.6652 \times^2 + 0.0517 \times^3 -0.001532 \times^4$$

Y = altura média nas classes de diâmetro

x = classe de diâmetro

A equação que apresentou melhor resultado foi a de nº 3, apresentando, portanto, uma relação entre classes de diâmetro e altura.

KER & SMITH²⁸, estudando vários modelos, constataram melhor aplicação do mesmo na parte ascendente da curva, com o modelo parabólico:

$$H = 4,5 + bD - cD^2$$

 ${\tt DISSECU}^{11} \ estudou \ o \ modelo \ H = a \ Log \ DAP \ + \ b, \ usado \ por \\ {\tt HENRICKSEN}^{24} \ em \ povoamentos \ de \ Silver \ Fir \ na \ determinação \ altura \ em \ função \ do \ diâmetro.$

ANDRADE 1 indica o modelo parabólico $H = a + bD - cD^2$, para a família das Mirtaceae do horto florestal Aimores - SP.

PARDE³⁷, estudando a relação altura/diâmetro, sugere o modelo parabólico para explicar a relação.

HUSCH et al²⁶ afirmam que se duas variáveis, apresentam relação com uma variável comum a elas, estas também se correlacionam entre si. Desde que a altura e diâmetro depen-

dam e se relacionem com idade, variável comum ao diâmetro e altura, existe correlação entre altura e diâmetro. E indicam as mais importantes funções de altura/diâmetro desenvolvidas:

1)
$$H = 4.5 + bD - cD^2$$
 (TROREY, 1932)

2)
$$H = 4.5 + h(1-e^{-aD})$$
 (MEYER, 1940)

3)
$$H = a + b \text{ Log D}$$
 (HENRICKSEN, 1950)

4) Log
$$H = a + b Log D$$
 (STOFFELLS e VAN SOEST, 1953)

Onde:

H = altura total h = altura maxima

D = DAP

e = base dos logaritmos naturais

a, b, c = coeficientes a estimar

A equação parabólica H = 4,5 + bD - CD², pode ser usada para descrever melhor a relação altura/diâmetro de muitos povoamentos. Contudo, deseja-se usar uma função matemática para descrever a relação altura/diâmetro de um povoamento específico, devendo-se testar qual a função que melhor se aplica e ajusta aos dados.

Em levantamentos florestais a curva de altura representa o estado atual com respeito à relação altura/diâmetro, na época em que o inventário foi realizado. Acontece que a relação altura/diâmetro no presente não será necessariamente aquela que existirá no futuro para as mesmas árvores. Esta diferença na mudança não é importante quando se testa grandes áreas ou em floresta balanceada multiana, porém em povoamen-

tos equianos ou para pequenas áreas florestais pode conduzir a erros substanciais, indo até 40% ou mais no incremento do volume.

CLIFFORD⁸, estudando relação hipsométrica, diz que forma da relação não é afetada pela densidade do povoamento. O modelo, tanto se aplica a povoamentos densos, onde o crescimento em diâmetro é reduzido, quanto para povoamentos com desbastes sucessivos, onde o crescimento em diâmetro é vigoroso. Comparando diversas relações entre altura e diâmetro em povoamentos equianos de <u>P. ponderosa</u> e <u>P. taeda</u>, chegou à conclusão de que a equação H = a + b Log D, apresentada por HEN-RICKSEN²⁴, é a que melhor se ajustou e deu resultados.

CURTIS⁹, testando equações semi-logarítmicas sigmõides encontrou os seguintes modelos:

1)
$$Log (H - 4,5) = a + bD^{-1}$$

2)
$$log (H - 4,5) = a + b Log D$$

3) Log (H -4,5) =
$$b_1$$
 Log D + c (Log D)²

Também usando modelos que a altura está em função do diâmetro e idade, propôs a seguinte equação:

$$Log H = b_0 + b_1 \frac{1}{D} + b_2 \frac{1}{I} + b_3 \frac{1}{DI}$$

Onde:

H = altura (m)

D = DAP

I = idade

a, b = coeficientes

PITA CARPENTER³⁸, trabalhando em povoamentos de <u>Pinus</u>

<u>pinaster</u> Aitem, <u>Pinus uncinata</u> Ramond, <u>Eucalyptus</u> <u>globulus</u>

<u>hábill</u>, aplicou os modelos que seguem para relacionar altura/
diâmetro:

1)
$$H = a + b D + cD^2$$

2) H = 1,3 +
$$(\frac{D}{a + bD})^2$$

Onde:

H = altura

D = DAP

a, b, c = coeficientes a estimar

Para bosques irregulares a relação altura/diâmetro quase não se alterou com o tempo e a mesma relação pode ser usada em inventários sucessivos. Quanto mais irregular for o povoamento, a diferença de ajuste entre as duas fórmulas aumenta. Com o povoamento estudado por PITA CARPENTER a equação que melhor se ajustou foi a parabólica: $H = a + b D + cD^2$

ANUCHIN², aconselha a equação logaritmica H=a+b Log D, proposta por HENRICKSEN²⁴ para a relação altura/diâmetro. Diz ainda que a curva é bastante ingreme para povoamentos jovens em classes de sítios bons, mas declina lentamente em povoamentos velhos de classes de sítios pobres.

 ${\rm EK}^{13}$ estudou 12 modelos para a relação altura/diâmetro e avaliou através da simulação para estimar a altura das árvores com amostras de tamanho pequeno. Encontrou o melhor ajuste com o modelo parabólico H = ${\rm b_0}$ + ${\rm b_1D}$ + ${\rm b_2D}^2$, que é mais comumente usado e empregado.

BRUCHWALD⁴, estudando dados de 3.578 árvores em seis povoamentos na Polônia, observou que a relação entre altura/diâmetro era bem expressa por uma parábola de 2ª ordem. Concluiu que o levantamento de 20 ou 30 árvores é suficiente para a construção da curva de altura e com este número de árvores o erro-padrão está em torno de 1,0%.

EMBRY & GOTTFRIED 14 , testando as equações propostas por CURTIS 9 , sem a variável independente idade, em bosques mistos de coníferas, encontrou o melhor ajuste para a seguinte equação:

1) Log (H - 4,5) =
$$b_1 \text{ Log } D^2$$

Usou também outras equações que deram um ajuste mais baixo, para árvores com diâmetros pequenos, tais como:

2)
$$H = b_0 + b_1 D + b_2 D^2$$

3)
$$H = 4,5 + b_1D + b_2D^2$$

4)
$$H = b_0 + b_1 \text{ Log } D$$

5)
$$H = 4,5 + b_1 \text{ Log } D$$

Onde:

H = altura (m)

D = DAP (cm)

 b_0, b_1, b_2 = coeficientes a estimar

HOSOKAWA & MACEDO²⁷, estudaram os seguintes modelos aplicados à Araucaria angustifolia (Bert) O. Ktze.:

1)
$$H = a + b/D + cD$$

2)
$$H = a + b D^2$$

3)
$$H = a D^b$$

4)
$$H = a + bD + cD^2$$

5)
$$H = a + b D$$

6)
$$H = a + b D + cD^2 + d D^3$$

Onde:

H = altura (m)

$$D = DAP (cm)$$

Concluiram que fossem estudadas mais equações que definam melhor a relação altura/diâmetro.

VEIGA⁴³, sugere as equações aritméticas para o estudo do Eucalyptus na ocasião do 1º corte.

$$HT = a + b Do + CDo^2$$

$$H5 = a + bDo + cDo^2$$

$$H8 = a + b Do + cDo^{2} + dDo^{3} + eDo^{4} + fDo^{5}$$

Onde:

HT = altura total (m)

D = diâmetro

H5 = altura comercial até o diâmetro de desponta 0,05 m

H8 = altura comercial até o diâmetro de desponta 0,08 m

MACHADO & ALBERTIN³⁴, estudando bosque secundário tropical, para todas as espécies, para algumas espécies e para a família das Lauraceae, tanto para todo o bosque, como para as espécies, as equações quadráticas ou parabólicas do tipo: $Y = b_0 + b_1 x + b_2 x^2 \text{ elogarítmicas do tipo: } Y = b_0 x^{b_1}, \text{ apresentam praticamente o mesmo resultado com relação ao ajuste.}$

Para LÖETSCH et al³¹, a curva da relação altura/diâmetro em povoamentos jovens equianos em sítios bons é ingreme, sendo plana em sítios pobres. A inclinação da mesma é em função da espécie. A relação altura/diâmetro depende largamente da posição sociológica de uma árvore específica no povoamento, o que é diferente de uma posição sociológica dentro das classes. As curvas de altura não se apresentam como extensão de uma outra curva, variando como ilustra a Figura 01. Povoamentos multianos apresentam curvas similares a classes normais de manejo, como pode ser visto na Figura 01, pela curva tracejada.

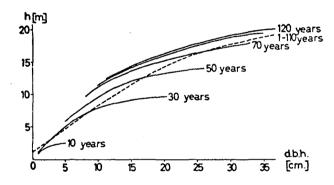


FIGURA 01: Curvas de altura em povoamentos de <u>Pinus</u> <u>silvestris</u> em idades diferentes e a correspondente curva de desenvolvimento em altura de uma classe normal de manejo. HAGBERG*.

^{*} HAGBERG, N. What looks the height curve like? A comparative review of the height curve of trees, stands and forests. Skogen 26, 14: 288-292, 1939.

A Figura 02 mostra também o ajuste de cinco (5) funções diferentes, que foram processadas por meio de um programa para curvas de altura por SCHMIDT*, sendo também usado, posteriormente, por ZÖHRER**, para ajustar a altura/diâmetro de um povoamento alpino de European Larch com 120 anos, citado por LOETSCH et al³¹.

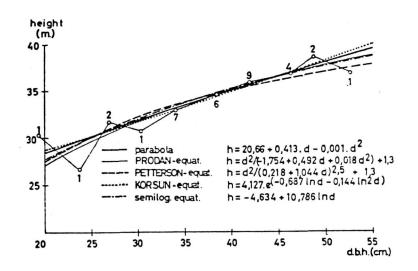


FIGURA 02: Gráfico de cinco (5) funções diferentes. ZÖHRER.

Continua ainda dizendo que a característica da curva de crescimento torna-se evidente quando se imagina na abcissa a soma de todo incremento diamétrico e na ordenada a soma de todos os incrementos em altura. Então, pode-se obter esta curva para povoamento específico das tabelas de produção, apenas plotando as alturas médias para cada classe de idade sobre os correspondentes diâmetros de área basal média, de um mesmo sítio. A Figura 03 mostra os estratos de altura de diferentes espécies.

^{*} SCHMIDT, A., Der rechnerische Ausgleich von Bestandeshöhenkurven? Forstwiss. Centralbl. 1967. 86. 6:370-382.

^{**} ZÖHRER, F. Struktur und Wachstum montan - subalpiner Lärchen-Fichten- Mischbestände. Thesis Univ. München. 1967, 234 p.

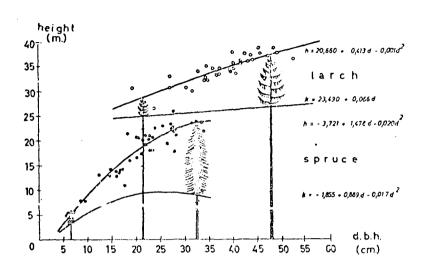


FIGURA 03: Estrato de altura de diferentes espécies. ZÖHRER.

VEIGA & TANAKA⁴⁴ trabalharam com Eucalyptus, de 12 anos na Região Mogi-Guaçu - SP, com intuito de determinar modelos hipsométricos, volumetria e comparar métodos de estimativa do volume. Separaram também a área em três (3) estratos e as curvas altura/diâmetro, desenvolvidas por estes autores foram as seguintes:

H1 = 1,5681 + 1,7867D - 0,0252
$$D^2$$

H2 = 3,7030 + 1,5477D - 0,0247 D^2
H3 = 4,3974 + 1,2448D - 0,0233 D^2

Onde:

H = altura total (m)
D = DAP com casca (cm)

NÄSLUND³⁵, estudando a relação hipsométrica, propôs, para a determinação da altura, a seguinte função:

$$H = D^2/(b_0^2 + b_1^2)^2 + 1,3$$

GARCIA²¹, estudando 38 modelos com <u>Pinus radiata</u>, obteve o melhor resultado com a equação:

$$H = a + b/(D + 10)$$

H = altura (m)

D = DAP (cm)

a, b = coeficientes

Recomenda ainda onde há pouca disponibilidade de dados os modelos:

1)
$$H = a(1 - e^{-0.06D})$$

2)
$$H = a D/(D + 20)$$

BURKHART & STRUB 6 , usando simulações em reflorestamento de Pinus taeda, aplicou a equação proposta por CURTIS 9 :

Log H = $b_0 + b_1(1/D)$, definiu bem a relação.

Constataram também que o coeficiente \mathbf{b}_0 é função da altura dominante e idade e o coeficiente \mathbf{b}_1 é função do número de árvores e idades.

1)
$$b_0 = a_0 + a_1(\text{Log Hdom}) + a_2(1/I)$$

2)
$$b_1 = a_0 + a_1(\log N) + a_2(1/I)$$

Onde:

 b_0 = interseção com eixo dos "Y"

b₁ = ângulo de inclinação da curva

 a_0 , a_1 = coeficientes a estimar

Hdom = altura dominante (m)

I = idade

N = número de árvores

Dizem também que a relação pode ser determinada pelo seguinte modelo:

Log H =
$$0.53815 + 0.77975 (LogHdom) - 1.17713 (1/I) + 0.35468 (LogN)/D + 4.11014 (1/ID) - 2.10285 (1/D)$$

Onde:

H = altura total (m)

Hdom = altura dominante (m)

I = idade

D = DAP (cm)

N = número de árvores

FISHWICK¹⁹, estudando parcelas de <u>Pinus elliottii</u> e Araucaria angustifolia, verificou que o modelo que apresentou melhor resultado foi o proposto por CURTIS⁹, LogH = $b_0 + b_1 1/D$.

SCHMIDT³⁹, estudando Pinus taeda no Paraná encontrou melhor relação com os modelos propostos por STOFFELLS, CURTIS.

1)
$$H = a D^b$$

2)
$$\log H = b_0 + b_1/D$$

Encontrou também que \mathbf{b}_0 é função da altura e diâmetro dominante e que \mathbf{b}_1 é função da área basal. Verificou também que os modelos logarítmicos foram melhores que os não logarítmicos.

3. MATERIAL E MÉTODOS

3.1. MATERIAL

3.1.1. LOCALIZAÇÃO, LIMITES E EXTENSÃO DA ÁREA

A área em estudo está localizada no Centro Florestal Herrera, situado à margem direita do Rio Ucayali, Distrito de Sapuena, Provincia de Requena, no Departamento de Loreto, Iquitos - Peru.

As coordenadas geográficas do Centro Florestal Herrera são: Longitude 75⁰ 40' W e Latitude 4⁰ 55' S.

Compreende uma área de 1.500 ha, de forma retangular.

Os dados do presente trabalho foram cedidos e coletados no Inventário Florestal dos Bosques de Copal, Iquitos-Peru, por VILLANUEVA⁴⁵, através de convênio estabelecido entre o Ministério de Agricultura, do Governo Peruano e Cooperação Técnica do Governo Suíço (COTESU), cobrindo 137 espécies e 14.670 indivíduos.

A relação das espécies encontradas no presente estudo, estão relacionadas no Apêndice, onde constam código, nome vulgar e científico e família de cada espécie encontrada no Centro Florestal Herrera.

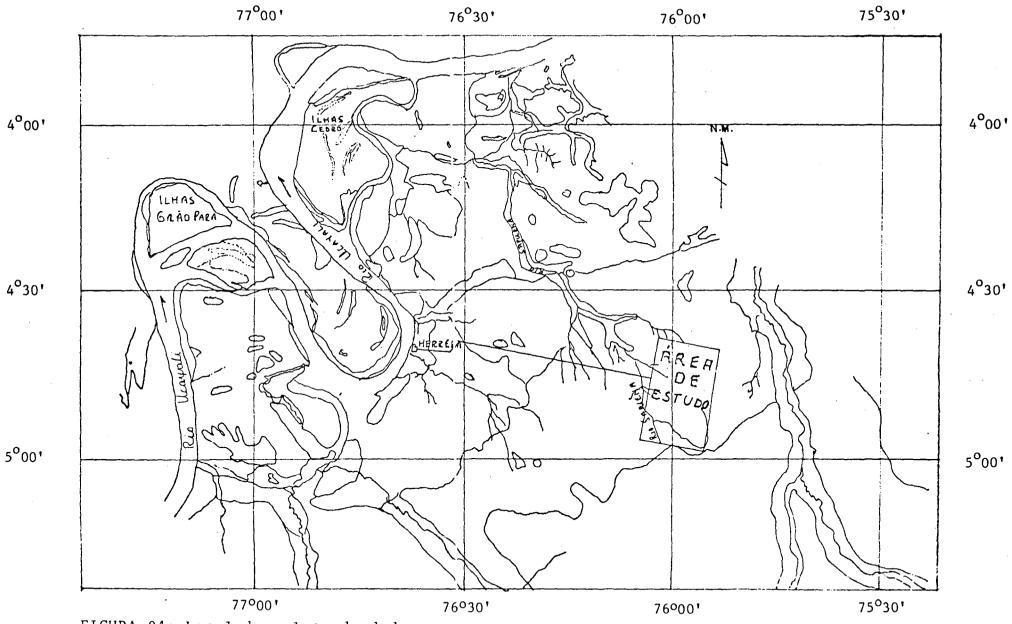


FIGURA 04: Local de coleta de dados VILLANUEVA, G.A. Inventário Forestal de los bosques de Copal. Iquitos, Peru, 1978, 71 p.

3.1.2. VEGETAÇÃO

A formação vegetal é classificada segundo TOSI⁴², como Bosque Úmido Tropical, cujas características fisionômicas estruturais e composição florística, corresponde à pluviosidade média mensal de 200 mm.

Dentro da formação vegetal de Floresta Tropical Úmida segundo BUDOWSKI⁵, as espécies que integram as diferentes etapas de sucessão vegetal apresentam características definidas em sua distribuição.

3.1.3. CLIMA E HIDROLOGIA

É um bosque tropical úmido, com temperatura média anual máxima de $25,7^{\circ}$ C e média anual mínima de $23,2^{\circ}$ C.

Com máxima precipitação anual de 3.419,5 milímetros e a média mínima de 1.916 milímetros. E segundo o diagrama bioclimático de HOLDRIDGE*, citado por OFICINA NACIONAL DE EVALUACION DE RECURSOS NATURALES²², o clima é úmido.

O sistema hidrográfico é muito bem servido pelos rios amazônicos.

3.1.4. SOLOS

Os solos são profundos e ácidos, com argila de natureza caolinita, de coloração vermelha a amarela.

* HOLDRIDGE, I.R. Life Zone Ecology. Tropical Science Centre San Jose de Costa Rica. 1967. 254 p.

3.1.5. GEOMORFOLOGIA E RELEVO

O relevo topográfico é dominantemente ondulado, típico da Planície Amazônica. As áreas planas ou suaves se distribuem ao longo dos grandes e sinuosos rios amazônicos.

3.1.6. DADOS UTILIZADOS

3.1.6.1. AMOSTRAGEM

O sistema amostral utilizado foi o delineamento sistemático irrestrito, em faixas segundo ${\tt HUSCH}^{25},$ recomendado para este tipo florestal.

CUNIA¹⁰ definiu bem alguns conceitos que elucidam melhor a terminologia que segue:

- a) Evento são as variáveis medidas em cada ponto amostral, por exemplo, DAP, altura total e altura comercial.
- b) Ponto amostral é cada um dos indivíduos com DAP \geq 25 cm, encontrado no espaço amostral.
- c) Espaço amostral $\tilde{\mathbf{e}}$ o conjunto de todos os pontos a-mostrais.

A forma de cada espaço amostral é retangular com 10 m x 125 m. O número total de espaços amostrais medidos foram de 1.000 unidades.

3.1.6.2. DADOS COLETADOS NO ESPAÇO AMOSTRAL

IDENTIFICAÇÃO DAS ESPÉCIES - Foram identificados todos os indivíduos encontrados no espaço amostral com DAP \geq 25 cm através de seu nome vulgar. Coletando-se material botânico (flor, folhas, fruto, casca, etc.), para confirmação em laboratório de família, gênero e espécie.

<u>DAP</u> - Foram medidos os diâmetros à altura do peito com casca de todas as árvores identificadas no espaço amostral, com DAP > 25 cm.

<u>ALTURA</u> - Foram medidas as alturas totais e comerciais, das árvores encontradas no espaço amostral com DAP \geq 25 cm. A altura comercial foi definida como a altura até as primeiras ramificações.

3.2. MÉTODOS

3.2.1. PROCESSAMENTO DE DADOS

Os trabalhos de computação dos dados foram desenvolvidos no computador Hewlett-Packard 9830B, do Departamento de Silvicultura e Manejo Florestal, da Universidade Federal do Paranã.

Os quadros 01, 02, 03 mostram a distribuição das árvores amostradas por classes de alturas e diâmetro. Os intervalos de classes foram fixados em 1 m para alturas e 5 cm para diâmetro.

3.2.2. ANALISE DE CORRELAÇÃO

O estudo de correlação simples entre variáveis, segundo FREESE¹⁸, é um procedimento técnico, usado para avaliar o grau de associação linear, existente entre duas e unicamente duas variáveis quaisquer, independente do efeito causado pela escala adotada. O uso deste procedimento é recomendado, quando não se sabe a tendência e o grau de associação (r) que pode existir entre duas variáveis. O valor que representa esta associação pode variar de 1 a -1; quanto mais próximo da unidade, melhor o grau de associação e quando tende a zero, menor ou nenhuma associação existe entre elas.

Segundo DRAPER & SMITH 12 , o coeficiente de correlação simples (r) positivo implica que maiores valores de \underline{x} estão associados com os maiores valores de y. Se os maiores valores de x estão associados com os menores valores de y, a correlação é negativa.

O coeficiente de correlação é definido como:

$$r = \frac{\text{Covariância de x e y}}{\text{(Variância de x) (Variância de y)}}$$

e calculada como segue:

$$r = \frac{Sxy}{Sx - Sy} = \frac{\Sigma xy}{\sqrt{(\Sigma x^2) (\Sigma y^2)}}$$

QUADRO 01: Distribuição das árvores em classes de alturas

****		*****		******	A				:==== : (*****	*****	****			,
HCONEC.	10	11	12	13	14	15	. 16	17	18	19	20	21	22	23	24	25	SON
3				1	2	2	5	2	. u = = = = 1	1	3						 17
4	3		3	. 3	2	5	13	8	5	3	3	1	1		1	1	52
5	11	1	19	10	10	33	100	39	68	26	47	7	28	13	10	8	430
6		4	18	15	13	38	160	104	204	48	91	23	37	29	15	21	828
7	8	6	43	30	22	50	71	52	125	62	112	16	40	39	14	15.	700
8	6	2	43	39	41	126	107	98	136	92	174	35	79	67	31	61	1137
9		1	27	26	29	49	61	4.4	82	47	57	17	27	23	14	22	526
10.			3	23	37	182	194	172	287	161	498	77	208	213	102	134	2291
11				1	4	28	47	53	43	50	63	45	48	26	14	13	435
12						52	82	€5	146	118	284	111	183	193	112	141	1507
13							15	2:4	70	50	181	87	154	152	105	109	947
14								9	65	28	75	50	101	83	67	58	536
15									22	48	225	84	234	230	161	258	1262
16										3	49	22	111	102	1 1 2	105	5 0 4
17											10	29	. 74	99	63	75	350
18													82	81	78	108	349
19														31	18	3◊	79
20															18	52	70
21																2	2
22								•									•
23																	•
24																	0
25									. ~								٥
SOH	31	14	156	148	160	565	855	650	1254	.737	1872	604	1407	1381	935	1213	12022

QUADRO 01: Distribuição das árvores em classes de alturas (Continuação)

COMEC	26	27	28	29	30	31	R A T	33	34	35	36	37	38	39	40	\$0
3																
4	1															
5	13		5		1		1									. 20
6	9	2	9													- 2
7	- 8	2	6	1			•									17
8	33	9	16	2	5		2		1	1						6
9	15	2	5	. 1												_ 2
10	107	25	50	3	17	•	7	1		1						21
11	11	1	4	2	1											15
12	83	19	51	5	24	2	14	1		2			1			20
13	73	32	44	6	18	1	5	1								18
14	39	15	44	3	6		2	2	•							111
15	201	64	145	15	49	4	24	1		7	2					517
16	79	45	. 70	7	23	6	14	3		3	1					25
17	61	24	41	12	21	3	8	2								173
18	85	40		15	57	3	18	2		9	1					32
19	13	16	14	2	15	1	. 8 4 2	2	1	1						7
20	4 4	25	83	14	78	12	42	11	2	4	1	1	1			31
21	4	4	7		8		3	1			•					2
22	3	8	17	1	18	1	6	1		1	1					5
23			3	1	7		2	1		1						1
24				2	13		i									1
25			·		3	1	4	2		1						1:
SOH	882	333	707	92	364	34	161	31	4	31	6	=== 1	2	0	*	2.64

QUADRO 02: Distribuição das árvores em classes de DAP c/c e altura total

PC/C	10	11	12	13	14	. T U !	16	17	A L (M)	19	20	21	22	23	24	25	\$01
20										~~~~						****	
25	19	9	82	77	76	243	417	306	515	261	516	150	329	259	141	151	355
30	8	2	44 .	42	43	171	236	171	347	193	507	174	321	324	177	200	296
35	1	2	14	16	21	81	110	90	184	134	330	108	266	252	159	181	195
40	2	1	13	8	15	33	58	63	103	73	259	71	199	207	162	221	148
45			2	2	1	1 5	14	20	46	39	102	35	104	116	103	137	73
50				2	3	5	11	17	27	19	76	33	. 83	91	76	117	56
55						4	1	3	9	5	25	5	39	43	40	57	23
60	1		1		1	6	2	5 2	9	6	24	11	32	4 5	28	62	23
65				1		4	2	2	5	4	10	7	12	24	24	35	13
70						3	2	2	6	2	13	4	8	6	13	26	8
75							1	1			3	4	9	. 7	4	7	. 3
8 0								1	1	1	4		3	3	4	8	2
85							1		1		1			. 3	1	3	1
90												1				. 2	
95												1	. 5	1	2	1	
100															1	3	
105																1	
110											2				•		
115																	
120																1	
125								•	1								
130																	
135										•							
140																	
SOM	31	14	156	148	160	565	855	690	1254	737	1872	604	1407	1381	935	1213	1202

QUADRO 02: Distribuição das árvores em classes de DAP c/c e altura total (Continuação)

DAPC/C	26	27	28	29	30	. T U R	32	33 	1 (M) 34	35	36	37	38	39	40	SOF
20											****			***		0
25	74	23	62	11	25		5	1			1					2 0 2
30	125	33	81	6	26	3	4	1					1			280
35,	119	43	83	10	34		6	2		2	1					300
4 0	156	52	82	9	39	3	7	2		2			1			353
45	92	36	60	10	34	3	10	1	1	1						248
5 ¢	104	42	72	7	49	4	13			2						293
55	56	28	55	6	29		14	2		3	1					194
60	63	24	58	12	41	8	21	5		2						234
6.5	36	19	47	8	27	3	26	5	1	3	1	1				177
70	18	10	40	4	16	4	12	1	2	5						1.12
75	11	8	20	4	14		9	1		1						68
8 0	15	4	16	2	10	1	11	3	•	1						63
85	8	3	15	2	8	1	10	2		1						50
90	2	5	4	1	4	1 ,	5	3		1						26
95		3	8		4		2			1						18
100	3		2				2	1		4						12
105			1		2	1	1			1	1					7
110							1				1					2
115					1											1
120						2	1	1.								4
125																0
130			1		1					1						3
135																C
140							1									1
SOM	882	333	707	92	364	34	161	31	4	31	6	1	2	• • • • • • • • • • • • • • • • • • •	*** **	2648

QUADRO 03: Distribuição das árvores em classes de DAP c/c e altura comercial

				A	LTU	RA	C O M	E R C	IAL	(M)	•		
DAPC/C .	3	4	5	6	7	8	9	10	1 1	12	13	14	\$01
	=====	=====	=======		=====	=====	=====	======	=====	=====	======		=====
2 ◊													
25	9	23	197	389	284	416	189	730	129	414	214	127	312
30	4	12	98	195	198	294	141	612	103	389	271	154	247
35	1	6	67	96	91	180	91	401	91	281	175	101	158
40	1	4	36	76	54	138	58	294	55	242	171	91	122
4 5	2	4	16	33	35	57	19	153	20	114	8 1	50	58
5◊		1	10	18	25	4 4	19	91	20	97	8 4	4 9	4 51
55			9	1 1	16	23	10	62	8	35	33	21	22
60		1	8	6	6	22	9	45	10	47	3 1	16	20
65			3	13	4	12	5	46	7	29	21	15	15
70		2	2	4	1	12		27	6	30	15	12	111
75			1	1	2	2	2	16	2	8	4	5	4:
8 0				2	1	3 2	2	8	3	11	9	2	4 :
85			2	2		2	1	6		6	8		2
9.0							1	4		2	2	1	1
95				2				3			3	3.	1
100							2			3	1		1
105						1		2					;
110							•	1			1		
115											1		
120								1			2		;
125			1										
130													(
135													
140										1			
	=====	=====	=====	. = = = = :	=====	=====	=====	======	=====	====		=====	~====
SOM	17	53	450	848	717	1206	549	2502	454	1709	1127	647.	10279

QUADRO 03: Distribuição das árvores em classes de DAP c/c e altura comercial (continuação)

=======											~ = = = = =		
					LTU		COM		IAL		0.5		
DAPC/C	1 5	16	17	18	19	20	21	22	23	24	25	26	S O M
	. = = = = = :		*****			:=====			=====				
20					- 4		_	_		•			470
25	299	95	80	99	20	28	5	3	1	2			632
30	335	142	91	113	21	51	_	9		5	2		769
35	281	136	81	94	21	47	3	12		1	1		677
4 0	265	102	8¢	89	20	52	2	9	1	1			621
4 5	142	8 4	55	56	17	30	3	7	3	2	1		400
5◊	144	59	41	73	17	49	4	4	2	2			395
55	67	32	26	33	. 8	23	3	1	i	1	2		197
60	102	41	23	4 1	9	41	2	1	3		3		266
65	4 5	20	20	27	5	25	2	5	2		1		152
70	3 ♦	11	8	17	6	11	1	2					86
75	26	9	6	8		7	1	1	1	1	1		61
8 ◊	17	4	6	1 0	1	8	1						47
85	7	5	3	4	3	9	1		1				33
90	4	6	2	1	1	2	1	1		1			19
95	5	3	_	5		1						•	1 4
100	3	2		1	1	2		1					10
105	1	2		•	2	_	•	-					5
110	1	-			_			1					2
115	•							•					
120		4				1							Š
125						•							
130		•		•		1							7
		1				4							0
135				•									
140							. 						
SOM	1774	755	522	672	152	388	29	57	15	16	11	. 0	4391
5 U II	1114	, JJ		0/2 =====:	132	300	د ب 	J (1.0		A A	·	7371

Onde:

Sxy = covariância de x e y

Sx = desvio-padrão de x

Sy = desvio-padrão de y

 $\Sigma xy = soma corrigida de xy$

 Σx^2 = soma corrigida do quadrado de x

 Σy^2 = soma corrigida do quadrado de y

Um coeficiente de correlação de 0,66 significa dizer que há uma correlação linear igual a 66% entre x e y.

Inicialmente foi feito um estudo das correlações básicas entre as variáveis: altura total, altura comercial e DAP.

De posse do resultado das correlações básicas, foram testados modelos para as relações: altura/diâmetro, altura to-tal/altura comercial e altura total/DAP e altura comercial.

Este estudo foi efetuado para toda a área inventariada, 1.500 ha do Centro Florestal Herrera.

O estudo foi também repetido para toda a floresta, separada em estratos de altura média, tendo sido tomada como base a altura total e dividido em 3 estratos de altura: árvores pequenas de 10 a 19,9 m, árvores médias de 20 a 29,9 m e árvores grandes de 30 a 39,9 m, finalmente foi feito o mesmo estudo para as 5 espécies mais frequentes, visando testar se as correlações e regressões podiam ser melhoradas, usando agrupamentos supostamente mais homogêneos, recomendado por LOETSCH et al³¹.

3.2.3. EQUAÇÕES DE REGRESSÃO PARA ESTIMAR A ALTURA TOTAL E AL-TURA COMERCIAL

Do grande número de modelos citados na literatura, escolheram-se aqueles que usavam como variáveis independentes a altura total, altura comercial e diâmetro à altura do peito.

Os modelos testados para as relações: altura/diâmetro, altura total/altura comercial e altura total/DAP e altura comercial constam nos Quadros 04, 05 e 06.

Para facilidade de computação, todas as variáveis utilizadas nos modelos de regressão foram definidas e numeradas, conforme mostra o Quadro 07.

3.2.4. SELEÇÃO DOS MELHORES MODELOS

Após a computação dos dados fez-se a escolha dos melhores modelos de equação de regressão para estimar a altura total e altura comercial.

Os critérios adotados para a escolha dos melhores modelos, foram os seguintes:

- a) Erro-padrão da variável dependente transformada;
- b) Erro-padrão residual.

Para comparação entre os modelos aritméticos, logarítmicos e hiperbólicos, de diferentes naturezas, foi adotado o

QUADRO 04: Modelos de equação de regressão testados para relação hipsométrica

EQUAÇ	COES
Ht = f(D)	Hc = f(D)
1. Ht = $b0+b1D$	Hc = b0 + b1D
2. Ht = $b0 + b1D + b2D^2$	$Hc = b0 + b1D + b2D^2$
3. Ht = $b0 + b1/D$	Hc = b0 + b1/D
4. Ht = $b0 + b1/D + b2D$	Hc = b0 + b1/D + b2D
5. Ht = $b0 + b1D + b2D^2 + b3D^3$	$Hc = b0 + b1D + b2D^2 + b3D^3$
6. Log Ht = $b0 + b1 \text{ Log } D + b2D$	Log Hc = b0 + b1 Log D + b2 D
7. Log Ht = $b0 + b1D + b2D^2$	$Log Hc = b0 + b1D + b2D^2$
8. Ht = b0 + b1 Log D	Hc = b0 + b1 Log D
9. Ht = $b0 + b1/D^2$	$Hc = b0 + b1/D^2$
10. Ht = $b0 + b1D^2$	$H_{C} = b0 + b1D^{2}$
11. Ht - 1,3 = $D^2/(b0 + b1D + b2D^2)$	Hc $-1,3 = D^2/(b0 + b1D + b2D^2)$
12. Log Ht = Log b0 + b1 Log D	Log Hc = Log b0 + b1 Log D
13. Log Ht = $b0 + b1D$	Log Hc = b0 + b1D
14. Log Ht = b0 + b1 Log D	Log Hc = b0 + b1 Log D
15. Ht = $D^2/(b0 + b1D^2) + 1,3$	$Hc = D^2/(b0 + b1D^2) + 1,3$
16. $\frac{1}{\sqrt[3]{\text{Ht} - 1.3}} = b0 + b1/D$	$\frac{1}{\sqrt[3]{\text{Hc} - 1.3}} = b0 + b1/D$
17. Ht = $D^2/(b0 + b1 \text{ LogD}) + 1,3$	$Hc = D^2/(b0 + b1 \text{ LogD}) + 1,3$
18. Ht = $D^2/(b0+b1D+b2D^2+b3D^3)+1,3$	$Hc=D^2/(b0+b1D+b2D^2+b3D^3)+1,3$
19. $Ht=D^2/(b0+b1/D+b2D) + 1,3$	$Hc = D^2/(b0+b1/D+b2D) + 1,3$
20. Ht = $D^2/(b0 + b1D)^2 + 1,3$	$Hc = D^2/(b0 + b1D)^2 + 1,3$
21. Ht = $D^2/(b0 + b1D) + 1,3$	$Hc = D^2/(b0 + b1D) + 1,3$

QUADRO 05: Modelos de equações de regressão testados para a relação altura total/altura comercial

EQUAÇO	DES
Ht = f(Hc)	Hc = f(Ht)
1. Ht = b0 + b1 Hc	Hc = b0 + b1 Ht
2. Ht = $b0 + b1 Hc + b2 Hc^2$	$Hc = b0 + b1 Ht + b2 Ht^2$
3. Ht = $b0 + b1 Hc^2$	$Hc = b0 + b1 Ht^2$
4. Log Ht = b0 + b1 Log Hc + b2 Hc	Log Hc = b0 + b1 Log Ht + b2 Ht
5. Log Ht = $b0 + b1$ Hc + $b2$ Hc ²	$Log Hc = b0 + b1 Ht + b2 Ht^{2}$
6. Log Ht = b0 + b1 Log Hc	Log Hc = b0 + b1 Log Ht
7. $\log Ht = b0 + b1 Hc$	Log Hc = b0 + b1 Ht

QUADRO 06: Modelos de equações de regressão testados para a relação altura total/DAP, altura comercial

EQUAÇÕES

Ht = f(DAP, altura comercial)

- 1. Ht = $b0 + b1 Hc^2 + b2 Log D$
- 2. Log Ht = b0 + b1 Hc + b2 Log D
- 3. Ht = $D^2/(b0 + b1D^2 + b2 (D^2/Hc 1,3))+1,3$

QUADRO 07: Relação das variáveis dependentes e independentes utilizadas nos modelos de regressão.

VARIÁVEL	NOME DA VARIÁVEL
V(1)	D(DAP)
V(2)	Ht(altura total)
V(3)	Hc(altura comercial)
V(4)	DC(diâmetro de copa)
V(5)	D^2
V(6)	1/D
V(7)	D^3
V(8)	Log Ht
V(9)	Log D
V(10)	Log Hc
V(11)	$D/\sqrt{Ht-1,3}$
V(12)	$D/\sqrt{Hc-1,3}$
V(13)	$\frac{3}{1/\sqrt{Ht-1},3}$
V(14)	$\frac{3}{1/\sqrt{\text{Hc}-1},3}$
V(15)	$1/D^2$
V(16)	Nº Árvores
V(17)	$D^2/Ht - 1,3$
V(18)	$D^2/Hc - 1,3$
V(19)	Ht ²
V(20)	Hc ²

erro-padrão da variável dependente transformado (Syxt) a sua forma original, como critéiro de seleção dos modelos de regressão. Transformando o erro-padrão das equações logarítmicas e hiperbólicas pela retrotransformação, estes podem ser diretamente comparados com o erro-padrão de estimativa das equações aritméticas, sem o uso do índice de Furnival para fazer tais comparações entre equações aritméticas e não aritméticas.

O erro-padrão da variável dependente transformado (Syxt) ou retrotransformado a unidades comparativas, calcula-se passando todos os dados originais nas equações não aritméticas testadas, estimado pelo processo dos mínimos quadrados, o valor da variável dependente estimado pela equação é comparado com cada um dos dados medidos da variável dependente.

4. RESULTADOS E DISCUSSÃO

4.1. CORRELAÇÃO SIMPLES

Neste estudo, foram consideradas as seguintes variáveis que poderiam ser utilizadas para a estimativa das alturas: altura total, altura comercial e DAP com casca.

Os resultados das correlações simples entre as variáveis básicas estudadas são mostrados nos quadros 08 a 10.

Verificou-se que as variáveis que apresentaram maior correlação simples entre si, foram encontradas quando se trabalhou com a floresta como um todo.

Estes primeiros resultados encontrados com as correlações simples, entre as variáveis estudadas, para todo o Centro Florestal Herrera, como também para os 3 estratos de a1tura média e para as 5 espécies mais frequentes, vistas nos quadros 08 a 10, mostram claramente, que, por exemplo, a variavel 1 ou DAP, do Quadro 08 apresenta um coeficiente de correlação simples (r) igual a 0,4987, aproximadamente 0,5 com a variável 2 ou altura total, as mesmas variáveis nos quadros 09 a 16 apresentam valores bem inferiores, a do coeficiente de correlação (r) do quadro 08, o que mostra, com estas primeiras verificações e comparações, que as correlações simples do quadro 08, trabalhando-se com todos os dados do Centro F10restal Herrera, apresentaram os melhores resultados, do que quando se tentou trabalhar com os dados reunidos em mentos supostamente mais homogêneos, de acordo com LOETSCH et

QUADRO 08: Coeficientes de correlação simples do DAP com as variáveis estudadas, para toda a floresta, para os 3 estratos e para as 5 espécies mais frequentes.

				D A P					
VARIÁVEL	TODA FLORESTA	ESTRATO 1	ESTRATO 2	ESTRATO 3	ESPÉCIE 1	ESPÉCIE 2	ESPÉCIE 3	ESPÉCIE 4	ESPÉCIE 5
DAP	1,0000	1,0000	1,000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
H Total	0,4987	0,2953	0,4713	0,2156	0,2227	0,3624	0,3430	0,3740	0,3779
H Comercial	0,2884	0,2129	0,2616	0,0267	0,0169	0,2547	0,2432	0,2203	0,2269
D Copa	0,5350	0,3939	0,5096	-0,0686	0,1453	0,4928	0,3960	0,3851	0,3645
DAP ²	0,9748	0,9797	0,9734	0,9852	0,9838	0,9862	0,9859	0,9833	0,9817
1/DAP	-0,9312	-0,9472	-0,9326	-0,9407	-0,9431	-0,9598	-0,9583	-0,9532	-0,9474
DAP ³	0,8945	0,9185	0,8872	0,9495	0,9421	0,9447	0,9444	0,9335	0,9296
Log H Total	0,4722	0,2904	0,4481	0,1957	0,1867	0,3488	0,3335	0,3595	0,3640
Log DAP	0,9749	0,9841	0,9769	0,9839	0,9840	0,9884	0,9879	0,9862	0,9845
Log H Comercial	0,2769	0,2128	0,2505	0,0539	0,0407	0,2385	0,2312	0,2128	0,2219
DAP/ $\sqrt{\text{Ht} - 1.3}$	0,4979	0,5836	0,7215	0,9158	0,8855	0,5788	0,5882	0,5615	0,5622
DAP/ $\sqrt{\text{Hc} - 1,3}$	-0,4621	0,2558	0,4063	0,6307	0,6438	0,3440	0,3555	0,3733	0,3657
1/3/Ht - 1,3	0,4301	0,5533	0,7018	0,9218	0,9044	0,5642	0,5687	0,5424	0,5394
$1/3\sqrt{\text{Hc}-1,3}$	0,5234	0,2728	0,4299	0,6272	0,6257	0,3039	0,3278	0,3553	0,3595
1/DAP ²	-0,8757	-0,9025	-0,8771	-0,8843	-0,8913	-0,9232	-0,9203	-0,9121	-0,9020
Nº Árvores	-0,0297	-0,0561	-0,0248	0,0259	0,0634	-0,1108	-0,0909	-0,0319	-0,0094
$DAP^2/Ht - 1,3$	0,9288	0,8857	0,9251	0,9528	0,9359	0,8695	0,8723	0,8683	0,8766
$DAP^2/Hc - 1,3$	0,7456	0,6471	0,7328	0,9003	0,9039	0,5874	0,6019	0,6256	0,6314
H Total ²	0,5148	0,2928	0,4856	0,2317	0,2561	0,3690	0,3458	0,3818	0,3840
H Comercial ²	0,2903	0,2022	0,2631	-0,0006	-0,0025	0,2548	0,2403	0,2155	0,2181

QUADRO 09: Coeficientes de correlação simples da altura total com as variáveis estudadas, para toda floresta, para os 3 estratos e para as 5 espécies mais frequentes

				ALTURA 1	TOTAL				
VARIÁVEL	TODA FLORESTA	ESTRATO 1	ESTRATO	2 ESTRATO	3 ESPÉCIE	1 ESPÉCIE	2 ESPÉCIE	3 ESPÉCIE	4 ESPÉCIE
DAP	0,4987	0,2953	0,4713	0,2156	0,2227	0,3624	0,3430	0,3740	0,3779
H Total	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
H Comercial	0,6290	0,6519	0,6170	0,2112	0,2316	0,6762	0,6194	0,5717	0,5927
D Copa	0,5466	0,4900	0,5273	0,0469	0,2909	0,2987	0,4341	0,5622	0,6121
DAP ²	0,4630	0,2728	0,4344	0,1770	0,1994	0,3341	0,3139	0,3483	0,3507
1/DAP	-0,4994	-0,3043	-0,4759	-0,2722	-0,2537	-0,3885	-0,3695	-0,3922	-0,3948
DAP ³	0,4019	0,2386	0,3725	0,1419	0,1770	0,2968	0,2759	0,3128	0,3140
Log H Total	0,9853	0,9899	0,9873	0,9970	0,9975	0,9915	0,9913	0,9904	0,9901
Log DAP	0,5125	0,3047	0,4846	0,2494	0,2417	0,3800	0,3611	0,3879	0,3919
Log H Comercial	0,6044	0,6171	0,5901	0,2235	0,2345	0,6398	0,5915	0,5506	0,5716
$DAP/\sqrt{Ht - 1,3}$	0,5293	-0,5619	-0,2333	- 0,1585	-0,2170	-0,5136	-0,5196	-0,5166	-0,5098
$DAP/\sqrt{Hc - 1,3}$	-0,4438	-0,3649	-0,1626	-0,0272	-0,0185	-0,2851	-0,2588	-0,2127	-0,2264
$1/\sqrt{3/\text{Ht} - 1,3}$	0,4801	-0,6115	-0,2651	-0,1359	- 0,1791	-0,5478	-0,5599	~ 0,5577	-0,5553
$1/\sqrt[3]{\text{Hc}-1,3}$	0,5189	-0,4508	-0,2171	0,0015	-0,0133	-0,4241	-0,3761	-0,3102	-0,3219
1/DAP ²	-0,4841	-0,2985	-0,4620	-0,2832	- 0 , 2595	-0,3908	-0,3715	-0,3904	-0,3911
Nº Árvores	0,0478	0,0352	0,0514	0,1343	0,2612	0,0175	0,0561	0,1798	0,2147
DAP ² /Ht - 1,3	0,2054	-0,1144	0,1696	-0,0065	-0,0413	-0,0805	-0,0908	-0,0674	-0,0484
DAP ² /Hc - 1,3	0,1484	-0,1228	0,1183	0,0810	0,0995	-0,0441	-0,0309	0,0144	0,0137
H Total ²	0,9923	0,9907	0,9936	0,9973	0,9979	0,9928	0,9926	0,9919	0,9916
H Comercial ²	0,6310	0,6566	0,6199	0,1949	0,2210	0,6788	0,6183	0,5674	0,5871

QUADRO 10: Coeficientes de correlação simples da altura comercial com as variáveis estudadas, para toda floresta, para os 3 estratos e para as 5 espécies mais frequentes

				ALTURA (COMERCIAL.		J		
VARIÁVEL	TODA FLORESTA	ESTRATO	1 ESTRATO	2 ESTRATO	3 ESPECIE	1 ESPÉCIE	2 ESPÉCIE	3 ESPÉCIE 4	ESPÉCIE 5
DAP	0,2884	0,2129	0,2616	0,0267	0,0169	0,2547	0,2432	0,2203	0,2269
H Total	0,6290	0,6519	0,6170	0,2112	0,2316	0,6762	0,6194	0,5717	0,5927
H Comercial	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
D Copa	0,4550	0,4839	0,4333	-0,2073	0,1517	0,2311	0,1427	0,1544	0,2288
DAP ²	0,2568	0,1923	0,2294	0,0500	0,0345	0,2117	0,2024	0,1802	0,1925
1/DAP	-0,3087	-0,2245	-0,2857	0,0292	0,0415	- 0,3075	-0,2948	-0,2693	-0,2690
DAP ³	0,2126	0,1626	0,1859	0,0658	0,0411	0,1610	0,1555	0,1343	0,1546
Log H Total	0,6190	0,6345	0,6086	0,2128	0,2270	0,6620	0,6156	0,5801	0,6011
Log DAP	0,3073	0,2227	0,2808	-0,0014	-0,0101	0,2865	0,2740	0,2500	0,2526
Log H Comercial	0,9793	0,9777	0,9781	0,9871	0,9872	0,9771	0,9773	0,9776	0,9776
DAP/ $\sqrt{\text{Ht}-1,3}$	0,4284	-0,3213	-0,1604	-0,0517	-0,0691	-0,3154	-0,2880	- 0,2911	-0,3023
DAP/ $\sqrt{\text{Hc} - 1.3}$	-0,4066	-0,7547	-0,6443	-0,6924	-0,6959	-0,6502	-0,6483	-0,6514	-0,6476
$1/\sqrt{3/Ht - 1,3}$	0,3825	-0,3687	-0,1828	-0,0844	-0,1057	-0,3361	-0,3042	-0,3073	-0,3248
$1/\sqrt{3/\text{Hc} - 1,3}$	0,4495	-0,8474	-0,7223	- 0,7390	-0,7442	-0,8138	-0,8062	-0,8026	-0,7961
1/DAP ²	- 0,3069	-0,2218	-0,2857	0,0526	0,0721	-0,3199	-0,3074	- 0,2805	-0,2782
Nº Ārvores	0,0203	0,0017	0,0221	-0,0256	0,2084	-0,0156	-0,0178	0,0060	0,0420
$DAP^2/Ht - 1,3$	0,1039	-0,0401	0,0746	0,0168	-0,0020	-0,0516	-0,0387	-0,0446	-0,0344
$DAP^23Hc - 1,3$	-0,2537	-0,4499	-0,2848	-0,3290	-0,3410	-0,3343	-0,3294	-0,3305	-0,3168
H Total ²	0,6228	0,6539	0,6119	0,2087	0,2343	0,6786	0,6116	0,5507	0,5712
H Comercial ²	0,9832	0,9812	0,9831	0,9893	0,9902	0,9816	0,9818	0,9823	0,9826

al³¹, assim ficou eliminada a possibilidade de se conseguir melhores resultados com os dados agrupados em estratos de altura média e espécies mais frequentes.

Um fato bastante interessante observado neste estudo é que sempre a correlação simples entre as variáveis altura total/DAP se tornou melhor e superior do que a correlação simples entre altura comercial/DAP. Ficou demonstrado claramente que a estimativa da altura total apresenta maior correlação simples com o DAP do que a variável altura comercial através do DAP.

Através das correlações simples visualiza-se o grau de associação entre as variáveis e se esta associação será positiva ou negativa, e com a distribuição dos dados e função sobre um eixo de coordenadas cartesianas, mostra a tendência dos pontos.

Através das Figuras 05, 06, 07 e 08, observa-se a relação existente entre classes de DAP, altura total e altura comercial.

Maiores detalhes sobre as correlações simples para toda a floresta para os 3 estratos de altura média e para as 5 espécies mais frequentes são encontrados no apêndice.

Convém, para melhor entendimento, definir que a altura dominante (hdom) é a altura média aritmética das 100 árvores mais grossas do povoamento.

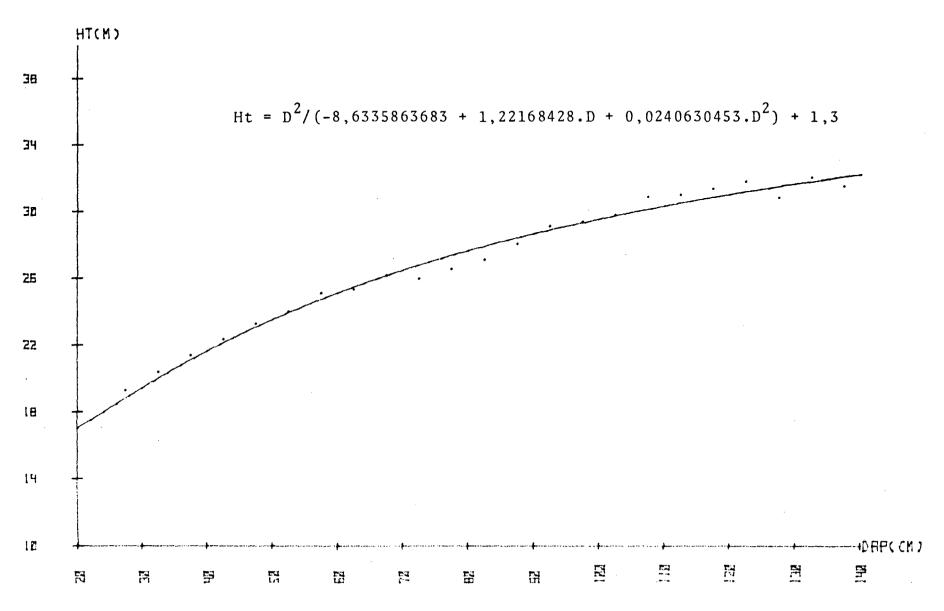


FIGURA 05: Relação entre classes de DAP c/c e altura total com a função ajustada

FIGURA 06: Relação entre classes de DAP c/c e altura comercial com a função ajustada

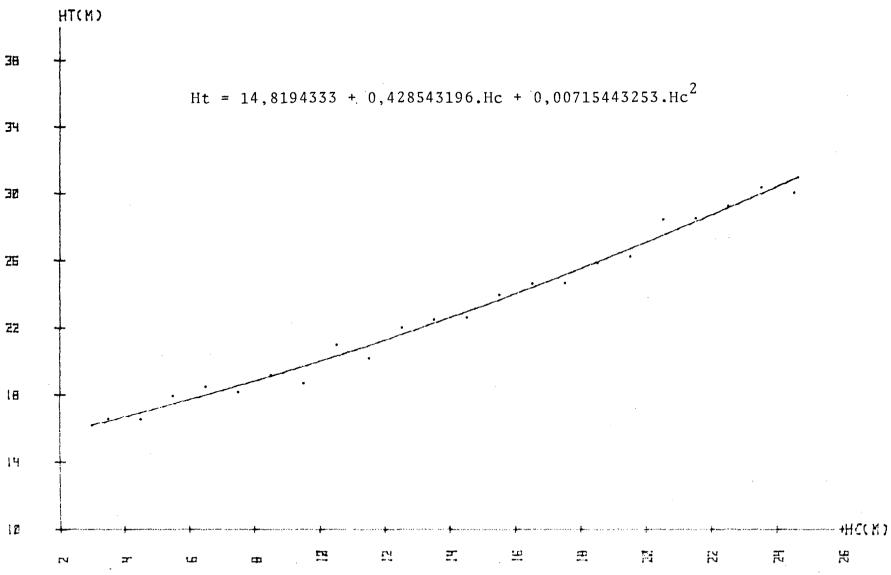


FIGURA 07: Relação entre classes de altura total e altura comercial com a função ajustada

FIGURA 08: Relação entre classes de altura comercial e altura total com função ajustada

4.2. MODELO DE EQUAÇÃO DE REGRESSÃO

Os modelos de equação de regressão testados foram todos os possíveis encontrados na literatura, sobre a relação hipsométrica, relação altura total/altura comercial e a relação altura total/DAP e altura comercial.

Os modelos testados foram aqueles relacionados nos Quadros 04, 05 e 06.

Para cada equação foram estimados os coeficientes de determinação (R^2) , erro-padrão de estimativa (Syx), erro-padrão da variável dependente transformado (Syxt), para as equações não aritméticas e o valor da razão entre variâncias (F) mostradas no apêndice.

O erro-padrão de estimativa da variável dependente transformado ou retrotransformação foi estimada somente para as equações logarítmicas e hiperbólicas, buscando unidades de natureza comparativa com as equações aritméticas.

4.3. SELEÇÃO DOS MELHORES MODELOS PARA ESTIMAR A ALTURA TO-TAL E ALTURA COMERCIAL

Através de uma observação e análise dos Quadros 11 a 15 foram selecionadas 3 equações para estimar a altura total e 2 para altura comercial.

Para estimar as alturas os modelos selecionados foram os seguintes:

a) Relação hipsométrica:

Ht - 1,3 =
$$D^2/b_0 + b_1D + b_2D^2$$
)

$$Hc - 1,3 = D^2/(b_0 + b_1D + b_2D^2)$$

b) Relação altura total/altura comercial:

$$Ht = b_0 + b_1 Hc + b_2 Hc^2$$

 $Hc = b_0 + b_1 Ht + b_2 Hr^2$

c) Relação altura total/(DAP e altura comercial)

Ht - 1,3 =
$$D^2/(b_0 + b_1D^2 + b_2(D^2Hc - 1,3)$$

Estas equações foram selecionadas, pois apresentaram os maiores coeficientes de determinação, os mesmos erros-padrão de estimativa e mais baixos erros-padrão retrotransformado.

O erro-padrão de estimativa (Syxt) da regressão das variáveis voltado à forma original, ou seja, da retrotransformação às unidades originais, é mais preciso e correto para exprimir a precisão da regressão, pois é o mais indicado do que as outras maneiras de medi-lo, conforme recomenda KOSAK³⁰.

A escolha do modelo hiperbólico, contendo a variável independente diâmetro, fácil de ser obtida no campo, vem testemunhar recomendações de PRODAN, citado por LOETSCH et al³¹, como a variável mais correlacionada com a variável dependente para floresta tropical multiana.

Os resultados alcançados com o estudo das relações: altura/diâmetro, altura total/altura comercial e altura total/DAP e altura comercial foram os resultados esperados e encontrados na literatura com trabalhos semelhantes, o que não é

QUADRO 11: Equações com erro-padrão residual da relação hipsométrica para estimar a altura total

Ν°	EQUAÇÃO	Syx	Syx%
1	Ht=b0 + b1D	3,7343	16
2.	$Ht=b0 + b1D + b2D^2$	3,7075	16
3	Ht=b0 + b1/D	3,7326	16
4	Ht=b0 + b1/D + b2D	3,7114	16
5	$Ht=b0 + b1D + b2D^2 + b3D^3$	3,7065	16
6	LogHt = b0 + b1 LogD + b2D	3,6703	15
7	$LogHt = b0 + b1D + b2D^2$	3,7127	16
8	Ht = b0 + b1LogD	3,6995	15
9	$Ht = b0 + b1/D^2$	3,7699	16
10	$Ht = b0 + b1D^2$	3,8187	16
11	Ht - 1,3 = $D^2/(b0 + b1D + b2D^2)$	1,8605	8
12	Log Ht = Logb0 + b1LogD	3,6891	15
13	Log Ht = b0 + b1D	3,7598	16
14	Log Ht = b0 + b1LogD	3,6811	15
15	$Ht = D^2/(b0 + b1D^2) + 1,3$	3,8592	16
16	$1/\sqrt[3]{\text{Ht} - 1,3} = b0 + b1/D$	3,6078	15
17	$Ht - 1,3 = D^2/(b0 + b1LogD)$	3,8876	16
18	Ht - 1,3 = $D^2/(b0+b1D+b2D^2+b3D^3)$	2,4536	11
19	$Ht - 1,3 = D^2/(b0 + b1/D + b2D)$	3,8344	16
20	Ht - 1,3 = $D^2/(b0 + b1D)^2$	3,6553	15
21	$Ht - 1,3 = D^2/(b0 + b1D)$	3,8232	16

QUADRO 12: Equações com erro-padrão residual da relação hipsométrica para estimar a altura comercial

Ν°	EQUAÇÃO	Syx	Syx%
1	Hc = b0 + b1D	3,7313	20
2	$Hc = b0 + b1D + b2D^2$	3,7071	20
3	Hc = b0 + b1/D	3,7065	20
4	Hc = b0 + b1/D + b2D	3,7066	20
5	$Hc = b0 + b1D + b2D^2 + b3D^3$	3,7042	20
6	LogHc = b0 + b1LogD + b2D	3,8725	21
7	$LogHc = b0 + b1D + b2D^2$	3,8755	21
8	Hc = b0 + b1LogD	3,7082	20
9	$Hc = b0 + b1/D^2$	3,7088	20
10	$Hc = b0 + b1D^2$	3,7662	20
11	$Hc - 1,3 = D^2/(b0 + b1D + b2D^2)$	2,0346	11
12	LogHc = Logb0 + b1LogD	3,8539	21
13	LogHc = b0 + b1D	3,8875	21
14	LogHc = b0 + b1LogD	3,8772	21
15	$Hc = D^2/(b0 + b1D^2) + 1,3$	3,4700	19
16	$1/\sqrt[3]{\text{Hc} - 1,3} = b0 + b1/D$	3,6212	19
17	$Hc - 1,3 = D^2/(b0 + b1LogD)$	3,0976	17
18	$Hc - 1,3 = D^2/(b0+b1D+b2D^2+b3D^3)$	3,0948	17
19	Hc - 1,3 = /(b0+b1/D + b2D) + 1,3	3,0874	17
20	$Hc - 1,3 = D^2/(b0 + b1D)^2 + 1,3$	3,4765	19
21	$Hc - 1,3 = D^2/(b0 - b1D)$	3,0876	17

QUADRO 13: Equações com erro-padrão residual da relação altura total/altura comercial para estimar a altura total

Иò	EQUAÇÃO	Syx	Syx %
1	Ht = b0 + b1Hc	3,3493	14
2	$Ht = b0 + b1Hc + b2Hc^2$	2,1176	9
3	$Ht = b0 + b1Hc^2$	3,3423	14
4	LogHt = b0 + b1LogHc + b2Hc	3,3499	14
5	$LogHt = b0 + b1Hc + b2Hc^2$	3,3499	14
6	LogHt = b0 + b1LogHc	3,4126	14
7	LogHt = b0 + b1Hc	3,3500	14

QUADRO 14: Equações com erro-padrão residual da relação altura total/altura comercial para estimar a altura comercial

Nφ	EQUAÇÃO	Syx	Syx%
1	Hc = b0 + blHt	3,0494	17
2	$Hc = b0 + b1Ht + b2Ht^2$	2,9075	16
3	$Hc = b0 + b1Ht^2$	3,0489	17
4	LogHc = b0 + b1LogHt + b2Ht	3,0605	17
5	$LogHc = b0 + b1Ht + b2Ht^2$	3,0585	17
6	LogHc = b0 + b1LogHt	3,0666	17
7	LogHc = b0 + b1Ht	3,0903	17

QUADRO 15: Equações com erro-padrão residual da relação altura total/DAP e altura comercial para estimar a altura total

Νò	EQUAÇÃO	Syx	Syx%	
1	$Ht = b0 + b1Hc^2 + b2LogD$	3,0113	13	
	LogHt = b0 + b1Hc + b2LogD	3,0178	13	
3	Ht = $D^2/(b0 + b1D^2 + b2(D^2/Hc-1,3))+1,3$	2,6032	11	

surpresa um coeficiente de determinação (R²) igual a 0,45 para as relações: altura/diâmetro, altura total/altura comercial e altura total/DAP, altura comercial com dados de Floresta Tropical multiana, o resultado que não estava sendo esperado, foi um ajuste de 0,89 para a relação hipsométrica quando se usou o modelo hiperbólico preconizado por PRODAN, citado por LOETSCH et al³¹.

Semelhantes resultados foram encontrados também para a relação altura total/altura comercial e para a relação altura total/DAP altura comercial, ratificando os resultados encontrados para a relação hipsométrica.

Constatou-se os mesmos resultados alcançados por MA-CHADO & ALBERTIN³⁴, em floresta tropical úmida, que pensavam obter melhores resultados para espécies em separado, conseguindo assim um melhor ajuste para as relações estudadas, o que não ocorreu. Isto se deve ao fato de que, para uma mesma espécie, crescendo em sítios e condições diferentes, encontra-se para uma mesma classe diamétrica, uma grande variedade de alturas.

Para a relação hipsométrica, usando-se o modelo de PRO-DAN, citado por LOETSCH et al³¹, recomendado para floresta multiana, encontrou-se o melhor ajuste e mais baixo erro-padrão de estimativa.

A tendência da relação hipsométrica mostra que nem sempre as maiores alturas correspondem aos maiores diâmetros como afirmam BRUCE & SCHUMACHER³, pois há uma tendência da curva se inclinar para baixo.

Em levantamentos florestais a curva de altura/diâmetro representa o estado atual com respeito à relação altura/diâ-

metro, na época em que o inventário foi realizado. Acontece que a relação altura/diâmetro no presente não será necessariamente aquela que existirá no futuro, sendo, por outro lado, pouco provável que a relação obtida em uma grande área e ainda em floresta multiana, sofre considerável modificações com o tempo, como constataram PITA CARPENTER³⁸, HUSCH et al²⁶.

4.4. TABELAS PARA DETERMINAR ALTURA TOTAL E ALTURA COMER-CIAL

Para maior facilidade no uso das equações selecionadas com as relações: hipsométricas, altura total/altura comercial e altura total/ DAP e altura comercial foram montadas tabelas de uso mais prático, entrando-se com a variável ou variáveis independentes e encontrando-se a altura total ou altura comercial.

Para estimativa da altura total, através da relação hipsométrica, o melhor resultado encontrado foi através do modelo 11, de Prodan, que estima a altura total somente por meio de uma variável dependente de fácil obtenção em campo, que é o DAP, apresentando um erro de 1,86 m ou 8,5% na estimativa da altura total, quadro 16.

O modelo 18, que é um modelo modificado do modelo 11 de Prodan, também apresentou bom resultado, porém seu erro na estimativa da altura total é de 2,45 m, ou seja, 30% a mais na determinação da altura total do que o modelo 11.

Não se nota diferença entre os modelos aritméticos, logarítmicos e modelos com a variável dependente transformada, apresentando um erro entre 3,5 a 3,9 m na estimativa da altura.

QUADRO 16: Estimativa da altura total através da relação hipsométrica

		(83) 0	PEIT	RA DO	ALTU	TROA	DIAME			DAP
9.0	8.0	7.¢	6.0	5.0	4.0	3.0	2.0	1.0	Ø. Ø	(ch)
======= 5.01	10.3	10.1	9.9	9.7	3.4	9.1	8.8	8.5	8.2	20.0
12.1	11.9	11.5	11.7	11.5	11.4	11.2	11.1	10.9	10.7	30.0
13.0	12.9	12.8	12.7	12.7	12.6	12.5	12.4	12.3	12.2	40.0
13.6	13.5	13.5	13.4	13.4	13.3	13.2	13.2	13.1	13.0	50.0
14.0	13.9	13.9	13.9	13.8	13.8	13.8	13.7	13.7	13.6	€♦.♦
14.3	14.2	14.2	14.2	14.2	14.1	14.1	14.1	14.0	14.0	70.0
14.5	14.5	14.4	14.4	14.4	14.4	14.4	14.3	14.3	14.3	80. 0
11.2	14.6	14.6	14.6	14.6	14.6	14.6	14.5	14.5	14.5	90.0
14.5	14.8	14.8	14.7	14.7	14.7	14.7	14.7	14.7	14.7	100.0
14.9	14.9	14.9	14.9	14.8	14.8	14.8	14.8	14.8	14.3	110.0
15.0	15.0	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9	120.0
15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	130.0
15.1	15.1	15.1	15.1	15.i	15.1	15.1	15.1	15.0	15.0	140.0

Com o estudo da relação hipsométrica, para a altura comercial, através de todos os modelos estudados, o erro de 2,0 m ou 16% foi sempre maior quando da estimativa da altura total. Dentre os modelos estudados também o que apresentou melhor resultado foi o 11 de Prodan, com grande superioridade com relação aos demais modelos. Pouca diferença foi encontrada entre tipos aritméticos e variável dependente transformada, com erro entre 3,0 m a 3,7 m, comparados com os modelos logarítmicos que apresentaram erro de 3,8 a 3,9 m na estimativa da altura comercial. A estimativa da altura comercial consta no quadro 17.

Na determinação da altura total em função da altura comercial, o modelo 2 se destaca com um erro de 2,1 m ou 10% na estimativa da altura total, podendo tanto estimar-se altura total através do DAP, como também em função da altura comercial. Com relação aos demais modelos apresentaram um erro 50% a mais que o modelo 2; esta estimativa consta no quadro 18.

Na estimativa da altura comercial, através da altura total também o modelo 2 foi o melhor, com um erro de 2,9 m, porém 40% maior do que a estimativa da Ht = f(Hc). Superioridade com relação aos demais modelos e pequena diferença com relação aos demais modelos na estimativa da altura total, a estimativa da altura comercial em função da altura total constam no quadro 19.

Para estimativa da altura total através de duas variáveis, DAP e altura comercial, o melhor modelo é o 3, mas a estimativa apresenta maior erro do que em função apenas de uma única variável, DAP ou altura comercial.

QUADRO 17: Estimativa da altura comercial através da relação hipsométrica

DAP			DIAHE	TROA	ALTU	R A D 0	PEIT	CH3) 0		
(CM)	٥.٥	1.0	2.¢	3.0	4.0	5.0	6.0	7.¢	€.◊	9.0
20.0	17.0	17.2	17.4	17.7	17.9	18.2	13.4	18.7	18.9	19.1
30.0	19.4	19.8	19.8	20.1	20.3	20.5	20.7	20.9	21.2	21.4
40.0	21.6	21.8	22.0	23.2	20.5	22.6	22.7	22.9	23.1	23.3
50.0	23.5	23.6	22.3	24.0	24.1	24.3	24.4	24.5	24.7	24.9
60.0	25.0	25.2	25.3	25.5	25.6	25.8	25.9	26.0	26.1	25.3
70.0	28.4	26.5	26.7	26.8	26.9	27.0	27.1	27.2	27.4	27.5
80.0	27.6	27.7	27.8	27.9	28.0	28.1	23.2	23.3	28.4	28.5
50.0	28.6	28.7	28.8	28.9	29.0	29.1	29.1	29.2	29.3	29.4
100.0	39.5	29.6	29.7	29.7	29.8	29.9	30.0	30.0	30.1	30.2
110.0	30.3	20.3	Z0.4	30.5	30.6	30.€	30.7	30.8	30.8	30.9
120.0	31.5	31.4	31.1	31.2	31.2	31.3	31.4	31.4	31.5	31.5
130.0	31.6	31.7	31.7	31.8	31.8	31.9	31.9	32.0	32.1	32.1
140.0	32.2	32.2	32.3	32.3	32.4	32.4	32.5	32.5	32.6	32.6

QUADRO 18: Estimativa da altura total através da relação altura total/altura comercial

HC			A L	TURA	COMER	CIAL (M	(H)						
(H)	٥.٥	Ø.1	Ø.2	♦.3	¢.4	◊.5	0.6	0.7	0.8	٥. ٩			
3.0	16.1	16.2	16.2	16.3	16.3	16.4	16.4	16.5	16.5	16.6			
4.0	16.6	16.7	16.7	16.8	16.8	16.9	16.9	17.0	17.0	17.1			
5.0	17.1	17.2	17.2	17.3	17.3	17.4	17.5	17.5	17.6	17.6			
6.0	17.7	17.7	17.8	17.8	17.9	17.9	18.0	18.0	18.1	18.2			
7.0	18.2	18.3	18.3	18.4	18.4	18.5	18.6	18.6	18.7	18.7			
8.0	18.8	18.8	18.9	19.0	19.0	19,1	19.1	19.2	19.2	19.3			
9.0	19.4	19.4	19:5	19.5	19.6	19.7	19.7	19.8	19.8	19.9			
10.0	20.0	20.0	20.1	20.2	20.2	20.3	20.3	20.4	20.5	20.5			
11.0	20.6	20.6	20.7	20.8	20.8	20.9	21.0	21.0	21.1	21.2			
12.0	21.2	21.3	21.4	21.4	21.5	21.6	21.6	21.7	21.8	. 21.8			
13.0	21.9	21.9	22.0	22.1	22.2	22.2	22.3	22.4	22.4	22.5			
14.0	22.6	22.6	22.7	22.8	22.8	22.9	23.0	23.0	23.1	23.2			
15.0	23.3	23.3	23.4	23.5	23.5	23.6	23.7	23.7	23.8	23.9			
16.0	24.0	24.0	24.1	24.2	24.3	24.3	24.4	24.5	24.5	24.6			
17.0	24.7	24.8	24.8	24.9	25.0	25.1	25.1	25.2	25. 3	25.4			
18.0	25.4	25.5	25.6	25.7	25.7	25.8	· 25 . 9	26.0	26.1	26.1			
19.0	26. 2	26.3	26.4	26.4	26.5	26.6	26.7	26.8	26.8	26.9			
20.0	27.0	27.1	27.2	27.2	27.3	27.4	27.5	27.6	27.6	27.7			
21.0	27.8	27.9	28.0	28.0	28.1	28.2	28.3	28.4	28.5	28.5			
22.0	28. 6	28.7	28.8	28.9	29.0	29.0	29.1	29.2	29.3	29.4			
23.0	29. 5	29.5	29.6	29.7	29.8	29.9	30.0	30.1	30.1	30.2			
24.0	30.3	30.4	30.5	30.6	30.7	30.8	30.8	30.9	31.0	31.1			
25.0	31.2	31.3	31.4	31.5	31.6	31.6	31.7	31.8	31.9	32.0			

QUADRO 19: Estimativa da altura comercial através da relação altura comercial/altura total

нт			AL	TURA	TOTAL	M >				
(H)	0.0	0.1	0.2	0.3	0.4	Ø.5	0.6	ø.7	٥.8	٥.9
O.O	5.0	5.1	5.2	5.2	5.3	5.4	5.5	5.5	5.6	5.7
1.0	5.7	5.8	5.9	5.9	6.0	6.1	6.1	€.2	6.3	6.3
2.0	6.4	6.5	6.5	6.6	6.7	6.7	, 6.8	6.8	6.9	7.0
3.◊	7.0	7.1	7.2	7.2	7.3	7.4	7.4	7.5	7.6	7.0
4.0	7.7	7.7	7.8	7.9	7.9	8.0	8.1	. 8.1	8.2 .	8.2
5.0	8.3	8.4	8.4	8.5	8.5	8.6	8.7	8.7	8.8	8.8
6.0	8.9	9.0	9.0	9.1	9.1	9.2	9.3	9.3	9.4	9.4
7.0	9.5	9.6	9.6	9.7	9.7	9.8	9.8	9.9	10.0	10.0
8.0	10.1	10.1	10.2	10.2	10.3	10.4	10.4	10.5	10.5	10.6
9.0	10.6	10.7	10.7	10.8	10.9	10.9	11.0	11.0	11.1	11.1
٥.٥	11.2	11.2	11.3	11.3	11.4	11.4	11.5	11.6	11.6	11.7
1.0	11.7	11.8	11.8	11.9	11.9	12.0	12.0	. 12.1	12.1	12.2
2.0	12.2	12.3	12.3	12.4	12.4	12.5	12.5	12.6	12.6	12.7
3.0	12.7	12.8	12.8	12.9	12.9	13.0	13.0	13.1	13.1	. 13.2
4.0	13.2	13.3	13.3	13.4	13 4	13.5	13.5	13.5	13.6	13.6
5.0	13.7	13.7	13.8	13.8	13.9	13.9	14.0	14.0	14.1	14.1
6.0	14.1	14.2	14.2	14.3	14.3	14.4	14.4	14.5	14.5	14.5
7.0	14.6	14.6	14.7	14.7	14.8	14.8	14.8	14.9	14.9	15.0
8.0	15.0	15.1	15.1	15.1	15.2	15.2	15.3	15.3	15.3	15.4
9.0	15.4	15.5	15.5	15.5	15.6	15.6	15.7	15.7	15,7	15.8
0.0	15.8	15.9	15.9	15.9	16.0	16.0	16.0	16.1	16.1	16.2
1.0	16.2	16.2	16.3	16.3	16.3	16.4	16.4	16.5	16.5	16.5
2.0	16.6	16.6	16.6	16.7	16.7	16.7	16.8	16.8	16.8	16.9
3.0	16.9	16.9	17.0-	17.0	17.0	17.1	17.1	17.2	17.2	17.2
4.0	17.2	17.3	17.3	17.3	17.4	. 17 . 4	17.4	17.5	17.5	17.5
5.0	17.6	17.6	17.6	17.7	17.7	17.7	17.8	17.8	17.8	17.8
6.0	17.9	17.9	17.9	18.0	16.0	18.0	18.1	18.1	18.1	18.5
7.0	18.2	18.2	18.2	18.3	18.3	13.3	18.3	18.4	18.4	18.4
8.0	18.4	18.5	18.5	18.5	18.5	18.6	18.6	18.6	18.7	18.7
9.0	18.7	18.7	18.8	18.8	18.8	18.8	18.9	18.9	18.9	18.9
0.0	18.9	19.0	19.0	19.0	19.0	19.1	19.1	19.1	19.1	19.2

Ht = f(DAP) - Erro de 1,86 m - 8% Ht = f(Hc) - Erro de 2,11 m - 9% Ht = f(DAP,Hc) - Erro de 2,60 m - 11%

Não convêm estimar a altura total em função do DAP e altura comercial, a não ser testando-se outros modelos a mais do que foram testados.

CONCLUSÕES

E possível estimar em Floresta Tropical a altura total ou altura comercial em função do DAP.

A estimativa da altura total foi sempre melhor que a estimativa da altura comercial.

A estimativa da altura total em função de uma variável apresentou melhores resultados que em função de 2 variáveis.

Nos levantamentos florestais não há necessidade de medir as 3 variáveis aqui medidas; medindo-se só o DAP pode-se estimar a altura total com baixo e razoável erro e estimar também a altura comercial com bons resultados.

Em levantamentos mais específicos mede-se o DAP e altura comercial.

Baseando-se na análise estatística apresentada nos Quadros 11 a 15, foi escolhido o modelo hiperbólico de Prodan para a relação hipsométrica:

a) Ht - 1,3 =
$$D^2(b_0 + b_1D + b_2D^2)$$

b) Hc - 1,3 =
$$D^2/(b_0 + b_1D + b_2D^2)$$

Para a relação altura total/altura comercial foi escolhido o modelo parabólico:

a) Ht =
$$b_0 + b_1 Hc + b_2 Hc^2$$

b)
$$Hc = b_0 + b_1 Ht + b_2 Ht^2$$

Para a relação dupla entre altura total/DAP, altura comercial foi selecionado o modelo hiperbólico de Prodan:

a) Ht - 1,3 =
$$D^2/(b_0 + b_1D^2 + b_2(D^2/Hc - 1,3))$$

que se ajustaram melhor e podem ser usados na determinação das alturas das árvores individuais do Centro Florestal Herrera, tendo como variáveis independentes, diâmetro com casca, à altura do peito, altura total e altura comercial.

A grande vantagem desses modelos de regressão é a facilidade de serem feitas estimativas das alturas, através de variáveis fáceis de serem obtidas no campo, como é o DAP, aproveitando os dados coletados em inventários, levantamentos e experimentos florestais, sem onerar custos adicionais de medições para determinar as relações, pois os parâmetros diâmetro e altura são variáveis imprescindíveis para o cálculo de estimativas quantitativas no setor florestal.

A aplicação dessas equações de regressão para estimar altura total e altura comercial é válida exclusivamente para florestas tropicais úmidas, de idênticas condições ecológicas à área estudada e sítio semelhantes à população pesquisada. Contudo, esta metodologia poderá ser usada para outras áreas florestais com características variadas e sítios diferentes.

A estimativa das alturas através do diâmetro é uma importante ferramente para determinar a volumetria de povoamentos em pé, sem a necessidade de corte das árvores, visando a confecção de um plano de manejo sustentado para a produção florestal.

A determinação das alturas através das equações de regressão é sem dúvida um ganho de custo e tempo, na medição das variáveis diâmetro e altura, tornando mais econômicos os custos de medição com uso de equações de regressão pré-selecionadas.

É também um subsídio básico para cálculo de volume através de tabelas regionais, bem como a transformação de tabelas regionais em tabelas locais, e base para estimativa volumétrica de árvores individuais de unidades amostrais e povoamentos, bem como estudos de exploração e transporte de matéria-prima da empresa florestal.

6. RESUMO

O presente estudo, conduzido em uma Floresta Tropical Úmida, do Centro Florestal Herrera, com 1.500 ha, localizada no Distrito de Sapuena, Iquitos - Peru, teve como principal objetivo estudar e selecionar modelos de regressão para estimar altura total e altura comercial, em função de parâmetros dendrométricos de fácil obtenção no campo.

Para este estudo foram utilizadas 14.670 árvores e 137 espécies, com amplitude diamétrica de 25 a 140 cm, de uma floresta tropical úmida.

Dos modelos testados, os melhores resultados foram alcançados com as equações:

a) Relação Hipsométrica:

Ht =
$$D^2/(-8,633586368 + 1,22168428.D + 0,0240630453$$
.
 D^2) + 1,3

$$R^2 = 0.89$$

$$Syx = 1,8605$$

$$Hc = D^2/(23,19249433 + 0,322901599 \cdot D + 0,0690218508 \cdot D^2)+1,3$$
 $R^2 = 0,74$
 $Syx = 2,0346$

b) Relação altura total/altura comercial: $Ht = 14,8149333 + 0,428543196 \cdot Hc + 0,00915443253 \cdot Hc^2$ $R^2 = 0,56$ Syx= 2,1176

$$Hc = -2.549033882 + 0.839225673$$
. Ht -0.0075132924 . Ht²
 $R^2 = 0.48$
 $Syx = 2.9075$

c) Relação altura total/DAP, altura comercial:

Ht =
$$D^2/(14,6366455 + 0,03019959D^2 + 0,086256198(D^2/Hc-1,3))+1,3$$

 $R^2 = 0,91$
Syx = 2,6032

Os critérios adotados para a escolha dos melhores modelos de regressão foram: erro-padrão da variável dependente transformado e o erro-padrão residual das equações aritméticas.

Os modelos selecionados foram os melhores que se ajustaram aos dados e podem ser usados para estimar a altura total e altura comercial de árvores individuais em pé, baseando-se em diâmetros e alturas.

O uso destas equações de regressão é restrito a Floresta Tropical Úmida, em idênticas condições ecológicas à área pesquisada e sítio semelhante à população em estudo. Contudo, esta metodologia poderá ser usada para estimativas semelhantes com outras florestas, em diferentes condições ecológicas e sítios.

SUMMARY

The present research was carried out in an uneven-aged stand of the Tropical Humid Forest, of Centro Florestal Herrera, with 1.500 ha located in the county of Sapuena, Iquitos, Peru. The main objective of this research was to study and to select regression models to estimate the total height and the merchantable height as a funtion of dendrometric parameters easy to be obtained in the field.

For this research, it was used data from 14.670 trees, and 137 species, with the diameter distribution ranging from 25 to 140 an from the Tropical Humid Forest.

The Prodan's model:

Ht =
$$D^2/(-8,6335863683 + 1,22168428 \cdot D + 0,0240630453 \cdot D^2)+1,3$$

 $R^2 = 0,89$

$$Syx = 1,8605$$

Hm =
$$D^2/(23,19249433 + 0,322901599 \cdot D + 0,0690218508 \cdot D^2)+1,3$$

 $R^2 = 0.74$

$$Syx = 2,0346$$

Ht =
$$D^2/(14,6366455 + 0,03019959 \cdot D^2 + 0,086256198 \cdot (D^2/Hc-1,3))+1,3$$

 $R^2 = 0.91$

$$Syx = 2,6032$$

gave the best result among all tested models for height/d.b.h curves, followed by the parabolic model:

$$Ht = 14,8194333 + 0,428543196 \cdot Hm + 0,00715443253 \cdot Hm^2$$

 $R^2 = 0,56$
 $Syx = 2,1176$

$$Hm = -2,549033882 + 0,839225673$$
. Ht - 0,0075132924 . Ht²
$$R^2 = 0,48$$

$$Syx = 2,9075$$

for relationship between total height/merchantable height, were determined for the forest as a whole.

The used criterium to choose the best model were standart error in the original form of the model.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ANDRADE, E.N. O eucalipto. 2. ed. Jundiai, Companhia Paulista de Estrada de Ferro, 1961. 681 p.
- 2. ANUCHIN, N.P. <u>Forest mensuration</u>. Jerusalém, Israel Program for <u>Scientific Translation</u>, 1970. 494 p.
- 3. BRUCE, D. & SCHUMACHER, F.X. Forest mensuration. 3. ed. New York, McGraw-Hill, 1950. 483 p.
- 4. BRUCHWALD, A. <u>Investigation of relation the between height</u> and d.b.h. in Scots Pine stands. <u>Folia Forestalia Polonica</u>, 16: 163-170, 1970. Resumo.
- 5. BUDOWSKI, G. <u>La identificacion en el campo de los arboles forestales mas importantes de la America Central</u>. Turrialba, IICA, 1954. 325 p.
- 6. BURKHART, H.E. & STRUB, M.R. Dry weight field estimates to Loblolly pine: a comparison of two techniques. In: IUFRO BIOMASS STUDIES, Nancy, 1973. Paper presented. Maine, College of Science and Agriculture, s.d. p.29-64.
- 7. CHAPMAN, H.H. & MEYER, W.H. <u>Forest mensuration</u>. N.York, McGraw-Hill, 1949. 522 p.
- 8. CLIFFORD, A.M. Height-diameter curves for three species subject to stagnation. <u>U.S.For. Serv. Res. Note RM</u>-69, 1966. 2 p.
- 9. CURTIS, R.O. Height-diameter and height-diameter- age equations for second-growth Douglas-fir. For Science, 14 (4): 365-75, 1967.
- 10. CUNIA T. Forest Brometry Monography Series. Elements of Mathematical. Frommentorke of Statistics. Syracuse. 1974. 163 p.
- 11. DISSECU, R. Determination of the height as a function of diameter ground level by mean of a regreddion. Rev. Padurilor, 7: 419-21, 1958. Resumo.
- DRAPER N.R. & SMITH H. Applied regression analysis. New York. John Wiley. 1966. 407 p.
- 13. EK, R. Performance of regression models for tree height estimation with small sample sizes. In: CONFERENCE OF THE ADVISORY GROUP OF FOREST STATISTICIANS, 41, Vancouver, 1973. Proceedings. Vancouver, 1973. p. 67-80.

- 14. EMBRY, R.S. & GOTTFRIED, G.S. Height-diameter equations to Arizona mixed conifers. U.S. For. Serv. Res. Note RM-191, 1971. 2 p.
- 15. EMROVIC, B. The graphical application of Levakovic's formulae. Sum. hist., 75(3/4): 148-56, 1951. Resumo.
- 16. ENCONTRO NACIONAL DE PESQUISADORES PARA PADRONIZAÇÃO DA TERMINOLOGIA FLORESTAL, 1., 1976. Anais. Curitiba, FIEP, 1976.
- 17. FREESE, F. Linear regression methods for forest research. <u>U.S. For. Serv. Res. Note FPL-17</u>, 1973. 136p.
- 18. Elementary Statistical Methods for Foresters. <u>U. S. Department of Agriculture. Forest Service</u>. 1967. 87 p.
- 19. FISHWICK, R. Estudo comparativo dos 6 métodos para calcular altura dominante de um povoamento florestal. Curitiba, PRODEPEF/IBDF, 1976.
- 20. GOMES, A.M. de A. <u>Medição dos arvoredos</u>. Lisboa, Sã da Costa, 1957. 413 p.
- 21. GARCIA, V.O. Height-diameter equations for Pinus radiata. Nota Tecnica. Instituto Forestal, Chile, 19, 1974. 16 p.
- 22. OFICINA NACIONAL DE EVALUACION DE RECURSOS NATURALES.
 Mapa ecologico del Peru, guia explicativo. Lima.
 1976. 146 p.
- 23. HEINSDIJK, D. & BASTOS, A.M. Inventários Florestais na Amazônia. <u>B. Setor de Inventários Florestais</u>, 6, 1963. 3 p.
- 24. HENRICKSEN, H.A. Height diameter curve with logarithmic diameter: brief report on a most reliable method of height determination from heights curves introduced by state forest Research Branch. Nansk Skov. Foren. Tidsskr, 35(4): 193-202, 1950. Resumo.
- 25. HUSCH, B. <u>Planificacion de un inventario forestal</u>. Roma, FAO, 1971. 135 p.
- 26. HUSCH, B.; MILLER, C.I. & BEERS, T.W. Forest mensuration. 2. ed. New York, Ronald Press, 1971. 410 p.
- 27. HOSOKAWA, R.T. & MACEDO, J.N. Relações hipsométricas para <u>Araucaria angustifolia</u>. <u>Floresta</u>, 4(1):31,1972.
- 28. KER, J.W. & SMITH, J.H.G. Advanges of the parabolic regression of height-diameter relationship. <u>For. Chronicle</u>, <u>31</u>: 236-246, 1955.

- 29. KORSUN, F. The height curve. <u>Lesn. Prace</u>, 26(6):185-190, 1947. Resumo.
- 30. KOSAK, A. Notes on Regression and Correlation Analysis as Important Fools in Forest Research. In: CONGRESSO MUNDIAL DA IUFRO, 16, Oslo, Norway. 1976.
- 31. LÖETSCH, F.; ZÖHRER, F. & HALLER, K.E. Forest inventory. Berlim, B.L.V., 1975. v.2, 469 p.
- 32. MEYER, H.A. A mathematical expression for height curves. J. For., 38:415-20, 1940.
- 33. MICHAILLOFF, I. Numerical procedure for working out curves for stand height. Forstwiss Cbl. U. thar. Forstl. Jb., 6: 273-79, 1943. Resumo.
- 34. MACHADO, S.A. & ALBERTIN, W. Algumas relações dasométricas importantes em um bosque secundário tropical. Turrialba, 23(2): 192-199, 1973.
- 35. NASLUND, M. The number of sample trees and the accuracy of the height curve. Medd. Stat. Skoostorsoksoust. 25: 93-170, 1939. Resumo.
- 36. PETTERSON. H. Yield of coniferous forests. Medd.Stat. Skoosforsoksonst., 45, 18, 189 p. 1955. Resumo.
- 37. PARDE, J. <u>Dendrometrie</u>. Nacy, L'Ecole National de Eaux et Forest, 1961, 350 p.
- 38. PITA CARPENTER, P.A. La relacion dasométrica entre altura totales y diametros normales. Montes, 25 (149): 403-411, 1969.
- 39. SCHMIDT, P.B. <u>Determinação indireta da relação hipsométrica para povoamentos de Pinus taeda, L</u>. Curitiba, 1977. Tese. Mestrado. Universidade Federal do Paraná.
- 40. SUPERINTENDÊNCIA DO DESENVOLVIMENTO DA AMAZÔNIA SUDAM.

 <u>Levantamentos florestais realizados pela missão FAO</u>

 <u>na Amazônia</u>. Belém, 1974. 2 v.
- 41. TROREY, L.G. A mathematical method for construction of diameter height curves based on site. <u>For.Chronicle</u>, 18 (2): 3-114, 1932.
- 42. TOSI, J. Zonas da vida natural no Peru. Lima, IICA Zona Andina, 1960. 271 p.
- VEIGA, R.A.A. Equações volumétricas para Eucalyptus saligna. Smith em ocasião do primeiro corte. Botucatu, 1972, 174 p.

- 44. VEIGA, R.A.A. & TANAKA, O.K. <u>Equações hipsométricas e de volume para Eucalyptus alba Reino</u>. Botucatu, Faculdade de Ciências Médicas e Biológicas, 1973.83 p.
- 45. VILLANUEVA, G.A. <u>Inventário Forestal de los bosques</u> de Copal. Iquitos, Peru, 1978, 71 p.

APÊNDICE

QUADRO 20: Floristica

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA	
001	Aguja moena		Lauraceae	
002	Aguano cumala	Virola albidiflora Ducke	Myristicaceae	
003	Alcanfor moena	Ocotea costulata Ness.	Lauraceae	
Ú04	Almendro blanco	Caryocar glabrum Pers.	Caryocaraceae	
005	Almendo colorado	Caryocar amigdaliforum Mutis	Caryocaraceae	
006	Ana caspi		Clusiaceae	
007	Anis moena	Endlicheria williamsii Schmidt	Lauraceae	
008	Añuje moena	Aniba sp.	Lauraceae	
009	Apacharama	Licania sp.	Rosaceae	
010	Azūcar huayo	Hymenea oblongifolia Hubert.	Caesalpinaceae	
011	Azufre caspi	Symphonia globulifera Ducke	Guttiferaceae	
012	Balata gomosa	Pouteria duckeana Baehni	Sapotaceae	
013	Balata rosada	Pouteria sp.	Sapotaceae	
014	Balata sapotina	Chrysophyllum ulei Krause	Sapotaceae	
015	Bolaina blanca	Guazuma sp.	Sterculiaceae	
016	Bombo caspi		Melastomaceae	

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA	
017	Caballo chupa	Cespedesia spathulata (Ruiz et Pav.) Planch.	Ochnaceae	
018	Canela moena	Ocotea laxiflora (Ness) Mez.	Lauraceae	
019	Capinuri de altura	Clarisia sp.	Moraceae	
020	Capirona de altura	Lorotea peruviana Standl.	Rubiaceae	
021	Caracha caspi	Tachigalia sp.	Caesalpinaceae	
022	Carahuasca	Guatteria pteropus Benth.	Annonaceae	
023	Cascarilla verde	Cinchona sp.	Rubiaceae	
024	Casha moena		Lauraceae	
025	Caucho	Hevea sp.	Euphorbiaceae	
026	Caucho masha	Sapium marmieri Hubert.	Euphorbiaceae	
027	Cedro	Cedrela odorada L.	Meliaceae	
028	Cepanchina	Sloanea sp.	Eleocarpaceae	
029	Cetico	<u>Cecropia</u> sp.	Moraceae	
030	Chamisa	Anthodicus sp.	Caryocaraceae	
031	Charapilla	Coumaruna sp.	Papilionaceae	
032	Charichuelo	Rhedia sp.	Clusiaceae	

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMILIA	
033	Chimicua	Perebea chimicua Mack.	Moraceae	
034	Chontaquiro	Diplotropis martiusii Benth	Papilionaceae	
035	Chullachaqui blanco	Pouruma ovata Trec.	Moraceae	
036	Chullachaqui colorado	Tavomita sp.	Guttifereae	
037	Copal blanco	Protium sp.	Burseraceae	
038	Copal colorado	Protium subserratum Engl.	Burseraceae	
039	Cumaceiba	Swartzia opacifolia Mack.	Caesalpinaceae	
040	Cumala blanca	Virola elongata (Benth) Warb.	Myristicaceae	
041	Cumaca colorada	Yryanthera grandis Ducke	Myristicaceae	
042	Cumala cumaru	Virola decorticans Ducke	Myristicaceae	
043	Cumala hoja marron	<u>Virola</u> sp.	Myristicaceae	
044	Cumala hoja parda	<u>Virola</u> sp.	Myristicaceae	
045	Espintana	Fusea decurrens Fries	Annonaceae	
046	Estoraque	Myroxylon balsamun Harms	Papilionaceae	
04.7	Gallinazo copal	Trattinickia peruviana Loes	Burseraceae	
048	Goma pashaco	Parkia oppositifolia Spruce	Mimosaceae	
049	Guariuba	Clarisia sp.	Moraceae	

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA
050	Guisador caspi		Bignoniaceae
051.	Haya huma	Courupita amazonica Knuth	Lecythidaceae
052	Huacapu		Guttiferae
053	Huairuro	Ormosia coccinea Jocke	Papilionaceae
054	Huairurillo		Conaraceae
055	Huacamayo caspi	Sickingia sp.	Rubiaceae
056	Huamanzamana	Jacaranda copaia Aubl.D.Don	Bignoniaceae
057	Huapina		Sapindaceae
058	Huarmi carpi	Sterculia pruriens Schum	Sterculiaceae
059	Huimba de altura	Ceiba pentandra Backh.	Bombacaceae
060	Ieoja	Unonopis floribunda Diels	Annonaceae
061	Ineira caspi	Chlorophora tintorea L. Gam.	Moraceae
062	Isma moena		Lauraceae
063	Itauba	Licaria quirirafuina Kosterm.	Lauraceae
064	Lacre		Sapindaceae
065	Laja caspi		

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA	
066	Lanza caspi	Mouriria acutiflora Naud.	Melastomaceae	
067	Leche caspi	Couma macrocarpa Mart.	Apocynaceae	
068	Loro micuna	Macoubea guianensis Aubl.	Apocynaceae	
069	Llanchama	Naucleopsis concinna Berg.	Moraceae	
070	Machimango blanco	Eschweilera timbuchensis Werm.	Lecythidaceae	
071	Machimango colorado	Eschweilera itayensis Knuth	Lecythidaceae	
072	Machin sapote	Quararibea lasiocalyx Schum.	Bombacaceae	
073	Manchari caspi	<u>Vantanea abovata</u> Nus. et Mart.	Humiriaceae	
074	Manchari colorado	Vantanea sp.	Humiriaceae	
075	Marupa	Simarouba amara Aubl.	Simaroubaceae	
076	Meto huayo		Vochyriaceae	
077	Misho chaqui	Helicostylis scabra (Macbr.) Berg.	Moraceae	
078	Moena		Lauraceae	
079	Moena amarilla	Ocotea petalanthera (Meissn)	Lauraceae	
080	Moena negra	<u>Nectandra</u> sp.	Lauraceae	

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAM Í LIA
081	Moena sin olor	Erisma uncinatum Warm	Vochysiaceae
082	Muesca huayo		Rosaceae
083	Naranjo podrido	Parahancornia peruviana Mona- chino	Apocynaceae
084	Nina caspi		Flacurtiaceae
085	Palisangre	Brosimun paraensis Hubert.	Moraceae
086	Palo de sangre	Swartzia cardiosperma Benth	Caesalpinaceae
087	Palto moena	Ocotea cuneifolia (Ruiz et Pav.)	Lauraceae
088	Papelillo caspi	Cariniana estrellinsis Knuth	Lecythidaceae
089	Parinari	Couepia chrysocalix Benth	Rosaceae
090	Parinari blanco	Couepia paraensis Benth	Rosaceae
091	Parinari colorado	Couepia thyrsiflora Hook.	Rosaceae
092	Pashaco	Schizolobium amazonica Knuth	Caesalpinaceae
093	Pashaquillo	Piptadenia sp.	Mimosaceae
094	Pashaco cutanillo	<u>Parkia</u> sp.	Mimosaceae
095	Pashna huachana		Euphorbiaceae

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA
096	Pichirina	Miconia amplexans Mart.	Melastomaceae
097	Pucuna caspi	Iryanthera laevis Mart.	Myristicaceae
098	Pumaquiro	Aspidosperma macrocarpa	Apocynaceae
099	Quillobordon	Aspidosperma varguesii Huber.	Apocynaceae
100	Quinilla blanca	Pouteria engleri Eyma	Sapotaceae
101	Quinilla caimitillo	Pouteria caimito Radlk.	Sapotaceae
102	Quinilla colorada	Manilkara bidentata A.Dc.A.Chov.	Sapotaceae
103	Quinilla de fruto negro	Pauteria madeirensis Baehni	Sapotaceae
104	Remo caspi	Swartzia brachyrachis Var.	Caesalpinaceae
105	Renaco	Ficus weberbaueri Standl.	Moraceae
106	Requia	Guarea sp.	Meliaceae
107	Requia blanca	Trichilia mavnasiana C.DC.	Meliaceae
108	Requia colorada	Guarea kunthiana C.DC.	Meliaceae
109	Rifari blanco	Miconia minutiflora C.DC.	Melastomaceae
110	Rifari colorado	Miconia wittii Ule	Melastomaceae
111	Sacha cacao	Theobroma subincanum Mart.	Sterculiaceae
			•

QUADRO 20: Florística (continuação)

	· ·		
CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA
112	Sacha huimba		Bombacaceae
113	Sacha guayaba		Myrtaceae
114	Sacha requia	Trichilia sp.	Meliaceae
115	Sacha tulpay	Anonocarpus amazonicus Ducke	Moraceae
116	Sacha uvilla	Coussapoa amarginata Killip.	Moraceae
117	Sacha uvas	Ophiocaryon sp.	Sabiaceae
118	Shimbillo	Inga alba Willd.	Mimosaceae
119	Shimbo	Inga marginata Willd	Mimosaceae
120	Shiringa	Hevea spruceana Muell. Arg.	Euphorbiaceae
121	Shiringa arana	Sapium sp.	Euphorbiaceae
122	Tahuari	Tabebuia pentahylla Hemsl.	Bignoniaceae
123	Tahuari blanco	Tabebuia rosea Hems1.	Bignoniaceae
124	Tangarana	Sclerolobium tintorium Benth.	Caesalpinaceae
125	Tornillo	Cedrelinga catenaeformis Ducke	Mimosaceae
126	Tortuga blanca	Diclinarona tessmannii Diels	Annonaceae
127	Tortuga caspi	Duguetia quitarensis Benth	Annonaceae

QUADRO 20: Florística (continuação)

CODIGO	NOME VULGAR	NOME CIENTÍFICO	FAMILIA
128	Uchumullaca		Myrtaceae
129	Ushum		Annonaceae
130	Yacushapana	Buchenavia sp.	Combretaceae
131	Yahuar huayo	Ambelaina quadrangularis Mull.Arg.	Apocynaceae
132	Yanahuasca		Annonaceae
133	Yerca caspi		Vochysiaceae
134	Yutubanco		Apocynaceae
135	Zancudo caspi	Alchornea pearcai Britton, bull	Euphorbiaceae
136	Zorro caspi		Annonaceae
137	Não identificada		

QUADRO 21: Coeficientes de correlação simples entre as variáveis estudadas para toda a floresta

	1	2	3	4	5	6	7	8	9	10
1	1.0000	0.4987	0.2884	0.5350	0.9748	-0.9312	0.8945	0.4722	0.9749	0.2769
2	0.4987	1.0000	0.6290	0.5466	0.4630	-0.4994	0.4019	0.9853	0.5125	0.6044
3	0.2884	0.6290	1.0000	0.4550	0.2568	-0.3087	0.2126	0.6190	0.3073	0.9793
4	0.5350	0.5466	0.4550	1.0000	0.4988	-0.5292	0.4330	0.5150	0.5399	0.4350
5	0.9748	0.4630	0.2568	0.4988	1:0000	-0.8364	0.9703	0.4296	0.9062	0.2426
6	-0.9312	-0.4994	-0.3087	-0.5292	-0.8364	1.0000	-0.7018	-0.4736	-0.9683	-0.2974
7	0.8945	0.4019	0.2126	0.4330	0.9703	-0.7018	1.0000	0.3670	0.7912	0.1986.
8	0.4722	0.9853	0.6190	0.5150	0.4296	-0.4736	0.3670	1.0000	0.5025	0.6058
9	0.9749	0.5125	0.3073	0.5399	0.9062	-0.9683	0.7912	0.5025	1.0000	0.3020
10	0.2769	0.6044	0.9793	0.4350	0.2426	-0.2974	0.1986	0.6058	0.3020	1.0000
11	0.4979	0.5293	0.4284	0.9683	0.4746	-0.4730	0.4211	0.4914	0.4912	0.3991
12	-0.4621	-0.4438	-0.4066	-0.8650	-0.4110	0.5027	-0.3400	-0.4239	-0.4837	-0.4076
13	0.4301	0.4801	0.3825	0.8903	0.4180	-0.3945	0.3777	0.4396	0.4162	0.3480
14	0.5234	0.5189	0.4495	0.9639	0.4756	-0.5378	0.4029	0.5000	0.5446	0.4429
15	-0.8757	-0.4841	-0.3069	-0.5074	-0.7622	0.9895	-0.6186	-0.4655	-0.9386	-0.2991
16	-0.0297	0.0478	0.0203	0.0083	-0.0284	0.0338	-0.0251	0.0541	-0.0252	0.0190
17	0.9288	0.2054	0.1039	0.4005	0.9423	-0.8124	0.9044	0.1798	0.8728	0.0986
18	0.7456	0.1484	-0.2537	0.2515	0.7675	-0.6382	0.7493	0.1307	0.6923	-0.2850
19	0.5148	0.9923	0.6228	0.5625	0.4838	-0.5055	0.4260	0.9556	0.5185	4.5888
20	0.2903	0.6310	0.9832	0.4598	0.2605	-0.3059	0.2179	0.6101	0.3040	0.9260
	=======================================							=======================================		

QUADRO 21: Coeficientes de correlação simples entre as variáveis estudadas para toda a floresta (continuação)

	11	12	13	14	15	16	17	18	19	20
1	0.4979	-0.4621	0.4301	0.5234	-0.8757	-0.0297	0.9288	0.7456	0.5148	0.2903
2	0.5293	-0.4438	0.4801	0.5189	-0.4841	0.0478	0.2054	0.1484	0.9923	0.6310
3	0.4284	-0.4066	0.3825	0.4495	-0.3069	0.0203	0.1039	-0.2537	0.6228	0.9832
4	0.9683	-0.8650	0.8903	0.9639	-0.5074	0.0083	0.4005	0.2515	0.5625	0.4598
5	0.4746	-0.4110	0.4180	0.4756	-0.7622	-0.0284	0.9423	0.7675	0.4838	0.2605
6	-0.4730	0.5027	-0.3945	-0.5378	0.9895	0.0338	-0.8124	-0.6382	-0.5055	-0.3059
7	0.4211	-0.3400	0.3777	0.4029	-0.6186	-0.0251	0.9044	0.7493	0.4260	0.2179
- 8	0.4914	-0.4239	0.4396	0.5000	-0.4655	0.0541	0.1798	0.1307	0.9556	0.6101
9	0.4912	-0.4837	0.4162	0.5446	-0.9386	-0.0252	0.8728	0.6923	0.518 5	0.3040
10	0.3991	-0.4076	0.3480	0.4429	-0.2991	0.0190	0.0986	-0.2850	0.5888	0.9260
11	1.0000	-0.7316	0.9743	0.8719	-0.4459	0.0218	0.3696	0.2339	0.5519	0.4434
12	-0.7316	1.0000	-0.5959	-0.9614	0.4986	0.0224	-0.3473	-0.2045	-0.4472	-0.3917
13	0.9743	-0.5959	1.0000	0.7540	-0.3663	0.0319	0.3145	0.1974	0.5068	0.4047
14	0.8719	-0.9614	0.7540	1.0000	-0.5257	-0.0051	0.3926	0.2408	0.5261	0.4425
15	-0.4459	0.4986	-0.3663	-0.5257	1.0000	0.0320	-0.7463	-0.5816	-0.4852	-0.3015
16	0.0218	0.0224	0.0319	-0.0051	0.0320	1.0000	-0.0459	-0.0309	0.0439	0.0220
17	0.3696	-0.3473	0.3145	0.3926	-0.7463	-0.0459	1.0000	0.8189	0.2260	0.1055
18	0.2339	-0.2045	0.1974	0.2408	-0.5816	-0.0309	0.8189	1.0000	0.1635	-0.2190
19	0.5519	-0.4472	0.5068	0.5261	-0.4852	0.0439	0.2260	0.1635	1.0000	0.6316
20	0.4434	-0 3917	0.4047	0.4425	-0.3015	0.0220	0.1055	-0.2190	0.6316	1.0000
	1252555	z== == z = = = = :				. = = = = = = = = :				* * * * * * * * * * * * * * * * * * * *

QUADRO 22: Coeficientes de correlação simples entre as variáveis estudadas para o estrato 1

	1	2	3	4	5	6	7	8	9	10
	******				=======================================					
1	1.0000	0.2953	0.2129	0.3939	0.9797	-0.9472	0.9185	0.2904	0.9841	0.2128
2	0.2953	1.0000	0.6519	0.4900	0.2728	-0.3043	0.2386	0.9899	0.3047	0.6171
3	0.2129	0.6519	1.0000	0.4839	0.1923	-0.2245	0.1626	0.6345	0.2227	0.9777
4	0.3939	0.4900	0.4839	1.0000	0.3777	-0.3824	0.3437	0.4583	0.3934	0.4634
5	0.9797	0.2728	0.1923	0.3777	1.0000	-0.8670	0.9786	0.2664	0.9294	0.1916
6	-0.9472	-0.3043	-0.2245	-0.3824	-0.8670	1.0000	-0.7550	-0.3030	-0.9888	-0.2259
7	0.9185	0.2386	0.1626	0.3437	0.9786	-0.7550	1.0000	0.2312	0.8376	0.1615
8	0.2904	0.9899	0.6345	0.4583	0.2664	-0.3030	0.2312	1,0000	0.3016	0.6082
9	0.9841	0.3047	0.2227	0.3934	0.9294	-0.9888	0.8376	0.3016	1.0000	0.2234
10	0.2128	0.6171	0.9777	0.4634	0.1916	~0.2259	0.1615	0.6082	0.2234	1.0000
11	0.5836	-0.5619	-0.3213	-0.0303	0.5759	-0.5491	0.5455	-0.5858	0.5717	-0.3031
12	0.2558	-0.3649	-0.7547	-0.2181	0.2610	-0.2326	0.2587	-0.3642	0.2452	-0.8269
13	0.5533	-0.6115	-0.3687	-0.0748	0.5295	-0.5460	0.4850	-0.6243	0.5565	-0.3458
14	0.2728	-0.4508	-0.8474	-0.2597	0.2669	-0.2620	0.2517	-0.4449	0.2701	-0.8773
15	-0.9025	-0.2985	-0.2218	-0.3668	-0.8051	0.9924	-0.6813	-0.2986	-0.9633	-0.2237
16	-0.0561	0.0352	0.0017	-0.0068	-0.0539	0.0546	-0.0497	0.0302	-0.0561	-0.0073
17	0.8857	-0.1144	-0.0401	0.2092	0.9025	-0.7887	0.8828	-0.1252	0.8426	-0.0293
18	0.6471	-0.1228	-0.4499	0.0217	0.6709	-0.5666	0.6722	-0.1228	0.6089	-0.4932
19	0.2928	0.9907	0.6539	0.5123	0.2723	-0.2985	0.2398	0.9618	0.3004	0.6114
20	0.2022	0.6566	0.9812	0.4867	0.1830	-0.2122	0.1549	0.6310	0.2110	0.9209
	:=======	*****		*=======						

QUADRO 22: Coeficientes de correlação simples entre as variáveis estudadas para o estrato 1 (Continuação)

	11	12	13	14	15	16	17	18	19	20
								=======================================		
1	0.5836	0.2558	0.5533	0.2728	-0.9025	-0.0561	0.8857	8.6471	0.2928	0.2022
2	-0.5619	-0.3649	-0.6115	-0.4508	-0.2985	0.0352	-0.1144	-0.1228	0.9907	0.6566
3	-0.3213	-0.7547	-0.3687	-0.8474	-0.2218	0.0017	-0.0401	-0.4499	0.6539	0.9812
4	-0.0303	-0.2181	-0.0748	-0.2597	-0.3668	-0.0068	0.2092	0.0217	0.5123	0.4867
5	0.5759	0.2610	0.5295	0.2669	-0.8051	-0.0539	0.9025	0.6709	0.2723	0.1830
6	-0.5491	-0.2326	-0.5460	-0.2620	0.9924	0.0546	-0.7887	-0.5666	-0.2985	-0.2122
7	0.5455	0.2587	0.4850	0.2517	-0.6813	-0.0497	0.8828	0.6722	0.2398	0.1549
8	-0.5858	-0.3642	-0.6243	-0.4449	-0.2986	0.0302	-0.1252	-0.1228	0.9618	0.6310
9	0.5717	0.2452	0.5565	0.2701	-0.9633	-0.0561	0.8426	0.6089	0.3004	0.2110
10	-0.3031	-0.8269	+0.3458	-0.8773	-0.2237	-0.0073	-0.0293	-0.4932	0.6114	0.9209
11	1.0000	0.5058	0.9798	0.5741	-0.5227	-0.0680	0.8557	0.6340	-0.5311	-0.3243
12	0.5058	1.0000	0.5176	0.9486	-0.2200	-0.0157	0.4116	0.8567	-0.3571	-0.6707
13	0.9798	0.5176	1.0000	0.6078	-0.5287	-0.0719	0.7996	0.6053	-0.5894	-0.3746
14	0.5741	0.9486	0.6078	1.0000	-0.2515	-0.0197	0.4392	0.7922	-0.4463	-0.7911
1,5	-0.5227	-0.2200	-0.5287	-0.2515	1.0000	0.0519	-0.7351	-0.5267	-0.2914	-0.2090
16	-0.0680	-0.0157	-0.0719	-0.0197	0.0519	1.0000	-0.0674	-0.0377	0.0397	0.0133
17	0.8557	0.4116	0.7996	0.4392	-0.7351	-0.0674	1.0000	0.7417	-0.1038	-0.0496
18	0.6340	0.8567	0.6053	0.7922	-0.5267	-0.0377	0.7417	1.0000	-0.1199	-0.4006
19	-0.5311	-0.3571	-0.5894	-0.4463	-0.2914	0.0397	-0.1038	-0.1199	1.0000	0.6672
20	-0.3243	-0.6707	-0.3746	-0.7911	-0.2090	0.0133	-0.0496	-0.4006	0.6672	1.0000
	*========	=======================================							=======================================	3=======

QUADRO 23: Coeficientes de correlação simples entre as variáveis estudadas para o estrato 2

	1	2	3	4	5	6	7 .	8	9	10
		93222CE3EE;		=======================================						2222222
1	1.0000	0.4713	0.2616	0.5096	0.9734	-0.9326	0.8872	0.4481	0.9769	0.2505
2	0.4713	1.0000	0.6170	0.5273	0.4344	-0.4759	0.3725	0.9873	0.4846	0.5901
3	0.2616	0.6170	1.0000	0.4333	0.2294	-0.2857	0.1859	0.6086	0.2808	0.9781
4	0.5096	0.5273	0.4333	1.0000	0.4729	-0.5059	0.4057	0.4995	0.5168	0.4143
5	0.9734	0.4344	0.2294	0.4729	1.0000	-0.8351	0.9677	0.4066	0.9069	0.2165
6	-0.9326	-0.4759	-0.2857	-0.5059	-0.8351	1.0000	-0.6932	-0.4565	-0.9754	-0.2728
7	0.8872	0.372 5	0.1859	0.4057	0.9677	-0.6932	1.0000	0.3435	0.7848	0.1734
8	0.4481	0.9873	0.6086	0.4995	0.4066	-0.4565	0.3435	1.0000	0.4735	0.5967
9	0.9769	0.4846	0.2808	0.5168	0.9069	-0.9754	0.7848	0.4735	1.0000	0.2785
10	0.2505	0.5901	0.9781	0.4143	0.2165	-0.2728	0.1734	0.5967	0.2785	1.0000
11	0.7215	-0.2333	-0.1604	0.1833	0.6999	-0.6728	0.6365	-0.2544	0.7110	-0.1546
12	0.4063	-0.1626	-0.6443	-0.0157	0.4057	-0.3590	0.3806	-0.1687	0.3902	-0.7054
13	0.7018	-0.2651	-0.1828	0.1615	0.6587	-0.6904	0.5768	-0.2847	0.7097	-0.1759
14	0.4299	-0.2171	-0.7223	-0.0349	0.4130	-0.4013	0.3702	-0.2226	0.4276	-0.7519
15	~0.8771	-0.4620	-0.2857	-0.4855	-0.7612	0.9900	-0.6108	-0.4474	-0.9436	-0.2766
16	-0.0248	0.0514	0.0221	0.0124	-0.0228	0.0305	-0.0189	0.0582	-0.0214	0.0214
17	0.9251	0.1696	0.0746	0.3718	0.9399	-0.8063	0.8995	0.1496	0.8728	0.0705
18	0.7328	0.1183	-0.2848	0.2234	.0.7564	-0.6229	0.7374	0.1056	0.6827	-0.3195
19	0.4856	0.9936	0.6119	0.5441	0.4531	-0.4785	0.3939	0.9672	0.4935	0.5774
20	0.2631	0.6199	0.9831	0.4383	0.2328	-0.2823	0.1905	0.6044	0.2794	0.6256
	:=======	=== =================================	=======================================							

QUADRO 23: Coeficientes de correlação simples entre as variáveis estudadas para o estrato 2 (Continuação)

	11	12	13	14	15	16	17	18	19	20
										. = = = = = = =
1	0.7215	0.4063	0.7018	0.4299	-0.8771	-0.0248	0.9251	0.7328	0.4856	0.2631
$\overline{2}$	-0.2333	-0.1626	-0.2651	-0.2171	-0.4620	0.0514	0.1696	0.1183	0.9936	0.6199
3	-0.1604	-0.6443	-0.1828	-0.7223	-0.2857	0.0221	0.0746	-0.2848	0.6119	0.9831
4	0.1833	-0.0157	0.1615	-0.0349	-0.4855	0.0124	0.3718	0.2234	0.5441	0.4383
5	0.6999	0.4057	0.6587	0.4130	-0.7612	-0.0228	0.9399	0.7564	0.4531	0.2328
6	-0.6728	-0.3590	-0.6904	-0.4013	0.9900	0.0305	-0.8063	-0.6229	-0.4785	-0.2823
7	0.6365	0.3806	0.5768	0.3702	-0.6108	-0.0189	0.8995	0.7374	0.3939	0.1905
8	-0.2544	-0.1687	-0.2847	-0.2226	-0.4474	0.0582	0.1496	0.1056	0.9672	0.6044
9	0.7110	0.3902	0.7097	0.4276	-0.9436	-0.0214	0.8728	0.6827	0.4935	0.2794
10	-0.1546	-0.7054	-0.1759	-0.7519	-0.2766	0.0214	0.0705	-0.3195	0.5774	0.6256
11	1.0000	0.5712	0.9775	0.6248	-0.6350	-0.0640	0.8844	0.7060	-0.2037	-0.1574
12	0.5712	1.0000	0.5593	0.9375	-0.3313	-0.0245	0.5132	0.8595	-0.1486	-0.5729
13	0.9775	0.5593	1.0000	0.6434	-0.6639	-0.0691	0.8278	0.6563	-0.2370	-0.1804
14	0.6248	0.9375	0.6434	1.0000	-0.3784	-0.0323	0.5242	0.7677	-0.2005	-0.6697
15	-0.6350	-0.3313	-0.6639	-0.3784	1.0000	0.0294	-0.7407	-0.5672	-0.4614	-0.2804
16	-0.0640	-0.0245	-0.0691	-0.0323	0.0294	1.0000	-0.0401	-0.0246	0.0488	0.0239
17	0.8844	0.5132	0.8278	0.5242	-0.7407	-0.0401	1.0000	0.8092	0.1874	0.0755
18	0.7060	0.8595	0.6563	0.7677	-0.5672	-0.0246	0.8092	1.0000	0.1308	-0.2477
19	-0.2037	-0.1486	-0.2370	-0.2005	-0.4614	0.0488	0.1874	0.1308	1.0000	0.6208
20	-0.1574	-0 5729	-0.1804	-0.6697	-0.2804	0.0239	0.0755	-0.2477	0.6208	1.0000
	******		=======================================	= t= = = = = = = :						

QUADRO 24: Coeficientes de correlação simples entre as variáveis estudadas para o estrato 3

	1	2	3	4	5	6	7	8	. 9	10
	~= 8 = = = = = = :	# = = & = = = = = = =							======	=======
1	1.0000	0.2156	0.0267	-0.0686	0.9852	-0.9407	0.9495	0.1957	0.9839	0.0539
2	0.2156	1.0000	0.2112	0.0469	0.1770	-0.2722	0.1419	0.9970	0.2494	0.2235
3	0.0267	0.2112	1.0000	-0.2073	0.0500	0.0292	0.0658	0.2128	-0.0014	0.9871
4	-0.0686	0.0469	-0.2073	1.0000	-0.0903	0.0306	-0.1084	0.0489	-0.0473	-0.1722
5	0.9852	0.1770	0.0500	-0.0903	1.0000	-0.8708	0.9890	0.1581	0.9392	0.0779
6	-0.9407	-0.2722	0.0292	0.0306	-0.8708	1,0000	-0.7933	-0.2522	-0.9860	0.0075
7	0.9495	0.1419	0.0658	-0.1084	0.9890	-0.7933	1.0000	0.1246	0.8801	0.0931
8	0.1957	0.9970	0.2128	0.0489	0.1581	-0.2522	0.1246	1.0000	0.2292	0.2229
9	0.9839	0.2494	-0.0014	-0.0473	0.9392	-0.9860	0.8801	0.2292	1.0000	0.0235
10	0.0539	0.2235	0.9871	-0.1722	0.0779	0.0075	0.0931	0.2229	0.0235	1.0000
11	0.9158	-0.1585	-0.0517	-0.0673	0.9118	-0.8421	0.8857	-0.1838	0.8906	-0.0274
12	0.6307	-0.0272	-0.6924	0.0920	0.5957	-0.6528	0.5551	-0.0389	0.6508	-0.7072
13	0.9218	-0.1359	-0.0844	-0.0670	0.8911	-0.9018	0.8442	-0.1577	0.9251	-0.0631
14	0.6272	0.0015	-0.7390	0.0937	0.5787	-0.6751	0.5272	-0.0116	0.6611	-0.7343
15	-0.8843	-0.2832	0.0526	0.0204	-0.7962	0.9897	-0.7067	-0.2639	-0.9522	0.0344
16		0.1343	-0.0256	0.1646	0.0118	-0.0628	0.0037	0.1229	0.0441	-0.0333
17	0.9528	-0.0065	0.0168	-0.0824	0.9702	-0.8348	0.9610	-0.0297	0.9045	0.0440
18	0.9003	0.0810	-0.3290	0.0282	0.8975	-0.8316	0.8757	0.0624	0.8768	-0.3166
19	0.2317	0.9973	0.2087	0.0443	0.1923	-0.2881	0.1560	0.9886	0.2656	0.2229
20	-0.0006	0.1949	0.9893	-0.2355	0.0214	0.0505	0.0371	0.1980	-0.026.1	0.9540
				========						* = = = = = = =

QUADRO 24: Coeficientes de correlação simples entre as variáveis estudadas para o estrato 3 (Continuação)

	11	12	13	14	15	16	17	18	19	20
			=======================================	*****						
1	0.9158	0.6307	0.9218	0.6272	-0.8843	0.0259	0.9528	0.9003	0.2317	-0.0006
2	-0.1585	-0.0272	-0.1359	0.0015	-0.2832	0.1343	-0.0065	0.0810	0.9973	0.1949
3	-0.0517	-0.6924	-0.0844	-0.7390	0.0526	-0.0256	0.0168	-0.3290	0.2087	0.9893
4	-0.0673	0.0920	-0.0670	0.0937	0.0204	0.1646	-0.0824	0.0282	0.0443	-0.2355
5	0.9118	0.5957	0.8911	0.5787	-0.7962	0.0118	0.9702	0.8975	0.1923	0.0214
6	-0.8421	-0.6528	-0.9018	-0.6751	0.9897	-0.0628	-0.8348	-0.8316	-0.2881	0.0505
7	0.8857	0.5551	0.8442	0.5272	-0.7067	0.0037	0.9610	0.8757	0.1560	0.0371
8	-0.1838	-0.0389	-0.1577	-0.0116	-0.2639	0.1229	-0.0297	0.0624	0.9886	0.1980
9	0.8906	0.6508	0.9251	0.6611	-0.9522	0.0441	0.9045	0.8768	0.2656	-0.0261
10	-0.0274	-0.7072	-0.0631	-0.7343	0.0344	-0.0333	0.0440	-0.3166	0.2229	0.9540
11	1.0000	0.6353	0.9753	0.6248	-0.7843	-0.0422	0.9747	0.8624	-0.1356	-0.0741
12	0.6353	1.0000	0.6754	0.9748	-0.6413	0.0911	0.5988	0.8737	-0.0169	-0.6670
13	0.9753	0.6754	1.0000	0.6752	-0.8631	-0.0030	0.9292	0.8651	-0.1161	-0.1037
14	0.6248	0.9748	0.6752	1.0000	-0.6727	0.0562	0.5805	0.8333	0.0129	-0.7289
15	-0.7843	-0.6413	-0.8631	-0.6727	1.0000	-0.0789	-0.7601	-0.7773	-0.2985	0.0704
16	-0.0422	0.0911	-0.0030	0.0562	-0.0789	1.0000	-0.0368	0.0716	0.1431	-0 0214
17	0.9747	0.5988	0.9292	0.5805	-0.7601	-0.0368	1.0000	0.8815	0.0136	-0.0102
18	0.8624	0.8737	0.8651	0.8333	-0.7773	0.0716	0.8815	1.0000	0.0969	-0.3349
19	-0.1356	-0.0169	-0.1161	0.0129	-0.2985	0.1431	0.0136	0.0969	1.0000	0.1912
20	-0.0741	-0.6670	-0.1037	-0.7289	0.0704	-0.0214	-0.0102	-0.3349	0.1912	1.0000
	12222222			. = = = = = = = :	=======	========	=========			=======

QUADRO 25: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Cumala colorada

	1	2	3	4	5	6	7	8	9	10
	******	*****							=======================================	
1	1.0000	0.2227	0.0169	0.1453	0.9838	-0.9431	0.9421	0.1867	0.9840	0.0407
2	0.2227	1.0000	0.2316	0.2909	0.1994	-0.2537	0.1770	0.9975	0.2417	0.2345
3	0.0169	0.2316	1.0000	0.1517	0.0345	0.0415	0.0411	0.2270	-0.0101	0.9872
4	0.1453	0.2909	0.1517	1.0000	0.1568	-0.1186	0.1668	0.2893	0.1324	0.1748
5	· 0.9838	0.1994	0.0345	0.1568	1.0000	-0.8706	0.9867	0.1612	0.9368	0.0630
6	-0.9431	-0.2537	0.0415	-0.1186	-0.8706	1.0000	-0.7844	-0.2241	~0.9870	0.0292
7	0.9421	0.1770	0.0411	0.1668	0.9867	-0.7844	1.0000	0.1380	0.8696	0.0727
8	0.1867	0.9975	0.2270	0.2893	0.1612	-0.2241	0.1380	1.0000	0.2088	0.2267
9	0.9840	0.2417	-0.0101	0.1324	0.9368	-0.9870	0.8696	0.2088	1.0000	0.0079
10	0.0407	0.2345	0.9872	0.1748	0.0630	0.0292	0.0727	0.2267	0.0079	1.0000
11	0.8855	-0.2170	-0.0691	0.0610	0.8770	-0.8206	0.8423	-0.2560	0.8638	-0.0442
12	0.6438	-0.0185	-0.6959	-0.0302	0.6124	-0.6673	0.5749	-0.0329	0.6624	-0.7111
13	0.9044	-0.1791	-0.1057	0.0103	0.8681	-0.8915	0.8108	-0.2131	0.9110	-0.0874
14	0.6257	-0.0133	-0.7442	-0.0436	0.5770	-0.6811	0.5247	-0.0292	0.6614	-0.7445
15	-0.8913	-0.2595	0.0721	-0.1048	-0.8009	0.9908	-0.7026	-0.2327	-0.956 6	0.0648
16	0.0634	0.2612	0.2084	0.0594	0.0536	-0.0941	0.0502	0.2403	0.0781	3.1786
17	0.9359	-0.0413	-0.0020	0.1338	0.9515	-0.8240	0.9365	-0.0824	0.8893	0.0275
18	0.9039	0.0995	-0.3410	0.0870	0.9098	-0.8293	0.8944	0.0699	0.8745	-0.3268
19	0.2561	0.9979	0.2343	0.2908	0.2352	-0.2802	0.2139	0.9908	0.2717	0.2402
20		0.2210	0.9902	0.1232	0.0096	0.0482	0.0125	0.2192	-0.0230	0.9557
	:======							=======================================		=======================================

QUADRO 25: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Cumala colorada (Continuação)

	11	12	13	14	15	16	17	18	19	20
	******				=======================================	========		= = = = = = = = = = = = = = = = = = = =		: = = = = = = = =
1	0.8855	0.6438	0.9044	0.6257	-0.8913	0.0634	0.9359	0.9039	0.2561	-0.0025
2	-0.2170	-0.0185	-0.1791	-0.0133	-0.2595	0.2612	-0.0413	0.0995	0.9979	0.2210
3	-0.0691	-0.6959	-0.1057	-0.7442	0.0721	0.2084	-0.0020	-0.3410	0.2343	0.9902
4	0.0610	-0.0302	0.0103	-0.0436	-0.1048	0.0594	0.1338	0.0870	0.2908	0.1232
5	0.8770	0.6124	0.8681	0.5770	-0.8009	0.0536	0.9515	0.9098	0.2352	0.0096
6	-0.8206	-0.6673	-0.8915	~0.6811	0.9908	-0.0941	-0.8240	-0.8293	-0.2802	0.0482
7	0.8423	0.5749	0.8108	0.5247	-0.7026	0.0502	0.9365	0.8944	0.2139	0.0125
8	-0.2560	-0.0329	-0.2131	-0.0292	-0.2327	0.2403	-0.0824	0.0699	0.9908	0.2192
9	0.8638	0.6624	0.9110	0.6614	-0.9566	0.0781	0.8893	0.8745	0.2717	-0.0230
10	-0.0442	-0.7111	-0.0974	-0.7445	0.0648	0.1786	0.0275	-0.3268	0.2402	0.9557
11	1.0000	0.6226	0.9711	0.6086	-0.7694	-0.0647	0.9715	0.8299	-0.1794	-0.0872
12	0.6226	1.0000	0.6754	0.9776	-0.6627	-0.0236	0.6018	0.8747	-0.0042	-0.6695
13	0.9711	0.6754	1.0000	0.6729	-0.8575	-0.0229	0.9234	0.8442	-0.1462	-0.1153
14	0.6086	0.9776	0.6729	1.0000	-0.6878	-0.0780	0.5717	0.8288	0.0021	-0.7270
15	-0.7694	-0.6627	-0.8575	-0.6878	1 0000	-0.1086	-0.7557	-0.7799	-0.2833	o, 073 5
16	-0.0647	-0.0236	-0.0229	-0.0780	-0.1086	1.0000	-0.0326	0.0297	0.2800	0.2295
17	0.9715	0.6018	0.9234	0.5717	-0 7557	-0.0326	1.0000	0.8721	-0.0022	-0.0271
18	0.8299	0.8747	0.8442	0.8288	~0.7799	0.0297	0.8721	1.0000	0.1280	-0.3471
19	-0.1794	-0.0042	-0.1462	0.0021	-0 2833	0.2800	-0.0022	011280	1.0000	0.2211
20	-0.0872	-0.6695	-0.1153	-0.7270	0.0735	0.2295	-0.0271	-0.3471	0.2211	1.0000
	========	========			=======================================		=======================================		========	:========

QUADRO 26: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Machimango blanco

	1	2	3	4	5	6	7	8	9	10
	========						=======	: = = = = = = = :		
1	1.0000	0.3624	0.2547	0.4928	0.9862	-0.9598	0.9447	0.3488	0.9884	0.2385
2	0.3624	1.0000	0.6762	0.2987	0.3341	-0.3885	0.2968	0.9915	0.3800	0.6398
3	0.2547	0.6762	1.0000	0.2311	0.2117	-0.3075	0.1610	0.6620	0.2865	0.9771
4	0.4928	0.2987	0.2311	1.0000	0.4740	-0.4945	0.4425	0.2936	0.4986	0.2346
5	0.9862	0.3341	0.2117	0.4740	1.0000	-0.9016	0.9858	0.3189	0.9499	0.1881
6	-0.9598	-0.388 5	-0.3075	-0.4945	-0.9016	1.0000	-0.8204	-0.3788	-0.9912	-0.3039
7	0.9447	0.2968	0.1610	0.4425	0.9858	-0.8204	1,0000	0.2807	0.8857	0.1302
8	0.3488	0.9915	0.6620	0.2936	0.3189	-0.3788	0.2807	1.0000	0.3683	0.6348
9	0.9884	0.3800	0.2865	0.4986	0.9499	-0.9912	0.8857	0.3683	1.0000	0.2772
10	0.2385	0.6398	0.9771	0.2346	0.1881	-0.3039	0.1302	0.6348	0.2772	1.0000
11	0.5788	-0.5136	-0.3154	0.1668	0.5849	-0.5336	0.5756	-0.5404	0.5599	-0.3054
12	0.3440	-0.2851	-0.6502	0.0588	0.4089	-0.2332	0.4717	-0.2907	0.2839	-0.7258
13	0.5642	-0.5478	-0.3361	0.1793	0.5569	-0.5397	0.5342	-0.5669	0:5570	-0.3207
14	0.3039	-0.4241	-0.8138	0.0374	0.3347	-0.2379	0.3589	-0.4268	0.2703	-0.8494
15	-0.9232	-0.3908	-0.3199	-0.4849	-0.8504	0.9936	-0.7577	-0.3827	-0.9701	-0.3208
16	-0.1108	0.0175	-0.0156	-0.1230	-0.1189	0.0883	-0.1218	0.0233	-0.0998	-0.0123
17	0.8695	-0.0805	-0.0516	0.3455	0.8883	-0.7868	0.8835	-0.0976	0.8326	-0.0571
18	0.5874	-0.0441	-0.3343	0.2141	0.6589	-0.4560	0.7235	-0.0486	0.5176	-0.3920
19	0.3690	0.9928	0.6786	0.3018	0.3432	-0.3900	0.3079	0.9692	0.3839	0.6340
20	0.2548	0.6788	0.9816	0.2191	0.2194	-0.2957	0.1762	0.6560	0.2800	0.9204
					* = = = = = = = = = = = = = = = = = = =	=======	========	=======================================		:=======

QUADRO 26: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Machimango blanco (Continuação)

	11	12	13	14	15	16	17	18	19	20
		=======================================					_ = = = = = = = = = = = = = = = = = = =			========
1	0.5788	0.3440	0.5642	0.3039	-0.9232	-0.1108	0.8695	0.5874	0.3690	0.2548
2	-0.5136	-0.2851	-0.5478	-0.4241	-0.3908	0.0175	-0.0805	-0.0441	0.9928	0.6788
3	-0.3154	-0.6502	-0.3361	-0.8138	-0.3199	-0.0156	-0.0516	-0.3343	0.6786	0.9816
4	0.1668	0.0588	0.1793	0.0374	-0.4849	-0.1230	0.3455	0.2141	0.3018	0.2191
5	0.5849	0.4089	0.5569	0.3347	-0.8504	-0.1189	0.8883	0.6589	0.3432	0.2194
6	-0.5336	-0.2332	-0.5397	-0.2379	0.9936	0.0883	-0.7868	-0.4560	-0.3900	-0.2957
7	0.5756	0.4717	0.5342	0.3589	-0.7577	-0.1218	0.8835	0.7235	0.3079	0.1762
8	-0.5404	-0.2907	-0.5669	-0.4268	-0.3827	0.0233	-0.0976	-0.0486	0.9692	0.6560
9	0.5599	0.2839	0.5570	0.2703	-0.9701	-0.0998	0.8326	0.5176	0.3839	0.2800
10	-0.3054	-0.7258	-0.3207	-0.8494	-0.3208	-0.0123	-0.0571	-0.3920	0.6340	0.9204
11	1.0000	0.5313	0.9795	0.6072	-0.5049	-0.1044	0.8739	0.5440	-0.4826	-0.3106
12	0.5313	1.0000	0.5110	0.8935	-0.1927	-0.0283	0.5303	0.9020	-0.2758	-0.5701
13	0.9795	0.5110	1.0000	0.6201	-0.5175	-0.1093	0.8249	0.5016	-0.5234	-0.3359
14	0.6072	0.8935	0.6201	1.0000	-0.2087	-0.0415	0.5116	0.6855	-0.4151	-0.7550
15	-0.5049	-0.1927	-0.5175	-0.2087	1.0000	0.0781	-0.7396	-0.4051	-0.3903	-0.3042
16	-0.1044	-0.0283	-0.1093	-0.0415	0.0781	1.0000	-0.1167	-0.0481	0.0100	-0.0242
17	0.8739	0.5303	0.8249	0.5116	-0.7396	-0.1167	1.0000	0.6917	-0.0637	-0.0468
18	0.5440	0.9020	0.5016	0.6855	-0.4051	-0.0481	0.6917	1.0000	-0.0396	-0.2826
19	-0.4826	-0.2758	-0.5234	-0.4151	-0.3903	0.0100	-0.0637	-0.0396	1.0000	0.6895
20	-0.3106	-0.5701	-0.3359	-0.7550	-0.3042	-0.0242	-0.0468	-0.2826	0.6895	1.0000
	:=======	*========			=======================================			*****		

QUADRO 27: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Parinari

	1	2	3	4	5	6	7	8	9	10
	========	=======================================	*****							
1	1.0000	0.3430	0.2432	0.3960	0.9859	-0.9583	0.9444	0.3335	0.9879	0.2312
2	0.3430	1.0000	0.6194	0.4341	0.3139	-0.3695	0.2759	0.9913	0.3611	0.5915
3	0.2432	0.6194	1.0000	0.1427	0.2024	-0.2948	0.1555	0.6156	0.2740	0.9773
4	0.3960	0.4341	0.1427	1.0000	0.3886	-0.3827	0.3706	0.4091	0.3929	0.1590
5	0.9859	0.3139	0.2024	0.3886	1.0000	-0.8985	0.9859	0.3028	0.9485	0.1841
6	-0.9583	-0.3695	~0.2948	-0.3827	-0.8985	1.0000	-0.8167	-0.3638	-0.9908	-0.2935
7	0.9444	0.2759	0.1555	0.3706	0.9859	-0.8167	1.0000	0.2640	0.8839	0.1313
8	0.3335	0.9913	0,6156	0.4091	0.3028	-0.3638	0.2640	1.0000	0.3534	0.5955
9	0.9879	0.3611	0.2740	0.3929	0.9485	-0.9908	0.8839	0.3534	1.0000	0.2679
10	0.2312	0.5915	0.9773	0.1590	0.1841	-0.2935	0.1313	0.5955	0.2679	1.0000
11	0.5882	-0.5196	-0.2880	0.0161	0.5958	-0.5401	0.5882	-0.5436	0.5678	-0.2802
12	0.3555	-0.2588	-0.6483	0.0594	0.4119	-0.2525	0.4630	-0.2684	0.3006	-0.7219
13		-0.5599	-0.3042	-0.0170	0.5614	-0.5442	0.5393	-0.5756	0.5615	-0.2924
14	0.3278	-0.3761	-0.8062	0.0605	0.3534	-0.2659	0.3706	-0.3854	0.2972	-0.8396
15		-0.3715	-0.3074	-0.3692	-0.8456	0.9934	-0.7521	-0.3675	~0.9689	-0.3099
16		0.0561	-0.0178	0.0010	-0.0954	0.0748	-0.0952	0.0577	-0.0833	-0.0125
17	0.8723	-0.0908	-0.0387	0.2304	0.8933	-0.7848	0.8909	-0.1039	0.8330	-0.0424
18		-0.0309	-0.3294	0.1836	0.6645	-0.4774	0.7167	-0.0363	0.5370	-0.3841
19		0.9326	0.6116	0.4542	0.3191	-0.3672	0.2830	0.9682	0.3611	0.5771
20		0.6183	0.9818	0.1240	0.2058	-0.2819	0.1650	0.6068	0.2656	0.9210
	:=======		=======================================					========		

QUADRO 27: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Parinari (Continuação)

	11	12	13	14	15	16	17	18	19	20
			=======================================	= = = = = = = = = = = = = = = = = = = =			========	=========	=======================================	
1	0.5882	0.3555	0.5687	0.3278	-0.9203	-0.0909	0.8723	0.6019	0.3458	0.2403
2	-0.5196	-0.2588	-0.5599	-0.3761	-0.3715	0.0561	-0.0908	-0.0309	0.9926	0.6183
3	-0.2880	-0.6483	-0.3042	-0.8062	-0.3074	-0.0178	-0.0387	-0.3294	0.6116	0.9818
4	0.0161	0.0594	-0.0170	0.0605	-0.3692	0.0010	0.2304	0.1836	0.4542	0.1240
5	0.5958	0 4119	0.5614	0.3534	-0.8456	-0.0954	0.8933	0.6645	0.3191	0.2058
6	-0.5401	-0.2525	-0.5442	-0.2659	0.9934	0.0748	-0.7848	-0.4774	-0.3672	-0.2819
7	0.5882	0.4630	0.5393	0.3706	-0.7521	-0.0952	0.8909	0.7167	0.2830	0.1650
8	-0.5436	-0.2684	-0.5756	-0.3854	-0.3675	0.0577	-0.1039	-0.0363	0.9682	0.6068
9	0.5678	0.3006	0.5615	0.2972	-0.9689	-0.0833	0.8330	0.5370	0.3611	0.2656
10	-0.2802	-0.7219	-0.2924	-0.8396	-0.3099	-0.0125	-0.0424	-0.3841	0.5771	0.9210
11	1.0000	0.5230	0.9779	0.5927	-0.5103	-0.1141	0.8746	0.5468	-0.4912	- 4 .283 6
12	0.5230	1.0000	0.5003	0.8950	-0.2131	-0.0243	0.5225	0.9007	-0.2460	-0.5703
13	0.9779	0.5003	1.0000	0.6006	-0.5217	-0.1237	0.8201	0.5013	-0.5385	-0.3033
14	0.5927	0.8950	0.6006	1.0000	-0.2367	-0.0341	0.5093	0.6916	-0.3610	-0.7498
15	-0.5103	-0.2131	-0.5217	-0.2367	1.0000	0.0669	-0.7358	-0.4267	-0.3672	-0.2912
16	-0.1141	-0.0243	-0.1237	-0.0341	0.0669	1.0000	-0.1073	-0.0407	0.0526	-0.0277
17	0.8746	0.5225	0.8201	0.5093	-0.7358	-0.1073	1.0000	0.6923	-0.0778	-0.0366
18	0.5468	0.9007	0.5013	0.6916	-0.4267	~0.0407	0.6923	1.0000	-0.0256	-0.2806
19	-0.4912	-0.2460	-0.5385	-0.3610	-0.3672	0.0526	-0.0778	-0.0256	1.0000	0.6177
20	-0.2836	-0.5703	-0.3033	-0.7498	-0.2912	-0.0277	-0.0366	-0.2806	0.6177	1.0000
	.=======		=======================================		======================================		========	=======================================		

QUADRO ²⁸: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Shimbillo

	1	2	3	4	5	6	7	8	9	10
						=======================================		:=======:		
1	1.0000	0.3740	0.2203	0.3851	0.9833	-0.9532	0.9335	0.3595	0.9862	0.2128
2	0.3740	1.0000	0.5717	0.5622	0.3483	-0.3922	0.3128	0.9904	0.3879	0.5506
3	0.2233	0.5717	1.0000	0.1544	0.1802	-0.2693	0.1343	0.5801	0.2500	0.9776
4	0.3851	0.5622	0.1544	1.0000	0.3773	-0.3718	0.3585	0.5215	0.3820	0.1660
5	0.9833	0.3483	0.1802	0.3773	1.0000	-0.8847	0.9828	0.3303	0.9403	0.1680
6	-0.9532	-0.3922	-0.2693	-0.3718	-0.8847	1.0000	-0.7898	-0.3845	-0.9899	-0.2712
7	0.9335	0.3128	0.1343	0.3585	0.9828	-0.7898	1.0000	0.2923	0.8641	0.1184
8	0.3595	0.9904	0.5801	0.5215	0.3303	-0.3845	0.2923	1.0000	0.3770	0.5651
9	0.9862	0.3879	0.2500	0.3820	0.9403	-0.9899	0.8641	0.3770	1.0000	0.2476
10	0.2128	0.5506	0.9776	0.1660	0.1680	-0.2712	0.1184	0.5651	0.2476	1.0000
11	0.5615	-0.5166	-0.2911	-0.0895	0.5606	-0.5198	0.5394	-0.5449	0.545 5	-0.2836
12	0.3733	-0.2127	-0.6514	0.0584	0.4196	-0.2771	0.4530	-0.2307	0.3233	-0.7220
13	0.5424	-0.5577	-0.3073	-0.1351	0.5287	-0.5225	0.4963	-0.5774	0.5385	-0.2963
14	0.3553	-0.3102	-0.8026	0.0538	0.3738	-0.2988	0.3795	-0.3313	0.3285	-0.8331
15	-0.9121	-0.3904	-0.2805	-0.3583	-0.8276	0.9929	-0.7208	-0.3854	-0.9663	-0.2860
16	-0.0319	0.1798	0.0060	0.1992	-0.0312	0.0248	-0.0258	0.1669	-0.0291	0.0103
17	0.8683	-0.0674	-0.0446	0.1699	0.8822	-0.7814	0.8648	-0.0856	0.8306	-0.0462
18	0.6256	0.0144	-0.3305	0.1836	0.6797	-0.5023	0.7134	0.0017	0.5628	-0.3808
19	0.3818	0.9919	0.5507	9.5946	0.3606	-0.3917	0.3292	0.9652	0.3912	0.5251
20	0.2155	0.5674	0.9823	0.1394	0.1803	-0.2560	0.1385	0.5694	0.2406	0.9226
			, =========			=======================================			========	

QUADRO 28: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Shimbillo (Continuação)

	11	12	13	14	15	16	17	18	19	20
			= = = = = = = = = = = = = = = = = = = =				=======			
1	0.5615	0.3733	0.5424	0.3553	-0.9121	-0.0319	0.8683	0.6256	0.3818	0.2155
2	-0.5166	-0.2127	-0.5577	-0.3102	-0.3904	0.1798	-0.0674	0.0144	0.9919	0.5674
3	-0.2911	-0.6514	-0.3073	-0.8026	-0.2805	0.0060	-0.0446	-0.3305	0.5507	0.9823
4	-0.0895	0.0584	-0.1351	0.0538	-0.3583	0.1992	0.1699	0.1836	0.5946	0.1394
5	0.5606	0.4196	0.5287	0.3738	-0.8276	-0.0312	0.8822	0.6797	0.3606	0.1803
6	-0.5198	-0.2771	-0.5225	-0.2988	0.9929	0.0248	-0.7814	-0.5023	-0.3917	-0.2560
7	0.5394	0.4530	0.4963	0.3795	-0.7208	-0.0258	0.8648	0.7134	0.3292	0.1385
8	-0.5449	-0.2307	-0.5774	-0.3313	-0.3854	0.1669	-0.0856	0.0017	0.9652	0.5694
9	0.5455	0.3233	0.5385	0.3285	-0.9663	-0.0291	0.8306	0.5628	0.3912	0.2406
10	-0.2836	-0.7220	-0.2963	-0.8331	-0.2860	0.0103	-0.0462	-0.3808	0.5251	0.9226
11	1.0000	0.5182	0.9773	0.5836	-0.4911	-0.1592	0.8643	0.5399	-0.4829	-0.2863
12	0.5182	1.0000	0.4953	0.8981	-0.2383	-0.0155	0.5286	0.8983	-0.1914	-0.5762
13	0.9773	0.4953	1.0000	0.5914	-0.5009	-9.1764	0.8101	0.4946	-0.5307	-0.3054
14	0.5836	0.8981	0.5914	1.0000	-0.2704	-0.0264	0.5172	0.7002	-0.2830	-0.7492
15	-0.4911	-0.2383	-0.5009	-0.2704	1.0000	0.0205	-0.7309	-0.4500	-0.3870	-0.2641
16	-0.1592	-0.0155	-0.1764	-0.0264	0 0205	1.0000	-0.1022	-0.0150	0.1898	-0.0031
17	0.8643	0.5286	0.8101	0.5172	-0.7309	-0.1022	1.0000	0.7046	-0.0489	-0.0438
18	0.5399	0.8983	0.4946	0.7002	-0 4500	-0.0150	0.7046	1.0000	0.0272	-0.2852 .
19	-0.4829	-0.1914	-0.5307	-0.2830	-0.3870	0.1898	-0.0489	0.0272	1.0000	0.5520
20	-0.2863	-0.5762	-0.3054	-0.7492	-0.2641	-0.0031	-0.0438	+0.2852	0.5520	1.0000
	E======					=======================================	=======		=======================================	=======

QUADRO 29: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Tangarana

	1	2	3	4	5	6	. 7	8	9	10
=										
1	1.0000	0.3779	0.2269	0.3645	0.9817	-0.9474	0.9296	0.3640	0.9845	0.2219 0.5716
2	0.3779	1.0000	0.5927	0.6121	0.3507	-0.3948	0.3140	0.9901	0.3919	
3	0.2269	0.5927	1.0000	0.2288	0.1925	-0.2690	0.1546	0.6011	0.2526	0.9776
4	0.3645	0.6121	0.2288	1.0000	0.3508	-0.3566	0.3256	0.5716	0.3652	0.2314
5	0.9817	0.3507	0.1925	0.3508	1.0000	-0.8718	0.9824	0.3338	0.9337	0.1822
6	-0.9474	-0.3948	-0.2690	-0.3566	-0.8718	1.0000	-0.7717	-0.3879	-0.9886	-0.2742
7	0.9296	0.3140	0.1546	0.3256	0.9824	-0.7717	1.0000	0.2951	0.8534	0.1403
8	0.3640	0.9901	0.6011	0.5716	0.3338	-0.3879	0.2951	1.0000	0.3816	0.5863
ğ	0.9845	0.3919	0.2526	0.3652	0.9337	-0.9886	0.8534	0.3816	1.0000	0.2531
10	0.2219	0.5716	0.9776	0.2314	0.1822	-0.2742	0.1403	0.5863	0.2531	1.0000
11	0.5622	-0.5098	-0.3023	-0.1409	0.5574	-0.5212	0.5315	-0.5385	0.5475	-0.2939
12		-0.2264	-0.6476	0.0115	0.3985	-0.2803	0.4141	-0.2440	0.3232	-0.7179
13	0.5394	-0.5553	-0.3248	-0.1957	0.5223	-0.5209	0.4866	-0.5748	0.5369	-0.3115
14	0.3595	-0.3219	-0.7961	-0.0122	0.3693	-0.3092	0.3640	-0.3430	0.3372	-0.8248
15	-0.9020	-0.3911	-0.2782	-0.3437	-0.8092	0.9922	-0.6970	-0.3871	-0.9626	-0.2872
	-0.0094	0.2147	0.0420	0.2336	-0.0048	0.0092	0.0034	0.2004	-0.0104	0.0421
17	0.8766	-0.0484	-0.0344	0.1385	0.8884	-0.7835	0.8670	-0.0664	0.8369	-0.0351
18	0.6314	0.0137	-0.3168	0.1553	0.6710	-0.5164	0.6843	0.0016	0.5754	-0.3664
19	0.3840	0.9916	0.5712	0.6413	0.3608	-0.3933	0.3271	0.9639	0.3940	0.5455
20	0.2181	0.5871	0.9826	0.2191	0.1889	-0.2512	0.1554	0.5889	0.2389	0.9234
				=======================================	========					

QUADRO 29: Coeficientes de correlação simples entre as variáveis estudadas para a espécie Tangarana (Continuação)

	11	12	13	14	15	16	17	18	19	20
	*******	=======================================								
1	0.5622	0.3657	0.5394	0.3595	-0.9020	-0.0094	0.8766	0.6314	0.3840	0.2181
$\frac{1}{2}$	-0.5098	-0.2264	-0.5553	-0.3219	-0.3911	0.2147	-0.0484	0.0137	0.9916	0.5871
_	-0.3023	-0.6476	-0.3248	-0.7961	-0.2782	0.0420	-0.0344	-0.3168	0.5712	0.9826
4	-0.1409	0.0115	-0.1957	-0.0122	-0.3437	0.2336	0.1385	0.1553	0.6413	0.2191
5	0.5574	0.3985	0.5223	0.3693	-0.8092	-0.0048	0.8884	0.6710	0.3608	0.1889
6	-0.5212	-0.2803	-0.5209	-0.3092	0.9922	0.0092	-0.7835	-0.5164	-0.3933	-0.2512
7	0.5315	0.4141	0.4866	0.3640	-0.6970	0.0034	0.8670	0.6843	0.3271	0.1554
8	-0.5385	-0.2440	-0.5748	-0.3430	-0.3871	0.2004	-0.0664	0.0016	0.9639	0.5889
9	0.5475	0.3232	0.5369	0.3372	-0.9626	-0.0104	0.8369	0.5754	0.3940	0.2389
10	-0.2939	-0.7179	-0.3115	-0.8248	-0.2872	0.0421	-0.0351	-0.3664	0.5455	0.9234
11	1.0000	0.5310	0.9769	0.6018	-0.4912	-0.1707	0.8570	0.5541	-0.4758	-0.2989
$\overline{12}$	0.5310	1.0000	0.5093	0.8974	-0.2425	-0.0294	0.5229	0.8939	-0.2054	-0.5741
13	0.9769	0.5093	1.0000	0.6120	-0.4985	-0.1909	0.8015	0.5079	-0.5284	-0.3254
14	0.6018	0.8974	0.6120	1.0000	-0.2808	-0.0460	0.5215	0.7007	-0.2948	-0.7461
15	-0.4912	-0.2425	-0.4985	-0.2808	1.0000	0.0073	-0.7287	-0.4633	-0.3866	-0.2573
16	-0.1707	-0.0294	-0.1909	-0.0460	0.0073	1.0000	-0.0913	-0.0159	0.2248	0.0357
17	0.8570	0.5229	0.8015	0.5215	-0.7287	-0.0913	1.0000	0.7113	-0.0311	-0.0360
18	0.5541	0.8939	0.5079	0.7007	-0.4633	-0.0159	0.7113	1.0000	0.0252	-0.2737
19	-0.4758	-0.2054	-0.5284	-0.2948	-0.3866	0.2248	-0.0311	0.0252	1.0000	0.5713
20	-0.2989	-0.5741	-0.3254	-0.7461	-0.2573	0.0357	-0.0360	-0.2737	0.5713	1.0000
	:=======		= = = = = = = = = = = = = = = = = = = =		=======================================					

QUADRO 30: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testados para estimar a altura total do Centro Herrera

Νċ	EQUAÇÃO	COEFICIENTES	R^2	Syx	Syxt	F
1	Ht = b0 + b1D	b0 = 15,34252128	0,25	3,7343	-	4782,85
		b1 = 0,162956542				
2	$Ht = b0 + b1D + b2D^2$	b0 = 12,08083147				
		b1 = 0,311216836	0,26	3,7075	-	2531,25
		b2 = -0,00148008				
3	Ht = b0 + b1/D	b0 = 29,79096834	0.25	3,7326		4800,41
		b1 = -288,5628894				
4	Ht = b0+b1/D+b2D	b0 = 22,73916465				- ,
		b1 = -152,201783	0,26	3,7114		2510,67
		b2 = 0,082807098				
5	$Ht=b0+b1D+b2D^2+b3D^3$	b0 = 10,49863621				
		b1 = 0,40966556	0,26	3,7065	_	1691,38
		b2 = -0,00331375	,			·
		b3 = 0,0000102002				

QUADRO 30: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testados para estimar a altura total do Centro Herrera (continuação)

				•		
Nφ	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
6	Log Ht = b0 + b1 Log D+b2D	b0 = 0,490166784			79 3,6703	2523,49
		b1 = 0,59459953	0,26	0,0779		
		b2 = 0,00246523				
7	$Log Ht = b0+b1D+b2D^{2}$	b0 = 1,1103904				
		b1 = 0,00737017	0,25	0,0788	3,7127	2303,95
		b2 = -0,0000411975				
8	Ht = b0 + b1 LogD	b0 = -4,99346528	0 26	3,6995		5146,27
		b1 = 17,00499868	0,20	3,0333	_	3140,27
9	$Ht = b0 + b1/D^2$	b0 = 25,98593052				
3	THE SOURCE DITY D	b1 = 5092061297	0,24	3,7699	-	4420,99
		01 - 3092001297				
10	$Ht = b0 + b1D^2$	b0 = 19,1851641	0.21	3,8187		3941,77
		b1 = 0,00147218	- ,	- ,		- · ·

Continua

QUADRO 30: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testados para estimar a altura total do Centro Herrera (continuação)

Νδ	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
11	Ht - 1,3 = $D^2/(b0+b1D+b2D^2)$	b0 = -8,633586368 $b1 = 1,22168428$ $b2 = 0,0240630453$	0,89	6,5165	1,8605	58476,72
12	Log Ht = LogbO+b1 LogD	b0 = -0,10949512 $b1 = 0,350538829$	0,25	0,0783	3,6891	58476,72
13	Log Ht = b0 + b1D	b0 = 1,200826703 $b1 = 0,00324339$	0,23	0,0798	3,7598	4144,73
14	Log Ht = b0 + b1 Log D	b0 = 0,777150055 b1 = 0,350538829	0,25	0,07830	3,6811	4880,93
15	$Ht = D^2/(b0+b1D^2)+1,3$	b0 = 17,51148055 b1 = 0,037263797	0,89	20,5504	3,8592	114496,83
16	$\frac{3}{1/\sqrt{\text{Ht} - 1,3}} = b0+b1/D$	b0 = 15,8882578 b1 = 0,682629336	0,30	19,2117	3,6078	6155,18

QUADRO 30: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testados para estimar a altura total do Centro Herrera (continuação)

Νç	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
17	Ht -1,3 = $D^2/(b0+b1 \text{ Log } D)$	b0 = -484,422389 $b1 = 360,1455132$	0,76	20,7016	3,8876	46179,57
18	$Ht-1,3=D^2/(b0+b1D+b2D^2+b3D^3)$	b0 = -8,9953951 $b1 = 1,29828084$ $b2 = 0,020714295$ $b3 = 0,000047995$	0,89	9,0254	2,4536	39007,79
19	Ht-1,3=D ² /(b0+b1/D+b2D)	b0 = -204,2998069 $b1 = 2841,434539$ $b2 = 5,270592308$	0,88	20,4183	3,8344	54739,99
20	$Ht-1,3=D^{2}/(b0+b1D)^{2}$	b0 = 18,99348863 b1 = 0,031923142	0,29	19,4646	3,6553	5622,42
21	Ht $-1,3 = D^2/(b0+b1D)$	b0 = -66,21287048 $b1 = 3,774293157$	0,86	20,3587	3,8232	90745,134

QUADRO 31: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testados para estimar a altura comercial do Centro Herrera

Nφ	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
1	Hc = b0 + b1D	b0 = 8,663139505 b1 = 0,085220199	0,35	3,7313	_	1310,16
2	$Hc = b0 + b1D + b2D^{2}$	b0 = 5,563456359 b1 = 0,226117336 b2 = -1,40657E-03	0,35	3,7071	-	758,65
3	Hc = b0 + b1/D	b0 = 16,51316570 b1 = -161,3151147	0,35	3,7065	_	1521,35
- 4	Hc = b0 + b1/D + b2D	b0 = 16,33899162 b1 = -157,9471011 b2 = 2,04527E-03	0,36	3,7066	-	760,68
5	Hc=b0+b1D+b2D ² +b3D ³	b0 = 2,97859492 b1 = 0,386952782 b2 = -4,40225E-03 b3 = 1,66640E-05	0,36	3,7042	-	514,48
6	LogHc = b0+b1LogD+b2D	b0 = 0,017258406 b1 = 0,762461682 b2 = -4,11582E-03	0,34	0,1449	3,8270	780,09
7	$LogHc = b0 + b1D + b2D^{2}$	b0 = 0,792395888 $b1 = 9,39333E-03$ $b2 = -6, 17835E-05$	0,34	0,1454	3,8505	728,53

QUADRO 31: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testados para estimar a altura comercial do Centro Herrera (continuação)

					*	
Nº.	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
8	Hc = b0 + bl Log D	b0 = -2,48840908 b1 = 9,2228224	0,34	3,7082	~	1506,66
9	$Hc = b0 + bI/D^2$	b0 = 14,44845557 b1 = -2919,722295	0,35	3,7088	-	1501,80
10	$Hc = b0 + b1D^2$	b0 = 10,72515732 b1 = 7,38419E-04	0,30	3,7662	***	1019,55
11	Hc-1,3=D ² /(b0+b1D+b2D ²)	b0 = 23,19249433 b1 = 0,322901599 b2 = 0,0690218508	0,74	8,3572	2,0346	10358,69
12	LogHc = Logb0 + b1 Log D	b0 = -0,30417664 b1 = 0,354993379	0,32	0,1454	3,8505	1450,20
13.	LogHc = b0 + b1D	b0 = 0,928549236 b1 = 3,20443E-03	0,30	0,1466	3,9071	1199,26
14	LogHc = b0 + b1 Log D	b0 = 0,496391068 b1 = 0,354993379	0,32	0,1454	3,8505	1450,20

QUADRO 31: Coeficientes e estatística básica da relação hipsométrica dos modelos de regressão testatos para estimar a altura comercial do Centro Herrera (continuação)

Νδ	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
15	$Hc=D^2/(b0+b1D^2) + 1,3$	b0 = 33,32902562 b1 = 0,081897956	0,59	18,4779	3,4700	20707,38
16	$\frac{3}{1/\sqrt{\text{Hc-1},3}} = b0 + b1/D$	b0 = 10,01955251 b1 = 0,02336741	0,37	18,7505	3,5212	3246,44
17	$Hc-1,3=D^2/(b0+b1 LogD)$	b0 = -1037,473717 $b1 = 770,8729874$	0,48	16,4948	3,0976	13296,61
18	Hc-1,3=D ² /(b0+b1D+b2D ² +b3D ³)	b0 = -18,4121591 b1 = 3,45826881 b2 = 0,012292889 b3 = 4,17171E-04	0,59	10,2406	3,0948	6924,65
19	Hc-1,3=D ² /(b0+b1/D+b2D)+1,3	b0 = -544,3475552 $b1 = 8195,650493$ $b2 = 12,49132919$	0,58	16,4405	3,0874	9958,50
20	$Hc-1,3 = D^2/(b0+b1D)^2+1,3$	b0 = 7,626019908 b1 = 0,513986462	0,25	18,5125	3,4765	3772,12
21	$Hc-1,3 = D^2/(b0+b1D)$	b0 = -146,0585034 $b1 = 8,175500435$	0,56	16,4441	3,0876	18082,23

QUADRO 32: Coeficientes e estatística básica da relação altura total/altura comercial dos modelos de regressão testados para estimar a altura total do Centro Herrera

Νò	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
1	Ht = b0 + b1Hc	b0 = 13,3241726	0,40	3,3493	_	9457,45
		b1 = 0,695434992	, , ,	•	·	
2	$Ht = b0+b1Hc+b2Hc^{2}$	b0 = 14,8149333				
		b1 = 0,428543196	0,56	2,1176	-	4823,08
		b2 = 0,00915443253				
3	$Ht = b0 + b1Hc^2$	b0 = 17,271004	0,40 3	3,3423	_	9558,13
		b1 = 0,0276244514	, ,,	J , J		,
4	LogHt=b0+b1LogHc+b2Hc	b0 = 1,157094906				
		b1 = -0,00500148	0,42	0,0711	3,3499	4486,67
		b2 = 0,014579497				
5	LogHt=b0+b1Hc+b2Hc ²	b0 = 1,159835827				
_		b1 = 0,013365737	0,41	0,0711	3,3499	4487,87
		b2 = 0,0000411567				
6	LogHt = b0 + b1 LogHc	b0 = 0,94775677		0,0721	3,4126	8376,80
		b1 = 0,35955814	0,39			
7	LogH = b0+b1Hc	b0 = 1,154124855	0.70	39 0,0712	3,3500	8973,75
		b1 = 0,014387682	0,39			

QUADRO 33: Coeficientes e estatística básica da relação altura total/altura comercial dos modelos de regressão testados para estimar a altura comercial do Centro Herrera

Νº	EQUAÇÃO	COEFICIENTES	R ²	Syx	Syxt	F
1	Hc = b0 + b1Ht	b0 = -0,355042159 b1 = 0,568927500	0,40	3,0494	-	9457,45
2	Hc=b0+b1Ht+b2Ht ²	b0 = -2,549033882 $b1 = 0,839225673$ $b2 = -0,0075132924$	0,48	2,9075	-	4730,91
3	$Hc = b0 + b1Ht^2$	b0 = 5,770382966 b1 = 0,012707463	0,39	3,0489	_	9132,97
4	LogHc=b0+b1LogHt+b2Ht	b0 = 0,06771517 b1 = 0,59385183 b2 = 9,10926E-03	0,37	0,0649	3,0605	4222,93
5	Loglic = b0+b1Ht+b2Ht ²	b0 = 0,323546697 $b1 = 0,046524215$ $b2 = -5,70945E-04$	0,38	0,0649	3,0585	4299,84
6	LogHc = b0+b1 LogHt	b0 = -0,301365229 $b1 = 1,020799198$	0,37	0,0650	3,0666	8376,80
7	LogHc = b0 + b1Ht	b0 = 0,589059393 $b1 = 0,021410719$	0,37	0,0655	3,0903	8316,00

QUADRO 34: Coeficientes e estatística básica da relação altura total/DAP, altura comercial dos modelos de regressão testados para estimar a altura total do Centro Herrera

Ν¢	EQUAÇÃO	COEFICIENTES	R2	Syx	Syxt	F
		b0 = -0,34737787				
1	Ht=b0+b1Hc ² +b2LogD	b1 = 0,22922623	0,51	3,0113	-	7562,93
		b2 = 11,72427673				
		b0 = 0,80682234				
2	LogHt=b0+b1Hc+b2LogD	b1 = 0,011924199	0,49	0,06462	3,0178	6963,74
		b2 = 0,240563991				
		b0 = 14,6366455				
3	Ht= $D^2/(b0+b1D^2+b2(D^2/Hc-1,3))+1,3$	3 b1 = 0,03019959	0,91	6,0549	2,6032	73231,50
		b2 = 0,086256198				