MÁRCIO CORAIOLA

DINÂMICA DE UMA FLORESTA ESTACIONAL SEMIDECIDUAL - MG: ABORDAGEM COM PROCESSOS DE AMOSTRAGEM EM MÚLTIPLAS OCASIÕES

Tese apresentada ao Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Agrárias da Universidade Federal do Paraná, como requisito parcial à obtenção do grau de Doutor em Ciências Florestais.

Orientador: Prof. Dr. Sylvio Péllico Netto

CURITIBA 2003

Universidade Federal do Paraná

Setor de Ciências Agrárias - Centro de Ciências Florestais e da Madeira

Programa de Pós-Graduação em Engenharia Florestal

Av. Lothário Meissner, 3400 – Jardim Botánico – CAMPUS III 80210-170 - CURITIBA - Paraná Tel. (41) 360.4212 - Fax. (41) 360.4211 – http://www.floresta.ufpr.br/pos-graduacao e-maii: pinheiro@floresta.ufpr.br

PARECER

Defesa nº 505 ,

A banca examinadora, instituída pelo colegiado do Curso de Pós-Graduação em Engenharia Florestal, do Setor de Ciências Agrárias, da Universidade Federal do Paraná, após argüir o doutorando MÁRCIO CORAIOLA em relação ao seu trabalho de tese intitulado "DINÂMICA DE UMA FLORESTA ESTACIONAL SEMIDECIDUAL — MINAS GERAIS: ABORDAGEM COM DIFERENTES PROCESSOS DE AMOSTRAGEM", é de parecer favorável à *APROVAÇÃO* do acadêmico, habilitando-o ao título de *Doutor* no Curso de Pós-Graduação em Engenharia Florestal, área de concentração em *Manejo Florestal*.

Dr. Sylvio Péllico Netto

Departamento de Ciências Florestais da UFPR

Orientador e presidente da banca examinadora

Dr. Nelson Yoshihiro Nakajima

Fundação Universidade Regional de Blumenau - FURB

Primeiro examinador

Dr. Edílson Batista de Oliveira

EMBRAPA/Florestas

Segundo examinador

Dr. Sebastião do Amaral Machado

Departamento de Ciências Florestais da UFPR

Terceiro examinador

Lous R. Sangula Dr. Carlos Roberto Sanguetta

Departamento de Ciências Florestais da UFPR

Quarto examinador

Curitiba, 7 de março de 2003.

Nivaldo Eduardo Rizzi

Coordenador do Curso de Pós-Graduação em Engenharia Flores

Franklin Galvão Vice-coordenador

DEDICATÓRIA

À minha mãe, ROSA CORAIOLA,

a meu pai, VERLI CORAIOLA,

e toda minha família, pelo carinho, amor e apoio inquestionável

DEDICO

AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pela oportunidade e financiamento do trabalho realizado.

À Universidade Federal do Paraná (UFPR), em especial ao Curso de Pós-Graduação em Engenharia Florestal, pela oportunidade concedida.

Ao professor Dr. Sylvio Péllico Netto pela oportunidade e confiança no meu trabalho, e pela dedicação, estímulo, compreensão e amizade sempre presentes.

Ao professor Dr. Carlos Roberto Sanquetta, pelas colaborações e sugestões apresentadas durante a realização do trabalho.

Ao professor Dr. Afonso Figueiredo Filho, pelo auxílio e sugestões apresentadas.

Ao Engenheiro Florestal e amigo Alexandre Koehler, pelo fundamental auxílio na coleta dos dados e identificação das espécies.

Aos Engenheiros Florestais Fernando José Fabrowski e Marcus Aurélius S. Vidal, pela amizade e ajuda na coleta dos dados.

Aos amigos, Antônio Delfino Ferreira, Eduardo Silva Ferreira, Allan Arantes Pereira, Marcelo Araújo Prado e Alvarino Santos Morais, pelo auxílio na identificação das espécies no campo, pela amizade e dedicação durante a coleta de dados.

Aos amigos Antônio Marcos, Rosimara, Ruan, Raiane e Eliane, pelo carinho e amizade oferecido todos os anos, fundamentais para a execução do presente trabalho.

À minha família, Verli, Rosa, Beto, Mauro, Marcelo, Franciane e Maurício pela confiança, incentivo e carinho, presentes em todos os momentos.

E, novamente a você **Cris**, minha companheira, pelo apoio, carinho e incentivo, fundamentais durante esta longa caminhada. **Muito Obrigado**, sem você nada seria possível...

A todos que, direta ou indiretamente, contribuíram para a realização deste trabalho.

BIOGRAFIA DO AUTOR

Márcio Coraiola, filho de Verli Coraiola e Rosa Coraiola, nasceu em 22 de setembro de 1971, Curitiba, Estado do Paraná.

Concluiu o curso primário na Escola Estadual Padre Olímpio de Souza (Curitiba) em 1981. Cursou o primeiro grau no Colégio Estadual Rio Branco (Curitiba), em 1985.

Concluiu o curso de segundo grau, Técnico em Processamento de Dados, no Colégio Estadual do Paraná (Curitiba) em 1988.

Ingressou no curso de Engenharia Florestal, da UFPR, em 1990.

Participou do Programa Especial de Treinamento (PET), da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), de Engenharia Florestal – UFPR, de abril de 1992 até abril de 1995, sendo premiado com uma bolsa de mestrado pelo melhor desempenho entre os participantes.

Graduou-se em Engenharia Florestal, pela Universidade Federal do Paraná, em março de 1995, recebendo o "Prêmio Professora Regina Maria Moreira" de honra ao mérito, pelo 1º Lugar da Turma de formandos de 1994.

Ingressou no curso de Pós-Graduação em Engenharia Florestal, nível Mestrado, da UFPR, em março de 1995.

Obteve o grau de Mestre em Ciências Florestais, pela UFPR, em março de 1997.

Ingressou no curso de Pós-Graduação em Engenharia Florestal, nível Doutorado, da UFPR, em março de 1997.

Ingressou na Pontifícia Universidade Católica do Paraná, em janeiro de 2000, como Professor Assistente I no curso de Agronomia, responsável pela disciplina de Recursos Naturais Renováveis.

Ingressou no Centro Universitário Campus de Andrade – UNIANDRADE, em fevereiro de 2000, como professor Adjunto nos Cursos de Administração e Informática, sendo responsável pelas disciplinas de Estatística e Matemática.

Ingressou na Universidade Tuiuti do Paraná - UTP, em fevereiro de 2001, como professor Adjunto nos Cursos de Administração e Ciências Contábeis, sendo responsável pelas disciplinas de Estatística e Matemática.

Em outubro de 2002 foi aprovado como professor Adjunto I pela Pontifícia Universidade Católica do Paraná, pelo curso de Agronomia.

SUMÁRIO

LIGHTA DE FIGURAC	vii
LISTA DE FIGURAS	
LISTA DE GRÁFICOS	X
LISTA DE TABELAS	χi
RESUMO	xiii
ABSTRACT	xiv
1 INTRODUÇÃO	1
1.1 OBJETIVOS	3
2 REVISÃO DE LITERATURA	5
2.1 ANÁLISE DA DINÂMICA DA FLORESTA	5
2.1.1 Ingresso	9
2.1.2 Crescimento	10
	12
2.1.3 Mortalidade	14
3 MATERIAL E MÉTODOS	21
3.1 LOCALIZAÇÃO DA ÁREA	21
3.2 CARACTERIZAÇÃO DA ÁREA DE ESTUDO	21
3.2.1 Geomorfologia	21
3.2.2 Solos	21
3.2.3 Relevo	23
3.2.4 Clima	23
3.2.5 Vegetação	24
3.3 INVENTÁRIO FLORESTAL	25
3.3.1 Obtenção dos dados	26
3.3.2 Composição Florística	26
3.3.3 Modelos ajustados para a floresta	29
3.3.3.1 Relação hipsométrica	29
3.3.3.2 Equação de volume	30
3.4 ANÁLISE DA DINÂMICA DA FLORESTA	30
3.4.1 Crescimento	30
3.4.2 Ingresso e Mortalidade	31
3.5 PROCESSOS DE AMOSTRAGEM EM MÚLTIPLAS OCASIÕES	31
3.5.1 Estimadores por processo de amostragem	35
4 RESULTADOS E DISCUSSÃO	47
4.1 ANÁLISE DA DINÂMICA DA FLORESTA	47
4.1.1 Crescimento	50
4.1.2 Mortalidade	83
	88
4.1.3 Ingresso	93
4.1.4 Síntese da dinâmica da floresta	99 99
	99
4.2.1 Amostragem Independente (AI)	
4.2.2 Amostragem com Repetição Total (ART)	103
4.2.3 Amostragem com Repetição Parcial (ARP)	107
4.2.4 Dupla Amostragem (DA)	111
4.3 Análise comparativa dos processos de amostragem	115
4.3.1 Volume médio	115

4.3.2 Erro padrão do volume comercial	120
4.3.3 Coeficiente de variação (%)	125
4.3.4 Média de crescimento	129
4.3.5 Erro Padrão do Crescimento	135
4.3.6 Correlação	140
4.3.7 Síntese das estimativas dos processos de amostragem	145
4.4 Comparação dos resultados da dinâmica com as estimativas obtidas nos	
principais processos de amostragem	149
4.5 Síntese dos principais resultados	157
4.5.1 Dinâmica da floresta	157
4.5.2 Processos de Amostragem em Múltiplas Ocasiões	158
5 CONCLUSÕES	161
5.1 Dinâmica da floresta	161
5.2 Processos de amostragem em Múltiplas Ocasiões	162
6 RECOMENDAÇÕES	163
REFERÊNCIAS	165

LISTA DE FIGURAS

FIGURA 1 -	LOCALIZAÇÃO DA CIDADE DE CÁSSIA NO ESTADO DE MINAS GERAIS - BRASIL	22
FIGURA 2 -	NÚMERO DE ÁRVORES POR CLASSE DE INCREMENTO PERIÓDICO ANUAL (IPA) EM DAP PARA O PERÍODO DE 1996 A 2001 PARA TODAS AS PARCELAS ESTUDADAS	61
FIGURA 3 -	VARIAÇÃO DO INCREMENTO PERIÓDICO ANUAL EM DAP POR CLASSE DIAMÉTRICA PARA AS PRINCIPAIS ESPÉCIES E PARA A FLORESTA NO PERÍODO DE 1996 A 2001	80
FIGURA 4 -	VOLUME COMERCIAL MÉDIO POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	117
FIGURA 5 -	VOLUME COMERCIAL MÉDIO POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES	118
FIGURA 6 -	ERRO PADRÃO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	122
FIGURA 7 -	ERRO PADRÃO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES	123
FIGURA 8 -	COEFICIENTE DE VARIAÇÃO (%) DO VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	126
FIGURA 9 -	COEFICIENTE DE VARIAÇÃO (%) DO VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES	127
FIGURA 10 -	MÉDIA DE CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	130

FIGURA 11 -	MEDIA DE CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES	131
FIGURA 12 -	ERRO PADRÃO DO CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	136
FIGURA 13 -	ERRO PADRÃO DO CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES	137
FIGURA 14 -	COEFICIENTE DE CORRELAÇÃO PARA O VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	141
FIGURA 15 -	COEFICIENTE DE CORRELAÇÃO PARA O VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES	142
FIGURA 16 -	MÉDIA, ERRO PADRÃO E COEFICIENTE DE CORRELAÇÃO DO VOLUME COMERCIAL, POR PROCESSO DE AMOSTRAGEM E PARA A DINÂMICA DA FLORESTA, NO PERÍODO DE 1996 A 2001, SOMENTE PARA AS ÁRVORES EM CRESCIMENTO	154
FIGURA 17 -	MÉDIA DE CRESCIMENTO, ERRO PADRÃO DO CRESCIMENTO E COEFICIENTE DE CORRELAÇÃO DO VOLUME COMERCIAL, POR PROCESSO DE AMOSTRAGEM E PARA A DINÂMICA DA FLORESTA, NO PERÍODO DE 1996 A 2001, SOMENTE PARA AS ÁRVORES EM CRESCIMENTO	156

LISTA DE GRÁFICOS

GRÁFICO 1 -	NÚMERO DE ÁRVORES EM CRESCIMENTO UTILIZADAS PARA ANÁLISE DA DINÂMICA DA FLORESTA, POR PERÍODO E POR PARCELA	49
GRÁFICO 2 -	NÚMERO DE ÁRVORES POR CLASSE DE IPA EM DAP PARA O TOTAL DA FLORESTA, NO PERÍODO DE 1996 A 2001	59
GRÁFICO 3 -	NÚMERO DE ÁRVORES MORTAS POR CLASSE DE DAP PARA A FLORESTA NO PERÍODO DE 1996 A 2001	86
GRÁFICO 4 -	MORTALIDADE RELATIVA POR CLASSE DE DAP PARA A FLORESTA NO PERÍODO DE 1996 A 2001	87
GRÁFICO 5 -	NÚMERO DE ÁRVORES INGRESSAS POR CLASSE DE DAP PARA A FLORESTA NO PERÍODO DE 1996 A 2001	91

LISTA DE TABELAS

TABELA 1 -	COMPOSIÇÃO FLORÍSTICA DA FLORESTA	27
TABELA 2 -	EQUAÇÕES HIPSOMÉTRICAS AJUSTADAS PARA A ALTURA COMERCIAL POR ESTRATO	29
TABELA 3 -	NÚMERO DE UNIDADES AMOSTRAIS PARA OS PRINCIPAIS PROCESSOS DE AMOSTRAGEM, CONSIDERANDO OS DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS UTILIZADOS	33
TABELA 4 -	BALANÇO FINAL PARA O NÚMERO DE ÁRVORES ESTUDAS NA DINÂMICA DA FLORESTA	47
TABELA 5 -	NÚMERO DE ÁRVORES EM CRESCIMENTO, MORTALIDADE E INGRESSO, POR PARCELA E PARA A FLORESTA, NO PERÍODO DE 1996 A 2001	48
TABELA 6 -	NÚMERO DE ÁRVORES POR CLASSE DE INCREMENTO PERIÓDICO ANUAL EM DAP POR PARCELA E PARA A FLORESTA NO PERÍODO DE 1996 – 2001	51
TABELA 7 -	ESTATÍSTICA DESCRITIVA PARA O DAP (cm) E ÁREA TRANSVERSAL (m²) DAS ÁRVORES POR PARCELA E PARA TODA A FLORESTA NO PERÍODO DE 1996 A 2001	53
TABELA 8 -	ESTATÍSTICA DESCRITIVA PARA A ALTURA COMERCIAL (m) E VOLUME COMERCIAL (m ³) DAS ÁRVORES POR PARCELA E PARA TODA A FLORESTA NO PERÍODO DE 1996 A 2001	54
TABELA 9 -	ESTATÍSTICA DESCRITIVA PARA O INCREMENTO PERIÓDICO ANUAL (IPA) EM DAP, ÁREA TRANSVERSAL, ALTURA E VOLUME COMERCIAL DAS ÁRVORES NO PERÍODO DE 1996 A 2001, POR PARCELA E PARA A FLORESTA	58
TABELA 10 -	INCREMENTO EM ÁREA BASAL POR PARCELA E PARA A FLORESTA NO PERÍODO DE 1996 A 2001	63
TABELA 11 -	INCREMENTO (IPA) EM VOLUME COMERCIAL POR PARCELA E PARA A FLORESTA NO PERÍODO DE 1996 A 2001	64
TABELA 12 -	NÚMERO DE ÁRVORES E INCREMENTO PERIÓDICO ANUAL EM DIÂMETRO POR CLASSE DE DAP, POR ESPÉCIE E PARA O TOTAL DA FLORESTA NO PERÍODO DE 1996 A 2001	66
TABELA 13 -	NÚMERO DE ÁRVORES E INCREMENTO PERIÓDICO ANUAL EM VOLUMECOMERCIAL POR CLASSE DE DAP, POR ESPÉCIE E PARA O TOTAL DA FLORESTA NO PERÍODO DE 1996 A 2001	69

TABELA 14 -	ESTATÍSTICA DESCRITIVA DO IPA EM DAP (CM/ANO) E DO IPA EM VOLUME (m ³/ano) POR ESPÉCIE E PARA O TOTAL DA FLORESTA	72
TABELA 15 -	NÚMERO DE ÁRVORES MORTAS POR CLASSE DE DAP POR ESPÉCIE E PARA A FLORESTA NO PERÍODO DE 1996 A 2001	84
TABELA 16 -	NÚMERO DE ÁRVORES INGRESSAS POR CLASSE DE DAP POR ESPÉCIE E PARA A FLORESTA NO PERÍODO DE 1996 A 2001	89
TABELA 17 -	MUDANÇAS NO NÚMERO DE ÁRVORES, ÁREA BASAL E VOLUME COMERCIAL, INCREMENTO PERIÓDICO ANUAL MÉDIO EM DAP, ÁREA BASAL, ALTURA E VOLUME COMERCIAL, MORTALIDADE E INGRESSO POR ESPÉCIE PARA E PARA A FLORESTA NO PERÍODO DE 1996 A 2001	94
TABELA 18 -	PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A AMOSTRAGEM INDEPENDENTE NO PERÍODO DE 1996 A 2001	100
TABELA 19 -	PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A AMOSTRAGEM COM REPETIÇÃO TOTAL NO PERÍODO DE 1996 A 2001	104
TABELA 20 -	PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A AMOSTRAGEM COM REPETIÇÃO PARCIAL NO PERÍODO DE 1996 A 2001	108
TABELA 21 -	PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A DUPLA AMOSTRAGEM NO PERÍODO DE 1996 A 2001	112
TABELA 22 -	SÍNTESE DAS PRINCIPAIS ESTIMATIVAS MÉDIAS POR UNIDADE AMOSTRAL E POR PROCESSO DE AMOSTRAGEM NO PERÍODO DE 1996 A 2001	147
TABELA 23 -	COMPARAÇÃO DAS ESTIMATIVAS REFERENTES À MÉDIA, ERRO PADRÃO E COEFICIENTE DE VARIAÇÃO DO VOLUME COMERCIAL DOS PRINCIPAIS PROCESSOS DE AMOSTRAGEM COM OS RESULTADOS DA DINÂMICA, NO PERÍODO DE 1996 A 2001, CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	151
TABELA 24 -	COMPARAÇÃO DAS ESTIMATIVAS REFERÊNTES À MÉDIA DE CRESCIMENTO, ERRO PADRÃO DO CRESCIMENTO E COEFICIENTE DE CORRELAÇÃO DOS PRINCIPAIS PROCESSOS DE AMOSTRAGEM COM OS RESULTADOS DA DINÂMICA NOS DIFERENTES PERÍODOS ESTUDADOS, CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO	152

RESUMO

O presente trabalho teve como objetivo principal a avaliação do crescimento de uma Floresta Estacional Semidecidual, situada em Cássia - MG, no período de 1996 a 2001, destacando a análise dos principais processos dinâmicos da floresta, além da avaliação das principais estimativas referentes aos processos de amostragem aplicados a inventários florestais (Amostragem Independente – Al, Repetição Total – ART, Repetição Parcial - ARP e Dupla Amostragem - DA). Foram considerados para a análise das estimativas de cada processo, diferentes tamanhos de unidades amostrais (100, 200, 400, 1000 e 2500 m²) e duas abordagens referentes ao número de árvores utilizadas (árvores em crescimento e todas as árvores). Na análise da dinâmica, o crescimento foi avaliado através dos Incrementos Periódicos Anuais (IPA), considerando apenas as árvores em crescimento. A mortalidade e o ingresso foram avaliados através do número de árvores que morreram e ingressaram (DAP ≥ 10 cm) durante o período, respectivamente. Observou-se um aumento de 1,06%/ano no número de árvores, revelando um acréscimo de 1,72%/ano e 1,6%/ano, respectivamente, para a área basal e volume comercial por hectare. Em média, a floresta apresentou 0,51 cm/ano, 0,02 m²/ano, 0,10 m/ano e 0,014 m³/ano, respectivamente para o IPA em DAP, área transversal, altura e volume comercial. Em relação às espécies, destacaram-se: o pau alho (maior IPA em todas as variáveis), o jaracatiá (2º maior IPA em altura comercial) e o jequitibá rosa (2º maior IPA em volume comercial). A floresta apresentou uma taxa de mortalidade de 2.78%/ano, enquanto que a taxa de ingresso encontrada foi de 5.24%/ano. Na avaliação das estimativas dos principais processos de amostragem, não foram observadas diferenças expressivas na análise referente ao volume comercial médio, erro padrão volumétrico e coeficiente de variação, para ambas as abordagens. Na análise do crescimento, a amostragem Al apresentou as maiores variações nas estimativas da média de crescimento e os maiores erros padrões em ambas abordagens, enquanto que os demais processos não apresentaram maiores diferenças entre si. As amostragens ART, ARP e DA apresentaram coeficientes de correlação próximos de um em todo o período, indicando que intervalos de até cinco anos podem ser considerados para análise do crescimento. A amostragem Al apresentou correlações próximas de zero em todos os casos. Com relação aos tamanhos de unidades amostrais, destacaram-se por apresentar os menores erros padrões do crescimento: a unidade de 200 m² (Al), as unidades de 100 e 200 m² (ART), as unidades de 200 e 2500 m² (ARP) e a unidade de 400 m² (DA). Na comparação dos resultados dos processos de amostragem com a dinâmica da floresta, observou-se que: os volumes comerciais médios ficaram próximos aos encontrados na dinâmica da floresta em todos os processos; os erros padrões volumétricos foram menores em relação à dinâmica em todos os casos; os coeficientes de variação foram superiores aos encontrados na dinâmica em todos os casos; as estimativas do crescimento ficaram próximas as encontradas na dinâmica, com exceção da amostragem Al, que revelou as maiores estimativas; os erros padrões do crescimento foram superiores aos encontrados na dinâmica em todos os casos; e a correlação entre os volumes comerciais nas várias ocasiões não apresentou diferenças significativas em relação à dinâmica em todos os processos.

ABSTRACT

The present work has as it's main objective the evaluation of a fragment of a Semideciduous season forest in Cassia - MG, between the years of 1996 and 2001, giving emphasis to the forest dynamic process, beside the evaluation the main sampling designs estimates applied to forest inventories (independent sampling - IS, total replacement - STR, partial replacement - SPR and double sampling - DS). It was considered different sampling unit sizes (100, 200, 400, 1000 and 2500 m²) for the estimates of each process and two approaches related to the number of trees were used (growing trees and all trees). On the dynamic analysis, the growth was evaluated through the periodic annual increments (PAI), considering only the growing trees. The mortality and the ingrowth had been evaluated trough the number of died trees and ingrowth (DBH \geq 10cm) during the considered period respectively. It has been observed an increasing of 1.06% per year on the number of trees, revealing an addition of 1.72% per year and 1.6% per year, respectively, for the basal area and commercial volume per hectare. In average the forest has presented 0.51% cm per year, 0.02 m² per year, 0.10m a year and 0.014m³, respectively for the PAI in DBA, in basal area, in commercial height and volume. Regarding the species, two main points were emphasized: the "Pau Alho" (highest PAI for all the variables), the "Jaracatia", (second highest PAI in commercial high) and the "Jequetibá Rosa" (second highest PAI in commercial volume). The forest has shown a rate of 2% of mortality per year, at the same time that the ingrowth rate resulted in 5.24% per year. In the evaluation of the main sampling design estimates, it was not observed expressive differences on the analysis of the average commercial volume, volume standard error and on the coefficient of variation, for both approaches. On the growth analysis, the sample has shown the highest variations of the average growth estimates and the highest standard error of the approaches, taking into consideration that the other process did not present major differences. The SPR, ARP and DA sampling designs, presented correlation coefficients close to 1 during the period, indicating that the intervals between occasions could be up to five years for the growth evaluation. The independent sampling design - Al resulted in correlation coefficients close to zero in all cases. Concerning the sizes of the sampling units, the units 200 m² (IS), 100 and 200 m² (TSR), 200 and 2500m² (SPR) and 400m² (DS) were emphasized because they produced the slowest standard error for growth estimates. Comparing the results of the sampling designs with the forest dynamics, it has been observed that: the average commercial volumes were the same in all process; the volume standard errors were lower in all cases; the coefficients of variation were higher in all cases; the growth estimates were the same in all cases as well, with the exception of the IS sampling, that revealed the largest estimates; the growth standard errors were superior in all cases; and the correlation coefficients did not present expressive differences in all sampling designs.

1 INTRODUÇÃO

São múltiplas as funções das florestas para o ser humano. O reconhecimento dos seus inúmeros benefícios e os esforços para conduzi-las através do manejo sustentado são relativamente recentes, e em muitas ocasiões, impulsionados por interesses puramente econômicos, tornam-se distorcidos.

Aliado ao seu incontestável valor econômico, as florestas exercem papel fundamental na manutenção da biodiversidade, abrigando grande número de espécies animais e vegetais do planeta. Para que se tenha um aproveitamento racional dos recursos advindos das florestas, deve-se conhecer profundamente o seu comportamento, evitando assim sua degradação.

Conhecimentos básicos sobre a dinâmica e a estrutura da floresta, destacando a composição florística, a estrutura horizontal (abundância, dominância e freqüência), estrutura vertical (posição sociológica e regeneração natural) e a estrutura dimensional (diamétrica, hipsométrica e volumétrica), são fundamentais para qualquer plano de manejo.

A estrutura do povoamento pode ser definida como a distribuição de espécies e quantidade de árvores numa área florestal, sendo o resultado dos hábitos de crescimento das espécies e das condições ambientais onde o povoamento se originou e desenvolveu (HUSCH et al., 1972).

O termo estrutura de florestas implica na ocupação espacial dos componentes de uma massa vegetal, e para determiná-la como caracterização multidimensional da vegetação faz-se necessário conhecer a percentagem de plantas que apresentam certo tipo biológico e quantificar as funções que se encontram representadas na população (MONTOYA-MAQUIN, 1966).

As florestas naturais possuem elevada diversidade de espécies e uma grande variação de qualidades em termos econômicos. Assim, os levantamentos estruturais deverão abranger pelo menos os seguintes itens: estrutura horizontal, estrutura vertical, estrutura dimensional e estrutura da regeneração natural. Segundo este autor, a análise da estrutura horizontal deve quantificar a participação das diferentes espécies em relação às outras, e verificar a forma de distribuição espacial de cada espécie, podendo ser determinada pelos índices de abundância e freqüência. A

análise da estrutura vertical deverá fornecer indícios sobre o estágio sucessional das espécies, informando quais as espécies mais promissoras para compor a estrutura florestal em termos dinâmicos. A análise da estrutura paramétrica refere-se às informações relacionadas ao inventário florestal, quantificando-a em termos de volume, qualidade de fuste, vitalidade das árvores, comercialização, etc. A análise da regeneração natural deve ser realizada também em termos estruturais, como abundância, freqüência, comercialização, etc., tornando-se importante, uma vez que a futura floresta dependerá do seu manejo (HOSOKAWA, 1986).

Estreitamente relacionado com a estrutura e o funcionamento da floresta está a dinâmica, que envolve vários processos de organização da comunidade e as relações bióticas entre diferentes populações.

Através da análise da dinâmica pode-se levantar informações concretas sobre o crescimento, bem como as entradas (ingresso) e saídas (mortalidade) do sistema, obtendo assim subsídios para se conhecer o estágio atual de desenvolvimento da floresta e de suas principais espécies. Tais estudos são de extrema importância para se conhecer as dificuldades de regeneração e desenvolvimento das espécies, favorecendo assim a intervenção do homem e propiciando melhores condições de sobrevivência e perpetuação dessas espécies.

Para se obter as informações necessárias para estudos de dinâmica florestal torna-se fundamental a formação de uma base de dados ao longo dos anos. As medições efetuadas nas diversas unidades amostrais permanentes, capazes de propiciar estudos de crescimento, devem ser levantadas com extremo cuidado e em intervalos definidos, objetivando captar as variações de crescimento, mortalidade e ingresso.

Na avaliação do crescimento de uma floresta, que pode ser definido como o aumento de tamanho que apresentam os organismos (ALDER, 1980), pode-se utilizar simplesmente os incrementos ou acréscimos, por exemplo, em volume ou área basal, ou os métodos e processos tradicionais para levantamentos florestais.

Para o acompanhamento contínuo de uma floresta, avaliando sua evolução ao longo do tempo, exige-se a utilização de técnicas estatísticas com sucessivas abordagens em intervalos de tempo definidos. Com essas abordagens, pode-se

avaliar a dinâmica da população, bem como uma série de variáveis indispensáveis para a definição do tipo de manejo a ser aplicado em uma floresta.

Assim, para que se possa avaliar o crescimento e a dinâmica de uma floresta natural, torna-se fundamental a definição do tipo de Inventário Florestal Contínuo a ser utilizado e, principalmente, a determinação do intervalo de tempo ideal entre as abordagens. De posse dessas informações pode-se avaliar, com precisão, o estado atual da floresta, melhorando a eficiência dos levantamentos e mantendo-se a confiabilidade dos mesmos.

1 1 OBJETIVOS

O objetivo principal do presente trabalho de pesquisa foi avaliar o crescimento e seus processos dinâmicos de uma Floresta Estacional Semidecidual, localizada em Cássia-MG, durante o período de 1996 a 2001, com vistas ao seu manejo em regime de rendimento sustentado.

Os objetivos específicos foram:

- a) Análise dos processos dinâmicos da floresta (mortalidade, crescimento e ingresso), destacando:
 - Avaliação do número de indivíduos por classe de Incremento Periódico Anual (IPA), por parcela e para a floresta;
 - Avaliação do Incremento Periódico Anual (IPA) em área basal e volume comercial, por parcela e para a floresta;
 - Avaliação do número de indivíduos e do Incremento Periódico Anual (IPA) em diâmetro e volume comercial, por classe de DAP, por espécie e para a floresta;
 - Análise estatística descritiva das variáveis DAP, área transversal, altura e volume comercial das árvores;
 - Análise estatística descritiva dos Incrementos Periódicos Anuais em DAP, área transversal, altura e volume comercial das árvores;
 - Análise estatística descritiva dos Incrementos Periódicos Anuais em DAP e volume comercial das árvores, por espécie e para a floresta;
 - Análise da mortalidade e ingresso das espécies por classe de DAP;

- b) Avaliação do crescimento da floresta através da aplicação de diferentes processos de amostragens em múltiplas abordagens (Amostragem Independente, Amostragem com Repetição Total, Amostragem com Repetição Parcial e Dupla Amostragem) destacando:
 - Avaliação estatística dos processos utilizados;
 - Avaliação do comportamento de diferentes tamanhos de unidades amostrais na análise das estimativas dos processos de amostragem;
 - Análise da influência do coeficiente de correlação para determinação do melhor intervalo de tempo entre medições na avaliação do crescimento;
 - Comparação das estimativas obtidas nos referidos processos de amostragem com os resultados da dinâmica da floresta.

2 REVISÃO DE LITERATURA

2.1 ANÁLISE DA DINÂMICA DA FLORESTA

Para se reconhecer as fases sucessionais de uma vegetação torna-se necessário o conhecimento prévio da sucessão vegetal regional, bem como de sua florística e fisionomia. Assim, com auxílio da análise estrutural, pode-se quantificar de forma objetiva um determinado tipo de vegetação e melhor caracterizá-la (KUNIYOSHI, 1989).

Antes que a vegetação de um determinado local alcance uma relativa estabilidade em suas características fisiológicas, ocorre uma série de mudanças nas comunidades, denominadas de dinâmica ou sucessão vegetal. Qualquer que seja o ecossistema, uma comunidade em evolução (sucessão) inicia-se pelas fases pioneiras e com o tempo vão sendo substituídas pelas fases transitórias ou fases serais, ou seja, quando a comunidade completa uma fase, a situação em que ela se encontra denomina-se sere e fases serais, os processos transitórios pelos quais a comunidade passa até que atinja o ponto final do processo de sucessão, quando alcança um equilíbrio dinâmico com as condições locais, denominado de clímax (ODUM, 1977).

Espécies serais são aquelas que entram no hábitat, quando os fatores ambientais favorecem temporariamente seu estabelecimento, até que as condições se tornem intoleráveis para sua reprodução. Finalmente, no chamado clímax, a comunidade se restringe a espécies da flora local, que são capazes de completar seus ciclos de vida em face à intensa competição e de se perpetuar indefinidamente, a não ser que esta comunidade seja perturbada por forças externas (DAUBENMIRE, 1968).

O reconhecimento das seres, para os estudos de composição florística, fisionomia e estrutura, é de fundamental importância, pois estes diferem de acordo com o estágio sucessional em que a comunidade se encontra. Se a sucessão tem início numa área não ocupada anteriormente, por uma comunidade ou substrato desprovido de biota (rocha, areia, vegetação, etc.), o processo denomina-se de sucessão primária, sucessão autogênica ou prisere (BUDOWSKI, 1966). Quando a

sucessão se desenvolve numa área ocupada anteriormente por uma comunidade e eliminada por outra (campo lavrado, floresta abandonada), ou em que houve alteração significativa da comunidade pré-existente, é chamada de sucessão secundária, sucessão alogênica ou subsere (KUNIYOSHI, 1989).

A mudança é uma das mais importantes características das comunidades vegetais. Observam-se dois tipos principais de mudanças temporais nas comunidades vegetais, a mudança direcional no tempo (sucessão) e mudança não direcional no tempo (flutuações). Sucessão pode ser reconhecida pela progressiva mudança nas composições das espécies da comunidade, passando por uma série de estágios, desde o pioneiro até o estágio clímax. Neste processo podem ser reconhecidas quatro fases bem distintas: pioneira, crescimento, maturação e degeneração (KREBS, 1985).

Os conhecimentos acumulados sobre as comunidades vegetais, o padrão de regeneração e o decurso do crescimento de cada espécie arbórea ou de grupos de espécies permitem tecer as primeiras conclusões sobre o processo de dinâmica florestal (LAMPRECHT, 1990).

A dinâmica da floresta pode iniciar com a formação de clareiras, que provocam mudanças nas características pedoclimáticas, ocasionando assim o processo de sucessão florestal (CARVALHO, 1997).

Clareira é definida, por muitos autores, como uma abertura no dossel da floresta ocasionada pela queda de uma ou mais árvores, ou de parte de suas copas, por morte natural, raios, ventos, vulcões furacões, derrubadas, entre outros fatores. Cada caso pode formar clareiras de tamanhos diferentes. A dinâmica da floresta, relacionada à sucessão, ocorre de forma diferenciada em relação ao processo de formação de clareiras. As clareiras formam um mosaico de diferentes estágios de desenvolvimento, dividindo a floresta em três fases sucessionais: fase de clareira; fase de construção e fase madura. A abertura de clareiras é o principal fator para que diversas espécies existam na floresta, sendo renovadas e sustentadas pela dinâmica de perda de indivíduos mais velhos; permitindo a existência de outros indivíduos (CARVALHO, 1997).

As contínuas alterações ambientais que ocorrem, mesmo em pequenas clareiras, podem ocasionar grande variação no grau de favorecimento ecológico em

relação à situação inicial vivida (LAMPRECHT, 1990). A sucessão natural de espécies se constitui numa seqüência de mudanças florísticas e estruturais que ocorrem no ecossistema, após um distúrbio na área, até que a floresta atinja um ponto de equilíbrio dinâmico (CARVALHO, 1997).

As clareiras abertas no dossel florestal podem ter mais importância na determinação de sua composição florística do que a competição entre as espécies arbóreas por luz e nutrientes, definindo uma floresta madura como um mosaico de fases estruturais que mudam com o tempo, resultando no processo dinâmico da floresta. Durante o curso da sucessão, indivíduos de várias espécies se estabelecem, crescem, reproduzem-se e morrem. Os indivíduos que morrem são substituídos pelo crescimento dos indivíduos vizinhos ou estabelecimento de novos indivíduos da mesma ou de diferentes espécies. Cada mudança no sistema ao longo do tempo pode ser interpretada como uma transição de um estágio sucessional para outro (WHITMORE, 1989).

O tamanho da clareira tem fundamental importância no processo de sucessão florestal, ou seja, pequenas clareiras como aquelas formadas pela queda de galho normalmente não promovem as condições microclimáticas para o estabelecimento de espécies pioneiras. Neste caso, as espécies clímax normalmente enchem a clareira pelo crescimento lateral dos galhos que envolvem as árvores. Por outro lado, se a clareira for grande, a colonização se dá pelas espécies pioneiras (SILVA, 1989).

O papel da dinâmica das espécies que se regeneram em clareira nas florestas tropicais tem sido estudado por vários autores, sendo considerado um importante fator na manutenção da alta diversidade das espécies (HARTSORN, 1989).

A estratégia reprodutiva das árvores de florestas úmidas pode ser classificada em três categorias gerais: especialistas em grandes clareiras, cujas sementes germinam somente em altas condições de temperatura e iluminação de grandes clareiras e cujas mudanças são altamente intolerantes à sombra; especialistas em pequenas clareiras, cujas sementes são capazes de germinar na sombra, mas requerem a presença de clareiras para crescerem até o dossel; e especialistas em sub-bosque, que aparentemente não requerem clareiras tanto para germinação ou crescimento. A variação entre tamanhos de clareiras é associada com importantes

mudanças microclimáticas e diferenças na distribuição temporal e espacial. Comunidades sujeitas a grandes escalas de distúrbios são mais ricas em espécies pioneiras, e, em contraste, comunidades na qual distúrbios de grande escala são raros, são mais ricas em espécies de pequenas clareiras (DENSLOW, 1980).

Em florestas naturais, as espécies podem ser agrupadas de acordo com o tipo de estratégia de regeneração natural, ou seja: espécies formadoras de bancos de sementes (pioneiras que depositam sementes que permanecem dormentes no solo, esperando por distúrbios na floresta que favorecem a germinação), espécies formadoras de banco de mudas (espécies clímax que produzem sementes, germinam e sobrevivem sob sombra), espécies dispersoras (produzem sementes que podem vir a germinar sob sombra, mas não sobrevivem de maneira significativa), e espécies com capacidade de reprodução vegetativa (brotação), com algumas sementes em céu aberto e outras sob sombra (SANQUETTA; NINOMIYA; OGINO, 1992).

O ingresso ou recrutamento, o crescimento ou incremento diamétrico e a mortalidade são o resultado final do processo da dinâmica de formação de populações multiâneos, e estão entre os poucos instrumentos para fazer predições sobre a produção futura da floresta (BARROS, 1980; CARVALHO, 1992). O contínuo aparecimento de novos indivíduos no estrato inferior da floresta que limita o espaço de crescimento das árvores novas devido ao aumento da densidade, propicia a eliminação de elementos menos capazes de competir. Este autor explica que as aberturas ocorridas no estrato superior da floresta, em decorrência da morte de grandes árvores, são ocupadas pelas árvores que encontram-se no estrato imediatamente inferior, que por sua vez proporcionam o estabelecimento de novos indivíduos, tornando heterogênea a distribuição de idades das árvores na floresta. Esse processo dinâmico da população será garantido pela composição das espécies, a partir das pioneiras para aquelas que são capazes de reproduzir-se satisfatoriamente à sombra.

A sucessão ocorre quando um grupo de espécies tolerantes à sombra substitui um grupo de espécies intolerantes. As espécies pioneiras crescem rápido, após a criação de uma clareira, e vão formar o dossel. Debaixo deste, se estabelecem às mudas de espécies tolerantes. Quando as espécies intolerantes começam a morrer, o dossel começa a se desfazer e as tolerantes são liberadas e

crescem como um segundo ciclo. Os processos da dinâmica florestal são responsáveis tanto pela mudança da comunidade bem como pela modificação do espaço desta, e tais processos se manifestam através da extinção e imigração local de populações, assim como flutuações na abundância relativa de populações dentro da comunidade (CARVALHO, 1997).

O estudo da dinâmica indica o crescimento e as mudanças na composição e na estrutura de uma floresta, e a melhor forma de enfocar a dinâmica de uma floresta é avaliando o crescimento, mortalidade e ingresso das árvores componentes dessa floresta (FINEGAN, 1993).

O crescimento individual das árvores, geralmente é avaliado, entre outras variáveis, principalmente pelo incremento diamétrico ou em área basal, sendo essas as principais variáveis para elaboração de modelos para predizer o crescimento individual das árvores (VANCLAY, 1994).

2.1.1 Ingresso

Ingresso é o processo pelo qual as árvores menores surgem na população depois de uma medição inicial, em parcela permanente, ou seja, ingressos são considerados como árvores que atingiram um diâmetro mínimo estipulado entre duas medições subseqüentes. As taxas de ingressos dependem do potencial de regeneração das espécies, da disponibilidade de luz ou da competição (ALDER; SYNNOTT, 1992).

O termo recrutamento se refere a admissão de um ser em uma determinada população ou comunidade, podendo, muitas vezes ser confundido com o aparecimento ou germinação de plântulas. Muitas vezes, o recrutamento também é chamado de ingresso, ou seja, o processo pelo qual árvores pequenas aparecem em um povoamento, por exemplo em uma parcela permanente, após a sua primeira medição (CARVALHO, 1992; 1997).

Segundo VANCLAY (1994), o recrutamento refere-se aos indivíduos que atingem um limite de tamanho especificado (por exemplo, 10 cm de DAP, 1,30 m de altura, etc.), o que difere de regeneração que se refere ao desenvolvimento de árvores já estabelecidas por sementes ou plântulas.

O estudo do ingresso em florestas tropicais úmidas tem grande importância do ponto de vista silvicultural, assim como sua qualidade e quantidade determinam com que sucesso a floresta está sendo "alimentada" com plântulas e pequenas árvores de espécies comerciais. Para a produção da floresta ser sustentável, é necessário que uma considerável quantia de regeneração de espécies comerciais entre na floresta e que um número mínimo dessas árvores sobrevivam e cresçam até o tamanho de abate a cada ciclo de corte (SILVA, 1989).

O número de ingressos varia de acordo com a composição das espécies e com o grau de perturbação no dossel. Assim, pequenas perturbações, tais como aquelas resultantes da queda de uma árvore ou galho, não levam ao aparecimento de grande número de novos indivíduos do recrutamento. Se a clareira for de pequeno tamanho, o ingresso não é abundante porque normalmente espécies de crescimento lento e tolerante à sombra ocupam a clareira. Inversamente, perturbações pesadas tais com aquelas causadas pela exploração, geralmente resultam em germinação e crescimento de grande número de espécies pioneiras de rápido crescimento, que logo crescem até o mínimo tamanho de medição (SILVA, 1989).

2.1.2 Crescimento

O crescimento é definido como o aumento de tamanho que apresentam os organismos conforme passa o tempo. A quantidade de crescimento, determinada por duas ou mais medições sucessivas, uma no início do período de crescimento e outra no final desse período, denomina-se incremento (ALDER, 1980).

Segundo PRODAN et al. (1997), o crescimento é o incremento gradual de um organismo, população ou objeto em um determinado período de tempo. O crescimento acumulado até uma idade determinada representa a produção até esta idade. Por outro lado, o crescimento individual das árvores é influenciado por suas características genéticas e sua inter-relação com o meio ambiente, fatores climáticos e de solo, além das características topográficas, cuja soma representa o conceito de qualidade de sítio. Além destes fatores, a competição pode ser considerada como um fator muito importante, e o mais controlável, através do manejo silvicultural.

Segundo HUSCH; MILLER; BEERS (1982), o crescimento de uma árvore consiste do alongamento e engrossamento das raízes, fuste e galhos, causando mudanças no seu peso, volume e forma. O crescimento linear de todas as partes de uma árvore é resultante das atividades do meristema primário, enquanto o crescimento em diâmetro, é resultante das atividades do meristema secundário ou câmbio, os quais produzem madeira. O crescimento é influenciado pela capacidade genética das espécies e interação com o ambiente, que incluem fatores climáticos, fatores do solo, características topográficas e competição.

Para GAUTO (1997), o crescimento de uma floresta, ou das árvores componentes desta, correspondem as mudanças ocorridas em tamanho durante um determinado período de tempo. Sabe-se, portanto, que em uma floresta o crescimento é dado pela atividade das árvores vivas, mas sua somatória não reflete o crescimento da floresta como um todo, pelo fato de existirem árvores mortas, cortadas e recrutadas no período de crescimento.

Pode-se dizer que existe variação de crescimento entre espécies, assim como pode haver variação dentro de uma mesma espécie e entre indivíduos, devido às diferenças que há nos tamanhos e grau de iluminação das copas e influência de fatores genéticos. Os tratamentos silviculturais podem diminuir ou até eliminar a diferença de crescimento entre indivíduos de uma mesma espécie, e o padrão de crescimento, em diâmetro, pode ser semelhante em floresta virgem e em floresta explorada, enquanto que de outras, pode ser completamente diferente (CARVALHO, 1997).

As espécies diferem geneticamente em suas taxas de crescimento. As pioneiras mostram a mais rápida taxa de crescimento, e sua sobrevivência depende da sua posição dominante no dossel. Algumas espécies emergentes mostram taxas de crescimento similares às das pioneiras e podem ser um tanto intolerante à sombra (MONOKARAN; KOCHUMMEN, 1987).

Ressalta-se também, que as espécies intolerantes à sombra crescem mais rápido, e em relação ao tamanho, normalmente as árvores maiores crescem mais em diâmetro do que as árvores menores. As árvores maiores apresentam mais possibilidades de terem suas copas completamente expostas à luz e atingirem maior crescimento, enquanto que as árvores de crescimento lento têm mais chances de

serem eliminadas quando pequenas, portanto não influem positivamente nos cálculos de taxas de crescimento e quando se calcula o incremento, normalmente as árvores do sub-bosque, de crescimento lento, são de pequeno porte (CARVALHO, 1997).

O método mais generalizado em estudos de crescimento e produção é a utilização de parcelas permanentes, sejam estas experimentais ou representativas do inventário contínuo. A remedição periódica das parcelas permanentes possibilita estimativas mais precisas do crescimento quando comparada com qualquer outro método aplicado com à mesma intensidade amostral (PRODAN et al., 1997).

Para a avaliação do crescimento em florestas mistas, ao longo de um período de tempo, três componentes devem ser analisados: incremento individual das árvores (crescimento), mortalidade e ingresso (ALDER; SYNNOTT, 1992). Este conceito pode ser expresso algebricamente como:

$$I = I_S - M + R$$

l = Incremento ou crescimento da floresta;

I_S = Soma dos incrementos das árvores que sobreviveram durante o período de tempo;

M = Volume das árvores que morreram durante o período;

R = Volume das árvores que ingressaram da regeneração medidas no final do período.

Segundo os autores, tal expressão conduz a uma importante conclusão para o trabalho em parcelas permanentes, onde as medições exatas de ingresso e mortalidade são tão importantes na amostragem de florestas, como as medições sobre o incremento das árvores.

2.1.3 Mortalidade

Mortalidade é o número ou volume de árvores que morreram periodicamente por causas naturais tais como senilidade, competição, insetos, doenças, vento e gelo (HUSCH; MILLER; BEERS, 1982).

Segundo SANQUETTA (1996), a mortalidade pode ser considerada como o número de árvores que foram mensuradas inicialmente, que não foram utilizadas, e morreram durante o período de crescimento. Para o autor a mortalidade pode ser

causada por diversos fatores, como: idade ou senilidade; competição e supressão; doenças e pragas; condições climáticas; fogos silvestres; e por anelamento e envenenamento, injúrias, corte ou abate da árvore.

Para CARVALHO (1992; 1997), a mortalidade pode ser causada por muitos fatores, como por exemplo, ataque por patógenos, parasitas e herbívoros, tempestades, danos causados por fortes chuvas, danos causados durante as operações de corte e transporte, e morte por idade.

A causa mais comum da morte de árvores em florestas tropicais não perturbadas é o vento, mas frequentemente as árvores morrem em pé, como resultado de várias causas possíveis como fungos patogênicos, herbívoros, senescência, déficit hídrico, ou supressão, ou a combinação destes fatores (LIEBERMAN; LIEBERMAN, 1987).

A mortalidade das árvores pode ser classificada em dois tipos: mortalidade regular, que inclui todas as formas de mortalidade que são esperadas ocorrer, normalmente causadas pela competição e supressão, idade, incidência de pragas, efeitos climáticos, entre outros e mortalidade irregular ou por catástrofes, que inclui as outras formas de mortalidade catastróficas (VANCLAY, 1994).

A taxa de mortalidade apresenta diferenças entre espécies e sítios, embora haja certa dificuldade em avaliá-la devido aos pequenos tamanhos de unidades amostrais. Em estudos realizados na Malásia, observou-se que espécies pioneiras, por exemplo, têm caracteristicamente altas taxas de mortalidade, sendo tais espécies incomuns em florestas primárias (MANOKARAN; KOCHUMMEN, 1987).

Em florestas tropicais, o padrão de mortalidade natural no tempo e no espaço está fortemente relacionado com a máxima longevidade das árvores; distribuição em classes de tamanho; abundância relativa das espécies; e tamanho e número de aberturas no dossel da floresta (CARVALHO, 1997).

As perdas de árvores influenciam as condições do microambiente e, consequentemente, a taxa de crescimento de árvores vizinhas. Assim, a morte de uma árvore pode aumentar ou decrescer a probabilidade da morte de outras (SWAINE; LIEBERMAN; PUTZ, 1987).

Estudos reportam que em florestas tropicais as espécies emergentes apresentam taxa anual de mortalidade mais baixa, enquanto que as espécies de

sub-bosque apresentam altas taxas e que outros estudos, considerando apenas indivíduos com DAP superior a 10 cm, indicam pouca diferença em mortalidade por classe de tamanho (CARVALHO, 1997).

O grau e o tempo transcorrido desde a perturbação tem um notável efeito sobre o comportamento da mortalidade em uma floresta tropical úmida. Em florestas não perturbadas, em estado de equilíbrio, as taxas de mortalidade são constantes nas diversas classes de DAP e, portanto, não se espera nenhuma correlação da mortalidade com o tamanho da árvore (MANOKARAN; KOCHUMMEN, 1987).

2.2 AMOSTRAGEM EM MÚLTIPLAS OCASIÕES

Para o monitoramento de uma população florestal, é vital a realização de sucessivas abordagens em intervalos de tempo apropriadamente definidos. Através destas abordagens pode-se avaliar o caráter dinâmico de uma população, bem como uma série de variáveis indispensáveis para a definição do manejo a ser aplicado à floresta em um período de tempo pré-determinado (PÉLLICO NETTO; BRENA, 1997).

Para monitoramento de uma área florestal, a base estatística para tais estudos pode ser a análise de regressão, a partir de um levantamento inicial completo. As estimativas da cobertura florestal em épocas posteriores podem ser conseguidas por levantamentos parciais utilizando-se os processos de regressão (FAO, 1973).

Os inventários florestais contínuos fornecem uma série de informações fundamentais aos manejadores, tais como, a avaliação do crescimento, as mudanças volumétricas ocorridas entre ocasiões distintas, a avaliação de densidade do estoque, a avaliação de produção, de índice de sítio, entre outras (PÉLLICO NETTO; BRENA, 1997).

No caso das florestas nativas, o conceito de manejo florestal deve ser assumido em um sentido mais amplo. O monitoramento da cobertura florestal, através da aplicação de inventários contínuos, deve ser considerado como uma peça basilar para a formulação de políticas de uso da terra e de avaliações dos

problemas ambientais decorrentes de intervenções na sua estrutura florestal, e não apenas como um instrumento para o manejo florestal.

Os inventários florestais sucessivos têm sido amplamente utilizados pelas empresas florestais dos Estados Unidos, Europa e Canadá, bem como por suas entidades públicas florestais, servindo como base para adoção de políticas de desenvolvimento (BRENA, 1979).

Ao se amostrar sucessivamente uma população, as informações obtidas na primeira ocasião são correlacionadas com às da segunda ocasião, quando um conjunto de unidades amostrais, ou parte deste, for remedido em cada uma das abordagens, possibilitando assim, que se estabeleça uma forte ligação entre ambas as ocasiões (PÉLLICO NETTO; BRENA, 1997).

O objetivo da realização de um inventário é prover a base para uma utilização racional dos recursos florestais e para orientar o manejador florestal em suas decisões. Os inventários sucessivos são usados para o planejamento das operações de exploração florestal, das transações de compra e venda, da localização de estradas, acompanhamento das operações de plantio e outras (BICKFORD, 1963).

Os inventários florestais contínuos englobam todas as modalidades de processos amostrais, onde se utiliza amostragem em sucessivas ocasiões. Portanto, o conceito de Inventário Florestal Contínuo, não se restringirá ao processo de Amostragem com Repetição Total, conhecido tradicionalmente como Inventário com Parcelas Permanentes (PÉLLICO NETTO; BRENA, 1997).

A amostragem em sucessivas ocasiões para utilização em inventários florestais tem três objetivos fundamentais: estimar quantidades e características da floresta presentes no primeiro inventário; estimar quantidades e características da floresta presentes no segundo inventário; e estimar as mudanças ocorridas na floresta entre os dois inventários (HUSCH; MILLER; BEERS, 1972; 1982).

Podem ser definidos quatro métodos básicos de se combinar as unidades amostrais permanentes e temporárias, em Inventário Florestais Contínuos (CUNIA; CHEVROU, 1969; FAO, 1974; HUSCH; MILLER; BEERS, 1972; PÉLLICO NETTO; BRENA, 1997):

- a) Uma amostra completamente nova pode ser tomada na população por ocasião de cada inventário. Todas as unidades amostrais são temporárias e independentes em cada ocasião – Amostragem Independentes – (AI);
- b) As unidades amostrais tomadas na primeira ocasião são remedidas na segunda ocasião, bem como em todas as ocasiões sucessivas – Amostragem com Repetição Total de unidades – (ART);
- Na segunda ocasião apenas uma parte das unidades amostrais tomadas na ocasião inicial é remedida – Amostragem Dupla – (AD);
- d) Na segunda ocasião, parte das unidades amostrais da primeira ocasião é remedida e novas unidades temporárias são tomadas na população – (ARP).

O processo de Amostragem com Repetição Parcial (ARP) engloba em sua estrutura todos os demais métodos mencionados (CUNIA; CHEVROU, 1969). Segundo PÉLLICO NETTO; BRENA (1997), os quatro processos de inventários contínuos envolvem três grupos de unidades amostrais distintas, como segue:

- Um grupo de unidades permanentes (*m*), que é remedido em todas as ocasiões;
- Um grupo de unidades temporárias (*u*), que é medido somente na primeira ocasião;
- E um grupo de unidades novas temporárias (n), que é medido somente na segunda ocasião.

A combinação desse três grupos de unidades amostrais origina os quatro processos de inventários florestais contínuo (PÉLLICO NETTO; BRENA, 1997): Amostragem Independente (AI), Amostragem com Repetição Total (ART), Dupla Amostragem (DA) e Amostragem com Repetição Parcial (ARP). Se o primeiro grupo de unidades amostrais for vazio (m = 0), a Amostragem com Repetição Parcial transforma-se em Inventários Independentes; se o segundo e terceiros grupos forem vazios (u = 0 e n = 0), tem-se o Inventário Florestal Contínuo; se o terceiro grupo for vazio (n = 0), têm-se a Dupla amostragem. Para esses autores, a Amostra com Repetição Parcial como método geral de amostragem em sucessivas ocasiões, é o mais eficiente entre os quatro processos (CUNIA; CHEVROU, 1969).

Na Amostragem Independente as abordagens nas duas ocasiões são executadas independentemente uma da outra. Assim, na primeira ocasião, a amostra necessária para estimar os parâmetros da população, é constituída de unidades temporárias da primeira ocasião (*u*); na segunda ocasião toma-se uma nova amostra na população, totalmente independente daquela da primeira ocasião, constituída de novas unidades temporárias (*n*). De acordo com os autores, as amostras devem ser tomadas aleatoriamente em ambas as ocasiões e seus estimadores e precisão são obtidos conforme os conhecimentos do processo de Amostragem Aleatória Simples (COCHRAN, 1965; PÉLLICO NETTO; BRENA, 1997).

As amostragens independentes não são comumente utilizadas em inventários florestais contínuos, uma vez que não se consegue obter nesta forma de abordagem, os estimadores de crescimento na base individual, como por exemplo, a altura dominante, controle evolutivo dos diâmetros, e controle de perdas, entre outros fatores importantes para o planejamento do manejo florestal (COCHRAN, 1965; PÉLLICO NETTO; BRENA, 1997).

O maior obstáculo para a utilização do processo de amostragem independente é a inexistência de correlação entre as unidades em ambas as ocasiões, tendo como consequência a obtenção do máximo erro de amostragem (VRIES, 1986; PÉLLICO NETTO; BRENA, 1997).

A Amostragem com Repetição Total pode ser definida como o processo onde a mesma amostragem realizada na primeira ocasião é remedida na segunda e em todas as ocasiões sucessivas (PÉLLICO NETTO; BRENA, 1997). Assim, existe uma correlação entre os valores obtidos nas duas amostragens e, em termos de inventários amostrais, este processo é conhecido como Inventário Florestal Contínuo (IFC).

Para SCHMIT¹, citado por PÉLLICO NETTO; BRENA (1997), os Inventários Florestais Contínuos, usando unidades amostrais permanentes (ART), foram introduzidos na Suíça em 1890. Ressalta também, que nessas condições todas as árvores com diâmetros iguais ou maiores que 16 cm são periodicamente medidas e o crescimento exatamente registrado. Menciona ainda que este procedimento

¹ SCHMIT, P. Continuous forest inventory in Switzerland. Biermensdorf, Zurich, Swiss Forest research Institute, 1971. 7p.

permite obter dados exatos sobre as condições florestais num determinado momento e também sobre suas alterações.

VRIES (1986); PÉLLICO NETTO; BRENA (1997), mencionaram a importância da demarcação e localização em campo das unidades, além da ordenação e numeração das árvores individualmente dentro das unidades amostrais na Amostragem com Repetição Total é de fundamental importância. Destacam também, que tais vantagens permitem o cálculo dos seus incrementos, bem como o controle de ocorrências e implicações de origem bióticas e abióticas ao longo do tempo.

A vantagem principal do processo de Amostragem com Repetição Total, em termos estatísticos, reside no aumento de precisão do estimador de crescimento, devido principalmente a remedição de todas as unidades amostrais (PÉLLICO NETTO; BRENA, 1997). Essa vantagem pode ser ainda maior quando se relaciona o manejo dos povoamentos com os aspectos relativos ao controle individual das árvores.

A Amostragem Dupla ou Dupla amostragem é o processo de Amostragem em Múltiplas Ocasiões, onde a amostra da segunda ocasião constitui uma subamostra da primeira ocasião (COCHRAN, 1965). É um processo particularmente importante, para as situações em que a obtenção da variável principal em estudo envolve alto custo, ou muito trabalho, uma vez que uma variável auxiliar, correlacionada com a principal, pode ser facilmente obtida.

Na Dupla Amostragem, pode ser mais conveniente e econômico tomar uma amostra grande da variável auxiliar, obtendo-se estimativas precisas do total da população ou da média da variável auxiliar, na primeira fase de amostragem. Na segunda fase, pode-se tomar uma subamostra da primeira fase, na qual mede-se a característica principal e a auxuliar, e usando-se a amostragem da primeira fase como informação suplementar, pode-se obter estimativas precisas da característica principal, através de regressão (PÉLLICO NETTO; BRENA, 1997; VRIES, 1986).

Segundo VRIES (1986); PÉLLICO NETTO; BRENA (1997), uma ampla amostragem é efetuada para se obter a precisão desejada para as estimativas da população da primeira ocasião (X), medindo-se a variável principal em uma subamostra permanente e a auxiliar em uma subamostra temporária. Na segunda ocasião, em uma subamostragem das unidades desta primeira abordagem, remede-

se a subamostra permanente, obtendo-se a estimativa da variável principal (Y) e um estimador da relação entre (Y) e (X). A média dos dados da amostragem da primeira ocasião (X) é então aplicada à relação desenvolvida, para se obter uma estimativa da média da segunda ocasião (Y).

Em relação à Dupla Amostragem, deve-se ressaltar que, a cada nova ocasião do inventário, o coeficiente de correlação entre as variáveis de interesse tende a diminuir, uma vez que o intervalo entre as medições cresce. Assim para se manter a precisão das estimativas, recomenda-se aumentar o número de unidades da subamostra (COCHRAN, 1965; PÉLLICO NETTO; BRENA, 1997).

WARE; CUNIA (1962) apresentaram a teoria da Amostragem com Repetição Parcial aplicada a inventários florestais em duas ocasiões sucessivas. Nesta ocasião, os autores consideraram a relação que une duas medições sucessivas através das parcelas permanentes, como uma função linear.

CUNIA (1965) apresentou a aplicação de regressão linear múltipla para a estimativa dos parâmetros da população nas duas ocasiões. O autor menciona que o uso da regressão só se justifica quando é possível estratificar a população através das variáveis qualitativas "dummy".

Qualquer fracasso da amostra inicial na Amostragem com Repetição Parcial, no sentido de ser representativa da população, pode ser parcialmente compensado pela introdução de novas unidades amostrais (WARE; CUNIA, 1962).

A principal vantagem da Amostragem com Repetição Parcial em relação aos outros processos é a existência de uma forte correlação entre os volumes da primeira para a segunda ocasião. Esta correlação, assim como a regressão linear correspondente é estimada a partir de unidades amostrais permanentes. Assim a regressão linear simples é aplicada às unidades temporárias da primeira ocasião e às temporárias da segunda ocasião, obtendo estimativas do volume destas parcelas para as ocasiões nas quais elas foram medidas (CUNIA, 1965).

A Amostragem com Repetição Parcial se baseia no princípio da amostragem repetida com substituição parcial das unidades amostrais. A cada remedição do inventário, parte do número de unidades medidas no inventário anterior é remedida e novas unidades são tomadas para completar a intensidade amostral. A referida amostragem engloba, em sua estrutura, todos os demais processos de amostragem

em múltiplas ocasiões, podendo ser transformada em qualquer um deles, durante a segunda ocasião, através da eliminação de grupos de unidades amostrais (PÉLLICO NETTO; BRENA, 1997).

RIBEIRO (1978), estudando povoamentos de *Pinus* sp. em Guarapuava-PR, confirma a superioridade da Amostragem com Repetição Parcial sobre os demais métodos nas estimativas de volumes médios da primeira e segunda ocasião. Destacou também, que a melhor estimativa do crescimento foi obtida através da Amostragem com repetição Total.

BRENA (1979), comparando a eficiência dos métodos de inventários florestais sucessivos em relação à Amostragem com Repetição Parcial, aplicados a uma população estratificada de *Eucalyptus* sp. na região de Lençóis Paulista-SP, concluiu que a Amostragem com Repetição Parcial foi o processo, entre os aplicados a inventários florestais sucessivos, estatisticamente mais eficiente para as estimativas das médias volumétricas da primeira e segunda ocasiões. Destacou também, que para a estimativa do crescimento, os melhores resultados foram obtidos pela Amostragem com Repetição Total.

3 MATERIAL E MÉTODOS

3.1 LOCALIZAÇÃO DA ÁREA

Os dados básicos utilizados neste trabalho foram obtidos em inventário florestal realizado numa área de floresta natural, localizada no município de Cássia, região sul do Estado de Minas Gerais, situada entre: Latitude 20°20' e 20°40' Sul e Longitude 46°40' e 47°00' Oeste (fig. 1).

A área de estudo é formada por uma propriedade denominada como Fazenda Reata, possuindo cerca de 56 hectares de floresta natural.

3.2 CARACTERIZAÇÃO DA ÁREA DE ESTUDO

3.2.1 Geomorfologia

Segundo RADAM-BRASIL (1978), a região estudada é caracterizada pelo domínio morfoestrutural remanescente de Cadeias Dobradas, apresentando vestígios destas estruturas, com exposições eventuais de seus embasamentos. A área em questão está situada na Região dos Planaltos do Alto Rio Grande, com altitudes médias em torno de 680 m.

3.2.2 Solos

De acordo com RADAM-BRASIL (1978), ocorrem solos classificados como Latossolo Vermelho-Escuro Distrófico, caracterizando solos minerais, não hidromórficos com horizonte B latossólico, diferenciado dos solos da classe Latossolo Vermelho-Amarelo por apresentarem teores mais elevados de Fe₂O₃ e, conseqüentemente, cores mais avermelhadas. Para os solos de textura mais argilosa e/ou muito argilosa, as percentagens de Fe₂O₃ no horizonte B variam de 8,8 a 16,6% e, para solos de textura média, estes valores variam de 3,9 a 8,5%.

FIGURA 1 - LOCALIZAÇÃO DA CIDADE DE CÁSSIA NO ESTADO DE MINAS GERAIS - BRASIL

O horizonte B apresenta cores vermelho-escuras e vermelho-escuro-acinzentadas, com matiz 2,5 YR ou mais vermelho, valores iguais ou menores que 4 e cromas iguais ou inferiores a 6. Possui valor de V% variando de 3 a 28%, com horizonte A moderado e ocorrências de A proeminente, com teores de carbono variando de 0,5 a 2,4%. Os valores Ki, baixos no horizonte B, situam-se em torno de 1,20, e a relação molecular Kr, também baixa, varia de 0,44 a 1,57.

Estes solos geralmente ocorrem em relevos predominantemente ondulados, são profundos, acentuadamente drenados, com pouca diferenciação entre os horizontes. Possuem textura predominantemente argilosa (algumas médias), com relação silte/argila inferior a 0,6 em todos os perfis. Apresentam boas características físicas para o desenvolvimento das raízes e relevo satisfatório à mecanização.

3.2.3 Relevo

Segundo RADAM-BRASIL (1978), "englobam relevos de dissecação estrutural moderada, orientados, constituindo cristas assimétricas e escarpas que coalescem com rampas de colúvio, "mares de morros" e colinas conexas". Possuem incisões de drenagem de 98 a 155 m e declividades entre 11 e 24°, com formações superficiais espessas, de textura areno-argilosa, recobertas por pastagens e vegetação secundária.

3.2.4 Clima

A região de Cássia-MG está situada a, aproximadamente, 680 metros de altitude, e apresenta temperaturas médias anuais de 26,5°C (máxima) e 19,5°C (mínima). O clima da região, segundo classificação de Köppen, é do tipo Cwa (Tropical de altitude), apresentando verões rigorosos e chuvosos.

3.2.5 Vegetação

Segundo RADAM-BRASIL (1978), a vegetação predominante na região estudada é a Floresta Estacional Semidecidual. O conceito ecológico da região da Floresta Estacional está preso ao clima de duas estações, uma chuvosa e outra seca, que condicionam uma estacionalidade foliar dos elementos arbóreos dominantes, os quais têm adaptação fisiológica à deficiência hídrica ou a baixa temperatura, durante certo tempo.

No caso das Florestas Semideciduais, a porcentagem de árvores caducifólias no conjunto florestal, e não das espécies que perdem folhas individualmente, devese situar em torno de 20 a 50 % na época desfavorável.

Este tipo de vegetação apresenta uma grande distribuição espacial, abrangendo parte do Rio Grande do Sul e do Espírito Santo, os vales dos rios Paraíba e Sapucaí, os planaltos interioranos e parte da bacia do Paraná. Nestas áreas, exceto a bacia do Paraná, os ambientes da Floresta Estacional Semidecidual ocorrem sob um clima tropical estacional com mais de 60 dias secos por ano, e litologia Pré-Cambriana, nas mais variadas formas de relevo, até o Quaternário. A ocorrência predominante de arenitos na bacia do Paraná propiciou a formação de solos com baixa capacidade de retenção de água e elevado déficit hídrico, que determinaram o caráter estacional do seu clima, sendo, portanto, os ambientes desta região fitoecológica, nas áreas em questão, delimitados segundo este critério.

Nestes ambientes, a intensa ação do homem praticamente substituiu a cobertura original por pastagens, agricultura e vegetação secundária, principalmente. Atualmente, ainda se encontram locais de difícil acesso ou protegidos por lei, pequenos agrupamentos remanescentes das Formações Aluviais, das Terras Baixas, Submontana e Montana.

A formação encontrada na área de estudo compreende a Floresta Montana, que apresenta o maior número de agrupamentos remanescentes na área abrangida pelos ambientes da Floresta Estacional Semidecidual. Ela ocorre nas altitudes entre 500 e 1500 metros, revestindo os diques de diabásio da Formação Serra Geral, na bacia do Paraná, e sobre o relevo dissecado do embasamento de litologia variada. Apesar do número elevado de agrupamentos remanescentes, eles são na sua

maioria pequenos, sendo os mais representativos encontrados próximos às cidades de Cordeiro-MG, Trajano de Moraes-RJ, Dores de Turvo-MG, Alvinópolis-MG, Carmo do Meio-MG e Bocaína de Minas-MG. Nestas áreas são freqüentes as espécies dos gêneros *Aspidosperma* (perobas), *Piptadenia* (angicos), *Cariniana* (jequetibás), *Ocotea* e *Nectandra* (canelas), e *Lecythis* (sapucaia), que ocupam o estrato dominante da floresta (RADAM-BRASIL, 1978).

3.3 INVENTÁRIO FLORESTAL

O inventário florestal contínuo para realização do presente estudo foi efetuado no período de 1995 a 2001. O projeto foi iniciado em 1995 quando foram instaladas as parcelas permanentes utilizadas para o estudo da dinâmica da floresta. As medições anuais tiveram início em julho de 1996, quando foi efetuada a primeira coleta de dados. Nos anos seguintes, sempre no mês de julho, foram efetuadas cinco remedições anuais no período de 1997 a 2001, totalizando 6 coletas de dados.

O processo de amostragem utilizado para o levantamento dos dados foi o sistemático em estágio único, com intervalos constantes de 100 metros entre linhas e unidades amostrais. A escolha do processo em questão deve-se às condições da floresta, que apresenta grande dificuldade de acesso interno, bem como devido aos possíveis agrupamentos de espécies determinadas pelas variações de sítio, além das vantagens que este processo oferece (PÉLLICO NETTO; BRENA, 1997).

Com relação ao método de amostragem, foi utilizado o de área fixa, devido às inúmeras vantagens que apresenta (PÉLLICO NETTO; BRENA, 1997), bem como pela necessidade de um controle mais rígido sobre as medições e acompanhamento futuro da dinâmica da floresta (parcelas permanentes).

Foram instaladas 9 unidades amostrais permanentes, com distribuição sistemática na floresta, abrangendo cerca de 16% do total da área. A unidade amostral utilizada foi de forma quadrada, com dimensões de 100 x 100 metros, resultando numa área de 10000 m² (1ha).

3.3.1 Obtenção dos dados

Após a instalação do experimento, em julho de 1995, foram efetuadas diversas coletas de informações na área em questão. As unidades amostrais de 10000 m² foram subdivididas em subparcelas de 100 m² (10 m x 10 m), totalizando 100 subparcelas por unidade amostral.

Em 1996, quando se iniciou a coleta das informações, foram marcadas em todas as parcelas permanentes, as árvores com DAP maior ou igual a 10 cm. As árvores foram numeradas, pintadas a 1,30 metros do solo e alocadas em croquis (subparcelas de 10 m x 10 m). Em seguida foram medidos os DAPs de todas as árvores das parcelas. As espécies foram identificadas após coleta de material botânico (CORAIOLA, 1997). Foram medidas também, algumas alturas (total e comercial) da população para posterior ajuste de equações hipsométricas, e cubadas árvores representativas para ajuste de equações de volume com casca.

Em todas as parcelas foram remedidos os DAPs, anotadas as mortas e incluídas as árvores que atingiram o diâmetro mínimo de 10 cm. Neste caso, as árvores eram numeradas, identificadas e alocadas em croqui.

3.3.2 Composição Florística

Na Tabela 1 estão apresentadas todas as espécies que ocorreram na área estudada com DAP > 10 cm, com identificação dos nomes vulgares e científicos (CORAIOLA, 1997).

TABELA 1 - COMPOSIÇÃO FLORÍSTICA DA FLORESTA

CÓDIGO	NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA
001	Açoita cavalo	Cordia sp. 2	Boraginaceae
002	Alectim	Holocalix balanseae Micheli	Mimosaceae
003	Amenduim	Senna sp.1	Caesalpinaceaea
004	Amesca	Trichilia pallida Sw.	Meliaceae
005	Amoreira	Maclura trinctoria (L.) Don ex Steudel	Moraceae
006	Angá graúdo	Inga sp.	Mimosaceae
800	Angá miúdo	Inga marginata Wild.	Mimosaceae
010	Ariticum cagão	Annona cacans Warms.	Anonaceae
011	Ariticunzinho	Annona montana Macfad; R. F. Fries	Annonaceae
013	Arruda	Zanthoxylum rhoifolium Lam.	Rutaceae
014	Bálsamo	Myrocarpus frondosus Fr. Allen.	Fabaceae
015	Batalha	Lauraceae 2	Lauraceae
016	Bico de pato	Machaerium aculeatum Raddi	Fabaceae
017	Braúna	Schinopsis brasiliensis Engl.	Anacardiaceae
018	Cambará lixa	Aloysia virginata Juss.	Verbenaceae
019	Camboatá	Cupania vernalis Camb.	Sapindaceae
021	Canafistula	Cassia ferruginea Schrad. ex DC.	Caesalpinaceae
022	Canela	Lauraceae 5	Lauraceae
023	Canela amarela	Nectandra sp.	Lauraceae
023	Canela bosta	Nectandra megapotamica Mez.	Lauraceae
025	Canela branca	Lauraceae 4	Lauraceae
026	Canela preta	Ocotea sp.	Lauraceae
027	Canela sebo	Lauraceae 1	Lauraceae
1027		Cabralea canjerana (Vell.) Martius.	Meliaceae
029	Canjerana	Mimosaceae 1	Mimosaceae
	Canjica		Combretaceae
031	Capitão	Terminalia sp. 2	Euphorbiaceae
032	Capixingui	Croton floribundus Spreng.	Myrsinaceae
1033	Capororocão	Myrsine umbellata Mez.	•
1034	Carne de vaca	Roupala sp.	Proteaceae
1035	Caroba	Jacaranda cf. micrantha CHAM.	Bignoniaceae
1036	Casca de arroz	Myrcia sp.	Myrtaceae
1037	Cedro	Cedrella cf. fissilis Vell.	Meliaceae
1039	D	Desconhecida	Desconhecida
1040	D1	Trichillia clausennii	Meliaceae
1041	D4	Siparuna apiosyce (Mart.) DC.	Monimiaceae
1042	Embaúba	Cecropia pachystachya Trec.	Cecropiaseae
1043	Erva de lagarto	Casearia sylvestris Sw.	Flacourtiaceae
1045	Farinha seca	Albizia polycephalla (Benth) Killip.	Mimosaceae
1046	Figueira	Ficus sp. 1	Moraceae
1048	Fruteira	Eugenia sp.	Myrtaceae
1050	Gairova	Syagrus oleraceae (Mart.) Becc.	Arecaceae
1051	Gameleiro	Ficus sp. 2	Moraceae
1052	Guaritá	Astronium graveolens Jacq.	Anacardiaceae
1053	Guatambú café	Aspidosperma ramiflorum M. Arg.	Аросупасеае
1054	Imbira sapo	Lonchocarpus sp.	Fabaceae
1055	lpê amarelo	Tabebuia sp. 2	Bignoniaceae
1057	Jacarandá roxo	Machaerium sp.	Fabaceae
1058	Jambreiro	Clusiaceae 1	Clusiaceae
1059	Jaracatiá	Jaracatia spinosa (Aubl) A.DC.	Carycaceae
1060	Jatobá	Hymenaea courbaril Linn.	Caesalpinaceae
1061	Jeguetibá branco	Cariniana estrellensis (Mart.) Kuntze	Lecytidaceae
1062	Jequetibá rosa	Cariniana legalis (Raddi) Kuntze	Lecytidaceae
1064	Limeira	Citrus sp.	Rutaceae

CÓDIGO	1 - CONTINUAÇÃO NOME VULGAR	NOME CIENTÍFICO	FAMÍLIA
1065	Mamica de porca	Zanthoxylum sp.	Rutaceae
1066	Mandiocão	Shefflera sp.	Araliaceae
1067	Marinheirinho	Matayba elaegnoides Radlk.	Sapindaceae
1068	Marinheiro	Guarea kunthiana Juss.	Meliaceae
1069	Monjoleiro	Acacia polyphylla DC.	Mimosaceae
1072	Orelha de mateiro	Chrysophyllum gonocarpum (Mart & Eichl) Engl.	Sapotaceae
1073	Orvalho	Trichillia pallens C.	Meliaceae
1074	Paineira	Chorisia speciosa St. Hill.	Bombacaceae
1075	Paineira branca	Pseudobombax grandiflorum (Carv.) A. Robins	Bombacaceae
1076	Palmito	Euterpe edulis Mart.	Arecaceae
1077	Panacéia	Solanum cernuum Vell.	Solanaceae
1079	Pau alho	Galesia integrifolia Spreng. Harms.	Phytollacaceaea
1081	Pau pólvora	Trema micrantha Blume.	Ulmaceae
1083	Pau viola	Alchomea triplinervia Muell. Arg.	Euphorbiaceae
1084	Pereira	Platyciamus regnelli Benth.	Fabaceae
1085	Peroba	Aspidosperma sp. 4	Apocynaceae
1086	Peroba branca	Aspidosperma sp. 3	Apocynaceae
1087	Peroba canela de velha	Aspidosperma sp. 2	Apocynaceae
1089	Peroba rosa	Aspidosperma polyneuron Muell. Arg.	Apocynaceae
1091	Pessegueiro bravo	Prunus subcoriaceae Koehne.	Rosaceae
1092	Pindaíba	Xylopia sp.	Annonaceae
1095	Quaresma	Miconia discolor DC.	Melastomatacea
1096	Quatiguá	Trichillia sp.	Meliaceae
1098	Sangueiro	Pterocarpus violaceous Vog. C19	Fabaceae
1099	Sassafrás	Ocotea pretiosa Benth. & Hook.	Lauraceae
1100	Serralha	Soracea guillerminiania Gaudich.	Moraceae
1101	Sete casaco	Myrtaceae 1	Myrtaceae
1102	Tamburilo	Enterolobium contorstisiliquum Morong.	Mimosaceae
1103	Tento	Ormosia arborea Harnu.	Fabaceae
1104	Três folhas	Esenbeckia grandiflora Mart.	Rutaceae
1105	Unha de boi	Bauhinia fortificata Link.	Mimosaceae
1106	Urtigão	Urera baccifera Gaudich.	Urticaceae
1108	Veludo	Chomesia sp.	Rubiaceae
1109	Vinhático	Vochysia tucanorum Mart.	Vochysiaceae
1110	Aliophyllus	Allophyllus sericeus (Camb.) Radik.	Sapindaceae
1115		Columbrina glandulosa Perkins	Rhamnaceae
1116	Sobraji Cordia 1	Cordia sp. 1	Boraginaceae
	Cordia 2	Cordia sp. 1	Boraginaceae
1117 1118	Cordia 2 Maria-mole	Dendropanax cuneatum (DC) Pland.	Araliaceae
		Hesteria sp.	Olacaceae
1119	Hesteria Myzologym	Myroloxum sp.	Fabaceae
1121	Myroloxum Pollipia	Myroioxum sp. Rollinia sp.	Annonaceae
1125	Rollinia	•	Elaeocarpaceae
1126	Sloaneae	Sloanea guianiensis (Aubl.) Bentham. Lauraceae 3	Lauraceae
1132	Lauraceae 3		Styracaceae
1139	Styrax 2	Styrax sp. 2	Bignoniaceae
1140 1141	lpê felpudo	Tabebuia sp. 1	Rubiaceae
	Tocayena	Tocayena sp.	Nuviduede

FONTE: CORAIOLA (1997)

3.3.3 Modelos aiustados para a floresta

As equações matemáticas utilizadas no presente trabalho foram ajustadas para floresta em questão e testadas por CORAIOLA (1997). Para determinação da melhor equação foram utilizados os seguintes critérios:

- 1 Menor erro padrão de estimativa Sxy%
- 2 Maior coeficiente de determinação R²aiustado
- 3 Maior valor de "F"
- 4 Análise dos resíduos

3.3.3.1 Relação hipsométrica

Para estimativa das alturas das árvores foi utilizada a metodologia proposta por CORAIOLA (1997), onde a população foi dividida em quatro estratos com base na relação altura comercial/diâmetro (hc/d) das árvores. Segundo este autor, cada classe de hc/d corresponde a um estrato da floresta. Assim, o estrato 4, que corresponde à primeira classe de h/d, inicia-se no menor valor de h/d, acrescido da média (amplitude da classe de h/d). O estrato 3 (correspondente à segunda classe de h/d), foi definido somando-se o valor superior da primeira classe de hd à média (amplitude), e assim sucessivamente até o estrato 1.

Para escolha da melhor equação por estrato foram testados 10 modelos matemáticos para a altura comercial das árvores. A tabela 2 apresenta os modelos selecionados para a altura comercial das árvores.

TABELA 02 – EQUAÇÕES HIPSOMÉTRICAS AJUSTADAS PARA A ALTURA COMERCIAL POR ESTRATO

ESTRATO	MODELO	Sxy%	$R^{\prime}_{aj.}$	F
1	$1/(h-1,3)^{1/3} = 0.316295 + 2.924294 (1/d) + 0.000000112 (d^2)$	16,26	0,85	85
2	$1/(h-1,3)^{1/3} = 0.377686 + 2.544429 (1/d) + 0.000003438 (d^2)$	14,93	0,90	292
3	$1/(h-1,3)^{1/3} = 0,42759 + 3,331435 (1/d) + 0,000004808 (d^2)$	16,27	0,88	359
4	$1/(h-1,3)^{1/3} = 0,573785 + 4,30737 (1/d) + 0,000011697 (d^2)$	27,95	0,61	85

FONTE: CORAIOLA (1997)

NOTA: h=altura comercial (m); d=diâmetro à altura do peito -DAP (cm).

3.3.3.2 Equação de volume

Foram estimados os volumes comerciais individuais com casca de todas as árvores amostradas, através de uma equação matemática ajustada para a floresta. Segundo CORAIOLA (1997), foram cubadas 120 árvores e testados 4 modelos matemáticos. A equação que apresentou melhores resultados foi a seguinte:

$$v_{c/c} = 0.027964 - 0.004736 \cdot d + 0.000241 \cdot d^2 + 0.00047 \cdot d \cdot h_c + 0.000039 \cdot d^2 \cdot h_c$$

onde.

 $v_{c/c}$ = volume comercial com casca (m³);

d = DAP (cm);

 h_c = altura comercial (m).

3.4 ANÁLISE DA DINÂMICA DA FLORESTA

A dinâmica da floresta foi avaliada através do crescimento, ingresso e mortalidade no período de 1996 a 2001.

3.4.1 Crescimento

O crescimento foi determinado pelo incremento periódico anual (IPA) para a floresta como um todo, por parcela e para todas as espécies. Para avaliação do crescimento foram calculados: o número de árvores por classe de IPA em DAP, por parcela e para a floresta; o IPA em área basal e volume comercial, por parcela e para a floresta; e o IPA médio em DAP e em volume comercial, por classe de DAP, por espécie e para a floresta. Foram calculadas também as estatísticas descritivas referentes ao DAP, área transversal, altura e volume comercial das árvores, por parcela e para a floresta; ao IPA em DAP, área transversal, altura e volume comercial das árvores, por parcela e para a floresta; e ao IPA em DAP e volume comercial, por espécie e para a floresta.

O IPA foi determinado da seguinte maneira:

$$IPA_{96-01} = \frac{DAP_{01} - DAP_{96}}{n} \text{ ou } \frac{ICA_{96-97} + ICA_{97-98} + ICA_{98-99} + ICA_{99-00} + ICA_{00-01}}{5}$$

IPA₉₆₋₀₁ = Incremento periódico anual no período de 1996 a 2001 (cm/ano);

ICA = Incremento Corrente Anual (por exemplo - ICA ₉₆₋₉₇ = ICA no período de 1996 a 1997);

DAP = Diâmetro a 1,30 m de altura (cm);

n = Período entre a primeira medição (1996) e última medição (2001) em anos.

3.4.2 Ingresso e Mortalidade

A mortalidade foi analisada mediante o cômputo do número de árvores que morreram no período de 1996 a 2001, por classe de DAP, por espécie e para a floresta. O ingresso foi determinado pelo número de árvores que atingiram o DAP mínimo de 10 cm entre as duas medições, por espécie, por classe de DAP e para a floresta. A porcentagem de árvores ingressas e mortas foi calculada pela relação entre o número de árvores que ingressaram ou morreram no período pelo número total de árvores no início do período. As taxas anuais de mortalidade e ingresso foram obtidas dividindo-se o número de árvores mortas ou ingressas entre duas medições pelo número de anos do período, por espécie, por parcela e para o total da floresta.

3.5 PROCESSOS DE AMOSTRAGEM EM MÚLTIPLAS OCASIÕES

Para a análise do crescimento da floresta foram utilizados os quatro principais processos de amostragem em múltiplas ocasiões existentes na literatura:

- Amostragem independente (AI)
- Amostragem com Repetição Total (ART)
- Dupla Amostragem (DA)
- Amostragem com Repetição Parcial (ARP)

A variável utilizada para a análise foi o volume comercial com casca das árvores, estimados segundo equação apresentada no item 3.3.3.2 do presente capítulo. Para os cálculos dos principais estimadores da primeira e segunda ocasião e da mudança ou crescimento, foram utilizados os formulários desenvolvidos para cada processo de amostragem.

Para a avaliação do crescimento, foram testadas duas situações distintas em relação aos dados utilizados para cada processo de amostragem:

- a) Dados coletados no período de 1996 a 2001, incluindo todas as árvores, ou seja, árvores em crescimento, as árvores ingressas e as mortas no período. Foram consideradas árvores em crescimento, todos os indivíduos (DAP ≥ 10 cm) que foram medidos em 1996 e encontraram-se vivos para medição em 2001.
- b) Dados coletados no período de 1996 a 2001, considerando apenas as árvores em crescimento, excluindo-se da análise as árvores mortas e as ingressas no período.

Para cada processo de amostragem analisado, foram utilizadas diferentes intensidades e tamanhos de unidades amostrais (tab. 3). Foram considerados cinco tamanhos de unidades amostrais diferentes: 100 m^2 ($10 \times 10 \text{ m}$), 200 m^2 ($10 \times 20 \text{ m}$), 400 m^2 ($20 \times 20 \text{ m}$), 1000 m^2 ($20 \times 50 \text{ m}$) e 2500 m^2 ($50 \times 50 \text{ m}$), resultando números de unidades amostrais potenciais diferentes para os 56 hectares da floresta (5600, 2800, 1400, 560 e 224 unidades, respectivamente).

Em função da área de cada unidade amostral foram estabelecidas diferentes intensidades amostrais, tendo como referência o número máximo de unidades em um hectare (100 x 100 m). Por exemplo, para unidades amostrais de 100 m², obtémse um total de 100 unidades em um hectare e 900 unidades nos nove hectares levantados, das quais foram sorteadas 600 para a referida análise. Para unidades de 400 m², observa-se um total de 25 unidades em um hectare e 225 unidades em nove hectares, das quais foram sorteadas 150 para a análise dos diferentes processos de amostragem.

TABELA 3 - NÚMERO DE UNIDADES AMOSTRAIS PARA OS PRINCIPAIS **CONSIDERANDO PROCESSOS** DE AMOSTRAGEM,

	DIF	FERENTES TA	MANHOS DE	UNIDADES A	MOSTRAIS UTILIZA	ADOS
		AMOS	STRAGEM INL	DEPENDENTE		
Unidade			Número de Ur	nidades Amostrais	,	
Amostral	Potenciais	Primeira O	casião (u)	Segunda	a Ocasião (n)	Total
(m ²)	(N)	Permanentes	Temporárias	Permanentes	Temporárias	Total
100	5600	0	600	0	600	600
200	2800	0	300	0	300	300
400	1400	0	150	0	150	150
1000	560	0	60	0	60	60
2500	224	00	24	0	24	24
		AMOSTRA	AGEM COM R	EPETIÇÃO TO	TAL	
Unidade			Número de U	nidades Amostrais	<u> </u>	
Amostral	Potenciais	Primeira O	casião (m)	Segunda	a Ocasião (m)	Total
(m ²)	(N)	Permanentes	Temporárias	Permanentes	Temporárias	Total
100	5600	600	0	600	0	600
200	2800	300	0	300	0	300
400	1400	150	0	150	0	150
1000	560	60	0	60	0	60
2500	224	24	0	24	0	24
 	,	AMOSTRA	GEM COM RE	PETIÇÃO PAR	RCIAL	
Unidade			Número de U	nidades Amostrais	<u> </u>	·····
Amostral	Potenciais	Primeira	Ocasião	Segun	da Ocasião	Total
(m ²)	(N)	Permanentes (m)	Temporárias (u)	Permanentes (m)	Temporárias Novas (n)	10.01
100	5600	200	400	200	400	600
200	2800	100	200	100	200	300
400	1400	50	100	50	100	150
1000	560	20	40	20	40	60
2500	224	8	16	8	16	24
			DUPLA AMOS	TRAGEM		
Unidade		y	Número de U	nidades Amostrais	3	,
Amostral	Potenciais	Primeira	Ocasião	Segunda	a Ocasião (m)	Total
(m ²)	(N)	Permanentes (m)	Temporárias (n)	Permanentes	Temporárias	rotar
100	5600	200 400		200	•	600
200	2800	100	200	100	-	300
400	1400	50	100	50	-	150
1000	560	20	40	20	-	60
2500	224	8	16	8	24	

Para o processo de amostragem independente, tanto na primeira como na segunda ocasião, foram utilizadas apenas parcelas temporárias, com intensidade variando conforme a área da unidade amostral. Para a primeira ocasião foram

sorteadas "n" unidades amostrais temporárias e na segunda ocasião, "n" novas unidades amostrais temporárias foram sorteadas. O número de unidades amostrais para as áreas iguais a 100, 200, 400, 1000 e 2500 m² foram, respectivamente, 600, 300, 150, 60 e 24 unidades.

No processo de amostragem com repetição total foram utilizadas somente parcelas permanentes. As unidades sorteadas foram medidas na primeira e apenas remedidas na segunda ocasião. Para as parcelas com áreas iguais a 100, 200, 400, 1000 e 2500 m² foram sorteadas, respectivamente, 600, 300, 150, 60 e 24 unidades amostrais permanentes.

A amostragem com repetição parcial propõe a utilização de três tipos de unidades amostrais: permanentes (primeira e segunda ocasiões), temporárias da primeira ocasião e temporárias novas na segunda ocasião. Na primeira ocasião foram sorteadas "m" unidades amostrais permanentes e "u" unidades amostrais temporárias. Na segunda ocasião, as "m" unidades permanentes foram remedidas e "n" novas unidades temporárias foram sorteadas. O número de unidades amostrais permanentes utilizadas na primeira e segunda ocasiões foram: 200, 100, 50, 20 e 8 unidades, respectivamente para as parcelas com áreas iguais a 100, 200, 400, 1000 e 2500 m². Com relação às unidades temporárias, foram utilizadas na primeira e segunda ocasião, 400, 200, 100, 40 e 16 unidades, respectivamente para as unidades de 100, 200, 400, 1000 e 2500 m².

Na dupla amostragem foram sorteadas "m" unidades amostrais permanentes e "n" temporárias na primeira ocasião. Para a segunda ocasião, apenas as "m" unidades permanentes foram remedidas. Os números de unidades utilizados para os diferentes tamanhos, 100, 200, 400, 1000 e 2500 m², foram, respectivamente, 200, 100, 50, 20 e 8 unidades. Com relação às unidades temporárias, foram utilizadas 400, 200, 100, 40 e 16 unidades, respectivamente para parcelas de 100, 200, 400, 1000 e 2500 m².

Para todos os processos de amostragem em questão, e também para os diferentes tamanhos de unidades amostrais utilizados, foram calculadas as estimativas referentes à média de volume comercial (m³/ha), o erro padrão em volume comercial (m³/ha) e o coeficiente de variação (%) em volume comercial, para os anos de 1996 a 2001.

Para análise do crescimento nos diversos processos de amostragem, foram utilizadas suas formulações específicas, conforme citado no capítulo anterior, destacando o cálculo da média de crescimento em volume comercial (m³/ha/ano) e o erro padrão do crescimento (m³/ha) para diferentes intervalos de tempo, ou seja, para os períodos de 1996-1997 (um ano), 1996-1998 (dois anos), 1996-1999 (três anos), 1996-2000 (quatro anos) e 1996-2001 (cinco anos).

Além das estimativas volumétricas por ano e as estimativas do crescimento nos vários períodos de tempo, foram calculados os coeficientes de correlação para os diferentes processos, tamanhos de unidades amostrais e intervalo entre as medições, tendo como base o volume comercial das árvores.

3.5.1 Estimadores por processo de amostragem

A seguir são apresentadas as fórmulas desenvolvidas para os principais estimadores dos processos de amostragem em questão, segundo literatura pertinente (PÉLLICO NETTO; BRENA, 1997):

A) Amostragem Independente

A₁) Primeira ocasião

• Média estimada (\bar{x})

$$\overline{x} = \frac{\sum_{i=1}^{n_1} X_{ui}}{n_1} \tag{1}$$

• Variância (s_x^2)

$$s_{x_u}^2 = \frac{\sum_{i=1}^{n_1} (x_{ui} - \overline{x}_u)^2}{n_1 - 1}$$
 (2)

• Variância da média ($s_{\bar{x}_u}^2$)

$$s_{\bar{x}_u}^2 = \frac{s_{x_u}^2}{n_1} \left(1 - \frac{n_1}{N_1} \right) \tag{3}$$

• Erro padrão $(s_{\bar{x}_u})$

$$s_{\bar{x}_{u}} = \sqrt{\frac{s_{x_{u}}^{2}}{n_{1}} \left(1 - \frac{n_{1}}{N_{1}}\right)} \tag{4}$$

• Coeficiente de variação (cv%)

$$cv\% = \frac{s_x}{\overline{x}} \cdot 100 \tag{5}$$

• Coeficiente de correlação (r)

$$r = \frac{Cov(xy)}{\sqrt{s^2_{x_u} \cdot s^2_{y_0}}}$$
 (6)

A₂) Segunda ocasião

• Média estimada (\bar{y}_n)

$$\bar{y}_{n} = \frac{\sum_{h=1}^{n_{2}} y_{nh}}{n_{2}} \tag{7}$$

• Variância $(s_{y_n}^2)$

$$s_{y_n}^2 = \frac{\sum_{h=1}^{n_2} (y_{nh} - \overline{y}_n)^2}{n_2 - 1}$$
 (8)

ullet Variância da média ($s_{\tilde{y}_n}^2$)

$$s_{\bar{y}_n}^2 = \frac{s_{y_n}^2}{n_2} \left(1 - \frac{n_2}{N_2} \right) \tag{9}$$

• Erro padrão $(s_{\bar{y}_n})$

$$s_{\bar{y}_n} = \sqrt{\frac{s_{y_n}^2}{n_2} \left(1 - \frac{n_2}{N_2} \right)} \tag{10}$$

• Coeficiente de variação (cv%)

$$cv\% = \frac{s_{y_n}}{\overline{y}} \cdot 100 \tag{11}$$

A₃) Crescimento

ullet Variância da média ($s_{\tilde{\imath}_i}^2$)

$$S_{\bar{d}_i}^2 = \frac{S_{x_u}^2}{n_1} + \frac{S_{y_u}^2}{n_2} \tag{13}$$

 \bullet Erro padrão do crescimento ($s_{_{\bar{d}_i}}$

$$S_{\bar{d}_i} = \sqrt{\frac{S_{x_u}^2}{n_1} + \frac{S_{y_n}^2}{n_2}}$$
 (14)

B) Amostragem com Repetição Total

B₁) Primeira ocasião

• Média estimada (\bar{x}_m)

$$\bar{x}_{m} = \frac{\sum_{j=1}^{n_{1}} X_{mj}}{n_{1}}$$
 (15)

• Variância $(s_{x_m}^2)$

$$s_{x_m}^2 = \frac{\sum_{j=1}^{n_1} \left(x_{mi} - \overline{x}_m \right)^2}{n_1 - 1}$$
 (16)

• Variância da média ($s_{\bar{x}_m}^2$)

$$s_{\bar{x}_m}^2 = \frac{s_{x_m}^2}{n_1} \left(1 - \frac{n_1}{N_1} \right) \tag{17}$$

ullet Erro padrão ($s_{\bar{x}_m}$)

$$s_{\bar{x}_m} = \sqrt{\frac{s_{x_m}^2}{n_1} \left(1 - \frac{n_1}{N_1} \right)}$$
 (18)

• Coeficiente de variação (cv%)

$$cv\% = \frac{s_{x_m}}{\overline{x}_m} \cdot 100 \tag{19}$$

• Coeficiente de correlação (r)

$$r = \frac{Cov(xy)}{\sqrt{s^2_{x_m} \cdot s^2_{y_m}}}$$
 (20)

B₂) Segunda ocasião

• Média estimada (\overline{y}_m)

$$\bar{y}_{m} = \frac{\sum_{h=1}^{n_{2}} y_{mh}}{n_{2}}$$
 (21)

• Variância $(s_{y_m}^2)$

$$s_{y_m}^2 = \frac{\sum_{h=1}^{n_2} (y_{mh} - \overline{y}_m)^2}{n_2 - 1}$$
 (22)

ullet Variância da média $(s_{\tilde{y}_m}^2)$

$$s_{\bar{y}_m}^2 = \frac{s_{y_m}^2}{n_2} \left(1 - \frac{n_2}{N_2} \right) \tag{23}$$

ullet Erro padrão ($s_{\bar{y}_m}$)

$$s_{\bar{y}_m} = \sqrt{\frac{s_{y_m}^2}{n_2} \left(1 - \frac{n_2}{N_2} \right)}$$
 (24)

• Coeficiente de variação (cv%)

$$cv\% = \frac{s_{y_m}}{\bar{y}_m} \cdot 100$$
 (25)

B₃) Crescimento

• Média
$$(\overline{d}_m)$$

$$\overline{d}_m = \overline{y}_m - \overline{x}_m$$
 (26)

ullet Variância da média $(s_{ar{d}_m}^2)$

$$s_{\overline{d}_{m}}^{2} = \frac{s_{x_{m}}^{2}}{m} + \frac{s_{y_{m}}^{2}}{m} - \frac{2s_{xy}}{m}$$
 (27)

 \bullet Erro padrão do crescimento ($s_{\overline{d}_{\mathrm{m}}})$

$$s_{\bar{d}_m} = \sqrt{\frac{s_{x_m}^2 + s_{y_m}^2 - 2s_{xy}}{m} - \frac{2s_{xy}}{m}}$$
 (28)

C) Dupla Amostragem

C₁) Primeira ocasião

- Média estimada (\bar{x}_1)
 - Temporárias

$$\bar{x}_{u} = \frac{\sum_{i=1}^{n_{l}} X_{ui}}{u} \tag{29}$$

$$P_u = \frac{u}{n_1} \tag{30}$$

- Permanentes

$$\overline{X}_m = \frac{\sum_{j=1}^{n_1} X_{mj}}{m} \tag{31}$$

$$P_m = \frac{m}{n_1} \tag{32}$$

- Geral

$$\overline{x}_1 = P_u \overline{x}_u + P_m \overline{x}_m \tag{33}$$

• Variância $(s_{x_1}^2)$

$$s_{x_1}^2 = \frac{\sum_{i=1}^{n_1} \left(X_i - \overline{x}_1 \right)^2}{n_1 - 1}$$
 (34)

• Variância da média $(s_{\bar{x}_i}^2)$

$$s_{\bar{x}_1}^2 = \frac{s_{x_1}^2}{n_1} \left(1 - \frac{n_1}{N_1} \right) \tag{35}$$

• Erro padrão $(s_{\bar{x}_i})$

$$s_{\bar{z}_1} = \sqrt{\frac{s_{x_1}^2}{n_1} \left(1 - \frac{n_1}{N_1} \right)}$$
 (36)

• Coeficiente de variação (cv%)

$$cv\% = \frac{s_{x_1}}{\bar{x}_1} \cdot 100$$
 (37)

Coeficiente de correlação (r)

$$r = \frac{Cov(xy)}{\sqrt{s_{x_m}^2 \cdot s_{y_m}^2}} \tag{38}$$

C₂) Segunda ocasião

• Média (\overline{y}_m)

$$\widetilde{y}_{m} = \frac{\sum_{j=1}^{n_{2}} X_{mj}}{n_{2}}$$
 (39)

• Variância $(s_{y_m}^2)$

$$s_{y_m}^2 = \frac{\sum_{j=1}^{n_2} \left(y_{mj} - \overline{y}_m \right)^2}{n_2 - 1}$$
 (40)

• Desvio padrão (s_{y_m})

$$s_{y_m} = \sqrt{\frac{\sum_{j=1}^{n_2} (y_{mj} - \bar{y}_m)}{n_2 - 1}}$$
 (41)

• Estimativa da média da segunda ocasião por regressão (\bar{y}_r)

$$\overline{y}_r = \overline{y}_m + b \cdot (\overline{x}_1 - \overline{x}_m) \tag{42}$$

$$b = r \cdot \frac{S_{y_m}}{S_{x_m}} \tag{43}$$

• Variância da média (s_y^2)

$$s_{y_r}^2 = \frac{s_{yx}^2}{n_2} + \frac{s_y^2 - s_{yx}^2}{n_1} \tag{44}$$

$$s_{yx}^{2} = \frac{1}{n_{2} - 2} \left[\sum_{j=1}^{m} y_{j}^{2} - \frac{\left(\sum_{j=1}^{m} y_{j} \cdot x_{j}\right)^{2}}{\sum_{j=1}^{m} x_{j}^{2}} \right]$$
 (45)

• Erro padrão (s_{y_r})

$$s_{y_r} = \sqrt{s_{y_r}^2}$$
 (46)

C3) Crescimento

• Média
$$(\overline{d}_r)$$

$$\overline{d}_r = \overline{y}_r - \overline{x}_1$$
 (47)

Variância da média do crescimento (^{s²}_{dr})

$$s_{d_r}^2 = \frac{\left(s_y^2 - s_{yx}^2\right) \left[\frac{1 + r(r-2)}{r^2}\right]}{n_1} + \frac{s_{yx}^2}{n_2}$$
(48)

• Erro padrão do crescimento (s_{d_r})

$$s_{d_r} = \sqrt{s_{d_r}^2} \tag{49}$$

D) Amostragem com Repetição Parcial

D₁) Primeira ocasião

- Média estimada (\bar{x}_1)
 - Temporárias

$$\bar{x}_u = \frac{\sum_{i=1}^{n_1} X_{ui}}{u} \tag{50}$$

$$P_u = \frac{u}{n_1} \tag{51}$$

- Permanentes

$$\overline{x}_m = \frac{\sum_{j=1}^{n_1} X_{mj}}{m} \tag{52}$$

$$P_m = \frac{m}{n_1} \tag{53}$$

- Geral

$$\overline{x}_1 = P_u \overline{x}_u + P_m \overline{x}_m \tag{54}$$

• Variância ($s_{x_i}^2$)

$$s_{x_1}^2 = \frac{\sum_{x=1}^{n_2} \left(x_i - \overline{x}_1\right)^2}{n_1 - 1}$$
 (55)

• Variância da média ($s_{\bar{x}_i}^2$)

$$s_{\bar{x}_1}^2 = \frac{s_{x_1}^2}{n_1} \left[1 - \frac{n_1}{N_1} \right]$$
 (56)

• Erro padrão $(s_{\tilde{x}_1})$

$$s_{\bar{x}_1} = \sqrt{\frac{s_{x_1}^2}{n_1} \left(1 - \frac{n_1}{N_1}\right)}$$
 (57)

• Coeficiente de variação (cv%)

$$cv\% = \frac{s_{x_1}}{\overline{x}_1} \cdot 100 \tag{58}$$

• Coeficiente de correlação (r)

$$r = \frac{Cov(xy)}{\sqrt{s^2_{x_m} \cdot s^2_{y_m}}} \tag{59}$$

D₂) Segunda ocasião

• Média corrente (\bar{y})

$$\overline{y} = a \cdot \overline{x}_u - a \cdot \overline{x}_m + c \cdot \overline{y}_u + (1 - c) \cdot \overline{y}_n$$
(60)

$$a = \frac{m \cdot P_u}{n_2 - P_u \cdot n \cdot r^2} \cdot b_{yx} \tag{61}$$

$$b_{yx} = r \cdot \frac{s_y}{s_x} \tag{62}$$

$$c = \frac{m}{n_2 - P_u \cdot r^2} \tag{63}$$

• Variância da média $(s_{\bar{\nu}}^2)$

$$s_{\bar{y}}^2 = a^2 \cdot s_x^2 \cdot \left(\frac{1}{u} + \frac{1}{m}\right) + c \cdot \frac{s_y^2}{m} + (1 - c)^2 \cdot \frac{s_y^2}{m} - 2 \cdot a \cdot c \cdot r \cdot \frac{s_x \cdot s_y}{m}$$
 (64)

• Erro padrão ($s_{\bar{v}}$)

$$s_{\bar{v}} = \sqrt{s_{\bar{v}}^2} \tag{65}$$

D₃) Crescimento

ullet Estimativa direta da média do crescimento (\overline{d}_p)

$$\overline{d}_p = A \cdot \overline{y}_m + (1 - A) \cdot \overline{y}_n + B \cdot \overline{x}_m - (1 + B) \overline{x}_u$$
 (66)

$$A = \frac{m}{n_2 - P_u \cdot n \cdot r^2} + \frac{n \cdot P_m}{n_2 - P_u n \cdot r^2} \cdot r \frac{s_x}{s_y}$$

$$\tag{67}$$

$$B = \frac{-m \cdot P_{u}}{n_{2} - P_{u} \cdot n \cdot r^{2}} \cdot r \frac{s_{y}}{s_{x}} - \frac{n_{2} \cdot P_{m}}{n_{2} - P_{u} \cdot n \cdot r^{2}}$$
(68)

 \bullet Variância da média do crescimento ($s_{\overline{d}_p}^2)$

$$s_{\bar{d}_p}^2 = A^2 \cdot \frac{s_y^2}{m} + (1 - A)^2 \cdot \frac{s_y^2}{n} + B^2 \cdot \frac{s_x^2}{m} + (1 + B)^2 \cdot \frac{s_x^2}{u} + 2 \cdot A \cdot B \cdot r \cdot \frac{s_x \cdot s_y}{m}$$
 (69)

ullet Erro padrão do crescimento ($s_{ ilde{d}_{v}}$)

$$s_{\bar{d}_p} = \sqrt{s_{\bar{d}_p}^2} \tag{70}$$

4 RESULTADOS E DISCUSSÃO

4.1 ANÁLISE DA DINÂMICA DA FLORESTA

A análise da dinâmica da floresta foi realizada a partir do número de árvores que cresceram (árvores em crescimento), utilizando-se o incremento em diâmetro, número de árvores que morreram e número de árvores que ingressaram (DAP ≥ 10 cm), no período de 1996 a 2001, em nove parcelas de um hectare, totalizando nove hectares estudados.

Na tabela 4 demonstra-se o balanço final para o número de árvores estudadas na dinâmica da floresta, enfocando o total de árvores analisadas (incluindo crescimento, ingresso e mortalidade), bem como o número de árvores mortas, ingressas e em crescimento (número total menos a mortalidade e ingresso) em cada ano de medição no período em questão. É importante ressaltar que o número de árvores em crescimento para a floresta (igual a 3805) foi obtido através subtração do número total de árvores pela mortalidade e ingresso, descontando também, as árvores mortas em 1996 e as árvores que ingressaram e morreram em períodos intermediários.

TABELA 4 – BALANÇO FINAL PARA O NÚMERO DE ÁRVORES ESTUDADAS NA DINÂMICA DA FLORESTA

		NÚMERO D	E ÁRVORES	
ANO	MORTALIDADE	INGRESSO	CRESCIMENTO	TOTAL
1996	353	-	4301	4654
1997	94	242	4207	4543
1998	116	334	4333	4783
1999	79	183	4588	4850
2000	109	119	4662	4890
2001	134	120	4647	4901
FLORESTA	532	998	3805	5652

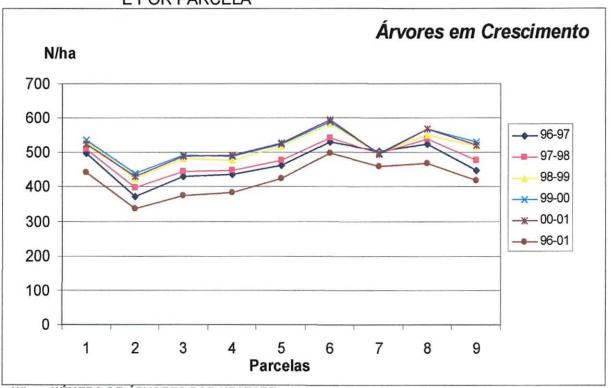
FLORESTA = Unidade de área - 9,0 ha

Como pode-se observar na tabela 4, em 1996 foram encontradas 4654 árvores na floresta em questão. Em 2001, ano da última medição analisada, o número observado foi de 4901 árvores, resultando num aumento de 5,31% no

período. Em relação à mortalidade, observou-se que em 1996 foram encontradas 353 árvores mortas na floresta, número este muito superior ao encontrado nos demais anos analisados. Este dado pode ser explicado pelo fato de que, no primeiro ano de levantamento, sempre são incluídas todas as árvores mortas encontradas na área analisada, sendo impossível diferenciar aquelas que morreram no último ano (mortalidade em um ano). Assim, desconsiderando a mortalidade de 1996, observou-se uma mortalidade de 532 árvores no período de 1996 a 2001. Com relação ao ingresso e as árvores em crescimento, observou-se que 998 árvores foram incluídas no período de 1996 a 2001 e que 3805 árvores permaneceram vivas durante todo o período.

Na tabela 5 estão apresentados os resultados da dinâmica da floresta, em relação ao número de árvores por parcela e para a floresta no período estudado, destacando-se o crescimento, ou seja, o número de árvores vivas medidas em 1996 e que permaneceram vivas até a última medição, a mortalidade, representada pelo número de árvores que morreram em cada período (por exemplo, 96-97, representando as árvores que morreram entre 1996 e 1997) e ingresso, informando o número de árvores que foram incluídas (DAP ≥ 10 cm) em cada período (por exemplo, 97-98, representam as árvores que foram incluídas na medição de 1998, ou seja, atingiram o DAP limite entre 1997 e 1998).

TABELA 5 - NÚMERO DE ÁRVORES EM CRESCIMENTO, MORTALIDADE E INGRESSO, POR PARCELA E PARA A FLORESTA, NO PERÍODO DE 1996 A 2001


		1	<u> </u>		<u> </u>	100	<u> </u>	200	<u> </u>										
PARCELAS		С	RESC	MENT	0			М	ORTA	LIDAE	E		INGRESSO						
	96-97	97-98	98-99	99-00	00-01	96-01	96-97	97-98	98-99	99-00	00-01	96-01	96-97	97-98	98-99	99-00	00-01	96-01	
PARCELA 1	497	509	534	535	525	441	9	13	6	19	19	66	25	31	20	9	10	95	
PARCELA 2	372	397	424	439	432	337	8	10	8	7	14	47	35	35	22	7	22	121	
PARCELA 3	432	444	483	492	489	374	5	13	8	17	22	65	25	47	26	19	16	133	
PARCELA 4	435	448	477	488	493	385	8	15	13	14	17	67	28	42	25	22	23	140	
PARCELA 5	463	477	519	524	527	424	21	13	6	13	10	63	27	48	18	13	8	114	
PARCELA 6	531	543	583	589	596	498	5	13	6	6	10	40	25	46	12	17	15	115	
PARCELA 7	503	498	499	497	495	459	15	15	9	9	13	61	10	10	7	11	5	43	
PARCELA 8	525	539	552	567	569	469	11	20	12	16	15	74	34	25	31	17	9	116	
PARCELA 9	449	478	517	531	521	418	12	4	11	8	14	49	33	50	22	4	12	121	
FLORESTA	4207	4333	4588	4662	4647	3805	94	116	79	109	134	532	242	334	183	119	120	998	
MÉDIA	467	481	510	518	516	423	10	13	9	12	15	59	27	37	20	13	13	111	

PARCELA = 1,0 ha; FLORESTA = 9,0 ha; MÉDIA = Número de Árvores por hectare

O gráfico 1 apresenta a evolução do número de árvores em crescimento nos diversos períodos, considerando as diferentes parcelas utilizadas. Observa-se o comportamento do número de árvores em períodos de um ano (96-97, 97-98, 99-00

e 00-01) e também o período integral, com intervalo de cinco anos (96-01). Para efeito de análise do crescimento (incremento), será utilizado apenas o período integral (96-01).

GRÁFICO 1 – NÚMERO DE ÁRVORES EM CRESCIMENTO UTILIZADAS PARA ANÁLISE DA DINÂMICA DA FLORESTA, POR PERÍODO E POR PARCELA

N/ha = NÚMERO DE ÁRVORES POR HECTARE

Considerando as árvores em crescimento (tab. 5), observou-se que no período de 96-97 existiam 4207 árvores, contra 4647 árvores no período de 00-01, indicando um aumento de 10,46% em relação ao período inicial. Analisando o número médio de árvores por parcelas utilizadas, obteve-se um aumento de 467 para 516 árvores, respectivamente, para os períodos de 96-97 e 00-01. Constatou-se, também, que a parcela 7 apresentou um decréscimo no número de árvores em torno de 1,6% e a parcela 2 um crescimento de 16,1%, respectivamente, para os períodos de 96-97 para 00-01. Em média, as parcelas apresentaram um crescimento de aproximadamente 11% em relação ao número de árvores em crescimento nos períodos considerados (graf. 1).

4.1.1 Crescimento

Conforme mencionado no item anterior, o crescimento da floresta em questão foi avaliado apenas com as árvores presentes durante todo o período, totalizando 3805 árvores nas nove parcelas estudadas.

Para análise do crescimento da floresta foram levantados os Incrementos Periódicos Anuais (IPAs) das variáveis diâmetro (DAP), área transversal (g), altura comercial (h_c) e volume comercial (v_c) das árvores. Como o termo incremento periódico representa o aumento das dimensões em um período determinado (ano), não é apropriado que haja valores negativos, pois a árvore não diminui em suas dimensões. Segundo VANCLAY (1994), existe a possibilidade de serem observados valores negativos de incremento (incrementos negativos, melhor chamados de mudança), no entanto, isto se deve principalmente, a problemas de medições (erros), ou em alguns casos, pela perda de casca e variações naturais do fuste. Deve-se considerar também, o tipo de floresta e o intervalo entre medições, uma vez que para diferentes florestas ter-se-á comportamentos bastante variados.

Embora existam vários trabalhos científicos onde foram considerados os "incrementos negativos" (PIZATTO, 1999; DURIGAN, 1999; GOMIDE, 1997; etc.), no presente trabalho, somente foram considerados incrementos iguais ou maiores que zero, uma vez que não ocorreram problemas significativos com erros de medições, ou com outros fatores associado, devido principalmente ao tipo de floresta, caracterizado, na sua maioria, por incrementos anuais maiores que zero. É importante ressaltar a experiência da equipe de campo, sendo composta na sua maioria por Engenheiros Florestais, Professores, Mestres e Doutores, fornecendo assim uma qualidade maior na coleta das informações. Outro fato importante a ser ressaltado é a forma como foi desenvolvido o trabalho, onde a coordenação das diversas etapas do projeto, desde o planejamento, instalação das parcelas no campo e medições anuais, foi de inteira responsabilidade do autor, presente em cada etapa do mesmo.

A tabela 6 apresenta o número de árvores encontradas por classe de Incremento Periódico Anual em DAP (cm) em cada parcela estudada e para a floresta (9 ha) no período de 1996 a 2001. Para análise do número de árvores por

classe, considerou-se primeiramente os valores de incremento iguais a zero (classe 1), e a partir da segunda classe, intervalos sucessivos com amplitudes de classe constante igual a 0.4 cm/ano. Foram computadas 11 classes de IPA (fora a classe $1 \rightarrow IPA=0$) com incrementos variando até 4.14 cm/ano.

TABELA 6 - NÚMERO DE ÁRVORES POR CLASSE DE INCREMENTO PERIÓDICO ANUAL EM DAP POR PARCELA E PARA A FLORESTA NO PERÍODO DE 1996 - 2001

INTERVALO	PA	RC. 1	PAF	≀C. 2	PAR	RC. 3	PAF	C. 4	PAF	C. 5	PAR	C. 6	PAF	C. 7	PAF	RC. 8	PAR	RC. 9	FLOR	ESTA
IPA (cm/ano)	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%
IPA=0	6	1,4	7	2,1	1	0,3	3	0,8	6	1,4	8	1,6	8	1,7	2	0,4	2	0,5	43	1,1
0 < IPA ≤ 0,4	224	50,8	147	43,6	182	48,7	156	40,5	227	53,5	269	54,0	340	74,1	257	54,8	211	50,5	2013	52,9
0,4 < iPA ≤ 0,8	107	24,3	94	27,9	98	26,2	118	30,6	108	25,5	135	27,1	84	18,3	129	27,5	124	29,7	997	26,2
0,8 < IPA ≤ 1,2	62	14,1	42	12,5	47	12,6	39	10,1	35	8,3	51	10,2	18	3,9	47	10,0	52	12,4	393	10,3
1,2 < IPA ≤ 1,6	29	6,6	19	5,6	23	6,1	29	7,5	30	7,1	30	6,0	6	1,3	20	4,3	21	5,0	207	5,4
1,6 < IPA ≤ 2,0	6	1,4	12	3,6	8	2,1	19	4,9	7	1,7	4	0,8	1	0,2	6	1,3	5	1,2	68	1,8
$2,0 < IPA \le 2,4$	6	1,4	7	2,1	7	1,9	14	3,6	4	0,9	0	0,0	2	0,4	5	1,1	2	0,5	47	1,2
2,4 < IPA ≤ 2,8	1	0,2	4	1,2	4	1,1	5	1,3	2	0,5	1	0,2	0	0,0	3	0,6	0	0,0	20	0,5
2,8 < IPA ≤ 3,2	0	0,0	4	1,2	2	0,5	2	0,5	3	0,7	0	0,0	0	0,0	0	0,0	0	0,0	11	0,3
3,2 < IPA ≤ 3,6	0	0,0	0	0,0	1	0,3	0	0,0	2	0,5	0	0,0	0	0,0	0	0,0	0	0,0	3	0,1
3,6 < IPA ≤ 4,0	0	0,0	1	0,3	1	0,3	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	2	0,1
4,0 < IPA ≤ 4,4	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	0	0,0	1	0,2	1	0,0
TOTAL	441	100	337	100	374	100	385	100	424	100	498	100	459	100	469	100	418	100	3805	100

Os incrementos periódicos anuais em DAP no período de 1996 – 2001 apresentaram uma amplitude entre 0 e 4,14 cm/ano. Do total da floresta, pode-se observar que os incrementos nulos (IPA=0) totalizaram cerca de 1%, destacando as parcelas 2 e 3, que apresentaram respectivamente, o maior (2,1%) e o menor (0,3%) índice de indivíduos com incrementos nulos. É importante ressaltar, conforme citado anteriormente, que o número de árvores com incrementos iguais a zero, ou seja, árvores que não cresceram durante o período estudado, é extremamente baixo (43 árvores nos 9 hectares levantados), justificando a ausência de incrementos negativos e comprovando a elevada taxa de crescimento anual das espécies da floresta.

A maioria das árvores apresentou IPAs, em diâmetro, maior que zero, totalizando cerca de 99%, conforme tabela 6. Verificou-se que, para o total da floresta, cerca de 52% das árvores apresentaram incrementos maiores que zero e menores ou iguais a 0,4 cm/ano, indicando que a grande maioria das árvores da floresta estudada apresenta um crescimento reduzido em relação aos valores encontrados (menor que 0,5 cm/ano); destaca-se também, as classes com IPAs entre 0,4 < IPA ≤ 0,8 e 0,8 < IPA ≤ 1,2, totalizando cerca de 36% das árvores

estudadas; nas classes com maior IPA, observou-se que menos de 10% das árvores apresentam IPA entre 1,2 < IPA ≤ 4,4, constatando-se que poucos indivíduos da floresta apresentam taxas de crescimento elevadas (acima de 1,2 cm/ano).

PIZATTO (1999), estudando a dinâmica de uma Floresta Ombrófila Mista - Paraná no período de 1995 a 1998, obteve incrementos (IPA) em DAP variando de -1,00 ("incremento negativo") a 1,00 cm/ano. Das árvores em crescimento analisadas, cerca de 8% do total apresentaram incrementos nulos e aproximadamente 80% das árvores, incrementos maiores que zero e menores que um. Pode-se destacar que a floresta em questão apresentou uma taxa de crescimento (IPA) muito abaixo da floresta estudada neste trabalho. DURIGAN (1999), em trabalho realizado no mesmo tipo de floresta, encontrou incrementos (IPA em DAP) variando entre -2,07 ("incrementos negativos") a 3,53 cm/ano.

Nas tabelas 7 e 8 estão apresentadas, respectivamente, as estatísticas descritivas para as variáveis DAP / Área Transversal e Altura Comercial / Volume Comercial das árvores, por parcela e para a floresta, considerando o período de 1996 a 2001. Dentre as principais estatísticas analisadas, destacando-se a média, desvio padrão, coeficiente de variação, coeficiente de curtose e assimetria, valor máximo e mínimo.

Como se pode observar na tabela 7, em 2001 a floresta apresentou um diâmetro médio de 21,7 cm, com uma amplitude de variação entre 10,2 e 203,4 cm, resultando numa alta variabilidade, expressa pelo coeficiente de variação (CV%) de 60,1% e um desvio padrão de 13,1 cm. Com relação aos coeficientes de assimetria e curtose encontrados, pode-se concluir que a floresta apresenta uma assimetria positiva forte (igual a 3,5) e uma curva com afilamento acentuado, leptocúrtica, devido ao alto valor de curtose (21,6). Através dos coeficientes de assimetria e curtose pode-se afirmar que a floresta em questão apresenta grande quantidade de indivíduos com valores inferiores a média (curva deslocada para a esquerda) e com cume elevado (leptocúrtica), caracterizando a tendência natural das florestas naturais, com grande concentração de indivíduos nas classes de DAP inferiores (curva em "J" invertido). Acrescenta-se também, que as variações em relação ao ano inicial de medição (1996) foram proporcionais, não havendo grandes diferenças significativas nas nove parcelas estudadas.

TABELA 7 - ESTATÍSTICA DESCRITIVA PARA O DAP (cm) E ÁREA TRANSVERSAL (m²) DAS ÁRVORES POR PARCELA E PARA TODA A FLORESTA NO PERÍODO DE 1996 A 2001

DAP	PAF	RC.1	PAF	RC.2	PAF	RC.3	PAF	RC.4	PAF	€C.5	PAF	RC.6	PAF	RC.7	PAF	RC.8	PARC.9		FLOR	ESTA
(cm)	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001
Média	20,4	23,0	19,7	22,9	20,0	23,0	20,0	23,4	20,8	23,5	19,1	21,3	20,1	21,6	16,7	19,1	16,1	18,6	19,2	21,7
Desvio padrão	12,8	13,5	12,2	12,7	16,0	16,3	14,0	14,4	16,2	16,9	11,3	11,7	11,8	12,3	8,0	8,8	8,0	8,6	12,5	13,1
CV%	62,7	58,5	61,8	55,7	79,9	70,7	70,0	61,6	77,7	71,9	59,4	54,7	58,5	57,2	48,1	46,2	49,5	46,0	65,3	60,1
Curtose	7,8	6,6	7,7	7,8	18,7	16,6	11,8	11,5	37,3	34,8	15,9	14,4	6,6	5,9	10,4	7,9	38,4	29,9	23,9	21,6
Assimetria	2,5	2,3	2,5	2,4	3,8	3,6	3,1	2,9	4,7	4,5	3,3	3,0	2,2	2,1	2,7	2,3	4,9	4,2	3,7	3,5
Mínimo	10,0	10,2	10,0	10,2	10,0	10,3	10,0	10,2	10,0	10,2	10,0	10,2	10,0	10,2	10,0	10,2	10,0	10,2	10,0	10,2
Máximo	101,2	103,5	89,9	95,5	139,9	141,2	109,2	116,5	197,4	203,4	107,9	111,7	91,0	92,0	70,7	72,9	99,5	103,5	197,4	203,4
Número de árvores	441	441	337	337	374	374	385	385	424	424	498	498	459	459	469	469	418	418	3805	3805
	PAF	RC.1	PARC.2 PAR		RC.3 PARC.4		PARC.5		PARC.6		PARC.7		PARC.8		PARC.9		FLORESTA			
Area transversal (m²)	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001
Média	0,05	0,06	0,04	0,05	0,05	0,06	0,05	0,06	0,05	0,07	0,04	0,05	0,04	0,05	0,03	0,03	0,03	0,03	0,04	0,05
Desvio padrão	0,08	80,0	0,07	0,08	0,14	0,14	0,10	0,11	0,17	0,19	0,07	0,08	0,06	0,07	0,04	0,04	0,05	0,05	0,09	0,10
CV%	168,1	152,0	166,7	149,1	263,9	227,2	206,4	179,5	314,1	283,1	186,3	165,2	152,0	145,7	135,3	122,8	192,8	162,2	228,1	201,6
Curtose	32,36	27,58	25,71	28,10	55,28	50,94	39,51	42,31	226,82	209,12	66,64	65,19	30,33	26,93	38,33	28,86	146,52	134,15	319,02	292,69
Assimetria	4,86	4,49	4,50	4,65	6,77	6,48	5,61	5,72	13,53	12,92	7,15	6,98	4,60	4,34	5,34	4,64	10,84	10,14	13,19	12,53
Mínimo	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Máximo	0,80	0,84	0,64	0,72	1,54	1,57	0,94	1,07	3,06	3,25	0,91	0,98	0,65	0,66	0,39	0,42	0,78	0,84	3,06	3,25
G	20,01	24,64	14,23	18,11	19,27	23,35	18,10	22,83	23,12	27,80	19,21	23,08	19,56	22,26	12,60	16,30	10,61	13,82	156,72	192,19
							i e													

TABELA 8 - ESTATÍSTICA DESCRITIVA PARA A ALTURA COMERCIAL (m) E VOLUME COMERCIAL (m³) DAS ÁRVORES POR PARCELA E PARA TODA A FLORESTA NO PERÍODO DE 1996 A 2001

Altura	PAF	RC.1	PAI	RC.2	PAF	RC.3	PA	RC.4	PAF	RC.5	PAF	RC.6	PAF	RC.7	PAI	RC.8	PAF	RC.9	FLOR	ESTA
Comercial (m)	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001
Média	4,5	4,8	4,5	5,0	4,9	5,4	5,1	5,8	4,7	5,2	5,3	5,8	5,2	5,5	5,0	5,5	5,5	6,2	5,0	5,5
Desvio padrão	2,8	3,0	2,9	3,1	3,5	3,6	3,4	3,6	2,9	3,1	2,8	3,0	3,3	3,5	2,7	3,0	2,6	2,9	3,0	3,2
CV%	62,9	61,9	63,6	61,0	71,5	66,9	65,6	61,6	60,9	60,5	52,2	51,7	63,0	63,1	53,6	54,7	47,0	46,8	59,9	58,7
Curtose	7,0	5,3	4,4	3,2	13,4	10,9	6,3	4,6	4,9	3,7	3,3	1,8	2,2	1,8	2,5	1,0	1,5	0,5	5,8	4,0
Assimetria	2,4	2,2	2,1	1,9	3,2	2,8	2,3	1,9	2,1	1,8	1,5	1,2	1,6	1,5	1,5	1,2	1,0	0,8	2,0	1,7
Minimo	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,4	2,3	2,3	2,3	2,4	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3
Máximo	21,4	21,8	16,4	16,7	29,5	29,8	22,4	23,6	18,5	19,5	20,0	20,4	20,9	21,1	18,5	19,0	16,5	16,7	29,5	29,8
Núm.de árvores	441	441	337	337	374	374	385	385	424	424	498	498	459	459	469	469	418	418	3805	3805
Volume	PAF	RC.1	PAI	RC.2	PAF	₹C.3	PAF	RC.4	PAF	₹C.5	PAF	RC.6	PAF	RC.7	PAF	RC.8	PAF	RC.9	FLOR	ESTA
Comercial (m³)	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001	1996	2001
Média					1 7 7 7 7								0.283		0.163	0.221	0.175	0.235	0.289	0.360
Desvio padrão	0,296	0,371 0.916	0,283	0,365 0.837	0,465 2.070	0,547 2,172	0,375	0,475 1,354	0,349	0,439 1,412	0,256 0,667	0,315 0,728	0,263	0,329	0,163	0,221	0,175	0,235	0,269	1,099
CV%	276.0	246.7	249.9	229.3	445.4	397.1	315,1	285.2	329.8	321,5	260,5	231.1	191.4	183.3	200.4	174.8	301.5	249.8	341.8	305.2
Curtose	92,164		32,398	35.702	107,496	100.887	61,606	67.629		111.109	1	93,899	21.661		53,922	43.091		163.417		216,348
Assimetria	8.161	7.377	5.217	5.437	9,475	9.183	7.083	7,399	9.148	9.621	8,587	8,579	4.188	3.945	6.635	5.829	11.883	11.523	12,983	12,164
Minimo	0.025	0.025	0,025	0.025	0.025	0.026	0.025	0.027	0.025	0.025	0.025	0,027	0.025	0.025	0.025	0.025	0.025	0.026	0.025	0.025
Máximo	11.602	12.268	6,649	7,753	28.527	29,342	13,479	15,824	16.135	19.204	8,970	9.765	4.612	4.747	3.683	3,967	8,623	9,567	28.527	29,342
V/ha	130.401	,	1	123.048],	204.586	l '	182.749			l '	156.819	1	.,	-,	103,775	73,294	98.258		1370,041
Núm.de érvores	441	441	30,381	123,040	173,024	204,000	144,342	102,149	1-1,001	100,203	127,013	130,018	129,713	130,000	10,241	100,770	10,204	30,230	1080,700	3805

Com relação às estatísticas referentes ao crescimento em área transversal das árvores (tab. 7) observou-se uma média de 0,05 m² para a floresta estudada, com uma amplitude de variação entre 0,01 e 3,25 m², e um alto coeficiente de variação (CV%=292,62), indicando grande dispersão dos valores em relação à média. Assim como o DAP, a área transversal apresentou um alto valor de assimetria (positiva = 12,53) e curtose (leptocúrtica = 292,69), revelando uma curva deslocada para a esquerda e com acentuado grau de afilamento. É importante afirmar que a área basal da floresta (9 ha) no período foi de 156,72 m² (17,41 m²/ha) em 1996 e 192,19 m² (21,35 m²/ha) em 2001.

GOMIDE (1997), estudando a área basal de uma Floresta Tropical Primária no Amapá, encontrou uma pequena variação no período analisado, de 35,6 m²/ha em 1985 para 35,54 m²/ha em 1996, demonstrando um equilíbrio nas taxas de mortalidade e ingresso das árvores. Para uma Floresta Tropical Secundária, no mesmo local, o autor encontrou 3,34 m²/ha em 1985 e 28,74 m²/ha em 1996, resultando em uma variação de 760% em relação ao período inicial.

PIZZATO (1999), analisando a estrutura de uma Floresta Ombrófila Mista no Paraná, encontrou uma área basal de 32,12 m²/ha em 1995 e 33,07 m²/ha em 1998, observando um acréscimo de 3,02% em relação ao ano inicial de medição. DURIGAN (1999), para o mesmo tipo de floresta encontrou 40,21 m²/ha em 1997, e um pequeno acréscimo de 0,63 m²/ha em 1988.

Conforme se pode observar na tabela 8, em 2001, a floresta em questão apresentou uma altura comercial média de 5,5 m e um coeficiente de variação de 58,7%, indicando alta variação das alturas em relação à média. Assim, como nas demais variáveis estudadas anteriormente (DAP e área transversal), a altura comercial apresentou assimetria positiva (igual a 1,7) e um coeficiente de curtose igual a 4,0, indicando uma curva afilada e com deslocamento para a esquerda. Poucos trabalhos têm sido desenvolvidos, no Brasil, com a altura comercial das árvores, uma vez que se trata de uma variável utilizada para levantamentos volumétricos comercias, sendo de difícil avaliação em relação ao seu comportamento. No entanto, como a altura comercial é importante para a determinação do volumes das árvores, foram abordados alguns resultados estatísticos para o melhor entendimento do seu comportamento. CORAIOLA (1997),

estudando a estrutura da floresta em questão, observou que a grande maioria das árvores apresentou alturas comerciais baixas (média de 5,0 metros), revelando que grande parte das espécies encontradas apresentou como característica relevante a bifurcação/ramificação a poucos metros do solo.

Na avaliação da distribuição dos volumes comerciais das árvores, observouse que a média volumétrica foi de 0,289 m³ em 1996 e 0,360 m³ em 2001, enquanto que o volume comercial médio por hectare encontrado em 2001 foi de aproximadamente 152 m³ contra 122 m³ em 1996 (aumento de 24%). Como podese observar na tabela 9, o coeficiente de variação encontrado para a floresta foi de 341,8% e 305,2% respectivamente em 1996 e 2001, indicando a alta variabilidade encontrada (amplitude entre 0,025 e 29,342 m³). O comportamento da floresta em relação à assimetria e curtose foi semelhante ao encontrado nas demais variáveis (DAP, área transversal e altura comercial): assimetria e curtose positivas. GOMIDE (1997), comparando o comportamento de uma floresta tropical primária e uma secundária no Amapá, encontrou um volume comercial de 333,3 m³/ha em 1985 e 328,0 m³/ha em 1996, para a floresta primária (decréscimo de 1,6%); para a floresta secundária, encontrou 4,97 m³/ha em 1985 e 40,27 m³/ha em 1996 (aumento de 710%).

Com relação às parcelas analisadas em 2001, destacam-se: a PARCELA 1, que apresentou a menor média em altura comercial (4,8 m); a PARCELA 2, com o menor número de árvores (337 arv./ha); a PARCELA 3, que apresentou o maior volume comercial médio (0,547 m³), o maior volume por hectare (204,586 m³/ha) e o maior coeficiente de variação em volume e em altura comercial (397,1% e 66,9%, respectivamente); a PARCELA 5, com a maior área basal (27,80 m²/ha), a maior área transversal média (0,07 m²), o maior DAP médio (23,5 cm) e o maior coeficiente de variação em área transversal e DAP (283,1% e 71,9%, respectivamente); a PARCELA 8, com o menor coeficiente de variação em volume comercial e em área transversal (174,8% e 122,8%, respectivamente), o menor volume comercial médio (0,221m³), a menor área transversal média (0,03 m²) e o maior número de árvores por hectare (469 arv./ha); e a PARCELA 9, que apresentou o menor volume comercial por hectare (98,258 m³/ha), a menor área basal por hectare (13,82 m²/ha), a menor área transversal média (0,03 m³), o menor

DAP médio (18,6 cm), a maior média em altura comercial (6,2 m) e o menor coeficiente de variação em DAP e em altura comercial (46,0% e 46,8%, respectivamente). As demais parcelas, 4, 6 e 7, não se destacaram em relação as demais.

A tabela 9 apresenta as estatísticas descritivas para os Incrementos Periódicos Anuais (IPA) em DAP, área transversal, altura e volume comercial das árvores, por parcela e para a floresta (9 ha), no período de 1996 a 2001. Dentre as principais estatísticas analisadas, destacam-se a média, desvio padrão, coeficiente de variação, coeficiente de curtose e assimetria, valor máximo e mínimo.

A floresta apresentou um IPA médio em DAP, no período analisado, de aproximadamente 0,51 cm/ano. Como se pode observar na tabela 9, obteve-se um desvio padrão igual 0,50 cm/ano e um coeficiente de variação de aproximadamente 98%, comprovando a grande variabilidade dos dados (amplitude de variação entre 0,00 e 4,14 cm/ano). A parcela 7 apresentou o menor incremento médio (0,29 cm/ano) e a maior variabilidade (CV% = 102,02). A parcela 4, com 0,67 cm/ano, revelou o maior incremento diamétrico médio. Já a parcela 9 apresentou a menor variabilidade (CV% = 86,79).

Conforme o que consta na tabela 9, a floresta apresentou um incremento periódico anual médio (IPA) em área transversal de 0,0162 m²/ano, com um coeficiente de variação de 160,39% e um desvio padrão de 0,0261 m²/ano, indicando grande dispersão dos dados em relação à média (amplitude entre 0,000 e 0,5946 m²/ano). As parcelas 4 e 9 apresentaram, respectivamente, o maior (0,0025 m²/ano) e o menor (0,0015 m²/ano) incremento em área transversal. Com relação à variabilidade, as parcelas 6 e 7 se destacaram por apresentar o menor (114,15%) e o maior (155,73%) coeficiente de variação, respectivamente.

Em média, para a floresta como um todo, observou-se um incremento periódico anual médio em altura comercial igual a 0,10 m/ano, com uma variabilidade de 122,73% (CV%). As parcelas 4 e 7 apresentaram, respectivamente, o maior (0,13 m/ano) e a menor (0,05 m/ano) incremento periódico anual.

TABELA 9 – ESTATÍSTICA DESCRITIVA PARA O INCREMENTO PERIÓDICO ANUAL (IPA) EM DAP, ÁREA TRANSVERSAL, ALTURA E VOLUME COMERCIAL DAS ÁRVORES NO PERÍODO DE 1996 A 2001, POR PARCELA E PARA A FLORESTA

IPA DAP (cm/ano)	PARC.1	PARC.2	PARC.3	PARC.4	PARC.5	PARC.6	PARC.7	PARC.8	PARC.9	FLORESTA
Média	0,53	0,63	0,60	0,67	0,53	0,45	0,29	0,49	0,50	0,51
Desvio padrão	0,46	0,62	0,58	0,61	0,54	0,40	0,30	0,45	0,44	0,50
CV%	87,28	99,70	95,94	91,33	101,95	88,76	102,03	91,66	86,79	97,57
Curtose	2,25	4,30	5,65	1,65	7,18	2,02	7,39	3,97	11,85	5,88
Assimetria	1,47	1,93	2,11	1,41	2,32	1,37	2,23	1,78	2,33	2,05
Mínimo	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Máximo	2,55	3,66	3,76	3,09	3,57	2,58	2,13	2,55	4,14	4,14
N	441	337	374	385	424	498	459	469	418	3805
IPA g (m²/ano)	PARC.1	PARC.2	PARC.3	PARC.4	PARC.5	PARC.6	PARC.7	PARC.8	PARC.9	FLORESTA
Média	0,0021	0,0023	0,0022	0,0025	0,0022	0,0016	0,0012	0,0016	0,0015	0,0162
Desvio padrão	0,0027	0,0034	0,0027	0,0032	0,0043	0,0018	0,0018	0,0020	0,0018	0,0261
CV%	129,18	147,42	123,05	129,93	196,35	114,15	155,73	129,77	116,75	160,39
Curtose	17,1981	66,7371	8,1206	17,0914	90,7889	7,0015	16,7047	10,2518	18,7730	101,0989
Assimetria	3,2056	6,3045	2,5573	3,3895	8,0962	2,2593	3,5655	2,8958	3,4449	6,9518
Mínimo	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Máximo	0,0263	0,0438	0,0182	0,0260	0,0602	0,0132	0,0141	0,0142	0,0151	0,5946
N	441	337	374	385	424	498	459	469	418	3805
IPA He (m/ano)	PARC.1	PARC.2	PARC.3	PARC.4	PARC.5	PARC.6	PARC.7	PARC.8	PARC.9	FLORESTA
Média	0,08	0,09	0,11	0,13	0,09	0,10	0,05	0,11	0,13	0,10
Desvio padrão	0,09	0,13	0,13	0,14	0,12	0,12	0,07	0,13	0,13	0,12
CV%	117,65	135,87	119,67	113,03	136,08	119,48	141,71	114,31	94,20	122,73
Curtose	8,04	11,05	4,64	2,91	12,44	7,63	14,64	2,21	1,41	6,27
Assimetria	2,55	2,97	2,15	1,71	3,01	2,41	3,42	1,65	1,31	2,27
Minimo	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Máximo	0,62	0,96	0,68	0,82	1,03	0,79	0,56	0,65	0,63	1,03
N	441	337	374	385	424	498	459	469	418	3805
IPA _{vc} (m³/ano)	PARC.1	PARC.2	PARC.3	PARC.4	PARC.5	PARC.6	PARC.7	PARC.8	PARC.9	FLORESTA
Média	0,015	0,016	0,016	0,020	0,018	0,012	0,009	0,012	0,012	0,014
Desvio padrão	0,028	0,038	0,028	0,043	0,064	0,017	0,019	0,018	0,017	0,033
cv%	187,52	232,92	172,86	214,39	352,14	148,05	201,52	154,58	145,75	232,69
Curtose	46,035	132,043	22,405	64,913	197,409	30,422	25,618	18,499	52,142	344,098
0011036					40.050	4,303	4,440	3,581	5,731	14,142
Assimetria	5,415	9,821	4,109	7,141	12,958	4,303	7,770	-,	0,.0.	, —
	5,415 0,000	9,821 0,000	4,109 0,000	7,141 0,000	0,000	0,000	0,000	0,000	0,000	0,000
Assimetria	1		•	-	•	•		,		i i

NOTA : IPA (INCREMENTO PERIÓDICO ANUAL); DAP = DIÂMETRO À ALTURA DO PEITO; g = ÂREA TRANSVERSAL; Hc = ALTURA COMERCIAL; Vc = VOLUME COMERCIAL; N = NÚMERO DE ÁRVORES

Com relação aos incrementos em volume comercial (tab. 9), observou-se que, em média, a floresta apresentou um IPA de 0,014m³/ano. A variabilidade média, representada pelo coeficiente de variação e pelo desvio padrão, indica uma grande dispersão dos valores, com incrementos variando entre 0,000 e 1,072 m³/ano. As parcelas que mais se destacaram foram: parcelas 6, 8 e 9, com os menores

incrementos volumétricos médios (0,012 m³/ano); parcela 4, com o maior incremento volumétrico médio (0,020 m³/ano); e as parcelas 5 e 9, que apresentaram, respectivamente, o maior (353,14%) e o menor (145,75%) coeficiente de variação (CV%).

É importante destacar que, na análise dos IPAs das variáveis em questão (DAP, área transversal, altura comercial e volume comercial), os valores de assimetria e curtose apresentaram sempre comportamentos similares, com valores de assimetria e curtose positivos, indicando curvas com deslocamento para a esquerda e um certo grau de afilamento, caracterizada por uma grande concentração de indivíduos com incrementos inferiores a média (tab. 9).

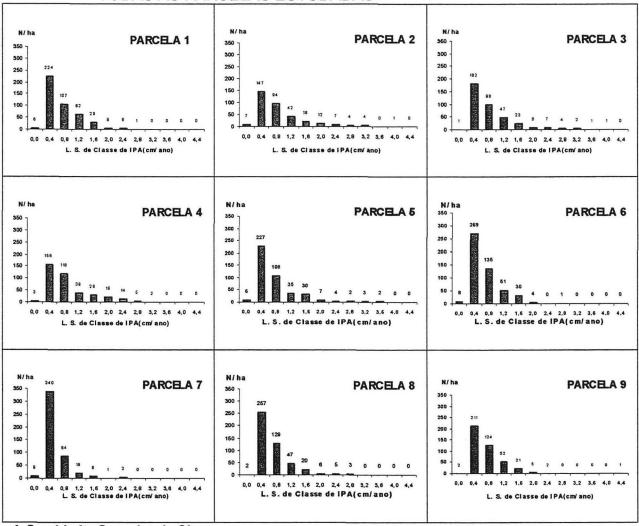
No gráfico 2 e na figura 2, estão apresentados o número de árvores por classe de IPA em DAP para o total da floresta e por parcela, respectivamente. Os gráficos foram elaborados com intervalos de classes de 0,4 cm, representados pelos limites superiores das classes, uma vez que a primeira classe teve como objetivo principal informar o número de árvores com incrementos nulos no período. Assim, a primeira classe inclui árvores com incrementos até zero (como não há incrementos negativos, somente iguais a zero), a segunda classe inclui árvores com incrementos até 0,4 cm, e assim por diante.

PERÍODO DE 1996 A 2001 FLORESTA Número de Árvores 2500 2013 2000 1500 1000 500 2,0 0,0 0,4 1,6 2,4 2,8 3,2 Limite Superior de Classe de IPA (cm/ano)

GRÁFICO 2 - NÚMERO DE ÁRVORES POR CLASSE DE IPA EM DAP PARA O TOTAL DA FLORESTA, NO PERÍODO DE 1996 A 2001

Número de árvores observadas no total das parcelas - 9,0 hectares

Como pode-se observar no gráfico 2, a floresta apresentou 43 árvores com incrementos nulos (árvores que não cresceram no período de 1996 a 2001), e na sua grande maioria (2013 árvores) incrementos entre 0,0 e 0,4 cm/ano $(0,0 < IPA \le 0,4)$. À medida em que os incrementos aumentam, observa-se uma redução gradativa no número de árvores, destacando as classes 3 $(0,4 < IPA \le 0,8)$, 4 $(0,8 < IPA \le 1,2)$ e 5 $(1,2 < IPA \le 1,6)$, totalizando cerca de 1567 árvores. A partir da sexta classe (IPA > 1,6), o número de árvores encontradas reduz consideravelmente, totalizando 182 representantes.


No geral, a floresta estudada, apresenta a curva típica encontrada em florestas naturais ("J" invertido), com grande concentração de indivíduos nas classes inferiores e posterior decréscimo à medida que aumentam os IPAs. É importante ressaltar que, a primeira classe (IPA = 0) foi representada apenas com o objetivo de destacar as árvores com incrementos nulos. Assim, se os indivíduos com incrementos nulos fossem incorporados na segunda classe $(0,0 \le IPA \le 0,4)$, a curva assumiria seu comportamento natural ("J" invertido).

Como se pode observar na figura 2, o comportamento do número de árvores por classe de incremento em DAP por parcela, apresentou a mesma tendência da floresta, com grande quantidade de indivíduos nas classes inferiores.

As parcelas 1 e 7 apresentaram maior número de árvores nas classe inferiores (IPA ≤ 2,4 cm/ano), indicando a presença de indivíduos com grandes dimensões, e baixas taxas de crescimento, devido principalmente à maior competição e menor disponibilidade de luz abaixo do dossel superior. As parcelas 2 e 3 apresentaram os maiores valores de incrementos em DAP (IPA ≤ 4,0 cm/ano), totalizando respectivamente, 23 e 28 árvores com IPA > 1,6 cm/ano, inferior apenas à parcela 4 que apresentou o maior número de árvores com crescimento maior que 1,6 cm/ano (40 indivíduos). Estas parcelas, que revelaram grandes taxas de incremento em DAP, se caracterizam pela presença de indivíduos de rápido (espécies crescimento pioneiras ou representantes jovens intermediárias ou clímax), com grande disponibilidade de espaço e luz, elementos diferenciadores do crescimento. As parcelas 6 e 7 se destacaram por apresentarem o menor número de indivíduos com IPA > 1,6 cm/ano (5 e 3 árvores, respectivamente), revelando grande concentração nas primeiras classes (267 e 340

árvores, respectivamente, na classe de $0.0 < IPA \le 0.4$). A parcela 9, apesar de apresentar, na sua maioria, incrementos de no máximo 2,4 cm /ano, se destaca pela presença de um representante na última classe $(4.0 < IPA \le 4.4)$.

FIGURA 2 - NÚMERO DE ÁRVORES POR CLASSE DE INCREMENTO PERIÓDICO ANUAL (IPA) EM DAP PARA O PERÍODO DE 1996 A 2001 PARA TODAS AS PARCELAS ESTUDADAS

L.S. = Limite Superior de Classe

GAUTO (1997), estudando a dinâmica de uma Floresta Estacional Semidecidual em Missiones – Argentina, encontrou um IPA em DAP de 0,57 cm/ano, no período de dois anos. Comparando com o incremento encontrado no presente trabalho (IPA em DAP de 0,51 cm/ano), pode-se concluir que as florestas em questão, embora situadas em regiões diferentes, apresentaram incrementos médios muito próximos. É importante destacar que, os resultados encontradas na floresta de

Missiones foram obtidos em um período bem curto (2 anos), enquanto que no presente estudo, foi considerado um período de 5 anos, revelando assim uma maior confiabilidade nos resultados obtidos, principalmente por se analisar 5 períodos de crescimento (96-97, 97-98, 98-99, 99-00 e 00-01).

Comparando os resultados encontrados no presente trabalho com outras florestas naturais, pode-se destacar: LIBERMAN et al. (1985) encontraram uma taxa média de crescimento em torno de 0,26 cm/ano para uma floresta primária na Costa Rica; SANQUETTA et al. (1991), estudando a dinâmica de uma floresta secundária no Japão (Fir-hemlock), encontraram um incremento médio em DAP de 0,10 cm/ano, em um período de 6 anos (espécies com DAP > 4 cm); CARVALHO (1992), ao avaliar o crescimento de uma floresta natural no Pará (Floresta Nacional de Tapajós), encontrou um incremento de 0,20 cm/ano (espécies com DAP > 5 cm); GOMIDE (1997), ao estudar a dinâmica de uma Floresta Tropical no Amapá, encontrou, em um período de 11 anos, incrementos periódicos anuais (IPA) em DAP de 0,14 e 0,60 cm/ano, respectivamente para florestas primária e secundária; PIZATTO (1999), para uma Floresta Ombrófila Mista no Paraná, encontrou um incremento periódico médio em DAP de 0,18 cm/ano para o período de 1995 e 1998 (árvores com DAP ≥ 10 cm). DURIGAN (1999), estudando a mesma floresta abordada por PIZATTO (1999), encontrou incrementos médios de 0,34 cm/ano.

A tabela 10 apresenta os incrementos periódicos anuais (IPA) em área basal (m²/ha) no período de 1996 a 2001, para as nove parcelas estudadas e para a floresta (nove hectares).

A floresta apresentou um incremento periódico anual médio em área basal de 0,79 m²/ha/ano e um total de 7,09 m²/9,0ha/ano para a floresta (3805 árvores) no período analisado. Com relação às parcelas, destaca-se: a parcela 4, com o maior incremento (IPA= 0,95 m²/ha/ano) e área basal da floresta em 2001 de 22,83 m²/ha, indicando a presença de espécies de rápido crescimento e menor competição entre os indivíduos (parcela com o terceiro menor número de árvores – 385/ha); a parcela 7, com o menor IPA (0,54 m²/ha/ano) e 22,26 m²/ha, revelando a menor taxa de crescimento entre as parcelas estudadas, explicada pela maior competição entre as espécies, por espaço e por luz (presença de indivíduos de grande porte, ocupando o dossel principal da floresta), o que dificulta o aparecimento de espécies pioneiras e

de rápido crescimento (parcela com o terceiro maior número de árvores – 459/ha); a parcela 5, com a maior área basal em 2001 (27,80 m²/ha) e IPA = 0,93 m²/ha/ano, indicando a presença de indivíduos de grande porte e de rápido crescimento; a parcela 9, que apresentou a menor área basal em 2001 (13,82 m²/ha) e um IPA = 0,64 m²/ha/ano, revelando a presença de indivíduos com pequenas dimensões e de crescimento abaixo da média.

TABELA 10 - INCREMENTO PERÍODICO ANUAL EM ÁREA BASAL POR PARCELA E PARA A FLORESTA NO PERÍODO DE 1996 A 2001

			Á	rea Bas	al (m²/ha	1)		IPA 96-01
PARCELAS	N	1996	1997	1998	1999	2000	2001	(m²/ha/ano)
PARCELA 1	441	20,01	21,18	22,10	23,00	23,73	24,64	0,93
PARCELA 2	337	14,23	15,05	15,93	16,72	17,36	18,11	0,78
PARCELA 3	374	19,27	20,25	21,10	21,94	22,71	23,35	0,82
PARCELA 4	385	18,10	19,27	20,34	21,24	22,07	22,83	0,95
PARCELA 5	424	23,12	24,19	25,26	26,16	26,98	27,80	0,93
PARCELA 6	498	19,21	20,01	20,93	21,74	22,49	23,08	0,77
PARCELA 7	459	19,56	20,13	20,76	21,34	21,34	22,26	0,54
PARCELA 8	469	12,60	13,54	14,28	15,13	15,77	16,30	0,74
PARCELA 9	418	10,61	11,40	12,17	12,79	13,38	13,82	0,64
FLORESTA	3805	156,72	165,02	172,88	180,07	186,34	192,19	7,09
MÉDIA	422,78	17,41	18,34	19,21	20,01	20,65	21,35	0,79

PIZATTO (1999) e DURIGAN (1999), estudando uma Floresta Ombrófila Mista no Paraná, encontraram respectivamente 0,3458 m²/ha/ano para 4 anos de medições e 0,7050 m²/ha/ano um período de 2 anos. Segundo DURIGAN (1999), a diferença verificada nos dois trabalhos se deve principalmente ao local de instalação das parcelas estudadas, observando-se diferenças significativas em relação aos processos de interferências antrópicas nos locais.

GOMIDE (1997), estudando a dinâmica de uma Floresta Tropical no Amapá entre 1985 a 1996, encontrou uma taxa de -0,086 m²/ha/ano para a floresta primária, revelando um decréscimo no incremento em área basal e 2,33 m²/ha/ano para a floresta secundária. Segundo o autor, a floresta primária apresentou decréscimos em incrementos, devido à alta taxa de mortalidade no período. Com relação à floresta secundária, o alto valor de incremento encontrado se deve ao baixo número de árvores na fase inicial do processo.

Na tabela 11 estão apresentados os incrementos periódicos anuais (IPA) em volume comercial para todas as parcelas estudadas e para a floresta (9,0 hectares) no período de 1996 a 2001.

TABELA 11 - INCREMENTO (IPA) EM VOLUME COMERCIAL POR PARCELA E PARA A FLORESTA NO PERÍODO DE 1996 A 2001

		_	Vo	lume co	mercial (m³/ha)		IPA 96-01
PARCELAS	N	1996	1997	1998	1999	2000	2001	(m³/ha/ano)
PARCELA 1	441	130,401	138,314	144,841	151,333	156,596	163,742	6,668
PARCELA 2	337	95,391	100,749	106,631	112,022	116,763	123,048	5,531
PARCELA 3	374	173,824	180,687	186,929	193,294	199,356	204,586	6,153
PARCELA 4	385	144,342	153,083	161,346	168,808	175,756	182,749	7,681
PARCELA 5	424	147,951	155,481	163,955	171,730	178,913	186,203	7,650
PARCELA 6	498	127,613	133,206	140,028	146,209	151,900	156,819	5,841
PARCELA 7	459	129,713	134,255	138,833	143,385	147,461	150,860	4,229
PARCELA 8	469	76,241	82,679	88,210	94,666	99,454	103,775	5,507
PARCELA 9	418	73,294	79,093	84,845	89,693	94,468	98,258	4,993
FLORESTA	3805	1098,768	1157,547	1215,620	1271,141	1320,665	1370,041	54,254
MÉDIA	422,78	122,085	128,616	135,069	141,238	146,741	152,227	6,028

Os incrementos periódicos em volume comercial (IPA) observados na tabela 11 revelam que a floresta estudada apresentou um IPA médio igual a 6,028 m³/ha/ano e um total de 54,254 m³/9,0ha/ano. Com relação às parcelas, destaca-se: as parcelas 4 e 5, com os maiores incrementos (7,681 e 7,650 m³/ha/ano, respectivamente), devido a menor competição e presença de indivíduos com grande potencial de crescimento; a parcela 7, que apresentou o menor IPA (4,993 m³/ha/ano), devido a maior competição entre as espécies (indivíduos de grande porte); a parcela 3, que apresentou o maior volume comercial (204,586 m³/ha) e incremento próximo da média (6,153 m³/ha/ano) e a parcela 9 com o menor volume comercial (98,258 m³/ha) e incremento abaixo da média (4,996 m³/ha/ano). No geral a floresta estudada apresentou, em 2001, um volume comercial médio de 152,227 m³/ha.

CARVALHO (1992), na Floresta Nacional do Tapajós - Pará, constatou um incremento volumétrico médio, em sete anos de medições, igual a 1,6 m³/ha/ano, chegando a 3,6 m³/ha/ano nos primeiros cinco anos e posterior decréscimo nos últimos anos (-2,1 m³/ha/ano). Segundo o autor, mesmo nas florestas que são consideradas clímax, os processos normais de dinâmica ainda são verificados.

GOMIDE (1999), em uma Floresta Tropical do Amapá, encontrou um incremento em volume igual a –0,39 m³/ha/ano (decréscimo) para a floresta primária, devido a alta taxa de mortalidade encontrada. Para a floresta secundária, o autor encontrou um incremento volumétrico igual a 3,53 m³/ha/ano, devido ao número reduzido de árvores do referido estágio sucessional.

Segundo SILVA (1989) é extremamente complicado comparar taxas de crescimento (incrementos) para diferentes florestas naturais, uma vez que existem inúmeros fatores que afetam o crescimento das árvores. Assim, pode-se afirmar apenas que, a floresta estudada neste trabalho apresentou taxas de crescimento volumétricas maiores que as florestas anteriormente citadas.

A tabela 12 apresenta o número de árvores e incremento periódico anual (IPA) médio em DAP para cada espécie encontrada e para a floresta (9,0 hectares), por classe de DAP (intervalo das classes igual a 10 cm) entre 1996 e 2001. Das 98 espécies encontradas, 39 apresentaram menos de 5 representantes, número considerado insuficiente para avaliar o comportamento das taxas de crescimento (PIZATTO, 1999). As demais espécies, apresentaram mais de 5 indivíduos e foram organizados em ordem decrescente de IPA médio.

A tabela 13 apresenta os incrementos em volume comercial (IPA) por espécie e para a floresta, por classe de DAP, no período de 1996 a 2001. Conforme mencionado no parágrafo anterior, a tabela foi organizada em ordem decrescente de IPA em volume, considerando apenas as espécies com no mínimo 5 representantes.

Para complementar a análise dos incrementos por espécie (DAP e volume comercial) foi elaborada a tabela 14, que apresenta as principais estatísticas descritivas, destacando os incrementos médios, a mediana, os valores máximos e mínimos, o desvio padrão, o coeficiente de variação e os coeficientes de assimetria e curtose para os incrementos periódicos anuais em DAP e volume comercial, no período de 1996 a 2001.

TABELA 12 - NÚMERO DE ÁRVORES E INCREMENTO PERIÓDICO ANUAL EM DIÂMETRO POR CLASSE DE DAP, POR ESPÉCIE E PARA O TOTAL DA FLORESTA NO PERÍODO DE 1996 A 2001

		NÚM.								PA I	MÉDIO I	POR	CLASS	E D	E DAP	(cm/									Média
CÓDIGO	ESPÉCIE	DE	10-	20	20-3	30	30-4	Ю	40-8	50	50-6	0	60-7	0	70-8	0	80-9	0	90-1	00	100-1	10	≥11	0	(IPA)
		ÁRV.	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	
1079	Pau alho	7	1,43	1	1,69	1	-	-	1,46	1	0,60	1	-	-	-	-	-	-	3,18	1	T -	-	2,26	2	1,84
1059	Jaracatiá	41	0,82	4	1,13	8	1,81	15	0,80	6	1,11	7	-	-	0,06	1	-	-	_	-	-	-	-	-	1,27
1042	Embaúba	39	0,41	10	1,51	26	1,11	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,20
1032	Capixingui	313	0,71	90	1,27	136	1,43	62	1,66	18	0,93	5	0,76	2	-	-	-	-	j -	-	-	-	-	-	1,16
1069	Monjoleiro	167	0,75	45	1,10	81	0,94	38	1,06	3	} -	-	-	-	-	-	-	-	-	-	-	-	-	•	0,96
1051	Gameleiro	27	0,27	8	1,23	7	0,68	4	0,42	3	0,16	1	1,46	2	1,18	1	-	-	0,70	1	-	-	-	-	0,73
1022	Canela	63	0,55	33	0,92	23	0,83	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,72
1029	Canjica	44	0,73	16	0,67	17	0,76	7	0,72	3	0,83	1	-	-	-	-	-	-	-	-	-	-	-	-	0,71
1083	Pau viola	59	0,61	19	0,74	16	0,95	6	0,64	12	0,39	4	0,60	2	-	-	_	-	-	-] -	-) -	-	0,67
1062	Jequetibá rosa	90	0,37	41	0,75	13	1,04	7	1,20	5	1,01	6	0,77	6	0,64	4	1,29	2	0,32	1	0,76	4	0,25	1	0,64
1010	Ariticum cagão	25	0,62	15	0,67	5	0,72	3	0,41	1	0,83	1	-	-	-	-	-	-	-	-	-	-	-	-	0,64
1091	Pessegueiro bravo	14	0,37	7	0,89	7	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	0,63
	Carne de vaca	6	0,36	5	1,81	1	-	-	-	_	-	_	-	_	-	-	_	-	-	-	-	-	-	-	0,60
	Canela amarela	59	0,40	30	0,77	21	0.95	7	0,45	1	_	_	-	-	-	-	-	-	-	-	-	-	-	-	0,59
	Sangueiro	57	0,31	17	0.78	11	0.81	7	0.65	2	0,26	6	0,69	3	0,73	7	0,51	1	0,99	3	-	-	-	-	0,58
	Guaritá	234	0,54	163	0,66	52	0.54	12	0,45	4	0,25	2	0,06	1	-	_	-	-	_	-	-	-	-	-	0,56
	Batalha	18	0,51	8	0,51	3	0,64	6	0,70	1] -	-	<u> </u>	-	_	_	-	_	-	-	- 1	-	-	-	0,56
	Jeguetibá branco	54	0,34	27	0,68	13	0,75	5	0,94	2	0.62	3	1,24	2	l -	_	-	-	0,64	1	0,45	1	-	_	0,54
	Peroba rosa	9	0,37	2	0.51	4	1,15	1	0,38	1	<u> </u>	-	-	-	0,48	1	-	-	_	_	-	_	-	-	0,53
	Paineira	73	0,34	38	0,64	21	0.88	4	0,92	1	-	-	0,84	2	0,65	3	-	-	0,43	2	1,13	2	-	-	0,52
	Sobraji	22	0,58	9	0.33	7	0.83	2	0,51	4] _	_	-	-	-	-	-	-	-	-	-	-] -	-	0,51
	Urtigão	235	0,45	175	0.67	57	0.30	3	'-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	0,50
	Canjerana	83	0,36	42	0.66	29	0.45	8	0,91	3	-	_	-	_	-	-	0,19	1	-	-	-	-	-	-	0,49
	Amoreira	65	0,34	11	0,67	25	0,39	20	0.39	6	0,38	1	-	_	0,27	2	-	_	-	-	-	-	-	-	0,48
	Angá graúdo	44	0,38	34	0.70	8	1,23	2	-	_		_	-	-	-	_	_	-	l -	-	-	-	-	-	0,48
	Alecrim	17	0,17	8	0.95	3	0.33	2	0,86	2	0.76	2	۱.	_	-	-		-	-	-	-	_	۱ -	-	0,48
	Bico de pato	15	0,76	1	0,32	3	0.89	1	0,29	3	0.38	3	0,37	2	0,84	2	,	_	-	_	-	-	-	-	0,47
	Guatambú café	30	0,53	13	0,40	7	0,40	7	0,36	3	-	-	'-	_	-	_	_	-	_	-	_	_	-	-	0,45
	Marinheiro	226	0,38	134	0,51	51	0.59	27	0,50	3	0.56	8	0.46	2	0,38	1	_	-	_	-	-	_	_	-	0,44
	Cedro	30	0,36	13	0,41	6	0,58	6	0,27	3	0.32	1		_	-,			-	0,57	1	_	_	-	-	0,41
	Peroba	12	0,37	8	0.49	3	3,00	-		-	"-		۱ -	-	۱ -	-	-	_	0.51	1	_	_	-	_	0,41
	Farinha seca	78	0,38	69	0,43	7	0,35	2		_	_	-	_	_	۱ -	_	_	_	-	-	-	_	-	-	0.40
	Figueira	5	0,30	3	1 5,5 .		0,00	-	_	-	0,32	1	_	_	_	_	_ ا	_	0,95	1	_	_	_	-	0,38
	Ariticunzinho	18	0,20	18	-	-	[]	-	1	-	1 0,02	•	١	_	_	-		_	-	-	-	_	-	_	0,37
	Orvalho	101	0,34	84	0.48	9	0.40	6		-	0,38	2	_	_	l <u>-</u>	_	_	_	_	_		_	_	_	0,36
	Orvaino D	196	0,34	154	0,48	32	1,08	5	0,51	3	0,38	4	[-	0.10	1		_	[-		_	1 _	_	0,34

TABELA 12 - CONTINUAÇÃO

_		NÚM.			,		, <u>.</u>		T				CLASS			<u>. </u>			(Média
ÓDIGO	ESPÉCIE	DE	10-	20	20-3	30	30~	40	40-		50-4		60-7	<u>'0</u>	70-8		80-90		90-1		100-1		≥1		(IPA)
		ÁRV.	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	`
1067	Marinheirinho	50	0,33	29	0,34	15	0,46	5] -	-	0,25	1	-	-	-	-	-	-	-	-	-	-	· -	-	0,34
1099	Sassafrás	41	0,30	23	0,35	14	0,46	3	0,16	1	-	-	-	-	-	-	-	-	-	-	-	•	-	-	0,32
1110	Allophyllus	20	0,29	19	-	-	-	-	0,92	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,32
1014	Bálsamo	5	0,21	4	0,76	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,32
1041	D4	66	0,60	50	0,51	13	0,30	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,30
1105	Unha de boi	57	0,24	47	0,60	9	0,41	1	-	-	-	-	-	-	! -	-	-	- !	-	-	-	-	-	-	0,30
1043	Erva de lagarto	10	0,25	8	0,51	2] -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,30
1019	Camboatá	7	0,33	3	0,00	1	0,38	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,30
1033	Capororocão	7	0,29	6	-	-	0,32	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	0,30
1054	Imbira sapo	22	0,35	3	0,19	8	0,32	3	0,30	3	0,37	3	0,25	2	-	-	-	-	-	-	-	-	-	-	0,27
1072	Orelha de mateiro	160	0,23	110	0,32	44	0,24	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,26
1008	Angá miúdo	6	0,23	5	0,35	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,25
1040	D1	289	0,23	225	0,27	59	0,24	4	0,25	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,24
1055	lpê amarelo	18	0,23	15	0,29	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,24
1101	Sete casaco	13	0,20	6	0,18	6	0,76	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,23
1004	Amesca	69	0.19	67	0.53	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,20
1084	Pereira	97	0,15	45	0,20	20	0,18	14	0,13	11	0,15	3	0,45	4	-	-	-	-	-	-	-	-	-	-	0,17
1058	Jambreiro	23	0.17	21	0.24	2	-	-	-	-	-	-	-	-	i -	-	-	-	-	-	-	-	-	-	0,17
1096	Quatiguá	99	0,14	93	0,15	8	_	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,14
1104	Três folhas	59	0.13	57	0,27	2	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,14
1100	Serralha	7	0.11	7	-	-	_	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-	0,11
1050	Gairova	5	0,10	5	_	_	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	0,10
1076	Palmito	15	0,05	15	_	_	-	-	\ <u>-</u>	-	۱ -	-	-	-	۱ -	-		-	۱ -	-	-	-	1 -	_	0,05
1021	Canafistula	4	-,	_	1,07	2	۱ -	-	1,31	1			-	-	0,25	1	l -	-	-	_	_	-	-	_	0,92
	Capitão	4	0,67	1	.,	_	0,48	2	''-	·	0.70	1	<u>-</u>	-			_	_	-	-	-	_	-	_	0,58
1086	Peroba branca	4	0.73	3	0,03	1	"-	-	l _	_	-,	_	_		_	_	_	_	_		-	-	-	-	0,56
1060	Jatobá	4	0,28	4	-		_	_	_	_	۱.		۱ ـ	_	١.	-	_	_	_	_	-	-	l -	-	0,28
	Paineira branca	4	-	-	0,29	1	_	_	0,16	2	۱ ـ	_	l _	-	_ ا	_	۱ -	_	0,19	1	_	_	-	-	0,20
1118	Maria-mole	4	0,19	4	0,20		1 _	_) ",	-	1 _	_	l _	_	١.	_	l _	_	-	Ċ	_		_	-	0,19
1018	Cambará lixa	4	0,15	4	_			_				_	_	_		_	_	_	ا _	_	_	_	١.	_	0,15
1010	Canela sebo	3	0,10	7	0.94	2	0,35	1		_		_		_		_	_	_	_	_	١.	_	_		0,74
1027	Açoita cavalo	3	0,92	1	0,04	~	0,55	•	0,19	1	0,57	4		_	_	_			_	_	l _	_	ł _	_	0,56
	Arruda	3	0,82		0,18	- 2	1,27	1	0,19		0,57		1 -	-	[-	1 -	_	-	_	[_] _	_	0,54
		3	0,38	1	0,18	2	0,32	2	-	-	-	-	[-	\	_	} _	_	-	-]	_	_	_	0,34
1139	Styrax 2		, ,		0.20	4	0,32	4	-	-	1 -	-	-	-	-	-	-		_	-	1 -	-	[_	0,34
1087	Peroba canela de velha	3	0,27	2	0,29	1	_	-	1 -	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	0,28
1065	Mamica de porca	3	0,27	3	_	-	_	•	-	-	-	•	-	-	-	-	-	-	-	-	~	-	-	-	0,27
1119	Hesteria	3	0,20	3	_	-] -	-	-	-	_	-	2	-	-	-	-	•	-	-	0.70	_	-	-	
1102	Tamburilo	2	-	-	-	-	1 -	-	l -	-	-	-	3,57	1	-	-	-	-	l -	-	0,76	1	-	-	2,16

TABELA 12- CONCLUSÃO

		NÚM.								IPA N	/IÉDIO	POR	CLASS	BE D	E DAP	(cm/	ano)								B# 6 -41
CÓDIGO	ESPÉCIE	DE	10-	-20	20-	30	30-	40	40-	50	50-	60	60-7	70	70-8	30	80-9	0	90-1	00	100-1	10	≥1′	10	Média (IPA)
		ÁRV.	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	DAP	N	(IFA)
1092	Pindalba	2	0,61	2	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	0,61
1116	Cordia 1	2	0,56	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,56
1025	Canela branca	2	0,70	1	-	-	0,38	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,54
1145	Terminalia 1	2	0,45	1	0,64	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,54
1057	Jacarandá roxo	2	0,22	1	0,83	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,53
1003	Amenduim	2	0,32	2	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	0,32
1103	Tento	2	0,25	1	-	_	0,22	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,24
1077	Panacéia	2	0,19	2	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	0,19
1048	Fruteira	2	0,13	1	0,22	1	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	0,18
1024	Canela bosta	1	-	-	0,95	1	-	_	-	_	-	-	-	-	-	_	-	-	~	-	-	-	-	-	0,95
1017	Braúna	1	0,73	1	-	-	-	-	-	-	[-	-	-	-	-	-	-	-	-	-	-	-	-	-	0,73
1035	Caroba	1	-	-	0,70	1	۱ -	-	- 1	-	-	-	-	-	-	-	-	-	\ ~	-	 	-	-	-	0,70
	Vinhático	1	_	-	<u> </u>	-	-	-	-	-	_	_	-	-	0,67	1	-	-	-	-	-	-	-	-	0,67
1026	Canela preta	1	l -	_	0,64	1	i -	-	-	-	-		ا -	-	-	-	١.	-	-		-	-	-	-	0,64
1132	Lauraceae 3	1	0,64	1	-	-	_ ا	-] _	-	-	_	-	-	_	-	-	-	-	-	-	_	-	_	0,64
	Pau pólvora	1	0,54	1	-	-	-	_	l -	-	۱.	-	-	_	_	-	-	-	-	_	-	-	-	-	0,54
	lpê felpudo	1	0,48	1	-	_	-	-	-	-	۱ -	-	-	_	-	_	-	_	-	-	-	-	-	-	0,48
	Sloaneae	1	0,19	1	_	_	_	_	-	_	-	-	-	_	- 1	-	_	-	-	-	-	_	-	-	0,19
	Cordia 2	1	-	-	-	_	-	_	0,10	1	-	_	_	_	-	-	-	_	-	_	-	_	_	-	0,10
	Myroloxum	1	0,10	1	_	_	-	-	ļ ['] -	-	-	-] -	-	_ ا	-		-	-	-	-	_	-	-	0,10
	Mandiocão	1	_	-	-	_	-	_	-	_	0,06	1	_	-	-	_	-	-	- 1	-	Í -	-	-	-	0,06
	Rollinia	1	0,03	1	_	-	-	_	l -	-	-	_	-	-	-	-	-	-	l -	-	[-	-	-	-	0,03
	Tocayena	1	0,03	1	-		_	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	0,03
1084	Limeira	1	0,00	1	_	-	_	-	-	-	_	-	-	-	-	-	-	-	_	_	-	_	-	-	0,00
	FLORESTA	3805	0,55	2266	0,50	936	0,29	337	0,43	116	0,61	66	0,81	31	0,48	25	0,72	4	0,34	13	0,31	8	0,37	3	0,51

TABELA 13 - NÚMERO DE ÁRVORES E INCREMENTO PERIÓDICO ANUAL EM VOLUMECOMERCIAL POR CLASSE DE DAP, POR ESPÉCIE E PARA O TOTAL DA FLORESTA NO PERÍODO DE 1996 A 2001

		N°	IPA MÉDIO							IPA	MÉ	DIO (m²	/and) POR	CLA	SSE DE	DA	P (cm)							
CÓDIGO	ESPÉCIE	ÁRV.	(m³/ano)	10-	20	20-3	30	30-4	0	40-5	0	50-6	0	60-7	0	70-8	0	80-9	0	90-10	00	100-1	10	≥11	0
			(Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N
1079	Pau alho	7	0,349	0,021	1	0,039	1	-	-	0,082	1	0,047	1	-	-	-	-	-	-	0,569	1	-	-	0,843	2
1062	Jequetibá rosa	90	0,055	0,007	41	0,025	13	0,056	7	0,100	5	0,104	6	0,103	6	0,104	4	0,238	2	0,075	1	0,265	4	0,163	1
	Sangueiro	57	0,039	0,004	17	0,019	11	0,034	7	0,034	2	0,023	6	0,072	3	0,093	7	0,077	1	0,180	3	-	-	-	-
1032	Capixingui	313	0,033	0,010	90	0,030	136	0,054	62	0,090	18	0,069	5	0,077	2	-	-	-	-	-	-	-	-	-	-
1059	Jaracatiá	41	0,033	0,007	4	0,019	8	0,040	15	0,030	6	0,054	7	-	-	0,005	1	-	-	-	-	-	-	-	-
1061	Jequetibá branco	54	0,030	0,007	27	0,024	13	0,037	5	0,076	2	0,066	3	0,158	2	-	-	-	-	0,159	1	0,133	1	-	-
1089	Peroba rosa	9	0,030	0,006	2	0,021	4	0,066	1	0,032	1	-	-	-	-	0,079	1	-	-	-	-	-	-	-	-
1046	Figueira	5	0,029	0,002	3	-	-	-	-	-	-	0,016	1	-	-	-	-	-	-	0,125	1	-	-	-	-
1042	Embaúba	39	0,028	0,006	10	0,035	26	0,040	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1074	Paineira	73	0,027	0,005	38	0,016	21	0,041	4	0,061	1	-	-	0,085	2	0,081	3	-	-	0,088	2	0,315	2	-	-
1069	Monjoleiro	167	0,025	0,011	45	0,027	81	0,037	38	0,062	3	-	-	-	-	-	-	-	-	-	-	_	-	-	•
1051	Gameleiro	27	0,025	0,002	8	0,019	7	0,021	4	0,017	3	0,009	1	0,096	2	0,093	1	-	-	0,095	1	-	-	_	-
1016	Bico de pato	15	0,022	0,005	1	0,004	3	0,021	1	0,012	3	0,020	3	0,024	2	0,073	2	-	-	-	-	-	-	-	-
1052	Guaritá	234	0,019	0,013	163	0,029	52	0,041	12	0,049	4	0,038	2	0,010	1	-	-	_	-	-	-	-	-	-	-
1054	Imbira sapo	22	0,018	0,007	3	0,007	8	0,018	3	0,025	3	0,038	3	0,035	2	_	-	-	-	-	-	-	-	-	-
1053	Guatambú café	30	0,017	0,010	13	0,016	7	0,023	7	0,030	3	-	-	·-	-	-	-	-	-	-	-	-	-	-	-
1022	Canela	63	0,016	0,008	33	0,022	23	0,035	7	-	_	-	_	-	_	-	-	-	_	-	-	-	-	-	-
1010	Ariticum cagão	25	0,016	0,009	15	0,015	5	0,031	3	0,029	1	0,073	1	-	-	-	-	-	-	-	-	-	-	-	-
	Batalha	18	0,016	0,007	8	0,015	3	0,025	6	0,042	1	' -	-	-	-	-	-	-	-	- 1	-	-	-	-	-
1083	Pau viola	59	0.015	0.005	19		16	0,024	6	0,024	12	0,020	4	0,041	2	-	-	-	-	-	-	-	-	-	_
1115	Sobraji	22	0,015	0,008	9	0,011	7	0,032	2	0,029	4	· -	_	_	-	-	_	_	-	_	_	-		-	-
1034	Carne de vaca	6	0,014	0.005	5	0,056	1	l '-	-	· -	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1029	Canjica	44	0,013	0,006	16	0,011	17	0,022	7	0,028	3	0,044	1	-	_	-	-	-	-	-	-	-	-	-	-
1002	Alecrim	17	0,013	0,002	8	0,014	3	0,009	2	0,031	2	0,044	2	-	-	-	-	-	-	-	-	-	-	-	-
1091	Pessegueiro bravo	14	0,012	0,005	7	0,019	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1045	Farinha seca	78	0,011	0,009	69	0,027	7	0,026	2	_	-	-	_	_	-	-	_	-	-	-	-	-	-	-	-
1085	Peroba	12	0,011	0,003	8	0,008	3	-	•	-	-	-	-	-	-	۱ -	-	-	-	0,080	1	-	_	-	-
1005	Amoreira	65	0,010	0,003	11	0,010	25	0,011	20	0,016	6	0,024	1	_	-	0,025	2	-	_	-	_	_	-	-	-
1037	Cedro	30	0,010	0,003	13	0,007	6	0,015	6	0,011	3	0.016	1	-	-	-	_	-	-	0,082	1	-	-	-	-
1084	Pereira	97	0,009.	0,003	45	0,007	20	0,011	14	0,012	11	0,016	3	0,061	4	-	-	l -	-	_	-	- 1	-	-	-
1023	Canela amarela	59	0,009	0,003	30		21	0,026	7	0,018	1	· -	-	['] -	_	-	-	-	-	-	-	-	-	-	-
1043	Erva de lagarto	10	0,009	0,005	8	0,024	2	_	-	-	-	-	-	-	-	-	-	-	_	-	_	-	_	-	-
	Camboatá	7	0,009	0,004	3	0,000	1	0,018	3	-	-	_	_	_	-	-	-	_	_	_	_	-	-	-	-
	Marinheiro	226	0,008	0,003	134	0,008	51	0,016	27	0,021	3	0,030	8	0,034	2	0,033	1	-	-	-	-	-	-	-	-
1028	Canjerana	83	0,008	0,003	42	0,011	29	0,013	8	0,036	3	' -	-	-	_	-	-	0,025	1	_	-] _	_	-	-
	Marinheirinho	50	0,008	0,005	29		15	0.019	5	·	_	0,021	1	-	-	-	-	-	-	-	-	-	_	_	-

TABELA 13 - CONTINUAÇÃO

		N°	IPA MÉDIO							IP/	MÉ	DIO (m	/anc) POR	CLA	SSE DE	DA	P (cm))						
CÓDIGO	ESPÉCIE	ÁRV.	(m³/ano)	10-	20	20-3	30	30-4	0	40-8	50	50-6	0	60-7	70	70-8	0	80-	90	90-1	00	100-	110	≥1′	10
			(Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N
1055	lpê amarelo	18	0,007	0,006	15	0,013	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1101	Sete casaco	13	0,007	0,003	6	0,006	6	0,038	1	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
1033	Capororocão	7	0,007	0,005	6	-	-	0,020	1	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-
1014	Bálsamo	5	0,007	0,003	4	0,026	1	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-
1006	Angá graúdo	44	0,006	0,003	34	0,010	8	0,031	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1110	Allophyllus	20	0,006	0,004	19	-	-	-	-	0,054	1	-	-	-	-	1 -	-	-	-	} -	-	-	-	-	-
1106	Urtigão	235	0,005	0,004	175	0,010	57	0,008	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1039	D ~	196	0,004	0,002	154	0,008	32	0,032	5	0,018	3	0,043	1	-	•	0,009	1	~	-	-	-	-	-	•	-
1073	Orvalho	101	0,004	0,002	84	0,008	9	0,010	6	-	-	0,019	2	-	-	-	-	-	-	-	-	-	-	-	-
1099	Sassafrás	41	0,004	0,002	23	0,006	14	0,011	3	0,006	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1011	Ariticunzinho	18	0,004	0,004	18	-	-	-	-	ł -	-	- }	-	-	-	-	-	-	-	-	-	-	-	-	-
1072	Orelha de mateiro	160	0,003	0,002	110	0,005	44	0,007	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1041	D4	66	0,003	0,014	50	0,007	13	0,008	3	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
1105	Unha de boi	57	0,003	0,002	47	0,010	9	0,010	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1040	D1	289	0,002	0,002	225	0.004	59	0,006	4	0,010	1	-	-	-	-	-	-	-	-	-	-	-	-	-	_
1096	Quatiguá	99	0,002	0,002	93	0,004	6	-	_	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	_
1004	Amesca	69	0,002	0,002	67	0,012	2	l <u>-</u>	_	_	_	-	_	-	-	-	-	-	-	-	-	-	-		-
1058	Jambreiro	23	0,002	0,002	21	0,007	2	_	_	-	-	_	_	_	-	_	_	-	-	-	-	-	-	-	-
	Serralha	7	0,002	0,002	7	-	_		_	_	_	_	-	_	-	-	-	_	_	-	_	-		_	_
1008	Angá miúdo	6	0,002	0,002	5	0,005	1	_	_	_	-	_	_	_	-	-	_	-	-	_	_	_	-	_	_
1050	Gairova	5	0,002	0,002	5	0,000	Ċ	1 _	_] _	_] <u> </u>	_	l <u>-</u>		.	-	l <u>-</u>	_	_	_	_	_	-	_
1104	Três folhas	59	0,002	0,001	57	0,005	2	_	_	_	_	_	_	[_	_	_	_		-	1 -	_	_	- 1	-	
1076	Palmito	15	0,001	0,001	15	0,000	-	_	_	١ _	_	i _	_	_		l _	_	_	-	١.	_	_	_	-	-
1018	Cambará lixa	4	0,001	0,002	4	-	_	1 _	_	_	_	_	_	_	_	l _	_	_	_	_	_	_		_	_
		4	0,002	0,002	-	0,024	2	_	-	0,073	4		-	[_	0.037	1		_	_	_	_	_	_	_
1021	Canafístula	4	0,039	0,009	4	0,024	-	0,025	2	0,075	•	0,053	4]	- [0,00,			_	_	_	_	_	_	_
1031	Capitão	4	0,028	0,003	4	1 -	-	0,020	-		-	0,000	•	{	_		_		_	1	_	_		_	_
1060	Jatobá	4		l '	4	0.005	1	-	-	0,006	2	-	-	-	•	1 -	_		_	0,027	4	_	_	_	_
1075	Paineira branca		0,011	- 0.40	-	0,005	4	_	-	0,000	-	-	-	_	-	-	-		_	0,027				_	_
1086	Peroba branca	4	0,014	0,018	3	0,001	1	-	-	-	-	-	-	_	-	-	•	-	-	-	-	_	•	-	_
1118	Maria-mole	4	0,003	0,003	4	-	-	-	-	0.040	_	0.046	_	-	-	-	-	-	-	1 -	•	-	-	-	-
1001	Açoita cavalo	3	0,025	0,017	1	0.004	-	0.040	-	0,012	1	0,040	1	} <u>-</u>	-	-	-	_	•	-	-	-	-	_	•
1013	Arruda	3	0,017	-	-	0,004	2	0,043	1	-	-	_	-	-	-	-	-	-	-	"	•	-	-	•	-
1027	Canela sebo	3	0,013	-	-	0,014	2	0,009	1	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
1065	Mamica de porca	3	0,006	0,006	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•
1087	Peroba canela de velha	3	0,004	0,003	2	0,007	7	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-
1119	Hesteria	3	0,004	0,004	3	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1139	Styrax 2	3	0,007	0,003	1	-	-	0,009	2	-	-	-	-	-	-	1 -	-	-	-	-	-	-	-	-	-

TABELA 13 - CONCLUSÃO

		N°								IP/	A MÉ	DIO (m	³/and) POR	CLA	SSE DI	E DA	P (cm)							
CÓDIGO	ESPÉCIE	ÁRV.	IPA MÉDIO (m³/ano)	10-	20	20-3	30	30-	40	40-	50	50-4	30	60-7	70	70-8	30	80-9	90	90-1	00	100-1	10	≥11	0
			(iii iaiio)	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N	Vc	N
1003	Amenduim	2	0,004	0,004	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1025	Canela branca	2	0,014	0,009	1	-	_	0,020	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1048	Fruteira	2	0,007	0,004	1	0,010	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1057	Jacarandá roxo	2	0,023	0,005	1	0,040	1	-	-	-	-	_	-	-	-	-	-	l -	-	-	-	-	-	-	-
1077	Panacéia	2	0,002	0,002	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1092	Pindaíba	2	0,012	0,012	2	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
1102	Tamburilo	2	0,186	-	_	-	-	-	-	-	-	-	_	0,191	1	-	_	-	_	-	-	0,182	1	-	-
1103	Tento	2	0,006	0,003	1	-	-	0,009	1	-	-	-	-	-	-	-	-	-	_	-	_		-	-	-
1116	Cordia 1	2	0,007	0,007	2	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-
1145	Terminalia 1	2	0,006	0 002	1	0,010	1	-	-	-	_	۱ -	-	-	-	- 1	-	-	-	-	-	-	-	-	-
1017	Braúna	1	0,014	0,014	1	-	-	-	-	-	-		-	_	-	-	-	-	-		-	-	-	_	-
1024	Canela bosta	1	0,014	-	-	0,014	1	i -	-	-	-] -	-	-	-	-	-	-	-	-	-	-	-	_	-
1026	Canela preta	1	0,014	-	-	0,014	1	-	-	- 1	_	-	-	-	-	-	-	۱ -	-	-	-	l -	-	_	-
1035	Caroba	1	0,025	-	-	0,025	1	۱ -	-	-	-	-	-	-	_	_	-	-	-	_	-	-	-	_	-
1064	Limeira	1	0,000	0,000	1		_	-	-	-	_	-	_	_	-	-	_	-	-	-	-	-	-	-	-
1066	Mandiocão	1 1	0,003	·_	-	-	-	_	-	_	_	0,003	1	-	-	-	-	-	-	-	-	-	٠.	_	-
1081	Pau pólvora	1	0,005	0,005	1	_	-	-	-	-	_	_	-	۱ -		_	_	-	_	_	-	-	-	-	-
	Vinhático	1 1	0,093	´-	-		-	_	-	-	_	۱ -	-	-	-	0,093	1	-	_	-	_	_	-	-	-
	Cordia 2	1	0,005	_	-	- 1	-	-	-	0,005	1	l -	-	-	-	_	-	-	_	_	_	_	-	-	-
	Myroloxum	1	0,001	0,001	1	-	_	_	-	_	_	-	-	-	-	l -	_	-	_	_	_	_		_	-
	Rollinia	1	0,000	0,000	1	_	-		_	١.	-	۱.	_	۱ -	_	ا -	_	۱ -	-	l <u>-</u>	-	١.	-	-	-
	Sloaneae	1	0,003	0,003	1	_	_	_	-	_	_	_	_		_	_	_	۱ ـ	_	l <u>-</u>	_	_		-	_
	Lauraceae 3	1 1	0,010	0,010	1	۱.		_	_	١.	_	_	_	_	_	_	_	_	_	<u>-</u>	_	l <u>-</u>	-	_	-
	lpê felpudo		0,006	0,006	1	_	_	_	_	١.	-		_	-	_	_	_	_	-	_	-	_	.	_	-
	Tocayena	1	0,000	0,000	1	۱.	_	_	-	_	_	_	-	_	_		_	_	_	_	_	_		_	_
	FLORESTA	3805	0.014	4	2266	0.015	038	0.010	337	0.004	118	0.007	66	0.015	31	0.009	25	0.028	4	0.011	13	0.005	8	0.004	3

TABELA 14 - ESTATÍSTICA DESCRITIVA DO IPA EM DAP (cm/ano) E DO IPA EM VOLUME (m³/ano) POR ESPÉCIE E PARA O TOTAL DA FLORESTA

CÓDIGO	ESPÉCIE	Nº	Me	édia	Med	iana	Mír	imo	Má	kimo	Desvio	padrão	C	:V%	Ass	imetria	Cı	ırtose
	ESPECIE	ÁRV.	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc
1001	Acoita cavalo	3	0.56	0.025	0.57	0.017	0.19	0.012	0.92	0.046	0.37	0.019	65.11	74.460	-0.13	1.613	-	-
1002	Alecrim	17	0,48	0,013	0,41	0,008	0,10	0,000	1,72	0,065	0,46	0,017	96,16	130,443	1,60	2,044	2,18	4,505
1003	Amenduim	2	0,32	0,004	0,32	0,004	0,06	0,001	0,57	0,006	0,36	0,004	113,14	111,485	-	-	-	-
1004	Amesca	69	0,20	0,002	0,16	0,002	0,03	0,000	1,15	0,022	0,21	0,004	104,67	142,721	2,66	3,671	8,55	16,437
1005	Amoreira	65	0,48	0,010	0,41	0,009	0,00	0,000	1,50	0,038	0,34	0,008	69,75	76,942	0,93	1,177	0,29	1,401
1006	Angá graúdo	44	0,48	0,006	0,32	0,002	0,03	0,000	1,69	0,039	0,43	0,008	88,87	134,144	1,20	2,573	0,84	7,927
1008	Angá miúdo	6	0,25	0,002	0,32	0,002	0,06	0,000	0,38	0,005	0,15	0,002	59,01	88,210	-0,79	0,609	-1,93	-1,448
1010	Ariticum cagão	25	0,64	0,016	0,45	0,010	0,03	0,000	1,85	0,073	0,51	0,017	79,20	109,267	0,93	1,895	0,19	4,126
1011	Ariticunzinho	18	0,37	0,004	0,32	0,003	0,06	0,001	0,76	0,010	0,18	0,003	48,63	62,280	0,98	1,308	1,03	1,099
1013	Arruda	3	0,54	0,017	0,22	0,005	0,13	0,004	1,27	0,043	0,64	0,023	117,50	130,586	1,69	1,726	-	-
1014	Bálsamo	5	0,32	0,007	0,32	0,005	0,03	0,000	0,76	0,026	0,31	0,011	96,70	146,889	0,62	1,969	-0,59	4,055
1015	Batalha	18	0,56	0,016	0,53	0,011	0,16	0,002	1,15	0,042	0,31	0,013	55,73	82,441	0,55	0,898	-0,73	-0,693
1016	Bico de pato	15	0,47	0,022	0,48	0,016	0,06	0,001	0,92	0,086	0,33	0,024	69,67	108,807	-0,05	1,709	-1,73	2,879
1017	Braúna	1	0,73	0,014	-	-	0,73	0,014	0,73	0,014	-	-	-	-	-	-	-	-
1018	Cambará lixa	4	0,15	0,002	0,14	0,002	0,06	0,001	0,25	0,004	0,08	0,001	52,63	76,688	0,56	1,475	0,93	2,538
1019	Camboatá	7	0,30	0,009	0,19	0,004	0,00	0,000	0,86	0,040	0,35	0,014	113,63	149,644	1,07	2,203	-0,73	5,148
1021	Canafístula	4	0,92	0,039	1,07	0,033	0,25	0,019	1,31	0,073	0,48	0,024	52,14	60,747	-1,26	1,443	0,86	2,272
1022	Canela	63	0,72	0,016	0,67	0,011	0,06	0,001	2,48	0,095	0,48	0,015	67,40	97,252	1,46	2,649	3,28	10,320
1023	Canela amarela	59	0,59	0,009	0,45	0,005	0,00	0,000	2,51	0,072	0,56	0,012	93,47	128,230	1,33	3,011	1,57	12,494
1024	Canela bosta	1	0,95	0,014	-	-	0,95	0,014	0,95	0,014	-	-	-	-	-	-	-	-
1025	Canela branca	2	0,54	0,014	0,54	0,014	0,38	0,009	0,70	0,020	0,23	0,008	-	-	-	-	-	~
1026	Canela preta	1	0,64	0,014	-	-	0,64	0,014	0,64	0,014] -	-	-	-	-	-	-	-
1027	Canela sebo	3	0,74	0,013	0,83	0,010	0,35	0,009	1,05	0,018	0,36	0,005	48,17	41,582	-1,01	1,625	-	-
1028	Canjerana	83	0,49	0,008	0,41	0,006	0,00	0,000	1,43	0,055	0,35	0,009	70,15	108,481	0,64	2,367	-0,40	8,114
1029	Canjica	44	0,71	0,013	0,65	0,010	0,13	0,001	1,56	0,045	0,36	0,011	50,82	83,463	0,64	1,709	-0,12	2,674
1031	Capitão	4	0,58	0,028	0,64	0,025	0,35	0,009	0,70	0,053	0,16	0,019	27,35	67,102	-1,65	0,716	2,70	-0,571
1032	Capixingui	313	1,16	0,033	1,02	0,025	0,03	0,000	3,76	0,149	0,73	0,029	63,04	85,943	0,89	1,471	0,59	2,197
1033	Capororocão	7	0,30	0,007	0,22	0,002	0,06	0,001	0,89	0,020	0,29	0,008	98,06	117,977	1,74	1,094	3,37	-0,916
1034	Carne de vaca	6	0,60	0,014	0,41	0,006	0,16	0,002	1,81	0,056	0,61	0,021	100,99	152,729	2,26	2,397	5,34	5,806
1035	Caroba	1	0,70	0,025	-	-	0,70	0,025	0,70	0,025	-	-	-	-	-	-	-	-
1037	Cedro	30	0,41	0,010	0,45	0,006	0,06	0,000	0,89	0,082	0,23	0,015	55,41	149,968	0,00	4,015	-0,72	18,894
1039	þ	196	0,34	0,004	0,25	0,002	0,00	0,000	1,43	0,043	0,30	0,007	89,63	155,175	1,55	3,420	2,449	13,186
1040	D1	289	0,24	0,002	0,22	0,002	0,00	0,000	0,76	0,010	0,15	0,002	62,42	84,770	0,72	1,488	0,26	2,198
1041	D4	66	0,30	0,003	0,22	0,002	0,03	0,000	1,56	0,020	0,29	0,004	94,94	118,640	2,10	2,413	5,69	6,545
1042	Embaúba	39	1,20	0,028	1,18	0,029	0,10	0,002	2,80	0,056	0,79	0,018	65,77	66,534	0,27	0,089	-1,01	-1,329
1043	Erva de lagarto	10	0,30	0,009	0,29	0,006	0,10	0,002	0,54	0,026	0,14	0,008	47,36	93,398	0,37	1,554	-0,68	1,193
1045	Farinha seca	78	0,40	0,011	0,33	0,007	0,00	0,000	1,27	0,057	0,29	0,011	72,66	98,418	0,94	1,969	0,13	4,515

TABELA 14 - CONTINUAÇÃO

ÓDIGO	ESPÉCIE	,N°	Me	édia	Med	liana	Mír	imo	Má	kimo	Desvic	padrão	C	V%	Assi	metria	Cu	rtose
	20, 20, 2	ÁRV.	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc
1046	Figueira	5	0.38	0.029	0.32	0.005	0.03	0.000	0.95	0.125	0.38	0.054	100.70	182.836	0.97	2.162	0.33	4.71
1048	Fruteira	2	0,18	0,007	0,18	0,007	0,13	0,004	0,22	0,010	0,07	0,005	38,57	66,830	-	-	-	-
1050	Gairova	5	0,10	0,002	0,06	0,001	0,03	0,000	0,25	0,005	0,09	0,002	97,18	129,322	1,82	2,198	3,38	4,86
1051	Gameleiro	27	0,73	0,025	0,60	0,015	0,03	0,000	2,39	0,104	0,59	0,032	81,03	127,698	0,83	1,654	0,44	1,48
1052	Guaritá	234	0,56	0,019	0,54	0,016	0,00	0,000	2,13	0,085	0,33	0,015	58,52	77,697	0,85	1,395	1,80	2,77
1053	Guatambú café	30	0,45	0,017	0,40	0,016	0,06	0,001	1,05	0,047	0,27	0,011	60,04	69,121	0,63	0,841	0,09	0,61
1054	Imbira sapo	22	0,27	0,018	0,21	0,012	0,00	0,000	0,99	0,072	0,25	0,018	91,49	103,111	1,46	1,680	1,99	2,8
1055	lpê amarelo	18	0,24	0,007	0,21	0,005	0,03	0,001	0,54	0,020	0,18	0,007	73,66	92,834	0,48	0,909	-1,19	-0,6
1057	Jacarandá roxo	2	0,53	0,023	0,53	0,023	0,22	0,005	0,83	0,040	0,43	0,024	81,42	107,516	-	-	-	-
1058	Jambreiro	23	0,17	0,002	0,16	0,002	0,06	0,000	0,41	0,008	0,11	0,002	63,21	85,042	0,73	1,373	-0,33	1,31
1059	Jaracatiá	41	1,27	0,033	0,95	0,028	0,06	0,002	4,14	0,108	0,94	0,025	74,21	77,364	0,91	1,019	0,60	0,80
1060	Jatobá	4	0,28	0,003	0,13	0,001	0,03	0,001	0,83	0,009	0,37	0,004	133,73	126,153	1,81	1,929	3,27	3,78
1061	Jequetibá branco	54	0,54	0,030	0,46	0,011	0,03	0,000	1,34	0,164	0,39	0,041	72,12	137,286	0,45	2,066	-0,98	3,76
1062	Jequetibá rosa	90	0,64	0,055	0,57	0,020	0,00	0,000	2,51	0,469	0,52	0,081	81,24	148,342	1,37	2,568	1,98	8,3
1064	Limeira	1	0,00	0,000	-	-	0,00	0,000	0,00	0,000	-	-	-	-	-	-	-	_
1065	Mamica de porca	3	0,27	0,006	0,29	0,007	0,13	0,003	0,38	0,007	0,13	0,002	48,50	35,563	-0,72	-1,659	-	-
1066	Mandiocão	1	0,06	0,003	-	-	0,06	0,003	0,06	0,003	-	-	-	-	-	-	-	-
1067	Marinheirinho	50	0,34	0,008	0,35	0,006	0,03	0,000	1,02	0,031	0,22	0,007	63,12	81,837	0,98	1,576	1,22	2,6
1068	Marinheiro	226	0,44	0,008	0,38	0,004	0,00	0,000	1,78	0,066	0,34	0,010	77,02	129,941	1,29	2,898	1,77	10,6
1069	Monjoleiro	167	0,96	0,025	0,99	0,022	0,00	0,000	2,55	0,075	0,52	0,017	54,34	66,345	0,28	0,751	-0,27	0,0
1072	Orelha de mateiro	160	0,26	0,003	0,21	0,002	0,00	0,000	1,46	0,028	0,21	0,003	81,92	112,604	1,97	3,536	6,79	20,1
1073	Orvalho	101	0,36	0,004	0,35	0,003	0,00	0,000	0,92	0,024	0,23	0,004	64,10	110,038	0,31	2,545	-0,77	8,4
1074	Paineira	73	0,52	0,027	0,41	0,008	0,00	0,000	1,59	0,442	0,39	0,060	76,00	221,630	0,94	5,183	0,26	32,5
1075	Paineira branca	4	0,20	0,011	0,19	0,006	0,13	0,005	0,29	0,027	0,07	0,011	32,98	95,022	0,71	1,972	1,79	3,9
1076	Palmito	15	0,05	0,001	0,06	0,001	0,00	0,000	0,16	0,002	0,04	0,001	87,75	83,725	0,84	0,497	0,98	-0,1
1077	Panacéia	2	0,19	0,002	0,19	0,002	0,10	0,001	0,29	0,003	0,14	0,002	70,71	89,461	-	-	-	-
1079	Pau alho	7	1,84	0,349	1,46	0,082	0,60	0,021	3,31	1,072	1,02	0,410	55,29	117,434	2,71	1,051	0,73	1,00
1081	Pau pólvora	1 1	0,54	0,005	-	-	0,54	0,005	0,54	0,005	-	-	-	-	-	-	-	-
1083	Pau viola	59	0,67	0,015	0,57	0,012	0,06	0,000	2,86	0,049	0,51	0,012	75,58	83,564	1,69	0,932	4,78	0,0
1084	Pereira	97	0,17	0,009	0,13	0,005	0,00	0,000	0,83	0,107	0,16	0,015	88,66	166,258	1,62	4,778	3,29	27,6
1085	Peroba	12	0,41	0,011	0,40	0,004	0,03	0,000	0,92	0,080	0,26	0,022	63,03	203,948	0,28	3,307	0,14	11,2
1086	Peroba branca	4	0,56	0,014	0,37	0,007	0,03	0,001	1,46	0,040	0,63	0,018	112,80	127,738	1,56	1,763	2,73	3,14
1087	Peroba canela de velha	3	0,28	0,004	0,29	0,004	0,19	0,002	0,35	0,007	0,08	0,003	29,04	57,841	-0,59	0,612	-	-
1089	Peroba rosa	9	0,53	0,030	0,48	0,028	0,22	0,005	1,15	0,079	0,31	0,026	58,25	87,074	1,00	0,983	0,48	-0,1
1091	Pessegueiro bravo	14	0,63	0,012	0,48	0,007	0,03	0,001	1,56	0,043	0,52	0,013	82,79	104,492	0,71	1,340	-1,04	1,0
1092	Pindaíba	2	0,61	0,012	0,61	0,012	0,46	0,007	0,76	0,016	0,21	0,006	34,44	54,221	-	-	-	-
1096	Quatiguá	99	0,14	0,002	0,10	0,001	0,00	0,000	0,76	0,014	0,12	0,002	87,09	111,068	2,01	3,429	6,67	16,4
	Sangueiro	57	0,58	0,039	0,48	0,021	0,03	0,000	2,23	0,340	0,44	0,054	76,41	139,852	1,57	3,465	3,20	16,6

TABELA 14 - CONCLUSÃO

CÓDIGO	ESPÉCIE	Nº	Me	édia	Med	liana	Mi	nimo	Má	ximo	Desvic	padrão	С	V%	Assi	metria	Ct	ırtose
	LOPLOIL	ÁRV.	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc	DAP	Vc
1099	Sassafrás	41	0.32	0.004	0.22	0.003	0.03	0.000	1.21	0.021	0.26	0.005	80.93	104.962	1.76	2.394	3.23	6.446
1100	Serralha	7	0,11	0,002	0,13	0,002	0,06	0,001	0,19	0,003	0,05	0,001	45,31	53,881	0,32	0,367	-1,50	-1,333
1101	Sete casaco	13	0,23	0,007	0,16	0,004	0,06	0,001	0,76	0,038	0,19	0,010	83,58	143,767	1,96	3,044	4,55	9,991
1102	Tamburilo	2	2,16	0,186	2,16	0,186	0,76	0,182	3,57	0,191	1,98	0,006	91,51	3,193	-	-	-	-
1103	Tento	2	0,24	0,006	0,24	0,006	0,22	0,003	0,25	0,009	0,02	0,004	9,43	64,360	-	-	-	-
1104	Três folhas	59	0,14	0,001	0,13	0,001	0,00	0,000	0,38	0,007	0,10	0,001	73,08	110,003	0,90	3,598	0,20	18,618
1105	Unha de boi	57	0,30	0,003	0,22	0,002	0,00	0,000	1,81	0,025	0,29	0,004	98,32	145,298	2,84	3,199	12,53	11,665
1106	Urtigão	235	0,50	0,005	0,41	0,004	0,03	0,000	2,58	0,044	0,36	0,005	72,45	97,440	2,04	3,125	6,43	15,279
1109	Vinhático	1	0,67	0,093	-	-	0,67	0,093	0,67	0,093	-	-	-	-	-	-	-	-
1110	Allophyllus	20	0,32	0,006	0,21	0,003	0,03	0,000	1,08	0,054	0,31	0,012	94,62	189,167	1,23	3,825	0,75	15,73
1115	Sobraji	22	0,51	0,015	0,37	0,011	0,03	0,001	1,21	0,049	0,34	0,013	67,70	87,828	0,45	1,081	-1,00	0,564
1116	Cordia 1	2	0,56	0,007	0,56	0,007	0,10	0,001	1,02	0,013	0,65	0,009	117,18	125,617	-	-	-	-
1117	Cordia 2	1 1	0,10	0,005	-	-	0,10	0,005	0,10	0,005	-	- 1	-	-	-	-		-
1118	Maria-mole	4	0,19	0,003	0,21	0,004	0,00	0,000	0,35	0,006	0,17	0,003	89,24	84,502	-0,23	-0,407	-4,34	-3,570
1119	Hesteria	3	0,20	0,004	0,13	0,002	0,03	0,000	0,45	0,009	0,22	0,005	-	-	1,36	1,589	-	_
1121	Myroloxum	1	0,10	0,001	_	-	0,10	0,001	0,10	0,001	-	-	•	-	_	-	-	-
1125	Rollinia	1	0,03	0,000	-	-	0,03	0,000	0,03	0,000	-	- 1	-	-	-	_	-	-
1126	Sloaneae	1	0,19	0,003	-	-	0,19	0,003	0,19	0,003	_	-	-	-	-	-	-	-
1132	Lauraceae 3	1	0,64	0,010	-	-	0,64	0,010	0,64	0,010	-	- 1	-	-	-	_	-	-
1139	Styrax 2	3	0,34	0,007	0,38	0,004	0,13	0,003	0,51	0,014	0,19	0,006	57,28	89,236	-0,94	1,651	-	-
1140	lpê felpudo	1	0,48	0,006	-	-	0,48	0,006	0,48	0,006	-	- [-	-	-	-	-	-
1141	Tocayena	1	0,03	0,000	-	-	0,03	0,000	0,03	0,000	-	-	-	-	-	-	-	-
1145	Terminalia 1	2	0,54	0,006	0,54	0,006	0,45	0,002	0,64	0,010	0,14	0,006	24,96	87,846	-	-	-	_
	FLORESTA	3805	0,51	0,014	0,35	0,005	0,00	0,000	4,14	1,072	0,50	0,033	97,57	232,687	2,05	14,142	5,88	344,09

Conforme se pode observar nas tabelas 12 e 14, apenas 17 espécies apresentaram incrementos em DAP superiores a média da floresta (IPA = 0,51 cm/ha/ano), representando cerca de 33% do total de árvores da floresta (3805 árvores em 9,0 hectares). Dentre as espécies com maior IPA em DAP destacam-se:

- Pau alho, que apresentou o maior crescimento da floresta, com IPA médio de 1,84 cm/ano (mediana = 1,46 cm/ano) e 7 indivíduos (9,0ha), distribuídos uniformemente nas classes de DAP (amplitude de variação entre 0,60 e 3,31 cm/ano). Apresentou um coeficiente de variação (CV%=55,29), bem abaixo da média da floresta, e coeficientes de assimetria e curtose positivos. O pau alho é uma espécie de crescimento rápido e com indivíduos que ocupam, desde o estrato inferior até o superior da floresta (grandes dimensões: maior DAP encontrado na floresta – 203 cm);
- Jaracatiá e embaúba, que apresentaram respectivamente incrementos médios em DAP de 1,27 e 1,20 cm/ano. O jaracatiá apresentou um coeficiente de variação de 74,21% (amplitude de variação entre 0,06 e 4,14 cm/ano) e indivíduos distribuídos nas cinco primeiras classes de DAP (10 ≤ DAP < 80 cm). Com relação a embaúba, observou-se que a espécie apresentou incrementos em DAP (IPA) variando entre 0,10 e 2,80 cm/ano (CV% = 65,77%), com indivíduos distribuídos nas classe inferiores de DAP (10 ≤ DAP < 40 cm) e valores de assimetria e curtose negativos (assimetria negativa e platicúrtica), apresentando uma curva com achatamento e deslocada para direita). Ambas as espécies são classificadas como pioneiras e de rápido crescimento, ocupando rapidamente os espaços abertos na floresta.</p>
- Capixingui, com 313 indivíduos na floresta (9,0 ha), apresentou o quarto maior IPA médio em DAP (1,16 cm /ano), distribuídos principalmente nas classes inferiores de DAP (10 ≤ DAP < 50 cm), mas podendo alcançar dimensões superiores (até 70 cm de DAP). A espécie, que figura entre as mais abundantes da floresta, apresenta uma amplitude de variação em IPA, entre 0,03 e 3,76 cm/ano, com variabilidade bem abaixo da média da floresta (CV% = 63,04) e coeficientes de assimetria e curtose positivos. O capixingui é

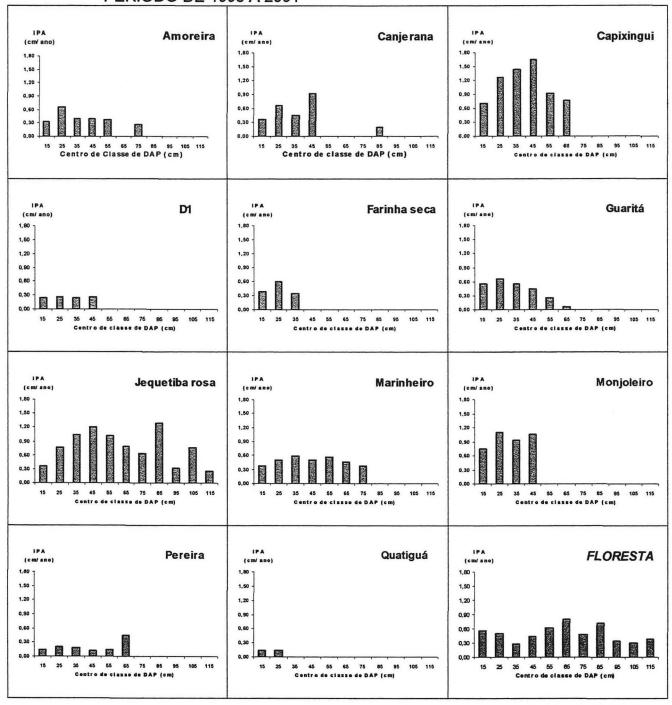
- uma espécie de rápido crescimento (pioneira), que apresenta um excelente desenvolvimento em e espaços vazios da floresta (clareiras);
- Monjoleiro (IPA médio = 0,96 cm/ano e mediana = 0,99 cm/ano), espécie muito abundante na floresta (167 ind./9,0ha); o jequetibá rosa (IPA = 0,64 cm/ano), espécie clímax da floresta, com ampla distribuição em todas as classes de DAP (10 ≤ DAP < 120 cm) e representante principal do dossel superior da floresta; o sangueiro (IPA = 0,58 cm/ano), espécie clímax e amplamente distribuída nas diversas classes de DAP; e o guaritá (IPA = 0,56 cm/ano), espécie clímax extremamente abundante na floresta (234 ind./9,0 ha) e com distribuição entre as classes inferiores e intermediárias (10 ≤ DAP < 70 cm);</p>
- Palmito, gairova, serralha, três folhas e quatiguá, são as espécies com os menores incrementos médios em DAP (0,05 / 0,10 / 0,11/ 0,14 e 0,14 cm/ano, respectivamente). As espécies três folhas e quatiguá, são espécies abundantes e que ocupam o estrato inferior da floresta e figuram entre as classes inferiores de DAP (10 ≤ DAP < 30 cm).

No geral, a floresta em questão apresentou, incrementos médios em DAP variando de 0,04 a 1,84 cm /ano, com algumas espécies revelando valores máximos de 4,14 cm/ano (jaracatiá) e outras, incrementos nulos (maria-mole, três folhas, unha de boi, quatiguá, pereira, entre outras). Com relação à variabilidade, observou-se que a floresta apresentou um coeficiente de variação de 97,57%, com algumas espécies revelando valores médios superiores (jatobá – CV%=133,73) e inferiores (tento – CV%=9,43). Com relação aos valores de assimetria e curtose, respectivamente, o deslocamento (esquerda ou direita) e o grau de achatamento (afilado ou achatado) em relação a curva normal, observou-se que a grande maioria das espécies apresentou valores positivos para assimetria (88 espécies) e curtose (80 espécies). Dentre as espécies que apresentaram valores de assimetria negativos (deslocamento para a direita), destacam-se: bico de pato, ingá miúdo, canafístula, canela sebo, capitão, entre outras. As espécies que apresentaram valores de curtose negativos (platicúrtica) foram: canjica, canjerana, cedro, embaúba, bálsamo, ingá miúdo, jambreiro, monjoleiro, jequetibá branco, entre outras.

Com relação ao incremento periódico anual em volume comercial (tabs. 13 e 14), pode-se observar que das espécies estudadas (com mais de 4 indivíduos), 20 apresentaram IPA médio igual ou maior que a média da floresta (0,014 m³/ha/ano), representando cerca de 36,16% do total de indivíduos da floresta (1376 ind./9,0ha). Dentre as espécies estudadas, destacam-se:

- Pau alho, representada na floresta (9,0 hectares) por 7 indivíduos amplamente distribuídos nas classes de DAP, apresentando o maior IPA em volume, com uma média de 0,349 m³/ano, muito superior ao segundo maior IPA e também a média da floresta (0,014 m³/ano). Trata-se de uma espécie de rápido crescimento, que atinge grandes dimensões (altura e DAP) e representantes que ocupam o estrato superior da floresta. Conforme citado anteriormente, a espécie apresentou o indivíduo com o maior DAP (203 cm) e também, o maior incremento em volume (1,072 m³/ano) da floresta. A espécie apresentou uma alta variabilidade na floresta (CV%=117 e desvio padrão igual a 0,410 m³/ano) e valores de assimetria e curtose positivos;
- Jequetibá rosa, com IPA médio em volume comercial igual a 0,055 m³/ano e 90 indivíduos distribuídos em todas as classes de DAP (única espécie com tal distribuição). Apresenta maior concentração de indivíduos nas classes inferiores (54 indivíduos com 10 ≤ DAP < 30 cm) e diminuição gradativa à medida em que aumentam os DAPs. A espécie possui ampla variabilidade de incrementos em volume (CV%=148 e desvio padrão igual a 0,081 m³/ano) e amplitude entre zero e 0,469 m³/ano. O jequetibá rosa é uma espécie clímax da floresta, que apresenta rápido crescimento e representantes em todos os estratos da floresta;</p>
- Sangueiro, apresentando o terceiro maior incremento médio em volume (0,039 m³/ano), e mediana igual a 0,021 m³/ano. Apresenta ampla variação de DAP, com um total de 57 indivíduos distribuídos em 10 classes diamétricas (10 ≤ DAP < 100 cm) e maior freqüência nas classes inferiores. A espécie possui uma variação de incrementos entre zero e 0,340m³/ano, e coeficiente de variação próximo a 140%, indicando grande dispersão de valores em relação à média. O sangueiro é uma espécie de rápido crescimento, apresentando indivíduos em todos os estratos da floresta

- (principalmente no estrato superior), sendo caracterizada pela presença de indivíduos com grandes dimensões (DAP, altura);
- Capixingui e jaracatiá, espécies pioneiras e de rápido crescimento, com incremento médio em volume comercial igual a 0,033 m³/ano. Ambas as espécies apresentam representantes nas várias classes diamétricas (10 ≤ DAP < 80 cm) e incrementos volumétricos (IPA) variando entre zero e 0,149 m³/ano (capixingui) e entre 0,002 e 0,108 m³/ano (jaracatiá). O capixingui, uma das espécies com maior abundância da floresta (313 ind./9,0ha), apresentou um desvio padrão de 0,029 m³/ano e um CV% = 85,94, indicando uma variação inferior ao das espécies acima citadas;</p>
- Monjoleiro е guaritá, espécies com alta abundância na floresta (167 e 234 ind./9,0ha, respectivamente), com incrementos médios em volume (IPA) acima da média da floresta (0,025 e 0,019 m³/ano, respectivamente). O monjoleiro trata-se de uma espécie pioneira de rápido crescimento, que ocupa os estratos inferior e intermediário da floresta (10 ≤ DAP < 50 cm). O guaritá, conforme citado na análise do incremento em diâmetro, é uma espécie clímax, que ocupa todos os estratos da floresta. As espécies apresentaram baixa variabilidade de incrementos (CV%, cerca de 70%), quando comparadas com a média da floresta (CV%=233%), e valores de assimetria e curtose positivos;
- Palmito e três folhas, com IPA igual a 0,001 m³/ano, e as espécies gairova, ingá muído, serralha, jambreiro, amesca, quatiguá e D1, com IPA igual a 0,002 m³/ano, que apresentaram os menores incrementos médios em volume comercial. Tais espécies apresentaram a grande maioria dos indivíduos concentrados nas primeiras classes (10 ≤ DAP < 30 cm). No geral as espécies anteriormente citadas, apresentam incrementos variando entre zero e 0,022 m³/ano, coeficientes de variação (CV%) variando entre 50 e 130%, e valores de assimetria e curtose positivos (com exceção das espécies ingá miúdo, serralha e palmito que apresentaram valores de curtose negativos).</p>


No geral a floresta apresentou incrementos médios em volume comercial (IPA) variando entre zero e 1,072 m³/ano. Com relação à variabilidade, o desvio padrão médio para o IPA em volume foi de 0,033 m³/ano, com espécies variando

entre 0,001 m³/ano (palmito, serralha, três folhas e panacéia) e 0,41 m³/ano (pau alho). O coeficiente de variação médio para a floresta foi de 232,68%, acima dos valores obtidos pelas espécies, devido a grande variação de valores existente na floresta como um todo. As espécies paineira, com 221%, e serralha, com 53%, apresentaram, respectivamente, o maior e o menor coeficiente de variação entre as espécies com 5 ou mais representantes na floresta. Na grande maioria, as espécies apresentaram valores de assimetria e curtose positivos, indicando um deslocamento da curva para a esquerda (assimetria positiva) e certo grau de afilamento (curtose positiva). As espécies, peroba rosa, palmito, ipê amarelo, batalha, capororocão, embaúba, serralha e ingá miúdo, apresentaram valores de curtose negativos (curva achatada – platicúrtica).

Conforme se pode observar na tabelas 12, para a floresta como um todo (9,0 hectares), a distribuição do número de árvores por classe diamétrica, segue a tendência normal das florestas naturais, com grande concentração de indivíduos nas classes inferiores e posterior decréscimo à medida que aumentam os diâmetros ("J" invertido). Com relação ao comportamento das principais espécies da floresta, podese observar a mesma tendência.

A figura 3 apresenta os incrementos periódicos anuais (IPA) médio em DAP no período de 1996 a 2001, por classe diamétrica para algumas espécies e para a floresta. Os gráficos relacionados na figura em questão, foram elaborados tomandose os centros de classe de DAP (cm) e os IPAs médios em DAP. Foram consideradas para tal, 11 classes de DAP com intervalos de 10 cm. As espécies escolhidas, em função da sua importância na estrutura da floresta como um todo, foram: amoreira, canjerana, capixingui, D1, farinha seca, guarita, jequetibá rosa, marinheiro, monjoleiro, pereira e quatiguá.

FIGURA 3 - VARIAÇÃO DO INCREMENTO PERIÓDICO ANUAL EM DAP POR CLASSE DIAMÉTRICA PARA AS PRINCIPAIS ESPÉCIES E PARA A FLORESTA NO PERÍODO DE 1996 A 2001

Analisando as taxas de incremento médio (IPA em DAP) por classe diamétrica no período de 1996 a 2001, observa-se que para a floresta como um todo (fig. 3), os incrementos apresentam um comportamento médio aproximado, destacando as

classes 5 (50 \leq DAP < 60 cm), 6 (60 \leq DAP < 70 cm) e 8 (70 \leq DAP < 80 cm) que apresentaram as maiores taxas de crescimento em DAP (0,61 cm/ano, 0,81 cm/ano e 0,72 cm/ano, respectivamente). Com relação as classes inferiores de DAP, destacam-se a primeira classe (10 \leq DAP < 20 cm) e a segunda classe (20 \leq DAP < 30 cm) que apresentaram taxas de incremento próximas da média da floresta (0,55 e 0,50 cm/ano respectivamente). As demais classes apresentaram taxas de crescimento inferior a média da floresta, destacando-se a terceira classe (30 \leq DAP < 40 cm) que apresentou a menor taxa de incremento da floresta (0,29 cm/ano).

Em relação ao comportamento das espécies da floresta (fig. 3 e tab. 12), observa-se que as taxas de incremento diamétrico (IPA) apresentam comportamentos bastante variados, dificultando a análise de uma tendência padrão para as espécies. As taxas de incremento dependem, principalmente, das características de cada espécie, da competição e de fatores genéticos e do meio, como luz, água, solo e nutrientes.

Como se pode observar na figura 3, o jequetibá rosa, uma das principais espécies da floresta, possui representantes em todas as classes de DAP. A espécie apresenta incrementos bastante variados, com taxas pequenas nas classes inferiores e aumento gradativo até a quarta classe (40 ≤ DAP < 50 cm), e posterior redução até a classe 7 (70 ≤ DAP < 80 cm). Deste ponto em diante, as taxas apresentam grandes variações, oscilando desde 1,29 cm/ano na classe 8 (80 ≤ DAP < 90 cm) até 0,25 e 0,32 cm/ano, respectivamente nas classe 9 (90 ≤ DAP < 100 cm) e 11 (110 ≤ DAP < 120 cm). A espécie apresenta grande concentração de indivíduos nas classes inferiores (10 ≤ DAP < 30 cm), com cerca de 60% do total.

A amoreira, espécie com grande valor comercial e com representantes nos vários estratos da floresta, apresentou taxas de incremento pouco variáveis. Com exceção da segunda classe (20 ≤ DAP < 30 cm), maior taxa média da espécie (0,67 cm/ano), as demais apresentaram taxas próximas a 0,35 cm/ano. A espécie apresenta uma variação diamétrica entre 10 ≤ DAP < 80 cm, com grande concentração de indivíduos nas três primeiras classes (10 ≤ DAP < 40 cm), onde a taxa média de incremento chega a 0,46 cm /ano.

Destaca-se também a canjerana, espécie de importância comercial e com boa distribuição na floresta, que apresentou taxas de incremento em DAP variando entre 0,19 cm/ano (80 ≤ DAP < 90 cm) e 0,91 cm/ano (40 ≤ DAP < 50 cm). A espécie apresentou 83 indivíduos na floresta (9,0 hectares), distribuídos principalmente nas primeiras classes (10 ≤ DAP < 30 cm), representando cerca de 85% do total.

O guaritá, espécie clímax da floresta, apresentou taxas de incremento maiores nas classes inferiores de DAP, chegando a 0,66 cm/ano (20 ≤ DAP < 30 cm), e posterior redução até alcançar 0,06 cm/ano na classe de 60 ≤ DAP < 70 cm. A espécie apresenta maior concentração de indivíduos nas classes inferiores de DAP, com 163 e 52 ind./9,0ha, respectivamente nas classe 1 e 2, totalizando cerca de 92% dos indivíduos.

A pereira, com taxas de incremento variando entre 0,13 cm/ano (40 ≤ DAP < 50 cm) e 0,45 cm/ano (60 ≤ DAP < 70 cm), apresentou pequenas variações nas demais classes. A espécie apresentou maior concentração de indivíduos nas classes inferiores de DAP (10 ≤ DAP < 30 cm), onde a taxa média de incremento chegou a 0,17 cm/ano (67% dos indivíduos).

O marinheiro, espécie com 226 indivíduos na floresta (9,0 hectares), apresentou taxas de incrementos com pouca variação (em média 0,44 cm/ano), com destaque para a primeira classe (10 ≤ DAP < 20 cm) com taxa igual a 0,38 cm/ano e a terceira (30 ≤ DAP < 40 cm) com 0,59 cm/ano. A espécie apresentou indivíduos concentrados principalmente entre 10 ≤ DAP < 30 cm, com cerca de 82% do total.

Com relação as espécies consideradas pioneiras na floresta, destacam-se o capixingui, a farinha seca e o monjoleiro, espécies com alta abundância na floresta. O capinxingui, uma das espécies com maior taxa de crescimento na floresta, apresentou incrementos variando entre 0,71 cm/ano (10 ≤ DAP < 20 cm) e 1,66 cm/ano (40 ≤ DAP < 50 cm). No geral, as taxas de crescimento seguem a distribuição normal, com incrementos menores nos extremos e com maior valor na classe intermediária (40 ≤ DAP < 50 cm). A espécie apresenta uma das maiores abundâncias da floresta, com grande concentração de indivíduos nas classe inferiores (72% do total), onde as taxas de incremento giram em torno de 1,00 cm/ano.

A farinha seca, com representantes concentrados nas primeiras classes (10 ≤ DAP < 40 cm), apresentou taxas de incremento com variação entre 0,35 e 0,61 cm/ano nas classes 2 e 3, respectivamente. No geral, a espécie não atinge grandes dimensões e ocupa rapidamente os espaços vazios da floresta.

O monjoleiro apresentou taxas de incremento entre 0,75 cm/ano $(10 \le \text{DAP} < 20 \text{ cm})$ e 1,10 cm/ano $(20 \le \text{DAP} < 30 \text{ cm})$. A espécie se caracterizou por grandes taxas de incrementos concentrados nas primeiras classes de DAP (75% do indivíduos entre $10 \le \text{DAP} < 30 \text{ cm}$).

Destacam-se também, as espécies D1 e quatiguá, que apresentaram grandes abundâncias na floresta. A espécie D1 apresentou pequenas taxas de crescimento e pouca variação de incremento (0,23 e 0,27 cm/ano) nas classes de DAP. A maior concentração dos indivíduos foi verificada na primeira classe de DAP (10 ≤ DAP < 20 cm), com cerca de 78% do total da espécie e taxa de incremento de 0,23 cm/ano. O quatiguá, com representantes apenas nas duas primeiras classes de DAP (10 ≤ DAP < 30 cm), apresentou baixas taxas de incremento (0,14 e 0,15 cm/ano nas respectivas classes de DAP). Ambas as espécies se caracterizam por baixo ritmo de crescimento e ocupam o estrato inferior da floresta.

4.1.2 Mortalidade

Para o presente trabalho, mortalidade foi considerada como o número de árvores que morreram no período de 1996 a 2001, ou seja, todas as árvores com DAP ≥ 10 cm que foram incluídas no primeiro ano de medição (1996) e morreram durante o período analisado.

A tabela 15 apresenta o número de árvores mortas, por classe de DAP, por espécie e para a floresta (9,0 ha) no período de 1996 a 2001. Para elaboração da referida tabela foram utilizadas oito classes de DAP, com amplitude de 8 cm.

TABELA 15 - NÚMERO DE ÁRVORES MORTAS POR CLASSE DE DAP POR ESPÉCIE E PARA A FLORESTA NO PERÍODO DE 1996 A 2001

	T I	N°	NÚMERO DE ÁRVORES POR CLASSE DE DAP (cm)							
CÓDIGO	ESPÉCIE	TOTAL	10-18	18-26	26-34	34-42	42-50	50-58	58-66	66-74
1032	Capixingui	100	36	32	18	9	3	1	1	-
1106	Urtigão	59	47	11	1	-	-	-	-	-
1069	Monjoleiro	45	19	8	12	6	-	_	-	-
1042	Embaúba	36	7	24	4	1	_	-	-	-
1039	D	31	23	6	1	1	-	-	+	-
1040	D1	22	15	5	2	-	-	-	-	-
1050	Gairova	16	11	5	-	-	-	-	-	-
1096	Quatiguá	14	13	1	-	-	-	-	-	
1104	Três folhas	14	14	-	-	-	-	-	-	-
1084	Pereira	13	6	1	1	3	2	-	-	-
1022	Canela	10	7	1	1	1	-	-	-	-
1073	Orvalho	10	10	-	-	-	-	-	-	-
1061	Jequetibá branco	9	2	4	2	-	-	-	1	-
1076	Palmito	9	9	•	-	-	-	-	-	-
1005	Amoreira	8	2	1	2	1	-	-	2	-
1008	Angá miúdo	8	8	-	•	-	-	-	-	-
1068	Marinheiro	8	5	1	2	-	-	-	-	-
1110	Allophyllus	8	8	-	-	-	-	-	-	-
1059	Jaracatiá	7	3	-	4	-	-	-	-	-
1083	Pau viola	7	5	-	2	-	-	-	-	-
1105	Unha de boi	7	7	-	-	-	-	-	-	-
1028	Canjerana	6	5	1	-	-	-	-	-	-
1041	D4	6	5	1	-	-	-	-	-	-
1074	Paineira	6	3	2	-	1	-	-	-	-
1006	Angá graúdo	5	5	•	-	-	-	-	-	-
1023	Canela amarela	5	4	-	1	-	-	-	-	-
1045	Farinha seca	5	5	-	-	-	-	-	-	-
1052	Guaritá	5	3	2	-	-	-	-	-	-
1072	Orelha de mateiro	5	5	-	-	-	-	-	-	-
1037	Cedro	4	-	2	-	2	-	-	-	-
1004	Amesca	3	3	-	-	-	-	-	-	~
1011	Ariticunzinho	3	3	-	-	-	-	-	-	-
1019	Camboatá	3	2	1	-	-	-	-	-	-
1021	Canafistula	3	-	-	1	-	-	-	1	1
1067	Marinheirinho	3	2	-	1	-	-	-	-	-
1043	Erva de lagarto	2	2	-	-	-	-	-	-	-
1054	Imbira sapo	2	-	-	-	-	1	-	1	-
1062	Jequetibá rosa	2	-	1	-	1	-	-	-	-
1081	Pau pólvora	2	2	-	-	-	-	•	-	-
1098	Sangueiro	2	2	-	-	-	-	-	-	•
1101	Sete casaco	2	1 1	1	-	-	-	-	-	-
1010 1015	Ariticum cagão Batalha	1	1	-	-	-	-	-	-	-
1015	Bico de pato	1		-	-	-	-	-	-	-
1018	Cambará lixa	1	'	-	-	-	_	-	-	-
1018	Cambara ixa Capororocão	1		-	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	_
1033	Came de vaca	1	1	-	-	-	-	-	-	_
1054	Gameleiro	1	1	-	-	-	-	-	-	-
1064	Limeira	1	1	_	_	_	_	_	_	_
1065	Mamica de porca	1	1	-	_	-	-	-	-	-
1077	Panacéia	1	i	_	_	-	-	_	_	_
1085	Peroba		l i	-	-	_	_	-	_	-
1086	Peroba branca	1	-	-	-	1	-	-	-	-
1087	Peroba canela de velha	1 1	_	1	-	-	-	-	-	-
				•						
	•	•								

TABELA 15 - CONTINUAÇÃO

CÓDIGO	ESPÉCIE	N°	NÚMERO DE ÁRVORES POR CLASSE DE DAP (cm)							
		TOTAL	10-18	18-26	26-34	34-42	42-50	50-58	58-66	66-74
1095	Quaresma	1	1	-		_	-	-	-	-
1099	Sassafrás	1	1	-	-	-	-	-	-	-
1108	Veludo	1	1	-	-	-	-	-	-	-
1115	Sobraji	1			-	1	-	-	-	
	FLORESTA	532	323	112	55	28	6	1	6	1

Na floresta como um todo (9,0 ha) morreram 532 árvores entre 1996 e 2001, ou seja, em média 59 indivíduos por hectare e uma taxa anual de mortalidade igual a 12 ind./ha/ano. Se for considerado o número total de árvores em crescimento estudadas na floresta (3805 árv. em 9,0 ha), obtém-se uma perda de 13,98% no número de árvores no período de 5 anos (2,8%/ano).

Com relação à mortalidade por classe de DAP (graf. 3), observou-se uma maior concentração de indivíduos nas classes inferiores, e posterior redução da mortalidade à medida que aumentam as classes diamétricas. A primeira classe (10 ≤ DAP < 18 cm) apresentou o maior concentração (323 árvores), representando cerca de 61% do total de árvores mortas. Nas classes seguintes (18 ≤ DAP < 42 cm), observou-se uma redução na mortalidade, representando cerca de 37% do total. Nas classe com DAP ≥ 42 cm, encontrou-se apenas 2,6% da mortalidade total. O alto índice absoluto de mortalidade observada nas classes inferior de DAP pode ser explicado pela maior concentração de indivíduos nestas classes, aliada a grande competição existente neste estrato da floresta, onde inúmeras espécies competem por espaço, luz, água e outros fatores do meio. Já nas classes com DAPs maiores, a competição diminui e a mortalidade geralmente é provocada por fatores bióticos (morte por senilidade ou enforcamento por cipós) e/ou abióticos, como por exemplo, vento, raios, entre outros.

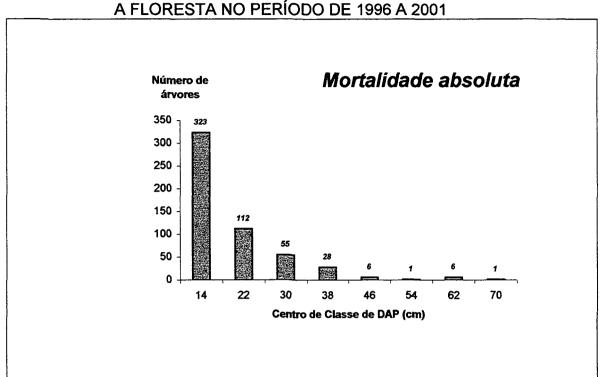


GRÁFICO 3 - NÚMERO DE ÁRVORES MORTAS POR CLASSE DE DAP PARA A FLORESTA NO PERÍODO DE 1996 A 2001

O gráfico 4 apresenta a mortalidade relativa da floresta, calculada pela relação entre o número de árvores mortas e o número total de árvores em crescimento, nas respectivas classes de DAP consideradas. Observa-se certa variabilidade na mortalidade relativa entre as diferentes classes de DAP, destacando-se as classes 7 (58 ≤ DAP < 66 cm) , 1 (10 ≤ DAP < 18 cm) e 4 (34 ≤ DAP < 42 cm) , que apresentaram os maiores percentuais (17,1%, 16,7% e 15,1%, respectivamente), e as classes 6 (50 ≤ DAP < 58 cm), 8 (66 ≤ DAP < 74 cm) e 5 (42 ≤ DAP < 50 cm), que revelaram as menores taxas de mortalidade relativa (1,8%, 5,3% e 6,7%, respectivamente). Assim, embora a tendência observada na análise da mortalidade absoluta tenha revelado grandes diferenças no número de indivíduos por classe de DAP, constatou-se que através da determinação da mortalidade percentual, tal diferença não se mostrou tão significativa, uma vez que a maioria das classes revelou taxas de mortalidade relativa entre 10 e 17,5%.

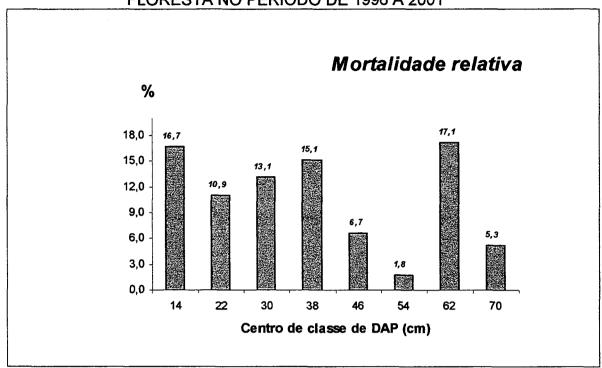


GRÁFICO 4 – MORTALIDADE RELATIVA POR CLASSE DE DAP PARA A FLORESTA NO PERÍODO DE 1996 A 2001

Com relação à mortalidade por espécie, observou-se que o capixingui (espécies com maior abundância na floresta) apresentou a maior mortalidade (100 ind./9,0ha), representando cerca de 19% do total. A espécie apresentou maior concentração de indivíduos mortos nas classes inferiores (10 ≤ DAP < 26 cm), mas com mortalidade em todas as classes diamétrica. Em seguida destaca-se o urtigão, o monjoleiro e a embaúba, apresentando respectivamente, 59, 45 e 36 indivíduos mortos nos nove hectares estudados, distribuídos nas primeiras classes de DAP (10 ≤ DAP < 42 cm). Essas quatro espécies são pioneiras, de rápido crescimento e ciclo de vida curto, exercendo importante papel na estrutura da floresta.

No geral, das 58 espécies que apresentaram mortalidade, apenas 12 tiveram pelo menos 10 árvores mortas no período, representando cerca de 70 % dos indivíduos estudados.

LIEBERMAN; LIEBERMAN (1987) encontraram uma taxa de mortalidade igual a 1,9%/ano para uma floresta primária na Costa Rica. SWAINE; LIEBERMAN; PUZTZ (1987), analisando florestas tropicais em continentes diferentes, com variações de sítio e entre períodos sucessivos, obtiveram uma taxa de mortalidade

entre 1 a 2%/ano. MANOKARAN; KOCHUMMEN (1987), encontraram uma taxa de mortalidade igual 2,0%/ano, para uma floresta primária na Malásia.

CARVALHO (1992), em uma floresta primária (Floresta Nacional do Tapajós-PA), encontrou uma taxa de mortalidade igual a 1,3%/ano.

GAUTO (1997), estudando uma Floresta Estacional Semidecidual na Argentina, obteve uma taxa anual de mortalidade de 1,91%/ano, abaixo do valor encontrado neste trabalho (2,8%/ano).

GOMIDE (1997) obteve taxas anuais de mortalidade iguais a 15,9 ind./ha/ano (1,22%/ano) e 111,22 ind./ha/ano (5,28%/ano), respectivamente para uma floresta tropical primária e secundária no Amapá, no período de 1985 a 1996.

PIZATTO (1999), estudando uma floresta Ombrófila Mista no Paraná (1995 a 1998), obteve uma taxa anual de mortalidade igual a 9 ind./ha/ano (1,49%/ano). DURIGAN (1999), para a mesma floresta, obteve taxa anual de mortalidade igual a 1,25 ind./ha/ano (0,21%/ano), para o período de 1997 a 1998.

4.1.3 Ingresso

No presente trabalho, ingresso foi considerado como o número de árvores que atingiram o DAP limite (DAP ≥ 10 cm) entre dois períodos de medições subseqüentes. Na tabela 16 estão apresentados os números de árvores ingressas, por classe de DAP, por espécie e para a floresta, no período de 1996 a 2001. Para tal foram consideradas cinco classes diamétricas com intervalo de 2 cm.

Como pode-se observar (tab. 16), na floresta estudada (9,0 ha) ingressaram 998 indivíduos em 5 anos, equivalente a uma taxa anual de ingresso de aproximadamente 22,2 ind./ha/ano. Considerando que a floresta em questão apresenta cerca de 3805 árvores em crescimento no período estudado, a referida taxa anual de ingresso representou um acréscimo de 26,22% no número de árvores em 5 anos (5,24%/ano).

TABELA 16 - NÚMERO DE ÁRVORES INGRESSAS POR CLASSE DE DAP POR ESPÉCIE E PARA A FLORESTA NO PERÍODO DE 1996 A 2001

CÓDIGO	ESPÉCIE		NÚMERO DE ÁRVORES POR CLASSE DE DAP (cm)					
		10-12	12-14	14-16	16-18	18-20	TOTA	
1052	Guaritá	124	1	-	-	-	125	
1106	Urtigão	75	12	2	-	-	89	
1032	Capixingui	55	13	2	1	-	71	
1039	D	58	-	1	_	_	59	
1042	Embaúba	29	17	7	1	1	55	
1040	D1	46	-	_	_	-	46	
1069	Monjoleiro	39	4	1	_	-	44	
1073	Orvalho	41	2	-	-	-	43	
1068	Marinheiro	38	1	-	_		39	
1059	Jaracatiá	16	10	3	2	_	31	
1045	Farinha seca	29	-	-	_	-	29	
1022	Canela	24	2	1	_	_	27	
1104	Três folhas	24	1	<u>.</u>	_	_	25	
1072	Orelha de mateiro	21	2	_	_	_	23	
1004	Amesca	19	-	-	_	_	19	
	1	17		-	-	_	17	
1096	Quatiguá	i	-	-	-	-	16	
1041	D4	16	-	-	-	-	16	
1105	Unha de boi	14	2	-	-	-	l I	
1006	Angá graúdo	15	-	-	-	-	15	
1098	Sangueiro	12	-	1	-	-	13	
1015	Batalha	12	-	-	-	-	12	
1028	Canjerana	12	-	-	-	-	12	
1023	Canela amarela	11	-	-	-	-	11	
1067	Marinheirinho	11	-	-	-	-	11	
1083	Pau viola	10	1	-	-	-	11	
1062	Jequetibá rosa	10	-	-	-	-	10	
1089	Peroba rosa	10	-	-	-	-	10	
1008	Angá miúdo	9	=	-	-	-	9	
1053	Guatambu café	9	-	-	-	-	9	
1074	Paineira	9	-	_	-	-	9	
1058	Jambreiro	7	-	-	-	-	7	
1110	Allophyllus	7	_	-	_	-	7	
1029	Canjica	6	-	_	-	-	6	
1055	lpê amarelo	6	_	-	-	-	6	
1002	Alecrim	5	-	_	_	_	5	
1061	Jequetibá branco	5	_	_	_	_	5	
1084	Pereira	5	_	_	_	_	5	
1091	Pessegueiro bravo	5	_	_	_	-	5	
1011	Ariticunzinho	3	_	_	_	_	3	
1011	Arruda	3		_	_	_	3	
1013	Bálsamo	3	_	_	_	_	3	
	Cambará lixa	3		_	_	_	3	
1018	}	1		-	-	-	3	
1051	Gameleiro	3	-	-	-	-	3	
1054	Imbira sapo	3	-	-	-	-		
1081	Pau pólvora	1	1	-	1	-	3	
1099	Sassafrás	3	-	-	-	-	3 2	
1043	Erva de lagarto	2	-	-	-	-		
1060	Jatobá	2	-	-	-	-	2	
1087	Peroba canela de velha	2	-	=	-	-	2	
1100	Serralha	2	-	-	-	-	2	
1115	Sobraji	2	•	-	-	-	2	
1003	Amenduim	1	-	-	-	-	1	
1005	Amoreira	1	-	-	-	-	1	
1019	Camboatá	1	-	-	-	-	1	

TABELA 16 - CONCLUSÃO

CÓDIGO	ESPÉCIE	NÚME	NÚMERO DE ÁRVORES POR CLASSE DE DAP (cm)						
		10-12	12-14	14-16	16-18	18-20	TOTAL		
1021	Canafistula	1	-	•	-	-	1		
1027	Canela sebo	-	1	-	-	-	1		
1033	Capororocão	1	-	-	-	-	1		
1035	Caroba	1	-	-	-	-	1		
1036	Casca de arroz	1	-	-	-	-	1		
1037	Cedro	1	-	-	-	-	1		
1076	Palmito	1	_	-	-	-	1		
1077	Panacéia	-	1	-	-	-	1		
1085	Peroba	1		-	-		1		
	FLORESTA	903	71	18	5	1	998		

No geral, a floresta apresentou 63 espécies que tiveram pelo menos um indivíduo ingresso no período estudado (1996 – 2001). A espécie que apresentou o maior número de árvores ingressas foi o guaritá, com 125 indivíduos em nove hectares, distribuídos nas duas primeiras classes diamétricas (10 ≤ DAP < 14 cm), representando cerca de 12,5 % do total. O urtigão apresentou o segundo maior número de árvores ingressas da floresta, com 89 indivíduos (9% do total), com distribuição em três classes de DAP (10 ≤ DAP < 16 cm). Destacam-se também, o capixingui, a embaúba, a D1 e o monjoleiro, com respectivamente, 71, 55, 46 e 44 indivíduos na floresta (9,0 ha).

Das espécies acima citadas, com exceção do guaritá, espécie clímax da floresta, e da espécie D1, que apresenta baixo índice de crescimento e ocupa os estratos inferiores da floresta, as demais são consideradas pioneiras, espécies com alta abundância, rápido crescimento e ciclo de vida curto, que ocupam os espaços vazios da floresta.

Com relação ao número de ingressos por classe de DAP (graf. 5), pode-se observar que a grande maioria dos indivíduos foram recrutados na primeira classe diamétrica (10 ≤ DAP < 12 cm), representando cerca de 90% do total da floresta (9,0 ha). Na classe seguinte (12 ≤ DAP < 14 cm) observou-se 71 ingressos no período estudado, totalizando cerca de 7% dos indivíduos. Nas demais classes observou-se uma redução gradativa até a classe final (18 ≤ DAP < 20 cm), que apresentou apenas 1 ingresso no período (espécie - embaúba).

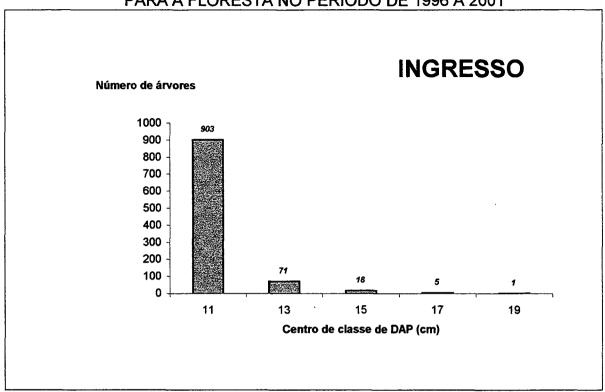


GRÁFICO 5 - NÚMERO DE ÁRVORES INGRESSAS POR CLASSE DE DAP PARA A FLORESTA NO PERÍODO DE 1996 A 2001

A maior concentração de ingressos nas classes inferiores de DAP se deve ao fato de que a grande maioria das espécies da floresta apresenta taxas de crescimento (incremento em DAP) menor que a amplitude das classes diamétricas analisadas. Como pode-se observar na tabela 16, das espécies que apresentaram os maiores números de árvores ingressas, destaca-se a embaúba, a única espécie com ingressos em todas as classes diamétricas (10 ≤ DAP < 20 cm), o capixingui e o jaracatiá, com ingressos nas quatro primeiras classes de DAP (10 ≤ DAP < 18 cm), o urtigão, o monjoleiro e a canela, com representantes nas três primeiras classes (10 ≤ DAP < 16 cm), e o guaritá, com representantes nas duas classes inferiores (10 ≤ DAP < 14 cm). Essas espécies, com representantes que ingressaram diretamente nas classes superiores de DAP, se caracterizam pelo alto ritmo de crescimento, chegando a alcançar, em um período de cinco anos, cerca de 15 a 20 cm de DAP (capixingui – IPA = 3,14 cm/ano e jaracatiá – IPA = 4,14 cm/ano).

LIEBERMAN; LIEBERMAN (1987), em estudo realizado na Costa Rica, encontraram uma taxa de ingresso igual a 1,8%/ano para uma floresta primária.

MANORAKAN; KOCHUMMEN (1987), encontraram uma taxa de ingresso igual a 1,4%/ano, para uma floresta primária na Malásia.

CARVALHO (1992), em uma floresta primária (Floresta Nacional do Tapajós-PA), encontrou uma taxa de ingresso igual a 1,4%/ano.

GAUTO (1997), estudando uma Floresta Estacional Semidecidual na Argentina, obteve uma taxa anual de ingresso de 2,14%/ano, abaixo do valor encontrado neste trabalho (5,24%/ano).

GOMIDE (1997) obteve taxas anuais de ingresso iguais a 19,17 (1,52%/ano) e 263,59 ind./ha/ano (14,63%/ano), respectivamente para uma floresta tropical primária e secundária no Amapá, no período de 1985 a 1996.

PIZATTO (1999), estudando uma floresta Ombrófila Mista no Paraná (1995 a 1998), obteve uma taxa anual de ingresso igual a 20 ind./ha/ano (3,5%/ano). DURIGAN (1999), para a mesma floresta, obteve taxa anual de ingresso igual a 9,5 ind./ha/ano (1,62%/ano), para o período de 1997 a 1998.

Observa-se, de acordo com as constatações dos vários autores citados anteriormente, que com exceção dos trabalhos apresentados por LIEBERMAN; LIEBERMAN (1987) e MANOKARAN; KOCHUMMEN (1987), que apresentaram taxas de mortalidades pouco superiores às taxas de ingresso, que na grande maioria dos casos, as taxas de mortalidade foram menores que as taxas de ingresso, obtendo-se assim, acréscimos no número de árvores nas florestas estudadas, inclusive neste trabalho.

4.1.4 Síntese da dinâmica da floresta

A tabela 17 apresenta uma síntese da dinâmica, destacando as principais mudanças ocorridas no período de 1996 a 2001, por espécie e para a floresta. Foram levantadas as seguintes observações: número de árvores existentes, área basal e o volume comercial encontrados em 1996 e em 2001; incrementos periódicos anuais médios (IPA) em DAP, área transversal, altura e volume comercial das árvores no período; número de árvores, área basal e volume comercial das árvores mortas no período; número de árvores, área basal e volume comercial das árvores mortas em 1996; e número de árvores, área basal e o volume comercial das árvores ingressas no período.

A floresta apresentou um acréscimo de 4654 para 4901 ind. / 9,0 ha (511 e 555 ind./ha), representando um aumento de 5,30% em cinco anos (1,06% por ano). Em relação à área basal, observou-se um aumento de 8,6% em 5 anos (1,72% ao ano), passando de 192,68 para 209,25 m²/9,0ha, respectivamente em 1996 e 2001 (21,41 e 23,25 m²/ha). A grande maioria das espécies (76 espécies) apresentou aumento em área basal no período, destacando o urtigão, o guaritá e o jaracatiá (maiores acréscimos). Das demais, 16 espécies tiveram redução na área basal no período considerado, destacando-se a pereira e a amoreira que apresentaram os maiores acréscimos absolutos, e apenas 9 espécies apresentaram aumentos próximos de zero ou nulos.

Para o volume comercial, observou-se também um acréscimo de 1350,64 para 1458,60 m³/9,0ha (150,07 e 162,06 m³/ha), respectivamente para 1996 e 2001, representando um aumento de 7,99% em 5 anos (1,6% ao ano). Dentre as espécies que apresentaram os maiores acréscimos em volume comercial no período de 1996 a 2001 (85 espécies), destacam-se o capixingui, o guaritá e o jequetibá rosa, que apresentaram os maiores acréscimos absolutos, a pereira e a amoreira, que apresentaram os maiores decréscimos (14 espécies).

TABELA 17 - MUDANÇAS NO NÚMERO DE ÁRVORES, ÁREA BASAL E VOLUME COMERCIAL, INCREMENTO PERIÓDICO ANUAL MÉDIO EM DAP, ÁREA BASAL, ALTURA E VOLUME COMERCIAL, MORTALIDADE E INGRESSO POR ESPÉCIE E PARA A FLORESTA NO PERÍODO DE 1996 A 2001

			V	(3	V	'c		IPA (M	édlo)			Mortal	ldade	1	Mortalid	ade 96	Mortas		Ingres	so
COD.	ESPÉCIE	(Ind. /	-	(m		(n	-	DAP	g	hc	Vc	1		I	T	Ι		1	<u> </u>	_	
		1996	2001	1996	2001	1998	2001	(cm/ano)	(m²/ano)	m/ano)	(m³/ano)	N	G	Vc	N	G	Vc	Totals	N	G	Vc
1001	Açoita cavalo	3	3	0,36	0,40	2,89	3,26	0,56	0,03	0,10	0,025	0	•	-	0	-	-	0	0	-	-
1002	Alecrim	17	22	1,09	1,34	5,12	6,39	0,48	0,02	0,04	0,013	0	-	-	0	-	-	0	5	0,05	0,149
1003	Amenduim	2	3	0,02	0,04	0,11	0,18	0,32	0,01	0,09	0,004	0	-	•	0	-	-	0	1	0,02	0,076
1004	Amesca	72	90	0,85	1,17	4,09	5,77	0,20	0,00	0,05	0,002	3	0,03	0,139	0	-	-	3	19	0,18	0,834
1005	Amoreira	103	67	7,70	5,32	37,03	25,55	0,48	0,02	0,04	0,010	8	0,92	4,857	30	2,18	10,250	38	1	0,01	0,026
1006	Angá graúdo	53	59	1,08	1,25	3,86	4,46	0,48	0,01	0,05	0,006	5	0,10	0,329	4	0,20	0,849	9	15	0,17	0,526
1008	Angá miúdo	14	17	0,21	0,23	0,69	0,75	0,25	0,01	0,03	0,002	8	0,09	0,290	2	0,04	0,150	10	9	0,10	0,295
1010	Ariticum cagão	26	25	0,99	1,24	6,87	8,80	0,64	0,02	0,14	0,016	1	0,01	0,054	0	-	-	1	0	-	-
1011	Ariticunzinho	21	22	0,22	0,31	1,03	1,49	0,37	0,01	0,10	0,004	3	0,04	0,177	0	-	-	3	3	0,04	0,168
1013	Arruda	3	6	0,12	0,18	0,71	1,12	0,54	0,02	0,09	0,017	0	-	-	0	-	-	0	3	0,03	0,149
1014	Bálsamo	6	8	0,11	0,15	0,61	0,85	0,32	0,01	0,07	0,007	0	-	-	1	0,02	0,089	1	3	0,03	0,149
1015	Batalha	18	29	0,81	1,12	5,48	7,48	0,56	0,02	0,11	0,016	1	0,01	0,047	0	-	-	1	12	0,13	0,598
1016	Bico de pato	16	15	2,66	2,89	14,48	16,05	0,47	0,03	0,03	0,022	1	0,02	0,075	0	-	-	1	0	-	-
1017	Braúna	1	1	0,01	0,02	0,07	0,14	0,73	0,00	0,45	0,014	0	-	-	0	-	-	0	0.	-	-
1018	Cambará lixa	5	7	0,07	0,09	0,32	0,46	0,15	0,00	0,04	0,002	1	0,01	0,072	0	-	-	1	3	0,04	0,165
1019	Camboatá	11	9	0,43	0,45	2,88	3,13	0,30	0,01	0,06	0,009	3	0,07	0,397	1	0,01	0,043	4	1	0,01	0,039
1021	Canafistula	8	6	1,53	1,02	13,59	9,13	0,92	0,03	0,16	0,039	3	0,72	6,440	1	0,20	1,677	4	1	0,01	0,054
1022	Canela	85	91	2,41	2,73	14,71	16,87	0,72	0,02	0,16	0,016	10	0,31	1,937	12	0,43	2,645	22	27	0,33	1,628
1023	Canela amarela	72	71	2,22	2,57	8,69	10,36	0,59	0,02	0,05	0,009	5	0,12	0,490	9	0,36	1,485	14	11	0,15	0,457
1024	Canela bosta	1	1	0,03	0,04	0,10	0,17	0,95	0,03	0,08	0,014	0	-	-	0	-	-	0	0	-	-
1025	Canela branca	2	2	0,12	0,14	0,84	0,99	0,54	0,02	0,12	0,014	0	-	-	0	-	-	0	0	-	-
1026	Canela preta	1	1	0,05	0,07	0,21	0,28	0,64	0,00	0,04	0,014	0	-	-	0	-	-	0	0	-	-
1027	Canela sebo	4	4	0,16	0,19	0,63	0,78	0,74	0,01	0,06	0,013	0	-	-	1	0,03	0,129	1	1	0,03	0,094
1028	Canjerana	95	96	3,86	4,33	17,25	19,62	0,49	0,01	0,04	0,008	6	0,12	0,415	6	0,29	1,204	12	12	0,13	0,407
1029	Canjica	45	50	2,04	2,65	8,72	11,68	0,71	0,03	0,06	0,013	0	-	-	1	0,03	0,124	1	6	0,06	0,193
1031	Capitão	4	4	0,40	0,46	3,08	3,64	0,58	0,02	0,12	0,028	0	-	-	0	-	-	0	0	-	-
1032	Capixingui	454	410	17,68	21,52	117,04	149,46	1,16	0,04	0,22	0,033	100	4,57	31,198	44	1,76	11,534	144	71	1,21	6,389
1033	Capororocão	8	8	0,16	0,19	1,37	1,60	0,30	0,01	0,11	0,007	1	0,01	0,066	0	-	-	1	1	0,01	0,052
1034	Carne de vaca	8	6	0,14	0,17	0,72	1,01	0,60	0,01	0,13	0,014	1	0,01	0,060	1	0,01	0,060	2	0	-	-
1035	Caroba	1	2	0,02	0,04	0,20	0,39	0,70	0,02	0,35	0,025	0		-	0	-	-	0	1	0,01	0,061
1036	Casca de arroz	О	1	0,00	0,01	0,00	0,04	-	-		-	0	-	-	0	-	-	0	1	0,01	0,037
1037	Cedro	45	31	3,12	2,39	15,61	12,65	0,41	0,02	0,04	0,010	4	0,31	1,365	11	0,70	3,128	15	1	0,01	0,031
1039	lo l	233	257	5,59	6,38	22,08	25,33	0,34	0,01	0,03	0,004	31	0,71	2,903	10	0,23	0,803	41	59	0,66	2,050
1040	D1	331	338	6,84	7,26	24,36	25,95	0,24	0,01	0,03	0,002	22	0,52	1,943	21	0,56	2,091	43	46	0,45	1,365
1041	D4	73	84	1,55	1,90	5,56	6,90	0,30	0,01	0,03	0,003	6	0,09	0,282	1	0,01	0,031	7	16	0,16	0,485

TABELA 17 - CONTINUAÇÃO

		N		(G Vc			IPA (M	édlo)			Mortali	dade	Mortalidade 96			Mortas	Ingresso			
COD.	ESPÉCIE	(Ind. /	9,0 ha)	(m	1 ²)	(m	1 ³)	DAP	g	hc	Vc	N	G	Vc	N	G	Vc	Totals	N	G	Vc
		1996	2001	1996	2001	1996	2001	(cm/ano)	(m²/ano)	m/ano)	(m³/ano)	1	9	VC		G	VC	Totals	,,		VC
1042	Embaúba	87	99	2,65	3,15	15,82	19,04	1,20	0,04	0,25	0,028	36	1,29	7,954	15	0,55	3,349	51	55	1,19	6,592
1043	Erva de lagarto	14	12	0,22	0,23	1,93	2,11	0,30	0,01	0,16	0,009	2	0,02	0,155	2	0,03	0,266	4	2	0,02	0,151
1045	Farinha seca	86	108	1,42	2,00	12,69	18,42	0,40	0,01	0,22	0,011	5	0,06	0,447	5	0,07	0,581	10	29	0,30	2,238
1046	Figueira	5	5	0,83	0,92	5,16	5,89	0,38	0,03	0,03	0,029	0	-	-	0	-	-	0	0	-	-
1048	Fruteira	2	2	0,08	0,09	0,74	0,81	0,18	0,00	0,05	0,007	0	-	-	0	-	-	0	0	-	-
1050	Gairova	23	5	0,50	0,09	2,69	0,48	0,10	0,00	0,02	0,002	16	0,36	1,916	2	0,06	0,326	18	0	-	-
1051	Gameleiro	29	30	2,85	3,31	15,33	18,26	0,73	0,03	0,06	0,025	1	0,01	0,046	1	0,10	0,478	2	3	0,03	0,096
1052	Guaritá	258	359	7,45	9,39	81,88	98,64	0,56	0,01	0,29	0,019	5	0,16	1,719	19	1,22	15,303	24	125	1,48	11,424
1053	Guatambu café	31	39	1,51	1,76	14,25	16,59	0,45	0,02	0,14	0,017	0	-	-	1	0,07	0,712	1	9	0,09	0,575
1054	lmbira sapo	25	25	2,76	2,51	29,80	26,94	0,27	0,01	0,06	0,018	2	0,44	5,006	1	0,01	0,064	3	3	0,04	0,260
1055	ipê amarelo	19	24	0,39	0,44	3,75	4,03	0,24	0,01	0,13	0,007	0	-	-	1	0,07	0,780	1	6	0,06	0,420
1057	Jacarandá roxo	3	2	0,13	0,07	1,54	0,69	0,53	0,02	0,24	0,023	0	-	-	1	0,09	1,078	1	0	-	-
1058	Jambreiro	26	30	0,45	0,48	2,42	2,51	0,17	0,00	0,04	0,002	0	-	-	3	0,08	0,481	3	7	0,06	0,296
1059	Jaracatiá	46	70	3,72	5,42	17,91	26,18	1,27	0,06	0,09	0,033	7	0,22	0,863	0	-	-	7	31	0,66	2,387
1060	Jatobá	4	6	0,07	0,10	0,34	0,50	0,28	0,01	0,08	0,003	0	-	-	0	-	-	0	2	0,02	0,098
1061	Jequetibá branco	68	63	5,08	4,88	57,17	55,49	0,54	0,02	0,15	0,030	9	0,61	6,317	5	0,53	5,891	14	5	0,05	0,340
1062	Jequetibá rosa	96	100	14,12	15,09	185,03	199,45	0,64	0,04	0,15	0,055	2	0,13	1,255	4	0,79	9,642	6	10	0,10	0,625
1064	Limeira	2	1	0,02	0,01	0,14	0,07	0,00	0,00	0,00	0,000	1	0,01	0,070	0	-	-	1	0	-	-
1065	Mamica de porca	4	4	0,05	0,06	0,41	0,51	0,27	0,00	0,16	0,006	1	0,01	0,075	0	-	-	1	0	-	-
1066	Mandiocão	1	1	0,22	0,22	1,20	1,21	0,06	0,01	0,00	0,003	0	-	-	0	-	-	0	0	-	-
1067	Marinheirinho	55	61	1,84	2,08	11,64	13,31	0,34	0,01	0,07	0,008	3	0,10	0,635	2	0,03	0,168	5	11	0,11	0,487
1068	Marinheiro	263	267	10,70	11,40	46,85	50,36	0,44	0,01	0,04	0,008	8	0,15	1,012	29	1,32	5,721	37	39	0,42	1,285
1069	Monjoleiro	240	220	9,08	9,91	58,27	65,25	0,96	0,03	0,19	0,025	45	1,98	13,306	31	1,42	9,476	76	44	0,68	3,451
1072	Orelha de mateiro	168	184	3,85	4,50	13,97	16,58	0,26	0,01	0,03	0,003	5	0,07	0,218	3	0,09	0,309	8	23	0,23	0,710
1073	Orvalho	120	145	2,35	3,05	8,93	11,53	0,36	0,01	0,04	0,004	10	0,10	0,309	9	0,11	0,357	19	43	0,44	1,342
1074	Paineira	79	84	6,93	7,82	63,32	72,49	0,52	0,03	0,10	0,027	6	0,24	1,584	0	-	-	6	9	0,08	0,382
1075	Paineira branca	4	4	0,99	1,02	6,24	6,47	0,20	0,01	0,02	0,011	0	-	-	0	-	-	0	0	-	-
1076	Palmito	27	20	0,31	0,23	2,33	1,74	0,05	0,00	0,03	0,001	9	0,11	0,809	3	0,03	0,255	12	1	0,01	0,056
1077	Panacéia	3	3	0,05	0,05	0,16	0,17	0,19	0,00	0,02	0,002	1	0,02	0,050	0	-	-	1	1	0,01	0,039
1079	Pau alho	11	7	5,66	5,61	41,78	46,36	1,84	0,23	0,30	0,349	0	-	-	4	0,87	7,634	4	0	-	-
1081	Pau pólvora	3	5	0,04	0,08	0,19	0,38	0,54	0,01	0,15	0,005	2	0,04	0,188	0	-		2	3	0,05	0,225
1083	Pau viola	68	72	4,61	5,26	21,83	25,24	0,67	0,02	0,06	0,015	7	0,21	0,832	2	0,19	0,851	9	11	0,18	0,590
1084	Pereira	145	105	9,84	6,95	100,79	71,16	0,17	0,01	0,05	0,009	13	0,83	8,371	36	2,59	26,678	49	5	0,07	0,467
1085	Peroba	12	13	0,92	1,03	5,86	6,54	0,41	0,02	0,04	0,011	1	0,01	0,025	0	-	-	1	1	0,01	0,025
1086	Peroba branca	5	4	0,20	0,09	2,37	0,83	0,56	0,01	0,32	0,014	1	0,13	1,810	0	-	•	1	0	-	-
1087	Peroba c. velha	4	6	0,10	0,13	0,54	0,71	0,28	0,01	0,07	0,004	1	0,04	0,238	0	-	-	1	2	0,02	0,091
1089	Peroba rosa	11	19	1,30	1,02	14,60	10,78	0,53	0,03	0,13	0,030	0	-	-	2	0,49	5,771	2	10	0,09	0,587
1091	Pesseg, bravo	14	19	0.28	0.47	1.54	2,68	0.63	0.02	0.14	0.012	n	_	-	0		-	a	5	0.06	0,282

TABELA 17 - CONCLUSÃO

] .	1	N		3	١ ،	/c		IPA (M	édio)			Mortal	dade	1	Mortalid	ade 96	Mortas		Ingresso		
COD.	ESPÉCIE	(ind. /	9,0 ha)	(n	n²)	(n	n³)	DAP	g	hc	Vc	N	G	Vc	N	G	Vc	Totals	N	G	Vc	
		1996	2001	1996	2001	1996	2001	(cm/ano)	(m²/ano)	m/ano)	(m³/ano)	L		VC.	14	3	VC	iotais		9	V C	
1092	Pindaíba	2	2	0,02	0,03	0,13	0,25	0,61	0,01	0,37	0,012	0	-	-	0	-	-	0	0	•	-	
1095	Quaresma	1	0	0,01	-	0,03	-	-	-	-	-	1	0,01	0,025	0	-	-	1	0	-	-	
096	Quatiguá	121	116	1,88	1,79	9,69	9,16	0,14	0,00	0,04	0,002	14	0,25	1,304	8	0,15	0,835	22	17	0,15	0,69	
098	Sangueiro	59	69	9,56	9,94	87,52	89,93	0,58	0,03	0,09	0,039	2	0,03	0,121	1	0,82	9,257	3	13	0,16	0,74	
099	Sassafrás	44	44	1,27	1,46	4,87	5,73	0,32	0,01	0,03	0,004	1	0,02	0,050	2	0,03	0,090	3	3	0,03	0,10	
100	Serralha	7	9	0,08	0,11	0,58	0,75	0,11	0,00	0,05	0,002	0	-	-	0	-	-	0	2	0,02	0,11	
101	Sete casaco	15	13	0,45	0,45	3,35	3,42	0,23	0,01	0,06	0,007	2	0,05	0,380	0	-	-	2	0	-	-	
102	Tamburilo	2	2	1,07	1,28	8,38	10,24	2,16	0,21	0,17	0,186	0	-	-	0	-	-	0	0	-	-	
103	Tento	2	2	0,08	0,09	0,54	0,60	0,24	0,01	0,05	0,006	0	-	-	0	-	-	0	0	-	-	
104	Três folhas	72	85	0,83	1,01	2,64	3,20	0,14	0,00	0,02	0,001	14	0,15	0,778	1	0,01	0,037	15	25	0,23	0,7	
105	Unha de boi	65	75	1,08	1,40	3,65	4,81	0,30	0,00	0,03	0,003	7	0,11	0,283	1	0,02	0,054	8	16	0,17	0,5	
106	Urtigão	288	342	5,47	7,57	18,77	26,71	0,50	0,01	0,05	0,005	59	1,07	3,620	2	0,06	0,209	61	89	1,12	3,5	
108	Veludo	1	0	0,01	-	0,02	-	-	-	-	-	1	0,01	0,025	0	-	-	1	0	-	-	
109	Vinhático	1	1	0,43	0,47	4,14	4,60	0,67	0,08	0,07	0,093	0	-	-	0	-	-	0	0	-	-	
110	Allophyllus	28	27	0,50	0,54	2,80	3,16	0,32	0,01	0,08	0,006	8	0,11	0,530	1	0,02	0,131	9	7	0,08	0,34	
115	Sobraji	23	24	1,17	1,30	8,09	9,15	0,51	0,02	0,10	0,015	1	0,09	0,662	0	-	-	1	2	0,02	0,0	
116	Cordia 1	2	2	0,02	0,03	0,08	0,15	0,56	0,01	0,15	0,007	0	-	-	0	-	-	0	0	-	-	
117	Cordia 2	1	1	0,13	0,13	0,97	1,00	0,10	0,01	0,01	0,005	0	-	•	0	-	-	0	0	-	-	
118	Maria-mole	4	4	0,08	0,09	0,43	0,50	0,19	0,00	0,04	0,003	0	-	-	0	-	-	0	0	-	-	
119	Hesteria	3	3	0,03	0,03	0,20	0,26	0,20	0,00	0,12	0,004	0	-	-	0	-	-	0	0	-	-	
121	Myroloxum	1	1	0,01	0,01	0,06	0,07	0,10	0,00	0,04	0,001	0	-	•	0	-	-	0	0	-	-	
125	Rollinia	1	1	0,02	0,02	0,06	0,06	0,03	0,00	0,00	0,000	0	-	-	0	-	-	0	0	-	-	
126	Sloaneae	1	1	0,01	0,01	0,07	0,08	0,19	0,00	0,12	0,003	0	-	-	0	-	-	0	0	-	-	
132	Lauraceae 3	1	1	0,01	0,02	0,06	0,11	0,64	0,00	0,27	0,010	0	-	-	0	-	-	0	0	•	-	
139	Styrax 2	3	3	0,20	0,22	0,87	0,98	0,34	0,01	0,03	0,007	0	-	-	0	-	-	0	0	-	-	
140	ipê felpudo	1	1	0,01	0,02	0,06	0,10	0,48	0,00	0,12	0,006	0	-	-	0	-	-	0	0	-	-	
141	Tocayena	1	1	0,01	0,01	0,06	0,06	0,03	0,00	0,01	0,000	0	-	-	0	-	•	0	0	-	-	
145	Terminalia 1	2	2	0,04	0,06	0,15	0,21	0,54	0,01	0,05	0,006	0	-	-	0	-	-	0	0	-	-	
	FLORESTA	4654	4901	192,68	209,25	1350,64	1458,40	0,51	0.02	0.10	0,014	532	18,03	116,521	353	18,99	143,074	885	998	12,57	58,8	

NOTA: N = Número de árvores / 9,0 ha; G = Área Basal (m² / 9,0 ha); Vc = Volume Comercial (m³ / 9,0 ha); g = área transversal (m²); hc = altura comercial (m); Floresta = 9,0 hectares IPA = Incremento Periódico Anual médio m² das árvores em crescimento (3805 árvores)

Assim como para a floresta, a maioria das espécies (45 espécies) apresentou acréscimos em relação ao número de árvores de 1996 para 2001, com destaque ao guaritá que teve o maior aumento absoluto (de 258 para 359 árvores → + 39,1%), o urtigão (288 para 342 árvores → + 18,7%) e o orvalho (120 para 145 árvores → + 20,8%). Das demais, 32 espécies apresentaram o mesmo número de árvores, destacando-se o sassafrás (44 árvores) e o imbira sapo (25 árvores), e 24 espécies tiveram redução no número de árvores no período de 1996 a 2001, entre elas o capixingui, que apresentou a maior redução absoluta (454 para 410 árvores → 9,7%), seguido da pereira (145 para 105 árvores → - 25,6%) e da amoreira (103 para 67 árvores → - 35%).

Com relação aos incrementos periódicos anuais (IPA) para a floresta, observou-se uma média de 0,51 cm/ano, 0,02 m²/ano, 0,10 m/ano e 0,014 m³/ano, respectivamente para o DAP, área transversal, altura comercial e volume comercial das árvores. As espécies que apresentaram os maiores incrementos (IPA) médios da floresta no período de 1996 a 2001 foram: o pau alho, que apresentou o maior IPA em DAP, área transversal, altura comercial e em volume comercial (1,84 cm/ano, 0,23 m²/ano, 0,30 m/ano e 0,349 m³/ano, respectivamente); o jaracatiá, que obteve o segundo maior IPA em DAP e em área transversal (1,27 cm/ano e 0,06 m²/ano); o guaritá, que apresentou o segundo maior IPA em altura comercial (0,29 m/ano); e o jequetibá rosa, que obteve o segundo maior IPA em volume comercial (0,055 m³/ano).

A floresta apresentou 532 árvores mortas no período de 1996 a 2001, representando cerca de 13,9% (2,78%/ano) do total de árvores em crescimento. Dentre as espécies que apresentaram o maior número de árvores mortas (sem as mortas de 1996, que não foram incluídas na análise da dinâmica), destacam-se o capixingui (maior área basal e volume comercial entre as mortas), o urtigão e o monjoleiro, que apresentaram respectivamente, 100, 59 e 45 árvores mortas no período.

Para as árvores já encontradas mortas em 1996 (não incluídas na análise da dinâmica da floresta), observou-se um total de 353 árvores nos 9,0 hectares estudados, representando cerca de 9,3% do total de árvores em crescimento. Entre as espécies, destacam-se: o capixingui (segundo maior volume comercial e terceira

maior área basal entre as mortas em 1996), a pereira (maior área basal e maior volume comercial entre as mortas), o monjoleiro e a amoreira, que apresentaram o maior número de árvores mortas no ano, com respectivamente, 44, 36, 31 e 30 árvores.

A floresta apresentou 998 árvores ingressas no período de 1996 a 2001 (DAP ≥ 10 cm), representando cerca de 26,2 % (5,24%/ano) do total das árvores em crescimento. As espécies que apresentaram o maior número de ingressos no período foram: o guaritá, com 125 indivíduos, e a maior área basal (1,48 m²/ano) e maior volume comercial (11,424 m³/ano) entre as ingressas na floresta; o urtigão, segundo maior número de árvores ingressas na floresta (89 indivíduos); e o capixingui (71 indivíduos), segunda maior área basal (1,21 m²/ano) e terceiro maior volume comercial (6,38 m³/ano) entre as ingressas.

4.2 PROCESSOS DE AMOSTRAGEM EM MÚLTIPLAS OCASIÕES

4.2.1 Amostragem Independente (AI)

Na tabela 18 estão apresentadas as principais estimativas referentes ao volume comercial das árvores, por tamanho de unidade amostral e para os dois conjuntos de dados analisados (árvores em crescimento e todas as árvores) para o processo de amostragem independente, destacando: a média em volume comercial (m³/ha), o erro padrão do volume comercial (m³/ha), o coeficiente de variação (%), a média de crescimento (m³/ha/ano), o erro padrão do crescimento (m³/ha) e o coeficiente de correlação (%).

Com relação ao volume médio das árvores em crescimento, a floresta apresentou uma média de 118,67 m³/ha em 1996 e 147,14 m³/ha em 2001, representando um aumento de aproximadamente 24% no período (4% ao ano). Ao se considerar todas as árvores, a floresta apresentou aumento de 136,344 m³/ha em 1996 para 143,677 m³/ha em 2001, resultando num acréscimo de 5,38% no período (0,9% ao ano). Em relação aos diferentes tamanhos de unidades amostrais. observa-se que, para as árvores em crescimento, a parcela de 100 m² apresentou o menor aumento (12%/período) e a parcela de 2500 m² o maior acréscimo (36%/período). Considerando todas as árvores, a parcela de 200 m², apresentou uma redução de aproximadamente 45% no período, e a parcela de 2500 m² o maior aumento, com cerca de 23% no período. No geral, observou-se que quando se considera apenas as árvores em crescimento, o volume médio em 2001 foi maior que o apresentado para todas as árvores, em virtude dos processos de dinâmica que ocorreram no período analisado (mortalidade e ingresso). Observa-se também que, em média, o volume das árvores em crescimento (118,670 m³/ha) em 1996, foi muito menor que o apresentado, quando foram incluídas todas as árvores da floresta (136,344 m³/ha). Este fato se deve ao grande número de árvores mortas encontradas na primeira medição (1996), que não afetaram as estimativas das árvores em crescimento.

TABELA 18 - PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A AMOSTRAGEM INDEPENDENTE NO PERÍODO DE 1996 A 2001

Média de volume (m³/ha)	196 A 200 I	
	2500m ²	NÉDIA
100H 200H 400H 1000H	CRESC. TODAS	MÉDIA CRESC. TODAS
	108,085 132,684	118,670 136,344
	137,496 135,866	135,044 143,846
	126,534 154,431	135,591 132,553
)	143,913 160,201	144,120 138,459
	147,510 152,871	147,787 143,204
	147,011 162,984	147,140 143,677
Erro padrão (m³/ha)	147,011 102,304	147,140 140,077
	0500 2	145010
	2500m ²	MÉDIA
	CRESC. TODAS	CRESC. TODAS
	7,803 8,885	9,269 10,064
, , , , , , , , , , , , , , , , , , , ,	10,342 9,404	10,543 9,494
	10,948 11,632	10,511 8,985
	10,965 11,107	10,589 9,120
, i	11,766 11,079	10,226 9,898
	11,176 8,958	10,101 8,707
ANO 100m ² 200m ² 400m ² 1000m ²		
100m 200m 1000m	2500m ²	MÉDIA
	CRESC. TODAS	CRESC. TODAS
i i i	37,43 34,72	108,44 102,85
	39,00 35,88	108,38 90,80
	44,86 39,05	104,02 92,33
1 1 1	39,50 35,95	100,54 92,19
1 1	41,36 37,57	93,02 97,75
	39,41 28,50	90,61 87,32
Média de crescimento (m³/ha/ano)		,
PERÍODO 100m ² 200m ² 400m ² 1000m ²	2500m ²	MÉDIA
	CRESC. TODAS	CRESC. TODAS
	29,411 3,183	16,374 7,503
	9,224 10,874	8,461 -1,895
	11,943 9,173	8,483 0,705
	9,856 5,047	7,279 1,715
96-01 3,075 3,649 5,671 -11,675 5,693 3,191 6,246 6,109	7,785 6,060	5,694 1,467
Correlação (Volume)		
PERÍODO 100m ² 200m ² 400m ² 1000m ²	2500m ²	MÉDIA
CRESC. TODAS CRESC. TODAS CRESC. TODAS C	CRESC. TODAS	CRESC. TODAS
96-97 0,08 -0,03 -0,05 -0,01 0,05 -0,03 0,08 0,03	-0,05 0,03	0,02 0,00
96-98 -0,01 -0,01 -0,03 0,11 0,02 -0,01 -0,12 -0,08	-0,20 0,16	-0,07 0,03
96-99 -0,01 -0,01 0,09 0,10 0,06 -0,03 0,04 0,04	-0,22 0,29	-0,01 0,08
96-00 -0,02	-0,11 0,04	0,02 -0,02
96-01 -0,03 0,02 -0,06 0,11 0,12 -0,19 -0,13 0,18	-0,14 -0,09	-0,05 0,01
Erro padrão do crescimento (m³/ha	a)	
PERÍODO 100m ² 200m ² 400m ² 1000m ²	2500m ²	MÉDIA
	CRESC. TODAS	CRESC. TODAS
96-97 13,490 13,432 12,784 13,450 16,501 13,713 14,564 16,026	12,956 12,937	14,059 13,912
1 11 -1	42 444 44 627	14,067 13,683
96-98 12,744 13,318 13,134 10,630 15,843 13,720 15,169 16,108	13,444 14,637	14,007 13,003
96-98 12,744 13,318 13,134 10,630 15,843 13,720 15,169 16,108	13,444 14,637 13,458 14,223	14,118 13,728
96-98 12,744 13,318 13,134 10,630 15,843 13,720 15,169 16,108 96-99 13,207 13,092 13,216 10,640 15,864 14,468 14,842 16,216		

Como pode-se observar na tabela 18, as árvores em crescimento apresentaram um erro padrão médio em volume comercial variando de 9,269 m³/ha em 1996 a 10,589 m³/ha em 2001. Quando se analisa todas as árvores da floresta, observa-se uma variabilidade entre 8,707 m³/ha em 2001 e 10,064 m³/ha em 1996. No geral, não houve grandes variações do erro padrão entre os diferentes tamanhos de parcelas. Para as árvores em crescimento os valores figuraram entre 7,733 m³/ha e 12,579 m³/ha, enquanto que, para todas as árvores da floresta, a variabilidade entre as parcelas ficou entre 5,508 m³/ha e 12,026 m³/ha.

Ao se analisar o coeficiente de variação (%) em volume comercial, observa-se que as árvores em crescimento apresentaram em média uma variabilidade maior em 1996 (cv%=108,44) do que em 2001 (cv%=90,61). Para todas as árvores da floresta, observou-se um comportamento similar, com o coeficiente de variação variando entre 102,85% e 87,32%, respectivamente em 1996 e 2001. Com relação à variabilidade nos diversos tamanhos de parcelas, observou-se maior variabilidade nas parcelas menores (100 m²), tanto para as árvores em crescimento como para todas as árvores da floresta.

Na análise do crescimento, observou-se que em média, as árvores em crescimento apresentaram maiores valores no período de 1996-1997 (intervalo de um ano), com 16,374 m³/ha/ano e menores taxas no período de 1996-2001 (intervalo de cinco anos), com 5,694 m³/ha/ano, representando uma redução de aproximadamente 65% em relação ao período inicial. Com relação às parcelas, observou-se grande variabilidade entre os diferentes tamanhos, com valores entre 3,075 m³/ha/ano (100 m²) e 29,411 m³/ha/ano (2500 m²).

Com relação à análise do crescimento, abordando todas as árvores da floresta, observou-se grande variabilidade entre os diferentes períodos e tamanhos de unidades amostrais. Em média, o maior crescimento foi observado no período de 1996-1997, com 7,503 m³/ha/ano, e o menor, um valor negativo ("crescimento negativo") de 1,895 m³/ha/ano no período de 1996-1998. Nas parcelas de 200 e 400 m², observou-se vários valores negativos, indicando grande variabilidade entre as diferentes parcelas. Os valores negativos se devem ao fato da amostragem independente utilizar unidades temporárias, possibilitando volumes por hectare menores em períodos de tempo subseqüentes, devido ao processo aleatório de

seleção das unidades. Outro fator importante é a dinâmica da floresta, onde a mortalidade e o ingresso influenciam diretamente nas estimativas volumétricas e no crescimento propriamente dito.

Na abordagem do crescimento, incluindo apenas as árvores em crescimento, observa-se que em média, a floresta apresentou taxas de crescimento entre 5,694 m³/ha/ano e 16,374 m³/ha/ano, respectivamente para os períodos de 1996-2001 e 1996-1997. Com relação ao comportamento do crescimento para os diferentes tamanhos de parcelas, em média, observa-se uma tendência de redução do crescimento quando se aumenta o intervalo de tempo entre as medições. Observa-se também, que no período de 1996-1997 (um ano de intervalo), as taxas de crescimento foram superiores aos demais períodos para todos os tamanhos de unidades amostrais, sugerindo que em intervalos menores a taxa de crescimento é maior.

Com relação à correlação entre os volumes comerciais nos diferentes períodos e tamanhos de unidades amostrais, tanto para as árvores em crescimento, quanto para todas as árvores, observa-se que o coeficiente encontrado em todos os casos ficou próximo de zero, revelando que não existe correlação entre as variáveis. Este fato pode ser explicado pela própria natureza da amostragem independente, onde as unidades amostrais são temporárias e sem nenhuma relação temporal, impossibilitando o acompanhamento individual de crescimento em diferentes períodos.

O erro padrão do crescimento, considerando apenas as árvores em crescimento, apresentou em média, pouca variabilidade em relação aos períodos estudados, oscilando entre 13,757 m³/ha/ano e 14,059 m³/ha/ano para os períodos de 1996-2001 e 1996-1997, respectivamente. Com relação aos diferentes tamanhos de parcelas, em todos os casos o erro padrão não apresentou maiores oscilações. Na abordagem referente a todas as árvores da floresta, observou-se a mesma tendência, com valores de erro padrão do crescimento variando entre 13,37 m³/ha/ano (1996-2001) e 14,184 m³/ha/ano (1996-2000) em média.

4.2.2 Amostragem com Repetição Total (ART)

A tabela 19 apresenta as principais estimativas referentes ao volume comercial das árvores para o processo de amostragem com repetição total, no período de 1996 a 2001, considerando diferentes intervalos entre as medições e diferentes tamanhos de parcelas. Foram consideradas também duas abordagens, a primeira incluindo apenas as árvores em crescimento, e a segunda incluindo todas as árvores da floresta (9,0 hectares).

Para a abordagem referente às árvores em crescimento, a média volumétrica encontrada para a floresta foi de 122,382 m³/ha e 152,500 m³/ha, respectivamente para os anos de 1996 e 2001, representando um acréscimo de aproximadamente 25% em relação ao ano inicial (4,2% ao ano). Na abordagem referente a todas as árvores da floresta, o aumento foi de 133,886 m³/ha para 159,045 m³/ha, representando cerca de 19% em relação ao ano inicial (3,16 % ao ano). A abordagem que inclui apenas as árvores em crescimento apresentou volumes pouco superiores aos encontrados na abordagem incluindo todas as árvores, uma vez que durante todo o período não são computadas as árvores ingressas e mortas, que influenciam diretamente no volume total do período. Com relação aos diferentes tamanhos de unidades amostrais, observou-se que para as árvores em crescimento, o maior aumento foi verificado na parcela de 400 m² (39,82% no período) e o menor na parcela de 200 m² (11,06% no período). Para a abordagem referente a todas as árvores, o maior aumento se verificou na parcela de 2500 m² (13,16% no período).

Na análise do erro padrão do volume comercial (tab.19), observa-se uma uniformidade nos valores médios encontrados nas duas abordagens. Na análise das árvores em crescimento, os valores oscilaram entre 10,011 m³/ha (1996) e 10,887 m³/ha (2001). Considerando todas as árvores, o erro padrão variou entre 8,625 m³/ha (2001) e 9,355 m³/ha (2000), indicando menores valores que na abordagem anterior. Com relação aos tamanhos de unidades amostrais, observou-se que a unidade de 400 m² apresentou os maiores erros e as unidades de 100 e 200 m² os menores erros (árvores em crescimento). Com relação à abordagem de todas as árvores, as unidades de 400, 1000 e 2500 m² apresentaram erros pouco maiores.

TABELA 19 - PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A AMOSTRAGEM COM REPETIÇÃO TOTAL NO PERÍODO DE 1996 A 2001

			2011010	LIVI COI						1990	12001	
4410							lume(m					
ANO)m²	200)m²	100		250		MÉI	
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.		CRESC.	TODAS	CRESC.	TODAS
1996	121,214	131,671	111,626	123,681	131,985	130,690		134,006	118,704		122,382	133,886
1997	127,809	140,085	117,878	131,919	-	139,089		142,561		157,929	128,967	142,317
1998	133,913	146,115		138,557	145,201	144,782		148,991	132,132		135,402	
1999	139,957	151,899	129,911	144,313	151,462		148,029	154,755	138,536	170,414	141,579	154,318
2000	145,179	156,235	135,193		157,088	154,196	153,804	159,129	144,137	174,811	147,081	158,692
2001	150,352	154,007	140,152	152,484	162,960	153,167	159,546	162,119	149,489	173,449	152,500	159,045
					Er	ro padra	ão (m³/t	ıa)				
ANO	100)m²	200)m²	400)m²	100	0m²	250	0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
1996	7,962	8,486	7,960	8,111	11,970	9,216	11,067	8,816	11,094	9,178	10,011	8,761
1997	8,139	8,613	8,073	8,247	12,179	9,327	11,213	8,948	11,275	9,315	10,176	8,890
1998	8,266	8,765	8,226	8,462	12,393	9,425	11,351	9,036	11,409	9,571	10,329	9,052
1999	8,422	8,886	8,328	8,693	12,627	9,553	11,476	9,190	11,488	9,671	10,468	9,199
2000	8,591	8,980	8,495	8,861	12,859	9,696	11,698	9,355	11,697	9,884	10,668	9,355
2001	8,824	8,035	8,667	9,178	13,180	8,352	11,898	9,557	11,864	8,001	10,887	8,625
			<u> </u>				iação (%		ıme			
ANO	100	Om ²	200)m ²		Om ²		0m ²		0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.		CRESC.	TODAS	CRESC.	TODAS
1996	170,27	167,08	130,72	120,21	117,55	91,40	70,67	53,93	48,46	31,85	107,53	92,89
1997	165,08	159,38	125,55	114,59	113,88	86,91	68,05	51,45	46,59	30,58	103,83	88,58
1998	160,01	155,50	121,55	111,95	110,63	84,38	65,66	49,71	44,77	30,21	100,52	86,35
1999	156,00	151,65	117,50	110,42	108,06	82,43	63,55	48,68	42,99	29,42	97,62	84,52
2000	153,41	149,00	115,18	108,94	106,10	81,50	62,35	48,19	42,07	29,31	95,82	83,39
2001	152,14	135,25	113,36	110,33	104,83	70,68	61,13	48,32	41,15	23,92	94,52	77,70
2001	102,17	100,20	110,00							20,52	34,02	
PERÍODO							nento (n			_ 2		
FERIODO	700111)m²		Dm ²		0m ²		0m ²		DIA
- 00.07	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
96-97	6,595	8,414	6,252	8,238	6,633	8,399	6,694	8,555	6,754	8,548	6,586	8,431
96-98	6,349	7,222	6,212	7,438	6,608	7,046	6,668	7,493	6,714	7,439	6,510	7,327
96-99	6,248	6,743	6,095	6,877	6,492	6,507	6,550	6,916	6,611	7,011	6,399	6,811
96-00	5,991	6,141	5,892	6,352	6,276	5,876						
96-01	5,828				1		6,356	6,281	6,358	6,358	6,175	6,202
	,	4,467	5,705	5,761	6,195	4,495	6,233	5,623	6,358 6,157	6,358 4,814	6,175 6,024	5,032
					6,195 Co	4,495 rrelação	6,233 (Volur	5,623 ne)	6,157	4,814	1	-
PERÍODO		0m²	200)m²	6,195 Co	4,495 rrelação Dm ²	6,233 O (Volur 100	5,623 ne) 0m ²	6,157 250	4,814 0m ²	6,024 MÉ	5,032 DIA
	CRESC.	0m² TODAS	200 CRESC.	Dm² TODAS	6,195 Co 400 CRESC.	4,495 rrelação Dm ² TODAS	6,233 C (Volument) 100 CRESC.	5,623 ne) 0m ² TODAS	6,157 250 CRESC.	4,814 0m ² TODAS	6,024 MÉ CRESC.	5,032 DIA TODAS
96-97	CRESC. 1,00	0m ² TODAS 1,00	200 CRESC. 1,00	0m ² TODAS 1,00	6,195 Co 400 CRESC. 1,00	4,495 Trelação Dm ² TODAS 1,00	6,233 C (Volur 100 CRESC. 1,00	5,623 ne) 0m ² TODAS 1,00	250 CRESC. 1,00	4,814 0m ² TODAS 1,00	6,024 MÉ CRESC. 1,00	5,032 DIA TODAS 1,00
96-97 96-98	1,00 1,00	0m ² TODAS 1,00 1,00	200 CRESC. 1,00 1,00	70DAS 1,00 1,00	6,195 Co 400 CRESC. 1,00 1,00	4,495 rrelação Dm ² TODAS 1,00 1,00	6,233 100 CRESC. 1,00 1,00	5,623 ne) 0m ² TODAS 1,00	250 CRESC. 1,00 1,00	4,814 0m ² TODAS 1,00 0,99	6,024 MÉ CRESC. 1,00 1,00	5,032 DIA TODAS 1,00 1,00
96-97 96-98 96-99	CRESC. 1,00	0m ² TODAS 1,00 1,00 0,99	200 CRESC. 1,00	0m ² TODAS 1,00 1,00 0,99	6,195 Co 400 CRESC. 1,00	4,495 Trelação Dm ² TODAS 1,00	6,233 CVOIUT 100 CRESC. 1,00 1,00	5,623 ne) 0m ² TODAS 1,00	250 CRESC. 1,00	0m ² TODAS 1,00 0,99 0,99	MÉ CRESC. 1,00 1,00 1,00	5,032 DIA TODAS 1,00 1,00 0,99
96-97 96-98 96-99 96-00	1,00 1,00	0m ² TODAS 1,00 1,00	200 CRESC. 1,00 1,00	70DAS 1,00 1,00	6,195 Co 400 CRESC. 1,00 1,00	4,495 rrelação Dm ² TODAS 1,00 1,00	6,233 C(Volument 100 CRESC. 1,00 1,00 1,00 1,00	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,99	250 CRESC. 1,00 1,00 1,00	4,814 0m ² TODAS 1,00 0,99 0,99 0,98	6,024 MÉ CRESC. 1,00 1,00	5,032 DIA TODAS 1,00 1,00 0,99 0,99
96-97 96-98 96-99	1,00 1,00 1,00	0m ² TODAS 1,00 1,00 0,99	200 CRESC. 1,00 1,00	0m ² TODAS 1,00 1,00 0,99	6,195 CO 400 CRESC. 1,00 1,00 1,00	4,495 rrelação 0m² TODAS 1,00 1,00 0,99	6,233 CVOIUT 100 CRESC. 1,00 1,00	5,623 ne) 0m² TODAS 1,00 1,00 0,99	250 CRESC. 1,00 1,00	0m ² TODAS 1,00 0,99 0,99	MÉ CRESC. 1,00 1,00 1,00	5,032 DIA TODAS 1,00 1,00 0,99
96-97 96-98 96-99 96-00	1,00 1,00 1,00 1,00	TODAS 1,00 1,00 0,99 0,99	200 CRESC. 1,00 1,00 1,00	TODAS 1,00 1,00 0,99 0,99 0,98	6,195 CO 400 CRESC. 1,00 1,00 1,00 1,00 1,00	4,495 TODAS 1,00 1,00 0,99 0,99 0,86	6,233 C (Volument 100 CRESC. 1,00 1,00 1,00 1,00 1,00	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,99 0,98	250 CRESC. 1,00 1,00 1,00 1,00 0,99	4,814 0m ² TODAS 1,00 0,99 0,99 0,98	MÉ CRESC. 1,00 1,00 1,00 1,00	5,032 DIA TODAS 1,00 1,00 0,99 0,99
96-97 96-98 96-99 96-00	CRESC. 1,00 1,00 1,00 1,00 1,00	TODAS 1,00 1,00 0,99 0,99 0,83	200 CRESC. 1,00 1,00 1,00 1,00 0,99	Om ² TODAS 1,00 1,00 0,99 0,99 0,98 En	6,195 Co 400 CRESC. 1,00 1,00 1,00 1,00 1,00 0 0 0 0 0 0 0	4,495 rrelação Dm² TODAS 1,00 1,00 0,99 0,99 0,86 io do cr	6,233 O (Volume 100 CRESC. 1,00 1,00 1,00 1,00 1,00 1,00 escime	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,99 0,98	250 CRESC. 1,00 1,00 1,00 1,00 0,99	4,814 0m ² TODAS 1,00 0,99 0,99 0,98 0,86	MÉ CRESC 1,00 1,00 1,00 1,00 1,00	5,032 DIA TODAS 1,00 1,00 0,99 0,99
96-97 96-98 96-99 96-00 96-01	CRESC. 1,00 1,00 1,00 1,00 1,00	TODAS 1,00 1,00 0,99 0,99	200 CRESC. 1,00 1,00 1,00 1,00 0,99	Om ² TODAS 1,00 1,00 0,99 0,99 0,98 En	6,195 Co 400 CRESC. 1,00 1,00 1,00 1,00 1,00 0 padrã	4,495 TODAS 1,00 1,00 0,99 0,99 0,86	6,233 O (Volume 100 CRESC. 1,00 1,00 1,00 1,00 1,00 1,00 escime	5,623 me) 0m² TODAS 1,00 1,00 0,99 0,99 0,98 mto (m³/	250 CRESC. 1,00 1,00 1,00 1,00 0,99	4,814 0m ² TODAS 1,00 0,99 0,99 0,98	MÉ CRESC 1,00 1,00 1,00 1,00 1,00	5,032 DIA TODAS 1,00 1,00 0,99 0,99 0,90
96-97 96-98 96-99 96-00 96-01	CRESC. 1,00 1,00 1,00 1,00 1,00	0m ² TODAS 1,00 1,00 0,99 0,99 0,83	200 CRESC. 1,00 1,00 1,00 1,00 0,99	Om ² TODAS 1,00 1,00 0,99 0,99 0,98 En	6,195 Co 400 CRESC. 1,00 1,00 1,00 1,00 1,00 0 0 0 0 0 0 0	4,495 rrelação Dm² TODAS 1,00 1,00 0,99 0,99 0,86 60 do cr	6,233 O (Volur 100 CRESC. 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,99 0,98 nto (m³/	250 CRESC. 1,00 1,00 1,00 0,99 ha)	4,814 0m ² TODAS 1,00 0,99 0,99 0,98 0,86	6,024 MÉ CRESC. 1,00 1,00 1,00 1,00 1,00 MÉ	5,032 DIA TODAS 1,00 1,00 0,99 0,99 0,90 DIA
96-97 96-98 96-99 96-00 96-01 PERÍODO	CRESC. 1,00 1,00 1,00 1,00 1,00 1,00 CRESC.	0m ² TODAS 1,00 1,00 0,99 0,99 0,83 0m ² TODAS	200 CRESC. 1,00 1,00 1,00 1,00 0,99	Om ² TODAS 1,00 1,00 0,99 0,99 0,98 En	6,195 Co 400 CRESC. 1,00 1,00 1,00 1,00 1,00 0 padra 400 CRESC.	4,495 rrelação Dm² TODAS 1,00 1,00 0,99 0,99 0,86 io do cr Dm² TODAS	6,233 C(Volur 100 CRESC. 1,00 1,00 1,00 1,00 1,00 escime 100 CRESC.	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,99 0,98 nto (m³/ 0m² TODAS	250 CRESC. 1,00 1,00 1,00 0,99 ha) 250 CRESC.	4,814 0m ² TODAS 1,00 0,99 0,98 0,86 0m ² TODAS	MÉ CRESC. 1,00 1,00 1,00 1,00 1,00 MÉ CRESC.	5,032 DIA TODAS 1,00 1,00 0,99 0,99 0,90 DIA TODAS
96-97 96-98 96-99 96-00 96-01 PERÍODO	CRESC. 1,00 1,00 1,00 1,00 1,00 1,00 CRESC. 0,578	0m ² 1,00 1,00 0,99 0,99 0,83 0m ² TODAS 0,620	200 CRESC. 1,00 1,00 1,00 1,00 0,99 200 CRESC. 0,739	Om ² TODAS 1,00 1,00 0,99 0,99 0,98 En	6,195 Co 400 CRESC. 1,00 1,00 1,00 1,00 1,00 CO CRESC. 1,515	4,495 TODAS 1,00 1,00 0,99 0,99 0,86 to do cr 0m ² TODAS 1,191	6,233 C(Volur 100 CRESC. 1,00 1,00 1,00 1,00 1,00 CRESC. 100 CRESC. 2,171	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,99 0,98 nto (m³/ 0m² TODAS 1,762	250 CRESC. 1,00 1,00 1,00 0,99 ha) 250 CRESC. 3,433	4,814 0m ² TODAS 1,00 0,99 0,99 0,98 0,86 0m ² TODAS 2,870	MÉ CRESC. 1,00 1,00 1,00 1,00 1,00 CRESC. 1,687	5,032 DIA TODAS 1,00 1,00 0,99 0,99 0,90 DIA TODAS 1,444
96-97 96-98 96-99 96-00 96-01 PERÍODO 96-97 96-98	CRESC. 1,00 1,00 1,00 1,00 1,00 100 CRESC. 0,578 0,722	0m ² 1,00 1,00 0,99 0,99 0,83 0m ² TODAS 0,620 0,945	200 CRESC. 1,00 1,00 1,00 0,99 200 CRESC. 0,739 0,857	Om ² TODAS 1,00 1,00 0,99 0,99 0,98 En Om ² TODAS 0,778 1,134	6,195 Co 400 CRESC. 1,00 1,00 1,00 1,00 1,00 O padra 400 CRESC. 1,515 1,635	4,495 rrelação m² TODAS 1,00 1,00 0,99 0,99 0,86 to do cr 0m² TODAS 1,191 1,438	6,233 C(Volur 100 CRESC. 1,00 1,00 1,00 1,00 1,00 CRESC. 2,171 2,248	5,623 ne) 0m² TODAS 1,00 1,00 0,99 0,98 nto (m³/ 0m² TODAS 1,762 1,944	250 CRESC. 1,00 1,00 1,00 0,99 ha) 250 CRESC. 3,433 3,498	0m ² TODAS 1,00 0,99 0,99 0,98 0,86 0m ² TODAS 2,870 3,101	MÉ CRESC. 1,00 1,00 1,00 1,00 1,00 1,00 MÉ CRESC. 1,687 1,792	5,032 TODAS 1,00 1,00 0,99 0,99 0,90 DIA TODAS 1,444 1,712

Com relação ao coeficiente de variação, as árvores em crescimento apresentaram valores superiores aos da abordagem incluindo todas as árvores. Em média, as árvores em crescimento apresentaram coeficientes de variação entre 94,52% (2001) e 107,53% (1996), contra 77,70% (1996) e 92,89% (2001) da análise incluindo todas as árvores. Na análise dos diferentes tamanhos de parcelas, observam-se coeficientes de variação maiores nas parcelas com áreas pequenas, chegando a 170,27% em 1996 (100 m²) e 41,15% em 2001 (2500 m²), na abordagem das árvores em crescimento. O mesmo comportamento foi verificado na abordagem incluindo todas as árvores (tab. 19).

Na avaliação do crescimento em volume comercial utilizando o processo de amostragem com repetição total, considerando apenas as árvores em crescimento, observa-se um crescimento médio uniforme para os diferentes períodos analisados, com variação entre 6,024 m³/ha/ano (1996-2001) e 6,586 m³/ha/ano (1996-1997). Para as unidades amostrais, observa-se também uma uniformidade entre os diferentes tamanhos, com valores de crescimento próximos de 6,000 m³/ha/ano. Na abordagem referente a todas as árvores, em média o crescimento foi de 8,431 m³/ha/ano (1996-1997) e 5,032 m³/ha/ano (1996-2001), e comportamento similar para os diferentes tamanhos de unidades amostrais e períodos analisados.

A correlação entre os volumes comerciais nos vários períodos analisados, considerando apenas as árvores em crescimento, apresentou valores máximos (coeficientes próximos ou iguais a 1,00) para todos os tamanhos de unidades amostrais. Os altos valores encontrados revelam a forte correlação entre os volumes nos vários períodos de tempo, demonstrando que o intervalo entre duas medições pode ser no mínimo igual a cinco anos, uma vez que não foram observadas mudanças nas correlações quando os intervalos de tempo aumentaram.

Na abordagem referente a todas as árvores, a correlação apresentou comportamento diferenciado para os diferentes períodos e também para os diferentes tamanhos de parcelas. Em média, a correlação foi maior nos períodos de 1996-1997 e 1996-1998 (r = 1,00), e posterior decréscimo à medida que o intervalo entre as medições aumentou, chegando a 0,90 para o período de 1996-2001 (cinco anos de intervalo). Assim, para períodos maiores ou iguais a cinco anos, deve-se observar o comportamento da correlação para evitar problemas maiores nas

avaliação do crescimento. Com relação ao comportamento do coeficiente de correlação para os diferentes tamanhos de parcelas, observou-se uma tendência similar, com valores maiores nos períodos menores e posterior decréscimo para períodos de tempo maiores. Destacam-se também, as parcelas de 100 m² e 2500 m², que apresentaram os menores valores de correlação, respectivamente iguais a 0,83 e 0,86, ambos no período de 1996-2001.

Na análise do erro padrão do crescimento em volume comercial, observou-se que na abordagem envolvendo apenas as árvores em crescimento, o erro variou, em média, entre 1,687 m³/ha e 2,300 m³/ha, respectivamente para os períodos de 1996-1997 e 1996-2001, representando um aumento de 36,3% em relação ao período inicial. As parcelas de 100 e 200 m² apresentaram os menores erros padrão, variando respectivamente entre 0,578 (96-97) e 1,362 m³/ha (96-98), e 0,739 (96-97) e 1,371 m³/ha (96-98). A parcela de 2500 m² apresentou o maior erro padrão do crescimento, variando entre 3,433 (96-97) e 3,802 m³/ha (96-01), comprovando a influência do tamanho da unidade amostral no erro padrão encontrado.

Com relação ao comportamento do erro padrão do crescimento na abordagem que inclui todas as árvores, observou-se a mesma tendência encontrada na abordagem anterior, com erros menores nos períodos iniciais e posterior acréscimo para os períodos de tempo maiores. Em média, os valores oscilaram entre 1,444 (96-97) e 4,172 m³/ha (96-01), resultando um acréscimo de aproximadamente 188% em relação ao período inicial, muito superior ao encontrado na abordagem envolvendo somente as árvores em crescimento. Na avaliação dos diferentes tamanhos de unidades amostrais, os maiores acréscimos foram encontrados na parcela de 100 e 400 m², apresentando respectivamente aumentos de 730 e 333% em relação ao período inicial.

No geral, os acréscimos encontrados na análise do erro padrão do crescimento na abordagem envolvendo todas as árvores revelaram variações muito superiores ao encontrado na abordagem das árvores em crescimento. A princípio, este fato pode ser explicado pela própria dinâmica da floresta, onde a mortalidade e o ingresso vão causar variações significativas no crescimento, pela morte de indivíduos de grande porte e posterior ingresso de espécies de rápido crescimento. Ao contrário, quando excluímos a mortalidade e o ingresso, a análise resume-se ao

crescimento individual das árvores, não proporcionando grandes alterações durante o período.

4.2.3 Amostragem com Repetição Parcial (ARP)

A tabela 20 apresenta as principais estimativas para o volume comercial das árvores no período de 1996 a 2001, utilizando o processo de amostragem com repetição parcial. Assim como nos processos anteriormente discutidos, foram consideradas duas abordagens para a análise: a primeira, envolvendo apenas as árvores em crescimento, e a segunda, onde foram incluídas todas as árvores (mortas e ingressas). Todas as estimativas obtidas pelo referido processo foram calculadas com base em diferentes tamanhos de unidades amostrais.

Através das estimativas referentes à média volumétrica obtida no processo de amostragem com repetição parcial, observa-se que, quando foram consideradas apenas as árvores em crescimento, o volume apresentou em média um acréscimo de aproximadamente 25% no período (4,2% ao ano), passando de 120,793 m³/ha em 1996 para 150,546 m³/ha em 2001. Com relação aos diferentes tamanhos de unidades amostrais, a parcela de 100 m² apresentou o menor acréscimo em volume comercial por hectare, com cerca de 11%, e a parcela de 400 m² o maior acréscimo, com cerca de 40% no período de 1996 a 2001.

Na abordagem referente a todas as árvores (tab. 20), o volume aumentou em média 18% no período de 1996 a 2001, inferior à porcentagem encontrada na análise das árvores em crescimento. A parcela de 400 m² apresentou o menor acréscimo (9%) e a parcela de 2500 m² o maior acréscimo (36%) em volume comercial por hectare no período de 1996 a 2001. No geral, a abordagem envolvendo as árvores em crescimento apresentou volumes médios sempre inferiores a abordagem que envolve todas as árvores, independente do tamanho da parcela e do período analisado, com exceção da parcela de 2500 m², que apresentou volumes inferiores em determinados períodos.

TABELA 20 - PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A AMOSTRAGEM COM REPETIÇÃO PARCIAL NO PERÍODO DE 1996 A 2001

							lume(m					
ANO	100)m²	200)m²)m²		0m ²	2500	0m²	MÉ	DIA
	CRESC.		CRESC.	TODAS	CRESC.		CRESC.		CRESC.		CRESC.	
1996	123,165			133,618	111,245		116,762		126,593			134,654
1997	130,796	149,057		148,261	ı .	127,534	115,655		137,961	133,666		141,862
1998	130,166	149,162		147,733	131,827	140,372	130,222	152,694	135,085	140,130	131,623	146,018
1999	134,957	157,058		151,229	138,009	151,305	132,229	159,597	146,801	139,827	138,444	151,803
2000	146,180	158,168	145,142	168,827	145,185	163,059	132,128	170,961	148,856	156,248	143,498	1 63 ,453
2001	147,817	150,778	140,165	156,052	1	155,029	147,686		161,518		150,546	159,541
					Er	ro padr	ão (m³/t	ıa)				
ANO	100)m²	200)m²	400)m²	100	0m²	250	0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
1996	8,657	8,770	9,232	8,853	9,687	12,039	10,567	11,512	10,456	7,695	9,720	9,774
1997	8,940	9,542	9,669	9,918	9,305	9,531	8,989	11,311	9,227	6,647	9,226	9,390
1998	7,584	8,517	8,724	8,510	10,737	11,029	9,375	11,323	9,912	7,722	9,267	9,420
1999	8,415	8,733	9,374	8,940	11,024	11,542	7,940	11,377	10,263	8,411	9,403	9,801
2000	8,462	9,108	6,382	10,598	10,932	11,560	8,561	12,513	10,313	10,929	8,930	10,941
2001	8,351	8,403	6,190	8,996	10,630	11,340	9,921	12,906	10,202	8,660	9,059	10,061
				Coe	eficiente	de var	iação (%	6) - Volu	ıme			
ANO	100	Dm ²	200	Om²		Om ²		0m²	250	0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.		CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
1996	182,21	171,69	134,09	121,46	112,87	110,02	74,19	64,50	42,82	33,50	109,24	100,23
1997	182,44	170,41	139,22	125,68	101,35	96,37	64,64	63,35	35,57	26,30	104,64	96,42
1998	153,45	151,87	125,74	108,53	108,36	104,20	60,02	62,47	39,18	29,31	97,35	91,28
1999	165,72	147,31	126,12	111,24	105,96	101,19	45,82	59,89	37,32	31,88	96,19	90,30
2000	153,35	151,77	85,63	117,32	99,73	93,72	51,21	61,33	36,95	36,10	85,37	92,05
2001	148,55	142,39	79,45	107,43	90,04	95,79	55,33	53,88	33,67	27,57	81,41	85,41
				M	édia de	crescin	nento (n	n³/ha/an	0)	-		
PERÍODO	100	Dm ²	200)m²	400)m²	100	0m²	250	0m ²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
96-97	6,956	8,124	6,244	8,501	6,272	7,115	6,276	8,156	6,216	7,279	6,393	7,835
96-98	6,775	7,439	6,012	8,170	6,914	6,746	6,248	7,372	6,029	7,331	6,396	7,411
96-99	6,600	7,050	5,941	7,621	7,044	6,685	5,986	6,810	6,048	6,731	6,324	6,979
96-00	6,507	6,185	5,732	7,160	6,807	6,426	5,774	6,298	5,900	6,186	6,144	6,451
96-01	6,284	4,684	5,492	6,317	6,737	6,015	5,744	4,672	5,594	5,732	5,970	5,484
					Co	rrelação	o (Volur	ne)				
PERÍODO	100	Om²	200	Dm²		Om²		0m ²	250	0m²	MÉ	DIA
		TODAS									CRESC.	
96-97	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
96-98	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
96-99	1,00	0,99	1,00	1,00	1,00	1,00	0,99	1,00	1,00	1,00	1,00	1,00
96-00	1,00	0,99	1,00	1,00	0,99	1,00	0,99	0,99	1,00	0,99	1,00	0,99
96-01	0,99	0,98	1,00	0,99	0,99	0,99	0,99	0,86	1,00	0,98	0,99	0,96
					o padrā	io do cr	escime	nto (m³/	ha\			
PERÍODO	100	0m²	200	Om ²		Om ²		0m ²		0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
96-97	0,893	1,711	1,121	2,178	0,740	4,984	3,102	0,650	1,869	1,879	1,545	2,280
96-98	2,407	1,329	1,040	1,080	1,888	2,422	2,804	1,407	0,802	1,146	1,788	1,477
96-99	1,426	1,781	0,874	1,274	2,313	2,293	6,624	1,897	0,794	1,833	2,406	1,816
96-00	1,800	2,273	1,119	2,945	2,390	2,777	5,635	2,602	1,032	5,094	2,395	3,138
96-01	2,443	3,960	1,833	2,325	2,800	3,788	3,695	9,935	1,120	3,327	2,378	4,667
			•									

Conforme pode-se observar na tabela 20, o erro padrão em volume comercial apresentou pequenas variações no período de 1996 a 2001, para ambas as abordagens. Na abordagem que inclui apenas as árvores em crescimento, o erro padrão oscilou, em média, entre 8,930 e 9,720 m³/ha, enquanto que na abordagem envolvendo todas as árvores, a variação encontrada foi pouco superior, oscilando entre 9,390 e 10,941 m³/ha. Para ambas as abordagens, o erro padrão não apresentou uma tendência definida de variação, alternando acréscimos e decréscimos nos vários período e tamanhos de unidades amostrais. Observou-se também, que nas parcelas com menor área o valor do erro padrão foi pouco menor que o encontrado nas parcelas com áreas maiores.

Na análise referente ao coeficiente de variação (%) para o volume comercial das árvores, observou-se que os valores encontrados em 1996 foram superiores aos de 2001, para ambas as abordagens. Na análise envolvendo as árvores em crescimento, em média, a maior variabilidade foi no ano de 1996 (CV% = 109,24), e posterior redução até o ano de 2001 (CV% = 81,41). Com relação aos diferentes tamanhos de parcelas, observou-se maior variabilidade nas parcelas menores, com coeficientes variando entre 148,55 e 182,21% na parcela de 100 m² e entre 33,67 e 42,82% na parcela de 2500 m². Na abordagem envolvendo todas as árvores, as parcelas de 100 e 2500 m², apresentaram respectivamente, a maior (CV% entre 142,39 e 171,59) e a menor (CV% entre 26,30 e 27,57) variabilidade.

Na análise da média de crescimento utilizando o processo de amostragem com repetição parcial, observa-se que, na abordagem envolvendo apenas as árvores em crescimento, em média o crescimento diminuiu de 6,393 m³/ha no período de 1996-1997 para 5,970 m³/ha no período de 1996-2001, representando uma redução de aproximadamente 7% em relação ao período inicial. Com relação aos diferentes tamanhos de parcelas, não se constatou mudanças significativas nos diferentes períodos.

Na abordagem envolvendo todas as árvores, o crescimento decresceu em média de 7,835 (96-97) para 5,484 m³/ha/ano (96-01), representando uma redução de 30% em relação ao período inicial, cerca de quatro vezes maior que a encontrada na análise envolvendo apenas as árvores em crescimento. Com relação aos diferentes tamanhos de unidades amostrais, observou-se a maior variação na

parcela de 100 m² (redução próxima de 42%) e a menor na parcela de 400 m² (redução de 15,4%) no período de 1996 a 2001. No geral, quando se consideram todas as árvores da floresta, observa-se uma maior variabilidade do crescimento nos diversos períodos, uma vez que o ingresso e a mortalidade são fatores que influenciam diretamente neste processo.

Como se pode observar na tabela 20, a correlação entre os volumes nos diferentes períodos de tempo e diferentes tamanhos de unidades amostrais, não apresentou diferenças significativas nas duas abordagens em questão. Na abordagem incluindo apenas as árvores em crescimento, observou-se uma correlação entre 0,99 e 1,00 para todos os casos, indicando uma altíssima correlação entre os volumes nos períodos analisados. Quando foram consideradas todas as árvores, a correlação oscilou entre 0,98 e 1,00 (exceção da parcela de 1000 m² no período de 96-01 que apresentou r = 0,86), indicando também uma forte correlação entre os volumes nos diversos períodos. No geral, pela alta correlação encontrada nos diferentes períodos, pode-se considerar um intervalo maior entre duas medições para análise do crescimento (cinco anos, por exemplo), uma vez que a correlação se mantém alta quando se aumenta o intervalo entre medições.

Na análise do erro padrão do crescimento (tab. 20), quando se consideram apenas as árvores em crescimento, em média os valores oscilaram entre 1,545 (96-97) e 2,378 m³/ha (96-01), revelando um aumento do erro padrão para intervalos entre medições maiores (54% de aumento de 1996-2001). Entre os diferentes tamanhos, a parcela de 1000 m² apresentou os maiores valores (entre 2,804 e 6,6624 m³/ha), e as demais apresentaram erros entre 0,893 e 2,800 m³/ha. Quando foram consideradas todas as árvores, o erro padrão variou, em média, entre 1,477 e 4,667 m³/ha (104% de aumento em relação ao período inicial 96-97), muito superior ao encontrado na abordagem incluindo somente as árvores em crescimento. Com relação aos diferentes tamanhos de parcelas, as maiores variações foram verificadas na parcela de 1000 m², com cerca de 1400% de aumento em relação ao período inicial (entre 0,65 e 9,935 m³/ha, respectivamente para 96-97 e 96-01), confirmando a alta variabilidade entre os diferentes períodos.

4.2.4 Dupla Amostragem (DA)

A tabela 21 apresenta as principais estimativas referentes ao volume comercial das árvores para o processo de dupla amostragem, no período de 1996 a 2001, considerando diferentes intervalos entre as medições e diferentes tamanhos de parcelas. Foram consideradas também duas abordagens, a primeira incluindo apenas as árvores em crescimento, e a segunda incluindo todas as árvores da floresta (9,0 hectares).

Os volumes comerciais estimados pela dupla amostragem, segundo a abordagem referente às árvores em crescimento, oscilaram, em média, de 122,526 m³/ha (1996) a 152,080 m³/ha (2001), representando um aumento de aproximadamente 24% em relação ao ano inicial. Nas estimativas por parcela, os maiores volumes foram encontrados na parcela de 1000 m² (entre 136,476 e 168,701 m³/ha), e os menores nas parcelas de 200 e 400 m² (117,050 a 143,009 m³/ha e 111,706 a 144,108 m³/ha, respectivamente).

Na abordagem envolvendo todas as árvores, os volumes estimados variaram, em média, entre 128,749 e 156,051 m³/ha respectivamente para os anos de 1996 e 2001. Com relação às estimativas nos diversos tamanhos de unidades amostrais, destacam-se as parcelas de 200, 400 e 1000 m² (volumes acima da média) e as parcelas de 100 e 2500 m² (volumes abaixo da média).

No geral, pode-se afirmar que os volumes comerciais estimados em ambas as abordagens apresentaram aumentos gradativos nos diferentes tamanhos de unidades amostrais e diversos anos de medições.

Na análise referente ao coeficiente de variação (CV%), observou-se que, na abordagem envolvendo as árvores em crescimento, a variabilidade decresceu, em média, de 107,62% em 1996 para 94,62% em 2001 (redução de aproximadamente 12%). Para os diferentes tamanhos de unidades amostrais, observou-se a mesma tendência de redução no período estudado, para as parcelas de 100 m² (maiores valores no período), 400 m² e 1000 m². As demais parcelas apresentaram pequenas oscilações no período, com destaque a parcela de 2500 m², que apresentou os menores valores (CV%) no período.

TABELA 21 - PRINCIPAIS ESTIMATIVAS REFERENTES AO VOLUME COMERCIAL PARA A DUPLA AMOSTRAGEM NO PERÍODO DE 1996 A 2001

	•	11110011	COLIN		Médi		lume(m					
ANO	100	lm²	200)m²	400		100		250	0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.		CRESC.		CRESC.		CRESC.		CRESC.	
1996				135,044		131,550	136,476		125,247			128,749
1997			122,919	144,168			143,377		131,602	- 1	129,191	
1998		137,095	128,588	150,570		148,625	149,974	149,844	137,019	•	135,484	
1999	141,709	141,572	133,759	157,018			156,480	154,506	142,343	•		148,916
2000	147,203	143,238	138,576	160,737		162,551	162,638		147,185		146,860	152,604
2001		146,055	143,009	165,977		166,496	168,701		151,877			
				<u> </u>			ão (m³/h					
ANO	100	m²	200)m²	400			0m ²	250	0m ²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.		CRESC.	TODAS	CRESC.	TODAS
1996	8,931	8,362	8,925	10,518	6,966	10,876	11,360	11,507	8,223	10,625	8,881	10,378
1997	11,206	7,438	11,028	8,883	4,522	10,443	11,589	11,720	9,966	10,147	9,662	9,726
1998	11,456	7,620	11,257	9,381	4,658	10,874	11,707	11,937	10,102	10,134	9,836	9,989
1999	11,649	7,907	11,365	9,934	4,821	11,341	11,875	12,154	10,254	10,395	9,993	10,346
2000	11,860	8,255	11,566	10,353	5,015	11,743	12,129	12,494	10,455	10,390	10,205	10,647
2001	12,178	8,558	11,791	10,949	5,192	12,266	12,359	12,886	10,803	10,751	10,464	11,082
			<u></u>		eficiente							
ANO	100	Om ²	200)m²	400		100			0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS		TODAS	CRESC.	TODAS	CRESC.		CRESC.	TODAS
1996	215,20	143,19	139,77	111,92	80,83	95,33	68,24	66,31	34,04	41,57	107,62	91,67
1997	206,73	136,04	153,81	106,45	65,21	91,02	62,74	63,16	35,31	39,81	104,76	87,30
1998	201,10	133,07	149,80	106,48	62,13	88,86	60,27	61,15	34,22	37,22	101,50	85,36
1999	194,98	129,64	144,92	106,16	60,29	87,85	58,11	59,96	33,16	36,20	98,29	83,96
2000	190,66	128,84	141,90	105,81	59,17	86,85	56,64	59,45	32,42	34,91	96,16	83,17
2001	187,63	129,65	139,57	107,70	58,17	87,30	54,87	59,04	32,28	34,74	94,50	83,69
	10.700				édia de						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PERÍODO	100	Om ²	200)m²	400			0m²		0m²	MÉ	DIA
	CRESC.		CRESC.	TODAS	CRESC.		CRESC.	TODAS	CRESC.		CRESC.	TODAS
96-97	6,954	9,018	5,869	9,475	7,246	8,822	6,901	8,168	6,355	8,043	6,665	8,705
96-98	6,678	6,270	5,769	8,137	7,313	8,731	6,749	7,366	5,886	7,068	6,479	7,514
96-99	6,519	5,679	5,570	7,693	6,971	8,331	6,668	6,472	5,698	6,777	6,285	6,990
96-00	6,263	4,670	5,382	6,740	6,748	7,939	6,541	6,012	5,484	5,585	6,084	6,189
96-01	6,111	4,314	5,192	6,523	6,480	7,164	6,445	5,565	5,326	4,795	5,911	5,672
			<u> </u>				o (Volur					
PERÍODO	100	Om ²	200)m²	400			Om ²	250	0m ²	MÉ	DIA
					CRESC.							
96-97	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
96-98	1,00	0,99	1,00	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,99
96-99	1,00	0,97	1,00	0,98	0,99	1,00	1,00	1,00	1,00	0,99	1,00	0,99
96-00	1,00	0,95	1,00	0,97	0,99	0,99	1,00	0,99	1,00	0,99	1,00	0,98
96-01	0,99	0,95	1,00	0,97	0,98	0,99	0,99	0,99	1,00	0,98	0,99	0,97
				En	o padrã	o do cr	escime	nto (m³/	ha)			
PERÍODO	10	0m²	200	Om ²	400)m²	100	0m ²	250	0m²	MÉ	DIA
	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS	CRESC.	TODAS
96-97	0,607	0,636	0,604	0,773	0,582	0,878	0,884	1,103	0,783	0,985	0,692	0,875
96-98	1,053	1,973	1,076	1,868	1,094	1,715	1,721	1,961	1,431	2,779	1,275	2,059
96-99	1,608	3,101	1,583	3,018	1,470	2,282	2,536	2,647	2,163	3,412	1,872	2,892
96-00	1,963	4,147	1,982	4,026	1,772	2,754	3,192	3,232	2,761	4,264	2,334	3,685
96-01	2,593	4,514	2,424	4,492	2,059	3,799	4,072	4,234	3,170	5,289	2,864	4,465

Como se pode observar na tabela 21, na abordagem das árvores em crescimento, o erro padrão da estimativa apresentou, em média, um aumento de 17,8 %, passando de 8,881 m³/ha em 1996 para 10,464 m³/ha em 2001. Para os diferentes tamanhos de parcelas, destaca-se a unidade de 400 m², que apresentou os menores valores e redução do erro padrão no período (6,966 m³/ha em 1996 e 5,192 m³/ha em 2001). As demais unidades apresentaram erros entre 8,223 (2500 m²) e 12,359 m³/ha (1000 m²). Na análise referente a todas as árvores, o erro padrão da estimativa apresentou valores médios entre 9,726 (1997) e 11,082 m³/ha (2001), indicando um decréscimo no período de 1996 a 1997, e posterior crescimento no período de 1997 a 2001. Nesta abordagem destacam-se: as parcelas de 100 e 200 m² (menores erros no período), a parcela de 1000 m² (maiores erros no período), a parcela de 2500 m² (menor variabilidade no período).

Na abordagem envolvendo todas as árvores, os coeficientes de variação foram pouco menores do que os encontrados na abordagem anterior, oscilando entre 91,67% em 1996 e 83,69% em 2001 (redução de 8,7% no período). Para os diferentes tamanhos de parcelas, observou-se a mesma tendência de redução no período, com pequenas alterações nas parcelas de 100, 200 e 400 m², que apresentaram aumentos nos período de 2000-2001. Destaca-se também, que as parcelas de 100 e 2500 m² apresentaram, respectivamente, os menores e maiores coeficientes de variação (CV%).

Na análise do crescimento, para ambas as abordagens, observou-se uma redução no período de 1996 a 2001, para todos os tamanhos de parcelas. Para as árvores em crescimento, o crescimento variou em média, entre 6,665 (1996-1997) e 5,911 m³/ha/ano (1996-2001), resultando em um decréscimo de aproximadamente 11% em relação ao período inicial. Nos diversos tamanhos de unidades amostrais, a média de crescimento apresentou os maiores valores na parcela de 400 m² (média \rightarrow 6,952 m³/ha/ano) e os menores na parcela de 2500 m² (média \rightarrow 5,750 m³/ha/ano).

Na abordagem envolvendo todas as árvores, o crescimento oscilou em média, entre 8,705 e 5,672 m³/ha/ano, resultando em uma redução de aproximadamente 35% em relação ao período inicial, muito superior à porcentagem encontrada na

abordagem anterior. Com relação ao comportamento do crescimento nos diferentes tamanhos de parcelas, destaca-se a unidade de 100 m², que apresentou o menor valor médio (5,990 m³/ha/ano), e a unidade de 400 m² que obteve o maior valor médio (8,197 m³/ha/ano).

No geral, pode-se concluir que, quando a floresta é analisada abordando apenas as árvores em crescimento, a variabilidade das taxas de crescimento encontradas nos diferentes períodos e tamanhos de parcelas é menor, uma vez que não são incluídas no processo as árvores mortas e ingressas, que influenciam diretamente a análise do crescimento.

Como se pode observar na tabela 21, para a análise das árvores em crescimento, as correlações encontradas nos diferentes tamanhos de unidades e períodos de tempo, ficaram próximas de um $(r = 1,00 \rightarrow correlação perfeita)$, demonstrando assim, que existe forte correlação entre os volumes medidos nas duas ocasiões. Destacam-se as parcelas de 200 e 2500 m² (r = 1,00) e a parcela de 400 m² $(0,98 \le r \le 1,00)$. Em todos os casos a correlação tende a decrescer com o aumento do intervalo entre as medições.

Na abordagem envolvendo todas as árvores, a correlação encontrada oscilou em média, entre 1,00 (1996-1997) e 0,97 (1996-2001). Para os diferentes tamanhos de parcelas, observou-se a mesma tendência, destacando-se a parcela de 100 m^2 , que apresentou a menor correlação ($\text{r} = 0,95 \rightarrow 1996-2001$) e as parcelas de 400 e 1000 m^2 que apresentaram os maiores (0,99 \leq r \leq 1,00). De modo geral, quanto maior o período entre duas medições a tendência é se obter correlações menores, principalmente quando se analisa todas as árvores da floresta (mortas e ingressas).

Na análise do erro padrão do crescimento, quanto à abordagem das árvores em crescimento, obteve-se valores oscilando em média, entre 0,692 e 2,864 m³/ha/ano, respectivamente para os períodos de 1996-1997 e 1996-2001, representando um aumento de aproximadamente 314% em relação ao período inicial. Na análise envolvendo os diferentes tamanhos de parcelas, observou-se que as unidades de 100, 200 e 400 m² apresentaram valores muito próximos da média em todos os períodos, enquanto que as unidades de 1000 e 2500 m² apresentaram erros maiores em todos os períodos.

O erro padrão do crescimento, na análise referente a todas as árvores, apresentou valores superiores aos encontrados na abordagem anterior, variando em média, entre 0,875 e 4,465 m³/ha/ano (aumento de 410%), respectivamente para os períodos de 1996-1997 e 1996-2001. As unidades apresentaram grande variabilidade entre os períodos, destacando a unidade de 100 m², que apresentou o maior acréscimo (609%), e a parcela de 400 m² que obteve o menor acréscimo (332%) em relação ao ano inicial. Destaca-se também que os maiores erros foram verificados na parcela de 2500 m², chegando a 5,289 m³/ha/ano (1996-2001).

4.3 Análise comparativa dos processos de amostragem

A análise em questão foi realizada com base nas principais estimativas obtidas em cada processo de amostragem, tendo como objetivo principal uma avaliação comparativa, considerando as duas abordagens estudadas (apenas as árvores em crescimento e todas as árvores) e os diferentes tamanhos de unidades amostrais (100, 200, 400, 1000 e 2500 m²).

4.3.1 Volume médio

As figuras 4 e 5 apresentam as estimativas referentes ao volume comercial médio para os quatro processos de amostragem em questão, no período de 1996 a 2001, para os diferentes tamanhos de unidades amostrais, considerando as duas abordagens em análise: árvores em crescimento e todas as árvores.

A) AMOSTRAGEM INDEPENDENTE

Como pode-se observar nas figuras 4 e 5, os volumes comerciais estimados através da amostragem independente, na abordagem referente às árvores em crescimento, apresentaram para os diferentes tamanhos de unidades amostrais comportamentos similares, não havendo diferenças expressivas no gráfico observado. Destaca-se também que nos períodos de 1997 e 1999 os diferentes tamanhos apresentaram valores muito próximos.

Na abordagem referente a todas as árvores, as estimativas encontradas nos diferentes tamanhos de unidades amostrais, apresentaram volumes mais próximos no período inicial (1996) e variações maiores nos demais períodos. Destacam-se

também, os volumes estimados na unidade de 200 m², que a partir de 1997 apresentou uma expressiva redução, ocasionada pela morte de alguns indivíduos da floresta entre 1997 e 1998.

B) AMOSTRAGEM COM REPETIÇÃO TOTAL

Como se pode observar na figura 4, o comportamento das estimativas dos volumes comerciais médios para as árvores em crescimento, apresentou tendência similar à encontrada na amostragem independente. Não foram observadas grandes variações entre os diferentes tamanhos de unidades amostrais no período estudado, destacando-se as estimativas obtidas em 1999, onde os volumes mais se aproximaram.

Na abordagem referente a todas as árvores (fig. 5), observou-se uma maior variação entre os vários tamanhos de unidades amostrais. A unidade de 2500 m² apresentou as maiores estimativas em volume comercial; a unidade de 200 m² as menores estimativas; e as demais apresentaram tendências aproximadas.

Portanto, a abordagem que inclui todas as árvores da floresta apresentou maiores variações em relação ao tamanho das unidades amostrais, enquanto que na abordagem das árvores em crescimento, as diferenças foram menos expressivas.

C) AMOSTRAGEM COM REPETIÇÃO PARCIAL

As estimativas para o volume comercial médio encontrada na amostragem com repetição parcial demonstram que para as árvores em crescimento (fig. 4), as diferentes unidades amostrais apresentaram diferenças maiores nos anos de 1997 e 2001, enquanto que em 1998 as diferenças foram muito pequenas. Destaca-se também, que a parcela de 1000 m^2 apresentou valores pouco abaixo das demais parcelas, enquanto que a de 2500 m^2 demonstrou valores acima das demais no período analisado.

FIGURA 4 – Volume comercial médio por processo de amostragem para diferentes tamanhos de unidades amostrais no período de 1996 a 2001 considerando apenas as árvores em crescimento

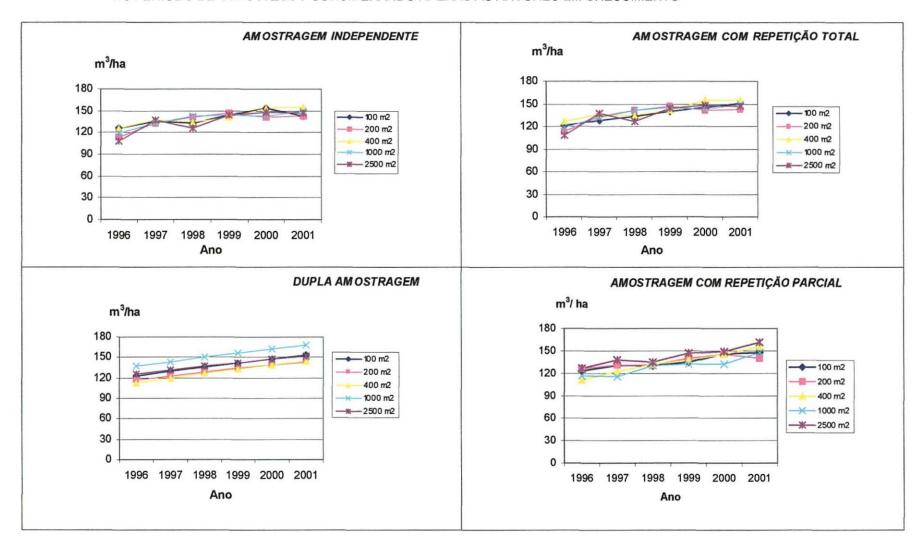
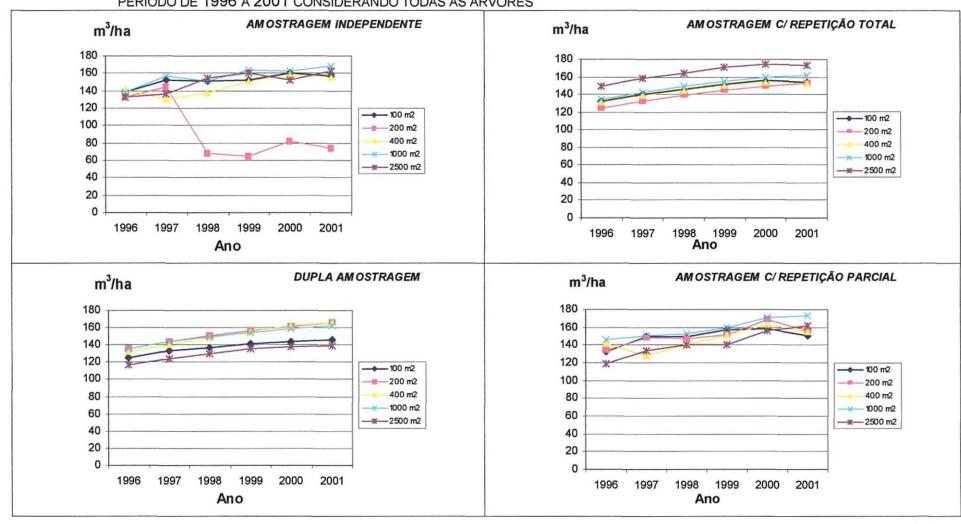



FIGURA 5 – Volume comercial médio por processo de amostragem para diferentes tamanhos de unidades amostrais no período de 1996 a 2001 considerando todas as árvores

Na abordagem referente a todas as árvores (fig.5), as diferenças entre as estimativas volumétricas nos vários tamanhos de parcelas ficou mais evidenciada. A parcela de 1000 m² apresentou uma tendência a estimativas maiores, enquanto que a parcela de 2500 m² se direciona para as menores estimativas no período, exatamente o contrário do encontrado na abordagem acima.

D) DUPLA AMOSTRAGEM

As estimativas para as árvores em crescimento na dupla amostragem (fig. 4), demonstram uma certa variabilidade entre os volumes encontrados nos diferentes tamanhos de unidades amostrais. A parcela de 1000 m² apresentou claramente tendência a maiores estimativas, enquanto que as parcelas de 200 e 400 m² revelaram estimativas muito próximas e abaixo das demais. As outras parcelas apresentaram valores intermediários.

Com relação à figura 5, que destaca a abordagem para todas as árvores, observa-se que as parcelas de 200, 400 e 1000 m², revelaram comportamentos similares e as maiores estimativas entre as parcelas no período analisado. Já a parcela de 2500 m² apresentou as menores estimativas do período.

É importante destacar, que devido ao fato da dupla amostragem estimar os volumes das unidades temporárias da segunda ocasião, as estimativas obtidas para o volume comercial foram as mais regulares (quase linear) entre os processos estudados, não sendo observados decréscimos nas estimativas durante todo o período estudado.

E) Análise final

Na abordagem referente às árvores em crescimento, os processos de amostragem independente e com repetição total, apresentaram as menores diferenças entre as estimativas do volume comercial nos diferentes tamanhos de unidades amostrais. Na dupla amostragem as diferenças das estimativas entre os vários tamanhos de unidades amostrais ficaram mais evidenciadas.

Na abordagem de todas as árvores, os processos apresentaram comportamentos similares nas estimativas do volume comercial, com destaque a amostragem independente que apresentou grande variação na parcela de 200 m².

No geral, qualquer análise que se faça utilizando as estimativas encontradas em cada situação, depende do conhecimento do volume comercial real da floresta, para se afirmar com precisão, qual tamanho de unidade mais se aproxima da realidade.

4.3.2 Erro padrão do volume comercial

As figuras 6 e 7 apresentam as estimativas referentes ao erro padrão do volume comercial no período de 1996 a 2001, destacando os valores encontrados nos diferentes tamanhos de unidades amostrais para a abordagem envolvendo as árvores em crescimento e para todas as árvores.

A) AMOSTRAGEM INDEPENDENTE

As estimativas obtidas para o erro padrão na amostragem independente, considerando apenas para as árvores em crescimento (fig. 6), revelaram comportamentos diferenciados para os diferentes tamanhos de unidades amostrais, com valores variando aproximadamente entre 8,000 e 12,000 m³/ha durante o período de 1996 a 2001. Em relação aos erros encontrados no ano inicial (1996) e final (2001), os diferentes tamanhos de unidades amostrais apresentaram pequenos acréscimos durante o período (exceto a unidade de 100 m² – decresceu), revelando maiores oscilações no período intermediário (1997 –2000). No geral, as unidades de 100 e 400 m² apresentaram respectivamente, os menores e os maiores erros durante o período.

Na abordagem referente a todas as árvores (fig. 7), a amostragem independente revelou comportamentos bem diferenciados no período de 1996 a 2001, com diferenças expressivas entre as estimativas obtidas para o erro padrão, nos diferentes tamanhos de unidades amostrais (amplitude de variação aproximadamente entre 4,000 e 12,000 m³/ha). Destacam-se: a unidade de 200 m², que apresentou as maiores variações e os menores erros no período; a unidade de 100 m², que apresentou as menores variações do erro padrão no período.

B) AMOSTRAGEM COM REPETIÇÃO TOTAL

Considerando apenas as árvores em crescimento (fig. 6), a amostragem com repetição total apresentou estimativas do erro padrão que oscilaram entre 8,000 e 12,000 m³/ha no período analisado, para os diferentes tamanhos de unidades. Como um todo, os erros obtidos nos diversos tamanhos de unidades revelaram pequeno aumento no final (exceção da parcela de 2500 m² – maior aumento) e maiores oscilações durante o período. Destacam-se, as parcelas de 100 e 400 m², que apresentaram respectivamente, os menores e maiores erros no período.

Para todas as árvores da floresta (fig.7), o erro padrão apresentou menores variações para os diferentes tamanhos de unidades, durante o período analisado, com valores variando entre 8,000 e 10,000 m³/ha. No geral, as unidades apresentaram comportamentos similares durante o período, destacando as unidades de 100, 400 e 2500 m² (maiores erros), que apresentaram redução do erro apenas no período final (2000 – 2001), e as unidades de 200 m² (menores erros) e 1000 m², com crescimento do erro durante todo o período.

C) AMOSTRAGEM COM REPETIÇÃO PARCIAL

Na análise das árvores em crescimento, o erro padrão obtido na amostragem com repetição parcial, apresentou diferenças expressivas para os diferentes tamanhos de unidades amostrais no período analisado. As diferenças entre as estimativas foram menores no início (1996) e maiores no final (2001), oscilando no geral, entre 6,000 e 11,000 m³/ha. Durante todo o período, o ano de 1997 apresentou as menores diferenças entre as estimativas do erro padrão para os diversos tamanhos de unidades amostrais. Destacam-se também: a unidade de 200 m², que apresentou sensível redução no erro padrão no período; a parcela de 400 m², com pequeno aumento no erro padrão no período; e as parcelas de 100, 1000 e 2500 m², que não apresentaram diferenças expressivas no erro padrão inicial (1996) e final (2001).

FIGURA 6 – ERRO PADRÃO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

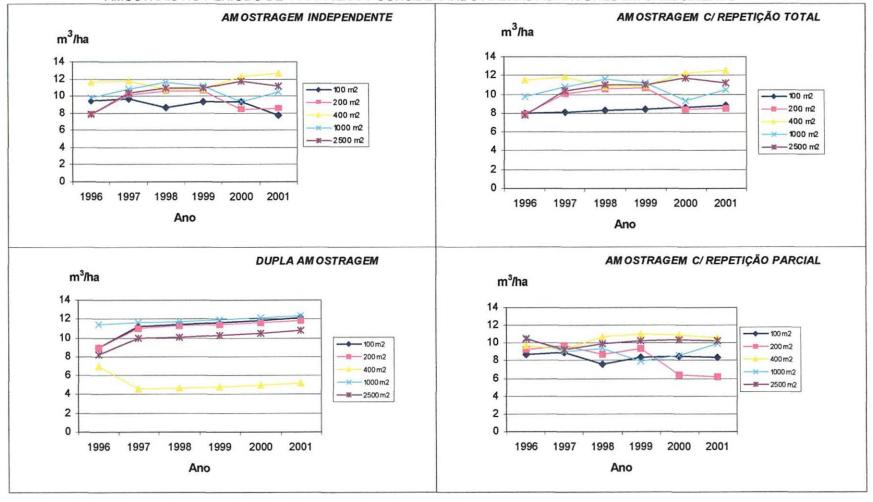


FIGURA 7 – ERRO PADRÃO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES

Na abordagem que inclui todas as árvores, observou-se também, variação significativa entre as estimativas do erro padrão nos diferentes tamanhos de unidades amostrais (entre 6,000 e 13,000 m³/ha). As parcelas de 1000 m² (maiores estimativas do erro padrão) e 2500 m² (tendência a menores estimativas) apresentaram tendência a pequenos aumentos no período. No geral, as parcelas de 100, 200 e 400 m², apresentaram pequenas diferenças nas estimativas dos erros em 1996 e 2001, demonstrando oscilações maiores durante o período.

D) DUPLA AMOSTRAGEM

Com pode-se observar na figura 6, para as árvores em crescimento, as estimativas do erro padrão encontradas nos diferentes tamanhos de unidades amostrais, revelaram comportamentos similares, com aumento no erro padrão durante o período, com exceção da unidade de 400 m², que apresentou uma considerável redução no período (principalmente entre 1996 e 1997). As unidades que mais se destacaram foram: a de 400 m² (menores erros no período) e a de 1000 m² (maiores erros no período).

Na análise de todas as árvores, as estimativas do erro padrão demonstraram tendências similares (pequenos aumentos) para os diferentes tamanhos de unidades amostrais no período de 1996 a 2001. Destacam-se, as parcelas de 100 e 1000 m², que apresentaram respectivamente, as menores e as maiores estimativas do erro padrão no período.

E) ANÁLISE FINAL

Em ambas as abordagens, os processos revelaram características particulares nas estimativas do erro padrão para os diferentes tamanhos de unidades amostrais.

Para análise das árvores em crescimento, os processo de amostragem independente e com repetição total, apresentaram estimativas do erro padrão com menor amplitude de variação, nos diferentes tamanhos de unidades amostrais. Na abordagem que envolve todas as árvores, a amostragem com repetição total

apresentou a menor amplitude de variação nas estimativas do erro padrão nos diferentes tamanhos de unidades amostrais.

4.3.3 Coeficiente de variação (%)

As figuras 8 e 9 apresentam as estimativas referentes ao coeficiente de variação (%) do volume comercial, para os quatro processos de amostragem em questão, no período de 1996 a 2001, considerando os diferentes tamanhos de unidades amostrais, e as duas abordagens em análise: árvores em crescimento e todas as árvores.

A) AMOSTRAGEM INDEPENDENTE

Com pode-se observar na figura 8 (árvores em crescimento), o coeficiente de variação (%) para o volume comercial apresentou grande variabilidade nos diferentes tamanhos de unidades amostrais no período de 1996 a 2001, oscilando aproximadamente entre 40 e 200%. Em todos os tamanhos de unidades amostrais, observou-se uma tendência a redução do coeficiente de variação de 1996 para 2001, com exceção da unidade de 2500 m², que apresentou pequeno aumento no período. Constatou-se também, uma redução gradativa no coeficiente de variação a medida em que se aumenta a área da unidade amostral, resultando a seguinte ordem decrescente de coeficientes encontrados: 100 m² (maiores CVs%), 200, 400, 1000 e 2500 m² (menores CVs%).

Para a análise referente a todas as árvores (fig. 9), observou-se a mesma tendência encontrada na abordagem anterior, onde o coeficiente de variação decresceu a medida em que se aumentou a área da unidade amostral, oscilando entre aproximadamente 25 e 180%. Em todos os casos constatou-se o aumento do coeficiente de variação no período, com exceção da unidade de 200 m², que apresentou pequeno aumento no período.

FIGURA 8 - COEFICIENTE DE VARIAÇÃO (%) DO VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

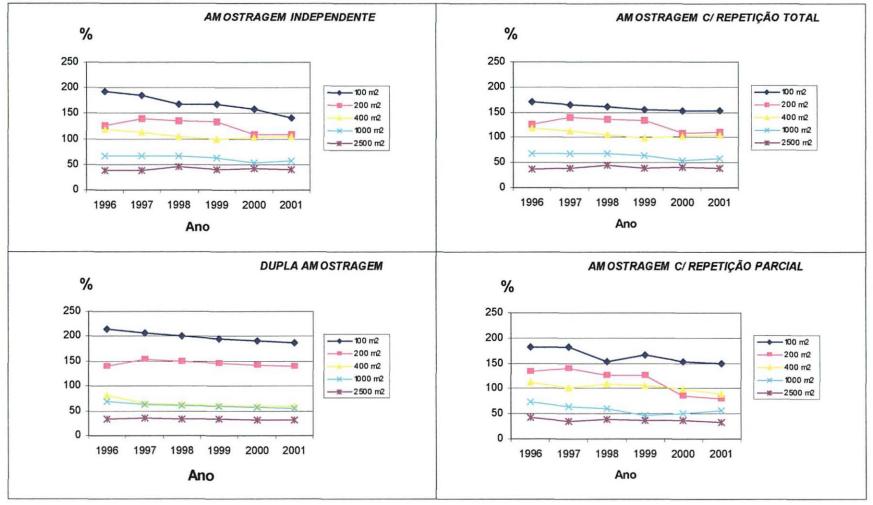
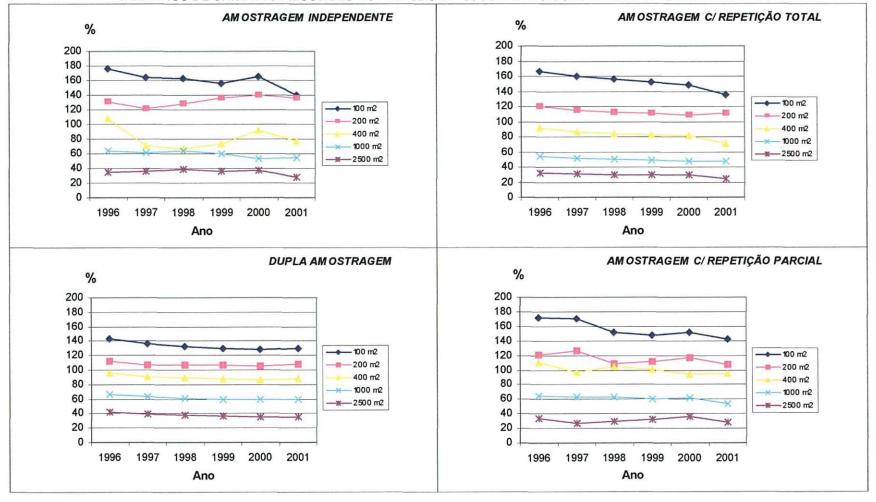



FIGURA 9 – COEFICIENTE DE VARIAÇÃO (%) DO VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES

B) AMOSTRAGEM COM REPETIÇÃO TOTAL

Como pode-se observar na figura 8, o coeficiente de variação para o volume comercial (apenas para as árvores em crescimento) tende a diminuir com o aumento da área da unidade amostral, variando aproximadamente entre 40 e 170% no período analisado. Para todos os tamanhos de unidades, observou-se uma redução do coeficiente de variação no período, com exceção da unidade de 2500 m², que apresentou pequeno aumento no período.

Na abordagem referente a todas as árvores (fig. 9), constatou-se um comportamento similar do coeficiente de variação, com valores oscilando aproximadamente entre 20 e 170%.

C) AMOSTRAGEM COM REPETIÇÃO PARCIAL

Para as árvores em crescimento (fig. 8), a tendência encontrada para o coeficiente de variação nos diferentes tamanhos de unidades amostrais, indicou uma redução nas estimativas no período de 1996 a 2001, com valores oscilando entre 30 e 180% aproximadamente. Constatou-se também, que o coeficiente de variação (%) decresceu com o aumento da área da unidade amostral. Destaca-se apenas a redução do coeficiente de variação na unidade de 200 m² no período de 1999 a 2001, ficando abaixo das estimativas obtidas na unidade de 400 m².

Para a análise referente a todas as árvores, observou-se comportamento similar para os diferentes tamanhos de unidades amostrais, com as estimativas do coeficiente de variação oscilando entre 25 e 175% aproximadamente.

D) DUPLA AMOSTRAGEM

As estimativas do coeficiente de variação (CV%) obtidas pela dupla amostragem (árvores em crescimento), revelaram uma tendência decrescente, com consequente redução dos valores obtidos nos diferentes tamanhos de unidades

amostrais, para o período de 1996 a 2001 (fig. 8). Nas estimativas para as diferentes unidades amostrais, constatou-se a redução do coeficiente de variação a medida em que as áreas das unidades aumentam. Destaca-se também, o comportamento similar observado nas unidades de 400 e 1000 m², onde as estimativas em ambas as unidades ficaram muito próximas.

Na análise de todas as árvores (fig. 9), novamente observou-se um comportamento similar ao obtido para as árvores em crescimento, onde o coeficiente de variação decresceu no período e diminuiu com o aumento da área das unidades amostrais.

E) Análise final

Com relação às estimativas obtidas no período de 1996 a 2001, referentes ao coeficiente de variação, nos diferentes tamanhos de unidades amostrais, observouse comportamento similar em todos os processos de amostragem analisados e para ambas as abordagens. Destaca-se apenas, que as estimativas do coeficiente de variação obtidas na abordagem referente a todas as árvores foram inferiores, na sua maioria, aos obtidos na abordagem das árvores em crescimento, demonstrando que existe menor variabilidade quando a floresta como um todo foi analisada.

4.3.4 Média de crescimento

As figuras 10 e 11 apresentam as estimativas referentes à média do crescimento (volume comercial) nos cinco períodos estudados (1996-1997, 1996-1998, 1996-1999, 1996-2000 e 1996-2001), destacando os valores encontrados nos diferentes tamanhos de unidades amostrais para a abordagem envolvendo as árvores em crescimento e para todas as árvores.

FIGURA 10 – MÉDIA DE CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

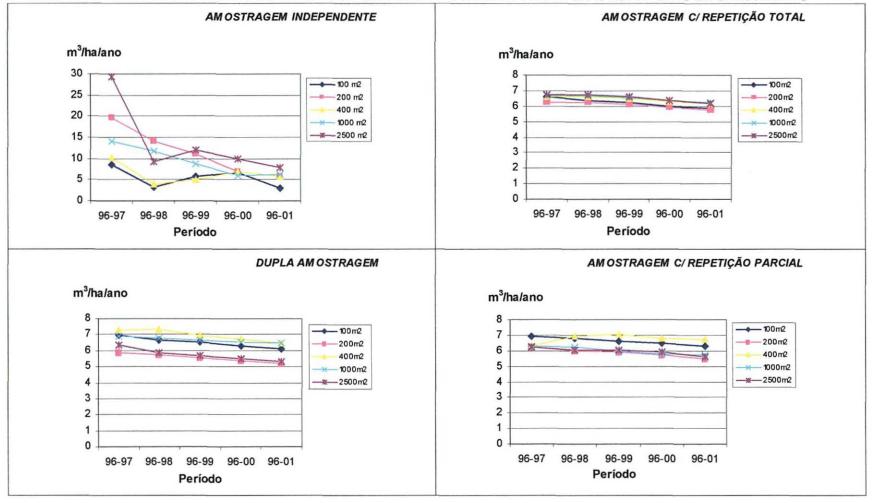
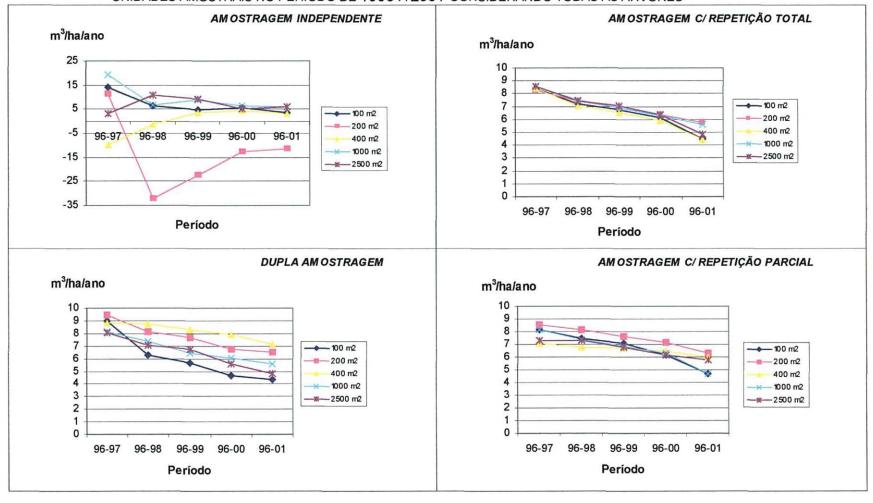



FIGURA 11 – MÉDIA DE CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES

A) AMOSTRAGEM INDEPENDENTE

Para as árvores em crescimento (fig. 10), as estimativas do crescimento para os diferentes tamanhos de unidades amostrais estudados apresentaram grande variabilidade, com oscilações consideráveis durante o período de 1996 e 2001 (entre 3,000 e 30,000 m³/ha/ano). Em todos os tamanhos de unidades amostrais as maiores estimativas do crescimento foram observadas no período de 1996-1997 (um ano de intervalo), com destaque a unidade de 2500 m², que apresentou a maior estimativa com cerca de 30,000 m³/ha/ano. No geral, as unidades de 100 e 400 m² apresentaram as menores estimativas do crescimento em todos os períodos, enquanto que a unidade de 2500 m² revelou as maiores estimativas. Observou-se também, que a medida em que aumentam os intervalos entre as medições, as estimativas tendem a diminuir.

Na abordagem referente a todas as árvores (fig. 11), observou-se também variação significativa entre as diferentes unidades amostrais e períodos estudados, destacando-se: a unidade de 200 m², que apresentou a maior oscilação entre os vários períodos analisados, resultando valores negativos para o crescimento nos períodos de 1996-1998, 1996-1999, 1996-2000 e 1996-2001; a unidade de 400 m², com "crescimento negativo" no período de 1996-1997 e posterior aumento nos demais períodos; as unidades de 100 e 1000 m², que apresentaram comportamentos similares e se caracterizaram pela redução do crescimento no primeiro (1996-1997) para o segundo período (1996-1998) e posterior equilíbrio nas taxas de crescimento nos demais períodos; a unidade de 2500 m², que apresentou aumento do crescimento até o segundo período (1996-1998) e pequenos decréscimos até o período final (1996-2001).

No geral, a amostragem independente apresentou variações nas estimativas do crescimento em ambas as abordagens, revelando diferenças significativas para as diferentes unidades amostrais e também para os diferentes períodos de tempo.

B) AMOSTRAGEM COM REPETIÇÃO TOTAL

Nas estimativas do crescimento referentes à amostragem com repetição total, as árvores em crescimento apresentaram pequenas oscilações nos diferentes períodos analisados, com variações pouco significativas (entre 6,000 e 7,000 m³/ha/ano) também para os diferentes tamanhos de unidades amostrais. No geral, observou-se uma pequena redução nas estimativas do crescimento à medida que o intervalo entre as medições aumentou (fig. 10).

Na análise referente a todas as árvores da floresta (fig. 11), as estimativas do crescimento revelaram comportamentos similares para os diferentes tamanhos de unidades amostrais e redução gradativa no crescimento para períodos mais longos (de aproximadamente 8,500 m³/ha/ano no período de 1996-1997 para 4,500 m³/ha/ano no período de 1996-2001).

C) AMOSTRAGEM COM REPETIÇÃO PARCIAL

Para as árvores em crescimento (fig. 10), as estimativas do crescimento apresentaram pequenas variações, aproximadamente entre 5,000 e 7,500 m³/ha/ano, para os diferentes tamanhos de unidades e períodos entre medições. Com exceção da unidade de 400 m², que apresentou pequeno aumento nas estimativas do crescimento no período de 1996-1998, as demais unidades revelaram pequenas reduções nas estimativas à medida que os intervalos entre as medições aumentaram.

Considerando todas as árvores (fig. 11), observou-se um comportamento similar ao encontrado na abordagem anterior, com uma redução mais acentuada do crescimento nos períodos mais longos, com valores oscilando entre 4,500 e 8,500 m³/ha/ano aproximadamente, para os diferentes tamanhos de unidades amostrais. Destaca-se, a unidade de 200 m², que apresentou as maiores estimativas do crescimento em todos os períodos, e as unidades de 100 e 1000 m², que obtiveram as menores estimativas do crescimento, com cerca de 4,500 m³/ha/ano no período de 1996-2001.

D) DUPLA AMOSTRAGEM

Como pode-se observar na figura 10, que ilustra o comportamento das árvores em crescimento, as estimativas encontradas nos diferentes períodos analisados apresentaram valores oscilando entre 5,000 e 7,500 m³/ha/ano, para os vários tamanhos de unidades amostrais. Observou-se também, a tendência decrescente das estimativas do crescimento no decorrer dos períodos, com destaque a parcela de 200 m², que apresentou as menores estimativas, e a unidade de 400 m², com as maiores estimativas do crescimento durante todo o período.

Na abordagem referente a todas as árvores da floresta (fig. 11), os diferentes tamanhos de unidades amostrais apresentaram maiores estimativas do crescimento no período inicial (1996-1997) e menores estimativas no período final (1996-2001), revelando uma tendência decrescente do crescimento em função do aumento do intervalo entre as medições. Destacam-se as unidades de 400 e 100 m², que apresentaram, respectivamente, as maiores e as menores estimativas durante o período.

No geral, as estimativas do crescimento obtidas com a dupla amostragem apresentaram comportamentos similares para os diferentes períodos estudados, revelando decréscimo do crescimento em função do aumento do intervalo entre as medições.

E) ANÁLISE FINAL

Na análise efetuada nos diferentes processos de amostragem, observou-se que a amostragem independente apresentou estimativas muito diferentes dos demais processos estudados, revelando grande variabilidade nas estimativas do crescimento para os diferentes períodos e tamanhos de unidades amostrais. Tais resultados podem ser explicados pelo fato da referida amostragem utilizar unidades amostrais temporárias na primeira e segunda ocasião, dificultando assim uma análise individual do crescimento, uma vez que não existe correlação entre os volumes analisados nos duas medições.

Para os demais processos não foram observadas grandes diferenças, destacando-se apenas que, na abordagem referente a todas as árvores, as estimativas do crescimento apresentaram maior amplitude de variação para os diferentes períodos. Com relação aos diferentes tamanhos de unidades amostrais, em ambas as abordagens, a amostragem com repetição total apresentou as menores variações, seguida da amostragem com repetição parcial e dupla amostragem.

4.3.5 Erro Padrão do Crescimento

As figuras 12 e 13 apresentam as estimativas referentes ao erro padrão do crescimento em volume comercial nos período diferentes analisados (1996-1997, 1996-1998, 1996-1999, 1996-2000 e 1996-2001), destacando os valores encontrados nos diferentes tamanhos de unidades amostrais para a abordagem envolvendo as árvores em crescimento e para todas as árvores.

A) AMOSTRAGEM INDEPENDENTE

Com pode-se observar na figura 12 (árvores em crescimento), o erro padrão do crescimento apresentou comportamento similar para os diferentes tamanhos de unidades amostrais nos diferentes períodos de tempo, com erros oscilando entre 11,000 e 18,000 m³/ha, aproximadamente. Observou-se que nos dois períodos iniciais (1996-1997 e 1996-1998) as estimativas apresentaram pequenas alterações; no período seguinte (1996-1999), verificou-se um aumento nas estimativas do erro padrão do crescimento, resultando as maiores estimativas encontradas; nos períodos seguintes, observou-se uma redução nas estimativas do erro padrão.

FIGURA 12 - ERRO PADRÃO DO CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

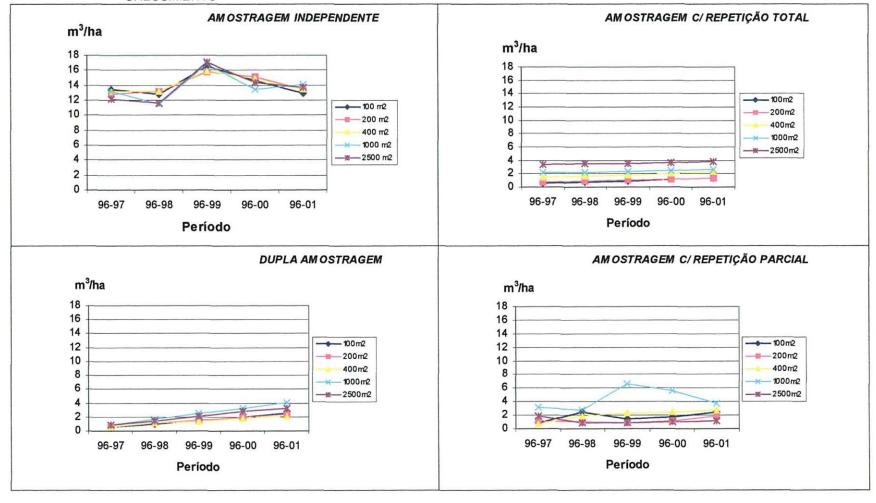
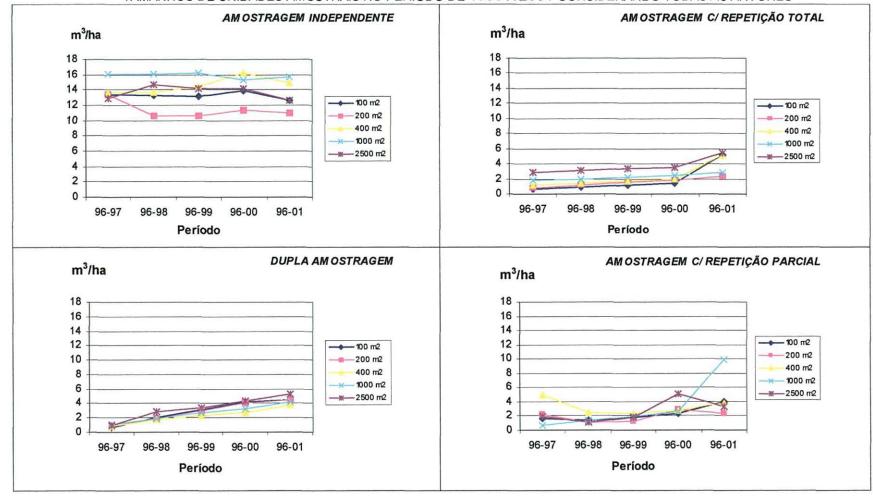



FIGURA 13 – ERRO PADRÃO DO CRESCIMENTO EM VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES

Na abordagem envolvendo todas as árvores (fig. 13), as estimativas do erro padrão do crescimento apresentaram maiores variações nos diferentes tamanhos de unidades amostrais, enquanto que nos vários períodos analisados as variações foram menos expressivas. As maiores estimativas do erro padrão do crescimento foram observadas na unidade de 1000 m², enquanto que as menores na unidade de 200 m². Com relação aos diferentes períodos estudados, a unidade de 200 m² apresentou as maiores oscilações, principalmente no período inicial (1996-1997), e a unidade de 400 m², que obteve acréscimos no erro padrão em função do aumento dos intervalos entre as medições.

B) AMOSTRAGEM COM REPETIÇÃO TOTAL

Na abordagem envolvendo apenas as árvores em crescimento (fig. 12), as estimativas do erro padrão do crescimento não apresentaram variações expressivas nos diferentes períodos analisados, revelando pequenos acréscimos no erro padrão à medida que os intervalos entre as medições aumentaram. Com relação aos diferentes tamanhos de unidades amostrais, não foram observadas grandes variações, destacando-se a unidade de 2500 m² (maiores estimativas durante todo o período) e as unidades de 100 e 200 m² (menores estimativas).

Nas estimativas referentes a todas as árvores da floresta (fig. 13), o erro padrão do crescimento não apresentou maiores oscilações nos diferentes períodos, destacando-se o período inicial (1996-1997) e o final (1996-2001) que apresentaram, respectivamente, as menores e as maiores estimativas. Destaca-se: a unidade de 2500 m², que apresentou as maiores estimativas em todos os períodos analisados, e a unidade de 100 m² que revelou os menores erros nos quatro períodos iniciais. No geral, as estimativas do erro padrão do crescimento nos diferentes tamanhos de unidades amostrais e períodos de tempo, oscilaram entre 0,000 e 6,000 m³/ha, aproximadamente, revelando pequeno aumento do erro padrão em função do aumento do intervalo entre as medições.

C) AMOSTRAGEM COM REPETIÇÃO PARCIAL

Nas estimativas do erro padrão do crescimento obtidas pela amostragem com repetição parcial, observou-se que, para as árvores em crescimento (fig.12), os diferentes tamanhos de unidades amostrais apresentaram comportamentos similares nos diferentes períodos estudados (tendência uniforme), com exceção da unidade de 200 m², que apresentou variações significativas nas estimativas referentes aos períodos de 1996-1999 e 1996-2000 (maiores estimativas encontradas). Para os diferentes tamanhos de unidades amostrais e períodos, os valores do erro padrão oscilaram entre 0,000 e 7,000 m³/ha.

Para a análise referente a todas as árvores (fig. 13), observou-se maiores oscilações nas estimativas do erro padrão nos períodos de 1996-1997, 1996-1999 e 1996-2001. Destacam-se: a unidade de 200 m² (menores estimativas), a unidade de 1000 m² (maior erro padrão – 1996-2001) e a unidade de 400 m², que apresentou as maiores estimativas nos quatro primeiros períodos. Como um todo, as unidades amostrais apresentaram erros que oscilaram entre 0,000 e 6,000 m³/ha (exceto a estimativa referente ao período de 1996-2001 da unidade de 1000 m²), alternando, entre os diferentes intervalos de tempo, acréscimos e decréscimos nas estimativas.

D) DUPLA AMOSTRAGEM

Com pode-se observar na figura 12, as árvores em crescimento apresentaram erros padrões do crescimento oscilando entre 0,000 e 4,000 m³/ha, revelando pequeno crescimento em função do aumento do intervalo entre as medições. Os diferentes tamanhos de unidades amostrais não apresentaram diferenças significativas nas estimativas do erro padrão do crescimento nos períodos analisados, destacando-se as unidades de 400 e 1000 m², que resultaram, respectivamente, as menores a as maiores estimativas nos vários períodos.

Na abordagem referente a todas as árvores da floresta (fig. 13), as estimativas do erro padrão do crescimento oscilaram, aproximadamente, entre 0,000 e 6,000 m³/ha nos vários períodos e tamanhos de unidades amostrais. Como observado na abordagem anterior, o erro padrão apresentou pequenos acréscimos

nas estimativas à medida que os intervalos entre as medições aumentaram. Com relação aos diferentes tamanhos de unidades amostrais, também não foram observadas diferenças significativas, destacando-se as unidades de 400 e 2500 m², que apresentaram respectivamente, as menores e as maiores estimativas do erro padrão do crescimento nos períodos analisados.

E) ANÁLISE FINAL

A amostragem independente apresentou, em ambas as abordagens, os maiores erros entre os processos de amostragem analisados, revelando uma grande variabilidade entre as várias unidades amostrais utilizadas. Como a amostragem independente utiliza unidades temporárias em ambas as ocasiões, o crescimento é analisado por unidade de área e não individualmente, aumentando, assim, o erro padrão das estimativas.

Os demais processos apresentaram comportamentos similares nas estimativas do erro padrão nos diferentes períodos analisados, destacando apenas a amostragem com repetição parcial, que apresentou maiores variações na unidade de 1000 m². A amostragem com repetição total e a dupla amostragem apresentaram estimativas muito próximas, com pequenas variações para os diferentes tamanhos de unidades amostrais.

4.3.6 Correlação

As figuras 14 e 15 apresentam as estimativas referentes ao coeficiente de correlação (r) do volume comercial, para os quatro processos de amostragem em questão, no período de 1996 a 2001, considerando os diferentes tamanhos de unidades amostrais, e as duas abordagens em análise: árvores em crescimento e todas as árvores.

FIGURA 14 - COEFICIENTE DE CORRELAÇÃO PARA O VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

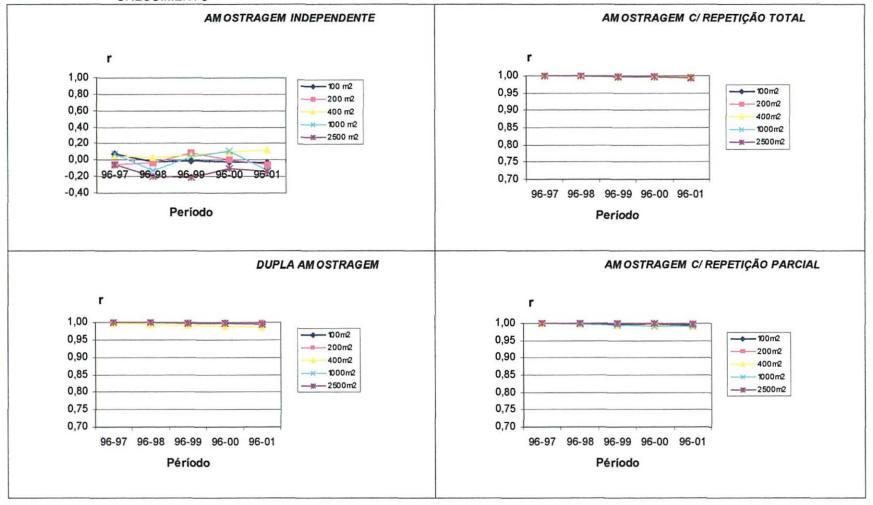
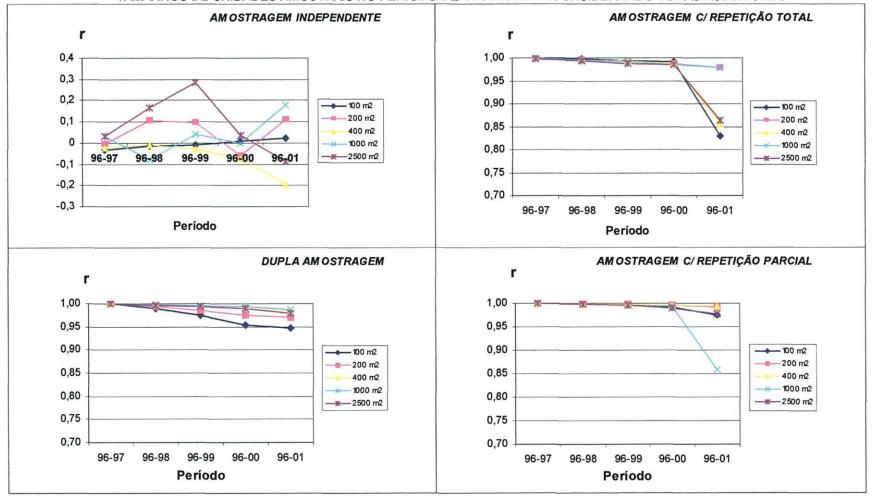



FIGURA 15 – COEFICIENTE DE CORRELAÇÃO PARA O VOLUME COMERCIAL POR PROCESSO DE AMOSTRAGEM PARA DIFERENTES TAMANHOS DE UNIDADES AMOSTRAIS NO PERÍODO DE 1996 A 2001 CONSIDERANDO TODAS AS ÁRVORES

A) AMOSTRAGEM INDEPENDENTE

Como pode-se observar nas figura 14 e 15 os coeficientes de correlação encontrados para as duas abordagens em questão apresentaram valores próximos de zero, indicando que não existe correção entre os volumes comerciais nos vários períodos analisados e diferentes tamanhos de unidades amostrais. Conforme mencionado anteriormente, a amostragem independente utiliza unidades temporárias em ambas as ocasiões, tornando praticamente nula a correlação entre as variáveis, uma vez que não existe um controle individual do crescimento nas referidas unidades.

B) AMOSTRAGEM COM REPETIÇÃO TOTAL

Como pode-se observar na figura 14, para as árvores em crescimento, a amostragem com repetição total apresentou altas correlações (praticamente perfeita), com valores acima de 0,99 em todos os períodos estudados e tamanhos de unidades amostrais. Estes resultados revelam que a correlação entre os volumes comerciais nas duas ocasiões permanece alta em todos os períodos estudados, inclusive no período de 1996-2001, cujo intervalo entre as medições é de cinco anos. Assim, para estudos de crescimento na referida floresta, onde a determinação do intervalo ótimo entre as duas ocasiões é fator fundamental, pode-se utilizar intervalos de até cinco anos, uma vez que a correlação entre as variáveis em ambas as ocasiões é muito alta.

Para a análise referente a todas as árvores da floresta (fig. 15), todos os diferentes tamanhos de unidades amostrais apresentaram altas correlações nos quatro períodos iniciais. No período final (1996-2001), as unidades de 100, 400 e 2500 m² revelaram queda considerável na correlação, chegando a aproximadamente 0,82 na unidade de 100 m². Assim, para as unidades de 200 e 1000 m², o intervalo de cinco anos pode ser perfeitamente recomendado para análises de crescimento (correlação alta em tosos os períodos), enquanto que para as demais, recomenda-se intervalos de até quatro anos, devido principalmente a sensível redução da correlação no período de 1996-2001.

C) AMOSTRAGEM COM REPETIÇÃO PARCIAL

Para as árvores em crescimento (fig. 14), a amostragem com repetição parcial apresentou altas correlações entre os volumes comerciais para todos os períodos e tamanhos de unidades amostrais, com coeficientes acima de 0,99 (correlação quase perfeita).

Na abordagem referente a todas as árvores (fig. 15), observou-se comportamento similar, com altas correlações em todos os períodos e tamanhos de unidades amostrais, com exceção da unidade de 1000 m², que apresentou sensível redução na correlação no período de 1996-2001 (r = 0,86).

No geral, em ambas as abordagens, a correlação permaneceu alta em todos os períodos, permitindo assim a utilização de intervalos de até cinco anos para avaliação do crescimento.

D) DUPLA AMOSTRAGEM

Na abordagem referente às árvores em crescimento (fig. 14), as correlações entre os volumes comerciais permaneceram altas em todos os períodos e tamanhos de unidades amostrais estudados, oscilando entre 0,98 e 1,00, revelando que para intervalos de até cinco anos a correlação permanece estável e alta.

Para todas as árvores da floresta (fig. 15), a correlação oscilou entre 0,95 e 1,00 para os diferentes períodos e tamanhos de unidades amostrais, revelando também forte correlação entre os volumes comerciais.

E) Análise Final

A amostragem independente revelou que não existe correlação entre os volumes comerciais nos diferentes períodos e tamanhos de unidades amostrais, uma vez que a referida amostragem não utiliza unidades permanentes, impossibilitando assim o acompanhamento individual do crescimento das árvores.

Nas demais amostragens, para ambas as ocasiões, observou-se uma forte correlação entre os volumes comerciais nos diferentes períodos e tamanhos de unidades amostrais, com algumas exceções encontradas no período de 1996-2001

na abordagem referente a todas as árvores. No geral, pode-se comprovar que a correlação permanece estável e forte em todos os períodos estudados, revelando assim intervalos ótimos, para estudos de crescimento, de até cinco anos entre referidas ocasiões.

4.3.7 Síntese das estimativas dos processos de amostragem

A tabela 22 apresenta uma síntese das principais estimativas médias obtidas nos quatro processos de amostragem, no período de 1996 a 2001, considerando as duas abordagens em questão: apenas as árvores em crescimento e todas as árvores. Para cada processo de amostragem foram consideradas, as menores e as maiores estimativas médias referentes à média volumétrica, o erro padrão volumétrico, o coeficiente de variação (%), a média de crescimento, o erro padrão do crescimento e o coeficiente de correlação dos volumes comerciais nas referidas ocasiões. As referidas estimativas médias de cada processo de amostragem foram obtidas através da média aritmética simples das estimativas obtidas nos vários anos ou períodos considerados. Em todos os processos de amostragem foram destacadas as unidades amostrais que apresentaram as menores e as maiores estimativas médias.

A) ABORDAGEM REFERENTE ÀS ÁRVORES EM CRESCIMENTO

Na amostragem independente destacam-se a unidade de 2500 m², que apresentou as menores estimativas para o volume comercial, CV%, correlação e as maiores estimativas para a média de crescimento, e a unidade de 400 m², que apresentou as maiores estimativas da média volumétrica, erro padrão volumétrico, erro padrão do crescimento e correlação.

Na amostragem com repetição total as unidades que se destacaram foram: a unidade de 200 m², que apresentou as menores estimativas para a média volumétrica, erro padrão volumétrico e média de crescimento; e a unidade de 2500 m³ que resultou na menor estimativa do CV% e as maiores estimativas para a média e erro padrão do crescimento.

Com relação à amostragem com repetição parcial, destaca-se a unidade de 2500 m², que apresentou as menores estimativas referentes ao CV%, erro padrão do crescimento, coeficiente de correlação e a maior estimativa da média volumétrica.

As unidades que se destacaram na dupla amostragem foram: 400 m², que resultou nas menores estimativas da média volumétrica, do erro padrão volumétrico e erro padrão do crescimento, além das maiores estimativas referentes à média de crescimento e coeficiente de correlação; e a unidade de 1000 m² que apresentou as maiores estimativas da média volumétrica, erro padrão volumétrico e erro padrão do crescimento.

B) ABORDAGEM REFERENTE A TODAS AS ÁRVORES

Como se pode observar na tabela 24, as unidades amostrais que se destacaram na amostragem independente foram a de 200 e 1000 m², que apresentaram, respectivamente as menores e as maiores estimativas da média volumétrica, do erro padrão volumétrico, da média de crescimento e do erro padrão do crescimento.

Para a amostragem com repetição total, a unidade de 200 m² apresentou as menores estimativas referentes à média volumétrica, erro padrão volumétrico, erro padrão do crescimento e a maior estimativa para o coeficiente de correlação. Destacou-se também a unidade de 2500 m², com a menor estimativa do CV% e as maiores estimativas da média volumétrica, do erro padrão volumétrico e do erro padrão do crescimento.

TABELA 22 - SÍNTESE DAS PRINCIPAIS ESTIMATIVAS MÉDIAS POR UNIDADE AMOSTRAL E POR PROCESSO DE AMOSTRAGEM NO PERÍODO DE 1996 A 2001

	Α		AF			ARP		DA
ÁRVORES EM CRESCIMENTO	Menor	Unidade	Menor	Unidade	Menor	Unidade	Menor	Unidade
	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral
Média volumétrica (m³/ha)	135,091	2500	126,468	200	129,114	1000	128,736	400
Erro padrão (m³/ha)	9,001	100	8,292	200	8,262	200	5,196	400
CV%	40,26	2500	44,34	2500	37,59	2500	33,57	2500
Média de crescimento (m³/ha/ano)	5,456	100	6,031	200	5,884	200	5,556	200
Erro padrão do crescimento (m³/ha)	12,447	200	0,942	100	1,123	2500	1,395	400
Correlação (r)	-0,14	2500	1,00	TODAS	1,00	100/200/400/2500	1,00	100/200/1000/250
	Α	1	AF	RT		ARP		DA
ARVORES EM CRESCIMENTO	Maior	Unidade	Maior	Unidade	Maior	Unidade	Maior	Unidade
	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral
Média volumétrica (m³/ha)	141,400	400	147,886	400	142,802	2500	152,941	1000
Елго padrão (m³/ha)	11,646	400	12,535	400	10,386	400	11,836	1000
CV%	168,54	100	159,48	100	164,29	100	199,38 6,952	100
Média de crescimento (m³/ha/ano)	13,644	2500	6,519	2500	6,755	400		400
Erro padrão do crescimento (m³/ha)	16,430	400	3,593	2500	4,372	1000	2,481	1000
Correlação (r)	0,07	400	1,00	TODOS	0,99	1000	0,99	400
_	Α	1	AF	₹T		ARP		DA
TODAS AS ÁRVORES	Menor	Unidade	Menor	Unidade	Menor	Unidade	Menor	Unidade
	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral
Média volumétrica (m³/ha)	94,272	200	140,007	200	141,854	2500	130,580	2500
Erro padrão (m³/ha)	6,726	200	8,592	200	8,344	2500	8,023	100
CV%	35,28	2500	29,22	2500	30,78	2500	37,41	2500
Média de crescimento (m³/ha/ano)	-13,535	200	6,465	400	6,597	400	5,990	100
Erro padrão do crescimento (m³/ha)	11,407	200	1,504	200	1,961	200	2,286	400
Correlação (r)	-0,07	400	0,96	100	1,00	200/400	1,00	1000
_	А		AF	RT		ARP		DA
TODAS AS ÁRVORES	Maior	Unidade	Maior	Unidade	Maior	Unidade	Maior	Unidade
	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral	Estimativa	Amostral
Média volumétrica (m³/ha)	157,008	1000	165,041	2500	159,008	1000	152,252	200
Еrro padrão (m³/ha)	11,428	1000	9,270	2500	11,824	1000	12,116	1000
CV%	160,63	100	152,98	100	155,91	100	133,40	100
Média de crescimento (m³/ha/ano)	9,364	1000	6,974	1000	7,554	200	8,197	400
					1			
Erro padrão do crescimento (m³/ha)	15,861	1000	3,644	2500	3,298	1000	3,346	2500

NOTA: Al = Amostragem Independente; ART = Amostragem com Repetição Total; ARP = Amostragem com Repetição Parcial; DA = Dupla Amostragem; Unidade Amostral = Unidade onde foi encontrada a menor/maior estimativa; Menor/Maior Estimativa = Obtida pela média das estimativas dos períodos

Na amostragem com repetição parcial, a unidade de 1000 m² apresentou as maiores estimativas da média volumétrica, erro padrão volumétrico, erro padrão do crescimento e coeficiente de correlação, enquanto que a unidade de 2500 m², obteve as menores estimativas da média volumétrica, erro padrão volumétrico e CV%. Destaca-se também, a unidade de 200 m², que revelou as menores estimativas do erro padrão do crescimento e coeficiente de correlação e a maior estimativa da média de crescimento.

Na dupla amostragem destacou a unidade de 100 m², com as menores estimativas referentes ao erro padrão volumétrico e média de crescimento, e as maiores estimativas do CV% e coeficiente de correlação. Destacou-se também a unidade de 2500 m², que revelou as menores estimativas da média volumétrica e do CV%, e o maior erro padrão do crescimento.

4.4 Comparação dos resultados da dinâmica com as estimativas obtidas nos principais processos de amostragem

Nas tabelas 23 e 24 estão apresentadas as estimativas da média, erro padrão, coeficiente de correção (%), média de crescimento, erro padrão do crescimento e coeficiente de correlação do volume comercial das árvores, no período de 1996 a 2001, por tamanho de unidade amostral, para os quatro processos de amostragem em estudo, e as referidas estimativas obtidas com base na avaliação da dinâmica da floresta (item 4.1). As referidas tabelas foram elaboradas com base nas árvores em crescimento, uma vez que a análise da dinâmica da floresta utilizou apenas as árvores que permaneceram vivas durante todo o período.

As estimativas apresentadas na dinâmica da floresta, referentes à média volumétrica, o erro padrão, o coeficiente de variação e a correlação do volume comercial, foram calculadas com base nas formulações específicas da amostragem aleatória simples. Para as estimativas do crescimento foram utilizados os IPAs (Incremento Periódico Anual) calculados nos diversos períodos considerados (1996-1997, 1996-1998, 1996-1999, 1996-2000 e 1996-2001). Foram utilizadas para as referidas estimativas nove parcelas permanentes de 1 ha (100 x 100 metros).

Como pode-se observar na tabela 23, os volumes comerciais obtidos na análise da dinâmica foram de 122,085 (1996), 128,616 (1997), 135,069 (1998), 14,238 (1999), 146,741 (2000) e 152,227 (2001). Comparando-se os referidos resultados com os obtidos nos diferentes processos de amostragem, destacam-se:

- Amostragem independente as unidades de 100 m² (1996,1998 e 1999), 400 m² (1996, 1998, 1999 e 2001) e 2500 m² (1999 e 2000), que mais se aproximaram dos valores da dinâmica;
- Amostragem com repetição total as unidades de 100 e 2500 m² resultaram em estimativas próximas em todos os anos;
- Amostragem com repetição parcial as unidades de 100 m² (1996, 1997 e 2000),
 200 m² (1996, 1997, 1999 e 2000) e 2500 m² (1996, 1998 e 2000), resultaram em volumes próximos aos encontrados na dinâmica;

 Dupla amostragem – as unidades de 100 e 2500 m2, que apresentaram os melhores resultados, com estimativas muito próximas em todos os anos.

Com relação ao erro padrão volumétrico (tab. 23), a dinâmica apresentou estimativas que oscilaram de 10,352 m³/ha em 1996 a 11,372 m³/ha em 2001. Destaca-se:

- Amostragem independente no geral, estimativas menores para todos os tamanhos de unidades amostrais, principalmente na unidade de 100 m² (menores erros);
- Amostragem com repetição total menores estimativas nas unidades de 100
 e 200 m² e maiores nas unidades de 400, 1000 e 2500 m²;
- Amostragem com repetição parcial no geral menores estimativas para todos os tamanhos de unidades amostrais;
- Dupla amostragem menores estimativas nas unidades de 400 e 2500 m² e maiores nas unidades de 100, 200 e 1000 m².

Na dinâmica, o coeficiente de variação (%) variou de 27,77 % em 1996 até 24,46 % em 2001, demonstrando pequenos decréscimo no período. Nos diferentes processos de amostragem, as estimativas obtidas revelaram valores acima dos encontrados na referida análise. No geral, as unidades com menores áreas revelaram maiores variações, chegando a 215% na unidade de 100 m² (dupla amostragem), enquanto que as unidades maiores (2500 m²) apresentaram valores mais próximos dos encontrados na dinâmica, em todos os processos (tab. 23).

Como se pode observar na tabela 24, o crescimento médio encontrado na análise da dinâmica variou de 6,531 m³/ha/ano no período de 1996-1997 até 6,028 m³/ha/ano no período de 1996-2001. Na amostragem independente as estimativas do crescimento apresentaram grandes variações nos períodos, chegando a 29,411 m³/ha/ano em 1996. Nos demais processos de amostragem, as estimativas ficaram muito próximas aos valores encontrados na análise da dinâmica, para todos os tamanhos de unidades amostrais e períodos analisados.

TABELA 23 - COMPARAÇÃO DAS ESTIMATIVAS REFERENTES À MÉDIA, ERRO PADRÃO E COEFICIENTE DE VARIAÇÃO DO VOLUME COMERCIAL DOS PRINCIPAIS PROCESSOS DE AMOSTRAGEM COM OS RESULTADOS DA DINÂMICA, NO PERÍODO DE 1996 A 2001, CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

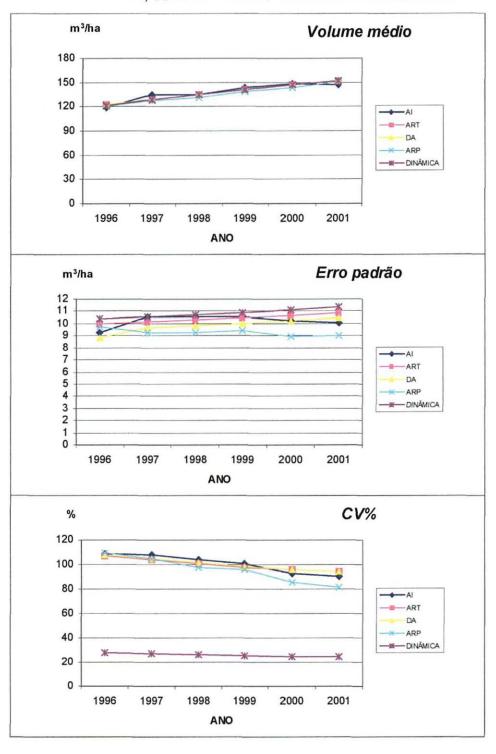
	MÉDIA VOLUMÉTRICA (m³/ha)																				
ANO	AMO	AMOSTRAGEM INDEPENDENTE AMOSTRAGEM C/REPETIÇÃO TOTAL AMOSTRAGEM C/REPETIÇÃO PARCIAL DUPLA AMOSTRAGEM															RESULTADO				
A110	100m²	200m²	400m ²	1000m²	2500m ²	100m ²	200m ²	400m ²	1000m ²	2500m ²	100m²	200m ²	400m ²	1000m²	2500m ²	100m²	200m²	400m²	1000m²	2500m²	DINÂMICA
1996	126,669	113,652	126,507	118,437	108,085	121,214	111,626	131,985	128,380	118,704	123,165	126,200	111,245	116,762	126,593	122,151	117,050	111,706	136,476	125,247	122,085
1997	135,259	133,289	136,593	132,582	137,496	127,809	117,878	138,618	135,074	125,458	130,796	131,042	122,534	115,655	137,961	129,105	122,919	118,952	143,377	131,602	128,616
1998	133,193	141,730	134,524	141,975	126,534	133,913	124,049	145,201	141,716	132,132	130,166	130,815	131,827	130,222	135,085	135,506	128,588	126,332	149,974	137,019	135,069
1999	143,688	146,620	141,699	144,682	143,913	139,957	129,911	151,462	148,029	138,536	134,957	140,222	138,009	132,229	146,801	141,709	133,759	132,618	156,480	142,343	141,238
2000	153,398	141,622	154,105	142,301	147,510	145,179	135,193	157,088	153,804	144,137	146,180	145,142	145,185	132,128	148,856	147,203	138,576	138,698	162,638	147,185	146,741
2001	142,045	142,005	154,972	149,666	147,011	150,352	140,152	162,960	159,546	149,489	147,817	140,165	155,544	147,686	161,518	152,706	143,009	144,108	168,701	151,877	152,227
								ERF	RO PA	DRÃO	VOLU	MÉTR	ICO (m	³ /ha)				-			
				DELIDE						TOTA!								ALICOT			DECLUTAD

ERRO PADRAO VOLUMETRICO (III /ma)																					
ANO	AM	OSTRAG	EM INDE	PENDEN	ITE	AMOSTRAGEM C/ REPETIÇÃO TOTAL					AMOS	TRAGEM	C/ REPE	TIÇÃO PA	ARCIAL		RESULTADO				
7110	100m²	200m ²	400m ²	1000m²	2500m ²	100m²	200m²	400m²	1000m ²	2500m ²	100m²	200m ²	400m ²	1000m²	2500m²	100m²	200m ²	400m²	1000m²	2500m ²	DINÂMICA
1996	9,400	7,848	11,560	9,734	7,803	7,962	7,960	11,970	11,067	11,094	8,657	9,232	9,687	10,567	10,456	8,931	8,925	6,966	11,360	8,223	10,352
1997	9,675	10,091	11,774	10,834	10,342	8,139	8,073	12,179	11,213	11,275	8,940	9,669	9,305	8,989	9,227	11,206	11,028	4,522	11,589	9,966	10,533
1998	8,605	10,532	10,833	11,634	10,948	8,266	8,226	12,393	11,351	11,409	7,584	8,724	10,737	9,375	9,912	11,456	11,257	4,658	11,707	10,102	10,729
1999	9,278	10,634	10,865	11,205	10,965	8,422	8,328	12,627	11,476	11,488	8,415	9,374	11,024	7,940	10,263	11,649	11,365	4,821	11,875	10,254	10,910
2000	9,317	8,451	12,268	9,327	11,766	8,591	8,495	12,859	11,698	11,697	8,462	6,382	10,932	8,561	10,313	11,860	11,566	5,015	12,129	10,455	11,135
2001	7.733	8.498	12.579	10.520	11,176	8.824	8.667	13,180	11,898	11,864	8,351	6,190	10,630	9,921	10,202	12,178	11,791	5,192	12,359	10,803	11,372

								(<u>JOEFI</u>	CIENTI	E DE \	<u>/ARIA</u> (<u>ÇAO (°</u>	<u>%) </u>							
ANO	AM	OSTRAC	EM INDE	PENDEN	NTE	AMOS	AMOSTRAGEM C/ REPETIÇÃO TOTAL					TRAGEM	C/ REPE	TIÇÃO P	ARCIAL		DUPLA		RESULTADO		
7110	100m²	200m ²	400m ²	1000m ²	2500m ²	100m ²	200m ²	400m ²	1000m²	2500m ²	100m ²	200m ²	400m ²	1000m ²	2500m ²	100m ²	200m²	400m ²	1000m²	² 2500m ²	DINÂMICA
1996	192,38	126,58	118,44	67,37	37,43	170,27	130,72	117,55	70,67	48,46	182,21	134,09	112,87	74,19	42,82	215,20	139,77	80,83	68,24	34,04	27,77
1997	185,43	138,78	111,73	66,99	39,00	165,08	125,55	113,88	68,05	46,59	182,44	139,22	101,35	64,64	35,57	206,73	153,81	65,21	62,74	35,31	26,82
1998	167,48	136,21	104,38	67,18	44,86	160,01	121,55	110,63	65,66	44,77	153,45	125,74	108,36	60,02	39,18	201,10	149,80	62,13	60,27	34,22	26,01
1999	167,38	132,94	99,38	63,49	39,50	156,00	117,50	108,06	63,55	42,99	165,72	126,12	105,96	45,82	37,32	194,98	144,92	60,29	58,11	33,16	25,29
2000	157,45	109,39	103,18	53,73	41,36	153,41	115,18	106,10	62,35	42,07	153,35	85,63	99,73	51,21	36,95	190,66	141,90	59,17	56,64	32,42	24,85
2001	141,13	109,69	105,21	57,62	39,41	152,14	113,36	104,83	61,13	41,15	148,55	79,45	90,04	55,33	33,67	187,63	139,57	58,17	54,87	32,28	24,46

TABELA 24 - COMPARAÇÃO DAS ESTIMATIVAS REFERÊNTES A MÉDIA DE CRESCIMENTO, ERRO PADRÃO DO CRESCIMENTO E COEFICIENTE DE CORRELAÇÃO DOS PRINCIPAIS PROCESSOS DE AMOSTRAGEM COM OS RESULTADOS DA DINÂMICA NOS DIFERENTES PERÍODOS ESTUDADOS, CONSIDERANDO APENAS AS ÁRVORES EM CRESCIMENTO

	ΑΑ	SARV	DRES E	M CRES	CIMENT	0															
								MÉD	A DE C	CRESC	IMEN	TO (m	n³/ha/a	ano)							
PERÍODO	AMOSTRAGEM INDEPENDENTE						AMOSTRAGEM C/REPETIÇÃO TOTAL					TRAGEN	C/REP	ETIÇÃO	PARCIAL		DUPL	RESULTADO			
PERIODO	100m²	200m²	400m²	1000m ²	2500m²	100m²	200m ²	400m²	1000m²	2500m ²	100m²	200m²	400m²	1000m²	2500m ²	100m²	200m²	400m²	1000m²	2500m ²	DINÂMICA
96-97	8,590	19,637	10,086	14,145	29,411	6,595	6,252	6,633	6,694	6,754	6,956	6,244	6,272	6,276	6,216	6,954	5,869	7,246	6,901	6,355	8,531
96-98	3,262	14,039	4,009	11,769	9,224	6,349	6,212	6,608	6,668	6,714	6,775	6,012	6,914	6,248	6,029	6,678	5,769	7,313	6,749	5,886	6,492
96-99	5,673	10,989	5,064	8,748	11,943	6,248	6,095	6,492	6,550	6,611	6,600	5,941	7,044	5,986	6,048	6,519	5,570	6,971	6,668	5,698	6,384
96-00	6,682	6,992	6,900	5,966	9,856	5,991	5,892	6,276	6,356	6,358	6,507	5,732	6,807	5,774	5,900	6,263	5,382	6,748	6,541	5,484	6,164
96-01	3,075	5,671	5,693	6,246	7,785	5,828	5,705	6,195	6,233	6,157	6,284	5,492	6,737	5,744	5,594	6,111	5,192	6,480	6,445	5,326	6,028
	ERRO PADRÃO DO CRESCIMENTO (m³/ha)																				
PERÍODO	AM	IOSTRAC	SEM IND	EPENDE	NTE	AMOS	TRAGE	M C/RE	PETIÇÃO	TOTAL	AMOST	TRAGEN	C/REP	ETIÇÃO I	PARCIAL		DUPL	A AMOS	TRAGEM		RESULTADO
LIGODO	100m²	200m ²	400m ²	_1000m ²	2500m ²	100m²	200m ²	400m ²	1000m ²	2500m ²	100m²	200m ²	400m ²	1000m ²	2500m ²	100m²	200m ²	400m²	1000m ²	2500m ²	DINÂMICA
96-97	13,490	12,784	16,501	14,564	12,956	0,578	0,739	1,515	2,171	3,433	0,893	1,121	0,740	3,102	1,869	0,607	0,604	0,582	0,884	0,783	0,413
96-98	12,744	13,134	15,843	15,169	13,444	0,722	0,857	1,635	2,248	3,498	2,407	1,040	1,888	2,804	0,802	1,053	1,076	1,094	1,721	1,431	0,377
96-99	13,207	13,216	15,864	14,842	13,458	0,926	0,996	1,822	2,360	3,565	1,426	0,874	2,313	6,624	0,794	1,608	1,583	1,470	2,536	2,163	0,358
96-00	13,235	11,533	16,856	13,481	14,119	1,123	1,166	2,010	2,483	3,667	1,800	1,119	2,390	5,635	1,032	1,963	1,982	1,772	3,192	2,761	0,343
96-01	12,173	11,567	17,084	14,332	13,631	1,362	1,371	2,307	2,655	3,802	2,443	1,833	2,800	3,695	1,120	2,593	2,424	2,059	4,072	3,170	0,352
								COE	FICIEN	ITE DE	COR	RELA	ÇÃO ((r)							
PERÍODO	AM	OSTRAC	SEM IND	EPENDE	NTE	AMOS	TRAGE	M C/RE	PETIÇÃO	TOTAL	AMOST	RAGEN	C/REP	ETIÇÃO I	PARCIAL		DUPL	RESULTADO			
FERIODO	100m²	200m²	400m²	1000m²	2500m²	100m²	200m ²	400m²	1000m²	2500m ²	100m²	200m²	400m²	1000m²	2500m²	100m²	200m²	400m²	1000m²	2500m²	DINÂMICA
96-97	0,08	-0,05	0,05	0,08	-0,05	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
96-98	-0,01	-0,03	0,02	-0,12	-0,20	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
96-99	-0,01	0,09	0,06	0,04	-0,22	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,99	1,00	1,00	1,00	0,99	1,00	1,00	1,00
96-00	-0,02	0,01	0,09	0,11	-0,11	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,99	0,99	1,00	1,00	1,00	0,99	1,00	1,00	0,99
96-01	-0,03	-0,06	0,12	-0,13	-0,14	1,00	0,99	1,00	1,00	0,99	0,99	1,00	0,99	0,99	1,00	0,99	1,00	0,98	0,99	1,00	0,99


Com relação ao erro padrão do crescimento (tab. 24), os resultados da dinâmica revelaram estimativas que oscilaram entre 0,413 e 0,352 m³/ha, para os períodos de 1996-1997 e 1996-2001, respectivamente. Para os diferentes processos de amostragem, as estimativas do erro padrão do crescimento foram superiores para todos os caso, destacando a amostragem independente, que apresentou os maiores erros.

Na análise da correlação (tab. 24), observou-se que os coeficiente encontrados na avaliação da dinâmica ficaram entre 0,99 e 1,00, comprovando a fortíssima correlação entre os volumes comerciais medidos nas várias ocasiões. Na análise dos diferentes processos, a amostragem independente não apresentou correlação entre os volumes nas duas ocasiões, enquanto que nos demais processos, os coeficientes encontrados foram similares aos encontrados na análise da dinâmica.

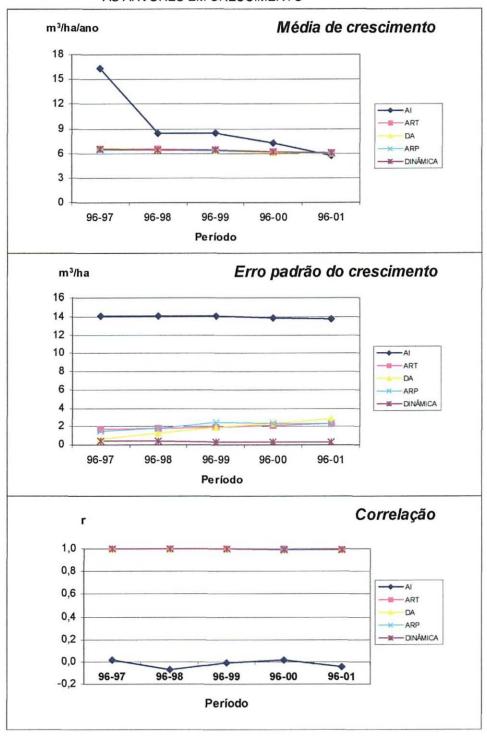
A figura 16 ilustra a comparação dos resultados obtidos na análise da dinâmica com os principais processos de amostragem, referentes às estimativas médias encontradas nos vários anos de medições (1996 a 2001). Assim, a média, o erro padrão e o coeficiente de correlação, foram obtidos através da média aritmética simples das estimativas dos diferentes tamanhos de unidades amostrais.

Como se pode observar na figura 16, as estimativas referentes aos volumes comerciais médios encontrados nos principais processos de amostragem, não apresentaram diferenças significativas em relação aos valores obtidos na análise da dinâmica.

FIGURA 16 – MÉDIA, ERRO PADRÃO E COEFICIENTE DE CORRELAÇÃO DO VOLUME COMERCIAL, POR PROCESSO DE AMOSTRAGEM E PARA A DINÂMICA DA FLORESTA, NO PERÍODO DE 1996 A 2001, SOMENTE PARA AS ÁRVORES EM CRESCIMENTO

Com relação ao erro padrão volumétrico (fig. 16), conforme mencionado na análise da tabela 23, todos os processos de amostragem apresentaram erros menores que as estimativas obtidas na dinâmica, com destaque a dupla amostragem, que apresentou os menores erros durante o período.

Na análise do coeficiente de variação (%), os resultados obtidos na análise da dinâmica foram muito menores que os encontrados nos processos de amostragem em estudo. Como o coeficiente de variação tende a ser maior nas unidades com área maior, ao se utilizar a média entre os diferentes tamanhos de unidades amostaris para efetuar a comparação, as estimativas dos coeficientes nos vários processos de amostragem aumentaram significativamente.


A figura 17 ilustra a comparação dos resultados obtidos na análise da dinâmica com as estimativas médias do crescimento, erro padrão do crescimento e coeficiente de correlação dos principais processos de amostragem, referentes aos diversos períodos analisados (1996 a 2001).

Como pode-se observar na figura 17, em média, os processos de amostragem apresentaram estimativas do crescimento similares aos valores obtidos na dinâmica da floresta, com exceção da amostragem independente, que revelou maiores taxas na maioria dos períodos analisados.

Com relação ao erro padrão do crescimento, a amostragem independente revelou os maiores erros, com estimativas muito acima dos valores encontrados na dinâmica da floresta. Para os demais processos de amostragem, as estimativas ficaram um pouco acima dos resultados obtidos pela dinâmica.

Na análise da correlação não foram observadas diferenças significativas entre as estimativas, com exceção da amostragem independente que apresentou correlações próximas de zero em todos os períodos.

FIGURA 17 — MÉDIA DE CRESCIMENTO, ERRO PADRÃO DO CRESCIMENTO E COEFICIENTE DE CORRELAÇÃO DO VOLUME COMERCIAL, POR PROCESSO DE AMOSTRAGEM E PARA A DINÂMICA DA FLORESTA, NO PERÍODO DE 1996 A 2001, SOMENTE PARA AS ÁRVORES EM CRESCIMENTO

4.5 Síntese dos principais resultados

4.5.1 Dinâmica da floresta

- No período de 1996 a 2001, a floresta apresentou Incrementos Periódicos Anuais (IPA) em DAP variando entre 0 e 4,14 cm/ano. Das 3805 árvores estudadas, cerca de 1% apresentou incrementos nulos (IPA = 0), aproximadamente 50% das árvores apresentaram IPA entre 0 e 0,4 cm/ano e cerca de 36% com IPA entre 0,4 e 1,2 cm/ano;
- A floresta apresentou um IPA médio em DAP de 0,51 cm/ano, desvio padrão de 0,50 cm/ano e coeficiente de variação de 98%, revelando grande variabilidade nos incrementos dessa variável;
- Com relação ao IPA em área transversal, a floresta apresentou média igual a 0,0162 m²/ano, com um coeficiente de variação igual a 160,39% e desvio padrão de 0,0261 m²/ano, indicando alta variabilidade dos incrementos em área transversal;
- A floresta apresentou em média 0,10 cm/ano de IPA em altura comercial, revelando alta variabilidade dos valores, comprovadas pelo coeficiente de variação de 122,73%;
- Com relação ao IPA em volume comercial, a floresta apresentou uma média de 0,014 m³/ano e grande dispersão dos valores, com um coeficiente de variação de 232,69%;
- Os incrementos em DAP, área transversal, altura comercial e volume comercial, apresentaram valores de assimetria e curtose positivos, revelando curvas com deslocamento para a esquerda e certo grau de afilamento, caracterizada por uma grande concentração de indivíduos com incrementos inferiores à média;
- A floresta apresentou um IPA médio de 0,79 m²/ha/ano para a área basal e 6,028 m³/ha/ano para o volume comercial;
- As espécies que apresentaram os maiores IPAs em DAP maiores da floresta foram: pau-alho (1,84 cm/ano), o jaracatiá (1,27 cm/ano), a embaúba (1,20 cm/ano), o capixingui (1,16 cm/ano), e o monjoleiro (0,96 cm/ano). As espécies que apresentaram os menores IPAs médios da floresta foram: o palmito, a

- gairova, a serralha, a três folhas e o quatiguá, (0,05 / 0,10 / 0,11 / 0,14 e 0,14 cm/ano, respectivamente);
- As espécies que apresentaram os maiores IPAs médio em volume da floresta foram: o pau-alho (0,349 m³/ano), o jequetibá rosa (0,055 m³/ano), o sangueiro (0,039 m³/ano), o capixingui e o jaracatiá (0,033 m³/ano), o monjoleiro (0,025 m³/ano) e o guarita (0,019 m³/ano). As espécies que apresentaram os menores IPAs médios em volume comercial foram: o palmito e a três folhas (0,001 m³/ano);
- Com relação à variação do IPA médio em DAP por classe diamétrica, considerando a floresta como um todo, observou-se uma tendência similar nas diversas classes, ou seja, não foram constatadas grandes oscilações nas taxas de incremento nas respectivas classes de DAP. Para as principais espécies da floresta, observou-se comportamentos bastante variados, com grande variação na distribuição das taxas de incremento por classes diamétricas;
- A floresta apresentou uma mortalidade de 12 ind./ha/ano, resultando aproximadamente em uma taxa de 2,8% ao ano. As espécies que apresentaram os maiores números de árvores mortas foram: capixingui (19% do total), seguido do urtigão, monjoleiro e a embaúba, que apresentaram respectivamente 11%, 8% e 7% do total de árvores mortas no período;
- Com relação aos ingressos, a floresta apresentou aproximadamente 22 ind./ha/ano, equivalente a uma taxa anual de ingresso igual a 5,24%/ano. A espécie que apresentou o maior número de ingressos no período foi o guaritá, com cerca de 12,5% do total, seguido do urtigão, capixingui, embaúba, D1 e o monjoleiro, que apresentaram, respectivamente, 9%, 7%, 5,5%, 4,6% e 4,4% do total de ingressos.

4.5.2 Processos de Amostragem em Múltiplas Ocasiões

 As estimativas referentes ao volume comercial, erro padrão volumétrico e coeficiente de variação revelaram resultados similares para todos os processos de amostragem em questão e para as duas abordagens estudadas;

- Na avaliação do crescimento, os processos de Amostragem com Repetição Total, Amostragem com Repetição Parcial e Dupla Amostragem revelaram estimativas muito próximas, não apresentando maiores diferenças durante o período analisado, em ambas as abordagens. A Amostragem Independente apresentou as maiores diferenças entre os processos estudados, revelando as maiores estimativas do crescimento para a abordagem das árvores em crescimento e as menores estimativas para a abordagem de todas as árvores;
- Na estimativa do erro padrão do crescimento, a Amostragem Independente apresentou as maiores diferenças entre os processos analisados. Os demais processos apresentaram estimativas sem maiores diferenças;
- Na análise da correlação entre os volumes comerciais nos diversos períodos estudados, observou-se uma altíssima correlação (próxima de um) em todos os processos de amostragem, com exceção da Amostragem Independente que apresentou coeficientes próximos de zero (correlação nula);
- Nas estimativas referentes ao volume comercial das árvores, em ambas as abordagens estudadas, todos os processos de amostragem revelaram acréscimos durante o período de 1996 a 2001;
- Durante o período estudado, não foram observadas maiores diferenças nas estimativas do erro padrão volumétrico nos processos de amostragem em questão e para as abordagens consideradas;
- Em todos os processos de amostragem observou-se uma redução no coeficiente de variação durante o período analisado, não havendo diferenças expressivas nas estimativas obtidas em ambas as abordagens;
- Na avaliação do crescimento, em ambas as abordagens, observou-se que todos os processos de amostragem apresentaram redução nas estimativas durante o período de 1996 a 2001.
- Com exceção da Amostragem Independente, que revelou redução do erro padrão do crescimento, em ambas as abordagens, observou-se um aumento no erro durante o período estudado;
- Na abordagem referente às árvores em crescimento, com exceção da Amostragem Independente, em todos os processos de amostragem a correlação entre os volumes comercias, nas diversas ocasiões, se manteve igual ou próximo

de um durante todo o período, não sendo observadas reduções significativas do coeficiente de correlação. Na abordagem referente a todas as árvores, observouse o mesmo comportamento, com pequena redução nos coeficientes durante o período, demonstrando tendência à redução dos mesmos, quando o intervalo entre as medições for superior a cinco anos;

- Todos os processos de amostragem em questão apresentaram estimativas do erro padrão volumétrico menores que os resultados encontrados na dinâmica da floresta, com destaque a Amostragem com Repetição Parcial, que revelou em média, os menores erros no período.
- Todos os processos de amostragem apresentaram estimativas dos coeficientes de variação superiores ao encontrado na dinâmica da floresta. No geral, quanto maior a área da unidade amostral menor é o coeficiente de variação;
- Nas estimativas do crescimento, com exceção da Amostragem Independente, que apresentou as maiores variações no período, os demais processos revelaram estimativas próximas dos valores encontrados na dinâmica da floresta, para todos os tamanhos de unidades amostrais;
- A Amostragem Independente apresentou erros padrões do crescimento muito acima dos resultados encontrados na dinâmica da floresta. Os demais processos apresentaram comportamentos similares, com estimativas sempre superiores aos resultados da dinâmica, em todos os tamanhos de unidades amostrais;
- A exceção da Amostragem Independente, que apresentou correlação entre os volumes comercias nas diversas ocasiões próxima de zero, os demais processos de amostragem revelaram coeficientes entre 0,99 e 1,00 em todos os tamanhos de unidades amostrais, resultados estes similares aos encontrados na dinâmica da floresta;
- Quando foram consideradas apenas as árvores em crescimento, a correlação entre os volumes comercias se manteve alta e próxima de um, indicando que o período de cinco anos pode ser recomendado para análise do crescimento da floresta. Quando foram consideradas todas as árvores na análise, a correlação também se manteve alta, com pequena queda para o intervalo de cinco anos, indicando certa tendência a redução desta, para períodos maiores aos estudados.

5 CONCLUSÕES

5.1 DINÂMICA DA FLORESTA

- A floresta Estacional Semidecidual de Cássia MG apresentou grande dinamismo, revelando altas taxas de crescimento (IPA), mortalidade e ingresso, valores estes superiores aos encontrados em outras florestas naturais citadas na literatura. No geral, a floresta é caracterizada pela presença de espécies clímax (jequetibás, sangueiro, guaritá, entre outras) de grande abundância e distribuídos em todos os estratos da floresta, e espécies pioneiras, de ciclo curto (embaúba, jaracatiá, urtigão, capixingui, monjoleiro, entre outras) e rápido crescimento, que ocupam os espaços deixados na floresta, e são responsáveis, na maioria dos casos, pelos altos índices de crescimento, mortalidade e ingresso;
- A floresta em questão revela características de uma floresta clímax, apresentando várias espécies que ocupam todos os estratos da floresta e se destacam pela sua importância na estrutura da floresta, revelando altos índices de abundância, dominância e freqüência, além de expressiva regeneração natural, aspectos estes fundamentais para a perpetuação destas espécies;
- Foram reveladas várias causas para a mortalidade das árvores nos diferentes estratos da floresta, destacando-se entre elas: a competição entre os indivíduos, as características genéticas das espécies, a alta ocorrência de cipós, o ataque de insetos e a ocorrência de vendavais e raios;
- A estrutura amostral utilizada, com unidades permanentes de um hectare (100m x 100m) e subdivisão em subparcelas de 100 m², mostrou ser eficiente e apropriada para pesquisas de dinâmica em florestas naturais;
- A pesquisa efetuada com abordagens sucessivas e anuais, em período de cinco anos, demonstrou ser possível a obtenção de consistência nos principais estimadores que caracterizam a dinâmica de florestas naturais.

5.2 PROCESSOS DE AMOSTRAGEM EM MÚLTIPLAS OCASIÕES

- Os estudos de dinâmica de florestas naturais poderão, a partir da experiência obtida nesta pesquisa, ser realizados por meio de processos de amostragem em múltiplas ocasiões;
- Valendo-se da manutenção da alta correlação entre medições sucessivas, a dinâmica de florestas naturais poderá ser periodicamente avaliada em intervalos de cinco anos, podendo, entretanto, ser utilizado os processos de amostragem em múltiplas ocasiões, mantendo-se as medições anuais, para detecção de algumas ocorrências cíclicas mais intensas, como mortalidade por fatores abióticos e detecção de ingressos de espécies de rápido crescimento;
- Dos processos de amostragem em múltiplas ocasiões utilizados nesta pesquisa, pode-se concluir que a Amostragem Independente (AI) não é recomendável para estudos de dinâmica; os processos de Amostragem com Repetição Total (ART) e Amostragem com Repetição Parcial (ARP) mostraram-se apropriados para estudos de dinâmica; o processo de Dupla Amostragem (DA) mostrou ser o mais apropriado para estudos de dinâmica, por ser o que gerou o maior número de resultados próximos aos estimadores encontrados nos estudos da dinâmica da floresta, além de se constituir num processo mais rápido para obtenção de dados, uma vez que se utiliza de métodos indiretos para geração dos estimadores (regressão linear);
- Com relação aos diferentes tamanhos de unidades amostrais considerados, não foram observados indicativos relevantes ou uma tendência definida que pudesse destacar um tamanho específico para os referidos processos de amostragem em análise, havendo na maioria dos casos uma alternância entre as melhores estimativas referentes aos vários tamanhos de unidade amostrais considerados.

6 RECOMENDAÇÕES

- Desenvolver estudos de estrutura e dinâmica em outras regiões de abrangência da Floresta Estacional Semidecidual, com o objetivo de obter informações mais detalhadas sobre o comportamento das principais espécies e para a floresta como um todo, propiciando assim comparações e conclusões mais apuradas sobre tal vegetação;
- Dar continuidade aos estudos de crescimento, através das coletas periódicas de campo, com o objetivo de organizar um banco de dados mais detalhado sobre a floresta em questão, propiciando assim, a geração de novos trabalhos fundamentais para o desenvolvimento das pesquisas em florestas naturais no Brasil;
- Incrementar as informações referentes à identificação de todas as espécies da floresta, bem como os estudos fenológicos das espécies, com o objetivo de se conhecer melhor os hábitos e as características principais das espécies integrantes da Floresta Estacional Semidecidual, possibilitando, a manutenção do banco genético deste tipo de vegetação, através da coleta de sementes e posterior produção de mudas de todas as espécies da região, entre outros benefícios:
- Aprimorar as equações hipsométricas e volumétricas já desenvolvidas, através da coleta de mais informações, propiciando assim o ajuste de equações por espécies ou por grupo de espécies;
- Utilizar a base de dados existente para testar e desenvolver modelos matemáticos, com o objetivo de avaliar a produção e o crescimento da floresta, bem como simular diferentes formas de manejo;
- Aplicar os diferentes processos de amostragem estudados neste trabalho em outras regiões e/ou diferentes tipos de florestas naturais, com o objetivo de obter informações mais detalhadas, possibilitando uma análise mais acurada da eficiência e precisão das principais estimativas obtidas nos diferentes processos amostrais;
- Incrementar as pesquisas sobre tamanhos e formas de unidades amostrais, para utilização em inventários florestais contínuos em florestas naturais, com o

- objetivo de se fornecer novas alternativas para a aplicação nos diferentes processos de amostragem;
- Dar continuidade ao processo de coleta periódica de dados, com o objetivo de se conhecer melhor o comportamento da correlação entre as variáveis em intervalos superiores a cinco anos, possibilitando uma melhor decisão acerca do período ideal entre duas medições, para análise do crescimento, em florestas naturais;
- Intensificar a utilização dos diferentes processos de amostragem em florestas naturais, com a finalidade de se conhecer melhor as vantagens e desvantagens de sua aplicação.

REFERÊNCIAS

- ALDER, D. Estimación del volumen forestal y predicción del rendimiento con especial referencia a los trópicos. Tomo II: Predicción del rendimiento. Roma: FAO 22/2, 1980. 118p.
- ALDER, D; SYNNOTT, T.J. Permanent sample plot techniques for mixed tropical forest. Oxford Forestry Institute. University of Oxford. **Tropical Forestry Papers 25**, 1992. 124p.
- BARROS, P.L.C. Estudo das distribuições diamétricas da floresta do Planalto Tapajós Pará. Curitiba, 1980. 123p. Dissertação (Mestrado em Engenharia Florestal), UFPR.
- BICKFORD, C. A. **On successive forest inventories**. Proc. Soc. Of American Foresters. 1963, p.25-30.
- BRENA, D. A. A comparação dos métodos de inventários florestais sucessivos em relação à amostragem com repetição parcial, aplicados em uma população estratificada. Curitiba, 1979. 127p. Dissertação (Mestrado em Engenharia Florestal), UFPR.
- BUDOWSKI,G. Los bosques de los trópicos úmedos de América. **Turrialba**. 16(3): 278-285. 1966.
- CARVALHO, J.O.P. Structure and dynamics of a logged over Brazilian Amazonian rain forest. Tese de Doutorado. University of Oxford. Oxford, 1992. 215p.
- CARVALHO, J.O.P. Dinâmica de florestas naturais e sua implicação para o manejo florestal. Curso de Manejo Florestal Sustentável. Curitiba : EMBRAPA Florestas, 1997.
- COCHRAN, W. G. **Técnicas de amostragem**. Rio de Janeiro: Editora Fundo de Cultura, 1965. 555p.
- CORAIOLA, M. Caracterização estrutural de uma Floresta Estacional Semidecidual localizada no município de Cássia MG. Curitiba, 1997. 196p. Dissertação (Mestrado em Engenharia Florestal), UFPR.
- CUNIA, T. Continuous forest inventory, partial replacement of samples and multiple regression. Forest Science, V.11, p.480-502, 1965.
- CUNIA, T. CHEVROU, R. B. Sampling with partial replacement on three of more occasions. Forest. Science, V.15, p.204-224, 1969.
- DAUBENMIRE, R. Plant communities a textbook of plant synecology. New York: Harper & Row, 1968. 300p.

- DENSLOW, J. S. Gap partitioning among tropical rainforest trees. **Biotropica** 12 (2): 45-55. 1980.
- DURIGAN, M. E. Florística, dinâmica e análise protéica de uma Floresta Ombrófila Mista em São João do Triunfo PR. Curitiba, 1999. 121p. Dissertação (Mestrado em Engenharia Florestal), UFPR.
- FAO. Manual of a forest inventory with special reference to mixed tropical forests. Roma, F.A.O., 1973. 200p.
- FINEGAN, B. Curso: Bases ecológicas para la silvicultura: los gremios de especies forestales. **Turrialba**. Costa Rica: CATIE. 1993. 35 p.
- GAUTO, O. A. Análise da dinâmica e impactos da exploração sobre o estoque remanescente (por espécies e grupos de espécies similares) de uma Floresta Estacional Semidecidual em Missiones, Argentina. Curitiba, 1997. 133p. Dissertação (Mestrado em Engenharia Florestal), UFPR.
- GOMIDE, G. L. A. Estrutura e dinâmica de crescimento de florestas tropicais primária e secundária no Estado do Amapá. 1997, 179p. Dissertação (Mestrado em Engenharia Florestal), UFPR.
- HARTSHORN, G. S. Gap-phase dynamics and tropical tree species richness. p. 65-73. In: Holm-Nielsen, L. B. & Basev, h. (eds.). **Tropical forests. Botanical dynamics and speciation**. Academic Press. London. 1989.
- HOSOKAWA, R.T. **Manejo e economia de florestas.** Roma: FAO/ONU, 1986. 125p.
- HUSCH, B.; MILLER, C. I.; BEERS, T. W. Forest mensuration. 2 ed. New York, The Ronald Press Company, 1972. 410 p.
- HUSCH, B.; MILLER, C. I.; BEERS, T. W. Forest mensuration. 3 ed. New York, John Wiley & Sons, 1982. 402 p.
- KREBS, C. J. Ecology: The experimental analysis of distribution and abundance. 2 ed. J. Willeys & Sons, New York. 1985.
- KUNIYOSHI, Y.S. Reconhecimento das fases sucessionais da vegetação arbórea. In: Simpósio sobre Avaliação de Impactos Ambientais. (1989: Curitiba). **Anais**. Curitiba: Fundação de Pesquisas Florestais do Paraná, 1989. p. 97-107.
- LAMPRECHT, H. Silvicultura nos trópicos: Ecossistemas florestais e respectivas espécies arbóreas possibilidades e métodos de aproveitamento sustentado. Rossdorf: TZ-Verl.-Ges., 1990. 343p.
- LIEBERMAN, D. and LIEBERMAN, M. Forest tree growth and dynamics at La Selva, Costa Rica (1969-1982). **Journal of Tropical Ecology** 3: 347-358. 1987.

LIEBERMAN, D. LIEBERMAN, M. PERALTA, R. HARTSHORN, G. S. Mortality patterns and turnover rates in wet tropical forest in Costa Rica. **Journal of Ecology** 73: 915-924. 1985.

MANOKARAN, N. KOCHUMMEN, K. M. Recruitment, grow and mortality of trees in an lowland dipyterocarp forest in Peninsular Malaysia. **Journal of Tropical Ecology** 3, 315-330. 1987.

MONTOYA MAQUIN, J. M. El acuerdo de Yangambi (1956) como base para una nomenclatura de tipos de vegetación en el trópico americano. **Turrialba**, 16 (2) : 169-180, 1966.

ODUM, E.P. Ecologia. São Paulo: Pioneira, 1977. 201p.

PÉLLICO NETTO, S.; BRENA, D. A. Inventário Florestal. Curitiba: Editorado pelos autores, 1997. v.1.

PIZZATO, W. Avaliação biométrica da estrutura e da dinâmica de uma Floresta Ombrófila Mista em São João do Triunfo – PR: 1995-1998.Curitiba, 1999, 172p. Dissertação (Mestrado em Engenharia Florestal), UFPR.

PRODAN, M.; PETERS, R.; COX, F.; REAL, P. **Mensura forestal**. San José, Costa Rica: Deutsche Gesellschaft für Technische Zusammenarbeit (GZT) GmbH: Instituto Interamericano de Cooperación para la Agricultura (IICA), 1997. 586p. (Serie Investación y Eduación en Desarrollo Sostenible).

RADAMBRASIL - Levantamento de recursos naturais. Vol. 32, 1978.

RIBEIRO, J. C. Eficiência da amostragem com repetição parcial em relação aos processos de inventários florestaos sucessivos. Curitiba, 1978. 99p. Dissertação (Mestrado em Engenharia Florestal), UFPR.

SANQUETTA, C.R. Fundamentos biométricos dos modelos de simulação florestal. Curitiba: FUPEF - Série didática Nº 08, 1996. 59p.

SANQUETTA, C. R.; NINOMIYA, I.; OGINO, K. Regeneration process in a firhemlock forest – analysis of sampling population. In: 103RD Annual Meeting of the Japanese Forestry. Tokyo, Japan. **Annals** of...: Japanese Forestry Society, n. 172, p 92. 1992.

SANQUETTA, C.R.; NINOMIYA, I.; TSUJITA, A. & OGINO, K. Dynamics during a 6-year period in a natural secondary fir-hemlock forest. **The Bulletin of the Ehime University Forest** 29:1-14, 1991.

SILVA, J. N. M. The behavior of the tropical rain forest of the Brazilian Amazon after logging. D. Phil thesis. Oxford University. Oxford. 1989.

SWAINE. M. D.; LIEBERMAN, D.; PUTZ, F. E.. The dynamics of tree populations in tropical forest: a review. **Journal of Tropical Ecology** 3: 359-366. 1987.

VANCLAY, J.K. Modelling forest growth and yield - applications to mixed tropical forests. Wallingford: CAB International, 1994. 312p.

VRIES, P. G, de. Sampling theory for forest inventory. Berlin, 1986. 399p.

WARE, K. D.; CUNIA, T. Continuous forest inventory with a partial replacement of samples. Forest Science. Monografh 3. 1962. 40p.

WHITMORE, T.C. An introduction to tropical rain forests. Oxford: Clarendon Press, 1989. 226p.