
         
 

 
 

Universidade Federal do Paraná 
Bioprocess Engineering and Biotechnology Division 

 
Université de Provance (Aix-Marseille I) 

 
Université de la Méditerranée (Aix-Marseille II) 

 
 

Master of Science 
Mention Microbiology, Plant Biology and Biotechnolo gies 

 
 
 

Respirometric Balance and Analysis of four 
microalgae: Dunaliella tertiolecta, Chlorella vulgaris, 

Spirulina platensis and Botryococcus braunii 
 
 
 
 

Author: Eduardo Bittencourt Sydney 
 
Supervisor: Professor Carlos Ricardo Soccol, PhD,HDR 
Co-Supervisor: Professor Julio C. de Carvalho 

 
 
 
 
 
 

Curitiba, October 2009



2 

 

Eduardo Bittencourt Sydney 

 

 

 

 

 

Respirometric Balance and Analysis of four 
microalgae: Dunaliella tertiolecta, Chlorella vulgaris, 

Spirulina platensis and Botryococcus braunii 
 

 

 

Programa de Pós-Graduação em Processos Biotecnológicos 

(Universidade Federal do Paraná) 

 

Master of Science Mention Microbiology, Plant Biology and Biotechnologies 

(Université de Provance – Aix-Marseille I) 

(Université de La mediteranée – Aix-Marseille II) 

 

 

 

 

 

Curitiba, October 2009



3 

 

Thanks  

 

I would like to thank PhD Carlos Ricardo Soccol, my supervisor, for the 

opportunities, confidence, wisdom, and understanding. I would like to ratify his 

competence and immense contribution to science. 

Professor Julio C. de Carvalho, co-supervisor of this thesis, for the valuable 

suggestions, revisions and discussions and help for the development of this essay. 

The mentors and Professors of the BIODEV master course for the learning and 

great opportunity. 

MsC Wilerson Sturm for the support, help, patience and availability, especially 

in relation to the equipment used.   

Professors Adenise Woiciechowski, Adriane B. Pedroni, Alberto J. Letti, 

Luciana P. de Souza and Michele R. Spier for the availability, help and friendship. 

All my colleagues from the Laboratory, especially my friends Carlos Dalmas, 

Gabrielle C. Consentino, Gerson R. de Mello, Gisele Carol and Ricardo Assmann for 

the friendship, support and collaboration. 

To my parents Suzana and Gilson and my brother Roberto for the 

encouragement, participation and unconditional support. 

In particular to Alessandra for the fellowship, patience, love, valuable 

suggestions and for being always by my side. 

To CAPES for the economical incentive and, most important, fostering 

academic research. 

To all those who directly or indirectly contributed to the implementation of this 

Master’s dissertation. 



4 

 

Abstract  

 

 As a consequence of global warming many technologies are being 

developed in order to remove carbon dioxide from air. Biological carbon fixation 

through microalgae cultivation seems to be the most interesting one, since they 

allow the use of residual waters as media for growth, and industrial gases as 

carbon sources. Growth kinetics, metabolic behavior, nutrient requirement, 

biomass composition and carbon fixation capacity are essential data for 

industrial processes development. Such data were evaluated in four microalga 

of industrial interest cultivated in artificial medium with CO2 as carbon source: 

Spirulina platensis, Dunaliella tertiolecta, Chlorella vulgaris and Botryococcus 

braunii. A respirometric balance based on gases analysis was used to evaluate 

carbon dioxide fixation rate and ion chromatography was employed to 

determine rate of consumption of nitrogen, phosphorus, potassium and 

magnesium for each microalga. The destination of carbon fixed was evaluated 

in terms of biomass and exopolyssaccharides production and as dissolved 

carbon, while nitrogen consumption was evaluated for protein and magnesium 

for chlorophyll production. B. braunii presented the highest CO2 fixation rate, 

followed by, S. platensis, D. tertiolecta and C. vulgaris (496.98, 318.16, 272.40, 

and 251.64 mg L-1 day-1, respectively). Nitrogen, potassium, magnesium and 

phosphorus (for D. tertiolecta calcium was analyzed instead of phosphorous) 

consumption rates (mg gX-1) were 49.35, 32.18, 2.85 and 314.4 for Chlorella 

vulgaris; 40.72, 15.02, 2.60 and 175.9 for B. braunii; 61.80, 24.09, 4.17 and 

247.4 for S. platensis; and 26.05, 59.71, 58.45 and 375.46 for D. tertiolecta. 

 

Microalgae. Dunaliella tertiolecta. Chlorella vulgaris. Botryococcus braunii. 

Spirulina platensis. CO2 fixation. Respirometry. Nutrients. 



5 

 

Table of Contents  

 

1.0 INTRODUCTION .......................................................................................................... 12 

2.0 BIBLIOGRAPHIC REVIEW ......................................................................................... 14 

2.1 Microalgal Metabolism ............................................................................................. 14 

2.2 Microalgae Mass Culture ......................................................................................... 19 

2.2.1 Food and Feed .............................................................................................. 21 

2.2.2 Polysaccharides ............................................................................................ 21 

2.2.3 Surfactants and fatty acids .......................................................................... 21 

2.2.4 Aminoacids and vitamins ............................................................................. 21 

2.2.5 Pigments ........................................................................................................ 22 

2.2.6 Pharmaceutical and diagnostics................................................................. 22 

2.2.7 Water treatment ............................................................................................ 22 

2.3 Microalgae Culture Fundamentals ......................................................................... 23 

2.3.1 Media for microalgae ............................................................................. 23 

2.3.2 Cultivation vessels ................................................................................. 26 

2.3.2.1 Light diffusion ............................................................................................ 27 

2.3.2.2 Mixing ......................................................................................................... 28 

2.3.3 Carbon dioxide .............................................................................................. 29 

2.3.4 Scaling Up...................................................................................................... 30 

2.3.5 Culture Monitoring ........................................................................................ 31 

2.4 Carbon Uptake by Microalgae ................................................................................ 31 

2.5 Microalgae Description and Specific Carbon Uptake Review ........................... 35 

2.5.1 Chlorella vulgaris .......................................................................................... 35 

2.5.2 Botryococcus braunii .................................................................................... 35 

2.5.3 Spirulina platensis ........................................................................................ 37 

2.5.4 Dunaliella tertiolecta ..................................................................................... 38 



6 

 

3.0 MATERIAL AND METHODS ...................................................................................... 39 

3.1 Microorganisms and Culture Conditions ....................................................... 39 

3.2 Cultivation conditions ....................................................................................... 40 

3.3 Kinetic Parameters Calculation ...................................................................... 41 

3.4 Analytical Determinations ................................................................................ 42 

3.4.1 Nitrate ............................................................................................................. 42 

3.4.2 Alkalinity ......................................................................................................... 43 

3.4.3 Cations Analysis ........................................................................................... 44 

3.4.5 Total carbohydrate analysis ........................................................................ 44 

3.5 Carbon Dioxide Data Acquisition ................................................................... 45 

3.6 Biomass Analysis .............................................................................................. 47 

3.6.1 Pigments ........................................................................................................ 47 

3.6.2 Lipids Extraction............................................................................................ 48 

3.6.3 Total Carbohydrates Quantification ........................................................... 49 

3.6.4 Protein Quantification ................................................................................... 49 

3.6.5 Ash .................................................................................................................. 49 

4.0 RESULTS ...................................................................................................................... 50 

4.1 Chlorella vulgaris LEB 104 ...................................................................................... 50 

4.1.1 Growth Parameters ...................................................................................... 50 

4.1.2 Media Analysis .............................................................................................. 50 

4.1.3 Carbon Dioxide Fixation .............................................................................. 53 

4.1.4 Biomass Composition .................................................................................. 54 

4.2 Botryococcus braunii ................................................................................................ 54 

4.2.1 Growth Parameters ...................................................................................... 54 

4.2.2 Medium Analysis ........................................................................................... 55 

4.2.3 Carbon Dioxide Fixation .............................................................................. 57 

4.2.4 Biomass Composition .................................................................................. 58 



7 

 

4.3 Spirulina platensis .................................................................................................... 58 

4.3.1 Growth Parameters ...................................................................................... 58 

4.3.2 Medium Analysis ........................................................................................... 59 

4.3.3 Carbon Dioxide Fixation .............................................................................. 61 

4.3.4 Biomass Composition .................................................................................. 62 

4.4 Dunaliella tertiolecta ................................................................................................. 62 

4.4.1 Growth Parameters ...................................................................................... 62 

4.4.2 Media Analysis .............................................................................................. 63 

4.4.3 Carbon Dioxide Fixation .............................................................................. 65 

4.4.4 Biomass Composition .................................................................................. 66 

5.0 DISCUSSION ................................................................................................................ 66 

5.1 General discussion ................................................................................................... 66 

5.2 Specific Discussion .................................................................................................. 68 

5.2.1 Growth Profiles.............................................................................................. 68 

5.2.2 Media Analysis .............................................................................................. 68 

5.2.3 Carbon Dioxide Assimilation ....................................................................... 69 

5.2.4 Biomass Composition .................................................................................. 70 

6.0 CONCLUSIONS............................................................................................................ 71 

7.0 FUTURE WORKS ........................................................................................................ 72 

8.0 BIBLIOGRAPHIC REFERENCES ............................................................................. 73 

ANNEX ......................................................................................................................................... 85 

 



8 

 

List of Figures  

Figure 1. An overview on photosynthesis’ Light and Dark reactions (Masojídek, 2004).
 ..................................................................................................................................................... 15 

Figure 2. Electron flux and energy status over the photosynthetic process (Masojídek, 
2004). ......................................................................................................................................... 16 

Figure 3. Different forms in which carbon dioxide is available in water. .......................... 17 

Figure 4. The dark process of CO2 capture and transformation through metabolism of 
photosyntethic microalgae (Masojídek, 2004). .................................................................... 17 

Figure 5. 90 acres commercial microalgae production facility, Kona, Hawaii. Note: 
green ponds culturing Spirulina and red ponds with Haematococcus pluvialis. ............. 19 

Figure 6. Microalgae wastewater treatment ponds at Hollister, California (USA). ......... 23 

Figure 7. Some of the many types of reactors used for microalgal cells cultivation: (a) 
open ponds (raceway), (b) tubular reactor and (c) flat panel. ........................................... 27 

Figure 8. Biomass densities (x), volumetric and areal productivities (Pvolume and Parea), 
and photosynthetic efficiencies (PE) of selected photoautotrophic cultures grown in 
different types of enclosed photobioreactors and under  various photosynthetic photon 
flux densities (PFFD) or light energy supplies (E) (see Eriksen, 2008). .......................... 28 

Figure 9. Paddle wheel mixing of raceway ponds in Earthrise Farms Inc. ...................... 29 

Figure 10. The dependence of pH of the media and the form that carbon dioxide is 
present. ...................................................................................................................................... 30 

Figure 11. Spirulina production facility of Earthrise Farms, Inc., in California. ............... 38 

Figure 12. New Brunswick reactor and control cabinet used for the cultivation of 
microalgae. Eight cool white lamps were used for illumination. ........................................ 41 

Figure 13. Standard curve of nitrogen for analysis of Nitrate in the growth media. ....... 43 

Figure 14. Standard curve for total carbohydrate analysis by the Phenol-Sulfuric 
method. ...................................................................................................................................... 45 

Figure 15. Scheme of the instrumentation used in carbon dioxide fixation quantification 
by microalgae. ........................................................................................................................... 46 

Figure 16. Rotameter used in CO2 flow measurement in first plan. On the top at right 
there is the thermal dispersion mass flow sensor Aalborg GFM. On the top at left there 
is the other mass flow sensor (used for total flow measurement)..................................... 46 

Figure 17. The Novus model N1100 controllers and the data acquisition by a personal 
computer with Laquis software. .............................................................................................. 47 



9 

 

Figure 18. Standard curve used for protein quantification in microalgae biomass by the 
method of Lowry (1951). ......................................................................................................... 49 

Figure 19. C. vulgaris LEB 104 growth profile in MBM media. .......................................... 50 

Figure 20. Dissolved carbon in form of bicarbonate in MBM during growth of C. 
vulgaris. ...................................................................................................................................... 51 

Figure 21. The profile of consumption of nitrogen, potassium, magnesium obtained by 
ion cromatography. ................................................................................................................... 51 

Figure 22. Relation between accumulated biomass production and accumulated 
consumption of each cation analyzed. .................................................................................. 52 

Figure 23. Dissolved phosphorus during cultivation of C. vulgaris in MBM media. ....... 52 

Figure 24. Carbon dioxide and oxygen profiles plotted togheter presenting symmetry 
and accordance to photossynthesis and respiration processes. ...................................... 53 

Figure 25. Growth profile of B. braunii cultivated in 3N-MBM media. .............................. 54 

Figure 26. Comparison between dissolved carbon and growth of B. braunii. ................. 55 

Figure 27. Dissolved salt profiles during cultivation of B. braunii in 3N-MBM media. .... 56 

Figure 28. Relation between accumulated biomass production and accumulated 
consumption of each cation analyzed. .................................................................................. 56 

Figure 29. Dissolved phosphorus during cultivation of B. braunii in 3 N- MBM media. . 57 

Figure 30. Carbon uptake and Oxygen production during growth of Botryococcus 
braunii. ........................................................................................................................................ 57 

Figure 31. Growth profile of Spirulina platensis grown in Zarrouk media. ....................... 58 

Figure 32. Carbon solubility during growth of S. platensis. ................................................ 59 

Figure 33. Profile of consumption of nitrogen, potassium and magnesium. ................... 60 

Figure 34. Profiles of accumulated biomass production versus accumulated 
consumption of each cation analyzed. .................................................................................. 60 

Figure 35. Dissolved phosphorus during cultivation of S. platensis in Zarrouk media. . 61 

Figure 36. Carbon uptake and Oxygen production during growth of Spirulina platensis.
 ..................................................................................................................................................... 61 

Figure 37. Growth profile of D. tertiolecta grown in Dun media. ....................................... 63 

Figure 38. Carbon solubility during growth of D. tertiolecta. .............................................. 64 

Figure 39. Profile of consumption of nitrogen, potassium and magnesium. ................... 64 



10 

 

Figure 40. Profiles of cations consumption versus Dunaliella tertiolecta biomass 
production. ................................................................................................................................. 65 

Figure 41. Carbon dioxide and oxygen consumption pattern. ........................................... 65 

Figure 42. Visual differences among ash of the microalgae. 1- B. braunii, 2- D. 
tertiolecta, 3- S. platensis, 4- C. vulgaris. ............................................................................. 66 

 



11 

 

 List of Tables   

Table 1. Products produced by microalgae. ......................................................................... 20 

Table 2. Data from the literature for cultivation parameters (%CO2 and T), productivity 
(P) and CO2 fixation rate (PCO2) for different microalgae (see Wang et al, 2008) .......... 33 

Table 3. Races of B. braunii and their different characteristics (from Banerjee et al, 
2002). ......................................................................................................................................... 36 

Table 4. The conditions of growing for S. platensis, D. tertiolecta, C. vulgaris and B. 
braunii. ........................................................................................................................................ 40 

Table 5. Estimated composition of C. vulgaris LEB 104. ................................................... 54 

Table 6. Composition of B. braunii cultivated in 3N-MBM media with carbon dioxide as 
carbon source. .......................................................................................................................... 58 

Table 7. Composition of S. platensis cultivated in modified Zarrouk media with carbon 
dioxide as carbon source. ....................................................................................................... 62 

Table 8. Composition of D. tertiolecta cultivated in 3N-MBM media with carbon dioxide 
as carbon source. ..................................................................................................................... 66 



12 

 

 

1.0 INTRODUCTION 
 

The Framework Convention on Climate Change, signed in Rio de Janeiro 

in 1992, made global warming a major focus and the development of 

technologies for reducing/absorbing greenhouse gases (GhG) gained 

importance.  

Rubin et al (1992) divided the GhG reduction alternatives into three 

groups: conservation, direct mitigation and indirect mitigation. Conservation 

measures reduce electricity consumption and thus GhG emissions; direct 

mitigation techniques capture and remove CO2 emitted by specific emissions 

sources; and indirect mitigation involve offsetting actions in which GhG 

producers support reductions in GhG emission. 

 The concept behind most disposal methods is to offset the immediate 

effect on the levels of carbon dioxide in the atmosphere by relocation, i.e., by 

injection into either geologic or oceanic sinks (Stewart et al, 2005). The problem 

with relocation that it is not the best solution; the sinks would be soon saturated  

once the major capacity is in ocean and deep saline formations amounting to 

1012 ton of CO2 while the global carbon dioxide emissions in 2009 were 

31,5x106 tons.  

Therefore, other technologies for CO2 and other GhG gases removal 

became to be developed. For Benemann (1996) GhG mitigation might promote 

the removal of CO2 followed by its long-term sequestration. Various CO2 

mitigation strategies have been thus investigated, which can be generally 

classified into two categories: (1) chemical reaction-based and (2) biological 

CO2 mitigation.  

Chemical reaction-based CO2 mitigation approaches are energy-

consuming and costly processes (Lin et al. 2003), and the only economical 

incentive for CO2 mitigation using the chemical reaction-based approach is the 

CO2 credits to be generated under the Kyoto Protocol (Wang, 2008). Biological 

CO2 mitigation has attracted much attention as a strategic alternative. 
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Microalgae cultivation gained importance because it associates CO2 mitigation 

and production of commercial bioproducts. 

Microalgae are microscopic organisms that typically grow suspended in a 

liquid medium and are able to use the solar energy to combine water with 

carbon dioxide to create biomass. In other words, basically they need a source 

of carbon (especially CO2) and sunlight for growing.  

 Despite microalgae existence has been known for a long time, studies 

are relatively recent. The initial studies about microalgae cultivation began in 

the late 40’s and early 50’s as a potential source of food. Concerns about water 

pollution in the 1960’s increased the interest in the use of microalgae in 

wastewater treatment. The perception in 1970’s that fossil fuel would run out 

made these microorganisms a focus of renewable fuel production. In the 1980’s 

microalgae were used as a source of value products, specifically nutriceuticals. 

In the 90’s, global warming (described above) focused microalgae as an 

alternative. 

 There have been extensive studies on process optimization 

(media and physico-chemical parameters optimization, screening and isolation 

of high CO2 tolerants, search for new valuable products, optimization and 

development of new vessels and systems for cultivation, for example) in order 

to try to overcome the economical issues faced in industrial scale production of 

microalgae. In addition, two other aspects are gaining importance: the use of 

industrial residues (in order to reduce media costs) and the carbon market 

(carbon credits as an additional element in the economic evaluation of the 

process).  

The evaluation of nutrients needs in microalgal cultures is an important 

tool in process development using residues and the quantification of carbon 

dioxide fixation is of great industrial interest since it can be traded in the 

international market and used as a marketing move by companies. 

The rate of carbon uptake is limited by the metabolic activity of 

microalgae, which is in turn limited by photosynthesis. The ability to identify 

rates of consumption of nutrients is thus of considerable importance to the 

understanding of the metabolism of microalgae and to avoid problems in 

industrial cultivation of such microorganisms.  
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The main objective of this study is to evaluate growth, metabolic behavior 

and consumption of nutrients and to quantify the carbon dioxide assimilation by 

four industrially important microalgae: Spirulina platensis, Chlorella vulgaris, 

Dunaliella tertiolecta and Botryococcus braunii, cultivated under autotrophic 

condition.  

 

2.0 BIBLIOGRAPHIC REVIEW  

 

2.1 Microalgal Metabolism 
 

Microalgae are a very heterogeneous group of microorganisms. The term 

“microalgae” includes prokaryotes and eukaryotes. Cyanobacteria (blue-green 

algae) are frequently unicellular and some species forming filaments or 

aggregates. The internal organization of a cyanobacterial cell is prokaryotic, 

where a central region (nucleoplasm) is rich in DNA and a peripheral region 

(chromoplast) contains photosynthetic membranes. The sheets of the 

photosynthetic membranes are usually arranged in parallel, close to the cell 

surface. Eukaryotic autotrophic microorganisms are usually divided according to 

their light-harvesting photosynthetic pigments: Rhodophyta (red algae), 

Chrysophyceae (golden algae), Phaeophyceae (brown algae) and Chlorophyta 

(green algae). Their photosynthetic apparatus are organized in special 

organelles, the chloroplasts, which contain alternating layers of lipoprotein 

membranes (thylakoids) and aqueous phases, the stroma (Staehelin, 1986). 

All photosynthetic organisms contain organic pigments for harvesting 

light energy. There are three major classes of pigments: chlorophylls (Chl), 

carotenoids and phycobilins. The chlorophylls (green pigments) and carotenoids 

(yellow or orange pigments) are lipophilic and associated in ChI-protein 

complexes, while phycobilins are hydrophilic. Chlorophyll molecules consist of a 

tetrapyrrole ring (polar head, chromophore) containing a central magnesium 

atom, and a long-chain terpenoid alcohol. Structurally, the various types of Chl 

molecules designated a, b, c and d differ in their side-group substituent on the 

tetrapyrrole ring. All ChI have two major absorption bands: blue or blue-green 
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(450-475 nm) and red (630-675 nm). Chl a is present in all oxygenic 

photoautotrophs.  

Photoautotrophic cultures seldom reach very high cell densities; they are 

more than an order of magnitude less productive than many heterotrophic 

microbial cultures. However, microalgal photosynthetic mechanism is simpler 

than in higher plants, providing more efficient solar energy conversion. This 

makes microalgae the most important carbon fixative group (around 50%) and 

oxygen producer of the planet. Microalgae cultures have some advantages over 

vascular plants (Benemann, 1996): all physiological functions are carried out in 

a single cell, they don’t differentiate into specialized cells and they multiply 

much faster.  

Photosynthesis can be defined as a redox reaction driven by light energy, 

in which carbon dioxide and water are converted into carbohydrates and 

oxygen. The conversion is traditionally divided into two stages, the so-called 

light reactions and dark reactions (fig 1). The first process is the Light 

Dependent Process (Light Reactions), which occurs in the grana and requires 

the direct energy of light to make energy carrier molecules that are used in the 

second process. The Light Independent Process (or Dark Reactions) occurs in 

the stroma of the chloroplasts, where the products accumulated in the products 

of the Light Reaction are used to form C-C covalent bonds of carbohydrates. 

The Dark Reactions can usually occur if the energy carriers from the light 

process are present.  

 

 
Figure 1. An overview on photosynthesis’ Light and Dark reactions (Masojídek, 2004). 

 

In the Light Dependent Processes (Light Reactions) light strikes 

chlorophyll a in such a way as to excite electrons to a higher energy state. In a 

series of reactions the energy is converted (along an electron transport process) 

into ATP and NADPH. Water is split in the process, releasing oxygen as a by-



16 

 

product of the reaction. The ATP and NADPH are used to make C-C bonds in 

the Light Independent Process (Dark Reactions). 

In the Light Independent Process, carbon dioxide from the atmosphere 

(or water for aquatic/marine organisms) is captured and modified by the addition 

of Hydrogen to form carbohydrates ([CH2O]n). The incorporation of carbon 

dioxide into organic compounds is known as carbon fixation. The energy comes 

from the first phase of the photosynthetic process (fig 2). Living systems cannot 

directly utilize light energy, but can, through a complicated series of reactions, 

convert it into C-C bond energy that can be released by glycolysis and other 

metabolic processes.  

 

 
Figure 2. Electron flux and energy status over the photosynthetic process (Masojídek, 

2004). 

 

So, we can say that the main role of the light reactions is to provide the 

biochemical reducing agent NADPH2 and the chemical energy carrier (ATP) for 

the assimilation of inorganic carbon, as the following reaction: 

 

 

 

The fixation of carbon dioxide happens in the dark (in the stroma of 

chloroplasts) using the NADPH2 and ATP produced in the light reaction of 

photosynthesis. The reaction can be expressed as: 
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OHOCHHCO ATPNADPH
22

32
2 )(4 + →+ ++  

 

Carbon dioxide can be available in water in three different forms: CO2, 

bicarbonate (HCO3
-) or carbonate (CO3

2-) (fig 3). The relative amounts of each 

form are pH-dependent. CO2 diffuse through the cell and is captured by the 

enzyme ribulose biphosphate (Rubisco) (Figure 4). 

 

 
Figure 3. Different forms in which carbon dioxide is available in water. 

 

 
Figure 4. The dark process of CO2 capture and transformation through metabolism of 

photosyntethic microalgae (Masojídek, 2004). 

 

The fixation of CO2 in form of sugar can be considered to occur in four 

distinct phases (Masojídek, 2004):  

(i) Carboxylation: reaction whereby CO2 is added to the 5 carbon 

sugar ribulose bisphosphate (Ribulose-bis-P) to form two 
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molecules of phosphoglycerate (Glycerate-P). This reaction is 

catalyzed by the enzyme ribulose biphosphate 

carboxylase/oxygenase (Rubisco);  

(ii) Reduction: to convert Glycerate-P to 3-carbon products (Triose-P), 

energy must be added in the form of ATP and NADPH2 in two 

steps, which are the phosphorylation of Glycerate-P to form 

diphosphoglycerate (Glycerate-bis-P) and the reduction of 

Glycerate-bis-P to phosphoglyceraldehyde (Glyceraldehyde-P) 

by NADPH2;  

(iii) Regeneration: Ribulose-P is regenerated for further CO2 fixation in 

a complex series of reactions combining 3-, 4-, 5-, 6- and 7-

carbon sugar phosphates, which are not  explicitly shown in the 

diagram;  

(iv) Production: primary end-products of photosynthesis are 

considered to be carbohydrates, but fatty acids, amino acids 

and organic acids are also synthesized in photosynthetic CO2 

fixation. 

 

Photorespiration represents a competing process to carbon fixation, 

where the organic carbon is converted into CO2 without any metabolic gain. 

Photorespiration depends on the relative concentrations of oxygen and CO2 

where a high O2/CO2 ratio stimulates this process, whereas a low O2/CO2 ratio 

favours carboxylation. Rubisco has low affinity to CO2; its Km (half saturation) 

being roughly equal to the level of CO2 in air. Thus, under high irradiance, high 

oxygen level and reduced CO2, the reaction equilibrium is shifted towards 

photorespiration. For optimal yields in microalgal mass cultures, it is necessary 

to minimize the effects of photorespiration, achieved by an effective stripping of 

oxygen and by CO2 enrichment. For this reason, microalgal mass cultures are 

typically grown at a much higher CO2/O2 ratio than that found in air.  

The source of nitrogen in cultivation of microalgae seems to cause 

changes in oxygen production during photosynthesis. The ratio between O2 

evolution rate and CO2 uptake rate (the photosynthetic quotient, PQ) depends 

on the composition of the produced biomass and the substrates that are 
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utilized. Especially oxidized nitrogen sources, which must be reduced before 

they are incorporated into the biomass, affect the PQ. When nitrate is used, it is 

expected a evolution of 1.3 mol O2 per mol of CO2 assimilated, while nitrite 

promotes a release of 1.2 mol O2 and ammonia 1.0 mol O2 (Eriksen et al, 

2007). Approximately 20% of O2 evolution equivalents can be accounted for by 

NO3
− uptake and assimilation under N-replete conditions (Turpin, 1991). PQ 

can also be predicted from the degree of reduction of the biomass (Roels, 

1980). Lipids and proteins accumulation result in a degree of reduction higher 

than carbohydrates.  

 

2.2 Microalgae Mass Culture 
 

The first commercial production systems of microalgae were developed 

in Japan (1960’s), where Chlorella was cultivated and sold as “health food”. In 

the 70’s Spirulina, a filamentous blue-green alga began to be cultivated in US 

and used as food supplement, aquaculture feed and food coloring. Dunaliella is 

another microalga whose industrial cultivation is well established. This alga is 

being used for beta-carotene production, food colorant and antioxidant/vitamin 

food supplement. The figure 5 illustrates an example of microalgae mass 

culture. 

 

 
Figure 5. 90 acres commercial microalgae production facility, Kona, Hawaii. Note: 

green ponds culturing Spirulina and red ponds with Haematococcus pluvialis. 

 

Latest developments have shown the potential of microalgae for the 

production of a variety of chemical and biologically active compounds, such as 

vitamins, pigments, carotenoids, proteins, aminoacids, lipids, polysaccharides, 
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antioxidants, antitumorals, antibiotics, antifungal agents, biofuels, and others 

are in progress (Becker, 1994). Table 1 shows some products produced by 

microalgae. 

 

Table 1. Products produced by microalgae. 

Food Protein supplement/fortification in diets for malnourished 

children and adults. 

Feed Protein and vitamins supplement in feeds for poultry, cattle, 

pigs, fish and bivalves. 

Health Food Algal powder as ingredient and supplement in health food and 

products 

Therapeutics β-Carotene as possible anti-skin-cancer treatment. Algal 

antibiotics as wound treatment, enzymatic hydrolyzates to 

promote skin metabolism. Prostaglandin stimulation by γ–

linolenic acid. Regulation of cholesterol synthesis. Isotopic 

compounds in medical researchers. 

Pigments β-Carotene as food color and food supplement (provitamin A). 

Xanthophylls in chicken and fish feeds. Phycobilins as food 

color, in diagnostics, cosmetics and analytical reagents. 

Fine 

chemicals 

Glycerol used in foods, beverages, cosmetics, pharmaceuticals. 

Fatty acids, lipids, waxes, sterols, hydrocarbons, amino acids, 

enzymes, vitamins C and E. Polysaccharides as gums, 

viscocifiers and ion exchangers. 

Fuel Long-chain hydrocarbons and esterified lipids as combustible 

oil. Hydrogen, biogas. 

Hormones Auxins, gibberellins and cytokines. 

Others Biofertilizer, soil conditioners, waste treatment. 

 

 Besides the commercial coverage of microalgae is very large, many 

production processes are still not feasible in industrial scale. More information 

about the products obtained from microalgae and their industrial uses are 

described in the next pages. 
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2.2.1 Food and Feed 
 

The most common biotechnological application of microalgae is in 

aquiculture, as feed for some species of fishes and a variety of forage 

organisms (Derner et al, 2006). Nowadays microalgae are commercialized as 

natural supplement food in form of tablets or extracts (Becker, 2004). 

 

2.2.2 Polysaccharides 
 

 Sulfonated polysaccharides are used commercially as thickening and 

flocculating agents. Carrageenans of red microalgae are an example. Other 

types include laminarin, starch, inulin, fucoidin and those comprised of xylose, 

arabinose, rhamnose and glucuronic acid. 

 

2.2.3 Surfactants and fatty acids 
 

  Microalgae are a unique source of fatty acids. Much of interest in their 

application in aquaculture is due to unsaturated C18 and C22 fatty acids. The 

change in human diet in the last years associated with the increasing number of 

sicknesses as a consequence of low consume of polyunsaturated fatty acids, as 

well the therapeutical properties associated (Jiang, 1999), turns much attention 

to the production of fatty acids by microalgae (Simopoulus, 2002)..  

Biodegradable biosurfactants from microalgae are glycolipids or long-

chain fatty acids, such as phosphatydylglycerol, phosphatydylcholine, etc. 

Essential fatty acids found on microalgae include linolenic acid (18:2), gamma-

linolenic (18:3) acid (GLA), eicosapentaeonic acid (20:5) (EPA), arachidonic 

acid (20:4) (ARA) and DHA (22:6) (Becker, 1994).  

 

2.2.4 Aminoacids and vitamins 
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 Several aminoacids could be potentially produced by microalgae. Under 

high salinity some species accumulate proline; blue-green algae can contain 

high concentration of cyanophycin bodies.  

 

2.2.5 Pigments 
 

 Industrial interest in microalgae pigments is mainly due to the 

therapeutical properties associated, but includes use as food additive. As light 

absorbing systems, microalgae have high concentration and a great variety of 

pigments. As examples, beta-carotene is produced by Dunaliella, phycocyanin 

by Spirulina, lutein by Neospongiococcus, astaxanthin by Haematococcus. 

  

 

2.2.6 Pharmaceutical and diagnostics 
 

 Some microalgal species show biological activity, such as antibacterial, 

antiviral, antifungal and even anti cancer. There is not yet industrial production 

of any of these pharmaceutical agents, since the way between finding a 

biological activity and the commercial final product is very long. But there is 

already some diagnostic reagents produced by these microorganisms, 

specifically phycobiliproteins of blue-green and red microalgae used as 

fluorescent labels in research and diagnostic kits (Europa Bioproducts - 

http://www.europa-bioproducts.com/). 

 

2.2.7 Water treatment 
 

 Nowadays many investigations are being made about the metal 

absorption capacity of microalgae and about phosphorus and nitrogen 

consumption. Figure 6 is a example of large scale cultivation of microalgae for 

wastewater treatment. 
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Figure 6. Microalgae wastewater treatment ponds at Hollister, California (USA). 

 

 

 

2.3 Microalgae Culture Fundamentals 
 

Studies on microalgae are preferably done under controlled conditions. 

Microalgae bioreactors are often designed differently from bioreactors used to 

grow other microorganisms. Two parameters are very useful to characterize the 

efficiency of microalgae cultivation systems: the volumetric productivity and the 

efficiency of light utilization.  

The volumetric productivity is the product of the biomass density and the 

specific growth rate, which is enhanced by providing carbon (as CO2, for 

example) in the media. A high volumetric productivity is beneficial because this 

means a smaller cultivation system. Moreover, a high volumetric productivity 

usually is accompanied with a high biomass density, which is more attractive 

with respect to downstream processing. However, working with photosynthetic 

microorganisms, the efficiency of light utilization should be considered too. 

Thus, supply, distribution and utilization of light in microalgal cultures are 

therefore central aspects. 

Mixing, process monitoring and control, and exploration of heterotrophic 

and recombinant microalgae are other aspects of microalgal culturing that have 

seen novel developments in recent years. 

 

2.3.1 Media for microalgae 
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As any other microorganism, microalgae have nutritional needs: carbon 

source, energy, water and inorganic nutrients. In the case of microalgae, the 

carbon source can be CO2 and the energy comes from sunlight. As microalgae 

grow in aqueous suspension, the manipulation and control of culture conditions 

makes their cultivation feasible, thus the productivity is limited mostly by the 

available of light. Reponses by algal cells to nutrients and cultivation 

environment can be used to manipulate the processes to favor the production of 

algal biomass (Benemann et al, 2002). 

The development of media for microalgae cultivation involves: a sufficient 

carbon source (up to 50% of the algal biomass); salt concentration (depending 

on the original biotope of the alga); nitrogen (represents about 5-10% of 

microalgae dry weight); phosphorus (DNA, RNA, ATP, cell membrane); sulfur 

(constituent of aminoacids, vitamins, sulfolipids, is involved in protein 

biosynthesis); potassium (cofactor for several enzymes and is involved in 

protein synthesis and osmotic regulation); magnesium (the central atom of the 

chlorophyll molecule); iron (constituent of cytrochromes and important in 

nitrogen assimilation); pH of the medium; temperature; trace elements and 

addition of organic compounds and growth promoters. 

Carbon is important because it is the source of energy for many cellular 

events (such as metabolites production), reproduction and is part of the physical 

structure of the cell. In conditions of low dissolved inorganic carbon (DIC), a DIC 

transport is induced in most microalgae (Matsuda and Colman, 1995), allowing 

normal cell growth.  

Nitrogen is used for the production of a wide range of organic molecules, 

such as protein, chlorophyll, vitamins, ficobilins and aminoacids. Nitrogen can 

also be accumulated and stored in the intracellular medium in the form of 

inorganic substances, especially under stress conditions. In N-sufficient cells 

amino acid synthesis depends on recent photosynthesis to provide carbon 

skeletons. Although nitrogen is assimilated by microalgae in form of ammonium, 

Lourenco and collaborators (2002) observed toxic effects on microalgal growth. 

Nutrient-limited algae exhibit perturbations to their physiology, and this is 

often reflected in, and determined by, parameters such as C:N ratio, protein: 

carbohydrate ratios, and nutrient-uptake characteristics (Roberts et al, 2008). 
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During nutrient depleted growth phases, starch and other carbon and energy 

storage compounds may accumulate and constitute a major part of the biomass 

production in green algae (Zhila et al, 2005). In nitrogen depleted and carbon 

sufficient, accumulation of carbon and energy storage compounds may account 

for all the produced biomass (Stenholm et al, 1998). Depletion of nutrients, in 

particular the nitrogen source, also results in break-down of the photosynthetic 

apparatus (Coleman et al, 1988), including the photosynthetic pigments 

(Eriksen et al, 1995). 

Depending on the material used in cultivation of microalgae and the 

utilization of biomass, three different systems can be distinguished (Becker, 

1994): 

I. Systems in which a selected algal strain is grown in a so called 

clean process, using fresh water, mineral nutrients and carbon 

sources. The algae in such systems are intended to be utilized 

mainly as food supplement. 

II. Systems using sewage or industrial waste waters as the culture 

medium. The cultivation of the microalgae involves secondary 

(BOD removal) and tertiary (nutrient removal) treatments and 

production of commercially interesting products. 

III. Cultivation of algae in enclosed systems under sunlight or artificial 

light, with cells being grown preferably in autotrophic media. 

 

Microalgae are microorganisms that are capable of producing many 

different compounds of industrial interest, some with high and some with low 

aggregated value. The final value of the product and its destination influence 

directly the conditions of cultivation. Therapeutical compounds produced by 

microalgae, for example, must be produced through a totally controlled and 

clean process, while for fuels industry it can be used residues and the control of 

the process can be less accurate. 

The utilization of complex media (those whose composition is not 

determinated, such as industrial residues) in the cultivation of microalgae is one 

alternative to turn the production of some microalgae’s metabolites 

economically feasible. Associated to residue composition and microalgae 
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metabolic operation, the knowledge of the needs of the microalgae might save 

time (and money) and might help in the development of a process. It is very 

important to supply all microalgae chemical needs because it is known that 

variations in the chemical composition of phytoplankton are also tightly coupled 

to changes in growth rate (Goldman, 1979). To a large degree, this growth rate 

dependence provides a good description of the nutritional state of a cell 

population in response to different degrees of nutrient limitation (Rhee, 1973).  

 

2.3.2 Cultivation vessels 
 

Many different configurations of photobioreactors are possible: from 

simple unmixed open pounds to highly complex enclosed ones (Fig 7). Most of 

the recent research in microalgal culturing has been carried out in 

photobioreactors with external light supplies, with large surface areas, short 

internal light paths, and small dark zones. Examples include open ponds (the 

cheaper ones), tubular reactors, flat panel reactors, column reactors (stirred 

tank reactors, bubble columns, airlift). 
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Figure 7. Some of the many types of reactors used for microalgal cells cultivation: (a) 
open ponds (raceway), (b) tubular reactor and (c) flat panel. 

 

The applications of such systems range from the small-scale production 

of high value products to the large-scale and very low cost culture of algae, so 

the choice between the different designs of photobioreactors must be specific to 

the application intended and local circumstances.  

Open ponds can be an important and cost-effective component of large-

scale cultivation technology, and optimal design parameters have been known 

for many years. The elongated “raceway-type” of open pond, using 

paddlewheels for recirculation and mixing, was developed in the 1950s by the 

Kohlenbiologische Forschungsstation in Dortmund, Germany. However, 

sustained open pond production proved to be feasible for only three microalgae: 

Spirulina platensis, Dunaliella salina and fast grow Chlorella, in all cases 

because contamination by other species can be avoided.  

 

2.3.2.1 Light diffusion  

 

The most important parameter considered for the development and 

utilization of a kind of reactor for microalgae cultivation is the light diffusion.  The 

productivity of photoautotrophic cultures is primarily limited by the supply of light 

and suffers from low energy conversion efficiencies caused by inhomogeneous 

distribution of light inside the cultures (Grobbelaar 2000). At culture surfaces, 

light intensities are high but absorption and scattering result in decreasing light 

intensities and complex photosynthetic productivity profiles inside the cultures 

(Ogbonna and Tanaka 2000). High light intensities at culture surfaces may 

cause photoinhibition, and the efficiency of light energy conversion into 

biomass, the photosynthetic efficiency (PE) is low. An overdose of excitation 

energy can lead to production of toxic species (e.g. singlet oxygen) and to 

photosynthesis damage (Janssen, 2002) 

By minimizing depth, volume is reduced, light diffusion is maximized, and 

so is cell concentration (Fig 8). From the cited types of photobioreactors, open 

ponds are usually 10-30 cm depth, tubular reactors 1 to 5 cm, flat panel 

reactors 2 to 5 cm. 
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Figure 8. Biomass densities (x), volumetric and areal productivities (Pvolume and Parea), 
and photosynthetic efficiencies (PE) of selected photoautotrophic cultures grown in 

different types of enclosed photobioreactors and under  various photosynthetic photon 
flux densities (PFFD) or light energy supplies (E) (see Eriksen, 2008). 

 

The light regimen itself is influenced by incident light intensity, reactor 

design and dimension, cell density, pigmentation of the cells, mixing pattern, 

and more. In outdoor photobioreactors the light regimen is also influenced by 

geographical location, time of the day, and weather conditions. Nowadays, open 

paddle wheel-mixed pound is the most commonly used photobioreactor. 

Some studies discuss the effect of mixing and productivity due to the 

“flashing light” effect: a few milliseconds flashes of high light intensity followed 

by a several-fold longer period of darkness do not reduce culture productivity 

from those under constant illumination (Kok, 1953). This effect is not observed 

in ponds, where the light/dark period is longer. As an example, while light/dark 

cycles of 94/94 ms were sufficiently short to increase the photosynthesis 

efficiency (PE) in cultures of Dunaliella tertiolecta, light/dark cycles of 3/3 s were 

too long and the PE decreased in comparison to continuously illuminated 

cultures (Janssen et al. 2001). 

 
2.3.2.2 Mixing 

 

To optimize the photosynthesis rate and the gases solubility in the media, 

mixing is very important. Besides that, mixing is important for homogeneous 

distribution of cells, metabolites, and heat and to transfer of gasses across gas–
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liquid interfaces. Mixing can be done mechanically by paddle wheel in raceways 

(fig 9) or by gas flow in bubble columns. 

 

 
Figure 9. Paddle wheel mixing of raceway ponds in Earthrise Farms Inc. 

 

2.3.3 Carbon dioxide 

 

Another issue in most photobioreactors is the CO2 diffusion to the culture 

media. The solubility of CO2 in the culture media depends on the depth of the 

pound, the mixing velocity, the productivity of the system, the alkalinity and the 

outgassing. It has been reported (Becker, 1994) that only 13–20% of the 

supplied CO2 was absorbed in raceway ponds when CO2 gas was sparged into 

the culture fluid as a carbon source. Gas–liquid contact time and gas–liquid 

interfacial area are, therefore, two key factors to enhance the gas–liquid mass 

transfer. In addition, high oxygen tension is problematic, since it promotes CO2 

outgassing and competes with CO2 for the CO2 fixing enzyme (RUBISCO).  

Weissman and Goebel (1987) investigated different alternatives for 

introducing and storing carbon dioxide in a microalgal growth medium. The 

capacity for carbon dioxide storage in a growth medium is important because it 

determines the number of carbonation stations required for a pond of specified 

size, depth, and liquid velocity or, alternatively, the maximum pond size 
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serviceable with one CO2 station. The first observation is that water chemistry 

will have a significant impact on the amount of carbon dioxide stored. pH is the 

major determinant of the relative concentrations of the carbonaceous system 

species in water and affects the availability of carbon for algal photosynthesis in 

intensive cultures (Azov, 1982).  

The absorption of CO2 into alkaline waters may be accelerated by one of 

two major uncatalyzed reaction paths: the hydration of CO2 and subsequent 

acid-base reaction to form bicarbonate ion, and the direct reaction of CO2 with 

the hydroxyl ion to form bicarbonate. The rate of the former reaction is faster at 

pH values below 8, while the latter dominates above pH 10. Between pH 8 and 

10, both can be important (see figure 10). 

 

 
Figure 10. The dependence of pH of the media and the form that carbon dioxide is 

present. 

  

2.3.4 Scaling Up 

 

Scale up is one of the most difficult tasks in outdoor mass culture. At this 

point contamination poses the greatest problem, due to the dilute inoculum 

(Richmond, 1990). 

There are two methods of scaling up to the production ponds. The first is 

by scaling up following a dilution ratio of 1:10 through successive volumes, the 

second is to derive the inocullum from an existing culture pond (Andersen, 

2005). The latter method is preferable because the first one require a longer 
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time, and thus became more expensive. During the first steps of scaling up, 

data on the effect of environmental factors (light, contamination, temperature) 

must be collected and the performance of agitation, aeration and medium 

composition studied. Even in established large scale cultivation, a small pond 

must be maintained to serve as fresh inocullum. 

 

2.3.5 Culture Monitoring 

 

Successful culture maintenance requires continuous monitoring. The 

most basic kind and the most used is microscopic examination, enabling the 

detection of contamination and abnormal morphological changes. Early 

detection allows control measures to be undertaken to guarantee the stability of 

the system.  

Routine tests on nutrient composition are used to avoid unexpected 

nutrient deficiencies. Regular monitoring of changes in pH, O2 and CO2 levels 

are essential. Healthy cultures show a regular diurnal pattern in these 

parameters; any significant variation is usually sign of problems in the culture. 

 

2.4 Carbon Uptake by Microalgae 

 

Microalgae can fixate carbon dioxide from different sources including 

CO2 from the atmosphere, from industrial exhaust gases (e.g. furnaces flue 

gases) and in form of soluble carbonates. Traditionally microalgae are cultivated 

in open or closed reactors and aerated with air or air enriched with CO2. 

Industrial exhaust gases contain up to 15% of carbon dioxide in its composition, 

being a rich source of carbon for microalgae growth. It is also possible to fixate 

CO2 by chemical reactions to produce mineralized source of carbon. 

Since outdoor sunlight cannot be controlled, carbon fixation by 

microalgae is usually studied indoors under artificial illumination. Several 

authors have studied the microalgae CO2 fixation capacity. Most of them 

focused the fixation into biomass (Chae et al 2006, Jacob-Lopes et al 2008, 

Kajiwara et al 1997). However, these studies did not quantified the total carbon 
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dioxide fixed effectively by microalgae (Jacob-Lopes et al 2008, Fan et al 2007), 

since there are innumerous routes for carbon destination besides biomass 

generation. Other researches focused on the determination of global rates of 

carbon dioxide sequestration through mass balances for this component in the 

liquid or gas phase of the systems (Eriksen et al 2007). Carbon dioxide fixation, 

described in the literature includes, among others, mineralization (formation of 

soluble bicarbonate and carbonate) and production of extracellular products 

such as polysaccharides, volatile organic compounds (Shaw et al 2003), fuels, 

organohalogens (Scarratt et al 1996), hormones.  

This indicates that carbon fixation by microalgae is a complex process 

where biomass production might be only part of the total carbon destination. In 

addition, little information is available with respect to the simultaneous research 

of both the global rates of carbon dioxide sequestration and the rates of 

incorporation of carbon into the microalgae biomass (Chiu et al 2008).  

In microalgae cultivation, usually, higher concentration of CO2 is not used 

because it may result in decreasing the pH since unutilized CO2 will be 

converted to HCO3
-. Shiraiwa et al (1991) and Aizawa et al (1986) reported that 

an increase in CO2 concentration of several percent resulted in the loss of 

carbon concentration mechanism (CCM) and any further increase was always 

disadvantageous to cell growth. 

If there is not enough CO2 gas supply, algae will utilize (bi)carbonate to 

maintain its growth. When algae use CO2 from bicarbonate an increase of pH is 

observed. To overcome this pH fluctuation, the CO2 gas injection might be 

controlled in a way that photosynthesis rate are balanced with enough and 

continuous availability of dissolved carbon. Maintaining constant the CO2 free 

concentration in the media will keep constant the carbon uptake.  

The ability to accumulate dissolved inorganic carbon (DIC) has been 

shown to occur in many algae and cyanobacteria (Williams and Colman, 1995). 

Whilst CO2 can diffuse into algal cells and is the substrate for carbon fixation by 

ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), it forms a small 

proportion of the total available inorganic carbon. The largest proportion of total 

dissolved inorganic carbon (DIC) available to microalgae consists of ionic 

HCO3
−, which has a low capacity for diffusion across cell membranes (Young et 
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al, 2001). A number of eukaryotic microalgae have developed mechanisms 

which permit the use of HCO3
− for photosynthesis (Miller and Canvin, 1985). 

Access to the larger pool of HCO3
− is assumed to involve one or both of two 

basic processes : 

 

(i) In some green algae the use of HCO3
-, has been correlated with 

the presence of external carbonic anhydrase (CA) activity 

(Aizawa and Miyachi et al, 1986). In these cases external CA is 

thought to facilitate the use of HCO3
-, by maintaining equilibrium 

between HCO3
-, and CO2, and thereby maintaining the supply 

of CO2, to a CO2, transporter (Aizawa and Miyachi, 1986).  

(ii) Direct HCO3
- transport via a transmembrane bicarbonate 

transporter, which has been demonstrated even in cells that 

have external CA activity (Williams and Turpin, 1987). The 

involvement of transmembrane ATPase proteins was also 

reported in DIC uptake by chlorophytes (Ramazanov et al. 

1995). 

 

Kajiwara et al. (1997) found that Synechococcus achieved a maximum 

CO2 uptake rate of 0.6 g L-1 day-1 at a cell mass concentration of 0.286 g L-1. 

Hirata et al. (1996) used Chlorella sp. UK001, and achieved a mean rate of CO2 

fixation was 0.0318 gCO2 L
-1 day-1 with an efficiency of conversion of energy to 

biomass equal to 4.3%. Marukami et al (1997) using Synechocystis aquatilis in 

a 5 l bioreactor and optimized conditions, obtained a maximum CO2 fixation rate 

of 1.5 gCO2 L
-1 day-1. They isolated more than 10 strains with high capability of 

CO2 fixation. Further experimentation using Botryococcus braunii gave a growth 

rate of around 0.5 g L-1 day-1.  

The table 2 (from Wang et al, 2008) gives rates for carbon dioxide 

fixation by microalgae. 

 

 

Table 2. Data from the literature for cultivation parameters (%CO2 and T), productivity 
(P) and CO2 fixation rate (PCO2) for different microalgae (see Wang et al, 2008) 
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2.4.1 Carbon market 

 

In January 2005 the EU-wide CO2 emissions trading system (EU-ETS) 

has formally entered into operation. The EU-ETS requires a cap-and-trade 

program whereby the right to emit a particular amount of CO2 becomes a 

tradable commodity (Benz et al, 2009). 

The carbon market jumped from 63 billion dollars in 2007 to 126 billion in 

2008, which means almost 12 times the value of 2005, according to a World 

Bank report. Credits were sold for 4.8 billion tons of carbon dioxide, a value 

61% higher than that of the previous year.  

The mechanism of carbon credits in the European Union grew 87% last 

year, reaching 92 billion dollars, according to the World Bank. The numbers for 

the year of 2009 have not yet been announced. At the same time, the cuts in 

emissions actually made and sold by clean energy projects registered (at United 

Nations) in developing countries fell 30% in 2008. 

Brazil is the third country in carbon credit generation, and the leader in 

Latin America. The most common type of CDM (Clean Development 

mechanism) in Brazil is the transformation of sugar cane bagasse into sugar 

and alcohol.  
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2.5 Microalgae Description and Specific Carbon Uptake Review 

 

2.5.1 Chlorella vulgaris 

 

The first photosynthetic microbe to be isolated and grown in pure culture 

was the freshwater microalga, Chlorella vulgaris. It is a spherical unicellular 

eukaryotic green algae which presents a thick cell wall (100 to 200 nm) as the 

main characteristic. This cell wall provides mechanical and chemical protection 

and it  is reported its relation with heavy metals resistance, which explains why 

C. vulgaris is one of the most used microorganisms for waste treatment. The 

chemical composition of Chlorella can be dramatically affected by cultivation 

conditions, from 8.7% protein and 86% lipid (oil) to 58% protein and 4.5% lipid 

(Spoehr and Milner, 1949). 

The uptake of carbon by C. vulgaris cells is done through the enzyme 

carbonic anhydrase, which catalyzes the hydration of CO2 to form HCO3
- and a 

proton. Hirata and collaborators studies upon carbon dioxide fixation in 1996 by 

this microalga showed important variations comparing cultivation under 

fluorescent lamps and sunlight. In the first case the estimated rate of carbon 

dioxide fixation was 865 mg CO2 L
-1 d-1; while in sunlight regimen the estimated 

rate achieves 31.8 mg CO2 L
-1 d-1. Winajarko et al (2008) achieved a transferred 

rate of 441.6 g CO2 L
-1 d-1 under the same cultivation conditions of Hirata et al 

(1996). 

Carbon fixation by Chlorella vulgaris is variable and depends, among 

other factors, on the concentration of CO2 in the gaseous source. While Yun et 

al (1997) cultivated C. vulgaris in 15% of carbon dioxide and achieved a fixation 

of 624 mg L-1 day-1; Scragg et al (2002) achieved a fixation of 75 mg L-1 day-1 

under CO2 concentration of 0.03%. In the same study, Scragg tested a medium 

with low nitrogen and the fixation rate was 45 mg L-1 day-1, suggesting that 

nitrogen also influences carbon uptake rate. 

Some studies (Chinassamy et al 2009; Morais and Costa 2007) indicate 

that the best concentration of CO2 for C. vulgaris growth is near to 6%.  

2.5.2 Botryococcus braunii 

 



36 

 

Botryococcus is a colonial microalga which is widespread in fresh and 

brackish waters of all continents. It is characterized by its slow growth and by 

containing up to 50% by weight of hydrocarbons. B. braunii is classified into A, 

B and L races (table 3) based on the difference between the hydrocarbons 

produced (Metzger and Largeau, 2005).  

 

Table 3. Races of B. braunii and their different characteristics (from Banerjee et al, 
2002). 

 

 

The cells of B. braunii are embedded in a communal extracellular matrix 

(or “cup”), which is impregnated with oils and cellular exudates (Blackburn, 

1936). Cells are attached to each other by a refringent material that sometimes 

links two or more distinct clumps of cell. The wall of each cell possesses an 

internal fibrillar layer made of polysaccharide (Largeau et al, 1980). B. braunii is 

capable of synthesizing exopolyssaccharides, as was first reported for the A 

race (Casadevall et al., 1985). The yield of EPS ranges from 250 g m–3 for A 

and B races to 1 kg m–3 for the L race. Higher growth and production of EPS 

occur when nitrate is the nitrogen source instead of urea or ammonium salts 

(Banerjee et al, 2002). Phosphorus and nitrogen are also important factors in 

accumulation of hydrocarbons by the microorganism (Jun et al, 2003). 

The metabolic energy devoted to produce such large amounts of 

hydrocarbons makes this species noncompetitive in open mass cultures, since 

strains not so burdened can grow much faster and soon dominate an outdoor 

pond culture (Benemann, 2003). B. braunii has been reported to convert 3% of 
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the solar energy to hydrocarbons (Gudin et al., 1984). Being synthesized by a 

photosynthetic organism, hydrocarbons from algae can be burned without 

contributing to the CO2 concentration in the atmosphere. 

Dayananda et al (2005) cultivated Botryococcus braunii strain SAG 30.81 

in shake flasks and obtained a maximum cell concentration of 0,65 g L-1 under 

16:8 light dark cycle. Experiments with different strains of B. Braunii indicate 

that the biomass yield is inversely proportional to lipids accumulation. The 

maximum biomass yield achieved was 2 g L-1 (with 40% of lipids) and the lower 

was 0.2 g L-1 (with 60% of lipids). Outdoor experiments with this microalga 

achieved a high biomass yield of 1.8 g L-1 but a very low lipid accumulation. It 

was also showed by Dayananda and collaborators that exopolyssaccharides 

production by Botryococcus braunii SAG 30.81 is not affected by light regimen 

in MBM media, differently than from lipids and proteins production.  

Marukami et al (1997) achieved a carbon dioxide fixation greater than 1 

gram per liter by Botryococcus braunii cultivated for hydrocarbon accumulation. 

 

 

2.5.3 Spirulina platensis 

 

Spirulina are multicellular and filamentous blue-green microalgae 

belonging to two separate genera Spirulina and Arthrospira and consists of 

about 15 species (Habib et al, 2008). It grows in water, reproduce by binary 

fission and can be harvested and processed easily, having significantly high 

macro- and micronutrient contents. Their main photosynthetic pigment is 

phycocyanin, which is blue in color. The helical shape of the filaments (or 

trichomes) is characteristic of the genus and is maintained only in a liquid 

environment or culture medium. 

Spirulina is found in soil, marshes, freshwater, brackish water, seawater 

and thermal springs. Alkaline, saline water (>30 g/l) with high pH (8.5–11.0) 

favor good production of Spirulina, especially where there is a high level of solar 

radiation. It predominates in higher pH and water conductivity. Like most 

cyanobacteria, Spirulina is an obligate photoautotroph, i.e. it cannot grow in the 



38 

 

dark on media containing organic carbon compounds. It reduces carbon dioxide 

in the light and assimilates mainly nitrates. 

 Spirulina contains unusually high amounts of protein, between 55 and 70 

percent by dry weight, depending upon the source (Phang et al., 2000). It has a 

high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 

percent total lipid and is a good source of vitamins (B1, B2, B3, B6, B9, B12, C, D, 

E). Spirulina is a rich source of potassium, and also contains calcium, 

chromium, copper, iron, magnesium, manganese, phosphorus, selenium, 

sodium and zinc. These bacteria also contain chlorophyll a and carotenoids. 

The optimum pH of the Spirulina sp. culture is between 8.5 and 9.5 

(Watanabe et al, 1995). Cyanobacteria possess a CO2-concentating 

mechanism that involves active CO2 uptake and HCO3
- transport. In 

experiments conducted by Morais and Costa (2007), carbon fixation in terms of 

biomass by Spirulina platensis was estimated in 413 mg L-1 d-1 (Wang, 2008). 

 

 
Figure 11. Spirulina production facility of Earthrise Farms, Inc., in California. 

2.5.4 Dunaliella tertiolecta 

 

Dunaliella tertiolecta is a marine unicellular green algal species. This 

round-shaped algal species is native to New Zealand and is found in brackish 

environments; it is a motile species and has a high tolerance for salt, 

temperature, and light. Dunaliella tertiolecta is relatively easy to culture. The cell 

divides by simple binary fission and no evidence of cell lysis, encystment, or 
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spore formation is observed (Segovia et al., 2003). Motion of cells is important 

since it facilitates nutrient transport, specially when in poor-nutrient waters. 

Nitrate assimilation system in Dunaliella tertiolecta was studied by Grant in 

1967 and 1968. The system is located completely within the chloroplast and is 

dependent on CO2 and light. D. tertiolecta, although showing a large increase in 

both nitrate and nitrite assimilation in light, did not show the stoichiometric 

evolution of extra oxygen found in other algae, as described in pages 18 and19. 

It was also noticed that the CO2 evolved in a 2:1 ratio to NO3 assimilated and a 

1.5:1 ratio to nitrite assimilated (Grant, 1968). 

It is generally accepted that D. tertiolecta changes the internal 

concentration of glycerol in order to survive to different NaCl concentrations (the 

osmotic balance achieved with glycerol). The calvin-benson cycle normally 

functions under constant NaCl extracellular concentration, and under such 

conditions it is needless to produce glycerol at a high rate. Internal pH and salt 

shock could trigger starch degradation and formation of glycerol (Goyal et al, 

1989). D. tertiolecta require Na+ for the uptake of phosphate. It is also 

suggested that there is a Na+/K+ pump in these cells (Avron et al, 1992). 

Dunaliella tertiolecta thrives over a wide pH range and expresses a 

capacity for extremely efficient DIC accumulation, incorporating a capacity to 

use HCO3
− in addition to CO2 (Aizawa et al., 1986; Young et al, 2001). 

Kishimoto et al (1994) cultivated a Dunaliella strain for pigment production with 

3% of CO2 and achieved a carbon uptake of 313 mg L-1 day-1. 

Dunaliella is an important microalgae for industrial processes since it 

produces a wide variety of commercial products (mainly pigments) and the 

rupture of the cells is very easy. 

 

 

3.0 MATERIAL AND METHODS  
 

3.1 Microorganisms and Culture Conditions 
 

C. vulgaris LEB-104 was obtained from Federal University of Santa Maria 

(UFSM, Brazil) and cultivated in Modified Bristol Medium (Watanabe, 1960). 
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D. tertiolecta SAG 13.86 was obtained from the Culture Collection of 

Algae at Gottingen and cultivated in artificial sea water (DUN medium). 

Botryococcus braunii SAG 30.81 was obtained from the Culture 

Collection of Algae at Gottingen, Germany, and grown at 25ºC in 3N-MBM 

medium.  

Spirulina platensis strain LEB 52 was obtained from Federal University of 

Santa Maria (UFSM) and grown in Zarrouk (Zarrouk 1966) modified medium. As 

carbon dioxide was used as carbon source, the amount of bicarbonate on the 

recipe was reduced to 2.8 g L-1, the lowest concentration needed to achieve 

buffering effect (Andrade et al, 2008). 

Table 4 summarizes the specific conditions used in each of the microalga 

cultivation. To all of experiments nitrate was added at 1 g L-1. 

 

Table 4. The conditions of growing for S. platensis, D. tertiolecta, C. vulgaris and B. 
braunii. 

Parameter C. vulgaris D. tertiolecta B. braunii S. platensis 

Temperature (ºC) 30 25 25 30 

pH 7.2±0.2 7.2±0.2 7.2±0.2 9.0±0.2 

Aeration (L/min) 1,0 1,0 1,0 1,0 

Carbon dioxide (ml/min) 50 50 50 50 

Light (lux) 3500 3500 3500 3500 

Mechanical Agitation (rpm) 200 200 150 150 

Volume (liters) 8 8 8 8 

 

 

3.2 Cultivation conditions 

 

The main cultivations were performed in a 11L BioFlo Fermentor (New 

Brunswick Sci) (fig 12) with working volume of 8 Liters. For pH measurement a 

pH sensor was used and the pH was controlled by automatic injection of 

specific acid and/or base as required.  
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Air enriched with CO2 (White Martins, Curitiba, Brazil) was sparged 

through a ring sparger and the gases concentration in exhaust gas measured 

as described below. Illumination of culture was provided by eight cool white 

32W fluorescent lamps (providing 3500 lux) in 12:12 (light:dark) hours 

photoperiod. Mechanical agitation was also provided as indicated in table 4. 

Temperature was measured by a thermocouple and controlled. Experiments 

duration was 15 days for all microalgae tested.  

 

 

Figure 12. New Brunswick reactor and control cabinet used for the cultivation of 
microalgae. Eight cool white lamps were used for illumination. 

 

3.3 Kinetic Parameters Calculation 

 

In all experiments the growth kinetics parameters was calculated. Based 

on the growth curve the exponential phase was identified as the linear interval 

plotting the biomass concentration logarithmic versus time. In the exponential 

phase (maximum) specific growth rate was obtained by equation 1 and biomass 

doubling time by equation 2. Maximum cell productivity was determinated by the 

maximum difference between biomass concentration in a day and the day 

before. 
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( )
i

i

tt

NN

−
⋅−= 303,2loglogµ     Equation 1 

where N and Ni are, respectively, biomass concentration at the end and 

beginning of exponential phase, t and ti are the time in days. 

µ
2ln=td      Equation 2 

 

 

3.4 Analytical Determinations 
 

Samples were withdrawn each 24 hours and centrifuged in a Sorvall 

Legend Mach 1.6 R centrifuge (Sorvall, Germany) at 246xg for 15 minutes. 

Cells were washed once and dried at 60ºC, while the cell-free medium was 

used for further analysis of nitrate, alkalinity, phosphorus and cations 

concentration.  

3.4.1 Nitrate 

Nitrate determinations were done daily by the colorimetric method 

proposed by Cataldo (1975). 

The method is based on the formation of color by the addition of 800 µl of 

a solution of 5% salicylic acid in pure H2SO4 to 200 µl of the nitrate solution (in 

this case the cell-free medium) completing the volume to 20 ml with NaOH 2M 

after 20 minutes. The nitrate absorbance is read in a spectrophotometer at 410 

nm. The nitrate concentration is determined using the previously prepared 

standard curve (fig 13). 
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Figure 13. Standard curve of nitrogen for analysis of Nitrate in the growth media. 

 

3.4.2 Alkalinity 

Alkalinity was also measured daily by titration of 10 ml of the cell-free 

medium with 1.0 N HCl using as dye indicators phenolphthalein (0.2 g L-1 in 

ethanol 95%) for carbonate and methylorange (0.5 g L-1 in water) for 

bicarbonate.  

Phenolphthalein is added to 10 milliliters of the cell-free medium and 

titration is conducted with HCl 0.1N until disappearance of color. To this sample 

methylorange is added and titrated until formation of pink/red color. 

The alkalinity depends on the composition and pH of the solution, with: 

o pH > 9.4 � carbonate and hydroxide; 

o 9.4>pH>8.3 � carbonate and bicarbonate 

o pH>4.4 � CO2 

Alkalinity is thus calculated considering the volume of acid solution used 

and the following reactions: 

 

CO3
2- + HCl � HCO3

- + Cl- 

HCO3
- + HCl � CO2 + H2O + Cl- 

 

In all cases, except for Spirulina, the main form (and the only that was 

considerate in calculations) of dissolved CO2 was HCO3
-. For Spirulina the 



44 

 

quantification was done firstly by titration of CO3
2- (v1) and then of HCO3

- (v2), 

considering the amount of bicarbonate as v1- v2. 

 

3.4.3 Cations Analysis 

The determination of cations was done with a 761 Compact IC 817 

Bioscan chromatograph. The column used was METROSEP C3 250/4.0 

(Metrohm), 250 mL x 4.0 mmID. Analytical conditions were: 3.5 mM HNO3, 1.0 

mL/min, 40ºC, 20 µL sample volume, 11.2 MPa. A standard chromatogram was 

prepared with the following salts: CaCl2.2H2O, MgCl2.6H2O, KCl, Na2SO4, 

ZnSO4.7H2O, NH4Cl e FeSO4.7H2O. 

 

3.4.4 Phosphorus Analysis 

Phosphorus consumption was assessed during the experiment in 5 days 

intervals by the quantification of soluble phosphorus in the media by the 

phospho-molybdate method. To 400 µl of cell-free medium was added 1.5 ml of 

a solution containing ammonium molybdate (1M), pure acetone and 5N sulfuric 

acid 1:2:1 (in volume). After homogenization, 100 µl of citric acid 100 mM was 

added. In presence of phosphorus a yellow color is developed, and read in 410 

nm against a standard curve. 

3.4.5 Total carbohydrate analysis 

The cell-free medium from the last day was analyzed for total sugars by 

the phenol-sulfuric method (Dubois et al, 1956). To 0.5 ml of supernatant, 0.5 

ml of a solution of 5% phenol was added, followed by the addition of 2.5 ml of 

concentrated sulfuric acid. The quantification was done by reading the samples 

in spectrophotometer at 490 nm and comparing with a standard curve (figure 

14) made using glucose. 
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Figure 14. Standard curve for total carbohydrate analysis by the Phenol-Sulfuric 

method. 

 

 

3.5 Carbon Dioxide Data Acquisition 
 

The cultivation vessel was coupled with sensors for the measurement of 

carbon dioxide and oxygen in the gas inlet and outlet (figure 15). In the inlet, 

carbon dioxide flow was monitored by a rotameter and measured by a thermal 

dispersion mass flow sensor (Aalborg GFM) (figure 16); while oxygen 

concentration in air was measured by an electrochemical sensor (Alphasense 

O2-A2) and monitored by a rotameter. In the outlet, total flow was measured by 

a mass flow sensor (Aalborg model GFM), the percentage of carbon dioxide in 

the air was measured by an infrared sensor (Vaisala GMT) and the percentage 

of oxygen by the O2-A2 sensor. Data acquisition occurred at 15 minutes 

intervals by Laquis software (Laquis, 2009). These sensors were all connected 

to Novus model N1100 controllers (figure 17) to achieve an industrial net 

requirement (STURM et al. 2008). To perform the calculations, this industrial 

net was connected to a personal computer running the Laquis software (figure 

17). 
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Figure 15. Scheme of the instrumentation used in carbon dioxide fixation quantification 
by microalgae. 

 

 

Figure 16. Rotameter used in CO2 flow measurement in first plan. On the top at right 
there is the thermal dispersion mass flow sensor Aalborg GFM. On the top at left there 

is the other mass flow sensor (used for total flow measurement). 
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Figure 17. The Novus model N1100 controllers and the data acquisition by a personal 

computer with Laquis software. 

 

 

A blank trial, using only media in the vessel, was run for 5 days with data 

acquisition to obtain total saturation of the media with carbon dioxide and to be 

used as basis to further calculations of carbon dioxide consumption. 

In the Annex I the calculations made from the data acquired by the 

software are presented. The data obtained for carbon dioxide fixation (grams 

per hour) was plotted against time and the area was obtained by integration by 

the trapezoidal method as described by Etter and Ingber (2007). 

 

3.6 Biomass Analysis 

 

After 15 days of experiment, the cells removed by centrifugation were 

dried at 60ºC until constant weight. The dried biomass was analyzed for 

chlorophyll, carbohydrate, protein, lipids and ash. 

 

3.6.1 Pigments 

The biomass was firstly extracted with 90% acetone at 4ºC overnight. For 

each gram of dry biomass, 40 ml of the solvent was used. After centrifugation 

(120xg, 10 min), the cell-free medium was analyzed for total pigments and for 

chlorophyll a content. 
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The quantification of total chlorophyll (Chl) was based in the somatory of 

the equations proposed by Strickland & Parsons (1968): 
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where: D = absorbance reading in the specific wavelength,  

 V1 = acetone 90% volume (ml),  

 V2 = volume of sample (liter),  

 L = optical path of the cuvette (cm). 

 

 After the spectrophotometric analysis, the acetone extract was 

dried at 60ºC until constant weight. The difference between chlorophyll a 

calculation and the dry weight was called “other pigments”. 

  

3.6.2 Lipids Extraction 

The acetone-extracted dried biomass was extracted with methanol: 

chloroform 1:1 (Bligh and Dyer, 1978) for lipid quantification. The extraction was 

realized in a Soxhlet extractor, which improves the removal of lipids from solid 

material promoting heated solvent recirculation. To the chloroform:methanol 

extract was added hexane (liquid-liquid extraction). The nonpolar phase was 

considered as lipid. 
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3.6.3 Total Carbohydrates Quantification 

For total carbohydrate quantification by the Phenol-Sulfuric method 

(Dubois et al, 1956), the biomass was hydrolysed with 0.1N NaOH overnight at 

4ºC. 

3.6.4 Protein Quantification 

 For proteins quantification the biomass was hydrolysed with 0,1N NaOH 

overnight at 4ºC. The Lowry protein assay method (Lowry, 1951) combines the 

reactions of cupric ions with the peptide bonds under alkaline conditions with 

the oxidation of aromatic protein residues. 

A standard curve with bovine serum albumin (figure 18) was used for the 

determination of protein concentration in the biomass. 

 

 
Figure 18. Standard curve used for protein quantification in microalgae biomass by the 

method of Lowry (1951). 

 

3.6.5 Ash 

 

The biomass obtained from the bioreactor was analyzed for ash content 

by the AOAC 941.12 method with some modifications. A sample of three grams 

of biomass was weighted and incinerated so that the sample fumes off without 

catching fire. Then incinerated samples were heated at 550ºC in furnace for 4 

hours and distilled water was added. After careful evaporation of the water, the 
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samples were put again in a furnace (Quimis, Brazil). The samples were 

weighted after cooling in dessicator to room temperature until constant weight. 

 

4.0 RESULTS 
 

4.1 Chlorella vulgaris LEB 104 

 

4.1.1 Growth Parameters 

 

Figure 19 shows the growth profile of Chlorella vulgaris LEB 104. 

Maximum cell concentration (1.94 g L-1) was reached on the last day (15th) of 

cultivation. Maximum specific growth rate of 0.29 d-1 was determinated during 

the exponential growth (96 to 168 hours), the biomass doubling time was 2.39 

days, and the maximum productivity was 0.31 g L-1 d-1. 

 

 
Figure 19. C. vulgaris LEB 104 growth profile in MBM media. 

 

4.1.2 Media Analysis 

 

Carbon solubility (CSOL) was determinated daily during cultivation of C. 

vulgaris and compared with the biomass production (Xt – X0, where X0 is the 
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biomass concentration in the beginning of the experiment and Xt is the 

concentrationin a given time) (figure 20). 

 

 
Figure 20. Dissolved carbon in form of bicarbonate in MBM during growth of C. 

vulgaris. 

 

The profile of cations dissolved in MBM media is shown in fig 21 (the 

chromatograms can be seen in Annex II) . The rates of consumption of nitrogen, 

potassium and magnesium were calculated by divinding the difference between 

the initial and final concentration by total biomass produced (X) and resulted in, 

respectively, 49.35, 32.18 and 2.85 gX-1.  

 

 

  

 

Figure 21. The profile of consumption of nitrogen, potassium, magnesium obtained by 
ion cromatography. 
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 The accumulated production of biomass was plotted against the 

accumulated consumption of each cation. These are showed in figure 22. 

 

Figure 22. Relation between accumulated biomass production and accumulated 
consumption of each cation analyzed. 

 

 Dissolved phosphorus was also analyzed at 5 days intervals. The 

rate of this anion consumption was determinated as 314.4 mg gX-1. The profile 

of dissolved phosphorus during the experiment is presented in figure 23. 

 

Figure 23. Dissolved phosphorus during cultivation of C. vulgaris in MBM media. 
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4.1.3 Carbon Dioxide Fixation 

 

Figure 24 shows the profile of carbon dioxide and oxigen consumption in 

comparison with the blank trial during the 15 days of experiment. 

 

Figure 24. Carbon dioxide and oxygen profiles plotted togheter presenting symmetry 
and accordance to photossynthesis and respiration processes. 

 

For carbon dioxide fixation quantification the area above (CO2 

consumption) and under (CO2 production) the blank line was integrated and 

subtracted, resulting in total carbon dioxide transfer rate of 251.64 mg L-1 day-1. 

The amount of carbon dioxide mineralized in soluble form of bicarbonate 

in the medium was estimated in 0.038 mgCO2 L-1. Total extracellular 

concentration of carbohydrates at the end of the experiment was 238.86 mg L-1. 

By the same integration method used for CO2 calculation, oxygen 

production was estimated in 982.48 mg L-1 day-1. 
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4.1.4 Biomass Composition 

 

Table 5 shows the estimated composition of the C. vulgaris strain LEB 

104 biomass.  

 

Table 5. Estimated composition of C. vulgaris LEB 104. 

Proteins Sugars Chlorophylls Lipids Ash 

40,95% 16,74% 9,09% 9,95% 13,35% 

 

 

4.2 Botryococcus braunii 

 

4.2.1 Growth Parameters 

 

The growth profile of Botryococcus braunii is showed in figure 25. It may 

be observed the growth is linear throughout almost the whole experiment. The 

maximum biomass concentration, 3.11 g L-1, was observed in the last day. 

 

 
Figure 25. Growth profile of B. braunii cultivated in 3N-MBM media. 

  

By plotting the log of biomass concentration versus time, it was noticed 

that exponential growth was taken until 144 hours. Maximum specific growth 
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rate, productivity and the biomass doubling time were calculated and resulted in 

0.24 d-1, 0.61 g L-1 and 2.9 days, respectively. 

  

4.2.2 Medium Analysis 

Carbon solubility (CSOL) during the cultivation of B. braunii in 3N-MBM 

medium in comparison with biomass growth profile can be observed in figure 

26. 

 

 
Figure 26. Comparison between dissolved carbon and growth of B. braunii. 

 

Consumption of nitrogen, magnesium and potassium during growth was 

determinated through the dissolved concentration in the medium (figure 27). 

The averae rates of consumption for each of the cations was calculated and 

resulted in 40.72 mg gX-1 for nitrogen, 15.02 mg gX-1 for potassium and 2.60 mg 

gX-1 for magnesium. 
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Figure 27. Dissolved salt profiles during cultivation of B. braunii in 3N-MBM media. 

 

The accumulated production of biomass was plotted against the 

accumulated production of each cation. These graphics are showed in figure 

28. 

 

  

 
Figure 28. Relation between accumulated biomass production and accumulated 

consumption of each cation analyzed. 

 

Dissolved phosphorus was analyzed during growth (figure 29) and its 

rate of consumption was 175.9 mg gX-1. 
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Figure 29. Dissolved phosphorus during cultivation of B. braunii in 3 N- MBM media. 

 

4.2.3 Carbon Dioxide Fixation 

 

Figure 30 show the pattern of consumption of carbon dioxide and oxigen 

in comparison with the blank trial. 

 

Figure 30. Carbon uptake and Oxygen production during growth of Botryococcus 
braunii. 

Carbon dioxide fixation was quantified by the same method described for 

C. vulgaris, and totalized 496.98 mg L-1 day-1 (41,94 mg CO2 h
-1 gbiomassa

-1). In 

exponential growth almost half of total carbon dioxide was fixed. Oxygen 

production was estimated in 1192.39 mg L-1 day-1.  
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The amount of carbon dioxide mineralized in soluble form of bicarbonate 

in the medium was estimated as 0.028 mgCO2 L
-1 (see fig 9). Total extracellular 

carbohydrates concentration at the end of the experiment was 35.85 mg L-1. 

 

4.2.4 Biomass Composition 

 

The biomass composition of Botryococcus braunii cultivated at the 

described conditions is indicated in table 6. 

 

Table 6. Composition of B. braunii cultivated in 3N-MBM media with carbon dioxide as 
carbon source. 

Proteins Sugars Chlorophyll Lipids Ash 

39,61% 2,38% 6.50% 33% 7,54% 

 

 

4.3 Spirulina platensis 

 

4.3.1 Growth Parameters 

 

The growth profile of the microalga Spirulina platensis LEB 52 is show in 

figure 31. Spirulina platensis presented two phases of exponential growth: one 

between 96 and 168 hours and other from 240 to 264 hours. 

 

 
Figure 31. Growth profile of Spirulina platensis grown in Zarrouk media. 
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Maximum cell concentration was observed in day 14th (2.18 g L-1). 

Specific growth rate and doubling time were calculated in the exponential 

growth phase and resulted in 0.22 d-1 and 3.12 days, respectively. Maximum 

cell productivity was 0.73 g L-1 d-1. 

 

4.3.2 Medium Analysis 

 

Dissolved carbon (CSOL) in Zarrouk media during cultivation of S. 

platensis is presented in figure 32. 

 

 

Figure 32. Carbon solubility during growth of S. platensis. 

 

The profiles of consumption of nitrogen, magnesium and potassium 

during growth are showed in figure 33. The average rate of consumption for 

these cations was calculated and resulted in 61.8 mg gX-1 for nitrogen, 24.09 

mg X-1 for potassium and 4.17 mg X-1 for magnesium. 
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Figure 33. Profile of consumption of nitrogen, potassium and magnesium. 

 

The accumulated production (Cf – C0, where zero is the biomass 

concentration in the beginning of the experiment and f is in a determinated day) 

of biomass was plotted against the accumulated production of each cation. 

These graphics is showed in figure 34. 

 

 

  

 
Figure 34. Profiles of accumulated biomass production versus accumulated 

consumption of each cation analyzed. 
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Dissolved phosphorus was analyzed during growth (figure 35) and its 

rate of consumption was 247.4 mg gX-1. 

 

 
Figure 35. Dissolved phosphorus during cultivation of S. platensis in Zarrouk media. 

 

 

4.3.3 Carbon Dioxide Fixation 

 

Figure 36 shows the pattern of consumption of carbon dioxide and 

oxigen in comparison with the blank trial. 

 

Figure 36. Carbon uptake and Oxygen production during growth of Spirulina platensis. 
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Carbon dioxide fixation was quantified by the same method described 

before and totalized 318.16 mg L-1 day-1. Oxygen production was estimated in 

1389.85 mg L-1 day-1.  

The amount of carbon dioxide mineralized in soluble form of bicarbonate 

in the medium was estimated in 0.028 mgCO2 L
-1. Total dissolved extracellular 

carbohydrates concentration at the end of the experiment was 114.33 mg L-1. 

 

4.3.4 Biomass Composition 

 

Table 7 indicates the composition of Spirulina platensis biomass 

cultivated. 

 

Table 7. Composition of S. platensis cultivated in modified Zarrouk media with carbon 
dioxide as carbon source. 

Proteins Sugars Chlorophyll a Lipids Ash Other Pigments 

42.33% 11% 12.13% 11% 7.11% 3.99% 

 

 

4.4 Dunaliella tertiolecta 

 

4.4.1 Growth Parameters 

 

Dunaliella tertiolecta results was considered here as a sum of a 

duplicate. Problems related to carbon dioxide fixation quantification (due to 

electrical outages) in one experiment and in growth profile analysis in other 

were faced. As both experiments was done in the same conditions, with very 

similar proportion of inoculum (initial biomass equal to 0.2 in one and 0.24 g L-1 

in the other) and almost identical profiles of nitrogen consumption and dissolved 

carbon was obtained, the results was mixed. 
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The growth profile of the microalga Dunaliella tertiolecta is shown in 

figure 37. The microalga has presented an exponential growth from 0 to 360 

hours. 

 

 
Figure 37. Growth profile of D. tertiolecta grown in Dun media. 

 

Maximum cell concentration was observed in day 15th (2.15 g L-1). 

Specific growth rate and doubling time was calculated at the exponential growth 

phase and resulted in 0.21 d-1 and 3.29 days, respectively. Maximum cell 

productivity was 0.42 g L-1 d-1. 

 

4.4.2 Media Analysis 

 

Dissolved carbon (CSOL) in Dun media during cultivation is presented in 

figure 38. 
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Figure 38. Carbon solubility during growth of D. tertiolecta. 

 

The profiles of consumption of nitrogen, magnesium, calcium and 

potassium during growth are showed in figure 39. 

 

 

 

 

Figure 39. Profile of consumption of nitrogen, potassium and magnesium. 

 

The average rate of consumption for each of the salts analyzed was 

calculated and resulted in 26.05 mg X-1 for nitrogen, 59.71 mg X-1 for 

potassium, 375.46 mg X-1 for calcium  and 58.45 mg X-1 for magnesium. The 

profiles of consumption versus biomass production is show in figure 40. 
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Figure 40. Profiles of cations consumption versus Dunaliella tertiolecta biomass 

production. 

 

4.4.3 Carbon Dioxide Fixation 

 

Figure 41 show the pattern of consumption of carbon dioxide and oxigen 

in comparison with the blank trial. 

 

Figure 41. Carbon dioxide and oxygen consumption pattern. 

 

Carbon dioxide fixation was quantified by the same method described 

earlier and totalized 272.40 mg L-1 day-1. The amount of carbon dioxide 

mineralized in soluble form of bicarbonate in the medium was estimated in 

0.028 mgCO2 L-1 (see fig 9). The concentration of total extracellular 

carbohydrates at the end of the experiment was 280.1 mg L-1. 
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4.4.4 Biomass Composition 

 

The composition of Dunaliella tertiolecta biomass is indicated in table 8. 

 

Table 8. Composition of D. tertiolecta cultivated in 3N-MBM media with carbon dioxide 
as carbon source. 

Proteins Sugars Chlorophyll Lipids Ash 

29.41% 13.95% 7.61% 11.44% 33.35% 

 

 

5.0 DISCUSSION 

 

This section is divided into general and specific discussion.  

 

5.1 General discussion 

 

Ash analysis of the microalgae presented visual differences (figure 42). 

The different colors observed indicate a variation in microalgae biomass 

composition, a consequence of the absorbed substances, probably due to 

specific metabolism characteristics. 

 

Figure 42. Visual differences among ash of the microalgae. 1- B. braunii, 2- D. 
tertiolecta, 3- S. platensis, 4- C. vulgaris. 
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Carbon solubility in media for the microalgae studied increases in all 

cases.  Eriksen et al (2007) related that the concentration of HCO3
− in the 

growth medium increased in proportion to the decrease in the concentration of 

the nitrogen source, which was also observed during our experimentations. This 

is a consequence of the nitrogen source used. The reduction of 1 mol of NO3
-  

consumes 1 proton, which comes from the dissociation of carbonic acid. 

Through the analysis of dissolved cations and anions in the media, it was 

possible to calculate the rates of consumption of phosphorus, magnesium, 

nitrogen and potassium. These data are of great importance in the utilization of 

residues for microalgae growth because they can be used to determine the 

need of supplementation and the capacity of removal of such nutrients by the 

microalgae. It was observed that for all microalgae nitrogen and magnesium 

consumption was associated with growth. Potassium consumption presented 

different behavior for the microalgae studied.  

The profiles of carbon dioxide and oxygen presented (figures 24, 30, 37, 

41) showed clearly the complementary behavior of photosynthesis and 

respiration during microalgal growth. Under lighting regimem the increase in 

carbon dioxide consumption is simultaneously accompanied by a decrease in 

oxygen consumption (photossynthesis process); and the opposite was 

observed under dark regimem (respiration process). The distances between 

peaks and valleys of carbon dioxide consumption line is aproximately 12 hours, 

which is in accordance with the duration of photosynthesis and respiration 

under the light photoperiodicity. 

The equipment developed in our laboratory (and that is in process of 

patenting) has the potential for measuring total carbon fixation by microalgae, 

becoming a important tool for microalgal clean development mechanisms, 

specially those that use closed photobioreactors. 
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5.2 Specific Discussion 

 

5.2.1 Growth Profiles 

 

The analysis of growth pattern and parameters for the strain LEB 104 of 

Chlorella vulgaris is in accordance with Morais and Costa (2007) who obtained 

a specific growth rate of 0.31 d-1, a doubling time of 2.27 days and a maximum 

productivity of 0.28 g L-1 d-1 for the same strain. 

Our results of B. braunii growth kinetics are in accordance to Vovola et al 

(1998), who achieved  a biomass concentration of 3.9 g L–1 and generation time 

of 3 to 4 days in modified Prat medium. The specific growth rate during 

exponential phase obtained by Vovola was very close to that obtained in this 

study (0.235 and 0.24 d–1, respectively). Other authors also presented very 

similar results (Órpez et al, 2009 and Qin,2005).  

Dunaliella tertiolecta presented a specific growth rate of 0.21 d-1 during 

the exponential phase, which occurs during 360 hours of cultivation. This data is 

considerably low comparing to those obtained by Roberts et al (2008) which 

achieved 1.25 d-1 and Sciandra et al (1997) 0.5 d-1. 

Spirulina platensis maximum growth rate was 0.223 d-1 and a biomass 

doubling time of 3.12 days. These data are in accordance with Binaghi (2003) 

and Morais and Costa (2007). 

 

5.2.2 Media Analysis 

 

The main difference between all the experiments taken was related to 

potassium consumption. It was observed that for C. vulgaris and S. platensis 

the major potassium consumption was observed from the end of the 

exponential growth, while in B. braunii and in D. tertiolecta it accompanied 

growth. Calcium consumption analysis in D. tertiolecta growth indicates major 

consumption in the beginning of the growth, what may be a consequence of 

adsorption to the cell membrane. 
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From the nitrogen consumed by Chlorella vulgaris (49.35 mg gX-1) and 

considering the composition of the biomass (table 4), it was possible to 

determine the destination of the nitrogen during growth. Approximately 76% 

was transformed into proteins, while 1.45% was used for chlorophyll production 

and 1.93% remained soluble in the medium. Almost all of the magnesium 

(97.84%) destine was to chlorophyll production. 

B. braunii presented a rate of consumption of 40.72 mg gX-1 for nitrogen, 

15.02 mg gX-1 for potassium and 2.60 mg gX-1 for magnesium. Phosphorus 

removal was equal to 175.90 mg gX-1.  

Around 65% of the nitrogen consumed by cells of B. braunii was used in 

protein production, while 1.68% was used for chlorophyll. Nitrate was totally 

consumed in 9 days of cultivation. Around 70% of the magnesium was 

destinated to chlorophyll. 

Protein was the destination of more than 56% of the nitrogen consumed 

by Dunaliella tertiolecta cells, while almost 50% of the magnesium was used in 

chlorophyll production. 

In Spirulina, the fate of 91% of the nitrogen consumed was the 

production of proteins and 1.1% in chlorophyll. Magnesium was almost all 

(97%) used in the production of chlorophyll. 

 

5.2.3 Carbon Dioxide Assimilation 

 

The total amount of carbon dioxide fixed by Chlorella vulgaris LEB 104 

estimated in 251.64 mg L-1 d-1. Through the biomass compositions the biomass 

composition in terms of elementar carbon was estimated. It was obseved that 

around 87% of the carbon fixated was used for the generation of microalgal 

biomass. Taking into account the amount of carbon dioxide mineralized in 

soluble form of bicarbonate in the medium (0.038 mgCO2 L-1) and considering 

the produced extracellular carbohydrates (238.86 mg L-1) as glicose (carbon 

represents 40%), we reach 91% of the known carbon destination. 



70 

 

The same calculations presented in the preceding paragraphs were done 

for the other algae: 

Botryococcus braunii carbon dioxide fixation was estimated in 496.98 mg 

L-1 day-1, representing an annual CO2 fixation of 110 tons per acre. The amount 

fixed in form of biomass is estimated as 88%. Extracellular carbohydrates 

(35.85 mg L-1) and the mineralized carbon (0.0276 mg L-1) was not significant in 

terms of CO2 fixation (less than 0.7% of total fixated).  

Spirulina platensis carbon dioxide fixation rate was estimated in 318.16 

mg L-1 day-1. This represents 82.6 tons of CO2. CO2 destination included around 

80.40% for biomass production and 3% for other known destination (114.33 mg 

L-1 as extracellular carbohydrates and 0.115 mg L-1 as mineralized carbon).  

Dunaliella tertiolecta was able to fixate 272.40 mg L-1 day-1 of carbon 

dioxide, which represents 60.36 tons acre-1 year-1. About 70% was used in 

biomass production and 9% for extracellular carbohydrates.  

 

5.2.4 Biomass Composition 

 

Biomass composition (table 5) indicates that C. vulgaris is a great source 

of proteins. Furthermore, the microalga presented a great production of 

extracellular polysaccharides (238.86 mg L-1, which is in accordance to 

Chinassamy et al, 2009), which was the destination of about 60% of the carbon 

dioxide fixed.  

The biomass yield of B. braunii obtained in this experiment was very high 

(3.11 g L-1 in 15 days) associated with a high lipid accumulation (33%) 

comparable to the literature. In terms of accumulation of hydrocarbons, 

Dayananda et al (2005) cultivated the same SAG 30.81 strain in shake flask 

and obtained a maximum cell concentration of 0.65 g L-1 under 16:8 light dark 

cycle with 50% of lipids accumulation. Further experiments achieved a 

maximum biomass yield of 2 g L-1 with 40% of lipid and 1.8 g L-1 in outdoor 

cultivation with 12% of lipids. 
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Spirulina platensis biomass is a good source of proteins, which 

represents 42% of the biomass, confirming its capacity of use in food and feed 

industry. 

Dunaliella tertiolecta stood out as a great exopolyssaccharides producer. 

It was achieved a high amount of ash in biomass, which might be a 

consequence of the high saline medium. 

 

6.0 CONCLUSIONS  

 
• The destination of carbon dioxide in Chlorella vulgaris experiment was 

around 90.8% to biomass production. CO2 fixation rate was estimated in 

251.64 mg L-1 day-1.  Nitrogen, potassium, magnesium and phosphorus 

consumption rates (mg gX-1) were 49.35, 32.18, 2.85 and 314.4.  

• Botryococcus braunii presented a carbon fixation capacity of 496.98 mg 

L-1 day-1. Almost all of the fixed CO2 was used in biomass production 

(88%). B. braunii biomass presented high growth rates associated with a 

high lipid production. Nitrogen, potassium, magnesium and phosphorus 

consumption rates (mg gX-1) were 40.72, 15.02, 2.60 and 175.9. 

• Carbon dioxide fixation rate by Spirulina platensis was estimated in 

318.16 mg L-1 day-1. Major carbon dioxide fixed was used in biomass 

production (80.40%), which presented 68% of proteins. Nitrogen, 

potassium, magnesium and phosphorus consumption rates (mg gX-1) 

were 61.8, 24.09, 4.17 and 247.4. 

• Dunaliella tertiolecta produced the higher amount of exopolyssaccharides 

(280,1 mg L-1 day-1). CO2 fixation rate was estimated in 272.40 mg L-1 

day-1, being almost 70% used for biomass production. Nitrogen, 

potassium, magnesium and calcium consumption rates (mg gX-1) were 

26.05, 59.71, 58.45 and 375.46. 
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• Biomass seems to represent only a small part of carbon metabolism and 

fixation of CO2 might not be quantified considering only biomass 

production in microalgae cultivation. 

• The strategy used for quantification of CO2 by the microalgae presented 

good results in comparison with the literature and seems to be useful for 

closed systems of microalgae production.  

 

7.0 FUTURE WORKS 

• Evaluate the effect of nutrients (excess or depletion) on carbon dioxide 

fixation and biomass composition of microalgae. 

• Evaluate carbon fixation, nutrients consumption and biomass 

composition in cultures containing liquid and/or gaseous industrial 

wastes. 

• Evaluate other microalgae in terms of carbon fixation capacity.  
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Annex I  

The data acquired by the software (*) was used for further calculations to obtain the carbon fixated. 

 

 

 

 

 

 

 

Time* CO2 in* (ml/min) CO2 out* (%) O2 in* (%) O2 out* (%) Gas flow* (L/min) 

11/3 11:01 38,38 2,88 20,51 20,08 1 

12/3 12:01 36,17 2,87 20,50 20,11 1 

13/3 13:01 38,39 2,87 20,48 20,12 0,9 

14/3 14:01 35.43 2,84 20,47 20,14 1 

15/3 15:01 37,65 2,78 20,47 20,17 1 

16/3 16:01 36,91 2,74 20,48 20,19 1 

17/3 17:01 36,91 2,70 20,48 20,21 0,9 

CO2 in (%) = (CO2in/GasFlow)*100 CO2 cons (%) = CO2in-CO2out CO2 cons (g/h) =  (CO2 cons)*(44/22,4)*60*GasFlow 

3,84 0,96 1,13 

3,62 0,75 0,88 

4,27 1,40 1,48 

3,54 0,70 0,83 

3,76 0,98 1,16 

3,69 0,95 1,12 

4,10 1,40 1,49 
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Annex II  

 

 
Five-day interval chromatograms of dissolved cations during growth of 

Botryococcus braunii in 3N-MBM media. 

 

 

 

Five-day interval chromatograms of dissolved cations during growth of Spirulina 

platensis in modified Zarrouk media. 
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Five-day interval chromatograms of dissolved cations during growth of Chlorella 

vulgaris in MBM media. 

 

 

 

Five-day interval chromatograms of dissolved cations during growth of 

Dunaliella tertiolecta in Artificial Sea Water media. 

 


