PETER LÖWENBERG NETO

Hipótese de conservação tropical explica a evolução de Muscidae (Insecta: Diptera) na América do Sul

Tese de doutoramento apresentada ao colegiado do Programa de Pós-Graduação em Ciências Biológicas (Entomologia) da Universidade Federal do Paraná como requisito parcial para a obtenção do grau de Doutor em Ciências.

Orientador: Claudio J. B. de Carvalho Co-orientador: Bradford A. Hawkins

CURITIBA, PARANÁ, BRASIL

AGOSTO DE 2009

Não havia data, nem assinatura, nem endereço. Li:

— "Hoje à noite, às quinze para as oito, receberá a visita de um cavalheiro que deseja consultá-lo sobre assunto da maior importância. Os serviços que prestou recentemente a uma das Casas Reais da Europa provaram que é pessoa em que se pode confiar assuntos importantes de uma magnitude que não se pode exagerar. Essa informação sua foi por muitas pessoas dada. Em casa a essa hora esteja então e não leve a mal se uma máscara o visitante usar".

— É realmente um mistério – comentei. — Que acha que significa isso?

— Não tenho os fatos ainda. É erro grave formular teorias antes de obter os fatos. Sem querer, começamos a torcer os fatos para se adaptarem às teorias, em vez de formular teorias que se ajustem aos fatos. Mas quanto ao bilhete, o que deduz dele?

Examinei cuidadosamente a caligrafia e o papel.

— O homem que escreveu isso – falei finalmente procurando imitar o processo de meu companheiro – era provavelmente uma pessoa de recursos. Papel desta qualidade custa pelo menos meia coroa o pacote. É excepcionalmente grosso.

Excepcional, é isso mesmo – disse Holmes. — Esse papel não é inglês. Segure-o contra a luz.

Fiz o que mandava e vi um E maiúsculo com um g pequeno, um P e um G grandes com um t pequeno tecidos no papel.

— Que deduz disso? – perguntou Holmes.

- Deve ser o nome do fabricante, sem dúvida.

— Nada disso. O G com o t pequeno quer dizer Gesellschaft, que em alemão significa Companhia. É uma abreviatura, é claro, reparei. E agora o Eg. vamos olhar no Dicionário Geográfico. — Tirou um volume marrom pesado das estantes. — Eglow, Eglonitz... aqui está, Egria. Fica em país de língua alemã...na Boêmia, não muito longe de Carlsbad. "Notável por ter sido a cena da morte de Walienstein, e por numerosas fábricas de vidro e de papel". Ha, lia, meu amigo, que diz disso? – Seus olhos brilhavam e desprendeu uma grande nuvem azul e triunfante do cigarro.

— O papel foi feito na Boêmia – respondi.

— Exatamente. E o homem que escreveu o bilhete é alemão. Reparou na construção peculiar da frase "Essa informação sua foi por muitas pessoas dada". Um francês ou um russo nunca escreveria isso. É uma construção tipicamente alemã. Portanto, só resta descobrir o que deseja esse alemão que escreve em papel da Boêmia e prefere usar uma máscara que mostrar o rosto. E aí vem ele, se não me engano, para resolver todas as nossas dúvidas.

Enquanto falava, ouviu-se o som surdo de cascos de cavalos e rodas rangendo contra o meio-fio, seguidos do ruído insistente da campainha. Holmes assoviou.

Arthur Ignatius Conan Doyle (1891) Um escândalo na Boêmia

AGRADECIMENTOS

Primeiramente gostaria de agradecer a Deus pelo nascer e por do sol e pela natureza que Ele criou para que pudéssemos estudá-la. Também, agradeço meus pais, José Luiz e Gladis, e meu irmão Fábio pelo total apoio em todas as etapas da minha vida e torno público um agradecimento especial à minha esposa Vanessa pelo amor, carinho, atenção, paciência, apoio incondicional e companheirismo.

Meus sinceros agradecimentos ao Dr. Claudio José Barros de Carvalho pelo exemplo profissional, confiança, amizade, sinceridade e parceria científica; e ao Dr. Bradford A. Hawkins (UCI, EUA) por ter me recebido muito bem em seu laboratório e ter contribuído com questionamentos e sugestões para o melhoramento desta tese. A Dra. Márcia Couri (MNRJ) agradeço a hospitalidade na minha visita ao Museu Nacional, disponibilização do computador e de todos os espécimes de Muscidae da coleção de Diptera do museu.

Aos integrantes da sala 359, da sala 360 e aos professores do Programa de Pós-Graduação em Entomologia e do Departamento de Zoologia (UFPR) agradeço pela boa convivência, companheirismo, amizade e discussões científicas.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) agradeço pela bolsa de doutoramento concedida durante a maior parte do período e agradeço ao colegiado Programa de Pós-Graduação em Entomologia (UFPR) e ao programa de estágio doutoral no exterior da CAPES pela concessão da bolsa sanduíche.

SUMÁRIO

Agradecimentos	iii
Lista de figuras	vi

Resumo	1
Abstract	2
1. Introdução	3
1.1 A narrativa histórica de Muscidae na América do Sul	6
2. Objetivo	9
2.1 Objetivos específicos	9
3. Metodologia	.10
3.1 Banco de dados geográfico e táxons analisados	10
3.2 Estimativa da distribuição geográfica	.11
3.3 Distância à raiz e a superárvore de Muscidae	.14
3.4 Análise estatística e o esquema biogeográfico	15
4. Resultados	18
4.1 Distribuição geográfica de Muscidae	18
4.2 A superárvore de Muscidae e a distância à raiz	.18
4.3 Padrão geográfico do sinal filogenético	21
5. Discussão	29
5.1 Estimativa da distribuição geográfica de Muscidae	29
5.2 A superárvore de Muscidae e a distância à raiz	30
5.3 Padrão geográfico do sinal filogenético	31
5.4 O clima do Cenozóico e a narrativa histórica de Muscidae na América do Sul	.32
5.5 Concordância da narrativa histórica de Muscidae e da biota Neotropical	34
6. Conclusões	38
7. Referências bibliográficas	.39

8. Apêndices	48
Apêndice 1. Lista das espécies de Muscidae utilizadas na análise	48
Apêndice 2. Conjunto de variáveis ambientais BIOCLIM utilizadas na estimativ	a das
áreas de distribuição	61
Apêndice 3. Mapas da distribuição agregada das espécies de Muscidae	62
Apêndice 4. Valor de distância a raiz dos táxons terminais	63
Apêndice 5. Regressão linear das variáveis ambientais na distância à raiz	64
Apêndice 6. Regressão com pesagem geográfica das variáveis na distância à raiz	z65

LISTA DE FIGURAS

Resumo

A conservação tropical é uma hipótese biogeográfica que assume o surgimento mais provável das linhagens em regiões de clima tropical e que a ocorrência da maioria das linhagens em regiões extratropicais e temperadas aconteceu apenas recentemente. Como conseqüência, a hipótese geograficamente prevê que, devido a conservação de nicho, linhagens mais antigas ocupam áreas tropicais (quentes); e linhagens mais recentes ocupam áreas que sofreram o avanço do esfriamento climático. Além do poder explicativo desta hipótese verificado para diversos táxons, acredita-se que a hipótese forneça uma explicação biogeográfica para Muscidae porque (1) a narrativa histórica de Muscidae tem paralelo com a evolução da biota Neotropical e (2) a trajetória evolutiva da biota Neotropical, assim como toda a biosfera, fora influenciada por mudanças paleoclimáticas. Logo, espera-se que (3) a Hipótese de Conservação Tropical explique o padrão geográfico da evolução de Muscidae na América do Sul. O objetivo deste estudo é testar se a hipótese de conservação tropical (HCT) explica o padrão geográfico da evolução de Muscidae na América do Sul. Um banco de dados geográficos foi construído com informações da ocorrência geográfica das espécies obtidas da literatura e de coleções biológicas. Os pontos de ocorrência foram utilizados para estimar a distribuição geográfica das espécies pelo programa MaxEnt com o conjunto de 19 variáveis ambientais (BIOCLIM) e sob critérios conservadores. Uma superárvore de Muscidae foi construída para a obtenção dos valores de distância à raiz (DR). Os valores de DR foram dispostos geograficamente conforme a distribuição dos táxons e analisadas visualmente. Além disso, regressões estatísticas (OLS, GWR, RT) testaram a correlação da temperatura e outras variáveis ambientais na métrica filogenética. A disposição geográfica dos valores de distância à raiz média por hexágono (DRM) corroborou o padrão espacial esperado pela HCT: concentração de baixos valores de DRM em regiões tropicais da América do Sul e concentração de altos valores de DRM em regiões extratropicais do cone sul do continente e ao longo da cordilheira dos Andes. A temperatura foi a variável ambiental que melhor explicou a variação da métrica filogenética e a sua relação forte e negativa endossou o padrão previsto pela hipótese. A árvore de regressão (RT) permitiu explicar os valores intermediários de DRM e, a partir disso, construir um esquema biogeográfico baseado em componentes biotérmicos. Acredita-se que a origem de Muscidae seja tropical e que na América do Sul a sua trajetória evolutiva foi diretamente afetada pelo esfriamento progressivo após a máxima termal do Paleoceno-Eoceno e introgressões marinhas ocorridas no Mioceno. Esta narrativa histórica de Muscidae foi congruente com a previsão da HCT e corroborou feições biogeográficas já conhecidas da biota Neotropical. Os elementos centrais da Hipótese de Conservação Tropical, origem tropical e resposta evolutiva frente ao esfriamento climático, fornecem uma simples e abrangente conjectura da evolução geográfica dos organismos, inovadora para biogeografia histórica e que explicou o padrão geográfico da evolução de Muscidae na América do Sul sob o cenário de mudanças paleoclimáticas.

Palavras-chave: biogeografia histórica, Cenozóico, MaxEnt, mudança climática, superárvore.

Abstract

The tropical conservatism hypothesis (TCH) assumes that most organisms' lineages have originated in areas of tropical (i.e. warm) climate and that they occupied extratropical and temperate areas only more recently. TCH geographically predicts that older taxa tend to occupy warm areas; while younger taxa tend to occupy extratropical and temperate areas. We tested if the geographic predictions of the Tropical Conservatism hypothesis could explain the evolutionary pattern of the Muscidae in South America. We proposed this hypothesis based on evidences that (i) the spatial evolution of the Muscidae had parallel with the spatial evolution of the Neotropical biota; and (ii) the evolution of the Neotropical biota was affected by Cenozoic climate change. As a logical feedback, we expected that (iii) TCH explained the historical narrative of the Muscidae in South America under the paleoclimate change scenario. We compiled the largest database of Muscidae geographic occurrence with information from literature and biological collections. Geographic distributions were estimated by the MaxEnt modeling technique, and a supertree of the Muscidae was assembled by MRP methodology. We calculated the root distance (RD), number of nodes between each terminal taxa and the phylogenetic root, to quantify the amount of evolutionary changes in term of speciations. The mean root distance (MRD) within each hexagon cell was calculated and its geographic display was visually analyzed. We statistically examined (OLS, GWR, RT) temperature correlates with the variance of the phylogenetic metric and Regression Tree (RT) results were employed to delineate biothermal components and to construct an area-cladogram. Visual inspection of the geographic display of the phylogenetic metric showed that lower values of MRD was highly concentrated at tropical warm areas of SA; and higher values of MRD was highly concentrated at the extratropical cone, southernmost SA and Andes mountain chain. Regression analyzes endorsed our visual interpretation and showed a relatively strong and negative correlation between temperature and MRD. We believe that Muscidae originated at tropical areas and at South America the historical narrative of the family was directly affected by the climate cooling after the Paleocene-Eocene maximum thermal and marine introgressions occurred in Miocene. The biogeographic scenario and the area-cladogram of the Muscidae were congruent with the geographic predictions of the TCH and with the Neotropical biota historical narrative as well. The Tropical Conservatism hypothesis explained comprehensively the spatial evolution of the Muscidae in SA and supported six previously known biogeographic features of the Neotropical biota. The core elements of the TCH, tropical origin and evolutionary response to climate cooling, provide a simple and outstanding conjecture of geographic evolution under paleoclimate change scenario outstandingly novel for historical biogeography approach.

Key-words: climate change, Cenozoic, historical biogeography, MaxEnt, supertree.

1. Introdução

Em análise espacial há um ramo científico chamado Biogeografia que compreende o estudo da distribuição geográfica dos seres vivos (Crisci *et al.* 2006). A biogeografia é, por natureza, uma ciência multidisciplinar e esta característica promove que, em um contexto espacial e temporal, o conhecimento biológico se concilie com o conhecimento abiótico e geológico para entender os padrões e os processos da natureza (Crisci *et al.* 2003). Em biogeografia, a busca pelo "padrão" e pelo "processo" é importante, pois eles estruturam a sua ontologia em duas práticas (Posadas *et al.* 2006): (1) a prática descritiva, que busca reconhecer e descrever o arranjo espacial dos organismos; e (2) a prática interpretativa, que busca interpretar as causas que geraram o padrão descrito.

Na prática interpretativa é onde reside a mais tradicional dicotomia da biogeografia (de Candolle 1820): a biogeografia histórica e a biogeografia ecológica. A diferença fundamental entre a biogeografia histórica e a ecológica é a escala espacial e temporal de análise e, como conseqüência disso, a natureza dos processos envolvidos. Entender em escala global as causas do padrão espacial de espécies de um táxon monofilético, por exemplo, exige que eventos geológicos remotos sejam invocados (e.g. deriva continental, mudança climática) e interpretados conjuntamente com mecanismos evolutivos (vicariância, dispersão e extinção). Já entender as causas espaciais de padrões locais, como a de uma comunidade em um fragmento florestal, exige o entendimento da influência de distúrbios ambientais e conversão de habitats, eventos em escala local e muitíssimo recentes na escala geológica.

Apesar de estar bem estabelecido na literatura que a biogeografia histórica e a biogeografia ecológica são linhas independentes de pesquisa (Crisci *et al.* 2003; Posadas *et al.* 2006), há um senso que permeia a interpretação dos biogeógrafos de que a divisão entre biogeografia histórica e ecológica é didática e representa apenas diferentes perspectivas de um mesmo objeto de estudo (Wiens & Donoghue 2004; Crisci *et al.* 2006; Morrone 2007). Esta idéia tem sustentado estudos de revisão teórica (*e.g.* Crisci *et al.* 2006; Morrone 2007) e, sobretudo, a busca por um denominador comum que permita, no contexto geográfico, a integração de agentes históricos e ecológicos.

Uma linha de pensamento bastante promissora é considerar que eventos históricos resultaram de interações materiais e energéticas dos organismos com o ambiente no passado (Wiens & Donoghue 2004). Ou seja, apesar da biogeografia histórica estar focado em mecanismos como vicariância, dispersão e extinção, estes eventos, quando reduzidas as suas proporções espaciais e temporais, não passam de interações ecológicas dos organismos com o meio. Esta perspectiva fundamentou a proposta de uma abordagem integrativa na qual a conservação e a evolução de nicho são os processos que conectam o fluxo de matéria e energia com a herança da informação biológica no espaço e no tempo (Wiens & Donoghue 2004).

A conservação de nicho é a tendência das espécies em reter as características ecológicas dos ancestrais (Wiens & Graham 2005). Ela basicamente reflete a falta de capacidade da linhagem em ocupar áreas com condições diferentes a área do ancestral e corrobora a dificuldade das linhagens tropicais em ocupar áreas temperadas (Hawkins & DeVries 2009). Em contrapartida, a evolução de nicho permite que as espécies ou linhagens ocupem novos habitats e regimes climáticos e persistam às mudanças ambientais (Wiens & Donoghue 2004).

Uma questão que permanece em aberto é a legitimidade da conservação/evolução de nicho como um processo evolutivo. Uma interpretação mais profunda dos conceitos (*e.g.* Pearmann *et al.* 2008) suporta que ele não seja um processo propriamente, mas sim, um fenômeno ou uma idiossincrasia da diversificação observado *a posteriori*. No entanto, os conceitos de conservação e evolução de nicho, sendo processos ou não, tem fornecido um panorama explicativo para diversas facetas da evolução, como especiação alopátrica, estrutura de comunidades, resposta a eventos de mudança climática, história humana recente e padrões globais de riqueza de espécies (Wiens & Graham 2005).

Para ilustrar as vantagens da integração de elementos ecológicos e históricos no conceito de conservação de nicho, Wiens & Donoghue (2004) elaboraram uma teoria chamada "Uma teoria integrativa para os padrões de biodiversidade" e aplicaram-na para explicar um caso biogeográfico bastante conhecido: o padrão espacial da riqueza de espécies. O modelo integrativo combinou três idéias básicas (Wiens & Donoghue 2004): (1) muitos grupos de organismos que apresentam alta riqueza de espécies tropicais se originaram na região tropical e apenas recentemente ocuparam a região temperada ou não ocuparam; (2) uma razão pela qual muitos organismos se originaram em regiões tropicais é porque as regiões tropicais no passado ocupavam uma área muito mais extensa que hoje. Há apenas 30-40 milhões de anos atrás as áreas temperadas começaram a aumentar de tamanho. Se grande parte do globo era tropical por um longo período, então é possível inferir que maior parte dos organismos tenha se originado em regiões tropicais; (3) muitas linhagens são adaptadas para o clima tropical e apenas algumas linhagens se adaptaram para regiões frias e congelantes. A conservação do nicho tropical é a responsável por manter a disparidade da riqueza de espécies entre regiões tropicais e temperadas ao longo do tempo.

Com este modelo, Wiens & Donoghue (2004) criticam o modo pelo qual a riqueza de espécies era analisada na perspectiva ecológica, considerando apenas a correlação do número de espécies e com variáveis ambientais, e enfatiza a idéia de que para se entender por que há mais espécies na região tropical é necessário resgatar a história das linhagens e entender quando e como os processos de especiação, dispersão e extinção geraram o padrão de riqueza.

Evidências tem se acumulado na literatura de que as mudanças paleoclimáticas foram um evento global (Zachos *et al.* 2001, para revisão) e que a evolução dos organismos foi diretamente afetada pelas mudanças climáticas do passado (*e.g.* Janis 1993). Um estudo que tratou das respostas evolutivas dos mamíferos frente a mudanças climáticas do Cenozóico (Blois & Hardly 2009) compilou evidencias que suportam que o clima afetou a abundância das populações, diversidade genética, morfologia, amplitude geográfica e, em nível de comunidade, afetou a estabilidade, imigração, especiação, extinção, sucessão funcional, sucessão biótica e diversidade de espécies (Blois & Hardly 2009). Especiação e arranjo geográfico de muitas plantas também foram afetados por mudanças paleoclimáticas (Latham & Ricklefs 1993, Pennington *et al.* 2004, Jaramillo *et al.* 2006).

Um dos pontos importantes da abordagem é que ela invoca o cenário de mudanças paleoclimáticas da Terra para entender a narrativa histórica dos grupos. Esta perspectiva favorece o modelo de integração em dois aspectos: as mudanças paleoclimáticas foram eventos de magnitude global (Zachos *et al.* 2001, para revisão), afetaram a maioria dos grupos e em quase todas as partes do planeta, e isso proporciona ao modelo grande poder explicativo; a compilação da narrativa dos eventos, origem tropical e resposta evolutiva ao resfriamento climático, fornece ao modelo um respaldo geológico e isso promove uma narrativa histórica baseada em paleoclima sem precedentes na biogeografia histórica.

Atualmente o modelo é conhecido como "Hipótese de Conservação Tropical" (HTC) e estudos testando esta hipótese tem explicado satisfatoriamente bem a evolução espacial dos organismos. Em um estudo com Aves no continente americano, o padrão geográfico da distância à raiz (DR) foi totalmente compatível com a hipótese: na região tropical da América do Sul observou-se alta concentração de espécies com valores baixos de DR que denotam linhagens relativamente mais antigas; e nas regiões temperadas, América do Norte, observou-se alta concentração de espécies altos de DR que denotam linhagens relativamente mais recentes. O padrão espacial do sinal filogenético foi completamente explicado pelas mudanças climáticas ocorridas no Cenozóico após a máxima termal do Eoceno (Hawkins *et al.* 2006). Um segundo estudo, com Aves em escala global, também endossou a previsão da hipótese: observou-se alta concentração de espécies mais antigas nas

regiões tropicais da América do Sul, África e região Indo-malaio; e concentração de espécies mais recentes em áreas extratropicais e de alta altitude dos mesmos continentes (Hawkins *et al.* 2007).

Estudos da biogeografia de dois táxons ectotérmicos suportaram as previsões da HCT e enfatizaram a importância da temperatura na evolução dos grupos. O primeiro estudo foi realizado com pererecas (Anura: Hylidae) do mundo utilizando datação molecular, reconstrução de área ancestral e distribuição geográfica. A interpretação da informação molecular e geográfica revelou que os hilídeos se originaram nas áreas tropicais da América do Sul e se diversificaram em áreas mais temperadas apenas recentemente. A temperatura apresentou forte relação com o sinal filogenético, sendo interpretada como fator limitante da ocupação de clados tropicais em regiões extratropicais (Wiens *et al.* 2006). O segundo estudo foi realizado com as borboletas na América do Norte onde verificou que as espécies mais antigas ocupam a parte sul do continente e as espécies mais recentes ocupam a parte norte do continente. Surpreendentemente, áreas montanhosas da região sul do continente apresentaram espécies mais recentes que regiões baixas de mesma latitude, enfatizando a relação da temperatura com os atributos filogenéticos, e a evolução da tolerância ao frio foi interpretada como uma novidade fundamental para explicar os padrões geográficos (Hawkins & DeVries 2009).

1.1 A narrativa histórica de Muscidae na América do Sul

O atual conhecimento da biogeografia de Muscidae na América do Sul indica que a narrativa histórica da família apresenta elementos congruentes com a evolução da biota neotropical. O primeiro estudo realizado focado na biogeografia da família na América do Sul foi elaborado pela compilação da informação de sete gêneros (de Carvalho *et al.* 2003). A distribuição das espécies de *Apsil, Bithoracochaeta, Cyrtoneurina, Cyrtoneuropsis, Palpibracus, Reynoldsia* e *Souzalopesmyia,* analisadas pela análise de traços, análise parcimoniosa de endemismos e biogeografia cladística, revelaram que o padrão espacial de áreas de endemismo foi congruente com os principais eventos geológicos da região Neotropical (de Carvalho *et al.* 2003).

O estudo da biogeografia cladística do gênero *Polietina* verificou que a distribuição e o relacionamento das espécies apresentaram congruência com um esquema hibrido de áreas neotropicais (Nihei & de Carvalho 2007a). Para verificar esta congruência foi executada a

análise de parcimônia de Brooks ("BPA") entre as espécies de *Polietina* e dois esquemas biogeográficos da região Neotropical: o de Amorim & Pires (1996) e o de Morrone (2001). Nenhum dos esquemas foi totalmente corroborado em um primeiro momento, no entanto, quando a subregião Amazônica (*sensu* Morrone 2001) foi dividida em duas áreas (NW e SE *sensu* Amorim & Pires 1996), a congruência espacial e relacional foi encontrada. Este resultado suporta a Amazônia como uma área historicamente composta, como descrita em estudos anteriores com outros táxons neotropicais (Amorim 2001; Camargo & Pedro 2003).

Um terceiro estudo utilizou 11 gêneros de Muscidae, aproximadamente 100 espécies, para testar a congruência espacial entre os grandes componentes bióticos da região Neotropical (Noroeste e Sudeste *sensu* Amorim & Pires 1996) e a tendência evolutiva das espécies da família (Löwenberg-Neto *et al.* 2008). Foi utilizada a métrica filogenética de distância à raiz e as espécies separadas em "basais" e "derivadas". Observou-se que maior concentração de espécies basais foi encontrada no grande componente Noroeste, e que maior concentração de espécies derivadas foi encontrada no componente Sudeste (Löwenberg-Neto *et al.* 2008), suportando que ambos, Muscidae e componentes Neotropicais, apresentam a mesma tendência evolutiva. Apesar de ter sido especulado que o resfriamento após a máxima termal do Eoceno teria sido responsável pelo estabelecimento dos componentes, esta dicotomia é mais bem explicada por eventos de introgressões marinhas ocorridas nas terras baixas da Amazônia (Amorim 2001, Nihei & de Carvalho 2007a, Amorim 2009).

Um quarto estudo envolvendo quase todas as espécies da família buscou reconhecer as áreas de endemismo e áreas de diversificação na América do Sul (Löwenberg-Neto & de Carvalho 2009). As áreas de endemismo foram delineadas pela análise parcimoniosa de endemismo com 728 espécies e as áreas de diversificação foram interpretadas pela ocorrência espacial de nós biogeográficos e traços generalizados suportados por espécies irmãs. Surpreendentemente as áreas de diversificação foram coincidentes com áreas de endemismo, com áreas de alta concentração de espécies e com áreas que no passado apresentaram grande dinamismo geológico (Löwenberg-Neto & de Carvalho 2009).

O conhecimento biogeográfico de Muscidae na América do Sul é fragmentado e ainda não há uma narrativa histórica completa da trajetória evolutiva da família (Löwenberg-Neto & de Carvalho 2009). A Hipótese de Conservação Tropical foi invocada para explicar a evolução de Muscidae não apenas porque há evidências de que a HCT tem poder de explicação para diversos táxons (*e.g.* Hawkins *et al.* 2006, Wiens *et al.* 2006), mas também porque: (1) a evolução espacial de Muscidae apresenta paralelo com a evolução da biota Neotropical; e (2) a trajetória evolutiva da biota neotropical foi afetada pelas mudanças paleoclimáticas. Se as duas premissas são verdadeiras, logo se espera que (3) a Hipótese de Conservação Tropical explique a evolução de Muscidae na América do Sul.

Para a área de estudo, espera-se que baixos valores de distância à raiz média (DRM) se concentrem na região tropical do continente, denotando a ocorrência de linhagens com origem relativamente mais antigas nestas regiões, e que valores altos de DRM se concentrem em regiões extratropicais, no cone sul do continente e ao longo da cordilheira dos Andes, denotando a ocorrência de linhagens com origem relativamente mais recente. Além disso, como sugerido por grupos ectotérmicos (Wiens *et al.* 2006, Hawkins & DeVries 2009), espera-se que a temperatura tenha influência na evolução da família.

2. Objetivo

Testar a hipótese de conservação tropical como explicação da evolução espacial de Muscidae na América do Sul.

2.1 Objetivos Específicos

- 1) Estimar a distribuição geográfica das espécies;
- 2) Hipotetizar o relacionamento evolutivo dos gêneros de Muscidae;
- 3) Contabilizar a métrica filogenética e associá-la à distribuição geográfica dos táxons;

4) Descrever o padrão geográfico da métrica filogenética e comparar com a previsão da hipótese de conservação tropical;

5) Verificar relação da métrica filogenética com as variáveis ambientais;

6) Compilar um esquema biogeográfico que represente espacialmente a hipótese de conservação tropical de Muscidae na América do Sul;

7) Comparar o esquema biogeográfico com a história da biota na região Neotropical.

3. Metodologia

3.1 Banco de dados geográfico e táxons analisados

O banco de dados geográfico das espécies de Muscidae foi construído a partir de informações publicadas na literatura e informações apresentadas nas etiquetas de material identificado em coleções biológicas. Na busca bibliográfica, o catálogo de Muscidae Neotropical (de Carvalho *et al.* 2005) foi utilizado como guia para artigos publicados desde 1758 até 2002; artigos mais recentes, publicados até Fevereiro de 2009, foram buscados no sítio "Web of Knowledge" (http://isiknowledge.com). Na visita a coleções biológicas foram incorporados ao banco de dados informação de 18.352 espécimes identificados depositados em duas coleções, Coleção Entomológica Pe. Jesus Santiago Moure (DZUP, Curitiba, PR) e Coleção de Diptera do Museu Nacional do Rio de Janeiro (MNRJ, Rio de Janeiro, RJ).

Para cada espécie de Muscidae foi criada uma tabela e para cada entrada da tabela foi inserida informação para os seguintes campos: nome da espécie, país, estado, município e localidade de ocorrência, longitude (graus, minutos decimais), latitude (graus, minutos decimais) e altitude (m), coleção biológica de depósito, gênero (macho ou fêmea), número de espécimes coletados na localidade, exemplar da série tipo, referência bibliográfica, coletor e ano de coleta, identificador e ano de identificação. Quando as coordenadas geográficas da localidade do exemplar não estavam disponíveis na fonte, no caso artigo ou etiqueta, as coordenadas geográficas assumidas eram a marco zero do município de ocorrência.

O banco de dados geográfico de Muscidae Neotropical contou com 808 espécies, contudo, as análises foram feitas apenas com 656 espécies (58 gêneros) por três razões: (1) foram excluídos os gêneros com espécies sinantrópicas porque a distribuição geográfica delas poderia estar relacionada às áreas de ocupação humana e, conseqüentemente, conduzir a uma interpretação tendenciosa dos resultados. Espécies dos seguintes gêneros foram excluídas: *Atherigona, Brontaea, Haematobia, Musca, Muscina, Ophyra, Psilochaeta, Stomoxys* e *Synthesiomyia*; (2) foram analisadas apenas espécies dos gêneros que foram previamente inclusos em uma análise filogenética. A informação filogenética associada à distribuição geográfica foi usada para o reconhecimento espacial dos padrões evolutivos, por este motivo, todos os gêneros analisados deveriam ter sido contemplados previamente em uma filogenia de Muscidae; e (3) como a métrica filogenética foi calculada ao nível taxonômico de gênero, foram excluídas as espécies de *Morellia* s.1. que é um gênero confirmadamente parafilético (Schuehli *et al.* 2007, Nihei & de Carvalho 2007b). Uma lista completa das espécies analisadas pode ser consultada no Apêndice 1.

3.2 Estimativa da distribuição geográfica

Os pontos de ocorrência foram utilizados para modelar a distribuição geográfica das espécies pela técnica do MaxEnt (Phillips & Dudík 2008). Em um contexto geográfico, a técnica baseada no algoritmo de máxima entropia é capaz de estimar as probabilidades das distribuições geográficas com apenas (a) dados de presença dos táxons e (b) variáveis ambientais (Phillips *et al.* 2004). A partir dos pontos de presença, a técnica reconhece os valores ambientais locais e estima, no universo espacial das variáveis, a distribuição geográfica mais homogênea (máxima entropia) para cada espécie (Phillips *et al.* 2006).

Estudos comparativos focados na acurácia das técnicas de modelagem com apenas pontos de presença têm mostrado que o desempenho do MaxEnt é superior ao desempenho das demais técnicas (*e.g.* GARP, DOMAIN, BIOCLIM). A avaliação dos modelos é normalmente feita baseada em índices obtidos *a posteriori*, como o valor da área sob a curva do operador receptor característico e o índice Kappa (ver detalhes em Elith *et al.* 2006) que ilustram estatisticamente a concordância espacial entre os pontos de ocorrência conhecidos e a área estimada (*e.g.* Phillips *et al.* 2004; Papes & Gaubert 2007). Nos estudos comparativos, os índices e os resultados das técnicas são comparados sob diferentes cenários analíticos: subamostras (Hernandez *et al.* 2006; Pearson *et al.* 2007; Peterson *et al.* 2007); amostras de tamanhos diferentes (Hernandez *et al.* 2006; Wisz *et al.* 2008); ajuste a um modelo nulo (Phillips *et al.* 2006; Raes & Steege 2007); diferentes regiões geográficas (Elith *et al.* 2006; Graham *et al.* 2007); diferentes táxons (Guisan *et al.* 2007); e erros induzidos nos dados de ocorrência das espécies (Graham *et al.* 2007).

Os estudos comparativos mostraram que as técnicas de modelagem são melhores que o modelo nulo, que a modelagem de táxons espacialmente mais restrito é mais precisa e que o desempenho das técnicas tende a melhorar com o aumento de pontos de presença da amostra (Hernandez *et al.* 2006; Pearson *et al.* 2007). O MaxEnt especificamente foi a técnica que apresentou a melhor correspondência espacial da modelagem de subamostras com amostras completas (Hernandez *et al.* 2006; Elith *et al.* 2006), melhor correspondência da área modelada com os pontos conhecidos (Peterson *et al.* 2007), apresentou o melhor desempenho com amostras com erros espaciais ([desvio padrão = 5 Km], Graham *et al.* 2007) e melhor

desempenho com amostras pequenas, intermediárias e grandes ([5, 10, 25, 50, 75 e 100 pontos], Hernandez *et al.* 2006; [10, 30 e 100 pontos], Wisz *et al.* 2008).

A grande virtude do MaxEnt é a acurácia na modelagem de táxons com poucos pontos conhecidos. A precisão da técnica está relacionada com um evento de regularização, própria do algoritmo, que assegura maior compromisso da área estimada com os pontos de ocorrência conhecidos, limitando a extrapolação geográfica e diminuindo os erros de comissão (Hernandez *et al.* 2006; Pearson *et al.* 2007). Esta característica pode parecer conservadora para estudos de espécies invasoras (*e.g.* Peterson *et al.* 2007), no entanto, é fundamental para o estudo de espécies raras em conservação (*e.g.* Papes & Gaubert 2007) e estudos evolutivos que exigem fidedignidade aos pontos conhecidos (*e.g.* Kozak & Wiens 2006).

No programa MaxEnt (versão 3.2.1 disponível em http://www.cs.princeton.edu/ ~schapire/maxent/) os pontos de ocorrência das espécies foram inseridos juntamente com as variáveis climáticas do conjunto BIOCLIM. BIOCLIM é um conjunto de 19 variáveis ambientais, derivadas da temperatura e da pluviosidade, combinadas para simular tendências climáticas anuais, sazonalidade e condições extremas e limitantes (Apêndice 2). Este conjunto de variáveis proporciona um ambiente de análise bastante conservador quando comparadas a outros conjuntos de dados, como IPCC, CRR, NDVI, e AVHRR (Peterson & Nakazawa 2008). O conjunto de dados BIOCLIM faz parte do banco de dados "WorldClim" (Hijmans *et al.* 2005) e foi obtido no sítio http://www.worldclim.org/. Após a inserção dos dados de ocorrência das espécies e das variáveis ambientais, a execução da análise ocorreu sob parâmetros padrão do programa.

Os resultados foram obtidos em formato logístico (escala probabilística de 0 a 1) e a estimativa de distribuição geográfica de cada espécie foi avaliada quanto a sua acurácia pelos valores da área sob a curva (ASC) do operador receptor característico (ORC). No gráfico do ORC é plotado a proporção de (1) positivos verdadeiros, ou seja, [a/(a + c)], onde *a* é presença observada e estimada e *c* é presença observada, mas não estimada pelo modelo (omissão), e a proporção de (2) falsos positivos, ou seja, [b/(b + d)], onde *b* é ausência observada e presença estimada (comissão) e *d* é ausência observada e estimada. A soma dos positivos verdadeiros e dos falsos positivos é sempre 1. Espera-se que uma estimativa geográfica aleatória tenha proporção semelhante entre (1) positivos verdadeiros e (2) falsos positivos, resultando em gráfico linear com ângulo de 45°, intersecção na origem (0,0) e, conseqüentemente, área sob a curva (ASC) igual a 0,5. Já uma estimativa geográfica relativamente precisa necessita apresentar uma proporção de mais (1) positivos verdadeiros e menos (2) falsos positivos, resultando em uma curva, também com intersecção na origem,

mas com trajetória acima da estimativa aleatória e com valores de ASC superiores a 0,5, sendo 1,0 indicativo de ajuste perfeito entre o estimado e o observado (Hanley & McNeil 1982, Fielding & Bell 1997).

Na presente análise, o valor da ASC de cada espécie foi utilizado como parâmetro para avaliar a acurácia da área de distribuição estimada: espécies que não atingiram o mínimo ASC de 0,85, que é um valor de boa precisão ([0,7 - 0,9 bom], [> 0,9 ótimo], Manel *et al.* 2001; Masuoka *et al.* 2009), foi descartada e os pontos originais analisados. Apesar de ter sido apontada algumas fraquezas como parâmetro de avaliação (Lobo *et al.* 2008; Peterson *et al.* 2007), a ASC é ainda uma das métricas mais utilizadas para avaliar *a posteriori* a qualidade das áreas modeladas (*e.g.* Williams *et al.* 2009, Puschendorf *et al.* 2009), pois é facilmente obtida dos resultados gerados pelo programa MaxEnt (Phillips & Dudík 2008) e, independentemente dos limites (*thresholds*), ela fornece uma noção geral da precisão do modelo.

As estimativas de áreas que tiveram valores da ASC superiores a 0,85 foram exportadas em formato .asc e importadas no programa ArcInfo (versão 9.2.4, ESRI) para serem individualmente editadas. A edição foi realizada para assegurar a fidedignidade das áreas modeladas com o atual conhecimento da distribuição dos táxons e contou com duas sucessivas modificações: a primeira modificação foi a exclusão de áreas com probabilidades inferiores a 0,6 e a transformação da área remanescente (> 0,6) em um polígono de distribuição da espécie; a segunda modificação foi a exclusão de áreas modeladas além de grandes barreiras geográficas (*e.g.* cordilheira dos Andes) que não havia coincidência com os pontos de ocorrência original. Este procedimento foi realizado para assegurar que a área modelada não extrapolasse a distribuição do táxon para além de barreiras limitantes, inserindo, em uma perspectiva continental, o princípio biogeográfico de que áreas ecologicamente similares separadas por barreiras abrigam composições diferentes de espécies (Buffon 1761).

Após o procedimento metodológico descrito acima, o polígono final da distribuição de cada espécie era equivalente à intersecção entre (1) a área modelada com probabilidade igual ou superior a 0,6 e (2) a área com amplitude coincidente aos pontos conhecidos e limitados pelo relevo. O conjunto analisado de distribuições geográficas contou com os polígonos finais das espécies e com os pontos de ocorrência das espécies cujas modelagens não atingiram a ASC de 0,85.

Em um mapa, os polígonos de distribuição e os pontos de ocorrência foram agregados e o número de espécies por hexágonos de 27,5 Km de diâmetro foi calculado. Para verificar a

acurácia de todo o conjunto de dados modelados, o padrão de distribuição das espécies foi visualmente comparado a um mapa piloto construído por outra metodologia. No mapa piloto, a distribuição geográfica de todas as espécies fora estimada pela distância mínima geográfica entre os pontos de ocorrência, fora posteriormente agregadas em um mapa e o número de espécies por hexágonos de 110 Km de diâmetro fora calculado (Apêndice 3). A estimativa modelada foi aceita se ambos os mapas apresentassem semelhante padrão quantitativo (número de espécies) e espacial.

3.3 Distância à raiz e a superárvore de Muscidae

Para a visualização da estrutura filogenética dos táxons no espaço geográfico foi utilizada a distância à raiz (Kerr & Currie 1999). Distância à raiz (DR) é uma métrica simples que representa o número de cladogêneses de um táxon terminal até a raiz da filogenia (*e.g.* Svenning *et al.* 2008). Para um dado cladograma, a métrica de distância à raiz relativiza os táxons terminais que se diversificaram antes dos terminais que se diversificaram posteriormente sem levar em conta, no entanto, as modificações evolutivas que não geraram especiações (anagêneses). Em análise biogeográfica evolutiva a distância à raiz é uma métrica bastante apropriada porque valoriza os eventos espaciais de diversificação (Löwenberg-Neto *et al.* 2008).

Para quantificar as distâncias à raiz é necessário adotar uma hipótese filogenética que retrate o relacionamento entre os táxons. Para Muscidae atualmente há disponíveis duas filogenias construídas focadas no relacionamento interno da família, a primeira baseada em caracteres morfológicos (de Carvalho 1989) e a segunda baseada em genes mitocondriais e nucleares (Schuehli *et al.* 2007). Além destas duas citadas, a filogenia molecular de "Muscoidea" (Kutty *et al.* 2008) e a filogenia morfológica de *Philornis, Passeromyia* e gêneros aliados (Couri & de Carvalho 2003) fornecem alguma informação sobre o relacionamento interno de Muscidae. Complementarmente às hipóteses mais abrangentes, há disponível filogenia para Azeliini (Savage & Wheeler 2004), Coenosiini (Couri & Pont 2000), Muscini (Nihei & de Carvalho 2007b) e Reinwarditiinae (Soares 2008), todas baseadas em caracteres morfológicos.

Por conta das várias fontes de informação, decidiu-se compilar as filogenias disponíveis em uma superárvore. A superárvore foi construída por meio da metodologia de representação em matriz com parcimônia (RMP, Baum 1992, Ragan 1992). Este método compreende uma técnica indireta de compilar superárvores na qual as árvores-fonte são codificadas em uma matriz e otimizadas pelo algoritmo de parcimônia (Bininda-Emonds *et al.* 2002). Na construção da matriz são codificados os táxons terminais em relação aos nós informativos e não há a necessidade das árvores-fonte compartilharem todos os terminais. Terminais descendentes de um mesmo nó são codificados "1"; os demais terminais da árvore em questão são codificados "0"; e os terminais não contemplados na dada árvore fonte são codificadas "?"(Bininda-Emonds 2004).

A matriz de Muscidae foi construída considerando gêneros como táxons terminais (n=128) e submetida à busca heurística, sem pesagem, com o algoritmo de parcimônia NONA (Goloboff 1993). As árvores mais parcimoniosas foram obtidas pelo consenso de maioria (Cotton & Wilkinson 2007).

Uma vez obtida a superárvore, a distância à raiz foi calculada para cada gênero terminal e o valor foi vinculado aos polígonos ou pontos de distribuição geográfica das espécies do gênero. Na seqüência, as distribuições de todas as espécies da análise foram agrupadas em um mapa para o cálculo da distância à raiz média (DRM) por hexágono (27,5 Km de diâmetro). Os valores de distância à raiz média mostram o perfil evolutivo dos táxons presentes em uma determinada área. Quando os valores são observados em uma escala continental, eles indicam áreas onde há maior concentração de espécies que se diversificaram mais tarde, retratando a estruturação e tendência evolutiva dos táxons na ocupação espacial (*e.g.* Hawkins *et al.* 2006; Löwenberg-Neto *et al.* 2008).

Os valores de DRM foram dispostos em dois mapas: o primeiro mapa foi construído com valores de DRM em classes iguais (Fig. 2A) e o segundo mapa foi construído baseado na média geográfica dos valores de DRM (média de DRM que leva em conta a freqüência dos valores quando dispostos geograficamente) e classes estabelecidas em desvios padrão desta média (Fig. 2B). Ambos os mapas retrataram a informação bruta de DRM, no entanto, no mapa B os valores filogenéticos foram polarizados e diferenciados por diferentes cores para facilitar a comparação visual.

3.4 Análise estatística e o esquema biogeográfico

A análise estatística foi empregada para verificar se a disposição geográfica da informação filogenética tinha relação com a temperatura e outras condições ambientais. No

programa SAM – "Spatial Analysis in Macroecology" (Rangel *et al.* 2006) versão 3.1 (disponível em http://www.ecoevol.ufg.br/sam/) foram executadas as seguintes análises: (1) regressão linear pelo método dos mínimos quadrados ordinários e (2) regressão com pesagem geográfica, ambos entre os valores de distância à raiz média (DRM) e as variáveis ambientais resolvidos para hexágonos de 110 km de diâmetro (n = 3.315).

As variáveis ambientais utilizadas foram as seguintes: (1) temperatura média anual e (2) precipitação média anual, ambas obtidas do conjunto de dados do Worldclim (http://www.worldclim.org/); (3) Evapotranspiração real (AET); (4) concentração de carbono orgânico no solo e (5) pH do solo, obtidas do conjunto de dados do "Atlas of the biosphere" (http://www.sage.wisc.edu/). Os dados de solo foram utilizados porque muitas espécies da família têm o hábito de empupar no solo (Skidmore 1985).

Nos estudos biogeográficos que utilizaram a distância à raiz, a interpretação espacial da informação filogenética foi feita de forma dicotômica. Os grupos eram divididos em (1) táxons com diversificação relativamente mais antiga ("basais"), sendo o terço dos táxons com os valores mais baixos de DR; e (2) táxons com diversificação relativamente mais recente ("derivados"), sendo o terço dos táxons com os valores mais elevados de DR (*e.g.* Hawkins *et al.* 2006). A tendência evolutiva espacial era visualizada pelo contraste geográfico entre os dois terços extremos (*e.g.* Löwenberg-Neto *et al.* 2008).

No presente estudo, uma novidade metodológica foi empregada para detalhar os intervalos de DRM: a árvore de regressão. A árvore de regressão é um método estatístico de classificação que aceita variáveis contínuas e categóricas e permite detalhar as relações em um contexto hierarquizado, evidenciando a contribuição de cada variável progressivamente. Na presente análise, o método possibilitou que intervalos significativos da métrica filogenética fossem identificados e explicados pelas variáveis. O resultado disso foi a identificação não apenas das classes de valores extremos, mas das classes intermediárias significativas de DRM.

A árvore de regressão foi executada com o programa CART (versão 6.0, disponível em http://www.salford-systems.com) sob os seguintes parâmetros: método dos mínimos quadrados; validação cruzada *V-fold*; e melhor árvore com menor erro padrão. Foram analisadas todas as variáveis ambientais utilizadas nas regressões anteriores acrescidas de componentes bióticos.

Os componentes foram acrescidos para competir com as variáveis ambientais na explicação dos valores filogenéticos. Como comentando na introdução, acredita-se que a evolução de Muscidae tenha paralelo com a evolução da biota Neotropical. Ora, se esta

hipótese for verdadeira, é de se esperar que os componentes bióticos estabelecido por estudos de biogeografia cladística possa explicar, completamente ou parcialmente, a estruturação espacial e relacional da família. Os componentes adotados foram as subregiões do esquema baseado em insetos (Morrone 2006): subregiões Andina (And), Paranaense (Par), Chaquenha (Cha), Caribenha (Car), Zona de Transição (ztSA) e Amazônica. A última subregião com a divisão em Noroeste (AmNW) e Sudeste (AmSE), como proposto no esquema baseado no gênero *Polietina* (Nihei & de Carvalho 2007a).

O esquema biogeográfico de Muscidae foi construído baseado nos intervalos das variáveis ambientais que explicaram significativamente as classes de DRM e o cladograma de área foi hipotetizado baseado na progressão dos valores médios de DRM das classes significativas.

4. Resultados

4.1 Distribuição geográfica de Muscidae

Todas as 656 espécies da análise tiveram suas distribuições modeladas e geraram um conjunto de dados cuja mediana da ASC foi de 0,9375. No entanto, nem todas as áreas estimadas foram utilizadas na análise. As áreas modeladas das espécies com ASC inferiores a 0,85 (n = 236) foram retiradas e, ao invés das áreas, os seus pontos de ocorrência foram utilizados. O conjunto de dados modelados com os pontos de ocorrência das espécies (n = 420) apresentou valor mediano de ASC em 0,9723 (Apêndice 1) e foi utilizado na análise.

As distribuições modeladas e os pontos de ocorrência foram agregados a um mapa e o mapa foi comparado ao mapa piloto construído com a mínima distância geográfica entre os pontos de ocorrência. Através de comparação visual foi observado que o padrão espacial de ocorrência e os valores do número de espécies de ambos os mapas foi semelhante (Apêndice 3).

4.2 A superárvore de Muscidae e a distância à raiz

A codificação das oito árvores-fonte de Muscidae gerou uma matriz com 124 gêneros terminais e 185 nós informativos. A matriz foi submetida ao algoritmo que otimizou três árvores igualmente parcimoniosas (comprimento = 241), as quais foram conciliadas pelo consenso de maioria (Fig. 1). A superárvore de Muscidae, quando substituído o gênero terminal pelo nome da sua subfamília, teve a seguinte relação: (Ac (Mu (Az (Di (Di Re) (Ph (Ph (At My (My Co))))))), onde Ac = Achanthipterinae, Mu = Muscinae, Az = Azeliinae, Re = Reinwarditiinae; Di = Dichaetomyiinae; Ph = Phaoniiae; At = Atherigoninae; My = Mydaeinae e Co = Coenosiinae.

Com a obtenção da superárvore de Muscidae foi possível calcular a distância à raiz de cada um dos 58 gêneros terminais (Apêndice 4). O valor mínimo foi 4 para *Itatingamyia* (Azeliinae), o valor máximo foi 22 para *Schoenomyza* e *Spathipheromyia* (Coenosiini), e a média foi 12,05 (n = 58).

Figura 1. Superárvore de Muscidae resultante do consenso de maioria de três árvores igualmente parcimoniosas. Os ramos com valor "2/3" foram conciliados pelo consenso de duas árvores e ramos sem valor foram conciliados em consenso total. Em negrito, táxons terminais com ocorrência na América do Sul e utilizados na análise; entre parênteses, abreviação do nome da subfamília: Ac = Achanthipterinae, Mu = Muscinae, Az = Azeliinae, Re = Reinwarditiinae; Di = Dichaetomyiinae; Ph = Phaoniiae; At = Atherigoninae; My = Mydaeinae e Co = Coenosiinae; após o nome da subfamília, região biogeográfica de ocorrência do táxon terminal: AFR = Afrotropical; AUS = Australásia; NEA = Neártica; NEO = Neotropical; ORI = Oriental; PAL = Paleártica.

4.3 Padrão geográfico do sinal filogenético

Os valores de distância à raiz dos gêneros terminais foram associados às distribuições das espécies e, então, calculada a distância à raiz média por hexágono (DRM). O valor mínimo de distância à raiz média foi 5 e o valor máximo foi 20. Para a área sem a informação de riqueza de espécies na Argentina, o valor médio foi calculado considerando a DR dos gêneros das espécies presentes na região (8 spp.) e foi de 9,5.

A visualização da disposição geográfica dos valores de distância à raiz média revelou que os valores baixos de DRM foram encontrados, com exceção dos Andes, na região tropical da América do Sul e revelaram que a região alberga as espécies cujas linhagens se diversificaram relativamente antes. Em contrapartida, os altos valores de DRM foram encontrados em regiões extratropicais e subantárticas no cone sul da América do Sul e ao longo da cadeia de montanha dos Andes e mostraram que a região alberga espécies cujas linhagens se diversificaram relativamente depois (Figs. 2 e 3).

O teste de regressão linear mostrou que a temperatura média anual foi a variável que apresentou a melhor relação com os valores de DRM (Apêndice 5). A relação foi relativamente forte e negativa, ou seja, com o aumento da temperatura houve diminuição nos valores de DRM e com a diminuição da temperatura houve aumento dos valores de DRM (Fig. 4). Esta relação foi confirmada pela regressão com pesagem geográfica que mostrou que a variação da temperatura média anual estava inversamente relacionada com a variação da DRM em quase toda América do Sul (Apêndice 4).

O método de detalhamento progressivo (RT) foi a modalidade de regressão que melhor explicou a variação da métrica filogenética ($r^2 = 0,71$). Os resultados reiteraram a importância da temperatura no arranjo espacial da DRM e endossaram os padrões geográficos da métrica filogenética descritos pela interpretação visual.

No primeiro nó da árvore (Fig. 5), a temperatura explicou 52% da variação de DRM e separou os valores em dois blocos espaciais: (1) áreas com temperatura abaixo de 20,8°C, que compreendem o cone sul e ao longo da cordilheira dos Andes, com valor médio de DRM igual a 12,7; e (2) áreas com temperaturas superiores a 20,8°C, que compreendem o restante do continente, com valor médio de DRM igual a 9,2. O bloco 1 foi subdivido em áreas com temperaturas inferiores a 15,2°C e valor médio de DRM igual a 13,7 e em áreas com temperaturas superiores a 20,8°C e valor médio de DRM igual a 11,5. O bloco 2, áreas com temperatura superior a 20,8°C, foi subdivido pela temperatura em áreas com temperaturas superiores a 20,8°C e inferiores a 22,8°C e valor médio de DRM igual a

10,1 e áreas com temperaturas superiores a 22,8°C e valor médio de DRM de 9,1. Esta última região foi subdividida pela variável "componentes bióticos" em duas áreas: Caribenha + Noroeste da Amazônia com valor médio de DRM de 9,3 e Sudeste da Amazônia + Chaquenha com valor médio de DRM de 8,8.

O detalhamento progressivo da relação entre a temperatura e os valores de DRM permitiu a construção de um esquema de áreas baseado nos intervalos significativos de temperatura (Fig. 6). Os componentes bióticos "Car + AmNW" e "AmSE + Cha (parcial) + Par (parcial)" tiveram participação em explicar a disposição dos valores de DRM na área delimitada por temperaturas superiores a 22,8°C (Fig. 7). O relacionamento geral entre os componentes foi hipotetizado em um cladograma de área levando em consideração o crescimento dos valores da métrica filogenética explicadas pela temperatura (Fig. 8).

Figura 2. Disposição geográfica dos valores de distancia à raiz média (DRM). Na região da Argentina: $*_{DRM} = 9,5$. Valores de DRM dispostos em classes de tamanhos iguais.

Figura 3. Disposição geográfica dos valores de distancia à raiz média (DRM). Na região da Argentina: $*_{DRM} = 9,5$. Valores de DRM dispostos em desvios padrões da média calculada da freqüência geográfica dos valores (média geográfica = 10,31). Mapa sem relevo.

Figura 4. Relação entre a temperatura média anual (°C) e a distância à raiz média de Muscidae na América do Sul.

Figura 5. Árvore de regressão (RT) das variáveis ambientais e componentes bióticos na métrica filogenética ($r^2 = 0,71$). Abaixo de cada nó, o nome da variável mais importante e o seu ganho proporcionado ao conjunto. Acima de cada caixa, os valores da variável que explicam os intervalos significativos da DRM.

Figura 6. Esquema biogeográfico de Muscidae baseado nos intervalos de temperatura e componentes bióticos que explicam a variação dos valores de DMR. Componentes biotérmicos conforme o detalhamento progressivo da árvore de regressão (Fig. 5).

Figura 7. Esquema biogeográfico de Muscidae baseado nos intervalos de temperatura e componentes bióticos que explicam a variação dos valores de DMR. Separação do componente com temperatura > 22,8°C (Fig. 6) em duas regiões: Caribenha + Noroeste da Amazônia e Sudeste da Amazônia + Chaquenha (parcial) + Paranaense (parcial) (Fig. 5).

Figura 8. Relacionamento entre os componentes conforme a progressão dos valores significativos de DRM identificados pela temperatura na árvore de regressão. A informação entre parênteses é a porção explicativa da variável (Figs. 6 e 7).

5. Discussão

5.1 Estimativa da distribuição geográfica de Muscidae

A utilização da técnica do MaxEnt para estimar a distribuição das espécies de Muscidae na América do Sul conjuntamente com os critérios e edições posteriores apresentaram três pontos favoráveis: (1) geração de detalhamento espacial das áreas de distribuição quando comparadas com a metodologia da mínima distância geográfica; (2) inclusão no contexto geográfico de elementos que remetem ao nicho climático; e (3) manutenção da fidedignidade da estimativa com os pontos de distribuição das espécies.

No entanto, como apresentado nos resultados, aproximadamente um terço das espécies modeladas não tiveram uma estimativa estatisticamente aceita. Estes táxons tinham em comum a característica de ter poucos pontos de ocorrência conhecidos e, apesar de a técnica lidar bem com poucos pontos de ocorrência, a modelagem gerou muitas áreas com falsas presenças. Estas estimativas foram descartadas e a utilização dos pontos de ocorrência destas espécies foi uma maneira de utilizar a informação disponível.

Em relação ao padrão espacial do conjunto de dados analisados (modelagem + pontos de ocorrência), duas questões chamaram a atenção. A primeira questão que chamou a atenção foi o fato da região sudeste do Brasil ter uma concentração excepcional de espécies (Apêndice 3). A Floresta Atlântica alberga diversas áreas de endemismo de Muscidae (de Carvalho *et al.* 2003, Nihei & de Carvalho 2005), foi uma área de diversificação no passado (Nihei & de Carvalho 2005, Löwenberg-Neto & de Carvalho 2009) e certamente proporciona condições ecológicas favoráveis para a ocorrência das espécies. Entretanto, é possível que a excepcional alta concentração de espécies seja resultado de maior esforço amostral na região (*e.g.* Romo *et al.* 2006).

Esta possível tendência no conhecimento espacial de Muscidae não afeta em nada a análise evolutiva. Isso porque a tendência geográfica das coletas não tem uma relação causal com a métrica filogenética: há a tendência em conhecer melhor regiões de fácil acesso (Romo *et al.* 2006), mas dificilmente há uma tendência em capturar mais espécies "basais" ou mais espécies "derivadas". Por isso, o sinal filogenético é preservado mesmo em amostras desiguais (Hawkins *et al.* 2005, Hawkins *et al.* 2006).

A segunda questão que chamou a atenção foi uma enorme área com ausência de espécies nas terras baixas da Argentina que compreende os Pampas, Espinal e parte do Chaco. Apesar de haver ocorrência de oito espécies na região, *Bithoracochaeta leucoprocta* (La

Germania, AR), *Dolichophaonia cacheuta* (San Javier, AR), *D. trigona* (Entre Ríos, AR), *Lispe setuligera* (Rufino, AR), *Myospila cyanea* (San Cristóbal, AR), *Philornis blanchardi* (Corrientes, AR), *P. pici* (Rosário, AR) e *P. torquans* (Bell Ville, AR), a área foi considerada desfavorável para ocorrência pelo procedimento utilizado para a modelagem das distribuições. Estas espécies tinham a característica comum de ter maior concentração de pontos em outras regiões que não a região da Argentina, o algoritmo omitiu a distribuição nesta região e favoreceu regiões onde os pontos mais se concentravam. Na análise do sinal filogenético, este viés gerado pelo protocolo conservador foi contornado com o cálculo da DR das espécies presentes na área e a DRM calculada para a região de ausência.

5.2 A superárvore de Muscidae e a distância à raiz

A topologia da superárvore de Muscidae foi similar à topologia de subfamílias apresentada por de Carvalho (1989) e isso já era esperado. A técnica da MRP apresenta uma propriedade intrínseca de favorecer a topologia de árvores mais inclusivas. Em outras palavras, árvores de alta hierarquia contribuem com mais caracteres para a matriz que as árvores de baixa hierarquia ou árvores parciais. Esta tendência na abrangência da árvore poderia ser interpretada como um problema em um primeiro momento, no entanto, esta propriedade é baseada no mérito das árvores: árvores mais inclusivas fornecem mais informações à matriz e, conseqüentemente, são naturalmente eleitas para contribuir mais para a resolução global (Bininda-Emonds *et al.* 2002).

No caso de Muscidae, esta propriedade da superárvore foi aceita sem alardes por dois motivos: (1) na metodologia de construção de superárvore é possível pesar a contribuição de nós, de árvores e tentar equilibrar o efeito intrínseco de árvores-fonte abrangentes (*e.g.* Bininda-Emonds & Sanderson 2001). No entanto, as pesagens servem para valorizar a informação que tem mais chance de ser compatível com a "verdadeira" relação. O relacionamento das subfamílias proposto por de Carvalho (1989), com exceção da hipótese molecular de Schuehli *et al.* (2007) que carece de amostragem de táxons terminais para uma melhor resolução, é corroborado por todas as subseqüentes filogenias de Muscidae (Couri & de Carvalho 2003, Kutty *et al.* 2008), suportando de Carvalho (1989) como uma hipótese bastante robusta; e (2) o objetivo da superárvore não era resolver problemas taxonômicos, mas sim apresentar uma compilação coerente e conservadora da informação disponível. A

superárvore de Muscidae representa a mais ampla e conservadora hipótese de relacionamento já conjecturada para a família.

5.3 Padrão geográfico da informação filogenética

O padrão geográfico da métrica filogenética de Muscidae na América do Sul foi consistente com a previsão geográfica de origem tropical e resposta evolutiva ao resfriamento climático. Tanto na observação dos mapas (Figs. 2 e 3) quanto nas análises de regressão com a temperatura (Figs. 4 e 5, Apêndices 5 e 6), linhagens com origem relativamente mais antiga ocuparam áreas que hoje e no passado eram de clima quente e linhagens com origem relativamente mais recente ocuparam áreas de clima frio.

A hipótese de conservação tropical invoca as mudanças paleoclimáticas como o principal evento no arranjo espaçotemporal dos organismos. Apesar do conhecimento *a priori* disso, foi surpreendente que a temperatura, como substituto do clima, endossou a premissa do clima como evento principal na disposição geográfica do sinal filogenético.

A interpretação da relação entre uma métrica filogenética e uma variável ambiental não é temporalmente trivial. O modelo de regressão prevê que com a diminuição da temperatura há um aumento dos valores de DRM e com o aumento da temperatura há uma diminuição dos valores. Contudo, como se trata de uma métrica evolutiva e sabe-se que a temperatura variou no passado (Zachos *et al.* 2001), infere-se que esta relação não seja apenas atual, mas que exista desde quando a variável ambiental começou a afetar a evolução da família e veio se mantendo ao longo do tempo geológico. Esta relação da temperatura com o sinal filogenético foi encontrada no estudo de borboletas da América do Norte (Hawkins & DeVries 2009) e permite especular que a temperatura no passado influenciou diretamente a evolução espacial dos invertebrados terrestres.

O padrão geográfico do sinal filogenético corroborou, tanto pela observação dos mapas quanto pelas análises estatísticas com a temperatura que a hipótese de conservação tropical, origem tropical e resposta evolutiva ao resfriamento climático, explicou de modo satisfatório a evolução de Muscidae na América do Sul. Na literatura não há outra hipótese biogeográfica que preveja este conjunto de padrões.

5.4 O clima do Cenozóico e a narrativa histórica de Muscidae na América do Sul

O clima do início do Paleoceno era caracterizado pela progressiva ascensão térmica. O planeta naquela época tinha plena atividade vulcânica, emitia grandes quantidades de gases de efeito estufa (Svensen *et al.* 2004) e tinha uma configuração dos continentes que favorecia que as correntes marítimas dissipassem o calor da região equatorial para regiões de alta latitude (Storey *et al.* 2007). O nível oceânico era mais elevado que o atual e o clima era quente e úmido na maior parte do globo. Acredita-se que as florestas tropicais ocupavam grande parte da América do Sul e que a distribuição das espécies de Muscidae ocorria por toda esta extensão. O ápice do aquecimento global se deu anteriormente a movimentação tectônica que desconectou a América do Sul e a Austrália da Antártida e fundiu a África e a Índia na Ásia há 37 milhões de anos antes do presente. Esta reconfiguração dos continentes, período Eoceno, modificou as correntes marítimas que deixaram de dissipar calor para as regiões de alta latitude. Na Época do Oligoceno surgiu uma corrente circulando a antártica que progressivamente esfriou o pólo e regiões de alta latitude, culminando com as baixas temperaturas experimentadas pelo globo (Zachos *et al.* 2001).

No período Neogene, o globo experimentou uma segunda ascenção térmica, chamada de ótimo climático do Médio-Mioceno (Zachos *et al.* 2001, Blois & Hadly 2009). Neste período ocorreu ingressões marinhas nas terras baixas da Amazônia (Räsänen *et al.* 1995, Potter 1997, Nores 1999, Donato *et al.* 2003) e acredita-se que este evento tenha separado o componente biotérmico >22.8°C em dois componentes, Car + AmNW e AmSE + Cha⁻ + Par⁻ (Figs. 6 e 7). Apesar de que varias introgressões marinhas mais antigas ocorreram na região (Amorim 2009), acredita-se que a introgressão que afetou a evolução de Muscidae tenha ocorrido no Mioceno ou mais recentemente: Muscidae diversificou-se no Eoceno e o evento de introgressão provavelmente ocorreu após a máxima termal do Paleoceno-Eoceno.

Para entender como as mudanças no paleoclima estabelecem os padrões espaciais, é aceitável invocar um modelo de diversificação que assume tanto dispersão quanto vicariância (Wiens & Donoghue 2004, Wiens *et al.* 2009). Na biogeografia cladística busca-se resgatar o relacionamento entre as áreas de endemismo e a congruência topologia entre os táxons (Harold & Mooi 1994, Humphries & Parenti 1999). Nesta abordagem o paradigma interpretativo é a hipótese de Máxima Vicariância (Humphries & Parenti 1999) que assume que os padrões espaciais são resultados de eventos de vicariância, e que discrepâncias deste modelo são interpretadas como dispersões. Uma vez que o relacionamento entre as áreas de

endemismo foi hipotetizado, buscam-se feições geográficas conspícuas (*e.g.* serras, vales, oceanos) que sejam congruentes com a divisão espacial e temporal das linhagens.

Uma fraqueza deste modelo é que para explicar a congruência dos padrões vicariantes de diversos táxons seria necessário assumir que dispersão também gera padrão de distribuição e o modelo de MaxVic não prevê como os táxons ancestrais se expandiram suficientemente para serem afetados por eventos vicariantes (Halas *et al.* 2005). Não é surpreendente que, sob esta perspectiva, a biogeografia cladística seja bem sucedida em resgatar apenas a narrativa histórica de poucos táxons (*e.g.* espécies de um gênero) com distribuição restrita (e.g. táxons endêmicos) e alopátrica, em um contexto não complexo (ver critica em Brooks 2005).

Na interpretação dos padrões por eventos climáticos, a questão que emerge é quanto à natureza e os efeitos do clima. Dada as circunstâncias atmosféricas do clima, as barreiras ocasionadas pelo clima e pelas mudanças climáticas são dinâmicas e geologicamente inconspícuas, ou seja, não há evidencias na superfície da Terra que indiquem como a mudança climática pode ter separado espacialmente os táxons. Por isso, mudanças climáticas não são invocadas como eventos vicariantes e quando o são, a biogeografia cladística carece de recursos metodológicos para testar este pressuposto.

Acredita-se que os efeitos do clima na evolução da biota podem ser de dois tipos: barreiras contínuas, como variação gradual de temperatura nas montanhas ou resfriamento progressivo, por exemplo, e isso pode ocasionar um padrão de expansão biótica ou diversificação por pressão adaptativa (*e.g.* Blois & Hadly 2009); e o clima pode gerar barreiras discretas, como climas estáveis por longos períodos, e isso ocasionar vicariância por isolamento geográfico da linhagem (*e.g.* Mercer & Roth 2003). De fato, não é totalmente compreendido como as mudanças do clima afetam a dinâmica espacial da evolução dos organismos; no entanto, a adoção de um modelo de diversificação que inclua tanto dispersão (expansão biótica) quanto vicariância (especiação) é o primeiro passo para a compreensão deste complexo sistema (Croizat 1964, Erwin 1988, Katinas *et al.* 1999, Lieberman 2003, Wiens & Donoghue 2004, Brooks 2005, Wiens *et al.* 2009).

Baseado no presente estudo, acredita-se que a origem de Muscidae seja tropical, na América do Sul a linhagem ancestral de Muscidae ocupava grande parte do continente e com o esfriamento progressivo do sul do continente e da cordilheira dos Andes as linhagens se derivaram às novas condições. Mais recentemente, introgressões marinhas ocorridas nas terras baixas da Amazônia separaram as linhagens tropicais em dois componentes.

Considerando a narrativa histórica de Muscidae descrita acima e o detalhamento progressivo do efeito espacial da temperatura na métrica filogenética (Fig. 5), foi possível

delimitar componentes bióticos baseados na temperatura (Fig. 6) e construir um cladograma geral de áreas baseado na progressão dos valores de DRM dos componentes biotérmicos. Novamente, foi surpreendente que o relacionamento entre os componentes (Fig. 8) mostrou uma gradiente geograficamente compatível com a hipótese de conservação tropical, e que permitiu a interpretação espacial da evolução de Muscidae no contexto das mudanças climáticas do Cenozóico.

5.5 Concordância da narrativa histórica de Muscidae e da biota Neotropical

Assumindo que a biogeografia de Muscidae tem paralelo com a evolução da biota Neotropical e que a evolução da biota Neotropical fora afetada por mudanças no paleoclima, a explicação da evolução de Muscidae pela hipótese de conservação tropical irá fornecer (i) uma nova e abrangente explicação da evolução geográfica da família; e, como uma conseqüência dedutiva, (ii) espera-se que algumas feições da biogeografia Neotropical possam ser corroboradas pelo esquema de Muscidae explicado pelas mudanças climáticas do Cenozóico.

Como verificado nos resultados, a HCT representa a melhor explicação já conjecturada para inferir a evolução espacial da família. Seguindo a lógica dedutiva, agora se espera que o cenário de mudanças paleoclimáticas corrobore, parcialmente ou completamente, feições biogeográficas da biota Neotropical.

A comparação entre a narrativa bioclimática de Muscidae e o conhecimento da biogeografia Neotropical corroborou alguns padrões já descritos para a região.

 A delimitação do componente biotérmico > 22.8°C por valores baixos de DRM sugerem que as condições de temperatura atuais são similares a do passado. Estas condições sugerem que o continente era coberto por um extenso e quente paleoclima, criando condições para que uma ampla floresta tropical ocupasse grande parte do continente (Wolfe 1985). Esta grande floresta do passado suporta, em linhas gerais, a similaridade da biota da Amazônia e da Floresta Atlântica encontrada atualmente (Nihei & de Carvalho 2007a; Amorim 2009). Além disso, a extensiva floresta tropical do passado associada a eventos de aridificação (Roig-Juñent *et al.*, 2006) corroboram a idéia de que o Cerrado é uma formação vegetacional modificada de floresta (Silva 1995, 1997, de Vivo 1997) e que alberga uma biota híbrida, ambiguamente relacionada com a floresta Amazônica e a Floresta Atlântica (Morrone 2006). A extensão geográfica deste componente biotérmico no nordeste do Brasil e norte da Floresta Atlântica (área vermelha, Fig. 6) suporta outras duas feições biogeográficas conhecidas (2 e 3):

2) a biota do norte da floresta Atlântica é mais relacionada com a Amazônia do que com a parte sul da floresta Atlântica (Camargo & Pedro 2003, Santos *et al.* 2003). O estudo realizado com plantas arbóreas na região nordeste do Brasil testou a hipótese de que, no passado, uma formação florestal conectava a Amazônia, a Caatinga e a floresta Atlântica e que o padrão biogeográfico encontrado hoje é resultado da fragmentação desta biota ancestral (Santos *et al.* 2003). Como conseqüência, esperou-se que a biota do norte da Floresta Atlântica fosse mais relacionada com a biota da Amazônia e Caatinga do que com a biota do sul da Floresta Atlântica. A distribuição e a filogenia dos táxons corroboraram a hipótese delineada, mostrando que o Centro Pernambuco era mais relacionado com a Amazônia do que com a floresta Atlântica ao sul do Rio São Francisco e que a Caatinga, que apresenta enclaves florestais, poderia ser interpretada como uma derivação da floresta ancestral que hoje alberga tanto elementos Atlânticos quanto Amazônicos (Santos *et al.* 2003).

3) A floresta Atlântica é uma formação historicamente e ecologicamente composta (Amorim & Pires 1996, Olson & Dinerstein 2002). Se tomada a delimitação da subregião Paranaense (Morrone 2006), que é similar a ecorregião Floresta Atlântica (Olson & Dinerstein 2002), é possível observar que os componentes biotérmicos dividem a Floresta Atlântica em duas faixas: (a) áreas ao norte, com temperaturas superiores a 22,8°C, do Rio de Janeiro, RJ (23° S) à João Pessoa, PB (7° S); e (b) áreas ao sul, com temperaturas entre 15,2°C e 22,8°C, no restante sul da Floresta Atlântica. A dicotomia da floresta Atlântica já foi descrita tanto em estudos ecorregionais (*e.g.* Olson & Dinerstein 2002) como em estudos de caráter histórico (*e.g.* Amorim & Pires 1996). Eles são suportados pela coincidência de áreas de endemismo de mamíferos (Costa *et al.* 2000, Costa 2003), aves (Silva *et al.* 2004) artrópodes, vertebrados e plantas (Sigrist & de Carvalho 2008).

O surpreendente foi observar que o gradiente de temperatura na Floresta Atlântica foi congruente com duas hipóteses de diversificação dos táxons. Um estudo com aves da floresta atlântica reconheceu três áreas de endemismos, que corroboram a dicotomia da Floresta Atlântica, e hipotetizou que os grupos mais antigos ocupam a área de endemismo mais ao norte e que as áreas mais ao sul albergam os táxons mais recentes (Silva *et al.* 2004). O estudo da biogeografia cladística de opiliões corroborou o mesmo padrão de diversificação norte-sul, apresentando os grupos mais antigos na parte norte da floresta Atlântica e os grupos mais recentes na parte sul (Pinto-da-Rocha & Silva 2005).

4) Os componentes termobióticos que compreendem as áreas entre 15,2°C e 22,8°C (área verde e área amarela, Fig. 6) delimitaram áreas equivalentes ao componente sul da Floresta Atlântica (Amorim & Pires 1996). No estudo em comparação, que foi construído baseado na distribuição de vertebrados e insetos, o componente sul ocupa a área desde o sudeste do Brasil até o centro oeste do continente nas áreas baixas adjacentes a cordilheira do Andes no norte da Argentina.

É comum que estudos biogeográficos invoquem a orogenia da Serra do Mar e Serra da Mantiqueira para explicar padrões espaciais na Floresta Atlântica (*e.g.* Amorim & Pires 1996, Pinto-da-Rocha & Silva 2005). De fato, a presença geográfica destas cadeias montanhosas foi determinante para a diversificação de Muscidae na Floresta Atlântica: devido a diferenças altitudinais, as montanhas contribuíram para esfriar o clima regional e promovem a heterogeneidade de condições ambientais (*e.g.* Ruggiero & Hawkins 2008). Esta área, por exemplo, alberga táxons mais derivados que quaisquer terras baixas de mesma latitude (Fig. 5A).

5) Para Muscidae, a região Andina é mais proximamente relacionada à região Neotropical que regiões do reino Austral. Em estudos anteriores da biogeografia de Muscidae assumiu-se que a região Andina e a região Neotropical não tinham relacionamento próximo entre si e eram tratadas como componentes historicamente isolados (Löwenberg-Neto *et al.* 2008, Löwenberg-Neto & de Carvalho 2009). Segundo Morrone (2002), a região Andina pertence ao reino Austral que equivale ao oeste do Gonduana onde a região era geograficamente mais próxima do sul da África e da Austrália do que da região Neotropical (Morrone 2002). Tem-se ciência de que uma análise biogeográfica global é necessária para checar se Muscidae tem relações circum-Antárticas previstas pela narrativa geológica do oeste da Gonduana, no entanto a narrativa histórica baseada em mudanças paleoclimáticas suporta a região Andina como uma área derivada e mais proximamente relacionada à região Neotropical, como descrito por estudos biogeográficos anteriores (Kuschel 1960, Morrone & Lopretto 1994, Maury *et al.* 1996, Katinas *et al.* 1999, Amorim 2009).

6) A zona de transição Sul-americana (Morrone 2004a, 2004b) apresenta um gradiente de componentes biotérmicos que suportam sua natureza híbrida. O componente biotérmico com temperaturas abaixo de 15,2°C (área azul escuro, Fig. 6) é coincidente com a delimitação prévia da região Andina que compreendia toda a cordilheira dos Andes (*sensu* Morrone 2001). Uma análise de traços de plantas e animais reconheceu três padrões espaciais na região Andina (Katinas *et al.* 1999): (1) endemismo, distribuição de táxons exclusivamente na região; (2) relação com uma região (Austral ou Neotropical) e; (3) relação com mais de uma

região (distribuição cosmopolita). A relação entre a região Andina e Neotropical ocorreu de duas maneiras: Patagônia e região Neotropical, como suportado pelo padrão 5 descrito acima; e províncias de Páramo e Puna com a região Neotropical (Katinas *et al.* 1999). O último padrão de relacionamento entre a região Andina e as províncias Neotropicais foi suportado por diversos táxons (Morrone 2006) e utilizado para classificar seis províncias (Páramo Norandino, Deserto Peruano Costeiro, Puna, Atacama, Prepuna e Monte) em zona de transição Sul-americana (Morrone 2004a, 2004b).

No esquema biogeográfico baseado em temperaturas é possível observar que as províncias renomeadas como zona de transição são coincidentes com áreas que, devido à diferença altitudinal, apresentam gradiente de componentes biotérmicos (Fig. 6). Este gradiente térmico suporta que estas áreas alberguem tanto biota Andina quanto Neotropical, endossando a natureza híbrida da zona de transição.

É interessante notar que, mesmo que tectonismo e introgressões marinhas têm sido invocados para explicar a evolução espacial da biota Neotropical (Amorim 2009), há similaridade da tendência da evolução geográfica quando se compara os padrões geográficos previsto pelas mudanças paleoclimáticas (HCT) e a narrativa histórica dos componentes bióticos. A hipótese de relacionamento espacial da região Neotropical, suportada pela distribuição e relacionamento de vertebrados, invertebrados e plantas (Amorim & Pires 1996, Amorim 2009), narra a seguinte seqüência de acontecimentos: o componente Caribenho foi o primeiro a se diferenciar do restante do continente. No continente, ocorreu a separação dos dois grandes componentes: Noroeste, que compreende parte da Amazônia e a Mesoamérica; e Sudeste, que compreende parte sul da Amazônia e Floresta Atlântica. O evento invocado para explicar esta dicotomia foram as introgressões marinhas ocorridas nas terras baixas da bacia Amazônica. Para alguns grupos, a região circumantárctica, que inclui os campos sulinos, patagônia e a cordilheira dos Andes, é o componente que derivou do restante da região Neotropical, e por isso ele é mais relacionado com o componente sul da Floresta Atlântica (Amorim 2009) do que com os componentes do reino Austral (Katinas et al. 1999; Morrone 2002).

Em termos gerais, a narrativa histórica resgatada pela biogeografia cladística apresenta a mesma tendência evolutiva da disposição geográfica de táxons basais em áreas tropicais e táxons derivados em áreas temperadas. Apesar da similaridade entre as duas abordagens parecer preliminar e inicialmente especulativa, ela suporta a idéia de que diferentes perspectivas podem resgatar a mesma narrativa histórica.

6. Conclusões

A hipótese de conservação tropical explicou de modo parcimonioso a evolução espacial de Muscidae na América do Sul. Os elementos centrais da hipótese, origem tropical e resposta evolutiva frente ao resfriamento climático, fornecem uma simples e extraordinária conjectura da evolução espacial dos organismos inovadora para a biogeografia histórica. Apesar de ainda não se compreender completamente como as mudanças climáticas afetam a especiação, dispersão e extinção, as mudanças climáticas do Cenozóico tiveram expressiva contribuição para a evolução espacial de Muscidae e da biota Neotropical.

A relação entre a temperatura e a métrica filogenética não é temporalmente trivial e infere-se que a relação encontrada hoje represente apenas um momento desta relação ao longo do tempo geológico. A novidade metodológica em detalhar os valores filogenéticos pela árvore de regressão permitiu um avanço interpretativo do relacionamento dos componentes que não há precedentes. Felizmente, os intervalos de DRM foram melhores explicados pela temperatura que permitiu a construção do primeiro esquema biogeográfico e do primeiro cladograma de área baseados em temperatura. Esta relação gerou componentes biotérmicos e cladograma de área compatíveis com as previsões da HCT e com a tendência geral da evolução da biota Neotropical (Amorim 2009).

Devido à magnitude global das mudanças paleoclimáticas, é inegável que elas tenham afetado a evolução da biota Neotropical. A biogeografia cladística resgatou com sucesso diversos padrões evolutivos, no entanto, a abordagem apresenta impedimentos metodológicos em lidar com mudanças climáticas e isso é um obstáculo para o entendimento mais profundo da evolução espacial de biota Neotropical. Sob a perspectiva de mudanças pretéritas do clima, seis feições biogeográficas já conhecidas foram corroboradas e acredita-se que estudos futuros irão seriamente considerar as mudanças climáticas do Cenozóico como possível explicação do padrão espacial e evolutivo de táxons Neotropicais.

7. Referências bibliográficas

- Amorim DS 2001 Dos amazonias. In: La biogeografia en America Latina. Teorías, conceptos, métodos y aplicaciones. (ed. Llorente-Bousquets J & Morrone JJ; Flores O) pp. 245-255.
 Facultad de Ciencias, UNAM, México
- Amorim DS 2009 Neotropical Diptera diversity: richness, patterns, and perspectives. InDiptera Diversity: Status, Challenges and tools (ed. T Pape & R Meier) pp. 71-97.Koninklijke Brill NV
- Amorim DS & Pires MRS 1996 Neotropical biogeography and a method for maximum biodiversity estimation. Biodiversity in Brazil: a first approach (ed. CEM Bicudo & NA Menezes) pp. 183–219. CNPq, São Paulo
- Baum BR 1992 Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3-10
- Bininda-Emonds ORP 2004 The evolution of supertrees. Trends in Ecology and Evolution 19:315
- Bininda-Emonds ORP & Sanderson MJ 2001 Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565-579
- Bininda-Emonds ORP, Gittleman JL & Steel MA 2002 The (super) tree of life: procedures, problems, and prospects. Annual Review of Ecology, Evolution, and Systematics 33:265-289
- Blois JL & Hadly EA 2009 Mammalian Response to Cenozoic Climatic Change. Annual Review of Earth and Planetary Sciences 37:181-208
- Brooks DR 2005 Historical biogeography in the age of complexity: expansion and integration. Revista Mexicana de Biodiversidad 76:79-94
- Buffon GLL Comte de 1761 Histoire naturelle générale. Imprimerie Royale, Paris.
- Camargo JMF & Pedro SRM 2003 Meliponini neotropicais: o gênero Partamona Schwarz, 1939 (Hymenoptera, Apidae, Apinae) - bionomia e biogeografia. Revista Brasileira de Entomologia 47:311-372
- de Candolle AP 1820 Géographie botanique. Dictionnaire des Sciences Naturelles 18 359-422
- de Carvalho CJB 1989 Classificação de Muscidae (Diptera): uma proposta através da análise cladística. Revista Brasileira de Zoologia 6:627-648
- de Carvalho CJB, Bortolanza M, Cardoso da Silva MC & Soares EDG 2003 Distributional patterns of the Neotropical Muscidae (Diptera). Una perspectiva Latinoamericana de la

biogeografía (ed. by J.J. Morrone and J. Llorente), pp. 263–274. Universidad Autonóma del México, Ciudad del México

- de Carvalho CJB, Couri MS, Pont AC, Pamplona D & Lopes SM 2005 A catalogue of the Muscidae (Diptera) of the Neotropical Region. Zootaxa 860:1-282
- Costa LP 2003 The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30:71-86
- Costa LP, Leite YLR, Fonseca GAB e Fonseca MT 2000 Biogeography of South American forest mammals: endemism and diversity in the Atlantic Forest. Biotropica 32:872-881

Cotton JA & Wilkinson M 2007 Majority-rule supertrees. Systematic Biology 56:445-452

- Couri MS & de Carvalho CJB 2003 Systematic relations among *Philornis* Meinert, *Passeromyia* Rodhain & Villeneuve and allied genera (Diptera, Muscidae). Brazilian Journal of Biology 63:223-232
- Couri MS & Pont A 2000 Cladistic analysis of coenosiini (Diptera: Muscidae: Coenosiinae) Systematic Entomology 25:373-392
- Crisci JV, Katinas L & Posadas P 2003 Historical Biogeography: an introduction. Harvard University Press.
- Crisci JV, Sala OE, Katinas L & Posadas P 2006 Bridging historical and ecological approaches in biogeography. Australian Systematic Botany 19:1-10
- Croizat L 1964 Space, Time, Form: The Biological Synthesis. Published by the author, Caracas, Venezuela
- Donato M, Posadas P, Miranda-Esquivel DR, Ortiz-Jaureguizar E & Cladera G 2003 Historical biogeography of the Andean region: evidence from Listroderina (Coleoptera: Curculionidae: Rhytirrhinini) in the context of the South American geobiotic scenario. Biological Journal of the Linnean Society 80:339-352
- Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS & Zimmermann NE 2006 Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129-151
- Erwin TL 1981 Taxon pulses, vicariance, and dispersal: an evolutionary synthesis illustrated by carabid beetles. Vicariance biogeography – a critique (ed. G Nelson & DE Rosen) pp. 159-196. Columbia University Press, New York

- Fielding AH & Bell JF 1997 A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49
- Goloboff PA 1993 NONA versão 2.0 disponível em http://www.cladistics.com (acessado em 9 de Dezembro de 2008).
- Graham CH, Elith J, Hijmans RJ, Guisan A, Peterson AT, Loiselle BA & The Nceas Predicting Species Distributions Working Group 2007 The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology 45:239– 247
- Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT 2007 What matterns for predicting the occurrences of trees: techniques, data, or species' characteristics? Ecological Monographs 77:615-630
- Halas D, Zamparo D & Brooks DR 2005 A historical biogeographical protocol for studying biotic diversification by taxon pulses. Journal of Biogeography 32:249-260
- Hanley JA & McNeil BJ 1982 The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29-36
- Harold AS & Mooi RD 1994 Areas of endemism: definition and recognition criteria. Systematic Biology 43:261-266
- Hawkins BA, DeVries PJ 2009 Tropical niche conservatism and the species richness gradient of North American butterflies. Journal of Biogeography (DOI: 10.1111/j.1365-2699.2009.02119.x)
- Hawkins BA, Diniz-Filho JAF & Soeller SA 2005 Water links the historical and contemporary components of the Australian bird diversity gradient. Journal of Biogeography 32:1035-1042
- Hawkins BA, Diniz-Filho JAF, Jaramillo CA & Soeller SA 2006 Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. Journal of Biogeography 33:770-780
- Hawkins BA, Diniz-Filho JAF, Jaramillo CA & Soeller SA 2007 Climate, niche conservatism, and the global bird diversity gradient. The American Naturalist 170:S16-S27
- Hernandez PA, Graham CH, Master LL & Albert DL 2006 The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773-785

Hijmans RJ, Cameron SE, Parra JL, Jones PG & Jarvis A 2005 Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978

Humphries CJ & Parenti L 1999 Cladistic biogeography, 2nd ed. Academic Press, London

- Janis CM 1993 Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology, Evolution, and Systematics 24:467-500
- Jaramillo C, Rueda MJ & Mora G 2006 Cenozoic plant diversity in the Neotropics. Science 311:1893-1896
- Katinas L, Morrone JJ & Crisci JV 1999 Track analysis reveals the composite nature of the Andean biota. Australian Journal of Botany 47:111-130
- Kerr JT & Currie DJ 1999 The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America. Ecoscience 6:329-337
- Kozak KH & Wiens JJ 2006 Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604-2621
- Kuschel G 1960 Terrestrial zoology in southern Chile. Proceedings of the Royal Society of London B 152:540-550
- Kutty SN, Pape T, Pont A, Wiegmann BM & Meier R 2008 The Muscoidea (Diptera: Calyptratae) are paraphyletic: Evidence from four mitochondrial and four nuclear genes. Molecular Phylogenetics and Evolution 49:639-652
- Latham EL & Ricklefs RE 1993 Continental comparisons of temperate-zone tree species diversity. Species diversity in ecological communities: historical and geographical perspectives (ed. RE Ricklefs and D Schluter) pp. 294-314. University of Chicago Press, Chicago
- Lieberman BS 2003 Paleobiogeography the relevance of fossils to biogeography. Annual Review of Ecology, Evolution, and Systematics 34:51-69
- Lobo JM, Jiménez-Valverde A & Real R 2008 AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17:145-151
- Löwenberg-Neto P & de Carvalho CJB 2009 Areas of endemism and spatial diversification of the Muscidae (Insecta: Diptera) in the Andean and Neotropical regions. Journal of Biogeography 36:1750-1759

- Löwenberg-Neto P, de Carvalho CJB & Diniz-Filho JAF 2008 Spatial congruence between biotic history and species richness of Muscidae (Insecta: Diptera) in the Andean and Neotropical regions. Journal of Zoological Systematic and Evolutionary Research 46:374-380
- Manel S, Williams HC & Ormerod SJ 2001 Evaluationg presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38:921-931
- Masuoka MP, Burke R, Colaccico M, Razuri H, Hill D & Murrell KD 2009 Predicted geographic ranges for north american sylvatic *Trichinella* species. Journal of Parasitology 95:829-837
- Maury EA, Pinto-da-Rocha R & Morrone JJ 1996 Distribution of *Acropsopilio chilensis* Silvestri, 1904 in southern South America (Opiliones, Palpatores, Caddidae).
 Biogeographica 72:127-132
- Mercer JM & Roth L 2003 The effects of Cenozoic global change on squirrel phylogeny. Science 299:1568-1572
- Morrone JJ 2001 Biogeografía de América Latina y el Caribe. Manuales &Tesis SEA, Vol. 3. Sociedad Entomológica Aragonesa, Zaragoza
- Morrone JJ 2002 Biogeographical regions under track and cladistic scrutiny. Journal of Biogeography 29:149-152
- Morrone JJ 2004a Panbiogeografía, componentes bióticos y zonas de transición. Revista Brasileira de Entomologia 48:149-162
- Morrone JJ 2004b La zona de transición Sudamericana: caracterización y relevancia evolutiva. Acta Entomólogica Chilena 28:41-50
- Morrone JJ 2006 Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analysis of the entomofauna. Annual Review of Entomology 51:467-494
- Morrone JJ 2007 Hacia una biogeografía evolutiva. Revista Chilena de Historia Natural 80: 509-520
- Morrone JJ & Lopretto EC 1994 Distributional patterns of freshwater Decapoda (Crustacea: Malacostraca) in southern South America: A panbiogeographic approach. Journal of Biogeography 21:97-109
- Nihei SS & de Carvalho CJB 2005 Distributional patterns of the Neotropical fly genus *Polietina* Schnabl and Sziedzicki (Diptera, Muscidae): a phylogeny-supported analysis using panbiogeographic tools. Papéis Avulsos de Zoologia 45:313-326

- Nihei SS & de Carvalho CJB 2007a Systematics and biogeography of *Polietina* Schnabl & Dziedzicki (Diptera,Muscidae): Neotropical area relationships and Amazonia as a composite area. Systematic Entomology 32:260-275
- Nihei SS & de Carvalho CJB 2007b Phylogeny and classification of Muscini (Diptera, Muscidae). Zoological Journal of the Linnean Society 149:493-532
- Nores M 1999 An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography 26:475-485
- Olson DM & Dinerstein E 2003 The global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical Garden 89:199-224
- Papes M & Gaubert P 2007 Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions 13:890–902
- Pearmann PB, Guisan A, Broennimann O & Randin CF 2008 Niche dynamics in space and time. Trends in Ecology and Evolution 23:149-158
- Pearson RG, Raxworthy CJ, Nakamura M & Peterson AT 2007 Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34:102–117
- Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK & Butterworth CA 2004 Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society B – Biological Sciences 359:515-537
- Peterson AT & Nakazawa Y 2008 Environmental data sets matter in ecological niche modelling: an example with *Solenopsis invicta* and *Solenopsis richteri*. Global Ecology and Biogeography 17:135-144
- Peterson AT, Papes M & Eaton M 2007 Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550-560
- Phillips SJ & Dudík M 2008 Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161-175
- Phillips SJ, Dudík M & Schapire RE 2004 A Maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, 2004
- Phillips SJ, Dudík M & Schapire RE 2006 Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259

- Pinto-da-Rocha R & Silva MB 2005 Faunistic similarity and historic biogeography of the harvestmen of Southern and Southeastern Atlantic rain forest of Brazil. The Journal of Arachnology 33:290-299
- Posadas P, Crisci JV, Katinas L 2006 Historical biogeography: A review of its basic concepts and critical issues. Journal of Arid Environments 66:389-403
- Potter PE 1997 The Mesozoic and Cenozoic paleodrainage of South America: a natural history. Journal of South American Earth Sciences 10:331-344
- Puschendorf R, Carnaval AC, VanDerWal J, Zumbado-Ulate H, Chaves G, Bolaños F & Alford RA 2009 Distribution models for the amphibian chytrid *Batrachochytrium dendrobatidis* in Costa Rica: proposing climatic refuges as a conservation tool. Diversity and Distributions 15:401-408
- Raes N & Steege H A null-model for significance testing of presence-only species distribution models. Ecography 30:727-736
- Ragan MA 1992 Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53-58
- Rangel TFLVB, Diniz-Filho JAF & Bini M 2006 Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography 15:321-327
- Räsänen ME, Linna AM, Santos JCR & Negri FR 1995 Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386-390
- Roback SS 1951 A classification of the muscoid calyptrate Diptera. Annals of Entomological Society of America 44:327-361
- Roig-Juñet S, Dominguez MC, Floresa GE & Mattonib C 2006 Biogeographic history of South American arid lands: A view from its arthropods using TASS analysis. Journal of Arid Environments 66:404-420
- Romo H, García-Barros E & Lobo JM 2006 Identifying recorder-induced geographic bias in an Iberian butterfly database. Ecography 29:873-885
- Ruggiero A & Hawkins BA 2008 Why do mountains support so many species of birds? Ecography 31:306-315
- Santos AMM, Cavalcanti DR, Silva JMC & Tabarelli M 2003 Biogeographical relationships among tropical forests in north-eastern Brazil. Journal of Biogeography 34:437-446
- Savage J & Wheeler TA 2004 Phylogeny of the Azeliini (Diptera: Muscidae). Studia Dipterologica 11:259-299

- Schuehli GS, de Carvalho CJB & Wiegmann BM 2007 Molecular phylogenetics of the Muscidae (Diptera: Calyptratae): new ideas in a congruence context. Invertebrate Systematics 21:263-278
- Sigrist MS & de Carvalho CJB 2008 Detection of areas of endemism on two spatial scales using Parsimony Analysis of Endemicity (PAE): the Neotropical region and the Atlantic Forest. Biota Neotropica 8:33-42

Silva JMC 1995 Birds of the Cerrado Region, South America. Steenstrupia 21:69-92

- Silva JMC 1997 Endemic bird species and conservation in the Cerrado region, South America. Biodiversity and Conservation 6:435-450
- Silva JMC, Sousa MC & Castelletti CHM 2004 Areas of endemism for passerine birds in the Atlantic forest, South America. Global Ecology and Biogeography 13:85-92

Skidmore P 1985 The biology of the Muscidae of the world. Series Entomologica 29:1-550

- Soares EDG 2008 Reinwardtiinae (Diptera: Muscidae) é um grupo monofilético?: uma abordagem cladística morfológica e molecular. Tese de Doutoramento, UFPR.
- Svenning J, Borchsenius F, Bjorholm S & Balslev H 2008 High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography 35:394-406
- Svensen H, Planke S, Malthe-Sørenssen A, Jamtveit B, Myklebust R, Eidem TR & Rey SS 2004 Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542-545
- Wiens JJ 2007 Global patterns of diversification and species richness in Amphibians. The American Naturalist 170:S86-S106
- Wiens JJ & Donoghue MJ 2004 Historical biogeography, ecology and species richness. Trends in Ecology & Evolution 19:639-644
- Wiens JJ & Graham CH 2005 Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36:519-539
- Wiens JJ, Graham CH, Moen DS, Smith SA & Reeder TW 2006 Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: Treefrog trees unearth the roots of high tropical diversity. The American Naturalist 168:579-596
- Wiens JJ, Sukumaran J, Pyron RA & Brown RM 2009 Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63:1217-1231
- Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, O'Brien JM & Schwartz MW 2009 Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions 15:565-576

- Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A & NCEAS Predicting Species Distributions Working Group 2008 Effects of sample size on the performance of species distribution models. Diversity and Distributions 14:763-773
- Wolfe JA 1985 Distribution of major vegetational types during Tertiary. Geophysical Monograph 32:357-375
- de Vivo M 1997 Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. Journal of Comparative Biology 2:63-74
- Zachos J, Pagani M, Sloan L, Thomas E & Billups K 2001 Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292: 686-693

Espécies de Muscidae analisadas e valor da área sob a curva (ASC) das espécies com distribuição modelada. O valor "pontos" corresponde às espécies que tiveram a distribuição modelada com valor de ASC inferior a 0,85 e, por isso, os pontos de ocorrência foram utilizados na análise.

U, S e, por isso, os pontos de ocorrencia foram utilizados na ananse.		
#	Espécie	ASC
1	Apsil apicata Malloch, 1934	0.9879
2	Apsil atripes Malloch, 1934	0.9952
3	Apsil biseta Malloch, 1934	0.9369
4	Apsil dilata Malloch, 1934	0.996
5	Apsil diminuta Couri, 2002	pontos
6	Apsil flavipalpis (Malloch, 1934)	0.9858
7	Apsil flavithorax Couri, 2005	0.9994
8	Apsil maculipennis Malloch, 1934	0.9935
9	Apsil maculiventris Malloch, 1929	0.9923
10	Apsil pennata Malloch, 1929	0.9878
11	Apsil spatulata Malloch, 1934	0.9959
12	Azelia neotropica Snyder, 1957	0.9939
13	Biopyrellia bipuncta (Wiedemann, 1830)	0.9359
14	Bithoracochaeta annulata Stein, 1911	0.8832
15	Bithoracochaeta calopus (Bigot, 1885)	0.97
16	Bithoracochaeta equatorialis Couri & Marques, 2001	0.9712
17	Bithoracochaeta flavicoxa Malloch, 1934	pontos
18	Bithoracochaeta leucoprocta (Wiedemann, 1830)	0.9314
19	Bithoracochaeta maricaensis Couri & Motta, 1995	0.9301
20	Bithoracochaeta nigricoxa Couri, 2005	0.9461
21	Bithoracochaeta plumata Albuquerque, 1955	0.948
22	Bithoracochaeta varicornis (Coquillett, 1900)	0.97
23	Brachygasterina andina Carvalho & Pont, 2006	pontos
24	Brachygasterina fulvohumeralis Malloch, 1922	0.9998
25	Brachygasterina maculata Couri, Carvalho & Pont, 2007	pontos
26	Brachygasterina major Malloch, 1934	0.9899
27	Brachygasterina stubeli (Röder, 1886)	0.9802
28	Brachygasterina violaceiventris Macquart, 1851	0.9926
29	Catatygmus veneris (Bigot, 1888)	0.9786
30	Chaetagenia stigmatica Malloch, 1928b	0.8614
31	Charadrella albuquerquei Carvalho, 1985	0.9826
32	Charadrella macrosoma Wulp, 1896	0.9621
33	Charadrella malacophaga Lopes, 1938	0.9789
34	Coenosia argentifrons (Malloch, 1934)	0.9892
35	Coenosia atrifrons Stein, 1911	0.9962
36	Coenosia aurifera (Malloch, 1934)	pontos
37	Coenosia camorinensis Albuquerque, 1956	pontos
38	Coenosia chaetosa Malloch, 1934	pontos
39	Coenosia crassicauda Stein, 1911	pontos
40	Coenosia curviventris Albuquerque, 1959	pontos
41	Coenosia enormis Albuquerque, 1956	pontos
42	Coenosia ignobilis Stein, 1911	0.9715
43	Coenosia inaequalis Malloch, 1934	pontos

44	Coenosia iniqua Stein, 1911	0.9944
45	Coenosia inusitata (Malloch, 1934)	pontos
46	Coenosia latitibia Albuquerque, 1957	pontos
47	Coenosia leucotrichia Albuquerque, 1956	pontos
48	Coenosia longipede Albuquerque, 1956	0.9964
49	Coenosia mediocris Stein, 1911	0.9955
50	Coenosia minuscularis Albuquerque, 1956	pontos
51	Coenosia neotropica Carvalho et al., 1993	0.991
52	Coenosia picta Stein, 1911	pontos
53	Coenosia pilitibia Stein, 1911	pontos
54	Coenosia plumbea Albuquerque, 1954	0.9928
55	Coenosia plumiseta Stein, 1911	0.859
56	Coenosia procera Stein, 1911	0.9884
57	Coenosia projecta Malloch, 1934	pontos
58	Coenosia rotundiventris Stein, 1911	pontos
59	Coenosia setiventris Stein, 1911	0.9971
60	Coenosia strenua Stein, 1911	pontos
61	Coenosia tarsata Snyder, 1957	0.9922
62	Coenosia tinctipenis Albuquerque 1956	pontos
63	Coenosia trichophthalma Albuquerque, 1950	pontos
64	Coenosia tunida Stein 1911	0 991
65	Coenosia uniformis Malloch 1934	0.9868
66	Cognosia vittithorar Stein 1911	nontos
67	Cognosia vulni Pont 1072	pontos
68	Cordiluroidas histriata (Wulp 1896)	0 003
60	Cordiluroides insularis (Williston, 1806)	0.995
70	Cordiluroides listrata Albuquerque, 1054	0.9281
70	Cordiluroides magalopyag Albuquerque, 1954	0.9942
71	Conditunoides megalopyga Albuquerque, 1954	0.9007
12	Corranteria bioclar Mallach 1024	pontos
13	Correntosta bicolor Malloch, 1934	pontos
74	Correniosia carnijez (Stein, 1911)	0.9985
15	Cyrtoneurina aufusca Couri, 1982	0.9042
/6	Cyrtoneurina arieriopsis Couri, 1982	0.9981
//	Cyrtoneurina biseta Snyder, 1954	0.9748
/8	Cyrtoneurina confusa Snyder, 1954	0.897
/9	Cyrtoneurina costalis (Walker, 1853)	0.966
80	Cyrtoneurina crispaseta Snyder, 1954	0.8881
81	Cyrtoneurina geminata (Stein, 1904)	0.919
82	Cyrtoneurina monstrata (Wulp, 1896)	0.9401
83	Cyrtoneurina uber Giglio-Tos, 1893	0.8933
84	Cyrtoneuropsis armipes (Stein, 1911)	0.9065
85	Cyrtoneuropsis beebei (Curran, 1934)	0.8501
86	Cyrtoneuropsis brunnea (Hough, 1900)	0.9866
87	Cyrtoneuropsis conspersa (Stein, 1911)	0.9349
88	Cyrtoneuropsis dubia (Snyder, 1954)	0.9547
89	Cyrtoneuropsis flaviantennata (Couri, 1982)	0.9941
90	Cyrtoneuropsis fuscicosta (Curran, 1934)	0.926
91	Cyrtoneuropsis fuscisquama (Snyder, 1954)	0.9968
92	Cyrtoneuropsis gemina (Wiedemann, 1830)	0.8529
93	Cyrtoneuropsis gluta (Giglio-Tos, 1893)	0.939
94	Cyrtoneuropsis immunda (Stein, 1911)	0.973
95	Cyrtoneuropsis incognita (Snyder, 1954)	0.9766
96	Cyrtoneuropsis inuber (Giglio-Tos, 1863)	0.9443

98	Cyrtoneuropsis maranhensis Couri, Barros & Orsini, 2009	pontos
99	Cyrtoneuropsis mellina (Stein, 1918)	0.9799
100	Cyrtoneuropsis mimica (Snyder, 1954)	0.9278
101	Cyrtoneuropsis multomaculata (Stein, 1904)	0.91
102	Cyrtoneuropsis neotrita (Snyder, 1954)	0.9176
103	Cyrtoneuropsis ocasionalis (Couri, 1982)	0.9435
104	Cyrtoneuropsis pallipes (Stein, 1918)	0.99
105	Cyrtoneuropsis pararescita (Couri, 1995)	0.8751
106	Cyrtoneuropsis polystigma (Wulp, 1896)	0.9382
107	Cyrtoneuropsis praenubila (Snyder, 1954)	0.8694
108	Cyrtoneuropsis protosetosa (Snyder, 1954)	0.9307
109	Cyrtoneuropsis rescita (Walker, 1861)	0.9184
110	Cyrtoneuropsis seriata (Stein, 1911)	0.8729
111	Cyrtoneuropsis similata (Couri, 1982)	0.9528
112	Cyrtoneuropsis spiloptera (Wiedemann, 1830)	0.9486
113	Cyrtoneuropsis steini (Snyder, 1954)	0.9665
114	Cyrtoneuropsis varicolor (Hough, 1900)	0.9783
115	Cyrtoneuropsis veniseta (Stein, 1904)	0.9346
116	Cyrtoneuropsis walkeri (Pont, 1972)	0.9912
117	Cyrtoneuropsis wulpi (Snyder, 1954)	0.964
118	Dolichophaonia anoctiluca (Carvalho, 1983)	0.9463
119	Dolichophaonia brasiliensis (Albuquerque, 1958)	0.9532
120	Dolichophaonia cacheuta (Snyder, 1957)	pontos
121	Dolichophaonia catamacla (Snyder, 1957)	pontos
122	Dolichophaonia catharinensis (Carvalho 1983)	0.9696
123	Dolichophaonia compressipalpis (Stein 1911)	0.9688
124	Dolichophaonia elongata (Albuquerque, 1958)	0.9176
125	Dolichophaonia femorata (Stein 1911)	0.9931
126	Dolichophaonia gallicola (Albuquerque, 1958)	0.9804
120	Dolichophaonia siacomeli (Carvalho, 1981)	0.9938
127	Dolichophaonia jamaicensis (Carvalho, 1983)	nontos
129	Dolichophaonia limbinervis (Stein 1918)	nontos
130	Dolichophaonia machadoi (Albuquerque, 1958)	0 9999
131	Dolichophaonia noctiluca (Albuquerque, 1950)	0.962
132	Dolichophaonia paranaensis Carvalho 1993	pontos
132	Dolichophaonia plaumanni (Carvalho, 1993)	0 9916
134	Dolichophaonia regina (Carvalho, 1903)	nontos
135	Dolichophaonia santoamarensis (Albuquerque 1958)	0.9366
136	Dolichophaonia sensitarsis (Carvalho, 1983)	nontos
137	Dolichophaonia simpler (Albuquerque, 1965)	0.9822
138	Dolichophaonia sumplex (Houquelque, 1930)	0.9665
130	Dolichophaonia tachnoides (Albuquerque, 1958)	0.9005
1/0	Dolichophaonia taransis (Malloch 1923)	0.9940
1/1	Dolichophaonia trigona (Shannon & Del Ponte, 1926)	0.0705
1/1	Dolichophaonia trigonata (Wuln 1896)	0.9937
1/13	Dolichophaonia unica Carvalho, 1993	nontos
143	Dolichophaonia vackerathi (Carvalho, 1995	pontos
1/15	Drengnochemis dorge Stein 1911	0 9968
145	Drepanochemis ariseovirens Malloch 1928	0.9900
1/7	Drepanochemis griscovirens Manoch, 1920	0.9901
1/18	Drymeia aterrima Will 1896	nontos
140	Granhomya amazonansis Couri & Marguos 2005	0 0202
149	Granhomya analis (Macquart 1851)	0.7303
150	Granhomya auricens Melloch 1024	0.9020
131	Graphomya auriceps Mallocii, 1954	pontos

152 Graphomya chilensis Bigot, 1888 153 Graphomya maculata (Scopoli, 1763) 154 Graphomya meridionalis Townsend, 1892 Graphomya mexicana Giglio-Tos, 1893 155 156 Graphomya occidentalis Arntfield, 1975 157 Graphomya panamensis Dodge, 1965 158 Graphomya podexaurea (Enderlein, 1935) 159 Graphomya stipata (Walker, 1953) 160 Graphomya tropicalis Malloch, 1934 161 Helina acrinis Snyder, 1941 162 Helina acrosticalis Snyder, 1941 163 Helina aczeli Snyder, 1957 164 Helina adelpha (Schiner, 1868) 165 Helina albuquerquei (Pont, 1972) 166 Helina angustipennis (Stein, 1911) 167 Helina anubes Snyder, 1941 168 Helina argentina Snyder, 1957 169 Helina augustipennis (Stein, 1911) 170 Helina auricolis Albuquerque, 1980 171 Helina australis (Carvalho & Pont, 1993) 172 Helina bigoti Malloch, 1934 173 Helina biseta (Stein, 1904) 174 Helina caerulea (Snyder, 1949) 175 Helina caneo Snyder, 1941 176 Helina chilensis Malloch, 1934 177 Helina circulatrix (Walker, 1861) 178 Helina connexa Malloch, 1934 179 Helina consanguinea (Stein, 1911) 180 Helina crepedoseta Snyder, 1940 181 Helina crocea Snyder, 1940 182 Helina dasyophthalma Malloch, 1928 183 Helina discolor (Stein, 1911) 184 Helina discreta (Wulp, 1896) 185 Helina echinogaster (Stein, 1911) 186 Helina equator Snyder, 1941 187 Helina etesia (Giglio-Tos, 1893) 188 Helina eurycephala (Stein, 1911) 189 Helina fallax (Stein, 1911) 190 Helina fulvapoda Snyder, 1940 191 Helina fulvocalyptrata Malloch, 1934 192 Helina fuscomarginata (Snyder, 1949) 193 Helina gigantea Albuquerque, 1956 194 Helina golbachi Snyder, 1957 195 Helina inepta (Stein, 1911) 196 Helina inepta (Stein, 1911) 197 Helina lasiosterna Snyder, 1941 198 Helina leucocephala (Wulp, 1896) 199 Helina longipila (Stein, 1918) 200 Helina luteola Albuquerque, 1956 201 Helina maculipes (Stein, 1918) 202 Helina marginipennis (Stein, 1904) 203 Helina meraca (Wulp, 1896) 204 Helina neotropica (Snyder, 1951) 205 Helina nigrimana (Macquart, 1851)

pontos 0.8659 0.9584 0.938 0.965 pontos 0.9058 pontos 0.8578 0.9908 pontos pontos pontos 0.9952 pontos 0.9915 0.9966 pontos pontos pontos 0.9878 0.9794 pontos pontos pontos pontos 0.9907 0.9801 0.9845 0.9588 0.9721 0.9514 0.9178 pontos pontos pontos 0.9574 pontos 0.9281 pontos pontos pontos pontos pontos pontos pontos 0.978 0.9231 pontos pontos 0.9754 pontos pontos

0.9904

206	Helina nigrina (Wiedemann, 1830)	0.9418
207	Helina nivaloides Albuquerque, 1956	pontos
208	Helina nobilis Albuquerque, 1956	pontos
209	Helina parvula (Wulp, 1896)	0.939
210	Helina pedella (Wiedemann, 1830)	0.9418
211	Helina piliceps (Stein, 1911)	pontos
212	Helina poeciloptera (Schiner, 1868)	0.9932
213	Helina praecipua (Walker, 1853)	0.9704
214	Helina prima (Malloch, 1921b)	pontos
215	Helina prolatifrons Snyder, 1940	pontos
216	Helina refusa (Giglio-Tos, 1893)	pontos
217	Helina regobarrosi Albuquerque, 1958	0.9964
218	Helina rubripalpis (Wulp, 1896)	0.9438
219	Helina rufiguttata (Macquart, 1851)	0.9458
220	Helina rufoapicata Malloch, 1934	pontos
221	Helina sera (Giglio-Tos, 1893)	pontos
222	Helina signatipennis (Wulp, 1896)	0.9172
223	Helina simplex Malloch, 1934	pontos
224	Helina subreptitia (Albuquerque & Lopes, 1979)	0.9035
225	Helina tarsalis (Stein, 1918)	pontos
226	Helina trichops (Stein, 1918)	pontos
227	Helina umbrosa (Wulp, 1896)	0.995
228	Helina viola Malloch, 1934	pontos
229	Helina walkeri Carvalho & Pont. 1993	pontos
230	Helina xena Malloch. 1934	0.9968
231	Hydrotaea acuta Stein, 1898	pontos
232	Hydrotaea cyaneiyentris Macquart, 1851	0.962
233	Hydrotaea nicholsoni Curran, 1939	0.9751
234	Hydrotaea nubilicosta Malloch 1923	pontos
235	Hydrotaea villosa Stein 1904	0 9967
236	Hydrotea dentines (Eabricius 1805)	0.9783
237	Insulamvia inusitata Couri 1982	pontos
238	Itatingamvia hivittata Albuquerque 1979	pontos
239	Limnophora aczeli (Snyder 1957)	0 888
240	Limnophora alacris Stein 1911	pontos
241	Limnophora albuauerauei (Lopes & Couri 1987)	0 9374
242	Limnophora altaneira (Albuquerque, 1954)	0.9573
243	Limnophora aurifacies Stein 1911	0.9723
243	Limnophora barbitarsis Stein, 1911	0.999
245	Limnophora brevihirta Malloch 1934	0.9791
246	Limnophora breviseta Stein 1911	pontos
240	Limnophora corvina (Giglio-Tos 1893)	0 9777
247	Limnophora cubana Johnson 1919	pontos
240	Limnophora deleta (Wulp, 1896)	0.965
249	Limnophora alegans Macquart 1843	0.905
250	Limnophora and Williston 1896	0.9052
251	Limnophora garrula (Giglio Tos. 1893)	0.9955
252	Limnophora gracilitarsis Stein 1011	0.9618
255	Limnophora gracultursis Stell, 1911	0.9018
234 255	Linnophora integna Stein, 1911)	0.9782
233	Limnophora Integra Stelli, 1911	0.9821
230 257	Limnophora marginata Stein 1004	0.0013
231	Limnophora marginala Stelli, 1904	0.927
230 250	Limnophora murgaula (White 1906)	0.9038
239	Linnophora manuscuta (w utp, 1890)	pontos

260	Limnophora narona (Walker, 1849)	pontos
261	Limnophora nigragentata (Albuquerque, 1954)	0.9831
262	Limnophora ovativentris (Macquart, 1851)	pontos
263	Limnophora paranaensis (Albuquerque, 1954)	0.9921
264	Limnophora patagonica Malloch, 1934	0.9488
265	Limnophora paulistana (Lopes & Khouri, 1991)	pontos
266	Limnophora pica (Macquart, 1851)	0.9253
267	Limnophora piliseta Stein, 1919	0.9492
268	Limnophora platystoma (Thomson, 1869)	pontos
269	Limnophora porteri Brethes, 1919	pontos
270	Limnophora pura Stein, 1911	0.9532
271	Limnophora saeva (Wiedemann, 1830)	0.9436
272	Limnophora snyderi (Lopes & Couri, 1987b)	0.9265
273	Limnophora vittata Macquart. 1851	0.9604
274	Lispe albitarsis (Stein, 1898)	0.988
275	Lispe bahama Snyder, 1958	pontos
276	Lispe cotidiana (Snyder, 1954)	pontos
277	Lispe latana Snyder 1949	0 9848
278	Lispe Levis (Stein 1911)	0.9753
279	Lispe lisarba (Snyder 1949)	pontos
280	Lispe nasoni (Stein 1898)	0 9996
281	Lispe nasoni (Stelli, 1996)	0.9990
201	Lispe setuliaera (Stoin, 1011)	0.9077
202	Lispe setungera (Stein, 1911)	0.9095
205	Lispe vilis (Stoin 1011)	0.9933
204	Lispe vills (Stein, 1911)	0.0404
205	Lispoides appendices Melloch 1024	0.987
200	Lispoides argenting Malloch, 1934	0.972
207	Lispoides argenina Manoch, 1934	pointos
288	Lispoides dirisquama (Stein, 1904)	0.9787
289	Lispoides diuta (Stein, 1911)	pontos
290	Lispoides elegantula (Pont, 1972)	pontos
291	Lispoides gracius (Stein, 1911)	0.9821
292	Lispoides guatemaia Shyder, 1951	0.9244
293	Lispoides indequifrons Malloch, 1934	0.9874
294	Lispoides insularis Hennig, 1957	pontos
295	Lispoides laevis (Stein, 1911)	pontos
296	Lispoides latifrons (Snyder, 1957)	pontos
297	Lispoides lopesi (Albuquerque, 1955)	0.9991
298	Lispoides nigribasis (Stein, 1911)	0.9856
299	Lispoides propinqua (Stein, 1911)	pontos
300	Lispoides pubiceps (Stein, 1911)	0.9882
301	Lispoides triplex (Stein, 1911)	0.9867
302	Lispoides uniseta (Malloch, 1934)	pontos
303	Micropotamia amazonica (Albuquerque & Lopes, 1982)	0.9948
304	Micropotamia cilitibia (Albuquerque, 1955)	0.9315
305	Micropotamia fucisquama (Wulp, 1896)	pontos
306	Morellia (Trichomorellia) callidimera (Bigot, 1887)	pontos
307	Morellia (Trichomorellia) nigritibia (Snyder, 1949)	pontos
308	Morellia (Trichomorellia) trichops (Malloch, 1923)	0.9563
309	Morellia (Xenomorellia) holti (Malloch, 1923)	0.9748
310	Morellia (Xenomorellia) montanhesa (Albuquerque, 1952)	0.9771
311	Micropotamia minuscula (Albuquerque, 1955)	0.9296
312	Mulfordia ferruginea Malloch, 1928	pontos
313	Mulfordia secunda Snyder, 1951	pontos

314	Mydaea nubivena Snyder, 1941	pontos
315	Mydaea plaumanni Snyder, 1941	0.9949
316	Myospila cyanea (Macquart, 1843)	0.9633
317	Myospila fluminensis Couri & Lopes, 1988	0.9501
318	Myospila matogrossensis Couri & Lopes, 1988	0.8551
319	Myospila meditabunda (Fabricius, 1781)	0.8555
320	Myospila obscura (Shannon & Del Ponte, 1926)	0.9898
321	Myospila pallidicornis (Bigot, 1887)	0.9375
322	Neivamvia antunesi Lopes, 1955	pontos
323	Neivamvia flavicornis (Malloch, 1928)	0.9931
324	Neivamvia latifrons Malloch. 1932	0.9805
325	Neivamvia travassosi Lopes & Mangabeira, 1938	pontos
326	Neodexionsis alacris Couri & Albuquerque, 1979	0.995
327	Neodexiopsis albisauamae (Albuquerque, 1959)	pontos
328	Neodexiopsis annulines (Macquart 1843)	0.9736
320	Neodexiopsis antennata Couri 1987	nontos
320	Neodexiopsis arizona Spyder 1958	pontos
330	Neodexiopsis barbiventris Couri & Albuquorquo, 1070	0.0374
222	Neodexiopsis burbivenins Court & Albuquerque, 1979	0.9374
222	Neodextopsis brevicornis (Malloci, 1954)	0.9998
224	Neodextopsis cacumina Shyder, 1957	0.9947
334	Neodexiopsis calopyga (Loew, 1872)	0.9903
335	Neodexiopsis cambuquirensis (Albuquerque, 1954)	0.989
336	Neodexiopsis cinerea Costacurta & Carvalho, 2005	0.9902
337	Neodexiopsis cirratipila Snyder, 1957	0.9659
338	Neodexiopsis clavacula Snyder, 1957	pontos
339	Neodexiopsis crassicrurus Snyder, 1957	pontos
340	Neodexiopsis crispiseta Snyder, 1957	pontos
341	Neodexiopsis croceafrons Snyder, 1957b	0.8578
342	Neodexiopsis declivis (Stein, 1904)	pontos
343	Neodexiopsis devia (Curran, 1934)	pontos
344	Neodexiopsis diaphana Stein, 1911	0.9985
345	Neodexiopsis discolorisexus Snyder, 1957a	pontos
346	Neodexiopsis ditiportus Snyder, 1957	pontos
347	Neodexiopsis dubia (Bigot, 1885)	0.9929
348	Neodexiopsis ebenifemur Snyder, 1957	pontos
349	Neodexiopsis elegans Couri & Albuquerque, 1979	0.9463
350	Neodexiopsis emmesa (Malloch, 1934)	0.8745
351	Neodexiopsis erecta Costacurta & Carvalho, 2005	0.9692
352	Neodexiopsis facilis Costacurta & Carvalho, 2005	0.9914
353	Neodexiopsis flavipalpis Albuquerque, 1956	0.9913
354	Neodexiopsis flavipes Williston, 1896	0.9914
355	Neodexiopsis fulvifrontis Couri & Albuquerque, 1979	0.9754
356	Neodexiopsis geniculata (Bigot, 1885)	0.8907
357	Neodexiopsis genupuncta (Stein, 1904)	pontos
358	Neodexiopsis hydrotaeiformis Snyder, 1958	pontos
359	Neodexiopsis incurva Stein, 1911	pontos
360	Neodexiopsis intoniclunis Snyder, 1957	pontos
361	Neodexionsis itatiaiensis (Albuquerque, 1954)	pontos
362	Neodexiopsis lanigera (Stein, 1918)	pontos
363	Neodexionsis latifrons (Thomson 1869)	nontos
364	Neodexiopsis latimaculata (Albuquerque 1956)	pontos
365	Neodexionsis legitima Costacurta & Carvalho 2005	0 9692
366	Neodexionsis lineata (Stein 1904)	nontos
367	Neodexionsis lunatisiana (Snyder 1957)	pontos
507	(Dilyuci, 1))	pontos

368	Neodexiopsis macrocera (Wulp, 1896)	pontos
369	Neodexiopsis magnicornis Snyder, 1958	pontos
370	Neodexiopsis maldonadoi Snyder, 1957	pontos
371	Neodexiopsis mesofulvata (Albuquerque, 1959)	0.9854
372	Neodexiopsis micans Snyder, 1957	pontos
373	Neodexiopsis microchaeta (Malloch, 1934)	0.9982
374	Neodexiopsis neoaustralis Snyder, 1957	0.9863
375	Neodexiopsis neoflavipes Snyder, 1957	pontos
376	Neodexiopsis neomacrocera Snyder, 1957	0.9848
377	Neodexiopsis nigerrima (Malloch, 1934)	0.9925
378	Neodexiopsis novissima Couri & Albuquerque, 1979	pontos
379	Neodexiopsis novissimun Couri & Albuquerque, 1979	pontos
380	Neodexiopsis obtusiloba (Malloch, 1934)	0.9552
381	Neodexiopsis paranaensis Costacurta & Carvalho, 2005	0.965
382	Neodexiopsis parvula Albuquerque, 1958	pontos
383	Neodexiopsis paulistensis Albuquerque, 1956	0.9944
384	Neodexiopsis pectinata Couri & Albuquerque, 1979	0.9679
385	Neodexionsis peninsula Snyder, 1958	0.999
386	Neodexiopsis peruviana Snyder, 1958	0.9988
387	Neodexionsis pilosa (Stein 1904)	0.9514
388	Neodexiopsis phosa (Stein, 1901)	pontos
389	Neodexiopsis pranoti Couri 1987	0.9738
300	Neodexiopsis point Court, 1987	0.9738
301	Neodexiopsis predcuid Shyder, 1958	pontos
302	Neodexiopsis priscipagas Silydei, 1958	0.8612
302	Neodexiopsis pure Costacurta & Carvalho, 2005	0.0012
204	Neodexiopsis pura Costaculta & Calvanio, 2005	0.9920
205	Neodexiopsis quiniivena Silydei, 19570	0 0 5 66
200	Neodexiopsis rara Costacurta & Carvano, 2005	0.9300
390	Neodexiopsis rava Snyder, 1957	pontos
397	Neodexiopsis recedens (Stein, 1904)	0.9386
398	Neodexiopsis rex Curran, 1928	pontos
399	Neodexiopsis rufipes (Macquart, 1851)	0.9785
400	Neodexiopsis rufitibia (Stein, 1919)	0.999
401	Neodexiopsis rustica (Albuquerque, 1956)	0.957
402	Neodexiopsis setipuncta Snyder, 1957	0.952
403	Neodexiopsis sima Snyder, 1957	pontos
404	Neodexiopsis similis Costacurta, Couri & Carvalho, 2005	0.9692
405	Neodexiopsis sociabilis Blanchard, 1937	pontos
406	Neodexiopsis subtilis Couri & Albuquerque, 1979	pontos
407	Neodexiopsis sulina Couri, 1987	pontos
408	Neodexiopsis tenuicornis (Wulp, 1896)	0.8937
409	Neodexiopsis tinctifacies (Albuquerque, 1958)	0.9886
410	Neodexiopsis truncata (Stein, 1911)	0.9994
411	Neodexiopsis uber Costacurta, Couri & Carvalho, 2005	0.9914
412	Neodexiopsis uspallata Snyder, 1957	pontos
413	Neodexiopsis vitilis Giglio-Tos, 1894	pontos
414	Neodexiopsis vulgaris Couri & Albuquerque, 1979	0.9951
415	Neodexiopsis xanthopoda (Albuquerque, 1956)	pontos
416	Neomuscina apicata (Stein, 1904)	pontos
417	Neomuscina atincta Snyder, 1949	0.9547
418	Neomuscina atincticosta Snyder, 1949	0.9877
419	Neomuscina capalta Snyder, 1949	0.857
420	Neomuscina currani Snyder, 1949	0.9493
421	Neomuscina dorsipuncta (Stein, 1918)	0.8966

422	Neomuscina douradensis Lopes & Khouri, 1996	pontos
423	Neomuscina goianensis Lopes & Khouri, 1995	0.9071
424	Neomuscina inflexa (Stein, 1918)	0.9784
425	Neomuscina instabilis Snyder, 1949	0.9335
426	Neomuscina macrops Snyder, 1949	pontos
427	Neomuscina mediana Snyder, 1949	0.9059
428	Neomuscina mexicana (Macquart, 1943)	0.968
429	Neomuscina mimosa Lopes & Khouri, 1996	pontos
430	Neomuscina neosimilis Snyder, 1949	0.9796
431	Neomuscina neotropica (Curran, 1934)	0.9588
432	Neomuscina nigricosta Snyder, 1949	pontos
433	Neomuscina nudistigma Snyder, 1949	0.9384
434	Neomuscina paramediana Lopes & Khouri, 1996	0.9196
435	Neomuscina parilis (Giglio-Tos, 1893)	pontos
436	Neomuscina pictipennis (Bigot, 1878)	0.9379
437	Neomuscina ponti Lopes & Khouri, 1995	0.9585
438	Neomuscina rufoscutella Dodge, 1955	0.9976
439	Neomuscina sanespra Snyder, 1949	0.9885
440	Neomuscina schadei Snyder, 1949	0.9639
441	Neomuscina scutellata (Johnson 1919)	pontos
442	Neomuscina similata Snyder 1949	0.8589
1/12	Neomuscing stabilis (Stein 1911)	0.8958
111	Neomuscina tauota Lopes 1984	nontos
777 1/15	Neomuscing tinctinervis (Stein 1918)	0.8974
77 <i>5</i> 776	Neomuscing tripunctata (Wuln 1896)	0.0774
117	Neomuscing trisata Snyder 1940	0.9107
1/18	Neomuscina vacta (Giglio Tos 1803)	nontos
440	Neomuscina vitoriae Lopos & Khouri 1005	0.0164
449	Neomuscing Fosteria (Shonnon & Del Donte, 1026)	0.9104
450	Neomuscini zosteris (Shainon & Dei Ponte, 1920)	0.979
451	Neomusciniopsis iaijroniaia Albuquerque & Lopes, 1982	
452	Neurotriza folsing (Wolker, 1840)	0.0000
455	Neurotriza marinonii Costoourto & Corvelho 2005	0.9670
454	Neurotrius aulius Costaculta & Carvalho, 2005	0.9957
455	Netroschoenemura annulata (Stein 1011)	0.9730
450	Notoschophomyza annulata (Siein 1911)	1 1 1 1 1 1 1 1 1 1
457	Neteral and the second se	0.9987
450	Notoschoenomyza chrysiceps Malloch, 1934	0.9987 pontos
458	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957	0.9987 pontos pontos
458 459	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004	0.9987 pontos pontos 0.9026
458 459 460	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863)	0.9987 pontos pontos 0.9026 0.9844
458 459 460 461	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955	0.9987 pontos pontos 0.9026 0.9844 pontos
458 459 460 461 462	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869
458 459 460 461 462 463	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos
458 459 460 461 462 463 464	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514
458 459 460 461 462 463 464 465	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999
458 459 460 461 462 463 464 465 466	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos
458 459 460 461 462 463 464 465 466 467	Notoschoenomyza chrysiceps Malloch, 1911) Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos
458 459 460 461 462 463 464 465 466 467 468	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos 0.9977
458 459 460 461 462 463 464 465 466 467 468 469	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989 Palpibracus apicalis (Malloch, 1934)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos 0.9977 0.9858
458 459 460 461 462 463 464 465 466 467 468 469 470	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989 Palpibracus apicalis (Malloch, 1934) Palpibracus carvalhoi Lopes & Khouri, 1996	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos 0.9977 0.9858 pontos
458 459 460 461 462 463 464 465 466 467 468 469 470 471	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989 Palpibracus apicalis (Malloch, 1934) Palpibracus carvalhoi Lopes & Khouri, 1996 Palpibracus chilensis (Bigot, 1885)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos 0.9977 0.9858 pontos 0.9923
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472	Notoschoenomyza chrysiceps Malloch, 1911) Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989 Palpibracus apicalis (Malloch, 1934) Palpibracus carvalhoi Lopes & Khouri, 1996 Palpibracus confusus (Malloch, 1928)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos 0.9977 0.9858 pontos 0.9923 0.9923 0.9878
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	Notoschoenomyza chrysiceps Malloch, 1911) Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989 Palpibracus apicalis (Malloch, 1934) Palpibracus carvalhoi Lopes & Khouri, 1996 Palpibracus chilensis (Bigot, 1885) Palpibracus fasciculatus (Malloch, 1934)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos 0.9977 0.9858 pontos 0.9977 0.9858 pontos 0.9923 0.9878 0.9922
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474	Notoschoenomyza chrysiceps Malloch, 1934 Notoschoenomyza costata Snyder, 1957 Notoschoenomyza diminuta Couri & Marques, 2004 Notoschoenomyza immaculata (Walker, 1863) Notoschoenomyza kuscheli Hennig, 1955 Notoschoenomyza spinicosta (Stein, 1904) Notoschoenomyza sulfuriceps Malloch, 1934 Oxytonocera nigrohalterata (Stein, 1904) Pachyceramyia cordyluroides (Stein, 1898) Pachyceramyia enigmatica Albuquerque, 1955 Pachyceramyia longispina (Malloch, 1923) Palpibracus albuquerquei Carvalho, 1989 Palpibracus apicalis (Malloch, 1934) Palpibracus carvalhoi Lopes & Khouri, 1996 Palpibracus confusus (Malloch, 1928) Palpibracus fasciculatus (Malloch, 1934) Palpibracus lancifer (Malloch, 1934)	0.9987 pontos pontos 0.9026 0.9844 pontos 0.9869 pontos 0.9514 0.999 pontos pontos 0.9977 0.9858 pontos 0.9923 0.9923 0.9978 0.9922 0.9959

476	Palpibracus peruvianus (Malloch, 1929)	0.9935
477	Palpibracus pilosus Macquart, 1851	0.899
478	Palpibracus separatus (Malloch, 1934)	0.9784
479	Palpibracus similis (Malloch, 1934)	0.9538
480	Palpibracus spicatus (Malloch, 1934)	0.9544
481	Palpibracus trivitattus (Malloch, 1934)	0.9908
482	Palpibracus univittatus (Bigot, 1857)	0.9939
483	Parapyrellia oportuna Albuquerque & Lopes, 1979	pontos
484	Pentacricia aldrichii Stein, 1898	pontos
485	Phaonia abdita (Giglio-Tos, 1893)	0.9103
486	Phaonia advena Snyder, 1957	0.9698
487	Phaonia annulata (Albuquerque, 1957)	0.9636
488	Phaonia aurantica (Albuquerque & Medeiros, 1980)	pontos
489	Phaonia bigoti (Albuquerque, 1957)	0.9859
490	Phaonia bipunctata (Schiner, 1868)	0.8601
491	Phaonia californiensis (Malloch, 1923)	0.9269
492	Phaonia curvata (Stein, 1904)	0.9892
493	Phaonia hugonis Carvalho 1989	0 9946
494	Phaonia latinervis (Stein 1904)	0.899
495	Phaonia lentiginosa Snyder 1957	0.9784
496	Phaonia maculosa Stein 1911	pontos
190	Phaonia major Carvalho, 1984	0.9544
198	Phaonia merala (Snyder, 1957)	nontos
770 /100	Phaonia mexicana Carvalho 1984	0 9908
500	Phaonia minuta Carvalho, 1984	0.9908
501	Phaonia nigerrima Carvalho, 1984	0.999
502	Phaonia nigriventris (Albuquerque, 1954)	0 9744
502	Phaonia praesuturalis (Stoin, 1004)	0.9744
503	Phaonia punctinemis Stein, 1904)	0.9204
504	Phaonia puncturervis Stelli, 1911	0.9110
505	Phaomia puncensis Coelho, 1998	0.0702
507	Phaonia quercus Coemo, 1998	0.9792
507	Phaonia robusia Carvalho, 1984	0.9857
500	Phaonia shannoni (Calvanio & Polit, 1993)	0.9902
509	Phaonia similata (Albuquerque, 1957)	0.9951
510	Phaonia soranensis Coelino, 1998	pontos
511	Phaonia tetragona Gaminara, 1930	pontos
512	Phaonia triseta Curran, 1931	0.9/11
513	Phaonia trispila (Bigot, 1885)	0.9905
514	Phaonia venicurva (Stein, 1904)	pontos
515	Philornis aitkeni Dodge, 1963	pontos
516	Philornis albuquerquei Couri, 1983	0.9468
517	Philornis amazonensis Couri, 1983	0.8556
518	Philornis angustifrons (Loew, 1861)	0.9175
519	Philornis bellus Couri, 1984	pontos
520	Philornis blanchardi Garcia, 1952	pontos
521	Philornis carinatus Dodge, 1968	0.8756
522	Philornis deceptivus Dodge & Aitken, 1968	0.9491
523	Philornis diminutus Couri, 1984	pontos
524	Philornis downsi Dodge & Aitken, 1968	0.9727
525	Philornis falsificus Dodge & Aitken, 1968	0.9451
526	Philornis fasciventris (Wulp, 1896)	0.9832
527	Philornis frontalis Couri, 1984	pontos
528	Philornis fumicosta Dodge, 1968	pontos
529	Philornis gagnei Couri, 1983	0.9434

530	Philornis glaucinis Dodge & Aitken, 1968	0.9005
531	Philornis grandis Couri, 1984	0.8577
532	Philornis insularis Couri, 1983	pontos
533	Philornis lopesi Couri, 1983	pontos
534	Philornis masoni Couri, 1986	0.9517
535	Philornis medianus Couri, 1984	pontos
536	Philornis mima (Townsend, 1927)	pontos
537	Philornis mimicola Dodge, 1968	0.8587
538	Philornis nielseni Dodge, 1968	pontos
539	Philornis niger Dodge & Aitken, 1968	0.9685
540	Philornis obscurinervis Couri, 1984	pontos
541	Philornis obscurus (Wulp, 1896)	0.8708
542	Philornis pici (Macquart, 1854)	pontos
543	Philornis querulus Dodge & Aitken, 1968	pontos
544	Philornis rettenmeveri Dodge, 1963	pontos
545	Philornis rufoscutellaris (Couri, 1983)	0.9428
546	Philornis sabroskyi Albuquerque, 1957	0.9622
547	Philornis sanguinis Dodge & Aitken 1968	pontos
548	Philornis schildi Dodge 1963	pontos
549	Philornis seguri Garcia 1952	0 9401
550	Philornis setinervis Dodge 1963	0.9964
551	Philornis snermonhilas (Townsond 1805)	nontos
552	Philornis steini (Pont 1072)	0.8546
552	Philornis torquans (Nielson, 1013)	0.0340
554	Philornis tripitansis Dodge & Aitkon 1968	0.9400
555	Philornis umanani Garcia 1052	0.0703
555	Philornis univittatus Dodgo 1068	0.9703
557	Philomis unividuals Dodge, 1968	0.0075
551	Philomia vulgaria Couri 1084	0.9073
550	Philomis vulgaris Couli, 1984	pontos
559	Philophils zeleki Douge, 1965	pontos
500	Puispina benevenuta (Albuquerque, 1957)	pontos
501	Pilispina alifera (Court & Carvaino, 1993)	pontos
502	Pilispina jumipennis (Albuquerque, 1954)	0.9951
563	Pilispina medinai (Snyder, 1957)	0.9852
564	Puispina paula (Medeiros, 1980)	0.8816
565	Pilispina pilitibia Albuquerque, 1954	0.9639
566	Plumispina longipilis Albuquerque, 1954	0.9507
567	Plumispina similis Costacurta & Carvalho, 2003	0.9848
568	Polietina bicolor Albuquerque, 1956	0.9702
569	Polietina flavithorax (Stein, 1904)	0.9235
570	Polietina major Albuquerque, 1956	0.9629
571	Polietina minor (Albuquerque, 1956)	0.9434
572	Polietina nigra Couri & Carvalho, 1996	0.9431
573	Polietina orbitalis (Stein, 1904)	0.9722
574	Polietina prima (Couri & Machado, 1990)	0.8865
575	Polietina rubella (Wulp, 1896)	pontos
576	Polietina steini (Enderlein, 1927)	0.9473
577	Polietina univittata Couri & Carvalho, 1996	0.9951
578	Polietina wulpi Couri & Carvalho, 1997	0.9788
579	Potamia plumata (Carvalho, 1981)	0.987
580	Potamia scraba (Giglio-Tos, 1893)	0.9884
581	Pseudoptilolepis centralis Schuehli & Carvalho, 2005	0.9271
582	Pseudoptilolepis chrysella Schuehli & Carvalho, 2005	0.9828
583	Pseudoptilolepis confusa Snyder, 1949	0.9634

584	Pseudoptilolepis crocina Schuehli & Carvalho, 2005	0.8903
585	Pseudoptilolepis elbida Schuehli & Carvalho, 2005	pontos
586	Pseudoptilolepis fluminensis Albuquerque, 1954	0.9617
587	Pseudoptilolepis fulvapoda Snyder, 1949	0.9914
588	Pseudoptilolepis latipalpis (Stein, 1918)	0.9985
589	Pseudoptilolepis nigripoda Snyder, 1949	0.9146
590	Pseudoptilolepis nudapleura Snyder, 1949	0.98
591	Reynoldsia aurifera (Bigot, 1885)	0.9765
592	Reynoldsia brevitarsis Malloch, 1934	pontos
593	Reynoldsia coxata Malloch, 1934	0.9821
594	Reynoldsia pectinata Malloch, 1934	0.9997
595	Reynoldsia pteropleuralis Malloch, 1934	0.9887
596	Reynoldsia rufoapicata Malloch, 1934	0.9944
597	Reynoldsia scutellata Malloch, 1934	0.9892
598	Reynoldsia trochanterata Malloch, 1934	pontos
599	Rhabdoptera striatipennis (Stein, 1911)	0.9883
600	Sarcopromusca pruna (Shannon & Del Ponte, 1926)	0.9713
601	Sarcopromusca sarcophagina (Wulp, 1896)	0.8621
602	Scenetes cardini Malloch, 1936	0.9816
603	Schoenomyza albomedia Malloch, 1934	pontos
604	Schoenomyza argyriceps Malloch, 1934	pontos
605	Schoenomyza armipes Malloch, 1934	0.9928
606	Schoenomyza aurifrons Malloch, 1918	pontos
607	Schoenomyza bella Malloch, 1934	pontos
608	Schoenomyza biseriata Malloch, 1934	pontos
609	Schoenomyza breviventris Stein, 1911	0.9894
610	Schoenomyza evittata Malloch, 1934	pontos
611	Schoenomyza fuscifacies Malloch, 1934	pontos
612	Schoenomyza latvittata Malloch, 1934	pontos
613	Schoenomyza mallochi Pont, 1972	pontos
614	Schoenomyza napensis Couri, 1996	pontos
615	Schoenomyza neobiseriata Snyder, 1957	pontos
616	Schoenomyza neotropica Carvalho & Pont, 1993	pontos
617	Schoenomyza nigrithorax Stein, 1911	pontos
618	Schoenomyza tarsalis Malloch, 1934	pontos
619	Schoenomyza univittata Malloch, 1934	0.9858
620	Schoenomyza willinki Snyder, 1957	pontos
621	Schoenomyzina biseta (Stein, 1911)	0.9994
622	Schoenomyzina emdeni Hennig, 1955	pontos
623	Schoenomyzina fuscicosa Malloch, 1934	0.9928
624	Schoenomyzina pallicornis Malloch, 1934	0.9928
625	Schoenomyzina triangularis Malloch, 1934	0.9919
626	Schoenomyzina unicolor (Stein, 1911)	pontos
627	Scutellomusca scutellaris (Fabricius, 1805)	0.8826
628	Souzalopesmyia amazonica Albuquerque, 1951	0.9988
629	Souzalopesmyia carioca Albuquerque, 1951	0.9018
630	Souzalopesmyia paraensis Carvalho, 1999	0.9804
631	Souzalopesmyia singularis (Stein, 1911)	0.9796
632	Souzalopesmyia sulina Carvalho, 1999	pontos
633	Spathipheromyia albiceps Malloch, 1934	pontos
634	Spathipheromyia apicalis (Stein, 1911)	0.9974
635	Spathipheromyia atra Malloch, 1934	0.9868
636	Spathipheromyia chilensis Malloch, 1934	0.9999
637	Spathipheromyia fenestrata (Bigot, 1888)	pontos

638	Spathipheromyia fuscipalpis (Stein, 1911)	0.9894
639	Spathipheromyia guttipennis (Thomson, 1896)	0.9659
640	Spathipheromyia insularis Malloch, 1934	pontos
641	Spathipheromyia magellani Malloch, 1934	pontos
642	Spathipheromyia minuta (Malloch, 1934)	pontos
643	Spathipheromyia nigra (Stein, 1911)	pontos
644	Spathipheromyia picta (Stein, 1911)	0.9997
645	Spiligona hirticeps (Stein, 1911)	0.9604
646	Spiligona trichops (Stein, 1911)	0.9612
647	Syllimnophora aliena (Stein, 1911)	0.9764
648	Syllimnophora angustifrons Malloch, 1934	0.9442
649	Syllimnophora atrovittata (Stein, 1904)	0.9798
650	Syllimnophora femorata (Stein, 1911)	0.9868
651	Syllimnophora inconspicua Malloch, 1934	0.9575
652	Syllimnophora nigra (Lopes & Couri, 1987)	0.9835
653	Syllimnophora pauciseta (Stein, 1904)	0.8904
654	Syllimnophora stigmatica (Lopes & Couri, 1987)	0.9503
655	Thaumasiochaeta pilitarsis Stein, 1911	0.9926
656	Thaumasiochaeta variegata (Stein, 1911)	0.9802
	Mediana (n = 420)	0.97225

Conjunto de variáveis ambientais BIOCLIM utilizadas na estimativa das áreas de distribuição

Tomporature modio anual
remperatura media anuai
Amplitude media da temperature diurna (média mensal (temp Máx – temp Mín))
Isotermalidade (amplitude média diurna/amplitude da temperatura anual)
Sazonalidade térmica (desvio padrão *100)
Temperatura máxima do mês mais quente
Temperatura mínima do mês mais frio
Amplitude da temperatura annual
Temperatura média do trimestre mais úmido
Temperatura média do trimestre mais seco
Temperatura média do trimestre mais quente
Temperatura média do trimestre mais frio
Precipitação anual
Precipitação do mês mais úmido
Precipitação do mês mais seco
Sazonalidade pluvial (coeficiente de variação)
Precipitação do trimestre mais úmido
Precipitação do trimestre mais seco
Precipitação do trimestre mais quente
Precipitação do trimestre mais frio

Mapas da distribuição agregada das espécies de Muscidae: A) mapa piloto construído com os pontos de ocorrência e traços individuais das espécies. Número de espécies resolvido em hexágonos de 110 km de diâmetro; B) mapa dos dados utilizados na análise construído com as distribuições modeladas e pontos dos táxons que não atingiram o ASC mínimo de 0,85. Número de espécies resolvido em hexágonos de 27,5 km de diâmetro.

נע		at n=	
	Gênero	DR	Subfamília
1	Itatingamyia Albuquerque	4	Azeliinae
2	Neomuscina Townsend	5	Dichaetomyiinae
3	Catantygmus Enderlein	6	Azeliinae
4	Micropotamia Carvalho	6	Azeliinae
5	Potamia Robineau-Desvoidy	6	Azeliinae
6	Hydrotaea Robineau-Desvoidy	7	Azeliinae
7	Palpibracus Rondani	7	Azeliinae
8	Philornis Meinert	7	Dichaetomyiinae
9	Dolichophaonia Carvalho	7	Phaoniinae
10	Helina Robineau-Desvoidy	7	Phaoniinae
11	Phaonia Robineau-Desvoidy	7	Phaoniinae
12	Souzalopesmyia Albuquerque	7	Phaoniinae
13	Azelia Robineau-Desvoidy	8	Azeliinae
14	Brachygasterina Macquart	8	Azeliinae
15	Correntosia Malloch	8	Azeliinae
16	Drymeia Meigen	8	Azeliinae
17	Polietina Schnabl & Dziedzicki	8	Muscinae
18	Scutellomusca Townsend	8	Mydaeinae
19	Muscina Robineau-Desvoidy	8	Reinwardtiinae
20	Chaetagenia Malloch	9	Dichaetomyiinae
21	Charadrella Wulp	9	Dichaetomyiinae
22	Cyrtoneurina Giglio-Tos	9	Dichaetomyiinae
23	Cyrtoneuropsis Malloch	9	Dichaetomyiinae
24	Pseudoptilolepis Snyder	9	Dichaetomyiinae
25	Biopyrellia Townsend	9	Muscinae
26	Morellia (Parapyrellia) (Townsend)	9	Muscinae
27	Neorypellia Pont	9	Muscinae
28	Morellia (Trichomorellia) (Stein)	10	Muscinae
29	Morellia (Xenomorellia) (Malloch)	10	Muscinae
30	Graphomya Robineau-Desvoidy	10	Mydaeinae
31	Myospila Rondani	10	Mydaeinae
32	Reinwardtia Brauer & Bergenstamm	10	Reinwardtiinae
33	Limnophora Robineau-Desvoidy	11	Coenosiinae
34	Lispe Latreille	11	Coenosiinae
35	Scenetes Malloch	11	Mydaeinae
36	Drepanocnemis Stein	12	Coenosiinae
37	Rhabdoptera Stein	12	Coenosiinae
38	Spiligona Schnabl	12	Coenosiinae
39	Mydaea Robineau-Desvoidy	12	Mydaeinae

Lista dos táxons terminais e respectivos valores de distância à raiz (DR) conforme a superárvore de Muscidae

40	Pachyceramyia Albuquerque	14	Coenosiinae
41	Agenamyia Albuquerque	15	Coenosiinae
42	Sarcopromusca Townsend	15	Muscinae
43	Pentacricia Stein	17	Coenosiinae
44	Coenosia Meigen	19	Coenosiinae
45	Oxytonocera Stein	19	Coenosiinae
46	Plumispina Albuquerque	19	Coenosiinae
47	Apsil Malloch	20	Coenosiinae
48	Bithoracochaeta Stein	20	Coenosiinae
49	Cordiluroides Albuquerque	20	Coenosiinae
50	Insulamyia Couri	20	Coenosiinae
51	Neodexiopsis Malloch	20	Coenosiinae
52	Reynoldsia Malloch	20	Coenosiinae
53	Schoenomyzina Malloch	20	Coenosiinae
54	Stomopogon Malloch	20	Coenosiinae
55	Notoschoenomyza Malloch	21	Coenosiinae
56	Pilispina Albuquerque	21	Coenosiinae
57	Schoenomyza Haliday	22	Coenosiinae
58	Spathipheromyia Bigot	22	Coenosiinae

Coeficientes de determinação (r^2) da regressão linear (quadrados mínimos

ordinários) das variáveis ambientais na distância à raiz (p<0,001).

	Temp.	Precip.	Evapot.	Solo: carbono	Solo: pH	Todas
Distância à raiz média	0,517	0,06	0,184	< 0,01	0,185	0,568

Regressão com pesagem geográfica das variáveis ambientais na distância à raiz média (DRM). Para cada variável foi apresentado o r² local, que informa se a relação é fraca, média ou forte, e o coeficiente padrão da variável, que informa se a relação é positiva, nula ou negativa. Legenda em classes de tamanhos iguais.