## **GUSTAVO BARBOSA ATHAYDE**

# ANÁLISE ESTRUTURAL E HIDROQUÍMICA DO AQÜÍFERO SERRA GERAL NA BACIA HIDROGRÁFICA DO PARANÁ III

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre pelo Curso de Pós-Graduação em Geologia Ambiental, Departamento de Geologia, Setor de Ciências da Terra, Universidade Federal do Paraná.

Orientador: Prof. Dr. Ernani F. da Rosa Filho

Co- Orientadores:

Prof. Dr. André Virmond Lima Bittencourt

Prof. Dr. Sidney Pires Rostirolla

CURITIBA 2008

Athayde, Gustavo Barbosa Análise estrutural e hidroquímica do Aqüífero Serra Geral na Bacia Hidrográfica do Paraná III / Gustavo Barbosa Athayde. – Curitiba, 2008. 128 f. : il., tabs, grafs.

Orientador: Ernani F. da Rosa Filho Dissertação (Mestrado) – Universidade Federal do Paraná, Setor de Ciências da Terra, Curso de Pós-Graduação em Geologia Ambiental. Inclui Bibliografia.

1. Hidrogeologia. 2. Hidrogeoquímica. I. Rosa Filho, Ernani F. II. Título. III. Universidade Federal do Paraná.

CDD 551.48

## TERMO DE APROVAÇÃO

## **GUSTAVO BARBOSA ATHAYDE**

#### ANÁLISE ESTRUTURAL E HIDROQUIMICA DO AQÜÍFERO SERRA GERAL NA BACIA HIDROGRÁFICA DO PARANÁ III.

Dissertação de Mestrado aprovada como requisito parcial para obtenção do grau de Mestre no Curso de Pós-Graduação em Geologia, área de concentração em Geologia Ambiental, da Universidade Federal do Paraná, Comissão formada por:

Profa. Dra. Amélia João Fernandes Instituto Geológico

Eduardo dv Af

Prof. Dr. Eduardo Chemas Hindi Universidade Federal do Paraná

Prof. Dr. Ernani Francisco da Rosa Filho Universidade Federal do Paraná Presidente

Curitiba, 26 de maio de 2008.

۰,

#### AGRADECIMENTOS

Ao Prof. Dr. Ernani Francisco da Rosa Filho, pela orientação desta dissertação, proveitosas discussões e oportunidades.

Aos co-orientadores Prof. Dr. Sidnei Pires Rostirolla e Prof. Dr. André Virmond Lima Bittencourt, pelas orientações, sugestões, discussões e críticas do texto.

A ITAIPU BINACIONAL, em especial ao Sr. Nelton Friderich e a bióloga Simone Benassi, pelo apoio e financiamento deste projeto.

Ao SAAE – Serviço Autônomo de Água e Esgoto do município de Marechal Cândido Rondon pelo fornecimento dos dados meteorológicos e laudos físicoquímicos, em especial ao colega Químico Laércio Miguel Richter pelo acompanhamento durante as etapas de campo.

Ao Geólogo Dr. Eduardo Chemas Hindi pela participação na banca, revisão do texto e ensinamentos durante as etapas desta pesquisa.

Aos colegas do Laboratório de Pesquisas Hidrogeológicas pelas análises físico-químicas.

Ao Laboratório de Pesquisas em Geofísica Aplicada, em especial a Geóloga M.S. Alessandra Bongiolo pelo fornecimento e análise dos dados aeromagnéticos.

Aos meus pais pelo apoio e construção do meu conhecimento ao longo da vida, esta dissertação é "parte dos frutos" desde investimento. Aos meus irmãos pelo apoio e incentivo em todas as etapas de minha vida. Minha família é bem bacana....

À Geóloga M.Sc. Camila de Vasconcelos Müller Athayde pela revisão dos dados hidroquímicos, companheirismo e apoio incondicional em todas as etapas desta pesquisa.

iii

|              |     | ,   |      |   |
|--------------|-----|-----|------|---|
| $\mathbf{c}$ | 184 | A F | יור  | ~ |
| 21           | INI | Δ H | < 11 |   |
| <b>U</b>     |     |     | 110  | - |
|              |     |     |      |   |

| LISTA DE FIGURASvi                                                                                  |                                                    |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| LISTA DE TABELASix                                                                                  |                                                    |  |  |
| RESUMO                                                                                              | X                                                  |  |  |
| ANSTRACT                                                                                            | xi                                                 |  |  |
| 1. INTRODUÇÃO                                                                                       | . 1                                                |  |  |
| 1.1 OBJETIVOS                                                                                       | . 2                                                |  |  |
| 2. MATERIAL E MÉTODOS                                                                               | .3                                                 |  |  |
| <ul> <li>2.1 BASE CARTOGRÁFICA UTILIZADA</li></ul>                                                  | .3<br>.4<br>.5<br>.5<br>.7<br>.8<br>11<br>11<br>13 |  |  |
| 5. CARACTERIZAÇÃO REGIONAL DO TERRITORIO                                                            | 10                                                 |  |  |
| 5.1. CONTEXTO GEOLOGICO REGIONAL                                                                    | 18                                                 |  |  |
| 3.1.1 FM. SERRA GERAL NO ESTADO DO PARANA                                                           | 19                                                 |  |  |
| 3.1.2 ARCABOUÇO ESTRUTURAL DA BACIA SEDIMENTAR DO PARANA                                            | 22                                                 |  |  |
| 3.2. HIDROGEOLOGIA REGIONAL                                                                         | 25<br>25                                           |  |  |
| 3.2.1 O AQUIFERO SERRA GERAL NO ESTADO DO PARANA                                                    | 25                                                 |  |  |
| <b>3.3. CLIMA NO ESTADO DO PARANA</b>                                                               | 31<br>27                                           |  |  |
| 3.1.4.1 Baranço munco cimatologico da bacia do no Ajuncaba, Marechai Candido Kondon / PK            | 37<br>20                                           |  |  |
| 3.1.4.1.1 Palanee Hidrige Climatelógice                                                             | 39<br>17                                           |  |  |
| 31413 Relações entre fenômenos climatológicos e águas subterrâneas                                  | +2<br>44                                           |  |  |
| 3.1. GEOMORFOLOGIA DA BPIII                                                                         | <b>46</b>                                          |  |  |
| 4. RESULTADOS E DISCUSSÕES                                                                          | 50                                                 |  |  |
| <b>4.1 Análise Multi-escala de Lineamentos Estruturais</b><br>4.1.1 Análise Direcional Multi-escala | <b>50</b><br>51                                    |  |  |

| 4.1.1.1 Lineamentos 1:600.000                                                  |        |
|--------------------------------------------------------------------------------|--------|
| 4.1.1.2 Lineamentos 1:300.000                                                  |        |
| 4.1.1.3 Lineamentos 1:100.000                                                  | 57     |
| 4.1.1 ANÁLISE COMPARATIVA DOS LINEAMENTOS TRAÇADOS                             | 60     |
| 4.1.2 ANÁLISE DE DENSIDADE DOS LINEAMENTOS ESTRUTURAIS                         | 61     |
| 4.1.2.1 Análise da Densidade dos Lineamentos Estruturais 1:600.000             | 63     |
| 1.1.2.2 Análise da Densidade dos Lineamentos Estruturais 1:300.000             | 64     |
| 1.1.2.3 Análise da Densidade dos Lineamentos Estruturais 1:100.000             |        |
| 4.2 IMPLICAÇÕES DO ARCABOUÇO ESTRUTURAL NAS VAZÕES DA BPIII                    |        |
| 4.2.1 DISTRIBUIÇÕES DAS VAZÕES NA BPIII                                        |        |
| 4.3 HIDROGEOQUÍMICA DA BPIII.                                                  |        |
| 4.3.1 CLASSIFICAÇÃO DAS ÁGUAS SUBTERRÂNEAS                                     |        |
| 4.3.1.1 Águas do tipo sulfatada-bicarbonatada sódica                           |        |
| 4.3.1.2 Águas do tipo bicarbonatada-carbonatada sódica                         | 77     |
| 4.3.1.3 Águas do tipo carbonatada sódica                                       |        |
| 4.3.1.4 Águas do tipo bicarbonatada sódica-cálcica                             |        |
| 4.3.1.5 Águas do tipo bicarbonatada cálcica-sódica                             | 80     |
| 4.3.1.6 Águas do tipo bicarbonatada sódica                                     | 81     |
| 4.3.1.7 Águas do tipo bicarbonatada cálcica                                    | 82     |
| 4.3.2 QUALIDADE DAS ÁGUAS PARA IRRIGAÇÃO                                       |        |
| 4.3.3 ANÁLISE NUMÉRICA E DISTRIBUIÇÃO ESPACIAL DOS DADOS                       |        |
| 4.3.3.1 Bicarbonato                                                            |        |
| 4.3.3.2 Carbonato                                                              | 88     |
| 4.3.3.3 Cloreto                                                                | 90     |
| 4.3.3.4 Fluoreto                                                               |        |
| 4.3.3.5 Sulfato                                                                |        |
| 4.3.3.7 Sílica                                                                 |        |
| 4.3.3.8 Cálcio                                                                 |        |
| 4.3.3.9 Magnésio                                                               | 100    |
| 4.3.3.10 Sódio                                                                 | 102    |
| 4.3.3.11 Potássio                                                              | 104    |
| 4.3.3.13 pH                                                                    | 106    |
| 4.3.3.14 Condutância específica                                                | 108    |
| 4.3.3.16 Sólidos totais dissolvidos                                            | 110    |
| 4.3.3.18 Temperatura                                                           | 112    |
| 4.3.4 RELAÇÕES POTENCIOMÉTRICAS E MISTURA DE ÁGUAS ENTRE OS AQÜÍFEROS SERRA GI | ERAL E |
| BOTUCATU NA ÁREA DA BPIII                                                      | 114    |
| 4.3.4.1 Tipologia química do Aqüífero Botucatu (Aqüífero Guarani) na BPIII     | 115    |
| 4.3.4.2 Perfil hidrogeológico                                                  | 117    |
| 5. CONCLUSÕES                                                                  | 121    |
| 6 DEFEDENCIAS                                                                  | 102    |
|                                                                                | I4J    |

## LISTA DE FIGURAS

| FIGURA 1 - LOCALIZAÇÃO DA ÁREA DE ESTUDO1                                        |
|----------------------------------------------------------------------------------|
| FIGURA 2 - MATERIAIS UTILIZADOS NA COLETA DAS AMOSTRAS (PH E CONDUTÍVIMETRO      |
| PORTÁTEIS, ÁGUA DEIONIZADA, FENALFTALEINA, ETC)8                                 |
| FIGURA 3 - BACIAS HIDROGRÁFICAS DO PARANÁ E DETALHE DA REDE DE DRENAGEM DA       |
| BPIII16                                                                          |
| FIGURA 4 - DIVISÃO REGIONAL E SEDES MUNICIPAIS DA BPIII17                        |
| FIGURA 5 - MAPA DA BACIA DO PARANÁ, MODIFICADO DE MILANI ET AL., (1997)18        |
| FIGURA 6 - MAPA DA FM. SERRA GERAL NO ESTADO DO PARANÁ E A LOCALIZAÇÃO DA        |
| BACIA DO PARANÁ III20                                                            |
| FIGURA 7 – ILUSTRAÇÃO DOS DERRAMES BASÁLTICOS. A ORDEM NUMÉRICA REPRESENTA       |
| A ORDEM DE EXTRAVASAMENTO DOS DERRAMES. 1 – MAIS ANTIGO; 4 – MAIS NOVO           |
| (MODIFICADO DE CPRM)21                                                           |
| FIGURA 8 - DIFERENTES LITOTIPOS ENCONTRADOS NA ÁREA DE ESTUDO. FOTOGRAFIAS DO    |
| AUTOR NA PEDREIRA MUNICIPAL DE TOLEDO – PR                                       |
| FIGURA 9 – ARCABOUÇO TECTÔNICO DA BACIA DO PARANÁ, MODIFICADO DE MILANI E        |
| <i>TAL</i> .,(1997)22                                                            |
| FIGURA 10- LOCALIZAÇÃO DA BPIII NO CONTINENTE E OS DADOS DO PROJETO WORLD        |
| STRESS MAP (2006)                                                                |
| FIGURA 11 – PRINCIPAIS AQÜÍFEROS DO ESTADO DO PARANÁ E A LOCALIZAÇÃO DA ÁREA     |
| EM ESTUDO                                                                        |
| FIGURA 12 - MODELO DE CIRCULAÇÃO NO AQÜÍFERO SERRA GERAL (FERNANDES, 2006) 26    |
| FIGURA 13 - NÚMERO DE OUTORGAS CONCEDIDAS PELA SUDERHSA POR UNIDADE              |
| AQÜÍFERA ATÉ O ANO DE 200527                                                     |
| FIGURA 14 - ZONA VESICULAR / AMIGDALOIDAL (TOPO DE DERRAME) EM BASALTO DA FM.    |
| SERRA GERAL E PERCOLAÇÃO DE ÁGUA NAS FRATURAS DO BASALTO                         |
| FIGURA 15 - DIAGRAMA DE PIPER DO AQÜÍFERO SERRA GERAL. FONTE: ROSA FILHO E HINDI |
| (2006)                                                                           |
| FIGURA 16 - DIAGRAMA DE CLASSIFICAÇÃO DE ÁGUA PARA IRRIGAÇÃO. FONTE: (ROSA       |
| FILHO E HINDI, 2006)                                                             |
| FIGURA 17 - CLASSIFICAÇÃO CLIMÁTICA REGIONAL DA ÁREA EM PESQUISA, MODIFICADO     |
| DE IAPAR, 2009)                                                                  |
| FIGURA 18 - DIREÇÃO PREDOMINANTE DOS VENTOS NO ESTADO DO PARANÁ                  |
| FIGURA 19 - CARTAS COM AS MÉDIAS MENSAIS DE PRECIPITAÇÃO PARA O ESTADO DO        |
| PARANÁ                                                                           |
| FIGURA 20 - CARTAS COM AS MÉDIAS MENSAIS DE TEMPERATURA                          |
| FIGURA 21 - CARTAS COM AS MEDIAS MENSAIS DE EVAPOTRANSPIRAÇÃO                    |
| FIGURA 22 - LOCALIZAÇÃO DO MUNICIPIO DE MARECHAL CÂNDIDO RONDON E DA BACIA       |
| DO AJURICABA                                                                     |
| FIGURA 23 - GRAFICO COMPARATIVO ENTRE AS TEMPERATURAS MEDIAS MENSAIS DOS         |
| ANOS DE 2004 E 2005                                                              |
| FIGURA 24 - GRÁFICO COMPARATIVO ENTRE AS PRECIPITAÇÕES MENSAIS PARA O PERÍODO    |
| ANALISADO                                                                        |
| FIGURA 25- GRÁFICO COMPARATIVO ENTRE A EVAPOTRANSPIRAÇÃO POTENCIAL NOS           |
| ANOS DE 2004 E 2005                                                              |
| FIGURA 26 - GRÁFICO DOS VALORES MENSAIS DE PRECIPITAÇÃO, EVAPOTRANSPIRAÇÃO       |
| POTENCIAL E ESCOAMENTO SUPERFICIAL NO PERÍODO ESTUDADO                           |
| FIGURA 27 - BALANÇO HİDRICO CLIMATOLÓGICO PARA O PERÍODO ESTUDADO44              |
| FIGURA 28 - GRAFICO DA VARIAÇAO DO NIVEL DINÂMICO NO POÇO TUBULAR PROFUNDO.      |
|                                                                                  |
| FIGURA 29 – MAPA HIPSOMETRICO DA BACIA HIDROGRÁFICA DO PARANA III                |
| FIGURA 30 – MAPA DA DECLIVIDADE DO TERRENO NA BACIA HIDROGRÁFICA DO PARANÁ       |
| III                                                                              |

| FIGURA 31 – MAPA DA DIREÇÃO DAS VERTENTES NA BACIA HIDROGRÁFICA DO PARANÁ III.<br>49 |
|--------------------------------------------------------------------------------------|
| EIGURA 32 - MODELO DIGITAL DE ELEVAÇÃO SRTM90 (USGS 2005) 50                         |
| FIGURA 32 - MODELO DIGITAL DE ELEVAÇÃO SKIMJO (0505, 2005)                           |
| 1.600 000 À ESQUERDA ROSETA REFERENTE A FREQÜÊNCIA À DIREITA ROSETA DO               |
| COMPRIMENTO ACUMULADO DOS LINEAMENTOS                                                |
| FIGURA 34 - LINEAMENTOS TRACADOS NA ESCALA 1.600 000                                 |
| FIGURA 35 - DIAGRAMA DE ROSETAS PARA OS I INFAMENTOS TRACADOS NA ESCALA              |
| 1.300 000 À ESQUERDA ROSETA REFERENTE A FREQÜÊNCIA DOS LINEAMENTOS À                 |
| DIREITA ROSETA REFERENTE AO COMPRIMENTO ACUMULADO                                    |
| FIGURA 36 - LINEAMENTOS TRACADOS NA ESCALA 1.300 000 56                              |
| FIGURA 37 - DIAGRAMA DE ROSETAS PARA OS LINEAMENTOS TRACADOS NA ESCALA               |
| 1:100.000. À ESQUERDA ROSETA REFERENTE A FREQÜÊNCIA DOS LINEAMENTOS À                |
| DIREITA ROSETA REFERENTE AO COMPRIMENTO ACUMULADO. 57                                |
| FIGURA 38 - LINEAMENTOS TRACADOS NA ESCALA 1:100.000                                 |
| FIGURA 39 - 60                                                                       |
| FIGURA 40 – MAPAS COM AS DIFERENTES METRAGENS DO RAIO DE INFLUÊNCIA E GRADE.62       |
| FIGURA 41 - MAPA DE DENSIDADE DOS LINEAMENTOS TRACADOS NA ESCALA 1:600.00063         |
| FIGURA 42 - MAPA DE DENSIDADE DOS LINEAMENTOS TRACADOS NA ESCALA 1:300.00064         |
| FIGURA 43 - MAPA DE DENSIDADE DOS LINEAMENTOS TRACADOS NA ESCALA 1:100.00065         |
| FIGURA 44 - LOCALIZAÇÃO DOS POCOS UTILIZADOS NA CONFECÇÃO DO MAPA DE                 |
| ISOVAZÕES                                                                            |
| FIGURA 45 - TRACADO 1:600.000                                                        |
| FIGURA 46 - TRACADO 1:300.000                                                        |
| FIGURA 47 - TRACADO 1:100.000                                                        |
| FIGURA 48 - LOCALIZAÇÃO DOS PONTOS ONDE FORAM OBTIDOS OS DADOS PARA ANÁLISE          |
| HIDROGEOQUÍMICA                                                                      |
| FIGURA 49 - DISTRIBUIÇÃO PERCENTUAL DAS CLASSES DE ÁGUA COM BASE NAS ANÁLISES        |
| FÍSICO-QUÍMICAS DAS AMOSTRAS COLETADAS NOS POÇOS TUBULARES PROFUNDOS                 |
| DA BPIII                                                                             |
| FIGURA 50 - DIAGRAMA DE PIPER COM 39 AMOSTRAS DE ÁGUA SUBTERRÂNEA DA BACIA           |
| DO PARANÁ III                                                                        |
| FIGURA 51 - DISTRIBUIÇÃO ESPACIAL DOS TIPOS DE ÁGUA NA BPIII                         |
| FIGURA 52 - DIAGRAMA DE PIPER PARA AS ÁGUAS SULFATADAS-BICARBONATADAS                |
| SÓDICAS                                                                              |
| FIGURA 53 - GRÁFICO COM A MÉDIA DOS VALORES DA ÁGUA SULFATADA-                       |
| BICARBONATADA SÓDICA76                                                               |
| FIGURA 54 - DIAGRAMA DE PIPER PARA AS ÁGUAS BICARBONATADAS-CARBONATADAS              |
| SÓDICAS                                                                              |
| FIGURA 55 - ESTATÍSTICA COM A MÉDIA DOS VALORES ÁGUA BICARBONATADA-                  |
| CARBONATADA SÓDICA                                                                   |
| FIGURA 56 - DIAGRAMA DE PIPER PARA AS ÁGUAS CARBONATADAS SÓDICAS                     |
| FIGURA 57 - GRÁFICO COM A MÉDIA DOS VALORES DAS ÁGUAS CARBONATADAS SÓDICAS           |
|                                                                                      |
| FIGURA 58 - DIAGRAMA DE PIPER PARA AS ÁGUAS BICARBONATADAS SÓDICAS-CÁLCICAS          |
|                                                                                      |
| FIGURA 59 - GRAFICO COM A MEDIA DOS VALORES DAS AGUAS BICARBONATADAS SODICO-         |
| CALCICAS                                                                             |
| FIGURA 60 - DIAGRAMA DE PIPER PARA AS AGUAS BICARBONATADAS CALCICAS-SODICAS          |
| FIGURA 61 - ESTATÍSTICA COM OS VALORES MEDIANOS DA ÁGUA BICARBONTADA                 |
| CÁLCICA-SÓDICA                                                                       |
| FIGURA 62 - DIAGRAMA DE PIPER PARA AS ÁGUAS BICARBONATADAS SÓDICAS81                 |
| FIGURA 63 - GRÁFICO COM A MÉDIA DOS VALORES DAS ÁGUAS BICARBONATADAS                 |
| SÓDICAS                                                                              |
| FIGURA 64 - DIAGRAMA DE PIPER PARA AS ÁGUAS BICARBONATADAS CÁLCICAS82                |

| FIGURA 65 - GRÁFICO COM A MÉDIA DOS VALORES DAS ÁGUAS BICARBONATADAS                       |           |
|--------------------------------------------------------------------------------------------|-----------|
| CÁLCICAS                                                                                   | 82        |
| FIGURA 66 - DIAGRAMA DE CLASSIFICAÇÃO DE ÁGUA PARA IRRIGAÇÃO, COM AMOSTRA                  | AS        |
| DE ÁGUAS SUBTERRÂNEAS DA BACIA DO PARANÁ III.                                              | 84        |
| FIGURA 67 - MUNICÍPIOS DA BPIII ONDE FOI ESTUDADA A DISTRIBUIÇÃO DOS ELEMENT               | OS        |
| QUÍMICOS NA ÁGUA SUBTERRÂNEA                                                               | 85        |
| FIGURA 68 - ESTATÍSTICA UNIVARIADA DO ÂNION HCO3 <sup>-</sup>                              | 86        |
| FIGURA 69 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DO ISOTEORES DE HCO3 <sup>-</sup>             | 87        |
| FIGURA 70 - ESTATÍSTICA UNIVARIADA DO CO3 <sup>2-</sup>                                    | 88        |
| FIGURA 71 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DE ISOTEORES DO CO <sub>3</sub> <sup>2-</sup> | 89        |
| FIGURA 72- ESTATÍSTICA UNIVARIADA DO CL <sup>-</sup>                                       | 90        |
| FIGURA 73 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DE ISOTEORES DO CL <sup>-</sup>               | 91        |
| FIGURA 74 - ESTATÍSTICA UNIVARIADA DO F <sup>-</sup>                                       | 92        |
| FIGURA 75 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DE ISOTEORES DO F                             | 93        |
| FIGURA 76 - ESTATÍSTICA UNIVARIADA DO SO4 <sup>-2</sup>                                    | 94        |
| FIGURA 77 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DE ISOTEORES DE SO <sub>4</sub> -2            | 95        |
| FIGURA 80 - ESTATISTICA UNIVARIADA DA SIO <sub>2</sub>                                     | 96        |
| FIGURA 81 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DE ISOTEORES DA SIO <sub>2</sub>              | 97        |
| FIGURA 82 - ESTATISTICA UNIVARIADA DO CA <sup>2+</sup>                                     | 99        |
| FIGURA 83 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DE ISOTEORES DO CA <sup>2+</sup>              | 99        |
| FIGURA 84 - ESTATISTICA UNIVARIADA DO MG <sup>2+</sup>                                     | 100       |
| FIGURA 85 - MAPA COM A DISTRIBUIÇAO ESPACIAL DE ISOTEORES DO MG <sup>2+</sup>              | 101       |
| FIGURA 86 - ESTATISTICA UNIVARIADA DO NA <sup>+</sup>                                      | 102       |
| FIGURA 87 -MAPA COM A DISTRIBUIÇAO ESPACIAL DE ISOTEORES DO NA <sup>+</sup>                | 103       |
| FIGURA 88 - ESTATISTICA UNIVARIADA DO CATION K <sup>+</sup>                                | 104       |
| FIGURA 89 - MAPA COM A DISTRIBUIÇAO ESPACIAL DOS ISOTEORES DO K <sup>+</sup>               | 105       |
| FIGURA 92 - ESTATISTICA UNIVARIADA DOS VALORES DE PH                                       | 106       |
| FIGURA 93 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DOS ISO-VALORES DO PH                         | 107       |
| FIGURA 94 - ESTATISTICA UNIVARIADA DA CONDUTANCIA ESPECIFICA                               | 108       |
| FIGURA 95 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DOS ISO-VALORES DA CONDUTANC                  | IA        |
|                                                                                            | 109       |
| FIGURA 98 - ESTATISTICA UNIVARIADA DOS SOLIDOS TOTAIS DISSOLVIDOS CALCULAD                 | OS        |
|                                                                                            | 110       |
| FIGURA 99 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DAS ISOTEORES DOS STD CALCULA                 | DOS       |
|                                                                                            |           |
| FIGURA 102 - ESTATISTICA UNIVARIADA DA TEMPERATURA                                         | 112       |
| FIGURA 103 - MAPA COM A DISTRIBUIÇÃO ESPACIAL DAS ISOVALORES DA TEMPERATU<br>(°C)          | ка<br>113 |
| FIGURA 104 - CENA LANDSAT TM7 E LOCALIZAÇÃO DOS POÇOS UTILIZADOS NA ANÁLIS                 | E115      |
| FIGURA 105 - DIAGRAMA DE PIPER DOS POÇOS DO GUARANI NA BP III                              | 117       |
| FIGURA 106 - LOCALIZAÇÃO DOS POÇOS UTILIZADOS NO PERFIL HIDROGEOLÓGICO                     | 118       |
| FIGURA 107 - PERFIL TOPOGRÁFICO E SUPERFÍCIE POTENCIOMÉTRICA "VIRTUAL" DOS                 |           |
| POÇOS ESTUDADOS                                                                            | 119       |
| FIGURA 108 - DIAGRAMA DE PIPER COM OS POÇOS UTILIZADOS NESTA ANÁLISE                       |           |
| (VERMELHO: MCR 1, AZUL: PB, VERDE: PB 1 E AMARELO: MCR)                                    | 120       |

## LISTA DE TABELAS

| TABELA 1 - PARÂMETROS ANALISADOS E MÉTODOS ANALÍTICOS CONFORME A ROTINA DO  | С  |
|-----------------------------------------------------------------------------|----|
| LPH1                                                                        | 10 |
| TABELA 2- VAZÕES DOS POÇOS TUBULARES PROFUNDOS LOCADOS NA FM. SERRA GERAL,  | ,  |
| SEPARADOS POR BACIAS HIDROGRÁFICAS                                          | 29 |
| TABELA 3 - MÉDIAS MENSAIS DO ESCOAMENTO SUPERFICIAL.                        | 41 |
| TABELA 4- VALORES MÉDIOS MENSAIS DE PRECIPITAÇÃO, EVAPOTRANSPIRAÇÃO         |    |
| POTENCIAL, ESCOAMENTO SUPERFICIAL E O SALDO PARA O PERÍODO ENTRE            |    |
| DEZEMBRO DE 2004 E DEZEMBRO DE 2005, NOTAR EM NEGRITO OS MESES COM          |    |
| EXCEDENTE HÍDRICO.                                                          | 43 |
| TABELA 5 - FREQÜÊNCIA E COMPRIMENTO ACUMULADO DOS LINEAMENTOS NA ESCALA     |    |
| 1:600.000                                                                   | 51 |
| TABELA 6 - FREQÜÊNCIA E COMPRIMENTO ACUMULADO DOS LINEAMENTOS NA ESCALA     |    |
| 1:300.000                                                                   | 54 |
| TABELA 7 - FREQÜÊNCIA E COMPRIMENTO DOS LINEAMENTOS TRAÇADOS NA ESCALA      |    |
| 1:100.000                                                                   | 57 |
| TABELA 8 - ESTATÍSTICA DOS DADOS DE VAZÃO DOS POÇOS (M <sup>3</sup> /H)     | 56 |
| TABELA 9- MÉDIAS DAS PRINCIPAIS CONCENTRAÇÕES DOS PARÂMETROS FÍSICO-QUÍMICO | )S |
| DOS DIVERSOS TIPOS DE ÁGUA SUBTERRÂNEA NA BPIII                             | 75 |
| TABELA 10 - PARÂMETROS HIDRODINÂMICOS DOS POÇOS UTILIZADOS11                | 15 |
| ,<br>,                                                                      |    |

#### RESUMO

O Aqüífero Serra Geral (ASG), formado pelos basaltos e derivados da Fm. Serra Geral ocorre, no Estado do Paraná, em uma área de aproximadamente 109.000 km<sup>2</sup>. As águas do aqüífero são explotadas, principalmente, para abastecimento público e, em menor escala por indústrias, hotéis e irrigação. A área de estudo localiza-se na região oeste do Estado do Paraná, compreendendo toda a Bacia Hidrográfica do Paraná III (BPIII). Os objetivos desta pesquisa foram: caracterizar as principais direções de lineamentos estruturais existentes e suas densidades, utilizando para isso a análise multiescala de lineamentos, bem como a análise hidroquímica da água subterrânea. Perfis construtivos de poços e dados hidrogeológicos foram usados para um melhor entendimento do comportamento do aquífero, bem como para estudar a interação com o aquífero subjacente. As amostras de água foram coletadas em poços tubulares profundos e analisadas para determinar a concentração dos íons principais (cálcio, magnésio, sódio, potássio, bicarbonato, cloreto, sulfato, nitrato, entre outros); total de sólidos dissolvidos e sílica. Alcalinidade, temperatura, pH e condutividade foram medidos em campo. Os tipos químicos de água foram definidos usando o diagrama de Piper. Os tipos de água determinados foram: bicarbonatada cálcica; bicarbonatada sódica: bicarbonatada sódica-cálcica: bicarbonatada cálcica-sódica; bicarbonatada-carbonatada sódica: carbonatada sódica: sulfatada-bicarbonatada sódica. Os resultados químicos dos parâmetros foram plotados em mapas de isolinhas, buscando caracterizar a distribuição espacial dos teores, assim como a relação entre valores elevados e aspectos da geologia estrutural local. O resultado desta pesquisa mostra que o ASG deve ser considerado como fonte estratégica para o abastecimento público em função da qualidade in nautra de suas águas, bem como pode ser utilizado, de maneira geral, como alternativa para irrigação em períodos de prolongada estiagem. Para um aproveitamento sustentável de suas potencialidades, todas as locações devem ser precedidas de análise estrutural / geomorfológica detalhada, que definam controles estruturais que governem o fluxo do aqüífero.

Palavras-Chaves: Bacia do Paraná III; Aquifero Serra Geral, Análise multi-escala de lineamentos e hidrogeoquímica.

### ABSTRACT

THE SERRA GERAL AQUIFER (SGA) IS CONSTITUTED BY VOLCANIC ROCKS FROM SERRA GERAL FORMATION AND IS LOCATED IN THE STATE PARANÁ, OVER AN AREA OF NEARLY 109.000 KM<sup>2</sup>. THE AQUIFER IS MAINLY EXPLOITED AS A PUBLIC WATER SUPPLY, AND SECONDARY, FOR HOTELS, INDUSTRY AND IRRIGATION. THE STUDIED AREA IS LOCATED IN WEST OF STATE PARANÁ. OVER THE PARANÁ HYDROGRAPHIC BASIN III (BPIII). THE AIM OF THIS RESEARCH WERE TO INVESTIGATE LINEAMENTS USING SEVERAL REMOTE SYSTEMS, TO CHECK AT SEVERAL SCALES THE POSSIBLE STRUCTURAL CONTROL OVER THE GROUNDWATER FLOW AND CHEMICAL CLASSIFICATION. GROUNDWATER SAMPLES WERE COLLECTED IN WATER WELLS AND ANALYZED FOR THE MAJOR IONS (CALCIUM, MAGNESIUM, SODIUM, POTASSIUM, CHLORIDE, SULFATE AND NITRATE AMONG OTHERS), TOTAL DISSOLVED SOLIDS AND DISSOLVED SILICA. ALKALINITY, TEMPERATURE, PH AND SPECIFIC CONDUCTANCE WERE MEASURED IN THE FIELD. THE WATER TYPES ARE: CA-HCO<sub>3</sub>, NA-NA-CA-HCO<sub>3</sub>, CA-NA-HCO<sub>3</sub>, NA-CO<sub>3</sub> AND SO<sub>4</sub>-NA-HCO<sub>3</sub>. THE HCO<sub>3</sub>. CHEMICAL RESULTS ARE PLOTTED AS ISOLINES MAPS SHOWING THE SPECIAL VARIATIONS OF THE PARAMETERS AND LINKED TO THE MAINLY STRUCTURAL FEATURES. THE RESULTS OF THIS RESEARCH SHOW THAT THE SGA IS STRATEGIC FOR PUBLIC WATER SUPPLY AND CAN BE USED. CONDITIONS TO IRRIGATION. IN EXTREME FOR SUSTAINABLE EXPLOITATIONS THE WELL LOCATIONS NEEDS A STRUCTURAL AND GEOMORPHOLOGIC STUDIES TO KNOW THE GROUNDWATER CONTROLS.

## 1. INTRODUÇÃO

O Aqüífero Serra Geral (ASG) é um dos mais importantes aqüíferos do Estado do Paraná, em função de sua área de abrangência e principalmente, de seu potencial para abastecimento público. Trata-se de um aqüífero tipo fissural, o que implica na necessidade de estudos de geologia estrutural para caracterizar direções e contextos tectônicos que configurem áreas potenciais à ocorrência de água subterrânea.

Esta dissertação aborda aspectos estruturais e hidroquímicos do ASG, na região da Bacia Hidrográfica do Paraná III (BPIII), Estado do Paraná (Figura 1).



Figura 1 - Localização da área de estudo

A importância do tema em estudo é justificada pelo papel desempenhado pelo ASG, tanto em nível local como nível nacional, considerando suas dimensões, potencialidades e a qualidade das águas subterrâneas. Através da análise multi-escala de lineamentos estruturais foram determinadas as principais direções azimutais, suas densidades e relações espaciais com os poços tubulares profundos, na área da BPIII.

Amostras de água coletadas nos poços tubulares profundos foram utilizadas para classificação hidroquímica, bem como verificar a possibilidade de uso destas águas na irrigação.

Alguns poços de água existentes na BPIII, que captam o Aqüífero Serra Geral, em específico no município de Marechal Cândido Rondon (MCR), possuem vazões em torno de 90 m<sup>3</sup>.h<sup>-1</sup> e características químicas semelhantes ao Aqüífero Botucatu (Guarani) em sua área de confinamento. Estes dados sugerem a existência de mistura de águas entre os aqüíferos, por meio de conexão estrutural.

Os resultados obtidos nesta pesquisa recursos hídricos subterrâneos do Aqüífero Serra Geral na BPIII devem ser administrados como fonte de água para abastecimento público e como alternativa na irrigação, principalmente nos períodos de prolongada estiagem.

## 1.1 Objetivos

O objetivo geral da pesquisa é apresentar de forma descritiva as características do ASG na BPIII.

Os objetivos específicos da pesquisa são:

- Determinar as direções estruturais predominantes dos lineamentos estruturais em três escalas de análise (1:600,000; 1:300.000 e 1:100.000).
- Elaborar mapas de densidade dos lineamentos traçados nas diversas escalas de análise, das direções azimutais com maior ocorrência, bem como, a relação espacial destas áreas com os poços tubulares profundos, na área da Bacia Hidrográfica do Paraná III.
- Análise hidrogeoquímica da água de 39 poços tubulares profundos situados próximos e no município de Marechal Cândido Rondon, com a finalidade de classificar a tipologia das águas, a distribuição espacial dos teores e sua aplicação na irrigação.

## 2. MATERIAL E MÉTODOS

Esta pesquisa foi desenvolvida com base em imagens de sensores remotos e dados hidroquímicos de poços tubulares profundos localizados na BPIII, conforme se descreve a seguir:

#### 2.1 Base Cartográfica Utilizada

Os dados cartografados utilizados estão projetados em UTM – Fuso 21 Sul, datum SAD 69. As rotinas de processamento foram realizadas com os programas: *ArcView 3.2; Rockworks; Surfer 8, Global Mapper e Linanalist, Qualigraf e Statistica 7.* 

Para confecção da base cartográfica foram utilizados mapas e imagens fornecidas pela ITAIPU – BINACIONAL. Os dados, de consulta restrita à ITAIPU, referem-se ao mapeamento de detalhe realizado em toda BPIII, fornecidos no formato *shapefile, contendo:* carta de drenagem, carta plani-altimétrica e carta com as principais vias de acesso.

As imagens orbitais foram geradas por dois sistemas de sensores remotos:

- Sensor ativo: dados do radar SIR-CX-SAR da SRTM Shuttle Radar Topographic Mission;
- Sensor passivo: imagem do satélite Landsat 7 ETM+.

As imagens orbitais foram utilizadas para análise, integração e interpretação dos lineamentos existentes na área.

A partir dos dados de radar (SRTM) foram gerados mapas de relevo sombreado, visando análises tridimensionais da superfície do terreno. Nestes mapas foram utilizadas quatro direções de iluminação no traçado dos lineamentos (N45°W, N45E, Norte e Leste).

Mapas do Estado do Paraná com a divisão municipal, sedes, principais drenagens e Bacias Hidrográficas do Paraná foram obtidos do banco de dados do LPH - Laboratório de Pesquisas Hidrogeológicas em formato *shapefile* e são referentes aos levantamentos de realizados pela SUDERHSA e Secretaria Estadual do Meio Ambiente – SEMA (2000).

O mapa geológico utilizado nesta pesquisa compreende as cartas Curitiba (Folha SG-22) e Assuncion (Folha SG-22) de autoria do Serviço Geológico do Brasil – CPRM (2004).

Os dados de vazão utilizados nesta dissertação referem-se a 119 poços tubulares profundos, 89 operados pela SANEPAR e 30 poços do SAAE de MCR. Estes dados foram utilizados para discutir a relação de poços tubulares com vazões elevadas e lineamentos estruturais.

As análises físico-químicas utilizadas na avaliação hidrogeoquímica foram coletadas durante a elaboração desta dissertação, e referem-se a 39 laudos de poços tubulares profundos do SAAE de MCR e de poços das prefeituras de Mercedes, Pato Bragado e Entre Rios do Oeste.

### 2.2 Análise Multi-escala de Lineamentos Estruturais

Os procedimentos adotados neste trabalho, objetivando a caracterização estrutural do Aqüífero Serra Geral na BPIII, são referentes às análises de direção, densidade e freqüência de lineamentos, em diferentes tipos de escala.

A escala da caracterização estrutural na área de estudo variou conforme a resolução espectral de cada um dos sistemas de sensores utilizados. A resolução dos sistemas aqui utilizados possui resolução entre 30 m (*Landsat 7 ETM*+) e 90 m (SRTM).

Para a área de estudo foram interpretados lineamentos estruturais a partir do Modelo Digital de Elevação SRTM90 (iluminações N45W, N45E, Norte e Leste) e imagens Landsat TM7, ambos fornecidos e pré-processados pela agência aeroespacial norte-americana - NASA.

Em todas as iluminações utilizadas no MDE foram traçados os lineamentos, após análise visual da coexistência em todas as iluminações, em caso positivo, o lineamento era considerado no traçado.

Os produtos e as escalas utilizadas são descritos a seguir:

- Análise do Modelo Digital de Elevação com escala de 1:600.000.
- Análise do Modelo Digital de Elevação com escala de 1:300.000.
- Análise da imagem Landsat TM7 e do Modelo Digital de Elevação com escala de 1:100.000.

#### 2.2.1. Traçado dos Lineamentos Estruturais

O termo "lineamento" foi proposto em 1904 por Hobbs a fim de caracterizar a ligação espacial da paisagem fraturada, tornando-se um termo consagrado, devido ao uso de imagens de satélite ou fotografias aéreas.

O'Leary *et al.* (1976) definiram lineamento como sendo uma feição da superfície terrestre que é "linear", mapeável, simples ou composta, contínua ou descontínua, cujas partes estão alinhadas em um arranjo retilíneo ou suavemente curvo e que difere distintivamente dos padrões de feições adjacentes.

A definição de lineamentos utilizada neste trabalho é aquela indicada por O'Leary *et al.* (1976).

Desta forma foram traçados sobre imagens SRTM, os lineamentos estruturais em três escalas:

- 1:600.000, traçados 165 lineamentos.
- 1:300.000, traçados 1.237 lineamentos.
- 1:100.000, traçados 10.384 lineamentos.

A área de análise destes lineamentos compreende uma área maior que a Bacia Hidrográfica do Paraná III devido à necessidade de minimizar, nos tratamentos estatísticos, os efeitos de borda (valores negativos devido à ausência de lineamentos) produzidos pelo reservatório da usina de ITAIPU BINACIONAL.

O objetivo de traçar e comparar os lineamentos em diferentes escalas é que a coexistência de feições geológicas em várias escalas de grandeza reflete o caráter tectônico dessas estruturas, caracterizando zonas de falhas geológicas e outras estruturas que possam transmitir e armazenar água.

#### 2.2.2. Mapa de Isodensidades de Lineamentos

Densidade de lineamentos é comumente tratada como o número de segmentos isolados de lineamentos, relacionadas a uma unidade de comprimento, área ou volume, para análises em uma, duas ou três dimensões, respectivamente.

A densidade é calculada a partir de um elemento conhecido do lineamento, como por exemplo, centróide ou extremidade.

Para cada escala de análise utilizada foi elaborado um mapa de densidade total dos lineamentos traçados.

Posteriormente, também para cada escala de análise, foram elaborados dois mapas de densidade de lineamentos para as duas principais direções azimutais encontradas.

Para obtenção do atributo densidade foi utilizado o programa desenvolvido por Freitas *et al.* (2004); denominado *Linanalyst*.

Neste programa, os modelos analíticos disponíveis foram denominados "centróides", "linhas de busca" (circulares e por grades), "grade" e "interseções".

Nos quatro métodos o processo de análise segue o mesmo princípio, a área é segmentada em diversas células e o processamento é então executado para cada uma delas.

Nesta pesquisa, para elaboração do grid de densidade de lineamentos, foi utilizado o método "linha de busca circulares". Neste método, segundo Rohrbaugh Jr. *et al.*,(2002), além do espaçamento da grade, o usuário indica o raio da linha de busca. O programa então detecta interseções dos lineamentos com o círculo de busca (parâmetro n) e terminações dos lineamentos que estejam inseridos no círculo de busca (parâmetro m). A partir destes dois valores são então calculados, através equações, valores de intensidade, comprimento e densidade de lineamentos.

O arquivo de saída é em formato ASCII, contendo as coordenadas centrais e extremidades de cada célula analisada, bem como e os atributos calculados.

De uma forma resumida os procedimentos computacionais para gerar mapas de isodensidades são descritos a seguir:

- Geração de tabela em formato .dbf com as coordenadas das extremidades e central de cada lineamento traçado, para inserir no *Linanalyst*.
- Escolha do modelo de análise, neste caso linhas de busca circulares.
- Geração de uma tabela com os parâmetros de direção azimutal, densidade, comprimento e freqüência, como resultado final no *Linanalyst*.
- Inserir a tabela de dados gerada no *Linanalist* no programa *Surfer 8*, para obter a malha de isodensidades dos lineamentos.

As classes azimutais mais representativas de lineamentos foram posteriormente tratadas com um filtro direcional no programa *Linanalyst.* Os lineamentos que correspondem a classes ou intervalos indicados são considerados na análise e aqueles que não satisfizerem as condições indicadas foram eliminados (análise com filtro direcional). O resultado é um mapa de densidade de lineamentos do intervalo azimutal selecionado.

Para identificar as principais direções de tensão, atualmente atuantes na placa sul-americana, utilizou-se os dados do projeto World Stress Map, neste *site*, um grupo de pesquisadores "alimenta" um banco de dados mundial sobre a direção de tensores crustais com base em deformação de poços de petróleo e terremotos.

### 2.3 Análise Hidrogeoquímica

Para classificar os tipos de água existentes e verificar a aplicação destas na irrigação, foi realizado a análise hidrogeoquímica e distribuição espacial dos teores na água subterrânea.

Na classificação do quimismo da água subterrânea do ASG na Bacia do Paraná III, foram utilizadas 39 análises físico-químicas de água de poços tubulares profundos.

As amostras foram coletadas em campo, onde também foram determinados os parâmetros alcalinidade, pH, condutividade elétrica e temperatura, armazenadas em caixas com isolante térmico e refrigerada, mantendo-se a temperatura das amostras em torno de 4°, utilizando os equipamentos apresentados na Figura 2.



Figura 2 - Materiais utilizados na coleta das amostras (pH e condutívimetro portáteis, água deionizada, fenalftaleina, etc)

## 2.3.1. Processamento dos dados Hidroquímicos

O estudo do equilíbrio termodinâmico entre os minerais e a água, bem como a classificação da água quanto ao seu conteúdo iônico, dependem de análises físico-químicas que representem fielmente a composição da água no seu estado natural, dissolvidas na água na forma de íons simples ou complexos (Hindi, 1999).

Os laudos analíticos do LPH apresentam o rol mínimo de 32 parâmetros. A consistência e qualidade dos dados foram avaliadas pela Diferença de Balanço lônico (DBI), que mede a diferença relativa entre as concentrações de cátions e ânions expressa em meq/L. As amostras tem DBI inferior a 10%, com resultado médio de 3%.

A diferença de balanço iônico foi calculada após a transformação de unidade das concentrações de mg/L para mEq/L. Esta transformação obedece a regra de Stabler, definida pela equação:

meq/L = (concentração em mg/L ou ppm ÷ Peso atômico do elemento) Número de oxidação A diferença do balanço iônico é dada pela seguinte fórmula:

DBI = 
$$\Sigma$$
 cátions -  $\Sigma$  ânions /  $\Sigma$  cátions +  $\Sigma$  ânions

Foi calculada a concentração da dureza conforme Tood (1959), onde o teor de cálcio e magnésio, expresso em carbonato de cálcio é calculado pela seguinte equação:

Dureza = 
$$[Ca^{+2}]$$
. (CaCO<sub>3</sub>) +  $[Mg^{+2}]$ . (CaCO<sub>3</sub>)  
(Ca) (Mg)

Dureza = 2,497 [Ca<sup>+2</sup>] + 4,115 [Mg<sup>+2</sup>]

Os sólidos totais dissolvidos foram calculados, somando, para cada amostra, o resultado das concentrações de cátions e ânions obtidas dos laudos físico-químicos e a concentração da sílica. Deste resultado subtraiu-se a metade da concentração do bicarbonato:

STD =  $(\Sigma \text{ cátions} + \Sigma \text{ ânions} + \text{SiO}_2) - \text{HCO}_3^{-}/2$ 

Os resultados e concentrações obtidas nos laudos físico-químicos foram submetidos a análises estatísticas univariadas para determinação de parâmetros descritivos e do tipo de distribuição dos dados.

As concentrações totais das espécies iônicas e dos parâmetros físicos foram determinadas conforme descrito na Tabela 1.

| Parâmetro                    | Método Analítico LPH                |  |
|------------------------------|-------------------------------------|--|
| рН                           | Potenciométrico                     |  |
| Condutividade                | -                                   |  |
| Turbidez                     | Método Nefelométrico                |  |
| Cor                          | Colorímetro                         |  |
| Cloreto                      | Titulométrico - Nitrato de mercúrio |  |
| Sulfato                      | Turbidimétrico                      |  |
| Fluoreto                     | Colorimétrico - Spadnss             |  |
| Fosfato                      | Colorimétrico – Ácido Ascórbico     |  |
| Nitrito                      | Colorimétrico                       |  |
| Nitrato                      | Redução pelo Cádmio                 |  |
| Nitrogênio total             | Kjeldahl                            |  |
| Nitrogênio orgânico          |                                     |  |
| Nitrogênio amoniacal         | Fenato                              |  |
| Sólidos Totais               |                                     |  |
| Sólidos Suspensos            | Gravimétrico                        |  |
| Sólidos Totais Dissolvidos   |                                     |  |
| Alcalinidade Total           |                                     |  |
| Alcalinidade à fenolftaleina |                                     |  |
| Carbonato                    | Titulométrico                       |  |
| Bicarbonato                  |                                     |  |
| Hidróxidos                   |                                     |  |
| Dióxido de Carbono livre     | Titulométrico                       |  |
| Acidez                       | Indionictioo                        |  |
| Dureza                       | Titulométrico - EDTA                |  |
| Cálcio                       | Titulométrico - EDTA                |  |
| Magnésio                     | Titulométrico - EDTA                |  |
| Sódio                        | Emissão de chama                    |  |
| Potássio                     | Emissão de chama                    |  |
| Ferro total                  | Fenantrolina                        |  |
| Sílica solúvel               | Molibdato                           |  |

Tabela 1 - Parâmetros analisados e métodos analíticos conforme a rotina do LPH

A classificação química da água foi feita pelo método de íons dominantes, utilizando-se o diagrama de Piper (PIPER, 1945), para representação dos resultados.

O diagrama triangular de Piper é usado para classificar e representar graficamente o tipo químico da água subterrânea, de acordo com a espécie predominante, e também, para definir a evolução química das águas.

Nesse diagrama, distinguem-se três campos com os dados plotados em % mEq/L:

- campo dos cátions, Na<sup>+</sup> + K<sup>+</sup>, Ca<sup>2+</sup> e Mg<sup>2+</sup>
- campo dos ânions, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup> e HCO<sub>3</sub><sup>-</sup> + CO<sub>3</sub><sup>2-</sup>
- campo dos resultados, onde os pontos encontrados nos campos anteriores são projetados.

O cruzamento do prolongamento dos dois pontos (campo dos cátions e campo dos ânions) no campo dos resultados, define a posição do ponto.

#### 2.3.2 Mapa de isovalores

A distribuição espacial dos principais parâmetros hidroquímicos, permite avaliar condições de potabilidade da água, caracterizando zonas mais adequadas a um determinado tipo de uso (HINDI, 2007).

Para a distribuição espacial dos teores foram utilizadas 34 análises de poços tubulares coletadas em MCR, Mercedes, Entre Rios do Oeste e Pato Bragado.

Foram desconsideradas, nestes mapas, as análises dos poços localizados em Itaipulândia e Foz do Iguaçu, em função da distância entre eles e áreas com maior concentração de poços (MCR).

Os poços foram inicialmente separados segundo os teores de cada elemento, conforme distribuição estatística do primeiro ao quarto quartil. Posteriormente foram geradas curvas de isovalores, no programa Surfer, que possui, dentre os métodos disponíveis: krigagem, funções radiais, curvatura mínima, interpolação linear por triangulação, regressão polinomial e ponderação pelo inverso da distância. Utilizou-se no programa *Surfer* o método de krigagem universal para interpolação dos dados.

Os dados foram transformados para o formato *shapefile* e integraram o SIG do projeto no programa Arcview 3.3. A partir deste ponto foi possível a sobreposição e comparação com outros mapas do bancos de dados georreferenciados.

### 2.3.3. Qualidade das águas para irrigação

O uso da água subterrânea para irrigação é limitado pelos efeitos adversos ao solo e plantas, relacionados à presença de substâncias dissolvidas na água, associados à salinidade total da água e ao conteúdo de sódio em solução.

A água com conteúdo elevado de STD causa "risco de salinidade" sendo tóxicas para as plantas. Concentrações elevadas de sólidos dissolvidos no solo

podem causar uma condição de seca fisiológica, na qual, apesar do solo estar úmido a planta irá murchar, pois as raízes não conseguirão absorver água. A concentração de sólidos totais dissolvidos, às vezes denominada salinidade total, pode ser medida indiretamente pelo valor da condutividade elétrica da água, já que estas duas grandezas são linearmente dependentes (ROSA FILHO e HINDI, 2006).

A irrigação com água contendo quantidades significativas de Na<sup>+</sup> causa o "risco de sódio", devido aos efeitos deste íon no solo. O sódio é adsorvido pelas partículas do solo, tornando-o duro e compacto quando seco e impermeável à percolação da água. Os solos de textura fina, com alto conteúdo de argila são os mais susceptíveis aos efeitos do sódio. A presença de Ca<sup>2+</sup> e Mg<sup>2+</sup> em altas concentrações no solo ajudam a controlar os efeitos do sódio e a manter as propriedades texturais e estruturais deste.

O risco do sódio é expresso em termos de SAR (*sodium adsorption ratio*), que compara as concentrações de Na<sup>+</sup>, Ca<sup>2+</sup>, e Mg<sup>2+</sup> na água. O SAR é calculado pela seguinte equação:

$$SAR = \frac{[Na^{+}]}{\sqrt{\frac{1}{2}([Ca^{2+}] + [Mg^{2+}])}}$$

Onde, [Na<sup>+</sup>], [Ca<sup>2+</sup>], e [Mg<sup>2+</sup>] são as concentrações desses íons, expressas em mmol/L.

A avaliação da qualidade da água para fins de irrigação é feita pela aplicação do diagrama que relaciona a razão de adsorção de sódio (RAS) com a condutividade elétrica da água, desenvolvido pelo U.S. Salinity Staff (1954), indicando os riscos potenciais de sódio e salinidade.

O risco de sódio é indicado no eixo das ordenadas em quatro classes de risco: baixo, médio, forte e muito forte. O risco de salinidade está indicado no eixo das abscissas em seis classes de risco: nulo, baixo, médio, alto, muito alto e excepcionalmente alto. Os campos definidos pela intercessão dessas classes definem se a água é adequada ou não para irrigação.

### 2.4 Balanço Hídrico Climatológico

No estudo do balanço hídrico, a abordagem de aspectos climatológicos, hidrológicos e hidrogeológicos faz se necessário para uma correta modelagem do ciclo hidrológico.

Neste estudo os dados disponíveis foram determinantes na escolha do método utilizado. As fontes de informação disponibilizaram:

Dados de precipitação e temperatura, fornecidos pelo Serviço Autônomo de Água e Esgoto – SAAE de Marechal Cândido Rondon – PR, referentes aos anos de 2004 e 2005.

Dados do escoamento superficial obtido junto à estação de medição de vazão da ITAIPU BINACIONAL, localizada no rio Ajuricaba, município de Marechal Cândido Rondon – PR, referentes ao período de dezembro de 2004 a dezembro de 2005.

Os dados de temperatura e precipitação, obtidos pela estação meteorológica localizada na sede do Serviço Autônomo de Água e Esgoto - SAAE (coordenadas 21J UTM - E 797.740 / UTM – N 7280318), foram utilizados para calcular, juntamente com dados do escoamento superficial do rio Ajuricaba, o excedente e a deficiência hídrica, aqui neste trabalho denominado SALDO HÍDRICO, no período entre dezembro / 2004 a dezembro / 2005.

Foram utilizados dados de precipitação (volume diário acumulado, leitura às 7h 00) e temperatura do ar (valores mínimos e máximos diários).

Aos dados de temperatura foi aplicado, de forma simplificada, o balanço hídrico climatológico desenvolvido por Thornthwaite e Mather (1955) objetivando determinar a evapotranspiração potencial mensal. Este método é uma das várias maneiras de se monitorar a variação do armazenamento de água, tanto na escala diária como em escalas maiores como a mensal, utilizando-se valores médios de vários anos (normal climatológica).

O método de cálculo da evapotranspiração potencial, baseado em índices térmicos, destaca-se pela facilidade de obtenção dos dados, entretanto apresenta valores sobrelevados quando comparados à evapotranspiração real (onde o número de parâmetros avaliados é bem maior). Nesse método, a evapotranspiração potencial não corrigida de cada mês é dada pela equação um:

$$ETP_m = C\theta^a$$
 (1)

onde "C" e "a" são os mesmos para todos os meses e calculados em função do índice térmico anual "I", dado pelas equações dois, três e quatro:

$$a = A_1 I^3 - A_2 I^2 - A_3 I - A_4 \quad (2)$$

sendo:

$$C = 16,2 (10/I)^a$$
 (4)

Onde o índice térmico anual "l" é dado em função dos índices térmicos mensais "i", é calculado a partir da equação cinco:

$$I = {}_{1}\Sigma^{12} i e i = (\theta/5)^{1,514}$$
 (5)

Para obter a evapotranspiração potencial (ETP) em milímetros, multiplicase os valores de ETP por um coeficiente de correção K que leva em conta a latitude (insolação) e o número de dias de cada mês.

Os resultados podem ser utilizados para fins de zoneamento agroclimático, demanda potencial de água das culturas irrigadas e no conhecimento do regime hídrico.

Dados horários de vazão (m<sup>3</sup>/s), medidos automaticamente, na estação da ITAIPU BINACIONAL, localizada no rio Ajuricaba (coordenadas 21J UTM-E 787400 / UTM-N 7275738), no período entre dezembro de 2004 até dezembro de 2005, foram tratados estatisticamente visando determinar, no período estudado, o escoamento superficial médio neste ponto da bacia hidrográfica.

No balanço hídrico de bacias hidrográficas o deflúvio é freqüentemente expresso em milímetros de altura de água sobre a área da bacia (mm), a fim de facilitar a comparação com a precipitação e a evapotranspiração, também normalmente expressas nesta mesma unidade linear.

Para uma bacia hidrográfica de área "A" (km<sup>2</sup>), com um deflúvio "Q" (m<sup>3</sup>/s), durante um período "T" de dias, a transformação do deflúvio em "mm" será calculada a partir da equação de Lima (2005), apresentada na equação seis:

# Q (mm) = 86,4 x <u>T (tempo em dias) x Q (m<sup>3</sup>/s)</u> (6) Área da Bacia (km<sup>2</sup>)

De pose dos dados acima descritos, foi calculado o balanço hídrico climatológico do período com base na seguinte relação: SALDO = Precipitação (P) – Evapotranspiração Potencial (ETP) – escoamento superficial (ESC).

O cálculo do balanço hídrico compreendeu o período de estiagem registrado na mídia do estado do Paraná, entre os meses de dezembro de 2004 e dezembro de 2005, período onde há, nesta pesquisa, dados do escoamento superficial, disponíveis. A análise dos valores de precipitação, temperatura e evapotranspiração potencial compreendem o período entre janeiro de 2004 e janeiro de 2005.

## 3. CARACTERIZAÇÃO REGIONAL DO TERRITÓRIO

A rede hidrográfica do território paranaense que drena suas águas diretamente no Reservatório de ITAIPU é denominada Bacia do Paraná III (Figura 3). A BPIII está localizada na porção oeste do Estado do Paraná, entre as latitudes 24,0° e 25,6° sul e longitudes 53,4° e 54,7° oeste.



Figura 3 - Bacias hidrográficas do Paraná e detalhe da rede de drenagem da BPIII

A BPIII é subdividida em 13 sub-bacias, essa área envolve total ou parcialmente os seguintes municípios paranaenses: Cascavel, Céu Azul, Diamante do Oeste, Entre Rios do Oeste, Foz do Iguaçu, Guaíra, Itaipulândia, Marechal Cândido Rondon, Maripá, Matelândia, Medianeira, Mercedes, Missal, Nova Santa Rosa, Ouro Verde do Oeste, Pato Bragado, Quatro Pontes, Ramilândia, Santa Helena, Santa Teresa do Oeste, Santa Teresinha de Itaipu, São José das Palmeiras, São Miguel do Iguaçu, São Pedro do Iguaçu, Terra Roxa, Toledo e Vera Cruz do Oeste (Figura 4).

Cerca de 925.000 pessoas habitam os 28 municípios que compõem a bacia, destacando-se quatro destes com população superior a 70.000 habitantes (IBGE, 2006).



Figura 4 - Divisão regional e sedes municipais da BPIII

## 3.1. Contexto geológico regional

A área em estudo situa-se na entidade geológica denominada Bacia Sedimentar do Paraná.

A Bacia do Paraná é uma ampla região sedimentar do continente sulamericano que inclui porções territoriais do Brasil meridional, Paraguai oriental, nordeste da Argentina e norte do Uruguai.

A bacia tem uma forma ovalada com eixo maior N-S, sendo seu contorno atual definido por limites erosivos relacionados em grande parte a história mesocenozóica do continente.

A Figura 5 apresenta o mapa geológico simplificado da Bacia do Paraná, com referências geográficas e profundidade do embasamento, modificado de Milani *et al.,*(1997).



Figura 5 - Mapa da Bacia do Paraná, modificado de Milani et al., (1997).

#### 3.1.1 Fm. Serra Geral no Estado do Paraná

Abrangendo toda área em estudo, a designação de Formação Serra Geral (White, 1906), refere-se à província magmática relacionada aos derrames e intrusivas que recobrem 1,2x106 km<sup>2</sup> da Bacia do Paraná, abrangendo toda a região centro-sul do Brasil e estendendo-se ao longo das fronteiras do Paraguai, Uruguai e Argentina.

Os basaltos continentais da "Província Magmática do Paraná" definida por Peate *et al.*, (1992) representam grandes volumes de magma gerados em períodos relativamente curtos de tempo. Rápidas taxas de geração de magma indicam fusão parcial, em resposta a eventos extensionais, associados a abertura do Atlântico Sul.

Segundo CPRM (2006) esta unidade está constituída dominantemente por basaltos e basalto-andesitos de filiação toleítica, os quais contrastam com riolitos e riodacitos aflorantes. Trata-se de uma manifestação magmática associada aos estágios precoces da ruptura do Gondwana e a abertura do Atlântico Sul.

Abrangendo a totalidade da área em estudo a Formação Serra Geral (Figura 6), considerada por Milani *et al.* (1994) como o registro mais volumoso de extravasamento intracontinental de lavas do planeta.

A Fm. Serra Geral, em termos petrológicos dominados por basaltos toleíticos e andesitos basaltos, ocorrendo subordinadas quantidades de riolitos e riodacitos (Peate *et al,. 1992*). Em termos geocronológicos (K/Ar) as magmáticas possuem intervalo temporal entre 147 a 11 Ma (Amaral *et al.*, 1966).





De acordo com Rüegg (1969), a composição mineralógica predominante dos basaltos é formada por plagioclásios, augita e pigeonita. Ocorrem como minerais acessórios, outros silicatos e óxidos contendo principalmente alumínio, ferro, cálcio, magnésio, sódio, titânio e potássio.

Os derrames possuem textura microcristalina, estrutura maciça e vesicular e/ou amigdalóide, intenso fraturamento, bem como esfoliações esferoidais. Segundo Melfi *et al.*, (1988) as suítes vulcânicas são essencialmente sub-horizontais, com um mergulho médio de 5° em direção ao interior da Bacia do Paraná. Entretanto, os fluxos basais podem apresentar inclinações excepcionalmente altas relacionadas à topografia irregular do embasamento.

A Figura 7 apresenta um esquema dos sucessivos derrames, intercalações com formações sotopostas, bem como tipos de solo resultantes do intemperismo dos basaltos. Destaca-se também a intercalação dos basaltos com os arenitos da Fm. Botucatu.



Figura 7 – Ilustração dos derrames basálticos. A ordem numérica representa a ordem de extravasamento dos derrames. 1 – mais antigo; 4 – mais novo (Modificado de CPRM)

Alguns exemplos das rochas descritas em campo, variando sua composição, ora mais ácida, ora mais básica, como peperitos e basaltos maciços podem ser observados nas fotografias da Figura 8.





Figura 8 - Diferentes litotipos encontrados na área de estudo. Fotografias do autor na pedreira municipal de Toledo – PR

#### 3.1.2 Arcabouço estrutural da Bacia Sedimentar do Paraná

A origem da Bacia do Paraná, de alguma forma, relaciona-se ao fim do Ciclo Brasiliano (Zalán *et al.*, 1990). Portanto, a estruturação herdada do embasamento foi um dos controladores da deposição sedimentar da bacia.

O arranjo do embasamento (Figura 9, modificada de Milani *et al.*, 1997) explica em parte o arcabouço estrutural da bacia. Este é dominado por três grandes alinhamentos tectônicos, agrupados nas direções NW-SE, NE-SW e E-W.



Figura 9 – Arcabouço tectônico da Bacia do Paraná, modificado de Milani *e tal.,*(1997).

Soares *et al.*, (1982) agruparam os lineamentos da Bacia do Paraná em seis sistemas preferenciais, que denominaram de Médio Ivaí (N45°W), Médio Piquiri (N65°W), Goioxim (N25°W), Médio Paraná (N35°E), Tapiracuí (N5°W) e Pitanga (N60°E). Estes autores descrevem:

A direção Médio Ivaí possui alta densidade, é correlacionável com falhas, enxames de diques e zonas de cisalhamento. Indicam zonas de fraqueza do embasamento que foram reativadas nas sucessivas fases de evolução da bacia.

As faixas estruturais identificadas correspondem a zonas de maior mobilidade tectônica, ativas durante toda evolução da bacia.

Algumas direções se superpõem a mega estruturas do embasamento, como a Direção Pitanga (N60ºE), relacionada com as falhas de Taxaquara e Incofidentes – Jacutinga.

A Faixa Médio Paraná possui notável paralelismo com o Cinturão Dobrado Ribeira.

ZALÁN *et al.*, (1990) descrevem que os lineamentos NW foram reativados durante a abertura do Atlântico Sul, ao contrário do sistema NE que teria sido pouco afetado. Estes autores sugerem para os lineamentos E-W, desenvolvimento a partir do Triássico e cujo paralelismo com as zonas de fratura oceânicas sugerem alguma ligação com a abertura do Oceano Atlântico Sul.

A direção de tensão E-W na placa sul-americana é considerada por autores como Rostirolla (2005) como atuante desde a instalação dos Andes e abertura do Oceano Atlântico Sul. Corrobora com as interpretações de Rostirolla *et al.*,(2005), os dados obtidos no projeto *World Stress Map* (2006).

Na placa sul-americana os tensores podem ser visualizados na Figura 10. A direção das linhas corresponde a direção de máxima tensão medida no ponto (notar em vermelho a Bacia do Paraná 3).

A informação mais próxima a BPIII, situada em território paraguaio, indica uma direção NE, muito próximo ao quadrante E-W.



Figura 10- Localização da BPIII no continente e os dados do projeto *World Stress Map* (2006).
# 3.2. Hidrogeologia regional

### 3.2.1 O Aqüífero Serra Geral no Estado do Paraná

Dentre as unidades aqüíferas existentes no Estado do Paraná (Figura 11), o aqüífero denominado Serra Geral corresponde a basaltos da Formação Serra Geral, onde além das fraturas tectônicas ocorrem outros tipos de descontinuidades, importantes para a circulação e armazenamento da água, representadas por fraturas de resfriamento que podem ser verticais (disjunções colunares) ou sub-horizontais. Desta forma a maior parte do fluxo fica limitado às fraturas sub-horizontais e a algumas estruturas tectônicas sub verticais.



Figura 11 – Principais aqüíferos do Estado do Paraná e a localização da área em estudo.

Fernandes *et al.,* (2006) propõe, em eu estudo detalhado do ASG no estado de São Paulo, um modelo conceitual de circulação das águas deste aqüífero. Este modelo é apresentado na Figura 12.



Figura 12 – Modelo de circulação no aqüífero Serra Geral (Fernandes et al., 2006)

Neste modelo. além das fraturas tectônicas. outros tipos de descontinuidades, importantes para a circulação e armazenamento de água, são representados por fraturas de resfriamento que podem ser verticais (disjunções colunares) ou sub-horizontais. Esta mesma autora descreve que as fraturas horizontais e pelo menos parte das verticais, de origem tectônica, estão interconectadas, bem como o nível potenciométrico do Sistema Aqüífero Guarani (SAG) está acima do contato com o Aqüífero Serra Geral, mas abaixo do nível potenciométrico dos basaltos.

No Estado do Paraná em função de uma maior deformação tectônica, originada pela intrusão dos diques de diabasio, em alguns casos o nível potenciométrico do Aqüífero Guarani situa-se acima do nível potenciométrico do ASG, ocasionando a mistura de água entre os aqüíferos.

Posicionado abaixo do Aqüífero Serra Geral, sem afloramentos na área de estudo, ocorre o Aqüífero Botucatu (Guarani), o qual apresenta características de águas com alto tempo de residência no aqüífero.

Na região da BPIII existem três poços que captam o Aqüífero Guarani. No poço tubular profundo situado em MCR, a cota potenciométrica do Aqüífero Botucatu por vezes é mais elevada que a cota do ASG, o que propicia a ascensão

das águas do Guarani e mistura com águas do ASG. No capítulo análise hidroquímica este tema será abordado em detalhe, com um exemplo de poços da BPIII.

# 3.2.2.1 Aspectos hidrodinâmicos do ASG no Estado do Paraná

Dentre as unidades aqüíferas existentes no estado do Paraná, a Unidade Aqüífera Serra Geral caracteriza-se como a unidade com maior número de poços outorgados pela SUDERHSA (Figura 13).



Figura 13 - Número de outorgas concedidas pela SUDERHSA por unidade aqüífera até o ano de 2005

Coincidentemente as maiores vazões correspondem as bacias com maior número de poços perfurados, o que pode indicar que estes resultados ocorrem em função de um número maior de amostras.

A maior freqüência das entradas de água dos poços perfurados na Fm. Serra Geral está localizada até os 110 m de profundidade, nessa faixa as vazões variam de 1 a 70 m<sup>3</sup>/h (ROSA FILHO *et al.*, 1987). No topo de derrame, onde ocorrem as zonas vesiculares e/ou amigdalóides (Figura 14), o armazenamento de água depende da disposição espacial dos espaços vazios e da conexão entre estes espaços.





Figura 14 - Zona vesicular / amigdalóides (topo de derrame) em basalto da Fm. Serra Geral e percolação de água nas fraturas do basalto

Ao comparar os dados de vazão dos poços outorgados pela SUDERHSA, separando-os por bacias hidrográficas (Tabela 2), observa-se que a Bacia do rio Iguaçu possui a maior vazão outorgada. Entretanto a Bacia do Paraná I registra a maior média de vazão dos poços, com 33 m<sup>3</sup>/h.

Os poços da BPIII, segundo dados da SUDERHSA (PARANÁ, 2006), apresentam vazão máxima de 190 m<sup>3</sup>/h.

Utilizando na análise apenas os poços perfurados pela SANEPAR, na área da BPIII, os quais pressupõe-se excelente controle geológico / hidrogeológico, nota-se que a vazão média obtida nos testes de bombeamento (42,7 m<sup>3</sup>/h) é maior do que as vazões de SUDERHSA para toda a BPIII.

| Vaz. Out. Máx. | Vaz. Out Méd.                                                                                                | Vaz. Out. Min.                                                                                                                                      | Número de poços                                                                                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200            | 17                                                                                                           | 1                                                                                                                                                   | 76                                                                                                                                                                                               |
| 185            | 9                                                                                                            | 1                                                                                                                                                   | 1288                                                                                                                                                                                             |
| 250            | 7                                                                                                            | 1                                                                                                                                                   | 1144                                                                                                                                                                                             |
| 172            | 13                                                                                                           | 1                                                                                                                                                   | 516                                                                                                                                                                                              |
| 61             | 33                                                                                                           | 6                                                                                                                                                   | 3                                                                                                                                                                                                |
| 27             | 16                                                                                                           | 5                                                                                                                                                   | 2                                                                                                                                                                                                |
| 190            | 11                                                                                                           | 1                                                                                                                                                   | 1167                                                                                                                                                                                             |
| 130            | 10                                                                                                           | 1                                                                                                                                                   | 931                                                                                                                                                                                              |
| 150            | 16                                                                                                           | 1                                                                                                                                                   | 29                                                                                                                                                                                               |
| 50             | 14                                                                                                           | 1                                                                                                                                                   | 12                                                                                                                                                                                               |
| 132            | 18                                                                                                           | 1                                                                                                                                                   | 98                                                                                                                                                                                               |
| 80             | 19                                                                                                           | 1                                                                                                                                                   | 20                                                                                                                                                                                               |
| 100            | 8                                                                                                            | 1                                                                                                                                                   | 620                                                                                                                                                                                              |
| 250            | 10                                                                                                           | 1,7                                                                                                                                                 | -                                                                                                                                                                                                |
|                | Vaz. Out. Máx.<br>200<br>185<br>250<br>172<br>61<br>27<br>190<br>130<br>150<br>50<br>132<br>80<br>100<br>250 | Vaz. Out. Máx. Vaz. Out Méd.   200 17   185 9   250 7   172 13   61 33   27 16   190 11   130 10   150 16   50 14   132 18   80 19   100 8   250 10 | Vaz. Out. Máx. Vaz. Out Méd. Vaz. Out. Min.   200 17 1   185 9 1   250 7 1   172 13 1   61 33 6   27 16 5   190 11 1   130 10 1   150 16 1   50 14 1   132 18 1   80 19 1   100 8 1   250 10 1,7 |

Tabela 2- Vazões dos poços tubulares profundos locados na Fm. Serra Geral, separados por bacias hidrográficas

Fonte: PARANÁ (2006)

### 3.1.3.2 Hidrogeoquímica do ASG no Estado do Paraná

É consenso entre muitos autores que predomina a tipologia química bicarbonatada cálcica nas águas do Aqüífero Serra Geral, no Estado do Paraná.

Estudos de Buchmann Filho (2002) e Bittencourt *et al.*, (2003) realizados na Bacia do Rio Piquiri (situada à nordeste da BPIII) indicam que o bicarbonato é o ânion mais abundante nessas águas. A concentração média é de 48,95 mg/L, com uma variação de 6 e 127 mg/L. Em 82 % das amostras, a concentração é inferior a 75 mg/L. Esta é uma característica bastante comum em se tratando de águas continentais relativamente diluídas. No mesmo trabalho, o bicarbonato é diretamente influenciado pelo equilíbrio do sistema  $CO_2 - H_2O$  vigente nas áreas próximas à recarga, também pelas reações de hidrólise dos silicatos das efusivas.

Segundo Bittencourt *et al.*, (2003) os principais processos que condicionam o quimismo das águas do Aqüífero Serra Geral na bacia hidrográfica do rio Piquiri são: dissolução dos basaltos e equilíbrio com minerais secundários; além de misturas com águas de aqüíferos sotopostos (aqüífero Guarani principalmente).

Uma abordagem regional realizada por Rosa Filho e Hindi (2006) descreve para o ASG, no Estado do Paraná, teores de sólidos totais dissolvidos entre 100 e 150 mg/L, pH entre 6,6 a 7,2 e dureza em torno de 40 mg-CaCO<sub>3</sub>/L. O teor médio de cálcio é 9 mg/L. As concentrações de magnésio variam de 3,5 a 6,5 mg/L, as de sódio, entre 1,2 a 3,7 mg/L, e as de potássio, entre 1,5 a 3 mg/L. O teor médio de bicarbonato é 38 mg/L, o de cloreto, 1,5 mg/L e o de sulfato, 2,5 mg/L. O diagrama de Piper com todo o universo amostral utilizado pelos autores supra citados é apresentado na Figura 15.



Figura 15 - Diagrama de Piper do Aqüífero Serra Geral. Fonte: Rosa Filho e Hindi (2006)

A Figura 16 mostra o diagrama de classificação de água para irrigação com amostras de água do Aqüífero Serra Geral, onde ocorrem águas com risco de sódio variando de baixo a muito forte (apenas uma amostra) e risco de salinidade de baixo a médio. Dentre as amostras analisadas apenas uma mostra-se inadequada para irrigação (ROSA FILHO e HINDI, 2006).



Figura 16 - Diagrama de classificação de água para irrigação. Fonte: (Rosa Filho e Hindi, 2006)

Com respeito à qualidade, as águas do Aqüífero Serra Geral não apresentam, via de regra, restrições para o consumo humano *in natura*.

### 3.3. Clima no Estado do Paraná

Os centros básicos de ação atmosférica que controlam as condições metereológicas do Brasil Sudeste e Meridional são o Anticiclone Sub-Tropical do Atlântico, o Anticiclone Migratório Polar, o Centro de Baixa Pressão do Chaco e as Altas Tropicais da Amazônia. O Anticiclone do Pacífico é de pouco interesse para a Região Sul Brasileira: apenas ocasionalmente, no inverno, em decorrência de seu posicionamento mais meridional, próximo ao Centro Migratório Polar, atuando sobre a Frente Polar Pacífica, promove o aumento do acúmulo de ar frio no Setor Atlântico, reforçando a Frente Polar Atlântica.

Nos Centros de Ação Atmosférica são originadas as massas de ar denominadas, respectivamente: Massa Tropical Atlântica (TA), quente e úmida,

tendendo a estável pela subsidência superior das células de alta pressão, Massa Tropical Continental (TC), instável, porém possuindo reduzida umidade; Massa Equatorial Continental, quente e instável; e as Massas Polares Atlântica e Pacífica, frias e geralmente úmidas.

Dos contatos entre essas massas de ar geram-se as "frentes", das quais a mais importante é a Frente Polar Atlântica (FPA). Seu principal eixo de progresso é o SW-NE, e de seus avanços e recuos advém, normalmente, as situações de instabilidade da Região Sul do Brasil.

O Paraná se encontra em uma região de transição climática com acentuada variabilidade na precipitação e temperatura. A ocorrência de períodos secos durante o ano é freqüente e constitui um importante fator de quebra de safras agrícolas.

Períodos consecutivos sem chuvas maiores que 5 mm de até 103 dias foram observados durante os últimos 45 anos de observações nas estações meteorológicas do IAPAR.

Períodos secos com mais de 50 dias de duração ocorrem com uma probabilidade inferior a 20%. A duração média dos períodos secos é maior no norte e diminui em direção ao sul. Há um predomínio de ocorrência durante o período de outono-inverno e menor no verão. Não se observa uma tendência de aumento ou diminuição desses eventos dentro da série de dados observados.

Nos últimos anos tem-se observado grande irregularidade na distribuição das chuvas, dificultando as operações agrícolas em geral. Durante grande parte dos anos de 2005 e 2006 as chuvas foram abaixo da média esperada. No ano de 2006 a situação de seca se caracterizou a partir do mês de abril, passando da condição de seca meteorológica para seca agrícola, afetando as culturas do milho safrinha e do trigo, e para seca hidrológica, reduzindo a vazão dos rios e dos reservatórios. As chuvas voltaram a ocorrer no mês de setembro, revertendo a situação de seca agrícola e possibilitando o início do plantio da nova safra de verão.

A classificação climática segundo Köppen para a BPIII é Cfa (clima subtropical; temperatura média no mês mais frio inferior a 18°C (mesotérmico) e temperatura média no mês mais quente acima de 22°C, com verões quentes, geadas pouco freqüentes e tendência de concentração das chuvas nos meses de

verão, contudo sem estação seca definida), e pode ser visualizada no mapa da Figura 17.



Figura 17 - Classificação climática regional da área em pesquisa, modificado de IAPAR, 2000)

A Figura 18 apresenta a direção predominante dos ventos no estado do Paraná. Observa-se que as rosetas próximas a BPIII (Palotina e Cascavel) possuem direção predominante para o quadrante nordeste.



Figura 18 - Direção predominante dos ventos no estado do Paraná. Fonte: IAPAR (2000)

A Figura 19, Figura 20 e Figura 21 apresentam a média mensal histórica, para os valores de precipitação, temperatura e evapotranspiração, respectivamente, no estado do Paraná, para uma série histórica entre 1972 a 1998.

O termo "precipitação" é definido como qualquer deposição d'água em forma líquida ou sólida proveniente da atmosfera, incluindo a chuva, granizo, neve, neblina, chuvisco, orvalho e outros hidrometeoros. A precipitação é medida em altura, normalmente expressa em milímetros. Uma precipitação de 1 mm é equivalente a um volume de 1 litro de água numa superfície de 1 m<sup>2</sup> (IAPAR, 2000).



Figura 19 - Cartas com as médias mensais de precipitação para o estado do Paraná Fonte: MODIFICADO DE IAPAR (2000)

A temperatura do ar pode ser definida em termos de movimento das moléculas de ar - a agitação das moléculas é tanto maior quanto maior for a temperatura - ou em termos relativos, com base no grau de calor que o ar contém. Para medir a temperatura são utilizados os termômetros. Existem diferentes escalas de medida da temperatura, mas a escala Celsius é a utilizada tanto nacional como internacionalmente (IAPAR, 2000).



Figura 20 - Cartas com as médias mensais de temperatura. Fonte: MODIFICADO DE IAPAR (2000)

A transferência de água de uma superfície qualquer para a atmosfera, por meio dos processos de evaporação e transpiração, é denominada evapotranspiração.

Normalmente se estima a evapotranspiração devido à dificuldade de se separar os processos de evaporação - perda de água diretamente das superfícies

para a atmosfera - e transpiração - perda de água dos organismos vegetais e animais para a atmosfera.

A evapotranspiração é considerada como potencial quando ocorre a partir de uma superfície vegetada extensa e uniforme, coberta por vegetação de porte baixo e bem suprida de água.



Figura 21 - Cartas com as médias mensais de evapotranspiração. Fonte: MODIFICADO DE IAPAR (2000)

Carvalho e Stipp (2004) em uma análise global do comportamento termopluviométrico no estado do Paraná, evidenciaram uma distinção mais marcante no que se refere à pluviometria, representada por uma estação mais chuvosa e outra mais seca, diferenciando-se das variações térmicas sazonais menos acentuadas.

Com relação ao Balanço Hídrico do Estado do Paraná propriamente dito, observam-se valores médios anuais de excedente hídrico (EXC) entre 372,8mm (Cambará) e 1586,7mm (Antonina).

A média mensal de precipitações é sempre superior a 100mm, exceto pela cidade de Maringá, 99,3mm. A deficiência hídrica (DEF) é presente em apenas 10 municípios, com valores médios anuais variando entre 0,1mm a 2,7mm (Carvalho e Stipp,2004).

Próximos a Marechal Cândido Rondon, os municípios de Foz do Iguaçu, São Miguel do Iguaçu, Cascavel e Guaíra apresentam ao longo de sua série histórica, balanço hídrico positivo, com excedentes hídricos maiores que 798mm / ano, conforme Carvalho e Stipp, 2004.

Estes dados mostram as condições do regime hídrico regional, caracterizando, no estado do Paraná (e na BPIII) o predomínio de excedentes hídricos ao longo de sua série histórica de dados.

3.1.4.1 Balanço hídrico climatológico da bacia do rio Ajuricaba, Marechal Cândido Rondon / PR.

O estudo sobre a interação entre os recursos hídricos superficiais e subterrâneos aborda aspectos climáticos, hidrológicos e hidrogeológicos, entre outros, com o intuito de caracterizar o ciclo hidrológico em uma determinada região ou bacia hidrográfica, quantificando e qualificando os recursos hídricos deste local.

Em um contexto regional, a baia do rio Ajuricaba localiza-se na Bacia Hidrográfica do Rio Paraná III (BPIII). A bacia hidrográfica do rio Ajuricaba está situada no município de MCR e sua localização, no contexto da BPIII é apresentada na Figura 22.



Figura 22 - Localização do município de Marechal Cândido Rondon e da bacia do Ajuricaba.

### 3.1.4.1.1 Parâmetros analisados

### Temperatura do Ar

Tomando como base as médias mensais de temperatura do ar, no período entre janeiro de 2004 a dezembro de 2005, a temperatura média anual é 23,4 °C, o mês mais quente, março de 2005 com temperatura média de 29,2 °C e, o mês mais frio, Julho de 2005 com temperatura média de 17,4 °C (Figura 23).

Exceto os meses de janeiro e setembro, todos os outros meses de 2005 possuem temperaturas médias maiores que as registradas no ano de 2004.



### Temperaturas médias mensais dos anos de 2004 e 2005

### Precipitação pluviométrica

A precipitação anual média no período de janeiro / 2004 a dezembro / 2005 é de 1735mm.

A média mensal de precipitação é de 144mm, sendo outubro / 2005 o mês mais chuvoso com volume precipitado de 470mm e, março / 2005 o mês com menor precipitação, 16mm.

Os valores acumulados de precipitação para os anos de 2004 e 2005 são 1664mm e 1806mm respectivamente.

No período analisado, os trimestres: abril, maio, junho e setembro, outubro, novembro, apresentaram maior precipitação. Este fato difere do padrão histórico observado por IAPAR (2000) e Carvalho e Stipp (2004), onde nos meses de dezembro, janeiro e fevereiro concentram-se os maiores índices pluviométricos na região. Comparando os meses do período estudado; janeiro, junho, agosto, setembro e outubro de 2005 apresentam volumes precipitados maiores que no ano de 2004 (Figura 24).



Médias mensais de precipitação para os anos de 2004 e 2005

Figura 24 - Gráfico comparativo entre as precipitações mensais para o período analisado.

### Evapotranspiração Potencial

Tomando como base os valores mensais de evapotranspiração potencial (ETP), no período entre janeiro de 2004 a dezembro de 2005, a ETP média é 107,8 mm; o mês com maior ETR é janeiro de 2004 com 173 mm e julho de 2005 o mês com menor valor 40mm.

Janeiro, julho e setembro / 2004 apresentam evapotranspiração potencial maior em 2004 do que em 2005, em todos os outros meses o ano de 2005 possui valores mais elevados (Figura 25).

A ETP do período analisado apresenta-se concordante com os valores estaduais, caracterizando o verão como a estação com maiores ETP, em virtude do maior comprimento dos dias e, da maior incidência de radiação solar.

#### Evapotranspiração Potencial



Fev Jan Mar Abril Maio Jun Jul Ago Set Out Nov Dez 2004 173,5 152,1 117,0 81,3 120,3 47,8 41,3 41,8 50,5 98,9 111,4 158,9 2005 161,5 173,0 193,0 128,3 72,6 70,0 40,4 88,1 47,6 110,7 133,5 172.5 Figura 25- Gráfico comparativo entre a evapotranspiração potencial nos anos de 2004 e 2005.

Escoamento Superficial

Neste trabalho, foram utilizadas as medições de vazão realizadas no rio Ajuricaba, no período entre dezembro de 2004 e dezembro de 2005.

As medições do escoamento superficial eram realizadas a cada 01 hora e medidas em m3/s na estação localizada no rio Ajuricaba.

O escoamento médio mensal, no período estudado, calculado a partir de informações horárias, é 0,3 m3/s, o que representa uma lâmina d'água de 51 mm mensais sobre a bacia hidrográfica (16,4 km2).

O mês com maior ESC foi outubro de 2005 com 1,1 m3/s (182,5 mm) e os meses de março e abril de 2004 com menor escoamento superficial 0,04 m3/s (6,7 mm).

A Tabela 3 apresenta a média mensal do escoamento superficial obtida na estação localizada no rio Ajuricaba para o período de dezembro de 2004 a dezembro de 2005.

| Tabela 5 - medias mensais do escoamento superiolal. |                         |          |        |                         |          |  |  |
|-----------------------------------------------------|-------------------------|----------|--------|-------------------------|----------|--|--|
| MÊS                                                 | ESC (m <sup>3</sup> /s) | ESC (mm) | MÊS    | ESC (m <sup>3</sup> /s) | ESC (mm) |  |  |
| Dez/04                                              | 0,290                   | 48,5     | Jul/05 | 0,160                   | 26,8     |  |  |
| Jan/05                                              | 0,170                   | 28,5     | Ago/05 | 0,110                   | 18,4     |  |  |
| Fev/05                                              | 0,060                   | 10,0     | Set/05 | 0,260                   | 43,5     |  |  |
| Mar/05                                              | 0,040                   | 6,7      | Out/05 | 1,090                   | 182,5    |  |  |
| Abr/05                                              | 0,040                   | 6,7      | Nov/05 | 0,820                   | 137,3    |  |  |
| Mai/05                                              | 0,100                   | 16,7     | Dez/05 | 0,330                   | 55,2     |  |  |
| Jun/05                                              | 0,480                   | 80,4     | -      | -                       | -        |  |  |

Tabela 3 - médias mensais do escoamento superficial.

### 3.1.4.1.2 O Balanço Hídrico Climatológico

A diferença entre os valores mensais acumulados de precipitação (P), e a soma do escoamento superficial (ESC) com os valores mensais de evapotranspiração (ETP), se positivo (P > ESC + ETP) caracteriza um volume de água (Saldo Hídrico), disponível à infiltração e ao armazenamento de água na bacia, aqui denominado excedente hídrico ou, se negativo (P < ESC + ETP), uma deficiência hídrica.

A média mensal precipitada no período entre dezembro de 2004 e dezembro de 2005 é 146,1 mm. A soma das precipitações mensais para o período estudado (13 meses) é 1899 mm.

A média mensal da ETP no período entre dezembro / 2004 e dezembro / 2005 é 119 mm. O somatório da evapotranspiração potencial mensal para o período estudado é 1550 mm.

A média mensal do escoamento superficial no período entre dezembro de 2004 e dezembro de 2005 é 50 mm. O somatório do escoamento superficial mensal para o período totaliza 661mm.

A Figura 26 - Gráfico dos valores mensais de precipitação, evapotranspiração potencial e escoamento superficial no período estudado. apresenta os valores mensais de precipitação, evapotranspiração potencial e escoamento superficial no período estudado.

Ao analisar os valores mensais do balanço hídrico (Tabela 4) observa-se que dentre os 13 meses analisados, seis meses apresentaram excedentes hídricos (abril, maio, junho, agosto, setembro e outubro).

Os excedentes hídricos possuem, no período estudado, valores entre 6 mm (abril / 2005) e 176 mm (outubro / 2005).



Figura 26 - Gráfico dos valores mensais de precipitação, evapotranspiração potencial e escoamento superficial no período estudado.

| Tabela 4- valo | res médios    | mensais    | de prec  | ipitação, | evapo  | transpiraçã  | о ро | tencia | зI, |
|----------------|---------------|------------|----------|-----------|--------|--------------|------|--------|-----|
| escoamento s   | uperficial e  | o saldo    | para o   | período   | entre  | dezembro     | de 2 | 2004   | е   |
| dezembro de 2  | 2005, notar e | em negrito | o os mes | ses com e | excede | nte hídrico. |      |        |     |

|        |       | -       |                         |          |            |
|--------|-------|---------|-------------------------|----------|------------|
| Mês    | P(mm) | ETP(mm) | ESC (m <sup>3</sup> /s) | ESC (mm) | SALDO (mm) |
| dez/04 | 93,0  | 158,9   | 0,290                   | 48,5     | -114,5     |
| jan/05 | 189,0 | 161,5   | 0,170                   | 28,5     | -1,0       |
| fev/05 | 26,2  | 173,1   | 0,060                   | 10,0     | -156,9     |
| mar/05 | 16,0  | 193,0   | 0,040                   | 6,7      | -183,7     |
| Abr/05 | 141,0 | 128,3   | 0,040                   | 6,7      | 6,0        |
| Mai/05 | 213,0 | 72,6    | 0,100                   | 16,7     | 123,7      |
| jun/05 | 218,0 | 70,0    | 0,480                   | 80,4     | 67,6       |
| jul/05 | 49,0  | 40,4    | 0,160                   | 26,8     | -18,2      |
| Ago/05 | 115,0 | 88,1    | 0,110                   | 18,4     | 8,5        |
| set/05 | 178,0 | 47,6    | 0,260                   | 43,5     | 86,8       |
| out/05 | 470,0 | 110,7   | 1,090                   | 182,5    | 176,8      |
| Nov/05 | 121,0 | 133,5   | 0,820                   | 137,3    | -149,8     |
| dez/05 | 70,0  | 172,5   | 0,330                   | 55,2     | -157,8     |
| -      |       |         |                         |          |            |

Ao realizar o balanço hídrico climatológico acumulado para o período estudado, o resultado apresenta um déficit hídrico de 312,3mm.

A Figura 27 apresenta os valores acumulados de P, ETP, ESC e SALDO utilizados no cálculo do balanço hídrico climatológico no período de dezembro de 2004 e dezembro de 2005. Observa-se que neste período ocorreu um déficit hídrico, não existindo a possibilidade de recarga do aqüífero.



Figura 27 - Balanço hídrico climatológico para o período estudado.

3.1.4.1.3 Relações entre fenômenos climatológicos e águas subterrâneas

Frente ao período de estiagem observado, procurou-se caracterizar possíveis relações entre o déficit hídrico ocorrido e seus impactos nos recursos hídricos subterrâneos.

Para realizar esta análise foram utilizados os dados fornecidos pelo SAAE, correspondentes ao nível dinâmico (ND) de bombeamento do poço tubular profundo, denominado "Poço Líder", poço distante 1,8 km da estação meteorológica do SAAE.

O "Poço Líder" é utilizado no abastecimento municipal, mantem sua vazão de bombeamento constante e mensalmente é medido o seu nível dinâmico de bombeamento.

O período analisado vai de janeiro de 2001 a abril de 2006 e o gráfico com a variação do ND neste período é apresentado na Figura 28.

Nesta comparação, o balanço hídrico climatológico compreendeu apenas os parâmetros precipitação e evapotranspiração. O descarte do escoamento superficial, nesta correlação, objetiva abranger um período maior de análise, entre janeiro de 2004 e dezembro de 2005.

Ao comparar o saldo do balanço hídrico climatológico, com os dados do nível dinâmico do poço tubular profundo pode-se constatar a relação da estiagem prolongada com o rebaixamento do nível de bombeamento, salientando-se que a vazão de explotação é mantida constante em todo o período estudado.

Esta relação evidencia também o acentuado rebaixamento do aqüífero frente à ausência de recarga. Devem ser realizados estudos específicos para mensurar a velocidade de recarga das águas, bem como monitoramento do aqüífero através de poços sem bombeamento.



Figura 28 - Gráfico da variação do nível dinâmico no poço tubular profundo.

O balanço hídrico registrou precipitação média mensal de 146mm, evapotranspiração potencial média mensal de 119mm e escoamento superficial médio mensal de 51mm.

A estiagem caracterizada (2004 – 2005), repercutida intensamente na mídia devido a "quebra" da safra agrícola e prejuízos da ordem de milhões de

reais, influenciou também a captação de água para abastecimento público no poço do SAAE, devido ao rebaixamento do nível dinâmico ocorrido no poço tubular profundo.

Quando comparados os dados registrados na estação do SAAE com os boletins climanalise obtidos mensalmente no Centro de Previsão de Tempos e Estudos Climáticos – CPTEC (2007), observa-se que em todo o sul do Brasil registraram-se as mesmas deficiências hídricas e estiagens prolongadas determinadas em Marechal Cândido Rondon.

Cabe ressaltar que esta estiagem representa um fenômeno atípico aos padrões climatológicos do Estado do Paraná, bem como apresenta pouco valor estatístico por trata-se da análise de uma série histórica de no máximo 24 meses.

### 3.1. Geomorfologia da BPIII

Para caracterizar regionalmente aspectos geomorfológicos da área, serão apresentados três mapas temáticos: mapa hipsométrico, mapa da declividade do terreno e mapa das direções das vertentes.

A variação altimétrica na área em estudo é 600 metros. A cota altimétrica mais baixa é 86 m.s.n.m.; junto ao rio Paraná, após o reservatório de ITAIPU, e os terrenos mais elevados (até 768 m.s.n.m.) situam-se próximo ao município de Cascavel / PR. O mapa hipsométrico da BPIII é apresentado na Figura 32.

As porções mais baixias da BPIII, próximo a Calha do rio Paraná, são correspondentes a área de descarga regional do ASG (e também do Aqüífero Botucatu).



Figura 29 – Mapa hipsométrico da Bacia Hidrográfica do Paraná III.

Predominam terrenos com declividade média de 4° na área da BPIII (Figura 33). Áreas mais declivosas (maiores que 45°) ocorrem principalmente na porção central da bacia hidrográfica. Ressalta-se que em terrenos com declividade acima de 6% predomina o escoamento superficial, e em terrenos com declividades menores de 6% predomina a infiltração de água no solo.



Figura 30 – Mapa da declividade do terreno na Bacia Hidrográfica do Paraná III.

O mapa de direção das vertentes tem sua função na hidrogeologia aplicada a determinação de encostas com menor insolação (voltadas para o sul), e conseqüentemente, maior umidade no solo, o que propicia melhores condições de recarga dos aqüíferos. A Figura 31 apresenta o mapa de direção das vertentes na BPIII.



# 4. RESULTADOS E DISCUSSÕES

### 4.1 Análise Multi-escala de Lineamentos Estruturais

A análise multi-escala de lineamentos consiste da descrição e interpretação de modelos digitais de elevação (Figura 32) e imagens orbitais Landsat TM7 visando determinar as direções estruturais predominantes.

Foram traçados inicialmente os lineamentos de toda área de estudo, a partir de 3 diferentes escalas de *zoom*: 1:600.000, 1:300.000 e 1:100.000. Em cada escala, foram caracterizadas as principais direções azimutais dos lineamentos estruturais, comparando os resultados obtidos (direções predominantes) para cada escala de análise.



Figura 32 - Modelo Digital de Elevação SRTM90 (USGS, 2005)

## 4.1.1 Análise Direcional Multi-escala

### 4.1.1.1 Lineamentos 1:600.000

Utilizando a escala 1:600.000 foram traçados 165 lineamentos. Estes lineamentos foram divididos, conforme sua orientação, em classes azimutais de 10 graus de intervalo.

Frente ao comprimento destas estruturas, estas podem ser caracterizadas como alinhamentos estruturais, indicativos de zonas de cisalhamento, falhas, dentre outros.

A Tabela 5 apresenta os dados de freqüência e comprimento dos lineamentos traçados.

| Classes       | FREQÜÊNCIA  |               | COMPRIMENTO ACUMULADO |               |
|---------------|-------------|---------------|-----------------------|---------------|
|               | Número de   |               | Comprimento dos       |               |
| Azimutais     | Lineamentos | Porcentagem % | Lineamentos           | Porcentagem % |
| N90°W a N80°W | 8           | 4,8           | 203.570               | 6,6           |
| N80°W a N70°W | 6           | 3,8           | 98.525                | 3,2           |
| N70°W a N60°W | 22          | 13,5          | 450.440               | 14,8          |
| N60°W a N50°W | 11          | 6,6           | 222.718               | 7,2           |
| N50°W a N40°W | 3           | 1,8           | 66.688                | 2,1           |
| N40°W a N30°W | 1           | 0,7           | 9.828                 | 0,3           |
| N30°W a N20°W | 2           | 1,4           | 22.547                | 0,8           |
| N20°W a N10°W | 4           | 2,4           | 55.561                | 1,8           |
| N10°W a N0°   | 8           | 4,8           | 151.952               | 5,1           |
| N0° a N10°E   | 11          | 6,6           | 172.055               | 5,6           |
| N10°E a N20°E | 14          | 8,4           | 210.741               | 6,8           |
| N20°E a N30°E | 14          | 8,4           | 319.595               | 10,4          |
| N30°E a N40°E | 14          | 8,4           | 217.673               | 7,1           |
| N40°E a N50E  | 17          | 10,3          | 318.664               | 10,4          |
| N50°E a N60°E | 10          | 6             | 169.187               | 5,5           |
| N60°E a N70°E | 11          | 6,6           | 224.921               | 7,3           |
| N70°E a N80°E | 1           | 0,7           | 23.990                | 0,9           |
| N80°E a N90°E | 8           | 4,8           | 125.858               | 4,1           |

Tabela 5 - Freqüência e comprimento acumulado dos lineamentos na escala 1:600.000

Os lineamentos podem ser visualizados nos diagramas de rosetas, nas classes de comprimento e freqüência na Figura 33.



Figura 33 - Diagrama de rosetas para os lineamentos traçados na escala 1:600.000, à esquerda roseta referente a freqüência, à direita roseta do comprimento acumulado dos lineamentos

Ao analisar as classes azimutais da distribuição da freqüência dos lineamentos na escala 1:600.000, observa-se que predominam os lineamentos de direção N70°W a N60°W (13,5%), seguidos pelos lineamentos de direção N40°E a N50°E (10,3%).

O predomínio da direção NW (noroeste) junto aos lineamentos traçados nesta escala é evidenciado principalmente na direção das principais drenagens da Bacia do Paraná III (ex: Rio São Francisco Falso, Rio São Francisco Verdadeiro e Ocoí). Nestes casos a rede de drenagem é controlada pelos lineamentos estruturais em um padrão riacho-fenda de dissecação do relevo.

O mapa com os lineamentos traçados sobre modelo SRTM 90 (USGS, 2005), na escala 1:600.000, e as principais drenagens da Bacia do Paraná III está apresentado na Figura 34.



Figura 34 - Lineamentos traçados na escala 1:600.000

## 4.1.1.2 Lineamentos 1:300.000

Utilizando a escala 1:300.000 foram traçados 1.237 lineamentos. Estes lineamentos foram divididos, conforme sua orientação, em classes azimutais de 10° de intervalo. A Tabela 6 apresenta os dados de freqüência e comprimento acumulado dos lineamentos traçados.

Tabela 6 - Freqüência e comprimento acumulado dos lineamentos na escala 1:300.000

| Classes       | FREQÜÊNCIA  |               | COMPRIMENTO ACUMULADO |               |
|---------------|-------------|---------------|-----------------------|---------------|
| Azimutais     | Número de   |               | Comprimento dos       |               |
| 7211101010    | Lineamentos | Porcentagem % | Lineamentos           | Porcentagem % |
| N90°W a N80°W | 35          | 2,8           | 152.574               | 2,8           |
| N80°W a N70°W | 47          | 3,7           | 232.757               | 4,3           |
| N70°W a N60°W | 97          | 7,8           | 454.082               | 8,4           |
| N60°W a N50°W | 67          | 5,4           | 278.690               | 5,1           |
| N50°W a N40°W | 62          | 5,1           | 250.475               | 4,6           |
| N40°W a N30°W | 62          | 5,1           | 256.121               | 4,7           |
| N30°W a N20°W | 60          | 4,8           | 237.490               | 4,4           |
| N20°W a N10°W | 72          | 5,8           | 288.303               | 5,3           |
| N10°W a N0°   | 65          | 5,2           | 250.022               | 4,6           |
| N0° a N10°E   | 108         | 8,7           | 451.275               | 8,4           |
| N10°E a N20°E | 114         | 9,2           | 498.751               | 9,2           |
| N20°E a N30°E | 101         | 8,1           | 449.657               | 8,3           |
| N30°E a N40°E | 94          | 7,5           | 385.995               | 7,2           |
| N40°E a N50E  | 81          | 6,5           | 383.164               | 7,1           |
| N50°E a N60°E | 64          | 5,1           | 315.680               | 5,8           |
| N60°E a N70°E | 48          | 3,8           | 201.812               | 3,7           |
| N70°E a N80°E | 36          | 2,9           | 174.174               | 3,2           |
| N80°E a N90°E | 24          | 1,9           | 106.937               | 1,9           |

Os lineamentos podem ser visualizados nos diagramas de rosetas, nas classes de comprimento e freqüência na Figura 35.



Figura 35 - Diagrama de rosetas para os lineamentos traçados na escala 1:300.000, à esquerda roseta referente a freqüência dos lineamentos à direita roseta referente ao comprimento acumulado.

Ao analisar as classes azimutais da distribuição da freqüência dos lineamentos na escala 1:300.000, observa-se que predominam os lineamentos de direção N-S a N30°E (26% dos lineamentos estão neste intervalo). O principal intervalo de direção no quadrante noroeste foi N70° - 60°W, correspondente a 7,8% do total de lineamentos traçados.

Existe uma maior ocorrência dos lineamentos N-S nesta escala de traçado quando comparada a escala anterior. Observa-se também que as principais drenagens da BPIII estão controladas pelos lineamentos estruturais de direção NW. Entretanto, os lineamentos de direção NE e N-S correspondem, em sua maioria, aos canais secundários da rede de drenagem principal.

O mapa com os lineamentos traçados na escala 1:300.000 está apresentado na Figura 36.



56



Figura 36 - Lineamentos traçados na escala 1:300.000

## 4.1.1.3 Lineamentos 1:100.000

Utilizando a escala 1:100.000 foram traçados 10.384 lineamentos. Estes lineamentos foram divididos, conforme sua orientação, em classes azimutais de 10° graus de intervalo. A Tabela 7 apresenta os dados de freqüência e comprimento dos lineamentos traçados.

Tabela 7 - Freqüência e comprimento dos lineamentos traçados na escala 1:100.000

| Classes       | FREQÜÊNCIA  |               | COMPRIMENTO ACUMULADO |               |
|---------------|-------------|---------------|-----------------------|---------------|
| Azimutais     | Número de   |               | Comprimento dos       |               |
|               | Lineamentos | Porcentagem % | Lineamentos           | Porcentagem % |
| N90°W a N80°W | 376         | 3,7           | 441.615               | 3,4           |
| N80°W a N70°W | 505         | 4,8           | 641.895               | 4,9           |
| N70°W a N60°W | 697         | 6,7           | 900.512               | 6,9           |
| N60°W a N50°W | 880         | 8,6           | 1.097.105             | 8,4           |
| N50°W a N40°W | 840         | 8,2           | 967.524               | 7,4           |
| N40°W a N30°W | 697         | 6,7           | 834.044               | 6,4           |
| N30°W a N20°W | 615         | 5,9           | 739.576               | 5,7           |
| N20°W a N10°W | 497         | 4,7           | 582.927               | 4,5           |
| N10°W a N0°   | 607         | 5,8           | 715.497               | 5,5           |
| N0° a N10°E   | 600         | 5,7           | 765.215               | 5,9           |
| N10°E a N20°E | 604         | 5,8           | 736.983               | 5,7           |
| N20°E a N30°E | 629         | 6,2           | 803.963               | 6,2           |
| N30°E a N40°E | 592         | 5,8           | 744.323               | 5,7           |
| N40°E a N50E  | 598         | 5,7           | 794.876               | 6,1           |
| N50°E a N60°E | 560         | 5,4           | 732.781               | 5,6           |
| N60°E a N70°E | 431         | 4,1           | 586.115               | 4,5           |
| N70°E a N80°E | 301         | 2,8           | 396.146               | 3             |
| N80°E a N90°E | 355         | 3,4           | 456.525               | 3,5           |

A distribuição espacial dos lineamentos, nas classes de comprimento e freqüência, pode ser visualizada nos diagramas de rosetas da Figura 37.



Figura 37 - Diagrama de rosetas para os lineamentos traçados na escala 1:100.000, à esquerda roseta referente a freqüência dos lineamentos à direita roseta referente ao comprimento acumulado.

Ao analisar as classes azimutais da distribuição da freqüência dos lineamentos na escala 1:100.000, observa-se que predominam os lineamentos de direção N60°W a N50°W (8,6%). A principal direção no quadrante nordeste foi N20° - 30°E, intervalo correspondente a 6,2% do total de lineamentos traçados.

Nesta escala de análise observa-se que a rede de drenagens está, em sua maior parte, controlada pelos lineamentos estruturais.

O mapa com os lineamentos traçados na escala 1:100.000 está apresentado na Figura 38.



Drenagens principais

Figura 38 - Lineamentos traçados na escala 1:100.000

4.1.1 Análise comparativa dos lineamentos traçados

Com o objetivo de verificar para cada intervalo azimutal, em qual escala de análise este intervalo possui mais lineamentos traçados, foram comparados todos os resultados obtidos na análise direcional multi-escala de lineamentos (Figura 39).



Figura 39 – Quadro comparativo dos lineamentos traçados nas escalas de análise.

Na escala 1:600.000 ainda que a direção N70W a N60W seja a com maior número de traçados, os lineamentos de direção NE predominam quando comparados nas outras escalas de análise. Estas grandes estruturas NE são, de maneira geral, paralelas as estruturas do embasamento da bacia sedimentar do Paraná.

Na escala 1:300.000 a distribuição por intervalos azimutais apresenta-se mais "homogênea" quando comparada a escala 1:600.000. Destacam-se as direções com tendência N-S, variando entre N20W a N20E.

Na escala 1:100.000 predominam os traçados com direção NW (variando de N20W a N80W. Na BPIII a direção NW é característica a rede de drenagem, destacando o os rios São Francisco Falo, São Francisco Verdadeiro, Ocoí, dentre outros.
Destaca-se que os intervalos azimutais N90W a N70W; N10W a N-S e N50E a N60E apresentam porcentagens de traçado muito semelhantes em todas as escalas, com variação percentual entre elas de no máximo 2%.

### 4.1.2 Análise de Densidade dos Lineamentos Estruturais

Inicialmente, para seleção do raio de busca e grade, foram realizadas análises utilizando os seguintes espaçamentos de contagem: 1.000 (apenas para escala 1:100.000 em função de um maior detalhamento); 2.500; 5.000 e 10.000. Os melhores resultados foram obtidos com as seguintes combinações:

- 1:600.000: raio de busca e grade com 10.000 metros.
- 1:300.000: raio de busca e grade com 5.000 metros.
- 1:100.000: raio de busca e grade com 1.000 metros.

Foram realizadas diversas combinações de raios de busca, as melhores combinações entre escala de traçado, metragem do raio de busca e grade de análise, são sugeridas em vermelho na Figura 40.

A necessidade de distâncias menores no mapa de densidade de lineamentos 1:100.00 deve-se ao maior detalhamento deste, que quando analisado com a distância de 10.000 metros (como exemplo) perde a definição das áreas em função da grande densidade de lineamentos.

A partir do mapa de densidade total de lineamentos traçados em cada escala de análise, foram realizadas análises estatísticas com o programa *Linanalyst* (FREITAS, 2005) o qual utiliza um filtro direcional onde são tratados apenas os lineamentos da direção de interesse. Utilizando este procedimento foram gerados novos mapas de densidade de lineamentos para cada escala de análise, com enfoque nas principais direções obtidas na análise estrutural.

A seguir, de forma seqüencial, são apresentados os mapas específicos de cada escala de traçado. São apresentados três mapas para cada escala: na parte superior o mapa de densidade total de lineamentos traçados, na parte inferior a esquerda a direção azimutal predominante e, na porção inferior direita, a segunda direção azimutal em ocorrência, conforme os resultados da análise direcional realizada.

## Grade e passo 10.000 metros



Figura 40 – Mapas com as diferentes metragens do raio de influência e grade.

0 80000 820000 84000

## 4.1.2.1 Análise da Densidade dos Lineamentos Estruturais 1:600.000

A Figura 41 apresenta o mapa de densidade dos lineamentos traçados na escala 1:600.000, bem como a densidade das principais direções azimutais encontradas: N70° – 60°W e N40 – 50E. O mapa de lineamentos é apresentado sobreposto (em cinza) aos mapas de densidade.

Densidade total



Figura 41 - Mapa de densidade dos lineamentos traçados na escala 1:600.000

### 1.1.2.2 Análise da Densidade dos Lineamentos Estruturais 1:300.000

A Figura 42 apresenta o mapa de densidade dos lineamentos traçados na escala 1:300.000, bem como a densidade das principais direções azimutais encontradas: N0° – 30°E e N70° – 60°W. O mapa de lineamentos é apresentado sobreposto (em cinza) aos mapas de densidade.

Densidade total



Figura 42 - Mapa de densidade dos lineamentos traçados na escala 1:300.000

## 1.1.2.3 Análise da Densidade dos Lineamentos Estruturais 1:100.000

A Figura 43 apresenta o mapa de densidade dos lineamentos traçados na escala 1:100.000, bem como a densidade das principais direções azimutais encontradas: N60° – 50°W e N20 – 30E. O mapa de lineamentos é apresentado sobreposto (em cinza) aos mapas de densidade.



Densidade total



Figura 43 - Mapa de densidade dos lineamentos traçados na escala 1:100.000

#### 4.2 Implicações do arcabouço estrutural nas vazões da BPIII

Com o objetivo de verificar a relação entre densidade de lineamentos traçados e localização de poços tubulares com vazões significativas (maior que o terceiro quartil) comparou-se os mapas de densidade ora apresentados com a localização dos poços tubulares existentes.

Os poços tubulares profundos foram separados segundo a distribuição do primeiro, secundo e terceiro quartis dos valores de vazão (5,25; 20 e 45 m<sup>3</sup>/h, respectivamente).

### 4.2.1 Distribuições das vazões na BPIII

Para a elaboração do mapa de vazões foram utilizados dados de 119 poços tubulares profundos, sendo 89 poços da SANEPAR e 30 poços do SAAE – serviço autônomo de água e esgoto de Marechal Cândido Rondon. A figura 38 apresenta a localização dos poços tubulares utilizados e figura 39, mapa de isovazões da BPIII.

A Tabela 8 apresenta os resultados estatísticos dos dados de vazão.



| 1 abela 0 - Lotatiotica uuo uauuo ue vazau uuo puçuo (11 /1 | Tabela 8 - | Estatística | dos | dados de | Vazão dos | poços ( | (m <sup>3</sup> /h |
|-------------------------------------------------------------|------------|-------------|-----|----------|-----------|---------|--------------------|
|-------------------------------------------------------------|------------|-------------|-----|----------|-----------|---------|--------------------|

Na Figura 44 é apresentado o mapa com a indicação das vazões dos poços tubulares conforme a seguinte escala de cores: poços com vazões maiores que 45 m<sup>3</sup>/h em lilas, poços com vazão entre 20 e 45 m<sup>3</sup>/h representados por **estrelas pretas** e poços com vazões entre 5 e 25 m<sup>3</sup>/h em **circunferências negras**.



Figura 44 - Localização dos poços utilizados na confecção do mapa de isovazões

A seguir, na Figura 45, Figura 46 e Figura 47, são apresentados os mapas de densidade de lineamentos traçados, sobrepostos ao mapa de vazão. Nestes mapas, na parte superior encontra-se o mapa de densidade total de lineamentos traçados; na parte inferior a esquerda o mapa de densidade de lineamentos da direção azimutal predominante e, na porção inferior direita, observa-se o mapa de densidade da segunda direção azimutal em ocorrência.

# Densidade total





 $N 40^{\circ} - 50^{\circ} E$ 



Figura 45 - Traçado 1:600.000

# Densidade total



 $N 70^{\circ} - 60^{\circ} W$ 



Figura 46 - Traçado 1:300.000

 $N 40^{\circ} - 50^{\circ} E$ 



## Densidade total



Figura 47 - Traçado 1:100.000

Comparando os mapas de lineamentos e poços tubulares, observa-se que não há uma aparente relação entre densidade de lineamentos e poços com vazões representativas. Ocorrem casos poços com alta vazão em áreas de alta e baixa densidade, assim como com os poços de baixa vazão.

Em algumas áreas, principalmente na região centro norte da bacia, há uma aparente relação inversa entre densidade de lineamentos e a vazão (ou seja, as maiores vazões estão fora das áreas com maior densidade de lineamentos).

Entretanto ressalta-se que existem também poços com alta vazão em áreas de alta densidade de lineamentos (ex: alguns poços na porção central da BPIII).

Na maior parte dos casos, as vazões mais significativas estão nas bordas das áreas de maior densidade.

Desta forma, não se tem uma relação clara, utilizando apenas o parâmetro densidade de lineamentos, para o estabelecimento de regiões potencialmente mais produtoras.

### 4.3 Hidrogeoquímica da BPIII

Para avaliar a tipologia e a variação do quimismo da água subterrânea do Aqüífero Serra Geral na Bacia do Paraná III, foram utilizadas 39 análises físicoquímicas de água de poços tubulares profundos (Figura 48).

Na classificação dos tipos de água foram utilizadas todas as amostras coletadas na BPIII, independente de sua localização geográfica. Já na distribuição espacial dos teores, foram utilizadas apenas as análises dos municípios de Marechal Cândido Rondon, Mercedez, Pato Bragado e Entre Rios do Oeste.

O controle de qualidade dos dados analíticos usados baseou-se no cálculo da diferença de balanço iônico (DBI), descartando aqueles que apresentaram DBI > 10%. O valor médio da DBI do conjunto amostral utilizado é igual a 3%.

Dentre os poços estudados, na BPIII, são classificados sete tipos principais de águas: bicarbonatada cálcica (43,6%); bicarbonatada sódica (17,9%); bicarbonatada sódica-cálcica (12,8%); bicarbonatada cálcica-sódica (7,7%); bicarbonatada-carbonatada sódica (7,7%); carbonatada sódica (5,1%); sulfatada-bicarbonatada sódica (5,1%).



Figura 48 - Localização dos pontos onde foram obtidos os dados para análise hidrogeoquímica

A distribuição percentual dos tipos de água para o conjunto de amostras analisado está apresentado na Figura 49.



Classificação das águas

Figura 49 - Distribuição percentual das classes de água com base nas análises físico-químicas das amostras coletadas nos poços tubulares profundos da BPIII

A Figura 50 apresenta o diagrama de Piper (1944) para todo o conjunto de amostras. A Figura 51 apresenta a distribuição espacial dos tipos de água dentre as amostras coletadas nos poços tubulares profundos.

No diagrama de Piper observa-se principalmente a tendência das águas bicarbonatadas cálcicas migrarem para o campo correspondente ao tipo de água bicarbonatada sódica. Na Tabela 9 estão os valores médios e medianos dos sete tipos de águas.

O tipo de água denominada de sulfatada bicarbonatada sódica diferenciase das demais e por isso ficou isolada em relação aos outros tipos estudados. Uma das hipóteses para esta diferença é a contribuição de águas de outros aqüíferos no ASG, neste caso em específico, águas do aqüífero Guarani (mais ricas em sulfato).

Diagrama de Piper



Figura 50 - Diagrama de Piper com 39 amostras de água subterrânea da Bacia do Paraná III



Figura 51 - Distribuição espacial dos tipos de água na BPIII

| Tabela 9- Médias das principais concentrações dos parâmetros físico-químicos dos diversos tipos de água subterrânea na BPIII |                                       |                                         |                    |                                 |                                 |                       |                          |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------|---------------------------------|---------------------------------|-----------------------|--------------------------|
| TIPOS                                                                                                                        | sulfatada-<br>bicarbonatada<br>sódica | bicarbonatada-<br>carbonatada<br>sódica | carbonatada sódica | bicarbonatada<br>sódica-cálcica | bicarbonatada<br>cálcica-sódica | bicarbonata<br>sódica | bicarbonatada<br>cálcica |
| Parâmetros                                                                                                                   | Média                                 | Média                                   | Média              | Média                           | Média                           | Média                 | Média                    |
| Turbidez (UT)                                                                                                                | 1,26                                  | 0,37                                    | 0,39               | 0,38                            | 0,33                            | 0,44                  | 0,70                     |
| Cor (uH)                                                                                                                     | 3,00                                  | 0,83                                    | 1,25               | 0,50                            | 0,00                            | 1,07                  | 1,47                     |
| Condutividade<br>µS/cm                                                                                                       | 104,05                                | 165,57                                  | 347,45             | 143,04                          | 114,10                          | 166,54                | 199,88                   |
| pН                                                                                                                           | 8,04                                  | 8,71                                    | 9,63               | 7,75                            | 7,32                            | 8,73                  | 7,45                     |
| Dureza (mg/L)                                                                                                                | 78,00                                 | 24,56                                   | 4,27               | 63,72                           | 65,67                           | 26,58                 | 68,24                    |
| STD (mg/L)                                                                                                                   | 123,00                                | 99,33                                   | 205,00             | 76,20                           | 53,67                           | 103,57                | 79,53                    |
| SiO <sub>2</sub> <sup>-</sup> (mg/L)                                                                                         | 32,65                                 | 34,91                                   | 31,25              | 33,37                           | 34,86                           | 34,48                 | 37,53                    |
| HCO <sub>3</sub> <sup>-</sup> (mg/L)                                                                                         | 73,49                                 | 54,01                                   | 55,13              | 99,71                           | 85,63                           | 93,29                 | 86,00                    |
| CO3 <sup>2-</sup> (mg/L)                                                                                                     | 4,08                                  | 17,11                                   | 62,12              | 0,00                            | 0,00                            | 13,01                 | 0,37                     |
| Cl <sup>-</sup> (mg/L)                                                                                                       | 40,50                                 | 5,78                                    | 13,04              | 6,63                            | 7,00                            | 4,39                  | 4,67                     |
| F⁻ (mg/L)                                                                                                                    | 0,26                                  | 0,15                                    | 0,35               | 0,33                            | 0,08                            | 0,39                  | 0,11                     |
| SO4 <sup>2-</sup> (mg/L)                                                                                                     | 105,00                                | 8,93                                    | 19,05              | 7,54                            | 1,00                            | 0,64                  | 0,76                     |
| NO <sub>3</sub> <sup>-</sup> (mg/L)                                                                                          | 1,33                                  | 3,75                                    | 2,04               | 5,22                            | 7,23                            | 2,93                  | 6,84                     |
| Ca <sup>2+</sup> (mg/L)                                                                                                      | 25,65                                 | 8,69                                    | 1,41               | 19,31                           | 18,53                           | 7,49                  | 20,41                    |
| Mg <sup>2+</sup> (mg/L)                                                                                                      | 3,40                                  | 0,70                                    | 0,18               | 4,16                            | 4,70                            | 2,27                  | 4,27                     |
| Na <sup>⁺</sup> (mg/L)                                                                                                       | 82,50                                 | 32,70                                   | 90,00              | 24,26                           | 17,60                           | 41,17                 | 9,93                     |
| K⁺ (mg/L)                                                                                                                    | 0,42                                  | 0,43                                    | 0,38               | 0,52                            | 0,47                            | 0,51                  | 0,56                     |
| Ferro total<br>(mg/L)                                                                                                        | 0,01                                  | 0,01                                    | 0,02               | 0,02                            | 0,02                            | 0,06                  | 0,07                     |
| Número de<br>amostras (N)                                                                                                    | 2                                     | 3                                       | 2                  | 5                               | 3                               | 7                     | 17                       |

### 4.3.1 Classificação das águas subterrâneas

4.3.1.1 Águas do tipo sulfatada-bicarbonatada sódica

As águas classificadas como sulfatada-bicarbonatada sódica têm as concentrações mais elevadas do ânion cloreto e o segundo maior valor médio de sódio.

As análises deste grupo localizam-se no município de Marechal Cândido Rondon a uma distância aproximada de 28 km entre si. Um poço situa-se na margem do Reservatório de ITAIPU BINACIONAL (Figura 52 em vermelho), com 85 mg/L de sulfato e 75 mg/L de sódio (composição mista); o outro, localizado próximo à área urbana do município e possui 125 mg/L de sulfato e 90 mg/L de sódio, podendo ser classificado como água sulfatada (Figura 52 em preto).

O gráfico da Figura 53 apresenta os valores médios das águas sulfatadasbicarbonatadas sódicas.







Figura 53 - Gráfico com a média dos valores da água sulfatada-bicarbonatada sódica

## 4.3.1.2 Águas do tipo bicarbonatada-carbonatada sódica

Os três poços que caracterizam este tipo de água situam-se a uma distância mínima de 6 km e máxima de 24 km entre si, sendo que os dois mais próximos estão localizados em MCR e o outro no município de Pato Bragado. Estes poços apresentam pH entre 8,33 e 9,29; valores de carbonato entre 14,56 mg/L e 20,12 mg/L e sódio entre 27,9 mg/L e 46,30 mg/L (Figura 54).

O gráfico da Figura 55 apresenta os valores médios da água bicarbonatada-carbonatada sódica.



Figura 54 - Diagrama de Piper para as águas bicarbonatadas-carbonatadas sódicas



Figura 55 - Estatística com a média dos valores água bicarbonatada-carbonatada sódica

4.3.1.3 Águas do tipo carbonatada sódica

As águas carbonatadas sódicas têm os valores mais elevados de condutividade, pH, sólidos totais dissolvidos, carbonato, sódio e concentrações elevadas de sulfato.

Estes dois poços distam-se 24 km um do outro, sendo que um deles localiza-se no Município de Pato Bragado com pH de 10,05; cloreto de 18,08 mg/L e sódio de 37,10 mg/L. O outro situado em MCR apresentou pH de 9,21, cloreto de 8,0 mg/L e sódio de 25,40 mg/L.

O diagrama de Piper elaborado com as concentrações químicas dos cátions e ânions das amostras de água está na Figura 56, sendo que o poço situado em MCR é plotado em vermelho e o poço de Pato Bragado em preto.

O gráfico da Figura 57 apresenta os valores médios das águas bicarbonatada-carbonatada sódica e carbonatada sódica.



Figura 56 - Diagrama de Piper para as águas carbonatadas sódicas



Figura 57 - Gráfico com a média dos valores das águas carbonatadas sódicas

4.3.1.4 Águas do tipo bicarbonatada sódica-cálcica

Todos os cinco poços localizam-se em MCR e possuem águas classificadas em bicarbonatadas sódico-cálcicas têm valores de pH entre 6,86 e 8,02.

O diagrama de Piper elaborado com este tipo de água pode ser observado na Figura 58. O gráfico dos principais cátions e ânions das águas bicarbonatadas sódico-cálcicas encontra-se na Figura 59.



Figura 58 - Diagrama de Piper para as águas bicarbonatadas sódicas-cálcicas



Figura 59 - Gráfico com a média dos valores das águas bicarbonatadas sódicocálcicas 4.3.1.5 Águas do tipo bicarbonatada cálcica-sódica

Todos os três poços localizam-se em Marechal Cândido Rondon e têm valores de pH entre 6,93 e 7,62. Na Figura 60 observa-se o diagrama de Piper para esta classificação.



Figura 60 - Diagrama de Piper para as águas bicarbonatadas cálcicas-sódicas

O gráfico com os principais cátions e ânios das águas bicarbonatadas calcica-sódicas é apresentado na Figura 61



Figura 61 - Estatística com os valores medianos da água bicarbontada cálcicasódica

## 4.3.1.6 Águas do tipo bicarbonatada sódica

Dos sete poços com este tipo químico de água, três localizam-se em Marechal Cândido Rondon, dois situam-se no município de Entre Rios do Oeste, um Mercedes e um em Foz do Iguaçu. O pH desta águas varia de 7,90 (poço de Mercedes) a 9,62 no poço de Entre Rios do Oeste.

Na Figura 62 observa-se o diagrama de Piper com as análises físicoquímicas dos poços com esta classificação.





O gráfico contendo os teores dos principais cátions e ânions das águas bicarbonatadas sódicas é apresentado na Figura 63.



4.3.1.7 Águas do tipo bicarbonatada cálcica

As águas do tipo bicarbonatada cálcica caracterizam-se como predominantes no Aqüífero Serra Geral e, neste trabalho em específico, correspondem a 43,6% das amostras coletadas.

Dentre os 17 poços classificados com este tipo de água, 12 estão situados em MCR, dois em Mercedes, dois em Itaipulândia e um situado em Foz do Iguaçu.

O pH destas águas varia de 6,45 a 8,37, as concentrações de cálcio estão entre 6,52 mg/L (poço em Itaipulândia) a 33,72 mg/L no poço da Bacia do Rio Ajuricaba em MCR.

Na Figura 64 observa-se o diagrama de Piper com as águas deste tipo de água. O gráfico apresentado na Figura 65 apresenta os principais cátions e ânions das águas bicarbonatadas cálcicas.







Figura 65 - Gráfico com a média dos valores das águas bicarbonatadas cálcicas

### 4.3.2 Qualidade das águas para Irrigação

O diagrama da Figura 66 mostra a qualidade da água para irrigação utilizando as amostras de água subterrânea coletadas nos poços da BP III. Das 39 amostras nota-se que:

- 15 poços têm risco nulo (C0-S1) com valores de condutividade abaixo de 100 µS/cm. Devido a escala do gráfico estas amostras não estão representadas.
- 18 poços têm riscos de sódio baixo e risco de salinidade baixo (C1-S1).
- Seis poços possuem valores de sódio ou salinidade que indicam restrições. Estes poços estão distribuídos da seguinte maneira:
- Um poço, localizado no município de Pato Bragado tem risco de médio sódio e baixo risco de salinidade (C1-S2).
- Um poço em Entre Rios do Oeste tem risco de sódio médio e risco de salinidade médio (C2-S2).
- Dois poços têm risco de salinidade médio (C2-S1). Um localizado em MCR, na bacia do rio Ajuricaba e outro em Pato Bragado.
- Um poço em Foz do Iguaçu com condutividade igual a 1479 µS/cm tem risco de salinidade alto (C3- S1).
- Um poço em Pato Bragado com 123 mg/L de sódio, tem risco de sódio muito forte e médio risco de salinidade (C2-S4). Neste caso o valor de Razão de Adsorção de sódio é 33,8. Uma vez que o limite de representação gráfica é 30, esta amostra não é representada no gráfico.



Figura 66 - Diagrama de classificação de água para irrigação, com amostras de águas subterrâneas da Bacia do Paraná III.

De uma forma em geral as águas do ASG aqui estudadas podem ser aplicadas na irrigação.

Entretanto, uma vez que ocorrem variações entre os poços na concentração dos parâmetros, no caso o sódio e condutividade (com magnitude para restringir sua utilização na irrigação), devem ser realizadas análises físicoquímicas locais visando à correta aplicação das águas.

### 4.3.3 Análise numérica e distribuição espacial dos dados

Na análise espacial dos cátions e ânions, foram utilizadas 34 análises de poços tubulares coletadas em MCR, Mercedes, Entre Rios do Oeste e Pato Bragado. As análises de água dos poços localizados em Itaipulândia e Foz do Iguaçu foram desconsideradas, na distribuição espacial dos teores, em virtude da falta de informações (poços tubulares) de qualidade, em outros municípios.

O mapa da Figura 67 apresenta, com hachuras em cor, os municípios da BPIII onde foi realizada a análise espacial da distribuição dos teores nas águas subterrâneas.





A seguir, apresenta-se a descrição estatística dos parâmetros analisados e sua distribuição espacial. Ressalta-se que os poços também estão separados segundo os teores dos elementos nas análises, utilizando os dados estatísticos referentes ao primeiro, segundo e terceiro quartis. O dióxido de carbono dissolvido naturalmente na água aparece nas análises químicas, principalmente, na forma dos íons  $CO_3^{2-}$  e  $HCO_3^{-}$ . A ocorrência de  $H_2CO_3^{-}$  (ácido carbônico),  $HCO_3^{-}$  (bicarbonato) e  $CO_3^{2-}$  (carbonato) está relacionada ao pH da seguinte maneira (Custodio e Llamas, 1983a; Freeze, Cherry, 1979; Fetter, 1994):

pH < 4,5 
$$H_2CO_3^-$$
  
4,5 < pH < 8,3  $H_2CO_3^-$  + HCO<sub>3</sub>  
8,3 < pH < 12,6  $HCO_3^-$  +  $CO_3^{2-}$   
pH >12,6  $CO_3^{2-}$ 

A estatística univariada do HCO<sub>3</sub><sup>-</sup>é apresentada na Figura 68 e sua distribuição espacial é apresentada na Figura 69.

| Dados estatísticos do bicarbonato (mg/L) |       |  |
|------------------------------------------|-------|--|
| Número de dados                          | 34    |  |
| Valor Mínimo                             | 32,2  |  |
| Valor Máximo                             | 133,1 |  |
| Média                                    | 84,4  |  |
| Mediana                                  | 88,7  |  |
| Moda                                     | 57,2  |  |



Figura 68 - Estatística univariada do ânion HCO3<sup>-</sup>



Figura 69 - Mapa com a distribuição espacial do isoteores de HCO3

Como já descrito nos íons bicarbonato, o CO<sub>3</sub><sup>2-</sup> também depende do pH. A existência de carbonato nas águas só ocorre quando os valores de pH superam 8,3.

A estatística do univariada do carbonato é apresentada Figura 70. A distribuição espacial do ânion carbonato é apresentada na Figura 71.

| Dados estatísticos do carbonato (mg/L) |      |  |
|----------------------------------------|------|--|
| Número de dados                        | 34   |  |
| Valor Mínimo                           | 0,0  |  |
| Valor Máximo                           | 83,8 |  |
| Média                                  | 7,2  |  |
| Mediana                                | 0,0  |  |
| Moda                                   | 0,0  |  |



Figura 70 - Estatística univariada do íon CO32-



Figura 71 - Mapa com a distribuição espacial de isoteores do  $\text{CO}_3^{2-}$ 

lon muito solúvel e estável, não causa redução ou oxidação do meio. Em concentrações acima de 250 mg/L comunica sabor salgado à água, porém não é prejudicial à saúde, mesmo em concentrações da ordem de 1000 mg/L. Teores elevados são prejudiciais para muitas plantas e tornam a água corrosiva.

A quantidade de Cl<sup>-</sup> nas águas naturais, em geral, está associada ao Na<sup>+</sup>. A ocorrência deste íon na água está associada a intrusões salinas em zonas costeiras, passagem da água por rochas sedimentares formadas em ambiente marinho, infiltração de água e lixiviação de solos em ambientes de clima árido, solubilização de depósitos de halita ou outro evaporito, além de aerossóis marinhos (HINDI, 1999).

O aumento dos teores de Cl<sup>-</sup> está relacionado no ambiente urbano com o processo de tratamento de água para abastecimento público, agente na produção de papéis, clorados de limpeza, desinfetantes, plásticos, solventes, produtos de petróleo, têxteis, anti-sépticos, tintas, clorofórmios e tubos de PVC (LICHT, 2001).

A estatística univariada do cloreto é apresentada na Figura 72. A distribuição espacial do cloreto é apresentada na Figura 73.

| Dados estatísticos do cloreto (mg/L) |      |  |
|--------------------------------------|------|--|
| Número de dados                      | 34   |  |
| Valor Mínimo                         | 0,6  |  |
| Valor Máximo                         | 49,0 |  |
| Média                                | 7,4  |  |
| Mediana                              | 5,3  |  |
| Moda                                 | 7,0  |  |



90



Figura 73 - Mapa com a distribuição espacial de isoteores do Cl<sup>-</sup>

Nas águas, o teor de F<sup>-</sup> de até 1,5 mg/L é benéfico à saúde, prevenindo cáries dentárias principalmente em crianças. Acima deste teor causa fluorose dental e deformação dos ossos (CPRM, 2000).

O F<sup>-</sup> é liberado durante os processos de intemperismo e ocorre em solução principalmente na forma de F<sup>-</sup>. O íon F<sup>-</sup> substitui a hidroxila (OH<sup>-</sup>) em minerais como micas, anfibólios, apatitas e argilas.

A estatística univariada do fluoreto é apresentada na Figura 74. A distribuição espacial do fluoreto é apresentada na Figura 75.

| Dados estatísticos do fluoreto (mg/L) |     |  |
|---------------------------------------|-----|--|
| Número de dados                       | 34  |  |
| Valor Mínimo                          | 0,0 |  |
| Valor Máximo                          | 1,6 |  |
| Média                                 | 0,2 |  |
| Mediana                               | 0,1 |  |
| Moda                                  | 0,1 |  |



Figura 74 - Estatística univariada do F



Figura 75 - Mapa com a distribuição espacial de isoteores do F

O S (enxofre) está distribuído na crosta, tanto em rochas ígneas como sedimentares, na forma de sulfetos (S<sup>2-</sup>) metálicos. Em contato com a água, em ambiente oxidante, esses sulfetos se transformam em sulfatos (SO<sub>4</sub><sup>2-</sup>) que são solubilizados e lixiviados. As mais importantes fontes de SO<sub>4</sub><sup>-2</sup> estão nos depósitos de gipso e anidrita (HEM, 1970). Podem ser consideradas como fonte de SO<sub>4</sub><sup>-2</sup>, nas águas naturais, os efluentes industriais e as chuvas ácidas (HINDI, 1999).

A estatística univariada do sulfato é apresentada na Figura 76. A distribuição espacial do íon sulfato é apresentada na Figura 77.

| Dados estatísticos do sulfato (mg/L) |       |  |
|--------------------------------------|-------|--|
| Número de dados                      | 34    |  |
| Valor Mínimo                         | 0,0   |  |
| Valor Máximo                         | 125,0 |  |
| Média                                | 8,5   |  |
| Mediana                              | 1,0   |  |
| Moda                                 | 1,0   |  |



Figura 76 - Estatística univariada do SO4-2



Figura 77 - Mapa com a distribuição espacial de isoteores de SO4-2

O termo sílica, que significa o óxido SiO<sub>2</sub>, é utilizado freqüentemente ao se referir ao silício em águas naturais, mas a forma correta é hidratada, representada como H<sub>4</sub>SiO<sub>4</sub> ou Si (OH)<sub>4</sub> (HEM, 1985).

O silício é o segundo elemento mais abundante da Terra e, a SiO<sub>2</sub> é um dos principais constituintes das rochas ígneas, metamórficas e sedimentares que, na forma de quartzo é um dos minerais mais resistentes ao intemperismo químico, com solubilidade baixa em condições ambientais. A sílica amorfa como chert, opala e calcedônia, são mais solúveis (HEM, 1985).

A concentração de SiO<sub>2</sub> comumente observada em águas naturais varia de 1 a 30 mg/L com mediana de 14 mg/L. Nas águas subterrâneas a mediana é de 17mg/L. Concentrações elevadas encontradas em poços estão relacionadas ao tipo de rocha e temperatura da água (HEM, 1985).

A estatística univariada da sílica é apresentada na Figura 78. A distribuição espacial do íon sílica é apresentada na Figura 79.

| Dados estatísticos da sílica (mg/L) |      |  |
|-------------------------------------|------|--|
| Número de dados                     | 34   |  |
| Valor Mínimo                        | 23,7 |  |
| Valor Máximo                        | 56,1 |  |
| Média                               | 35,5 |  |
| Mediana                             | 33,8 |  |
| Moda                                |      |  |



Figura 78 - Estatística univariada da SiO<sub>2</sub>


Figura 79 - Mapa com a distribuição espacial de isoteores da SiO<sub>2</sub>

O cálcio é liberado durante o intemperismo dos plagioclásios, piroxênios, anfibólio, epídotos, carbonatos, sulfatos em rochas básicas e ultrabásicas. Os minerais de cálcio intemperizam-se facilmente, dissolvem-se em meio ácido e podem recristalizar na forma de calcita, aragonita, dolomita, granada, fosfato e apatita (MINEROPAR, 2001).

Os íons de Ca<sup>+2</sup> e Mg<sup>+2</sup> são incorporados à água em concentrações que dependem das quantidades e formas disponíveis, do tempo e modo de interação entre água e a rocha e, das condições ambientais, todas ligadas às concentração descritas a seguir (HEM, 1970; KRAUSKOPF, 1972):

 pH: quanto mais ácido o meio, mais intensa é a dissolução, ocorrendo precipitação em pH básico;

 - CO<sub>2</sub>: o aumento da concentração de CO<sub>2</sub> aumenta a acidez, favorecendo a dissolução e, no caso inverso, precipitação;

 temperatura: o aumento da temperatura diminui a solubilidade, devido a diminuição da concentração do CO<sub>2</sub>;

A estatística univariada do cálcio é apresentada na Figura 80. A distribuição espacial do íon cálcio é apresentada na Figura 81.

| Dados estatísticos do cálcio (mg/L) |      |  |  |  |  |  |
|-------------------------------------|------|--|--|--|--|--|
| Número de dados                     | 34   |  |  |  |  |  |
| Valor Mínimo                        | 0,8  |  |  |  |  |  |
| Valor Máximo                        | 33,7 |  |  |  |  |  |
| Média                               | 16,2 |  |  |  |  |  |
| Mediana                             | 17,2 |  |  |  |  |  |
| Moda                                | 6,4  |  |  |  |  |  |



Figura 80 - Estatística univariada do Ca<sup>2+</sup>



Figura 81 - Mapa com a distribuição espacial de isoteores do Ca<sup>2+</sup>

O Mg<sup>2+</sup> apresenta propriedades similares ao Ca<sup>2+</sup>, é um dos principais responsáveis pela dureza da água, porém é mais solúvel e difícil de precipitar. Quando em solução tem a tendência de nela permanecer, daí o enriquecimento dos seus sais nas águas dos oceanos (Custodio, Llamas, 2001).

O Mg<sup>2+</sup> está presente nos silicatos, óxidos e carbonatos. Os íons de Mg<sup>2+</sup> são menores do que os de Ca<sup>2+</sup> e, por isso, têm uma densidade de carga mais forte e maior tração sobre as moléculas de água.

A estatística univariada do íon magnésio é apresentada na Figura 82. A distribuição espacial do íon magnésio é apresentada na Figura 83.

| Dados estatísticos do cálcio (mg/L) |      |  |  |  |  |  |  |
|-------------------------------------|------|--|--|--|--|--|--|
| Número de dados                     | 34   |  |  |  |  |  |  |
| Valor Mínimo                        | 0,8  |  |  |  |  |  |  |
| Valor Máximo                        | 33,7 |  |  |  |  |  |  |
| Média                               | 16,2 |  |  |  |  |  |  |
| Mediana                             | 17,2 |  |  |  |  |  |  |
| Moda                                | 6,4  |  |  |  |  |  |  |



Figura 82 - Estatística univariada do Mg<sup>2+</sup>



Figura 83 - Mapa com a distribuição espacial de isoteores do Mg<sup>2+</sup>

4.3.3.10 Sódio

O Na<sup>+</sup> é um dos metais alcalinos mais abundantes nas águas subterrâneas, possui solubilidade elevada e difícil precipitação.

Em geral, há um aumento gradativo dos teores de Na<sup>+</sup> das águas subterrâneas a partir da zona de recarga do aqüífero em direção às suas porções mais confinadas ou dos seus exutórios (CPRM, 2000).

O Na<sup>+</sup> é retido por adsorção na superfície de minerais, especialmente por minerais que apresentam alta capacidade de troca catiônica como as argilas. As fontes de Na<sup>+</sup> são: feldspatos (ortoclásio e microclínio), anfibólios, piroxênios, feldspatóides (nefelina e sodalita), rochas alcalinas e carbonatitos (CPRM, 2000).

A estatística univariada do sódio é apresentada na Figura 84. A distribuição espacial do íon sódio é apresentada na Figura 85.

| Dados estatísticos do sódio (mg/L) |       |  |  |  |  |  |
|------------------------------------|-------|--|--|--|--|--|
| Número de dados                    | 34    |  |  |  |  |  |
| Valor Mínimo                       | 1,9   |  |  |  |  |  |
| Valor Máximo                       | 123,0 |  |  |  |  |  |
| Média                              | 27,5  |  |  |  |  |  |
| Mediana                            | 17,0  |  |  |  |  |  |
| Moda                               | 7,2   |  |  |  |  |  |



Figura 84 - Estatística univariada do Na<sup>+</sup>



Figura 85 -Mapa com a distribuição espacial de isoteores do Na<sup>+</sup>

4.3.3.11 Potássio

O K<sup>+</sup> ocorre em pequenas quantidades ou está ausente nas águas subterrâneas, devido a sua participação intensa em processos de troca iônica, além da facilidade de ser adsorvido pelos minerais de argila e, de seus sais serem bastante utilizados pelos vegetais (CPRM, 2000).

A quantidade de  $K^+$  em águas naturais é muito baixa comparada ao Na<sup>+</sup>, porque este tende a ficar em solução desde que foi liberado da estrutura mineral, enquanto o  $K^+$  é liberado com mais dificuldade, além de ser reincorporado na estrutura dos minerais de argila (HEM, 1970).

A estatística univariada do potássio é apresentada na Figura 86. A distribuição espacial do íon potássio é apresentada na Figura 87. A estatística univariada do potássio é apresentada na Figura 87.

| Dados estatísticos do potássio (mg/L) |     |  |  |  |  |  |
|---------------------------------------|-----|--|--|--|--|--|
| Número de dados                       | 34  |  |  |  |  |  |
| Valor Mínimo                          | 0,0 |  |  |  |  |  |
| Valor Máximo                          | 1,3 |  |  |  |  |  |
| Média                                 | 0,5 |  |  |  |  |  |
| Mediana                               | 0,5 |  |  |  |  |  |
| Moda                                  | 0,5 |  |  |  |  |  |



Figura 86 - Estatística univariada do cátion K<sup>+</sup>



Figura 87 - Mapa com a distribuição espacial dos isoteores do K<sup>+</sup>

A atividade iônica do hidrogênio em solução aquosa é controlada pelas reações químicas que produzem ou consomem hidrogênio (HEM, 1985).

A temperatura exerce um forte efeito no comportamento do pH, sendo que temperaturas elevadas aumentam a constante de equilíbrio da água (K<sub>w</sub>) e, o valor do pH diminui. O pH da água pode ser afetado pela oxidação do ferro dissolvido, ou seja, o pH diminui com a oxidação e precipitação do ferro (HEM, 1985).

No local de estudo as análises dos poços situados em Entre Rios do Oeste e Pato Bragado apresentam pH maior que oito.

A estatística univariada do pH é apresentada na Figura 88. A distribuição espacial do pH é apresentada na Figura 89.

| Dados estatísticos do pH (mg/L) |      |  |  |  |  |  |  |
|---------------------------------|------|--|--|--|--|--|--|
| Número de dados                 | 34   |  |  |  |  |  |  |
| Valor Mínimo                    | 6,5  |  |  |  |  |  |  |
| Valor Máximo                    | 10,1 |  |  |  |  |  |  |
| Média                           | 7,9  |  |  |  |  |  |  |
| Mediana                         | 7,9  |  |  |  |  |  |  |
| Moda                            | 7,2  |  |  |  |  |  |  |



Figura 88 - Estatística univariada dos valores de pH.



Figura 89 - Mapa com a distribuição espacial dos iso-valores do pH

# 4.3.3.14 Condutância específica

Condutância elétrica, ou condutividade é a capacidade de uma substância conduzir corrente elétrica. A condutividade elétrica aumenta com a elevação da temperatura, e quantidade de íons dissolvidos.

A estatística univariada da condutância específica é apresentada na Figura 90. A distribuição espacial da condutância específica é apresentada na Figura 91.

| Dados estatísticos da condutância específica (µ/S) |         |  |  |  |  |  |
|----------------------------------------------------|---------|--|--|--|--|--|
| Número de dados                                    | 34      |  |  |  |  |  |
| Valor Mínimo                                       | 34,8    |  |  |  |  |  |
| Valor Máximo                                       | 1.479,0 |  |  |  |  |  |
| Média                                              | 180,0   |  |  |  |  |  |
| Mediana                                            | 124,9   |  |  |  |  |  |
| Moda                                               | -       |  |  |  |  |  |



Figura 90 - Estatística univariada da condutância específica



Figura 91 - Mapa com a distribuição espacial dos iso-valores da condutância específica

### 4.3.3.16 Sólidos totais dissolvidos

A concentração do material dissolvido na água é determinada a partir do peso do resíduo seco, resultante da evaporação, à temperatura fixa e constante seguida de secagem em estufa de uma alíquota da amostra de volume conhecido. A temperatura usada para determinação dos sólidos totais dissolvidos (STD) foi de 103°C.

Os valores analíticos dos STD foram determinados pelo método gravimétrico e podem apresentar discrepâncias quando comparados com a soma das concentrações de cátions e ânions. Esta discrepância normalmente é devida à transformação de  $HCO_3^-$  em  $CO_3^{2-}$  pela perda de  $CO_2$ .

A estatística univariada dos STD é apresentada na Figura 92. A distribuição espacial dos STD é apresentada na Figura 93.

| Dados estatísticos dos sólidos totais dissolvidos (mg/L) |       |  |  |  |  |  |
|----------------------------------------------------------|-------|--|--|--|--|--|
| Número de dados                                          | 34    |  |  |  |  |  |
| Valor Mínimo                                             | 32,0  |  |  |  |  |  |
| Valor Máximo                                             | 331,0 |  |  |  |  |  |
| Média                                                    | 91,6  |  |  |  |  |  |
| Mediana                                                  | 62,0  |  |  |  |  |  |
| Moda                                                     | 32,0  |  |  |  |  |  |



Figura 92 - Estatística univariada dos sólidos totais dissolvidos calculados



Figura 93 - Mapa com a distribuição espacial das isoteores dos STD calculados

A estatística do univariada da temperatura é apresentada na Figura 94. A distribuição espacial da temperatura é apresentada na Figura 95.

Observa-se que, nos municípios de Pato Bragado e Entre Rios Do Oeste, a temperatura das águas aumenta até 2 °C. Este aumento pode estar associado a mistura de água entre o ASG e o Aqüífero Botucatu, uma vez que este último, apresenta temperaturas elevadas na área da BPIII, inclusive com aproveitamento de seu potencial termal.

| Dados estatísticos da temperatura (°C) |      |  |  |  |  |  |  |
|----------------------------------------|------|--|--|--|--|--|--|
| Número de dados                        | 34   |  |  |  |  |  |  |
| Valor Mínimo                           | 22,0 |  |  |  |  |  |  |
| Valor Máximo                           | 26,8 |  |  |  |  |  |  |
| Média                                  | 23,7 |  |  |  |  |  |  |
| Mediana                                | 23,1 |  |  |  |  |  |  |
| Moda                                   | 23,0 |  |  |  |  |  |  |



Figura 94 - Estatística univariada da temperatura



Figura 95 - Mapa com a distribuição espacial das iso-valores da temperatura (°C)

4.3.4 Relações potenciométricas e mistura de águas entre os aqüíferos Serra Geral e Botucatu na área da BPIII

Na área de estudo, conforme apresentado, predominam poços com águas do tipo bicarbonatadas cálcicas. Entretanto, nos municípios de Marechal Cândido Rondon, Pato Bragado e Entre Rios do Oeste, poços tubulares que captam o Aqüífero Serra Geral apresentam tipologia química bastante diferenciada do padrão hidroquímico do ASG.

Nesta abordagem foram selecionados apenas quatro poços do ASG que apresentaram tipologia química diferente do padrão regional, bicarbonatada cálcica, e um poço que capta o aqüífero Botucatu.

Na Figura 96 é apresentado o mapa com a localização dos 05 poços abordados neste estudo:

- Poço 01 BOTUCATU: Localizado em MCR, capta o aqüífero Botucatu.
- Poço 02 (MCR): localizado em MCR, capta o ASG.
- Poço 03 (MCR 1): localizado em MCR, capta o ASG.
- Poço 04 (PB): localizado em Pato Bragado, capta o ASG.
- Poço 05 (PB 1): localizado em Pato Bragado, capta o ASG.



Figura 96 - Cena LANDSAT TM7 e localização dos poços utilizados na análise

As características hidrodinâmicas dos poços aqui utilizados são descritas na Tabela 10.

| Código                | Cota       | Nível Estático | Cota Potenciométrica |  |  |  |  |
|-----------------------|------------|----------------|----------------------|--|--|--|--|
| Coulgo                | (m.s.n.m.) |                | (m.s.n.m.)           |  |  |  |  |
| Poço 01 - BOTUCATU    | 395        | - 91,5 m       | 303,5                |  |  |  |  |
| Poço 02 – MCR (ASG)   | 392        | - 94,0 m       | 298,0                |  |  |  |  |
| Poço 03 - MCR 1 (ASG) | 303        | - 21,8 m       | 281,2                |  |  |  |  |
| Poço 04 – PB (ASG)    | 228        | - 5,0 m        | 223,0                |  |  |  |  |
| Poço 05 - PB 1 (ASG)  | 245        | - 33,7 m       | 211,3                |  |  |  |  |

Tabela 10 - Parâmetros hidrodinâmicos dos poços utilizados

4.3.4.1 Tipologia química do Aqüífero Botucatu (Aqüífero Guarani) na BPIII

Na Bacia do Paraná III são poucos os poços perfurados até o Aqüífero Botucatu. Isto se deve principalmente a dois fatores: a espessura de até 920 metros de basaltos (Formação Serra Geral) e o alto teor de íons dissolvidos na água subterrânea, condicionando sua aplicação principal à industria do turismo de águas termais.

Os três poços tubulares profundos que captam o Aqüífero Botucatu (MCR, Itaipulândia e Foz do Iguaçu) aqui utilizados, apresentam a seguinte tipologia química:

- Marechal Cândido Rondon: água sulfatada sódica
- Itaipulândia: água sulfatada sódica.
- Foz do Iguaçu: cloretada-sulfatada sódica.

Os poços de Marechal Cândido Rondon, Itaipulândia e Foz do Iguaçu estão respectivamente plotados em vermelho, azul e verde, no diagrama de Piper da Figura 97.

As águas do aqüífero Botucatu aqui descritas caracterizam a porção confinada do aqüífero, conforme Hindi (2007).

Neste estudo foi utilizado o poço de Marechal Cândido Rondon (Poço 01 – BOTUCATU) para correlação química e potenciométrica entre os aqüíferos.

Com o intuito de verificar a potenciometria regional do aqüífero Botucatu, verificou-se que, em outros dois poços da BPIII (Itaipulândia e Foz do Iguaçu) a potenciometria do aqüífero Botucatu se mantém acima da cota potenciométrica do ASG. As cotas potenciométricas nos poços perfurados que captam o Aqüífero Botucatu na BPIII, são 288m e 240m, para os poços situados nos municípios de Itaipulândia e Foz do Iguaçu, respectivamente.



Figura 97 - Diagrama de Piper dos poços do Guarani na BP III

## 4.3.4.2 Perfil hidrogeológico

Ao comparar a cota potenciométrica do Aqüífero Botucatu (poço MCR) com a cota potenciométrica do Aqüífero Serra Geral, observa-se que a potenciometria do Aqüífero Botucatu esta acima do nível potenciométrico do Aqüífero Serra Geral nesta área. Para avaliar esta condição potenciométrica entre os aqüíferos, na região de estudo, foi confeccionado um perfil topográfico entre os poços, desde MCR a Pato Bragado (Figura 98), a partir dos dados hidráulicos dos poços, foi confeccionado um perfil hidrogeológico (Figura 99).

Observa-se que a cota potenciométrica do Aqüífero Botucatu (poço em MCR), está acima da cota altimétrica dos poços situados no município de Pato Bragado (PB e PB 1), evidenciando a possibilidade hidráulica de conectividade entre os aqüíferos. Ressalta-se que em função da compartimentação estrutural do ASG trata-se de um nível potenciométrico "virtual".



Figura 98 - Localização dos poços utilizados no perfil hidrogeológico.



Figura 99 - Perfil topográfico e superfície potenciométrica "virtual" dos poços estudados

Observando as análises físico-químicas dos poços que captam o ASG, apresentadas no perfil selecionado, pode-se notar que a amostra MCR apresenta pouca semelhança química com o padrão "bicarbonatada cálcica" do ASG. Da mesma forma as amostras PB e PB-01 também possuem indicativos de mistura de águas entre os Aqüíferos Serra Geral e Guarani.

A relação potenciométrica entre os aqüíferos contribui para explicar os teores "anômalos" ao ASG, principalmente para os íons sulfato e sódio.

Conforme ilustrado na Figura 100 os poços utilizados no perfil hidrogeológico podem ter seus teores diferenciados do padrão hidroquímico bicarbonatada cálcica em função da mistura de águas entre os aqüíferos Serra Geral e Botucatu. Entretanto, sabe-se que a Fm. Serra Geral possui litotipos alcalinos que também poderiam influenciar nesta variação da tipologia química

A hipótese de mistura de águas entre os ASG e Botucatu, neste caso, parece mais apropriada, em função das tipologias químicas entre os dois aqüíferos. Corrobora esta decisão a possibilidade de amostragem do Aqüífero Botucatu para classificação química das águas e obtenção dos dados hidrodinâmicos



Figura 100 - Diagrama de *Piper* com os poços utilizados nesta análise (Vermelho: MCR 1, Azul: PB, Verde: PB 1 e Amarelo: MCR)

### 5. CONCLUSÕES

O arcabouço tectônico da Fm. Serra Geral, na área de estudo, é composto principalmente por estruturas rúpteis, que representam o registro de varias fases deformacionais, superpostas e recorrentes.

A influência das estruturas rúpteis (lineamentos) nas vazões do ASG não pode ser negligenciada na etapa de locação dos poços tubulares. Neste aspecto esta dissertação pôde caracterizar o ASG quanto à densidade, freqüência e comprimento acumulado dos lineamentos, em três diferentes tipos de escala.

A aparente relação entre densidade de lineamentos e poços com vazões maiores que 45 m<sup>3</sup>/h não pode ser explicada utilizando apenas os estudos realizados. Tal fato deve-se principalmente a heterogeneidade estrutural do reservatório e/ou à maior permeabilidade de fraturas horizontais, bem como contatos entre derrames, pouco identificáveis sob a forma de lineamentos em superfície.

Estudos com imagens de alta resolução e controle detalhado das estruturas em campo podem minimizar o risco exploratório, uma vez que possibilitam, em escala macroscópica, identificar zonas de falha extensionais ou outras estruturas não tectônicas favoráveis a circulação e armazenamento de água.

Foram classificados sete tipos principais de água no ASG, na área deste estudo: bicarbonatada cálcica (43,6%); bicarbonatada sódica (17,9%); bicarbonatada sódica-cálcica (12,8%); bicarbonatada cálcica-sódica (7,7%); bicarbonatada-carbonatada sódica (7,7%); carbonatada sódica (5,1%); sulfatada-bicarbonatada sódica (5,1%).

Alguns parâmetros destacam-se por diferenciarem do padrão existente no aqüífero serra geral, estas "anomalias físico-químicas" em função da semelhança com o tipo químico das águas do aqüífero Botucatu (em sua área de confinamento), e também pela relação potenciométrica local (que indica ascensão do fluxo em direção ao ASG), sugere que ocorra mistura de águas entre o ASG e o aqüífero Botucatu, na área de MCR.

Ressalta-se que o fluxo entre aqüíferos dá-se principalmente por falhas de alto de mergulho, este fato destaca a importância do mapeamento destas estruturas, bem como um detalhamento e controle das mesmas em campo.

Dentre as amostras coletadas, as águas do ASG não apresentam restrições para consumo humano ou irrigação. Para consumo humano, excetuam-se dois poços, um situado em MCR e outro em Pato Bragado, que apresentam valores de fluoreto e pH (respectivamente) acima dos valores da portaria 518 do ministério da Saúde.

Frente ao elevado tempo de residência destas das águas do Aqüífero Botucatu na área da BPIII, quando ocorrem condições favoráveis à comunicação entre os aqüíferos, muitas vezes as águas do ASG acabam por perder qualidade, tanto para consumo quanto para irrigação, em função do aumento na concentração dos teores.

O ASG deve ser encarado como importante recurso hídrico, em especial na região da BPIII em função de sua qualidade e aptidão para o consumo *in* natura, bem como pela possibilidade de suprir a demanda de irrigação em períodos prolongados de estiagem.

### 6. REFERENCIAS

BITTENCOURT, A.V.L.; ROSA FILHO, E.F.; HINDI, E.C.; BUCHMANN FILHO, A.C. A influencia dos basaltos e de misturas com águas de aqüíferos sotopostos nas águas subterrâneas do sistema aqüífero Serra Geral, na bacia do rio Piquiri, Paraná, BR. **Águas Subterrâneas**. Curitiba: ABAS, v. 17, p. 67-75, 2003.

BRASIL. 2004. Ministério da Saúde. Portaria nº 518 de 25 de março de 2004.
Estabelece normas e o padrão de potabilidade da água destinada ao consumo humano. Diário Oficial da União, Brasília, v. 59, p. 266-270, 26 mar. 2004, Seção 1.

BUCHMANN FILHO, A.C. Características das águas subterrâneas do Sistema Aqüífero Serra Geral no estado do Paraná. Curitiba, 2002, 120p. Dissertação (Mestrado em Geologia Ambiental) Departamento de Geologia, UFPR.

CARVALHO, S. M; STIPP N. A. F. Contribuição ao estudo do balanço hídrico no estado do paraná: uma Proposta de classificação qualitativa. **Geografia.** Londrina, V 13, n 1. JAN./JUN. 2004.

CETESB. 2006. Variáveis de qualidade das águas. Companhia de Tecnologia de Saneamento Ambiental. Disponível em: <http://www.cetesb.sp.gov.br/Agua/rios/ variaveis.asp> Acesso 10/10/2006.

CPRM. 2000. **Hidrogeologia conceitos e aplicações.** Serviço Geológico do Brasil. 2ª ed.

CPRM. 2006. Formação Serra Geral. Disponível em http://www.cprm.gov.br/Aparados/ap\_geol\_pag05.htm. Acesso em 02/10/2006.

CPTEC- Centro de Previsão do Tempo e Estudos Climáticos. Disponível em: http://climanalise.cptec.inpe.br/~rclimanl/boletim/> Acesso em 29/12/2007.

CUSTÓDIO, E.; LLAMAS, M. R. 1983a. Hidrologia Subterrânea. Barcelona: Omega.

CUSTÓDIO, E.; LLAMAS, M. R. 2001. **Hidrologia Subterrânea.** 2<sup>a</sup> edição. Barcelona: Omega.

FERNANDES, A. J.; , C.; WAHNFRIED, I.; FERREIRA, L. M. R.; PRESSINOTTI, M. M. N.; VARNIER, C.; IRITANI, M. A.; HIRATA, R. Modelo conceitual preliminar de circulação de água subterrânea do aqüífero Serra Geral, Ribeirão Preto, SP. **In:** XIV Congresso Brasileiro de Águas Subterrâneas da ABAS., 2006. Anais do XIV Congresso Brasileiro de Águas Subterrâneas, 2006.

FETTER, C. W. 1994. Applied Hydrogeology. Upper Saddle River: Prentice-Hall.

FREEZE, R. A.; CHERRY, J. A. 1979. Groundwater. Englewood: Prentice-Hall.

FREITAS, R.C.; ROSTIROLLA, S.P.; MANCINI, F. Auxílio computacional na análise de lineamentos obtidos por sensores remotos. **In**: CONGRESSO BRASILEIRO DE GEOLOGIA, 42, 2004, Araxá. **Anais**... Araxá: SBG, 2004, CD-ROM.

FREITAS, R. C. Análise Estrutural Multi-Temática Do Sistema Petrolífero IratiRio Bonito/Pirambóia. 2005. 0 F. Dissertação (Mestrado Em Pós Graduação Em
Geologia) - Departamento De Geologia, Fundação Da Ufpr Para O
Desenvolvimento Da Ciência Tecnologia E Cultura

HEM, J. D. 1985. Study and Interpretation of the chemical characteristics of natural waters. *Geological Survey Water- Suply Paper.* n. 2254, p1- 263.

HEM, J. D. 1970. Study and Interpretation of the chemical characteristics of natural waters. *Geological Survey Water- Suply Paper.* n. 1473, p1- 334.

HINDI, E. C. 1999. **Caracterização hidroquímica e hidrogeológica das fontes cársticas das Bacias dos rios Tumiri, Água Comprida, Fervida e das Onças – Colombo, PR.** Curitiba, 127 f. Dissertação (Mestrado em Geologia) – Setor de Ciências da Terra, Universidade Federal do Paraná. HINDI, E.C.; **Hidroquímica e hidrotermalismo do Sistema Aqüífero Guarani no Estado do Paraná**. Curitiba, 2007, 153p. Tese (Doudorado em Geologia Ambiental) Departamento de Geologia, UFPR.

HOBBS, W. Lineaments of the Atlantic border region. **GSA Bulletin**, v. 15, p. 483 - 506, 1904.

IAPAR. 2000. Instituto Agronômico do Paraná. **Cartas Climáticas do Paraná.** Disponível em <http://www.iapar.br> Acesso em 04 nov. 2008.

IBGE Instituto Brasileiro de Geografia e Estatística. 2006. Disponível em <a href="http://www.ibge.com.br">http://www.ibge.com.br</a>> Acesso em 17 nov. 2006.

KRAUSKOPF, K. L. 1972. Introdução à geoquímica. São Paulo: Edusp-Polígono.

LICHT, O. A. B. 2001. Análise multielementar na gestão ambiental – Identificação e caracterização de Províncias Geoquímicas naturais, alterações antrópica da paisagem, áreas favoráveis à prospecção mineral e regiões de risco para a saúde no Estado do Paraná, Brasil. Curitiba, V1-V2. 209 f. Tese (Doutorado em Geologia) - Setor de Ciências da terra, Universidade Federal do Paraná.

MELFI, A. J.; PICCIRILLO, E. M.; NARDY, A. J. R. Geological and magmatic aspects of the Parana Basin: an introduction. **In:** PICCIRILLO E. M. & MELFI, A. J. (Eds.). The Mesozoic Flood Volcanism of the Parana Basin: petrogenetic and geophysical aspects. São Paulo: USP, 1988. p. 1-14.

MILANI, J.; FRANÇA, A.B.; SCHNEIDER, R.L. Bacia do Paraná. **Boletim de Geociências da Petrobrás**, v.8, n.1, p.69-82. 1994.

MINEROPAR – Minerais do Paraná S.A. Mapa geológico do Estado do Paraná. Escala 1:650.000 Curitiba: Mineropar, 2001. O'LEARY. D. W.; FRIEDMAN, J.D; POHN, H. A. *Lineament, linear lineation some proposed new standards for old terms.* **Geological Society America Bulletin** 87, p. 1463-1469,1976.

PARANÁ. Superintendência de Desenvolvimento de Recursos Hídricos e Saneamento Ambiental. Banco de dados georreferenciados de poços tubulares profundos. Curitiba, 2006.

PEATE D. W.; HAWKESWORTH C. J.; MANTOVANI M. S. M. 1992. Chemical Stratigrafhy of Paraná Lavas (South America): Classification of Magma Types and their Spatial Distribuition. **Bull. Volcanol**, 55: 119-139.

PIPER, A.M. A graphic procedure in the geochemical interpretation of wateranalyses. Transactions of the American Geophysical Union – 1944. Washington (DC), Part VI, p. 914-928, May/1945.

ROHRBAUGHT Jr., M. B.; DUNNE, W. M.; MAULDON, M.; Estimating frature trace intensity, density, and mean lenght using circular scan lines and windows. In: AAPG Bulletin, v. 86, n. 12, December, 2002, p. 2089 – 2104.

ROSA FILHO, E.F.; BITTENCOURT, A.V.L.; SALAMUNI, R. Contribuição ao estudo das águas subterrâneas nos basaltos no Estado do Paraná. **Boletim Paranaense de Geociências**, n.37, p. 22-41, 1987.

ROSA FILHO, E. F.; HINDI, E. C. 2006. Diagnóstico das águas subterrâneas no Estado do Paraná: quantidade e Qualidade. **Relatório técnico**.

ROSTIROLLA, S. P. Comentários sobre a evolução tectônica da Placa Sul-Americana no Fanerozóico, com ênfase na análise da Bacia do Paraná e áreas correlatas na Argentina. **In:** IV SEGEPAR, 2005, Curitiba, PR. **Anais.** Curitiba, PR : CEGEP, 2005. v. 1.

ROSTIROLLA, S.P.; MANCINI, F.; RIGOTI, A. Reativação de Megalineamentos na Evolução Fanerozóica da Placa Sul-Americana. **In:** X SNET, Curitiba, Resumo expandido submetido e aceito, 2005.

RÜEGG, N. A. Aspectos geoquímicos, mineralógicos e petrográficos de rochas basálticas da Bacia do Paraná, São Paulo, 1969. Tese (Doutorado), USP.

SDSU – San Diego University, Department of Geological sciences. In: http://www.geology.sdsu.edu/; (2006).

SOARES P.C., BARCELLOS P.E., CSORDAS S.M. 1982. Análise, interpretação e integração de lineamentos a partir de imagens (Radar-Landsat) e suas relações com a tectônica da Bacia do Paraná. São Paulo: **Relatório RT-342/82**, **Paulipetro**. Consórcio CESP.

STRUGALE, M.; Arcabouço e evolução estrutural do Arco de Ponta Grossa no Grupo São Bento (Mesozóico): implicações na hidrodinamica do sistema Aqüífero Guarani e na migração de hidrocarbonetos na Bacia do Paraná. Curitiba, 2002, 138p. Dissertação (Mestrado em Geologia Exploratória), Departamento de Geologia, UFPR.

THORNTWAITE, C. W., MATHER, J. R. 1995. The water balance. **Climatology** 8:1-104.

TOOD, D. K. 1959. **Hidrologia de águas subterrâneas.** São Paulo: Edgar Blücher.

USGS; EROS Data Center; *Data Services Branch. Seamless Data Distribution System.* Disponível em: <a href="http://seamless.usgs.gov/">http://seamless.usgs.gov/</a>> Acesso em: 12 nov. 2005

U.S. SALINITY STAFF. Diagnosis and improvmente of saline and alkali soils. U. S. *Department of agriculture; Agriculture Handbook*, n. 60, 160p. Washington, DC, 1954.

WHITE, I.C. (1906) Relatório Final da Comissão de Estudos das Minas de Carvão de Pedra do Brasil. Rio de Janeiro: DNPM, 1988. Parte I; Parte II, p. 301-617. (ed. Fac-similar)

WorldStressMap.2006.Disponívelem:<a href="http://www-wsm,physik.unikasruhe.de/pub/introduction\_frame.html">http://www-wsm,physik.unikasruhe.de/pub/introduction\_frame.html> Acesso 02/10/2006.

ZALÁN, P. V., WOLFF, S., CONCEIÇÃO, J. C., MARQUES, A., ASTOLFI, M. A.
M., VIEIRA, I. S., APPI, V. T. Bacia do Paraná. In: Origem e Evolução de Bacias
Sedimentares. Rio de Janeiro: PETROBRAS, 1990b. p. 135 - 164.

| UTM_X  | UTM_Y   | TEMPERATURA | pН    | TURBIDEZ | ALCALINIDADE | BICARBONATO | CARBONATO | CLORETO | DUREZA | CÁLCIO | MAGNÉSIO | FERRO | FLUORETO | CO2   | NITRATO | STD    | SULFATO | CONDUTIVIDADE | SILICA | SÓDIO  | POTÁSSIO |
|--------|---------|-------------|-------|----------|--------------|-------------|-----------|---------|--------|--------|----------|-------|----------|-------|---------|--------|---------|---------------|--------|--------|----------|
| 772189 | 7288922 | 23          | 8,02  | 1,94     | 96,90        | 88,74       | 8,16      | 32,00   | 78,00  | 22,84  | 5,10     | 0,01  | 0,27     | 1,85  | 0,44    | 82,00  | 85,00   | 173,30        | 40,10  | 75,00  | 0,65     |
| 795147 | 7278959 | 24          | 7,93  | 0,22     | 95,56        | 95,56       | 0,00      | 7,00    | 63,00  | 19,24  | 3,64     | 0,00  | 1,08     | 2,24  | 4,43    | 76,00  | 1,00    | 160,90        | 33,18  | 26,00  | 0,41     |
| 794985 | 7278605 | 23          | 7,62  | 0,32     | 95,68        | 95,68       | 0,00      | 7,00    | 75,00  | 22,80  | 4,37     | 0,01  | 0,08     | 4,59  | 6,64    | 66,00  | 1,00    | 139,90        | 38,22  | 22,00  | 0,35     |
| 799873 | 7278840 | 23          | 8,74  | 0,28     | 100,88       | 78,00       | 22,88     | 5,00    | 12,00  | 3,60   | 0,72     | 0,01  | 0,12     | 0,00  | 5,31    | 62,00  | 1,00    | 132,30        | 30,32  | 46,00  | 0,18     |
| 799412 | 7281082 | 25          | 6,86  | 0,50     | 48,99        | 59,77       | 0,00      | 4,15    | 36,61  | 12,05  | 1,60     | 0,04  | 0,12     | 10,50 | 6,63    | 125,00 | 14,69   | 161,70        | 33,50  | 15,30  | 1,10     |
| 799409 | 7281083 | 23          | 8,05  | 0,57     | 58,24        | 58,24       | 0,00      | 49,00   | 78,00  | 28,45  | 1,70     | 0,01  | 0,25     | 1,03  | 2,21    | 164,00 | 125,00  | 34,80         | 25,20  | 90,00  | 0,18     |
| 799578 | 7283974 | 23          | 8,33  | 0,27     | 62,40        | 45,76       | 16,64     | 4,00    | 26,00  | 9,61   | 0,48     | 0,01  | 0,02     | 0,00  | 7,08    | 40,00  | 0,00    | 84,30         | 27,90  | 20,00  | 0,44     |
| 799828 | 7284209 | 23          | 8,93  | 0,25     | 74,88        | 62,40       | 12,48     | 4,00    | 20,00  | 6,41   | 0,97     | 0,01  | 0,09     | 0,00  | 1,77    | 46,00  | 1,00    | 97,90         | 24,32  | 28,00  | 0,33     |
| 797593 | 7284050 | 23          | 7,42  | 0,26     | 91,52        | 91,52       | 0,00      | 5,00    | 64,00  | 18,00  | 4,62     | 0,01  | 0,07     | 6,95  | 4,87    | 50,00  | 1,00    | 105,30        | 34,15  | 17,00  | 0,50     |
| 797662 | 7282497 | 25          | 6,93  | 0,42     | 69,68        | 69,68       | 0,00      | 9,00    | 58,00  | 14,80  | 5,10     | 0,03  | 0,09     | 16,37 | 10,18   | 45,00  | 1,00    | 97,10         | 32,22  | 13,80  | 0,56     |
| 794985 | 7278605 | 24          | 7,85  | 0,34     | 107,12       | 107,02      | 0,00      | 7,00    | 78,00  | 24,80  | 3,89     | 0,01  | 0,04     | 3,02  | 7,08    | 56,00  | 1,00    | 119,40        | 37,92  | 20,00  | 0,33     |
| 795147 | 7278959 | 24          | 8,00  | 0,24     | 96,72        | 96,72       | 0,00      | 6,00    | 56,00  | 19,20  | 3,89     | 0,01  | 0,04     | 0,96  | 3,54    | 55,00  | 1,00    | 116,90        | 32,17  | 22,00  | 0,34     |
| 796643 | 7284653 | 22          | 7,20  | 0,32     | 92,56        | 92,56       | 0,00      | 4,00    | 80,00  | 22,04  | 6,08     | 0,00  | 0,16     | 11,68 | 5,75    | 45,00  | 1,00    | 95,50         | 39,80  | 7,70   | 0,76     |
| 794199 | 7283158 | 24          | 8,37  | 0,38     | 53,04        | 46,80       | 6,24      | 5,40    | 44,00  | 14,08  | 2,19     | 0,01  | 0,07     | 0,00  | 2,66    | 32,00  | 1,00    | 67,70         | 29,97  | 8,90   | 0,53     |
| 772533 | 7289106 | 23          | 7,20  | 0,44     | 57,20        | 57,20       | 0,00      | 9,70    | 60,00  | 17,23  | 4,15     | 0,00  | 0,23     | 7,21  | 11,51   | 37,00  | 1,00    | 77,50         | 38,42  | 7,30   | 0,55     |
| 776740 | 7282696 | 23          | 7,03  | 0,44     | 57,20        | 57,20       | 0,00      | 6,90    | 48,00  | 13,63  | 3,40     | 0,01  | 0,13     | 10,67 | 7,97    | 32,00  | 1,00    | 67,90         | 36,72  | 6,70   | 0,53     |
| 777175 | 7283599 | 23          | 7,62  | 0,34     | 84,24        | 84,24       | 0,00      | 8,30    | 66,00  | 18,84  | 4,62     | 0,01  | 0,15     | 4,04  | 3,10    | 39,00  | 1,00    | 82,60         | 43,45  | 11,90  | 0,44     |
| 781174 | 7281087 | 23          | 7,96  | 0,42     | 113,36       | 113,36      | 0,00      | 12,10   | 89,00  | 28,05  | 4,62     | 0,02  | 0,17     | 2,48  | 8,85    | 63,00  | 21,00   | 145,60        | 37,27  | 30,00  | 0,47     |
| 780917 | 7285507 | 24          | 8,67  | 0,41     | 125,84       | 105,04      | 20,80     | 6,90    | 27,00  | 6,41   | 2,67     | 0,01  | 0,24     | 0,00  | 2,66    | 67,00  | 0,00    | 140,60        | 23,73  | 53,50  | 0,25     |
| 779128 | 7300104 | 24          | 8,02  | 0,53     | 133,12       | 133,12      | 0,00      | 3,90    | 74,00  | 18,03  | 7,05     | 0,02  | 0,22     | 2,54  | 2,66    | 62,00  | 0,00    | 130,10        | 30,75  | 28,00  | 0,30     |
| 778259 | 7294675 | 24          | 7,65  | 0,40     | 88,40        | 88,40       | 0,00      | 3,70    | 81,00  | 24,85  | 4,62     | 0,00  | 0,24     | 3,95  | 6,64    | 44,00  | 1,00    | 93,90         | 33,55  | 7,20   | 0,39     |
| 791326 | 7286280 | 23          | 7,75  | 0,39     | 57,20        | 57,20       | 0,00      | 5,30    | 40,00  | 13,62  | 1,45     | 0,01  | 0,10     | 2,03  | 10,18   | 36,00  | 0,00    | 76,10         | 28,07  | 12,30  | 0,43     |
| 791156 | 7270698 | 23          | 7,34  | 0,41     | 59,28        | 59,28       | 0,00      | 4,80    | 53,00  | 14,02  | 4,37     | 0,01  | 0,16     | 5,41  | 5,31    | 33,00  | 1,00    | 69,10         | 30,95  | 5,70   | 0,65     |
| 796362 | 7265257 | 23          | 7,35  | 0,84     | 110,24       | 110,24      | 0,00      | 8,20    | 91,00  | 31,26  | 3,16     | 0,05  | 0,13     | 9,84  | 7,08    | 55,00  | 1,00    | 118,50        | 24,62  | 15,80  | 0,41     |
| 803650 | 7288650 | 23          | 8,52  | 0,35     | 46,80        | 32,24       | 14,56     | 5,00    | 24,00  | 8,41   | 0,72     | 0,01  | 0,15     | 0,00  | 2,66    | 32,00  | 0,00    | 68,40         | 30,53  | 15,30  | 0,26     |
| 778259 | 7294675 | 25          | 7,72  | 0,61     | 89,28        | 89,28       | 0,00      | 7,00    | 73,30  | 22,53  | 4,88     | 0,09  | 0,08     | 3,40  | 5,75    | 38,00  | 1,00    | 82,30         | 32,95  | 11,90  | 0,52     |
| 779128 | 7300104 | 26          | 7,90  | 0,61     | 123,84       | 123,84      | 0,00      | 9,00    | 67,27  | 13,68  | 8,06     | 0,04  | 0,26     | 3,11  | 3,98    | 59,00  | 1,00    | 124,90        | 38,00  | 38,50  | 0,30     |
| 801799 | 7279079 | 24          | 9,21  | 0,28     | 101,20       | 60,72       | 40,48     | 8,00    | 6,00   | 2,00   | 0,24     | 0,01  | 0,00     | 0,00  | 3,98    | 79,00  | 1,00    | 166,90        | 25,40  | 57,00  | 0,15     |
| 794991 | 7278595 | 23          | 7,65  | 0,50     | 107,55       | 131,21      | 0,00      | 0,60    | 79,27  | 26,24  | 3,38     | 0,02  | 0,09     | 7,04  | 5,04    | 176,00 | 0,50    | 228,00        | 45,90  | 15,60  | 0,50     |
| 791937 | 7278596 | 25          | 7,10  | 0,50     | 108,07       | 131,85      | 0,00      | 2,25    | 113,00 | 33,72  | 7,20     | 0,04  | 0,06     | 7,90  | 15,91   | 206,00 | 0,50    | 279,00        | 56,10  | 10,80  | 0,80     |
| 784640 | 7272801 | 24          | 9,29  | 0,50     | 102,41       | 84,03       | 20,12     | 8,33    | 23,69  | 8,05   | 0,90     | 0,01  | 0,29     | 0,00  | 1,50    | 226,00 | 26,79   | 344,00        | 46,30  | 62,80  | 0,60     |
| 762041 | 7219787 | 23          | 6,45  | 2,10     | 28,68        | 34,99       | 0,00      | 0,55    | 24,08  | 6,52   | 1,94     | 0,30  | 0,02     | 1,80  | 0,31    | 67,00  | 0,50    | 59,50         | 33,80  | 1,90   | 0,70     |
| 779269 | 7270694 | 25          | 10,05 | 0,50     | 180,18       | 49,53       | 83,75     | 18,08   | 2,53   | 0,82   | 0,12     | 0,02  | 0,70     | 0,00  | 0,09    | 331,00 | 37,10   | 528,00        | 37,10  | 123,00 | 0,60     |
| 780524 | 7266080 | 27          | 9,62  | 0,50     | 111,50       | 86,99       | 24,12     | 1,38    | 3,80   | 1,44   | 0,05     | 0,29  | 0,14     | 0,00  | 3,14    | 174,00 | 0,50    | 267,00        | 39,10  | 52,20  | 0,70     |
| 781067 | 7261496 | 27          | 8,81  | 0,50     | 100,90       | 106,09      | 8,36      | 0,83    | 15,01  | 8,84   | 0,73     | 0,03  | 0,21     | 0,00  | 1,06    | 176,00 | 0,50    | 208,00        | 52,60  | 43,20  | 0,50     |
| 745655 | 7170193 | 23          | 7,06  | 0,50     | 74,29        | 90,63       | 0,00      | 2,65    | 66,37  | 18,53  | 4,93     | 0,04  | 0,13     | 9,70  | 4,64    | 136,00 | 0,50    | 1479,00       | 44,20  | 7,20   | 1,30     |
| 772293 | 7214720 |             | 7,63  | 3,00     | 90,82        | 110,80      | 0,00      | 1,15    | 86,01  | 22,94  | 7,05     | 0,52  | 0,11     | 8,80  | 7,74    | 161,00 | 0,50    | 200,00        | 47,50  | 7,80   | 0,70     |
| 743122 | 7173714 | 24          | 8,41  | 0,50     | 78,38        | 90,69       | 2,42      | 3,63    | 40,95  | 12,07  | 2,69     | 0,02  | 1,64     | 0,00  | 2,56    | 141,00 | 0,50    | 195,10        | 33,30  | 26,80  | 1,30     |
|        |         |             |       |          |              |             |           |         |        |        |          |       |          |       |         |        |         |               |        |        |          |