DANIEL DE LIMA

A PROGRAMAÇÃO MATEMÁTICA NO PLANEJAMENTO DE PRODUÇÃO NA RELAÇÃO AVÍCOLA / AVIÁRIO

ALOJAMENTO E DESALOJAMENTO DE AVES

DANIEL DE LIMA

A PROGRAMAÇÃO MATEMÁTICA NO PLANEJAMENTO DE PRODUÇÃO NA RELAÇÃO AVÍCOLA / AVIÁRIO

ALOJAMENTO E DESALOJAMENTO DE AVES

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre em Ciências do Programa de Pós-Graduação em Métodos Numéricos em Engenharia dos Setores de Tecnologia e Ciências Exatas, UFPR.

Orientador: Prof. Dr. Celso Carnieri

TERMO DE APROVAÇÃO

Daniel de Lima

A Programação Matemática no Planejamento de Produção na Relação Avícola/Aviário – Alojamento e Desalojamento de Aves

Dissertação aprovada como requisito parcial para obtenção do grau de Mestre no Curso de Pós-Graduação em Métodos Numéricos em Engenharia — Area de Conce itração em Programação Matematica, Setores de Tecnologia e de Ciências Exatas da Universidade Federal do Parana, pela seguinte banca examinadora

Orientador

Prof Celso Carnieri, D Eng Programa de Pos-Graduação em Metodos

Numericos em Engenharia - UFPR - PR

Prof Arinei Carlos Lindbeck da Silva, D Eng
Departamento de Matematica

Universidade Federal do Parana - PR

Prof Marco Andre Mazzarotto, D Eng Departamento de Matematica

Universidade Tuiuti do Parana -PR

Prof Luiz Carlos de Abreu Rodrigues, D Eng

Departamento de Mecânica CEFET – CURITIBA - PR

Agradecimentos

A Deus, Ser Supremo, Criador de todas as coisas, Responsável pela vida e pela existência de tudo;

Aos meus familiares, pelo apoio, confiança e motivação durante todas as etapas de meu mestrado, especialmente a minha esposa *Gisleide* pelo companheirismo e paciência;

Ao professor Orientador, *Dr. Celso Carnieri* pela orientação, atenção e companheirismo durante toda a fase de escrita;

A secretária de curso em Campo Mourão, Gláucia Soares, grande companheira;

Aos professores das disciplinas ministradas em Campo Mourão: *Ademir, Paulo, Arinei, Liliana, Celso, Anselmo, Maria Teresinha, Neida, Volmir e Jair,*

Aos colegas de sala, Adalberto, Amauri, Carlos Ropelatto, Carlos Vinicius, Claudia, Douglas, Emerson, Flávia, Itamar, Lauri, Marco, Marcelo, Maury, Rogério, Sérgio, Silvia, Thelma, Valdete e Valdir, pelo companheirismo, um grupo que não media esforços para colaborar um com o outro;

Aos colegas, Carlos Ropelatto, Lauri e Claudia, amigos de viagens, trabalhos, e "apertos", que durante toda a fase de créditos estiveram lado a lado, prestando preciosa ajuda;

A prof^a. Mirian Resende Mendes, responsável direta pelo meu ingresso no curso;

A direção da FAFIPA (Faculdade Estadual de Educação Ciências e Letras de Paranavaí), pelo incentivo e apoio;

A empresa Avícola Felipe S/A pela abertura das portas para o trabalho;

A todas as pessoas, que não citei, mas que direta ou indiretamente colaboraram para a conclusão deste trabalho.

Há homens que lutam um dia e são bons,
Há outros que lutam um ano e são melhores,
Há os que lutam muitos anos e são muito bons,
Mas há os que lutam toda a vida e estes são imprescindíveis.

(Bertold Brecht)

RESUMO

Nas últimas duas décadas, houve uma evolução bastante significativa na produção de frangos no Brasil. O dinamismo da atividade avícola está atrelado aos constantes ganhos de produtividade, sobretudo através da melhoria dos índices de conversão alimentar, dos ganhos nutricionais, da pesquisa em genética, da maior automação dos aviários e de um melhor manejo.

A Programação Matemática tem sido amplamente utilizada industrialmente, com o objetivo de otimizar as técnicas de produção nos mais diferentes campos, buscando o desenvolvimento, a aplicação dos métodos numéricos e tentando encontrar novas formas de solução para problemas reais de uma forma geral.

Este trabalho apresenta uma técnica de otimização que visa criar um planejamento de alojamento de aves para uma empresa de abate de frangos. Como a empresa trabalha no sistema de integração, o problema consiste em determinar semanalmente: onde alojar, quando alojar e quando desalojar para cada um dos mais de 350 produtores integrados que pertencem à empresa.

O objetivo principal do trabalho é conseguir que o abate do frango ocorra o mais próximo possível do 43º dia, buscando também a satisfação do produtor fazendo com que o mesmo fique o menor tempo possível com o galpão vazio, satisfeitas as condições de higiene; rapidez no sentido de introduzir no processo um novo integrado, melhorando a performance do processo e respostas instantâneas, no caso de haverem mudanças repentinas no processo de demanda ou de oferta .

Palavras-chave: Integração; planejamento; alojamento; frango de corte e otimização.

ABSTRACT

In the last two decades, there has been meaningful evolution in Brazilian chicken production. The dynamism of the poultry raising activity is, above all, attached to the continuous increases of productivity by the improvement of nourishing conversion rate, the nutritional gains, the research on genetics, the greater aviary automation and a better handling.

The Mathematical Programming has been widely used in industry, looking forward to improving the techniques in production among the most different areas, searching for the development, applying the numeric methods, trying to find new ways of solving real problems in general.

This work presents a new optimizing technique, which aims at creating a chicken's planning of lodging for a company's chicken lower. As the company works in an integrated system, the problem consists in determining fortnightly: where to allocate, when to allocate, when to remove and the allocation quantity to each one of the 350 integrated producers who belong to the company.

The main objective of the work is to obtain that the abates of the chicken occurs near the 43rd day, trying to give the satisfaction of the producer making with that the producer gets the less possible time with the empty shed, satisfied the hygiene conditions; fast to introduce in the new integrated process, improving the instantaneous performance of the process and answers, in the case of having sudden changes in the process of demand or of the offers.

Keywords: Integration; Planning; Lodging; Poultry and Optimization

LISTA DE TABELAS

Tabela 2.1 – Produção Mundial de Carne de Frango	23
Tabela 2.2 – Produção de Frango de Corte – Paraná / Brasil	23
Tabela 2.3 – Exportação Brasileira de Carne de Frango	24
Tabela 2.4 – Plantel de Aves no Paraná I	26
Tabela 2.5 – Plantel de Aves no Paraná II	28
Tabela 2.6 – Tempo dispendido num Aviário	35
Tabela 3.1 – Estrutura da Empresa Sadia	41
Tabela 3.2 – Valores Típicos dos tamanhos dos Problemas na Sadia	51
Tabela 5.1 – Comparação entre as simulações realizadas I	89
Tabela 5.2 – Comparação entre as simulações realizadas II	89

LISTA DE FIGURAS

Figura 1.1 – Fases da modelagem de um problema real	.14
Figura 2.1 – Mapa do Estado do Paraná	29
Figura 2.2 – Gráfico da Relação Peso x Idade	37
Figura 5.1 – Tela do Lingo com solução após 1ª simulação	76
Figura 5.2 – Tela do Lingo com solução após 2ª simulação	79
Figura 5.3 – Tela do Lingo com solução após 3ª simulação	83
Figura 5.4 – Tela do Lingo com solução após 4ª simulação	.88

SUMÁRIO

Resumo	07
Abstract	
Lista de Tabelas	09
Lista de Figuras	10
Sumário	11
1 INTRODUÇÃO	14
1.1 Objetivo do Trabalho	14
1.2 Histórico da Pesquisa Operacional	15
1.3 Apresentação do Trabalho	18
1.4 Limitação do Trabalho	19
1.5 Importância do Trabalho	20
1.6 Estrutura do Trabalho	20
2 PRODUÇÃO E COMERCIALIZAÇÃO DE FRANGO	
2.1 A Produção de frangos no Brasil	
2.2 A Produção de frangos no Paraná	
2.3 A Produção de frangos em Paranavaí	
2.4 A Avícola Felipe S/A de Paranavaí	
2.5 O Sistema Integrado	32
2.6 Características do Processo de Criação	37
3 CASOS DE PROGRAÇÃO LINEAR APLICADA AO SETOR AV	/ÍCOLA40
3.1 Introdução	40
3.2 Resumo do artigo da Sadia	
3.2.1 Produção de Frangos	
3.2.2 Processamento	
3.2.3 Planejamento Integrado	
3.2.4 Implementação Computacional	50

3.2.5 Benefícios	.53
3.3 Otimização da Industrialização e Comercialização de Frangos	.57
3.4 Considerações sobre os trabalhos apresentados	.58
4 O MODELO MATEMÁTICO	.61
4.1 Introdução	.61
4.2 Descrição do Modelo Matemático	.63
4.2.1 Variáveis de Decisão	.63
4.2.2 Dados	64
4.2.3 Função Objetivo	.64
4.2.4 Restrições quanto ao suprimento de Demanda	.64
4.2.5 Restrições quanto à oferta de Pintainhos	.65
4.2.6 Restrições quanto a distância Média	.65
4.2.7 Restrições de Unicidade de Desalojamento	.66
4.2.8 Restrições de Unicidade de Alojamento	.67
5 IMPLEMENTAÇÃO COMPUTACIONAL	68
5.1 Introdução	68
5.2 Sintaxe do Modelo Programado	69
5.3 Simulações Desenvolvidas	70
5.4 Primeira Simulação	70
5.4.1 Resultados para a Primeira Simulação	74
5.5 Segunda Simulação	77
5.5.1 Resultados para a Segunda Simulação	78
5.6 Terceira Simulação	80
5.6.1 Resultados para a Terceira Simulação	82
5.7 Quarta Simulação	84
5.7.1 Resultados para a Quarta Simulação	86
5.8 Considerações sobre as Simulações	89
6 CONCLUSÃO E SUGESTÃO PARA TRABALHOS FUTUROS	92
6.1 Conclusão	92
6.2 Sugestão para Trabalhos Futuros	93
REFERÊNCIAS BIBLIOGRÁFICAS	94
REFERÊNCIAS ELETRÔNICAS	98
Glossário	.101

ANEXOS	103
ANEXO 3.1 – O Sistema PIPA	104
ANEXO 4.1 – Índice de Conversão Alimentar	107
ANEXO 4.2 – Relatório de Cidades - Integrados	112
ANEXO 4.3 – Relatório de Alojamento – Outubro/2004	121
ANEXO 4.4 – Relatório de Programação de Abate – Outubro/2004	129

CAPÍTULO I

1. INTRODUÇÃO

1.1 – Objetivo do Trabalho

O objetivo deste trabalho é utilizar métodos e conceitos relacionados à Pesquisa Operacional, como uma ferramenta de apoio da tomada de decisão relacionada ao processo produtivo, procurando a melhor solução entre as obtidas durante o processo. O campo escolhido, neste caso, foi a intermediação na relação entre a avícola e o aviário, ou seja, na tomada de decisões relacionadas ao alojamento.

A Pesquisa Operacional é um ramo da matemática aplicada, que utilizada com técnica apropriada, vem se tornando uma das ferramentas mais poderosas utilizadas industrialmente. Seus benefícios são exatamente aqueles procurados por qualquer empresa: diminuição de custos e aumento de lucros. Está direcionada para a resolução de problemas reais, tendo como principal objetivo encontrar soluções para o problema, e quando possível obter a melhor entre elas. Levando em conta esta finalidade, objetivaremos usar estes conceitos, visando maximizar o lucro da empresa durante o processo. Para GOLDBARG [2000], a utilização do ferramental da "Pesquisa Operacional" na promoção da eficiência e eficácia organizacional em todos os níveis de gestão é uma realidade tornada viável pelo avanço do computador.

A resolução de problemas com a utilização de técnicas de modelagem e programação linear passa por vários estágios.

Pode-se perceber no diagrama a seguir (figura 1.1), as fases que compõem a resolução de um problema real, usando técnicas de modelagem matemática. Primeiramente, parte-se da definição do problema, a construção do modelo matemático e a busca da solução onde entram as técnicas de otimização. Em seguida faz-se a implementação dos resultados, se foi possível obtê-los, retornando-se ao início para detectar possíveis falhas no processo. Finalizando, faz-se a comparação entre aquilo que tínhamos anteriormente e as soluções encontradas para o mesmo.

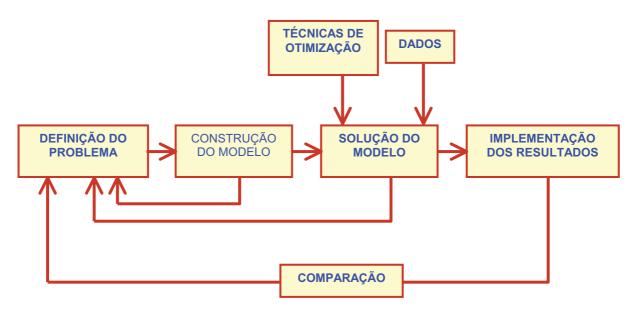


Figura 1.1 – Fases da modelagem de um problema real

1.2 – Histórico da Pesquisa Operacional

Dois mil anos antes de Cristo, exemplos especiais de equações lineares já tinham sido estudadas por egípcios e babilônios. Os babilônios também

consideraram duas equações lineares em duas variáveis. Babilônios, gregos e chineses conheciam a idéia de eliminação de variáveis para resolver equações lineares (ou quadráticas).

O que hoje é conhecido como o método de eliminação Gaussiana foi descrito explicitamente no livro chinês "*Nove Livros da Aritmética*" que provavelmente foi escrito entre 202 a.C. e 9 d.C. e descreve métodos que provavelmente foram escritos muito antes. Equações lineares e eliminação de variáveis também foram estudadas por Diophantos de Alexandria (aprox. Século III d.C.).

O nome eliminação Gaussiana é devido a alguns artigos de Gauss onde a eliminação é aplicada. Gauss estudou equações lineares para estimar as órbitas de corpos celestes e observou que, se um sistema Ax = b de n equações e n incógnitas não admite solução ou admite várias soluções, então existe um vetor y, não nulo, tal que yA = 0 (que já se pode considerar uma espécie de afirmação "dual"). Em um de seus artigos Gauss também descreveu o que é hoje conhecido como processo de ortogonalização de Gram-Schmidt, que decompõe uma matriz A como A=QU, onde Q é uma matriz ortogonal (QT Q=1) e U é uma matriz triangular superior.

Logo, a expressão Ax = b, pode ser substituída por $Ux=Q^T$ b, que é mais fácil de ser resolvida.

Enquanto resolver vários tipos de equações foi um tópico central em matemática, pouca atenção foi tomada em encontrar uma solução "ótima" (com raras exceções). As aplicações em problemas de transporte na década de 40 (em particular, pelas forças armadas aliadas durante a segunda grande guerra mundial) foi um primeiro passo importante na criação da programação linear.

Em 1946, George Dantzig¹ era consultor para a *US Air Force Controller* no Pentágono. Foi nesta época que Dantzig recebeu dos seus colegas D. Hitchcock e M. Wood o desafio de tentar ver o que poderia ser feito para mecanizar o processo de planejamento. No verão de 1947, Dantzig propôs o método Simplex que tornou possível a solução de problemas de otimização de vários tipos, como transporte, produção, alocação de recursos e problemas de escalonamento (*scheduling*). O desenvolvimento dos computadores permitiu a aplicação do método simplex a problemas de grande porte, enquanto que, por outro lado, o método revelou alguns dos problemas numéricos que podem ocorrer em cálculos feitos por um computador, o que motivou a busca de soluções para estes problemas.

No início da década de 50 começaram a surgir várias áreas as quais chamamos hoje coletivamente de *Programação Matemática*. Essas subáreas de programação matemática cresceram rapidamente, com a programação linear desempenhando um papel fundamental nesse desenvolvimento. Entre essas subáreas estão: programação não-linear, fluxos em redes, métodos de grande porte, programação estocástica, programação inteira e programação dinâmica.

Podemos destacar alguns setores onde a Pesquisa Operacional tem sido amplamente utilizada atualmente:

- ✓ Formulação de alimentos,
- ✓ Rações e adubos,
- ✓ Blendagem de ligas metálicas e petróleo;

1 George Dantzig -Nasceu em 8 de novembro de 1914 em Portland, Oregón (Estados Unidos). Estudou nas Universidades de Maryland e Michigan, trabalhou na oficina de Estatísticas Laboratoriais dos Estados Unidos e, durante a Segunda Guerra Mundial, no Quartel Geral do Exército desempenhando funções de controle estatístico. No ano 1946, doutorou-se em Matemática pela Universidade de Califórnia, em Berkeley.

Os seus trabalhos nas Forças Aéreas deram origem, no ano de 1947, a sua maior contribuição a matemática: o **Método Simplex**, dentro da programação linear.

- ✓ Transporte; aplicações comerciais,
- ✓ Localização industrial;
- ✓ Carteira de ações (investimentos);
- ✓ Alocação de recursos em fábricas, fazendas, escritórios, etc;
- ✓ Designação de pessoas e tarefas (composição de tabelas de horários)
- ✓ Corte de barras e chapas entre outros.

1.3 – Apresentação do trabalho

Este trabalho desenvolvido na Avícola Felipe S/A de Paranavaí enfatiza especialmente o processo de alojamento de aves (ordenação de tarefas), ou seja, quando se deve alojar um lote de aves em determinado aviário e quando desalojar de acordo com a necessidade do abatedouro, satisfazendo as condições de consumo e ganho de peso (índice de conversão alimentar).

Ao final do trabalho, espera-se que o programa desenvolvido responda às seguintes perguntas:

- Quando alojar um lote em cada uma das propriedades?
- Quando desalojar estes mesmos lotes?
- Quando desalojar os lotes alojados na semana anterior?

Para responder a estas perguntas, e possivelmente outras que surgirão no decorrer dos estudos, procura-se construir um modelo matemático, relacionando cada um dos aviários, suas respectivas capacidades e distâncias com as datas de alojamento e abate.

Ao final, se eventualmente a empresa opte pela implementação do trabalho, pode-se ainda alcançar os seguintes objetivos:

- Aumento na satisfação do integrado com relação ao período desocupado, ou seja, conseguir que cada um deles fique o menor tempo possível com o galpão vazio, satisfazendo as condições de higienização;
- II) Rapidez no sentido de introduzir no processo um novo integrado, melhorando a performance do processo;
- III) Respostas instantâneas, no caso de haverem mudanças repentinas no processo de demanda ou de oferta.

1.4 – Limitação do Trabalho

O trabalho apresentou várias limitações impostas pelas condições que cercam a atividade avícola, sendo que algumas foram consideradas e outras descartadas pelas dificuldades apresentadas e pela sua relevância. Dentre as limitações descartadas, pode-se destacar:

- Ao alojar um galpão o programa não considerou a distância dos locais onde o lote será entregue, já que isso acarretaria em uma canalização de opções e em alguns casos mostrou infactibilidade;
- Ao desalojar, levando em conta a restrição de distância média, em alguns casos pode-se não satisfazer um certo criador que deseja que seu lote seja retirado mais cedo, pensando em obtenção de mais alojamentos ao ano, porém a restrição é necessária ao programa, pois a empresa terceirizada que faz a retirada desses frangos, possui uma frota atual de 13 caminhões e conseqüentemente não poderia desalojar em um mesmo dia galpões muito distantes da avícola;

- A avícola, durante o ano de 2004 tem feito uma campanha para aumento do número de integrados, ocasionando alteração constante de dados.

Estas e outras limitações foram sendo supridas, no decorrer do trabalho, tentando-se obter a melhor resposta para a empresa, sem também deixar de se importar com o integrado, já que o mesmo é a mola-mestra do processo.

1.5 – Importância do trabalho

A Pesquisa Operacional serve para orientar as pessoas a tomar decisões, objetivando lucrar o máximo. É obvio que esta tomada de decisão é influenciada por inúmeros fatores, que são abordados durante o processo de resolução, não esquecendo dos fatores que cercam esta vantagem. Para este trabalho coloca-se como base a idéia que a empresa pode ter um grande lucro, pensando também no lucro e na satisfação dos produtores que mantém o abastecimento da empresa. Não se deve esquecer que se um galpão fica um longo período vazio todos perdem. Perde o produtor que não consegue uma boa quantidade de lotes/ano e perde a avícola que precisa ser abastecida diariamente com aves para o abatedouro.

No programa criado procura-se abater o frango com idade o mais próximo possível dos 43 dias, sabendo-se por experiências anteriores que isso propiciará um peso ótimo para a empresa e para o criador.

1.6 – Estrutura do trabalho

Este trabalho está dividido em seis capítulos, que são:

No CAPÍTULO I, apresenta-se os objetivos do trabalho, um pouco do histórico da Pesquisa Operacional, uma apresentação geral do trabalho, as limitações encontradas durante o transcorrer da pesquisa e escrita, a importância do trabalho e finaliza-se com esta estrutura que fecha o capítulo.

No CAPÍTULO II, faz-se uma descrição completa sobre o mercado de frangos no mundo, Brasil, Paraná e também na região de Paranavaí, mostrando o crescimento que este setor tem tido nos últimos anos e sua importância para a economia do estado do Paraná.

No CAPÍTULO III, apresenta-se outros trabalhos desenvolvidos na área de criação e processamento de aves desenvolvidos na Sadia e na empresa Frango Seva de Pato Branco.

No CAPÍTULO IV, apresenta-se o modelo matemático, detalhado com função objetivo e suas restrições.

No CAPÍTULO V, mostra-se a implementação computacional com os procedimentos utilizados para criação do programa e as simulações realizadas para teste. Finaliza-se com as considerações sobre as simulações realizadas.

Finalizando o trabalho no CAPÍTULO VI temos a conclusão final do trabalho e sugestão para possíveis trabalhos futuros.

CAPÍTULO II

2. PRODUÇÃO E COMERCIALIZAÇÃO DE FRANGO

2.1- A Produção de Frangos no Brasil

A avicultura brasileira é uma das atividades agropecuárias mais avançadas tecnologicamente, principalmente a de corte, atingindo níveis de produtividade comparados aos países mais desenvolvidos no mundo, o que contribui de forma significativa para o fornecimento de proteína animal de baixo custo e geração de riquezas para o país. Nesse sentido, os modernos processos de criação e industrialização associados à melhoria genética das aves têm levado a excelentes índices de conversão alimentar, precocidade, produtividade e sobrevivência.

Hoje o Brasil é considerado um dos maiores produtores e exportadores de produtos derivados da carne de frango tendo superado em exportações até os Estados Unidos (tabelas 2.1, 2.2 e 2.3), tornando-se líder do ranking mundial de exportações. Em volume os norte-americanos ainda são líderes, porém em divisas o Brasil conseguiu superar os americanos já que o produto exportado pelos EUA possui menor valor agregado. Comparando 2002, 2003 e 2004 esta diferença vem caindo significativamente, pois o Brasil elevou seus embarques, enquanto os americanos reduziram. A comparação aos EUA se faz jus em virtude de os americanos terem tradição como maior produtor e exportador de mundo.

O fator importante neste contexto é que o Brasil exporta produtos derivados (cortes), sobretudo para mercados exigentes como Europa e Japão, o que justifica o fato dos americanos terem maior volume de exportação e perderem em receita exportável para o Brasil.

Além da sanidade do rebanho nacional, livre de newcastle¹ e da influenza², outros fatores contribuem para a competitividade, como o baixo custo. Somente o Brasil, Argentina, Paraguai e Bolívia respondem por 50% da produção mundial de soja e 10% de milho, para uma população de 3,5% do globo. Conseqüentemente à estes dados, há um excedente de produção para alimentar as criações e exportar. Além disso, o Brasil possui 80 milhões de hectares inexplorados, que podem ampliar a produção de grãos.

No entanto, para o país manter e até aumentar suas exportações, existe a necessidade um bom investimento em fiscalização, pois o mercado internacional exige a isenção destas doenças em nosso rebanho. Por isso tem sido cobrada uma maior fiscalização sanitária por parte das agroindústrias. Dessa forma o Ministério da Agricultura disponibiliza a cada abatedouro, técnicos que coordenam o processo de fiscalização dos lotes.

2.2- A produção de frangos no Paraná

A agroindústria avícola do estado do Paraná respondeu em 2003 por 20,7 % da produção total nacional de frangos de corte. Para Martins [2004] a avicultura paranaense tem muitos motivos para comemorar. Em 2003, o setor vivenciou um recorde atrás do outro, surpreendendo até os mais otimistas. A

¹ Doença de Newcastle . O agente causador é um vírus de genoma ARN, pertencente ao gênero Paramyxovirus. A infecção pelo vírus de Newcastle ocorre em aves domésticas, semi – domésticas e silvestres. É uma das doenças mais importantes das aves domésticas que ocorre sob as formas enzooótica e epizoótica provocando grandes perdas econômicas.

² Doença influenza. Assim chamada por ser derivada de uma palavra italiana que reflete a suposição generalizada na época , de que a infecção resultava de " má influencia " climática criada por uma infeliz conjunção de astros. O vírus da influenza (Hemophilus influenzae – H5N1) pode ser cultivado e se multiplica em grande quantidade em ovos de galinha embrionados, descoberta essa que veio possibilitar pesquisas mais baratas com esses agentes causais de doenças, que exigiam antes meios sofisticados e caros para seu cultivo. Causam também, esses vírus, a chamada hemaglutinação (HA) ou seja, aglutinação de hemácias de galinha.

avicultura de corte do Paraná continua avançando bastante registrando os maiores índices de crescimento do País na produção e na exportação e com potencial para um desempenho ainda melhor.

Tabela 2.1 – PRODUÇÃO MUNDIAL DE CARNE DE FRANGO

PRINCIPAIS PAÍSES (1999 - 2004) - VALORES EM MILHARES DE TONELADAS

ANO	Mundo	EUA	Brasil	China	UE	México
1999	55.957	13.618	5.526	4.400	6.692	1.732
2000	58.518	13.944	5.976	5.050	6.686	1.825
2001	60.269	14.267	6.736	5.200	6.756	1.928
2002	61.892	14.764	7.517	5.400	6.715	1.915
2003	62.892	14.696	7.843	10.000	2.297	2.297
2004*	64.892	15.226	8.235	10.000	2.460	2.460

Fonte: Associação Brasileira dos Produtores e Exportadores de Frangos * previsão

Comparando o estado do Paraná com o País vê-se o quanto essa atividade é importante para a economia do estado (tabela 2.2).

Tabela 2.2 – PRODUÇÃO DE FRANGO DE CORTE NO PARANÁ E BRASIL (1999 - 2004) – VALORES EM TONELADAS

ANO	PARANÁ	BRASIL	% PR/BR
1999	1.010.951	5.526.044	18,3
2000	1.158.812	5.977.000	19,4
2001	1.305.314	6.735.000	19,4
2002	1.427.524	7.516.923	19,0
2003	1.624.857	7.842.950	20,7
2004*	2.170.000	8.750.000	24,8

Fonte: Sindiavipar / UBA

* Previsão para o ano de 2004

Estatisticamente vê-se que o Paraná era o terceiro estado exportador de carne de frango (tabela 2.3), ficando atrás de Santa Catarina e Rio Grande do Sul, porém em 2004 tem havido um grande crescimento na produção e no período de janeiro a junho já ultrapassou o estado do RS. Este crescimento foi proporcionado pelo surgimento de novos mercados abertos em paises europeus e asiáticos que somente consomem carne de países totalmente isentos da "gripe do frango" que atingiu vários países, principalmente na Ásia.

Tabela 2.3 – EXPORTAÇÃO BRASILEIRA DE CARNE DE FRANGO PRINCIPAIS ESTADOS (2001 - 2004*) – VALORES EM TONELADAS

PARANÁ	RIO G. DO SUL	S. CATARINA
314.218	510.544	500.651
390.689	441.900	689.678
503.425	545.824	666.945
297.399	283.864	340.946
	314.218 390.689 503.425	314.218 510.544 390.689 441.900 503.425 545.824

Fonte: ABEF - Associação Brás.dos Prod. e Exp.de Frangos * acumulado de janeiro a junho

No Paraná, a avicultura tem um papel social muito importante sendo responsável pela geração de muitos empregos, pela fixação do homem no campo e movimentação na balança comercial do estado. Segundo SINDIAVIPAR [2004], a avicultura de corte tem um papel social muito importante para o Paraná

FATOR SOCIAL

- MÃO DE OBRA DIRETA
 - 50.000 POSTOS DE TRABALHO
- MÃO DE OBRA INDIRETA
 - 550.000 POSTOS DE TRABALHO

PRODUTORES INTEGRADOS

- 7.482 DE FRANGOS
- 455 DE PERUS
- TRANSPORTES DE PINTOS, RAÇÃO, AVES VIVAS E ASSISTÊNCIA TÉCNICA, INSUMOS E AVES ABATIDAS.
 - 100.000 VIAGENS MÊS
- ÁREA PLANTADA PARA ABASTECER A AVICULTURA
 - MILHO 590.430 ha (43%) *
 - SOJA 200.000 ha (6%) *
- TOTAL DE PEQUENOS AGRICULTORES QUE FORNECEM INSUMOS PARA AVICULTORES (30 A 50 ha)
 - 35.000 FAMÍLIAS (10%) **
- percentual do total produzido no Paraná
- ** percentual do total de mão obra rural do estado

A produção no estado praticamente alcança todas as regiões, porém destacam-se algumas cidades com plantel acima de 3 milhões de cabeças. Este plantel pode ser até questionável, pois cidades de porte pequeno possuem grandes rebanhos, porém isto é influenciado pela proximidade com grandes abatedouros e ou muitas vezes oferecem boas condições para proprietários que queiram participar de planos de integração.

Na região de Francisco Beltrão, tem-se um exemplo a ser seguido. A administração municipal e a direção do Frigorífico Sadia, juntamente com os produtores rurais, incentivam a construção de novos aviários no município. Segundo informações da Secretaria do Interior do estado do Paraná, para cada aviário de 100

metros de comprimento são gastas, em média, 50 horas de trabalho, sendo, aproximadamente, 28 horas de máquinas com a terraplanagem e mais 22 horas com o cascalhamento do local, preparação da estrada de acesso e das áreas de manobra de caminhões. A administração municipal de Francisco Beltrão "subsidia" até 30 horas/ máquina para terraplanagem. O que passar disso, é pago pelo agricultor diretamente à empresa prestadora do serviço, quando terceirizado. Como são muitos serviços, a Secretaria de Interior contrata empresas para realizar a terraplanagem. Para cada aviário, o poder público municipal investe, em média, R\$ 5 mil. Por esses e outros incentivos é que a cidade possui o 5º rebanho avícola do estado. Em muitas outras cidades como Paranavaí, por exemplo, isto não ocorre, o que dificulta a entrada de novos integrados no plantel da empresa, porém existem linhas de crédito a juros baixos para a construção de novos galpões.

As tabelas 2.4 e 2.5 mostram a distribuição do rebanho paranaense. Vemos que apenas 30 municípios representam 50,14% do plantel de aves do estado.

Tabela 2.4 – MUNICÍPIOS PARANAENSES COM PLANTEL ACIMA DE 3
MILHÕES DE AVES

CIDADES	PLANTEL	AVICULTORES
TOLEDO	5.085.038	377
PIRAI DO SUL	4.915.128	212
CASCAVEL	4.318.972	308
DOIS VIZINHOS	4.198.800	256
FCO. BELTRÃO	3.555.100	241
PALOTINA	3.316.440	140
CAFELANDIA	3.186.280	145
7 MUNICÍPIOS	28.575.758	1679

Fonte: Sindiavipar, Seab / Deral

2.3 – A produção de frangos em Paranavaí

A cidade de Paranavaí, situada há 550 km de Curitiba no extremo noroeste do Paraná tem mostrado um forte crescimento no setor avícola.

Paranavaí, apesar de não constar entre os grandes rebanhos do estado, possui um plantel de 750.000 cabeças com cerca de 100 produtores ligados à atividade. Aliado à esse plantel local, há também várias cidades da região que possuem produtores integrados à avícola, totalizando 31 municípios e um plantel de 3.000.000 de cabeças (anexo 4.2).

A empresa em questão, onde se desenvolveu este trabalho utiliza o sistema de integração cujo funcionamento será relatado a seguir, atendendo produtores integrados num raio de até 110 km de sua sede. Na figura 2.1, temos em destaque a cidade de Paranavaí e o círculo no mapa mostra a área abrangida pela avícola.

2.4 – A Avícola Felipe S/A de Paranavaí

Instalada em Paranavaí desde 1995, a Avícola Felipe S. A. é uma empresa pertencente ao grupo Irmãos Felipe. O grupo resolveu entrar no mercado agro-industrial, mais precisamente no ramo avícola, pois percebeu que a avicultura de corte praticamente inexistia em Paranavaí, optando justamente por investir nesse mercado, que se mostrou bastante viável.

Tabela 2.5 – MUNICÍPIOS PARANAENSES COM PLANTEL DE 1 A 3 MILHÕES

DE AVES

CIDADES	PLANTEL	AVICULTORES
LONDRINA	2.384.960	116
ITAPEJARA DO OESTE	2.073.100	127
SALTO DO LONTRA	2.036.600	117
MANDIRITUBA	1.963.000	136
NOVA AURORA	1.856.000	163
ASTORGA	1.799.360	107
SANTA HELENA	1.733.604	108
MATELANDIA	1.619.246	112
VERE	1.613.600	108
MARMELEIRO	1.609.500	106
RIO NEGRO	1.598.380	111
GUARANIAÇU	1.592.678	125
ASSIS CHATEAUBRIAND	1.563.040	75
TIJUCAS DO SUL	1.407.620	92
CASTRO	1.401.944	65
MEDIANEIRA	1.387.004	91
SÃO MIGUEL DO IGUAÇU	1.383.187	90
FORMOSA DO OESTE	1.322.500	127
TRÊS BARRAS DO PR	1.235.340	108
INDIANÓPOLIS	1.203.670	74
CÉU AZUL	1.170.058	82
SÃO JORGE DO OESTE	1.077.800	68
JAGUAPITÃ	1.067.890	62
23 MUNICÍPIOS	36.100.081	2370

Fonte: Sindiavipar, Seab/Deral

A Avícola Felipe, de Paranavaí, tem cada vez mais ampliado suas exportações e vem se adequando para vender frango para a Comunidade Européia

e Asiática. A empresa, em 2004 é uma das 50 maiores avícolas do País, está inscrita na lista geral de exportadores e com a instalação de diversos controles de qualidade específicos, terá condições de atender todos os mercados mundiais. O plano de metas da Felipe (nome fantasia Mister Frango) é passar de 12 mil toneladas vendidas para o exterior em 2004 (que representariam 30% do volume produzido) totalizando faturamento de R\$ 30 milhões.

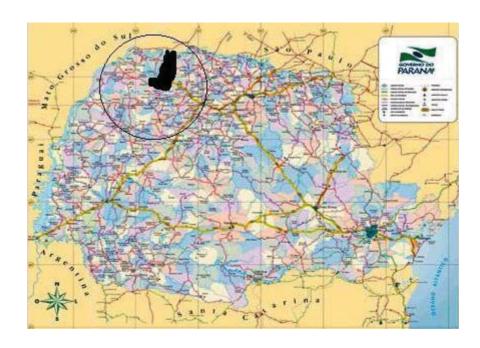


Figura 2.1 – Mapa do Estado do Paraná – Escala 1: 5.000.000

Inicialmente, a empresa atendia apenas a região Noroeste do estado, ampliando para todo o estado, porém a visão inicial, que queria atingir o mercado exterior nunca foi esquecida. A forte concorrência de grandes empresas do setor, fez com que a empresa adiasse este projeto até 1998, quando iniciou as exportações. Mas só atingiu um volume considerável em 1999. Em 2004, estão sendo exportadas 650 toneladas mensais, principalmente para Argentina e China e também já foram efetuados os primeiros contratos de exportações com Japão, Rússia e alguns países árabes.

Para atingir seu plano de expansão, a Felipe pretende ampliar o número de abates nos próximos três anos. Das 70 mil aves abatidas por dia, a empresa pretende chegar a 140 mil abates diários.

Foi investido muito em treinamento e capacitação para os atuais 1280 funcionários. Somente nos últimos 3 meses do primeiro semestre de 2004 foram 150 contratações e mais 150 deverão ocorrer até dezembro de 2004.

A empresa conta atualmente com cerca de 350 produtores integrados, e está em franca campanha para ampliar este número, pois atualmente trabalha em turno único de 8 horas no abatedouro, porém a partir de setembro de 2004 já estará operando em dois turnos.

Além do abatedouro, a empresa é composta por uma fábrica de subprodutos e outra de ração para aves. De 3500 metros quadrados de área construída em 95, a empresa passou para mais de 12.000 metros quadrados em 2004.

Na Avícola Felipe, 90% do frango produzido é cortado, aproveitando as melhores partes (cortes nobres) como asa, coxa, peito e filé. O que sobra (o dorso) é transformado em CMS (carne mecanicamente separada), que é vendida para a industria de embutidos.

As três indústrias da avícola (abatedouro, subprodutos e ração) foram beneficiadas com melhorias tecnológicas, seguindo a meta da empresa de automatizar e modernizar os processos. Foi investido mais de US\$ 1,5 milhão. A fábrica de rações ganhou uma desativadora de soja, que realiza a tostagem do grão para que ele possa ser consumido pelos animais. Já o abatedouro foi equipado em 2003 com um túnel de congelamento contínuo, ampliando a capacidade de

congelamento dos frangos e diminuindo o tempo de congelamento de 8 horas e meia para 4 horas.

2.5 – O sistema integrado

A produção de frango de corte no Paraná pode ser subdividida em três modalidades diferentes: produtores independentes, produtores cooperados e produtores submetidos ao sistema de integração. Os produtores independentes não têm vínculo de compra de insumos ou venda do produto com nenhuma empresa; formulam a ração na propriedade ou a adquirem junto a fornecedores; adquirem os pintos no mercado; contratam a assistência técnica de terceiros e/ou firmas especializadas. Os produtores cooperados reunem-se em cooperativas com o objetivo de comprar em conjunto os insumos básicos à produção de frango de corte, bem como a industrialização e comercialização do produto final. E, no sistema de integração sob contratos, a agroindústria coordena todo o processo produtivo.

Na produção de frango de corte, o sistema de integração ocorre quando uma empresa coordena todo o processo, fornece os insumos necessários à produção, ou seja, pintos de um dia, ração, vacinas e medicamentos, assistência técnica, transporte, industrialização (abate, corte, processamento, e embalagem), armazenamento, comercialização, distribuição, controle do processo de tomada de decisão e todos os demais insumos utilizados na produção e assistência técnica. Pode-se dizer que a agroindústria indiretamente utiliza as instalações do produtor rural, fornecendo o pinto, ração, vacinas, medicamentos e acompanhamento veterinário. Ao produtor integrado compete o fornecimento dos demais insumos necessários à condução da atividade avícola, tais como: instalações adequadas,

sendo galpões, utensílios, equipamentos, material para a cama, energia, água, silos para armazenamento da ração e fornecer toda a mão-de-obra necessária às atividades diárias. Em relação à mão-de-obra, o produtor é responsável por todas e quaisquer implicações de ordem social, trabalhista e previdenciária relacionadas a vínculos empregatícios.

Além dessas, o produtor tem outras obrigações como comunicar à indústria sempre que aparecer qualquer doença ou anormalidade; promover a desinfecção do galpão após a retirada dos frangos e prepará-lo para recebimento de novo lote de pintainhos; atendendo todas as recomendações técnicas da indústria. Salientando-se que por força do contrato, o integrado deve seguir rigorosamente as instruções nele expressas, podendo responder civil e criminalmente por omissão.

Quanto às decisões, as empresa integradoras coordenam todo o processo relativo ao sistema de integração, estabelecendo um total controle da produção de frangos de corte, alienando o produtor das decisões, ou seja, o criador torna-se um subordinado quase total às decisões da empresa.

O sistema integrado sob contratos surgiu paralelamente à grande modernização da avicultura como processo de mudanças nas estratégias organizacionais, disseminando-se rapidamente. Hoje, a avicultura brasileira está fortemente baseada no sistema de produção integrada, no qual as atividades do produtor são regidas por contratos firmados com a indústria. O estado do Paraná apresenta sistemas de produção de frangos diferenciados entre si, no entanto, as empresas determinam as relações contratuais que regulam os sistemas integrados.

A avicultura integrada consiste em um relacionamento entre a agroindústria e os produtores rurais em que o produtor de frango se caracteriza pela

utilização de mão-de-obra familiar, por ser proprietário de pequena extensão de terra e a propriedade ser diversificada.

No Paraná existem 33 empresas que trabalham com o sistema de produção integrada sob contratos, sendo que, apenas uma não coordena todo o processo, deixando a cargo dos produtores toda a produção de frango de corte, desde a produção dos pintos até a industrialização e o processamento do produto final. As demais promovem uma integração verticalizada que vai da aquisição dos pintos à comercialização do frango.

O ingresso das empresas no sistema de integração é motivado pela tendência do mercado, homogeneidade da matéria-prima, suprimento da capacidade de abate, aumento da produção como garantia de melhor comercialização, redução da necessidade de investimento e diminuição das despesas operacionais, aumento da produtividade e matéria-prima assegurada.

A integração para os pequenos e médios produtores tornou-se uma oportunidade de negócio, gerando receita em curto espaço de tempo com a venda do frango e da cama.

A forte tendência à especialização da atividade de produção de frango de corte, aliada à instabilidade da economia e à necessidade de obtenção de renda em prazos mais curtos, tem levado os produtores, principalmente os pequenos, a ingressarem na atividade ou investirem em melhoramentos das condições das instalações, de acordo com as exigências das empresas integradoras.

O sistema de produção contratual de frango de corte tem demonstrado que dele podem participar produtores com capacidade de alojamento relativamente baixa, uma vez que a capacidade média dos integrados é de 13.800 aves, enquanto a dos independentes e/ou cooperados que é de 48.700 frangos

As exigências feitas pelas empresas integradoras ao produtor para que este possa participar do sistema são: galpão equipado, contratos em que são descritas todas as obrigações do integrado e do integrador, condições de higiene e manejo adequado da criação e o tipo de galpão.

Algumas empresas integradoras exigem um tamanho mínimo do galpão de 1.200 m², que possa abrigar entre 12.000 a 14.000 frangos. Essa dimensão foi definida através de estudos técnicos sendo considerada a que melhor otimiza o uso da mão-de-obra no manejo e proporciona maior rentabilidade. Para a empresa, esse dimensionamento minimiza o tempo e o custo com o transporte dos insumos e o carregamento das aves. Os equipamentos e utensílios usados nas granjas como comedouros, bebedouros, entre outros, são padronizados de acordo com as exigências das integradoras.

Quanto ao trabalho, além do esforço físico dispendido na condução da atividade, o produtor deve ser um especialista, devendo possuir habilidades que incluam experiência e conhecimento para seguir as determinações técnicas da integradora. Esse conhecimento pode ser adquirido de diversas formas, como, por exemplo, junto a outros produtores de frango de corte, na integradora e na assistência técnica.

Em relação ao tempo gasto, a necessidade de mão-de-obra é relativamente baixa, com exceção das operações de limpeza, desinfecção e distribuição da cama no galpão e o apanhe, engradeamento e carregamento das aves que necessitam de maior quantidade de mão-de-obra. Uma síntese das atividades desenvolvidas e a necessidade de mão-de-obra podem ser verificadas na tabela 2.6.

Tabela 2.6 – ESPECIFICAÇÃO DAS ATIVIDADES, TEMPO E MÃO-DE-OBRA DISPENDIDOS EM UMA UNIDADE DE 1.200 M² DE FRANGO DE CORTE.

	Tempo	Mão-de-
Atividade	médio	obra
Limpeza, desinfecção e distribuição da cama	6 dias	4 homens
Preparação do galpão para recebimento dos		
pintos (distribuição de campânulas,	1 dia	1 homem
bebedouros, comedouros, ventiladores e		
cortinas)		
Recebimento dos pintos	1 dia	1 homem
Manejo diário (aquecimento, alimentação,	45 dias	1 homem
água, tratamento sanitário e outros)		
Apanhe, engradeamento e carregamento	1 dia	10 homens

Fonte: Avícola Felipe

Para efetuar o pagamento ao integrado, as integradoras usam várias maneiras de se calcular o valor a ser pago. Algumas empresas utilizam tabelas de pontuação para a avaliação final do lote, que serve de base da remuneração do produtor. O cálculo baseia-se no desempenho esperado, que considera as seguintes variáveis: mortalidade, conversão alimentar, ganho de peso diário, carregamento, contusão e manejo. Para cada variável há um peso correspondente.

No entanto, nesse sistema não se deve considerar que o preço recebido pelo produtor é o preço de venda do frango, pois este não lhe pertence. O preço reflete unicamente a compensação pela engorda dos mesmos.

De forma geral os contratos de integração garantem uma certa estabilidade de renda aos produtores integrados, remunerando todos os fatores de produção e, ainda, propicia renda residual. No entanto, a relação integrador/integrado estabelecido por meio de contrato, dentre as incumbências da

empresa integradora, deixa explícita a subordinação do integrado a todo o seu complexo de processamento, ao qual compete fornecer os insumos necessários.

A principal barreira à entrada de produtores na atividade avícola em sistema de integração é a falta de recursos para investimentos em construção do galpão e na compra de equipamentos, em que pese o poder de decisão em relação à tecnologia a ser usada e a administração da produção que são exercidos pela indústria.

Em relação ao sistema de integração, a principal desvantagem é a centralização do poder de decisão pela indústria, uma vez que o produtor é um mero executor das decisões que lhe são impostas. Como o integrado é dependente dos insumos, deve adaptar-se ao sistema como seguidor de instruções e administrador de mão-de-obra. Outra desvantagem é a baixa remuneração proporcionada pelo sistema. A sua saída do sistema é difícil, praticamente irreversível, pois além de depender de insumos, deve amortizar, a longo prazo, o capital inicial investido, convivendo com as incertezas do mercado do frango.

2.6 – Características do Processo de Criação

Na criação de frangos de corte, muitas são as preocupações que cercam o criador. Na propriedade, a primeira característica importante que se pode mencionar é o microclima que se forma dentro do galpão, o qual pode ser controlado pelo uso de ventiladores, exaustores e nebulizadores. Outras características que podem ser consideradas são: a qualidade dos pintos, o aparecimento de doenças, a taxa de mortalidade dos frangos, a taxa de conversão alimentar e o ganho de peso diário das aves.

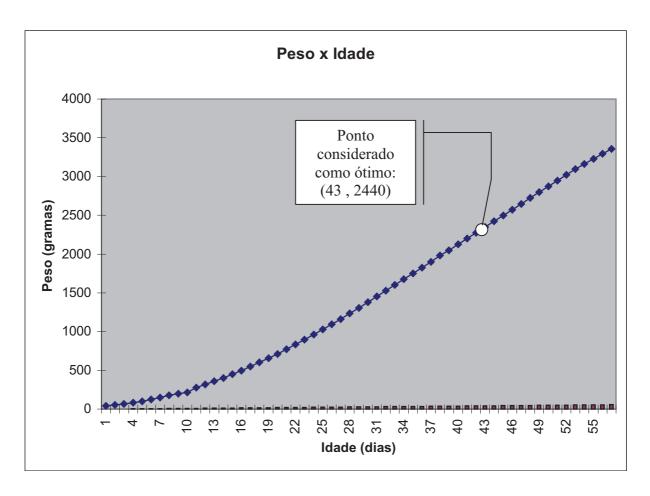


Figura 2.2 – Gráfico de relação Peso Vivo / Idade

Com relação a taxa de conversão alimentar, várias são as pesquisas para detectar o ponto ideal de abate, já que após uma certa idade o frango deixa de converter em carne um bom percentual daquilo que consumiu. A figura 2.2 mostra bem esta relação peso / idade. Pode-se perceber que após um certo período a curva vai "diminuindo" sua inclinação, ou seja, aproxima-se de uma inflexão, deixando de ser crescente para assumir uma postura quase constante.

O preço de mercado do frango para o produtor, utilizado como balizador da remuneração do avicultor e outras variáveis técnicas utilizadas no sistema de determinação da remuneração, também se constituem em fontes de

preocupação para a atividade. Somando-se a isso, o investimento em mão-de-obra, no qual o produtor de frango de corte assume todos os riscos trabalhistas.

O ambiente institucional em que ocorrem as transações, principalmente aquelas relacionadas a políticas protecionistas, geram incerteza na expansão das exportações brasileiras de carne de frango e, conseqüentemente, no crescimento da avicultura de corte de um modo geral.

Quanto ao fornecimento de ração para o avicultor, a empresa integradora realiza a entrega de acordo com o desenvolvimento das aves, ou seja, ração para crescimento e para engorda. E esta é fornecida às aves continuamente, ou seja, 24 horas por dia, para que em aproximadamente 43 dias, os frangos estejam prontos para o abate.

Na Avícola Felipe, trabalha-se com quatro tipos de ração que são enviadas ao criador de acordo com a idade do lote. A primeira, chamada de pré-inicial para o período em que a ave ainda não atingiu 250 gramas; a segunda, chamada de inicial é usada de 250 a 1000 gramas de peso; a terceira, chamada de crescimento é utilizada até cinco dias antes do abate e por fim a quarta, chamada de final, é utilizada nos últimos cinco dias.

Em relação ao consumo, a freqüência de compra de carne de frango no mercado nacional varia de acordo com o momento econômico influenciado pela época do ano. No período de Natal há um aumento de aproximadamente 35% no consumo alavancado pelo consumo do frango inteiro de grande porte (*chester*), porem os cortes (frango em pedaços), também possuem um bom mercado durante todo o ano.

CAPÍTULO III

3. CASOS DE PROGRAMAÇÃO LINEAR APLICADA AO SETOR AVÍCOLA.

3.1 – Introdução

Neste capítulo, mostram-se alguns casos já estudados em que a Pesquisa Operacional foi utilizada dentro do setor avícola.

Durante o processo de pesquisa para aprofundamento no tema, alguns trabalhos ligados à área de manejo e produção de aves, serviram de fundamentação teórica para o trabalho aqui proposto. O primeiro a ser apresentado foi desenvolvido pela empresa de consultoria UNISOMA de Campinas S.P., que desenvolveu um trabalho na empresa SADIA. O segundo, trata-se de uma dissertação de mestrado orientada também pelo Dr. Celso Carnieri, desenvolvida por Luiz Carlos Scheitt do CEFET de Pato Branco e defendida em dezembro de 2003.

3.2 – Resumo do artigo publicado com o título "Integrated Planning for Poultry Production at Sadia" (Planejamento Integrado para Produção de Aves da Sadia).- Taube Neto [1996]

A empresa Sadia Concórdia S. A. é o maior produtor de aves domésticas do Brasil, processando cerca de 300 milhões de frangos e 11 milhões de perus por ano, tem crescentemente usado modelos matemáticos desde 1990 para melhorar a tomada de decisão ao longo de sua cadeia de produção. Tem economizado mais de 50 milhões de dólares num período de três anos, tendo como

resultados uma melhor conversão alimentar para o peso vivo das aves; melhorou o aproveitamento das aves para produzir mais de 300 produtos classificados pelas faixas de pesos, levando em conta a variação de pesos dentro dos rebanhos; o cumprimento diário de quase 100% do plano de produção com aumento da produção dos produtos de maior valor agregado; maior flexibilidade e redução no tempo de atendimento da demanda de mercado; apropriar e ampliar faixas de estudos de diferentes preços e cenários de demanda. Este original e pioneiro uso da Pesquisa Operacional e aproximação da ciência de gerenciamento da indústria de aves é também adaptável para diversos tipos de produção e aplicável em outras indústrias de processamento de animais.

A Sadia foi fundada em 1944 em Concórdia, uma cidade no oeste do estado de Santa Catarina no sul do Brasil. Em 1994 o grupo Sadia compreendia 19 companhias com 24 instalações industriais espalhadas pelo país. Nesta época o grupo empregava mais de 30.000 trabalhadores, tem uma renda anual maior que US\$ 2,5 bilhões e exportava sua produção para em torno de 40 países. Em 2004 a Sadia é também o maior produtor brasileiro de aves domésticas, carne processada, carne de porco, carne de boi e o segundo maior processador de grãos de soja do país.

A UNISOMA é uma empresa de consultoria que trabalha com Pesquisa Operacional, especializada no planejamento de produção industrial, particularmente nos negócios de agricultura.

O trabalho desenvolvido e implementado por uma equipe da UNISOMA de cerca de 20 pessoas em sociedade com a área empresarial do setor avícola da Sadia que representa 30 por cento de renda do grupo aproximadamente.

3.2.1 – Produção de Frangos

A produção de frangos na Sadia começou nos anos 50 com um processo muito direto. Eram criadas aves em fazendas da própria companhia visando suprir o abate. O processo industrial era limitado a simplesmente buscar, abater e empacotar. A decisão de mudança veio em 1961 com o começo da estrutura de "integração", um sistema que já era aplicado nos E. U. A.

Embora um simples conceito, o sistema de integração envolve problemas operacionais de grande complexidade e magnitude que a Sadia deve negociar diariamente.

Tabela 3.1 – ESTRUTURA DA EMPRESA SADIA

Indústria	Número de	Número de Aves	Peso Médio da
	Produtores	Processadas em	Ave em kg
	Integrados	1994 (milhões)	
Concórdia	1.204	64	1,714
Chapecó	1.267	31	2,309
Dois Vizinhos	1.119	62	1,715
Toledo	1.061	68 1,802	
Francisco Beltrão	644	31 2,301	
Américo Brasiliense	414	29	2,007
Agroavícola	350	24	2,100
Total	6.059	309	

Fonte: UNISOMA

A companhia tem atualmente sete indústrias de processamento de frangos (Tabela 3.1), com um processamento superior a 300 milhões de frangos em 1994, e uma indústria de perus em Chapecó, com processamento acima de 11

milhões de aves ao ano. Os pintainhos utilizados são produzidos em sete chocadeiras localizadas próximo às indústrias.

Cada indústria tende a se especializar em certas famílias de produtos, sendo que cada qual precisa de aves com uma certa faixa de pesos específicos. Por exemplo, a indústria de Concórdia fornece principalmente para o mercado do Oriente Médio e por isso processa pequenos frangos com um peso médio de 1,714 quilos, já a indústria de Chapecó, por outro lado, produz para o mercado doméstico, com uma preferência em aves com um peso médio de 2,309 quilos.

A linha de produtos derivada de frangos da Sadia inclui muitos tipos de cortes, lingüiças, salsichas e outros itens de processamento, totalizando mais de 300 produtos. A grande linha de produtos originou-se principalmente da necessidade de suprir muitos mercados distintos. Por exemplo, um frango inteiro exportado para Arábia Saudita deve pesar quando pronto para cozinhar entre 0,975 kg e 1,025kg, já o mercado japonês gosta de cortes diferenciados de quaisquer outros tipos de pedidos. Ao contrário de outros grandes processadores globais de aves domésticas que têm a tarefa mais simples de produzir frangos ao redor de um peso médio fixo, a Sadia enfrenta um desafio mais complexo de planejar o crescimento e processamento de frangos com idades de 33 a 52 dias, correspondendo a uma faixa de peso de cerca de 1,300 a 2,700 kg .

A extensão de distribuição do peso do rebanho sobre os diferentes produtos, causa uma forte interdependência entre produtos.

A qualquer hora na vida de um rebanho, o peso das aves é normalmente distribuído aproximadamente com um coeficiente de variação entre nove e quatorze por cento. O coeficiente de variação é até certo ponto dependente do sexo do rebanho, do produtor individual, e da estação do ano.

A parte da curva de crescimento que é de interesse para rebanhos de produção é a seção praticamente linear de 33 a 52 dias (figura 2.2).

Cada rebanho se comporta diferentemente dependendo de sua raça, sexo, tipo de galpão, competência e dedicação do produtor, e outros fatores.

Ao longo do crescimento de cada rebanho, as variáveis relevantes que devem ser observadas e controladas são, além do peso médio, o total de ração consumida e a taxa de mortalidade. O metabolismo dos frangos é tal que eles ganham peso muito depressa. O ganho de peso varia consideravelmente com a temperatura e umidade do ar, por exemplo, influenciado por forte diferença de período no ganho de peso em galpões não climatizados. De uma forma bem simples, podemos dizer que para cada dois quilos de ração consumida obtem-se um quilo no peso, dada uma provisão abundante de água para frangos que estão com 42 dias de idade, uma idade na qual a ave já é grande o bastante para ser abatida para a maioria dos produtos. Porém, esta relação de ração para peso-vivo aumenta rapidamente com a idade, conseqüentemente, quando um rebanho não é abatido num determinado dia, a conversão de ração em peso nos dias seguintes será menos eficiente. Semelhantemente, a taxa de mortalidade de cada rebanho não apenas aumentará com a idade, mas varia de acordo com a estação do ano e com outros fatores diversos.

A variabilidade do peso das aves dentro de um rebanho significa que o rebanho fornece frangos para produtos em várias faixas de peso. Isto significa que quando planejamos o fornecimento de frangos em certa faixa de pesos, nós devemos também considerar o fornecimento em faixas vizinhas e a proporção de aves em cada rebanho que será desclassificado (quer dizer, não bom o bastante para venda como carcaças inteiras) por várias razões. Algumas das aves

desclassificadas podem ser cortadas em pedaços para melhor aproveitamento de suas partes. Até mesmo uma ave perfeita pode ser cortada em pedaços. Por exemplo, a crescente demanda por carne branca significa que um aumento proporcional da carcaça perfeita gerará melhores cortes, os quais são vendidos por um preço melhor.

Inicialmente, do ponto de vista tático, a Sadia deve alocar produtos nas indústrias, e então deve planejar sua produção diariamente para cada uma das sete indústrias, atendendo a demanda e levando em conta o mercado de exportação. Em seguida deve selecionar rebanhos para prover a matéria prima que eles precisam para suprir as indústrias. Tomando estas três decisões, deverá levar em conta todas as restrições técnicas, tais como a indústria de abate e capacidade de evisceração, a disponibilidade de facilidades necessárias para produzir certos produtos, rendimento do processo, diferentes custos de produção, preço de cada produto em cada mercado, sempre buscando conhecer a demanda com o maior lucro possível. Além disso, deve decidir quais novos rebanhos devem ser alojados com produtores integrados para prover matéria-prima suficiente para encontrar a oferta de demanda para os meses seguintes. Cada indústria processa entre 10 e 20 rebanhos de 12.000 frangos diariamente. A Sadia aloja um número semelhante de pintainhos todo dia para os seus produtores (350 a 1.300 por local) ao redor de cada indústria.

3.2.2 - Processamento

Após decisão de qual rebanho será processado em um dia qualquer, a Sadia deve determinar a hora de apanhar em cada produtor integrado, levando em conta a distribuição de peso de cada rebanho e o tempo de viagem do produtor a

indústria. Determinada a hora de apanhar, evita-se ter grande espera na plataforma de chegada antes de a ave ser pendurada nas linhas de processamento, um dos quais são ajustados para faixas diferentes de peso vivo.

Um bom planejamento do rebanho a ser abatido e processado diariamente, sincronizado com a seqüência de operações e a capacidade do processamento, leva diariamente a melhoria na performance dos planos de produção.

As indústrias armazenam os produtos em câmaras frigoríficas para transportar mais tarde, através de sua frota de caminhões frigoríficos.

A Sadia utiliza uma frota de aproximadamente 1300 caminhões que transportam produtos diretamente para seus clientes, que são supermercados ou para centros de distribuição regional. A esses centros, é adicionada uma frota de 300 caminhões que fazem a distribuição regional para pequenos comerciantes.

3.2.3 – Planejamento Integrado

Não se conhece nenhuma publicação de sistema de planejamento integrado de aves para otimização com a amplitude do sistema instalado na Sadia, denominado PIPA (Integrated Poultry Production Planning). O sistema PIPA busca otimizar decisões ao longo dos estágios de produção, apóia o planejamento e controla todas as atividades ao longo desta cadeia de decisão, respondendo perguntas importantes dentro do processo de produção:

— Quantos pintainhos avós² deveria a Sadia comprar e quando?

Pintainhos avós – Sãos aqueles comprados pelo produtor de ovos e são alojados na proporção de 18% masculinos e 82% femininos sendo responsáveis pela geração dos pais que por sua vez gerarão os pintainhos que abastecerão os aviários. Após um período são descartados (abatidos) e substituídos. .

- Quando deveria a Sadia descartar e substituir os rebanhos atuais dos avós e pais?
- Quando um produtor particular deveria alojar um rebanho de pintainhos de corte? (Esta é uma decisão fundamental do sistema PIPA desde o alojamento é um comprometimento de recursos para encontrar a demanda futura).
- Quando deveria abater cada rebanho? (Isto é também uma decisão crítica como deveriam ser abatidos rebanhos em linha com demanda confirmada).
- Quanto de cada produto deveria ser alocado em cada indústria trimestralmente, mensalmente e semanalmente?
- Como poderia adaptar rebanhos com o abate e a capacidade de produção diária?
- Como poderia sincronizar rebanho em corte com o pendurado para prover uma distribuição própria de peso durante produção diária?

O sistema PIPA (anexo 3.1) é composto de diversos módulos que interagem-se, arranjado em três níveis: estratégico, tático e operacional. Todos os módulos são otimizados usando técnicas de programação matemática. O sistema é amparado por suporte estatístico e é complementado com um módulo de formulação alimentar.

O módulo estratégico planeja o fluxo global de ovos para incubadoras, pintainhos para produtores, frangos de corte para as indústrias e produtos para mercados.

Um outro módulo permite que através da análise de investimento, por exemplo, planejadores possam avaliar o efeito da abertura de uma nova indústria, a entrada de um novo mercado, introduzindo novos produtos, especializando

indústrias para um tipo particular de produto, ou associando produtos para os mercados.

Para alocar produtos para as indústrias com o passar do tempo, o sistema deve representar condições passageiras, tais como o estado atual do rebanho em cada localidade e demanda de produtos.

Os módulos tático e operacional executam deste modo planejamento dinâmico e controle.

O primeiro destes dois módulos, denominado tático, faz o planejamento de pintainhos, simultaneamente sincronizado com o ciclo de colocar ovos dos avós e pais com a exigência para suprir pintainhos de corte. Determina a política de reposição para avós e o ciclo dos pais, minimizando o custo total da produção de pintainhos de corte.

Seguindo as diretrizes de produção, o segundo módulo (tático), ou planejamento da localidade, determina o alojamento, o abate e os horários de produção para cada localidade baseado no estado atual dos rebanhos e da capacidade de abate diária, a demanda estimada para a família de produtos, os preços dos produtos e ração e custo dos pintainhos, objetivando maximizar uma margem de lucros das localidades. Neste momento, a principal decisão é quantos pintainhos poderiam ser alojados todos os dias para prover a quantidade apropriada e a distribuição de peso das aves para os meses seguintes. A Sadia realiza o alojamento atual de cada produtor particular com suporte do módulo de Controle e Planejamento de Rebanho. Este módulo também determina os rebanhos individuais a serem abatidos todos os dias, baseado numa performance da estimativa atual dos rebanhos previamente alojados. O módulo de Controle e Planejamento da Indústria leva em conta o horário de abate e sua conseqüente distribuição de peso de aves

diariamente, consequentemente determinando o horário de produção para a localidade durante os próximos 7 a 15 dias, baseado na demanda confirmada.

Uma descrição mais formal da localidade, rebanho, controle e planejamento da indústria compreende o uso representativo de curvas de crescimento de grupos de rebanhos nos diferentes estágios atuais de crescimento, especificado pelo sexo e pela linhagem, o Módulo de Planejamento Local decide a idade de abate de cada grupo do rebanho com a finalidade de prover aves suficientes para encontrar a demanda das famílias de produtos, respeitando a capacidade de abate.

Para modelar o problema foram criados grupos de variáveis. Por exemplo, em cada grupo de rebanhos, a variável Y(g, j), denota a porcentagem de aves do grupo g a ser abatida no dia j. Esta porcentagem é ajustada mais tarde para corresponder ao abate de rebanhos inteiros individuais quando o dia *j* realmente ocorrer. Já a variável X(b, i, j) determina o número de pintainhos de tipo b a ser alojado no dia i para abate no dia j. Este número de pintainhos a serem alojados será ajustado quando o dia i realmente ocorrer para alojar rebanho individual (normalmente contendo cerca de 12.000 pintainhos). A variável W(f, j) é a quantidade de toneladas do produto da família f a ser produzida no dia j. Estes três conjuntos de variáveis estão relacionados com a finalidade de encontrar a demanda futura de todos os produtos com o passar do tempo, com respeito a capacidade diária de alojamento, abate, e corte. Este módulo equilibra as atividades, compensando a baixa ou nula produção nos fins de semana e feriados. Também compensa a variação na performance de crescimento com o passar do tempo e sazonalidade de mercado. O módulo fornece informações para planejamento de rebanhos, das quais a Sadia pode programar individualmente rebanhos para ambos

alojamento e abate. É também uma importante ferramenta para estabelecer compromissos táticos de vendas.

3.2.4 – Implementação Computacional

Um módulo inicial desenvolvido pela UNISOMA para determinação de alojamento e datas de processamento foi o primeiro que a Sadia implementou, em dezembro de 1990 na indústria de Concórdia. Este módulo não usou representação detalhada dos produtos e processos, mais tarde introduzido no módulo de planejamento local, considerando apenas o perfil do frango vivo que satisfaria a melhor produção semanal necessária, determinada pela equipe de planejamento da produção.

Esta versão inicial, e subseqüentemente o módulo de Planejamento Local melhoraram significativamente a conversão da ração em peso vivo. Este módulo trata cada rebanho individualmente por seu crescimento, ração consumida, e curva de mortalidade, para determinar a idade de processamento ótima com o objetivo explícito de minimizar o custo. Previamente, a Sadia obteve os frangos mais pesados principalmente de rebanhos machos, os mais leves de rebanhos fêmeas por causa das regras de processamento então em vigor.

Os gerentes de planejamento de custo resistiram a quebra deste paradigma, como era natural, porém mais tarde vieram apreciar os benefícios desta nova metodologia, a qual incluiu melhoria da previsibilidade do suprimento de frangos, melhor adaptabilidade com a flutuação do mercado, e uma eficiência maior na utilização da capacidade de processamento. Esta previsibilidade permitiu a eles fechar a fábrica por uma ou mais trocas ou para turnos de fim de semana

determinados durante o horizonte de planejamento. Eles também insistiram em um outro paradigma, o uso total da capacidade de processamento, mas logo perceberam isto mais sutilmente quando eles entenderam o poder do modelo matemático para mostrar a interdependência do crescimento do rebanho com as condições do mercado. Muitas decisões têm sido recentemente baseadas em margens de lucros de produtos obtida dos dados históricos da contabilidade. Estas decisões são agora tomadas usando análise de sensitividade e estudos dos cenários baseados nas misturas alternativas dos produtos e outras modificações nas restrições, usando objetivos melhores definidos, incluindo as considerações preçoquantidade-elasticidade.

A instalação do módulo de Controle e Planejamento da Fábrica aumentou os detalhes do nível de planejamento e diminuiu a diferença entre o horário planejado e o executado. A Sadia necessariamente aumentou diariamente o nível de controle e sincronizou o fluxo de aves de acordo com seus pesos e com o carregamento, pendura, e operações de corte, neste ínterim ainda introduziu o planejamento de corte com a finalidade de satisfazer algumas destas necessidades.

A Sadia começou instalando o módulo de Planejamento de Pintainhos para avós e reprodutores em novembro de 1994. Sua função imediata era indicar alternativas para provisão de pintainhos que melhorassem a capacidade com a finalidade de minimizar suprimentos do terceiro grupo. Estas alternativas demandaram novos dados e rotinas administrativas.

O módulo de Planejamento Global Integrado é uma ferramenta que habilita a Sadia a executar estudos do processo de produção como um todo. Ela executa tais estudos mais freqüentemente como um incremento na produção. A função original do modelo pretendeu a determinação do plano de produção superior

e é agora executada por um recentemente instalado módulo de planejamento multilocal.

Os módulos do sistema PIPA usam vários recursos matemáticos. O suporte estatístico, por exemplo, usa modelos econométricos e estatística multivariada, o planejamento de horário de carregamento é baseado em simulação, porém, as técnicas mais usadas são os módulos de programação matemática.

Tabela 3.2 – VALORES TÍPICOS DOS TAMANHOS DOS PROBLEMAS IMPLEMENTADOS NA SADIA

Módulo	Número de	Número de	Elementos
	Variáveis	Restrições	não nulos
Planejamento da Localidade	20.000	5.000	100.000
Planejamento do Rebanho e Controle	8.000	2.000	180.000
Planejamento da Fábrica e Controle	11.000	4.000	60.000
Planejamento da Troca e Controle	9.000	3.000	30.000
Planejamento dos Pintainhos	130.000	35.000	250.000
Planejamento Global Integrado	5.000	2.000	90.000

Fonte: UNISOMA

A UNISOMA desenvolveu o trabalho computacional em linguagem de programação C sobre uma plataforma Unix e usou o software OSL de programação matemática da IBM, exceto para o módulo de Controle e Planejamento de Troca de Produção e o módulo de Planejamento Global Integrado, o qual a UNISOMA desenvolveu em GAMS, com um link para OSL. Os problemas de programação linear requerem um potente processador, pois envolvem um grande número de variáveis (Tabela 3.2).

O sistema PIPA dedicou 370 estações de trabalho e oito modelos IBM RS/6000, sete dos quais estão nos sistemas de processamento das fábricas e o oitavo na SADIDATA na cidade de São Paulo onde parte da equipe da UNISOMA está concentrada.

3.2.5 – Benefícios

Os benefícios diretos obtidos pela Sadia com o sistema PIPA podem ser divididos em quatro categorias: melhoria da conversão da ração, produtos com maior valor agregado, respostas mais rápidas para flutuações do mercado e maior sensitividade para oportunidades de mercados; tendo também realizado outros benefícios menos tangíveis.

Um dos mais relevantes indicadores para indústria de aves é chamado razão da conversão alimentar de consumo.

A Sadia conduziu um estudo para comparar a conversão alimentar de cada uma das fábricas antes e depois da implementação dos módulos do sistema PIPA designados para apoiar as decisões de alojamento e cortes das aves.

Verificou-se que a média decresce nas faixas de razões entre 3,2 e 3,9 por cento. Considerando que o consumo de ração processado pela Sadia hoje é de aproximadamente 105.000 toneladas/mês, o custo da tonelada de ração é aproximadamente US\$ 165, 00, e a duração média de tempo da implementação do sistema de PIPA em cada fábrica, é 36 meses, então nós temos, como resultado do ganho da ração em conversão de peso vivo, economizando algo na faixa de \$20 milhões (0,032 x 105.000 x 165 x 36) para \$24 milhões (0,039 x 105.000 x 165 x 36). Estudos similares apontam para uma redução de outros \$5 milhões para perus,

somando um ganho total próximo de \$25 a \$29 milhões em cima de um período de três anos.

A Sadia alcançou outro benefício direto do sistema PIPA elevando a produção do denominado valor agregado dos produtos. A implementação do sistema PIPA causou uma mudança na porcentagem média da produção de cada produto. Dados mostram que após a implementação do sistema PIPA, houve uma elevação média de 11% na produção. Considerando uma renda média de \$420 milhões nos últimos três anos, e que a margem de lucros comuns dos produtos de valor agregado é 15% maior do que outros produtos propiciando um aumento na renda de \$6 milhões, partindo da estimativa de um total de \$18 milhões em cima dos últimos três anos.

O processo de alojamento é baseado na previsão de vendas. Quando a venda atual difere muito da prevista, o perfil das aves dos produtores conflita com a necessidade do mercado. Com o sistema PIPA, a Sadia pode achar, de modo mais rápido, a melhor possibilidade de partida considerando dois itens: necessidade de novo mercado e o perfil das aves dos produtores, evitando perda de renda ou tirando proveito de oportunidades melhores.

Diversas análises estratégicas tornaram-se possíveis com o sistema PIPA. Por exemplo, a pessoa pode olhar para trás e pode ver a melhoria na margem de lucros total que poderia ter sido alcançada, que foi fixada num determinado passado, mantendo o exato cenário de aves alojadas e considerando os preços reais do mercado.

Variando a idade de processamento e mistura de vendas em mais ou menos 10% de cada produto a empresa pode aumentar a margem de lucros total em até 14%. Este tipo de análise indica a direção da melhoria, mostrando o caminho

para elevação da margem de lucros total mais apropriada, e ainda uma possível, mistura de vendas. Estima-se que o potencial de ganhos, nesta área, seja acima de US\$30 milhões por ano.

Em resumo, nos últimos três anos, os benefícios diretos do sistema PIPA resultaram em lucros acima de US\$50 milhões. Esta cifra é esperada aumentar nos próximos anos como um resultado da melhoria contínua no uso do sistema PIPA.

Outros benefícios incluem o seguinte: praticamente 100 % dos planos críticos de produção são implementados como foram planejados, o que é particularmente importante para remessas de exportação. Tempo de espera na plataforma de chegada foi reduzido em 50 %, resultando em menor perda de peso e baixa mortalidade e uso mais lucrativo do frango fazendo como que a Sadia leve vantagem a curto prazo nas oportunidades de mercado.

O sistema PIPA também ajudou a Sadia consolidar mudanças organizacionais executadas desde abril de 1994. Na nova estrutura administrativa, o setor de aves domésticas pertence a uma unidade empresarial, a qual é conduzida por um único empresário, em contraste com a descentralização do processamento das fábricas.

Na esfera tecnológica e de investimento, a Sadia analisa as decisões num contexto integrado. Por exemplo, a representação do processo de produção do sistema PIPA e a relação dele com a provisão de frangos estimularam planejadores a executar estudos mais detalhados sobre a especialização do processamento das fábricas, a redefinição dos centros de distribuição, a introdução de novas raças, a instrumentalização dos alojamentos para controle de temperatura, umidade, e ração, e automatização das fábricas.

A representação completa do modelo matemático da cadeia de decisão em cima de horizontes de tempo diferentes e a integração de capacidades de produção fundamentais com o ambiente de mercado provou ser um modo em direção a um aumento de eficiência e rentabilidade

Em 2004, a Sadia vê a formalização matemática da cadeia inteira no setor de frangos e perus como essencial para utilização de técnica e informação administrativa até certo ponto consistente com seus objetivos e com suas restrições físicas, econômicas e administrativas. Na realidade, os gerentes entendem melhor e aceitam as responsabilidades deles quando podem ver as interdependências entre capacidade de produção e os papéis de cada parte do processo.

O tratamento dos aspectos quantitativos de planejamento, via matemática e estatística, complementa outras iniciativas da Sadia, como no remanejamento de sua estrutura administrativa e seu programa de qualidade. A Sadia vê as técnicas e atitudes neste tratamento como incluindo sua própria tecnologia, isto é, tecnologias de decisão. Esta visão facilita interações com outras tecnologias, tais como informação tecnológica e automatização.

Recentemente a Sadia juntamente com a UNISOMA ampliou o desenvolvimento e implementação do sistema PIPRA (Planejamento Integrado de Produção de Ração) sobre os próximos três anos. Este sistema estende a idéia da formulação ótima de ração sobre um horizonte de planejamento de longo período de tempo, cercando a compra de ingredientes. O sistema habilitará a Sadia economizar entre US\$10 milhões e US\$30 milhões em um ano, de acordo com simulações executadas com um ano de horizonte de planejamento e preço de flutuação sazonal dos ingredientes.

3.3 – Resumo da Dissertação de Mestrado "Otimização da Industrialização e Comercialização da Carne de Frango". (UFPR, Curitiba, 2003). Scheitt [2003].

Este trabalho apresentado e defendido em 2003 por Scheitt, apesar de aparentar ser bem mais simples que o projeto desenvolvido na SADIA, também possui características bem peculiares e interessantes.

O trabalho foi desenvolvido na empresa Frango SEVA Ltda de Pato Branco, escolhendo-se de modo especial a industrialização e comercialização de carne de frango.

Segundo Scheitt [2003] é muito volumoso e diversificado o produto extraído do frango, tendo este mercado tido um grande crescimento nos últimos anos no Brasil. O objetivo principal segundo Scheitt é utilizar métodos matemáticos da área de Pesquisa Operacional como ferramentas de suporte produtivo, auxiliando a tomada de decisão, indicando o melhor caminho a ser seguido dentre os muitos caminhos possíveis. Considerou-se que qualquer centavo economizado ou conquistado durante a cadeia de produção e comercialização é muito significativo, levando em conta o volume produzido e comercializado diariamente.

O trabalho em si dá ênfase especial na fase de abatedouro e posterior comercialização, procurando responder as seguintes perguntas:

Como vender o produto? Inteiro ou em partes?

Se o frango for vendido em partes, qual o tipo ideal de corte a realizar?

Se o frango for vendido inteiro, com que peso será abatido?

Onde vender o produto?

Para responder à estas perguntas foi construído um modelo matemático concretizando as operações de produção e venda da carne, escolhendo as combinações que resultam em maior lucro para a empresa.

O programa desenvolvido foi implementado e executado no Software LINGO tendo alcançado resultados que apontam um grande sucesso no que se refere à aplicação da Programação Linear no ramo avícola. Pode-se perceber que com poucas alterações no sistema de funcionamento da empresa, no processo de produção e comercialização poderia obter-se um aumento de 5% no lucro atual da empresa, que mesmo pelo pequeno porte da empresa onde o trabalho se desenvolveu, já representa um lucro de R\$ 130.000,00.

Os objetivos diretos alcançados mostraram um aumento na produção de produtos que agregam maior lucro; maior e melhor controle de custos; segurança e elasticidade na elaboração do preço de venda; respostas mais rápidas às exigências e oscilações do mercado; estudos rápidos com respostas instantâneas através de simulações de cenários diferentes de demanda e ampla variedade de produtos.

3.4 – Considerações sobre os trabalhos apresentados.

Verificamos que ambos os projetos apresentam dimensões bem diferentes, porém mostram o poder da modelagem matemática e sua aplicação em vários campos da indústria.

O primeiro trata-se de um trabalho comercial de um vulto expressivo, não se tratando de pesquisa acadêmica e sim uma pesquisa de muitos anos,

amplamente testada e analisada pela empresa que o desenvolveu em sincronia com a Sadia.

Verificamos que o projeto desenvolvido na Sadia foi preparado por etapas (módulos), pois seria muito difícil tal trabalho ser feito em uma etapa única.

O lucro obtido pela Sadia com a otimização conseguida após a implementação mostra a importância da Pesquisa Operacional e o que se pode alcançar quando se acredita e investe-se nesta ferramenta.

Infelizmente, não se pode mostrar o modelo matemático utilizado na Sadia, pois o artigo não o apresenta e no contato com a empresa Unisoma percebe-se que existe um segredo comercial envolvendo a parceria entre a Unisoma e a Sadia, o que os impediu de mostrar o modelo utilizado.

O segundo desenvolvido por Scheitt, por tratar-se de uma dissertação de Mestrado, possui uma estrutura bem menor, porém não menos importante para a Pesquisa Operacional.

Neste caso o modelo matemático foi apresentado no trabalho apresentando função objetivo e restrições.

Em sua conclusão Scheitt mostra também que haveria lucro se a empresa onde o trabalho foi realizado utilizasse o programa por ele desenvolvido podendo obter um lucro anual aproximado de R\$130.000,00 (cento e trinta mil reais). Pode até parecer algo muito pequeno como o lucro obtido pela SADIA, na casa dos milhões de dólares, porém como a empresa SEVA onde o trabalho se realizou é uma empresa de "porte pequeno" pode-se concluir que o lucro seria considerável.

O autor do trabalho não comentou em sua dissertação se a empresa optou ou não pelo uso do programa por ele desenvolvido, acredita-se, no entanto

que se a referida empresa analisar os dados demonstrados, com certeza não hesitará em utiliza-lo.

CAPÍTULO IV

4. O MODELO MATEMÁTICO

4.1 – Introdução

A formulação do modelo matemático constituiu-se no grande desafio deste trabalho já que o número de fatores e variáveis envolvidos é grande.

A função objetivo poderia ser definida de várias formas distintas; maximizando o peso ao abate, minimizando o número de dias em que o galpão fica vazio ou até minimizando o índice de conversão alimentar, porém a escolha recaiu sobre a idéia de minimizar a soma dos desvios em relação ao ponto "ideal" de abate.

Segundo dados pesquisados anteriormente e a própria experiência da empresa foi nos informado que a melhor idade para o abate é aos 43 dias de vida. Cada animal possui um índice de conversão alimentar (anexo 4.1) que é obtido pela razão entre quantidade de ração consumida e o peso do animal. Por exemplo, ao nascer o pintainho possui aproximadamente 42 gramas; aos 5 dias de vida ele possui em média 112 gramas e já consumiu 92 gramas de ração neste período então, neste caso, o índice de conversão alimentar é obtido pela razão entre 92/112= 0,8214 . Aos 15 dias a ave tem cerca de 469 gramas e já consumiu em torno de 598 gramas de ração o que proporciona um índice de 1,275. Aos 43 dias de vida o frango tem cerca de 2482 gramas para um consumo aproximado de 4352 gramas de ração que gera um índice de 1,7534.

Após várias observações, a empresa pôde ver que após esse período o animal converte muito pouco em ganho de peso todo o seu consumo de ração, o

que torna o abate menos viável economicamente após o 43° dia. A idéia da função objetivo então é criar um planejamento de abate que minimize a distância do ponto ideal de abate para cada um dos lotes alojados. Então, se um lote for abatido no 45° dia, seu desvio em relação ao ponto ótimo de abate será de 2 dias; se um lote for abatido no 42° dia, seu desvio em relação ao ótimo será de 1 dia. A meta então é minimizar a soma destes desvios.

A avícola abate cerca de 80.000 cabeças (demanda) de frangos por dia e possui cerca de 350 produtores integrados que criam frangos para a empresa. Estes aviários ficam a uma distância de 2 até 200 km da avícola e possuem capacidades que variam de 2500 até 30000 cabeças (anexo 4.2). Há uma oferta de pintainhos a serem alojados toda semana, que não pode ser excedida e existe um período de sanitarização que é obrigatório entre a saída de um lote da propriedade até a chegada de um novo rebanho.

Atualmente o trabalho de designação de quais aviários deverão receber na semana um novo lote e quais serão abatidos é feita manualmente por um departamento do setor de fomento da empresa (anexos 4.3 e 4.4). Neste setor da empresa está concentrado o desenvolvimento do trabalho que aqui é descrito. A idéia inicial é fazer com que o programa desenvolvido faça esta designação, otimizando o processo, ou seja, abatendo o frango na idade ideal e tentando ao máximo evitar que os galpões fiquem vazios por um período além da sanitarização necessária.

Ficou definido que na elaboração do modelo seria estabelecido uma meta que considera como ótimo o abate aos 43 dias. Neste caso, a função objetivo procura fazer com que cada lote de aves ao ser abatido, desvie-se o mínimo possível desta meta satisfazendo as restrições que estão descritas no modelo.

4.2 - Descrição do Modelo Matemático

Para programar o modelo trabalhou-se sobre uma reta que engloba o dia em que o programa é rodado, os dias anteriores a ele em que vários galpões já receberam lotes, os dias subseqüentes onde necessitamos definir onde alojar e finalmente o final da reta que engloba os dias relativos ao abate.

-r+1 = dia referente aos galpões já alojados

j = dia referente aos galpões a serem alojados

k = dia referente aos galpões a serem desalojados

DR = dia em que o programa é rodado para tomada de decisão do alojamento da semana seguinte, visando definir quais aviários receberão alojamento nos dias "j" posteriores j = 1,2,3,4,5,6 e 7

4.2.1 - Variáveis de decisão

$$X_{ijk} = \begin{cases} 1 \text{ , se o galpão } \mathbf{i} \text{ , será alojado no dia } \mathbf{j} \text{ e será desalojado no dia } \mathbf{k} \text{ ;} \\ 0 \text{ , em caso contrário;} \end{cases}$$

y
$$_{prk} = \begin{cases} 1 \text{ , se o galpão } \mathbf{p} \text{ , } \mathbf{já \ alojado } \text{ no dia } \mathbf{r} \text{ será desalojado no dia } \mathbf{k} \text{ ;} \\ 0 \text{ , em caso contrário;} \end{cases}$$

4.2.2 - Dados

C_i = Capacidade do galpão a ser alojado i;

C_p = Capacidade do galpão já alojado **p**;

C = Capacidade de todos os galpões de integrados a avícola

D_k = Demanda para o dia k em número de cabeças ;

S_i = Oferta de pintainhos para alojar no dia j;

d_i = Distância do aviário i a avícola;

m = número de galpões vazios no dia DR

n = número de galpões já alojados na semana anterior ao dia DR

Como se espera abater o frango o mais próximo possível dos 43 dias, então a idade do frango ao abate será k - j + 1 (o termo "+1", porque o pintainho já vai para o produtor com 1 dia de vida) para os que serão alojados ou k + r dias para os galpões já alojados, logo, a função objetivo será:

4.2.3 – Função Objetivo:

$$F = \sum_{i=1}^{m} \sum_{j=1}^{7} \sum_{k=40}^{46} |k-j+1-43| x_{ijk} + \sum_{p=1}^{n} \sum_{r=1}^{7} \sum_{k=40}^{46} |k+r-43| y_{prk}$$

Função a qual queremos minimizar.

4.2.4 – Restrições quanto ao suprimento de demanda.

Para cada dia a partir do 40°, as restrições a seguir garantem o abastecimento do abatedouro.

$$\sum_{i=1}^{m} \sum_{j=1}^{7} C_i x_{ijk} + \sum_{p=1}^{n} \sum_{r=1}^{7} C_p y_{prk} \ge D_k \quad \text{; com } k \in \{40,41,...,46\}$$

4.2.5 – Restrições quanto à capacidade de abastecimento de pintainhos.

Para cada dia em que será definido o alojamento é necessário que seja alojada somente a quantidade disponível de pintainhos.

$$\sum_{i=1}^{m} \sum_{k=40}^{46} C_i x_{ijk} \le S_j \quad \text{; com j } \in \{1, 2, ..., 7\}$$

4.2.6 – Restrições quanto à distância média para desalojamento.

Para a entrada deste grupo de restrições é necessário calcular a distância média ponderada entre os aviários e a avícola.

Havendo 350 locais (aviários) com suas respectivas capacidades, então a média ponderada das distâncias (θ), tendo como peso a capacidade é :

$$\frac{\sum_{i=1}^{350} C_i.d_i}{\sum_{i=1}^{350} C_i} = \theta$$

Sendo então θ , como a média ponderada, então há um novo grupo de restrições relativas a distância média que permita que durante todos os dias esta

distância esteja em um nível dentro de uma faixa permitida (neste caso, impusemos um limitante de 20% acima da média):

$$\frac{\sum_{i=1}^{m} \sum_{j=1}^{7} C_{i} d_{i} x_{ijk} + \sum_{p=1}^{n} \sum_{r=1}^{7} C_{p} d_{p} y_{prk}}{\sum_{i=1}^{m+n} C_{i}} \leq 1,2\theta \quad ; \text{ com } k \in \{40, 41, ..., 46\}$$

Estas restrições após linearizadas ficarão:

$$\sum_{i=1}^{m} \sum_{j=1}^{7} C_i d_i x_{ijk} + \sum_{p=1}^{n} \sum_{r=1}^{7} C_p d_p y_{prk} \le 1,2\theta \sum_{i=1}^{m+n} C_i \quad ; \text{ com } k \in \{40, 41, ..., 46\}$$

4.2.7 – Restrição que garante que o mesmo lote não será desalojado 2 vezes na mesma semana.

Como **k** é o dia do abate, **j** é o dia que o lote será alojado e **r** o dia de alojamento dos galpões já cheios, é necessário estabelecer que o mesmo lote não poderá ser abatido duas vezes, logo:

$$\sum_{k=40}^{46} x_{ijk} \leq 1 \quad \text{; com i } \in \{1, 2, ..., m\} \text{ e j } \in \{1, 2, ..., 7\}$$

$$\sum_{k=40}^{46} y_{prk} \le 1 \quad \text{; com p } \in \{1, 2, ..., n\} \text{ e } r \in \{1, 2, ..., 7\}$$

4.2.8 – Restrição que garante que o mesmo lote não será alojado mais de uma vez na mesma semana.

$$\sum_{j=1}^{7} x_{ijk} \le 1 \quad \text{; com i } \in \{1, 2, ..., m\} \text{ ; com k } \in \{40, 41, ..., 46\}$$

CAPÍTULO V

5. IMPLEMENTAÇÃO COMPUTACIONAL

5.1 – Introdução

A Pesquisa Operacional utiliza vários pacotes computacionais na resolução de problemas. Dentre eles podemos destacar:

- □ Q M
- LINDO
- LINGO
- □ GAMS
- □ QSB2

Optamos em utilizar o software **LINGO** que é um pacote que faz parte integrante do pacote Lindo Solver Suite (Linear Interactive and Discrete Optmizer). O LINGO é uma linguagem de modelagem matemática diferente das linguagens convencionais de programação. No LINGO apenas se especifica o que se quer, e não "como deveria encontrar a solução". O trabalho do LINGO é justamente de se preocupar "em como".

O LINGO é uma ferramenta versátil para executar tarefas complexas e potentes. É empregado na resolução de modelos lineares, não lineares e inteiros. Ele oferece maior flexibilidade em termos de como os modelos são apresentados, já que a linguagem de modelamento do LINGO é expressa numa maneira natural que é muito parecido com a notação matemática padrão.

O LINGO permite que se expresse o modelo usando termos matemáticos convencionais. Pode-se expressar fórmulas de forma fácil para a leitura

e entendimento usando parênteses, variáveis e expressões no lado direito das restrições ou equações de qualquer estilo. O programa conta ainda com uma extensa biblioteca de funções estatísticas, financeiras, matemáticas e operações em série nos permitindo expressarmos uma fórmula complexa de modo fácil e claro. Com o LINGO, antes de resolver um problema, simplificam-se as expressões do mesmo, se necessário, tornando-as mais eficientes, e logo otimizá-lo.

O grande atrativo deste software é sua habilidade de aceitar fórmulas numa sintaxe menos exigente, como o uso de parênteses e variáveis, ou seja, em notação matemática padrão. Já para os problemas "maiores", onde há milhares de variáveis, como o caso em questão, o maior atrativo está nos comandos de uma linguagem avançada que facilita a transferência de modelos matemáticos mais complexos para calcular suas soluções. Isso tudo pela biblioteca de funções matemáticas, estatísticas e de operadores em série.

5.2 – Sintaxe do modelo programado

Para programação do modelo seguimos os seguintes passos:

Entra-se com os conjuntos primitivos que são:

- Número de galpões vazios e seus atributos que são: distância e capacidade;
- Número de galpões já alojados e seus atributos que são: distância, capacidade e dia alojado;
- Dia a definir alojamento e seu atributo que é: oferta de pintainhos;
- Dia a desalojar e seu atributo que é: demanda.

Em seguida entra-se com os conjuntos derivados:

- Variável 1 (GALPAOVAZIO, ALOJAR, DESALOJAR) : Xiik;
- Variável 2 (GALPAOCHEIO, ALOJADO, DESALOJAR): Yprk.

Após definição dos conjuntos, entra-se com os dados (CAPACIDADE1; DISTANCIA1; DISTANCIA2; DIA2; OFERTA e DEMANDA) e a formulação da função objetivo e restrições dentro da notação padrão do LINGO, conforme descrito no capítulo anterior.

As simulações foram testadas num computador Authentic AMD K-6 II 500 MHz, que conseguiu dar uma resposta entre 01 segundo com o modelo inicial que usava 40 variáveis e 17 restrições até 15 minutos para os modelos maiores, variando de acordo com os dados de entrada, já que isso é um fator importante no número de iterações.

5.3 – Simulações desenvolvidas para análise de resultados.

Simulação, como o próprio nome indica, é uma técnica que permite imitar o funcionamento de um sistema real. Para que se possa analisar se o programa desenvolvido está efetivamente dando respostas condizentes com a realidade do problema, quatro simulações estão a seguir e faz-se uma comparação entre os resultados obtidos.

Nesta etapa, utiliza-se dados fictícios apenas na primeira simulação e a partir da segunda foram dados coletados na empresa em estudo.

5.4 – Primeira Simulação

A primeira simulação utilizou os seguintes dados:

Trabalhou com um horizonte de planejamento bem reduzido e poucos galpões para que os cálculos do modelo pudessem ser conferidos "a mão".

Definição de alojamento para apenas dois dias, lotes alojados nos dois dias anteriores e desalojamento em quatro dias.

```
Capacidade em cabeças de cada galpão vazio
CAPACIDADE1 =300 500 400
Distância em km de cada galpão vazio até a avícola
DISTANCIA1 = 25 50 46
Capacidade em cabeças de cada galpão alojado na semana
anterior
CAPACIDADE2 = 240 190
Distância em km de cada galpão alojado até a avícola
DISTANCIA2 = 14 35
Valor de R da variável YPRK , ou seja, o dia que cada galpão
alojado recebeu alojamento
DIA2 = 1 3
Oferta de pintainhos a serem alojados ( em cabeças )
OFERTA = 500 400 350
Demanda em cabeças para o dia de desalojar
DEMANDA = 300 200 250 370
```

Como se trata de um modelo acadêmico com dados não reais, o problema não apresentou muitas variáveis. Neste caso apresenta-se a seguir o modelo completo:

```
MIN YPRK(1,1,1) + YPRK(1,1,3) + 2 YPRK(1,1,4)
```

```
+ 3 XIJK( 1, 1, 1) + 2 XIJK( 1, 1, 2) + XIJK( 1, 1, 3)

+ 4 XIJK( 1, 2, 1) + 3 XIJK( 1, 2, 2) + 2 XIJK( 1, 2, 3)

+ XIJK( 1, 2, 4) + 5 XIJK( 1, 3, 1) + 4 XIJK( 1, 3, 2)

+ 3 XIJK( 1, 3, 3) + 2 XIJK( 1, 3, 4) + 3 XIJK( 2, 1, 1)

+ 2 XIJK( 2, 1, 2) + XIJK( 2, 1, 3) + 4 XIJK( 2, 2, 1)

+ 3 XIJK( 2, 2, 2) + 2 XIJK( 2, 2, 3) + XIJK( 2, 2, 4)

+ 5 XIJK( 2, 3, 1) + 4 XIJK( 2, 3, 2) + 3 XIJK( 2, 3, 3)

+ 2 XIJK( 2, 3, 4) + 3 XIJK( 3, 1, 1) + 2 XIJK( 3, 1, 2)

+ XIJK( 3, 1, 3) + 4 XIJK( 3, 2, 1) + 3 XIJK( 3, 2, 2)

+ 2 XIJK( 3, 2, 3) + XIJK( 3, 2, 4) + 5 XIJK( 3, 3, 1)

+ 4 XIJK( 3, 3, 2) + 3 XIJK( 3, 3, 3) + 2 XIJK( 3, 3, 4)
```

SUBJECT TO

19] 240 YPRK(1,1,1) + 300 XIJK(1,1,1) + 300 XIJK(1,2,1) + 300 XIJK(1, 3, 1) + 500 XIJK(2, 1, 1) + 500 XIJK(2, 2, 1) + 500 XIJK(2, 3, 1) + 400 XIJK(3, 1, 1) + 400 XIJK(3, 2, 1) + 400 XIJK(3, 3, 1) >= 30020] 240 YPRK(1, 1, 2) + 300 XIJK(1, 1, 2) + 300 XIJK(1, 2, 2) + 300 XIJK(1, 3, 2) + 500 XIJK(2, 1, 2) + 500 XIJK(2, 2, 2) + 500 XIJK(2,3,2) + 400 XIJK(3,1,2) + 400 XIJK(3,2,2) + 400 XIJK(3, 3, 2) >= 20021] 240 YPRK(1, 1, 3) + 300 XIJK(1, 1, 3) + 300 XIJK(1, 2, 3) + 300 XIJK(1, 3, 3) + 500 XIJK(2, 1, 3) + 500 XIJK(2, 2, 3) + 500 XIJK(2, 3, 3) + 400 XIJK(3, 1, 3) + 400 XIJK(3, 2, 3) + 400 XIJK(3, 3, 3) >= 25022] 240 YPRK(1, 1, 4) + 300 XIJK(1, 1, 4) + 300 XIJK(1, 2, 4) + 300 XIJK(1, 3, 4) + 500 XIJK(2, 1, 4) + 500 XIJK(2, 2, 4) + 500 XIJK(2, 3, 4) + 400 XIJK(3, 1, 4) + 400 XIJK(3, 2, 4) + 400 XIJK(3, 3, 4) >= 37023] 300 XIJK(1,1,1) + 300 XIJK(1,1,2) + 300 XIJK(1,1,3)

```
+ 300 XIJK(1,1,4) + 500 XIJK(2,1,1) + 500 XIJK(2,1,2)
    + 500 XIJK( 2, 1, 3) + 500 XIJK( 2, 1, 4) + 400 XIJK( 3, 1, 1)
    + 400 XIJK(3, 1, 2) + 400 XIJK(3, 1, 3) + 400 XIJK(3, 1, 4)
    <=
        500
24] 300 XIJK( 1, 2, 1) + 300 XIJK( 1, 2, 2) + 300 XIJK( 1, 2, 3)
    + 300 XIJK( 1, 2, 4) + 500 XIJK( 2, 2, 1) + 500 XIJK( 2, 2, 2)
    + 500 XIJK(2,2,3) + 500 XIJK(2,2,4) + 400 XIJK(3,2,1)
    + 400 XIJK(3, 2, 2) + 400 XIJK(3, 2, 3) + 400 XIJK(3, 2, 4)
    <= 400
25] 300 XIJK( 1, 3, 1) + 300 XIJK( 1, 3, 2) + 300 XIJK( 1, 3, 3)
    + 300 XIJK( 1, 3, 4) + 500 XIJK( 2, 3, 1) + 500 XIJK( 2, 3, 2)
    + 500 XIJK( 2, 3, 3) + 500 XIJK( 2, 3, 4) + 400 XIJK( 3, 3, 1)
    + 400 XIJK(3, 3, 2) + 400 XIJK(3, 3, 3) + 400 XIJK(3, 3, 4)
    <= 350
26] 3360 YPRK( 1, 1, 1) + 7500 XIJK( 1, 1, 1) + 7500 XIJK( 1, 2, 1)
    + 7500 XIJK( 1, 3, 1) + 25000 XIJK( 2, 1, 1)
    + 25000 XIJK( 2, 2, 1) + 25000 XIJK( 2, 3, 1)
    + 18400 XIJK(3, 1, 1) + 18400 XIJK(3, 2, 1)
    + 18400 XIJK(3, 3, 1) <= 64250.43
27] 3360 YPRK(1,1,2) + 7500 XIJK(1,1,2) + 7500 XIJK(1,2,2)
    + 7500 XIJK(1, 3, 2) + 25000 XIJK(2, 1, 2)
    + 25000 XIJK( 2, 2, 2) + 25000 XIJK( 2, 3, 2)
    + 18400 XIJK(3, 1, 2) + 18400 XIJK(3, 2, 2)
    + 18400 XIJK(3, 3, 2) <= 64250.43
28] 3360 YPRK(1,1,3) + 7500 XIJK(1,1,3) + 7500 XIJK(1,2,3)
    + 7500 XIJK(1, 3, 3) + 25000 XIJK(2, 1, 3)
    + 25000 XIJK( 2, 2, 3) + 25000 XIJK( 2, 3, 3)
    + 18400 XIJK(3, 1, 3) + 18400 XIJK(3, 2, 3)
    + 18400 XIJK(3, 3, 3) <= 64250.43
29] 3360 YPRK( 1, 1, 4) + 7500 XIJK( 1, 1, 4) + 7500 XIJK( 1, 2, 4)
    + 7500 XIJK( 1, 3, 4) + 25000 XIJK( 2, 1, 4)
```

```
+ 25000 XIJK(2, 2, 4) + 25000 XIJK(2, 3, 4)
    + 18400 XIJK(3, 1, 4) + 18400 XIJK(3, 2, 4)
    + 18400 XIJK(3, 3, 4) <= 64250.43
30] XIJK(1,1,1) + XIJK(1,1,2) + XIJK(1,1,3) + XIJK(1,1,4)
    + XIJK(1, 2, 1) + XIJK(1, 2, 2) + XIJK(1, 2, 3)
    + XIJK(1, 2, 4) + XIJK(1, 3, 1) + XIJK(1, 3, 2)
    + XIJK( 1, 3, 3) + XIJK( 1, 3, 4) <=
311
   XIJK(2, 1, 1) + XIJK(2, 1, 2) + XIJK(2, 1, 3) + XIJK(2, 1, 4)
    + XIJK(2, 2, 1) + XIJK(2, 2, 2) + XIJK(2, 2, 3)
    + XIJK(2, 2, 4) + XIJK(2, 3, 1) + XIJK(2, 3, 2)
    + XIJK(2, 3, 3) + XIJK(2, 3, 4) <= 1
32] XIJK(3, 1, 1) + XIJK(3, 1, 2) + XIJK(3, 1, 3) + XIJK(3, 1, 4)
    + XIJK(3, 2, 1) + XIJK(3, 2, 2) + XIJK(3, 2, 3)
    + XIJK(3, 2, 4) + XIJK(3, 3, 1) + XIJK(3, 3, 2)
    + XIJK(3, 3, 3) + XIJK(3, 3, 4) <= 1
33] YPRK(1,1,1) + YPRK(1,1,2) + YPRK(1,1,3) + YPRK(1,1,4)
    <= 1
34]<= 1
END
INTE
       40
```

O problema apresentou 40 variáveis e 17 restrições, respondendo em apenas 1 segundo.

5.4.1 – Resultados obtidos para a primeira simulação:

```
Global optimal solution found at step:

Objective value:

Branch count:

Variable

M
1200.000
N
430.0000
```

W1 42.41667 W2 23.27907 TETA 32.84787

Variable	V	alue	CAPACIDADE2(2)	190.0000
М	1200.000		DISTANCIA2(1)	14.00000
N	430.0000		DISTANCIA2(2)	35.00000
W1	42.41667		DIA2(1)	1.000000
W2	23.27907		DIA2(2)	3.000000
TETA	32.84787		OFERTA(1)	500.0000
CAPACIDA	DE1(1)	300.0000	OFERTA(2)	400.0000
CAPACIDA	DE1(2)	500.0000	OFERTA(3)	350.0000
CAPACIDA	DE1(3)	400.0000	DEMANDA (1)	300.0000
DISTANCI	A1(1)	25.00000	DEMANDA (2)	200.0000
DISTANCI	A1(2)	50.00000	DEMANDA (3)	250.0000
DISTANCI	A1(3)	46.00000	DEMANDA (4)	370.0000
CAPACIDA	DE2(1)	240.0000		

Valores das variáveis

XIJK(1, 1,	1)	0.0000000	XIJK(2, 1, 1)	0.0000000
XIJK(1, 1,	2)	0.0000000	XIJK(2, 1, 2)	0.0000000
XIJK(1, 1,	3)	0.0000000	XIJK(2, 1, 3)	1.000000
XIJK(1, 1,	4)	0.0000000	XIJK(2, 1, 4)	0.0000000
XIJK(1, 2,	1)	0.0000000	XIJK(2, 2, 1)	0.0000000
XIJK(1, 2,	2)	0.0000000	XIJK(2, 2, 2)	0.0000000
XIJK(1, 2,	3)	0.0000000	XIJK(2, 2, 3)	0.0000000
XIJK(1, 2,	4)	0.0000000	XIJK(2, 2, 4)	0.0000000
XIJK(1, 3,	1)	1.000000	XIJK(2, 3, 1)	0.0000000
XIJK(1, 3,	2)	0.0000000	XIJK(2, 3, 2)	0.0000000
XIJK(1, 3,	3)	0.0000000	XIJK(2, 3, 3)	0.0000000
XIJK(1, 3,	4)	0.0000000	XIJK(2, 3, 4)	0.0000000

XIJK(3	, 1	, 1)	0.0000000	YPRK(1,1,3)	0.0000000
XIJK(3	, 1	, 2)	0.0000000	YPRK(1,1,4)	0.0000000
XIJK(3	, 1	, 3)	0.0000000	YPRK(1,2,1)	0.0000000
XIJK(3	, 1	, 4)	0.0000000	YPRK(1,2,2)	0.0000000
XIJK(3	, 2	, 1)	0.0000000	YPRK(1,2,3)	0.0000000
XIJK(3	, 2	, 2)	0.0000000	YPRK(1,2,4)	0.0000000
XIJK(3	, 2	, 3)	0.0000000	YPRK(2, 1, 1)	0.0000000
XIJK(3	, 2	, 4)	1.000000	YPRK(2,1,2)	0.0000000
XIJK(3	, 3	, 1)	0.0000000	YPRK(2, 1, 3)	0.0000000
XIJK(3	, 3	, 2)	0.0000000	YPRK(2,1,4)	0.0000000
XIJK(3	, 3	, 3)	0.0000000	YPRK(2,2,1)	0.0000000
XIJK(3	, 3	, 4)	0.0000000	YPRK(2,2,2)	0.0000000
YPRK(1	, 1	, 1)	0.0000000	YPRK(2,2,3)	0.0000000
YPRK (1	, 1	, 2)	1.000000	YPRK(2,2,4)	0.0000000

Folgas

Row	Slack or Surplus	13	0.0000000
1	7.000000	14	0.0000000
2	0.000000	15	0.0000000
3	0.000000	16	0.0000000
4	0.0000000	17	0.0000000
5	0.0000000	18	0.0000000
6	0.0000000	19	0.0000000
7	0.0000000	20	40.00000
8	0.000000	21	250.0000
9	0.0000000	22	30.00000
10	0.0000000	23	0.0000000
11	0.0000000	24	0.0000000
12	0.0000000	25	5.000000

26	5.675000	31	0.0000000
27	6.089000	32	0.0000000
28	3.925000	33	0.0000000
29	4.585000	34	1.000000
30	0.000000		

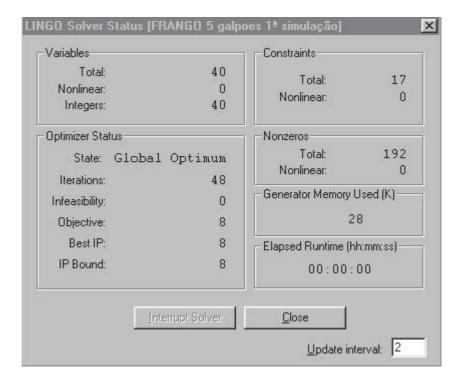


Figura 5.1 – Tela do Lingo com solução após 1ª simulação

5.5 - Segunda Simulação

A segunda simulação utilizou os seguintes dados:

Trabalhou com um horizonte de planejamento semanal.

Definição de alojamento e desalojamento em 7 dias para mais ou menos.

Capacidade em cabeças de cada galpão vazio

CAPACIDADE1 = 20000 15000 9000 11000 12500 19000 14000 16000

12500 12500 17000 12500 7500 14500 23000 16000

Distância em km de cada galpão vazio até a avícola

DISTANCIA1 = 30 25 81 101 73 77 90 72 11 66 101 80 80 101 4

Capacidade em cabeças de cada galpão alojado na semana anterior

Distância em km de cada galpão alojado até a avícola

DISTANCIA2 =27 68 68 14 13 13 35 66 46 31 27 31 27 102 20 11

Valor de R da variável YPRK , ou seja, o dia que cada galpão alojado recebeu alojamento

DIA2 = 1 1 1 1 2 2 2 2 3 3 4 4 4 5 6 6

Oferta de pintainhos a serem alojados (em cabeças)

OFERTA = 80000 80000 75000 90000 80000 70000 100000

Demanda em cabeças para o dia de desalojar

DEMANDA = 55000 50000 50000 50000 55000 50000 55000

O problema apresentou 896 variáveis e 54 restrições, respondendo em 4 minutos e 36 segundos após 27.585 iterações.

5.5.1 – Resultados obtidos para a segunda simulação:

Global optimal solution found at step: 27585

Objective value: 4.000000

Branch count: 2736

Variable Value

M 232000.0

N 181500.0 W1 59.78664 W2 42.01377 TETA 50.90021

Variáveis não nulas:

XIJK(1, 3, 6)	1.000000	XIJK(13, 3, 6)	1.000000
XIJK(2, 3, 6)	1.000000	XIJK(14, 4, 7)	1.000000
XIJK(3, 4, 7)	1.000000	XIJK(15, 1, 4)	1.000000
XIJK(4, 1, 4)	1.000000	XIJK(16, 1, 4)	1.000000
XIJK(5, 4, 7)	1.000000	YPRK(1, 1, 2)	1.000000
XIJK(6, 4, 7)	1.000000	YPRK(2, 1, 2)	1.000000
XIJK(7, 2, 5)	1.000000	YPRK(3, 1, 3)	1.000000
XIJK(8, 2, 5)	1.000000	YPRK(4, 1, 2)	1.000000
XIJK(9, 2, 5)	1.000000	YPRK(5,2,1)	1.000000
XIJK(10, 2, 5)	1.00000	YPRK(6, 2, 1)	1.000000
XIJK(11, 1, 3)	1.000000	YPRK(7, 2, 1)	1.000000
XIJK(12, 3, 6)	1.000000	YPRK(8, 2, 3)	1.000000

Folgas não nulas:

Row	Slack or Surplus	688	20000.00
1	4.000000	689	35000.00
679	17000.00	690	80000.00
680	4000.000	691	70000.00
681	9000.000	692	100000.0
684	5000.000	693	20.36068
686	13000.00	694	23.79868
687	25000.00	695	22.62868

696	23.75668	726	1.000000
697	23.88168	727	1.000000
698	20.80168	728	1.000000
699	19.70168	729	1.000000
724	1.000000	730	1.000000
725	1.000000	731	1.000000

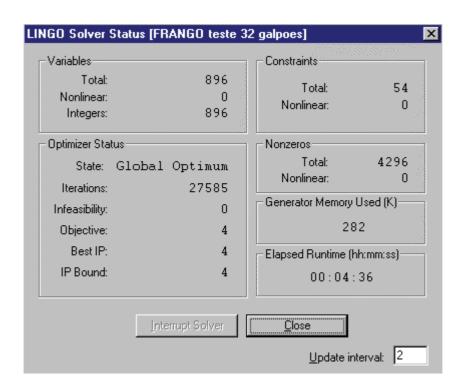


Figura 5.2 – Tela do Lingo com solução após 2ª simulação

5.6 - Terceira Simulação

A terceira simulação utilizou os seguintes dados:

Trabalhou com um horizonte de planejamento semanal;

Definição de alojamento e desalojamento em 7 dias para mais ou menos.

Capacidade em cabeças de cada galpão vazio apto a receber alojamento

CAPACIDADE1 = 7500 7000 22000 21000 21000 15000 9000 11000 12500 19000 14000 16000 12500 12500 17000 16000 13000 7500 9000 11000 12500 7500 14500 23000 16000 7500 7500 7500 14500 13000 11000

Distância em km de cada galpão vazio até a avícola

DISTANCIA1 = 53 44 14 17 17 28 38 108 50 87 38 101 80 80 101

4 27 29 42 68 97 95 25 81 101 73 77 90 72 11 66 101

Capacidade em cabeças de cada galpão alojado na semana anterior

Valor de R da variável YPRK, ou seja, o dia que cada galpão alojado recebeu alojamento.

O problema apresentou 1764 variáveis e 82 restrições, respondendo em 20 segundos após 2.272 iterações.

5.6.1 – Resultados obtidos para a terceira simulação:

Global opt	imal solution	n found at	step:	2272
Objective	value:			5.000000
Branch cou	nt:			15

Variable	Value
М	415500.0
N	385500.0
W1	57.31408
W2	52.32685
TETA	54.82046

Variáveis não nulas:

XIJK(1, 2, 5)	1.000000	XIJK(15, 1, 4)	1.000000
XIJK(2, 1, 4)	1.000000	XIJK(16, 2, 5)	1.000000
XIJK(3,3,6)	1.000000	XIJK(17, 4, 7)	1.000000
XIJK(5, 3, 6)	1.000000	XIJK(18, 4, 7)	1.000000
XIJK(6, 4, 7)	1.000000	XIJK(19, 3, 6)	1.000000
XIJK(8,4,7)	1.000000	XIJK(20, 1, 4)	1.000000
XIJK(9, 2, 5)	1.000000	XIJK(22, 1, 4)	1.000000
XIJK(10, 1, 4)	1.000000	XIJK(23, 4, 7)	1.000000
XIJK(11, 3, 6)	1.000000	XIJK(25, 2, 5)	1.000000
XIJK(12, 2, 5)	1.000000	XIJK(26, 2, 5)	1.000000
XIJK(13, 1, 4)	1.000000	XIJK(27, 4, 7)	1.000000
XIJK(14, 3, 6)	1.000000	XIJK(28, 4, 7)	1.000000

XIJK(29, 4, 7)	1.000000	YPRK(9, 1, 2)	1.000000
XIJK(32, 1, 4)	1.000000	YPRK(10, 2, 1)	1.000000
YPRK(1, 1, 3)	1.000000	YPRK(11, 2, 1)	1.000000
YPRK(2, 1, 2)	1.000000	YPRK(12, 2, 1)	1.000000
YPRK(3, 1, 2)	1.000000	YPRK(13, 2, 1)	1.000000
YPRK(4, 1, 2)	1.000000	YPRK(14, 2, 1)	1.000000
YPRK(5, 1, 3)	1.000000	YPRK(15, 2, 2)	1.000000
YPRK(6, 1, 2)	1.000000	YPRK(16, 2, 1)	1.000000
YPRK(7, 1, 3)	1.000000	YPRK(19, 3, 1)	1.000000
YPRK(8, 1, 2)	1.000000		

Folgas não nulas:

Slack or Surplus	1199	7.926143
5.000000	1200	5.655493
500.0000	1201	4.782743
6000.000	1202	5.011843
4000.000	1203	4.890193
5000.000	1207	1.000000
500.0000	1210	1.000000
3500.000	1224	1.000000
8500.000	1227	1.000000
9500.000	1233	1.000000
1500.000	1234	1.000000
11500.00	1252	1.000000
90000.00	1253	1.000000
75000.00	1255	1.000000
100000.0	1256	1.000000
4.929843	1257	1.000000
6.616843	1258	1.000000
	5.000000 500.0000 6000.000 4000.000 5000.000 500.000 3500.000 8500.000 9500.000 1500.000 11500.00 90000.00 75000.00 4.929843	5.000000 1200 500.0000 1201 6000.000 1202 4000.000 1203 5000.000 1207 500.0000 1210 3500.000 1224 8500.000 1227 9500.000 1233 1500.000 1234 11500.00 1252 90000.00 1253 75000.00 1255 100000.0 1256 4.929843 1257

1259	1.000000	1262	1.000000
1260	1.000000	1263	1.000000
1261	1.000000		

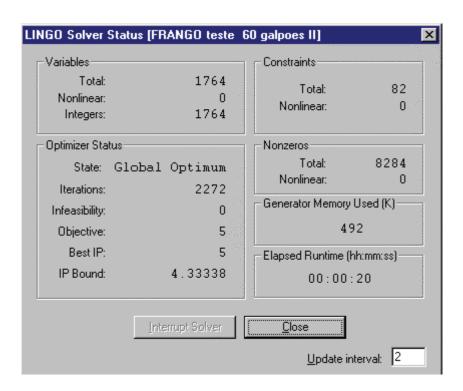


Figura 5.3 – Tela do Lingo com solução após 3ª simulação

5.7 – Quarta simulação

A quarta simulação utilizou os seguintes dados:

Trabalhou com um horizonte de planejamento semanal e 100 galpões;

Definição de alojamento e desalojamento em 7 dias para mais ou

menos;

Capacidade de cada galpão vazio

CAPACIDADE1 = 10000 12000 17000 7500 7000 22000 21000 21000 15000 9000 11000 12500 19000 14000 16000 12500 12500 17000

```
16000 13000 7500 9000 11000 12500 7500 14500 23000 16000 7500
7500 7500 7500 14500 13000 11000 10000 12000 17000 7500 7000
22000 21000 21000 15000 9000 9000 11000 12500 7500 14500 ;
Distância de cada galpão vazio até a avícola
DISTANCIA1 = 13 25 38 53 44 14 17 17 28 38 108 50 87 38 101 80
80 101 4 27 29 42 68 97 95 25 81 101 73 77 90 72 11 66 101 13
25 38 53 44 14 17 17 28 38 108 50 87 38 101;
Capacidade de cada galpão alojado na semana anterior
CAPACIDADE2 =19000 22000 36000 11000 11000 11500 24000 7500
24000 19000 10000 7500 7500 15000 7500 7000 11000 7000 10500
19000 22000 36000 11000 11000 11500 24000 7500 24000 19000
7000 10500 19000 24000 22500 24000 19000 10000 7500 7500 ;
Distância de cada galpão alojado até a avícola
DISTANCIA2 =30 32 22 92 92 107 18 21 92 77 55 70 24 83 68 68
100 21 14 13 13 35 102 66 46 31 27 102 20 11 30 32 22 92 92
107 18 21 92 77 55 70 24 83 68 18 21 92 77 55;
valor de R da variável YPRK , ou seja, o dia que cada galpao
alojado recebeu alojamento
4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 7 7 7 7 ;
Oferta de pintainhos a serem alojados (em cabeças)
OFERTA = 80000 80000 75000 70000 70000 70000 ;
Demanda para o dia de desalojar
DEMANDA = 80000 70000 80000 75000 75000 70000 79000
```

O problema apresentou 2800 variáveis e 122 restrições, respondendo em 21 segundos após 452 iterações.

5.7.1 – Resultados obtidos para a quarta simulação:

Global optimal solution found at step: 452
Objective value: 2.000000
Branch count: 15

VariableValueM650500.0N762500.0W150.44504W250.97180TETA50.70842

Variáveis não nulas:

XIJK(1, 4, 7)	1.000000	XIJK(32, 2, 5)	1.000000
XIJK(2,2,5)	1.000000	XIJK(34, 4, 7)	1.000000
XIJK(3, 3, 6)	1.000000	XIJK(35, 3, 6)	1.000000
XIJK(4, 3, 6)	1.000000	XIJK(38, 2, 5)	1.000000
XIJK(5, 1, 4)	1.000000	XIJK(41, 3, 6)	1.000000
XIJK(6, 5, 7)	1.000000	XIJK(45, 2, 5)	1.000000
XIJK(7, 1, 4)	1.000000	XIJK(46, 1, 4)	1.000000
XIJK(8, 2, 5)	1.000000	XIJK(47, 4, 7)	1.000000
XIJK(9, 4, 7)	1.000000	XIJK(48, 4, 7)	1.000000
XIJK(12, 2, 5)	1.000000	YPRK(1, 1, 2)	1.000000
XIJK(16, 3, 6)	1.000000	YPRK(2, 1, 2)	1.000000
XIJK(18, 1, 4)	1.000000	YPRK(3, 1, 3)	1.000000
XIJK(26, 1, 4)	1.000000	YPRK(7, 1, 3)	1.000000
XIJK(29, 1, 4)	1.000000	YPRK(8, 1, 2)	1.000000

YPRK(9, 1, 3)	1.000000	YPRK(16, 2, 1)	1.000000
YPRK(10, 1, 2)	1.000000	YPRK(17, 2, 1)	1.000000
YPRK(11, 1, 2)	1.000000	YPRK(18, 2, 1)	1.000000
YPRK(12, 1, 2)	1.000000	YPRK(19, 2, 1)	1.000000
YPRK(13, 2, 1)	1.000000	YPRK(21, 3, 1)	1.000000
YPRK(14, 2, 1)	1.000000		

Folgas não nulas:

Row	Slack or Surplus	2138	1.000000
2107	2000.000	2140	1.000000
2108	15000.00	2141	1.000000
2109	4000.000	2142	1.000000
2110	1000.000	2144	1.000000
2111	4000.000	2146	1.000000
2113	4500.000	2147	1.000000
2114	4000.000	2148	1.000000
2115	1000.000	2149	1.000000
2116	5000.000	2150	1.000000
2117	8500.000	2151	1.000000
2118	48000.00	2152	1.000000
2119	70000.00	2154	1.000000
2120	70000.00	2155	1.000000
2121	8.237420	2157	1.000000
2122	10.20110	2158	1.000000
2123	8.254920	2160	1.000000
2124	6.499320	2163	1.000000
2125	9.400620	2164	1.000000
2126	8.332120	2166	1.000000
2127	7.175370	2167	1.000000
2137	1.000000	2169	1.000000

2170	1.000000	2221	1.000000
2171	1.000000	2222	1.000000
2176	1.000000	2223	1.000000
2177	1.000000	2224	1.000000
2181	1.000000	2225	1.000000
2182	1.000000	2226	1.000000
2183	1.000000	2227	1.000000
2192	1.000000		
2197	1.000000		
2199	1.000000		
2200	1.000000		
2201	1.000000		
2202	1.000000		
2203	1.000000		
2204	1.000000		
2205	1.000000		
2206	1.000000		
2207	1.000000		
2208	1.000000		
2209	1.000000		
2210	1.000000		
2211	1.000000		
2212	1.000000		
2213	1.000000		
2214	1.000000		
2215	1.000000		
2216	1.000000		
2217	1.000000		
2218	1.000000		
2219	1.000000		
2220	1.000000		

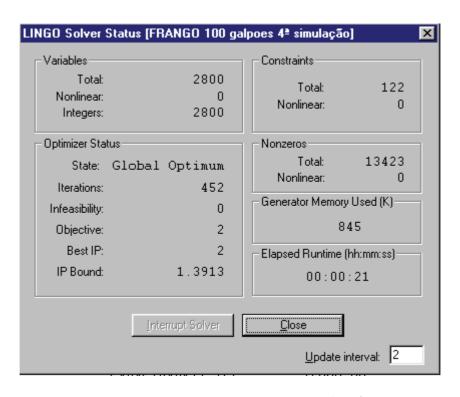


Figura 5.4 – Tela do Lingo co]m solução após 4ª simulação

5.8 – Considerações sobre as simulações feitas.

Podemos perceber que entre uma simulação e outra o tempo de processamento variava muito. Pelos estudos preliminares percebe-se que isso ocorria de acordo com as folgas dos dados de entrada. Os resultados obtidos se mostraram satisfatórios, pois o objetivo era abater o frango o mais próximo possível do 43º dia e em todos os casos o galpão era desalojado no 43º dia ou quando muito com um dia a mais ou a menos. Como o objetivo inicial e principal é justamente que se abata o mais próximo possível dos 43 dias, constatamos que as soluções obtidas em cada uma das simulações aparentam ser realmente ótimas. Nas tabelas 5.1 e 5.2 pode-se perceber a diferença entre cada uma das simulações realizadas.

Houve muitas preocupações quando da entrada de dados para os

testes. A principal delas está relacionada com a região de fronteira da reta de simulação:

Tabela 5.1 – COMPARAÇÃO ENTRE AS SIMULAÇÕES REALIZADAS I

Simul ação	Nº de galpões vazios	Nº de galpões alojados	Capacidades dos galpões vazios	Capacidades dos galpões alojados	Oferta de Pintainhos	Demanda total ΣD_k
1	3	2	1200	430	1250	1420
2	16	16	232.000	181.500	575.000	365.000
3	32	32	415.500	385.500	610.000	535.000
4	50	50	650.500	762.500	515.000	529.000

Tabela 5.2 - COMPARAÇÃO ENTRE AS SIMULAÇÕES REALIZADAS II

Simul ação	Distância Média (θ)	Valor Função Objetivo	Nº de variáveis	Nº de Restrições	Nº de Iterações	Tempo de Processamento em minutos e segundos
1	32,8	8	40	17	48	00' 01"
2	50.9	4	896	54	27585	04' 36''
3	54.8	5	1764	82	2272	00' 20''
4	50.7	5	2800	122	452	00' 21"

Os galpões, por exemplo, que receberam alojamento no dia r=7 se forem abatidos em k=40, serão abatidos com 47 dias (k+r) o que proporcionaria um desvio de 4 dias em relação ao ponto ideal de abate. Como a função objetivo deseja minimizar estes desvios, provavelmente este galpão não será designado para abate.

Porém, como nas simulações feitas o horizonte de planejamento é semanal acredita-se que este galpão não estaria sem designação se o programa tivesse sido rodado na semana anterior.

Este problema de fronteira sempre haverá, pois por mais que se "alargue" esta região sempre existirá uma fronteira limitante para ser analisada.

Em outros testes efetuados ampliando esta região verificou-se que ainda assim haveria problemas, logo não é o horizonte de planejamento que resolveria o problema de fronteira.

CAPÍTULO VI

6. CONCLUSÃO E SUGESTÕES PARA TRABALHOS FUTUROS

6.1 – Conclusão

Após um período de convivência dentro da empresa onde o trabalho foi realizado, percebe-se a necessidade da implementação de um programa que agilize o trabalho de designação de alojamentos para cada semana.

Percebe-se também que o trabalho da forma como é feito, ocasiona uma demora muito grande, pois os funcionários que hoje desempenham tal serviço fazem manualmente esta designação. Entende-se que se faz necessário a implementação de tal programa, porém para que isso ocorra, é necessário também que haja susceptibilidade a mudanças por parte da direção da empresa, já que normalmente a implementação gera uma alteração radical na estrutura de trabalho da empresa.

Os resultados até aqui obtidos mostram que a Programação Matemática é viável para a empresa. A utilização da modelagem matemática como ferramenta no processo decisório é uma realidade que mesmo o mais "antiquado" empresário não pode se esquivar. Pode-se resumir que em síntese ao longo da cadeia de produção haverá ganhos significativos, principalmente pelo fato de haver um maior aproveitamento de cada lote, como o abate ocorrendo o mais próximo possível do ótimo (43 dias). Também será possível obter uma maior satisfação do integrado com um aumento de lucro objetivado pelo maior aproveitamento do galpão, tentando alocar em cada galpão até sete lotes/ano. Hoje a empresa vem trabalhando com uma média de 6 alojamentos ao ano para cada galpão o que pode

ser melhorado consideravelmente.

6.2 – Sugestão para trabalhos futuros

Com o propósito de aprimorar os resultados obtidos por este trabalho, já que o mesmo limitou-se a designação de alojamento e desalojamento de aves, não se importando com outras áreas da empresa que poderiam ser estudadas visando otimização, destacamos algumas propostas a seguir que podem ser usadas para posterior estudos. Algumas delas não possui grande correlação com o setor da empresa onde se desenvolveu este trabalho, porém pelo estudo do trabalho desenvolvido pela UNISOMA na SADIA, acredita-se que mereça atenção por parte da direção da empresa. Dentre elas, citamos:

- Desenvolvimento de um programa de mistura ótima de ração já que toda ração consumida nos aviários é fabricada dentro da própria avícola;
- Desenvolvimento de um programa de transportes que minimize os trajetos percorridos pelos técnicos que continuamente necessitam visitar os galpões para manutenção da qualidade do rebanho;
- Criação de um programa de otimização de horários de trabalho, já que o setor de abate conta com 450 funcionários e está em expansão e este ajuste possibilitaria uma economia na contratação de mão de obra.
- Sincronia deste com o trabalho que vem sendo desenvolvido no setor de apanha que visa minimizar o tempo de espera dos lotes na plataforma de descarga.

Por fim, espero que o trabalho aqui desenvolvido sirva para auxílio de outros trabalhos que venham a ser executados na área de otimização.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1]-ALBINO LUIZ FERNANDO TEIXEIRA, Frangos de Corte: Manual Prático de Manejo de Produção. Viçosa, Aprenda Fácil, 1998.
- [2]-ARASHIRO, O. A História da Avicultura no Brasil. Gessuli Editores Ltda, 1989.
- [3]-ARAÚJO, MARIA DA PIEDADE, **Rentabilidade da produção de frango de corte sob contratos de integração vertical em Minas Gerais**. 1996. 135p. Dissertação Mestrado em Economia Aplicada Piracicaba: ESALQ, Piracicaba SP.
- [4]-CAIXETA-FILHO, JOSÉ VICENTE, **Pesquisa Operacional Técnicas de Otimização Aplicadas a Sistemas Agroindustriais**. Atlas, São Paulo, 2001.
- [5]-EHRLICH, PIERRE JACQUES, Pesquisa Operacional. Editora Atlas, São Paulo, 1976.
- [6]-ELLENRIEDER, ALBERTO, **Programação Linear**. Editora Almeida Neves, São Paulo, 1976.
- [7]-GOLDBARG, MARCO CÉSAR, **Otimização Combinatória e Programação Linear: Modelos e Algoritmos**. Editora Campus, Rio de Janeiro, 2000.
- [8]-HILL, MANUELA M., SANTOS, MARIANA M., Investigação Operacional.

 Volume I, Edições Sílabo, 1999.
- [9]-HILLIER, FREDERIC S. E LIBERMANN, GERALD G. Introduction to

 Operations Research. Prentice Holden-Day. San Francisco. USA. 1974.

- [10]-HOUAISS, ANTONIO, **Novo Webster's Dicionário Universitário Inglês- Português**. Editora Record, Rio de Janeiro , 2002.
- [11]-KOLMAN, BERNARD, Introdução à Álgebra Linear com Aplicações. 6ª edição, Editora LTC, Rio de Janeiro, 1996.
- [12]-LACHTERMACHER, G. Pesquisa Operacional na tomada de decisão: modelagem em Excel. Editora Campus. 2002.
- [13]-LAW, A. M. e KELTON, W. D. **Simulation modeling and analysis**. In: McGraw-Hill Inc., 2^a edição. 1991.
- [14]-LOEWER, O. J. & BRIDGES, T. C. **On-farm drying and storage systems**. Ed. American Society of Agricultural Engineers. ASAE Publication 9. 1994.
- [15]-MALAVAZZI, G. Avicultura Manual Prático. São Paulo, Nobel, 1978.
- [16]-MONTEVERDE, K. TEECE, D.J. Supplier switching costs and vertical integration in the automobile industry. The Beel Journal of Economics, v. 13, p.206, 1982.
- [17]-MORÉ, JORGE J. e WRIGHT, STEPHEN J., **Optimization Software Guide.**Society for Industrial and Applied Mathematics, Philadelphia, USA, 1993.
- [18]-MACULAN, NELSON, Programação Linear. Ed. Atlas, São Paulo, 1988.

- [19]-MURTY, KATTA G. Linear and Combinatorial programming. Robert E. Krieger Publishing Company, Inc., Florida, U.S.A., 1985.
- [20]-PANIK, MICHAEL J., Linear Programming: Mathematics, Theory and Algorithms. Kluwer Academic Publishers, Michigan, USA, 1996.
- [21]-PINTO, WILSON SILVA, Introdução ao Desenvolvimento de Algoritmos e Estrutura de Dados. Editora Érica, São Paulo, 1990.
- [22]-PRADO, D. Programação linear. Editora de Desenvolvimento Gerencial. 2000.
- [23]-PUCCINI, ABELARDO DE LIMA. Introdução à Programação Linear. Ed. Livros Técnicos, Rio de Janeiro, 1989.
- [24]-SAIGAL, ROMESH, Linear Programming A modern Integrated Analysis.
 Kluwer Academic Publishers, Michigan, USA, 1995.
- [25]-SALKIN, HARVEY M., **Integer Programming**. Addison-Wesley Publishing Company, Massachusetts, USA, 1975.
- [26]-SANTOS, ANTONIO RAIMUNDO, Apresentação Gráfica de Pesquisas Científicas e Trabalhos Acadêmicos -Sugestões e Normas (NBR - 14724: 2002). Projeto Saber, Curitiba, 2004.
- [27]-SCHEITT, L. C. Otimização da industrialização e comercialização da carne de frango. 2003. 110p. (Dissertação - Mestrado em Programação Matemática - UFPR). Curitiba-PR.

- [28]-SCHORR, HÉLIO, A Força da Avicultura Brasileira. Reportagem Aveworld. A revista do Avicultor Moderno. São Paulo, Nº 01, p.8, fev/mar.2003.
- [29]-SCHRIJVER, ALEXANDER, **Theory of Linear and Integer Programming**.

 John Wiley & Sons, England, 1999.
- [30]-TAUBE NETTO, MIGUEL, Integrated Planning for Poultry Production at Sadia. Interfaces, Vol.26, No.1, pp.38-53, Penn State University, Pennsylvania USA, 1996.
- [31]-WINSTON, W. L. **Operations research applications and algorithms**. In. International Thomson Publishing. Belmont, Califórnia. 1994.

REFERÊNCIAS ELETRÔNICAS:

[1]-DANTZIG, GEORGE, biografia. Disponível em :

www.statslab.cam.ac.uk/~rrw1/opt95/dantzig.htm > Acesso em: 28 mar. 2004.

[2]-FOLHA DE LONDRINA, Exportação brasileira de frango cresce 52%.

Disponível em:

http://www.sindiavipar.com.br/2index.html > Acesso em: 02 set. 2004.

[3]-Garantindo o interesse da classe Produtora e Industrial da Avicultura.

Disponível em http://www.clubedofazendeiro.com.br/Noticias/cadernos.

Acesso em: 05 abr. 2004.

[4]-GAZETA DO POVO, União Européia suspende teste em frango brasileiro.
Disponível em:
http://www.sindiavipar.com.br/2index.html > Acesso em: 02 set. 2004

- [5]-GAZETA MERCANTIL, **Paraná exporta mais frango em 2004**, Disponível em: http://www.sindiavipar.com.br/2index.html > Acesso em: 23 jul. 2004
- [6]-GAZETA MERCANTIL, Santa Catarina declina produção de frango. Disponível em:

< http://www.sindiavipar.com.br/2index.html > Acesso em: 20 jul. 2004

[7]-GUEDES, PEDRO PEREIRA, **A importância do Sistema de Integração**

Disponível em:

http://www.aviculturaindustrial.com.br/site/ListaDinamica.asp?tipo tabela=cet

&TotalDeRegistros=666&PaginaAtual=34 > Acesso em: 04 abr. 2004.

[8]-Histórico da Pesquisa Operacional. Disponível em:

http://www.ime.usp.br/~coelho/mac315/apresentacao/node1.html >, Acesso

em: 03 abr. 2004.

[9]-Integração, a parceria que deu certo. Disponível em:

http://www.uba.org.br/integracao.html > Acesso em 07 set. 2004.

[10]-**Lingo, o uso desta Ferramenta**. Disponível em:

<www.terravista.pt/nazare/4370/lingo1.htm > Acesso em 08 ago. 2004.

[11]-Manual do Lingo. User's Guide. Disponível em:

http://www.lindo.com > Acesso em 30 mai. 2004.

[12]-MARTINS, PETRONIO, A Administração Rural. Disponível em:

< www. Avisite.com.br>, Acesso em 10 abr 2004.

[13]-O ESTADO DO PARANÁ, Brasil perto de ser o maior exportador de frango.

Disponível em:

http://www.sindiavipar.com.br/2index.html > Acesso em: 02 set. 2004.

[14]-O ESTADO DO PARANÁ, Exportação leva maior parte do frango do Paraná.

Disponível em:

http://www.sindiavipar.com.br/2index.html > Acesso em: 23 abr. 2004

[15]-Planejamento e Local de Produção-Viabilidade Econômica do Projeto.

Disponível em:

< http://www.avisite.com.br/cet/4/03/index.shtm > , Acesso em: 03 abr. 2004.

[16]-Produção- Frango de Corte no Paraná e Brasil. Disponível em:

http://www.uba.org.br/integracao.html Acesso em 05 jun. 2004.

[17]-RICHETTI, ALCEU & SANTOS, ANTONIO CARLOS, **Balanceamento de** ração. Disponível em:

<www.dae.ufla.br/cedoc/artigo03200.doc> , Acesso em: 04 abr. 2004.

[18]-TAUBE-NETTO, MIGUEL, **O Sistema PIPA – SADIA.** [mensagem pessoal].

Mensagem recebida por profdalima@hotmail.com>.

GLOSSÁRIO

Abate – Ação de abater. Matança de animais para consumo.

Alocado – No texto é o mesmo que alojado.

Alojar – Colocar um lote de aves em uma propriedade.

Apanha – Ato de pegar os frangos na granja para o abate. O mesmo que coleta.

Ave perfeita – Diz-se perfeita da ave que não possui hematomas no corpo.

Aviário – Propriedade rural onde são instalados os galpões de frango.

Cama de Frango – Palha usada para forrar o chão dentro dos galpões.

Campânulas – Peça em formato de sino usada como bebedouro de água no aviário.

Carcaça Perfeita – É o termo empregado para o dorso que sobra da ave depois de retiradas as partes nobres (peito, coxa, asa, etc...) desde que não possua sinal de

tombo ou pancada.

Carregamento – O mesmo que carga. Usado para definir uma carga de frango.

Contusão – Hematoma. Mancha provocada no corpo das aves, quando as mesmas "se batem" durante um trajeto para o abatedouro.

Conversão Alimentar – Quantidade que um animal converte em carne daquilo que consumiu de ração.

Desalojar – Retirar um lote de frango de uma propriedade para o abate.

Engradeamento – Ato de colocar o frango na caixa para carregar no caminhão.

Evisceração – Setor do abatedouro onde são retiradas as vísceras do frango.

Galpão – Barração na propriedade onde são criados os frangos.

Integrado –Pessoa responsável pela criação do frango na propriedade rural. Aquele que se integra (associa) a avícola.

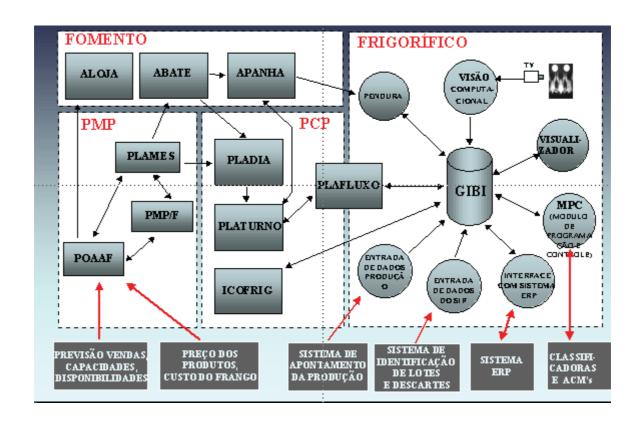
Integrador –Papel desempenhado pela avícola na relação com o avicultor. Controlador do processo de integração.

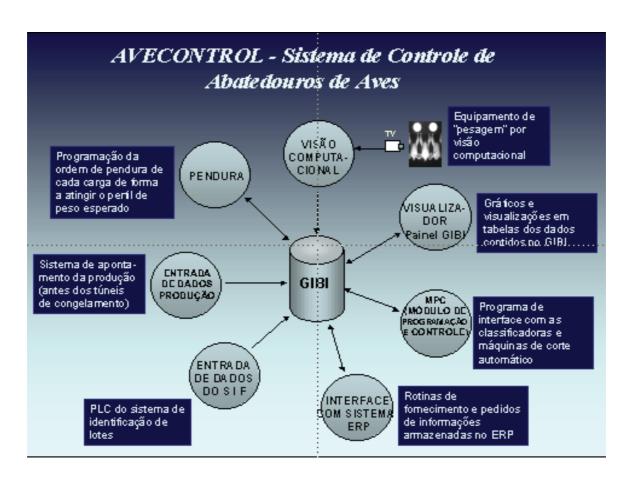
Nória – Corrente onde o frango é pendurado no abatedouro para o processo de abate, evisceração e corte.

Pendura – Setor do abatedouro onde a ave é colocada na nória.

Pintainho – O mesmo que pintinho. Frango com um dia de vida.

Plantel – Numero de cabeças de aves de uma propriedade. O mesmo que lote.


Subproduto do frango –Aquilo que é derivado do frango; cortes, carcaça, penas, sangue, etc....


Anexo 3.1

O SISTEMA PIPA IMPLANTADO NA SADIA

PIPA – Planejamento Integrado da Produção Avícola AVECONTROL - Sistema de Controle de Abatedouros de Aves

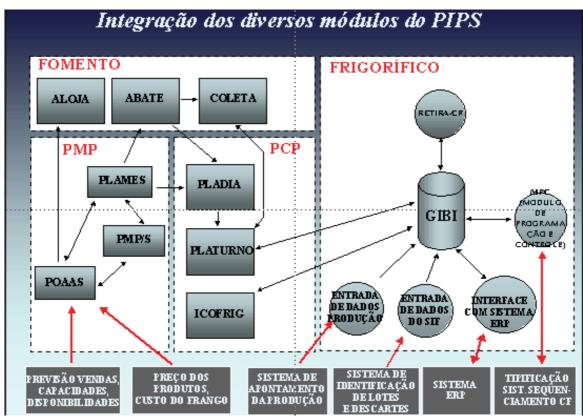


TABELA DE ÍNDICE DE CONVERSÃO ALIMENTAR

RELATÓRIO DE CIDADES / INTEGRADOS

	Integrado	Cidade	Quantidade Alojada	Distância (km)
1	Abel Mansano	São Jorge do Ivaí	24.000	98
2	Abel Martins	Presidente Castelo Branco	7.500	62
3	Adalto Gonçalves da Cruz	Ourizona	12.500	69
5	Adalto Pezotti Bernardino	Doutor Camargo	20.500	98,5
6	Adecio Tozin	Nova Esperança	15.000	47
7	Ademir Rosa da Silva	Sta Cruz do Monte Castelo	10.000	95
8	Agenor Bueno / Regina Pires Bueno	Paranavaí	15.000	19
9	Agropecuaria Santana Ltda	Mandaguaçu	20.000	70
10	Ailton Giovanini / Elisabete Batista Giovanini	Paranavaí	17.000	22,5
11	Airton Adenir da Silva / Jakeline Amaral de Souza	Paranavaí	12.000	14
12	Alber Antonio Rufo	Atalaia	15.000	83
13	Albertino Simões	Nova Esperança	12.500	42,5
14	Alberto José Romualdo Neto	Mandaguaçu	15.000	71
15	Alcides Pereira da Silva	Nova Esperança	11.000	38,5
16	Alcides Vizini	São Pedro do Paraná	15.000	96,5
17	Alexandre França	Nova Aliança do Ivaí	18.000	13
18	Alice Fugime Oku	Amaporã	16.000	33,5
19	Alison Rogério de Alvarenga	Itaúna do Sul	11.000	92
20	Altacir Perez Rissato	Paranavaí	23.000	10
21	Amaury Gabriel	São Jorge do Ivaí	24.000	80
22	Amaury Gabriel	São Jorge do Ivaí	8.000	66
23	Amaury Gabriel	São Jorge do Ivaí	15.000	66
24	Amilton Marins Perru	Nova Esperança	26.000	51
25	André Luiz Siqueira Alves	Mandaguaçu	13.500	69
26	Ângelo José Vizini	Porto Rico	15.000	98
27	Ângelo Manzoni	São Carlos do Ivaí	19.000	52
28	Antenor Elizeu Saes	Mandaguaçu	10.000	68
29	Antonia Guarin Sobrinha	Flórida	15.000	79
30	Antonio Alberto de Souza	Angulo	19.000	91
31	Antonio Ávila Martinez	Guaporema	28.000	73
32	Antonio Benedito Pereira de Lima	Itaúna do Sul	11.500	92
33	Antonio Benedito Pereira de Lima	Itaúna do Sul	11.500	92
34	Antonio Carlos Silva	Mandaguaçu	10.000	70
35	Antonio Casagrande4	São Jorge do Ivaí	12.000	68
36	Antonio Celso Cavalari	Angulo	13.000	88
37	Antonio Fernandes	Doutor Camargo	15.000	105
38	Antonio Fernandes	Doutor Camargo	30.000	105
39	Antonio Fernandes	Doutor Camargo	7.000	105
40	Antonio Freire Munhoz	São Jorge do Ivaí	15.000	65
41	Antônio Galvão	São Tomé	13.000	96
42	Antonio Garcia Navarro	Itaúna do Sul	11.000	92
43	Antonio Leite de Moraes	Paranavaí	15.000	15
44	Antonio Luiz Brito Silva	Doutor Camargo	22.000	104
45	Antonio Luiz Candioto	Alto Paraná	15.000	29,5
46	Antonio Mashio	Indianópolis	23.500	
47	Antônio Moreira	Paranavaí	7.000	27

48	Antonio Renato Soares Silva	Paranavaí	15.000	21
49	Antonio Rigobelo	Paranavaí	12.500	17
50	Aparecido de Souza	Alto Paraná	14.000	36
51	Aparecido de Souza Aparecido Tsuyochi Matsumoto	Loanda	16.000	75
52	Arildo Martins Urano	São Jorge do Ivaí	14.000	96
53	Aristides Morante Parra	Alto Paraná	7.000	37
54	Arnoldo Schulz	Guaporema	13.000	70
55	Asshaias Felipe Essuane	Paranavaí	7.500	16
56	Augusto Alves dos Santos	Paranavaí	12.000	10
57	Augusto Pasquali / José R. Rosa / Roberto R.	Alto Paraná	13.000	33
	Rosa			
58	Augusto Pasquali / José R. Rosa / Roberto R. Rosa		12.000	33
59	Benedito Gerolino	Atalaia	10.000	75
60	Bernardo Haweroth	Paranavaí	11.000	8,5
61	Bertolino Meurer	Iguaraçu	22.000	101
62	Bertolino Meurer	Iguaraçu	22.000	101
63	Bertolino Meurer	Iguaraçu	22.000	101
64	Carlos Alberto de Carvalho	Flórida	12.000	75
65	Carlos Aurélio Domingos	Itaúna do Sul	19.000	87
66	Carlos César Mariusso	Lobato	39.000	100
67	Carlos Marques das Neves	Indianópolis	19.000	77
68	Carlos Roberto Bratifsch Junior	Nova Esperança	10.000	46
69	Carlos Roberto Galindo Arenas	Mandaguaçu	15.000	66
70	Carlos Roberto Negri	Guairaça	7.500	34
71	Carlos Roberto Rossato	Santa Cruz do	7.500	109
		Monte Castelo		
72	Carlos Volpi	Santa Cruz do Monte Castelo	19.000	93
73	Catarina Tsuyako Ishii	Uniflor	22.500	63
74	Célio Rubens André Ferro	Alto Paraná	10.000	30
75	Celso Avelar	Paranavaí	15.000	27
76	Cíntia Maria Gomes Colhado	Presidente Castelo Branco	7.500	52
77	Claudemir Chini Ganassin	Tamboara	14.000	22
78	Claudemir Santos / Idalina A. F. dos Santos	Paranavaí	22.500	23
79	Claudevino Varga	Mandaguaçu	16.000	67
80	Claudio Antônio Zolim	Rondon	11.000	66
81	Claudio Antônio Zolim	Rondon	11.000	66
82	Claudio João Razente	Alto Paraná	15.000	35
83	Claudio Vulpini Della Vedova	Presidente Castelo Branco	12.500	52
84	Claudionor Macedo Bastos	Santa Cruz do Monte Castelo	15.000	100
85	Cleto Lanziani Janeiro	Paranavaí	7.500	9
86	Clodovil José Guermandi	São Pedro do	11.000	100
		Paraná	-1.000	100
87	Clodovino Chiqueti / Amarildo Chiqueti	Nova Aliança do Ivaí	13.000	28
88	Clóvis Amaral	Loanda	22.500	76
89	Clovis Yoshimi Tomioka	Diamante do Norte	15.000	104
90	Cristina Lie Assakura Yazawa	Tamboara	8.000	13
91	Cristino Martin	Presidente Castelo Branco	7.500	62
L	1	DI UIIIVV		

92	Daniel Martins da Silva	Sta Cruz do Monte Castelo	10.500	90
93	Danye C. Aguilera Ruiz	Nova Esperança	12.000	48
94	Darcy Peruzzo	Santa Mônica	15.000	78
95	Dário Yoneyama	Paranavaí	14.000	12
96	Davi França	Alto Paraná	15.000	38
97	Décimo Caetano	Nova Esperança	10.000	56
98	Décio Perissato	Florai	10.000	60
99	Delfino Alvarenga	Itaúna do Sul	11.000	90
100	Demetrio Gonzaga	Doutor Camargo	12.500	100
100	Devanir Vinuto Visentin	Tamboara	7.500	24
101	DEZ - Empreendimentos	Paranavaí	13.000	17
102	Dirceu Barboza	Paraiso do Norte	12.500	40
	Dirceu Barboza Dirceu Pires Mattos Junior	Cruzeiro do Sul		75
104			14.000	
105	Dirley Domingues Eugenio	Paranavaí	12.000	19
106	Dirley Domingues Eugênio	Loanda	15.000	65
107	Djair Fonzar	Santa Cruz do	11.500	107
108	Doacir de Oliveira	Monte Castelo Atalaia	7.500	71
	Dorvalino Edson de Lima		10.000	100
109		Iguaraçu	7.500	
110	Edilson Augusti Bernardelli	Paranavaí		20
111	Edio Jose de Araujo	Paranavaí	17.000	25
112	Edivaldo Pereira dos Santos	Paranavaí	15.000	21
113	Ednei Balestre	Alto Paraná	10.000	42
114	Edno Aparecido Possari	Mandaguaçu	12.000	66
115	Edson Airton Ferri	Atalaia	7.500	56,5
116	Edson Gomes	Alto Paraná	15.000	29,5
117	Edson Oscar Belini	Florai	12.000	62
118	Edson Teofilo da Silva	Loanda	11.000	90
119	Edson Yoshiyuki Tomioka	Diamante do Norte	16.000	101
120	Edson Yoshiyuki Tomioka	Diamante do Norte	16.000	101
121	Eduardo Mioto	Rondon	20.000	65
122	Eduardo Vieira	Guairaça	11.000	38
123	Edvarde Bernardelli	Indianópolis	15.000	75
124	Edvarde Bernardelli	Indianópolis	35.000	75
125	Elias da Cruz Auréllio	Alto Paraná	14.000	38
126	Elias Martins / Janete Oler Martins	Presidente Castelo Branco	7.500	62
127	Elizabet Martin	Presidente Castelo Branco	7.500	62
128	Elizeu Moya / Nivaldo Moya	Alto Paraná	15.000	37
129	Elvis Antonio Calheiros de Souza	Paranavaí	10.000	17
130	Emilia Yasume	Itaúna do Sul	11.500	92
131	Emilio Carbelin	Lobato	10.500	102
132	Ermelindo Rodrigues	Presidente Prudente	11.000	182
133	Ernesto Malice / Vanilde T. F. Malice	Lobato	7.500	93,5
134	Erotildes Vansan de Amorin	Mandaguaçu	12.000	69
135	Eudes José Davoglio / Mauro Tolim	Diamante do Norte	15.000	92
136	Eustachio Fabres Francez	Nova Esperança	7.500	47,5
137	Euzébio Marini	São Pedro do	11.000	95,5

		Paraná		
138	Evaristo Milanez Garcia	Sta Cruz do Monte Castelo	20.000	92
139	Ezequias da Silva	Tamboara	25.000	21
140	Fernando Formagio	Doutor Camargo	27.500	108
142	Francisca Nessy Souza Molina	Cruzeiro do Sul	17.000	76
143	Francisco de Oliveira	Paranavaí	15.000	15
144	Francisco de Oliveira	Paranavaí	12.000	15
145	Francisco Leonardo Souza	Maringá	12.000	90
146	Franciso Percílio Nascimento	Alto Paraná	7.500	46
147	Fulgêncio Arcas de Garcia	Santa Izabel do Ivaí	7.500	95
148	Gelson Coelho	Cruzeiro do Sul	10.000	65,5
149	Genival Machado / Valdete M. J. S. Machado	Santa Mônica	7.500	73
150	Geraldo Frigatto	Tamboara	14.500	20
151	Geraldo Guarin	Florida	15.000	81
152	Geraldo Silva Rocha	Santa Mônica	7.500	90
153	Gilberto Natal Sandri	Paranavaí	15.000	18
154	Gilberto Suzhlc / Rosilene N. da Silva Suzhlc	Santa Izabel do Ivaí	11.000	101
155	Gilda Mara Fuser de Lima	Mandaguaçu	12.000	70
156	Givaldo Dias de Souza	Mandaguaçu	10.000	70
157	Gumercindo Pereira de Melo	Santa Cruz do Monte Castelo	7.500	90
158	Hélio Kazuo Nakatani	Paranavaí	15.000	28
159	Hercules Edemir Cestaro	Guairaça	15.000	37
160	Hilda Domiciano Santos	Loanda	7.500	98
161	Humberto Santos Peron	Maringá	12.500	90
162	Iassuo Cussunoque	Paranavaí	10.500	29,5
163	Imigrantes Transportes	Quatro Barras	10.000	· · · · · · · · · · · · · · · · · · ·
164	Iracy Camelotti	Cruzeiro do Sul	11.000	70
165	Irene Foratto Neves	Tamboara	15.000	14
166	Isaias Alves Martins	Mandaguaçu	12.000	70
167	Isaias Aurélio	Alto Paraná	9.000	38
168	Isidoro Dalago	Doutor Camargo	15.000	101
169	Isidro Trevizan / Malvina Antônio Trevizan	São Manoel	12.500	82
170	Ismael Antonio Domingues	Santa Cruz do Monte Castelo	11.000	90
171	Itamar José Tronchini	Rondon	12.000	65
172	Ivando Bernardeli	Indianopolis		80
173	Ivani Pereira Santos / Luiz Santos / Edivaldo	*	15.000	33
174	Jacson José dos Reis	Terra Rica	7.000	44
175	Jair Pinelli	Mandaguaçu	10.000	66
176	Jeckson Antonio Rodrigues da Silva	Cascavel	11.500	330
177	João Alves Borges Filho	Guairaça	11.500	34
178	João Antonio Flote	Alto Paraná	7.500	46
179	João Aparecido Izídio / Nailde Izidro da S. Izídio	Nova Esperança	7.500	70
180	João Basilio	Marilena	13.500	93
181	João Batista Fortes de Oliveira	Amaporã	12.000	41
182	João Carlos Assoni	Colorado	12.500	101
183	João Duda da Silva	Itaúna do Sul	7.500	87
184	João Formigoni	Paranavaí	17.500	19
185	João Leite Barbosa e outros	Paranavaí	18.000	20

186	João Nivaldo da Silva	Flórida	7.000	80
187	João Paulo da Silva	Tamboara	7.500	15
188	João Pedro Barranco Pecinato	Guaporema	24.000	79
189	João Pereira da Silva	Presidente	15.000	182
		Prudente		
190	João Preiss	Mandaguaçu	12.000	68
191	João Prudencio	Florai	11.500	64
192	Joaquim Vizini	Porto Rico	24.000	92
193	Joel Orelio	Alto Paraná	28.000	38
194	Jorge Yoneyama	Paranavaí	23.000	8
195	Jorge Yoneyama	Paranavaí	23.000	8
196	José Alves da Silva	Doutor Camargo	9.000	108
197	José Aparecido Celestino	São Jorge do Ivaí	24.000	70
198	José Aurélio	Nova Esperança	10.000	43,5
199	José Cardoso Santos	Terra Rica	10.000	21
200	José Carlos Bertali	Santa Izabel do Ivaí	11.000	101
201	José Carlos Brambila	Tamboara	7.500	27
202	José Carlos D. Escarmanhani	Guairaça	15.000	33
203	José Carlos Rezende Cervante	Guairaça	7.500	35
204	José Cassemiro de Souza	Mandaguaçu	12.000	64,5
205	José de Souza Dias	Paranavaí	12.500	24
206	José dos Prazeres Pedro	Santa Cruz do Monte Castelo	26.000	95,5
207	Jose Emilio Montrezol	Doutor Camargo	12.500	104
208	Jose Felipe	Paranavaí	11.000	21
209	Jose Francisco Dias	Sta Izabel do Ivai	10.000	75
210	Jose Laerte da Fonseca	Florida	15.000	77
211	Jose Luiz Bovo	São Jorge do Ivaí	16.000	67
212	José Luiz Favarim / Clarice M. R. Favarim	Paranavaí	22.000	14
213	Jose Luiz Francelino da Silva	Colorado	15.000	107
214	José Luiz Rossato	Santa Cruz do Monte Castelo	7.500	106
215	José Martins	Presidente Castelo Branco	7.500	62
216	José Mauro Bellanda	Florai	12.500	71
217	José Messias Orelio	Alto Paraná	5.500	38
218	José Miguel Correia Filho	Atalaia	7.000	68,5
219	José Nelson Arenas Minatelli	São Jorge do Ivaí	12.500	80
220	José Otacílio dos Santos	Santa Mônica	30.000	82
221	José Otacílio dos Santos	Santa Mônica	10.500	82
222	José Roberto Fumagalli	Santa Mônica	7.500	72
223	Josias da Silva	Sta Cruz do Monte Castelo	13.500	91
224	Josoer Orelio	Alto Paraná	13.000	38
225	Jovino Spoladore	Paranavaí	17.500	22
226	Juarez Ribeiro da Silva	Santa Cruz do Monte Castelo	10.500	90
227	Juliano Garcia Moro	Indianópolis	12.500	79
228	Juliano Garcia Moro	Indianópolis	16.000	79
229	Júlio César Felippe	Paranavaí	21.000	16,5
230	Júlio César Felippe	Paranavaí	22.000	16,5
	I/1: - O/ E-1:	Paranavaí	22.000	16,5
231	Júlio César Felippe	raiallavai	22.000	10,5

233	Juverci Guedes Gonçalves / Maria E. M. Gonçalves	Lobato	7.000	100
234	Katuso Sato	Loanda	16.000	100
235	Kazuo Furuyama	Alto Paraná	15.000	46
236	Ladair Piovezan	Santa Izabel do Ivaí	23.000	80,5
237	Lauro Manoel da Silva	Paranavaí	7.500	20,5
238	Lázaro Burim	Cruzeiro do Sul	15.000	77,5
239	Leandro Jose Martins	Presidente Castelo	12.500	63
		Branco		
240	Leonardo Godofredo Treichel	Nova Esperança	22.500	38
241	Leonardo Godofredo Treichel	Nova Esperança	8.000	46
242	Leonir Anacleto da Silva	Santa Cruz do Monte Castelo	7.500	86
243	Livia Ezarchi Aquarone	Cruzeiro do Sul	10.000	76
244	Livia Ezarchi Aquarone	Cruzeiro do Sul	18.000	81
245	Lívia Ezarchi Aquarone	Nova Esperança	17.500	49,5
246	Lívia Ezarchi Aquarone	Nova Esperança	10.000	56
247	Lourival Aparecido Pegoraro	Santa Cruz do	16.500	87
		Monte Castelo		
248	Lourival Capoani	Nova Esperança	11.000	53
249	Lucas Trevizan	São Manoel	14.500	85
250	Luciano Henrique Perez	Mandaguaçu	12.000	68
251	Luis Marcos Cauneto	Tamboara	10.000	19
252	Luis Pazini	Rondon	13.500	53
253	Luiz Antônio Castanheira	São Jorge do Ivaí	9.000	93
254	Luiz Augusto Pereira Santos	Guairaça	10.000	33
255	Luiz Carlos Bulla	Mandaguaçu	16.500	65
256	Luiz Carlos Picoli / Nivaldo Picoli	Alto Paraná	10.000	28
257	Luiz Erismar Pereira Junior	Mandaguaçu	17.500	67
258	Luiz Hogaha	Paranavaí	24.000	22
259	Luiz Iunklaus / Zilda Santos Iunklaus	Paranavaí	19.000	13
260	Luiz Iunklaus / Zilda Santos Iunklaus	Paranavaí	24.000	13
261	Luiz Martins	São Carlos do Ivaí	10.500	50
262	Luiz Sanches Sanches	Tamboara	10.500	14
263	Manoel Luiz Candiotto	Alto Paraná	12.000	29,5
264	Manoel Porfirio dos Santos	Paranavaí	13.000	23
265	Marcio Bandini	Tamboara	15.000	17
266	Márcio Yuri Tanoue	Paranavaí	15.000	21
267	Marcos Adriano Rocha e / ou	Doutor Camargo	11.000	104
268	Marcos Antonio Pereira de Albuquerque	Paranavaí	12.500	21
269	Marcos Casemiro de Souza	Mandaguaçu	14.500	64
270	Marcos Sidney Dalago	Doutor Camargo	11.000	102
271	Maria Clara Francisco lemos	Uniflor	10.000	64
272	Maria das Dores Torres Ribeiro	Santa Mônica	7.500	77
273	Maria de Citini Giovanini / Ariovaldo Giovanini	Paranavaí	12.000	22
274	Maria Rodrigues Aguiar	Paranavaí	12.000	23
275	Marildo L. Piovesan / Lino	Planaltina do Paraná	22.000	45,5
276	Mário Batista da Silva	Nova Aliança do Ivaí	7.000	20
277	Mario César de Oliveira	Maringa	15.000	82
278	Mário Yoneyama	São Carlos do Ivaí	14.000	46

270	Marizélia Meireles da Silva	Domonovoí	7.500	10.5
279		Paranavaí Loanda	13.500	10,5
280	Mauri Arauj dos Santos Maurício Ávila Martinez			94 73
281		Guaporema	24.000	
282	Mauro Dias Lima e / ou	Paranavaí	24.000	18
283	Mauro Sérgio Aldrovandi	Rondon	13.000	90
284	Michael Taguti Dias	Sta Izabel do Ivai	10.000	74
285	Miguel Mansano Filho	São Jorge do Ivaí	10.000	96
286	Milene Ciscuouto Peluso e / ou	Atalaia	12.500	64,5
287	Milto Cano Rosa	Maringa	13.500	83
288	Milton Butim e / ou	Santa Izabel do Ivaí	12.500	97
289	Milton Romão Trofino	Mandaguaçu	13.500	70
290	Milton Terumit Asano	Alto Paraná	7.000	35
291	Moises Mioto	Rondon	14.000	83
292	Nailda Pierin	Paranavaí	14.000	11
293	Nalu Muniz Mewes	Amaporã	13.000	29
294	Nelson Cordeiro	Mandaguaçu	25.000	68
295	Nelson de Souza / Maria Iraci Amorim	Tamboara	7.000	21
296	Nélson Balestrini / Wilson Roberto Balestri	Alto Paraná	11.500	42
297	Neri Fogaça de Oliveira	Alfredo	10.000	
		Marcondes		
298	Neusa Frata	Tamboara	12.500	19
299	Nilson Zardo	Paranavaí	14.000	21
300	Nilton Lourenço Bispo	Nova Esperança	7.500	46,5
301	Nivaldo Fernandes da Silva	Santa Mônica	7.500	70
302	Northon Paulo Paganela	Santa Mônica	7.500	70
303	Odair Ruffo / Antonio Ruffo	Atalaia	7.000	80
304	Olímpio Jasper	Paranavaí	7.500	8
305	Onelha Coan	Alto Paraná	7.700	33
306	Orlando dos Santos e / ou	Presidente Castelo Branco	8.500	56
307	Orlando José Tavares / Luzia T. Tavares	Lobato	9.000	100
308	Osmar de Andrade Gois	Porto Rico	18.000	103
309	Osmar de Andrade Gois	Porto Rico	24.000	103
310	Osni da Silva Mozarino	Paiçandu Paiçandu	16.500	100
311	Osvaldo Ferro / Célio R. A. Ferro	Alto Paraná	9.678	30
312	Over Bregantini	Guairaça	10.500	37
313	Paulo César Alves da Cruz	Terra Rica	7.500	63,5
314	Paulo Cesar Pasquini	Atalaia Atalaia	7.500	58,5
315	Paulo Emílio de Medeiros	Paranavaí	10.000	18
316	Pedro Antonio Rissi	Santa Izabel do	11.000	101
317	Pedro Bolognes	Ivaí Doutor Camargo	11.000	108
317	Pedro Campezato	Paranavaí	22.500	35
319	Pedro dos Santos / Ozie Jorge Melo	Paranavaí	7.500	27
319	Pedro Ferreira do Bem	Nova Esperança	7.500	52,5
320	Pedro Garcia	Alto Paraná	7.500	32,3
	Pedro Kariya / Emília Y. Monzen	Itaúna do Sul	9.500	94
322	<u> </u>	Presidente Castelo		53
323	Pedro Paganelli	Branco	11.000	
324	Prsperity Participações e Emp.	Santana de Parnaiba	16.000	75
325	Raimundo Lucena Morato	Presidente Prudente	15.000	180
	•			

326	Reginaldo Sort de Souza	Nova Esperança	8.500	38
327	Reinaldo de Oliveira	Guaporema	13.000	66
328	Reinaldo Hishinuma	Paranavaí	21.000	30
329	Reinaldo Lavagnoli	Ângulo	28.500	82
330	Reinaldo Martins	Indianópolis	10.000	82
331	Renato Bertola	Alto Paraná	7.500	25
332	Renato Buranello Gonçalves do Nascimento	Rondon	10.000	55
333	Renilda Pires Gomes	Paranavaí	14.200	25
334	Renilson de Andrade	Paranavaí	15.000	4
335	Roberto de Souza Molina e / Marcia P. Molina	Cruzeiro do Sul	7.000	76
336	Roberto Ferri	Atalaia	16.000	56,5
337	Roberto Pondiam	Indianópolis	15.000	90
338	Rodovini Transportes	Paranavaí	12.000	26
339	Rogerio Brambila Reggiani	São Tomé	17.000	95
340	Rogério César Zaninelo	Alto Paraná	22.500	41
341	Rosangela da Cunha	Santa Cruz do	16.000	91
		Monte Castelo		
342	Rosângela de Paula Zunarelli	Paranavaí	15.000	22
343	Rozeno Fernandes Guimarães	Nova Esperança	7.500	45
344	Rubens Massari Onishi / José Crestani	Nova Londrina	15.000	90
345	Rubens Pereira Negrão	Santa Cruz do	18.000	91
		Monte Castelo	12 400	20
346	Rubens Ribeiro Neves	Alto Paraná	12.400	39
347	Salvador José M. Stefano	Mandaguaçu	12.500	69
348	Sebastião Alcebíades Gonçalves	Paranavaí	15.000	20
349	Sebastião Dias Mulza	Nova Esperança	7.000	44
350	Sebastião Scapolan	Tamboara	10.500	19
351	Sebo Jales Ind. E Com. De Prod.	Dirce Reis	8.500	
352	Sérgio Luiz Arenas Minatelli	São Jorge do Ivaí	12.500	80
353	Sérgio Luiz Assoni	Colorado	12.500	101
354	Sergio Storck	Paranavaí	7.500	27
355	Sérgio Verzola / Camilo Fco Caston	Mandaguaçu	12.500	63
356	Setuo Iseri	Paranavaí	13.500	17
357	Shozi Matuo	São Manoel	13.000	98
358	Sidnei Edson Matheus	Santa Cruz do	7.500	108
		Monte Castelo		
359	Sidnei Varnier	Nova Esperança	15.000	45
360	Silvana Bueno Pereira do lago	Mandaguaçu	16.700	70
361	Sílvio Yoneyama	Paranavaí	15.000	20
362	Sílvio Yoneyama	Paranavaí	12.500	20
363	Tania Cristina Zolin Rodrigues	Rondon	12.400	84
364	Terezinha Nogueira Trevisan	São Tomé	21.000	96
365	Tiago Trassi Alves	Atalaia	13.000	
366	Umberto Zancanaro	Santa Cruz do Monte Castelo	7.500	96
367	Vagner Pim Picorelli	Alto Paraná	10.000	42
368	Valcir Coan	Alto Paraná	7.500	54
369	Valdeci Jonck de Souza	Mirador	16.000	44
370	Valdemar Pasquali	Alto Paraná	12.500	32
371	Valdemir Aparecido Filipini	Paranavaí	11.500	37
372	Valdenir Antônio Palmieri	Santa Mônica	11.000	68
			14.000	71
373	Valdete M. J. S. Machado	Santa Mônica	14.000	71

374	Valdevino Ramos da Silva	Paranavaí	16.000	23
375	Valdioris Volpato / Valderlei Volpato	Paranavaí	15.000	30,5
376	Valdir Pasquali	Alto Paraná	15.000	24,5
377	Valdomiro Berthi	Alto Paraná	17.000	39
378	Valéria Regina Pereira Nichele	São Tomé	39.000	96
379	Valter Edegar Miller	Maringa	22.000	89
380	Vanilde Gabriel de Almeida	São Jorge do Ivaí	15.000	79,5
381	Vicente Dragunski Filho	Ourizona	25.000	67
382	Vicente Florentino da Silva	Tamboara	14.500	20
383	Vilmar Ferreira da Silva e ou	Tamboara	36.000	22
384	Vilson Zanata	Alto Paraná	7.500	36,5
385	Waldur Trentini	Paranavaí	19.000	21
386	Walter Barbosa	Paraiso do Norte	14.500	42
387	Walter Marion	Atalaia	7.500	68
388	Wanderley Fonzar	Santa Cruz do	9.000	106
		Monte Castelo		
389	Wellington Flávio Azevedo	Doutor Camargo	22.500	102
390	Wilmar José Buchner	Paranavaí	7.500	11
391	Wilson Roberto Matera	Doutor Camargo	17.000	101

RELATÓRIO DE ALOJAMENTO - OUTUBRO - 2004

RELATÓRIO DE PROGRAMAÇÃO DE ABATE - OUTUBRO – 2004