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Este artigo apresenta uma aplicacao de Predi¢ao Conformal em um problema classico de risco de crédito,
utilizando a base de dados German Credit e dois modelos de classificacao base: Naive Bayes e Random Forest.
A partir do esquema de split conformal prediction, construimos conjuntos preditivos para o rétulo de risco
com garantia de cobertura marginal no nivel nominal de 90% sob a suposi¢ao de permutabilidade dos dados.
Avaliamos o desempenho por meio da cobertura empirica e do tamanho médio dos conjuntos no conjunto
de teste, além de métricas tradicionais dos modelos base (acuracia e AUC). Os resultados indicam que a
cobertura empirica permanece préxima ou acima do nivel nominal, enquanto o tamanho médio dos conjuntos
sugere uma propor¢ao relevante de decisoes claras (/C(x)| = 1) e uma fragdo menor na zona cinza (|C(x)| = 2).
Discutimos como essa decomposicdo em zonas de decisdo pode apoiar regras de neg6cio, distinguindo
aprovacgoes e recusas com maior confianca e encaminhando casos ambiguos para anélise adicional. Por fim,
apontamos direcoes para trabalhos futuros envolvendo variacdes mais avangadas de Predi¢cao Conformal e
critérios de avaliacao que considerem custos assimétricos de erro.

Palavras-chave: Predicao Conformal; Inferéncia Conformal; risco de crédito; classificagdao; Random Forest;
Naive Bayes; conjuntos de predicdo; cobertura empirica; incerteza preditiva.

This paper presents an application of Conformal Prediction to a classical credit-risk classification problem
using the German Credit dataset and two base classifiers: Naive Bayes and Random Forest. Using split conformal
prediction, we construct prediction sets for the risk label with a marginal coverage guarantee at the nominal
90% level under the assumption of data exchangeability. We assess performance through empirical coverage
and average set size on a held-out test set, in addition to standard metrics of the base models (accuracy and
AUC). The results show that empirical coverage remains close to or above the nominal level, while the average
set size indicates a substantial proportion of clear decisions (| C(x)| = 1) and a smaller fraction in the gray zone
(IC(x)| = 2). We discuss how this decision-zone decomposition can support business rules by distinguishing
approvals and rejections with greater confidence and routing ambiguous cases to additional review. Finally, we
outline future directions involving more advanced variants of Conformal Prediction and evaluation criteria
that account for asymmetric error costs.

Keywords: Conformal Prediction; Conformal Inference; credit risk; classification; Random Forest; Naive Bayes;
prediction sets; empirical coverage; predictive uncertainty.
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1. Introduction

Statistical and machine learning (ML) models are wi-
dely used by financial institutions to support decisi-
ons across a variety of banking products. In credit-risk
problems, it is common to use classification models
to predict whether a new customer is a good or bad
payer based on registration, behavioral, and in some
cases, macroeconomic information. Typical examples
include models based on logistic or multinomial re-
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gression, Random Forest, gradient boosting methods,
among others.

In practice, these models provide a point estimate
of the probability of default, which is then used in in-
ternal decision rules (for example, credit approval or
rejection). However, they typically do not provide a me-
asure of uncertainty associated with each individual
prediction.

Standard model-evaluation tools are important for
assessing the overall performance of the classifier. Ne-
vertheless, these metrics do not provide formal gua-
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rantees regarding prediction quality at the individual
level. Moreover, the usual statistical assumptions of
a model, potential sampling biases, and changes in
the economic environment may affect the reliability
of these models, without such additional uncertainty
being clearly quantified.

In this context, the Conformal Inference approach
has emerged as a complement to traditional predic-
tive models by producing prediction sets accompanied
by coverage guarantees under the assumption of data
exchangeability [1]. Instead of returning only a class
label or a point probability, such methods associate
each new observation with a set of labels that, with a
pre-specified nominal probability, contains the true
label.

In recent years, the literature has documented appli-
cations of Conformal Inference in different fields, in-
cluding regression, time series, and high-dimensional
classification problems [2]. In finance, recent work has
explored the use of this approach to quantify uncer-
tainty in forecasts of financial variables and risk me-
trics [3]. Despite this, applications focused specifically
on credit risk (whether retail or wholesale) remain rela-
tively less explored.

In this work, we analyze a credit-risk classification
problem using the German Credit dataset, which is
widely used in the literature as a benchmark for evalu-
ating default models. We consider two models: Naive
Bayes and Random Forest. Based on the class probabi-
lities provided by these models, we apply Conformal
Inference techniques to construct prediction sets for
classification.

The goal of this study is to present a practical applica-
tion of the aforementioned methodology. In particular,
we seek to answer the following questions: (i) do the
theoretical coverage guarantees hold in practice? and
(ii) how can this information be interpreted from the
perspective of credit-risk decision-making?

The paper is organized as follows. In Section 2, we
describe the dataset, the computational resources, and
the Conformal Inference methodology adopted in this
study. In Section 3, we present and discuss the results
obtained for the German Credit dataset, emphasizing
the relationship between coverage, set size, and deci-
sion zones. Finally, in Section 4, we summarize the
main conclusions and suggest directions for future
work.
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2. Development

2.1. Data set

The study uses the Statlog German Credit Data dataset,
available from the UCI repository [4], which consists of
1,000 customers and 20 covariates of categorical and
numerical types, in addition to the (target) variable
that indicates the customer’s credit risk (response va-
riable Y). We adopt the convention Y = 1 for a good
payer and Y = 0 for a bad payer. The proportion of bad
payers is 40%, and approximately 60% are good payers.
From the 20 original variables, nine predictors were
selected to compose the covariate vector X. These va-
riables were chosen after a pre-processing step that
included normalization of the numerical covariates, re-
moval of predictors with zero variance, unique values,
or high correlation among themselves.

Summarized descriptions of the covariates used and
the response variable are presented in Table 1. To cha-
racterize the customer profile, we computed basic des-
criptive statistics for the selected variables, focusing on
measures of central tendency for the numerical covari-
ates, stratified by good and bad payer in Table 2. Addi-
tionally, we built a plot showing the behavior of the nu-
merical covariates (dur_months, cred_amt, and age),
using distinct colors for each risk class; see Figure 1.

Tabela 1: Description of the variables used from the German
Credit dataset.

Variable Brief description

acct_bal Checking account status

dur_months Credit contract duration, in months

cred_hist Previous credit history (delinquencies,
repaid loans, no credit history)

purpose Main purpose of the credit (car, furni-
ture, education, etc.)

cred_amt Amount of credit granted

savings Customer’s savings/investment balance

emp_dur Length of current employment (year
ranges, including unemployment)

property Type of declared property/asset (real es-
tate, savings, others, none)

age Applicant’s age, in years

target Credit risk (1 = good payer; 0 = bad
payer)

Tabela 2: Descriptive statistics of the numerical variables, by
risk class.

Variable Mean (Good) SD (Good) Mean (Bad) SD (Bad)
dur_months 19 11,08 25 13,28
cred_amt 2985,44 2401,50 3938,13 3535,82
age 36 11,35 34,00 11,23
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Descriptive analyses were also performed for the
other categorical variables included in the study, using
frequency tables and bar charts stratified by risk class.
However, these results are not presented here in detail
due to space limitations.
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Figura 1: Distribution of the numerical variables vs. risk class
(Target).

2.2. Computational resources

All data pre-processing steps, classifier fitting, and ap-
plication of Conformal Inference techniques were im-
plemented in Python (version 3.12.11), using the pandas
library for data manipulation, numpy for numerical
operations, and scikit-1learn for fitting the Naive
Bayes and Random Forest classifiers. The construc-
tion of conformal sets was carried out with the MAPIE
(Model-Agnostic Prediction Interval Estimator) library,
which provides an interface compatible with the
scikit-learn ecosystem; see [5]. Figures were pro-
duced with the matplotlib and seaborn libraries.
The hardware used was a laptop with 16 GB of RAM,
and the entire project was carried out in the VS CODE
programming environment.

2.3. Methodology

2.3.1. Classification models

We use two models that are widely applied in credit-
risk problems: Naive Bayes [6, 7] and Random Forest [8,
9]. These models were chosen because they combine
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well- established interpretations in the literature with
straightforward implementationsin the scikit-Tlearn
library.

The Naive Bayes classifier is based on the assump-
tion of conditional independence of the covariates gi-
ven the class label. In practical terms, the model esti-
mates, for each class, the distribution of the explana-
tory variables and combines these estimates through
Bayes' rule to obtain the posterior probability of each
class for a new individual.

Random Forest is an ensemble learning method that
builds a collection of decision trees fitted on bootstrap
samples of the training data, combining them by ma-
jority vote in the classification case. At each internal
split of the trees, a random subset of covariates is con-
sidered, which induces diversity among the trees and
contributes to reducing the variance of the ensemble.

2.4. Conformal Prediction

Let 2, = {(X;, Yi)}l’.l:1 be a dataset, where X; denotes
the covariate vector of customer i and Y; € {0, 1} indi-
cates their credit-risk status (1 = good payer, 0 = bad
payer). Given a new customer (X1, Y,+1), the goal
of Conformal Inference is to construct a predictive set
for the class, Cn (Xpn+1) €10,1}, such that the probabi-
lity of containing the true label is at least equal to a
pre-specified nominal level 1 — a:

P(Ype1 € Cu(Xni1) 2 1-a, 6))

under the assumption of data exchangeability [1].

In the binary credit-risk setting considered in this
work, each new customer is associated with a set C,, (x)
that can be {1} (approval case, “clear”), {0} (rejection
case, “clear”) or {0, 1} (intermediate case, in which the
method indicates higher uncertainty).

2.5. Split Conformal Prediction

According to [1], Split Conformal Prediction is the sim-
plest and most computationally efficient way to apply
conformal prediction. Following the notation of [1], let
D, = {(X;, Yi)};?zl be a set of exchangeable observati-
ons and consider a partition of the indices I; and I 4
such that I U Iq ={1,...,n} and Iy N I = @. The trai-
ning setis 21, = {(X;, Yi)}ie1,, and the calibration set is
Dioa = (X, Yidtiery-

First, a classification model is fitted only on 9;, yi-
elding the probabilistic classifier

fr.(x) = P(Y =k| X = x), )
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foreach k=0,1.

Next, for each observation in the calibration set, ab-
solute residuals are used to obtain the scores.

The score construction is given by

Ri=1Yi— f1, (x|, i€ I, 3)

From the sample of scores {R;};cr,,, the conformal
quantile gy, atlevel (1 — @) is computed according to
the definition: §,, = [(1 - a)(n2 + 1)1, the smallest of
{Ri}iel.,-

R Finally, the conformal predictive set is defined using

f1, and g, as follows:

én (x) = {fltr (x) - qlcal’ fItr (x) + qlcal}' (4)

The coverage guarantee 1 is achieved because, con-
ditional on the appropriate training set, the calibration
residuals and the testresidual R, 11 = | Y11 — f;u (Xp+1)|
are all i.i.d., and therefore exchangeable. Symmetry in
the construction of the scores is essential to ensure
the statistical property of exchangeability. The key idea
is to construct residuals in a way that treats all data
determining their distribution, including the test data,
symmetrically. Algorithm 1 details the complete pro-
cedure of the Split Conformal Prediction methodology
presented in this section.

Algorithm 1 Split Conformal Prediction

1. Input: data 9, = {(X;, Y,-)}?:1 and level a €
(0,1).

2. Partition the indices into two disjoint subsets:
Iy (training) and I, (calibration).

3. Train a probabilistic model on {(X;, Yi)}ier,,
obtaining the predictor fltr-

4. Foreachie I,

5. Compute the score R; = |Y; — f;u (X)I.

6. Compute the conformal quantile gy, as the
empirical quantile at level (1 —a) of the sample
{Ri}iel.,-

7. To predict at a new point x:

Compute the point prediction f}tr (x).

9. Define the conformal/predictive set
Con(0) = {1, 00 = 1> f1, 00 + i1 ).
10. Output: predictive set C,(x).

®

2.6. Evaluation measures

To evaluate the performance of the conformal sets, the
German Credit dataset was split into three mutually ex-
clusive subsets: training (70%), calibration (15%), and
test (15%). In this split, we stratified with respect to Y
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in order to preserve the proportion of good and bad
payers. The classification models were fitted only on
the training subset; the conformal scores were cons-
tructed on the calibration subset; and all evaluation
metrics were estimated on the test subset.

The main performance measure considered is the
empirical coverage of the conformal sets. Denoting by
Ntest the number of test observations and by C,(X;) the
predictive set associated with customer i, we define

Ntest
cov = > 1{Y; € Cu(X)}, (5)
Ntest j—1

where 1{-} is the indicator function. This metric sum-
marizes the proportion of customers for whom the true
label belongs to the conformal set, and it is compared
directly to the nominal coverage level 1 — a used in
calibration (in this study, « = 0,1).

As an efficiency measure, we use the average size of
the prediction sets, given by

Ntest

Y 1C (X)), (6)

Ntest j=1

width =

where |C,,(X;)| is the number of labels in the set asso-
ciated with customer i. In the binary case, 1Cn(X)| €
{1,2},so width can be interpreted as the relative propor-
tion of “clear” decisions (singleton sets) versus cases in
which both classes remain plausible (two-class sets).
For comparison with traditional approaches, we also
computed the accuracy and AUC of the classification
models on the test set, without the conformal step.

2.7. Decision zones in credit risk

Based on én (x), we propose three decision zones of
interest for the credit-risk context. The idea is to trans-
late the set size into operational categories that sup-
port business rules. Clear good-payer zone: cases in
which C‘n (x) = {1}, that is, the set contains only the
good-payer class. Thus, the classifier and the confor-
mal procedure point toward credit approval; Clear bad-
payer zone: cases in which én (x) = {0}, where the set
contains only the bad-payer class. These customers
are strong candidates for rejecting the application or
for more restrictive policies; Gray zone: cases in which
C’n (x) = {0, 1}, indicating that, at level 1 — a, both clas-
ses remain plausible. In this situation, the automatic
decision is less reliable, and customers may be routed
to human review.

http://aabo.leg.ufpr.br/tcc
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3. Results

3.1. Coverage and set size

Table 3 summarizes, for each model, the empirical co-
verage estimated on the test set and the average size
of the conformal sets, for a nominal confidence level
0of 90%. In both cases, the empirical coverage remains
above the nominal level, which is consistent with the
theoretical guarantees.

Regarding the average size of the prediction sets, the
results suggest that both models yield a value of appro-
ximately 1.4. Since this lies between 1 and 2, it indicates
that, on average, the method is operating close to the
lower bound (size 1).

Tabela 3: Empirical coverage and average size of the conformal
sets.

Base model Empirical coverage Average size
Naive Bayes 0,920 1,400
Random Forest 0,927 1,427

In practice, an average size of approximately 1.4 indi-
cates that the classification model, together with Split
Conformal Prediction, is discriminating uncertainty
with reasonable efficiency: in most cases (60%), it was
able to reduce the uncertainty set to a single class while
maintaining the marginal coverage guarantee 1 — a.

3.2. Decision zones by model

Figure 2 shows, for each model, the proportion of test-
set observations classified in the gray zone and in the
clear zone. For both models, most observations fall into
decision zones considered clear, although a relevant
fraction remains in the gray zone, in which both classes
remain plausible from the conformal perspective.
Figure 3 provides further detail by decomposing the
decision zones according to the true label Y in the
test set. For Naive Bayes, among customers who are in
fact bad payers (Y = 0), 25 observations fall in the gray
zone and 20 in the clear zone, indicating a higher con-
centration of ambiguous cases in this group. Among
good payers (Y = 1), there are 35 observations in the
gray zone and 70 in the clear zone, implying that about
two thirds of the test-set good payers are classified in a
clear decision zone. For Random Forest, the pattern is
similar: among bad payers (Y = 0), 29 observations are
in the gray zone and 16 in the clear zone; among good
payers (Y = 1), 35 are in the gray zone and 70 in the
clear zone. These results suggest that, for both models,
Conformal Prediction tends to produce clearer decisi-
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ons for the good-payer class, whereas the bad-payer
class concentrates a larger proportion of cases in the
gray zone, which may be relevant for defining more
conservative credit policies for these profiles.

Naive Bayes Random Forest
W gray zone

80 W clear zone

% of customers

40.0% 42.7%

gray zone clear zone gray zone clear zone

Figura 2: Proportion of test-set observations in the gray zone
and in the clear zone, for the models.

Naive Bayes Random Forest

35
i . i
g 0 1 0 1

True target (y)

W gray zone
M clear zone

# of customers

True target (y)

Figura 3: Number of test-set observations in the gray zone
and in the clear zone, decomposed by the true label Y € {0, 1},
for the models.

3.3. Model results

In this subsection, we analyze in greater detail the per-
formance of the Random Forest model, chosen as the
base model for proposing the institution’s business ru-
les. Although analogous analyzes were conducted for
the Naive Bayes classifier, the results were very similar
and, due to space limitations, are not presented here
in detail. Table 4 summarizes the classic performance
metrics of the Random Forest model in the test set,
without the conformal layer.

Tabela 4: Performance of the Random Forest model on the
test set (without Conformal Prediction).

Metric Value
Point accuracy 0,793
AUC-ROC 0,835

When incorporating the Conformal Prediction layer
with nominal level 1 — a = 0,90, we obtain the metrics
shown in Table 5. The estimated overall coverage is
approximately 0,907, very close to the nominal level,
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indicating that the vast majority of true labels in the
test set fall within the conformal sets produced by the
method. The average set size is width ~ 1,32, meaning
that, on average, the method returns slightly more than
one label per observation, while maintaining good effi-
ciency.

Tabela 5: Conformal-layer metrics for the Random Forest mo-
del (@ = 0,1) on the test set.

Metric Value
Overall coverage cov 0,907
Average set size width 1,32

Proportion of cases with ICl=1 0,68
Proportion of cases with ICl=2 0,32
Proportion of cases with IC]=0 0,00
Coverage for Y =1 (good payer) 1,00
Coverage for Y =0 (bad payer) 0,689

We observe that about 68% of the test observations
yield singleton sets (IC] = 1), that is, decisions consi-
dered clear from the conformal standpoint, whereas
approximately 32% of cases remain in the gray zone
(1Cl=2), requiring additional review or more conserva-
tive credit policies. No cases with |C| = 0 were observed,
which is consistent with the theoretical construction
of the method. Decomposing coverage by class shows
that, for good payers (Y = 1), coverage is essentially
perfect, whereas for bad payers (Y = 0), coverage is
around 0,689. This asymmetry is consistent with the
fact that Conformal Prediction guarantees marginal
coverage over the mixture of classes, but not necessa-
rily class-conditional (balanced) coverage, and it high-
lights the importance of analyzing the conformal-layer
performance separately across distinct risk segments.

From an applied perspective, these supplementary
results provide a more granular understanding of how
the conformal layer interacts with the base model: on
the one hand, it preserves strong overall coverage per-
formance; on the other hand, it makes explicit the
proportion of automatic decisions versus cases that
should be routed to the gray zone, as well as differen-
ces in coverage between good and bad payers. This
type of analysis is essential for the institution to cali-
brate the operational use of conformal sets, adjusting
confidence levels and business rules according to the
desired risk appetite.

4. Final Comments
This work presented an application of Conformal Pre-

diction to a classical credit-risk problem, using the Ger-
man Credit dataset and two base classification models,
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Naive Bayes and Random Forest. Using the split confor-
mal prediction approach, it was possible to construct
predictive sets for the probability of default with mar-
ginal coverage guarantees close to the nominal 90%
level, while maintaining good predictive performance
in terms of accuracy and AUC of the base model. The
analysis of decision zones showed that a relevant share
of customers can be classified into clear good- or bad-
payer zones, while a smaller fraction remains in the
gray zone, in which uncertainty should be carefully
assessed.

From the perspective of business rules, the confor-
mal layer adds an important dimension to the decision-
making process: in addition to the score or point proba-
bility provided by the base model, the institution gains
access to sets C(x) that make it possible to transparen-
tly distinguish customers with a strong indication of
good payer (C(x) = {1, customers with a strong indi-
cation of bad payer (C(x) = {0}), and borderline cases
(C(x) = {0,1}), which are candidates for human review
or more conservative policies.

For future research, we plan to explore more advan-
ced variants of Conformal Prediction described in [1],
such as full conformal, jackknife+, and cross-conformal
schemes. In addition, it is of interest to investigate
more refined evaluation criteria that account for asym-
metric misclassification costs between good and bad
payers, as well as to apply the methodology to other
credit portfolios and banking products.
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