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RESUMO 
 

A crescente complexidade dos sistemas de engenharia tem impulsionado o 
desenvolvimento de técnicas estocásticas para otimização, que superam as 
limitações dos métodos determinísticos. Metaheurísticas, especialmente as híbridas, 
têm se mostrado técnicas promissoras para lidar com problemas de múltiplos 
objetivos e alta dimensionalidade. Este trabalho propõe duas novas metaheurísticas 
híbridas, KOARIME (mono objetivo) e MOKOARIME (multi-objetivo), que combinam 
as abordagens de exploração do Algoritmo de Otimização de Kepler (KOA) e o 
refinamento das soluções inspirado no algoritmo RIME, baseado no crescimento do 
gelo-rime. A versão mono objetivo do KOARIME foi avaliada nas competições de 
benchmark CEC 2017, CEC 2019 e CEC 2023, considerando diferentes tamanhos 
populacionais, obtendo desempenho superior em aproximadamente 50% das 
funções avaliadas quando comparada aos algoritmos de referência. No contexto 
multi-objetivo, o MOKOARIME foi avaliado na competição CEC 2018, alcançando os 
melhores resultados em termos de convergência e diversidade em cerca de 60% dos 
problemas analisados. Além dos benchmarks, os algoritmos foram aplicados a 
problemas reais de engenharia. No estudo de uma microrrede híbrida off-grid, o 
KOARIME obteve 100% de vitórias na minimização mono objetivo do custo do ciclo 
de vida (LCC – Life Cycle Cost), enquanto o MOKOARIME apresentou desempenho 
superior em 75% dos cenários na formulação multi-objetivo, considerando 
simultaneamente critérios econômicos e ambientais. No problema de otimização de 
treliças estruturais, o MOKOARIME superou os algoritmos comparados em 93% dos 
casos avaliados, demonstrando elevada robustez e qualidade das frentes de Pareto 
obtidas. De forma geral, os resultados quantitativos confirmam que o KOARIME e o 
MOKOARIME são algoritmos eficientes, robustos e competitivos, apresentando boa 
escalabilidade computacional e desempenho consistente tanto em benchmarks 
clássicos quanto em problemas reais de engenharia, consolidando-se como 
abordagens competitivas e robustas para problemas de otimização mono objetivo e 
multi-objetivo em engenharia. 
 
Palavras-chave: Metaheurísticas híbridas; otimização mono objetivo; otimização 
multi-objetivo; sistemas híbridos de energia renovável; CEC benchmarks. 
 



 

ABSTRACT 
 
The increasing complexity of engineering systems has driven the development of 
stochastic optimization techniques capable of overcoming the limitations of 
deterministic methods. Metaheuristics, particularly hybrid approaches, have proven to 
be promising techniques for addressing problems involving multiple objectives and 
high dimensionality. This work proposes two new hybrid metaheuristics, KOARIME 
(single objective) and MOKOARIME (multi-objective), which combine the exploration 
mechanisms of the Kepler Optimization Algorithm (KOA) with solution refinement 
inspired by the RIME algorithm, based on the growth of rime ice. The single-objective 
version of KOARIME was evaluated on the CEC 2017, CEC 2019, and CEC 2023 
benchmark suites, considering different population sizes, and achieved superior 
performance in approximately 50% of the evaluated functions when compared with 
reference algorithms. In the multi-objective context, MOKOARIME was assessed on 
the CEC 2018 benchmark suite, achieving the best results in terms of convergence 
and diversity in about 60% of the analyzed problems. Beyond benchmark 
evaluations, the proposed algorithms were applied to real engineering problems. In 
the study of a hybrid off-grid microgrid, KOARIME achieved 100% victories in the 
single-objective minimization of the life cycle cost (LCC), while MOKOARIME 
outperformed competing algorithms in 75% of the scenarios under the multi-objective 
formulation, simultaneously considering economic and environmental criteria. In the 
structural truss optimization problem, MOKOARIME surpassed the compared 
algorithms in 93% of the evaluated cases, demonstrating high robustness and 
superior quality of the obtained Pareto fronts. Overall, the quantitative results confirm 
that KOARIME and MOKOARIME are efficient, robust, and competitive algorithms, 
exhibiting good computational scalability and consistent performance across both 
classical benchmark problems and real-world engineering applications, thereby 
consolidating themselves as competitive and robust approaches for single-objective 
and multi-objective optimization in engineering. 

 
 Keywords: Hybrid metaheuristics; single-objective optimization; multi-objective 

optimization; renewable hybrid energy systems; CEC benchmarks. 
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1 INTRODUÇÃO 
 

A crescente complexidade dos problemas enfrentados em diversas áreas, 

como engenharia, ciência da computação e economia, tem impulsionado o 

desenvolvimento de métodos de otimização mais sofisticados e eficazes.  

 Otimizar é a tarefa de encontrar uma ou mais soluções que corresponde a 

minimizar (ou maximizar) um ou mais objetivos especificados e que satisfaçam todas 

as restrições (se houver). Um problema da otimização mono objetivo envolve apenas 

uma função objetivo e geralmente resulta em uma única solução. Naturalmente, 

quando há apenas uma função a ser otimizada, a obtenção dos resultados costuma 

ser mais simples. Por outro lado, um problema de otimização que envolve múltiplos 

objetivos que devem ser otimizados ao mesmo tempo e que podem apresentar uma 

natureza conflitante entre si, é chamado de problema de otimização multi-objetivo 

(Multi-objective Optimization Problems - MOPs) (Cheng et al., 2018). 

Métodos tradicionais de otimização, como aqueles baseados em gradiente e 

programação linear, muitas vezes falham em lidar com problemas caracterizados por 

múltiplos ótimos locais, não linearidade acentuada e alta dimensionalidade. Esses 

métodos tendem a ficar presos em mínimos locais e são ineficazes quando se trata 

de explorar espaços de solução vastos e complexos. Em resposta a essa demanda, 

as metaheurísticas têm se destacado como ferramentas cruciais, capazes de 

abordar problemas de otimização complexos, onde métodos tradicionais não 

conseguem alcançar soluções satisfatórias (Talbi, 2009). 

O termo "metaheurística" deriva de duas palavras gregas: "meta" que significa 

além, e "heurística" que significa encontrar ou descobrir. Assim, as metaheurísticas 

são algoritmos de "alto nível" que guiam outras heurísticas ou processos de busca 

para explorar o espaço de soluções de maneira eficiente (Gendreau & Potvin, 2010). 

Atualmente, essas técnicas são consideradas métodos de ponta para solucionar 

problemas de otimização difíceis. Assim, sempre que surgem novos problemas de 

otimização, as metaheurísticas são uma das principais ferramentas no rol de 

soluções (Anerjee et al., 2024). 

Segundo os autores Kiani et al. (2023), as metaheurísticas podem ser 

classificadas em quatro grupos principais: Algoritmos inspirados na evolução; 

Algoritmos inspirados na inteligência de enxame; Algoritmos inspirados em leis da 

física; Algoritmos inspirados no comportamento humano. Essa classificação 
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evidencia a diversidade dessas técnicas e sua ampla aplicabilidade na resolução de 

problemas complexos de otimização. 

Nos últimos anos, está relatado na literatura um aumento significativo de 

algoritmos que não seguem puramente o paradigma de uma metaheurística 

tradicional única. Pelo contrário, combinam vários componentes algorítmicos, muitas 

vezes originários de algoritmos de outras áreas de pesquisa sobre otimização. A 

evolução das metaheurísticas tem sido constante ao longo dos anos e com isto 

diversas combinações têm surgido, como as metaheurísticas híbridas (Talbi, 2015). 

A principal motivação por trás da hibridização de diferentes algoritmos é 

explorar o caráter complementar de diferentes estratégias de otimização, ou seja, 

acredita-se que os algoritmos híbridos se beneficiem da sinergia. Na verdade, a 

escolha de uma combinação adequada de conceitos algorítmicos complementares 

pode ser a chave para obter o melhor desempenho na solução de muitos problemas 

de otimização difíceis. Infelizmente, o desenvolvimento de uma abordagem híbrida 

eficaz é, em geral, uma tarefa difícil que requer experiência de diferentes áreas de 

otimização. Além disso, a literatura mostra que não é trivial generalizar, ou seja, um 

determinado híbrido pode funcionar bem para problemas específicos, mas pode 

funcionar mal para outros. 

Existem duas abordagens principais para a hibridização das metaheurísticas: 

hibridização sequencial e hibridização paralela, cada uma oferecendo estratégias 

distintas para combinar algoritmos e potencializar o desempenho da otimização. 

Existem muitos trabalhos sobre a hibridização de metaheurísticas na 

literatura. Alguns dos trabalhos mais recentes são apresentados a seguir: Lin, Bian e 

Dong (2022), que desenvolveram o híbrido Evolução Diferencial (DE) + Busca do 

Cuco (CS) para roteamento de tubulações navais sob múltiplas restrições 

geométricas e de colisão, elevando a eficiência de busca no layout de dutos; 

Mohammed e Rashid (2020), que combinaram Algoritmo da Baleia (WOA) + 

Algoritmo do Lobo Cinzento (GWO) para dimensionamento de vaso de pressão, 

obtendo melhor precisão e convergência do que as versões base dos algoritmos; 

Brajević et al. (2022), que integraram Algoritmo de Seno Cosseno (SCA) + Colônia 

Artificial de Abelhas (ABC) , resolveram 15 problemas clássicos de projeto de 

engenharia (por exemplo, viga soldada, vaso de pressão, redutor de velocidade), 

superando as versões base dos algoritmos em diversos casos; e Omidinasab e 
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Goodarzimehr (2020), que propuseram um híbrido Otimização por Enxame de 

Partículas (PSO) + Algoritmo Genético (GA) para dimensionamento ótimo de treliças 

com variáveis discretas, minimizando o peso sob restrições de tensão e 

deslocamento e obtendo soluções competitivas e estáveis frente a métodos de 

referência. 

Também existem metaheurísticas híbridas voltadas para otimização multi-

objetivo. Vo, Tang e Lee (2024) propõem o MOGWOCS, que integra o Grey Wolf 

Optimizer a operadores do Cuckoo Search (movimentos de Lévy) e ajustes no 

mecanismo de atualização, alcançando melhores valores de hipervolume (HV) e 

distância de geração invertida (IGD - Inverted Generational Distance) em 

benchmarks. Yang, Liu e Yang (2022) apresentam a Otimização por Enxame de 

Partículas Multi-objetivo Competitiva-Cooperativa (CCHMOPSO), uma versão 

aprimorada da Otimização por Enxame de Partículas Multi-objetivo (MOPSO) com 

gestão adaptativa do arquivo externo para preservar a diversidade, regra combinada 

para atualização do melhor resultado e perturbações dirigidas, superando o MOPSO 

e Algoritmos Evolutivos Multi-objetivo (MOEAs) clássicos. Zhu et al. (2024) 

hibridizam a seleção ambiental ao combinar dominância de Pareto generalizada 

simétrica com vetores de referência ajustados, equilibrando convergência e 

diversidade. Por fim, Du et al. (2024) aprimoram o Algoritmo Genético Não-

Dominado II (NSGA-II) com inicialização diversificada, busca local e elitismo 

adaptativo, obtendo ganhos consistentes nas métricas da frente de Pareto (HV/IGD) 

em grande parte dos benchmarks. 

Os trabalhos brevemente citados mostram que a proposição de uma 

metaheurística híbrida é um tema interessante para pesquisadores que buscam 

obter melhores resultados na solução de diferentes tipos de problemas de 

otimização. Nesta dissertação são propostas duas novas metaheurísticas: a primeira 

uma metaheurística mono objetivo denominada Algoritmo de Otimização KOARIME 

(KOARIME), baseada nas metaheurísticas mono objetivo Algoritmo de Otimização 

de Kepler (KOA) e Algoritmo de Otimização RIME; a segunda uma metaheurística 

multi-objetivo denominada Algoritmo de Otimização KOARIME Multi-objetivo 

(MOKOARIME), baseada na metaheurística mono objetivo KOARIME e na utilização 

dos conceitos de dominância generalizada de Pareto  para a seleção da população 

em cada iteração. Os algoritmos são aplicados a um conjunto de funções de teste e 
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seus resultados são comparados com os de outros algoritmos de otimização. Por 

fim, os algoritmos propostos são utilizados em problemas da engenharia. 

 

1.1 MOTIVAÇÃO 
 

Com o avanço da complexidade dos problemas de engenharia, e conforme 

análise na literatura envolvendo o uso de metaheurísticas mono e multi-objetivo 

(clássicas e híbridas) em problemas do tipo NP (Tempo Polinomial Não 

Determinístico), cuja obtenção da solução ótima pode demandar tempo exponencial, 

as metaheurísticas tem-se mostrado técnicas promissoras e eficientes quando se 

trata de analisar o comportamento dinâmico dos subsistemas conflitantes destes 

sistemas.  

A busca por novos métodos para a otimização desses problemas tem levado 

os pesquisadores a proporem novas técnicas ou a combinação de técnicas 

existentes. E segundo o teorema No Free Lunch (Wolpert e Macready, 1997) que 

afirma que, para qualquer algoritmo de otimização, qualquer melhoria no 

desempenho em uma classe de problemas é compensada por um desempenho 

inferior em outra classe, ou seja, não existe um algoritmo ótimo universal para todos 

os problemas de otimização. Baseado neste paradigma o presente trabalho propõe a 

construção de duas metaheurísticas híbridas, uma mono e outra multi-objetivo a 

partir das metaheurísticas KOA e RIME. Essas novas metaheurísticas tem como 

objetivo melhorar a performance em termos de convergência e diversidade das 

soluções utilizando métricas como valor mínimo/máximo, IGD e Hipervolume (HV) 

quando comparadas com outras metaheurísticas da literatura. 

 

1.2 OBJETIVOS 
 

A seguir, o objetivo geral dessa dissertação é abordado, seguido pela 

descrição dos objetivos específicos. 
 

1.2.1 Objetivo geral 
 

Desenvolver dois algoritmos híbridos mono e multi-objetivo baseado em 

metaheurística no campo de fenômeno físico para a otimização de Sistemas de 

Engenharia. 
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1.2.2 Objetivos específicos 
 

Os objetivos específicos da pesquisa proposta são: 

 

a. Realizar um estudo sobre as metaheurísticas; 

b. Realizar um levantamento do estado da arte no uso de metaheurísticas 

para Sistemas de Engenharia;  

c. Desenvolver um algoritmo mono objetivo que combine as melhores 

características do KOA e do RIME buscando maximizar o desempenho; 

d. Avaliar a performance do algoritmo híbrido desenvolvido nas competições 

CEC2017, CEC2019 e CEC2023 e comparar seus resultados com os 

obtidos pelas principais metaheurísticas. 

e. Transformar o algoritmo mono objetivo desenvolvido em multi-objetivo. 

f. Avaliar a performance do algoritmo híbrido desenvolvido nas benchmarks 

multi-objetivo da CEC2018, bem como em aplicações reais de otimização 

de sistemas de engenharia. 
 

1.3 ESTRUTURA DO DOCUMENTO 
 

Este documento está organizado em sete capítulos que apresentam, de forma 

integrada, os conceitos fundamentais, o desenvolvimento das metaheurísticas 

propostas e a análise dos resultados obtidos. No Capítulo 1, são introduzidos o 

contexto, a motivação e os objetivos do trabalho, destacando a relevância da 

otimização aplicada a sistemas complexos de engenharia. 

O Capítulo 2 apresenta a fundamentação teórica necessária para o 

desenvolvimento da pesquisa, abrangendo conceitos de otimização, métodos mono 

e multi-objetivo e a descrição das metaheurísticas conforme sua classificação. Na 

sequência, no Capítulo 3 são apresentados os benchmarks utilizados na validação 

dos algoritmos, bem como os dois problemas reais avaliados: a microrrede off-grid e 

os sistemas estruturais de treliças. 

O Capítulo 4 apresenta a revisão sistemática da literatura, destacando 

trabalhos recentes, abordagens híbridas e lacunas encontradas, que motivaram a 

formulação do algoritmo KOARIME nas versões mono e multi-objetivo. Já o Capítulo 

5 detalha a metodologia proposta, apresentando a estrutura do algoritmo híbrido 
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mono objetivo e sua extensão para o caso multi-objetivo, bem como os 

procedimentos de avaliação utilizados. 

O Capítulo 6 reúne os resultados obtidos. Primeiramente são apresentados os 

desempenhos do algoritmo mono objetivo nos benchmarks CEC. Em seguida, são 

apresentados os resultados da versão multi-objetivo nos benchmarks e nos 

problemas reais, contemplando a análise do sistema off-grid tanto na formulação 

mono objetiva (otimização do LCC) quanto na versão multi-objetiva, além dos 

resultados obtidos na otimização estrutural das treliças. Por fim, são apresentadas 

as conclusões, destacando as contribuições do trabalho e possibilidades de 

continuidade.
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2 FUNDAMENTAÇÃO TEÓRICA 
 

Existem muitos métodos de otimização e cada um deles alcança bons 

resultados em determinados tipos de problema. A escolha do método depende de 

uma série de características do problema a ser otimizado, principalmente do 

comportamento da função que o representa, a qual muitas vezes é de difícil 

determinação. Para esta escolha, faz-se necessário também um bom conhecimento 

das ferramentas de otimização. 

Algoritmos metaheurísticos são paradigmas da inteligência computacional 

usados especialmente para resolver problemas de otimização difíceis. Em geral, os 

algoritmos computacionais inteligentes visam gerar uma nova solução superior à 

existente a cada iteração. Idealmente, espera-se que algoritmos computacionais 

inteligentes gerem soluções superiores às soluções atuais com mínimo esforço 

Neste capítulo será apresentada a teoria relacionada à proposta desta 

pesquisa. Inicialmente serão abordados conceitos sobre otimização, assim como 

serão apresentadas as definições de problemas mono objetivo e multi-objetivo. Em 

seguida, serão abordados conceitos sobre metaheurísticas suas classificações, 

utilizadas na formulação dos algoritmos híbridos. 

 
2.1 OTIMIZAÇÃO 
 

Otimizar é a tarefa de encontrar uma ou mais soluções que corresponde a 

minimizar (ou maximizar) um ou mais objetivos especificados e que satisfaçam todas 

as restrições (se houver). Um problema de otimização de objetivo único envolve 

apenas uma função objetivo e geralmente resulta em uma única solução. 

Naturalmente, quando há apenas uma função a ser otimizada, a obtenção dos 

resultados costuma ser mais simples. Por outro lado, um problema de otimização 

que envolve múltiplos objetivos que devem ser otimizados ao mesmo tempo e que 

podem apresentar uma natureza conflitante entre si, é chamado de problema de 

otimização multi-objetivo (Multi-Objective Optimization Problems - MOPs). Uma 

classe especial de MOPs são os problemas com quatro ou mais objetivos que são 

conhecidos na literatura como problemas de otimização com muitos objetivos (Many-

Objective Optimization Problems - MaOPs) (Cheng et al., 2018). 

Os problemas de otimização geralmente são caracterizados por três 
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elementos fundamentais. O primeiro é uma quantidade numérica, definida como 

função objetivo, usada para avaliar soluções candidatas. Em muitos problemas de 

otimização, há apenas uma função objetivo, e encontrar a melhor solução candidata 

é equivalente a encontrar o elemento com o melhor valor possível da função 

objetivo, intitulado como solução “ótima”. A função objetivo representa um valor que 

se deseja minimizar (ou maximizar, dependendo do contexto). O segundo elemento 

é uma coleção de variáveis de decisão, que são quantidades que podem ser 

manipuladas para otimizar as funções objetivo. O terceiro elemento são as 

restrições, que são condições que devem ser sempre verdadeiras, não importa qual 

seja a solução, impondo restrições aos valores que as variáveis de decisão podem 

assumir (Abraham et al., 2005; WRIGHT, 2016). 

A formulação matemática de um problema de otimização é o primeiro passo 

para sua resolução. Corresponde à tradução do problema em equações e 

inequações que representam seus três elementos: as funções objetivo, as variáveis 

de decisão e as restrições. Os métodos que serão aplicados para resolver o 

problema de otimização dependerão de sua formulação matemática. Uma 

formulação incompleta ou incorreta levará o método a produzir soluções inviáveis ou 

nenhuma solução. 

 

2.1.1 Otimização Mono Objetivo 
 

A otimização mono objetivo visa determinar, no conjunto de soluções viáveis, 

aquela que melhor atende a um único objetivo (por exemplo, minimizar o custo total, 

maximizar a eficiência ou reduzir as emissões). Nessa abordagem, a função objetivo 

é a métrica central de avaliação: atribui a cada solução um valor único. As variáveis 

de projeto são as decisões sob controle que configuram o sistema (por exemplo, 

quantidade de módulos fotovoltaicos, número de turbinas e capacidade de baterias) 

e determinam diretamente o valor do objetivo; ao ajustá-las, o desempenho se 

altera, o que viabiliza escolher a configuração que melhor atende ao critério adotado. 

Em problemas de engenharia, é importante explicitar qual propriedade será 

otimizada (tensões, consumo, custo, tração, eficiência) e caracterizar a função 

objetivo quanto à dimensionalidade (dependência de uma ou de múltiplas variáveis) 

e ao seu comportamento global (unimodal, com um único extremo; ou multimodal, 

com múltiplos extremos). Por fim, apresentam-se o melhor valor da função objetivo e 
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a configuração de decisão correspondente. 

Problemas de otimização mono objetivo (minimização) de uma forma geral 

pode ser formulados pela Equação (1): 

 

 
 

                                              (1) 
 

 
 

 
onde: 

    = Vetor de variáveis de decisão; 

 = Conjunto admissível (domínio) das variáveis de decisão; 
 = Função objetivo; 

              = J-ésima restrição de desigualdade; 

              = K-ésima restrição de igualdade; 

 = Limite inferior e o limite superior; 
 

O funcionamento básico do algoritmo mono objetivo parte de uma 

especificação clara do problema e de uma solução inicial viável. O procedimento 

evolui por iterações sucessivas nas quais o algoritmo aplica sua regra de atualização 

para produzir um novo candidato a partir do estado corrente (por exemplo, ajustando 

valores das variáveis conforme a lógica interna do método). Cada candidato é então 

avaliado pela função objetivo e verificado quanto ao atendimento das restrições. Em 

seguida, aplica-se uma regra de aceitação: o candidato substitui a solução atual 

apenas quando melhora o critério estabelecido e mantém a viabilidade; caso 

contrário, a solução atual é preservada e o processo avança para a próxima 

iteração. O ciclo continua até o cumprimento de critérios de parada previamente 

definidos, como o número máximo de iterações ou ausência de progresso 

mensurável por um intervalo determinado. Ao final, apresentam-se o melhor valor da 

função objetivo, a configuração de decisão correspondente e a confirmação de 

atendimento às restrições. 

Para exemplificar o comportamento da otimização mono objetivo em um 

problema de natureza multimodal, foi utilizada a função de Rastrigin unidimensional, 
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conhecida por sua alta complexidade devido à presença de diversos mínimos locais 

distribuídos ao longo do domínio.  

Na Figura 1, tem-se a representação da função de Rastrigin unidimensional, 

classificada como uma função multimodal devido à presença de múltiplos mínimos 

locais distribuídos ao longo do domínio. Nessa representação, x corresponde à 

variável de decisão e f(x) representa o valor da função objetivo a ser minimizada, 

sendo o domínio de x restrito ao intervalo [-2.5,2.5], destacando-se os pontos 

marcados que correspondem às iterações em que houve melhora significativa da 

solução. Observa-se que, na iteração 0, o valor da função é elevado ( ( ) ≈ 2); em 

seguida, o algoritmo se desloca para a iteração 1, reduzindo o valor para 

aproximadamente ( ( ) ≈ 1); e, por volta da iteração 32, aproxima-se do mínimo 

global (x = 0). Essa visualização mostra como o algoritmo percorre o espaço de 

busca e gradualmente converge para solução ótima. 
 

FIGURA 1 – Representação da função Rastrigin 

 

 
Fonte: O Autor, 2025. 

 

2.1.2 Otimização Multi-Objetivo 
 

Em otimização multi-objetivo, em geral, não existem soluções ótimas no 

sentido de minimizarem/maximizarem individualmente todos os objetivos. A principal 

característica na otimização multi-objetivo é a existência de um conjunto de soluções 

eficientes/aceitáveis que são superiores às demais. Encontrar todas essas soluções 

eficientes é geralmente uma tarefa inviável, especialmente em problemas com 
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muitos objetivos (Palakonda; Mallipeddi, 2017). Na prática, os otimizadores tentam 

entregar um conjunto com a maior quantidade e diversidade de soluções eficientes. 

Quando encontrar tais soluções é impraticável, os otimizadores tentam entregar uma 

boa aproximação dessas soluções. Tal conjunto de soluções é chamado de 

aproximação do conjunto de Pareto, ou conjunto de aproximação, e o conjunto de 

seus pontos no espaço objetivo é denominado aproximação da fronteira de Pareto.  

Existem muitos métodos de otimização e cada um deles alcança bons 

resultados em determinados tipos de problema. A escolha do método depende de 

uma série de características do problema a ser otimizado, principalmente do 

comportamento da função que o representa, a qual muitas vezes é de difícil 

determinação. Para esta escolha, faz-se necessário também um bom conhecimento 

das ferramentas de otimização. 

Problemas de otimização multi-objetivo de uma forma geral pode ser 

formulado pela Equação (2): 

 
 

                                              (2) 
 

 
 

 
onde: 

    = Vetor de variáveis de decisão; 

 = Conjunto admissível (domínio) das variáveis de decisão; 
 = Vetor de objetivos; 

               = J-ésima restrição de desigualdade; 

               = K-ésima restrição de igualdade; 

 = Limite inferior e o limite superior; 
   

Em problemas com múltiplos objetivos, raramente existe uma solução que 

simultaneamente minimize (ou maximize) todos os critérios de interesse. Em vez 

disso, busca-se um conjunto de soluções que representam compromissos eficientes 

entre objetivos potencialmente conflitantes (por exemplo, custo versus 

desempenho). Essa ideia é formalizada pelo conceito de Pareto: compara-se duas 

soluções no espaço dos objetivos e diz-se que uma solução domina a outra quando 

ela não é pior em nenhum objetivo e é estritamente melhor em pelo menos um 
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deles. Se não existe, no conjunto viável, nenhuma solução que domine uma dada 

solução, então essa solução é dita não dominada ou Pareto-ótima. 

O conjunto de todas as soluções não dominadas no espaço de decisão 

constitui o chamado conjunto de Pareto. Ao projetar essas soluções para o espaço 

dos objetivos, isto é, olhando apenas os valores dos critérios, obtém-se a fronteira 

de Pareto. Em termos geométricos, para dois objetivos a fronteira aparece como 

uma curva que delimita o “melhor contorno” da região factível; para três objetivos, 

como uma superfície; e, para um número maior de objetivos, como um conjunto de 

pontos de dimensão superior. Cada ponto nessa fronteira é eficiente: melhorar um 

objetivo a partir dele implica, necessariamente, degradar pelo menos um outro. 

A Figura 2 ilustra, em um problema multi-objetivo de minimização, o conceito 

de fronteira de Pareto e de dominância. O eixo horizontal (Objetivo 1) e o eixo 

vertical (Objetivo 2) representam dois critérios conflitantes; portanto, soluções 

“melhores” situam-se mais próximas do canto inferior esquerdo (valores menores em 

ambos os objetivos). As curvas indicadas como Fronteira de Pareto 1 e Fronteira de 

Pareto 2 correspondem, à primeira e à segunda frente obtidas por ordenação de 

não-dominância. A Fronteira de Pareto 1 reúne soluções não dominadas dentro do 

conjunto analisado, isto é, para cada ponto nessa curva não existe outro que seja 

simultaneamente melhor (menor) em todos os objetivos e estritamente melhor em 

pelo menos um deles. Já a Fronteira de Pareto 2 cada ponto é dominado por ao 

menos uma alternativa pertencente à fronteira 1. Os pontos A e B pertencem à 

Fronteira de Pareto 1 e, portanto, são não dominados no conjunto analisado. O 

ponto A apresenta melhor desempenho no Objetivo 1 (posição mais à esquerda) e 

pior no Objetivo 2 (posição mais alta), ao passo que B exibe o comportamento 

oposto. Como nenhum deles é simultaneamente superior ao outro em ambos os 

objetivos, A e B não se dominam e ambos compõem o conjunto eficiente. Já o ponto 

C, situado na Fronteira de Pareto 2, é dominado por pelo menos uma solução da 

fronteira 1, isto é, existe uma alternativa com valores não piores em todos os 

objetivos e estritamente melhor em pelo menos um, e, por essa razão, não integra a 

fronteira de Pareto (conjunto de soluções não dominadas) do problema. 
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FIGURA 2 – Exemplo de fronteira de Pareto e relação de dominância 

 
Fonte: Adaptado de KESIREDDY; MEDRANO, 2024. 

 

Um ponto central na avaliação de frentes aproximadas em otimização multi-

objetivo é relatar, simultaneamente, quão perto a solução está da fronteira de Pareto 

verdadeira (convergência) e quão bem distribuída ela está ao longo dessa fronteira 

(diversidade). Dois indicadores consolidados para isso são o Hipervolume (HV) e o 

IGD(Distância Geracional Invertida - Inverted Generational Distance). O HV mede o 

volume no espaço dos objetivos dominado pelo conjunto aproximado em relação a 

um ponto de referência; quanto maior o HV, melhor é, pois o conjunto domina uma 

região mais ampla (capturando, de forma única, convergência e espalhamento). Já o 

IGD calcula a distância média de uma fronteira de referência até o conjunto obtido; 

nesse caso, valores menores indicam melhor aproximação. 

 

2.2 METAHEURÍSTICAS 
 

O termo "metaheurística" deriva de duas palavras gregas: "meta" que significa 

além, e "heurística" que significa encontrar ou descobrir. Assim, as metaheurísticas 

são algoritmos de "alto nível" que guiam outras heurísticas ou processos de busca 

para explorar o espaço de soluções de maneira eficiente. Esses algoritmos são 

inspirados em diversos fenômenos naturais, sociais e físicos (Gendreau & Potvin, 

2010). 
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As metaheurísticas podem ser classificadas em quatro grandes grupos, de 

acordo com os princípios que orientaram seu desenvolvimento: baseadas em 

evolução, comportamento de enxames, fenômenos físicos/químicos e 

comportamento humano. Essa classificação evidencia a diversidade dessas técnicas 

e sua ampla aplicabilidade na resolução de problemas complexos de otimização 

(Blum & Roli, 2003). 

 

2.2.1 Classificação das metaheurísticas 
 

As metaheurísticas podem ser classificadas em quatro grandes grupos, com 

base nos fenômenos que inspiraram sua criação. Cada grupo utiliza uma abordagem 

distinta para explorar o espaço de soluções, destacando sua versatilidade e 

eficiência em resolver problemas complexos. A seguir, cada grupo é descrito em 

mais detalhes. 

 

2.2.1.1 Algoritmos Baseados em Evolução 
 

Inspirados na teoria da evolução biológica, os algoritmos deste grupo utilizam 

mecanismos como seleção natural, mutação e recombinação para simular o 

processo evolutivo. Nesse contexto, as soluções candidatas são tratadas como 

indivíduos de uma população que evolui ao longo do tempo, onde apenas os 

melhores sobrevivem para gerar novas soluções. 

 

Exemplos: 

 Algoritmo Genético – GA (Goldberg, 1989); 

 Algoritmo Genético de Ordenação Não Dominada III - NSGA-III (Deb, K.; 

Jain, H., 2014); 

 Evolução Diferencial Adaptativa com Operadores de Ensemble - EA4Eig (Yi 

et al., 2022). 

 

2.2.1.2 Algoritmos Baseados em Comportamento Humano 
 

Este grupo de algoritmos se inspira em diferentes aspectos do 

comportamento humano, como aprendizado, ensino, emoções e interações sociais. 
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Esses algoritmos simulam a maneira como os seres humanos resolvem problemas, 

frequentemente em colaboração com outros, ou através de processos adaptativos e 

de aprendizado contínuo. 

 

Exemplos: 

 Otimização Baseada em Ensino-Aprendizagem – TLBO (Rao; Savsani; 

Vakharia, 2011); 

 Otimizador de Engenharia Social Multi-objetivo - MOSEO (Fard et al., 2016); 

 Algoritmo de Desempenho Baseado no Comportamento de Aprendizes 

(Rahman; Rashid, 2021). 

 

2.2.1.3 Algoritmos Baseados em Fenômenos Físicos 
 

Algoritmos deste grupo simulam processos físicos, como a termodinâmica, e 

as leis da física clássica e quântica. Ao modelar as interações físicas e as leis que 

regem o comportamento dos sistemas naturais, esses algoritmos oferecem 

mecanismos inovadores para explorar e intensificar o espaço de soluções. 

 

Exemplos: 

 Algoritmo de Busca Gravitacional – GSA (Rashedi et al., 2009); 

 Algoritmo do Ciclo da Água Multi-objetivo – MOWCA (Sadollah et al., 2015); 

 Otimizador do Espectro de Luz - LSO (Abdel-Basset et al.,2022). 

 

2.2.1.4 Algoritmos Baseados em Comportamento de Enxames 
                             

Algoritmos neste grupo são inspirados pelo comportamento coletivo 

observado na natureza, como o movimento de bandos de pássaros, cardumes de 

peixes ou colônias de formigas. Essas técnicas se baseiam na cooperação e troca 

de informações entre várias soluções candidatas para convergir para a solução 

ótima. 

 

Exemplos: 

 Otimização de Colônia de Formigas – ACO (Dorigo; Maniezzo; Colorni, 

1996); 



35 
 

 Otimizador de Lobos Cinzentos Multi-objetivo – MOGWO (Mirjalili et al., 

2016); 

 Algoritmo do Enxame de Patos – DSA (Zhang; Wen, 2021). 

 

Um conceito importante no campo da metaheurística é o Teorema do No Free 

Lunch (NFL). Esse teorema, aplicável a qualquer algoritmo de otimização, afirma 

que nenhum algoritmo é o melhor para resolver todos os tipos de problemas. Isso 

significa que o desempenho de um algoritmo depende das características do 

problema. Por exemplo, um algoritmo que funciona bem para um tipo de problema 

pode apresentar resultados ruins para outro. Por isso, é essencial escolher a 

metaheurística certa para cada situação. Muitas vezes, é necessário ajustar ou 

combinar diferentes algoritmos para obter melhores resultados (Wolpert & Macready, 

1997). 

 

2.2.2 Hibridização das metaheurísticas 
 

Problemas reais de otimização costumam reunir características que tornam a 

busca pela melhor solução particularmente desafiadora: funções objetivo não 

convexas e, por vezes, não diferenciáveis; múltiplos ótimos locais; variáveis 

contínuas e discretas combinadas; restrições complexas; e avaliações custosas 

(simulações demoradas, protótipos, ensaios). Nesse cenário, as metaheurísticas se 

consolidaram como estratégias de alto nível adaptáveis a várias classes de 

problemas, desde que se respeite o equilíbrio entre diversificação (explorar regiões 

distintas do espaço) e intensificação (refinar soluções promissoras). 

A hibridização surge como uma engenharia de algoritmos que combina, de 

forma coordenada, metaheurísticas entre si e/ou com técnicas exatas (programação 

matemática, por restrições) e métodos de IA, com o propósito de somar virtudes e 

mitigar fragilidades. Evidências reportadas na literatura mostram que integrações 

bem projetadas tendem a produzir soluções mais eficientes e robustas do que 

abordagens isoladas, justamente por articularem melhor a diversificação e 

intensificação (Blum et al., 2008). 

Do ponto de vista arquitetural, a literatura distingue duas famílias principais de 

hibridização: sequencial e paralela. 
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2.2.2.1 Hibridização Sequencial 
 

A hibridização sequencial é uma estratégia em que dois (ou mais) métodos de 

busca são aplicados em fases sucessivas, de modo que a saída de um algoritmo 

serve de ponto de partida para o seguinte. Em geral, emprega-se primeiro um 

componente de exploração global (responsável por cobrir amplamente o espaço de 

decisão e identificar regiões promissoras) e, na sequência, um componente de 

intensificação local (voltado a refinar soluções candidatas nessas regiões). A 

transição entre as fases pode ocorrer uma única vez, ao final, ou iterativamente, 

guiada por critérios como número de iterações, estagnação do valor objetivo ou 

perda de diversidade. Essa arquitetura combina ampla busca com refinamento 

dirigido, aumentando a eficiência e a robustez. 

 

Exemplos: 

 Algoritmo Evolutivo Híbrido em Três Fases - 3PHEA (Dib, 2023); 

 Algoritmo Híbrido Sequencial - NSGAIIMOPSO (Raj & Kumar, 2021); 

 Algoritmo de Otimização Híbrida Sequencial - SHOA (Geetha et al., 2024). 

 

2.2.2.2 Hibridização Paralela 
 

A hibridização paralela executa dois ou mais métodos de busca 

simultaneamente, permitindo troca de informação entre eles (migração de indivíduos, 

compartilhamento de elites ou soluções guias). Diferente da versão sequencial (fase 

1 → fase 2), as buscas ocorrem de forma simultânea, influenciando-se mutuamente 

em tempo real, explorando a diversidade algorítmica e reduzindo o tempo de 

execução por meio de execução concorrente. 

 

Exemplos: 

 Algoritmo Híbrido Paralelo – PSO-DE (Zhang, Wang & Jin, 2011); 

 Problema de atribuição quadrática multi-objetivo - PasMoQAP (Sanhueza et 

al., 2017); 

 PSO–GA Híbrido Paralelo - PPSOGA (Amirteimoori et al., 2022). 
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3 BENCHMARKS E PROBLEMAS REAIS 
 

Um novo algoritmo de otimização deve ter seu desempenho validado por 

meio da comparação com métodos consagrados da literatura, utilizando conjuntos 

de funções de benchmark amplamente aceitos. Embora não exista um conjunto 

universal de referência, as competições CEC fornecem problemas diversificados e 

não tendenciosos, sendo amplamente utilizadas para avaliação de metaheurísticas. 

Neste trabalho, os conjuntos de benchmark CEC 2017, CEC 2019 e CEC 

2023 são utilizados para avaliar a versão mono objetivo da metaheurística proposta, 

enquanto o benchmark CEC 2018 é utilizado na validação da versão multi-objetivo. 

Após essa etapa, os algoritmos são aplicados a problemas reais de engenharia, 

envolvendo um ou mais objetivos, permitindo analisar seu desempenho em cenários 

realistas. 

 

3.1 FUNÇÕES DE BENCHMARK 
 

As funções de benchmark são utilizadas como referência para avaliar a 

eficiência e o comportamento de algoritmos de otimização. Elas são organizadas em 

diferentes modalidades, como unimodais, multimodais, híbridas e de composição, 

cada uma representando desafios distintos para os mecanismos de exploração e 

intensificação das metaheurísticas. Essa diversidade permite uma avaliação 

abrangente da capacidade dos algoritmos em lidar com múltiplas características 

presentes em problemas reais. 

 

3.1.1 CEC 2017 benchmark suíte 
 

O conjunto de funções benchmark CEC 2017 foi desenvolvido para avaliar o 

desempenho dos algoritmos de otimização em problemas com funções mono 

objetivo. Esses benchmark foram projetados para apresentar uma variedade de 

desafios aos algoritmos de otimização, como lidar com funções unimodais, 

multimodais, híbridas e de composição. O conjunto inicialmente consistia em 29 

funções de teste, mas atualmente conta com 28, pois uma das funções foi 

descontinuada. 

 A Tabela 1 mostra as funções utilizadas na competição CEC 2017 assim 

como a modalidade que cada função pertence assim como a sua formulação 
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matemática. 

 

3.1.2 CEC 2019 benchmark suíte 
 

As funções do CEC 2019 foram desenvolvidas como parte do Desafio de 100 

Dígitos, uma competição de otimização em que algoritmos são avaliados pela sua 

precisão ao resolver problemas de função mono objetivo. O objetivo do desafio é 

encontrar o valor mínimo de 10 funções diferentes com precisão de até 10 dígitos. 

Essas funções variam em termos de multimodalidade, número de ótimos locais, e 

dependência de parâmetros. Algumas são altamente não separáveis, exigindo uma 

capacidade robusta de exploração e intensificação do algoritmo. 

Esse desafio é inspirado no SIAM 100-Digit Challenger de 2002, que avaliava 

a precisão de algoritmos ao resolver problemas matemáticos difíceis. A Tabela 2 

mostra as funções utilizadas na competição CEC 2019 assim como a modalidade 

que cada função pertence assim como a sua formulação matemática. 

 

3.1.3 CEC 2023 benchmark suíte 
 

O benchmark CEC 2023 aborda problemas de otimização contínua em 

grande escala, com dimensionalidade variando de 129 a 3006 variáveis, 

representando desafios significativos para metaheurísticas. Os problemas envolvem 

cenários de medição sem contato de tensão (NVM) e corrente (NIM), nos quais a 

elevada dimensionalidade e a forte interação entre variáveis tornam a convergência 

mais complexa. As funções utilizadas são apresentadas na Tabela 3.
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3.1.4 CEC 2018 benchmark suíte 
 

No presente trabalho será utilizado o benchmark MaF que utiliza 15 

problemas de teste para otimização multi-objetivo originalmente fornecidos por 

Cheng et al. (2018), e usados na Competição CEC 2018. Este conjunto tem sido um 

dos mais utilizado na literatura ele traz versões modificadas das funções que 

pertencem a DTLZ, WFG e outros conjuntos. 

As 15 funções de benchmark apresentam propriedades diversas que 

abrangem uma boa representação de vários cenários do mundo real, como serem 

multimodais, desconectados, degenerados e/ou não separáveis, e possuírem um 

formato de frente de Pareto irregular, um conjunto de Pareto complexo ou um grande 

número de variáveis de decisão. O objetivo deste conjunto é promover a pesquisa 

em otimização multi-objetivo, sugerindo um conjunto de funções de referência com 

uma boa representação de vários cenários do mundo real. 

 A Tabela 4 mostra as funções utilizadas na competição CEC 2018 assim 

como a modalidade que cada função pertence assim como a sua formulação 

matemática. 
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3.2 PROBLEMAS DE ENGENHARIA 
 

Após a utilização das metaheurísticas nas benchmark, as metaheurísticas 

propostas serão utilizadas em problemas mais realísticos, serão tratados problemas 

de engenharia. Tais estudos de caso são constituídos por equações algébricas, 

algébrico-diferenciais ou integro-diferenciais e descrevem problemas de grande 

interesse no meio acadêmico e industrial. 

 

3.2.1 Microrrede off-grid com diversas fontes de energia renováveis 
 

A energia é um fator-chave no crescimento socioeconômico de qualquer país. 

A geração tradicional de energia, por si só, não consegue atender à demanda devido 

a políticas de investimento inadequadas, restrições de combustível e altas perdas na 

transmissão e distribuição. Portanto, é necessário gerar eletricidade a partir de 

recursos de energia renovável (ER). Isso é especialmente verdadeiro em áreas 

rurais e distantes, onde a expansão da rede não é viável nem econômica. 

Por uma infinidade de razões, planejar e construir uma microrrede off-grid é 

difícil, tanto do ponto de vista tecnológico quanto econômico. Uma delas é a 

dependência dos recursos de energia renovável e das condições meteorológicas. 

Os recursos de energia renovável podem ser utilizados em uma ampla gama 

de aplicações, incluindo setores doméstico, comunitário, agrícola, comercial e de 

pequena indústria. Isso ajuda a melhorar a qualidade do tratamento em centros de 

saúde primários, educação de estudantes, instalações de água potável, produção 

agrícola e negócios madeireiros. 

 

3.2.1.1 Modelagem do sistema 
 

A modelagem matemática adequada dos componentes de uma microrrede 

off-grid constitui um pré-requisito essencial para o seu correto dimensionamento. 

Neste estudo, é proposta uma microrrede isolada composta por fontes renováveis de 

energia solar, eólica e de biomassa, associadas a um sistema de armazenamento 

em banco de baterias e a um conversor bidirecional com controlador de carga. Para 

garantir a continuidade do fornecimento, quando a geração renovável e o 

armazenamento não são suficientes, a demanda é suprida por um gerador a diesel 
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como fonte de apoio. A Figura 3 apresenta a configuração da microrrede utilizada no 

estudo de caso proposto. 

 
FIGURA 3 – Estrutura da microrrede off-grid proposta 

 
Fonte: O Autor, 2025. 

 

Na microrrede, o sistema fotovoltaico é responsável por converter a energia 

proveniente da radiação solar em energia elétrica durante os períodos de 

disponibilidade de irradiância. Seu desempenho depende diretamente das condições 

ambientais, especialmente da irradiância solar e da temperatura ambiente, que 

influenciam tanto a potência quanto a eficiência dos módulos. Para representar 

adequadamente esse comportamento, a simulação utiliza séries horárias de 

irradiância e temperatura ao longo de um ano completo, permitindo capturar 

variações e oscilações diárias típicas do local em estudo. 

O sistema de geração eólica converte a energia cinética do vento em energia 

elétrica por meio de aerogeradores. Como a velocidade do vento varia de acordo 
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com a altura, as medições realizadas próximas ao solo precisam ser ajustadas para 

a altura do cubo da turbina. Esse ajuste é feito utilizando a lei de potência do vento, 

que considera a rugosidade do terreno e a diferença entre a altura de medição e a 

altura do aerogerador. Dessa forma, obtém-se uma estimativa mais precisa da 

velocidade efetiva do vento disponível para a geração e, consequentemente, da 

potência produzida pelo sistema. 

A geração de energia a partir da biomassa, neste estudo, é realizada por meio 

de um gaseificador acoplado a um gerador elétrico, responsável por converter 

biomassa sólida em gás combustível e, posteriormente, em energia elétrica. No 

modelo implementado, o conjunto opera com potência fixa de 4,5 kW e é acionado 

diariamente em um intervalo pré-definido, correspondente às horas de maior 

demanda do sistema. Conforme estabelecido, o gerador funciona entre 18h e 22h, 

totalizando cinco horas de operação contínua por dia. Durante esse período, a 

energia elétrica fornecida ao sistema corresponde diretamente à potência de 

operação do gerador, enquanto nos demais horários a produção é nula. Essa 

configuração representa a biomassa como uma fonte programada de apoio no 

período noturno, contribuindo para reduzir o uso do gerador a diesel e aumentar a 

confiabilidade da microrrede. 

O banco de baterias tem a função de equilibrar o balanço energético da 

microrrede, atuando tanto no armazenamento do excedente de geração renovável 

quanto no suprimento da carga em períodos de déficit. A cada passo horário, o 

modelo calcula a diferença entre a energia gerada pelas fontes renováveis e a 

demanda da carga. Quando há equilíbrio entre geração e consumo, o atendimento é 

realizado diretamente pelas fontes renováveis, mantendo o estado de carga das 

baterias inalterado. Nos instantes em que a geração excede a demanda, o 

excedente é direcionado prioritariamente para o carregamento das baterias, 

respeitando o limite máximo de capacidade; caso essa capacidade seja atingida, o 

excedente adicional é descartado. Por outro lado, quando a geração é insuficiente, 

as baterias passam a descarregar para suprir a diferença entre carga e geração, 

considerando a eficiência do sistema e uma taxa de autodescarga. Se o estado de 

carga atinge o limite mínimo de operação, o modelo aciona o gerador a diesel para 

evitar a interrupção do fornecimento. Dessa forma, o sistema de armazenamento por 

baterias é representado como um elemento central na gestão da energia, garantindo 

maior estabilidade e confiabilidade ao sistema híbrido. 
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O gerador a diesel (DG - Diesel Generator) atua como fonte complementar de 

energia no sistema híbrido, sendo acionado apenas quando as fontes renováveis e o 

banco de baterias não conseguem suprir a demanda elétrica. No modelo adotado, o 

DG possui uma potência nominal definida e entra em operação somente quando a 

carga atinge um patamar mínimo de utilização, evitando o funcionamento em regime 

de baixa carga, que reduz a eficiência e aumenta o desgaste do equipamento. 

Quando acionado, o gerador supre a diferença entre a demanda e a energia 

fornecida pelas fontes renováveis, e seu consumo de combustível é calculado por 

meio de um modelo linear baseado na potência gerada e na potência nominal do 

equipamento. Nos períodos em que a carga está abaixo do limite mínimo de 

operação, o atendimento é realizado prioritariamente pelas fontes renováveis e pelo 

banco de baterias; caso esses recursos não sejam suficientes, o modelo registra a 

parcela de carga não atendida como perda. Dessa forma, o DG é representado 

como uma fonte de apoio destinada a garantir a continuidade do suprimento em 

situações críticas, embora com maior custo operacional e impacto ambiental. 

O conversor bidirecional com controlador de carga (BDC-CC) é um 

componente essencial para a integração e o gerenciamento eficiente da energia em 

sistemas híbridos isolados. Capaz de operar nos modos retificador e inversor, o 

BDC-CC converte corrente alternada (CA) em corrente contínua (CC), e vice-versa, 

permitindo a conexão entre fontes como o gerador de biomassa e as cargas ou 

componentes em corrente contínua. Com uma eficiência de 95%, o BDC-CC 

assegura uma transferência energética eficaz entre diferentes subsistemas, 

minimizando perdas e maximizando o aproveitamento da energia disponível. 

 

3.2.1.2 Análise econômica do sistema 
 

A avaliação econômica de um sistema híbrido isolado de energia renovável é 

essencial para garantir sua viabilidade e sustentabilidade a longo prazo. Diversos 

indicadores são amplamente utilizados para analisar o desempenho financeiro e 

apoiar o processo de decisão, tais como Custo do Ciclo de Vida ( ), o Índice de 

Lucratividade (IL), o Payback Descontado (PBD), o Valor Presente Líquido (VPL) e a 

Taxa Interna de Retorno (TIR). Esses parâmetros fornecem diferentes perspectivas 

sobre aspectos como rentabilidade, liquidez e risco do investimento, sendo 

fundamentais para uma análise abrangente. 
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Trabalhos como os de Reis (2007), Neto (2017), Silva (2012), Andrade (2020) 

e Barbosa (2020) demonstram a aplicabilidade e relevância desses indicadores em 

diferentes contextos, reforçando sua utilidade na análise da sustentabilidade 

econômica. A seguir são apresentados os indicadores econômicos utilizados na 

otimização mono e multi-objetiva.  

O Custo do Ciclo de Vida (LCC - Life Cycle Cost) é uma metodologia 

amplamente utilizada para avaliar a viabilidade econômica de sistemas de energia 

ao longo de toda a sua vida útil. Esse indicador considera todos os custos que serão 

incorporados desde a fase inicial de implantação até o final do período de operação 

do projeto, permitindo identificar a configuração mais econômica do sistema híbrido.

  

No presente estudo, o LCC é composto pelos seguintes elementos: 

 Custo de Capital Inicial (ICC), que representa os gastos com aquisição 

de painéis fotovoltaicos, turbinas eólicas, gerador a biomassa, banco 

de baterias, conversor bidirecional e gerador a diesel; 

 Custo de Instalação (EREC), que contempla despesas de montagem, 

infraestrutura e eventuais reinstalações ao longo da vida útil dos 

equipamentos; 

 Custos de Operação e Manutenção (O&M), atualizados para valor 

presente, referentes às despesas anuais de manutenção preventiva e 

corretiva dos componentes do sistema; 

 Custos de Reposição, associados à substituição de equipamentos cuja 

vida útil é inferior ao horizonte total do projeto (biomassa, conversor e 

DG); 

 Custo com Combustível, abrangendo tanto o consumo anual de 

biomassa pelo gaseificador quanto o consumo de diesel pelo gerador 

de apoio. 

O Custo do Ciclo de Vida (LCC) é uma metodologia amplamente utilizada 

para avaliar a viabilidade econômica de sistemas de energia ao longo de toda a sua 

vida útil. Esse indicador incorpora todos os custos envolvidos desde a fase inicial de 

implantação até o final do período de operação, incluindo aquisição, instalação, 

manutenção, reposições e consumo de combustível. No contexto deste estudo, o 

LCC é aplicado para quantificar o custo total associado ao sistema híbrido sob 
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condições operacionais previamente estabelecidas, que incluem confiabilidade 

energética de 100% (LPSP = 0) e fração renovável mínima de 85%. Dessa forma, o 

LCC fornece uma visão abrangente do impacto financeiro decorrente do 

desempenho da microrrede. 

O Valor Presente Líquido (VPL) é um indicador amplamente utilizado para 

avaliar a viabilidade econômica de um projeto, pois compara o valor presente das 

receitas futuras com o total de custos associados ao investimento. Para isso, todos 

os fluxos de caixa ao longo da vida útil do projeto são atualizados mediante uma 

taxa de desconto, permitindo incorporar o valor do dinheiro no tempo. Dessa 

maneira, o VPL possibilita verificar se a geração de benefícios ao longo dos anos é 

suficiente para compensar os investimentos iniciais e os gastos operacionais. Um 

resultado positivo indica que o projeto tende a ser financeiramente vantajoso, 

enquanto um VPL negativo revela que os custos superam os ganhos projetados, 

caracterizando a inviabilidade econômica do empreendimento. 

O Índice de Lucratividade (IL) é um indicador que relaciona o valor presente 

dos fluxos de caixa futuros ao investimento inicial necessário para a implementação 

do projeto. Por ser uma medida relativa de rentabilidade, o IL expressa quanto 

retorno econômico é gerado para cada unidade monetária investida. Valores 

superiores a 1 indicam que o projeto tende a ser financeiramente atrativo, pois os 

benefícios atualizados superam o capital aplicado. Em contraste, valores inferiores a 

1 revelam que os ganhos não compensam o investimento realizado, apontando para 

a inviabilidade econômica da proposta. 

A Taxa Interna de Retorno (TIR) corresponde à taxa de desconto que faz com 

que o Valor Presente Líquido (VPL) de um projeto seja igual a zero. Em termos 

práticos, é a taxa que iguala o valor presente dos fluxos de caixa futuros ao 

investimento inicial, representando assim a rentabilidade percentual efetiva do 

projeto ao longo de sua vida útil. Esse indicador permite comparar o retorno 

proporcionado pelo investimento com a taxa mínima de atratividade (TMA) adotada 

pelo decisor. Quando a TIR supera a TMA, o projeto é considerado economicamente 

viável, uma vez que sua rentabilidade excede o custo de oportunidade do capital. 

Caso a TIR seja inferior à TMA, o investimento tende a ser rejeitado, por não atender 

ao retorno mínimo esperado. 

O Payback Descontado (PBD) indica o tempo necessário para que o 

investimento inicial de um projeto seja recuperado, considerando o valor do dinheiro 
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no tempo por meio de uma taxa de desconto. Ao contrário do payback simples, que 

desconsidera a desvalorização monetária, o PBD atualiza cada fluxo de caixa, 

oferecendo uma análise mais precisa da viabilidade econômica. Esse indicador é útil 

especialmente em projetos de médio e longo prazo, pois permite identificar o ponto 

em que o projeto se torna financeiramente autossustentável. De forma geral, quanto 

menor o PBD, mais rapidamente o capital investido retorna. Um projeto é 

considerado atrativo quando o PBD é inferior à sua vida útil. 

 

3.2.2 Sistemas de Treliças 
 

As treliças são estruturas formadas por barras conectadas em nós, 

transmitindo exclusivamente esforços axiais de tração ou compressão. Devido à sua 

simplicidade de modelagem, associada à relevância prática em engenharia civil, 

mecânica e aeroespacial, tornaram-se benchmark consagrados em pesquisas de 

otimização estrutural. Esses problemas oferecem um equilíbrio ideal entre realismo 

físico e complexidade computacional, exigindo a integração direta entre algoritmos 

de otimização e a análise por elementos finitos (FEA), responsável por calcular 

deslocamentos nodais, esforços internos e tensões em cada barra (Mehta et al., 

2025). 

No contexto de projeto, as treliças envolvem objetivos conflitantes: estruturas 

mais leves tendem a ser mais flexíveis, enquanto estruturas mais rígidas implicam 

maior peso e, portanto, maior custo. Essa relação caracteriza um problema multi-

objetivo, em que a solução não é única, mas sim um conjunto de Pareto, formado 

por alternativas de projeto que equilibram de maneiras distintas os objetivos 

conflitantes de leveza e rigidez. 

A seguir são apresentadas as configurações de treliças utilizadas neste 

trabalho, assim como em trabalhos publicados anteriormente. 

A treliça de 72 barras, é formada por 20 nós interligados por 72 barras e 

representa uma benchmark utilizada em otimização multi-objetivo. Sua principal 

característica é a presença de restrições de deslocamento no topo, que aumentam a 

complexidade do problema e forçam o equilíbrio entre leveza e rigidez. As áreas das 

barras podem ser tratadas como variáveis independentes ou agrupadas (em torno 

de 16 a 18 grupos), reduzindo a dimensionalidade sem comprometer o 

comportamento estrutural. Essa treliça é considerada um caso de escala moderada 
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e geometria realista, servindo para avaliar a capacidade dos algoritmos em lidar com 

múltiplos objetivos e restrições críticas. 

 
FIGURA 4 – Treliça de 72 barras 

 
Fonte: Mehta et al., 2025. 

 

A treliça 582 barras é uma benchmark de porte intermediário a grande, utilizado 

para avaliar a escalabilidade de algoritmos de otimização multi-objetivo. Sua 

configuração envolve 87 nós interconectados por 582 barras, resultando em um 

número elevado de variáveis de projeto, que podem ser tratadas de forma 

independente ou agrupadas em conjuntos de barras equivalentes para reduzir a 

dimensionalidade, geralmente considerada com 32 grupos. Essa treliça é 

particularmente relevante porque já exige mecanismos robustos de diversidade e 

convergência, pressionando o desempenho dos algoritmos sem alcançar ainda o 

custo extremo dos casos de 942 e 1016 barras. 
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FIGURA 5 – Treliça de 582 barras 

 
Fonte: Hosseinzadeh, 2017. 

 

 

A treliça de 942 barras é um dos benchmarks mais amplamente utilizados em 

estudos de otimização estrutural de larga escala. Ela é composta por 314 nós 

interligados por 942 barras, resultando em um problema de alta dimensionalidade, 

com grande número de variáveis de projeto e restrições, normalmente estruturadas 

em 59 grupos. Essa configuração coloca forte pressão sobre os algoritmos de 

otimização, tanto no aspecto de convergência quanto de diversidade da frente de 

Pareto, tornando-se referência para avaliar a escalabilidade e robustez de métodos 

aplicados a problemas reais de engenharia. Por sua popularidade na literatura, a 

treliça de 942 barras é considerada um teste de validação essencial para novos 

algoritmos multi-objetivo. 
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FIGURA 6 – Treliça de 942 barras 

 
Fonte: Mehta et al., 2025. 

 

A treliça de 1016 barras é um dos maiores benchmark de otimização 

estrutural disponíveis na literatura, composta por 342 nós interconectados por 1016 

barras, normalmente organizadas em 120 grupos. Trata-se de um problema de 

altíssima dimensionalidade, que gera milhares de variáveis de projeto e um número 

elevado de restrições de tensão e deslocamento, configurando um verdadeiro teste 

para algoritmos de otimização multi-objetivo. Seu uso é menos frequente do que em 

casos clássicos, devido ao custo computacional elevado, mas quando incluída em 

estudos, serve para demonstrar a robustez, escalabilidade e estabilidade numérica 

dos métodos propostos, além de evidenciar sua capacidade de explorar frentes de 

Pareto amplas em cenários de grande porte, próximos de aplicações reais de 

engenharia. 
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FIGURA 7 – Treliça de 1016 barras 

 
Fonte: Jangir et al., 2024. 
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4 REVISÃO DA LITERATURA 
 

Há duas abordagens principais para realizar uma pesquisa literária: o 

mapeamento sistemático e a revisão sistemática da literatura. Esta última é um 

método eficaz para identificar, interpretar e avaliar estudos relevantes que abordam 

uma questão de pesquisa específica (Kitchenham e Charters, 2007). Neste caso, 

utilizamos a revisão sistemática da literatura para relacionar os trabalhos 

desenvolvidos entre 1990 e novembro de 2025 sobre o uso de metaheurísticas na 

otimização de sistemas de engenharia. 
 

4.1 REVISÃO SISTEMÁTICA DA LITERATURA 
 

Esta seção aborda a utilização dos repositórios: Instituto Multidisciplinar de 

Publicação Digital (MDPI), Scopus e Web of Science para conduzir o processo de 

coleta de dados e análise bibliométrica do estado da arte sobre o problema de 

otimização. A busca foi realizada por meio do portal de periódicos da Coordenação 

de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). 

O MDPI é um repositório de acesso aberto que publica uma ampla variedade 

de periódicos em diversas disciplinas, incluindo ciências, engenharia, tecnologia, 

medicina e ciências sociais. O Web of Science é amplamente reconhecido por 

indexar periódicos e conferências internacionais de alta qualidade, assegurando que 

as publicações incluídas sejam de grande relevância e tenham passado por rigorosa 

revisão por pares. O Scopus é uma das maiores e mais respeitadas bases de dados 

de resumos e citações de literatura científica revisada por pares. Desenvolvido pela 

Elsevier, o Scopus abrange uma vasta gama de disciplinas, como ciências físicas, 

ciências da vida, ciências sociais e ciências da saúde. Assim, os bancos de dados 

foram analisados e comparados, abrangendo publicações desde 1990 até novembro 

de 2025, proporcionando uma visão abrangente das pesquisas realizadas nesse 

período. 

Para realizar essa primeira etapa da pesquisa, foi gerada uma string de busca 

nas bases de dados, com o critério de inclusão restrito a artigos de revistas e 

conferências escritos em inglês. A string de busca genérica utilizada foi 

'metaheuristic' com o objetivo de investigar a tendência geral e o volume de 

publicações relacionadas a metaheurísticas. Esta pesquisa é fundamental para 
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compreender as publicações feitas sobre metaheurísticas, sem restringir o contexto 

de aplicação. Ao mapear o crescimento ou declínio do interesse acadêmico em 

metaheurísticas, é possível identificar se o tema está em evidência, ou seja, se está 

em ascensão ou em declínio ao longo dos anos. 
 

FIGURA 8 – Número total de publicações com a string “metaheuristic” ao longo dos anos 

 
Fonte: O Autor, 2025. 

 

É possível notar que esta é uma área promissora. Até por volta de 2005, 

haviam poucas pesquisas sobre o assunto, mas a partir desse ano, o interesse 

acadêmico cresceu significativamente. Desde então, observa-se um aumento 

contínuo e consistente no número de publicações, indicando que a pesquisa em 

metaheurísticas tem ganhado cada vez mais destaque e relevância ao longo dos 

anos. 

Na segunda etapa da pesquisa, foi gerada uma string de busca nas bases 

de dados, com o critério de inclusão restrito a artigos de revistas e conferências 

escritos em inglês. A string de busca genérica utilizada foi 'hybrid metaheuristic' com 

o objetivo de examinar o volume e a tendência das publicações relacionadas à 

metaheurísticas híbridas. Esta pesquisa é de vital importância, considerando o foco 

deste estudo. Ao investigar a evolução das publicações sobre metaheurísticas 

híbridas ao longo dos anos, esta análise permite compreender se o tema está em 

ascensão ou declínio, refletindo o grau de interesse da comunidade científica nessa 

área. 
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FIGURA 9 – Número total de publicações com a string “hybrid metaheuristic” ao longo dos anos 

 
Fonte: O Autor, 2025. 

 

Ao longo do período de 1990 a 2025, as metaheurísticas convencionais 

mantiveram predominância em termos de volume de publicações, enquanto as 

híbridas surgiram de forma mais tardia e com representatividade inicial bastante 

limitada. Até o início dos anos 2000, os estudos envolvendo abordagens híbridas 

eram pouco expressivos, mas, a partir de 2012, observa-se um crescimento 

consistente, alcançando centenas e, posteriormente, milhares de registros anuais na 

década de 2020. Em média, ao longo de todo o período analisado, verifica-se 

aproximadamente uma publicação em metaheurísticas híbridas para cada quatro ou 

cinco em metaheurísticas convencionais. Apesar da diferença em termos absolutos, 

a evolução constante das metaheurísticas híbridas evidencia a relevância crescente 

dessa vertente, indicando que se trata de um campo de investigação promissor. 

Na terceira etapa da pesquisa, foi gerada uma string de busca nas bases de 

dados utilizando o operador AND para conectar dois ou mais termos de busca, com 

o critério de inclusão restrito a artigos de revistas e conferências escritos em inglês. 

A string de busca genérica utilizada foi “hybrid metaheuristic” AND “single objective” 

com o objetivo de analisar o uso de metaheurísticas híbridas em sistemas que 

possuem apenas um objetivo. Esta pesquisa é particularmente relevante para 

entender como as metaheurísticas híbridas estão sendo aplicadas no contexto de 

otimização com somente um objetivo. 
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FIGURA 10 – Número total de publicações com a string “hybrid metaheuristic” e “single objective” ao 
longo dos anos 

 
 

Fonte: O Autor, 2025. 
 

As metaheurísticas híbridas mono objetivo apresentaram um 

desenvolvimento tardio, com praticamente nenhuma publicação registrada até 

meados dos anos 2000 e apenas valores isolados em bases como SCOPUS e Web 

of Science. A partir de 2009, começam a surgir registros mais frequentes, embora 

ainda modestos, e é somente após 2016 que se observa um crescimento 

consistente, com destaque para a década de 2020, quando os trabalhos passam a 

ultrapassar a marca de dezenas por ano. Em 2024, por exemplo, foram 

contabilizados 41 artigos no SCOPUS e 27 na Web of Science, demonstrando que, 

apesar de ainda representar uma parcela pequena em relação ao universo das 

metaheurísticas, trata-se de uma área em expansão, com potencial para novas 

investigações e aplicações na solução de problemas de otimização. 

Na quarta etapa da pesquisa, foi gerada uma string de busca nas bases de 

dados utilizando o operador AND para conectar dois ou mais termos de busca, com 

o critério de inclusão restrito a artigos de revistas e conferências escritos em inglês. 

A string de busca genérica utilizada foi “hybrid metaheuristic” AND “multi-objective” 

com o objetivo de analisar o uso de metaheurísticas híbridas em sistemas que 

possuem vários objetivos. Esta pesquisa é particularmente relevante para entender 

como as metaheurísticas híbridas estão sendo aplicadas no contexto de otimização 

com múltiplos objetivos. 
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FIGURA 11 – Número total de publicações com a string “hybrid metaheuristic” e “multi-objective” ao 
longo dos anos 

 
Fonte: O Autor, 2025. 

 

As metaheurísticas híbridas multi-objetivo apresentam um crescimento 

gradual e contínuo desde os primeiros registros no início dos anos 2000, quando 

ainda eram restritas a poucos trabalhos por ano. Entre 2004 e 2010, observa-se um 

aumento modesto, passando de apenas dois para 14 artigos no SCOPUS, o que 

marca o início da consolidação da área. A partir de 2015, a produção cresce de 

forma mais consistente, com destaque para a década de 2020, em que os números 

se ampliam significativamente: em 2020 já eram 48 artigos no SCOPUS e 42 na 

Web of Science, enquanto em 2024 atingem 121 e 75. Esses resultados indicam 

que, embora mais recente em comparação às abordagens de objetivo único, a 

hibridização aplicada a problemas multi-objetivo vem ganhando relevância 

expressiva, tornando-se um campo de investigação cada vez mais consolidado 

dentro da otimização. 

Na quinta etapa de pesquisa, foi gerada uma string de busca nas bases de 

dados utilizando o operador AND para conectar dois ou mais termos de busca, com 

o critério de inclusão restrito a artigos de revistas e conferências escritos em inglês. 

A string de busca genérica utilizada foi “hybrid metaheuristic” AND “physics-based”  

com o objetivo de analisar o uso de metaheurísticas hibridas baseadas em 

fenômenos físicos em sistemas com um ou vários objetivos. Esta pesquisa é 

particularmente relevante para entender como as metaheurísticas hibridas baseadas 

em fenômenos físicos estão sendo aplicadas no contexto de otimização de sistemas 
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com um ou múltiplos objetivos. 

 
FIGURA 12 – Número total de publicações com a string “hybrid metaheuristic” e “physics-based” ao 

longo dos anos 

 
Fonte: O Autor, 2025. 

 

As metaheurísticas híbridas baseadas em princípios físicos constituem uma 

vertente bastante recente dentro da área de otimização, com registros praticamente 

inexistentes até meados da década de 2010. Os primeiros trabalhos aparecem em 

2016 e 2017, ainda de forma isolada, e apenas a partir de 2018 começam a surgir 

indícios de maior interesse da comunidade científica. O crescimento ocorre na 

década de 2020, com destaque para 2022 e 2023, anos em que foram 

contabilizados 14 e 21 artigos na MDPI, além de registros complementares em 

SCOPUS e Web of Science. Em 2024 os números se mantêm em patamares 

relevantes, embora ligeiramente inferiores ao pico anterior, indicando que se trata de 

um campo em consolidação. Apesar de ainda representar uma parcela pequena do 

total de publicações em metaheurísticas, o avanço observado demonstra que a 

combinação de modelos inspirados em leis físicas com outras estratégias de busca 

vem se configurando como uma linha de investigação promissora. 

Na sexta etapa da pesquisa, foi gerada uma string de busca nas bases de 

dados utilizando o operador AND para conectar dois ou mais termos de busca, com 

o critério de inclusão restrito a artigos de revistas e conferências escritos em inglês. 

A string de busca genérica utilizada foi “metaheuristic” AND “renewable energy” com 

o objetivo de analisar o cruzamento entre as áreas de metaheurísticas e energia 
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renovável. Essa análise busca identificar pesquisas que aplicam métodos 

metaheurísticos para resolver problemas relacionados a energias renováveis. Esta 

pesquisa é particularmente relevante para entender como as metaheurísticas estão 

sendo aplicadas no contexto das energias renováveis. A combinação dessas duas 

áreas de estudo pode não apenas revelar abordagens inovadoras para a otimização 

de sistemas de energia renovável, mas também apontar tendências futuras na 

aplicação de algoritmos de otimização em sustentabilidade. 
 

FIGURA 13 – Número total de publicações com a string “metaheuristic” and “renewable energy” ao 
longo dos anos 

 
 

Fonte: O Autor, 2025. 

 
 

No gráfico acima, é possível observar que as pesquisas envolvendo o uso de 

metaheurísticas para a resolução de problemas relacionados à energia renovável 

tiveram seu início apenas em 2012. A partir desse ponto, o interesse na interseção 

dessas duas áreas começou a crescer de forma gradual. A partir de 2017, há um 

grande aumento no número de estudos, refletindo um pico significativo de interesse 

de produção acadêmica. Esse crescimento acelerado nos últimos anos indica que a 

aplicação de metaheurísticas em problemas de energia renovável está se tornando 

cada vez mais relevante e essencial, possivelmente impulsionada pela crescente 

urgência em encontrar soluções eficientes e sustentáveis para os desafios 

energéticos globais. 

Na última etapa da pesquisa, foi gerada uma string de busca nas bases de 

dados utilizando o operador AND para conectar dois ou mais termos de busca, com 
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o critério de inclusão restrito a artigos de revistas e conferências escritos em inglês. 

A string de busca genérica utilizada foi “metaheuristic” AND “truss optimization” AND 

“multi-objective” com o objetivo de analisar o cruzamento entre as áreas de 

metaheurísticas e otimização de treliças multi-objetivo. Essa análise busca identificar 

pesquisas que aplicam métodos metaheurísticos para resolver problemas estruturais 

complexos em treliças, considerando simultaneamente múltiplos critérios de 

desempenho. A combinação dessas duas áreas de estudo pode apontar tendências 

futuras no uso de algoritmos de otimização para problemas de engenharia estrutural 

em contextos reais. 

 
FIGURA 14 – Número total de publicações com a string “metaheuristic” and “truss optimization” ao 

longo dos anos 

 
Fonte: O Autor, 2025. 

 

A análise dos dados evidencia que a aplicação de metaheurísticas em 

problemas de treliças ganhou relevância somente a partir de meados dos anos 2000, 

com publicações iniciais pontuais em SCOPUS e Web of Science. A evolução é 

marcante após 2010, quando ambas as bases apresentam crescimento contínuo, 

destacando-se a consolidação a partir de 2016 com números de dois dígitos. A 

MDPI aparece apenas a partir de 2017, mas apresenta um rápido crescimento, 

atingindo 15 publicações em 2023. Já SCOPUS e Web of Science exibem trajetórias 

paralelas, com forte aceleração a partir de 2020, atingindo 63 e 53 publicações em 

2023. O panorama mostra não apenas o aumento do interesse da comunidade 

científica, mas também a consolidação do campo em periódicos de maior 
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visibilidade, refletindo a importância crescente das metaheurísticas como ferramenta 

de otimização estrutural aplicada às treliças. 

O VOSviewer é um software de visualização de informações amplamente 

utilizado para analisar e selecionar as palavras-chave mais relevantes utilizadas 

pelos autores em seus artigos. Na Figura 15, é apresentada a interconexão dos 

conceitos mais recorrentes nas publicações do repositório MDPI que abordam a 

interseção das metaheurísticas híbridas. Essa visualização permite identificar os 

termos mais frequentemente utilizados e como eles se relacionam, oferecendo uma 

visão clara das tendências e do foco das pesquisas nessa área específica.  

Na Figura 15, os termos de maior frequência formam um núcleo que se 

distribui em três eixos complementares: avaliação de desempenho, com destaque 

para accuracy e RMSE, evidenciando ênfase em validação e comparação rigorosa 

de resultados; foco metodológico, com termos como optimizer, exploration, heuristic 

algorithm, machine learning e artificial neural network, indicando a integração entre 

operadores heurísticos e componentes de aprendizado para equilibrar exploração e 

intensificação; e classes de problema, como scheduling problem e vehicle routing 

problem, além de power system, energy consumption e emission, que situam a 

pesquisa em cenários industriais e energéticos, frequentemente sob restrições e 

metas de sustentabilidade. Em conjunto, a concentração desses termos mostra que 

as metaheurísticas híbridas publicadas na MDPI são orientadas a aplicações, 

dirigidas por métricas e metodologicamente híbridas, combinando busca e 

aprendizagem para enfrentar problemas complexos e mensuráveis no mundo real. A 

Figura 16 foi gerada também com o software VOSviewer e mostra a interconexão 

das palavras chaves mais utilizadas nas publicações envolvendo as metaheurísticas 

híbridas encontradas no Scopus. 
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FIGURA 15 – Principais palavras-chave associadas a metaheurísticas híbridas nas publicações da 
MDPI 

 
Fonte: O Autor, 2025. 
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FIGURA 16 – Principais palavras-chave associadas a metaheurísticas híbridas nas publicações da 
Scopus 

 
Fonte: O Autor, 2025. 

 

A análise das Figura 16 mostra que o termo hybrid metaheuristic se conecta 

fortemente tanto a algoritmos clássicos, como genetic algorithm, particle swarm 

optimization e grey wolf optimizer, quanto a suas versões híbridas, evidenciando o 

esforço contínuo em aprimorar exploração e intensificação por meio da combinação 

de estratégias. Esses vínculos se estendem a problemas consolidados da literatura 

de otimização, como flow shop scheduling, knapsack problem e vehicle routing, que 

aparecem como aplicações recorrentes e de alta relevância prática. Ao mesmo 

tempo, observa-se a associação direta com tópicos energéticos, como hybrid energy 

system, microgrid, optimal power flow e photovoltaic system, o que destaca a 

importância do tema no contexto de sustentabilidade e sistemas de energia 
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renovável. Outro ponto de destaque é a aproximação crescente com técnicas de 

aprendizado de máquina, representadas por termos como machine learning model, 

deep learning model, random forest e reinforcement learning, indicando um 

movimento atual da literatura em integrar métodos preditivos e metaheurísticas para 

produzir soluções mais robustas e adaptativas em cenários complexos. A Figura 17 

foi gerada também com o software VOSviewer e mostra a interconexão das palavras 

chaves mais utilizadas nas publicações envolvendo as metaheurísticas híbridas 

encontradas no Web of Science. 

 
FIGURA 17 – Principais palavras-chave associadas a metaheurísticas híbridas nas publicações da 

Web of Science 

 
Fonte: O Autor, 2025. 
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A Figura 17, observa-se que as metaheurísticas híbridas revelam uma rede 

de conexões consistente. Palavras como algorithm, metaheuristic algorithm e hybrid 

algorithm aparecem como núcleos de alta frequência, refletindo a centralidade do 

desenvolvimento de novas abordagens híbridas. Ao mesmo tempo, problemas 

clássicos como vehicle routing problem e job shop scheduling permanecem 

recorrentes, evidenciando a relevância prática das heurísticas em cenários 

industriais e logísticos. Além disso, emergem conexões com deep learning, artificial 

neural network e hybrid renewable energy system, apontando para a integração 

crescente entre otimização, inteligência artificial e aplicações energéticas 

sustentáveis. Essa configuração sugere que o campo tem avançado da aplicação de 

técnicas tradicionais para soluções mais sofisticadas, orientadas à convergência 

entre métodos de otimização, aprendizado de máquina e desafios multidimensionais 

atuais. 

 As Tabelas 5, 6 e 7 mostram as áreas de pesquisa mais recorrentes em 

relação a artigos publicados com o tema de uso de metaheurísticas híbridas. A 

primeira é referente ao MDPI, a segunda ao Scopus e a terceira ao Web of Science. 
 

TABELA 5 – Áreas do conhecimento mais frequentes relacionadas com o uso de metaheurísticas 
híbridas de acordo com MDPI 

 
Área do conhecimento Frequência Absoluta Frequência Percentual 

Engenharia 611 19,37% 
Ciência da Computação e Matemática 525 16,65% 

Ciências Ambientais e da Terra 509 16,14% 
Química e Ciência dos Materiais 437 13,85% 

Ciências Físicas 393 12,46% 
Biologia e Ciências Biológicas 242 7,67% 

Saúde Pública e Assistência Médica 152 4,82% 
Negócios e Economia 130 4,12% 

Ciências Sociais, Artes e Humanidades 124 3,93% 
Medicina e Farmacologia 30 0,99% 

 
Fonte: O Autor, 2025. 
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TABELA 6 – Áreas do conhecimento mais frequentes relacionadas com o uso de metaheurísticas 
híbridas de acordo com o Scopus 

Área do conhecimento Frequência Absoluta Frequência Percentual 
Ciência da Computação 4845 31,67% 

Engenharia 3732 24,40% 
Matemática 2312 15,11% 

Ciências da Decisão 904 5,91% 
Energia 832 5,43% 

Ciência dos Materiais 597 3,90% 
Física e Astronomia 459 3,05% 
Ciências Ambientais 425 2,77% 

Negócios, Gestão e Contabilidade 390 2,54% 
Outros 799 5,22% 

 
Fonte: O Autor, 2025. 

 
TABELA 7 – Áreas do conhecimento mais frequentes relacionadas com o uso de metaheurísticas 

híbridas de acordo com o Web of Science 

 
Área do conhecimento Frequência Absoluta Frequência Percentual 

Ciência da Computação 2743 28,73% 
Engenharia 2512 26,31% 

Pesquisa Operacional  722 7,56% 
Energia Combustíveis 438 4,58% 
Ciência Tecnológica 434 4,54% 

Matemática 402 4,21% 
Telecomunicações 394 4,12% 

Ciência dos Materiais 283 2,96% 
Sistemas de Controle de Automação 271 2,81% 

Outros 1347 14,18% 
 

Fonte: O Autor, 2025. 
 

A análise comparativa das três tabelas revela diferenças significativas na 

distribuição das áreas do conhecimento relacionadas ao uso de metaheurísticas 

híbridas. No caso da MDPI (Tabela 5), observa-se um equilíbrio entre diversas 

áreas, com destaque para Engenharia (19,37%), Ciência da Computação e 

Matemática (16,65%) e Ciências Ambientais e da Terra (16,14%). Essa diversidade 

sugere que, nessa base, as metaheurísticas híbridas têm sido aplicadas de forma 

ampla em contextos interdisciplinares, abrangendo desde problemas de engenharia 



76 
 

até questões ambientais, com inserções relevantes também em áreas de química, 

física e biologia. 

Na base Scopus (Tabela 6), nota-se uma concentração maior em Ciência da 

Computação (31,67%) e Engenharia (24,40%), que juntas somam mais da metade 

das ocorrências. Em seguida, Matemática (15,11%) e Ciências da Decisão (5,91%) 

reforçam o caráter metodológico e aplicado dessas técnicas. Ao mesmo tempo, 

áreas como Energia (5,43%) e Ciência dos Materiais (3,90%) indicam aplicações 

mais voltadas a problemas práticos e tecnológicos. Esse padrão mostra uma forte 

predominância das ciências exatas e tecnológicas, refletindo a ênfase da Scopus em 

indexar pesquisas voltadas para desenvolvimento de algoritmos, modelagem e 

aplicação em engenharia e computação. 

Já na Web of Science (Tabela 7), o perfil se aproxima do da Scopus, com 

predominância de Ciência da Computação (28,73%) e Engenharia (26,31%), mas 

apresenta maior destaque para áreas mais específicas, como Pesquisa Operacional 

(7,56%), Energia e Combustíveis (4,58%) e Sistemas de Controle de Automação 

(2,81%). Esse recorte revela um viés voltado para a otimização e aplicação prática 

em sistemas energéticos, industriais e de telecomunicações. Além disso, a categoria 

“Outros” representa 14,18%, indicando uma dispersão de estudos em áreas diversas 

não tão representativas individualmente, mas que refletem a transversalidade do uso 

de metaheurísticas híbridas em diferentes domínios do conhecimento. 

 

4.2 SÍNTESE DOS TRABALHOS CITANDO METAHEURÍSTICAS HÍBRIDAS 
APLICADAS A SISTEMAS DE ENGENHARIA 

 

Com o objetivo de identificar trabalhos relevantes relacionados ao uso de 

metaheurísticas em problemas de otimização estrutural e energética, foi realizada 

uma pesquisa bibliográfica no Portal de Periódicos da CAPES. As buscas utilizaram 

combinações de palavras-chave como “metaheuristic” AND “truss optimization” ou 

“metaheuristic” AND “renewable energy”, considerando apenas trabalhos publicados 

em inglês no período de 2016 a 2024. 

No ano de 2024, Najm et al. apresentam o Algoritmo da Baleia Híbrido com 

TTA (HWOA-TTA) combina o Algoritmo da Baleia (WOA) e o Algoritmo Tiki-Taka 

(TTA) para resolver problemas de otimização. O WOA oferece maior capacidade de 

exploração do espaço de busca, enquanto o TTA reforça a intensificação. O método 
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foi avaliado em treze funções de benchmark e comparado com PSO, WOA e TTA, 

apresentando desempenho superior, sobretudo em funções multimodais de alta 

complexidade. Também foi aplicado em dois problemas clássicos de engenharia, o 

dimensionamento de um vaso de pressão e o projeto de uma treliça de três barras, 

obtendo soluções de menor custo e mais consistentes. Os resultados indicam que o 

HWOA-TTA atinge melhor equilíbrio entre diversidade e precisão, consolidando-se 

como alternativa competitiva em relação a metaheurísticas tradicionais. 

Zitouni et al. (2024) apresenta o BHJO, um algoritmo híbrido que combina três 

metaheurísticas: Algoritmo do Besouro (BWO), o Algoritmo do Morcego Híbrido 

(HBA) e o Algoritmo da Medusa (JS). A proposta busca explorar as forças 

complementares de cada método, sendo que o BWO e o HBA oferecem boas 

capacidades de intensificação, enquanto o JS contribui com maior diversidade 

exploratória. O algoritmo foi testado em 40 funções de benchmark, incluindo 

unimodais, multimodais, híbridas e de composição, mostrando desempenho superior 

ou competitivo em relação a metaheurísticas amplamente utilizadas, como WOA, 

Otimização Mariposa-Chama (MFO), PSO e a Otimização por Falcões de Harris 

(HHO), além das versões isoladas do BWO, HBA e JS. Além dos testes de 

benchmark, os autores aplicaram o BHJO em problemas de projeto de engenharia, 

como o dimensionamento de um vaso de pressão, o projeto de uma treliça de dez 

barras e o projeto de uma mola helicoidal, evidenciando sua robustez em cenários 

práticos e complexos. Os resultados estatísticos, avaliados com testes de Friedman 

e Dunn, confirmaram a eficácia do algoritmo, que apresentou soluções de alta 

qualidade, convergência acelerada e maior estabilidade quando comparado aos 

métodos de referência. 

O trabalho de Pham e Vu (2024) aborda o problema do dimensionamento 

ótimo de treliças, no qual se busca minimizar o peso estrutural respeitando restrições 

de tensão e deslocamento, exigindo elevado custo computacional devido às 

inúmeras análises por elementos finitos. Para lidar com esse desafio, os autores 

propõem o dDEmRao-DiC, um algoritmo híbrido que combina o DE com o Algoritmo 

Rao em um esquema adaptativo, aliado a um mecanismo de comparação por 

distância (Distance Comparison – DiC). O Algoritmo Rao contribui com maior 

exploração nas etapas iniciais, enquanto o DE intensifica a busca nas fases finais, e 

o módulo DiC descarta soluções pouco promissoras sem avaliação completa, 

reduzindo significativamente o número de cálculos. O método foi aplicado em seis 
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configurações de treliças de referência (10, 25, 72, 120, 200 e 942 barras) e 

comparado tanto com a versão híbrida sem DiC quanto com métodos reconhecidos 

na literatura, incluindo Evolução Diferencial com Oposição e Comparação ao Vizinho 

Mais Próximo (ODE-NNC), o Algoritmo do Percevejo-d’Água (WSA), a Otimização 

Puma (PO), o Algoritmo Pinguim Imperador–Enxame de Salpas (ESA), o Algoritmo 

dos Predadores Marinhos (MPA), o Algoritmo do Lobo Cinzento Aprimorado (IGWO), 

a Busca do Cuco (CS), o Sistema Artificial de Circulação Coronária (ACCS), a Busca 

Harmônica Auto-Adaptativa (SAHS) e a Otimização por Evaporação da Água (WEO). 

Os resultados mostraram que o dDEmRao-DiC alcançou soluções com menor peso 

estrutural ou desempenho equivalente aos melhores concorrentes, além de 

convergir mais rapidamente e exigir menos avaliações da função objetivo, 

confirmando sua eficiência e robustez para problemas de otimização estrutural. 

O estudo conduzido de Vo, Tang e Lee (2024) apresenta o MOGWOCS, um 

algoritmo híbrido multi-objetivo que combina o GWO e o CS para enfrentar 

problemas de otimização estrutural em larga escala. A proposta introduz três 

melhorias principais: a substituição da média aritmética pela média harmônica no 

cálculo da posição dos lobos líderes, um novo mecanismo simplificado de seleção 

de líderes e a incorporação dos voos de Lévy do CS, responsáveis por ampliar a 

diversidade da busca e reduzir a estagnação em ótimos locais. O método foi 

validado em funções matemáticas, em 11 problemas mecânicos do CEC2020 e em 

quatro projetos de treliças espaciais de grande porte, nos quais os objetivos eram 

minimizar o peso estrutural e o deslocamento dos nós, respeitando restrições de 

tensão. A avaliação foi conduzida por meio das métricas de hipervolume, igd e testes 

estatísticos de Friedman. Os resultados mostraram que o MOGWOCS superou 

algoritmos de referência, incluindo MOALO, MOWCA, NSGA-II, NSGWO e MOCS, 

alcançando soluções mais diversas, estáveis e de maior qualidade. O desempenho 

foi especialmente superior nos casos de treliças de grande escala (354, 582, 942 e 

1016 barras), em que apresentou frentes de Pareto mais amplas e contínuas, 

confirmando sua eficácia para problemas de engenharia. 

Elsabet Ferede Agajie et al. (2024) apresentam diversos cenários para o 

fornecimento de energia em áreas rurais de Gaita Selassie, Etiópia, por meio de um 

sistema híbrido renovável de energia isolado. Focado na redução de custos e no 

atendimento à demanda energética, foram analisadas seguintes configurações: 

energia fotovoltaica, eólica e sistemas de armazenamento de energia hidrelétrica 
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bombeada. Metaheurísticas, como o MOGWO e o MOGOA, foram empregados para 

otimizar o custo nivelado de energia e o custo total do ciclo de vida, utilizando dados 

meteorológicos. Entre as alternativas, o sistema híbrido energia fotovoltaica-eólica-

sistema de armazenamento de energia hidrelétrica bombeada demonstrou ser a 

solução mais eficiente, alcançando um custo nivelado de energia de €0,126/kWh e 

um custo total do ciclo de vida de €6897300. Os resultados apresentam que o 

MOGWO apresentou melhores resultados na otimização do custo nivelado de 

energia e do custo total do ciclo de vida em todos os cenários analisados. 

O estudo conduzido por Susan e Balasubramanian (2023) propõe um 

algoritmo híbrido para otimizar a escolha dos pontos de parada de um veículo de 

recarga em redes de sensores sem fio recarregáveis. O método combina o Algoritmo 

do Morcego (DA), o Algoritmo do Vaga-lume (FA) e o Algoritmo do Lobo Cinzento 

(GWO), de modo a superar limitações dos algoritmos isolados, como convergência 

lenta e estagnação em ótimos locais. A função objetivo, embora composta por 

múltiplos fatores como energia residual, distância, atraso e confiabilidade, é 

formulada como uma expressão única, o que mantém a natureza mono objetivo do 

problema. Os experimentos, realizados com cem sensores em uma área simulada 

de cem por cem metros, demonstram que o algoritmo híbrido apresenta 

desempenho superior às suas versões individuais, alcançando maior velocidade de 

convergência, redução do atraso, prolongamento da vida útil da rede e aumento da 

confiabilidade. 

O desenvolvimento de Güven et al. (2023) aborda a otimização de um 

sistema de energia renovável, formulado como um problema de minimização do 

custo anual do sistema. O caso de estudo considera um campus universitário na 

Turquia, atendido por um sistema híbrido composto por painéis fotovoltaicos, 

turbinas eólicas, baterias, gerador a diesel e inversores, operando em modo isolado. 

Para o dimensionamento ótimo do sistema, os autores utilizaram quatro algoritmos 

metaheurísticos: GA, PSO, FA e o híbrido HFAPSO. O HFAPSO busca unir a 

exploração diversificada do FA com a intensificação do PSO, equilibrando 

diversidade de soluções e velocidade de convergência. Foram simulados quatro 

cenários de composição do sistema, e o melhor desempenho foi alcançado pelo 

arranjo PV+Bateria, no qual o HFAPSO obteve a configuração ótima de 2787 kW de 

painéis fotovoltaicos e 3154 kW de baterias, com ACS de US$ 479340,57. Em todas 

as comparações, o HFAPSO mostrou-se superior ao GA, PSO, FA e ao software 
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HOMER Pro, atingindo soluções mais estáveis, de menor custo e com maior 

confiabilidade operacional. 

Paolo Marocco et al. (2021) apresentam uma metodologia de otimização 

baseada em programação linear inteira mista em um sistema híbrido de energia 

renovável em comunidade isolada. O estudo, aplicado à vila de Ginostra, na ilha de 

Stromboli (Itália), integra painéis fotovoltaicos, baterias e armazenamento de 

hidrogênio, com foco em atender à demanda energética de forma econômica e 

sustentável. O modelo considera custos de degradação dos componentes e 

estratégias de resposta à demanda, permitindo a análise das configurações 

otimizadas para o sistema. O estudo comparou o desempenho da programação 

linear inteira mista com as metaheurísticas PSO e GA. Os resultados indicaram que 

o método programação linear inteira mista foi mais eficiente que abordagens PSO e 

GA, reduzindo o custo de energia para 0,455 €/kWh. 

Ellahi e Abbas (2020) abordam o problema de despacho econômico, que 

consiste em determinar a alocação ótima da geração entre diferentes usinas de 

modo a atender à demanda elétrica com o menor custo, considerando restrições 

como limites de operação, rampas e o efeito de válvula. O estudo contempla três 

contextos: sistemas formados apenas por fontes renováveis (solar, eólica e 

biomassa), sistemas mistos que integram renováveis e unidades térmicas, e 

sistemas compostos exclusivamente por térmicas. Para resolver esse problema, os 

autores propõem um algoritmo híbrido que combina o Otimização por Enxame de 

Partículas (PSO) e o Algoritmo do Morcego (BA), ao incorporar à equação de 

velocidade do PSO parâmetros derivados do BA, de modo a aprimorar o equilíbrio 

entre exploração e intensificação. Os resultados demonstram que a abordagem 

híbrida supera consistentemente as versões individuais do PSO e do BA, 

alcançando menores custos de geração, convergência mais rápida e soluções mais 

estáveis, mesmo em cenários de variabilidade de carga e incertezas associadas às 

fontes renováveis. 

Com a crescente necessidade de soluções energéticas confiáveis e 

sustentáveis para áreas remotas, Samy et al. (2019) exploraram o uso do Algoritmo 

do Pólen das Flores (FPA) para otimizar o dimensionamento do sistema híbrido 

isolado, compostos por painéis fotovoltaicos, células de combustível, eletrolisadores 

e tanques de armazenamento de hidrogênio. O objetivo foi reduzir o valor total, 

garantindo alta confiabilidade no fornecimento de energia e uma baixa probabilidade 
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de perda de fornecimento. O estudo mostrou que o FPA superou os algoritmos PSO 

e ABC em tempo de convergência e eficiência de custo-benefício, alcançando uma 

configuração ideal com 27 painéis fotovoltaicos, 28 células de combustível, 58 

eletrolisadores e 37 tanques de armazenamento de hidrogênio. Essa configuração 

resultou em uma probabilidade de perda de fornecimento de 1,52%, excesso de 

energia de 4,68% e custo nivelado de energia de 0,334 dólares por quilowatt-hora. 

A pesquisa feita por Massan, Wagan e Shaikh (2017) propõe um novo 

algoritmo híbrido para o problema de posicionamento ótimo das turbinas em parques 

eólicos, combinando o Evolução Diferencial (DE) e o FA. O objetivo é otimizar 

simultaneamente a potência gerada e o custo por turbina, considerando as perdas 

de energia provocadas pela redução da velocidade do vento atrás das turbinas, 

modeladas de forma simplificada pelo modelo de Jensen, em uma área de 2×2 km. 

O DE atua na exploração global, enquanto o FA realiza a intensificação local, 

evitando a estagnação em ótimos locais e aprimorando soluções promissoras. A 

proposta foi comparada com o Algoritmo Genético (GA) e as versões individuais do 

DE e do FA. Os resultados mostraram que o algoritmo híbrido apresentou 

desempenho superior, alcançando maior geração de potência e menor custo 

unitário, especialmente em cenários com um grande número de turbinas. Além 

disso, identificou como configuração ótima a instalação de 68 turbinas, assegurando 

melhor relação entre energia produzida e custo. Esses resultados demonstram a 

eficácia das abordagens híbridas na otimização do layout de parques eólicos, 

superando as limitações das metaheurísticas aplicadas isoladamente. 
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5 METODOLOGIA 
 

Algoritmos metaheurísticos são uma das abordagens mais eficazes utilizadas 

no tratamento de tarefas de otimização. Eles são capazes de fornecer soluções 

adequadas para problemas de otimização sem a necessidade de informações de 

gradiente, baseando-se apenas em busca aleatória no espaço de resolução de 

problemas, utilizando operadores aleatórios e processos de tentativa e erro. Com 

conceitos simples, fácil implementação, eficiência em problemas de otimização não 

lineares, não convexos, descontínuos, não derivativos e NP-difíceis, e eficiência em 

espaços de busca discretos e desconhecidos levaram à popularidade dos algoritmos 

metaheurísticos entre os pesquisadores. Com isso, nos últimos anos, muitas 

metaheurísticas mono e multi-objetivas foram desenvolvidas. 

Neste capítulo serão apresentadas as duas novas metaheurísticas propostas. 

Inicialmente é apresentada a metaheurística híbrida mono objetivo, o Algoritmo 

Kepler-Rime (KOARIME), que combina a capacidade de exploração do Algoritmo de 

Otimização Kepler baseada em orbitais com a intensificação do Algoritmo RIME, 

baseado no processo físico de formação do gelo-rime. A segunda metaheurística 

também híbrida, porém multi-objetiva é baseada na versão mono objetivo KOARIME, 

a qual será chamada (em inglês, Multi-objective Optimization Kepler-Rime Algorithm 

– MOKOARIME), que utiliza uma abordagem de seleção baseada na Dominância de 

Pareto Generalizada (M−1) -GPD. 

Este capítulo detalha a metodologia empregada no desenvolvimento do 

algoritmo KOARIME aplicado a problemas mono objetivo e ao MOKOARIME 

aplicado a problemas multi-objetivo. 

 

5.1 METAHEURÍSTICA HÍBRIDA MONO OBJETIVA KOARIME 
 

O algoritmo híbrido proposto neste trabalho combina, de forma colaborativa, 

as metaheurísticas KOA e RIME, aproveitando as capacidades de diversificação e 

intensificação de ambos os algoritmos. Essa nova metaheurística colaborativa, 

denominada “KOARIME”, é composta por dois mecanismos. O primeiro mecanismo 

corresponde à estrutura do KOA, enquanto o segundo corresponde a estrutura do 

RIME. 

O algoritmo de otimização Kepler é uma metaheurística inspirada nas leis do 
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movimento planetário desenvolvidas por Johannes Kepler no século XVII (Lei das 

Órbitas, Lei das Áreas, Lei dos Períodos). Essas leis descrevem os princípios 

fundamentais que regem o movimento dos planetas ao redor do sol, e são 

conhecidas como as três leis de Kepler. O KOA utiliza essas leis como base para 

guiar o processo de otimização, simulando o comportamento orbital dos "planetas" 

que representam soluções candidatas em um espaço de busca. Esse mecanismo 

permite que as soluções se movam de forma diversificada, ampliando a exploração 

de diferentes regiões e evitando a convergência prematura. 

O RIME é uma metaheurística inspirada no fenômeno físico de formação do 

gelo-rime, que ocorre quando o vapor de água no ar ainda não condensada congela 

e adere a objetos, como galhos de árvores, em temperaturas baixas. O crescimento 

do gelo-rime é determinado por fatores ambientais, como temperatura, velocidade do 

vento, umidade e condições atmosféricas. Este processo de formação pode ser 

dividido em dois tipos: gelo macio, cresce lentamente e de maneira aleatória em 

várias direções devido à baixa velocidade do vento, ele simula o movimento das 

partículas para explorar amplamente o espaço de busca de forma aleatória, 

garantindo que o algoritmo cubra diferentes áreas do espaço de soluções; gelo duro, 

cresce rapidamente e segue uma direção definida, conforme é empurrado pelo vento 

forte, ele é inspirado pelo crescimento direcionado, realiza a intensificação, 

facilitando a troca de informações entre soluções candidatas de alta qualidade. 

No algoritmo híbrido proposto, o processo de busca inicia com um conjunto de 

soluções candidatas, distribuídas aleatoriamente em órbitas estocásticas dentro dos 

limites do problema. Para cada solução da população é calculado um valor de 

 que corresponde ao valor da função objetivo. As soluções são atualizadas 

com base em forças gravitacionais calculadas pela distância em relação à melhor 

solução global, um fator de inércia adaptativo controla a transição gradual entre 

exploração (soluções distantes) e intensificação (soluções próximas ao ótimo global). 

Desta população de soluções, o algoritmo RIME seleciona as melhores soluções 

para o refinamento. Duas estratégias principais guiam o refinamento: busca suave, 

pequenas perturbações para explorar regiões promissoras adjacentes; busca 

intensa, ajustes direcionados às soluções mais promissoras, acelerando a 

convergência local. A seguir é aplicado uma seleção gananciosa positiva para 

manter apenas as soluções mais eficazes. A otimização encerra-se ao alcançar o 

número máximo de iterações. Essa estrutura híbrida promove equilíbrio entre 
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exploração e refinamento, permitindo ao KOARIME alcançar soluções robustas e 

eficientes em problemas complexos. 

O fluxograma da metaheurística híbrida proposta neste trabalho é 

apresentado na Figura 18. 

 

5.1.1 Processo de inicialização 
 

Nesse processo, um número de planetas igual a N, denominado tamanho da 

população de soluções, será distribuído aleatoriamente em d-dimensões, 

representando as variáveis de decisão de um problema de otimização, de acordo 

com a seguinte fórmula: 

 

               (3) 

onde: 

  = Indica o i-ésimo planeta (solução candidata) no espaço de busca. 

 N = Representa o número de soluções candidatas no espaço de busca. 

 d = Representa a dimensão do problema a ser otimizado. 

  = Representa o limite superior da j-ésima variável de decisão. 

 = Representa o limite inferior da j-ésima variável de decisão. 

  = Um número gerado aleatoriamente entre 0 e 1. 

 

A excentricidade orbital  para cada i-ésima solução é inicializada utilizando a 

equação: 

 

            (4) 
 

Finalmente, o período orbital (T) para cada i-ésima solução é inicializado 

usando a equação: 

 

                                    (5) 
 

onde: 

  = é um número gerado aleatoriamente com base na distribuição normal. 
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FIGURA 18 – Fluxograma algoritmo KOARIME 

 
Fonte: O Autor, 2025. 
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5.1.2 Definindo a força gravitacional (F) 
 

O Sol é o elemento central do Sistema Solar sendo o maior em termos de 

massa. A principal razão pela qual os planetas orbitam o Sol é a força gravitacional 

que ele exerce, mantendo-os em suas trajetórias ao redor dele. Se o Sol não existir, 

os planetas se moverão em linha reta em direção ao infinito; no entanto, a gravidade 

do Sol muda constantemente de direção para permitir que os planetas se movam ao 

seu redor em forma elíptica. 

A força de atração entre o Sol ( , melhor solução) e qualquer planeta ( , 

demais soluções) é descrita pela Lei Universal da Gravitação, definida como: 

 

                               (6) 
 

onde: 

t = Representa a iteração atual. 

= A excentricidade da órbita de um planeta, que varia entre 0 a 1. 

μ(t) = Constante gravitacional universal, cuja formulação é apresentada na 

Equação (13). 

 = Valores normalizados de , que representa a massa de , é 

apresentado por meio da equação (9). 

   = Valores normalizados de  , que representa a massa de , é 

apresentado por meio da equação (10). 

 ɛ = Valor pequeno para evitar divisão por zero. 

    = = Valor normalizado de  que representa a distância 

euclidiana entre  e , e é definido como: 

 

 = || ||₂ =                   (7) 

 
                                     (8) 

 

onde: 

 || ||₂ = Representa a distância euclidiana entre as dimensões de 
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 e as de . 

 

A massa do Sol ( ) e da solução  ( ) no tempo  é calculado utilizando a 

avaliação de fitness conforme a equação a seguir (considerando um problema de 

minimização): 

 

                                        (9) 

 
                                            (10) 

 
 
onde: 

 
                      = best (t) =                                         (11) 
 

                                                              (12) 
 

A função que decresce exponencialmente com o tempo (t) para controlar a 

precisão da busca, é definida da seguinte forma: 

 

                                (13) 
onde: 

   = É uma constante. 

 = Valor inicial. 

 t = Representa a iteração atual. 

  = Representa o máximo de iterações. 

 

5.1.3 Calculando a velocidade de um objeto 
 

A velocidade de um planeta depende de sua posição em relação ao Sol. Isso 

significa que a velocidade de um planeta aumenta quando ele está próximo ao Sol e 

diminui quando está distante. Se um planeta está perto do Sol, a gravidade do Sol é 

consideravelmente forte, fazendo com que o planeta tente aumentar sua velocidade 

para evitar ser puxado em direção ao Sol. Por outro lado, se o planeta está longe do 

Sol, sua velocidade diminui porque a gravidade do Sol é mais fraca. 
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Matematicamente, esse comportamento é descrito na Equação 14, que 

calcula a velocidade de uma solução ao redor do Sol (melhor solução). A equação é 

dividida em duas partes: 

 

          (14)  

 
                                                           (15) 

                                      (16) 
  

                               (17) 
  

                                       (18) 

  
                                            (19) 

             
                             (20) 

  
                                     (21) 

  

                                                                               (22) 
 

                                                                      (23) 

 
onde: 

 = Representa o vetor de velocidade da solução  no tempo t. 

  = Representa a solução . 

  = Representam soluções que são selecionados aleatoriamente da 

população. 
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  = Representam a massa de . 

 = Representam a massa de . 

 ɛ = Valor pequeno para evitar divisão por zero. 

   = A distância entre a melhor solução  e a solução  no tempo t. 

  = Representa o semieixo maior da órbita elíptica da solução  no tempo t, 

definida pela terceira lei de Kepler, como segue: 

 

                                       (24) 
 

onde: 

   = O período orbital do objeto i e é determinado pela Equação 5. 
 

No algoritmo, assume-se que o semieixo maior da órbita elíptica da solução  

diminui gradualmente com as gerações, à medida que as soluções se movem em 

direção à região promissora, onde a melhor solução global provavelmente será 

encontrada.  

O propósito da equação 16 é calcular a porcentagem de passos que cada 

objeto irá mudar. Se  ≤ 0.5, então a solução está próximo ao Sol e 

aumentará sua velocidade para evitar ser atraído pelo Sol devido à sua imensa força 

gravitacional. Caso contrário, a solução diminuirá sua velocidade. 

Essa abordagem garante que o KOA mantenha a eficiência durante a 

otimização, equilibrando a velocidade e a diversidade das soluções ao longo do 

processo. 

 

5.1.4 Escapando do ótimo local 
 

No sistema solar, a maioria dos objetos gira no sentido anti-horário ao redor 

do Sol, e todos eles também giram em seus próprios eixos; no entanto, alguns 

objetos giram ao redor do Sol no sentido horário. O algoritmo proposto utiliza esse 

comportamento para escapar de regiões de ótimos locais. O KOA proposto simula 

esse comportamento usando uma flag  que altera a direção da busca, de modo que 

os agentes tenham uma boa chance de explorar o espaço de busca com precisão. 

Isso significa que, ao mudar a direção de busca (anti-horária para horária, ou vice-

versa), o algoritmo tenta evitar de ficar preso em um ótimo local e aumentar a 
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exploração, garantindo que o espaço de soluções seja coberto de forma mais 

eficiente. 

 

5.1.5 Atualizando as posições dos objetos 
 

Conforme mencionado anteriormente, os planetas orbitam ao redor do Sol em 

suas próprias órbitas elípticas. Durante a rotação, os planetas se aproximam do Sol 

por um certo período e depois se afastam. O algoritmo proposto simula esse 

comportamento através de duas fases principais: as fases de exploração e de 

intensificação. O KOA explora soluções distantes do Sol para encontrar novas 

soluções, enquanto utiliza soluções próximas ao Sol de forma mais precisa, 

buscando novos lugares perto das melhores soluções. A Figura 19 mostra as 

regiões de exploração e de intensificação ao redor do Sol. 

 
FIGURA 19 – Regiões de exploração e intensificação no espaço de busca 

 
 

Fonte: Adaptado de Abdel-Basset et al., 2023 
 

As fases de exploração e de intensificação são descritas detalhadamente a 

seguir. Na fase de exploração, as soluções estão distantes do Sol, indica que o 

algoritmo proposto explora de forma mais eficiente toda a área de busca. De acordo 

com os passos anteriores, uma nova posição de cada solução distante do Sol é 

atualizada usando a equação: 

 

         (25) 
 

onde:  

 = A nova posição da solução  no tempo t+1. 

 = A velocidade da solução  necessária para alcançar a nova posição. 

  = Melhor posição do Sol encontrada até o momento. 

  = Usado como flag para alterar a direção da busca. 
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A Equação 25 simula a força gravitacional do Sol sobre as soluções, onde 

essa equação utiliza um tamanho de passo adicional com base no cálculo da 

distância entre o Sol e a solução atual, multiplicada pela força gravitacional do Sol, 

ajudando o KOA a explorar as regiões ao redor da melhor solução encontrada até o 

momento e a encontrar melhores resultados com menos avaliações da função. De 

modo geral, a velocidade das soluções representará o operador de exploração do 

KOA quando uma solução estiver distante do Sol. No entanto, essa velocidade é 

influenciada pela força gravitacional do Sol, que ajuda a solução atual a explorar 

ligeiramente as regiões próximas da solução ótima. 

Por outro lado, quando uma solução se aproxima do Sol, sua velocidade 

aumenta drasticamente, permitindo que ela escape da atração gravitacional do Sol. 

Nesse caso, a velocidade representa a capacidade de evitar ótimos locais, se a 

melhor solução encontrada até o momento, referida como o Sol, for um mínimo local. 

A força gravitacional do Sol representa o operador de intensificação, auxiliando o 

KOA a "atacar" a melhor solução até o momento para encontrar soluções ainda 

melhores. 

 

5.1.6 Atualizando a distância com o Sol 
 

Para melhorar ainda mais os operadores de exploração e intensificação das 

soluções, busca-se imitar o comportamento típico da distância entre o Sol e os 

planetas, que naturalmente variam ao longo do tempo. Quando as soluções estão 

próximas do Sol, o KOA se concentrará em otimizar o operador de intensificação; 

quando o Sol está distante, o KOA otimizará o operador de exploração. Essas regras 

dependem do valor do parâmetro regulador h, que varia gradualmente com o tempo. 

Quando esse valor é grande, o operador de exploração é empregado para expandir 

a separação orbital das soluções em relação ao Sol; por outro lado, quando esse 

valor é pequeno, o operador de intensificação é usado para explorar as regiões 

próximas à melhor solução encontrada até o momento, caso a distância entre o Sol 

e as soluções sejam pequenas. 

Esse princípio é alternado aleatoriamente com a Equação 25 para aprimorar 

ainda mais os operadores de exploração e intensificação do KOA. O modelo 

matemático desse princípio é descrito da seguinte maneira: 
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     (26) 

 

onde: 

   = Uma solução aleatória da população; 

 = Outra solução aleatória da população; 

  = É um fator adaptativo para controlar a distância entre o Sol e o planeta 

atual no tempo t, conforme definido abaixo: 

 

                                                                          (27) 

onde: 

 r = É um número gerado aleatoriamente com base na distribuição normal. 

 η = Fator que diminui linearmente de 1 a -2, conforme definido abaixo: 

 

                                             (28) 
 

onde: 

  = parâmetro de controle cíclico que diminui gradualmente de -1 para -2 ao 

longo de ciclos   durante todo o processo de otimização, conforme definido abaixo: 

 

(29) 

 

5.1.7 Elitismo 
 

Esta etapa implementa uma estratégia elitista para garantir a melhor posição 

dos planetas e do Sol. Este procedimento é: 

 

                          (30) 

 

5.1.8 Estratégia de busca gelo macio 
 

Em um ambiente com brisa, o crescimento do gelo macio é fortemente 
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aleatório, e as partículas de gelo podem cobrir livremente a maior parte da superfície 

do objeto ao qual estão aderidas, mas crescem lentamente na mesma direção. 

Inspirado pelo crescimento do gelo macio, é utilizada uma estratégia de busca gelo 

macio, que aproveita a forte aleatoriedade e a ampla cobertura das partículas de 

gelo, permitindo que o algoritmo cubra rapidamente todo o espaço de busca nas 

primeiras iterações e evite cair em ótimos locais. O acúmulo inicial de gelo sobre 

cada partícula é representado no algoritmo pela atualização de posição definida na 

Equação 31: 

 

   
(31) 

 

onde: 

  = coeficiente de aderência, que afeta a probabilidade de condensação de 

um agente e aumenta com o número de iterações, Equação 32: 

,      (32) 

   = número aleatório no intervalo (-1,1) 

 = controla a direção do movimento da solução, que mudará conforme o 

número de iterações, conforme mostrado na Equação 33: 

                                                    (33) 

 = Grau de adesão, que é um número aleatório no intervalo (0,1), utilizado 

para controlar a distância entre os centros de duas partículas. 

 = É o fator ambiental, que segue o número de iterações para simular a 

influência do ambiente externo e é utilizado para garantir a convergência do 

algoritmo, conforme mostrado na Equação 34: 

                                                                          (34) 

onde: 

  = O modelo matemático é a função degrau. 

w = O valor padrão de w é 5, utilizado para controlar o número de segmentos 

da função degrau. 
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5.1.9 Estratégia de busca gelo duro 
 

Em condições de vento forte, o crescimento do gelo duro é mais simples e 

regular em comparação ao crescimento do gelo macio. Inspirado no fenômeno de 

perfuração que é usado para atualizar o algoritmo entre agentes, permitindo que as 

partículas do algoritmo sejam trocadas, melhorando a convergência e a capacidade 

do algoritmo de escapar de ótimos locais. A fórmula para substituição entre 

partículas da solução é apresentada: 

 

                                   (35) 

 

onde: 

 = Representa o valor normalizado do valor de aptidão da 

solução atual, indicando a chance do i-ésimo agente do rime ser selecionado. 

 

5.1.10 Mecanismo de seleção gananciosa positiva 
 

Tipicamente, os algoritmos de metaheurísticas possuem um mecanismo de 

seleção gananciosa que substitui e registra o melhor valor de aptidão e o melhor 

agente após cada atualização. A ideia comum é comparar o valor de aptidão 

atualizado de um agente com o ótimo global, e, se o valor atualizado for melhor do 

que o ótimo global atual, o valor de aptidão ótimo é substituído, e o agente é 

registrado como o novo ótimo. A vantagem dessa operação é que ela é simples e 

rápida, mas não contribui para a exploração e intensificação da população, servindo 

apenas como um registro. 

Diante disso, é proposto um mecanismo de seleção gananciosa positiva para 

participar das atualizações da população. A ideia específica é comparar o valor de 

aptidão atualizado de um agente com o valor de aptidão antes da atualização e, se o 

valor atualizado for melhor, ocorre uma substituição, e as soluções de ambos os 

agentes também são trocados. 

Por um lado, esse mecanismo permite que a população tenha continuamente 

bons agentes por meio da substituição ativa de agentes, o que melhora a qualidade 

da solução global. Por outro lado, como as posições dos agentes da população 

mudam significativamente a cada iteração, inevitavelmente haverá agentes que 
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pioram em relação à população antes da atualização e que são prejudiciais para a 

próxima iteração. Portanto, essa operação garante que a população evolua em uma 

direção ótima a cada iteração. 

 

5.1.11 Algoritmo Mono Objetivo KOARIME 
 

O Algoritmo 1 apresenta o pseudocódigo detalhado do KOARIME, destacando 

suas principais etapas. Cada linha do pseudocódigo corresponde a uma ação 

específica realizada pelo algoritmo durante as fases de inicialização, exploração com 

KOA e refinamento com RIME. 
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Algoritmo 1 Pseudo código KOARIME 

 
Início 

Estabelecer os parâmetros N,Tmax,μ0,γ,W.  

Inicializar a população com posição aleatória, excentricidades orbitais e períodos orbitais. 

Avaliar os valores de aptidão para a população inicial.  

Determinar a melhor solução global  

while t < Tmax do 

           Atualizar ei, i = 1,2,...,N, best(t), worst(t) e μ(t) . 

           for i = 1 : N do 

                Calcular a distância euclidiana entre a melhor solução ( ) e a solução i ( ) .                            

                Calcular a força gravitacional entre  e . 

                Calcular a velocidade da solução  . 

                Gerar dois números aleatórios r e r1 entre 0 e 1.  

                if r > r1 then 

                         Atualizar a nova posição da solução . 

                else 

   Atualizar a distância entre a solução  e . 

                end 

                Aplicar o elitismo. 

                for Para cada solução i do  

 for Para cada dimensão j do 

     if r8 < E then 

          Aplicar a estratégia de busca gelo macio.  

                          end  

                          if r9 < Fnormr ( ) then 

                                   Aplicar a estratégia de busca gelo-duro. 

                          end          

                     end 

                end 

               Aplicar o mecanismo de seleção gananciosa positiva. 

          end 

          t ← t + 1 

  end 
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5.2 METAHEURÍSTICA HÍBRIDA MULTI-OBJETIVO KOARIME 
 

Com o intuito de expandir o potencial do algoritmo KOARIME, originalmente 

desenvolvido para problemas mono objetivo, propõe-se sua extensão para tratar 

cenários de otimização com múltiplos objetivos. Para isso, a metaheurística híbrida 

proposta foi combinada com o processo de seleção de soluções baseado na relação 

de não dominância (M-1)-GPD. 

Inicialmente, nesta seção, será apresentado o conceito do processo de 

seleção de soluções baseado na relação de não dominância (M−1) -GPD, antes da 

introdução do algoritmo híbrido proposto para a resolução de problemas multi-

objetivo e de muitos objetivos. 

 

5.2.1 Seleção de soluções baseada na relação de não dominância (M-1)-GPD 
 
 

A dominância de Pareto constitui a base da maioria dos algoritmos multi-

objetivo. Nesse critério, uma solução domina outra se for não pior em todos os 

objetivos e estritamente melhor em pelo menos um deles. Embora aplicável em 

problemas de baixa dimensionalidade (2 ou 3 objetivos), sua capacidade de 

discriminação cai drasticamente em problemas de muitos objetivos, onde a maioria 

das soluções se torna mutuamente não-dominada. Essa característica reduz a 

efetividade do processo de seleção e dificulta tanto a convergência quanto a 

manutenção da diversidade populacional. 

Diversas estratégias foram propostas para contornar essas limitações. Entre 

os métodos baseados em dominância, destacam-se variantes como a dominância 

relaxada (Ishibuchi et al., 2008), a dominância em cone (Fan et al., 2001), o CDAS – 

Área de Soluções de Controle de Dominância (Jiang et al., 2014) e o CNα (Zhang et 

al., 2015), além da Generalização da Otimalidade de Pareto (GPO) (Li et al., 2017), 

que expande a região de comparação para aumentar a diversidade entre soluções. 

Outra linha de pesquisa envolve métodos baseados em decomposição, que utilizam 

vetores ou pontos de referência para dividir o espaço objetivo em sub-regiões, como 

ocorre no NSGA-III (Deb & Jain, 2014) e no RVEA (Cheng et al., 2016). Já em 

algoritmos clássicos como o NSGA-II (Deb et al., 2002), a distância de aglomeração 

é utilizada como critério de diversidade, garantindo a manutenção de soluções bem 

distribuídas ao longo da frente de Pareto. Apesar de avanços relevantes, cada 
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abordagem apresenta limitações: métodos de decomposição dependem fortemente 

da escolha e adaptação dos vetores, a distância de aglomeração perde eficiência em 

altas dimensões, e variantes da dominância frequentemente comprometem a 

diversidade ao reforçar demais a convergência. 

Nesse contexto, foi proposto o esquema (M-1)-GPD (Li et al., 2022), uma 

extensão do GPO que busca superar essas limitações de forma simples e eficaz. 

Essa nova estratégia aumenta a força de seleção sem comprometer a diversidade, 

além de eliminar a necessidade de pontos ou vetores de referência e praticamente 

não exigir parâmetros adicionais. 

 

5.2.1.1 Seleção de soluções baseada na relação de não dominância (M-1)-GPD 
 

A Generalização da Otimalidade de Pareto (GPO) consiste em ampliar a 

região de dominância das soluções com base em um ângulo de expansão φ, 

aplicado a todos os objetivos. Apesar de útil, essa formulação depende fortemente 

da escolha de  e pode ser computacionalmente onerosa. Para superar essas 

limitações, foi proposta a extensão (M-1)-GPD. 

No (M-1)-GPD, a comparação entre soluções é realizada preservando-se um 

objetivo e expandindo os demais (M-1) de acordo com o ângulo φ. Esse 

procedimento é repetido M vezes, de modo que cada solução é avaliada sob 

diferentes perspectivas complementares. A Figura 20 ilustra esse princípio no caso 

bidimensional. No espaço original - , o objetivo  permanece fixo enquanto  é 

expandido (região azul,  - ); de forma simétrica, no caso oposto,  é preservado 

e  sofre expansão (região verde, - ). Assim, surgem duas variações do espaço 

objetivo, oferecendo diferentes perspectivas que, em conjunto, ampliam a 

comparação entre soluções. A Figura 21 mostra a generalização para três objetivos, 

em que surgem três casos simétricos: =[0,φ,φ], =[φ,0,φ] e =[φ,φ,0]. Cada 

configuração mantém um objetivo inalterado e expande os demais, gerando regiões 

de dominância distintas que, ao se combinar, oferecem uma representação mais 

completa do espaço de Pareto. 
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FIGURA 20 – Ilustração no espaço bidimensional 

 
Fonte: Li et al., 2022 

      
FIGURA 21 – Ilustração no espaço tridimensional 

 
Fonte: Li et al., 2022 

 

Do ponto de vista matemático, o mecanismo adotado pelo (M−1)-GPD baseia-

se na definição de um ângulo de expansão φ*, dado por: 

 

                                                          (36) 

 

onde: 

 = Representa o ângulo de expansão definido pelo método. 

 

Considerando que o objetivo  é mantido inalterado, a expansão dos demais 

objetivos é representada pela seguinte matriz, que aplica o ângulo de expansão , 

modificando sua região de dominância: 
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                                  (37) 

 

Esse procedimento é repetido simetricamente para cada um dos M-1 

objetivos, de modo que, em cada caso, um objetivo é mantido inalterado e os demais 

são expandidos. A combinação desses cenários fornece múltiplas comparações 

entre soluções, ampliando a capacidade de explorar diferentes regiões do espaço 

objetivo. 

Após a aplicação da transformação matemática baseada no (M−1)-GPD, 

inicia-se o processo de seleção ambiental, que define as soluções sobreviventes 

para a próxima geração. Esse processo é composto por três etapas: 

 

1. Identificação de soluções extremas: Inicialmente, realiza-se a ordenação 

rápida por não dominância no espaço de objetivos original, a fim de 

identificar o conjunto de soluções extremas. Essas soluções são 

diretamente incluídas na população sobrevivente, assegurando a 

preservação das regiões limites da frente de Pareto. 

2. Ordenação múltipla (M-1)-GPD: Em seguida, cada solução é reavaliada em 

M cenários distintos do (M−1)-GPD, correspondente a cada objetivo 

mantido inalterado. O resultado é uma matriz de dimensão M×2N (sendo M 

o número de cenários avaliados e 2N o total de soluções consideradas, 

resultante da união da população de pais com a de filhos), em que cada 

linha representa a ordenação obtida em um dos casos.  

3. Seleção balanceada: Finalmente, as soluções sobreviventes são escolhidas 

de forma balanceada entre os diferentes cenários, de modo a garantir uma 

cobertura abrangente do espaço objetivo. Para complementar, adota-se o 

critério de distância angular mínima, privilegiando soluções mais distantes 

das previamente selecionadas. Esse mecanismo reduz redundâncias e 

preserva a diversidade populacional. 

Assim, o método (M−1)-GPD consolida-se como uma estratégia eficiente de 

seleção ambiental em algoritmos multi-objetivo. Ao combinar múltiplas perspectivas 
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de comparação, provenientes dos diferentes cenários de preservação e expansão de 

objetivos, o método assegura simultaneamente a convergência em direção à frente 

de Pareto e a manutenção da diversidade populacional. 

 

5.2.2 Algoritmo híbrido multi-objetivo MOKOARIME proposto 
 

O algoritmo híbrido multi-objetivo proposto, constitui uma extensão do 

KOARIME para problemas com múltiplos objetivos. Sua estrutura mantém os 

mecanismos de exploração e intensificação característicos do algoritmo original, mas 

substitui a etapa de seleção final pela seleção ambiental (M−1)-GPD, assegurando 

simultaneamente convergência e diversidade. O fluxo geral da metaheurística é 

ilustrado na Figura 22, e o Algoritmo 2 apresenta o pseudocódigo correspondente, 

destacando as principais etapas da versão multi-objetivo, incluindo a integração do 

processo (M−1)-GPD e a atualização progressiva da frente de Pareto. 
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FIGURA 22 – Fluxograma algoritmo MOKOARIME 

 
Fonte: O autor, 2025 
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Algoritmo 2 Pseudo código MOKOARIME 

 
Início 

Estabelecer os parâmetros N,Tmax,μ0,γ,W, φ.  

Inicializar a população com posição aleatória, excentricidades orbitais e períodos orbitais. 

Avaliar os valores de aptidão para a população inicial.  

Determinar a melhor solução global  

while t < Tmax do 

          Atualizar ei, i = 1,2,...,N, best(t), worst(t) e μ(t) . 

          for i = 1 : N do 

              Calcular a distância euclidiana entre a melhor solução ( ) e a solução i ( ). 

              Calcular a força gravitacional entre  e . 

              Calcular a velocidade da solução  . 

              Gerar dois números aleatórios r,r1 entre 0 e 1.  

              if r > r1 then 

  Atualizar a nova posição da solução . 

              else 

  Atualizar a distância entre a solução  e . 

              end 

              for Para cada agente i do  

                   for Para cada dimensão j do 

  if r2 < E then 

                                Aplicar a estratégia de busca gelo macio.  

                       end  

                        if r3 < Fnormr(Si) then 

                                Aplicar a estratégia de busca gelo-duro. 

                       end          

                   end 

              end 

               Avaliar os M objetivos para cada solução da população. 

               Seleção ambiental (M−1)-GPD. 

               Atualizar frente de Pareto 

          end 

          t ← t + 1 

 end 
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6 APRESENTAÇÃO DOS RESULTADOS 
 

Neste capítulo, são apresentados os resultados das simulações realizadas 

para a avaliação do desempenho: do algoritmo mono objetivo em diferentes 

benchmark; do algoritmo multi-objetivo em um benchmark, assim como em 

problemas reais. A ferramenta utilizada para rodar o algoritmo foi o ambiente 

computacional MatLab e o hardware sendo um processador Intel(R) Core i7-10510U 

unidade de central de processamento (do inglês central processing unit, CPU) @ 

2.30 GHz e computador de 16GB de memória RAM (do inglês random access 

memory). Para cada função e algoritmo, foram realizadas 50 execuções. Os 

resultados foram organizados em tabelas, apresentando os valores médios (μ) e 

desvio padrão (σ) para cada função e algoritmo, além dos rankings médios 

calculados a partir do teste de Friedman. Além disso, foi realizado um teste de 

hipótese para verificar a significância estatística das comparações entre o 

desempenho dos algoritmos avaliados. 

 
6.1 RESULTADOS DO ALGORITMO MONO OBJETIVO NAS FUNÇÕES DE 

BENCHMARK 
 

Esta seção apresenta uma análise dos resultados obtidos nos benchmarks 

CEC2017, CEC2019 e CEC2023, considerando diferentes tamanhos populacionais 

(5, 30 e 60 indivíduos) ao longo de 3000 gerações. A discussão visa destacar o 

desempenho do algoritmo híbrido KOARIME em comparação com seus algoritmos 

base (KOA e RIME) e demais abordagens de referência. A análise considera não 

apenas os valores médios e desvios padrão das funções otimizadas, mas também 

os ranks médios gerados pelo teste de Friedman e os testes de hipótese pareados, 

os quais permitem avaliar a significância estatística das diferenças de desempenho. 

Os resultados são discutidos individualmente para cada benchmark, evidenciando o 

comportamento dos algoritmos frente a diferentes níveis de complexidade e 

diversidade populacional. 

O desempenho do KOARIME foi comparado com seis algoritmos de 

referência amplamente utilizados na literatura, sendo dois deles de natureza híbrida: 

KOA (Abdel-Basset et al., 2023); RIME (Su et al., 2023); SHADE (Tanabe; 

Fukunaga, 2013), WOA (Mirjalili; Lewis, 2016); PSOABC (Tamilselvan, 2020) e 
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GWOWOA (Obadina et al., 2022). 

A Tabela 8 apresenta as configurações dos algoritmos de otimização 

utilizados nas funções de benchmarks. 

 
TABELA 8 – Parâmetros internos utilizados na otimização 

Parâmetro KOARIME KOA RIME SHADE WOA PSOABC GWOWOA 
Tc 3 3      

 0.1 0.1      
λ 15 15      
W 5  5     
H    50    
p    0.05    
b     1  1 
w      0.7  
c       1.5  
c       1.5  

limit      100  
Fonte: O Autor, 2025. 

 

Os parâmetros listados na Tabela 8 correspondem a: Tc: período orbital; μ : 

massa inicial; λ: amortecimento orbital; W: intensidade da formação de gelo; H: 

tamanho da memória histórica; p: proporção dos melhores; b: curvatura da espiral; 

w: inércia; c : peso cognitivo; c : peso social; limit: limite de estagnação. 

 

6.1.1 Resultados da CEC2017 
 

A seguir, são apresentados os resultados obtidos para o conjunto de funções 

da CEC2017. As Tabelas 9 a 13 reúnem os valores médios, desvios padrões, 

rankings e testes de hipótese. 
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6.1.1.1 Discussão de resultados da CEC2017 
 

Os resultados obtidos no benchmark CEC2017 evidenciam o desempenho 

robusto e consistente do algoritmo KOARIME em relação aos seus predecessores 

(KOA e RIME) e demais algoritmos concorrentes. Foram avaliadas 28 funções para 

três configurações distintas de tamanho populacional (5, 30 e 60 indivíduos), com 50 

execuções por função. A análise considerou valores médios, desvios padrões, ranks 

médios via teste de Friedman e testes de hipótese para avaliar a significância 

estatística das diferenças observadas. 

No cenário com uma população de apenas 5 indivíduos, fator que reduz a 

diversidade e desafia o desempenho de algoritmos metaheurísticos, o KOARIME 

demonstrou desempenho superior. O algoritmo conquistou 13 primeiros lugares, 12 

segundos lugares e 3 terceiros lugares entre as 28 funções do benchmark CEC2017, 

alcançando 100% de presença nos primeiros lugares. Esse desempenho evidencia 

sua capacidade de equilibrar exploração e intensificação. Em contraste, os 

algoritmos base KOA obteve apenas 2 vitórias e o RIME nenhuma, demonstrando 

desempenho inferior frente ao algoritmo híbrido. Os Rank médios do teste de 

Friedman confirmam a dominância do KOARIME, com 1.7 de média — o melhor 

entre todos os algoritmos. Na sequência aparecem PSOABC (2.2), KOA (3.1), RIME 

(3.8), GWOWOA (4.8), SHADE (5.8) e WOA (6.5). 

Complementando essa análise, os testes de hipótese reforçam a significância 

estatística dos resultados. Em quase todas as comparações entre o KOARIME e os 

demais algoritmos (KOA, RIME, SHADE, WOA, GWOWOA), a hipótese nula foi 

rejeitada (p < 0.05), indicando diferenças estatisticamente significativas a favor do 

KOARIME. A única exceção foi o PSOABC, cujo desempenho se mostrou 

estatisticamente equivalente . 

No cenário com população intermediária de 30 indivíduos, o algoritmo 

KOARIME manteve sua superioridade na CEC2017. Entre as 28 funções avaliadas, 

obteve 13 primeiros lugares, 12 segundos lugares e 3 terceiros lugares, marcando 

presença nas primeiras posições. Esse desempenho evidencia sua robustez frente a 

funções unimodais, multimodais, híbridas e compostas, mesmo em uma 

configuração com diversidade moderada. Em contraste, os algoritmos base 

apresentaram desempenho inferior: KOA e o RIME não ficaram entre as primeiras 

posições em nenhuma função. 
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A análise estatística pelo teste de Friedman confirmou a dominância do 

KOARIME, que obteve o menor rank médio (1.7), superando algoritmos como 

PSOABC (2.5) e SHADE (2.3). Nos testes de hipótese, a hipótese nula foi rejeitada 

na maioria das comparações, indicando que as diferenças de desempenho em 

relação a KOA, RIME, WOA e GWOWOA são estatisticamente significativas. Apenas 

PSOABC e SHADE apresentaram equivalência estatística, embora com 

desempenho médio inferior. 

No cenário com uma população mais ampla de 60 indivíduos, configuração 

que amplia a exploração e intensificação, o algoritmo KOARIME manteve sua 

posição de destaque. Nos testes com as 28 funções do benchmark CEC2017, o 

KOARIME obteve 11 primeiros lugares e 17 segundos lugares, totalizando 28 

aparições entre os dois melhores colocados. Esse desempenho reforça a eficácia da 

hibridização entre os mecanismos exploratórios do KOA e as estratégias de 

adaptação do RIME. Em contraste, os algoritmos base KOA e RIME não 

apresentaram desempenhos expressivos, ficando com participações modestas e 

sem dominância clara em nenhuma função. 

O teste de Friedman, aplicado para avaliar os ranks médios de desempenho 

nas 28 funções, confirmou a superioridade do KOARIME, que apresentou o menor 

rank médio (1.6) entre todos os algoritmos, seguido por SHADE (2.3), PSOABC 

(2.9), RIME (3.3). Como menores valores de Rank indicam melhor desempenho 

relativo, esses resultados reforçam a consistência do KOARIME. 

Complementarmente, os testes de hipótese evidenciaram diferenças 

estatisticamente significativas entre o KOARIME e cinco dos seis algoritmos 

comparados (KOA, RIME, WOA, PSOABC, GWOWOA), com p-valores inferiores a 

0.05. A única exceção foi a comparação com SHADE, cujo p-valor (0.108) indicou 

desempenho estatisticamente equivalente, embora o KOARIME ainda tenha mantido 

vantagem no número do rank médio.   
 
6.1.2 Resultados da CEC2019 

 
  As Tabelas 14 a 18 apresentam os resultados referentes ao benchmark 

CEC2019. A organização segue o mesmo padrão adotado para o CEC2017, com 

métricas estatísticas e rankings para os três tamanhos populacionais testados. 
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6.1.2.1 Discussão de resultados da CEC2019 
 

No primeiro cenário da CEC2019, com uma população de apenas 5 

indivíduos, o algoritmo KOARIME manteve um desempenho notável. Avaliado em 10 

funções clássicas, o algoritmo híbrido alcançou 7 primeiros lugares, 2 segundos 

lugares e 1 terceiro lugar, mantendo sua presença nas primeiras posições. Esse 

desempenho evidencia a eficácia da combinação entre a exploração gravitacional do 

KOA e a intensificação adaptativa do RIME, demonstrando robustez mesmo em 

condições com baixa diversidade populacional. Em contraste, os algoritmos base 

apresentaram desempenho inferior. O KOA, por exemplo, obteve apenas um 

segundo lugar e três terceiros lugares, enquanto o RIME conquistou um segundo 

lugar e quatro terceiros lugares. 

O teste de Friedman confirmou estatisticamente a dominância do KOARIME, 

que apresentou o menor rank médio (1.4), seguido por PSOABC (2.7), RIME (3.6) e 

KOA (4.9). Como ranks menores indicam melhor desempenho médio por função, 

esse resultado evidencia a consistência e eficiência da abordagem híbrida. Os testes 

de hipótese reforçaram essa constatação: a hipótese nula foi rejeitada em cinco das 

seis comparações realizadas, indicando significância estatística nas diferenças 

observadas. A única exceção foi a comparação com o PSOABC, cujo p-valor (0.089) 

foi superior ao nível de significância de 0.05, sugerindo desempenho 

estatisticamente equivalente. 

No cenário com uma população ampliada para 30 indivíduos, o algoritmo 

híbrido KOARIME manteve sua liderança em desempenho. Das dez funções 

avaliadas no benchmark CEC2019, o KOARIME obteve 6 primeiros lugares e 3 

segundos lugares, evidenciando sua robustez mesmo frente ao aumento da 

complexidade populacional. Em contraste, os algoritmos base KOA e RIME 

apresentaram desempenhos consideravelmente inferiores: o KOA obteve a pior 

média de ranks e o RIME, com desempenho intermediário, não alcançou nenhuma 

vitória entre as funções testadas. 

A análise estatística por meio do teste de Friedman confirmou a superioridade 

do KOARIME, que obteve o menor rank médio (1.7), seguido pelos algoritmos 

SHADE (2.5) e PSOABC (2.9), com os demais posicionando-se em níveis de 

desempenho inferiores. Adicionalmente, os testes de hipótese pareados indicaram 

diferenças estatisticamente significativas entre o KOARIME e quatro dos seis 
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algoritmos comparados (KOA, RIME, WOA, GWOWOA), com valores de p inferiores 

a 0,05. As exceções foram os algoritmos SHADE (p = 0.204) e PSOABC (p = 0.107), 

cujos desempenhos foram estatisticamente equivalentes ao do KOARIME, embora 

este tenha mantido vantagem em número de vitórias e rank médio em ambos os 

casos. 

Com a ampliação da população para 60 indivíduos no benchmark CEC2019, 

o algoritmo híbrido KOARIME manteve sua liderança com desempenho consistente. 

Entre as 10 funções avaliadas, o KOARIME conquistou 5 primeiros lugares, 4 

segundos lugares e 1 terceiro lugar, confirmando sua robustez mesmo com um 

número maior de indivíduos no processo de otimização. Em contraste, os algoritmos 

base apresentaram desempenhos mais fracos: o KOA teve o pior desempenho 

médio (6.6), enquanto o RIME permaneceu em posição intermediária, sem registrar 

nenhuma vitória, evidenciando a superioridade da abordagem híbrida do KOARIME. 

A análise estatística por meio do teste de Friedman reafirmou a superioridade 

do KOARIME, que obteve o menor rank médio (1.6). Os algoritmos mais próximos 

foram SHADE (2.1) e PSOABC (3.2), embora nenhum tenha igualado sua 

consistência. Os testes de hipótese pareados reforçaram essa evidência, com 

diferenças estatisticamente significativas (p < 0.05) entre KOARIME e todos os 

demais algoritmos, exceto o SHADE (p = 0.302), cujo desempenho foi considerado 

estatisticamente equivalente. Mesmo assim, o KOARIME superou o SHADE em 

número de vitórias e rank médio consolidando-se como o algoritmo mais eficaz entre 

os avaliados para o cenário populacional ampliado. 

 

6.1.3 Resultados da CEC2023 
 

A seguir, são apresentados os resultados obtidos na otimização das funções 

da CEC2023, considerando as mesmas configurações populacionais utilizadas nos 

casos anteriores. As tabelas correspondentes detalham os valores médios, desvios 

padrão, rankings médios obtidos pelo teste de Friedman e os resultados dos testes 

de hipótese para comparação entre algoritmos. 
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6.1.3.1 Discussão de resultados da CEC2023 
 

Os resultados obtidos com população igual a 5 mostra que o algoritmo híbrido 

KOARIME destacou-se mais uma vez como o de melhor desempenho geral, 

alcançando o menor rank médio (1.3) entre todos os algoritmos avaliados. Ele 

conquistou o primeiro lugar em quatro funções, além de obter a segunda colocação 

em duas funções, demonstrando consistência e robustez frente a diferentes 

categorias de funções. O algoritmo KOA apresentou desempenho intermediário, com 

rank médio de 3.4, destacando-se com a segunda posição em 2 funções, embora 

tenha tido desempenho menos expressivo nas demais. O algoritmo RIME obteve 

rank médio de 4.5, sem alcançar a primeira colocação em nenhuma função, 

evidenciando uma performance mais modesta. 

Entre os demais algoritmos, o SHADE apresentou desempenho semelhante 

ao KOA, com rank médio de 3.5. Já o WOA (5.0), PSOABC (4.6) e GWOWOA (5.6) 

apresentaram os piores desempenhos médios. A análise estatística pelo teste de 

hipótese de Friedman confirmou a superioridade estatística do KOARIME sobre 

todos os demais algoritmos. Todas as hipóteses nulas foram rejeitadas, incluindo a 

comparação com o KOA (p = 0.05), o que demonstra que os ganhos obtidos com a 

hibridização são estatisticamente significativos, mesmo em relação ao melhor dos 

algoritmos base. 

No cenário com população intermediária de 30 indivíduos, o algoritmo híbrido 

KOARIME manteve sua performance destacada no benchmark CEC2023. Avaliado 

em seis funções teste, o KOARIME obteve três primeiros lugares, dois segundos 

lugares e uma terceira colocação, totalizando presença em todas as primeiras 

posições. Esses resultados confirmam a versatilidade e a adaptabilidade do 

algoritmo híbrido frente a diferentes categorias funcionais, mesmo em contextos com 

diversidade populacional moderada. O algoritmo base KOA, por sua vez, apresentou 

o pior desempenho entre todos os avaliados. Com rank médio de 6.4, ficou nas 

últimas colocações em todas as funções, sem obter qualquer primeira ou segunda 

colocação. O RIME, outro algoritmo base, teve desempenho mais equilibrado, 

destacando-se com uma vitória, mas sem manter regularidade nas demais, 

encerrando com rank médio de 4.0. 

Entre os algoritmos de comparação, o PSOABC apresentou resultado 

competitivo, obtendo o melhor desempenho na função SONVM1 e encerrando com 
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rank médio de 2.4, o segundo melhor geral. Já o algoritmo SHADE teve performance 

estável, com rank médio de 3.4, seguido por WOA (4.2) e GWOWOA (5.8), que 

obtiveram desempenhos mais modestos. Os testes de hipótese pareados reforçaram 

essa dominância: as diferenças entre o KOARIME e os algoritmos KOA, RIME, WOA 

e GWOWOA foram estatisticamente significativas (p < 0.05), evidenciando a eficácia 

da hibridização proposta. Por outro lado, as comparações com SHADE (p = 0.09) e 

PSOABC (p = 0.17) não apresentaram significância estatística, indicando 

desempenhos equivalentes nesses casos, embora o KOARIME ainda mantenha 

vantagem no número de vitórias e na consistência geral. 

No cenário com uma população ampliada para 60 indivíduos, o algoritmo 

híbrido KOARIME manteve sua posição de destaque no benchmark CEC2023. 

Foram avaliadas seis funções com diferentes níveis de complexidade, e o KOARIME 

apresentou um desempenho consistente, com quatro primeiros lugares e dois 

segundos lugares, permanecendo entre os dois melhores em todas as funções 

testadas. Os demais algoritmos apresentaram resultados inferiores. O KOA e o 

GWOWOA obtiveram os piores rank médios (ambos com 6.1), enquanto o RIME e o 

SHADE empataram com 4.0, evidenciando desempenho mediano. O WOA e o 

PSOABC obtiveram rank médios de 3.6 e 2.6, sendo este último o mais próximo do 

desempenho do KOARIME. 

A análise estatística com o teste de Friedman confirmou a superioridade 

estatística do KOARIME, que obteve o menor rank médio (1.3). Os testes de 

hipótese indicaram diferenças significativas (p < 0.05) em relação a todos os 

algoritmos, exceto o PSOABC (p = 0.0852), o que indica equivalência estatística 

apenas com este. Ainda assim, o KOARIME superou o PSOABC em número de 

vitórias e consistência geral. 
 

6.2 RESULTADOS DO ALGORITMO MULTI-OBJETIVO NA FUNÇÃO DE 
BENCHMARK 

 

Nesta seção serão apresentados os resultados obtidos na avaliação do 

desempenho do algoritmo MOKOARIME frente aos algoritmos de comparação, 

considerando as funções de benchmark (CEC 2018), considerando diferentes 

tamanhos populacionais (30, 120 e 300 indivíduos) ao longo de 300 gerações tendo 

sido conduzidas por 50 execuções independentes. O ambiente computacional 

empregado foi o MATLAB, executado em um sistema com processador Intel(R) Core 
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i7-10510U CPU @ 2.30 GHz e 16 GB de memória RAM. O objetivo é verificar a 

eficiência do algoritmo em diferentes contextos de otimização multi-objetivo, 

analisando sua capacidade de alcançar a frente de Pareto e preservar a diversidade 

das soluções não dominadas.  

Para fins de comparação, os desempenhos das metaheurísticas foram 

avaliados por meio das métricas Distância de Geração Invertida (IGD) e Hipervolume 

(HV), amplamente utilizadas na literatura de otimização multi-objetivo para 

quantificar a qualidade das frentes de Pareto obtidas. A métrica IGD mede a 

proximidade média entre os pontos da frente de Pareto de referência e os pontos 

obtidos pelo algoritmo. Valores menores de IGD indicam que as soluções geradas 

estão mais próximas da fronteira ideal, refletindo melhor convergência. Já o 

Hipervolume (HV) mede o tamanho da região do espaço de objetivos coberta pelas 

soluções não dominadas, em relação a um ponto de referência. Quando as soluções 

estão mais próximas da frente ideal e bem distribuídas, essa região é maior, 

resultando em valores mais altos de HV. Portanto, um HV elevado indica uma 

melhor qualidade geral da frente de Pareto. Em conjunto, as duas métricas permitem 

avaliar simultaneamente os dois aspectos fundamentais do desempenho em 

otimização multi-objetivo, convergência e diversidade. 

O desempenho do MOKOARIME foi comparado a um conjunto de 

metaheurísticas híbridas de referência: HMOEA (Ali et al., 2024), HMOFA (Xie et al., 

2018), MOWOATS (Abdel Aziz et al., 2019), MOGWOCS (Vo et al., 2024) 

,NSGAIIMOPSO (Li et al., 2023), SHAMODE_WO (Panagant et al., 2019). 

A Tabela 24 apresenta as configurações dos algoritmos de otimização 

utilizados nas funções de benchmarks. 

Na Tabela 24 são definidos os parâmetros Tc: período orbital; μ : massa 

inicial; λ: amortecimento orbital; W: intensidade da formação de gelo; φ: ângulo de 

projeção; pc: probabilidade de crossover; pm: probabilidade de mutação; σ: desvio 

padrão da mutação; μ: parâmetro da mutação polinomial; β : atratividade inicial; α : 

amplitude inicial; α_d: decaimento; elite_inject_every: frequência de elitismo; b: 

curvatura da espiral do WOA; ts_frac: fração para Tabu Search; ts_sigma: 

vizinhança do TS; p_a: probabilidade de abandono; c_Levy: coeficiente do passo 

Lévy; α: coeficiente de ponderação do operador; w: inércia; c , c : pesos cognitivo e 

social; p: proporção dos melhores; H: tamanho da memória histórica. 
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TABELA 24 – Parâmetros internos utilizados na otimização 

Parâmetro MOKOA
RIME 

HMOEA HMOFA MOWOA
TS 

MOGWO
CS 

NSGAIIM
OPSO 

SHAMO
DE_WO 

Tc 3       
μ  0.1       
λ 15       
W 5       
φ 57.3°       
Pc  0.5    0.9  
Pm  0.5      
σ  0.05    0.15  
μ  1/D    1/D  
β    1.0     
α    0.25     

α_d   0.98     
elite_inject

_every 
  5     

b    1.0    
ts_frac    0.25    

ts_sigma    0.05    
p_a     0.25   

c_Levy     0.1   
α      0.5  
w      0.7  
c       1.5  
c       1.5  
p       1.0 
H       50 

Fonte: O Autor, 2025. 
 

 

6.2.1 Resultados da CEC 2018 
 

Nesta subseção são apresentados os resultados obtidos pelo MOKOARIME e 

pelos algoritmos de comparação nas funções de benchmark MaF(Many-objective 

Functions) - MaF1 a MaF15, pertencentes à suíte CEC 2018. Esses problemas 

abrangem diferentes níveis de complexidade, como não convexidade, 

descontinuidade e alta dimensionalidade, permitindo avaliar o desempenho dos 

algoritmos em diversos cenários de otimização multi-objetivo. 

A Tabela 25 apresenta a configuração dos problemas de teste da competição 

CEC 2018, nos quais as funções MaF1 a MaF15 foram avaliadas considerando dois 

cenários distintos de otimização multi-objetivo: um com três objetivos (M = 3) e outro 

com dez objetivos (M = 10). Essa variação permite analisar o desempenho do 

MOKOARIME frente a diferentes graus de complexidade, verificando sua 

capacidade de manter convergência e diversidade tanto em problemas de baixa 

quanto de alta dimensionalidade de objetivos. 
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TABELA 25 – Problemas testes da competição CEC 2018 

Função Objetivos Dimensão 
MaF1 3, 10 12, 14 
MaF2 3, 10 12, 14 
MaF3 3, 10 12, 14 
MaF4 3, 10 12, 14 
MaF5 3, 10 12, 14 
MaF6 3, 10 12, 14 
MaF7 3, 10 12, 14 
MaF8 3, 10 12, 14 
MaF9 3, 10 12, 14 

MaF10 3, 10 12, 14 

MaF11 3, 10 12, 14 

MaF12 3, 10 12, 14 

MaF13 3, 10 12, 14 

MaF14 3, 10 20, 100 

MaF15 3, 10 20, 100 
Fonte: O Autor, 2025. 

 

Os resultados obtidos para as funções da CEC 2018 são apresentados nas 

Tabelas 26 a 31, essas apresentam os valores médios e desvios-padrão obtidos 

pelas métricas IGD e HV, assim como o teste de Wilcoxon signed-rank aplicado 

individualmente a cada função, com o objetivo de comparar o desempenho do 

MOKOARIME em relação aos algoritmos de referência. A interpretação seguirá a 

convenção amplamente utilizada na literatura: será atribuído o símbolo “+” quando o 

MOKOARIME apresentar desempenho significativamente superior, o símbolo “=” 

quando não houver diferença estatisticamente significativa, e o símbolo “–” quando o 

MOKOARIME for estatisticamente inferior. 
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A Tabela 32 apresenta os resultados gerais do teste de Wilcoxon aplicado às 

funções da CEC2018, comparando o desempenho do MOKOARIME com seis 

algoritmos híbridos de referência. O MOKOARIME obteve 647 vitórias, 323 empates 

e apenas 110 derrotas, demonstrando superioridade em 65,7% das comparações 

diretas. Esses resultados indicam que o MOKOARIME apresentou desempenho 

estatisticamente melhor na maior parte das funções, mantendo alta estabilidade 

entre diferentes cenários de otimização. 
 

TABELA 32 – Resultados gerais do MOKOARIME 

Algoritmo de Comparação Vitória Empate Derrota 
MOKOARIME × HMOEA 119 48 13 
MOKOARIME × HMOFA 124 41 15 

MOKOARIME × HMOWOATS 107 57 16 
MOKOARIME × MOGWOCS 101 58 21 

MOKOARIME × NSGAIIMOPSO 112 54 14 
MOKOARIME × SHAMODE_WO 84 65 31 

TOTAL 647 323 110 
Fonte: O Autor, 2025 

 

A Tabela 33 apresenta o número de vitorias e derrotas, assim como a 

diferença entre vitorias e derrotas de cada metaheurística utilizada. 
 

TABELA 33 – Vitórias e derrotas gerais dos sete algoritmos com base nas métricas IGD e HV 

Métricas MOKOARIME HMOEA HMOFA HMOWATS MOGWOC
S 

NSGAIIMOP
SO 

SHADEMO
DE_WO 

 
IGD 

Vitórias 466 204 145 256 275 208 336 
Derrotas 74 336 395 284 265 332 204 
Diferença 392 -132 -250 -28 10 -124 132 
Posição 1 6 7 4 3 5 2 

 
HV 

Vitórias 443 207 178 256 283 171 352 
Derrotas 97 333 362 284 257 369 188 
Diferença 346 -126 -184 -28 26 -198 164 
Posição 1 5 6 4 3 7 2 

Fonte: O Autor, 2025 
 

A análise comparativa das métricas IGD e HV confirma o desempenho 

consistente do MOKOARIME. Com 466 vitórias e apenas 74 derrotas em IGD 

(diferença de +392) e 443 vitórias e 97 derrotas em HV (diferença de +346), o 

algoritmo apresentou excelente equilíbrio entre convergência e diversidade. Em 

ambas as métricas, o MOKOARIME obteve resultados superiores aos do segundo 

colocado (SHAMODE_WO), mantendo vantagem relevante nas contagens de 

vitórias. Esses resultados demonstram que o MOKOARIME atingiu soluções mais 
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estáveis e precisas, consolidando-se como o algoritmo de melhor desempenho entre 

todos os métodos híbridos avaliados (HMOEA, HMOFA, HMOWOATS, MOGWOCS, 

NSGAIIMOPSO e SHAMODE_WO). 

 

6.3 ANÁLISE ECONÔMICA DA MICRORREDE OFF-GRID COM DIVERSAS 
FONTES DE ENERGIA RENOVÁVEIS 

 

Para a análise econômica da microrrede sob estudo, este trabalho utiliza-se 

de uma curva de carga horária representativa de uma comunidade de pequeno 

porte, com perfil autônomo de consumo. Essa curva foi adotada com base em dados 

previamente utilizados em estudos anteriores (Kumar; Saini, 2020; Kumar et al., 

2021). 

Para refletir variações sazonais relevantes no perfil de carga, o ano foi 

segmentado em duas estações predominantes: inverno (março a outubro) e verão 

(novembro a fevereiro). Durante o verão, observa-se uma elevação na demanda 

energética, especialmente em virtude do uso de equipamentos de ventilação e 

refrigeração. No inverno, por sua vez, verifica-se uma redução no consumo médio 

diário. 

A Figura 23 apresenta os perfis de demanda horária correspondentes a cada 

estação, evidenciando as variações de consumo ao longo do ano. Essas 

informações servem como base para a simulação do desempenho elétrico e 

econômico do sistema híbrido proposto, contribuindo para uma análise mais realista 

e robusta do cenário avaliado. 
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FIGURA 23 – Perfil de demanda elétrica horária em um dia 

 
Fonte: Kumar, P. P.; Saini, R. P, 2020. 

 

A Tabela 34 apresenta os valores médios horários de demanda elétrica para 

um dia típico de verão e de inverno, detalhados por setor: residencial, comunitário, 

agrícola e comercial. Observa-se um pico de consumo no período noturno, 

especialmente entre 18h e 20h no verão, quando a carga total atinge 64,03 kWh, 

impulsionado principalmente pelo uso simultâneo de iluminação, eletrodomésticos e 

ventilação. Durante a madrugada e nas primeiras horas do dia, os valores são 

significativamente menores, refletindo os hábitos de uso típicos da comunidade. No 

inverno, observa-se uma redução significativa na carga total diária, com destaque 

para o setor residencial, em função das temperaturas mais amenas, que diminuem a 

necessidade de ventilação e refrigeração. Essa variação sazonal reforça a 

importância de estratégias de planejamento energético adaptativas, que considerem 

essas flutuações no dimensionamento e na operação do sistema. 
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TABELA 34 – Perfil horário da demanda elétrica por setor no dia típico de verão e inverno 

Tempo (h) Carga 
Doméstica (V/I) 

Carga 
Comunitária 

(V/I) 

Carga Agrícola Carga 
Comercial (V/I) 

Demanda 
Total 

(kWh)  (V/I) 
00:00 – 01:00 19.95/0 1.76/1.38 0 2.98 24.69/4.36 
01:00 – 02:00 19.95/0          1.76/1.38        0 2.98            24.69/4.36 
02:00 – 03:00    19.95/0          1.76/1.38        0 2.98            24.69/4.36 
03:00 – 04:00    19.95/0          1.76/1.38        0 2.98            24.69/4.36 
04:00 – 05:00    30.59/10.64      1.76/1.38        0 2.98            35.33/15 
05:00 – 06:00    37.24/17.29      1.76/1.38        0 2.98            41.98/21.65 
06:00 – 07:00    27.93/7.98       0.58/0.2         9 2.98            40.49/20.16 
07:00 – 08:00    27.93/7.98       0.58/0.2         9 2.98            40.49/20.16 
08:00 – 09:00    27.27/7.32       0.58/0.2         9    2.98            39.83/19.5 
09:00 – 10:00    16.63/6.65       3.44/3.44        5.53            9.43/9.05        35.03/24.67 
10:00 – 11:00    16.63/6.65       3.44/3.44        5.53            9.43/9.05        35.03/24.67 
11:00 – 12:00    23.28/13.3       5.01/3.50        5.53            9.43/9.05        43.25/31.38 
12:00 – 13:00    23.28/13.3   5.01/3.50 5.53  9.43/9.05       43.25/31.38 
13:00 – 14:00 23.28/13.3   4.95/3.44 1.55  9.43/9.05 39.21/27.34 
14:00 – 15:00 23.28/13.3   4.95/3.44 0       7.25/6.87 35.48/23.61 
15:00 – 16:00 23.28/13.3   4.95/3.44 0       7.25/6.87 35.48/23.61 
16:00 – 17:00 23.28/13.3   4.95/3.44 0       7.25/6.87 35.48/23.61 
17:00 – 18:00 23.28/13.3   2.05/1.44 0       6.01/5.63 31.34/20.37 
18:00 – 19:00 58.52/38.57 2.05/1.44 0       3.46/3.08 64.03/43.09 
19:00 – 20:00 58.52/38.57 2.05/1.44 0       3.46/3.08 64.03/43.09 
20:00 – 21:00 57.86/37.91 1.76/1.38 0       2.98               62.6/42.27 
21:00 – 22:00 57.86/37.91 1.76/1.38 0       2.98             62.6/42.27 
22:00 – 23:00 39.24/19.29 1.76/1.38 0       2.98         43.98/23.65 
23:00 – 00:00 19.95/0        1.76/1.38 0       2.98              24.69/4.36 

Soma total da demanda em 24h:  952.36/543.28   
Fonte: Kumar, P. P.; Saini, R. P, 2020. 

 
A compreensão do clima local é fundamental para a avaliação do potencial de 

geração de energia a partir de fontes renováveis. Neste estudo, foram utilizados 

dados anuais de irradiância solar e velocidade do vento referentes a uma localidade 

do estado do Rio Grande do Norte, região conhecida por apresentar elevado 

potencial solar e pelas boas condições para a geração eólica. 

Os registros de irradiância (Figura 24) indicam uma boa disponibilidade de 

recurso solar ao longo do ano, com variações típicas entre os meses, influenciadas 

pela cobertura de nuvens e pelo posicionamento solar. Quanto à velocidade do 

vento (Figura 25), os dados demonstram valores médios consistentes durante 

grande parte do ano, com destaque para determinados períodos em que os ventos 

atingem intensidade suficiente para garantir o funcionamento eficiente das turbinas 

eólicas. Esse comportamento favorável contribui para o equilíbrio do sistema híbrido, 

sobretudo em horários ou estações com menor disponibilidade solar. Além disso, a 

análise da temperatura média diária (Figura 26) evidencia valores elevados ao longo 

de grande parte do ano.  

Essas informações são fundamentais para embasar decisões sobre o 
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dimensionamento e a combinação das tecnologias de geração, de forma a 

maximizar o aproveitamento dos recursos naturais e garantir o atendimento da 

demanda energética da comunidade estudada. 

 
FIGURA 24 – Irradiância solar anual 

 
Fonte: Inmet, 2025. 

 
 

FIGURA 25 – Velocidade do vento anual 

 
Fonte: Inmet, 2025. 
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FIGURA 26 – Temperatura anual 

 
Fonte: Inmet, 2025. 

  

A potência gerada pelos módulos fotovoltaicos é calculada considerando as 

variações horárias de irradiância solar e temperatura ambiente ao longo do ano. O 

desempenho do painel é influenciado tanto pela quantidade de radiação incidente 

quanto pela temperatura das células, que reduz a eficiência do módulo quando 

supera os valores de referência. Assim, a potência instantânea é estimada por: 

                     (38)                 

onde: 

   
  = É a potência nominal de cada painel; 
  = É a irradiância solar horária (kW/m²); 

 = 1kW/m² é a irradiância de referência; 
  =  coeficiente de temperatura de potência; 

  =  temperatura estimada da célula; 
  = temperatura ambiente horária (°C); 
  = temperatura padrão de referência. 
   
A energia gerada pelos painéis fotovoltaicos é: 
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                                                                           (39)                  
 

onde: 

 = É a energia produzida no instante t; 
 = É o número de painéis instalados; 

  = É o intervalo de tempo (1 hora). 
 

 A geração eólica do sistema é calculada a partir da velocidade do vento 

registrada hora a hora ao longo do ano. Como os dados disponíveis foram medidos 

a 10 m de altura, enquanto a turbina opera a 20 m, a velocidade é corrigida por meio 

da lei de potência, garantindo coerência entre os dados medidos e a altura real de 

operação da turbina. 

A potência gerada pela turbina eólica depende diretamente da velocidade do 

vento. A turbina só começa a gerar quando o vento atinge a velocidade mínima de 

operação (cut-in) e continua aumentando sua produção até alcançar a velocidade 

nominal, ponto em que atinge sua potência máxima. Para ventos acima do limite de 

segurança (cut-out), a turbina é desligada para evitar danos. Assim, a potência 

gerada em cada hora é calculada por:  

 

         (40) 

 
onde: 

 = Potência nominal da turbina; 
  = Velocidade de corte inferior, abaixo da qual não há geração; 

 = Velocidade nominal, a partir da qual a turbina opera em sua 
potência máxima constante; 
  = Velocidade de corte superior, acima da qual a turbina 
também não gera por segurança; 

 = É a velocidade do vento  ajustada na altura do cubo da turbina 
eólica. 
 
A energia gerada pela turbina eólica: 
 

                                     (41)                  
 

onde: 
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 = É a energia produzida no instante t; 
 = É o número de turbinas instaladas; 

  = É o intervalo de tempo (1 hora). 

 

O banco de baterias atua como elemento central para garantir o suprimento 

de energia nos momentos em que as fontes renováveis não atendem à demanda, 

seja por baixa geração ou por picos de consumo. Quando há excedente de 

produção, a energia é armazenada; quando há déficit, a bateria supre a carga. O 

estado de energia armazenada no instante t depende do nível no instante anterior, 

das perdas por autodescarga e do balanço entre geração e demanda. 

Durante o processo de carga, a atualização da energia armazenada é dada 

por: 

 

                       (42)                  
 
onde: 

   = Energia armazenada nas baterias no instante t; 
   = Taxa de autodescarga horária das baterias; 
   = Energia elétrica gerada pelas fontes renováveis no instante t; 
   = Demanda elétrica do sistema; 
   = Eficiência do conversor; 
    = Eficiência do controlador de carga; 
   = Eficiência de carga/descarga da bateria; 
 

A energia total disponível em cada hora é composta pela soma das 
contribuições de corrente contínua (fotovoltaico e eólica) e corrente alternada 
(biomassa), ajustadas pela eficiência do conversor: 
 
                                                                         (43)                  

  
                                                 (44) 

 
                                                            (45) 

 
Quando a geração renovável é insuficiente, ocorre o processo de descarga, 

em que a bateria complementa a energia necessária para atender à carga: 
 

                       (46) 
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Embora o número de baterias   não apareça explicitamente nas 

Equações 42–46, que tratam apenas da dinâmica de carga e descarga,  

determina os limites operacionais do banco ao definir sua capacidade máxima e 

mínima de armazenamento. 

A capacidade máxima e mínima de armazenamento do banco de baterias é 

calculada por: 

 

                                         (47)     

 

                                         (48)     

   

onde: 

  = Tensão nominal da bateria; 

  = Capacidade nominal (Ah); 

 = Limite superior do estado de carga (100%); 

 = Limite inferior do estado de carga (50%). 

 

As configurações técnicas dos módulos fotovoltaicos, das turbinas eólicas e 

do banco de baterias, incluindo potência nominal, parâmetros elétricos, limites 

operacionais e eficiências, encontram-se apresentadas no Apêndice A. 

O modelo de simulação do sistema híbrido opera de forma integrada e avalia, 

hora a hora, o comportamento da microrrede ao longo de um ano típico (8760 

horas). Para cada conjunto de variáveis de decisão ( , , ), o modelo utiliza 

os perfis anuais de irradiância solar, velocidade do vento, temperatura ambiente e 

dados de carga da comunidade para calcular a energia elétrica produzida pelos 

subsistemas fotovoltaico, eólico e de biomassa. 

A cada hora, o modelo verifica se a geração renovável é suficiente para suprir 

a demanda. Quando há excedente, a energia é direcionada ao banco de baterias; 

caso o estado de carga atinja o limite máximo operacional, o excedente é 

descartado. Quando a geração é insuficiente, a bateria é descarregada até o limite 

mínimo permitido, estabelecido como 50% de profundidade de descarga (DoD). 

Persistindo o déficit, o gerador a diesel é acionado apenas quando o déficit 
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instantâneo de energia ultrapassa 40% da potência nominal do equipamento, limite 

mínimo necessário para sua operação. Caso o déficit seja inferior a esse limiar, o 

diesel não é acionado e a insuficiência é registrada como falta de energia para o 

cálculo da probabilidade de falta de suprimento de energia (LPSP). 

Ao final da simulação anual, são calculados indicadores como LPSP, 

proporção de energia renovável (RF - Renewable Fraction) e consumo de diesel. 

Apenas as configurações que atendem aos critérios mínimos de confiabilidade 

avançam para a análise econômica, na qual os resultados anuais são projetados ao 

longo de 25 anos. Esse procedimento permite determinar o Custo do Ciclo de Vida 

(LCC), adotado como função objetivo na otimização. 

                

6.3.1 Formulação e resultados da otimização mono objetivo 
 

Após a definição dos componentes do Custo do Ciclo de Vida (Seção 3.2.2.1), 

apresenta-se abaixo a formulação matemática do LCC, que integra todos os custos 

descritos anteriormente e é utilizada como função objetivo da otimização mono 

objetivo: 

 

                                (49) 
 

O Custo de Capital Inicial ( ) dos componentes do sistema é calculado da 
seguinte forma: 
 

                                           (50) 

 
onde: 

   = Número de painéis fotovoltaicos; 

   = Número de turbinas eólicas; 

   = Número de baterias; 

   = Custo de capital do respectivo componente. 

 
  O custo de instalação ( ) é calculado como: 
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(51) 

 

onde: 

  = Número de painéis fotovoltaicos; 

  = Número de turbinas eólicas; 

  = Número de baterias; 

  = Custo de instalação do respectivo componente; 

  = Taxa de inflação; 

  = Taxa de desconto; 

  = Número de reinstalações ao longo da vida útil do sistema; 

   = Número de ciclos de reinstalação ao longo da vida útil da 

biomassa, conversor e gerador 

 

 O valor presente dos custos anuais de operação e manutenção ( ) é 

calculado como: 

 

 

 

 

  (52) 

onde: 

  = Número de painéis fotovoltaicos; 

  = Número de turbinas eólicas; 

  = Número de baterias; 

  = Custo anual de operação e manutenção do respectivo componente; 

  = Taxa de inflação; 

  = Taxa de desconto; 

  = Número total de anos da vida útil do projeto. 

 

Como alguns componentes possuem vida útil inferior ao tempo total do 



140 
 

projeto, o valor presente dos Custos de Reposição é: 

 

 

 

 

 

 (53) 

onde: 

   = Custo de reposição do respectivo componente;  

  = Taxa de inflação; 

  = Taxa de desconto; 

   = Número de ciclos de substituição ao longo da vida útil da 

biomassa, conversor e gerador. 

   = Número de substituições ao longo da vida útil do sistema; 

 
O valor presente do custo anual de combustível ( ) é calculado como: 

 
 

 

 

 

   (54) 

onde: 

   = Valor presente dos custos com combustível; 

   = Custo por tonelada de biomassa; 

   = Quantidade anual de biomassa utilizada; 

   = Consumo anual total de diesel pelo gerador; 

   = Custo unitário do diesel; 

  = Taxa de inflação; 

  = Taxa de desconto; 

  = Vida útil do projeto; 

 
A equação que expressa a função objetivo da otimização é: 

 
    (55) 

Sujeito a: 
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Restrições operacionais: 

 LPSP=0;  

 RF   85%. 

Limites das variáveis de decisão: 

 0 ≤  ≤ 2000; 

 0 ≤  ≤ 2000; 

 0 ≤  ≤ 2000. 

 

Cada algoritmo foi executado 50 vezes de forma independente, com 100 

iterações e população de 30 e 60 indivíduos. Para cada configuração, calcularam-se 

o valor médio e o desvio-padrão do LCC ao longo das 50 execuções. Além disso, 

para o melhor resultado entre as 50 execuções, foi registrada a evolução do LCC ao 

longo das iterações, possibilitando comparar a convergência e o comportamento de 

busca dos algoritmos. 

 
TABELA 35 – Resultados médios e desvio-padrão do LCC obtidos pelos algoritmos 

 KOARIME KOA RIME SHADE WOA PSOABC GWOWOA 

Pop Media Desvio-
Padrão 

Media Desvio-
Padrão Media Desvio-

Padrão Media Desvio-
Padrão Media Desvio-

Padrão Media Desvio-
Padrão Media Desvio-

Padrão 
30 1210722 51.79 1235766 3911.62 1232651 22670 1241097 9460.57 1405670 155032 1232940 7264.58 1452594 4463.99 
60 1210632 25.98 1227346 2832.11 1225835 11246 1222758 6203.25 1370813 144530 1217030 9085.48 1221343 6312.49 

Fonte: O Autor, 2025 
 

 Nos experimentos realizados com populações de 30 e 60 indivíduos, o 

KOARIME destacou-se de forma consistente como o algoritmo mais eficiente, 

apresentando os menores custos de ciclo de vida médios (1210722 e 1210632) e os 

menores desvios-padrão (51.79 e 25.98). Esses resultados evidenciam alta 

estabilidade e capacidade de convergência do método em diferentes tamanhos 

populacionais. Em ambas as configurações, o algoritmo RIME e PSOABC 

demonstraram desempenhos competitivos, alcançando valores médios de LCC 

próximos aos do KOARIME, embora com variações maiores. 

 Por outro lado, os métodos SHADE, KOA e GWOWOA apresentaram 

desempenho intermediário, enquanto o WOA exibiu os maiores custos médios e 

dispersões, indicando baixa estabilidade e menor eficiência no processo de 

otimização. De forma geral, os resultados confirmam a robustez e superioridade do 

KOARIME, que manteve desempenho consistente e convergência eficaz em ambas 
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as populações analisadas. 

As Figuras 27 e 28 apresentam as curvas de convergência das melhores 

execuções dos algoritmos com populações de 30 e 60 indivíduos. 

 
FIGURA 27 – Curva de convergência da melhor execução dos algoritmos população de 30 

 
Fonte: O Autor, 2025 

 
FIGURA 28 – Curva de convergência da melhor execução dos algoritmos população de 60 

 
Fonte: O Autor, 2025 
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Observa-se que o KOARIME (linha vinho) apresentou desempenho superior 

em ambas as configurações, alcançando o menor valor de LCC e convergindo de 

forma mais rápida e estável.  

 

6.3.2 Formulação e resultados da otimização multi-objetivo 
 

Os fluxos de caixa anuais  constituem a base dos indicadores financeiros 

utilizados na formulação multi-objetivo. Cada  representa o resultado econômico 

líquido do sistema no ano j ao longo da vida útil do projeto, considerada igual a 25 

anos. Dessa forma, o modelo gera um conjunto de fluxos anuais, um para cada ano 

da análise. (Islam; Bhuiyan, 2020). 

Em microrredes isoladas, apenas a energia efetivamente utilizada contribui 

para a receita do sistema, enquanto a energia excedente é descartada e não possui 

valor econômico. Dessa forma, a receita anual é calculada a partir da energia útil 

multiplicada pela tarifa de venda adotada. De acordo com valores típicos observados 

em microrredes isoladas (Irena, 2023), essas tarifas variam entre US$ 0,20/kWh e 

US$ 0,40/kWh; neste estudo, adotou-se o valor de US$ 0,30/kWh. A energia útil 

anual é expressa por: 

 
 

      (56) 

  (57) 

onde: 

   = Energia útil total ao longo do ano (kWh); 

   = Energia total gerada pelo sistema no instante t (kWh); 

   = Energia excedente (desperdiçada) no instante t (kWh); 

   = receita anual obtida com a energia útil no ano j; 

  = Número de horas do ano (8760). 

 

O custo operacional anual, composto pelas despesas de operação, 

manutenção e combustível de todos os componentes, é representado pelo termo: 
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    (58) 

 

onde: 

  = Número de painéis fotovoltaicos; 

  = Número de turbinas eólicas; 

  = Número de baterias; 

  = Custo anual de operação e manutenção do respectivo componente; 

  = Custo por unidade de biomassa; 

  = Quantidade anual de biomassa consumida; 

  = Consumo anual total de diesel pelo gerador; 

  = Custo unitário do diesel. 

 

O custo de reposição e reinstalação no ano j é representado por . No 

modelo adotado, consideram-se reposições da unidade de biomassa, do gerador a 

diesel e do conversor em anos específicos da vida útil do sistema, conforme:  

 

                              (59) 

onde: 

  = Custo de reposição e reinstalação da unidade de biomassa; 

 = Custo de reposição e reinstalação do gerador a diesel; 

 = Custo de reposição e reinstalação do conversor; 

  = 9,10,17 e 20 correspondem aos ciclos(anos) de substituição dos 

equipamentos. 

 

 Assim, o fluxo de caixa anual é obtido por: 

 

  (60) 
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onde: 

  = Fluxo de caixa líquido no ano j; 

  = Receita anual obtida com a venda de energia no ano j; 

  = Custo operacional anual, incluindo operação, manutenção e 

combustíveis; 

  = Custo de reposição e reinstalação dos componentes no ano j. 

 

 O Investimento Inicial (DI) corresponde ao valor total necessário para 

implementar o sistema híbrido no ano zero, incluindo a compra dos equipamentos e 

os custos de instalação de cada tecnologia. Dessa forma, o investimento total pode 

ser expresso por: 

 

  (61) 

onde: 

  = Investimento inicial do sistema fotovoltaico; 

  = Investimento inicial das turbinas eólicas; 

  = Investimento inicial do banco de baterias; 

  = Investimento inicial da unidade de biomassa; 

  = Investimento inicial do gerador a diesel; 

  = Investimento inicial do sistema conversor. 

 

 Cada componente possui um investimento inicial dado por: 

 

  (62) 

onde: 

  = Custo de capital do componente k; 

  = Custos de instalação e montagem do componente k; 

 . 

 

O Custo do Ciclo de Vida (LCC), já detalhado na formulação mono objetivo, é 

utilizado aqui como uma das funções objetivo. O Valor Presente Líquido (VPL) é 

calculado por: 
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  (63) 

onde: 

  = Taxa de desconto; 

  = Vida útil do projeto (em anos); 

  = Ano da análise. 

 

O Índice de Lucratividade (IL) é definido por: 

 

 

 
  (64) 

A Taxa Interna de Retorno (TIR) é calculada como: 

 

 
 

 (65) 

O Payback Descontado é dado por: 

 
 

 (66) 

As emissões anuais de dióxido de carbono associadas ao uso do gerador são 

obtidas a partir desse consumo, utilizando um fator de emissão específico. Adota-se 

o valor de 2,7 kgCO , correspondente à emissão de CO  por litro de diesel 

consumido (OGUNJUYIGBE; AYODELE; AKINOLA, 2016). Assim, a função objetivo 

de emissões de CO  é dada por: 

 

 

 
  
 

  (67) 
 

 
onde: 

  = Consumo de combustível do gerador a diesel na hora ; 

  = Número total de horas simuladas (neste estudo, =8760) 
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 Considerando todas as métricas financeiras e ambiental estabelecidas, o 

problema multi-objetivo é formulado como: 

 

     (68) 
 

Sujeito a: 

Restrições financeiras: 

 VPL (x) > 0;  

 IL (x) > 1; 

 TIR (x) > 0,07 (TMA); 

 PBD (x) < 25 anos; 

Limites das variáveis de decisão: 

 0 ≤  ≤ 2000; 

 0 ≤  ≤ 2000; 

 0 ≤  ≤ 2000; 

onde:  

 X = [ , , ] em que: 

o  = Número de painéis fotovoltaicos; 

o  = Número de turbinas eólicas; 

o  = Número de módulos de baterias. 

 

Para a análise multi-objetivo, foram aplicados os algoritmos avaliados na 

formulação apresentada, considerando 50 execuções independentes, 300 iterações 

e tamanhos populacionais de 30 e 300 indivíduos. O desempenho das soluções foi 

avaliado por meio da métrica do hipervolume (HV). 
 

TABELA 36 – Resultados médios do HV e desvio-padrão do obtidos pelos algoritmos 

 MOKOARIME HMOEA HMOFA HMOWATS MOGWOCS NSGAIIMOPSO SHAMODE_WO 
Pop Media Desvio-

padrão 
Media Desvio-

padrão Media Desvio-
padrão Media Desvio-

padrão Media Desvio-
padrão Media Desvio-

padrão Media Desvio-
padrão 

30 0.17043 0.0003 0.15048+ 0.0004 0.12254+ 0.0004 0.13561+ 0.0004 0.15577+ 0.0004 0.16176= 0.0003 0.15973= 0.0003 
300 0.45403 0.0238 0.38603+ 0.0217 0.39311+ 0.0199 0.37769+ 0.0251 0.41701+ 0.0164 0.43085= 0.0135 0.42210+ 0.0139 

Fonte: O Autor, 2025 
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TABELA 37 – Resultados gerais do MOKOARIME 

Algoritmo de comparação Vitória Empate Derrota 
MOKOARIME × HMOEA 2 2 0 
MOKOARIME × HMOFA 2 0 0 

MOKOARIME × HMOWOATS 2 0 0 
MOKOARIME × MOGWOCS 2 0 0 

MOKOARIME × NSGAIIMOPSO 0 2 0 
MOKOARIME × SHAMODE_WO 1 1 0 

TOTAL 9 3 0 
Fonte: O Autor, 2025 

 
TABELA 38 – Comparativo de vitórias e derrotas (HV) 

Métrica MOKOARIME HMOEA HMOFA HMOWATS MOGWOCS NSGAIIMOPSO SHAMODE_WO 
 

HV 
Vitórias 12 3 1 2 6 10 8 
Derrotas 0 9 11 10 6 2 4 
Diferença 12 -6 -10 -8 0 8 4 
Posição 1 5 7 6 4 2 3 

Fonte: O Autor, 2025 
 

A análise dos resultados médios do HV, em conjunto com o teste de 

Wilcoxon, evidenciam que o MOKOARIME apresentou desempenho estatisticamente 

superior nas duas configurações populacionais (30 e 300 indivíduos). O algoritmo 

obteve os maiores valores médios, baixa dispersão e nenhuma derrota nas 

comparações diretas, comprovando sua eficiência e estabilidade. No ranking geral, o 

MOKOARIME manteve a primeira posição, seguido por NSGAIIMOPSO e 

SHADEMODE_WO, enquanto MOGWOCS, HMOEA, HMOWOATS e HMOFA 

exibiram resultados inferiores, reafirmando a robustez e a qualidade das soluções 

produzidas pelo MOKOARIME. 

 

6.4 FORMULAÇÃO E RESULTADOS OBTIDOS NO SISTEMA DE TRELIÇAS 
 

Em problemas de otimização estrutural de treliças multi-objetivo, destacam-se 

duas funções objetivo centrais: a redução do peso da estrutura, associada ao custo, 

e a minimização da flexibilidade global da treliça, garantindo que os deslocamentos 

estejam dentro de limites aceitáveis para o uso seguro e confortável da estrutura. 

Matematicamente, essas funções podem ser expressas como: 
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 Peso total da estrutura: 

 

    O primeiro objetivo consiste em minimizar o peso total da estrutura. Esse peso 

depende do comprimento e da área da seção transversal de cada barra. Assim, o 

objetivo pode ser escrito como: 

 

 
 

    (69) 

onde: 

 = Número total de barras; 

 = Comprimento da barra i; 

 = Área da seção transversal associada à barra i. 

 

 Flexibilidade global 

 

     O segundo objetivo avalia a flexibilidade global da treliça a partir dos 

deslocamentos obtidos na análise estrutural. Esses deslocamentos são calculados 

por meio do Método dos Elementos Finitos (MEF), no qual a treliça é modelada com 

base em sua geometria e na conectividade entre nós. O MEF resolve o equilíbrio 

estrutural e fornece, como resultado, o vetor de deslocamentos nodais, indicando 

quanto cada nó se movimenta sob o estado de forças definido no problema. A 

função objetivo corresponde ao maior deslocamento absoluto encontrado entre 

todos os nós. Assim: 

 (70) 

onde: 

 = Deslocamento nodal associado ao nó j, considerando todas as direções 

avaliadas no modelo. 

 

 A formulação multi-objetivo pode ser representada como: 

 

 (71) 

onde: 
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 = Representa o peso total da estrutura; 

 = Representa a flexibilidade global medida pelo deslocamento máximo 

nodal. 

 

Sujeito a: 

 

 Restrição de tensão: 

 
 

(72) 

 

onde: 

  = Tensão axial na barra i; 

  = Força normal atuante nessa barra; 

= Representa a tensão admissível do material. 
 
 
 Limite das áreas: 

 

 (73) 

onde: 

 

 = Valor mínimo permitido para a área da seção transversal; 

 = Valor máximo permitido para a área da seção transversal; 

 

Os limites inferiores e superiores das áreas das barras, bem como a tensão 

admissível do material , foram definidos com base em valores consolidados na 

literatura de cada benchmark estrutural. Para cada treliça, as barras podem ser 

agrupadas em conjuntos equivalentes, resultando no número de variáveis (nVar) 

utilizado no processo de otimização. Esse agrupamento reduz a dimensionalidade 

sem comprometer a representatividade estrutural, permitindo comparações 

consistentes entre os diferentes modelos analisados. 
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TABELA 39 – Parâmetros estruturais adotados para cada treliça 

Treliça nVar    
72 Barras 16 0.1 3.4 25 

582 Barras 32 1 20 25 
942 Barras  59 1 200 25 
1016 Barras 120 1 200 40 

Fonte: Mehta et al., 2025; Hosseinzadeh, 2017; Jangir et al., 2024. 
 

Os resultados obtidos para o sistema de treliças são apresentados a seguir, 

considerando as métricas IGD e HV. As figuras geradas no MATLAB ilustram as 

frentes de Pareto correspondentes à melhor execução (menor IGD) entre 50 

execuções independentes, realizadas para populações de 30, 120 e 300 indivíduos, 

permitindo uma análise comparativa do desempenho dos algoritmos. 

Os valores médios e desvios-padrão das métricas IGD e HV para todas as 

treliças são apresentados de forma consolidada nas Tabelas 42 e 43, ao final desta 

subseção. 

 

6.4.1 Treliça de 72 barras 
 

O primeiro caso analisado corresponde à treliça de 72 barras, uma estrutura 

de baixa complexidade relativa, frequentemente utilizada como benchmark em 

pesquisas de otimização devido à sua simplicidade e relevância. 

 
FIGURA 29 – Frente de Pareto obtida na melhor execução com população de 30 indivíduos 

 
Fonte: O Autor, 2025 
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FIGURA 30 – Frente de Pareto obtida na melhor execução com população de 120 indivíduos 

 
Fonte: O Autor, 2025 

 
FIGURA 31 – Frente de Pareto obtida na melhor execução com população de 300 indivíduos 

 
Fonte: O Autor, 2025 

 

6.4.2 Treliça de 582 barras 
 

A Treliça de 582 barras representa um caso de maior porte em relação à 

anterior, com aumento significativo no número de variáveis de projeto e restrições 

estruturais. Trata-se de um benchmark intermediário, utilizado para avaliar a 

capacidade de escalabilidade e a robustez dos algoritmos de otimização. 
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FIGURA 32 – Frente de Pareto obtida na melhor execução com população de 30 indivíduos 

 
Fonte: O Autor, 2025 

 
FIGURA 33 – Frente de Pareto obtida na melhor execução com população de 120 indivíduos 

 
Fonte: O Autor, 2025 
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FIGURA 34 – Frente de Pareto obtida na melhor execução com população de 300 indivíduos 

 
Fonte: O Autor, 2025 

 

6.4.3 Treliça de 942 barras 
 

A Treliça de 942 barras caracteriza-se por uma estrutura de grande 

complexidade, com elevado número de nós, variáveis e restrições. Esse caso é 

amplamente empregado para avaliar o desempenho de algoritmos em problemas de 

larga escala, exigindo alta capacidade de convergência e manutenção da 

diversidade das soluções. 

 
FIGURA 35 – Frente de Pareto obtida na melhor execução com população de 30 indivíduos 

 
Fonte: O Autor, 2025 
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FIGURA 36 – Frente de Pareto obtida na melhor execução com população de 120 indivíduos 

 
Fonte: O Autor, 2025 

 
FIGURA 37 – Frente de Pareto obtida na melhor execução com população de 300 indivíduos 

Fonte: O Autor, 2025 
6.4.4 Treliça de 1016 barras 

 

A Treliça de 1016 barras corresponde ao caso de maior complexidade entre 

os analisados, apresentando um número elevado de nós, variáveis e restrições, o 

que a torna um benchmark de larga escala utilizado para testar a robustez e a 

capacidade de convergência e diversidade dos algoritmos de otimização. 
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FIGURA 38 – Frente de Pareto obtida na melhor execução com população de 30 indivíduos 

 
Fonte: O Autor, 2025 

 
FIGURA 39 – Frente de Pareto obtida na melhor execução com população de 120 indivíduos 

 
Fonte: O Autor, 2025 
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FIGURA 40 – Frente de Pareto obtida na melhor execução com população de 300 indivíduos 

 
Fonte: O Autor, 2025 

 
TABELA 40 – Resultados gerais do MOKOARIME no problema de treliças 

Algoritmo de Comparação Vitória Empate Derrota 
MOKOARIME × HMOEA 22 2 0 
MOKOARIME × HMOFA 24 0 0 

MOKOARIME × HMOWOATS 24 0 0 
MOKOARIME × MOGWOCS 24 0 0 

MOKOARIME × NSGAIIMOPSO 18 6 0 
MOKOARIME × SHAMODE_WO 23 1 0 

TOTAL 135 9 0 
Fonte: O Autor, 2025 

 
TABELA 41 – Comparativo de vitórias e derrotas (IGD E HV) no problema de treliças 

Métricas MOKOARI
ME 

HMOEA HMOFA HMOWATS MOGWOC
S 

NSGAIIM
OPSO 

SHAMODE_
WO 

 
IGD 

Vitórias 72 42 14 17 6 57 44 
Derrotas 0 30 58 55 66 15 28 
Diferença 72 12 -44 -38 -60 42 16 
Posição 1 4 6 5 7 2 3 

 
HV 

Vitórias 72 43 15 21 1 54 46 
Derrotas 0 29 57 51 71 18 26 
Diferença 72 14 -42 -30 -70 36 20 
Posição 1 4 6 5 7 2 3 

Fonte: O Autor, 2025 
 

Os resultados apresentados na Tabela 40 evidenciam o excelente 

desempenho do MOKOARIME frente aos demais algoritmos testados no problema 

de otimização de treliças. O algoritmo obteve 135 vitórias, 9 empates e nenhuma 

derrota, demonstrando domínio total sobre os demais algoritmos comparados. Esse 

resultado confirma a consistência e robustez do MOKOARIME na geração de 
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soluções não dominadas, com alta qualidade e estabilidade ao longo de todas as 

instâncias analisadas. Ao analisar as métricas IGD e HV, observa-se que o 

MOKOARIME mantém a primeira posição em ambas, reforçando sua capacidade de 

equilibrar convergência e diversidade. 

O NSGAIIMOPSO surge como o segundo melhor algoritmo, apresentando 

desempenho competitivo, mas ainda significativamente inferior em termos de 

cobertura e proximidade da frente ótima. O SHAMODE_WO ocupa a terceira 

posição, com resultados consistentes, embora menos expressivos. Os demais 

algoritmos híbridos HMOEA, HMOFA, HMOWOATS e MOGWOCS apresentaram 

desempenhos bastante inferiores ao MOKOARIME. 
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6.5 Análise do Tempo Computacional 
 

 
Além dos resultados obtidos nas análises de desempenho, o tempo 

computacional médio é um indicador relevante para avaliar o custo computacional 

associado às metaheurísticas, especialmente em problemas de engenharia. Esse 

tempo reflete diretamente a sofisticação dos mecanismos internos de busca, 

incluindo estratégias de exploração, intensificação e seleção adotadas por cada 

algoritmo. 

A Tabela 44 apresenta o tempo médio de execução, em segundos, dos 

algoritmos mono objetivo nos benchmarks CEC 2017, CEC 2019, CEC 2023 e na 

microrrede off-grid, considerando a formulação mono objetiva de minimização do 

LCC, permitindo a comparação do custo computacional entre os métodos avaliados. 

 
TABELA 44 – Comparação do tempo médio de execução (em segundos) dos algoritmos mono 

objetivo 

 KORIME(s) KOA(s) RIME(s) SHADE(s) WOA(s) PSOABC(s) GWOWOA 
(s) 

CEC 2017 8.72 2.47 4.18 4.21 3.38 9.35 7.55 
CEC 2019 5.97 1.02 4.32 3.32 2.89 6.56 6.46 
CEC 2023 13786 3213 9718 5207 6779 14075 12841 
Microrrede 

off-grid 
1717.86 721.94 980.55 974.70 1032.68 2764.67 1715.66 

Fonte: O Autor, 2025 
 

A Tabela 45 apresenta o tempo computacional médio, em segundos, dos 

algoritmos multi-objetivo avaliados no benchmark CEC 2018 e nas aplicações reais 

da microrrede off-grid, considerando sua formulação multi-objetivo, bem como no 

problema de otimização de treliças. Esses resultados permitem comparar o custo 

computacional associado às diferentes abordagens de otimização adotadas. 
 

TABELA 45 – Tempo computacional médio (em segundos) dos algoritmos avaliados nos diferentes 
problemas 

 MOKORIM
E(s) 

HMOEA
(s) 

HMOFA
(s) 

HMOWAT
S(s) 

MOGWOC
S(s) 

NSGAIIMO
PSO (s) 

SHAMODE_
WO (s) 

CEC 
2018 

9.71 10.38 8.819 9.76 7.11 10.13 6.39 

Microrre
de off-

grid 

7519.52 3403.37 5635.10 3148.90 3230.60 8729.73 3372.56 

Treliças 854.910 671.54 668.61 670.42 761.105 1335.48 590.532 
Fonte: O Autor, 2025 
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Os resultados da Tabela 44 indicam que o KOARIME apresenta custo 

computacional superior ao de algoritmos mais simples, como KOA e WOA, porém 

compatível com outros métodos híbridos, como PSOABC e GWOWOA. Esse 

comportamento é mais evidente no benchmark CEC 2023, devido à elevada 

dimensionalidade do problema, que impacta de forma semelhante todos os 

algoritmos avaliados. Na aplicação da microrrede off-grid, o tempo de execução do 

KOARIME permanece competitivo com as outras metaheurísticas híbridas. A Tabela 

45 mostra que o MOKOARIME apresenta tempo computacional inferior ao do 

NSGAII-MOPSO, indicando menor custo computacional em relação a esse método 

de referência. Por outro lado, o MOKOARIME demanda maior tempo de execução 

quando comparado aos demais algoritmos avaliados, como HMOEA, HMOFA, 

HMOWATS, MOGWOCS e SHAMODE-WO, o que é esperado em função da maior 

complexidade do processo de seleção baseado na dominância generalizada de 

Pareto (M-1) GPD. 
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7 CONCLUSÃO 
 

O presente trabalho apresentou o desenvolvimento de duas novas 

metaheurísticas híbridas, o KOARIME e o MOKOARIME, baseadas na integração 

entre os Algoritmo de Otimização de Kepler (KOA) e Algoritmo de Otimização Rime 

(RIME). Essa combinação foi concebida para unir a capacidade de exploração global 

do KOA, inspirada nas leis do movimento orbital de Kepler, à intensificação local 

promovida pelo RIME, fundamentada no processo físico de formação do gelo rime. 

O objetivo central foi criar um método capaz de equilibrar diversidade e 

convergência, melhorando a precisão das soluções e reduzindo a probabilidade de 

estagnação em ótimos locais. 

Na primeira etapa da pesquisa, foi desenvolvido o KOARIME em sua versão 

mono objetivo, avaliado por meio das funções de benchmark das competições CEC 

2017, 2019 e 2023. Os resultados obtidos demonstraram ganhos de desempenho 

em relação aos algoritmos originais e a outros algoritmos de referência, incluindo 

abordagens híbridas, apresentando menores erros médios e baixa variabilidade 

entre execuções. Essa primeira versão confirmou a eficiência da hibridização 

proposta, evidenciando que a integração entre os mecanismos orbitais do KOA e os 

processos de deposição do RIME resultou em um modelo estável e robusto para 

otimização contínua. 

A segunda etapa da pesquisa consistiu na expansão do modelo para o 

contexto multi-objetivo, dando origem ao MOKOARIME. Essa versão incorporou os 

princípios da dominância de Pareto e o uso de métricas de desempenho como HV e 

IGD, ampliando a capacidade do algoritmo de lidar com múltiplos critérios 

conflitantes. A avaliação realizada nas funções de benchmark da CEC 2018 

demonstrou que o MOKOARIME superou os algoritmos híbridos de referência 

(HMOEA, HMOFA, HMOWOATS, MOGWOCS, NSGAIIMOPSO e 

SHADEMODE_WO), apresentando frentes de Pareto mais amplas, bem distribuídas 

e com maior qualidade de convergência. O teste estatístico de Wilcoxon confirmou a 

superioridade da proposta, enquanto o ranking geral posicionou o MOKOARIME em 

primeiro lugar, com o maior número de vitórias. 

Além dos testes em benchmarks, o algoritmo foi aplicado a dois problemas de 

engenharia de alta relevância. Na versão mono objetivo, o KOARIME foi empregado 

na minimização do custo do ciclo de vida (LCC) de uma microrrede híbrida isolada, 
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obtendo o menor custo médio e o menor desvio-padrão entre os algoritmos 

comparados, o que evidenciou sua eficiência e estabilidade na otimização 

econômica do sistema. Em seguida, a versão multi-objetivo, o MOKOARIME, foi 

aplicada à mesma microrrede, utilizando uma função com seis objetivos que 

representaram simultaneamente critérios econômicos e ambientais. O modelo 

proposto demonstrou melhor desempenho nas métricas HV e IGD, indicando maior 

qualidade de convergência e diversidade das soluções ao lidar simultaneamente 

com critérios econômicos e ambientais. No problema das treliças, o MOKOARIME 

apresentou desempenho consistente em termos de estabilidade e qualidade das 

soluções, produzindo frentes de Pareto mais diversificadas e bem distribuídas. Essa 

performance confirma sua habilidade em lidar com restrições estruturais e múltiplos 

objetivos, como a minimização simultânea do peso e do deslocamento máximo. Em 

conjunto, esses resultados reforçam o potencial prático do MOKOARIME em 

problemas reais de engenharia, nos quais diferentes critérios precisam ser 

equilibrados de forma eficiente. Em relação ao custo computacional, os resultados 

indicam que o desempenho superior alcançado pelo KOARIME e pelo MOKOARIME 

está associado a um aumento esperado no tempo de execução, decorrente da maior 

complexidade dos mecanismos de busca e seleção adotados. 

Como perspectiva para trabalhos futuros, recomenda-se o aprimoramento dos 

modelos KOARIME e MOKOARIME, explorando estratégias adaptativas para o 

controle dinâmico de parâmetros e mecanismos de autoaprendizado que utilizem o 

histórico de desempenho para guiar o equilíbrio entre exploração e intensificação. O 

KOARIME pode ser expandido com técnicas de ajuste automático e estratégias 

híbridas inspiradas em comportamento coletivo, enquanto o MOKOARIME pode 

incorporar abordagens de aprendizado de máquina e otimização dinâmica, 

ampliando sua eficiência em cenários de alta dimensionalidade e múltiplos objetivos 

conflitantes. Essas evoluções visam tornar ambos os algoritmos ainda mais 

robustos, autônomos e capazes de se adaptar a diferentes classes de problemas 

complexos de otimização. 
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APÊNDICE A - CONFIGURAÇÕES OPERACIONAIS DO SISTEMA 
HÍBRIDO 

 
 Este apêndice apresenta os parâmetros técnicos e econômicos dos principais 

componentes utilizados na modelagem e simulação do sistema híbrido de geração 

de energia analisado. São detalhadas as especificações do módulo fotovoltaico, da 

turbina eólica, do sistema de geração por biomassa, do banco de baterias do tipo 

Níquel-Ferro (Ni-Fe) e do gerador a diesel. Essas informações servem de base para 

o cálculo do desempenho técnico, econômico e ambiental do sistema proposto. 

 
TABELA 46 – Parâmetros do módulo fotovoltaico 

Parâmetro Valor Unidade Descrição 
Modelo ND-250 QCs  Fabricante Sharp Solar. 

Custo Unitário 250 USD Custo estimado por unidade do módulo. 
Potência nominal          250 W Potência de pico do módulo. 

Irradiância de referência         1              kW/m²  Valor padrão para testes de desempenho. 
Temperatura de 

referência  
    25            ºC         Condição padrão de operação. 

Coeficiente térmico              º        Variação percentual da potência por ºC. 
Área aproximada                1.6           m²         Superfície ocupada pelo módulo. 

Fonte: Kumar, P. P.; Saini, R. P, 2020. 
 

TABELA 47 – Parâmetros técnicos da turbina eólica 

Parâmetro Valor Unidade Descrição 
Modelo BWC XL1  Fabricante Bergey Windpower. 

Custo Unitário 2500 USD Custo estimado por unidade. 
Potência nominal  1000  W Potência de pico do módulo. 

Velocidade de corte 
inferior     

2.5 m/s   Abaixo dessa velocidade, não há geração. 

Velocidade nominal        11  m/s  A partir dessa velocidade, a potência é 
constante. 

     
Velocidade de corte 

superior   
21  m/s  Acima dessa velocidade, a turbina é 

desligada. 
Fonte: Kumar, P. P.; Saini, R. P, 2020. 

 
TABELA 48 – Parâmetros do sistema de geração por biomassa 

Parâmetro Valor Unidade Descrição 
Qbm   9 toneladas/ano Quantidade anual disponível de 

biomassa. 
Nbmg 20%  Eficiência do gerador de biomassa. 
CVbm     4015    kcal/kg        Poder calorífico da biomassa. 

DOHbmg 5 horas/dia      Número de horas diárias de operação 
do gerador. 

Custo Unitário   
a biomassa.   

3604   USD          Custo de capital do sistema de geração. 

Fonte: Kumar, P. P.; Saini, R. P, 2020. 
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TABELA 49 – Especificações da bateria NI-FE 

Parâmetro Valor Unidade Descrição 
Eficiência ciclo   80%  Eficiência no processo completo de carga e 

descarga. 
Autodescarga 1%  Perda diária de carga quando a bateria está ociosa. 

Capacidade nominal 1000     Ah Quantidade de carga elétrica armazenada. 
Tensão nominal 1.2  V Tensão elétrica por unidade. 

Vida útil esperada 30+  anos Tempo médio de operação com DOD = 50%. 
Custo de capital    1057 USD Custo inicial da bateria. 

Fonte: Kumar, P. P.; Saini, R. P, 2020. 
 
 
Consumo de combustível: 
 
                                                                  

onde: 

   = Consumo de combustível no instante t (litros/hora); 

   = Coeficiente da potência gerada; 

   = Coeficiente da potência nominal; 

   = Potência gerada pelo DG no instante t; 

   = Potência nominal do DG. 

 
TABELA 50 – Parâmetros do gerador a diesel (DG) 

Parâmetro Valor Unidade Descrição 
Modelo   C62.5  Modelo Cummins 62.5 kVA.descarga. 

Potência nominal 50 kW Potência máxima de operação do gerador. 
Eficiência de 
conversão             

0.95 % Eficiência da conversão de energia. 

Custo Unitários         5715 USD Custo inicial do equipamento. 
Custo do combustível    0.97      USD Preço considerado por litro de diesel. 

Coeficiente a 0.246     L/kWh             Coeficiente de consumo de combustível. 
Coeficiente b           0.08145   L/kWh             Coeficiente fixo da curva de consumo. 

 
Fonte: Kumar, P. P.; Saini, R. P, 2020. 

 
 

 

 


