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Resumo
No contexto da Indústria 4.0, a indústria de cosméticos
recorre à Inteligência Artificial e à cultura Data Driven
como diferenciais estratégicos para antever tendências
e otimizar recursos. O objetivo central deste artigo é
aplicar técnicas de aprendizagem de máquina não super-
visionada — especificamente K-Means e Clusterização
Hierárquica — para mapear e compreender os perfis
de grupos em um portfólio com mais de 2.000 SKUs de
bisnagas, utilizando suas características físicas e dimensi-
onais. A partir da identificação de famílias homogêneas
de produtos, busca-se detectar oportunidades para ma-
ximizar a performance do processo fabril, otimizando o
sequenciamento da produção e a eficiência global (OEE),
superando as limitações da categorização tradicional.
A metodologia adotada foi quantitativa e exploratória,
aplicando a transformação Box-Cox na engenharia de
features e simulando 8 cenários de modelagem para tes-
tar a robustez do agrupamento em conjuntos de dados
distintos. As análises comparativas demonstraram que
a mitigação da redundância dimensional nos dados de
entrada maximizou a coesão dos grupos. O modelo K-
Means com K = 65 (Cenário C8) foi selecionado como a
solução de melhor balanço estratégico e estatístico (Silhu-
eta: 0,5733; DBI: 0,5240). Conclui-se que a caracterização
robusta em 65 famílias fornece subsídios acionáveis para
a gestão industrial elevar a padronização e a utilização
dos ativos de fabricação.

Palavras-chave: Indústria 4.0; Clusterização; K-Means;
Clusterização Hierárquica Aglomerativa.

Abstract
In the context of Industry 4.0, the cosmetics industry
turns to Artificial Intelligence and a Data Driven cul-
ture as strategic differentiators to forecast trends and
optimize resources. The central objective of this pa-
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per is to apply unsupervised machine learning tech-
niques—specifically K-Means and Hierarchical Cluste-
ring—to map and understand group profiles within
a tube portfolio containing over 2,000 SKUs, utilizing
their physical and dimensional characteristics. Based on
the identification of homogeneous product families, the
study seeks to detect opportunities to maximize manu-
facturing process performance, optimizing production
sequencing and Overall Equipment Effectiveness (OEE),
overcoming the limitations of traditional categorization.
The methodology adopted was quantitative and explo-
ratory, applying Box-Cox transformation for feature en-
gineering and simulating 8 modeling scenarios to test
clustering robustness across distinct datasets. Compa-
rative analyses demonstrated that mitigating dimensi-
onal redundancy in the input data maximized group
cohesion. The K-Means model with K = 65 (Scenario
C8) was selected as the solution with the best strategic
and statistical balance (Silhouette: 0.5733; DBI: 0.5240).
It is concluded that the robust characterization into 65
families provides actionable insights for industrial ma-
nagement to enhance standardization and the utilization
of manufacturing assets.

Keywords: Industry 4.0; Clustering; K-Means; Agglo-
merative Hierarchical Clustering.

1 Introdução

O mercado de higiene pessoal e cosméticos no Brasil é
um dos mais dinâmicos do mundo, com o setor proje-
tando um crescimento anual de 7% até 2027, evidenci-
ando sua robustez e sua importância estratégica global
[1]. As empresas deste mercado caracterizam-se por se-
rem extremamente ágeis em seus lançamentos, a fim de
antever tendências em um mercado cada vez mais com-
petitivo [2], e suprir as expectativas de um consumidor
que busca uma equação custo-benefício mais vantajosa.
O reflexo disso, segundo a Associação Brasileira da In-
dústria de Higiene Pessoal, Perfumaria e Cosméticos
[3], é uma indústria inovadora, ágil e focada em fatores
qualitativos e quantitativos.

Tal agilidade reflete diretamente no número de pro-
dutos lançados: em 2021, a indústria brasileira lançou
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7.368 produtos, ultrapassando a China e se tornando a
segunda maior potência mundial em lançamentos. Com
o advento da indústria 4.0 e o avanço da tecnologia, as
organizações se tornaram mais inovadoras e disruptivas
nos seus processos e tarefas, buscando minimizar custos,
mitigar erros e aumentar a competitividade [2].

Neste cenário de intensa transformação, o desenvol-
vimento da Inteligência Artificial (IA) e das práticas de
Ciência de Dados se tornou um diferencial estratégico.
Empresas que adotam uma cultura Data Driven² uti-
lizam essas tecnologias para otimizar o modelo de to-
mada de decisão, tornando-o mais assertivo e eficiente
[4]. Uma das formas mais poderosas de aplicação é a im-
plementação de modelos de aprendizagem de máquina.

Aprendizagem de máquina é uma subárea da Inteli-
gência Artificial, que utiliza modelos matemáticos para
inferir aprendizado baseado em exemplos [5]. A apren-
dizagem de máquina se subdivide em categorias, sendo
o aprendizado não supervisionado fundamental para
a clusterização. Segundo [6], clusterização consiste em
subdividir uma população heterogênea em subgrupos
mais coesos, sem rótulos pré definidos, identificando
grupos por meio de suas semelhanças.

Segundo Metz [7], a clusterização é uma ferramenta es-
sencial para a detecção e segmentação de características,
sendo um método cujos resultados dependem direta-
mente da escolha de parâmetros como as medidas de
similaridade utilizadas.

A aplicação dessa técnica é vasta:[6] a utilizou para a
predição de evasão escolar,[4] usou o método de cluste-
rização para definição de um sistema de recomendação
baseando-se no perfil de compra de cada grupo e [8]
demonstraram o potencial do K-Means na análise e in-
terpretação de vastos volumes de dados provenientes
de imagens de satélite, destacando sua aplicação em
áreas como monitoramento ambiental e agricultura de
precisão.

Diante do forte crescimento na aplicação das técnicas
de aprendizagem de máquina em diversas áreas, como
saúde, transportes e automobilística [4], o mercado de
cosméticos também se destaca. Neste cenário, este tra-
balho vem de encontro com essa demanda, propondo
uma solução eficiente e acessível para a categorização
de SKUs² em famílias de bisnagas, grupos que deveriam
compartilhar especificações técnicas para otimizar o pro-
cesso produtivo. Atualmente, esse processo é executado
de forma manual e subjetiva, o que o torna suscetível a
erros, resultando em decisões baseadas na experiência
individual e desprovidas de critérios objetivos. Essas
oportunidades de melhoria são claramente visualizadas
na eficiência e gestão de rotina do setor operacional.

A segmentação não padronizada de SKUs com carac-
terísticas físicas e dimensionais distintas pode levar a
alocação subótimas de recursos e a gargalos no processo
produtivo, como o envase, impactando a performance
e a flexibilidade produtiva. Portanto, a oportunidade
reside na substituição dessa abordagem subjetiva por
um método capaz de realizar a segmentação automática
de SKUs² em famílias de forma precisa, ágil e padroni-

zada. Este método deve garantir maior flexibilidade de
roteiro de produção, minimizar a necessidade de troca
de ferramentais e, consequentemente, aumentar a efici-
ência global da produção (Overall Equipment Effectiveness
- ³OEE).

Diante deste panorama, o objetivo geral deste artigo é
aplicar técnicas de aprendizagem de máquina não super-
visionado — especificamente os algoritmos K-Means e
Clusterização Hierárquica — para a definição de grupos
homogêneos em um portfólio de bisnagas. O estudo
utilizará como variáveis as características físicas e di-
mensionais dos SKUs². A finalidade é gerar informações
estratégicas que otimizem o sequenciamento produtivo,
a padronização e a melhor utilização de ativos e ferra-
mentais de fabricação.

As contribuições deste artigo são:

� Desenvolver um modelo de clusterização robusto
para o portfólio de bisnagas, capaz de agrupar os
SKUs com base em suas características físicas e di-
mensionais.

� Realizar uma análise detalhada usando os métodos
K-Means e Clusterização Hierárquica, incluindo a
correta definição do número de clusters (parâmetro
K) com base em critérios estatísticos e contextuais
de negócio.

1 Data Driven: O termo *Data Driven* significa, em português, “Orientado por
Dados”. Isso significa que uma empresa que possui uma cultura *Data Driven*
baseia a maior parte dos seus processos e ações na coleta e análise de dados,
visando a tomada de decisão assertiva. Disponível em:
https://www.alura.com.br/artigos/data-driven?srsltid=
AfmBOoqcvIVTyHolcML3rGJlqqe7SRR1AhDAbipfBDx7qOgGPEpJIXIa.
2 SKU: A sigla vem do termo em inglês *Stock Keeping Unit*, ou Unidade de
Manutenção de Estoque. Disponível em:
https://venda.amazon.com.br/sellerblog/
o-que-e-sku-do-produto-e-qual-a-importancia-de-utilizar-esse-codigo.
3 OEE: Utilizado na indústria, o *Overall Equipment Effectiveness* aponta o
nível de eficiência de um equipamento. Disponível em:
https://www.totvs.com/blog/gestao-industrial/oee/.

2 Materiais e Métodos
O estudo é caracterizado como uma pesquisa aplicada,
dado seu objetivo prático em desenvolver um modelo
capaz de prover um agrupamento ótimo de produtos
com base em características dimensionais e processuais.
A abordagem é quantitativa e de natureza exploratória,
utilizando técnicas de aprendizagem de máquina não
supervisionada para identificar os padrões e estruturas
em dados não rotulados. A metodologia segue etapas
que abrangem coleta de dados, pré-processamento, a
modelagem por agrupamento e validação, baseando-se
em aspectos científicos e regras de negócio, conforme
demonstrado no fluxograma da Figura 1.

2.1 Conjunto de Dados
O conjunto de dados foi extraído do sistema Systems,
Applications & Products (SAP) e de tabelas construídas
durante o estudo em uma empresa de grande porte do
setor de cosméticos e higiene pessoal no Brasil. Devido
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Figura 1: Fluxograma de etapas empregadas no trabalho. Fonte: O autor

ao sigilo empresarial, o nome da organização e os valores
absolutos das variáveis são omitidos.

O objeto do estudo é o portfólio de mais de 2.000 pro-
dutos da categoria de bisnagas de diversos modelos, co-
res, tamanhos e volumetrias. A escolha deste segmento
se justifica pela sua alta representatividade no volume de
produção e pela grande oportunidade de automatizar o
processo de definição de famílias. A clusterização desses
produtos visa trazer celeridade e grandes impactos nas
áreas incumbidas pela gestão do portfólio, especialmente
na padronização de ferramental e no sequenciamento
produtivo.

A seleção das variáveis para o modelo de clusterização
foi um passo metodológico crucial. As variáveis foram
elencadas visando prioritariamente sua relevância ao
processo fabril, com o objetivo de obter uma melhor
segmentação dos produtos desta categoria e identificar
oportunidades de sequenciamento, ganho de setup (pro-
cesso de preparação de um equipamento para iniciar
uma nova produção) e padronização de ferramental de
fabricação. A estrutura do conjunto de dados utilizado
no modelo é apresentada na Tabela 1.

Tabela 1: Dados fictícios para representação do conjunto
de dados.

diametro altura comprimento peso tp_selagem
13,00 36,22 23,23 120,00 tipo_1
5,00 15,55 8,39 90,00 tipo_2
34,00 17,00 25,33 100,00 tipo_3

Fonte: O autor (2025)

2.2 Limpeza e Preparo dos Dados
A preparação do conjunto de dados é uma fase crítica e
fundamental em qualquer projeto de Ciência de Dados,
sendo determinante para garantir a interpretabilidade
e a confiabilidade dos resultados dos métodos. Todas
as etapas de pré-processamento, engenharia de atribu-
tos e modelagem foram executadas no ambiente Python.
A escolha do Python se justifica pela sua versatilidade,
dinamismo e integração com diversas bibliotecas bem
estabelecidas, como Pandas, NumPy e Scikit-Learn, ofere-
cendo um robusto ferramental para a Ciência de Dados
[9]. O conjunto de dados fornecido necessitou da aplica-
ção de técnicas de transformação e normalização para
que as variáveis atingissem o estado ideal para a mode-
lagem.

A etapa inicial visou a higienização e a estruturação
dos dados, garantindo sua integridade e formato para o

processamento subsequente:

� Carregamento e Junção dos Dados: O processo foi
iniciado pelo carregamento de diversas fontes de
dados. Em seguida, foi realizada a junção, coletando
as variáveis de interesse de cada base e formando
um único conjunto de dados principal. Para isso,
foi utilizada a função merge da biblioteca Pandas,
definindo o código único de cada SKU como chave
primária para garantir a unicidade e a consistência
dos registros.

� Tratamento de Tipos e Nomenclaturas: Realizou-
se a conversão dos tipos de dados, garantindo que
as colunas numéricas fossem tratadas como Float.
Houve também a padronização das nomenclaturas
na coluna categórica de tp_selagem, consolidando
múltiplas descrições textuais em categorias únicas e
bem definidas.

� Tratamento de Dados Inválidos e Outliers: Por
fim, foi realizado o tratamento de dados inconsis-
tentes. Foram identificados e removidos registros
com valores contextualmente impossíveis para as
dimensões (a critério de exemplo, valores de altura
igual a 0), além de categorias que representavam
ruídos conceituais (outliers), garantindo que apenas
SKUs válidos fossem considerados na modelagem
exploratória.

2.2.1 Engenharia de Atributos

As variáveis dimensionais e de processo do portfólio
apresentam duas características que influenciam direta-
mente a escolha do algoritmo: multimodalidade (pre-
sença de múltiplos picos na distribuição, como na variá-
vel altura) e assimetria, a qual persistiu mesmo após o
tratamento de outliers. Tais distribuições podem com-
prometer a estabilidade de algoritmos baseados em dis-
tância. A visualização do perfil de distribuição das vari-
áveis numéricas, antes das transformações, é ilustrada
na Figura 2:

2.2.2 Transformação de Distribuição: Box-Cox

Para mitigar a forte assimetria observada, optou-se pela
aplicação da Transformação Box-Cox [10], uma técnica
paramétrica recomendada para estabilizar a variância e
aproximar a distribuição dos dados de uma curva nor-
mal, pré-requisito crucial para modelos de clusterização
baseados em distância. A transformação foi aplicada em
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Figura 2: Representação do perfil das variáveis antes de passarem pelo processo de engenharia de atributos. Fonte:
O autor(2025)

todas as variáveis numéricas: diâmetro, altura, compri-
mento e peso. Formalmente, a transformação é definida
como:

yi(λ) =

{
xλ

i −1
λ se λ �= 0

ln(xi) se λ = 0
(1)

onde:

� yi(λ): Valor transformado.
� xi: original value.
� λ: Parâmetro de transformação (determinado pelo

log-likelihood ótimo).
� ln(xi): Logaritmo Natural, aplicado quando λ = 0.

2.2.3 One-Hot Encoding de Variáveis Categóricas

A variável categórica de selagem, crucial para a distinção
das famílias de bisnagas, foi submetida ao processo de
codificação utilizando o método One-Hot Encoding [11].
Essa técnica converte a variável qualitativa em múltiplas
colunas binárias (0 ou 1), onde cada nova coluna repre-
senta uma categoria de selagem específica (por exemplo,
tipo_1, tipo_2). Este procedimento permite que a infor-
mação qualitativa seja processada de forma quantitativa
pelos algoritmos de agrupamento baseados em distân-
cia.

2.2.4 Normalização dos dados

Uma vez transformadas as colunas, torna-se necessá-
rio a aplicação da normalização, visto que as colunas

numéricas ainda possuíam diferentes escalas. O mé-
todo utilizado para a resolução deste problema foi o
StandardScaler. Esta técnica padroniza todas as colunas,
formatando-as para que apresentem média zero (μ = 0)
e desvio-padrão unitário (σ = 1). A normalização é
indispensável para o K-Means e a Clusterização Hie-
rárquica, pois garante que as variáveis tenham pesos
igualitários na definição dos clusters e no cálculo da
distância euclidiana.

Z =
x − μ

σ
(2)

onde:

� Z: é o valor padronizado (Z-score).
� x: é o valor original da variável.
� μ: é a média dos valores da variável no conjunto de

dados.
� σ: é o desvio padrão dos valores da variável no

conjunto de dados.
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2.3 Métodos Empregados
Esta seção detalha os métodos de clusterização selecio-
nados para a identificação de clusters homogêneos no
portfólio de bisnagas. A escolha recaiu sobre os métodos
K-Means e a clusterização Hierárquica Aglomerativa.

2.3.1 Método K-Means

O K-Means é um método de agrupamento particional
baseado em centroides, fundamental para dividir um
conjunto de dados não rotulados em um número fixo
de K clusters. O objetivo principal é que cada cluster
compartilhe características comuns, representadas pelo
seu centróide.

Formalmente, o conjunto de dados de entrada pode
ser representado pela matriz X (Figura 3), onde N é o
número de observações e D é o número de variáveis
[12]:

X =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1D
x21 x22 · · · x2D

...
...

. . .
...

xN1 xN2 · · · xND

⎤
⎥⎥⎥⎦

Figura 3: Representação da Matriz de Dados (X). A
matriz X representa o conjunto de dados de entrada,
onde cada linha é uma observação (SKU) e cada coluna
é uma variável dimensional ou de processo.

A intenção do K-Means é minimizar a função de
custo, denominada Inércia ou soma dos quadrados intra-
cluster (Within-Cluster Sum of Squares). Esta função (Eq.
3) mede a coesão interna dos clusters, quantificando a
soma das distâncias quadráticas (geralmente Euclidia-
nas) entre cada amostra (xi) e o centróide (μj) de seu
respectivo grupo:

argmin
C

k

∑
j=1

∑
xi∈Cj

||xi − μj||2 (3)

onde:

� argmin
C

: Instrução matemática de minimização da

expressão seguinte em relação aos conjuntos de clus-
ters (C).

� ∑k
j=1: Somatório sobre todos os k clusters do modelo,

indexados por j.
� ∑xi∈Cj

: Somatório dos resultados de cada ponto de
dado xi pertencente ao cluster Cj.

� xi: Um ponto de dado individual (vetor de variá-
veis).

� μj: O centroide (vetor de médias) do grupo j.

� ||xi − μj||2: Distância Euclidiana Quadrada entre o
ponto xi e o centroide μj.

O processo iterativo do algoritmo é iniciado com a
escolha dos K clusters, sendo que cada centróide cor-
responde a um grupo. Os K centróides iniciais são atri-
buídos aleatoriamente. O algoritmo segue as etapas a
seguir:

� Inicialização: Definição do K e posicionamento dos
K centróides iniciais no espaço das variáveis.

� Atribuição: Cada observação se une ao grupo cujo
centróide seja o mais próximo, fazendo uso da dis-
tância euclidiana quadrada.

� Atualização: Com os clusters formados, os centrói-
des são recalculados, criando-se um novo ponto
médio das observações que foram atribuídas ao res-
pectivo cluster.

As iterações repetem-se até que a alocação das obser-
vações não se altere de forma significativa ou até que a
posição dos centróides se estabilize, indicando a conver-
gência do modelo.

2.3.2 Método de Clusterização Hierárquica

O método hierárquico adota uma formação de clusters
distinta do K-Means. A diferença crucial reside no pro-
cesso de clusterização: enquanto o K-Means é um mé-
todo particional baseado em centróides, o agrupamento
hierárquico é um método construtivo que estabelece
uma estrutura em forma de dendrograma (árvore), a
qual representa a relação de similaridade e distância
entre as observações. Existem dois métodos principais
segundo [7]: o Aglomerativo (bottom-up) e o Divisivo
(top-down).

Para este trabalho, implementamos o método hierár-
quico aglomerativo, o mais comumente aplicado. Esta
abordagem funciona de baixo para cima, onde cada ob-
servação é um grupo individual. Em seguida, ocorrem
fusões iterativas mediante suas similaridades.

� Inicialização: Cada observação é tratada como um
único grupo.

� Fusão: Em cada iteração, os clusters mais próximos,
de maior similaridade e menor distância, são fundi-
dos.

� Conclusão: O processo continua até que todas as
observações estejam unidas em um grupo raiz.

Para a medição da proximidade entre os clusters a se-
rem mesclados (critério de fusão), foi utilizado o método
de ligação Ward (Ward’s linkage) dentre os demais exis-
tentes. O método Ward busca a fusão que resulta no
menor aumento da Soma dos Quadrados Intra-Cluster
(Within-Cluster Sum of Squares, WCSS), ou seja, na menor
perda de coesão interna [13].

Matematicamente, o método Ward é baseado no cál-
culo da distância Euclidiana Quadrada entre os centroi-
des dos clusters. O aumento na WCSS (ΔWCSS) ao fun-
dir os clusters Ci e Cj é formalmente dado por (Eq. 4):

ΔWCSS(Ci, Cj) =
ninj

ni + nj
||μi − μj||2 (4)

7
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onde:

� ΔWCSS(Ci, Cj): É o aumento na WCSS causado
pela fusão dos clusters Ci e Cj.

� ni, nj: São, respectivamente, o número de observa-
ções nos clusters Ci e Cj.

� μi, μj: São os vetores centróides dos clusters Ci e Cj.
� ||μi − μj||2: É a Distância Euclidiana Quadrada en-

tre os centróides.

O método Ward busca, em cada iteração, o par de clus-
ters que resulta no menor valor de ΔWCSS. Conforme a
Equação 4, a expressão mostra que a WCSS é penalizada
não apenas pela distância entre os centróides (μi e μj),
mas também pelo tamanho dos clusters (ni e nj), favore-
cendo a formação de clusters compactos e balanceados.

Este método é conhecido por sua tendência a gerar
clusters com alta coesão interna, o que indiretamente
auxilia na separação entre os clusters, sendo relevante
para interpretação de perfis homogêneos. O critério de
Ward é frequentemente escolhido por produzir clusters
de tamanhos aproximadamente iguais, o que evita que
outliers ou grandes clusters dominem a análise. Outro
fator importante é a redução no tempo computacional
para efetuar o cálculo [7].

2.4 Métricas de Avaliação
O agrupamento, por ser uma técnica de aprendizagem
não supervisionada, demanda uma avaliação baseada
em critérios que quantifiquem a qualidade da estrutura
interna dos clusters, uma vez que não há um rótulo de
verdade (ground truth). Desta forma, as métricas de va-
lidação interna têm o propósito de medir o quanto os
clusters são coesos internamente e o quão bem estão se-
parados entre si. As seguintes métricas foram utilizadas
para a comparação de performance entre os modelos
K-Means e Hierárquico e para a validação da escolha
final do K.

2.4.1 Pontuação de Silhueta (Silhouette Score)

A Pontuação de Silhueta avalia o quão bem cada observa-
ção se ajusta ao seu próprio grupo comparada ao grupo
mais próximo. O valor da silhueta para uma observação
i é dado pela Equação 5 [14]. O valor da Pontuação de
Silhueta varia de −1 a 1. Valores mais próximos de 1
são desejáveis, pois indicam que a observação está bem
alocada e distante do grupo vizinho.

si =
bi − ai

max(ai, bi)
(5)

onde:

� si: É a Pontuação de Silhueta para a observação
i, com i = 1, 2, . . . , n, sendo n o número total de
observações.

� ai: É a coesão da observação i. É definida como a
distância média da observação xi a todos os outros
pontos no mesmo grupo (Ck). Quanto menor o valor
de ai, maior a coesão interna.

� bi: É a separação da observação i. É definida como
a menor distância média da observação xi a todos
os pontos de qualquer outro grupo (Cj), sendo Cj o
grupo vizinho mais próximo.

� max(ai, bi): É o maior valor entre ai e bi, usado para
normalizar o resultado.

2.4.2 Índice de Davies-Bouldin (Davies-Bouldin In-
dex, DBI)

O Índice de Davies-Bouldin (DBI) quantifica a qualidade
do agrupamento com base na razão entre a dispersão
média intra-clusters e a distância entre os centróides dos
clusters. O DBI é uma métrica de avaliação em que
valores menores são desejáveis. Um valor baixo de DBI
indica uma agrupamento superior, pois é resultado de
clusters densos e com alta separação entre si.

O DBI é formalmente definido pela Equação 6 [15]:

DBI =
1
K

K

∑
i=1

max
i �=j

(Rij) (6)

onde:

� K: É o número total de clusters (clusters).
� ∑K

i=1: Símbolo de Somatório, que significa: some os
resultados para cada grupo i, do primeiro (i = 1)
até o último (K).

� maxi �=j(Rij): A instrução para encontrar o valor má-
ximo da similaridade Rij para um grupo específico
i, comparando-o com todos os outros clusters j.

� Rij: A medida de similaridade entre o grupo i e o
grupo j.

A similaridade entre dois clusters, Rij, é a medida de
similaridade entre o grupo i e o grupo j. Esta relação
(razão de dispersão) é formalmente definida por:

Rij =
si + sj

d(ci, cj)
(7)

onde:

� Rij: É a medida de similaridade entre o grupo i e o
grupo j.

� si e sj: São, respectivamente, as medidas de disper-
são interna (dispersão média) dos clusters i e j.

� d(ci, cj): É a distância entre os centróides (ci e cj) do
grupo i e do grupo j.

2.4.3 Correlação Cofenética (Cophenetic Correlation
Coefficient, CCC)

A Correlação Cofenética é uma métrica utilizada espe-
cificamente para avaliar a fidelidade da estrutura hie-
rárquica construída (o dendrograma) em relação às dis-
tâncias originais entre os dados. O valor do CCC varia
entre 0 e 1. Valores mais próximos de 1 são desejáveis,
pois indicam que o agrupamento hierárquico preservou
fielmente as distâncias originais entre os dados.
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O CCC é calculado como a correlação de Pearson entre
duas matrizes de distâncias, conforme a Equação 8:

CCC = corr(D, Dc) (8)

onde:

� D: É a matriz de distâncias originais entre os N
pares de observações do conjunto de dados.

� Dc: É a matriz de distâncias cofenéticas. A distância
cofenética entre duas observações é definida como
a altura do ramo no dendrograma no qual elas são
unidas pela primeira vez.

� corr(·): Representa o Coeficiente de Correlação de
Pearson.

3 Resultados e Discussão

3.1 Análise Exploratória de Dados
A Análise Exploratória de Dados constituiu uma etapa
crucial para a compreensão do portfólio, o entendimento
do comportamento das variáveis e a determinação das
etapas de pré-processamento necessárias para otimizar
a performance dos algoritmos de agrupamento.

A variável categórica (tp_selagem), após a codificação
One-Hot Encoding foi devidamente preparada. Con-
tudo, as variáveis numéricas demonstraram forte assi-
metria e multimodalidade. Essa característica exigiu a
aplicação da transformação Box-Cox (Equação 1) como
etapa preliminar a normalização dos dados (Equação 2),
mitigando o impacto da escala no cálculo da distância
euclidiana.

A multimodalidade evidenciada pelos múltiplos picos
nas distribuições das variáveis numéricas reforça a hipó-
tese de que o conjunto de dados é composto por grupos
dimensionais distintos, o que valida a escolha por uma
abordagem de agrupamento não supervisionado.

3.2 Avaliação e Definição do K

Visto que o agrupamento é uma técnica de aprendiza-
gem não supervisionada, sem um rótulo de verdade
(ground truth), a determinação do número ideal de gru-
pos (K) é uma decisão estratégica balizada por métricas
estatísticas e por premissas de negócio. A determinação
do K para os métodos K-Means e Hierárquico baseou-se
inicialmente em critérios estatísticos, cujos resultados
evidenciaram a complexidade do portfólio:
•Para o K-Means: A análise da Inércia visualizada pelo
Método do Cotovelo (Elbow Method) em função de di-
ferentes valores de K (conforme Figura 4) sugeriu um
ponto de inflexão na região de K = 6. Embora este valor
seja estatisticamente eficiente para a redução da vari-
ância intra-grupo, ele foi considerado insuficiente para
capturar a granularidade e a diversidade exigida pelo
negócio.
•Para o Agrupamento Hierárquico: A aplicação da Re-
gra de Mojena [16] para corte no dendrograma (Figura 5)

sugeriu um número de grupos significativamente mais
elevado, na ordem de K = 47. Este resultado indica a
existência de alta granularidade e nichos dimensionais
no portfólio, estando mais próximo das premissas do
negócio.

3.3 Validação K ótimo
Essa disparidade entre as sugestões dos métodos (o K =
6 do Elbow versus o K = 47 da Regra de Mojena) expôs
o dilema central do nosso trabalho. Para encontrar o
equilíbrio ideal entre o rigor estatístico e a utilidade
prática, recorremos às métricas de validação interna.

Para isso, foi utilizada a Pontuação de Silhueta (Silhou-
ette Score, Seção 2.4.1), que mede formalmente a coesão e
a separação dos agrupamentos. Para determinar o K que
otimiza essa métrica, foi simulado um range de K que
se estendeu de 2 até 100 grupos para ambos os métodos,
K-Means e Hierárquico.

A Figura 6 representa a análise comparativa da Pontu-
ação de Silhueta média em função do número de grupos
(K). A análise detalhada dessa curva indicou os pontos
de máxima qualidade estatística para cada método.

3.4 Cenários de Modelagem e Avaliação
Como conclusão da simulação aplicada e alinhado às
premissas de negócio, foram estabelecidos os valores
de K estatisticamente relevantes: K = 47, sugerido pela
Regra de Mojena do método hierárquico, e K = 65, iden-
tificado como o ponto de máxima Pontuação de Silhueta
para o método hierárquico. Embora ambos os valores
tenham sido definidos por critérios de agrupamento hi-
erárquico, eles serão aplicados ao método K-Means, e
o desempenho será medido por métricas de validação
interna.

Durante a Análise Exploratória de Dados, foi identifi-
cada uma forte similaridade entre as variáveis diâmetro
e comprimento. Essa correlação entre variáveis motivou
uma premissa crucial para a análise de robustez: a neces-
sidade de avaliar o impacto da redundância de informa-
ção. Sendo assim, dois conjuntos de dados foram usados
no agrupamento:

� Conjunto de Dados 1: Contém todas as variáveis,
incluindo a variável comprimento.

� Conjunto de Dados 2: Exclui a variável compri-
mento.

Portanto, para validar a estabilidade dos modelos e a
relevância das variáveis de entrada, foram executados 8
cenários de agrupamento. A inclusão de cenários sem
a variável ’comprimento’ foi motivada pela necessidade
de avaliar o impacto desta variável na qualidade do
agrupamento, dado seu potencial como fonte de alta
variabilidade e sua similaridade com a variável diâmetro.

Os cenários de agrupamento foram definidos con-
forme a Tabela 2:
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Figura 4: Determinação do número ótimo de grupos (K) através do Método Elbow. Fonte: O autor (2025)

Figura 5: Determinação do número ótimo de grupos (K) através da Regra de Mojena aplicada ao Dendrograma.
Fonte: O autor (2025)
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Figura 6: Análise comparativa da Pontuação de Silhueta média em função do número de grupos (K). Fonte: O
autor (2025)

Tabela 2: Cenários de agrupamento e conjuntos de dados a serem utilizados.

Método K (grupos) Conj. de Dados Total

K-Means
47

Conjunto 1
2

Conjunto 2

65
Conjunto 1

2
Conjunto 2

Hierárquico
47

Conjunto 1
2

Conjunto 2

65
Conjunto 1

2
Conjunto 2

A (Tabela 3) apresenta o desempenho dos 8 cenários
de experimento em relação as métricas de validação in-
terna: Pontuação de Silhueta (Silhouette Score, que deve
ser maximizada), Índice de Davies-Bouldin (DBI, que
deve ser minimizado) e Correlação Cofenética (aplicável
apenas ao método Hierárquicos).

Ao observarmos os grupos gerados, torna-se possível
identificar o ganho mais relevante de performance nas
métricas de dispersão e separação quando agrupados
com o Conjunto de Dados 2 (sem a variável ’compri-
mento’).

O Índice de Davies-Bouldin (DBI), que mede a ra-
zão entre a dispersão intra-grupos e a separação inter-
grupos, diminuiu consideravelmente em todos os ce-
nários com a exclusão da variável ’comprimento’. Essa
melhora validou a premissa de redundância, indicando
que a remoção dessa variável reduziu a variância interna
dos grupos.

No entanto, a Pontuação de Silhueta (Silhouette Score),

que avalia a coesão e a separação em conjunto, apresen-
tou um resultado misto:

� Modelos Hierárquicos (C2 vs. C1 e C4 vs. C3):
O Silhouette Score teve uma queda, indicando que
a eliminação da variável, embora melhorando o
DBI (redução da dispersão), reduziu ligeiramente a
coesão do agrupamento.

� Modelos K-Means (C6 vs. C5 e C8 vs. C7): O Si-
lhouette Score apresentou uma melhora, ainda que
marginal, sugerindo que a remoção da variável re-
dundante não prejudicou, e até auxiliou, a coesão
do agrupamento.
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Tabela 3: Desempenho das métricas de validação interna para os 8 cenários de agrupamento.
Cen. Método K Conj. Dados Silhueta DBI Corr. Cofenética

C1 Hierárquico 47 Conjunto 1 0,5582 0,8128 0,7216
C2 Hierárquico 47 Conjunto 2 0,5578 0,6119 0,8060
C3 Hierárquico 65 Conjunto 1 0,5872 0,7268 0,7216
C4 Hierárquico 65 Conjunto 2 0,5746 0,5195 0,8060

C5 K-Means 47 Conjunto 1 0,5386 0,7893 N/A
C6 K-Means 47 Conjunto 2 0,5453 0,5688 N/A
C7 K-Means 65 Conjunto 1 0,5728 0,6218 N/A
C8 K-Means 65 Conjunto 2 0,5733 0,5240 N/A

3.5 Performance e Escolha Final

A avaliação de desempenho dos cenários propostos, su-
marizados na Tabela 3 , demandou uma análise que
considerasse não apenas as métricas estatísticas, mas
também as premissas importantes de negócio e a viabili-
dade operacional.

O Cenário C3 (Clusterização Hierárquica com K = 65,
Conjunto Completo) alcançou o maior valor absoluto de
Pontuação de Silhueta (0,5872), indicando maior coesão
interna. Contudo, essa solução apresentou um Índice de
Davies-Bouldin (DBI) de 0,7268, o mais alto entre os ce-
nários com K=65, o que sugere uma dispersão excessiva
entre os clusters.

Em contraste, o Cenário C8 (K-Means com K = 65,
sem a variável comprimento) foi selecionado como o
modelo final. Esta escolha foi fundamentada em um
balanceamento estratégico: o C8 registrou um elevado
Silhouette Score (0,5733) e, crucialmente, um DBI baixo
(0,5240), indicando a melhor separação e menor disper-
são entre os grupos.

Adicionalmente, o C8 demonstrou a melhor coerência
na validação técnica dos perfis para o processo produtivo
final, superando os modelos hierárquicos em viabilidade
operacional. O algoritmo K-Means com a remoção da
variável redundante provou ser a solução mais robusta
para manter a coesão e reduzir drasticamente a disper-
são, alinhando a performance estatística às necessidades
de negócio.

3.6 Interpretação do método empregado

O modelo final selecionado (K-Means com K=65, Ce-
nário C8) obteve 65 grupos de bisnagas. O primeiro
passo na interpretação dessas famílias é a análise da dis-
tribuição (Figura 7) do volume total de SKUs, crucial
para a estratégia de sequenciamento produtivo. Como
pode-se notar, a distribuição dos grupos não obteve uma
homogeneidade, isso já era esperado dado o desbalan-
ceamento da variável categórica (tp_selagem). Chama
atenção também os grupos com um número baixo de
observações (Sku’s), que expressam a representação de
Skus bem peculiares.

4 Conclusão
O presente estudo aplicou técnicas de aprendizagem
de máquina (clusterização) com o objetivo de solucio-
nar o problema da segmentação subjetiva de SKUs de
bisnagas em uma indústria de cosméticos. A aborda-
gem demonstrou-se eficaz ao eliminar a dependência
da experiência subjetiva, conferindo maior celeridade e
padronização ao processo decisório. O objetivo princi-
pal foi plenamente atingido com a entrega do modelo
K-Means, com K = 65 grupos, que define 65 famílias
homogêneas e estatisticamente robustas de bisnagas, tra-
duzindo as características dimensionais e de processo
em informações acionáveis.

O principal desafio e objeto de contribuição metodoló-
gica foi a equalização e a definição do K ótimo. O rigor
empregado na análise de robustez dos 8 cenários (Tabela
3) permitiu uma análise ponderada entre a otimização
estatística e a viabilidade operacional, resultando na es-
colha do modelo que oferece o melhor balanceamento
estratégico. Esse agrupamento em 65 famílias fornece
subsídios diretos para a gestão industrial, permitindo,
através da comparação entre clusters e SKUs, a mini-
mização de setups e a otimização do sequenciamento
produtivo, entre outras ações. Tais iniciativas impactam
positivamente o OEE (Overall Equipment Effectiveness)
das linhas de envase.

Como limitação do estudo, reconhece-se que não fo-
ram explorados outros métodos de agrupamento avan-
çados, como DBSCAN ou Gaussian Mixture Models
(GMMs), cuja aplicação poderia refinar a segmentação
dos grupos de nicho. Para trabalhos futuros, sugere-se
a expansão da análise metodológica com o teste de no-
vos modelos (como DBSCAN ou GMMs) para refinar a
estrutura de agrupamento.
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Figura 7: A Figura 5 Demonstra a distribuição do volume de SKUs (número de observações) em cada um dos 65
grupos gerados. Fonte: O autor (2025)
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