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Resumo

No contexto da Industria 4.0, a industria de cosméticos
recorre a Inteligéncia Artificial e a cultura Data Driven
como diferenciais estratégicos para antever tendéncias
e otimizar recursos. O objetivo central deste artigo é
aplicar técnicas de aprendizagem de maquina ndo super-
visionada — especificamente K-Means e Clusterizacao
Hierarquica — para mapear e compreender os perfis
de grupos em um portfélio com mais de 2.000 SKUs de
bisnagas, utilizando suas caracteristicas fisicas e dimensi-
onais. A partir da identificagdo de familias homogéneas
de produtos, busca-se detectar oportunidades para ma-
ximizar a performance do processo fabril, otimizando o
sequenciamento da producdo e a eficiéncia global (OEE),
superando as limita¢gdes da categorizac¢do tradicional.
A metodologia adotada foi quantitativa e exploratéria,
aplicando a transformagao Box-Cox na engenharia de
features e simulando 8 cendrios de modelagem para tes-
tar a robustez do agrupamento em conjuntos de dados
distintos. As andlises comparativas demonstraram que
a mitigagdo da redundéancia dimensional nos dados de
entrada maximizou a coesdo dos grupos. O modelo K-
Means com K = 65 (Cenario C8) foi selecionado como a
solugdo de melhor balango estratégico e estatistico (Silhu-
eta: 0,5733; DBI: 0,5240). Conclui-se que a caracterizagdo
robusta em 65 familias fornece subsidios aciondveis para
a gestdo industrial elevar a padronizagdo e a utilizagao
dos ativos de fabricagao.

Palavras-chave: Industria 4.0; Clusterizagdo; K-Means;
Clusterizagdo Hierdrquica Aglomerativa.

Abstract

In the context of Industry 4.0, the cosmetics industry
turns to Artificial Intelligence and a Data Driven cul-
ture as strategic differentiators to forecast trends and
optimize resources. The central objective of this pa-
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Um Enfoque em Eficiéncia Operacional na Indus-

per is to apply unsupervised machine learning tech-
niques—specifically K-Means and Hierarchical Cluste-
ring—to map and understand group profiles within
a tube portfolio containing over 2,000 SKUs, utilizing
their physical and dimensional characteristics. Based on
the identification of homogeneous product families, the
study seeks to detect opportunities to maximize manu-
facturing process performance, optimizing production
sequencing and Overall Equipment Effectiveness (OEE),
overcoming the limitations of traditional categorization.
The methodology adopted was quantitative and explo-
ratory, applying Box-Cox transformation for feature en-
gineering and simulating 8 modeling scenarios to test
clustering robustness across distinct datasets. Compa-
rative analyses demonstrated that mitigating dimensi-
onal redundancy in the input data maximized group
cohesion. The K-Means model with K = 65 (Scenario
C8) was selected as the solution with the best strategic
and statistical balance (Silhouette: 0.5733; DBI: 0.5240).
It is concluded that the robust characterization into 65
families provides actionable insights for industrial ma-
nagement to enhance standardization and the utilization
of manufacturing assets.

Keywords: Industry 4.0; Clustering; K-Means; Agglo-
merative Hierarchical Clustering.

1 Introducao

O mercado de higiene pessoal e cosméticos no Brasil é
um dos mais dindmicos do mundo, com o setor proje-
tando um crescimento anual de 7% até 2027, evidenci-
ando sua robustez e sua importancia estratégica global
[1]. As empresas deste mercado caracterizam-se por se-
rem extremamente dgeis em seus langamentos, a fim de
antever tendéncias em um mercado cada vez mais com-
petitivo [2], e suprir as expectativas de um consumidor
que busca uma equagdo custo-beneficio mais vantajosa.
O reflexo disso, segundo a Associacdo Brasileira da In-
dustria de Higiene Pessoal, Perfumaria e Cosméticos
[3], é uma industria inovadora, 4gil e focada em fatores
qualitativos e quantitativos.

Tal agilidade reflete diretamente no nimero de pro-
dutos langados: em 2021, a indtstria brasileira langou
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7.368 produtos, ultrapassando a China e se tornando a
segunda maior poténcia mundial em langcamentos. Com
o advento da industria 4.0 e o avango da tecnologia, as
organizagdes se tornaram mais inovadoras e disruptivas
nos seus processos e tarefas, buscando minimizar custos,
mitigar erros e aumentar a competitividade [2].

Neste cendrio de intensa transformacéo, o desenvol-
vimento da Inteligéncia Artificial (IA) e das praticas de
Ciéncia de Dados se tornou um diferencial estratégico.
Empresas que adotam uma cultura Data Driven? uti-
lizam essas tecnologias para otimizar o modelo de to-
mada de decisdo, tornando-o mais assertivo e eficiente
[4]. Uma das formas mais poderosas de aplicagdo é a im-
plementagdo de modelos de aprendizagem de méaquina.

Aprendizagem de maquina é uma subdrea da Inteli-
géncia Artificial, que utiliza modelos matemaéticos para
inferir aprendizado baseado em exemplos [5]. A apren-
dizagem de maquina se subdivide em categorias, sendo
o aprendizado ndo supervisionado fundamental para
a clusterizac¢do. Segundo [6], clusterizagdo consiste em
subdividir uma populagdo heterogénea em subgrupos
mais coesos, sem rétulos pré definidos, identificando
grupos por meio de suas semelhancas.

Segundo Metz [7], a clusterizagdo é uma ferramenta es-
sencial para a deteccdo e segmentacdo de caracteristicas,
sendo um método cujos resultados dependem direta-
mente da escolha de parametros como as medidas de
similaridade utilizadas.

A aplicacdo dessa técnica é vasta:[6] a utilizou para a
predicdo de evasdo escolar,[4] usou o método de cluste-
rizagdo para defini¢do de um sistema de recomendagao
baseando-se no perfil de compra de cada grupo e [8]
demonstraram o potencial do K-Means na anélise e in-
terpretacdo de vastos volumes de dados provenientes
de imagens de satélite, destacando sua aplicagdo em
dreas como monitoramento ambiental e agricultura de
precisdo.

Diante do forte crescimento na aplicagdo das técnicas
de aprendizagem de madquina em diversas areas, como
satide, transportes e automobilistica [4], o mercado de
cosméticos também se destaca. Neste cendrio, este tra-
balho vem de encontro com essa demanda, propondo
uma solugdo eficiente e acessivel para a categorizagao
de SKUs? em familias de bisnagas, grupos que deveriam
compartilhar especificagdes técnicas para otimizar o pro-
cesso produtivo. Atualmente, esse processo é executado
de forma manual e subjetiva, o que o torna suscetivel a
erros, resultando em decisdes baseadas na experiéncia
individual e desprovidas de critérios objetivos. Essas
oportunidades de melhoria sdo claramente visualizadas
na eficiéncia e gestdo de rotina do setor operacional.

A segmentacdo ndo padronizada de SKUs com carac-
teristicas fisicas e dimensionais distintas pode levar a
alocagdo subétimas de recursos e a gargalos no processo
produtivo, como o envase, impactando a performance
e a flexibilidade produtiva. Portanto, a oportunidade
reside na substituicdo dessa abordagem subjetiva por
um método capaz de realizar a segmentagdo automaética
de SKUs? em familias de forma precisa, 4gil e padroni-

zada. Este método deve garantir maior flexibilidade de
roteiro de produgdo, minimizar a necessidade de troca
de ferramentais e, consequentemente, aumentar a efici-
éncia global da produgédo (Overall Equipment Effectiveness
- 30OEE).

Diante deste panorama, o objetivo geral deste artigo é
aplicar técnicas de aprendizagem de maquina ndo super-
visionado — especificamente os algoritmos K-Means e
Clusterizagdo Hierdrquica — para a defini¢do de grupos
homogéneos em um portfélio de bisnagas. O estudo
utilizard como varidveis as caracteristicas fisicas e di-
mensionais dos SKUs?. A finalidade é gerar informagdes
estratégicas que otimizem o sequenciamento produtivo,
a padronizacdo e a melhor utilizacdo de ativos e ferra-
mentais de fabricagao.

As contribuicdes deste artigo sdo:

> Desenvolver um modelo de clusterizacdo robusto
para o portfélio de bisnagas, capaz de agrupar os
SKUs com base em suas caracteristicas fisicas e di-
mensionais.

» Realizar uma andlise detalhada usando os métodos
K-Means e Clusterizagdo Hierdrquica, incluindo a
correta defini¢do do ntimero de clusters (parametro
K) com base em critérios estatisticos e contextuais
de negocio.

! Data Driven: O termo *Data Driven* significa, em portugués, “Orientado por
Dados”. Isso significa que uma empresa que possui uma cultura *Data Driven*
baseia a maior parte dos seus processos e agdes na coleta e andlise de dados,
visando a tomada de decisao assertiva. Disponivel em:
https://www.alura.com.br/artigos/data-driven?srsltid=
AfmBOoqcvIVTyHolcML3rGI1lqqe7SRR1AhDAbipfBDx7q0gGPEpPIIXIa.

2 SKU: A sigla vem do termo em inglés *Stock Keeping Unit*, ou Unidade de
Manutengéo de Estoque. Disponivel em:
https://venda.amazon.com.br/sellerblog/
0-que-e-sku-do-produto-e-qual-a-importancia-de-utilizar-esse-codigo.

3 OEE: Utilizado na indtstria, o *Overall Equipment Effectiveness* aponta o
nivel de eficiéncia de um equipamento. Disponivel em:
https://www.totvs.com/blog/gestao-industrial/oee/.

2 Materiais e Métodos

O estudo é caracterizado como uma pesquisa aplicada,
dado seu objetivo pratico em desenvolver um modelo
capaz de prover um agrupamento étimo de produtos
com base em caracteristicas dimensionais e processuais.
A abordagem é quantitativa e de natureza exploratoria,
utilizando técnicas de aprendizagem de maquina nao
supervisionada para identificar os padrdes e estruturas
em dados ndo rotulados. A metodologia segue etapas
que abrangem coleta de dados, pré-processamento, a
modelagem por agrupamento e valida¢do, baseando-se
em aspectos cientificos e regras de negécio, conforme
demonstrado no fluxograma da Figura 1.

2.1 Conjunto de Dados

O conjunto de dados foi extraido do sistema Systems,
Applications & Products (SAP) e de tabelas construidas
durante o estudo em uma empresa de grande porte do
setor de cosméticos e higiene pessoal no Brasil. Devido
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Figura 1: Fluxograma de etapas empregadas no trabalho. Fonte: O autor

ao sigilo empresarial, o nome da organizagdo e os valores processamento subsequente:

absolutos das varidveis sdo omitidos.

O objeto do estudo é o portfélio de mais de 2.000 pro-
dutos da categoria de bisnagas de diversos modelos, co-
res, tamanhos e volumetrias. A escolha deste segmento
se justifica pela sua alta representatividade no volume de
produgdo e pela grande oportunidade de automatizar o
processo de definicdo de familias. A clusterizacdo desses
produtos visa trazer celeridade e grandes impactos nas
dreas incumbidas pela gestao do portfélio, especialmente
na padronizacdo de ferramental e no sequenciamento
produtivo.

A selecdo das varidveis para o modelo de clusterizagdo
foi um passo metodolégico crucial. As varidveis foram
elencadas visando prioritariamente sua relevancia ao
processo fabril, com o objetivo de obter uma melhor
segmentacdo dos produtos desta categoria e identificar
oportunidades de sequenciamento, ganho de setup (pro-
cesso de preparagdo de um equipamento para iniciar
uma nova produgdo) e padronizagdo de ferramental de
fabricagdo. A estrutura do conjunto de dados utilizado
no modelo é apresentada na Tabela 1.

Tabela 1: Dados ficticios para representagdo do conjunto

de dados.
diametro altura comprimento peso  tp_selagem
13,00 36,22 23,23 120,00  tipo_1
5,00 15,55 8,39 90,00  tipo_2
34,00 17,00 25,33 100,00  tipo_3

Fonte: O autor (2025)

2.2 Limpeza e Preparo dos Dados

A preparacdo do conjunto de dados é uma fase critica e
fundamental em qualquer projeto de Ciéncia de Dados,
sendo determinante para garantir a interpretabilidade
e a confiabilidade dos resultados dos métodos. Todas
as etapas de pré-processamento, engenharia de atribu-
tos e modelagem foram executadas no ambiente Python.
A escolha do Python se justifica pela sua versatilidade,
dinamismo e integragdo com diversas bibliotecas bem
estabelecidas, como Pandas, NumPy e Scikit-Learn, ofere-
cendo um robusto ferramental para a Ciéncia de Dados
[9]. O conjunto de dados fornecido necessitou da aplica-
¢do de técnicas de transformacéo e normalizagdo para
que as varidveis atingissem o estado ideal para a mode-
lagem.

A etapa inicial visou a higienizagdo e a estruturacéo
dos dados, garantindo sua integridade e formato para o

» Carregamento e Junc¢do dos Dados: O processo foi
iniciado pelo carregamento de diversas fontes de
dados. Em seguida, foi realizada a juncdo, coletando
as variaveis de interesse de cada base e formando
um tnico conjunto de dados principal. Para isso,
foi utilizada a fungdo merge da biblioteca Pandas,
definindo o cédigo tnico de cada SKU como chave
primdria para garantir a unicidade e a consisténcia
dos registros.

» Tratamento de Tipos e Nomenclaturas: Realizou-
se a conversdo dos tipos de dados, garantindo que
as colunas numéricas fossem tratadas como Float.
Houve também a padronizagdo das nomenclaturas
na coluna categorica de tp_selagem, consolidando
multiplas descri¢des textuais em categorias tinicas e
bem definidas.

» Tratamento de Dados Invilidos e Outliers: Por
fim, foi realizado o tratamento de dados inconsis-
tentes. Foram identificados e removidos registros
com valores contextualmente impossiveis para as
dimensoes (a critério de exemplo, valores de altura
igual a 0), além de categorias que representavam
ruidos conceituais (outliers), garantindo que apenas
SKUs vélidos fossem considerados na modelagem
exploratéria.

2.2.1 Engenharia de Atributos

As variaveis dimensionais e de processo do portfélio
apresentam duas caracteristicas que influenciam direta-
mente a escolha do algoritmo: multimodalidade (pre-
senca de multiplos picos na distribui¢do, como na varia-
vel altura) e assimetria, a qual persistiu mesmo apés o
tratamento de outliers. Tais distribui¢cdes podem com-
prometer a estabilidade de algoritmos baseados em dis-
tancia. A visualizagdo do perfil de distribuigdo das vari-
dveis numéricas, antes das transformacoes, é ilustrada
na Figura 2:

2.2.2 Transformacdo de Distribuicdo: Box-Cox

Para mitigar a forte assimetria observada, optou-se pela
aplicagdo da Transformagao Box-Cox [10], uma técnica
paramétrica recomendada para estabilizar a variancia e
aproximar a distribui¢do dos dados de uma curva nor-
mal, pré-requisito crucial para modelos de clusterizagdo
baseados em distancia. A transformacéo foi aplicada em
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Figura 2: Representacdo do perfil das varidveis antes de passarem pelo processo de engenharia de atributos. Fonte:

O autor(2025)

todas as varidveis numéricas: didmetro, altura, compri-
mento e peso. Formalmente, a transformagao é definida
como:

X1 seA #0
(AN ={ "1 1
5i(A) In(x;)) seA =0 M

onde:

» y;(A): Valor transformado.

> x;: original value.

> A: Parametro de transformacgdo (determinado pelo
log-likelihood 6timo).

» In(x;): Logaritmo Natural, aplicado quando A = 0.

2.2.3 One-Hot Encoding de Variaveis Categoricas

A variavel categorica de selagem, crucial para a distin¢do
das familias de bisnagas, foi submetida ao processo de
codificagdo utilizando o método One-Hot Encoding [11].
Essa técnica converte a varidvel qualitativa em multiplas
colunas bindrias (0 ou 1), onde cada nova coluna repre-
senta uma categoria de selagem especifica (por exemplo,
tipo_1, tipo_2). Este procedimento permite que a infor-
macdo qualitativa seja processada de forma quantitativa
pelos algoritmos de agrupamento baseados em distan-
cia.

2.2.4 Normalizacdo dos dados

Uma vez transformadas as colunas, torna-se necessé-
rio a aplicagdo da normalizacdo, visto que as colunas

numéricas ainda possuiam diferentes escalas. O mé-
todo utilizado para a resolugdo deste problema foi o
StandardScaler. Esta técnica padroniza todas as colunas,
formatando-as para que apresentem média zero (¢ = 0)
e desvio-padrado unitario (¢ = 1). A normalizagdo é
indispensavel para o K-Means e a Clusterizagdo Hie-
rarquica, pois garante que as varidveis tenham pesos
igualitdrios na defini¢cdo dos clusters e no célculo da
distancia euclidiana.

)

onde:

» Z: é o valor padronizado (Z-score).

» x: é o valor original da varidvel.

> u: é amédia dos valores da varidvel no conjunto de
dados.

» o: é o desvio padrdo dos valores da varidvel no
conjunto de dados.
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2.3 Métodos Empregados

Esta secdo detalha os métodos de clusterizagao selecio-
nados para a identificacdo de clusters homogéneos no
portfélio de bisnagas. A escolha recaiu sobre os métodos
K-Means e a clusterizacdo Hierdrquica Aglomerativa.

2.3.1 Método K-Means

O K-Means é um método de agrupamento particional
baseado em centroides, fundamental para dividir um
conjunto de dados néo rotulados em um ntimero fixo
de K clusters. O objetivo principal é que cada cluster
compartilhe caracteristicas comuns, representadas pelo
seu centroide.

Formalmente, o conjunto de dados de entrada pode
ser representado pela matriz X (Figura 3), onde N é o
numero de observacdes e D é o nimero de variaveis
[12]:

X111 X12 X1D

X1 X2 X2D
X =

XN1 XN2 XND

Figura 3: Representacdo da Matriz de Dados (X). A
matriz X representa o conjunto de dados de entrada,
onde cada linha é uma observacgéo (SKU) e cada coluna
é uma varidvel dimensional ou de processo.

A inten¢do do K-Means é minimizar a funcido de
custo, denominada Inércia ou soma dos quadrados intra-
cluster (Within-Cluster Sum of Squares). Esta funcao (Eq.
3) mede a coesdo interna dos clusters, quantificando a
soma das distancias quadraticas (geralmente Euclidia-
nas) entre cada amostra (x;) e o centréide (pt]-) de seu
respectivo grupo:

k
argéninZ Y (k= 3)

jZl XI'ECJ‘
onde:

> argmin: Instrucdo matematica de minimizacdo da
expressao seguinte em relacdo aos conjuntos de clus-
ters (C).

> 2;‘:1: Somatorio sobre todos os k clusters do modelo,
indexados por j.

> inecji Somatoério dos resultados de cada ponto de
dado x; pertencente ao cluster C;.

» x;: Um ponto de dado individual (vetor de varia-
veis).

> p;: O centroide (vetor de médias) do grupo j.

v

|Ixi —p ]-| |?: Distancia Euclidiana Quadrada entre o
ponto x; e o centroide -

O processo iterativo do algoritmo ¢ iniciado com a
escolha dos K clusters, sendo que cada centréide cor-
responde a um grupo. Os K centréides iniciais sao atri-
buidos aleatoriamente. O algoritmo segue as etapas a
seguir:

» Inicializac¢do: Definicdo do K e posicionamento dos
K centroéides iniciais no espaco das varidveis.

> Atribuicdo: Cada observagdo se une ao grupo cujo
centréide seja 0 mais préximo, fazendo uso da dis-
tancia euclidiana quadrada.

> Atualizagdo: Com os clusters formados, os centroi-
des sao recalculados, criando-se um novo ponto
médio das observacdes que foram atribuidas ao res-
pectivo cluster.

As iteragOes repetem-se até que a alocagdo das obser-
vagOes ndo se altere de forma significativa ou até que a
posigdo dos centréides se estabilize, indicando a conver-
géncia do modelo.

2.3.2 Método de Clusterizacao Hierarquica

O método hierarquico adota uma formacao de clusters
distinta do K-Means. A diferenca crucial reside no pro-
cesso de clusteriza¢do: enquanto o K-Means é um mé-
todo particional baseado em centréides, o agrupamento
hierdrquico é um método construtivo que estabelece
uma estrutura em forma de dendrograma (drvore), a
qual representa a relagdo de similaridade e distancia
entre as observagdes. Existem dois métodos principais
segundo [7]: o Aglomerativo (bottom-up) e o Divisivo
(top-down).

Para este trabalho, implementamos o método hierar-
quico aglomerativo, o mais comumente aplicado. Esta
abordagem funciona de baixo para cima, onde cada ob-
servagdo é um grupo individual. Em seguida, ocorrem
fusoes iterativas mediante suas similaridades.

» Inicializa¢do: Cada observacdo é tratada como um
Unico grupo.

» Fusdo: Em cada iteracdo, os clusters mais préoximos,
de maior similaridade e menor distancia, sdo fundi-
dos.

» Conclusdo: O processo continua até que todas as
observagdes estejam unidas em um grupo raiz.

Para a medi¢do da proximidade entre os clusters a se-
rem mesclados (critério de fusao), foi utilizado o método
de ligacdo Ward (Ward'’s linkage) dentre os demais exis-
tentes. O método Ward busca a fusdo que resulta no
menor aumento da Soma dos Quadrados Intra-Cluster
(Within-Cluster Sum of Squares, WCSS), ou seja, na menor
perda de coesao interna [13].

Matematicamente, o método Ward é baseado no cal-
culo da distancia Euclidiana Quadrada entre os centroi-
des dos clusters. O aumento na WCSS (AWCSS) ao fun-
dir os clusters C; e C; é formalmente dado por (Eq. 4):

AWCSS(C;, Cj) = (4)

T’lii’l]' B )
ni—i-n]-H”i .”j||
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onde:

» AWCSS(C;, C)): E 0 aumento na WCSS causado
pela fuséo dos clusters C; e C;.

> nj, 1 Sédo, respectivamente, o nimero de observa-
cOes nos clusters C; e C;.

> 1, pj: S0 os vetores centréides dos clusters C; e Cj.

> |l —n ]-| |?: £ a Distancia Euclidiana Quadrada en-
tre os centroéides.

O método Ward busca, em cada itera¢do, o par de clus-
ters que resulta no menor valor de AWCSS. Conforme a
Equagdo 4, a expressdo mostra que a WCSS é penalizada
ndo apenas pela distancia entre os centréides (y; e p)),
mas também pelo tamanho dos clusters (n; e n j), favore-
cendo a formacdo de clusters compactos e balanceados.

Este método é conhecido por sua tendéncia a gerar
clusters com alta coesdo interna, o que indiretamente
auxilia na separagdo entre os clusters, sendo relevante
para interpretacdo de perfis homogéneos. O critério de
Ward é frequentemente escolhido por produzir clusters
de tamanhos aproximadamente iguais, o que evita que
outliers ou grandes clusters dominem a andlise. Outro
fator importante é a reducdo no tempo computacional
para efetuar o célculo [7].

2.4 Meétricas de Avaliacao

O agrupamento, por ser uma técnica de aprendizagem
ndo supervisionada, demanda uma avaliagdo baseada
em critérios que quantifiquem a qualidade da estrutura
interna dos clusters, uma vez que ndo ha um rétulo de
verdade (ground truth). Desta forma, as métricas de va-
lidagdo interna tém o proposito de medir o quanto os
clusters sdo coesos internamente e o quao bem estao se-
parados entre si. As seguintes métricas foram utilizadas
para a comparagdo de performance entre os modelos
K-Means e Hierdrquico e para a validagdo da escolha
final do K.

2.4.1 Pontuacdo de Silhueta (Silhouette Score)

A Pontuacao de Silhueta avalia o qudo bem cada observa-
¢a0 se ajusta ao seu préprio grupo comparada ao grupo
mais préximo. O valor da silhueta para uma observagao
i é dado pela Equacéo 5 [14]. O valor da Pontuagdo de
Silhueta varia de —1 a 1. Valores mais préximos de 1
sdo desejdveis, pois indicam que a observacdo estd bem
alocada e distante do grupo vizinho.

- bi —a;
i max(ai, bl) (5)
onde:

» s;: E a Pontuagao de Silhueta para a observacio
i,comi = 1,2,...,n, sendo n o nimero total de
observacgdes.

» a;: E a coesdo da observacio i. E definida como a
distancia média da observacao x; a todos os outros
pontos no mesmo grupo (Cy). Quanto menor o valor
de a;, maior a coesdo interna.

> b;: E a separacao da observagao i. E definida como
a menor distdncia média da observacao x; a todos
os pontos de qualquer outro grupo (C;), sendo C; o
grupo vizinho mais préximo.

» max(a;, b;): E o maior valor entre a; e b;, usado para
normalizar o resultado.

2.4.2 indice de Davies-Bouldin (Davies-Bouldin In-

dex, DBI)

O Indice de Davies-Bouldin (DBI) quantifica a qualidade
do agrupamento com base na razdo entre a dispersdo
média intra-clusters e a distancia entre os centréides dos
clusters. O DBI é uma métrica de avaliacdo em que
valores menores sdao desejaveis. Um valor baixo de DBI
indica uma agrupamento superior, pois é resultado de
clusters densos e com alta separacdo entre si.
O DBI é formalmente definido pela Equacéo 6 [15]:

K
max(R;;
=i ( 1])

DBI = L (6)

onde:

» K: E o namero total de clusters (clusters).

» YK ,: Simbolo de Somatério, que significa: some os
resultados para cada grupo i, do primeiro (i = 1)
até o ultimo (K).

> max;.;(R;j): A instrugdo para encontrar o valor ma-
ximo da similaridade R;; para um grupo especifico
i, comparando-o com todos os outros clusters j.

> Rjj: A medida de similaridade entre o grupoi e o
grupo j.

A similaridade entre dois clusters, Ri]-, é amedida de
similaridade entre o grupo i e o grupo j. Esta relagdo
(razdo de dispersdo) é formalmente definida por:

Si+ s
Rjj= ——

ij = d(c ;) @)

onde:

> Rj: E a medida de similaridade entre o grupo i e o
grupo j.

> s; e s;: Sdo, respectivamente, as medidas de disper-
sdo interna (dispersdo média) dos clustersie j.

> d(c;,c;): E a distancia entre os centréides (c; e ¢;j) do
grupo i e do grupo j.

2.4.3 Correlacdo Cofenética (Cophenetic Correlation
Coefficient, CCC)

A Correlagdo Cofenética é uma métrica utilizada espe-
cificamente para avaliar a fidelidade da estrutura hie-
rérquica construida (o dendrograma) em relagdo as dis-
tancias originais entre os dados. O valor do CCC varia
entre 0 e 1. Valores mais préximos de 1 sdo desejaveis,
pois indicam que o agrupamento hierarquico preservou
fielmente as distancias originais entre os dados.
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O CCC é calculado como a correlagédo de Pearson entre
duas matrizes de distancias, conforme a Equacao 8:

CCC = corr(D, D;) 8)

onde:

» D: E a matriz de distancias originais entre os N
pares de observagdes do conjunto de dados.

» D.: E a matriz de distancias cofenéticas. A distancia
cofenética entre duas observagdes é definida como
a altura do ramo no dendrograma no qual elas sao
unidas pela primeira vez.

» corr(-): Representa o Coeficiente de Correlagdo de
Pearson.

3 Resultados e Discussao

3.1 Andlise Exploratéria de Dados

A Anélise Exploratéria de Dados constituiu uma etapa
crucial para a compreensdo do portfélio, o entendimento
do comportamento das varidveis e a determinagdo das
etapas de pré-processamento necessarias para otimizar
a performance dos algoritmos de agrupamento.

A variavel categorica (tp_selagem), ap6s a codificagao
One-Hot Encoding foi devidamente preparada. Con-
tudo, as varidveis numéricas demonstraram forte assi-
metria e multimodalidade. Essa caracteristica exigiu a
aplicagdo da transformagado Box-Cox (Equagdo 1) como
etapa preliminar a normalizacdo dos dados (Equagdo 2),
mitigando o impacto da escala no calculo da distancia
euclidiana.

A multimodalidade evidenciada pelos mdltiplos picos
nas distribui¢des das varidveis numéricas reforca a hipé-
tese de que o conjunto de dados é composto por grupos
dimensionais distintos, o que valida a escolha por uma
abordagem de agrupamento ndo supervisionado.

3.2 Avaliacao e Definicao do K

Visto que o agrupamento é uma técnica de aprendiza-
gem ndo supervisionada, sem um rétulo de verdade
(ground truth), a determinagdo do niimero ideal de gru-
pos (K) é uma decisao estratégica balizada por métricas
estatisticas e por premissas de negdcio. A determinagdo
do K para os métodos K-Means e Hierdrquico baseou-se
inicialmente em critérios estatisticos, cujos resultados
evidenciaram a complexidade do portfélio:

*Para o K-Means: A andlise da Inércia visualizada pelo
Método do Cotovelo (Elbow Method) em funcado de di-
ferentes valores de K (conforme Figura 4) sugeriu um
ponto de inflexdo na regido de K = 6. Embora este valor
seja estatisticamente eficiente para a redugdo da vari-
ancia intra-grupo, ele foi considerado insuficiente para
capturar a granularidade e a diversidade exigida pelo
negocio.

ePara o Agrupamento Hierarquico: A aplicacdo da Re-
gra de Mojena [16] para corte no dendrograma (Figura 5)

sugeriu um ndmero de grupos significativamente mais
elevado, na ordem de K = 47. Este resultado indica a
existéncia de alta granularidade e nichos dimensionais
no portfélio, estando mais préximo das premissas do
negocio.

3.3 Validacao K étimo

Essa disparidade entre as sugestdes dos métodos (o K =
6 do Elbow versus o K = 47 da Regra de Mojena) exp6s
o dilema central do nosso trabalho. Para encontrar o
equilibrio ideal entre o rigor estatistico e a utilidade
prética, recorremos as métricas de validagdo interna.

Para isso, foi utilizada a Pontuagdo de Silhueta (Silhou-
ette Score, Secdo 2.4.1), que mede formalmente a coesdo e
a separacdo dos agrupamentos. Para determinar o K que
otimiza essa métrica, foi simulado um range de K que
se estendeu de 2 até 100 grupos para ambos os métodos,
K-Means e Hierarquico.

A Figura 6 representa a andlise comparativa da Pontu-
acdo de Silhueta média em fungao do ntiimero de grupos
(K). A anélise detalhada dessa curva indicou os pontos
de maxima qualidade estatistica para cada método.

3.4 Cenarios de Modelagem e Avaliacao

Como conclusdo da simulagdo aplicada e alinhado as
premissas de negdcio, foram estabelecidos os valores
de K estatisticamente relevantes: K = 47, sugerido pela
Regra de Mojena do método hierdrquico, e K = 65, iden-
tificado como o ponto de maxima Pontuagéo de Silhueta
para o método hierdrquico. Embora ambos os valores
tenham sido definidos por critérios de agrupamento hi-
erdrquico, eles serdo aplicados ao método K-Means, e
o desempenho serd medido por métricas de validacao
interna.

Durante a Andlise Exploratéria de Dados, foi identifi-
cada uma forte similaridade entre as variaveis didmetro
e comprimento. Essa correlagdo entre varidveis motivou
uma premissa crucial para a analise de robustez: a neces-
sidade de avaliar o impacto da redundéancia de informa-
¢do. Sendo assim, dois conjuntos de dados foram usados
no agrupamento:

» Conjunto de Dados 1: Contém todas as varidveis,
incluindo a varidvel comprimento.

» Conjunto de Dados 2: Exclui a varidvel compri-
mento.

Portanto, para validar a estabilidade dos modelos e a
relevancia das varidveis de entrada, foram executados 8
cendrios de agrupamento. A inclusdo de cendrios sem
a varidvel ‘comprimento’ foi motivada pela necessidade
de avaliar o impacto desta varidavel na qualidade do
agrupamento, dado seu potencial como fonte de alta
variabilidade e sua similaridade com a variavel didmetro.

Os cendrios de agrupamento foram definidos con-
forme a Tabela 2:
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Método do Cotovelo para o Modelo K-Means
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Figura 4: Determinagdo do niimero 6timo de grupos (K) através do Método Elbow. Fonte: O autor (2025)
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Figura 5: Determinacdo do nimero 6timo de grupos (K) através da Regra de Mojena aplicada ao Dendrograma.
Fonte: O autor (2025)
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Comparativo da Pontuacao de Silhueta: K-Means vs. Hierarquico
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Figura 6: Analise comparativa da Pontuacgdo de Silhueta média em fungdo do ntimero de grupos (K). Fonte: O

autor (2025)

Tabela 2: Cendrios de agrupamento e conjuntos de dados a serem utilizados.

Método K (grupos) Conj. de Dados Total
47 Eon].un:o ; ’
K-Means onyunto
65 Con]:unto 1 ’
Conjunto 2
47 Con].unto 1 5
o Conjunto 2
Hierarquico
65 Con]:unto 1 ’
Conjunto 2

A (Tabela 3) apresenta o desempenho dos 8 cendrios
de experimento em relacdo as métricas de validagao in-
terna: Pontuacdo de Silhueta (Silhouette Score, que deve
ser maximizada), Indice de Davies-Bouldin (DBI, que
deve ser minimizado) e Correlacdo Cofenética (aplicdvel
apenas ao método Hierdrquicos).

Ao observarmos os grupos gerados, torna-se possivel
identificar o ganho mais relevante de performance nas
métricas de dispersdo e separacdo quando agrupados
com o Conjunto de Dados 2 (sem a varidvel 'compri-
mento’).

O Indice de Davies-Bouldin (DBI), que mede a ra-
za0 entre a dispersdo intra-grupos e a separacao inter-
grupos, diminuiu consideravelmente em todos os ce-
nérios com a exclusdo da varidvel ‘comprimento’. Essa
melhora validou a premissa de redundancia, indicando
que a remogdo dessa varidvel reduziu a varidncia interna
dos grupos.

No entanto, a Pontuacao de Silhueta (Silhouette Score),

11

que avalia a coesdo e a separa¢do em conjunto, apresen-
tou um resultado misto:

» Modelos Hierarquicos (C2 vs. C1 e C4 vs. C3):
O Silhouette Score teve uma queda, indicando que
a eliminacdo da varidvel, embora melhorando o
DBI (reducao da dispersdo), reduziu ligeiramente a
coesdo do agrupamento.

Modelos K-Means (C6 vs. C5 e C8 vs. C7): O Si-
lhouette Score apresentou uma melhora, ainda que
marginal, sugerindo que a remogao da varidvel re-
dundante nédo prejudicou, e até auxiliou, a coesdao
do agrupamento.
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Tabela 3: Desempenho das métricas de validagdo interna para os 8 cendrios de agrupamento.

Cen. Método K Conj. Dados Silhueta DBI Corr. Cofenética
C1 Hieradrquico 47 Conjunto 1 0,5582 0,8128 0,7216
C2 Hierarquico 47 Conjunto 2 0,5578 0,6119 0,8060
C3 Hieradrquico 65 Conjunto 1 0,5872 0,7268 0,7216
C4 Hieradrquico 65 Conjunto 2 0,5746 0,5195 0,8060
C5 K-Means 47 Conjunto 1 0,5386 0,7893 N/A
(@) K-Means 47 Conjunto 2 0,5453 0,5688 N/A
Cc7 K-Means 65 Conjunto 1 0,5728 0,6218 N/A
C8 K-Means 65 Conjunto 2 0,5733 0,5240 N/A
3.5 Performance e Escolha Final 4 Conclusio

A avaliacdo de desempenho dos cendrios propostos, su-
marizados na Tabela 3 , demandou uma andlise que
considerasse ndo apenas as métricas estatisticas, mas
também as premissas importantes de negécio e a viabili-
dade operacional.

O Cenadrio C3 (Clusterizagdo Hierdrquica com K = 65,
Conjunto Completo) alcangou o maior valor absoluto de
Pontuacao de Silhueta (0,5872), indicando maior coesdo
interna. Contudo, essa solucao apresentou um Indice de
Davies-Bouldin (DBI) de 0,7268, o mais alto entre os ce-
narios com K=65, o que sugere uma dispersado excessiva
entre os clusters.

Em contraste, o Cenario C8 (K-Means com K = 65,
sem a varidvel comprimento) foi selecionado como o
modelo final. Esta escolha foi fundamentada em um
balanceamento estratégico: o C8 registrou um elevado
Silhouette Score (0,5733) e, crucialmente, um DBI baixo
(0,5240), indicando a melhor separagdo e menor disper-
sdo entre os grupos.

Adicionalmente, o C8 demonstrou a melhor coeréncia
na validacdo técnica dos perfis para o processo produtivo
final, superando os modelos hierdrquicos em viabilidade
operacional. O algoritmo K-Means com a remocao da
varidvel redundante provou ser a solugdo mais robusta
para manter a coesdo e reduzir drasticamente a disper-
sdo, alinhando a performance estatistica as necessidades
de negdcio.

3.6 Interpretacdo do método empregado

O modelo final selecionado (K-Means com K=65, Ce-
nario C8) obteve 65 grupos de bisnagas. O primeiro
passo na interpretagdo dessas familias é a andlise da dis-
tribuicao (Figura 7) do volume total de SKUs, crucial
para a estratégia de sequenciamento produtivo. Como
pode-se notar, a distribui¢do dos grupos ndo obteve uma
homogeneidade, isso ja era esperado dado o desbalan-
ceamento da varidvel categoérica (tp_selagem). Chama
atengdo também os grupos com um ntimero baixo de
observagoes (Sku’s), que expressam a representacdo de
Skus bem peculiares.

O presente estudo aplicou técnicas de aprendizagem
de maquina (clusteriza¢do) com o objetivo de solucio-
nar o problema da segmentagdo subjetiva de SKUs de
bisnagas em uma industria de cosméticos. A aborda-
gem demonstrou-se eficaz ao eliminar a dependéncia
da experiéncia subjetiva, conferindo maior celeridade e
padronizagdo ao processo decisério. O objetivo princi-
pal foi plenamente atingido com a entrega do modelo
K-Means, com K = 65 grupos, que define 65 familias
homogéneas e estatisticamente robustas de bisnagas, tra-
duzindo as caracteristicas dimensionais e de processo
em informacdes aciondveis.

O principal desafio e objeto de contribuicao metodolé-
gica foi a equalizacdo e a defini¢do do K 6timo. O rigor
empregado na andlise de robustez dos 8 cenarios (Tabela
3) permitiu uma andlise ponderada entre a otimizagao
estatistica e a viabilidade operacional, resultando na es-
colha do modelo que oferece o melhor balanceamento
estratégico. Esse agrupamento em 65 familias fornece
subsidios diretos para a gestdo industrial, permitindo,
através da comparacdo entre clusters e SKUs, a mini-
mizagdo de setups e a otimizagdo do sequenciamento
produtivo, entre outras acdes. Tais iniciativas impactam
positivamente o OEE (Overall Equipment Effectiveness)
das linhas de envase.

Como limitagdo do estudo, reconhece-se que néo fo-
ram explorados outros métodos de agrupamento avan-
cados, como DBSCAN ou Gaussian Mixture Models
(GMMs), cuja aplicagdo poderia refinar a segmentagao
dos grupos de nicho. Para trabalhos futuros, sugere-se
a expansdo da andlise metodologica com o teste de no-
vos modelos (como DBSCAN ou GMMs) para refinar a
estrutura de agrupamento.

12
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Numero de SKUs por Cluster (K=65, Sem Comprimento)
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Figura 7: A Figura 5 Demonstra a distribui¢do do volume de SKUs (ntimero de observagdes) em cada um dos 65

grupos gerados. Fonte: O autor (2025)
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