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Agradeço aos membros das bancas de pré-defesa, Prof. Dra. Alessandra Souza Barbosa
e Prof. Dr. Emerson Cristiano Barbano, e defesa de dissertação, Prof. Dr. Márcio
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Agradeço ao secretário do PPGF-UFPR, Leandro Florentino, pela ajuda em todas as
questões burocráticas.
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RESUMO

Esta dissertação apresenta um estudo teórico da fotoionização da molécula de 2-metoxietanol
(CH3OCH2CH2OH) na faixa de energia ultravioleta (10–35 eV). Os cálculos foram realiza-
dos empregando o Método Variacional de Schwinger nas aproximações estático-troca (SE)
e estático-troca-polarização (SEP). A estrutura eletrônica da molécula foi obtida pela apro-
ximação de Hartree-Fock com o conjunto de bases aug-cc-pVTZ, utilizando os softwares Gaus-
sian03 e Gaussian09 para o cálculo da estrutura eletrônica e das polarizabilidades, respectiva-
mente. O objetivo principal foi determinar as seções de choque de fotoionização (σ) e anali-
sar o comportamento do parâmetro de assimetria (β), relacionados à probabilidade de ejeção
eletrônica e à distribuição angular dos fotoelétrons. Os cálculos foram realizados com o pacote
computacional ePolyScat-E, empregando parâmetros otimizados por testes de convergência, de
modo a reduzir o tempo computacional mantendo a precisão dos resultados. As seções de
choque totais apresentam máximos em aproximadamente 18,1 eV (SE) e 17,5 eV (SEP), evi-
denciando que a inclusão dos efeitos de polarização no ńıvel SEP melhora a descrição teórica
da interação elétron-molécula. Os resultados obtidos contribuem para o entendimento dos pro-
cessos de fotoionização em moléculas orgânicas oxigenadas, fornecendo subśıdios teóricos para
futuras investigações experimentais.

Palavras-Chave: 2-metoxietanol;Método Variacional de Schwinger;ePolyScat-E ;Fotoionização.



ABSTRACT

This dissertation presents a theoretical study of the photoionization of the 2-methoxyethanol
(CH3OCH2CH2OH) molecule in the ultraviolet energy range (10–35 eV). The calculations were
performed using the Schwinger Variational Method within the static-exchange (SE) and static-
exchange-polarization (SEP) approximations. The molecular electronic structure was obtained
through the Hartree–Fock approximation with the aug-cc-pVTZ basis set, employing the Gaus-
sian03 and Gaussian09 packages for the electronic structure and polarizability calculations,
respectively. The main objective was to determine the photoionization cross sections (σ) and
to analyze the behavior of the asymmetry parameter (β), which are related to the probabil-
ity of electron ejection and the angular distribution of photoelectrons. The calculations were
carried out using the ePolyScat-E computational package, with optimized parameters deter-
mined by convergence tests to balance accuracy and computational efficiency. The total cross
sections show maxima at approximately 18.1 eV (SE) and 17.5 eV (SEP), indicating that the
inclusion of polarization effects at the SEP level improves the theoretical description of the
electron–molecule interaction. The results contribute to a deeper understanding of photoion-
ization processes in oxygenated organic molecules and provide theoretical insights for future
experimental investigations.

Keywords: 2-Methoxyethanol;Schwinger Variational Method;ePolyScat-E ;Photoionization.
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2.8 Método para a Obtenção dos Potenciais de Ionização . . . . . . . . . . . . . . . 37

2.9 Polarizabilidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Pacote Computacional ePolyScat-E . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Resultados e discussão 41

3.1 2-metoxietanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



3.1.1 Seções de Choque de Fotoionização e Parâmetros de Assimetria . . . . . 42
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1 Introdução

A fotoionização é um processo fundamental na interação entre a radiação eletromagnética e

a matéria, no qual um fóton incidente transfere energia suficiente a um elétron para que este

seja ejetado de um átomo, molécula ou sólido. Esse fenômeno desempenha um papel central

em diversas áreas da f́ısica, da qúımica e da astrof́ısica, sendo essencial para a compreensão de

processos microscópicos e macroscópicos que ocorrem em ambientes naturais e laboratoriais [1].

Desde os experimentos pioneiros de Hertz e Lenard sobre o efeito fotoelétrico, que culminaram

nas interpretações quânticas propostas por Einstein, até os estudos de ionização de átomos e

moléculas por radiação ultravioleta e raios X, a compreensão da interação luz-matéria evoluiu

consideravelmente. Atualmente, técnicas modernas de espectroscopia, como a espectroscopia

de fotoelétrons excitados por radiação ultravioleta (UPS), a espectroscopia de fotoelétrons por

raios X (XPS) e a fotoionização resolvida no tempo com pulsos de femtossegundos (TRPES),

permitem investigar com alta precisão a estrutura eletrônica e a dinâmica de sistemas atômicos

e moleculares. [2].

A relevância do estudo da fotoionização vai além da sua importância conceitual no contexto da

mecânica quântica. Em astrof́ısica, por exemplo, a análise da luz proveniente de estrelas e nebu-

losas depende da interpretação de processos de fotoionização para determinar a composição e as

propriedades f́ısicas desses objetos [3]. Na ciência de materiais, a espectroscopia de fotoelétrons

permite acessar informações detalhadas sobre os estados eletrônicos em superf́ıcies e interfaces

[4]. Além disso, a fotoionização é uma etapa cŕıtica em diversas aplicações tecnológicas, como

a litografia ultravioleta extrema [5], o controle de reações qúımicas via laser [6], e a detecção

de contaminantes em ambientes atmosféricos [7].

Do ponto de vista teórico, o estudo da fotoionização também representa um campo rico e

desafiador, exigindo o desenvolvimento de métodos avançados para tratar a interação entre

elétrons e campos externos, bem como os efeitos de correlação eletrônica e estrutura fina [8,

9]. Neste contexto, compreender os mecanismos fundamentais que governam a fotoionização,

tanto em sistemas simples (apresentam poucos elétrons e interações, permitindo modelagem

teórica precisa) quanto em ambientes mais complexos (incluem maior número de part́ıculas,

acoplamento eletrônico e nuclear, interações coletivas, ou presença de ambiente), é essencial

para o avanço do conhecimento cient́ıfico e para o aprimoramento de técnicas experimentais de

alta precisão.

Diante desse panorama, esta dissertação tem como objetivo investigar os aspectos teóricos da
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fotoionização da molécula 2-metoxietanol. O 2-metoxietanol (também conhecido como me-

tilcelosolve ou monoetilenoglicol monometiléter) é um éter de glicol com fórmula molecular

CH3OCH2CH2OH. Trata-se de um ĺıquido incolor, de alta volatilidade, higroscópico e misćıvel

em água e na maioria dos solventes orgânicos. Devido à presença simultânea de um grupo

éter e um grupo hidroxila, apresenta propriedades solventes versáteis e alta polaridade, carac-

teŕısticas que favorecem sua aplicação na solubilização de resinas, tintas, corantes e produtos

farmacêuticos [10].

Do ponto de vista qúımico, o 2-metoxietanol é reativo em processos de oxidação e é capaz de

formar ésteres e outros. Sua estrutura permite a penetração em materiais polares e apolares,

tornando-o eficaz em formulações industriais, especialmente como solvente em tintas, vernizes,

cosméticos, pesticidas e produtos de limpeza [11]. No entanto, o 2-metoxietanol apresenta toxi-

cidade significativa, sendo absorvido por via dérmica, respiratória e oral. Estudos toxicológicos

demonstram efeitos adversos à reprodução e ao desenvolvimento embriofetal, além de potenciais

efeitos hematológicos em exposições crônicas. Por esse motivo, seu uso tem sido cada vez mais

regulamentado e substitúıdo por solventes menos tóxicos em diversas regiões, especialmente na

União Europeia e nos Estados Unidos [12–14].

O estudo do 2-metoxietanol é importante tanto do ponto de vista ambiental e toxicológico,

quanto qúımico-farmacológico, dado seu papel como modelo de compostos orgânicos oxigenados

em estudos de metabolismo, bioacumulação e mecanismos de toxicidade. Além disso, sua análise

em ambientes ocupacionais e sua degradação em processos atmosféricos ou biológicos são temas

relevantes em pesquisas de segurança qúımica e saúde pública [15].

Diversos compostos contendo o grupo metoxi (OCH3) têm sido identificados no meio interes-

telar. Entre eles estão o éter dimet́ılico (DME) [16, 17], o éter met́ılico et́ılico [18] e o metoxi-

metanol [19]. Observações com radiotelescópios também já confirmaram a presença do radical

metoxi de forma isolada [20]. Essas espécies metoxiladas, comumente associadas a regiões quen-

tes onde estrelas estão se formando, como mostrado por [20–25], também têm sido detectadas

em ambientes frios do espaço. O DME, por exemplo, foram identificados em nuvens escuras e

núcleos pré-estelares [20, 26].

Existe outro estudo realizado com o 2-metoxietanol em meios biológicos que vale a pena ser

destacado. Os pesquisadores Ruth P. Draper, Dianne M. Creasy and John A. Timbrell [27] ava-

liaram diferentes biomarcadores associados a danos testiculares, com foco especial na creatina

urinária como um posśıvel marcador não invasivo. Ratos machos foram submetidos à admi-

nistração de diferentes concentrações de 2-metoxietanol, uma substância reconhecida por sua

toxicidade testicular. Foram analisados diversos parâmetros, incluindo alterações patológicas

nos test́ıculos, peso testicular, ńıveis urinários de creatina e creatinina, atividades da lactato

desidrogenase (isoforma C4, LDH-C4) e concentração de testosterona sérica. Observou-se que o

2-metoxietanol induziu alterações testiculares patológicas de forma dependente da dose, sendo

tais alterações viśıveis já com a menor dose administrada (100 mg/kg). A excreção urinária

de creatina aumentou significativamente em todas as doses testadas, enquanto a redução no
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peso dos test́ıculos foi verificada apenas nas maiores concentrações (500 e 750 mg/kg). A tes-

tosterona sérica apresentou redução significativa apenas com a dose de 500 mg/kg, e os ńıveis

de LDH-C4 não mostraram variações relevantes. Com base nesses resultados, conclui-se que a

creatina urinária foi o marcador mais senśıvel para identificar os danos testiculares e a disfunção

induzidos pelo 2-metoxietanol.

O estudo da fotoionização de moléculas como o 2-metoxietanol possui grande relevância ci-

ent́ıfica porque permite compreender, em ńıvel fundamental, como a radiação interage com

sistemas de interesse biológico e ambiental, revelando os mecanismos de ionização, excitação

e fragmentação molecular. Essas informações são essenciais para correlacionar propriedades

eletrônicas e estruturais da molécula com os efeitos observados em sistemas vivos, como os da-

nos testiculares investigados por Draper, Creasy e Timbrell. Ao elucidar os estados eletrônicos

acesśıveis por fotoionização e os canais de decaimento envolvidos, é posśıvel construir uma

ponte entre estudos espectroscópicos de alta resolução e avaliações toxicológicas, favorecendo

o desenvolvimento de biomarcadores mais precisos, como a creatina urinária identificada no

estudo, e contribuindo para uma compreensão integrada dos impactos qúımicos e f́ısicos do

2-metoxietanol.

Neste trabalho será abordado o estudo teórico da fotoionização na faixa do ultravioleta do

confôrmero mais estável da molécula de 2-metoxietanol em estado gasoso [28]. A estrutura

molecular pode ser verificada na Figura 1.1. Os cálculos de estrutura eletrônica foram realizados

com o Gaussian03 [29] e Gaussian09 [30]. Os cálculos foram realizados em duas aproximações:

a aproximação estático-troca, onde não são considerados efeitos de polarização, ou seja, não

é permitido o relaxamento da nuvem eletrônica no cálculo e a aproximação estático-troca-

polarização, onde permite-se o relaxamento da nuvem eletrônica do ı́on devido a interação com

o campo elétrico do elétron ejetado. Para a inclusão dos efeitos de polarização foi utilizado um

potencial modelo de Perdew e Zunger [31]. Para a realização dos cálculos de seção de choque de

fotoionização e dos parâmetros de assimetria foi utilizado o pacote computacional ePolyScat-E

[32].
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Figura 1.1: Estrutura do 2-metoxietanol. Na imagem, as esferas brancas representam átomos de
hidrogênio, as esferas pretas representam átomos de carbono e as esferas vermelhas representam
átomos de oxigênio. Imagem gerada com o software Avogadro. [33]

A organização desta dissertação segue a seguinte estrutura: o Caṕıtulo 2 apresenta a base

teórica necessária para o desenvolvimento do trabalho, abordando desde conceitos fundamentais

de mecânica quântica e teoria do espalhamento até a modelagem matemática do processo de

fotoionização e a caracterização teórica do alvo. Detalha-se a abordagem metodológica adotada,

incluindo os métodos empregados, os procedimentos realizados e os pacotes computacionais

utilizados nas simulações. O Caṕıtulo 3 é dedicado à exposição e análise dos resultados obtidos

para as seções de choque e os parâmetros de assimetria. O Caṕıtulo 4 traz as considerações

finais e as principais conclusões do trabalho, além de trazer as perspectivas para investigações

futuras e propor direções para estudos posteriores.
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2 Fundamentação Teórica

Este caṕıtulo versará sobre a teoria, aproximações e métodos utilizados nesta dissertação para

o estudo da estrutura eletrônica da molécula e da fotoionização molecular. A primeira etapa

no desenvolvimento do trabalho é a descrição do alvo molecular de interesse. Para tal, foi

utilizado o Método de Hartree-Fock para os cálculos da função de onda da molécula. Para a

obtenção de outras propriedades moleculares necessárias como dados de entrada do ePolyScat-E,

na ausência de dados experimentais, foram realizados cálculos teóricos dos estados eletrônicos

e das polarizabilidades através da Teoria do Funcional da Densidade Dependente do Tempo

(do inglês, Time Dependent Density Functional Theory - TDDFT com os funcionais B3LYP e

UB3LYP [28]. O prefixo “U” em UB3LYP indica o uso do método unrestricted (sem restrição de

spins), empregado para sistemas abertos, isto é, com número ı́mpar de elétrons ou multiplicidade

de spin diferente de singleto. Já para a obtenção dos potenciais de ionização, foi utilizado o

método de EOMIP-CCSD (do inglês, Equation of Motion Ionization Potential Coupled-Cluster

with Single and Double Excitations) através do software CFOUR [27, 34]. Para a fotoionização

propriamente dita, adotou-se Método Variacional de Schwinger (MVS) [35]. O MVS trata-

se do Prinćıpio Variacional de Schwinger com o uso dos Aproximantes de Padé [36]. Os

Aproximantes de Padé são uma forma de aproximar funções complicadas usando uma razão de

polinômios (um polinômio no numerador dividido por outro no denominador). Os aproximantes

de Padé têm aplicações em diversas áreas do conhecimento [36]. Na mecânica quântica e

no estudo de espalhamento eletrônico, eles são empregados para melhorar a convergência de

séries em métodos variacionais, como utilizado no ePolyScat-E. Na mecânica estat́ıstica e na

teoria de campos, são utilizados para somar séries divergentes, em um processo conhecido

como resummation. Já na engenharia, servem para aproximar funções de transferência em

sistemas dinâmicos, enquanto na óptica e na espectroscopia encontram uso na modelagem de

ressonâncias, em que a presença de pólos possui interpretação f́ısica relevante [37]. Além disso,

no ePolyScat-E é utilizado um método variacional a partir da equação de Lippmann-Schwinger.

As teorias e aproximações supracitadas que nortearão todo o trabalho a seguir. Além disso,

os conhecimentos apresentados neste caṕıtulo fazem-se necessários, tanto para uma forte e

fundamentada estrutura teórica quanto para o entendimento pleno dos resultados apresentados.
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2.1 Interação da Radiação com a Matéria

Para compreender o processo de fotoionização, é fundamental estudar os fenômenos que en-

volvem a interação entre a radiação e a matéria sob uma perspectiva semi-clássica. Nesse

contexto, a matéria é analisada de forma quântica, enquanto o fóton é tratado como um campo

de radiação clássico.

2.1.1 A Teoria Eletromagnética e as Equações de Maxwell

As equações de Maxwell são dadas por [38]:

∇ · E =
ρ

ε0
, (2.1)

∇× E = −∂B

∂t
, (2.2)

∇ ·B = 0, (2.3)

∇×B = μ0J+ μ0ε0
∂E

∂t
. (2.4)

Nas equações apresentadas, E representa o campo elétrico, enquanto B corresponde ao campo

magnético. A grandeza ρ é a densidade de carga elétrica, e J a densidade de corrente elétrica.

Os śımbolos ε0 e μ0 designam, respectivamente, a permissividade elétrica e a permeabilidade

magnética do vácuo. O potencial escalar elétrico é indicado por ϕ, ao passo que A representa o

potencial vetor magnético. Por fim, t denota o tempo e∇ é o operador diferencial que assume os

papéis de gradiente, divergente ou rotacional conforme a operação em que aparece. Todas essas

grandezas — E(r, t), B(r, t), φ(r, t) eA(r, t) — são funções da posição r e do tempo t, refletindo

a natureza espaço-temporal dos campos eletromagnéticos. Essa dependência expĺıcita em (r, t)

é essencial, pois as equações de Maxwell descrevem como as variações espaciais (gradientes,

divergentes e rotações) e temporais (derivadas no tempo) desses campos estão interligadas,

permitindo a propagação das ondas eletromagnéticas no vácuo. Os campos podem ser escritos

em termos dos potenciais escalar e vetor:

B = ∇×A, (2.5)

E = −∇ϕ− ∂A

∂t
. (2.6)

Nas expressões para os campos, A representa o potencial vetor magnético, cuja rotação fornece

o campo magnético segundo B = ∇×A, enquanto ϕ corresponde ao potencial escalar elétrico,

associado à contribuição eletrostática do campo elétrico conforme E = −∇ϕ− ∂A
∂t
. Substituindo

estas expressões nas equações de Maxwell, obtemos:
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∇ ·
(
−∇ϕ− ∂A

∂t

)
=

ρ

ε0
, (2.7)

∇× (∇×A) = μ0J− μ0ε0 ∇
(
∂ϕ

∂t

)
− μ0ε0

∂2A

∂t2
. (2.8)

Da identidade vetorial:

∇× (∇×A) = ∇(∇ ·A)−∇2A, (2.9)

segue que:

∇2A− μ0ε0
∂2A

∂t2
= ∇

(
∇ ·A+ μ0ε0

∂ϕ

∂t

)
− μ0J. (2.10)

Esta equação contém toda a informação sobre a radiação eletromagnética no espaço livre. Para

ondas no vácuo, ou seja, na ausência de fontes (J = 0 e ρ = 0), temos

∇ ·
(
−∇ϕ− ∂A

∂t

)
= 0, (2.11)

∇2A− μ0ε0
∂2A

∂t2
= ∇

(
∇ ·A+ μ0ε0

∂ϕ

∂t

)
. (2.12)

Escolhendo o calibre de Coulomb, ∇ ·A = 0, a primeira equação se reduz a:

∇2ϕ = 0. (2.13)

A solução geral é uma função harmônica, mas no calibre da radiação adota-se usualmente ϕ = 0

(ou constante). O śımbolo ϕ representa o potencial escalar elétrico, associado ao campo elétrico

pela relação E = −∇ϕ − ∂A

∂t
. No entanto, ao se adotar o calibre de radiação (ou calibre de

Coulomb), usualmente se impõe ϕ = 0 no vácuo, de modo que o campo elétrico é descrito

apenas em termos do potencial vetor A. Assim, a equação para A assume a forma de onda:

∇2A− μ0ε0
∂2A

∂t2
= 0. (2.14)

Uma solução particular é a onda plana:
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A(r, t) = A0 e
i(k·r−ωt) +A∗

0 e
−i(k·r−ωt). (2.15)

Na expressão apresentada, A0 representa o vetor de amplitude complexa da onda, que carrega

as informações sobre a intensidade, direção e polarização do campo, k corresponde ao vetor

de onda, responsável por definir a direção de propagação e cujo módulo está relacionado ao

comprimento de onda por |k|= 2π

λ
, enquanto ω é a frequência angular, associada ao peŕıodo T

e à frequência f da oscilação por ω = 2πf =
2π

T
. Na forma real, isso equivale a:

A(r, t) = 2A0 cos(k · r− ωt) ê, (2.16)

com ê um vetor unitário perpendicular a k. Desta solução, seguem os campos:

E(r, t) = −∂A

∂t
= 2ωA0 sen (k · r− ωt) ê, (2.17)

B(r, t) = ∇×A = 2A0 sen (k · r− ωt) (k× ê). (2.18)

A densidade de energia eletromagnética é:

u(r, t) =
1

2

(
ε0E

2 +
B2

μ0

)
. (2.19)

Substituindo os campos, obtemos:

u(r, t) = 4 ε0 ω
2 A2

0 sen 2(k · r− ωt). (2.20)

A média temporal é:

〈u〉 = 2 ε0 ω
2 A2

0. (2.21)

O valor de A0 pode ser expresso em termos do número de fótons N e do volume V , impondo:

〈u〉 = N�ω

V
, (2.22)
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onde o śımbolo �, conhecido como h cortado ou h barra, corresponde à constante de Planck

reduzida, definida por � =
h

2π
, sendo h a constante de Planck. Essa constante é fundamental

em Mecânica Quântica, pois simplifica a formulação de expressões que envolvem frequências

angulares e quantização de momento angular. Portanto:

A0(ω) =

√
N�

2ε0ωV
. (2.23)

Finalmente, a intensidade da onda plana é:

I(ω) = 〈u〉c = 2 ε0 c ω
2 A2

0(ω), (2.24)

onde a constante c representa a velocidade da luz no vácuo, cujo valor é aproximadamente

c ≈ 3, 0 × 108 m/s, sendo uma constante fundamental da natureza que estabelece o limite

máximo de propagação de sinais e de part́ıculas sem massa. Substituindo a expressão de A0,

chegamos a:

I(ω) =
N�ω

V
c. (2.25)

Este resultado mostra que a intensidade é proporcional ao número de fótons por unidade de

volume e à energia de cada fóton.

2.1.2 Teoria Quântica do Espalhamento

Quando uma molécula ou átomo interage com um campo eletromagnético, pode ocorrer a

fotoabsorção, um fenômeno no qual a molécula captura um fóton de energia �ω. Se essa energia

for suficiente, a molécula é levada a um estado excitado devido à transição de um elétron de um

ńıvel de energia mais baixo para outro de maior energia [39]. Se esse estado excitado também

for um estado pré-dissociativo, pode resultar na fragmentação da molécula em partes neutras

ou no retorno ao estado fundamental por luminescência, com a emissão de um fóton. Além

disso, pode acontecer a fotoionização (principal foco desta dissertação), processo no qual o fóton

fornece energia suficiente para remover um elétron da molécula, levando à sua ionização. Nesse

caso, o estado final – composto pela molécula ionizada e pelo elétron ejetado – pode ser tratada

como um problema de espalhamento do elétron pelo campo coulombiano de longo alcance da

molécula ionizada [40].
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2.1.3 Descrição do Fenômeno de Espalhamento Quântico

O fenômeno de colisão ocorre quando um feixe de part́ıculas A, com o mesmo momento inicial

ki, colimadas e com energia definida, incide sobre um alvo contendo um feixe de part́ıculas B.

Nessas condições, pode-se desprezar a interação entre as part́ıculas do próprio feixe e considerar

apenas sua interação com o alvo. Para garantir a validade dessa aproximação, é importante que

as part́ıculas B estejam suficientemente afastadas umas das outras, de modo que o comprimento

de onda de De Broglie das part́ıculas A seja pequeno comparado a essa separação. Isso assegura

que cada part́ıcula B atue de forma independente como um centro espalhador, sem efeitos de

interferência significativa entre os espalhamentos [41].

Assim, cada evento elementar do processo pode ser descrito como a colisão de uma part́ıcula A

do feixe com uma part́ıcula B do alvo. Após a interação, a part́ıcula A é espalhada e detectada

com um novo momento kf . O detector é colocado em uma região sem interferência direta

do feixe incidente, registrando o número de part́ıculas espalhadas em função dos ângulos de

espalhamento θ (polar) e φ (azimutal). Embora o ângulo φ possa variar, espera-se simetria

azimutal no espalhamento. A Figura 2.1 ilustra graficamente esse processo [42].

Figura 2.1: Representação esquemática do espalhamento de part́ıculas por uma molécula em
fase gasosa. Imagem retirada da tese de doutorado de Mylena Hortz Ribas, 2023.

Após a colisão, diferentes processos podem ocorrer, como espalhamento elástico, espalhamento

inelástico e reações. No caso do espalhamento elástico, a part́ıcula A não transfere energia para

a part́ıcula B, mas pode transferir momento linear, sem que haja alteração na estrutura interna

do sistema:

A+B → A+B. (2.26)

No espalhamento inelástico, contudo, as part́ıculas A e B podem sofrer mudanças em seus

estados internos:

A+B → A′ +B, (2.27)

A+B → A+B′, (2.28)
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A+B → A′ +B′. (2.29)

Nessas expressões, A′ e B′ representam os novos estados internos das part́ıculas envolvidas. Já

nas reações, o sistema inicial (A+B) pode se decompor em duas ou mais part́ıculas distintas:

A+B → C +D, (2.30)

A+B → C1 + · · ·+ Cn, com n ≥ 2. (2.31)

Este trabalho se concentra no estudo do processo espećıfico de fotoionização direta, que pode

ser representado pela seguinte equação:

�ω +B → B+ + e−, (2.32)

em que �ω é a energia do fóton incidente, B representa o sistema molecular em seu estado

neutro e B+ representa o sistema molecular em seu estado ionizado.

2.1.4 O Espalhamento por um Potencial

Nesta seção, será discutido o problema do espalhamento de uma part́ıcula por um potencial

V (r). Nessa condição, a Equação de Schrödinger Independente do Tempo, expressa em unida-

des atômicas, é dada por [39, 42]:

(
−1

2
∇2 + V (r)

)
Ψ(r) = EΨ(r), (2.33)

onde E representa a energia total do sistema, e Ψ(r) é a função de onda associada à part́ıcula

espalhada. Considerando que a part́ıcula tem vetor de onda inicial k e vetor de onda final kf ,

com |k|= |kf | e E = k2

2
, é posśıvel definir um potencial efetivo como:

U(r) = 2V (r). (2.34)

Dessa forma, a equação acima pode ser reescrita como:

(∇2 + k2 − U(r))Ψ(r) = 0. (2.35)

Quando não há interação, ou seja, no caso de V = 0, a solução da equação homogênea é

simplesmente uma onda plana:

Ψ(r) ∝ eik·r. (2.36)
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Considerando um potencial de curto alcance V (r), pode-se utilizar uma solução assintótica de

contorno para a função de onda quando a part́ıcula se encontra longe da região de interação

(r → ∞):

Ψ(r)−→
r→∞

A

(
eik·r + fk(θ, φ)

eikr

r

)
. (2.37)

Aqui, adotou-se ki = k e kf = k, sendo k̂ a direção de incidência da part́ıcula. O coeficiente

A é um fator de normalização, enquanto o termo eik·r representa a parte da onda incidente

que não sofreu espalhamento. Já eikr/r descreve uma onda esférica divergente da região de

espalhamento, com fk(θ, φ) representando a amplitude da onda na posição do detector, que

depende da direção n̂ = (θ, φ) e da energia k. Aqui, adotou-se ki = k e kf = k, sendo k

a direção de incidência da part́ıcula. O coeficiente A é um fator de normalização, enquanto

o termo eik·r representa a parte da onda incidente que não sofre espalhamento. Por outro

lado, o termo
eikr

r
descreve uma onda esférica divergente (outgoing) que emerge da região

de interação, carregando a informação sobre a amplitude de espalhamento fk(θ, φ) para um

dado valor de energia k. Essa escolha reflete a condição f́ısica de que, para r → ∞, apenas

ondas que se afastam da origem (isto é, part́ıculas que deixam a região de interação) devem ser

consideradas.

Os resultados desses processos podem ser descritos por meio da Seção de Choque. A chamada

Seção de Choque Diferencial Elástica (EDCS, do inglês, Elastic Differential Cross Section)

é definida como a relação entre o fluxo de part́ıculas espalhadas por unidade de tempo no

elemento de ângulo sólido dΩ e a densidade de part́ıculas incidentes:

dσ

dΩ
= |fk(θ, φ)|2, (2.38)

onde dΩ representa o elemento diferencial do ângulo sólido. Essa equação relaciona a quantidade

experimental DCS com a teoria.

Ao integrar a Seção de Choque Diferencial em todas as direções angulares, obtém-se a Seção

de Choque Integral (ICS, do inglês, Integral Cross Section), que quantifica a probabilidade de

espalhamento da part́ıcula em qualquer direção para uma energia espećıfica:

σ =

∫ 2π

0

∫ π

0

|fk(θ, φ)|2 sen θ dθ dφ. (2.39)

2.1.5 A Equação de Lippmann–Schwinger

A equação de Lippmann–Schwinger constitui uma formulação integral da equação de Schrödin-

ger independente do tempo, sendo mais geral e especialmente adequada para o tratamento

de problemas de espalhamento em Mecânica Quântica. Essa formulação permite descrever a

interação entre part́ıculas e potenciais externos em termos de operadores e funções de Green, o

que a torna amplamente utilizada em f́ısica de part́ıculas, f́ısica nuclear e óptica quântica [39,
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42].

A seguir vamos apresentar uma formulação geral, apresentada na referência [39]. De forma

geral, a equação é escrita como:

|ψ(±)〉 = |φ〉 +G
(±)
0 (E)V |ψ(±)〉 (2.40)

em que |ψ(±)〉 representam os estados espalhados (estados finais após a interação), |φ〉 é o estado
inicial não perturbado (estado livre), V corresponde ao potencial responsável pelo espalhamento

e G
(±)
0 (E) = (E −H0 ± iε)−1 é o operador de Green associado ao Hamiltoniano livre H0.

Essa formulação pode ser interpretada como uma relação iterativa entre o estado inicial e o

estado final, incorporando de forma natural os efeitos do potencial V . Além disso, mostra como

a solução integral engloba a equação diferencial de Schrödinger, tornando-se uma abordagem

mais abrangente e poderosa para a análise de processos de espalhamento.

Para determinar a Seção de Choque no espalhamento, é essencial calcular a amplitude de

espalhamento fk. No entanto, para obter a Seção de Choque de Fotoionização, é necessário

conhecer a Função de Onda de Espalhamento. Essa função de onda pode ser obtida a partir

da equação diferencial, equivalente à Eq.(2.34), que pode ser expressa como:

[∇2 + k2]ψ(k, r) = U(r)ψ(k, r). (2.41)

A solução geral dessa equação pode ser encontrada utilizando uma equação integral. Projetando

a Eq.(2.44) na base de coordenadas |r〉, obtém-se:

ψ(k, r) = Φ(k, r) +

∫
G

(±)
0 (k, r, r′)U(r′)ψ(k, r′) dr′, (2.42)

onde Φ(k, r) representa a solução da equação homogênea [∇2+k2]Φ(k, r) = 0, e G
(±)
0 é a Função

de Green correspondente ao operador ∇2, definida por:

[∇2 + k2]G
(±)
0 (k, r, r′) = −δ(r− r′). (2.43)

A Função de Green para uma part́ıcula livre é dada por:

G
(±)
0 (r, r′) = − 1

4π

exp (±ik|r− r′|)
|r− r′| . (2.44)

Substituindo a Eq. (2.44) em (2.42), obtém-se a forma integral da função de onda espalhada:

ψ(+)(k, r) = (2π)−3/2eik·r +
∫

G
(+)
0 (r, r′)U(r′)ψ(+)(k, r′) dr′. (2.45)

Esta é a Equação de Lippmann–Schwinger, que constitui uma formulação integral alterna-

tiva da equação de Schrödinger. A condição de contorno assintótica de onda esférica divergente

já está incorporada em G
(+)
0 . Na região distante (r → ∞), no domı́nio do detector, a equação
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de Lippmann–Schwinger assume a forma:

ψ(+)(k, r) ≈ (2π)−3/2eik·r +
eikr

r

1

4π

∫
e−ikf ·r′U(r′)ψ(+)(k, r′) dr′, (2.46)

onde, para espalhamento elástico, vale |kf |= |ki|= k. Assim, a amplitude de espalhamento

f(kf ,ki) pode ser escrita como:

f(kf ,ki) = −(2π)3/2

4π

∫
e−ikf ·r′U(r′)ψ(+)(k, r′) dr′. (2.47)

f = −2π2〈kf |U |ψ(+)
k 〉. (2.48)

Aqui, foi considerada a identidade 〈r|Φk〉 = (2π)−3/2 exp(ik · r).

2.1.6 Formulação do Problema Molecular

A formulação do problema molecular se baseia em soluções aproximadas da Equação de Schrödin-

ger não-relativ́ıstica e independente do tempo. O objetivo principal é determinar os autoestados

da seguinte equação [43]:

H|Ψ〉 = E|Ψ〉. (2.49)

Em unidades atômicas, o Hamiltoniano molecular H, para um sistema com N elétrons e M

núcleos, é dados por:

H = −
N∑
i=1

1

2
∇2

i −
M∑

A=1

1

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB

RAB

, (2.50)

onde MA representa a massa do A-ésimo núcleo, ZA e ZB correspondem às cargas dos núcleos

A e B, respectivamente. A distância entre o i-ésimo elétron e o A-ésimo núcleo é representada

por riA e a distância entre dois elétrons i e j é dada por rij. A distância entre os núcleos A e B

é indicada por RAB. Os operadores de energia cinética ∇2
i e ∇2

A atuam sobre as coordenadas

dos elétrons e dos núcleos, respectivamente. Na Eq.(2.2), as definições para as distâncias são

riA ≡ |�ri − �RA|, rij ≡ |�ri − �rj| e RAB ≡ |�RA − �RB|.
Na Eq.(2.50), o primeiro termo se refere à energia cinética dos elétrons, o segundo termo

corresponde à energia cinética dos núcleos, o terceiro termo representa a atração Coulombiana

entre elétrons e núcleos, o quarto termo descreve a repulsão Coulombiana entre os elétrons e o

quinto termo indica a repulsão Coulombiana entre os núcleos.

O problema descrito pela Eq.(2.49) se torna extremamente inviável de se resolver utilizando os

métodos tradicionais de Mecânica Quântica. Para a solução de tal equação, é preciso utilizar

uma aproximação que será de grande utilidade para atacar o problema da solução desta equação

quando aplicada à sistemas com dois ou mais núcleos.
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2.1.7 A Aproximação de Born-Oppenheimer: A Formulação do Pro-

blema Eletrônico

Nesta seção vamos discutir sobre a Aproximação de Born-Oppenheimer, destacando a separação

de movimentos nucleares e eletrônicos devido à grande diferença de massa entre os núcleos MA

e os elétrons mi. Em virtude dessa diferença de massa, os núcleos se movem muito mais

lentamente que os elétrons. Por essa razão, o termo de energia cinética dos núcleos pode ser

desprezado, transformando o termo de interação nuclear em uma constante. Assim, considera-

se que os elétrons se movem em um campo de núcleos fixos [44]. Com essa suposição, o

Hamiltoniano Molecular pode ser reescrito conforme mostrado a seguir [45]:

H = Hel +
M∑

A=1

M∑
B>A

ZAZB

RAB

, (2.51)

onde Hel é o Hamiltoniano Eletrônico dado por:

Hel = −1

2

N∑
i=1

∇2
i −

M∑
A=1

N∑
i=1

ZA

riA
+

N∑
i=1

N∑
j>i

1

rij
, (2.52)

e o termo de repulsão nuclear VNN é definido como:

VNN =
M∑

A=1

M∑
B>A

ZAZB

RAB

. (2.53)

Como VNN é uma constante, o problema descrito pela equação pode ser simplificado para:

(Hel + VNN)|ψel〉 = ETotal|ψel〉. (2.54)

A partir dessa expressão, pode-se reescrever o Hamiltoniano Eletrônico isolado:

Hel|ψel〉 = (ETotal − VNN)|ψel〉, (2.55)

onde a energia eletrônica Eel é definida como:

Eel = ETotal − VNN . (2.56)

Assim, a equação acima pode ser reescrita da seguinte forma:

Hel|ψel〉 = Eel|ψel〉. (2.57)

Dessa maneira, a Equação de Schrödinger assume a forma de uma Equação de Autovalores para

o Hamiltoniano Eletrônico, indicando que, na Aproximação de Born-Oppenheimer, o estado

eletrônico |ψ〉 é um autovetor do Hamiltoniano Eletrônico Hel. O valor de Eel pode ser obtido

resolvendo a Equação de Autovalores, com VNN sendo uma constante significativa no processo.
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Considere o Hamiltoniano Eletrônico, o qual descreve o movimento de N elétrons no campo

gerado por M cargas pontuais. A solução da Equação de Schrödinger para esse Hamiltoniano

Eletrônico é dada pela Eq.(2.57) e a função de onda eletrônica é:

Φel = Φel({ri}; {RA}). (2.58)

Essa função de onda descreve o movimento dos elétrons e depende explicitamente das coor-

denadas dos elétrons, enquanto depende parametricamente das coordenadas dos núcleos. Da

mesma forma, a energia eletrônica é dada por:

Eel = Eel({RA}). (2.59)

Quando dizemos que a dependência é paramétrica, isso significa que para diferentes arranjos

nucleares, Φel será uma função distinta das coordenadas eletrônicas. No entanto, as coordenadas

nucleares não aparecem explicitamente em Φel. A energia total para núcleos fixos deve incluir

também a repulsão nuclear, que é constante e não afeta a solução de Φel:

Etotal = Eel +
M∑

A=1

M∑
B>A

ZAZB

RAB

. (2.60)

2.2 O Método de Hartree-Fock

O Método de Hartree-Fock (HF) é amplamente utilizado na f́ısica e na qúımica computacional

como uma técnica aproximada para calcular a função de onda e a energia em problemas de

muitos corpos de um estado estacionário. Em termos gerais, esse método assume que a função

de onda de um sistema composto porN corpos pode ser aproximada por um único Determinante

de Slater, caso os corpos sejam férmions, ou por uma função permanente para N orbitais de

spin no caso de bósons. O método variacional é empregado para derivar um conjunto de N

equações acopladas para esses N orbitais. A solução dessas equações fornece tanto a função de

onda no ńıvel Hartree-Fock quanto a energia do sistema [45].

Na literatura, o método é frequentemente referido como ”método de campo autoconsistente”.

Isso ocorre porque, quando Douglas Hartree desenvolveu a equação que leva seu nome, ele

impôs a condição que o campo calculado a partir da distribuição de carga fosse consistente

com o campo inicialmente assumido [46]. Isso garante a autoconsistência, que é um requisito

fundamental para a solução. No entanto, as soluções dessas equações não lineares geralmente

se comportam como se cada part́ıcula fosse submetida ao campo gerado por todas as outras

part́ıculas no sistema. As equações são, de modo geral, resolvidas iterativamente, embora nem

sempre o processo convergente seja garantido. Além disso, o Método de Hartree-Fock serve

como um ponto de partida para diversas técnicas que lidam com o problema de muitos corpos,

tanto em átomos quanto em moléculas [45–47].
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O presente trabalho foca na aplicação da teoria de estrutura eletrônica de átomos e moléculas,

considerando-os em estados conhecidos de ”camada aberta”ou ”camada fechada”, levando em

conta se todos os elétrons estão ou não emparelhados. Em inglês, esses estados são chamados

de Open Shell e Closed Shell, respectivamente. Para sistemas de camada aberta, são utiliza-

dos métodos como Restricted Open-Shell Hartree-Fock (ROHF) e o Unrestricted Hartree-Fock

(UHF). Para camada fechada, caso da presente dissertação, foi utilizado o Restricted Hartree-

Fock (RHF) [48, 49].

A análise de átomos e moléculas com múltiplos elétrons geralmente é realizada por meio de

métodos numéricos, por razões que devem estar evidentes neste ponto: o mesmo tratamento

usado para o átomo de Hélio, se aplicado ao átomo de carbono, cujo Determinante de Slater

possui dimensão 6 × 6, seria extremamente complexo, exigindo o cálculo de cerca de 1000

integrais (elementos de matriz). Entretanto, um dos métodos mais relevantes para a estrutura

eletrônica, que é o Método de Hartree-Fock, baseia-se diretamente na aplicação do Prinćıpio

Variacional. O Método de Hartree-Fock será abordado aqui de forma sucinta. Cabe ressaltar

que esse método foi amplamente utilizado entre as décadas de 1960 e 1990, e ainda hoje é a

base para diversas metodologias mais avançadas.

O Hamiltoniano de uma molécula com N elétrons é expresso como:

Hel =
N∑
i=1

[
p2i
2m

−
M∑

A=1

ZAe
2

|ri −RA|

]
+

N−1∑
i=1

N∑
j>i

e2

|ri − rj| . (2.61)

Podemos decompor o Hamiltoniano em operadores de um elétron e operadores que tratam da

repulsão entre dois elétrons. O Hamiltoniano total do sistema é dado por:

Hel =
N∑
i=1

hi +
N−1∑
i=1

N∑
j>i

Vij, (2.62)

em que:

hi =
p2i
2m

−
M∑

A=1

ZAe
2

|ri −RA| (2.63)

corresponde ao operador de um elétron, contendo a energia cinética do elétron i e sua interação

com todos os núcleos, e

Vij =
e2

|ri − rj| (2.64)

descreve a interação de repulsão coulombiana entre os elétrons i e j. A função de onda é

representada por um Determinante de Slater, como mostrado abaixo:

O Método de Hartree-Fock fornece uma solução variacional para o problema eletrônico. Neste

método, a função de onda eletrônica do sistema é descrita como um Determinante de Slater,

constrúıdo a partir de funções de onda chamadas de spin-orbitais. O Determinante de Slater é
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escrito como:

Ψ(x1, x2, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
. . .

...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣
, (2.65)

onde os χi(x) representam os spin-orbitais. Cada coordenada xn corresponde ao conjunto

formado pelas coordenadas espaciais rn e pela coordenada de spin sn do elétron n, isto é,

xn = (rn, sn). Estes spin-orbitais são funções do tipo:

χi(x) =

⎧⎨
⎩Φj(r)α(ω),

Φj(r)β(ω),
(2.66)

em que Φj(r) é a parte espacial do orbital e α(ω), β(ω) são as funções de spin. A forma

simplificada do Determinante de Slater pode ser representada como:

|Ψ〉 = |χ1χ2 . . . χaχb . . . χi〉. (2.67)

Para o funcional da energia, utilizando o estado de N elétrons mostrado acima, temos:

E0 = 〈Ψ|H|Ψ〉 =
N/2∑
α=1

2〈ψα|h|ψα〉+
N/2∑
α=1

N/2∑
β=1

2〈ψαψβ| 1
r12

|ψαψβ〉 − 〈ψαψβ| 1
r12

|ψβψα〉. (2.68)

Para garantir que o estado minimizado seja válido, é necessário que as variações em todos os

orbitais respeitem a condição de ortogonalidade, dada por:

Sαβ =

∫
d3r ψ∗

α(r)ψβ(r) = δαβ, (2.69)

onde δαβ é o delta de Kronecker, definido como:

δαβ =

⎧⎨
⎩1, se α = β,

0, se α �= β.
(2.70)

Para impor essa condição, usamos os multiplicadores de Lagrange εαβ e obtemos o funcional

corrigido:

L({ψα}) = E0({ψα})−
N/2∑
α=1

N/2∑
β=1

εαβ(Sαβ − δαβ). (2.71)

Ao minimizar este funcional, derivamos as equações que governam o sistema de um elétron,

chamadas de Equações de Hartree-Fock. O Hamiltoniano efetivo de um elétron resultante dessas
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equações é conhecido como o Operador de Fock. Essas equações são escritas como:

f(1)ψj(1) = εj ψj(1). (2.72)

O operador f(1) também pode ser representado da seguinte forma, envolvendo o Hamiltoniano

h(1) e os termos de interação de Coulomb Ja e de troca Ka:

f(1) = h(1) +

N/2∑
a=1

2Ja(1)−Ka(1). (2.73)

O operador h(1) é definido como

h(1) = −1

2
∇2

1 −
M∑

A=1

ZA

r1A
, (2.74)

onde o primeiro termo corresponde à energia cinética do elétron 1 e o segundo termo representa

a interação coulombiana entre o elétron 1 e todos os núcleos da molécula, de cargas ZA e posições

RA. A Matriz de Fock contém termos que se referem aos operadores de Coulomb e de troca,

representando o Efeito de Campo Médio dos outros elétrons sobre o elétron considerado. As

expressões para a energia de cada orbital εj e para a energia total do átomo E0 estão descritas

abaixo:

Ja(1)ψj(r1) =

∫
d3r2ψ

∗
a(r2)

1

r12
ψa(r2)ψj(r1) (2.75)

Ka(1)ψj(r1) =

∫
d3r2ψ

∗
a(r2)

1

r12
ψj(r2)ψa(r1). (2.76)

A energia εj do orbital j é então calculada pela soma da integral do Operador de Fock f(1) e

as interações de Coulomb e de troca com os demais orbitais a:

εj = 〈ψj|h(1)|ψj〉+
N/2∑
a=1

2
[
〈ψjψa| 1

r12
|ψjψa〉 − 〈ψjψa| 1

r12
|ψaψj〉

]
, (2.77)

onde a notação:

〈ψiψj| 1
r12

|ψkψl〉 (2.78)

representa a integral de dois elétrons (também chamada de integral de Coulomb-Exchange),

dada por:

〈ψiψj| 1
r12

|ψkψl〉 =
∫ ∫

ψ∗
i (r1)ψ

∗
j (r2)

1

r12
ψk(r1)ψl(r2) dr1 dr2. (2.79)

Assim, essa integral pode representar a interação de repulsão eletrônica ou de troca, dependendo

da ordem dos orbitais.
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2.2.1 O Método de Hartree-Fock-Roothan

O Método de Hartree-Fock-Roothan surge como uma solução para o problema de viabilidade

prática do Método de Hartree-Fock, já que as Equações de Fock consistem em um sistema

acoplado de equações integro-diferenciais para os orbitais eletrônicos. Roothan propôs uma

alternativa para superar essa dificuldade: expandir os orbitais eletrônicos ψj em uma base de

funções conhecidas φμ, que possuem integrais e derivadas previamente estabelecidas [45, 50,

51]. Os coeficientes de combinação linear cμ,j são tratados como parâmetros variacionais, sendo

assim:

ψj(r) =
K∑

μ=1

cμ,jφμ(r) (2.78)

Utilizando um conjunto de bases {φμ}, as Equações de Fock são convertidas em uma forma

matricial, onde a solução do problema é obtida ao calcular os autovalores e autovetores da

Matriz de Fock F . Estes autovalores representam as energias e os autovetores correspondem

aos coeficientes de combinação linear dos orbitais eletrônicos:

FC = SCE (2.80)

Aqui, são introduzidas as Matrizes de Fock F, de Sobreposição S, de Coeficientes C e de Ener-

gias E. A matriz S é formada pelos produtos escalares entre as funções de base E, as quais

não são necessariamente ortogonais. O problema se transforma em um problema de autovalo-

res generalizado. No caso espećıfico em que S = 1, obtém-se a situação padrão. As equações

matriciais, nesse caso, são explicitamente definidas como a seguir:

(1) A Matriz de Superposição S, que contém os produtos escalares entre as funções de base

φμ, é dada por:

S =

⎛
⎜⎜⎜⎜⎝

1 S12 · · · S1K

S21 1 · · · S2K

...
...

. . .
...

SK1 SK2 · · · 1

⎞
⎟⎟⎟⎟⎠ , (2.81)

onde Sij é a integral de recobrimento entre as bases φi e φj.

(2) A Matriz de Energias E, que é diagonal e contém as energias dos orbitais εj, é:

E =

⎛
⎜⎜⎜⎜⎝
ε1 0 · · · 0

0 ε2 · · · 0
...

...
. . .

...

0 0 · · · εK

⎞
⎟⎟⎟⎟⎠ (2.82)
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(3) A Matriz de Coeficientes C, que armazena os coeficientes de combinação linear cμ,j para

os orbitais eletrônicos, é:

C =

⎛
⎜⎜⎜⎜⎝

c11 c12 · · · c1K

c21 c22 · · · c2K
...

...
. . .

...

cK1 cK2 · · · cKK

⎞
⎟⎟⎟⎟⎠ (2.83)

(4) AMatriz de Fock F, que contém os elementos fμν , os quais dependem tanto dos operadores

de uma part́ıcula quanto das interações eletrônicas, é:

F =

⎛
⎜⎜⎜⎜⎝

f11 f12 · · · f1K

f21 f22 · · · f2K
...

...
. . .

...

fK1 fK2 · · · fKK

⎞
⎟⎟⎟⎟⎠ (2.84)

Essas matrizes são fundamentais para a resolução do problema de Hartree-Fock-Roothan. A

matriz S considera a sobreposição das funções de base, enquanto a matriz C contém as com-

binações lineares das funções de base que formam os orbitais. A matriz F, por sua vez, é usada

para calcular as energias dos orbitais (contidas em E, considerando tanto os efeitos de um único

elétron quanto as interações eletrônicas.

A solução do problema de autovalores generalizado possibilita a determinação das energias

dos orbitais eletrônicos εj, além de fornecer as combinações lineares das funções de base que

compõem esses orbitais, representadas pelas colunas da matriz C. No entanto, é importante

notar que os elementos da matriz F são influenciados pelos coeficientes de combinação linear,

de acordo com a seguinte equação:

fμν = 〈φμ|h|φν〉+
N/2∑
a=1

K∑
σ=1

K∑
λ=1

cλac
∗
σa [2〈φμφσ|V12|φνφλ〉 − 〈φμφσ|V12|φλφν〉] . (2.85)

O procedimento de resolução das equações de Hartree–Fock–Roothaan é iterativo e autocon-

sistente. Inicialmente, assume-se um conjunto de coeficientes de combinação linear C, a partir

do qual se constrói a matriz de densidade eletrônica P. Com essa matriz, calcula-se a matriz

de Fock F. Em seguida, resolve-se o problema de autovalores generalizado, obtendo novos

coeficientes C e novos valores de energia orbital εi. Esse processo é repetido até que as dife-

renças entre as matrizes de densidade de iterações consecutivas sejam menores que um limite

pré-estabelecido, atingindo, assim, a condição de autoconvergência (SCF Convergence).

Ao final do procedimento, obtêm-se os orbitais moleculares canônicos, suas energias associadas

εi e a energia total do sistema EHF, calculada a partir da densidade convergida. Esses resultados

servem de ponto de partida para métodos pós-Hartree–Fock, como o Configuration Interaction

(CI) e o Coupled Cluster (CC), que incorporam a correlação eletrônica de forma mais precisa.
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2.3 O Método de Coupled Cluster

O Coupled Cluster (CC) é uma técnica numérica usada para modelar sistemas de muitos cor-

pos. Sua aplicação mais comum é como um dos métodos ab initio na qúımica e f́ısica quântica

pós Hartree-Fock, dentro da qúımica e fisica computacional, mas também pode ser aplicada em

f́ısica nuclear. O Método de Coupled Cluster se baseia no Método de Hartree-Fock e cria funções

de onda multi-eletrônicas, utilizando o operador de cluster exponencial para incorporar a cor-

relação eletrônica. Esse método é conhecido por gerar resultados muito precisos, especialmente

ao trabalhar com moléculas de tamanhos pequeno e médio [34, 52].

O desenvolvimento do Coupled Cluster começou nos anos de 1950 com Fritz Coester e Hermann

Kümmel [53, 54], que o utilizaram para investigar fenômenos da f́ısica nuclear. No entanto, em

1966, Jǐŕı Č́ıžek [34], posteriormente em colaboração com Josef Paldus, adaptou essa técnica

para estudar a correlação eletrônica em átomos e moléculas. Nos dias atuais, o Coupled Cluster

é um dos métodos mais amplamente usados na qúımica e f́ısica quântica por sua capacidade de

incluir a correlação eletrônica de maneira eficaz [34, 52].

2.3.1 Ansatz da Função de Onda

A teoria de Coupled Cluster oferece uma solução exata para a Equação de Schrödinger esta-

cionária, escrita na forma [34, 52, 55]:

H|Ψ〉 = E|Ψ〉, (2.86)

onde H é o Hamiltoniano que descreve o sistema, |Ψ〉 é a função de onda exata, e E representa a

energia exata do estado fundamental. Além de descrever o estado fundamental, essa teoria pode

ser estendida para tratar estados excitados, utilizando técnicas como resposta linear, equação

de movimento, ou as abordagens conhecidas como State-Universal e Valence-Universal Multi-

Reference Coupled Cluster [34, 53, 54].

As abordagens conhecidas como State-Universal e Valence-Universal Multi-Reference Coupled

Cluster (MRCC) são extensões do método de Coupled Cluster voltadas para sistemas em que

uma única função de referência não é suficiente. De forma geral, a abordagem State-Universal

constrói uma função de onda comum capaz de descrever simultaneamente diversos estados

eletrônicos (fundamental e excitados), garantindo consistência entre eles. Já a abordagem

Valence-Universal concentra-se especificamente na descrição adequada dos estados de valência

mais relevantes, tornando o tratamento das excitações mais seletivo e eficiente. Ambas são em-

pregadas em problemas de correlação eletrônica forte, nos quais o uso de uma única referência,

como no método de Hartree–Fock, se torna inadequado [34, 52, 55, 56].

A função de onda na abordagem escrita acima é formulada como um ansatz exponencial, que

pode ser escrito como:
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|Ψ〉 = eT |Φ0〉, (2.87)

onde |Φ0〉 é a função de onda de referência, frequentemente escolhida como um Determinante

de Slater formado por orbitais Hartree-Fock. No entanto, outras funções de onda fornecidas

através de outros métodos, como a Configuração de Interação (CI, do inglês, Configuration

Interaction) [57], o Método Auto-Consistente Multi-Configuracional [45] ou os Orbitais de

Brueckner [58], também podem ser utilizadas . O operador de cluster T atua sobre |Φ0〉
gerando uma combinação linear de determinantes excitados com base nessa função de referência.

A escolha desse ansatz exponencial se destacada por garantir a extensividade de tamanho da

solução, uma propriedade que não é mantida por métodos como a CI. Assim, a teoria de

Coupled-Cluster assegura que a solução seja consistente em relação ao tamanho do sistema,

independentemente da função de onda de referência.

2.3.2 O Operador de Cluster

O operador de Cluster é representado pela soma [34]:

T = T1 + T2 + T3 + · · · , (2.88)

onde T1 descreve todas as excitações simples, T2 refere-se às excitações duplas, e assim suces-

sivamente. No formalismo da segunda quantização, esses operadores podem ser escritos como:

T1 =
∑
i

tai â
†
aâi, (2.89)

e

T2 =
1

4

∑
i,j,a,b

tabij â
†
aâ

†
bâj âi, (2.90)

e, de maneira mais geral, o operador de cluster de ordem n é dado por:

Tn =
1

n!

∑
i1...in

∑
a1...an

ta1...ani1...in
â†a1 â

†
a2
. . . âin âi1 . (2.91)

Aqui, â† e â são os operadores de criação e aniquilação, respectivamente. Os ı́ndices i e j re-

presentam orbitais ocupados (ou de buraco), enquanto a e b se referem à orbitais desocupados

(ou de part́ıcula). Esses operadores de excitação estão na forma canônica e em ordem normal,

tomando como referência o estado de vácuo de Fermi |Φ0〉. Os operadores T1 e T2, que repre-

sentam excitações de uma e duas part́ıculas, respectivamente, transformam a função de onda

de referência |Φ0〉 em uma combinação linear de Determinantes de Slater, sem a necessidade

de um operador exponencial (como ocorre no método de CI, onde as excitações são aplicadas

linearmente à função de onda). Contudo, ao aplicar o operador exponencial de cluster à função
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de onda, são gerados determinantes excitados mais complexos, decorrentes dos vários termos T1

e T2 nas expansões que seguem (conforme discutido abaixo). A solução truncada |Ψ〉 é obtida

ao resolver os coeficientes desconhecidos tai e tabij . A expansão do operador exponencial eT pode

ser feita por uma Série de Taylor. Considerando apenas T1 e T2, temos:

eT = 1 + T +
1

2!
T 2 + · · · = 1 + T1 + T2 +

1

2
T 2
1 + T1T2 +

1

2
T 2
2 + · · · . (2.92)

Embora essa série seja finita na prática, já que o número de orbitais ocupados e de excitação é

limitado, ela ainda é extensa. Mesmo com o uso de computadores de alto desempenho, o cálculo

de todas as contribuições do operador de cluster pode ser viável apenas para sistemas pequenos

com poucos elétrons. Por isso, em muitas situações, é comum considerar apenas as excitações

simples e duplas, resultando no método CCSD [27, 34] (que será discutido posteriormente), que

é mais eficiente que o MP2 (do inglês, Møller–Plesset Perturbation Theory) ou o CISD [34],

mas que ainda assim não alcança a precisão necessária em certos casos. Para maior precisão, é

necessário incluir excitações triplas, seja de forma aproximada (perturbativa) ou completa.

Quando se lida com problemas mais complexos, como o rompimento duplo de ligações, as

excitações de quadrúpolo de ordens superiores podem também se tornar importantes, embora

normalmente suas contribuições sejam pequenas. Dessa forma, a adição de operadores T3,

T4, T5, T6, e além, tendem a gerar pequenas contribuições ou insignificantes para a maioria

dos casos. Se o operador de cluster for truncado em Tn, Determinantes de Slater associados

às excitações com N < n ainda podem ter um papel na função de onda final |Ψ〉, graças à

natureza não-linear da ansatz do operador exponencial. Assim, um operador de cluster que

inclua até Tn pode recuperar mais energia de correlação do que uma abordagem de CI com

excitações até a mesma ordem.

2.3.3 As Equações de Coupled Cluster

Considere a Equação de Schrödinger expressa em termos da função de onda do coupled cluster,

conforme descrito a seguir:

H|Ψ0〉 = HeT |Φ0〉 = EeT |Φ0〉, (2.93)

onde há q coeficientes (amplitudes t) que precisam ser determinados. Para obter as q equações

necessárias, começamos multiplicando a Equação de Schrödinger pela esquerda com e−T , e

projetamos sobre o conjunto completo de determinantes excitados até a ordem m, onde m

é a maior ordem de excitação inclúıda no operador T . Esses determinantes excitados são

constrúıdos a partir da função de onda de referência |Φ0〉, e são indicados por |Φ∗〉. Exemplos

espećıficos incluem |Φa
i 〉, que representa um determinante excitado simples, com o elétron do

orbital i excitado para o orbital a; |Φab
ij 〉, que representa um determinante excitado duplo, com

elétrons nos orbitais i e j excitados para os orbitais a e b, respectivamente, e assim por diante.
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Dessa maneira, é gerado um sistema de equações algébricas não lineares dependentes de energia

para determinar as amplitudes t:

〈Φ0|e−THeT |Φ0〉 = E〈Φ0|Φ0〉 = E , (2.94)

〈Φ∗|e−THeT |Φ0〉 = E〈Φ∗|Φ0〉 = 0, (2.95)

sendo que a primeira equação corresponde à avaliação da energia e a segunda deve ser resolvida

para obter as amplitudes t. Note que utilizamos e−T eT = 1, que é o operador identidade e

supomos que os orbitais são ortogonais. No entanto, em algumas abordagens, como com orbitais

de valência, essa ortogonalidade pode não ser garantida, e o último conjunto de equações pode

não ser estritamente nulo.

No contexto do método CCSD básico [34], temos:

〈Φ0|e−(T1+T2)He(T1+T2)|Φ0〉 = E , (2.96)

〈Φa
i |e−(T1+T2)He(T1+T2)|Φ0〉 = 0, (2.97)

〈Φab
ij |e−(T1+T2)He(T1+T2)|Φ0〉 = 0, (2.98)

onde o Hamiltoniano transformado pela similaridade H̄, pode ser expresso utilizando o Lema

de Hadamard [59], que faz parte da Álgebra de Lie, também conhecido como a Fórmula de Ha-

damard (relacionada à Fórmula de Baker-Campbell-Hausdorff [34, 55], embora sejam conceitos

distintos):

H̄ = e−THeT = H + [T,H] +
1

2!
[[T, T ],H] + · · · = (HeT )C , (2.99)

onde, por definição, o comutador entre dois operadores A e B é dado por:

[A,B] = AB − BA, (2.100)

e, de forma aninhada:

[A, [B,C]] = A(BC − CB)− (BC − CB)A. (2.101)

Essas relações seguem da estrutura de uma álgebra de Lie e são utilizadas na expansão de

Baker–Campbell–Hausdorff [60] que aparece na Eq.(2.94). Aqui, o subscrito C indica a parte

conectada do operador.
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2.3.3.1 Tipos e Classificações dos Métodos Coupled Cluster

Os métodos tradicionais de Coupled Cluster são classificados de acordo com o número máximo

de excitações consideradas na definição do operador T [55]. As siglas dos métodos Coupled

Cluster costumam ser formadas pelas letras ”CC”(referentes a Coupled Cluster), seguidas por:

S - indicando excitações simples (singles),

D - representando excitações duplas (doubles),

T - para excitações triplas (triples),

Q - para excitações quádruplas (quadruples).

Portanto, no Método CCSDT, o operador T é descrito como:

T = T1 + T2 + T3. (2.102)

Quando termos estão entre parênteses, significa que eles são calculados com base em teorias de

perturbação. Por exemplo, no Método CCSD(T) [61]:

O Coupled Cluster trata de forma completa as excitações simples e duplas.

As contribuições das excitações conectadas triplas são estimadas de maneira não iterativa,

utilizando a Teoria de Perturbação de Muitos Corpos.

2.4 A Fotoionização

2.4.1 O Fóton e Algumas de suas Propriedades

O fóton (γ) é uma part́ıcula elementar que atua como mediadora da força eletromagnética [62,

63]. Ele também é a menor unidade de radiação eletromagnética, incluindo a luz. O termo

Photon foi introduzido por Gilbert Lewis em 1926 [64].

Os fótons pertencem à categoria dos bósons e possuem spin igual a 1 [65, 66]. A troca de

fótons virtuais entre part́ıculas carregadas, como elétrons e pósitrons, é um fenômeno descrito

pela eletrodinâmica quântica, que se origina do Modelo Padrão da f́ısica de part́ıculas [63, 66].

Tais aspectos não serão aqui abordados profundamente pois fogem do escopo dessa dissertação.

Além disso, os fótons interagem tanto com os elétrons quanto com os núcleos atômicos, de-

sempenhando um papel essencial nas propriedades da matéria, influenciando aspectos como a

estrutura e estabilidade dos átomos, moléculas e sólidos [62, 66].

Os fótons são frequentemente associados à luz viśıvel, mas essa relação é válida apenas para

uma pequena parte do espectro eletromagnético [62, 67]. Toda radiação eletromagnética é

composta por fótons, ou seja, a energia transportada por essa radiação é quantizada [66]. Isso
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significa que qualquer onda eletromagnética, independentemente de sua frequência, energia

ou momento, é composta por fótons. Essas part́ıculas fundamentais podem ser geradas ou

destrúıdas quando interagem com outras part́ıculas, o fóton é uma part́ıcula estável, não sofre

decaimento espontâneo [62, 65].

Diferentemente de outras part́ıculas (por exemplo elétrons), os fótons não possuem massa em

repouso, o que significa que sua massa relativ́ıstica depende exclusivamente de sua energia [62,

67]. Eles se deslocam sempre à velocidade da luz no vácuo, independentemente do referencial

do observador. Mesmo sem uma massa de repouso, eles carregam momento proporcional à sua

frequência ou, de maneira equivalente, ao seu comprimento de onda [62, 67]. Esse momento

pode ser transferido em colisões, como ocorre quando um fóton atinge um elétron, uma outra

part́ıcula ou uma molécula. Esse prinćıpio é essencial para fenômenos como a pressão de

radiação, usada em tecnologias como velas solares [62].

Os fótons são gerados por átomos quando um elétron muda de ńıvel energético dentro do

átomo, emitindo um fóton ao perder energia [66]. Além disso, processos como decaimentos nu-

cleares de part́ıculas instáveis e a aceleração de part́ıculas carregadas também podem produzir

fótons. A emissão cont́ınua de fótons ocorre frequentemente devido a colisões entre átomos, e

a distribuição dos comprimentos de onda dos fótons emitidos está diretamente ligada à tem-

peratura do emissor, conforme descrito pela Distribuição de Maxwell-Boltzmann [68]. Esse

fenômeno faz com que objetos aquecidos emitam radiação em faixas espećıficas do espectro

eletromagnético, abrangendo desde microondas e infravermelho até a luz viśıvel e ultravioleta.

Fótons altamente energéticos podem ser produzidos por processos como aniquilação de pares

part́ıcula-antipart́ıcula, decaimentos radioativos e colisões de part́ıculas em aceleradores de alta

energia [63, 66].

A respeito do seu spin, os fótons possuem spin igual a 1, o que os classifica como bósons [65,

66]. Eles são mediadores das interações eletromagnéticas, permitindo que part́ıculas carregadas

interajam entre si por meio da troca de fótons virtuais, fenômeno essencial para a compreensão

do eletromagnetismo quântico [63, 66]. Por serem bósons de calibre, espera-se que apresentem

três estados de spin, sendo eles −1, 0 e 1. No entanto, a projeção zero é inviável porque

exigiria um referencial em repouso para o fóton, o que contrariaria a teoria da relatividade, já

que ele sempre se move independentemente do referencial inercial [65]. Como consequência, os

fótons apresentam apenas duas polarizações circulares posśıveis. Além disso, por não possúırem

massa em repouso, sua polarização é sempre perpendicular à direção de propagação da onda

eletromagnética associada [62, 67].

2.4.2 O Formalismo da Fotoionização

A fotoionização de moléculas pode ser formulada utilizando as aproximações de Born-Oppenheimer

e de Hartree-Fock, sem levar em conta os efeitos relativ́ısticos [69, 70]. A fotoionização direta

é descrita pela seguinte equação:
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�ω + (AB) → (AB)+ + e−, (2.103)

A Equação de Schrödinger que descreve esse sistema pode ser expressa como:

H|φ(μ1, ..., μN)〉 = E|φ(μ1, ..., μN)〉, (2.104)

onde o Hamiltoniano total é definido por:

H = Hm − 1

2
∇2

r +
∑
i

V (r −Ri) +
N−1∑
j

V (r − rj). (2.105)

onde |φ(μN)〉 representa a função de onda do sistema ı́on-fotoelétron e μi denota a coordenada

espacial do i-ésimo elétron, sendo equivalente à notação ri utilizada na Eq.(2.106). A descrição

da fotoionização no nosso formalismo pode ser feita via um processo de ”meia colisão”, no qual

o lado direito da Eq.(2.96) pode ser entendido com uma interação entre um elétron ejetado e o

ı́on remanescente [71].

Nesse contexto, −∇2
r/2 representa o operador de energia cinética do fotoelétron, V (r − Ri) é

o potencial que descreve a interação entre o fotoelétron e os núcleos da molécula, enquanto

V (r− rj) caracteriza a interação entre o fotoelétron e os elétrons do alvo [69]. O Hamiltoniano

do ı́on molecular, Hm, pode ser escrito como:

Hm =
1

2

N−1∑
j

∇2
j +

N+1∑
μ

V (rj −Rμ) +
∑
j<k

V (rj − rk), (2.106)

onde o primeiro termo representa a energia cinética dos elétrons da molécula, o segundo termo

refere-se à interação entre esses elétrons e os núcleos e, por fim, o último termo descreve a

interação eletrônica no alvo molecular [70].

O formalismo mais geral para o tratamento da fotoionização segue o formalismo multicanal,

no qual a função de onda de espalhamento pode ser representada como uma combinação linear

das autofunções Ψm do Hamiltoniano Hm e da função de onda do fotoelétron χm [71]:

|φ〉 =
∑
m=1

A|Ψm〉 ⊗ |χm〉. (2.107)

Aqui, A é um operador de antissimetrização que garante a validade do Prinćıpio da Exclusão

de Pauli [69]. A função Ψm, correspondente ao estado do ı́on molecular, deve ser escrita de

forma antissimétrica:

|Ψm〉 = A[Ψm
1 (μ1)Ψ

m
2 (μ2) . . .Ψ

m
N−1(μN−1)], (2.108)

o que leva a uma função de onda de espalhamento na forma:
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|φ(μ1, μ2, ..., μN−1, μN)〉 =
∑
m=1

A[Ψm
1 (μ1)Ψ

m
2 (μ2) . . .Ψ

m
N−1(μN−1)]⊗ χm(μ). (2.109)

As funções Ψm
i representam os spin-orbitais ligados, enquanto χm(μ) descreve o estado do

elétron livre. Essas funções podem ser escritas como:

|Ψm
i 〉 = |ϕi〉 ⊗ |η〉, i = 1, 2, ..., N − 1. (2.110)

e

|χm〉 = |φm〉 ⊗ |η〉, (2.111)

onde |η〉 denota os estados de spin α, β [66, 69]. Ao substituir a Eq.(2.100) na Eq.(2.97),

obtemos:

H
∞∑

m=1

A|Ψm〉 ⊗ |χm〉 = E
∞∑

m=1

A|Ψm〉 ⊗ |χm〉. (2.112)

Projetando essa equação sobre um conjunto completo de autofunções do Hamiltoniano Hm do

sistema, representado por Ψs, temos [71, 72]:

∑
s=1

〈Ψs|H|
∞∑

m=1

A|Ψm〉 ⊗ |χm〉 =
∑
s=1

〈Ψs|E
∞∑

m=1

A|Ψm〉 ⊗ |χm〉. (2.113)

Isso resulta na seguinte equação:

∑
s,m

〈Ψs|HmA|Ψm〉 ⊗ |χm〉 −
∑
s,m

〈Ψs|1
2
∇2

rA|Ψm〉 ⊗ |χm〉+

+
∑
s,m

∑
i

〈Ψs|V (r −Ri)A|Ψm〉 ⊗ |χm〉+
∑
s,m

N−1∑
j

〈Ψs|V (r − rj)A|Ψm〉 ⊗ |χm〉 =

=
∑
s,m

〈Ψs|EA|Ψm〉 ⊗ |χm〉. (2.114)

Como Hm|Ψm〉 = εm|Ψm〉 e as funções de onda dos orbitais são ortonormais e normalizadas,

ou seja, 〈Ψs|Ψm〉 = δs,m, a equação anterior pode ser reescrita como:

∑
s,m

〈Ψs|HmA|Ψm〉 ⊗ |χm〉 = 1√
N !

∑
m

εmχm(μ) (2.115)

∑
s,m

∑
i

〈Ψs|V (r −Ri)A|Ψm〉 ⊗ |χm〉 = 1√
N !

∑
m

V (r −Ri)χm(μ) (2.116)
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∑
s,m

N−1∑
j

〈Ψs|V (r − rj)A|Ψm〉 ⊗ |χm〉 =

=
1√
N !

∑
m

N−1∑
j

∫
(ϕ∗

k(μj)V (rj − r)ϕk(μj)dμj)χm(μ)−

−
∫

(ϕ∗
k(μj)V (rj − r)χm(μj)dμj)ϕk(μ). (2.117)

onde V (rj−r) indica o potencial de interação entre part́ıculas móveis (por exemplo, a interação

entre o elétron na posição r e outro na posição rj e V (r − Ri) normalmente indica o potencial

coulombiano da i-ésima carga fixa (núcleo/́ıon) agindo sobre a part́ıcula com coordenada r. Por

fim:

∑
s,m

〈Ψs|EA|Ψm〉 ⊗ |χm〉 = Eχm(μ). (2.118)

Ao identificar os termos da Eq.(2.93) como potenciais de natureza estática (Coulombiano) e de

troca, conforme apresentado no método de Hartree-Fock, temos:

V Eχm(μ) =

(∫
ϕ∗
k(μk)V (rj − r)ϕk(μk)dμk

)
χm(μ), (2.119)

V Tχm(μ) =

(∫
ϕ∗
k(μk)V (rj − r)χm(μk)dμk

)
ϕk(μ). (2.120)

Assim, a Eq.(2.89) pode ser reescrita da seguinte maneira:

[∇2 + k2]χm(μ) =
∞∑
s,m

U ′
msχs

(μ), (2.121)

onde k2 = 2(E − εi), e o termo U ′
ms é expresso em função do potencial Coulombiano, de troca

e de polarização:

U ′
msχs

(μ) = 2[V E + V T + V P ]χm(μ). (2.122)

Fenômenos de muitos corpos, como correlações eletrônicas entre o elétron do alvo e o elétron

ejetado, além da polarização da nuvem eletrônica, podem ser tratados dentro do formalismo

multicanal. Contudo, a inclusão exata desses efeitos exige alto custo computacional, sendo

inviável até mesmo para sistemas moleculares pequenos. Por essa razão, recorre-se a meto-

dologias aproximadas que permitam considerar tais efeitos com menor custo. Neste trabalho,

adota-se uma abordagem monocanal que insere os efeitos de muitos corpos em um potencial

efetivo, somado de maneira ad hoc aos potenciais estático e de troca, conforme descrito na

Eq.(2.98). Nesse esquema, os potenciais estático e de troca são obtidos rigorosamente a partir
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da função de onda de Hartree-Fock da molécula-alvo. O programa ePolyScat-E fornece dife-

rentes opções de potenciais para modelar a polarização V P , incluindo o potencial de Padial e

Norcross [73] e o de Perdew e Zunger [72] . Ambos partem do modelo de gás de elétrons livres,

diferenciando-se pelos parâmetros adotados para a região interna, enquanto o comportamento

assintótico é determinado pela polarizabilidade da molécula. Esse potencial de polarização de-

sempenha um papel fundamental quando o elétron espalhado possui baixa energia (tipicamente

abaixo de 20 eV). Nessa faixa, a interação do elétron incidente com a polarização induzida na

nuvem eletrônica do alvo é particularmente relevante.

A Eq.(2.97) pode ser associada à equação de Schrödinger dentro do formalismo de Lippmann-

Schwinger. Entretanto, como o problema tratado envolve equações diferenciais acopladas de

canais, é necessário simplificá-la para o regime monocanal, considerando apenas o estado fun-

damental do ı́on molecular. Dessa forma, a equação assume a forma:

[
∇2 + k2 − U(r) +

2

r

]
χ
(±)
k (μ) = 0, (2.123)

onde U(r) representa o potencial de curto alcance, que inclui o termo de interação estático-

troca-polarização, enquanto o termo 2/r corresponde ao potencial de natureza Coulombiana.

De acordo com a seção 2.6, a função de espalhamento χ
(±)
k pode ser expressa pela equação de

Lippmann-Schwinger:

χ
(±)
k = |ϕk〉+G(±)U |χ(±)

k 〉, (2.124)

em que χ
(+)
k descreve a função de onda antes da colisão e χ

(−)
k após a colisão. O termo ϕk refere-

se à onda plana incidente, G é a função de Green, e U representa o potencial de interação. A

solução assintótica para o elétron ejetado, no limite r → ∞, pode ser escrita como [16]:

χ
(±)
k → ϕk(r) +

exp(ikr)

r
(2π)−3/2fk(r, r

′), (2.125)

onde fk(r, r
′) corresponde à amplitude de espalhamento, dada por:

fk(r, r
′) = −2π2〈ϕk|U |χ(±)

k 〉. (2.126)

Aqui, ϕk é a onda incidente, U o potencial de interação, e χ
(±)
k a função de onda de espalha-

mento.

A amplitude de espalhamento desempenha um papel fundamental no processo iterativo, pois

possibilita a determinação da função de onda do elétron ejetado em cada etapa do cálculo.

Quando a amplitude de espalhamento (ou, de forma equivalente, a matriz K) converge, isso

garante também a convergência da função de onda associada ao fotoelétron. Além disso,

utilizando-se a identidade de Kato, pode-se construir a função de onda do cont́ınuo, que é

essencial para a avaliação do processo de fotoionização.
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2.5 O Método Variacional de Schwinger

A função de onda do elétron no cont́ınuo é determinada por meio do programa ePolyScat-E,

que emprega o Método Variacional de Schwinger para a resolução da equação de Lippmann-

Schwinger. Nesse procedimento, a função de onda do cont́ınuo é obtida a partir do espalhamento

de elétrons em moléculas. O estado final do sistema é representado por uma única trônica, onde

os orbitais iônicos do caroço são forçados a coincidir com os orbitais Hartree-Fock da molécula

neutra. O potencial estático-troca, nessa formulação, é extráıdo diretamente da função de

onda do ı́on molecular calculada no ńıvel Hartree-Fock. Com essa simplificação, o problema da

fotoionização passa a ser tratado como o espalhamento de uma part́ıcula única [74].

Na aproximação de frozen core, a equação de Schrödinger para os N elétrons do sistema, consi-

derando o ı́on molecular e o elétron ejetado, é projetada sobre o canal do estado fundamental.

Isso resulta em uma equação de Schrödinger efetiva para um único elétron [74]. Assim, em

unidades atômicas, a equação que descreve o fotoelétron assume a forma:

[
−1

2
∇2 − 1

r
+ V (r)− k2

2

]
χ
(−)
k = 0, (2.127)

em que k representa o momento do elétron no cont́ınuo e V (r) descreve o potencial de curto

alcance associado ao termo estático-troca. Nesse potencial, pode-se incluir de forma ad hoc

uma contribuição adicional correspondente ao modelo de polarização adotado [74]. A solução

numérica da equação de Lippmann-Schwinger pode ser obtida a partir da expansão da função

de onda do elétron no cont́ınuo em ondas parciais:

χ
(±)
k (r) =

[
2

π

]1/2 ∑
lm

il φklm(r)Y
∗
lm(r̂), (2.128)

onde Y ∗
lm(r) são os harmônicos esféricos e φklm corresponde à função de onda plana, escrita

como:

φklm = eiσl
Fl(γ; kr)

kr
Ylm(r̂), (2.129)

sendo Fl(γ; kr) a função regular de Coulomb, γ = −1/k e σl = arg[Γ(l + 1 + iγ)] o parâmetro

associado ao deslocamento de fase de Coulomb. Adaptando a Eq.(2.75) para o caso do elétron

no cont́ınuo, tem-se:

χ
(−)
klm(r) = φklm(r) + 〈r|G(−)U |χ(−)

klm〉, (2.130)

em que a função de Green de Coulomb é dada por:

G(−) =

(
∇2 +

2

r
+ k2 − iε

)−1

. (2.131)
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A Eq.(2.106) é então resolvida numericamente de forma iterativa. Para isso, o potencial de

curto alcance U é aproximado por um potencial separável:

〈r|US0|r′〉 =
∑

αi,αj∈R
〈r|U |αi〉[U−1]ij〈αj|U |r′〉, (2.132)

onde R representa o conjunto inicial utilizado na expansão das funções, [U−1]ij é a matriz

inversa dos elementos Uij, e αi e αj são funções base do tipo gaussiana cartesiana. Substituindo

a Eq(2.108) na Eq.(2.106), a equação de Lippmann-Schwinger pode ser reescrita como:

χ
(−)S0
klm (r) = φ

(−)
klm(r) +

∑
αi,αj∈R

〈r|G(−)U |αi〉[D−1]ij〈αj|U |φ(−)
klm〉, (2.133)

sendo que Dij corresponde ao elemento de matriz definido pela matriz de transição de dipolo:

Dij = 〈αi|U − UG(−)U |αj〉. (2.134)

As funções de onda aproximadas são constrúıdas a partir da expansão da função de onda de es-

palhamento — anteriormente expressa em ondas parciais — em um conjunto inicial denominado

S0:

S0 = χS0
kl1m

, χS0
kl2m

, . . . , χS0
klpm

, (2.135)

onde lp representa o valor máximo de l na expansão em ondas parciais, obtido a partir de testes

de convergência realizados com o programa ePolyScat-E. Esse conjunto pode ser generalizado

para n iterações sucessivas, resultando em:

Sn = χSn
kl1m

, χSn
kl2m

, . . . , χSn
klpm

. (2.136)

Assim, a função de onda obtida na n-ésima iteração pode ser escrita em termos das soluções

do passo anterior Sn−1:

χ
(−)Sn

klm (r) = φ
(−)
klm(r) +

∑
αi,αj∈R∪Sn−1

〈r|G(−)U |ξi〉[D−1]ij〈ξj|U |φ(−)
klm〉. (2.137)

Esse processo é realizado de maneira iterativa até que as funções de onda atinjam convergência.

Quando isso ocorre, ou seja, quando χ
(−)Sn−1

klm ≈ χ
(−)Sn

klm , pode-se demonstrar que as soluções

obtidas correspondem às soluções exatas da equação de Lippmann-Schwinger para o potencial

U [74]. Especificamente, no ePolyScat− E o procedimento iterativo é interrompido quando a

mudança no valor RMS (do inglês, ”Root Mean Square”) ou valor quadrático médio da matriz-K

entre duas iterações sucessivas é menor que o valor definido de 0, 10× 10−5.
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2.6 Seção de Choque e Parâmetro de Assimetria para

Fotoionização

Quando um fóton incide sobre uma molécula neutra com energia superior à necessária para

ionizar um determinado orbital molecular, há a possibilidade de que um elétron seja ejetado

desse orbital, passando para um estado no cont́ınuo. A probabilidade dessa transição está

relacionada à matriz de transição de dipolo, que pode ser expressa de duas formas distintas: na

representação de comprimento de dipolo (L) ou na representação de velocidade de dipolo (V)

[75]. Essas duas representações podem ser escritas, respectivamente, como:

ILk,n̂ = (k)1/2〈Ψ|r · n̂|φ〉, (2.138)

IVk,n̂ =
(k)1/2

E
〈Ψ|∇ · n̂|φ〉, (2.139)

onde o estado final é dado por:

|φ〉 = A|Ψm〉 ⊗ |χm〉. (2.140)

Nessas expressões, Ψ representa a função de onda do estado inicial da molécula neutra, calculada

via método de Hartree-Fock (determinante de Slater). Já φ corresponde à função de onda do

estado final, composto pelo ı́on e pelo fotoelétron. A função Ψm descreve o orbital molecular do

ı́on, enquanto χm é a função associada ao fotoelétron. O vetor k denota o momento do elétron

ejetado, n̂ indica a direção da polarização da radiação incidente, e o fator (k)1/2 é introduzido

para ajustar a normalização das funções de onda no cont́ınuo [45, 76].

A seção de choque de fotoionização duplamente diferencial pode ser expressa como:

d2σL,V

dΩkdΩε

=
4π2E

c
|IL,Vk,n̂ |2. (2.141)

Ao expandir os elementos da matriz de dipolo em termos de ondas parciais (harmônicos

esféricos), obtém-se:

IL,Vk,n̂ =

[
4π

3

]1/2 ∑
lmμ

IL,VlmμY
∗
1μ(Ωk)Ylm(Ωε), (2.142)

o que conduz à formulação dos elementos de matriz de ondas parciais, nas representações de

comprimento (L) e velocidade (V) do dipolo, dadas por:

ILlmμ = (k)1/2〈Ψ|rμ|φ〉, (2.143)

IVlmμ =
(k)1/2

E
〈Ψ|∇μ|φ〉, (2.144)
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em que:

rμ =

⎧⎨
⎩∓(x± iy)/21/2, μ = ±1,

z, μ = 0,
(2.145)

e:

∇μ =

⎧⎨
⎩

1√
2

[
∓ (

∂
∂x

)± i
(

∂
∂y

)]
, μ = ±1,

∂
∂z
, μ = 0.

(2.146)

A seção de choque total de fotoionização, obtida pela média sobre todas as direções, é então

dada por:

σL,V =
4π2

3c
E

[∑
μ

Dμ

]
, (2.147)

onde:

Dμ =
∑
l

∣∣∣IL,Vll̄m−μ

∣∣∣2 . (2.148)

Do ponto de vista formal, as representações de comprimento e de velocidade do dipolo fornecem

resultados equivalentes, desde que as funções de onda empregadas sejam autossoluções exatas

do Hamiltoniano eletrônico. No entanto, na prática, ao se trabalhar com funções aproximadas,

a igualdade entre as seções de choque não é garantida. Apesar disso, observa-se que ambas as

representações tendem a apresentar comportamentos semelhantes, permitindo que se utilize a

comparação entre elas como medida indireta da qualidade dos cálculos e dos resultados obtidos.

A seção de choque diferencial pode ser escrita como:

dσL,V

dΩk

=
σL,V
k

4π

[
1 + βL,V

k P2(cos θ)
]

(2.149)

onde θ representa o ângulo formado entre a polarização da radiação incidente e o vetor momento

do elétron emitido, P2(cos θ) é o polinômio de Legendre de ordem 2 e βL,V
k corresponde ao

parâmetro de assimetria. Este parâmetro é dado pela expressão:

βL,V
k =

3

5

[
1∑
μ Dμ

] ∑
ll′mμ

(−1)m−μ+1IL,Vlmμ(I
L,V
l′m′μ)

∗ [(2l + 1)(2l′ + 1)]1/2 (2.150)

×(1100|20)(ll′00|20)(11− μμ′|2μ′′)(ll′ −mm′|2− μ′′), (2.151)

em que (j1j2m1m2|j3m3) são coeficientes de Clebsch-Gordan. O valor de β depende apenas da

energia do fóton incidente, enquanto o ı́ndice k indica que o parâmetro descreve a distribuição

angular dos fotoelétrons, mas não é influenciado por sua direção espećıfica. Outra maneira
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de caracterizar o parâmetro de assimetria é a partir da distribuição angular observada pelo

detector. Nesse caso, o parâmetro expressa a anisotropia da emissão eletrônica em relação à

orientação do campo luminoso no laboratório. Assim, integrando-se a seção de choque diferen-

cial sobre todas as direções de emissão posśıveis, a Eq. (2.125) assume uma forma simplificada,

na qual θ passa a ser definido em relação ao eixo de polarização da radiação e ao eixo molecular

[74]. Dessa forma, o parâmetro de assimetria β é obtido como

βL,V
n =

[2D0 − (D−1 +D+1)]∑
μ Dμ

, (2.152)

sendo dependente apenas das direções de emissão eletrônica. As Eqs.(2.126) e (2.127) pos-

suem aplicações distintas: a primeira é mais adequada para cálculos teóricos detalhados, en-

quanto a segunda é amplamente utilizada em análises experimentais. Neste trabalho, adota-se

a Eq.(2.153) como base para a determinação do parâmetro de assimetria β.

Figura 2.2: Distribuições angulares de fotoelétrons ilustradas para quatro diferentes valores do
parâmetro de assimetria (β), considerando a orientação em relação ao vetor de polarização da
radiação incidente. Imagem retirada da tese de doutorado de Mylena Hortz Ribas, 2023 [77].

Na Figura 2.2, mostramos a relação entre os valores de beta com as direções angulares pre-

ferenciais em relação à direção de polarização da radiação. Por exemplo, para β = 0, temos

uma distribuição angular isotrópica. Considerando que a direção de polarização da luz está na

direção 0 − 180◦, para β = −1 os elétrons são ejetados preferencialmente a 90◦. Para β = 1 e

β = 2, os elétrons são ejetados preferencialmente na direção de polarização da luz.
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2.7 Obtenção da Geometria Molecular do Confôrmero

Mais Estável

Para a descrição da fotoionização precisamos de propriedades moleculares do alvo, tais como

função de onda, energias de ionização e polarizabilidade, obtidas através dos cálculos de estru-

tura eletrônica da molécula alvo. Para isso utilizamos cálculos de estrutura molecular. No caso

do presente trabalho, a geometria molecular foi obtida através de buscas bibliográficas de dados

já existentes na literatura. Para o caso do 2-metoxietanol, a geometria foi retirada do artigo de

Abdel-Rahman et al. [28]. No artigo, os autores otimizaram 12 estruturas de confômeros no

ńıvel CBS-QB3 [78]. A geometria utilizada neste trabalho é do confôrmero de menor energia,

cujo o autor denomina como tGg-.

Após a obtenção da geometria molecular, o cálculo da estrutura eletrônica foi realizado utili-

zando o Método Hartree-Fock aplicado a sistemas de camada fechada, com o conjunto de bases

aug-cc-pVTZ. A partir desse procedimento, foi gerado um arquivo de sáıda pelo software Gaus-

sian03, contendo dados moleculares essenciais, como a energia total em Hartree, as funções de

onda, os autovalores e as coordenadas moleculares , os quais serão utilizados como inputs no

pacote ePolyScat-E para o cálculo da fotoionização.

A energia total Hartree-Fock obtida neste trabalho para este confôrmero foi de -268.062922

hartrees, enquanto que o valor obtido por Abdel-Rahman et al. foi de -269.117808 hartrees no

ńıvel CBS-QB3. O valor do momento de dipolo obtido pelo cálculo realizado nesta pesquisa foi

de 2.5733 D.

2.8 Método para a Obtenção dos Potenciais de Ionização

A energia de ionização, também chamada de potencial de ionização, corresponde à quantidade

mı́nima de energia necessária para remover um elétron de um orbital molecular espećıfico. Esse

valor pode ser obtido tanto por meio de técnicas experimentais quanto por métodos teóricos

computacionais. Neste estudo, determinados potenciais de ionização foram obtidos a partir de

dados experimentais dispońıveis na literatura (somente para o orbital de valência mais externo).

Para os orbitais de valência mais internos não foram encontrados valores experimentais, desta

forma as energias orbitais para estes orbitais foram calculadas por simulações realizadas no

software CFOUR [79], empregando o método EOMIP-CCSD [80], juntamente com o conjunto

de bases aug-cc-pVTZ [81]. Tais métodos fazem uso da abordagem Coupled Cluster [82], con-

siderando excitações simples e duplas a partir do determinante de Hartree-Fock. Na tabela

2.1 são apresentados os valores de potencial de ionização vertical utilizados neste trabalho e os

valores valores calculados com o CFOUR.
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Tabela 2.1: Potenciais de Ionização vertical para o 2-metoxietanol utilizados neste trabalho
calculados com o CFOUR e o valor experimental vertical.

ORBITAL IP (eV) (CFOUR) EXPERIMENTAL

21 10,298 9,60 [83]

20 10,554 —

19 12,176 —

18 12,267 —

17 13,693 —

16 14,621 —

15 14,813 —

14 15,815 —

13 16,650 —

12 16,863 —

11 17,568 —

10 20,668 —

9 22,646 —

Os valores teóricos dos potenciais de ionização foram calculados a partir das energias dos esta-

dos do ı́on obtidas no ńıvel CCSD na mesma geometria da molécula neutra:

IP = (Energia do estado do ı́on) - (Energia da molécula neutra no estado fundamental).

2.9 Polarizabilidade

Polarizabilidade Molecular

Para determinar o potencial de polarização, é essencial conhecer o valor da polarizabilidade do

alvo. Em particular, a contribuição de longo alcance desse potencial é dada por:

V P ≈ − α

r4
, r → ∞, (2.153)

onde α representa a polarizabilidade média do ı́on. O cálculo dessa grandeza requer o conhe-

cimento das polarizabilidades do estado fundamental do ı́on molecular, bem como dos estados

excitados que participam do processo. A polarizabilidade, por definição, quantifica o grau de

facilidade com que uma substância adquire um momento de dipolo elétrico p sob a influência

de um campo elétrico externo E. Matematicamente, essa relação é expressa como:

p = αE, (2.154)

onde:
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α =

⎛
⎜⎝
αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎞
⎟⎠ . (2.155)

No programa computacional ePolyScat-E, é posśıvel fornecer diretamente o valor médio da

polarizabilidade ou utilizar os componentes do tensor associados. Frequentemente, são empre-

gados apenas os termos diagonais do tensor (αxx, αyy, αzz), que podem ser combinados para se

obter uma estimativa média da polarizabilidade.

Em experimentos de espalhamento de elétrons por moléculas neutras, geralmente se usam dados

experimentais da polarizabilidade média. Contudo, ao tratar-se de ı́ons, é necessário obter os

valores tanto para o estado fundamental quanto para os estados excitados, pois esses valores

não estão dispońıveis de forma experimental.

Neste contexto, são realizados cálculos utilizando pacotes computacionais de estrutura eletrônica.

Utilizamos o pacote Gaussian09 para determinar as polarizabilidades dos estados eletrônicos

desejados. O método adotado foi o funcional B3LYP dentro do formalismo da Teoria do Fun-

cional da Densidade (DFT) [84, 85], utilizando o conjunto de bases aug-cc-pVTZ utilizando a

metodologia Polar.

Tabela 2.2: Polarizabilidades para o 2-metoxietanol. As polarizabilidades apresentadas abaixo
foram obtidas teoricamente através do pacote Gaussian09, utilizando a Teoria do Funcional da
Densidade (DFT) com o conjunto de bases aug-cc-pVTZ na metodologia Polar.

ESTADO POLARIZABILIDADE SIMETRIA

0 85,10 A

1 92,06 A

2 88,74 A

3 81,78 A

4 88,03 A

5 95,15 A

6 60,63 A

7 77,71 A

8 80,97 A

9 77,00 A

10 80,56 A

11 178,41 A

12 464,08 A

13 233,06 A
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2.10 Pacote Computacional ePolyScat-E

As funções de onda dos fotoelétrons foram determinadas utilizando o pacote computacional

ePolyScat-E, que usa um método variacional baseado no Prinćıpio Variacional de Schwinger

em conjunto com os Aproximantes de Padé. A função de onda ψk(r) é obtida resolvendo a

Equação de Schrödinger para um elétron, em unidades atômicas, conforme a expressão:

[
−1

2
∇2 + V (N−1)(r, R)− k2

2

]
ψk(r) = 0, (2.156)

onde o termo −1
2
∇2 representa a energia cinética do fotoelétron e V (N−1)(r, R) é o potencial de

interação entre o elétron no cont́ınuo e o ı́on molecular, pode ser dado por:

V (N−1) = Vst + Vex + Vcp, (2.157)

sendo Vst o potencial estático, Vex o termo de troca, que incorpora a interação coulombiana

devido à carga ĺıquida no ı́on e é calculado de maneira exata com base na função de onda

molecular no ńıvel Hartree-Fock e Vcp é o potencial de correlação-polarização, derivado do

modelo de Perdew e Zunger . Este último é parametrizado com base na aproximação de

densidade local para descrever a parte de correlação. O potencial de polarização assintótico é

expresso por:

Vpol = − α

r4
, (2.158)

onde α é a polarizabilidade do ı́on. O que delimita o uso destes potenciais é o primeiro cruza-

mento entre eles. No ePolyScat-E, as funções de onda são expandidas em ondas parciais e em

um único centro, o centro de massa do ı́on, que é mantido fixo. Após testes de convergência

dos parâmetros, com base nos valores de seção de choque, determinamos os parâmetros ótimos

como: lmax = 30, lmaxA = 10, lmaxK = 8 e Rmax = 15, 0. Os outros parâmetros do cálculo

(Emax e Lmax) foram mantidos fixos com base em sugestões fornecidas na literatura e serão

revistos no segmento abaixo:

Rmax: representa o maior valor de r, em Ångströms, definido para a grade numérica

radial;

Lmax: controla a convergência da expansão em ondas parciais, estabelecendo o limite

máximo do momento angular l para a função de onda;

LmaxI : correspondem ao maior valor efetivo de l utilizado no cálculo do potencial de

espalhamento. Este parâmetro deve ter, no mı́nimo, o valor 2× Lmax;

LmaxA: indica o valor de truncamento da função de onda para valores elevados de r.
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3 Resultados e discussão

Neste caṕıtulo são apresentados os resultados das seções de choque de fotoionização e dos

parâmetros de assimetria para molécula de 2-metoxietanol. O 2-metoxietanol, ilustrado na

Figura 3.1, é uma molécula orgânica com fórmula molecular CH3OCH2CH2OH, contendo dois

grupos funcionais relevantes: o grupo éter (-OCH3) e o grupo hidroxila (-OH), conectados

por uma cadeia etilênica. Essa estrutura confere à molécula um caráter polar e complexidade

eletrônica, sendo de particular interesse em estudos de espectroscopia e fotoionização.

3.1 2-metoxietanol

Figura 3.1: Estrutura do 2-metoxietanol do confôrmero tGg- de menor energia. Imagem retirada
do artigo de Abdel-Rahman et al. [28]

A molécula pertence ao grupo pontual C1, o qual não possui nenhum elemento de simetria

além da identidade. A molécula possui 12 confôrmeros, entretanto neste trabalho foi estudado

somente o confôrmero mais estável. Portanto, seus orbitais moleculares são rotulados apenas

pela simetria ”A”. A configuração eletrônica total do 2-metoxietanol é dada por:
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[(1A)2(2A)2(3A)2(4A)2(5A)2(6A)2(7A)2(8A)2](9A)2(10A)2(11A)2(12A)2(13A)2(14A)2(15A)2

(16A)2(17A)2(18A)2(19A)2(20A)2(21A)2

onde os orbitais de (1A) a (8A) são orbitais do tipo core (ou de caroço), isto é, altamente loca-

lizados nos núcleos atômicos (particularmente nos oxigênios e carbonos) e não participam dos

processos de fotoionização de valência, pois as energias de ionização estão muito acima da faixa

de energia estudada neste trabalho. Os orbitais de (9A) a (21A) correspondem aos orbitais de

valência, incluindo ligações σ (C-H, C-C, C-O, e O-H), bem como pares de elétrons não ligantes

localizados nos oxigênios. Dentre esses, os orbitais ligados mais externos – especialmente o

HOMO (21A) – são os principais candidatos à ionização por fótons na faixa do ultravioleta ou

por colisões com elétrons.

3.1.1 Seções de Choque de Fotoionização e Parâmetros de Assime-

tria

Nas pesquisas teóricas de fotoionização, é comum calcular as Seções de choque de fotoionização

para cada orbital molecular individualmente. A molécula de 2-metoxietanol possui 21 orbitais,

13 sendo de valência e 8 do tipo core. Neste trabalho vamos calcular a ionização somente a

partir dos orbitais de valência.

3.1.2 Seções de Choque de Fotoionização por Orbital - Aproximação

estático-troca (SE)

Nos gráficos da Figura 3.2 são apresentadas as seções de choque de fotoionização do 2-metoxietanol

nas representações de comprimento (L) e velocidade (V) de dipolo para os orbitais de valência

numerados de 9A a 21A, ambos os cálculos na aproximação estático-troca (SE). conforme es-

tabelecido na configuração eletrônica da molécula. A curva azul representa os resultados na

representação de comprimento (L), enquanto a curva vermelha representa a representação de

velocidade (V). Pode-se observar que os orbitais mais externos (21A, 20A, 19A, 18A, 17A e

16A) apresentam maiores valores de seção de choque e são os principais contribuintes na faixa

de energia de 15 eV a 20 eV. O orbital 17A, em particular, apresenta o pico mais pronunciado

entre todos os orbitais, com valor máximo de seção de choque de fotoionização superior a 30

Mb na representação de comprimento em torno de 17 eV, indicando uma alta probabilidade de

fotoionização nessa região de energia. Abaixo deste orbital, também se destacam os orbitais

18A, 19A, 20A e 21A, todos com valores significativos na seção de choque de fotoionização e

com picos em torno de 16 eV à 18 eV. Os orbitais intermediários (de 13A a 16A) apresentam

picos mais moderados.
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Figura 3.2: Seções de choque de fotoionização na aproximação estático-troca para o 2-
metoxietanol nas representações de dipolo de velocidade V (curva vermelha) e de comprimento
L (curva azul) para todos os 13 orbitais de valência.
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Já os orbitais mais internos entre os valência (de 9A a 12A) possuem seções de choque de

fotoionização relativamente muito menores, muitas vezes abaixo de 5 Mb, e não contribuem

significativamente para o espectro total na faixa analisada, devido ao seu maior potencial de

ionização, devido também a maior blindagem dos elétrons mais externos, entre outras razões.

O orbital 21A é o mais externo, com menor energia de ionização e o menos blindado que os

outros elétrons de orbitais mais internos. Apesar disso, não é o orbital que possui a maior seção

de choque como poderia ser intuitivamente esperado. Por exemplo, a sua seção de choque é

menor que o orbital 17A.

A razão que justifica isso é que o valor da integral de matriz de dipolo depende de três fatores:

da função de onda do orbital de sáıda, do orbital do cont́ınuo e do operador de dipolo. As

funções de onda possuem nodos, assim o produto final dos três fatores dependendo da região

pode ser positivo ou negativo, ou seja, podem se cancelar ou somar. O que vai determinar o

valor da integral da matriz de dipolo é o quanto esses nodos, as fases e a forma das funções de

onda se combinam espacialmente para gerar somas ou cancelamentos. Portanto, a razão que

justifica que a seção de choque do orbital mais externo não possui a maior seção de choque que

orbitais mais internos é complexa, e se deve ao efeito conhecido como interferência quântica.

Na Figura 3.3, para auxiliar na visualização espacial, apresentamos a representação gráfica dos

orbitais moleculares da molécula de 2-metoxietanol.

Figura 3.3: Representação gráfica dos orbitais moleculares da molécula de 2-metoxietanol.
Imagens geradas com o software Avogadro, aplicando um valor de isosuperf́ıcie de 0,02 para os
orbitais moleculares.

3.1.3 Seção de Choque Total de Fotoionização - Aproximação estático-

troca (SE)

A molécula de 2-metoxietanol (CH3OCH2CH2OH) apresenta uma estrutura molecular com-

posta por um grupo éter (-O-) e um grupo hidroxila terminal (-OH), ligados por uma cadeia
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etilênica. Essa configuração fornece uma complexidade adicional em comparação com moléculas

menores, resultando em número maior de orbitais de valência contribuindo para a resposta de

fotoionização. A análise na aproximação estático-troca (SE) considera a soma das seções de cho-

que de fotoionização dos orbitais moleculares de valência estudados e pode ser feita utilizando

as representações de comprimento (L) e velocidade (V) para o operador de dipolo.

Na Figura 3.4, são apresentados os resultados para a seção da seção de choque total de fotoi-

onização do 2-metoxietanol na aproximação SE, a qual é obtida através da soma das seções

de choque das contribuições individuais de cada orbital de valência estudado. Estes resultados

revelam perfis distintos para as representações de comprimento (L) e velocidade (V), ambos

cobrindo a faixa de energias entre 10 e 35 eV. O valor máximo da seção de choque (L) ocorre

em aproximadamente 210 Mb, localizado por volta de 18,1 eV, enquanto que o valor máximo

da seção de choque (V) ocorre em aproximadamente 149 Mb, centrado na faixa de 17,8 eV a

18,3 eV. Há uma diferença sistemática entre os valores obtidos nas duas representações, com L

sendo maior que V em praticamente toda a faixa energética. As duas curvas apresentam um

comportamento qualitativo semelhante, em termos de forma, indicando que ambas aproximam

bem na posição de máximo, mas diferem na magnitude.

Figura 3.4: Seção de choque de fotoionização na aproximação estático-troca para o 2-
metoxietanol nas representações de comprimento de dipolo (L) e velocidade de dipolo (V)
da soma dos 13 orbitais de valência.

Como observado anteriormente, a representação de (L) resulta sistematicamente em seções de

choque mais elevadas em comparação à de velocidade (V). A discrepância é mais acentuada nas

regiões de maior intensidade de transição (perto do máximo) e diminui gradualmente nas extre-

midades do espectro (10-12 eV e valores maiores que 30 eV). A representação de comprimento
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tende a superestimar a intensidade das transições em certos métodos computacionais, especial-

mente quando os orbitais finais são externos. A representação de velocidade pode subestimar

as intensidades quando os estados finais não são bem descritos em termos da simetria e da base

computacional utilizada. Apesar dessas diferenças, a concordância na posição dos máximos e

das caracteŕısticas estruturais sugere que ambas as representações representam adequadamente

a f́ısica essencial do processo de fotoionização da molécula. As descontinuidades observadas

na seção de choque, correspondentes aos aumentos abruptos, ocorrem toda vez a energia do

fóton atinge a energia de ionização de um orbital mais interno, ou seja, elas estão relacionadas

a abertura de um novo canal de ionização.

A análise da seção de choque de fotoionização do 2-metoxietanol utilizando a aproximação

estático-troca revela um espectro rico em estrutura. O pico máximo próximo a 18 eV representa

a região de maior probabilidade de fotoionização, sendo associado à sobreposição de diferentes

canais de ionização. A comparação entre as representações L e V, embora mostre discrepâncias

em magnitude, apresenta excelente concordância em termos de posição dos picos e estrutura

geral, reforçando a confiabilidade dos resultados dentro da metodologia empregada.

3.1.4 Parâmetros de Assimetria por Orbital - Aproximação estático-

troca (SE)

O parâmetro de assimetria (β) fornece informações sobre como os fotoelétrons são emitidos

angularmente no referencial do laboratório. Esse parâmetro pode ser utilizado como uma

ferramenta para investigar o ambiente qúımico do átomo ou molécula ao qual o elétron pertencia

antes de ser removido. Experimentalmente, β é determinado por meio da detecção dos elétrons

emitidos em dois ângulos perpendiculares, normalmente 0◦ e 90◦, em relação à direção de

polarização da luz incidente. A variação do valor de β com a energia do fotoelétron pode

revelar caracteŕısticas importantes sobre o meio qúımico de onde ele foi extráıdo.

O comportamento de β em função da energia é amplamente utilizado por experimentalistas na

análise de resultados espectroscópicos para fazer a identificação dos orbitais e de sua natureza

[86, 87]. Em geral, os orbitais π possuem grande variação nos valores de β, que costuma variar

de 1,2 até 1,6. Os orbitais de caráter sigma costumam não apresentar um comportamento

caracteŕıstico, apresentam um formato mais variado. Usualmente, apresentam oscilações e

não costumam ter grande variação nos valores de β como no caso de orbitais π, em geral

variam de 0,5-0,8. Especificamente no caso da molécula 2-metoxietanol, ela só possui orbitais

do tipo σ, uma vez que apresenta somente ligações simples entre os átomos. Desta forma, o

comportamento de β em função da energia pode auxiliar na diferenciação entre os orbitais dessa

simetria.

Nos gráficos da Figura 3.5, são apresentados os Parâmetros de Assimetria β calculados nas

aproximações SE-L (curva magenta) e SE-V (curva ciano) em função da energia, para os treze

orbitais de valência do 2-metoxietanol. Os dados permitem observar o comportamento dinâmico

46



do parâmetro de assimetria nas seções de choque, a distribuição angular do fotoelétron pode

indicar regiões onde há estrutura de ressonância.

Observa-se um comportamento qualitativamente similar entre as curvas L e V para todos os

orbitais. Em muitos orbitais, as curvas se aproximam ou se sobrepõem para energia baixas,

mais próximas do limiar de ionização, indicando que o parâmetro de assimetria tende a uma

forma mais regular em energias mais baixas. Para uma compreensão mais espećıfica, vamos

analisar grupos espećıficos de orbitais por vez para um melhor entendimento do comportamento

do parâmetro de assimetria na molécula estudada na presente dissertação.

O orbital 9A se destaca por exibir um mı́nimo bem definido em torno de 27 eV, enquanto o

orbital 13A revela um crescimento mais suave e cont́ınuo. Já nos orbitais 14A a 17A, observa-se

que o orbital 14A possui um máximo sutil próximo de 16 eV, seguido por uma subida suave. Ao

passo que os orbitais 15A a 17A apresentam um padrão de crescimento com pontos de inflexão,

mas sem mudanças abruptas. A presença de mais de um mı́nimo (por exemplo, no orbital 19A)

pode sugerir ressonâncias múltiplas.

3.1.5 Seções de Choque de Fotoionização por Orbital - Aproximação

estático-troca-polarização (SEP)

Ao levar em conta o efeito da polarização nos cálculos, observa-se uma tendência de deslo-

camento no pico da seção de choque para valores de energia mais baixos. De modo geral, a

inclusão da polarização da densidade eletrônica do alvo provoca uma estabilidade dos esta-

dos iônicos resultantes para energias menores, quando comparada à abordagem que considera

apenas a aproximação estático-troca. Essa estabilidade ocorre devido à deformação da nuvem

eletrônica, em resposta ao campo elétrico do elétron ejetado, gerando estados ressonantes de

energia menor. Vários orbitais apresentam picos entre 15 eV e 20 eV, indicando transições

eletrônicas prováveis nessa faixa de energia.

Os resultados apresentados na Figura 3.6 correspondem às seções de choque de fotoionização

calculadas para os treze orbitais de valência do 2-metoxietanol na aproximação estático-troca

com polarização (SEP), comparando-se as formas do operador de dipolo de velocidade e de

comprimento. A análise dos gráficos evidencia, de modo geral, a presença de máximos bem

definidos na região de baixas energias de fóton, tipicamente entre 13 e 18 eV, seguidos de um

decaimento nas curvas à medida que a energia aumenta até aproximadamente 35 eV. Esse

comportamento é consistente com o regime de fotoionização em moléculas, no qual estruturas

ressonantes mais intensas se manifestam em energias próximas ao limiar, enquanto em energias

mais altas a seção de choque tende a decrescer monotonicamente.

Nos orbitais de maior energia, identificados como 21A, 20A e 19A, observa-se que as curvas

apresentam perfis relativamente variados, com picos de intensidade moderada. Os orbitais 20A

e 19A destacam-se por exibirem um máximo mais acentuado em torno de 15 eV e 16,5 eV,

respectivamente, enquanto o orbital 21A apresenta um pico mais suave e distribuições menos
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Figura 3.5: Parâmetros de assimetria na aproximação estático-troca para o 2-metoxietanol nas
representações de dipolo de velocidade V (curva ciano) e de comprimento L (curva magenta)
para todos os 13 orbitais de valência.
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estruturadas. Em seguida, nos orbitais 18A a 16A, verificam-se as seções de choque mais

elevadas, atingindo valores próximos a 30 Mb, o que caracteriza uma maior probabilidade de

ionização associada a esses estados. Nesses casos, a forma da curva indica a presença de picos

com caracteŕısticas de ressonâncias, particularmente no orbital 17A, que apresenta um pico

relativamente estreito seguido de um decaimento suave, em contraste com os orbitais 18A e

16A, nos quais apresentam caracteŕısticas de estruturas mais alargadas nos picos.

Na faixa intermediária, correspondente aos orbitais 15A a 13A, as curvas ainda exibem estru-

turas pronunciadas na região de 13 a 16 eV, embora com intensidades ligeiramente menores

em comparação àquelas observadas nos orbitais anteriores. Nota-se que o orbital 13A também

apresenta uma queda rápida após o máximo, evidenciando a redução da seção de choque em

energias mais altas. Nos orbitais mais internos, entre 12A e 10A, a magnitude das seções de

choque diminui de forma significativa, com valores máximos variando entre 10 e 15 Mb, e com

curvas mais suaves e menos estruturadas. Nessas faixas, os picos tornam-se menos evidentes,

refletindo uma probabilidade de ionização consideravelmente menor. Por fim, o orbital 9A apre-

senta comportamento bastante distinto dos demais: a seção de choque assume valores muito

baixos, inferiores a 5 Mb, mantendo-se praticamente constante ao longo de todo o intervalo de

energia analisado, sem ind́ıcios de estruturas com caracteŕısticas de ressonância.

Outro aspecto que merece destaque é a comparação entre as duas formas do operador de dipolo

utilizadas nos cálculos. Em todos os orbitais, verifica-se que a representação de comprimento

(L) resulta em valores de seção de choque sistematicamente mais elevados que aqueles obti-

dos na representação de velocidade (V). Essa diferença, embora presente em todo o conjunto

de orbitais, mostra-se mais pronunciada nos orbitais intermediários (particularmente entre os

orbitais 18A e 15A), enquanto nos orbitais mais externos e mais internos a discrepância é

significativamente reduzida.

De forma geral, a análise evidencia que as maiores contribuições para a seção de choque de

fotoionização do 2-metoxietanol advêm dos orbitais de valência mais externos, os quais apre-

sentam picos com caracteŕısticas de ressonância mais intensos e bem definidos. Os orbitais de

energia intermediária contribuem com perfis ainda estruturados, mas de menor intensidade,

enquanto os orbitais mais internos apresentam valores baixos e comportamento mais uniforme

ao longo da faixa de energias considerada. Dessa forma, os resultados apresentados fornecem

um panorama detalhado do comportamento das seções de choque por orbital, permitindo ava-

liar tanto a intensidade relativa de cada contribuição quanto a consistência entre as diferentes

formas do operador de dipolo, bem como da influência do efeito de polarização.

3.1.6 Seção de Choque Total de Fotoionização - Aproximação estático-

troca-polarização (SEP)

A Figura 3.7 mostra a soma das seções de choque total de fotoionização dos orbitais de valência

do 2-metoxietanol, no ńıvel SEP, as quais são obtidas pela soma das contribuições dos orbitais
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Figura 3.6: Seções de choque de fotoionização na aproximação estático-troca mais polarização
para o 2-metoxietanol nas representações de dipolo de velocidade V (curva vermelha) e de
comprimento L (curva azul) para todos os 13 orbitais de valência.
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individuais. O gráfico apresenta as seções de choque como função da energia do fóton incidente

para as representações de comprimento de dipolo e velocidade de dipolo.

O gráfico cobre o intervalo de 10 eV a 35 eV, que compreende a maior parte do regime de

fotoionização da camada de valência do 2-metoxietanol. Essa região inclui ressonâncias de

forma, associadas a estados quasi-ligados com tempo de vida finito, a região de platô após

o pico máximo onde a seção de choque decresce, e os limiares de ionização associados aos

múltiplos orbitais ocupados.

Figura 3.7: Seção de choque de fotoionização na aproximação estático-troca-polarização para
o 2-metoxietanol nas representações de comprimento de dipolo (L) (curva preta) e velocidade
de dipolo (V) (curva vermelha) da soma dos 13 orbitais de valência.

O gráfico da Figura 3.7 mostra a variação da seção de choque de fotoionização em função da

energia do fóton incidente (em eV), comparando dois diferentes esquemas de cálculo, represen-

tados pelas curvas L (preta) e V (vermelha). As seções de choque são expressas em megabarns

(Mb).

Observa-se que, para energias abaixo de aproximadamente 12 eV, ambas as curvas apresentam

valores muito baixos de seção de choque, o que corresponde ao regime onde a probabilidade

de ionização é reduzida devido à baixa energia dos fótons em superar a barreira de ionização

dos canais mais internos, acarretando em poucos orbitais contribuindo. A partir desse valor,

há um rápido crescimento da seção de choque, com um aumento quase abrupto até por volta

de 16–18 eV, onde se encontram os primeiros picos acentuados.

Na região de máximo, observa-se que a curva L atinge valores mais elevados do que a curva

V, indicando que o método associado à curva preta prevê maior intensidade de resposta à

radiação. A discrepância entre as duas representações se mantém em praticamente toda a faixa
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energética, sendo que a curva vermelha (V) permanece sistematicamente abaixo da curva preta

(L). Isso sugere que os diferentes tratamentos teóricos introduzem diferenças que impactam

de forma significativa a magnitude calculada da seção de choque, ainda que o comportamento

qualitativo (crescimento inicial, pico e decaimento subsequente) seja similar.

Após o pico principal, ambas as curvas apresentam um decaimento gradual da seção de choque

com o aumento da energia do fóton, comportamento esperado em processos de fotoionização,

visto que, em energias muito elevadas, a probabilidade de absorção decresce à medida que os

fótons ionizam menos eficientemente os elétrons ligados. Esse regime assintótico, mais suave e

monotônico, indica a dominância de processos de ionização direta sem contribuição significativa

de estados ressonantes.

A análise evidencia três aspectos principais: a região de limiar, marcada pelo ińıcio da io-

nização significativa acima de 12 eV; a presença de estruturas ressonantes na faixa de 15–20

eV, que elevam a seção de choque a valores máximos próximos de 145-180 Mb; e a tendência

decrescente em altas energias, que confirma o caráter universal de atenuação da probabilidade

de fotoionização. A comparação entre as representações de comprimento (L) e velocidade (V)

não só confirma a solidez da descrição qualitativa, mas também evidencia a relevância dos di-

ferentes esquemas teóricos. Isso se deve ao fato de que a magnitude absoluta dos resultados

pode variar de uma forma para outra, o que pode afetar a concordância e a interpretação entre

experimentos e teoria.

3.1.7 Parâmetros de Assimetria por Orbital - Aproximação estático-

troca-polarização (SEP)

Como já apresentado apropriadamente em seções anteriores do texto, o parâmetro de assimetria

β descreve a forma angular da distribuição dos elétrons ejetados no processo de fotoionização.

Aqui, será feita uma análise dos parâmetros de assimetria quando os efeitos de polarização são

levados em consideração durante a realização dos cálculos.

Os gráficos da Figura 3.8 mostram β para os orbitais 9A a 21A, em função da energia do fóton

entre 10 e 50 eV, sob duas representações: de velocidade (V) e de comprimento (L). As curvas

estão bem próximas, o que indica boa consistência numérica, que é um fator importante que

indica confiabilidade da função de onda dos orbitais utilizados.

A Figura 3.8 apresenta os parâmetros de assimetria para os treze orbitais de valência do 2-

metoxietanol, calculados na aproximação estático-troca com polarização, comparando as formas

do operador de dipolo de velocidade (curva ciano) e de comprimento (curva magenta).
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Figura 3.8: Parâmetros de assimetria na aproximação estático-troca mais polarização para o
2-metoxietanol nas representações de dipolo de velocidade V (curva ciano) e de comprimento
L (curva magenta) para todos os 13 orbitais de valência.
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Diferentemente das seções de choque, que descrevem a intensidade do processo de fotoionização,

os parâmetros de assimetria fornecem informações sobre a distribuição angular dos fotoelétrons

emitidos, sendo, portanto, grandezas mais senśıveis a detalhes da estrutura eletrônica e da

forma do campo de radiação.

De modo geral, observa-se que todos os orbitais seguem uma tendência semelhante: em baixas

energias, os parâmetros apresentam variações mais acentuadas, muitas vezes partindo de valores

próximos a zero ou mesmo negativos, enquanto em energias mais altas (acima de 30 eV) há

uma convergência gradual para valores próximos de 1,5, o que caracteriza um regime de emissão

cada vez mais anisotrópico e direcionado ao longo do vetor do campo elétrico (ver a Figura 2.2

do β em função do ângulo mostrada em seção anterior). Essa evolução com a energia está de

acordo com o comportamento esperado para moléculas, nas quais a distribuição angular dos

fotoelétrons tende a se tornar mais assimétrica conforme a energia do fóton aumenta.

Nos orbitais mais externos (21A, 20A e 19A), as curvas apresentam um crescimento relativa-

mente suave e monotônico, com pequenos desvios próximos ao limiar de ionização, mas con-

vergindo rapidamente para valores acima de 1,5. Já nos orbitais intermediários (18A a 16A),

observa-se uma maior estrutura nas curvas, com pequenas oscilações ou platôs entre 15 e 25

eV. O orbital 17A, em particular, apresenta uma região de quase estabilização do parâmetro

de assimetria em torno de 1, antes de retomar o crescimento gradual.

Nos orbitais situados entre 15A e 13A, os parâmetros de assimetria também apresentam cres-

cimento progressivo com a energia, mas acompanhado de pequenas irregularidades na região

de baixas energias, o que pode indicar ressonâncias. Nos orbitais mais internos (12A a 10A),

o crescimento inicial é mais rápido, e as curvas tendem a se estabilizar em valores próximos

a 1,5 ainda em energias intermediárias, apresentando comportamento mais regular e menos

estruturado. Esse comportamento distinto reflete a maior dificuldade em descrever a emissão

angular a partir de estados mais fortemente ligados, nos quais os efeitos da forma do potencial

molecular tornam-se mais relevantes.

Quanto à comparação entre as duas representações do operador de dipolo, observa-se que as cur-

vas obtidas nas representações de velocidade e comprimento apresentam excelente concordância,

diferindo apenas levemente. Essa discrepância é mais viśıvel em alguns orbitais intermediários,

como o 17A e o 15A, mas, de forma geral, a proximidade entre os dois resultados indica con-

sistência numérica dos cálculos e robustez da aproximação utilizada.

Em śıntese, a análise mostra que os parâmetros de assimetria apresentam uma evolução sis-

temática com a energia, partindo de valores baixos ou negativos em energias próximas ao limiar

de ionização e convergindo para valores próximos a 1-1,5 em energias mais elevadas. As va-

riações mais significativas ocorrem em orbitais intermediários, onde se observam oscilações e

platôs que refletem a complexidade da dinâmica de emissão eletrônica. A concordância entre

as formas de velocidade e de comprimento reforça a confiabilidade dos resultados obtidos, ao

mesmo tempo em que os perfis observados permitem caracterizar, de forma orbital-resolvida, o

comportamento angular da fotoionização no 2-metoxietanol.
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3.1.8 Comparação entre os resultados das Seções de Choque de Fo-

toionização nos ńıveis SE-L/V e SEP-L/V.

Nesta seção vamos apresentar uma comparação dos resultados de fotoionização nas quatro

aproximações: SE-L/V e SEP-L/V. Na Figura 3.9, apresentamos as seções de choque parciais

de fotoionização para cada um dos 13 orbitais de valência nas 4 aproximações supracitadas.

A comparação entre os resultados nas representações L e V com polarização (SEP) e sem

polarização (SE) mostra que, independente do efeito de polarização, a seção de choque calculada

na representação L é maior que na representação V. Contudo, em geral, os resultados com

polarização apresentam uma proximidade levemente maior entre L e V do que no caso SE.

Para os orbitais que apresentam picos com caracteŕısticas de estados ressonantes, os resultados

na aproximação SEP mostram que os picos são deslocados cerca de 1,6 eV comparados com os

resultados SE, na mesma representação de dipolo. Este fato reforça que os picos na seção de

choque possuem caracteŕısticas de estados ressonantes.
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Figura 3.9: Comparação das seções de choque de fotoionização teóricas por orbital nos ńıveis
SE e SEP para o 2-metoxietanol nas representações de comprimento de dipolo (L) e velocidade
de dipolo (V).
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Na Figura 3.10, comparamos a seção de choque total dada pela soma dos 13 orbitais de valência

nas 4 aproximações: SE-L/V e SEP-L/V. De maneira geral, os 4 ńıveis de cálculo geram um

perfil semelhante, com diferenças de magnitude e posições de picos levemente diferentes. Para

energias abaixo de 16,5 eV, as seções de choque na aproximação SEP fornecem valores levemente

maiores que na aproximação SE. Isso pode ser explicado devido ao fato de que na Figura 3.8,

os picos da seção de choque são deslocados para energias menores. Para energias após o pico,

acima de 18 eV, vemos que os resultados de seção de choque na aproximação SEP são menores

que os obtidos na aproximação SE, na mesma representação de dipolo (L ou V). Até o momento,

não foi encontrado nenhum resultado experimental para comparação. Pela experiência prévia,

por exemplo, em Medeiros et al [88], é esperado que os nossos resultados, nos quatro ńıveis

de cálculos, SE/SEP e L/V, gerem resultados que sirvam de limite superior e inferior para os

valores de seção de choque, onde os resultados experimentais devam ser encontrados entre esses

intervalos.

Figura 3.10: Comparação das Seções de choque de fotoionização total teóricas nos ńıveis SE e
SEP para o 2-metoxietanol nas representações de comprimento de dipolo (L) e velocidade de
dipolo (V).

Na Figura 3.11 foram comparados os parâmetros de assimetria calculados nos 4 ńıveis de

cálculos. Como observado nas Figuras 3.4 e 3.7, os parâmetros de assimetria são menos senśıveis

às representações L ou V do que as seções de choque. A comparação dos resultados nas apro-

ximações SEP e SE nas representações L e V mostram que não há grandes diferenças nos

4 ńıveis de cálculo. Quando existem mı́nimos no parâmetro de assimetria, na aproximação

SEP essas estruturas são deslocadas para energias menores comparados com os resultados do

SE, na mesma representação de dipolo. Isso é coerente com o fato apontado na literatura de
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que mı́nimos no parâmetro de assimetria estão relacionados com estados ressonantes. Como

a molécula de 2-metoxietanol apresente simetria C1, isso não se torna tão evidente quando

comparada a moléculas de alta simetria, como o benzeno [87].

Figura 3.11: Comparação dos parâmetros de assimetria teóricos por orbital nos ńıveis SE e
SEP para o 2-metoxietanol nas representações de comprimento de dipolo (L) e velocidade de
dipolo (V).

58



4 Conclusão

A presente dissertação apresentou uma investigação teórica abrangente do processo de fotoi-

onização da molécula de 2-metoxietanol (CH3OCH2CH2OH), utilizando como principais fer-

ramentas o Método Variacional de Schwinger com Aproximantes de Padé nas aproximações

estático-troca (SE) e estático-troca-polarização (SEP), com suporte computacional do pacote

ePolyScat-E. A partir da caracterização eletrônica detalhada da molécula por meio do método

de Hartree-Fock e da descrição geométrica com o conjunto de bases aug-cc-pVTZ, foi posśıvel

calcular as seções de choque de fotoionização e os parâmetros de assimetria associados à emissão

de fotoelétrons, nas representações de comprimento (L) e velocidade (V), fornecendo uma com-

preensão mais aprofundada da resposta eletrônica da molécula frente à radiação.

Os resultados obtidos evidenciam a importância de se considerar os efeitos de polarização

eletrônica na simulação de processos de fotoionização, uma vez que a inclusão da polarizabi-

lidade no ńıvel SEP gerou deslocamentos energéticos e variações significativas nos perfis das

seções de choque e nos parâmetros de assimetria em comparação ao ńıvel SE. A análise deta-

lhada das contribuições individuais dos orbitais de valência mostrou-se essencial para a iden-

tificação das regiões espectrais dominadas por determinados orbitais, revelando a natureza

orbital-espećıfica da resposta fotoionizante da molécula. Observou-se que o máximo da seção

de choque total se localiza em torno de 18,1 eV na aproximação SE e 17,5 eV na SEP. Os

resultados com SEP são esperados serem mais importantes para energias próximas ao limiar

de ionização ou para os orbitais mais externos. Enquanto que seria esperado que a seção de

choque próxima do pico em torno de 17-18 eV é esperado que o resultado com a aproximação SE

produziria melhor concordância com resultados experimentais, como observado em trabalhos

prévios.

O estudo dos parâmetros de assimetria β forneceu informações relevantes sobre a distribuição

angular dos fotoelétrons, apontando para uma dependência não trivial com a energia do fóton

e com o orbital de origem do elétron ejetado. Essa análise angular é fundamental para ex-

perimentos de espectroscopia resolvida angularmente, onde o comportamento direcional dos

fotoelétrons constitui uma ferramenta para análise da estrutura eletrônica molecular. A com-

paração entre os resultados obtidos nas representações de comprimento e velocidade de dipolo

indica a consistência interna dos cálculos, evidenciando a robustez do modelo teórico adotado.

Este comportamento de β em função da energia pode ser utilizado pelos experimentalistas

para a identificação dos orbitais moleculares, no caso da medição da distribuição angular dos
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fotoelétrons.

Além das contribuições espećıficas para a caracterização do 2-metoxietanol, os resultados aqui

apresentados têm implicações mais amplas para o entendimento de processos de fotoionização

em moléculas orgânicas oxigenadas, com potencial aplicação em áreas como astroqúımica,

qúımica ambiental e farmacologia. A relevância do 2-metoxietanol como modelo de éteres

e álcoois em estudos de toxicidade e reatividade qúımica reforça a importância de investigações

teóricas que elucidem suas propriedades espectroscópicas fundamentais.

Em śıntese, este trabalho avança na compreensão dos mecanismos quânticos que regem a fo-

toionização do 2-metoxietanol, ao mesmo tempo em que contribui metodologicamente para a

consolidação do uso do Método Variacional de Schwinger com Aproximantes de Padé e do pacote

ePolyScat-E como ferramentas confiáveis na simulação de processos moleculares fotoinduzidos.

Esperamos que os nossos resultados nos quatro ńıveis, SE/SEP e L/V, estimulem grupos ex-

perimentais a medir a seção de choque de fotoionização do 2-metoxietanol, bem como para a

interpretação de espectros de fotoionização obtidos em ambientes laboratoriais ou astrof́ısicos.

O presente trabalho concentrou-se na análise da seção de choque de fotoionização e na deter-

minação dos parâmetros de assimetria para o confôrmero mais estável do 2-metoxietanol, forne-

cendo uma base teórica sólida e contribuindo para a compreensão das propriedades eletrônicas

dessa espécie molecular. No entanto, para uma descrição mais abrangente e realista do compor-

tamento fotoionizável da molécula, torna-se necessário estender a investigação para os demais

confôrmeros energeticamente acesśıveis.

Como perspectiva imediata, propõe-se o estudo sistemático dos outros confôrmeros do 2-

metoxietanol, a fim de avaliar como suas diferenças estruturais impactam as seções de choque

de fotoionização e os parâmetros de assimetria associados. A comparação entre os perfis espec-

troscópicos de cada confôrmero poderá esclarecer a influência da geometria molecular sobre os

processos de ionização e sobre as contribuições orbitais espećıficas.

Além disso, é fundamental considerar o efeito da população térmica dos confôrmeros, espe-

cialmente em condições experimentais onde múltiplas conformações coexistem. Dessa forma,

uma etapa futura essencial será a construção de uma média ponderada termicamente, utili-

zando distribuições de Boltzmann para estimar a população relativa de cada confôrmero em

função da temperatura. Essa abordagem permitirá uma comparação mais direta com dados

experimentais, além de oferecer uma descrição mais fiel das condições f́ısicas reais.

Em conjunto, tais extensões do presente trabalho contribuirão para um entendimento mais

completo da dinâmica fotoeletrônica do 2-metoxietanol e para o refinamento das metodologias

teóricas aplicadas à fotoionização de moléculas com múltiplos confôrmeros.
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