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RESUMO

Existe uma preocupagdo constante por parte das empresas jornalisticas com respeito
a0 tempo necessario para os jornais serem entregues a seus assinantes, pois € preciso
que estes os recebam em suas casas antes de sua saida para o trabalho. Neste trabalho,
se analisou um problema real existente em uma empresa de Curitiba e se procurou,
inicialmente, traduzi-lo de forma matemdtica. Buscou-se, entdo, uma solucido para a
melhoria do sistema em vigor, com a pesquisa de locais que fossem mais adequados
para servirem como postos de distribui¢io. Com o intuito de reduzir os tempos
computacionais demandados para encontrar uma solucdo 6tima quando sdo utilizadas
as técnicas da Programacdo Linear Inteira, foram empregados alguns procedimentos
heuristicos, obtendo-se solucdes que, embora boas, possam nio ser as melhores. Foi
abordado o algoritmo de Teitz e Bart, que mostrou ser eficiente e simples de ser
implementado; depois se estudou a meta-heuristica Simulated Annealing, que exigiu
tempos computacionais mais elevados, porém atingindo os mesmos resultados do
algoritmo anterior; foi estudado também o Algoritmo Genético, que apresentou
resultados inferiores aos conseguidos pelos dois primeiros algoritmos. Visando achar a
melhor forma dos bairros serem atendidos pelos postos de distribui¢do, foram
estudados ainda alguns métodos estatisticos da Andlise de Agrupamentos; 0s
resultados alcangados, entretanto, se mostraram menos apropriados para o caso em
estudo, em virtude de ndo ser considerado o nimero de assinantes em cada bairro.
Ap6s serem definidas as melhores solucdes, foram comparados esses resultados com o
sistema atualmente empregado pela empresa, tendo sido constatada uma redugio
significativa na soma ponderada das distincias a serem percorridas pelos entregadores.



ABSTRACT

Journalistic companies are always worried about the time of delivery of the daily
newspapers to their subscribers, because they need to receive them in their houses
before the exit to the work. In this study an real problem was analyzed in a company
located in Curitiba and it was sought, initially, to translate it in a mathematical way.
Then, a solution was looked for improving the current system by searching the
appropriate places for serving as points of distribution and by a new grouping of the
neighborhoods supplied by the points. Some heuristic procedures were used, in order
to reduce computational times by finding the solution through the techniques of Lineal
Programming, getting solutions that can be not the best ones; firstly the algorithm of
Teitz and Bart were analyzed and showed efficiency, leading to the best solutions; then
the Simulated Annealing algorithm was studied and demanded higher computacional
times to reach the same solutions of the previous algorithm; Genetic Algorithm was
also studied and presented worst results than those gotten by the first two algorithms.
Seeking to analyze the best form of the neighborhoods be assisted by the distribution
points, some statistical methods of Clusters Analysis was studied; however, the
reached results were less appropriate for the case in study, because the number of
subscribers was not considered in each neighborhood. After the best solutions were
defined, those results were compared with the system used currently by the company;
an important reduction in the total distance to be traveled by the newspapers deliverers
was verified.



1 INTRODUCAO

1.1 OBJETIVOS DO TRABALHO

O objetivo deste trabalho foi o de verificar a possibilidade de melhoria no
servico de entrega de jornais a seus assinantes, mediante a busca de locais mais
adequados para servirem de postos de distribui¢ao e com um melhor agrupamento dos
bairros atendidos pelos postos. Sob outro aspecto, pode ser considerado que este
trabalho teve como objetivo primario estudar a utilizacdo e o comportamento de alguns
métodos matematicos frente a um determinado problema real. O que se procura € obter
uma solucao mais apropriada que aquela utilizada atualmente.

Para atingir esse objetivo, foram analisadas diversas técnicas de Pesquisa
Operacional, visando a obtencdo de uma solugdo quase 6tima, através de métodos
heuristicos, com economias de tempo computacional, e sdo abordados procedimentos
estatisticos da Andlise Multivariada, na parte referente 2 Andlise de Agrupamentos ou
formacao de clusters.

Outrossim, se procura comparar os resultados obtidos com a utilizagdo
daquelas heuristicas com a metodologia usada atualmente e mostrar a viabilidade da

aplicagdo prética dos resultados obtidos.

1.2 IMPORTANCIA DO TRABALHO

A principal importancia desse trabalho € a apresentacdo de uma proposta
vidvel para reduzir a distdncia total percorrida pelos entregadores de jornal aos
assinantes; assim, serd permitido que os jornais sejam entregues com a devida
antecedéncia mesmo quando, por qualquer motivo, exista algum atraso no hordrio de
inicio da sua distribuicao.

Complementarmente, se espera obter uma reducdo dos custos operacionais,
pela diminui¢do dos veiculos e do pessoal envolvidos na tarefa de distribuicdo, sendo

mantida, contudo, a mesma qualidade dos servicos prestados.



[\

1.3 ESTRUTURA DO TRABALHO

Este trabalho se divide em cinco capitulos. No Capitulo 1 € apresentada uma
introdugao sobre o assunto a ser desenvolvido e a sua importancia.

No Capitulo 2 é descrito o problema real, como ele € resolvido atualmente, e
as dificuldades encontradas para seu equacionamento e andlise.

No Capitulo 3 é realizada uma revisdo da literatura disponivel, sendo
comentado o problema de localizacdo de facilidades e as medidas de similaridade, e
ainda consta uma descri¢do dos algoritmos abordados no estudo.

No Capitulo 4 é mostrada a implementacdo dos algoritmos descritos no
Capitulo 3 e realizada uma apreciacdo dos resultados obtidos com a sua aplicagao.

No Capitulo 5 sdao apresentadas as conclusdes e formuladas sugestdes para

estudos futuros, em continuidade ao presente trabalho.



2 O PROBLEMA REAL

2.1 DESCRICAO DO PROBLEMA

A imprensa é um dos meios de comunicag¢do de massa, sendo constituida de
publicacdes periddicas, que divulgam informacdes, comentdrios e imagens gréficas
referentes ao que acontece em uma cidade, no pais € no mundo, os quais sdo de
interesse para a vida dos individuos e das comunidades.

Hoje, quando se fala em imprensa, deve-se ter presente que se trata de uma
poderosa industria. O jornalismo ¢ uma atividade complexa, que abrange desde a
simples coleta da noticia até a sua difusdo organizada, através de empresas editoras,
cuja forca e prestigio se baseiam na circulagdo, representada pelo nimero de
exemplares vendidos e pelo volume de antncios.

De certa forma, pode-se dizer que, na confec¢do de um jornal, existem cinco
etapas:

a) Redacdo: Trabalho dos profissionais que colhem ou redigem noticias,
escrevem reportagens e editoriais, corrigem ou reescrevem, ilustram e
diagramam as matérias, fotografam, revéem os originais compostos. Esse
trabalho normalmente € iniciado pela manha e se estende até a hora do
fechamento do jornal, tarde da noite.

b) Fotolitagem: Processo de geracdo de filme com as reportagens e imagens,
e da preparacgdo das chapas para a impressao.

c¢) Impressio: E a etapa em que as chapas para impressdo sio encaixadas e
sdo definidas as cores; as rotativas imprimem, cortam e dobram os rolos
de papel, deixando pronto o jomal.

d) Expedicio: E o processo de agrupamento dos diversos cadernos do jornal,
da colocacao dos encartes e da embalagem.

e) Distribuicio: E a etapa de entrega dos jornais aos assinantes e as bancas.
A distribui¢do se realiza em duas fases: primeiro os cadernos dos jornais
sdo encaminhados até os postos de distribuicdo e, depois, € feita a entrega

domiciliar dos jornais aos assinantes.



Este trabalho abordou a segunda fase dessa tltima etapa, quando os jornais
sdo entregues aos assinantes. Para sua efetivagdo, os dados necessdrios foram
fornecidos por uma empresa jornalistica de Curitiba, com tiragem média, de segunda-
feira a sdbado, de 57.000 unidades, e circulacdo paga de 47.000 exemplares. Aos
domingos, quando a tiragem aumenta para 110.000 unidades, a circulacdo paga € de
cerca de 90.000 exemplares. O levantamento de dados, somente na cidade de Curitiba,
indicou que, na ocasido, foram entregues 28.725 jornais a seus assinantes, conforme
consta no Anexo 1.

O setor de distribuicdo do jornal possui, atualmente, uma estrutura composta
de 7 coordenadores de drea, 18 auxiliares e 178 entregadores. Os jornais sdo enviados
do setor de expedi¢do para nove postos de distribuicdo, por intermédio de furgdes, a
medida que vao sendo concluidos. Os postos de distribui¢do atuais foram localizados,
com o incremento do nimero de assinantes, em pontos da cidade de Curitiba que
permitissem a realizacdo de todas as tarefas que lhe sdo exigidas. O estabelecimento de
novo posto ¢ definido quando esse nimero de assinantes cresce.

Na tabela 2.1 estdo relacionados os postos de distribuicdo atuais, seus
enderecos € numero de assinantes e, ainda, a localizacdo geogréfica dos mesmos,
referente a um sistema de coordenadas cartesianas ortogonais, estabelecido em um

mapa de Curitiba, mostrando-se os valores das abscissas (X) e das ordenadas (X,).

TABELA 2.1 - ENDEREGCOS DOS POSTOS DE DISTRIBUICAO - SITUACAO ATUAL

POSTOS ENDERECOS Xlggﬁiﬁ.r[éi Xy (u.q.) X2 (u.q.)
Batel Av. Batel com Rua Teixeira Coelho 2.363 10,43 23,09
Champagnat Rua Des. Otavio do Amaral, 738 5.371 10,57 24,34
Agua Verde Rua Prof. Doracy Cesarino, 49 4,728 10,52 19,95
Centro Rua José Loureiro, 770 2.427 13,03 24,05
Juvevé Av. Joao Gualberto, 1576 4,646 14,05 26,06
Hauer Av. Mal Floriano Peixoto, 5517 3.350 15,23 18,66
Bacacheri Rua Amadeu A. Yassim,386 2.078 17,95 26,00
Capap Raso Rua Prof. Doracy Cesarino, 49 1.233 10,52 19,95
Cabral Av. Jodo Gualberto, 1576 2.529 14,05 26,06

Observacao: u.q. significa unidade de quadricula e é definida no item 2.2.



Embora sejam considerados nove postos de distribui¢ao, independentes entre
si, na realidade sdo somente sete enderecos, pois os postos Agua Verde e Capido Raso
estao situados no mesmo local, no Portao, e os postos Juvevé e Cabral estdo situados
no mesmo local, no Juvevé.

O hordrio previsto para a chegada dos jornais aos postos ¢ as 02h30min, e a
entrega domiciliar precisa estar concluida, no maximo, até as 06h30min. Em cada
posto existe um nimero variado de entregadores, que fazem, habitualmente, uma ou
mais viagens por dia. No centro, as entregas sao feitas a pé, nos bairros, de bicicleta, e
nos locais mais afastados, de motocicleta.

De acordo com a empresa jornalistica consultada, os bairros sdo atendidos,

em cada posto de distribuicdo, da forma indicada no quadro 2.1 a seguir:

QUADRO 2.1 - BAIRROS ATENDIDOS EM CADA POSTO DE DISTRIBUICAO - SITUACAO ATUAL

Posto Batel:
Batel - Bigorrilho (parcial) - Campina da Siqueira - Seminario

Posto Champagnat (Bigorrilho):

Bigorrilho - Bom Retiro - Butiatuvinha - Campo Comprido - Cascatinha - Cidade Industrial (Parcial) - Lamenha
Pequena - Mercés - Mossungué - Orleans - Pilarzinho - Santa Felicidade - Santo Inécio - S&0 Braz - Sdo
Francisco - Sao Jodo - Vista Alegre

Posto Agua Verde:
Agua Verde - Parolin - Portéo - Rebougas - Santa Quitéria - Vila Guaira - Vila Izabel

Posto Centro:
Centro

Posto Juvevé:
Alto da Gldria - Alto da XV - Ahu (Parcial) - Centro Civico - Cristo Rei - Jardim Botanico - Juvevé

Posto Hauer:
Alto Boqueirao - Boqueirdo - Campo de Santana - Caximba - Guabirotuba - Hauer - Jardim das Américas -
Pinheirinho - Sitio Cercado - Uberaba - Umbara - Xaxim (parcial)

Posto Bacacheri:
Atuba - Bairro Alto - Capéo da Imbuia - Cajuru - Hugo Langue - Jardim Social - Prado Velho - Taruma

Posto Capéo Raso:
Augusta - Capéao Raso - Cidade Industrial (parcial) - Fazendinha - Ganchinho - Novo Mundo - Portéo (parcial) -
Riviera - Sdo Miguel - Tatuquara - Vila Fanny - Vila Linddia - Xaxim (parcial)

Posto Cabral:
Abranches - Ahu (parcial) - Bacacheri - Barreirinha - Boa Vista - Cabral - Cachoeira - Hugo Langue (parcial) -
Santa Candida - Sao Lourengo - Taboao - Tingui.




Para possibilitar uma andlise, sob o aspecto matemadtico, os bairros foram
numerados, por ordem alfabética, conforme mostrado no Anexo 1; na tabela 2.2,
constam os nomes dos postos com a relacio numérica dos bairros atendidos, as
respectivas quantidades de assinantes e de entregadores, e também a média de jornais

por entregador, em cada posto.

TABELA 2.2 - BAIRROS ATENDIDOS EM CADA POSTO DE DISTRIBUIGAO - SITUAGAO ATUAL

, . MEDIA DE
POSTOS DE NUMERO DE NUMERO DE
_ BAIRROS JORNAIS POR
DISTRIBUICAO ASSINANTES | ENTREGADORES

ENTREGADOR

Batel 12-21-65 2.363 16 147,69
Champagnat 18-15-17-22-26-30-43-45-46-48-50-57- 59-60-61-

62-74 5.371 23 233,52

Agua Verde 2-36-49 - 52-54-58-73 4.728 18 262,67

Centro 28 2.427 15 161,80

Juvevé 3-5-6-29-31-39-42 4.646 15 309,73

Hauer 4-16-23-27-35-37-40-51-66-71-72-75 3.350 29 115,52

Bacacheri 7-10-20-24-38-41-53-68 2.078 22 94,45

Capéao Raso 8-25-32-33-34-44-47-55-64-69 1.233 24 51,38

Cabral 1-9-11-14-18-19-56-63-67-70 2.529 16 158,06

TOTAL 28.725 178 161,38

Assim, por exemplo, o posto de distribuicio Champagnat, atende aos bairros 13,
15,17, 22, 26, 30, 43, 45, 46, 48, 50, 57, 59, 60, 61, 62 e 74, que possuem ao todo 5.371
assinantes. Para atender aos assinantes dessa drea, estdo disponiveis 23 entregadores, que
fazem uma entrega média de 233,52 jornais por entregador.

Os 75 pontos representativos dos bairros e dos postos estdo indicados na
figura 2.1, a seguir, onde os pontos vermelhos representam os bairros € 0s pontos azuis
representam aqueles bairros que servem de postos de distribuicao.

A figura 2.2 apresenta um mapa de Curitiba onde estdo mostrados os bairros
atendidos em cada posto de distribui¢ao.

O problema real é achar quais sao os bairros mais indicados para servirem de
postos de distribui¢do, mediante a obtencdo da menor soma ponderada das distancias
entre os bairros. Para isso, sdo analisadas as hipdteses de existirem desde 5 até 10
postos de distribuicao.

Estabelecidos esses postos, o problema € definir como os bairros devem ser

atendidos por eles, isto €, a forma dos bairros se agruparem em torno dos postos.



ORDENADAS

FIGURA2.1- LOCALIZACAO DOS BAIRROS E DOS POSTOS DE
DISTRIBUICAO - SITUAGAO ATUAL
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FIGURA 2.2 - MAPA DE CURITIBA MOSTRANDO OS BAIRROS ATENDIDOS EM CADA POSTO DE
DISTRIBUIGCAO - SITUAGAO ATUAL
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2.2 DIFICULDADES ENCONTRADAS

A primeira dificuldade encontrada foi quanto a impossibilidade de se
conhecer os enderecos de todos assinantes; por questdes particulares da empresa
pesquisada, somente foi fornecido o nimero de assinantes por bairro da cidade. Em
virtude disso, houve a necessidade de se estabelecer locais que pudessem ser
considerados como representativos dos mesmos; esses locais foram definidos de forma
bastante subjetiva, escolhendo-se, de preferéncia, o centro geométrico da drea de cada
bairro; para a situacdo atual, quando algum bairro faz parte de dois postos de
distribuicao, a sua alocagdo foi efetuada no posto situado mais préximo, pelo motivo
de ndo se ter conhecimento das quantidades parciais de assinantes.

Acresce o fato de que ndo sao conhecidas as distancias reais que cada
entregador estd percorrendo; as distincias internas em cada bairro podem até ser mais
relevantes, inclusive através do exame das rotas percorridas por entregador. Neste
trabalho sdo consideradas apenas as distincias entre os pontos representativos de cada
bairro e os postos de distribuigdo.

Por sua vez, a tarefa de caracterizacdo dos pontos representativos de cada bairro
teve de ser realizada com a implantacdo de um sistema de coordenadas cartesianas
ortogonais sobre um mapa de Curitiba, no qual cada quadricula equivale a
aproximadamente 900 metros; desta forma, a unidade de comprimento utilizada neste
trabalho, se tornou a unidade de quadricula, ou, simplesmente, u.q.. As coordenadas
cartesianas ortogonais dos pontos representativos de cada bairro estdo mostradas no
Anexo 2.

Ap6s serem resolvidos os problemas anteriores, foi possivel o
desenvolvimento de programas especificos, usando o software MATLAB, para a

utilizacao e andlise dos algoritmos descritos no Capitulo 4.
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3 O PROBLEMA MATEMATICO E DESCRICAO DOS ALGORITMOS
UTILIZADOS

3.1 INTRODUCAO

Visando atender aos objetivos enunciados no Capitulo 1, procurou-se traduzir o
problema real em forma matemadtica. A parte da Pesquisa Operacional que trata de
problemas onde se busca uma combinacdo de valores discretos das varidveis, de forma a
otimizar uma certa funcdo objetivo, é chamada de Otimizacdo Combinatéria. Sendo,
normalmente, muito grande o numero das possiveis combinagdes de valores, esses
problemas sdo de dificil tratamento sob o aspecto computacional. Entretanto, existem
certos métodos que fogem completamente da abordagem cldssica de otimizagdo, visando
a obtencdo de solugdes aproximadas, porém aceitdveis.

Uma importante classe de problemas dentro da Otimiza¢do Combinatodria € a
dos problemas de localizacao de facilidades, na qual se encaixa o problema da
melhor localizagdo dos postos de distribui¢do de jornais. A busca da melhor forma dos
bairros se agruparem para serem atendidos pelos postos de distribuicao € um

problema de agrupamento (formacao de clusters).

3.2 REVISAO DA LITERATURA DISPONIVEL

COOPER, 1963, apresentou um trabalho contendo um método exato € um
método heuristico para obter solucdes de problemas de locacio e de alocagdo. Tendo em
vista 0 numero elevado de cdlculos necessdrios para a sua resolugdo, foi sugerida a
pesquisa de outros métodos aproximados para o caso de problemas com maior magnitude.

Por sua vez, HAKIMI, 1964, generalizou os conceitos de centro e de vértice-
mediana de um grafo. Os resultados permitiram obter a localiza¢do 6tima para um
centro de comutacdo em uma rede de comunicacdo. HAKIMI, 1965, generalizou o
conceito de mediana em um grafo ponderado para multiplas medianas; mostrou, entio,
que a distribuicdo 6tima de p centros de comutagdo, em uma rede de comunicacdo, é

correspondente a localizacdo de p-medianas de um grafo ponderado.
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Um método aproximado para se encontrar a mediana de um grafo ponderado
foi proposto por TEITZ e BART, 1968. Esse método foi utilizado neste trabalho e esta
apresentado no item 3.4.1.

O modelo das p-medianas também foi aplicado por BEZERRA, 1995, para a
localizacdo de postos de coleta para apoio ao escoamento de produtos extraidos do
babacu, a fim de racionalizar o transporte entre o local de coleta e o local de
processamento, no estado do Piaui.

LIMA, 1996, utilizou o mesmo método para a distribuicdo espacial de
servicos especializados de satide em uma determinada regido do estado de Santa
Catarina, quando propds uma estrutura hierdrquica, com unidades hospitalares locais,
centros intermedidrios e um centro de referéncia.

SOUZA, 1996, desenvolveu modelos quantitativos para o dimensionamento,
localizacdo, e escalonamento no tempo, de sistemas com servicos de atendimento
emergencial, para os quais ¢ exigida rapidez na chegada ao local da ocorréncia.

LOBO, 1998, analisou a distribuicdo espacial de creches municipais ja
existentes, para sugerir locais para instalacdo de novas creches em Florianépolis,
aplicando o método de cobertura de conjuntos.

NUNES, 1998, propds uma solucdo para o problema de roteirizagdo de
veiculos no transporte dos funciondrios de uma empresa, de Curitiba para Araucdria,
utilizando o Algoritmo Genético para resolver o problema das p-medianas.

MOCELLIN et al, 1999, publicaram artigo sobre algoritmos € modelos para
roteamento de veiculos, com aplicacdo ao caso da entrega domiciliar de jornais, no Rio
de Janeiro, onde foi utilizado o Algoritmo Genético.

SAMPAIO, 1999, elaborou um plano de otimizacdo em uma rede escolar
municipal em Curitiba, utilizando as técnicas do Simulated Annealing e do Algoritmo
Genético, considerando a localizacdo da residéncia dos alunos como um fator

fundamental na determinagdo da posi¢ao ou ampliacdo de uma escola.



3.3 OPROBLEMA DE LOCALIZACAO DE FACILIDADES

3.3.1 Introducao

Grafo ¢ um conjunto constituido de pontos (ou vértices) e linhas (ou arcos)
que ligam todos ou alguns desses pontos (ou vértices). Quando se associam valores (ou
pesos) diferentes a cada ponto (ou vértice), entdo se tem um grafo ponderado.
Existem diferentes metodologias para a elaboracdo de modelos para problemas de
localizacdo de facilidades. De acordo com CHRISTOFIDES, 1975, em certos
problemas associados com a alocacio de facilidades em um grafo, o que se deseja é
localizar uma facilidade de maneira que seja minimizada a soma de todas as menores
distancias da facilidade aos pontos (ou vértices) do grafo. A localizacdo 6tima da
facilidade € chamada mediana do grafo e, devido a natureza da funcio objetivo, essa
classe de problemas € referida como um problema de localizacao de soma minima.

Em particular, existe o problema de se achar as p-medianas de um dado
grafo; este é o problema da localizacio 6tima de um certo nimero p de facilidades, de
tal forma que a soma das menores distancias aos pontos (ou vértices) do grafo, a partir
da facilidade mais préxima, seja minimizada.

O problema de se achar as p-medianas pode ser ampliado pela associagao de
um peso a cada ponto (ou vértice); assim, o objetivo a ser minimizado se torna a soma
das distancias ponderadas. Sdo as chamadas alocacoes ponderadas, ou seja, a
determinacao das p-medianas de um grafo ponderado.

No item 3.3.3 € apresentado o modelo matematico para a formulacdo do
problema das p-medianas, que possibilita se obter uma solugio exata; entretanto, para
sua resolucdo, geralmente ¢é exigido um grande tempo computacional ou,
simplesmente, ele € invidvel.

Por outro lado, existem diversos métodos aproximados que permitem

resolvé-lo, como o Algoritmo de Teitz-Bart, que serd ventilado no item 3.5.1.
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Ainda existem diversas heuristicas derivadas da natureza, as chamadas meta-
heuristicas, que sao aplicdveis a problemas do tipo do presente estudo. Sdo analisadas
as meta-heuristicas Simulated Annealing, no item 3.5.2, e Algoritmo Genético, no item
3.5.3. E ainda efetuada uma apreciacio sobre métodos estatisticos de Andlise de
Agrupamentos, no item 3.5.4., para efeito de comparacdo com seus resultados, tendo

em vista que o problema em questio envolve a formagao de agrupamentos.

3.3.2 O problema das p-medianas

MINIEKA, 1978, fornece definicdes bdsicas a respeito do estudo de
medianas. Considerando um grafo, definido por um conjunto de m pontos (ou vértices)
e um conjunto de arcos que ligam todos esses pontos (ou vértices), entdo mediana ¢
qualquer ponto (ou vértice), cuja distancia total a todos os outros pontos (ou vértices)
seja a menor possivel.

Estabelecida a matriz das distincias entre os pontos (ou vértices), entdo a
soma dos elementos da i-ésima linha € igual a soma das distancias do ponto (ou
vértice) 1 para todos os outros vértices. Conseqiientemente, uma mediana corresponde
a qualquer fila da matriz que possua a menor soma.

Quando € preciso selecionar diversas locagdes de facilidades, cada ponto
(ou vértice) € associado com a aloca¢do mais préxima dele. Trata-se do caso de
medianas multiplas.

Para se obter uma solucdo final, as técnicas indicadas para esses problemas
pertencem a Programacdo Linear Inteira. HAKIMI, 1965, ¢ GOLDMAN, 1969,
apresentaram resultados importantes ligados a medianas multiplas. Para isso é preciso
supor que se esteja procurando um certo conjunto de p locagdes, p > 1, de forma que
cada ponto (ou vértice) esteja associado com a locagdo mais proxima dele e que seja
minimizada a distincia total de cada locagdo aos vértices associados com ela. Tal

conjunto de pontos € chamado de p-medianas.
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3.3.3 Formulagdo Matemdtica

O problema das p-medianas, usando-se Programacao Linear Inteira, pode ser
assim expresso matematicamente (CHRISTOFIDES, 1975):

Pretende-se minimizar a funcdo objetivo

n 11
2EDW,

i=1 j=1

onde Dj € a distancia do ponto (ou vértice) X; ao ponto (ou vértice) Xj, W; € a

ponderacao de cada ponto (ou vértice) X;, e a variavel de decisdo € &, com

jj b

5:‘/ = 1, quando o ponto (ou vértice) X; € alocado ao ponto (ou vértice) X;
51:,. = (0, no caso contrario,

e com a funcio sendo sujeita as seguintes restricoes:

mn

a) 25]7 = 1, para j = 1,2,....m (que garante que todo ponto (ou vértice) X;
i=1
seja alocado a somente um ponto ( ou vértice) que seja mediana X;).

g

b) Zéﬁ = p (que garante que existam, exatamente, p pontos (ou vértices)

i=1

que sejam medianas).
c) &, <¢,, para todo i, j = 1,2,...,m (que garante que as alocagdes sejam
feitas somente a pontos (ou vértices) que sejam medianas).

d) £,=0o0u 1, ou seja, as varidveis devem ser bindrias.

A vantagem desse modelo € a possibilidade de se obter a solugcdo exata
(solug¢do 6tima) do problema; contudo, quando o ndmero de varidveis e/ou de
restricdes ¢ muito grande, o tempo computacional para resolver o problema € elevado,

tornando as vezes invidvel sua solugio.

3.4 MEDIDAS DE DISTANCIA E DE SIMILARIDADE

Um aspecto importante a ser definido, para as técnicas utilizadas em problemas
de Otimizacdo Combinatéria e de Andlise de Agrupamentos, € o critério de medida da
distancia ou da similaridade entre dois objetos, isto é, como quantificar o quanto eles sdo

parecidos. Nesse sentido, podem ser citadas, entre outras, as seguintes métricas:



a)

b)

d)

e)
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Distancia euclidiana:

Distancia euclidiana ¢ a métrica mais conhecida para indicar a
proximidade entre dois objetos A e B. Para cada ponto do plano, se
considera um vetor X de duas coordenadas reais e o valor da distincia é,

entao, exXpresso por:

D(A,B) = \/Z[Xi(A) - X,(B)f

Coeficiente médio da distancia euclidiana:
O coeficiente médio da distancia euclidiana é uma medida derivada dessa
anterior, dividindo-se a soma dos quadrados das diferengas das

coordenadas pelo numero de coordenadas envolvidas. Assim, tem-se:

D(AB) = [N [X,(A)-X,(B) /2
i=l
Distancia euclidiana padronizada:
Quando as grandezas ndo sdo compardveis, € introduzido o conceito do
desvio-padrao s; das coordenadas X;; a distancia euclidiana padronizada é

expressa por:

D(A,B) = \/i[xf(A)—X,-(B)]

i=1 S;

1

Distancia euclidiana ponderada pela matriz de covariancias ou
Distancia de Mahalanobis:

Distancia de Mahalanobis € a distancia euclidiana ponderada pela matriz
V de covariancia das coordenadas; em notacao vetorial, a sua expressao ¢é
dada por:

D(A.B) = [(X(A) - X(B))'V'(X (A) - X(B)]"*

Distancia ''City-Block' ou ''Manhattan', ou ainda Métrica do

Quarteirao:
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No calculo da distancia entre dois pontos, também € usada a soma do
valor absoluto das diferencas das coordenadas; essa distancia, chamada
comumente de Métrica do Quarteirdo, é dada pela expressao:

~

D(AB) = Y 1X,(A)-X,(B)]

i=1
A vantagem dessa métrica reside no fato de que € possivel se efetuar uma
pequena corre¢do do erro cometido ao se considerar os caminhos, dentro
de uma cidade, como sendo efetuados em linha reta, como ocorre quando

se utiliza a distancia euclidiana e outras métricas dela derivadas.

f) Meétrica de MinkowskKi:

A Meétrica de Minkowski € expressa por:

i=l

) n
D(A,B) = [Zm | X.(A)— X,(B) |"}

onde W; representa as ponderacdes de cada varidvel e k € um nimero

inteiro escolhido adequadamente.

3.5 ALGORITMOS UTILIZADOS

Os algoritmos utilizados neste trabalho estdo apresentados nos itens 3.5.1 a
3.5.4.

3.5.1 Algoritmo de Teitz e Bart

Um método heuristico, baseado na substitui¢ao de vértices, foi descrito por
TEITZ e BART, 1968. O algoritmo ¢ iniciado com a escolha aleatéria de um conjunto
Sy, formado por p pontos (ou vértices), entre 0s m pontos (ou vértices) de um grafo, o
qual serd considerado como a primeira aproximacao do conjunto procurado S das p
medianas; calcula-se, a seguir, a soma ponderada D, das menores distancias dos m

pontos (ou vértices) a esse conjunto S.

O método verifica, entdo, se qualquer outro ponto (ou vértice) do grafo pode

substituir um dos pontos (ou vértices) de S;, comparando a nova menor soma
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ponderada das distancias D com a soma D, anterior. Caso esta nova soma seja inferior
A soma anterior, dai esta serd considerada a nova soma minima e, assim, O Nnovo
conjunto serd uma melhor aproximagao do conjunto das p medianas; caso contrdrio, o
ponto (ou vértice) sera descartado.

Repetem-se essas substituicdes e comparagdes até que seja obtido um
conjunto em que nenhuma substitui¢do de pontos (ou vértices) produza uma menor
soma ponderada das distancias minima. O conjunto final serd uma aproximacao da
solugdo étima.

O algoritmo de Teitz e Bart pode ser descrito através dos seguintes passos:

Passo 1
Selecione um conjunto S, de p pontos (ou vértices) do conjunto X de pontos
(ou vértices), de modo a formar uma aproximacao inicial das p-medianas. Rotule todos

0s pontos (ou vértices) X; ¢ Sy como "ndo-analisados".

Passo 2
Selecione algum vértice "nao-analisado" e, para cada ponto (ou vértice)

Xj e X =S8y, calcule a redugdo A, encontrada na soma ponderada das distancias.

Passo 3
Encontre A;, = max [A,], para todo X; e S,
Se A, < 0, rotule X; como "analisado" e volte para o Passo 2;
Se A,,> 0, o conjunto S, € substituido e entdo rotule X; como "analisado” e

volte para o Passo 2.

Passo 4

Repita os Passos 2 e 3 até todos os pontos (ou vértices) em X - S, serem
analisados; considera-se realizado um ciclo. Se nenhuma substituicio de ponto (ou
vértice) for realizada, rotule todos os pontos (ou vértices) como "ndo-analisados" e

volte ao Passo 2.

Passo 5

Pare. O conjunto atual é considerado o conjunto das p-medianas.
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3.5.2  Simulated Annealing

Entre as diversas técnicas heuristicas modernas, cujo objetivo € a resolucio de
problemas de Otimizacdo Combinatéria, se destaca o algoritmo chamado Simulated
Annealing. Suas 1déias bésicas foram primeiramente publicadas por METROPOLIS et al,
1953, em um algoritmo para simular em computador o resfriamento de um material, no
processo conhecido como annealing. Quando um material sélido é aquecido apds seu
ponto de fusdo e depois resfriado até um estado sélido, as propriedades estruturais do
solido resfriado dependerdo da taxa de resfriamento. O resfriamento gradual do material, a
partir de uma temperatura inicial elevada, o leva a estados minimos de energia; esses
estados se caracterizam pelo fato de somente ser atingida uma perfei¢ao estrutural no
estado sélido quando o resfriamento € gradual. No caso de resfriamento rdpido ou
repentino, o material se cristaliza com uma energia, dita "minima local" que,
freqiientemente, se caracteriza por possuir um certo nimero de imperfei¢des estruturais.

A idéia do Simulated Annealing origina-se da combinacdo dessas
observacdes sobre a fisica dos materiais com um procedimento computacional,
visando simular o comportamento de um conjunto de 4tomos em condi¢des de
temperatura fixa.

Essa simulacdo compreende uma seqiiéncia de passos; a cada passo, é dado
um pequeno deslocamento em um dos dtomos e calculada a variacdo de energia AE
que o sistema sofre com aquele deslocamento. Quando a energia decresce, AE<0, o
deslocamento € incorporado ao estado do sistema e utilizado para o passo seguinte.
Caso contrdrio, uma caracteristica propria do Simulated Annealing é a de aceitar
movimentos que aumentem o valor da fungao objetivo, mediante a utilizagao de uma
estratégia de aceitacdo probabilistica, visando evitar minimos locais. A probabilidade é
dada pela expressao

AE
PAE)= ¢ T,
Enquanto a temperatura T € elevada, quase toda configuracdo ¢ aceita pois a

probabilidade se torna praticamente igual a 1(um). A medida que o valor de T
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decresce, a aceitagdo de configuragio de maior energia torna-se cada vez mais
improvavel, até que, nos ultimos estdgios da simula¢do, somente sdo aceitas
configurac¢des que representem um decréscimo no valor da funcio objetivo.

Todo esse processo € repetido um certo nimero de vezes em cada temperatura,
e a temperatura decresce até o sistema permanecer em um estado constante.

KIRKPATRICK et al, 1983, e CERNY, 1985, mostraram, de forma
independente, que o algoritmo de Metropolis pode ser aplicado a problemas de
Otimizacdo Combinatdria, com o objetivo de se obter a convergéncia para uma
solugdo étima.

De acordo com DOWSLAND, 1995, o algoritmo Simulated Annealing tem
capacidade de fornecer boas solugdes para problemas dificeis e os resultados
alcancados lhe concedem um alto grau de respeitabilidade; entretanto, por outro lado,
o tempo computacional demandado para a convergéncia para a solu¢io 6tima € maior
do que para outros algoritmos estudados e, muitas vezes, para se obter sucesso, €
necessario que sejam efetuadas modificagdes no algoritmo bdésico.

Na aplicacdo do Simulated Annealing, define-se primeiro um parametro de
controle, chamado muitas vezes de temperatura T, a partir do qual € escolhido
aleatoriamente um determinado nimero de pontos (ou vértices) do grafo, que passam a
constituir uma solugdo inicial, ou primeiro conjunto das p-medianas. Calcula-se a
menor soma ponderada das distincias de todos os pontos (ou vértices) a essas
medianas; esse € o valor da solucdo inicial.

Procuram-se novos conjuntos de pontos (ou vértices), mediante mudancas
aleatdrias das medianas, e sdo calculadas as novas somas ponderadas das distancias de
todos os pontos (ou vértices) a essas novas medianas.

Uma nova solugdo € aceita se a distincia calculada for menor que a distancia
obtida na solugdo inicial, ou se for atendida uma condi¢ao probabilistica.

Depois da pesquisa de um certo nimero de solugdes, alterando-se os pontos
(ou vértices) da solugdo corrente, efetua-se a chamada reducao da temperatura, com

a utilizacdo de uma férmula escolhida previamente.



Nessa temperatura, realiza-se uma nova busca de solugdes, efetuando-se um
ndmero menor de mudangas de pontos (ou vértices) da solugdo corrente € repetem-se
as mesmas etapas realizadas na temperatura inicial.

Continua-se abaixando a temperatura, isto €, efetuando-se a busca de novas
solugdes por meio de um nimero cada vez menor de mudancas na solucio corrente € o
cédlculo da menor soma ponderada das distancias de todos os pontos (ou vértices) as
medianas, até se chegar a uma temperatura final pré-determinada, considerada a

temperatura de equilibrio. A solucio corrente € entdo a melhor solucao do problema.

3.5.2.1 Caracteristicas gerais

Para se aplicar o Simulated Annealing a um problema de Otimizacgdo
Combinatéria € preciso tomar, preliminarmente, diversas decisdes, que podem ser
divididas em duas categorias:

a) Decisodes genéricas:

1.°)  Escolha das temperaturas inicial e final.

2.°) Escolha da taxa de redu¢do da temperatura.

3.°) Fixacdo de uma condi¢do de parada.

b) Decisoes especificas de cada problema:

1.°) Escolha de uma solug¢do inicial vidvel para o problema.

2.°) Definicdo do conjunto de solugdes vidveis. Costuma-se procurar,
além de um conjunto pequeno de solugdes vidveis, vizinhancas
razoavelmente pequenas, pois se pode chegar a uma solucio
adequada apds poucas iteragdes.

3.°) Definicdo da funcdo objetivo. Em vista da necessidade de se
calcular, em cada iteracdo, a diferenga entre os valores dessa funcio
em dois pontos, a funcdo objetivo deve permitir que esse cdlculo

seja efetuado de forma rapida e eficiente.
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3.5.2.2 Descri¢ao do algoritmo

Passo 1
Na temperatura inicial T > 0, escolha uma soluclo inicial Sy_constituida de p

pontos (ou vértices) do conjunto X.

Passo 2

Gere uma outra solucao S, vizinha de S,.

Passo 3
Calcule a diferenca AE, entre o valor da fun¢do objetivo para S e para Sy,
Se AE <0, entdo S = Sy;

Se AE >0, entdo gere aleatoriamente X no intervalo (0,1);
AE
Casox< e T ,entdo S = S,.

Passo 4

Repita os Passos 2 e 3 um nimero determinado de vezes.

Passo 5
Reduza a temperatura T, de acordo com uma funcdo de reducdo de

temperatura estabelecida.

Passo 6
Repita os Passos 2, 3 e 4, para cada nova temperatura, até uma temperatura
final ou até atender ao critério de parada. O conjunto atual é uma aproximacao do

conjunto das p-medianas.

3.5.3 Algoritmo Genético

De acordo com REEVES, 1995, o Algoritmo Genético teve sua origem na
analogia entre a representacao de uma estrutura complexa, por meio de um vetor de

componentes, e a idéia da estrutura genética de um cromossomo. Como exemplo, na
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geracdo seletiva de animais, procura-se que os filhos possuam certas caracteristicas
desejdveis, que sdo determinadas, a nivel genético, pela forma de combinacao dos
cromossomos dos pais. De maneira semelhante, na procura das melhores solugdes
em problemas complexos, muitas vezes, instintivamente, misturam-se partes de
solucdes existentes. A comparacdo ndo € totalmente correta, mas permitiu a
HOLLAND, 1975, propor essa metodologia para resolver aqueles problemas. Com os
trabalhos de GOLDBERG, 1989, o Algoritmo Genético adquiriu a grande
popularidade de que goza atualmente.

De uma maneira simples, pode-se dizer que Algoritmo Genético ¢ um
método computacional de busca, baseado em mecanismos da evolugdo natural e na
genética. Uma populacao de possiveis solu¢des para um determinado problema evolui
de acordo com operadores probabilisticos concebidos a partir de paralelos biolégicos,
fazendo com que, na média, os individuos representem solu¢des cada vez melhores, a
medida que o processo evolutivo continua.

A nivel biolégico, um individuo € formado por um conjunto de
cromossomos; entretanto, um individuo também pode ser formado por apenas um
cromossomo ¢, dessa forma, muitas vezes os dois termos sdo usados indistintamente.
Cada cromossomo é composto de genes, sendo que cada gene possui um local fixo no
cromossomo, denominado lécus. Cada gene pode assumir um certo valor, pertencente
a um certo conjunto de valores, denominados alelos.

No Algoritmo Genético, os cromossomos correspondem aos individuos e sdo
os equivalentes das solugdes, e uma populacdo € um conjunto de individuos ou
solucdes. As varidveis sdo muitas vezes chamadas de genes e os valores possiveis das
varidveis, de alelos.

Em Genética, denomina-se genétipo ao conjunto de cromossomos, genes €
alelos, e denomina-se fenétipo as caracteristicas conferidas por ele.

No Algoritmo Genético, o gendtipo € a variavel independente da fungao
objetivo, e o fendtipo é a varidvel dependente ou valor da funcdo. Em um problema,
apos ser definida a forma de representacdo dos cromossomos, é gerado um conjunto de

possiveis solucdes, que corresponde a uma populacdo inicial de individuos. Em cada
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geracao, os componentes de uma populacdao sdo modificados, de acordo com certas

regras, implementadas pelos chamados operadores genéticos.

Segundo REEVES, 1995, o Algoritmo Genético se destaca por:

a)

b)

d)

Independéncia de dominio. O algoritmo trabalha com uma codificagdo em
cada problema, tornando facil escrever um programa geral de computacdo
para resolver os mais diversos problemas de otimizagao.

Nao linearidade. Um Algoritmo Genético nao necessita de hipoteses de
linearidade ou convexidade; o Unico requisito é o calculo de algumas
medidas de desempenho que podem ser complicadas e ndo-lineares.
Robustez. Como conseqiiéncia das caracteristicas anteriores, o Algoritmo
Genético € naturalmente robusto, pode enfrentar os mais diversos tipos de
problemas e trabalhar com fun¢des nio-lineares de maneira muito eficiente.
Facilidade de modificacdo. E facil alterar um Algoritmo Genético para

varia¢des do modelo do problema original.

3.5.3.1 Etapas do Algoritmo Genético

As etapas seguidas no Algoritmo Genético sdo as seguintes:

a)

b)

Codificacao

Considera-se um cromossomo composto por um certo nimero de genes e
se permite que cada alelo no cromossomo tome determinados valores. O
importante é que haja uma populagdo inicial abrangendo a maior drea
possivel do espaco de busca.

Avaliacio da adaptabilidade

E preciso avaliar a capacidade de adaptacdo de cada cromossomo. Nos
casos mais simples, usa-se o valor da funcio objetivo a ser otimizada, que
d4, para cada cromossomo, uma medida do quanto ele estd adaptado ao
ambiente. O resultado da avaliacdo de cada cromossomo resulta num

valor denominado fitness.



c)

d)

f)

Selecao

A selegdo tem por objetivo fazer com que 0s cromossomos mais
adaptados de cada geracdo tenham mais probabilidade de participar do
processo que ird garantir a nova populacdo. O operador genético da
selecao classifica os cromossomos de forma que os com baixa adapta¢ao
tenham grande probabilidade de desaparecerem da populacdo, ao passo
que os mais adaptados tenham grande chance de sobrevivéncia.
Reproducao

O processo de reproducdo envolve mais de um cromossomo e
desencadeia o fendmeno denominado cruzamento (crossover). O
operador genético do cruzamento aproxima aleatoriamente dois
cromossomos (pais) selecionados para serem cruzados e que trocam entre
si partes de seus genes. Isso resulta em dois cromossomos diferentes, mas
que ainda guardam influéncia dos pais. Os pares de cromossomos que nao
sofrem cruzamento sdo copiados integralmente para a nova populacdo,
como filhos.

Mutacao

A mutacdo € o processo através do qual se altera um ou mais
componentes de um cromossomo € € necessdria para a manutengdo da
diversidade genética da populagdo. Em principio, seleciona-se uma
posicdo num cromossomo e muda-se, aleatoriamente, o valor do gene
correspondente por um outro valor possivel. O operador mutacao
introduz variagdes bdsicas nos genes de uma populacdo, garantindo a
possibilidade de exploracdo de todo o espaco de pesquisa, independente
da populacao inicial especifica.

Condicao de parada

Na maioria dos casos, ndo se pode afirmar, com seguranga, se uma
determinada solu¢do encontrada corresponde a um 6timo global; assim é
usado um critério de parada, que pode depender da uma niao melhoria
significativa da populacdo, apds vdrias geragdes consecutivas, ou pode ser

fixado por um nimero maximo de geracdes.
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3.5.3.2 Descricdo do Algoritmo Genético

Passo 1

Gere aleatoriamente uma populagdo inicial com um determinado numero de

Cromossomaos.

Passo 2

Avalie a adaptabilidade de cada membro da populacao, através de seu fitness.

Passo 3

Classifique os cromossomos, de acordo com o0s seus fitness.

Passo 4
Escolha aleatoriamente dois cromossomos da populagdo para participarem

do processo de cruzamento (crossover).

Passo 5

Efetue o cruzamento desses dois cromossomos.

Passo 6
Promova a mutacdo de cada cromossomo criado, caso seu fitness seja

inviavel.

Passo 7
Inclua na populagcdo o cromossomo gerado que possua o melhor fitness e

retire da populagdo o cromossomo que tiver o pior fitness.

Passo 8
Repita os Passos 4 até 7 até a condi¢cdo de parada. O cromossomo que tiver o

melhor fitness da populagao final € a solucgio procurada.
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3.5.4.3 Algoritmo Genético para Problemas de Agrupamento

Tendo em vista que o conjunto inicial de cromossomos € arbitrdrio e as
mudangas subseqiientes sdo probabilisticas, o Algoritmo Genético pode demorar
bastante tempo até atingir a sua convergéncia. por isso, muitas vezes é sugerida, na
utilizacdo desse algoritmo, a introdug¢do de mais um operador além dos operadores
genéticos de selecado, reproducdo e mutacio.

KRISHNA et al, 1999, apresentou um artigo intitulado "Genetic K-Means
Algorithm", em que a populacido se inicia aleatoriamente e evolui em cada geracao,
mediante a aplicagdo do chamado operador k-medianas, utilizando procedimentos

andlogos aos dos métodos da Andlise de Agrupamentos, que serdo vistos a seguir.

3.5.4 Andlise de Agrupamentos

Conforme BUSSAB et al, 1990, a Andlise de Agrupamentos engloba uma -

7z

variedade de técnicas e algoritmos, cujo objetivo € encontrar e separar objetos em
grupos naturais. Segundo EVERITT, 1974, quando é conhecida uma amostra de
objetos, a Andlise de Agrupamentos procura um esquema de classificagdo que agrupe
os objetos em um certo nimero de grupos. Os agrupamentos sdo efetuados com base
em coeficientes de correlacdo ou por medidas de similaridade.

Para se produzir uma estrutura de grupo simples, a partir de um conjunto de

dados complexos, € necessdrio que se estabeleca uma medida de distincia ou

similaridade, conforme foi apresentado no item 3.4.

3.5.4.1 Classificagdo dos Agrupamentos

As idéias bdsicas para se definir agrupamentos sdo a coesio interna dos
objetos e o isolamento externo entre os grupos (CORMACK, 1971). Nessas condigoes,
podem ser destacadas, pelo menos, duas técnicas de agrupamento:

a) Agrupamento hierdrquico.

b) Agrupamento por parti¢ao.
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Em virtude de sua versatilidade e facilidade de aplicacdo, d4-se énfase a

classe dos agrupamentos hierdrquicos.

3.5.4.2 Agrupamento Hierdrquico

Agrupamento hierdrquico é aquele no qual os objetos sdo classificados em
grupos, em diferentes etapas, de modo hierdrquico, produzindo uma &rvore de
classificacdo, chamada dendrograma, que é uma representacdo grafica da forma
como sdo efetuados os agrupamentos, a medida que as similaridades entre os grupos
vao sendo diminuidas, isto €, quando sao aumentadas as distancias entre eles.

No inicio, existem tantos grupos quantos sao os objetos. Em seguida, sdao
agrupados os objetos semelhantes de acordo com suas similaridades. depois,
relaxando-se o critério de similaridade, os grupos vao-se unindo a outros grupos até
formarem um grupo tnico.

O procedimento para a formacdo de um agrupamento hierdrquico é o

seguinte:

Passo 1

Estabeleca grupos, cada um formado por um tnico objeto.

Passo 2
Forme novos agrupamentos, em funcio das similaridades de cada grupo com

os demais grupos.

Passo 3

Repita os passos anteriores, até a existéncia de um sé grupo.

3.5.4.3 Métodos de Agrupamento Hierdrquico

Entre os métodos de agrupamento hierdrquico, podem ser citados:
a) Método da ligacio simples ou do vizinho mais préximo:
As similaridades sdo fornecidas pela menor distancia entre os dois objetos

mais préximos de cada grupo.
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b) Método da ligacao completa ou do vizinho mais distante:
As similaridades entre dois grupos sdao definidas pelos objetos de cada
grupo que menos se parecem, isto €, pela menor distancia entre os dois
objetos mais afastados de cada grupo.

c) Método da média das distancias:

As similaridades entre dois grupos sao dadas pela média das distancias
entre todos os pares de objetos, sendo um de cada grupo. Os novos grupos
sao formados de acordo com a menor média das distancias.

d) Método do centroéide:

Cada grupo de objetos € substituido por um tnico ponto representado
pelas coordenadas de seu centro (centréide). Os novos grupos sao
formados de acordo com a menor distincia entre seus centros.

e) Método de Ward:
As similaridades entre dois grupos sdo definidas com base no valor da

soma do quadrado das distancias de cada objeto ao centro do grupo.

3.5.4.4 Agrupamento por Particao

Nessa categoria, os agrupamentos obtidos produzem uma particio do
conjunto de objetos e pressupdem o estabelecimento prévio do nimero de particdes
desejadas. A diferenca entre os diversos algoritmos de particdo ocorre pela escolha
entre um dos seguintes procedimentos:

a) Forma de iniciar os grupos.

b) Forma de designar os objetos aos grupos iniciais.

c) Forma de re-designar um ou mais objetos ja agrupados para outros

grupos.

Um dos métodos mais usados em Andlise de Agrupamentos, quando se trata
com muitos objetos, é o método das p-médias. E preciso escolher um critério de

homogeneidade dentro do grupo e um critério de heterogeneidade entre os grupos. O
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mais usado é o da soma residual dos quadrados, para o qual se efetua, em primeiro
lugar, a particdo dos m objetos em p grupos quaisquer € se considera o centro de cada
um desses grupos.

Denomina-se soma residual dos quadrados de um grupo a soma dos
quadrados das distancias euclidianas dos objetos desse grupo ao seu centro; a soma
residual dos quadrados, para toda a particdo, serd a soma de todas as somas residuais
dos quadrados de cada grupo. Quanto menor for este valor, mais homogéneos serdo os

objetos dentro de cada grupo e melhor serd a partig¢ao.
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4 PROGRAMAS DESENVOLVIDOS EIMPLEMENTACAODOS
ALGORITMOS AO PROBLEMA REAL

4.1 INTRODUCAO

Foram desenvolvidos alguns programas, descritos na seqiiéncia, fazendo uso
do software MATLAB para a resolu¢do do problema real apresentado no Capitulo 2,
isto €, para a busca de um conjunto de bairros que sirvam de postos de distribui¢do, de
tal forma que a soma ponderada das distancias de todos os bairros aos postos seja a
menor possivel, e para a implementacdo dos algoritmos descritos no Capitulo 3.
Levou-se em consideracdo, em vdrios deles, as sugestdes apresentadas por NUNES,
1998, e por SAMPAIO, 1999.

Os dados iniciais bdsicos dos programas sdo as coordenadas cartesianas
ortogonais dos pontos representativos de cada bairro (definidos no item 2.2),
constantes do Anexo 2, e o ndmero de assinantes do jornal em cada bairro (pesos dos
bairros), mostrados no Anexo 1.

Na aplicacdo dos algoritmos foi examinada a possibilidade de existirem
desde 5 até 10 postos de distribuicdo, de modo que se pudesse efetuar a comparagdo
entre os diversos resultados encontrados.

Simultaneamente, foi calculado o nimero de assinantes, em cada posto de
distribuicdo, a fim de se verificar se esse nimero nao seria inferior a menor quantidade

de assinantes atendida pelos atuais postos.

4.2 DESCRICAO DOS PROGRAMAS DESENVOLVIDOS

4.2.1 Programa para o agrupamento dos bairros aos postos de distribuicao

Foi criado um programa, chamado mindismed, para calcular a menor soma
ponderada das distincias entre os bairros e os postos de distribui¢dao, quando sdo

conhecidos as coordenadas cartesianas ortogonais € o ndmero de assinantes de cada
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bairro e as coordenadas cartesianas de um ndmero definido de postos de distribui¢ao;
em conseqiiéncia, se torna possivel agrupar os bairros aos postos situados a menor

distancia. Os passos utilizados pelo programa sao os seguintes:

Passo 1
Calcule as distancias entre os pontos representativos de cada bairro e cada

posto de distribuicdo.

Passo 2

Ache as menores distancias entre os bairros e os postos de distribui¢ao.

Passo 3
Calcule a menor soma ponderada das distancias entre os bairros e os pontos

de distribuigdo.

Passo 4

Agrupe os bairros nos postos de distribui¢do situados a menor distancia.

4.2.2 Programa para o algoritmo de Teitz e Bart

O programa empregado para a determinacdo das p-medianas, utilizando o
algoritmo de Teitz e Bart, denominado teitzbart, ¢ iniciado com a matriz contendo as
coordenadas cartesianas ortogonais dos pontos representativos de cada bairro e o vetor
contendo o numero de assinantes (pes<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>