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RESUMO

Neste estudo, foi realizada uma analise da transferéncia de calor em trocadores de
calor de tubos circulares e elipticos, em duas dimensGes. O método de elementos finitos foi
utilizado para discretizar as equagdes governantes do escoamento e da transferéncia de calor,
e um elemento bidimensional, isoparamétrico, quadrilateral com fungdes de interpolagdo
linear, foi implementado e agregado ao cédigo FEAP (Zienkiewicz e Taylor, 1989). Os
resultados numéricos, para uma configuragdo de arranjo triangular equilateral, obtidos com o
novo elemento foram entdo validados, via comparagdo direta com os resultados experimentais
previamente publicados para trocadores de calor de tubos circulares (Stanescu et al., 1996). A
seguir, uma otimizagio numérica da geometria foi conduzida para maximizar a taxa total de
transferéncia de calor entre o volume dado e o escoamento externo tanto para arranjos
circulares como elipticos, para varias configuragdes gerais. Os resultados sdo apresentados
para ar na faixa de 300<Re, <800, onde L ¢ o comprimento varrido do volume fixado.
Arranjos circulares e elipticos com a mesma area de obstrugfo na dire¢do do escoamento livre
foram comparados com base na transferéncia total de calor maxima. O efeito da excentricidade
das elipses também foi investigado. Um ganho relativo na transferéncia de calor de até 13 % ¢
observado no arranjo eliptico 6timo, em comparag¢do ao arranjo circular 6timo. O ganho de
transferéncia de calor, combinado com a redugdo em perda de carga de até 25 % observada
em estudos anteriores (Brauer, 1964; Bordalo e Saboya, 1995) mostram que arranjos de tubos
elipticos tém potencial para um desempenho consideravelmente melhor do que os

convencionais circulares.



ABSTRACT

In this study, a two-dimensional (2-D) heat transfer analysis was performed in circular
and elliptic tube heat exchangers. The finite element method was used to discretize the fluid
flow and heat transfer governing equations and a 2-D isoparametric, four-noded, linear
element was implemented for the finite element analysis program FEAP (Zienkiewicz and
Taylor, 1989). The numerical results for the equilateral triangle staggering configuration,
obtained with the new element were then validated by means of direct comparison to
previously published experimental results for circular tubes heat exchangers (Stanescu et al.,
1996). Next, a numerical geometric optimization was conducted to maximize the total heat
transfer rate between the given volume and the given external flow both for circular and
elliptic arrangements, for general staggering configurations. The results are reported for air in
the range 300<Re, <800, where L is the swept length of the fixed volume. Circular and
elliptical arrangements with the same flow obstruction area were compared on the basis of
maximum total heat transfer. The effect of ellipses eccentricity was also investigated. A
relative heat transfer gain of up to 13 % is observed in the optimal elliptical arrangement, as
compared to the optimal circular one. The heat transfer gain, combined with the relative
pressure drop reduction of up to 25 % observed in previous studies (Brauer, 1964; Bordalo
and Saboya, 1995), shows the elliptical arrangement has the potential for a considerably better

overall performance than the conventional circular one.
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1 INTRODUCAO

1.1 Consideracdes iniciais

Um novo desafio apresenta-se ao engenheiro do proximo milénio. Ndo € suficiente
realizar um projeto que seja exequivel e funcional. Além disso, o mesmo deve funcionar de
forma otimizada, isto é, com maximo desempenho.

A alta competitividade do mercado nos dias atuais, requer conhecimentos cada vez
mais especializados e equipamentos adequados para se obter o melhor produto pelo menor
investimento. Neste sentido, muito esfor¢o tem sido dedicado a busca de equipamentos mais
eficientes, devido & preocupag@o com o uso 6timo da energia disponivel.

A otimiza¢do dos processos de troca de energia tem sido objeto de varios
estudos nos tGltimos tempos. Isto ocorre devido a sua importancia, como por exemplo na
refrigeragdo de equipamentos eletrénicos, que ¢ um problema basico de transferéncia de calor.
A evolugdo de tais equipamentos € acompanhada de uma redu¢do do volume ocupado por
este. Dessa forma, devemos obter um maximo de transferéncia de calor para um dado espaco,
0 que caracteriza a necessidade de estudos de otimizagdo. Arranjos de tubos estdo presentes
em muitas aplica¢les industriais, atuando como trocadores de calor em sistemas de ar
condicionado, aquecedores e radiadores.

Nos processos em que a troca de calor deve ser feita através de um fluido em
escoamento forgado, deseja-se uma troca eficiente de calor, mas sem que haja, excessiva perda
de carga. Uma alta perda de carga implica em alta poténcia de bombeamento, acarretando
consumo desnecessario de energia.

O assunto deste trabalho foi motivado por esta necessidade crescente de otimizagio
em todas as aplicacdes da Engenharia, visando racionalizar o uso da energia disponivel e
reduzir o trabalho perdido.

No caso especifico deste trabalho, pretende-se através da quantificagdo da troca de
calor em um certo volume fixo, para varias configuragées de tubos, chegar, numericamente, a
configuragdo geométrica Otima para arranjos de tubos circulares e elipticos, presentes em
muitas aplicagdes industriais modernas.

Um grande nimero de problemas da engenharia € regido por equagdes diferenciais
parciais. Entretanto, em geral, a obtengdo de solugdes exatas para estas equagdes € tarefa de
grande dificuldade ou, via de regra, impossivel. Esta dificuldade pode estar relacionada a

propria forma da equagdo, a geometria, ou as condigdes de contorno e iniciais.
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Surge assim a necessidade de resolver o problema de forma aproximada, com a
utilizagdo de métodos numéricos. Este procedimento permite obter informagdes mais
detalhadas e compreensiveis, com tempo de projeto reduzido, além da possibilidade de simular
situacdes impossiveis de se obter de forma experimental. Tomando como exemplo este
trabalho, foram realizados inumeros testes que experimentalmente seriam inviaveis. Esta
aproximagdo consiste no processo de conversdo das equagdes diferenciais parciais continuas
em um sistema de equagdes algébricas que representam o dominio discreto. Para a
discretizagdo foi escolhido o método de Elementos Finitos (Zienkiewicz e Taylor, 1989).

A precisdo obtida na solugdo aproximada estd diretamente relacionada a qualidade da
malha (representagdo do continuo). Regides onde a solugio apresente elevados gradientes
devem apresentar uma maior densidade de pontos, comparadas a outras. Esta maior densidade
de pontos pode ser obtida através de refinamentos e/ou concentragdes de linhas da malha na
regido problematica, razdo pela qual a malha deste problema foi mais refinada ao redor dos
tubos.

A seguir, sdo apresentados os objetivos do presente trabalho. No capitulo 2, apresenta-
se uma revisdo da literatura técnica, descrevendo e discutindo estudos relacionados com o
tema desta dissertac@o, publicados até a presente data. No capitulo 3, apresenta-se e discute-se
o problema fisico a ser resolvido nesta tese. No capitulo 4, listam-se as hipoteses adotadas e
apresenta-se o modelo matematico para o problema fisico. No capitulo 5, detalha-se e discute-
se o método numérico utilizado nesta tese para a solugdo das equagdes governantes do
problema, apresentando também as figuras de mérito propostas para analise de performance
dos arranjos de tubos em estudo. No capitulo 6, apresentam-se os resultados numéricos
obtidos nesta tese e discute-se sua validagio a luz de dados experimentais, os novos resultados

para a geometria de tubos elipticos e a analise comparativa entre tubos circulares e elipticos.

1.2  Objetivos
Este estudo tem por objetivos:

a) Utilizar o codigo aberto FEAP, "Finite Element Analysis Program", desenvolvido por
Zienkiewicz e Taylor (1989), e elementos especificos para a solu¢do numérica em duas
dimensdes das equacdes de conservacdo (massa, momentum e energia), para obter
solugdes para arranjos de tubos circulares e elipticos em convecgdo forgada.

Primeiramente o codigo ¢ validado reproduzindo-se resultados disponiveis na literatura



b)
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para a otimizacdo de arranjos de tubos circulares em convecgdo forgada (Stanescu et
al., 1996).

Buscar a otimizag¢do de arranjos de tubos elipticos em convecgdo for¢ada, para maxima
transferéncia de calor, sob uma restricdo de volume fixo, através do codigo aberto
FEAP. A seguir comparam-se os resultados com os resultados para arranjos de tubos
circulares, reportando-se os ganhos percentuais da configuracdo Otima eliptica em
relagdo a circular, do ponto de vista de transferéncia de calor.

Apresentar os resultados, através de grupos adimensionais convenientes, portanto, de

carater geral para qualquer configurac@o de tubos elipticos.



2 REVISAO DA LITERATURA

O desenvolvimento de técnicas de resfriamento para equipamentos eletronicos €
ilustrado pelo surgimento de resultados fundamentais que se aplicam a classes inteiras de
configura¢des geométricas (Bar-Cohen e Kraus, 1990; Peterson e Ortega, 1990). Um exemplo
claro sdo as normas de projeto para a sele¢do de espagamento entre os componentes de um
equipamento de volume fixo, tal que a condutdncia térmica média entre o equipamento € o
refrigerante seja maximizada. Os espagamentos Otimos ja foram reportados para varias
geometrias, tanto em convecgdo natural (Bar-Cohen e Rohsenow, 1984, Bejan, 1995; Kim et
al., 1991; Anand et al., 1992), como em convecgdo for¢ada (Knight et al., 1991; Knight et al.,
1992; Bejan e Morega, 1993; Hirata et al., 1970; Nakayama et al., 1988; Matsushima et al,,
1992; Bejan e Sciubba, 1992).

Shepherd (1956) analisou tubos circulares com uma fileira e trocadores de calor com
aletas determinando o coeficiente global de transferéncia de calor como uma fungdo do
numero de Reynolds, assumindo aletas isotérmicas.

Brauer (1964) apresentou uma pesquisa com resultados experimentais comparando,
arranjos de tubos elipticos e circulares para transferéncia de calor e perda de carga, baseado na
observagdo de que a geometria do tubo eliptico tem uma configuragdo aerodindmica melhor
que a do tubo circular. Portanto, € razoavel esperar-se uma reducgdo na forga total de arrasto e
um aumento na transferéncia de calor, ao comparar-se arranjos de tubos elipticos com arranjos
de tubos circulares, submetidos a um escoamento livre, em fluxo cruzado.

Schulemberg (1966) analisou o potencial de aplicagdo de tubos elipticos em trocadores
de calor na industria, mostrando experimentalmente os resultados da transferéncia de calor e
perda de carga.

Saboya (1974) obteve experimentalmente os coeficientes de transferéncia de calor
locais, usando a técnica de sublimagdo do naftaleno por uma analogia de transferéncia de calor
e massa para trocadores de calor de uma e duas fileiras de tubos circulares aletados.

Saboya e Sparrow (1976) estenderam o estudo para trocadores de calor de tubos
circulares de trés fileiras. Os resultados mostraram baixos coeficientes de transferéncia de
massa atras dos tubos, quando comparados com a média dos arranjos.

Ximenes (1981) relatou experimentalmente resultados para coeficientes de

transferéncia de massa em trocadores de calor de uma e duas fileiras de tubos elipticos
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aletados. Na configuragdo para tubo eliptico foi observado que a queda do coeficiente de
transferéncia de massa foi menos acentuada atras dos tubos do que na configuragdo circular.

Rosman et al. (1984) experimentalmente determinaram os coeficientes de transmissdo
de calor locais e globais usando a analogia entre transferéncia de calor e massa, para
trocadores de calor de uma e duas fileiras de tubos circulares aletados, através da
determinagio numérica da distribuigdo de temperatura da aleta e eficiéncia, e a temperatura do
escoamento livre ao longo da aleta. Os resultados mostraram que a configuragdo de duas
fileiras € mais eficiente que a configuragio de uma fileira.

Bordalo e Saboya (1995) relataram medi¢cdes da perda de carga comparando arranjos
com configuragdes de uma, duas e trés fileiras. A conclusdo destes estudos baseados em
evidéncias experimentais € que a configuragdo com tubos elipticos tem melhor performance do
que com tubos circulares.

Stanescu et al. (1996) estudaram o espagamento oOtimo de tubos circulares em
escoamento livre e convecgdo forgada , fluxo cruzado, e Bejan et al. (1995) apresentaram um
estudo similar em convecgdo natural. Ambos os estudos levam em consideragio a limitagdo de
espago disponivel em qualquer projeto, através de uma restricio de volume fixo. Nestas
configuragdes as simetrias presentes nos arranjos permitiram que os problemas fossem
modelados numericamente em duas dimensdes. O espacamento 6timo entre fileiras de tubos
foi determinado por maximizagdo da transferéncia de calor entre os tubos circulares e o
escoamento livre.

Rocha et al. (1997) estudaram trocadores de calor de tubos elipticos aletados para
configuracdes especificas de 1 e 2 fileiras de tubos, com uma formulag@o simplificada, sendo
que os resultados de eficiéncia foram comparados aos de trocadores de calor de tubos
circulares. Os resultados mostraram para as configuracdes estudadas ganhos percentuais de
até 18% para transferéncia de calor e de até€ 25% para perda de carga.

Neste trabalho, busca-se determinar o espagcamento 6timo entre fileiras de tubos para
uma outra configura¢do basica: o arranjo de tubos elipticos com escoamento transversal em
convec¢do forgcada. Dentro deste contexto, este trabalho visa avaliar a geometria de
trocadores de calor de tubos elipticos ndo aletados sob convecgdo forcada, através de
simulagdes numéricas, utilizando o método de elementos finitos, capazes de prever o
desempenho do trocador de calor, do ponto de vista de transferéncia de calor.

O modelo numérico deste estudo € validado qualitativamente pela comparagdo direta

com resultados experimentais publicados para a geometria de tubos circulares (Stanescu et
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al., 1996). A seguir, resultados inéditos para a geometria de tubos elipticos sdo obtidos e

comparados com os resultados de tubos circulares.



3 O PROBLEMA FiSICO

3.1 Geometria do arranjo

O problema a ser resolvido neste trabalho ¢ formulado a partir da configuragdo
mostrada na Figura 1. O médulo, consiste de um conjunto de tubos elipticos (ou circulares),
em cujo interior circula um fluido aquecido. Os tubos sdo montados em um volume (LHW),
sendo o comprimento L na dire¢do do fluxo, a altura H perpendicular a diregéo do fluxo e dos
tubos, e a largura W perpendicular a dire¢do do fluxo e paralela aos tubos. Este volume ¢é
mantido fixo em todas as simula¢des, caracterizando desta maneira a limitagdo de espago
(restrigdo), presente em qualquer projeto de engenharia.

Os tubos sdo idénticos, onde cada tubo eliptico € caracterizado pelo semi-eixo maior,
a, semi-eixo menor, b, € o comprimento do tubo W. No caso de tubos circulares, a dimensdo
caracteristica € o diametro, D.

Os tubos elipticos sdo montados em paralelo em uma disposi¢do triangular eqiiilateral
com um dos lados perpendicular ao fluxo e cada tubo é atravessado internamente por uma

corrente de fluido aquecido.

céhula unitivia
{canal elementar)

Si2+b ¥ r’

w

¥
A
=3
/7]

o Ol

2

:
0 010

)
)

VIS + 2312,

f——

Figura 1 — Arranjo de tubos elipticos.
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As componentes da velocidade, u, e v, sdo alinhadas com os eixos, X € Y,
respectivamente. O dominio computacional é composto pelo canal elementar, que tem por
comprimento total 3L. Para isto, nas simulagdes, acrescentou-se o comprimento L na entrada
e na saida do arranjo (ndo representado na Figura 1).

O arranjo geométrico dos tubos tem quatro graus de liberdade: o espagamento vertical,
(S+2b)/2, dado pela distincia entre centros perpendicular a dire¢do do fluxo no canal
elementar, o numero de tubos, N, montados no canal elementar de comprimento L, a
excentricidade, e, e o espagamento horizontal, 1= V3 (S+2b)/2, que representa a distancia
entre centros na direcdo do fluxo no canal elementar, para um arranjo triangular equilateral.

A velocidade do escoamento livre é um pardmetro externo e pode variar, sendo
representada pelo nimero de Reynolds, UL/v, baseado no comprimento L do volume fixo.

A geometria do mddulo montado no volume LHW pode ser mudada por variagdo de
(S+2b)/2, N, e, e 1 ou uma combinag@o destes parametros.

E de interesse o arranjo geométrico, dado pela combinagiio de parimetros otima, que
maximize a transferéncia de calor entre os tubos e o escoamento livre, para um certo espago
disponivel, representado pela restrigdo de volume fixo, LHW.

A parte critica de um estudo de otimizagdo consiste na identificagdo dos graus de
liberdade (varidveis) que permitam a maximiza¢do (ou minimizagdo) da figura de mérito
escolhida, no caso, a maximizac¢do da transferéncia de calor entre os tubos e o escoamento
livre, q. A primeira variavel identificada desta maneira foi o espagamento entre fileiras de
tubos, S. Dado um arranjo de tubos, contendo um nimero de canais elementares pré-

especificado, N.., observa-se um espagamento maximo entre fileiras, S__, tal que o arranjo
seja acondicionado no interior do espago disponivel LHW. Para justificar a escolha do
parametro S para ser otimizado, basta que se analise dois extremos: S—0eS— S, . Para
uma determinada condi¢@o de velocidade de entrada no arranjo, U_, quando S— 0 , a area

minima da segfo transversal de escoamento, A., se reduz e, portanto, o fluxo de fluido no

canal elementar cai, e desta maneira ¢ — 0 . Quando S —S__, A.aumenta, a velocidade na

se¢do transversal do escoamento se reduz e, portanto, q também diminui. Este comportamento

claramente indica a existéncia de um valor maximo para q no intervalo 0 > S >S_  desde

que S, seja suficientemente grande.



3.2  Critério de comparacio entre tubos de secio circular e eliptica

Para o estabelecimento de uma base comparativa entre tubos de secdo circular e
eliptica adotou-se o critério de manter-se a mesma se¢do dos tubos na dire¢do do escoamento,
ou seja, o didmetro do tubo circular igual a duas vezes o semi-eixo menor do tubo eliptico
conforme a Figura 2. Desta maneira, todos os arranjos sob comparagdo tiveram a mesma area

de obstrugdo ao escoamento livre.

Tuho circular Tuho eliptico
o
y
e
Ug D=2
R
e e &Rﬁ—¥ —_—_

Figura 2: Superficies de troca de calor.

3.3  Disposicio dos tubos

A Figura 3 mostra uma distribuigdo triangular equilateral dos tubos no canal elementar.

" H 2a
< : :
— s | L
L1 Y, e : (S + 2b)i2
“f"’r\ as
| l l
LVEE+ )2 | VIS 22 | VIS + 2
i A 2T i |

|
|
L L

g

R

Figura 3: Distribui¢fo triangular eqiiilateral para 4 tubos no canal elementar.
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A geometria da Figura 3 permite escrever a seguinte expressdo geral:

a S
—+{(N-1)| —+1|cos30° (1)
b ( )[2b )

L

2b
A partir de N e L/2b determina-se S/2b com a equago (1), parametro este utilizado

para a montagem das malhas e determinagdo do espagamento Otimo entre fileiras de tubos.

Para o estudo da segdo eliptica, a restri¢do de distribuigdo triangular eqiiilateral ndo foi

adotada. Portanto, variou-se somente a altura do canal elementar do arranjo (S+2b)/2.
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4 MODELO MATEMATICO

O problema foi analisado partindo das seguintes hipoteses:
e  Fluido newtoniano;

e Escoamento incompressivel,

e  2-D (bi-dimensional);

e Regime permanente;

e Hscoamento laminar;

e Propriedades constantes no fluido, e

e Dissipacdo viscosa desprezivel.

O ar comporta-se como um fluido newtoniano aonde a tensdo cisalhante €
proporcional ao gradiente de velocidade e devido a pequenas variagdes da temperatura,
consideram-se as propriedades constantes no fluido e a dissipagdo viscosa desprezivel.

O escoamento pode ser tratado como incompressivel por desenvolver-se em baixas
velocidades (escoamento laminar) e pequenas variagdes de pressdo, onde a densidade e a
viscosidade também permanecem constantes.

A influéncia do efeito das superficies do volume LHW ¢ desprezivel, uma vez que a
altura do canal elementar (S + 2b)/2 é consideravelmente menor que a altura do arranjo H,

portanto, o escoamento pode ser tratado como bi-dimensional.
4.1  Equacdes governantes

Partindo-se das equagbes basicas de conservagdo de massa, momento e energia,
utilizando as hipoteses apresentadas, as equagdes resultantes, simplificadas que governam o

problema sdo:

4.1.1 Conservacio de massa

—Z 4120 2
+6y 2)
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4.1.2 Conservacio de momentum

e Componente na direcdo x:

2 2
WL 1D [9__@_} &)

e Componente na dire¢do y:

2 2
uéV—JrV@:—l@ﬂ) (%—}+%} 4)

4.1.3 Conservacio de energia

or T T T
u&'{‘\’g:a —éx*—z—'*'—éF (5)

Devido as simetrias existentes nos arranjos, o problema pode ser resolvido em duas

dimensdes, com o dominio reduzido a apenas uma célula unitaria, mostrada na Figura 1.

4.2  Forma adimensional

A fim de que os resultados sejam de carater geral e para facilitar a obtengdo da solugdo
numérica das equagdes, grupos adimensionais convenientes foram definidos para a
representacdo das quantidades de interesse, i.e., temperaturas, velocidades e pressdo, fazendo
uso também do numero de Prandtl, correspondente ao fluido, e do nimero de Reynolds
baseado na velocidade de entrada do fluido no arranjo € no comprimento total varrido pelo
escoamento, L.

Adimensionalizando as varidveis envolvidas nas equagdes, obtém-se:

o Velocidades:

U=— (6)



e Posigdes:

o Pressio:

p=—L
e Uy,

e Perda de carga:

__Ap
oU2 /2

e Temperatura:

e Numero de Reynolds:

U_L
ReL = X
i

o Numero de Peclet:

U_L
PeL:L
o

13

Q)

®)

&)

(10)

(1)

(12)

(13)

(14
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e Numero de Prandtl:

Pr=_ (15)

4.3  Equacdes governantes adimensionais
Substituindo os grupos adimensionais nas equagdes governantes, as equacdes

governantes adimensionais resultantes so:
4.3.1 Conservacio de massa

U, v _,

X (o
4.3.2 Conservacio de momentum
e Componente na dire¢do x:
2 2
6_U+V6_U:_2Pi_+ 1 a[j+a[2} (17)
0X oY 0X Re; | 0X* oY
e Componente na diregdo y:
2 2
Ua_V.;_VQ\_/:_@_;_ 1 6 \;7.;_6\2/ (18)
0X oY oY Re,|dX* oY
4.3.3 Conservacio de energia
2 2
U?iJrV&_e: 1 682+682 (19)
oX oY Pe |dX* oY
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4.4  Condi¢coes de contorno adimensionais
A seguir, sdo estabelecidas condi¢des de contorno apropriadas ao problema, isto €,
temperaturas prescritas nos tubos, nenhuma penetragdo nas interfaces de canal para canal, e

condi¢do de ndo deslizamento nas superficies dos tubos.

(A) U=1, V=0,6 =0; (20)
ouU 0
B) —=0,V=0, —=0; 21
(B) el > (21)
(C) U=V=0,0=1, (22)
%) 0 )
oX oX 0oX
(B) © (B) (B)
: : ©
. ¥
Um’Tm (A) _)E\\__./} K‘«-__.-e-/ (D)
(B) (B) (B)

Figura 4: Condic¢ées de contorno no canal elementar.
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5 METODO NUMERICO

5.1 Consideracdes iniciais

Para a solu¢do numérica das Equagdes (16)-(19), foi aplicado o método de elementos
finitos (Zienkiewicz e Taylor, 1989). Desta maneira, obtém-se os campos de velocidades e
temperaturas no dominio definido pela célula unitaria da Figura 1.

O cbdigo computacional dos elementos especificos para a solugdo das equagdes de
conservagdo, em linguagem FORTRAN, foi desenvolvido com base na forma variacional
("weak form") das Equagdes (16)-(19) (Reddy e Gartling, 1994), constituindo-se em
elementos bidimensionais, quadrilaterais, isoparamétricos, com fungdes de interpolagéo
lineares. Este codigo foi escrito e agregado ao codigo aberto do método de elementos finitos
"FEAP - Finite Element Analysis Program" (Zienkiewicz e Taylor, 1989) pelo Grupo de
Energia e Ciéncias Térmicas do PIPE, UFPR.

Para possibilitar o célculo do fluxo de calor entre os tubos e o escoamento do fluido
foi necessario implementar um cédigo computacional especifico para realizar o pos-
processamento das temperaturas obtidas na solugdo do problema no dominio computacional
representado pelo canal elementar da Figura 1.

Para valida¢do do calculo do fluxo de calor foi realizado um teste do calculo do fluxo
de calor em uma cavidade quadrada utilizando o cédigo desenvolvido nesta tese, conforme
demonstrado no Anexo 1, comparando os valores obtidos com a solugdo numeérica e a solugio
obtida por outros métodos publicados na literatura técnica.

Além disso o codigo foi validado, via comparagdo direta dos resultados numéricos para
arranjos de tubos circulares com os resultados experimentais de Stanescu et al. (1996). O
problema de obtengdo dos campos de temperaturas e velocidades em arranjos de tubos
elipticos foi resolvido numericamente para varias configuragdes. Foi computada a densidade
volumétrica de transferéncia de calor de cada arranjo. Desta maneira, realizou-se a otimizagio
numérica do espagamento entre os tubos dos arranjos para maxima transferéncia de calor,
para uma determinada restri¢do de espaco (condi¢do de volume fixo).

O calculo da densidade volumétrica de transferéncia de calor ou condutancia térmica
média de cada arranjo foi determinado, dividindo a taxa de geragdo total de calor nos tubos,

Q, pelo volume total disponivel para instalagdo do arranjo, LHW (condi¢do de volume fixo).
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5.2  Malha utilizada

Para efeito de verificagdo da teoria apresentada apos o estudo de diversas
configuragdes de malhas, chegou-se mediante testes de refinamento a uma malha com 5180
elementos, 4 nds por elemento, totalizando 5460 nos, sendo 260 nés na dire¢do x e 21 nos na

dire¢do y, com quatro tubos no canal elementar.

Figura 5: Malha gerada através do codigo FEAP para 4 tubos no canal elementar.

Para permitir a estabilizagdo do escoamento a montante e a jusante do arranjo foi
acrescentado um comprimento L a esquerda e a direita da malha da Figura 5. Através de testes
numéricos, constatou-se que para este problema ndo houve variagdo significativa no calculo
do fluxo total de calor utilizando-se um comprimento de L/2-2a ao invés de L. No entanto,

para obteng¢do dos resultados apresentados nesta tese, a malha teve o comprimento total 3L.

5.3 Teste de refinamento da malha

Para todos os arranjos testados, foi realizado um teste de refinamento de malha com
5380 elementos, 4 nos por elemento, totalizando 5670 nods, sendo 270 nds na dire¢do x e 21
nos na diregdo y, com quatro tubos no canal elementar, cujo erro entre a malha anterior (5460

nos e 5180 elementos) e a malha posterior ¢ dado por:

erro = |q -q

malha anterior matha posterior

24

| malha anterior

onde ( representa a densidade volumétrica de transferéncia de calor do arranjo adimensional,

a ser definida na Equacéo (58).
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O erro calculado pela Equagdo (24) situou-se sempre abaixo de 1 % em todos os
casos testados. Portanto, adotou-se a malha menos refinada para a obtengdo de todos os

resultados deste trabalho.

5.4  Equacgdes de Navier-Stokes e Energia em Elementos Finitos
As equagdes implementadas no coédigo FEAP (Finite Element Analysis Program),

através do elemento Navier-Stokes e Energia encontram-se na forma generalizada:

Vi=0 (25)
—(u ey

) a—%—(u.V)u =-Vp+u Vi+p g8 (T-T,) (26)
0 ¢ UVT=kV*T 27

onde a pressio foi eliminada da Equagdo (25), fazendo uso de um modelo de penalidade para

elementos finitos, aproximando a equacdo de conservagdo de massa para (Hughes et al,
1979):

ov
oYYy 28
+6y 28)

onde vy - fator de penalidade, deve ser assumido grande o suficiente para que a equacdo de
conservagio de massa seja satisfeita aproximadamente.

A implementacdo do método de elementos finitos para solu¢do das equagdes (25) —
(27) requer primeiramente a obtencdo da forma variacional (fraca) do problema. A seguir, a
forma variacional resultante € discretizada, inicialmente por um método de Galerkin (i.e.,
analogo a diferengas centrais no método de diferengas finitas). No entanto, devido as
caracteristicas do escoamento no arranjo da Figura 1, fisicamente a solugdo depende
preferencialmente do que ocorre nos pontos anteriores a um determinado ponto do dominio,
considerando a dire¢do do escoamento forgado. O método de Galerkin ndo captura este
aspecto fisico em suas equacgdes discretas (andlogo de diferencas centrais, no método de

diferengas finitas). Portanto, a forma discreta utilizada neste trabalho foi a proposta por
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Hughes (1978), que consiste num esquema “upwinding”, onde ¢ possivel adequar a forma
discreta as caracteristicas do escoamento.

Apo6s o desenvolvimento da forma discreta, obtém-se a forma matricial para o

problema bidimensional em regime permanente:

C(uw) 0 u, 2K, +K,, K, u, K, Ky iy K
+ + = 29)

0 Cw||u, K, K,+ 2K, ||u, f(m f(zz u, F,
DT+LT=G (30)

onde C(u) é a matriz de capacidade que contém os termos advectivos das equagdes de
momentum, que depende de forma nfo linear da solu¢dio u (vetor biparticionado em u; —
dire¢do x e u, — diregdo y, cada um deles com um nimero de componentes igual ao nimero de

incognitas da malha); K,,, K,,K,;,eK,, sdo as matrizes rigidez de coeficientes constantes
(propriedades constantes) que contém os termos viscosos das equages de momentum;
K, Ky, Ky,eK,, sdo as matrizes de penalidade, que contém os termos devido a

eliminag¢@o da pressdo das equagdes de momentum com o uso da equagdo (28) (para obtengdo
dos elementos destas matrizes adotou-se um procedimento de integragdo reduzida, pois estes
termos resultam do campo de pressdo, a fim de evitar o fendmeno de “locking™); D(u) € a
matriz de capacidade que contém os termos advectivos da equac@o da energia; L € a matriz de
difusdo de coeficientes constantes, que contém os termos difusivos da equagdo da energia; F; e
F, sdo os vetores for¢a da equagdo de momentum que contém as forgas de campo e condi¢des
de contorno de velocidade, e G o vetor for¢a da equacdo da energia que contém os termos de
geragdo de calor e condigdes de contorno de temperatura.

Deixa-se de apresentar os detalhes mateméaticos dos componentes dessas matrizes por
razGes de brevidade, uma vez que o assunto desta tese ndo € o método de elementos finitos
propriamente dito. No entanto, para maiores detalhes da formulagdo utilizada para codificar o
elemento deste trabalho, deve-se consultar o trabalho de Reddy e Gartling (1994).

O sistema de equacdes ndo-lineares construido com as equacgdes (29) e (30) foi
resolvido pelo método de Newton-Raphson, para a obtengdo das velocidades e temperaturas,

para a malha utilizada (Reddy e Gartling, 1994).
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Visando a correspondéncia entre as equagdes governantes adimensionais e as equagdes

implementadas no cédigo FEAP, torna-se necessario a correlagdo que se segue para o arquivo
de entrada de dados:

Para os niimeros de Reynolds e Peclet baseados no comprimento L temos a seguinte

relacdo de equivaléncia:
Re, =Re, L/D; Pe,  =Pe, L/D (31)

Exemplificando, para L/D = 6.2, Re, =100, Pr = 0.72 temos:
w =00161;y =1l.e6;0 =1;1 =2;k =2

x,=0,8,=0,8,=0, B =0; ¢, =1;k =0.00224

Note que:

u = ; Pe, =Re, Pr; k=

e o ,- parametro de “upwinding” (Hughes, 1978).

e Pe,

5.5  Algoritmo para o cilculo da transferéncia de calor, em tubos de secio circular
Inicialmente procedemos o calculo da transferéncia de calor para cada nd das

superficies que envolvem os tubos.

Superficie de
contaioe u r

PR

Figura 6: Coordenadas polares ne circulo.
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A partir da Algebra Vetorial, calcula-se o modulo do vetor q, como se segue:

[qn[ =q, n+q,.n (32)

onde n — vetor normal a superficie.

Considerando a fungdo f uma superficie genérica, o vetor normal n € dado por:

n= % (33)
A funcdo f para o circulo € dada por:

f=(x-x)" +(y-y;)*-r* =0 (34)
Temos que o gradiente de f é dado por:

Vf = (ﬁf- i} (35)
ox Oy

VI =(2(x-%;),2(y-y;) (36)

E o médulo do gradiente de f ¢ dado por:

[VE|= gﬂ +(§32 (37)

Substituindo as derivadas:

VE|=2(x-x)? + (¥ -y;)? (38)
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Das coordenadas retangulares:

X -X, =T Cc08d (39)

y-y; =rsend (40)

Substituindo, as equagdes (39) e (40) na equagdo (38):

’Vf] = 2\/r200528 +1’sen’s (41)
Simplificando:
\VE|=2r (42)

Substituindo, as equagdes (42) e (36) na equacdo (33) e simplificando:
n= (0058, sen8) (43)

Substituindo, (42) em (30) temos a equacdo resultante para o célculo da transferéncia

de calor normal a superficie de troca de calor:
|d,| = |a4| cosd +qu! sensd (44)

O angulo 6 foi obtido através da relagdo, a seguir, para coordenadas polares:

5= arctg{l—i-—y} (45)

Xi-X

O que permite a obtencdo do angulo & para qualquer posi¢do (X,y) na superficie

circular.
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5.6  Algoritmo para integracio da transferéncia de calor ao longo da superficie do
tubo

Da transferéncia de calor, aplicando-se a lei de Fourier na interface fluido /sélido

(condugio pura) temos que q & dado por:
n

e q =-k— (46)

Combinando as equagdes (44) e (46), obtém-se:

cosd + send (47)

; oT
I
i[-| -k,

n

L
oy

Usando as equagdes (8), (9) e (12), define-se:

q" L
F= - = I(’}e lcosB + D send (48)
KT, - T,) |0X| Y
Fazendo a média ao longo da superficie de troca de calor e integrando de 0 a
q L 1
-2 ['Fa (49)
K(T, - T,) =

onde a integral I ao longo da superficie é representada por:

q |Lx

T=— " — V" Fds
KT -T) .L ©0)

A seguir, a taxa de geragdo de calor por unidade de volume total do arranjo, é dada

por:
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Q — Ncel q]cel (51)
WLH WLH
Simplificando a equagédo (51):
Q = Ncsl qicel (52)

A transferéncia de calor média por unidade de area por superficie do canal elementar ¢

dada por:

_ (qlccl)i
D
—W
2

(53)

1,1

ondei=1,..,N e N representa o nimero de superficies em contato com o canal elementar.
A Func¢do Objetivo representada pela transferéncia de calor volumétrica adimensional

por canal elementar ¢ definida como:

= b (54)
k(T - T,)HWL/D
Substituindo, a equagdo (52) na equagdo (54):
N )
ai — ( cel qlcel )1 - (55)
k(T, - T,)yHWL/D
Substituindo, a equagdo (53) na equagdo (55):
.| 7D
Nce] qn,i T W
q, 2 (56)

k(T, - T,)HWL/D’

Simplificando e multiplicando a equagdo (56) por L/L:
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D2
a7
g = Ll D= 57
k(,-T,) H 2
D
Substituindo I; da equagdo (50) na equagdo (57):
Al
- ﬂ N,
L= == 58
Q=1 H (58)
D
onde:
~ N —~
=X q (59)

A integral I; foi implementada no cédigo FEAP, que passou a computar diretamente

com as equacdes (58) e (59) o valor de q para cada geometria de arranjo estudada.
O calculo de q foi realizado neste trabalho apenas para tubos circulares, a fim de
permitir a validagio de resultados numéricos por comparagio direta com resultados

experimentais (Stanescu et al., 1996).

5.7 Metodologia para o cilculo da transferéncia de calor em tubos de secdo circular

e eliptica

No presente trabalho, foi definida uma nova figura de mérito para o calculo da
transferéncia de calor utilizando a temperatura no final do canal elementar com o objetivo de
obter maior precisdo dos resultados numéricos.

Parte-se das equagdes (51) e (52) que representam a taxa de geragdo de calor por

unidade de volume total do arranjo e utiliza-se como referéncia o fluxo de calor volumétrico a

seguir:
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o 0T P“J )
(2b)2 3

A Fungdo Objetivo representada pela transferéncia de calor volumétrica adimensional ¢

dada por:

g =2 (61)
Aot
Substituindo, a equagdo (51) na equagdo (61), obtém-se:

= Neot Qe 62)

*

Tk (T, - T,) LHW/(2b)?

A transferéncia de calor para uma célula € obtida por um balango global de energia

tomando uma célula como volume de controle:
Qreet = m cp (i - Too) (63)

onde T, — temperatura média do fluido na segdo de saida da célula unitéaria.

A vazdo massica de ar € calculada na se¢io de entrada da célula unitaria como:

= Uw(s*";bjw (64)

Substituindo, as equagdes (63) e (64) na equagdo (62):

2 —

Ncel Q Uoo [S+ wa cp (T;-Tw)

Q- : (65)
k (T, -T,) LHW/(2b)?

Simplificando e substituindo a equag@o (12) em (65):
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6 DISCUSSAO DE RESULTADOS

6.1 Validaciio dos resultados numéricos para arranjos de tubos circulares

Nesta se¢do, busca-se obter resultados numéricos para um arranjo de tubos de
dimensdes idénticas as utilizadas no experimento de Stanescu et al. (1996) dadas por:

L=392mm, H=352 mm, W= 134 mm, D =6.35 mm e a relagdo L/D =6.2.

Estabelecemos para o nosso estudo comparativo um arranjo com doze tubos no volume
fixo LHW de referéncia, e quatro tubos no canal elementar. Desta maneira, é possivel investigar
qual o espagamento 6timo entre fileiras de tubos, em um arranjo de geometria conhecida ou
especificada.

Consideram-se estes dados como a base do arranjo utilizado na experimentagio
numérica, dimensGes estas que adimensionalizadas segundo o comprimento L do arranjo

resultam em:

[l
I
o

~

H =0.9678

=

=3.4

D =0.1613

L/D=62

H/D=6.0

Mantendo a restri¢do de tridngulo equilatero para o arranjo, utilizando a equagio (1),
ondea=b,D=2b,N=4, N_,=6 eL/D=6.2, obtém-se S/D = 1.0.

Partiu-se inicialmente da relagdo S/D = 1.0 maxima para o arranjo. Este espacamento
entre tubos foi entdo reduzido para um mesmo numero de tubos no arranjo (12 tubos) até que
fosse encontrado o espagamento 6timo dado pela maxima transferéncia de calor.

Através do codigo FEAP foram obtidos os fluxos de calor, segundo a equagio (59) para

varios valores de S/D e Re; = 310, 465, 620 e 775, cujos valores de (S$/D),, encontram-se

entre 0.25 e 1.0, de acordo com o grafico da Figura 7.
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Figura 7: Grafico dos resultados numéricos e experimentais para trocadores de calor de tubos circulares

com arranjo triangular eqiiilateral.

A Figura 7 mostra que os resultados numéricos obtidos neste trabalho apresentam

concordancia qualitativa com os resultados experimentais de Stanescu et al. (1996), para Re,
= 50 e 100 principalmente, no que se refere a localizag8io do espagamento 6timo (S/D)Ot .

A concordidncia é marcante, observando também que o arranjo experimental era
pequeno e, portanto, ndo era um grande banco de cilindros. Nos experimentos, utilizou-se fluxo
de calor uniforme nos tubos, e na simulagio numérica os arranjos s3o infinitamente mais largos
e com cilindros isotérmicos.

Realizada a validag@o dos resultados numéricos para tubos circulares, parte-se a seguir

para a otimizagdo dos arranjos de tubos elipticos.

6.2 Otimizacao de arranjos de tubos de secéio eliptica
De acordo com o critério de equivaléncia entre tubos de se¢do circular e eliptica e a

disposi¢do dos tubos (variando somente (S+2b)/2), tratados nos itens 3.2 e 3.3 deste trabalho,
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parte-se dos seguintes valores adimensionalizados para a otimizacdo dos arranjos de tubos de
secdo eliptica:

L=10

L/2b=6.2

S/2b=1.0

Para as excentricidades :

e=1.0, 3=0.08065 e b=0.08065 secdo circular;

e=0.80,2=0.1241¢ b =0.08065 secdo eliptica;

e=0.65 a=010le b = 0.08065 se¢do eliptica;
obtiveram através do codigo FEAP os fluxos de calor segundo a nova figura de mérito da
equagdo (67), tratada no item 5.8 para Re; =310, 465, 620 e 775, cujos valores 6timos para
S/2b encontram-se entre 0.25 e 1.5 de acordo com os graficos das Figuras 8, 9 e 10
respectivamente.

A influéncia da variagdo de Re; ¢ também investigada nas Figuras 8, 9 e 10. Quando

Re; aumenta g, aumenta. O maximo é menos pronunciado para valores baixos de Re; .

8
L2b=6.2
7 775=Re
a L e=1
*
/_*\
6 620

U
IIIll]i]llllll'ljll'lllllllI|
S
N
h

310
4 //"
3
2 T T 1 1 [ L] 1 1] H I 1 L4 T 1 I 1 T 1 1]
0 0.5 1 1.5 2
S/2b

Figura 8: Grifico dos resultados numéricos para trocadores de calor de tubos circulares (e=1) .



Figura 9: Grifico dos resultados numéricos para trocadores de calor de tubos elipticos (€=0.8) .
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*

Figura 10: Grafico dos resultados numéricos para trocadores de calor de tubos elipticos (e=0.65).
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6.3  Comparacio entre tubos de secio circular e eliptica

As figuras 11 e 12 mostram o efeito da excentricidade das elipses sobre q_, para Re, =
465 e 620, respectivamente. Quando a excentricidade decresce, a* aumenta, portanto a

geometria eliptica tem uma melhor taxa de transferéncia de calor total entre os tubos e o

escoamento livre.

77
. L/2b=6.2
- Pr=072
~ ] Re, =465
q,
67 e=0.65
] 08
1
57
4 LI B R E I A A
0 0.5 1 1.5

S/2b

Figura 11: Grifico do efeito da excentricidade das elipses na transferéncia de calor (Re;=465).
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L/2b=6.2

Pr=0.72
Re =620
L

o)
*
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)>

e=0.65

0.8

S/2b

Figura 12: Grifico do efeito da excentricidade das elipses na transferéncia de calor (Re;=620).

Os resultados mostrados nas Figuras 8 a 12 sdo resumidos nas Figuras 13 e 14. O efeito

da excentricidade das elipses sobre q_ ¢ representado na Figura 13, onde a medida que
* max

Re, eq aumentam, a excentricidade decresce, isto €, quanto mais alongadas as elipses

* max
maior ¢ a transferéncia de calor total. Em uma analise quantitativa, € importante realgar que foi
observado um ganho maximo de 13 % na transferéncia de calor em comparagdo com o arranjo
circular tradicional, através da simulagdo numérica, observado para o arranjo eliptico com e =
0.65.
A Figura 14 mostra que o espagcamento 6timo decresce a medida que a velocidade do

escoamento livre aumenta (ou Re, ).



ja—
o

O

Rl

* max

[e0]

W (@)

5N

~3
||||IlllIlllLl]Ill.LllIJIlLILIIIIIJ

775 =Re
L

LR2b=6.2
Pr=0.72

(O8]

0.6

34

Figura 13: Grifico do efeito da excentricidade das elipses sobre a maxima condutincia térmica global.

2
1 L/2b=6.2
] Pr=0.72
§ 310 =Re,
(s/2b) 157
1-—
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Figura 14: Grafico do efeito da excentricidade das elipses sobre o espacamento 6timo para a maxima

condutincia térmica global.
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O valor de S/D = 0.1 foi o valor minimo possivel com o que foram obtidas solugtes
numéricas. A explicagdo para tal limitacdo prende-se ao fato de que para espacamentos

pequenos, (S - 0), o modelo utilizado ndo representa o comportamento esperado do ponto de
vista fisico (ﬁ* —>O) , pelo fato de ao se aproximar-se os tubos a velocidade na secdo
., max

critica (minima) aumenta € 0 escoamento, eventualmente, passa a ser compressivel, portanto,
ndo representado pelo modelamento apresentado.

Nao houve perda de generalidade dos resultados por fixar-se Nei= 6 no presente
estudo, como € deduzido através das equagdes (57) e (67). O efeito da variagdo do nimero de
tubos em um canal elementar, N, estd ainda para ser investigado, mas pode-se notar que N =
L/a representa o limite onde as elipses se tocam. De qualquer modo, néo ¢é dificil verificar que a

figura de mérito dada pela equacdo (54) € analoga ao nimero de Nusselt médio para todo o

arranjo, q =Nu = w, de modo que, h = q(2b)
k (T, -T,)LHW

,onde h representa o coeficiente

de transferéncia de calor médio equivalente, W/(m?K). Portanto, para nimeros maiores de
2 2>

fileiras, ¢ (ou q. ) computado para N = 4 é uma boa aproximagdo. Isto € explicado
max * max

pelo fato de que com um nimero grande de fileiras, o escoamento seria completamente
desenvolvido, portanto, com nenhuma mudanca significativa no nimero de Nusselt médio para
uma geometria particular, seja ela circular ou eliptica. Este comportamento foi observado
experimentalmente comparando resultados de arranjos de tubos circulares de trés fileiras,
apresentados por Saboya e Sparrow (1976), com resultados de arranjos de tubos circulares de
duas fileiras, apresentados por Rosman et al. (1984), ambos para trocadores de calor aletados.
O mesmo fendmeno foi também observado numericamente em um recente estudo de Fowler et
al. (1997), em placas submetidas a convecgdo forgada, onde conclui-se que o efeito de N em

q € quase inexistente para 2< N <65.
max

As isotermas mostradas nas Figuras 15, 16 e 17 comprovam o ganho da transferéncia de
calor com o aumento da temperatura no final do canal elementar na faixa de 0.7 a 0.9, com a

redugdo da excentricidade. A medida que a excentricidade é reduzida, o fluido na saida do

arranjo fica mais aquecido, portanto , T, se eleva, e consequentemente q_ .
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Figura 15: Grifico das isotermas para o espacamento 6timo S/2b = 0.50, e = 1.0 e Rey, = 620.
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Figura 16: Grifico das isotermas

para o espacamento 6timo S/2b = 0.50, e = 0.80 ¢ Rer, = 620.
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Figura 17: Grafico das isotermas para o espagamento 6timo S/2b = 0.75, e = 0.65 e Re, = 620.
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6.4  Distincia entre centros varidvel na direcio do escoamento
Alternativamente, o arranjo de tubos pode ser otimizado fixando-se a altura do canal

elementar do arranjo (S+2b)/2 e variando-se a distancia entre centros na dire¢do do escoamento

(1 =3 (S+2b)/2) da Figura 1. Foi realizado um teste partindo de um arranjo com: e = 1, L=

~

1.2, L/2b=7.44 e S/2b = 1.5, como dimensdes do maior arranjo ¢ Re; = 620. O valor de 1

para a maxima transferéncia de calor situa-se em torno de 0.8 para este caso de acordo com a

Figura 18.

620 = Re
L

3»04 T T T I T T 1 I T T T l T T T
0.4 0.6 0.8 1 1.2

Figura 18: Grifico da distincia entre centros 6tima na direcio do escoamento.

A distincia maxima entre centros na diregdo do escoamento, L. € dada por:

lnax = (L-2b) / (N-1) (68)

A distincia entre centros na dire¢do do escoamento adimensionalizada ( 1 ) € dada por:

T =1/l (69)

A finalidade do estudo apresentado nesta segdo foi de apenas estudar a possibilidade de
estender o presente estudo em trabalhos futuros, para um estudo de otimizacdo de arranjos de

tubos elipticos com relagdo a mais um grau de liberdade.
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7 CONCLUSOES

Os resultados numéricos obtidos nesta tese demonstram que arranjos de tubos de segdo
circular e eliptica podem ser otimizados para maxima transferéncia de calor (ou maxima
condutancia térmica), quando a otimizagdo é sujeita a uma determinada restrigdo de volume.
Do ponto de vista de aplicagdo pratica direta dos resultados aqui apresentados, cumpre
ressaltar que isto dependera da similaridade entre a configuracdo analisada neste trabalho, pela
Figura 1, e o projeto real em estudo. No entanto, do ponto de vista fundamental os resultados
obtidos permitem afirmar que sempre haverad um espagamento 6timo entre fileiras de tubos de
trocadores de calor, que ¢ importante ser encontrado.

Do ponto de vista de transferéncia de calor, foi demonstrado que a configuracdo
eliptica tem melhor desempenho que a circular. Entre os casos estudados, o ganho maximo

obtido foi de 13 %, para e = 0.65, com Re; = 465. O ganho em transferéncia de calor,

combinado com a redugdo em perda de carga de até 25 % observada em estudos anteriores
(Brauer, 1964; Bordalo e Saboya, 1995) mostram que arranjos de tubos elipticos tém
potencial para um desempenho consideravelmente melhor do que os convencionais circulares.

Este estudo ainda demonstrou a possibilidade de otimizag¢do dos arranjos com relagdo
a distancia entre centros dos tubos, na dire¢do do escoamento. Este grau de liberdade
adicional deve ser adicionalmente investigado em estudos posteriores.

Como uma seqiiéncia natural para o presente estudo, a fim de quantificar o ganho total
em desempenho do ponto de vista de transferéncia de calor e perda de carga, sugere-se a
utilizagdo de uma nova figura de mérito. O calculo da entropia gerada no processo, a partir
dos campos de temperatura e pressdo obtidos neste trabalho combinaria os dois efeitos. A
otimiza¢do seria, portanto, direcionada para a minimizagio da geracdo de entropia no

processo.
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ANEXO 1

Teste do calculo da transferéncia de calor em uma cavidade quadrada
Visando a comparagdo entre a solugdo numérica obtida com o codigo FEAP e a

solugdo exata reportada por Bejan (1995), foi efetuado o calculo da transferéncia de calor para

uma cavidade quadrada em convecgdo natural, mostrada na Figura 19.

e
le
H Th Tc
T
1 L

{
i~ I

Figura 19: Convec¢io natural em uma cavidade quadrada.

O problema foi analisado partindo das seguintes hipoteses:
e  Fluido newtoniano;

e Escoamento incompressivel,

e  2-D (bi-dimensional);

e Regime permanente;

e Escoamento laminar;

e Propriedades constantes no fluido, e

e Dissipagio viscosa desprezivel.

1. Equacdes governantes
Partindo-se das equagdes basicas de conservagdo de massa, momento e energia e de
acordo com as hipoteses pré-definidas, para fluxo constante do fluido as equagles que

governam o problema resultantes sio:
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1.1 Conservaciao de massa

@+§Y:O (70)
ox Oy

1.2 Conservacio de momentum

o Componente na diregéo x:

ou o*u  d%u
U—+V—= -ty | —F+— (71)
ox 0y o 0x ox” Oy

e Componente na diregéo y:

o, v _ 1dp, (& &%
“x oy ooy (ax ayj o 7

1.3  Conservacio de energia

oT [52}“ a?} 7
ox* oy

U—+v—=ao
Ox

dy

2. Forma adimensional
Por se tratar de um problema envolvendo convec¢do natural o nimero de Rayleigh
seré utilizado como parametro.

Adimensionalizando as variaveis envolvidas nas equagdes tem-se:

e Velocidades:

U=uilra™ (74)
o
Vev H Ra 12 (75)

o
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o Posicdes:
X
X=" 76
o (76)
y
Y =2 77
a (77)
e Pressdo:
2
p-_PH (78)
4o Ra
e Temperatura:
T-T
0 = 2 (79)
Th - Tc
e Numero de Rayleigh:
T, -T,)H’
o v
3. Equacées governantes adimensionais

Substituindo as equagdes adimensionais nas equacgdes governantes, as equagdes

governantes adimensionais resultantes sdo apresentadas a seguir:

3.1 Conservacio de massa

e (81)
3.2 Conservacio de momentum
e Componente na direggo x:
Ry Y2 A 2 2
a U_O_E+V6_U :__(9_]')_4_8 [21+__6 [21 (82)
Pr oX oY oX oX* oY
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e Componente na dire¢do y:

+Ra'? 0 (83)

=——+—+
oY oxX* oayY?

R 1/2
a {:UQY—-FV

gcy} op 2’V 'V
Pr oX oY

3.3  Conservacio de energia

2 2
Ra"| U v :—8—62+~a-—6§— (84)
oX oyl oX° oY
4. Solugéio experimental/integral
O nimero de Nusselt para o presente problema ¢ definido como (Bejan, 1995):
Nu = Q (85)
Qoond pura
onde a transferéncia de calor através da cavidade € dada por:
H
Q =k j (QIJ dy (86)
0 \0x/ _,

Resolvendo as equagdes (70) — (73), sujeitas as condi¢Ges de contorno da Figura 20

por um método integral (Bejan, 1995) e usando a equagio (86) obtém-se:

Q =0.364(T, -T,)Ralf* (87)

O fluxo de calor por conducdo pura € dado por:

(Th - Tc)

T (8%)

Qcond pura =kH
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Substituindo as equagdes (87) e (88) na equagdo (85), obtém-se:

Q= 0.364%Ra”4 (89)

ParaL/H =1; Ra'® =10%; obtém - se Nu =2.0469

5 Solu¢io numérica
A malha utilizada para a resolu¢do do problema é composta de 841 elementos, 4 nos

por elemento, totalizando 900 nos, sendo 30 nés na dire¢do x e 30 nds na direcdo y, de acordo

com a Figura 20.

Figura 20: Malha gerada pelo cédigo FEAP para a cavidade quadrada.

As condi¢Ses de contorno adimensionais, encontram-se de acordo com a Figura 21.
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U, v=0
o=

U,v=0 Fluido (p, p) | V0
a=0 9=1

U,v=0

ae
oy Y

Figura 21: Condig¢des de contorno na cavidade quadrada.

As equagdes implementadas no codigo FEAP, através do elemento Navier-Stokes e

Energia encontram-se na forma:
—(ou . g —
o ng(u‘V)u =-Vp+u Vii+p g8 (T-T,) (90)

0 C, iVI=kV?T (91)

P

Visando a correspondéncia entre as equagdes governantes adimensionais e as equagdes
implementadas no cédigo FEAP, torna-se necessario a correlagdo que se segue para o arquivo

de entrada de dados:
Exemplificando para, Ra = 10°, Pr = 0.71 tem-se:

w =10,y =1e6; p =140.84507;, 1 =2; k' =2

w,=0,8, =0,8,=-1.0;  =0.71; ¢, = 0.71; k=1.0

onde:

Il
=
m»-d
S
=}
’-‘I
e}l
1
s~}
-
Il

l

o ; T, (92)
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= 1 _ag-
Nu = L (axjx v (93)

Através da implementagdo da equagdo (93) no codigo FEAP, para o calculo do fluxo
de calor o resultado obtido para o nimero de Nusselt foi de 2.165 valor este proximo do
apresentado na Figura 5.13, do livro (Bejan, 1995) para H/L=1 e Ra=10"*.

A Figura 22 apresenta as isotermas geradas para as condi¢gdes de contorno

anteriormente estabelecidas.

Telefele

Stant| 5 Exploing -DisSE .. | i Tebet g |[XFEAP Graphics. . 3 MicrosotWord- a..| [81fg2- Pain | @R ozan

Figura 22: Grifico das isotermas para uma cavidade quadrada.



ANEXO 2
Input-file para uma cavidade quadrada

feap ** NC in a square cavity - Ra=1.e4, Pr=0.71

900,841,1,2,3.4
bloc
4,2929.1.1,1
1,0.,0.
2,0,1.
3,1.,1.

4.1.,0.

boun
2,1,-1,-1,-1
29.0,1,1,1
1,30,-1,-1,0
871,0,1,1,1
872,1,-1,-1,-1
899,0,1,1,1
30,30,-1,-1,1
900,0,1,1,1
forc
871,1,0.,0.,1.
900,0,0.,0.,1.
mate

1,2

1.,1.66,140.84507,2,2
0.,0.-1,0.71,0.71,1,
0.,0.

end
inter

stop
end
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ANEXO 3

Input-file para 4 tubos no canal elementar, e = 1.0, S/D= 1.0 e Re; =620

feap **simulagdo numérica de tubos cilindricos™**
5460,5180,1,2,3,4

bloc 1
4,9.20,1,1,1,250
1,0.,0.0000
2,0.9404,0.0000
3,0.9404,0.1613

4,0.,0.1613

bloc 2
4,10,20,10,181,1,249
1,0.9404,0.0000
2,0.9994.0.0000
3,0.9994.0.1613
4,0.9404,0.1613

bloc 3
4,5,20,20,381,1,254
1,0.9994.0.0000
2,1.0196,0.0000
3,1.0196,0.1080
4,0.9994.0.1613

bloc 4
4,5,20,25,481,1,254
1,1.0196,0.0000
2,1.0398,0.0000
3,1.0398,0.0915
4.1.0196,0.1080

bloc 5
4,5,20,30,581,1,254
1,1.0398,0.0000
2,1.0599,0.0000
3,1.0599,0.0832
4,1.0398,0.0915

bloc 6
4,5,20,35,681,1,254
1,1.0599,0.0000
2,1.0801,0.0000
3,1.0801,0.0807
4.,1.0599,0.0832

bloc 7
4,5.20,40,781,1,254



1,1.0801,0.0000
2,1.1003,0.0000
3,1.1003,0.0832
4,1.0801,0.0807

bloc 8
4,5,20,45,881,1,254
1,1.1003,0.0000
2,1.1204,0.0000
3,1.1204,0.0915
4,1.1003,0.0832

bloc 9
4,520,50,981,1,254
1,1.1204,0.0000
2,1.1406,0.0000
3,1.1406,0.1080
4,1.1204,0.0915

bloc 10
4,5,20,55,1081,1,254
1,1.1406,0.0000
2,1.1607,0.0000
3,1.1607,0.1613
4,1.1406,0.1080

bloc 11
4,20,20,60,1181,1,239
1,1.1607,0.0000
2,1.2788,0.0000
3,1.2788.,0.1613
4,1.1607,0.1613

bloc 12
4,5,20,80,1581,1,254
1,1.2788,0.0000
2,1.2990,0.0533
3,1.2990,0.1613
4,1.2788,0.1613

bloc 13
4,5,20,85,1681,1,254
1,1.2990,0.0533
2,1.3191,0.0698
3,13191,0.1613
4,1.2990,0.1613

bloc 14
4,5,20,90,1781,1,254
1,1.3191,0.0698
2,1.3393,0.0781
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3,1.3393,0.1613
4,1.3191,0.1613

bloc 15
4,5,20,95,1881,1,254
1,1.3393,0.0781
2,1.3595,0.0807
3,1.3595,0.1613
4,1.3393,0.1613

bloc 16
4,520,100,1981,1,254
1,1.3595,0.0807
2,1.3796,0.0781
3,1.3796,0.1613
4,1.3595,0.1613

bloc 17
4,5,20,105,2081,1,254
1,1.3796,0.0781
2,1.3998,0.0698
3,1.3998,0.1613
4,1.3796,0.1613

bloc 18
4,5,20,110,2181,1,254
1,1.3998.0.0698
2,1.4200,0.0533
3,1.4200,0.1613
4,1.3998,0.1613

bloc 19
4,5,20,115,2281,1,254
1,1.4200,0.0533
2,1.4401,0.0000
3,1.4401,0.1613
4,1.4200,0.1613

bloc 20
4,20,20,120,2381,1,239
1,1.4401,0.0000
2,1.5582,0.0000
3,1.5582,0.1613
4,1.4401,0.1613

bloc 21
4,5,20,140,2781,1,254
1,1.5582,0.0000
2,1.5784,0.0000
3,1.5784,0.1080
4,1.5582,0.1613



bloc 22
4,5.20,145,2881,1,254
1,1.5784,0.0000
2.1.5985,0.0000
3,1.5985,0.0915
4,1.5784,0.1080

bloc 23
4,5,20,150,2981,1,254
1,1.5985,0.0000
2,1.6187.0.0000
3,1.6187,0.0832
4,1.5985,0.0915

bloc 24
4,5,20,155,3081,1,254
1,1.6187,0.0000
2,1.6388,0.0000
3,1.6388,0.0807
4,1.6187,0.0832

bloc 25
4,5.20,160,3181,1,254
1,1.6388,0.0000
2,1.6590,0.0000
3,1.6590,0.0832
4,1.6388,0.0807

bloc 26
4,5,20,165,3281,1,254
1,1.6590,0.0000
2,1.6792,0.0000
3,1.6792,0.0915
4,1.6590,0.0832

bloc 27
4,5,20,170,3381,1,254
1,1.6792,0.0000
2.1.6993.0.0000
3,1.6993,0.1080
4.1.6792.0.0915

bloc 28
4,5,20,175,3481,1,254
1,1.6993.0.0000
2,1.7195,0.0000
3,1.7195,0.1613
4,1.6993,0.1080

bloc 29
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4,20,20,180,3581,1,239
1,1.7195,0.0000
2,1.8376,0.0000
3,1.8376,0.1613
4,1.7195,0.1613

bloc 30
4,5,20,200,3981,1,254
1,1.8376,0.0000
2,1.8577,0.0533
3,1.8577,0.1613
4,1.8376,0.1613

bloc 31
4,5,20,205,4081,1,254
1,1.8577,0.0533
2,1.8779,0.0698
3,1.8779,0.1613
4,1.8577,0.1613

bloc 32
4,5,20,210,4181,1,254
1,1.8779,0.0698
2,1.8981,0.0781
3,1.8981,0.1613
4,1.8779,0.1613

bloc 33
4,5,20,215,4281,1,254
1,1.8981,0.0781
2,1.9182,0.0807
3,1.9182,0.1613
4,1.8981,0.1613

bloc 34
4,5,20,220,4381,1,254
1,1.9182,0.0807
2,1.9384,0.0781
3,1.9384,0.1613
4,1.9182,0.1613

bloc 35
4,5,20,225,4481,1,254
1,1.9384,0.0781
2,1.9586,0.0698
3,1.9586,0.1613
4,1.9384,0.1613

bloc 36
4,5,20,230,4581,1,254
1,1.9586,0.0698



2,1.9787,0.0533
3,1.9787,0.1613
4,1.9586,0.1613

bloc 37
4,5,20,235,4681,1,254
1,1.9787,0.0533
2.1.9989.0.0000
3,1.9989,0.1613
4,1.9787,0.1613

bloc 38
4,10,20,240,4781,1,249
1,1.9989,0.0000
2,2.0579,0.0000
3,2.0579,0.1613
4,1.9989.0.1613

bloc 39
4,10,20,250,4981,1,249
1,2.0579,0.0000
2.2.9983,0.0000
3,2.9983,0.1613
4.2.0579,0.1613

boun
1,260,-1,-1-1
5201,0,1,1,1
5202,1,0,-1,0
5219,0,0,1,0
5220,1,-1,-1,-1
5260,0,1,1,1
5261,1,0,-1,0
5339,0,0,1,0
5340,1,-1,-1,-1
5380,0,1,1,1
5381,1,0,-1,0
5460,0,0,1,0
2,1,0-1,0
79,0,0,1,0
80,1,-1,-1,-1
120,0,1,1,1
121,1,0,-1,0
199,0,0,1,0
200,1,-1,-1,-1
240,0,1,1,1

25279

241,1,0,-1,0

25272

260,0,0,1,0

fore
1,260,1.,0.,0.
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5201,0,1.,0.,0.
5220,1,0.,0.,1.
5260,0,0.,0.,1.
80,1,0.,0.,1.
120,0,0.,0..1.
5340,1,0.,0.,1.
5380,0,0.,0.,1.
200,1,0.,0.,1.
240,0,0.,0.,1.

mate

1,2
0.001613,1.6,1.0,2,2
0.,0.,0.,0.,1.,0.002240

2> 2> 2 252

0.,0.,0.,0.08065,0.08065
476.,480.,576.,580.,676.,680
776.,780.,876.,880.,976.,980.
1076.,1080.,1176.,1180.,1.0801,0.1613
1581.,1585.,1681.,1685.,1781.,1785
1881.,1885.,1981.,1985.,2081.,2085
2181.,2185.2281.,2285.,1.3595,0.
2876.,2880.,2976.,2980.,3076.,3080
3176.,3180.,3276.,3280.,3376.,3380.
3476.,3480.,3576.,3580.,1.6388,0.1613
3981.,3985.,4081.,4085.,4181.,4185.
4281.,4285.,4381.,4385.,4481.,4485
4581.,4585.,4681.,4685.,1.9182,0.

end

inter
stop
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ANEXO 4

Input-file para 4 tubos no canal elementar, e = 0.80, S/2b = 1.0 ¢ Re; =620

feap **simulagfo numérica de tubos elipticos**
5460,5180,1,2,3,4

bloc 1

4,9,20,1,1,1,250
1,0.0000,0.0000
2,1.0013,0.0000
3,1.0013,0.1613

4,0.0000,0.1613

bloc 2
4,10,20,10,181,1,249
1,1.0013,0.0000
2,1.0403,0.0000
3,1.0403,0.1613
4,1.0013,0.1613

bloc 3
4,5,20,20,381,1,254
1,1.0403,0.0000
2,1.0655,0.0000
3,1.0655,0.1080
4,1.0403,0.1613

bloc 4
4,5,20,25,481,1,254
1,1.0655,0.0000
2,1.0907,0.0000
3,1.0907,0.0915
4,1.0655,0.1080

bloc 5
4,5,20,30,581,1,254
1,1.0907,0.0000
2,1.1159,0.0000
3,1.1159,0.0832
4,1.0907,0.0915

bloc 6
4,5,20,35,681,1,254
1,1.1159,0.0000
2,1.1411,0.0000
3,1.1411,0.0807
4,1.1159,0.0832

bloc 7
4,5,20,40,781,1,254



1,1.1411,0.0000
2,1.1663,0.0000
3,1.1663,0.0832
4,1.1411,0.0807

bloc 8
4,5.20,45,881,1,254
1,1.1663,0.0000
2,1.1915,0.0000
3,1.1915,0.0915
4,1.1663,0.0832

bloc 9
4,5.20,50,981,1,254
1,1.1915,0.0000
2,1.2167,0.0000
3,1.2167,0.1080
4,1.1915,0.0915

bloc 10
4,5,20,55,1081,1,254
1,1.2167,0.0000
2,1.2419,0.0000
3,1.2419,0.1613
4,1.2167,0.1080

bloc 11
4,20,20,60,1181,1,239
1,1.2419,0.0000
2,1.3199,0.0000
3,1.3199,0.1613
4,1.2419,0.1613

bloc 12
4,5.20,80,1581,1,254
1,1.3199,0.0000
2,1.3451,0.0533
3,1.3451,0.1613
4,1.3199,0.1613

bloc 13
4,5,20,85,1681,1,254
1,1.3451,0.0533
2,1.3703,0.0698
3,1.3703,0.1613
4,1.3451,0.1613

bloc 14
4,5,20,90,1781,1,254
1,1.3703,0.0698
2,1.3955,0.0781
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3,1.3955,0.1613
4,1.3703,0.1613

bloc 15
4,5,20,95,1881,1,254
1,1.3955,0.0781
2,1.4207,0.0807
3,1.4207,0.1613
4,1.3955,0.1613

bloc 16
4,5,20,100,1981,1,254
1,1.4207,0.0807
2,1.4459,0.0781
3,1.4459,0.1613
4.1.4207,0.1613

bloc 17
4,5,20,105,2081,1,254
1,1.4459,0.0781
2,1.4711,0.0698
3,1.4711,0.1613
4,1.4459,0.1613

bloc 18
4,5,20,110,2181,1,254
1,1.4711,0.0698
2,1.4963,0.0533
3,1.4963,0.1613
4,1.4711,0.1613

bloc 19
4,5,20,115,2281,1,254
1,1.4963,0.0533
2,1.5215,0.0000
3,1.5215,0.1613
4,1.4963,0.1613

bloc 20
4,20,20,120,2381,1,239
1,1.5215,0.0000
2,1.5994,0.0000
3,1.5994.0.1613
4,1.5215,0.1613

bloc 21
4,5,20,140,2781,1,254
1,1.5994,0.0000
2,1.6246,0.0000
3,1.6246,0.1080
4,1.5994,0.1613



bloc 22
4,5,20,145,2881,1,254
1,1.6246,0.0000
2,1.6498,0.0000
3,1.6498.,0.0915
4,1.6246,0.1080

bloc 23
4,5,20,150,2981,1,254
1,1.6498.0.0000
2,1.6750,0.0000
3,1.6750,0.0832
4,1.6498,0.0915

bloc 24
4,5,20,155,3081,1,254
1,1.6750,0.0000
2,1.7002,0.0000
3,1.7002,0.0807
4,1.6750,0.0832

bloc 25
4,5,20,160,3181,1,254
1,1.7002,0.0000
2,1.7254,0.0000
3,1.7254,0.0832
4,1.7002,0.0807

bloc 26
4,5,20,165,3281,1,254
1,1.7254,0.0000
2,1.7506,0.0000
3,1.7506,0.0915
4,1.7254,0.0832

bloc 27
4,5,20,170,3381,1,254
1,1.7506,0.0000
2,1.7758,0.0000
3,1.7758,0.1080
4,1.7506,0.0915

bloc 28
4,5,20,175,3481,1,254
1,1.7758,0.0000
2.1.8010,0.0000
3.1.8010,0.1613
4,1.7758,0.1080

bloc 29
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4,20,20,180,3581,1,239
1,1.8010,0.0000
2.1.8790,0.0000
3,1.8790,0.1613
4,1.8010,0.1613

bloc 30
4,5,20,200,3981,1,254
1,1.8790,0.0000
2,1.9042,0.0533
3,1.9042,0.1613
4,1.8790,0.1613

bloc 31
4,5,20,205,4081,1,254
1,1.9042,0.0533
2,1.9294.0.0698
3,1.9294.0.1613
4,1.9042,0.1613

bloc 32
4,5,20,210,4181,1,254
1,1.9294,0.0698
2.1.9546,0.0781
3,1.9546,0.1613
4,1.9294,0.1613

bloc 33
4,5.20,215,4281,1,254
1,1.9546,0.0781
2,1.9798,0.0807
3,1.9798,0.1613
4,1.9546,0.1613

bloc 34
4,5,20,220,4381,1,254
1,1.9798,0.0807
2,2.0050,0.0781
3,2.0050,0.1613
4,1.9798,0.1613

bloc 35
4,520,225,4481,1,254
1,2.0050,0.0781
2,2.0302,0.0698
3,2.0302,0.1613
4.2.0050,0.1613

bloc 36
4,5,20,230,4581,1,254
1,2.0302,0.0698



2.2.0554,0.0533
3,2.0554,0.1613
42.0302,0.1613

bloc 37
4,5,20,235,4681,1,254
1,2.0554,0.0533
2,2.0806,0.0000
3,2.0806,0.1613
4.2.0554,0.1613

bloc 38
4,10,20,240,4781,1,249
1,2.0806,0.0000
2,2.1196,0.0000
3,2.1196,0.1613
4.2.0806,0.1613

bloc 39
4,10,20,250,4981,1,249
1,2.1196,0.0000
2.3.1209,0.0000
3,3.1209,0.1613
4,2.1196,0.1613

boun
1,260,-1,-1,-1
5201,0,1,1,1
5202,1,0,-1,0
5219,0,0,1,0
5220,1,-1,-1,-1
5260,0,1,1,1
5261,1,0,-1,0
5339,0,0,1,0
5340,1,-1,-1,-1
5380,0,1,1,1
5381,1,0,-1,0
5460,0,0,1,0
2,1,0,-1,0
79,0,0,1,0
80,1,-1,-1-1
120,0,1,1.1
121,1,0,-1,0
199,0,0,1,0
200,1,-1,-1,-1
240,0,1,1,1
241,1,0,-1,0
260,0,0,1,0

fore
1,260,1.,0.,0.
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5201,0,1.,0.,0.
5220,1,0.,0.,1.
5260,0,0.,0.,1.
80,1,0.,0.,1.
120,0,0.,0.,1.
5340,1,0.,0,,1.
5380,0,0.,0.,1.
200,1,0.,0.,1
240,0,0.,0.,1.

mate

1,2
0.00161,1.6,1.0,2,2
0.,0.,0.,0.,1.,0.00224
0.,0.,0.,0.1008,0.08065
476.,480.,576.,580.,676.,680.
776.,780.,876.,880.,976.,980
1076.,1080.,1176.,1180.,1.1411,0.1613
1581.,1585.,1681.,1685.,1781.,1785
1881.,1885.,1981.,1985.,2081.,2085
2181.,2185..2281.,2285.,1.4207,0.
2876.,2880.,2976.,2980.,3076.,3080
3176.,3180.,3276.,3280.,3376.,3380.
3476.,3480.,3576.,3580.,1.7002,0.1613
3981.,3985.,4081.,4085.,4181.,4185.
4281.,4285.4381.,4385.,4481. 4485
4581.,4585.,4681.,4685.,1.9798,0.

end

inter
stop
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ANEXO S

Input-file para 4 tubos no canal elementar, e = 0.65, S/2b = 1.0 ¢ Re, =620

feap **simulagdo numérica de tubos elipticos™*
5460,5180,1,2,3,4

bloc 1

4,9,20,1,1,1,250

1,0.0000,0.0000

2,1.0711,0.0000

3,1.0711,0.1613

4,0.0000,0.1613

bloc 2
4,10,20,10,181,1,249
1,1.0711,0.0000
2.1.0869,0.0000
3,1.0869,0.1613
4,1.0711,0.1613

bloc 3
4,5,20,20,381,1,254
1,1.0869,0.0000
2,1.1179,0.0000
3,1.1179,0.1080
4,1.0869,0.1613

bloc 4
4,5.20,25,481,1,254
1,1.1179,0.0000
2,1.1489,0.0000
3,1.1489,0.0915
4,1.1179,0.1080

bloc 5
4,5,20,30,581,1,254
1,1.1489,0.0000
2,1.1799,0.0000
3,1.1799,0.0832
4,1.1489,0.0915

bloc 6
4,5,20,35,681,1,254
1,1.1799,0.0000
2,1.2109,0.0000
3,1.2109,0.0807
4,1.1799,0.0832

bloc 7
4,5,20,40,781,1,254



1,1.2109,0.0000
2,1.2420,0.0000
3,1.2420,0.0832
4,1.2109,0.0807

bloc 8
4,520,45,881,1,254
1,1.2420,0.0000
2,1.2730,0.0000
3,1.2730,0.0915
4,1.2420,0.0832

bloc 9
4,520,50,981,1,254
1,1.2730,0.0000
2,1.3040,0.0000
3,1.3040,0,1080
4,1.2730,0.0915

bloc 10
4,5,20,55,1081,1,254
1,1.3040,0.0000
2,1.3350,0.0000
3,1.3350,0.1613
4,1.3040,0.1080

bloc 11
4,20,20,60,1181,1,239
1,1.3350,0.0000
2,1.3664,0.0000
3,1.3664,0.1613
4,1.3350,0.1613

bloc 12
4,5,20,80,1581,1,254
1,1.3664,0.0000
2,1.3974,0.0533
3,1.3974,0.1613
4,1.3664,0.1613

bloc 13
4,5,20,85,1681,1,254
1,1.3974,0.0533
2,1.4285,0.0698
3,1.4285,0.1613
4,1.3974,0.1613

bloc 14
4,5.20,90,1781,1,254
1,1.4285,0.0698
2,1.4595,0.0781
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3,1.4595.0.1613
4,1.4285,0.1613

bloc 15
4,5,20,95,1881,1,254
1,1.4595,0.0781
2,1.4905,0.0807
3,1.4905,0.1613
4,1.4595,0.1613

bloc 16
4,5,20,100,1981,1,254
1,1.4905,0.0807
2,1.5215,0.0781
3,1.5215,0.1613
4.1.4905,0.1613

bloc 17
4,5,20,105,2081,1,254
1,1.5215,0.0781
2,1.5525,0.0698
3,1.5525,0.1613
4,1.5215,0.1613

bloc 18
4,5,20,110,2181,1,254
1,1.5525,0.0698
2,1.5836,0.0533
3,1.5836,0.1613
4,1.5525,0.1613

bloc 19
4,520,115,2281,1,254
1,1.5836,0.0533
2.1.6146,0.0000
3,1.6146,0.1613
4,1.5836,0.1613

bloc 20
4,20,20,120,2381,1,239
1,1.6146,0.0000
2,1.6460,0.0000
3,1.6460,0.1613
4,1.6146,0.1613

bloc 21
4,5,20,140,2781,1,254
1,1.6460,0.0000
2,1.6770,0.0000
3,1.6770,0.1080
4.1.6460,0.1613
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bloc 22
4,5,20,145,2881,1,254
1,1.6770,0.0000
2,1.7080,0.0000
3,1.7080,0.0915
4,1.6770,0.1080

bloc 23
4,5,20,150,2981,1,254
1,1.7080,0.0000
2,1.7390,0.0000
3,1.7390,0.0832
4,1.7080,0.0915

bloc 24
4,5,20,155,3081,1,254
1,1.7390,0.0000
2,1.7701,0.0000
3,1.7701,0.0807
4,1.7390,0.0832

bloc 25
4,5,20,160,3181,1,254
1,1.7701,0.0000
2,1.8011,0.0000
3,1.8011,0.0832
4,1.7701,0.0807

bloc 26
4,5,20,165,3281,1,254
1,1.8011,0.0000
2.,1.8321,0.0000
3,1.8321,0.0915
4,1.8011,0.0832

bloc 27
4,5.20,170,3381,1,254
1,1.8321,0.0000
2.1.8631,0.0000
3,1.8631,0.1080
4,1.8321,0.0915

bloc 28
4,5.20,175,3481,1,254
1,1.8631,0.0000
2,1.8941,0.0000
3,1.8941,0.1613
4,1.8631,0.1080

bloc 29
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4.20,20,180,3581,1,239
1,1.8941,0.0000
2,1.9256,0.0000
3,1.9256,0.1613
4,1.8941,0.1613

bloc 30
4,5,20,200,3981,1,254
1,1.9256,0.0000
2,1.9566,0.0533
3,1.9566,0.1613
4,1.9256,0.1613

bloc 31
4,5,20,205,4081,1,254
1,1.9566,0.0533
2,1.9876,0.0698
3,1.9876,0.1613
4,1.9566,0.1613

bloc 32
4,520,210,4181,1,254
1,1.9876,0.0698
2,2.0186,0.0781
3,2.0186,0.1613
4,1.9876,0.1613

bloc 33
4,520,215,4281,1,254
1,2.0186,0.0781
2,2.0496,0.0807
3,2.0496,0.1613
4.2.0186,0.1613

bloc 34
4,520,220,4381,1,254
1,2.0496,0.0807
2,2.0807,0.0781
3,2.0807,0.1613
4,2.0496,0.1613

bloc 35
4,5.20,225.4481,1,254
1,2.0807,0.0781
2,2.1117,0.0698
3,2.1117,0.1613
4,2.0807,0.1613

bloc 36
4,5,20,230,4581,1,254
1,2.1117,0.0698



2,2.1427,0.0533
3,2.1427,0.1613
4,2.1117,0.1613

bloc 37
4,5.20,235,4681,1,254
1,2.1427,0.0533
2.,2.1737,0.0000
3,2.1737,0.1613
4.2.1427,0.1613

bloc 38
4,10,20,240,4781,1,249
1,2.1737,0.0000
2.2.1894,0.0000
3,2.1894,0.1613
42.1737,0.1613

bloc 39
4,10,20,250,4981,1,249
1,2.1894,0.0000
2.3.2606,0.0000
3,3.2606,0.1613
472.1894.0.1613

boun
1,260,-1,-1,-1
5201,0,1,1,1

297>

5202,1,0,-1,0
5219,0,0,1,0
5220,1,-1,-1,-1
5260,0,1,1,1

272 %2

5261,1,0,-1,0
5339,0,0,1,0
5340,1,-1,-1,-1
5380,0,1,1,1
5381,1,0,-1,0
5460,0,0,1,0
2.1,0,-1,0
79,0,0,1,0
80,1,-1,-1,-1
120,0,1,1,1
121,1,0,-1,0
199,0,0,1,0
200,1,-1,-1,-1
240,0,1,1,1
241,1,0,-1,0
260,0,0,1,0

forc
1,260,1.,0.,0.
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5201,0,1.,0

0,1,,0.,0.
5220,1,0.,0,,1.
5260,0,0.,0.,1
80,1,0.,0.,1.
120,0,0.,0.,1.

> > 2

5340,1,0.,0.,1.

5380.0.0..0.1.
200,1.0.0..1.

273 > >

240,0,0.,0.,1.

s 1.

mate

1,2

0.00161,1.¢6,1.0,2,2
0.,0.,0.,0.,1.,0.00224
0.,0.,0.,0.1241,0.08065
476.,480.,576.,580.,676.,680.
776.,780.,876.,880.,976.,980.
1076.,1080.,1176.,1180.,1.2109,0.1613
1581.,1585.,1681.,1685.,1781.,1785
1881.,1885.,1981.,1985.2081.,2085
2181.,2185.2281.,2285..1.4905.0.
2876..2880.,2976.,2980.,3076.,3080
3176.,3180.,3276.,3280.,3376.,3380.
3476.,3480.,3576.,3580.,1.7701,0.1613
3981.,3985.,4081.,4085.,4181.,4185
4281.,4285.4381.,4385_4481._4485
4581.,4585.,4681.,4685.,2.04960.

end

inter
stop
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ANEXO 6
Elemento Navier-Stokes e Energia para 4 tubos no canal elementar

subroutine elmt02(d,ul,xL,ix,tls,p,ndf,ndm,nst,isw)

implicit double precision (a-h,0-z)

HHHHH R A
2-dimensional Non-Linear flow element for FEAP:
four node quadrilateral - Navier-Stokes and energy
equations
Hughes upwinding scheme (Int. J. Num. Meth. in Eng.,
Vol. 12, 1359-1365, 1978)
by JOSE VARGAS (August, 1996)
HHHHH R

Arguments in subroutine call:

d - vector in which element material properties are stored
ul - localized nodal velocities

xl - localized nodal coordinates

ix - element connection array

tl - (not used in this element)

s - element stiffness matrix

p - element right-hand side (force) vector

ndf - number of dof per node

nst - dimensioned size of element stiffness matrix s

isw - integer switch=1-8 ; used to request various element

functions:

isw function

1 input element data

2 check element for errors

3 compute element stiffness and force

4 compute fluxes for printed output

5 compute element mass matrix (dynamics)
6 compute internal force vector only

7 compute consistent load vector from

surface tractions
8 compute fluxes AT NODES for plotting

....Required format of element material properties in input file:

Record 1.
mu =  dynamic viscosity
gama =  penalty parameter
rho = Mass density
I = Quad. pts/dir to be used in elem stiffness
and force vector calculations
k = Quad. pts/dir to be used in printed stress

output
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c
C
C
C
C
C
v
C
v
C
v
C
C
C
C
C
C
v
C
C
(v
C
C
C
C
v
C
C
v
Cc
C
C
C
C
C
C
C
v
C
Cc
C
C
C
C
C
C
v
c
C
C
C

not used in this element
(enter 0 in all cases)

i

Record 2.
alfa = upwinding parameter
g x = x-component of gravity
gy = y-component of gravity
beta = coefficient of thermal expansion
c = specific heat
k = thermal conductivity
Record 3.
TO = reference temperature
Q = Internal heat generation
psi0 = streamfunction value at node #1
sa = bigger semi-axis of the elliptical tube section
sb = smaller semi-axis of the elliptical tube section
Record 4.

nellslbini = first surface - first element
nellslbend = first surface - last element
nells2bini = second surface - first element
nells2bend = second surface - last element
nells3bini = third surface - first element
nells3bend = third surface - last element

Record 5.

nells4bini = fourth surface - first element
nells4bend = fourth surface - last element
nells5Sbini = fifth surface - first element
nells5bend = fifth surface - last element
nells6bini = sixth surface - first element
nells6bend = sixth surface - last element

Record 6.

nells7bini = seventh surface - first element
nells7bend = seventh surface - last element
nells8bini = eighth surface - first element
nells8bend = eighth surface - last element

xo01 = first tube - orign of tube x
yol = first tube - orign of tube y
Record 7.

nel2sibini = first surface - first element
nel2slbend = first surface - last element
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nel2s2bini = second surface - first element
nel2s2bend = second surface - last element
nel2s3bini = third surface - first element
nel2s3bend = third surface - last element

Record 8.

nel2s4bini = fourth surface - first element
nel2sdbend = fourth surface - last element
nel2s5bini = fifth surface - first element
nel2s5bend = fifth surface - last element
nel2s6bini = sixth surface - first element
nel2s6bend = sixth surface - last element

Record 9.

nel2s7bini = seventh surface - first element
nel2s7bend = seventh surface - last element
nel2s8bini = eighth surface - first element
nel2s8bend = eighth surface - last element

X02 = second tube - orign of tube x
yo2 = second tube - orign of tube y
Record 10.

nel3slbini = first surface - first element
nel3slbend = first surface - last element
nel3s2bini = second surface - first element
nel3s2bend = second surface - last element
nel3s3bini = third surface - first element
nel3s3bend = third surface - last element

Record 11.

nel3s4bini = fourth surface - first element
nel3s4bend = fourth surface - last element
nel3s5bini = fifth surface - first element
nel3sSbend = fifth surface - last element
nel3s6bini = sixth surface - first element
nel3sébend = sixth surface - last element

Record 12.

nel3s7bini = seventh surface - first element
nel3s7bend = seventh surface - last element
nel3s8bini = eighth surface - first element
nel3s8bend = eighth surface - last element

x03 = third tube - orign of tube x
yo3 = third tube - orign of tube y
Record 13.
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neldslbini = first surface - first element
neld4slbend = first surface - last element
nel4s2bini = second surface - first element
nel4s2bend = second surface - last element
nelds3bini = third surface - first element
nel4s3bend = third surface - last element

Record 14.

neldsdbini = fourth surface - first element
nel4s4bend = fourth surface - last element
neldsSbini = fifth surface - first element
neldsSbend =  fifth surface - last element
nelds6bini =  sixth surface - first element
nelds6bend = sixth surface - last element

Record 15.

nel4s7bini = seventh surface - first element
nelds7bend = seventh surface - last element
nel4s8bini = eighth surface - first element
nel4s8bend =  eighth surface - last element
x04 = fourth tube - orign of tube x

yo4 = fourth tube - orign of tube y

Other variables used include:
eps = temp. derivs. vector
errck = logical variable used to indicate error in input
head = character variable containing the problem title
ipr = precision of arithmetic: 1-single 2-double
ior,iow = logical units for input and output files
lint = total number of element integration points

m  =blank common array used throughout FEAP
ma = material number
mct = line counter for printed stress output

numnp = total number of nodal points
numel = total number of elements
numat = total number of material sets

nen = max number of nodes per element
neq = total number of equations (or DOF) in problem
nel = number of nodes per element
nsl = number of dof per element
sig = fluxes vector
shp = shape function storage array; details in subroutine shape01
sg = vector containing first natural coordinate of
Gauss points (i.e., xi)
td = vector used to read from the input file
tg = vector containing second natural coordinate of

Gauss points (i.e., eta)
wg = vector of weights associated with Gauss points
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C...

C
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xsj = jacobian of global-local coordinate transformation

character*4 o,head,wd

logical errck,debug

common /bdata/ 0,head(20)

common /cdata/ numnp,numel,nummat,nen,neq,ipr
common /debugs/ debug

common /eldata/ dm,n,ma mct,iel, nel

common /errchk/ errck

common /iofile/ ior,ijow

common /plstrs/ np

common m(1)

common /strnum/ istv

common /teste/ tetaia,tetaip,dteta,dtna,dtnp
common /elipse/ sa,sb

save /bdata/ /cdata//debugs/,/eldata/,/plstrs/,/iofile/

dimension d(1),ul(ndf,1),xl(ndm, 1),ix(1),tl(1),s(nst,1),p(1)
1 ,shp(3,9),58(16),tg(16),wg(16),s1g(6),eps(8),wd(2),td(6)
2 ,sd(27,27),taux(2,2),rkbar(2,2),cin(4),uaux(2),bous(2),
3 b(2),din(4),rl(2),shp1(3,9)

data wd /'flow’','flow"/

. go to correct process (based on value of isw)
got0(1,2,3,4,5,4,7,8), isw

%0%0%0%0%%%0%0%0%%%0%0%6%%6%0%0%%6%0%0%%6%0%6%%6%6%0%6%6%6%%%%6%0%%%%%%%
%%0%%%%%%%
¢ isw=1: Read in material properties

C

%%%0%%0%%0%%0%%0%:%0%%0%%0%%%%6%%6%%%%%6%0%%%%%0%:%%%%%0%%%%%
%0%0%0%%%%%%

1

60000

if(ior.1t.0) write(*,3000)

.. read a line as a string in the input file. Using
.. commas or blanks as delimiters, dinput stores the
.. numerical data needed in the vector td

... read record 1

call dinput(td,6)
if{errck) go to 1

... move properties

d(1) =td(1) ! viscosity

d(2) =td(2) ! penalty parameter

d(3) =td(3) ! density

1 =td(4) ! Gauss points / dir for stiffness

k =td(5) ! Gauss points / dir for stresses

1 =td(6) !type of element (not used)
if(ior.1t.0) write(*,3001)

... read record 2

call dinput(td,6)
if(errck) goto 11



C....

move properties into vector d for later use

d(7) =td(1) ! upwinding parameter (not used here)
d®) =td(2)! g x

d9)=tdB3)!gy

d(10) =td(4)! beta (coefficient of thermal expansion)
d(11) =td(5) ! ¢ (specific heat)

d(12) =td(6) ! k (thermal conductivity)

12 if(ior.1t.0) write(*,3002)

C....

read record 3
call dinput(td,6)
if(errck) goto 11

... move properties into vector d for later use

d(13) =td(1) ! reference temperature

d(14) =td(2) ! Internal heat generation

d(15) =td(3) ! Streamfunction value at node #1

sa =td(4) ! bigger semi-axis of the elliptical tube section

sb =1d(5) ! smaller semi-axis of the elliptical tube section
... read record 4

call dinput(td,6)
if(errck) goto 11

... move properties into variables for later use

nellsIbini = td(1) ! first surface - first element in block 1
nellslbend =td(2) ! first surface - last element in block 1
nells2bini = td(3) ! first surface - first element in block 2
nells2bend = td(4) ! first surface - last element in block 2
nells3bini = td(5) ! first surface - first element in block 3
nells3bend =td(6) ! first surface - last element in block 3

... read record 5

call dinput(td,6)
if(errck) goto 11

... move properties into variables for later use

nells4bini = td(1) ! first surface - first element in block 4
nells4bend = td(2) ! first surface - last element in block 4
nells5bini = td(3) ! first surface - first element in block 5
nellsSbend = td(4) ! first surface - last element in block 5
nells6bini = td(5) ! first surface - first element in block 6
nellsébend = td(6) ! first surface - last element in block 6

... read record 6

call dinput(td,6)
if(errck) goto 11

... move properties into variables for later use

nells7bini = td(1) ! first surface - first element in block 7
nells7bend =td(2) ! first surface - last element in block 7
nells8bini = td(3) ! first surface - first element in block 8
nells8bend = td(4) ! first surface - last element in block 8
xol =td(5) ! first surface - orign of tube x
yol =td(6) ! first surface - orign of tube y

... read record 7

call dinput(td,6)
if(errck) goto 11

... move properties into variables for later use
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nel2s1bini = td(1) ! first surface - first element in block 1
nel2slbend = td(2) ! first surface - last element in block 1
nel2s2bini = td(3) ! first surface - first element in block 2
nel2s2bend = td(4) ! first surface - last element in block 2
nel2s3bini = td(5) ! first surface - first element in block 3
nel2s3bend =td(6) ! first surface - last element in block 3
... read record 8

call dinput(td,6)

if(errck) goto 11

... move properties into variables for later use

nel2s4bini = td(1) ! first surface - first element in block 4
nel2s4bend = td(2) ! first surface - last element in block 4
nel2s5bini = td(3) ! first surface - first element in block 5
nel2s5bend = td(4) ! first surface - last element in block 5
nel2s6bini = td(5) ! first surface - first element in block 6
nel2s6bend = td(6) ! first surface - last element in block 6
... read record 9

call dinput(td,6)

if{errck) go to 11

... move properties into variables for later use

nel2s7bini = td(1) ! first surface - first element in block 7
nel2s7bend = td(2) ! first surface - last element in block 7
nel2s8bini = td(3) ! first surface - first element in block 8
nel2s8bend = td(4) ! first surface - last element in block 8
x02=td(5) ! second surface - orign of tube x

yo2 =td(6) ! second surface - orign of tube y

... read record 10

call dinput(td,6)

if{errck) goto 11

... move properties into variables for later use

nel3s1bini = td(1) ! first surface - first element in block 1
nel3slbend = td(2) ! first surface - last element in block 1
nel3s2bini = td(3) ! first surface - first element in block 2
nel3s2bend = td(4) ! first surface - last element in block 2
nel3s3bini = td(5) ! first surface - first element in block 3
nel3s3bend = td(6) ! first surface - last element in block 3
... read record 11

call dinput(td,6)

if(errck) goto 11

... move properties into variables for later use

nel3s4bini = td(1) ! first surface - first element in block 4
nel3s4bend = td(2) ! first surface - last element in block 4
nel3s5bini = td(3) ! first surface - first element in block 5
nel3s5bend =td(4) ! first surface - last element in block 5
nel3s6bini = td(5) ! first surface - first element in block 6
nel3s6bend = td(6) ! first surface - last element in block 6
... read record 12

call dinput(td,6)

if(errck) goto 11

... move properties into variables for later use

nel3s7bini = td(1) ! first surface - first element in block 7
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nel3s7bend = td(2) ! first surface - last element in block 7
nel3s8bini = td(3) ! first surface - first element in block 8
nel3s8bend = td(4) ! first surface - last element in block 8
x03 =td(5) ! third surface - orign of tube x
yo3 =td(6) ! third surface - orign of tube y
... read record 13
call dinput(td,6)
if(errck) goto 11
... move properties into variables for later use
nel4sibini = td(1) ! first surface - first element in block 1
nel4s1bend = td(2) ! first surface - last element in block 1
nel4s2bini = td(3) ! first surface - first element in block 2
nel4s2bend = td(4) ! first surface - last element in block 2
nel4s3bini = td(5) ! first surface - first element in block 3
nel4s3bend = td(6) ! first surface - last element in block 3
... read record 14
call dinput(td,6)
if{errck) go to 11
... move properties into variables for later use
nel4s4bini = td(1) ! first surface - first element in block 4
nel4s4bend = td(2) ! first surface - last element in block 4
nel4s5bini = td(3) ! first surface - first element in block 5
nel4s5bend = td(4) ! first surface - last element in block 5
nel4s6bini = td(5) ! first surface - first element in block 6
nel4s6bend = td(6) ! first surface - last element in block 6
... read record 15
call dinput(td,6)
if(errck) go to 11
.... move properties into variables for later use

nel4s7bini = td(1) ! first surface - first element in block 7
nel4s7bend = td(2) ! first surface - last element in block 7
nel4s8bini = td(3) ! first surface - first element in block 8
nel4s8bend = td(4) ! first surface - last element in block 8
x04 =td(5) ! fourth surface - orign of tube x
yo4 =td(6) ! fourth surface - orign of tube y
... output current parameters
write(iow,2000) wd(i+1),d(1),d(2),d(3),Lk,d(14),d(11),d(12)
if(ior.1t.0) then

write(*,2000) wd(i+1),d(1),d(2),d(3),Lk,d(14),d(11),d(12)

endif

d(4)=dG)

... Integration properties
d(5) =1
d(6)=k

if(i.eq.2) d(13) = d(2)

... total number of integration points initialized to zero
(pgaussO01 called below to set it)

lint =0

return
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c
20%0%6%6%%6%6%6%6%0%6%6%6%6%6%6%6%%6%6%0%%%6%%6%%0%6%6%6%6%0%6%%%%0%0%%%%%%
%%%%%%%%%
¢ isw=2: Check element for input errors
c
%6%6%%6%6%6%0%6%6%6%6%6%6%6%%6%6%0%6%0%6%%6%6%0%%%%%0%%6%0%%%%%6%%6%%%%%
%%%%%%%%%
c.... subroutine ckisop checks for missing data and negative
¢  jacobians at nodes
2 call ckisop(ix,xl,shp,ndm)
return

c .
%%6%%%%6%6%6%%6%%6%%%6%6%%6%%%0%%6%%6%6%%%0%6%%6%0%6%%%%6%6%%%%%%
%%%%%%%%%
¢ isw=3: Compute element stiffness matrix (s) and
c stress-divergence vector (p) (residual force vector)
c
%%0%0%6%%6%0%6%6%6%6%6%6%6%6%6%6%6%0%0%%%0%6%%6%0%6%6%6%0%%%%6%0%%%6%0%6%%%%0
%6%6%%%:%%%%
3 1=d(5)
c.... generate natural coordinates and weights of integration
¢ points (only done once when lint=0)

if(1*1.ne.lint) call pgaussO1(l,lint,sg tg,wg)
.. Element jacobian computed as in Reddy formulation.
... Straight vector multiplication of Na,xl x Nb,xl for K

.. perform integration by looping over int. points, summing
.. integration loop calculates force vector due to body forces
... and integrals of N_a i times N_b,j for later stiffness

... calculation

coen0o0o0

do 111 ii=1,nst
do 112 jj=1,nst
s(ii,jj)=0.d0
112 continue
111 continue
d2 = d(3)*d(8)*d(10)*d(13) ! x-force term
d3 =d(3)*d(9)*d(10)*d(13) ! y-force term
d4=d(14) !internal heat generation
do 330 1= 1,lint
call shape02(sg(1),tg(1),x1,shp,xsj,ndm, false.,nalfa,shp1)
xsj = xsj*wg(l)

.. including weight and jacobian determinant in viscosity
... and in density

o0 0 o0

dmu = d(1)*xsj

rtho = d(3)*xsj

bous(1) = d(8)*d(10)*rho
bous(2) = d(9)*d(10)*rho
rk = d(12)*xsj



c
c.... big loop to assemble the jacobian matrix (12x12 for linear elements)

C

nline =0
do 33 ii=1,nel ! loop over a
ncol =0

do 44 jj=1,nel ! loop over b
do 55 ki=1,ndm
do 66 kj = 1,ndm
taux(ki,kj) = shp(ki,ii)*shp(kj,jj)*dmu

66 continue
55 continue
do ki = 1,ndm
do kj = 1,ndm

if(ki.eq.1.and kj.eq.1) then
rkbar(ki kj) = 2.d0*taux(1,1)+taux(2,2)
else
if(ki.eq.2.and kj.eq.2) then
rkbar(ki,kj) = taux(1,1)+2.d0*taux(2,2)

else
rkbar(ki,kj) = taux(ki,kj)
endif
endif
enddo
enddo
c
c.... compute thermal diffusion and
¢ Boussinesq vector
c
do ik=1,ndm
b(ik)= bous(ik)*shp(3,ii)*shp(3,jj) ! B_i
1l(ik)= rk*shp(ik,ii)*shp(ik.jj) ! Lj(uj)
enddo
c
c.... constructing jacobian initially with K, B and L (Reddy notation)
c

s(ii+nline,jj+ncol) = rkbar(1,1)

& +s(ii+nline,jj+ncol)

s(ii+nline,jj+1+ncol) = rkbar(1,2)

& +s(ii+nline,jj+1+ncol)

s(ii+nline,jj+2+ncol) = b(1)+s(ii+nline,jj+2+ncol)

s(ii+1+nline,jj+ncol) = rkbar(2,1)

& +s(ii+1+nline,jj+ncol)

s(ii+1+nline,jj+1+ncol) = rkbar(2,2)+s(ii+1+nline,jj+1+ncol)

s(ii+1+nline,jj+2+ncol) = b(2)+s(ii+1-+nline,jj+2+ncol)

s(ii+2+nline,jj+2+ncol) = ri(1)+rl(2)

& +s(ii+2+nline,jj+2+ncol)
c
c.... compute force vector with K,L and B (Reddy notation)
c

p(it+nline) = p(ii+nline)-(
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& rkbar(1,1)*ul(1,jj)+rkbar(1,2)*ul(2,j))+b(1)*ul(3,}}))
p(ii+1+nline) = p(ii+1+nline)-(b(2)*ul(3,jj)
& -rkbar(2,2)*ul(2,jj)+rkbar(2,1)*ul(1,j))
p(ii+2-+nline) = p(ii+2+nline)-(rl(1)+rl(2))*
& ul(3.jj)
ncol = ncol+2
44  continue
nline = nline+2
33 continue

c
c
c.... now compute gravity and thermal loads
=1
do j=1,nel

p(1) = p(j1)+d2*shp(3,j)*xs]

p(j1+1) = p(G1+1)+d3*shp(3,j)*xsj

p(j1+2) = p(j1+2)+d4*shp(3.j)*xs]

j1 =jl+ndf

enddo

330 continue ! end of first gaussian integration
c
.. now we have the jacobian and residual vector with K
.. and we have to add the K” contribution, performing a
.. reduced order Gaussian Integration (one level)

o000

lint=0

I=d(5)-1

if(1*1.ne lint) call pgauss01(1 lint,sg,tg, wg)

do 370 I=1,lint
call shape02(sg(1),tg(1),x1,shp,xsj,ndm,.false.,nalfa,shp1)
xsj = xsj*wg(1)

.. including weight amd Jacobian determinant in the
... penalty parameter

o600 o0

gama = d(2)*xsj
nline =0
do 34 ii=1,nel ! loop over a
ncol =0
do45jj=1, nel !loop overb
do 56 ki=1,ndm
do 67 kj=1,ndm
taux(ki,kj) = shp(ki,ii)*shp(kj,jj) *gama
67 continue
56 continue
c
c.... adding the new penalty contribution into "s" (big matrix)
C
s(ii+nline,jj+ncol) = s(ii+nline,jj+ncol) + taux(1,1)
s(ii+nline,jj+1+ncol) = s(ii+nline,jj+1+ncol) + taux(1,2)
s(ii+1+nline,jj+ncol) = s(ii+1+nline,jj+ncol) + taux(2,1)
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81

s(ii+1+nline,jj+1+ncol) = s(ii+1+nline, jj+1+ncol) + taux(2,2)
c....  update force vector with K*

p(ii+tnline) = p(ii+nline)-(taux(1,1)*ul(1,jj)+taux(1,2)*
& ul(2,j)
p(ii+1+nline) = p(ii+1+nline)-(taux(2,1)*ul(1,jj)+taux(2,2)*
& ul(2,j5)
¢23456789012345678901234567890123456789012345678901234567890123456789012
ncol = ncol+2
45 continue
nline = nline+2
34  continue
370 continue

C
c.... compute inertia terms with upwinding scheme
c

nalfa = d(7)

call pgauss01(1,lint,sg,tg wg)
call shape02(sg(1),tg(1),x1,shp,xsj,ndm,.false. nalfa,shp1)
xs] = xsj*wg(1)
rho = d(3)*xsj
du=d(3)*d(11)*xsj
do jn=1,ndm
uaux(jn)=0.d0

uaux1=0.d0
c
c.... compute sum over cof N ¢ *u cand N ¢ * 1
c
do ir=1,nel
vaux(jn)=vaux(jn)+shp(3,ir)*ul(jn,ir)
vaux 1=vaux1+shp(3,ir)
enddo
enddo
nline =0
do 341 ir=1,nel ! loop over a
ncol =0
do 345jj=1, nel !'loop over b
c
c.... compute inertia contribution
c
if (nalfa.eq.0) then
do ik=1,ndm

cin(ik)= rho*shp(3,ii)*vaux(ik)*shp(ik,jj) ! Cj(uj)
din(ik)= du*shp(3,ii)*vaux(ik)*shp(ik,jj) ! Dj(uj)
cin(ik+ndm)=rho*shp(3,ii)*uvaux1*shp(ik,jj) ! Cj(1)
din(ik+ndm)=du*shp(3,ii)*vaux1*shp(ik,jj) ! Dj(1)
enddo
else
do ik=1,ndm
cin(ik)= rho*shp1(3,ii)*uaux(ik)*shp1(ik,jj) ! Cj(uj)
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din(ik)= du*shp1(3,ii)*uvaux(ik)*shp1(ik,jj) ! Dj(uj)
cin(ik+tndm)=rho*shp1(3,ii)*uvaux1*shp1(ik,jj) ! Cj(1)
din(ik+ndm)=du*shp1(3,ii)*uvaux1*shp1(ik.jj) ! Dj(1)
enddo
endif
c
c.... updating jacobian with C and D
c
s(ii+nline jj+ncol) = cin(1)+cin(3)*ul(1,jj)+cin(2)
& +s(ii+nline,jj+ncol)
s(ii+nline,jj+1+ncol) = cin(4)*ul(1,jj)
& +s(ii+nline,jj+1+ncol)
s(ii+1+nline,jj+ncol) = cin(3)*ul(2,}))
& +s(iit1+nline,jj+ncol)
s(ii+1+nline,jj+1+ncol) = cin(1)+cin(2)+cin(4)*ul(2,jj)+
& s(ii+1-+nline,jj+1+ncol)
s(1i1+2+nline,jj+ncol) = din(3)*ul(3,jj)+s(ii+2+nline,jj+ncol)
s(ii+2+nline,jj+1+ncol) = din(4)*ul(3,j))
& +s(ii+2+nline,jj+1+ncol)
s(ii+2-+nline,jj+2+ncol) = din(1)+din(2)
& +s(ii+2+nline,jj+2+ncol)
c
c.... compute force vector with C and D (Reddy notation)
c
p(ii+nline) = p(ii+nline)-(cin(1)*ul(1,jj)+cin(2)*ul(1,jj))
p(ii+1+nline) = p(ii+1-+nline)-(cin(1)*ul(2,jj)+cin(2)
& *ul(2,j)
p(ii+2+nline) = p(ii+2+nline)-((din(1)+din(2))*
& ul(3,j)
ncol = ncol+2
345 continue
nline = nline+2
341 continue

c
c.... Now we have assembled the elemental jacobian matrix
c.... completely for the FLOW/HEAT TRANSFER problem with upwinding
c.... and the
c.... elemental residual vector
return
c
c

%0%0%0%%%%6%6%6%%%6%6%6%%0%6%6%%6%0%6%%0%0%6%%%6%6%6%6%6%6%6%%%%%6%%6%%%o
%0%0%%%%%%%
¢ 1sw=4,6: compute element internal force vector (isw=0)
c or element fluxes for printing (isw=4)
c
%0%0%0%%%%0%0%6%%6%0%6%6%6%6%0%6%%6%0%6%%0%0%6%%%:%0%6%%6%%%%%%%:%%6%:%%o
%%0%%%%%%%
4 1=4d(5)

if(isw.eq.4) 1 = d(6)
c.... generate natural coordinates and weights of integration



¢ points (only done once when lint=0)
if(1*1.ne.lint) call pgauss01(l lint,sg,tg, wg)
c.... compute element stresses, strains, and forces
sumx=0.d0
sumy=0.d0
sumdx=0.d0
sumdy=0.d0
do 440 1 = 1 lint
c.... compute element shape functions and derivatives
call shape02(sg(l),tg(1),x1,shp,xsj,ndm,.false.,nalfa,shp1)
c.... compute strains and coordinates of current quadrature pt.
do4101=1,8
eps(i) = 0.0
410 continue
xx=0.0
yy=0.0
do 420 j = 1,nel
xx = xx + shp(3,))*x1(1,j) ! compute global coord.
yy = yy + shp(3,j)*x1(2,j) ! of the gaussian points
eps(1) = eps(1) + shp(1,j)*ul(1,j) ! du/dx
eps(2) = eps(2) + shp(2,j)*ul(2,)) ! dv/dy
eps(3) = eps(3) + shp(2,j)*ul(1,)) ! du/dy
eps(4) = eps(4) + shp(1,))*ul(2,j) ! dv/dx
eps(5) = eps(5) + shp(3,)*ul(1,)) 'u
eps(6) = eps(6) + shp(3,j)*ul(2,)) ' v
eps(7) = eps(7) + shp(1,j)*ul(3,j) ! dT/dx
eps(8) = eps(8) + shp(2,j)*ul(3,j) ! dT/dy
420 continue
¢
c prepare gaussian coordinates and heat fluxes for averaging later
c Done on Dec 8, 1999
¢

SUMX=SUmMx-+xx
sumy=sumy-+yy
sumdx=sumdx+eps(7)
sumdy=sumdy-+eps(8)

.... compute pressures, stresses and vorticity
sig(1) = -d(2)*(eps(1)+eps(2)) ! pressure
sig(2) = eps(1) ! dimensionless ux-flux
sig(3) = eps(3) ! dimensionless uy-flux

c sig(4) = d(1)*eps(4) ! vx-flux

sig(4) = eps(4) | dimensionless vx-flux

sig(5) = eps(2) ! dimensionless vy-flux

sig(6) = eps(4)-eps(3) ! vorticity

psi = dsqrt(eps(5)**2+eps(6)**2) ! velo. contour
c dtx = -d(12)*eps(7) ! x-heat flux
c dty = -d(12)*eps(8) ! y-heat flux

dtx = eps(7) ! dimensionless x-heat flux

dty = eps(8) ! dimensionless y-heat flux
c.... Stream function computation

o



oo o0 o

o

C
C
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llI=1abs(ix(1))

if(1l.eq.1) then
psil=d(15)
dx1=x1(1,2)-x1(1,1)
dy1=x1(2,2)-x1(2,1)

else
psil=psil+ul(1,1)*dy1-ul(2,1)*dx1 ! streamfunction
dx1=xl1(1,2)-x1(1,1)
dy1=x1(2,2)-x1(2,1)

endif

if(isw.eq.4) then

.. print pressures, stresses, vorticity, velo. contour and streamfunction

.. output pressures, stresses, vorticity, velo. contour and streamfunction

mct = mct - 2

if(mct.le.0) then
write(iow,2001) o,head
if(ior.1t.0) then

write(*,2001) o,head

endif
mct = 50

endif

write(iow,2002) n,ma,(sig(ii),ii=1,5),xx,yy,sig(6),
& psi,dtx,dty,psil
if(ior.1t.0) then
write(*,2002) n,ma,(sig(ii),ii=1,5),xx,yy,sig(6),
& psi,dtx,dty,psil

569 continue ! only a dummy argument

C

(eI ¢)

o O 00

endif

.. THIS PART BELOW IS NOT USED IN A FLUID ELEMENT

elseif(isw.eq.6) then

.. compute the element internal force vector

(via the integral of B”t sigma)

dv = xsj*wg(1)*d(14)
il=1
do 430 j = 1,nel
p(1 ) =p(l ) - (shp(1,j)*sig(1) + shp(2,j)*sig(2))*dv

1 +d(11)*shp(3,j)*dv

p(j1+1) = p(1+1) - (shp(1,j)*sig(2) + shp(2,j)*sig(3))*dv
1 + d(12)*shp(3,j)*dv

i1 =jl + ndf

430 continue

endif

440 continue

C



compute average central gaussian coordinate at the element
and average central heat fluxes

o 0000

dtx4=dtx

dty4=dty

xx=sumx/4.d0

yy=sumy/4.d0

dtx=sumdx/4.d0

dty=sumdy/4.d0
z*****************************************

¢ Compute total heat fluxes at tubes
c*****************************************

pi=4.d0*atan(1.d0)

c
C********** ﬁrSt tUbe ook seskosk kool sk ok ok
c
if(n.ge.nellslbini.and.n.le.nel1s1bend) then
call sintegral02(yo1,xo1,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nells1bend) then
write(*,*)'fluxt1=",sum
c icont=0
c sum=0.d0
endif
if(n.ge.nells2bini.and.n.le.nel1s2bend) then
call sintegral02(yo1,x01,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nells2bend) then
write(*,*)' fluxt2='"sum
c icont=0
c sum=0.d0
endif
if(n.ge.nells3bini.and.n.le.nel1s3bend) then
call sintegral02(yo1,xo1,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nells3bend) then
write(*,*)'fluxt3=",sum
c icont=0
c sum=0.d0
endif
if(n.ge.nells4bini.and.n.le.nel1s4bend) then
call sintegral02(yo1,x01,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nells4bend) then
write(*,*)' fluxt4d='sum
c icont=0
c sum=0.d0

endif



if(n.ge.nells5bini.and.n.le.nel1s5bend) then
call sintegral02(yo1,xo01,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nells5bend) then
write(*,*) fluxt5='",sum
c icont=0
c sum=0.d0
endif
if{n.ge.nells6bini.and.n.le.nel1s6bend) then
call sintegral02(yo1,x01,yy,xx,dty,dtx icont,pi,sum)
endif
if(n.eq.nells6bend) then
write(*,*) fluxt6=",sum

C icont=0
c sum=0.d0
endif

if(n.ge.nells7bini.and.n.le.nel1s7bend) then
call sintegral02(yol,x01,yy,xx,dty,dtx icont,pi,sum)
endif
if(n.eq.nel1s7bend) then
write(*,*) fluxt7='sum

c icont=0
c sum=0.d0
endif

if(n.ge.nel1s8bini.and.n.le.nel1s8bend) then
call sintegral02(yol,x01,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nells8bend) then
write(*,*)'fluxt8=',sum

icont=0
c sum=0.d0
endif
c
c********** Second tUbe sk ok ok s ke sk ke sk skesk
c
if(n.ge.nel2s1bini.and.n.le.nel2s1bend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s1bend) then
write(*, *)'fluxt9=",sum
c icont=0
c sum=0.d0
endif
if(n.ge.nel2s2bini.and.n.le.nel2s2bend) then
call sintegral02(yo02,x02,yy,xx,dty,dtx, icont,pi,sum)
endif
if(n.eq.nel2s2bend) then
write(*,*)'fluxt10=',sum
c icont=0
c sum=0.d0

endif
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if(n.ge nel2s3bini.and.n le.nel2s3bend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s3bend) then
write(*,*)'flux11=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel2s4bini.and.n.le.nel2s4bend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s4bend) then
write(*,*)' fluxt12="sum
icont=0
sum=0.d0
endif
if(n.ge.nel2s5bini.and.n.le.nel2sSbend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s5bend) then
write(*, *)' fluxt13=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel2s6bini.and.n.le.nel2s6bend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s6bend) then
write(*,*)'fluxt14=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel2s7bini.and.n.le.nel2s7bend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s7bend) then
write(*,*)'fluxt15=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel2s8bini.and.n.le.nel2s8bend) then
call sintegral02(yo2,x02,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel2s8bend) then
write(*,*)'fluxt16=',sum
fluxf=sum/pi
write(*,*) fluxf=' fluxf
icont=0
sum=0.d0
endif
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c********** thlrd tUbe sokskskskok ko kk

C

if(n.ge.nel3s1bini.and.n.le.nel3s1bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s1bend) then
write(*,*)' fluxt17=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel3s2bini.and.n.le.nel3s2bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s2bend) then
write(* *)'fluxt18='sum
icont=0
sum=0.d0
endif
if(n.ge.nel3s3bini.and.n.le.nel3s3bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s3bend) then
write(*,*)'fluxt19=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel3s4bini.and.n.le.nel3s4bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s4bend) then
write(*,*)'fluxt20=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel3s5bini.and.n.le.nel3s5bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s5bend) then
write(*,*)'"fluxt21='",sum
icont=0
sum=0.d0
endif
if(n.ge.nel3s6bini.and.n.le.nel3s6bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s6bend) then
write(*,*)'fluxt22=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel3s7bini.and.n.le.nel3s7bend) then



call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s7bend) then
write(*,*)fluxt23=",sum
c icont=0
c sum=0.d0
endif
if(n.ge.nel3s8bini.and.n.le.nel3s8bend) then
call sintegral02(yo3,x03,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel3s8bend) then
write(*, *) fluxt24="_sum
icont=0
c sum=0.d0
endif

c********** fourth tube ook kKRR gk

if(n.ge.nel4s1bini.and.n.le nel4s1bend) then
call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s1bend) then
write(*,*) fluxt25=",sum

c icont=0
C sum=0.d0
endif

if(n.ge.nel4s2bini.and.n.le.nel4s2bend) then
call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s2bend) then
write(*,*)'fluxt26=",sum

c icont=0
c sum=0.d0
endif

if(n.ge.nel4s3bini.and.n.le.nel4s3bend) then
call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s3bend) then
write(*,*)'flux27=",sum

c icont=0
C sum=0.d0
endif

if(n.ge.nel4s4bini.and.n.le.nel4s4bend) then
call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s4bend) then
write(*,*)'fluxt28="sum

c icont=0
c sum=0.d0
endif

if(n.ge.nel4s5bini.and.n.le.nel4s5bend) then
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C

c****************************************************

C

C
C

call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s5bend) then
write(*,*)'fluxt29=',sum
icont=0
sum=0.d0
endif
if(n.ge.nel4s6bini.and.n.le.nel4s6bend) then
call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s6bend) then
write(*,*)'"fluxt30=",sum
icont=0
sum=0.d0
endif
if(n.ge.nel4s7bini.and.n.le.nel4s7bend) then
call sintegral02(yo4,x04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s7bend) then
write(*,*)'fluxt3 1="sum
icont=0
sum=0.d0
endif
if(n.ge.nel4s8bini.and.n.le.nel4s8bend) then
call sintegral02(yo4,xo04,yy,xx,dty,dtx,icont,pi,sum)
endif
if(n.eq.nel4s8bend) then
write(*,*)'fluxt32=',sum
fluxf=sum*0.013
write(*,*)'fluxf=" fluxf
write(*,*)'dtx4=",dtx4,'dtxavg=",dtx
write(*,*)'dty4=",dty4,'dtyavg=",dty
icont=0
sum=0.d0
endif

End of new part for computing total heat flux
c****************************************************

return
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%0%0%0%0%6%%6%0%6%%6%6%0%6%%6%0%0%%%0%6%%6%0%6%%%%%6%%%:%%%%0%%%%%%%
%%0%0%%%%:%%
¢ isw=5: compute consistent mass matrix (for dynamics)

v

%%0%%%0%%6%%%0%6%%0%6%%0%%0%6%0%0%%0%%%6%%6%0%6%0%6%%0%%0%6%%0%%%%%%0
%0%0%0%%%6%0%%

5

1=d(5)

c.... generate natural coordinates and weights of integration

C

points (only done once when lint=0)
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if{1*1.ne lint) call pgauss01(L lint,sg,tg,wg)
c.... loop over integration points, compute integral of N_a times
¢ N_btimes rho
do 530 1= 1,lint
call shape02(sg(l),tg(1),x1,shp,xsj,ndm,.false.,nalfa,shp1)
dv = wg(l)*xsj*d(4)
j1=1
do 520 j = 1,nel
w1l = shp(3,))*dv
p(i1) = p(i1) + Wil
kl1=jl
do 510 k =j,nel
s(j1,k1) = s(j1,k1) + shp(3.k)*wl1
k1 =kl +ndf
510 continue
j1 =jl + ndf
520  continue
530 continue
c.... compute missing parts and lower part by symmetries
nsl = nel*ndf
do 550 j = 1,nsl,ndf
pG+1) = p()
do 540 k = j,nsl,ndf
s(+1,k+1) = s(j,k)
s(k,j) = s(.k)
s(k+1,j+1) = s(j,k)
540 continue
550 continue
return
c
c
%0%0%6%%%6%6%6%6%6%6%6%6%6%6%6%6%0%%%6%6%%%0%0%6%%6%0%0%6%%6%0%%%%0%%%%%%
%%0%0%%%%%%
¢ isw=7: compute force vector corresponding to
c prescribed tractions
c
%6%%0%%%6%6%0%6%%6%06%6%6%6%6%%6%%%6%6%6%%%%6%6%6%%6%6%%0%%6%6%0%0%%% %% %
%%0%0%%%%%:%
7 call surf01(d,xl,ma,ndf,ndm,nel,mct, p)
return
c
%%%%0%6%6%6%6%6%0%6%6%6%6%6%6%%0%%6%0%%0%%%%%:%%6%0%6%%6%%0%%%0%6%%%%%0
%%0%0%%%%%:%
¢ isw=8: compute nodal stresses for plotting
c
%%0%0%6%6%6%6%0%6%6%6%6%6%6%%0%6%6%6%%%%6%%6%%6%6%%6%%%0%0%%%:%6%6%%%%%%
%%0%0%0%%%%%
8 call sten02(ix,d,x1,ul,tl,s,shp,m(np),m(np+numnp*ipr),ndf,ndm,
1 nel,numnp)
return
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c
%0%%6%6%0%6%6%%6%6%6%6%6%6%6%6%0%%6%6%0%%%6%0%0%%%6%%%6%%0%6%0%6%%0%%%%%%0
%%%%0%%%%%
¢ format statements for element 1
c
%0%0%0%%%%6%6%6%%6%6%6%6%%6%0%0%%%0%6%6%6%0%0%%%6%0%6%%6%0%0%6%%0%0%0%%%%%
%%0%%%%%%%
1000 format(3£10.0,3110/6£10.0)
2000 format(/5x,'Fluid ',a4,' 4-NavierStokes flow Element'//
1 10x,'viscosity ' €12.5/10x,'penalty param',£8.5/
2 10x,'density  ',e12.5/10x,'gauss pts/dir',i3/
3 10x,'fluxes pts 'i3/ 10x, 'el2.5/
3 10x, ',e12.5/10x,' Lel2.5/)
2001 format(al,20a4//5x 'element fluxes'//' element material',
1 ' pressure ux-flux uy-flux vx-flux vy-flux’,
2 """ 1-coord 2-coord vorticity velocity modulus ',
3'x-hflux y-hflux streamfunction’)
2002 format(/2i19,5¢12.3/29.3,5¢12.3)
3000 format(' Input: mu, gama, rtho, #-pts K, #-pts sig/' >'$)
3001 format(' Input: thick, 1-body, 2-body/* 1>'.$)
3002 format(’ Input: thick, 1-body, 2-body/* >',%)
end
C  HHHHHH R
¢ subroutine integral02: computes values of integral Ii
C BB R
subroutine sintegral02(yo1,x01,yy,xx,dty,dtx,icont,pi,sum)
implicit real*8 (a-h,0-z)
common /teste/ tetaia,tetaip,dteta,dtna,dtnp
if(icont.eq.0) then
tetaia=atan(abs((yol-yy)/(xo01-xx)))
auxl=tetaia
if(xx.gt.xo1) tetaia=pi-tetaia
dtna=fluxn(dty,dtx,aux1)
write(*,*)'tetaia='tetaia,'dtna=",dtna
icont=1
else
tetaip=atan(abs((yo1-yy)/(xo01-xx)))
aux2=tetaip
if(xx.gt.xo1) tetaip=pi-tetaip
dtnp=fluxn(dty,dtx,aux2)
dteta=tetaip-tetaia
sum=sum-+((dtnp+dtna)/2)*dteta
c write(*,*)'tetaia,tetaip="tetaia, tetaip
write(*,*)'dtna=',dtna,'dtnp=",dtnp,'sum=",sum
tetala=tetaip
dtna=dtnp
icont=1
endif
return
end
C  HHEHHHEHHHH R R AR

o

[¢]
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function to compute the normal heat flux to the
surface
HH R R
function fluxn(qy,qx.teta)
implicit real*8 (a-h,0-z)
common /elipse/ sa,sb

circular or elliptical section

aux=sqrt(qx*qx+qy*qy)
aux=abs(qx)*cos(teta)+abs(qy)*sin(teta)

aux1=abs(qx)*1/(sqrt(1-+(sa**2/sb**2)*(tan(teta))**2))

aux2=abs(qy)* 1/(sqrt(1-+(sb**2/sa**2)/(tan(teta))**2))

aux=aux l+aux2

fluxn=aux

return

end

THHEHHHHH A
subroutine shape02: computes values of shape function

and its derivatives at a point
FHHH A

subroutine shape02(s,t,x1,shp,xsj,ndm,flg,nalfa shp1)
implicit real*8 (a-h,0-z)
logical flg

... shape function routine for 4-node isoparametric quadrilaterals

.. Given data:

s:  first natural coordinate of point

t:  second natural coordinate of point

xl: array of localized coordinates
(dimensioned ndm by 4)

... Output:

shp: array containing evaluations of all element shape
functions and derivatives at (s,t)
shp(1,a)=N_a,x (s,t)
shp(2,a)=N_a,y (s,t)
shp(3,a)=N_a (s,t)
for a=1,2,3,4
xsj: jacobian of coordinate transformation
(i.e., det(dx/dxi))
shp: array containing evaluations of all element shape
functions and derivatives at s=t=nalfa/3 (upwinding point)
shp1(1,a)=N_ax (s,t)
shp1(2,a)=N_a,y (s,t)
shp1(3,a)=N_a (s,t)
for a=1,2.3.,4

real*8 xl(ndm,4),shp(3,4),shp1(3,4)



sh=0.5%s
th=0.5%
sp=0.5+sh
tp=0.5+th
sm=0.5 - sh
tm=0.5-th
if (nalfa.ne.0) then
s1 = nalfa/3.d0
tl =sl
shl = 0.5*s1
thl = 0.5*%t1
spl =0.5 + shl
tpl = 0.5 + thl
sml = 0.5 - shl
tml =0.5 - thl
shp1(3,1) = sml*tml
shpl1(3,2) = spl*tml
shp1(3,3) = spl*tpl
shp1(3,4) = sml*tpl
endif
... evaluate the shape functions
shp(3,1) = sm*tm
shp(3,2) = sp*tm
shp(3,3) = sp*tp
shp(3,4) = sm*tp
... calculates the partial derivatives of x ,y with respect
to xi and eta (including a factor of 4) and put in xs,xt,ys,yt
xo = xI(1,1)-x1(1,2)+x1(1,3)-x1(1,4)
xs = -x1(1,1)+x1(1,2)+x1(1,3)-x1(1,4) + xo*t
xt = -x1(1,1)-x1(1,2)+x1(1,3)+x1(1,4) + x0*s
yo = xI(2,1)-x1(2,2)+x1(2,3)-x1(2,4)
ys = -x1(2,1)+x1(2,2)+x1(2,3)-x1(2,4) + yo*t
yt = -x1(2,1)-x1(2,2)+x1(2,3)+x1(2,4) + yo*s
if (nalfa.ne.0) then
xol = xI(1,1)-xI(1,2)+x1(1,3)-x1(1,4)
xsl = -x1(1,1)+x1(1,2)+x1(1,3)-xI(1,4) + xo1*t1
xt1 = -x1(1,1)-x1(1,2)+x1(1,3)+x1(1,4) + x01*s1
yol = x1(2,1)-x1(2,2)+x1(2,3)-x1(2,4)
ysl = -x1(2,1)+x1(2,2)+x1(2,3)-x1(2,4) + yol*tl
ytl = -x1(2,1)-x1(2,2)+x1(2,3)+x1(2,4) + yol*sl
endif
... compute jacobian, put in Xsj
xsj1 = xs*yt - xt*ys
xs] = 0.0625%*xsj1
if (nalfa.ne.0) xsj2 = xs1*ytl - xt1*ysl
... compute shape function derivatives with respect to x and y
and store in shp (see pp. 146-147 of Hughes)
if(.not.fig) then
if(xsj1.eq.0.0d0) xsj1 = 1.0
Xs = (xs+xs)/xsjl
xt = (xt+xt)/xsjl
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C
C
C
C
C
v

ys = (yst+ys)/xsjl

yt = (yt+yt)/xsjl

ytm = yt*tm

ysm = ys*sm

ytp = yt*tp

ysp = ys*sp

xtm = xt*tm

Xsm = xs*sm

xtp = xt*tp

XSp = xs*sp

shp(1,1) = - ytm+ysm

shp(1,2) = ytmtysp

shp(1,3) = ytp-ysp

shp(1,4) = - ytp-ysm

shp(2,1) = xtm-xsm

shp(2,2) = - xtm-xsp

shp(2,3) = - xtp+xsp

shp(2,4) = xtp+xsm

endif
if (nalfa.ne.0) then

if(.not.flg) then
if(xsj2.eq.0.0d0) xsj2 = 1.0
xsl = (xsl+xs1)/xsj2
xt] = (xtl1+xt1)/xsj2
ysl = (ysl+ysl)/xsj2
ytl = (yt1+ytl)/xsj2

ytml = yt1*tml
ysml = ysl*sml
ytpl = ytl*tpl

yspl = ysl*spl
xtml = xt1*tml
xsml = xs1*sml
xtpl = xt1*tpl
xspl = xs1*spl
shpi(1,1) = - ytml+ysml
shp1(1,2) = ytml+yspl
shp1(1,3) = ytpl-yspl
shp1(1,4) = - ytpl-ysm1
shp1(2,1) = xtml-xsml
shp1(2,2) = - xtm1-xspl
shp1(2,3) = - xtp1l+xspl
shp1(2,4) = xtpl+xsml
endif
endif
end

B R
subroutine stcn02: computes quantities necessary for

nodal projection of element stresses to nodes
HHHHH AR
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*** representation of stress field in terms of NODAL
stresses requires a reprojection of the stress
field. The technique used is a least squares
method (see Hughes, pp. 226-228 for a brief and
somewhat cryptic presentation)

*** primary output variables of this routine:

s. consistent projection matrix

dt: lumped (diagonal) projection matrix, stored
in vector form

st: weighted stress vector

O 00 000000060600

subroutine stcn02(ix,d,x1,ul,tls,shp,dt,st,ndf,ndm,nel,numnp)
implicit double precision (a-h,0-z)
dimension dt(numnp),st(numnp, 1),xl(ndm, 1),shp(3,4),sig(6),
1 d(1),eps(6),ul(ndf,1),t1(1),ix(1),s(nel, 1),sg(16),tg(16),
2 wg(16),shp1(3,4)

¢ data ss/-1.d0, 1.d0,1.d0,-1.d0, 0.d0,1.d0,0.d0,-1.d0,0.d0/

¢ datatt/-1.d0,-1.d0,1.d0, 1.d0,-1.d0,0.d0,1.d0, 0.d0,0.d0/
c..... lumped and consistent projection routine

1=d(5)

if(1*1.ne lint) call pgaussO1(l lint,sg,tg,wg)

call pzero(s,nel*nel)
c
c..... Note: do 300 loop is a loop over the integration points
c

do 3001= 1 lint

call shape01(sg(l),tg(l),x1,shp,xsj,ndm,.false.,nalfa,shp1)

xsj=xs)*wg(l)

do 100i=1,8
eps(i) = 0.0d0

100  continue

xx = 0.0

yy =0.0

do 110 1= 1,nel
xx = xx + shp(3,1)*x1(1,i) ! compute global coord.
yy = yy + shp(3,1)*x1(2,i) ! of the gaussian points
eps(1) = eps(1) + shp(1,i)*ul(1,1) !pressure
eps(2) = eps(2) + shp(2,i)*ul(2,1)
eps(3) = eps(3) + shp(2,i)*ul(1,1)
eps(4) = eps(4) + shp(1,1)*ul(2,1)
eps(5) = eps(5) + shp(3,1))*ul(1,1) ' u
eps(6) = eps(6) + shp(3,)*ul(2,i)) ! v
eps(7) = eps(7) + shp(1,1)*ul(3,1) ! dT/dx
eps(8) = eps(8) + shp(2,i)*ul(3,1) ! dT/dy
ss = shp(3,1)*xsj

c.... compute consistent projection matrix
do 105 j = 1,nel
s(.j) = s(i,j) * ss*shp(3,j)



105  continue
110  continue
C.... compute stresses
c
sig(1) = -d(2)*(eps(1)+eps(2)) ! pressure
sig(2) = d(1)*eps(1) ! ux-flux
sig(3) = d(1)*eps(3) ! uy-flux
sig(4) = d(1)*eps(4) ! vx-flux
sig(5) = d(1)*eps(2) ! vy-flux
sig(6) = eps(4)-eps(3) ! vorticity
psi = dsqrt(eps(5)**2+eps(6)**2)
dtx = eps(7) ! x-hflux
dty = eps(8) ! x-hflux
c.... Stream function computation
11=iabs(ix(1))
if(11.eq.1) then
psi1=0.d0
dx1=xI1(1,2)-x1(1,1)
dy1=x1(2,2)-x1(2,1)
else
psil=psil+ul(1,1)*dy1-ul(2,1)*dx1 ! streamfunction
dx1=xI(1,2)-x1(1,1)
dy1=x1(2,2)-x1(2,1)
endif
c.... compute lumped projection and assemble the stress integrals
do 120 j = 1,nel
1 = iabs(ix(]))
if(11.gt.0) then
xg =xsj*shp(3,))
dt(ll) = dt(ll) + xg
st(1,1) = st(11,1) + sig(1)*xg ! pressure
st(11,2) = st(11,2) + sig(6)*xg ! vorticity
st(11,3) = st(11,3) + sig(2)*xg ! du/dx
st(11,4) = st(11,4) + psi*xg ! velo. contour
st(1,9) = st(11,9) + dtx*xg ! x-hflux
st(11,10) = st(11,10) + dty*xg ! y-hflux
st(1,11) = st(1L,11) + psil *xg ! streamfunction
endif
120 continue
300 continue
return
end

97



98
REFERENCIAS BIBLIOGRAFICAS

Anand, N. K.; Kim, S. H.; Fletcher, L. S. The effect of plate spacing on free convection
between heated parallel plates. J. Heat Transfer, 114: 515-518 (1992).

Bar-Cohen, A. & Rohsenow, W. M.  Thermally optimum spacing of vertical, natural

convection cooled, parallel plates. .J. Heat Transfer, 106: 116-123 (1984).

Bar-Cohen, A. & Kraus, A. D. Advances in Thermal Modeling of Electronic Components and
Systems. Vol. 2 ASME Press, New York (1990).

Bejan, A. & Sciubba, E. The optimal spacing of parallel plates cooled by forced convection.
Int. J. Heat Mass Transfer, 35: 3259-3264 (1992).

Bejan, A. & Morega, A. M. Optimal arrays of pin fins in laminar forced convection. J. Heat

Transfer, 115: 75-81 (1993).

Bejan, A. Convection Heat Transfer. 2nd Edition, Wiley, New York (1995).

Bejan, A.; Fowler, A. J.; Stanescu, G. The optimal spacing between horizontal cylinders in a
fixed volume cooled by natural convection. Int. J. Heat Mass Transfer, 38: 2047-2055

(1995).

Bordalo, S. N. & Saboya, F. E. M. Determinagio experimental dos coeficientes de perda de
carga em trocadores de calor de tubos circulares ¢ elipticos aletados. Proc. 13° COBEM,

Conferéncia Brasileira em Engenharia Mecdnica, Belo Horizonte, Brasil (1995).

Brauer, H. Compact heat exchangers. Chem. Process Eng., 451-460 (August 1964).

Dongarra, J.J.; Bunch, J. R.; Moler, C. B.; Stewart, G. W. LINPAK Users’ Guide, Society for
Industrial and Applied Mathematics, Philadelphia (1979).



99
Fowler, A. J; Ledezma, G. A.; Bejan, A. Optimal geometric arrangement of staggered plates
in forced convection, Int. J. Heat Mass Transfer, 8: 1795-1805 (1997).

Hirata, M.; Kakita, Y.; Yada, Y.; Hirose, Y., Morikawa, T.; Ecomoto, H. Temperature
distribuition of finned integrated circuits, Fijitsu Sci. Technol. J., 6: 91-115 (1970).

Hughes, T. J. R, A simple scheme for developing upwind finite elements, Int. J. Numerical

Methods in Engineering, Vol. 12, pp. 1359-1365 (1978).

Hughes, T. J. R., Liu, W. K., e Brooks, A., “Review finite element analysis of incompressible
viscous flows by penalty function formulation”, Journal of Computational Physics, Vol.

30, pp. 1- 60 (1979).

Kays, W. A. & London, A. L. Compact heat transfer characteristics of air cooled heat
exchangers for air conditioning devices Bull, JSME, 11: 303-311 (1968).

Kim, S. H.; Anand, N. K ; Fletcher, L. S. Free convection between series of vertical parallel

plates with embedded line heat sources, J. Heat Transfer, 113: 108-115 (1991).

Knight, R. W_; Goodling, J. S.; Hall, D. J. Optimal thermal design of forced convection heat
sinks-analytical, .J. Electronic Packaging, 113: 313-321 (1991).

Knight, R. W.; Goodling, J. S.; Gross, B. E. Optimal thermal design of air cooled forced
convection finned heat sinks-experimental verification, /EEE Trans. Components, Hybrids

Manufacturing Technol. 15: 754-760 (1992).

Matsushima, H.; Yanagida, T.; Kondo, Y. Algorithm for predicting the thermal resistance of
finned LSI packages mounted on a circuit board, Heat Transfer-Jap. Res., 21: 504-517
(1992).

Nakayama, W.; Matsushima, H.; Goel, P. Forced convective heat transfer from arrays of
finned packages, Em Cooling Technology for Electronic Equipment, (Editado por W.
Aung), pp. 195-210, Hemisphere, New York (1988).



100

Peterson, G. P. & Ortega, A. Thermal control of electronic equipment and devices, Adv. Heat

Transfer, 20: 181-314 (1990).

Reddy, J. N.; Gartling, D. K. The Finite Element Method in Heat Transfer and Fluid
Dynamics, CRC (1994).

Rocha, L. A. O.; Saboya, F. E. M.; Vargas, J. V. C. A comparative study of elliptical and
circular sections in one and two-row tubes and plate fin heat exchangers, /nt. J. Heat Fluid

Flow , 18: 247-252 (1997).

Rosman, E. C. Performance of tube and plate fin heat exchangers. Tese de Mestrado,
Departament of Mechanical Engineering, Pontificia Universidade Catdlica do Rio de

Janeiro, Brazil, (1979).

Rosman, E. C_; Carajilescov, P.; Saboya, F. E. M. Performance of tube of one and two-row

tube and plate fin heat exchangers. J. Heat Transfer, 106: 627-632 (1984).

Saboya, F. E. M . Local and average transfer coefficients in plate fin and tube configurations.
Ph.D. thesis, Departament of Mechanical Engineering, University of Minnesota,

Minneapolis, MN. (1974).

Saboya, F. E. M. & Sparrow, E. M. Experiments on a three-row fin and tube heat
exchangers, .J. Heat Transfer, 98: 520-522 (1976).

Schulemberg, F. Finned elliptical tubes and their applications in air-cooled heat exchangers.

J. Eng. Ind., 88: 179-190 (1966).

Shepherd, D. G. Performance of one-row tube coils with thin, plate fins, low velocity forced

convection. Heating, Piping and Air Conditioning, 28: 137-144 (1956).

Stanescu, G.; Fowler, A. J; Bejan, A. The optimal spacing of cylinders in free-stream cross-

flow forced convection, Int. J. Heat Mass Transfer, em impressao (1996).



101

Ximenes, M. P. Heat and mass transfer in elliptical tubes and plate fin heat exchangers. Ph.D.
thesis, Mechanical Engineering Division, Air Force Institute of Technology, Sao José dos

Campos, Brazil, (1981).

Zienkiewicz, O. C.; Taylor, R. L. The Finite Element Method, McGraw-Hill, London (1989).



