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a Semi-eixo maior do tubo de secção elíptica, m

b Semi-eixo menor do tubo de secção elíptica, m

cp Calor específico a pressão constante, J/(kg.K)

cp Coeficiente referente ao calor específico a pressão constante, (FEAP)

D Diâmetro do tubo circular, m

e Excentricidade do tubo, b/a

f  Função que representa a equação da elipse ou do círculo

F Fluxo de calor adimensional

FEAP Finite Element Analysis Program ( Zienkiewicz e Taylor, 1989)

g Gravidade, m/s2

g Coeficiente referente a gravidade, (FEAP)

gx Coeficiente referente a componente de gravidade na direção x, (FEAP)

gy Coeficiente referente a componente de gravidade na direção y, (FEAP)

H Altura do arranjo, m

Ij Integral da transferência de calor ao longo da superfície do tubo

k Condutividade térmica, W/(m.K)

k Coeficiente referente a condutividade térmica, (FEAP)

k , 1 Número de pontos para a quadratura gaussiana nas duas direções do

problema bidimensional 

1 Distância entre centros dos tubos na direção do escoamento

1 Distância adimensional entre centros dos tubos na direção do escoamento

1 ^  Distância máxima entre centros dos tubos na direção do escoamento

L Comprimento do arranjo, m

m Vazão mássica de ar, kg/s

n Vetor normal

N Número de tubos no canal elementar

N cel Número de células do arranjo

Nu Número de Nusselt, -----—----
Q  cond pura
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q".n,i Taxa de transferência de calor média por unidade de área por superfície do canal

elementar

qr Taxa de transferência de calor resultante

qx Taxa de transferência de calor na direção x

qy Taxa de transferência de calor na direção y

q Taxa de transferência de calor de cada tubo, W/m2i

q Taxa de transferência de calor média, W/m2i

qlcel Taxa de transferência de calor de uma célula, W

q^f Fluxo de calor volumétrico, W/m3

q{ Taxa de transferência de calor volumétrica adimensional por tubo,

“D" 2
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D
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q Taxa de transferência de calor volumétrica adimensional total, £  q;

i = l  1
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______ -^cel Îcel______

k(Tw - T JL H W /D 2 

Q Taxa de geração total de calor, W



r Raio do tubo circular, m

Ra Número de Rayleigh

ReD Número de Reynolds baseado no diâmetro

ReL Número de Reynolds baseado no comprimento do arranjo

S Distância entre tubos, m

(S + 2b) / 2 Distância entre centros do tubo de secção elíptica no canal elementar 

e perpendicular a direção do fluxo, m 

(S + 2D) / 2 Distância entre centros do tubo de secção circular no canal 

elementar e perpendicular a direção do fluxo, m 

T Temperatura, K

Tc Temperatura da parede fria, K

Th Temperatura da parede quente, K

Ts Temperatura média do fluido na saída do arranjo (x=3L), K

Tw Temperatura superficial do tubo, K

T^ Temperatura do escoamento livre, K

Tmax Temperatura máxima na superfície dos tubos, K

u,v Componentes da velocidade, m/s

ü Vetor velocidade, m/s

U,V Componentes da velocidade adimensionais

Velocidade do escoamento livre, m/s 

W Largura do arranjo, m

x,y Coordenadas cartesianas, m

X,Y Coordenadas cartesianas adimensionais

Xj, Coordenadas dos centros dos tubos

Símbolos gregos:

oc Difusividade térmica, m2/s

a p Parâmetro de “upwinding”

(3 Coeficiente referente ao coeficiente de expansão térmica (FEAP)

0 Temperatura adimensional



0S Temperatura média adimensional na saída do arranjo, (em 3L)

[1 Viscosidade dinâmica, kg/m.s

[X Coeficiente referente a viscosidade dinâmica, (FEAP)

V Viscosidade cinemática, m2/s

P Densidade, kg/m3

P Coeficiente referente a densidade, (FEAP)

Y Parâmetro de penalidade

Ap Variação de pressão

AP Variação de pressão adimensional

8 Ângulo do círculo em coordenadas polares

Vf Gradiente da fimção f.



RESUMO

Neste estudo, foi realizada uma análise da transferência de calor em trocadores de 

calor de tubos circulares e elípticos, em duas dimensões. O método de elementos finitos foi 

utilizado para discretizar as equações governantes do escoamento e da transferência de calor, 

e um elemento bidimensional, isoparamétrico, quadrilateral com funções de interpolação 

linear, foi implementado e agregado ao código FEAP (Zienkiewicz e Taylor, 1989). Os 

resultados numéricos, para uma configuração de arranjo triangular eqüilateral, obtidos com o 

novo elemento foram então validados, via comparação direta com os resultados experimentais 

previamente publicados para trocadores de calor de tubos circulares (Stanescu et al., 1996). A 

seguir, uma otimização numérica da geometria foi conduzida para maximizar a taxa total de 

transferência de calor entre o volume dado e o escoamento externo tanto para arranjos 

circulares como elípticos, para várias configurações gerais. Os resultados são apresentados 

para ar na faixa de 300 < ReL< 800, onde L é o comprimento varrido do volume fixado. 

Arranjos circulares e elípticos com a mesma área de obstrução na direção do escoamento livre 

foram comparados com base na transferência total de calor máxima. O efeito da excentricidade 

das elipses também foi investigado. Um ganho relativo na transferência de calor de até 13 % é 

observado no arranjo elíptico ótimo, em comparação ao arranjo circular ótimo. O ganho de 

transferência de calor, combinado com a redução em perda de carga de até 25 % observada 

em estudos anteriores (Brauer, 1964; Bordalo e Saboya, 1995) mostram que arranjos de tubos 

elípticos têm potencial para um desempenho consideravelmente melhor do que os 

convencionais circulares.



ABSTRACT

In this study, a two-dimensional (2-D) heat transfer analysis was performed in circular 

and elliptic tube heat exchangers. The fínite element method was used to discretize the fluid 

flow and heat transfer goveming equations and a 2-D isoparametric, four-noded, linear 

element was implemented for the finite element analysis program FEAP (Zienkiewicz and 

Taylor, 1989). The numerical results for the equilateral triangle staggering configuration, 

obtained with the new element were then validated by means of direct comparison to 

previously published experimental results for circular tubes heat exchangers (Stanescu et al, 

1996). Next, a numerical geometric optimization was conducted to maximize the total heat 

transfer rate between the given volume and the given externai flow both for circular and 

elliptic arrangements, for general staggering configurations. The results are reported for air in 

the range 300 < ReL á  800, where L is the swept length of the fíxed volume. Circular and 

elliptical arrangements with the same flow obstruction area were compared on the basis of 

maximum total heat transfer. The effect of ellipses eccentricity was also investigated. A 

relative heat transfer gain of up to 13 % is observed in the optimal elliptical arrangement, as 

compared to the optimal circular one. The heat transfer gain, combined with the relative 

pressure drop reduction of up to 25 % observed in previous studies (Brauer, 1964; Bordalo 

and Saboya, 1995), shows the elliptical arrangement has the potential for a considerably better 

overall performance than the conventional circular one.



1 INTRODUÇÃO

1.1 Considerações iniciais

Um novo desafio apresenta-se ao engenheiro do próximo milênio. Não é suficiente 

realizar um projeto que seja exeqüível e funcional. Além disso, o mesmo deve funcionar de 

forma otimizada, isto é, com máximo desempenho.

A alta competitividade do mercado nos dias atuais, requer conhecimentos cada vez 

mais especializados e equipamentos adequados para se obter o melhor produto pelo menor 

investimento. Neste sentido, muito esforço tem sido dedicado à busca de equipamentos mais 

eficientes, devido à preocupação com o uso ótimo da energia disponível.

A otimização dos processos de troca de energia tem sido objeto de vários 

estudos nos últimos tempos. Isto ocorre devido à sua importância, como por exemplo na 

refrigeração de equipamentos eletrônicos, que é um problema básico de transferência de calor. 

A evolução de tais equipamentos é acompanhada de uma redução do volume ocupado por 

este. Dessa forma, devemos obter um máximo de transferência de calor para um dado espaço, 

o que caracteriza a necessidade de estudos de otimização. Arranjos de tubos estão presentes 

em muitas aplicações industriais, atuando como trocadores de calor em sistemas de ar 

condicionado, aquecedores e radiadores.

Nos processos em que a troca de calor deve ser feita através de um fluido em 

escoamento forçado, deseja-se uma troca eficiente de calor, mas sem que haja, excessiva perda 

de carga. Uma alta perda de carga implica em alta potência de bombeamento, acarretando 

consumo desnecessário de energia.

O assunto deste trabalho foi motivado por esta necessidade crescente de otimização 

em todas as aplicações da Engenharia, visando racionalizar o uso da energia disponível e 

reduzir o trabalho perdido.

No caso específico deste trabalho, pretende-se através da quantificação da troca de 

calor em um certo volume fixo, para várias configurações de tubos, chegar, numericamente, à 

configuração geométrica ótima para arranjos de tubos circulares e elípticos, presentes em 

muitas aplicações industriais modernas.

Um grande número de problemas da engenharia é regido por equações diferenciais 

parciais. Entretanto, em geral, a obtenção de soluções exatas para estas equações é tarefa de 

grande dificuldade ou, via de regra, impossível. Esta dificuldade pode estar relacionada à 

própria forma da equação, à geometria, ou às condições de contorno e iniciais.



Surge assim a necessidade de resolver o problema de forma aproximada, com a 

utilização de métodos numéricos. Este procedimento permite obter informações mais 

detalhadas e compreensíveis, com tempo de projeto reduzido, além da possibilidade de simular 

situações impossíveis de se obter de forma experimental. Tomando como exemplo este 

trabalho, foram realizados inúmeros testes que experimentalmente seriam inviáveis. Esta 

aproximação consiste no processo de conversão das equações diferenciais parciais contínuas 

em um sistema de equações algébricas que representam o domínio discreto. Para a 

discretização foi escolhido o método de Elementos Finitos (Zienkiewicz e Taylor, 1989).

A precisão obtida na solução aproximada está diretamente relacionada à qualidade da 

malha (representação do contínuo). Regiões onde a solução apresente elevados gradientes 

devem apresentar uma maior densidade de pontos, comparadas a outras. Esta maior densidade 

de pontos pode ser obtida através de refinamentos e/ou concentrações de linhas da malha na 

região problemática, razão pela qual a malha deste problema foi mais refinada ao redor dos 

tubos.

A seguir, são apresentados os objetivos do presente trabalho. No capítulo 2, apresenta- 

se uma revisão da literatura técnica, descrevendo e discutindo estudos relacionados com o 

tema desta dissertação, publicados até a presente data. No capítulo 3, apresenta-se e discute-se 

o problema físico a ser resolvido nesta tese. No capítulo 4, listam-se as hipóteses adotadas e 

apresenta-se o modelo matemático para o problema físico. No capítulo 5, detalha-se e discute- 

se o método numérico utilizado nesta tese para a solução das equações governantes do 

problema, apresentando também as figuras de mérito propostas para análise de performance 

dos arranjos de tubos em estudo. No capítulo 6, apresentam-se os resultados numéricos 

obtidos nesta tese e discute-se sua validação a luz de dados experimentais, os novos resultados 

para a geometria de tubos elípticos e a análise comparativa entre tubos circulares e elípticos.

1.2 Objetivos

Este estudo tem por objetivos: 

a) Utilizar o código aberto FEAP, "Finite Element Analysis Program", desenvolvido por 

Zienkiewicz e Taylor (1989), e elementos específicos para a solução numérica em duas 

dimensões das equações de conservação (massa, momentum e energia), para obter 

soluções para arranjos de tubos circulares e elípticos em convecção forçada. 

Primeiramente o código é validado reproduzindo-se resultados disponíveis na literatura



para a otimização de arranjos de tubos circulares em convecção forçada (Stanescu et 

al., 1996).

Buscar a otimização de arranjos de tubos elípticos em convecção forçada, para máxima 

transferência de calor, sob uma restrição de volume fixo, através do código aberto 

FEAP. A seguir comparam-se os resultados com os resultados para arranjos de tubos 

circulares, reportando-se os ganhos percentuais da configuração ótima elíptica em 

relação à circular, do ponto de vista de transferência de calor.

Apresentar os resultados, através de grupos adimensionais convenientes, portanto, de 

caráter geral para qualquer configuração de tubos elípticos.



2 REVISÃO DA LITERATURA

O desenvolvimento de técnicas de resfriamento para equipamentos eletrônicos é 

ilustrado pelo surgimento de resultados fundamentais que se aplicam a classes inteiras de 

configurações geométricas (Bar-Cohen e Kraus, 1990; Peterson e Ortega, 1990). Um exemplo 

claro são as normas de projeto para a seleção de espaçamento entre os componentes de um 

equipamento de volume fixo, tal que a condutância térmica média entre o equipamento e o 

refrigerante seja maximizada. Os espaçamentos ótimos já foram reportados para várias 

geometrias, tanto em convecção natural (Bar-Cohen e Rohsenow, 1984, Bejan, 1995; Kim et 

al., 1991; Anand et al., 1992), como em convecção forçada (Knight et al., 1991; Knight et al., 

1992; Bejan e Morega, 1993; Hirata et al., 1970; Nakayama et al., 1988; Matsushima et al., 

1992; Bejan e Sciubba, 1992).

Shepherd (1956) analisou tubos circulares com uma fileira e trocadores de calor com 

aletas determinando o coeficiente global de transferência de calor como uma função do 

número de Reynolds, assumindo aletas isotérmicas.

Brauer (1964) apresentou uma pesquisa com resultados experimentais comparando, 

arranjos de tubos elípticos e circulares para transferência de calor e perda de carga, baseado na 

observação de que a geometria do tubo elíptico tem uma configuração aerodinâmica melhor 

que a do tubo circular. Portanto, é razoável esperar-se uma redução na força total de arrasto e 

um aumento na transferência de calor, ao comparar-se arranjos de tubos elípticos com arranjos 

de tubos circulares, submetidos a um escoamento livre, em fluxo cruzado.

Schulemberg (1966) analisou o potencial de aplicação de tubos elípticos em trocadores 

de calor na indústria, mostrando experimentalmente os resultados da transferência de calor e 

perda de carga.

Saboya (1974) obteve experimentalmente os coeficientes de transferência de calor 

locais, usando a técnica de sublimação do naftaleno por uma analogia de transferência de calor 

e massa para trocadores de calor de uma e duas fileiras de tubos circulares aletados.

Saboya e Sparrow (1976) estenderam o estudo para trocadores de calor de tubos 

circulares de três fileiras. Os resultados mostraram baixos coeficientes de transferência de 

massa atrás dos tubos, quando comparados com a média dos arranjos.

Ximenes (1981) relatou experimentalmente resultados para coeficientes de 

transferência de massa em trocadores de calor de uma e duas fileiras de tubos elípticos



aletados. Na configuração para tubo elíptico foi observado que a queda do coeficiente de 

transferência de massa foi menos acentuada atrás dos tubos do que na configuração circular.

Rosman et al. (1984) experimentalmente determinaram os coeficientes de transmissão 

de calor locais e globais usando a analogia entre transferência de calor e massa, para 

trocadores de calor de uma e duas fileiras de tubos circulares aletados, através da 

determinação numérica da distribuição de temperatura da aleta e eficiência, e a temperatura do 

escoamento livre ao longo da aleta. Os resultados mostraram que a configuração de duas 

fileiras é mais eficiente que a configuração de uma fileira.

Bordalo e Saboya (1995) relataram medições da perda de carga comparando arranjos 

com configurações de uma, duas e três fileiras. A conclusão destes estudos baseados em 

evidências experimentais é que a configuração com tubos elípticos tem melhor performance do 

que com tubos circulares.

Stanescu et al. (1996) estudaram o espaçamento ótimo de tubos circulares em 

escoamento livre e convecção forçada , fluxo cruzado, e Bejan et al. (1995) apresentaram um 

estudo similar em convecção natural. Ambos os estudos levam em consideração a limitação de 

espaço disponível em qualquer projeto, através de uma restrição de volume fixo. Nestas 

configurações as simetrias presentes nos arranjos permitiram que os problemas fossem 

modelados numericamente em duas dimensões. O espaçamento ótimo entre fileiras de tubos 

foi determinado por maximização da transferência de calor entre os tubos circulares e o 

escoamento livre.

Rocha et al. (1997) estudaram trocadores de calor de tubos elípticos aletados para 

configurações específicas de 1 e 2 fileiras de tubos, com uma formulação simplificada, sendo 

que os resultados de eficiência foram comparados aos de trocadores de calor de tubos 

circulares. Os resultados mostraram para as configurações estudadas ganhos percentuais de 

até 18% para transferência de calor e de até 25% para perda de carga.

Neste trabalho, busca-se determinar o espaçamento ótimo entre fileiras de tubos para 

uma outra configuração básica: o arranjo de tubos elípticos com escoamento transversal em 

convecção forçada. Dentro deste contexto, este trabalho visa avaliar a geometria de 

trocadores de calor de tubos elípticos não aletados sob convecção forçada, através de 

simulações numéricas, utilizando o método de elementos finitos, capazes de prever o 

desempenho do trocador de calor, do ponto de vista de transferência de calor.

O modelo numérico deste estudo é validado qualitativamente pela comparação direta 

com resultados experimentais publicados para a geometria de tubos circulares (Stanescu et



al, 1996). A seguir, resultados inéditos para a geometria de tubos elípticos são obtidos 

comparados com os resultados de tubos circulares.



3 O PROBLEMA FÍSICO

3.1 Geometria do arranjo

O problema a ser resolvido neste trabalho é formulado a partir da configuração 

mostrada na Figura 1. O módulo, consiste de um conjunto de tubos elípticos (ou circulares), 

em cujo interior circula um fluido aquecido. Os tubos são montados em um volume (LHW), 

sendo o comprimento L na direção do fluxo, a altura H perpendicular à direção do fluxo e dos 

tubos, e a largura W perpendicular a direção do fluxo e paralela aos tubos. Este volume é 

mantido fixo em todas as simulações, caracterizando desta maneira a limitação de espaço 

(restrição), presente em qualquer projeto de engenharia.

Os tubos são idênticos, onde cada tubo elíptico é caracterizado pelo semi-eixo maior, 

a, semi-eixo menor, b, e o comprimento do tubo W. No caso de tubos circulares, a dimensão 

característica é o diâmetro, D.

Os tubos elípticos são montados em paralelo em uma disposição triangular eqüilateral 

com um dos lados perpendicular ao fluxo e cada tubo é atravessado internamente por uma 

corrente de fluido aquecido.



As componentes da velocidade, u, e v, são alinhadas com os eixos, x e y, 

respectivamente. O domínio computacional é composto pelo canal elementar, que tem por 

comprimento total 3L. Para isto, nas simulações, acrescentou-se o comprimento L na entrada 

e na saída do arranjo (não representado na Figura 1).

O arranjo geométrico dos tubos tem quatro graus de liberdade: o espaçamento vertical, 

(S+2b)/2, dado pela distância entre centros perpendicular à direção do fluxo no canal 

elementar, o número de tubos, N, montados no canal elementar de comprimento L, a 

excentricidade, e, e o espaçamento horizontal, 1 = V3 (S + 2b)/2, que representa a distância 

entre centros na direção do fluxo no canal elementar, para um arranjo triangular eqüilateral.

A velocidade do escoamento livre é um parâmetro externo e pode variar, sendo 

representada pelo número de Reynolds, UL/ v , baseado no comprimento L do volume fixo.

A geometria do módulo montado no volume LHW pode ser mudada por variação de 

(S+2b)/2, N, e, e 1 ou uma combinação destes parâmetros.

É de interesse o arranjo geométrico, dado pela combinação de parâmetros ótima, que 

maximize a transferência de calor entre os tubos e o escoamento livre, para um certo espaço 

disponível, representado pela restrição de volume fixo, LHW.

A parte crítica de um estudo de otimização consiste na identificação dos graus de 

liberdade (variáveis) que permitam a maximização (ou minimização) da figura de mérito 

escolhida, no caso, a maximização da transferência de calor entre os tubos e o escoamento 

livre, q. A primeira variável identificada desta maneira foi o espaçamento entre fileiras de 

tubos, S. Dado um arranjo de tubos, contendo um número de canais elementares pré- 

especificado, Ncei, observa-se um espaçamento máximo entre fileiras, , tal que o arranjo 

seja acondicionado no interior do espaço disponível LHW. Para justificar a escolha do 

parâmetro S para ser otimizado, basta que se analise dois extremos: S -» 0 e S -» . Para

uma determinada condição de velocidade de entrada no arranjo, , quando S -» 0 , a área 

mínima da seção transversal de escoamento, Ac, se reduz e, portanto, o fluxo de fluido no 

canal elementar cai, e desta maneira q - » 0  . Quando S -» , Ac aumenta, a velocidade na

seção transversal do escoamento se reduz e, portanto, q também diminui. Este comportamento 

claramente indica a existência de um valor máximo para q no intervalo 0 > S > Smax desde

que Smax seja suficientemente grande.



3.2 Critério de comparação entre tubos de seção circular e elíptica

Para o estabelecimento de uma base comparativa entre tubos de seção circular e 

elíptica adotou-se o critério de manter-se a mesma seção dos tubos na direção do escoamento, 

ou seja, o diâmetro do tubo circular igual a duas vezes o semi-eixo menor do tubo elíptico 

conforme a Figura 2. Desta maneira, todos os arranjos sob comparação tiveram a mesma área 

de obstrução ao escoamento livre.

Tubo circular Tubo

 >

->

->

Figura 2: Superfícies de troca de calor.

3.3 Disposição dos tubos

A Figura 3 mostra uma distribuição triangular eqüilateral dos tubos no canal elementar.

(S + 2b);2

I V 3  ÇS + 2b)/2 I V 3 (S  + Zb)/2 J , \ Í 3 (S + 2b)/2-m-



A geometria da Figura 3 permite escrever a seguinte expressão geral:

L _ a  
2b b

+ ( N - l ) — +1 
V2b

cos30( d )

A partir de N e L/2b determina-se S/2b com a equação (1), parâmetro este utilizado 

para a montagem das malhas e determinação do espaçamento ótimo entre fileiras de tubos.

Para o estudo da seção elíptica, a restrição de distribuição triangular eqüilateral não foi 

adotada. Portanto, variou-se somente a altura do canal elementar do arranjo (S+2b)/2.



4 MODELO MATEMÁTICO

O problema foi analisado partindo das seguintes hipóteses:

• Fluido newtoniano;

• Escoamento incompressível;

• 2-D (bi-dimensional);

• Regime permanente;

• Escoamento laminar;

• Propriedades constantes no fluido, e

• Dissipação viscosa desprezível.

O ar comporta-se como um fluido newtoniano aonde a tensão cisalhante é 

proporcional ao gradiente de velocidade e devido a pequenas variações da temperatura, 

consideram-se as propriedades constantes no fluido e a dissipação viscosa desprezível.

O escoamento pode ser tratado como incompressível por desenvolver-se em baixas 

velocidades (escoamento laminar) e pequenas variações de pressão, onde a densidade e a 

viscosidade também permanecem constantes.

A influência do efeito das superfícies do volume LHW é desprezível, uma vez que a 

altura do canal elementar (S + 2b)/2 é consideravelmente menor que a altura do arranjo H, 

portanto, o escoamento pode ser tratado como bi-dimensional.

4.1 Equações governantes

Partindo-se das equações básicas de conservação de massa, momento e energia, 

utilizando as hipóteses apresentadas, as equações resultantes, simplificadas que governam o 

problema são:

4.1.1 Conservação de massa



4.1.2 Conservação de momentum

Componente na direção x:

du õu l dp
U  h V  = ----------------- hV

dx dy q dx

f  2̂ 2,, "Nd ^ u + d y  
dx2 dy'

(3)

Componente na direção y:

dv dvu  h v —
dx dy

1 dp
q dy l dxÁ dy'

+v ô Áw d Áv+ ■ (4)

4.1.3 Conservação de energia

ÕT õ l
u  1-v—  = a

dx dy
r ô2T õ2T ^ 

ôx2 õy2
(5)

Devido às simetrias existentes nos arranjos, o problema pode ser resolvido em duas 

dimensões, com o domínio reduzido a apenas uma célula unitária, mostrada na Figura 1.

4.2 Forma adimensional

A fim de que os resultados sejam de caráter geral e para facilitar a obtenção da solução 

numérica das equações, grupos adimensionais convenientes foram definidos para a 

representação das quantidades de interesse, i.e., temperaturas, velocidades e pressão, fazendo 

uso também do número de Prandtl, correspondente ao fluido, e do número de Reynolds 

baseado na velocidade de entrada do fluido no arranjo e no comprimento total varrido pelo 

escoamento, L.

Adimensionalizando as variáveis envolvidas nas equações, obtém-se:

• Velocidades:



L

Y -  Y
L

• Pressão:

P = J L
e u :

• Perda de carga:

AP = Ap
e U i / 2

Temperatura:

T - TA xoo
T - TAW co

Número de Reynolds:

ReL ^
V

• Número de Peclet:



• Número de Prandtl:

(15)

4.3 Equações governantes adimensionais

Substituindo os grupos adimensionais nas equações governantes, as equações 

governantes adimensionais resultantes são:

4.3.1 Conservação de massa

4.3.2 Conservação de momentum

• Componente na direção x:

i fa2u a2u
----------rH----- s-

SX2 SY2
(17)

• Componente na direção y:

ÕP 1 ô+ i Ta2v  õ2v
--------- v +  v (18)

ÕY ReL _ ÕX ÕY

4.3.3 Conservação de energia

T õd xrôd 1 õ 
U —  +  V —  = ---------------

i f õ2e s 2e
ÕX ÔY PeL [ÕX



4.4 Condições de contorno adimensionais

A seguir, são estabelecidas condições de contorno apropriadas ao problema, isto é, 

temperaturas prescritas nos tubos, nenhuma penetração nas interfaces de canal para canal, e 

condição de não deslizamento nas superfícies dos tubos.

(A) U = 1; V = 0; 6 = 0; (20)

(B) ^  = 0;V = 0; |U < ) ;  (21)
Õ Y  Õ Y

(O u= V = 0; 0 =1; (22)

dU dV dd(D) = = (23)
ax õ x  ax

(B) (B) (B)

»T® (A)
(Q (C)

(B)
(C) (B) <C)

(D)

(B)

Figura 4: Condições de contorno no canal elementar.



5 MÉTODO NUMÉRICO

5.1 Considerações iniciais

Para a solução numérica das Equações (16)-(19), foi aplicado o método de elementos

finitos (Zienkiewicz e Taylor, 1989). Desta maneira, obtêm-se os campos de velocidades e

temperaturas no domínio definido pela célula unitária da Figura 1.

O código computacional dos elementos específicos para a solução das equações de 

conservação, em linguagem FORTRAN, foi desenvolvido com base na forma variacional 

("weak form") das Equações (16)-(19) (Reddy e Gartling, 1994), constituindo-se em 

elementos bidimensionais, quadrilaterais, isoparamétricos, com funções de interpolação 

lineares. Este código foi escrito e agregado ao código aberto do método de elementos finitos 

"FEAP - Finite Element Analysis Program" (Zienkiewicz e Taylor, 1989) pelo Grupo de 

Energia e Ciências Térmicas do PIPE, UFPR.

Para possibilitar o cálculo do fluxo de calor entre os tubos e o escoamento do fluido 

foi necessário implementar um código computacional específico para realizar o pós- 

processamento das temperaturas obtidas na solução do problema no domínio computacional 

representado pelo canal elementar da Figura 1.

Para validação do cálculo do fluxo de calor foi realizado um teste do cálculo do fluxo 

de calor em uma cavidade quadrada utilizando o código desenvolvido nesta tese, conforme 

demonstrado no Anexo 1, comparando os valores obtidos com a solução numérica e a solução 

obtida por outros métodos publicados na literatura técnica.

Além disso o código foi validado, via comparação direta dos resultados numéricos para 

arranjos de tubos circulares com os resultados experimentais de Stanescu et al. (1996). O 

problema de obtenção dos campos de temperaturas e velocidades em arranjos de tubos 

elípticos foi resolvido numericamente para várias configurações. Foi computada a densidade 

volumétrica de transferência de calor de cada arranjo. Desta maneira, realizou-se a otimização 

numérica do espaçamento entre os tubos dos arranjos para máxima transferência de calor, 

para uma determinada restrição de espaço (condição de volume fixo).

O cálculo da densidade volumétrica de transferência de calor ou condutância térmica 

média de cada arranjo foi determinado, dividindo a taxa de geração total de calor nos tubos, 

Q, pelo volume total disponível para instalação do arranjo, LHW (condição de volume fixo).



5.2 Malha utilizada

Para efeito de verificação da teoria apresentada após o estudo de diversas 

configurações de malhas, chegou-se mediante testes de refinamento a uma malha com 5180 

elementos, 4 nós por elemento, totalizando 5460 nós, sendo 260 nós na direção x e 21 nós na 

direção y, com quatro tubos no canal elementar.

Figura 5: Malha gerada através do código FEAP para 4 tubos no canal elementar.

Para permitir a estabilização do escoamento a montante e a jusante do arranjo foi 

acrescentado um comprimento L a esquerda e a direita da malha da Figura 5. Através de testes 

numéricos, constatou-se que para este problema não houve variação significativa no cálculo 

do fluxo total de calor utilizando-se um comprimento de L/2-2a ao invés de L. No entanto, 

para obtenção dos resultados apresentados nesta tese, a malha teve o comprimento total 3L.

5.3 Teste de refinamento da malha

Para todos os arranjos testados, foi realizado um teste de refinamento de malha com 

5380 elementos, 4 nós por elemento, totalizando 5670 nós, sendo 270 nós na direção x e 21 

nós na direção y, com quatro tubos no canal elementar, cujo erro entre a malha anterior (5460 

nós e 5180 elementos) e a malha posterior é dado por:

erro = q -q / 4 ,malha anterior malha posterior malha anterior

onde q representa a densidade volumétrica de transferência de calor do arranjo adimensional, 

a ser definida na Equação (58).



O erro calculado pela Equação (24) situou-se sempre abaixo de 1 % em todos os 

casos testados. Portanto, adotou-se a malha menos refinada para a obtenção de todos os 

resultados deste trabalho.

5.4 Equações de Navier-Stokes e Energia em Elementos Finitos

As equações implementadas no código FEAP (Finite Element Analysis Program), 

através do elemento Navier-Stokes e Energia encontram-se na forma generalizada:

V.ü=0 (25)

^ ^      __
— +(Ü.V)Ü = -V p + |x  V2Q + e 1(3 ( T - T J  (26)

Kdt )

p cp ü VT = k V2 T (27)

onde a pressão foi eliminada da Equação (25), fazendo uso de um modelo de penalidade para 

elementos finitos, aproximando a equação de conservação de massa para (Hughes et al., 

1979):

^  + ^  = (28)
dx dy y

onde y - fator de penalidade, deve ser assumido grande o suficiente para que a equação de 

conservação de massa seja satisfeita aproximadamente.

A implementação do método de elementos finitos para solução das equações (25) -  

(27) requer primeiramente a obtenção da forma variacional (fraca) do problema. A seguir, a 

forma variacional resultante é discretizada, inicialmente por um método de Galerkin (i.e., 

análogo a diferenças centrais no método de diferenças finitas). No entanto, devido às 

características do escoamento no arranjo da Figura 1, fisicamente a solução depende 

preferencialmente do que ocorre nos pontos anteriores a um determinado ponto do domínio, 

considerando a direção do escoamento forçado. O método de Galerkin não captura este 

aspecto físico em suas equações discretas (análogo de diferenças centrais, no método de 

diferenças finitas). Portanto, a forma discreta utilizada neste trabalho foi a proposta por



Hughes (1978), que consiste num esquema “upwinding”, onde é possível adequar a forma 

discreta às características do escoamento.

Após o desenvolvimento da forma discreta, obtém-se a forma matricial para o 

problema bidimensional em regime permanente:

~C(u) 0 u i
< > +

0 C(u) U2,

2Kn + K 22 K 21

K 12 K n + 2K22

V j*
>

j*
> 1

V rF 1
< > + < > =  < >

U 2 , _ 21 22 _ U 2 . F 2 .

(29)

D(u)T + LT = G (30)

onde C(u) é a matriz de capacidade que contém os termos advectivos das equações de 

momentum, que depende de forma não linear da solução u (vetor bipartieionado em ui -  

direção x e u2 -  direção y, cada um deles com um número de componentes igual ao número de 

incógnitas da malha); K n ,K 12,K 21,e K 22 são as matrizes rigidez de coeficientes constantes 

(propriedades constantes) que contêm os termos viscosos das equações de momentum;

e K „  são as matrizes de penalidade, que contêm os termos devido à

eliminação da pressão das equações de momentum com o uso da equação (28) (para obtenção 

dos elementos destas matrizes adotou-se um procedimento de integração reduzida, pois estes 

termos resultam do campo de pressão, a fim de evitar o fenômeno de “locking”); D(u) é a 

matriz de capacidade que contêm os termos advectivos da equação da energia; L é a matriz de 

difusão de coeficientes constantes, que contêm os termos difusivos da equação da energia; Fi e 

F2 são os vetores força da equação de momentum que contêm as forças de campo e condições 

de contorno de velocidade, e G o vetor força da equação da energia que contêm os termos de 

geração de calor e condições de contorno de temperatura.

Deixa-se de apresentar os detalhes matemáticos dos componentes dessas matrizes por 

razões de brevidade, uma vez que o assunto desta tese não é o método de elementos finitos 

propriamente dito. No entanto, para maiores detalhes da formulação utilizada para codificar o 

elemento deste trabalho, deve-se consultar o trabalho de Reddy e Gartling (1994).

O sistema de equações não-lineares construído com as equações (29) e (30) foi 

resolvido pelo método de Newton-Raphson, para a obtenção das velocidades e temperaturas, 

para a malha utilizada (Reddy e Gartling, 1994).



Visando a correspondência entre as equações governantes adimensionais e as equações 

implementadas no código FE AP, toma-se necessário a correlação que se segue para o arquivo 

de entrada de dados:

Para os números de Reynolds e Peclet baseados no comprimento L temos a seguinte 

relação de equivalência:

ReL = ReD L/D; PeL = PeD.L/D (31)

Exemplificando, para L/D = 6.2, ReD = 100, Pr = 0.72 temos:

]T = 0.0161;y =l.e6;p~ = l;l '  =2;k '  = 2

ocp = 0 ; g x = 0 ; g y =0; f  = 0; cp = l ; k  = 0.00224

Note que:

[x = ——  ; PeL = ReL .Pr; k = —— e a - parâmetro de “upwinding” (Hughes, 1978).
Re, PeL

5.5 Algoritmo para o cálculo da transferência de calor, em tubos de seção circular

Inicialmente procedemos o cálculo da transferência de calor para cada nó das 

superfícies que envolvem os tubos.



A partir da Álgebra Vetorial, calcula-se o módulo do vetor qn como se segue:

|q j  = q x -n + qy -n

onde n -  vetor normal à superfície.

Considerando a função f  uma superfície genérica, o vetor normal n é dado por:

n Vf
IVfl

A função f  para o círculo é dada por:

f  = ( x - x i)  ̂ +(y-Yi)2 - r 2 =0

Temos que o gradiente de f  é dado por:

Vf
y õ x 7 dy j

Vf = ( 2 (x - x i) ,2(y-y i))

E o módulo do gradiente de f  é dado por:

Vf =
.ôx,

+ Õf_ 
ôy J

Substituindo as derivadas:



Das coordenadas retangulares:

x - x ■ = r cos 8

y-y .  = r sen 8

(39)

(40)

Substituindo, as equações (39) e (40) na equação (38):

|Vf I = 2-\/r2cos28 + r 2sen28 (41)

Simplificando:

Vf = 2r (42)

Substituindo, as equações (42) e (36) na equação (33) e simplificando:

n = (cos8, sen8) (43)

Substituindo, (42) em (30) temos a equação resultante para o cálculo da transferência 

de calor normal à superfície de troca de calor:

qn = q x cos8 + sen 8 (44)

O ângulo 8 foi obtido através da relação, a seguir, para coordenadas polares:

8 = arctg Yi-Y
X ; " X

(45)

O que permite a obtenção do ângulo 8 para qualquer posição (x,y) na superfície

circular.



5.6 Algoritmo para integração da transferência de calor ao longo da superfície do 

tubo

Da transferência de calor, aplicando-se a lei de Fourier na interface fluido /sólido 

(condução pura) temos que q é dado por:

t õ l  t ÕT „ ÕT
q„ = - k —  , q = - k —  e q = - k  —

õn x õx y õy
(46)

Combinando as equações (44) e (46), obtém-se:

t ÕT COSÔ +
, ÕT

q = -k  — - k  —n dx õy
senô (47)

Usando as equações (8), (9) e (12), define-se:

q” LnF = --------------- = —  cosô--I------senô
k(Tw -  T J  SX ÕY

Fazendo a média ao longo da superfície de troca de calor e integrando de 0 a n:

1 f*
= -  F dô 

k(Tw -  T J  n Jo

onde a integral I ao longo da superfície é representada por:

(48)

q" Lti
(49)

I
q" Lnn

k(T -  T ) ÍJo
F dô (50)

W  00

A seguir, a taxa de geração de calor por unidade de volume total do arranjo, é dada

por:



Q  _  ^ c e l  f í lc e l  ( 5 1 )

W L H  W L H

Simplificando a equação (51):

Q = N celqIcel (52)

A transferência de calor média por unidade de área por superfície do canal elementar é 

dada por:

q .n, í

( f í l c e l ) ;  ( 5 3 )

71 D w

onde i = 1, . . . ,NeN representa o número de superfícies em contato com o canal elementar.

A Função Objetivo representada pela transferência de calor volumétrica adimensional 

por canal elementar é definida como:

q* = ------------ ^ ------------- (54)
k(Tw- T JH W L /D 2

Substituindo, a equação (52) na equação (54):

~  ( N c e i  f í l c e l / c  c \
f í i  = --------------------------------------------------  ( 5 5 )

k ( T -  T JH W L /D 2

Substituindo, a equação (53) na equação (55):

N ceI
tiD 
---- W

3 i= ----------------- á------- - (56)
k ( T -  T JH W L /D 2

Simplificando e multiplicando a equação (56) por L/L:



Substituindo I j  da equação (50) na equação (57):

2
D

onde:

N

(59)
i=l

A integral li foi implementada no código FE AP, que passou a computar diretamente 

com as equações (58) e (59) o valor de q para cada geometria de arranjo estudada.

O cálculo de q foi realizado neste trabalho apenas para tubos circulares, a fim de 

permitir a validação de resultados numéricos por comparação direta com resultados 

experimentais (Stanescu et al., 1996).

5.7 Metodologia para o cálculo da transferência de calor em tubos de seção circular

No presente trabalho, foi definida uma nova figura de mérito para o cálculo da 

transferência de calor utilizando a temperatura no final do canal elementar com o objetivo de 

obter maior precisão dos resultados numéricos.

Parte-se das equações (51) e (52) que representam a taxa de geração de calor por 

unidade de volume total do arranjo e utiliza-se como referência o fluxo de calor volumétrico a 

seguir:

e elíptica



q«f = k
( T .- T .)

(2b)2

W (60)
m

A Função Objetivo representada pela transferência de calor volumétrica adimensional é 

dada por:

Q/LHW (61)
I ref

Substituindo, a equação (51) na equação (61), obtêm-se:

N„ , qcel llc e l

k(Tw - TJLH W /(2b):
(62)

A transferência de calor para uma célula é obtida por um balanço global de energia 

tomando uma célula como volume de controle:

qi»i = rilcP (Ts -T J (63)

onde Ts-  temperatura média do fluido na seção de saída da célula unitária.

A vazão mássica de ar é calculada na seção de entrada da célula unitária como:

m = q XJ0
S + 2b

W (64)

Substituindo, as equações (63) e (64) na equação (62):

q =

^S + 2b

\ 2 )
W c (T -T  )p \  s 00 /

k(Tw -TJLHW /(2b)2
(65)

Simplificando e substituindo a equação (12) em (65):



6 DISCUSSÃO DE RESULTADOS

6.1 Validação dos resultados numéricos para arranjos de tubos circulares

Nesta seção, busca-se obter resultados numéricos para um arranjo de tubos de 

dimensões idênticas às utilizadas no experimento de Stanescu et al. (1996) dadas por:

L = 39.2 mm, H = 35.2 mm, W = 134 mm, D = 6.35 mm e a relação L/D = 6.2. 

Estabelecemos para o nosso estudo comparativo um arranjo com doze tubos no volume 

fixo LHW de referência, e quatro tubos no canal elementar. Desta maneira, é possível investigar 

qual o espaçamento ótimo entre fileiras de tubos, em um arranjo de geometria conhecida ou 

especificada.

Consideram-se estes dados como a base do arranjo utilizado na experimentação 

numérica, dimensões estas que adimensionalizadas segundo o comprimento L do arranjo 

resultam em:

L -  1.0 

H =0.9678 

W = 3.4 

D =0.1613 

L/D = 6.2 

H/D = 6.0

Mantendo a restrição de triângulo equilátero para o arranjo, utilizando a equação (1), 

onde a = b, D = 2b, N = 4, N cel = 6 e L/D = 6.2, obtém-se S/D =1.0.

Partiu-se inicialmente da relação S/D =1.0  máxima para o arranjo. Este espaçamento 

entre tubos foi então reduzido para um mesmo número de tubos no arranjo (12 tubos) até que 

fosse encontrado o espaçamento ótimo dado pela máxima transferência de calor.

Através do código FEAP foram obtidos os fluxos de calor, segundo a equação (59) para 

vários valores de S/D e ReL = 310, 465, 620 e 775, cujos valores de (S/D)ot encontram-se 

entre 0.25 e 1.0, de acordo com o gráfico da Figura 7.
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Figura 7: Gráfico dos resultados numéricos e experimentais para trocadores de calor de tubos circulares

com arranjo triangular eqüilateral.

A Figura 7 mostra que os resultados numéricos obtidos neste trabalho apresentam 

concordância qualitativa com os resultados experimentais de Stanescu et al. (1996), para ReD 

= 50 e 100 principalmente, no que se refere à localização do espaçamento ótimo (S/D)ot.

A concordância é marcante, observando também que o arranjo experimental era 

pequeno e, portanto, não era um grande banco de cilindros. Nos experimentos, utilizou-se fluxo 

de calor uniforme nos tubos, e na simulação numérica os arranjos são infinitamente mais largos 

e com cilindros isotérmicos.

Realizada a validação dos resultados numéricos para tubos circulares, parte-se a seguir 

para a otimização dos arranjos de tubos elípticos.

6.2 Otimização de arranjos de tubos de seção elíptica

De acordo com o critério de equivalência entre tubos de seção circular e elíptica e a 

disposição dos tubos (variando somente (S+2b)/2), tratados nos itens 3.2 e 3.3 deste trabalho,



parte-se dos seguintes valores adimensionalizados para a otimização dos arranjos de tubos de 

seção elíptica:

L=1.0

L/2b=6.2

S/2b=1.0

Para as excentricidades :

e = 1.0, ã  = 0.08065 e b = 0.08065 seção circular; 

e = 0.80, ã  = 0.1241 e b = 0.08065 seção elíptica; 

e = 0.65, ã =  0.101 e b = 0.08065 seção elíptica; 

obtiveram através do código FEAP os fluxos de calor segundo a nova figura de mérito da 

equação (67), tratada no item 5.8 para ReL =310,  465, 620 e 775, cujos valores ótimos para 

S/2b encontram-se entre 0.25 e 1.5 de acordo com os gráficos das Figuras 8, 9 e 10 

respectivamente.

A influência da variação de ReL é também investigada nas Figuras 8, 9 e 10. Quando 

ReL aumenta aumenta. O máximo é menos pronunciado para valores baixos de ReL .

S/2b

Figura 8: Gráfico dos resultados numéricos para trocadores de calor de tubos circulares (e=l) .



S/2b

Figura 9: Gráfico dos resultados numéricos para trocadores de calor de tubos elípticos (e=0.8) .

S/2b



6.3 Comparação entre tubos de seção circular e elíptica

As figuras 11 e 12 mostram o efeito da excentricidade das elipses sobre q j  para ReL =

465 e 620, respectivamente. Quando a excentricidade decresce, q  ̂ aumenta, portanto a

geometria elíptica tem uma melhor taxa de transferência de calor total entre os tubos e o

escoamento livre.

S/2b

Figura 11: Gráfico do efeito da excentricidade das elipses na transferência de calor (ReL=465).



S/2b

Figura 12: Gráfico do efeito da excentricidade das elipses na transferência de calor (ReL=620).

Os resultados mostrados nas Figuras 8 a 12 são resumidos nas Figuras 13 e 14. O efeito 

da excentricidade das elipses sobre q é representado na Figura 13, onde a medida que
*, max

ReL e q aumentam, a excentricidade decresce, isto é, quanto mais alongadas as elipses
*, max

maior é a transferência de calor total. Em uma análise quantitativa, é importante realçar que foi 

observado um ganho máximo de 13 % na transferência de calor em comparação com o arranjo 

circular tradicional, através da simulação numérica, observado para o arranjo elíptico com e =

0.65.

A Figura 14 mostra que o espaçamento ótimo decresce a medida que a velocidade do 

escoamento livre aumenta (ou ReL ).



e

Figura 13: Gráfico do efeito da excentricidade das elipses sobre a máxima condutância térmica global.

e

Figura 14: Gráfico do efeito da excentricidade das elipses sobre o espaçamento ótimo para a máxima

condutância térmica global.



O valor de S/D = 0.1 foi o valor mínimo possível com o que foram obtidas soluções 

numéricas. A explicação para tal limitação prende-se ao fato de que para espaçamentos 

pequenos, (S —> 0), o modelo utilizado não representa o comportamento esperado do ponto de

vista físico q -» 0  , pelo fato de ao se aproximar-se os tubos a velocidade na seção
V *, m ax J

crítica (mínima) aumenta e o escoamento, eventualmente, passa a ser compressível, portanto, 

não representado pelo modelamento apresentado.

Não houve perda de generalidade dos resultados por fixar-se Ncei= 6 no presente 

estudo, como é deduzido através das equações (57) e (67). O efeito da variação do número de 

tubos em um canal elementar, N, está ainda para ser investigado, mas pode-se notar que N = 

L/a representa o limite onde as elipses se tocam. De qualquer modo, não é difícil verificar que a 

figura de mérito dada pela equação (54) é análoga ao número de Nusselt médio para todo o

~ =-= h(2b) t- q(2b) , r  r  ■arranjo, q = Nu = -------- , de modo que, h = ----- —— ------- , onde h representa o coeficiente
k (Tw -T JL H W

de transferência de calor médio equivalente, W/(m2.K). Portanto, para números maiores de 

fileiras, q (ou q ) computado para N = 4 é uma boa aproximação. Isto é explicado
m ax *, max

pelo fato de que com um número grande de fileiras, o escoamento seria completamente 

desenvolvido, portanto, com nenhuma mudança significativa no número de Nusselt médio para 

uma geometria particular, seja ela circular ou elíptica. Este comportamento foi observado 

experimentalmente comparando resultados de arranjos de tubos circulares de três fileiras, 

apresentados por Saboya e Sparrow (1976), com resultados de arranjos de tubos circulares de 

duas fileiras, apresentados por Rosman et al. (1984), ambos para trocadores de calor aletados. 

O mesmo fenômeno foi também observado numericamente em um recente estudo de Fowler et 

al. (1997), em placas submetidas à convecção forçada, onde conclui-se que o efeito de N em 

q é quase inexistente para 2 < N < 65 .
m ax

As isotermas mostradas nas Figuras 15, 16 e 17 comprovam o ganho da transferência de 

calor com o aumento da temperatura no final do canal elementar na faixa de 0.7 a 0.9, com a 

redução da excentricidade. A medida que a excentricidade é reduzida, o fluido na saída do 

arranjo fica mais aquecido, portanto , Ts se eleva, e consequentemente q#.
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Figura 15: Gráfico das isotermas para o espaçamento ótimo S/2b = 0.50, e = 1.0 e ReL= 620,



Figura 16: Gráfico das isotermas para o espaçamento ótimo S/2b = 0.50, e = 0.80 e ReL= 620.



Figura 17: Gráfico das isotermas para o espaçamento ótimo S/2b = 0.75, e = 0.65 e ReL= 620.



6.4 Distância entre centros variável na direção do escoamento

Alternativamente, o arranjo de tubos pode ser otimizado fixando-se a altura do canal 

elementar do arranjo (S+2b)/2 e variando-se a distância entre centros na direção do escoamento

(1=V3(S + 2b)/2) da Figura 1. Foi realizado um teste partindo de um arranjo com: e = 1, L =

1.2, L/2b = 7.44 e S/2b = 1.5, como dimensões do maior arranjo e ReL = 620. O valor de 1 

para a máxima transferência de calor situa-se em torno de 0.8 para este caso de acordo com a 

Figura 18.
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Figura 18: Gráfico da distância entre centros ótima na direção do escoamento.
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A distância máxima entre centros na direção do escoamento, lmax é dada por:

Imax = (L-2b) / (N-l) (68)

A distância entre centros na direção do escoamento adimensionalizada ( 1 ) é dada por:

T = l / l max (69)

A finalidade do estudo apresentado nesta seção foi de apenas estudar a possibilidade de 

estender o presente estudo em trabalhos futuros, para um estudo de otimização de arranjos de 

tubos elípticos com relação a mais um grau de liberdade.



Os resultados numéricos obtidos nesta tese demonstram que arranjos de tubos de seção 

circular e elíptica podem ser otimizados para máxima transferência de calor (ou máxima 

condutância térmica), quando a otimização é sujeita a uma determinada restrição de volume. 

Do ponto de vista de aplicação prática direta dos resultados aqui apresentados, cumpre 

ressaltar que isto dependerá da similaridade entre a configuração analisada neste trabalho, pela 

Figura 1, e o projeto real em estudo. No entanto, do ponto de vista fundamental os resultados 

obtidos permitem afirmar que sempre haverá um espaçamento ótimo entre fileiras de tubos de 

trocadores de calor, que é importante ser encontrado.

Do ponto de vista de transferência de calor, foi demonstrado que a configuração 

elíptica tem melhor desempenho que a circular. Entre os casos estudados, o ganho máximo 

obtido foi de 13 %, para e = 0.65, com ReL = 465. O ganho em transferência de calor, 

combinado com a redução em perda de carga de até 25 % observada em estudos anteriores 

(Brauer, 1964; Bordalo e Saboya, 1995) mostram que arranjos de tubos elípticos têm 

potencial para um desempenho consideravelmente melhor do que os convencionais circulares.

Este estudo ainda demonstrou a possibilidade de otimização dos arranjos com relação 

à distância entre centros dos tubos, na direção do escoamento. Este grau de liberdade 

adicional deve ser adicionalmente investigado em estudos posteriores.

Como uma seqüência natural para o presente estudo, a fim de quantificar o ganho total 

em desempenho do ponto de vista de transferência de calor e perda de carga, sugere-se a 

utilização de uma nova figura de mérito. O cálculo da entropia gerada no processo, a partir 

dos campos de temperatura e pressão obtidos neste trabalho combinaria os dois efeitos. A 

otimização seria, portanto, direcionada para a minimização da geração de entropia no 

processo.



Teste do cálculo da transferência de calor em uma cavidade quadrada

Visando a comparação entre a solução numérica obtida com o código FE AP e a 

solução exata reportada por Bejan (1995), foi efetuado o cálculo da transferência de calor para 

uma cavidade quadrada em convecção natural, mostrada na Figura 19.

Z Z .Z . /
i

Figura 19: Convecção natural em uma cavidade quadrada.

O problema foi analisado partindo das seguintes hipóteses:

• Fluido newtoniano;

• Escoamento incompressível;

• 2-D (bi-dimensional);

• Regime permanente;

• Escoamento laminar;

• Propriedades constantes no fluido, e

• Dissipação viscosa desprezível.

1. Equações governantes

Partindo-se das equações básicas de conservação de massa, momento e energia e de 

acordo com as hipóteses pré-definidas, para fluxo constante do fluido as equações que 

governam o problema resultantes são:



1.1 Conservação de massa

ou dv _
—  +  —  = 0
õx dy

(70)

1.2 Conservação de momentum

Componente na direção x:

du du 1 dpu — + v — =-----—+ V

0 n2 ^o u  d u + ■
dx dy q õx l dx dy

(71)

Componente na direção y:

dv dv 1 dp u —  + v —  = --------- bv
í  "̂ 2 ^2
' Ô  V  Ô  V

dx dy q dy \d x  dy
+ ■ Pg (72)

1.3 Conservação de energia

dT dT 
u  1- v —  = a

0 2T <92rO+ •
dx dy l dx dy

(73)

2. Forma adimensional

Por se tratar de um problema envolvendo convecção natural o número de Rayleigh 

será utilizado como parâmetro.

Adimensionalizando as variáveis envolvidas nas equações tem-se:

• Velocidades:

U = u —  Ra
a

V = v — Ra
a

•1/2

-1/2

(74)

(75)



• Posições:

X =  —  (76)
H

Y = - X -  (77)
H

• Pressão:

P = —£ 5 ----  (78)
T> r, 1/2[i a Ka

• Temperatura:

T - T
Tk-T„

(79)

• Número de Rayleigh:

Ra = gP (Th - T J H  ^

a v

3. Equações governantes adimensionais

Substituindo as equações adimensionais nas equações governantes, as equações 

governantes adimensionais resultantes são apresentadas a seguir:

3.1 Conservação de massa

d ü  ÔY—  + —  = 0 (81)
ÔX ÔY

3.2 Conservação de momentum

• Componente na direção x:

Ra 1/2

Pr
u ^ + v ^

ax dY
ap a2u a2u
— f ;r H------ r- (82)ex ô x 2 ô y 2



Componente na direção y:

Ra 1/2

Pr
u ^ + v ^

ÕX ÕY
ÕP , a2v , a v , 1----- -r- 4 t- + Ra
ÔY ÕX2 ÕY2

(83)

3.3 Conservação de energia

Ra 1/2 ÕQ ÔQ
U  + V ----

Õ X  Õ Y

õ 20 d \ (84)

4. Solução experimental/integral

O número de Nusselt para o presente problema é definido como (Bejan, 1995):

Nu =
- cond pura

(85)

onde a transferência de calor através da cavidade é dada por:

Q =k
Jo VÕxy

dy (86)
x =  0

Resolvendo as equações (70) -  (73), sujeitas às condições de contorno da Figura 20 

por um método integral (Bejan, 1995) e usando a equação (86) obtém-se:

Q = 0.364 (Th -Tc)Ra 1/4 (87)

O fluxo de calor por condução pura é dado por:

Qcond pura kH (T„ -T„)
L

(88)



Substituindo as equações (87) e (88) na equação (85), obtém-se:

Q =0.364 ~ R a 1/4 (89)
H

Para L/H = 1; Ra1/4 = 103; obtém - se Nu = 2.0469

5 Solução numérica

A malha utilizada para a resolução do problema é composta de 841 elementos, 4 nós 

por elemento, totalizando 900 nós, sendo 30 nós na direção x e 30 nós na direção y, de acordo 

com a Figura 20.

Figura 20: Malha gerada pelo código FE AP para a cavidade quadrada.

As condições de contorno adimensionais, encontram-se de acordo com a Figura 21.



u,v=o
0=0

u,v=o
0=1

u,v=o
á0

~3y =0

Figura 21: Condições de contorno na cavidade quadrada.

As equações implementadas no código FEAP, através do elemento Navier-Stokes e 

Energia encontram-se na forma:

—  + (u.V)ü| = -V p + n  V2u + e gp  ( T - T J
V ôt )

(90)

Q c ü VT = k V2 T (91)

Visando a correspondência entre as equações governantes adimensionais e as equações 

implementadas no código FEAP, toma-se necessário a correlação que se segue para o arquivo 

de entrada de dados:

Exemplificando para, Ra = 104, Pr = 0.71 tem-se:

pT = 1.0; y =l.e6; = 140.84507; 1’= 2; k' = 2

ocp =0; gx =0; gy =-1.0; p~ = 0.71; cp = 0.71; k = 1.0

onde:

q = Ra12 P r ' 1; c = Pr = — (92)



N u = r í f i  dY (93>Jo v9Xyx = o

Através da implementação da equação (93) no código FE AP, para o cálculo do fluxo 

de calor o resultado obtido para o número de Nusselt foi de 2.165 valor este próximo do 

apresentado na Figura 5.13, do livro (Bejan, 1995) para H/L=l e Ra=104

A Figura 22 apresenta as isotermas geradas para as condições de contorno 

anteriormente estabelecidas.

£ 3  FE A P G iap h ics  W in d o w

DISPLh CEMENT

Start | Exploting - DISSE... | HXFEAPG.aphics... y M ic ro s o ftW o ,d • a... [ ^ f i g2 -Pamt 11:02 AM



Input-füe para uma cavidade quadrada

feap ** NC in a square cavity - Ra=l.e4, Pr=0.71
900,841,1,2,3,4

bloc
4,29,29,1,1,1 
1,0.,0.
2,0., 1.
3.1..1.
4.1.0.

boun
2,1,-1,-1,-1
29.0.1.1.1
1.30,-1,-1,0
871.0.1.1.1
872.1,-1,-1,-1
899.0.1.1.1
30.30,-1,-1,1
900.0.1.1.1

forc
871.1.0..0..1.
900.0.0..0..1.

mate
1,2
1..1.e6,140.84507,2,2 
0.,0.,-l.,0.71,0.71,1.
0.,0.

end

inter
stop
end



Input-file para 4 tubos no canaí elementar, e = 1.0, S/D= 1.0 e ReL = 620

feap ** simulação numérica de tubos cilíndricos**
5460,5180,1,2,3,4

bloc 1
4,9,20,1,1,1,250
1,0.,0.0000
2.0.9404.0.0000
3.0.9404.0.1613
4.0..0.1613

bloc 2
4,10,20,10,181,1,249
1.0.9404.0.0000
2.0.9994.0.0000
3.0.9994.0.1613
4.0.9404.0.1613

bloc 3
4.5.20.20.381.1.254
1.0.9994.0.0000
2.1.0196.0.0000
3.1.0196.0.1080
4.0.9994.0.1613

bloc 4
4.5.20.25.481.1.254
1.1.0196.0.0000
2.1.0398.0.0000
3.1.0398.0.0915
4.1.0196.0.1080

bloc 5
4.5.20.30.581.1.254
1.1.0398.0.0000
2.1.0599.0.0000
3.1.0599.0.0832
4.1.0398.0.0915

bloc 6
4.5.20.35.681.1.254
1.1.0599.0.0000
2.1.0801.0.0000
3.1.0801.0.0807
4.1.0599.0.0832

bloc 7
4.5.20.40.781.1.254



1,1.0801,0.0000
2.1.1003.0.0000
3.1.1003.0.0832
4.1.0801.0.0807

bloc 8
4.5.20.45.881.1.254
1.1.1003.0.0000
2.1.1204.0.0000
3.1.1204.0.0915
4.1.1003.0.0832

bloc 9
4.5.20.50.981.1.254
1.1.1204.0.0000
2.1.1406.0.0000
3.1.1406.0.1080
4.1.1204.0.0915

bloc 10
4.5.20.55.1081.1.254
1.1.1406.0.0000
2.1.1607.0.0000
3.1.1607.0.1613
4.1.1406.0.1080

bloc 11
4,20,20,60,1181,1,239
1.1.1607.0.0000
2.1.2788.0.0000
3.1.2788.0.1613
4.1.1607.0.1613

bloc 12
4.5.20.80.1581.1.254
1.1.2788.0.0000
2.1.2990.0.0533
3.1.2990.0.1613
4.1.2788.0.1613

bloc 13
4.5.20.85.1681.1.254
1.1.2990.0.0533
2.1.3191.0.0698
3.1.3191.0.1613
4.1.2990.0.1613

bloc 14
4.5.20.90.1781.1.254
1.1.3191.0.0698
2.1.3393.0.0781



3.1.3393.0.1613
4.1.3191.0.1613

bloc 15
4.5.20.95.1881.1.254
1.1.3393.0.0781
2.1.3595.0.0807
3.1.3595.0.1613
4.1.3393.0.1613

bloc 16
4.5.20.100.1981.1.254
1.1.3595.0.0807
2.1.3796.0.0781
3.1.3796.0.1613
4.1.3595.0.1613

bloc 17
4.5.20.105.2081.1.254
1.1.3796.0.0781
2.1.3998.0.0698
3.1.3998.0.1613
4.1.3796.0.1613

bloc 18
4.5.20.110.2181.1.254
1.1.3998.0.0698
2.1.4200.0.0533
3.1.4200.0.1613
4.1.3998.0.1613

bloc 19
4.5.20.115.2281.1.254
1.1.4200.0.0533
2.1.4401.0.0000
3.1.4401.0.1613
4.1.4200.0.1613

bloc 20
4,20,20,120,2381,1,239
1.1.4401.0.0000
2.1.5582.0.0000
3.1.5582.0.1613
4.1.4401.0.1613

bloc 21
4.5.20.140.2781.1.254
1.1.5582.0.0000
2.1.5784.0.0000
3.1.5784.0.1080
4.1.5582.0.1613



bloc 22
4.5.20.145.2881.1.254
1.1.5784.0.0000
2.1.5985.0.0000
3.1.5985.0.0915
4.1.5784.0.1080

bloc 23
4.5.20.150.2981.1.254
1.1.5985.0.0000
2.1.6187.0.0000
3.1.6187.0.0832
4.1.5985.0.0915

bloc 24
4.5.20.155.3081.1.254
1.1.6187.0.0000
2.1.6388.0.0000
3.1.6388.0.0807
4.1.6187.0.0832

bloc 25
4.5.20.160.3181.1.254
1.1.6388.0.0000
2.1.6590.0.0000
3.1.6590.0.0832
4.1.6388.0.0807

bloc 26
4.5.20.165.3281.1.254
1.1.6590.0.0000
2.1.6792.0.0000
3.1.6792.0.0915
4.1.6590.0.0832

bloc 27
4.5.20.170.3381.1.254
1.1.6792.0.0000
2.1.6993.0.0000
3.1.6993.0.1080
4.1.6792.0.0915

bloc 28
4.5.20.175.3481.1.254
1.1.6993.0.0000
2.1.7195.0.0000
3.1.7195.0.1613
4.1.6993.0.1080



4,20,20,180,3581,1,239
1.1.7195.0.0000
2.1.8376.0.0000
3.1.8376.0.1613
4.1.7195.0.1613

bloc 30
4.5.20.200.3981.1.254
1.1.8376.0.0000
2.1.8577.0.0533
3.1.8577.0.1613
4.1.8376.0.1613

bloc 31
4.5.20.205.4081.1.254
1.1.8577.0.0533
2.1.8779.0.0698
3.1.8779.0.1613
4.1.8577.0.1613

bloc 32
4.5.20.210.4181.1.254
1.1.8779.0.0698
2.1.8981.0.0781
3.1.8981.0.1613
4.1.8779.0.1613

bloc 33
4.5.20.215.4281.1.254
1.1.8981.0.0781
2.1.9182.0.0807
3.1.9182.0.1613
4.1.8981.0.1613

bloc 34
4.5.20.220.4381.1.254
1.1.9182.0.0807
2.1.9384.0.0781
3.1.9384.0.1613
4.1.9182.0.1613

bloc 35
4.5.20.225.4481.1.254
1.1.9384.0.0781
2.1.9586.0.0698
3.1.9586.0.1613
4.1.9384.0.1613

bloc 36
4.5.20.230.4581.1.254
1.1.9586.0.0698



2.1.9787.0.0533
3.1.9787.0.1613
4.1.9586.0.1613

bloc 37
4,5,20,235,4681,1,254
1.1.9787.0.0533
2.1.9989.0.0000
3.1.9989.0.1613
4.1.9787.0.1613

bloc 38
4.10.20.240.4781.1.249
1.1.9989.0.0000
2.2.0579.0.0000
3.2.0579.0.1613
4.1.9989.0.1613

bloc 39
4.10.20.250.4981.1.249
1.2.0579.0.0000
2.2.9983.0.0000
3.2.9983.0.1613
4.2.0579.0.1613

boun 
1,260,-1,-1,-1
5201.0.1.1.1
5202.1.0,-1,0
5219.0.0.1.0
5220.1,-1,-1,-1
5260.0.1.1.1
5261.1.0,-1,0
5339.0.0.1.0
5340.1,-1,-1,-1
5380.0.1.1.1
5381.1.0,-1,0
5460.0.0.1.0
2.1.0,-1,0
79.0.0.1.0
80.1,-1,-1,-1
120,0, 1,1,1 
121, 1,0,-1,0
199.0.0.1.0
200.1,-1,-1,-1
240.0.1.1.1
241.1.0,-1,0
260.0.0.1.0

forc
1,260, l.,0.,0.



5201.0.1..0..0.
5220.1.0..0..1.
5260.0.0..0..1.
80.1.0..0..1.
120,0,0.,0.,1.
5340.1.0..0..1.
5380.0.0..0..1.
200.1.0..0..1.
240.0.0..0..1.

mate
1,2
0.001613, l.e6,1.0,2,2 
0.,0.,0.,0.,1.,0.002240 
0.,0.,0.,0.08065,0.08065
476..480..576..580..676..680.
776..780..876..880..976..980.
1076..1080..1176..1180.. 1.0801,0.1613
1581..1585..1681..1685..1781..1785.
1881..1885..1981..1985..2081..2085.
2181..2185..2281..2285..1.3595.0.
2876..2880..2976..2980..3076..3080.
3176..3180..3276..3280..3376..3380.
3476..3480..3576..3580..1.6388.0.1613
3981..3985..4081..4085..4181..4185.
4281..4285..4381..4385..4481..4485.
4581..4585..4681..4685..1.9182.0.

end

inter
stop



Input-fíle para 4 tubos no canal elementar, e = 0.80, S/2b = 1.0 e ReL = 620

feap **simulação numérica de tubos elípticos**
5460,5180,1,2,3,4

bloc 1
4,9,20,1,1,1,250
1,0.0000,0.0000
2.1.0013.0.0000
3.1.0013.0.1613
4.0.0000.0.1613

bloc 2
4,10,20,10,181,1,249
1.1.0013.0.0000
2.1.0403.0.0000
3.1.0403.0.1613
4.1.0013.0.1613

bloc 3
4.5.20.20.381.1.254
1.1.0403.0.0000
2.1.0655.0.0000
3.1.0655.0.1080
4.1.0403.0.1613

bloc 4
4.5.20.25.481.1.254
1.1.0655.0.0000
2.1.0907.0.0000
3.1.0907.0.0915
4.1.0655.0.1080

bloc 5
4.5.20.30.581.1.254
1.1.0907.0.0000
2.1.1159.0.0000
3.1.1159.0.0832
4.1.0907.0.0915

bloc 6
4.5.20.35.681.1.254
1.1.1159.0.0000
2.1.1411.0.0000
3.1.1411.0.0807
4.1.1159.0.0832

bloc 7
4.5.20.40.781.1.254



1.1.1411.0.0000
2.1.1663.0.0000
3.1.1663.0.0832
4.1.1411.0.0807

bloc 8
4.5.20.45.881.1.254
1.1.1663.0.0000
2.1.1915.0.0000
3.1.1915.0.0915
4.1.1663.0.0832

bloc 9
4.5.20.50.981.1.254
1.1.1915.0.0000
2.1.2167.0.0000
3.1.2167.0.1080
4.1.1915.0.0915

bloc 10
4.5.20.55.1081.1.254
1.1.2167.0.0000
2.1.2419.0.0000
3.1.2419.0.1613
4.1.2167.0.1080

bloc 11
4,20,20,60,1181,1,239
1.1.2419.0.0000
2.1.3199.0.0000
3.1.3199.0.1613
4.1.2419.0.1613

bloc 12
4.5.20.80.1581.1.254
1.1.3199.0.0000
2.1.3451.0.0533
3.1.3451.0.1613
4.1.3199.0.1613

bloc 13
4.5.20.85.1681.1.254
1.1.3451.0.0533
2.1.3703.0.0698
3.1.3703.0.1613
4.1.3451.0.1613

bloc 14
4.5.20.90.1781.1.254
1.1.3703.0.0698
2.1.3955.0.0781



3.1.3955.0.1613
4.1.3703.0.1613

bloc 15
4.5.20.95.1881.1.254
1.1.3955.0.0781
2.1.4207.0.0807
3.1.4207.0.1613
4.1.3955.0.1613

bloc 16
4.5.20.100.1981.1.254
1.1.4207.0.0807
2.1.4459.0.0781
3.1.4459.0.1613
4.1.4207.0.1613

bloc 17
4.5.20.105.2081.1.254
1.1.4459.0.0781
2.1.4711.0.0698
3.1.4711.0.1613
4.1.4459.0.1613

bloc 18
4.5.20.110.2181.1.254
1.1.4711.0.0698
2.1.4963.0.0533
3.1.4963.0.1613
4.1.4711.0.1613

bloc 19
4.5.20.115.2281.1.254
1.1.4963.0.0533
2.1.5215.0.0000
3.1.5215.0.1613
4.1.4963.0.1613

bloc 20
4,20,20,120,2381,1,239
1.1.5215.0.0000
2.1.5994.0.0000
3.1.5994.0.1613
4.1.5215.0.1613

bloc 21
4.5.20.140.2781.1.254
1.1.5994.0.0000
2.1.6246.0.0000
3.1.6246.0.1080
4.1.5994.0.1613



bloc 22
4.5.20.145.2881.1.254
1.1.6246.0.0000
2.1.6498.0.0000
3.1.6498.0.0915
4.1.6246.0.1080

bloc 23
4.5.20.150.2981.1.254
1.1.6498.0.0000
2.1.6750.0.0000
3.1.6750.0.0832
4.1.6498.0.0915

bloc 24
4.5.20.155.3081.1.254
1.1.6750.0.0000
2.1.7002.0.0000
3.1.7002.0.0807
4.1.6750.0.0832

bloc 25
4.5.20.160.3181.1.254
1.1.7002.0.0000
2.1.7254.0.0000
3.1.7254.0.0832
4.1.7002.0.0807

bloc 26
4.5.20.165.3281.1.254
1.1.7254.0.0000
2.1.7506.0.0000
3.1.7506.0.0915
4.1.7254.0.0832

bloc 27
4.5.20.170.3381.1.254
1.1.7506.0.0000
2.1.7758.0.0000
3.1.7758.0.1080
4.1.7506.0.0915

bloc 28
4.5.20.175.3481.1.254
1.1.7758.0.0000
2.1.8010.0.0000
3.1.8010.0.1613
4.1.7758.0.1080



4,20,20,180,3 581,1,239
1,1.8010,0.0000
2.1.8790.0.0000
3.1.8790.0.1613
4.1.8010.0.1613

bloc 30
4.5.20.200.3981.1.254
1.1.8790.0.0000
2.1.9042.0.0533
3.1.9042.0.1613
4.1.8790.0.1613

bloc 31
4.5.20.205.4081.1.254
1.1.9042.0.0533
2.1.9294.0.0698
3.1.9294.0.1613
4.1.9042.0.1613

bloc 32
4.5.20.210.4181.1.254
1.1.9294.0.0698
2.1.9546.0.0781
3.1.9546.0.1613
4.1.9294.0.1613

bloc 33
4.5.20.215.4281.1.254
1.1.9546.0.0781
2.1.9798.0.0807
3.1.9798.0.1613
4.1.9546.0.1613

bloc 34
4.5.20.220.4381.1.254
1.1.9798.0.0807
2.2.0050.0.0781
3.2.0050.0.1613
4.1.9798.0.1613

bloc 35
4.5.20.225.4481.1.254
1.2.0050.0.0781
2.2.0302.0.0698
3.2.0302.0.1613
4.2.0050.0.1613

bloc 36
4.5.20.230.4581.1.254
1.2.0302.0.0698



2.2.0554.0.0533
3.2.0554.0.1613
4.2.0302.0.1613

bloc 37
4,5,20,235,4681,1,254
1.2.0554.0.0533
2.2.0806.0.0000
3.2.0806.0.1613
4.2.0554.0.1613

bloc 38
4.10.20.240.4781.1.249
1.2.0806.0.0000
2.2.1196.0.0000
3.2.1196.0.1613
4.2.0806.0.1613

bloc 39
4.10.20.250.4981.1.249
1.2.1196.0.0000
2.3.1209.0.0000
3.3.1209.0.1613
4.2.1196.0.1613

boun
1,260,-1,-1,-1
5201.0.1.1.1
5202.1.0,-1,0
5219.0.0.1.0
5220.1,-1,-1,-1
5260.0.1.1.1
5261.1.0,-1,0
5339.0.0.1.0
5340.1,-1,-1,-1
5380.0.1.1.1
5381.1.0,-1,0
5460.0.0.1.0
2.1.0,-1,0
79.0.0.1.0
80.1,-1,-1,-1
120,0, 1,1,1 
121, 1,0,-1,0
199.0.0.1.0
200.1,-1,-1,-1
240.0.1.1.1
241.1.0,-1,0
260.0.0.1.0

forc
1,260,1.,0,,0.



5201.0.1..0..0.
5220.1.0..0..1.
5260.0.0..0..1.
80.1.0..0..1.
120,0,0., 0., 1.
5340.1.0..0..1.
5380.0.0..0..1.
200.1.0..0..1.
240.0.0..0..1.

mate
1,2
0.00161,l.eó,1.0,2,2 
0.,0.,0.,0.,1.,0.00224 
0.,0.,0.,0.1008,0.08065
476..480..576..580..676..680.
776..780..876..880..976..980.
1076..1080..1176..1180..1.1411.0.1613
1581..1585..1681..1685..1781..1785.
1881..1885..1981..1985..2081..2085.
2181..2185..2281..2285..1.4207.0.
2876..2880..2976..2980..3076..3080.
3176..3180..3276..3280..3376..3380.
3476..3480..3576..3580..1.7002.0.1613
3981..3985..4081..4085..4181..4185.
4281..4285..4381..4385..4481..4485.
4581..4585..4681..,4685., 1.9798,0.

end

inter
stop



Input-fíle para 4 tubos no canal elementar, e = 0.65, S/2b = 1.0 e ReL = 620

feap ** simulação numérica de tubos elípticos**
5460,5180,1,2,3,4

bloc 1
4,9,20,1,1,1,250
1,0 .0000,0.0000
2.1.0711.0.0000
3.1.0711.0.1613
4.0.0000.0.1613

bloc 2
4,10,20,10,181,1,249
1.1.0711.0.0000
2.1.0869.0.0000
3.1.0869.0.1613
4.1.0711.0.1613

bloc 3
4.5.20.20.381.1.254
1.1.0869.0.0000
2.1.1179.0.0000
3.1.1179.0.1080
4.1.0869.0.1613

bloc 4
4.5.20.25.481.1.254
1.1.1179.0.0000
2.1.1489.0.0000
3.1.1489.0.0915
4.1.1179.0.1080

bloc 5
4.5.20.30.581.1.254
1.1.1489.0.0000
2.1.1799.0.0000
3.1.1799.0.0832
4.1.1489.0.0915

bloc 6
4.5.20.35.681.1.254
1.1.1799.0.0000
2.1.2109.0.0000
3.1.2109.0.0807
4.1.1799.0.0832

bloc 7
4.5.20.40.781.1.254



1.1.2109.0.0000
2.1.2420.0.0000
3.1.2420.0.0832
4.1.2109.0.0807

bloc 8
4.5.20.45.881.1.254
1.1.2420.0.0000
2.1.2730.0.0000
3.1.2730.0.0915
4.1.2420.0.0832

bloc 9
4.5.20.50.981.1.254
1.1.2730.0.0000
2.1.3040.0.0000
3.1.3040.0.1080
4.1.2730.0.0915

bloc 10
4.5.20.55.1081.1.254
1.1.3040.0.0000
2.1.3350.0.0000
3.1.3350.0.1613
4.1.3040.0.1080

bloc 11
4,20,20,60,1181,1,239
1.1.3350.0.0000
2.1.3664.0.0000
3.1.3664.0.1613
4.1.3350.0.1613

bloc 12
4.5.20.80.1581.1.254
1.1.3664.0.0000
2.1.3974.0.0533
3.1.3974.0.1613
4.1.3664.0.1613

bloc 13
4.5.20.85.1681.1.254
1.1.3974.0.0533
2.1.4285.0.0698
3.1.4285.0.1613
4.1.3974.0.1613

bloc 14
4.5.20.90.1781.1.254
1.1.4285.0.0698
2.1.4595.0.0781



3.1.4595.0.1613
4.1.4285.0.1613

bloc 15
4.5.20.95.1881.1.254
1.1.4595.0.0781
2.1.4905.0.0807
3.1.4905.0.1613
4.1.4595.0.1613

bloc 16
4.5.20.100.1981.1.254
1.1.4905.0.0807
2.1.5215.0.0781
3.1.5215.0.1613
4.1.4905.0.1613

bloc 17
4.5.20.105.2081.1.254
1.1.5215.0.0781
2.1.5525.0.0698
3.1.5525.0.1613
4.1.5215.0.1613

bloc 18
4.5.20.110.2181.1.254
1.1.5525.0.0698
2.1.5836.0.0533
3.1.5836.0.1613
4.1.5525.0.1613

bloc 19
4.5.20.115.2281.1.254
1.1.5836.0.0533
2.1.6146.0.0000
3.1.6146.0.1613
4.1.5836.0.1613

bloc 20
4,20,20,120,2381,1,239
1.1.6146.0.0000
2.1.6460.0.0000
3.1.6460.0.1613
4.1.6146.0.1613

bloc 21
4.5.20.140.2781.1.254
1.1.6460.0.0000
2.1.6770.0.0000
3.1.6770.0.1080
4.1.6460.0.1613



bloc 22
4.5.20.145.2881.1.254
1.1.6770.0.0000
2.1.7080.0.0000
3.1.7080.0.0915
4.1.6770.0.1080

bloc 23
4.5.20.150.2981.1.254
1.1.7080.0.0000
2.1.7390.0.0000
3.1.7390.0.0832
4.1.7080.0.0915

bloc 24
4.5.20.155.3081.1.254
1.1.7390.0.0000
2.1.7701.0.0000
3.1.7701.0.0807
4.1.7390.0.0832

bloc 25
4.5.20.160.3181.1.254
1.1.7701.0.0000
2.1.8011.0.0000
3.1.8011.0.0832
4.1.7701.0.0807

bloc 26
4.5.20.165.3281.1.254
1.1.8011.0.0000
2.1.8321.0.0000
3.1.8321.0.0915
4.1.8011.0.0832

bloc 27
4.5.20.170.3381.1.254
1.1.8321.0.0000
2.1.8631.0.0000
3.1.8631.0.1080
4.1.8321.0.0915

bloc 28
4.5.20.175.3481.1.254
1.1.8631.0.0000
2.1.8941.0.0000
3.1.8941.0.1613
4.1.8631.0.1080



4,20,20,180,3581,1,239
1.1.8941.0.0000
2.1.9256.0.0000
3.1.9256.0.1613
4.1.8941.0.1613

bloc 30
4.5.20.200.3981.1.254
1.1.9256.0.0000
2.1.9566.0.0533
3.1.9566.0.1613
4.1.9256.0.1613

bloc 31
4.5.20.205.4081.1.254
1.1.9566.0.0533
2.1.9876.0.0698
3.1.9876.0.1613
4.1.9566.0.1613

bloc 32
4.5.20.210.4181.1.254
1.1.9876.0.0698
2.2.0186.0.0781
3.2.0186.0.1613
4.1.9876.0.1613

bloc 33
4.5.20.215.4281.1.254
1.2.0186.0.0781
2.2.0496.0.0807
3.2.0496.0.1613
4.2.0186.0.1613

bloc 34
4.5.20.220.4381.1.254
1.2.0496.0.0807
2.2.0807.0.0781
3.2.0807.0.1613
4.2.0496.0.1613

bloc 35
4.5.20.225.4481.1.254
1.2.0807.0.0781
2.2.1117.0.0698
3.2.1117.0.1613
4.2.0807.0.1613

bloc 36
4.5.20.230.4581.1.254
1.2.1117.0.0698



2.2.1427.0.0533
3.2.1427.0.1613
4.2.1117.0.1613

bloc 37
4,5,20,235,4681,1,254
1.2.1427.0.0533
2.2.1737.0.0000
3.2.1737.0.1613
4.2.1427.0.1613

bloc 38
4.10.20.240.4781.1.249
1.2.1737.0.0000
2.2.1894.0.0000
3.2.1894.0.1613
4.2.1737.0.1613

bloc 39
4.10.20.250.4981.1.249
1.2.1894.0.0000
2.3.2606.0.0000
3.3.2606.0.1613
4.2.1894.0.1613

boun
1,260,-1,-1,-1
5201.0.1.1.1
5202.1.0,-1,0
5219.0.0.1.0
5220.1,-1,-1,-1
5260.0.1.1.1
5261.1.0,-1,0
5339.0.0.1.0
5340.1,-1,-1,-1
5380.0.1.1.1
5381.1.0,-1,0
5460.0.0.1.0
2.1.0,-1,0
79.0.0.1.0
80.1,-1,-1,-1
120,0,1,1,1 
121, 1,0,-1,0
199.0.0.1.0
200.1,-1,-1,-1
240.0.1.1.1
241.1.0,-1,0
260.0.0.1.0

forc
1,260,1.,0.,0.



5201.0.1.,M .
5220.1.0..0..1.
5260.0.0..0..1.
80.1.0..0..1.
120,0,0.,0.,1.
5340.1.0..0..1.
5380.0.0..0..1.
200.1.0..0..1.
240,Q,0.,0.,1.

mate
1,2
0.00161, l.eó, 1.0,2,2 
0.,0.,0.,0.,1.,0.00224 
0.,0.,0.,0.1241,0.08065
476..480..576..580..676..680.
776..780..876..880..976..980.
1076..1080..1176..1180.. 1.2109,0.1613
1581..1585..1681..1685..1781..1785.
1881..1885..1981..1985..2081..2085.
2181..2185..2281..2285..1.4905.0.
2876..2880..2976..2980..3076..3080.
3176..3180..3276..3280..3376..3380.
3476..3480..3576..3580..1.7701.0.1613
3981..3985..4081..4085..4181..4185.
4281..4285..4381..4385..4481..4485.
4581..4585..4681..4685..2.0496.0.

end

inter
stop



Elemento Navier-Stokes e Energia para 4 tubos no canal elementar

subroutine elmt02(d,ul,xl,ix,tl,s,p,ndf,ndm,nst,isw) 
implicit double precision (a-h,o-z)

2-dimensional Non-Linear flow element for FE AP: 
four node quadrilateral - Navier-Stokes and energy 
equations

Hughes upwinding scheme (Int. J. Num. Meth. in Eng.,
Vol. 12, 1359-1365, 1978) 

by JOSE VARGAS (August, 1996)

Arguments in subroutine call:
d - vector in which element material properties are stored 
ul - localized nodal velocities 
xl - localized nodal coordinates 
ix - element connection array 
tl - (not used in this element) 
s - element stiffness matrix 
p - element right-hand side (force) vector 
ndf - number of dof per node 
nst - dimensioned size of element stiffness matrix s 
isw - integer switch=l-8 ; used to request various element 

functions:
isw function

1 input element data
2 check element for errors
3 compute element stiffness and force
4 compute fluxes for printed output
5 compute element mass matrix (dynamics)
6 compute internai force vector only
7 compute consistent load vector from

surface tractions
8 compute fluxes AT NODES for plotting

..Required format of element material properties in input file:

Record 1.

mu = dynamic viscosity
gama = penalty parameter 
rho = Mass density
1 = Quad. pts/dir to be used in elem stiffness

and force vector calculations 
k = Quad. pts/dir to be used in printed stress 

output



not used in this element 
(enter 0 in ali cases)

alfa = upwinding parameter
g_x = x-component of gravity
gjy  = y-component of gravity
beta = coefficient of thermal expansion
c = specific heat
k = thermal conductivity

Record 3.

TO = reference temperature
Q = Internai heat generation
psiO = streamfunction value at node #1 

sa = bigger semi-axis of the elliptical tube section
sb = smaller semi-axis of the elliptical tube section

Record 4.

nellslbini = first surface - first element 
nellslbend = first surface - last element 
nells2bini = second surface - first element 
nells2bend = second surface - last element 
nells3bini = third surface - first element 
nells3bend = third surface - last element

Record 5.

nells4bini = fourth surface - first element 
nells4bend = fourth surface - last element 
nellsSbini = fifth surface - first element 
nellsSbend = fifth surface - last element 
nellsóbini = sixth surface - first element 
nellsóbend = sixth surface - last element

Record 6.

nells7bini = seventh surface - first element 
nells7bend = seventh surface - last element 
nells8bini = eighth surface - first element 
nells8bend = eighth surface - last element 
xol = first tube - orign of tube x
yol = first tube - orign of tube y

Record 7.

nel2slbini = first surface - first element 
nel2slbend = first surface - last element



nel2s2bini = second surface - fírst element 
nel2s2bend = second surface - last element 
nel2s3bini = third surface - fírst element
nel2s3bend = third surface - last element

Record 8.

nel2s4bini = fourth surface - fírst element 
nel2s4bend = fourth surface - last element 
nel2s5bini = fifth surface - fírst element
nel2s5bend = fifth surface - last element
nel2s6bini = sixth surface - fírst element
nel2s6bend = sixth surface - last element

Record 9.

nel2s7bini = 
nel2s7bend 
nel2s8bini = 
ne!2s8bend 
xo2 = 
yo2

Record 10.

seventh surface - fírst element 
= seventh surface - last element 

eighth surface - fírst element 
= eighth surface - last element 
second tube - orign of tube x 
second tube - orign of tube y

nel3slbini = fírst surface - fírst element 
nel3slbend = fírst surface - last element 
nel3s2bini = second surface - fírst element 
nel3s2bend = second surface - last element 
nel3s3bini = third surface - fírst element 
nel3s3bend = third surface - last element

Record 11.

nel3s4bini = fourth surface - fírst element 
nel3s4bend = fourth surface - last element 
nel3s5bini = fifth surface - fírst element 
nel3s5bend = fifth surface - last element 
nel3s6bini = sixth surface - fírst element 
nel3s6bend = sixth surface - last element

Record 12.

nel3s7bini = seventh surface - fírst element 
nel3s7bend = seventh surface - last element 
nel3s8bini = eighth surface - fírst element 
nel3s8bend = eighth surface - last element 
xo3 = third tube - orign of tube x
yo3 = third tube - orign of tube y



nel4slbini = first surface - first element 
nel4slbend = first surface - last element 
nel4s2bini = second surface - first element 
nel4s2bend = second surface - last element 
nel4s3bini = third surface - first element 
nel4s3bend = third surface - last element

Record 14.

nel4s4bini = fourth surface - first element 
nel4s4bend = fourth surface - last element 
nel4s5bini = fifth surface - first element 
nel4s5bend = fifth surface - last element 
nel4s6bini = sixth surface - first element 
nel4s6bend = sixth surface - last element

Record 15.

nel4s7bini = seventh surface - first element 
nel4s7bend = seventh surface - last element 
nel4s8bini = eighth surface - first element 
nel4s8bend = eighth surface - last element 
xo4 = fourth tube - orign of tube x
yo4 = fourth tube - orign of tube y

Other variables used include: 
eps = temp. derivs. vector
errck = logical variable used to indicate error in input
head = character variable containing the problem title
ipr -  precision of arithmetic: 1-single 2-double
ior,iow = logical units for input and output files
lint = total number of element integration points
m = blank common array used throughout FEAP
ma = material number
mct = line counter for printed stress output
numnp = total number of nodal points
numel = total number of elements
numat = total number of material sets
nen = max number of nodes per element
neq = total number of equations (or DOF) in problem
nel = number of nodes per element
nsl = number of dof per element
sig = fluxes vector
shp = shape ftmction storage array; details in subroutine shapeOl 
sg = vector containing first natural coordinate of 

Gauss points (i.e., xi) 
td = vector used to read from the input file
tg = vector containing second natural coordinate of

Gauss points (i.e., eta) 
wg = vector of weights associated with Gauss points



c xsj = jacobian of global-local coordinate transformation
c

character*4 o,head,wd
logical errck,debug
common /bdata/ o,head(20)
common /cdata/ numnp,numel,nummat,nen,neq,ipr
common /debugs/ debug
common /eldata/ dm,n,ma,mct,iel,nel
common /errchk/ errck
common /iofile/ ior,iow
common /plstrs/ np
common m(l)
common /strnum/ istv
common /teste/ tetaia,tetaip,dteta,dtna,dtnp
common /elipse/ sa,sb
save /bdata/,/cdata/,/debugs/,/eldata/,/plstrs/,/iofile/

dimension d( 1 ),ul(ndf, 1 ),xl(ndm, 1), ix( 1 ),tl( 1), s(nst, l),p(l)
1 , shp(3,9),sg( 16),tg( 16),wg( 16), sig(6),eps(8),wd(2),td(6)
2 , sd(27,27),taux(2,2),rkbar(2,2),cin(4),uaux(2),bous(2),
3 b(2),din(4),rl(2),shp 1(3,9) 
data wd /'flow','flow!/

c.... go to correct process (based on value of isw) 
go to( 1,2,3,4,5,4,7,8), isw

c
% % % 0/o% % % % % % % % % 0/o 0/o% % 0/o% % % % 0/o% % % % % % % 0/o% % % % % % % % % % % % % %  

%%%%%%%%% 
c isw=l: Read in material properties 
c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
I if(ior.lt.O) write(*,30G0)
c.... read a line as a string in the input file. Using 
c.... commas or blanks as delimiters, dinput Stores the 
c.... numerical data needed in the vector td 
c
c.... read record 1 

call dinput(td,6) 
if(errck) go to 1 

c.... move properties
d ( l)= td (l)  ! viscosity
d(2) = td(2) ! penalty parameter
d(3) = td(3) ! density
1 = td(4) ! Gauss points / dir for stiffness
k = td(5) ! Gauss points / dir for stresses
i = td(6) ! type of element (not used)

II if(ior.lt.O) write(*,3001) 
c
c.... read record 2 

call dinput(td,6) 
if(errck) go to 11



c.... move properties into vector d for later use
d(7) = td(l) ! upwinding parameter (not used here) 
d(8) = td(2) ! g_x 
d(9) = td(3) ! g jy
d(10) = td(4)! beta (coeffícient of thermal expansion)
d ( ll)  = td(5) ! c (specific heat)
d(12) = td(6) ! k (thermal conductivity)

12 if(ior.lt.O) write(*,3002) 
c.... read record 3 

call dinput(td,6) 
if(errck) go to 11 

c.... move properties into vector d for later use 
d(13) = td(l) ! reference temperature 
d(14) =td(2) ! Internai heat generation 
d(15) = td(3) ! Streamfunction value at node #1 
sa = td(4) ! bigger semi-axis of the elliptical tube section 
sb = td(5) ! smaller semi-axis of the elliptical tube section 

c.... read record 4 
call dinput(td,6) 
if(errck) goto 11 

c.... move properties into variables for later use
nellslbini = td(l) ! first surface - fírst element in block 1 
nellslbend = td(2) ! first surface - last element in block 1 
nells2bini = td(3) ! first surface - first element in block 2 
neíls2bend = td(4) ! first surface - last element in block 2 
nells3bini = td(5) ! first surface - first element in block 3 
nells3bend = td(6) ! first surface - last element in block 3 

c.... read record 5 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use
nell s4bini = td(l) ! first surface - first element in block 4 
nells4bend = td(2) ! first surface - last element in block 4 
nells5bini = td(3) ! first surface - first element in block 5 
nellsSbend = td(4) ! first surface - last element in block 5 
nellsóbini = td(5) ! first surface - first element in block 6 
nellsóbend = td(6) ! first surface - last element in block 6 

c.... read record 6 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use
nells7bini = td(l) ! first surface - first element in block 7 
nells7bend = td(2) ! first surface - last element in block 7 
nells8bini = td(3) ! first surface - first element in block 8 
nells8bend = td(4) ! first surface - last element in block 8 
xol = td(5) ! first surface - orign of tube x
yol = td(6) ! first surface - orign of tube y

c.... read record 7 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use



nel2slbini = td ( l ) ! fírst surface - first element in block 1 
nel2slbend = td(2) ! first surface - last element in block 1 
nel2s2bini = td(3) ! first surface - first element in block 2 
nel2s2bend = td(4) ! first surface - last element in block 2 
nel2s3bini = td(5) ! first surface - first element in block 3 
nel2s3bend = td(6) ! first surface - last element in block 3 

c.... read record 8 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use
nel2s4bini = td(l) ! first surface - first element in block 4 
nel2s4bend = td(2) ! first surface - last element in block 4 
nel2s5bini = td(3) ! first surface - first element in block 5 
nel2s5bend = td(4) ! first surface - last element in block 5 
nel2s6bini = td(5) ! first surface - first element in block 6 
nel2s6bend = td(6) ! first surface - last element in block 6 

c.... read record 9 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use
nel2s7bini = td(l) ! first surface - first element in block 7 
nel2s7bend = td(2) ! first surface - last element in block 7 
nel2s8bini = td(3) ! first surface - first element in block 8 
nel2s8bend = td(4) ! first surface - last element in block 8 
xo2 = td(5) ! second surface - orign of tube x
yo2 = td(6) ! second surface - orign of tube y

c.... read record 10 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use
nel3slbini = td(l) ! first surface - first element in block 1 
neBslbend = td(2) ! first surface - last element in block 1 
nel3s2bini = td(3) ! first surface - first element in block 2 
nel3s2bend = td(4) ! first surface - last element in block 2 
nel3s3bini = td(5) ! first surface - first element in block 3 
nel3s3bend = td(6) ! first surface - last element in block 3 

c.... read record 11 
call dinput(td,6) 
if(errck) go to 11 

c.... move properties into variables for later use
nel3s4bini = td(l) ! first surface - first element in block 4 
nel3s4bend = td(2) ! first surface - last element in block 4 
nel3s5bini = td(3) ! first surface - first element in block 5 
nel3s5bend = td(4) ! first surface - last element in block 5 
nel3s6bini = td(5) ! first surface - first element in block 6 
nel3s6bend = td(6) ! first surface - last element in block 6 

c.... read record 12 
call dinput(td,6) 
if(errck) goto 11 

c.... move properties into variables for later use
nel3s7bini = td ( l ) ! first surface - first element in block 7



nel3s7bend = td (2 )! fírst surface - last element in block 7 
nel3s8bini = td(3) ! fírst surface - fírst element in block 8 
nel3s8bend = td(4) ! fírst surface - last element in block 8 
xo3 = td(5) ! third surface - orign of tube x
yo3 = td(6) ! third surface - orign of tube y

.... read record 13 
call dinput(td,6) 
if(errck) goto 11 

.... move properties into variables for later use
nel4slbini = td(l) ! first surface - first element in block 1 
nel4slbend = td(2) ! first surface - last element in block 1 
nel4s2bini = td(3) ! first surface - fírst element in block 2 
nel4s2bend = td(4) ! fírst surface - last element in block 2 
nel4s3bini = td(5) ! fírst surface - first element in block 3 
nel4s3bend = td(6) ! fírst surface - last element in block 3 

.... read record 14 
call dinput(td,6) 
if(errck) go to 11 

.... move properties into variables for later use
nel4s4bini = td(l) ! fírst surface - first element in block 4 
nel4s4bend = td(2) ! fírst surface - last element in block 4 
nel4s5bini = td(3) ! first surface - first element in block 5 
nel4s5bend = td (4 )! fírst surface - last element in block 5 
nel4s6bini = td(5) ! first surface - fírst element in block 6 
nel4sóbend = td(6) ! fírst surface - last element in block 6 

... read record 15 
call dinput(td,6) 
if(errck) go to 11 

... move properties into variables for later use 
nel4s7bini = td(l) ! first surface - first element in block 7 
nel4s7bend = td (2 )! first surface - last element in block 7 
nel4s8bini = td(3) ! fírst surface - first element in block 8 
nel4s8bend = td(4) ! fírst surface - last element in block 8 
xo4 = td(5) ! fourth surface - orign of tube x
yo4 = td(6) ! fourth surface - orign of tube y

... output current parameters 
write(iow,2000) wd(i+1 ),d( 1 ),d(2),d(3),l,k,d( 14),d( 1 l),d(12) 
if(ior.lt.O) then

write(*,2000) wd(i+1 ),d( l),d(2),d(3),l,k?d( 14),d( 1 l),d(12) 
endif
d(4) = d(3)

... integration properties 
d(5) = 1
d(6) = k

if(i.eq.2) d(13) = d(2)
... total number of integration points initialized to zero 

(pgaussOl called below to set it) 
lint = 0
retura



%%%%%0/0%%%%%%0/0%%%%%%%%%%%%%%%0/0%%0/0%%%%0/0%%%%%%%%
%%%%%%%%%
c isw=2: Check element for input errors
c
% % % % % % % % % % % % % % % % % % % % % % % % % % 0/o% % % % 0/o% % % % % % % % % % % % %

%%%%%%%%%
c.... subroutine ckisop checks for missing data and negative 
c jacobians at nodes
2 call ckisop(ix,xl, shp,ndm) 

retum
c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
c isw=3: Compute element stiffness matrix (s) and 
c stress-divergence vector (p) (residual force vector)
c
% % % % % % % % 0/o 0/o 0/o% % % 0/o% % % % % % % 0/o 0/o% % % % % % % 0/o 0/o% % 0/o 0/o% % % % % % % %

%%%%%%%%%
3 1 = d(5)
c.... generate natural coordinates and weights of integration 
c points (only done once when lint=0) 

if(l*l.ne.lint) call pgaussO 1 (l,lint,sg,tg,wg) 
c.... Element jacobian computed as in Reddy formulation. 
c.... Straight vector multiplication ofNa,xl x Nb,xl for K 
c
c.... perform integration by looping over int. points, summing 
c.... integration loop calculates force vector due to body forces 
c.... and integrais of N_a,i times N_b,j for later stiffness 
c.... calculation
c

do 111 ii=l,nst 
do 112jj=l,nst

s(iijj)=0 d°
112 continue 
111 continue

d2 = d(3)*d(8)*d(10)*d(13) ! x-force term 
d3 = d(3)*d(9)*d(10)*d(13) ! y-force term 
d4 = d(14) ! internai heat generation
do 330 1 = l,lint 

call shape02(sg(l),tg(l),xl,shp,xsj,ndm,.false.,nalfa,shp 1) 
xsj = xsj*wg(l)

c
c.... including weight and jacobian determinant in viscosity 
c.... and in density
c

dmu = d(l)*xsj 
rho = d(3)*xsj 
bous(l) = d(8)!itd(10)*rho 
bous(2) = d(9)*d(10)*rho 
rk = d(12)*xsj



c.... big loop to assemble the jacobian matrix (12x12 for linear elements)
c

níine = 0
do 33 ii=ri,nel ! loop over a 

ncol = 0
do 44 jj=l,nel ! loop over b 

do 55 ki=l,ndm 
do 66 kj = l,ndm 

taux(ki,kj) = shp(ki,ii)*shp(kj,jj)*dmu 
66 continue
55 continue 

do ki = l,ndm 
do kj = 1 ,ndm 

if(ki.eq. l.and.kj.eq. 1) then 
rkbar(ki,kj) = 2. dO *taux( 1,1 )+taux(2,2) 

else
if(ki.eq.2.and.kj.eq.2) then 

rkbar(ki,kj) = taux( 1,1 )+2. d0*taux(2,2) 
else
rkbar(ki,kj) = taux(ki,kj) 

endif 
endif 

enddo 
enddo

c
c.... compute thermal diffusion and 
c Boussinesq vector 
c

do ik=l,ndm 
b(ik)= bous(ik) * shp(3 ? ii) * shp(3 ,jj) ! B i 
rl(ik)= rk* shp(ik,ii)* shp(ikjj) ! Lj(uj) 

enddo
c
c.... constructing jacobian initially with K, B and L (Reddy notation)
c

s(ii+nlinejj+ncol) -  rkbar(l,l)
& +s(ii+nlinejj+ncol) 
s(ii+nline ,jj+1 +ncol) = rkbar(l,2)

& +s(ii+nlinejj+l+ncol) 
s(ii+nline,jj+2+ncol) = b(l)+s(ii+nlinejj+2+ncol) 
s(ii+l+nline,jj+ncol) = rkbar(2,l)

& +s(ii+1 +nline jj  +ncol)
s(ii+1 +nline ,jj+1 +ncol) = rkbar(2,2)+s(ii+1 +nline j j+ 1 +ncol) 
s(ii+1 +nline,jj +2+ncol) = b(2)+s(ii+l +nline,jj+2+ncol) 
s(ii+2+nline,jj+2+ncol) = rl(l)+rl(2)

& +s(ii+2+nline,jj+2+ncol)
c
c.... compute force vector with K,L and B (Reddy notation)
c

p(ii+nline) = p(ii+nline)-(



& rkbar( 1,1 )*ul( 1 jj)+rkbar(l ,2)*ul(2,jj)+b( 1 )*ul(3 jj)) 
p(ii+l+nline) = p(ii+1 +nline)-(b(2) *ul(3 ,jj)
& +rkbar(2,2)*ul(2,jj)+rkbar(2, l)*ul( 1 jj)) 
p(ii+2+nline) = p(ii+2+nline)-(rl( 1 )+rl(2)) *

& ul(3jj)
ncol = ncol+2 

44 continue 
nline = nline+2 

33 continue 
c 
c
c.... now compute gravity and thermal loads

do j=l,nel 
p(jl) = p(jl)+d2*shp(3j)*xsj 
p(jl+ l) = p(j 1+1 )+d3 * shp(3 ,j)*xsj 
p(jl+2) = p(j l+2)+d4*shp(3 ,j)*xsj 
j l = jl-Hndf 

enddo
330 continue ! end of fírst gaussian integration 
c
c.... now we have the jacobian and residual vector with K 
c.... and we have to add the KA contribution, performing a 
c.... reduced order Gaussian Integration (one levei) 
c

lint = 0
1 = d(5)-l
if(l*l.ne.lint) call pgaussO 1(1,lint,sg,tg,wg) 
do 370 1=1,lint 

call shape02(sg(l),tg(l),xl,shp,xsj,ndm,.false.,nalfa,shp 1) 
xsj = xsj*wg(l)

c
c.... including weight amd Jacobian determinant in the 
c.... penalty parameter 
c

gama = d(2)*xsj 
nline = 0
do 34 ii=l,nel ! loop over a 

ncol = 0
do 45 jj = 1, nel !loop over b 

do 56 ki=l,ndm 
do 67 kj=l,ndm 

taux(ki,kj) = shp(ki,ii)*shp(kj ,jj)*gama 
67 continue
56 continue 

c
c.... adding the new penalty contribution into "s" (big matrix)
c

s(ii+nlinejj+ncol) = s(ii+nline,jj+ncoí) + taux(l,l) 
s(ii+nline ,jj+l +ncol) = s(ii+nline,jj+1 +ncol) + taux(l,2) 
s(ii+1 +nline jj+ncol) = s(ii+l+nline,jj+ncol) + taux(2,1)



c.... update force vector with KA
c

p(ii+nline) = p(ii+nline)-(taux( 1,1 )*ul( 1 jj)+taux( 1,2)*
& ul(2,jj))
p(ii+l+nline) = p(ii+1 +nline)-(taux(2,1) *ul( 1 ,jj )+taux(2,2) *

& ul(2,jj))
C23456789012345678901234567890123456789012345678901234567890123456789012 

ncol = ncol+2 
45 continue

nline = nline+2 
34 continue 
370 continue 

c
c.... compute inertia terms with upwinding scheme 
c

nalfa = d(7)
call pgaussO 1(1 ,lint,sg,tg,wg)
call shape02(sg( 1 ),tg( 1 ),xl,shp,xsj,ndm,.false.,nalfa,shp 1) 
xsj = xsj*wg(l) 
rho = d(3)*xsj 
du = d(3)*d(ll)*xsj 

do jn=l,ndm 
uaux(jn)=0.d0 
uauxl=0.d0

c
c.... compute sum over c ofN  c * u c and N_c * 1
c

do ir=l,nel
uaux(jn)=uaux(jn)+shp(3,ir)*ul(jn,ir) 
uaux 1 =uaux 1+shp(3 ,ir) 

enddo 
enddo 

nline = 0
do 341 ii=l,nel ! loop over a 

ncol = 0
do 345 jj = 1, nel !loop over b

c
c.... compute inertia contribution
c

if (nalfa. eq.O) then 
do ik=l,ndm 

cin(ik)= rho*shp(3,ii)*uaux(ik)!f!shp(ik,jj) ! Cj(uj) 
din(ik)= du*shp(3,ii)*uaux(ik)*shp(ikjj) ! Dj(uj) 
cin(ik+ndm)=rho*shp(3,ii)*uaux 1 *shp(ikjj) ! Cj(l) 
din(ik+ndm)=du*shp(3,ii)*uauxl*shp(ik,jj) ! Dj(l) 

enddo
else 

do ik=l,ndm
cin(ik)= rho*shp 1 (3,ii)*uaux(ik)*shp 1 (ik,jj) ! Cj(uj)



din(ik)= du*shp 1 (3,ii)*uaux(ik)*shp 1 (ikjj) ! Dj(uj) 
cin(ik+ndm)=rho*shp 1 (3 ,ii)*uauxl *shp 1 (ikjj) ! Cj(l) 
din(ik+ndm)=du*shp 1 (3,ii)*uaux 1 *shp 1 (ikjj) ! Dj(l) 

enddo 
endif

c
c.... updating jacobian with C and D
c

s(ii+nlinejj+ncol) = cin( 1 )+cin(3)*ul( 1 jj)+cin(2)
& +s(ii+nlinejj+ncol) 
s(ii+nlinejj+l+ncol) = cin(4)*ul(l jj)

& +s(ii+nline j  j+1 +ncol) 
s(ii+1 +nline j j  +ncol) = cin(3)*ul(2jj)

& +s(ii+1 +nline,jj +ncol)
s(ii+1 +nline j j+ 1 +ncol) = cin( 1 )+cin(2)+cin(4)*ul(2 ,jj)+

& s(ii+1 +nline,jj+1 +ncol)
s(ii+2+nline,ii+ncol) = din(3)*ul(3,ij)+s(ii+2+nline.ij+ncol) 
s(ii+2+nline,jj+l+ncol) = din(4)*ul(3,jj)

& +s(ii+2+nline j j +1 +ncol) 
s(ii+2+nlinejj+2+ncol) = din(l)+din(2)

& +s(ii+2+nlinejj+2+ncol)
c
c.... compute force vector with C and D (Reddy notation)
c

p(ii+níine) = p(ii+nline)-(cin( 1 )*ul( 1 jj)+cin(2)*ul( 1 jj)) 
p(ii+l+nline) = p(ii+l+nline)-(cin(l)*ul(2jj)+cin(2)

& *ul(2jj))
p(ii+2+nline) = p(ii+2+nline)-((din( 1 )+din(2)) *

& ul(3jj)) 
ncol = ncol+2 

345 continue 
nline = nline+2 

341 continue 
c
c.... Now we have assembled the elemental jacobian matrix
c.... completely for the FLOW/HEAT TRANSFER problem with upwinding
c.... and the
c.... elemental residual vector 

return
c
c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
c isw=4,6: compute element internai force vector (isw=6) 
c or element fluxes for printing (isw=4) 
c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
4 1 = d(5)

if(isw.eq.4) 1 = d(6) 
c.... generate natural coordinates and weights of integration



c points (only done once when lint=0) 
if(l*l.ne.lint) call pgaussO 1 (l,lint,sg,tg,wg) 

c.... compute element stresses, strains, and forces 
sumx=0.d0 
sumy=0.d0 
sumdx=0.d0 
sumdy=0.d0 

do 440 1 = l,lint 
c.... compute element shape functions and derivatives

call shape02(sg(l),tg(l),xl,shp,xsj,ndm,.false.,nalfa,shpl) 
c.... compute strains and coordinates of current quadrature pt. 

do 410 i=  1,8 
eps(i) = 0.0 

410 continue 
xx = 0.0
yy = o.o
do 420 j = l,nel
xx = xx + shp(3,j)*xl(l,j) ! compute global coord. 
yy = yy + shp(3,j)*xl(2,j) ! of the gaussian points 
eps(l) = eps(l) + shp(l,j)*ul(l,j) ! du/dx 
eps(2) = eps(2) + shp(2,j)*ul(2,j) ! dv/dy 
eps(3) = eps(3) + shp(2,j)*ul(l,j) ! du/dy 
eps(4) = eps(4) + shp(l,j)*ul(2,j) ! dv/dx 
eps(5) = eps(5) + shp(3,j)*ul(l,j) ! u 
eps(6) = eps(6) + shp(3,j)*ul(2,j) ! v 
eps(7) = eps(7) + shp(l,j)*ul(3,j) ! dT/dx 
eps(8) = eps(8) + shp(2,j)*ul(3,j) ! dT/dy 

420 continue 
c
c prepare gaussian coordinates and heat fluxes for averaging later
c Done on Dec 8, 1999
c

sumx=sumx+xx 
sumy=sumy+yy 
sumdx=sumdx+ep s(7) 
sumdy=sumdy+eps(8)

c
c.... compute pressures, stresses and vorticity 

sig(l) = -d(2)*(eps( 1 )+eps(2)) ! pressure 
sig(2) = eps(l) ! dimensionless ux-flux 
sig(3) = eps(3) ! dimensionless uy-flux 

c sig(4) = d(l)*eps(4) ! vx-flux
sig(4) = eps(4) ! dimensionless vx-flux 
sig(5) = eps(2) ! dimensionless vy-flux 
sig(6) = eps(4)-eps(3) ! vorticity 
psi = dsqrt(eps(5)* *2+eps(6)* *2) ! velo. contour 

c dtx = -d(12)*eps(7) ! x-heat flux
c dty = -d(12)*eps(8) ! y-heat flux

dtx = eps(7) ! dimensionless x-heat flux 
dty = eps(8) ! dimensionless y-heat flux 

c.... Stream function computation



ll=iabs(ix( 1)) 
if(ll.eq.l) then 

psil=d(15) 
dxl=xl(l,2)-xl(l,l) 
dy 1 =xl(2,2)-xl(2,1) 

else
psil=psil+ul(l,l)*dyl-ul(2,l)*dxl ! streamfunction 
dx 1 =xl( 1,2)-xl( 1,1) 
dy 1 =xl(2,2)-xl(2,1) 

endif
if(isw.eq.4) then

c
c.... print pressures, stresses, vorticity, velo. contour and streamfunction 
c
c.... output pressures, stresses, vorticity, velo. contour and streamfunction 

mct = mct - 2 
if(mct.le.O) then 

c write(iow,2001) o,head
if(ior.lt.O) then 

c write(*,2001) o,head
endif 
mct = 50 

endif
c
c write(iow,2002) n,ma,(sig(ii),ii=T,5),xx,yy,sig(6),
c & psi,dtx,dty,psil 

if(ior.lt.O) then 
c write(*,2002) n,ma,(sig(ii),ii=l,5),xx,yy,sig(6),
c & psi,dtx,dty,psil 
569 continue ! only a dummy argument 

endif
c
c TfflS PART BELOW IS NOT USED IN A FLUID ELEMENT
c

elseif(isw.eq.6) then
c
c.... compute the element internai force vector 
c (via the integral of BAt sigma) 
c

dv = xsj*wg(l)*d(14)
j l  = 1
do 430 j = l,nel
p(jl ) = p(jl ) - (shp(l,j)*sig(l) + shp(2,j)5i:sig(2))*dv 

1 + d(l l)*shp(3,j)*dv
p(jl+ l) = p(jl+ l) - (shp(l,j)*sig(2) + shp(2,j):i:sig(3))*dv 

1 + d( 12) * shp(3 ,j) * dv
j l  = j l  + ndf 

430 continue
endif 

440 continue



compute average central gaussian coordinate at the element 
and average central heat fluxes

dtx4=dtx
dty4=dty
xx=sumx/4.d0
yy=sumy/4.d0
dtx=sumdx/4.d0
dty=sumdy/4.d0

Compute total heat fluxes at tubes

pi=4. dO * atan( 1. dO)

********** tube **********

if(n. ge.nellsl bini. and.n. le.nellsl bend) then 
call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 

endif
if(n.eq.nell slbend) then 

write(*, *)'fluxt l-,sum  
icont=0 
sum=0.d0 

endif
if(n. ge. nel 1 s2bini. and. n. le. nel 1 s2bend) then 

call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n. eq. nel 1 s2bend) then 
write(*, *)'fluxt2-,sum 
ieont=0 
sum=0.d0 

endif
if(n. ge. nel 1 s3 bini. and.n. le.nel 1 s3bend) then 

call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nell s3bend) then 
write( *, *)'fluxt3 =',sum 
icont=0 
sumF=0.d0 

endif
if(n.ge.nel 1 s4bini. and.n. le.nel 1 s4bend) then 

call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n. eq. nel 1 s4bend) then 
write(*, 5!í)'fluxt4=',sum 
icont=0 
sum=0.d0 

endif



if(n.ge.nell sSbini.and.n.le.nell s5bend) then 
call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 

endif
if(n. eq.nel 1 s5bend) then 

write(*,*)'fluxt5-,sum 
c icont=0
c sum=0.d0

endif
if(n.ge.nel 1 sóbini.and.n.le.nel 1 sóbend) then 

call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,ieont?pi,sum) 
endif

if(n. eq.nel lsóbend) then 
write(*, *)'fluxt6-, sum 

c icont=0
c sum=0.d0

endif
if(n. ge. nel 1 s7bini. and. n. le. nel 1 s7bend) then 

call sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nell s7bend) then 
write(*,*)'fluxt7-,sum 

c icont=0
c sum=0.d0

endif
if(n. ge. nel 1 s8bini. and .n.le.nell s8bend) then 

call sintegral02(yol,xol,yy,xx,dty,dtx,icont,pi?sum) 
endif

if(n.eq.nel 1 s8bend) then 
write(*,*)'fluxt8-,sum 
icont=0 

c sum=0.dG
endif

c
second tube

c
if(n. ge. nel2s 1 bini. and. n.le. nel2s 1 bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n. eq. nel2s 1 bend) then
write(5ií, *)’fluxt9=',sum 

c icont=0
c sum=0.d0

endif
if(n.ge.nel2 s2bini. and. n. le. nel2s2bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,siim) 
endif

if(n.eq.nel2s2bend) then 
write(*, *)'fluxt 10-',sum 

c icont=0
c sum=0.d0

endif



Íf(n.ge.nel2s3bini.and.n.le.nel2s3bend) then 
call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,sum) 

endif
if(n. eq. nel2 s3 bend) then 

write(*,*)'fluxl 1 - ,sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel2s4bini.and.n.íe.nel2s4bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n. eq. nel2 s4bend) then 
write(*, *)'fluxt 12-, sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel2s5bini.and.n.le.nel2s5bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel2s5bend) then 
write(*,*)'fluxt 13-, sum 
icont=0 
sum=0.d0 

endif
if(n. ge.nel2s6bini. and.n.le. nel2s6bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,sum) 
endif

if^n. eq. nel2 sóbend) then 
write(*, *)'fluxt 14 - ,  sum 
icont=0 
sunr=0.d0 

endif
if(n.ge.nel2s7bini. and. n. le. nel2s7bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi, sum) 
endif

if(n.eq.nel2s7bend) then 
write(*, *)'fluxt 15=',sum 
icont=0 
sum=0.dO 

endif
if(n. ge. nel2s8bini.and.n. le. nel2s8bend) then 

call sintegral02(yo2,xo2,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel2s8bend) then 
write(*,*)'fluxtl6-,sum 
fluxf=sum/pi 
write(*, *)'fluxf=',fluxf 

icont=0 
sum=0.dO 

endif



if(n.ge.nel3 s 1 bini. and. n. le. nel3 s 1 bend) then 
call sintegral02(yo3,xo3,yy,xx,dty,dtx,icont,pi,sum) 

endif
if(n. eq. nel3 s 1 bend) then 

write(*,*)'fluxt 17- ,sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel3s2bini.and.n.le.nel3s2bend) then 

call sintegral02(yo3,xo3,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel3 s2bend) then 
write(*, *)'fluxt 18-, sum 
icont=0 
sum=0.d0 

endif
if(n. ge. nel3 s3 bini. and. n. le. nel3 s3 b end) then 

call sintegral02(yo3 ,xo3,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel3s3bend) then 
write(*, *)'fluxt 19 -,sum 
icont=0 
sum=0.d0 

endif
if(n.ge.nel3 s4bini. and. n. le. nel3 s4bend) then 

call sintegra!02(yo3,xo3,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel3 s4bend) then 
write(*,*)'fluxt20='7sum 
icont~0 
sum=0.d0 

endif
if(n.ge.nel3 s5bini.and.n. Ie.nel3 sSbend) then 

call sintegral02(yo3,xo3,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel3 sSbend) then 
write(*,*)'fluxt21-,sum 
icont=0 
sum=0.d0 

endif
if(n.ge.nel3 sóbini. and. n. le. nel3 sóbend) then 

call sintegral02(yo3 ,xo3 ,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n. eq.neB sóbend) then 
write(*,*)'fluxt22-,sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel3s7bini.and.n.le.nel3s7bend) then



call sintegral02(yo3 ,xo3 ,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel3 s7bend) then 
write(*,*)'fluxt23-,siim 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel3s8bini.and.n.le.nel3s8bend) then 

call sintegral02(yo3,xo3,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel3s8bend) then 
write(*,*)'fluxt24-,sum 
icont=0 

sum=0.d0 
endif

if(n.ge.nel4slbini.and.n.le.nel4slbend) then 
call sintegral02(yo4,xo4,yy?xx,dty,dtx,icont,pi,sum) 

endif
if(n. eq.nel4s 1 bend) then

write(*,*)'fluxt25-,sum
icont-0
sum=0.d0

endif
if(n.ge.nel4s2bini. and. n. le. nel4s2bend) then 

call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont3pi,sum) 
endif

if(n.eq.nel4s2bend) then 
write(*,*)'fluxt26-,sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel4s3bini.and.n.le.nel4s3bend) then 

call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel4s3bend) then 
write(*,*)'flux27-,sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel4s4bini.and.n.le.nel4s4bend) then 

call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel4s4bend) then 
write(*,*)'fhixt28-,sum 
icont=0 
sum=0.d0 

endif
Íf(n.ge.nel4s5bini.and.n.le.neí4s5bend) then



call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont,pi5sum) 
endif

if(n.eq.nel4s5bend) then 
write(*,*)'fluxt29-,sum 

c icont=0
c sum=0.d0

endif
Íf(n.ge.nel4s6bini.and.n.le.nel4s6bend) then 

call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel4sóbend) then 
write(*,*)'fluxt30-,sum 

c icont=0
c sum=0.d0

endif
if(n. ge. ne!4s7bini. and. n. le. nel4s7bend) then 

call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n. eq. nel4 s7bend) then 
write(*,*)'fluxt3 l - 7sum 

c icont=0
c sum=0.d0

endif
if(n. ge. nel4 s8bini. and. n. le. nel4s8bend) then 

call sintegral02(yo4,xo4,yy,xx,dty,dtx,icont,pi,sum) 
endif

if(n.eq.nel4s8bend) then 
write(*, *)'fluxt3 2 - , sum 
fluxf=sum*0.013 
write(*, *),fluxf=!,fluxf 

write(*,*)'dtx4-,dtx4,'dtxavg-,dtx 
write(*,*)'dty4-,dty4,'dtyavg-,dty 

icont=0 
sum=O.d0 

endif
c
^  íjc j{c ?ic ^  jjí sjc »jí íjc jfc sjc jjc íjc sjc j|c s|c sjí sjc sfc ift sjc 5{c sfc 3{s 5jí jjc íjí ã|c % j|ç sjí 5|c íjc sjs ?Jí sjc ^

c End of new part for computing total heat flux
q ;fc % ^  :jc sH íK ^  ^  =f! sH ^  sfc ^  ^  *  %  H< sh %  %  &

return
c
c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
c isw=5: compute consistent mass matrix (for dynamics) 
c
% % % % % % % % % % % % % % % % % % % % % % 0/o 0/o% % % % % % % % 0/o 0/o% 0/o% % 0/o% 0/o 0/o% % %

%%%%%%%%%
5 1 = d(5)
c.... generate natural coordinates and weights of integration 
c points (only done once when lint=0)



if(l*l.ne.lint) call pgaussO 1(1,lint,sg,tg,wg) 
c.... loop over integration points, compute integral of N a  times 
c N_b times rho 

do 530 1 = l,lint 
call shape02(sg(l),tg(l),xl,shp,xsj,ndm,.false.,nalfa,shp 1) 
dv = wg(l)*xsj*d(4) 
j l  = l
do 520 j = l,nel 
w l 1 = shp(3,j)*dv 
p(ji) = p è i)  + w ii  
k l = jl
do 510 k = j,nel
s(jl,kl) = s(jl,kl) + shp(3,k)*wl 1 
kl = kl + ndf 

510 continue 
j 1 = j 1 + ndf 

520 continue 
530 continue
c.... compute missing parts and lower part by symmetries 

nsl = nel* ndf 
do 550 j = 1,nsl,ndf

p(j+i) = pé)
do 540 k = j,nsl,ndf 

s(j+l,k+l) = s(j,k) 
s(k,j) = s(j,k) 
s(k+l,j+l) = s(j,k)

540 continue 
550 continue 

retura
c
c
% % % % % % % 0/o% % % % % % 0/o% % % 0/o% 0/o 0/o% 0/o% % % 0/o% % % 0/o% % % % % % % 0/o% % % 0/o%

%%%%%%%%%
c isw=7: compute force vector corresponding to 
c prescribed tractions
c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%
1 call surfO 1 (d,xl,ma,ndf,ndm,nel,mct, p) 

return
c
% % % % % % % % % % 0/o% % % % % % % % % % % % % % % % % 0/o% % 0/o% % % 0/o% % % 0/o 0/o% 0/o 0/o 0/o

%%%%%%%%%
c isw=8: compute nodal stresses for plotting
c
% % % % % 0/o% % % % % % % % % % % % % % % 0/o% 0/o% % % 0/o% % % % 0/o% % % 0/o% % 0/o 0/o 0/o% % %

%%%%%%%%%
8 call stcn02(ix,d,xl,ul,tl,s,shp,m(np),m(np+numnp*ipr),ndf,ndm,

1 nel,numnp)
return

c



% % % % 0/o% % % % % % 0/o 0/o% % 0/o% % % % 0/o% % 0/o % 0/o 0/o% % % 0/o% % % % 0/o% % 0/o 0/o% % % % %  

%%%%%%%%% 
c format statements for element 1 
c
% % % % % % % % % % % % % % % % % % % % % % 0/o% % % % % % % % % % % % % % % % % % % % % %

%%%%%%%%%
1000 format(3fí 0.0,3í 10/6f 10.0)
2000 format(/5x,'Fluid ',a4,' 4-NavierStokes flow Element'//

1 10x,’viscosity ',el2.5/10x,'penalty param',18.5/
2 10x,'density ',el2.5/10x,'gauss pts/dir',i3/
3 10x,'fluxes pts ',i3/ 10x,' ',el2.5/
3 10x,' ',el2.5/10x,' ',el2.5/)

2001 format(al ,20a4//5x,'element fluxes'//' element material',
1 ' pressure ux-flux uy-flux vx-flux vy-flux',
2 ''/ ' 1-coord 2-coord vorticity velocity modulus ',
3'x-hflux y-hflux streamíunction')

2002 format(/2i9,5e 12.3/219. 3,5 e 12.3 )
3000 formatf Input: mu, gama, rho, #-pts K, #-pts sigV >',$)
3001 format(' Input: thick, 1-body, 2-body'/' 1>',$)
3002 format(' Input: thick, 1-body, 2-body'/' 1>',$) 

end

c subroutine integral02: computes values of integral li

subroutine sintegral02(yo 1 ,xo 1 ,yy,xx,dty,dtx,icont,pi,sum) 
implicit real*8 (a-h,o-z) 
common /teste/ tetaia,tetaip,dteta,dtna,dtnp 

if(icont.eq.0) then 
tetaia=atan(abs((yo 1 -yy)/(xo 1 -xx))) 
auxl=tetaia
if(xx.gt.xol) tetaia=pi-tetaia 
dtna=fluxn(dty,dtx,auxl) 

c write(*,*)'tetaia-,tetaia,'dtna-,dtna
icont=l 
else
tetaip=atan(abs((yo 1 -yy)/(xo 1 -xx))) 
aux2=tetaip
if(xx.gt.xol) tetaip=pi-tetaip 
dtnp=fluxn(dty,dtx,aux2) 
dteta=tetaip-tetaia 
sum=sum+((dtnp+dtna)/2)*dteta 

c write(*, * )'tetaia,tetaip-,tetaia,tetaip
c write(*,*)'dtna-,dtna,'dtnp-,dtnp,'sum-,sum

tetaia=tetaip 
dtna=dtnp 
icont=l 
endif 

retum 
end



c íünction to compute the normal heat flux to the
c surface

íünction fluxn(qy,qx,teta) 
implicit real* 8 (a-h,o-z) 
common /elipse/ sa,sb

c
c circular or elliptical section 
c
c aux=sqrt(qx*qx+qy*qy) 
c aux=abs(qx)*cos(teta)+abs(qy)*sin(teta)

aux 1 =abs(qx)* 1 /(sqrt( 1 +(sa* *2/sb* *2)*(tan(teta))* *2))
aux2=abs(qy)* l/(sqrt( 1 +(sb* *2/sa* *2)/(tan(teta))* *2))
aux=auxl+aux2
fluxn=aux
return
end

c
c mmmmmmmmmmmmmmmmmimmmmmm
c subroutine shape02: computes values of shape íünction
c and its derivatives at a point
c mmmmmmmmmmmmmmmmmmmmmmmmm
c

subroutine shape02(s,t,xl,shp,xsj,ndm,flg,nalfa,shp 1) 
implicit real *8 (a-h,o-z) 
logical flg

c.... shape íünction routine for 4-node isoparametric quadrilaterals
c
c.... Given data:
c s: first natural coordinate o f point
c t: second natural coordinate of point
c xl: array of localized coordinates
c (dimensioned ndm by 4)
c
c.... Output:
c shp: array containing evaluations of ali element shape
c fimctions and derivatives at (s,t)
c shp(l,a)=N_a,x (s,t)
c shp(2,a)=N_a,y (s,t)
c shp(3,a)=N_a (s7t)
c for a= 1,2,3,4
c xsj: jacobian of coordinate transformation
c (i.e., det(dx/dxi))
c shp: array containing evaluations of ali element shape
c íunctions and derivatives at s=t=nalfa/3 (upwinding point)
c shp 1(1 ,a)=N_a,x (s,t)
c shp 1 (2,a)=N_a,y (s,t)
c shp 1 (3 ,a)=N_a (s,t)
c for a= 1,2,3,4

real*8 xl(ndm,4),shp(3,4),shp 1 (3,4)



sh = 0.5*s 
th = 0.5*t 
sp = 0.5 + sh 
tp = 0.5 + th  
sm = 0.5 - sh 
tm = 0.5 - th 
if (nalfa.ne.O) then 

sl = nalfa / 3.dO 
tl  = sl 
shl = 0.5*sl 
thl = 0.5*tl 
spl = 0.5 + shl 
tpl = 0.5 + thl 
sml = 0.5 - shl 
tml = 0.5 - thl 
shpl(3,l) = sml*tml 
shp 1(3,2) = spl*tml 
shp 1(3,3) = spl*tpl 
shp 1(3,4) = sm 1 *tp 1 

endif
c.... evaluate the shape íunctions 

shp(3,l)= sm*tm 
shp(3,2) = sp*tm 
shp(3,3) = sp*tp 
shp(3,4) = sm*tp 

c.... calculates the partial derivatives of x ,y with respect 
c to xi and eta (including a factor of 4) and put in xs,xt,ys,yt 

xo = xl( 1,1 )-xl( 1,2)+xl( 1,3 )-xl( 1,4) 
xs = -xl( 1,1 )+xl( 1,2)+xl( 1,3 )-xl( 1,4) + xo*t 
xt = -xl(l,l)-xl(l,2)+xl(l,3)+xl(l,4) + xo*s 
yo = xl(2, l)-xl(2,2)+xl(2,3)-xl(2,4) 
ys = -xl(2,l)+xl(2,2)+xl(2,3)-xl(2,4) + yo*t 
yt = -xl(2,l)-xl(2,2)+xl(2,3)+xl(2,4) + yo*s 
if (nalfa.ne.O) then 

xol = xl( 1,1 )-xl( 1,2)+xl( 1,3 )-xl( 1,4) 
xsl = -xl(l,l)+xl(l,2)+xl(l,3)-xl(l,4) + xol*tl 
xtl = -xl( 1,1 )-xl( 1,2)+xl( 1,3 )+xl( 1,4) + xol*sl 
yoi = xl(2,l)-xl(2,2)+xl(2,3)-xl(2,4) 
ysl = -xl(2,1 )+xl(2,2)+xl(2,3 )-xl(2,4) + yol*tl 
ytl = -xl(2,1 )-xl(2,2)+xl(2,3)+xl(2,4) + yol*sl 

endif
c.... compute jacobian, put in xsj 

xsjl = xs*yt - xt*ys 
xsj = 0.0625*xsjl
if (nalfa.ne.O) xsj 2 = xsl*ytl - xtl*ysl 

c.... compute shape function derivatives with respect to x and y 
c and store in shp (see pp. 146-147 of Hughes) 

if(.not.flg) then 
if(xsjl.eq.0.0d0) xsjl = 1.0 
xs = (xs+xs)/xsj 1 
xt = (xt+xt)/xsj 1



ys = (ys+ys)/xsj 1 
yt = (yt+yt)/xsjl 
ytm = yt*tm 
ysm = ys*sm 
ytp = yt*tp 
ysp = ys*sp 
xtm = xt*tm 
xsm = xs*sm 
xtp = xt*tp 
xsp = xs*sp 
shp(l,l) = - ytm+ysm 
shp(l,2) = ytm+ysp 
shp(l,3) = ytp-ysp 
shp(l,4) = - ytp-ysm 
shp(2,1) = xtm-xsm 
shp(2,2) = - xtm-xsp 
shp(2,3) = - xtp+xsp 
shp(2,4) = xtp+xsm 

endif
if (nalfa. ne.O) then 

if(.not.flg) then 
if(xsj2.eq.0.0d0) xsj2 =1.0 
xs 1 = (xs 1+xs 1 )/xsj 2 
xtl = (xtl +xt 1 )/xsj2 
ys 1 = (ys 1 +ys 1 )/xsj2 
ytl = (ytl+ytl)/xsj2 
ytml = ytl*tml 
ysml = ysl*sml 
ytpl = ytl*tpl 
yspl = ysl*spl 
xtml = xtl*tml 
xsml = xsl*sml 
xtpl = xtl*tpl 
xspl = xsl*spl 
shp l(l,l)  = - ytml+ysml 
shpl(l,2) = ytml+yspl 
shpl(l,3) = ytpl-yspl 
shp 1(1,4) = - ytpl-ysml 
shp 1 (2,1) = xtm 1 -xsm 1 
shp 1(2,2) = - xtml-xspl 
shp 1(2,3) = - xtpl+xspl 
shp 1 (2,4) = xtp 1 +xsm 1 

endif 
endif 
end

subroutine stcn02: computes quantities necessary for 
nodal projection of element stresses to nodes



c *** representation of stress field in terms of NODAL 
c stresses requires a reprojection of the stress
c field. The technique used is a least squares
c method (see Hughes, pp. 226-228 for a brief and
c somewhat cryptic presentation)
c
c *** primary output variables of this routine:
c
c s: consistent projection matrix
c dt: lumped (diagonal) projection matrix, stored
c in vector form
c st: weighted stress vector

subroutine stcn02(ix,d,xl,ul,tl,s,shp,dt,st,ndf,ndm,nel,numnp)
implicit double precision (a-h,o-z)
dimension dt(numnp),st(numnp,l),xl(ndm,l),shp(3,4),sig(6),
1 d( 1 ),eps(6),ul(ndf, 1 ),tl( 1 ),ix( 1 ),s(nel, 1 ),sg( 16),tg( 16),
2 wg(16),shpl(3,4)

c data ss/-l.dO, I.d0,l.d0,-l.d0, 0.dO, 1.d0,0.dO,-1.d0,0.d0/
c datatt/-l.dO,-l.dO,l.dO, I.d0,-l.d0,0.d0,l.d0, 0.d0,0.d0/
c lumped and consistent projection routine

1 = d(5)
if(l*l.ne.lint) call pgaussO 1 (l,lint,sg,tg,wg)
call pzero(s,nel*nel)

c
c Note: do 300 loop is a loop over the integration points
c

do 300 1 = l,lint 
call shapeO 1 (sg(l),tg(l),xl,shp,xsj,ndm,.false.,nalfa,shp 1) 
xsj=xsj*wg(l) 
do 100 i=  1,8 

eps(i) = O.OdO 
100 continue 

xx = 0.0 
yy = 0.0 
do 110 i = l,nel
xx = xx + shp(3,i)*xl(l,i) ! compute global coord. 
yy = yy + shp(3,i)*xl(2,i) ! of the gaussian points 
eps(l) = eps(l) + shp(l,i)*ul(l,i) Ipressure 
eps(2) = eps(2) + shp(2,i)*ul(2,i) 
eps(3) = eps(3) + shp(2,i)*ul(l,i) 
eps(4) = eps(4) + shp(l,i)*ul(2,i) 
eps(5) = eps(5) + shp(3,i)*ul(l,i) ! u 
eps(6) = eps(6) + shp(3,i)*ul(2,i) ! v 
eps(7) = eps(7) + shp(l,i)*ul(3,i) ! dT/dx 
eps(8) = eps(8) + shp(2,i)*ul(3,i) ! dT/dy 
ss = shp(3,i)*xsj 

c.... compute consistent projection matrix 
do 105 j = l,nel 

s(i,j) = s(i,j) + ss*shp(3,j)



105 continue 
110 continue 
c.... compute stresses 
c

sig(l) = -d(2)*(eps(l)+eps(2)) ! pressure 
sig(2) = d(l)*eps(l) ! ux-flux 
sig(3) = d(l)*eps(3) ! uy-flux 
sig(4) = d(l)*eps(4) ! vx-flux 
sig(5) = d(l)*eps(2) ! vy-flux 
sig(6) = eps(4)-eps(3) ! vorticity 
psi = dsqrt(eps(5)* *2+eps(6)* *2) 
dtx = eps(7) ! x-hflux 
dty = eps(8) ! x-hflux 

c.... Stream function computation 
ll=iabs(ix(l)) 
if(ll.eq.l) then 

psil=0.d0 
dx 1 =xl( 1,2)-xl( 1,1) 
dy 1 =xl(2,2)-xl(2,1) 

else
psil=psil+ul(l,l)*dyl-ul(2,l)*dxl ! streamfunction 
dx 1 =xl( 1,2)-xl( 1,1) 
dy 1 =xl(2,2)-xl(2,1) 

endif
c.... compute lumped projection and assemble the stress integrais 

do 120 j = l,nel 
11 = iabs(ixQ) 
if(ll.gt.O) then 
xg = xsj*shp(3,j) 
dt(ll) = dt(ll) + xg
st(ll,l) = st(ll,l) + sig(l)*xg ! pressure 
st(ll,2) = st(ll,2) + sig(6)*xg ! vorticity 
st(ll,3) = st(ll,3) + sig(2)*xg ! du/dx 
st(ll,4) = st(ll,4) + psi*xg ! velo. contour 
st(ll,9) = st(ll,9) + dtx*xg ! x-hflux 
st(ll,10) = st(ll,10) + dty*xg ! y-hflux 
st(ll,l 1) = st(ll,l 1) + psil*xg ! streamfunction 

endif 
120 continue 
300 continue 

return 
end
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