
\ c : : : í . v : c  : 2 2 1  - , s

c t   ' c c v . : . . .  t c  . 2  z L

D l  UMA PRÓTESE PARCIAL F XA POSTERIOR

- - - - - -  1.
Vw w . U - ,

23C2



ROBERTO ANTONIO VOSGERAU

ANÁLISE DO COMPORTAMENTO BIOMECÂNICO 

DE UMA PRÓTESE PARCIAL FIXA POSTERIOR

Dissertação apresentada como requisito parcial à 

obtenção do grau de Mestre em Ciências, área de con­

centração em Programação Matemática. Curso de Pós- 

Graduação em Métodos Numéricos em Engenharia. Se­

tor de Tecnologia, Universidade Federal do Paraná. 

Orientadora: ProP. Dra. Mildred Ballin Hecke

Co-orientador: P roP . Dr. R oberto Dalledone

Machado

CURITIBA

2002



Roberto Antonio Vosgerau

“Análise do Comportamento Biomecânico de Uma Prótese 

Parcial Fixa Posterior”

Dissertação aprovada como requisito parcial para a obtenção do grau de Mestre em 

Ciências, M.Sc. Áreas de Concentração : Programação Matemática, do Programa de Pós- 

Graduação em Métodos Numéricos em Engenharria da Universidade Federal do Paraná pela 

comissão formada pelos professores:

Orientadora:

Cò-Orientador

Prof: Dr. Rodne; Jassanezi
Departamento de M Aplicada
UNICAMP-SP 
Examinador externo

Prpff Ederson A. G. B,efiol
Departamento de Odontoiogia Restaoradora - UFPR
Examinador externo

Cuririba, 08 de novembro de 2002 
Paraná - Brasil

Prof Dr. Mildred Ballin Hecke
Setor de Tecnologja^ljEEE'

-ProfTpr. Roberto Dailedone Maclrado 
Setor dé Tecnologia, UFPR

Prof Dra. Beatriz Luci Fernandes 
Departamento de Engenharia Mecânica -  PUC/PR 
Examinadora externa //



Se o homem, puder, com dignidade 

e força, conservar o seu ideal superior 

de viver honesta e honradamente, 

de aprender com todos, 

com humildade, de amar o próximo 

sem exigência de retomo, de trabalhar 

arduamente em benefício de todos,

sinceramente será feliz, muito feliz.

Dr. Leocádio José Correia.



A toda nossa família pelo apoio, pelas orações, em especial aos meus pais 

Fredolim(f) e Iloah e meus sogros Sebastião(f) e Jany(f).

Aos meus irmãos, Luís{\), Roseli{\), José Carlos e Ciro, pelo companheirismo e

união.

Aos meus amados filhos, Rosana e Antonio Carlos, Lígia e Rogério, Flávio, 

Marcos e Milene, pela paciência, apoio e afeto que nos une.

Á minha esposa Maria Jurema que me faz feliz todos os dias, a quem aprendi

admirar muito pelo seu amor e dedicação.



Agradecimentos

Meus agradecimentos:

aos professores orientadores, Dra. Mildred Ballin Hecke e Dr. Roberto 

Dalledone Machado, pela orientação, confiança depositada e pelo apoio;

aos professores do curso de pós-graduação, pela formação e estímulo;

ao prof. Dr. Rodney Carlos Bassanezzi, pela amizade, orientação e 

estímulo;

ao prof. Dr. Wilson Costa, pela amizade e pelos esclarecimentos sobre 

Odontologia;

ao prof. Ederson A. G. Betiol, pelo apoio, auxílio, amizade e elucidações 

sobre Odontologia;

aos colegas de pós-graduação, pela amizade; 

à Maristela, pela presteza, eficiente desempenho e amizade; 

ao sr. Elizeu, pelo atendimento e amizade; 

à Maria Fernanda, pela colaboração, apoio e amizade;

i



aos professores do departamento de Matemática do CEFET-PR de 

Ponta Grossa e Curitiba, por me proporcionarem condições de realizar 

este trabalho;

a todos que contribuiram, direta ou indiretamente, para a realização 

deste trabalho;

a DEUS, a quem tudo devemos, por ter-me concedido a graça de 

realizar este trabalho e ter colocado em meu caminho pessoas tão espe­

ciais com as quais muito aprendi e por proporcionar-me sempre motivos 

para agradecer.

ii



Resumo

Pacientes com ausência de dentes postero-inferiores são encontrados freqüen­

temente em clínicas odontológicas e existem várias alternativas de reabilitação 

para resolver este tipo de problema. Uma delas é o implante e a colocação de uma 

prótese fixa que une este implante a um dente natural.

0  objetivo deste estudo é avaliar a distribuição de tensões no osso da mandí- 

bula, através do Método dos Elementos Finitos, por meio de um modelo bidimen­

sional de uma prótese parcial fixa posterior quando submetida a forças masti- 

gatórias. O Método dos Elementos Finitos foi adotado para análise numérica com 

a utilização do software ANSYS® 5.7.1, versão universitária.

O conjunto constituído pelo primeiro pré-molar inferior, o implante osseoin- 

tegrado (sistema Branemark) localizado na região do segundo molar inferior (si­

tuados no mesmo hemi arco) e dois pônticos localizados na região do segundo 

pré-molar e primeiro molar inferior, são submetidos a cargas verticais sobre os 

elementos desta ponte.

O modelo foi desenvolvido a partir de uma imagem radiográfica digitalizada 

da região posterior esquerda da mandíbula e construído utilizando uma plataforma 

CAD. Foram comparados os resultados obtidos (tensões sobre o osso cortical e 

trabecular) na região próxima ao ligamento periodontal (primeiro pré-molar) e na 

região próxima ao implante. A existência de um nível mais alto de tensão para

iii



o local do implante pode resultar em perda óssea na região, podendo conduzir o 

tratamento a um fracasso. Para melhor comparar os resultados foram feitas si­

mulações considerando alterações nesta prótese, acrescentando: a) um conector 

semi-rígido na região entre o primeiro molar e o implante (segundo molar); b) 

um conector semi-rígido entre o dente natural (primeiro pré-molar) e o segundo 

pré-molar. Para o estudo destes modelos foi utilizada a teoria do contato.

Os modelos foram analisados considerando-se o caso de estado plano de 

tensões. Os modelos numéricos adotados, as simplificações consideradas, as difi­

culdades inerentes à modelagem e os resultados obtidos com o estudo das próteses 

em questão (prótese parcial fixa rígida e as semi rígidas) são discutidos.

Para a prótese rígida, verificou-se a existência de maior concentração de 

tensões na região óssea cortical que circunda o implante (parte superior); na semi- 

rígida (situação b), as tensões diminuíram nesta área, aumentando na região do 

encaixe enquanto que na semi-rígida (situação a), as tensões aumentaram sensivel­

mente na região óssea cortical daquela região.

Palavras-chave: Prótese parcial fixa, pônticos, implante osseointegrado, edentado, 

ligamento periodontal, Método dos Elementos Finitos, teoria do contato.
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Abstract

Patients lacking posterior teeth are commonly found in dentist’s clinics and 

there are several rehabilitation alternatives to solve this kind of problem. One 

of them being the implant and the making of a fixed prosthesis connecting this 

implant to a natural tooth.

The objective of this study is to evaluate the tensions distribution in the jaw 

bone, through the Finite Elements Method, simulating a partial fixed prosthesis by 

a bidimensional model when submitted mastigatory forces. The Finite Elements 

Method were adopted with the use of the ANSYS 5.7.1 software, university version.

The group constituted by the first inferior premolar, the osseointegrated im­

plant (Branemark system) and two pontics located in the second premolar area 

and first inferior molar, are submitted to vertical loads on this bridge elements.

The model was developed from a digital radiographic image of the jaw poste­

rior left area and built using the CAD platform.The obtained results were compared 

(tensions on the cortical and trabecular bone) in the close area to the periodontal 

ligament (first premolar) and in the close area to the implant. The existence of a 

higher levei of tension for the implant place may result in bone loss in the area, 

leading to a treatment failure. For results best comparison was made simulations 

considering an alteration in this prosthesis, increasing: a) a semi-rigid connector 

in the region between first molar and implant (second molar); b) a semi-rigid con-
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nector between natural tooth (first premolar) and second premolar. For the study 

of these models was used contacfs theory.

The models were analyzed being considered the plain State of stress. The 

numeric models adopted, the considered simplifications, the inherent difficulties to 

the shaping and the results obtained with the study of the partial fixed prosthesis 

and the semi-rigid ones are discussed.

For the rigid prosthesis, was verified the existence of larger concentration of 

tensions in the cortical bone axea that surrounds the implant (superior part); in 

the semi-rigid (situation b), the tensions decreased in this area, increasing in the 

fitting area, while in the semi-rigid (situation a), the tensions increased sensibly 

in the cortical bone region of that region.

Key-word: Fixed partial denture, pontics, osseointegrated implant, edentate, 

periodontal ligament, Finite Element Method, contacfs theory.
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Capítulo 1

Introdução

O sucesso, a longo prazo, de um tratamento odontológico com implantes 

dentários, depende da boa osseointegração. Tal fato é associado ao tipo apropriado 

do osso com a superfície da fixação. Nas clínicas odontológicas surgem, com certa 

freqüência, clientes com ausência de dentes posteriores inferiores. Diz-se que estes 

possuem arcadas com extremos livres, classe I e II de acordo com a classificação 

de Kennedy (1927). Estas perdas dentárias normalmente são causadas por cáries 

ou problemas periodontais que estimulam uma constante busca da solução reabi- 

litadora protética ideal a ser oferecida a cada paciente. Periodonto é um tipo de 

fibra que serve de ligamento entre o dente e o osso da mandíbula ou da maxila, 

destinado a absorver as cargas mastigatórias.

Para solucionar este problema existem algumas alternativas reabilitadoras. 

Uma delas é através de próteses parciais removíveis, porém nos casos de extremos



livres, as próteses possuem dois tipos de suporte: os dentes que no estado de nor­

malidade possuem uma mobilidade aproximada de 0,1 mm e a fibromucosa que 

tem uma resiliência de 0,4 a 2 mm (Mensor, 1968) o que dificulta este tipo de 

reabilitação. Outro inconveniente é que estas próteses devolvem uma eficiência 

mastigatória menor e também são menos confortáveis que as próteses fixas (Aka- 

gawa et al, 1989).

Outra alternativa é através das próteses parciais fixas em cantilever (balanço) 

(Tylman et al., 1960) que possuem um comportamento biomecânico desfavorável 

e necessitam de desgaste de alguns elementos dentários, muitas vezes sadio, para 

servirem de retentor para essas próteses.

A prótese fixa sobre implantes osseointegrados seria a melhor opção de trata­

mento por devolver uma boa eficiência mastigatória como as próteses fixas dento- 

suportadas sem ter que desgastar dentes, por ter uma menor perda óssea na região 

ao longo do tempo e ser mais confortável que as próteses removíveis (Akagawa et 

al, 1989).

Entretanto, em alguns casos, devido à perda óssea, na posição do nervo alve- 

olar inferior, ou a perda de implantes, é necessário construir a união de um dente 

com um implante que não possui ligamento periodontal e conseqüentemente pos­

sui mobilidade bem menor do que o dente (Hobo et al., 1989; Gyllenram, 1994; 

Weinberg, 1993).

É muito interessante observar como a prótese, uma vez instalada na boca do
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paciente, se comporta sobre as estruturas que lhe darão suporte, já que ela é um 

aparelho mecânico que receberá cargas e que lhes adicionará cargas protéticas, ao 

mesmo tempo em que funciona num meio biológico.

Na indicação de uma prótese deve-se planejar o equilíbrio entre as cargas 

acrescidas e a capacidade do periodonto de sustentação em suportá-las. Portanto, 

a repercussão nos dentes-suportes, dependendo de um planejamento correto ou não, 

pode variar desde um estímulo fisiológico até o estabelecimento de uma patologia 

mais séria.

O objetivo principal de uma prótese dental é manter o equilíbrio entre a 

saúde e a função do sistema estomatognático, preservando suas estruturas, além 

de proporcionar estética agradável e conforto no uso (Laganá, 1996).

Alguns autores sugerem a separação dessas próteses dento-implanto supor­

tada através de encaixes (conexão semi-rígida) e não usar uma conexão rígida 

(monobloco) que sobrecarregaria o implante por possuir uma mobilidade bem 

menor do que o dente (Cohen e Orenstein,1999).

Outros autores sugerem que nos casos em que há necessidade de combinação 

entre elemento dentário e implante osseointegrados, deve-se lançar mão de uma 

conexão rígida (Lum et al, 1991).

Os encaixes extracoronários, em particular, são os mais indicados para atuar 

como retentores de próteses parciais removíveis de extremidades livres, princi­

palmente aqueles de conexões elásticas, que funcionam de forma a minimizar as
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Os encaixes extracoronários rígidos e semi-rígidos apresentam características 

diferentes em relação a alguns aspectos como os de natureza mecânica, localização, 

rigidez, levando-os a atuar de maneiras distintas sobre as estruturas de suporte 

(Laganá, 1996).

O objetivo deste trabalho é simular o comportamento biomecânico e avaliar 

a distribuição de tensões nas estruturas de suporte de uma prótese parcial fixa de 

quatro elementos que possui como pilares o primeiro pré-molar e um implante do 

mesmo hemi-arco, localizado na região do segundo molar inferior, com conectores 

rígidos, submetidos a forças oclusais. No caso dessa prótese ser semi-rígida, onde 

os encaixes foram considerados com o mesmo material das coroas (liga áurea), as 

folgas previstas e até toleradas fazem com que a maior parte das vinculações entre 

os elementos se efetue por contato nesta região. O efeito do contato entre compo­

nentes é de difícil avaliação, pois o sistema formado entre eles é não-linear. Para 

tanto foi utilizado o Método dos Elementos Finitos (MEF), que é uma técnica de 

solução aproximada para modelos matemáticos que buscam representar o compor­

tamento mecânico dos corpos, aqui representado pela estrutura protética, sujeita a 

condições de contorno e de carregamento, com auxílio do software ANSY5®, 5.7.1, 

versão universitária. A versatilidade do MEF permite dentre outras aplicações, a 

solução de problemas de contato entre corpos de geometria complicada, além de 

simular o comportamento de diversas classes de materiais.

4
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No capítulo 2 apresenta-se uma revisão de literatura seguindo uma cronologia 

sobre próteses, implantes, encaixes e análises clínicas e sobre o uso do MEF na 

Odontologia.

Uma revisão dos conceitos teóricos abordando equações diferenciais, teoria 

da elasticidade e teoria do contato é descrita no capítulo 3. A teoria do contato 

utilizada, baseia-se no princípio dos trabalhos virtuais (Bathe, 1997), e também 

3 descrita sua modelagem computacional. Devido a não linearidade do contato, 

é feita uma abordagem geral dos métodos disponíveis para a solução de sistemas 

algébricos não lineares, bem como dos métodos para resolver problemas de funções 

de restrição, impostas pelo contato (Bazaraa & Shetty, 1979).

Para avaliar a intensidade e distribuição de tensões em próteses dentárias foi 

usado o Método dos Elementos Finitos (MEF), descrito no capítulo 4. Ele é muito 

utilizado na engenharia, e também na área de saúde, principalmente em medi­

cina e odontologia, para simular o funcionamento das estruturas do corpo humano 

(Selna 1975). O MEF apresenta várias vantagens com relação a outros métodos 

quando se trata de avaliação da distribuição de tensões durante os movimentos 

mastigatórios no sistema estomatognático. Porém, são ressaltadas as dificuldades 

em se conseguir modelos matemáticos próximos da realidade. Neste trabalho foram 

necessárias algumas suposições simplificadoras em decorrência da impossibilidade 

de se copiar fielmente as estruturas e o funcionamento do corpo humano devido 

à variação existente dentro da espécie. O MEF foi usado, por ser um método
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numérico (computacional) que viabiliza a resolução de problemas complexos, ob­

tendo resultados muito próximos dos reais, que seriam praticamente impossíveis 

de serem solucionados teoricamente ou analiticamente.

Sabe-se que, em muitos problemas, a distribuição de tensões nem sempre pode 

ser medida fisicamente. Porém, com o MEF, esta tarefa pode ser alcançada, pois 

pode-se avaliar a distribuição de tensões e deformações no elemento visualizando-se

e interpretando-se as imagens através de tabela de cores em uma etapa de pós-
✓

processamento. E um método numérico para solucionar de maneira aproximada, 

equações diferenciais parciais oriundas da física matemática.

Uma apresentação da prótese parcial fixa posterior, objeto deste estudo com 

sua geometria e materiais que a compõe é descrita no capítulo 5, bem como sua 

modelagem computacional criada com auxílio do software AN SYS®, 5.7.1, versão 

universitária. Ainda foram discutidos os resultados numéricos da simulação para 

os três modelos de próteses: prótese parcial fixa, prótese semi rígida com encaixe 

na coroa da fixação e prótese semi rígida com encaixe na coroa do segundo pré 

molar.

O capítulo 6 traz os resultados obtidos, as conclusões e sugestões futuras com 

os modelos descritos no capítulo anterior.
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Capítulo 2

Revisão da literatura

2.1 Próteses, implantes, encaixes e análises clínicas

Branemark et al (1969), introduziram o conceito de implantes osseointegrados. 

Apresentaram estudo em cães, indicando que próteses poderiam ser suportadas 

por implantes de titânio, e sugeriram seu uso em humanos. A técnica deveria ser:

1) cirurgia atraumática tanto aos tecidos moles como aos duros; 2) implantes 

quimicamente estáveis e puros de titânio; 3) pós cirúrgico com retalho fechado, 

permitindo uma cicatrização onde os implantes permanecessem isolados da cavi­

dade oral, até restabelecimento da barreira biológica; 4) higiene oral.

Branemark et al. (1977), ao longo de dez anos, utilizando 1618 implantes 

osseointegrados em 235 m axilas e mandíbulas, demonstraram estabilidade de 76% 

das próteses colocadas em maxila e 99% das instaladas em mandíbulas. Após



nova manipulação e reimplantação, outros 18% dos pacientes na maxila e 1% na 

mandíbula também ficaram estáveis. Assim, em todo material colhido, alcançaram 

uma média de sucesso de 94% para maxila e 100% para a mandíbula. 

Demonstraram, desse modo, ser possível um prognóstico a longo prazo com base 

em conhecimentos biológicos e experiência clínica.

Nyman & Lindhe (1979) fizeram um estudo, em que foram realizados 60 casos 

clínicos de próteses extensas com múltiplos pônticos em cantilever e pilares com 

grande perda óssea, na maioria dos casos, contrariando a lei de Ante.1 Todas as 

próteses examinadas funcionaram de 8 a 11 anos sem perder o ligamento ao redor 

dos dentes suportes. Os autores salientam que o sucesso destas próteses se deu 

provavelmente devido à completa eliminação da placa e devido ao desenho oclusal 

correto.

Adell et al. (1981), observaram, num período de de 5 a 9 anos, um grupo de

130 pacientes com próteses implanto-suportadas na região da maxila e mandíbula.

Concluíram que 81% dos implantes colocados na maxila e 91% na mandíbula

permaneceram estáveis. O valor médio de perda óssea marginal durante o período

de osseointegração (18 meses) foi de 1,5 mm e nos anos subsequentes, 0,1 mm.

Borchers & Rechardt (1983), afirmaram que a ausência de ligamento peri-

odontal nos implantes osseointegrados provoca a transmissão de cargas ao osso

1Diz:”A área da superfície das raízes dos apoios, deve ser igual ou superior à dos dentes que 

vão ser substituídos por pônticos”
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adjacente ao implante. Já, em dentição natural, o ligamento periodontal absorve 

parte da carga e dissipa de certa forma a restante. Assim, quando cargas são apli­

cadas sobre implantes osseointegrados, estes se comportam diferentemente que os 

elementos naturais, transmitindo a carga ao tecido ósseo com maior intensidade e 

alterando o fenômeno de remodelação óssea de alguma maneira. Este fato também 

foi relatado por Hobo et al. (1989).

Ericsson et al. (1986) fizeram um estudo clínico com dez indivíduos reabilita­

dos por próteses fixas, suportadas ao mesmo tempo por elementos dentários e por 

implantes osseointegrados. Em seis deles foram utilizados conectores rígidos e nos 

outros quatro, semi-rígidos. Estes pacientes foram avaliados num período de seis a 

trinta meses, onde foram revelados bons resultados clínicos. Os autores discutem 

as diferenças entre a mobilidade dos implantes e dos dentes, devido a presença do 

ligamento periodontal. Contudo, devido ao curto tempo de acompanhamento e ao 

pequeno número de pacientes tratados, os autores ainda não indicam como regra 

para tratamento.

Richter (1989) afirmou que cargas horizontais ao implante causam maiores 

tensões ao osso cortical, fato este confirmado pelos estudos por elementos finitos de 

Borchers &; Rechardt (1983). Mecanicamente isto é desfavorável porque as margens 

do tecido ósseo precisam reagir como um elemento de suporte do implante, surgindo 

assim o aparecimento de destruição óssea em forma de cratera no nível coronário do 

implante. O autor sugere o estreitamento da mesa oclusal, o aumento do diâmetro
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do implante e o ajuste dos movimentos oclusais com liberdade, sem bruxismo, 

como forma de atenuar o aparecimento de cargas horizontais.

Van Rossen et al (1990) e Clelland et al (1991), estudando implantes de 

formas diferentes, avaliaram a dissipação de cargas para o osso suporte. Con­

cluíram que as tensões críticas concentravam-se na crista óssea, e que as mais 

baixas concentravam-se na região apical do implante, na posição estudada.

Patterson et al (1992) estudaram através de análises teóricas de um modelo 

idealizado, a fadiga dos parafusos que compõem o conjunto dos implantes dentais 

osseointegrados. Os princípios de engenharia mecânica mostram a importância 

da pré carga (tensão) inicial existente entre os parafusos deste sistema. Quando 

um sistema é construído com implantes suficientes e equidistantes, a resistência 

à fadiga é de aproximadamente 20 anos. Este valor cai drasticamente quando as 

condições prescritas não são satisfeitas.

Akagawa et el. (1992), através de estudo tridimensional, analisaram a inter­

face implante/óssea de um implante osseointegrado. Verificaram que esta poderia 

ser afetada conforme a intensidade da carga mastigatória. A biomecânica da in­

terface contribui para o sucesso de um tratamento, porém uma mesma magnitude 

de carga pode gerar efeitos diferentes nesta interface, em função de sua direção.

Nevins &; Langer (1993) publicaram estudo da aplicação de implantes os­

seointegrados na região posterior da mandíbula. Acompanhados por sete anos, en­

contraram uma média de sucesso de 95,5% para os 551 implantes posicionados na
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mandíbula, e 97% para as 247 próteses instaladas em 200 pacientes. Comprovaram 

assim, a viabilidade técnica em questão.

Walton & MacEntee (1993) fizeram um estudo com 29 pacientes que rece­

beram 32 próteses implanto-suportadas (12 fixas e 20 removíveis) colocadas sobre 

107 implantes. Apesar do curto período de acompanhamento observaram que as 

próteses removíveis necessitaram de mais ajustes e reparos do que as próteses 

fixas. Salientaram que estas considerações deveriam ser levadas em conta durante 

o planejamento das próteses.

Weinberg &; Kruger (1994) fizeram algumas considerações biomecânicas 

quando há união de um pilar dente natural e um pilar implante osseointegrado. 

Revelam, neste estudo, a diferença de mobilidade de um implante para um dente 

natural devido à presença das fibras periodontais e recomenda o uso de um encaixe 

semi-rígido para prevenir a sobrecarga do implante ou do parafuso de retenção.

Ogiso et al. (1994) estudaram histologicamente as conseqüências das cargas 

geradas em um implante e em dente natural. Concluíram que a longevidade de um 

implante está relacionada ao número de implantes, seu comprimento, seu diâmetro, 

tipo de prótese utilizada e à capacidade de receber cargas oclusais.

Breeding et al. (1995) comentaram a respeito da união de dentes naturais a 

implantes osseointegrados através de próteses parciais fixas e discutiram a diferença 

de mobilidade entre eles. Citaram que alguns autores defendem o uso de uma 

conexão rígida e outros, da semi-rígida. Este estudo ” in vitro”mostra o funciona­
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mento de uma prótese com conector rígido e outra com conector semi-rígido.

Richter (1995), desenvolveu um aparato capaz de quantificar as cargas oclu- 

sais sem alterar a dimensão vertical. Pela técnica, um transdutor era colocado 

diretamente sobre o implante ou dente natural ” in vivo” . Implantes isolados na 

região de molares e pré-molares geraram força vertical máxima de 120 a 150 N. A 

mastigação em oclusão cêntrica gerou uma força de aproximadamente 50 N, para 

ambos os pilares natural ou implante. Prematuridades menores que 200 /xra na 

superfície oclusal não foram significantes em relação ao aumento da força vertical 

gerada pelos implantes. Assim, o autor concluiu que o elemento intra móvel de 

absorção de carga dos implantes pode não ser necessário, uma vez que a resiliência 

axial é menor que 100 fxm.

Ingber & Jansen(1997), comentam a diferença biológica existente entre um 

dente natural que possui ligamento periodontal e um implante que relativamente 

não possui movimento no osso. Esta conexão teria como conseqüência a migração 

apical do dente natural, recomendando uma conexão rígida, acreditando que a 

união implante-dente deve ser evitada sempre que possível e explicam que os dentes 

não podem ajudar os implantes, mas podem prejudicá-los e afirmam que implantes 

não ajudam os dentes, mas podem tolerá-los. Salientam que com os avanços das 

técnicas cirúrgicas, se existe um espaço para um pôntico então existe espaço para 

um implante, havendo poucas áreas onde os implantes não podem ser colocados.

Lindh et al. (1997), sugeriram um tipo de encaixe para união dente-implante,
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pois, segundo os autores, frequentemente o seio maxilar e o nervo alveolar inferior 

dificultam a colocação de implantes na região posterior. Porém com a confecção de 

próteses fixas unindo dente a implante, pode-se restaurar até a região de segundo 

pré-molar.

Chen et al. (1999), estudaram a partir de dois modelos tridimensionais da 

mandíbula, um para análise global e outro mais detalhado somente da região retro- 

molar, onde foi colocado um implante usado para ancoragem ortodôntica. Este 

trabalho enfatiza a tensão ao redor e entre as roscas do implante, para futura 

comparação com dados histomorfométricos existentes nos estudos clínicos.

Borges et al. (2001), descrevem a respeito da conexão dente-implante, fazendo 

uma revisão da literatura, abordando aspectos técnicos e biomecânicos desta união. 

Os autores acreditam que este tipo de tratamento é viável e defendem uma conexão 

rígida entre os pilares.

2.2 O uso do Método dos Elementos Finitos na 

Odontologia

Em 1971, Farah & Craig estudaram, através da análise fotoelástica, a distribuição 

de tensões sobre a superfície de uma prótese fixa de ouro com quatro elementos. A 

magnitude da força e o comportamento da prótese dependeram do suporte ofere-
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cido pelas raízes dos dentes-suportes. Quando as raízes destes estavam muito bem 

adaptadas ao seu revestimento, as próteses funcionaram como uma viga engastada 

nas duas extremidades. Quando as raízes dos dentes eram adaptadas de forma ape­

nas razoável ao seu revestimento, a prótese funcionou como uma viga engastada 

em apenas uma extremidade.

Farah et al.(1973), realizaram um trabalho comparativo entre os métodos 

de elemento finito bidimensional e a fotoelasticidade. Verificaram que as tensões 

desenvolvidas em restaurações de cavidades de classe II, mostravam-se de forma 

clara, visível através das franjas coloridas fotoelásticas, podendo ser avaliadas do 

ponto de vista qualitativo, ao passo que, pelo MEF, a avaliação é mais detalhada 

quanto ao completo estado de tensões que se processa no modelo pesquisado. Su­

geriram, ainda de forma indelével, que a associação dos dois métodos, permite um 

melhor entendimento da distribuição das tensões, quando uma restauração dental 

é submetida à ação das cargas mastigatórias.

Thresher & Saito(1973), empregaram o MEF para verificar a distribuição das 

tensões geradas num incisivo central superior íntegro, homogêneo com um não ho­

mogêneo, onde foram computados os respectivos módulos de elasticidade de suas 

camadas internas, e verificadas suas repercussões no ligamento periodontal e osso 

alveolar. Observaram que quando uma carga é aplicada perpendicularmente ao 

longo do eixo do dente, as tensões são transferidas ao osso, ao redor da raiz, provo­

cando tração e compressão e que, o ponto de transição entre estas duas tensões
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localizou-se a meio caminho da raiz, enquanto que os maiores deslocamentos ocor­

reram na metade superior do dente.

Farah & Craig(1974) propuseram um estudo para determinar a distribuição 

de tensão num primeiro molar, utilizando três terminações marginais a saber: chan- 

fro, ombro biselado e lâmina de faca, utilizando para tanto o MEF . Verificaram 

então que o chanfro apresentou menor quantidade de tensão axial, radial e de cisa- 

lhamento na margem, seguido do ombro biselado e da lâmina de faca. Compa­

rando com o método da fotoelasticidade ou com outras medidas de força, os autores 

concluíram que o MEF tem a vantagem de fornecer mais detalhes na avaliação da 

tensão no modelo dentário.

Selna et al.(1975) utilizaram o MEF para estudar as tensões geradas em 

um segundo pré-molar superior submetido a forças oclusais, tanto em idealizações 

planas como axissimétricas. Os autores observaram que este método tem sido larga­

mente aplicado em estudos de engenharia e mecânica estruturais e que é bem 

apropriado para análise de tensões em dentes e restaurações porque pode simular 

fielmente as geometrias, cargas e diferentes materiais utilizados.

Kitoh et al.(1977), estudaram através do MEF, o comportamento mecânico 

do modelo de primeiros pré-molares inferiores, com ligamento periodontal e osso 

mandibular. Verificaram que, sob carga oclusal, o ligamento periodontal apre­

senta grande capacidade de suporte para o dente. Sob carga horizontal, no sentido 

vestíbulo-lingual na região coronária do dente em questão, o fulcro se localiza na

15



região do terço apical. Concluíram que este método é muito melhor que a fotoe- 

lasticidade e que o indicador de tensões(strain gauge).

Corrêa & Matson(1977), introduziram o MEF num trabalho sobre tensões 

desenvolvidas num dente restaurado com amálgama de prata sob a ação de uma 

carga mastigatória de 240 N. Compararam a metodologia utilizada com a fotoelas- 

ticidade bi e tridimensional, reafirmando que a fotoelasticidade apresenta análise 

qualitativa das tensões no interior das estruturas, sendo muito difícil de se obter a 

quantificação das tensões.

Aydilink & Akay(1980), observaram que a distribuição de tensões a partir da 

aplicação de uma carga oclusal era mais uniforme quando uma camada resiliente 

era usada na base da prótese em relação à base de uma prótese convencional. 

O deslocamento vertical do rebordo foi menor quando utilizada a base resiliente 

comparada à base de prótese convencional. Essa pesquisa, com auxílio do método 

de análise bidimensional dos elementos finitos, demonstrou que a camada resiliente 

funcionava como um amortecedor de choque, preservando assim o osso suporte.

Williams et al.(1987), analisaram a partir de um modelo bidimensional, de 

uma secção vestíbulo-lingual de um molar, a distribuição das tensões através do 

MEF, variando a extensão da restauração. Este modelo foi submetido a uma carga 

de 100 N distribuída uniformemente ao longo das inclinações da superfície oclusal.

El Charkawi et al.(1990), propuseram uma modificação para os implantes 

osseointegrados colocados na extremidade distai que necessitavam ser unidos a
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dentes naturais. Para compensar a diferença entre a movimentação do dente na­

tural dada pelo ligamento periodontal e a deformação elástica mínima do implante 

osseointegrado, foi proposta a utilização de uma camada de material resiliente para 

envolver o intermediário do sistema de implante, a fim de imitar a movimentação 

natural. Para esse estudo os autores utilizaram o MEF e enfatizaram a vantagem 

deste método por não necessitar de experimentos em animais ou testes clínicos. No 

entanto, propõem que para interpretação dos resultados, não devem ser ignoradas 

experiências clínicas conseguidas no decorrer dos anos.

Goel et al.(1990), descreveram, observando e comparando um modelo axis- 

simétrico com elementos finitos bi e tridimensionais, que as tensões principais 

máximas são de tração e as tensões principais mínimas são de compressão. A 

mais importante indicação clínica conseqüente deste estudo é que o esmalte e a 

dentina, embora organicamente unidos, respondem diferentemente às cargas masti- 

gatórias. Apesar destes tecidos serem suportes entre si, podem reagir às tensões 

independentemente.

Holmes et al.(1992), utilizaram o MEF no sistema de implante IMZ (4.0 

por 13.0 mm) restaurado com uma coroa de ouro e avaliaram a influência do po- 

lioximetileno (POM) no elemento intramóvel(IME), entre a parte fixa do implante 

e a prótese, com o intuito de imitar o movimento permitido pelo ligamento peri­

odontal e complexo alveolar, quando submetido à forças verticais e oblíquas. 

Observaram que a concentração de tensão no osso e nos componentes do sistema de
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implante foram maiores quando submetidos à cargas oblíquas (30°), que quando 

sujeitas a cargas verticais. A transmissão de tensão ocorreu principalmente na 

região da crista óssea dos implantes e esta tensão não foi reduzida com o uso do 

elemento intramóvel do polioximetileno comparado ao titânio e a máxima tensão 

ocorreu no parafuso de fixação.

Aydin & Tekkaya (1992), analisaram quantitativamente a distribuição de 

tensões e deflexões geradas por diferentes carregamentos sobre os elementos su­

portes de uma prótese parcial fixa de três elementos e com dois tipos de suporte 

periodontal, através do MEF, em modelos bidimensionais. Consideraram os ma­

teriais elásticos, homogêneos e isotrópicos. Analisaram quatro diferentes tipos de 

cargas: 1) uma força distribuída de 600 N; 2) concentrada não axial e; 3) força 

axial de 300 N; 4) carga vertical de 300 N concentrada no centro do pôntico. Ve­

rificaram que as tensões cresceram na prótese parcial fixa com decrescente suporte 

periodontal e foram notados aumentos críticos para concentrações não axiais de 

carga sobre o molar, e que o pré-molar exerceu maiores pressões durante carrega­

mentos oclusais (exceto axial) no tecido ósseo alveolar, do que o molar.

Sakaguchi & Borgersen (1993), fizeram um estudo avaliando o comporta­

mento biomecânico dos componentes de uma coroa implanto-suportada, utilizando 

o MEF para modelos bidimensionais e concluíram que uma análise de contato não 

linear dos componentes do implante é benéfica, que as análises lineares não simu­

lam o comportamento de contato e resultam em uma elevada distribuição de
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tensões em regiões onde ocorrências de falhas clínicas são relatadas. Simularam 

o aperto do parafuso de ouro retentor da coroa e aplicaram uma carga axial na 

ponta de cúspide. O carregamento na ponta de cúspide resultou na separação do 

contato entre: 1) parafuso de ouro retentor e o intermediário e 2) coroa e inter­

mediário. Ciclos de carregamentos e descarregamentos repetidos resultaram numa 

alternância de contatos e separações entre a base da cabeça do parafuso reten­

tor e a coroa. Relatos clínicos de perda e falhas nos parafusos provavelmente são 

resultados destes eventos de separações e elevadas cargas no parafuso.

Reitz(1994), sugeriu que no ato da colocação da prótese provisória ou defini­

tiva sobre os pilares implantados, as cargas deveriam ser transmitidas no sentido 

axial ao longo do eixo do implante. Forças de torção lateral deveriam ser evi­

tadas. Afirmou também que a força oclusal poderia ser a mesma apresentada pela 

dentição natural sem causar dano.

Lewinstein et al.(1995), mostraram um novo sistema (IL system) para suporte 

de extensão distai de prótese em cantilever onde usava um pequeno implante e um 

encaixe especial tipo bola e analisaram um modelo bidimensional através do MEF 

deste sistema: o osso ao redor e uma prótese no sistema convencional. Observou 

que o uso desse sistema de suporte para extensão distai diminuiu drasticamente 

a tensão no osso, na prótese cantilever e nos implantes. Sugeriram que este novo 

sistema seja recomendado para pacientes desdentados totais e parciais.

Sakaguchi k  Borgensen (1995), através de um método de análises de con-
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tatos não lineares de elementos finitos, estudaram o mecanismo de transferência 

de carga entre os componentes protéticos causados por uma aplicação de torque 

nos parafusos usados para união dos componentes.

Akpinar et al. (1996), compararam a distribuição de tensão de dois implantes 

osseointegrados com formatos diferentes usados como pilares posteriores de uma 

prótese fixa, sendo o pilar anterior um dente natural. Foi usado neste estudo, im­

plantes IT I1 (parafuso oco) e o IT I2(parafuso maciço). Observaram que o parafuso 

maciço apresentava menor concentração de esforços ao redor do implante. O au­

tor salienta a dificuldade técnica da confecção do modelo matemático do parafuso 

oco, que foi composto de duas partes separadas na região do ápice, o que pode 

ter causado valores um pouco maiores nesta área. Estes resultados foram obtidos 

através do MEF com modelo bidimensional.

Kamposiora et al. (1996), usaram o MEF de análise bidimensional para 

avaliar a distribuição e os níveis de tensão em uma prótese parcial fixa de três 

elementos (do primeiro pré-molar ao primeiro molar inferior) usando diferentes 

materiais (liga de ouro tipo III, Dicor e In-ceram) e com diferentes espessuras de 

conectores (3.0 e 4.0 mm). A maior tensão ocorreu na região dos conectores e a 

tensão foi de 40% a 50% menor para os conectores de 0.4 mm. Os níveis de tensão 

dentro do modelo de in-ceram foram menores do que nos outros materiais.

Papavasiliou et al. (1996), estudaram a concentração e distribuição de tensões 

em quatro diferentes combinações pilar-restauração usando implantes Branemark
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sob forças mastigatórias de 200 N sobre os intermediários usando duas posições 

diferentes do parafuso de fixação e duas posições das margens das coroas cimen­

tadas versus parafusadas. Os modelos com parafusos sobre os pilares tiveram menor 

tensão e melhor distribuição de tensão que aqueles onde os parafusos se encon­

travam numa posição mais interna. As próteses parafusadas e com margens de 

coroas curtas tiveram maiores índices de tensão. Para este estudo foram utilizados 

modelos bidimensionais dos elementos finitos.

Laganá(1996), estudou através do MEF de análise bidimensional, o com­

portamento biomecânico das estruturas de suporte e da prótese parcial removível 

de extremidade livre, com encaixe extracoronário rígido e semi-rígido. Nesse tra­

balho foram utilizadas três radiografias panorâmicas, aleatórias, de pacientes da 

clínica odontológica da Faculdade de Odontologia da Universidade de São Paulo, 

para a determinação da proporção dente/altura da mandíbula e utilizado os dados 

da literatura para se obter as dimensões anatômicas da coroa e raiz do primeiro 

pré-molar inferior no que se refere a altura e largura.

Sertgõz(1997), avaliou o efeito de três materiais diferentes para superfície 

oclusal (resina, resina composta e porcelana) e quatro materiais diferentes para a 

infraestrutura (ouro, prata-paládio, cromo-cobalto e figa de titânio) e observou a 

distribuição de tensões numa prótese fixa inferior suportada por seis implantes e no 

osso ao redor dos implantes, quando o sistema recebe uma carga oclusal vertical 

de 172 N distribuída em todos os dentes. Conclui-se que não houve diferenças
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substanciais em relação a distribuição de tensões no tecido ósseo, esponjoso e 

cortical ao redor do implante e que a tensão se concentrou no parafuso de retenção 

das próteses, aumentando o risco de falha. A melhor combinação de materiais 

encontrada, do ponto de vista biomecânico, foram os materiais mais rígidos: cromo- 

cobalto para a infraestrutura e porcelana para a superfície oclusal. Para este estudo 

foi utilizado o MEF de análise tridimensional.

Menicucci et al. (1998), analisaram tridimensionalmente a distribuição de 

tensões pelo MEF no osso ao redor de dois implantes usados para reter uma prótese 

total inferior sujeita a cargas mastigatórias de 35 N na região do primeiro molar, 

usando dois sistemas diferentes de ancoragem: bola e barra-clip (Nobel Biocare). 

Observaram que o sistema barra-clip apresentava maiores tensões no osso em torno 

do implante. Contudo, os autores salientaram que este resultado foi obtido através 

de modelos matemáticos que não podem representar a complexidade biológica.

Sendyk (1998), analisou a distribuição das tensões nos implantes osseointe­

grados variando o diâmetro do implante e o material da coroa protética, através 

da análise não linear pelo MEF. Observou com relação à distribuição de tensões 

na estrutura do tecido ósseo, que quanto maior o diâmetro do implante, menor 

será o valor das tensões geradas no osso cortical, e também não encontrou grande 

diferença com relação aos dois tipos de material restaurador (porcelana e compôme- 

ro), e que em todas as situações a região próxima do pescoço dos implantes foram 

as mais solicitadas, diminuindo à medida que caminhamos em direção apical.
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Ulbrich (1998), estudou a distribuição de tensões, através do MEF bidimen­

sional, nos implantes restaurados com uma coroa de ouro onde era alterado o 

elemento intramóvel (em titânio ou polioximetileno) e um terceiro elemento de­

nominado IMC (em titânio ou polioximetileno), foram aplicadas cargas no sentido 

axial e oblíquo. Concluiu-se que as tensões são sempre maiores no carregamento 

oblíquo do que no carregamento axial, com isto a deflexão da estrutura ocorre 

principalmente quando da utilização do IME, neste caso o parafuso de fixação e o 

corpo do implante receberam maiores tensões. Com a utilização do IMC há uma 

diminuição de tensões no parafuso de fixação. Outro fato importante encontrado 

na pesquisa é que não houve diferença significativa nas tensões transmitidas ao 

osso de suporte com a utilização de qualquer um dos elementos intramóveis. Con­

cluiu também que os maiores picos de tensão ocorreram no parafuso de fixação e 

no tampão em resina.

Cohen & Orenstein (1999), discutiram a combinação de implantes e dentes 

como pilares de prótese fixas afirmando que os dentes naturais têm aproximada­

mente de 100 a 200 fim de mobilidade devido a presença do ligamento periodontal, 

e os implantes osseointegrados devido à intima relação com o tecido ósseo tem 

uma mobilidade de aproximadamente 10fim, desta forma durante as cargas masti- 

gatórias sobre esta ponte fixa o implante seria sobrecarregado.

Sugeriram, então, uma conexão semi-rígida em que a parte fêmea é colocada dentro 

da coroa do implante e o macho unido ao pôntico.
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Lacerda (1999), avaliou o comportamento biomecânico das estruturas de su­

porte e da prótese parcial removível apoiada sobre implante na região distai com 

auxílio do MEF, sob aplicação de cargas verticais, variando as conexões entre dente 

suporte e prótese parcial removível, bem como entre implante e prótese parcial re­

movível e observou que o encaixe rígido entre o dente suporte e a prótese parcial 

removível, em relação ao semi-rígido, transmite maiores tensões no dente suporte 

e diminui as tensões sobre a fibromucosa e sobre o implante. Observou também, 

que uma vinculação articulada entre implante e prótese parcial removível diminui 

o momento fletor transmitido ao implante e aumenta as tensões na fibromucosa e 

dente suporte. Para este estudo foram usados programas COSMOS/M e FELT.

Nishimura et al. (1999), observaram, através da fotoelasticidade, duas próteses 

fixas, tendo como pilares um dente (pré-molar inferior) e dois implantes osseointe- 

grados situados na região do extremo livre e variando o tipo de conector, rígido e 

semi-rígido, entre os implantes e o dente. Submeteram estas próteses a cargas verti­

cais, recomendando que a seleção dos desenhos dos conectores deveria ser baseada 

na saúde periodontal dos dentes e no suporte fornecido pelos implantes.

Yang et al. (1999), analisaram o nível de tensão nos dentes e estruturas de 

suporte de uma prótese parcial fixa e verificaram como a adição de pilares múltiplos 

na prótese fixa altera as tensões e sua deflexão. Observaram que: 1) a perda de 

suporte ósseo aumentou a deflexão e tensão na estrutura; 2) com a confecção de 

uma prótese parcial fixa houve uma redução da tensão e deflexão das estruturas
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de suporte; 3) foi encontrada concentração de tensão nos conectores das próteses e 

na área da dentina cervical perto da região do espaço protético; 4) com os dentes 

esplintados diminuiu a deflexão e a tensão nas estruturas de suporte, mas foi 

observado um aumento de tensão na prótese; 5) aumentando o número de pilares 

unidos não resultou na redução de tensão proporcional no periodonto.

Cimini et al. (2000), discutiram diversas medidas encontradas na literatura 

de cargas atuantes nos dentes humanos, para diversas situações. Os valores encon­

trados foram comparados com aqueles adotados em diversos trabalhos de simu­

lação via MEF. Os autores citaram que na literatura estudada que as cargas de 

mordida em humanos podem variar significativamente. Por outro lado, analistas 

responsáveis pela modelagem matemática de problemas envolvendo dentes teriam 

maior confiança nos resultados da análise caso os dados de entrada de cargas em 

seus modelos pudessem ser mais precisos. Com esse tipo de ferramenta disponível, 

profissionais poderiam embasar suas decisões clínicas de uma maneira mais rea­

lista.
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Capítulo 3

Revisão de conceitos teóricos

Este capítulo apresenta uma revisão de alguns conceitos teóricos, constando de 

equações diferenciais, teoria da elasticidade e teoria do contato, que poderão au­

xiliar na leitura de alguns tópicos deste trabalho.

3.1 Equações diferenciais

0  conjunto de equações diferenciais que rege os fenômenos físicos é bem vasto e 

muitas dessas equações, quando somente duas variáveis independentes estão pre­

sentes, são casos especiais da equação linear homogênea de segunda ordem geral, 

isto é,
d 2u  d 2u  d 2u  . n - d u  d u  _  . .a +  2ò ——r - +  c-^-r-+  2d— +  2e —  + /u  — 0, (3.1)
o x  a x o y  o y 2 o x  o y



onde a, b, c, d, e, f podem ser constantes ou funções de x e y.

De momento, nota-se que a forma da equação (3.1) se parece com a de uma secção 

cônica geral:

ax2 +  2 bxy +  cy2 +  2 dx +  2 ey +  /  =  0. (3.2)

Esta equação representa uma elipse, quando tomar valores positivos (ac — ò2 > 0), 

parábola, quando tomar valores nulos (ac — fe2 =  0), ou hipérbole, para valores 

negativos (quando ac — b2 <  0). Usando-se uma classificação semelhante para a 

equação diferencial 3.1, diz-se que ela é do tipo:

• elíptico, quando ac — b2 >  0,

• parabólico, quando ac — b2 =  0,

• hiperbólico, quando ac — b2 < 0.

A equação de Laplace a duas variáveis:

fftqr d í̂i

W  +  (3‘3)

pode ser obtida dea equação (3.1), fazendo-se a =  1, b =  0, c =  1, d =  e — f  =  0 e 

como ac — b2 >  0, § do tipo elíptico.

Alguns dos problemas mais comuns da física-matemática podem ser representados 

por equações que são classificadas em três grandes classes, cada uma representada 

por um tipo de fenômeno bem particular:
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1. Equações elípticas:

d2u d2u
Ih 2 +  f y 2 ~  ^

2. Equações parabólicas:

d2u du /TT.
ã ? - ã  =  0 ( í í )

3. Equações hiperbólicas:

=  0 (111)
dt2 dx2 v '

As equações elípticas são representativas dos problemas de potencial que

aparecem nos estudos em regime permanente na eletricidade, na mecânica (de­

formação de um sólido, escoamento laplaciano de um fluído) e nos problemas 

térmicos (distribuição de temperaturas). Este tipo de equação está associado a 

problemas de valor de contorno em regime estacionário, ou seja, a problemas de 

equilíbrio. As condições de contorno são normalmente do tipo:

• Dirichlet: u(s) — ua — f 0{s) (condições de contorno essenciais)

• Neumann: =  / 0(s) (condição de contorno natural)

• Mista: u(s) +  f^(s) =  f a{s)

As equações (II) são representativas dos problemas de propagação de calor, de 

difusão, de probabilidades, etc. As condições de contorno associadas à equação são 

de dois tipos: Dirichlet, Neuman ou mista sobre a fronteira do domínio e condição 

inicial t =  0 em todo o domínio.
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As equações (III) caracterizam o fenômeno da propagação das ondas, sejam 

elas vibratórias do tipo mecânica ou eletromagnéticas. As condições de contorno 

associadas são aquelas do domínio relacionadas às condições de Cauchy ao instante 

inicial.

Os problemas elípticos são característicos da análise de fenômenos de regime 

permanente, fenômenos do tipo estático (sem variação temporal) ou variável no 

tempo segundo uma função conhecida. Os problemas parabólicos ou hiperbólicos 

são ligados ao estudo de regime transitório e sua resolução permite analisar a 

evolução de um fenômeno físico no decorrer do tempo.

O MEF é um método aproximado de solução de equações diferenciais. Para 

melhor entender o método, considera-se o seguinte problema modelo (apresentado 

por Becker, Carey & Oden ([30]): achar uma função u(x) € C2(0 ,1) tal que

—u" +  u =  x, 0 < a; < 1 (3.4)

com it(0) =  u(l) =  0 (forma forte)

Sua forma variacional1 (ou fraca) consiste em achar u(x) £ H  tal que

í (—u"(x) +  u(x) — x).v(x) dx =  0, Vu Ç. H  (3.5)
J o

onde H é o conjunto das funções quadrado integráveis:

H — {v =  v(rc) | I v2 dx <  oo}
J o

1Os conceitos do Cálculo variacional podem ser encontrados em Elsgoltz,1969 ou Gelfand e 

Fomin, 1963
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Ou equivalentemente (integrando-se por partes), deve-se achar u(x) £ H1, de modo 

que

I (u'v' +  uv — xv)dx =  0, Vu (E Hl (3.6)
J o

onde a função integranda apresenta-se na forma simétrica.

Desse modo, na resolução do problema (3.4), considera-se a forma dada em 

(3.6), utiliza-se as idéias do Método de Galerkin (Zienkiewicz, 1980; Becker, Carey 

e Oden, 1986) propondo-se as seguintes funções aproximadoras, para u(x) e v(x):

n

u(x) =  'S£ 2 ai(f>i(x ) (3-7)
2—1
n

v(x ) =  "52 P M 30) (3-8)
j=i

de modo que encontrar u(x) e v(x) resume-se em achar os escalares aii e j3j, onde 

o conjunto 0 i, 02, 03,..., 0n í linearmente independente e forma uma base para o

espaço de H%, e $  são escalares. Os a* são conhecidos como graus de liberdade da

aproximação. De (3.7) e (3.8) temos que:

u’ (x) =  X > £ < M z )  (3.9)
2=1

« 'w  =  (310)
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Substituindo-se esses valores em (3.6), tem-se:

^  i=1 j = l  i=l J = 1

n

* • ( £ / % ( * ) ) ]  <k =  °. V » € ^ , v «  3,11)
i = l

Reagrupando-se os termos, encontra-se:

n  n

2 ( X > « “ i -  3 ) $  =  0, V/3, (3.12)
i = l  i = 1

onde

^  =  l  +  (3.13)

Fj =  í x<f)j(x)dx (3-14)
J o

Portanto:
n  n

^  ̂^   ̂FijOti P) 0, i, j  1)2, — , u
j = l  i=l

K.a =  F  => a — K ^ .F  (3.15)

em que K é uma matriz simétrica (conhecida como matriz de rigidez) e F é 

conhecido como vetor de carga. Desde que as funções são conhecidas, os números 

Kij e Fj podem ser calculados diretamente pelas equações (3.13) e (3.14).

O MEF propõe uma técnica para construir as funções aproximadoras de 

Galerkin em problemas de valor de contorno. A idéia principal é que as funções 

básicas 4>i podem ser representadas por polinômios em intervalos limitados por nós
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A coleção dos elementos e os pontos nodais sobre o domínio do problema 

aproximado é denominado de malha dos elementos finitos. Para construir as funções 

básicas, adota-se o seguinte critério fundamental:

• Elas são geradas por funções polinomiais definidas nos intervalos, elemento 

por elemento, sobre a malha dos elementos finitos.

• As funções básicas são elementos da classe H%.

nas subregiões do domínio, de forma que sejam unitárias num determinado nó e 

nula nos demais. Especificamente se Xj é a coordenada do nó j, então:

II , se i =  j

0, se i f  j

Para o problema modelo o domínio pode ser, por exemplo, particionado 

em quatro intervalos iguais, denominados de elementos e denotados por Í2j, i =  

1, 2,3,4. O comprimento de cada intervalo é representado por h, conforme figura 

3.1.

Figura 3.1: Partição do intervalo [0,1] em quatro elementos finitos
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• Devem ser escolhidas de forma tal que os parâmetros <+ definidos para a 

solução aproximada de u(x) são os valores de u(x) nos pontos nodais.

Se no problema modelo (3.4) tomar-se a função básica

<f>i(x) =  ax +  6, 

tem-se nos nós i e j, respectivamente:

<t>i(xi) =  a,Xi +  b =  1

e

4>i(xj) =  axj +  6 =  0

Representado matricialmente por:

í a 1 Xi 1 í 1 1
161 Xi 1J l 0 J

- i
a = ----------

X j — Xi

e

b =  Xj —
X j  — Xi

Tem-se também que

(f>j(Xi) — CLXi +  6 =  0

— axj +  6 = 1
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Desse modo, <f>i(x) =  x em , 4>\{x) =  —x +  2 em íl2 e suas derivadas, <$>\(x) =  1

em Di e 0í(a;) =  — 1 em D2 são quadrado integráveis em [0, 2h], (onde h — |).

De modo análogo obtem-se as outras funções básicas (j>2(2;) e 4>z{x) no intervalo 

[0, 1].

Assim, o cálculo de e Fi 3 obtido por:

Kij = j  (</>'</>' +  dx =  Y lJ ü +  dx (3-16)

onde f n representa a integração sobre o elemento De. Analogamente,

4

f í =  y , f ? <317>
e=l

onde

F? =  í  x(f>idx (3.18)
J Qe

e Ff constitui os componentes do vetor de carga do elemento finito De.

Ia I Xi 1  0  I

b I 1J 1 J
1

/ .  a = --------------
X j  — Xi

e

b =
X  j  —
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O erro cometido na aproximação por elementos finitos é uma função e, definida 

como a diferença entre a solução exata e a solução aproximada;

e(x) =  u(x) — Uh(x)

Como o método é aproximado, haverá sempre um resíduo que, espera-se, seja o 

mínimo possível. Para avaliar esses erros, ( segundo Becker, Carey e Oden(1986), 

no MEF, é comum utilizar-se três normas para quantificá-los nas aproximações: a 

norma da energia: || e H#; norma L2: || e ||o e norma do máximo: || e ||oo.

Para o problema modelo (3.4), a norma da energia é a raiz quadrada de duas 

vezes a energia de deformação2:

II e |\e =  [(e'(z))2 -  (e(x))2] dx^j (3.19)

A norma L2 § a raiz quadrada da média quadrada da função e é definida por:

II e |\„= d xX  , (3.20)

e a norma do máximo é o valor absoluto máximo da função e(x):

II e lloo= max I e{x) \ (3.21)
U < a ; < l

Se o domínio do problema é discretizado por uma malha de elementos finitos

consistindo de elementos de igual comprimento h, pode-se refinar esta malha por

valores decrescentes de h e consequentemente aumenta-se o número de elementos

2Dada por U = \ fg [(a')2 — u2] dx
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da malha. Calculam-se limites sobre o erro, obtido numa determinada norma, e 

válida para h muito pequeno através da expessão:

II e ||< C tf, (3.22)

onde C é uma constante dependente dos dados do problema e p é um inteiro 

que depende das funções básicas escolhidas na aproximação do elemento finito. 0  

expoente p é a taxa de convergência do método em relação à norma adotada. Se p 

é positivo, o erro || e || aproxima-se de zero com h tendendo a zero, e quando isto 

acontece, diz-se que a aproximação converge para a solução exata com respeito à 

norma escolhida.

3.2 Teoria da Elasticidade

3.2.1 Estado plano de tensões

Muitos problemas práticos tridimensionais, sob certas hipóteses podem ter sua 

formulação simplificada resultando numa modelagem de problemas bidimensionais. 

Estes são os chamados problemas planos: estado plano de tensões (plane stress), 

estado plano de deformações (plane strain) e problemas axissimétricos.
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No estado plano de tensões pode-se considerar por exemplo, uma chapa fina 

(corpo B), de espessura t, constituída de material isotrópico elástico linear, com 

módulo de Young E e coeficiente de Poisson v , sob a ação de forças atuantes 

paralelas ao seu plano e distribuídas uniformemente ao longo de sua espessura

(figura 3.2).

37

Figura 3.2: Estado plano de tensões

Considera-se a chapa referida a um sistema de coordenadas cartesianas or- 

togonal XOYZ, onde o plano XOY coincide com o plano médio da chapa (figura 

3.3).

Figura 3.3: Plano médio de uma chapa

Neste caso, as componentes de tensões atuantes fora do plano de definição da 

chapa assumirão valores insignificantes quando comparados aos valores daquelas



atuantes ern tal plano, e podem ser desprezadas (ou seja, o modelo matemático 

admitirá que as tensões o z = 0 , txz =  0 e Ty z=o). As componentes de tensões atu­

antes resumir-se-ão a duas tensões normais ox e rry, e uma tensão de cisalhamento 

rxy todas atuando no plano XOY. As figuras 3.4 e 3.5 mostram tais componentes 

atuando em um paralelepípedo infinitesimal.
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Figura 3.4: Tensões normais

dx
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Figura 3.5: Tensões de cisaihamento

dx

A representação da chapa fina pode ser feita por intermédio de seu plano 

médio í] (figura 3.3) submetida a um carregamento atuante em sua direção, com­

posto pelo sistema de cargas F =  {b,p} onde b é uma carga de corpo distribuída 

na sua superfície e calculada por unidade de comprimento normal ao plano e p, 

uma carga de linha, atuando num contorno lateral (denominado de F) da chapa 

e prescrição de deslocamentos homogênea do tipo bilateral Uj =  0 em pontos de 

Fj do contorno.

3.2.2 Cinemática

Hipóteses simplificadoras da cinemática:

1. Fibras paralelas ao plano médio ou se alongam ou se encurtam.

2. Secções planas e normais ao plano médio da chapa permanecem planas e 

normais a tal plano, após a deformação e paralelas às posições indeformadas.
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3. Secções paralelas permanecem paralelas após a deformaçao.

3.2.3 Campo de deslocamentos

Adotadas as hipóteses do item anterior, o campo de deslocamentos possível é o que 

admite o ponto P (x , y) distante da origem, após a transformação, posicionado em 

P'(x+u, y+ v ), ou seja, as componentes ue v do vetor deslocamento d segundo os 

eixos OX e OY são funções dependentes apenas de x e y. Na forma vetorial, tem-se 

que d =  {u (x,y) v (x ,y )}T. O conjunto U de todos os campos de deslocamentos 

constitui um espaço vetorial com o seguinte produto interno: < u,v > =  f n u.v dCí. 

As restrições que poderão serem impostas ao campo de deslocamentos são: bila­

terais (aquelas em que se o deslocamento está impedido numa direção, então estará 

impedido na direção oposta) e homogêneas (são as que impõe deslocamentos nulos 

nos pontos de impedimentos Xj).

3.2.4 Componentes de deformação

Segundo Green(1968), na teoria infinitesimal, assume-se que as componentes do ve­

tor deslocamento (d =  {u u}T) e suas derivadas em relação aos eixos coordenados 

e em relação ao tempo t, são pequenas, de forma que pode-se negligenciar os termos 

não lineares se comparados com os lineares. As componentes do vetor deslocamento 

podem ser representadas por funções contínuas na forma u =  u(x, y )e  v — v(x, y).



Toma-se um paralelogramo infinitesimal de lados paralelos aos eixos coordenados 

com comprimentos dx e dy conforme figura 3.6. Com a deformação do contínuo, 

ocorre variação no comprimento dos lados e nos ângulos entre eles.
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Figura 3.6: Retângulo infinitesimal

Deformação na direção do eixo OX:

Figura 3.7: Deformação na direção do eixo OX

Para pequenas deformações, o alongamento unitário ou deformaçao linear



dy

dv

unitária na direção OX é a razão du/dx. Assim obtemos a equação:

^  =  lim ^  (3.23)
dx Ax—*o Are

onde £ representa o alongamento unitário e 7 é a deformação angular. 

Deformação na direção do eixo OY:

De modo análogo, temos:

£y =  7T =  AÍm0 3̂'24^o y  A y -*o  A y  

Figura 3.8: Deformação na direção do eixo OY
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Interpretação das expressões (1.1) e (1.2): Um ponto genérico P (x,y) da 

chapa desloca-se a P'(x +  u,y +  v) quando o corpo se deforma. O deslocamento 

d pode ser representado pelos seus componentes u e v, nas direções OX e OY, 

respectivamente. Se forem conhecidas as funções que fornecem os deslocamentos 

u e v para todos os pontos da chapa, conforme figura 3.9, pode-se calcular as 

deformações ex e ey, por intermédio das derivadas das funções que fornecem 

u e v, nas expressões (3.23) e (3.24).

Figura 3.9: Deslocamento de um ponto P
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Deformação angular ou distorção

As deformações normais calculadas por (3.23) e (3.24) justificam-se pela ação 

das tensões normais. Por outro lado, as tensões de cisalhamento acarretam dis­

torções, isto é, variações na forma do elemento infinitesimal (figura 3.10).

Para pequenas deformações, o deslocamento dos pontos da linha AC é pa-
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Figura 3.10: Deformação angular

ralelo ao eixo OX. Nestas condições os ângulos são pequenos e a deformação angular 

no eixo OY será dada por:

CC' du,
7i ~  —  =  — (71 ~  tan7l).

Da mesma forma, a distorção angular no eixo OX será dada por:

B B ' d v ,

72~ ã b  = ã í (72~ tan72)'

Assim o elemento que era inicialmente retangular, sofreu distorção, mudando sua 

forma, e os lados não formam mais um ângulo reto. Esta distorção é dada por:

7i +  72 =  7xi

Portanto,

du dv 
^xy dy dx

(3.25)



Pode-se escrever as relações deformações-deslocamentos na forma matricial:

e =  d.d,
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3.2.5 Esforços internos

A existência de esforços internos fica evidente quando observa-se que ao submeter- 

se um corpo deformável a ações de forças externas, suas partículas permanecem 

unidas. Portanto alguma força interna deve ser responsável por esse fenômeno. 

Para o problema plano de tensões, o trabalho interno, realizado pelos esforços 

internos Wi em conseqüência de um campo de deformações virtuais gerado a

onde

£ ^xy\

_  Jxy  

£xy~  2

/  a \21  0

a = \ ° 2I
A . A . 
dy dx J

d =  {u {x ,y) v {x ,y }T
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3.2.6 Trabalho externo

É realizado pelas forças externas F =  { 6,p}, em conseqüência de um campo de 

deslocamentos virtuais ôu, e é definido por:

We =  í  b.ôudxdy +  í  p.SudT (3.29)
Jn J r

para todo deslocamento virtual õu, onde a carga de corpo (figura 3.11)

& = {  bx{x,y) by{x,y) j  

está distribuída na superfície média D e a carga de linha p está aplicada no

contorno T, P = ^ p x(x,y) py(x,y) j  •

O trabalho externo também pode ser definido por We —< F,Su >.

partir de um campo de deslocamentos virtuais, é definido por:

Wi =  -  [  o.ôe dB (3.26)
Jb

num corpo B. Desenvolvendo esta integral, para o problema plano tem-se:

/  \

=  ~ J  t °X Oy TXy ^ Ô£y ÚQ dz (3.27)

 ̂ Òlxy y

que resulta em:

Wi =  - t  /  (ox.ôex +  Oy.Ó£y +  Txy.Ô£xy) dx dy (3.28)
Jn

para toda deformação virtual Ô£x, Ó£y e 8^xy.



47

Figura 3.11: Cargas de corpo e de superfície

3.2.7 Equação constitutiva

Para um material isotrópico elástico linear submetido a processos isotérmicos e 

adiabáticos, há uma relação linear entre tensões e deformações definida por:

a =  V.e (3.30)

onde
(\  v 0 \

E
V  = - ------   i/ 1 0

(1 - 1/2)

\0 0 1=*)

Esta relação é conhecida como ” Lei de Hooke” , (matemático inglês Robert 

Hooke (1635-1703)). As relações lineares entre as componentes de tensão e as

componentes de deformação são conhecidas como lei de Hooke. Assim, no caso

particular de um problema unidimensional, tem-se:

u* =  E .ex (3.31)



para deformações no eixo OX, onde E é o módulo de elasticidade do material. 

Um elemento alongado na direção OX é acompanhado por uma contração lateral, 

que é uma fração da deformação longitudinal. Essa fração constante é chamada de 

coeficiente de Poisson v. Logo

v =  ^  (3.32)
£x

ou ainda:

ey =  v (3.33)

Se o elemento estiver submetido simultaneamente à ação das tensões normais ox 

e oy uniformemente distribuídas sobre as faces, o cálculo das deformações merece 

atenção especial. Devido à contração lateral na direção OX, esta deve ser descon­

tada da deformação em OX calculada por (3.31). Portanto:
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£x =  % - u . ^  (3.34)
E E  '

Usando o mesmo raciocínio na direção OY:

V =  |  "  " - f  (3-35)

As tensões de cisalhamento atuantes no elemento produzem distorções, em que

Txy =  G.7*,,, (3-36)

G =  (3-37)
2(l +  i/) V '

onde
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5 o módulo de elasticidade transversal, de rigidez ou de elasticidade ao cisa- 

lhamento. Então tem-se:

Ixy =  =  2(1 +ç )Tx" (3.38)

As equações (3.34), (3.35) e (3.38) podem ser representadas na forma matricial, 

para futura aplicação do MEF:

(  \ (  \ (  \£x 1 -V  0 Ox

£y =  —V 1 0  (Jy (3.39)

 ̂ 7x1/ y y 0 0 2(1 +  v) y rxy ^

Ou ainda:
í  \  (  \  í  \Ox 1 V 0 £x

°y = Y ^ 2  V 1 0  £y (3 '4° )

 ̂ T*y j  0 0 -)  y 7xy y

Portanto (forma compactada):

=  [*>]•{«(.,*>} (3.41)

onde a expressão do primeiro membro representa a matriz de tensões num ponto 

P(x,y), [D] é a matriz de elasticidade e {£(1,3/)}, a matriz das deformações no 

ponto P(x,y). A relação 3.41 traduz a correspondência entre tensões e deformações 

em qualquer ponto P(x,y) do elemento, sendo denominada de equação constitu­

tiva para o material isotrópico elástico linear submetido a processos isotérmicos e 

adiabáticos.



3.2.8 Equilíbrio

Diz-se que um corpo plano encontra-se em equilíbrio com o sistema de forças 

F  =  {b,p} se, para todo deslocamento virtual Su que satisfaça as condições 

cinemáticas de contorno, a distribuição de tensões cr, associada ao sistema de cargas 

3 tal que

Wi +  We =  0 (3.42)

para todo Su (Princípio dos Trabalhos Virtuais - PTV), ou seja:

—t /  cr.Se dxdy +  í  b.ôu dxdy +  í  p.õu dT =  0, V Su (3.43)
Jn Jn Jr

Nesta equação o é a tensão associada à deformação e pela equação constitutiva. 

Tem-se então, que o trabalho virtual dos esforços internos generalizados e das 

cargas aplicadas é nulo para toda ação virtual de deslocamento admissível. Usando 

em (3.43) as relações: a =  V.e, e e =  [d]u, onde d í o operador diferencial que 

depende da natureza do problema (se for unidimensional, d =  J^), tem-se:

—t í ([d]u)T,D.([d]Su) dxdy +  í (Su)T.bdxdy+ í(Su)T.pdV =  0, V Su 
Jn Jn Jr

(3.44)

3.2.9 Tensões principais

Tensões principais são aquelas que assumem valores máximo ao longo de uma 

direção e mínimo ao longo da outra. Estas duas direções são ortogonais e não
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Figura 3.12: Tensões principais

dx

existem tensões cisalhantes. As tensões principais (Ti e <r2 são obtidas por:

<7: =  +  ^ - = ^ 7 ^  (3.45)

<t 2  =  a m j „  =  f i ± £ e  -  ( 3 . 4 6 )

Por meio da cunha (figura 3.12), podem ser deduzidas as tensões principais, mas

as tensões desenhadas aqui não são necessariamente as principais. Enquanto que

a máxima tensão cisalhante é fornecida por:

W  = =  y (^ ü ) 2  + r2s (3.47)
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3.2.10 Critério de escoamento

Existem diversos critérios que procuram avaliar a condição de escoamento dos 

materiais. Dentre estes, pode-se destacar o critério de Von Mises: (Richard Von 

Mises, especialista em Matemática Aplicada (1883-1953)). Este critério baseia-se 

na determinação da energia de distorção de certo material, ou seja, da energia 

relacionada com as mudanças na forma do material. Neste critério, interessa a 

tensão equivalente:

^  (3-48)

e o material é considerado no regime elástico enquanto aeqv <  ay, onde oy i a 

tensão de escoamento do material, determinada num ensaio de tração.

3.2.11 Equações que governam o problema

componentes estruturais (dente natural, pônticos, periodonto, osso cortical, osso 

trabecular, implante e dentina). Esses componentes ocupam domínios íí, de con­

torno T, que estão sujeitos às cargas de corpo e superfície, b e p, respectivamente. 

Estas cargas causam deslocamentos u e deformações e no sistema. O equilíbrio 

dos componentes estruturais da prótese parcial fixa posterior, é regido pelo PTV 

(forma fraca da equação de equilíbrio) representado pela equação (3.43), que se 

apresenta desenvolvida abaixo:

A prótese parcial fixa posterior estudada neste trabalho é composta de diversos



- t  f n (<7x - Ó £ x  +  a y . Ô £ y  +  T x y . Ô £ x y )  d x  d y  + 1 J Q ( b x S u x  +  b y ô U y )  d x  d y  +  

f r ( p X Ó U X  +  P y ô U y )  d T  =  0 \ / 5U x , Ò U y

(variáveis: tensões ax, ay e rxy)

Logo:

~ ^ [ / n ( ( ã x < 7 :E  ^  d y T x y  b x ) ô u x  +  ( g ^ t f y  +  ã x ^ r y  +  b y ) ò U y )  d x  d y ]  i  

f r ( p x S u x  + P y S u y )  d F  =  0 \ / ô u x ,  S u y

Aplicando-se resultados do cálculo variacional, chega-se ao sistema de equações: 
/

d ò
d x U x  +  d y T x V  +  t > x  =  0  

< (3.49)

^ ° V  +  È TxV +  b y  =  0
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que são as equações de equilíbrio, ponto a ponto, do modelo geométrico da prótese 

parcial fixa posterior, objeto deste estudo. Pode-se escrever que

diva +  b — 0 (3.50)

3.2.12 Equações de compatibilidade

A formulação matemática da condição de compatibilidade da distribuição de tensões 

com a existência de funções contínuas u e  v definindo a deformação, será obtida a 

partir das equações 3.23, 3.24 e 3.25. Estas três componentes de deformação que 

são expressas por duas funções u e v não podem ser tomadas de forma arbitrária, 

e existe uma relação entre as componentes de deformação, obtidas a partir dessas
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equações. Assim, deriva-se a primeira equação duas vezes em relação a y, a se­

gunda, duas vezes em relação a x e a terceira uma vez em relação a x e outra em 

relação a y, para se encontrar (no estado plano):

d h x d2ey __ d27*y f3 5n
dy2 dx2 dxdy

Esta equação diferencial de segunda ordem, denominada de condição de com­

patibilidade, precisa ser satisfeita pelas componentes de deformação para assegurar 

a existência de funções u e v relacionadas com as componentes de deformação 

representadas pelas equações 3.23, 3.24 e 3.25.

3.2.13 Resumo das equações

Sintetizando-se, tem-se as seguintes equações:

1. Deformações:
~   du
t x  ~  dx

< F — ãv (3.52)
— dy v 7

 ̂ £xv =  \^xv ('Yxy =  õy +  ãx)

2. Constitutiva:

( 1  v 0 \

E
a =  V.s, onde V  =  — rr v 1 0 (3.53)(1 -  v )

\ o  o ^ y

3. De equilíbrio:
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div a +  b =  0 (3.54)

4. De compatibilidade:

d2sx &£y =  d2-fxy
8y 2  d x 2 dxdy K }

5. Condições de contorno:

• Dirichlet:

«n  =  ü (3.56)

• Newmann:

<jT2 =  ar2 (3.57)

3.3 Teoria do Contato

Dois corpos em contato podem apresentar movimentos relativos de escorregamento, 

de rolamento e/ou de giro. Na região de contato entre dois corpos, há uma interação 

entre as superfícies, resultando na transmissão de cargas e momentos de uma para 

outra. Se o contato entre os corpos for elástico, forças de atrito poderão se ma­

nifestar desde que exista deslizamento significativo entre as duas partes. A lei 

de atrito de Coulomb é utilizada para representar o atrito entre superfícies em 

contato, se houver deslizamento relativo significativo de um corpo em relação ao 

outro (Bathe, 1997).



Sejam dois corpos elásticos, 1 e 2, em movimento relativo tal como ilustrado 

na figura 3.13, que os levará a manterem entre si um contato no tempo t. O domínio 

íl é formado pelos domínios Oj e Í22 enquanto que o contorno T é constituído pelos 

contornos Ti e r 2 respectivamente, e a superfície de contato desconhecida a priori 

5 representada por Tc.

Figura 3.13: Corpos em contato



Considera-se que o contato entre os dois corpos elásticos ocorrerá ao longo 

de uma certa área de contato Tj2, em 1, e T21, em 2, como é mostrado na figura 

3.14.
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Figura 3.14: Contato



O equilíbrio na configuração deformada poderá ser determinado pelo PTV. 

A consideração do contato entre dois corpos leva à adição de parcelas de cargas 

ao sistema, além das forças de corpo b e de superfície p. Tais forças atuarão como 

contribuição às cargas de superfície.

Assim as forças de contato [/c] são adicionadas à equação (3.43):

t i  a.Se dVt =  U L  b.6udQ +  J  p.SudT h U L  ôuc.fcdTc^ (3.58)

A equação (3.58) é válida para todo deslocamento virtual compatível imposto na 

estrutura. O contorno T de cada corpo pode ser considerado em duas partes: T/  

onde são prescritas as trações, e r c, região onde atuam as forças de contato. A 

região de contato não é conhecida a priori, sendo sua determinação uma etapa 

necessária da análise. Considerando f 12 como o vetor de forças na superfície de 

contato no corpo 1 devido ao contato com o corpo 2 e / 21 o vetor de forças de 

superfície no corpo 2 devido ao contato com o corpo 1, tem-se que / 12 =  — / 21, 

como na figura 3.15.
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Figura 3.15: Representação de forças em contato



As superfícies T12 e T21 são denominadas de par de superfícies de contato, T12 

§ convencionalmente chamada de superfície de contato (contact surface) e T21, de 

superfície alvo (target surface). Estas superfícies podem não ter necessariamente 

o mesmo tamanho. Decompondo as forças de contato f 12 que agem na superfície 

T12, em componentes normais e tangenciais sobre os vetores unitários n e s na 

superfície T21, tem-se:

/ 12 =  Xn +  cs

onde À e c são as componentes das forças de contato normal e tangencial. Portanto 

pode-se escrever que:

A =  ( / 12)T n;

c = ( / 12)T s

Para definir os valores das componentes nas direções de n e s, considera-se 

um ponto genérico x no tempo t na superfície T12 e toma-se um ponto y*(x,t) de 

T21 (figura 3.16) que satisfaça

|| x - y * ( x , t )  ||2=  miriyer2i{\\ x - y  ||2}

Assim, a distância do ponto x até T21 § dada por:

gn(x,t) =  { x -  y*)T.n 

onde n é o vetor unitário utilizado em y*(x, t).
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A função gn é a função gap, na direção normal, para o par de contatos. 

Assume-se que, quando gn > 0, não há contato entre os corpos, havendo contato 

quando gn =  0 e penetração quando gn < 0. Esta última situação não é permitida 

e deve ser eliminada. Desse modo, as condições de contato normal são:

9 n >  0; A > 0; gn.\ =  0 (3.59)

Figura 3.16: Quantidades de contato (BATHE, 1997)
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Corpo 2

Considerando-se que Su] e ôu2 são as componentes dos deslocamentos virtuais 

nas superfícies de contato dos corpos 1 e 2, respectivamente, a parcela correspon­

dente ao contato na equação (3.58) pode ser subdividida como:

í òulf l2d?l2+  í ôu2f 21dT21= í  ôul2f l2dr12 (3.60)
Jr12 J r21 ./r12



onde áu12 =  5u1 — Su2.

As condições de atrito, descritas pela lei de Coulomb, serão incluídas no 

contato entre duas superfícies pelo coeficiente de atrito y  e define-se a grandeza 

adimensional r  :

c
y.X

(com À > 0)

onde y.X ê a resistência do atrito. A amplitude da velocidade tangencial relativa é 

dada por:

ú(x,t) =  ((u2)|v. (i t) -  (i*1)|(i>t))r .s

correspondente ao vetor tangencial s em y*(x,t), onde ú(x,t).s í a velocidade 

tangencial no tempo t do ponto material em y* relativa ao ponto material em x. 

Com estas definições, a lei de atrito de Coulomb fica:

| t  |< 1 (3.61)

onde :

| t|<1 ú =  0 e, |t|=1 =£* sinal(ü) =  sinal(r) (3.62)

A solução do problema de contato é a solução do PTV da equação (3.58) sujeito 

às condições das equações de compatibilidade (equação (3.59)) e levando em conta 

as leis de atrito (equação (3.61) e (3.62)).
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Figura 3.17: Elemento de contato bidimensional

M (Nó de contato)

3.3.1 Forças de contato

(Nós target)

Haverá supostamente penetração quando o nó de contato M ultrapassa a 

superfície definida pelos nós alvo /  e J (figura 3.17). Esta penetração é repre­

sentada pela grandeza g e é uma violação de compatibilidade. Para satisfazer a 

compatibilidade de contato, são desenvolvidas, nos nós alvos, forças na direção da 

normal n que tendem a reduzir a penetração a valores numéricos aceitáveis. Além 

das forças de compatibilidade, forças de fricção são desenvolvidas nas direções que 

são tangentes ao plano alvo. As forças normais e tangenciais são referenciadas em 

relação ao sistema de coordenadas local XY. Duas das abordagens existentes para 

satisfazer a compatibilidade de contato (forças normais) serão descritas a seguir: 

o método da penalidade e a combinação da penalidade com os multiplicadores de



Lagrange. O método da penalidade impõe a compatibilidade através da rigidez de 

contato (parâmetro de penalização). A combinação desta com multiplicadores de 

Lagrange satisfaz a compatibilidade com uma precisão definida pelo usuário pela 

adição de forças de contato de Lagrange. Para o método das penalidades, o valor 

da força nodal que ocorre na interface do contato na direção normal é dado por:

I
kn.gn se gn <  0

(3.63)

o se gn > 0 

onde kn § a rigidez normal de contato.

As forças aplicadas ao nó de contato M  são equilibradas por forças aplicadas aos 

nós da superfície alvo I e J. Desse modo: f HiM =  f n,i +  fn,j =  fn 

Se o atrito não for considerado, a força tangencial nodal é nula. Com a consideração 

do atrito elástico de Coulomb, a força nodal na direção tangencial na interface do 

contato é:

I
ks.ul < F.fs se de adesão

(3.64)

f s se de deslizamento

onde F é o fator de relação entre o atrito estático e o dinâmico, ues ía  deformação

tangencial elástica. A variável / s ; a força limite de adesão do modelo do atrito de

Coulomb, cujo valor é dado por : f s =  —g.fn

Para a direção tangencial, o balanceamento de forças nodais é similar ao das forças
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normais:

fs,M ~  f s j  “ I "  fs,J =  fs

3.3.2 Métodos de solução

1. Método dos multiplicadores de Lagrange

O método dos multiplicadores de Lagrange é mais confiável por não utilizar 

parâmetros, como no método das penalidades, que podem provocar mau 

condicionamento da matriz obtida na aplicação da discretização (Bathe,1996). 

Os multiplicadores de Lagrange são coeficientes das equações de restrição e 

após a multiplicação das mesmas são adicionados ao sistemas de equações. 

A formulação variacional considerada para um problema de contato de um 

modelo estrutural discreto, com a utilização dos multiplicadores de Lagrange 

possui a seguinte forma:

n  =  - u t K u  — ut F  +  Xt (N t u — 0 ) (3.65)
z

onde À 3 o vetor dos multiplicadores de Lagrange , N é uma matriz que

contém as condições cinemáticas de contato e 0  3 o vetor das restrições.

Calculando a primeira variação desta forma (em relação a u e À) (3.65), 

encontra-se:

6U =  K u - F  +  NX +  N t u -  ip (3.66)
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Nesta equação, fica evidente o aumento da dimensão do problema pelo acrés­

cimo da parcela de força de contato, devido aos multiplicadores de Lagrange 

nas equações envolvidas. Os multiplicadores de Lagrange podem ser combi­

nados com o método das penalidades com algumas vantagens. Para o método 

combinado, a componente de força do multiplicador de Lagrange é calculada 

localmente para cada elemento iterativamente como:

f n =  min( 0, kn.gn +  Ài+i)

onde Ài+i é a força dos multiplicadores de Lagrange na iteração i + 1. O valor 

desta força é determinado por:

IA i +  a.kn.gn se | gn |> e
(3.68)

A* se | gn \< e

sendo a um fator computado internamente, a  < 1; e e a tolerância de com­

patibilidade, definida pelo usuário (constante FTOLN, no ANSYS 5.7).

2. Métodos de solução de sistemas não-lineares

O sistema de equações algébricas para o contato, independentemente do 

método utilizado para imposição das restrições, é não-linear. Os métodos

Fazendo 5XIl =  0, chega-se ao sistema:

í  \ í  \ í  \
K  N  1 | u F

(3.67)

\ NT ° )  W  { * )



desenvolvidos para resolver sistemas não-lineares podem ser explícitos (sem 

a montagem de matriz) ou implícitos (com a montagem de matriz), incremen­

tais, iterativos ou mistos (Cook, 1989). Os métodos incrementais aproximam 

o problema não-linear por uma série de problemas lineares. A carga total apli­

cada é subdividida em pequenos incrementos, que podem ter ou não o mesmo 

tamanho. Cada incremento é resolvido como se fosse linear, por métodos con­

vencionais. 0  processo é repetido até completar a carga total aplicada e a 

solução é dada pela soma de todos os deslocamentos incrementais encontra­

dos. A matriz de rigidez é obtida como tangente à curva força-deslocamento 

nos pontos desejados, como se observa na figura 3.18.

Figura 3.18: Solução - método incrementai para uma carga (COOK, 1989)
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Este método produz uma solução que não se aproxima adequadamente da 

solução exata, devido aos erros acumulados nos incrementos. Os métodos 

iterativos aplicam sucessivas iterações na solução até que o equilíbrio seja 

alcançado para o carregamento total aplicado.

3. M étodo de Newton-Raphson

O método de Newton-Raphson como pode-se observar na figura 3.19 (Cook, 

1989) é também iterativo.

Figura 3.19: Newton-Raphson para uma carga (COOK,1989)
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Neste método, a matriz de rigidez tangente é inicialmente considerada cons­

tante, e o deslocamento encontrado, em geral não satisfaz as condições de



equilíbrio. Em cada iteração, calcula-se uma parcela de carga desbalanceada 

que será utilizada para computar um incremento adicional aos deslocamen­

tos. Na iteração seguinte, a matriz tangente será atualizada e uma parcela 

da carga desbalanceada será encontrada novamente, repetindo-se o processo 

até que os valores de desbalanceamento ou os deslocamentos adicionais, 

se aproximem de tolerâncias que permitam a satisfação das condições de 

equilíbrio (ou até que se obtenha a convergência).

0  método de Newton-Raphson modificado ou da Rigidez Inicial segue o 

mesmo procedimento, diferindo apenas no fato de não atualizar a matriz 

de rigidez ou atualizá-la raramente, isto implicaria na necessidade de mais 

iterações em cada passo de carga, At, e por este motivo, tal alternativa 

não foi empregada. Os métodos Quasi-Newton utilizam a matriz rigidez se- 

cante para as iterações, ao invés da matriz rigidez tangente, com vantagens 

computacionais e de estabilidade nos passos da iteração. Os métodos mistos 

associam os métodos incrementais e os métodos iterativos. Neste trabalho foi 

utilizado o procedimento de Newton-Raphson incrementai com a atualização 

da matriz de rigidez em cada iteração.
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Capítulo 4

Método dos Elementos Finitos

4.1 Breve histórico

Conforme Assan (1999), há mais de dois mil anos, filósofos gregos já haviam elabo­

rado teorias nas quais supunham que todas as coisas eram formadas por inúmeras 

partículas. Assim, Leucipo e Demócrito estabeleceram que tudo era constituído por 

um número infinitamente grande de partículas denominadas de átomos. Eudóxio, 

criador do método da exaustão, que consiste em inscrever e circunscrever figuras 

retilíneas em figuras curvilíneas, já pensava dessa forma, em discretizar a figura 

contínua para facilitar certos cálculos.

Esse método permitiu que fossem calculadas áreas de figuras curvas e volumes 

de sólidos como esferas e cones. Ele é equivalente à passagem ao limite do cálculo 

diferencial e integral. Na década de 1930, McHenry e Hrennikoff substituíram um



elemento estrutural contínuo como, por exemplo, uma placa, por uma estrutura 

formada por barras seguindo a geometria original, mantendo as mesmas condições 

de vinculação e cargas. Esses métodos, que originaram a análise matricial, embora 

considerem o meio contínuo discretizado por elementos de rigidez e elasticidade 

conhecidas, não apresentam o aspecto conceituai implícito no MEF. Este consiste 

não apenas em transformar o sólido contínuo em uma associação de elementos 

discretos e escrever as equações de compatibilidade e equilíbrio entre eles, mas 

admitir funções contínuas que representam o campo de deslocamentos no domínio 

de um elemento e, a partir daí, obter o estado de deformações correspondente 

que, associado às relações constitutivas do material, permitem definir o estado de 

tensões em todo o elemento. Este estado de tensões é transformado em esforços 

internos que estão em equilíbrio com as ações externas. Essa formulação provém 

do método de Rayleigh-Ritz que se baseia na minimização da energia potencial 

total do sistema, escrita em função de um campo predefinido de deslocamentos.

Em 1943, Courant, matemático de renome, aplicou esse procedimento no 

estudo da torção de Saint-Venant de secções vazadas. Esses trabalhos eram pouco 

valorizados naquela época, pois não haviam computadores capazes de generalizar 

e resolver grandes conjuntos de equações algébricas simultâneas. Assim, não é 

acidentalmente que o desenvolvimento do MEF coincida com maior avanço dos 

computadores digitais e linguagens de programação.

Em 1953, engenheiros já haviam escrito equações de rigidez em forma ma-
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tricial, resolvendo-as em computadores. A maior parte deste trabalho foi utilizada 

na indústria aeroespacial (na época um problema grande tinha cem graus de liber­

dade). Ainda neste ano, na companhia de aviação Boeing, Turner sugeriu que 

elementos planos triangulares fossem usados para modelar a fuselagem de aero­

naves. Quase que simultaneamente um trabalho similar foi publicado por Argyris 

e Kelsey na Inglaterra.

O MEF teve sua formulação estabelecida na forma como é hoje conhecida 

com a publicação do trabalho de Turner, Clough, Martin e Topp, em 1956. Clough, 

autor do nome (Método dos Elementos Finitos, em contraposição aos elementos 

infinitesimais do cálculo diferencial e integral), descreve em detalhes sua parti­

cipação no desenvolvimento deste método em artigo publicado em 1980.

Um grande número de programas de elementos finitos em computadores 

emergiu no final das décadas de 1960 e 1970, onde destacaram-se o ANSYS, ASKA, 

STRUDL, ADYNA e NASTRAN, que são munidos de pré-processadores (para os 

dados de entrada) e pós-processadores (para avaliação dos resultados). Esses pro­

cessadores tornam mais fácil, rápida e barata a análise pelo método dos elementos 

finitos. Atualmente, existem muitos programas computacionais comerciais de uso 

corrente em diversas áreas do conhecimento que utilizam esse método para análises 

linear e não-linear.

O MEF, inicialmente concebido como um artifício matemático para cálculo de 

estruturas, tornou-se poderosa ferramenta para resolução de equações diferen­
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ciais parciais, tão comuns na física dos meios contínuos. Seja na mecânica dos 

sólidos ou dos fluidos, na termofísica, no eletromagnetismo dos campos estáticos 

ou de propagação, o MEF representa uma ferramenta quase universal para a pré- 

determinação do comportamento físico dos objetos em estudo.

Nas próximas subseções, serão descritos, sumariamente, as aproximações eo- 

mumente empregadas em programas de elementos finitos.

4.2 Elementos finitos unidimensionais

Trata-se, neste tópico, do aspecto numérico, envolvido nas técnicas de aproximação 

que visam, a partir de uma discretização, determinar as soluções de sistemas 

contínuos. Cada segmento desta discretização passa a ser chamado de elemento e 

definido por funções de forma que descrevem seu comportamento entre sua origem 

e extremidade. Os pontos que limitam os elementos finitos são chamados de nós.

Adota-se para o problema, inicialmente, a aproximação do tipo nodal de um 

domínio O, para em seguida aplicar este tipo de aproximação em seus subdomínios. 

A aproximação nodal em subdomínios é chamada de aproximação dos Elementos 

Finitos.

O uso do conceito de subdomínios ou elementos é estudado num espaço de re­

ferência, o que introduz os conceitos de tranformações geométricas de um elemento 

do espaço real para o espaço de referência e a construção da matriz jacobiana da
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Para os problemas dependentes de uma única variável x , propõe-se a inter- 

polação da forma:
N

uN(x) =  y ]uj.(f>i(x)
2=1

onde os Ui são os graus de liberdade, valores nodais de u ( x )  do elemento e <pi são as 

funções de forma. Por exemplo, uma função interpoladora de um elemento finito 

” e” , linear, unidimensional, representado por deslocamentos nodais u t ê dada por:

X  — X 2 X — X \
u J x )  —  U \ .------------- h u 2 . ------------

X\ -  X 2 x 2 -  X i

sendo as funções de forma:

A t \ X ~ X 1M x) = ----------
X i -  x 2

e

A ( \ X ~ XlM x ) = ----------X 2 -  X i

Assim temos que: u e ( x )  =  U i<f>i(x) +  u 2<f)(x), u\ e u 2 são os deslocamentos 

nodais. Observa-se que:

<P i0o) = i M xi) = 0

<f>2 ( x i )  =  0 <t>i{x2 ) =  1

MMatricialmente: [u] =  [4>i 0 2] \ /
l u* J

Neste exemplo, as funções são facilmente construídas, mas, para um problema
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As funções de forma assim construídas empregam o próprio sistema de coordenadas 

global (x,y).

4.3 Elementos finitos bidimensionais

Embora o MEF seja geral e possa ser aplicado a qualquer problema de valor de 

contorno, neste item ele será apresentado de maneira particularizada, considerando 

as variáveis nodais como sendo de deslocamento.

4.3.1 Elemento finito triangular linear

Este elemento tem como funções interpoladoras para os deslocamentos u e v, 

polinômios do primeiro grau:

u(x, y) =  Cj +  r2x +  c3y (4.1)

v(x, y ) = c t +  csx +  Cey (4.2)

com n funções de forma, pode-se utilizar a fórmula de interpolação de Lagrange: 

&(x) =  * =  1, 2, n
llj= l(j?íí)V.Xí xj)

Observa-se que

10 se j  ^  i 

1 se j  — i
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Figura 4.1: Elemento finito triangular linear

-̂------------------------------------------------------------ * x

conforme a figura 4.1.

Tratando-se de elemento triangular, é comum encontrar sua formulação atra­

vés de outro tipo de coordenadas, denominadas de coordenadas triangulares ou ho­

mogêneas, em lugar das coordenadas cartesianas. O elemento é numerado seguindo 

o sentido antihorário e seus lados têm nome ou índice do nó oposto. Para se obter 

as relações entre as coordenadas cartesianas e homogêneas, proceder-se-á como em 

Brebbia ([27]). Para isto, considera-se um ponto P(x,y), interno ao triângulo. As 

coordenadas homogêneas podem ser interpretadas como relações entre as áreas dos 

triângulos definidos pelos nós 1, 2, 3 e o ponto P, conforme a figura 4.2. A área Ai 

do triângulo 1P3 é dada por:

A<i — T̂ 2^ 2^2) ’



77

Figura 4.2: Triângulo linear - coordenadas homogêneas

o  " "X

onde a altura desse triângulo mede 02h2. Como se observa pela figura, se o ponto 

P coincidisse com o nó 3 ou com o nó 1, o produto 4>2h2 seria nulo, uma vez que 

nesses nós, 02 =  0- Porém, se o ponto P coincidisse com o nó 2, o produto (j)2h2 

seria igual a h2, já que nesse nó, tem-se 02 =  1.

De modo análogo, tem-se para a área A\ do triângulo 2P3:

Da área A do triângulo 123 tem-se que:

A =  \l2h2 =  I h h
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donde obtem-se as relações A\/A e A2/A, que fornecem:

4 , 1  =  t

Mas as áreas devem obedecer a condição:

A — Ai +  Ai +  A$

, ^3=> 1 =  (f>i +  02 +

=$> 1 =  01 +  02 +  03 

Assim as relações entre as coordenadas cartesianas e homogêneas são dadas

por:

x =  4>\X\ +  0 2X2 +  0 3̂ 3 (4.3)

y — (f>lVl +  02Í/2 +  03?/3 (4.4)

Substituindo estas equações (4.3 e 4.4) em (4.1) e (4.2) e particularizando os valores

de 0 1, 02 e 03 para cada nó do elemento triangular, obtém-se:

Ui =  Cl +  c 2X i +  CzUi 

Vi =  c4 +  c 5X i +  c§yi

e



Eliminando-se os seis coeficientes Cj(j=  1, 2, 6) das seis igualdades

implícitas às igualdades (4.3) e (4.4) e recordando que as áreas A, A i,A 2 eA 3 são 

obtidas de:
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com i =  1, 2, 3.

Logo tem-se que:

Nas equações (4.5) e (4.6), os coeficientes 0i são as funções de forma que 

interpolam os resultados nodais no elemento finito. Assim, para 0i =  1, tem-se 

(j)2 — 03 =  0 e os deslocamentos u têm a variação mostrada na figura 4.3.

\ \1 x-í yi 1 X y

A  =  2  1 0̂ 2 2/2 ’ ~  2 ^  1 ^ 2  2/2 ’

y 1 a;3 2/3 y  1 ^3  2/3 y

\ \
1 Xi 2/i 1 x i 2/1

^2 =  2 ^  1  ̂ V ’ =  2 ^  1 2̂ 2/2

^ 1 2:3 2/3 y  ( !  1  ! / y

3

u  —  (f)\U\ +  <f>2U 2 +  3̂113 =  ^   ̂4>iUi (4-5)
i= 1 

3

v =  <Ml +  h v2 +  íM3 =  ^iVi (4'6)
2=1



80

3

Figura 4.3: Função de forma 0i

Da mesma forma, para 02 —  1, tem-se 0i =  ^  =  0 e para 03 =  1 tem-se 

0 1 — 02 — 0 (figura 4.4).
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Figura 4.4: Função de forma 03

Matricialmente, as equações (4.5) e (4.6) podem ser representadas por:

r >
Ui

Vl

(w 0i 0 02 0 03 0 u2

r
V I 0  01 0  0 2  0  0 3  V2

U3

Vz

OU

u =  (f)V (4.7)
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ou (na forma compactada):

(4.8)

Substituindo nesta igualdade o vetor u dado em (4.7), tem-se as deformações em 

função dos deslocamentos nodais:

{e } =  {S\.{4>V} = B.V (4.9)

de modo que aparecem derivadas das coordenadas homogêneas em relação às co­

ordenadas cartesianas.

onde

V =  | Mi vx u2 v2 u3 v3 |

As deformações são obtidas com a derivação de (4.7): 

( \ r
!  0 r )

<  ̂r  0 í
V

~ A  d_ V )
>xy av dxV L *

em que a matriz B, que relaciona as deformações com deslocamentos, tem a forma:

( t ° \ t  1</>l 0 (j>2 0 03 0 
B =  o £  (4.10)

0 (j) I 0 <f>2 0 (/) 3 
d_ d_ L  J

\ dx J



4.3.2 Elemento triangular quadrático

Uma melhor representação do campo de deformações dentro do elemento só é 

possível se a função que exprime os deslocamentos tivesse grau maior que o de 

uma função linear, de sorte que suas derivadas também melhor representassem o 

campo de deformações. Porém, uma função de grau maior requer um número maior 

de coeficientes desconhecidos e o número destes está intimamente relacionado ao 

número de graus de liberdade do elemento. O número de graus de liberdade de­

pende do tipo do problema, por exemplo, na Teoria da Elasticidade e em problemas 

de estado plano de tensões, são dois. O elemento triangular quadrático possui seis 

nós, sendo três situados nos pontos médios dos lados, com dois graus de liberdade 

(u, v) por nó, que são as translações nas direções de X e Y, como mostra a figura 

4.5. No ANSY5® 5.7.1, este elemento é representado pelo elemento PLANE 2 que 

3 utilizado para modelagem de sólidos no estado plano de tensões, estado plano de 

deformações e modelos axissimétricos.

Portanto, o elemento triangular de seis nós terá doze graus de liberdade, 

sendo que a matriz coluna das forças nodais e dos deslocamentos nodais terão 

dimensões 12x 1 e a matriz de rigidez, 12x12, isto é:
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Tendo em vista que cada elemento tem seis nós, com dois graus de liberdade 

por nó, os deslocamentos u e v são aproximados por polinômios completos do

/ ]  = [ * ]  - ( í )
L  J  1 2 x 1  L  J  1 2 x 1 2  \  /  1 2 x 1
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Figura 4.5: Elemento finito triangular de seis nós

segundo grau em x e y. Então, propõe-se para interpolaçao dos deslocamentos as 

seguintes expressões:

U — Ui<j)\ +  U2(f>l +  «303 +  «404 +  «505 +  «606

v =  Vi 01 +  «202 +  «303 +  «404 +  «505 +  «606

onde os coeficientes «* e «; são escalares arbitrários que representam os desloca­

mentos nodais. Matricialmente

{ « }  =  K ) ( 0e)

onde

{ « }  {«x «y}

K )  — |  líi  V1 U2 V2 « 3  ^3 u 4 v i  u 5 ^5 u 6 v 6 }



/  \ T 
o  <pe2 o  ^  o  4 > i o  <f>t o  (j> t o

(0e) =

y 0 (/>f 0 <j>l 0 <f)% 0 0e4 0 0g 0 4>l y

e

01 =  Cn +  c2iz +  c31y +  c41xy +  C51Z2 +  Cf̂ y2

02 =  c i2 +  c22x  +  c32y  +  c42xy  +  C52Z2 +  CQ2y2

03 =  C13 +  c23x  +  c33y +  c43xy  +  c53x2 +  c§3y2

06 =  C16 +  c26̂  +  C36y +  c46xy +  c56x2 +  c66y2

Como as deformações podem ser calculadas pelas expressões (4.8 e 4.9), tem- 

se que

{e} =  [a].(^).[«*i =  [b].[«1

onde

/  \
2 (c2i +  c4iy +  2c51o:)2: 0   0

[B ] =  2 0 2(c3i +  C41X +  2ceiy) • • • 0 2 (c36 +  c46x +  2c$6y)

, c3i +  c41x  +  2ceiy c21 +  c41y +  2c51x  .............. • • • ,
\ /  3x12

(4.11)
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As deformações assim calculadas, variam linearmente com x e y ,  ponto a 

ponto no interior do triângulo bem como as tensões crx, ay e rxy que decorrem 

imediatamente do cálculo das deformações através das equações (3.40).

A variação de ax com x deve-se, neste caso, à ação direta da variação de ex 

ao longo de X, bem como devido à ação da contração lateral provocada por ey. 

Assim numa região em que ocorra acentuada variação da tensão <7X, o elemento 

triangular quadrático do estado plano de tensões pode representar essa variação, 

dependendo do refino da malha.

Obviamente, em função do gradiente de tensões presente, o estudo do tamanho 

adequado do elemento sempre merecerá cuidados ao se definir a malha em ele­

mentos finitos, pois os deslocamentos variam quadraticamente e as deformações 

(ex =  por exemplo), variam linearmente. Como {<r} =  E .{e}, então, a apro­

ximação de tensões no interior do elemento também é linear. A partir dos deslo­

camentos nodais [ue] pode-se calcular as deformações no interior do elemento por 

intermédio da matriz [B]. Pela equação constitutiva tem-se que

{a (x ,y )}  =  [D ].{e(x,y)}

logo,

{a (x ,y )} =  [D}.[B].{ue} (4.12)

Desse modo, as tensões são determinadas a partir dos deslocamentos nodais. 

As forças externas realizam um trabalho na medida em que acontece a deformação
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do corpo. No regime elástico, essa deformação é associada a uma ” energia de de­

formação” , que, após a remoção do carregamento, pode ser recuperada. O trabalho 

externo é obtido por intermédio das forças nodais e dos correspondentes desloca­

mentos, e é armazenado no elemento como energia de deformação. Então admite-se 

uma condição externa arbitrária imposta ao elemento, representada por um con­

junto de deslocamentos nodais e correspondentes forças nodais atuantes. Esses 

deslocamentos impostos arbitrariamente, são os deslocamentos virtuais utilizados 

na aplicação do Princípio dos Trabalhos Virtuais (PTV)(Bathe, 1997).

0  trabalho externo We realizado pelas forças externas

F = { b ,p )

em conseqüência de um campo de deslocamentos virtuais 5u ? definido por:

We = < F ,5 u >  (4.13)

Ou seja,

We =  í b.5udxdy+ í p.ôudT (4-14)
Jçi J r

para todo deslocamento virtual ôu, onde a carga de corpo b — (bx, by) está dis­

tribuída na superfície Q, e a carga de linha p =  (px,Py) está aplicada no contorno

r  do corpo. Da mesma forma que existem deslocamentos virtuais impostos aos nós 

do elemento, a esta situação corresponde uma condição deformada virtual interna 

do elemento. Considerando o trabalho interno verificado anteriormente sobre um
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corpo B de espessura t, tensão a =  {ax, cry, rxy}, deformação ôe — {óex, Sey, ôexy} ) 

onde exy — xy, obtém-se as equações que governam este problema.

O equilíbrio dos componentes estruturais é regido pelo PTV (forma fraca da 

equação de equilíbrio) representado pela equação abaixo:

[  SeTa dD, — í  5uTb< m - í  ôuTpdT =  0, (4.15)
Jn Ju Jr

Nesta equação, ôu § o vetor de deslocamentos virtuais. As deformações virtuais ôe 

são aquelas correspondentes aos deslocamentos virtuais impostos ao sistema.

Pelo PTV, para um problema no estado plano de tensões, estado plano de de­

formações ou axissimétrico, tem-se que:

t f  (du)T.V.(dôu)dxdy — í (ôu)T.bdxdy— í(Ôu)T.pdT =  0 \/Su (4.16) 
Jn Jn Jt

Portanto, o primeiro termo de 4.16 toma a seguinte forma:

í [B]t .V.[B] dxdy.(ue) (4-17)
i

onde B é dada pela expressão (4.9).

A parcela

ke — t í [B)t .V.[B] dxdy (4.18)
Jn

; designada por matriz de rigidez do elemento e, onde D é a matriz de constantes 

elásticas do material e depende do tipo da análise em questão.

Para determinar o vetor de cargas, na ausência de forças do corpo, calcula-se a

88



integral:

[/p] =  J { 5u)T \p] d r  =  í [ f a '^ ] T (p] dr  =  j f w V  < l ( í « ') ,

donde chega-se a

M . M  =  [/;] +  [/;] -  [ r i  (4.i9)

Estas matrizes elementares são utilizadas para a montagem da matriz de rigidez 

global de toda a estrutura, num processo de agrupamento das contribuições ele­

mentares, mais as condições de contorno, resultando no seguinte sistema linear de 

equações algébricas:

KU =  Fv +  Fn =  F  (4.20)

onde Fy é o termo fonte devido à força de volume b, e F^, termo fonte devido

às condições de contorno naturais de Neumann ou forças de superfície. A matriz

quadrada K  í definida positiva e simétrica em virtude da matriz V  das constantes 

elásticas também ser positiva definida. Portanto, existe uma inversa K _1 e os 

deslocamentos nodais da solução aproximada são dados por

U =  K ~lF  (4.21)

4.3.3 Elemento finito isoparamétrico

Da mesma forma que é feita a aproximação das variáveis do problema pode-se esta­

belecer aproximações para a geometria que são definidas a partir das coordenadas
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dos nós. Neste caso, pode-se usar um sistema de coordenadas local denominado 

por isoparamétrico, baseado num elemento padrão de referência. A formulação dos 

elementos isoparamétricos, publicada por Irons em 1966, permite gerar elementos 

com lados curvos que modelam mais adequadamente os contornos irregulares do 

modelo que se pretende discretizar. As funções de transformação geométrica são 

idênticas às funções de interpolação.

Para simplificar a expressão analítica para elementos de forma complexa, um 

elemento de referência é introduzido. Seja então, o elemento definido num espaço 

não dimensional abstrato com uma forma geométrica muito simples. A geometria 

do elemento de referência é mapeada a partir da geometria do elemento real, usando 

expressões de transformações geométricas.

Um elemento finito fle em XY é obtido como imagem sob Te do correspon­

dente elemento padrão ftr do plano £ 77. A função inversa Te-1 de Í7e para ílr é 

também definida. A figura (figura 4.6) mostra um elemento finito quadrangular e 

o respectivo elemento isoparamétrico.

Obter um elemento isoparamétrico a partir de um elemento quadrangular, 

como o da figura 4.6 corresponde a criar um elemento de bordas curvas com seus 

pontos obtidos por um mapeamento ponto a ponto a partir do elemento inicial 

utilizando as funções de forma como funções mapeadoras.

A coordenada adimensional £, também chamada de coordenada natural ou 

homogênea, é fixada no elemento e assim permanece, independentemente da

90



91

Figura 4.6: Elemento isoparamétrico

orientação que o elemento venha a ter em relação ao sistema XY de coordenadas 

globais.

Te : ü r — üe

definida por

r e(£, Tj) =  (*(£> v), J/(Ç,»?)) (4-22)



e sua inversa é obtida por:

T7 l{x ,y) =  (£.»?)

onde ílr ê representado por um quadrado com coordenadas locais ( e t ) ,  satis­

fazendo:

-1  <  £ < 1

e

-1  < V < 1

Assim o ponto (1,77) G 0 r ê transformado no ponto (x =  x (l,rj),y  =  y (l, 77)) no 

plano XY. Porém os pontos (rr(l, 77), 7/(1, 77)) definem parametricamente uma curva 

no plano XY, onde 77 aparece como um parâmetro real.

Diz-se que esta curva define a linha curvilínea £ =  1 no plano XY. De maneira 

análoga, temos para a linha 77 =  1, onde o elemento de referência é mapeado para 

a curva 77 =  1 no plano XY.

A transformação Te define a coordenada de cada ponto do elemento real X 

em termos de coordenadas abstratas £ do ponto correspondente do elemento de 

referência e depende da forma e localização do elemento real. Desse modo, existe 

uma transformação Te diferente para cada elemento real.

A idéia básica de introduzir o elemento de referência pode agora ser estabele­

cida: a geração de uma malha completa de elementos finitos contendo N elementos 

é vista como uma seqüência de transformações Tí, T2, T3, . . . ,  Tjv dadas na forma
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(4.22), em que cada elemento Í2e § imagem de um elemento de referência fixado 

de Qr sob o mapeamento coordenado Te.

Cada transformação Te í escolhida para ter as seguintes propriedades:

• 0  mapeamento deve ser feito um a um, ou seja, para qualquer ponto do 

elemento de referência, há um e somente um ponto do elemento real.

• Os nós geométricos do elemento de referência correspondem aos nós geométri­

cos do elemento real.

• Qualquer porção do contorno do elemento de referência, definido pelos nós 

geométricos deste contorno, correspondem a uma porção do contorno do 

elemento real definido pelos nós correspondentes.

• Para cada elemento, as funções £ e rj precisam ser inversíveis e continuamente 

diferenciáveis.

Supondo-se que as funções x e y sejam continuamente diferenciáveis em 

relação a £ e 77, então os diferenciais d£ e dr) se transformam em dx e dy.

Logo:

& = ! * + * * ,
<9£ drj

e

, dy dy
áy =  d éd i + &,dn
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que pode ser escrita na forma matricial:

dx §  g* dí
=  S( ^  (4.23)

. dy J I  I J  [  .
A matriz 2 x 2 das derivadas parciais de (4.23) é denominada de matriz 

jacobiana da transformação definida em (4.22) e representada por J. A equação

(4.23) pode ser vista como uma transformação linear de segmentos d£ e dr] do 

plano Or em segmentos dx e dy no plano XY.

Se, para o ponto (£,77) € ü r, é possível resolver a equação 4.23 para d£ e 

dr] em termos de dx e dy, então um mapeamento inverso Te_1 do sistema

de coordenadas XY para o sistema £ 77 pode ser construído neste ponto. Obvi­

amente, a condição necessária e suficiente para que a matriz jacobiana de (4.23) 

seja inversível é que o seu determinante \J\ seja diferente de zero em (£, 77) €

A função | J\ § chamada de jacobiano da transformação (4.22). Portanto:

d x d y  d x  d y

| -, |  =  d e t J  =  ã ê ã T ã ; ã ç

Sempre que \J\ ^  0, pode-se escrever que:

d£ dx 1 Tfe dx
=  J~K =  ^  *  (4.24)

dr, J dy J ' ' [  |  J [ ^  .
Tem-se, pela Te-1 , que

í £ =  £(z,y)

[ 77 =  77(0;,?/)
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Igualando os termos das equações 4.24 e (4.25) encontra-se:

dx \J\drj

d£ 1 dx
dy \J\ drj

di7 1 dy
dx =  ~ ÍJÍW  
dy 1 dx

dy =  \j\dt

O jacobiano pode ser entendido como um operador que transforma coordenadas 

do sistema local £ rj para o sistema global XY.

Observa-se que se o número de nós do elemento real for maior que o número de 

nós aplicados por Te, então Te í denominado de mapeamento superparamétrico; 

se o número de nós do elemento real for igual ao número de nós aplicado por 

Te, tem-se um mapeamento isoparamétrico e, quando o número de nós do ele­

mento for menor que o número de nós aplicados por Te, tem-se um mapeamento 

subparamétrico.

Os elementos isoparamétricos com nós apenas no contorno são denominados 

de serendipity. A adição de um nó interno na posição £ =  0 e y — 0 torna

Nota-se que, como em (4.23),

dÇ dx
=  *■ 35 (4.25)

dr) f 2 f 2 dy• ox oy **



o elemento mais preciso e os elementos com nós internos são denominados de 

lagrangeanos porque utilizam as funções de Lagrange.

Os elementos isoparamétricos têm como válida a condição de compatibilidade 

de deslocamentos entre elementos, podendo representar corretamente os movimen­

tos de corpo rígido e as condições de deformações constantes. Devido à complexi­

dade das funções que devem ser integradas para obter a matriz de rigidez, utiliza-se 

a integração numérica (Assan,1999).

Os elementos finitos são objetos de geometria sempre convexa e suas for­

mulações tendem a privilegiar as formas mais regulares. Ou seja, elementos fini­

tos triangulares são em geral melhores quanto mais se aproximam de triângulos 

equiláteros. Quadrados são usualmente melhores que retângulos e estes melhores 

que paralelogramos, e assim por diante. A exigência da convexidade é oriunda da 

necessidade da inversão do Jacobiano da função que mapeia um domínio elementar 

do tipo [—1, l]AíT[—1,1] no domínio do elemento, conforme ilustrado na figura 4.6.

A qualidade da malha depende de dois critérios (Sabonnadière e Coulomb 

([100])):

• Forma: os elementos não devem se afastar das formas ideais (triângulos 

equiláteros, quadrados, tetraedros equiláteros, cubos,...), sob pena de degra­

dar a solução.

• Tamanho: o erro do método introduzido pela discretização depende da
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dimensão dos elementos, que devem ser mais concentrados onde a solução é muito 

perturbada.

Assim sempre que necessário deve-se otimizar a malha por redução do tamanho 

dos elementos ou por aumento da precisão sobre o elemento (ordem da função de 

interpolação). Observa-se nos objetos de formas irregulares e complexas que as 

malhas geradas automaticamente por programas de computadores, algumas vezes 

não têm boa qualidade, podendo apresentar resultados diferentes do real, devendo 

por isso serem refinadas.
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Capítulo 5

Modelagem

5.1 Geometria das estruturas

O modelo em estudo corresponde ao segmento da mandíbula, partindo da região 

do segundo molar até a região do primeiro pré-molar, estando presente os suportes 

dentais e fibromucoso, criando-se, assim, um espaço protético de extremidades no 

primeiro pré-molar (dente sadio) até um implante osseointegrado situado na região 

do segundo molar, conforme figura 5.1.

As diversas estruturas componentes do modelo matemático, foram projetadas 

a partir de duas radiografias periapicais na região posterior da mandíbula com os 

dentes e estruturas de suportes sadios, as quais foram digitalizadas com auxílio de 

um scaner. Através destas imagens e com auxílio do programa AUTOCAD (auto 

deskinc, USA), foram delineadas as seguintes estruturas (Betiol, 2002):
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Figura 5.1: Modelo inicial

1. Dentes

Primeiro pré-molar (34), segundo pré-molar (35), primeiro molar (36) e se­

gundo molar (37)*. Para as dimensões dos dentes usou-se a média aritmética 

da altura e largura, obtidas de dois autores: Blak e Marcellier citados por 

Vellini & Serra (1976), constantes das tabelas 5.1, 5.2 e 5.3.

Na região correspondente a coroa do dente 34 foi feita a simulação de um

preparo para a coroa total metálica com término em chanfrado (Farah e

Craig, 1974) e com um desgaste de aproximadamente 1,2 mm. Foi mantida a

*Os números entre parênteses são indicações usuais adotadas pela Odontologia
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Tabela 5.1: Dimensão média, em mm, do primeiro pré-molar inferior

Autores Comp. total comp. raiz Alt. coroa Dim. MD 

coroa

Dim. MD 

colo

Blak 21.6 14.0 7.8 6.9 4.7

Marc. 23.0 15.0 8.0 6.9 5.0

Média 22.3 14.5 7.9 6.9 4.8

Autores Altura da coroa Dimensões MD 

coroa

Dimensões MD 

colo

Blak 7.9 7.1 4.8

Marc. 8.1 7.2 4.8

Média 8.0 7.15 4.8

forma original da porção coronária representando um retentor do tipo coroa 

total metálica. De acordo com a radiografia, copiou-se o tecido pulpar, que 

pode levar a alterações no resultado final do trabalho (Las Casas et al, 1999). 

Acompanhando ainda a imagem radiográfica, foi copiado o ligamento peri- 

odontal, para o qual foi adotada a espessura média de 0,25 mm (Coolidge, 

1937).

Ainda com auxílio do programa AUTOCAD foram eliminadas as raízes dos 

dentes 35 e 36 (tabela 5.3) dando à forma de pôntico (côncavo em relação ao

Tabela 5.2: Dimensão média, em mm, do segundo pré-molar inferior



tecido gengival) para as coroas correspondentes.
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Tabela 5.3: Dimensão média, em mm, do primeiro e segundo molar inferior

Autores Altura da coroa Dimensões MD 

coroa

Dimensões MD 

colo

l°molar 2°molar l°molar 2°molar l°molar 2°molar

inf. inf. inf. inf. inf. inf.

Blak 7.7 6.9 11.2 10.7 8.5 8.1

Marc. 7.7 6.9 11.2 10.7 8.5 8.3

Média 7.7 6.9 11.2 10.7 8.5 8.2

2. Implante osseointegrado

Na região do dente 37, foi apagada a porção radicular que foi substituída 

pela imagem de uma fixação Branemark, fabricada pela Nobel Biocare *, 

com a medida de 3,75 mm de diâmetro por 10,00 mm de comprimento. Este 

implante foi usado por ser amplamente pesquisado e citado na literatura por 

vários autores, sendo um rosqueado de hexágono externo e confeccionado 

em titânio puro. A imagem deste implante foi obtida incluindo-se o con­

junto fixação/pilar/coroa em um material composto de resina ortofilática

T-208, monômero de estireno e catalisador Luperox DD-M, fabricados pela 

f Nobel Biocare, Gotemburgo, Suécia



Redefibra®, São Paulo. Posteriormente o conjunto foi cortado pelo disco 

de diamante XL-12235 de 0.3 mm de espessura, em serra da Labcut 1010, 

Exel Technologies Inc., Enfield, Connecticut, USA. Este corte foi interpre­

tado e através do auxílio de um perfilômetro marca Mitutoyo, modelo PJ 

300, com precisão de 50 \im. Esta imagem foi a mesma usada no trabalho de 

Sendyk(1998).

3. Ossos

Acompanhando a imagem radiográfica na região que circunda a raiz do 

primeiro pré-molar foi copiada a cortical óssea com a espessura de 0,5 mm. 

Próxima da região cervical o osso cortical aumenta gradativamente chegando 

a 2,0 mm na região do espaço protético, correspondente aos dentes 35 e 36. 

O restante da estrutura óssea foi considerado como osso medular.

4. Prótese parcial fixa

Foi dada a forma dos dentes acompanhando a radiografia e as medidas médias 

dos autores conforme tabelas 5.1, 5.2 e 5.3.

No primeiro pré-molar representou-se o retentor com término em chanfrado 

confeccionado apenas em um material, com a espessura de aproximadamente 

1,2 mm. Aos pônticos, com a forma coronária dos dentes da radiografia 

e com as dimensões médias (tabelas 5.2 e 5.3) e próximo ao tecido gengival, 

foi dada a forma convexa. Estes elementos ficaram representados pelo mesmo
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material.

O retentor sobre o implante teve a forma coronária da radiografia em apenas 

um material, com as dimensões médias (tabelas 5.2 e 5.3). Seguindo a indicação do 

sistema Branemark (Nobel Biocare), foi usado um pilar cônico de 1,0 mm de altura 

(Sendik, 1998), como conexão para unir a coroa à fixação (figura 5.1). Apesar 

da estrutura em estudo ser tridimensional, optou-se neste trabalho por modelá- 

la como bidimensional, pois este modelo, apesar de aparentemente simplificado, 

apresenta as informações relevantes suficientes a respeito do estado de tensões a 

que o corpo está submetido. Optou-se por utilizar o modelo plano de tensões pois os 

dentes envolvidos nesta análise estão situados no mesmo hemi-arco, fazendo parte 

do polígono de Roy (1936). Segundo Roy, os dentes posteriores de uma arcada se 

movimentam no mesmo sentido e estão dispostos no mesmo plano. Os posteriores, 

do outro lado, estão dispostos em outro plano, enquanto que os incisivos estão num 

terceiro plano e os caninos formam o quarto e quinto plano, originando uma figura 

geométrica denominada de ” Polígono de Roy” .

5.1.1 Modelagem computacionai

O programa escolhido para a análise do modelo pelo Método dos Elementos Finitos 

foi o ANSYS® 5.7.1, versão universitária, desenvolvido pela Swanson Analysis



Inc., com auxílio de um computador Pentium III de 800 MHz, com 512 MB de 

memória, e 30 GB de Hard Disk, de propriedade do CESEC (Centro de Estudos de 

Engenharia Civil Inaldo Ayres Vieira) da Universidade Federal do Paraná (UFPR).

Para a modelagem dos elementos sólidos do problema, o ANSYS® versão 

5.7.1 disponibiliza o elemento PLANE 2 que utiliza-se de elementos quadráticos, 

que são mais precisos, embora apresente maior dispêndio computacional, devido às 

restrições impostas pelos elementos de contato. O elemento utilizado é mostrado 

na figura 5.2 e definido por seis nós, com dois graus de liberdade em cada nó, que 

são translações nas direções X e Y.

O PLANE 2 pode ser utilizado na modelagem de sólidos no estado plano de 

tensões, estado plano de deformações ou ainda em sólidos axissimétricos. 

Considerou-se para a prótese parcial fixa posterior, o estado plano de tensões, de­

vido à sua geometria.
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Figura 5.2: Elemento triangular quadrático

O modelo adotado neste trabalho foi transferido do programa AUTOCAD 

para o ANSYS, onde foi criada (manualmente), região por região do modelo, uma 

malha composta por 24.852 pontos nodais e 12.169 elementos (figura 5.3).
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Figura 5.3: Malha da prótese parcial fixa posterior

Na região entre o dente e osso, correspondente ao ligamento periodontal 

(figura 5.4) e na região entre o implante e osso, onde estão as espiras da fixação, a 

malha foi mais discretizada (figura 5.5), para permitir uma avaliação mais precisa 

da distribuição de tensões nestas áreas, já que um dos grandes objetivos deste 

trabalho é a avaliação da distribuição de tensões na prótese parcial fixa e nas 

estruturas de suporte.

ANSYS 5.7 
OCT 13 2002 
07:55:43
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Figura 5.4: Malha do periodonto

Neste trabalho foi considerado um íntimo contato entre toda a superfície do 

implante e a estrutura óssea correspondente, situação esta que segundo Holmes, 

et al (1992), não ocorre na realidade.

ANSYS 5.1
OCT 10 200209105:42
fcUÚMKNTS
PowerGraphics
EFACET- 1

TY?E NUM
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Figura 5.5: Malha na região do implante

ANSYS 5.7 
OCT 13 2002 
07:5-7:18

Para representar as diversas estruturas que compõem o modelo matemático, 

cada elemento bidimensional recebeu determinados valores inerentes às proprieda­

des físicas intrínsecas dos materiais representados na figura 5.6, onde, a cor ver­

melha representa a liga áurea (retentor, pônticos e retentor da fixação); a cor verde, 

o ouro 24 K (parafuso da fixação); a cor amarela, o titânio (implante); a cor azul 

mais claro, o osso cortical; a cor azul mais escuro, a dentina; a cor vermelha, ao 

redor do dente natural, representando o periodonto e a cor lilás, o osso trabecular.
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Figura 5.6: Material dos componentes da estrutura

ANSYS 5.7 OCT 13 2CC2 07:28:42

De acordo com a tabela 5.4 que obedece a literatura relativa a este assunto, 

os materiais estão numerados de acordo com suas representações introduzidas no 

ANSYS® 5.7.1. O modelo considera que as estruturas são homogêneas, lineares, 

elásticas e isotrópicas.
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Tabela 5.4: Propriedades mecânicas dos materiais que compõem o modelo (Sendyk, 

1998)__________________________________________________________

MATERIAL MÓDULO DE 

ELASTICIDADE 

(GPa)*

COEFICIENTE DE 

POISSON

iy)

1. Osso cortical 13,7 0.30

2. Osso trabecular 1.37 0.30

3. Ligam, periodontal 0.003 0.45

4. Dentina 18.6 0.31

5. Liga de ouro 90.0 0.30

6. Parafuso ouro 99.3 0.28

7. Titânio 110.0 0.28

As cargas de oclusão podem variar significativamente segundo a literatura.

Essa dispersão verificada nas cargas medidas pode ser atribuída a vários motivos,

entre eles o uso de diferentes métodos de medida, a estrutura e geometria dentária

do paciente, a estrutura muscular orofacial, a idade, o sexo, etc (Cimini et al,

2000). Estudos prévios (Holmes, 1992) informam que a força oclusal comum com

próteses de implante-apoio variam de 110 a 200 N na região dos incisivos, podendo

chegar a 500 N na região molar.

*GPa =  10 9N/m2



Para este trabalho, foi aplicada uma carga vertical de 168 N, distribuída 

nas superfícies oclusais dos dentes envolvidos, por ser considerada fisiológica e 

suficiente para obtenção de resultado (Betiol, 2002). Foram adotadas cargas di­

recionadas para o longo eixo dos dentes, pois considera-se uma oclusão normal. 

Segundo Okenson (1992), para uma oclusão ideal, durante os movimentos masti- 

gatórios, quando a mandíbula se eleva e os dentes se contatam, as forças são dire­

cionadas para o longo eixo dos dentes posteriores e, a partir deste ponto, quando 

a mandíbula se move nos movimentos de lateralidade e protrusiva, os dentes an­

teriores se tocam e desocluem os posteriores impedindo que estes recebam cargas 

laterais. Isto é chamado de oclusão mutuamente protegida.

Neste trabalho foi usado o critério de Von Mises, criado por Richard Von 

Mises (1883 - 1953) para se avaliarem os estados de tensão atuantes no corpo. O 

programa de computador pode determinar, na fase de pós processamento, as zonas 

de solicitação segundo uma escala de cores correspondentes aos diversos níveis de 

tensão.

Foram selecionadas três áreas para interpretar a distribuição de tensões de 

Von Mises na aplicação das cargas oclusais, a saber:

1. Região óssea que circunda a raiz do elemento dentário natural, primeiro pré-

molar inferior esquerdo.

2. Região óssea que circunda a fixação localizada na região do segundo molar
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inferior esquerdo.

3. Regiões internas dos pilares e da prótese parcial fixa.

Foram feitas avaliações qualitativa e quantitativa dos resultados:

• Avaliação qualitativa: observando-se as diferentes cores apresentadas pelo 

programa ANSY5® 5.7.1, que representam níveis de tensões diferentes.

• Avaliação quantitativa (numérica): o gradiente de cores que acompanha o 

modelo matemático gráfico do elemento finito, fornece o valor máximo e o 

valor mínimo para cada região.

Neste trabalho foi feita uma simulação, através do MEF, de uma ponte fixa 

com conectores rígidos e duas próteses fixas com conectores semi rígidos, tendo 

como pilares, um dente e um implante osseointegrado, para se observar a dis­

tribuição das tensões na estrutura desta prótese, nos seus pilares e no tecido ósseo 

correspondente.

As malhas foram construídas utilizando-se elementos triangulares quadráticos 

(seis nós) e mais refinadas na região correspondente ao ligamento periodontal tal 

como mostrado na figura 5.4, entre a raiz do primeiro pré-molar e o tecido ósseo 

correspondente, na área onde ocorre a osseointegração entre as espiras da fixação 

(localizada na região do segundo molar inferior) e o tecido ósseo circundante.

Na região correspondente à estrutura dentária, bem como na região interna
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da fixação e dos componentes protéticos (figura 5.3), também teve-se cuidado es­

pecífico na criação da malha pois, dependendo da deformação sofrida nesta área, 

pode-se ter diferentes distribuições de tensões na região dos pilares com relação 

ao tecido ósseo correspondente. O motivo desta preocupação prende-se ao fato de 

existir diferença de mobilidade entre um dente saudável e um implante osseoin- 

tegrado. A diferença de mobilidade entre um dente com periodonto normal e um 

implante osseointegrado é comentada por vários autores pesquisados durante a 

revisão de literatura. Weinberg (1993) e Weinberg & Kruger (1994) salientam esta 

diferença de mobilidade, sendo em torno de 100 a 500 fxm para um dente com 

periodonto considerado normal enquanto o implante poderia chegar no máximo a 

100 /xm. Segundo Cohen & Orenstein (1994) e Hobo (1997), os dentes naturais 

têm uma mobilidade em torno de 100 a 200 fim, e os implantes osseointegrados, 

uma mobilidade de até 10 \im\ enquanto que para Lill et al (1988), os dentes têm 

uma mobilidade dez vezes maior que os implantes.

Estas variações ocorrem devido à forma do implante pesquisado, do tamanho 

e diâmetro da fixação, dos tipos de conexões e do tipo de osso, porém é fato que 

existe esta diferença de mobilidade. Desta forma os pônticos mais o retentor do 

primeiro pré-molar inferior têm uma tendência de se movimentar no sentido ocluso- 

gengival e o implante praticamente não tem mobilidade, gerando assim um efeito 

de alavanca com o fulcro nesta região (cervical do implante), onde se encontram 

tensões máximas de 31,32 MPa (figura 5.7), na cor cinza, na prótese parcial fixa.
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Pode-se observar na figura o local da tensão máxima (representado por MX) e o 

da tensão mínima (MN).

Figura 5.7: Tensão Von Mises na prótese fixa

ANSYS 5.7 
OCT 13 2002 
07:31:20
ELEMENT SOLUTION
STEP-1
SUB -1
TIME- 1

SEQV (NOAVG)
PowecGraphics EFACET=1 
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Figura 5.8: Tensões de Von Mises no implante da prótese fixa

Neste modelo, a tensão máxima ocorre no espelho do implante, conforme 

figura 5.8, na cor cinza que não aparece na escala de cores, por ser uma tensão de 

nível acima da máxima representada na cor vermelha. Isto pode acontecer também 

nos casos unitários quando se usa uma fixação com implante de plataforma pequena 

ou regular para uma coroa de superfície oclusal extensa (Piattelli et al ,1998).

Uma ponte fixa com conectores rígidos ou semi rígidos que possui pilares com 

diferentes mobilidades leva certamente a uma distribuição de tensões desiguais ao 

tecido ósseo da região correspondente, quando esta prótese recebe uma força oclusal 

no sentido do longo eixo dos dentes.



Para uma melhor estratégia comparativa, este problema também foi simulado 

com uma prótese fixa semi rígida com encaixe (conector) na coroa do implante e 

outra, semi rígida com encaixe na coroa do segundo pré molar. Desse modo foram 

estudadas três situações diferentes para estes modelos, adotando-se cargas verticais 

(168 N) distribuídas sobre a superfície oclusal dos três modelos:

1. Prótese parcial fixa (já descrita anteriormente);

2. Prótese semi rígida com encaixe na coroa da fixação (figura 5.9);

3. Prótese semi rígida com encaixe na coroa do segundo pré molar (figura 5.10).

Figura 5.9: Prótese semi rígida com encaixe na coroa da fixação (modelo 2)

116



117

Figura 5.10: Prótese semi rígida com encaixe na coroa segundo pré molar (mod 3)

A prótese de quatro elementos recebe esta força mastigatória que se distribui 

ao longo das superfícies oclusais dos elementos dentários envolvidos, onde é inte­

ressante notar que as direções principais de tensões (figura 5.11 e figura 5.12), se 

distribuem de maneira bem mais homogênea através da estrutura dentária do que 

no implante osseointegrado.
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Esta diferença se deve também à presença do ligamento periodontal presente 

somente no elemento dentário, funcionando como um amortecedor. Estas fibras 

periodontais responsáveis por este amortecimento não estão presentes na inter­

face entre implante e osso onde ocorre a osseointegração. Este pode ser o motivo 

do afrouxamento dos parafusos e até da fratura dos componentes protéticos ou do 

próprio implante. Autores como Borchers & Reichart (1983), Babbush (1987), Kay 

(1989), Chapman & Kirsch (1990), El Charkawi et al. (1990), Cavicchia e Bravi 

(1994), El Charkawi et al. (1994), Papavasiliou et al. (1996) mostram a tentativa 

de alguns fabricantes, Interpor International, por exemplo, de produzirem compo­

nentes protéticos intermediários (IME em polioximetileno) ligando as fixações aos

Figura 5.11: Distribuição vetorial das tensões principais na região do implante
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Figura 5.12: Distribuição vetorial das tensões principais na região do periodonto

retentores que permitiriam uma simulação do ligamento periodontal. Estas ten­

tativas foram frustradas, já que com relação à distribuição de tensões ao tecido 

ósseo, estes intermediários não levam a mudanças significativas com relação aos in­

termediários (IME) de titânio. Autores como Holmes et al. (1992) e Ulbrich (1998) 

mostram em suas pesquisas, que a distribuição de tensões para o tecido ósseo que 

circunda as fixações seria similar quando se usa um pilar intermediário em titânio 

ou em polioximetileno.

Com relação ao tecido ósseo, pode-se observar nas figuras 5.13 e 5.14, a 

concentração de tensões (Von Mises) na região óssea cortical do dente natural



(região cérvico mesial), onde foi registrada a tensão mínima de t i .Q Q lü M  P a  e na 

região óssea cortical, próxima da cervical mesial do implante, com a tensão máxima 

de 17,82M P a  representadas pelas cores azul e vermelha, respectivamente, nestas 

figuras.

Figura 5.13: Tensões de Von Mises no osso cortical (região do dente natural) - 

modelo 1

120

Observa-se na escala ao lado da figura 5.14, os valores das tensões Von Mises, 

e à medida que percorre-se da região do implante para as estruturas de suporte 

observa-se uma diminuição gradativa de tensões chegando a uma tensão mínima 

na região correspondente ao osso medular, entre os dois pilares (figura 5.7), re­

presentado pela cor azul mais escuro, ou seja, 99, 7% menores. Este fato já era es-
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Figura 5.14: Tensões de Von Mises na região óssea próxima do implante (mod 1)

perado, pois a função do tecido ósseo é dissipar as cargas mastigatórias (Sakagushi 

& Borgensen, 1995).

Este fato pode ser explicado pelo braço de alavanca causado pela prótese 

fixa, já que se consideram pilares com diferentes mobilidades, o elemento dentário 

tem uma tendência de sofrer intrusão devido à presença do ligamento periodon­

tal, e o implante sofre uma menor intrusão, pois está unido diretamente ao osso. 

Portanto, como não se sabe o valor exato que leva a reabsorção óssea em volta do 

implante, as tensões nesta área podem ser responsáveis pela perda óssea encon­

trada clinicamente com freqüência nesta região. Por este motivo, a exemplo dos 

autores Kitoh et al (1988), Hobo et al (1989), Clelland et al (1993), Sendyk (1998),



no presente trabalho dá-se maior importância aos valores qualitativos das tensões

e não quantitativos.
✓
E fato também que em condições consideradas normais os implantes osseoin- 

tegrados após o primeiro ano em função perdem cerca de 1.0 mm de osso na região 

da crista óssea (Branemark et al.(1977), Adell et al (1981), Kitoh et al (1988), 

Albrektsson et al (1988), Rangert et al (1989)). Talvez isto pode ser explicado 

pela concentração de tensões nesta região quando a prótese está sujeita a cargas 

oclusais.

Os autores Ismail et al. (1991), Cohen e Orenstein (1994), sugerem o uso 

de conexões semi-rigidas, pois, desta forma, haveria uma melhor distribuição de 

forças entre implante, dente e tecidos de suporte, evitando assim uma sobrecarga 

do implante e tecido ósseo correspondente. Para Weinberg (1993), nas próteses que 

possuem pilares com diferentes mobilidades, os implantes sempre são sobrecarrega­

dos, recomendando para estes casos novos desenhos de próteses para diminuir as 

tensões próximas ao implante.

5.1.2 Modelagem dos contatos

Para representar a aproximação e o possível contato entre as superfícies da conexão 

da prótese semi-rígida, o ANSYS® 5.7.1 disponibiliza os elementos de contato. 

Para o problema em questão, é necessário a consideração do contato entre duas
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superfícies elásticas, inicialmente separadas ou em contato. A modelagem do con­

tato entre estas superfícies foi construída por elementos de contato denominados 

de CONTA 172.

0  elemento CONTA 172 relaciona uma superfície denominada de target sur- 

face ou superfície alvo, com a superfície de contato denominada de contact surface, 

formando o par de contato como na figura 5.15.

Figura 5.15: Superfícies de contato
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Os elementos da superfície 2-D da superfície target associados aos elementos 

de contato são representados pelo elemento TARGE 169. A superfície target % 

discretizada por um conjunto de segmentos target (TARGE 169) e forma par com



a superfície de contato através do mesmo conjunto constante real. Pode-se impor 

forças e momentos sobre os elementos target. A superfície target § modelada por 

um conjunto de segmentos target e vários segmentos target formam uma superfície 

target, que pode ser rígida ou deformável.

No caso de duas superfícies elásticas a consideração de superfícies target 

ou contact para uma ou outra superfície é arbitrário e irrelevante. Para o caso de 

contato entre superfícies rígidas e elásticas, a superfície rígida é sempre considerada 

como target.

O valor exato da região onde ocorre o contato não precisa ser conhecido pre­

viamente para a geração dos elementos. Usualmente são tomados mais elementos 

do que realmente é necessário, pela associação do nó de contato com diversas linhas 

target vizinhas. A geração de contato considerando ambas as áreas como target e 

como contact foi adotada na modelagem para garantir a simetria do modelo.

O elemento CONTA172 permite a inclusão do atrito de Coulomb entre as 

superfícies de contato, sendo que o coeficiente /i é fornecido nas propriedades do 

material fictício dos elementos de contato.

O contato é estabelecido quando o nó de contato, penetra na linha target 

com a magnitude denominada gap, na direção normal e representada por gn. Isto 

é uma violação física da compatibilidade de deslocamentos, pois superfícies sólidas 

não podem se interpenetrar. Desse modo, para reduzir a interpenetração a níveis 

aceitáveis são desenvolvidas forças normais à superfície target na região de contato.
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Inicialmente as forças tangenciais são consideradas nulas para se determinar 

as forças de contato e o valor de gn. Nos passos posteriores são incluídas as forças 

tangenciais, caracterizando a existência de adesão ou deslizamento em cada nó. 

Tem-se, assim, o perfil do contorno onde acontece o contato.

Para resolver o problema do contato, que é não-linear com restrições, o 

ANSY5® utiliza o Método das Penalidades que pode ser associado aos multi­

plicadores de Lagrange. As constantes utilizadas para a solução do problema são:

1. Fator de rigidez de contato - FKN

0  ANSYS® 5.7.1 sugere um valor inicial calculado por

F K N  «  f cEh

onde / c i o  fator que controla a compatibilidade do contato, variando de 0.01 

a 100, com valor padrão inicial de 1.0; E é o menor módulo de elasticidade 

dos materiais envolvidos; h é um comprimento de contato característico, de­

pendente da geometria do problema. Esta aproximação para FKN § apenas 

uma alternativa inicial, com uma margem alta de valores possíveis. O valor 

real de FKN í encontrado por tentativas. Valores altos de FKN restringem 

a interpenetração e valores baixos permitem grande interpenetração das su­

perfícies. O Método das Penalidades exige valores altos de FKN, ao passo que 

se tivermos valores baixos de FKN deve-se utilizar o Método das Penalidades 

associado aos multiplicadores de Lagrange.
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2. Fator de rigidez de contato de deslizamento - FKT

O fator de rigidez FKT  § usado se existe o atrito elástico de Coulomb. O 

parâmetro impõe a componente de deslizamento e corresponde a uma rigidez 

tangencial à linha target. No ANSYS®, o valor padrão é de 1.0. Pode-se 

definir um valor arbitrário para FKT, do mesmo modo que para FKN.

3. Fator de tolerância - FTOLN

S

E uma constante real para definir o fator de tolerância para ser aplicado na 

direção da normal da superfície, destinada a determinar se a compatibilidade 

de penetração é satisfeita, quando se usa o método das funções de penalidades 

mais os multiplicadores de Lagrange (KEYOPT(2)=0). No ANSYS®, o valor 

do FTOLN deve ser positivo (usualmente menor que 0.2) e seu valor padrão 

í de 0.1.

Nos modelos 2 e 3, isto é, das prótese semi rígidas, ocorre o contato entre o 

conector e as coroas do implante e do segundo pré molar, respectivamente, após a 

aplicação das cargas verticais. Devido a não linearidade dos elementos de contato, 

o método de solução adotado para os modelos foi o método de Newton-Raphson 

incrementai (figura 3.18). Como o contato exige a aplicação de um método de 

funções de restrição, o método escolhido no ANSYS® foi o método das penalidades 

com os multiplicadores de Lagrange. A utilização deste método foi adotada pela 

maior rapidez de convergência da solução.
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A análise considerando pequenas deformações foi adotada para todos os 

modelos deste trabalho. A aplicação do carregamento nos modelos foi realizada de 

acordo com a literatura, para os deslocamentos que estejam dentro de limites de 

utilização.

Todos os materiais que compõem o modelo foram considerados elásticos, 

lineares e isotrópicos para o carregamento aplicado.

O contato existente nos encaixes das próteses semi rígidas foi modelado con­

siderando a possível existência do atrito de Coulomb. Os coeficientes de atrito 

estático e dinâmico são considerados iguais na análise de todos os modelos.

Os elementos de contato CONTA 172 e TARGE 169, utilizados para fazer a 

ligação entre os conectores da prótese semi rígida, convergiram com os seguintes 

valores dos parâmetros de contato: F K N  =  10, FTOLN  =  0.1, para o modelo 

2 e F K N  =  1, FTOLN  =  0.1, para o modelo 3.

5.1.3 Resultados nos modelos 2 e 3

No modelo 2, a tensão máxima foi de 41,65 MPa (no conector) e a mínima foi 

de 3,567.10-5 MPa (no implante), enquanto que no osso cortical, região cérvico 

mesial do dente natural (figura 5.16),ocorreu a tensão mínima de 6 ,04.10_3M Pa e 

a tensão máxima foi de 14,02 MPa, nas proximidades da região cervical mesial 

do implante (figura 5.17); no implante, 30,75 MPa; na dentina, 12,00 MPa e no
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periodonto, 0,14983 MPa.

Figura 5.16: Tensões de Von Mises na região óssea próxima ao dente natural

(modelo 2)
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Figura 5.17: Tensões de Von Mises na região óssea cortical próxima do implante 

(modelo 2)

No modelo 3, a tensão máxima ocorreu no implante com 202,11 MPa (figura

5.18) e a mínima, nos pônticos com 3, 76.10-8 MPa; no osso cortical, nas proxi­

midades da região cervical mesial do implante, a máxima foi de 69,87 MPa (figura

5.19) e a mínima, de 1,52.10-3 MPa na área da cervical mesial do elemento 

dentário (figura 5.20); nos pônticos, 76,87 MPa ; no dente natural, 4,10856 MPa e 

no periodonto, 1,196.10-2 MPa. Os resultados das tensões máximas e mínimas 

dos modelos 1, 2 e 3 estão dispostos na tabela 5.5.
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Tabela 5.5: Resultados das tensões máximas e mínimas, nos modelos 1, 2 e 3

Tensão máxima (MPa) Tensão mínima (MPa)

Modelo 1 31,32 1 ,12.10"4

(PPFP) (espelho implante) (implante)

Modelo 2 41,65 3 ,567.10-3

(PSRLD) (pônticos) (implante)

Modelo 3 202,11 3,76.10-8

(PSRLE) (implante) (pônticos)

A figura 5.21 apresenta a distribuição de tensão nos três modelos, na região 

Sssea próxima do implante, após a aplicação da força oclusal de 168 N.
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Figura 5.18: Tensões de Von Mises no implante (modelo 3)

Figura 5.19: Tensões de Von Mises região óssea, próxima do implante (modelo 3)
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Figura 5.20: Tensões de Von Mises na região óssea, próxima do dente natural 

(modelo 3)

Figura 5.21: Tensões de Von Mises na região óssea próxima ao implante nos modelos 

1, 2 e 3 respectivamente



Capítulo 6 

Conclusões e sugestões de 

continuidade

Atualmente, a Bioengenharia é um campo em ascensão e, dentro dele, as modela­

gens computacionais podem ser extremamente úteis. Muitas são as possíveis 

aplicações (acústica, escoamento de sangue, ortopedia, odontologia, ecologia, 

química, etc).

A modelagem numérica de próteses parciais fixas rígidas e semi rígidas mos- 

trou-se viável e gerou resultados satisfatórios, levando-se em consideração as sim­

plificações adotadas nos modelos bidimensionais. Desse modo, pode-se garantir a 

confiabilidade dos modelos e prosseguir com as considerações e análises para se 

atingir o objetivo maior que é a atenuação de tensões provocadas pelas cargas 

oclusais.



O Método dos Elementos Finitos dentre tantos métodos aproximados, mos- 

trou-se muito eficiente, inclusive na Bioengenharia. Quando empregado em proble­

mas de contato, o MEF mostrou-se bastante apropriado para modelar a estrutura 

da prótese semi rígida posterior, estudada neste trabalho. Tem-se exatamente a 

situação de restrição à penetração de um componente estrutural no outro, mas 

com liberdade de escorregar quando em contato.

Tendo em vista a complexidade da estrutura do modelo (prótese parcial fixa 

ligando um dente natural com uma fixação), tanto geométrica quanto dos materiais 

que a compõem, a maior dificuldade de um trabalho desta natureza reside na 

determinação das constantes características do problema de contato. O emprego 

de elementos de contato na análise implicou na introdução de não linearidades 

decorrentes do próprio elemento.

Os parâmetros necessários para a solução do contato são fornecidos de acordo 

com a escolha do método de solução das equações de restrição. Neste sentido pode- 

se concluir que o Método das Penalidades com multiplicadores de Lagrange foi 

eficiente na solução do problema e forneceu resultados numéricos compatíveis.

A convergência dos resultados depende dos valores dos parâmetros de con­

tato. Encontrar valores que tornam a solução convergente é uma das maiores di­

ficuldades do problema. Embora o manual de usuário ANSYS® 5.7.1, sugira um 

conjunto de valores possíveis para os coeficientes de contato, na prática, a deter­

minação destes valores é obtida por tentativas.
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O comportamento biomecânico da prótese na região de interesse (osso trabe- 

cular e cortical), nas proximidades da interface do implante e na raiz do 

dente natural, apresentou melhores resultados no modelo 2 (prótese semi rígida 

com encaixe na coroa da fixação), onde as tensões máximas no osso cortical 

(região próxima do implante) ficaram reduzidas (0,79 =  14,02MPa(modelo2) -r 

17,82MPa(modelol)) e no implante (0,98), ao passo que, aumentaram as tensões 

nos pônticos (1,96), no periodonto (2,97) e na dentina (1,13) em relação aos valores 

encontrados na prótese fixa (modelo 1).

As tensões verificadas no modelo 3 (prótese semi rígida com encaixe na coroa 

do segundo pré molar), tiveram os seguintes acréscimos em relação aos modelos 1 

e 2, respectivamente: no osso cortical (3,92 e 4,98), no implante (6,45 e 6,57), no 

periodonto (0,24 e 0,0798), na dentina (0,39 e 0,34) e nos pônticos (3,63 e 1,85).

No modelo 3, houve grande aumento de tensão no osso cortical, implante 

e pônticos, cabendo ao profissional da área de Odontologia, a decisão de contra 

indicar (ou não) a sua adoção para um tratamento odontológico utilizando este 

modelo.

Na prótese fixa (modelo 1), os maiores esforços provocados pela força de 

oclusão penalizam a região de interface do implante com o osso trabecular e cor­

tical, onde poderá ocorrer uma reabsorção óssea no local e, conseqüentemente, 

comprometer o tratamento no decorrer de certo período de tempo.

Existe uma diminuição gradativa da intensidade das tensões de Von Mises à
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medida em que se desloca em direção ao tecido ósseo apical, em todos os modelos 

estudados.

Num implante apoiado em tecido ósseo cortical, as tensões são muito maiores 

neste tecido do que no tecido ósseo medular.

Nas várias simulações executadas, as porções do osso cortical que envolve 

o pescoço dos implantes, foram as mais solicitadas. Os resultados obtidos repre­

sentam qualitativamente bem, o comportamento das próteses representadas nos 

modelos 1, 2 e 3.

Neste trabalho as maiores dificuldades foram encontradas na modelagem das 

próteses semi rígidas (modelos 2 e 3) onde foi necessário, inclusive, refinamento 

maior das malhas nas regiões de contato, para se obter a convergência dos resul­

tados.

Como continuação deste trabalho, poderia ser feito, em 3D, um estudo dos 

modelos analisados, para melhor se avaliar o comportamento biomecânico das 

próteses, com formatos diferentes de implantes e outros tipos de encaixe.

Poderiam, também, serem avaliadas outras próteses, permutando-se os pi­

lares, ou considerando-se como pilares, dois implantes ou, dependendo da região 

edêntula, considerar-se uma prótese com três pilares e em outros problemas simi­

lares apresentados pela Implantodontia. Nos vários casos, pode-se aplicar diversos 

tipos de cargas, seguindo a literatura existente, inclusive com cargas inclinadas 

(oclusão não ideal).
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Glossário

A M Á L G A M A : material restaurador composto de mercúrio e outros minerais, 

originário da mistura do mercúrio com limalha de prata e outros metais.

ÁPICE: ponta da raiz dos dentes.

A R C A D A : é o conjunto formado pelos dentes e seu respectivo osso de sus­

tentação. Existem duas arcadas: a superior e a inferior.

BIO M ATERIAIS: são substâncias bioaceitáveis usadas em enxertos e implantes. 

CEM EN TO: nome dado à superfície externa da raiz dos dentes. 

CISALH AM EN TO : ocorre quando o corpo tende a resistir à ação de duas forças 

agindo próxima e paralelamente, mas em sentidos contrários.

CONECTORES: são ligações entre os pônticos e os retentores. Podem ser rígidos 

(junta conexão) ou semi rígidos (encaixe).

COROA: é a porção visível dos dentes acima da gengiva, recoberta por esmalte. 

Também é o nome que se dá a uma prótese que visa substituir a coroa de um dente 

natural que foi prejudicada em sua estrutura.

D EN TIN A: porção do dente situada abaixo do esmalte. Quando está exposta 

gera dor como resposta a estímulo de frio ou ao calor.

ELASTICIDADE: é a propriedade pela qual um material tende a retornar a sua 

forma primitiva, quando as cargas deixam de atuar.

IM PLAN TES D EN TÁRIO S: são raízes metálicas artificiais fabricadas com o
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metal Titânio (figuras 6.1 e 6.2). Têm a forma aproximada de uma raiz dentária, 

sendo colocados dentro dos ossos maxilares. Após algumas semanas, o osso da 

pessoa se une ao implante, formando uma estrutura única, sendo por isto chamado 

implante osseointegrado. Após esta integração, a nova raiz já tem condições de 

suportar um dente, (uma coroa artificial) ou servir de base para uma ponte fixa . 

IM PLA N TE  SISTEM A B R A N E M A R K : são cilindros rosqueáveis feitos de 

Sxido de titânio (figura 6.3), biocompatíveis que se osseointegram ao osso humano. 

Esta técnica é realizada em duas etapas. Na primeira a implantação do cilindro é 

feita no osso da mandíbula ou da maxila e fecha-se a gengiva imbutindo o cilin­

dro. Seis meses depois, em média, expõe-se a "cabeça” do implante que tem uma 

superfície de engate com rosca interna onde parafusa-se um sistema de conexão e 

então será cimentado ou parafusado o dente em porcelana procurando restabele­

cer as funções do dente natural perdido: estética, mastigação, fonação e postura 

facial. O grande feito, de extraordinária importância, foi apresentado pelo Prof. 

Dr. Per-Indgar-BRANEMARK, da Suécia e colaboradores, que apresentaram, em 

1982, na Faculty of Dentistry na University of Toronto (Canadá), os implantes 

cilíndricos rosqueáveis de óxido de titânio. Estes estudos tiveram início em 1952 e 

implantados em seres humanos em 1965. A não ser por pequenas modificações esta 

técnica continua sem alterações, com 36 anos, e seu sucesso medida em 96% dos 

casos. A partir desta conferência de Toronto, as inúmeras Universidades de todo 

o mundo passaram a introduzir em seus programas esta ciência e esta técnica:

138



Sistema Branemark de Implantes.

IM PLA N T O D O N T IA : é o estudo da arte e da ciência relacionadas com a 

inserção de materiais e dispositivos com a finalidade de restaurar protéticamente 

a função e a estética do paciente desdentado total e parcial.

LIG A M E N TO  PERIO D O N TAL: é o tecido conjuntivo que circunda as raízes 

dentárias ligando-as ao osso alveolar.

M ÓDULO DE E LASTICID AD E OU M Ó D U LO  DE Y O U N G : fornece o 

grau de elasticidade de um material.

OSSO ALVEOLAR: osso com a finalidade de prender o dente à mandíbula e 

maxila.

OSSO CO RTICAL: é uma camada periférica de tecido ósseo compacto. A média 

de espessura do osso cortical é de dois milímetros.

OSSO TR A B E C U L A R : é um tecido ósseo esponjoso localizado na medula do 

osso, diferente do córtex que é compacto. Este osso é composto de uma rede de 

trabéculas contendo tecido intersticial.

PERIO D O N TO : (peri =  em redor de, odontos =  ente) compreende os seguintes 

tecidos: a gengiva, o ligamento periodontal, o cemento radicular e o osso alveolar. 

PILAR: é o dente ou um implante que serve de suporte a uma prótese.

POLPA: tecido mais interno do dente, onde encontram-se os vasos, nervos e tecido 

conjuntivo fibroso.

PÔ N TICO : é o dente artificial suspenso entre os dentes suporte.
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/   /
PRÓ TESE D E N T A R IA : a prótese dentária visa substituir um ou mais dentes 

e/ou tecido de proteção e sustentação ausentes, objetivando o restabelecimento 

do equilíbrio neuromuscular do sistema estomatognático, possibilitando o desem­

penho e manutenção de suas funções, restabelecendo o bem estar físico, mental 

e social. Os aparelhos protéticos podem ser classificados, visando os aspectos de 

fixação (próteses fixas e próteses removíveis (total e parcial) e de transmissão dos 

esforços mastigatórios (dento-suportada: prótese fixa; dento-muco-suportada: par­

cial e removível; muco-suportada: dentadura completa).

PRÓ TESE P A R C IA L R E M O VÍV E L (P P R ): é um aparelho protético que 

substitui os dentes naturais perdidos, em arcadas nas quais ainda permanecem 

alguns dentes naturais, portanto, com perda parcial de dentes. E chamada de 

removível porque pode ser retirada pelo portador no momento que este desejar. 

Toda PPR convencional necessita de grampos.

PRÓ TESE PA RC IA L F IX A  (P P F): é um aparelho que substitui um ou vários 

dentes ausentes, permanentemente unido aos dentes remanescentes e/ou implantes. 

R E A B SO R Ç Ã O  ÓSSEA: é a perda de substância óssea por um processo pa­

tológico ou fisiológico que pode estar associada ao envelhecimento, a distúrbios 

metabólicos ou trauma.

R E G IÃ O  PE R IA P IC A L : região situada envolta ao ápice radicular. 

RESISTÊNCIA: é a capacidade de um corpo de resistir à forças. 

RESILIÊNCIA: é a capacidade de um corpo de resistir ao trabalho.
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RETEN TORES: são restaurações que são cimentadas aos pilares. 

RIGIDEZ: é a capacidade de um corpo de resistir à deformação.

Figura 6.1: Secção de um implante osseointegrado
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Figura 6.2: Implantes dentários

Figura 6.3: Implante Branemark
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