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Resumo

Pacientes com auséncia de dentes postero-inferiores sao encontrados freqiien-
temente em clinicas odontoldgicas e existem varias alternativas de reabilitacao
para resolver este tipo de problema. Uma delas é o implante e a colocagao de uma
prétese fixa que une este implante a um dente natural.

O objetivo deste estudo é avaliar a distribuigao de tensoes no osso da mandi-
bula, através do Método dos Elementos Finitos, por meio de um modelo bidimen-
sional de uma prétese parcial fixa posterior quando submetida a forgas masti-
gatorias. O Método dos Elementos Finitos foi adotado para analise numérica com
a utilizacao do software ANSYS® 5.7.1, versao universitaria.

O conjunto constituido pelo primeiro pré-molar inferior, o implante osseoin-
tegrado (sistema Branemark) localizado na regido do segundo molar inferior (si-
tuados no mesmo hemi arco) e dois ponticos localizados na regido do segundo
pré-molar e primeiro molar inferior, sdo submetidos a cargas verticais sobre os
elementos desta ponte.

O modelo foi desenvolvido a partir de uma imagem radiografica digitalizada
da regiao posterior esquerda da mandibula e construido utilizando uma plataforma
CAD. Foram comparados os resultados obtidos (tensoes sobre o osso cortical e
trabecular) na regiao préxima ao ligamento periodontal (primeiro pré-molar) e na
regido préxima ao implante. A existéncia de um nivel mais alto de tensao para
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o local do implante pode resultar em perda dssea na regido, podendo conduzir o
tratamento a um fracasso. Para melhor comparar os resultados foram feitas si-
mulacoes considerando alteracOes nesta prétese, acrescentando: a) um conector
semi-rigido na regido entre o primeiro molar e o implante (segundo molar); b)
um conector semi-rigido entre o dente natural (primeiro pré-molar) e o segundo
pré-molar. Para o estudo destes modelos foi utilizada a teoria do contato.

Os modelos foram analisados considerando-se o caso de estado plano de
tensoes. Os modelos numéricos adotados, as simplificagdes consideradas, as difi-
culdades inerentes & modelagem e os resultados obtidos com o estudo das préteses
em questao (prétese parcial fixa rigida e as semi rigidas) s@o discutidos.

Para a prétese rigida, verificou-se a existéncia de maior concentracao de
tensoes na regiao 6ssea cortical que circunda o implante (parte superior); na semi-
rigida (situacdo b), as tensdes diminuiram nesta area, aumentando na regiao do
encaixe enquanto que na semi-rigida (situacao a), as tensoes aumentaram sensivel-
mente na regiao éssea cortical daquela regio.

Palavras-chave: Prétese parcial fixa, ponticos, implante osseointegrado, edentado,

ligamento periodontal, Método dos Elementos Finitos, teoria do contato.
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Abstract

Patients lacking posterior teeth are commonly found in dentist’s clinics and
there are several rehabilitation alternatives to solve this kind of problem. One
of them being the implant and the making of a fixed prosthesis connecting this
implant to a natural tooth.

The objective of this study is to evaluate the tensions distribution in the jaw
bone, through the Finite Elements Method, simulating a partial fixed prosthesis by
a bidimensional model when submitted mastigatory forces. The Finite Elements
Method were adopted with the use of the ANSYS 5.7.1 software, university version.

The group constituted by the first inferior premolar, the osseointegrated im-
plant (Branemark system) and two pontics located in the second premolar area
and first inferior molar, are submitted to vertical loads on this bridge elements.

The model was developed from a digital radiographic image of the jaw poste-
rior left area and built using the CAD platform.The obtained results were compared
(tensions on the cortical and trabecular bone) in the close area to the periodontal
ligament (first premolar) and in the close area to the implant. The existence of a
higher level of tension for the implant place may result in bone loss in the area,
leading to a treatment failure. For results best comparison was made simulations
considering an alteration in this prosthesis, increasing: a) a semi-rigid connector

in the region between first molar and implant (second molar); b) a semi-rigid con-



nector between natural tooth (first premolar) and second premolar. For the study
of these models was used contact’s theory.

The models were analyzed being considered the plain state of stress. The
numeric models adopted, the considered simplifications, the inherent difficulties to
the shaping and the results obtained with the study of the partial fixed prosthesis
and the semi-rigid ones are discussed.

For the rigid prosthesis, was verified the existence of larger concentration of
tensions in the cortical bone area that surrounds the implant (superior part); in
the semi-rigid (situation b), the tensions decreased in this area, increasing in the
fitting area, while in the semi-rigid (situation a), the tensions increased sensibly
in the cortical bone region of that region.

Key-word: Fixed partial denture, pontics, osseointegrated implant, edentate,

periodontal ligament, Finite Element Method, contact’s theory.
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Capitulo 1

Introducao

O sucesso, a longo prazo, de um tratamento odontolégico com implantes
dentarios, depende da boa osseointegracao. Tal fato é associado ao tipo apropriado
do osso com a superficie da fixagdo. Nas clinicas odontolégicas surgem, com certa
freqiiéncia, clientes com auséncia de dentes posteriores inferiores. Diz-se que estes
possuem arcadas com extremos livres, classe I e II de acordo com a classificagao
de Kennedy (1927). Estas perdas dentérias normalmente sao causadas por céries
ou problemas periodontais que estimulam uma constante busca da solugao reabi-
litadora protética ideal a ser oferecida a cada paciente. Periodonto é um tipo de
fibra que serve de ligamento entre o dente e o osso da mandibula ou da maxila,
destinado a absorver as cargas mastigatorias.

Para solucionar este problema existemn algumas alternativas reabilitadoras.

Uma delas é através de préteses parciais removiveis, porém nos casos de extremos



livres, as préteses possuem dois tipos de suporte: os dentes que no estado de nor-
malidade possuem uma mobilidade aproximada de 0,1 mm e a fibromucosa que
tem uma resiliéncia de 0,4 a 2 mm (Mensor, 1968) o que dificulta este tipo de
reabilitagdo. Outro inconveniente é que estas proteses devolvem uma eficiéncia
mastigatoria menor e também sao menos confortéveis que as proteses fixas (Aka-
gawa et al, 1989).

Outra alternativa é através das préteses parciais fixas em cantilever (balango)
(Tylman et al., 1960) que possuem um comportamento biomecanico desfavoravel
e necessitam de desgaste de alguns elementos dentarios, muitas vezes sadio, para
servirem de retentor para essas proteses.

A proétese fixa sobre implantes osseointegrados seria a melhor opgao de trata-
mento por devolver uma boa eficiéncia mastigatéria como as proéteses fixas dento-
suportadas sem ter que desgastar dentes, por ter uma menor perda éssea na regiao
ao longo do tempo e ser mais confortavel que as préteses removiveis (Akagawa et
al, 1989).

Entretanto, em alguns casos, devido & perda 6ssea, na posicao do nervo alve-
olar inferior, ou a perda de implantes, é necessario construir a uniao de um dente
com um implante que nao possui ligamento periodontal e conseqiientemente pos-
sui mobilidade bem menor do que o dente (Hobo et al., 1989; Gyllenram, 1994;
Weinberg, 1993).

E muito interessante observar como a prétese, uma vez instalada na boca do



paciente, se comporta sobre as estruturas que lhe darao suporte, ja que ela é um
aparelho mecénico que recebera cargas e que lhes adicionara cargas protéticas, ao
mesmo tempo em que funciona num meio biolégico.

Na indicacao de uma protese deve-se planejar o equilibrio entre as cargas
acrescidas e a capacidade do periodonto de sustentagao em suporta-las. Portanto,
a repercussao nos dentes-suportes, dependendo de um planejamento correto ou nao,
pode variar desde um estimulo fisiolégico até o estabelecimento de uma patologia
mais séria.

O objetivo principal de uma prétese dental é manter o equilibrio entre a
saude e a funcao do sistema estomatognatico, preservando suas estruturas, além
de proporcionar estética agradavel e conforto no uso (Lagan, 1996).

Alguns autores sugerem a separacao dessas proteses dento-implanto supor-
tada através de encaixes (conexao semi-rigida) e nao usar uma conexao rigida
(monobloco) que sobrecarregaria o implante por possuir uma mobilidade bem
menor do que o dente (Cohen e Orenstein,1999).

Outros autores sugerem que nos casos em que ha necessidade de combinagao
entre elemento dentdrio e implante osseointegrados, deve-se langar mao de uma
conexao rigida (Lum et al, 1991).

Os encaixes extracoronarios, em particular, sdo os mais indicados para atuar
como retentores de préteses parciais removiveis de extremidades livres, princi-

palmente aqueles de conexoes eldsticas, que funcionam de forma a minimizar as



tensoes ou cargas sobre os dentes-suportes.

Os encaixes extracoronarios rigidos e semi-rigidos apresentam caracteristicas
diferentes em relagao a alguns aspectos como os de natureza mecanica, localizagao,
rigidez, levando-os a atuar de maneiras distintas sobre as estruturas de suporte
(Lagand, 1996).

O objetivo deste trabalho é simular o comportamento biomecanico e avaliar
a distribui¢ao de tensoes nas estruturas de suporte de uma prétese parcial fixa de
quatro elementos que possui como pilares o primeiro pré-molar e um implante do
mesmo hemi-arco, localizado na regiao do segundo molar inferior, com conectores
rigidos, submetidos a forgas oclusais. No caso dessa prétese ser semi-rigida, onde
os encaixes foram considerados com o mesmo material das coroas (liga durea), as
folgas previstas e até toleradas fazem com que a maior parte das vinculagoes entre
os elementos se efetue por contato nesta regiao. O efeito do contato entre compo-
nentes é de dificil avaliagao, pois o sistema formado entre eles é nao-linear. Para
tanto foi utilizado o Método dos Elementos Finitos (MEF), que é uma técnica de
solugao aproximada para modelos matematicos que buscam representar o compor-
tamento mecanico dos corpos, aqui representado pela estrutura protética, sujeita a
condigdes de contorno e de carregamento, com auxilio do software ANSYS®,5.7.1,
versao universitdria. A versatilidade do MEF permite dentre outras aplicagoes, a
solucao de problemas de contato entre corpos de geometria complicada, além de

simular o comportamento de diversas classes de materiais.



No capitulo 2 apresenta-se uma revisao de literatura seguindo uma. cronologia
sobre préteses, implantes, encaixes e analises clinicas e sobre o uso do MEF na
Odontologia.

Uma revisao dos conceitos tedricos abordando equagoes diferenciais, teoria
da elasticidade e teoria do contato é descrita no capitulo 3. A teoria do contato
utilizada, baseia-se no principio dos trabalhos virtuais (Bathe, 1997), e também
3 descrita sua modelagem computacional. Devido a nao linearidade do contato,
é feita uma abordagem geral dos métodos disponiveis para a solucao de sistemas
algébricos nao lineares, bem como dos métodos para resolver problemas de fungoes
de restrigdo, impostas pelo contato (Bazaraa & Shetty, 1979).

Para avaliar a intensidade e distribuigao de tensoes em préteses dentéarias foi
usado o Método dos Elementos Finitos (MEF), descrito no capitulo 4. Ele € muito
utilizado na engenharia, e também na 4rea de satde, principalmente em medi-
cina e odontologia, para simular o funcionamento das estruturas do corpo humano
(Selna 1975). O MEF apresenta vérias vantagens com relagdo a outros métodos
quando se trata de avaliacdo da distribuigdo de tensoes durante os movimentos
mastigatorios no sistema estomatognatico. Porém, sdo ressaltadas as dificuldades
em se conseguir modelos matematicos préximos da realidade. Neste trabalho foram
necessarias algumas suposi¢oes simplificadoras em decorréncia da impossibilidade
de se copiar fielmente as estruturas e o funcionamento do corpo humano devido

A variacdo existente dentro da espécie. O MEF foi usado, por ser um método



numérico (computacional) que viabiliza a resolu¢do de problemas complexos, ob-
tendo resultados muito proximos dos reais, que seriam praticamente impossiveis
de serem solucionados teoricamente ou analiticamente.

Sabe-se que, em muitos problemas, a distribuigao de tensées nem sempre pode
ser medida fisicamente. Porém, com o MEF, esta tarefa pode ser alcangada, pois
pode-se avaliar a distribuicao de tensoes e deformagoes no elemento visualizando-se
e interpretando-se as imagens através de tabela de cores em uma etapa de pds-
processamento. E um método numérico para solucionar de maneira aproximada,
equagoes diferenciais parciais oriundas da fisica matemaética.

Uma apresentacao da pr(’)tgse parcial fixa posterior, objeto deste estudo com
sua geometria e materiais que a compoe é descrita no capitulo 5, bem como sua
modelagem computacional criada com auxilio do software ANSYS®,5.7.1, versao
universitdria. Ainda foram discutidos os resultados numéricos da simulagao para
os trés modelos de préteses: prétese parcial fixa, prétese semi rigida com encaixe
na coroa da fixacao e prétese semi rigida com encaixe na coroa do segundo pré
molar.

O capitulo 6 traz os resultados obtidos, as conclusoes e sugestoes futuras com

os modelos descritos no capitulo anterior.



Capitulo 2

Revisao da literatura

2.1 Proéteses, implantes, encaixes e andlises clinicas

Branemark et al (1969), introduziram o conceito de implantes osseointegrados.
Apresentaram estudo em caes, indicando que préteses poderiam ser suportadas
por implantes de titanio, e sugeriram seu uso em humanos. A técnica deveria ser:
1) cirurgia atraumdtica tanto aos tecidos moles como aos duros; 2) implantes
quimicamente estiveis e puros de titdnio; 3) pés cirtrgico com retalho fechado,
permitindo uma cicatrizacao onde os implantes permanecessem isolados da cavi-
dade oral, até restabelecimento da barreira bioldgica; 4) higiene oral.

Branemark et al. (1977), ao longo de dez anos, utilizando 1618 implantes
osseointegrados em 235 maxilas e mandibulas, demonstraram estabilidade de 76%

das préteses colocadas em maxila e 99% das instaladas em mandibulas. Apés



nova manipulagao e reimplantaco, outros 18% dos pacientes na maxila e 1% na
mandibula também ficaram estveis. Assim, em todo material colhido, alcancaram
uma média de sucesso de 94% para maxila e 100% para a mandibula.
Demonstraram, desse modo, ser possivel um prognéstico a longo prazo com base
em conhecimentos bioldgicos e experiéncia clinica.

Nyman & Lindhe (1979) fizeram um estudo, em que foram realizados 60 casos
clinicos de préteses extensas com miultiplos ponticos em cantilever e pilares com
grande perda éssea, na maioria dos casos, contrariando a lei de Ante.! Todas as
préteses examinadas funcionaram de 8 a 11 anos sem perder o ligamento ao redor
dos dentes suportes. Os autores salientam que o sucesso destas préteses se deu
provavelmente devido & completa eliminagao da placa e devido ao desenho oclusal
correto.

Adell et al. (1981), observaram, num periodo de de 5 a 9 anos, um grupo de
130 pacientes com préteses implanto-suportadas na regido da maxila e mandibula.
Concluiram que 81% dos implantes colocados na maxila e 91% na mandibula
permaneceram estaveis. O valor médio de perda Gssea marginal durante o periodo
de osseointegracao (18 meses) foi de 1,5 mm e nos anos subsequentes, 0,1 mm.

Borchers & Rechardt (1983), afirmaram que a auséncia de ligamento peri-

odontal nos implantes osseointegrados provoca a transmissao de cargas ao 0sso

1Diz:” A area da superficie das raizes dos apoios, deve ser igual ou superior a dos dentes que

vao ser substituidos por poénticos”



adjacente ao implante. J4, em dentigdo natural, o ligamento periodontal absorve
parte da carga e dissipa de certa forma a restante. Assim, quando cargas séo apli-
cadas sobre implantes osseointegrados, estes se comportam diferentemente que os
elementos naturais, transmitindo a carga ao tecido ésseo com maior intensidade e
alterando o fendomeno de remodelagio éssea de alguma maneira. Este fato também
foi relatado por Hobo et al. (1989).

Ericsson et al. (1986) fizeram um estudo clinico com dez individuos reabilita-
dos por proéteses fixas, suportadas ao mesmo tempo por elementos dentarios e por
implantes osseointegrados. Em seis deles foram utilizados conectores rigidos e nos
outros quatro, semi-rigidos. Estes pacientes foram avaliados num periodo de seis a
trinta meses, onde foram revelados bons resultados clinicos. Os autores discutem
as diferengas entre a mobilidade dos implantes e dos dentes, devido a presenca do
ligamento periodontal. Contudo, devido ao curto tempo de acompanhamento e ao
pequeno nimero de pacientes tratados, os autores ainda nao indicam como regra
para tratamento.

Richter (1989) afirmou que cargas horizontais ao implante causam maiores
tensoes ao osso cortical, fato este confirmado pelos estudos por elementos finitos de
Borchers & Rechardt (1983). Mecanicamente isto é desfavoravel porque as margens
do tecido ésseo precisam reagir como um elemento de suporte do implante, surgindo
assim o aparecimento de destruigao 6ssea em forma de cratera no nivel coronério do

implante. O autor sugere o estreitamento da mesa oclusal, o aumento do diametro
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do implante e o ajuste dos movimentos oclusais com liberdade, sem bruxismo,
como forma de atenuar o aparecimento de cargas horizontais.

Van Rossen et al (1990) e Clelland et al (1991), estudando implantes de
formas diferentes, avaliaram a dissipagdo de cargas para o osso suporte. Con-
cluiram que as tensoes criticas concentravam-se na crista éssea, e que as mais
baixas concentravam-se na regiao apical do implante, na posigao estudada.

Patterson et al (1992) estudaram através de andlises tedricas de um modelo
idealizado, a fadiga dos parafusos que compéem o conjunto dos implantes dentais
osseointegrados. Os principios de engenharia mecéanica mostram a importancia
da pré carga (tensdo) inicial existente entre os parafusos deste sistema. Quando
um sistema é construido com implantes suficientes e equidistantes, a resisténcia
a fadiga é de aproximadamente 20 anos. Este valor cai drasticamente quando as
condigbes prescritas nao sao satisfeitas.

Akagawa et el. (1992), através de estudo tridimensional, analisaram a inter-
face implante/Gssea de um implante osseointegrado. Verificaram que esta poderia
ser afetada conforme a intensidade da carga mastigatéria. A biomecéanica da in-
terface contribui para o sucesso de um tratamento, porém uma mesma magnitude
de carga pode gerar efeitos diferentes nesta interface, em fun¢ao de sua diregao.

Nevins & Langer (1993) publicaram estudo da aplicagdo de implantes os-
seointegrados na regiao posterior da mandibula. Acompanhados por sete anos, en-

contraram uma média de sucesso de 95,5% para os 551 implantes posicionados na
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mandibula, e 97% para as 247 préteses instaladas em 200 pacientes. Comprovaram
assim, a viabilidade técnica em questao.

Walton & MacEntee (1993) fizeram um estudo com 29 pacientes que rece-
beram 32 préteses implanto-suportadas (12 fixas e 20 removiveis) colocadas sobre
107 implantes. Apesar do curto periodo de acompanhamento observaram que as
préteses removiveis necessitaram de mais ajustes e reparos do que as proteses
fixas. Salientaram que estas consideragoes deveriam ser levadas em conta durante
o planejamento das préteses.

Weinberg & Kruger (1994) fizeram algumas consideragées biomecanicas
quando ha unido de um pilar dente natural e um pilar implante osseointegrado.
Revelam, neste estudo, a diferenca de mobilidade de um implante para um dente
natural devido a presenca das fibras periodontais e recomenda o uso de um encaixe
semi-rigido para prevenir a sobrecarga do implante ou do parafuso de retengao.

Ogiso et al. (1994) estudaram histologicamente as consequéncias das cargas
geradas em um implante e em dente natural. Concluiram que a longevidade de um
implante estd relacionada ao mimero de implantes, seu comprimento, seu didmetro,
tipo de prétese utilizada e & capacidade de receber cargas oclusais.

Breeding et al. (1995) comentaram a respeito da uniao de dentes naturais a
implantes osseointegrados através de préteses parciais fixas e discutiram a diferenga
de mobilidade entre eles. Citaram que alguns autores defendem o uso de uma

conexdo rigida e outros, da semi-rigida. Este estudo ”in vitro”mostra o funciona-
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mento de uma prétese com conector rigido e outra com conector semi-rigido.

Richter (1995), desenvolveu um aparato capaz de quantificar as cargas oclu-
sais sem alterar a dimensdo vertical. Pela técnica, um transdutor era colocado
diretamente sobre o implante ou dente natural ”in vivo”. Implantes isolados na
regiao de molares e pré-molares geraram forca vertical maxima de 120 a 150 N. A
mastigacao em oclusao céntrica gerou uma forgca de aproximadamente 50 N, para
ambos os pilares natural ou implante. Prematuridades menores que 200 ym na
superficie oclusal nao foram significantes em relagao ao aumento da forca vertical
gerada pelos implantes. Assim, o autor concluiu que o elemento intra mével de
absor¢ao de carga dos implantes pode n&o ser necessario, uma vez que a resiliéncia
axial é menor que 100 pm.

Ingber & Jansen(1997), comentam a diferenca bioldgica existente entre um
dente natural que possui ligamento periodontal e um implante que relativamente
nao possui movimento no osso. Esta conexao teria como consequéncia a migragao
apical do dente natural, recomendando uma conexao rigida, acreditando que a
uniao implante-dente deve ser evitada sempre que possivel e explicam que os dentes
nao podem ajudar os implantes, mas podem prejudicé-los e afirmam que implantes
ndo ajudam os dentes, mas podem tolera-los. Salientam que com os avangos das
técnicas cirdrgicas, se existe um espago para um pontico entao existe espago para
um implante, havendo poucas 4reas onde os implantes nao podem ser colocados.

Lindh et al. (1997), sugeriram um tipo de encaixe para uniao dente-implante,
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pois, segundo os autores, frequentemente o seio maxilar e o nervo alveolar inferior
dificultam a colocagao de implantes na regiao posterior. Porém com a confecgio de
proteses fixas unindo dente a implante, pode-se restaurar até a regidao de segundo
pré-molar.

Chen et al. (1999), estudaram a partir de dois modelos tridimensionais da
mandibula, um para anélise global e outro mais detalhado somente da regiao retro-
molar, onde foi colocado um implante usado para ancoragem ortodontica. Este
trabalho enfatiza a tens@ao ao redor e entre as roscas do implante, para futura
comparagao com dados histomorfométricos existentes nos estudos clinicos.

Borges et al. (2001), descrevem a respeito da conexao dente-implante, fazendo
uma revisao da literatura, abordando aspectos técnicos e biomecanicos desta uniao.
Os autores acreditam que este tipo de tratamento € vidvel e defendem uma conexao

rigida entre os pilares.

2.2 O uso do Método dos Elementos Finitos na

Odontologia

Em 1971, Farah & Craig estudaram, através da anélise fotoeldstica, a distribuicao
de tensdes sobre a superficie de uma prétese fixa de ouro com quatro elementos. A

magnitude da forca e o comportamento da prétese dependeram do suporte ofere-
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cido pelas raizes dos dentes-suportes. Quando as raizes destes estavam muito bem
adaptadas ao seu revestimento, as préteses funcionaram como uma viga engastada
nas duas extlfemidades. Quando as raizes dos dentes eram adaptadas de forma ape-
nas razoavel ao seu revestimento, a prétese funcionou como uma vig;cm engastada
em apenas uma extremidade.

Farah et al.(1973), realizaram um trabalho comparativo entre os métodos
de elemento finito bidimensional e a fotoelasticidade. Verificaram que as tensoes
desenvolvidas em restauracoes de cavidades de classe 1I, mostravam-se de forma
clara, visivel através das franjas coloridas fotoelasticas, podendo ser avaliadas do
ponto de vista qualitativo, ao passo que, pelo MEF, a avaliacao é mais detalhada
quanto ao completo estado de tensdes que se processa no modelo pesquisado. Su-
geriram, ainda de forma indelével, que a associagao dos dois métodos, permite um
melhor entendimento da distribuigio das tensGes, quando uma restauragao dental
é submetida a agao das cargas mastigatorias.

Thresher & Saito(1973), empregaram o MEF para verificar a distribuigao das
tensoes geradas num incisivo central superior integro, homogéneo com um nao ho-
mogéneo, onde foram computados os respectivos médulos de elasticidade de suas
camadas internas, e verificadas suas repercussoes no ligamento periodontal e osso
alveolar. Observaram que quando uma carga é aplicada perpendicularmente ao
longo do eixo do dente, as tensoes sao transferidas ao osso, ao redor da raiz, provo-

cando tracdo e compressao e que, o ponto de transicao entre estas duas tensoes
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localizou-se a meio caminho da raiz, enquanto que os maiores deslocamentos ocor-
reram na metade superior do dente.

Farah & Craig(1974) propuseram um estudo para determinar a distribui¢ao
de tensao num primeiro molar, utilizando trés terminages marginais a saber: chan-
fro, ombro biselado e lamina de faca, utilizando para tanto o MEF . Verificaram
entao que o chanfro apresentou menor quantidade de tensao axial, radial e de cisa-
lhamento na margem, seguido do ombro biselado e da lamina de faca. Compa-
rando com o método da fotoelasticidade ou com outras medidas de forga, os autores
concluiram que o MEF tem a vantagem de fornecer mais detalhes na avaliacao da
tensao no modelo dentario.

Selna et al.(1975) utilizaram o MEF para estudar as tensoes geradas em
um segundo pré-molar superior submetido a forcas oclusais, tanto em idealizagoes
planas como axissimétricas. Os autores observaram que este método tem sido larga-
mente aplicado em estudos de engenharia e mecéanica estruturais e que é bem
apropriado para andlise de tensdes em dentes e restauragoes porque pode simular
fielmente as geometrias, cargas e diferentes materiais utilizados.

Kitoh et al.(1977), estudaram através do MEF, o comportamento mecéanico
do modelo de primeiros pré-molares inferiores, com ligamento periodontal e osso
mandibular. Verificaram que, sob carga oclusal, o ligamento periodontal apre-
senta grande capacidade de suporte para o dente. Sob carga horizontal, no sentido

vestibulo-lingual na regiao corondria do dente em questao, o fulcro se localiza na
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regiao do tergo apical. Concluiram que este método é muito melhor que a fotoe-
lasticidade e que o indicador de tensdes(strain gauge).

Corréa & Matson(1977), introduziram o MEF num trabalho sobre tensées
desenvolvidas num dente restaurado com amalgama, de prata sob a acao de uma
carga mastigatoria de 240 N. Compararam a metodologia utilizada com a fotoelas-
ticidade bi e tridimensional, reafirmando que a fotoelasticidade apresenta andlise
qualitativa das tensGes no interior das estruturas, sendo muito dificil de se obter a
quantificagao das tensoes.

Aydilink & Akay(1980), observaram que a distribuigao de tensoes a partir da
aplicagdo de uma carga oclusal era mais uniforme quando uma camada resiliente
era usada na base da prétese em relagdo a base de uma prétese convencional.
O deslocamento vertical do rebordo foi menor quando utilizada a base resiliente
comparada & base de prétese convencional. Essa pesquisa, com auxilio do método
de anilise bidimensional dos elementos finitos, demonstrou que a camada resiliente
funcionava como um amortecedor de choque, preservando assim o osso suporte.

Williams et al.(1987), analisaram a partir de um modelo bidimensional, de
uma Secgao Vestl'bulo—lingua.l de um molar, a distribui¢ao das tensoes através do
MEF, variando a extensao da restauragio. Este modelo foi submetido a uma carga
de 100 N distribuida uniformemente ao longo das inclinagoes da superficie oclusal.

El Charkawi et al.(1990), propuseram uma medificagdo para os implantes

osseointegrados colocados na extremidade distal que necessitavam ser unidos a
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dentes naturais. Para compensar a diferenca entre a movimentacgao do dente na-
tural dada pelo ligamento periodontal e a deformagao elastica minima do implante
osseointegrado, foi proposta a utilizacdo de uma camada de material resiliente para
envolver o intermediario do sistema de implante, a fim de imitar a movimentagao
natural. Para esse estudo os autores utilizaram o MEF e enfatizaram a vantagem
deste método por nao necessitar de experimentos em animais ou testes clinicos. No
entanto, propoem que para interpretacao dos resultados, nao devem ser ignoradas
experiéncias clinicas conseguidas no decorrer dos anos.

Goel et al.(1990), descreveram, observando e comparando um modelo axis-
simétrico com elementos finitos bi e tridimensionais, que as tensoes principais
méaximas sdo de tragdo e as tensOes principais minimas sdo de compressao. A
mais importante indicagdo clinica consequente deste estudo é que o esmalte e a
dentina, embora organicamente unidos, respondem diferentemente as cargas masti-
gatérias. Apesar destes tecidos serem suportes entre si, podem reagir as tensoes
independentemente.

Holmes et al.(1992), utilizaram o MEF no sistema de implante IMZ (4.0
por 13.0 mm) restaurado com uma coroa de ouro e avaliaram a influéncia do po-
lioximetileno (POM) no elemento intramével(IME), entre a parte fixa do implante
e a prétese, com o intuito de imitar o movimento permitido pelo ligamento peri-
odontal e complexo alveolar, quando submetido a forcas verticais e obliquas.

Observaram que a concentragao de tensdo no osso e nos componentes do sistema de
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implante foram maiores quando submetidos & cargas obliquas (30°), que quando
sujeitas a cargas verticais. A transmissdo de tensdo ocorreu principalmente na
regiao da crista 6ssea dos implantes e esta tensdo nao foi reduzida com o uso do
elemento intramével do polioximetileno comparado ao titanio e a méxima tensao
ocorreu no parafuso de fixacao.

Aydin & Tekkaya (1992), analisaram quantitativamente a distribuigdo de
tensoes e deflexoes geradas por diferentes carregamentos sobre os elementos su-
portes de uma prétese parcial fixa de trés elementos e com dois tipos de suporte
periodontal, através do MEF, em modelos bidimensionais. Consideraram os ma-
teriais elasticos, homogéneos e isotrépicos. Analisaram quatro diferentes tipos de
cargas: 1) uma forca distribuida de 600 N; 2) concentrada néo axial e; 3) forca
axial de 300 N; 4) carga vertical de 300 N concentrada no centro do péntico. Ve-
rificaram que as tensoes cresceram na prétese parcial fixa com decrescente suporte
periodontal e foram notados aumentos criticos para concentragoes nao axiais de
carga sobre o molar, e que o pré-molar exerceu maiores pressoes durante carrega-
mentos oclusais (exceto axial) no tecido ésseo alveolar, do que o molar.

Sakaguchi & Borgersen (1993), fizeram um estudo avaliando o comporta-
mento biomecanico dos componentes de uma, coroa implanto-suportada, utilizando
o MEF para modelos bidimensionais e concluiram que uma analise de contato nao
linear dos componentes do implante é benéfica, que as andlises lineares nao simu-

lam o comportamento de contato e resultam em uma elevada distribuicao de
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tensoes em regioes onde ocorréncias de falhas clinicas sdo relatadas. Simularam
o aperto do parafuso de ouro retentor da coroa e aplicaram uma carga axial na
ponta de cispide. O carregamento na ponta de cispide resultou na separacao do
contato entre: 1) parafuso de ouro retentor e o intermedidrio e 2) coroa e inter-
mediario. Ciclos de carregamentos e descarregamentos repetidos resultaram numa
alternancia de contatos e separagbes entre a base da cabega do parafuso reten-
tor e a coroa. Relatos clinicos de perda e falhas nos parafusos provavelmente sao
resultados destes eventos de separagoes e elevadas cargas no parafuso.

Reitz(1994), sugeriu que no ato da colocacao da prétese proviséria ou defini-
tiva sobre os pilares implantados, as cargas deveriam ser transmitidas no sentido
axial ao longo do eixo do implante. Forcas de tor¢ao lateral deveriam ser evi-
tadas. Afirmou também que a forga oclusal poderia ser a mesma apresentada pela
denti¢ao natural sem causar dano.

Lewinstein et al.(1995), mostraram um novo sistema (IL system) para suporte
de extensao distal de prétese em cantilever onde usava um pequeno implante e um
encaixe especial tipo bola e analisaram um modelo bidimensional através do MEF
deste sistema: o osso ao redor e uma prétese no sistema convencional. Observou
que o uso desse sistema de suporte para extensao distal diminuiu drasticamente
a tensdao no o0sso, na prétese cantilever e nos implantes. Sugeriram que este novo
sistema seja recomendado para pacientes desdentados totais e parciais.

Sakaguchi & Borgensen (1995), através de um método de andlises de con-
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tatos nao lineares de elementos finitos, estudaram o mecanismo de transferéncia
de carga entre os componentes protéticos causados por uma aplicacao de torque
nos parafusos usados para uniao dos componentes.

Akpinar et al. (1996), compararam a distribui¢ao de tensao de dois implantes
osseointegrados com formatos diferentes usados como pilares posteriores de uma
prétese fixa, sendo o pilar anterior um dente natural. Foi usado neste estudo, im-
plantes ITI l(par?.fuso oco) e o ITI 2(parafuso macigo). Observaram que o parafuso
macico apresentava menor concentragao de esforcos ao redor do implante. O au-
tor salienta a dificuldade técnica da confecgao do modelo matematico do parafuso
oco, que foi composto de duas partes separadas na regiao do apice, o que pode
ter causado valores um pouco maiores nesta area. Estes resultados foram obtidos
através do MEF com modelo bidimensional.

Kamposiora et al. (1996), usaram o MEF de andlise bidimensional para
avaliar a distribuicao e os niveis de tensdao em uma prétese parcial fixa de trés
elementos (do primeiro pré-molar ao primeiro molar inferior) usando diferentes
materiais (liga de ouro tipo III, Dicor e In-ceram) e com diferentes espessuras de
conectores (3.0 e 4.0 mm). A maior tensao ocorreu na regiao dos conectores e a
tensao foi de 40% a 50% menor para os conectores de 0.4 mm. Os niveis de tensao
dentro do modelo de in-ceram foram menores do que nos outros materiais.

Papavasiliou et al. (1996), estudaram a concentracao e distribuicao de tensoes

em quatro diferentes combinagdes pilar-restauragao usando implantes Branemark



21

sob forgas mastigatérias de 200 N sobre os intermedirios usando duas posicoes
diferentes do parafuso de fixacao e duas posicoes das margens das coroas cimen-
tadas versus parafusadas. Os modelos com parafusos sobre os pilares tiveram menor
tensao e melhor distribuicdo de tensdo que aqueles onde os parafusos se encon-
travam numa posicao mais interna. As préteses parafusadas e com margens de
coroas curtas tiveram maiores indices de tensao. Para este estudo foram utilizados
modelos bidimensionais dos elementos finitos.

Lagand(1996), estudou através do MEF de andlise bidimensional, o com-
portamento biomecanico das estruturas de suporte e da prétese parcial removivel
de extremidade livre, com encaixe extracoronario rigido e semi-rigido. Nesse tra-
balho foram utilizadas trés radiografias panoramicas, aleatérias, de pacientes da
clinica odontolégica da Faculdade de Odontologia da Universidade de Sao Paulo,
para a determinacao da proporcao dente/altura da mandibula e utilizado os dados
da literatura para se obter as dimensoes anatomicas da coroa e raiz do primeiro
pré-molar inferior no que se refere a altura e largura.

Sertgoz(1997), avaliou o efeito de trés materiais diferentes para superficie
oclusal (resina, resina composta e porcelana) e quatro materiais diferentes para a
infraestrutura (ouro, prata-palddio, cromo-cobalto e liga de titinio) e observou a
distribuicao de tensoes numa prétese fixa inferior suportada por seis implantes e no
osso ao redor dos implantes, quando o sistema recebe uma carga oclusal vertical

de 172 N distribuida em todos os dentes. Conclui-se que néo houve diferencas
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substanciais em relagdo a distribuicio de tensoes no tecido dsseo, esponjoso e
cortical ao redor do implante e que a tensao se concentrou no parafuso de retengao
das préteses, aumentando o risco de falha. A melhor combinacao de materiais
encontrada, do ponto de vista biomecanico, foram os materiais mais rigidos: cromo-
cobalto para a infraestrutura e porcelana para a superficie oclusal. Para este estudo
foi utilizado o MEF de analise tridimensional.

Menicucci et al. (1998), analisaram tridimensionalmente a distribuicdo de
tensoes pelo MEF no osso ao redor de dois implantes usados para reter uma protese
total inferior sujeita a cargas mastigatérias de 35 N na regiao do primeiro molar,
usando dois sistemas diferentes de ancoragem: bola e barra-clip (Nobel Biocare).
Observaram que o sistema barra-clip apresentava maiores tensoes no osso em torno
do implante. Contudo, os autores salientaram que este resultado foi obtido através
de modelos matemadticos que ndo podem representar a complexidade biolégica.

Sendyk (1998), analisou a distribuigao das tensoes nos implantes osseointe-
grados variando o diAmetro do implante e o material da coroa protética, através
da anilise nao linear pelo MEF. Observou com relagdo a distribuicao de tensoes
na estrutura do tecido dsseo, que quanto maior o didmetro do implante, menor
ser4 o valor das tensoes geradas no osso cortical, e também nao encontrou grande
diferenca com relacao aos dois tipos de material restaurador (porcelana e comp6me-
10), € que em todas as situacoes a regido préxima do pescogo dos implantes foram

as mais solicitadas, diminuindo 4 medida que caminhamos em direc¢ao apical.
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Ulbrich (1998), estudou a distribuigao de tensoes, através do MEF bidimen-
sional, nos implantes restaurados com uma coroa de ouro onde era alterado o
elemento intramével (em titanio ou polioximetileno) e um terceiro elemento de-
nominado IMC (em titanio ou polioximetileno), foram aplicadas cargas no sentido
axial e obliquo. Concluiu-se que as tensbes sdo sempre maiores no carregamento
obliquo do que no carregamento axial, com isto a deflexdo da estrutura ocorre
principalmente quando da utilizagdo do IME, neste caso o parafuso de fixacao e o
corpo do implante receberam maiores tensces. Com a utilizagdo do IMC h4 uma
diminuicao de tensoes no parafuso de fixagdo. Outro fato importante encontrado
na pesquisa é que nao houve diferenca significativa nas tensoes transmitidas ao
osso de suporte com a utilizagao de qualquer um dos elementos intraméveis. Con-
cluiu também que os maiores picos de tensdo ocorreram no parafuso de fixacao e
no tampao em resina.

Cohen & Orenstein (1999), discutiram a combinacado de implantes e dentes
como pilares de prétese fixas afirmando que os dentes naturais tém aproximada-
mente de 100 a 200 pm de mobilidade devido a presenga do ligamento periodontal,
e os implantes osseointegrados devido a intima relagao com o tecido ésseo tem
uma mobilidade de aproximadamente 10pm, desta forma durante as cargas masti-
gatdrias sobre esta ponte fixa o implante seria sobrecarregado.

Sugeriram, entao, uma conexao semi-rigida em que a parte fémea é colocada dentro

da coroa do implante e o macho unido ao pontico.
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Lacerda (1999), avaliou o comportamento biomecénico das estruturas de su-
porte e da prétese parcial removivel apoiada sobre implante na regido distal com
auxilio do MEF, sob aplicagao de cargas verticais, variando as conexdées entre dente
suporte e prétese parcial removivel, bem como entre implante e prétese parcial re-
movivel e observou que o encaixe rigido entre o dente suporte e a prétese parcial
removivel, em relagao ao semi-rigido, transmite maiores tensoes no dente suporte
e diminui as tensoes sobre a fibromucosa e sobre o implante. Observou também,
que uma vinculagao articulada entre implante e prétese parcial removivel diminui
o momento fletor transmitido ao implante e aumenta as tensoes na fibromucosa e
dente suporte. Para este estudo foram usados programas COSMOS/M e FELT.

Nishimura et al. (1999), observaram, através da fotoelasticidade, duas préteses
fixas, tendo como pilares um dente (pré-molar inferior) e dois implantes osseointe-
grados situados na regido do extremo livre e variando o tipo de conector, rigido e
semi-rigido, entre os implantes e o dente. Submeteram estas préteses a cargas verti-
cais, recomendando que a sele¢ao dos desenhos dos conectores deveria ser baseada
na saude periodontal dos dentes e no suporte fornecido pelos implantes.

Yang et al. (1999), analisaram o nivel de tensao nos dentes e estruturas de
suporte de uma prétese parcial fixa e verificaram como a adigao de pilares multiplos
na prétese fixa altera as tensoes e sua deflexao. Observaram que: 1) a perda de
suporte ésseo aumentou a deflexao e tensao na estrutura; 2) com a confecgao de

uma prétese parcial fixa houve uma redugao da tensao e deflexao das estruturas
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de suporte; 3) foi encontrada concentragéo de tensao nos conectores das préteses e
na area da dentina cervical perto da regido do espago protético; 4) com os dentes
esplintados diminuiu a deflexdo e a tensdao nas estruturas de suporte, mas foi
observado um aumento de tensdo na prétese; 5) aumentando o niimero de pilares
unidos nao resultou na redugao de tensao proporcional no periodonto.

Cimini et al. (2000), discutiram diversas medidas encontradas na literatura
de cargas atuantes nos dentes humanos, para diversas situagoes. Os valores encon-
trados foram comparados com aqueles adotados em diversos trabalhos de simu-
lacao via MEF. Os autores citaram que na literatura estudada que as cargas de
mordida em humanos podem variar significativamente. Por outro lado, analistas
responsaveis pela modelagem matematica de problemas envolvendo dentes teriam
maior confianca nos resultados da anélise caso os dados de entrada de cargas em
seus modelos pudessem ser mais precisos. Com esse tipo de ferramenta disponivel,
profissionais poderiam embasar suas decisoes clinicas de uma maneira mais rea-

lista.



Capitulo 3

Revisao de conceitos teoricos

Este capitulo apresenta uma revisao de alguns conceitos tedricos, constando de
equacoes diferenciais, teoria da elasticidade e teoria do contato, que poderao au-

xiliar na leitura de alguns topicos deste trabalho.

3.1 Equacoes diferenciais

O conjunto ‘de equagoes diferenciais que rege os fendmenos fisicos € bem vasto e
muitas dessas equacoes, quando somente duas varidveis independentes estao pre-
sentes, sao casos especiais da equacao linear homogénea de segunda ordem geral,
isto é,

0%u 0%u 0*u

+c-— +2d Ou + 2e Ou
O0x? 0zdy oy? Oz oy

+ fu =0, (3.1)
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onde a, b, ¢, d, e, f podem ser constantes ou fungoes de x e y.
De momento, nota-se que a forma da equagao (3.1) se parece com a de uma secgao

coOnica geral:

az® + 2bzy + cy® + 2dz + 2ey + f = 0. (3.2)

Esta equacio representa uma elipse, quando tomar valores positivos (ac — b > 0),
pardbola, quando tomar valores nulos (ac — b = 0), ou hipérbole, para valores
negativos (quando ac — b%* < 0). Usando-se uma classificagao semelhante para a

equacao diferencial 3.1, diz-se que ela é do tipo:
e eliptico, quando ac—b? > 0,
o parabélico, quando ac — b? =0,
e hiperbélico, quando ac — b? < 0.

A equacao de Laplace a duas varidveis:

o o _
o2 = Oy?

0 (3.3)
pode ser obtida dea equagéo (3.1), fazendo-sea=1, b=0,c=1,d=e=f=0e
como ac — b%* > 0, % do tipo eliptico.

Alguns dos problemas mais comuns da fisica-matematica podem ser representados

por equagdes que sao classificadas em trés grandes classes, cada uma representada

por um tipo de fen6meno bem particular:
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1. Equagoes elipticas:

2. Equagoes parabdlicas:

% - % =0 (II)
3. Equagoes hiperbdlicas:

% - % = (I11)

As equagoes elipticas sao representativas dos problemas de potencial que
aparecem nos estudos em regime permanente na eletricidade, na mecanica (de-
formagdo de um sélido, escoamento laplaciano de um fluido) e nos problemas
térmicos (distribui¢do de temperaturas). Este tipo de equacao estd associado a
problemas de valor de contorno em regime estaciondrio, ou seja, a problemas de

equilibrio. As condigoes de contorno sao normalmente do tipo:

e Dirichlet:  u(s) = u, = f,(s) (condigbes de contorno essenciais)

o Neumann: 2% = f,(s) (condigdo de contorno natural)
e Mista: u(s) + 24(s) = fols)

As equagoes (II) sdo representativas dos problemas de propagagcao de calor, de
difusao, de probabilidades, etc. As condigbes de contorno associadas a equacao sao
de dois tipos: Dirichlet, Neuman ou mista sobre a fronteira do dominio e condigao

inicial ¢t = 0 em todo o dominio.
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As equagoes (III) caracterizam o fenémeno da propagacao das ondas, sejam
elas vibratérias do tipo mecénica ou eletromagnéticas. As condigbes de contorno
associadas sao aquelas do dominio relacionadas as condigoes de Cauchy ao instante
inicial.

Os problemas elipticos sao caracteristicos da analise de fenomenos de regime
permanente, fendmenos do tipo estatico (sem variagdo temporal) ou varidvel no
tempo segundo uma funcdo conhecida. Os problemas parabdlicos ou hiperbdlicos
sao ligados ao estudo de regime transitorio e sua resolugao permite analisar a
evolucao de um fendémeno fisico no decorrer do tempo.

O MEF é um método aproximado de solugao de equagoes diferenciais. Para
melhor entender o método, considera-se o seguinte problema modelo (apresentado

por Becker, Carey & Oden ([30]): achar uma fungéo u(z) € C*(0,1) tal que
—u" +u=uz, 0<z<l (3.4)
- com u(0) = u(1) =0 (forma forte)
Sua forma variacional (ou fraca) consiste em achar u(z) € H tal que
1
/ (—u"(z) + u(z) — x).v(z)dz =0, Yve H (3.5)
0

onde H é o conjunto das fung¢oes quadrado integraveis:

H={v=v(a:)|/0 v dx < oo}

10s conceitos do Célculo variacional podem ser encontrados em Elsgoltz,1969 ou Gelfand e

Fomin, 1963
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Ou equivalentemente (integrando-se por partes), deve-se achar u(z) € H*, de modo
que

1
/ (u'v' + uv — zv)dz = 0, Vv € H} (3.6)
0

onde a funcao integranda apresenta-se na forma simétrica.
Desse modo, na resolugdo do problema (3.4), considera-se a forma dada em
(3.6), utiliza-se as idéias do Método de Galerkin (Zienkiewicz, 1980; Becker, Carey

e Oden, 1986) propondo-se as seguintes fungoes aproximadoras, para u(z) e v(z):

u(z) = Zaidh-(w) (3.7)

v@) = ) Bidi() (38)

de modo que encontrar u(z) e v(z) resume-se em achar os escalares o; e 3;, onde
o conjunto @1, @a, @3, ..., ¢, * linearmente independente e forma uma base para o
espaco de H}, e (3; sao escalares. Os o; sao conhecidos como graus de liberdade da

aproximagao. De (3.7) e (3.8) temos que:
V(@) = 3 ored(z) (39
P ‘dx

v(z) = Zﬁj%@(-’ﬁ) (3.10)
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Substituindo-se esses valores em (3.6), tem-se:

[ [(;;3 i - i(@)) (Z B2 g@)) + (Z s@)8:2)) (32 Bitr(2)) -

3=1

z(i ﬁquj(m))] dz =0, Vve H! VB(3.11)
j=1

Reagrupando-se os termos, encontra-se:

Z(Z Kijo; — Fj)@’ =0, Vg (3.12)
=1 =1

onde

K, = /0 1 (%@(x).d%qu(x)+¢>,-(x).¢j(z)) dz (3.13)

F;, = /0m¢j(x)dx (3.14)

Portanto:

iimjai -F;=0, 4,j3=12,....n

j=1 i=1
~Ka=F=a=K'F (3.15)
em que K 3 uma matriz simétrica (conhecida como matriz de rigidez) e F 2
conhecido como vetor de carga. Desde que as fungoes ¢; sdo conhecidas, os nimeros
K;; e F; podem ser calculados diretamente pelas equacdes (3.13) e (3.14).
O MEF propoe uma técnica para construir as funcoes aproximadoras de
Galerkin em problemas de valor de contorno. A idéia principal é que as fungoes

bésicas ¢; podem ser representadas por polindmios em intervalos limitados por nés
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nas subregioes do dominio, de forma que sejam unitarias num determinado né e

nula nos demais. Especificamente se z; é a coordenada do né j, entao:

1, se1=7

¢i(z;) =
0, sei# ]
Para o problema modelo o dominio pode ser, por exemplo, particionado
em quatro intervalos iguais, denominados de elementos e denotados por 2;, ¢ =

1,2,3,4. O comprimento de cada intervalo é representado por h, conforme figura

3.1.

Figura 3.1: Partigao do intervalo [0,1] em quatro elementos finitos

Elementos Q ; Q ) Q 3 Q A

® \ 4

Nés 0 1 2 3 4 X

A colecao dos elementos e os pontos nodais sobre o dominio do problema
aproximado é denominado de malha dos elementos finitos. Para construir as fungoes

bésicas, adota-se o seguinte critério fundamental:

e Elas sdo geradas por fungoes polinomiais definidas nos intervalos, elemento

por elemento, sobre a malha dos elementos finitos.

e As funcoes bésicas sao elementos da classe H_.
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e Devem ser escolhidas de forma tal que os parametros «; definidos para a

solugao aproximada de u(z) sao os valores de u(z) nos pontos nodais.

Se no problema modelo (3.4) tomar-se a fungao bésica

¢i(z) =ax + b,

tem-se nos nos i e j, respectivamente:

di(z;) =az; +b=0

Representado matricialmente por:

-1

a z; 1 1
b CEj 1 0
-1
a =
CL’j Z;
e
b= —2
.’Ej — T;
Tem-se também que
¢i(z;)) =az; +b=0
e

¢(z;) =azx; +b=1
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cuja representacao matricial é:

a z; 1 0
b CI?j 1 1
1
a=
T; — I
e
b= —
T; — T
Desse modo, ¢ (z) = z em ©, , ¢1(z) = —z+2 em ), e suas derivadas, ¢(z) =1

em Q; e ¢ (z) = —1 em € sdo quadrado integréveis em [0, 2h], (onde h = 3).

De modo andlogo obtem-se as outras fungdes bésicas ¢o(z) e ¢3(z) no intervalo

0,1].

Assim, o célculo de K;; e F; 3 obtido por:

K;; = /01 (d’;‘f’; + ¢z’¢j> dr = 24:/9 (d’;(f?;' + ¢i¢j) dz (3.16)
=170

onde fQ representa, a integracio sobre o elemento §2,. Analogamente,

4
F, = Z F* (3.17)
e=1
onde
FF = / x¢; dx (3.18)

e F° constitui os componentes do vetor de carga do elemento finito 2.
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O erro cometido na aproximagao por elementos finitos é uma fungéo e, definida

como a diferencga entre a solucao exata e a solugdo aproximada;
e(z) = u(z) — un(x)

Como o método é aproximado, haverd sempre um residuo que, espera-se, seja o
minimo possivel. Para avaliar esses erros, ( segundo Becker, Carey e Oden(1986),
no MEF, é comum utilizar-se trés normas para quantificd-los nas aproximacoes: a
norma da energia: || € ||g; norma L2 || e|lp e norma do maximo: | € ||co-

Para o problema modelo (3.4), a norma da energia é a raiz quadrada de duas

vezes a energia de deformagao?:

e llz= ( /o 1 [(€'(2)* = (e(2))] diB)% (3.19)

A norma L? $% a raiz quadrada da média quadrada da fungao e é definida por:

let=( [ (@) dm)%, (320)

e a norma do maximo é o valor absoluto maximo da fungao e(x):

I € llo= max | e(z) | (3.21)

0<z<1

Se o dominio do problema é discretizado por uma malha de elementos finitos
consistindo de elementos de igual comprimento h, pode-se refinar esta malha por

valores decrescentes de h e consequentemente aumenta-se o nimero de elementos

2Dada por U = %fol (W)? —u?|dz
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da malha. Calculam-se limites sobre o erro, obtido numa determinada norma, e

vélida para h muito pequeno através da expessao:

lell< Ch, (3.22)

onde C é uma constante dependente dos dados do problema e p é um inteiro
que depende das fungoes bésicas escolhidas na aproximagao do elemento finito. O
expoente p € a taxa de convergéncia do método em relagao a norma adotada. Se p
% positivo, o erro || e || aproxima-se de zero com h tendendo a zero, e quando isto
acontece, diz-se que a aproximacio converge para a solugdo exata com respeito a

norma escolhida.

3.2 Teoria da Elasticidade

3.2.1 Estado plano de tensoes

Muitos problemas praticos tridimensionais, sob certas hipdteses podem ter sua
formulagao simplificada resultando numa modelagem de problemas bidimensionais.
Estes sio os chamados problemas planos: estado plano de tensoes (plane stress),

estado plano de deformagdes (plane strain) e problemas axissimétricos.
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No estado plano de tensoes pode-se considerar por exemplo, uma chapa fina
(corpo B), de espessura t, constituida de material isotrépico eldstico linear, com
modulo de Young E e coeficiente de Poisson v , sob a agao de forcas atuantes
paralelas ao seu plano e distribuidas uniformemente ao longo de sua espessura

(figura 3.2).

Figura 3.2: Estado plano de tensoes

Y

- - - . - - - o e - -

Considera-se a chapa referida a um sistema de coordenadas cartesianas or-

togonal XOYZ, onde o plano XOY coincide com o plano médio da chapa (figura
3.3).

Figura 3.3: Plano médio de uma chapa

Neste caso, as componentes de tensoes atuantes fora do plano de definicao da

chapa assumirao valores insignificantes quando comparados aos valores daquelas
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atuantes em tal plano, e podem ser desprezadas (ou seja, o modelo matematico
admitira que as tensoes 0, =0 ,7,, =0 e T,,—9). As componentes de tensoes atu-
antes resumir-se-ao a duas tensoes normais o, e 0,, e uma tensao de cisalhamento

T2y todas atuando no plano XOY. As figuras 3.4 e 3.5 mostram tais componentes

atuando em um paralelepipedo infinitesimal.

Figura 3.4: Tensoes normais

t 1

- |
1 T
ot ——
1
1
1 —t—p O,
dy | < ! :
]
“—t+ 4 __] T
7 |

-,
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Figura 3.5: Tensoes de cisalhamento
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A representagao da chapa fina pode ser feita por intermédio de seu plano
médio €2 (figura 3.3) submetida a um carregamento atuante em sua dire¢ao, com-
posto pelo sistema de cargas F' = {b, p} onde b é uma carga de corpo distribuida
na sua superficie e calculada por unidade de comprimento normal ao plano e p,
uma carga de linha, atuando num contorno lateral (denominado de I') da chapa
e prescrigao de deslocamentos homogénea do tipo bilateral u; = 0 em pontos de

I'; do contorno.

3.2.2 Cinematica

Hipdéteses simplificadoras da cinematica:

1. Fibras paralelas ao plano médio ou se alongam ou se encurtam.

2. Seccoes planas e normais ao plano médio da chapa permanecem planas e

normais a tal plano, apds a deformacao e paralelas as posigoes indeformadas.
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3. Secgoes paralelas permanecem paralelas apds a deformagao.

3.2.3 Campo de deslocamentos

Adotadas as hipdteses do item anterior, o campo de deslocamentos possivel é o que
admite o ponto P(z,y) distante da origem, apés a transformacao, posicionado em
P'(z+u,y+v), ou seja, as componentes u e v do vetor deslocamento d segundo os
eixos OX e OY sao fungdes dependentes apenas de x e y. Na forma vetorial, tem-se
que d = {u(z,y) v(z,y)}*. O conjunto U de todos os campos de deslocamentos
constitui um espago vetorial com o seguinte produto interno: < u,v >= [, u.v d.
As restrigbes que poderao serem impostas ao campo de deslocamentos sao: bila-
terais (aquelas em que se o deslocamento estd impedido numa direcao, entao estard
impedido na dire¢ao oposta) e homogéneas (sdo as que impoe deslocamentos nulos

nos pontos de impedimentos z;).

3.2.4 Componentes de deformacao

Segundo Green(1968), na teoria infinitesimal, assume-se que as componentes do ve-
tor deslocamento (d = {u v}T) e suas derivadas em relagao aos eixos coordenados
e em relagao ao tempo t, sao pequenas, de forma que pode-se negligenciar os termos
nao lineares se comparados com os lineares. As componentes do vetor deslocamento

podem ser representadas por funcdes continuas na forma u = u(z,y) e v = v(z,y).
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Toma-se um paralelogramo infinitesimal de lados paralelos aos eixos coordenados
com comprimentos dx e dy conforme figura 3.6. Com a deformagao do continuo,

ocorre variacao no comprimento dos lados e nos angulos entre eles.

Figura 3.6: Retangulo infinitesimal

-

dx

v

Deformacao na direcao do eixo OX:

Figura 3.7: Deformacao na diregao do eixo OX

l

Para pequenas deformacoes, o alongamento unitdrio ou deformacao linear
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unitéria na diregdo OX é a razao Ou/0z. Assim obtemos a equagao:

ou Au
— — = lim — 2
= Br  som0Az (3:23)
onde € representa o alongamento unitirio e y é a deformacao angular.
Deformacao na direcao do eixo OY:
De modo anélogo, temos:
A
e, =2~ fim 2 (3.24)

= — = 1im —
ay Ay—0 Ay

Figura 3.8: Deformagao na diregao do eixo OY

|- =

s) i
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Interpretacao das expressoes (1.1) e (1.2): Um ponto genérico P(z,y) da
chapa desloca-se a P'(z + u,y+ v) quando o corpo se deforma. O deslocamento
d pode servrepresentado pelos seus componentes u e v, nas diregoes OX e OY,
respectivamente. Se forem conhecidas as fungoes que fornecem os deslocamentos
u e v para todos os pontos da chapa, conforme figura 3.9, pode-se calcular as

deformagoes €, e ¢,, por intermédio das derivadas das fungoes que fornecem

u e v, nas expressoes (3.23) e (3.24).

Figura 3.9: Deslocamento de um ponto P

v4

LSl

v

Deformacao angular ou distorgao

As deformagées normais calculadas por (3.23) e (3.24) justificam-se pela agao
das tensoes normais. Por outro lado, as tensdes de cisalhamento acarretam dis-
torcoes, isto é, variacoes na forma do elemento infinitesimal (figura 3.10).

Para pequenas deformacoes, o deslocamento dos pontos da linha AC ¢ pa-
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Figura 3.10: Deformacao angular

ou D’

—

ralelo ao eixo OX. Nestas condicoes os angulos sao pequenos e a deformagao angular

no eixo OY sera dada por:

NCCI—@( ~ tany;)
’Yl—AC—ay’Yl— Y1)-

Da mesma, forma, a distor¢ao angular no eixo OX serd dada por:

NBB’_@'U( ~ tans)
72_A3_6x72— Y2)-

Assim o elemento que era inicialmente retangular, sofreu distor¢ao, mudando sua

forma, e os lados nao formam mais um angulo reto. Esta distor¢ao é dada por:

M+ Y2 = Vay-

Portanto,

ou Ov

_ou Ov 2
Yay ay+ o (3.25)
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Pode-se escrever as relagdes deformagoes-deslocamentos na forma matricial:
e =0.d,

onde

d = {u(z,y) v(z,y}"

3.2.5 Esforcos internos

A existéncia de esforgos internos fica evidente quando observa-se que ao submeter-
se um corpo deforméavel a acoes de forgas externas, suas particulas permanecem
unidas. Portanto alguma forca interna deve ser responsivel por esse fenémeno.
Para o problema plano de tensdes, o trabalho interno, realizado pelos esforcos

internos W; em consequéncia de um campo de deformagbes virtuais gerado a
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partir de um campo de deslocamentos virtuais, é definido por:
W;=— / 0.6 dB (3.26)
B

num corpo B. Desenvolvendo esta integral, para o problema plano tem-se:

0 \
5
m:iﬂlxa’%7”> se, | d2dz (3.27)
~3

&hy/

que resulta em:

W;=—t / (05.0e5 + 0y.06y + Toy.06cy) dx dy (3.28)
Q

para toda deformagao virtual de,, de, € 07y

3.2.6 Trabalho externo

E realizado pelas forcas externas F = {b,p}, em consequéncia de um campo de

deslocamentos virtuais du, e é definido por:

We=/b.5udxdy+/p.6udF (3.29)
Q r

para todo deslocamento virtual du, onde a carga de corpo (figura 3.11)

b= { bie) 1) b

estd distribuida na superficie média 2 e a carga de linha p estd aplicada no

T .
contorno I', p= { p(z,y) py(z,9) } :

O trabalho externo também pode ser definido por W, =< F, du >.
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Figura 3.11: Cargas de corpo e de superficie

3.2.7 Equacgao constitutiva

Para um material isotrépico elastico linear submetido a processos isotérmicos e

adiabdticos, ha uma relagao linear entre tensoes e deformagoes definida por:

oc=D.e (3.30)
onde
1 v O
E
D= —
) v 1 0
0 0 i

2
Esta relagao é conhecida como ”Lei de Hooke”, (matematico inglés Robert

Hooke (1635-1703)). As relagbes lineares entre as componentes de tensao e as

componentes de deformacio sao conhecidas como lei de Hooke. Assim, no caso

particular de um problema unidimensional, tem-se:

o, = FEey (3.31)
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para deformagoes no eixo OX, onde E é o médulo de elasticidade do material.
Um elemento alongado na direcio OX é acompanhado por uma contragao lateral,

que é uma fragao da deformagao longitudinal. Essa fragao constante é chamada de

coeficiente de Poisson v. Logo

€y
=3 3.32
ou ainda:
Ey = 1/.——(;; (3.33)

Se o elemento estiver submetido simultaneamente & acao das tensdes normais o,
e 0, uniformemente distribuidas sobre as faces, o cdlculo das deformagoes merece
atencao especial. Devido & contracao lateral na direcao OX, esta deve ser descon-

tada da deformacdo em OX calculada por (3.31). Portanto:

Oz oy
. Ty 3.34
“=F "E (3.34)

Usando o mesmo raciocinio na diregao OY:

g Oy
8y = Ey - V.E (335)

As tensoes de cisalhamento atuantes no elemento produzem distorcoes, em que
Ty = G-Yay, (3.36)
onde

=517 (3.37)



49

% 0 médulo de elasticidade transversal, de rigidez ou de elasticidade ao cisa-

thamento. Entao tem-se:

T 204+v) 1
oy = 2 = AL )T (3.39)

As equagtes (3.34), (3.35) e (3.38) podem ser representadas na forma matricial,

para futura aplicacao do MEF:

€z \ 1 —v 0 \ Oz
1
e | Tl v 1 0 oy (3.39)
Yoy / 0 0 2(1+v) } Try
Ou ainda:
( O / 1 v O €z
E
oy | 71,2 v1 0 Ey (3.40)
KTxy \0 0 1—_2_'4) Yzy
Portanto (forma compactada):
{0w} = [D]{e@un} (3.41)

onde a expressdo do primeiro membro representa a matriz de tensdoes num ponto
P(x,y), [D] é a matriz de elasticidade e {¢(z4)}, a matriz das deformagoes no
ponto P(x,y). A relagdo 3.41 traduz a correspondéncia entre tensoes e deformagoes
em qualquer ponto P(x,y) do elemento, sendo denominada de equagao constitu-
tiva para o material isotrdpico eldstico linear submetido a processos isotérmicos e

adiabaticos.
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3.2.8 Equilibrio

Diz-se que um corpo plano encontra-se em equilibrio com o sistema de forgas
F = {b,p} se, para todo deslocamento virtual du que satisfaca as condigoes
cinematicas de contorno, a distribui¢ao de tensoes o, associada ao sistema de cargas
5 tal que

Wi+ W, =0 (3.42)

para todo du (Principio dos Trabalhos Virtuais - PTV), ou seja:
—-t/ o.dedz dy + / b.dudz dy + /p.éu dl' =0, Y du (3.43)
Q Q r

Nesta equagao o € a tensao associada a deformacao € pela equagao constitutiva.
Tem-se entao, que o trabalho virtual dos esforgos internos generalizados e das
cargas aplicadas é nulo para toda acdo virtual de deslocamento admissivel. Usando
em (3.43) as relagbes: 0 =D.e, e € = [0]u, onde 0 3 o operador diferencial que

depende da natureza do problema (se for unidimensional, 0 = %), tem-se:

—t/ﬂ([@]u)T.D.([a]du) dz dy + /Q(tsu)T.bdm dy + /F(éu)T.de =0, v du

(3.44)

3.2.9 Tensoes principais

Tensoes principais sao aquelas que assumem valores maximo ao longo de uma

direcao e minimo ao longo da outra. Estas duas diregoes sao ortogonais e nao
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Figura 3.12: Tensoes principais

existem tensoes cisalhantes. As tensoes principais o, e g, sao obtidas por:

o:+o0o Oz — O,

01 = Omaz = = ¥4 \/(T”V + 7 (3.45)
oz + oy Oz = Oy 2

02 = Omin = 9 = (_—2 ) +*> Tzy (346)

Por meio da cunha (figura 3.12), podem ser deduzidas as tensoes principais, mas
as tensoes desenhadas aqui nao sao necessariamente as principais. Enquanto que

a maxima tensao cisalhante é fornecida por:

_oi—0y_ [0z—0y,
nae = D57 = [ Ty, (347
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3.2.10 Critério de escoamento

Existem diversos critérios que procuram avaliar a condicao de escoamento dos
materiais. Dentre estes, pode-se destacar o critério de Von Mises: (Richard Von
Mises, especialista em Matematica Aplicada (1883-1953)). Este critério baseia-se
na determinacao da energia de distorcao de certo material, ou seja, da energia

relacionada com as mudangas na forma do material. Neste critério, interessa a

Tequ = |/ Eéfﬁ (3.48)

e o material é considerado no regime eldstico enquanto 0.4, < oy, onde oy * a

tensao equivalente:

tensao de escoamento do material, determinada num ensaio de tracao.

3.2.11 Equacoes que governam o problema

A prétese parcial fixa posterior estudada neste trabalho é composta de diversos
componentes estruturais (dente natural, ponticos, periodonto, osso cortical, osso
trabecular, implante e dentina). Esses componentes ocupam dominios €2, de con-
torno I', que estao sujeitos as cargas de corpo e superficie, b e p, respectivamente.
Estas cargas causam deslocamentos u e deformagoes € no sistema. O equilibrio
dos componentes estruturais da prétese parcial fixa posterior, é regido pelo PTV
(forma fraca da equagao de equilibrio) representado pela equagao (3.43), que se

apresenta desenvolvida abaixo:
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—t [(05-065 + 0.0y + Tyy.064,) dx dy +t Jo(bz0ug + byduy) dx dy +
Jo(pzbus +pybu,)dT =0 Vou,, du,

(varidveis: tensdes 0, 0, € Tyy)

Logo:

—t[fQ((E%oz + ,%Txy + bz)0us + (%Gy + 2 1oy + by)Suy) dz dy) +
Je(pobu, + pybu,)dl =0 Vou,, du,

Aplicando-se resultados do calculo variacional, chega-se ao sistema de equagoes:
(

0 0

! (3.49)

0 0 —

que sao as equagoes de equilibrio, ponto a ponto, do modelo geométrico da prétese

parcial fixa posterior, objeto deste estudo. Pode-se escrever que

divo+b=0 (3.50)

3.2.12 Equagoes de compatibilidade

A formulagao matematica da condicao de compatibilidade da distribuigao de tensoes
com a existéncia de fungoes continuas u e v definindo a deformagao, serd obtida a
partir das equagoes 3.23, 3.24 e 3.25. Estas trés componentes de deformacao que
sao expressas por duas fungoes u e v ndo podem ser tomadas de forma arbitraria,

e existe uma relagao entre as componentes de deformagao, obtidas a partir dessas
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equagoes. Assim, deriva-se a primeira equagao duas vezes em relagdo a y, a se-
gunda, duas vezes em relagao a x e a terceira uma vez em relacao a x e outra em

relagdo a y, para se encontrar (no estado plano):

O, 0%, 0y
oy 0z Ozxly

(3.51)

Esta equacéo diferencial de segunda ordem, denominada de condigao de com-
patibilidade, precisa ser satisfeita pelas componentes de deformagao para assegurar
a existéncia de fungoes u e v relacionadas com as componentes de deformagao

representadas pelas equacgoes 3.23, 3.24 e 3.25.

3.2.13 Resumo das equagoes

Sintetizando-se, tem-se as seguintes equagoes:

1. Deformacgoes:

€, = 2
| &=2 (3.52)

2. Constitutiva:

1 v O
=D de D=2 v 1 0 (3.53)
o0 =D.e, onde —(1_’/2) .
0 0 1—-v

3. De equilibrio:



divd+b=0

4. De compatibilidade:
O, 0%, 0%y

0y? + oz 0z0y

5. Condicoes de contorno:

e Dirichlet:

I
IS

ur,

e Newmann:

0’1’\2 = 0’1‘~2

3.3 Teoria do Contato

39

(3.54)

(3.55)

(3.56)

(3.57)

Dois corpos em contato podem apresentar movimentos relativos de escorregamento,

de rolamento e/ou de giro. Na regido de contato entre dois corpos, hd uma interagao

entre as superficies, resultando na transmissao de cargas e momentos de uma para

outra. Se o contato entre os corpos for elastico, forcas de atrito poderao se ma-

nifestar desde que exista deslizamento significativo entre as duas partes. A lei

de atrito de Coulomb é utilizada para representar o atrito entre superficies em

contato, se houver deslizamento relativo significativo de um corpo em relagao ao

outro (Bathe, 1997).
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Sejam dois corpos eldsticos, 1 e 2, em movimento relativo tal como ilustrado
na figura 3.13, que os levara a manterem entre si um contato no tempo t. O dominio
(2 é formado pelos dominios €2, e 2, enquanto que o contorno I' é constituido pelos

contornos I'; e I'y respectivamente, e a superficie de contato desconhecida a prior:

3 representada por I'..

Figura 3.13: Corpos em contato

Cargas de superficie
P

Restri¢cdo
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Considera-se que o contato entre os dois corpos eldsticos ocorrera ao longo
de uma certa 4rea de contato I'}2, em 1, e ['?!, em 2, como é mostrado na figura

3.14.

Figura 3.14: Contato

Tempo 0+—<

Tempo t
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O equilibrio na configuracao deformada podera ser determinado pelo PTV.
A consideragao do contato entre dois corpos leva a adi¢ao de parcelas de cargas
ao sistema, além das forgas de corpo b e de superficie p. Tais forcas atuarao como
contribuicao as cargas de superficie.

Assim as forcas de contato [f.] s@o adicionadas & equagao (3.43):

2 2 2
Z/a.ésszZ{/b.éud9+/p.5udl‘}+2{
=179 L=1 /& r L=1

A equagao (3.58) é valida para todo deslocamento virtual compativel imposto na

e f, dI‘c} (3.58)

Te

estrutura. O contorno I' de cada corpo pode ser considerado em duas partes: I'y
onde sao prescritas as tracoes, e I';, regido onde atuam as forgas de contato. A
regiao de contato ndo é conhecida a priori, sendo sua determinagao uma etapa
necessaria da andlise. Considerando f!2 como o vetor de forgas na superficie de
contato no corpo 1 devido ao contato com o corpo 2 e f2! o vetor de forgas de

superficie no corpo 2 devido ao contato com o corpo I, tem-se que f!* = — 2,

como na figura 3.15.
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Figura 3.15: Representagao de forgas em contato

Superficie de contato

f!‘l

Superficie alvo
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As superficies I''2 e I'*! sao denominadas de par de superficies de contato, I'2
$ convencionalmente chamada de superficie de contato (contact surface) e I'*!, de
superficie alvo (target surface). Estas superficies podem n&o ter necessariamente
o mesmo tamanho. Decompondo as forcas de contato f!2 que agem na superficie
"2 em componentes normais e tangenciais sobre os vetores unitrios n e s na
superficie I'?!, tem-se:

f22 =X n+cs

onde A\ e ¢sao as componentes das forgas de contato normal e tangencial. Portanto

pode-se escrever que:

A= (f1*)"m;
c=(f1*)7T.s

Para definir os valores das componentes nas diregdes de n e s, considera-se
um ponto genérico X no tempo ¢ na superficie I''? e toma-se um ponto y*(z,t) de

I'! (figura 3.16) que satisfaga
| z —y"(z,1) ||l2= minger={|| z — y ||2}
Assim, a distancia do ponto x até I'?'! $ dada por:
gn(z,t) = (z —y") n

onde n é o vetor unitério utilizado em y*(z,t).
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A fungao g, ¢ a fungao gap, na dire¢cao normal, para o par de contatos.
Assume-se que, quando g, > 0, nao ha contato entre os corpos, havendo contato
quando g, = 0 e penetragao quando g, < 0. Esta tltima situacao nao é permitida

e deve ser eliminada. Desse modo, as condigoes de contato normal sao:
>0, A>0; gnA=0 (3.59)
Figura 3.16: Quantidades de contato (BATHE, 1997)
Corpo 1

cs r‘u

An

Corpo 2

Considerando-se que du' e Ju? sao as componentes dos deslocamentos virtuais
nas superficies de contato dos corpos I e 2, respectivamente, a parcela correspon-

dente ao contato na equagao (3.58) pode ser subdividida como:

6u1f12 dr'? 4 5u2f21 dr2! — 6u12f12 dr? (3.60)

riz r21 riz
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onde du'? = Jul — Su?.
As condigoes de atrito, descritas pela lei de Coulomb, serao incluidas no

contato entre duas superficies pelo coeficiente de atrito p e define-se a grandeza

adimensional 7 :

N
D)
(com A > 0)

onde p.)\ 3 a resisténcia do atrito. A amplitude da velocidade tangencial relativa é

dada por:
(2,1) = (B 0y = @)1 )75

correspondente ao vetor tangencial s em y*(z,t), onde u(z,t).s * a velocidade
tangencial no tempo t do ponto material em y* relativa ao ponto material em x.

Com estas defini¢oes, a lei de atrito de Coulomb fica:
|7|<1 (3.61)
onde :
l7|<1 = u=0 e |7|]=1 = sinal(d) = sinal(7) (3.62)

A solucao do problema de contato é a solugao do PTV da equagao (3.58) sujeito
as condicdes das equacoes de compatibilidade (equagao (3.59)) e levando em conta

as leis de atrito (equagao (3.61) e (3.62)).
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3.3.1 Forcgas de contato

Figura 3.17: Elemento de contato bidimensional

1;"1 (N6 de contato)

/ J
I
(Nos target)

Havera supostamente penetragao quando o né de contato M ultrapassa a
superficie definida pelos nés alvo I e J (figura 3.17). Esta penetracao é repre-
sentada pela grandeza g e é uma violagao de compatibilidade. Para satisfazer a
compatibilidade de contato, sao desenvolvidas, nos nés alvos, forgcas na diregao da
normal n que tendem a reduzir a penetracao a valores numéricos aceitaveis. Além
das forgas de compatibilidade, forgas de fricgao sao desenvolvidas nas direcoes que
sao tangentes ao plano alvo. As for¢as normais e tangenciais sao referenciadas em
relacao ao sistema de coordenadas local XY. Duas das abordagens existentes para
satisfazer a compatibilidade de contato (forgas normais) serao descritas a seguir:

o método da penalidade e a combinagao da penalidade com os multiplicadores de
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Lagrange. O método da penalidade impde a compatibilidade através da rigidez de
contato (pardmetro de penalizacdo). A combinagao desta com multiplicadores de
Lagrange satisfaz a compatibilidade com uma precisao definida pelo usuério pela
adicao de forgas de contato de Lagrange. Para o método das penalidades, o valor

da forga nodal que ocorre na interface do contato na diregao normal é dado por:

kn.gn se g, <0
fo= (3.63)
0 se gn > 0
onde k, 3 a rigidez normal de contato.
As forcas aplicadas ao n6 de contato M sao equilibradas por forgas aplicadas aos
n6s da superficie alvo I e J. Desse modo: fopm = far+ fag = fn
Se o atrito nao for considerédo, a forca tangencial nodal é nula. Com a consideracao

do atrito eldstico de Coulomb, a forga nodal na direcdo tangencial na interface do

contato é:

ks.ué < F. fs se de adesao
fs= (3.64)

fs se de deslizamento

onde F é o fator de relacao entre o atrito estético e o dinamico, u¢ 2 a deformagao
tangencial eldstica. A varidvel f, % a forca limite de adesdo do modelo do atrito de
Coulomb, cujo valor é dado por : f, = —p.f

Para a direcio tangencial, o balanceamento de forgas nodais é similar ao das forgas
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normais:

fs,M = fs,I +fs,J = fs

3.3.2 Meétodos de solucao

1. Método dos multiplicadores de Lagrange

O método dos multiplicadores de Lagrange é mais confidvel por nao utilizar
pardmetros, como no método das penalidades, que podem provocar mau
condicionamento da matriz obtida na aplicagao da discretizagao (Bathe,1996).
Os multiplicadores de Lagrange sao coeficientes das equagdes de restrigo e
ap6s a multiplicacdo das mesmas sao adicionados ao sistemas de equagoes.
A formulagédo variacional considerada para um problema de contato de um
modelo estrutural discreto, com a utilizacao dos multiplicadores de Lagrange

possui a seguinte forma:

I, = %UTK’U, —uTF + XT(NTu — ) (3.65)

onde A % o vetor dos multiplicadores de Lagrange , N é uma matriz que
contém as condicoes cineméticas de contato e ¥ 3 o vetor das restrigoes.
Calculando a primeira variacdo desta forma (em relagdo a u e \) (3.65),

encontra-se:

Sll=Ku—F+N\+NTu—9 (3.66)
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Fazendo 611, = 0, chega-se ao sistema:

K N u F
. = (3.67)

NT 0 A Y
Nesta equagao, fica evidente o aumento da dimensao do problema pelo acrés-
cimo da parcela de forga de contato, devido aos multiplicadores de Lagrange
nas equagoes envolvidas. Os multiplicadores de Lagrange podem ser combi-
nados com o método das penalidades com algumas vantagens. Para o método

combinado, a componente de forga do multiplicador de Lagrange é calculada

localmente para cada elemento iterativamente como:

fr=min(0, kn.gn + Ait1)

onde A1 é a forca dos multiplicadores de Lagrange na iteragao i+ 1. O valor

desta forca é determinado por:

Xit+aky,.g, se|gnl|>e€
Aip1 = (3.68)
Ai se|gnl|<e

sendo a um fator computado internamente, o < 1; e € a tolerancia de com-

patibilidade, definida pelo usurio (constante FTOLN, no ANSYS 5.7).

. Métodos de solugao de sistemas nao-lineares

O sistema de equacgdes algébricas para o contato, independentemente do

método utilizado para imposicao das restrigoes, é nao-linear. Os métodos
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desenvolvidos para resolver sistemas nao-lineares podem ser explicitos (sem
a montagem de matriz) ou implicitos (com a montagem de matriz), incremen-
tais, iterativos ou mistos (Cook, 1989). Os métodos incrementais aproximam
o problema nao-linear por uma série de problemas lineares. A carga total apli-
cada é subdividida em pequenos incrementos, que podem ter ou nao o mesmo
tamanho. Cada incremento é resolvido como se fosse linear, por métodos con-
vencionais. O processo é repetido até completar a carga total aplicada e a
solugao é dada pela soma de todos os deslocamentos incrementais encontra-
dos. A matriz de rigidez é obtida como tangente a curva forga-deslocamento

nos pontos desejados, como se observa na figura 3.18.

Figura 3.18: Solucdo - método incremental para uma carga (COOK, 1989)

P

") T 3.
Ap,
Pl....... 2,/ A

Ap,
P A/ i

E E . Ap,
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Este método produz uma solugao que nao se aproxima adequadamente da
solugao exata, devido aos erros acumulados nos incrementos. Os métodos
iterativos aplicam sucessivas iteragoes na solugao até que o equilibrio seja

alcangado para o carregamento total aplicado.

. Método de Newton-Raphson

O método de Newton-Raphson como pode-se observar na figura 3.19 (Cook,

1989) é também iterativo.

Figura 3.19: Newton-Raphson para uma carga P, (COOK,1989)

»
O uA u1 u2 uB u
r Au1 L] Au2 1

Neste método, a matriz de rigidez tangente é inicialmente considerada cons-

tante, e o deslocamento encontrado, em geral nao satisfaz as condicoes de
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equilibrio. Em cada iteracao, calcula-se uma parcela de carga desbalanceada
que serd utilizada para computar um incremento adicional aos deslocamen-
tos. Na iteracao seguinte, a matriz tangente sera atualizada e uma parcela
da carga desbalanceada sera encontrada novamente, repetindo-se o processo
até que os valores de desbalanceamento ou os deslocamentos adicionais,
se aproximem de tolerancias que permitam a satisfacao das condicoes de

equilibrio (ou até que se obtenha a convergéncia).

O método de Newton-Raphson modiﬁcadq ou da Rigidez Inicial segue o
mesmo procedimento, diferindo apenas no fato de nao atualizar a matriz
de rigidez ou atualizé-la raramente, isto implicaria na necessidade de mais
iteracoes em cada passo de carga, At, e por este motivo, tal alternativa
nao foi empregada. Os métodos Quasi-Newton utilizam a matriz rigidez se-
cante para as iteragoes, ao invés da matriz rigidez tangente, com vantagens
computacionais e de estabilidade nos passos da iteracao. Os métodos mistos
associam os métodos incrementais e os métodos iterativos. Neste trabalho foi
utilizado o procedimento de Newton-Raphson incremental com a atualizagao

da matriz de rigidez em cada iteracgao.



Capitulo 4

Método dos Elementos Finitos

4.1 Breve histoérico

Conforme Assan (1999), hi mais de dois mil anos, filésofos gregos ja haviam elabo-
rado teorias nas quais supunham que todas as coisas eram formadas por intimeras
particulas. Assim, Leucipo e Demdcrito estabeleceram que tudo era constituido por
um nimero infinitamente grande de particulas denominadas de atomos. Eudéxio,
criador do método da exaustdo, que consiste em inscrever e circunscrever figuras
retilineas em figuras curvilineas, ji pensava dessa forma, em discretizar a figura
continua para facilitar certos calculos.

Esse método permitiu que fossem calculadas areas de figuras curvas e volumes
de sélidos como esferas e cones. Ele é equivalente a passagem ao limite do célculo

diferencial e integral. Na década de 1930, McHenry e Hrennikoff substituiram um
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elemento estrutural continuo como, por exemplo, uma placa, por uma estrutura
formada por barras seguindo a geometria original, mantendo as mesmas condigoes
de vinculacao e cargas. Esses métodos, que originaram a analise matricial, embora
considerem o meio continuo discretizado por elementos de rigidez e elasticidade
conhecidas, nao apresentam o aspecto conceitual implicito no MEF. Este consiste
nao apenas em transformar o sélido continuo em uma associagao de elementos
discretos e escrever as equagoes de compatibilidade e equilibrio entre eles, mas
admitir fungoes continuas que representam o campo de deslocamentos no dominio
de um elemento e, a partir dai, obter o estado de deformacoes correspondente
que, associado as relagoes constitutivas do material, permitem definir o estado de
tensoes em todo o elemento. Este estado de tensoes € transformado em esforgos
internos que estao em equilibrio com as agoes externas. Essa formulacao provém
do método de Rayleigh-Ritz que se baseia na minimizagao da energia potencial
total do sistema, escrita em fun¢ao de um campo predefinido de deslocamentos.

Em 1943, Courant, matematico de renome, aplicou esse procedimento no
estudo da torgao de Saint-Venant de secgoes vazadas. Esses trabalhos eram pouco
valorizados naquela época, pois nao haviam computadores capazes de generalizar
e resolver grandes conjuntos de equacées algébricas simultaneas. Assim, nao é
acidentalmente que o desenvolvimento do MEF coincida com maior avango dos
computadores digitais e linguagens de programagao.

Em 1953, engenheiros ja haviam escrito equagoes de rigidez em forma ma-
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tricial, resolvendo-as em computadores. A maior parte deste trabalho foi utilizada
na industria aeroespacial (na época um problema grande tinha cem graus de liber-
dade). Ainda neste ano, na companhia de aviacdo Boeing, Turner sugeriu que
elementos planos triangulares fossem usados para modelar a fuselagem de aero-
naves. Quase que simultaneamente um trabalho similar foi publicado por Argyris
e Kelsey na Inglaterra.

O MEF teve sua formulagao estabelecida na forma como é hoje conhecida
com a publicacdo do trabalho de Turner, Clough, Martin e Topp, em 1956. Clough,
autor do nome (Método dos Elementos Finitos, em contraposigao aos elementos
infinitesimais do calculo diferencial e integral), descreve em detalhes sua parti-
cipagao no desenvolvimento deste método em artigo publicado em 1980.

Um grande nimero de programas de elementos finitos em computadores
emergiu no final das décadas de 1960 e 1970, onde destacaram-se o ANSYS, ASKA,
STRUDL, ADYNA e NASTRAN, que sao munidos de pré-processadores (para os
dados de entrada) e pés-processadores (para avaliagao dos resﬁlta,dos). Esses pro-
cessadores tornam mais facil, rdpida e barata a anélise pelo método dos elementos
finitos. Atualmente, existem muitos programas computacionais comerciais de uso
corrente em diversas dreas do conhecimento que utilizam esse método para anlises
linear e nao-linear.

O MEF, inicialmente concebido como um artificio matemaético para calculo de

estruturas, tornou-se poderosa ferramenta para resolugdo de equagoes diferen-
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clals parciais, tao comuns na fisica dos meios continuos. Seja na mecanica dos
sélidos ou dos fluidos, na termofisica, no eletromagnetismo dos campos estaticos
ou de propagagao, o MEF representa uma ferramenta quase universal para a pré-
determinacao do comportamento fisico dos objetos em estudo.

Nas préximas subsecoes, serao descritos, sumariamente, as aproximagoes co-

mumente empregadas em programas de elementos finitos.

4.2 Elementos finitos unidimensionais

Trata-se, neste topico, do aspecto numérico, envolvido nas técnicas de aproximacgao
que visam, a partir de uma discretizacdo, determinar as solugoes de sistemas
continuos. Cada segmento desta discretizagao passa a ser chamado de elemento e
definido por funcoes de forma que descrevem seu comportamento entre sua origem
e extremidade. Os pontos que limitam os elementos finitos sdo chamados de nés.
" Adota-se para o problema, inicialmente, a aproximagao do tipo nodal de um
dominio €2, para em seguida aplicar este tipo de aproximagao em seus subdominios.
A aproximacao nodal em subdominios é chamada de aproximacao dos Elementos
Finitos.
O.uso do conceito de subdominios ou elementos é estudado num espago de re-
feréncia, o que introduz os conceitos de tranformagoes geométricas de um elemento

do espaco real para o espaco de referéncia e a construcao da matriz jacobiana da
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transformagao.

Para os problemas dependentes de uma tnica varidvel z, propoe-se a inter-

polacao da forma:
N
un(z) = Zuiqbl(z)
i=1
onde os u; sao os graus de liberdade, valores nodais de u(z) do elemento e ¢; sao as

fungées de forma. Por exemplo, uma funcio interpoladora de um elemento finito

”e”, linear, unidimensional, representado por deslocamentos nodais u; 2 dada por:

T — Iy T— I
Ue(Z) = uy. + us.
Ty — T2 T2— T
sendo as fungoes de forma:
r — T2
€T) =
¢1() p—
e
r— T
po(z) =
Ty — I

Assim temos que: u(z) = u1¢1(z) + u2d(x), w1 e up sao os deslocamentos

nodais. Observa-se que:
¢1(z1) =1 ¢1(z2) =0
P2(z1) =0 ¢a(z2) =1

Uy
Matricialmente: [u] = [¢; @2
Ug

Neste exemplo, as funcoes sao facilmente construidas, mas, para um problema
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com n fungoes de forma, pode-se utilizar a férmula de interpolagao de Lagrange:

H;L=1(j;éz‘) (z — =)

¢i(z) = == i=1,2,..n
j=1(j#i)($i - z;)
Observa-se que
0 sej#i1
i(z;) =
1 sej=1

As func6es de forma assim construidas empregam o proprio sistema de coordenadas

global (x,y).

4.3 Elementos finitos bidimensionais

Embora o MEF seja geral e possa ser aplicado a qualquer problema de valor de
contorno, neste item ele serd apresentado de maneira particularizada, considerando

as variadveis nodais como sendo de deslocamento.

4.3.1 Elemento finito triangular linear

Este elemento tem como fungGes interpoladoras para os deslocamentos u e v,

polindmios do primeiro grau:

u(z,y) = ¢ + cx + c3y (4.1)

v(z,y) = cs + 52 + oY (4.2)
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Figura 4.1: Elemento finito triangular linear

conforme a figura 4.1.

Tratando-se de elemento triangular, é comum encontrar sua formulacao atra-
vés de outro tipo de coordenadas, denominadas de coordenadas triangulares ou ho-
mogéneas, em lugar das coordenadas cartesianas. O elemento é numerado seguindo
o sentido antihorario e seus lados tém nome ou indice do né oposto. Para se obter
as relacoes entre as coordenadas cartesianas e homogéneas, proceder-se-4 como em
Brebbia ([27]). Para isto, considera-se um ponto P(x,y), interno ao triangulo. As
coordenadas homogéneas podem ser interpretadas como relagoes entre as areas dos

triangulos definidos pelos nés 1, 2, 3 e o ponto P, conforme a figura 4.2. A area A,

do triangulo 1P3 é dada por:

1
Ay = §l2(¢2h2),
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Figura 4.2: Triangulo linear - coordenadas homogéneas

onde a altura desse triangulo mede ¢9h,. Como se observa pela figura, se o ponto
P coincidisse com o né 3 ou com o né 1, o produto ¢2ho seria nulo, uma vez que
nesses n6s, ¢, = 0. Porém, se o ponto P coincidisse com o né 2, o produto ¢qh,
seria igual a ho, J4 que nesse no, tem-se ¢o = 1.

De modo andlogo, tem-se para a area A; do triangulo 2P3:

1
A= 5h(gih).

Da area A do triangulo 123 tem-se que:

1 1
A - 5[2’12 - —2‘l1h1
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donde obtem-se as relagoes A;/A e Ay/A, que fornecem:

A
hr="7
€
Ay
b=

Mas as areas devem obedecer a condicao:

A=A +Ay + A3

A

=1=¢1+¢2+ a1

=>1=¢1+d2+ 3

Assim as relacdes entre as coordenadas cartesianas e homogéneas sao dadas

por:

T = $121 + T2 + P3T3 (4.3)
Y = hy1 + b2z + P3y3 (4.4)

Substituindo estas equagoes (4.3 e 4.4) em (4.1) e (4.2) e particularizando os valores

de ¢1, ¢2 e ¢3 para cada né do elemento triangular, obtém-se:

U; = €1 + CoZ; + C3Y;

v, = Cy + C5%; + Ce¥Y;
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comi=1, 2, 3.

Eliminando-se os seis coeficientes ¢;(j= 1, 2, ..., 6) das seis igualdades

implicitas as igualdades (4.3) e (4.4) e recordando que as dreas A, A;, Ay e Az sao

obtidas de:
Iz w» 1z y
_Edet 1 2o 1y |5 A1:§det 1 2y D
1 z3 y3 1 z3 y3
/ 1 z, »n 1 2y »n
1 1
Azzidet} 1 =z y | A3=§det I 22y
\ 1 z3 ys I =y
Logo tem-se que:
3
u = prur + douia + P3us = Y by, (4.5)
i=1
3
v = o1+ dova + $3vs = Y divi (4.6)
=1

Nas equacoes (4.5) e (4.6), os coeficientes ¢; sdo as fungoes de forma que
interpolam os resultados nodais no elemento finito. Assim, para ¢; = 1, tem-se

¢2 = ¢3 = 0 e os deslocamentos u tém a Variagéo mostrada na figura 4.3.
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Figura 4.3: Funcao de forma ¢,
3

1 \
\

Da mesma forma, para ¢, = 1, tem-se ¢, = ¢3 = 0 e para ¢3 = 1 tem-se

&1 = ¢ = 0 (figura 4.4).
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Figura 4.4: Fungao de forma ¢;

Matricialmente, as equagoes (4.5) e (4.6) podem ser representadas por:

( )

uy
U1
u ¢ 0 ¢ 0 ¢3 O (2
v 0 & 0 ¢ 0 o3 Vg
ug

U3

ou

u= @V (4.7)
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T
V:{Ul V1 Uz Vg9 U3 ’U3}
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As deformagoes sao obtidas com a derivagao de (4.7):

;

ou (na forma compactada):

€z

€y

k%yJ

)

I |
0
5;0
u
)
0 5
v
o 0
3, 0

{e} = [0] {u} (4.8)

Substituindo nesta igualdade o vetor u dado em (4.7), tem-se as deformagGes em

fungao dos deslocamentos nodais:

(e} =[0]{¢.V} =BV (4.9)

em que a matriz B, que relaciona as deformagtes com deslocamentos, tem a forma:

Sl

0
2
69

KA
Oz

1 0 ¢ 0 ¢3 O
0 & 0 ¢ 0 o3

(4.10)

de modo que aparecem derivadas das coordenadas homogéneas em relagao as co-

ordenadas cartesianas.
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4.3.2 Elemento triangular quadratico

Uma melhor representacao do campo de deformacoes dentro do elemento s6 é
possivel se a fungdo que exprime os deslocamentos tivesse grau maior que o de
uma. fungao linear, de sorte que suas derivadas também melhor representassem o
campo de deformagoes. Porém, uma funcao de grau maior requer um nimero maior
de coeficientes desconhecidos e o niimero destes esta intimamente relacionado ao
numero de graus de liberdade do elemento. O nimero de graus de liberdade de-
pende do tipo do problema, por exemplo, na Teoria da Elasticidade e em problemas
de estado plano de tensoes, sdo dois. O elemento triangular quadratico possui seis
nés, sendo trés situados nos pontos médios dos lados, com dois graus de liberdade
(u, v) por né, que sdo as translagdes nas diregoes de X e Y, como mostra a figura
4.5. No ANSYS® 5.7.1, este elemento é representado pelo elemento PLANE 2 que
5 utilizado para modelagem de sélidos no estado plano de tensoes, estado plano de
deformagoes e modelos axissimétricos.

Portanto, o elemento triangular de seis nés terd doze graus de liberdade,
sendo que a matriz coluna das forgas nodais e dos deslocamentos nodais terao

dimensoes 12x1 e a matriz de rigidez, 12x12, isto é:

L) G

Tendo em vista que cada elemento tem seis nés, com dois graus de liberdade

por né, os deslocamentos u e v s@o aproximados por polindmios completos do
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Figura 4.5: Elemento finito triangular de seis nés

Y4

segundo grau em x e y. Entao, propoe-se para interpolagao dos deslocamentos as

seguintes expressoes:
u = u S + upPy + uzds + uady + usPs + ueds

v = 1105 + vad§ + V3PS5 + vady + UsP + Ve

onde os coeficientes u; e v; sao escalares arbitrarios que representam os desloca-

mentos nodais. Matricialmente

{u} = {u®}(¢%)

onde

{u} = {us u,}"

eyl __
{u}*{ul Vi Ug Vg U3 Vs Ug Vg Us Us Ug 1]6}
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() = ¢ 0 ¢35 0 45 0 ¢ 0 o5 0 ¢ 0
0 ¢ 0 45 0 ¢5 0 des O ¢5 0 &5

¢ =11 +eax + ey + ey + 5172 + c1y’
@5 = c12 + C22% + €32y + CaoTy + csoT” + Coay’

¢35 = c13 + Co3T + C33Y + CasTY + N T

P = Ci6 + Co6T + C36Y + Ca6TY + cs6Z° + CopY”

Como as deformacoes podem ser calculadas pelas expressoes (4.8 e 4.9), tem-

se que
{e} = [0].(¢°)-[u] = [B].[u]
onde
2(ca1 + cary + 20512)T 0 e 0
1
[B] = 2 0 2(c31 + ez +2c61y) -+ 0 2(c3s+ caeT + 2ce6Y)
c31 + ca1x + 2c61y co1 +eny + 2c51%

3x12

(4.11)
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As deformagoes assim calculadas, variam linearmente com x e y, ponto a
ponto no interior do tridngulo bem como as tensoes o,, 0, e T, que decorrem
imediatamente do célculo das deformagoes através das equagdes (3.40).

A variagdo de o, com x deve-se, neste caso, a acgao direta da variagao de ¢,
ao longo de X, bem como devido & agao da contragao lateral provocada por ¢,.
Assim numa regido em que ocorra acentuada variagao da tensdo o, o elemento
triangular quadratico do estado plano de tensoes pode representar essa variagao,
dependendo do refino da malha.

Obviamente, em funcao do gradiente de tensoes presente, o estudo do tamanho
adequado do elemento sempre merecera cuidados ao se definir a malha em ele-
mentos finitos, pois os deslocamentos variam quadraticamente e as deformacoes
(€x = g—: por exemplo), variam linearmente. Como {oc} = E.{€}, entao, a apro-
ximagao de tensoes no interior do elemento também é linear. A partir dos deslo-
camentos nodais [u¢] pode-se calcular as deformagoes no interior do elemento por

intermédio da matriz [B]. Pela equagdo constitutiva tem-se que

{o(z,y)} = [D] {e(=,v)}
logo,
{o(z,y)} = [D].[B] {u°} (4.12)

Desse modo, as tensoes sao determinadas a partir dos deslocamentos nodais.

As forcas externas realizam um trabalho na medida em que acontece a deformacao
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do corpo. No regime elastico, essa deformagao é associada a uma ”energia de de-
formagao”, que, apds a remogao do carregamento, pode ser recuperada. O trabalho
externo é obtido por intermédio das forcas nodais e dos correspondentes desloca-
mentos, e é armazenado no elemento como energia de deformagao. Entao admite-se
uma condicao externa arbitraria imposta ao elemento, representada por um con-
junto de deslocamentos nodais e correspondentes forcas nodais atuantes. Esses
deslocamentos impostos arbitrariamente, sao os deslocamentos virtuais utilizados
na aplicacdo do Principio dos Trabalhos Virtuais (PTV)(Bathe, 1997).

O trabalho externo W, realizado pelas forcas externas
F = {b,p}
em consequéncia de um campo de deslocamentos virtuais du 3 definido por:
W, =< F,éu > (4.13)

Ou seja,
W, = / b.0u dzdy + / p.dudl (4.14)
Q r

para todo deslocamento virtual du, onde a carga de corpo b= (b;,b,) estd dis-
tribuida na superficie Q e a carga de linha p = (p,,p,) estd aplicada no contorno
I' do corpo. Da mesma forma que existem deslocamentos virtuais impostos aos nés
do elemento, a esta situacao corresponde uma condigao deformada virtual interna

do elemento. Considerando o trabalho interno verificado anteriormente sobre um
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corpo B de espessura t, tensdo 0 = {0,, 0y, Tyy }, deformagao de = {de,, dey, 04y},
onde £,y = %%y, obtém-se as equacdes que governam este problema.
O equilibrio dos componentes estruturais é regido pelo PTV (forma fraca da

equagao de equilibrio) representado pela equagao abaixo:

/65T0dQ—/éudeQ-/équdf‘:O, Yéu (4.15)
Q Q r

Nesta equacao, du 3 o vetor de deslocamentos virtuais. As deformagoes virtuais de
sao aquelas correspondentes aos deslocamentos virtuais impostos ao sistema.
Pelo PTV, para um problema no estado plano de tensoes, estado plano de de-

formagoes ou axissimétrico, tem-se que:

" / ()T D.(36u) dz dy — / (6u)T bz dy — / (ouw)Tpdl =0  Vou (4.16)

Portanto, o primeiro termo de 4.16 toma a seguinte forma:

Z t /Q [B]”.D.[B] dz dy.(u°) (4.17)

onde B é dada pela expressao (4.9).
A parcela

k¢ =t / [B]T.D.[B] dz dy (4.18)

3 designada por matriz de rigidez do elemento e, onde D é a matriz de constantes
eldsticas do material e depende do tipo da analise em questao.

Para determinar o vetor de cargas, na auséncia de forgas do corpo, calcula-se a
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integral:

1= [ Gu)lp) ar = 1wt v = [ 157 drygen),
donde chega-se a
ke ] = (£ + 1] = [£°) (4.19)

Estas matrizes elementares sao utilizadas para a montagem da matriz de rigidez
global de toda a estrutura, num processo de agrupamento das contribuicoes ele-
mentares, mais as condigbes de contorno, resultando no seguinte sistema linear de
equagoes algébricas:

KU=Fy+Fy=F (4.20)
onde Fy 3o termo fonte devido a forga de volume b, e Fy, termo fonte devido
as condigoes de contorno naturais de Neumann ou forgas de superficie. A matriz
quadrada K 3 definida positiva e simétrica em virtude da matriz D das constantes

eldsticas também ser positiva definida. Portanto, existe uma inversa K~! e os

deslocamentos nodais da solugao aproximada sao dados por

U=K'F (4.21)

4.3.3 Elemento finito isoparamétrico

Da mesma forma que é feita a aproximacao das variaveis do problema pode-se esta-

belecer aproximacoes para a geometria que sao definidas a partir das coordenadas
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dos nés. Neste caso, pode-se usar um sistema de coordenadas local denominado
por isoparamétrico, baseado num elemento padrao de referéncia. A formulagao dos
elementos isoparamétricos, publicada por Irons em 1966, permite gerar elementos
com lados curvos que modelam mais adequadamente os contornos irregulares do
modelo que se pretende discretizar. As fungoes de transformagao geométrica sao
idénticas as fungoes de interpolagao.

Para simplificar a expressao analitica para elementos de forma complexa, um
elemento de referéncia é introduzido. Seja entdo, o elemento definido num espago
nao dimensional abstrato com uma forma geométrica muito simples. A geometria
do elemento de referéncia é mapeada a partir da geometria do elemento real, usando
expressoes de transformagoes geométricas.

Um elemento finito €2, em XY é obtido como imagem sob 7, do correspon-
dente elemento padrao €2, do plano £ . A funcdo inversa T.! de Q. para Q, 3
também definida. A figura (figura 4.6) mostra um elemento finito quadrangular e
o respectivo elemento isoparamétrico.

Obter um elemento isoparamétrico a partir de um elemento quadrangular,
como o da figura 4.6 corresponde a criar um elemento de bordas curvas com seus
pontos obtidos por um mapeamento ponto a ponto a partir do elemento inicial
utilizando as fungoes de forma como fungoes mapeadoras.

A coordenada adimensional £, também chamada de coordenada natural ou

homogénea, é fixada no elemento e assim permanece, independentemente da
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Figura 4.6: Elemento isoparamétrico

&

n
('1v 1)
//
Q,
(-1,-1) (-1 t

orientacao que o elemento venha a ter em relagao ao sistema XY de coordenadas
globais.

T.:Q, =,

definida por

Te(&,m) = (x(&;m), y(&,m)) (4.22)
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e sua inversa € obtida por:
T (z,y) = (&)

onde €2, 3 representado por um quadrado com coordenadas locais £ e 7, satis-

fazendo:

Assim o ponto (1,7) € Q, 3 transformado no ponto (z = z(1,7),y = y(1,7)) no
plano XY. Porém os pontos (z(1,7),y(1,n)) definem parametricamente uma curva
no plano XY, onde 7 aparece como um parametro real.

Diz-se que esta curva define a linha curvilinea ¢ = 1 no plano XY. De maneira
analoga, temos para a linha 77 = 1, onde o elemento de referéncia é mapeado para
a curva 77 = 1 no plano XY.

A transformacao T, define a coordenada de cada ponto do elemento real X
em termos de coordenadas abstratas £ do ponto correspondente do elemento de
referéncia e depende da forma e localizagdo do elemento real. Desse modo, existe
uma, transformacao T, diferente para cada elemento real.

A idéia bésica de introduzir o elemento de referéncia pode agora ser estabele-
cida: a geracdo de uma malha completa de elementos finitos contendo N elementos

é vista como uma sequéncia de transformagoes 11,73, T3, ..., Ty dadas na forma
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(4.22), em que cada elemento 2, 3 imagem de um elemento de referéncia fixado
de €2, sob o mapeamento coordenado T.

Cada transformacgao T, 32 escolhida para ter as seguintes propriedades:

O mapeamento deve ser feito um a um, ou seja, para qualquer ponto do

elemento de referéncia, ha um e somente um ponto do elemento real.

Os nés geométricos do elemento de referéncia correspondem aos nés geométri-

cos do elemento real.

Qualquer porgao do contorno do elemento de referéncia, definido pelos nés
geométricos deste contorno, correspondem a uma porgao do contorno do

elemento real definido pelos nés correspondentes.

Para cada elemento, as fungoes £ e 7 precisam ser inversiveis e continuamente

diferenciaveis.

Supondo-se que as fungdes = e § sejam continuamente diferencidveis em
relacao a & e 7, entao os diferenciais d¢ e dn se transformam em dz e dy.

Logo:

or ox

dx = a—€d§+5;dn

Oy oy
dy = —=d¢ + —d
4 o€ +87] g
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que pode ser escrita na forma matricial:

dx 9z 0Oz d§
=% (4.23)
dy g—g g% dn

A matriz 2 x 2 das derivadas parciais de (4.23) é denominada de matriz
jacobiana da transformacao definida em (4.22) e representada por J. A equagao
(4.23) pode ser vista como uma transformacao linear de segmentos d¢ e dn do
plano (2, em segmentos dz e dy no plano XY.

Se, para o ponto (&,7) € Q,, é possivel resolver a equagao 4.23 para d{ e
dn em termos de dz e dy, entdo um mapeamento inverso 7. ! do sistema
de coordenadas XY para o sistema £ 7 pode ser construido neste ponto. Obvi-
amente, a condicao necesséria e suficiente para que a matriz jacobiana de (4.23)
seja inversivel é que o seu determinante |J| seja diferente de zero em (§,7) € €.

A fungido |J| % chamada de jacobiano da transformacio (4.22). Portanto:

gy 2002y
|J|—detJ—6§877 o 9

Sempre que |J| # 0, pode-se escrever que:

d¢ dz & 0z || gy
_ gL — ﬁ on om (4.24)
0 oz
dn dy % o dy

Tem-se, pela T.!, que
§=¢(z,y)

n = n(z,y)
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Nota-se que, como em (4.23),

d¢ a—i % dz
=% % (4.25)
2] o
dn 52 5o dy

Igualando os termos das equagbes 4.24 e (4.25) encontra-se:

of _ 10y
or |J|on
% _ 10
9y Jlon
o 10y
Oz |J| 0&
on 10z
dy |J|o¢

O jacobiano pode ser entendido como um operador que transforma coordenadas
do sistema local £ n para o sistema global XY.

Observa-se que se o ntiimero de nés do elemento real for maior que o nimero de
nés aplicados por T, entao T, 3 denominado de mapeamento superparamétrico;
se o nimero de nds do elemento real for igual ao nimero de nés aplicado por
T., tem-se um mapeamento isoparamétrico e, quando o niumero de nés do ele-
mento for menor que o nimero de nés aplicados por T, tem-se um mapeamento
subparamétrico.

Os elementos isoparamétricos com nés apenas no contorno sao denominados

de serendipity. A adigdo de um né interno na posicdlo { =0 e n =0 torna
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o elemento mais preciso e os elementos com nds internos sao denominados de
lagrangeanos porque utilizam as fungoes de Lagrange.

Os elementos isoparamétricos tém como vélida a condigao de compatibilidade
de deslocamentos entre elementos, podendo representar corretamente os movimen-
tos de corpo rigido e as condigoes de deformagoes constantes. Devido a complexi-
dade das fungoes que devem ser integradas para obter a matriz de rigidez, utiliza-se
a integracdo numérica (Assan,1999).

Os elementos finitos sao objetos de geometria sempre convexa e suas for-
mulagoes tendem a privi’legiar as formas mais regulares. Ou seja, elementos fini-
tos triangulares s@o em geral melhores quanto mais se aproximam de triangulos
equilateros. Quadrados sao usualmente melhores que retangulos e estes melhores
que paralelogramos, e assim por diante. A exigéncia da convexidade é oriunda da
necessidade da inversao do Jacobiano da fungao que mapeia um dominio elementar
do tipo [—1,1]X[—1,1] no dominio do elemento, conforme ilustrado na figura 4.6.

A qualidade da malha depende de dois critérios (Sabonnadiere e Coulomb

([100})):

e Forma: os elementos nao devem se afastar das formas ideais (tridngulos

equilateros, quadrados, tetraedros equildteros, cubos,...), sob pena de degra-

dar a solucao.

e Tamanho: o erro do método introduzido pela discretizagdo depende da
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dimenséao dos elementos, que devem ser mais concentrados onde a solugao € muito
perturbada.

Assim sempre que necessario deve-se otimizar a malha por redugao do tamanho
dos elementos ou por aumento da precisao sobre o elemento (ordem da funcao de
interpolagao). Observa-se nos objetos de formas irregulares e complexas que as
malhas geradas automaticamente por programas de computadores, algumas vezes
nao tém boa qualidade, podendo apresentar resultados diferentes do real, devendo

por isso serem refinadas.



Capitulo 5

Modelagem

5.1 Geometria das estruturas

O modelo em estudo corresponde ao segmento da mandibula, partindo da regiao
do segundo molar até a regido do primeiro pré-molar, estando presente os suportes
dentais e fibromucoso, criando-se, assim, um espago protético de extremidades no
primeiro pré-molar (dente sadio) até um implante osseointegrado situado na regiao
do segundo molar, conforme figura 5.1.

As diversas estruturas componentes do modelo matematico, foram projetadas
a partir de duas radiografias periapicais na regiao posterior da mandibula com os
dentes e estruturas de suportes sadios, as quais foram digitalizadas com auxilio de
um scaner. Através destas imagens e com auxilio do programa AUTOCAD (auto

deskinc, USA), foram delineadas as seguintes estruturas (Betiol, 2002):
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Figura 5.1: Modelo inicial

1. Dentes

Primeiro pré-molar (34), segundo pré-molar (35), primeiro molar (36) e se-
gundo molar (37)*. Para as dimensoes dos dentes usou-se a média aritmética
da altura e largura, obtidas de dois autores: Blak e Marcellier citados por

Vellini & Serra (1976), constantes das tabelas 5.1, 5.2 e 5.3.

Na regiao correspondente a coroa do dente 34 foi feita a simulagdo de um
preparo para a coroa total metdlica com término em chanfrado (Farah e

Craig, 1974) e com um desgaste de aproximadamente 1,2 mm. Foi mantida a

*Os nimeros entre parénteses sao indicagoes usuais adotadas pela Odontologia



Tabela 5.1: Dimensao média, em mm, do primeiro pré-molar inferior

Autores | Comp. total | comp. raiz | Alt.coroa | Dim. MD | Dim. MD
coroa colo
Blak 21.6 14.0 7.8 6.9 4.7
Marec. 23.0 15.0 8.0 6.9 5.0
Média 22.3 14.5 7.9 6.9 4.8

100

Tabela 5.2: Dimensao média, em mm, do segundo pré-molar inferior

Autores | Altura da coroa Dimensoes MD Dimensoes MD
coroa colo
Blak 7.9 7.1 4.8
Marec. 8.1 7.2 4.8
Média 8.0 7.15 4.8

forma original da porgao coronaria representando um retentor do tipo coroa
total metdlica. De acordo com a radiografia, copiou-se o tecido pulpar, que
pode levar a alteragoes no resultado final do trébalho (Las Casas ét al, 1999).
Acompanhando ainda a imagem radiografica, foi copiado o ligamento peri-

odontal, para o qual foi adotada a espessura média de 0,25 mm (Coolidge,

1937).

Ainda com auxilio do programa AUTOCAD foram eliminadas as raizes dos

dentes 35 e 36 (tabela 5.3) dando & forma de péntico (c6ncavo em relagao ao



tecido gengival) para as coroas correspondentes.

Tabela 5.3: Dimensiao média, em mm, do primeiro e segundo molar inferior

Autores Altura da coroa Dimensoes MD Dimensoes MD
coroa colo
1°molar | 2°molar | 1°molar | 2°molar | 1°molar | 2°molar
inf. inf. inf. inf. inf. inf.
Blak 7.7 6.9 11.2 10.7 8.5 8.1
Marec. 7.7 6.9 11.2 10.7 8.5 8.3
Média | 77 | 69 | 112 | 107 | 85 8.2

2. Implante osseointegrado

101

Na regido do dente 37, foi apagada a porgao radicular que foi substituida

pela imagem de uma fixacdo Branemark, fabricada pela Nobel Biocare |,

com a medida de 3,75 mm de didmetro por 10,00 mm de comprimento. Este

implante foi usado por ser amplamente pesquisado e citado na literatura por

vérios autores, sendo um rosqueado de hexdgono externo e confeccionado

em titdnio puro. A imagem deste implante foi obtida incluindo-se o con-

junto fixagao/pilar/coroa em um material composto de resina ortofilatica

T-208, mondmero de estireno e catalisador Luperox DD-M, fabricados pela

"Nobel Biocare, Gotemburgo, Suécia
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Redefibra®, Sao Paulo. Posteriormente o conjunto foi cortado pelo disco
de diamante XL-12235 de 0.3 mm de espessura, em serra da Labcut 1010,
Exel Technologies Inc., Enfield, Connecticut, USA. Este corte foi interpre-
tado e através do auxilio de um perfilometro marca Mitutoyo, modelo PJ

300, com precisao de 50 pm. Esta imagem foi a mesma usada no trabalho de

Sendyk(1998).

. Ossos

Acompanhando a imagem radiogréfica na regiao que circunda a raiz do
primeiro pré-molar foi copiada a cortical dssea com a espessura de 0,5 mm.
Préxima da regiao cervical o osso cortical aumenta gradativamente chegando
a 2,0 mm na regiao do espago protético, correspondente aos dentes 35 e 36.

O restante da estrutura 6ssea foi considerado como osso medular.

. Prétese parcial fixa

Foi dada a forma dos dentes acompanhando a radiografia e as medidas médias
dos autores conforme tabelas 5.1, 5.2 e 5.3.

No primeiro pré-molar representou-se o retentor com término em chanfrado
confeccionado apenas em um material, com a espessura de aproximadamente
1,2 mm. Aos ponticos, com a forma corondria dos dentes da radiografia
e com as dimensoes médias (tabelas 5.2 e 5.3) e préximo ao tecido gengival,

foi dada a forma convexa. Estes elementos ficaram representados pelo mesmo
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material.

O retentor sobre o implante teve a forma coronaria da radiografia em apenas
um material, com as dimensoes médias (tabelas 5.2 e 5.3). Seguindo a indicacao do
sistema Branemark (Nobel Biocare), foi usado um pilar cénico de 1,0 mm de altura
(Sendik, 1998), como conexao para unir a coroa a fixacdo (figura 5.1). Apesar
da estrutura em estudo ser tridimensional, optou-se neste trabalho por model4-
la como bidimensional, pois este modelo, apesar de aparentemente simplificado,
apresenta as informacoes relevantes suficientes a respeito do estado de tensoes a
que o corpo esta submetido. Optou-se por utilizar o modelo plano de tensoes pois os
dentes envolvidos nesta anélise estao situados no mesmo hemi-arco, fazendo parte
do poligono de Roy (1936). Segundo Roy, os dentes posteriores de uma arcada se
movimentam no mesmo sentido e estao dispostos no mesmo plano. Os posteriores,
do outro lado, estao dispostos em outro plano, enquanto que os incisivos estao num
terceiro plano e os caninos formam o quarto e quinto plano, originando uma figura

geométrica denominada de ” Poligono de Roy”.

5.1.1 Modelagem computacional

O programa. escolhido para a anélise do modelo pelo Método dos Elementos Finitos

foi o ANSYS® 5.7.1, versdo universitaria, desenvolvido pela Swanson Analysis
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Inc., com auxilio de um computador Pentium III de 800 MHz, com 512 MB de
memoria, e 30 GB de Hard Disk, de propriedade do CESEC (Centro de Estudos de
Engenharia Civil Inaldo Ayres Vieira) da Universidade Federal do Parana (UFPR).

Para a modelagem dos elementos sélidos do problema, o ANSYS® versio
5.7.1 disponibiliza o elemento PLANE 2 que utiliza-se de elementos quadraticos,
que sdo mais precisos, embora apresente maior dispéndio computacional, devido as
restricoes impostas pelos elementos de contato. O elemento utilizado é mostrado
na figura 5.2 e definido por seis nés, com dois graus de liberdade em cada né, que
sao translagoes nas direcoes X e Y.

O PLANE 2 pode ser utilizado na modelagem de sélidos no estado plano de
tensoes, estado plano de deformagcoes ou ainda em sélidos axissimétricos.
Considerou-se para a prétese parcial fixa posterior, o estado plano de tensoes, de-

vido a sua geometria.
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Figura 5.2: Elemento triangular quadratico

O modelo adotado neste trabalho foi transferido do programa AUTOCAD
para o ANSYS, onde foi criada (manualmente), regiao por regiao do modelo, uma

malha composta por 24.852 pontos nodais e 12.169 elementos (figura 5.3).
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Figura 5.3: Malha da prétese parcial fixa posterior

Na regiao entre o dente e osso, correspondente ao ligamento periodontal
(figura 5.4) e na regiao entre o implante e osso, onde estao as espiras da fixagao, a
malha foi mais discretizada (figura 5.5), para permitir uma avaliagao mais precisa
da distribui¢ao de tensoes nestas areas, ja que um dos grandes objetivos deste
trabalho é a avaliacao da distribuicao de tensoes na protese parcial fixa e nas

estruturas de suporte.
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Figura 5.4: Malha do periodonto
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Neste trabalho foi considerado um intimo contato entre toda a superficie do
implante e a estrutura dssea correspondente, situagao esta que segundo Holmes,

et al (1992), nao ocorre na realidade.
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Figura 5.5: Malha na regiao do implante
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Para representar as diversas estruturas que compoem o modelo matemaético,
cada elemento bidimensional recebeu determinados valores inerentes as proprieda-
des fisicas intrinsecas dos materiais representados na figura 5.6, onde, a cor ver-
melha representa a liga durea (retentor, ponticos e retentor da fixagao); a cor verde,
o ouro 24 K (parafuso da fixa¢ao); a cor amarela, o titanio (implante); a cor azul
mais claro, o osso cortical; a cor azul mais escuro, a dentina; a cor vermelha, ao

redor do dente natural, representando o periodonto e a cor lilds, o osso trabecular.
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Figura 5.6: Material dos componentes da estrutura

ANSYS 5.7
OCT 13 2CC2
07:28:42

De acordo com a tabela 5.4 que obedece a literatura relativa a este assunto,
os materiais estao numerados de acordo com suas representagoes introduzidas no
ANSYS® 5.7.1. O modelo considera que as estruturas saio homogéneas, lineares,

elasticas e isotropicas.
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Tabela 5.4: Propriedades mecanicas dos materiais que compoem o modelo (Sendyk,

1998)
MATERIAL MODULO DE COEFICIENTE DE
ELASTICIDADE POISSON

(GPa)? ¥)

1. Osso cortical 13,7 0.30

2. Osso trabecular 1.37 0.30

3. Ligam. periodontal 0.003 0.45

4. Dentina 18.6 0.31

5. Liga de ouro 90.0 0.30

6. Parafuso ouro 99.3 0.28

7. Titanio 110.0 0.28

As cargas de oclusao podem variar significativamente segundo a literatura.
Essa dispersao verificada nas cargas medidas pode ser atribuida a varios motivos,
entre eles o uso de diferentes métodos de medida, a estrutura e geometria dentaria
do paciente, a estrutura muscular orofacial, a idade, o sexo, etc (Cimini et al,
2000). Estudos prévios (Holmes, 1992) informam que a forca oclusal comum com

préteses de implante-apoio variam de 110 a 200 N na regido dos incisivos, podendo

chegar a 500 N na regiao molar.

tGPa = 10°N/m?
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Para este trabalho, foi aplicada uma carga vertical de 168 N, distribuida
nas superficies oclusais dos dentes envolvidos, por ser considerada fisiolégica e
suficiente para obtencao de resultado (Betiol, 2002). Foram adotadas cargas di-
recionadas para o longo eixo dos dentes, pois considera-se uma oclusdo normal.
Segundo Okenson (1992), para uma oclusdo ideal, durante os movimentos masti-
gatérios, quando a mandibula se eleva e os dentes se contatam, as forgas sao dire-
cionadas para o longo eixo dos dentes posteriores e, a partir deste ponto, quando
a mandibula se move nos movimentos de lateralidade e protrusiva, os dentes an-
teriores se tocam e desocluem os posteriores impedindo que estes recebam cargas
laterais. Isto é chamado de oclusao mutuamente protegida.

Neste trabalho foi usado o critério de Von Mises, criado por Richard Von
Mises (1883 - 1953) para se avaliarem os estados de tensao atuantes no corpo. O
programa de computador pode determinar, na fase de pds processamento, as zonas
de solicitacao segundo uma escala de cores correspondentes aos diversos niveis de
tensao.

Foram selecionadas trés dreas para interpretar a distribuigdo de tensoes de

Von Mises na aplicagao das cargas oclusais, a saber:

1. Regifo 6ssea que circunda a raiz do elemento dentério natural, primeiro pré-

molar inferior esquerdo.

2. Regiao 6ssea que circunda a fixacdo localizada na regiao do segundo molar
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inferior esquerdo.

3. Regioes internas dos pilares e da protese parcial fixa.

Foram feitas avaliagoes qualitativa e quantitativa dos resultados:

e Avaliacao qualitativa: observando-se as diferentes cores apresentadas pelo

programa ANSYS® 5.7.1, que representam niveis de tensdes diferentes.

e Avaliagdo quantitativa (numérica): o gradiente de cores que acompanha o
modelo matematico grafico do elemento finito, fornece o valor méximo e o

valor minimo para cada regiao.

Neste trabalho foi feita uma simulagdo, através do MEF, de uma ponte fixa
com conectores rigidos e duas préteses fixas com conectores semi rigidos, tendo
como pilares, um dente e um implante osseointegrado, para se observar a dis-
tribuicdo das tensoes na estrutura desta prétese, nos seus pilares e no tecido ésseo
correspondente.

As malhas foram construidas utilizando-se elementos triangulares quadraticos
(seis nds) e mais refinadas na regido correspondente ao ligamento periodontal tal
como mostrado na figura 5.4, entre a raiz do primeiro pré-molar e o tecido 6sseo
correspondente, na drea onde ocorre a osseointegragdo entre as espiras da fixacao
(localizada na regiao do segundo molar inferior) e o tecido ésseo circundante.

Na regiao correspondente a estrutura dentaria, bem como na regiao interna
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da fixacdo e dos componentes protéticos (figura 5.3), também teve-se cuidado es-
pecifico na criagdo da malha pois, dependendo da deformagao sofrida nesta érea,
pode-se ter diferentes distribuicoes de tensoes na regiao dos pilares com relacao
ao tecido 6sseo correspondente. O motivo desta preocupagao prende-se ao fato de
existir diferenga de mobilidade entre um dente saudavel e um implante osseoin-
tegrado. A diferenca de mobilidade entre um dente com periodonto normal e um
implante osseointegrado é comentada por varios autores pesquisados durante a
revisdo de literatura. Weinberg (1993) e Weinberg & Kruger (1994) salientam esta
diferenga de mobilidade, sendo em torno de 100 a 500 um para um dente com
periodonto considerado normal enquanto o implante poderia chegar no maximo a
100 pm. Segundo Cohen & Orenstein (1994) e Hobo (1997), os dentes naturais
tém uma mobilidade em torno de 100 a 200 um e os implantes osseointegrados,
uma mobilidade de até 10 um; enquanto que para Lill et al (1988), os dentes tém
uma mobilidade dez vezes maior que os implantes.

Estas variacoes ocorrem devido & forma do implante pesquisado, do tamanho
e didmetro da fixagao, dos tipos de conexdes e do tipo de osso, porém é fato que
existe esta diferenca de mobilidade. Desta forma os ponticos mais o retentor do
primeiro pré-molar inferior tém uma tendéncia de se movimentar no sentido ocluso-
gengival e o implante praticamente nao tem mobilidade, gerando assim um efeito
de alavanca com o fulcro nesta regidao (cervical do implante), onde se encontram

tensoes méximas de 31,32 MPa (figura 5.7), na cor cinza, na prétese parcial fixa.
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Pode-se observar na figura o local da tensdo maxima (representado por MX) e o

da tensao minima (MN).

Figura 5.7: Tensao Von Mises na protese fixa
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Figura 5.8: Tensoes de Von Mises no implante da prétese fixa
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Neste modelo, a tensao méaxima ocorre no espelho do implante, conforme
figura 5.8, na cor cinza que nao aparece na escala de cores, por ser uma tensao de
nivel acima da maxima representada na cor vermelha. Isto pode acontecer também
nos casos unitarios quando se usa uma fixa¢ao com implante de plataforma pequena
ou regular para uma coroa de superficie oclusal extensa (Piattelli et al ,1998).

Uma ponte fixa com conectores rigidos ou semi rigidos que possui pilares com
diferentes mobilidades leva certamente a uma distribuigao de tensoes desiguais ao
tecido dsseo da regiao correspondente, quando esta prétese recebe uma forga oclusal

no sentido do longo eixo dos dentes.
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Para uma melhor estratégia comparativa, este problema também foi simulado
com uma proétese fixa semi rigida com encaixe (conector) na coroa do implante e
outra, semi rigida com encaixe na coroa do segundo pré molar. Desse modo foram
estudadas trés situacoes diferentes para estes modelos, adotando-se cargas verticais

(168 N) distribuidas sobre a superficie oclusal dos trés modelos:

1. Prétese parcial fixa (ja descrita anteriormente);

2. Prétese semi rigida com encaixe na coroa da fixacao (figura 5.9);

3. Prétese semi rigida com encaixe na coroa do segundo pré molar (figura 5.10).

Figura 5.9: Prétese semi rigida com encaixe na coroa da fixagao (modelo 2)
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Figura 5.10: Prétese semi rigida com encaixe na coroa segundo pré molar (mod 3)

A proétese de quatro elementos recebe esta forca mastigatéria que se distribui
ao longo das superficies oclusais dos elementos dentérios envolvidos, onde ¢é inte-
ressante notar que as direcoes principais de tensoes (figura 5.11 e figura 5.12), se
distribuem de maneira bem mais homogénea através da estrutura dentaria do que

no implante osseointegrado.
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Figura 5.11: Distribuigao vetorial das tensoes principais na regiao do implante

PRIN1

. PRIN3

Esta diferenca se deve também a presenca do ligamento periodontal presente
somente no elemento dentério, funcionando como um amortecedor. Estas fibras
periodontais responsaveis por este amortecimento nao estao presentes na inter-
face entre implante e osso onde ocorre a osseointegragao. Este pode ser o motivo
do afrouxamento dos parafusos e até da fratura dos componentes protéticos ou do
préprio implante. Autores como Borchers & Reichart (1983), Babbush (1987), Kay
(1989), Chapman & Kirsch (1990), El Charkawi et al. (1990), Cavicchia e Bravi
(1994), El Charkawi et al. (1994), Papavasiliou et al. (1996) mostram a tentativa
de alguns fabricantes, Interpor International, por exemplo, de produzirem compo-

nentes protéticos intermedidrios (IME em polioximetileno) ligando as fixacoes aos
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Figura 5.12: Distribuicao vetorial das tensoes principais na regiao do periodonto

ANSYS 5.7
OCT 13 2002

retentores que permitiriam uma simulacao do ligamento periodontal. Estas ten-
tativas foram frustradas, ja que com relagao a distribuicao de tensoes ao tecido
Gsseo, estes intermedidrios nao levam a mudancas significativas com relagao aos in-
termediérios (IME) de titanio. Autores como Holmes et al. (1992) e Ulbrich (1998)
mostram em suas pesquisas, que a distribui¢ao de tensoes para o tecido ésseo que
circunda as fixagoes seria similar quando se usa um pilar intermediario em titanio
ou em polioximetileno.

Com relacao ao tecido dsseo, pode-se observar nas figuras 5.13 e 5.14, a

concentracao de tensoes (Von Mises) na regiao Gssea cortical do dente natural
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(regido cérvico mesial), onde foi registrada a tensao minima de 0.0016M Pa e na
regiao 6ssea cortical, préxima da cervical mesial do implante, com a tensao maxima
de 17,82M Pa representadas pelas cores azul e vermelha, respectivamente, nestas

figuras.

Figura 5.13: Tensoes de Von Mises no osso cortical (regiao do dente natural) -
modelo 1
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Observa-se na escala ao lado da figura 5.14, os valores das tensoes Von Mises,
e 4 medida que percorre-se da regiao do implante para as estruturas de suporte
observa-se uma diminuicao gradativa de tensoes chegando a uma tensao minima
na regiao correspondente ao osso medular, entre os dois pilares (figura 5.7), re-

presentado pela cor azul mais escuro, ou seja, 99, 7% menores. Este fato ja era es-



121

Figura 5.14: Tensoes de Von Mises na regiao dssea proxima do implante (mod 1)
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perado, pois a fungao do tecido dsseo é dissipar as cargas mastigatérias (Sakagushi
& Borgensen, 1995).

Este fato pode ser explicado pelo brago de alavanca causado pela prétese
fixa, ja que se consideram pilares com diferentes mobilidades, o elemento dentario
tem uma tendéncia de sofrer intrusao devido a presenga do ligamento periodon-
tal, e o implante sofre uma menor intrusao, pois esta unido diretamente ao osso.
Portanto, como nao se sabe o valor exato que leva a reabsorgao 6ssea em volta do

implante, as tensoes nesta area podem ser responsaveis pela perda dssea encon-
trada clinicamente com freqiiéncia nesta regiao. Por este motivo, a exemplo dos

autores Kitoh et al (1988), Hobo et al (1989), Clelland et al (1993), Sendyk (1998),
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no presente trabalho da-se maior importancia aos valores qualitativos das tensoes
e nao quantitativos.

E fato também que em condigoes consideradas normais os implantes osseoin-
tegrados apds o primeiro ano em fungao perdem cerca de 1.0 mm de osso na regiao
da crista 6ssea (Branemark et al.(1977), Adell et al (1981), Kitoh et al (1988),
Albrektsson et al (1988), Rangert et al (1989)). Talvez isto pode ser explicado
pela concentracao de tensoes nesta regiao quando a prétese estd sujeita a cargas
oclusais.

Os autores Ismail et al. (1991), Cohen e Orenstein (1994), sugerem o uso
de conexoes semi-rigidas, pois, desta forma, haveria uma melhor distribuicao de
forcas entre implante, dente e tecidos de suporte, evitando assim uma sobrecarga
do implante e tecido Gsseo correspondente. Para Weinberg (1993), nas préteses que
possuem pilares com diferentes mobilidades, os implantes sempre sao sobrecarrega-
dos, recomendando para estes casos novos desenhos de préteses para diminuir as

tensoes proximas ao implante.

5.1.2 Modelagem dos contatos

Para representar a aproximacao e o possivel contato entre as superficies da conexao
da prétese semi-rigida, 0 ANSYS® 5.7.1 disponibiliza os elementos de contato.

Para o problema em questao, é necessario a consideragao do contato entre duas
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superficies elasticas, inicialmente separadas ou em contato. A modelagem do con-
tato entre estas superficies foi construida por elementos de contato denominados
de CONTA 172.

O elemento CONTA 172 relaciona uma superficie denominada de target sur-
face ou superficie alvo, com a superficie de contato denominada de contact surface,

formando o par de contato como na figura 5.15.

Figura 5.15: Superficies de contato

superficie de contato

superficie alvo

Os elementos da superficie 2-D da superficie target associados aos elementos
de contato sao representados pelo elemento TARGE 169. A superficie target *

discretizada por um conjunto de segmentos target (TARGE 169) e forma par com
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a superficie de contato através do mesmo conjunto constante real. Pode-se impor
forcas e momentos sobre os elementos target. A superficie target 3 modelada por
um conjunto de segmentos target e varios segmentos target formam uma superficie
target, que pode ser rigida ou deformaével.

No caso de duas superficies elasticas a consideragao de superficies target
ou contact para uma ou outra superficie é arbitrario e irrelevante. Para o caso de
contato entre superficies rigidas e elasticas, a superficie rigida é sempre considerada
como target.

O valor exato da regiao onde ocorre o contato nao precisa ser conhecido pre-
viamente para a geragao dos elementos. Usualmente sao tomados mais elementos
do que realmente é necessario, pela associagao do n6 de contato com diversas linhas
target vizinhas. A geracdo de contato considerando ambas as areas como target e
como contact foi adotada na modelagem para garantir a simetria do modelo.

O elemento CONTA172 permite a inclusdo do atrito de Coulomb entre as
superficies de contato, sendo que o coeficiente p 3 fornecido nas propriedades do
material ficticio dos elementos de contato.

O contato é estabelecido quando o né de contato, penetra na linha target
com a magnitude denominada gap, na dire¢cao normal e representada por g¢,. Isto
é uma violacao fisica da compatibilidade de deslocamentos, pois superficies solidas
nao podem se interpenetrar. Desse modo, para reduzir a interpenetragao a niveis

aceitaveis sao desenvolvidas forgas normais & superficie target na regiao de contato.
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Inicialmente as forcas tangenciais sao consideradas nulas para se determinar
as forgas de contato e o valor de g,. Nos passos posteriores sao incluidas as forgas
tangenciais, caracterizando a existéncia de adesao ou deslizamento em cada né.
Tem-se, assim, o perfil do contorno onde acontece o contato.

Para resolver o problema do contato, que é nao-linear com restrigoes, o
ANSYS® utiliza o Método das Penalidades que pode ser associado aos multi-

plicadores de Lagrange. As constantes utilizadas para a solugao do problema sao:

1. Fator de rigidez de contato - FKN

O ANSYS® 5.7.1 sugere um valor inicial calculado por
FKN = f.Eh

onde f. 3 o fator que controla a compatibilidade do contato, variando de 0.01
a 100, com valor padrao inicial de 1.0; E é o menor médulo de elasticidade
dos materiais envolvidos; h é um comprimento de contato caracteristico, de-
pendente da geometria do problema. Esta aproximacao para FKN 2 apenas
uma alternativa inicial, com uma margem alta de valores possiveis. O valor
real de FKN 32 encontrado por tentativas. Valores altos de FKN restringem
a interpenetragao e valores baixos permitem grande interpenetragao das su-
perficies. O Método das Penalidades exige valores altos de FKN, ao passo que
se tivermos valores baixos de FKN deve-se utilizar o Método das Penalidades

associado aos multiplicadores de Lagrange.
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2. Fator de rigidez de contato de deslizamento - FKT

O fator de rigidez FKT 3 usado se existe o atrito elastico de Coulomb. O
parametro impoe a componente de deslizamento e corresponde a uma rigidez
tangencial a linha target. No ANSYS®, o valor padrao é de 1.0. Pode-se

definir um valor arbitrario para FKT, do mesmo modo que para FKN.

3. Fator de tolerancia - FTOLN

E uma constante real para definir o fator de tolerancia para ser aplicado na
dire¢do da normal da superficie, destinada a determinar se a compatibilidade
de penetragao é satisfeita, quando se usa o método das funcoes de penalidades
mais os multiplicadores de Lagrange (KEYOPT(2)=0). No ANSYS®, o valor
do FTOLN deve ser positivo (usualmente menor que 0.2) e seu valor padrao

3$de 0.1.

Nos modelos 2 e 3, isto é, das prétese semi rigidas, ocorre o contato entre o
conector e as coroas do implante e do segundo pré molar, respectivamente, apds a
aplicagao das cargas verticais. Devido a ndo linearidade dos elementos de contato,
o método de solucao adotado para os modelos foi o0 método de Newton-Raphson
incremental (figura 3.18). Como o contato exige a aplicacdo de um método de
funcoes de restricao, o método escolhido no ANSY S® foi 0 método das penalidades
com os multiplicadores de Lagrange. A utilizagdo deste método foi adotada pela

maior rapidez de convergéncia da solugao.
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A analise considerando pequenas deformagoes foi adotada para todos os
modelos deste trabalho. A aplicagao do carregamento nos modelos foi realizada de
acordo com a literatura, para os deslocamentos que estejam dentro de limites de
utilizacao.

Todos os materiais que compdem o modelo foram considerados elasticos,
lineares e isotrépicos para o carregamento aplicado.

O contato existente nos encaixes das préteses semi rigidas foi modelado con-
siderando a possivel existéncia do atrito de Coulomb. Os coeficientes de atrito
estatico e dindmico sdo considerados iguais na anélise de todos os modelos.

Os elementos de contato CONTA 172 e TARGE 169, utilizados para fazer a
ligagao entre os conectores da protese semi rigida, convergiram com os seguintes
valores dos parametros de contato: FKN =10, FTOLN = 0.1, para o modelo

2e FKN =1, FTOLN = 0.1, para o modelo 3.

5.1.3 Resultados nos modelos 2 e 3

No modelo 2, a tensdo méxima foi de 41,65 MPa (no conector) e a minima foi
de 3,567.10~° MPa (no implante), enquanto que no osso cortical, regido cérvico
mesial do dente natural (figura 5.16),0correu a tensao minima de 6,04.1073MPa e

a tensao méaxima foi de 14,02 MPa, nas proximidades da regiao cervical mesial

do implante (figura 5.17); no implante, 30,75 MPa; na dentina, 12,00 MPa e no



periodonto, 0,14983 MPa.
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Figura 5.16: Tensoes de Von Mises na regiao Ossea proxima ao dente natural

(modelo 2)
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Figura 5.17: Tensoes de Von Mises na regiao éssea cortical préxima do implante
(modelo 2)
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No modelo 3, a tensao méaxima ocorreu no implante com 202,11 MPa (figura
5.18) e a minima, nos ponticos com 3,76.10~% MPa; no osso cortical, nas proxi-
midades da regiao cervical mesial do implante, a maxima foi de 69,87 MPa (figura
5.19) e a minima, de 1,52.10~® MPa na érea da cervical mesial do elemento
dentério (figura 5.20); nos ponticos, 76,87 MPa ; no dente natural, 4,10856 MPa e
no periodonto, 1,196.10~2 MPa. Os resultados das tensoes maximas e minimas

dos modelos 1, 2 e 3 estao dispostos na tabela 5.5.



Tabela 5.5: Resultados das tensoes méximas e minimas, nos modelos 1, 2 ¢ 3

Tensao méaxima (MPa) | Tensdo minima (MPa)
Modelo 1 | 31,32 1,12.107%
(PPFP) | (espelho implante) (implante)
Modelo 2 41,65 3,567.1073
(PSRLD) (ponticos) (implante)
Modelo 3 202,11 3,76.1078
(PSRLE) (implante) (ponticos)
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A figura 5.21 apresenta a distribui¢do de tensao nos trés modelos, na regiao

jssea proxima do implante, apds a aplicagdo da forga oclusal de 168 N.
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Figura 5.18: Tensoes de Von Mises no implante (modelo 3)
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Figura 5.20: Tensoes de Von Mises na regiao dssea, proxima do dente natural

(modelo 3)
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Figura 5.21: Tensoes de Von Mises na regiao 6ssea proxima ao implante nos modelos

1, 2 e 3 respectivamente




Capitulo 6

Conclusoes e sugestoes de

continuidade

Atualmente, a Bioengenharia é um campo em ascensao e, dentro dele, as modela-
gens computacionais podem ser extremamente tteis. Muitas sdo as possiveis
aplicagoes (acistica, escoamento de sangue, ortopedia, odontologia, ecologia,
quimica, etc).

A modelagem numérica de préteses parciais fixas rigidas e semi rigidas mos-
trou-se vidvel e gerou resultados satisfatérios, levando-se em consideracao as sim-
plificacoes adotadas nos modelos bidimensionais. Desse modo, pode-se garantir a
confiabilidade dos modelos e prosseguir com as consideracoes e andlises para se
atingir o objetivo maior que é a atenuagdo de tensoes provocadas pelas cargas

oclusais.
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O Método dos Elementos Finitos dentre tantos métodos aproximados, mos-
trou-se muito eficiente, inclusive na Bioengenharia. Quando empregado em proble-
mas de contato, o MEF mostrou-se bastante apropriado para modelar a estrutura
da prétese semi rigida posterior, estudada neste trabalho. Tem-se exatamente a
situacao de restricao a penetracao de um componente estrutural no outro, mas
com liberdade de escorregar quando em contato.

Tendo em vista a complexidade da estrutura do modelo (prétese parcial fixa
ligando um dente natural com uma fixagao), tanto geométrica quanto dos materiais
que a compoem, a maior dificuldade de um trabalho desta natureza reside na
determinacdo das constantes caracteristicas do problema de contato. O emprego
de elementos de contato na andlise implicou na introdugao de nao linearidades
decorrentes do préprio elemento.

Os parametros necessarios para a solugao do contato sao fornecidos de acordo
com a escolha do método de solucdo das equagtes de restrigao. Neste sentido pode-
se concluir que o Método das Penalidades com multiplicadores de Lagrange foi
eficiente na solugao do problema e forneceu resultados numéricos compativeis.

A convergéncia dos resultados depende dos valores dos parametros de con-
tato. Encontrar valores que tornam a solugdo convergente é uma das maiores di-
ficuldades do problema. Embora o manual de usuirio ANSYS® 5.7.1, sugira um
conjunto de valores possiveis para os coeficientes de contato, na pratica, a deter-

minagao destes valores é obtida por tentativas.
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O comportamento biomecanico da prétese na regidao de interesse (osso trabe-
cular e cortical), nas proximidades da interface do implante e na raiz do
dente natural, apresentou melhores resultados no modelo 2 (prétese semi rigida
com encaixe na coroa da fixagdo), onde as tensbes méaximas no osso cortical
(regido préxima do implante) ficaram reduzidas (0,79 = 14,02M Pa(modelo2) +
17,82M Pa(modelol)) e no implante (0,98), ao passo que, aumentaram as tensoes
nos ponticos (1,96), no periodonto (2,97) e na dentina (1,13) em relagao aos valores
encontrados na protese fixa (modelo 1).

As tensoes verificadas no modelo 3 (prétese semi rigida com encaixe na coroa
do segundo pré molar), tiveram os seguintes acréscimos em relagao aos modelos 1
e 2, respectivamente: no osso cortical (3,92 e 4,98), no implante (6,45 e 6,57), no
periodonto (0,24 e 0,0798), na dentina (0,39 e 0,34) e nos ponticos (3,63 e 1,85).

No modelo 3, houve grande aumento de tensdao no osso cortical, implante
e ponticos, cabendo ao profissional da area de Odontologia, a decisao de contra
indicar (ou ndo) a sua adogdo para um tratamento odontolégico utilizando este
modelo.

Na prétese fixa (modelo 1), os maiores esforgos provocados pela forca de
oclusao penalizam a regido de interface do implante com o osso trabecular e cor-
tical, onde podera ocorrer uma reabsorgao dssea no local e, conseqiientemente,
comprometer o tratamento no decorrer de certo periodo de tempo.

Existe uma diminui¢ao gradativa da intensidade das tensoes de Von Mises a
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medida em que se desloca em diregao ao tecido ésseo apical, em todos os modelos
estudados.

Num implante apoiado em tecido 6sseo cortical, as tensoes sao muito maiores
neste tecido do que no tecido 6sseo medular.

Nas varias simulagoes executadas, as porgoes do osso cortical que envolve
o pescoco dos implantes, foram as mais solicitadas. Os resultados obtidos repre-
sentam qualitativamente bem, o comportamento das préteses representadas nos
modelos 1, 2 e 3.

Neste trabalho as maiores dificuldades foram encontradas na modelagem das
préteses semi rigidas (modelos 2 e 3) onde foi necessario, inclusive, refinamento
maior das malhas nas regiées de contato, para se obter a convergéncia dos resul-
tados.

Como continuacao deste trabalho, poderia ser feito, em 3D, um estudo dos
modelos analisados, para melhor se avaliar o comportamento biomecanico das
préteses, com formatos diferentes de implantes e outros tipos de encaixe.

Poderiam, também, serem avaliadas outras préteses, permutando-se os pi-
lares, ou considerando-se como pilares, dois implantes ou, dependendo da regiao
edéntula, considerar-se uma prétese com trés pilares e em outros problemas simi-
lares apresentados pela Implantodontia. Nos vérios casos, pode-se aplicar diversos

tipos de cargas, seguindo a literatura existente, inclusive com cargas inclinadas

(oclusdo nao ideal).
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Glossario
AMALGAMA: material restaurador composto de mercirio e outros minerais,
originario da mistura do mercirio com limalha de prata e outros metais.
APICE: ponta da raiz dos dentes.
ARCADA: é o conjunto formado pelos dentes e seu respectivo osso de sus-
tentagao. Existem duas arcadas: a superior e a inferior.
BIOMATERIAIS: sio substancias bioaceit4veis usadas em enxertos e implantes.
CEMENTO: nome dado a superficie externa da raiz dos dentes.
CISALHAMENTO: ocorre quando o corpo tende a resistir & agao de duas forcas
agindo préxima e paralelamente, mas em sentidos contrarios.
CONECTORES: sao ligagoes entre os ponticos e os retentores. Podem ser rigidos
(junta conexao) ou semi rigidos (encaixe).
COROA.: é a porcao visivel dos dentes acima da gengiva, recoberta por esmalte.
Também é o nome que se d4 a uma, prétese que visa substituir a coroa de um dente
natural que foi prejudicada em sua estrutura.
DENTINA: por¢do do dente situada abaixo do esmalte. Quando estd exposta
gera dor como resposta a estimulo de frio ou ao calor.
ELASTICIDADE: é a propriedade pela qual um material tende a retornar a sua

forma primitiva, quando as cargas deixam de atuar.

IMPLANTES DENTARIOS: sio raizes metalicas artificiais fabricadas com o
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metal Titanio (figuras 6.1 e 6.2). Tém a forma aproximada de uma raiz dentéria,
sendo colocados dentro dos ossos maxilares. Apds algumas semanas, o osso da
pessoa se une ao implante, formando uma estrutura tnica, sendo por isto chamado
implante osseointegrado. Apés esta integragdo, a nova raiz ja tem condicoes de
suportar um dente, (uma coroa artificial) ou servir de base para uma ponte fixa .
IMPLANTE SISTEMA BRANEMARK: sao cilindros rosqueaveis feitos de
5xido de titanio (figura 6.3), biocompativeis que se osseointegram ao osso humano.
Esta técnica é realizada em duas etapas. Na primeira a implantagao do cilindro é
feita no osso da mandibula ou da maxila e fecha-se a gengiva imbutindo o cilin-
dro. Seis meses depois, em média, expoe-se a ”cabega”do implante que tem uma
superficie de engate com rosca interna onde parafusa-se um sistema de conexao e
entao serd cimentado ou parafusado o dente em porcelana procurando restabele-
cer as fungdes do dente natural perdido: estética, mastigacao, fonagao e postura
facial. O grande feito, de extraordindria importéancia, foi apresentado pelo Prof.
Dr. Per-Indgar-BRANEMARK, da Suécia e colaboradores, que apresentaram, em
1982, na Faculty of Dentistry na University of Toronto (Canada), os implantes
cilindricos rosquedveis de 6xido de titanio. Estes estudos tiveram inicio em 1952 e
implantados em seres humanos em 1965. A ndo ser por pequenas modificacoes esta
técnica continua sem alteracoes, com 36 anos, e seu sucesso medida em 96% dos
casos. A partir desta conferéncia de Toronto, as intimeras Universidades de todo

o mundo passaram a introduzir em seus programas esta ciéncia e esta técnica:
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Sistema Branemark de Implantes.

IMPLANTODONTIA: é o estudo da arte e da ciéncia relacionadas com a
inser¢ao de materiais e dispositivos com a finalidade de restaurar protéticamente
a fungao e a estética do paciente desdentado total e parcial.

LIGAMENTO PERIODONTAL: é o tecido conjuntivo que circunda as raizes
dentarias ligando-as ao osso alveolar.

MODULO DE ELASTICIDADE OU MODULO DE YOUNG: fornece o
grau de elasticidade de um material.

OSSO ALVEOLAR: osso com a finalidade de prender o dente a mandibula e
maxila.

OSSO CORTICAL: é uma camada periférica de tecido 6sseo compacto. A média
de espessura do osso cortical é de dois milimetros.

0SSO TRABECULAR: é um tecido dsseo esponjoso localizado na medula do
osso, diferente do cértex que é compacto. Este osso é composto de uma rede de
trabéculas contendo tecido intersticial.

PERIODONTO: (peri = em redor de, odontos = ente) compreende os seguintes
tecidos: a gengiva, o ligamento periodontal, o cemento radicular e o osso alveolar.
PILAR: é o dente ou um implante que serve de suporte a uma prétese.
POLPA: tecido mais interno do dente, onde encontram-se os vasos, nervos e tecido
conjuntivo fibroso.

PONTICO: é o dente artificial suspenso entre os dentes suporte.
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PROTESE DENTARIA: a protese dentaria visa substituir um ou mais dentes
e/ou tecido de protegdao e sustentacao ausentes, objetivando o restabelecimento
do equilibrio neuromuscular do sistema estomatognatico, possibilitando o desem-
penho e manutencao de suas fungGes, restabelecendo o bem estar fisico, mental -
e social. Os aparelhos protéticos podem ser classificados, visando os aspectos de
fixagdo (préteses fixas e préteses removiveis (total e parcial) e de transmissao dos
esforgos mastigatérios (dento-suportada: prétese fixa; dento-muco-suportada: par-
cial e removivel; muco-suportada: dentadura completa).

PROTESE PARCIAL REMOVIVEL (PPR): é um aparelho protético que
substitui os dentes naturais perdidos, em arcadas nas quais ainda permanecem
alguns dentes naturais, portanto, com perda parcial de dentes. E chamada de
removivel porque pode ser retirada pelo portador no momento que este desejar.
Toda PPR convencional necessita de grampos.

PROTESE PARCIAL FIXA (PPF): é um aparelho que substitui um ou varios
dentes ausentes, permanentemente unido aos dentes remanescentes e/ou implantes.
REABSORCAO OSSEA: é a perda de substancia Gssea por um processo pa-
tolégico ou fisiolégico que pode estar associada ao envelhecimento, a disturbios
metabdlicos ou trauma.

REGIAO PERIAPICAL: regiao situada envolta ao apice radicular.
RESISTENCIA: é a capacidade de um corpo de resistir & forgas.

RESILIENCIA: ¢ a capacidade de um corpo de resistir ao trabalho.
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RETENTORES: sao restauracoes que sao cimentadas aos pilares.

RIGIDEZ: é a capacidade de um corpo de resistir a deformacao.

Figura 6.1: Sec¢ao de um implante osseointegrado
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Figura 6.2: Implantes dentarios

Figura 6.3: Implante Branemark
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