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In the province of the mind, 

what one believes to be true. 

either is true or becomes true.



To Mônica.

To my family.
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Abstract

Nonlinear least squares (NLS) problems appear in many important practicai 

applications, for instance, signal processing and functional approximations. The 

majority of the methods for solving NLS problems is based on a minimization of 

subproblems, but they do not keep the error structure as the data structure. In 

this dissertation we propose a new method for solving NLS problems. We call this 

method Successive Nonlinear Least Squares (SNLS). Based on the idea developed 

recently by Yalamov and Yuan (2000), the SNLS method differs from the existing 

approaches because it preserves the structure of the error. The SNLS method con- 

sists of the Solutions of successive least squares (LS) problems by the total least 

squares (TLS) formulation. The SNLS method is general NLS problem solver and 

is quite suitable for structured NLS problems. Some numérica! tests for Toeplitz 

and Vandermonde matrices and parameter estimation problems are presented. Nu- 

merical results illustrate that the SNLS algorithm converges fast and provides good 

approximations to the exact solution of the NLS problems for our test problems.



Resumo

Problemas de mínimos quadrados não-lineares aparecem em muitas aplicações 

importantes. Por exemplo, processamento de sinal e aproximações funcionais. A 

maioria dos métodos destinados à resolução de problemas de mínimos quadra­

dos não-lineares está baseada na minimização de subproblemas mas estes métodos 

não preservam a estrutura da matriz dos erros como a matriz dos dados. Nesta 

dissertação propomos um novo método destinado à resolução de problemas de 

mínimos quadrados não-lineares. Chamamos este método de método dos Mínimos 

Quadrados Não-lineares Sucessivos. Baseado na idéia recentemente desenvolvida 

por Yalamov e Yuan (2000), o método dos Mínimos Quadrados Não-lineares Su­

cessivos difere das abordagens existentes por que este método preserva a estrutura 

da matriz dos erros. O método dos Mínimos Quadrados Não-lineares Sucessivos 

consiste na solução de sucessivos problemas de mínimos quadrados através da for­

mulação de mínimos quadrados totais. Este método resolve problemas gerais de 

mínimos quadrados não-lineares e é muito adequado à resolução de problemas 

de mínimos quadrados não-lineares estruturados. Alguns testes numéricos foram 

realizados para matrizes Toeplitz e Vandermonde e problemas de estimativa de 

parâmetros são apresentados. Testes numéricos mostram que o algoritmo converge

v



rapidamente e fornece boas aproximações para a solução exata dos nossos proble­

mas testes.
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Chapter 1

Introduction

The aim of this work is to propose a new iterative method for solving nonlinear 

least squares (NLS) problems

A (a)x =  b. (1.1)

Here A(a) i s a m x n  nonhnear functional with m >  n, x, b € R n and a is a s x 1 

parameter vector. Nonhnear least squares problems appear in many engineering 

applications such as signal processing [30], frequency and exponential decay esti- 

mation [1, 25, 31], engineering and optica! design, optimal control, curve fitting, 

fitting scattered data in three-dimensional space [21], exponential data modelling 

problems, functional approximation and others problems where nonhnear systems 

of equations are involved.

In general, methods described in [5, 15, 16, 17, 18, 36] obtain the solution by

1



solving sequences of minimization subproblems do not keep error structure as the 

data structure. Rosen, Park and Glick [33] develop an algorithm ealled Structured 

Nonlinear Total Least Norm (SNTLN), an extension of the Structured Total Least 

Norm (STLN) [32], for solving structured nonlinear least squares problems.

In particular, the method for solving NLS problems is to minimize the residual 

r(x) — Ax — b iteratively with the initial value of a till to achieve a desired 

approximation. The related approach can be done based on the following total 

least squares (TLS) formulation

min* ||(£,r)||F
(1.2)

s.t. (A +  E )x  =  ò +  r 

which is also known as the errors-in-variables [37].

Recently the Successive Least Squares (SLS) method for obtaining an approxi- 

mate solution to the overdetermined TLS problem has been proposed by Yalamov 

and Yuan [39]. This method is quite suitable for structured TLS problems such as* 

Toeplitz and Hankel systems because it satisfies the error structure requirements.

The idea of methods for solving large structured TLS problems [5, 7, 8, 9, 10] 

motivates us to study a new method for solving large structured NLS problems by 

Solutions of successive least squares (LS) problems. This is the main purpose of 

this dissertation.

CHAPTER 1. INTRODUCTION 2



1.1 Outline of the Work

This dissertation is organized as follows. In Chapter 1 some basic ideas about least 

square solution to linear systems and structured matrices are reviewed. In Section

1.3 we summarize some structured matrices such as Toeplitz, Hankel and Vander- 

monde. A special method to find the Toeplitz matrix-vector multiplication with 

the Gomplexity 0(n log2 n) flops, the Fast Fourier Transform (FFT), is described 

in Section 1.4. The QR decomposition by Givens and Hyperbolic rotations are 

reminded in Sections 1.5 and 1.6, respectively.

Chapter 2 contains important issues about existing efficient methods for struc­

tured linear least squares problems, specifically, Toeplitz systems [2, 11, 12, 22]. 

The Fast Inverse QR Factorization described in Section 2.1 is suitable for Toeplitz 

systems because the consideration of the structure of the matrix A. This fact re- 

duces the computational cost to 0(mn) operations to find its LS solution. The 

TLS formulation and its properties are treated in Section 2.3. A survey of the SLS 

method is given in Section 2.4.

In Chapter 3 the NLS problem, which is our contribution of this dissertation, 

is treated. This problem is closely related to unconstrained minimization problems 

in R ra. In Section 3.2 a new method called Successive Nonlinear Least Squares 

(SNLS) method is proposed. This method is general solver for NLS problems and 

quite suitable for structured NLS problems because of the preservation of the
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structure of the input data and error matrix. The SNLS method is based on ideas 

of the SLS method developed by Yalamov and Yuan [39]. Our work considers the 

case of Toeplitz, Hankel and Vandermonde matrices, and other structures can be 

treated similarly.

In Chapter 4 numerieal tests considering overdetermined Vandermonde systems 

are given to verify the efficiency of the SNLS method. The results assert that the 

SNLS method obtains good approximated solution for our tests. In Section 4.1 

we present an application of the Vandermonde systems to the exponential data 

modelling. In Section 4.2 we propose some modifications in the SNLS method, 

the MSNLS method, to improve the convergence and the accuracy of the SNLS 

algorithm for Vandermonde systems. In Section 4.3 the convergent behavior of a 

for both the SNLS and MSNLS methods are treated with different initial guess ã. 

In Section 4.4 two different types of signal are considered. The first type of signal 

data is from that used by Osborne and Smyth [29] and the second type of function 

is the sum of Gaussian functions which is similar to that used in [22]. In Section

4.5 Toeplitz systems taken from [22] are considered.

In Chapter 5 we set some conclusions and suggestion for future research.

CHAPTER1. INTROD UCTION 4



1.2 Least Square Solution to Linear Systems

A linear least squares (LS) problem consists of solving an overdetermined linear 

system

Ax =  b. (1.3)

Here A  G R mxn, m >  n, b G R m, and x G R n. Unless b belongs to the range of 

A, i.e., 6 G R{A). the overdetermined system has no classic solution. Then we ean 

find Ax such that it is the best approximation in some sense to 6 and denote it by

Ax — b.

One common way is to find approximation x such that

|| Ax -  b\\2 =  min || Ay -  b\\2. (1.4)
y

Of course we can consider different norms in (1.4).

Since the function f(x ) =  \\\Ax — ò|[| is differentiable, by KKT condition, we

have the normal equations ATAx =  ATb. Since the 2-norm is preserved under

the orthogonal transformation, QR factorization can be used to solve the problem 

efficiently.

The vector x is called a least square solution of (1.4) where Ax is as close as 

possible to the vector b.

The following theorem characterizes the property of the LS solution.

CHAPTER1. INTROD UCTION 5
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T heorem  1.2.1 (LS Solution  P r o p e r t y )

x* solves the LS problem (1-4) AT(b — Ax*) =  0.

Proof: One proof of this theorem is given in Bjõrck [5], pp. 5. ♦

The vector b is decomposed into two orthogonal components:

b =  b* +  r* =  Ax* +  r*, r*LAx*, Ax* =  b*

where b* is the orthogonal projection of b onto R(A). Note that the decomposition

is always unique, even when the LS solution x* is not unique.

Moreover, from Theorem 1.2.1 note that the LS solution satisfies the normal 

equations

AtAx =  ATb. (1.5)

The system (1.5) is always semidefinite positive and consistent since

ATb € R(At ) =  R(AtA).

C o r o lla r y  1.2.2 (LS S o lu tio n  AND R esid u al) If rank(A) =  n then (1-4) 

has a unique LS solution, given by

x* =  (ATA)~1ATb.

The corresponding LS correction is given by the residual:

r* =  b -  Ax* =  b -  6*, b* =  PAb



where Pa — A(ATA)~1AT is the orthogonal projector onto R(A).

If rank(A) — r <  n, the LS problem (1.4) is rank-defieient and has an infinite 

number of Solutions. For example, if x  is a minimizer and z € N(A) then x +  z is 

also a minimizer. For reasons of stability and minimal sensitivity, a unique solution 

having minimal 2-norm is singled out from the set of ali minimizer

X  — {x  E R n : ||Ax — í>||2 =  min}.

We denote the solution by x*. Note that in the full rank case, there is only one 

LS solution which has minimal 2-norm.

1.3 Structured Matrices

In many real applications, the input data of the problems has special structure 

such as Toeplitz, Hankel or Vandermonde. Many fast solvers take into account 

this structure where these special matrices appears.

CHAPTER 1. INTRODUCTION 7
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1.3.1 Toeplitz Matrices

D efinition  1.3.1 The matrixT G py+ixn+i is called Toeplitz if the matrixT is 

in the form
{ t o  t \  t 2  ■ ■ ■ t n  ^

t—l to t\ • • * tn_1
T =  '

\  t —n t —( n _ i) i • • ‘ t o  J

In this case, the general term is t̂ - =  tj_* for some given seqnence with the

entries t_n,t_n+i , .... t_1? t0, t1;.... tn. A Toeplitz matrix is defined by one row and

one column. Sometimes we denote the Toeplitz matrix T as a vector in the form

(t—ni t—n+1, ••• A—1? ̂ 0 ,^1, •••, Lz) •

We denote the symmetric Toeplitz matrix defined by just one row vector

(to, t i , ..., tn)T as well.

1.3.2 Circulant Matrices

A special case of a Toeplitz matrices is presented here.
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D efinition  1.3.2 We have that a n n x n  matrix Cn is called circulant when

( Cg C_ i * • * C2—n C\—n ^

Cr.

C\ Cg C—

Cn—2 • •

\ C f i — i  Cn—2 ' ‘ *

C-2—i

Cl Co )

where C-k =  Cn-fc for 1 <  k < n — 1.

1.3.3 Hankel Matrices

D efinition  1.3.3 The matrix H  E R mxn is called Hankel if H is in the form

(hg hi h2 * • /in ^

hi h2 h  • * hn+1

H = h2 h /i4 • ’ ^n+2

\ hn hn+l hn+2 *•• h2n J

The general term of Hankel matrix H is hij =  hj+i- 2 for some given sequence 

hg, / i i , / i 2n—15 ^2n- The entries of i f  are constant along the anti-diagonals.
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1.3.4 Vandermonde Matrices

D efinition  1.3.4 A matrix of the form

(  1 1 1 \

ao &■!
V  =  Vr(a0, a i , . . .  ,a n) =

is Vandermonde where {a ^}^=0 is a sequence ofn  +  1 distinct real numbers.

Vandermonde matrices are related to the polynomial problem of finding a poly- 

nomial p(x) — anxn +  an_ ix71' 1 +  • • • +  ao, which interpolates the data (<**, /*), 

z — 0 ,1, . . . ,  n. The coefíicient vector satisfies the linear system

arises when determining weights Xi in quadrature formulas when moments bi are 

given.

In General, Vandermonde systems are extremely ill-conditioned.

1.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efi&cient altemative to obtain a Toeplitz 

matrix-vector multiplication. This method consists of computing the finite Fourier

VTa =  f

called a dual Vandermonde system. The primai system

Vx =  b



transform, with the significative reduction to the computational cost in order of 

0(n log2n) operations where n is the number of points.

The discrete Fourier eoefficients {c j}™~q for a function

j=o

at the points Xk =  2&7r/n, A; =  0, 1, . . . ,  n — 1 can be computed by

\  E  f  ( ^ )  e~ii2k*/n’ j  =  0, 1, . . . ,  n -  1. (1.6)
k=0 '  J

CHAPTER1. INTRODUCTION 11

If üj =  e 2/c7n//n is the nth root of unity, i.e., uf1 — 1, then the Fourier eoefficients 

can be rewritten as follows

cj =  - ^ 2  f kUjJk’ =  ~ f ( Xk)-n n
k= 0

Note that Cj is expressed as a polynomial of degree n — 1 in uz. This can also be 

written as a matrix-vector multiplication

c =  Fnf, (Fn)jk =  <Jk,

where Fn G R 7lXn is the Fourier matrix.

In the usual implementation of the discrete Fourier transform, n2 operations 

are required. Now, if n =  2r and set

2&i, if k even, ^
k =  ■{ 0 <  k\ <  —n — 1,

2k\ +  1 if k odd,



then the sum in (1.6) can be splitted into an even and an odd part such that

\n—1 ^n—1

Cj =  f 2k1{w2Ykl +  ^ 2  f 2ki +  1 {u2y klujJ. (1.7)
k\=0 ki=0

Let r) be the quotient and ji  the remainder when j  is divided by |n, i.e.,

j  =  rjT-n +  j\. Then, since uju =  1,

(u;2) ^  =  (lü2) ^ 1 M n k i ^ y ^  =  =  (u 2 yik lm

Thns if, for j i  =  0,1, . . . ,  |n — 1, we set

|n-l |n-l

0O’i ) =  ^ 2  h kÁu2)3k\ ^ 0'i) =  +
fci=0 ki=0

where (o;2)^n =  1. Then, by (1.7) .

cõ =  <Kii) +  3 =  0,1, • - •, n -  1.

The computational effort by this way is n log2 n operations.

Many excellent surveys of the use of the discrete Fourier transform are given 

by Cooley, Lewis and Welsh [13], Henrici [14] and Walker [38].

CHAPTER 1. INTROD UCTION 12
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1.5 Givens Rotations

The Givens rotations introduces zeros more seleetively than the Householder trans-

formation. The matrix of Givens rotation is

(1  ••• 0

G(i,k, 9)

0 \

0 • • • c • • • s

\0 ••• 0 ••• 0 ••• 1 j

where G& =  Gkk =  c =  cos 9, Gik =  s =  sin# and Gk% =  —s for some 9. Note

that Givens rotations are orthogonal (c2 +  s1 =  1 and G (i,k,9)G (i,k,9)T =  I). 

Geometrically, the matrix G(i, A:, 9) rotates in 9 radians a pair of coordinates axes 

in the (i, k) plane. For instance, if x € R n and y — G(i, k, 0)Tx. then

Vi =

CXi -  sxk j  =  i, 

SX{ ~[~ cxk j  — A/j

Xj j  ^  z, k.

Setting

Xi and s = - x k
xi V x2i + x \

we can force yk to be zero.

0

0

c



The following Givens rotation algorithm given in [20] requires 5 flops and a 

single square root.

A lg o r ith m  1.5.1 (G ivens R otations A l g o r ith m ) Given the scalars a and 

b, this function computes c =  cos(6) and s =  sin(0) so that

CHAPTER1. INTRODUCTION 14

function [c, s] =  givens (a, b)

if b =  0

c =  1 

5 = 1

else

if |6| > |a|

r =  —a/b 

s =  l/y/l +  t 2

C — S T

else

r  =  —b/a

c =  l/y/l +  T2 

S — CT

end
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end 

end givens

15

1.6 Hyperbolic Rotations

In the same way of Givens rotation we can construct a hyperbolic transformation 

as follows
/ I

H =

0 ••• 0 ••• 0 \

0 ••• c ■s •• • 0

0 •. - - 5  .• • c  • . • 0

\0 ••• 0 ••• 0 ••• 1/
Here, c =  cosh($) and s =  sinh($). Moreover we have that c2 — s2 =  1. The

hyperbolic rotations algorithm can be easily obtained.



Chapter 2 

Iterative Methods for Structured 

LS Problems

In this chapter we remind some iterative algorithms for solving structured LS 

problems

min \\Sx — b\\2. (2.1)
X

Here S € R mxn is structured, m >  n, ò £ R m, and x  € R n.

In Section 2.1 Fast Inverse QR Factorization for solving Toeplitz systems de- 

veloped by Nagy [27] is reviewed. This method makes use of the Toeplitz structure 

and requires only 0(mn) operations. Eífective preconditioned conjugate gradients 

with circulant and noncirculant preconditioners are presented in Section 2.2. The 

TLS problem is given in Section 2.3. In Section 2.4 the Successive Least Squares

16



(SLS) method proposed by Yalamov and Yuan [39] is reviewed because it is an 

important algorithm for our work in next chapter. The SLS method preserves 

the structure of the error matrix as in the data matrix and is quite suitable for 

structured linear systems.
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2.1 Fast Inverse QR Factorization

A fast solver of Toeplitz system

min||6 — Tx\\2 (2.2)
X

is the Fast Inverse QR Factorization which requires only 0(mn) operations.

This algorithm is based on the Toeplitz structure of T. To compute the matrix 

R we have the following procedure:

If T is an m x n Toeplitz matrix of full column rank and R is the Cholesky

factor of Tt T  then T can be partitioned as

( t 0 uT\ ( T 0 ü \
T  =  j =  (2.3)

\ v  T0 )  \vT tm- n)

where To is a submatrix of T, u and v are n — 1 dimensional vectors, v and ü are

m — 1 dimensional vectors, and to and tm- n are scalars. In the same way R can be

partitioned as

R

Here z and z are n — 1 dimensional vectors and ru and rnn are scalars.

r ii

0 Rt,

Rt z

0T rnr
(2.4)



Using the partitioning (2.3) and (2.4) and then setting RTR =  T^T we have 

1̂1 ru zT \ í  1̂ +  vTv t0uT +  VTTq 

rn z zzT +  RTRb)  \ t0u +  T^v uuT +  T0r T0

and
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(R ?R t R fz  \ (  TgT0 +  vvT Tq Ü +  tm- nv

\ zTRt zTz +  r jn J \ üt To +  tm- nvT üTü +  
From (2.5) and (2.6) we have

ztF  +  RlRb =  uuT +T%T0

and

Rt R t - T d T0 +  vv~T

It follows that

(2.5)

(2.6)

R% Rb =  R j Rt +  uuT — vvT — zzT. (2.7)

From (2.5) the ôrst row of R can be easily computed because

rn =  *o and zT =  (̂ oWT +  t^ToVm.

The expression (2.7) can be rewritten as

7 ^ # ! =  R?Rt +  uuT (2.8)

^ 2  =  7 ? ^ - ^  (2.9)

and

R£Rb =  R%R2- z z T (2.10)



where R\ and R2 are upper triangular matrices.

For the updating problem (2.8) we can find a product of Givens rotations 

Q =  G(n — 1, rc, 9n- 1) • * • G( 1, n , 9{) so that
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where G (i,j,ôi) is a Givens rotation.

For the downdating problems (2.9) and (2.10), the Hyperbolic rotation — 

H(n — 1, 72, 4>n-\) ■ ■ • i7 (l, 7 2 , )  and =  i7(n — 1,72, pn-i)  - • • iJ(l,72, p{) can be 

found such that

The following algorithm proposed by Nagy in [27] computes R with mn+ 6n2 +  

0{n) multiplications.

A l g o r it h m  2.1.1 (Fa s t  In v e r s e  QR A l g o r it h m ) Given the matrix T, this 

function computes R.

function R =  fastiqr(T)

(2.11)

(2.12)

and

(2.13)

i 2(l, 1) — rn — \Ao + +  • * * +  1

2; =  (tQu +  Tfv)/ru
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R (l ,2 :n )  =  zT 

for k =  1,2, . . .  ,n — 1

rt(k : n — 1) =  R(k , k : n — 1) 

[c, s] =  givens (rt(k),u(k))
c —s \ / r.

uT )  \  s c J  \uT
[c,s] =hyp(ri(fc),ü(fc)) 

c —s

vT)  \ —s c J \ vT
[c,s] = h y p (r2(k),z{k)) 

c —s

ZT J \ — S c }  \ zT
R(k +  1, k +  1 : n) =  r^ik : n — 1)

end

end fastiqr

2.2 CG Methods for Toeplitz Systems

Fast direct Toeplitz solvers require 0(n  log2 n) operations. By using a precondi- 

tioned CG method, the computational effort is redueed to 0(n log2 n) operations. 

Fast direct Toeplitz solvers are unstable for some important Toeplitz matrices such 

as indefinite and certain non-Hermitian Toeplitz matrices. In this case precondi- 

tioned iterative methods must be used.



2.2.1 Toeplitz and Circulant Matrices Using Fourier Series

An n x n Toeplitz matrix Tn with the entries tj# =  tj-k, 0 < j, k < n can be 

defined for ali n > 1 by the following Fourier coefficients of /

tk =  h J  f W e~Ík<>de’ k =  0 ,± l ,± 2 ,...  (2.14)

where /  is a 27r-periodic continuous real-valued function defined on [—tt, 7t]. The 

function /  is called the generating function of the sequence of Toeplitz matrices

Tn. Note that when /  is an even function Tn is a real symmetric matrix.

If Cn is a circulant matrix then it can be diagonalized by the Fourier matrix 

Fn such that

Cn =  F*KnFn (2.15)

where the entries of Fn are given by

[F-n\j,h =  i. fc <  "  -  1 (2-16)

and An is a diagonal matrix with the entries as the eigenvalues of Cn. We can 

obtain the diagonal entries \  of A* by the FFT of first column of Cn

n — 1

Ak =  Y^Cj<?™:íkln, k =  0 , . . . ,n - l .  (2.17)
3=0

By FFT we can obtain the products Cny and C~ly for every vector y using 

(2.15) in 0(n\og2n) operations.
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2.2.2 CG Method for Toeplitz Matrices

We shall apply the CG method for solving the Toeplitz system. The method just 

needs matrix-vector product.

At each iteration Tny can be computed by FFT embedding Tn into a 2n x 2n 

circulant matrix, i.e.,

The matrix-vector multiplication requires 0(2nlog2(2n)) operations and the

2n-vector for storing the eigenvalues of the embedded circulant matrix given in

(2.18) is need.

Then, to solve the Toeplitz system Tnx — b we solve the following precondi- 

tioned system

The preconditioner Pn is a matrix constructed with 0(n log2 n) operations and 

the linear system Pnv =  y is solved in 0(n log2n) operations.

(2.18)

total number of operations at each iteration is 0(n  log2 n) operations. An extra

Pn lTnx =  Pn lb. (2.19)

2.2.3 Circulant Toeplitz Preconditioners

If C is an n x n circulant matrix then it can be diagonalized by (2.15) and its 

inversion is done in 0(n  log2 n) operations by FFT of size n.
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Strang [35] proposes the first circulant preconditioner S =  s*_/, 0 < k.l < n 

with the diagonais Sj given by
/

cj 0 < i < | ,

Cj_n | < j  <  n, (2.20)

sn+j 0 < - j  < n.

This preconditioner is obtained from the central diagonais of C and reflected 

them around to complete the circulant requirements.

S j  s

2.3 Total Least Squares Problem

Total least squares (TLS) problems appear in many engineering applications such 

as signal and image processing, systems identification, automatic control, decon- 

volution techniques, and systems response prediction [37]. The TLS problem is a 

general case of the LS problem based on the fact that in many cases sampling or 

modelling errors affect both the vector b and the matrix A.

This assumption motivates an estimative of the unknown vector x given by 

solving the following TLS problem

min||(£,r)||F
X

s.t. (A +  E )x =  b +  r (2.21)



where A .E  G R mXn, m >  n, 6, r £ R m, and x € R n, || • ||f denotes the Frobenius 

norm and b +  r E i?(^4 +  i?). The Frobenius norm of an m x n matrix A is defined 

by

CHAPTER 2. ITERATIVE METHODS FOR STRUCTURED LS PROBLEMS24

where ” tr” denotes the trace.

The vector x* that solve this problem is called total least squares (TLS) solu- 

tion.

In many cases the solution of the TLS problem is close to the solution of the 

correspondent LS problem.

2.4 Successive Least Squares Method

In this section we review the Successive Least Squares (SLS) method proposed by 

Yalamov and Yuan [39] for solving structured TLS problems. This method is based 

on solution of successive LS problems to satisfy the requirement of error matrix 

structure. Of course, the method can also be applied to the general TLS problems.

2.4.1 Mathematical Background

The TLS equation

m  n

(.A +  E)x — b +  r (2.22)



is nonlinear whith respect to the unknowns E, x and r. The unknowns can be 

separated into two groups. For instance, we have one group for x and another 

one for E  and r. If x  is constant the problem becomes linear with respect to the 

unknowns E  and r. In many cases the LS solution is close enough to the TLS 

solution because LS problems are a special case of TLS problems. Thus the initial 

value Xo is chosen for solving the LS problem Ax0 =  b +  r0. This initial value is 

also proposed in [6, 32].

Considering x as a constant at each step, and E and r variables, we rewrite 

the TLS problem (2.21) as
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To obtain the matrix X  and the vector a we consider the following equality

r
min

a
2

s.t. Ax +  X a  =  b +  r. (2.23)

X a  =  Ex. (2.24)

This choice depends on the structure of the matrix E.

To illustrate this choice a few examples are cited here.

Ex a m p le  2 .4 .1  If E is an unstructured matrix then we have

(  x i •••xn \

X i  • • • X ,

X  =

«£l ' ‘ ' /
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and

Oi Vec{Ef) ( ê l l ;  • • -  i Clm ^ 2 1 5  * • • j  ^ 2 m ' ' ’ &m l ?  • • ■ i &mn)T

Here X  G R™ x™> and a G R mn.

E x a m p l e  2 .4 .2  If E is sparse, X  and a are also sparse. Their sparsity pattern 

depends on the sparsity pattern of E.

E x a m p l e  2 .4 .3  General Toeplitz matrices E generates the following results

( x n  £ n _ i  • • • X i  0  \

X n  "  • X 2  X i  J

and

a — (en_ i , . . . ,  ei, eo, e_i , . . . ,  e_m+i)J

where X  G R mx(m+n *) and a G R m+n 1,

For simplicity, the problem (2.23) can be rewritten as

mm
a

s.t. ( - I , X )
r

\a J
b — Ax. (2.25)



Here (2.25) is an nnderdetermined linear system with the identity matrix I  € 

Rmxm anc[ x  e  R mxfe where k depends on the structure of E.

By analysis of Bjõrck [6], the solution of (2.25) is given by r =  — y and a — X Ty 

where y is the solution of the system

(.I +  X X T)y =  s. (2.26)

This form is a better alternative to solve the LS problem (2.25) because the 

matrix M  =  I  +  X X T is computed easily in practical applications. Moreover, M  

is symmetric positive definite (s.p.d.) and its smallest eigenvalue is not less than 

1.

To obtain the solution of the linear system (2.26) there are many alternatives 

such as iterative methods, direet solution by some banded solver or direct solution 

by a super-fast Toeplitz solver [2]. Since M  has very nice properties the iterative 

solution using CG methods with an appropriate preconditioner (Section 2.2) is 

quite suitable to solve this system.

2.4.2 Successive Least Squares Algorithm

The SLS method is based on the solution of successive LS problems. The initial 

value Xo is given solving the related LS problem Axo =  b 4- tq. When £ is a known 

vector we compute E  and r. Obtaining E, x and r can be computed by solving a 

LS problem with the matrix A + E  and the vector b. The SLS algorithm is proposed
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based on these notes.

A l g o r it h m  2.4.1 (S u c c e s s iv e  L e a s t  Sq u a r e s  A l g o r it h m ) Given A andb 

this algorithm computes the TLS solution x.

function x =sls(A, b)

Solve the LS problem  Ax o =  b

r0 =  - s 0 =  Ax o -  b

for k =  1 ,2 , ... until convergence

Solve the LS problem  (—/, X*)

Define Ek such that Xk~i&k =  EkXk-i 

Solve the LS problem  (A +  Ek)xk =  b 

sk =  b -  Axk

Sk—l

Fk^k &k

end

end sls

For Toeplitz systems the matrix M is fully defined by its first row whose 

entries are defined by the following matrix-vector product

^ 'Vn ■ • • X \  \  í  Xfi  \

\ 0

(2.27)

In /  \ X l /



Note that this matrix is also Toeplitz. So, this multiplication can be done in 

0(nlog2n) flops by FFT. When an iterative method is used to solve the s.p.d. 

Toeplitz system M y =  s the matrix M  is not definite explicitly.

The matrix-vector multiplication a =  X Ty is done in 0((m  +  n) log2(m +  n)) 

flops.

Unfortunately, for general matrices E  the overdetermined linear system

(A +  Ek)xk =  b (2.28)

can not be solved efficiently. This occur because Ek, in general, is not of low rank. 

The Fast Inverse QR Iteration (Section 2.1) may be used to solve the system (2.28) 

in 4mn -f 0 (n 2) flops.

Finally, the computation of s and r that involves products with Toeplitz ma­

trices are done in 0((m  +  n) log2(m +  n)) flops.

Summarizing, the total number of flops per iteration step is

4mn +  0 ((m  +  n) log2(m +  n))

and a few vectors of length not greater than m + n are stored.

Ry numérica! experiments given in Yalamov and Yuan [39], the method can ob- 

tain the TLS solution which is quite different from the LS solution. Other methods 

do not keep the structure of the error matrix in this case.
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Chapter 3

The SNLS Method for NLS 

Problems

In this chapter we propose a new way for solving overdetermined NLS problems

A{a)x — b. (3.1)

Here A(a) is an m x n nonlinear functional of an s x 1 parameter vector a  with 

m >  n, x € R n and 6 € R m.

This way is based on the TLS formulation (2.21) combined with the successive 

LS method. In Section 3.1 the NLS problem is presented. An important source of 

the NLS problems is the fitting data to a mathematical model such as exponential 

fitting problems. In Section 3.2 we derive the SNLS method and its numerical al- 

gorithm. The SNLS method is quite suitable for structured NLS problems because
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the SNLS algorithm preserves the structure of the error matrix. Here we just con- 

sider the case of Toeplitz, Hankel and Vandermonde structures. Since the SNLS 

method is designed for general structure problems, other structures can be treated 

similarly. Numerical experiments will be presented in next chapter.

3.1 Nonlinear LS Problems

The unconstrained Nonlinear LS problem consists of finding a global minimizer of 

the sum of squares of m nonlinear functions

<t’(x ) =  \\\f(.x)Wl =  \ f(x )Tf{x )  (3.2)

where /  : R n —» R m, m > n. This is a special case of the general optimization 

problem in R n that is solved by unconstrained methods such as described in [5, 4, 

16, 18, 34].

An important application of the NLS problems is the fitting data to a math- 

ematical model. Given a set of observed points (í;, y*), i — 1, . . . ,  m, the purpose 

is to fit this points to a model function y =  g(t,x) If r*(x) represents the error in 

the prediction model for the ith observation,

ri(x) =  yi -  g(ti,x), i =  1, . . .  ,m,

the objective is to minimize the l-norm of the vector r(x). This problem is on the 

form of the problem (3.2) with f(x )  =  r(x).
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For example, the following exponential fitting problem is to determine the 

parameter vector x which gives the best fit to m observed points yi). i =  

1, . . . ,  ra, m > 5, in the expression

y(t, x) =  xx +  x 2eX4t +  x3eX5t

This problem is hnear with respect to x2 and x$ but nonlinear in x4 and 

x5. In this case, the parameter vector x  can be partitioned as xT =  (yT1 zT) and is 

called the separable NLS problem.

3.2 Successive LS method for Nonlinear LS Pro- 

blems

The idea of the SLS algorithm proposed by Yalamov and Yuan [39] motivates us 

to set up some similar method for solving structured NLS problems because of 

preservation of error structure.

3.2.1 Successive Nonlinear Least Squares Method

From (3.1) the residual vector r is defined by

r(a, x) =  A(a)x — b.

In many applications A(a) has some speciai structure, for example, Toeplitz, 

Hankel or Vandermonde. The related problem is called structured NLS problem.

CHAPTER 3. THE SNLS METHOD FOR NLS PROBLEMS 32



CHAPTER 3. THE SNLS METHOD FOR NLS PROBLEMS 33

The main problem is the error in A (a) also with the same structure as that of 

A (a). Note that the problem (3.1) is linear in x and nonlinear in a and called 

separable NLS problem. In this work we limit our attention to the separable case 

investigated in the papers [3, 19, 23, 26, 28].

We follow ideas from Rosen, Park and Glick [33] and Yalamov and Yuan [39] 

to consider the equivalent form for the problem as follows

The matrix A (a) contains errors that are stored in the matrix AA(a). The error 

matrix AA(a) has the same structure as A(a) and A a represents the corresponding 

error in a.

For the nonlinear formulation, in the equality (2.24) X  is replaced by J(a, x). 

Then we have

Here, J(a,x) is the Jacobian of A(a)x  with respect to a. Let a,j(a) represent 

the j th column of A {a )1

mins ||(AA(a),r)||F
(3.3)

s.t. {A(ol) +  AA (a))x — b +  r.

AA (a)x — J(a,x) Aa. (3.4)

n
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Therefore, the problem (3.3) can be stated as follows

r
miris

Aa (3.5)
2

s.t. A (a)x  +  J(a, x)A a  =  b +  r,

that is,

r
miiLr

Aa (3.6)2

s.t. [—/ ,  J(a, ar)] =  6 — A(a)x.

Here (3.6) is a underdetermined linear system with I  € R mxm and J(a, x) € 

R mxs where I  denotes the identity matrix.

where M  =  ( /  +  J(a, x)J(a, x)T) and 5 =  6 — A(a)x. Here r — —y and a =  

J (a ,x )Ty.

The SNLS algorithm consists of the following steps. Computing an initial valne 

x from A(ã)x  =  6 for some given initial value ã; solving (3.7) with ã given and 

x computed to obtain the approximation of the unknowns r and Aa; updating ã; 

computing the new vectors x and r by solving a LS problem with updated matrix 

A(a); repeating these steps.

The solution of (3.6) is the solution of the following linear system

My =  s (3.7)



3.2.2 Successive Nonlinear Least Squares Algorithm

It follows from the analysis in previous seetions that there is the SNLS algorithm 

as follows.

A l g o r it h m  3 .2 .1  (SNLS A l g o r it h m ) Given A(a), b, V a(A(a)x) and ã this 

algorithm computes the NLS solution x and the parameter vector a.

Set a =  ã 

Com pute A(a)

Solve A(a)x =  b 

Com pute J(a, x)

Set r =  A(a)x — b, s =  —r 

Repeat

Solve [ I A J(a, x) J(a, x)T]y =  s 

Set A a =  J(a , x)Ty, a =  a +  Aa 

Com pute A(a)

Solve A(a)x =  b 

Com pute J(a,x)

Set s =  b — A{a)x, r =  —s

until convergence
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One way to find the solution of the second linear system is to compute the QR 

factorization of the matrix A(a) as follows

A(á)x =  b =$■ QRx — b.

From the normal equations we have

QtQRx =  QTb

that results in

Rx =  QTb.

Multiplying both the sides by RT we have the following equality

RtRx =  RTQTb.

How

- c
then

( RT 0) f  Ja : =  ( ã r 0) QTb.

-  -  í ll\Calling b =  QTb and b =  l 1 we have
W

RtRx =  RTh

that is equivalent to

Rx =  bi. (3.8)

The triangular system (3.8) can be easily solved by a back substitution method.
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Chapter 4

Numerical Experiments

In this chapter we present some numerical experiments by using in MATLAB 

6.0 to verify the efficiency of the SNLS method. We also present the modified 

SNLS (MSNLS) method. The modification is done to reduce the computational 

cost and to improve the convergence and the accuracy of the SNLS algorithm for 

Vandermonde system.

It follows from our numerical tests that both the SNLS and MSNLS algo- 

rithms converge fast with reasonable tolerance and provide good approximation 

to the desired solution when the exact problem is perturbed by several uniformly 

distributed random errors in a, or in both a and ò. Also the MSNLS algorithm is 

better than the SNLS algorithm in the sense of the convergence rate and accuracy 

of the approximated solution.

In Section 4.1 we present an application of the Vandermonde systems to the
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exponential data modelling. In Section 4.2 we give an overview about the MSNLS 

method. In Section 4.3 the performance of both the SNLS and MSNLS methods 

is compared with LS, TLS and SNTLN algorithms for a given problem. In Section

4.4 we consider two types of signal to verify the ability of the SNLS method to 

converge to the exact parameter vector ae from different choices of initial parameter 

estimates ã. Toeplitz systems are considered in Section 4.5.

4.1 Vandermonde System Applied to the Expo­

nential Data Modelling

Vandermonde structure frequently appears in many nonlinear applications such as 

exponential data modelling problems. For m given uniformly sample data points 

yi, the fitting model function is

i =  0 , . . . ,  m, where n is the model order and At is the constant sampling interval. 

The objective of this problem is to obtain an estimative of the frequencies /j-, 

damping factors amplitudes üj and phases <fij. j  =  1,. . .  ,n. Frequencies and 

damping factors are obtained from methods based on TLS where Toeplitz structure 

is considered. The linear parameters Xj which contains the amplitudes aj and 

phases <f>j, 1 < j  <  n, are estimated from solving the overdetermined Vandermonde

n n
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system

A(a)x  =  b (4.1)

where

í  1 1 1 \
/ < Y l \  /  2/o \

ai a2

A(a) =  a\ o% a2n , m > n, a = 6 =

\ / \ Vm—l /

Since the problem (4.1) is nonlinear with respect to a, a good initial estimated 

parameter vector ã is need. There is an perturbation h in the initial parameter 

vector ã such that

4.2 Modified Successive Nonlinear Least Squa­

res Algorithm

In this section we can solve the NLS problem by the approach proposed by Yalamov 

and Yuan [39]. Our objective is to reduce the computational cost, and to improve 

the convergence rate and the accuracy of the SNLS algorithm for Vandermonde 

structures. Of course, this modification can be used for other structures.

r
min

h
2

s.t. A(a)x — A(a  +  h)x =  b +  r.
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Considering the NLS problem (3.3), we choose the matrices X  and 3? in such a 

way that

A A(a)x  =  XFAa, (4*2)

where both X  and T have nice structure for structured problems. For example, if 

A(a) is Vandermonde, then

/  xx •• • xn 0 \

X  =
X i  • • • x 7

X i • •  • x n  /

and

F =

(  zeros(s) ^

L

2diag (a*)

-SXS

\(m — l)diag(a™ 2) )  
where X  € R mxm’> and T € R ,Bnx*, i =  l , . . . , s .

Now we consider the problem

mm
VAa

s.t. A(a)x  +  XVAa  =  b +  r.

(4.3)
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Then (4.3) is equivalent to

41

mm

s.t.

r

T A a

r \
(4.4)

TAa
b — A(a)x.

From Yalamov and Yuan [39], one way to find the LS solution of the problem 

(4.4) is to solve

(.I +  X X T)y =  s (4.5)

where s =  b — A(a)x. Note that (4.5) is very easily solvable system (in general, it 

is a diagonal system). From (4.5) it follows that r =  —y and

TAa =  X Ty. (4.6)

Since (4.6) may not be a consistent system, we consider its least squares solution 

as follows:

r TrA a  =  TTX Ty, (4.7)

otherwise, we obtain Aa  just by its first s equations. Of course, we can consider 

other type of Solutions for A a from (4.6). Note that TtX t =  (XT)T =  J (a ,x)T. 

Then (4.7) can be solved by

D Aa  =  J(a, x)y (4.8)

where D  =  r Tr.
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For Vandermonde systems, for instance, I  +  X X T =  (1 +  ||cc|||)I and D is an

linear system is solved by QR decomposition as described in Section 3.2.

4.2.1 Modified Successive Nonlinear Least Squares Algo­

rithm

A lgo r ith m  4 .2 .1  (MSNLS A lg o r ith m ) Given A(a), b, V aA(a) and ã this 

algorithm computes the NLS solution x and the parameter vector a.

Set a =  ã 

Com pute A(a)

Solve A(a)x =  b 

Com pute J(a, x)

Set r =  A(a)x  — b, s =  —r 

Repeat

n x n diagonal matrix whose entries are given by da =  Í 2°A* 2 • ^be second

Set a =  a +  Aa

Com pute A (a)

Solve A (a)x  =  b

Com pute J(a,x)
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Set s =  b — A{a)x, r — —s 

until convergence

43

4.3 Performance of Both the SNLS and MSNLS 

Methods for Vandermonde Overdetermined 

Systems

In this section we make some numerical tests to verify the efficiency of both the 

SNLS and MSNLS methods for reconstrncting a given exact problem. The test 

problem is the same as that proposed by Rosen, Park and Glick in [33].

Given an initial value of A(a), we assume that there exists a exact Vander­

monde matrix A(ae) and vector be such that

A(oc e)xe =  Òg

for some exact solution xe. Then, the overdetermined system has a solution xe 

with zero residual for A (ae) and be. In practical apphcations, since the data are 

perturbed by noise, the perturbed Vandermonde matrix A(ae +  ôa) =  A(ã) and 

the perturbed vector bp are assumed to be known. Random perturbations ôa are 

generated in the vector parameter a to give a Vandermonde matrix A(a  +  da).
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The components of Sa are uniformly distributed random variables in the interval 

[-7 ,7]-

The matrix A(a) and vectors r and xp are computed via LS, TLS, SNTLS2, 

SNLS and MSNLS, satisfying the perturbed system

A{a)xp =  A(ã  +  h)xp =  bp — r,

where h is the error for a parameter vector a. For LS, A(a) =  A(a) since the 

matrix is not perturbed. For TLS, A(a) =  A(ã) +  E  for some error matrix E  since 

TLS does not preserves the structure or to consider the nonlinear dependence of 

A on a into account in computing the solution.

In the test we consider A(ae) a 15 x 3 Vandermonde matrix such that
/  g — 0 . 1 + 27rv/— 1* 0.5  \  / 1 \

OLp — ■>— 0 . 2 + 27T\/— 1*0.4

\e— 0 .3 + 2 7 r v /— 1 * 0 .3

5 X P = 1

W
Each data obtained represents the average of 100 Solutions computed with dif- 

ferent random values in the interval [—7 ,7]. For both SNLS and MSNLS methods 

the number of iterations was limited to 10 while for the SNTLN2 algorithm the 

number of iterations was limited to 20. When the convergence test is not satisfied, 

that is, ||Aa|| > l.Oe — 6 or ||Ax|| > l.Oe — 6, the result given by our methods in 

the lOth iteration is taken as the final solution.

The results of LS, TLS and SNTLN2 are obtained from [33]. The SNTLN2*

method was implemented in Matlab by us. Unfortunately we do not have notice of



how their minimization subproblem was solved. In our implementation we use a CG 

method for solving the minimization subproblem without a suitable preconditioner. 

Then, for the tests, our results are not so good as that the SNTLN2 method.

4.3.1 Numerical Results When b is Unperturbed

In Table 4.1 the test results are given for the problem where only the parameter 

vector a is perturbed by uniformly distributed random variables in the interval 

[—7 ,7]. For 7 =  l.Oe — 8 and 7 =  l.Oe — 6 both the SNLS and MSNLS me­

thods converges in one step. For other values of 7 , its iterations was terminated 

after 10 iterations. The reason for this fact is that we did not apply the efficient 

preconditioned CG method described in Section 2.2 to solve very ill-conditioned 

Vandermonde System (4.1). But for ali tests, the relative error with respect to 

the vector x  obtained by the MSNLS method is better than that by LS, TLS, 

SNTLN2* and SNLS methods.

The CPU time, in seconds, of both MSNLS and SNTLN2* methods is given in 

Table 4.2.

Figures 4.1 and 4.2 display the relative error computed by both MSNLS and 

SNTLN2* methods with respect to x and a for e =  l.Oe — 16. In this case the 

convergence of the SNTLN2* method is still better than the convergence of the 

MSNLS method.
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7 LS TLS SNTLN2 SNTLN2* SNLS MSNLS

1.0e-8 4.8e-8 4.8e-8 4.9e-15 4.5e-8 2.3e-8 1.9e-8

1.0e-6 4.5e-6 4.5e-6 2.2e-16 2.9e-16 2.2e-6 2.0e-6

1.0e-4 4.9e-4 4.9e-4 l.Te-14 3.5e-13 9.5e-4 1.9e-4

1.0e-3 5.0e-3 5.0e-3 3.5e-16 3.4 9.3e-3 1.8e-3

1.0e-2 4.5e-2 4.6e-2 2.1e-14 3.0 1.2e-l 1.6e-2

1.0e-l 4.2e-l 4.2e-l 5.1e-2 1.3 3.8 1.2e-l

Table 4.1: Solution error of xp computed by the LS, TLS, SNTLN2,

SNTLN2*, SNLS and MSNLS methods when b is unperturbed.

In Figures 4.3 and 4.4 the comparison between both the MSNLS and SNTLN2* 

methods with respect to x and a, respectively, is shown. Here the MSNLS method 

converge fast when compared to the SNTLN2* method.

4.3.2 Numerical Results When b is Perturbed

For the perturbation in vector òe, two different cases are analyzed. First, be is 

affected by uniformly distributed random variables in the interval [-1.0e-8,1.0e-8]. 

In the second case, be is perturbed by uniformly distributed random variables in 

the interval [—7,7], like ae. The objective of these tests is to verify how both 

the SNLS and MSNLS methods recovers the correct solution when ae and be are 

affected by the different kinds of errors.
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7 SNTLN2* MSNLS

1.0e-8 3.8e-l 1.8e-l

1.0e-6 8.2e-l 6.0e-2

1.0e-4 1.1 1.9

1.0e-3 5.3 1.8

1.0e-2 5.3 1.9

1.0e-l 5.0 1.9

Table 4.2: CPU time of both SNTLN2* and MSNLS methods when b is unper- 

turbed.

Numerical Results When b is Perturbed by Uniformly Distributed Ran­

dom Variables in the Interval [-1.0e-8,1.0e-8]

In Table 4.3 the results obtained for b perturbed by uniformly distributed random 

variables in the interval [-1.0e-8,L0e-8] are given. Both the SNLS and MSNLS 

methods converges fast for 7 =  l.Oe — 8 and 7 =  l.Oe — 6 but they not satisfies the 

stopping criterion for ali tests when other values of 7 are considered. For ali tests 

the relative error in x of the MSNLS method is better than that of LS, TLS and 

SNLS.

The CPU time of both MSNLS and SNTLN2 * methods when b is perturbed

by uniformly distributed random variables in the interval [-1 .0 e-8 ,1 .0e-8] is given

in Table 4.4.
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Figure 4.1: Convergence of both the MSNLS and SNTLN2* methods with respect 

to x when b is unperturbed, e =  l.Oe — 16 and 7 =  l.Oe — 1.

For £ =  l.Oe — 16 the convergence of the SNTLN2* method is still better than 

the convergence of the MSNLS method. This fact is shown in Figures 4.7 and 4.8.

The comparison between both the MSNLS and SNTLN2* methods with respect 

to x and a, respectively, is shown in Figures 4.7 and 4.8.

In accord with Figures 4.7 and 4.8 the convergence of the MSNLS method is 

better than that the SNTLN2* method for a small tolerance.
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Figure 4.2: Convergence of both the MSNLS and SNTLN2* methods with respect 

to a when b is unperturbed, e =  l.Oe — 16 and 7 =  l.Oe — 1.

Numerical Results When b is Perturbed by Uniformly Distributed Ran- 

dom Variables in the Interval [—7 ,7]

When b is perturbed by uniformly distributed random variables in the interval 

[—7 ,7], the accuracy of the MSNLS method is better than that of LS, TLS, 

SNTLN2, SNTLN2* and SNLS. The results are given in Table 4.5. Unfortunately, 

the convergence test of both SNLS and MSNLS methods is not satisfied within 10 

iterations for 7 =  (l.Oe — 4 , . . . ,  l.Oe — 1) for ali tests.

In Table 4.6 the CPU time of both MSNLS and SNTLN2 * methods when b

is perturbed by uniformly distributed random variables in the interval [—7 , 7 ] is

presented.
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Figure 4.3: Comparison between both the MSNLS and SNTLN2* methods with 

respect to x when b is unperturbed and 7 =  l.Oe — 1.

When e =  l.Oe — 16 the SNTLN2* method converges fast and provides good 

approximation to the desired Solutions.

From Figures 4.11 and 4.12 the convergence of the MSNLS method is better 

than that SNTLN2* method.

4.4 Parameter Estimation Problems

To verify the capacity of the SNLS method we consider the following parameter 

estimation problem:
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Figure 4.4: Comparison between both the MSNLS and SNTLN2* methods with 

respect to a when b is unperturbed and 7 =  l.Oe — 1.

Suppose that a measured signal f(t)  at m observed values of t has the form

fi =  f(U) +  r\i, z =  l , . . . ,m  (4.9)

where rji represent noise or error in the measurement and f(t)  is one of the following 

forms

i- m  =  z u ^ e - a>1

or

2. m  =  z u xie~(t~as)2/<r2-

We shall use the SNLS method to obtain the approximation xp to the exact 

solution xe. The data for the first type of signal was obtained from Osborne and
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7 LS TLS SNTLN2 SNTLN2* SNLS MSNLS

1.0e-8 4.5e-8 4.5e-8 2.5e-8 4.6e-8 2.4e-8 1.9e-8

1.0e-6 5.0e-6 5.0e-6 2.5e-8 1.3e-8 2.5e-6 2.0e-6

1.0e-4 5.0e-4 5.0e-4 2.7e-8 1.3e-8 9.1e-4 1.9e-4

1.0e-3 4.2e-3 4.2e-3 2.7e-8 3.1 9.2e-3 1.8e-3

1.0e-2 4.9e-2 4.9e-2 2.4e-8 2.6 1.3e-l 1.6e-2

1.0e-l 4.7e-l 4.7e-l l.le -1 1.8 4.2 1.2e-l

Table 4.3: Solution error of xp computed by the LS, TLS, SNTLN2,

SNTLN2*, SNLS and MSNLS methods when b is perturbed by uniformly dis­

tributed random variables in the interval [-1.0e-8,1.0e-8].

Smyth [29], and the second type is the sum of Gaussian functions which is similar 

to that in [24].

For the first case we take 30 points U in the interval t E [0,1] and set the values 

ae =  (0 4 7 )T and xe — (0.5 2 —1.5 )r . Then, we have m =  30, n =  3, 

s =  3. This signal is used to measure the effect of errors in the data vector fi 

on the computed parameter estimate ap. Uniformly distributed random errors rç*, 

i =  1 ,. . . ,  m in the interval [—e, e] were added to /(L ) to give fi as in 4.9.

For the second case we take a2 =  0.05, ae =  (0.1 0.3 0.5 0.9 )T, xe ~

/  j P(1.0 0.5 2.0 0.25) and 64 values of ti equally spaced in the interval [0,1]. So 

we have m =  64, n =  4, and s =  4. The error in f(U) is given by uniformly
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7 SNTLN2* MSNLS

1.0e-8 2.1e-l 1.5e-l

1.0e-6 8.5e-l 2.2e-l

1.0e-4 9.7e-l 1.8

1.0e-3 5.4 2.0

1.0e-2 5.1 2.0

1.0e-l 4.9 1.9

Table 4.4: CPU time of both SNTLN2* and MSNLS methods when b is perturbed 

by uniformly distributed random variables in the interval [-1.0e-8,1.0e-8].

distributed random variables 77», i =  1, . . . ,  m in the interval [—e, e].

The ability of the SNLS method for different initial parameter estimates ã was 

tested with the two types of signals. The initial parameter estimation is

ã  =  cx.e +  5a

where the components of òa are uniformly distributed random variables in the 

interval [—7 ,7]. For ali cases, uniformly distributed random variables \r]i\ <  

l.Oe — 7 are added to fc such that

f i  =  /  { p i )  +  l i  i  =

The number of iterations is limited to 100 for six values of 7 . Here we consider

7 =  (0,0.01,0.02,0.03,0.05,0.07).
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Figure 4.5: Convergence of both the MSNLS and SNTLN2* methods with respect 

to x  when b is perturbed by uniformly distributed random variables in the interval 

[-1.0e-8,1.0e-8], e =  l.Oe — 16 and 7 =  l.Oe — 1.

4.4.1 Numerical Results for the First Type of Signal

First we consider numerical tests for the first case. Uniformly distributed random 

errors in the interval [-1.0e-7,1.0e-7] are added in /*. Numerical tests are also done 

with a single outlier at one of the points t*. For no outliers, the results of the SNLS 

method are given in Table 4.7. Since the norm of the error in both x  and a are 

minimized, different digits of correction were considered. Table 4.8 displays that 

the number of iterations decreases significatively for different digits of corrections.

The effect of outliers is verified by adding 1 outlier (±0.1) in a random position

of the vector / .  In Table 4.9 we give the average result of the obtained results for
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Figure 4.6: Convergence of both the MSNLS and SNTLN2* methods with respect 

to a when b is perturbed by uniformly distributed random variables in the interval 

[-1.0e-8,1.0e-8], s =  l.Oe — 16 and 7 =  l.Oe — 1.

different values of 7 and 100 test problems. The number of iterations and the 

approximated solution of x  and a are given in Table 4.10

4.4.2 Numerical Results for the Second Type of Signal

The obtained results are compared with the tests of both the SNTLN1 (SNTLS 

with Li norm) and SNTLN2 (SNTLS with L2 norm) algorithms presented by 

Rosen, Park and Glick in [33]. The results of 20 Solutions, each with different 

random values of Sa when no outliers was considered are given in Table 4.11. If 

7 =  0.02, the SNLS method converges for ali cases, as both SNTLN1 and SNTLN2.
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Figure 4.7: Comparison between both. the MSNLS and SNTLN2* methods with 

respect to x when b is perturbed by uniformly distributed random variables in the 

interval [-l.Qe-8,1.0e-8] and 7 =  l.Oe — 1.

For 7 =  0.07 the percentage of convergence of the SNLS method drops to 80% while 

the percentage of convergence of both SNTLN1 and SNTLN2 drops to 75%.

In order to investigate the effect of outliers, we consider 10 and 25 outliers. 

The values of 7 are the same as that used above. The value of each outlier is ±0.1. 

These values are added to R (in addition to rji) at randomly selected positions of 

the 64 points. The SNLS algorithm, as the SNTLN2 algorithm, did not satisfy the 

convergence criterion in many cases.
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Figure 4.8: Comparison between both the MSNLS and SNTLN2* methods with 

respect to a  when b is perturbed by uniformly distributed random variables in the 

interval [-1.0e-8,1.0e-8] and 7 =  l.Oe — 1.

4.5 Toeplitz Systems

In this section we present some numerical tests considering a Toeplitz system. The 

problem is take from [22]. The test problem is constructed so that both A (ae) and 

be are known. Random perturbations ôa on ae and Ò5 on be was added to give a 

Toeplitz matrix A(ae +  ôa) and b =  be +  The components of ôa are uniformly 

distributed random variables in the interval [—7,7] and ôb is randomly generated 

and scaled so that ||e||2 =  0.011|6||2-
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7 LS TLS SNTLN2 SNTLN2* SNLS MSNLS

1.0e-8 4.6e-8 4.6e-8 2.5e-8 5.1e-8 2.2e-8 1.8e-8

1.0e-6 4.6e-6 4.6e-6 2.5e-6 1.3e-6 2.4e-6 2.2e-6

1.0e-4 4.6e-4 4.6e-4 2.3e-4 1.3e-4 8.8e-4 1.8e-4

1.0e-3 4.7e-3 4.7e-3 2.5e-3 2.9 9.4e-3 1.7e-3

1.0e-2 4.3e-2 4.3e-2 2.7e-2 2.2 l.le -1 1.6e-2

l.Oe-1 5.1e-l 5.1e-l 3.4e-l 1.5 4.3 l.le -1

Table 4.5: Solution error of xp computed by the LS, TLS, SNTLN2,

SNTLN2*, SNLS and MSNLS methods when b is perturbed by uniformly dis- 

tributed random variables in the interval [—7,7].

In the test, the first column of the Toeplitz matrix A(a) is given by

. —(o;—i+l)
r> _ 9

col : a^i =

and its row is given by

e 2ĉ  , i =  1, 2, . . . ,  2u +  1

, otherwise

row — CLll 0 • • • 0

Here 4̂(o:) G R nxn, n =  64, ae =  1.25 and uj =  8. The exact solution xe is not 

known.

The vector b is given as follows

b = 1 ••• 1 +  e.
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7 SNTLN2* MSNLS

1.0e-8 2.6e-l 4.9e-2

1.0e-6 6.7e-l 2.2e-l

1.0e-4 9.4e-l 1.9

1.0e-3 5.3 1.8

1.0e-2 5.1 1.9

1.0e-l 4.9 1.9

Table 4.6: CPU time of both SNTLN2* and MSNLS methods when h is perturbed 

by uniformly distributed random variables in the interval [—7,7].

Our purpose is to obtain the exaet parameter ae via SNLS. The obtained results 

represents the average of 100 Solutions, each with different random values in the 

given interval. The number of iterations was limited in 20 iterations. When the 

stopping criterion

||Aa|| < e and ||Ax|| < e, e =  l.Oe — 6,

is not satisfied, the result obtained at the 20th iteration is taken as the final 

solution. In our tests the stopping criterion is satisfied, at most, in 5 iterations. 

The results are given in Table 4.12. This fact shows that the SNLS algorithm can 

be fast enough, especially if some fast or super fast methods are applied for the 

basic iteration step.
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Figure 4.9: Convergence of both the MSNLS and SNTLN2* methods with respect 

to x  when b is perturbed by uniformly distributed random variables in the interval

[7 ,7], e =  l.Oe — 16 and 7 =  l.Oe — 1.

7 \\Xp-Xeh
ll̂ elb

||«p—Q:e||2
ll&e II2 ||Ax|| ||Aq || #  it.

0 5.4e-8 5.9e-9 8.3e-8 8.2e-8 1

0.01 l.le-3 9.5e-4 9.2e-7 9.1e-7 40

0.02 2.4e-3 1.9e-3 9.1e-7 9.1e-7 44

0.03 3.6e-3 2.9e-3 9.2e-7 9.2e-7 46

0.05 5.2e-3 4.2e-3 9.2e-7 9.1e-7 49

0.07 7.4e-3 6.5e-3 9.1e-7 9.1e-7 51

Table 4.7: Convergence of the SNLS method for 100 tests of the first type of signal

when no outliers was considered.
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Figure 4.10: Convergence of both the MSNLS and SNTLN2* methods with respect 

to a when 6 is perturbed by uniformly distributed random variables in the interval

[7 ,7], e =  l.Oe — 16 and 7 =  l.Oe — 1.

£ I)xp—Xelta
II*. Ib

||ap-Q!e||2
llo.Ha | | A x | | I I A q . ii #  it-

1.0e-6 7.4e-3 6.5e-3 9.1e-7 9.1e-7 51

1.0e-4 8.3e-3 6.5e-3 9.1e-5 9.1e-5 24

1.0e-3 8.4e-3 6.9e-3 8.8e-4 8.7e-4 11

1.0e-2 1.6e-2 7.7e-3 6.0e-3 5.9e-3 2

1 . 0 e - l 1.7e-2 7.9e-3 7.1e-3 7.0e-3 1

Table 4.8: Convergence of the SNLS method for 100 tests of the first type of signal

when no outliers was considered for different digits of correction e and 7  =  0.07.
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Figure 4.11: Comparison between both the MSNLS and SNTLN2* methods with 

respect to x when b is perturbed by uniformly distributed random variables in the 

interval [7 ,7] and 7 =  l.Oe — 1.

7 || X-p ÍCe||2
Ikella

||Qp-Q!e||2
Kllí ||Ax|| ||Aa|| #  it.

0 6.0e-2 7.2e-3 9.1e-7 9.1e-7 58

0.01 6.1e-2 7.3e-3 9.1e-7 9.1e-7 57

0.02 6.9e-2 9.2e-3 9.1e-7 9.1e-7 57

0.03 8.5e-2 1.3e-2 9.3e-7 9.2e-7 59

0.05 7.8e-2 1.3e-2 9.2e-7 9.2e-7 57

0.07 7.1e-2 1.3e-2 9.2e-7 9.1e-7 57

Table 4.9: Convergence of the SNLS method for 100  tests of the first type of signal

when 1 outlier was added in a random component of /*.
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Figure 4.12: Comparison between both the MSNLS and SNTLN2* methods with 

respect to a when b is perturbed by uniformly distributed random variables in the 

interval [7 ,7] and 7 =  l.Oe — 1.

£ ||Xp ®e||2
ll*e||2

llttp-Oteib
ll̂ elb ||As|| ||Aa|| #  it-

l.Ge-6 7.1e-2 1.3e-2 9.2e-7 9.1e-7 57

1.0e-4 7.8e-2 1.4e-2 9.1e-5 9.1e-5 29

1.0e-3 7.7e-2 1.4e-2 8.9e-4 8.9e-4 16

1.0e-2 5.9e-2 l.le -2 7.7e-3 7.7e-3 4

1.0e-l 4.0e-2 9.2e-3 1.5e-2 1.4e-2 1

Table 4.10: Convergence of the SNLS method for 100 tests of the first type of

signal for different digits of correction £ and 7  =  0.07 when 1 outlier was added in

a random component of /*.
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7 \\Xp~Xeh
||Xe||2

\\oív—ae|b
\M\2 ||Ax|| ||Aa|| #  it-

0 5.4e-8 5.9e-9 8.3e-8 8.2e-8 1

0.01 l.le-3 9.5e-4 9.2e-7 9.1e-7 40

0.02 2.4e-3 1.9e-3 9.1e-7 9.1e-7 44

0.03 3.6e-3 2.9e-3 9.2e-7 9.2e-7 46

0.05 5.2e-3 4.2e-3 9.2e-7 9.1e-7 49

0.07 7.4e-3 6.5e-3 9.1e-7 9.1e-7 51

Table 4.11: Convergence of the SNLS method for 100 tests of the second type of 

signal when no outliers was considered.

7 ||ap-Q:e||2
llOelb I|Aoí|| #  it-

1.0e-8 3.9e-9 3.4e-23 3

1.0e-6 4.3e-7 4.1e-7 4

1.0e-4 4.0e-5 1.9e-23 5

1.0e-3 3.7e-4 1.0e-22 3

1.0e-2 3.9e-3 1.2e-23 4

1.0e-l 3.8e-2 2.7e-21 5

Table 4.12: Convergence of the SNLS method for 100 tests when a Toeplitz system 

is considered.



Chapter 5

Conclusions

In this dissertation we propose a new way to solve structured NLS problems 

based on the TLS formulation. We consider an initial estimate to the parameter 

vector a and an initial value to the vector x. The errors in both a and x  are 

minimized iteratively by successive Solutions of two LS problems at each iteration. 

The first system is a symmetric and positive definite linear system. Its solution 

can be obtained by CG methods with a suitable preconditioner. If A(a) has some 

structure, the SNLS method keeps the same structure for the errors and does not 

require the matrix M  explicitly when some fast iterative method is used. Then, a 

few vectors with length not greater than m +  n are required. The solution of the 

second linear system depends on the structure of the data matrix, Toeplitz, Hankel 

or Vandermonde. One of the advantages of the SNLS method is that the structure 

of the error matrix is preserved. Another one is the low computational cost at each
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iteration. Another version of the SNLS method, the MSNLS method, is proposed 

to solve Vandermonde systems and it can be extended to other structures. This 

version is based on solution of two diagonal systems for solving the first linear 

system. The computational cost is reduced and the related modification provides 

a still better accuracy for the method. Numerical experiments confirm that both 

the SNLS and MSNLS methods converges to good approximation to the desired 

solution. This fact shows that our methods can be fast enough, especially if some 

fast or super fast methods are applied to solve the two related linear systems. Even 

though the numerical performance of our methods is not as good as that of the 

SNTLN2 algorithm our methods are ali certainly better than the LS, TLS and 

SNTLN2* methods. In agreement with Bjõrk, the SNLS method converges fast 

and is quite suitable when a small desired tolerance is required.

In future, we are trying to consider different algebraic manipulations and direct 

and iterative methods to obtain the solution of both the underdetermined and the 

overdetermined linear systems and to verify the effect of this choice in the obtained 

results.
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Appendix A

Matlab Codes

function msnls (ganima, opt)

%MSNLS This code reconstruct an exact Vandermonde system 

°/0A(alpha_e)x_e=b_e by the MSNLS method where alpha_e and b_e 

%are perturbed by distributed random variables in the interval 

% [-gamma, gamma] .

TotalOfTests=100;

RelativeErrorAlpha=0;

RelativeErrorX=0;

TotalTime=0;

% Initializing the optional plot 

i f  opt==l

TotalOfTests=l;
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for t=l:TotalOfTests 

7. In itia l values 

Maxlt=10; 

to l=l.O e-6;

ErrAlpha=2*tol;

ErrX=2*tol; 

k=0;

7, Exact Vandermonde test problem 

[V,x_e,alpha_e,b,m,n,ss]=testl;

7o Perturbation on the in itia l parameter vector alpha 

[alpha_p] =pertalpha(alpha_e, gamma,ss);

7o Perturbation on the exact vector b by distributed 

7o random variables in the interval [ -1 .0e~8,1. Ge-8]

7o [b] =pert lb (b ,m);

% Perturbation on the exact vector b by distributed 

7o random variables in the interval [-gamma,gamma]

[b]=pert2b(b,gamma,m);

7o In itia l computations 

alpha=alpha_p;

V=vand(alpha,m,n);

end

68



% In itia l least square solution 

[Q,R]=qr(V) ;

R=R(1:n,: ) ;  

for c=l:n

bb(c)=Q (:,c)J*b;

end

bb=bb( : ) ;

7, Back substitution 

x_old=back(R,bb,n) ; 

x=x_old;

JVx^acobvCalplia^jmjn) ; 

r=V*x_old-b; 

s= -r ;

nnn=norm(s);

7« In itia l plot data (optional) 

i f  opt==l

Ve cError Alpka (1) =norm ( alptLa_e -  alpba) /norm ( alpb.a_e) ;  

VecErrorX (1) =norm (x_e-x_old) /norm (x_e) ;

end

Time=cputime;

7* Main computations
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while (ErrAlplia>tol | ErrX>tol) &k<MaxIt 

% Computing the matrix X 

for i=l:m

X (i ,i * n -(n -l ) : i*n)=x’ ; 

end

y = s/(l+ x , *x );

V=X, *y;

7o Computing the matrix D 

for i=l:m

D (i* n -(n -l) :i* n ,: )=d iag((i)*alph a.~(i-1)) ;

end

DD=(D’ *D);

JVxy=JVx5*y ; 

for h=l:n

DeltaAlpha(h)=JVxy(h)/DD(h,h );

end

DeltaAlpha=DeltaAlpha(: ) ;  

alpha=alpha+Delt aAlpha;

7o Updating the matrix V 

V=vand(alpha,m,n);

% Least square solution to the overdetermined system
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[Q,R]=qr(V) ;

R=R(1:n,: ) ;  

bb=Q **b; 

bb=bb(l:n);

7» Back substitution 

x=back (R, bb, n) ;

% Updating the Jacobian matrix with respect to new x

JVx=j acobv(alpha,x,m,n);

s=b-V*x;

r=~s;

7o Computing the stop criterion  

ErrAlpha=norm(DeltaAlpha);

ErrX=norm(x-x_old) ;

7o Plot data 

i f  opt==l

Ve cErrorAlpha(k+2)=ErrAlpha/norm(alpha_e ) ;

Ve cErrorX(k+2)=ErrX/norm(x_e ) ;

end

% Updating 

x_old=x; 

k=k+l;
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% Plotting the error (optional) 

i f  opt==l

semilogyCVecErrorAlpha, ' - O  ; 

hold on;

semilogy(VecErrorX,* :* ) ;

t it le C 5Modified Successive Nonlinear Least

Squares Method*) ;

xlabel( ’ MSNLS iterations5) ;

ylabel ( ’ I | x-x_e | | _2/1 | x_e I I _2 and

I I alpha-alpha_e | I _2/1 | alpha_e i 1 _25) ;

legend(*relative error in the vector alpha*,

*relative error in the vector x ’ ) ;

end

T ime=cput ime-Time;

T o t  al T ime=To t  al Time+T ime;

RelativeFinalErrorAlpha=norm(alpha-alpha_e) /norm(alpha_e) ; 

Relat iveErrorAlpha=Relat iveErrorAlpha+

RelativeFinalErrorAlpha;

RelativeFinalErrorX=norm(x-x_e) /norm(x_e); 

RelativeErrorX=RelativeErrorX+RelativeFinalErrorX;

end
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1 Close the cnrrent figure 

i f  opt==l

liold off

end

TotalTime

Average0fRelativeErrorAlp3ia=RelativeErrorAlpha/Total0fTests 

AverageOfRelativeErrorX=RelativeErrorX/TotalOfTests

function snls(gamma,optl, opt2)

%SNLS -  A Successive Least Squares Method for Nonlinear 

%Least Squares Problems 

TotalOfTests=100;

RelativeErrorAlpha=0;

RelativeErrorX=0;

TotalTime=0;

% In itia lizin g  the optional plot 

i f  opt2==l

TotalOfTests=l;

end

for t = l :TotalOfTests

end
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% In itia l values 

Maxlt=10; 

t o l= l . Oe-6;

ErrAlplia=2*tol;

ErrX=2*tol; 

k=0 ;

i f  o p t l = = l

% Vandermonde test problem 

[V, x_e, alplia_e, b , m, n, ss] =t est 1; 

e lse if optl==2 

% First type of signal

[V, x_e, alpha_e, b , m, n, ss] =test2; 

e lse if optl==3

[V, x_e, alptLa_e, b, m, n, ss] =test2; 

e lse if optl==4

[V, x_e, alp3ia_e, b, m, n, s s , omega] =t est 4;

end

t  Perturbation on the in itia l parameter vector alpíia 

[alplia_p] =pertalpha(alpha_e, gamma, ss) ;
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% Perturbation on the exact vector b by distributed 

% random variables in the interval [ -1 .Oe-8,1 .Oe-8] 

% (for the Vandermonde test problem)

% [b] =pert lb (b, m) ;

% Perturbation on the exact vector b by distributed 

% random variables in the interval [-gamma, gamma]

% (for the Vandermonde test problem)

[b]=pert2b(b,gamma,m);

7« Perturbation in vector b (for the Toeplitz test  

7o problem)

7«e=randn(n,l);

7ob=b+0.01*norm(b)/norm(e) ;

% In itia l computations 

alpha=alpha_p; 

i f  optl==l

% Vandermonde test problem 

V=vand(alpha,m,n); 

e lse if optl==2

V=matrixl(alpha,m,n); 

e lse if optl==3
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% Second type of signal 

V=matrix2(alplia,m,n) ; 

e lse if optl==4

% Toeplitz test problem 

V=to ep(alpka, omega,n ) ;

end

7, In itia l least sqnare solution 

[Q,R] =qr(V);

R=R(1:n,: ) ;  

for c=l:n

bb(c)=Q(:, c )J*b;

end

bb=bb( : ) ;

7o Back substitution 

x_old=back(R,bb,n); 

x=x_old; 

i f  optl==l

7# Vandermonde test problem 

JVx=j acobv ( alpba, x , m, n) ; 

e lse if optl==2

7o First type of signal
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JVx=j acobml (alpha, x ,m, n) ; 

e lse if optl==3

% Second type of signal 

JVx=jacobm2(alpha,x,m,n) ; 

e lse if optl==4

% Toeplitz test problem 

JVx=j ac obt ( alpha, omega, x , m, n) ;

end

r=V*x_old-b; 

s=-r;

nrm=norm(s) ;

7, In itia l plot data (optional) 

i f  opt2==l

VecErrorAlpha(l)=norm(alpha_e-alpha) /norm(alpha_e) ; 

VecErrorX (1) =norm (x_e-x_old) /norm (x_e) ;

end

Time=cpntime;

% Main compntations 

while (ErrAlpha>tol | ErrX>tol) &k<MaxIt 

% Computing the matrix M 

M=eye(m)+JVx*JVx5;
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y=cg(M,s);

Delt aAlpha= JVx; *y ; 

alpha=DeltaAlpha+alpha;

% Updating the matrix V 

i f  optl==l

% Vandermonde test problem 

V=vand(alpha,m,n); 

e lse if optl==2

70 First type of signal 

V=matrixl(alpha,m,n); 

e lse if optl==3

% Second type of signal 

V=matrix2(alpha,m,n); 

e lseif optl==4

7o Toeplitz test problem 

V=toep(alpha,omega,n);

end

7« Least square solution to the overdetermined system 

CQ,R]=qr(V) ;

R=R(1:n , : ) ;  

bb=Q’*b;
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bb=bb(l:n);

% Back substitution 

x=back(R,bb,n); 

s=b-V*x;

% Updating the Jacobian matrix with respect to the 

% new x 

i f  optl==l

% Vandermonde test problem 

JVx=jacobv(alpha,x,m,n); 

e lse if optl==2

% First type of sigual 

JVx=jacobml(alpha,x ,m,n ) ; 

e lse if optl==3 

% Second type of signal 

JVx=j acobm2 (alpha, x , m, n) ; 

e lse if optl==4

% Toeplitz test problem

JVx=j acobt ( alpha, omega, x , m, n) ;

end

r=JVx*alpha-s;

% Compnting the stop criterion
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ErrAlpha=norm(DeltaAlpha);

ErrX=norm(x-x_old) ;

% Plot data 

i f  opt2==l

VecErrorAlpha(k+2)=ErrAlpha/norm(alpha_e ) ; 

VecErrorX(k+2)=ErrX/nonn (x_e);

end

°/« Updating 

x_old=x; 

k=k+l;

end

% Plotting the error (optional) 

i f  opt2==l

semilogy(VecErrorAlpha,J- 7) ;  

hold on;

semilogy(VecErrorX,J: 0 ;

titleOSuccessive Nonlinear Least Squares Method’ ) ;  

xlabel( 3SNLS iterations *); 

ylabel (M l x-x_e I I _2/1 | x_e | | _2 and 

I I alpha-alpha_e I I _2/1 I alpha_e | | _23) ; 

legendMreiative error in the vector alphaM
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T ime=cpntime-Time;

TotalTime=TotalTime+Time;

RelativeF inalErrorAlpha=norm( alpha- alplia_e) /  norm ( alpha_e) 

Relat iveError Alplia=Relat iveErrorAlpha+

Relat iveF inalErrorAlpha;

RelativeFinalErrorX=norm(x-x_e) /norm(x_e);

RelativeErrorX=RelativeErrorX+RelativeFinalErrorX;

end

°/0 Close the current figure 

i f  opt2==l

hold off

end

TotalTime

AverageOfRelativeErrorAlpha=RelativeErrorAlpha/TotalOfTests 

Average OfReiat iveErrorX=Relat iveErrorX/TotalOfTe st s

function sntln(gamma)

%SNTLN This code reconstruct an exact Vandermonde system 

°/0A(alpha_e)x_e=b_e by the SNTLN algorithm where alpha_e and

’ relative error in tlie vector xO ;

end



°/0b_e are perturbed by uniformly distributed random variables 

%in the interval [-gamma,gamma] .

TotalOfTests=100;

RelativeErrorAlpha=0;

RelativeErrorX=0;

TotalTime=0;

% Initializing the optional plot 

i f  opt==l

TotalOfTests=l;

end

for t = l :TotalOfTests 

°/0In itia l values 

maxit=20; 

tol=l.O e-6;

DeltaAlpha=2*tol;

DeltaX=2*tol; 

k=0;

% Exact Vandermonde test problem 

[V, x_e, alpha_e, b, m, n, ss] =t est 1;

D=zeros(n); 

for i= l:n
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% Pertnrbation on the in itia l parameter vector alpha 

[alpha_p] =pert alpha ( alpha_e, gamma, n) ;

°/« Pertnrbation on the exact vector b by distributed 

% random variables in the interval [ -1 .Oe-8,1 .Oe-8]

% Cb] =pert lb (b, m);

°/0 Perturbation on the exact vector b by distributed 

% random variables in the interval [-gamma,gamma]

[b]=pert2b(b,gamma,m);

7o In itia l computations 

alpha=alpha_p;

V=vand(alpha,m,n );

7o In itia l least square solution 

[Q,R]=qr(V) ;

x_old=pcg((R? *R), (R7 *Q *)*b ); 

x=x_old;

JVx=jacobv(alpha,x,m,n); 

r=V*x-b;

7o In itia l plot data (optional) 

i f  opt==l

D (i,i)=1.0e-8;

end
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VecErrorAlpha(l)=norm(alpha_e-alpha) /norm(alplia_e) ; 

VecErrorX(1) =norm(x_e-x_old) /norm(x_e) ;

end

Time=cputime;

% Main computations

while (norm(DeltaAlpha) >tol | norm(DeltaX) >tol) &k<maxit 

DAlpha=l. Oe-8*(alpha-alpha_p) ;

A=[V, JVx;zeros(n),D] ; 

bb= [r ;DAlpha];

7» Least square solution to the overdetermined 

7C system 

CQ,R]=qr(A);

y=pcg((R?*R) , (R3*QO*bb) ;

DeltaX=y(l:n);

DeltaX=DeltaX(:) ;  

x=x+DeltaX;

DeltaAlpha=y(n+1:2*n);

DeltaAlpha=DeltaAlpha(:); 

alpha=alpha+De1taAlpha;

% Updating the matrix V 

V=vand(alpha,m,n);
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% Updating the Jacobian matrix with respect to the 

% new x

JVx=j acobv(alpha, x , m, n) ; 

r=b~V*x;

% Plot data 

i f  opt==l

VecError Alpha (k+2) =norm(DeltaAlpha) /norm ( alpha_e ) ; 

VecErrorX(k+2)=norm(DeltaX)/norm(x_e);

end

% Updating 

k=k+l;

end

7» Plotting the error (optional) 

i f  opt==l

semilogyCVecErrorAlpha, *-*) ; 

hold on;

semilogy(VecErrorX,' : ;

titleOStructured Nonlinear Total Least

Norm Method

Squares MethodO;

xlabel( ’ SNTLN iterationsJ) ;



ylabel (Ml x-x_e I | _2/1 I x_e I | _2 and 

! | alpha- alpha_e I I _2/1 I alpha_e I | _2 M ; 

legendC’ relative error in the vector alphaM 

Jrelative error in the vector x 5) ;

end

Time=cputime-Time;

TotalTime=TotalTime+Time;

RelativeFinalErrorAlpha=norm(alpha-alpha_e) /norm(alpha_e); 

Relat iveErrorAlpha=Relat iveErrorAlpha+

Relat iveF inalErrorAlpha;

Relat iveFinalErrorX=norm (x-x_e) /norm(x_e) ;

Relat iveErrorX=Relat iveErrorX+Relat iveF inalErrorX;

end

% Close the current figure 

i f  opt==l

hold off

end

TotalTime

AverageOf Relat iveErr orAlpha=Relat iveError Alpha/TotalOf Test s 

AverageOf Relat iveErrorX=RelativeErrorX/TotalOf Tests
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function b=back(R,b,n) 

b(n)=b(n)/R(n,n); 

for c=n -l: —1:1

b (c)= (b (c)-R (c ,c+ l:n )*b (c+ l:n ))/R (c ,c );

end

function x=cg(A,b)

% Conjugate Gradiente Method 

%

7oThis function solves symmetric and positive definite linear 

7oSystems Ax=b.

%

eps=l.Oe-6;

maxit=100;

k=0;

[m,n]=size(A) ; 

x=zeros(n,1); 

r=b;

rho (1) =norm(r) ~2;

while sqrt(rho) >eps*norm(b)&k<maxit 

k=k+l;
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i f  k = = l  

p=r;

else

beta=riio (k)/rho Ck-1) ; 

p=r+beta*p;

end

w=Â*p;

alpb.a=riio (k) /  (p * *w) ; 

x=x+alph.a*p; 

r=r-alph.a*w; 

rho(k+l)=norm(r)~2;

end

function JVx=jacobml(alplia,x,iii,n) 

tt=linspace(0 ,1 ,m); 

alplia=alpiia(:) ;

JVx=zeros(n,m); 

for i=2:m

JVx(: ,i)= -tt(i)*e x p (-a lp 3 ia .*tt(i)) ;

end

for i= l:n
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JVx(i,:)=JVx(i,:)*x(i);

end

JVx=JVxJ;

fnnction JVx=jacobm2(alpha,x,m,n) 

tt=linspace(0 ,1 ,m); 

alpha=alpha( : ) ;

JVx=zeros(n,m); 

for i=2:m

JVx(:, i ) =40*(tt(i) -a lp h a ). *exp(-20*(tt(i) -a lp h a ). ~2);

end

for i= l:n

J V x (i,:)= J V x (i,:)*x (i) ;

end

JVx=JVx5;

fnnction JVx=jacobt(alpha, omega,x,m,n)

JVx=zeros(m,1); 

c=zeros(n ,l); 

r=zeros(l,n ); 

for i = l :2*omega+l
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c(i)=(-l/2*(sqrt(2)*exp(-(om ega-i+l)~2/2*alpha~2))*.. .  

pi*alp lia /(p i''(3 /2)*alpha ''3)+l/2*(sqrt(2)*.. .  

(omega-i+l)~2*exp(-(omega-i+l)~2/2*alpha~2))*.. .  

pi*alpha/(sqrt (pi) *alpha~4) ) * x ( i ) ;

end

r ( l , l ) = c ( l , 1) ;

JVx=toeplitz(c,r);

JVx=JVx*x;

fnnction JVx=jacobv(alpha,x,m,n)

°/0JACOBVAND This subroutine computes the m-by-n jacobian of 

%V(alpha)x with respect to alpha 

alpha=alpha(: ) ;

JVx=zeros(n,m); 

for i=2:m

JVx(:, i)= (i -l)* a lp h a .~ (i -2 ) ;

end

for i= l:n

J V x (i,:)= J V x (i,:)*x (i) ;

end

JVx=JVx, ;
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function V=roatrixl ( alpha, m,n) 

tt=linspace(0,1 ,m); 

alpha=alpha(:) ;

V=ones(n,m); 

for i=l:m

V (: , i)= e x p (-a lp h a .* (tt(i))) ;

end 

V=V>;

function V=matrix2 (alpha, m,n) 

tt=linspace(0,l,m ); 

alpha=alpha(: ) ;

V=ones(n,m); 

for i=l:m

V (: , i)=exp(-20 *(tt(i) -a lp h a ). ~2);

end 

V=V>;

function b=outliers(b,m)

% OUTLIERS 

for i= l:0
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r=randint (1 ,1 , [1 ,m] ) ; 

b(r)=b(r)+0.1 ;

end

function [b]=pertlb(b,m)

0/oPERTlB This algorithin generates a perturbation on each 

0/Ocomponent of the vector b by uniformly distributed random

%variables in the interval [ -1 .Oe-8,1 .Oe-8].

delta2=l.0e-8*rand(m,1 ); 

b=b+delta2;

function [b]=pert2b(b,gamma,m)

°/0PERT2B This algorithm generates a perturbation on each 

VoComponent of the vector b by uniformly distributed random

%variables in the interval [-gamma,gamma].

delt a2=gamma*rand(m,1 ) ;  

b=b+delta2;

funet i  on [alpha_p] =pert alpha (alpha_e, gamma, s s )

%PERTALPHA This algorithm generates a perturbation on the 

'/«parameter vector alpha
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deltal=gamma*rand(ss,1 ) ; 

alpha_p=alpha_e+deltal;

function [V,x_e, alpha_e,b,m,n,ss]=testl

°/0TESTl This algoritlm generates the exact Vandermonde test

°/oproblem obtained from Rosen, Park and Glick [33]

m=15;

alpha_e= [exp ( - .  l+2*pi*sqrt (-1) * . 5) 

exp(-.2+2*pi*sqrt(-1 )* .4 )  

exp (-.3+2*p i*sq rt(-1 )* .3 )]; 

s s=length(alpha_e) ;  

n=ss;

x_e=ones(n, 1); 

alpha=alpha_e;

V=vand(alpha,m,n); 

b=V*x_e;

funct ion [V, x_e, alpha_e, b , m, n, ss] =test2

7oTEST2 This algorithm generates the exact f ir s t  type of

%signal obtained from Osbome and Smith [29]

m=30;
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alplia_e= [0; 4; 7] ; 

ss=length(alpha_e) ; 

n=ss;

x_e=[0 .5 ; 2; -1 .5 ] ;  

alpha=alpha_e;

V=matrixl(alpha,m,n); 

b=V*x_e;

function [V,x_e, alpha_e, b , m, n, ss] =test3

%TEST3 This algorithm generates the exact second type of

%signal obtained from Osbome and Smith [29]

m=64;

alpha_e= [0 .1 ; 0 .3 ; 0 .5 ; 0.9] ; 

ss=length(alpha_e); 

n=ss;

x_e= [1 .0 ;0 .5 ;2 .0 ;0 .25] ; 

alpha=alpha_e;

V=matrix2(alpha,m,n); 

b=V*x_e;

funct ion [V, x_e, alpha_e, b , m, n, s s , omega] =test4
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n=m;

omega=8; 

alplia_e=l. 25; 

ss= l;

alpha=alpha_e;

V=toep(alpha,omega,n);

b=ones(n,l);

x_e=V2

fnnction V=toep(alpha, omega,n) 

c=zeros(n,1); 

r=zeros(l,n ); 

for i = l :2*omega+l

c(i)=(l/sqrt(2*pi*alpha~2) )*exp(-(omega-i+l)~2/ (2*alpha~2)) ;

end

r ( l , l ) = c ( l , l )  ;

V =toeplitz(c,r);

fnnction V=vand(alpha,m,n)

%VAND This snbrontine generates a m-by-n Vandermonde matrix.

m=64;
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alplia=alplia(:) ; 

V=ones(n,m); 

for i=l:m

V (:,i)= a lp h a .~ (i -l) ; 

end V=V>;
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