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In the province of the mind,
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either is true or becomes true.



it

To Moénica.

To my family.



Acknowledgements

I am deeply grateful to my advisor, Prof. Dr. Jin Yun Yuan, for introducing
me to this topic and for his helpful discussions and suggestions.

I would like to give my thanks to my professors Dr. Celso Carnieri, Dr. Jiahong
Yin, Dr. Maria Terezinha Arns Steiner, Dr. Marli Cardia, Dr. Mildred Ballin Hecke
and Dr. Rubens Robles Ortega Junior for their teachings and helps.

I would like to give my sincere thanks to my family, specially to my wife,
Monica, for their comprehension throughout my work.

I also would like my thanks to my friends Ms. Waléria Adriana Gongalez Cecilio,
Mr. Celso José Cordeiro and Mr. Cosmo Damido Santiago for their helpful discus-
sions and collaboration during my study.

I would like to give my special thanks to CAPES for its financial support and

to CESEC for its structure.

il



Abstract

Nonlinear least squares (NLS) problems appear in many important practical
applications, for instance, signal processing and functional approximations. The
majority of the methods for solving NLS problems is based on a minimization of
subproblems, but they do not keep the error structure as the data structure. In
this dissertation we propose a new method for solving NLS problems. We call this
method Successive Nonlinear Least Squares (SNLS). Based on the idea developed
recently by Yalamov and Yuan (2000), the SNLS method differs from the existing
approaches because it preserves the structure of the error. The SNLS method con-
sists of the solutions of successive least squares (LS) problems by the total least
squares (TLS) formulation. The SNLS method is general NLS problem solver and
is quite suitable for structured NLS problems. Some numerical tests for Toeplitz
and Vandermonde matrices and parameter estimation problems are presented. Nu-
merical results illustrate that the SNLS algorithm converges fast and provides good

approximations to the exact solution of the NLS problems for our test problems.
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Resumo

Problemas de minimos quadrados nao-lineares aparecem em muitas aplicacoes
importantes. Por exemplo, processamento de sinal e aproximacoes funcionais. A
maioria dos métodos destinados & resolucdo de problemas de minimos quadra-
dos nao-lineares estd baseada na minimizagdo de subproblemas mas estes métodos
nao preservam a estrutura da matriz dos erros como a matriz dos dados. Nesta
dissertagao propomos um novo método destinado & resolugdo de problemas de
minimos quadrados nao-lineares. Chamamos este método de método dos Minimos
Quadrados Nao-lineares Sucessivos. Baseado na idéia recentemente desenvolvida
por Yalamov e Yuan (2000), o método dos Minimos Quadrados N3o-lineares Su-
cessivos difere das abordagens existentes por que este método preserva a estrutura
da matriz dos erros. O método dos Minimos Quadrados Nao-lineares Sucessivos
consiste na solugao de sucessivos problemas de minimos quadrados através da for-
mulacao de minimos quadrados totais. Este método resolve problemas gerais de
minimos quadrados ndo-lineares e é muito adequado & resolucdo de problemas
de minimos quadrados ndo-lineares estruturados. Alguns testes numéricos foram
realizados para matrizes Toeplitz e Vandermonde e problemas de estimativa de

parametros sao apresentados. Testes numéricos mostram que o algoritmo converge



rapidamente e fornece boas aproximacoes para a solucio exata dos nossos proble-

mas testes.
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Chapter 1

Introduction

The aim of this work is to propose a new iterative method for solving nonlinear

least squares (NLS) problems
Ala)z =b. (1.1)

Here A(a) is a m x n nonlinear functional with m > n, z,b € R* and aisa s x 1
parameter vector. Nonlinear least squares problems appear in many engineering
applications such as signal processing [30], frequency and exponential decay esti-
mation [1, 25, 31|, engineering and optical design, optimal control, curve fitting,
fitting scattered data in three-dimensional space [21], exponential data modelling
problems, functional approximation and others problems where nonlinear systems
of equations are involved.

In general, methods described in [5, 15, 16, 17, 18, 36] obtain the solution by
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solving sequences of minimization subproblems do not keep error structure as the
data structure. Rosen, Park and Glick [33] develop an algorithm called Structured
Nonlinear Total Least Norm (SNTLN), an extension of the Structured Total Least
Norm (STLN) [32], for solving structured nonlinear least squares problems.

In particular, the method for solving NLS problems is to minimize the residual
r(z) = Az — b iteratively with the initial value of « till to achieve a desired
approximation. The related approach can be done based on the following total

least squares (TLS) formulation

ming || (E,7)]|
(1.2)
st. (A+ Edx=b+r
which is also known as the errors-in-variables [37].

Recently the Successive Least Squares (SLS) method for obtaining an approxi-
mate solution to the overdetermined TLS problem has been proposed by Yalamov
and Yuan [39]. This method is quite suitable for structured TLS problems such as
Toeplitz and Hankel systems because it satisfies the error structure requirements.

The idea of methods for solving large structured TLS problems [5, 7, 8, 9, 10]

motivates us to study a new method for solving large structured NLS problems by

solutions of successive least squares (LS) problems. This is the main purpose of

this dissertation.
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1.1 Owutline of the Work

This dissertation is organized as follows. In Chapter 1 some basic ideas about least
square solution to linear systems and structured matrices are reviewed. In Section
1.3 we summarize some structured matrices such as Toeplitz, Hankel and Vander-
monde. A special method to find the Toeplitz matrix-vector multiplication with
the complexity O(nlog,n) flops, the Fast Fourier Transform (FFT), is described
in Section 1.4. The QR decomposition by Givens and Hyperbolic rotations are
reminded in Sections 1.5 and 1.6, respectively.

Chapter 2 contains important issues about existing efficient methods for struc-
tured linear least squares problems, specifically, Toeplitz systems [2, 11, 12, 22].
The Fast Inverse QR Factorization described in Section 2.1 is suitable for Toeplitz
systems because the consideration of the structure of the matrix A. This fact re-
duces the computational cost to O(mn) operations to find its LS solution. The
TLS formulation and its properties are treated in Section 2.3. A survey of the SLS
method is given in Section 2.4.

In Chapter 3 the NLS problem, which is our contribution of this dissertation,
is treated. This problem is closely related to unconstrained minimization problems
in R”. In Section 3.2 a new method called Successive Nonlinear Least Squares
(SNLS) method is proposed. This method is general solver for NLS problems and

quite suitable for structured NLS problems because of the preservation of the
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structure of the input data and error matrix. The SNLS method is based on ideas
of the SLS method developed by Yalamov and Yuan [39]. Our work considers the
case of Toeplitz, Hankel and Vandermonde matrices, and other structures can be
treated similarly.

In Chapter 4 numerical tests considering overdetermined Vandermonde systems
are given to verify the efficiency of the SNLS method. The results assert that the
SNLS method obtains good approximated solution for our tests. In Section 4.1
we present an application of the Vandermonde systems to the exponential data
modelling. In Section 4.2 we propose some modifications in the SNLS method,
the MSNLS method, to improve the convergence and the accuracy of the SNLS
algorithm for Vandermonde systems. In Section 4.3 the convergent behavior of o
for both the SNLS and MSNLS methods are treated with different initial guess a.
In Section 4.4 two different types of signal are considered. The first type of signal
data is from that used by Osborne and Smyth [29] and the second type of function
is the sum of Gaussian functions which is similar to that used in [22]. In Section
4.5 Toeplitz systems taken from [22] are considered.

In Chapter 5 we set some conclusions and suggestion for future research.



CHAPTER 1. INTRODUCTION 5

1.2 Least Square Solution to Linear Systems

A linear least squares (LS) problem consists of solving an overdetermined linear

system

Az = b. (1.3)

Here A € R™" m > n, b € R™, and x € R”. Unless b belongs to the range of
A, ie., b€ R(A), the overdetermined system has no classic solution. Then we can

find Ax such that it is the best approximation in some sense to b and denote it by
Az =b.
One common way is to find approximation x such that
1Az — bll> = min || Ay — b]]>. (1.4)

Of course we can consider different norms in (1.4).

Since the function f(z) = %||Az — b||3 is differentiable, by KKT condition, we
have the normal equations ATAxr = ATb. Since the 2-norm is preserved under
the orthogonal transformation, QR factorization can be used to solve the problem
efficiently.

The vector z is called a least square solution of (1.4) where Az is as close as
possible to the vector b.

The following theorem characterizes the property of the LS solution.
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THEOREM 1.2.1 (LS SOLUTION PROPERTY)

z* solves the LS problem (1.4) <= AT(b— Az*) =0.

Proof: One proof of this theorem is given in Bjérck [5], pp. 5. ¢
The vector b is decomposed into two orthogonal components:
b=b"+r"=Az"+r*, r*lAz*, Ax*=10¥"

where b* is the orthogonal projection of b onto R(A). Note that the decomposition
is always unique, even when the LS solution z* is not unique.

Moreover, from Theorem 1.2.1 note that the LS solution satisfies the normal

equations
AT Az = ATb. (1.5)
The system (1.5) is always semidefinite positive and consistent since
ATb € R(AT) = R(ATA).

COROLLARY 1.2.2 (LS SoLUTION AND RESIDUAL) If rank(A) = n then (1.4)

has a unique LS solution, given by
z* = (ATA)"* ATb.
The corresponding LS correction is given by the residual:

r*=b—Ax* =b—b", b* = Pyb
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where Py = A(ATA)71AT is the orthogonal projector onto R(A).

If rank(A) = r < n, the LS problem (1.4) is rank-deficient and has an infinite
number of solutions. For example, if z is a minimizer and z € N(A) then x + z is
also a minimizer. For reasons of stability and minimal sensitivity, a unique solution

having minimal 2-norm is singled out from the set of all minimizer
X ={z € R": ||Az — b||s = min}.

We denote the solution by z*. Note that in the full rank case, there is only one

LS solution which has minimal 2-norm.

1.3 Structured Matrices

In many real applications, the input data of the problems has special structure
such as Toeplitz, Hankel or Vandermonde. Many fast solvers take into account

this structure where these special matrices appears.
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1.3.1 Toeplitz Matrices

DEFINITION 1.3.1 The matriz T € RVM1*"+ is called Toeplitz if the matriz T is

wn the form
N R S
(] to 1 - tpa
T =
\ten t-gu-y) t1 o0t )

In this case, the general term is t;; = t;_; for some given sequence with the
entries t_p,t_n+1, ..., t—1, L0, t1, ..., tn. A Toeplitz matrix is defined by one row and
one column. Sometimes we denote the Toeplitz matrix T' as a vector in the form
(tons tntdy ooy Tm1s E0y 1y veey B ) T -

We denote the symmetric Toeplitz matrix defined by just one row vector

(to,t1, .., tn)T as well.

1.3.2 Circulant Matrices

A special case of a Toeplitz matrices is presented here.
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DEFINITION 1.3.2 We have that an n x n matrix C, is called circulant when

[0 c1 o G o)
1 G €1t Con
C. =
Cn—2
\eo1 Gz - a )

where c_p =cpp for 1 <k <n-—1.

1.3.3 Hankel Matrices

DEFINITION 1.3.3 The matrizx H € R™ " s called Hankel if H s in the form

( he hi hs -+ A, \
hi  hy hs -+ hnpp
H=1hy hs hy - hpyo
\h’n h'n-l—l hn+2 T h2'n )

The general term of Hankel matrix H is h;; = hj;s_2 for some given sequence

ho, h1, ..., hon—1, hon. The entries of H are constant along the anti-diagonals.
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1.3.4 Vandermonde Matrices

DEFINITION 1.3.4 A matriz of the form
( 1 1 -1 \

Qp Q@ Qp
V=V(a,ay,...,an) =

n n n
\ao al .« an)

is Vandermonde where {ar}_, is a sequence of n+ 1 distinct real numbers.

Vandermonde matrices are related to the polynomial problem of finding a poly-
nomial p(z) = a,z" + a,_12° ! + --- + ao, which interpolates the data (i, fi),

1=20,1,...,n. The coefficient vector satisfies the linear system
Via=f

called a dual Vandermonde system. The primal system
Ve=5b

arises when determining weights z; in quadrature formulas when moments b; are
given.

In General, Vandermonde systems are extremely ill-conditioned.

1.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient alternative to obtain a Toeplitz

matrix-vector multiplication. This method consists of computing the finite Fourier
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transform, with the significative reduction to the computational cost in order of
O(nlog, n) operations where n is the number of points.
The discrete Fourier coefficients {c; };:(} for a function
n—1
fla) =) cie”
§=0

at the points z; = 2knw/n, k= 0,1,...,n — 1 can be computed by

L&A ((2kn ~ij2kn/n
cj=——E fl— e , j=0,1,....,n—1. (1.6)
n n
k=0
If w = e~ %7/ is the nth root of unity, i.e., w” = 1, then the Fourier coefficients

can be rewritten as follows

n—1

¢ = Ekawjka Je = %f(xk)-

Note that c; is expressed as a polynomial of degree n — 1 in w?. This can also be

written as a matrix-vector multiplication
Canf, (Fn)jkzwjk7

where F,, € R™*" is the Fourier matrix.

In the usual implementation of the discrete Fourier transform, n? operations

are required. Now, if n = 2" and set

2k, if k£ even, 1
k= 0 S k1 < —2'TL -1

2k +1 if k odd,
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then the sum in (1.6) can be splitted into an even and an odd part such that

1

sn—1 %n»l
cj = Z fgkl(w2>jk1 + Z foky + l(wQ)jkle. (1.7)
k1=0 k1=0

Let 1 be the quotient and j; the remainder when j is divided by —;-n, ie.,

j =n3n+ ji. Then, since o™ =1,
(w2)jk1 - (wz)n(1/2)nk1 (w2)j1k1 — (wn)nh (w2)j1k1 = (w2)j1k1.

Thus if, for 2 =0,1,...,5n — 1, we set

1

sn—1 %n—l
$(h) = D foka (@Y™, $() =D foks + 1w,
k=0 k=0

where (w?)2" = 1. Then, by (1.7)

¢;=o(h) +v(i)w?, 7=0,1,...,n—1.

The computational effort by this way is nlog, n operations.
Many excellent surveys of the use of the discrete Fourier transform are given

by Cooley, Lewis and Welsh [13], Henrici [14] and Walker [38].
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1.5 Givens Rotations

The Givens rotations introduces zeros more selectively than the Householder trans-

formation. The matrix of Givens rotation is

/1 R (TR | B 0\
0 c s 0
G(i, k,6) =
0 —s c 0
\0 | NP W 1)
where Gy = G = ¢ = cos8, Gy = s = sinf and G; = —s for some 6. Note

that Givens rotations are orthogonal (¢ + s> = 1 and G(3, k,0)G(3,k,0)T = I).
Geometrically, the matrix G(i, k, 0) rotates in 0 radians a pair of coordinates axes

in the (¢, k) plane. For instance, if x € R™ and y = G(i, k,6)Tz, then

,

cT; — 8T ] =1,

Yi=1 sz;+cxy j=k,
\ z; j#i,k.
Setting
c= Ti and 5= ——F

2 1 2 2 2
VI + T T; + Tf,

we can force y; to be zero.
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The following Givens rotation algorithm given in [20] requires 5 flops and a

single square root.

ALGORITHM 1.5.1 (GIVENS ROTATIONS ALGORITHM) Given the scalars a and

b, this function computes c = cos(f) and s = sin(6) so that

) 6)-0)

function [c, s] = givens(a, b)

ifb=0
c=1
s=1
else
if |b] > |a|
T=—a/b
s=1/V/1+72
c=S8T
else
= —b/a
=1/Vi+72
s=cT
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end

end givens

1.6 Hyperbolic Rotations

In the same way of Givens rotation we can construct a hyperbolic transformation

as follows
1 0 0 0\
0 c —s 0
H =
0 —8 c 0
\0 -+ 0 - 0 ... 1)

Here, ¢ = cosh(f) and s = sinh(d). Moreover we have that ¢ — s2 = 1. The

hyperbolic rotations algorithm can be easily obtained.



Chapter 2

Iterative Methods for Structured

LS Problems

In this chapter we remind some iterative algorithms for solving structured LS

problems
min ||Sz — bl|5. (2.1)

Here S € R™*" is structured, m > n, b € R™, and z € R™.

In Section 2.1 Fast Inverse QR Factorization for solving Toeplitz systems de-
veloped by Nagy [27] is reviewed. This method makes use of the Toeplitz structure
and requires only O(mn) operations. Effective preconditioned conjugate gradients
with circulant and noncirculant preconditioners are presented in Section 2.2. The

TLS problem is given in Section 2.3. In Section 2.4 the Successive Least Squares

16
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(SLS) method proposed by Yalamov and Yuan [39] is reviewed because it is an
important algorithm for our work in next chapter. The SLS method preserves

the structure of the error matrix as in the data matrix and is quite suitable for

structured linear systems.

2.1 Fast Inverse QR Factorization

A fast solver of Toeplitz system
min ||b — Tz||2 (2.2)

is the Fast Inverse QR Factorization which requires only O(mn) operations.
This algorithm is based on the Toeplitz structure of T. To compute the matrix

R we have the following procedure:

If T is an m x n Toeplitz matrix of full column rank and R is the Cholesky

factor of 77T then T can be partitioned as

to UT TO i
T = = (2.3)
v TO '17T tm—n

where Tj is a submatrix of T', w and ¥ are n — 1 dimensional vectors, v and 4 are

m — 1 dimensional vectors, and ¢y and #,,_, are scalars. In the same way R can be

partitioned as
1 ZT Rt zZ
R= = . (2.4)
0 Rb OT Tnn

Here z and Z are n — 1 dimensional vectors and ry; and 7, are scalars.
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Using the partitioning (2.3) and (2.4) and then setting RTR = T7T we have
2 r127 2+vv  toul + 07T,
= (2.5)
rnz 227 + RIRy tou+Tgv wu? +TETh

RTR, Rz TITo+ 507 T§a+ tmnd
= : (2.6)

TR, FzZ4rL @I To + tmnd” @Fa+t2,_,

From (2.5) and (2.6) we have

and

2zt + R{Rb =uu’ + Tg To

and
RTR, =TT Ty + o9”.
It follows that

RTRy = RTR; + uu® — 997 — 227. (2.7)
From (2.5) the first row of R can be easily computed because
3 =12 and 27 = (tou” + T Tp) /1.
The expression (2.7) can be rewritten as
RTR; = RTR, + wu® (2.8)

RYRy = RTR, — %97 (2.9)
and

Rbe = RIR, — 227 (2.10)
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where R; and R, are upper triangular matrices.
For the updating problem (2.8) we can find a product of Givens rotations

Q=G(n—-1,n,0ph_1)---G(1,n,6;) so that

Rt Rl
uT 0T

where G(i, 7, 6;) is a Givens rotation.
For the downdating problems (2.9) and (2.10), the Hyperbolic rotation Y =

Hn—1,n,¢p1)---H(,n,¢1) and Y@ = H(n—1,n,pn_1)--- H(1,n, p1) can be

Ry R,

y® ( = (2.12)
o7 o7
Ry Ry

Y® ( \) = ( ) . (2.13)
ET OT

The following algorithm proposed by Nagy in [27] computes R with mn+6n?+

found such that

and

O(n) multiplications.

ALGORITHM 2.1.1 (FAST INVERSE QR ALGORITHM) Given the matriz T, this

function computes R.

function R = fastiqr(7T’)

RL1) =ry=+/B+t+---+t2_,

z = (tou + TOT’U)/TH
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R(1,2:n) =27

fork=1,2,....n—1

rek:n—1)=R(k,k:n—1)

c,s] = hYP(Tl(k 'U(k'

[c,s ]T hyprzk) k))
(zT) . )(T)
Rk+1,k+1: n)—-rb(k‘ n—1)

end

end fastiqr

2.2 CG Methods for Toeplitz Systems

Fast direct Toeplitz solvers require O(nlogZn) operations. By using a precondi-
tioned CG method, the computational effort is reduced to O(nlog, n) operations.
Fast direct Toeplitz solvers are unstable for some important Toeplitz matrices such
as indefinite and certain non-Hermitian Toeplitz matrices. In this case precondi-

tioned iterative methods must be used.
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2.2.1 Toeplitz and Circulant Matrices Using Fourier Series

An n x n Toeplitz matrix T, with the entries ¢;; = t;_, 0 < j, ¥ < n can be

defined for all n > 1 by the following Fourier coefficients of f
1 (" .
b= 15— / f(0)e=*dh, k=0,+1,£2,... (2.14)
™ —T

where f is a 2m-periodic continuous real-valued function defined on [—7, 7]. The
function f is called the generating function of the sequence of Toeplitz matrices
T,,. Note that when f is an even function T, is a real symmetric matrix.

If C,, is a circulant matrix then it can be diagonalized by the Fourier matrix
F, such that

Cn= F;AnFn (215)
where the entries of F, are given by

1 o
[Falje = == jk<n—1 (2.16)
bl \/ﬁ

and A, is a diagonal matrix with the entries as the eigenvalues of C,,. We can

obtain the diagonal entries Ax of Ax by the FFT of first column of C,
n—1
Xe= ) cie?™ k=0, n—1. (2.17)
3=0

By FFT we can obtain the products C,y and C, 'y for every vector y using

(2.15) in O(nlog,n) operations.
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2.2.2 CG Method for Toeplitz Matrices

We shall apply the CG method for solving the Toeplitz system. The method just

needs matrix-vector product.

At each iteration T,y can be computed by FFT embedding 7T,, into a 2n X 2n

. (2. 18)
T n O l

The matrix-vector multiplication requires O(2nlog,(2n)) operations and the

circulant matrix, i.e.,

total number of operations at each iteration is O(nlog,n) operations. An extra
2n-vector for storing the eigenvalues of the embedded circulant matrix given in
(2.18) is need.

Then, to solve the Toeplitz system T,z = b we solve the following precondi-

tioned system

P Tz = P, (2.19)

The preconditioner P, is a matrix constructed with O(nlog, n) operations and

the linear system P,v = y is solved in O(n log, n) operations.

2.2.3 Circulant Toeplitz Preconditioners

If C' is an n x n circulant matrix then it can be diagonalized by (2.15) and its

inversion is done in O(nlog, n) operations by FFT of size n.
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Strang [35] proposes the first circulant preconditioner S = s;;, 0 < k, Il < n

with the diagonais s; given by

Cj 0<j§%,

$i =19 Cjn E<j<n, (2.20)

Snyj 0< —j<n.
\
This preconditioner is obtained from the central diagonals of C' and reflected

them around to complete the circulant requirements.

2.3 Total Least Squares Problem

Total least squares (TLS) problems appear in many engineering applications such
as signal and image processing, systems identification, automatic control, decon-
volution techniques, and systems response prediction [37]. The TLS problem is a
general case of the LS problem based on the fact that in many cases sampling or

modelling errors affect both the vector b and the matrix A.
This assumption motivates an estimative of the unknown vector z given by

solving the following TLS problem

min | (B, r)|L¢

st. A+ E)yx=b+r (2.21)
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where A,E € R™*" m >n, b,r € R™ and z € R, || - | denotes the Frobenius

norm and b+r € R(A+ E). The Frobenius norm of an m x n matrix A is defined

l4lr =, 1 >3 ak = Val(ATA)

where ”tr” denotes the trace.

by

The vector z* that solve this problem is called total least squares (TLS) solu-

tion.

In many cases the solution of the TLS problem is close to the solution of the

correspondent LS problem.

2.4 Successive Least Squares Method

In this section we review the Successive Least Squares (SLS) method proposed by
Yalamov and Yuan [39] for solving structured TLS problems. This method is based
on solution of successive LS problems to satisfy the requirement of error matrix

structure. Of course, the method can also be applied to the general TLS problems.

2.4.1 Mathematical Background

The TLS equation

(A+E)z=b+r (2.22)
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is nonlinear whith respect to the unknowns E, z and r. The unknowns can be
separated into two groups. For instance, we have one group for x and another
one for E and r. If x is constant the problem becomes linear with respect to the
unknowns F and r. In many cases the LS solution is close enough to the TLS
solution because LS problems are a special case of TLS problems. Thus the initial
value zg is chosen for solving the LS problem Az, = b + ry. This initial value is
also proposed in [6, 32].

Considering = as a constant at each step, and F and r variables, we rewrite

the TLS problem (2.21) as

r
min
o
2
st. A+ Xa=b+r. (2.23)

To obtain the matrix X and the vector o we consider the following equality
Xa = Exz. (2.24)

This choice depends on the structure of the matrix E.

To illustrate this choice a few examples are cited here.

EXAMPLE 2.4.1 If E is an unstructured matriz then we have
(317 2n \

T1-Tp
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and

Q= ’U€C(E) = (6113 -e-3€1p,€21,.-.,€2n," ", E€m1, - '7e‘mn)T-

Here X € R™™? gnd oo € R™™.

ExXAMPLE 2.4.2 If E is sparse, X and a are also sparse. Their sparsity pattern

depends on the sparsity pattern of E.

EXAMPLE 2.4.3 General Toeplitz matrices E generates the following results

/xn xn,__}_ e :Bl 0\
T e T Iy
X =
KO Tp v+ To :cl/
and
T
a=(en-1,---,€1,€0,€_1,--.,€_mi1)

where X € R™*(m+n=1) gnd o € RM7-1,

For simplicity, the problem (2.23) can be rewritten as

min

s.t. (1, X) =b— Az. (2.25)
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Here (2.25) is an underdetermined linear system with the identity matrix I €
R™™ and X € R™** where k depends on the structure of E.
By analysis of Bjorck [6], the solution of (2.25) is given by 7 = —y and a = X7y

where y is the solution of the system
(I+XXT)y=s. (2.26)

This form is a better alternative to solve the LS problem (2.25) because the
matrix M = I + X X7 is computed easily in practical applications. Moreover, M
is symmetric positive definite (s.p.d.) and its smallest eigenvalue is not less than
1.

To obtain the solution of the linear system (2.26) there are many alternatives
such as iterative methods, direct solution by some banded solver or direct solution
by a super-fast Toeplitz solver [2]. Since M has very nice properties the iterative
solution using CG methods with an appropriate preconditioner (Section 2.2) is

quite suitable to solve this system.

2.4.2 Successive Least Squares Algorithm

The SLS method is based on the solution of successive LS problems. The initial
value z is given solving the related LS problem Azq = b+ ro. When z is a known
vector we compute E and r. Obtaining F, z and r can be computed by solving a

LS problem with the matrix A+ E and the vector b. The SLS algorithm is proposed
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based on these notes.

ALGORITHM 2.4.1 (SUCCESSIVE LEAST SQUARES ALGORITHM) Given A andb

this algorithm computes the TLS solution x.
function z =sls(A, b)

Solve the LS problem Azy =5
ro=—8g= Az — b
for k =1,2,... until convergence
Tk
Solve the LS problem (—I, Xj) = Sp_1

(677
Define Ej, such that Xi_101 = Epxr_1

Solve the LS problem (A + Ej)z, = b
S = b— A:Ek
Te = Ekask — Sg

end

end sls

For Toeplitz systems the matrix M is fully defined by its first row m®) whose

entries are defined by the following matrix-vector product

(2.27)
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Note that this matrix is also Toeplitz. So, this multiplication can be done in
O(nlogyn) flops by FFT. When an iterative method is used to solve the s.p.d.
Toeplitz system My = s the matrix M is not definite explicitly.

The matrix-vector multiplication oo = X7y is done in O((m + n) log,(m + n))
flops.

Unfortunately, for general matrices FE the overdetermined linear system

(A+ Ek)Zk =b (228)

can not be solved efficiently. This occur because Ey, in general, is not of low rank.
The Fast Inverse QR Iteration (Section 2.1) may be used to solve the system (2.28)
in 4mn + O(n?) flops.

Finally, the computation of s and r that involves products with Toeplitz ma-
trices are done in O((m + n)log,(m + n)) flops.

Summarizing, the total number of flops per iteration step is

4mn + O((m + n) logy(m + n))

and a few vectors of length not greater than m + n are stored.
By numerical experiments given in Yalamov and Yuan [39], the method can ob-
tain the TLS solution which is quite different from the LS solution. Other methods

do not keep the structure of the error matrix in this case.



Chapter 3

The SNLS Method for NLS

Problems

In this chapter we propose a new way for solving overdetermined NLS problems
Ala)x =b. (3.1)

Here A(c) is an m X n nonlinear functional of an s X 1 parameter vector a with
m>n,x € R"and b € R™.

This way is based on the TLS formulation (2.21) combined with the successive
LS method. In Section 3.1 the NLS problem is presented. An important source of
the NLS problems is the fitting data to a mathematical model such as exponential
fitting problems. In Section 3.2 we derive the SNLS method and its numerical al-

gorithm. The SNLS method is quite suitable for structured NLS problems because

30
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the SNLS algorithm preserves the structure of the error matrix. Here we just con-
sider the case of Toeplitz, Hankel and Vandermonde structures. Since the SNLS
method is designed for general structure problems, other structures can be treated

similarly. Numerical experiments will be presented in next chapter.

3.1 Nonlinear LS Problems

The unconstrained Nonlinear LS problem consists of finding a global minimizer of

the sum of squares of m nonlinear functions

z€R™

min 6(z),  4(2) = 51£@)IE = 5 £ @) F(@) (32)
where f : R* — R™, m > n. This is a special case of the general optimization
problem in R™ that is solved by unconstrained methods such as described in [5, 4,
16, 18, 34].

An important application of the NLS problems is the fitting data to a math-
ematical model. Given a set of observed points (¢;,¥:), ¢ = 1,...,m, the purpose

is to fit this points to a model function y = g(¢,z) If r;(z) represents the error in

the prediction model for the ith observation,
ri(x) =y —g(ti,x), i=1,...,m,

the objective is to minimize the [-norm of the vector r(z). This problem is on the

form of the problem (3.2) with f(z) = r(z).
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For example, the following exponential fitting problem is to determine the
parameter vector x which gives the best fit to m observed points (¢, ), ¢ =

1,...,m, m > 5, in the expression
y(t,T) = T, + 22" + 1365

This problem is linear with respect to z1, 2 and z3 but nonlinear in z, and
zs. In this case, the parameter vector z can be partitioned as 27 = (yT, 27) and is

called the separable NLS problem.

3.2 Successive LS method for Nonlinear LS Pro-
blems

The idea of the SLS algorithm proposed by Yalamov and Yuan [39] motivates us
to set up some similar method for solving structured NLS problems because of

preservation of error structure.

3.2.1 Successive Nonlinear Least Squares Method
From (3.1) the residual vector r is defined by
r(a,z) = A(a)z — b.

In many applications A(«) has some special structure, for example, Toeplitz,

Hankel or Vandermonde. The related problem is called structured NLS problem.
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The main problem is the error in A(a) also with the same structure as that of
A(a). Note that the problem (3.1) is linear in z and nonlinear in « and called
separable NLS problem. In this work we limit our attention to the separable case
investigated in the papers [3, 19, 23, 26, 28].

We follow ideas from Rosen, Park and Glick [33] and Yalamov and Yuan [39]

to consider the equivalent form for the problem as follows

min, [|(AA(@), )| 53)
s.t. (Ala) + AA(a)z =b+T.

The matrix A(«) contains errors that are stored in the matrix AA(«). The error
matrix AA(a) has the same structure as A(o) and Ao represents the corresponding
error in o.

For the nonlinear formulation, in the equality (2.24) X is replaced by J(a, z).

Then we have

AA(a)z = J(a,z)Aa. (3.4)

Here, J(o, z) is the Jacobian of A(a)z with respect to o. Let a;(¢) represent

the jth column of A(a),

J(a,z) = Vo (Ala)z) = ijvaaj(a).

=1
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Therefore, the problem (3.3) can be stated as follows

r
min,
Ax (3.5)
2

st. Al@)z + J(a,z)Aa=b+T,

that is,
T
min,
A
a |, (36)
r
s.t. [-1, J(a, z)] =b— Ala)z.
Aa

Here (3.6) is a underdetermined linear system with [ € R™™ and J(a,z) €
R™*¢ where I denotes the identity matrix.

The solution of (3.6) is the solution of the following linear system
My=s (3.7)

where M = (I + J(a,z)J(0,z)T) and s = b — A(a)z. Here r = —y and o =
J(o, z)Ty.

The SNLS algorithm consists of the following steps. Computing an initial value
z from A(&)z = b for some given initial value &; solving (3.7) with & given and
z computed to obtain the approximation of the unknowns r and Ac; updating &;

computing the new vectors z and r by solving a LS problem with updated matrix

A(a); repeating these steps.
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3.2.2 Successive Nonlinear Least Squares Algorithm

It follows from the analysis in previous sections that there is the SNLS algorithm

as follows.

ALGORITHM 3.2.1 (SNLS ALGORITHM) Given A(), b, Vo(A(@)z) and & this

algorithm computes the NLS solution x and the parameter vector a.

Set =&

Compute A(a)

Solve A(a)x =b
Compute J(a, 1)

Set r = A(a)z — b, s=—r

Repeat

Solve [I + J(o,z)J (o, z) )y = s
Set Aa = J(a,z)Ty, a=a+ Ax
Compute A(a)

Solve A(a)z =b

Compute J(a,z)

Set s=b— A(a)z, r=—s

until convergence
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One way to find the solution of the second linear system is to compute the QR

factorization of the matrix A(c) as follows
Ala)z=b = QRx=b.
From the normal equations we have
Q"QRz = Qb
that results in
Rz = QTb.
Multiplying both the sides by BT we have the following equality
RTRz = RTQ™.

How

then

R
(RT O)( >x=(RT 0)Q”b.
0

by
Calling b = Q7b and b = (_ ) we have
by

R"Rz = R™h,

that is equivalent to

Rx =b,. (3.8)

The triangular system (3.8) can be easily solved by a back substitution method.



Chapter 4

Numerical Experiments

In this chapter we present some numerical experiments by using in MATLAB
6.0 to verify the efficiency of the SNLS method. We also present the modified
SNLS (MSNLS) method. The modification is done to reduce the computational
cost and to improve the convergence and the accuracy of the SNLS algorithm for
Vandermonde system.

It follows from our numerical tests that both the SNLS and MSNLS algo-
rithms converge fast with reasonable tolerance and provide good approximation
to the desired solution when the exact problem is perturbed by several uniformly
distributed random errors in ¢, or in both o and b. Also the MSNLS algorithm is
better than the SNLS algorithm in the sense of the convergence rate and accuracy
of the approximated solution.

In Section 4.1 we present an application of the Vandermonde systems to the

37
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exponential data modelling. In Section 4.2 we give an overview about the MSNLS
method. In Section 4.3 the performance of both the SNLS and MSNLS methods
is compared with LS, TLS and SNTLN algorithms for a given problem. In Section
4.4 we consider two types of signal to verify the ability of the SNLS method to
converge to the exact parameter vector o, from different choices of initial parameter

estimates &. Toeplitz systems are considered in Section 4.5.

4.1 Vandermonde System Applied to the Expo-
nential Data Modelling

Vandermonde structure frequently appears in many nonlinear applications such as
exponential data modelling problems. For m given uniformly sample data points
s, the fitting model function is
n n
y; =~ Z z; a;'_ - Z( a; e\/—_1¢,-) el—di+2mV=1 fj)iAt’
j=1 j=1
1 =0,...,m, where n is the model order and At is the constant sampling interval.
The objective of this problem is to obtain an estimative of the frequencies f;,
damping factors d;, amplitudes a; and phases ¢;, j = 1,...,n. Frequencies and
damping factors are obtained from methods based on TLS where Toeplitz structure
is considered. The linear parameters z; which contains the amplitudes a; and

phases ¢;, 1 < j < n, are estimated from solving the overdetermined Vandermonde



CHAPTER 4. NUMERICAL EXPERIMENTS 39

system
Ala)z =5 (4.1)
where
1 1 . 1
( \ / 011\ Yo \
(67} Qo (675
Qg n
Ale)=1| o o a2 |,m>n, a= , b=
| \ o / \¥m1/
\af' ™ apt o ot 1

Since the problem (4.1) is nonlinear with respect to «, a good initial estimated
parameter vector & is need. There is an perturbation A in the initial parameter

vector @ such that

r
min

h

2

st. Ala)z =A@+ h)z=b+r.

4.2 Modified Successive Nonlinear Least Squa-

res Algorithm

In this section we can solve the NLS problem by the approach proposed by Yalamov
and Yuan [39]. Our objective is to reduce the computational cost, and to improve
the convergence rate and the accuracy of the SNLS algorithm for Vandermonde

structures. Of course, this modification can be used for other structures.
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Considering the NLS problem (3.3), we choose the matrices X and I" in such a

way that

AA(a)z = XTAa, (4.2)

where both X and I' have nice structure for structured problems. For example, if

A(e) is Vandermonde, then

/xl...wn 0 \

and

( zeros(s) \
Tsxs

I'= 2diag(a;)

\ (m — 1)diag(al™?) /

where X ¢ R™™ and ' e R™>**, i =1,...,s.

Now we consider the problem

r
min
TAq (4.3)

2

st. Al@)z+ XTAa=b+r.
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Then (4.3) is equivalent to

min
TA
& ) (4 4)
r
s.t. (—I,X) =b— A(a)z.
T'Aa

From Yalamov and Yuan [39], one way to find the LS solution of the problem

(4.4) is to solve

I+XXTy=s (4.5)

where s = b — A(a)z. Note that (4.5) is very easily solvable system (in general, it

is a diagonal system). From (4.5) it follows that r = —y and
FAo = XTy. (4.6)

Since (4.6) may not be a consistent system, we consider its least squares solution

as follows:

ITT Ao =TTXTy, (4.7)

otherwise, we obtain A« just by its first s equations. Of course, we can consider
other type of solutions for Aa from (4.6). Note that I'7 X7 = (XIT = J(a, z)T.

Then (4.7) can be solved by
DAa = J(o,z)y (4.8)

where D = T'TT.
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For Vandermonde systems, for instance, I + X X7 = (1 + ||z||2)] and D is an
n X n diagonal matrix whose entries are given by d;; = 22’;1 jZa?j ~2_ The second

linear system is solved by QR decomposition as described in Section 3.2.

4.2.1 Modified Successive Nonlinear Least Squares Algo-

rithm

ALGORITHM 4.2.1 (MSNLS ALGORITHM) Given A(a), b, V,A(a) and & this

algorithm computes the NLS solution z and the parameter vector a.

Set o =&

Compute A(a)

Solve A(a)z = b
Compute J(ao, z)

Set r = A(a)r —b, s=—r

Repeat

Set ¥ = 1y

Set Aa = diag (—-;,,—%sz) J(a,z)Ty
Zj:l] Q;

Set o = o+ Aa

Compute A(a)

Solve A(a)z =b

Compute J(o, )
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Set s=b— A(a)z, 7= —s

until convergence

4.3 Performance of Both the SNLS and MSNLS
Methods for Vandermonde Overdetermined

Systems

In this section we make some numerical tests to verify the efficiency of both the
SNLS and MSNLS methods for reconstructing a given exact problem. The test
problem is the same as that proposed by Rosen, Park and Glick in [33].

Given an initial value of A(a), we assume that there exists a exact Vander-

monde matrix A(a.) and vector b, such that
A(oe)ze = be

for some exact solution z.. Then, the overdetermined system has a solution z.
with zero residual for A(c.) and b.. In practical applications, since the data are
perturbed by noise, the perturbed Vandermonde matrix A(c. + d,) = A(&) and
the perturbed vector b, are assumed to be known. Random perturbations d,, are

generated in the vector parameter o to give a Vandermonde matrix A(a + &,)-
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The components of §, are uniformly distributed random variables in the interval
[=7:7]-
The matrix A(a) and vectors r and z, are computed via LS, TLS, SNTLS2,

SNLS and MSNLS, satisfying the perturbed system
Al)zp = A&+ h)zp = by — 7,

where h is the error for a parameter vector a. For LS, A(a) = A(&) since the
matrix is not perturbed. For TLS, A(a) = A(a)+ E for some error matrix F since
TLS does not preserves the structure or to consider the nonlinear dependence of

A on ¢ into account in computing the solution.

In the test we consider A(c.) a 15 x 3 Vandermonde matrix such that
e—0-1+2mv/=1x0.5 1
Q= | e 02mV=I04 | g 1| b, = Alae)ze.

6—0.3+27r\/ —1%0.3 1

Each data obtained represents the average of 100 solutions computed with dif-
ferent random values in the interval [—v,7]. For both SNLS and MSNLS methods
the number of iterations was limited to 10 while for the SNTLN2 algorithm the
number of iterations was limited to 20. When the convergence test is not satisfied,
that is, ||Ac|| > 1.0e — 6 or ||Az|| > 1.0e — 6, the result given by our methods in
the 10th iteration is taken as the final solution.

The results of LS, TLS and SNTLN2 are obtained from [33]. The SNTLN2*

method was implemented in MATLAB by us. Unfortunately we do not have notice of
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how their minimization subproblem was solved. In our implementation we use a CG
method for solving the minimization subproblem without a suitable preconditioner.

Then, for the tests, our results are not so good as that the SNTLN2 method.

4.3.1 Numerical Results When b is Unperturbed

In Table 4.1 the test results are given for the problem where only the parameter
vector « is perturbed by uniformly distributed random variables in the interval
[=7,7]- For v = 1.0e — 8 and v = 1.0e — 6 both the SNLS and MSNLS me-
thods converges in one step. For other values of ~, its iterations was terminated
after 10 iterations. The reason for this fact is that we did not apply the efficient
preconditioned CG method described in Section 2.2 to solve very ill-conditioned
Vandermonde System (4.1). But for all tests, the relative error with respect to
the vector z obtained by the MSNLS method is better than that by LS, TLS,
SNTLN2* and SNLS methods.

The CPU time, in seconds, of both MSNLS and SNTLN2* methods is given in
Table 4.2.

Figures 4.1 and 4.2 display the relative error computed by both MSNLS and
SNTLN2* methods with respect to z and « for ¢ = 1.0e — 16. In this case the

convergence of the SNTLN2* method is still better than the convergence of the

MSNLS method.
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07 LS TLS | SNTLN2 | SNTLN2* | SNLS | MSNLS

1.0e-8 || 4.8e-8 | 4.8e-8 | 4.9e-15 4.5e-8 2.3e-8 | 1.9e-8

1.0e-6 || 4.5e-6 | 4.5e-6 | 2.2e-16 2.9e-16 | 2.2e-6 | 2.0e-6

1.0e-4 || 4.9e-4 | 4.9e-4 | 1.7e-14 3.9e-13 | 9.5e-4 | 1.9e-4

1.0e-3 || 5.0e-3 | 5.0e-3 | 3.5e-16 3.4 9.3e-3 | 1.8e-3
1.0e-2 || 4.5e-2 | 4.6e-2 | 2.1e-14 3.0 1.2e-1 | 1.6e-2
1.0e-1 || 4.2¢-1 | 4.2e-1 5.1e-2 1.3 3.8 1.2e-1

Table 4.1: Solution error 1Ze=2elz f z, computed by the LS, TLS, SNTLN2,

llzell2
SNTLN2*, SNLS and MSNLS methods when b is unperturbed.
In Figures 4.3 and 4.4 the comparison between both the MSNLS and SNTLN2*
methods with respect to z and «, respectively, is shown. Here the MSNLS method

converge fast when compared to the SNTLN2* method.

4.3.2 Numerical Results When b is Perturbed

For the perturbation in vector b., two different cases are analyzed. First, b, is
affected by uniformly distributed random variables in the interval [-1.0e-8,1.0e-8].
In the second case, b, is perturbed by uniformly distributed random variables in
the interval [~v,~], like a,. The objective of these tests is to verify how both
the SNLS and MSNLS methods recovers the correct solution when a. and b, are

affected by the different kinds of errors.
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v || SNTLN2* | MSNLS

1.0e-8 3.8e-1 1.8e-1

1.0e-6 8.2e-1 6.0e-2

1.0e-4 1.1 1.9
1.0e-3 5.3 1.8
1.0e-2 5.3 1.9
1.0e-1 5.0 1.9

Table 4.2: CPU time of both SNTLN2* and MSNLS methods when b is unper-

turbed.

Numerical Results When b is Perturbed by Uniformly Distributed Ran-

dom Variables in the Interval [-1.0e-8,1.0e-8]

In Table 4.3 the results obtained for b perturbed by uniformly distributed random
variables in the interval [-1.0e-8,1.0e-8] are given. Both the SNLS and MSNLS
methods converges fast for v = 1.0e — 8 and v = 1.0e — 6 but they not satisfies the
stopping criterion for all tests when other values of « are considered. For all tests
the relative error in z of the MSNLS method is better than that of LS, TLS and
SNLS.

The CPU time of both MSNLS and SNTLN2* methods when b is perturbed

by uniformly distributed random variables in the interval [-1.0e-8,1.0e-8] is given

in Table 4.4.
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Figure 4.1: Convergence of both the MSNLS and SNTLN2* methods with respect

to £ when b is unperturbed, € = 1.0e — 16 and v = 1.0e — 1.

For € = 1.0e — 16 the convergence of the SNTLN2* method is still better than
the convergence of the MSNLS method. This fact is shown in Figures 4.7 and 4.8.

The comparison between both the MSNLS and SNTLN2* methods with respect
to = and a, respectively, is shown in Figures 4.7 and 4.8.

In accord with Figures 4.7 and 4.8 the convergence of the MSNLS method is

better than that the SNTLN2* method for a small tolerance.
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Figure 4.2: Convergence of both the MSNLS and SNTLN2* methods with respect

to a when b is unperturbed, £ = 1.0e — 16 and v = 1.0e — 1.

Numerical Results When b is Perturbed by Uniformly Distributed Ran-

dom Variables in the Interval [—7,7]

When b is perturbed by uniformly distributed random variables in the interval
[—~,7], the accuracy of the MSNLS method is better than that of LS, TLS,
SNTLN2, SNTLN2* and SNLS. The results are given in Table 4.5. Unfortunately,
the convergence test of both SNLS and MSNLS methods is not satisfied within 10
iterations for v = (1.0e — 4,...,1.0e — 1) for all tests.

In Table 4.6 the CPU time of both MSNLS and SNTLN2* methods when b

is perturbed by uniformly distributed random variables in the interval [—v,~] is

presented.
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Figure 4.3: Comparison between both the MSNLS and SNTLN2* methods with

respect to £ when b is unperturbed and v = 1.0e — 1.

When & = 1.0e — 16 the SNTLN2* method converges fast and provides good

approximation to the desired solutions.

From Figures 4.11 and 4.12 the convergence of the MSNLS method is better

than that SNTLN2* method.

4.4 Parameter Estimation Problems

To verify the capacity of the SNLS method we consider the following parameter

estimation problem:
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Figure 4.4: Comparison between both the MSNLS and SNTLN2* methods with

respect to a when b is unperturbed and v = 1.0e — 1.
Suppose that a measured signal f(t) at m observed values of ¢ has the form
fi = f(t,,) + i, 7= 1, e, m (49)

where 7); represent noise or error in the measurement and f(t) is one of the following

forms

L f(t) =3 ze™™"
or
2 f(8) = S mse o/,

We shall use the SNLS method to obtain the approximation z, to the exact

solution z.. The data for the first type of signal was obtained from Osborne and
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¥ LS TLS | SNTLN2 | SNTLN2* | SNLS | MSNLS

1.0e-8 || 4.5e-8 | 4.5e-8 2.5e-8 4.6e-8 2.4e-8 | 1.9e-8

1.0e-6 || 5.0e-6 | 5.0e-6 | 2.5e-8 1.3e-8 2.5e-6 | 2.0e-6

1.0e-4 || 5.0e-4 | 5.0e-4 2.7e-8 1.3e-8 9.1e-4 | 1.9e-4

1.0e-3 || 4.2e-3 | 4.2e-3 | 2.7e-8 3.1 9.2e-3 | 1.8e-3
1.0e-2 || 4.9e-2 | 4.9e-2 | 2.4e-8 2.6 1.3e-1| 1.6e-2
1.0e-1 || 4.7e-1 | 4.7e-1 | 1.le-1 1.8 4.2 1.2e-1

Table 4.3: Solution error ”—ﬂ’f;—ﬁ'ﬁ of x, computed by the LS, TLS, SNTLN2,

SNTLN2*, SNLS and MSNLS methods when b is perturbed by uniformly dis-

tributed random variables in the interval [-1.0e-8,1.0e-8].

Smyth [29], and the second type is the sum of Gaussian functions which is similar
to that in [24].

For the first case we take 30 points ¢; in the interval ¢ € [0, 1] and set the values
0. = (0 4 7)7 and z, = (0.5 2 —1.5)7. Then, we have m = 30, n = 3,
s = 3. This signal is used to measure the effect of errors in the data vector f;
on the computed parameter estimate o,. Uniformly distributed random errors 7;,
i¢=1,...,m in the interval [—¢, €] were added to f(¢;) to give f; as in 4.9.

For the second case we take 0> = 0.05, o = (0.1 0.3 0.5 0.9)7, z, =
(1.0 0.5 2.0 0.25 )T and 64 values of t; equally spaced in the interval [0,1]. So

we have m = 64, n = 4, and s = 4. The error in f(¢;) is given by uniformly
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0 SNTLN2* | MSNLS

1.0e-8 2.1e-1 1.5e-1

1.0e-6 8.5e-1 2.2e-1

1.0e-4 9.7e-1 1.8
1.0e-3 5.4 2.0
1.0e-2 5.1 2.0
1.0e-1 4.9 1.9

Table 4.4: CPU time of both SNTLN2* and MSNLS methods when b is perturbed

by uniformly distributed random variables in the interval [-1.0e-8,1.0e-8].

distributed random variables 7;, 2 = 1,...,m in the interval [—¢, €].
The ability of the SNLS method for different initial parameter estimates & was

tested with the two types of signals. The initial parameter estimation is
A = Q¢ + 0q

where the components of §, are uniformly distributed random variables in the

interval [—v,~]. For all cases, uniformly distributed random variables 7;, |n;| <

1.0e — 7 are added to f; such that

fi=fE)+m i=1,...,m.

The number of iterations is limited to 100 for six values of . Here we consider

v = (0,0.01, 0.02, 0.03, 0.05, 0.07).



CHAPTER 4. NUMERICAL EXPERIMENTS 54

T T —
-—— relative error obtained by the MSNLS method {3

o f 1 . [ relaﬁveerrorobtainedbxtheSNTlNZ’method;

%

-
(=}

0 50 1(’)0 1;0 2(.)0 2;0 300
MSNLS and SNTLN2* iterations
Figure 4.5: Convergence of both the MSNLS and SNTLN2* methods with respect

to = when b is perturbed by uniformly distributed random variables in the interval

[-1.0e-8,1.0e-8], £ = 1.0e — 16 and v = 1.0e — 1.
4.4.1 Numerical Results for the First Type of Signal

First we consider numerical tests for the first case. Uniformly distributed random
errors in the interval [-1.0e-7,1.0e-7] are added in f;. Numerical tests are also done
with a single outlier at one of the points ¢;. For no outliers, the results of the SNLS
method are given in Table 4.7. Since the norm of the error in both z and a are
minimized, different digits of correction were considered. Table 4.8 displays that
the number of iterations decreases significatively for different digits of corrections.

The effect of outliers is verified by adding 1 outlier (£0.1) in a random position

of the vector f. In Table 4.9 we give the average result of the obtained results for
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Figure 4.6: Convergence of both the MSNLS and SNTLN2* methods with respect

to o when b is perturbed by uniformly distributed random variables in the interval

[-1.0e-8,1.0e-8], € = 1.0e — 16 and v = 1.0e — 1.

different values of v and 100 test problems. The number of iterations and the

approximated solution of z and « are given in Table 4.10

4.4.2 Numerical Results for the Second Type of Signal

The obtained results are compared with the tests of both the SNTLN1 (SNTLS
with L; norm) and SNTLN2 (SNTLS with Ly norm) algorithms presented by
Rosen, Park and Glick in [33]. The results of 20 solutions, each with different
random values of d, when no outliers was considered are given in Table 4.11. If

v = 0.02, the SNLS method converges for all cases, as both SNTLN1 and SNTLN2.
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Figure 4.7: Comparison between both the MSNLS and SNTLN2* methods with
respect to  when b is perturbed by uniformly distributed random variables in the

interval [-1.0e-8,1.0e-8] and v = 1.0e — 1.

For v = 0.07 the percentage of convergence of the SNLS method drops to 80% while
the percentage of convergence of both SNTLN1 and SNTLN2 drops to 75%.

In order to investigate the effect of outliers, we consider 10 and 25 outliers.
The values of -y are the same as that used above. The value of each outlier is 40.1.
These values are added to f; (in addition to 7;) at randomly selected positions of
the 64 points. The SNLS algorithm, as the SNTLN2 algorithm, did not satisfy the

convergence criterion in many cases.
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Figure 4.8: Comparison between both the MSNLS and SNTLN2* methods with

respect to a when b is perturbed by uniformly distributed random variables in the

interval [-1.0e-8,1.0e-8] and v = 1.0e — 1.

4.5 Toeplitz Systems

In this section we present some numerical tests considering a Toeplitz system. The
problem is take from [22]. The test problem is constructed so that both A(c.) and
be are known. Random perturbations J, on a. and ¢, on b, was added to give a
Toeplitz matrix A(ae + 0,) and b = be + &. The components of é, are uniformly

distributed random variables in the interval [—v,~] and & is randomly generated

and scaled so that |le]|2 = 0.01|b||2-
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¥ LS TLS | SNTLN2 | SNTLN2* | SNLS | MSNLS

1.0e-8 || 4.6e-8 | 4.6e-8 2.5e-8 5.1e-8 2.2e-8 | 1.8e-8

1.0e-6 || 4.6e-6 | 4.6e-6 2.5e-6 1.3e-6 2.4e-6 | 2.2e-6

1.0e-4 || 4.6e-4 | 4.6e-4 2.3e-4 1.3e-4 8.8¢-4 | 1.8e-4

1.0e-3 || 4.7e-3 | 4.7e-3 2.5e-3 2.9 9.4e-3 | 1.7e-3
1.0e-2 || 4.3e-2 | 4.3e-2 2.7e-2 25 1.1e-1 | 1.6e-2
1.0e-1 || 5.1e-1 | 5.1e-1 3.4e-1 1.5 4.3 1.1le-1

Table 4.5: Solution error lli”ﬁ;TT:"z of z, computed by the LS, TLS, SNTLN2,

SNTLN2*, SNLS and MSNLS methods when b is perturbed by uniformly dis-

tributed random variables in the interval [—7, 7].

In the test, the first column of the Toeplitz matrix A(«) is given by

—(w—1 2
e i=1,2,... 2%w+1

1
V2mo?
col:a;; =

0 , otherwise

and its row is given by

TO'U):[all 0 co O:|.

Here A(a) € R™", n = 64, a, = 1.25 and w = 8. The exact solution z. is not

known.

The vector b is given as follows

‘5
b=[1 1} + &
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~ || SNTLN2* | MSNLS

1.0e-8 2.6e-1 4.9e-2

1.0e-6 6.7e-1 2.2e-1

1.0e-4 9.4e-1 1.9
1.0e-3 5.3 1.8
1.0e-2 5.1 1.9
1.0e-1 4.9 1.9

Table 4.6: CPU time of both SNTLN2* and MSNLS methods when b is perturbed

by uniformly distributed random variables in the interval [—7, 7]

Our purpose is to obtain the exact parameter o, via SNLS. The obtained results
represents the average of 100 solutions, each with different random values in the

given interval. The number of iterations was limited in 20 iterations. When the

stopping criterion
[Aef|<e and ||Az||<e, e=1.0e—6,

is not satisfied, the result obtained at the 20th iteration is taken as the final
solution. In our tests the stopping criterion is satisfied, at most, in 5 iterations.
The results are given in Table 4.12. This fact shows that the SNLS algorithm can

be fast enough, especially if some fast or super fast methods are applied for the

basic iteration step.
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[7,7], e=1.0e — 16 and -y = 1.0e — 1.

250

| e | lecede 1 Ag)] | Aal | # it
0 5.4e-8 9.9e-9 | 8.3e-8 | 8.2e-8 1
0.01 || 1.1e3 9.5e-4 | 9.2e-7|9.1e7 | 40
0.02 || 2.4e-3 1.9e-3 | 9.1e-7 { 9.1e-7 | 44
0.03 || 3.6e-3 2.9e-3 | 9.2e-7 | 9.2e-7| 46
005 52e-3 | 4.2¢-3 [9.2e-7|9.1e7| 49
0.07 || 7.4e-3 6.5e-3 | 9.1e-7 | 9.1e-7 | 51

Table 4.7: Convergence of the SNLS method for 100 tests of the first type of signal

when no outliers was considered.
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Figure 4.10: Convergence of both the MSNLS and SNTLN2* methods with respect

to o when b is perturbed by uniformly distributed random variables in the interval

i 1
100 1
MSNLS and SNTLN2" iterations

7,7, € = 1.0e — 16 and v = 1.0e — 1.

1
250

o | Rt | gt | 1l | Ina] | # 5
1.0e-6 | 7.4e-3 | 6.5e-3 | 9.1e-7 | 9.1e-7 | 51
1.0e-4 || 8.3e-3 6.5e-3 [ 9.1e-5 | 9.1e-5 | 24
1.0e-3 || 8.4e-3 | 6.9e-3 | 8.8e-4 | 8.7e-4| 11
1.0e-2 || 1.6e-2 7.7e-3 |6.0e-3 | 5.9e-3 | 2
1.0e-1| 1.7e-2 | 7.9e-3 |[T7.1e3|7.0e-3| 1

Table 4.8: Convergence of the SNLS method for 100 tests of the first type of signal

when no outliers was considered for different digits of correction ¢ and vy = 0.07.
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Figure 4.11: Comparison between both the MSNLS and SNTLN2* methods with
respect to x when b is perturbed by uniformly distributed random variables in the

interval [y,v] and v = 1.0e — 1.

v llzp—~zell2 | llap—cell2 |Az] | [[Aa | # it.

llzell2 lloell2

0 6.0e-2 7.2e-3 | 9.1e-7 | 9.1e-7 | 58

0.01 | 6.1e-2 7.3e-3 | 9.1e-7 | 9.1e-7 | 57

0.02 | 6.9e-2 9.2e-3 | 9.1e-7 | 9.1e-7 | 57

0.03 || 8.5e-2 1.3e-2 | 9.3e-7 | 9.2e-7 | 59

0.05 || 7.8e-2 1.3e-2 | 9.2e-7 | 9.2e-T | 57

0.07 || 7.1e-2 1.3e-2 | 9.2e-7 | 9.1e-7 | 57

Table 4.9: Convergence of the SNLS method for 100 tests of the first type of signal

when 1 outlier was added in a random component of f;.
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Figure 4.12: Comparison between both the MSNLS and SNTLN2* methods with

respect to o when b is perturbed by uniformly distributed random variables in the

interval [7y,7] and v = 1.0e — 1.

£ llxﬁ;ﬁilz Haﬁao:ﬁ:llz 1AzZ]] | [|Aa]| | # it.
1.0e-6 || 7.1e-2 13e-2 | 9.2e-7|9.1e-7| 57
1.0e-4 || 7.8e-2 | 1.4e-2 |9.1e5|91e5| 29
1.0e-3 || 7.7e-2 | 1.4e-2 |89e4|89-4| 16
1.0e-2 || 592 | lle2 |7.7e3|7.7¢-3| 4
1.0e-1 || 4.0e-2 | 9.2e-3 | 1.5e-2 | 1l4e2| 1

Table 4.10: Convergence of the SNLS method for 100 tests of the first type of

signal for different digits of correction £ and v = 0.07 when 1 outlier was added in

a random component of f;.
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v | el | Tl | Az | jAal | # it
0 5.4e-8 5.9e-9 | 8.3e-8 | 8.2e-8 1
0.01 | L.le3 | 9.5e-4 |9.2e7|9.1e7| 40
0.02 | 2.4e-3 | 1.9e-3 | 9.1e7|9.1e7| 44
0.03 | 3.6e-3 | 2.9e-3 |9.2e-7|9.2e-7 | 46
0.05 || 5.2e-3 | 4.2¢3 |9.2e-7[9.1e7| 49
0.07 | 7.4e-3 | 6.5e-3 | 9.le-7 | 9.1e-7 | 51

64

Table 4.11: Convergence of the SNLS method for 100 tests of the second type of

signal when no outliers was considered.

v | Bl | (aa) | # it
1.0e-8 || 3.9e-9 | 3.4e23| 3
1.0e-6 || 4.3e-7 | 4.1e-7 4
1.0e-4 || 4.0e-5 |1.9e-23| 5
1.0e-3 | 3.7e-4 |1.0e-22| 3
1.0e-2 | 3.9e-3 |1.2e-23| 4
1.0e-1 || 3.8e-2 | 2.7e-21| 5

Table 4.12: Convergence of the SNLS method for 100 tests when a Toeplitz system

is considered.



Chapter 5

Conclusions

In this dissertation we propose a new way to solve structured NLS problems
based on the TLS formulation. We consider an initial estimate to the parameter
vector o and an initial value to the vector z. The errors in both o and z are
minimized iteratively by successive solutions of two LS problems at each iteration.
The first system is a symmetric and positive definite linear system. Its solution
can be obtained by CG methods with a suitable preconditioner. If A(a) has some
structure, the SNLS method keeps the same structure for the errors and does not
require the matrix M explicitly when some fast iterative method is used. Then, a
few vectors with length not greater than m + n are required. The solution of the
second linear system depends on the structure of the data matrix, Toeplitz, Hankel
or Vandermonde. One of the advantages of the SNLS method is that the structure

of the error matrix is preserved. Another one is the low computational cost at each

65
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iteration. Another version of the SNLS method, the MSNLS method, is proposed
to solve Vandermonde systems and it can be extended to other structures. This
version is based on solution of two diagonal systems for solving the first linear
system. The computational cost is reduced and the related modification provides
a still better accuracy for the method. Numerical experiments confirm that both
the SNLS and MSNLS methods converges to good approximation to the desired
solution. This fact shows that our methods can be fast enough, especially if some
fast or super fast methods are applied to solve the two related linear systems. Even
though the numerical performance of our methods is not as good as that of the
SNTLN2 algorithm our methods are all certainly better than the LS, TLS and
SNTLN2* methods. In agreement with Bjork, the SNLS method converges fast
and is quite suitable when a small desired tolerance is required.

In future, we are trying to consider different algebraic manipulations and direct
and iterative methods to obtain the solution of both the underdetermined and the

overdetermined linear systems and to verify the effect of this choice in the obtained

results.



Appendix A

Matlab Codes

function msnls(gamma,opt)

%MSNLS This code reconstruct an exact Vandermonde system
%A(alpha_e)x_e=b_e by the MSNLS method where alpha e and b_e
%are perturbed by distributed random variables in the interval
%[-gamma ,gamma] .

TotalO0fTests=100;

RelativeErrorAlpha=0;

RelativeErrorX=0;

TotalTime=0;

% Initializing the optional plot

if opt==

TotalOfTests=1;
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end
for t=1:TotalOfTests
% Initial values
MaxIt=10;
tol=1.0e-6;
ErrAlpha=2%tol;
ExrrX=2*tol;
k=0;
% Exact Vandermonde test problem
[V,x_e,alpha e,b,m,n,ss]=testl;
% Perturbation on the initial parameter vector alpha
[alpha_pl=pertalpha(alpha_e,gamma,ss);
% Perturbation on the exact vector b by distributed
% random variables in the interval [-1.0e-8,1.0e-8]
%[b]=pertib(b,m);
% Perturbation on the exact vector b by distributed
% random variables in the interval [-gamma,gamma]
[bl=pert2b(b,gamma,m) ;
% Initial computations
alpha=alpha p;
V=vand(alpha,m,n);
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% Initial least square solution

[Q,Rl=qr();

R=R(1:n,:);

for c=1:n
bb(c)=Q(:,c) ’*b;

end

bb=bb(:);

% Back substitution

x_old=back(R,bb,n);

x=x_0l1d;

JVx=jacobv(alpha,x,m,n);

r=Vxx_old-b;

s=-T;

nrm=norm(s) ;

% Initial plot data (optiomnal)

if opt==1
VecErrorAlpha(1l)=norm(alpha e-alpha)/norm(alpha_e);
VecErrorX(1)=norm(x_e-x_0ld) /norm(x_e);

end

Time=cputime;

% Main computations
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while (ErrAlpha>tol|ErrX>tol)&k<MaxIt

% Computing the matrix X

for i=1:m

X(i,i*n-(n-1):i*n)=x’;

end

y=s/(1+x’*x);

v=K’*y;

% Computing the matrix D

for i=1:m
D(i*n-(n-1) :i*n, :)=diag((i)*alpha. (i-1));

end

DD=(D’>*D) ;

JVxy=JVx’*y,

for h=1:n
DeltaAlpha(h)=JVxy(h)/DD(h,h);

end

DeltaAlpha=DeltaAlpha(:);

alpha=alpha+DeltaAlpha;

% Updating the matrix V

V=vand(alpha,m,n) ;

% Least square solution to the overdetermined system
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[(Q.Rl=qr(V);

R=R(1:n,:);
bb=Q’*b;
bb=bb(1:n);

% Back substitution

x=back(R,bb,n);

% Updating the Jacobian matrix with respect to new x

JVx=jacobv(alpha,x,m,n);

s=b-Vx*x;

r=-8;

% Computing the stop criterion

ErrAlpha=norm(DeltaAlpha) ;

ErrX=norm(x-x_old);

% Plot data

if opt==
VecErrorAlpha(k+2)=ErrAlpha/norm(alpha e);
VecErrorX (k+2)=ErrX/norm(x_e) ;

end

% Updating

x.0ld=x;

k=k+1;
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end
% Plotting the error (optional)
if opt==
semilogy(VecErrorAlpha,’-’);
hold om;
semilogy (VecErrorX,’:7);
title(’Modified Successive Nonlinear Least
Squares Method’);
xlabel (’MSNLS iterations’);
ylabel(’ | |x-x_el|| 2/|Ixell2 and
| lalpha-alpha el | 2/1|alpha_el|| 2’);
legend(’relative error in the vector alpha’,
’relative error in the vector x’);
end
Time=cputime-Time;
TotalTime=TotalTime+Time;
RelativeFinalErrorAlpha=norm(alpha-alpha e)/norm(alpha_e);
RelativeErrorAlpha=RelativeErrorAlpha+
RelativeFinalErrorAlpha;
RelativeFinalErrorX=norm(x-x_e) /norm(x_e);
RelativeErrorX=RelativeErrorX+RelativeFinalErrorX;
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end
% Close the current figure
if opt==
hold off
end
TotalTime
AverageOfRelativeErrorAlpha=RelativeErrorAlpha/TotalOfTests

AverageOfRelativeErrorX=RelativeErrorX/TotalOfTests

function snls(gamma,optl,opt2)
%SNLS - A Successive Least Squares Method for Nonlinear
%Least Squares Problems
Total0fTests=100;
RelativeErrorAlpha=0;
RelativeErrorX=0;
TotalTime=0;
% Initializing the optional plot
if opt2==1

TotalOfTests=1;
end

for t=1:TotalOfTests
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% Initial values
MaxIt=10;
tol=1.0e-6;

ErrAlpha=2*tol;

ErrX=2xtol;
k=0,
if opti==1

% Vandermonde test problem
[V,x_e,alpha e,b,m,n,ss]=testl;
elseif optl==
% First type of signal
[V,x_e,alpha e,b,m,n,ss]=test2;

elseif optl==

[V,x_e,alphae,b,m,n,ss]=test2;

elseif optl==

[V,X_e,alpha_e,b,m,n,ss,omegaJ=test4;
end
% Perturbation on the initial parameter vector alpha
[alpha_pl=pertalpha(alpha_ e,gamma,ss);
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% Perturbation on the exact vector b by distributed
% random variables in the interval [-1.0e-8,1.0e-8]
% (for the Vandermonde test problem)
%[bl=pertib(b,m);
% Perturbation on the exact vector b by distributed
% random variables in the interval [-gamma,gammal
% (for the Vandermonde test problem)
[b]=pert2b(b,gamma,m) ;
% Perturbation in vector b (for the Toeplitz test
% problem)
%e=randn(n,1);
%b=b+0.01*norm(b) /norm(e) ;
% Initial computations
alpha=alpha p;
if opti==1
% Vandermonde test problem
V=vand (alpha,m,n);

elseif optl==

V=matrixi(alpha,m,n);
elseif optl==
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% Second type of signal
V=matrix2(alpha,m,n);
elseif optl==4
% Toeplitz test problem
V=toep(alpha,omega,n);
end
% Initial least square solution
[Q,R]=qr(V);
R=R(1:mn,:);
for c=1:n
bb(c)=Q(:,c) ’*b;
end
bb=bb(:);
% Back substitution
x_old=back(R,bb,n);
x=x_0ld;
if opti==1
% Vandermonde test problem
JVx=jacobv(alpha,x,m,n);
elseif optl==
% First type of signal
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JVx=jacobml(alpha,x,m,n);

elseif optl==
% Second type of signal
JVx=jacobm2(alpha,x,m,n);

elseif optl==
% Toeplitz test problem
JVx=jacobt (alpha,omega,x,m,n);

end

=V*x_o0ld-b;

s=-T;

nrm=norm(s) ;

% Initial plot data (optional)

if opt2==1
VecErrorAlpha(1)=norm(alpha_e-alpha)/norm(alpha._e);
VecErrorX(1)=norm(x_e-x_0ld)/norm(xz_e) ;

end

Time=cputime;

% Main computations

while (ErrAlpha>tol|ErrX>tol)&k<MaxIt
% Computing the matrix M
M=eye (m)+JVx*JVx’;
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y=cg(M,s);
DeltaAlpha=JVx’*y;
alpha=DeltaAlpha+alpha;
% Updating the matrix V
if opti==1
% Vandermonde test problem
V=vand(alpha,m,n);
elseif optl==
% First type of signal
V=matrixi(alpha,m,n);
elseif optl==
% Second type of signal
V=matrix2(alpha,m,n);
elseif optl==
% Toeplitz test problem
V=toep(alpha,omega,n) ;
end
% Least square solution to the overdetermined system
[Q,Rl1=qr(V);
R=R(1:n,:);
bb=Q’*b;
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bb=bb(1:n);
% Back substitution
x=back(R,bb,n);
s=b-V*x;
% Updating the Jacobian matrix with respect to the
% new x
if opti==1
% Vandermonde test problem
JVx=jacobv(alpha,x,m,n);
elseif optl==2
% First type of signal
JVx=jacobml (alpha,x,m,n);
elseif optl==
% Second type of signal
JVx=jacobm2(alpha,x,m,n);
elseif opti==4
% Toeplitz test problem
JVx=jacobt (alpha,omega,x,m,n);
end
r=JVx*alpha-s;
% Computing the stop criterion
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ErrAlpha=norm(DeltaAlpha) ;
ErrX=norm(x-x_old);
% Plot data
if opt2==
VecErrorAlpha(k+2)=ErrAlpha/norm(alpha.e);
VecErrorX (k+2)=ErrX/norm(x_e);
end
% Updating
x_old=x;
k=k+1;
end
% Plotting the error (optional)
if opt2==1
semilogy(VecErrorAlpha,’~’);
hold on;
semilogy(VecErrorX,’:’);
title(’Successive Nonlinear Least Squares Method’);
xlabel(’SNLS iterations’);
ylabel(’ | |x-xell 2/]lxel| 2 and
| lalpha-alpha el | 2/]|lalphael|2’);
legend(’relative error in the vector alpha’,
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*relative error in the vector x’);
end
Time=cputime-Time;
TotalTime=TotalTime+Time;
RelativeFinalErrorAlpha=norm(alpha-alpha e)/norm(alpha.e);
RelativeErrorAlpha=RelativeErrorAlpha+
RelativeFinalErrorAlpha;
RelativeFinalErrorX=norm(x-x_e) /norm(x.e);
RelativeErrorX=RelativeErrorX+RelativeFinalErrorX;
end
% Close the current figure
if opt2==
hold off
end
TotalTime
AverageOfRelativeErrorAlpha=RelativeErrorAlpha/TotalOfTests

AverageDfRelativeErrorX=RelativeErrorX/TotalOfTests

function sntln(gamma)
%SNTLN This code reconstruct an exact Vandermonde system
%A(alpha_e)x_e=b_e by the SNTLN algorithm where alpha e and
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%b_e are perturbed by uniformly distributed random variables
%in the interval [-gamma,gammal.
TotalOfTests=100;
RelativeErrorAlpha=0;
RelativeErrorX=0;
TotalTime=0;
% Initializing the optional plot
if opt==1
TotalOfTests=1;
end
for t=1:TotalOfTests
%Initial values
maxit=20;
tol=1.0e-6;
DeltaAlpha=2x*tol;
DeltaX=2*tol;
k=0;
% Exact Vandermonde test problem
[V,x_e,alpha e,b,m,n,ss]=testl;
D=zeros(n);
for i=1:n
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D(i,i)=1.0e-8;

end

% Perturbation on the initial parameter vector alpha

[alpha pl=pertalpha(alpha e,gamma,n);

% Perturbation on the exact vector b by distributed

% random variables in the interval [-1.0e-8,1.0e-8]

%[bl=pertib(b,m);

% Perturbation on the exact vector b by distributed

% random variables in the interval

[bl=pert2b(b,gamma,m) ;

% Initial computations
alpha=alpha p;
V=vand(alpha,m,n);

% Initial least square solution
[Q,R]=qr(V);
x_0ld=pcg((R’*R), (R’ *Q’)*b) ;
x=x_0ld;
JVx=jacobv(alpha,x,m,n);
r=V*x-b;

% Initial plot data (optional)
if opt==

33
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VecErrorAlpha(1)=norm(alpha_e-alpha)/norm(alpha_e);
VecErrorX(1)=norm(x_e-x_old) /norm(x_e);

end

Time=cputime;

% Main computations

while (norm(DeltaAlpha)>tol|norm(DeltaX)>tol)&k<maxit
DAlpha=1.0e-8%* (alpha-alpha.p);
A=[V,JVx;zeros(n),D];
bb=[r;DAlphal ;
% Least square solution to the overdetermined
% system
[Q,R]l=qr(4);
y=pcg((R’*R) , (R’*Q’)*bb) ;
DeltaX=y(l:n);
DeltaX=DeltaX(:);
x=x+DeltaX;
DeltaAlpha=y(n+1:2+%n);
DeltaAlpha=DeltaAlpha(:);
alpha=alpha+DeltaAlpha;
% Updating the matrix V
V=vand(alpha,m,n);
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% Updating the Jacobian matrix with respect to the
% new x
JVx=jacobv(alpha,x,m,n);
r=b-V*x;
% Plot data
if opt==
VecErrorAlpha(k+2)=norm(DeltaAlpha) /norm(alpha_e);
VecErrorX (k+2)=norm(DeltaX) /norm(x_e);
end
% Updating
k=k+1;
end
% Plotting the error (optiomnal)
if opt==1
semilogy (VecErrorAlpha,’-’);
hold on;
semilogy(VecErrorX,’:7);
title(’Structured Nonlinear Total Least
Norm Method
Squares Method’);
xlabel(’SNTLN iterations’);
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ylabel(’ | |x-x_el| 2/ |xel| 2 and
| lalpha-alpha e||_2/]||alphael|_2%);
legend(’relative error in the vector alpha’,
’relative error in the vector x’);
end
Time=cputime-Time;
TotalTime=TotalTime+Time;
RelativeFinalErrorAlpha=norm(alpha-alpha_e)/norm(alpha_e);
RelativeErrorAlpha=RelativeErrorAlpha+
RelativeFinalErrorAlpha;
RelativeFinalErrorX=norm(x-x_e)/norm(x_e);
RelativeErrorX=RelativeErrorX+RelativeFinalErrorX;
end
% Close the current figure
if opt==
hold off
end
TotalTime
AverageOfRelativeErrorAlpha=RelativeErrorAlpha/TotalOfTests

AverageOfRelativeErrorX=RelativeErrorX/TotalOfTests
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function b=back(R,b,n)

b(n)=b(n)/R(n,n);

for c=n-1:-1:1
b(c)=(b(c)-R(c,c+1:n)*b(c+1:n))/R(c,c);

end

function x=cg(A,b)
% Conjugate Gradiente Method
%
%This function solves symmetric and positive definite linear
%systems Ax=b.
yA
eps=1.0e—6;
maxit=100;
=0;
[m,n]=size(A);
x=zeros(n,1);
r=b;
rho(1)=norm(r) "2;
while sqrt(rho)>eps*norm(b)&k<maxit
k=k+1;
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if k==1
p=T;
else
beta=rho (k) /rho(k-1);
p=rtbeta*p;
end
w=A*p;
alpha=rho (k) /(p’*w) ;
x=x+alphax*p;
r=r-alpha*w;
rho (k+1)=norm(r) "2;

end

function JVx=jacobml(alpha,x,m,n)

tt=linspace(0,1,m);

alpha=alpha(:);

JVx=zeros(n,m);

for i=2:m
JVx(:,i)=-tt(i)*exp(-alpha.*tt(i));

end

for i=1:n
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JVx (i, )=JIvx(i, )*x(1);
end

JVx=JVx’;

function JVx=jacobm2(alpha,x,m,n)

tt=linspace(0,1,m);

alpha=alpha(:);

JVx=zeros(n,m) ;

for i=2:m
JVx(:,1)=40%(tt(i)-alpha) . *exp(-20*(tt (i)-alpha)."2);

end

for i=l:n
JVx (i, )=Jvx(i, )*x(1);

end

JVx=JVx’;

function JVx=jacobt(alpha,omega,x,m,n)
JVx=zeros(m,1);

c=zeros(n,1);

r=zeros(1,n);

for i=1:2*xomega+1l
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c(i)=(-1/2*(sqrt(2) *exp (- (omega-i+1) “2/2*alpha~2) ) *. ..
pi*alpha/(pi~(3/2)*alpha~3)+1/2*(sqrt(2)*. ..
(omega-i+1) “2xexp(-(omega-i+1)~2/2*alpha”2))*. ..
pi*alpha/(sqrt(pi)*alpha~4))*x(i);
end
r{1,1)=c(1,1);
JVx=toeplitz(c,r);

JVx=JVx*x;

function JVx=jacobv(alpha,x,m,n)
%JACOBVAND This subroutine computes the m-by-n jacobian of
%V(alpha)x with respect to alpha
alpha=alpha(:);
JVx=zeros(n,m);
for i=2:m
JVx(:,i)=(i-1)*alpha."(i-2);

end
for i=1:n

Jvx (i, )=Jvx(d, )*x(i);
end

JVx=JVx’;
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function V=matrixl(alpha,m,n)

tt=1linspace(0,1,m);

alpha=alpha(:);

V=ones (n,m) ;

for i=l:m
V(:,i)=exp(-alpha.*(tt(i)));

end

V=V’

function V=matrix2(alpha,m,n)

tt=linspace(0,1,m);

alpha=alpha(:);

V=ones(n,m) ;

for i=i:m
V(:,i)=exp(~20*(tt(i)-alpha) . 2);

end

V=V’;

function b=outliers(b,m)
% OUTLIERS

for i=1:0
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r=randint(1,1,[1,m]);
b(x)=b(r)+0.1;

end

function [b]=pertib(b,m)

%PERT1B This algorithm generates a perturbation on each
%component of the vector b by uniformly distributed random
%variables in the interval [-1.0e-8,1.0e-8].
delta2=1.0e-8*rand(m,1);

b=b+delta2;

function [bl=pert2b(b,gamma,m)

%PERT2B This algorithm generates a perturbation on each
%hcomponent of the vector b by uniformly distributed random
%variables in the interval [-gamma,gamma].
delta2=gamma*rand (m, 1) ;

b=b+delta2;

function [alpha p]=pertalpha(alpha e,gamma,ss)
%PERTALPHA This algorithm generates a perturbation on the

%parameter vector alpha
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deltal=gamma*rand(ss,1);

alpha p=alpha e+deltal;

function [V,x_e,alpha e,b,m,n,ss]=testl

%TEST1 This algorithm generates the exact Vandermonde test

%problem obtained from Rosen, Park and Glick [33]

m=15;

alpha e=[exp(-.1+2*pi*sqrt(-1)*.5)
exp(—.2+2*pi*sqrt(-1)*.4)
exp(~.3+2xpi*sqrt (-1)*.3)]1;

ss=length(alpha_e);

n=ss;

x_e=ones(n,1);

alpha=alpha e;

V=vand(alpha,m,n) ;

b=V*x_e;

function [V,x e,alpha e,b,m,n,ss]=test2

%TEST2 This algorithm generates the exact first type of
%signal obtained from Osborne and Smith [29]

m=30;
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alpha_e=[0; 4; 7];
ss=length(alpha e);
n=ss;

x.e=[0.5; 2; -1.5];
alpha=alpha_e;
V=matrixi(alpha,m,n);

b=V*x_e;

function [V,x e,alpha e,b,m,n,ss]=test3

%TEST3 This algorithm generates the exact second type of
%signal obtained from Osborne and Smith [29]

m=64;

alpha_e=[0.1;0.3;0.5;0.9];

ss=length(alpha_e);

n=ss;

x-e=[1.0;0.5;2.0;0.25];

alpha=alpha e;

V=matrix2(alpha,m,n);

b=V*x_e;

function [V,x_e,alpha e,b,m,n,ss,omegal=testd
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omega=8;

alpha e=1.25;

ss=1;

alpha=alpha_ e;
V=toep(alpha,omega,n) ;
b=ones(n,1);

x_e=V;

function V=toep(alpha,omega,n)
c=zeros(n,1);
r=zeros(1,n);
for i=1:2*omega+l
c(i)=(1/sqrt (2*pi*alpha~2) ) *exp(-(omega-i+1)~2/(2*alpha~2));
end
r(1,1)=c(1,1);

V=toeplitz(c,r);

function V=vand(alpha,m,n)
%VAND This subroutine generates a m-by-n Vandermonde matrix.
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alpha=alpha(:);

V=ones(n,m);

for i=1:m
V(:,i)=alpha."(i-1);

end V=V’;
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