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RESUMO

Existem muitas situações nas quais é necessário estimar-se uma quantidade 

em relação a outra, como por exemplo, a quantificação de um certo produto, o 

tamanho da população, os gastos públicos em um Estado, em um determinado ano 

considerando os dados disponíveis das diversas localidades que compõem a 

população total, em algum ano anterior. Neste trabalho, desenvolve-se uma 

metodologia estatística para estimar o número de equipamentos de uso 

compartilhado no Estado, aplicando aos métodos de estimação apropriados, 

técnicas de reamostragem, como exemplo de uma metodologia que pode ser 

aplicada em um número muito grande de situações. Agrupam-se as localidades 

semelhantes aplicando-se Análise de Agrupamento, dimensiona-se o tamanho da 

amostra de localidades aplicando-se a Teoria da Amostragem e aplica-se o 

estimador da razão para estimar o número de equipamentos de uso compartilhado. 

Finalmente, faz-se uma simulação para identificar o melhor dos estimadores, 

clássicos, Bootstrap ou Jackknife. Aplicam-se, também, as técnicas de computação 

intensiva, nas suas várias abordagens.
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ABSTRACT

There are many situations in which it is necessary to estimate a quantity against 

other, as for example, the amount of a certain product, the size of the population, 

the public expenses in a State, at a certain year considering the available data from 

the different places which compose the total population, at any previous year. In 

this work, a statistical methodology is developed to estimate the number of 

equipments of shared use in the State, applying to the appropriate methods of 

estimation, techniques of resampling, as an example of a methodology that can be 

applied to a large number of situations. The similar localities are grouped by the 

application of Grouping Analysis, it is determined the sampling size of localities by 

applying the Sampling Theory and the ratio estimator is applied to estimate the 

number of equipments of shared use. Finally, it is held a simulation to identify the 

best estimator, classics, Bootstrap or Jackknife. Intensive computing techniques are 

also applied in their several approaches.
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INTRODUÇÃO

1.1. O Problema

O mundo atual, ancorado na ideologia neoliberal e na globalização, tem 

passado por várias modificações. Fusões de grandes empresas privadas acontecem 

rotineiramente com o objetivo de unificar departamentos e, conseqüentemente, 

reduzir custos. Mas o contrário também pode ocorrer e empresas gigantes são 

divididas, como tem acontecido, por exemplo, com grandes conglomerados nas 

áreas de telecomunicações, de produção e distribuição de energia, etc. Nesse caso, 

o motivo para esse fato é a privatização de grandes empresas estatais. Em tal 

contexto, pode ocorrer que algum equipamento urbano, ou não, que era utilizado 

em comodato por várias empresas públicas ao mesmo tempo, tenha o seu uso 

definido e cobrado pela empresa implantadora do equipamento. Como um exemplo 

de equipamentos de uso compartilhado, tem-se os postes das companhias de 

eletrificação, que em geral a elas pertencem, e que são utilizadas por outras 

empresas, como as empresas de telefonia, de TV a cabo, etc. Então, como se faz 

para estimar a quantidade de equipamentos que, durante muitos anos, foram 

construídos e utilizados por duas ou mais empresas? É interessante observar que a 

empresa implantadora do equipamento tem ciência da quantidade existente, porém 

não sabe exatamente quantos equipamentos estão em uso por outras empresas. Esse 

é um problema atual e de solução procurada por várias empresas nacionais.

1.2. Objetivos

O objetivo principal deste trabalho é desenvolver uma metodologia para 

estimação do número de equipamentos de uso compartilhado, em uma população 

de equipamentos da mesma espécie com tamanho N conhecido. De forma
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secundária, tem-se também como objetivos a execução de uma simulação para 

avaliação da eficiência da metodologia desenvolvida e a construção de um 

programa executivo, tanto para a metodologia quanto para a simulação.

1.3. Justificativa

O presente estudo justifica-se pela demanda atual de metodologias para a 

quantificação de equipamentos de uso compartilhado tendo em vista a privatização 

de muitas empresas estatais, as quais, muitas vezes, usavam equipamentos públicos 

em comum. Mas, em função da situação de novas administrações, há necessidade 

de se identificar os equipamentos de uso compartilhado com o objetivo de estipular 

a conseqüente remuneração. Assim, a criação de metodologias com a finalidade de 

estimar a quantidade destes equipamentos é muito importante.

1.4. Estrutura do Trabalho

Desenvolve-se o assunto da seguinte maneira: no Capítulo 2, é feita uma 

revisão de literatura abordando livros e artigos sobre os seguintes assuntos: a Teoria 

de Agrupamentos, a Teoria da Amostragem, o Estimador da Razão, a Expansão 

Simples e a Regressão Linear, e duas técnicas estatísticas computacionalmente 

intensivas: o “Jackknife” e o “Bootstrap”. No Capítulo 3, descreve-se o material e o 

método, ou seja, aborda-se a metodologia de avaliação construída, a simulação e o 

programa. Finalmente, no Capítulo 4, faz-se a discussão dos resultados e no 

Capítulo 5, a conclusão.
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2.1. A Teoria de Agrupamentos

2.1.1. Introdução

A resposta para a pergunta, “o que é um agrupamento?”, não tem uma 

resposta fácil. Existem muitas idéias intuitivas, freqüentemente conflitantes, sobre o 

que se constitui um “agrupamento”, mas poucas definições formais (CORMACK, 

1971, p.329). Assim, o termo, permanece como um conceito indefinido. Segundo 

CORMACK, que fez uma revisão crítica sobre o assunto, duas idéias básicas estão 

envolvidas na conceituação de agrupamento, quais sejam: coesão interna entre os 

elementos do grupo (condição de minimalidade) e isolamento externo (condição de 

maximalidade) (CORMACK, 1971, p. 329).

Para ilustrar a dificuldade de se definir agrupamento JOHNSON (1998, 726 - 

728) ilustra a situação com as possíveis maneiras de se agrupar as 16 cartas 

distintas de um baralho e mostra que existe uma única maneira para se agrupar as 

16 cartas em um único grupo, 32.767 de particioná-las em dois grupos de tamanhos 

variados e 7.141.686 maneiras de agrupa-las em três grupos, também de tamanhos 

variáveis. E, de modo geral, o número de maneiras de alocar n objetos em k grupos 

distintos, é um número de Stirling, de segunda ordem dado por: (í/ko^c-ifj(j) i" • De

sorte que, adicionando esses números para k=l, 2,.., n grupos, pode-se obter o 

número total de possíveis maneiras de alocar os n objetos dentro de grupos distintos 

(JOHNSON, 1998, p. 727). Algumas tentativas para definir agrupamento, por que, 

quando e como usá-lo, têm sido feitas, mas sem manifestações por parte dos 

usuários dos métodos de agrupamentos (CORMACK, 1971, p. 330).

A maioria dos esforços no sentido de produzir uma estrutura simples de 

agrupamento requer a noção de medida de “proximidade” ou de “similaridade”, e 

há muita subjetividade envolvida na escolha de uma medida de “similaridade”.

2. REVISÃO BIBLIOGRÁFICA
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Considerações importantes incluem a natureza das variáveis (discreta e contínua) as 

escalas de medição (nominal, ordinal, intervalo, razão), além de conhecimento do 

assunto em questão por parte do investigador (JOHNSON, 1998, p. 728). Assim, 

quando itens (unidades ou casos) são agrupados, a medida de “proximidade” é 

usualmente indicada por algum tipo de distância. Por outro lado, variáveis são 

usualmente agrupadas com base nos coeficientes de correlação ou com medidas de 

associação (JOHNSON, 1998, p.728). O coeficiente de correlação é um bom 

indicador do grau de proximidade entre duas variáveis aleatórias ou vetores.

2.1.2. Agrupamentos Hierárquicos

As técnicas de agrupamento hierárquico trabalham com uma série de 

sucessivas fusões ou com uma série de sucessivas divisões. A primeira dessas 

técnicas é chamada de Método Hierárquico Aglomerativo, que considera 

inicialmente tantos grupos quanto o número de itens existentes na população e, 

através de uma seqüência de fusões, nas quais os itens mais “semelhantes” são 

agrupados primeiro, prossegue-se até que o último item seja incluído.

A segunda, chamada de Método Hierárquico Divisivo, trabalha no sentido 

inverso, ou seja, considera todos os indivíduos pertencentes a um único grupo e 

inicia separando este em dois subgrupos, de forma que os itens de cada um dos 

subgrupos esteja “longe” dos outros itens do outro subgrupo. Esses por sua vez, são 

divididos até que haja tantos grupos quantos itens iniciais, formando, assim, cada 

item um grupo. Os resultados dos métodos aglomerativo ou divisivo podem ser 

representados em um diagrama bidimensional, conhecido como dendograma, e 

algumas técnicas de agrupamento hierárquico podem ser usadas para agrupar tanto 

itens quanto variáveis (JOHNSON, 1998, p. 738-739).
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DENDROGRAMA ILUSTRATIVO PARA QUATRO GRUPOS 
Ligação Vizinho Mais Próximo - Distância Euclidiana

Figura 01: Dendograma

Na figura 01 o eixo horizontal contêm os itens agrupados segundo a 

distância representada no eixo vertical. Como pode ser observado no dendograma, 

os itens 17 e 18 estão agrupados juntos a uma distância de uma unidade a partir da 

origem. Outros itens estão agrupados a uma distância maior. A distância entre um 

grupo e outro é a medida de dissimilaridade entre esses grupos. Maior distância, 

significa maior dissimilaridade ou isolamento entre os itens.

2.1.3.Agrupamentos Não Hierárquicos

As técnicas de Agrupamento Não Hierárquico são mais indicadas para agrupar 

itens (unidades ou casos) do que variáveis, em uma coleção de k grupos. Quando 

itens são agrupados, a proximidade é indicada por algum tipo de distância e, por 

outro lado, variáveis são geralmente agrupadas com base nos coeficientes de 

correlação ou por medidas semelhantes de associação (JOHNSON, 1998, p.724 - 

728).

Neste trabalho, o interesse é agrupar itens (unidades ou casos). Para esse fim, 

utiliza-se o método mais popular de agrupamento Não Hierárquico, chamado 

k-médias, cujo algoritmo é descrito a seguir, e como medida de similaridade ou 
distância, usa-se a distância Euclidiana.
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2.1.3.1. O Método das k-médias

O agrupamento de N elementos (itens ou casos) de uma população pelo

método das k médias pode ser descrito pela seqüência de passos que constitui o

algoritmo de agrupamento.

Passo 1 - Reparte-se os N elementos (itens ou casos) da população em k grupos 

arbitrários e calculam-se os k centróides desses k grupos.

Passo 2 - Para cada um dos k grupos criados arbitrariamente, calcula-se a distância 

Euclidiana entre cada um dos N elementos da população e o centróide do grupo. 

Aloca-se o elemento ao grupo do qual esteja mais próximo, podendo esse elemento, 
pertencer ou não ao grupo inicial.

Passo 3 - Recalcula-se os novos centróides dos grupos formados tanto para aquele 

que recebeu um novo elemento, como para aquele que perdeu o referido elemento.

Repetem-se os Passos 2 e 3, até que todos os k grupos e todos os N 

elementos da população tenham sido verificados e que estejam satisfeitas as 

condições gerais de minimalidade entre os itens internos a cada grupo e as de 

maximalidade entre os itens de grupos distintos. Ilustra-se o algoritmo 

(HARTIGAN; WONG, 1973, p. 100-108) do método com o Fluxograma abaixo, 

cujos símbolos significam:

k o número de grupos fixado;

Zr(m) o centro do grupo r, na iteração m;

x r, r = 1, 2, ...,k o item inicial atribuído ao grupo r;
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S »

Nt , t = 1,

o grupo t, na iteração m;

2,...,m o número de itens do grupo St (m);

Figura 02: FLUXOGRAMA -  Método das k Médias
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Exemplo - Agrupamento pelo método das k-Médias (JOHNSON, 1998, p. 754 -  

757, Exemplo, 12.2)

Suponha-se haver quatro itens a serem agrupados, A, B, C e D, e que cada 

item seja constituído de duas variáveis, Xi e X2, cujas medidas para os respectivos 

itens estão dadas na tabela abaixo.

Item
Observações

Xl x2
A 5 3
B -1 1

C 1 -2

D -3 -2

O objetivo é dividir esses itens em k = 2 grupos tais que os itens dentro de 
um grupo estejam mais próximos um do outro do que estejam dos itens que 
pertencem ao outro grupo.

Seguindo os passos acima descritos para o procedimento das k-médias, tem-se :

Passo 1 -  Escolhendo arbitrariamente (AB) e (CD), como grupos iniciais, 

determinam-se os seus respectivos centróides:

GRUPO Coordenadas do Centróide
x2

(AB) 5 + (-D=2
2

3 + 1=2
2

(CD) 1 + (-3) _ j 
2

- 2+(-2>= . 2
2



Passo 2 -  Cálculo das distâncias Euclidianas, dos itens A, B, C e D, aos centróides 

iniciais, definidos pelos grupos (AB) e (CD);

9

Sendo a menor distância Euclidiana a distância do item B ao grupo inicial 

(CD), o item B deve ser alocado a este grupo, ficando o novo grupo constituído 

pelos itens B, C e D, formando o grupo (BCD), e o grupo (AB) perde o item B, 

ficando o grupo constituído, apenas, pelo item A, grupo (A).

Passo 3 -  Recalculando os novos centróides;

GRUPOS Coordenadas dos Centróides
Xj x 2

d2 (A, (AB)) = (5-2)2 + (3-2)2 = 10

d2 (A, (CD)) = (5-(-l))2 + (3-(-2))2 = 61

d2 (B, (AB)) = (-1 -2)2 + (1 -2)2 =10

d2 (B, (CD)) = (-1 -(-1))2 + (1 -(-2)) 2 = 9

(A) 5
— 1 +1 + (-3) ^

3

1+ (~2) + (~2) x(BCD) 3 3

Calculando as distâncias Euclidianas, para os itens A, B, C e D, para esses 

novos centróides, dos novos grupos recentemente formados, tem-se;
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d2(A,(A)) = (5-5)2 + (3-3)2 = 0

d2 (B, (A)) = (-1+5)2 + (1+3)2 =32

d2 (C, (A)) = (1 -5)2 + (-2-3)2 = 41

d2 (D, (A)) = (-3-5)2 + (-2-3)2 =29

d2 (A, (BCD)) = (5-(-l))2 + (3-(-l))2 = 52 

d2 (B, (BCD)) = (-l-(-l))2 + (l-(-l))2 = 4 

d2 (C, (BCD)) = (1 -(-1)) 2 + (-2-(-1)) 2 = 5 

d2 (D, (BCD)) = (-3-(-l))2 + (-2-(-l))2 = 5 

d2 (B, C) = (-1-1 )2 + (l-(-2))2 =13

d2 (B, D) = (-1 -(-3))2 + (1 -(-2» 2 = 13

d2 (D, D) = (-3-(-3))2 + (-2-(-2))2 = 0

Verifica-se, dos resultados dos cálculos de distâncias acima, que o processo 

das k-médias, para esse exemplo, se encerra, pois a condição de coesão interna (ou 

condição de minimalidade) entre os elementos de cada grupo e a condição de 

isolamento externo (ou condição de maximalidade) entre itens de grupos distintos 

estão satisfeitas, com um grupo formado apenas pelo item A, grupo (A), e o outro 

grupo sendo formado pelos itens B, C e D , grupo (BCD).
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2.2. A Teoria da Amostragem

2.2.1. Introdução

“Nossos conhecimentos, nossas atitudes e nossas ações baseiam-se, em 

grande parte, em exemplos. Isso é igualmente verdadeiro, quer na vida cotidiana, 

quer na pesquisa científica”.

Nos negócios e na ciência humanos, faltam-nos recursos para estudar mais 

que uma fração dos fenômenos que podem melhorar nossos conhecimentos.” 

(COCHRAN, 1965, p. 13).

A teoria da amostragem trata dos métodos de seleção e observação de uma 

parte (uma amostra) da população inteira, para com ela fazer inferências sobre toda 

a população, em lugar de um senso completo. Algumas vantagens de uma 

inferência estatística baseada em uma amostra sobre um senso de toda a população 

são, entre outras, as seguintes:

1 -  Economia. Uma vez que os dados são obtidos de uma pequena fração da 

população em lugar de obtê-los de toda a população, as despesas são menores do 

que a de um senso integral.

2 -  Rapidez. Pelo mesmo motivo do item anterior, os dados podem ser coletados, 

sistematizados e sintetizados mais rapidamente, do que os de um senso completo. O 

que é de suma importância quando é urgente a necessidade das informações.

3 -  Exeqüibilidade. Especialmente quando a observação é de caráter destrutivo, 

para a qual um senso completo seria impraticável. Ou mesmo no caso de uso de 

equipamentos caros e sofisticados e de pessoal altamente especializados.

4 -  Qualidade e Exatidão. Em situações onde sejam necessários pessoal altamente 

treinado e equipamentos sofisticados, o que seria impraticável em um senso 

completo, pode ser perfeitamente exeqüível em uma pequena amostra da população 

inteira. Daí ser possível contar com as condições necessárias, tendo como resultado 

estimativas de maior qualidade e precisão do que um senso completo poderia 

fornecer.
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Por outro lado, um censo completo pode ter vantagens especiais sobre uma 

amostra pequena, em outras situações, quais sejam:

1 -  Dados para unidades pequenas podem ser obtidos com pouca dificuldade;

2 -  Um censo completo é de maior aceitação por parte do público;

3 -  A resposta e a compilação de dados se tornam mais seguras;

4 -  Vicios de convergência podem ser mais facilmente verificados e corrigidos;

5 -  Não se requer pessoal especializado na realização da tarefa de levantamento de 

dados (KISH, 1965, p. 18) e (COCHRAN, 1965, p. 13 -15).

2.2.2. Tipos de Amostragens

A teoria da amostragem aborda diversas maneiras de retirar as amostras da 

população. Estas podem ser retiradas aleatoriamente, da população inteira como um 

todo, ou dividindo-se a população em estratos ou em grupos, e as amostras então 

serem retiradas de cada um desses estratos ou grupos, também de forma aleatória. 

Outra maneira de retirar as amostras, é faze-lo de forma sistemática, que consiste 

em dividir o número total de unidades da população pelo número de unidades a ser 

amostrado, n; em seguida, sorteia-se a primeira unidade que será retirada dentre a 

primeira unidade da população e o número obtido pela divisão do número total de 

unidades da população pelo número de unidades a ser amostrado, as demais 

unidades a serem amostradas serão, então, aquelas cujos números são o número da 

primeira unidade sorteada acrescido de 1, 2, 3, .., n-1. Além disso, a amostragem 

sistemática pode também ser realizada dentro de estratos ou de grupos.

A forma de retirar as amostras aleatórias, tanto da população inteira quanto de 

estratos ou de grupos, também pode ser feita de duas formas diferentes: sem 

reposição da unidade sorteada ou com reposição da mesma.

Diversas formas de se dividir a amostra também são consideradas na teoria da 

amostragem como, por exemplo, amostra proporcional ao tamanho do estrato ou 

grupo a ser amostrado, etc. Neste trabalho, consideram-se, exclusivamente, 

amostras aleatórias simples, e os resultados se referem a esse tipo de amostragem.
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2.2.2.1. Amostras Aleatórias Simples

Dá-se o nome de Amostra Aleatória Simples ao conjunto de observações de 

tamanho n, cujos elementos foram selecionados da população com probabilidades 

iguais de ocorrência. Os elementos dessas amostras são obtidos de todas as 

combinações amostrais possíveis, das N unidades populacionais tomadas n a n.

2.2.2.2. Algumas propriedades das amostras aleatórias simples:

Considera-se, no que segue, algumas propriedades das amostras aleatórias 

simples em uma população com N unidades populacionais. Para esse contexto tem- 

se a seguinte notação:

número total de unidades populacionais;

número total de unidades a ser amostrado na população;

quantidade da variável cujo valor é conhecido, presente na i-ésima 
unidade populacional;

quantidade da variável cujo valor total populacional se deseja 
estimar, presente na i-ésima unidade populacional;

quantidade total amostrai da variável cujo valor total populacional 
é conhecido;

quantidade total amostrai da variável cujo valor total populacional 
se deseja estimar;

quantidade total populacional da variável cujo valor total
populacional é conhecido;

quantidade total populacional da variável cujo valor total
populacional se deseja estimar;

índice amostrai, ou fração amostrai;

N

n

Xi

Yi

x = 2 > ,
i=1

y=  Z  Víi=1

N

x = 2 >
i=1

N
Y =2 > i

i=1

f=n/N
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valor médio amostrai da variável cujo valor total populacional é 
conhecido;

valor médio amostrai da variável cujo valor total populacional se 
deseja estimar;

valor médio populacional da variável cujo valor total populacional 
é conhecido;

valor médio populacional da variável cujo valor total populacional 
se deseja estimar;

estimador do valor total populacional da variável cujo valor total 
populacional é conhecido;

estimador do valor médio populacional da variável cujo valor total 
populacional se deseja estimar;

2.2.2.2.1- Esperanças e Variâncias de amostras aleatórias simples

RESULTADO 2.2.2.2.1.1

A Esperança do valor médio amostrai y é um estimador não viciado do valor 

médio populacional Y .

PROVA.

Se Ey  é não viciado, então E y = ——— T Í + ‘" + ̂ n 1, sendo o
r N N\ n )

somatório estendido a todas as combinações amostrais possíveis de tamanho n, 

retiradas das N unidades populacionais Q̂ 1. Mas, calcular o somatório 

+ JL + ■■■>’„) significa calcular em quantas amostras de tamanho n, obtidas das

x = (l/n )£  x;
i=1

H V n ) íy ,
i=1

_  N
X = (1/N)£ Xi

i=1

_  N
Y  =  ( 1/ N ) X  y i

i=1

X = Nx

Y = y
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N unidades populacionais, aparecerá um dado yi. Fixado um yl5 restam (N-l) 

unidades populacionais de onde os demais (n-l) yi serão retirados. Dessa fonna, o 

número de amostras contendo um yt fixo será dado por uma combinação de (N-l) yi

unidades amostrais tomadas (n-l) a (n-l), ou Assim, ^ ( y l + y2 + •••>'«)

calculado sobre todas as possíveis combinações amostrais, dará

L O á  +-F2 + - +-y”) = (n_ty (N-n)! ŷi + Y2 + ‘"+ qUe? substltuído na última

expressão para E x , e fazendo-se as devidas simplificações, obtém-se:

Ey = (yi +y2+ - + y N)/N=Y  => Ey = y  .

RESULTADO 2.2.22.1.1.1

Y = N  y é um estimador não viciado do valor total populacional, Y .

PROVA:

e-v  MnL(N - n) - Z y  x
 N! = 2 + ’ + 'F C°m ° S°mat0n°

estendido à todas as Q̂ 1 amostras. Mas, da demonstração do Resultado 2.2.2.2.1,

(y + > 2  +••• + Yv) <lue substituída na expressão acima, e fazendo as simplificações

devidas, obtém-se: E Y  = (y1+ y2 + ... + yN) = Y .

Logo, E Y = Y => EY é um estimador não viciado do valor total populacional X.
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RESULTADO 2.2.2.2.1.2

A variância do valor médio amostrai x de uma amostra aleatória simples é dada 

por:
| N

Vy = (l-f)(S2/n). Onde: s 2 = ^ , g ( y í - y ) 2.

PROVA:

r “i2 r ~\2
=„2( y - r f =  £ ( y ( - f )  => E[n2{y-Y^]= E ^ , - 7 )

i=l 1=1

n
i=\

E { y - Y ) 2 = E ± { y , - F )  =E É ( y i - ^  + 2 ^ ,  - r)(yM - r )
Z=1 ?=1

2 £ (y -Y )2 = E  É L - F ) 2 + 2 £  g f o - r ) ( y w - 7 )
i=l i=1

Aplicando-se aos dois termos do lado direito da última equação o mesmo raciocínio 

aplicado na demonstração do Resultado 2.2.22.1, tem-se

E X í y . - F ) 2
i=i = Ê  E (yí “  Y f  =  = x X Ú  -  Y)2 (a)’ onde os lúnitesN i—i=1 c ;=1

não indicados para o somatório são todas as possíveis combinações, CN

E
Z=1 í=1 C  i?2—1
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onde os limites não especificados dos somatórios do lado direito se estendem a 

todas as combinações amostrais Q ^1. Desenvolvendo os cálculos e simplificando, 

tem-se

E
Í-1

n E
N-l

i=l

Substituindo (a) e (b) na expressão de onde elas foram retiradas, e fazendo as 

simplificações,tem-se:

n2 E ± b , J )/=!
n N-l

completando o quadrado no último somatório, a última expressão pode ser escrita

na forma: n2 E í i - M ] í ú - F ) 2+ M r É Ú - F ) 2
M N {N-l) i= 1 /=1

sendo que o último somatório dentro da chave é nulo, tem-se então que:

E
i-1

- y ) 2 => E
n N ( N - \ ) t t

N / \
Z=1 = (1 -/)

S2 \

V y  = { l - f )
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Se X| e yi são duas quantidades presentes em todas as unidades da população, e x e 

y  são os seus respectivos valores médios, obtidos por meio de uma amostragem 

aleatória simples, então a covariância de x e y será dada por:

— — N  - n 1 n — —E(y - Y)(x - X) = ---------------Y  (yi -  Y)(x, -  X)
n N  N - l í í

PROVA:

Seja Zf = Xi + yi a quantidade presente em todas as unidades da população. 

Aplicando-se o Resultado 2.2.2.2.1.2 ao valor médio populacional dessa 

quantidade,

Ou, seja: Z = X + Y , E(z - Zf  = —1— V N (z -  Z f
nN N - l

E [(y -Y )+ (x -X )J  = ^  ^  g [ ( yj _ Y) + (xi -X )]2 a)

_  M —n 1 N —
Mas, do Resultado 2.22.2.1.2: E(y -  Y)2 = ------------- Y  (v. -  Y)2

nN A - l t f  7

Essa expressão para a variâneia de y , juntamente com a similar para x , 

substituídas na expressão a) acima, após as simplificações, resulta em:

— — N—n 1 N _  _
E ( y - 7 ) ( x - X )  =   Y (X - 7 )(xi - X)

nN N - l t r

Observa-se que os Resultados acima, para as variâncias, são Resultados 

aplicáveis às populações infinitas. Para as populações finitas os mesmos devem ser 

acrescidos do fator de correção para populações finitas (cpf). Para a variâneia, em 

uma população finita, o cpf, é (N-n)/N. As vezes o e.p.f. é escrito na forma (N- 

n)/N-l, para simplificações, por alguns autores.

RESULTADO 2 .2 .2 2 .1.3
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2.2.2.3. Considerações sobre o dimensionamento da amostra

Para o dimensionamento da amostra a ser retirada da população, diversas 

considerações devem ser levadas em conta por parte do pesquisador. Entre essas 

considerações estão o nível de confiança da solução desejada, o erro relativo, a 

precisão, o vício e a exatidão, entre outras. Os termos exatidão e precisão são 

largamente usados para separar os efeitos dos vícios. Precisão, em geral, se refere a 

pequenos erros variáveis; as vezes o termo denota unicamente o inverso da 

variância amostrai, mas em qualquer caso ele exclui o efeito do vício. A exatidão é 

uma referência à totalidade dos pequenos erros e inclui o efeito dos vícios. A 

exatidão é definida como sendo o inverso do erro total, incluindo os vícios e os 

demais erros pequenos. Assim, um planejamento amostrai será exato se for preciso 

e tiver vícios nulos ou muito pequenos. Um planejamento amostrai com um vício 

grande é ainda preciso se suas variáveis erro forem pequenas, mas não é exato. A 

seguir, lista-se algumas definições como dadas em KISH (1965, p. 24-25, 510):

o vício diz respeito ao afastamento do valor médio 
amostrai, y , do valor médio populacional, p;

o erro relativo é a razão entre a diferença do valor 
verdadeiro e o estimado, e o valor verdadeiro;

a precisão é definida como o inverso da variância 
amostrai;

|^ _  j |  + 1̂  erros\ a exatidão é definida como a razão entre a soma dos
Exatidão---------------------  vícios e dos pequenos erros de observação, e a

<Jy variância,

Vício — i i - y

Y - Y  Erro relativo —----—
Yy

1
Precisão = —-



As curvas normais representam as distribuições amostrais de quatro 
planejamentos amostrais. A altura das curvas mede a probabilidade de variação 
dos valores das estimativas. Os planejamentos B e D têm vícios grandes, 
enquanto que A e C parecem não viciados. Os planejamentos A e C são mais 
precisos, porque eles têm menores erros padrão que os planejamentos C e D. Dos 
quatro planejamentos, somente o planejamento A é exato, porque ambos, 
variável erro e vício são pequenos. Ao contrário, o planejamento D apresenta a 
maior distância média do valor verdadeiro [KISH, 1965, pág. 510]

Figura 03: Curvas de Distribuições Normais para ilustração de Exatidão,
Precisão e Vício, amostrais.

A , erro total da distribuição dada pela curva normal, A.
B , erro total da distribuição dada pela curva normal, B.
C , erro total da distribuição dada pela curva normal, C.
D , erro total da distribuição dada pela curva normal, D.
Figura 04: Relações entre erros e vícios das distribuições amostrais A, B, C e D,

da Figura 03, acima.

20



21

2.2.2.4. O tamanho da amostra

Neste trabalho, os resultados foram obtidos a partir de amostras aleatórias 

simples e, para um nível de confiança da solução (1- a),  precisão d, erro relativo r, 

proporção inicial estimada em 9{) e quantidade total de equipamentos na população, 

N, as amostras foram então determinadas a partir da seqüência de passos:

1 - Cálculo da quantidade de equipamentos a ser amostrada na população, n:

(y ~ h  I 'l *
p  l> r  = a  => P \ 7  - ju > rju)=  a  => d - r / j , - z < y f ,

V ^  J

mas do RESULTADO 2.2.2.2.1.2, a 2y= (1-f) (S2/ n), ou seja,

< j
2 __ ( N  -  ri) 90( l -  60) 

* (A - l)  n

jy u  i  ^ N z 2Ô Á - ê 0)Resulta dai que n > ——------ N  ̂y —
d2{ N - \ ) + z ^ - 0 o)

2 -  Cálculo do número de localidades a ser amostrado por grupo ou estrato

2.1 - Fez-se uma alocação dos n equipamentos a serem amostrados na população, 

proporcional ao tamanho (quantidade de equipamentos) de cada grupo, ou estrato,

h, determinado pela expressão: nh =
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2.2 -  Cálculo da quantidade de equipamentos a ser amostrada em cada grupo ou 
estrato, h:

p  |£»—^fíi>r - a  p f lr - / í  >r/í)=a => d = rfX = z<JT =>l A  J
í v

z <*h

^ - l y J v 
1+_Lfel
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2.3. O Estímador da Razão

2.3.1-Introdução

Em muitas situações, numa população finita de tamanho N, duas quantidades 

X e Y variam muito de uma unidade populacional para outra; no entanto, a razão 

entre as duas quantidades, X e Y, R = Y/X, pode variar pouco de unidade para 

unidade. Nesse caso, a razão amostrai poderá ser usada para se estimar o valor total 

populacional da quantidade Y desconhecida, presente em todas as N unidades 

populacionais, sendo conhecida a outra quantidade X.

O estimador da razão é uma técnica utilizada quando, em uma população, for 

necessário estimar a relação entre uma quantidade, cujo valor populacional é 

conhecido, e outra, com valor populacional desconhecido. A população deve ser 

composta de N unidades populacionais e, tanto a quantidade que se quer estimar 

quanto a outra, cujo valor populacional é conhecido, devem estar presentes em cada 

uma dessas N unidades. A técnica do estimador da razão foi utilizada pela primeira 

vez por Laplace, em 1802, para estimar a população da França (ENCYCLOPEDIA 

of Statistical Science, 1986 Vol.. 7, p. 639).

2.3.2. Esperança e Variância do Estímador da Razão

Sejam:

R=Y/X a razão entre o valor total populacional Y, da variável que se 
deseja estimar, e o valor total populacional X, da variável 
cujo valor total populacional é conhecido;

f  = n/N o índice, ou fração amostrai;

Y * (y/x)X a estimativa do valor total populacional da variável Y cujo 
valor total populacional se deseja estimar;

R = y/x = y/x o estimador da Razão R = Y / X.
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Os resultados a seguir enunciados encontram-se provados em COCHRAN 
(1965).

RESULTADO 2.3.2.1

A variância aproximada do estimador da razão, R = y/x, em uma amostra 

aleatória simples de tamanho n, suficientemente grande, com yi e Xi medidos em 

cada unidade amostrai, é dada por:

f (r)«
x ’ (n.X2)

T , ( y , - ^ x , y
=1

(N-l)

onde R e f  já  foram definidos anteriormente.

RESULTADO 2.3.2.1.1

A variância aproximada do estimador Y do valor total populacional, Y, é 
dada por:

'Z(yl-R.x,)2 /(N-l)
i = 1

RESULTADO 2.3.2.1.2

A variância aproximada do estimador Y, do valor médio populacional Y, é 

dada por:



25

Para uma população finita, o coeficiente de correlação p, entre xf e yt , é 

definido por

P
tJe ^ - Y Y tJ e Íx ^ X ) 2 (N ~ l )S yS , (n - i)s ts }

Usando p , SY e SX9 os RESULTADOS 2.3.2.1, 2.3.2.1.1 e 2.3.2.1.2 poderão ser 

escritos em termos de coeficientes de variação (erro padrão, dividido pela 

quantidade que está sendo estimada):

De R=F/Ã => Y = RX e podemos escrever;/. -  Rxtcomo:

(Yí"Y) + (xj -  R X )

Essas considerações substituídas no Resultado 2.3.2.1 fornecem:

* f )=  - Y -  X ,  -  P I

vir): N 2(l - / )
n(N - í)

£ ( y , - Y f  +R>'jr(Xl- x Y - 2 R Í j (yl - Y \ x l - X )
i=1 í=l i =  1

ou seja,

v{y)= N ^  f \ s 2y + R2Sl - 2i?pS,,sJ.

Pode-se também substituir R por R = Y IX  e, da expressão de p , tirar

ps„s , = ( j y U Z f o  “ X i  -  x )= s y, e substituir pSySx por Syx tem-se,

Assim, P Ú  = X í l [ C)v+c xx_ 2cJ  onde; CW= E ,C
yy \ r i  ’ xx 2 , yxX' ,C.

s yx

YX
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são os quadrados dos coeficientes de variação de Y, X e de XY, respectivamente, e 

Sx, Sy e Syx são as variâncias amostrais de x* e yi, respectivamente, e a covariância 

entre x* e yt. Da mesma fonna, determinam-se as outras expressões semelhantes que 

seguem abaixo:

H H - í i z / l í c  + C -2 C  1 e +C - 2 C  1y2 Lxv ** yx J c d2 L xv W* JI Yl í\ Yl

2.3.3. Estimador da Razão Separado

Quando se faz uma estratifícação ou uma divisão da população em grupos, 

uma das maneiras de se usar o estimador da razão na estimação do total 

populacional é determinar-se as estimativas das razões em cada grupo ou estrato 

para, com elas, calcular as estimativas de cada grupo ou estrato e, daí, a estimativa 

populacional. Assim, dividindo-se a população em k grupos ou estratos, a 

estimativa separada de cada estrato ou de cada grupo será dada por :

onde cada uma das quantidades se refere ao estrato ou grupo de 
ordem h sendo que:

é o valor da quantidade conhecida, no grupo ou estrato h;

é o valor médio amostrai da quantidade sob estimação, Yh, no 

estrato ou grupo h;

é o estimador da Razão, Rh, do estrato ou grupo h e 

é a estimativa populacional da quantidade desconhecida, Y;
RS £_j^Rh 

h=1

ychRh — Xah

Xah

y Ch

ych
ah

/V —..Mu- AY -  V  V
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RESULTADO 2.3.3.1

Se as grandezas amostrais, nh, forem grandes em todos os estratos ou grupos, 

então a variância da estimativa populacional da quantidade sob estimação, Y, 

obtida pelo estimador da razão separado, é dada por:

v (4 ) = í Nĥ ~fh\ S>* + - 2 ). onde:
h=\ n k

Yh é a razão no estrato ou grupo h;= —

ph é o coeficiente de correlação entre as quantidades
amostradas, xj e yi, do estrato ou grupo h;

r _ nh é o índice, ou fração amostrai, do estrato ou grupo h.
Jh

l nh é a variância amostrai de xÍ5 a quantidade conhecida,
$xh -  ~ amostrada no grupo ou estrato h;

I  '  "l h L i= l

l nh ^ é a variância amostrai de yÍ5 a quantidade sob 
Syh = ~ J7) estimação, no grupo ou estrato h;

n h  1 i=  1

Nh é o número total de localidades com valores
conhecidos, Xi, no grupo ou estrato h;

é o número total de quantidades com valores 
conhecidos, xÍ3 amostradas, no grupo ou estrato h;

nh
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2.3.4. Estimador da Razão Combinado

Chama-se de Razão Combinada, a razão da soma das estimativas de todos os 
estratos ou grupos entre a quantidade sob estimação e a quantidade conhecida. 
Assim,

V  -  é a estimativa populacional da variável sob estimação obtida 
~~ por uma expansão das médias amostrais em cada grupo ou

estrato, h, a toda a população;

£  y . _ é a estimativa populacional da quantidade conhecida obtida por
E ~ èi hXh expansão das médias amostrais em cada grupo ou estrato, h, a

toda a população;

y é o estimador da razão combinado;
Rr -  E
c xE

Y = rcx  é a estimativa populacional da variável sob estimação, obtida
com o estimador da razão combinado;

Nh é o número total de unidades da população, presentes no
estrato ou grupo h;

1 Â  é o valor médio amostrai, da variável sob estimação, no estrato
n h ~

ou grupo h;

é o número de unidades amostradas no estrato ou grupo h;

yhi é o valor amostrai da variável que sendo estimada na unidade i,
do estrato ou grupo h;

o valor médio da variável sob estimação, no estrato ou grupo h;

n h

yh
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RESULTADO 2.3.4

Quando o tamanho da amostra total n for grande, a variância da estimativa 

populacional da quantidade sob estimação, obtida com o estimador da razão 

combinado, será dada por

^(4) = Z  "  + RçSj - 2 R c P ^ * )
h=\ n h

onde cada um dos símbolos já  foi definido anteriormente.

2.3.5. Estimador da Razão Não Viciado

A razão não viciada é obtida a partir dos valores médios das razões,

r i =  Yi /  Xi!

1 n 1 n V

7= 1 Z *  = - Z —n p t  n p t  x;

Mas, na amostragem aleatória simples, E ( r )  = E(rt) , q, portanto, o vício de r , é:

vicio(r) = E ( r ) - R  = - j L ' £ r t (xi ~ x )

Agora, pelo RESULTADO 2.2.2.2.3, uma estimativa não viciada de uma

1 N —expressão similar à do vício acima: ^   ̂ - X )  é dada por:
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{xi ~x ) = ~~~{y ~r x ) • Assim, a estimativa de r , com o vício corrigido,
n  1 j=\ 12 —  1

será dada por r - r  + - r  i ) , e a  estimativa do valor populacional Y,

dada pelo estimador da razão não viciado, será: Y = r 'X  = r l  + l ) .  ̂ .
( n - 1) V ;

2.3.6. Intervalo de Confiança para os estimadores da Razão

Os limites inferior e superior do intervalo de confiança da estimativa 

populacional Y , pelos estimadores da razão, separado e não viciado são 

determinados pela expressão:

Y  - z { A  ^  +  è h2â 2ak - 2 0hp hâ châ ah) , Y  +  z ,  1  ^ — ^ ^ - ( e x 2,*  + Ò 2è 2ah -  20hp hò chò a} )  ,
\ mh I mh

onde:

M h é o número de localidades do grupo ou estrato
h;

mh é o número de localidades amostradas no grupo
ou estrato h;

2 XT* (y h~Y h f  é a variância da quantidade de equipamentos
à  ch = ———-—■——  compartilhados amostrada no grupo ou estrato

— 1 h;

Zm,’(x - x  )2 é a variância da quantidade de equipamentos
2 = 1  c h  '  -i 1<y ah  ------------ -------  amostrada no grupo ou estrato n;

mu -1
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Z "Vr - r  vv  \ e a correlaçao entre os amostrados e
7=1 \  ahi X  ah A  f  chi f  ch )  . 1 J JPh = -------------------------------  compartilhados amostrados no estrato ou grupo

mh<7ch(7ah h-XXy

ych é a estatística amostrai que estima a razão,
@ k= ^L v

Xah 0 = — -
X

xahi é o valor da quantidade conhecida X, na
localidade i, amostrada no estrato ou grupo h;

xah é o valor médio da quantidade X, dos
amostrados no estrato ou grupo h;

y ahi é o valor amostrai da quantidade desconhecida
Y, na localidade i, amostrada no estrato ou 
grupo h;

yah é o valor médio da quantidade desconhecida Y,
dos amostrados no estrato ou grupo h;

X  é a quantidade total, conhecida na população,
ou a quantidade total de equipamentos na 
população;

Y é a quantidade total desconhecida na
população, ou seja, a quantidade total de 
equipamentos compartilhados, na população.

2.4. Expansão Simples

O método de estimação da Expansão Simples estima o valor médio 

populacional. Sua estimativa é dada pela expressão:

Y  que é a estimativa do valor médio populacional, da quantidade
~ hY\^ch populacional sob estimação, Y, pelo método da Expansão 

Simples, onde:

_ _ 1 ã  é o valor médio da quantidade populacional sob estimação, Y,
mh ~t^chi no estrato ou grupo h;



é o número de localidades amostradas no estrato ou grupo h;

é o valor da quantidade populacional sob estimação, Y, na 
localidade i, do estrato ou grupo h;

mh

y cM

32



33

2.5 Regressão Linear

2.5.1 Introdução

A análise de regressão é uma técnica estatística usada para investigar e 

modelar o relacionamento entre variáveis. O estatístico inglês Galton estudando o 

tamanho de ervilhas, usou a palavra regressão pela primeira vez. As aplicações 

dessa técnica são numerosas e ocorrem em quase todos os Variáveis científicos, 

podendo a Análise de Regressão ser considerada como a mais usada das técnicas 

estatísticas. Aqui apresenta-se de forma resumida uma parte dessa técnica.

2.5.2 Estrutura Probabilística

Seja o modelo Y = XJ3 + s tal que Y e s  têm dimensão n (número de 

observações), £  tem dimensão p (número de parâmetros do modelo) e X (matriz do 

modelo) é de ordem n x p. São admitidas para o modelo as seguintes suposições:

í~) o vetor de erros sl = [si,s2, é um vetor aleatório, ou seja, seus

componentes gj, i = 1,2,.... ,n são variáveis aleatórias;

2~) a esperança de cada componente de s é zero, ou seja, E(s) = 0

3~) os componentes do vetor s  não são correlacionados, ou seja, cov(Si ,Sj ) = 0

para í ^ j e  possuem variância constante, a  . Assim, a matriz de Covariância de
2 2 s é a matriz diagonal a  In , onde In é a matriz identidade de ordem n, V(s_) “  c>

In •

O modelo acima, com as três suposições anteriores, é conhecido como 

Modelo Linear de Gauss Markov e o Teorema de Gauss-Markov garante que, sob 

as três suposições e com XlX não singular, o estimador não viciado uniformemente 

de mínima variância (UMVU) do vetor J3 é p  = (X^Q^XV
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Além das três suposições já citadas sobre o modelo, a seguinte também é comum:

4â) a distribuição de Sj i =1,2,... ,né a Normal (Gaussiana).

Admitida essa última suposição, tem-se o modelo de Gauss-Markov Normal.

2.5.3 Análise da Variância da Regressão

A Análise da Variância é uma das técnicas estatísticas cujas bases foram 

lançadas por Fisher. Essa técnica é geralmente usada para verificar se o ajuste feito 

é bom. Inicialmente vai-se considerar o modelo com um suporte (uma covariável) 

apenas

Yj = Po + PiXí+Sí i = 1,2,.... ,n

Partindo-se da identidade yi - y = y t -  y + y. -  y t , elevando-se ao quadrado e 

somando-se para Vi, tem-se:

^ ' Y . i y i - y ) 2 + Y u ( y i - y i ) 2
Í=1 Z= 1 7=1

É comum construir-se um quadro que resume as informações da Análise da 

Variância:
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QUADRO DA ANÁLISE DE VARIÂNCIA

Modelo Yj = p0 + PiXi + Si, com p = 2 parâmetros

Fonte de 
variação

Soma de quadrados G.L. Quadrado
médio

F

Regressão
SQRegr

= ± { y , - y ) 2i=1

p-1 -  1 ± ( y , - y f
7=1

P~  1

7=1

Y , ( y , - y , ) 2 /n- p
7=1

Residual SQR=Xcyj - J)f)2
7=1

n-p = n-2 i ~  1
n - p

Total s q t =  t ( y ,  ~ y )2
7=1

n-  1

O estimador UMVU da variância do erro sÍ5 V(Si) = a 2, é o quadrado médio dos 

resíduos

V(s,)= â2 = s2= —------------
n — p

O teste que se faz com a estatística F do quadro acima é o da hipótese Ho: Pi = 0, 

ou seja, verifica-se se existe relação linear entre as variáveis Y e X.

A generalização para p > 2 parâmetros pode ser feita imediatamente:
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QUADRO DA ANÁLISE DE VARIÂNCIA

Modelo Yj = Po + PiXh +|32X2i +  + p ^ X ^  j + *

Fonte de 
variação

Soma de quadrados G.L. Quadrado médio F

Regressão
SQRegr
= j3tX tY - n y 2

p-1 SQRegr
p -1

SQRegr , SQR
p -1  n - p

Residual SQR= H L - P ^ Y n-p SQR
n - p

Total SQT = t Y - n y 2 n-1

O teste feito com a estatística F acima é o da hipótese nula H0- P i= P2 = - ~ 

Pp_i = 0 ou seja, se existe regressão dos X’s para Y, ou melhor, se existe regressão 

linear entre a variável resposta Y e as covariáveis Xj i = 1,2,... ,p-l.

2.5.4 Coeficiente de Correlação Múltipla ao Quadrado (R2)

Para se medir a adequação do ajuste compara-se a Soma de Quadrados da 

Regressão com a Soma de Quadrados Total e tem-se o coeficiente de determinação 

ou correlação múltipla ao quadrado,

Z ^ - y ) 2
r 2 = -y  o < R2 <1

Ê (y .-y )8i=1

Quando o ajuste é bom, o modelo explica boa parte da variação total e, 
conseqüentemente, o valor de R2 é próximo de 1. Em caso contrário, com um 
modelo pobre, o valor de R2 é pequeno (CHAVES NETO, 1999).
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2.6. Técnicas de Reamostragens

2.6.1 Introdução

A maioria dos métodos estatísticos de uso corrente hoje, foram desenvolvidos 

entre 1800 e 1930 (DIACONIS; EFRON, 1983 p. 116), época em que a 

computação de muitos dados era lenta e extremamente cara pois não existiam as 

calculadoras eletrônicas ou os computadores modernos de hoje.

A teoria estatística elementar, que é ordinariamente ensinada nas escolas, é 

uma versão simples de uma teoria complicada que foi desenvolvida a fim de evitar 

uma grande quantidade de cálculos numéricos. Com o advento da computação 

rápida e barata, novos métodos estatísticos foram desenvolvidos ou se tomaram 

disponíveis. Entre esses métodos encontram-se o de Monte Cario, conhecido há 

mais tempo, o Jackknife, desenvolvido a partir do fim da década de 1940, e o 

Bootstrap, desenvolvido independentemente por Efron (CHAVES NETO, 1991) 

em 1977. O método Monte Cario é usado geralmente para simulação e os outros 

métodos, Jackknife e Bootstrap, são técnicas estatísticas baseadas em computação 

intensiva.

Esses métodos empregam técnicas de reamostragem, ou seja, eles se valem de 

um conjunto de dados originado de observações ou de dados hipotéticos gerados 

por algum mecanismo como, por exemplo, lançamento de dados, retirada de carta 

de um baralho, lançamento de uma moeda, roleta russa, etc., para produzir novos 

dados hipotéticos para, com eles, fazer-se inferências estatísticas, ou seja, as 

técnicas de reamostragem são técnicas de simulação de novos dados hipotéticos a 

partir de dados originais.

2.6.2 O Método Monte Cario

O método Monte Cario é um método numérico de resolução de problema 

matemático por reamostragem aleatória. Como técnica numérica universal, o 

método Monte Cario pôde ser aplicado de forma plena somente com o advento do 

computador e seu Variável de aplicação é expandido a cada nova geração de 

computadores (SOBOL, 1994, p.l). Os problemas tratados pelo método Monte
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Cario são de dois tipos: probabilísticos e determinísticos, segundo estejam eles 

relacionados ou não diretamente com o comportamento e resultados de processos 

aleatórios.

A primeira publicação de que se tem notícia sobre o Método Monte Cario 

data de 1949, no Journal of American Statistical Association (HAMMERSLEY; 

HANDSCOMB, 1964), por N. Metropolis e S. Ulam. Sabe-se, no entanto, que o 

fundamento teórico do método já era conhecido bem antes dessa data, e que certos 

problemas de estatística foram algumas vezes resolvidos por esse método. Como a 

sua aplicação repetitiva e mecânica é enfadonha, o uso intensivo do método só foi 

possível com o advento da computação rápida e barata.

A utilização real do método Monte Cario como uma ferramenta de pesquisa 

provém do trabalho sobre a bomba atômica durante a Segunda Guerra Mundial. No 

entanto, o desenvolvimento sistemático dessas idéias provém do trabalho de Harris 

e Herman Kahn, em 1948. Ainda nessa década, os autovalores da equação de 

Shõredinger foram estimados pelo método Monte Cario. No entanto, as idéias 

modernas do método já eram conhecidas e foram, por exemplo, utilizadas por Lord 

Kelvin, sessenta anos antes dessa publicação, em um artigo onde discutia a solução 

da equação de Boltzman. Kelvin, porém, estava mais preocupado com os resultados 

em si do que com o método propriamente dito, de forma que o mérito da descoberta 

do método é atribuído a Ulan e a Fermi, não só por terem redescoberto o método, 

mas também por garantirem aos seus colegas cientistas, as possibilidades e 

potencialidades das aplicações do método na física (HAMMERSLEY; 

HANDSCOMB, 1964).

A partir dessa época, seguiu-se um intenso estudo do método Monte Cario, 

principalmente na década de 1950. Paradoxalmente, isso foi o suficiente para pôr o 

método em descrédito. Havia uma tendência de se tentar resolver com ele todo o 

tipo de problema, sem dar atenção a quais desses problemas o método podia ser 

aplicado eficientemente e quais o método manipulava ineficientemente. Como 

conseqüência, o método caiu em descrédito. Nos últimos anos, o método Monte 

Cario está voltando à tona. Principalmente devido ao melhor conhecimento a 

respeito de para quais problemas ele é a melhor, e as vezes a única técnica de
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solução disponível. Tais problemas têm crescido em número, principalmente pelo 

incremento de técnicas de redução da variância recentemente descobertas, onde o 

método prévio era ineficiente, e parcialmente, porque o método tende a florescer 

em problemas que envolvem complicações práticas encontradas mais e mais 

freqüentemente na matemática aplicada e na pesquisa operacional 

(HAMMERSLEY; HANDSCOMB, 1964, p.9).

Uma das principais forças da matemática teórica está relacionada com a 

abstração e a generalidade: alguém pode escrever expressões simbólicas ou 

equações teóricas que abstraem a essência de um problema e revela a sua estrutura 

subjacente. Contudo, essa mesma força carrega consigo uma fraqueza inerente: 

quanto mais geral e formal é a sua linguagem, menos disponível está a teoria de 

prover uma solução numérica em uma aplicação particular. A idéia por detrás da 

aplicação do Método Monte Cario em problemas determinísticos é explorar a força 

da matemática teórica e, ao mesmo tempo, evitar a sua fraqueza inerente, 

substituindo teoria por ‘experimento’ sempre que ela falhar. Especificamente, 

suponha haver um problema determinístico que possa ser formulado em linguagem 

teórica mas que não se possa resolvê-lo, por meios teóricos. Sendo determinístico, 

tal problema não tem nenhuma associação direta com processos aleatórios; mas, 

quando a teoria expõe a sua estrutura subjacente, talvez seja possível que essa 

estrutura ou expressão formal também descreva um processo aleatório 

aparentemente relacionado, e então pode-se resolver o problema deterministico 

numericamente, por meio de uma simulação Monte Cario do problema 

probabilístico concomitante. Por exemplo, um problema da teoria eletromagnética 

pode requerer a solução da equação de Laplace sujeita a certas condições de 

contorno que frustra os métodos analíticos padrões. Agora, a equação de Laplace 

ocorre largamente nos estudos de partículas que se dispersam aleatoriamente em 

uma barreira de absorção. Assim, é possível resolver o problema eletromagnético 

realizando um experimento, no qual as partículas são guiadas por meio de números 

aleatórios até que elas sejam absorvidas sobre barreiras especialmente escolhidas 

para representar as condições de contorno prescritas (HAMMERSLEY; 
HANDSCOMB, 1964, p. 4-5).
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O método Monte Cario sempre provê uma solução logicamente aceitável. 

Porém, mais especificamente, é com relação aos testes de hipóteses, estatísticos, 

que o método Monte Cario baseado sobre uma lógica de aleatorização, tem 

propriedades que os estatísticos estão julgando agora atrativas, porque elas são mais 

robustas que os testes paramétricos tradicionais (SIMON; ATKINSON;SEKOVAS,

2.6.2.1. Exigências de um procedimento Monte Cario:

O procedimento Monte Cario exige as seguintes condições:

-  As distribuições e os parâmetros do processo devem ser especificados. Eles 

poderão variar durante as diferentes rodadas do experimento, mas devem ser 

especificados a cada passo;

2- — O problema não deveria ser propenso a uma solução rápida pelos métodos 

numéricos ou determinísticos usuais. Isto é, ele pode ser solucionável por meio de 

métodos analíticos, mas a solução é mais econômica pelo método Monte Cario;

3- -  Requer-se um suprimento de números aleatórios (usualmente, uniformemente 

distribuídos).

Supondo que se deseje estimar o valor de uma quantidade desconhecida Z. 

Denotando a estimativa Monte Cario de Z por z \  fazendo-se N ensaios para obter 

z \  Então, a estimativa Monte Cario de Z, será dada por (1), e uma estimativa da 

variâneia de Z por (2), respectivamente,

Na execução do método Monte Cario, aparentemente, o valor esperado de Z 

e sua variâneia podem ter seus erros reduzidos. A variâneia é função inversa do 

número de ensaios, e pode ser reduzida aumentando-se o número desses, o que 

poderá não ser viável economicamente, quando o número de ensaios for grande. 

Existe hoje contudo, um número considerável de técnicas desenvolvidas com o 

intuito de reduzir a variâneia, das quais mencionaremos algumas:

1976).

1 Nz’= - T z ;  ( 1)  e 
N t f i=l

( 2 )
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1-Amostragem dentro da região de Importância (Importanee Sampling);

2-Uso de Valores Esperados (Combinação de Métodos Analíticos e 

Probabilísticos);

3-Correlação e Regressão;

4-Amostragem sistemática;

5-Amostragem Estratificada;

6-Outras.

(LACHENBRUCH, 1965 p. 10-12)

Um exemplo de estimativa de uma área simples por Monte Cario pode ser 

visualizada no Anexo 01.

2.6.3. O Jaekknife

O “Jaekknife” é uma técnica de reamostragem computacionalmente intensiva, 

desenvolvida por Quenoüille (MILLER, 1974) e apresentada à comunidade 

científica em sua primeira versão em 1949. Consistia em um método para reduzir o 

vício de um estimador de correlação serial, com base na divisão da amostra original 

em duas semi-amostras. Posteriormente, em 1956, Quenoüille (MILLER, 1974) 

apresentou a versão generalizada e aperfeiçoada do método, onde a amostra 

original de tamanho n é dividida em g sub-amostras de tamanho h. Desse modo, 

tem-se n = gh. Fixando-se h = 1, a amostra original passa a ter n grupos com uma 

unidade observacional cada. Daí em diante, o método passou a ser aplicado de 

forma abrangente em vários problemas. (CHAVES NETO, 1991, p.21).

A partir de uma amostra aleatória de tamanho n, X = (X1; X2, ... , Xn), de 

variáveis independentes e identicamente distribuídas (i.i.d.), com função de 

verossimilhança f(X,0), dessa amostra aleatória dependente do parâmetro 0, o 

procedimento “Jaekknife”, na sua versão generalizada, pode ser descrito pela 

seqüência de passos :
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1) Da amostra original X, toma-se uma outra amostra de tamanho n-1, X (_i) = (Xj, 

X2, ...., Xv_i, Xi+i,.., Xn), deixando fora o i-ésimo elemento amostrai, X *;

2) Calculam-se as estatísticas 9 = Tn ( X ) e ÔH) = T n_i(X como estimativas 

de 9 e de 0(_o respectivamente;

3) Caleulam-se os valores 6{i) = nÔ-(n-  1)0H) , n = 1,2,..., n; chamados

pseudovalores;

4) Determina-se a estimativa “Jackknife” de 6 , 6 definida por ® ~1Lí=Áí) 1 n > a 

média aritmética dos pseudovalores;

5) Determina-se o estimativa “Jackknife” do erro padrão de 6 por

ePjack = — - — Ê(̂ ,-̂ )21n(n~ l ) t T  w
(CHAVES NETO, 1991).

Embora os pseudovalores sejam intrigantes, não está claro serem eles a melhor 

maneira de se pensar o “Jackknife” (EFRON; TIBSHIRANI 1993 p. 145)

2.6.3.1 Médias, Erro Padrão e Vícios

Suponha-se ter um vetor amostrai X, composto por quantidades aleatórias, xÍ9 

i=l, 2, ...n, independentes e identicamente distribuídas (i.i.d.), de uma distribuição 

de probabilidades F desconhecida, isto é, se Xj ~ F, i=l, 2, ...n, i.i.d., seja 0 , um 

parâmetro de interesse, 9=0{F), esperança, correlação, etc., o qual estima-se pela 

estatística 9 = 9{F), onde F é uma distribuição empírica de probabilidades, obtida
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colocando-se massa l/n, em cada valor amostrai, xÍ7 i=l, 2, ...,n, da amostra 

original. O método “Jackknife” consiste em remover sucessivamente da amostra 

original um valor amostrai xi e recalcular <9. Removendo-se um valor amostrai da 

amostra original, obtém-se uma distribuição empírica de probabilidades diferente 

1F(_i} com massa —-, em cada valor amostrai restante Xj, j ^ i e o correspondente

valor recalculado da estatística, e X ^  = (xl7 x2,...,xi.1, xi+i,...,xn) chamada a i-ésima 

amostra “Jackknife” do vetor amostrai X original. Tem-se dessa forma

(9 = - Y ” x ,  0, = —!—V x, e â  = —V" á. n como as estimativas de 0 de1 (-0 n _ x Lu J  O n L̂ i=1 (-0

0(_n e de Ô respectivamente. A estimativa “Jackknife” do erro padrão da estimativa

1
—11 / 21 JL ~ ~ „

‘Jackknife” 0{ ), de 0 é definida como sendo: epJack ((7,.., -  a i2
w(w-l) m'

e a

estimativa “Jackknife” do vício de Ô(), por bJack(Ô,ÔQ) = (n- l)(0(_o -  <9(}) e, para a

2
estimativa do vício da variância, bjack (â 2,â 2jack) = - —

n

(EFRON; TIBSHIRANI, 1993, p. 151).

2.6.3.2. O Jackknife e Regressão Linear

Seja Y = X g + e, onde Y é o  vetor das respostas, X é a matriz do modelo, de 

ordem n x p, g é um vetor desconhecido, o vetor dos parâmetros do modelo de 

regressão linear, e 8, é o vetor dos resíduos. A estimativa “Jackknife” de/?, p  é

calculada com base nos n pseudovalores, => ^ (- í)= ^ V ’) ^(-0 )_1 ^(-i) ¥(-i>

onde X(_i) é a matriz obtida da matriz do modelo X, eliminando-se a i-ésima linha, e 

X^)1 é a transposta da matriz X(.j), e Y ^  é o vetor obtido do vetor das respostas, 

eliminando-se a i-ésima linha, ou seja:
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........................1
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1

1
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As estimativas “Jackknife” são dadas, então, por :

1 « ~

I X ,  > in - 1 i=i TZ * h >
I  i= l

< W A ) = — É*?-o (EFRON, 1982, p. 18-19).
i=l

Exemplo: Amostras Jackknife

Seja X = (94, 19, 16, 38, 99, 14, 23), um vetor amostrai. Para esse vetor amostrai, 
vamos listar nove amostras Jackknife e as médias de cada amostra, Al, A2, ...A7, 
MA1, MA2, ...MA7, MO a média da amostra original, FA é a freqüência de cada 
ponto amostrai em cada amostra, FT é a freqüência total, em todas as amostras de 
cada ponto amostrai, MT é a média total das médias, MA1, MA2, ...MA7 e, i = 1, 
2, ...7 é o índice do ponto amostrai da amostra original.

Amostra original MO = média da amostra original

i 1 2 3 4 5 6 7 Médias
u 94 19 16 38 99 14 23 MO=43,28
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Amostras Jackknife, MA(i) = média(i) da amostra Jackknife, A(i).

Al 19 19 16 38 99 14 23 MA1 = 38
A2 94 94 16 38 99 14 23 MA2= 63
A3 94 94 19 38 99 14 23 MA3= 63,5
A4 94 94 19 16 99 14 23 MA4= 59,83
A5 94 94 19 16 38 14 23 MA5= 49,66
A6 94 94 19 16 38 99 23 MA6= 63,83
A l 94 94 19 16 38 99 14 MA7= 62,33 

MT = 57,16

Freqüência de cada ponto 
Jackknife, acima;

amostrai da amostra original em cada uma das amostras

FA1 00 01 01 01 01 01 01
FA2 01 00 01 01 01 01 01
FA3 01 01 00 01 01 01 01
FA4 01 01 01 00 01 01 01
FA5 01 01 01 01 00 01 01
FA6 01 01 01 01 01 00 01
FA7 01 01 01 01 01 01 00

Freqüência total de cada ponto amostrai original, nas sete amostras Jackknife. 

FT 06 06 06 06 06 06 06

Erro padrão Jack = 22,21

Gráfico 00.01: Freqüências dos pontos amostrais das amostras Jackknife, acima.
Freqüências dos pontos amostrais nas 7 amostras Jackknife

O número na base de cada retângulo é o valor amostrai do vetor de amostras 
originais. No topo de cada retângulo, está o número de vezes que o ponto amostrai 
aparece em todas as sete amostras Jackknife, acima.
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2.6.4.I. Introdução

O método Bootstrap é também uma técnica de reamostragem 

computacionalmente intensiva, que tem suas raízes no Jackknife (YUNG, 1994, p. 

393). Desenvolvida por Efron, em 1977, tem vantagens sobre os métodos 

estatísticos convencionais, tais como a de não depender da hipótese de que os dados 

provenham de uma distribuição normal, bem como a de não ser necessário o uso de 

fórmulas complicadas ou mesmo inexistentes para a solução exata e ainda a 

vantagem de tratar de amostras pequenas. O método Bootstrap substitui essas 

fórmulas por cálculos simples, porém volumosos, realizados pelo computador 

(SWANEPOEL, 1990, p.2).

A idéia subjacente ao Bootstrap é reamostrar um número grande de vezes a 

amostra original, para com elas obter as estatísticas e precisões desejadas.

Foram desenvolvidas diversas formas de aplicar o método Bootstrap, segundo 

as reamostragens sejam feitas com ou sem reposição, e o tamanho da amostra seja 

ou não igual ao da amostra original (RAO; KATZOFF, 1996). Há também diversos 

tipos de Bootstrap: paramétrico, não paramétrico e Bayseniano. No Bootstrap 

paramétrico, a forma da distribuição é conhecida e no Bootstrap não paramétrico e 

no Bayseniano, não. No caso não paramétrico, a função de distribuição F é uma 

distribuição onde é colocada massa l/n em cada ponto amostrai, no tipo 

Bayseniano, a distribuição é semelhante ao do caso não paramétrico, com a 

diferença de substituir o tamanho dos saltos da função de distribuição empírica 

pelas diferenças de n-1 variáveis aleatórias, independentes e identicamente 

distribuídas, segundo uma distribuição uniforme no intervalo (0,1) (SALINAS, 

1998, p.7-8).

Todo o método está calcado sobre o princípio chamado “plug-in”, que associa 

o valor de um parâmetro, cuja distribuição é desconhecida, à estatística amostrai de 

uma distribuição empírica, obtida a partir da amostra disponível, colocando

2.6.4. O Bootstrap
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probabilidade l/n em cada um desses pontos amostrais dessa amostra (EFRON; 

TIBSHIRANI, 1993).

A parte difícil do procedimento Bootstrap refere-se ao efetivo cálculo da sua 

distribuição (EFRON, 1979, p. 1-26). Para esse cálculo, três métodos são possíveis:

1- Cálculo direto teórico, através da obtenção das amostras Bootstrap e de uma 

distribuição empírica, onde é atribuída massa l/n a cada ponto amostrai.

2- Aproximação Monte Cario à distribuição Bootstrap, acima.

3- O método da expansão em séries de Taylor para a obtenção da média e da 

variâneia aproximadas da distribuição Bootstrap.

Encerrando esta introdução sobre o Bootstrap, deseja-se salientar primeiramente 

que tanto o Jackknife quanto o Bootstrap não são uma panacéia e não são remédios 

para um inadequado tamanho de amostra. No caso não paramétrico, a distribuição 

amostrai deve estar, em algum sentido, próximo da distribuição populacional para 

que se obtenha inferências acuradas. No caso paramétrico somente o parâmetro 

estimador necessita estar próximo ao parâmetro populacional para que a inferência 

seja acurada. Isso porque, quanto menor for a amostra, maiores serão as flutuações 

da distribuição amostrai. Os métodos não paramétricos, que são sensíveis a uma 

grande variedade de tais flutuações, serão mais afetados pelos menores tamanhos 

das amostras do que os métodos paramétricos se as hipóteses dos métodos 

paramétricos forem válidas (SARLE, 1995 p. 3). Em segundo lugar salienta-se que 

o Bootstrap tem os seus entusiastas e os seus críticos, como citado em PETERSON 

(1991 p. 3), por exemplo: “O trabalho de Efron, tem influenciado tremendamente as 

rotinas do pensamento estatístico, ...é uma técnica muito poderosa (o Bootstrap) - a 

maior contribuição à teoria e à prática da estatística” e, “Nem todos estão 

enamorados com estas técnicas [de reamostragens]. Os céticos argumentam que 

‘você está tentando obter algo a partir do nada. Você usa os mesmos números vez 

após vez até ter uma resposta que não poderia obter de outra maneira. A fim de 

fazer isto, você deve assumir algo, e você poderá viver o suficiente para arrepender- 

se daquilo que assumiu’ Stephen E. Fienberg - York University in Toronto”. Por 

último as palavras finais de um revisor crítico dos métodos Bootstrap: “O esforço da
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realização de Efron para o uso da idéia de reamostragem, especialmente quando 

combinado com o poder da computação moderna, tem de fato provocado um 

impacto significante no pensamento estatístico, mas relativamente pouco, na prática 

estatística. O Bootstrap não paramétrico tem sido usado regularmente para 

suplementar a maioria das análises estatísticas padrão em problemas simples de 

estimação do erro, mas a história termina por aí” (YUNG, 1994).

2.6.4.2. O Procedimento Bootstrap

Sejam X = (X1? X2, ... , Xn) uma amostra aleatória (a.a.), de tamanho n, 

proveniente de uma distribuição de probabilidades F desconhecida onde cada xÍ5 i =

l,2,...,n é independente e identicamente distribuído (i.i.d.) em F, x, ~ F , i = 1,2, .. 

,n, 6 é um parâmetro e t(X) o seu estimador. O procedimento Bootstrap de 

reamostragens com reposição toma amostras com o mesmo tamanho, n, da amostra 

original x, e pode ser descrito através dos seguintes passos :

O ^1-) O estimador de máxima verossimilhança não paramétrico de F, F (X), é a 

distribuição empírica, onde cada valor amostrai xi? i = l,2...n, da amostra original,

tem probabilidade l/n, F (X) = ]T”=l I (xí< X ) (l/n), onde I (xí< X ) é a função 

indicadora;

2°) Da amostra X = (Xl7 X2, , Xn), toma-se B (muito grande) amostras de mesmo 

tamanho n e, com reposição, da amostra original: X* = (X*n, X*i2, ..., X* ln), X*2
ác A d* «fe jfc ik sir

— /  V  V  v  \  V    / V  V  V  V
~  Va  21? A  22, , A  2n/?— ? A B ~  VA  BI? A  B2, ••• , A  Bn>,

3°) Calcula-se as B estatísticas Bootstrap T*b — T*(x\), b = 1,2....B e, a partir do 

conjunto de valores T* (X \), b = 1,2....B, calcula-se a estatística ?

que é uma estimativa Bootstrap do verdadeiro parâmetro estimado pela estatística T 

(X? F).
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O conjunto de valores “Bootstrap” T*(Xh), b = 1,2....B estima a verdadeira 

distribuição amostrai da estatística T(X, F). E, denotando o número de vezes com 

que cada ponto amostrai xÍ5 da amostra original aparece em cada uma das B,

amostras Bootstrap, por N*i? ou seja, N*i = # {X*i = X,}, tem-se que, N*j = n, e

daí que N' = {N*i, N*2, , N*B), tem distribuição multinomial. Também, em

correspondência às freqüências relativas, P*i = N*i / n, assumindo valores no 

conjunto {O/n l/n ,2/n ,...,n/n}, N*i ~ b (n, l/n) e, P*i, tem média e variância dadas 

pelo resultado 2.6.4.2.1 (CHAVES NETO, 1991):

RESULTADO 2.6.4.2.1

Seja P j = N i / n, a proporção de vezes em que o ponto amostrai X* foi 

selecionado na amostra Bootstrap X \. Então, a variável aleatória P* possui 

distribuição amostrai com média l/n e variância (n-l)/n3

Prova:

Como N*i ~ b(n, l/n), tem-se que :

E (P*0 = E (N*i / n) = (l/n) E (N*0 = 1 / n, e 

V(P*j)=V(N*i / n) = (1 / n2) V(N*j) = (n-1) / n3 .

2.6.4.3. Melhor Estimativa Bootstrap do Vício (BBBE)

Sejam:

X = ( Xi, X2, , Xn) o vetor da amostra original;
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$ o 1000a - ésimo percentil Bootstrap;

$ o 1000 (1-a) - ésimo percentil Bootstrap;

( 0 ^ 0  ) -  ( Q*(a\ê * (1~a}) 0 intervalo de confiançaBCa;

0*(a) o extremo inferior do intervalo de
confiança;

0*(1~a) o extremo superior do intervalo de
confiança;

X i = (X n , X 2 1 , , X ni) o primeiro vetor das amostras Bootstrap;

P ji = # {X ii = Xj} / k , j = 1, 2 ,... ,n a proporção do número de vezes que cada
valor amostrai Xj da amostra original
aparece na primeira amostra Bootstrap;

& & í£
X 2 = (X i2 ; X 22? •••, X tl2) o segundo vetor das amostras Bootstrap;

P*j2 = # {X*l2 = Xj} / k , j = 1,2,... ,n a proporção do número de vezes que cada
valor amostrai Xj, da amostra original
aparece na segunda amostra Bootstrap;

X*b = (X* ib, X*2b? - - -, X*llB) a B - ésima amostra Bootstrap;

4* t r ^
P jB =  # {X íb= Xj} / k , j  =  1, 2, . . .  ,n a  proporção do núm ero de v e zes que cad a

valor amostrai xj da amostra original
aparece na B - ésima amostra Bootstrap;

P  i = (P 11, P  21, •••, P  ni) a proporção do número d e vezes que o
valo r am ostrai Xj aparece na prim eira 
am ostra B ootstrap, j  = 1, 2, . . . ,  n;

*  *
E  2 = (P  12, P 22, ••• , P n2) a proporção do núm ero d e v e zes que o

valo r am ostrai Xj aparece na segunda 
am ostra B ootstrap, j  =  1, 2, . . . ,  n;

P  b =  (P ib, P 2B,. . . ,  P  hb) a proporção do número de vezes que o
valor amostrai xj, aparece na B-ésima 
amostra Bootstrap, j = 1 ,2 ,..., n;
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-* 1 A  *
p  = i L £ *

x 5  ô=i

o vetor média das proporções de ocorrência 
de cada valor amostrai xj, que aparecem 
nas B, amostras Bootstrap;

o valor médio de cada amostra Bootstrap 
X*b, b=l,2,...,B;

_ *  l f
x = «2,**

£> A=1

o valor médio Bootstrap, dos B valores 
médios x*

A melhor estimativa Bootstrap do vício (bbbe) de jc* é dado por

bbbe(x*) = x*- ¥ *  * K ‘

2.6.4.4. Intervalo de Confiança Bootstrap, Acelerado com correção do Vício

Seja 0* o lOOa-ésimo, percentil das B estatísticas Bootstrap 0*B.. O

intervalo de convergência 1-2 a  , é obtido diretamente dos percentis.

Método percentil: ( 4rf>4uP) = ( 0*ia\Ô*(l~a)) .

Por exemplo, se B =2000 e a  =0.05, então, ( ^c005) ^ 095)) é o intervalo ente o 100- 

ésimo e o 1900-ésimo valores ordenados dos B =2000 números, ê*l,ê*2,...9ê*B.

(Bca)



52

2.6.4.5. Estimativa Jackknife do Vício Bootstrap (JAB — Jackknife After 
Bootstrap)

Sejam X ^  = (XI? X2,...,Xí_i, Xi+I, ..., Xn) um dos B vetores de amostras 

Bootstrap que não contém o valor amostrai original Xj , i=l,2,...,n , e que se tenha 

B(j) vetores sem o i-ésimo valor amostrai x, i = l e  Q = {b / Xj € X*b 3=

1,2,...n} o conjunto dos índices das amostras Bootstrap X b, que não contém o valor 

amostrai xÍ7 para cada i, i=l,2,...,n. Para cada calculam-se

_ *  1 
x b = -= -2>«, v è € c, e xR = ■Ba>

1
Br.

^x*h para i=l,2,...,n e para cada B(i),
n i=1 "(0 feC,

calculam-se epff(i) e o erro padrão estimado Bootstrap das n estimativas, epB(n 

1 ”
e P  B{.) = ~ ~ l L e P B ( i )  n t=i

E a estimativa Jackknife da variância de epm

™rjack(epB(.)>=
( 1w—1

n
nz

i = 1

e o respectivo erro padrão ePjacp(ePg^ y)=
r -t >n - 1

n\
n
z
i=1 epB{í)~epB(.)

1/2
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A aplicação do método Bootstrap, ao modelo de regressão linear, pode ser 

descrito pela seguinte seqüência de passos (CHAVES NETO, 1985, p. 7-10):

1 -  Seja, Y_ = X p  + s  o modelo de regressão linear, sendo Y_ o vetor de respostas,

s  o vetor dos erros ou resíduos, ambos com dimensão n, /? o vetor dos

coeficientes de regressão com dimensão p+1, e X a matriz do modelo de ordem 

(n, p+1) assumida não aleatória;

2 -  Os resíduos ou erros s  são assumidos terem distribuição F , desconhecida, 

centrada em zero, de forma que:

e i ~  »dF  com £Fte )= o ;

3 -  Com a matriz do modelo X especificada, faz-se um ajuste ao modelo através
/V

dos mínimos quadrados (por exemplo) obtendo-se as estimativas de /? , /?  :

fi = ( X tX y lX tY;

4 -  É determinado o vetor de resíduos: 

e = Y_-Xf}_

5 -  É estabelecida uma distribuição empírica de probabilidades F para os resíduos 

corrigidos pela média deste modo, F associa a probabilidade l/n para cada resíduo

e i ■ e i  ~  i i d F  y

2.6.4.6. Bootstrap e Regressão Linear
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6 -  É tomada uma amostra Bootstrap, e* de F : 

ê (ei, e2, ..., en),

7 -  É construído um vetor de pseudodados Y*:

Y = X fi  + e ;

/ \*  /V

8 -  É feito um ajuste aos pseudo-dados e a estimativa Bootstrap p  de p  é 

determinada:

/}”= (XX^VY*;

/\ *
9 -  A distribuição Bootstrap de p  é uma aproximação da distribuição amostrai de

/V

l -

RESULTADO 2.5.4.Ó

O estimador de mínimos quadrados ordinários do vetor de parâmetros no
A a?

modelo Y_ = X p  + s ,  P  = ( X ^ X T ,  tem média e variância Bootstrap dadas por 

E. ( £ ) = £  e V ( / ) = â 2 (VX)'1



Prova:

e

assim,

E . ( / )  = E»((XtX)-1X,Y‘) = (XtX)-'XtE.(Y*) = (X'X)-1XtE,(X/? + e‘ ) = 

E*(^”) = (XtX)‘1Xt(X^+0) = (XtX)‘1XtY*= H .( / ‘)=

E.(/)= l

V ,(/? ’) = V [(X‘X)-1 Xf Y] = (X1 X^X1 V(Y)X(X*X)’1 = (X*X)"1 X1 W( x p+e )  

V.Q?*) = (X‘ X)"1 X1 V(Xf^ + e)  X(X‘ X)"1 = (X' X)-1 X1 a 2X (X‘ X)'1

\»( (f)= a1 íxlxy'

.6.4.7. Redução de Vício em Amostras Bootstrap

O método Bootstrap é uma técnica de avaliação de propriedades dos 

procedimentos estatísticos em amostras repetidas. Em geral, estimativas numéricas 

incluem erros não só devido ao processo de simulação como também àqueles 

provenientes dos dados amostrais, os quais podem desempenhar um papel 

importante em todo o processo Bootstrap. Logo, é importante que se considere 

procedimentos que conduzam à redução da variância na simulação Bootstrap. Entre 

as técnicas desenvolvidas com esse fim, está a que considera o balanceamento das 

amostras Bootstrap, que será aqui descrita. O valor amostrai da amostra original da 

estatística T será designado como TobS3 e aquelas relacionadas às B amostras

55

Como os ei são independentes com média zero e variância â 2 = —TYyt - y f)21 ”
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Bootstrap, por Tb*, b = Uma aproximação normal para a estatística T é

estimada ter Vício* e variância V* dados por:

Vício*=T.' -  Tobs = B'1 X t i Tb* - T°i» e V*= Z t f r *  ~ respectivamente

e as probabilidades G(d) = P(T <9 +à ) podem ser estimadas diretamente pelas 

proporções simuladas G*(d) = B_I# { i: Tj * < Tobs + d}. Como o processo Bootstrap 

simula amostras aleatórias da função de distribuição empíriea F , isto é, 

F(x*)  = n # {i : xf < x* }, pode-se, em princípio, estimar-se o vício e a variância 

de T, por E0*(T) - Tobs e V* - var0*(T), e estimar-se G(d) por G*(d) = Po*(T < Tobs 

+d), onde o asterisco denota amostra proveniente de F,  e o subscrito o, denota 

procedimento Bootstrap ordinário. As diferenças E0 (T) - Tobs e V* - varQ (T ), etc., 

denotam erros de simulação. Naturalmente que tais erros podem, em princípio, ser 

reduzidos aumentando-se B, mas essa pode não ser a melhor solução em um 

problema complicado. Os vícios, obtidos nesses processos, têm um comportamento 

randômico, pois são dependentes das freqüências P* com que os pontos amostrais 

Xf i=l,2,...,n aparecem nas B amostras Bootstrap. No caso, por exemplo, de E(T*) -  

E(T), o vício é da ordem de B’1'2 (DAVIDSON; HTNKT.EY; SCHETCHTMAN,

1986), um erro de primeira ordem que pode ser removido, forçando

isto é, fazendo-se que cada ponto amostrai xi? da amostra original seja igualmente 

freqüente no conjunto completo das B amostras Bootstrap, condição essa chamada 

de balanceamento amostrai, ou permutação. Na prática, uma amostra Bootstrap 

balanceada ou uma “permutação” é obtida copiando-se B vezes os n pontos 

amostrais da amostra original, um ao lado do outro, formando uma seqüência de 

nB, pontos amostrais; a seguir, realiza-se uma permutação aleatória de toda a 

seqüência, e da nova seqüência obtida, a partir do primeiro ponto amostrai, retira-se 

seqüencialmente as B amostras Bootstrap de tamanho n cada uma. Essas amostras, 

colocadas em forma de uma matriz B x n , cujas B linhas terão, cada uma

delas, £  "=] Fb* = n , e cada uma de suas colunas terão = B .

(GRAHAM; HINKLEY; JOHN; SHI, 1990)
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Seja X = (94, 19, 16, 38, 99, 14, 23), um vetor amostrai. Para esse vetor, vamos 

listar nove amostras, Bootstrap Simples e as médias de cada amostra, A l, A2, ...A9, 

MA1, MA2, ...MA9; MO a média da amostra original, FA é a freqüência de cada 

ponto amostrai em cada amostra, FT é a freqüência total, em todas as amostras de 

cada ponto amostrai, MT é a média total das médias, MA1, MA2, ...MA9 e i = 1,2, 

...7, é o índice do ponto amostrai da amostra original.

Exemplo: Amostras não Balanceadas (Bootstrap Simples)

Amostra original MO = média da amostra original

i 1 2 3 4 5 6 7 Médias
u 94 19 16 38 99 14 23 MO = 43,28

Amostras Bootstrap Simples MA(í) = médias das amostras Bootstrap, A(i)
Al 14 38 99 38 38 23 38 MA 1 =41,14
A2 99 14 14 16 16 94 38 MA2 = 41,57
A3 99 19 19 14 19 99 14 MA3= 40,42
A4 23 23 23 94 99 16 14 MA4 =41,71
A5 19 16 19 19 14 19 94 MA5 = 28,57
A6 19 23 19 14 94 16 99 MA6 = 40,57
A7 99 19 99 38 14 14 94 MA7 = 53,85
A8 99 19 99 14 19 38 99 MA8 = 55,28
A9 14 23 38 23 23 38 94 MA9 = 36,14

MT = 42,14

Freqüência amostrai de cada ponto da amostra original, em cada amostra Bootstrap 

Simples;

FA1 00 00 00 04 01 01 01
FA2 01 00 02 01 01 02 00
FA3 00 03 00 00 02 02 00
FA4 01 00 01 00 01 01 03
FA5 01 04 01 00 00 01 00
FA6 01 02 01 00 01 01 01
FA7 01 01 00 01 02 02 00
FA8 00 02 00 01 03 01 00
FA9 01 00 00 02 00 01 03



Freqüência total de cada ponto amostrai da amostra original nas nove amostras 

Bootstrap

FT 06 12 05 09 11 12 08
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Gráfico 00.02: Freqüência dos pontos amostrais originais nas nove amostras 
Bootstrap Simples, acima.

Os números no topo dos retângulos referem-se ao número de vezes que cada ponto 
amostrai da amostra original aparece nas nove amostras Bootstrap Simples acima.

Exemplo: Amostras, Bootstrap Balanceado

Seja X = (94, 19, 16, 38, 99, 14, 23), um vetor amostrai. Para esse vetor, vamos 

listar nove amostras, Bootstrap Balanceado e as médias de cada amostra, Al, A2, 

...A9, MA1, MA2, ...MA9; MO é a média da amostra original, FA é a freqüência de 

cada ponto amostrai em cada amostra, FT é a freqüência total, em todas as amostras 

de cada ponto amostrai, MT é a média total das médias, MA1, MA2, ...MA9 e, i =

1,2, ...7, é o índice, do ponto amostrai da amostra original.
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Amostra original MO = média da amostra original

i 1 2 3 4 5 6 7 Médias
u 94 19 16 38 99 14 23 MO=43,28

Amostras Bootstrap Balanceado

Al 16 99 38 99 16 38 14 MA 1=45/71
A2 23 38 94 14 16 19 23 MA2=32,42
A3 94 23 94 14 14 94 94 MA3=61
A4 99 38 38 99 14 19 16 MA4=46714
A5 23 38 99 14 94 14 16 MA5=42,57
A6 23 38 14 16 23 14 23 MA6=21,57
A7 99 19 38 94 19 16 94 MA7=54,14
A8 38 16 99 23 94 23 99 MA8=56
A9 19 19 19 99 19 16 19 MA9=30 

MT =43,28

Freqüência de 
Balanceado

cada ponto da amostra original em cada amostra Bootstrap

FA1 00 00 02 02 02 01 00
FA2 01 01 01 01 00 01 02
FA3 04 00 00 00 00 02 01
FA4 00 01 01 02 02 01 00
FA5 01 00 01 01 01 02 01
FA6 00 00 01 01 00 02 03
FA7 02 02 01 01 01 00 00
FA8 01 00 01 01 02 00 02
FA9 00 05 01 00 01 00 00

Freqüência total de cada ponto da amostra original nas nove amostras Bootstrap 
Balanceado;

FT 09 09 09 09 09 09 09
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Gráfico 00.03: Freqüências dos pontos amostrais originais nas nove amostras 
Bootstrap Balanceado, acima.

Os números no topo dos retângulos, indicam o número de vezes que o ponto 
amostrai, cujo valor é indicado nas bases dos retângulos, aparece nas nove amostras 
Bootstrap Balanceado

2.6.4.8. O Bootstrap e o Estimador da Razão

Na amostragem estratifícada, de estágio único ou de estágios múltiplos, as 

amostras são retiradas do seu estrato sem reposição. Diversos procedimentos 

Bootstrap para avaliar o vício, a estabilidade, a banda de confiança e a faixa de 

probabilidades para o estimador da razão foram propostos. Listam-se a seguir, as 

conclusões sobre um estudo comparativo destes procedimentos dados em RAO e 

KATZOFF (1996), a partir de resultados empíricos.

1- Como esperado, o vício e o Erro Quadrático Médio (MSE) de todas os 

estimadores da variância decrescem com o aumento do tamanho da amostra, n;

2- Todos os procedimentos subestimam o MSE (Yr );

3- A Linearização e os métodos Bootstrap subestimam o MSE( Y R), mais do que o 

Jackknife;

4- Para os procedimentos Bootstrap, a subestimação é relativamente maior para 

amostragem sem reposição com seu tamanho ótimo, n(2-f);
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5- As diferenças na estimação dos erros quadráticos médios são desprezíveis, para 

os diferentes procedimentos e as variâncias desses estimadores são muito maiores 

de que a dos seus vícios quadráticos;
6- Para os procedimentos Jackknife e Bootstrap, a faixa das probabilidades e o 

intervalo de confiança não diferem significativamente, especialmente quando a 

fração amostrai (n/N) excede aos cinco por cento. Nesse caso, as faixas das 

probabilidades para tais procedimentos estão próximas de noventa por cento para a 

taxa nominal de noventa e cinco por cento, sendo que, para o estimador clássico, a 

faixa de probabilidades é de oitenta e cinco por cento .
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3. MATERIAL E MÉTODO 

3,1» Introdução

Os estimadores descritos no capítulo 2 foram aplicados a dez variáveis, duas das 

quais pertencentes ao Bancos de Dados fornecidos pelo IPARDES, áreas Urbana e 

Rural, designadas respectivamente de PU e PR, e a oito das variáveis pertencentes a 

um Banco de Dados disponível no Laboratório de Estatística da UFPR, áreas 

Residenciais, Comerciais, Industriais, Públicas, Urbanas e Rurais. Estas últimas 

foram nomeadas com o prefixo NC e com o pós-fixo AES, ILU, IND, COM, POD, 

PRO, RES e RUR, respectivamente.

A simulação para o Banco de Dados fornecido pelo IPARDES abrangeu a 

quantidade de trezentos e setenta e um Municípios. Para o Banco de Dados 

disponível no Laboratório de Estatística da UFPR, a abrangência variou entre 

trezentos e seis e trezentos e vinte Municípios, pois foi escolhido para simulação o 

ano de mil novecentos e noventa.

3.2. Material

Para a simulação, foi construído o programa computacional EEC. Esse 

programa é composto de todos os estimadores descritos no capítulo 2, e de 

simulações Jackknife e Bootstrap, Simples e Balanceado, de alguns desses 

estimadores, nomeadamente dos estimadores da razão, separado(RhS) e não 

viciado (RhNV) e da Regressão Linear (EL). O programa, ainda, faz aproximações 

Monte Cario das simulações Jackknife e Bootstrap. Para a Regressão Linear 

considerou-se dois casos, a saber:

1. Para agrupamentos com mais de dois grupos, os coeficientes de regressão 

linear foram determinados tomando-se os valores médios das amostras de
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cada grupo. Com os coeficientes de regressão assim determinados, foram 

feitas as estimativas populacional e de cada localidade separadamente;

2. Para cada grupo ou estrato com mais de duas localidades amostradas, 

foram determinados os seus coeficientes de regressão linear, e a estimativa 

da regressão foi feita então para cada localidade do respectivo grupo. A 

soma das estimativas das localidades estimadas dessa forma aparece como 

estimativa RLGE, em “Gráficos 2”, como estimativa populacional, 

também.

3.3. Metodologia

a) Com o objetivo de se verificar que tipo de agrupamento forneceria a menor 

variância populacional, considerou-se para as variáveis NC_AES, N CILU  e 

NCPRO, do banco de dados disponível no laboratório de Estatística da UFPR, os 

agrupamentos utilizando apenas a variável de interesse e os agrupamentos 

envolvendo outras variáveis além daquela de interesse. Quando se faz 

agrupamentos das localidades, com mais variáveis além da variável de interesse, as 

variâncias populacionais se poderão tomar muito maiores do que aquela para a 

variável de interesse, produzindo amostra mínima do tamanho da própria 

quantidade existente na população, como são os casos para as variáveis NC_AES, 

NC ILU e NC PRO, vistos no Quadro 00, ANEXO 3. Assim, para a verificação 

do comportamento de cada estimador, para variáveis analisadas, todos os resultados 

aqui descritos foram obtidos fazendo-se agrupamentos unicamente com a variável 

de interesse.

b) Na busca do melhor método para se estimar a quantidade de equipamentos de 

uso compartilhado, fez-se simulações para dez das variáveis constantes nos dois 

conjuntos de dados acima mencionados: aquele fornecido pelo IPARDES e o 

disponível no laboratório de estatística da UFPR. Variou-se a quantidade de gmpos 

dentro da amplitude delimitada no programa e dentro das limitações impostos pela 

estrutura dos dados ao método das k-Médias, distância Euclidiana. Consideraram- 

se proporções de equipamentos compartilhados de 75 e 76%, 75 e 80% e 75 e 90%
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entre os grupos ou estratos nos quais a população inteira foi dividida. Nesse 

procedimento, os grupos ou estratos ímpares receberam a proporção de 75% 

enquanto que os grupos ou estratos pares receberam 76% em uma rodada, 80% em 

uma outra e, finalmente, 90% na última. O objetivo era verificar o comportamento 

de cada estimador em situações onde as variações nas proporções de 

compartilhados entre as localidades de grupos ou estratos diferentes fossem 

‘pequena5 (da ordem de um por cento), ‘média5, (da ordem de cinco por cento) e 

‘grande5 (da ordem de quinze por cento). Considerou-se para isso:

1 - os erros relativos percentuais em valor absoluto das estimativas de cada 

estimador, em relação ao valor simulado do número de equipamentos 

compartilhados na população;

2 - o  número de localidades estimadas, com erro relativo percentual em valor 

absoluto, menor ou igual a cinco em relação ao valor simulado para as mesmas;

3 -  a cobertura do valor simulado do número de equipamentos compartilhados na 

população, pelos limites (aproximados, em alguns casos) inferior e superior das 

estimativas de cada estimador.

c) Identificação e descrição do melhor método;

Ci) Como pode ser visto em cada um dos ‘Quadros5 que expõe cada ‘Análise - Pré 

Amostrai5 de algumas das variáveis estudadas, o método de agrupamento das k- 

médias, em alguns casos, pode fornecer uma quantidade bastante grande de 

localidades a serem amostradas, em relação à quantidade de localidades existentes 

na população. Nesses casos, fez-se então estratificações com o objetivo de se obter 

um número menor de localidades a ser amostrado. São exemplos disso os casos das 

variáveis, NC_AES, NC ILU e NCPRO, para os quais o método de agrupamento 

das k-Médias agrupa todas as localidades da população em apenas dois grupos, os 

dois primeiros, e em três grupos, o último deles. Nessa circunstância, as 

quantidades de localidades a serem amostradas, são, respectivamente: 111, 97 e 

153, ou seja, mais de trinta e até cinqüenta por cento das localidades da população 

que, no caso, são 318, 318 e 306, respectivamente (para o ano de 1990, usado para
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as simulações). As estratificações, para esses casos, forneceram 58, 65 e 62 

localidades a serem amostradas para as respectivas variáveis, baixando o número de 

localidades a ser amostrado para cerca de vinte por cento do número total de 

localidades nas respectivas populações, dessas variáveis.

Verificou-se, também, o comportamento desses estimadores quando do 

aumento do número de grupos e/ou estratos, nos quais a população inteira foi 

dividida, para se verificar a qualidade dos mesmos em relação à diminuição do 

número de localidades a ser amostrado.

C2) Com base nos resultados obtidos das simulações, verifica-se que cada um dos 

estimadores tem características que o classifica como ‘melhor estimador’, em 

determinadas situações, para algumas das variáveis estudadas. É exemplo disso o 

estimador RLGE, a regressão linear dentro do grupo ou estrato que, em geral, não 

fornece boas estimativas populacionais para a maioria das variáveis estudadas. Isso 

ocorre principalmente porque as suas estimativas devem ser feitas para 

agrupamentos ou estratificações com mais do que duas localidades dentro do grupo 

ou estrato mas, em diversos desses agrupamentos ou estratificações, muitos dos 

grupos ou estratos possuem menos do que três localidades amostradas. Esse 

estimador, no entanto, fornece o maior número de localidades estimadas dentro do 

intervalo de erro relativo percentual, para a variável NC ELU, que todos os demais 

estimadores em todos os casos das simulações, estimando, praticamente todas as 

localidades da população, com erro relativo percentual em valor absoluto menor ou 

igual a 5, muito embora os erros relativos de suas estimativas populacionais tenham 

valores maiores. Outros exemplos são os dos estimadores RL, RLBB e RLBS para 

a variável NCPRO, para a qual esses estimadores fornecem os menores erros 

relativos percentuais em valor absoluto das estimativas populacionais, mas as suas 

estimativas dos valores das localidades dentro do intervalo de erro relativo 

percentual estão entre as menores quantidades de localidades estimadas dentro do 

referido intervalo.
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C3) Assim, como critério para a decisão de ‘melhor5 estimador, estabeleceu-se que 

o estimador deveria fornecer, em primeiro lugar, o menor erro relativo percentual 

em valor absoluto das estimativas populacionais quando as diferenças de 

proporções do número de equipamentos compartilhados, nos grupos ou estratos, 

fossem maiores ou, então mantivessem a tendência de ser o ‘melhor estimador5, 

quando essa diferença aumenta entre os grupos ou estratos. Em segundo lugar, 

colocou-se como critério de ‘melhor estimador5 aquele segundo o qual o estimador 

deveria estimar o maior número de localidades dentro do intervalo de um erro 

relativo percentual lixado e manter ou acentuar essa tendência quando a diferença 

de proporção do número de compartilhados aumente de um grupo ou estrato para o 

outro. Como um terceiro critério de ‘melhor estimador5, considerou-se, ainda, a 

cobertura do valor populacional simulado do número de equipamentos de uso 

compartilhado, pelos limites inferior e superior, das estimativas desses estimadores, 

quando elas são calculadas, ainda que de maneira aproximada, como são os casos 

dos estimadores da razão, separado (RhS) e não Viciado (RhNV) e as suas 

simulações Bootstrap e Jackknife, RhS BB, RhSBS, RhSJK, RhNVBB, RhNVBS e 

RhNVJK. E, isso, para o menor número encontrado de localidades a ser amostrado 

na população.

C4) Considerando-se os critérios acima estabelecidos para a identificação de 

‘melhor5 estimador, e os resultados das simulações realizadas para as dez variáveis 

dos dois conjuntos de dados disponíveis (do IPARDES e daquele disponível no 

laboratório de Estatística da UFPR), verificou-se que o estimador da razão 

separado, RhS, em oito das dez variáveis estudadas, classificou-se como o ‘melhor 

estimador5. Nos outros dois casos, onde o estimador da razão separado, RhS, 

deixou de fornecer os menores erros relativos percentuais em valor absoluto, 

verifica-se que o motivo para tal reside na diferença entre os arredondamentos 

parciais e totais, quando os valores parciais das localidades estimadas são muito 

pequenos e multi-modais, como os das casas das unidades. Para se comprovar esse 

fato, onde o estimador da razão separado, RhS, não forneceu os menores erros 

relativos percentuais em valor absoluto, retirou-se os estratos que continham
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equipamentos cujos valores eram da ordem das unidades. Para as variáveis 

NCJDLU e NC_PRO retiraram-se os estratos que continham localidades com 

apenas um, dois ou três equipamentos. Os resultados dessas restrições, podem ser 

vistos nos gráficos correspondentes a estas variáveis, com as respectivas restrições: 

Gráficos 03.10 a 03.18 e Gráficos 06.10 a 06.18, ANEXO 5. A partir desses 

resultados, pode-se concluir que o estimador da razão separado, RhS, pode ser 

considerado o estimador universal para esse tipo de estimação, se a ressalva de se 

excluir as localidades com um número de equipamentos da ordem das unidades 

com modas grandes.

C5) O estimador da razão separado, RhS;

Quando se faz uma estratifíeação ou a divisão da população em grupos, uma 

das maneiras de se usar o estimador da razão na estimação do total populacional é 

determinar-se as estimativas das razões em cada grupo ou estrato, para com elas 

calcular as estimativas de cada um desses grupos ou estratos, e daí a estimativa 

populacional. Assim, dividindo-se a população em k grupos ou estratos, a 

estimativa separada de cada estrato ou de cada grupo será dada por :

onde cada uma das quantidades, se refere ao estrato ou grupo de 
ordem h ; sendo que:

é o valor da quantidade conhecida, no grupo ou estrato h;

é o valor médio amostrai da quantidade conhecida, no estrato ou 
grupo h;

é o valor médio amostrai da quantidade sob estimação, 

é o estimador da Razão do estrato ou grupo h;

xh

X,

Rh = yh
X .
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y b s  = 2 j m ,h=1

- - é a estimativa populacional da quantidade Y, desconhecida.

RESULTADO 2.3.3.1

Se as grandezas amostrais, nh, forem grandes em todos os estratos ou grupos, 

então a variância da estimativa populacional da quantidade sob estimação, Y, 

obtida pelo estimador da razão separado, é dada por:

V(f«s) = fh\ s J + R * S j  -2  R ^ S yA , )  , onde:
h=l nh

p _ Yh é a razão no estrato ou grupo h;
6=Y

Ph é o coeficiente de correlação entre as quantidades amostradas, Xj e yi
do estrato ou grupo h;

r _ nh é o índice, ou fração amostrai, do estrato ou grupo h;

>xii é a variância amostrai de xÍ7 a quantidade conhecida, no grupo ou
estrato h;

>yh é a variância amostrai de yÍ5 a quantidade sob estimação, no grupo
ou estrato, h:

Nh é o número total de quantidades com valores conhecidos, xÍ7 no
grupo ou estrato, h;

rih é o número total de quantidades com valores conhecidos, xi?
amostradas, no grupo ou estrato h;
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Os resultados deste trabalho foram obtidos seguindo-se os passos descritos 

de maneira resumida conforme segue:

1 -  Cálculo do tamanho total da amostra n, na população, ou seja, a quantidade de

equipamentos a ser amostrado, na população, com o uso da expressão:

;vz24 ( i - 4 )
d2( N - l )  + z2ê0( l - ê 0)

N é o número total de equipamentos constantes na população;

Z é o escore padrão, obtido a partir do nível de confiança da solução fixado;

0O é a proporção inicial do número de equipamentos compartilhados na 

população, fixada em 0.5;

2 -  Cálculo do tamanho da amostra, em cada grupo ou estrato h:

Para o número de equipamentos a ser amostrado em cada grupo ou estrato, fez-se 

uma alocação dos n equipamentos a serem amostrados na população, determinados 

no item anterior, proporcionais ao tamanho do estrato ou grupo, ou seja, 

proporcionais à quantidade de equipamentos contidos em cada um desses grupos ou 

estratos, dados por:

d) Roteiro do procedimento para a obtenção dos resultados:

nNh
n h =  —" N

sendo:

nh o número de equipamentos a ser amostrado no grupo ou estrato h; 

Nh o número de equipamentos do estrato ou grupo h;

N o número total de equipamentos da população; 

n o número total de equipamentos a ser amostrado na população;
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3 -  Cálculo da quantidade de localidades a ser amostrada, em cada grupo ou estrato 

h:

A quantidade de localidades a ser amostrada em cada grupo ou estrato, mh, foi 

determinada por:

f  Vza\

m, >----     onde:
i +  1

Mk

í  ^

v//

r é o erro relativo do número médio da estimativa de equipamentos no
grupo ou estrato h, fixado em 0.10;

ji h é o valor médio da quantidade conhecida xh, no grupo ou estrato h, ou
seja, da quantidade de equipamentos no estrato ou grupo h;

x  ̂ é o valor médio amostrai da quantidade conhecida, xh, no grupo ou estrato
h;

d é a precisão do erro relativo do número médio de equipamentos do estrato
ou grupo h, fixada em d = 0.05;

Mh é o número total de localidades no estrato ou grupo h;

mh é o número de localidades amostradas no estrato ou grupo h;

Oh é o desvio padrão da quantidade xh, conhecida, no estrato ou grupo h, ou
seja, a quantidade de equipamentos no estrato ou grupo h;

4 -  Cálculo do número de equipamentos a ser amostrado em cada localidade a ser 
amostrada, no estrato ou grupo h:

Uma vez determinado o número de localidades a ser amostrado, mh, dentro 

do grupo ou estrato, h, esse número é então dividido pela soma do número de 

equipamentos dessas localidades e a quantidade a ser amostrada em cada uma delas 

é encontrada através de uma distribuição proporcional à quantidade de cada uma 
delas, ou seja:
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mh

Z w*>
= ---- > onde;

Í=1

ntó é o número total de equipamentos a ser amostrado na localidade i, do
estrato ou grupo h;

Nm é o número total de equipamentos na localidade amostrada i, do estrato ou
grupo h;

5 -  Estimação o número de equipamentos compartilhados:

Para as simulações dentro de cada grupo ou estrato nos quais a população foi 

dividida, nos estratos de ordem ímpar, símulou-se uma proporção de 75% como 

sendo a proporção de compartilhados. Para os estratos ou grupos de ordem par, essa 

proporção foi simulada, em uma primeira rodada, em 76%, na segunda rodada, em 

80% e, na terceira rodada, em 90%. A partir dessas simulações, calculou-se o total 

de compartilhados na população como sendo a soma da quantidade total do estrato 

ou grupo multiplicada pela respectiva proporção simulada do grupo ou estrato, 

arredondado para o número inteiro mais próximo. Para cada localidade, foi 

calculada também a quantidade de compartilhados, como o produto da quantidade 

de equipamentos da localidade pela proporção simulada do grupo ou estrato do qual 

a localidade faz parte, arredondada para o inteiro mais próximo.

6 — Cálculo das estimativas populacionais, a partir dos dados amostrais simulados:

Com as quantidades de equipamentos em cada localidade amostrada, rodou- 

se o programa três vezes, simulando-se proporções diferentes para a quantidade de 

equipamentos compartilhados. Com uma mesma amostra, na primeira rodada
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simulou-se uma proporção de 75% de compartilhados para os estratos ou grupos 

ímpares e de 76% para os pares. Numa segunda rodada, simulou-se para a referida 

amostra 80% para os estratos ou grupos pares, enquanto os ímpares continuaram 

com 75%. Numa terceira rodada, a mesma amostra recebeu uma proporção de 90% 

de compartilhados nos estratos ou grupos pares. Com essas proporções dentro de 

cada estrato ou grupo, determinou-se o valor populacional simulado para o número 

total de compartilhados na população. A partir das proporções fixadas dentro de 

cada estrato ou grupo para as localidades neles amostradas, procedeu-se então às 

estimações de compartilhados a partir desses dados, com cada um dos estimadores 

descritos na Revisão Bibliográfica. Quais sejam: 

a- Estimador da razão separado, RhS; 

b- Estimador da razão não viciado, RhNV; 

c- Estimador da razão combinado, RhCB; 

d- Estimador da expansão simples, EXPS;

e- Estimador da regressão linear dentro dos grupos ou estratos, RLGE; 

f- Estimador da razão separado, Bootstrap Balanceado, RhSBB; 

g- Estimador da razão separado, Bootstrap Simples, RhSBS; 

h- Estimador da razão separado, Jackknife, RhSJK; 

i- Estimador da razão não viciado, Bootstrap Balanceado, RhNVBB; 

j- Estimador da razão não viciado, Bootstrap Simples, RhNVBS; 

k- Estimador da razão não viciado, Jackknife, RhNVJK;

1- Estimador da regressão linear, RL. Para esse estimador, tomou-se as médias das 

quantidades amostradas e as médias simuladas de compartilhados, em cada 

grupo ou estrato; 

m- Estimador da regressão linear, Bootstrap Balanceado, RLBB; 

n- Estimador da regressão linear, Bootstrap Simples, RLBS; 

o- Estimador da regressão linear, Jackknife, RLJK; 

p- Estimador da razão separado, Bootstrap Balanceado, RhSBBMC; 

q- Estimador da razão separado, Bootstrap Simples, RhSBSMC; 

r- Estimador da razão separado, Jackknife, RhSJKMC; 

s- Estimador da razão não viciado, Bootstrap Balanceado, RhNVBBMC;
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t- Estimador da razão não viciado, Bootstrap Simples, RhNVBSMC; 

u- Estimador da razão não viciado, Jackknife, RhNVJKMC; 

v- Estimador da regressão linear, Bootstrap Balanceado, RLBBMC; 

w- Estimador da regressão linear, Bootstrap Simples, RLBSMC; 

x- Estimador da regressão linear, Jackknife, RLJKMC;

As estimativas dos itens o até w são as simulações Monte Cario para esses 

respectivos estimadores, com exceção, é claro, do estimador da expansão simples, 

EXPS, do estimador da razão combinado, RhCB, e do estimador da regressão 

linear, RLGE, dentro dos grupos ou estratos.

7 -  Cálculo dos erros relativos percentuais em valor absoluto, das estimativas 

populacionais:

Com a estimativa populacional, determinou-se de cada estimador o erro 

relativo percentual em valor absoluto entre essas estimativas e o valor simulado 

populacional, para o número de compartilhados. Isso para, a partir desses valores, 

determinar-se o estimador que forneceria o menor erro em todas ou na maioria das 

simulações, da estimativa populacional.

8 -  Cálculo do número de localidades estimadas com erro relativo percentual em 

valor absoluto menor ou igual a 5:

Com o valor simulado para cada localidade a partir da proporção simulada 

de compartilhados para o estrato ou grupo na qual ela se insere, e com o valor 

estimado para a mesma por cada um dos estimadores, calculou-se o erro relativo 

percentual em valor absoluto e, então, contou-se o número dessas localidades cujas 

estimativas tinham erro relativo percentual em valor absoluto menor ou igual a 

cinco. O objetivo era verificar qual estimador se comportava melhor estimando as 

localidades individualmente.
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9 -  Cálculo do número de vezes que o valor simulado populacional é coberto pelo 

intervalo dado pelos extremos inferior e superior da estimativa de cada estimador:

Foram calculados os extremos inferior e superior das estimativas do valor 

populacional e verificado se o intervalo dado por esses extremos cobriam o valor 

populacional simulado.

10 -  Simulação Monte Cario para a avaliação de cada estimador:

Foram realizadas simulações Monte Cario para alguns estimadores para, 

com elas, verificar-se a eficiência de cada estimador.

3.4. Programa Computacional

3.4.1. Introdução

O programa computacional EEC foi elaborado visando ao seguinte:

1-Fazer simulações para se identificar o possível melhor estimador, para os dados 

sob consideração;

2-Agrupar as localidades constantes da população, em grupos fixados pelo 

usuário dentro dos limites de um até dezessete grupos. Observa-se que, sendo o 

agrupamento efetuado pelo método das k-Médias, pode ocorrer que o número de 

grupos fixado não seja atingido, pois isso é dependente da estrutura do Banco de 

Dados sob análise, imposta ao método de agrupamento das k-Médias, como pode
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ser visto nas ‘Análises Pré Amostrais’, ANEXO 3, para algumas das variáveis 

analisadas, onde os agrupamentos têm sempre menos do que dezessete grupos. 

Os resultados dos agrupamentos podem ser visualizados em ‘Gruo/Estrato’, 
Figura 6, ANEXO 2. Aí, podem ser vistas as quantidades mínimas de 

equipamentos a ser amostrada na população, a quantidade de localidades a ser 

amostrada na mesma, a que grupo pertence cada localidade, a quantidade de 

equipamentos de cada uma delas e quantos, no mínimo, de seus equipamentos 

devem ser amostrados para que a estimativa atinja o nível de confiança desejado.

3-Estratificar as localidades constantes da população, em uma amplitude de um a 

dezessete estratos. Após fixar o número de estratos e clicar o botão ‘GK’, ver 

Figura 5, ANEXO 2, onde aparecerão as variáveis para preenchimento dos 

limites inferior e superior de cada estrato. Esses limites podem ser retirados da 

tabela visualmente, bastando para isso utilizar o comando ‘Ordenar’, e os 

valores da variável são ordenados crescentemente. Preenchidos os valores da 

variável com os limites dos estratos, clicando-se o botão ‘Estratifkar’, ver 

Figura 5, ANEXO 2, é feita a estratificação e as localidades pertencentes a cada 

estrato, as quantidades de equipamentos de cada uma delas, aquelas que devem 

ser amostradas e o número mínimo de seus equipamentos a serem amostrados 

aparecerão em ‘Grupos/Estratos’, rolando a barra de rolagem para baixo, ver 

Figura 5, ANEXO 2;

4-Fazer amostragem Aleatória Simples ou Sistemática (aproximada, em geral) 

dentro de cada grupo ou estrato, selecionado em ‘Grupos/Estratos’, 

‘Amostragem Proporcional ao Tamanho’, ver Figura 5, ANEXO 2;

5-Fazer estimativas do total populacional, com cada um dos estimadores 

descritos no capítulo 2. Os resultados dessas estimativas são mostrados em 

‘Resultados das Estimativas Clássicas, Jackknife e Bootstrap e Simulações 

Monte Cario’, ver Figura 11 e 12 e, também, em ‘Gráficos 2’, ver Figura 17 , 

em ‘Resultados das Estimativas Populacionais’:

6-Fazer estimativas de cada uma das localidades constantes da população, com 

todos os estimadores, e indicar quais dos estimadores foram os que fizeram 

estimativas entre os limites de erro relativo percentual fixado pelo nível de
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confiança estabelecido e, também, indicar qual foi o menor erro relativo 

percentual para cada localidade estimada, que pode ser visto em ‘Estimação’, 
Figura 14, ANEXO 2 Em ’Gráficos 1’, é dada a quantidade de localidades 

estimadas dentro do erro relativo percentual absoluto, por cada estimador, dentro 

de cada grupo e/ou estrato e também em toda a população, ver Figuras 16 e 17, 

ANEXO 2;
7-Realizar simulações Bootstrap Simples e Balanceado, e Jackknife das 

estimativas dos estimadores da razão, separado (RhS) e não viciado (RhNV) e da 

Regressão Linear (RL). Isso é feito automaticamente. Os resultados podem ser 

vistos em ‘Resultados das Estimativas Clássicas, Jackknife Bootstrap e 

Simulações Monte Cario’, Figura 12 e 13;
8-Realizar aproximações Monte Cario das simulações Bootstrap e Jackknife. 

Essas aproximações são realizadas a comando do usuário, após a realização das 

estimativas, isto é, após a inserção dos dados para a simulação em ‘Dados pós- 
amostragem’, onde se pode entrar com as percentagens para cada grupo ou 

estrato aí contido, após a estratificação ou agrupamento e, então, no Campo ao 

lado, chamado de ‘Simulação’, clicar em ‘Simular Compartilhados’ e depois o 

botão ‘Calcular’. Após isso, as simulações ou aproximações Monte Cario podem 

ser feitas, no Campo ‘Aproximações Monte Cario’, onde o usuário poderá 

determinar o número de replicações desejado, variando entre cinqüenta e 

quinhentas replicações. Tais replicações podem ser feitas uma, duas, ou mais de 

cada vez, sendo que a cada valor fixado de replicações, o tempo aproximado para 

a execução da simulação aparecerá indicado como ‘Tempo Estimado’. Os 

resultados dessas aproximações Monte Cario podem ser vistas na parte final de 

‘Resultados das Estimativas, Clássicas, Jackknife e Bootstrap’, na página 

‘Simulação Bootstrap’, rolando-se a barra de rolagem. Ali, aparecerão os 

resultados dessas aproximações, precedidas pela indicação do número de 

replicações solicitadas. Alguns desses resultados das aproximações Monte Cario 

podem ser vistas também em ‘Gráficos2’, Figura 18. Nesse caso, só o resultado 

da última iteração é que aparece em ‘Gráficos 2’;



FLUXOGRAMA GERAL

Figura 05: Fluxograma Geral
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4. RESULTADOS E DISCUSSÃO

4.1. Discussão dos resultados das simulações, para cada variável analisada:

Para cada uma das variáveis analisadas, consideraram-se proporções de 

compartilhados, de 75% nos grupos ou estratos ímpares e 76%, 80% ou 90% nos 

pares, em rodadas diferentes, com a mesma amostra e o mesmo número de rodadas 

para cada uma das diferentes proporções de compartilhados com amostras distintas. 

De todas as rodadas, para cada grupo de proporções diferentes, 75 e 76%, 75 e 

80%, 75 e 90%, determinou-se, média, erro padrão e amplitude de variação para os 

erros relativos percentuais em valores absolutos das estimativas populacionais e 

para o número de localidades estimadas. Para o número de vezes que as estimativas 

do estimador cobre o valor simulado da estimativa populacional, calculou-se o 

número de vezes de cobertura e as amplitudes de variação para cada uma dessas 

diferenças de proporção.

Considerou-se também o conjunto de todas as rodadas, com todas as 

diferenças de proporção acima mencionadas, e determinou-se, então, as médias, os 

erros padrão e as amplitudes de variação para as coberturas, para os erros relativos 

percentuais em valor absoluto e para o número de localidades estimadas.

Os resultados dessas simulações para cada uma das dez variáveis estudadas 

foram tabelados e então transformados em gráficos, que podem ser vistos nos 

anexos.

Além disso, fez-se também uma verificação do comportamento de cada 

estimador, para todos os agrupamentos permitidos pela estrutura dos dados em 

consideração e, em alguns casos, diversas estratificações, principalmente quando o 

número de grupos era pequeno.



79

Para a variável NC_AES, realizaram-se 25 rodadas de simulações, para as 

diferentes proporções de compartilhados entre os seis estratos nos quais a 

população inteira foi dividida com o menor número de localidades a ser amostrado 

na população, que no caso foi de sessenta e dois. Como resultado de todas as 

simulações, nas 25 rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, 

verificou-se que:

1 -  Os erros relativos percentuais em valores absoluto, das estimativas 

populacionais, o estimador da razão separado, RhS, tem os seus valores 

decrescentes, com o aumento das diferenças de proporções de compartilhados, 

entre os estratos, atingindo o valor de cerca de um, para a maior diferença de 

proporção.

2 -  Consideradas todas as 75 rodadas de simulações, com todas as suas diferenças 

nas proporções, o estimador da razão separado, RhS, juntamente com seus similares 

Bootstrap balanceado e simples e Jackknife, mantêm as menores médias, erro 

padrão e amplitude de variação de erro relativo percentual em valores absolutos. Os 

estimadores da razão acima mencionados são seguidos de perto em seus resultados 

pelos estimadores da regressão linear, RL, e de seus similares, Bootstrap 

balanceado RLBB, Bootstrap simples RLBS e Jackknife RLJK, o mesmo 

acontecendo com a simulação Monte Cario RLJKMC, da regressão linear 

Jackknife.

As diferenças entre as estimativas do estimadores da razão separado, RhS e 

as da regressão linear, RL, estão no fato que, nas estimativas destas últimas, os 

erros relativos percentuais crescem com o aumento na diferença de proporção entre 

os compartilhados, enquanto que em relação ao estimador da razão acontece o 

contrário.

3- Quanto ao número de localidades estimadas, o maior número delas fica por conta 

da regressão linear dentro do estrato RLGE, que tem o maior número de localidades 

estimadas, aumentando esse número com o aumento na diferença de proporção de

4.1.1. Discussão dos resultados das simulações para a variável NC_AES:
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compartilhados, com menor erro padrão e amplitude de variação dessas 

quantidades. Gráficos 01.04 a 01.06, Tabelas 01.04 a 01.06

4 -  Com relação à cobertura do valor simulado da estimativa populacional, os 

maiores número de vezes estão a cargo dos estimadores da razão separado, RhS e 

não viciado, RhNV, e de seus similares Jackknife, RhSJK e RhNVJK. As 

estimativas desses estimadores cobrem o valor simulado das estimativas 

populacional em praticamente todas as simulações, com erro padrão e amplitude de 

variação desse referido número, nulos ou quase nulos.

Em resumo, o estimador da razão separado, RhS, é o melhor estimador das 

estimativas populacionais para a variável NC_AES, pois as suas estimativas têm o 

menor erro relativo percentual em valor absoluto quando comparadas às estimativas 

de todos os demais estimadores, porque suas estimativas cobrem o valor simulado 

em praticamente todas as simulações com erro padrão e amplitude de variação da 

ordem de zero. O estimador da razão separado, RhS, estima também um número 

significativamente grande de localidades, com erro padrão e amplitude de variação 

desse número um pouco menor, apenas, que o do estimador RLGE.

4.1.2. Discussão dos resultados das simulações para a variável NC_COM:

Para a variável NC COM, foram realizadas 25 rodadas de simulações para 

as diferentes proporções de compartilhados entre os seis estratos nos quais a 

população inteira foi dividida com o menor número de localidades a ser amostrado 

na população entre os treze grupos, nos quais a população inteira foi dividida, Esse 

número foi de cinqüenta e cinco. Como resultado de todas as simulações, nas 25 

rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, verificou-se que:

1 -  Os erros relativos percentuais em valor absoluto das estimativas dos 

estimadores da razão, separado RhS e não viciado, RhNV, têm valores próximos de 

zero. Os similares Bootstrap do estimador da razão separado, RhSBB e RhSBS, e 

Jackknife, RhSJK, têm os valores de erro relativo percentual da ordem de meio, 

diminuindo este valor com o aumento da diferença de compartilhados. As
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estimativas dos similares Bootstrap e Jackknife, do estimador da razão não viciado, 

RhNVBB, RhNVBS e RhNVJK, respectivamente, têm erros da ordem de um que 

diminuem para cerca de meio quando as diferenças de proporção de compartilhados 

atinge o maior valor simulado.

Os erros padrão das estimativas dos estimadores da razão, separado e não 

viciado, bem como as amplitudes de variação dos erros relativos percentuais desses 

estimadores estão próximos de zero. Essas quantidades também estão próximas de 

zero para os similares Bootstrap e Jackknife, dos estimadores da razão, porém um 

pouco maiores do que as dos seus representantes clássicos.

2 - 0  maior número de localidades estimadas pertence ao estimador da razão 

separado, RhS, o qual estima todas as localidades, em todos os casos de diferença 

de proporção entre o número de compartilhados. Ao estimador da razão separado 

segue-se o estimador da razão não viciado, RhNV, que estima quase todas as 

localidades, praticamente não variando a quantidade das mesmas quando da 

variação das diferenças de proporção entre o número de compartilhados. Quanto ao 

número de localidades estimadas, erro padrão e amplitude de variação do número 

das mesmas, esses estimadores da razão são seguidos pelo estimador da regressão, 

RLGE, que também tem ótimos resultados.

3 -  Quanto ao número de vezes que o valor simulado da estimativa populacional é 

coberto, os maiores números de vezes estão por conta dos estimadores da razão 

separado e não viciado, RhS e RhNV, e de seus similares Jackknife, RhSJK e 

RhNVJK, respectivamente.

Em resumo, podemos dizer que ao estimador da razão restam algumas 

pequenas vantagens em relação aos demais que o seguem, especialmente àquele 

que o segue mais de perto, o não viciado RhNV. Assim, o estimador da razão 

separado, RhS, por uma leve diferença, caracteriza-se como melhor estimador, para 

a variável NC COM.
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Para a variável NC ILU, realizaram-se 25 rodadas de simulações, para as 

diferenças de proporção entre os cinco estratos, nos quais a população inteira foi 

dividida, com o menor número de localidades a ser amostrado na população que, no 

caso foi de sessenta e nove. Como resultado de todas as simulações, nas 25 rodadas 

e no conjunto de todas elas, ou seja, nas 75 rodadas, verificou-se que:

1 -  Os menores erros relativos percentuais em valor absoluto estão por conta das 

estimativas Bootstrap e Jackknife, RhSBB, RhSBS e RhSJK, do estimador da razão 

separado, Rh S. As estimativas do erro relativo percentual desses estimadores têm 

os menores erros, as menores amplitudes de variação e os menores erros padrão, 

quando comparadas a todas as estimativas de todos os demais estimadores. Suas 

estimativas se mantêm quase que inalteradas com o aumento das diferenças de 

proporção do número de compartilhados. Os erros padrão do erro relativo 

percentual das estimativas populacionais desses estimadores, ficam em tomo de 

um, e seus erros padrão também ficam em tomo de um, enquanto que as suas 

amplitudes de variação estão em torno de seis.

2 -  Quanto ao número de localidades estimadas, o maior número delas fica por 

conta da regressão linear RLGE, que estima praticamente todas as localidades, 

independentemente de as diferenças entre o número de compartilhados ser menor 

ou maior. O número de localidades estimadas pelo estimador da regressão linear, 

RLGE, tem o menor erro padrão e a menor amplitude de variação dentre todos os 

demais estimadores.

Ao número de localidades estimadas pelo estimador RLGE, seguem as dos 

estimadores da razão separado, Bootstrap e Jackknife, RhSBB, RhSBS e RhSJK 

respectivamente, os quais têm os números de localidades estimadas comparáveis 

aos do estimador RLGE, quando a diferença do número de compartilhados é da 

ordem de um ou de cinco por cento, diminuindo quando tal diferença atinge os 

quinze por cento. Mesmo assim, os estimadores RhSBB, RhSBS e RhSJK têm os 

maiores números de localidades estimadas que os demais estimadores, que não o 

RLGE.

4X3, Discussão dos resultados das simulações para a variável NCILU:
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3 -  Quanto à cobertura do valor populacional simulado, os maiores números de 

vezes pertencem aos estimadores da razão clássicos, separado e não viciado,RhS e 

RhNV, respectivamente, juntamente com os seus representantes Jackknife, RhSJK 

e RhNVJK. Todos eles cobrem o valor simulado em praticamente todas as 

situações, não importando se as diferenças entre o número de compartilhados é 

pequena ou grande.

Em resumo, o estimador da razão separado Jackknife, RhSJK, é o estimador 

que tem o menor erro relativo percentual em suas estimativas do valor simulado, 

populacional, menor amplitude de variação desses erros e menor erro padrão dos 

mesmos. Com relação ao número de localidades estimadas, é o estimador que 

estima o maior número delas, depois do estimador RLGE. Além disso, suas 

estimativas populacionais cobrem o valor simulado o maior número de vezes, com 

amplitude de variação e erro padrão desse número de vezes praticamente nulos.

Assim, o estimador da razão separado Jackknife poderia, ser considerado o 

melhor estimador para a variável NC_ILU. Observa-se no entanto, que o estimador 

clássico da razão separado, RhS, deixa de ser o melhor estimador, de um lado por 

causa dos erros de arredondamentos parciais, feitos sobre as proporções do número 

de compartilhados de cada localidade. Por serem pequenas as quantidades de 

equipamentos dessas localidades, os arredondamentos das quantidades de 

compartilhados, destes valores, causam erros relativos percentuais elevados. Fez-se 

outras estimativas para esta variável, eliminando-se o estrato que continha as 

menores quantidades de equipamentos e o estrato contendo as localidades que 

continham de um a três equipamentos, e o resultado mostra que o estimador da 

razão separado, clássico, RhS, mantém a sua liderança como ‘melhor estimador5.

Por todas as considerações acima, o estimador da razão separado clássico, 

RhS, deve ser considerado o melhor estimador para esta variável também, 

juntamente com o estimador da razão separado Jackknife, RhSJK.
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Para a variável NC_3ND, realizaram-se 20 rodadas de simulações para as 

diferentes proporções de compartilhados entre os catorze estratos, nos quais a 

população inteira foi dividida, com o menor número de localidades a ser amostrado 

na população que, no caso, foi de sessenta e sete. Como resultado de todas as 

simulações, nas 20 rodadas e no conjunto de todas elas, ou seja, nas 60 rodadas, 

verificou-se que:

1 -  Os estimadores da razão separado, RhS, e não viciado, RhNV, apresentam erros 

relativos percentuais das estimativas populacional em relação ao valor simulado 

próximos de zero, o mesmo acontecendo com o erro padrão e a amplitude de 

variação dos erros relativos percentuais, com uma leve vantagem para o estimador 

separado. Esses valores de erro relativo percentual se mantêm para todas as 

diferenças de proporção de compartilhados.

2 -  Quanto ao número de localidades estimadas, o maior número delas é do 

estimador da razão separado; seus erros padrão e a amplitude de variação desses 

números são menores do que as de todos os outros estimadores, inclusive os do 

estimador não viciado, que o segue em segundo lugar. Em terceiro lugar, tem-se o 

estimador da regressão linear, RLGE, com um número de localidades um pouco 

menor, porém com um erro padrão e amplitude de variação menores que os do 

estimador não viciado, RhNV, porém um pouco maiores do que as do estimador 

separado, RhS.

3 - 0  número de vezes que o valor simulado populacional é coberto pelos 

intervalos das estimativas de cada estimador encontra os seus maiores valores para 

os estimadores da razão separado e não viciado, juntamente com os seus similares 

Jackknife, RhSJK e RhNVJK. As estimativas desses estimadores cobrem o valor 

populacional simulado em praticamente cem por cento das vezes. Seus erros padrão 

e amplitudes de variação dessa quantidade estão bem próximo a zero.

Em resumo, o estimador da razão separado, RhS, deve ser considerado o 

melhor estimador para a variável NCJND.

4 1A  Discussão dos resultados das simulações para a variável NC IND:
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Para a variável NCPQD, realizaram-se 21 rodadas de simulações para as 

diferentes proporções de compartilhados entre os oito grupos, nos quais a 

população inteira foi dividida, com o menor número de localidades a ser amostrado 

na população, que no caso foi de quarenta e três. Como resultado de todas as 

simulações, nas 21 rodadas e no conjunto de todas elas, ou seja, nas 63 rodadas, 

verificou-se que:

1 -  Os menores eixos relativos percentuais em valor absoluto, pertencem aos 

estimadores da razão separado, RhS, não viciado, RhNV, e combinado, RhCB, com 

uma leve vantagem para o estimador separado, RhS. Os erros padrão e amplitude 

de variação dos erros relativos percentuais desses estimadores são bastante 

pequenos, ainda com leve vantagem para o estimador separado. Os estimadores 

Bootstrap e Jackknife, dos estimadores da razão separado RhSBB, RhSBS e 

RhSJK, assim como os do não viciado, RJhNVBB, RhNVBS e RhNVJK, também 

têm, aproximadamente, as mesmas características de seus similares clássicos, acima 

mencionadas.

2 -  Quanto ao número de localidades estimadas, o maior número delas é a do 

estimador da razão separado, RhS, seguido pelo estimador da razão não viciado, 

RhNV e da regressão linear, RLGE, que apresentam valores muito próximos os do 

estimadores da razão separado e não viciado. O erro padrão do número de 

localidades estimadas do estimador da regressão linear, RLGE, é da mesma ordem 

que a do estimador da razão separado, RhS, ambas menores do que aquela do 

estimador não viciado, RhNV. O mesmo acontece com as amplitudes de variação 

do número de localidades estimadas por esses estimadores.

3 -  Sobre a cobertura do valor populacional simulado, as maiores quantidades de 

vezes são dos estimadores da razão separado, RhS, e não viciado, RhNV, 

juntamente com seus similares Jackknife, RhSJK e RHNVJK, com os mesmos 

números de quantidades que as dos seus representantes clássicos. Todos esses

4.1,5, Discussão dos resultados das simulações para a variável NCPOI);
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estimadores apresentam amplitude de variação e erro padrão, da quantidade de 

vezes, da ordem de zero.

Em conclusão, podemos afirmar que, por todas essas considerações feitas 

sobre os resultados das simulações, o estimador da razão separado RhS, por suas 

características e por suas, ainda que pequenas, diferenças em relação àqueles 

estimadores que o seguem, ser ele o melhor estimador para a variável NCJPOD.

4.1.6. Discussão dos resultados das simulações para a variável NC PRO;

Para a variável NCJPRO, realizaram-se 25 rodadas de simulações, para as 

diferentes proporções de compartilhados entre os oito grupos, nos quais a 

população inteira foi dividida, com o menor número de localidades a ser amostrado 

na população que, no caso, foi de cinqüenta e seis. Como resultado de todas as 

simulações, nas 25 rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, 

verificou-se que:

1 -  Quanto aos erros relativos percentuais em valor absoluto das estimativas 

populacionais os estimadores da regressão linear, RL, e seus representantes 

Bootstrap e Jackknife, RI,BB, RLBS e RLJK, juntamente com as simulações 

Monte Cario RLJKMC, do estimador da regressão linear Jackknife, RLJK, e do 

estimador da razão separado Bootstrap balanceado, RhSBB, têm os menores erros. 

O menor erro padrão e menor amplitude de variação dos erros relativos percentuais 

são do estimador da razão separado Bootstrap balanceado, RhSBB.

2 -  Quanto ao número de localidades estimadas, o maior número pertence ao 

estimador da razão separado e ao estimador da regressão linear, RLGE. Ambos têm 

essas quantidades variando muito pouco com a variação nas diferenças de 

compartilhados. Ambos os estimadores têm erro padrão e amplitudes de variação 

do número de localidades estimadas, pequenos, com uma leve vantagem para o 

estimador da razão separado, RhS.

3 -  Quanto à cobertura do valor populacional simulado, o estimador da razão 

separado, RhS, e o estimador da razão não viciado, RhNV, juntamente com os seus 

similares Jackknife, RhSJK e RhNVJK, possuem os maiores números de vezes. As
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estimativas desses estimadores cobrem o valor simulado em, praticamente, cem por 

cento das vezes. Seus erros padrão e amplitudes de variação são praticamente 

nulos.

Em resumo, para essa variável o quadro parece um pouco confuso quanto à 

decisão sobre qual seria o melhor estimador, quando consideradas separadamente 

as características desses estimadores. Contudo, ao considerar-se em conjunto, tais 

características parecem indicar o estimador da razão separado Jackknife, RhSJK, 

como o melhor estimador para a variável NC PRO. Pois, por exemplo, as 

estimativas do estimador da razão separado Bootstrap têm erros relativos 

percentuais um pouco menores do que os correspondentes, do estimador da razão 

separado Jackknife. Quanto às outras características, ambos têm diferenças 

pequenas, porém quanto às coberturas do valor populacional simulado, o estimador 

da razão separado Jackknife cobre cem por cento das vezes esse valor, enquanto 

que o correspondente estimador Bootstrap tem uma grande amplitude de variação 
no número de vezes que cobre o valor simulado .

4.1.7. Discussão dos resultados das simulações para a variável NC RES;

Para a variável NC RES, foram realizadas 25 rodadas de simulações para as 

diferentes proporções de compartilhados entre os catorze grupos, nos quais a 

população inteira foi dividida, com o menor número de localidades a ser amostrado 

na população que, no caso, foi de sessenta. Como resultado de todas as simulações, 

nas 25 rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, verificou-se 

que:

1 -  Os estimadores da razão, separado RhS e não viciado RhNV, tem os menores 

erros relativos percentuais de suas estimativas populacionais em relação ao valor 

populacional simulado. Os erros relativos percentuais, seus erros padrão e 

amplitudes de variação são todos pequenos, próximos de zero.

2 -  As maiores quantidades de localidades estimadas também são dos estimadores 

da razão separado, RhS, e não viciado, RhNV. Seus erros padrão e amplitude de 

variação do número de localidades estimadas têm valores próximos de zero, com
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pequena vantagem para o estimador da razão separado. Observa-se nesse caso, que

0 estimador da regressão linear, RLGE, não estima sequer uma localidade, com 

erro relativo percentual em valor absoluto menor ou igual a 5, apesar de o 

estimador fazer estimativas em doze dos catorze grupos. O estimador da regressão 

linear, RLGE, não só não estima bem as localidades como também tem enormes 

erros relativos percentuais (maiores do que noventa por cento) nas suas estimativas 

populacionais. Tais resultados do estimador RLGE o caracterizam como um 

péssimo estimador para a variável NC_RES.

3 -  Quanto à cobertura do valor populacional simulado, os estimadores da razão 

separado e não viciado, juntamente com seus similares Bootstrap e Jackknife, 

cobrem o valor simulado cem por cento das vezes, com exceção do estimador da 

razão Bootstrap balanceado que, nas setenta e cinco simulações, cobriu setenta e 

quatro vezes o valor simulado populacional.

Em resumo, das diversas considerações acima, dois estimadores podem ser 

considerados melhor estimador para a variável NCJRES, mas, ainda neste caso, 

uma diferença bastante pequena no número de localidades estimadas caracteriza o 

estimador da razão separado, RhS, como o melhor estimador para essa variável.

4.1.8. Discussão dos resultados das simulações para a variável NC RUR;

Para a variável NCRUR, realizaram-se 25 rodadas de simulações para as 

diferentes proporções de compartilhados entre os catorze grupos, nos quais a 

população inteira foi dividida, com o menor numero de localidades a ser amostrado 

na população que, no caso, foi de sessenta. Como resultado de todas as simulações, 

nas 25 rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, verificou-se 

que:

1 -  Os estimadores da razão separado, RhS, e não viciado, RhNV, tem os menores 

erros relativos nas estimativas do valor populacional simulado. Independentemente 

de serem ou não pequenas as diferenças entre o número de compartilhados, esses 
erros se mantêm próximos de zero, bem como suas amplitudes e erros padrão. Em 

todas as situações há uma pequena vantagem para o estimador da razão separado.
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Observa-se que na maioria dos estimadores e na maior parte das simulações há 

erros relativos percentuais em valores absolutos menores do que um e que o 

estimador da razão combinado, RhCB, tem esse erro, em média, menor do que 0.2, 

e erro padrão e amplitude menores do que um.

2 -  Quanto ao número de localidades estimadas, com erro relativo percentual em 

valor absoluto, menor ou igual a 5, os estimadores da razão separado, RhS, e não 

viciado, RhNV, estimam quase que cem por cento das localidades na maioria das 

simulações, com erros padrão e amplitudes de variação em torno de um. Observa- 

se, aqui, algo interessante com relação ao estimador da regressão linear, RLGE, 

esse estimador estima em todas as situações, independentemente de as diferenças 

no número de compartilhados ser pequena ou grande, um número constante de 

localidades, quarenta e nove. Ao se observar as quantidades de localidades dos 

grupos com mais de duas localidades a serem amostradas, verifica-se que os cinco 

grupos com mais do que duas localidades amostradas possuem, em conjunto, 

setenta e seis localidades. Delas, somente quarenta e nove são estimadas, com erro 

relativo percentual em valor absoluto menor ou igual a cinco, pelo estimador da 

regressão linear, RLGE.

3 -  Com relação à cobertura do valor populacional simulado, os estimadores da 

razão, separado RhS, e não viciado RhNV, bem como os seus similares Jackknife, 

cobrem o valor simulado em cem por cento das vezes.

Em resumo, os estimadores da razão separado, RhS, e não viciado, RhNV, 

são ótimos estimadores para a variável NCJRUR, não só das estimativas 

populacionais, como também das estimativas das localidades. Esse saldo é 

favorável no que diz respeito ao erro relativo percentual em valor absoluto, para o 

estimador da razão separado, pois coloca-o como o melhor estimador, embora a 

diferença, na realidade, seja bastante pequena, da ordem da segunda ou terceira 

casa decimal.
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Para a variável PR, foram realizadas 25 rodadas de simulações para as 

diferentes proporções de compartilhados entre os catorze grupos, nos quais a 

população inteira foi dividida, com o menor número de localidades a ser amostrado 

na população que, no caso, foi de sessenta. Como resultado de todas as simulações, 

nas 25 rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, verificou-se 

que:

1 - Os menores erros relativos percentuais em valores absolutos pertencem aos 

estimadores da razão separado, RhS, e não viciado, RhNV, sendo praticamente 

nulos e pouco ou quase nada variando com as diferenças nas proporções de 

compartilhados. As estimativas Bootstrap e Jackknife, desses estimadores, RhSBB, 
RhS BS, RhSJK, RhNV RR, RhNVBS e RhNVJK, respectivamente, têm erros 

maiores que os seus representantes clássicos, porém, em média menores do que 0.4. 

O estimador da razão combinado, assim como os demais estimadores já 

mencionados, também têm erros relativos percentuais pequenos, em média menores 

do que 0.4. Com relação aos estimadores da regressão linear, RL, e seus similares 

Bootstrap e Jackknife, seus erros relativos percentuais em valores absoluto, 

menores do que um. As melhores estimativas, porém, em todos os aspectos, no que 

diz respeito ao valor do erro relativo percentual, seus erros padrão e suas 

amplitudes de variação, ainda são dos estimadores clássicos, da razão separado, 

RhS e, não viciado, RhNV.

2-Quanto ao número de localidades estimadas, os estimadores da razão separado e 

não viciado, têm a totalidade deles, independentemente se as diferenças nas 

proporções de compartilhados sejam grandes ou pequenas. Nota-se aqui que o 

estimador da regressão linear, RLGE, não estima sequer uma localidade, com erro 

relativo percentual em valor absoluto menor ou igual a 5, muito embora faça 

estimativas em sete dos treze grupos nos quais a população foi dividida, 

caracterizando-se dessa forma, como um péssimo estímador para as localidades.

4.1.9. Discussão dos resultados das simulações para a variável PR:
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3-0 valor simulado populacional do número de compartilhados é coberto 

praticamente em cem por cento das vezes pelas estimativas dos estimadores da 

razão separado, RhS e não viciado, RhNV, e por seus respectivos representantes 

Jackknife, RhSJK e RhNVJK.

Em resumo, uma pequena vantagem para o estimador da razão separado, 

RhS, em relação ao estimador não viciado, RhNV, o coloca como o melhor 

estimador para a variável PR

4.1.10. Discussão dos resultados das simulações para a variável PU;

Para a variável PU, realizaram-se 25 rodadas de simulações, para as 

diferentes proporções de compartilhados entre os catorze grupos, nos quais a 

população inteira foi dividida, com o menor número de localidades a ser amostrado 

na população que, no caso, foi de sessenta. Como resultado de todas as simulações, 

nas 25 rodadas e no conjunto de todas elas, ou seja, nas 75 rodadas, verificou-se 

que:

1 -  Os estimadores da razão separado, RhS e não viciado, RhNV, têm os menores 

erros relativos percentuais em valores absolutos das estimativas populacionais em 

relação ao valor simulado populacional, seguidos dos seus representantes Bootstrap 

e Jackknife, RhSBB, RhSBS, RhSJK, RhNVBB, RhNVBS, e RhNVJK, 

respectivamente, que têm erros relativos percentuais, em valor absolutos menores 

que meio. O estimador da razão combinado RhCB também tem erros relativos 

percentuais, em valor absoluto, menores que meio. Já os estimadores da razão 

separado e não viciado têm os erros relativos percentuais, os erros padrão e a 

amplitude de suas variações menores do que os dos demais estimadores acima 

mencionados.

2 -  Quanto ao número de localidades estimadas com erro relativo menor do que 5, 

os estimadores da razão separado e não viciado têm a quase totalidade delas, em 

todos os casos de variação nas diferenças do número de compartilhados. Aqui 

também, como no caso da variável PR, o estimador da regressão linear, RLGE, não 

estima sequer uma localidade com erro relativo percentual em valor absoluto menor
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do que 5, apesar de fazer estimativas de treze dos dezesseis grupos nos quais a 

população está dividida, o que o caracteriza como um mau estimador das 

localidades para essa variável.

3 -  Quanto à cobertura do valor simulado populacional, as estimativas dos 

estimadores separado, RhS e não viciado, RhNV, bem como as de seus 

representantes Jackknife, RhSJK e RhNVJK, cobrem o valor simulado 

populacional em praticamente cem por cento das vezes, com erros padrão e 

amplitudes de variação desse número de vezes praticamente nulos.

Em resumo, na caracterização de ‘melhor estimador5 praticamente não há 

diferença entre os estimadores da razão separado, RhS, e não viciado, RhNV, 

clássicos, a não ser uma diferença muito pequena no número de localidades 

estimadas, a favor do estimador da razão separado, RhS.
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5. CONCLUSÃO

Para a obtenção dos resultados deste trabalho, consideraram-se dez variáveis 

com características diferentes, pertencentes a dois bancos de dados distintos. Para 

algumas das variáveis estudadas, o método de agrupamento das k-Médias forneceu 

um número de localidades a ser amostrado bem maior do que para algumas 

estratificações das mesmas variáveis.

Fez-se uma comparação entre as estimativas de diversos estimadores 

clássicos e não clássicos (computacionalmente intensivos). Simulou-se uma 

quantidade de compartilhados na faixa de 75 a 90%. Realizaram-se, então 

simulações Monte Cario para uma avaliação desses estimadores. Como resultado, 

verificou-se que o estimador da razão separado clássico é o melhor estimador para 

esse tipo de problema, na faixa considerada para o número de compartilhados, 

quando a quantidade de equipamentos não for simultaneamente multimodal e com 

valores da ordem das unidades.

Como não se fez um estudo para as proporções de compartilhados menores 

do que 75%, e tendo em vista a possibilidade da existência concomitante de valores 

da ordem das unidades e multimodais, na variável a ser estimada, sugere-se que:

1-Faça-se uma ordenação das quantidades de equipamentos da variável sob 

estimação;

2-Verifícar-se a existência de valores da ordem das unidades multimodais, para as 

quantidades de equipamentos das localidades. Caso existam quantidades pequenas 

de equipamentos, com modas grandes, e se a amplitude de variação da quantidade 

de equipamentos na população não for grande, deve-se, além de agrupamentos, 

fazer-se também estratificações para a verificação da quantidade de equipamentos a 

ser amostrado. Possivelmente esses valores pequenos de quantidades de 

equipamentos tenham que ser filtrados (eliminados) das análises se as suas modas 

forem grandes e a amplitude de variação dessa quantidade for pequena na 

população.
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3-Realize-se uma verificação do número máximo de agrupamentos possíveis para a 

variável sob estimação, para se identificar o menor número de localidades a ser 

amostrado na população, para a situação. Caso o número de grupos obtidos seja 

pequeno e a quantidade de localidades a ser amostrada seja grande, deve-se fazer 

também estratifícações para comparação; caso essa comparação forneça menor 

número de localidades a ser amostrado, deve-se trabalhar então com as 

estratifícações para a realização das estimativas;

4-Simule-se diferenças de proporção, variando as quantidades do número de 

compartilhados, entre os diversos grupos ou estratos nos quais a população inteira 

foi dividida, a partir de alguma estimativa inicial, a partir de uma amostra piloto ou 

de informações outras.

5-Proceda-se então, às simulações Monte Cario para a verificação do 

comportamento de cada estimador, sob as diversas diferenças de compartilhados, 

próximas às obtidas no item 4, acima, para então decidir o estimador a ser 

empregado para a estimação desejada.
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ANEXO 1 -  Exemplo de cálculo de área simples pelo método Monte Cario

Para pontos -  100

Al = 0,29 A6 = 0,25
A2 = 0,29 A7 = 0,24
A3 = 0,28 A8 = 0,19
A4 = 0,27 A9 = 0,32
A5 = 0,29 Al 0= 0,32

Média = 0,274 
Vicio = 0,024 
Erro P= 0,0392

Para pontos =  200
Al = 0,26 A6 = 0,23
A2 = 0,225 A7 = 0,26
A3 = 0,225 A8 = 0,22
A4 = 0,24 A9 = 0,2
A5 = 0,245 Al 0= 0,255

Média = 0,236 
Vicio = -0,014 
Erro P= 0,0195

Para pontos = 500
Al = 0,256 A6 = 0,258
A2 = 0,228 A l  = 0,228
A3 = 0,22 A8 = 0,264
A4 = 0,248 A9 = 0,27
A5 = 0,258 A10= 0,228

Média = 0,2458 
Vicio = -4,1999 
Erro P= 0,0180

Para pontos =  1000

Al = 0,25 A6 = 0,254
A2 = 0,238 A l  = 0,262
A3 = 0,268 A 8  = 0,248
A4 = 0,221 A9 = 0,228
A5 = 0,233 Al 0= 0,262

Média = 0,2464 
Vicio = -3,5999 
Erro P= 0,0158
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ANEXO 2 -  Ajuda para operação do programa EEC (Estimação de Número 
de Equipamentos de Uso Compartilhados).

1 -  Apresentação

Este programa foi desenvolvido para fazer estimativas do número de equipamentos 
compartilhados, usando Agrupamento ou Estratifícação. O agrupamento é 
automático, enquanto que a estratifícação é um processo mecânico, de escolha dos 
limites inferior e superior de cada estrato. Para agrupar os itens, o método 
empregado é o método das k Médias.
O que segue, é uma seqüência de passos, a ser seguida, para a utilização do 
programa, para a obtenção do número de equipamentos compartilhados.

2 -  Requisitos

A tabela a ser analisada deve ser em formato DBF. Este formato é o tipo de 
estrutura de dados do Dbase. Consegue-se este formato de dados, por exemplo, 
exportando uma planilha em forma de tabela do Excel (Salvar como...).

3 -  Especificações

- Tabela com no máximo 10 variáveis para cálculo e com no máximo 5 variáveis de 
cabeçalho. Total de 15da variáveis;
- Número máximo de registros filtrados na tabela é 500;
- Nível de confiança da solução de 51 a 99%;
- Numero de grupos de 1 a 17;
- Número de estratos de 1 a 17;
- Número máximo de localidades (ou itens) por grupo/estrato é 500;



4 -  Funcionamento

Figura 06: Tela inicial do programa

1- Seleciona a pasta desejada;
2- Seleciona o arquivo desejável;
3- Arquivo selecionado;
4- Executa a abertura do arquivo.

Figura 07: Tela inicial do programa

100
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1 - Número de registros filtrados da tabela;
2-da variável ANO ainda não filtrado;
3- Indicativo deda variável;
4- Caminho do arquivo de dados;
5-da variável NCRES ainda não ordenado crescentemente;

Figura 08: Descrição das variáveis

1-das vanaveis do inicio do arquivo;
2-da variável ANO filtrado. Quando o filtro está vazio, a tabela não está filtrada;
3-da variável NC RES ordenado crescentemente;
4- Identificação dos municípios nos resultados;
5- Executa o filtro indicado.

Figura 09: Continuação descrição das variáveis
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1- Nível de confiança da solução, vai de 51 a 99;
2- Entrar com a Estimativa Inicial da Razão;
3- Entrar com o Erro Relativo;
4- Entrar com a Precisão da Estimativa;
5- Números de Grupos, vai 1 a 17;
6- Já vem selecionada a variável de Ordem. Esta variável não pode ser descelecionada. Selecionar 

as demais variáveis para agrupamento caso haja interesse.
7- Selecionar entre amostragem Aleatória e Sistemática (aproximada).

8- Executa os cálculos para o agrupamento;

9- Número de estratos, vai de 1 a 17;

10- Cria as caixas de edição referente ao número de estratos.

11 - Caixas de edição para entrar com os valores extremos dos estratos. Entrar com valores inteiros. O

valor do limite inferior do estrato seguinte deve ser maior que o limite superior do estrato

anterior.

12- Executa os cálculos para a estratificação. A estratificação e o agrupamento são independentes.

Figura 10: Continuação descrição das variáveis
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Exemplo de resultado do agrupamento.

Figura 11: Resultado do agrupamento

Exemplo de resultado da estratificação.

Figura 12: Resultado estratificação



104

Análise Pré-Amostral, tabela contendo os principais resultados para análise.

Figura 13: Análise pré-amostral

1 - Caixa de edição com os valores dos amostrados;
2- Identificação dos municípios sorteados;
3- Caixa de edição com os valores dos compartilhados;
4- Caixa de edição com valores numéricos que vai de 20 a 300%;
5- Limpa todas as caixas de edição de Compartilhados, para possibilitar a execução do próximo item;
6- Preenche as caixas de edição de Compartilhados com a porcentagem de cada estrato % Estrato,

caso todos as caixas de edição de compartilhados estejam vazias;
7- Quando se preenchem manualmente as caixas de edição de Compartilhados, é conveniente saber a

que porcentagem corresponde estes valores, por estrato/grupo;
8- Executa todos os cálculos de análise para uma iteração, obtendo o tempo dos cálculos;

Figura 14: Dados pós-amostragem
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1- Ao marcar a quantidades de iterações Monte Cario, obten-se o tempo estimado de duração dos 
cálculos;

2- Executa os cálculos, agora para as aproximações Monte Cario.

Figura 15: Continuação dados pós-amostragem

Figura 16: Resultado dos cálculos do agrupamento.
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- Exemplo de resultados dos cálculos, para estratos; 
1- Sobe a tela e mostra o menu.

Figura 17: Resultado dos cálculos estratifícação

1- Tela de Estimação, onde mostra as estimações para cada município e o melhor estimador;
2- Gráfico comparativo 1;
3- Gráfico comparativo 2;
4- Histórico das estimações, para posterior análise.

Figura 18: Demais telas
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Figura 19: Estimação

Figura 20: Estimação (continuação)
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Figura 21: Tela de apresentação dos gráficos das estimativas do número de 
localidades estimadas dentro do intervalo do erro relativo percentual fixado pelo 
nível de confiança da solução. Dentro de cada grupo e na população.

Figura 22: Gráficos das estimativas do número de localidades estimadas dentro do 
intervalo do erro relativo percentual fixado pelo nível de confiança da solução. 
Dentro de cada estrato e na população.
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Figura 23: Gráficos comparativos das estimativas populacionais de cada
estimador.
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ANEXO 3 -Quadros de Análises Pré-Amostrais.

QUADRO 00: ANÁLISE PRÉ-AMOSTRAL,das variáveis NC_AES, NC_ILU,
NC PRO, NC COM

QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-
POP

AMOSTRA VAR-
POP.

E04 NC ILU 95 A 318 65 49,9,4,3 1013 215 6
E06 NC AES 95 A 318 64 36,9,8,2,4,5 1908 421 74
E06 NC PRO 95 A 306 62 36,9,8,4,3,2 12% 668 10140
G02 NC AES 95 A 318 111 77,34 1908 709 30
G02 NC ILU 95 A 318 97 97,0 1013 390 7
G03 NC PRO 95 A 306 153 1.7,145 12% 839 294
G12 NC PRO.NC COM 95 A 306 306 1,5,7,13,14,31,33,49,48,52,35,18 1296 1254 7343644
G13 NC AES.NC COM 95 A 318 317 1,5,7,13,15,32.33.48,46,49,32,31.5 1908 1818 7344022
G13 NC ILU JVC COM 95 A 318 318 1,5,7,13,15,32,33,48,48,51,37,23,5 1013 985 7343726

QUADRO 01: ANALISE PRÉ-AMOSTRAL.da vanável NC_AES.
QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP.
G01 NC AES 95 A 318 145 145 1908 921 25
GOI NC AES 95 S 318 145 145 1908 829 25
G02 NC AES 95 A 318 111 77,34 1908 702 30
G02 NC AES 95 S 318 111 77,34 1908 731 30
E04 NC AES 95 A 318 72 46,15,7,4 1908 564 114
E04 NC AES 95 S 318 72 46,15,7,4 1908 559 114
E05 NC AES 95 A 318 67 36,9,15,2,5 1908 471 75
E05 NC AES 95 S 318 67 36,9,15,2,5 1908 462 75
E06 NC AES 95 A 318 64 36,9,8,2,4,5 1908 443 74
£06 NC AES 95 S 318 64 36,9,8,2,4,5 1908 437 74
E07 NC AES 95 A 318 58 36,9,3,2,2,1,5 1908 380 72
E07 NC AES 95 S 318 58 36,9,3,2,2,1,5 1908 372 72

<.*uanndatk de grupos QGTl.da vanavd para agrupamento, no caso a NCAES. Nivd de Confiança pretendido da solução NC. tipo de amostragem A * aleatona Simples. S = SistemaUca. (Quantidade de Locabdades na 
População QLP, Quantidade de Locabdades a serem amostrados na população QLAP. Quantidade de Ixxaiidades a serem amostradas no Grupo ou Estralo QLAGE. quantidade de equipamentos, total na população 
Total Pop. quantidade de equipamentos a serem amostrados na população AMOSTRA. Yanãncia PopuboonaL VAR1ANCLA POP

QUADRO 02: ANÁLISE PRÉ-AMOSTRAL,da variável NC ILU.
QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP
GOI NC ILU 95 A 320 152 152 1018 454 7
G02 NC ILU 95 A 320 97 97,0 1018 361 7
E04 NC ILU 95 A 320 65 50,9,3,3 998 203 6

Quantidade de grupos Qi.VT.da vanavd para agrupamento, sendo o pnmeiro ddes o da vanavd de interesse. no caso a NC RES. Nrvd de Confiança pretendido da sohição NC. tipo de amostragem A = aãeatene 
Simples. S = Sistemadca. Quantidade de Localidades na População QLP. Quanddade de Locabdades a serem amostrados na população QLAP, Quanddade de Locabdades a serem amostradas no ürapo ot Esteio 
QLAGE. quantidade de equipamentos, total na população Tc<al Pop . quantidade de equipamentos a serem amostrados na população AMOSTRA. Vanàncta PopulacionaL VAR1ÁNCLA POP

QUADRO 03: ANÁLISE PRÉ-AMOSTRAL.da variável NC POD.
QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP.
GOI NC POD 95 A 320 236 236 20261 13265 9358
G02 NC POD 95 A 320 139 3,136 20261 9309 346399
G03 NC POD 95 A 320 97 1,21,75 20261 8021 10782
G04 NC POD 95 A 320 78 1,3,23.51 20261 6531 6319
G05 NC POD 95 A 320 59 1,3,13,16,26 20261 5780 6119
G06 NC POD 95 A 320 50 1,3,6,8,10,22 20261 4958 5775
G07 NC POD 95 A 320 45 1,3,6,8,6,8,13 20261 4829 5744
G08 NC POD 95 A 320 43 1,3,6,7,6,6,5,9 20261 4577 5731
E14 NC POD 95 A 320 29 9,4,3,1,L L L 1,0,2,1,L3,l 20261 3271 5082
Quanddade de grupos QGILda vanavd para agrupamento, sendo o pnmeiro ddes o da vanavd de mteresse. no caso a NC POD. Nrvd de Confiança pretendido da sohição NC. tipo de amostragem A = akatona 
Simples. S = Sistemadca. Quanddade de Locahdades na População QLP. Quanddade de I-ocaixlarics a serem amostrados na população QLAP. Quanddade de l-ocahdades a serem amostradas no Grupo ou Estrato 
QLAGE. quanddade de equipamentos, total na população Total Pop . quantidade de equgamentos a serem amostrados na população AMOSTRA Yanãnaa Populacional VARLANCLA POP
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QUADRO 04: ANÁLISE PRÉ-AMOSTRAL,da variável NC_PRO.
QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP
G01 NC PRO 95 A 306 287 287 1296 1174 187
G01 NC PRO 95 S 306 287 287 12% 1243 187
G02 NC PRO 95 A 306 238 1,237 1296 1066 44
G02 NC PRO 95 S 306 238 1,237 12% 992 44
G03 NC PRO 95 A 306 153 1,7,145 12% 854 294
G03 NC PRO 95 S 306 153 1,7,145 12% 867 294
E07 NC PRO 95 A 306 62 36,9,8,3,2,3,1 12% 686 261
E07 NC PRO 95 S 306 62 36,9,8,3,2,3,1 12% 677 261

Quantidade de grupos QG/E,da vanavel para agrupamento, no caso a NC PRO, Nível de Confiança pretendido da solução NC, tipo de amostragem A = aleatona Simples, S = Sistemabca, Quantidade de Localidades na 
População QLP, (Quantidade de Locabdades a serem amostrados na população QLAP. Quantidade de Locabdades a serem amostradas no Grupo ou Estrato QLAGE, quantidade de equipamentos, total na população 
Total Pop , quantidade de equipamentos a serem amostrados na população AMOSTRA, Vanância Populacional, VAR1ÂNCIA POP

QUADRO 05: ANÁLISE PRÉ-AMOSTRAL.da variável NC RES.
QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP.
G01 NC RES 95 A 320 308 308 1441479 37419 421509851
002 NC RES 95 A 320 277 1,276 1441479 37419 63592574
G03 NC RES 95 A 320 228 1,7,220 1441479 37419 548952440
Ü04 NC RES 95 A 320 178 1,4,17,156 1441479 37419 570356044
005 NC RES 95 A 320 153 1,3,7,18,124 1441479 37419 528869486
G06 NC RES 95 A 320 123 1,3,6,10,21,82 1441479 37418 525674829
G07 NC RES 95 A 320 110 1,3,3,5,9,23,66 1441479 37418 511504736
G08 NC RES 95 A 320 91 1,3,3,5,8,9,14,48 1441479 37419 511029764
G09 NC RES 95 A 320 84 1,3,3,5,8,9,9,14,32 1441479 37418 510944044
GIO NC RES 95 A 320 75 1,3,3,5,8,9,6,6,7,27 1441479 37419 510898829
G ll NC RES 95 A 320 71 1,3,3,5,8,9,6,6,6,6,18 1441479 37419 5108886%
G12 NC RES 95 A 320 67 1,3,3,5,8,9,4,4,4,3,6,17 1441479 37419 510849097
G13 NC RES 95 A 320 62 1,3,3,5,8,9,4,4,3,2,3,4,13 1441479 37419 510843947
G14 NC RES 95 A 320 60 1,3,3,5,8,9,4,4,3,2,3,3,5,7 1441479 37419 510841510

Quantidade de grupos QGtE,da vanável para agrupamento, sendo o primeiro deles o da vanável de interesse, no caso a NC RES, Nível de Confiança pretendido da solução NC, tipo de amostragem A = aleatona 
Simples, S = Sistemática, Quantidade de Localidades na População QLP, Quantidade de Localidades a serem amostrados na população QLAP, Quantidade de Localidades a serem amostradas no Grupo ou Estrato 
QLAGE, quantidade de equipamentos, total na população Total Pop,  quantidade de equipamentos a serem amostrados na população AMOSTRA, Vanância Populacional, VARIÂNCIA POP

QUADRO 06: ANÁLISE PRÉ-AMOSTRAL.da variável NC_RUR.
QG/E VARIAVELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP.
G01 NC RUR 95 A 306 147 147 227674 32870 409162
002 NC RUR 95 A 306 109 26,83 227674 32870 58%57
003 NC RUR 95 A 306 91 13,23,55 227674 32871 569487
G04 NC RUR 95 A 306 75 8,10,11,46 227674 30122 539201
G05 NC RUR 95 A 306 69 3,6,8,11,41 227674 31071 444043
G06 NC RUR 95 A 306 64 3,5,6,8,12,30 227674 29355 427376
007 NC RUR 95 A 306 57 3,2,3,4,6,11,28 227674 26696 372367
008 NC RUR 95 A 306 50 3,2,3,4,4,5,8,21 227674 25394 368997
G09 NC RUR 95 A 306 46 3,2,2,2,3,3,5,6,20 227674 22345 359463
G10 NC RUR 95 A 306 44 3,2,2,2,3,3,5,5,7,12 227674 22117 358766
G ll NC RUR 95 A 320 43 3,2,2,2,2,2,3,3,4,8,12 230033 19466 356651
G12 NC RUR 95 A 320 41 3,2,2,2,2,2,2,2,3,5,7,9 230033 19142 355892
G13 NC RUR 95 A 320 37 3,2,2,2,2,2,2,2,2,3,3,7,5 230033 18911 355294

Quantidade de gnipos QG/E,da vanavel para agrupamento, sendo o primem? deles o da vanável de interesse, no caso a NC RUR, Nível de Confiança pretendido da solução NC, tipo de amostragem A * aleatona 
Simples, S = SLsfematxa, Quantidade de Locabdades na População QLP, Quantidade de Localidades a serem amostrados na população QLAP, Quantidade de Localidades a serem amostradas no Grupo ou Estrato 
QLAGE, quantidade de equipamentos, total na população Total Pop , quantidade de equipamentos a serem amostrados na população AMOSTRA, Vanância Populacional, VARIÂNCIA POP
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QUADRO 07: ANÁLISE PRÉ-AMOSTRAL,da variável PU.
QG/E VARIA VELS NC S/A QLP QLAP QLAGE TOT-POP AMOSTRA VAR-POP
G01 PU 95 A 371 354 354 7011990 38207 7081242135
G02 PU 95 A 371 319 1,318 7011990 38207 1329111984
G03 PU 95 A 371 265 1,7,257 7011990 38208 7798889292
G04 PU 95 A 371 210 1,4,15,190 7011990 38207 6925459664
G05 PU 95 A 371 160 1,4,12,26,117 7011990 38208 6886972631
G06 PU 95 A 371 139 1,4,10,13,21,90 7011990 38208 6920059894
G07 PU 95 A 371 130 1,4,3,5,11,20,86 7011990 38207 6458505933
G08 PU 95 A 371 110 1,4,3,5,9,9,18,61 7011990 38208 6450999466
G09 PU 95 A 371 103 1,4,3,5,4,6,9,16,55 7011990 38207 6431342292
GI0 PU 95 A 371 91 1,4,3,5,4,6,8,10,13,37 7011990 38207 6430128539
G ll PU 95 A 371 85 1,4,3,3,5,3,4,4,9,12,37 7011990 38207 6409094907
G12 PU 95 A 371 79 1,4,3,3,5,3,4,4,4,5,10,33 7011990 38207 6408097609
G13 PU 95 A 371 73 1,4,3,3,5,3,4,3,4,4,6,8,25 7011990 38207 6407852575
G14 PU 95 A 371 65 1,4,3,3,5,3,4,3,3,2,4,5,9,16 7011990 38207 6407564302
G15 PU 95 A 371 61 1,4,3,3,5,3,4,3,3,2,2,4,4,6,14 7011990 38207 6407412493
G16 PU 95 A 371 58 1,4,3,3,5,3,4,3,3,2,2,4,4,5,6,6 7011990 38208 6407389074

QUADRO 178 - Quantidade de grupos QG/E,da vanável para agrupamento, sendo o primeiro deles o da vanavel de interesse, no caso a PU, Nível de Confiança pretendido da solução NC, tipo de amostragem A = 
aleatora Simples, S = Sistemática, Quantidade de Localidades na População QLP, Quantidade de Localidades a serem amostrados na população QLAP, Quantidade de Localidades a serem amostradas no Grupo ou 
Estrato QLAGE, quantidade de equipamentos, totai na população Total Pop., quantidade de equipamentos a serem amostrados na população AMOSTRA, Variâncta Populacional, VARIÂNCÍA POP
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ANEXO 4 -  Resultados das Estimativas Clássicas Bootstrap e Jackknife e 
Simulações Monte Cario.

Tabela 01: RESULTADOS DAS ESTIMATIVAS: CLÁSSICAS, BOOTSTRAP, 
JACKKNIFE E SIMULAÇÕES MONTE CARLO

GRUPOS: 13 da variável: NC COM AMOSTRAGEM ALEATÓRIA

Nome da variável de interesse______________________NC COM________________________________________________________
Valor total da variável de interesse 170611
Valor estimado de compartilhados 140492
Estim. Expansão Simples 75081
Estim. Rh Combinado 141028
Estim. RL Clássico 127798
Estim. Var da estim dos Comp 2674,13519882947
Coef. de variação (CV) 0,00914927199211961
Soma dos Resíduos -5,11590769747272E-13
Soma dos Comp. x Resíduos 850326,87996353
Soma dos Amost. x resíduos 905206,823288965
BetaZeroChapeu / BetaUmChapeu 31,4747629612634 0,748878368474899
Estim. Var. dos BetaChap Clássica 7,99163136205742 2,04602280508302E-ó
Estim. covar dos BetaChap Clássica________________ -0,00183048179715656_______________________ -0,00183048179715656

Limite Inf. Estim; Rh Sep clássico 41914
Estim: Rh Sep clássico 140499
Limite Sup. Estim: Rh Sep clássico_________________239084___________________________________________________________

Estim: BB 1000 Rh Sep 140195
Lim Inf do Int de Conf Rh Sep BB (p/NC = 90%) 135823 107 0,796097116157148
Lim Sup do Int de Conf Rh Sep BB (p/ NC = 90%) 143630 808 0,841856398555827
Estimador Rh Sep BB 0,821725789490328
BBBEMEDIA Rh Sep BB 2,31856634586025E-16
Epb Rh Sep BB 0,0204042259231646
Ep JAB do Ep de Rh Sep BB______________________0,00207458473572636______________________________________________

Estim: BS 1000 Rh Sep 139913
Lim Inf do Int de Conf Rh Sep BS (p/NC = 90%) 135786 109 0,795879636091785
Lim Sup do Int de Conf Rh Sep BS (p/NC = 90%) 142758 820 0,836742948944253
Estimador Rh Sep BS 0,820069265966988
BBBEMEDIA Rh Sep BS 8,85305283943039E-16
Epb Rh Sep BS 0,0198647286729994
Ep JAB do Ep de Rh Sep BS______________________ 0,00258000734466597______________________________________________

Estim JK por Rh Sep 140251
Lim Inf do Int de Conf JK Sep (p/NC = 95%) 116922
Lim Sup do Int de Conf JK Sep (p/ NC = 95%) 163580
Estimador Rh Sep JK 0,822052178239253
Ep JK de Rh Sep 0,251541547822458
Vício JK de Rh Sep_____________________________ 0________________________________________________________________

Limite Inf. Estim: RhNV clássico 41935
Estim: Rh NV clássico 140507
Limite Sup. Estim: Rh NV clássico_________________239079___________________________________________________________

Estim: BB 1000 RhNV 141377
Lim Inf do Int de Conf RhNV BB (p/NC = 90%) 137132 102 0,803770709230109
Lim Sup do Int de Conf Rh NV BB (p/NC = 90%) 143880 767 0,843319610485979
Estimador Rh NV BB 0,828648232340947
BBBEMEDIA Rh NV BB 8,57007607241167E-16
Epb de Rh NV BB 0,0207828720112511
Ep JAB do Ep de Rh NV BB______________________0,00181619068226398______________________________________________

Estim: BS 1000 RhNV 141400
Lim Inf do Int de Conf Rh NV BS (p/ NC = 90%) 137154 102 0,803899812030152
Lim Sup do Int de Conf Rh NV BS (p/ NC = 90%) 143886 767 0,843356669044192
Estimador Rh NV BS 0,828787878844616
BBBEMEDIA RhNV BS 3,4857099845409E-16
Epb de Rh NV BS 0,0205915990980505
Ep JAB do Ep de RhNV BS______________________ 0,00215878597203291___________ ___________________________________
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Estim JK por RhNV 141280
Lim Inf do Int de Conf JK Sep (p/  NC = 95%) 117645
Lim Sup do Int de Conf JK Sep (p/ NC = 95%) 164914
Estimador JK Rh NV 0,828080921665692
Ep JK de Rh NV 0,254833387778079
Vício JK de RhNV______________________________ 0_____________________________________________________ _ _ _ _

Estim Reg Lin BB (p/ K > 2) 126590
BetaZeroChapeuAst /  BetaUmChapeuAst 37,8437551428879 0,741759421283377
Estim var dos BetaChapAst BB 11,5510106245933 2,95729746392979E-6
Estim covar dos BetaChapAst BB ________  -0,00264575700869623 _________ ___________-0,00264575700869623

Estim Reg Lin G/E (p/ mAh[i] > 2, K = 12) 70856
vBetaChapZero /  vBetaChapUm G/E (h = 2) 0,533906419980009 0,16533543283732
vBetaChapZero / vBetaChapUm G/E (h = 3) 1,50482412189022 0,331875176648936
vBetaChapZero /  vBetaChapUm G/E (h = 4) 1,86641608960492 0,428890181033115
vBetaChapZero / vBetaChapUm G/E (h = 5) -2,38654065504217 0,487013198631261
vBetaChapZero / vBetaChapUm G/E (h = 6) -7,20992366410607 0,916030534351174
vBetaChapZero / vBetaChapUm G/E (h = 7) -0,783406820840729 0,752032154533731
vBetaChapZero / vBetaChapUm G/E (h = 8) 2,33510214911209 0,891085168479696
vBetaChapZero / vBetaChapUm G/E (h = 9) 2,3331058020477 0,736291240045503
vBetaChapZero /  vBetaChapUm G/E (h = 10) 3,70901639342433 0,864754098360612
vBetaChapZero/vBetaChapUm G/E (h = 11) -1,63496533795511 0,749891681109185
vBetaChapZero / vBetaChapUm G/E (h = 12) -0,776632302405375 0,914089347079048
vBetaChapZero / vBetaChapUm G/E (h = 13)________ 0,370736086175937_________________________ 0,13016157989228_______

Estim Reg Lin JK (G/E >2) 127671
BetaZeroChapeuJK / BetaUmChapeuJK 34,8260157441258 0,748113359103854
Estim var dos BetaChap JK 6,56332273143882E-28 1,602373713730I8E-31
Estim covar dos BetaChap JK ________ __ _________l,02551917678732E-29______________________ l,02551917678732E-29

Estim Reg Lin BS (p/ K > 2) 126693
BetaZeroChapeuAst / BetaUmChapeuAst 37,3022737608267 0,742364662623633
Estim var dos BetaChapAst BS 11,2229571092763 2,87330898357857E-6
Estim covar dos BetaChapAst BS__________________ -0,0025706164070999________________________ -0,0025706164070999

Estim MC Reg Lin JK (G/E >2) 127671
BetaZeroChapeuJK/BetaUmChapeuJK 34,8260157441258 0,748113359103854
Estim var dos BetaChap JK 87,4599872082281 0,0403586513841468
Estim covar dos BetaChap JK_____________________ 1,87876745069708___________________________1,87876745069708_______

Estim MC RL Clássico 127800
Estim RL Clássico______________________________127798___________________________________________________________

APROXIMAÇÕES MONTE CARLO DAS ESTIMATIVAS BOOTSTRAP BALANCEADO - 500 - ITERAÇÕES

Estim MC Rh Sep Clássico_______________________140250___________________________________________________________

Estim MC BB Rh Sep___________________________ 140251___________________________________________________________

Estim BB Rh Sep 140251
Lim Inf do Int de ConfRh Sep BB (p/NC = 90%) 139944
Lim Sup do Int de ConfRh Sep BB (p/ NC = 90%) 140559
Estimador Rh Sep BB 0,822052178239247
Epb de Rh Sep_________________________________ 0,0205703820170956_______________________________________________

Estim MC Jack Rh Sep BB 140273
Estim Jack Rh Sep BB 140251
Estimador Jack Rh Sep BB 0,822052178239247
Epb Jack de Rh Sep BB___________ _______________ 0,0208423328724743________________________________ ______________

Estim MC Rh NV Clássico_______________________141281___________________________________________________________

Estim MC BB RhNV____________________________ 141280 ___________________________________ __________________

Estim BB RhNV 141280
Lim Inf do Int de Conf MC Rh NV BB 140968
Lim Sup do Int de Conf MC Rh NV BB 141592
Estimador Rh NV BB 0,828080921665688
Epb de RhNV_________________________________ 0,0208667915628001________________________________________________
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Estim Jack Rh NV BB 141280
Estim Jack Rh NV BB 141280
Estimador de Jack Rh NV BB 0,828080921665688
Epb Jack de Rh NV BB__________________________ 0,0210576414606147

Estim MC Reg Lin BB 127795
Estim Reg Lin BB 127798
BetaZeroChapeuAst /  BetaUmChapeuAst 31,4777981565342 0,748874975882438
Estim var dos BetaChapAst BB 7,99163136205743 2,04602280508303E-6
Estim covar dos BetaChapAst BB__________________ -0,00183048179715653_______________________ -0,00183048179715653

Estim MC Rh Clássico__________________________ 140250___________________________________________________________

Estim MC Rh Sep BS_______________________ 140252 ________________________________________ __________

Estim BS Rh Sep 140499
Lim Inf do Int de ConfRh Sep BS (p/NC = 90%) 139949
Lim Sup do Int de ConfRh Sep BS (p/ NC = 90%) 140553

Estimador Rh Sep BS 0,822053252098708
Epb de Rh Sep 0

Estim Jack Rh Sep BS 140256
Estimador Jack Rh Sep BS 0,82208239207027
Epb Jack de Rh Sep BS 0,0201254752030092
Estim Jack Rh Sep MC 140273

Estim MC Rh NV Clássico 141281

Estim MC BS RhNV___________________________ 141278 ______________________________________________________

Estim BS RhNV 141278
Lim Inf do Int de ConfRh NV BS (p/ NC = 90%) 140973
Lim Sup do Int de Conf Rh NV BS (p/ NC = 90%) 141583
Estimador Rh NV BS 0,828070544238577
Epb de RhNV_________________________________0,0204141119700864________________________________________________

Estim MC Jack Rh NV BS 141300
Estim Jack Rh NV BS 141283
Estimador Jack Rh NV BS 0,828098985285107
Epb Jack de RhNV BS__________________________ 0,0203919734018822____________________ _________ _______ _

Estim MC Reg Lin 127795
Estim Reg Lin BS 127800
BetaZeroChapeuAst / BetaUmChapeuAst 31,4489909768619 0,74889054358688
Estim var dos BetaChapAst BS 7,99163136205743 2,04602280508303E-6
Estim covar dos BetaChapAst BS__________________-0,00183048179715653_______________________-0,00183048179715653

Estim MC Reg Lin Jack (G/E >2). 127671
Estim Reg Lin Jack (G/E > 2) 127691
BetaZeroChapeuJK/BetaUmChapeuJK BS 34,8313744171127 0,748228471176211
Estim var dos BetaChap Jack BS 0,000344584514171088 l,59009470430129E-7
Estim covar dos BetaChap Jack BS_________________7,40217543136935E-6_______________________ 7,40217543136935E-6



116

ANEXO 5 -  Gráficos gerados em Programa Microsoft Excel a partir dos 
resultados obtidos com o Programa EEC.

Os resultados obtidos para cada uma das dez variáveis estudadas foram 

tabelados e então transformados em gráficos. Nas páginas seguintes apresentam-se 

os gráficos referentes aos resultados de cada uma das variáveis estudadas.



GRÁFICO 01.01: Médias dos erros relativos percentuais em valores absolutos
de 25 rodadas para simulações de 75_76%, 75 80% e 75_90%, de
compartilhados. Variável: NC AES.

GRÁFICO 01.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais das 75 rodadas de simulações. Variável: 
NC AES.

GRÁFICO 01.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais das 75 simulações. Variável: 
NC AES.
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GRÁFICO 01.04: Média do número de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5,para 25 simulações. Variável:
NC AES.

GRÁFICO 01.05: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual em valor absoluto menor ou igual a 5, para as 75 
simulações. Variável: NC_AES.

GRÁFICO 01.06: Amplitude de variação do número de localidades estimadas 
com erros relativos percentuais em valores absolutos menores ou iguais a 5, para 
as 75 simulações. Variável: NC AES.
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GRÁFICO 01.07: Cobertura do valor simulado das estimativas populacionais,
em cada uma das 25 simulações. Variável: NCAES.

ESTIMADOR

GRAFICO 01.08: Erro Padrão do número de vezes que o intervalo cobre o 
valor simulado das estimativas populacionais, em 75 simulações. Variável: 
NC AES.

ESTIMADOR

GRÁFICO 01.09: Amplitude de variação do número de vezes que o intervalo 
cobre o valor simulado, da estimativa populacional, para as 75 simulações. 
Variável: NC AES.

E ST M A D O R
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GRÁFICO 02.01: Médias dos erros relativos percentuais em valores absolutos,
das estimativas populacionais, de 25 simulações, para 75_76%, 75_80% e
75 90%'respecti vãmente. Variável: NC COM.

GRÁFICO 02.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais de 75 simulações. Variável: NC COM.

1 ,aiN - -  —  -  -  —   -------------------------------------------------------

a n  m u

GRÁFICO 02.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais das 75 simulações. Variável: 
NC COM.

CSTIMAIMNt
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GRAFICO 02.04: Média do número de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5, para as 25 simulações.
Variável: NC COM.

GRAFICO 02.05: Erro Padrão do número de localidades estimadas com erro 
relativo percentual em valor absoluto menor ou igual a 5, para as 75 simulações. 
Variável: NC COM.

GRÁFICO 02.06: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual menor ou igual a 5. Variável: NC COM.
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GRÁFICO 02.07: Número de vezes que o intervalo definido pelos limites 
inferior e superior das estimativas de cada estimador, cobre o valor simulado 
populacional, em cada grupo de 25 rodadas de simulações, para as proporções de 
Compartilhados- 75 7 6 %  75 8 0 %  p 75 Q 0 %  Variável- N f  f O M

GRÁFICO 02.08: Erro padrão do número máximo de vezes que o intervalo 
definido pelos limites inferior e superior das estimativas de cada estimador cobre 
o valor simulado populacional, em cada grupo de 25 rodadas de simulações, para 
as proporções de compartilhados: 75 76%, &%_80% e 75_90%. Variável: 
NC COM.

GRÁFICO 02.09: Amplitude de variação dos números máximos de vezes que o 
intervalo definido pelos limites inferior e superior das estimativas de cada 
estimador, cobre o valor simulado populacional, em cada grupo de 25 rodadas de 
simulações, para as proporções de compartilhados: 75_76%, 75_80% e 75_90%. 
Variável: NC COM.

ESTIMADOR



GRÁFICO 03.01: Média dos erros relativos percentuais em valores absolutos
das estimativas populacionais, de 25 simulações, para: 75 76%, 75_80% e
75 90%, respectivamente. Variável: NC_ILU.

GRÁFICO 03.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais, para as 75 simulações. Variável: 
NC ILU.

GRÁFICO 03.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais, para as 75 simulações. 
Variável: NC ILU.
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GRÁFICO 03.04: Número de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5. Variável: NCILU.

GRÁFICO 03.05: Erro Padrão do número de localidades estimativas com erro 
relativo percentual em valor absoluto menor ou igual a 5, para as 75 simulações. 
Variável: NC ILU.

GRÁFICO 03.06: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual em valor absoluto menor ou igual a 5. Variável: 
NC ILU.
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GRÁFICO 03.07: Cobertura do valor simulado das estimativas populacionais,
em cada uma das 25 simulações. Variável: NC_ILU.

CCTMADOR

GRÁFICO 03.08: Erro Padrão do número de vezes que o intervalo cobre os 
valores simulados das estimativas populacionais, em 75 simulações. Variável: 
NC ILU.

ESTIMADOR

GRÁFICO 03.09: Amplitude de variação do número de vezes que o intervalo 
cobre o valor simulado da estimativa populacional, considerando-se os três 
grupos de simulações, 75 76%, 75 80% e 75 90% simultaneamente, cada um 
com 25 simulações. Variável: NC ILU.

ESTIMADOR



126

GRÁFICO 03.10: Média dos erros relativos percentuais em valores absolutos
das estimativas populacionais, de 25 simulações, para: 75 76%, 75 80% e

BTtNÉ»«ftCI

GRÁFICO 03.11: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais, para as 75 simulações. Variável: 
NC ILU, eliminado o primeiro estrato.

GRÁFICO 03.12: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais, para as 75 simulações. 
Variável. NC ILU. eliminado o primeiro estrato.
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GRAFICO 03.13: Número médio de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5. Variável: NCILU, eliminado

GRÁFICO 03.14: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual em valor absoluto menor ou igual a 5. Variável: 
NC ILU, eliminado o primeiro estrato.

GRAFICO 03.15: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual em valor absoluto menor ou igual a 5. Variável: 
NC ILU, eliminado o primeiro estrato.
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GRÁFICO 03.16: Numero de vezes que o valor simulado populacional é
coberto pelas estimativas populacionais, em dez rodadas. Variável: NCILU,
eliminado o primeiro estrato.

GRÁFICO 03.17: Erro Padrão dos números máximos de vezes que o valor 
simulado populacional é coberto pelas estimativas populacionais. Variável: 
NCILU, eliminado o primeiro estrato.

GRÁFICO 03.18: Amplitude de variação do número de vezes que o valor 
simulado populacional é coberto pelas estimativas populacionais. Variável : 
NC ILU, eliminado o primeiro estrato.

ESTMADOR

«nMAOOR

ESTIMADOR



GRÁFICO 04.01: Médias dos erros relativos percentuais em valores absolutos,
das estimativas populacionais, de 25 simulações, para: 75 76%, 75 8-% e
75 90%, respectivamente. Variável: NC_IND.

GRÁFICO 04.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais de 75 simulações. Variável: NC IND.

GRÁFICO 04.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais das 75 simulações. Variável: 
NC IND
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GRÁFICO 04.04: Média do número de localidades estimadas com erro relativo
menor ou igual a 5, para 20 simulações. Variável: NC IND.

E ST IM A D O R

GRÁFICO 04.05: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual em valor absoluto menor ou igual a 5. Variável: 
NC IND.

GRÁFICO 04.06: Amplitude de variação do número de localidades estimadas 
com erros relativos percentuais em valores absolutos menores ou iguais a 5. 
Variável: NC IND.

CSTin*»9*
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GRÁFICO 04.07: Cobertura do valor simulado das estimativas populacionais,
em cada uma das 20 simulações. Variável: NCIND.

GRÁFICO 04.08: Erro Padrão do número de vezes que o intervalo cobre os 
valores simulados, das estimativas populacionais, em 60 simulações. Variável : 
NC IND.

GRAFICO 04.09: Amplitude de variação do número de vezes que o intervalo 
cobre os valores simulados das estimativas populacionais, para 60 simulações. 
Variável: NC IND.

ESTIMADOR

ETHMAOOR
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GRÁFICO 05.01: Médias dos erros relativos percentuais em valores absolutos
das estimativas populacionais de 25 simulações, para: 75 76%, 75 80% e

GRÁFICO 05.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais de 75 simulações. Variável: NCPOD.

GRAFICO 05.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais das 75 simulações. Variável: 
NC POD.
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GRÁFICO 05.04: Número de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5. Variável: NC POD.

GRÁFICO 05.05: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual menor ou igual a 5, para as 75 simulações. Variável: 
NC POD.

GRAFICO 05.06: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual em valor absoluto menor ou igual a 5, em 75 
simulações. Variável: NC POD.
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GRÁFICO 05.07: Cobertura do valor simulado das estimativas populacionais
em valores absolutos, em cada uma das 21 simulações. Variável: NCPOD.

eSTMAOOR

GRÁFICO 05.08: Erro Padrão do número de vezes que o intervalo cobre os 
valores simulados das estimativas populacionais, em 63 simulações. Variável: 
NCPOD.

25

CSTMADOR

GRÁFICO 05.09: Amplitude de variação do número de vezes que o intervalo 
cobre o valor simulado da estimativa populacional, para as 63 simulações. 
Variável: NC POD.
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GRÁFICO 06.01: Médias dos erros relativos percentuais em valores absolutos, 
das estimativas populacionais, para cada grupo de simulações: 75_76%, 75 80% 
e 75_90% respectivamente, cada uma com 25 simulações cada. Variável: 
NC PRO.

GRÁFICO 06.02: Erro Padrão dos erros relativos percentuais em valor absoluto 
das estimativas populacionais, das 75 simulações, consideradas 
simultaneamente. Variável: NC PRO.

GRÁFICO 06.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais, das 75 simulações consideradas 
simultaneamente. Variável: NC PRO.
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GRÁFICO 06.04: Número médio de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5, para 25 simulações. Variável:
NC PRO.

GRAFICO 06.5: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual em valor absoluto, menor ou igual a 5. Variável: 
NC PRO.

GRÁFICO 06.06: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual em valor absoluto menor ou igual a 5, para as 75 
simulações, consideradas simultaneamente. Variável: NC PRO.



GRAFICO 06.07: Cobertura dos valores simulados das estimativas
populacionais, em cada grupo de simulação; 75 76%, 75 80% e 75 90%,
respectivamente, com 25 simulações cada. Variável: NC_PRO.

GRAFICO 06.08: Erro Padrão do número médio de vezes que o intervalo cobre 
os valores simulados das estimativas populacionais, em 63 simulações. Variável: 
NC PRO.

rSTIHMOK

GRÁFICO 06.09: Amplitude de variação do número de vezes que o intervalo 
cobre o valor simulado da estimativa populacional, para as 75 simulações. 
Considerou-se o mínimo e o máximo entre os três grupos de simulações. 
Variável: NC PRO.
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GRÁFICO 06.10: Médias dos erros relativos percentuais em valores absolutos
das estimativas populacionais.Variável: NCPRO, eliminado o primeiro estrato.

GRÁFICO 06.11: Erro Padrão da média de variação dos erros relativos 
percentuais em valores absolutos das estimativas populacionais.Variável: 
NC_PRO, eliminado o primeiro estrato.

GRÁFICO 06.12: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais.Variável: NC PRO, eliminado o 
primeiro estrato.
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GRÁFICO 06.13: Número médio de localidades estimadas com erro relativo
percentual em valor absoluto menor ou igual a 5. Variável: NCPRO, eliminado
o primeiro estrato.

GRÁFICO 06.14: Erro Padrão do número de localidades estimadas com erro 
relativo percentual em valor absoluto menor ou igual a 5. Variável: NC PRO, 
eliminado o primeiro estrato.

GRÁFICO 06.15: Amplitude de variação do número médio de localidades 
estimadas com erro relativo percentual menor ou igual a 5. Variável: NC PRO, 
eliminado o primeiro estrato.
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GRÁFICO 06.16: Número de vezes que o valor simulado populacional é
coberto pelas estimativas populacionais.Variável: NCPRO, eliminado o
primeiro estrato.

GRÁFICO 06.17: Erro Padrão do número de vezes que o valor simulado 
populacional é coberto pelas estimativas populacionais.Variável: NC PRO, 
eliminado o primeiro estrato.

GRÁFICO 06.18: Amplitude de variação do número de vezes que o valor 
simulado populacional é coberto pelas estimativas populacionais.Variável: 
NC PRO, eliminado o primeiro estrato.
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GRÁFICO 07.01: Média dos erros relativos percentuais em valores absolutos
das 25 simulações. Variável: NCRES.

CSTIM*»*ftCS

GRÁFICO 07.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das 75 simulações. Variável: NC RES.

GRÁFICO 07.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das 75 simulações. Variável: NC RES.
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GRÁFICO 07.04: Número médio de localidades estimadas em 25 simulações
com erro relativo percentual em valor absoluto menor ou igual a 5. Variável:
NC RES.
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GRAFICO 07.05: Erro Padrão do número de localidades estimadas com erro 
relativo percentual em valor absoluto menor ou igual a 5, para as 75 simulações. 
Variável: NC RES.

GRÁFICO 07.06: Amplitude de variação do número de localidades estimadas 
em 75 simulações com erro relativo percentual menor ou igual a 5. Variável: 
NC RES.
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GRÁFICO 07.07: Cobertura do valor simulado das estimativas populacionais,
em cada uma das 25 simulações. Variável: NC RES.
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GRAFICO 07.08: Erro Padrão do número médio de vezes que o intervalo cobre 
os valores simulados das estimativas populacionais, em 75 simulações. Variável: 
NC RES.

GRÁFICO 07.09: Amplitude de variação do número de vezes que o intervalo 
cobre o valor simulado, das estimativas populacionais, em 75 simulações. 
Variável: NC RES.
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GRÁFICO 08.01: Média dos erros relativos percentuais em valores absolutos
das 25 simulações. Variável: NCRUR.

CSTIHM**

GRÁFICO 08.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais das 75 simulações. Variável: NC RUR.

GRÁFICO 08.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais das 75 simulações. Variável: 
NC RUR.
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GRAFICO 08.04: Número médio de localidades estimadas em 75 simulações
com erro relativo percentual em valor absoluto menor ou igual a 5. Variável:
NC RUR.

GRÁFICO 08.05: Erro Padrão do número de localidades estimadas em 75 
simulações com erro relativos percentual em valor absoluto menor ou igual a 5. 
Variável: NC RUR.

GRÁFICO 08.06: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual menor ou igual a 5. Variável: NC RUR.
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GRÁFICO 08.07: Cobertura do valor simulado das estimativas populacionais,
em cada uma das 25 simulações. Variável: NCRUR.

GRÁFICO 08.08: Erro Padrão do número médio de vezes que o intervalo cobre 
os valores simulados das estimativas populacionais, em 75 simulações. Variável: 
NC RUR.

GRÁFICO 08.09: Amplitude de variação do número de vezes que o intervalo 
cobre os valores simulados das estimativas populacionais, para as 75 simulações. 
Variável: NC RUR.
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GRÁFICO 09.01: Média dos erros relativos percentuais das estimativas
populacionais de 25 simulações. Variável: PR.

GRÁFICO 09.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais das 75 simulações. Variável: PR.

GRÁFICO 09.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais de 75 simulações. Variável: PR.
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GRÁFICO 09.04: Número médio de localidades estimadas em 25 simulações 
com erro relativo percentual menor ou igual a 5. Variável: PR.

«II

GRÁFICO 09.05: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual em valor absoluto menor ou igual a 5. Variável: PR.

GRÁFICO 09.06: Amplitude de variação do número de localidades estimadas 
com erro relativo percentual menor ou igual a 5, em 75 simulações. Variável: 
PR.



GRÁFICO 09.07: Cobertura dos valores simulados das estimativas
populacionais, em cada grupo de simulação: 75_76%, 75 80% e 75_90%,
respectivamente, com 25 simulações cada. Variável: PR.

EmMAOOR

GRÁFICO 09.08: Erro Padrão do número médio de vezes que o intervalo cobre 
os valores simulados das estimativas populacionais, em 75 simulações. Variável: 
PR.

30

ESTIMADOR

GRÁFICO 09.09: Amplitude de variação do número de vezes que o intervalo 
cobre os valores simulados das estimativas populacionais, em 75 simulações. 
Variável: PR.
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GRÁFICO 10.01: Média dos erros relativos percentuais em valores absolutos
das estimativas populacionais de 25 simulações. Variável: PU.

GRÁFICO 10.02: Erro Padrão dos erros relativos percentuais em valores 
absolutos das estimativas populacionais de 75 simulações. Variável. PR.

GRÁFICO 10.03: Amplitude de variação dos erros relativos percentuais em 
valores absolutos das estimativas populacionais de 25 simulações. Variável: PU.
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GRÁFICO 10.04: Número médio de localidades estimadas em 75 simulações
com erro relativo percentual em valor absoluto menor ou igual a 5. Variável: PU.

GRÁFICO 10.05: Erro Padrão do número médio de localidades estimadas com 
erro relativo percentual em valor absoluto menor ou igual a 5, para as 75 
simulações. Variável: PU.

GRÁFICO 10.06: Amplitude de variação do número de localidades estimadas 
com erro relativo em valor absoluto menor ou igual a 5. Variável: PU.
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GRÁFICO 10.07: Cobertura do valor simulado das estimativas populacionais,
em cada uma das 25 simulações. Variável: PR.

GRAFICO 10.08: Erro Padrão do número médio de vezes que o intervalo cobre 
os valores simulados das estimativas populacionais, em 75 simulações. Variável: 
PU.

GRÁFICO 10.09: Amplitude de variação do número de vezes que intervalo 
cobre os valores simulados das estimativas populacionais, para as 75 simulações. 
Variável: PU.


