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RESUMO

Problemas de vibração livre podem ser resolvidos usando uma nova técnica 
denominada de Método Composto. Este método combina a aproximação pelo Método 
dos Elementos Finitos (MEF) com as soluções analíticas da Teoria Clássica (TC) de 
placas. O campo de deslocamentos é expandido, unindo-se os valores nodais do MEF 
ao campo de deslocamentos obtidos pelas funções da TC. As funções da TC devem 
satisfazer certas condições de contorno específicas, de forma a não alterar o valor do 
deslocamento nodal obtido pelo MEF. Estas funções também devem ser solução da 
equação da freqüência.
O objetivo deste trabalho é aplicar o MC para determinar as freqüências e modos de 
vibrar em placas espessas de Mindlin-Reissner. A solução analítica para a vibração de 
placas é apresentada e a equação da freqüência é determinada. As parcelas da TC 
(funções c) são adicionadas às funções de forma do MEF para elementos 
isoparamétricos de quatro e oito nós.
No MC, para o mesmo grau de aproximação, existem dois tipos de refinamentos: h e c .  
O refinamento h, semelhante ao do MEF, corresponde ao aumento do número de 
elementos. O refinamento c corresponde ao acréscimo do número de graus de 
liberdade relativos à TC, denominados graus de liberdade c.
Alguns exemplos são apresentados para mostrar a eficiência e precisão do método. Os 
efeitos relacionados à distorção dos elementos, também são apresentados e 
comparados, tanto em relação ao MEF quanto ao MC.

Palavras-chave: Método Composto; Freqüência Natural; Método dos Elementos 

Finitos; Placa Espessa.



ABSTRACT

Free vibration problems can be solved using a new technique named Composite 
Element Method (CEM). This method combines the Finite Element Method (FEM) 
approach and analytical Solutions obtained from the Classical Theory (CT) applied for 
plates vibration. The displacement field is expanded, merging the nodal values from 
FEM with the analytical funetions of the classical Solutions. The classical solution 
functions must satisfy certain specific boundary conditions in such a way that they do 
not change the nodal values of FEM. These functions must also be the Solutions for the 
frequency equation.
The objective of the present work is to apply the CEM on the Reissner-Mindlin’s plate 
model. Analytical Solutions of vibration plates are reviewed and frequency equations 
are obtained. The ofunctions are added to the shape functions of isoparametric 
elements, with 4 and 8 nodes of the FEM.
Examples are included to show the efficiency and accuracy of the method. In the 
CEM, there are two types of refinements: h and c. The first one, corresponds to the 
increase of the number of elements in the finite element mesh. The other one, is related 
to the increment of the number of analytical functions on the CEM displacement field. 
The effects related to the elements distortion are shown and compared using both, 
FEM and CEM.

Key-words: Composite Element Method; Natural Frequency; Finite Element Method; 
Thick Plate



1

1 INTRODUÇÃO

A importância do estudo de vibrações reside no fato de que a maioria das 

estruturas, máquinas, equipamentos e também organismos vivos são afetados por este 

fenômeno. Muitos sistemas, devido a características construtivas, transferem suas 

vibrações para o ser humano, o que pode resultar em desconforto e perda de eficiência 

na sua operação e, em situações extremas, podem causar seqüelas e lesões 

irreversíveis. No caso de equipamentos, problemas de desbalanceamento, decorrentes 

do projeto e/ou manutenção inadequados, podem resultar em vibrações. Neste caso, é 

possível que determinadas partes sofram fadiga (devido ao carregamento cíclico), ou 

que ocorram desgastes em mancais e outros componentes móveis. As vibrações podem 

também provocar ruídos que, hoje em dia, devem ser limitados a níveis prescritos em 

normas específicas.

O estudo de vibrações relaciona-se com o movimento oscilatório dos corpos, 

periodicamente repetido ou não, em relação à posição de equilíbrio, e respectivas 

forças associadas. Fatores como a distribuição de massa e a elasticidade dos corpos os 

tomam susceptíveis às implicações das vibrações.

Por estas razões, o projeto de máquinas, equipamentos e estruturas deve 

considerar o comportamento oscilatório dos seus componentes, uma vez que os 

deslocamentos e/ou deformações decorrentes podem levar à falha do sistema 

desenvolvido.

Uma das formas características das vibrações é quando o movimento se 

repete em intervalos definidos de tempo. O período da oscilação é o tempo decorrido 

para que o movimento comece a se repetir. O movimento completado em um período é 

um ciclo. A  freqüência da oscilação é o número de ciclos que ocorrem em uma 

determinada unidade de tempo. A freqüência é o valor inverso do período.
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As vibrações podem ser caracterizadas, conforme o comportamento, em 

lineares e não lineares. Esta classificação, no entanto, deriva da forma de resolução do 

sistema de equações, que também é classificado em linear e não linear. Na análise de 

sistemas lineares sujeitos a carregamentos dinâmicos arbitrários, existem vários 

modelos matemáticos que representam o fenômeno vibratório, assim como 

convenientes formas de sua solução. Contudo, haja vista a tendência do surgimento de 

não linearidades (material e/ou geométricas) com o incremento da amplitude de 

oscilação, a solução passa pela análise de sistemas não lineares (CLOUGH e 

PENZIEN, 1975; MEIROVITCH, 1975; CRAIG, 1981; THOMSON, 1993). A não 

linearidade do material também influencia no comportamento da estrutura, e deve ser, 

se for o caso, cuidadosamente considerada na etapa de projeto.

As vibrações também podem ser classificadas em relação às forças atuantes 

na estrutura. Neste caso, tem-se vibrações:

a) Livres: estas ocorrem sem a atuação de carregamentos externos e 

desconsiderando-se o efeito do amortecimento. Uma vez iniciada uma 

vibração livre (ou vibração natural) na estrutura, esta continua a oscilar com 

sua freqüência natural. O sistema em estado de vibração livre pode oscilar 

em um modo tal que seja excitado por uma ou mais freqüências naturais, 

dependendo do número de graus de liberdade.

b) Forçadas: estas são produzidas e mantidas por forças excitadoras 

externas ao sistema. Se a freqüência de excitação coincide com uma das 

freqüências naturais do sistema, apesar de serem fenômenos independentes, a 

amplitude resultante da combinação das oscilações é afetada pelas duas 

freqüências e, eventualmente , pode provocar ressonância.

Outra classificação das vibrações se dá considerando as forças resistivas, que 

podem ser do tipo:

a) Amortecidas: quando o atrito, a resistência do ar, o amortecimento 

viscoso e todas as outras forças, influenciam de forma significativa na
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resposta dinâmica do sistema.

b) Sem amortecimento: ocorre quando a ação de forças resistivas é

desprezável em relação à resposta dinâmica do sistema.

Em geral, a primeira etapa para o projeto de uma estrutura sujeita às 

vibrações mecânicas é a determinação de suas freqüências naturais.

Uma outra análise pode levar em consideração o caso de vibrações forçadas 

que, de maneira geral, avalia a estrutura sob carregamento cíclico ou periódico, sendo 

denominada de análise harmônica. No caso desta análise sinalizar para freqüências 

próximas de uma das freqüências naturais, medidas de contingência devem ser 

adotadas para evitar danos e funcionamento inadequado da estrutura. O caso onde a 

amplitude de oscilação tende a se tornar infinita, se desprezados os efeitos dos diversos 

amortecimentos, é conhecido como ressonância. Outra análise muitas vezes realizada 

na verificação da resposta dinâmica dos sistema é a transiente. É uma técnica para se 

determinar a resposta de uma estrutura a um carregamento arbitrário aplicado em um 

certo intervalo de tempo, como por exemplo, explosões, choques, terremotos, etc.

A determinação das freqüências naturais deve ser considerada para verificar 

a possibilidade da ocorrência do fenômeno da ressonância, que leva a grandes 

deformações e falhas mecânicas. Um exemplo clássico é o da ponte de Tacoma 

Narrows (EUA), que colapsou quando entrou em ressonância induzida pelo vento 

(RAO,1995).

A definição da influência dos vários parâmetros que caracterizam as 

vibrações é de interesse prático nas aplicações de engenharia, fazendo com que o tema, 

ainda hoje, seja estudado por vários pesquisadores.

1.1 TÉCNICAS EMPREGADAS PARA O ESTUDO DE VIBRAÇÕES

Devido à importância e aplicabilidade da análise de vibrações, diversos 

métodos de determinação de freqüências naturais foram desenvolvidos. Um dos mais 

importantes se baseia em métodos experimentais. Outra forma de solução é a partir da



4

construção de um modelo matemático, sendo que, entre as mais conhecidos, destacam- 

se:

a) Teoria Clássica (TC): apresenta a solução para a equação diferencial que 

rege o problema. Em geral, a solução para esta categoria de equações é 

obtida através de séries. A limitação desta abordagem diz respeito a 

dificuldade e a complexidade de se obter solução para condições de contorno 

diversas, (LI, CAO e LI, 1994a e 1996; LOW, 1993, 1997 e 1998; 

SRINIVAS, 1970; LEISSA, 1973).

b) Método dos Elementos Finitos (MEF): técnica de solução aproximada 

onde, através de uma discretização do domínio em termos de nós e 

elementos, se pode fazer uma análise apurada do comportamento vibratório. 

E, hoje em dia, uma das principais ferramentas empregadas em análise 

estrutural (CRAIG, 1981; ZIENKIEWICZ, 1977; SINGH e SMITH, 1994; 

CHOPRA, 1995; BATHE, 1996; MACKERLE, 1999 e 2000).

c) Método das Tiras Finitas (MTF): constitui-se de um método “semi- 

analítico”, onde o domínio é dividido em um número finito de tiras e a 

solução é obtida pela sobreposição dos efeitos das mesmas. É um método 

vantajoso pela facilidade de entrada de dados e baixo custo computacional. 

Suas desvantagens estão associadas aos problemas de condições de contorno 

aos quais a placa está sujeita (SHEIKH e MUKHOPADHYAY, 1993; 

CHEUNG e KONG, 1995a e 1995b; HINTON, ÕZAKÇA e RAO, 1995; 

KONG e CHEUNG, 1995; AU e CHEUNG, 1996a e 1996b; ZHONG, 

CHEUNG e LI, 1998; CHEUNG, AU e ZHENG, 2000; FRIEDRICH, 2000).

d) Método dos Elementos de Contorno (MEC): técnica de solução 

aproximada onde, através de uma discretização do contorno em termos de 

nós e elementos, se pode fazer uma análise apurada de problemas estruturais 

estáticos e dinâmicos. Apresenta-se também, como uma alternativa para 

solucionar com precisão problemas que envolvem concentração de tensão ou
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onde o domínio se estende para o infinito. Uma das vantagens em relação ao 

MEF é que a dimensão do problema diminui uma vez. Por exemplo: se o 

domínio é tridimensional, na análise pelo MEC o domínio do problema é 

dado por uma superfície. Sua desvantagem é a dificuldade na determinação 

da solução fundamental para certos problemas, e também em relação ao 

custo computacional, pois, embora as matrizes sejam menores, elas são 

cheias e as técnicas de manipulação e armazenamento consagrados no MEF 

não se aplicam (BREBBIA e NARDINI, 1983; PROVIDAKIS e BESKOS, 

1986; BURCZYNSKI, KUHN, ANTES e NOWAKOWSKI, 1997; DAVÍ e 

MILAZZO, 1997; TANAKA, MATSUMOTO e SHIOZAKI, 1998).

e) Análise Estocástica: utilizada para avaliar a confiabilidade das estruturas. 

Este método probabilístico trata o comportamento do material, a geometria e 

os carregamentos como variáveis randômicas (Y ANM ARCKE e 

GRIGORIU, 1983; LEI e QIU, 1998a e 1998b; LI, FANG e LIU, 1999; 

GRIGORIU, 2000).

f) Outros métodos: também utilizam-se outros métodos que empregam uma 

discretização mista, de domínio e de contorno, e também métodos que não 

utilizam malhas ( “meshless”). O Método das Nuvens proposto por Duarte e 

Oden (1995) discretiza o modelo (domínio arbitrário) apenas por uma nuvem 

esparsa de nós. Já os métodos mistos são aqueles que combinam o MEF e o 

MEC, potencializando as vantagens de cada uma das abordagens. Um 

exemplo é o Método da Função de Green Local Modificado (MMFGL), 

utilizado por FILIPPIN (1992) para analisar problemas de vibrações em 

membranas e cavidades.

Problemas simples, onde se conhece a solução exata, podem ser resolvidos 

pela TC. Na maioria das vezes, onde as condições de contorno e a geometria 

apresentam complexidades há a necessidade de utilização de métodos aproximados.

A busca por técnicas que obtenham maior precisão do que as atuais, oferece
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uma oportunidade de investigação na determinação de freqüências naturais em 

estruturas. No caso das placas, o desafio é obter um método eficiente que consiga 

resolver o problema para quaisquer geometria e condições de contorno, com o mínimo 

de custo computacional.

1.2 OBJETIVO GERAL

O objetivo da presente investigação é desenvolver uma nova abordagem para 

a resolução de problemas de vibrações livres em placas espessas, utilizando uma 

formulação híbrida, obtida com o emprego da TC e do MEF. Esta abordagem é 

baseada no Método Composto (MC), que foi proposto por ZENG (1998a, 1998b, 

1998c), para análise de vibrações em estruturas.

Para a determinação dos resultados, uma implementação numérica e 

computacional foi realizada. Para validar a proposta e analisar os resultados obtidos, 

serão comparados exemplos com os apresentados na literatura.

1.3 OBJETIVOS ESPECÍFICOS

Pode-se estabelecer como objetivos específicos:

■ Determinar um maior número de modos de vibrar que os fornecidos pelo 

MEF, para uma mesma discretização;

■ Determinar as freqüências naturais de vibração com maior precisão;

■ Comparar o custo computacional;

■ Desenvolver elementos finitos do MC para placas espessas.

1.4 ESCOPO DO TRABALHO

A proposta refere-se à solução do problema de vibrações livres, aplicada às 

placas espessas pela Teoria de Mindlin/Reissner, utilizando o Método Composto 

(MC).
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Para possibilitar o uso do MC, são implementados dois elementos 

quadrilaterais isoparamétricos, um de quatro nós e outro de oito nós. A validação é 

feita com exemplos da TC e MEF.

1.5 ESTRUTURA DO TRABALHO

No Capítulo 2 é apresentada uma descrição detalhada do problema, 

mostrando a teoria de flexão e de vibrações em placas. Em seguida, são analisados os 

trabalhos mais relevantes desenvolvidos para o problema de vibrações em placas. São 

também discutidas algumas vantagens e desvantagens das formas atuais de solução do 

problema.

A descrição do Método Composto (MC) e o desenvolvimento dos elementos 

de placa de quatro e oito nós são apresentados no Capítulo 3, incluindo a descrição da 

potencialidade do método.

O Capítulo 4 contém o modelo proposto para emprego do MC como meio de 

resolução de problemas de vibrações livres em placas espessas. Os procedimentos de 

implementação numérica e computacional são apresentados, assim como suas 

características.

Uma descrição detalhada das aplicações e resultados obtidos é feita no 

Capítulo 5. A análise de resultados, em termos globais e específicos, se dá através de 

técnicas comparativas com outros métodos de solução.

As conclusões sobre a utilização do MC na análise dinâmica de placas são 

descritas no Capítulo 6. Também, apresentam-se sugestões para continuidade do 

trabalho e aprimoramentos do método estudado.



2 ESTUDO DE VIBRAÇÕES EM PLACAS

Neste capítulo é apresentada uma revisão teórica sobre os métodos de 

solução para vibrações livres em placas espessas, os problemas mais freqüentes e a 

forma de solução para sua implementação. Apresenta-se também uma descrição dos 

trabalhos mais relevantes para a análise de vibrações livres em placas.

2.1 INTRODUÇÃO

A obtenção da solução para o problema de vibrações de placas espessas 

passa pelo conhecimento de como ocorrem as deformações e as tensões decorrentes da 

aplicação dos carregamentos e condições de contorno envolvidas.

As placas podem ter contornos livres, simplesmente apoiados e fixos, ou 

ainda, em alguns casos, apresentar pontos de apoio. Em muitos casos, estas condições 

de contorno são mistas, o que dificulta ou impossibilita a obtenção da solução analítica 

(solução matemática fechada) para o problema. Os carregamentos estáticos e 

dinâmicos em placas são predominantemente perpendiculares à superfície da placa.

Pela teoria da elasticidade, quando um corpo sólido está submetido à forças 

externas, ele se deforma, produzindo tensões internas. A deformação é influenciada 

pela configuração geométrica do corpo e pelas propriedades mecânicas do material.

Assume-se a relação tensão-deformação como sendo linear e as propriedades 

do material isotrópicas.

Nas próximas seções as equações relacionadas à cinemática de deformação 

das placas e as relacionadas ao fenômeno vibratório são apresentadas.
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2.2 FUNDAMENTOS TEÓRICOS

2.2.1 Cinemática da Deformação de Placas

Uma placa é um corpo sólido, limitado por duas superfícies planas paralelas, 

cujas dimensões laterais (largura e comprimento para placa retangular ou diâmetro em 

uma placa circular) são muito maiores que a distância entre as duas superfícies 

paralelas (espessura da placa) e, normalmente, as cargas atuantes são perpendiculares à 

superfície média, REDDY (1984).

O domínio de interesse O é denotado por (HUGHES, 1987)

£2 = p :,;y ,z)e9 l5 z e , ( x , ; y ) e A t í R 2},  (2.1)

onde h é  a espessura da placa e A é a área da placa.

As duas teorias mais difundidas e aplicadas para a análise de flexão em 

placas conforme COOK (1988), são:

a) Teoria de Kirchhoff-Love

Esta adota as seguintes hipóteses, REDDY (1984):

■ A existência de um plano neutro, onde a placa não sofre alongamentos 

nem encurtamentos;

■ Fibras normais a superfície média são inextensíveis;

■ Seções planas e perpendiculares à superfície média, se mantém planas e 

perpendiculares à superfície média, após a flexão;

■ Os deslocamentos da superfície média são pequenos quando comparados 

à espessura da placa;

b) Teoria de Mindlin-Reissner

Aqui são introduzidas as deformações cisalhantes transversais quando do 

carregamento da placa. Desta forma, pode-se aplicar as hipóteses simplificadoras de 

Kirchhoff-Love, mas com a seguinte diferença:
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■ As normais à superfície de referência indeformada da placa permanecem 

retas, mas não necessariamente normais à superfície de referência.

No regime linear, as relações deformações-deslocamentos podem ser escritas

como

Uma vez que 3uz/dz = 0, têm-se que uz = uz (x, y ) .

Para o giro das seções utilizam-se fix e fiy , conforme pode ser observado na

Figura 2.1. Cabe salientar que nesta notação a rotação (3X positiva tem um vetor axial 

no sentido contrário ao do eixo y. Para a rotação f3y o mesmo não ocorre sendo, 

portanto, a direção do vetor axial coincidente com a direção do eixo x.

Na Figura 2.1 pode-se observar as variáveis adotadas para a análise de placas 

quando sujeitas à deformações de cisalhamento.

FIGURA 2.1 -  DEFORMAÇÃO NA ANÁLISE DE PLACA INCLUINDO AS DEFORMAÇÕES DE
CISALHAMENTO (ADAPTADO DE BATHE, 1996)



1 1

As componentes do deslocamento de um ponto de coordenadas x, y e z são

dadas por

(2.3)

onde {u} é o vetor deslocamento, fix e f3y são as rotações da normal à superfície média 

da placa indeformada e u z é o  deslocamento transversal.

Utilizando a representação matricial e considerando que as deformações de 

flexão da placa variam linearmente ao longo de sua espessura, pode-se calcular o valor 

das deformações em qualquer ponto da placa, para uma dada curvatura, através de

(2.4)

Assumindo que as deformações de cisalhamento são constantes ao longo da 

espessura da placa, tem-se que

(2.5)

Para um material isotrópico, a relação constitutiva elástica é dada por

(2.6)
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K } = M e c}, (2.7)

onde {Gf\ são as componentes do tensor de tensões devidas à flexão, {<rc} são as 

componentes do tensor de tensões devidas ao cisalhamento, [Df\ é a matriz constitutiva 

em relação à flexão, [Dc] é a matriz constitutiva em relação ao cisalhamento, {£f } são 

as componentes da deformação devidas à flexão e {sc} são as componentes da 

deformação devidas ao cisalhamento. Assim, tem-se que

onde E  é o módulo de elasticidade do material e v é  o coeficiente de Poisson.

Na próxima seção, discute-se a aplicação do Princípio dos Trabalhos Virtuais 

para a determinação da equação de movimento da placas, possibilitando assim, a 

obtenção de autovalores e autovetores que, no problema físico, representam 

respectivamente, as freqüências e os modos de vibrar.

2.2.2 Teoria de Vibrações Aplicada ao Problema de Placas

Admita uma estrutura sujeita a ação de forças externas e sob equilíbrio 

dinâmico. Assim

(2 .8)

(2-9)

(2-10)

onde Wj é o trabalho interno e We é o trabalho externo.
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O trabalho externo é produzido pelas forças externas e o trabalho interno 

pela energia de deformação acrescido da energia cinética. Pode-se escrever o trabalho 

interno como sendo

onde Wt é trabalho interno, U é a energia de deformação e f é a  energia cinética.

onde ú é a velocidade associada ao campo de deslocamentos e p  é a densidade de 

massa por volume.

Considere-se agora, nesta mesma estrutura, um campo de deslocamentos 

virtuais a partir da configuração de equilíbrio. Então, durante o processo de 

deformação virtual, cada elemento infinitesimal da estrutura se deforma, e os esforços 

internos e externos que agem diretamente sobre ela realizam um trabalho virtual. 

Assim, pelo Princípio dos Trabalhos Virtuais, o trabalho realizado pelas forças 

externas, quando se dá a uma estrutura deformável em equilíbrio um deslocamento 

virtual, é igual ao realizado pelas forças internas, isto é

Wt - U  + T  , (2.11)

A energia potencial é dada por

(2.12)

A energia cinética é dada por

(2.13)

ÔWi = ÓWe \fóu  , (2.14)

onde ÔWi é a variação trabalho virtual interno, ôWe é a variação trabalho virtual 

externo e ôu é o deslocamento virtual.

O trabalho virtual externo é obtido a partir do produto das forças externas



14

pelos deslocamentos virtuais.

O trabalho virtual interno é obtido a partir das tensões e deformações que 

ocorrem nos elementos sujeitos ao deslocamento virtual.

Reescrevendo as equações em função do deslocamento virtual e substituindo 

convenientemente nas integrais as simplificações utilizadas para o problema de 

vibrações em placas, tem-se

onde cr e £ são as tensões e deformações, respectivamente, u é o vetor deslocamento, 

Su é uma pequena variação no vetor u, t é o tempo, F é  o vetor de forças externas e k é 

a constante de Mindlin (melhor detalhada no próximo capítulo).

Considerando a Equação (2.15), onde o deslocamento virtual é arbitrário e 

desconhecido, tem-se:

onde [Df] e [Dc] são as matrizes das relações constitutivas, [Lf] é o operador da 

transformação entre as deformações de flexão e deslocamentos e [Lc] é o operador da 

transformação entre as deformações de cisalhamento e deslocamentos.

Os dois primeiros termos da Equação (2.15) são associados à rigidez da 

placa e o terceiro termo à sua massa.

A Equação (2.16) vale para o problema contínuo. Neste trabalho, a forma de

(2.15)

(2.16)
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solução é aproximada através de funções de interpolação e apresentada em termos de 

solução nodal. Assim, pretende-se substituir o campo de deslocamentos contínuo por 

um campo de deslocamentos discreto. Para tanto, propõe-se a seguinte aproximação:

(2.17)

onde uN é o vetor de deslocamentos nodal, ôuN é vetor de deslocamentos virtuais 

nodais e ü o vetor de acelerações nodais.

Levando a Equação (2.17) em (2.16) e destacando as matrizes de massa e 

rigidez anteriormente mencionadas, tem-se

{ t N f  [K]^u-N }+ \ i N f  [M ]{&N }= {f  N J  {& N } , (2.18)

onde é o vetor de forças nodais aplicadas.

Como a Equação (2.18) deve ser satisfeita para qualquer que seja o 

deslocamento virtual cinematicamente admissível, esta pode ser reescrever após a 

transposição de todos os termos, como

(2.19)

Nota-se que isso foi possível porque K & M  são simétricas.

A Equação (2.19) representa a forma discreta da equação diferencial de 

equilíbrio dinâmico de estrutura sob carregamento F.

Se este termo é nulo (F=0), conforme BOYCE e DIPRIMA (1997), tem-se 

uma equação diferencial homogênea cuja solução é de forma periódica de freqüência 

(D, a ser determinada. Assim, pode-se escrever a solução da mesma como

}= onde, j  =-̂ [—1 . (2.20)



Neste caso, diferenciando-se duas vezes tem-se 

{mw}=-oj2\*0N\;im . (2.21)
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Substituindo-se as Equações (2.20) e (2.21) na Equação (2.19) e, 

considerando F=0, tem-se

- & 2[MÍtt0N\;j a  =0  (2.22)

Simplificando convenientemente a Equação (2.22) e lembrando que é°* é 

sempre positivo, tem-se

(W -S 72[a í]){»/}= 0 . (2.23)

Assim, o problema a ser resolvido, envolve a obtenção dos autovalores e

autovetores que representam, respectivamente, a freqüência natural de vibração e os 

modos de vibrar da placa. Logo, a solução da Equação (2.23), pode ser obtida através 

do problema padrão de autovalores e autovetores.

ISTO -  2M<t> (2.24)

Onde M  e K  são, respectivamente, as matrizes de massa e de rigidez, X representa os 

autovalores e os autovetores.

2.3 ABORDAGENS PARA RESOLUÇÃO DO PROBLEMA DE VIBRAÇÕES 

EM PLACAS

Nas próximas seções apresentam-se algumas das abordagens mais utilizadas 

para a solução do problema de vibrações em placas.
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2.3.1 Estudos Iniciais -  Aplicação às Placas Finas

Segundo SZILARD (1974), o primeiro matemático a estudar o problema de 

vibrações livres em placas foi Euler em 1766, e Lagrange foi o primeiro a obter sua 

correta equação diferencial. Navier foi o primeiro a obter corretamente a equação 

diferencial de placas retangulares com rigidez flexural. Para certos problemas de 

valores de contorno ele introduziu um método exato, o qual transforma a equação 

diferencial em um sistema algébrico. O Método de Navier é baseado na solução forte 

da equação diferencial, utilizando as funções das séries trigonométricas de Fourier. O 

Método de Levy também se utiliza de séries de Fourier, mas com sua utilização restrita 

ao caso onde dois lados opostos da placa são simplesmente apoiados.

Ainda conforme Szilard, Kirchhoff foi o responsável pela descoberta da 

equação da freqüência das placas e introduziu o Método do Deslocamento Virtual na 

solução dos problemas vibrações em placas.

Conforme FIEW (1995), em 1877 Rayleigh apresentou um método genérico 

para a solução de vibrações livres de estruturas. Ritz apresentou em 1909 uma nova 

abordagem do método de Rayleigh, que ficou conhecida como Método de Rayleigh- 

Ritz, cujo procedimento consiste em introduzir na solução um certo grupo de funções 

linearmente independentes conhecidas, e assim, obter a solução através da 

determinação dos seus coeficientes. A versatilidade desta ferramenta (procedimento) 

fez com que se transformasse em uma das mais utilizadas atualmente.

Um dos problemas para a obtenção da solução analítica relacionados com 

vibrações em placas, diz respeito às condições de contorno a que elas estão sujeitas. 

Também, neste sentido, a maior parte das investigações apresenta solução para placas 

finas, onde os efeitos das deformações de cisalhamento são negligenciados, 

destacando-se o trabalho de EEISSA (1973).
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2.3.2 Estudo de Placas Espessas

Atualmente, os problemas de placas espessas são preferencialmente tratados 

pela teoria de Mindlin-Reissner, conforme HUGHES (1987), permitindo assim a 

consideração das deformações cisalhantes transversais. Em placas espessas o 

cisalhamento tem efeito significativo nos resultados das análises estruturais estáticas e 

dinâmicas.

Os estudos mais relevantes sobre o efeito do cisalhamento são os trabalhos 

de Timoshenko e Mindlin. O primeiro apresentou a teoria de vibração de vigas 

espessas com efeito da inércia rotacional e da deformação de cisalhamento. Já Mindlin 

formulou teoria similar à de Timoshenko para vibração de placas espessas.

Na abordagem dada pelo modelo de placas de Mindlin-Reissner, SRINIVAS 

(1970) utilizou uma teoria exata aplicada ao caso de placas tri-dimensionais para 

estudar a vibração em placas retangulares, espessas, homogêneas e laminadas. Os 

valores obtidos no trabalho de SRINIVAS (1970) têm sido utilizados por vários 

pesquisadores como referência para o estudo de vibrações livres.

As primeiras tentativas de simular o comportamento de placas espessas, 

através do MEF, foram realizadas utilizando formulação baseada nas hipóteses de 

Kirchhoff-Love. No entanto, pelas limitações da formulação utilizada, desenvolveu-se 

um elemento finito degenerado, baseado na teoria de Mindlin-Reissner, no qual as 

equações são expressas em termos de variáveis nodais na superfície média da placa. 

Os resultados deste elemento obtidos com integração completa não foram satisfatórios 

quando aplicados a modelos de placas finas, pois o modelo resultante era 

excessivamente rígido em termos de deformações, originando o problema de 

travamento (locking) (HUANG e HINTON, 1986).

O método utilizado para resolver o problema de travamento nestes elementos 

é a subintegração, que consiste em utilizar a regra da integração de Gauss uma ordem 

abaixo da necessária para integrar exatamente as matrizes de rigidez elementares, 

conforme ZIENKIEWICZ (1971). Contudo, esta solução ainda não resolve todos os



19

problemas, pois a subintegração de todas as matrizes resulta no surgimento de “modos 

espúrios”. Assim, desenvolveu-se o Método da Subintegração Seletiva 

(ZIENKIEWICZ, 1971), que consiste em subintegrar apenas a parcela da matriz de 

rigidez correspondente aos termos de cisalhamento.

Para a solução do problema do cisalhamento, outras teorias têm sido 

propostas, como por exemplo, a Teoria de Ordem Superior de REDDY (1984). Na 

teoria de ordem superior o campo de deslocamentos é expandido para a coordenada da 

espessura. Conforme LIEW (1995), na análise de vibrações de placas moderadamente 

espessas, a Teoria de Mindlin-Reissner produz bons resultados. Deve-se observar que, 

mais recentemente, quando se trabalha com análise de tensões, placas ortotrópicas ou 

compostas, o uso de teorias de ordem superior oferece melhores resultados do que 

aqueles produzidos com a Teoria de Mindlin-Reissner.

ROCK e HINTON (1976), utilizando a Teoria de Mindlin-Reissner, 

introduziu o elemento quadrilateral isoparamétrico para análise de vibrações livres de 

placas espessas e finas.

Outros métodos de solução para vibrações livres em placas que consideram 

condições de contorno variadas, foram obtidos. Como por exemplo, MIKAMI (1984) 

estudou a aplicação do Método da Colocação para determinar a vibração de placas 

retangulares de Mindlin.

DAWE (1978), também estudando placas de Mindlin com condições de 

contorno variadas, aplicou o Método das Tiras Finitas. MIZUSAWA (1993) aplicou o 

Método das Tiras com Splines para estudar a vibração livre de placas. CHEN e YANG 

(1988) aplicou o MEF produzindo também resultados para a análise de vibrações 

livres em placas laminadas e considerando deformações cisalhantes.

Na próxima seção, apresenta-se a idealização de uma nova proposta para a 

solução do problema de vibrações livres em placas.
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2.4 M ÉTODO COM POSTO

O Método Composto (MC) é uma nova variação do Método dos Elementos 

Finitos (MEF), proposta por ZENG (1998a, 1998b e 1998c) para análise de vibrações 

em estruturas. Este método combina o MEF convencional com a TC, e apresenta dois 

tipos de refinamentos :

a) Refinamento h : é semelhante a abordagem de análise no MEF, onde 

utiliza-se uma seqüência de malhas com o mesmo tipo de elemento e o 

tamanho deste diminui uniformemente.

b) Refinamento c : corresponde ao aumento do número de funções de 

interpolação, através da inclusão de novos termos da série correspondentes à 

solução da TC.

Nesta linha de investigação foram desenvolvidos elementos de barra (ZENG, 

1998a) e de viga (ZENG, 1998b). Segundo ARNDT (2001), os resultados de exemplos 

numéricos mostraram que o MC é mais preciso que o MEF, com o mesmo número de 

graus de liberdade, na análise de vibrações livres.

SHI e ZENG (2000) desenvolveram o elemento composto para vibração de 

placa fina elástica.

Outros métodos com concepções semelhantes para a solução do problema de 

vibrações também foram propostos. O Método dos Elementos Finitos Hierárquicos 

(MEFH) foi aplicado por BARDELL (1991) para vibrações em placas. HOUMAT 

(1997) desenvolveu uma variante do MEFH para vibrações em placas na qual funções 

de formas trigonométricas hierárquica são compostas com funções de forma 

polinomiais, sendo que, os exemplos numéricos testados, apresentaram resultados de 

superconvergência com o aumento do números de funções hierárquicas.

Recentemente outros pesquisadores têm trabalhado nesta abordagem dos 

métodos hierárquicos, como por exemplo, CÔTÉ (2001), que apresenta uma discussão 

sobre a seleção de funções de forma para a versão-p utilizadas no MEF para a solução 

do problema de vibrações em placas.
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3 FORMULAÇÃO DO MÉTODO COMPOSTO

Neste capítulo é apresentada a introdução teórica que associa o MEF às 

funções da TC, dando assim origem ao Método Composto. Faz-se uma análise do 

modelo de deslocamentos aplicado ao MC. Apresenta-se, também, a base da 

formulação do MC e, sendo o MEF intrínseco ao MC, sua formulação também é 

descrita. Na parte final do capítulo, discute-se sobre a solução da equação diferencial 

aplicada à vibrações e define-se quais são as funções da teoria clássica aplicáveis ao 

desenvolvimento do MC para placas espessas.

3.1 M ODELO DE DESLOCAMENTOS APLICADO AO M ÉTODO 

COM POSTO

O Método Composto (MC) é uma nova variação do Método dos Elementos 

Finitos (MEF), proposta por ZENG (1998a, 1998b, 1998c), para análise de vibrações 

em estruturas.

O MC se comporta, sob vários aspectos, de modo semelhante ao MEF, como 

por exemplo no processo de solução, na precisão, eficiência, entre outros. O MC 

incorpora parte da solução obtida da teoria clássica, objetivando atingir alta precisão e 

convergência para problemas com geometria e condições de contorno complexas. 

Cabe ressaltar que a utilização de um sistema de coordenadas apropriado é a base para 

a descrição adequada do campo de deslocamentos em cada um dos elementos (SHI e 

ZENG, 2000).

Para se obter a implementação da formulação do MC, utiliza-se o 

procedimento que envolve as seguintes etapas:

■ Superpor as soluções da TC à técnica convencional do MEF, possibilitando 

o uso de parte da série da solução analítica para enriquecer a solução do
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MEF;

■ Definir dois sistemas de coordenadas para descrever o campo de 

deslocamentos, sendo um com os graus de liberdade nodais utilizado no 

MEF, e outro, local, com os graus de liberdade utilizado pela parcela da TC;

■ Utilizar funções da TC que atendam determinadas condições de contorno 

para serem superpostas ao MEF, possibilitando assim transferir os resultados 

obtidos pela parcela da TC para valores nodais sem afetar a solução 

proveniente do MEF.

Para descrever o campo de deslocamentos será utilizada uma combinação 

linear das funções de interpolação do MEF, com as funções que fazem parte da série 

da solução analítica da TC. Portanto, o campo de deslocamentos no MC é descrito por

u {x ,y )  = u MEF{x>y)+ UTc(x ’ y) * (3.i)

onde U m e f  é o campo de deslocamentos usual do MEF e UTC é o campo de 

deslocamentos interno ao elemento (associado à TC), baseado no sistema de 

coordenadas nodais; (x,y) é a coordenada local do elemento que percorre a superfície 

média do elemento.

O sistema de coordenadas nodais do MEF descreve o campo de 

deslocamentos UMEF, através dos deslocamentos dos nós do elemento, ou seja

u mef (x ’ y) = H T ix> y)q > (3-2)

onde H é a matriz das funções de forma e q é o vetor de deslocamentos nodais (ou 

graus de liberdade nodais).

O campo de deslocamentos UTC é descrito através de coeficientes da série de 

funções obtidas pela TC, sendo dado por

u Tc{x>y) = 0 T{*,y)c , (3.3)

onde 0  é a matriz com a série de funções analíticas da TC e c é o  vetor de coeficientes
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que definem os graus de liberdade c (coordenadas c).

Na próxima seção mostra-se o desenvolvimento do MC para placas 

apresentando-se a forma de superposição do MEF às parcelas da TC.

3.2 DESENVOLVIMENTO DO MÉTODO COMPOSTO

3.2.1 Superposição das Funções do Método dos Elementos Finitos às Funções da 

Teoria Clássica

Com base nas seções anteriores e considerações feitas, o campo de 

deslocamentos, dado na Equação (3.1), pode ser descrito por

{ t/}= [fff{9}+[0F{c}, (3.4)

onde [H\ é a matriz com as funções de interpolação para os graus de liberdade q e [0] é 

a matriz com as funções de interpolação da TC para os graus de liberdade c.

Neste caso, o primeiro termo é avaliado de maneira semelhante ao MEF, 

utilizando os mesmos valores para as matrizes de rigidez e de massa. Cabe agora 

examinar os termos que contribuem para a parcela associada aos graus de liberdade c.

Para entendimento da superposição proposta pelo MC (parcelas semelhantes 

ao MEF enriquecidas de parcelas da TC), considera-se a primeira integral da Equação 

(3.5) relativa ao caso dos termos à flexão da matriz de rigidez, mostrado na Equação 

(2.16) e que aqui será repetida para facilidade de compreensão:

h/2 hf2

J  J W r [L/f [o T L y lS w jd z d A  + q  \{u Y [L cY[D c\L j$ u } d z d A
A-h/2 A-h/2

„ (3-5)
hj2 í 2 )

+ J  J  P j * {$u}dzdA  = ^{f Y $ u)dA .
A-h/2 [ &  ) A
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O campo de deslocamentos, dado pela Equação (3.4), é substituído no 

primeiro termo da Equação (3.5), permitindo o cálculo da matriz de rigidez associada 

aos termos em flexão da placa. Nota-se que existem termos relacionados apenas aos 

termos semelhantes ao MEF, dados pelo conjunto Kqq, termos relacionados apenas as 

parcelas da TC, dados por KCCj e termos da superposição das duas abordagens dados 

pelos conjuntos Kqc e Kcq. O índice q está associado aos graus de liberdade nodais e o 

índice c aos graus de liberdade c.

Então, substituindo-se o campo de deslocamento na parcela da matriz de 

rigidez associada aos termos em flexão, tem-se

h/2 h/2
J \{v}T[Lf]T{Df \Lf X&U}<kdA=\ j>}7
A-h/2 A-h/2

[§{/ } d z  dA

h/2

A-h/2 

h/2

Df Lf[H]l+

«// r ■]
= J m V f T[n]D,Lf w _

P f Lm 'zdA
(3.6)

A-h/2
1D f  Lf  \H ] [5 U } d z d A

FIGURA 3.1 -  MAPEAMENTO DOS TERMOS DA EQUAÇÃO DA RIGIDEZ À FLEXÃO PARA O SISTEMA
MATRICIAL NO MC

Kqq = Matriz de rigidez dos termos associados à flexão semelhantes ao MEF
Kcc = Matriz de rigidez dos termos associados à flexão da TC 
Kqc = Matriz com termos cruzados 
Kcq -  Matriz Kqc transposta
Lf = Operador da transf. Deformação de flexão x Deslocamentos 
Df = Matriz das relações constitutivas para os termos em flexão
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A Figura 3.1 ilustra como a montagem da matriz de rigidez para os termos 

associados à flexão é mapeado para o sistema matricial.

Na próxima seção apresenta-se a abordagem tradicional para o MEF onde, 

definem-se o processo de interpolação e a constituição da matriz de rigidez e matriz 

massa.

3.3 MÉTODO DOS ELEMENTOS FINITOS APLICADOS À PLACAS

Sendo a formulação do MC baseada no MEF e enriquecida com funções da 

TC, a discretização do MC baseia-se em elementos finitos conhecidos. Por esta razão, 

neste trabalho, apresenta-se a formulação que abrange dois elementos para a 

implementação computacional, o elemento isoparamétrico quadrilateral de quatro nós 

e o elemento isoparamétrico quadrilateral de oito nós.

A Figura 3.2 contém a representação dos valores nodais de deslocamento de 

um elemento de placa de quatro nós, considerando o plano médio da placa e a 

espessura constante.

FIGURA 3.2 -  DESLOCAMENTOS NODAIS PARA O ELEMENTO DE QUATRO NÓS

3.3.1 Formulação do Elemento Isoparamétrico Aplicado às Placas

Um sistema de coordenadas naturais colocado no centro do elemento, 

estabelece uma correspondência direta entre os elementos das matrizes e os graus de
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liberdade que representam o campo de deslocamentos, consistindo na idéia central 

desta formulação. Isto possibilita, para o caso do elemento retangular aplicado às 

placas, utilizar funções lineares na direção de cada uma das coordenadas. Desse modo, 

o sistema de coordenadas a ser criado deve ser tal que permita mapear os elementos do 

sistema de coordenadas genérico para o sistema de coordenadas naturais e vice-versa. 

Este mapeamento pode ser visto na Figura 3.3.

As coordenadas genéricas podem ser interpoladas da seguinte forma

n

‘1, ■, 
y = YJyi fcjd.rç)

i=1 _

onde hi são as funções de forma dadas por BATHE (1996), ODEN (1981), e sendo £ e 

t] as coordenadas locais do elemento, ambas variando de -1 a +1.

O número de funções de forma n é igual ao número de nós utilizado no 

elemento isoparamétrico que se está formulando.

FIGURA 3.3 -  MAPEAMENTO ENTRE O ELEMENTO PADRÃO E UM ELEMENTO FINITO QUALQUER
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Assim como foi definida a relação entre os sistemas de coordenadas (global e 

específico) é necessário estabelecer uma vinculação entre os operadores diferenciais. 

Esta pode ser dada por

A matriz [J] (2 x 2) das derivadas parciais é chamada de matriz Jacobiana da 

transformação. Para efetivar as relações entre os sistemas de coordenadas é necessário 

que exista a matriz inversa da transformação Jacobiana {[J]'1).

Da mesma forma

dA — dx dy ,

/ x .  <3-9)dA — (det  J j d ç d T)  ,

onde o {det J) é o determinante da matriz Jacobiana da transformação.

Na próxima seção apresenta-se a matriz de rigidez de um elemento 

isoparamétrico pelo MEF.

3.3.2 Matriz de Rigidez

As matrizes de rigidez da placa consideram as relações entre os sistemas de 

coordenadas, local e global. As relações a seguir estão descritas em termos de 

coordenadas globais, as quais devem ser avaliadas utilizando-se a formulação para 

elementos isoparamétricos no sistema local e aplicando-se a transformação jacobiana.

No capítulo 2, definiu-se o campo de deslocamentos baseado em variáveis 

independentes dadas pelo deslocamento transversal (uz) e pelas rotações das secções 

(J3X e f3y). Assim, na discretização de elementos finitos necessita-se somente da 

continuidade entre elementos associados em w, j3x e fdy e não necessitando portanto, 

associá-los à suas derivadas. Desta forma, pode-se relacionar os deslocamentos nodais



utilizando as mesmas funções de interpolação. Para as interpolações utilizam-se

n n n
uz - ^ h iU z, (3̂  — — ̂  hfi'y , Py ~~ , (3.10)

i= l i= l i= l

onde 6 xl e 0 yl são os graus de liberdade relacionados à rotação e calculados para cada 

nó do elemento isoparamétrico implementado.

Na forma matricial, tem-se
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Para completar a formulação da matriz de rigidez de elementos finitos, 

define-se o operador da transformação entre as deformações e deslocamentos para os 

termos em flexão como sendo Bf (que podem ser extraídas das Equações (3.14) e

(3.15)), e o operador da transformação entre as deformações e deslocamentos para os 

termos em cisalhamento transversal Lc, como sendo Bc (que podem ser obtidas com as 

funções de interpolação dadas pela Equação (3.10) e pela Equação (3.13)). Logo, tem- 

se que
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placas o valor de k proposto originalmente por Mindlin é 7t2/12. 

A matriz massa do MEF é descrita na próxima seção.

3.3.3 Matriz Massa

A matriz massa do sistema a ser avaliada conforme o sistema discreto 

proposto na Equação (2.23) para uma placa com espessura constante, conforme 

PETYT (1990), é dada por

onde [M] é a matriz massa.

O detalhamento do MC, mostrando como as funções da TC são empregadas 

na interpolação das deformações e deslocamentos, será discutido a seguir.

3.4 MÉTODO COMPOSTO APLICADO À PLACAS

Para o MC, as parcelas das deformações associadas à TC, são obtidas de 

forma semelhante àquela ilustrada nas Equações (2.4) e (2.5). Assim, tem-se

(3.19)

(3.20)

e as deformações de cisalhamento transversal da placa para a parcela do MC são



onde para as parcelas da TC tem-se que aç e Oy são as rotações das secções e c o  

deslocamento transversal, associados ao grau de liberdade c.

Considerando apenas a matriz com as funções de forma que representam a 

solução para o problema de vibração livre de placas, obtém-se a matriz associada aos 

graus de liberdade c. Esta é dada por

Para os graus de liberdade associados à TC tem-se o deslocamento 

transversal c e o giro das secções aç e Oy como sendo variáveis independentes. Estas 

variáveis, na estratégia utilizada aqui, são relacionadas pelas funções de interpolação. 

O vetor dos graus de liberdade c é dado por

o o o • :• (j>x o o <p2 o o ••• (pm o o
[(/>] = 0 0 0 : 0 (j}x 0 0 (f}2 0 ••• 0 (j)m 0

0 0 0 ••• : 0 0 (px 0 0 (j)2 ••• 0 0 (pm
(3.22)

O número de zeros que precedem as funções de forma (p do MC é igual ao 

número de graus de liberdade do elemento finito que está sendo avaliado. O índice m, 

associado às funções de forma (p, define o número de funções utilizadas da série da
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seção transversal) às funções da TC.

Da mesma forma que para o MEF, pode-se calcular as derivadas dc/dx e 

dc/dy, considerando o deslocamento transversal c
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as seguintes características:

■ Pertencer ao espaço solução, isto é, ser solução possível para a Equação 

diferencial associada ao problema de vibrações livres de placas.

■ No contorno do elemento, o deslocamento deve ser nulo, para que não 

altere a parcela do MEF.

FIGURA 3.4 -  CONDIÇÕES DE CONTORNO PARA AS PARCELAS DA TC EM UMA PLACA

■ No contorno do elemento, o giro da seção transversal (derivada primeira 

da função) deve ser igual a zero. Com isto, apenas a parcela associada ao 

MEF será responsável por esta determinação.

Pode-se observar que estas características representam as condições de 

contorno para uma placa engastada nos bordos. Portanto, conclui-se que o MC 

acrescenta graus de liberdade associados ao domínio. A Figura 3.4 ilustra as condições 

de contorno de compatibilidade para as funções de forma das parcelas da TC.

3.4.2 Funções de Forma da Teoria Clássica

A solução da equação diferencial para o problema de vibrações livres com as 

imposições das condições de contorno para placa engastada é a forma pela qual se 

obtém as funções utilizadas para interpolação da parcela associada à TC.

A equação diferencial do movimento é dada por
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DV u + phü  ~ q , (3.28)

onde q é a carga distribuída na superfície da placa, D é a rigidez á flexão e p  a 

densidade de massa.

O estudo de vibrações livres é baseado apenas na rigidez, geometria e 

distribuição de massa sobre o corpo (no caso, considera-se esta distribuição ocorrendo 

no plano médio). Para a vibração livre de uma placa, onde se assume uma carga 

distribuída nula, a equação diferencial pode ser escrita como



35



36



37

VALOR
h 4,7300
A2 7,8532
Aj 10,9956
A4. 14,1372
A5 17,2788
6̂ 20,4204

Ai 23,5619
A% 26,7035
Ag 29,8451
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Na Tabela 3.1 pode-se encontrar até o valor de X9, e os valores X, cujos 

índices sejam maiores que nove, podem ser obtidos por:

Xj  = (2 j  + 7)zr/2 para j  = m ou j  — n (3-47)

Na próxima seção é feito o detalhamento das matrizes que calculam as 

deformações e como são somadas as parcelas do MEF às parcelas da TC.

3.4.3 Termos da Matriz de Deformação Associados ao Método Composto

Para a formulação da matriz de rigidez dos termos associados à TC, define- 

se o operador da transformação entre as deformações e deslocamentos para os termos 

em flexão Lf como sendo BCf e o operador da transformação entre as deformações e 

deslocamentos para os termos em cisalhamento transversal Lc como sendo BCc, através 

de interpolação semelhante à do MEF



3.4.4 Agrupamento dos Termos em Flexão e Cisalhamento para o Método 

Composto

O operador da transformação, para os termos em flexão L(H+̂  é dada por

39

(3.50) e (3.51).
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(3.54)

onde [N] é a matriz com as funções de forma do MC.

3.5 SUMÁRIO DO CAPÍTULO 3

Neste capítulo apresentaram-se os princípios do MC e definiram-se as 

características das funções da TC para o método. Concluiu-se que as funções da TC 

para um domínio retangular devem atender às condições de contorno de uma placa 

com os quatro bordos engastados. Conforme SZILARD (1974), a solução da equação 

diferencial para as condições de contorno em questão podem ser obtidas de forma 

aproximada por funções que resolvem o problema de viga com condições de contorno 

semelhantes.

Discutiu-se, também, que a solução do problema de vibrações livres de 

placas resume-se na determinação dos autovalores e autovetores a partir da definição 

da matriz de rigidez e matriz massa do sistema. A técnica proposta para o MC é uma 

variante do MEF, que busca o enriquecimento da solução acrescentando termos da TC 

às matrizes do problema em questão. A superposição das duas abordagens foi 

apresentada nas últimas seções do capítulo.
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4 FORMULAÇÃO NUMÉRICA DO MÉTODO COMPOSTO

Neste capítulo, são apresentadas as implementações de dois elementos com 

as seguintes características: elemento composto isoparamétrico de quatro nós e 

elemento composto isoparamétrico de oito nós. Discute-se, também, o método de 

solução utilizado para resolver o problema de autovalores e autovetores e o método de 

integração numérica. Finalmente, as implementações computacionais necessárias são 

brevemente descritas.

Outros elementos finitos mais eficientes poderiam ser implementados, 

porém, o objetivo é verificar a eficiência do MC. Neste sentido, trabalhar com 

elementos mais simples, além da facilidade na implementação, evidencia melhor as 

características do MC.

4.1 IM PLEM ENTAÇÃO DO ELEM ENTO ISOPARAM ÉTRICO LINEAR DE

QUATRO NÓS

A implementação deste elemento utilizando o MC começa pela definição das 

funções utilizadas para as interpolações, tanto da parcela associada ao MEF quanto das 

parcelas da TC. Após esta definição, há a necessidade de se avaliarem as matrizes que 

relacionam as deformações de flexão e cisalhamento, possibilitando assim, calcular a 

matriz de rigidez da placa. O passo seguinte é determinar a matriz massa do sistema, 

utilizando as mesmas funções de interpolação já definidas.

4.1.1 Funções de Forma para o MEF

As funções de forma são dadas por, BATHE (1996), ODEN (1981)
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h  = ^ V  + ©  + Tl) , h2 =^{l-^ \l  + ii) ,

h3=±{i-%\i-i\), h4=l(i+tXi-n).
(4.1)

A Figura 4.1 apresenta o elemento quadrilateral e as posições dos nós 

associadas as funções de forma da Equação (4.1).

FIGURA 4.1 -  ELEMENTO QUADRILATERAL ISOPARAMÉTRICO DE QUATRO NÓS

As funções de forma da parcela da TC para o MC, serão discutidas com mais 

detalhes na seção seguinte.

4.1.2 Funções de Forma para a Teoria Clássica

As funções de forma da TC, usadas para a implementação do MC, a partir da 

equação da freqüência de vigas nas direções x e y ,  são dadas por
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consideram as coordenadas globais do vértice do elemento. Todavia, para o elemento 

isoparamétrico deve-se considerar o sistema de coordenadas posicionado no centro do 

mesmo. Assim, tem-se que
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que atendem as condições de contorno do elemento MC:

§ 1 a ,T \)= x 1 (^)Y 1 (T\),

<\>2( ^ r \ ) = X 2( ^ ) Y 1(r]),
(4.10)

$3 ( í , r \ )=X]( í ) Y 2 (T\),

M ^ r ] ) = X 2( ^ ) Y 2(T]).

A Figura 4.2 ilustra graficamente, os quatro primeiros modos de vibrar da 

placa, obtidos a partir das funções (ps contidas na Equação (4.10).

Mais funções de forma da TC podem ser acrescentadas ao MC. É objetivo 

deste trabalho verificar a necessidade e as conseqüências relacionadas ao incremento 

do número de funções da TC. Estes aspectos são discutidos no Capítulo 5.

Para se utilizar na formulação do MC mais funções </>Si basta avaliar as 

Equações (4.4) e (4.5) com os valores respectivos de X que constam da Tabela 3.1.

FIGURA 4.2 - REPRESENTAÇÃO DAS FUNÇÕES DE FORMA PARA OS QUATRO PRIMEIROS MODOS DE 
VIBRAÇÃO

a) Função b) Função <t>2

c) Função (j)3 d) Função <j)4



45

A matriz de deformação para os termos de flexão do MC é o somatório das 

matrizes dada pela Equação (3.50)

4.1.3 Matriz de Deformação para os Termos de Flexão do Método Composto
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= ( 3.927cos(3.927\ + 3.927) - 3.927cosh(3.927£ + 3.927)
dÇ

+ 3.924sen(3.927£ + 3.927) + 3.924senh(3.927£ + 3.927))(3é?n(2.365Ti + 2.365)

- ^«/i(2J65ti + 2J65J - í.0í3c<«(2.365ti + 2.365) + 1.018cosh(2.365i) + 2.365)),

= (sen(3.927^ + 3.927) - senh(3.927% + 3.927) - .9992cos(3.927Ç + 3.927)
dr|

+ . 9992cosh(3.927t, + 3.927))(2.365cos(2.365r\ + 2.365) - 2.365cosh(2.365r\ + 2.365) 

+ 2.408sen(2.365r\ + 2.365) + 2.408senh(2.365v{ + 2.365)),

= (2.365cos(2.365^ + 2.365) - 2.365cosh(2.365^ +2.365)
dÇ

+ 2.408sen(2.365^ +2.365) + 2.408senh(2.365^ +2.365))(sen(3.927r\ + 3.927)

- senh(3.927r\ + 3.927) - .9992cos(3.927r\ + 3.927) + .9992cosh(3.927r\ + 3.927)),

= (sen(2.365h, + 2.365) - senh(2.365t, +2.365) - 1.018cos(2.365% + 2.365)
dr\

+ 1.018cosh(2.3651, + 2.365))(3.927cos(3.927r\ + 3.927) - 3.927cosh(3.927r\ + 3.927)

+ 3.924sen(3.927r\ + 3.927) + 3.924senh(3.927r{ + 3.927)),

= (3.927cos(3.927h, + 3.927) - 3.927cosh(3.927^ +3.927)

+ 3.924sen(3.927Ç + 3.927) + 3.924senh(3.9271, + 3.927))(rtt?7i(r3.927‘n + 3.927)

- senh(3.927r\ + 3.927) - .9992cos(3.927r\ + 3.927) + .9992cosh(3.927v{ + 3.927)) ,e

= (sen(3.927Ç + 3.927) - senh(3.927\ 4- 3.927) - .9992cos(3.927^ + 3.927)
ÔTj

+ .9992cosh(3,927l + 3.927))(3.927cos(3.927x\ + 3.927) - 3.927cosh(3.927r) + 3.927) 

+ 3.924sen(3.927r\ + 3.927) + 3.924senh(3.927i) + 3.927)).
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Composto

A matriz de deformação para os termos relativos ao cisalhamento do MC é o 

somatório das matrizes dadas pela Equação (3.51):

4.1.4 Matriz de Deformação para os Termos de Cisalhamento do Método
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4.2.2 Funções de Forma da Teoria Clássica para o Elemento de Oito Nós

As funções de forma utilizadas para a parcela da TC são as mesmas funções 

que as empregadas para o elemento quadrilateral de quatro nós. A diferença é que a 

quantidade de nós altera o número de graus de liberdade apenas para a parcela 

associada ao MEF.
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Composto

A matriz de deformação, para os termos de cisalhamento do MC, também é 

obtida da mesma forma que para o elemento quadrilateral de quatro nós

’ (4 3 0 )

4.2.4 Matriz de Deformação para os Termos de Cisalhamento do Método
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FIGURA 4.4 -  DETALHES DA ESTRUTURA DE ENTRADA, PROCESSAMENTO E SAI DA DE DADOS
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FIGURA 4.5- FLUXOGRAMA MOSTRANDO OS ELEMENTOS PRINCIPAIS DO PROGRAMA

4.3.1 Método de Jacobi Generalizado

O Método de Jacobi Generalizado é um dos muitos métodos de extração de 

autovalores existentes. A escolha do método de extração de autovalores depende da 

ordem da matriz e de suas características (por exemplo se é matriz esparsa), número de
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autovalores que se deseja extrair, entre outros. Outra questão, é relativa a localização 

dos autovalores de interesse em relação ao espectro de autovalores. Sendo assim, a 

utilização do Método de Jacobi Generalizado produz bons resultados quando se quer 

todos os autovalores e este número de autovalores é de aproximadamente 200, 

conforme COOK (1989).

O problema de autovalores a ser resolvido é dado por

K<& = ÃM<3> , (4.33)

onde K  é a matriz de rigidez, M  é a matriz massa e M  ^  I, À é o autovalor e O é o 

autovetor.

O Método de Jacobi Generalizado resolve o problema operando 

simultaneamente K  e M, obtendo assim, todos os autovalores e autovetores 

correspondentes.

4.3.2 Integração Num érica

O cálculo da integral para obter a matriz de rigidez e matriz massa do 

elemento finito apresenta grandes dificuldades sob o ponto de vista algébrico. A 

implementação do código computacional em questão necessita de uma estratégia 

específica para efetuar os cálculos das integrais, sendo então utilizado o procedimento 

numérico.

O procedimento numérico substitui a integral em todo o domínio pelo 

somatório do valor da função multiplicado por um fator peso em alguns pontos 

escolhidos do domínio. De maneira genérica e utilizando a matriz de rigidez como 

exemplo, tem-se
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integração 2x2 para os termos associados às funções do MEF e ordem de integração 

4x4 para os termos associados à TC.

4.4 SUMÁRIO DO CAPÍTULO 4

Neste capítulo apresentou-se a formulação numérica do MC. Para o presente 

trabalho optou-se pela implementação do elemento composto isoparamétrico 

quadrilateral de quatro nós e elemento composto isoparamétrico quadrilateral de oito 

nós. Para tanto, as funções de forma para interpolação utilizada pelo MEF foram 

definidas conforme BATHE (1996) e ODEN (1981). As funções de forma da parcela 

da TC utilizadas foram apresentadas considerando-se a inclusão de apenas quatro 

funções em cada um dos elementos a ser implementado. Entretanto, o número de 

funções pode ser qualquer e sua implementação pode ser feita de modo similar. Para 

facilitar o entendimento da formulação numérica, as derivadas das funções de forma 

também foram apresentadas.

Após a definição das funções de forma e suas derivadas procede-se a 

obtenção das matrizes associadas à rigidez da placa, matriz de flexão e cisalhamento, e 

também, a obtenção da matriz massa.

Com a formulação numérica definida, apresentou-se a estrutura do código 

computacional, que é capaz de resolver o problema de autovalores e autovetores. 

Características importantes do código computacional são permitir a escolha do número 

de parcelas da TC que se quer incluir na solução, monitorar a ocorrência do 

determinante do jacobiano negativo para algum elemento da malha e também verifica 

a ocorrência da matriz massa ou matriz de rigidez que não seja positiva definida. O 

código computacional também controla o tempo de processamento, sendo este um dos 

parâmetros para se determinar a eficiência do MC.

Durante o processo de cálculo computacional foi necessária a implementação 

de subrotina de integração numérica, sendo 6x6 a máxima ordem possível para a 

quadratura de Gauss. Com este procedimento foi possível determinar qual a ordem de



58

integração que atende aos requisitos de precisão para o MC, concluindo-se que a 

ordem de integração para os termos associados às parcelas da TC deve ser 4x4.

A determinação computacional dos autovalores e autovetores é realizada 

pelo Método de Jacobi Generalizado, utilizando subrotina extraída de BATHE (1996).
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5 APLICAÇÕES E RESULTADOS

Neste capítulo são apresentados resultados da implementação computacional 

realizada pelo MC. Faz-se uma comparação da sua solução com aquelas obtidas pelo 

MEF e por valores extraídos da teoria de placas. O efeito da variação do número de 

elementos (refinamento h) e do número de coordenadas c ou graus de liberdade c 

(refinamento c) sobre as soluções é também apresentado. Exemplos representativos de 

problemas são propostos para investigar: o efeito da distorção dos elementos da malha, 

a convergência dos resultados e, finalmente, os erros das diversas soluções 

comparando com os valores obtidos pelo MEF.

5.1 CONSIDERAÇÕES INICIAIS

Para a obtenção de resultados com base na implementação proposta, 

apresentam-se casos relevantes nas seções seguintes, através das quais pretende-se 

validar e consolidar o método. Assim, são verificadas:

■ A influência das parcelas da TC quando associadas ao elemento finito 

quadrilateral de quatro e oito nós.

■ O efeito do refinamento h sobre o resultado das freqüências naturais.

■ O efeito do refinamento c, comparando-o com o refinamento h, e sua 

influência sobre as freqüências naturais.

* O comportamentodo método implementado quando sujeito à distorção do 

elemento.

H A comparação dos resultados obtidos com a implementação em relação 

ao MEF.

B A definição de parâmetros suficientes para aplicar o método em placas 

com diferentes condições de contornos e, fazer comparações com outros
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métodos utilizados na resolução do problema.

8 O efeito do locking ao qual está sujeito o elemento de quatro e oito nós 

do MC, ora implementado.

5.2 FO RM A TO DA VERIFICAÇÃO

Para a verificação numérica, propõe-se a abordagem baseada em casos 

representativos. Assim, tem-se:

a) Caso 1: define-se uma placa com características dimensionais e 

condições de contorno onde se conhece a solução analítica, sendo esta, a 

referência para comparação. Para este caso, todas as informações são 

extraídas como, por exemplo, aspectos relacionados à convergência e 

métodos de refinamento. A Figura 5.1, apresenta a seqüência de análises 

realizadas para o Caso 1.

b) Caso 2: são selecionadas placas com diversas condições de contorno 

cujos resultados produzidos são comparados com outros métodos disponíveis 

na literatura.

5.3 CASO 1: VIBRAÇÃO LIVRE DE PLACA QUADRADA COM OS 

QUATRO LADOS SIMPLESMENTE APOIADOS

Neste exemplo, considera-se a vibração livre de uma placa quadrada semi- 

espessa, onde o contorno apresenta-se simplesmente apoiado, e a relação entre o vão e 

a espessura (b/h) é igual a 10. A Figura 5.2 apresenta a placa com as condições de 

contorno e características do material.

A placa é representada inicialmente por uma malha (3x3). Este processo se 

repete para malhas (4x4), (5x5), (6x6), (7x7), (8x8), (9x9) e (10x10). Sendo a placa 

simplesmente apoiada, o deslocamento transversal em todos os nós do contorno é igual 

a zero.



CASO 1
FIGURA 

5.1 
- 

MAPA 
DE 

LEITURA 
DAS 

ANÁLISES 
DO 

CASO 
1
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FIGURA 5.2 -  CONDIÇÕES DE CONTORNO DA PLACA DO CASO 1

Contorno SS-SS 
v= 0,3
relação/?//?=10 
material isotrópico

Exemplo de uma malha 
4x4 (16 elementos)
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As Tabelas 5.1 e 5.2 apresentam os valores das freqüências adimensionais, 

obtidas através do MEF com 9, 16, 25, 36, 49, 64, 81 e 100 elementos quadrilaterais de 

quatro nós, e os respectivos erros em relação à solução exata. Neste caso, o número de 

graus de liberdade do MEF corresponde ao número de nós multiplicado por três 

(desconsiderando as condições de contorno). O aumento do número de graus de 

liberdade decorrente do aumento do número de elementos corresponde ao refinamento 

h do MEF.

TABELA 5 .1 - RESULTADOS DA FREQUÊNCIA ADIMENSIONALISADA X OBTIDOS PELO MEF COM MALHA
(3X3) À (6X6) E OS ERROS REFERENTES À SOLUÇÃO ANALÍTICA

Modo

-Analítico-
SRINIVAS

(1970)

-MEF- 
Malha 3x3

-MEF- 
Malha 4x4

-MEF- 
Malha 5x5

-MEF- 
Malha 6x6

K 4 erro(%) 4 erro(%) T, erro(%) 4 erro(%)
1 19,089 33,513 75,56 27,588 44,52 24,688 29,33 23,048 20,74
2 45,620 106,927 134,39 80,236 75,88 67,676 48,35 60,900 33,49
3 45,620 106,927 134,39 80,236 75,88 67,676 48,35 60,900 33,49
4 70,089 148,745 112,22 113,857 62,45 97,690 39,38 89,056 27,06
5 85,488 651,564 662,17 183,096 114,18 149,447 74,82 129,274 51,22

TABELA 5 .2 - RESULTADOS DA FREQUÊNCIA ADIMENSIONALISADA X OBTIDOS PELO MEF COM MALHA
(7X7) À (10X10) E OS ERROS REFERENTES À SOLUÇÃO ANALÍTICA

Modo

-Analítieo-
SRINIVAS

(1970)

-MEF- 
Malha 7x7

-MEF- 
Malha 8x8

-MEF- 
Malha 9x9

-MEF- 
Malha 10x10

4- K erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 22,031 15,41 21,357 11,88 20,888 9,42 20,549 7,65
2 45,620 56,827 24,57 54,180 18,76 52,364 14,78 51,063 11,93
3 45,620 56,827 24,57 54,180 18,76 52,364 14,78 51,063 11,93
4 70,089 83,906 19,71 80,578 14,97 78,306 11,72 76,685 9,41
5 85,488 117,168 37,06 109,430 28,01 104,199 21,89 100,484 17,54



64

FIGURA 5.3 - ERRO RELATIVO DO MEF (ELEMENTOS DE QUATRO NÓS) PARA AS FREQUÊNCIAS
ADIMENSIONAIS COMPARADOS À SOLUÇÃO ANALÍTICA

Nota:
a) O gráfico da segunda e terceira freqüências são coincidentes
b) O erro relativo da malha (3x3) para a quinta freqüência não consta do gráfico, sendo seu valor igual a 

662,2% de erro relativo.

5.3.1.2 Elemento Quadrilateral de Oito Nós

Considerando agora o caso dos elementos quadrilaterais de oito nós, as 

Tabelas 5.3 e 5.4 apresentam os valores das freqüências adimensionais, obtidas através 

do MEF com malhas 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 e, finalmente, 10x10, e os 

respectivos erros em relação à solução exata. Esta primeira análise apresenta os 

resultados do refinamento h do MEF. Já, a Figura 5.4 contém a representação gráfica 

das cinco primeiras freqüências adimensionais em função do erro em relação à solução 

exata proposta por SRINIVAS (1970).
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TABELA 5.3 -  RESULTADOS DA FREQUÊNCIA ADIMENSIONALISADA X OBTIDOS PELO MEF COM MALHA
(3X3) À (6X6) E OS ERROS REFERENTES À SOLUÇÃO ANALÍTICA

Modo

-Analítico-
SRINIVAS

(1970)

-MEF- 
Malha 3x3

-MEF- 
Malha 4x4

-MEF- 
Malha 5x5

-MEF- 
Malha 6x6

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 19,303 1,12 19,144 0,29 19,089 0,00 19,082 -0,04
2 45,620 48,603 6,54 46,532 2,00 45,928 0,68 45,717 0,21
3 45,620 48,603 6,54 46,532 2,00 45,928 0,68 45,717 0,21
4 70,089 81,018 15,59 72,030 2,77 70,533 0,63 70,143 0,08
5 85,488 93,116 8,92 91,024 6,48 87,706 2,59 86,438 1,11

TABELA 5.4 -  RESULTADOS DA FREQUÊNCIA ADIMENSIONALISADA X OBTIDOS PELO MEF COM MALHA 
(7X7) À (10X10) E OS ERROS REFERENTES À SOLUÇÃO ANALÍTICA

Modo

-Analítico-
SRINIVAS

(1970)

-MEF- 
Malha 7x7

-MEF- 
Malha 8x8

-MEF- 
Malha 9x9

-MEF- 
Malha 10x10

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 19,074 -0,08 19,071 -0,10 19,068 -0,11 19,067 -0,11
2 45,620 45,614 -0,01 45,561 -0,13 45,533 -0,19 45,516 -0,23
3 45,620 45,614 -0,01 45,561 -0,13 45,533 -0,19 45,516 -0,23
4 70,089 69,679 -0,16 69,902 -0,27 69,862 -0,32 69,839 -0,36
5 85,488 85,829 0,40 86,617 0,03 85,342 -0,17 85,242 -0,29

5.3.1.3 Análise dos Resultados Obtidos para o MEF

Pode-se observar nas Figuras 5.3 e 5.4, que os resultados obtidos com o 

elemento quadrilateral de oito nós são melhores do que os de quatro nós, em função do 

enriquecimento do espaço de solução com o aumento do grau do polinômio de 

interpolação. Esta vantagem apresenta-se na forma de erro relativo menor para todas 

as freqüências, considerando a solução analítica.

O fato de existirem diferenças sensíveis em relação aos resultados destes 

elementos é que torna a implementação do elemento quadrilateral de quatro e oito nós 

no MC interessante, já  que parte das funções utilizadas no MC são as mesmas do 

MEF. Assim, poderá ser observado o efeito do acréscimo das parcelas da TC na
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FIGURA 5.4 - ERRO RELATIVO DO MEF (OITO NÓS) PARA AS FREQUÊNCIAS ADIMENSIONAIS

Nota:
a) O gráfico da segunda e terceira freqüências são coincidentes

5.3.2 Método Composto

De forma a observar os resultados obtidos com a implementação do MC, 

consideram-se diversas variações no número de elementos (graus de liberdade nodais) 

e no número de graus de liberdade c.

O número total de graus de liberdade ntgl para placas utilizando o MC, pode 

ser obtido através da equação

ntgl = NTN x ngln + NTE x ngln x nglc — ntglr (5.3)

onde NTN  é o número total de nós, NTE é o número total de elementos, ngln é o
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número de graus de liberdade nodais, nglc é o número de graus de liberdade c por 

elemento e ntglr é o número total de graus de liberdade restritos.

O nglc é dado pelo número de funções (l,2,3...m) que se está utilizando 

multiplicado pelo ngln (está se utilizando três graus de liberdade por nó). O nglc 

utilizado nesta pesquisa varia de um até quatro, uma vez que se utilizam até quatro 

parcelas da TC, para demonstrar a superposição com as funções de forma típicas do 

MEF.

5.3.2.1 Elemento Quadrilateral de Quatro nós

Para este elemento apresentam-se as análises propostas na Figura 5.1 e as 

condições de contorno da placa do Caso 1 dadas pela Figura 5.2.

5.3.2.1.1 Refinamento c

Para comparar resultados relativos ao refinamento c utilizou-se malhas (3x3), 

(4x4) e (8x8). O uso desta discretização se justifica por permitir observar a evolução 

dos efeitos do acréscimo do número de funções da TC na solução.

Os resultados obtidos são apresentados nas Tabelas 5.5 à 5.7, sendo estes, 

comparados com a solução analítica.

TABELA 5.5 -  RESULTADOS OBTIDOS PELO MC COM MALHA 3X3 E REFINAMENTO c

Modo
SRINIVAS

(1970)
Malha 3x3-lc Malha 3x3-2c Malha 3x3-3c Malha 3x3-4c

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 30,740 61,03 29,970 57,00 28,918 51,49 28,457 49,08
2 45,620 98,466 115,84 88,188 93,31 85,210 86,78 83,957 84,04
3 45,620 98,466 115,84 88,188 93,31 85,210 86,78 83,957 84,04
4 70,089 132,911 89,63 123,977 76,88 123,617 76,37 122,815 75,23
5 85,488 238,529 179,02 223,141 161,02 194,575 127,60 186,032 117,61
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TABELA 5.6 -  RESULTADOS OBTIDOS PELO MC COM MALHA 4X4 E REFINAMENTO c

Modo
SRINIVAS

(1970)
Malha 4x4-lc Malha 4x4-2c Malha 4x4-3c Malha 4x4-4c

4 4 erro(%) 4- erro(%) 4 erro(%) K erro(%)
1 19,089 24,872 30,29 24,545 28,58 24,135 26,44 23,970 25,57
2 45,620 75,184 64,81 73,339 60,76 71,204 56,08 69,523 52,40
3 45,620 75,184 64,81 73,339 60,76 71,204 56,08 69,523 52,40
4 70,089 103,865 48,19 100,157 42,90 97,198 38,68 94,571 34,93
5 85,488 163,648 91,43 148,204 73,36 138,630 62,16 124,873 46,07

TABELA 5.7 -  RESULTADOS OBTIDOS PELO MC COM MALHA 8X8 E REFINAMENTO c

SRINIVAS Malha 8x8-lc Malha 8x8-2c Malha 8x8-3c Malha 8x8-4c
Modo (1970)

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 20,770 8,81 20,731 8,60 20,629 8,07 20,603 7,93
2 45,620 52,793 15,72 52,369 14,79 52,066 14,13 51,903 13,77
3 45,620 52,793 15,72 52,369 14,79 52,066 14,13 51,903 13,77
4 70,089 76,958 9,80 76,004 8,44 75,311 7,45 74,876 6,83
5 85,488 105,481 23,39 103,653 21,25 102,715 20,15 101,337 18,54

FIGURA 5.5 - ERRO RELATIVO DO MC COM REFINAMENTO c PARA A PRIMEIRA FREQUÊNCIA  
ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)
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FIGURA 5.6 - ERRO RELATIVO DO MC COM REFINAMENTO c PARA A TERCEIRA FREQUÊNCIA  
ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)

FIGURA 5.7 - ERRO RELATIVO DO MC COM REFINAMENTO c PARA A QUINTA FREQUÊNCIA  
ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)
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A  Tabela 5.8 apresenta o comportamento dos resultados, avaliando-se a 

relação do uso de quatro e uma parcela da TC, para o refinamento c do MC.

Análise dos resultados:

TABELA 5.8 -  COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAÇÃO À
SOLUÇÃO ANALÍTICA.

Modo Malha 3x3 - 4 c  / lc Malha 4x4 - 4c / lc Malha 8x8 -  4c / lc
1 19,6% 15,6% 1 0%
3 27,4% 19,1% 12,4%
5 34,3% 49,6% 20,7%

Dos resultados obtidos pelo refinamento c do MC, apresentados nas Figuras 

5.5 à 5.7, e com base na Tabela 5.8, as seguintes observações podem ser feitas:

• refinamento c melhora a precisão dos resultados para as freqüências mais 

altas (observar colunas da Tabela 5.8).

• Malhas mais grosseiras têm seus resultados melhorados sensivelmente 

com o refinamento c (observar linhas da Tabela 5.8).

5.3.2.1.2 Refinamento h

Para comparar resultados relativos ao refinamento h foram utilizadas malhas 

(3x3, (5x5), (7x7), e (10x10), e até quatro funções da teoria clássica. A escolha destas 

discretizações permite observar o comportamento em relação à convergência com o 

aumento do número de elementos na malha.

Os valores produzidos podem ser encontrados nas Tabelas 5.9 à 5.12.
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TABELA 5.9 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM UMA
FUNÇÃO DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-lc Malha 5x5-lc Malha 7x7-lc Malha lOxlO-lc

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 30,740 61,03 22,883 19,88 21,368 11,94 20,264 6,16
2 45,620 98,466 115,84 62,804 37,67 55,042 20,65 50,306 10,27
3 45,620 98,466 115,84 62,804 37,67 55,042 20,65 50,306 10,27
4 70,089 132,911 89,63 89,162 27,21 79,278 13,11 74,580 6,41
5 85,488 238,529 179,02 135,894 58,96 111,628 30,58 98,266 14,95

TABELA 5.10- RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM DUAS
FUNÇÕES DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-2c Malha 5x5-2c Malha 7x7-2c Malha 10xl0-2c

4 4 erro(%) 4 erro(%) A.i erro(%) 4 erro(%)
1 19,089 29,970 57,00 22,773 19,30 21,301 11,59 20.217 5,91
2 45,620 88,188 93,31 61,453 34,71 54,635 19,76 49,995 9,59
3 45,620 88,188 93,31 61,453 34,71 54,635 19,76 49,995 9,59
4 70,089 123,977 76,88 87,227 24,45 78,207 11,58 73,625 5,04
5 85,488 223,141 161,02 126,576 48,06 108,778 27,24 97,180 13,68

TABELA 5.11 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM TRÊS
FUNÇÕES DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-3c Malha 5x5-3c Malha 7x7-3c Malha 10xl0-3c

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 28,918 51,49 22,534 18,05 21,179 10,95 20,141 5,51
2 45,620 85,210 86,78 60,364 32,32 54,179 18,76 49,769 9,10
3 45,620 85,210 86,78 60,364 32,32 54,179 18,76 49,769 9,10
4 70,089 123,617 76,37 85,588 22,11 77,312 10,31 73,082 4,27
5 85,488 194,575 127,60 121,833 42,51 107,385 25,61 96,225 12,56

TABELA 5.12 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM
QUATRO FUNÇÕES DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-4c Malha 5x5-4c Malha 7x7-4c Malha 10xl0-4c

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 28,457 49,08 22,430 17,50 21,144 10,77 20,127 5,44
2 45,620 83,957 84,04 59,658 30,77 53,902 18,15 49,672 8,88
3 45,620 83,957 84,04 59,658 30,77 53,902 18,15 49,672 8,88
4 70,089 122,815 75,23 83,919 19,73 76,682 9,41 72,828 3,91
5 85,488 186,032 117,61 111,132 30,00 104,970 22,79 95,950 12,24
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FIGURA 5.8 - ERRO RELATIVO DO MC (ELEMENTO DE QUATRO NÓS) COM REFINAMENTO h PARA A
PRIMEIRA FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)

FIGURA 5.9 - ERRO RELATIVO DO MC (ELEMENTO DE QUATRO NÓS) COM REFINAMENTO h PARA A 
TERCEIRA FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)
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FIGURA 5.10 - ERRO RELATIVO DO MC (ELEMENTO DE QUATRO NÓS) COM REFINAMENTO h PARA A
QUINTA FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)

Análise dos resultados:

Na Tabela 5.13 apresentam-se os resultados comparativos para os valores 

obtidos com o refinamento h do MC para o elemento de quatro nós.

TABELA 5.13 -  COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAÇÃO À
SOLUÇÃO ANALÍTICA.

Modo M a l h a  1 0 x 1 0  / M a l h a  

3 x 3  -  l c

M a l h a  1 0 x 1 0 / M a l h a

3 x 3  -  2 c

M a l h a  1 0 x 1 0  /  M a l h a

3 x 3  —  3 c

M a l h a  1 0 x 1 0 / M a l h a  

3 x 3  -  4 c

1 89,9% 89,6% 89,3% 88,9%
3 91,1% 89,7% 89,5% 89,4%
5 91,6% 91,5% 90,2% 89,6%
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ser observado pela tendência das curvas nas figuras.

• o padrão de convergência não se altera com o aumento do número de 

funções da TC. Isto pode ser observado na Tabela 5.13.

• o resultado relativo à solução pelo MEF, para a quinta freqüência 

adimensionalisada e malha 3x3, não faz sentido porque esta malha é 

muito grosseira para capturar este modo de vibração.

5.3.2.1.3 Distorção de malha -  quatro nós

Nesta seção faz-se a análise dos efeitos da distorção do elemento 

quadrilateral de quatro nós do MC, nos resultados das freqüências calculadas.

A malha utilizada para analisar a distorção é apresentada na Figura 5.11.

FIGURA 5.11 -  MALHA 3X3 COM ELEMENTOS DE QUATRO NÓS DISTORCIDOS

Os resultados obtidos com o MC, para até quatro funções da TC, são 

apresentados em termos de erro relativo à solução analítica, para a primeira, terceira e 

quinta freqüências naturais. Como condições de contorno, a placa apresenta os quatro
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bordos simplesmente apoiados (SS-SS), com relação vão/espessura (b/h) igual a 10 e

coeficiente de Poisson igual a 0,3.
FIGURA 5.12 -  EFEITO DA DISTORÇÃO DO ELEMENTO DE QUATRO NÓS PARA A PRIMEIRA  

FREQUÊNCIA NATURAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA

FIGURA 5.13 -  EFEITO DA DISTORÇÃO DO ELEMENTO DE QUATRO NÓS PARA A TERCEIRA  
FREQUÊNCIA NATURAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA
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FIGURA 5.14 -  EFEITO DA DISTORÇÃO DO ELEMENTO DE QUATRO NÓS PARA A QUINTA FREQUÊNCIA
NATURAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA

Análise dos resultados:

A  Tabela 5.14 apresenta os resultados obtidos a partir da distorção aplicada. 

Estes resultados estão colocados em forma de percentual de degradação, levando-se 

em conta o resultado analítico proposto por SRINIVAS (1970).
TABELA 5.14 -  COMPARATIVO DO PERCENTUAL DE DEGRADAÇÃO DOS RESULTADOS (II)  EM

RELAÇÃO À SOLUÇÃO ANALÍTICA

Modo 1 Função 2 Funções 3 Funções 4 Funções
1 40,0% 48,0% 61,0% 6 8 ,6 %
3 14,6% 37,0% 43,0% 47,0%
5 20,4% 10,9% 6,4% 15,5%
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do MC com a utilização deste elemento de quatro nós, já  que este 

elemento, pela própria formulação não apresenta resultados precisos.

5.3.2.2 Elemento Quadrilateral de Oito Nós

Da mesma maneira que o procedimento empregado para o elemento 

quadrilateral de quatro nós, as análises seguem a seqüência proposta na Figura 5.1.

5.3.2.2.1 Refinamento c

Para comparar resultados relativos ao refinamento c foram utilizadas malhas 

(3x3), (4x4) e (8x8 ). Este padrão de discretização é aplicado novamente para poder se 

comparar os resultados com aqueles obtidos para o elemento quadrilateral de quatro 

nós.

As Tabelas 5.15 à 5.17, apresentam os resultados do refinamento c , sendo 

que estes são comparados à solução analítica.

TABELA 5.15 -  RESULTADOS OBTIDOS PELO MC COM MALHA 3X3 E REFINAMENTO c

Modo
SR IN IVA S

(1970)
Malha 3x3-lc Malha 3x3-2c Malha 3x3-3c Malha 3x3-4c

4 K erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 19,301 1,11 19,297 1,09 19,286 1,03 19,276 0,98
2 45,620 48,542 6,40 48,454 6,21 48,390 6,07 48,312 5,90
3 45,620 48,542 6,40 48,454 6,21 48,390 6,07 48,312 5,90
4 70,089 78,552 12,07 77,966 11,24 77,535 10,62 77,235 10,19
5 85,488 92,614 8,34 92,157 7,80 91,613 7,16 91,572 7,12

TABELA 5.16 -  RESULTADOS OBTIDOS PELO MC COM MALHA 4X4 E REFINAMENTO c

Modo
SR IN IVA S

(1970)
Malha 4x4-lc Malha 4x4-2c Malha 4x4-3e Malha 4x4-4c

4 4 erro(%) 4- erro(%) 4: erro(%) 4 erro(%)
1 19,089 19,143 0,28 19,140 0,27 19,136 0,25 19,133 0,23
2 45,620 46,526 1,99 46,519 1,97 46,466 1,86 46,421 1,76
3 45,620 46,526 1,99 46,519 1,97 46,466 1,86 46,421 1,76
4 70,089 71,844 2,50 71,772 2,40 71,697 2,29 71,618 2,18
5 85,488 90,951 6,39 90,665 6,06 90,554 5,93 90,279 5,60
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TABELA 5.17 -  RESULTADOS OBTIDOS PELO MC COM MALHA 8X8 E REFINAMENTO c

Modo
SRINIVAS

(1970)
Malha 8x8-lc Malha 8x8-2c Malha 8x8-3c Malha 8x8-4c

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 19,071 -0,10 19,070 -0,10 19,070 -0,10 19,070 -0,10
2 45,620 45,561 -0,13 45,561 -0,13 45,554 -0,14 45,553 -0,15
3 45,620 45,561 -0,13 45,561 -0,13 45,554 -0,14 45,553 -0,15
4 70,089 69,901 -0,27 69,893 -0,28 69,887 -0,29 69,885 -0,29
5 85,488 85,516 0,03 85,479 -0,01 85,445 -0,05 85,441 -0,06

FIGURA 5.15 - ERRO RELATIVO DO MC -  OITO NÓS COM REFINAMENTO c PARA A PRIMEIRA  
FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)
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FIGURA 5.16 - ERRO RELATIVO DO MC - OITO NÓS COM REFINAMENTO c PARA A TERCEIRA
FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)

FIGURA 5.17 - ERRO RELATIVO DO MC -  OITO NÓS COM REFINAMENTO c PARA A QUINTA FREQUÊNCIA  
ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)
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Análise dos resultados:

A  Tabela 5.18 apresenta o comportamento dos resultados, para o refinamento

c do MC, para a relação entre o uso de quatro e uma parcela da TC.
TABELA 5.18 -  COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAÇÃO À

SOLUÇÃO ANALÍTICA.

Modo Malha 3x3 -  4c / lc Malha 4x4 -  4c / lc Malha 8x8 -  4c / lc
1 11,7% 17,8% 0,0%
3 7,8% 11,6% 15,4%
5 14,6% 12,4% 100,0%

onde: A representa o percentual de melhoria do resultado em relação à solução 
analítica.____________________________________________________________________

Dos resultados obtidos pelo refinamento c do MC, apresentados nas Figuras 

5.15 à 5.17, as seguintes observações podem ser feitas:

• Para as malhas mais grosseiras o refinamento c mantêm o padrão de 

melhoria da solução entre às freqüências pesquisadas.

• No caso da malha 8x8, pode-se observar grande variação relativa à 

melhoria da solução. Porém, em valores absolutos a diferença é pequena, 

conforme pode ser visto na Figura 5.17.

5.3.2.2.2 Refinamento h

Para comparar resultados relativos ao refinamento h utilizou-se as malhas 

(3x3, (5x5), (7x7), e (10x10), com até quatro funções para a parcela da TC. As Tabelas

5.19 à 5.22, contém os valores computados com a implementação proposta.
TABELA 5.19 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM UMA

FUNÇÃO DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-lc Malha 5x5-lc Malha 7x7-lc Malha lOxlO-lc

4 4 erro(%) K erro(%) 4 erro(%) 4 erro(%)
1 19,089 19,301 1,11 19,089 0,00 19,074 -0,08 19,067 -0,11
2 45,620 48,542 6,40 45,929 0,68 45,613 -0,01 45,516 -0,23
3 45,620 48,542 6,40 45,929 0,68 45,613 -0,01 45,516 -0,23
4 70,089 78,552 12,07 70,494 0,58 69,976 -0,16 69,838 -0,36
5 85,488 92,614 8,34 87,693 2,58 85,828 0,40 85,242 -0,29
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TABELA 5.20 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM DUAS
FUNÇÕES DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-2c Malha 5x5-2c Malha 7x7-2c Malha 10xl0-2c

4 4 erro(%) 4 erro(%) 4- erro(%) 4 erro(%)
1 19,089 19,297 1,09 19,089 0,00 19,074 -0,08 19,067 -0,11
2 45,620 48,454 6,21 45,925 0,67 45,613 -0,02 45,516 -0,23
3 45,620 48,454 6,21 45,925 0,67 45,613 -0,02 45,516 -0,23
4 70,089 77,966 11,24 70,459 0,53 69,965 -0,18 69,834 -0,36
5 85,488 92,157 7,80 87,546 2,41 85,770 0,33 85,225 -0,31

TABELA 5.21 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM TRÊS
FUNÇÕES DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-3c Malha 5x5-3c Malha 7x7-3c Malha 10xl0-3c

4 Ài erro(%) 4 erro(%) 4 , erro(%) 4 erro(%)
1 19,089 19,286 1,03 19,086 -0,02 19,073 -0,08 19,067 -0,12
2 45,620 48,390 6,07 45,894 0,60 45,603 -0,04 45,513 -0,24
3 45,620 48,390 6,07 45,894 0,60 45,603 -0,04 45,513 -0,24
4 70,089 77,535 10,62 70,431 0,49 69,955 -0,19 69,832 -0,37
5 85,488 91,613 7,16 87,328 2,15 85,740 0,30 85,215 -0,32

TABELA 5.22 -  RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM
QUATRO FUNÇÕES DA TC

Modo
SRINIVAS

(1970)
Malha 3x3-4c Malha 5x5-4c Malha 7x7-4c Malha 10xl0-4c

4 4 erro(%) 4 erro(%) 4 erro(%) 4 erro(%)
1 19,089 19,276 0,98 19,085 -0,02 19,073 -0,08 19,067 -0,12
2 45,620 48,312 5,90 45,885 0,58 45,601 -0,04 45,513 -0,24
3 45,620 48,312 5,90 45,885 0,58 45,601 -0,04 45,513 -0,24
4 70,089 77,235 10,19 70,406 0,45 69,951 -0,20 69,831 -0,37
5 85,488 91,572 7,12 87,267 2,08 85,733 0,29 85,214 -0,32
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FIGURA 5.18 - ERRO RELATIVO DO MC (ELEMENTO DE OITO NÓS) OITO NÓS COM REFINAMENTO h
PARA A PRIMEIRA FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS
(1970)

FIGURA 5.19 - ERRO RELATIVO DO MC (ELEMENTO DE OITO NÓS) COM REFINAMENTO h PARA A 
TERCEIRA FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)
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FIGURA 5.20 - ERRO RELATIVO DO MC (ELEMENTO DE OITO NÓS) COM REFINAMENTO h PARA A
QUINTA FREQUÊNCIA ADIMENSIONALISADA EM COMPARAÇÃO COM SRINIVAS (1970)

Análise dos resultados:

Na Tabela 5.23 apresentam-se os resultados comparativos para os valores 

obtidos com o refinamento h do MC para o elemento de quatro nós.

TABELA 5.23 -  COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAÇÃO À
SOLUÇÃO ANALÍTICA.

Modo Malha 10x10 / Malha 
3x3 -  lc

Malha 10x10 / Malha 
3x3 -  2c

Malha 10x10 / Malha 
3x3 -  3c

Malha 10x10 / Malha 
3x3 -  4c

1 90,1% 89,9% 88,3% 87,7%
3 96,4% 96,3% 96,0% 95,9%
5 96,5% 96,0% 95,5% 95,5%
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o padrão de convergência se mantêm compatível com o aumento do 

número de funções da TC.

5.3.2.2.3 Distorção de malha oito nós

A malha distorcida de oito nós encontra-se ilustrada na Figura 5.21. 

FIGURA 5.21 - MALHA 3X3 COM ELEMENTO DE OITO NÓS DISTORCIDO

As características da placa são as consideradas para o Caso 1, sendo 

analisados os efeitos do elemento distorcido para a primeira, terceira e quinta 

freqüências naturais, referenciadas à solução analítica.
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FIGURA 5.22 -  EFEITO DA DISTORÇÃO DO ELEMENTO DE OITO NÓS PARA A PRIMEIRA FREQUÊNCIA
NATURAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA

FIGURA 5.23 -  EFEITO DA DISTORÇÃO DO ELEMENTO DE OITO NÓS PARA A TERCEIRA FREQUÊNCIA
NATURAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA
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FIGURA 5.24 -  EFEITO DA DISTORÇÃO DO ELEMENTO DE OITO NÓS PARA A QUINTA FREQUÊNCIA
NATURAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA

Análise dos resultados:

Pode-se observar das Figuras 5.22 à 5.24, e com base na Tabela 5.24, que:

■ A distorção do elemento de placa é representativa no resultado das 

freqüências.

■ Aparentemente, o acréscimo de funções da TC não resolve o problema da 

degradação dos resultados produzidos com o elemento distorcido, uma 

vez que mantêm-se o padrão de deterioração dos mesmos.

■ Nota-se que a degradação dos resultados obtidos com o MC é menor para 

as freqüências mais altas como pode ser observado da Tabela 5.24.
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TABELA 5.24 -  COMPARATIVO DO PERCENTUAL DE DEGRADAÇÃO DOS RESULTADOS (II)  EM
RELAÇÃO À SOLUÇÃO ANALÍTICA.

Modo 1 Função 2 Funções 3 Funções 4 Funções
1 136,4% 136,4% 150,0% 150,0%
3 61,1% 62,6% 61,3% 62,5%
5 83,1% 85,9% 93,0% 94,4%

5.3.2.3 Efeito da Variação da Relação Vão/Espessura

Efetuou-se a investigação do efeito da mudança da relação vão/espessura 

(b/h) na precisão dos resultados para a primeira, terceira e quinta freqüências 

adimensionalisadas, para as condições de contorno do Caso 1. As freqüências 

escolhidas dão uma idéia de como o efeito da relação vão/espessura atuam sobre os

elementos de placa do MC implementados.

FIGURA 5.25 - EFEITO DA RELAÇÃO VÃO/ESPESSURA PARA A PRIMEIRA FREQÜÊNCIA  
ADIMENSIONALISADA (ELEMENTO DE QUATRO NÓS)



A freqüência adimensionalisada utilizada como comparação é para placa fina 

(obtidos da Teoria Clássica de Placas -  Kirchhoff-Love). A malha utilizada para 

comparar os resultados é composta por 64 elementos (malha 8x8). As relações 

vão/espessura experimentadas foram de 10, 12, 15, 18, 20, 30, 50 e 100. Assim, quanto 

maior a relação b/h mais fina é a placa. As freqüências são adimensionalisadas 

conforme a Equação (5.1). Os testes foram realizados para o elemento quadrilateral de 

quatro e oito nós.

Os valores das freqüências adimensionalisadas para placas finas foram 

obtidos de LEISSA (1973), sendo:

■ 19,739 para o primeiro modo de vibar;

■ 49,348 para o segundo modo de vibrar;

■ 98,696 para o terceiro modo de vibrar.

FIGURA 5.26 - EFEITO DA RELAÇÃO VÃO/ESPESSURA PARA A TERCEIRA FREQÜÊNCIA  
ADIMENSIONALISADA (ELEMENTO DE QUATRO NÓS)
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FIGURA 5.27 - EFEITO DA RELAÇÃO VÃO/ESPESSURA PARA A QUINTA FREQÜÊNCIA  
ADIMENSIONALISADA (ELEMENTO DE QUATRO NÓS)

FIGURA 5.28 -  EFEITO DA RELAÇÃO VÃO/ESPESSURA PARA A PRIMEIRA FREQUÊNCIA  
ADIMENSIONALISADA (ELEMENTO DE OITO NÓS)
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FIGURA 5.29 - EFEITO DA RELAÇÃO VÃO/ESPESSURA PARA A TERCEIRA FREQUÊNCIA  
ADIMENSIONALISADA (ELEMENTO DE OITO NÓS)

FIGURA 5.30 - EFEITO DA RELAÇÃO VÃO/ESPESSURA PARA A QUINTA FREQUÊNCIA  
ADIMENSIONALISADA (ELEMENTO DE OITO NÓS)
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Análise dos resultados:

Observando-se das Figuras 5.25 à 5.30, nota-se que quando a relação b/h 

aumenta, o elemento de placa do MC melhora os resultados para placas finas, se 

comparado ao MEF. Apesar disto, esta melhora ainda não é suficiente para resolver o 

problema. Isto fica evidente para uma relação b/h igual a 100, onde a diferença entre 

as curvas do MC e do MEF, são comparadas com a solução analítica de placas finas. 

Verificam-se os efeitos do locking para os dois elementos implementados, sendo que 

para o elemento de quatro nós este efeito, pela própria formulação do elemento, é 

potencializado.

Conforme pode-se observar nas Figuras 5.28 à 5.30, o elemento de oito nós é 

mais eficiente na análise de placas finas.

A solução para placas finas é dependente das funções típicas do MEF, 

portanto a solução que produz bons resultados depende da implementação de 

elementos finitos capazes de capturar a variação b/h.

5.3o3 Comparação de Resultados do MEF e MC

Para comparar resultados relativos ao emprego do MEF e MC utilizou-se as 

malhas (3x3), (4x4), (5x5), (6 x6 ), (7x7), (8x8 ), (9x9) e (10x10), com variação de até 

quatro funções da TC.

Apresentam-se os dados para a primeira, terceira e quinta freqüências mais 

baixas, onde pode-se observar a convergência e a precisão do MC e do MEF.

5.3.3.1 Comparação de Resultados para o Elemento de Quatro Nós

Nas Figuras 5.31 à 5.33, são apresentados os resultados em termos de erro 

relativo à solução analítica, dada por SRINIVAS (1970).
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FIGURA 5.31 -  COMPARAÇÃO DO MEF E O MC COM REFINAMENTO c PARA A PRIMEIRA FREQUÊNCIA
ADIMENSIONALISADA - ERRO RELATIVO À SOLUÇÃO ANALÍTICA

FIGURA 5.32 -  COMPARAÇÃO DO MEF E O MC COM REFINAMENTO c PARA A TERCEIRA FREQUÊNCIA  
ADIMENSIONALISADA - ERRO RELATIVO À SOLUÇÃO ANALÍTICA
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FIGURA 5.33 -  COMPARAÇÃO DO MEF E O MC COM REFINAMENTO c PARA A QUINTA FREQUÊNCIA
ADIMENSIONALISADA - ERRO RELATIVO À SOLUÇÃO ANALÍTICA

N o t a :

a )  O  e r r o  r e l a t i v o  d a  m a l h a  ( 3 x 3 )  p a r a  a  q u i n t a  f r e q ü ê n c i a  n ã o  c o n s t a  d o  g r á f i c o ,  s e n d o  s e u  v a l o r  

i g u a l  a  6 6 2 , 2 %  d e  e r r o  r e l a t i v o .

Análise dos resultados:

Dos resultados obtidos pelo MEF e do MC com refinamento de 4 parcelas da 

TC, as seguintes observações podem ser feitas:

• O MC apresenta uma melhoria de resultados da ordem de 30% 

(aproximadamente) para todas as malhas pesquisadas.

• Para freqüências mais altas e malhas grosseiras o MC apresenta grande 

melhoria nos resultados, conforme pode-se observar na Tabela 5.25.
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TABELA 5.25 -  COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAÇÃO À
SOLUÇÃO ANALÍTICA DADA POR SRINIVAS (1970).

M a l h a M a l h a M a l h a M a l h a M a l h a M a l h a M a l h a
M a l h a  1 0 x 1 0 -  

4 c  /  M a l h a  

1 0 x 1 0 - M E F

Modo 3 x 3 - 4 c  / 4 x 4 - 4 e  / 5 x 5 - 4 c  / 6 x 6 - 4 c  / 7 x 7 - 4 c  I 8 x 8 - 4 c  / 9 x 9 - 4 c  /

M a l h a  3 x 3 M a l h a  4 x 4 M a l h a  5 x 5 M a l h a  6 x 6 M a l h a  7 x 7 M a l h a  8 x 8 M a l h a  9 x 9

- M E F - M E F - M E F - M E F - M E F - M E F - M E F

1 35,0% 42,6% 40,3% 28,6% 30,1% 33,2% 28,1% 28,9%
3 37,5% 30,9% 36,3% 27,9% 26,1% 26,7% 24,6% 25,6%
5 59,6% 59,9% 48,1% 38,5% 33,8% 29,8% 30,2%

53.3.2 Comparação de Resultados para o Elemento de Oito Nós

A representação gráfica apresentada nas Figuras 5.34 à 5.36, traz o elemento 

quadrilateral de oito nós, comparado em termos de erro relativo à solução analítica 

dada por SRINIVAS (1970).

FIGURA 5.34 - COMPARAÇÃO DO MEF E O MC COM REFINAMENTO c PARA A PRIMEIRA FREQUÊNCIA  
ADIMENSIONAL -  ERRO RELATIVO À SOLUÇÃO ANALÍTICA
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FIGURA 5.35 - COMPARAÇÃO DO MEF E O MC COM REFINAMENTO c PARA A TERCEIRA FREQUÊNCIA
ADIMENSIONAL - ERRO RELATIVO À SOLUÇÃO ANALÍTICA

FIGURA 5.36 - COMPARAÇÃO DO MEF E O MC COM REFINAMENTO c PARA A QUINTA FREQUÊNCIA  
ADIMENSIONAL - ERRO RELATIVO À SOLUÇÃO ANALÍTICA
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Dos resultados obtidos pelo MEF e do MC com refinamento de até 4 

parcelas da TC, as seguintes observações podem ser feitas:

• O MC apresenta uma melhoria pequena de resultados quando comparados 

aos apresentados pelo MEF, conforme pode ser observado na Tabela 

5.26.

• Para malhas mais grosseiras o MC apresenta consideráveis melhorias em 

termos absolutos.

Análise dos resultados:

TABELA 5.26 -  COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAÇÃO À
SOLUÇÃO ANALÍTICA DADA POR SRINIVAS (1970).

M a l h a M a l h a M a l h a M a l h a M a l h a M a l h a M a l h a
M a l h a  1 0 x 1 0 -  

4 c  /  M a l h a  

1 0 x 1 0 - M E F

Modo 3 x 3 - 4 c  / 4 x 4 - 4 c  / 5 x 5 - 4 c  / 6 x 6 - 4 c  / 7 x 7 - 4 c  / 8 x 8 - 4 c  / 9 x 9 - 4 c  /

M a l h a  3 x 3 M a l h a  4 x 4 M a l h a  5 x 5 M a l h a  6 x 6 M a l h a  7 x 7 M a l h a  8 x 8 M a l h a  9 x 9

- M E F - M E F - M E F - M E F - M E F - M E F - M E F

1 14,3% 26,0% 2 0 ,0 % 2 0 ,0 % 0 ,0 % 0 ,0 % 0 ,0 % 8,3%
3 1 0 ,8 % 13,6% 17,2% 23,5% 75,0% 13,3% 5,0% 4,2%
5 25,3% 15,7% 24,5% 27,6% 37,9% 150% 26,1% 9,4%

5.3.3.2.1 Análise Comparativa dos Resultados entre o MC e o MEF

Como pode-se observar nas seções anteriores, para as freqüências 

pesquisadas, o MC apresentou melhoria no valor da freqüência. Também, pode-se 

notar que o processo de convergência do MC é similar ao do MEF.

As parcelas da TC têm mais influência no elemento quadrilateral de quatro 

nós do que no elemento de oito nós implementado do MC.

O MC apresenta melhores resultados para as malhas mais grosseiras.
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Conforme pode-se observar das Figuras 5.57 e 5.38, o custo computacional 

aumenta com o incremento das parcelas da TC. A análise foi realizada com o código 

computacional implementado, e utilizando-se um processador Intel -  Pentium III ® de 

600 MHz de velocidade e 512Mb de memória RAM.

A Figura 5.37 apresenta o gráfico do tempo de processamento expresso em 

segundos. Apesar dos valores estarem representados de forma absoluta é possível 

avaliar o comportamento relativo, tanto para o refinamento h quanto para o 

refinamento c.

FIGURA 5.37 -  COMPARATIVO DO TEMPO DE PROCESSAMENTO PARA O MC E O MEF -  ELEMENTO DE 
QUATRO NÓS

Tempo de processamento

5.3.3.3 Análise do custo computacional
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FIGURA 5.38 - COMPARATIVO DO TEMPO DE PROCESSAMENTO PARA O MC E O MEF -  ELEMENTO DE
OITO NÓS

A Figura 5.38 apresenta o gráfico com os tempos comparativos de 

processamento para o MC e o MEF utilizando-se o elemento quadrilateral de oito nós. 

Pode-se observar que o custo computacional aumenta significativamente com a 

inclusão de novas parcelas da TC.
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5.4 CASO 2: VIBRAÇÃO LIVRE DE PLACA QUADRADA COM

CONDIÇÕES DE CONTORNO VARIÁVEIS

A Figura 5.39 apresenta cinco placas semi espessas com condições de 

contorno variáveis. A relação vão/espessura (b/h) igual a 10, coeficiente de Poisson
o

0,3, módulo de elasticidade 2,1E11 Mpa, massa específica 7800 kg/m .

Os resultados foram obtidos considerando uma malha 10x10 elementos, 

sendo utilizado o MC com quatro parcelas da TC (Malha 10x10 -  4c). Diversas 

condições de contorno, conforme as apresentadas na Figura 5.39, são aplicadas para

FIGURA 5.39 -  CONDIÇÕES DE CONTORNO DA PLACA DO CASO 2

ilustrar a convergência e a precisão do método implementado.

Na Tabela 5.27 apresenta-se o resultado para uma placa com o contorno 

simplesmente apoiado, conforme caso a) da Figura 5.39, (SS-SS), e as comparações 

feitas a partir da solução analítica para placas espessas dada por SRINIVAS (1970), 

comparação com o Método da Colocação dado por MIKAMI (1984), o Método das 

Tiras com Splines dado por MIZUSAWA (1993), MEF dado por CHEN (1988) e
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ainda, comparação com a teoria de placas finas dada por LEISSA (1973).
TABELA 5.27 -  FREQUÊNCIA ADIMENSIONALISADA PARA PLACAS SIMPLESMENTE APOIADA (SS-SS)

Método Modos
1 2 3 4 5 6

M C -4c 19,067 45,512 45,512 69,831 85,214 85,214
MIZUSAWA (1993) 19,058 45,448 45,448 69,717 84,926 84,926
MIKAMI (1984) 19,06 45,45 45,45 69,72 84,93
SRINIVAS (1970) 19,089 45,620 45,620 70,089 85,488
CHEN (1988) 19,065 45,489 45,489 69,816 85,147 85,147
Teoria de placas Finas 19,739 49,348 49,348 78,957 98,696 98,696

Na Tabela 5.28 apresentam-se os resultados para uma placa conforme caso 

b) da Figura 5.39, (SS-FS), e as comparações feitas a partir do Método da Colocação 

dado por MIKAMI (1984), o Método das Tiras com Splines dado por MIZUSAWA 

(1993) e a comparação com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.28 -  FREQUÊNCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE  
APOIADOS E OS OUTROS DOIS, ENGASTADO E SIMPLES APOIADO (SS-FS)

Método
Modos

1 2 3 4 5 6
M C -4 c 22,396 47,137 52,213 74,167 86,055 93,501
MIZUSAWA (1993) 22,376 47,063 52,090 74,004 85,759 93,064
M IK A M I (1984) 22,38 47,05 52,10 74,00 85,75
Teoria de placas Finas 23,646 51,674 58,646 86,135 100,27 113,23

Na Tabela 5.29 apresenta-se o resultado para uma placa conforme caso c) da

Figura 5.39, (SS-LL), e as comparações feitas a partir do Método da Colocação dado

por MIKAMI (1984), o Método das Tiras com Splines dado por MIZUSAWA (1993) e

a comparação com a teoria de placas finas dada por LEISSA (1973).
TABELA 5.29 -  FREQUÊNCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE

APOIADOS E OS OUTROS DOIS LIVRES (SS-LL)

Método
Modos

1 2 3 4 5 6
M C -4 c 9,444 15,402 33,894 36,399 42,849 62,235
MIZUSAW A (1993) 9,4388 15,384 33,841 36,334 42,760 62,084
M IK A M I (1984) 9,4395 15,383 33,835 36,336 42,750 62,076
Teoria de placas Finas 9,6314 16,135 36,726 38,945 46,738 70,740
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Conforme caso d) da Figura 539, (SS-FF), têm-se o resultado na Tabela 

530, e as comparações feitas a partir do Método da Colocação dado por MIKAMI 

(1984), o Método das Tiras com Splines dado por MIZUSAWA (1993) e ainda, a 

comparação com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.30 -  FREQUÊNCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE
APOIADOS E OS OUTROS DOIS ENGASTADOS (SS-FF)

Método
Modos

1 2 3 4 5 6
M C -4c 26,682 49,141 59,308 78,876 87,013 101,737
MIZUSAWA (1993) 26,645 49,063 59,118 78,683 86,720 101,15
MIKAMI (1984) 26,64 49,06 59,10 78,68 86,71
Teoria de placas Finas 28,951 54,743 69,327 94,585 102,10 129,1

Na Tabela 5.31 apresenta-se o resultado para uma placa conforme caso e) da 

Figura 5.39, (SS-FL), e as comparações feitas a partir do Método da Colocação dado 

por MIKAMI (1984), o Método das Tiras com Splines dado por MIZUSAWA (1993), 

comparação com o Método das Tiras Finitas dado por DAWE (1978), e ainda, 

comparação com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.31 -  FREQUÊNCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE
APOIADOS E OS OUTROS DOIS, ENGASTADO E LIVRE (SS-FL)

Método
Modos

1 2 3 4 5 6
M C -4c 12,255 30,436 38,679 55,865 62,834 78,743
MIZUSAWA (1993) 12,245 30,386 38,607 55,743 62,649 78,429
MIKAMI (1984) 12,3 30,39 38,61 55,74 62,65
DAWE (1978) 12,3 30,39 38,61 55,74 62,65
Teoria de placas Finas 12,687 33,065 41,702 63,015 72,398 90,611
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5.5 ANÁLISE GLOBAL DOS RESULTADOS

O MC implementado para o elemento de placa foi utilizado para obter as 

freqüências naturais de vibração para placas de Mindlin. Foram feitos testes para uma 

relação vão/espessura igual a 10 , sendo apresentados resultados satisfatórios quando 

comparados aos métodos de solução tradicionais, como pode ser observado no estudo 

do Caso 2 da seção anterior.

A convergência do MC é boa, sendo melhorada com o aumento do número 

de parcelas da TC.

O refinamento c demonstra ser eficiente para as malhas mais grosseiras e a 

implementação de mais parcelas da TC ( neste trabalho implemento-se até quatro 

parcelas) pode indicar qual a tendência e efeitos para os resultados da freqüência (em 

termos de eficiência).

Para malhas muito refinadas o custo computacional aumenta muito para cada 

nova parcela da TC implementada.

Observou-se a convergência para todas as freqüências pesquisadas com o 

MC implementado.

Na verificação dos efeitos da distorção do elemento de placa do MC 

observou-se o efeito negativo sobre os resultados da freqüência. Em comparação com 

o MEF o efeito da distorção é minimizado no MC.

A variação na relação vão/espessura é influenciada no MC implementado 

pelas funções típicas do MEF que são superpostas. Assim, o elemento de oito nós 

apresenta melhores resultados que o elemento de quatro nós. Como as parcelas típicas 

de MEF são predominantes no resultado, a implementação de elementos com 

características que também resolvam placas finas podem ser implementados.

Em comparação com o MEF, o MC implementado apresentou resultados 

mais precisos para todas as freqüências pesquisadas, em compensação o custo 

computacional é afetado.
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6 CONCLUSÕES E SUGESTÕES DE CONTINUIDADE

6.1 CONCLUSÕES

6.1.1 Quanto ao Estudo

O elemento de placa espessa (teoria de Mindlin-Reissner) proposto neste 

trabalho e inspirado no MC, proposto por ZENG (1998a, 1998b, 1998c, 2000), permite 

a solução para o problema de vibrações livres, considerando a forma de discretização 

proposta.

No MC implementado são superpostas funções de forma, típicas do MEF e 

parcelas da série da solução analítica da TC para a equação da freqüência, a partir de 

condições de contorno de compatibilidade, conforme descrito no Capítulo 3.

As funções de forma da TC são introduzidas no MC através dos chamados 

graus de liberdade c, associados ao domínio. A possibilidade de aumentar o número de 

funções da TC faz com que não se necessite criar outra malha de elementos finitos 

(nova discretização) para obter mais modos de vibrar e freqüências. Esta característica 

representa uma das maiores versatilidades do método.

6.1.2 Quanto à Implementação Computacional

Pode-se reconhecer no modelo da matriz de rigidez e matriz massa do MC, o 

grupo de elementos pertencentes às funções típicas do MEF (submatriz MEF), 

possibilitando assim, um processo hierárquico na montagem das mesmas matrizes 

quando se acrescentar a parcela da TC. Esta característica é fundamental para a 

eficiência computacional do método.
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No Capítulo 5, foram apresentados resultados para os dois tipos de 

refinamentos do MC implementado: (i) refinamento c e o (ii) refinamento h. Cada um 

destes refinamentos é mais eficiente dependendo da aplicação:

(i). O refinamento c é mais eficiente quando se quer encontrar

freqüências naturais (em número maior do que pelo MEF), sem aumentar a

discretização, o que representa economia de tempo no pré processamento.

(ii). O refinamento h é eficiente quando se quer precisão de resultados,

sendo que deve ser levado em conta o custo computacional.

Detalhes que merecem maior atenção na implementação computacional 

dizem respeito à integração numérica e sua influência na solução do problema, 

principalmente se a opção para a solução do problema de locking for baseada na 

subintegração.

O processo de solução dos autovalores e autovetores também deve ser 

apreciado para obter maior precisão nos resultados. Neste trabalho, optou-se pelo 

Método de Jacobi Generalizado, sendo todos os resultados apresentados baseados 

neste método.

6.1.3 Resultados Obtidos

Pode-se observar que o MC proposto segue o padrão de convergência do 

MEF. A precisão dos resultados, conforme pode-se observar no Capítulo 5, é melhor 

do que a apresentada pelo MEF (comparando elementos com o mesmo número de 

nós).

Os resultados numéricos obtidos com o elemento de oito nós do MC-4c 

(Método Composto com quatro parcelas da TC), apresentaram-se compatíveis quando 

comparados, por exemplo ao MEF, ao Método das Tiras Finitas e ao Método da 

Colocação, conforme pode ser observado na seção 5.4.

Os testes realizados para avaliar a questão da distorção da malha mostraram 

que cada freqüência é influenciada negativamente e de forma diferente pela mesma.
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Conforme as seções 5.3.2.1.3 e 5.3.2.2.3, os valores apresentados para a malha 

distorcida do MC, quando comparados aos fornecidos pelo MEF, são um pouco 

melhores e, os resultados obtidos com o elemento quadrilateral de quatro nós é pouco 

representativo em termos quantitativos.

Com base nos exemplos propostos e resultados produzidos, pode-se observar 

que o MC é eficiente quanto à precisão. Considerando a discretização, pode-se poupar 

tempo por não necessitar tanto refino de malha, que inclui também a atribuição das 

condições de contorno, para a obtenção de um mesmo número de freqüências naturais, 

comparando-se com o MEF.

A utilização do MC é mais eficiente (precisão de resultados produzidos x 

custo computacional) para malha mais grosseiras e para as freqüências mais baixas. A 

otimização do código computacional pode melhorar a eficiência do método. Análise 

mais detalhada deve ser realizada na busca por modos espúrios.

A comparação com os resultados de aplicações propostas pela literatura 

mostrou-se satisfatória, verificando assim, o potencial de uso desta técnica para a 

solução dos problemas de vibrações livres em placas espessas.

6.2 SUGESTÕES PARA TRABALHOS FUTUROS

Neste estudo, focou-se em alguns dos aspectos referentes à superposição das 

funções de forma, utilizadas no MEF, com as funções da parcela da TC aplicada à 

vibrações livres de placas. Para completar a investigação sobre o elemento de placa 

proposto, deve-se avaliar ainda:

■ O comportamento, para o caso de se implementar números maiores de 

parcelas da TC;

■ Técnicas de obtenção da matriz massa mais eficientes;

■ Técnicas de solução de autovalores e auto vetores, comparando a

eficiência de cada uma destas técnicas com o método proposto;

■ verificar se as técnicas atualmente empregadas para resolver o efeito do



106

locking a que estão sujeitos os elementos de placas também são efetivas 

para o MC;

■ A análise dos modos espúrios para as freqüências naturais;

■ Comparar o MC eom outros tipos de elementos finitos adaptativos.

Na análise estrutural ainda pode-se pesquisar outros elementos utilizando a 

mesma abordagem, possibilitando assim, encontrar soluções mais precisas para o 

problema de vibrações livres para várias aplicações, como por exemplo:

■ Estudo de placas com espessuras variáveis;

■ Estudo de placas com nervuras de reforço;

■ Estudo de placas para materiais ortotrópicos;

■ Estudo de placas para materiais laminados;

■ Estudo de cascas;

O uso desta mesma abordagem na solução de vibrações forçadas pode ser 

testado. Outro problema semelhante ao de vibrações, que é o estudo da instabilidade 

estrutural (flambagem), pode ser implementado baseando-se na proposta do MC, já 

que este problema recai na solução de autovalores e autovetores, e apresenta solução 

analítica obtida pela TC.

O aspecto matemático e computacional também deve ser levado em 

consideração para a implementação do MC, de forma a melhorar seu desempenho.
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