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RESUMO

Problemas de vibragdo livre podem ser resolvidos usando uma nova técnica
denominada de Método Composto. Este método combina a aproximacgéo pelo Método
dos Elementos Finitos (MEF) com as solucdes analiticas da Teoria Classica (TC) de
placas. O campo de deslocamentos € expandido, unindo-se os valores nodais do MEF
ao campo de deslocamentos obtidos pelas fun¢es da TC. As funcdes da TC devem
satisfazer certas condi¢des de contorno especificas, de forma a nZo alterar o valor do
deslocamento nodal obtido pelo MEF. Estas fun¢des também devem ser solucdo da
equacdo da freqiiéncia.

O objetivo deste trabalho € aplicar o MC para determinar as freqiiéncias e modos de
vibrar em placas espessas de Mindlin-Reissner. A solug@o analitica para a vibragdo de
placas € apresentada e a equagdo da freqiiéncia ¢ determinada. As parcelas da TC
(fungdes c¢) sdo adicionadas as funcdes de forma do MEF para elementos
1soparamétricos de quatro e oito nos.

No MC, para o mesmo grau de aproximacio, existem dois tipos de refinamentos: 4 € c.
O refinamento A, semelhante ao do MEF, corresponde ao aumento do nimero de
elementos. O refinamento ¢ corresponde ao acréscimo do nimero de graus de
liberdade relativos a TC, denominados graus de liberdade c.

Alguns exemplos sdo apresentados para mostrar a efici€ncia e precisao do método. Os
efeitos relacionados a distor¢do dos elementos, também sdo apresentados e
comparados, tanto em rela¢do ao MEF quanto ao MC.

Palavras-chave: Método Composto; Freqiiéncia Natural; Método dos Elementos

Finitos; Placa Espessa.
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ABSTRACT

Free vibration problems can be solved using a new technique named Composite
Element Method (CEM). This method combines the Finite Element Method (FEM)
approach and analytical solutions obtained from the Classical Theory (CT) applied for
plates vibration. The displacement field is expanded, merging the nodal values from
FEM with the analytical functions of the classical solutions. The classical solution
functions must satisfy certain specific boundary conditions in such a way that they do
not change the nodal values of FEM. These functions must also be the solutions for the
frequency equation.

The objective of the present work is to apply the CEM on the Reissner-Mindlin’s plate
model. Analytical solutions of vibration plates are reviewed and frequency equations
are obtained. The c-functions are added to the shape functions of isoparametric
elements, with 4 and 8 nodes of the FEM.

Examples are included to show the efficiency and accuracy of the method. In the
CEM, there are two types of refinements: z and c. The first one, corresponds to the
increase of the number of elements in the finite element mesh. The other one, is related
to the increment of the number of analytical functions on the CEM displacement field.

The effects related to the elements distortion are shown and compared using both,
FEM and CEM.

Key-words: Composite Element Method; Natural Frequency; Finite Element Method;
Thick Plate
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1 INTRODUCAO

A 1mportancia do estudo de vibrac¢des reside no fato de que a maioria das
estruturas, maquinas, equipamentos e também organismos vivos sao afetados por este
fendmeno. Muitos sistemas, devido a caracteristicas construtivas, transferem suas
vibra¢des para o ser humano, o que pode resultar em desconforto e perda de eficiéncia
na sua operagao e, em situagdes extremas, podem causar seqiiclas e lesdes
irreversiveis. No caso de equipamentos, problemas de desbalanceamento, decorrentes
do projeto e/ou manutengdo inadequados, podem resultar em vibragdes. Neste caso, €
possivel que determinadas partes sofram fadiga (devido ao carregamento ciclico), ou
que ocorram desgastes em mancais e outros componentes moveis. As vibragdes podem
também provocar ruidos que, hoje em dia, devem ser limitados a niveis prescritos em
normas especificas.

O estudo de vibragdes relaciona-se com o movimento oscilatoério dos corpos,
periodicamente repetido ou nao, em relacdo a posicdo de equilibrio, e respectivas
forcas associadas. Fatores como a distribuicdo de massa e a elasticidade dos corpos os
tornam susceptiveis as implica¢des das vibragdes.

Por estas razdes, o projeto de maquinas, equipamentos e estruturas deve
considerar o comportamento oscilatério dos seus componentes, uma vez que OS
deslocamentos e/ou deformagdes decorrentes podem levar a falha do sistema
desenvolvido.

Uma das formas caracteristicas das vibragdes é quando o movimento se
repete em intervalos definidos de tempo. O periodo da oscilacdo é o tempo decorrido
para que o movimento comece a se repetir. O movimento completado em um periodo é
um ciclo. A freqiiéncia da oscilagdo € o nuimero de ciclos que ocorrem em uma

determinada unidade de tempo. A freqii€ncia € o valor inverso do periodo.



As vibracdes podem ser caracterizadas, conforme o comportamento, em
lineares e ndo lineares. Esta classificag@o, no entanto, deriva da forma de resoluc@o do
sistema de equacdes, que também € classificado em linear e ndo linear. Na andlise de
sistemas lineares sujeitos a carregamentos dindmicos arbitrarios, existem Vvarios
modelos matemdticos que representam o fendmeno vibratério, assim como
convenientes formas de sua solucido. Contudo, haja vista a tendéncia do surgimento de
ndo linearidades (material e/ou geométricas) com o incremento da amplitude de
oscilacdo, a solugdo passa pela andlise de sistemas ndo lineares (CLOUGH e
PENZIEN, 1975; MEIROVITCH, 1975; CRAIG, 1981; THOMSON, 1993). A nio
linearidade do material também influencia no comportamento da estrutura, e deve ser,
se for o caso, cuidadosamente considerada na etapa de projeto.

As vibragOes também podem ser classificadas em relagc@o as forcas atuantes
na estrutura. Neste caso, tem-se vibragoes:

a) Livres: estas ocorrem sem a atuacdo de carregamentos externos e
desconsiderando-se o efeito do amortecimento. Uma vez iniciada uma
vibracao livre (ou vibrag¢do natural) na estrutura, esta continua a oscilar com
sua freqiiéncia natural. O sistema em estado de vibragao livre pode oscilar
em um modo tal que seja excitado por uma ou mais freqii€ncias naturais,
dependendo do nimero de graus de liberdade.

b) Forgadas: estas sdao produzidas e mantidas por forcas excitadoras

externas ao sistema. Se a freqiiéncia de excitacdo coincide com uma das

freqii€ncias naturais do sistema, apesar de serem fendmenos independentes, a

amplitude resultante da combinacdo das oscilacGes € afetada pelas duas

freqiiéncias e, eventualmente , pode provocar ressonancia.

Outra classificagdo das vibracGes se da considerando as forgas resistivas, que
podem ser do tipo:

a) Amortecidas: quando o atrito, a resisténcia do ar, o amortecimento

viscoso e todas as outras forcas, influenciam de forma significativa na



resposta dindmica do sistema.

b) Sem amortecimento: ocorre quando a acdo de forcas resistivas €

desprezavel em relacio a resposta dindmica do sistema.

Em geral, a primeira etapa para o projeto de uma estrutura sujeita as
vibracOes mecanicas € a determinacao de suas freqii€ncias naturais.

Uma outra andlise pode levar em consideracdo o caso de vibracdes forcadas
que, de maneira geral, avalia a estrutura sob carregamento ciclico ou periddico, sendo
denominada de andlise harménica. No caso desta andlise sinalizar para freqii€ncias
proximas de uma das freqiiéncias naturais, medidas de contingéncia devem ser
adotadas para evitar danos e funcionamento inadequado da estrutura. O caso onde a
amplitude de oscilagdo tende a se tornar infinita, se desprezados os efeitos dos diversos
amortecimentos, € conhecido como ressondncia. Outra analise muitas vezes realizada
na verificacio da resposta dinamica dos sistema ¢ a transiente. E uma técnica para se
determinar a resposta de uma estrutura a um carregamento arbitrario aplicado em um
certo intervalo de tempo, como por exemplo, explosdes, choques, terremotos, etc.

A determinacdo das freqiiéncias naturais deve ser considerada para verificar
a possibilidade da ocorréncia do fenémeno da ressonincia, que leva a grandes
deformacgdes e falhas mecanicas. Um exemplo cldssico é o da ponte de Tacoma
Narrows (EUA), que colapsou quando entrou em ressonancia induzida pelo vento
(RAO,1995).

A definicdo da influéncia dos vérios parametros que caracterizam as
vibracgdes € de interesse pratico nas aplicagoes de engenharia, fazendo com que o tema,

ainda hoje, seja estudado por véarios pesquisadores.

1.1 TECNICAS EMPREGADAS PARA O ESTUDO DE VIBRACOES

Devido a importincia e aplicabilidade da anélise de vibracdes, diversos
métodos de determinacdo de freqiiéncias naturais foram desenvolvidos. Um dos mais

importantes se baseia em métodos experimentais. Outra forma de solucdo € a partir da



constru¢do de um modelo matematico, sendo que, entre as mais conhecidos, destacam-

S€:

a) Teoria Cldssica (TC): apresenta a solu¢do para a equacio diferencial que
rege o problema. Em geral, a solucdo para esta categoria de equacdes é
obtida através de séries. A limitacdo desta abordagem diz respeito a
dificuldade e a complexidade de se obter solucdo para condices de contorno
diversas, (LI, CAO e LI, 1994a e 1996; LOW, 1993, 1997 e 1998;
SRINIVAS, 1970; LEISSA, 1973).

b) Método dos Elementos Finitos (MEF): técnica de solu¢do aproximada
onde, através de uma discretizacdo do dominio em termos de nds e
elementos, se pode fazer uma andlise apurada do comportamento vibratério.
E, hoje em dia, uma das principais ferramentas empregadas em anélise
estrutural (CRAIG, 1981; ZIENKIEWICZ, 1977; SINGH e SMITH, 1994;
CHOPRA, 1995; BATHE, 1996; MACKERLE, 1999 e 2000).

c) Método das Tiras Finitas (MTF): constitui-se de um método “‘semi-
analitico”, onde o dominio € dividido em um namero finito de tiras e a
solugio é obtida pela sobreposicdo dos efeitos das mesmas. E um método
vantajoso pela facilidade de entrada de dados e baixo custo computacional.
Suas desvantagens estdo associadas aos problemas de condi¢des de contorno
aos quais a placa estd sujeita (SHEIKH ¢ MUKHOPADHYAY, 1993;
CHEUNG e KONG, 1995a e 1995b; HINTON, OZAKCA e RAO, 1995;
KONG e CHEUNG, 1995; AU e CHEUNG, 1996a e 1996b; ZHONG,
CHEUNG e LI, 1998; CHEUNG, AU e ZHENG, 2000; FRIEDRICH, 2000).
d) Método dos Elementos de Contorno (MEC): técnica de solugdo
aproximada onde, através de uma discretizacdo do contorno em termos de
nos e elementos, se pode fazer uma andlise apurada de problemas estruturais
estaticos e dindmicos. Apresenta-se também, como uma alternativa para

solucionar com precisao problemas que envolvem concentragdo de tensao ou



onde o dominio se estende para o infinito. Uma das vantagens em rela¢do ao
MEF € que a dimensdo do problema diminui uma vez. Por exemplo: se o
dominio € tridimensional, na andlise pelo MEC o dominio do problema ¢
dado por uma superficie. Sua desvantagem ¢ a dificuldade na determinagio
da solugdo fundamental para certos problemas, e também em relagdo ao
custo computacional, pois, embora as matrizes sejam menores, elas sdo
cheias e as técnicas de manipula¢do e armazenamento consagrados no MEF
ndo se aplicam (BREBBIA e NARDINI, 1983; PROVIDAKIS e BESKOS,
1986; BURCZYNSKI, KUHN, ANTES e NOWAKOWSKI, 1997; DAVI e
MILAZZO, 1997; TANAKA, MATSUMOTO e SHIOZAKI, 1998).
e) Andlise Estocdstica: utilizada para avaliar a confiabilidade das estruturas.
Este método probabilistico trata o comportamento do material, a geometria e
0os carregamentos como varidveis randomicas (VANMARCKE e
GRIGORIU, 1983; LEI e QIU, 1998a ¢ 1998b; LI, FANG e LIU, 1999;
GRIGORIU, 2000).
f) Outros métodos: também utilizam-se outros métodos que empregam uma
discretizac@o mista, de dominio e de contorno, e também métodos que ndo
utilizam malhas (“meshless”). O Método das Nuvens proposto por Duarte e
Oden (1995) discretiza o modelo (dominio arbitrario) apenas por uma nuvem
esparsa de nds. Ja os métodos mistos sdo aqueles que combinam o MEF e o
MEC, potencializando as vantagens de cada uma das abordagens. Um
exemplo ¢ o Método da Funcgido de Green Local Modificado (MMFGL),
utilizado por FILIPPIN (1992) para analisar problemas de vibragoes em
membranas e cavidades.
Problemas simples, onde se conhece a solugdo exata, podem ser resolvidos
pela TC. Na maioria das vezes, onde as condi¢bes de contorno e a geometria
apresentam complexidades hé a necessidade de utilizagdo de métodos aproximados.

A busca por técnicas que obtenham maior precisdo do que as atuais, oferece



uma oportunidade de investigacio na determinacio de freqiiéncias naturais em
estruturas. No caso das placas, o desafio ¢ obter um método eficiente que consiga
resolver o problema para quaisquer geometria e condicdes de contorno, com o minimo

de custo computacional.

1.2 OBJETIVO GERAL

O objetivo da presente investigagao é desenvolver uma nova abordagem para
a resolucdo de problemas de vibracdes livres em placas espessas, utilizando uma
formulacdo hibrida, obtida com o emprego da TC e do MEF. Esta abordagem é
baseada no Método Composto (MC), que foi proposto por ZENG (1998a, 1998b,
1998c), para andlise de vibracdes em estruturas.

Para a determinacdo dos resultados, uma implementacio numérica e
computacional foi realizada. Para validar a proposta e analisar os resultados obtidos,

serdo comparados exemplos com os apresentados na literatura.

1.3 OBJETIVOS ESPECIFICOS

Pode-se estabelecer como objetivos especificos:

= Determinar um maior niimero de modos de vibrar que os fornecidos pelo
MEEF, para uma mesma discretizacao;

= Determinar as freqiiéncias naturais de vibragdo com maior precisao;

* Comparar o custo computacional;

= Desenvolver elementos finitos do MC para placas espessas.

1.4 ESCOPO DO TRABALHO

A proposta refere-se a solug@o do problema de vibragdes livres, aplicada as
placas espessas pela Teoria de Mindlin/Reissner, utilizando o Método Composto

MCOC).



Para possibilitar o uso do MC, sdo implementados dois elementos
quadrilaterais 1soparamétricos, um de quatro nés e outro de oito nds. A validagido é

feita com exemplos da TC e MEF.

1.5 ESTRUTURA DO TRABALHO

No Capitulo 2 € apresentada uma descri¢do detalhada do problema,
mostrando a teoria de flexdo e de vibragdes em placas. Em seguida, sdo analisados os
trabalhos mais relevantes desenvolvidos para o problema de vibra¢es em placas. Sdo
também discutidas algumas vantagens e desvantagens das formas atuais de solucio do
problema.

A descri¢do do Método Composto (MC) e o desenvolvimento dos elementos
de placa de quatro e oito nés sdo apresentados no Capitulo 3, incluindo a descri¢do da
potencialidade do método.

O Capitulo 4 contém o modelo proposto para emprego do MC como meio de
resolucdo de problemas de vibracgdes livres em placas espessas. Os procedimentos de
implementagdo numérica e computacional sdo apresentados, assim como suas
caracteristicas.

Uma descrigdo detalhada das aplicagcdes e resultados obtidos € feita no
Capitulo 5. A anélise de resultados, em termos globais e especificos, se d4 através de
técnicas comparativas com outros métodos de solugdo.

As conclusdes sobre a utilizacdo do MC na analise dindmica de placas sao
descritas no Capitulo 6. Também, apresentam-se sugestdes para continuidade do

trabalho e aprimoramentos do método estudado.



2 ESTUDO DE VIBRACOES EM PLACAS

Neste capitulo € apresentada uma revisdo tedrica sobre os métodos de
solugdo para vibragoes livres em placas espessas, os problemas mais freqiientes e a
forma de solu¢@o para sua implementacdo. Apresenta-se também uma descri¢do dos

trabalhos mais relevantes para a analise de vibragdes livres em placas.

2.1 INTRODUCAO

A obtencdo da solucdo para o problema de vibracGes de placas espessas
passa pelo conhecimento de como ocorrem as deformacoes e as tensdes decorrentes da
aplicagdo dos carregamentos e condigdes de contorno envolvidas.

As placas podem ter contornos livres, simplesmente apoiados e fixos, ou
ainda, em alguns casos, apresentar pontos de apoio. Em muitos casos, estas condi¢des
de contorno sdo mistas, o que dificulta ou impossibilita a obtencdo da solucdo analitica
(solugdo matematica fechada) para o problema. Os carregamentos estaticos e
dindmicos em placas sdo predominantemente perpendiculares a superficie da placa.

Pela teoria da elasticidade, quando um corpo sé6lido esta submetido a forgas
externas, ele se deforma, produzindo tensdes internas. A deformacdo € influenciada
pela configuracdo geométrica do corpo e pelas propriedades mecanicas do material.

Assume-se a relag@o tensdo-deformagao como sendo linear e as propriedades
do material isotropicas.

Nas proximas secoes as equacdes relacionadas a cinemadtica de deformagao

das placas e as relacionadas ao fendmeno vibratdrio sdo apresentadas.



2.2 FUNDAMENTOS TEORICOS

2.2.1 Cinematica da Deformacao de Placas

Uma placa € um corpo solido, limitado por duas superficies planas paralelas,
cujas dimensdes laterais (largura e comprimento para placa retangular ou didmetro em
uma placa circular) sdo muito maiores que a distancia entre as duas superficies
paralelas (espessura da placa) e, normalmente, as cargas atuantes sdo perpendiculares a
superficie média, REDDY (1984).

O dominio de interesse € é denotado por (HUGHES, 1987)

Q:{(x,y,z)ei)ﬁlze{-%,%l(x,yk ACC.KZ}, 2.1

onde & € a espessura da placa e A € a drea da placa.
As duas teorias mais difundidas e aplicadas para a analise de flexdo em
placas conforme COOK (1988), sdo:
a) Teoria de Kirchhoff-Love
Esta adota as seguintes hip6teses, REDDY (1984):
» A existéncia de um plano neutro, onde a placa ndo sofre alongamentos
nem encurtamentos;
= Fibras normais a superficie média sdo inextensiveis;
= Sec¢des planas e perpendiculares a superficie média, se mantém planas e
perpendiculares a superficie média, apds a flexdo;
=  Os deslocamentos da superficie média sdo pequenos quando comparados
a espessura da placa;
b) Teoria de Mindlin-Reissner
Aqui s3o introduzidas as deformagdes cisalhantes transversais quando do
carregamento da placa. Desta forma, pode-se aplicar as hipdteses simplificadoras de

Kirchhoff-Love, mas com a seguinte diferenga:
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= As normais a superficie de referéncia indeformada da placa permanecem
retas, mas nao necessariamente normais a superficie de referéncia.

No regime linear, as relacdes deformagdes-deslocamentos podem ser escritas

cOomo
du, du du,
2.2)
Y ~a_”x_+iul Y ~—_a_ui+auz _?—l'{_y+§_tl_z-
vy o T T T Ty

Uma vez que du_/dz=0, tém-se que u, =u_(x,y).

Para o giro das se¢des utilizam-se £, e f, , conforme pode ser observado na
Figura 2.1. Cabe salientar que nesta notagdo a rotagdo [, positiva tem um vetor axial
no sentido contrario ao do eixo y. Para a rotagdo £, o mesmo nao ocorre sendo,
portanto, a direcdo do vetor axial coincidente com a dire¢do do eixo x.

Na Figura 2.1 pode-se observar as varidveis adotadas para a andlise de placas

quando sujeitas a deformacdes de cisalhamento.

FIGURA 2.1 — DEFORMAGAO NA ANALISE DE PLACA INCLUINDO AS DEFORMAGOES DE
CISALHAMENTO (ADAPTADO DE BATHE, 1996)
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As componentes do deslocamento de um ponto de coordenadas x, y e z s@o

dadas por
u (x,y,z)| |=2B(xy)
fule,y, b ={uy(xy,2)p={-B,(xy)f 2.3)
u,(x,,2) u/(x,y)

onde {u} € o vetor deslocamento, f3; e f3, sdo as rotagdes da normal a superficie média
da placa indeformada e u, € o deslocamento transversal.

Utilizando a representacdo matricial e considerando que as deformacdes de.
flexdo da placa variam linearmente ao longo de sua espessura, pode-se calcular o valor

das deformacoes em qualquer ponto da placa, para uma dada curvatura, através de

9
Ery aaﬂx
{gf }: Eyy (=72 —a7y . 2.4)
Vy ., 9y
dy  ox

Assumindo que as deformacdes de cisalhamento sdo constantes ao longo da

espessura da placa, tem-se que

du,
Yx —Bx
fe}=1 "= a?fz . @.5)
sz ay _ﬂﬁy

Para um material isotrépico, a relag@o constitutiva elastica € dada por

{Gf}:[Df}{gf} @0



lo.}=[D.Je.} . 2.7)

onde {0;} sdo as componentes do tensor de tensdes devidas a flexdo, {o.} sdo as
componentes do tensor de tensdes devidas ao cisalhamento, [Dy] € a matriz constitutiva
em relagdo a flexdo, [D ] € a matriz constitutiva em relagdo ao cisalhamento, {&} sdo
as componentes da deformagdo devidas a flexdo e {&} s@o as componentes da

deformacao devidas ao cisalhamento. Assim, tem-se que

1l v 0

D J=+E v 1 0 2.8)

(R
{Dc]=m 2 _(%V_) (2.9)

onde E € o médulo de elasticidade do material e v € o coeficiente de Poisson.

Na proxima sec¢do, discute-se a aplicacdo do Principio dos Trabalhos Virtuais
para a determinacdo da equacdo de movimento da placas, possibilitando assim, a
obtencdo de autovalores e autovetores que, no problema fisico, representam

respectivamente, as freqiiéncias e os modos de vibrar.

2.2.2 Teoria de Vibracoes Aplicada ao Problema de Placas

Admita uma estrutura sujeita a a¢do de forgas externas e sob equilibrio

dinamico. Assim

W, =W, , (2.10)

onde W, € o trabalho interno e W, € o trabalho externo.
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O trabalho externo € produzido pelas forcas externas e o trabalho interno
pela energia de deformacao acrescido da energia cinética. Pode-se escrever o trabalho

nterno como sendo

W.=U+T | 2.11)

onde W;¢€ trabalho interno, U € a energia de deformacdo e T ¢ a energia cinética.

A energia potencial € dada por

U =1t Vo fe, }dVJr%f{GC}T{SC}dV : (2.12)

A energia cinética é dada por

-\2
T=L4[plaf av 2.13)
1%

onde u ¢€ a velocidade associada ao campo de deslocamentos e 0 é a densidade de
massa por volume.

Considere-se agora, nesta mesma estrutura, um campo de deslocamentos
virtuais a partir da configuracdo de equilibrio. Entdo, durante o processo de
deformacdo virtual, cada elemento infinitesimal da estrutura se deforma, e os esforcos
internos e externos que agem diretamente sobre ela realizam um trabalho virtual.
Assim, pelo Principio dos Trabalhos Virtuais, o trabalho realizado pelas forgas
externas, quando se d4 a uma estrutura deformavel em equilibrio um deslocamento

virtual, € igual ao realizado pelas forgas internas, isto é

oW, = W, Vou , (2.14)
onde OWi ¢ a variagdo trabalho virtual interno, oWe é a variagdo trabalho virtual
externo e du é o deslocamento virtual.

O trabalho virtual externo ¢ obtido a partir do produto das forcas externas
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pelos deslocamentos virtuais.

O trabalho virtual interno é obtido a partir das tensdes e deformacgdes que
ocorrem nos elementos sujeitos ao deslocamento virtual.

Reescrevendo as equagoes em funcio do deslocamento virtual e substituindo
convenientemente nas integrais as simplificagdes utilizadas para o problema de

vibragdes em placas, tem-se

h/2 h/2
[ [o,fioe, Jazansk | [{o.} foe, }dzan+
A~h/2 A—hf2

(2.15)

+jj { }{SM}dsz [{FY foubaa

A~hf2

onde o e £sao as tensdes e deformagdes, respectivamente, u € o vetor deslocamento,
ou é uma pequena variacdo no vetor u, 1 € o tempo, F € o vetor de forcas externas e k é
a constante de Mindlin (melhor detalhada no préximo capitulo).

Considerando a Equacdo (2.15), onde o deslocamento virtual € arbitrario e

desconhecido, tem-se:

hj2 k2
[ [u¥le Voo, foudazaa+ k| [l (L1 (D)L, Kouldz da
A—h/2 A—h/2
(2.16)

B2
o p{gt } {5u} dzaa = j{F}T{Bu}dA :

A=h/2

onde [Df e [D.] sdo as matrizes das relacdes constitutivas, [L] ¢ o operador da
transformagao entre as deformacdes de flexdo e deslocamentos e [L.] € o operador da
transformacao entre as deformagdes de cisalhamento e deslocamentos.

Os dois primeiros termos da Equacdo (2.15) sdo associados a rigidez da
placa e o terceiro termo a sua massa.

A Equacao (2.16) vale para o problema continuo. Neste trabalho, a forma de
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solucdo € aproximada através de funcdes de interpolacdo e apresentada em termos de
solu¢@o nodal. Assim, pretende-se substituir o campo de deslocamentos continuo por

um campo de deslocamentos discreto. Para tanto, propde-se a seguinte aproximagao:

fu}=[H Y |
{BM}E[H]{&(N} (2.17)
{ii}E[H]{iiN } ,

onde " é o vetor de deslocamentos nodal, & é vetor de deslocamentos virtuais
nodais e U o vetor de acelera¢des nodais.
Levando a Equacdo (2.17) em (2.16) e destacando as matrizes de massa e

rigidez anteriormente mencionadas, tem-se
{“N }T [K]{&tN }+ {u‘N }T [M}{&LN }: {FN }T {&HV } , (2.18)

onde F" ¢ o vetor de forcas nodais aplicadas.
Como a Equagdo (2.18) deve ser satisfeita para qualquer que seja o
deslocamento virtual cinematicamente admissivel, esta pode ser reescrever apos a

transposi¢ao de todos os termos, como

(K1 J+ I B = {F ™ } 2.19)

Nota-se que isso foi possivel porque K e M sao simétricas.

A Equacdo (2.19) representa a forma discreta da equacdo diferencial de
equilibrio dindmico de estrutura sob carregamento F.

Se este termo € nulo (F=0), conforme BOYCE e DIPRIMA (1997), tem-se
uma equacdo diferencial homogénea cuja solucdo é de forma periddica de freqiiéncia

w, a ser determinada. Assim, pode-se escrever a solucdo da mesma como

WY 1=l b onde, j=+T . (2.20)
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Neste caso, diferenciando-se duas vezes tem-se

SNl 2l N e 2.21)
i f= -

Substituindo-se as Equagdes (2.20) e (2.21) na Equagdo (2.19) e,

considerando F=0, tem-se

[K}@ON}ef‘“’ ~o’ M ]{uON }eﬂ”" =0 (2.22)

Simplificando convenientemente a Equagdo (2.22) e lembrando que ¢ é

sempre positivo, tem-se

(&1-a* [ u," }=0 . (2.23)

Assim, o problema a ser resolvido, envolve a obtencdo dos autovalores e
autovetores que representam, respectivamente, a freqiiéncia natural de vibracdo e os
modos de vibrar da placa. Logo, a solucao da Equag@do (2.23), pode ser obtida através

do problema padrdo de autovalores e autovetores.

K® = AMD (2.24)

Onde M e K sdo, respectivamente, as matrizes de massa e de rigidez, A representa os

autovalores e ® os autovetores.

2.3 ABORDAGENS PARA RESOLUCAO DO PROBLEMA DE VIBRACOES
EM PLACAS

Nas préximas se¢des apresentam-se algumas das abordagens mais utilizadas

para a solug@o do problema de vibragdes em placas.



17
2.3.1 Estudos Iniciais — Aplica¢ao as Placas Finas

Segundo SZILARD (1974), o primeiro matematico a estudar o problema de
vibracdes livres em placas foi Euler em 1766, e Lagrange foi o primeiro a obter sua
correta equagdo diferencial. Navier foi o primeiro a obter corretamente a equagio
diferencial de placas retangulares com rigidez flexural. Para certos problemas de
valores de contorno ele introduziu um método exato, o qual transforma a equagio
diferencial em um sistema algébrico. O Método de Navier é baseado na solucio forte
da equacdo diferencial, utilizando as fungdes das séries trigonométricas de Fourier. O
Método de Levy também se utiliza de séries de Fourier, mas com sua utilizagdo restrita
ao caso onde dois lados opostos da placa sdo simplesmente apoiados.

Ainda conforme Szilard, Kirchhoff foi o responsavel pela descoberta da
equacao da freqiiéncia das placas e introduziu o Método do Deslocamento Virtual na
solucdo dos problemas vibra¢des em placas.

Conforme LIEW (1995), em 1877 Rayleigh apresentou um método genérico
para a solucdo de vibragdes livres de estruturas. Ritz apresentou em 1909 uma nova
abordagem do método de Rayleigh, que ficou conhecida como Método de Rayleigh-
Ritz, cujo procedimento consiste em introduzir na solugdo um certo grupo de fungdes
linearmente independentes conhecidas, e assim, obter a solu¢do através da
determinacado dos seus coeficientes. A versatilidade desta ferramenta (procedimento)
fez com que se transformasse em uma das mais utilizadas atualmente.

Um dos problemas para a obten¢do da solugdo analitica relacionados com
vibracOes em placas, diz respeito as condigdes de contorno a que elas estdo sujeitas.
Também, neste sentido, a maior parte das investigacGes apresenta solugdo para placas
finas, onde os efeitos das deformacgdes de cisalhamento sdo negligenciados,

destacando-se o trabalho de LEISSA (1973).
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2.3.2 Estudo de Placas Espessas

Atualmente, os problemas de placas espessas sao preferencialmente tratados
pela teoria de Mindlin-Reissner, conforme HUGHES (1987), permitindo assim a
consideracdo das deformagOes cisalhantes transversais. Em placas espessas o
cisalhamento tem efeito significativo nos resultados das analises estruturais estiticas e
dinamicas.

Os estudos mais relevantes sobre o efeito do cisalhamento sdo os trabalhos
de Timoshenko e Mindlin. O primeiro apresentou a teoria de vibragdo de vigas
espessas com efeito da inércia rotacional e da deformacdo de cisalhamento. J4 Mindlin
formulou teoria similar a de Timoshenko para vibracdo de placas espessas.

Na abordagem dada pelo modelo de placas de Mindlin-Reissner, SRINIVAS
(1970) utilizou uma teoria exata aplicada ao caso de placas tri-dimensionais para
estudar a vibragdo em placas retangulares, espessas, homogéneas e laminadas. Os
valores obtidos no trabalho de SRINIVAS (1970) tém sido utilizados por véarios
pesquisadores como referéncia para o estudo de vibragdes livres.

As primeiras tentativas de simular o comportamento de placas espessas,
através do MEF, foram realizadas utilizando formulacdo baseada nas hipéteses de
Kirchhoff-Love. No entanto, pelas limita¢des da formulagdo utilizada, desenvolveu-se
um elemento finito degenerado, baseado na teoria de Mindlin-Reissner, no qual as
equacgdes sdo expressas em termos de varidveis nodais na superficie média da placa.
Os resultados deste elemento obtidos com integracdo completa ndao foram satisfatorios
quando aplicados a modelos de placas finas, pois o modelo resultante era
excessivamente rigido em termos de deformagdes, originando o problema de
travamento (locking) (HUANG e HINTON, 1986).

O método utilizado para resolver o problema de travamento nestes elementos
¢ a subintegrac@o, que consiste em utilizar a regra da integracdo de Gauss uma ordem
abaixo da necessdria para integrar exatamente as matrizes de rigidez elementares,

conforme ZIENKIEWICZ (1971). Contudo, esta soluc¢ao ainda ndo resolve todos os
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problemas, pois a subintegracdo de todas as matrizes resulta no surgimento de “modos
espurios”. Assim, desenvolveu-se o Método da Subintegracdo Seletiva
(ZIENKIEWICZ, 1971), que consiste em subintegrar apenas a parcela da matriz de
rigidez correspondente aos termos de cisalhamento.

Para a solu¢do do problema do cisalhamento, outras teorias tém sido
propostas, como por exemplo, a Teoria de Ordem Superior de REDDY (1984). Na
teoria de ordem superior o campo de deslocamentos é expandido para a coordenada da
espessura. Conforme LIEW (1995), na andlise de vibragdes de placas moderadamente
espessas, a Teoria de Mindlin-Reissner produz bons resultados. Deve-se observar que,
mais recentemente, quando se trabalha com andlise de tensdes, placas ortotrdpicas ou
compostas, o uso de teorias de ordem superior oferece melhores resultados do que
aqueles produzidos com a Teoria de Mindlin-Reissner.

ROCK e HINTON (1976), utilizando a Teoria de Mindlin-Reissner,
introduziu o elemento quadrilateral isoparamétrico para analise de vibragoes livres de
placas espessas e finas.

Outros métodos de solug@o para vibragdes livres em placas que consideram
condicdes de contorno variadas, foram obtidos. Como por exemplo, MIKAMI (1984)
estudou a aplicagdo do Método da Colocagdo para determinar a vibragdo de placas
retangulares de Mindlin.

DAWE (1978), também estudando placas de Mindlin com condi¢des de
contorno variadas, aplicou o Método das Tiras Finitas. MIZUSAWA (1993) aplicou o
Método das Tiras com Splines para estudar a vibrag@o livre de placas. CHEN e YANG
(1988) aplicou o MEF produzindo também resultados para a andlise de vibragoes
livres em placas laminadas e considerando deformagdes cisalhantes.

Na préxima secao, apresenta-se a idealizagdo de uma nova proposta para a

solug@o do problema de vibrac¢des livres em placas.
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2.4 METODO COMPOSTO

O Método Composto (MC) € uma nova variagdo do Método dos Elementos
Finitos (MEF), proposta por ZENG (1998a, 1998b e 1998c) para anilise de vibracdes
em estruturas. Este método combina o MEF convencional com a TC, e apresenta dois
tipos de refinamentos :

a) Refinamento 4 : é semelhante a abordagem de andlise no MEF, onde

utiliza-se uma seqiiéncia de malhas com o mesmo tipo de elemento e o

tamanho deste diminui uniformemente.

b) Refinamento c¢: corresponde ao aumento do numero de fungdes de

interpolacdo, através da inclusdo de novos termos da série correspondentes 2

solugdo da TC.

Nesta linha de investigacdo foram desenvolvidos elementos de barra (ZENG,
1998a) e de viga (ZENG, 1998b). Segundo ARNDT (2001), os resultados de exemplos
numéricos mostraram que o MC é mais preciso que o MEF, com 0 mesmo nimero de
graus de liberdade, na anélise de vibragdes livres.

SHI e ZENG (2000) desenvolveram o elemento composto para vibragcdo de
placa fina el4stica.

Outros métodos com concepgdes semelhantes para a solucdo do problema de
vibragdes também foram propostos. O Método dos Elementos Finitos Hierarquicos
(MEFH) foi aplicado por BARDELL (1991) para vibracdes em placas. HOUMAT
(1997) desenvolveu uma variante do MEFH para vibracdes em placas na qual fungdes
de formas trigonométricas hierdrquica sdo compostas com fung¢des de forma
polinomiais, sendo que, os exemplos numéricos testados, apresentaram resultados de
superconvergéncia com o aumento do nimeros de func¢des hierarquicas.

Recentemente outros pesquisadores tém trabalhado nesta abordagem dos
métodos hierarquicos, como por exemplo, COTE (2001), que apresenta uma discussio
sobre a sele¢do de fung¢des de forma para a versdo-p utilizadas no MEF para a solucao

do problema de vibragdes em placas.
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3 FORMULACAO DO METODO COMPOSTO

Neste capitulo € apresentada a introdug@o tedrica que associa o MEF as
fun¢des da TC, dando assim origem ao Método Composto. Faz-se uma andlise do
modelo de deslocamentos aplicado ao MC. Apresenta-se, também, a base da
formulacdo do MC e, sendo o MEF intrinseco ao MC, sua formula¢do também &
descrita. Na parte final do capitulo, discute-se sobre a solugdo da equagio diferencial
aplicada a vibracgOes e define-se quais s@o as fungdes da teoria cldssica aplicaveis ao

desenvolvimento do MC para placas espessas.

31 MODELO DE DESLOCAMENTOS APLICADO AO METODO
COMPOSTO

O Método Composto (MC) é uma nova variagdo do Método dos Elementos
Finitos (MEF), proposta por ZENG (1998a, 1998b, 1998c), para andlise de vibracdes
em estruturas.

O MC se comporta, sob vérios aspectos, de modo semelhante ao MEF, como
por exemplo no processo de solugdo, na precisdo, eficiéncia, entre outros. O MC
incorpora parte da solug¢do obtida da teoria classica, objetivando atingir alta precisdo e
convergéncia para problemas com geometria e condi¢des de contorno complexas.
Cabe ressaltar que a utilizagdo de um sistema de coordenadas apropriado € a base para
a descri¢ao adequada do campo de deslocamentos em cada um dos elementos (SHI e
ZENG, 2000).

Para se obter a implementacdo da formulagdo do MC, utiliza-se o
procedimento que envolve as seguintes etapas:

= Superpor as solucdes da TC a técnica convencional do MEF, possibilitando

0 uso de parte da série da solucdo analitica para enriquecer a solugdo do
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MEF;
*» Definir dois sistemas de coordenadas para descrever o campo de
deslocamentos, sendo um com os graus de liberdade nodais utilizado no
MEF, e outro, local, com os graus de liberdade utilizado pela parcela da TC;
» Utilizar fun¢des da TC que atendam determinadas condi¢cdes de contorno
para serem superpostas ao MEF, possibilitando assim transferir os resultados
obtidos pela parcela da TC para valores nodais sem afetar a solugdo
proveniente do MEF.
Para descrever o campo de deslocamentos serd utilizada uma combinagéo
linear das fun¢des de interpolagdo do MEF, com as fungdes que fazem parte da série

da solucdo analitica da TC. Portanto, o campo de deslocamentos no MC ¢ descrito por

U(x,y)=U ppp (%, 9)+ Urc(x,y) | (3.1)

onde Upgr € 0 campo de deslocamentos usual do MEF e Uy € o campo de
deslocamentos interno ao elemento (associado a TC), baseado no sistema de

coordenadas nodais; (x,y) é a coordenada local do elemento que percorre a superficie

média do elemento.
O sistema de coordenadas nodais do MEF descreve o campo de

deslocamentos Ujr , através dos deslocamentos dos nds do elemento, ou seja

Upier (x,y)=H" (x,y)q . (3.2)

onde H € a matriz das fungdes de forma e g € o vetor de deslocamentos nodais (ou

graus de liberdade nodais).

O campo de deslocamentos U;¢ € descrito através de coeficientes da série de

funcdes obtidas pela TC, sendo dado por

Urc(x,y)=0"(x.y)c , (3.3)

onde () é a matriz com a série de fungdes analiticas da TC e ¢ € o vetor de coeficientes
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que definem os graus de liberdade c (coordenadas c).
Na proxima se¢do mostra-se o desenvolvimento do MC para placas

apresentando-se a forma de superposi¢do do MEF as parcelas da TC.

3.2 DESENVOLVIMENTO DO METODO COMPOSTO

3.2.1 Superposicao das Fung¢des do Método dos Elementos Finitos as Funcoes da

Teoria Classica

Com base nas seg¢Oes anteriores e consideracdes feitas, o campo de

deslocamentos, dado na Equacdo (3.1), pode ser descrito por

k=l {a+lol{c}. (3.4)

onde [H] € a matriz com as fung¢des de interpolacdo para os graus de liberdade g e [@] é
a matriz com as fun¢des de interpolag@o da TC para os graus de liberdade c.

Neste caso, o primeiro termo ¢ avaliado de maneira semelhante ao MEF,
utilizando os mesmos valores para as matrizes de rigidez e de massa. Cabe agora
examinar os termos que contribuem para a parcela associada aos graus de liberdade c.

Para entendimento da superposi¢@o proposta pelo MC (parcelas semelhantes
ao MEF enriquecidas de parcelas da TC), considera-se a primeira integral da Equag@o
(3.5) relativa ao caso dos termos a flexao da matriz de rigidez, mostrado na Equacdo

(2.16) e que aqui sera repetida para facilidade de compreensao:

h/2 h/2
[ [l e, oy ey foubdean + & [l LT [,z Hou}dz da
A—h/2 A—h/2
(3.5)

i { }{Su}dsz J{FY foulas

A-h/2
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O campo de deslocamentos, dado pela Equagdo (3.4), é substituido no
primeiro termo da Equacgdo (3.5), permitindo o célculo da matriz de rigidez associada
aos termos em flexdo da placa. Nota-se que existem termos relacionados apenas aos
termos semelhantes ao MEF, dados pelo conjunto K, , termos relacionados apenas as
parcelas da TC, dados por K, e termos da superposicdo das duas abordagens dados
pelos conjuntos K. € K., O indice g esta associado aos graus de liberdade nodais e o
indice c aos graus de liberdade c.

Entdo, substituindo-se o campo de deslocamento na parcela da matriz de
rigidez associada aos termos em flexao, tem-se

jj{u} Lo, I, Joudzda = jj{U}T[Lf (el ]T[Df][Lf([H]+[¢])}{8U}dsz:

A-h/)2 A—hf2

K2

~£ J/:(U}T [Lf(HH D}IQDfo[H]L» [Dfo[q)]D{SU}dz dA (3.6)

-] z{/EU} [Lf mPrts [”1]+ [Lf "mPrly [¢]]+ {LfT[‘I’]Df Lf[¢]]+ {LfT[d)]Df Lf{H]]{SU }dz dA
A

FIGURA 3.1 — MAPEAMENTO DOS TERMOS DA EQUAGAO DA RIGIDEZ A FLEXAO PARA O SISTEMA
MATRICIAL NO MC

f f{”} L‘f (7] Dfo[H] Lf 1P 7Ly, ] [Lf [¢Dfo{¢]] [Lf [¢Dfo H]]{ﬁu}dsz

. AN

N /
\\ \ l\. /,
N~ ' \\ /
Ky : K ) /
e _;-_,._____. /
K, K.|/
Cq ! J

K = Matriz de rigidez dos termos associados a flexdo semelhantes ao MEF
K = Matriz de rigidez dos termos associados a flexdo da TC

K = Matriz com termos cruzados

K = Matriz Kqc transposta

L = Operador da transf. Deformagao de flexao x Deslocamentos

D, =Matriz das relacdes constitutivas para os termos em flexao

-
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A Figura 3.1 ilustra como a montagem da matriz de rigidez para os termos
associados a flexdao € mapeado para o sistema matricial.

Na proxima secdo apresenta-se a abordagem tradicional para o MEF onde,
definem-se o processo de interpolac@o e a constituicdo da matriz de rigidez e matriz

massa.

3.3 METODO DOS ELEMENTOS FINITOS APLICADOS A PLACAS

Sendo a formulagdo do MC baseada no MEF e enriquecida com fungdes da
TC, a discretizacao do MC baseia-se em elementos finitos conhecidos. Por esta razio,
neste trabalho, apresenta-se a formulagdo que abrange dois elementos para a
implementac¢do computacional, o elemento isoparamétrico quadrilateral de quatro nés
e 0 elemento isoparamétrico quadrilateral de oito nés.

A Tigura 3.2 contém a representacao dos valores nodais de deslocamento de
um elemento de placa de quatro nés, considerando o plano médio da placa e a

espessura constante.

FIGURA 3.2 — DESLOCAMENTOS NODAIS PARA O ELEMENTO DE QUATRO NOS

z 4
Y

P /

3.3.1 Formulacao do Elemento Isoparamétrico Aplicado as Placas

ar

/,—-» .

Um sistema de coordenadas naturais colocado no centro do elemento,

estabelece uma correspondéncia direta entre os elementos das matrizes € os graus de



liberdade que representam o campo de deslocamentos, consistindo na idéia central
desta formulagdo. Isto possibilita, para o caso do elemento retangular aplicado as
placas, utilizar funcdes lineares na dire¢@o de cada uma das coordenadas. Desse modo,
o sistema de coordenadas a ser criado deve ser tal que permita mapear os elementos do
sistema de coordenadas genérico para o sistema de coordenadas naturais e vice-versa.
Este mapeamento pode ser visto na Figura 3.3.

As coordenadas genéricas podem ser interpoladas da seguinte forma

x=Yx h(&m)
= , (3.7)

y:iyi hi(‘f’ﬂ)

onde A; sdo as func¢des de forma dadas por BATHE (1996), ODEN (1981), e sendo & e
7 as coordenadas locais do elemento, ambas variando de —1 a +1.
O ntmero de fungdes de forma n € igual ao nimero de nds utilizado no

elemento isoparamétrico que se estd formulando.

FIGURA 3.3 - MAPEAMENTO ENTRE O ELEMENTO PADRAO E UM ELEMENTO FINITO QUALQUER

Yy
T 3
X
nll
-1,1) 1,1
14
S B

(-1,-1) (1,-1)
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Assim como foi definida a relacdo entre os sistemas de coordenadas (global e
especifico) € necessario estabelecer uma vinculacdo entre os operadores diferenciais.

Esta pode ser dada por

21 To
: 9
65413. (3.8)
on dy

A matriz [J] (2 x 2) das derivadas parciais é chamada de matriz Jacobiana da
transformacdo. Para efetivar as relacdes entre os sistemas de coordenadas é necessario
que exista a matriz inversa da transformacao Jacobiana 1.

Da mesma forma

dA=dxdy |,

(3.9)
dA=(det J)dE dn ,

onde o (det J) € o determinante da matriz Jacobiana da transformagao.
Na proxima secdo apresenta-se a matriz de rigidez de um elemento

1soparamétrico pelo MEF.

3.3.2 Matriz de Rigidez

As matrizes de rigidez da placa consideram as relacdes entre os sistemas de
coordenadas, local e global. As relacdes a seguir estdo descritas em termos de
coordenadas globais, as quais devem ser avaliadas utilizando-se a formula¢do para
elementos isoparamétricos no sistema local e aplicando-se a transformacéo jacobiana.

No capitulo 2, definiu-se o campo de deslocamentos baseado em variaveis
independentes dadas pelo deslocamento transversal (u,) e pelas rotagdes das secgOes
B, e ﬂy). Assim, na discretizagdo de elementos finitos necessita-se somente da
continuidade entre elementos associados em w, f, e [, € ndo necessitando portanto,

associa-los a suas derivadas. Desta forma, pode-se relacionar os deslocamentos nodais
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utilizando as mesmas fungdes de interpolagdo. Para as interpolacoes utilizam-se

w, =Y hu',  B,=-2h0,, B, =Y oL, (3.10)
[ i=] i=]

onde 6/ e 6,' sao os graus de liberdade relacionados a rotacdo e calculados para cada
no do elemento isoparamétrico implementado.

Na forma matricial, tem-se

B 0 0 B 0 0 -~ h 0 0
H={0 B 0 0 h 0 - 0 h 0 (3.11)
0 0 b 0 0 h - 0 0 h
= ¥ x y U x y 7 U, x vl

As derivadas dw/dx e dw/dy, considerando o deslocamento transversal w,

sao determinadas por

1
U,

auZ % (_9.]2 ahn 2
ox _ 1] 9& d& o0& u,

u, ~[Jij %2 % oh, % : ro- (3.13)

dy em &=i on on on dm )

n=J u "

Z Jnxl

De modo similar, a interpolagdo das rota¢des, ocorre nas formas

o
y
aﬂx %__ 9}_12_ ah” 2
ox 0, H | & 9 A& 0y
B kel w1l A0
ay em{;—“i_ 877 877 ar] 2xn 671
n=J y

nxl
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91

9, Iy Oy ||

dx [, W | 9E 9E of 0%
aﬁy —[Jij]sz a—hl— ah2 ahn . r - (315)

ay em E=i 877 877 877 2xn n

n=j 9):

nxl

Para completar a formulacdo da matriz de rigidez de elementos finitos,
define-se o operador da transformacdo entre as deformacgdes e deslocamentos para os
termos em flexdo L; como sendo By (que podem ser extraidas das EquacSes (3.14) e
(3.15)), e o operador da transformacdo entre as deformagdes e deslocamentos para 0s
termos em cisalhamento transversal L., como sendo B, (que podem ser obtidas com as

fung¢des de interpolacido dadas pela Equacdo (3.10) e pela Equagao (3.13)). Logo, tem-

se que
| ahI ahz ahn—
o 0 -— 0 0 -—= - 0o 0 -t
o8 o0& oE
o M o, Wy Wy O O
| de om o I o on|
”a"}'ll‘ 0 h] —a—ilg— 0 hZ cee __a_hﬂ_ 0 hn
8], =| % oz E -
- —h] 0 — "‘hz 0 P _n _hn 0
o7 a7 n

Portanto, a matriz de rigidez pode ser escrita da seguinte forma

h/2 h/2
(k1=[ [l [/ IB;lazaa+ [ [[B.J DB Jdzda (3.18)
A-h/2 A-h/2

onde [Dy] € dado pela Equagdo (2.8), [D,] é dado pela Equacdo (2.9) e k € o parametro

associado ao fato da tensdo de cisalhamento ndo ser constante na sec¢do da placa. Para
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placas o valor de k proposto originalmente por Mindlin é T*/12.

A matriz massa do MEF ¢ descrita na proxima se¢ao.

3.3.3 Matriz Massa

A matriz massa do sistema a ser avaliada conforme o sistema discreto

proposto na Equacao (2.23) para uma placa com espessura constante, conforme

PETYT (1990), € dada por

_h
1= [ ol | 0
0

onde [M] € a matriz massa.

0 0
]3
29
2
0o M
12

) (3.19)

O detalhamento do MC, mostrando como as fung¢des da TC sdo empregadas

na interpolagdo das deformacdes e deslocamentos, sera discutido a seguir.

3.4 METODO COMPOSTO APLICADO A PLACAS

Para o MC, as parcelas das deformagdes associadas a TC, sdo obtidas de

forma semelhante aquela ilustrada nas Equacdes (2.4) e (2.5). Assim, tem-se

Jda

X

| 9y

da,

ox
acxy

dy

X

da

dy |

, (3.20)

e as deformacgdes de cisalhamento transversal da placa para a parcela do MC sdo
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dc
}/x 5. Y%x
‘= gx (3.21)
Y —C~a ’
)z ay y

onde para as parcelas da TC tem-se que ¢, e ¢, sdo as rotacOes das sec¢les e ¢ 0
deslocamento transversal, associados ao grau de liberdade c.

Considerando apenas a matriz com as fun¢des de forma que representam a
solucdo para o problema de vibragdo livre de placas, obtém-se a matriz associada aos

graus de liberdade c. Esta € dada por

000 ¢ 0 0 ¢, O O - ¢ O
l¢)]=jo 000 -t 0 ¢ 0 0 ¢ 0 - 0 g, 0]. (3.22)
000 0 0 ¢ 0 0 ¢ - 0O 0 g,

O numero de zeros que precedem as funcdes de forma ¢ do MC é igual ao
nimero de graus de liberdade do elemento finito que estd sendo avaliado. O indice m,

associado as fungdes de forma ¢, define o niimero de funcdes utilizadas da série da

TC.

Para os graus de liberdade associados a TC tem-se o deslocamento
transversal ¢ e o giro das sec¢Oes &, e ¢, como sendo varidveis independentes. Estas
variiveis, na estratégia utilizada aqui, sdo relacionadas pelas funcdes de interpolag@o.

O vetor dos graus de liberdade ¢ € dado por

=p 00 0 ¢ & ¢ ¢ 6 6 - ¢ & &), (323
e o campo de deslocamentos ¢ dado por

n n ) n .
=Y, 0 =—2000, o, =Y0065. (3.24)
=l =1 i=I

O 1indice ¢ associado ao pardmetro @, relaciona a derivada primeira (giro da



secdo transversal) as fungdes da TC.
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Da mesma forma que para o MEF, pode-se calcular as derivadas dc/ox e

dc/dy , considerando o deslocamento transversal ¢

99,
_ 1| 9
—[Jij 2x2 aﬁ
a7

99,
o0&
96,
on

Definem-se as rotacdes associadas ao MC por

Jda,

ox

dor,

dy |em $=i
n=j

e,

da,,

0x

da,,

By em&=i
n=j

9,

7 | d
=L, ai
2
9,

;| 0
:_[J"J’]ziz aqi
an

99

o0&
992

o7

99,
Cl4
99,
an

C]\
90,
o0& €2
a¢m
877 2xm c
mJ)mxl
0(‘1
y
w] |,
o0& y
a¢m :
87] 2xm
0(,‘]71
y
d reﬁ]
A
& 7=
09y,
877 2xm gem

mxl

mxl

(3.25)

(3.26)

(3.27)

Na préxima secdo realiza-se a busca das fungdes da TC que podem ser

empregadas no MC. Discutem, também, as caracteristicas de compatibilidade e as

condi¢des de contorno que devem ser satisfeitas para superpor o MEF as funcOes da

TC.

3.4.1 Caracteristicas das Funcodes de Forma MC

Para a implementacao do MC € necessario que as func¢des de forma atendam
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as seguintes caracteristicas:

Pertencer ao espacgo solucio, isto €, ser solucdo possivel para a Equacao

diferencial associada ao problema de vibracdes livres de placas.

No contorno do elemento, o deslocamento deve ser nulo, para que nio

altere a parcela do MEF.

FIGURA 3.4 — CONDIGOES DE CONTORNO PARA AS PARCELAS DA TC EM UMA PLACA

No contorno:

u2=0
0

HZ :0
ox
%z _y
oy

No contorno do elemento, o giro da secao transversal (derivada primeira
da funcao) deve ser igual a zero. Com isto, apenas a parcela associada ao
MEEF sera responsavel por esta determinacao.

Pode-se observar que estas caracteristicas representam as condi¢des de
contorno para uma placa engastada nos bordos. Portanto, conclui-se que o MC
acrescenta graus de liberdade associados ao dominio. A Figura 3.4 ilustra as condigdes

de contorno de compatibilidade para as func¢des de forma das parcelas da TC.

3.4.2 Funcoes de Forma da Teoria Classica

A solucdo da equacdo diferencial para o problema de vibragOes livres com as
imposicdes das condi¢des de contorno para placa engastada é a forma pela qual se
obtém as fung¢des utilizadas para interpolag@o da parcela associada a TC.

A equagdo diferencial do movimento € dada por
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DV*u+phi=q , (3.28)

onde g € a carga distribuida na superficie da placa, D € a rigidez 4 flexdo e p a
densidade de massa.

O estudo de vibragdes livres ¢ baseado apenas na rigidez, geometria e
distribuicdo de massa sobre o corpo (no caso, considera-se esta distribuicdo ocorrendo
no plano médio). Para a vibracdo livre de uma placa, onde se assume uma carga

distribuida nula, a equacgao diferencial pode ser escrita como

DV*u+phii=0 . (3.29)

Como pode-se observar, a equagdo diferencial do movimento tem como
variavel dependente também o tempo. Conforme BOYCE e DIPRIMA (1997), pode-se

proceder a seguinte separacao de variaveis:

u(x,y,t)=U(x,v)T(t) . (3.30)
Fazendo
p’ =% : (3.31)
tem-se
BT ViU +UT =0 . (3.32)

Assim, a separacdo de variaveis pode ser obtida por

BT VU =-UT =w? (3.33)

donde, conclui-se que
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Lo o? e
T
(3.34)
D VU
—_— =
ph U

Assim, conclui-se que @’ é a razdo de separacdo de varidveis. Por outro lado,
w, em relacdo ao problema fisico, € conhecido como a freqiiéncia natural.
Uma forma de obter a solu¢do do conjunto de Equacdes (3.34) ¢ através da

aproximagdo por séries infinitas, conforme SZILARD (1974):

Ulxy)= zzunm mn (x’ y) (3.35)

Da Equagdo (3.35), pode-se reescrever ¢(x,y) como o produto de duas

fungoes, onde cada uma delas depende apenas de um argumento. Entéo

Opn =X (X)) Y, (y) (3.36)

As funcOes linearmente independentes, separadas em dois grupos, X,(x) e
Y,(y), permite encontrar a solu¢io que satisfaz todas as condi¢des de contorno. Para
estas funcgdes, podem-se utilizar as mesmas fung¢des de vibragdes de vigas, com
condicdes de contorno similares as da placa. Assim, analisa-se a solucdo para o
problema de vibragao livre para vigas, que ¢ dada por

I*U(xt) _ m d*U(xt)

ox* EI 32 G371

onde m € a massa por unidade de comprimento, E 0 médulo de elasticidade do material
e [ o momento de inércia da viga.
Assumindo-se a solu¢do harmonica para a Equag@o (3.37), e particularizando

para a dire¢do X, tem-se
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d*X,(x) mw?

X(x), 3.38
=X (%) (338)
sendo possivel 1dentificar a constante
1Y mo?
T = , 3.39
r I (3.39)

onde A € o pardmetro de forma e [ € o comprimento do vio.

Substituindo a Equagdo (3.39) na Equacio (3.38), tem-se

4 4
4 Xnlx) Zx";(“:%xm(x). (3.40)

Assim, a solu¢do geral da Equagdo (3.40) € dada por

A A

X (x)=C; sen

A
+C, cos—”l’J-C—+ C3 senh + Cy cosh ,;x i (3.41)
As constantes C;, C,,C; e C,sdo obtidas a partir das condi¢des de contorno, e
o pardmetro A, é a raiz da equacdo caracteristica da freqiiéncia. Para o elemento de
viga de comprimento /, as condicdes de contorno de compatibilidade sao:
X (0)=X,,()=0

dx, (3.42)

m

dx

_dX,,
x=0 dx

=0

x=l

Substituindo as condigdes de contorno da Equagdo (3.42) na Equacgdo (3.41),

obtém-se um sistema de equacdes homogéneas, cuja forma matricial é dada por
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1 0 1 0 (a,
(

cos(A,)  sen(l,) cosh(A,) senh(A,, )| |y

. (3.43)
0 1 0 i a;

S o o O

—sen(A,,) cos(A,,) senh(h,) cosh(A,)]||ay

A equagdo da freqiiéncia € obtida fazendo-se o determinante do sistema igual

a zero. Logo

f=cosA,.coshAd, —1=0 . (3.44)

As raizes da equagdo caracteristica, 4, sdo os autovalores do problema. Os

modos de vibragdo (autovetores) sdo obtidos das Equagoes (3.43) e (3.44)
A, x A.x\ send, —senhA A, x A X
X — m _ Ll Zm _ m m m _ K Zm .
m (X) a; {sen( / J sen ( / ) cos A, —cosh [cos( / ] cos (——l H} (3.45)

Utilizando-se a mesma abordagem, pode-se concluir que para uma placa

retangular, na dire¢dao perpendicular, tem-se
Ay A,y senA, —senhA A,y Any
Yiy)=b T senhl 2~ | — n n_ | In2 n ,
2 2{“’{ l ) e ( l J cos A, —cosh A, [cos( l R (3.46)

onde os indices m e n estdo relacionados com a dire¢do em questdo (x ou y) e o

comprimento [ é o tamanho do vao da placa.
TABELA 3.1 — RAIZES DA EQUAGAO DA FREQUENCIA

Jons o VALOR |
» 4,7300
Ao 7,8532
s 10,9956
A 14,1372
As 17,2788
Ae 20,4204
A 23,5619
Mg 26,7035
Ao 29,8451
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Na Tabela 3.1 pode-se encontrar até o valor de Ag e os valores A, cujos

indices sejam matores que nove, podem ser obtidos por:

A =(2j+1I)r/2 para j=m ou j=n (3.47)

Na proxima secdo € feito o detalhamento das matrizes que calculam as

deformacdes e como sao somadas as parcelas do MEF as parcelas da TC.

3.4.3 Termos da Matriz de Deformacio Associados ao Método Composto

Para a formulacdo da matriz de rigidez dos termos associados a TC, define-
se o operador da transformacdo entre as deformacdes e deslocamentos para os termos
em flexdao Ly como sendo BCye o operador da transformac@o entre as deformagoes e
deslocamentos para os termos em cisalhamento transversal L. como sendo BC,, através

de interpolacdo semelhante a do MEF

000 ..:00 Yo o 9% 4 o %
o & o9&
- 9, 99, 99
BC},=|10 0 0 --- : 0 =/ b3 0 e 0 m 0
[BC], 5 ° 5 5 (3.48)
: Jg 94 Jdg, 99, dg, 94,
00 ..:0%% %% g% 9 % %
P00 0% Tan © % Tan 26 an
000 - : %q)—‘ 0 ¢ %(b—‘ 0 ¢ - % 9,
[Bcl, = s g . f : f . (3.49)
P S, —i2 .
000 i Zh—g 0 2% g S a0

O numero de zeros que precedem as funcdes que relacionam as deformacoes
para a TC € igual ao nimero de graus de liberdade do elemento finito que esta sendo
avaliado. O indice m associado as fun¢des ¢ indica o niimero de funcdes utilizados na
série da TC.

A partir das se¢Oes anteriores é possivel agrupar as matrizes que relacionam

os termos em flexdao e cisalhamento, sendo estas matrizes substituidas nas Equacoes
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(3.50) e (3.51).

3.4.4 Agrupamento dos Termos em Flexdo e Cisalhamento para o Método

Composto

O operador da transformag@o, para os termos em flexdo L. 4, ¢ dada por

o 3.50
[BmC]; = [L([Hchl)]f =Bl +5cl, 20

E para o operador da transformag@o, para os termos em cisalhamento L. 4

tem-se
. (3.51)
[Bmcl, =[] = (8], +[BC],
Assim, a matriz de rigidez elementar € determinada por
K2 K2
[k]=] [lBMmc]] Ip ; IBMd] s dzdA+k | j [BMC [D, ]BMC], dzdA . (3.52)
A-h/2 A—h/2

3.4.5 Matriz Massa para o Método Composto

Para avaliar a matriz massa necessita-se conhecer a matriz resultante do

somatoério das funcdes de forma, assim

[N]=[H]+0] . (3.53)

A matriz massa do MC € dada por
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R0 0
T h’
prl=[plvT o — 0 [N]aa, (3.54)
A
3
0o 0 =
i 12 ]

onde [N] € a matriz com as func¢des de forma do MC.

3.5 SUMARIO DO CAPITULO 3

Neste capitulo apresentaram-se os principios do MC e definiram-se as
caracteristicas das fungdes da TC para o método. Concluiu-se que as fung¢des da TC
para um dominio retangular devem atender as condi¢cdes de contorno de uma placa
com os quatro bordos engastados. Conforme SZILARD (1974), a solucdo da equagéo
diferencial para as condicdes de contorno em questdo podem ser obtidas de forma
aproximada por fungdes que resolvem o problema de viga com condi¢des de contorno
semelhantes.

Discutiu-se, também, que a solu¢do do problema de vibracOes livres de
placas resume-se na determinacdo dos autovalores e autovetores a partir da defini¢do
da matriz de rigidez e matriz massa do sistema. A técnica proposta para o MC € uma
variante do MEF, que busca o enriquecimento da solugdo acrescentando termos da TC
as matrizes do problema em questdo. A superposicdo das duas abordagens foi

apresentada nas tltimas se¢des do capitulo.
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4 FORMULACAO NUMERICA DO METODO COMPOSTO

Neste capitulo, sd@o apresentadas as implementagdes de dois elementos com
as seguintes caracteristicas: elemento composto isoparamétrico de quatro nés e
elemento composto isoparamétrico de oito nds. Discute-se, também, o método de
solu¢do utilizado para resolver o problema de autovalores e autovetores e o método de
integracao numérica. Finalmente, as implementacdes computacionais necessarias sao
brevemente descritas.

Outros elementos finitos mais eficientes poderiam ser implementados,
porém, o objetivo € verificar a eficiéncia do MC. Neste sentido, trabalhar com
elementos mais simples, além da facilidade na implementacio, evidencia melhor as

caracteristicas do MC.

4.1 IMPLEMENTACAO DO ELEMENTO ISOPARAMETRICO LINEAR DE
QUATRO NOS

A implementacdo deste elemento utilizando o MC comeca pela definicdo das
funcOes utilizadas para as interpolagOes, tanto da parcela associada ao MEF quanto das
parcelas da TC. Apds esta defini¢@o, hé a necessidade de se avaliarem as matrizes que
relacionam as deformacdes de flexdo e cisalhamento, possibilitando assim, calcular a
matriz de rigidez da placa. O passo seguinte € determinar a matriz massa do sistema,

utilizando as mesmas fungdes de interpolagao ji definidas.

4.1.1 Funcoes de Forma para o MEF

As fungdes de forma sdo dadas por, BATHE (1996), ODEN (1981)
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=SB Ly = (-8iem),
4.1

hy=U=ENi-n) = EI-m).

A Figura 4.1 apresenta o elemento quadrilateral e as posi¢cdes dos nds

associadas as funcodes de forma da Equagéo (4.1).

FIGURA 4.1 — ELEMENTO QUADRILATERAL ISOPARAMETRICO DE QUATRO NOS

A
VN o
{2 M
\)‘ 1 )
A LI
@& @

As funcoes de forma da parcela da TC para o MC, serdo discutidas com mais

detalhes na secdo seguinte.

4.1.2 Funcoes de Forma para a Teoria Cldssica

As funcdes de forma da TC, usadas para a implementacdo do MC, a partir da

equacdo da freqiiéncia de vigas nas direcdes x e y, sdo dadas por

X, (x)=sen A —senh Ay ) _send, —senhd, | cos| A —cosh A ) (4.2)
l l cosA, —cosh A l l

Ay A y) send —senh/A Ay Ay
Y {y)= —2= |—senh| —= |— n Ly n? | coshl 222 |1 .
) sen( I ] sen{ I ] cosA, —cosh A, {CO{ I } COS( I 4.3)

Considerando o elemento quadrilateral isoparamétrico, tem-se que a

distancia [ € igual a 2 (variagdo da coordenada natural). As Equagdes (4.2) e (4.3)
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consideram as coordenadas globais do vértice do elemento. Todavia, para o elemento
1soparamétrico deve-se considerar o sistema de coordenadas posicionado no centro do

mesmo. Assim, tem-se que

X (é) = sen(i”iéilJ - senh(zvl(—?lj

(4.4)
senh,, —senhh,, |: (Xm(&-k])) (?xm(é—kl)]:l
- | cos| ———————= |- cosh) ——— ||,
cosh,, —cosh,, 2 2
Yn(n)zsen(—————xn(?Jr“J—senh{————x"(?+“J
(4.5)

senh, —senhA, Ap(n+1) Ap(n+1)
- | cos| ———|—coshi ——— ||.
cosh, —coshh, l [

O produto das Equacdes (4.4) e (4.5) representam as fungdes de forma para
placas. Avaliando-se o parametro de forma A, conforme os valores da Tabela 3.1,

pode-se reescrever para A=4,7300 e A,=7,8532, as seguintes equacoes:

X (€) 12405 =5en(2.365& +2.365) - senh(2.365& +2.365)

4.6
-1.01780941c0s(2.365¢ + 2.365) +1.01780941 cosh(2.365& + 2.365) (4.6)

Y, (1) 1-s 7 = 5en(2.3657 +2.365) - senh(2.3657 + 2.365) 7
-1.01780941cos(2.3657 +2.365) +1.01780941 cosh(2.3657 + 2.365) @D

X (&)1 gs3 = 5en(3.92660¢ +3.92660) - senh(3.92660¢& +3.92660) i
-.999223291¢0s(3.92660¢ +3.92660) +.999223291 cosh(3.92660& +3.92660) “4-8)
Y, (1) 17 5535 = 5e0(3.926607 +3.92660) - senh(3.926607 + 3.92660) “9)

-.999223291¢c0s(3.926607 + 3.92660) +.999223291cosh(3.926607 + 3.92660)

Assim, com as Equagdes (4.6), (4.7), (4.8) e (4.9) pode-se construir as quatro

primeiras funcdes que representam os quatro primeiros modos de vibrar das placas,
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que atendem as condi¢des de contorno do elemento MC:

O(EM)=X,;(8)Y; (M),
02(&Em)=X,(E)Y)(m),
¢3(En)=X,;(E)Y5(m),
d4(EM)=X,(E)Yo(m).

(4.10)

A Tigura 4.2 ilustra graficamente, os quatro primeiros modos de vibrar da
placa, obtidos a partir das funcdes ¢ contidas na Equacao (4.10).

Mais fungdes de forma da TC podem ser acrescentadas ao MC. E objetivo
deste trabalho verificar a necessidade e as conseqiiéncias relacionadas ao incremento
do numero de fun¢des da TC. Estes aspectos sdo discutidos no Capitulo 5.

Para se utilizar na formulacdo do MC mais fungdes ¢, basta avaliar as

Equagoes (4.4) e (4.5) com os valores respectivos de A que constam da Tabela 3.1.

FIGURA 4.2 - REPRESENTAGAO DAS FUNCOES DE FORMA PARA OS QUATRO PRIMEIROS MODOS DE
VIBRACAO

AR
§ %&& ORI

%@\\,‘%ﬂ
@‘i‘»

¢) Funcio ¢s d) Funcao ¢,
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4.1.3 Matriz de Deformacao para os Termos de Flexao do Método Composto

A matriz de deformac@do para os termos de flexdo do MC € o somatério das

matrizes dada pela Equacao (3.50)

) 4.11
[BMC]f:[L<lHl+[¢])]f D
4 4 4 4
[BMd, =0 (—Jg——) 0o 0 Q—;-;—) o o 28 4 _(L;;Q 0
o U _U+g o (m) (=g o (-m) (-9, U-m (49
4 4 4 4 4 4 4 4
oo Mg oo By o, o ow] P
% & LS &
0o X 0 By g B W,
an n an on
o B o, X My, My O, %
& o & & o &k o

As 12 primeiras colunas estdo associadas ao MEF e as restantes, sdo

referentes as parcelas da TC, onde:

85% =(2.365c0s(2.365E + 2.365) - 2.365cosh(2.365E + 2.365)

4.13
2.407sen(2.365E + 2.365) + 2.407senh(2.365E + 2.365))(sen(2.365m + 2.365) @.13)
- senh(2.365m + 2.365) - 1.018cos(2.365M + 2.365) + 1.018cosh(2.365n + 2.365)),
a{;& = (sen(2.365E + 2.365) - senh(2.365& + 2.365) - 1.018cos(2.365E + 2.365)
mn
(4.14)

+1.018cosh(2.365E + 2.365))(2.365c0s(2.365M + 2.365) - 2.365cosh(2.365m + 2.365)
+2.407sen(2.365m + 2.365) + 2.407senh(2.3657 + 2.365)),



ag;g =(3.927c0s(3.927E + 3.927) - 3.927cosh(3.927E + 3.927)

+3.9245en(3.927E + 3.927) + 3.924senh(3.927E + 3.927) )(sen(2.365M + 2.365)

- senh(2.365M+ 2.365) - 1.018cos(2.365M + 2.365) + 1.018cosh(2.365m + 2.365)),

%?—2— =(sen(3.927E+ 3.927) - senh(3.927& + 3.927) - .9992c0s(3.927E + 3.927)
M

+.9992c0sh(3.927E + 3.927))(2.365¢0s(2.365M + 2.365) - 2.365cosh(2.365 + 2.365)
+2.408sen(2.365M + 2.365) + 2.408senh(2.3651 + 2.365)),

—%(%3— =(2.365¢c05(2.365E + 2.365) - 2.365cosh(2.365E + 2.365)

+ 2.408sen(2.365E + 2.365) + 2.408senh(2.365E + 2.365) )(sen(3.927n + 3.927)

- senh(3.927n+3.927) - .9992c0s(3.927M+ 3.927) + .9992cosh(3.9271 + 3.927)),

%’B— =(sen(2.365E + 2.365) - senh(2.365E + 2.365) - 1.018cos(2.365& + 2.365)
N

+1.018cosh(2.365E + 2.365))(3.927c0s(3.927M + 3.927) - 3.927cosh(3.927M+ 3.927)

+3.924s5en(3.927M+ 3.927) + 3.924senh(3.927M + 3.927)),

a0y

% - (3.927¢05(3.927E + 3.927) - 3.927cosh(3.927E + 3.927)
+3.9245en(3.927E + 3.927) + 3.924senh(3.927E + 3.927))(sen(3.9271 + 3.927)
_ senh(3.927M + 3.927) - .9992¢05(3.9271 + 3.927) + .9992cosh(3.927m + 3.927)) ,e

¢y

3 =(sen(3.927& + 3.927) - senh(3.927 & + 3.927) - .9992c0s(3.927& + 3.927)
n

+.9992c0sh(3.927E + 3.927))(3.927¢0s(3.927M + 3.927) - 3.927cosh(3.927m + 3.927)
+3.9245en(3.927M + 3.927) + 3.924senh(3.927M + 3.927)).
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(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)
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4.1.4 Matriz de Deformacao para os Termos de Cisalhamento do Meétodo

Composto

A matriz de deformacdo para os termos relativos ao cisalhamento do MC é o

somatdrio das matrizes dadas pela Equacao (3.51):

5 4.21
[BC), = (L)), e
(+m) 0 (I+8(1+m) _(1+7) 0 (-E)7+m)
_| 4 4 4
B0 e 09 Gt
4 4 4 4
_U=m) 0 U=g-n (-n 0 (1+81-n)
4 4 4 4
-9 _(-gim) U+gy (g (4.22)
4 4 4 4
ToooaF 0w F 0w ooy
i -¢ 0 % -0, 0 % 03 0 %%i -9, 0

Avaliando-se as derivadas das fun¢des de forma do MEF e das parcelas da
TC, respectivamente dadas pelas Equagdes (4.13) a (4.20), pode-se obter a matriz
referente aos termos em cisalhamento para o MC. O método permite acrescentar
individualmente as funcdes da parcela da TC. Uma vez definido o nimero de parcelas
da TC, estas devem ser avaliadas tanto para os termos em flexdo quanto para os termos

em cisalhamento.

4.1.5 Matriz de Rigidez do Método Composto para o Elemento de Quatro Nos

A matriz de rigidez € dada por

h/2 hj2
(k1= [lBMCT, b P liBMmc] sdzdA+k | [[BMCI D, |[BMC], dzda . (4.23)
A2 A-h/2
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4.1.6 Matriz Massa do Elemento de Quatro Nos do Método Composto

A matriz com as fun¢des de forma [N] para o MC, € dada por

[N]=[H]+]0], (4.24)

onde [H] esta associada as func¢des de forma tipicas do MEF e [¢] esta associada as
parcelas da TC.
Assim, a matriz com os termos das funcdes de forma é dada por
O 0Ol 0 0k 00k 0 0¢ 00 ¢ 00 ¢ 00 ¢ 0 0

IN={0 i, 0 0 h, O 0l 0 01 00 ¢ 00 ¢ 0 0 ¢ 0 0 ¢ 0 (425
0 0k 0 0h 00K 00RO O & 0 0 ¢ 0 06 0 0 ¢

A matriz massa do MC € dada por

R0 0
T =
1= [ plN] {0 = 0 [N]daA | (4.26)
A e
0o 0 —
i 12 ]

Na proxima secdo apresenta-se a implementacio MC para o elemento
isoparamétrico de oito nds. Nesta implementacdo sdo utilizadas quatro funcdes da
parcela da TC, de maneira similar a empregada para o elemento de quatro nos. Desta
forma permite-se comparar os resultados obtidos entre estes dois elementos e avaliar a

influéncia do MC quando comparado ao MEF.

4.2 IMPLEMENTACAO DO ELEMENTO ISOPARAMETRICO
QUADRATICO DE OITO NOS

A concepgido do elemento isoparamétrico quadrilateral de oito nés € feita da

mesma forma que a do elemento de quatro nés. A diferenca reside nas parcelas do
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MEF, ja4 que, para este tipo de elemento, as funcdes de forma utilizadas sao

quadraticas.

4.2.1 Funcoes de Forma para o MEF

As fungdes de forma sdo dadas por, BATHE (1996), ODEN (1981):

1 2
hy =Z&1+§)(1+n)—(1~§2 JI+m)-(1-n° )(1+é)],

ﬂl EXI+m)-(1-E )(1+n)-(1-n% J1-E)] |

1

s =1 €N )10 )(1-€)- (18 1)

1

Z[(Hé)(kn)-(l-&z)(l—n)—(l—nZ)(Hé)] ,

(4.27)

115—-;—1-§2)(1+n)
hy = (107 )1-€)

2
h7=%(1—§2)(1—n) p

hg=é(1—n2)(1+~£)-

A Figura 4.3 apresenta o elemento quadrilateral e as posi¢des dos noés
associadas as func¢des de forma da Equacgao (4.27).

FIGURA 4.3 — ELEMENTO QUADRILATERAL ISOPARAMETRICO DE OITO NOS

K
ONSNC) L )
O o
O CEENNO
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4.2.2 Funcoes de Forma da Teoria Classica para o Elemento de Oito Nos

As fungdes de forma utilizadas para a parcela da TC sao as mesmas funcdes
que as empregadas para o elemento quadrilateral de quatro nds. A diferenga € que a

quantidade de nds altera o nimero de graus de liberdade apenas para a parcela
associada ao MEF.
4.2.3 Matriz de Deformacao para os Termos de Flexdao do Método Composto

A matriz de deformac@o, para os termos de flexdao do MC, é obtida da mesma

forma que para o elemento quadrilateral de quatro nés

, 4.28)
Byl =],
"0 Iy, Iy, Iy o
o& of o& of
[BMC}f:O% 0 0‘9’l 0 oaﬁ 0 0%’- 0
an on on an
o M W, W o Oy
) o8 oy o Iy o ony
ohs ohs ok g
0 0 -= 0 0 -=% 090 0 =< 0 o0 -=%
o& o& o& o0&
ohs ol ok, Ohg
0 = 0 0 = 0 o0 < 0o 0 = o0
0o B O, K s , Ay Wy O Oy
o  on o oy of 9y of  on
0 0 %o o 9% 4 9y g %
o& oL oE of
0 % o o % 0 9%, 9
on on o on
0 % % , 9% 9 , 9 9, O O |
o& on o& an o& o of on |

Aqui, as 24 primeiras colunas estdo associadas ao MEF e as demais a TC. As
derivadas das funcOes de forma do MEF sao obtidas de maneira direta e as derivadas

das funcoes de forma da parcela da TC, estdo descritas nas Equagoes (4.13) a (4.20) .
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4.2.4 Matriz de Deformacido para os Termos de Cisalhamento do Método

Composto

A matriz de deformacio, para os termos de cisalhamento do MC, também ¢é

obtida da mesma forma que para o elemento quadrilateral de quatro nos

, 4.30)
[BMC], = [L([H T+e)) ]C
%2 0 N %%2 0 n aff 0 Iy %Z 0 N
n n n n
81—75 0 hs % 0 I ?Ii 0 hy il}‘i 0 hg
5 oy kg 5 4.31)
o0 % oy o0 oy 0 B8 0
T T A
R . .
% d; % 0, aas 03 aaf ¢4.
i ¢ S 0 =2 _ 0o = _ 0 4 _ 0
n 0 an 9, 03 an Oy

Como ocorre na matriz de deformagdes de flexdo, as 24 primeiras colunas
estao associadas ao MEF e as colunas restantes sdao referentes ao MC. As derivadas
das funcdes de forma do MEF s@o obtidas de maneira direta e as derivadas das funcgdes
de forma do MC estdo descritas nas Equacdes (4.13) a (4.20) .

4.2.5 Matriz de Rigidez do Método Composto para o Elemento de Qito Nos

Uma vez definidas as matrizes de deformacio, a matriz de rigidez para o

elemento de oito nds é calculada pela Equacgdo (4.23).

4.2.6 Matriz Massa do Método Composto para o Elemento de Oito Nos

Para calcular a matriz massa do elemento de oito ndés do MC é necessario
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conhecer a matriz com as func¢des de forma [N], que € dada por

0
0O h 0 0 h 0 0 kB 0 0 h O (4.32)
0 0 hs 0 0 h 0 0

o 0 0 ¢ 0 0 ¢ 0 0 ¢ 0 0
0 ¢ 0 0 o 0 0 o; 0 0 ¢ 0]
0 0 ¢ 0 0 ¢ 0 0 ¢; 0 0 ¢

A matriz massa do MC ¢ calculada pela Equacdo (4.26), utilizando-se a
matriz com as fun¢des de forma dada pela Equacio (4.32).

Na proxima sec¢ao apresenta-se a implementagdo computacional do MC para
os dois elementos propostos nas secdes anteriores. Discutem-se detalhes especificos
relacionados com o MC e também algumas caracteristicas da implementagéo

computacional.

4.3 IMPLEMENTACAO COMPUTACIONAL

A partir da formulacao, foi desenvolvido um cédigo computacional escrito
em linguagem Fortran. O programa produz resultados, a partir de condi¢Oes de
contorno definidas, para o problema de vibragcdes livres em placas, tanto para o MEF
quanto para o MC. Foram implementados os dois elementos propostos nas segdes
anteriores.

A determinagdo computacional dos autovalores e autovetores ¢ realizada
pelo Método de Jacobi Generalizado, utilizando subrotina extraida de BATHE (1996).

A Figura 4.4 ilustra detalhes dos arquivos de entrada e saida de dados,

relacionando-os com a etapa de processamento.
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FIGURA 4.4 — DETALHES DA ESTRUTURA DE ENTRADA, PROCESSAMENTO E SAIDA DE DADOS

DADOS DE ENTRADA
{ARQUIVO *,TXT)

1.Defini¢do do tipo de solugdo:
MEF ou MC

2.Coordenadas nodais
(definidas a partir da malha
gerada em pré-processamento)

3.Condigdes de contorno
4. Matriz de incidéncia > PROCESSAMENTO
5.Propriedades do material
(E,v,pp,)h) 1.Calcular Matriz de Rigidez - [K]
6.NGmeros de pontos para a g(R;:ls%;\‘/aerr ;:)Ar?)tt:iénhwﬂ;zsea - [M]
integragdo de Gauss. .

¢ _' autovetores e autovalores —1

DADOS DE SAIDA

(ARQUIVO *.TXT)

1.Rescreve os dados de

entrada

2.Matriz dos graus de

liberdade do sistema

3.Autovalores/Autovetores
4. Tempo de processamento

L _

A Figura 4.5 apresenta os elementos principais do fluxograma do cdédigo
computacional implementado.

No cédigo existem mecanismos de detecgdo de erros, onde se verifica se as
matrizes de rigidez e massa sao positivas definidas. No caso de existirem problemas o

programa € interrompido, e a informag@o € escrita no arquivo de saida de dados.
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FIGURA 4.5- FLUXOGRAMA MOSTRANDO OS ELEMENTOS PRINCIPAIS DO PROGRAMA

( ENTRADA DE DADOS ’

DEFINE O NUMERO DE ELEMENTOS DA MALHA
DEFINE O NUMERO DE FUNGOES COMPOSTAS "MC"
ARMAZENA O VETOR DE COORDENADAS NODAIS
DEFINICAO DA MATRIZ DOS GRAUS DE LIBERDADE DA PLACA {(COND. DE CONTORNO)

DEFINIGAC DOS PONTOS DE INTEGRAGAO DE GAUSS
CALCULO DO DETERMINANTE JACOBIANO
CALCULO DA MATRIZ DE RIGIDEZ A FLEXAO DO ELEMENTO
CALCULO DA MATRIZ DE RIGIDEZ AC CISALHAMENTO DO ELEMENTO
CALCULO DA MATRIZ DE MASSA DO ELEMENTO

CALCULO PARA TODOS

0OS ELEMENTOS DA
NLHA

SIM

CALCULO DOS AUTOVALORES E AUTOVETORES
KO=AMO

ATUALIZA MATRIZ DOS AUTOVETORES
ATUALIZA OS AUTOVALORES

NAO / A
CONVERGENCIA

( SAIDA DE RESULTADOS >

4.3.1 Método de Jacobi Generalizado

O Método de Jacobi Generalizado é um dos muitos métodos de extracdo de
autovalores existentes. A escolha do método de extragdo de autovalores depende da

ordem da matriz e de suas caracteristicas (por exemplo se € matriz esparsa), nimero de



autovalores que se deseja extrair, entre outros. Outra questdo, ¢ relativa a localizacao
dos autovalores de interesse em relagdo ao espectro de autovalores. Sendo assim, a
utilizacdo do Método de Jacobi Generalizado produz bons resultados quando se quer
todos os autovalores e este nimero de autovalores € de aproximadamente 200,

conforme COOK (1989).

O problema de autovalores a ser resolvido ¢ dado por

KD =AM | (4.33)

onde K é a matriz de rigidez, M ¢ a matriz massa e M # I, A € o autovalor e @ € o
autovetor.
O Meétodo de Jacobi Generalizado resolve o problema operando

simultanecamente K e M, obtendo assim, todos os autovalores e autovetores

correspondentes.

4.3.2 Integracdo Numérica

O célculo da integral para obter a matriz de rigidez e matriz massa do
elemento finito apresenta grandes dificuldades sob o ponto de vista algébrico. A
implementacdo do codigo computacional em questdo necessita de uma estratégia
especifica para efetuar os calculos das integrais, sendo entdo utilizado o procedimento
numeérico.

O procedimento numérico substitui a integral em todo o dominio pelo
somatério do valor da funcdo multiplicado por um fator peso em alguns pontos
escolhidos do dominio. De maneira genérica e utilizando a matriz de rigidez como

exemplo, tem-se

kel= [(8Y DBldet s agan (434)

.
Area
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Assim, a matriz de rigidez para o elemento i1soparamétrico ¢ definida no
sistema natural de coordenadas (intervalo de —1 a +1). O determinante do operador
Jacobiano € utilizado para relacionar a area do elemento isoparamétrico a area do
elemento real que estd sendo mapeado. Como a anélise leva em consideragdo apenas o

plano médio da placa, a integral fica definida apenas na 4rea. Entdo pode-se escrever

11

ke |= [ [1BT [DIiBlder 7 a an - @35)

Coloca-se a expressao da integral obtida por procedimento numérico

aproximado como sendo

[F(¢)dl=ayF(L) ) ar P8 )4t ay F(L, )= Y arF(5 )+ R, - (4.36)

onde os valores de F({) sdo determinados em alguns pontos escolhidos, a é o peso de
cada um dos valores no somatério e R, é o residuo correspondente ao erro associado ao
processo de integracdo numeérica.

Para maior precisdao no processo de integragdo, o nimero de pontos de
integracdo deve ser ampliado.

Utilizou-se na implementacdo computacional o método de Quadratura de
Gauss, onde a posi¢do dos pontos de integracdo e 0s respectivos pesos sdo otimizados.
O cbdigo computacional implementado permite ajustar a Ordem de Integracio,
viabilizando o tratamento do fendmeno de travamento, mencionado no Capitulo 2, e
controle da precisdo da integracdo. Pode-se representar a integragdo numérica da

matriz de rigidez da placa por
. : 4.37
{k ]zzaij-[F]ij “4-37)
ij

Nos casos relativos as verificacdes do Capitulo 5 utilizou-se ordem de
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integracdo 2x2 para os termos associados as funcdes do MEF e ordem de integracao

4x4 para os termos associados a TC.

4.4 SUMARIO DO CAPITULO 4

Neste capitulo apresentou-se a formula¢do numérica do MC. Para o presente
trabalho optou-se pela implementagdo do elemento composto isoparamétrico
quadrilateral de quatro nés e elemento composto isoparamétrico quadrilateral de oito
nos. Para tanto, as funcOes de forma para interpolacdo utilizada pelo MEF foram
definidas conforme BATHE (1996) e ODEN (1981). As funcdes de forma da parcela
da TC utilizadas foram apresentadas considerando-se a inclusdo de apenas quatro
funcdes em cada um dos elementos a ser implementado. Entretanto, o nimero de
funcdes pode ser qualquer e sua implementacdo pode ser feita de modo similar. Para
facilitar o entendimento da formulacdo numérica, as derivadas das func¢Ges de forma
também foram apresentadas.

Ap6s a defini¢do das funcdes de forma e suas derivadas procede-se a
obtencdo das matrizes associadas a rigidez da placa, matriz de flex@o e cisalhamento, e
também, a obtencao da matriz massa.

Com a formulacdo numérica definida, apresentou-se a estrutura do codigo
computacional, que € capaz de resolver o problema de autovalores e autovetores.
Caracteristicas importantes do cédigo computacional sdo permitir a escolha do niimero
de parcelas da TC que se quer incluir na solucdo, monitorar a ocorréncia do
determinante do jacobiano negativo para algum elemento da malha e também verifica
a ocorréncia da matriz massa ou matriz de rigidez que ndo seja positiva definida. O
cédigo computacional também controla o tempo de processamento, sendo este um dos
parametros para se determinar a eficiéncia do MC.

Durante o processo de calculo computacional foi necessaria a implementa¢ao
de subrotina de integracdao numérica, sendo 6x6 a maxima ordem possivel para a

quadratura de Gauss. Com este procedimento foi possivel determinar qual a ordem de
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integracdo que atende aos requisitos de precisdo para o MC, concluindo-se que a
ordem de integracdo para os termos associados as parcelas da TC deve ser 4x4.
A determinacdo computacional dos autovalores e autovetores € realizada

pelo Método de Jacobi Generalizado, utilizando subrotina extraida de BATHE (1996).
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5 APLICACOES E RESULTADOS

Neste capitulo sao apresentados resultados da implementa¢do computacional
realizada pelo MC. Faz-se uma comparacido da sua solu¢do com aquelas obtidas pelo
MEF e por valores extraidos da teoria de placas. O efeito da variacdo do nimero de
elementos (refinamento #) e do niimero de coordenadas ¢ ou graus de liberdade ¢
(refinamento ¢) sobre as solugdes ¢ também apresentado. Exemplos representativos de
problemas sdo propostos para investigar: o efeito da distor¢ao dos elementos da malha,
a convergéncia dos resultados e, finalmente, os erros das diversas solucdes

comparando com os valores obtidos pelo MEF.

5.1 CONSIDERACOES INICIAIS

Para a obtenc¢do de resultados com base na implementacdo proposta,
apresentam-se casos relevantes nas secdes seguintes, através das quais pretende-se
validar e consolidar o método. Assim, sdo verificadas:

= A influéncia das parcelas da TC quando associadas ao elemento finito

quadrilateral de quatro e o0ito nos.

= O efeito do refinamento 4 sobre o resultado das freqiiéncias naturais.

= O efeito do refinamento ¢, comparando-o com o refinamento A4, e sua

influéncia sobre as freqiiéncias naturais.

= O comportamentodo método implementado quando sujeito a distor¢do do

elemento.

* A comparagdo dos resultados obtidos com a implementacio em relagdo

ao MEF.

= A definicdo de pardmetros suficientes para aplicar o método em placas

com diferentes condi¢Oes de contornos e, fazer comparacdes com outros



60

métodos utilizados na resolu¢@o do problema.
= O efeito do locking ao qual estd sujeito o elemento de quatro e oito nés

do MC, ora implementado.

5.2 FORMATO DA VERIFICACAO

Para a verificagdo numérica, propde-se a abordagem baseada em casos
representativos. Assim, tem-se:

a) Caso 1: define-se uma placa com caracteristicas dimensionais e
condi¢Oes de contorno onde se conhece a solug¢do analitica, sendo esta, a
referéncia para comparagdo. Para este caso, todas as informacdes sdo
extraidas como, por exemplo, aspectos relacionados a convergéncia e
métodos de refinamento. A Figura 5.1, apresenta a seqiiéncia de andlises
realizadas para o Caso 1.

b) Caso 2: sdo selecionadas placas com diversas condigdes de contorno
cujos resultados produzidos sdo comparados com outros métodos disponiveis

na literatura.

53 CASO 1: VIBRACAO LIVRE DE PLACA QUADRADA COM OS
QUATRO LADOS SIMPLESMENTE APOIADOS

Neste exemplo, considera-se a vibragdo livre de uma placa quadrada semi-
espessa, onde o contorno apresenta-se simplesmente apoiado, € a relagdo entre o vdo e
a espessura (b/h) € igual a 10. A Figura 5.2 apresenta a placa com as condi¢Oes de
contorno e caracteristicas do material.

A placa € representada inicialmente por uma malha (3x3). Este processo se
repete para malhas (4x4), (5x5), (6x6), (7x7), (8x8), (9x9) e (10x10). Sendo a placa
simplesmente apoiada, o deslocamento transversal em todos os noés do contorno € igual

a Z€ro.
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FIGURA 5.2 — CONDICOES DE CONTORNO DA PLACA DO CASO 1

\ Contorno SS-SS

v=0,3
relacao b/h=10
material isotropico

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

' ; ; \ Exemplo de uma malha
v 4x4 (16 elementos)

Para a apresentacio dos resultados optou-se pela freqiiéncia

adimensionalisada A , que é dada por

Vi
A:w(phb J
D

(5.1)

3

onde w ¢ a freqiiéncia, h € a espessura da placa, b € o vao livre da placa e D € arigidez
a flexdo da placa. A rigidez a flexao da placa é calculada por

En’

D=
12(1-v*)

(5.2)

onde E ¢ o médulo de elasticidade e v € o coeficiente de Poisson.
Tomando-se o coeficiente de Poisson (V) igual a 0,3, a solu¢@o analitica para

a freqiiéncia adimensionalisada € obtida conforme proposto por SRINIVAS (1970).

5.3.1 Meétodo dos Elementos Finitos

5.3.1.1 Elemento Quadrilateral de Quatro Nos
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As Tabelas 5.1 e 5.2 apresentam os valores das freqii€ncias adimensionais,
obtidas através do MEF com 9, 16, 25, 36, 49, 64, 81 e 100 elementos quadrilaterais de
quatro nos, e os respectivos erros em relacdo a solugdo exata. Neste caso, o nimero de
graus de liberdade do MEF corresponde ao nimero de nds multiplicado por trés
(desconsiderando as condi¢Ges de contorno). O aumento do nimero de graus de

liberdade decorrente do aumento do nimero de elementos corresponde ao refinamento

h do MEF.

TABELA 5.1~ RESULTADOS DA FREQUENCIA ADIMENSIONALISADA A OBTIDOS PELO MEF COM MALHA
(3X3) A (6X6) E OS ERROS REFERENTES A SOLUGAO ANALITICA

-Analitico- -MEF- -MEF- -MEF- -MEF-
Modo SRINIVAS Malha 3x3 Malha 4x4 Malha 5x5 Malha 6x6
(1970)
A A, erro(%) | A, ero(%) | A, erro(%) A, erro(%)
1 19,089 33,513 75,56 27,588 44,52 24,688 29,33 23,048 20,74
2 45,620 106,927 134,39 80,236 75,88 67,676 48,35 60,900 33,49
3 45,620 106,927 134,39 80,236 75,88 67,676 48,35 60,900 33,49
4 70,089 148,745 112,22 113,857 62,45 97,690 39,38 89,056 27,06
5 85,488 651,564 662,17 183,096 114,18 149,447 74,82 129,274 51,22

TABELA 5.2—- RESULTADOS DA FREQUENCIA ADIMENSIONALISADA A OBTIDOS PELO MEF COM MALHA
(7X7) A (10X10) E OS ERROS REFERENTES A SOLUGAO ANALITICA

-Analitico- -MEF- -MEF- -MEF- -MEF-
Modo SRINIVAS Malha 7x7 Malha 8x8 Malha 9x9 Malha 10x10
(1970)
A A erro(%) | A, erro(%) | A, erro(%) | A, | erro(%)
1 19,089 22,031 1541 21,357 11,88 20,888 9,42 20,549 7,65
2 45,620 56,827 24,57 54,180 18,76 52,364 14,78 51,063 11,93
3 45,620 56,827 24,57 54,180 18,76 52,364 14,78 51,063 11,93
4 70,089 83,906 19,71 80,578 14,97 78306 11,72 76,685 9,41
5 85,488 117,168 37,06 109,430 28,01 104,199 21,89 100484 17,54
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FIGURA 5.3 - ERRO RELATIVO DO MEF (ELEMENTOS DE QUATRO NOS) PARA AS FREQUENCIAS
ADIMENSIONAIS COMPARADOS A SOLUGAO ANALITICA
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Nota:
a) O grafico da segunda e terceira freqiiéncias sao coincidentes

b) O erro relativo da malha (3x3) para a quinta freqii€ncia ndo consta do grafico, sendo seu valor igual a
662,2% de erro relativo.

5.3.1.2 Elemento Quadrilateral de Oito Nos

Considerando agora o caso dos elementos quadrilaterais de oito nds, as
Tabelas 5.3 e 5.4 apresentam os valores das freqiiéncias adimensionais, obtidas através
do MEF com malhas 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9 e, finalmente, 10x10, € os
respectivos erros em relacdo a solugdo exata. Esta primeira andlise apresenta os
resultados do refinamento 4 do MEF. J4, a Figura 5.4 contém a representac@o grafica
das cinco primeiras freqii€ncias adimensionais em func¢io do erro em relacio a solucao

exata proposta por SRINIVAS (1970).
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TABELA 5.3 - RESULTADOS DA FREQUENCIA ADIMENSIONALISADA A OBTIDOS PELO MEF COM MALHA
(3X3) A (6X6) E OS ERROS REFERENTES A SOLUCAO ANALITICA

-Analitico- -MEF- -MEF- -MEF- -MEF-
Modo SRINIVAS Malha 3x3 Malha 4x4 Malha 5x5 Malha 6x6
(1970)
A A, erro(%) | A, erro(%) | A, ero(%) | A, erro(%)
1 19,089 19,303 1,12 19,144 0,29 19,089 0,00 19,082 -0,04
2 45,620 48,603 6,54 46,532 2,00 45928 0,68 45717 0,21
3 45,620 48,603 6,54 46,532 2,00 45,928 0,68 45,717 0,21
4 70,089 81,018 15,59 72,030 2,77 70,533 0,63 70,143 0,08
5 85,488 93,116 8,92 91,024 6,48 87,706 2,59 86,438 1,11

TABELA 5.4 — RESULTADOS DA FREQUENCIA ADIMENSIONALISADA A OBTIDOS PELO MEF COM MALHA
(7X7) A (10X10) E OS ERROS REFERENTES A SOLUGAO ANALITICA

-Analitico- -MEF- -MEF- -MEF- -MEF-
Modo SRINIVAS Malha 7x7 Malha 8x8 Malha 9x9 Malha 10x10
(1970)
A, A, erro(%) | A, erro(%) | A, erro(%) A erro(%)
1 19,089 19,074 -0,08 19,071 -0,10 19,068 0,11 19,067 -0,11
2 45,620 45,614 0,01 45,561 0,13 45,533 0,19 45,516 0,23
3 45,020 45,014 -0,01 45,561 0,13 45,533 -0,19 45,516 -0,23
4 70,089 69,679 -0,16 69,902 0,27 69,862 0,32 69,839 -0,36
5 85,488 85,829 0,40 86,617 0,03 85,342 0,17 85,242 -0,29

5.3.1.3 Analise dos Resultados Obtidos para o MEF

Pode-se observar nas Figuras 5.3 e 5.4, que os resultados obtidos com o

elemento quadrilateral de oito nés s3o melhores do que os de quatro nds, em fungédo do

enriquecimento do espago de solugdo com o aumento do grau do polindbmio de

interpolagfo. Esta vantagem apresenta-se na forma de erro relativo menor para todas

as freqiiéncias, considerando a solugdo analitica.

O fato de existirem diferengas sensiveis em relagdo aos resultados destes

elementos é que torna a implementacéo do elemento quadrilateral de quatro e 0ito nds

no MC interessante, ja que parte das fungbes utilizadas no MC sdo as mesmas do

MEF. Assim, poderd ser observado o efeito do acréscimo das parcelas da TC na

formulacdo.
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FIGURA 5.4 - ERRO RELATIVO DO MEF (OITO NOS) PARA AS FREQUENCIAS ADIMENSIONAIS
REFERENTES A SOLUGAO ANALITICA
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Nota:
a) O grifico da segunda e terceira freqiiéncias sdo coincidentes

5.3.2 Método Composto

De forma a observar os resultados obtidos com a implementa¢do do MC,
consideram-se diversas variacOes no nimero de elementos (graus de liberdade nodais)

e no numero de graus de liberdade c.

O ndmero total de graus de liberdade ntgl para placas utilizando o MC, pode

ser obtido através da equacao

ntgl = NTN xngln + NTE X ngln X nglc — ntglr (5.3)

onde NTN ¢ o numero total de nés, NTE é o niimero total de elementos, ngin é o
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numero de graus de liberdade nodais, nglc é o nimero de graus de liberdade ¢ por
elemento e ntglr € o nimero total de graus de liberdade restritos.

O nglc € dado pelo ntimero de funcgdes (7,2,3...m) que se esta utilizando
multiplicado pelo ngln (estd se utilizando trés graus de liberdade por né). O nglc
utilizado nesta pesquisa varia de um até quatro, uma vez que se utilizam até quatro

parcelas da TC, para demonstrar a superposicdo com as func¢Ses de forma tipicas do

MEF.

5.3.2.1 Elemento Quadrilateral de Quatro nés

Para este elemento apresentam-se as andlises propostas na Figura 5.1 ¢ as

condigoes de contorno da placa do Caso 1 dadas pela Figura 5.2.

5.3.2.1.1 Refinamento ¢

Para comparar resultados relativos ao refinamento ¢ utilizou-se malhas (3x3),
(4x4) e (8x8). O uso desta discretizagdo se justifica por permitir observar a evolugdo
dos efeitos do acréscimo do nimero de funcdes da TC na solucio.

Os resultados obtidos s@o apresentados nas Tabelas 5.5 a 5.7, sendo estes,

comparados com a solu¢do analitica.

TABELA 5.5 — RESULTADOS OBTIDOS PELO MC COM MALHA 3X3 E REFINAMENTO ¢

SRINIVAS Malha 3x3-1¢ Malha 3x3-2¢ Malha 3x3-3¢ Malha 3x3-4¢
Modo (1970)

A, A erro(%)| A erro(%) | A erro(%) | A, erro(%)

19,089 30,740 61,03 29,970 57,00 28918 51,49 28,457 49,08
45,620 98,466 115,84 88,188 93,31 85210 86,78 83,957 84,04
45,620 98,466 115,84 88,188 93,31 85210 86,78 83,957 84,04
70,089 132,911 89,63 123,977 76,88 123,617 76,37 122,815 75,23
85,488 238,529 179,02 223,141 161,02 194,575 127,60 186,032 117,61

(O UV I S
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TABELA 5.6 — RESULTADOS OBTIDOS PELO MC COM MALHA 4X4 E REFINAMENTO ¢

SRINIVAS Malha 4x4-1c Malha 4x4-2¢ Matlha 4x4-3c Malha 4x4-4c
Modo (1970)
A A letro(%)| A, |emo(®)| A |emro(®)| A, | erro(%)
1 19,089 24,872 30,29 24,545 28,58 24,135 26,44 23,970 25,57
2 45,620 75,184 64,81 73,339 60,76 71,204 56,08 69,523 52,40
3 45,620 75,184 64,81 73,339 060,76 71,204 56,08 09,523 52,40
4 70,089 103,865 48,19 100,157 4290 97,198 38,68 94,571 34,93
5 85,488 163,648 91,43 148,204 73,36 138,630 62,16 124,873 46,07
TABELA 5.7 — RESULTADOS OBTIDOS PELO MC COM MALHA 8X8 E REFINAMENTO ¢
SRINIVAS Malha 8x8-1c Malha 8x8-2¢ Malha 8x8-3¢ Malha 8x8-4c
Modo (1970)
A A erro(%) | A, erro(%) | A, erro(%) | A, erro(%)
1 19,089 20,770 8,81 20,731 8,60 20,629 8,07 20,603 7,93
2 45,620 52,793 15,72 52,369 14,79 52,066 14,13 51,903 13,77
3 45,620 52,793 15,72 52,369 14,79 52,066 14,13 51,903 13,77
4 70,089 76,958 9,80 76,004 8,44 75,311 7,45 74,876 6,83
5 85,488 105,481 23,39 103,653 21,25 102,715 20,15 101,337 18,54

FIGURA 5.5 - ERRO RELATIVO DO MC COM REFINAMENTO ¢ PARA A PRIMEIRA FREQUENCIA

ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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FIGURA 5.6 - ERRO RELATIVO DO MC COM REFINAMENTO ¢ PARA A TERCEIRA FREQUENCIA

ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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Andlise dos resultados:

A Tabela 5.8 apresenta o comportamento dos resultados, avaliando-se a

relacdo do uso de quatro e uma parcela da TC, para o refinamento ¢ do MC.

TABELA 5.8 - COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELACAO A

SOLUGAO ANALITICA.
Modo | Malha 3x3 — 4c/ 1c | Malha 4x4 — 4c / 1c | Malha 8x8 —4c / 1c
1 19,6% 15,6% 10%
3 27,4% 19,1% 12,4%
5 34,3% 49,6% 20,7%

l(Erro relativo malha 4c)|

A=||1- : 100 [[%]
l (Erro relativo malha 1C)|

onde: Arepresenta o percentual de melhoria do resultado em relagdo a soluc@o
analitica.

Dos resultados obtidos pelo refinamento ¢ do MC, apresentados nas Figuras
5.52a5.7, e com base na Tabela 5.8, as seguintes observacdes podem ser feitas:
e refinamento ¢ melhora a precis@o dos resultados para as freqiiéncias mais
altas (observar colunas da Tabela 5.8).
e Malhas mais grosseiras t€ém seus resultados melhorados sensivelmente

com o refinamento ¢ (observar linhas da Tabela 5.8).

5.3.2.1.2 Refinamento A

Para comparar resultados relativos ao refinamento 4 foram utilizadas malhas
(3x3, (5x5), (7x7), e (10x10), e até quatro fungdes da teoria classica. A escolha destas
discretizagOes permite observar o comportamento em relagdo a convergéncia com o
aumento do ndmero de elementos na malha.

Os valores produzidos podem ser encontrados nas Tabelas 5.9 2 5.12.
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TABELA 5.9 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM UMA

FUNGAO DA TC

SRINIVAS Malha 3x3-1c Malha 5x5-1c Malha 7x7-1c Malha 10x10-1c
Modo (1970)

A, A erro(%) | A, erro(%) | A erro(%) A erro(%)
1 19,089 30,740 61,03 22,883 19,88 21,368 11,94 20,264 6,16
2 45,620 98,466 115,84 62,804 37,67 55,042 20,65 50,306 10,27
3 45,620 98,466 115,84 62,804 37,67 55,042 20,65 50,306 10,27
4 70,089 132,911 89,63 89,162 27,21 79,278 13,11 74,580 6,41
5 85,488 238,529 179,02 135,894 58,96 111,628 30,58 98,266 14,95

TABELA 5.10 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM DUAS

FUNGOES DA TC

SRINIVAS Malha 3x3-2¢ Malha 5x5-2c¢ Malha 7x7-2¢ Malha 10x10-2¢
Modo (1970)

ol A lemmo(®)| A |emo(%)| A, |erro(%)| A |erro(%)

1 19,089 29,970 57,00 22,773 19,30 21,301 11,59 20,217 5,91

2 45,620 88,188 93,31 01,453 34,71 54,635 19,76 49,995 9,59

3 45,620 88,188 93,31 61,453 34,71 54,635 19,76 49,995 9,59

4 70,089 123,977 76,88 87227 2445 78,207 11,58 73,625 5,04

5 85,488 223,141 161,02 126,576 48,06 108,778 2724 97,180 13,68

TABELA 5.11 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM TRES

FUNGOES DA TC

SRINIVAS Malha 3x3-3¢c Malha 5x5-3¢ Malha 7x7-3¢c Malha 10x10-3¢c
Modo (1970)

A A erro(%) | A, ero(%) | A, erro(%) A erro(%)
1 19,089 28,918 51,49 22534 18,05 21,179 10,95 20,141 5,51
2 45,620 85,210 86,78 60,364 32,32 54,179 18,76 49,769 9,10
3 45,620 85,210 86,78 00,364 32,32 54,179 18,76 49,769 9,10
4 70,089 123,617 76,37 85,588 22,11 77,312 10,31 73,082 4,27
5 85,488 194,575 127,60 121,833 42,51 107,385 25,61 96,225 12,56

TABELA 5.12 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM
QUATRO FUNGOES DA TC

SRINIVAS Malha 3x3-4¢ Malha 5x5-4¢ Malha 7x7-4c¢ Malha 10x10-4c¢
Modo (1970)

A, A, erro(%) | A, erro(%) | A erro(%) | A, erro(%)
1 19,089 28,457 49,08 22,430 17,50 21,144 10,77 20,127 5,44
2 45,620 83,957 84,04 59,658 30,77 53,902 18,15 49,672 8,88
3 45,620 83,957 84,04 59,658 30,77 53,902 18,15 49,672 8,88
4 70,089 122,815 75,23 83919 19,73 76,682 9,41 72,828 391
5 85,488 186,032 117,61 111,132 30,00 104,970 22,79 95,950 12,24
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FIGURA 5.8 - ERRO RELATIVO DO MC (ELEMENTO DE QUATRO NOS) COM REFINAMENTO h PARA A

Erro (%)

FIGURA 5.9 - ERRO RELATIVO DO MC (ELEMENTO DE QUATRO NOS) COM REFINAMENTO h PARA A
TERCEIRA FREQUENCIA ADIMENSIONALISADA EM COMPARACAO COM SRINIVAS (1970)
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FIGURA 5.10 - ERRO RELATIVO DO MC (ELEMENTO DE QUATRO NOS) COM REFINAMENTO h PARA A
QUINTA FREQUENCIA ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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Andlise dos resultados:

Na Tabela 5.13 apresentam-se os resultados comparativos para os valores

obtidos com o refinamento £ do MC para o elemento de quatro nés.

TABELA 5.13 — COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAGAO A

SOLUGAO ANALITICA.
Modo | Malha 10x10/Malha | Malha 10x10/Malha | Malha 10x10/Malha | Malha 10x10/ Malha
3x3 - 1Ic 3x3-2c 3x3 -3c 3x3 —4c
1 89,9% 89,6% 89,3% 88,9%
3 91,1% 89,7% 89,5% 89,4%
5 91,6% 91,5% 90,2% 89,6%

A= 1_l(Erro relativ-o malha (10x10) — refino C)I £100 [% ]
l (Erro relativo malha (3x3) — refinoc) I

onde: A representa o percentual de melhoria do resultado em relac@o a solucao
analitica.

Dos resultados obtidos pelo refinamento 2 do MC, apresentados nas Figuras

5.8 2 5.10, as seguintes observacdes podem ser feitas:

e refinamento # obtém convergéncia para todas as freqiiéncias, como pode
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ser observado pela tendéncia das curvas nas figuras.

e 0 padrdo de convergéncia ndo se altera com o aumento do nimero de
funcdes da TC. Isto pode ser observado na Tabela 5.13.

e o resultado relativo a solugdo pelo MEF, para a quinta freqiiéncia
adimensionalisada e malha 3x3, ndo faz sentido porque esta malha é

muito grosseira para capturar este modo de vibragao.

5.3.2.1.3 Distor¢ao de malha — quatro nés

Nesta secdo faz-se a andlise dos efeitos da distor¢do do elemento
quadrilateral de quatro nés do MC, nos resultados das freqiiéncias calculadas.

A malha utilizada para analisar a distor¢do € apresentada na Figura 5.11.

FIGURA 5.11 — MALHA 3X3 COM ELEMENTOS DE QUATRO NOS DISTORCIDOS
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Os resultados obtidos com o MC, para até quatro fungdes da TC, sdo
apresentados em termos de erro relativo a solug@o analitica, para a primeira, terceira e

quinta freqii€ncias naturais. Como condi¢des de contorno, a placa apresenta os quatro
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bordos simplesmente apoiados (SS-SS), com relagdo vdo/espessura (b/h) igual a 10 e

coeficiente de Poisson igual a 0,3.

FIGURA 5.12 — EFEITO DA DISTORGAO DO ELEMENTO DE QUATRO NOS PARA A PRIMEIRA
FREQUENCIA NATURAL — ERRO RELATIVO A SOLUGAO ANALITICA

Erro (%)

MEF MC - 1c MC - 2¢ MC - 3c MC - 4c
B Malha distorcida 3x3 94.8 85.6 84.4 829 82.8
Malha Quadrada 3x3 75.6 61.0 57.0 51.5 49.1

FIGURA 5.13 — EFEITO DA DISTORGAO DO ELEMENTO DE QUATRO NOS PARA A TERCEIRA
FREQUENCIA NATURAL — ERRO RELATIVO A SOLUGAO ANALITICA
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FIGURA 5.14 — EFEITO DA DISTORGAO DO ELEMENTO DE QUATRO NOS PARA A QUINTA FREQUENCIA
NATURAL — ERRO RELATIVO A SOLUCAO ANALITICA

700.0

Erro (%)

B Malha distorcida 3x3 662.4 215.6 178.5 135.8 135.8
B Malha Quadrada 3x3 662.2 179.0 161.0 127.6 117.6

Andlise dos resultados:

A Tabela 5.14 apresenta os resultados obtidos a partir da distor¢ao aplicada.
Estes resultados estdo colocados em forma de percentual de degradacdo, levando-se

em conta o resultado analitico proposto por SRINIVAS (1970).

TABELA 5.14 — COMPARATIVO DO PERCENTUAL DE DEGRADAGAO DOS RESULTADOS (IT) EM
RELAGAO A SOLUCAO ANALITICA

Modo | 1 Func¢ado ] 2 Fungdes ] 3 Funcdes [ 4 Funcoes
1 40,0% 48,0% 61,0% 68,6%
3 14,6% 37,0% 43,0% 47,0%
5 20,4% 10,9% 6,4% 15,5%

e l (Erro relativo malha distorcida refino c) |

—1 [*100 {[%]

I(Erro relativo malha re tan gular refino c)

onde: IT representa o percentual de degradagdo dos resultados da malha distorcida em
relacdo a malha regular.

Pode-se observar das Figuras 5.12 2 5.14 e com base na Tabela 5.14, que:

= A distor¢cdo da malha € representativa no resultado das freqiiéncias.

= Aparentemente o acréscimo de fun¢des da TC minimiza, mas nao resolve
o problema da degradacdo dos resultados produzidos com a malha
distorcida.

= As conclusdes obtidas devem ser apenas em relacdo ao comportamento
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do MC com a utilizacdo deste elemento de quatro nds, ji que este

elemento, pela propria formulag@o ndo apresenta resultados precisos.

5.3.2.2 Elemento Quadrilateral de Oito N6s

Da mesma maneira que o procedimento empregado para o elemento

quadrilateral de quatro nés, as analises seguem a seqiiéncia proposta na Figura 5.1.

5.3.2.2.1 Refinamento ¢

Para comparar resultados relativos ao refinamento ¢ foram utilizadas malhas
(3x3), (4x4) e (8x8). Este padrao de discretizagdo € aplicado novamente para poder se
comparar os resultados com aqueles obtidos para o elemento quadrilateral de quatro
nos.

As Tabelas 5.15 a 5.17, apresentam os resultados do refinamento ¢ , sendo

que estes sdo comparados 2 solucao analitica.

TABELA 5.15 - RESULTADOS OBTIDOS PELO MC COM MALHA 3X3 E REFINAMENTO ¢

SRINIVAS Malha 3x3-1c¢ Malha 3x3-2¢ Malha 3x3-3¢ Malha 3x3-4c
Modo (1970)

A A erro(%) | A erro(%) | A erro(%) | A, erro(%)

1

19,089 19,301 1,11 19,297 1,09 19,286 1,03 19,276 0,98
45,620 48,542 6,40 48,454 6,21 48,390 6,07 48312 5,90
45,620 48,542 6,40 48,454 6,21 48,390 6,07 48312 5,90
70,089 78,552 12,07 77966 11,24 77,535 10,62 77,235 10,19
85,488 92,614 8,34 92,157 7,80 91,613 7,16 91,572 7,12

B W N -

TABELA 5.16 — RESULTADOS OBTIDOS PELO MC COM MALHA 4X4 E REFINAMENTO ¢

SRINIVAS Malha 4x4-1¢ Malha 4x4-2¢ Malha 4x4-3¢ Malha 4x4-4c
Modo (1970)

A A erro(%) | A erro(%) | A erro(%) | A erro(%)

H

19,089 19,143 0,28 19,140 0,27 19,136 0,25 19,133 0,23
45,620 46,526 1,99 46,519 1,97 46,466 1,86 46,421 1,76
45,620 46,526 1.99 46,519 1,97 46,466 1,86 46,421 1,76
70,089 71,844 2,50 71,772 2,40 71,697 2,29 71,618 2,18
85,488 90,951 6,39 90,665 6,06 90,554 5,93 90,279 5,60

N BN =
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TABELA 5.17 - RESULTADOS OBTIDOS PELO MC COM MALHA 8X8 E REFINAMENTO ¢

SRINIVAS Malha 8x8-1c Malha 8x8-2c¢ Malha 8x8-3c Malha 8x8-4¢

Modo (1970)
A, A, erro(%) | A, erro(%) A, erro(%) | A, erro(%)
1 19,089 19,071 -0,10 19,070 -0,10 19,070 -0,10 19,070 -0,10
2 45,620 45,561 -0,13 45,561 -0,13 45,554 -0,14 45,553 -0,15
3 45,620 45,561 0,13 45,561 0,13 45,554 -0,14 45,553 0,15
4 70,089 69,901 -0,27 69,893 -0,28 69,887 -0,29 69,885 -0,29
5 85,488 85,516 0,03 85479 -0,01 85,445 -0,05 85,441 -0,06

FIGURA 5.15 - ERRO RELATIVO DO MC - OITO NOS COM REFINAMENTO ¢ PARA A PRIMEIRA
FREQUENCIA ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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FIGURA 5.16 - ERRO RELATIVO DO MC - OITO NOS COM REFINAMENTO ¢ PARA A TERCEIRA
FREQUENCIA ADIMENSIONALISADA EM COMPARACAO COM SRINIVAS (1970)

7.0
6ol F\’\\_‘_\ S —
504
4.0
£
o 30
=
w
2.0 +—— e . o S —
—————————— e e
—————————— —-
1.0
0.0 +—— < "
1Fangao T S Blingbes T 3 'Péﬁéi'{e}s"""'"""""""""”“”‘f’?dégées
1.0
——e—Matha 3x3 — & —Malha 4x4 .. 4 .- Malha 8x8

FIGURA 5.17 - ERRO RELATIVO DO MC — OITO NOS COM REFINAMENTO ¢ PARA A QUINTA FREQUENCIA
ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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Andlise dos resultados:
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A Tabela 5.18 apresenta o comportamento dos resultados, para o refinamento

c do MC, para a relagdo entre o uso de quatro e uma parcela da TC.
TABELA 5.18 — COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAGAO A

SOLUGCAO ANALITICA.
Modo | Malha 3x3 —4c / 1c | Malha 4x4 —4c / 1c | Malha 8x8 —4c/ 1c
1 11,7% 17,8% 0,0%
3 7.8% 11,6% 15,4%
5 14,6% 12,4% 100,0%

A=

%]

1_l(Erro relativo malha 4c)| £100
I (Erro relativo malha lc\)l

onde: A representa o percentual de melhoria do resultado em relacdo a solucao

analitica.

Dos resultados obtidos pelo refinamento ¢ do MC, apresentados nas Figuras

5.15 a5.17, as seguintes observagdes podem ser feitas:

e Para as malhas mais grosseiras o refinamento ¢ mantém o padriao de

melhoria da solugdo entre as freqiiéncias pesquisadas.

e No caso da malha 8x8, pode-se observar grande variagdo relativa a

melhoria da solu¢do. Porém, em valores absolutos a diferenca € pequena,

conforme pode ser visto na Figura 5.17.

5.3.2.2.2 Refinamento h

Para comparar resultados relativos ao refinamento £ utilizou-se as malhas

(3x3, (5x5), (7x7), e (10x10), com até quatro fungdes para a parcela da TC. As Tabelas

5.19 2 5.22, contém os valores computados com a implementagdo proposta.
TABELA 5.19 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM UMA

FUNCAO DATC

SRINIVAS Malha 3x3-1c Malha 5x5-1¢ Malha 7x7-1¢ Malha 10x10-1¢c
Modo (1970)

A A erro(%) | A, erro(%) | A, erro(%) | A, erro(%)
1 19,089 19,301 1,11 19,089 0,00 19,074 -0,08 19,067 -0,11
2 45,620 48,542 6,40 45,929 0,68 45,613 0,01 45516 0,23
3 45,620 48,542 6,40 45,929 0,68 45,613 0,01 45,516 0,23
4 70,089 78,552 12,07 70,494 0,58 69,976 0,16 69,838 -0,36
5 85,488 92,614 8,34 87,693 2,58 85,828 0,40 85,242 0,29




81

TABELA 5.20 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM DUAS

FUNCOES DA TC

SRINIVAS Malha 3x3-2¢ Malha 5x5-2¢ Malha 7x7-2¢ Malha 10x10-2¢
Modo (1970)

A A erro(%) | A, ero(%) | A |emro(%)| A, erro(%)
1 19,089 19,297 1,09 19,089 0,00 19,074 -0,08 19,067 -0,11
2 45,620 48,454 6,21 45925 0,67 45,613 0,02 45,516 -0,23
3 45,620 48,454 6,21 45925 0,67 45,613 0,02 45,516 -0,23
4 70,089 77,966 11,24 70,459 0,53 69,965 -0,18 69,834 -0,36
5 85,488 92,157 7,80 87,546 2,41 85,770 0,33 85,225 -0,31

TABELA 5.21 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM TRES

FUNGCOES DA TC

SRINIVAS Malha 3x3-3c Malha 5x5-3c Malha 7x7-3¢ Malha 10x10-3¢
Modo (1970)

A A, erro(%) | A, erro(%) | A, erro(%) | A, erro(%)
1 19,089 19,286 1,03 19,086 -0,02 19,073 -0,08 19,067 -0,12
2 45,620 48,390 6,07 45,894 0,60 45,603 -0,04 45,513 -0,24
3 45,620 48,390 6,07 45,894 0,60 45,603 -0,04 45,513 -0,24
4 70,089 77,535 10,62 70,431 0,49 69,955 -0,19 69,832 -0,37
5 85,488 91,613 7,16 87,328 2,15 85,740 0,30 85,215 0,32

TABELA 5.22 — RESULTADOS OBTIDOS PARA MALHA (3X3), (5X5), (7X7) E (10X10) PELO MC COM
QUATRO FUNGOES DA TC

SRINIVAS Malha 3x3-4¢ Malha 5x5-4c¢ Malha 7x7-4¢ Malha 10x10-4¢
Modo (1970)

A A, erro(%) | A, erro(%) | A erro(%) | A, erro(%)
1 19,089 19,276 0,98 19,085 -0,02 19,073 -0,08 19,067 0,12
2 45,620 48,312 5,90 45,885 0,58 45,601 0,04 45,513 -0,24
3 45,620 48,312 5,90 45,885 0,58 45,601 -0,04 45,513 -0,24
4 70,089 77,235 10,19 70,406 0,45 69,951 -0,20 69,831 0,37
5 85,488 91,572 7,12 87,267 2,08 85,733 0,29 85,214 0,32
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FIGURA 5.18 - ERRO RELATIVO DO MC (ELEMENTO DE OITO NOS) OITO NOS COM REFINAMENTO h
PARA A PRIMEIRA FREQUENCIA ADIMENSIONALISADA EM COMPARACAO COM SRINIVAS
(1970)
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FIGURA 5.19 - ERRO RELATIVO DO MC (ELEMENTO DE OITO NOS) COM REFINAMENTO h PARA A
TERCEIRA FREQUENCIA ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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FIGURA 5.20 - ERRO RELATIVO DO MC (ELEMENTO DE OITO NOS) COM REFINAMENTO h PARA A
QUINTA FREQUENCIA ADIMENSIONALISADA EM COMPARAGAO COM SRINIVAS (1970)
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Andlise dos resultados:

Na Tabela 5.23 apresentam-se os resultados comparativos para os valores

obtidos com o refinamento 7 do MC para o elemento de quatro nés.

TABELA 5.23 — COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAGAO A

SOLUGAO ANALITICA.
Modo | Malha 10x10/Malha | Malha 10x10/Malha | Malha 10x10/Malha | Malha 10x10/ Matha
3x3-1c 3x3-2c 3x3 -3¢ 3x3 -4c
1 90,1% 89,9% 88,3% 87, 7%
3 96,4% 96,3% 96,0% 95,9%
5 96,5% 96,0% 95,5% 95,5%

l(Erro relativo malha (10x10) — refino c)‘

A=]1-
l (Erro relativo malha (3x3) — refino c) l

#100|[%]

onde: A representa o percentual de melhoria do resultado em relacgéo a solugio
analitica.

Dos resultados obtidos pelo refinamento 2 do MC, apresentados nas Figuras
5.18 2 5.20, as seguintes observacdes podem ser feitas:

e refinamento 4 obtém convergéncia para as todas as freqiiéncias.
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e 0 padriao de convergéncia se mant€ém compativel com o aumento do

numero de fun¢des da TC.

5.3.2.2.3 Distorc¢do de malha — oito nds

A malha distorcida de oito nds encontra-se ilustrada na Figura 5.21.

FIGURA 5.21 - MALHA 3X3 COM ELEMENTO DE OITO NOS DISTORCIDO
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As caracteristicas da placa sdo as consideradas para o Caso 1, sendo

freqiiéncias naturais, referenciadas a solucao analitica.

analisados os efeitos do elemento distorcido para a primeira, terceira e quinta



FIGURA 5.22 — EFEITO DA DISTORGCAO DO ELEMENTO DE OITO NOS PARA A PRIMEIRA FREQUENCIA
NATURAL ~ ERRO RELATIVO A SOLUCAO ANALITICA
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FIGURA 5.23 — EFEITO DA DISTORGAO DO ELEMENTO DE OITO NOS PARA A TERCEIRA FREQUENCIA
NATURAL — ERRO RELATIVO A SOLUGAO ANALITICA
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FIGURA 5.24 — EFEITO DA DISTORGAO DO ELEMENTO DE OITO NOS PARA A QUINTA FREQUENCIA
NATURAL — ERRO RELATIVO A SOLUGAO ANALITICA

Erro (%)

MEF MC-1c | MC-2c | MC-3c | MC-4c
| @ Malha distorcida 3x3 16.2 15.2 14.5 13.9 13.8
Malha Quadrada 3x3 8.9 8.3 7.8 7.2 7.1

Andlise dos resultados:

Pode-se observar das Figuras 5.22 a 5.24, e com base na Tabela 5.24, que:

86

= A distor¢do do elemento de placa € representativa no resultado das

freqiiéncias.

= Aparentemente, o acréscimo de fungdes da TC ndo resolve o problema da

degrada¢do dos resultados produzidos com o elemento distorcido, uma

vez que mantém-se o padrao de deterioragdo dos mesmos.

= Nota-se que a degradacdo dos resultados obtidos com o MC é menor para

as freqii€ncias mais altas como pode ser observado da Tabela 5.24.
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TABELA 5.24 — COMPARATIVO DO PERCENTUAL DE DEGRADAGAO DOS RESULTADOS (IT) EM
RELAGAO A SOLUGAO ANALITICA.

Modo | 1 Funcio T 2 Funcoes f 3 Funcoes ] 4 Fungdes
1 136,4% 136,4% 150,0% 150,0%
3 61,1% 62,6% 61,3% 62,5%
5 83,1% 85,9% 93,0% 94,4%

=

l (Erro relativo malha distorcida refino c) l_ 1]*1 OO}[% ]

I(Erro relativo malha re tan gular refino c)]

onde: IT representa o percentual de degradacdo dos resultados da malha distorcida em
relacdo a malha retangular.

5.3.2.3 Efeito da Variagdo da Relagao Vao/Espessura

Efetuou-se a investigacdo do efeito da mudanca da relagdo vao/espessura
(b/h) na precisdo dos resultados para a primeira, terceira e quinta fregii€ncias
adimensionalisadas, para as condi¢des de contorno do Caso 1. As freqiiéncias
escolhidas ddo uma idéia de como o efeito da relagdo vdo/espessura atuam sobre 0s

elementos de placa do MC implementados.

FIGURA 5.25 - EFEITO DA RELAGAO VAO/ESPESSURA PARA A PRIMEIRA FREQUENCIA
ADIMENSIONALISADA (ELEMENTO DE QUATRO NOS)

98.0 »

880 }————— iX
/ f
I’ by
78.0 2 AR

68.0

58.0 4

48.0

Frequéncia (Adimensionalisada)

38.0

28.0

1 8-0 T T T T T T -~
10 15 20 50 100
Relacédo b/h

—+— Placa Fina ---=-- MC-1¢ --#-- MC-2¢ ~-%--MC-3c —*— MC-4c --+- MEF




88

A freqiiéncia adimensionalisada utilizada como comparacao é para placa fina
(obtidos da Teoria Classica de Placas — Kirchhoff-Love). A malha utilizada para
comparar os resultados € composta por 64 elementos (malha 8x8). As relagdes
vao/espessura experimentadas foram de 10, 12, 15, 18, 20, 30, 50 e 100. Assim, quanto
maior a relagdo b/h mais fina € a placa. As frequéncias sdo adimensionalisadas
conforme a Equacdo (5.1). Os testes foram realizados para o elemento quadrilateral de
quatro e 0ito nos.

Os valores das freqiiéncias adimensionalisadas para placas finas foram
obtidos de LEISSA (1973), sendo:

= 19,739 para o primeiro modo de vibar;

= 49,348 para o segundo modo de vibrar;

= 08,696 para o terceiro modo de vibrar.

FIGURA 5.26 - EFEITO DA RELAGAO VAO/ESPESSURA PARA A TERCEIRA FREQUENCIA
ADIMENSIONALISADA (ELEMENTO DE QUATRO NOS)
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FIGURA 5.27 - EFEITO DA RELAGAO VAO/ESPESSURA PARA A QUINTA FREQUENCIA
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FIGURA 5.28 — EFEITO DA RELAGAO VAO/ESPESSURA PARA A PRIMEIRA FREQUENCIA
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FIGURA 5.29 - EFEITO DA RELAGAO VAO/ESPESSURA PARA A TERCEIRA FREQUENCIA
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FIGURA 5.30 - EFEITO DA RELAGAO VAO/ESPESSURA PARA A QUINTA FREQUENCIA
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Andlise dos resultados:

Observando-se das Figuras 5.25 a 5.30, nota-se que quando a relagdo b/h
aumenta, o elemento de placa do MC melhora os resultados para placas finas, se
comparado ao MEF. Apesar disto, esta melhora ainda ndo € suficiente para resolver o
problema. Isto fica evidente para uma rela¢do b/h igual a 100, onde a diferenga entre
as curvas do MC e do MEF, sdo comparadas com a solu¢fdo analitica de placas finas.
Verificam-se os efeitos do locking para os dois elementos implementados, sendo que
para o elemento de quatro nés este efeito, pela propria formulacdo do elemento, é
potencializado.

Conforme pode-se observar nas Figuras 5.28 a 5.30, o elemento de oito nés €
mais eficiente na andlise de placas finas.

A solucdo para placas finas € dependente das fungdes tipicas do MEEF,
portanto a solucdo que produz bons resultados depende da implementacio de

elementos finitos capazes de capturar a variagio b/h.

5.3.3 Comparacao de Resultados do MEF e MC

Para comparar resultados relativos ao emprego do MEF e MC utilizou-se as
malhas (3x3), (4x4), (5x5), (6x6), (7x7), (8x8), (9x9) e (10x10), com variacdo de até
quatro func¢des da TC.

Apresentam-se os dados para a primeira, terceira e quinta freqiiéncias mais

baixas, onde pode-se observar a convergéncia e a precisao do MC e do MEF.

5.3.3.1 Comparacdo de Resultados para o Elemento de Quatro Noés

Nas Figuras 5.31 a 5.33, sdo apresentados os resultados em termos de erro

relativo a solug@o analitica, dada por SRINIVAS (1970).



FIGURA 5.31 — COMPARAGAO DO MEF E O MC COM REFINAMENTO ¢ PARA A PRIMEIRA FREQUENCIA

ADIMENSIONALISADA - ERRO RELATIVO A SOLUGAO ANALITICA
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Erro (%)

80.0
70.0
60.0
50.0
40.0 +
30.0 -
20.0
10.0 +
0.0
MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA
3X3 4X4 5X5 6X6 X7 8X8 9X9 10X10
—e—MEF 75.56 4452 29.33 20.74 15.41 11.88 9.42 7.65
--»- MC-1ic| 61.03 30.29 19.88 16.35 11.94 8.81 7.51 6.16
---&-- MC-2c | 57.00 28.58 19.30 15.95 11.59 8.60 7.32 5.91
--%--MC-3c| 51.49 26.44 18.05 15.06 10.95 8.07 6.86 5.51
~--%--MC-4c| 49.08 25.57 17.50 14.80 10.77 7.93 6.77 5.44

FIGURA 5.32 — COMPARAGAO DO MEF E O MC COM REFINAMENTO ¢ PARA A TERCEIRA FREQUENCIA

ADIMENSIONALISADA - ERRO RELATIVO A SOLUGAO ANALITICA

Erro (%)

140.0
120.0 :\\
AN
100.0 A N
20\
80.0 :‘\:\ NN \
RIS
60.0 *:f"\_~
%:{:}
40.0 =
20.0
0.0
MALHA | MALHA |[MALHA | MALHA | MALHA | MALHA | MALLHA | MALHA
3X3 4X4 5X5 6X6 7X7 8X8 9Xx9 10X10
—e—MEF 134.39| 75.88 | 48.35 | 3349 | 2457 | 18.76 | 14.78 | 11.93
--a-MC-1c | 115.84 | 64.81 37.67 | 28.15 | 20.65 | 15.72 | 12.65 | 10.27
-k~ MC-2c | 93.31 60.76 | 34.71 | 26.34 | 19.76 | 14.79 | 11.90 9.59
--x-MC-3c| 86.78 | 56.08 | 32.32 | 25.06 | 18.76 | 14.13 | 11.38 9.10
-¥--MC-4c | 84.04 | 52.40 | 30.77 | 24.14 | 18.15 | 13.77 | 1114 8.88
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FIGURA 5.33 - COMPARACAO DO MEF E O MC COM REFINAMENTO ¢ PARA A QUINTA FREQUENCIA
ADIMENSIONALISADA - ERRO RELATIVO A SOLUCAO ANALITICA

240,0
210,0
180,0
< 150,0 |
° 120,0
i 90,0
60,0
30,0
0,0
MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA
3X3 | 4X4 | 5X5 | 6X6 | 7X7 | 8X8 | 9X9 |10X10
—+—MEF 662,17 | 114,18 | 74,82 | 51,22 | 37,06 | 28,01 | 21,89 | 17,54 |
- MC-1c| 179,02 | 91,43 | 5896 | 4195 | 30,58 | 23,39 | 18,34 | 14,95
a- MC-2¢c | 161,02 | 73,36 | 48,06 | 3426 | 27,24 | 2125 | 16,84 | 13,68
_.%-MC-3¢| 127,60 | 62,16 | 42,51 | 31,65 | 2561 | 20,15 | 1581 | 12,56
—%--MC-4c | 117,61 | 46,07 | 30,00 | 26,59 | 22,79 | 18,54 | 1537 | 12,24
Nota:

a) O erro relativo da malha (3x3) para a quinta fregiiéncia n3o consta do grifico, sendo seu valor
igual a 662,2% de erro relativo.

Andlise dos resultados:

Dos resultados obtidos pelo MEF e do MC com refinamento de 4 parcelas da
TC, as seguintes observacdes podem ser feitas:
e O MC apresenta uma melhoria de resultados da ordem de 30%
(aproximadamente) para todas as malhas pesquisadas.
e Para freqiiéncias mais altas e malhas grosseiras o MC apresenta grande

melhoria nos resultados, conforme pode-se observar na Tabela 5.25.
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TABELA 5.25 — COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAGAO A
SOLUCAO ANALITICA DADA POR SRINIVAS (1970).

Malha Malha Malha Malha Malha Malha Malha Malha 10x10-
Modo 3x3-4c/ 4x4-4c/ 5x5-4c¢/ 6x6-4c/ Tx7-4c / 8x8-4¢c / 9x9-4¢ / ¢ / Malha
Malha 3x3 | Malha 4x4 | Malha 5x5 | Malha 6x6 | Malha 7x7 | Malha 8x8 | Malha 9x9 10x10 — MEF
— MEF —MEF -~ MEF — MEF -~ MEF —~ MEF — MEF
1 350% 42,6% 403% 28,6% 30,1% 332% 28,1% 28,9%
3 375% 309% 363% 279% 26,1% 26,7% 24,6% 25,6%
5 59,6% 599% 481% 38,5% 338% 29.8% 30,2%
A= _‘(Erro relativo malha - refino 4c)| #100 [[%]

l (Erro relativo malha — MEF) l

onde: A representa o percentual de melhoria do resultado obtido pelo MC em relacéo
ao MEF quando comprados a soluco analitica.

5.3.3.2 Comparacao de Resultados para o Elemento de Oito Nés

A representacgdo gréifica apresentada nas Figuras 5.34 a 5.36, traz o elemento

quadrilateral de oito nds, comparado em termos de erro relativo a solucdo analitica

dada por SRINIVAS (1970).

FIGURA 5.34 - COMPARAGAO DO MEF E O MC COM REFINAMENTO ¢ PARA A PRIMEIRA FREQUENCIA
ADIMENSIONAL — ERRO RELATIVO A SOLUGAO ANALITICA

Erro (%)

1.2
10l &
\\
A\
0.8 \
N\
\
06 \
\\
04
W\
0.2 -
~—J —K
-0.2
MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA
3X3 4X4 5X5 6X6 7X7 8X8 9Xx9 10X10

—e—MEF 1.12 0.29 0.00 -0.04 -0.08 -0.10 -0.11 -0.11
--= - MC-1c 1.1 0.28 0.00 -0.04 -0.08 -0.10 -0.11 -0.11
---4-- MC-2c 1.09 0.27 0.00 -0.04 -0.08 -0.10 -0.11 -0.11
—--¥--MC-3c 1.03 0.25 -0.02 -0.05 -0.08 -0.10 -0.11 -0.12
—¥— MC-4c 0.98 0.23 -0.02 -0.05 -0.08 -0.10 0.11 -0.12
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FIGURA 5.35 - COMPARAGCAO DO MEF E O MC COM REFINAMENTO ¢ PARA A TERCEIRA FREQUENCIA
ADIMENSIONAL - ERRO RELATIVO A SOLUCAO ANALITICA

7.0
6.0
5.0
— 4.0 +
9
o 3.0
w 2.0
1.0
0.0
-1.0
MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA
3X3 4X4 5X5 6X6 X7 8X8 9Xx9 10X10
—e—MEF 46.54 2.00 0.68 0.21 -0.01 -0.13 -0.19 -0.23
--= - MC-1c 6.40 1.99 0.68 0.21 -0.01 -0.13 -0.19 I -0.23
k- MC-2¢c 6.21 1.897 0.67 0.21 -0.02 -0.13 -0.19 -0.23
—-%X--MC-3c 6.07 1.86 0.60 0.17 -0.04 -0.14 -0.20 -0.23
—%—MC-4c| 590 1.76 0.58 0.17 0.04 | -0.15 020 | -0.24

FIGURA 5.36 - COMPARAGAO DO MEF E O MC COM REFINAMENTO ¢ PARA A QUINTA FREQUENCIA
ADIMENSIONAL - ERRO RELATIVO A SOLUGAO ANALITICA

10.0
8.0
6.0 -
S
o 4.0 -
uw
2.0
0.0 e S
-2.0
MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA | MALHA
3X3 4X4 5X5 6X6 7X7 8X8 9X9 10X10
—e—MEF 8.92 6.48 2.59 1.1 0.40 0.03 -0.17 -0.29
--#-MC-1c| 834 6.39 258 1.11 0.40 0.03 -0.17 -0.29
---k-- MC-2¢c| 7.80 6.06 2.41 0.99 0.33 -0.01 -0.20 -0.31
--X--MC-3c| 7.16 5.93 2.15 0.89 0.30 -0.05 -0.22 -0.32
—*%—MC-4¢c| 7.12 5.60 2.08 0.87 0.29 -0.06 -0.23 -0.32




Andlise dos resultados:
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Dos resultados obtidos pelo MEF e do MC com refinamento de até 4

parcelas da TC, as seguintes observacdes podem ser feitas:

O MC apresenta uma melhoria pequena de resultados quando comparados

aos apresentados pelo MEF, conforme pode ser observado na Tabela

5.26.

termos absolutos.

Para malhas mais grosseiras o MC apresenta consideraveis melhorias em

TABELA 5.26 — COMPARATIVO DO PERCENTUAL DE MELHORIA DOS RESULTADOS (A) EM RELAGAO A
SOLUCAO ANALITICA DADA POR SRINIVAS (1970).

Malha Malha Malha Malha Malha Malha Malha Malha 10x10-
Modo 3x3-4c¢c/ 4x4-4c / 5x5-4¢/ 6x6-4¢ / Tx7-4¢c / 8x8-4c/ 9x9-4¢ / 4c / Malha
Malha 3x3 | Malha 4x4 | Malha 5x5 | Malha 6x6 | Malha 7x7 | Malha 8x8 | Malha 9x9 10x10 — MEF
~ MEF - MEF - MEF — MEF — MEF — MEF — MEF
1 143% 26,0% 20,0% 20,0% 0,0% 0,0% 0,0% 8,3%
3 10,8% 13,6% 172% 23,5% 75,0% 13,3% 5,0% 4,2%
5 25,3% 15,7% 245% 27,6% 379% 150% 26,1% 9,4%

A

H

1-—

!(Erro relativo malha — refino 4c)|

| (Erro relativo malha — MEF ) l

)* 100}[%]

onde: A representa o percentual de melhoria do resultado em relagdo a solucao
analitica.

5.3.3.2.1 Analise Comparativa dos Resultados entre o MC e o MEF

Como pode-se observar nas segdes anteriores, para as freqiiéncias
pesquisadas, o MC apresentou melhoria no valor da freqii€éncia. Também, pode-se
notar que o processo de convergéncia do MC € similar ao do MEF.

As parcelas da TC tém mais influéncia no elemento quadrilateral de quatro
nos do que no elemento de oito nés implementado do MC.

O MC apresenta melhores resultados para as malhas mais grosseiras.



5.3.3.3 Analise do custo computacional

Conforme pode-se observar das Figuras 5.57 e 5.38, o custo computacional
aumenta com o incremento das parcelas da TC. A andlise foi realizada com o cédigo
computacional implementado, e utilizando-se um processador Intel — Pentium III © de
600 MHz de velocidade e 512Mb de memoria RAM.

A Figura 5.37 apresenta o grafico do tempo de processamento expresso em
segundos. Apesar dos valores estarem representados de forma absoluta é possivel

avaliar o comportamento relativo, tanto para o refinamento 4 quanto para o

refinamento c.

FIGURA 5.37 — COMPARATIVO DO TEMPO DE PROCESSAMENTO PARA O MC E O MEF — ELEMENTO DE

QUATRO NOS
Tempo de processamento
600.00
500.00
. 400.00
)
2 300.00
£
Q
= 200.00
100.00
0.00 —x - 3 8 SEtie Sk
MALHA|MALHA  MALHA | MALHA | MALHA | MALHA | MALHA|MALHA
3X3 4X4 5X5 6X6 7X7 8X8 9X9 | 10X10
—-&—-- MEF 0.01 0.09 0.29 1.01 2.94 8.05 18.65 | 39.55
—-m--MC-1c!| 0.13 0.26 0.84 2.78 8.27 | 20.82 | 48.36 | 91.11
---A-- MC-2c| 0.15 0.48 1.81 6.47 | 18.61 | 46.65 |100.45/194.76
- % ~-MC-3c| 0.20 0.78 3.59 | 12.24 | 36.50 | 85.51 [181.57|349.42
—X¥—MC - 4c| 0.31 1.39 6.16 | 21.50 | 59.25 1 141.01 |295.09593.13
Discretizacao




98

FIGURA 5.38 - COMPARATIVO DO TEMPO DE PROCESSAMENTO PARA O MC E O MEF — ELEMENTO DE

OITO NOS
Tempo de processamento
5000.0
45000 4 e — }K
40000 +— /
35000 +— // ,)<
V4
—_ Ve
0 3000.0 / K
8 2500.0 AL
£ /’ -
- 2000.0 - AR
AT
/ C oA
1500.0 S AR d—
LA e
R IR
1000.0 L
,;“‘
500.0 -
0.0 o e
Malha 3 x3 Malha 5 x5
—.e—-.MEF 0.43 286 1423 54.32 149.75 383.45 86737 | 1689.16
—-m-—MC-1c 0.70 395 20.65 74.29 210.57 660.25 1108.19 | 2191.00
---A-- MC-2¢ 0.93 5.83 29.47 99.37 283.22 650.87 1351.56 | 2872.04
— X -MC-3c 1.18 8.00 38.53 137.69 375.44 855.92 1958.81 | 3773.96
—%—MC - 4c 1.51 10.13 49.83 169.92 480.07 | 1100.28 | 2513.34 | 4863.69
Discretizagao

A Figura 5.38 apresenta o grafico com os tempos comparativos de
processamento para 0 MC e o MEF utilizando-se o elemento quadrilateral de oito nos.
Pode-se observar que o custo computacional aumenta significativamente com a

inclusdo de novas parcelas da TC.
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54 CASO 2: VIBRACAO LIVRE DE PLACA QUADRADA COM
CONDICOES DE CONTORNO VARIAVEIS

A Figura 5.39 apresenta cinco placas semi espessas com condi¢des de
contorno variaveis. A relacdo vao/espessura (b/h) igual a 10, coeficiente de Poisson
0,3, médulo de elasticidade 2,1E11 Mpa, massa especifica 7800 kg/m’.

Os resultados foram obtidos considerando uma malha 10x10 elementos,
sendo utilizado o MC com quatro parcelas da TC (Malha 10x10 - 4c). Diversas

condi¢oes de contorno, conforme as apresentadas na Figura 5.39, sdo aplicadas para

FIGURA 5.39 — CONDIGOES DE CONTORNO DA PLACA DO CASO 2

s s s
| 1
/] | |
s $S-8S s F SS-FS s L| SS-LL L
L |
s s )
a) b) c)
S S
!
N l S = simplesmente apoiado
F SS-FF F F SS-FL |t F = engastado
l L = livre
N |
s s
d) e)

ilustrar a convergéncia e a precisao do método implementado.

Na Tabela 5.27 apresenta-se o resultado para uma placa com o contorno
simplesmente apoiado, conforme caso a) da Figura 5.39, (SS-SS), e as comparagoes
feitas a partir da solug@o analitica para placas espessas dada por SRINIVAS (1970),
comparagdo com o Método da Colocagdo dado por MIKAMI (1984), o Método das
Tiras com Splines dado por MIZUSAWA (1993), MEF dado por CHEN (1988) e



ainda, comparagio com a teoria de placas finas dada por LEISSA (1973).
TABELA 5.27 — FREQUENCIA ADIMENSIONALISADA PARA PLACAS SIMPLESMENTE APOIADA (SS-SS)

100

Método Modos
1 2 3 4 5 6

MC - 4c 19,067 45,512 45,512 69,831 85,214 85,214
MIZUSAWA (1993) 19,058 45,448 45,448 69,717 84,926 84,926
MIKAMI (1984) 19,06 45,45 45,45 69,72 84,93

SRINIVAS (1970) 19,089 45,620 45,620 70,089 85,488

CHEN (1988) 19,065 45,489 45,489 69,816 85,147 85,147
Teoria de placas Finas 19,739 49,348 49,348 78,957 98,696 98,696

Na Tabela 5.28 apresentam-se os resultados para uma placa conforme caso

b) da Figura 5.39, (SS-FS), e as comparagdes feitas a partir do Método da Colocagao
dado por MIKAMI (1984), o Método das Tiras com Splines dado por MIZUSAWA
(1993) e a comparagdo com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.28 - FREQUENCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE
APOIADOS E OS OUTROS DOIS, ENGASTADO E SIMPLES APOIADO (SS-FS)

Método Modos
1 2 3 4 5 6
MC -4c¢ 22,396 47,137 52,213 74,167 86,055 93,501
MIZUSAWA (1993) 22,376 47,063 52,090 74,004 85,759 93,064
MIKAMI (1984) 22,38 47,05 52,10 74,00 85,75
Teoria de placas Finas 23,646 51,674 58,646 86,135 100,27 113,23

Na Tabela 5.29 apresenta-se o resultado para uma placa conforme caso c) da

Figura 5.39, (SS-LL), e as comparagdes feitas a partir do Método da Colocacdo dado

por MIKAMI (1984), o Método das Tiras com Splines dado por MIZUSAWA (1993) e

a comparag¢do com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.29 — FREQUENCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE
APOIADOS E OS OUTROS DOIS LIVRES (SS-LL)

Método Modos
1 2 3 4 5 6
MC — 4c 9.444 15402 33.804 36399 42849 62235
MIZUSAWA (1993) 94388 15384 33,841 36334 42760 62084
MIKAMI (1984) 04395 15383 33835 36336 42750 62,076
Teoria de placas Finas ~ 9,6314 16,135 36726 38945 46738 70,740
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Conforme caso d) da Figura 5.39, (SS-FF), tém-se o resultado na Tabela
5.30, e as comparagOes feitas a partir do Método da Colocacao dado por MIKAMI
(1984), o Método das Tiras com Splines dado por MIZUSAWA (1993) e ainda, a
comparagao com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.30 — FREQUENCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE
APOIADOS E OS OUTROS DOIS ENGASTADOS (SS-FF)

Método Modos
1 2 3 4 5 6
MC — 4c 26682 49141 59308  78.876 87013 101,737
MIZUSAWA (1993) 26,645 49063 59,118 78,683 86720 101,15
MIKAMI (1984) 26,64 49,06 59,10 78,68 86.71

Teoria de placas Finas 28,951 54,743 69,327 94,585 102,10 129,1

Na Tabela 5.31 apresenta-se o resultado para uma placa conforme caso e) da
Figura 5.39, (SS-FL), e as comparacdes feitas a partir do Método da Colocacdo dado
por MIKAMI (1984), o Método das Tiras com Splines dado por MIZUSAWA (1993),
comparagdo com o Método das Tiras Finitas dado por DAWE (1978), e ainda,
comparacdo com a teoria de placas finas dada por LEISSA (1973).

TABELA 5.31 - FREQUENCIA ADIMENSIONALISADA PARA PLACAS COM DOIS LADOS SIMPLESMENTE
APOIADOS E OS OUTROS DOIS, ENGASTADO E LIVRE (SS-FL)

Método Modos
1 2 3 4 5 6
MC - 4c 12255 30436 38,679 55.865 62834 78,743
MIZUSAWA (1993) 12245 30386 38607 55743 62,649 78,429
MIKAMI (1984) 12,3 3039 38,61 5574 62,65
DAWE (1978) 123 30,39 38,61 5574 62,65

Teoria de placas Finas 12,687 33,065 41,702 63,015 72,398 90,611
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5.5 ANALISE GLOBAL DOS RESULTADOS

O MC implementado para o elemento de placa foi utilizado para obter as
freqiiéncias naturais de vibracdo para placas de Mindlin. Foram feitos testes para uma
relacdo vao/espessura igual a 10, sendo apresentados resultados satisfatérios quando
comparados aos métodos de solucdo tradicionais, como pode ser observado no estudo
do Caso 2 da se¢@o anterior.

A convergéncia do MC € boa, sendo melhorada com o aumento do nimero
de parcelas da TC.

O refinamento ¢ demonstra ser eficiente para as malhas mais grosseiras e a
implementacdo de mais parcelas da TC ( neste trabalho implemento-se até quatro
parcelas) pode indicar qual a tendéncia e efeitos para os resultados da freqiiéncia (em
termos de eficiéncia).

Para malhas muito refinadas o custo computacional aumenta muito para cada
nova parcela da TC implementada.

Observou-se a convergéncia para todas as freqiiéncias pesquisadas com o
MC implementado.

Na verificacdo dos efeitos da distor¢cdo do elemento de placa do MC
observou-se o efeito negativo sobre os resultados da freqii€ncia. Em compara¢do com
o MEF o efeito da distor¢@o € minimizado no MC.

A variacdo na relagdo vao/espessura € influenciada no MC implementado
pelas fungoes tipicas do MEF que sdo superpostas. Assim, o elemento de oito nds
apresenta melhores resultados que o elemento de quatro nds. Como as parcelas tipicas
de MEF sido predominantes no resultado, a implementacdo de elementos com
caracteristicas que também resolvam placas finas podem ser implementados.

Em comparacdo com o MEF, o MC implementado apresentou resultados
mais precisos para todas as frequiéncias pesquisadas, em compensacdo O custo

computacional é afetado.
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6 CONCLUSOES E SUGESTOES DE CONTINUIDADE

6.1 CONCLUSOES

6.1.1 Quanto ao Estudo

O elemento de placa espessa (teoria de Mindlin-Reissner) proposto neste
trabalho e inspirado no MC, proposto por ZENG (1998a, 1998b, 1998c, 2000), permite
a solucdo para o problema de vibrag¢oes livres, considerando a forma de discretizac@o
proposta.

No MC implementado sdo superpostas funcdes de forma, tipicas do MEF e
parcelas da série da solucdo analitica da TC para a equacdo da freqliéncia, a partir de
condicdes de contorno de compatibilidade, conforme descrito no Capitulo 3.

As fun¢Oes de forma da TC sdo introduzidas no MC através dos chamados
graus de liberdade c, associados ao dominio. A possibilidade de aumentar o nimero de
funcdes da TC faz com que ndo se necessite criar outra malha de elementos finitos
(nova discretizag@o) para obter mais modos de vibrar e freqii€ncias. Esta caracteristica

representa uma das maiores versatilidades do método.

6.1.2 Quanto a Implementacao Computacional

Pode-se reconhecer no modelo da matriz de rigidez e matriz massa do MC, o
grupo de elementos pertencentes as funcdes tipicas do MEF (submatriz MEF),
possibilitando assim, um processo hierarquico na montagem das mesmas matrizes
quando se acrescentar a parcela da TC. Esta caracteristica é fundamental para a

efici€ncia computacional do método.
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No Capitulo 5, foram apresentados resultados para os dois tipos de
refinamentos do MC implementado: (i) refinamento c e o (ii) refinamento h. Cada um
destes refinamentos € mais eficiente dependendo da aplicacio:

(1). O refinamento ¢ € mais eficiente quando se quer encontrar

freqiiéncias naturais (em nimero maior do que pelo MEF), sem aumentar a

discretizagdo, o que representa economia de tempo no pré processamento.

). O refinamento & ¢ eficiente quando se quer precisdo de resultados,

sendo que deve ser levado em conta o custo computacional.

Detalhes que merecem maior atencdo na implementagdo computacional
dizem respeito a integracdo numérica e sua influéncia na solucdo do problema,
principalmente se a op¢do para a solucdo do problema de locking for baseada na
subintegracao.

O processo de solugdo dos autovalores e autovetores também deve ser
apreciado para obter maior precisdo nos resultados. Neste trabalho, optou-se pelo
Método de Jacobi Generalizado, sendo todos os resultados apresentados baseados

neste método.

6.1.3 Resultados Obtidos

Pode-se observar que o MC proposto segue o padrao de convergéncia do
MEF. A precisdo dos resultados, conforme pode-se observar no Capitulo 5, é melhor
do que a apresentada pelo MEF (comparando elementos com o mesmo ndmero de
nos).

Os resultados numéricos obtidos com o elemento de oito nés do MC-4c
(Método Composto com quatro parcelas da TC), apresentaram-se compativeis quando
comparados, por exemplo ao MEF, ao Método das Tiras Finitas e ao Método da
Colocagdo, conforme pode ser observado na sec¢do 5.4.

Os testes realizados para avaliar a questao da distor¢do da malha mostraram

que cada freqii€ncia € influenciada negativamente e de forma diferente pela mesma.
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Conforme as secOes 5.3.2.1.3 e 5.3.2.2.3, os valores apresentados para a malha
distorcida do MC, quando comparados aos fornecidos pelo MEF, sdo um pouco
melhores e, os resultados obtidos com o elemento quadrilateral de quatro nés é pouco
representativo em termos quantitativos.

Com base nos exemplos propostos e resultados produzidos, pode-se observar
que o MC € eficiente quanto a precisao. Considerando a discretizacao, pode-se poupar
tempo por ndo necessitar tanto refino de malha, que inclui também a atribuig¢do das
condig¢des de contorno, para a obtengdo de um mesmo niimero de freqiiéncias naturais,
comparando-se com o MEF.

A utilizagdo do MC € mais eficiente (precisdo de resultados produzidos x
custo computacional) para malha mais grosseiras e para as freqiiéncias mais baixas. A
otimizac¢ao do cédigo computacional pode melhorar a eficiéncia do método. Analise
mais detalhada deve ser realizada na busca por modos espirios.

A comparagdo com os resultados de aplica¢des propostas pela literatura
mostrou-se satisfatéria, verificando assim, o potencial de uso desta técnica para a

solucdo dos problemas de vibragdes livres em placas espessas.

6.2 SUGESTOES PARA TRABALHOS FUTUROS

Neste estudo, focou-se em alguns dos aspectos referentes a superposi¢do das
fungdes de forma, utilizadas no MEF, com as fungdes da parcela da TC aplicada a
vibracdes livres de placas. Para completar a investigagdo sobre o elemento de placa
proposto, deve-se avaliar ainda:
= O comportamento, para o caso de se implementar nimeros maiores de
parcelas da TC;
= Técnicas de obten¢do da matriz massa mais eficientes;
= Técnicas de solugdo de autovalores e autovetores, comparando a
eficiéncia de cada uma destas técnicas com o método proposto;

= verificar se as técnicas atualmente empregadas para resolver o efeito do
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locking a que estdao sujeitos os elementos de placas também sdo efetivas
para o MC;

» A anéilise dos modos espurios para as freqii€ncias naturais;

* Comparar o MC com outros tipos de elementos finitos adaptativos.

Na analise estrutural ainda pode-se pesquisar outros elementos utilizando a
mesma abordagem, possibilitando assim, encontrar solu¢des mais precisas para o
problema de vibragdes livres para varias aplicagdes, como por exemplo:

= Estudo de placas com espessuras variaveis;

= Estudo de placas com nervuras de reforco;

= Estudo de placas para materiais ortotropicos;

= Estudo de placas para materiais laminados;

= Hstudo de cascas;

O uso desta mesma abordagem na solucdo de vibra¢des forgadas pode ser
testado. Outro problema semelhante ao de vibragdes, que € o estudo da instabilidade
estrutural (flambagem), pode ser implementado baseando-se na proposta do MC, ja
que este problema recai na solugdo de autovalores e autovetores, e apresenta solucao
analitica obtida pela TC.

O aspecto matemitico e computacional também deve ser levado em

consideracdo para a implementacdo do MC, de forma a melhorar seu desempenho.
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