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RESUMO

O tópico principal deste trabalho é o estudo da precisão do método ADI-FDTD 

na simulação da propagação de ondas guiadas.

Inicialmente são mostrados os conceitos do método FDTD e discutida a 

condição de estabilidade deste método, que são a base para o desenvolvimento do 

método ADI-FDTD. Em seguida é apresentado o método ADI-FDTD e a ordenação 

utilizada para agilizar a solução dos sistemas de equações lineares que devem ser 

resolvidas neste método.

É feita também uma breve descrição da linha de transmissão stripline, a qual foi 

utilizado como objeto das simulações.

Finalmente são realizadas diversas simulações com os métodos FDTD e ADI- 

FDTD e seus resultados são comparados com os obtidos analiticamente.



ABSTRACT

The main topic of this work is the study of the precision of the ADI-FDTD 

method in the simulation of the propagation of guided waves.

Initially the concepts os the FDTD method are shown and the condition of 

stability of this method is considered, which are the base for the development of the 

ADI-FDTD method. Then the ADI-FDTD method is presented and the ordering used 

to speed up the solution of the system of linear equations that should be solved in this 

method is explained.

It is also made a brief description of the stripline transmission line which was 

used as object of the simulations.

Finally several simulations are accomplished with both FDTD and ADI-FDTD 

methods and the results are compared with the ones obtained analytically.
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SIMBOLOGIA

E campo elétrico

H campo magnético

D densidade de fluxo elétrico 

B densidade de fluxo magnético 

J densidade de corrente elétrica 

ji permeabilidade magnética

8 permissividade elétrica

o condutividade elétrica

p densidade de carga

Et vetor campo elétrico tangencial

Bn vetor densidade de fluxo magnético normal

Hn vetor campo magnético normal 

D„ vetor densidade de fluxo elétrico normal 

AV matriz coluna de potencial elétrico

AM matriz coluna de potencial magnético

Ht vetor campo magnético tangencial

AV» elemento de potencial elétrico com origem em i e direção de x 

AVyi elemento de potencial elétrico com origem em i e direção de y 

AVã elemento de potencial elétrico com origem em i e direção de z 

AMxi elemento de potencial magnético com origem em i' e direção de x 

AMyj elemento de potencial magnético com origem em i* e direção de y 

AMá elemento de potencial magnético com origem em i' e direção de z 

AH» elemento de campo magnético com origem em i' e direção de x 

AHyj elemento de campo magnético com origem em i' e direção de y 

AHa elemento de campo magnético com origem em i' e direção de z



Axj comprimento da aresta com origem em i e direção x

Ayj comprimento da aresta com origem em i e direção y

Azj comprimento da aresta com origem em i e direção z

C capacitância

G condutância

R relutância

AS área da face

AL comprimento da aresta

C» capacitância da aresta com origem em i e direção x

Cyi capacitância da aresta com origem em i e direção y

Czi capacitância da aresta com origem em i e direção z

G>d condutância da aresta com origem em i e direção x

Gyj condutância da aresta com origem em i e direção x

Gn condutância da aresta com origem em i e direção x

Rxi relutância da face na direção x

Ryi relutância da face na direção y

Rzi relutância da face na direção z

c matriz das capacitâncias

R matriz das relutâncias

G matriz das condutâncias

AI elemento de corrente elétrica

AVn vetor elemento de tensão no instante n.At

AVn+I vetor elemento de tensão no instante (n+l).At

AV1*2 vetor elemento de tensão no instante (n+2).At

AI®'1 vetor elemento de corrente no instante (n-l).At

AI“ vetor elemento de corrente no instante n. At 

AI1*1 vetor elemento de corrente no instante (n+l).At 

AM“ vetor elemento de potencial magnético no instante n.At 

AMn+1 vetor elemento de potencial magnético no instante (n+l).At



c velocidade da luz no vácuo

T duração do pulso

fò freqüência central

p constante de fase

Z impedância característica

r\ impedância da onda no vácuo

Sr permissividade elétrica relativa

b distância entre os planos condutores

w largura da fita central

t espessura da fita central

Pr permeabilidade magnética relativa.

AF" elemento de potencial elétrico com origem em i e direção de x no instante n.At 

af;  elemento de potencial elétrico com origem em i e direção de y no instante n.At 

ak;  elemento de potencial elétrico com origem em i e direção de z no instante n.At 

AF̂ +1 elemento de potencial elétrico com origem em i e direção de x no instante 

(n+l).At

AF"+1 elemento de potencial elétrico com origem em i e direção de y no instante 

(n+l).At

AV”+l elemento de potencial elétrico com origem em i e direção de z no instante 

(n+l).At

AM” elemento de potencial elétrico com origem em i e direção de x no instante n .At 

AM" elemento de potencial elétrico com origem em i e direção de y no instante n. At 

AM", elemento de potencial elétrico com origem em i e direção de z no instante n.At 

AM"+1 elemento de potencial elétrico com origem em i e direção de x no instante 

(n+l).At

AM"+1 elemento de potencial elétrico com origem em i e direção de y no instante 

(n+l).At

AM”+1 elemento de potencial elétrico com origem em i e direção de z no instante 

(n+l).At



1 INTRODUÇÃO

Microondas e componentes eletrônicos que trabalham com microondas vêm 

sendo largamente utilizados nas áreas de computação, telecomunicações e sistemas de 

navegação. Á análise da compatibilidade eletromagnética de dispositivos trabalhando 

com microondas tem, portanto, despertado grande interesse dos pesquisadores. O 

estudo do comportamento destes dispositivos utilizando métodos analíticos se mostra 

difícil e muitas vezes inviável, devido à alta complexidade matemática envolvida. 

Contudo, o advento dos computadores digitais possibilitou que problemas 

eletromagnéticos complexos sejam resolvidos utilizando-se métodos numéricos [1] e 

conseqüentemente cada vez mais experiências práticas dão lugar a simulações de 

forma a reduzir custos e ampliar as possibilidades nas investigações.

Dentre os diversos métodos atualmente utilizados, o método FDTD (Finite 

Difference Time Domain) [2] tem se destacado como um método simples e preciso. 

Este método não apresenta grandes complexidades matemáticas, é robusto e apresenta 

uma modelagem adequada a vários problemas de interação eletromagnética. 

Computacionalmente, o esquema é dispendioso e requer computadores com grande 

poder de processamento, porém com a rápida evolução da capacidade de 

armazenamento e do tempo de processamento, problemas que há alguns anos só eram 

resolvidos em sofisticadas estações de trabalho, hoje podem ser resolvidos em 

microcomputadores pessoais de baixo custo.

Quando a dimensão da estrutura é da mesma ordem de grandeza do 

comprimento de onda, o método FDTD convencional é adequado, pois nesta situação é 

mais rápido que os demais. O método FDTD, entretanto, pode apresentar instabilidade 

e dispersão numérica. A condição de Courant [2] assegura a estabilidade numérica ao 

restringir a discretização temporal em função da discretização espacial. Desta forma, o 

número de iterações aumenta à medida que mais pontos são utilizados para discretizar 

o espaço. A dispersão numérica é mantida em níveis aceitáveis se forem garantidos 

pelo menos vinte pontos de discretização espacial por comprimento de onda [1].



0  método MRTD {Multiresolution Time Domain) [3] foi criado com o objetivo 

de reduzir a dispersão numérica permitindo a utilização de menos pontos de 

discretização por comprimento de onda. Através da aplicação da expansão espacial 

wavelet [4] ortogonal para as equações de Maxwell, o método MRTD reduz a 

dispersão numérica, sendo capaz de fornecer resultados precisos com uma 

discretização próxima ao limite de amostragem de Nyquist. Portanto a mínima 

discretização para que o método MRTD gere resultados confiáveis é próximo de duas 

amostras por comprimento de onda, muito menos que os mínimos vinte necessários no 

método FDTD convencional.

A fim de relaxar a condição de estabilidade, foi desenvolvido o método ADI- 

FDTD (Alternating Direction Implicit Finite Difference Time Domain) [5] [6]. Neste 

método o passo de tempo pode ser escolhido em função de uma precisão requerida 

sem a preocupação em obedecer à condição de Courant. O objetivo deste trabalho é 

investigar a precisão do método ADI-FDTD em relação às discretizações temporais e 

espaciais.

No trabalho foram realizadas diversas simulações e os resultados obtidos foram 

comparados com as soluções analíticas. Foram realizadas também comparações com 

os resultados de simulações utilizando o método FDTD. Desta forma, foi possível 

comparar a precisão de ambos os métodos e determinar as características de cada um. 

Como objeto de teste foi utilizada uma linha de transmissão stripline devido à 

confiabilidade dos resultados obtidos analiticamente.

O Capítulo 2 apresenta o método FDTD, seu histórico, teoria e a utilização de 

um esquema novo: em vez de utilizar valores de campo elétrico e magnético, faz uso 

de valores de tensão e corrente a fim de propiciar uma interface direta com modelos de 

componentes eletrônicos discretos em trabalhos futuros. Em seguida o método ADI- 

FDTD é apresentado, com seu histórico e equações fundamentais. Como são 

necessárias as soluções de sistemas de equações lineares, é discutida a permutação de 

matrizes de forma a tomá-las tridiagonais e em seguida a solução do sistema é 

encontrada utilizando a decomposição em matrizes com apenas duas diagonais não



nulas.

No capítulo 3 é descrita a linha de transmissão stripline que é utilizada nas 

simulações. É também descrito o programa utilizado para a definição do espaço 

computacional e criação da malha.

No capítulo 4 os resultados das simulações são apresentados em íunção da 

dependência em relação à freqüência da fonte de excitação, passo no tempo de 

simulação e configuração da malha de discretização espacial. Após esta apresentação 

os resultados são discutidos.

No capítulo 5 são apresentadas as conclusões gerais do trabalho.



2 TEORIA DO MÉTODO FDTD

2.1 INTRODUÇÃO

A origem do método FDTD se deu em 1966. Neste ano, Kane S. Yee 

desenvolveu um trabalho que chamou de "Numerical Solution of Initial Boundary 

Value Problems Involving Maxwell's Equations in Isotropic Media” [7] .0  trabalho de 

Yee marca o início do método FDTD. O termo FDTD foi utilizado pela primeira vez 

por Allen Taflove em 1980.

Apesar da sua simplicidade, o método FDTD teve uma lenta evolução por 

necessitar de computadores de alto desempenho, pois requer muita memória e tempo 

de processamento. No entanto, o alto desempenho das estações de trabalho de alguns 

anos atrás já está presente nos microcomputadores domésticos de hoje.

Este método tem como característica apresentar instabilidade numérica 

quando o passo no tempo não satisfaz a condição de estabilidade de Courant [2], que 

limita o passo no tempo em função da discretização espacial utilizada.

Na tentativa de eliminar a instabilidade numérica inerente ao método FDTD 

foi criado o método ADI-FDTD, o qual é incondicionalmente estável.

Este capítulo traz uma descrição tanto do método FDTD quanto do método 

ADI-FDTD, os quais foram utilizados nesta dissertação. Alternativamente aos 

trabalhos encontrados sobre o assunto que utilizam valores de campo elétrico e 

magnético, as simulações foram realizadas em relação a valores de tensão e corrente 

em cada ponto de discretização.

A simulação requer a solução de um sistema de equações lineares de alta 

ordem. Para otimizar o tempo de resolução foram utilizadas algumas funções de 

manipulação de matrizes, como por exemplo, a permutação de linhas e colunas a fim 

de se obter uma matriz tridiagonal. Matrizes tridiagonais levam a uma solução mais 

rápida quando são fatoradas em duas matrizes, triangular inferior e triangular



superior [8].

2.2 O MÉTODO FDTD

2.2.1 Transitório Eletromagnético

Na simulação dos campos eletromagnéticos foi utilizado o tipo de excitação 

denominada transitório eletromagnético e caracterizada por ter inicialmente um valor 

de tensão nulo, uma alta freqüência e uma curta duração.

A propagação de ondas eletromagnéticas toma-se evidenciada numa 

estrutura física quando suas dimensões ultrapassam um décimo do comprimento da 

onda eletromagnética.

Para a solução de problemas envolvendo a propagação de ondas 

eletromagnéticas, partimos das equações de Maxwell

VxE = - ÕR
dt ’

VxH = - —  + J, 
d t

V.D = p  ,
V.B = 0

(2.1)

(2.2)

(2.3)
(2.4)

onde E e H são os campo elétrico e magnético respectivamente, D e B são as 

densidade de fluxo elétrico e magnético, p é a densidade volumétrica de carga elétrica 

e J é densidade superficial de corrente elétrica.

As equações (2.1) e (2.2) são conhecidas como leis de Faraday e Ampère, 

respectivamente, e as equações (2.3) e (2.4) são conhecidas como leis de Gauss.

A maioria dos materiais elétricos encontrados na prática são condutores 

elétricos não magnéticos e dielétricos (isolantes elétricos) que podem ser 

caracterizados macroscopicamente pelas constantes



• p, que representa a permeabilidade magnética (1,257 pH/mm para o 

vácuo e os materiais não magnéticos),

• s, que representa a permissividade elétrica (8,854 pF/mm para o vácuo 

mas varia para cada material) e

•  o, que é a condutividade elétrica (varia para cada material e é nula para o 

vácuo).

As densidades de fluxo magnético, fluxo elétrico e corrente elétrica podem ser 

expressas em função do campo eletromagnético através das constantes elétricas dos 

materiais

Com estas informações é possível caracterizar o comportamento do campo no 

tempo em materiais lineares e isotrópicos, uma vez que as condições iniciais são 

conhecidas e satisfazem as equações de Maxwell. Convenientemente, o campo e a 

fonte são ajustados para serem zero no tempo inicial. Isso se deve ao fato de ter sido 

utilizado na simulação um transitório eletromagnético, que possui como característica 

as condições iniciais nulas. Neste caso, as duas equações divergentes são na verdade 

redundantes, uma vez que podem ser obtidas através das equações rotacionais nestas 

condições.

É possível demonstrar que apenas as equações rotacionais são necessárias e que 

as equações divergentes estão contidas nestas. Para tanto, calcula-se os divergentes das 

equações rotacionais

B = //.H, 
D = f l ,  
J = cr.E

(2.5)
(2.6) 
(2.7)



V.(V X E )= V .Í-— ) => =
ôt J ôt

=> V.B = constante (2.8.a)

(2.8.b)

da equação da continuidade da corrente elétrica temos

V.J+— = 0
Ôt

substituindo V. J por - em (2.8.b) temos

^  = 0 =» at(VD>- o => V J) -  p  = constante
ôt ôt ôt

(2.8.C)

Nas demonstrações acima a identidade V.VxA = 0 foi utilizada. Como B, D e p 

têm valor inicial igual a zero, tem-se

que são as equações (2.3) e (2.4) e portanto as equações rotacionais são suficientes 

para os cálculos do transitório eletromagnético.

2.2.2 Discretização Espacial

Yee montou um esquema para permitir a aplicação das Leis de Faraday e 

Ampère no sistema de coordenadas cartesianas de forma a minimizar os cálculos 

necessários ao assumir uma discretização do espaço tridimensional.

V . B = constante = 0 (2.9.a)

(2.9.b)V . D - p = constante = 0



Figura 2.1 -  Célula de Yee e seu esquema de numeração

O espaço é dividido em células básicas como as da figura 2.1, as quais 

apresentam vetores de campo elétrico tangenciais às arestas e vetores de campo 

magnético normais às faces das células. Desta forma os componentes de campo 

elétrico e magnético são arranjados no espaço tridimensional de tal forma que cada 

vetor H é envolvido por quatro vetores E e vice-versa.

Para realizar a simulação é necessário enumerar todos os elementos do espaço 

computacional para identificar cada um deles de forma inequívoca. Sendo assim, 

foram enumerados todos os vetores, células e nós de acordo com o esquema descrito a 

seguir.

Na figura 2.1, está representada a primeira célula localizada na origem dos 

eixos coordenados. Nesta figura tem-se a numeração dos nós dentro de uma única 

célula. Ao enumerar os nós de toda a malha, iniciamos pela coordenada x, em seguida



utilizamos a coordenada y e finalmente a coordenada z. Partindo da origem dos eixos,

retoma-se ao início e incrementa-se y de uma unidade e novamente enumeram-se os 

nós na direção de x. Quando chegar ao último nó em x e y máximos, retoma-se à 

origem dos eixos e incrementa-se z de uma unidade e o processo se inicia novamente, 

até enumerar todo o espaço computacional. Cada célula possui oito nós, e as células 

são representadas com a mesma numeração do seu nó de menor índice. Na figura 2.1 

está representada a célula de número um. Os vetores de campo elétrico são tangenciais 

às arestas da célula e têm a origem no nó de menor índice da respectiva aresta. Os 

vetores de campo magnético são normais às faces da célula e têm origem no nó n', que 

se localiza no centro da célula. Na simulação consideraram-se constantes as 

características do material (a,|a.,s) dentro da célula.

2.2.3 Constantes Estruturais

Utilizando a leideFaraday na forma integral, tem-se

onde os índices "í" e são utilizados para representar os componentes vetoriais 

tangencial ao contorno e normal à superfície.

Já da lei de Ampère, obtém-se

Na formulação, são considerados constantes os componentes vetoriais de campo 

ao longo de uma aresta e sobre uma face nas células de Yee. Sendo assim, utilizou-se o

enumeram-se os nós da direção de x crescente. Ao chegar ao último nó nesta direção,

(2.10)

(2.11)



que se denominou elemento de tensão da seguinte forma

JF = -[E,.dL = -E,.AL (2.12)

Onde Et é o campo elétrico tangencial a uma aresta e AL é o comprimento da 

respectiva aresta.

Como exemplo, observando a figura 2.2, tem-se

àVxl= -E xlA xl (2.13.a)
AF̂ i = -E ylA yl (2.13.Ò)

<1II<3 (2.13.c)

Analogamente definiu-se o elemento de potencial magnético AM, que é o 

produto do campo magnético tangencial a uma aresta Ht pelo comprimento da 

respectiva aresta, AL

AM = jH,.dL = H,.AL (2.14)

Como exemplo, observando a figura 2.2, tem-se a representação dos elementos

AMxl=Hxl

AMzl=Hzl

2 2 

2 2

(2.15.a)

(2.15.b)

(2.15.C)



Neste caso, ao se calcular o comprimento AL, considera-se a distância do nó n' 

no centro da célula até o centro da célula vizinha na direção do vetor do campo 

magnético utilizado.

Estes elementos são arranjados como vetores coluna na forma

(2.16)

Em conseqüência às aproximações utilizadas para o campo eletromagnético é 

possível determinar as capacitâncias e as condutâncias das arestas e as relutâncias das 

faces das células de Yee através de

A F/ AM /
AV = AVy e AM = AMy

1
<

1 _AMz

C = s AS_
AL

„ ASG = <7---
AL

9t = \_AL_
pA S

(2.17)

(2.18) 

(2.19)



onde AS é a área da face e AL, o comprimento da aresta. As equações acima são 

resultantes da aplicação das fórmulas do capacitor de placas paralelas, do resistor 

uniforme e do solenóide [9]. Estas constantes estabelecem as características físicas e 

geométricas do espaço discretizado através das células de Yee, sendo denominadas 

nesta dissertação de constantes estruturais. Como células vizinhas podem apresentar 

características físicas e geométricas diferentes, tomou-se necessário realizar a média 

aritmética das constantes envolvidas uma vez que cada aresta é comum a quatro 

células e cada face é comum a duas células.

Desta forma, as constantes estruturais são dadas por



Na figura 2.3 têm-se representadas as células utilizadas no cálculo da 

capacitância CX7 e a relutância 9txi.

Figura 2.3 -  Células utilizadas no cálculo da capacitância Q? e relutância 9txi

Na formulação matricial estas constantes tomam a forma de matrizes diagonais 

de acordo com

'c , 0 0
c  = 0 C, 0

0 0 C z _

X 0 0 '

R = 0 % 0
0 0

X 0 0 '

G = 0 °y 0
0 0 G._

(2.23)

(2.24)

(2.25)



2.2.4 Equações Fundamentais

Aproximando-se as integrais de linha das leis de Faraday e Ampère como 

somatórios discretos e substituindo-se as definições anteriores tem-se

AVy2+AVz4-A V y6-A V z2 =

AVz3+AVx7-A V z4-A V x3 =

AVxS +AVy6 -A V x7 -A V yS =

1 dAMx}
dt

1 dAMyl
' dt

1 dAMzl
' dt

(2.26.a)

(2.26.b)

(2.26.C)

AMyl + AMz3 -  AMyS -  AMzl = -G x7.AVx7 -  Cx7.
dAV.xl

dt
dAV„,

&Mzl + M Í* - &Ul2 -  &Mxl = -G *.A ^ -  C ^ —^ -

m xX + m y2- am ,3 -  = - g „ .av,x

(2.27.a)

(2.27.b)

(2.27.C)

Estas equações podem ser reescritas na forma matricial como

V  AV = R  ' - A M
dt

Y  AM = -G .A V -C — AV
dt

(2.28)

(2.29)

onde Zv e Em são matrizes esparsas com quatro elementos não nulos em cada linha, 

sendo dois elementos de valor +1 e dois de valor -1 , cujo objetivo é realizar o 

somatório através do produto matricial.

A formulação matricial permite a introdução do elemento de corrente elétrica 

AI para substituir o elemento de corrente magnética AM, de acordo com a lei de 

Ampère



I = |H,dL

Para uma célula obtém - se

a i= X 1í h , a l = X mam <2-30>

Assim sendo, obtém-se as equações fundamentais do método FDTD em termos de 

elementos de tensão e corrente elétricas

AI = -G.AV-C—AV. (2.32)
dt K '

2.2.5 Discretização Temporal

A derivada em relação ao tempo das equações de Faraday e Ampère pode ser 

aproximada pela sua respectiva diferença finita centrada conforme

A lf í+ ^ - A if r - íüAt

 ■  S 2y (2.33)

(2.34)

ou abreviadamente

= (235)

„ +1 „ AVn+2 + AV" _ AVn+2 -  AV"&ln+i = -G —-----— ----C—-------=-L-  (2.36)
2 At



onde At é o passo que define a discretização temporal e indica a iteração realizada.

Isolando-se In+; V"+2 nas equações (2.35) e (2.36) obtêm-se as equações 

recursivas do método FDTD

Nota-se que ao iniciar as iterações com n=l, os elementos de corrente 

apresentarão somente os índices pares e os elementos de tensão, os ímpares. Isto 

mostra que há um deslocamento temporal de At/2 entre os valores de corrente e tensão, 

entretanto isto não causa erro nos resultados.

2.2.6 Critério de Estabilidade

O passo temporal At precisa ser pequeno o suficiente para satisfazer a condição 

de estabilidade de Courant. Esta condição é obtida levando em consideração que o 

maior passo de tempo permitido deve ser limitado de tal forma que onda ou pulso não 

se propague por mais de uma célula no intervalo de tempo At, garantindo assim que a 

simulação seja estável. Em três dimensões a condição de estabilidade de Courant 

requer

(2.37)

(2.38)

A /<
1 (2.39)

onde Ax, Ay, Az são as menores arestas das células utilizadas na discretização espacial 

e v é a velocidade da luz no meio considerado.



2.2.7 Dispersão Numérica

A onda ou pulso que se propaga na região computacional tem uma velocidade 

de fase variável (que não é a velocidade de fase física) dependente do comprimento de 

onda, da direção de propagação e da discretização espacial. Esta velocidade de fase, 

como a velocidade de fase física, causa o espalhamento dos pulsos, e é referida como 

dispersão numérica.

A conseqüência mais visível da dispersão numérica é que a onda ou pulso que 

se propaga no espaço discretizado tem uma velocidade de fase menor que a velocidade 

da luz. O efeito é mínimo para uma propagação oblíqua e máximo para uma onda 

propagando-se ao longo de x, y ou z. Além disso, a dispersão numérica determina o 

comprimento de onda mínimo permitido que se propaga na região computacional. 

Comprimentos de onda menores que o mínimo não se propagam de forma alguma. Em 

outras palavras, as malhas FDTD e ADI-FDTD agem como filtros passa baixas com 

uma freqüência de corte em tomo de f ^  =c/2min(Ax,Áy,Az) . Na prática, no entanto, 

os efeitos deste filtro passa - baixas são percebidos a partir de 7^=20 min(Ax,Ay,Áz), 

ou seja, este é o menor comprimento de onda que é simulado de forma confiável.

2.2.8 Condutores perfeitos

Na natureza não encontramos condutores elétricos perfeitos, mas condutores 

elétricos como cobre e alumínio podem ser aproximados por condutores perfeitos 

devido à alta condutividade elétrica.

O campo elétrico tangencial aos condutores elétricos perfeitos é nulo, logo o 

elemento de tensão tangencial ÁV também deve ser, e isto eqüivale a alocar um valor 

infinito de capacitância na equação fundamental do método FDTD.

Já condutores magnéticos perfeitos não existem fisicamente, mas podem ser 

utilizados como artifício em alguns problemas com simetria, nos quais algumas 

superfícies são modeladas por condutores magnéticos perfeitos.

Como o condutor magnético perfeito é o dual do condutor elétrico perfeito, o



elemento de potencial magnético AM deve ser nulo, e isto eqüivale a alocar um valor 

nulo de relutância na equação fundamental do método FDTD.

2.2.9 Elementos de absorção

Em muitas simulações, as estruturas em estudo são abertas, como por exemplo 

antenas e linhas de transmissão do tipo microstrip. Para a simulação destas estruturas 

seria necessária a simulação até o infinito. Como nenhum computador pode armazenar 

uma quantidade infinita de dados, é necessário utilizar algum tipo de artifício para 

limitar o espaço da simulação. Mesmo em estruturas fechadas tem-se que limitar o 

tamanho da estrutura na direção de propagação. Isso é feito através da utilização da 

condição de contorno de absorção, na qual toda onda eletromagnética incidente deve 

ser absorvida de forma a eliminar qualquer reflexão.

A absorção é realizada através da extremidade de cada guia de onda, onde 

valores ótimos de condutividade elétrica [10] são alocados aos dielétricos que formam 

o guia de onda para fazer o casamento de impedâncias e assim evitar reflexões.

Um elemento de absorção é formado pela última camada de células de Yee 

na extremidade do guia de onda constituído por

• um condutor magnético perfeito (plano de corte da célula de Yee) e

• dielétricos com condutividade elétrica ótima.

Para a simulação de uma onda TEM (Transversal Eletromagnética), a

condutividade é dada por

onde AL é a aresta da célula na direção de propagação, s é a permissividade elétrica e 

p. a permeabilidade magnética da região adjacente.

(2.40)



2.2.10 Fontes de Excitação

Para iniciar a simulação, deve-se inserir um transitório eletromagnético que se 

propague pela estrutura. Sempre que possível, deve-se procurar alocar os elementos de 

tensão ou corrente da fonte na seção transversal de forma semelhante à distribuição 

encontrada no modo de onda que se deseja simular.

A variação temporal dos elementos de tensão da fonte depende da largura da 

faixa de freqüências a serem analisadas, sendo que a variação mais utilizada 

corresponde a um pulso de Hanning [11] modulado em amplitude. Quanto maior for a 

duração do pulso, mais estreita será a faixa de freqüências excitadas. A equação do 

pulso é dada por

h it>

0,parat <0
1 ,2.7CJt1 -  cos( )

-. cos(2 j>r./0 /), para 0 < / < T (2.41)

0, para t > T

onde T é a duração do pulso e fò é freqüência central. A faixa de freqüências 

excitadas vai de f0-2/T até fò+2/T.

Na figura 2.4 tem-se a representação do pulso no domínio do tempo para um 

valor de T de lns e fo igual a 10 GHz, e na figura 2.5 tem-se a sua representação no 

domínio da freqüência, cujos valores são obtidos através do cálculo da FFT(Fasí 

Fourier Transform).
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Figura 2.4 -  Pulso de Hanning
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Figura 2.5 -  FFT do pulso de Hanning



2.3 MÉTODO ADI-FDTD

O método FDTD é largamente utilizado para resolver problemas relacionados 

com o eletromagnetismo, porém a condição de estabilidade de Courant precisa ser 

satisfeita. Portanto, o passo máximo no tempo é limitado pelo tamanho mínimo da 

célula no domínio computacional, significando que se o objeto em análise apresentar 

dimensões muito menores que o comprimento de onda, o passo no tempo será muito 

menor que o período da onda, o que aumentará em muito o tempo de processamento.

A fim de remover a condição de estabilidade, foi desenvolvido o método ADI- 

FDTD [6] [8]. Com este método, o tamanho do passo no tempo não depende mais da 

condição de estabilidade de Courant, sendo escolhido em função dos erros numéricos 

decorrentes das discretizações.

2.3.1 Discretização Temporal

Uma possibilidade de tomar o método FDTD incondicionalmente estável seria 

através da aplicação da regra trapezoidal para a solução da equação diferencial [12]. 

Neste caso, as equações (2.28) e (2.29) seriam aproximadas por

S > V I + I > V  = R -, AM"*'-AM" (2 42)
2 Aí

E . ,  AM"*1 + X „A M - AV"*1 + AV” AV"*1 -  AV"

2 ' 2 ' At

No entanto, a determinação de AV”+; em função de AV” e AI” é implícita e 

recai na obtenção da solução de um sistema de equações lineares de alta ordem a um 

custo computacional elevado, e que portanto, não é vantajosa em relação ao método 

FDTD condicionalmente estável.

A técnica ADI segue o mesmo principio da regra trapezoidal, mas no lugar da 

média dos somatórios, o próprio somatório em si é dividido em duas parcelas cada



qual com os elementos de mesma orientação

fn+1

y2

a f ;3+1 -  av2? + ak ;7 -  ak ; 3 = /ç;rn+1

y6

At
A M ?  - a m ;,

At
A M ? - AM*

aa/ ;3+1 -  a m ? + a m ; -  am ; 5 = - gr«+l

At
a f ; 7+1+ a f "x7 - c

aa/ ;5+1 -  am "+i + am " -  am ;2 = - g

af^ - af,"
At

A C + A F ; 6 A F ^ - A F ,"  

2 A/
A T/W+l , A rr/l A T̂W+l   A T̂/l

am ; 2+1 -  am ; ; 1+ am " -  aa/ ;3 = - g z4 z4 -  c = ^ —
At

Na figura 2.6 tem-se representados os elementos da equação (2.44.a)

(2.44.a)

(2.44.b)

(2.44.C)

(2.45.a)

(2.45.b)

(2.45.C)

Figura 2.6 -  Elementos do somatório de AV ao redor de AM da equação (2.44.a)



Na forma matricial

AM”+1 -  AM”
(2.46)

MA MB  2MA MB

AV"+l + AV” 
At

(2.47)

onde I va, Zvb, Ema, S mb são matrizes esparsas que possuem dois elementos não 

nulos por linha, um com valor -1 e outro com valor +1, e cujo objetivo é realizar o 

somatório através do produto matricial.

Utilizando a relação

, 1

Neste caso, a determinação de AV em função de AV eAI recai na obtenção 

da solução de um sistema de equações lineares tridiagonal, cuja resolução numérica 

segue um algoritmo próprio a um baixo custo computacional.

A fim de garantir a estabilidade numérica faz-se necessária a inversão dos 

índices n e n+1 no primeiro membro das equações (2.44) e (2.45) a cada iteração, daí a 

origem da sigla ADI. Isto eqüivale à inversão dos índices A e B nas equações (2.49) e

(2.50). Percebe-se neste caso que AV” e AI” referem-se ao mesmo instante de tempo.

AI -  (Y  a + Y  ).AM = y , yAM
víL jM A  Ám JM B J L - d M

(2.48)

obtém-se equações recursivas para AV e AI na forma implícita.

(2.49)

ai ~  = a t + a v (2.50)



2.3.2 Solução de Sistemas de Equações Tridiagonal

A regra utilizada para a enumeração dos nós gera um sistema de equações 

lineares com apenas três coeficientes não nulos em cada equação de (2.49), sendo que 

a matriz de coeficientes é esparsa, mas não apresenta necessariamente a forma 

tridiagonal. É possível utilizar a ordenação reversa de Cuthill-McKee [13], que realiza 

diversas permutações entre linhas e colunas de forma a ter os elementos não nulos 

próximos da diagonal. Esta é a ordenação ótima quando se utiliza o método LU de 

resolução de equações lineares [9].

Na figura 2.7 tem-se uma demonstração da ordenação. São apresentados os 

gráficos antes e depois da ordenação. Estes gráficos representam matrizes esparsas 

onde os pontos são os elementos não nulos.

n2 = 15536 nz = 15536

a) b)
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Figura 2.7 -  Aplicação da ordenação reversa de Cuthill-McKee. a) Antes da ordenação, 

b) Após a ordenação, c) Antes da ordenação ampliado, d) após a ordenação ampliado.

Após a ordenação, obtém-se um sistema de equações tridiagonal do tipo

* u 0  " V V
*2,1 ã 2,2 a 2$

=

0 ^ n j t- 1 ü n,n_ 3 * .

-----------1

(2.51)

Pode-se decompor a matriz de coeficientes A em duas matrizes L e U, sendo 

que cada uma delas apresenta apenas duas diagonais não nulas, tal que

" 4 0 " ‘ l { d ; l .a ^ 2 ) 0

IIsii
< a 2,l d 2 1 d 2 . a 2 3

0 a „ „  , d nn,n—i n _ 0 1

(2.52)

Os elementos da diagonal podem ser determinados por 

di = ati - au - d~\.a,_u , i = 2,3,...,n, ondedx = au (2.53)



O sistema AX = LUX = B é resolvido em duas etapas:

LY = B , (2.54)

UX = Y (2.55)

onde os valores de Y e X são obtidos através

V  — ^  V  — ^  • O _  C f \y\ ~ , >yi — . (2.56)«i ai
x» = y n>xi = y t - a UM.xi+l/d i,i = n-\,...,l. (2.57)

2.3.3 Conclusão

Através da discretização espacial utilizando-se as células de Yee, o método 

FDTD mostra ser um método simples e capaz de simular problemas com as mais 

diversas geometrias e com vários tipos de materiais.

O método FDTD para ser estável necessita satisfazer a condição de estabilidade 

de Courant, que em situações onde as dimensões da estrutura são muito pequenas em 

comparação com o comprimento de onda, faz com que este método utilize muita 

memória e tempo de processamento.

Na tentativa de eliminar a necessidade de satisfazer esta condição de 

estabilidade foi desenvolvido o método ADI-FDTD. Utilizando-se as equações dos 

métodos FDTD e ADI-FDTD apresentados neste capítulo foram realizadas diversas 

simulações que são apresentadas nos capítulos seguintes.



3 OBJETO DE TESTE

3.1 INTRODUÇÃO

Neste capítulo é feita uma descrição das principais características da linha de 

transmissão stripline, que foi a estrutura utilizada nas simulações. Tal escolha se deve 

ao fato do mesmo possuir uma solução analítica de fácil obtenção para comparação 

com os resultados numéricos obtidos.

Em seguida é descrito o programa utilizado para realizar a discretização do 

espaço computacional. É feita uma demonstração da forma como são alocados todos 

os parâmetros necessários para a simulação, como materiais utilizados, fonte de 

excitação, pontos de amostragem, superfícies de absorção e superfícies metálicas.

3.2 LINHA DE TRANSMISSÃO STRIPLINE

A tecnologia de circuitos impressos para microondas avançou 

consideravelmente com a introdução das linhas de transmissão do tipo stripline. Este 

tipo de linha é mostrado na figura 3.1.

Figura 3 .1 -  Linha de transmissão stripline 

A stripline consiste de um condutor central envolto por um material



dielétrico que por sua vez está contido entre duas placas metálicas. Esta linha é uma 

variante das dos cabos coaxiais, como mostrado na figura 3.2.

Figura 3.2 -  Evolução da linha de transmissão stripline

Em geral a stripline é leve, pequeno, fácil de fabricar com as técnicas de 

circuito impresso e de custo acessível. O modo de propagação dominante é o TEM, 

apesar de que em altas freqüências aparecem modos de ordem superior.

Dois importantes parâmetros de qualquer linha de transmissão são a impedância 

característica Z e a constante de fase (3. Como o modo de operação é o TEM, estes 

parâmetros podem ser calculados [14] por

fi = a)y[pê (3.1)

Z =
4

ln 1 + 4 b - t  
a  W

8 b - t
Jt W

8 b - t
u  w d

+ 6,27 (3.2)

onde o  é freqüência angular, r\ = 377Q é a impedância de onda no vácuo, Sr é a



permissividade elétrica relativa do material dielétrico, b é a distância entre os planos 

condutores e W e t sâo a largura e a espessura da fita central, respectivamente.

A fórmula utilizada para o cálculo de Z possui um erro menor que 0,5%, 

quando W/(b-t) < 10.

Na solução analítica utilizou-se esta fórmula que leva em consideração a 

espessura t porque os métodos FDTD e ADI-FDTD têm como característica considerar 

que os planos elétricos e magnéticos possuem uma espessura [2], mesmo quando esta é 

especificada com valor nulo.

3.3 MODELO NUMÉRICO

Para esta simulação foi escolhida uma estrutura do tipo stripline, como a da 

figura 3.1, onde W= 5,4mm, b = 5,4mm, h = b /2 e t  = 0.O  material dielétrico utilizado 

foi o teflon, que possui permissividade elétrica relativa Sr = 2,1. A permeabilidade 

magnética relativa p* é igual a 1.

As dimensões foram escolhidas de tal forma que para uma freqüência de 10 GHz 

o número de células por comprimento de onda seja próximo de vinte, conforme a 

seção 2.2.7.

3.3.1 Definição do Espaço Computacional

Para a entrada dos dados utilizou-se o programa GID (Geometry & Data) 

[15], com o qual se fez de forma gráfica a entrada dos dados do programa, similar aos 

programas de CAD existentes no mercado. Neste programa são definidas as dimensões 

da estrutura, as dimensões das células de Yee(Ax,Ay,Az), o número de iterações, as 

condições de contorno, material utilizado, localização dos planos metálicos e 

magnéticos, pontos de amostragem e localização da fonte de excitação.

Na figura 3.3 tem-se o espaço computacional com a linha de transmissão 

stripline representada no programa GID.



Figura 3.3 -  Tela de entrada de dados do programa GiD

Na definição do espaço computacional, deve-se definir os pontos, as retas, as 

superfícies e finalmente os volumes, nesta seqüência. Cada um destes elementos 

geométricos é definido em função do anterior. Desta forma, uma reta é definida por 

dois pontos, uma superfície por quatro retas e um volume por seis superfícies.

Pode-se selecionar individualmente cada um destes elementos geométricos e 

configurar as suas características.

Os pontos são definidos em uma janela de coordenadas onde são inseridas 

as coordenadas cartesianas do ponto. Definidos pelo menos dois pontos, pode-se 

definir uma reta entre eles, bastando selecionar o ponto inicial e o final da reta. 

Definidas as retas, o programa é capaz de gerar automaticamente uma superfície para 

cada quatro retas que formem um contorno fechado. O volume também é criado de



forma automática, sendo formado por seis superfícies que formem um volume 

fechado. Na figura 3.3, o espaço computacional foi dividido em oito volumes e 38 

superfícies.

3.3.2 Definição das Características Eletromagnéticas dos Volumes

Definido o espaço computacional, deve-se em seguida definir quais os 

materiais utilizados e onde estão presentes. As características dos materiais utilizados 

( Sr, e ct ) são pré-defínidas em um arquivo de configurações que é carregado 

quando especifíca-se o tipo de problema a ser utilizado.

No modelo utilizado o único material presente é o teflon, portanto foram 

selecionados todos os volumes e definidos como sendo constituídos deste material, 

como mostrado na figura 3.4

SI
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Figura 3.4 -  Definição dos materiais utilizados.

As características eletromagnéticas dos materiais serão utilizadas para o cálculo 

das constantes estruturais, conforme descrito na seção 2.2.3.



3.3.3 Definição das Superfícies Metálicas

Foram selecionadas as superfícies superiores, inferiores e centrais, como 

mostrado na figura 3.5, e estas superfícies foram definidas como sendo superfícies 

metálicas. Os elementos de tensão ÁV tangenciais a estas superfícies são anulados 

através da alteração dos valores das respectivas capacitâncias, configurando-as com 

valores infinitos, conforme explicado na seção 2.2.8.

Figura 3.5 -  Superfícies metálicas

3.3.4 Definição das Superfícies de Absorção

As superfícies de absorção foram alocadas de forma a circundar todo o 

perímetro da estrutura, como mostrado na figura 3.6. Antes de definir onde serão 

alocadas as superfícies de absorção, é necessário configurar a condutividade elétrica o 

destas superfícies, uma vez que o valor de a  varia com as dimensões das células de 

Yee utilizadas na simulação, conforme (2.40). Os elementos de potencial magnético 

AM tangenciais a estas superfícies são anulados através da alteração dos valores das 

respectivas relutâncias para valores nulos, conforme explicado na seção 2.2.8.



Figura 3.6 -  Alocação dos planos de absorção

3.3.5 Definição da Malha

Para definir a malha a ser utilizada, deve-se selecionar cada segmento de reta e 

inserir o número de divisões que este deve ter. Segmentos de reta paralelos ao 

selecionado terão o mesmo número de divisões automaticamente.

Utilizaram-se quatro tipos de malhas nas simulações. O primeiro tipo é 

mostrado na figura 3.7. Nesta malha têm-se dezoito divisões na direção de propagação 

z, seis na direção de y e dezoito na direção de x.
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Figura 3.7 -  Malha com 18 divisões uniformes a) Vista em corte. b) Vista superior

Para analisarmos com maior precisão os pontos próximos às bordas da fita 

central, foram realizadas simulações utilizando a malha da figura 3.8. Nela foi 

utilizada uma divisão gradual do tamanho das células na direção de x, sendo que as 

menores células se encontram próximas às bordas da fita central.



Nesta malha o número de divisões permanece o mesmo, variando apenas o 

tamanho das células na direção de x.

L
Figura 3.8 -  Malha com 18 divisões graduais.

Uma terceira malha foi criada com um maior número de divisões, para verificar 

se os resultados obtidos com uma maior discretização seriam mais precisos. Esta 

malha apresenta uma divisão gradual no tamanho das células com vinte e quatro 

divisões na direção x, conforme a figura 3.9 .

L

Figura 3.9 -  Malha com 24 divisões graduais.



Para verificar a dependência da precisão em função do tamanho das células na 

direção de propagação, utilizamos uma malha com dezoito divisões iguais na 

direção de x, seis na direção de y e vinte e quatro na direção de z, conforme a 

figura 3.10.

L

a)

b)

Figura 3.10 -  a) Vista frontal da malha uniforme de 18 divisões em x. b) Vista superior da malha 

com 24 divisões em z.



A fonte foi alocada em série com a fita metálica central, como mostrado na 

figura 3.11, de acordo com a equação (2.41).

y
x H Uz 1

Figura 3 .11-  Alocação dos elementos da fonte

Foi alocada uma fonte de tensão na direção de propagação z em cada uma das 

células do conjunto, de modo a todas estarem em paralelo.

Para representar os elementos da fonte é criada uma matriz esparsa com 

elementos unitários não nulos. As colunas representam os índices dos conjuntos das 

fontes, e os elementos não nulos são alocados nas linhas correspondentes aos nós 

definidos através da malha.



As tensões foram amostradas em três conjuntos de células no plano vertical 

central, conforme a figura 3.12.

Figura 3.12-  Alocação dos pontos de amostragem da tensão

As tensões em cada conjunto de células são somadas, de modo a obter a 

tensão entre o plano inferior e a fita central no caminho formado pelas células de cada 

conjunto. Como em cada célula existem dois elementos de tensão, deve-se dividir o 

resultado da soma por dois.

Para representar os elementos das amostras de tensão é criada uma matriz 

esparsa com elementos unitários não nulos. As colunas representam os índices dos 

conjuntos das amostras, e os elementos não nulos são alocados nas linhas 

correspondentes aos nós definidos através da malha.



As correntes foram amostradas em três conjuntos de pontos da fita metálica 

central, e cada conjunto possui a mesma coordenada z que o conjunto de amostras de 

tensão com índice correspondente, conforme a figura 3.13.

y
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Figura 3.13-  Alocação dos pontos de amostragem de corrente

As correntes na direção de propagação z das células de cada conjunto são 

somadas, de forma a se obter a corrente total na seção transversal que contém as 

células amostradas.

De forma semelhante às amostras de tensão, as amostras de corrente são 

representadas por uma matriz esparsa com elementos não nulos unitários, com as 

colunas representando o índice do conjunto e as linhas correspondem aos nós definidos 

através da malha.

3.3.9 Definição dos Parâmetros Gerais

Os dados iniciais da simulação como permeabilidade magnética do vácuo, 

permissividade elétrica do vácuo, dados da fonte e número de iterações foram



configurados conforme a figura 3.14.
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Figura 3.14 -  Janela de configuração de parâmetros do GiD

Deve-se observar que o programa GiD é utilizado para a definição da 

geometria, materiais, condições do espaço computacional e também para a geração e 

numeração da malha, porém a maneira como estes dados serão utilizados é 

especificada pelo usuário através da anexação de um arquivo *.bas, no qual foi 

implementado o método FDTD ou ADI-FDTD (anexo I), dependendo do método que 

se deseja simular.

Após a entrada de todos os dados da simulação, o programa GID interpreta 

os comandos do arquivo *.bas e gera um arquivo *.m compatível com o programa de 

simulação numérica Matlab. O conteúdo deste arquivo é executado utilizando o 

programa Matlab e desta forma obtêm-se os resultados da simulação, ou seja, os 

valores de tensão e corrente nos pontos de amostragem em função do tempo.

3.4 DETERMINAÇÃO DOS PARÂMETROS DO GUIA DE ONDA

Feita a simulação, obtém-se as tensões e as correntes em três pontos distintos 

da estrutura, através do somatório das tensões e correntes dos conjuntos de células 

escolhidas anteriormente. É então calculada a FFT (Fast Fourier Transform) das



tensões e correntes obtidas para calcular a constante de fase p e a impedância 

característica Z em função da freqüência.

A constante de fase p pode ser obtida por

y -  —arccos/z 
d

( v , - v A 1= —arccos/z 3 1

J d l  h  )
(3.3)

Como estamos utizando uma estrutura sem perdas, pode-se utilizar a 

aproximação |P| = |y|.

Com P calculado, pode-se calcular a impedância característica por

z = V1.eld- V 3.e~jd
/, je T - I%£-yd (3.4)

onde Vi, V2 , V3, li, I2 e I3 são as transformadas de Fourier das amostras de tensão e 

de corrente obtidas do conjuntos 1 ,2 e 3 respectivamente, e d é  a distância entre os 

conjuntos na direção de propagação.



4 RESULTADOS E DISCUSSÕES

4.1 INTRODUÇÃO

Neste capítulo é analisada a eficiência e precisão do método ADI-FDTD, 

aplicado ao estudo de problemas tridimensionais. Para tanto foi implementado um 

programa computacional tendo como plataforma o Matlab e foram realizadas diversas 

simulações com uma linha de transmissão stripline. Os resultados obtidos são 

comparados com as soluções analíticas e também com simulações realizadas 

utilizando o método FDTD.

4.2 DEPENDÊNCIA EM RELAÇÃO À FREQÜÊNCIA

Para avaliar a precisão do método ADI-FDTD, procurou-se realizar uma 

comparação com o método FDTD convencional. Para tanto foram feitas diversas 

simulações com a freqüência centralde excitação, em (2.41), variando de 500MHz 

até 20GHz, para ambos os métodos.

Em cada simulação foram calculados os valores de p e Z que foram 

comparados com os valores teóricos e depois foram traçadas as curvas de erro de 

acordo com a definição

e = (™lorsbatlado-valorteárico)
valor,teórico

(4.1)

O tamanho da estrutura foi escolhido de tal forma que na freqüência de 

10GHz o número de células por comprimento de onda seja próximo de vinte. O passo 

no tempo foi de 2,5ps, que é o máximo valor obtido através da condição de Courant.

A espessura da fita central para o cálculo dos valores teóricos foi proporcional 

ao tamanho da célula utilizada, sendo que o valor utilizado foi 0,135 da dimensão da 

célula Ay que possui a mesma direção que a espessura t [15]. A largura W utilizada



teve o seu valor acrescido de 0,27 vezes Ax. Já a distância entre os planos condutores b 

teve o seu valor diminuído de 0,27 vezes Ay.

Primeiramente calcularam-se os valores de p e Z em função dos pontos de 

amostragem de tensão, e obteve-se a tabela 1. Em seguida foram calculadas p e Z 

novamente, porém desta vez calculando os valores em função das amostras de 

corrente.

Ambos utilizaram a discretização espacial mostrada na figura 3.7.

TABELA 1 -  ERRO DE Z E p EM FUNÇÃO DA TENSÃO
CÁLCULO COM BASE NA TENSÃO

ADI-FDTD FDTD TEÓRICO
Freq(GHz) Z Erro(%) Beta | Erro(%) Z | Erro(%) | Beta | !UJ 2 | Beta

0,5 40,87 0,24 0,0155 2,07 74,64 83,07 0,0014 90,78 40,77 0,0152
1 40,87 0,24 0,0306 0,75 68,02 66,83 0,0034 88,81 40,77 0,0304
2 40,87 0,24 0,0617 1,58 47,03 15,35 0,0330 45,67 40,77 0,0607
4 40,85 0,19 0,1238 1,91 41,64 2,13 0,1128 7,15 40,77 0,1215
6 40,78 0,02 0,1864 2,29 41,74 2,37 0,1810 0,67 40,77 0,1822
8 40,66 0,28 0,2495 2,69 41,83 2,59 0,2458 1,16 40,77 0,2430
10 40,43 0,84 0,3133 3,16 41,31 1,32 0,3123 2,83 40,77 0,3037
12 40,25 1,28 0,3781 3,74 40,63 0,35 0,3760 3,17 40,77 0,3645
14 39,94 2,04 0,4441 4,45 40,42 0,87 0,4350 2,31 40,77 0,4252
16 39,53 3,05 0,5114 5,24 39,99 1,92 0,4996 2,81 40,77 0,4859
18 39,03 4,27 0,5802 6,13 39,35 3,49 0,5672 3,75 40,77 0,5467
20 38,57 5,40 0,6494 6,91 37,05 9,13 0,6389 5,18 40,77 0,6074

TABELA 2 -  ERRO DE Z E p EM FUNÇÃO DA CORRENTE
CÁLCULO COM BASE NA CORRENTE

ADI-FDTD FDTD TEÓRICO
Freq(GHz) 2 | Erro(%) | Beta | !LU Z | Erro(%) Beta Erro(%) z I Beta

0,5 40,87 0,24 0,0166 9,31 42,10 3,25 0,0153 0,75 40,77 0,0152
1 40,87 0,24 0,0318 4,70 42,02 3,06 0,0308 1,41 40,77 0,0304
2 40,86 0,21 0,0633 4,21 42,07 3,18 0,0620 2,07 40,77 0,0607
4 40,83 0,14 0,1269 4,46 41,24 1,15 0,1243 2,32 40,77 0,1215
6 40,79 0,04 0,1909 4,76 42,19 3,48 0,1860 2,07 40,77 0,1822
8 40,71 0,15 0,2552 5,03 41,82 2,57 0,2462 1,33 40,77 0,2430
10 40,53 0,60 0,3199 5,33 41,41 1,56 0,3076 1,28 40,77 0,3037
12 40,23 1,33 0,3851 5,66 40,03 1,82 0,3682 1,03 40,77 0,3645
14 39,86 2,24 0,4510 6,07 40,60 0,42 0,4295 1,01 40,77 0,4252
16 39,50 3,12 0,5182 6,64 39,82 2,34 0,4896 0,75 40,77 0,4859
18 39,12 4,05 0,5866 7,30 38,65 5,21 0,5538 1,30 40,77 0,5467
20 38,75 4,96 0,6580 8,33 36,40 10,73 0,6190 1,91 40,77 0,6074

Os valores de erro obtidos para Z e P são mostrados graficamente nas

figuras 4.1 e 4.2, respectivamente.
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Figura 4.1 -  Erro de Z em função de fò para malha da figura 3.7
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Observa-se que o método ADI-FDTD apresenta um melhor resultado em 

baixas freqüências, e também uma taxa de variação mais suave, sem mudanças 

abruptas. Uma possível causa para este comportamento é o fato do método FDTD estar 

com o passo no tempo no limite da estabilidade, sendo que nestas condições uma 

pequena imprecisão nos cálculos pode causar uma grande erro nos resultados. O 

método FDTD apresentou uma faixa estreita de utilização, com valores de erro 

aumentando rapidamente para freqüências abaixo de 4GHz e acima de 18GHz.

Para a constante de fase o método FDTD apresentou melhores resultados, 

apesar de que quando calculado através da tensão os erros se tomaram maiores para as 

baixas freqüências. Para verificar se o motivo destes erros não são modos evanescentes 

que se propagam na estrutura, fez-se uma simulação com a estrutura sem a fita central. 

Nestas condições não se deveria verificar nenhum modo se propagando, e foi o que se 

observou, descartando-se assim a hipótese dos modos evanescentes.

Percebe-se ainda que o método ADI-FDTD apresenta melhor precisão nos 

resultados de Z do que nos de p.

Para comparar a desempenho computacional de ambos os métodos, anotou-se 

na tabela 3 o tempo gasto em cada simulação . As simulações foram realizadas 

utilizando um microcomputador com CPU AMD K6-2 operando à 475MHz.

TABELA 3 -  TEMPO DE SIMULAÇÃO COM At =2,5 ps

Frea.íGHz) ITERAÇÕES ADI-FDTDÍsl FDTDÍsl ADI-FDTD/FDTD
0,5 8000 704,97 276,01 2,55
1 4000 328,07 130,00 2,52
2 2000 167,48 65,48 2,56
4 1000 88,27 35,87 2,46
6 700 65,09 27,68 2,35
8 550 54,93 23,34 2,35
10 450 47,00 20,54 2,29
12 450 47,08 20,27 2,32
14 450 47,36 20,60 2,30
16 450 46,87 20,60 2,28
18 450 47,56 20,61 2,31
20 450 47.36 20.64 2.29



Nas simulações com freqüência abaixo de 10GHz o número de iterações e a 

duração da excitação da fonte foram ajustados de forma que as simulações tivessem o 

mesmo número de períodos que na simulação com 10GHz . Já nas freqüências acima 

de 10GHz estas se mantiveram constantes para evitar que a faixa de freqüências 

excitadas fosse muito larga, pois quanto menor a duração do pulso de excitação da 

fonte, maior a largura da faixa de freqüências.

Os valores obtidos no cálculo do tempo podem variar um pouco pois a 

simulação foi realizada utilizando-se o sistema operacional Windows 98, e como o 

mesmo é multitarefa, em alguns instantes algumas linhas de execução podem 

concorrer pelos recursos da CPU, acarretando em um maior tempo de simulação. 

Porém este erro geralmente é pequeno, não comprometendo os resultados obtidos.

Observando os resultados obtidos percebe-se que o método ADI-FDTD é 

cerca de 2,38 vezes mais lento em comparação com o método FDTD para o problema 

estudado.

Com relação à memória, o método ADI-FDTD utilizou cerca de 2,61 vezes 

mais que o método FDTD.

4.4 DEPENDÊNCIA EM RELAÇÃO AO PASSO DE TEMPO DE SIMULAÇÃO

Como para o método ADI-FDTD não há a necessidade de que o passo no 

tempo respeite a condição de Courant, foram realizadas diversas simulações alterando 

o passo no tempo. Essas simulações foram feitas com freqüências entre 1GHz até 

8GHz, sempre dobrando a freqüência, e os resultados obtidos foram salvos na tabela 4 

e os gráficos de Z para as freqüências de 1 ,2 ,4  e 8 GHz são mostrados na figura 4.3. 

Procedimento similar foi realizado para |3, e as curvas para 1, 2, 4 e 8GHz são 

mostradas na figura 4.4.
TABELA 4 -  ERRO DE Z E p EM FUNÇÃO DE At

Passo no 1GHz 2GHz 4GHz 8GHz
Tempo(ps) Z(%) I Beta(%) Z(%) | Beta(%) Z(%) I Beta(%) Z(%) | Beta(%)
2,5 0,24 2,07 0,24 2,07 0,19 2,89 0,15 2,84
5 1,92 6,68 1,97 6,84 2,19 7,85 3,93 9,88
7,5 4,96 12,61 5,01 12,94 5,35 14,88 9,35 21,89
10 8,44 18,86 8,64 19,85 7,41 26,45 35,06 69,14
12,5 12,49 25,78 11,85 27,09 12,86 31,49 0,11 39,26
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Figura 4.4 -  Erro de (3 em função de At

O passo no tempo se inicia no valor de 2,5ps, que é o maior passo permitido se 

fosse utilizado o método FDTD pois este é o valor obtido da condição de Courant. É 

possível verificar que quanto maior é a freqüência, maior o erro em módulo. Verifica- 

se também que para a freqüência de 8GHz os erros se tomam muito altos para um 

passo no tempo maior que lOps.



4.4 DEPENDÊNCIA EM RELAÇÃO ÀS DIMENSÕES DAS CÉLULAS

Em uma linha de transmissão do tipo stripline, as linhas do campo elétrico e 

magnético se concentram nas proximidades da fita central, e são mais espaçadas nas 

proximidades dos planos externos como pode ser observado na figura 3.2.c. As duas 

extremidades da fita central são pontos que, devido à espessura, dificultam o cálculo 

dos campos elétricos e magnéticos. Para tentar melhorar a precisão dos valores da 

simulação, o tamanho da célula foi feito gradual na direção de x, com células menores 

próximas às bordas da fita central, como mostrado na figura 3.8.

Com esta nova malha com 18 divisões graduais, simulou-se novamente 

utilizando o método ADI-FDTD, variando o passo no tempo. Cabe observar que se 

fosse utilizado o método FDTD, ao se diminuir o tamanho das células, mesmo que 

somente nas extremidades da fita central, o passo no tempo teria que ser diminuído.

Os valores obtidos foram salvos na tabela 5.

TABELA 5 -  ERRO DE Z E p EM FUNÇÃO DA FREQÜÊNCIA COM MALHA DE 18 DIVISÕES GRADUAIS

Passo no 1GHz 2GHz 4GHz 8GHz
Tempo(ps) Z(%) | Beta(%) Z(%) Beta(%) Z(%) Beta(%) Z(%) Beta(%)
2,5 0,47 2,07 0,54 2,07 0,18 3,31 2,73 3,29
5 1,40 8,65 1,54 8,65 2,12 9,09 4,16 11,11
7,5 4,06 15,24 4,43 15,24 5,13 16,53 10,29 24,69
10 7,31 21,83 7,94 23,47 8,48 26,45 35,80 69,14
12,5 10,95 29,40 11,80 30,88 13,86 31,49 1,25 39,26

Foram também realizadas simulações com uma malha gradual com um maior 

número de células na seção transversal a fita central, no caso 24 células. Procurou-se 

com isso verificar se com as malhas concentradas nas bordas da fita central e um 

maior número de divisões tem-se uma melhor precisão. A malha utilizada é mostrada 

na figura 3.9 e os resultados obtidos são mostrados na tabela 6.



TABELA 6 -  ERRO DE Z E 0 EM FUNÇÃO DA FREQÜÊNCIA COM MALHA DE 24 DIVISÕES GRADUAIS

Passo no 1GHz 2GHz 4GHz 8GHz
Tempo(ps) Z(%) | Beta(%) Z(%) | Beta(%) Z(%) I Beta(%) Z(%) Beta(%)
2,5 0,47 3,72 0,51 3,22 0,06 3,47 0,28 3,50
5 2,23 8,65 2,37 8,65 2,95 9,09 4,97 11,11
7,5 4,87 15,24 5,23 15,24 5,93 16,53 11,05 24,69
10 8,09 21,83 8,72 23,47 9,25 26,45 36,34 69,14
12,5 11,70 29,40 12,54 30,88 14,58 31,49 2,08 39,26

Para verificar a dependência da precisão em função do tamanho das células 

na direção de propagação, criou-se uma nova malha com dezoito divisões iguais na 

direção de x, seis na direção de y e vinte e quatro na direção de z, conforme a figura 

3.10 e os resultados obtidos foram salvos na tabela 7.

TABELA 7 -  ERRO DE Z E p EM FUNÇÃO DA FREQÜÊNCIA COM MALHA DE 24 DIVISÕES GRADUAIS 
NA DIREÇÃO DE PROPAGAÇÃO

Passo no 1 GHz 2 GHz 4GHz 8GHz
Tempo (ns) Z(%) Beta(%) Z(%) | Beta(%) Z(%) Beta(%) Z(%) Beta(%)

2,50 0,78 0,75 0,80 1,41 0,75 2,31 0,04 2,59
5,00 0,99 6,02 1,01 6,51 1,31 7,69 3,74 9,67
7,50 3,56 11,95 3,56 12,61 4,08 14,63 9,16 21,60
10,00 6,73 18,53 6,53 19,52 7,34 23,39 6,48 28,48
12,50 10,23 25,45 9,47 26,93 8,86 23,22 35,94 101,19

Para realizar uma melhor comparação entre os resultados obtidos com os 

tipos de malhas utilizados, foram feitos os gráficos dos erros em função do passo no 

tempo para as freqüências de 1, 2, 4 e 8 GHz. Na figura 4.5 tem-se o erro da 

impedância característica em função do passo no tempo para a freqüência de 1GHz. 

Na figura 4.6 tem-se o erro para a constante de fase para a mesma freqüência.



-Malha uniforme com 18 em x / 18 em z — Malha gradual com 18 em x / 18 em z 
-Malha gradual com 24 em x / 18 em z Malha uniforme com 18 em x/ 24 em z

At (ps)

Figura 4.5 -  Z em função de At para a freqüência de 1GHz.

-Malha uniforme com 18 em x / 18 em z —B— Malha gradual com 18 em x / 18 em z 
- Malha gradual com 24 em x /18 em z —x— Malha uniforme com 18 em x / 24 em z

At (ps)

Figura 4.6 (3 em função At para a freqüência de 1GHz.

Observa-se que a malha uniforme com 18 divisões em x e 24 divisões em z foi a 

que obteve os melhores resultados, embora a diferença seja muito pequena. As malhas 

graduais, quando comparadas com a malha homogênea com 18 divisões em x e z, 

trouxeram uma pequena melhoria nos valores de Z, porém os valores obtidos para (3



foram piores. É interessante observar que a malha gradual com 18 divisões foi mais 

precisa do que a gradual de 24 divisões. Comportamento semelhante ao observado na 

freqüência delGHz ocorreu para a freqüência de 2GHz, como observamos nas figuras 

4.7 e 4.8

-Malha uniforme com 18 em x /18  em z — malha gradual com 18 em x /1 8  em z

-Malha gradual com 24 em x /1 8  em z Malha uniforme com 18 em x 7 24 em z

At (ps)

Figura 4.7 -  Z em função de At para a freqüência de 2GHz.

Malha uniforme com 18 em x / 18 em z — Malha gradual com 18 em x / 18 em z 
Malha gradual com 24 em x /18 em z —X— Malha uniforme com 18 em x / 24 em z

At (ps)



A partir de 4GHz observa-se que as malhas graduais passam a ter os maiores 

erros, tanto para Z quando para J5, como observa-se nas figuras 4.9 e 4.10

-Malha uniforme com 18 em x / 18 em z —S—Malha gradual com 18 em x / 18 em z 
- Malha gradual com 24 em x /18 em z — Malha uniforme com 18 em x / 24 em z

At (ps)

Figura 4.9 -  Z em função de At para a freqüência de 4GHz.

-Malha uniforme com 18emx/18emz 
-Malha gradual com 24 em x / 18 em z -X-

- Malha gradual com 18 em x /18 em z 
-Malha uniforme com 18 em x/ 24 em z

At (ps)

Figura 4.10 (3 em função At para a freqüência de 4GHz.



Para a freqüência de 8 GHz, os erros aumentam muito quando o passo no tempo 

é maior que 7,5 os, independente da malha utilizada, como observa-se na figura 4.11 e 

4.12.

Malha uniforme com 18 em x / 18 em z — Malha gradual com 18 em x / 18 em z 
Malha gradual com 24 em x /18 em z -H*-~ Malha uniforme com 18 em x / 24 em z

At (ps)

Figura 4.11 -  Z em função de Àt para a freqüência de 8GHz.

Malha homogênea com 18emx/18emz —* —Malha gradual com 18emx/18emz 
Malha gradual com 24 em x /18 em z —**-~Malha homogênea com 18 em x / 24 em z

At (ps)



Na tabela 8 tem-se o At fixo em 2,5ps, e as simulações foram feitas utilizando o 

método ADI-FDTD para as malhas graduais de 24 e 18 células na direção de x, e as 

freqüências variando de 500MHz até 20GHz. Os valores obtidos para Z e 3 foram 

traçados nas figuras 4.13 e 4.14, respectivamente. Nestas figuras têm-se a curva 

representando o método ADI-DTD aplicado para a malha homogênea com 18 divisões 

em x e 18 em z, a curva representando o mesmo método aplicado à malha com 18 

divisões concentradas nas bordas da fita central, também a curva com o método ADI- 

FDTD aplicado à malha gradual concentrada nas bordos da fita central, porém com 24 

divisões, a curva com o método ADI-FDTD aplicado a malha com 18 divisões em x e 

24 divisões na direção de z (cujos resultados são mostrados na tabela 9) e a curva que 

representa o método FDTD convencional com malha homogênea e amostras de 

corrente .

TABELA 8 -  ERRO DOS VALORES DE Z E p EM FUNÇÃO DA FREQÜÊNCIA COM At=2,5ps
ADI-FDTD COM 24 DIVISÕES ADI-FDTD COM18 DIVISÕES TEÓRICO

Freq(GHz) Z % | Beta % z  I % I Beta | % Z PARA 24|Z PARA 18 Beta
0,5 41,71 0,27 0,0154 1,41 41,41 0,40 0,0156 2,73 41,596 41,246 0,0152
1 41,79 0,47 0,0311 2,40 41,44 0,47 0,0310 2,07 41,596 41,246 0,0304
2 41,81 0,51 0,0622 1,97 41,47 0,54 0,0620 1,64 41,596 41,246 0,0610
4 41,62 0,06 0,1248 1,46 41,32 0,18 0,1250 1,63 41,596 41,246 0,1230
6 41,57 0,06 0,1881 3,35 41,25 0,01 0,1880 3,30 41,596 41,246 0,1820
8 41,48 0,28 0,2511 3,33 41,12 0,31 0,2510 3,29 41,596 41,246 0,2430
10 41,04 1,34 0,3161 4,08 40,83 1,01 0,3150 3,72 41,596 41,246 0,3037
12 40,62 2,35 0,3808 4,48 40,48 1,86 0,3800 4,26 41,596 41,246 0,3645
14 39,99 3,86 0,4479 5,34 40,00 3,02 0,4462 4,94 41,596 41,246 0,4252
16 39,42 5,23 0,5161 6,21 39,46 4,33 0,5140 5,77 41,596 41,246 0,4859
18 38,67 7,03 0,5860 7,19 38,80 5,93 0,5833 6,70 41,596 41,246 0,5467
20 37,42 10,04 0,6564 8,06 38,00 7,87 0,6530 7,50 41,596 41,246 0,6074



TABELA 9 -  ERRO DOS VALORES DE Z E p EM FUNÇÃO DA FREQÜÊNCIA COM At=2,5ps

HOMOGÊNEA 24 DIVISÕES EM Z TEÓRICO
FREQÜÊNCIA z I Z(%) I BETA | BETA(%) z I BETA
0,5 40,00 -1,90 0,0150 -1,22 40,773 0,0151857
1 41,09 0,78 0,0306 0,75 40,773 0,0303714
2 41,10 0,80 0,0616 1,41 40,773 0,0607427
4 41,08 0,75 0,1238 1,91 40,773 0,1214854
6 40,98 0,51 0,1863 2,23 40,773 0,1822282
8 40,79 0,04 0,2493 2,60 40,773 0,2429709
10 40,54 0,57 0,3130 3,06 40,773 0,3037136
12 40,22 1,36 0,3774 3,55 40,773 0,3644563
14 39,84 2,29 0,4428 4,14 40,773 0,425199
16 39,35 3,49 0,5094 4,83 40,773 0,4859418
18 38,77 4,91 0,5772 5,58 40,773 0,5466845
20 38,16 6,41 0,6452 6,22 40,773 0,6074272

“ ♦"“ Método ADI-FDTD com malha uniforme com 18emx/18emz 

*  Método ADI-FDTD com malha gradual com 18emx/18emz

  Método ADI-FDTD com malha gradual com 24 em x /18 em z
X— Método ADI-FDTD com malha uniforme com 18 em x / 24 em z

Método FDTD com malha uniforme com 18 emx /18 em z e amostras de corrente

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
fo (GHz)



"“■♦“"Método ADI-FDTD com malha uniforme com 18emx/18emz 

Método ADI-FDTD com malha gradual com 18emx/18emz 

Método ADI-FDTD com malha gradual com 24 em x /18 em z 

Método ADI-FDTD com malha uniforme com 18 em x / 24 em z 

Método FDTD com malha uniforme com 18emx/18emze amostras de corrente

fo (GHz)

Figura 4.14 -  Comparação do erro de (3 em função de fò

4.5 INTERPRETAÇÃO DOS RESULTADOS

Para o valor de Z, o método ADI-FDTD apresentou valores mais precisos até 

freqüências próximas de 10GHz, a partir de onde o método FDTD se toma melhor até



cerca de 17GHz. O método FDTD apresenta uma curva de erro com variação abrupta, 

tendo vários pontos de máximo e mínimo.

Para os valores de P a partir de 6GHz o método FDTD convencional com 

amostras de corrente apresenta melhores resultados, porém quando calculado através 

das amostras de tensão o erro aumenta drasticamente para valores inferiores a 4GHz.

Observa-se que para baixas freqüências no método FDTD existe uma grande 

diferença entre os valores obtidos com base na tensão e os obtidos com base na 

corrente, sendo que os melhores resultados são obtidos com a corrente, tanto para Z 

quanto para p.

No método ADI-FDTD os valores de Z obtidos através dos valores de (3 

calculados com amostras de tensão e os obtidos com amostras de corrente são muito 

próximos, ao passo que para (3 os melhores valores são obtidos com base na tensão.

Computacionalmente, o método ADI-FDTD é mais dispendioso que o método 

FDTD convencional, necessitando de cerca de 2,5 vezes mais tempo de processamento 

para o mesmo número de iterações. Porém como o algoritmo do método ADI-FDTD é 

incondicionalmente estável, observou-se que para freqüência abaixo de 4GHz, é 

possível manter o erro no cálculo de Z abaixo de 5% com um passo no tempo de 

simulação de até três vezes o máximo valor determinado pela condição de Courant.

Quando se reduz a dimensão das células ao longo do eixo x, conforme as 

figuras 3.8 e 3.9, não é obtida nenhuma melhora significativa em baixas freqüências, 

sendo que os erros aumentam em alta freqüência, conforme os gráficos 4.13 e 4.14. Já 

quando se altera o passo no tempo de simulação, este tipo de malha apresenta uma 

pequena variação no erro tanto de Z quando de (3, sendo para menos em baixas 

freqüências e para mais em altas freqüências.

Quando a dimensão das células ao longo do eixo z é alterada, em relação a 

freqüência ocorre um pequeno aumento no erro de Z, e uma diminuição no erro de P o 

que é esperado já que a onda propaga-se nesta direção.



4.6 CONCLUSÃO

De acordo com os resultados apresentados neste capítulo, conclui-se se que o 

método ADI-FDTD apresenta bons resultados, com valores obtidos muito próximos 

dos calculados analiticamente, sendo que para freqüências onde as dimensões das 

células são menores que 1/20 do comprimento de onda o método ADI-FDTD foi 

melhor que o método FDTD.

Em contrapartida, o método ADI-FDTD é menos eficiente 

computacionalmente, necessitando de cerca de duas vezes e meia o tempo gasto pelo 

método FDTD para realizar o mesmo tipo de simulação.

O método ADI-FDTD apresenta melhor precisão nos resultados de Z do que 

nos de (3.

Um aumento do número de células é mais eficiente na direção de propagação da 

onda, principalmente em relação ao passo no tempo, diminuindo tanto os erros de Z 

quanto os de P .



5 CONCLUSÃO GERAL

Neste trabalho desenvolveu-se um estudo da precisão do método ADI-FDTD 

através da sua aplicação na simulação em um guia de onda do tipo stripline. 

Foram feitas comparações com os resultados obtidos analiticamente e através do 

método FDTD. As simulações foram realizadas utilizando-se elementos de 

tensão e corrente, em vez de campo elétrico e magnético, como é normalmente 

encontrado nos trabalhos sobre o assunto. Através da simulação de um transitório 

eletromagnético foram calculados os erros em função da variação da freqüência 

da fonte de excitação, da variação do passo no tempo e da variação da 

discretização espacial.

Em relação à freqüência o método ADI-FDTD se mostrou preciso e em 

freqüências onde as dimensões das células são menores que 1/20 do 

comprimento de onda os resultados obtidos foram melhores do que com o 

método FDTD.

Através dos resultados obtidos verificou-se que o método ADI-FDTD é 

cerca de 2,38 vezes mais lento e requer 2,61 vezes mais memória que o método 

FDTD para o problema analisado.

Na estrutura simulada ao se calcular o valor de Z para freqüências abaixo 

de 4GHz obteve-se um erro menor que 5% com um passo de 7,5ps, muito 

próximo dos 3% obtido com o método FDTD com o passo máximo de 2,5ps. 

Nestas freqüências o erro no cálculo do valor de (5 aumenta linearmente com o 

passo no tempo para o método ADI-FDTD, sendo que, com um passo no tempo 

de 7,5ps, temos um erro de cerca de 12%.

A utilização do método ADI-FDTD é vantajosa quando as dimensões das 

células são muito menores que 1/20 do comprimento de onda que se propaga na 

estrutura, pois nestas condições o erro de Z é menor do que quando se utiliza o 

método FDTD convencional, e os valores obtidos para P em ambos os métodos 

são muito próximos. Como o método ADI-FDTD é incondicionalmente estável,



se o interesse for apenas no cálculo de Z, pode-se ainda aumentar o passo no 

tempo até cerca de três vezes o valor imposto pela condição de Courant, assim o 

método ADI-FDTD se toma mais rápido que o método FDTD convencional.

Como sugestões de temas para trabalhos futuros, tem-se a investigação das 

causas do grande erro encontrado para os valores de Z e P em baixas freqüências 

quando se utiliza o método FDTD convencional com amostras de tensão. Pode-se 

também realizar o estudo da utilização do método ADI-FDTD em outros tipos de 

linhas de transmissão. Como neste trabalho foram utilizados valores de tensão e 

corrente, uma continuidade seria a implementação de uma interface direta com 

modelos de componentes eletrônicos discretos.



ANEXO I

ARQUIVO ADI_FDTD.BAS

Arquivo ADI_FDTD.bas no qual foi implementado o método ADI-FDTD. 

Este arquivo é utilizado pelo programa GiD para gerar o arquivo ADIFDTD.m 

que é executado no programa Matlab versão 4.2c. 1. Os comandos do programa 

GiD são precedidos do símbolo *, e o símbolo para a multiplicação é **. O 

restante da sintaxe segue a estrutura adotada pelo programa Matlab.

VoPROJETO: *GenData(l)

clear ali 
tic

epo = *GenData(2); 
muo = *GenData(3); 
sgc = *GenData(4);
T = *GenData(5);
F = *GenData(6); 
dt = *GenData(7);
N = *GenData(8); 
elems = [
*set elems(Hexahedra)
*loop elems
*ElemsConec *ElemsMat;
*end
];
mats = [
*loop materiais
*M atProp(l) *MatProp(2) *MatProp(3) *MatNum; 
*end 
1;

nodes = [
*loop nodes
*NodesCoord *NodesNum;
*end
1;



pec = [
*set elems(Quadrilateral)
*set cond PEC 
*loop elems OnlyinCond 
*ElemsConec *cond(l);
*end
J;

anypec = pec~=0>

pm c= [
*set e!ems(Hexahedra)
*set cond PMC 
*Ioop elems OnlyinCond 
*GlobalNodes *cond(l) *ElemsNum; 
*end 
];

anypmc = pmc~^=[]; 

source = [
*set elems(Quadrilateral)
*set cond FONTE 
*loop elems OnlyinCond 
*ElemsConec *\ 
*if(strcm p(cond(l),"Ux")=0)
1*\
*endif
*if(strcmp(cond(l),"Uy")==0)
2 *\
*endif
* if(strcmp(cond( 1)," Uz" )= 0 )
3 *\
*endif
*cond(2);
*end
J;

anysource = source-^ [];

voltage = [
*set cond TENSÃO 
*loop elems OnlyinCond 
*ElemsConec *\ 
*if(strcm p(cond(l),"Vx")=0)
1*\
*endif
*if(strcm p(cond(l),"Vy")=0)
2 *\



*endif
*if(strcm p(cond(l),"V z")=0)
3 *\
*endif
*cond(2);
*end
];

anyvoltage = voltage~=[]; 

current = [
*set cond CORRENTE 
*loop elems OnlyinCond 
*EIemsConec *\
*if(strcm p(cond(l),"lx")=0)
1*\
*endif
*if(strcmp(cond(l),,Ty”)= 0 )
2 *\
*endif
*if(strcmp(cond(l),’Tz,,)= 0 )
3 *\
*endif
*cond(2);
*end
1;

anycurrent = current~=Q;

x = 0; y = length(nodes); z = 2**y; w = 3**y; % VERSORES

source(:,5) = (source(:,5)-l)**y; 
voltage(:,5) = (voltage(:,5)-l)**y; 
current(:,5) = (current(:,5)-l)**y;

% RENUMERAÇÃO DOS NÓS DE ACORDO COM COORDENADAS 
CRESCENTES (X,Y,Z)

maxnodes = max(nodes);

magnitude = nodes(:,l)**le2+... 
nodes(:,2)**le4+... 
nodes(:,3)**le6;

[magnitude order] = sort(magnitude);

nodes = nodes(order,:);



[order reorder]=sort(order);

elems(:,l:8) = sort(reshape(reorder(elem s(:,l :8)),size(elems(:,l:8)))')'; 
if(anypec)
pec(:,l :4) = sort(reshape(reorder(pec(:,l :4)),size(pec(:,l :4)))')';
end
if(anypmc)
pm c(:,l :4) = sort(reshape(reorder(pm c(:,l :4)),size(pmc(:,l :4)))')'; 
end
if(anysource)
source(:,l:4) = sort(reshape(reorder(source(:,l:4)),size(source(:,l:4)))')'; 
end
if(anyvoltage)
voltage(:,l :4) = sort(reshape(reorder(voItage(:,l:4)),size(voItage(:,l:4)))')'; 
end
if(anycurrent)
current(:,l :4) = sort(reshape(reorder(current(:,l :4)),size(current(:,l :4)))')’; 
end

clear maxnodes magnitude order reorder

% MATRIZES CONSTITUTIVAS

ep = Inf**ones(y,l); 
mu = Inf**ones(y,l); 
sg = zeros(y,l);

ep(elem s(:,l))= epo**mats(elems(:,9),l); 
mu(elems(:,l)) = muo**mats(elems(:,9),2); 
sg(elems(:,l)) = sgc**mats(elems(:,9)r3); 
if(anypmc)
sg(elems(pmc(:,6),l)) = sgc**pmc(:,5); 
end

clear mats

% MATRIZES DE ARESTAS

dx = ones(y,l); 
dy = ones(y,l);
dz = ones(y,l);

dx(elems(:,l)) = nodes(elems(: ,8), 1 )-nodes(elems(:, 1), 1); 
dy(elems(:,l)) -  nodes(eleins(:,8)?2)-nodes(elems(:,l)>2); 
dz(elems(:,l)) = nodes(elems(:,8),3)-nodes(eIems(:,l)>3);

% VERSORES TANGENCIAIS



ax = [0 0 0;
101;
1 01];

ay = [1 01;
0 0 0 ;
110];

az = [11 0;
1 1 0 ;
0 0 0];

% VERSORES

bx = [1 1 1 1 ;
1010;
1010];

by = [1 01 0 ;
1111;
1100];

b z = [ l  100 ;
1100;
m i ] ;

if(anypec) % DETERMINAÇÃO DO PLANO DO CONDUTOR ELÉTRICO 
(X=1,Y=2,Z=3)

plane = ((nodes(pec(:,4),l:3)-nodes(pec(:,l)4:3))=0)**[l 2 3]';

% DETERMINAÇÃO DOS NÓS DO PLANO A SEREM CONSIDERADOS (1)

pec = spones(sparse(pec(:,l:3)+x,l,ax(plane{:),:),w,l)+...
sparse(pec(:,l:3)+y,l,ay(plane(:),:),w,l)+...
sparse(pec(:,l:3)+z,l,az(plane(:),:),w ,l));

else pec = sparse(3**nnodes,l); end

if(anypmc) % DETERMINAÇÃO DO PLANO DO CONDUTOR MAGNÉTICO 
(X=1,Y=2,Z=3)

plane = ((nodes(pmc(:,4),l:3)-nodes(pmc(:,l)*l:3))=0)**[l 2 3]’;

% DETERMINAÇÃO DOS NÓS DO PLANO A SEREM CONSIDERADOS (1)

pmc = spones(sparse(elems(pmc(:,6),l:3)+x,l,ax(plane(:),:),w,l)+...
sparse(elems(pmc(:,6),l:3)+y,l»ay(plane(:),:),w,l)+...
sparse(elems(pmc(:,6),l:3)+z,l,az(plane(:),:),w,l));



else pmc = sparse(w,l); end

if(anysource) % DETERMINAÇÃO DO PLANO DA FONTE (X=1,Y=2,Z=3)

plane = ((nodes(source(:,4),l:3)-nodes(source(:,l),l:3))=0)**[l 2 3]’;

% DETERMINAÇÃO DOS NÓS DA FONTE A SEREM CONSIDERADOS 
(VALOR)

m = max(source(:,6));
n = diag(source(:,6))**ones(length(source(:,6)),4); 

source = spones(...
sparse(source(:,l:4)+x,n,diag(x=source(:,5))**bx(plane(:),l:4),w,m)+... 
sparse(source(:,l :4)+y,n,diag(y=source(:,5))**by(plane(:),l :4),w,m)+... 
sparse(source(:,l :4)+z,n,diag(z=source(:,5))**bz(plane(:),l:4),w,ni));

source = [source sparse(length(source),l)];

else source = sparse(w,l); end

if(anyvoltage) % DETERMINAÇÃO DO PLANO DE TENSÃO (X=1,Y=2,Z=3) 

plane = ((nodes(voltage(:,4),l:3)-nodes(voltage(:,l)4:3))=0)**[l 2 3]’;

% DETERMINAÇÃO DOS NÓS DE TENSÃO A SEREM CONSIDERADOS (1) 

m = max(voltage(:,6));
n = diag(voItage(:,6))**ones(length(voltage(:,6)),4); 

voltage = spones(...
sparse(voltage(:,l :4)+x,n,diag(x==:voltage(:,5))**bx(plane(:),l :4),w,m)+... 
sparse(voltage(:,l :4)+y,n,diag(y=voltage(:,5))**by(plane(:),l :4),w,m)+... 
sparse(voltage(:,l:4)+z,n,diag(z=voltage(:,5))**bz(plane(:),l:4),w,m));

else voltage = sparse(w,l); end

if(anycurrent) % DETERMINAÇÃO DO PLANO DE CORRENTE 
(X=1,Y=2,Z=3)

plane = ((nodes(current(:,4),l:3)-nodes(current(:,l)?l:3))=0)**[l 2 3J';

% DETERMINAÇÃO DOS NÓS DE CORRENTE A SEREM CONSIDERADOS 
(1)



m = max(current(:,6));
n = diag(current(:,6))**ones(length(current(:,6)),4); 

current = spones(...
sparse(current(:,l:4)+x,n,diag(x=current(:,5))**bx(plane(:),l:4),w,m)+...
sparse(current(:,l:4)+y,n,diag(y=current(:,5))**by(plane(:),l:4),w,m)+...
sparse(current(:,l:4)+z,n,diag(z==current(:,5))**bz(plane(:),l:4),w,m));

else current = sparse(w,l); end

clear ax ay az bx by bz plane m n nodes

pack

toc
tic

% conectividades 

nl = elems(:,l);
n2 = elems(:,2); 
n3 = elems(:,3); 
n4 = elems(:,4); 
n5 = elems(:,5); 
n6 = elems(:,6); 
n7 = elems(:,7);

% inverso das capacitâncias das células de Yee 

invC = zeros(w,l);

invC(x+n7) = 4**dx(n7)./(ep(nl).**dy(nl).**dz(nl)+... 
ep(n3).**dy(n3).**dz(n3)+... 
ep(n5).**dy(n5).**dz(n5)+... 
ep(n7).**dy(n7).**dz(n7));

invC(y+n6) = 4**dy(n6)./(ep(nl).**dx(nl).**dz(nl)+... 
ep(n2).**dx(n2).**dz(n2)+... 
ep(n5).**dx(n5).**dz(n5)+... 
ep(n6).**dx(n6).**dz(n6»;

invC(z+n4) = 4**dz(n4)./(ep(nl).**dx(nl).**dy(nl)+... 
ep(n2).**dx(n2).**dy(n2)+... 
ep(n3).**dx(n3).**dy(n3)+... 
ep(n4).**dx(n4).**dy(n4));

invC = invC.**(l-pec); % condutor elétrico perfeito



% inverso das indutâncias das células de Yee 

invL = zeros(w,l);

invL(x+nl) = (dx(nl)./mu(nl)+dx(n2)./mu(n2))./dy(nl)./dz(nl)/2; 

invL(y+nl) = (dy(nl)./mu(nl)+dy(n3)./mu(n3))./dx(nl)./dz(nl)/2; 

invL(z+nl) = (dz(nl)./mu(nl)+dz(n5)./mu(n5))./dx(nl)./dy(nl)/2; 

invL = invL.**(l-pmc); % condutor magnético perfeito 

% condutâncias das células de Yee 

G = zeros(w,l);

G(x+n7) = (sg(n 1). **dy(nl ).* *dz(n 1)+...
Sg(n3).**dy(n3).**dz(n3)+...
sg(n5).**dy(n5).**dz(n5)+...
sg(n7).**dy(n7).**dz(n7))/4./dx(n7);

G(y+n6) = (sg(nl).**dx(nl).**dz(nl)+...
Sg(n2).**dx(n2).**dz(n2)+...
Sg(n5).**dx(n5).**dz(n5)+...
sg(n6).**dx(n6).**dz(n6))/4./dy(n6);

G(z+n4) = (sg(nl).**dx(nl).**dy(nl)+... 
sg(n2).**dx(n2).**dy(n2)+...
Sg(n3).**dx(n3).**dy(n3)+...
sg(n4).**dx(n4).**dy(n4))/4./dz(n4);

c = length(elems);

% operador integral sobre o campo elétrico na célula de Yee 
sigmaEa = [x+nl y+n2 +ones(c,l); 

x+nl y+n6 -ones(c,l); 
y+nl z+n3 +ones(c,l); 
y+nl z+n4 -ones(c,l); 
z+nl x+n5 +ones(c,l); 
z+nl x+n7 -ones(c,l)];

sigmaEb = [x+nl z+n4 +ones(c,l); 
x+nl z+n2 -ones(c,l); 
y+nl x+n7 +ones(c,l); 
y+nl x+n3 -ones(c,l); 
z+nl y+n6 +ones(c,l); 
z+nl y+n5 -ones(c,l)];
% operador integral sobre o campo magnético na célula de Yee



sigmaHa = [x+n7 z+n3 +ones(c,l); 
x+n7 z+nl -ones(c,l); 
x+n5 z+nl +ones(c,l); 
y+n6 x+n5 +ones(c,l); 
y+n6 x+nl -ones(c,l); 
y+n2 x+nl +ones(c,l); 
z+n4 y+n2 +ones(c,l); 
z+n4 y+nl -ones(c,l); 
z+n3 y+nl +ones(c,l)];

sigmaHb = [x+n7 y+nl +ones(c,l); 
x+n7 y+n5 -ones(c,l); 
x+n3 y+nl -ones(c,l); 
y+n6 z+nl +ones(c,l); 
y+n6 z+n2 -ones(c,l); 
y+n5 z+nl -ones(c,l); 
z+n4 x+nl +ones(c,l); 
z+n4 x+n3 -ones(c,l); 
z+n2 x+nl -ones(c,l)];

sigmaEa = sparse(sigmaEa(:,l),sigmaEa(:,2),sigmaEa(:,3),w,w); 
sigmaEb = sparse(sigmaEb(:,l)?sigmaEb(:,2),sigmaEb(:,3),w,w); 
sigmaHa = sign(sparse(sigmaHa(:,l),sigmaHa(:,2),sigmaHa(:,3),w,w)); 
sigmaHb = sign(sparse(sigmaHb(:,l),sigmaHb(:,2),sigmaHb(:3),w,w));

Pa = spdiags(l+G.**invC**dt/2,0,w,w) + ...
spdiags(dt**invC,0,w,w)**sigmaHa**spdiags(dt**invL,0,w,w)**sigmaEa;

Qa = spdiags(l-G.**invC**dt/2,0,w,w) - ...
spdiags(dt**invC,0,w,w)**sigmaHa**spdiags(dt**invL,0,w,w)**sigmaEb;

Pb = spdiags(l+G.**invC**dt/2,0,w,w) + ...
spdiags(dt**invC,0,w,w)**sigmaHb**spdiags(dt**invL,0,w,w)**sigmaEb;

Qb = spdiags(l-G.**invC**dt/2,0,w,w) - ...
spdiags(dt**invC,0,w,w)**sigmaHb**spdiags(dt**invL,0,w,w)**sigmaEa;

Ya = (sigmaHa+sigmaHb)**spdiags(dt**invL,0,w,w)**sigmaEa;

Yb = (sigmaHa+sigmaHb)**spdiags(dt**invL,0,w,w)**sigmaEb;

Z =dt**invC;

clear ep mu sg elems pec pmc invC invL G sigmaEa sigmaEb sigmaHa sigmaHb 
nl n2 n3 n4 n5 n6 n7

pack
toc



dl =zeros(w,l); 
dV =zeros(w,l); 
dVo = zeros(w,l); 
v = zeros(N,size(voltage,2)); 
i = zeros(N,size(current,2));

% CONEXÃO DOS ELEMENTOS DE CIRCUITO

connection = flnd(sum(source'));

% FATORAÇÃO

[La,Ua] = lu(Pa);
[Lb,Ub] = lu(Pb);

u = circuit(0,dt,i»F,T);

% ITERAÇÕES 
tic
for n=2:2:N

dV = Ua\(La\(Qa**dVo-Z.**dI)); 
dl = dl + Ya**dV + Yb**dVo; 
v(n-l,:) = dV'**voltage; 
i(n-l,:) = dl'**current; 
u = sum(circuit(n-l,dt,i,F,T)**source'); 
dVo = dV;
dVo(connection) = u(connection);

dV = Ub\(Lb\(Qb**dVo-Z.**dI)); 
dl = dl + Yb**dV + Ya**dVo; 
v(n,:) = dV'**voltage; 
i(n,:) = dl'**current;
u = sum(circuit(n,dt,i,F,T)**source');
dVo = dV;
dVo(connection) = u(connection);

end
toc
% GRÁFICOS 
close ali
set(gca,'ColorOrder',[01 0;11 0;0 0 1;1 0 1;01 1;111])
hold on
plot(v)
figure
set(gca,'ColorOrder',[01 0;11 0;0 0 1;10 1;01 1;111])
hold on
plot(i)
% FIM DO PROGRAMA



ANEXO 2

CÁLCULO DA IMPEDÂNCIA CARACTERÍSTICA E DA CONSTANTE 

DE PROPAGAÇÃO

Para o cálculo da constante de propagação, considera-se uma linha de 

transmissão qualquer com uma fonte alocada em uma de suas extremidades e uma 

carga na outra extremidade. A direção de propagação é z . Considera-se a origem da 

coordenada z como sendo um ponto próximo ao centro da linha de transmissão, como 

mostrado na figura 1.

FONTE A(f) Sinal Incidente CARGA

-d 0 d

B(f) Sinal Refletido

A fonte gera um sinal incidente A(f) e conseqüentemente um sinal refletido B(f). 

As tensões V amostradas na origem, em um ponto a uma distancia -d  e em um ponto a 

uma distância d são dadas por

V (-d) = + JZ^Be*,

V(0) = JZ^A + JZ^B,

V(d) = 4z~cAe* +

(1)
(2)
(3)

onde Zc é a impedância característica, A e B são a amplitude da onda incidente e da 

onda refletida no ponto zero respectivamente e y é  a constante de propagação.

Se os valores de tensão nos pontos considerados forem obtidos pela simulação,



podemos resolver o sistema de equações acima, de forma que a constante de 

propagação é dada por

1 d 2V(0)
r V(d) + V ( -d js

2V(0)

Y = — arccosh 
d

V(d) + V(-d) 
2V(0)

(4)

(5)

Se forem utilizadas amostras de corrente /  ao invés de tensão, teremos como 

resultado

1,
7  = - l n  a

1

M  + Hrd) 
2/(0) ^

m + K - d )
2/(0) -1

Y = — arccosh
d

I(d) + I(-d)  
2/(0)

(6)

(7)

Já a impedância característica é obtida por

c I(-d)e“ -I(d)e-M
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Resumo

A condição de contorno de absorção é implementada de forma simplificada sem 

a necessidade de algoritmos complexos. A absorção é satisfatória numa faixa de 

freqüências limitada. O que é útil para a simulação de alguns dispositivos de uso em 

altas freqüências. A formulação teórica e alguns resultados numéricos para os modos 

TEM, TE e híbrido são apresentados.

1. Introdução

O método das diferenças finitas no domínio do (FDTD) [7] vem sendo 

amplamente utilizado na simulação de circuitos digitais de alta velocidade e de 

dispositivos de microondas e optoeletrônicos pera sua simplicidade na formulação 

matemática e fácil implementação como programa de computador.

0 cálculo direto da matriz de espalhamento que caracteriza tais Dispositivos 

requer a utilização de guias de onda Infinitos ou perfeitamente casados na simulação

[17]. Para tal, o artifício numérico usado é a condição de contorno de absorção, na qual 

toda onda eletromagnética incidente é absorvida de forma a eliminar qualquer 

reflexão [18]. De maneira geral, para a implementação desta condição são usados 

algoritmos próprios sendo que o grau de complexidade destes aumenta conforme a 

perfeição exigida na absorção [19]. Em termos práticos, isto requer um aumento da
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capacidade de memória do computador e diminui a velocidade de processamento da 

simulação.

Uma alternativa que permite a aplicação do método em computadores de 

pequeno porte é a simplificação da condição de absorção, fazendo uso do mesmo 

algoritmo empregado no método FDTD. Em contrapartida, a simplificação não 

permite a absorção total da onda incidente e o cálculo direto da matriz de 

espalhamento toma-se errôneo. Felizmente existem métodos indiretos de cálculo que 

compensam a reflexão da condição de absorção, mas ainda assim deve-se enfatizar que 

quanto maior for a absorção, mais rápida será a convergência do cálculo [20],

Este trabalho apresenta a formulação teórica para a condição de absorção simplificada.

2. Formulação Teórica

No método FDTD o espaço computacional é discretizado com base na célula de 

Yee [1], na qual um ponto do espaço é expandido num paralelepípedo de arestas Ax, 

Ay e Az e as componentes do campo eletromagnético são alocadas nos vértices 

conforme mostra a Figura 1. A Figura 2 mostra um guia de onda com secção 

transversal arbitrária. Neste, a condição de absorção proposta é formada somente pelos 

três primeiros planos de discretização do guia, designados na figura por 1, 2 e 3, que 

correspondem às faces lateral esquerda, lateral direita e lateral esquerda da célula de 

Yee, respectivamente. O plano 1 é implementado como uma parede magnética, ou 

circuito aberto, onde todas as componentes de campo nele existentes são sempre nulas. 

A região não metálica do plano 2 é dotada de condutividade elétrica o não nula e finita 

para absorver a onda eletromagnética incidente. A espessura da região de absorção é 

d= di2 + d23 onde d^ e d23 são as separações entre os planos 1 e 2 e entre os planos 2 e

3, respectivamente. Um algoritmo para o método FDTD que incorpora a condutividade 

elétrica é apresentado em [21].



A z

Figura 1 -  Célula de Yee

Absorção _
j S eç io  Transversal
f /

dl2  <Í23

Figura 2 -  Implementação da condição de absorção num guia de onda genérico



A estrutura equivalente em termos de parâmetros distribuídos de linha de 

transmissão aparece na figura 3 .0  circuito aberto corresponde ao plano 1, a indutância 

L representa a região entre os planos 1 e 2, a capacitância C e a condutância G 

representam a região entre os planos 1 e 3 e o guia de onda possui admitância 

característica Yc.

Circuito
Aberto

Figura 3 -  Circuito equivalente com parâmetros distribuídos

Sendo © a freqüência angular da onda eletromagnética, a admitância total da 

região entre os planos 1 e 3, vista do guia de onda é

Y = Gd + icoCd (1)

e o coeficiente de reflexão pode ser calculado por

Da teoriam das linhas de transmissão com perdas pequenas[17] sabe-se que



G/Yc = 2a  e 

gC/Yc = p

(3)
(4)

onde a e  P  são as constantes de atenuação e de fase do guia, respectivamente.

Substituindo-se (3) e (4) em (1) e calculando-se o módulo p do coeficiente de 

reflexão em (2) obtém-se

2ad=l e J3d = 0, simultaneamente. Como /?= 0 não é uma condição útil na prática, a 

função é apenas minimizada com

O valor de a  depende da condutividade elétrica a atribuída ao plano 2 e do 

modo de onda eletromagnética que se propaga no guia. Assim, o valor ótimo de cr 

pode ser determinado através de (6) e da relação entre a  e cr para o modo de 

propagação em questão.

Em guias de onda homogêneos preenchidos com dielétricos imperfeitos, a 

constante de atenuação é

se as perdas no dielétrico forem pequenas [22], Logo, o valor ótimo encontrado para a 

condutividade elétrica da condição de absorção é

(5)

Para que a absorção seja perfeita deve-se ter p  = 0, o que só é possível com

2 ad=l.

(6)



onde fè é a freqüência de corte do modo e f  é a freqüência na qual se deseja a 

minimização do coeficiente de reflexão, e p e s são a permeabilidade magnética e a 

permissividade elétrica do meio, respectivamente. A equação (8) com £ = 0  aplica-se a 

modos TEM.

Em meios não homogêneos, dificilmente há uma relação simples entre a e o .  

Entretanto pode-se adotar (8) para determinar um valor de condutividade para cada 

meio que compõe a estrutura como uma fórmula aproximada, porém de simples 

utilização.
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