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RESUMO

O tdpico principal deste trabalho € o estudo da precisdo do método ADI-FDTD
na simulagdo da propagagio de ondas guiadas.

Inicialmente sdo mostrados os conceitos do método FDTD e discutida a
condi¢cdo de estabilidade deste método, que sdo a base para o desenvolvimento do
método ADI-FDTD. Em seguida € apresentado o método ADI-FDTD e a ordenagio
utilizada para agilizar a solu¢do dos sistemas de equagdes lineares que devem ser
resolvidas neste método.

E feita também uma breve descrigo da linha de transmiss3o stripline, a qual foi
utilizado como objeto das simulagdes.

Finalmente sdo realizadas diversas simulagdes com os métodos FDTD e ADI-

FDTD e seus resultados sdo comparados com os obtidos analiticamente.



ABSTRACT

The main topic of this work is the study of the precision of the ADI-FDTD
method in the simulation of the propagation of guided waves.

Initially the concepts os the FDTD method are shown and the condition of
stability of this method is considered, which are the base for the development of the
ADI-FDTD method. Then the ADI-FDTD method is presented and the ordering used
to speed up the solution of the system of linear equations that should be solved in this
method is explained.

It is also made a brief description of the stripline transmission line which was
used as object of the simulations.

Finally several simulations are accomplished with both FDTD and ADI-FDTD
methods and the results are compared with the ones obtained analytically.
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1 INTRODUCAO

Microondas e componentes eletronicos que trabalham com microondas vém
sendo largamente utilizados nas areas de computagdo, telecomunicag¢des e sistemas de
navegacdo. A andlise da compatibilidade eletromagnética de dispositivos trabalhando
com microondas tem, portanto, despertado grande interesse dos pesquisadores. O
estudo do comportamento destes dispositivos utilizando métodos analiticos se mostra
dificil ¢ muitas vezes invidvel, devido a alta complexidade matematica envolvida.
Contudo, o advento dos computadores digitais possibilitou que problemas
eletromagnéticos complexos sejam resolvidos utilizando-se métodos numéricos [1] e
conseqiientemente cada vez mais experiéncias praticas ddo lugar a simulagdes de
forma a reduzir custos e ampliar as possibilidades nas investigagGes.

Dentre os diversos métodos atualmente utilizados, o0 método FDTD (Finite
Difference Time Domain) [2] tem se destacado como um método simples e preciso.
Este método ndo apresenta grandes complexidades matematicas, € robusto e apresenta
uma modelagem adequada a varios problemas de interagdo eletromagnética.
Computacionalmente, o esquema € dispendioso e requer computadores com grande
poder de processamento, porém com a rapida evolugio da capacidade de
armazenamento e¢ do tempo de processamento, problemas que ha alguns anos s6 eram
resolvidos em sofisticadas estagdes de trabalho, hoje podem ser resolvidos em
microcomputadores pessoais de baixo custo.

Quando a dimensdo da estrutura é da mesma ordem de grandeza do
comprimento de onda, o método FDTD convencional € adequado, pois nesta situagéo €
mais rapido que os demais. O método FDTD, entretanto, pode apresentar instabilidade
e dispersdo numérica. A condigio de Courant [2] assegura a estabilidade numérica ao
restringir a discretizagio temporal em fun¢go da discretiza¢do espacial. Desta forma, o
numero de iterages aumenta & medida que mais pontos sdo utilizados para discretizar
o espago. A dispersdo numérica ¢ mantida em niveis aceitdveis se forem garantidos

pelo menos vinte pontos de discretizag@o espacial por comprimento de onda [1].
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O método MRTD (Multiresolution Time Domain) [3] foi criado com o objetivo
de reduzir a dispersdo numérica permitindo a utilizagio de menos pontos de
discretizagdo por comprimento de onda. Através da aplicagdo da expansdo espacial
wavelet [4] ortogonal para as equages de Maxwell, o método MRTD reduz a
dispersdo numérica, sendo capaz de fornecer resultados precisos com uma
discretizagdo préxima ao limite de amostragem de Nyquist. Portanto a minima
discretiza¢@o para que o método MRTD gere resultados confidveis € préximo de duas
amostras por comprimento de onda, muito menos que os minimos vinte necessarios no
método FDTD convencional.

A fim de relaxar a condigdo de estabilidade, foi desenvolvido o0 método ADI-
FDTD (Alternating Direction Implicit Finite Difference Time Domain) [5] [6]. Neste
método o passo de tempo pode ser escolhido em fungdo de uma precisdo requerida
sem a preocupa¢do em obedecer a condigdo de Courant . O objetivo deste trabalho €
investigar a precisdo do método ADI-FDTD em relagdo as discretizagGes temporais e
espaciais.

No trabalho foram realizadas diversas simulag3es e os resultados obtidos foram
comparados com as solugdes analiticas. Foram realizadas também compara¢des com
os resultados de simulagdes utilizando o método FDTD. Desta forma, foi possivel
comparar a precisdo de ambos os métodos e determinar as caracteristicas de cada um.
Como objeto de teste foi utilizada uma linha de transmissio stripline devido a
confiabilidade dos resultados obtidos analiticamente.

O Capitulo 2 apresenta 0 método FDTD, seu histdrico, teoria e a utilizagio de
um esquema novo: em vez de utilizar valores de campo elétrico e magnético, faz uso
de valores de tensdo e corrente a fim de propiciar uma interface direta com modelos de
componentes eletronicos discretos em trabalhos futuros. Em seguida o método ADI-
FDTD € apresentado, com seu histérico e equagdes fundamentais. Como sdo
necessarias as solugdes de sistemas de equagdes lineares, € discutida a permutagdo de
matrizes de forma a torna-las tridiagonais € em seguida a solugdo do sistema é

encontrada utilizando a decomposi¢do em matrizes com apenas duas diagonais ndo



nulas.

No capitulo 3 € descrita a linha de transmisséo stripline que € utilizada nas
simulagdes. E também descrito o programa utilizado para a defini¢io do espago
computacional e criagcdo da malha.

No capitulo 4 os resultados das simula¢Ges sdo apresentados em fungdo da
dependéncia em relagdo a freqiiéncia da fonte de excitagdo, passo no tempo de
simulagio e configuracdo da malha de discretizagdo espacial. Apds esta apresentagdo
os resultados sdo discutidos.

No capitulo 5 so apresentadas as conclusdes gerais do trabalho.



2 TEORIA DO METODO FDTD

2.1 INTRODUCAO

A origem do método FDTD se deu em 1966. Neste ano, Kane S. Yee
desenvolveu um trabalho que chamou de "Numerical Solution of Initial Boundary
Value Problems Involving Maxwell's Equations in Isotropic Media” [7] .O trabalho de
Yee marca o inicio do método FDTD. O termo FDTD foi utilizado pela primeira vez
por Allen Taflove em 1980.

Apesar da sua simplicidade, o método FDTD teve uma lenta evoluggo por
necessitar de computadores de alto desempenho, pois requer muita memoria € tempo
de processamento. No entanto, o alto desempenho das estagdes de trabalho de alguns
anos atras ja esta presente nos microcomputadores domésticos de hoje.

Este método tem como caracteristica apresentar instabilidade numérica
quando o passo no tempo ndo satisfaz a condigdo de estabilidade de Courant [2], que
limita o passo no tempo em funcdo da discretizagdo espacial utilizada.

Na tentativa de eliminar a instabilidade numérica inerente ao método FDTD
foi criado o método ADI-FDTD, o qual ¢ incondicionalmente estavel.

Este capitulo traz uma descri¢do tanto do método FDTD quanto do método
ADI-FDTD, os quais foram utilizados nesta dissertagdo. Alternativamente aos
trabalhos encontrados sobre o assunto que utilizam valores de campo elétrico e
magnético, as simulagdes foram realizadas em relagdo a valores de tensdo e corrente
em cada ponto de discretizaggo.

A simula¢io requer a solugdo de um sistema de equacdes lineares de alta
ordem. Para otimizar o tempo de resolugdo foram utilizadas algumas fungdes de
manipula¢do de matrizes, como por exemplo, a permutaggo de linhas e colunas a fim
de se obter uma matriz tridiagonal. Matrizes tridiagonais levam a uma solugdo mais

rapida quando s3o fatoradas em duas matrizes, triangular inferior e triangular



superior [8].

2.2 0 METODO FDTD

2.2.1 Transitorio Eletromagnético

Na simulag@o dos campos eletromagnéticos foi utilizado o tipo de excitagdo
denominada transitério eletromagnético e caracterizada por ter inicialmente um valor
de tensdo nulo, uma alta freqiiéncia e uma curta duraggo.

A propagacdo de ondas eletromagnéticas torna-se evidenciada numa
estrutura fisica quando suas dimensdes ultrapassam um décimo do comprimento da
onda eletromagnética.

Para a solugdo de problemas envolvendo a propagacdo de ondas

eletromagnéticas, partimos das equagdes de Maxwell

oB
VxE=-"2—=, 2.1
X py 2.1)
vxE=-2,3, (2.2)
or
VD=p, 2.3)
VB=0 (2.4)

onde E ¢ H sfo os campo elétrico e magnético respectivamente, D e B sfo as
densidade de fluxo elétrico € magnético, p € a densidade volumétrica de carga elétrica
e J é densidade superficial de corrente elétrica.
As equagdes (2.1) e (2.2) sd@o conhecidas como leis de Faraday € Ampere,
respectivamente, e as equagdes ( 2.3) e (2.4 ) sdo conhecidas como leis de Gauss.
A maioria dos materiais elétricos encontrados na prética sdo condutores
elétricos ndo magnéticos e dielétricos (isolantes elétricos) que podem ser

caracterizados macroscopicamente pelas constantes
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e L, que representa a permeabilidade magnética (1,257 uH/mm para o
vacuo e os materiais ndo magnéticos),
e ¢, que representa a permissividade elétrica (8,854 pF/mm para o vacuo
mas varia para cada material) e
® 0, que ¢ a condutividade elétrica (varia para cada material e ¢ nula para o
VACuo0).
As densidades de fluxo magnético, fluxo elétrico e corrente elétrica podem ser

expressas em funcdo do campo eletromagnético através das constantes elétricas dos

materiais
B=uH, (2.5)
D=¢E, (2.6)
J=cE 2.7

Com estas informagdes € possivel caracterizar o comportamento do campo no
tempo em materiais lineares e isotropicos, uma vez que as condigdes iniciais s30
conhecidas e satisfazem as equagbes de Maxwell. Convenientemente, 0 campo € a
fonte sdo ajustados para serem zero no tempo inicial. Isso se deve ao fato de ter sido
utilizado na simulag¢&o um transitério eletromagnético, que possui como caracteristica
as condigGes iniciais nulas. Neste caso, as duas equagdes divergentes sdo na verdade
redundantes, uma vez que podem ser obtidas através das equac¢des rotacionais nestas
condigdes.

E possivel demonstrar que apenas as equagdes rotacionais s&o necessarias € que
as equacdes divergentes estdo contidas nestas. Para tanto, calcula-se os divergentes das

equacdes rotacionais



V.(VxE)=V.(— %’7’): 0= —9%9—):\7.13 = constante (2.8.2)

V.(VxH)=V.(%lt)—+J):> 0 =Q§J)+V.J (2.8b)

da equag@o da continuidade da corrente elétrica temos
VI+ ‘—33 =
ot

substituindo V.J por - %’tz em (2.8.b) temos

awD)_ap_,_ olvD)-]

=0= V.D- p = constante (2.8.¢)
or ot ot

Nas demonstragdes acima a identidade V.VxA =0 foi utilizada. Como B, D e p

tém valor inicial igual a zero, tem-se

V . B=constante =0 (29.a)
V .D - p=constante =0 (2.9.b)

que sdo as equagdes (2.3) e (2.4) e portanto as equagdes rotacionais sdo suficientes

para os calculos do transitorio eletromagnético.

2.2.2 Discretizagdo Espacial

Yee montou um esquema para permitir a aplicagdo das Leis de Faraday e
Ampére no sistema de coordenadas cartesianas de forma a minimizar os calculos

necessarios ao assumir uma discretizagdo do espaco tridimensional.
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Figura 2.1 — Célula de Yee e seu esquema de numeragio

O espago ¢ dividido em células basicas como as da figura 2.1, as quais
apresentam vetores de campo elétrico tangenciais as arestas e vetores de campo
magnético normais as faces das células. Desta forma os componentes de campo
elétrico e magnético sdo arranjados no espago tridimensional de tal forma que cada
vetor H ¢ envolvido por quatro vetores E e vice-versa.

Para realizar a simulagdo € necessario enumerar todos os elementos do espaco
computacional para identificar cada um deles de forma inequivoca. Sendo assim,
foram enumerados todos os vetores, células e nés de acordo com o esquema descrito a
seguir.

Na figura 2.1, esta representada a primeira c€lula localizada na origem dos
eixos coordenados. Nesta figura tem-se a numerag¢do dos nds dentro de uma unica

célula. Ao enumerar os nés de toda a malha, iniciamos pela coordenada x, em seguida
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utilizamos a coordenada y e finalmente a coordenada z. Partindo da origem dos eixos,
enumeram-se os nds da direg¢do de x crescente. Ao chegar ao 1iltimo no nesta diregdo,
retorna-se ao inicio e incrementa-se y de uma unidade e novamente enumeram-se os
nos na dire¢do de x. Quando chegar ao ltimo ndé em x e y maximos, retorna-se a
origem dos eixos e incrementa-se z de uma unidade e o processo se inicia novamente,
até¢ enumerar todo o espaco computacional. Cada célula possui oito nds, e as células
sdo representadas com a mesma numerag¢io do seu né de menor indice. Na figura 2.1
esta representada a célula de numero um. Os vetores de campo elétrico sdo tangenciais
as arestas da célula e t€m a origem no né de menor indice da respectiva aresta. Os
vetores de campo magnético sdo normais as faces da célula e tém origem no né n', que
se localiza no centro da célula. Na simulagdo consideraram-se constantes as

caracteristicas do material (o,u,€) dentro da célula.

2.2.3 Constantes Estruturais

Utilizando a lei de Faraday na forma integral, tem-se

)
{E,dL == [B,ds

0
§E.dL= - [ 4H,d8 (2.10)

onde os indices "t" e "n" sd3o utilizados para representar os componentes vetoriais
tangencial ao contorno e normal a superficie.

Ja da lei de Ampére, obtém-se
§H,dL=J,d8 +—a—j D, dS
L s ot

{H.dL=[oE,dS +§£ [E, a8 2.11)

Na formulag3o, sfo considerados constantes os componentes vetoriais de campo

a0 longo de uma aresta e sobre uma face nas células de Yee. Sendo assim, utilizou-se o
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que se denominou elemento de tens3o da seguinte forma

4V =-(E, dL =-E AL 2.12)

Onde E; ¢ o campo elétrico tangencial a uma aresta ¢ AL é o comprimento da

respectiva aresta.

Como exemplo, observando a figura 2.2, tem-se

AV, =-E_ A, (2.13.2)
AV, =-E, A, (2.13.5)
AV, =-E, A, (2.13.0)

Analogamente definiu-se o elemento de potencial magnético AM, que € o
produto do campo magnético tangencial a uma aresta H; pelo comprimento da

respectiva aresta, AL

AM = [H,dL = H, AL (2.14)

Como exemplo, observando a figura 2.2, tem-se a representagfo dos elementos

§

AMxl =Hxl ﬂd}ﬂ) (215a)
L2 2
(A, A

AM, =H \—2’—’ +T’3) (2.15.b)
4

AM, =H, A‘l+é‘-5-J (2.15.)
L2 2
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B 6

o
Figura 2 .2 — Elementos de potencial elétrico e de potencial magnético

Neste caso, ao se calcular o comprimento AL, considera-se a distdncia do n6 n'

no centro da célula até o centro da célula vizinha na dire¢do do vetor do campo
magnético utilizado.

Estes elementos sdo arranjados como vetores coluna na forma

AV, AM,
AV=|AV,| ¢ AM=|AM, (2.16)
AV, AM

z
Em conseqiiéncia as aproximagdes utilizadas para o campo eletromagnético é

possivel determinar as capacitincias e as condutncias das arestas e as relutincias das
faces das células de Yee através de

AL
G= aﬁ
4L

1 4L

—,uAS

(2.17)
(2.18)

(2.19)
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onde AS ¢ a area da face e AL, o comprimento da aresta. As equacgdes acima s3o
resultantes da aplicacdo das formulas do capacitor de placas paralelas, do resistor
uniforme e do solendide [9]. Estas constantes estabelecem as caracteristicas fisicas e
geométricas do espago discretizado através das células de Yee, sendo denominadas
nesta dissertacdo de constantes estruturais. Como células vizinhas podem apresentar
caracteristicas fisicas e geométricas diferentes, tornou—se necessario realizar a média
aritmética das constantes envolvidas uma vez que cada aresta ¢ comum a quatro
células e cada face ¢ comum a duas células.

Desta forma, as constantes estruturais séo dadas por

_ EALA, +HEABA L +HEA A s +8,A LA,

_ 2.20.a
57 4Ax, =20
C,= glelAzl +£2Ax2A22 +85A25A25 +86A“6A36 (2 20 b)
y . 20.
_ 8B+ EBLA, +EAA  +EALA,, (2.20.c)
) v 20.
_ 0 A, A L+ 0300 5 +0A A s+ 0004, (2.21.2)
; Ve 21.
G = OBuB+ O8N, + MM+ TA LA (2.21.b)
»6 4Ay, |
- o.lelAyl + GZAxZAy2 + 0-3A’13A)'3 + 0-4Ax4Ay4 (2 21 C)
) o~ 21.
Aa + An
mﬂ _ J7A Hy (2.22.2)
2A 4,
An  Bs
H K
R - 222b
. 2AleAzl ( )
Ay, Bs
a (2.22.0)

g:"‘zl -
2A A 1



13

Na figura 2.3 tém-se representadas as células utilizadas no calculo da

capacitancia Cy; e a relutancia R,;.

'
Figura 2.3 — Células utilizadas no célculo da capacitincia C; e relutancia R,

Na formulagdo matricial estas constantes tomam a forma de matrizes diagonais

de acordo com

C, 0 0

C=0 C, 0 (2.23)
0 0 C,
®, 0 O

R=[0 ®, 0 (2.24)
0 0 ®,
G, 0 0

G={0 G, 0 (2.25)
0 0 G,
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2.2 4 Equagdes Fundamentais

Aproximando-se as integrais de linha das leis de Faraday e Ampére como

somatorios discretos e substituindo-se as defini¢des anteriores tem-se

dAM
AV, +AV,, -AV -AV,, = SRI v 2l (2.26.a)
x1
1 dAM
AV +AV , —AV,, —AV 3 = —. 4 (2.26.b)
R, &
1 dAM, (2.26.¢)

BV 5+ AV = AV = AV = o

z1

AM,, + AM, — AM s - AM,, = -G, AV, -c,,.d—‘i% (2.27.2)
dAV

AM,, + AM —AM ., =AM,y = ~Gyo AV, = Cyp—? (2.27b)

aAv, (2.27.)

AM, +AM,, — AM g~ AM, = =G, AV, = C,,.— 2

Estas equacdes podem ser reescritas na forma matricial como

d (2.28)

=R1Z
> AV=R —~AM

> AM =—G.AV—-C%AV (2.29)
onde Yy € X sdo matrizes esparsas com quatro elementos ndo nulos em cada linha,

sendo dois elementos de valor +1 e dois de valor —1, cujo objetivo € realizar o

somatdrio através do produto matricial.
A formulagdo matricial permite a introdugéo do elemento de corrente elétrica

Al para substituir o elemento de corrente magnética AM, de acordo com a lei de

Ampere
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I={H,dL
Para uma célula obtém - se

Al=) HAL=) AM (2.30)

Assim sendo, obtém-se as equagdes fundamentais do método FDTD em termos de

elementos de tensdo e corrente elétricas

ad
2 2vAV =R AL 2.31)
d
Al=-GAV-C—AV. 2.32)
2.2.5 Discretizagdo Temporal

A derivada em relagdo ao tempo das equa¢des de Faraday e Ampeére pode ser

aproximada pela sua respectiva diferenca finita centrada conforme

Y2 AVl) =R A'(t i é;) _ A[(t ] %{) 233)

At
A{t LA ) G AV( +4)+AV(r) C. AV(t + 4t)-AV(t) 2.34)
2 At
ou abreviadamente
. _ Alru-l _ AIn-]
ZMZVAV =R i (2.35)
n+2 n n+2 n
AP = AV HAV" AV AV 236)

2 Vils
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onde At € o passo que define a discretiza¢io temporal e “n” indica a iteragdo realizada.

In+1 Vn+2

Isolando-se nas equagdes (2.35) e (2.36) obtém-se as equagdes

recursivas do método FDTD

AI™ = AT+ ALRY > AV” (2.37)
AV™? =(M)AV” __281 g (2.38)
2C+AG 2C+AIG

Nota-se que ao iniciar as iteracbes com »=1, os elementos de corrente
apresentardo somente os indices pares € os elementos de tens3o, os impares. Isto
mostra que ha um deslocamento temporal de At/2 entre os valores de corrente e tenszo,

entretanto isto ndo causa erro nos resultados.

2.2.6 Critério de Estabilidade

O passo temporal At precisa ser pequeno o suficiente para satisfazer a condigdo
de estabilidade de Courant. Esta condig@o é obtida levando em consideragdo que o
maior passo de tempo permitido deve ser limitado de tal forma que onda ou pulso néo
se propague por mais de uma célula no intervalo de tempo At, garantindo assim que a
simulagdo seja estavel. Em trés dimensdes a condi¢do de estabilidade de Courant

requer

1

2.39
: (2.39)

Ars 1 1
\/ &F W) (@)

onde Ax, Ay, Az s3o as menores arestas das células utilizadas na discretizaggo espacial

e v é a velocidade da luz no meio considerado.
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2.2.7 Dispersdo Numérica

A onda ou pulso que se propaga na regido computacional tem uma velocidade
de fase variavel (que ndo ¢ a velocidade de fase fisica ) dependente do comprimento de
onda, da dire¢@io de propagacdo e da discretizagdo espacial. Esta velocidade de fase,
como a velocidade de fase fisica, causa o espalhamento dos pulsos, e ¢ referida como
dispersdo numérica.

A conseqiiéncia mais visivel da dispersdo numérica € que a onda ou pulso que
se propaga no espago discretizado tem uma velocidade de fase menor que a velocidade
da luz. O efeito é minimo para uma propagacdo obliqua e maximo para uma onda
propagando-se ao longo de x, y ou z. Além disso, a dispersdo numérica determina o
comprimento de onda minimo permitido que se propaga na regido computacional.
Comprimentos de onda menores que o minimo néo se propagam de forma alguma. Em
outras palavras, as malhas FDTD e ADI-FDTD agem como filtros passa baixas com
uma freqiiéncia de corte em torno de f,,x =c/2min(Ax,Ay,Az) . Na pratica, no entanto,
os efeitos deste filtro passa - baixas sdo percebidos a partir de Ayi;=20 min(Ax,Ay,Az),

ou seja, este € 0 menor comprimento de onda que ¢ simulado de forma confiavel.

2.2.8 Condutores perfeitos

Na natureza n3o encontramos condutores elétricos perfeitos, mas condutores
elétricos como cobre e aluminio podem ser aproximados por condutores perfeitos
devido a alta condutividade elétrica.

O campo elétrico tangencial aos condutores elétricos perfeitos € nulo, logo o
elemento de tensdo tangencial AV também deve ser, e isto equivale a alocar um valor
infinito de capacitincia na equagdo fundamental do método FDTD .

Ja condutores magnéticos perfeitos ndo existem fisicamente, mas podem ser
utilizados como artificio em alguns problemas com simetria, nos quais algumas
superficies sdo modeladas por condutores magnéticos perfeitos.

Como o condutor magnético perfeito € o dual do condutor elétrico perfeito, o
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elemento de potencial magnético AM deve ser nulo, e isto eqiiivale a alocar um valor

nulo de relutdncia na equag¢do fundamental do método FDTD.

2.2.9 Elementos de absor¢do

Em muitas simulagdes, as estruturas em estudo s&o abertas, como por exemplo
antenas e linhas de transmissdo do tipo microstrip. Para a simula¢do destas estruturas
seria necessaria a simulagéo até o infinito. Como nenhum computador pode armazenar
uma quantidade infinita de dados, € necessario utilizar algum tipo de artificio para
limitar o espago da simulagdo. Mesmo em estruturas fechadas tem-se que limitar o
tamanho da estrutura na dire¢do de propagacdo. Isso é feito através da utilizagdo da
condi¢do de contorno de absorgéo, na qual toda onda eletromagnética incidente deve
ser absorvida de forma a eliminar qualquer reflexéo.

A absorgdo € realizada através da extremidade de cada guia de onda, onde
valores 6timos de condutividade elétrica [10] sdo alocados aos dielétricos que formam
o guia de onda para fazer o casamento de impedéncias e assim evitar reflexdes.

Um elemento de absor¢do é formado pela Gltima camada de células de Yee
na extremidade do guia de onda constituido por

¢ um condutor magnético perfeito (plano de corte da célula de Yee) e

o dielétricos com condutividade elétrica 6tima.

Para a simulagdo de uma onda TEM (Transversal Eletromagnética), a

condutividade ¢ dada por

2 le
o=—, ’—— 2.40
AL \ u ( )

onde AL ¢ a aresta da célula na dire¢do de propagacio, € € a permissividade elétrica e

u a permeabilidade magnética da regido adjacente.
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2.2.10 Fontes de Excitacdo

Para iniciar a simulag&o, deve-se inserir um transitorio eletromagnético que se
propague pela estrutura. Sempre que possivel, deve-se procurar alocar os elementos de
tensdo ou corrente da fonte na segdo transversal de forma semelhante a distribuigcdo
encontrada no modo de onda que se deseja simular.

A variagd@o temporal dos elementos de tensdo da fonte depende da largura da
faixa de freqii€ncias a serem analisadas, sendo que a variagdo mais utilizada
corresponde a um pulso de Hanning [11] modulado em amplitude. Quanto maior for a
duracdo do pulso, mais estreita sera a faixa de freqii€ncias excitadas. A equagdo do

pulso é dada por

0,parat<0
2.zt

1-cos(—)
h(t) = ————2——T——.cos(2.ﬁ. f,1),para0<¢<T 2.41)

O,parat>T

onde T ¢ a duraggo do pulso e f; € frequi€ncia central . A faixa de freqii€ncias
excitadas vai de f;-2/T até £,+2/T.

Na figura 2.4 tem-se a representacdo do pulso no dominio do tempo para um
valor de T de Ins e f; igual a 10 GHz, e na figura 2.5 tem-se a sua representagéo no
dominio da freqiiéncia, cujos valores sdo obtidos através do calculo da FFT(Fast
Fourier Transform).
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2.3 METODO ADI-FDTD

O método FDTD ¢ largamente utilizado para resolver problemas relacionados
com o eletromagnetismo, porém a condi¢do de estabilidade de Courant precisa ser
satisfeita. Portanto, o passo maximo no tempo € limitado pelo tamanho minimo da
célula no dominio computacional, significando que se o objeto em andlise apresentar
dimensdes muito menores que o comprimento de onda, o passo no tempo sera muito
menor que o periodo da onda, 0 que aumentara em muito o tempo de processamento.

A fim de remover a condi¢do de estabilidade, foi desenvolvido o método ADI-
FDTD [6] [8]. Com este método, o tamanho do passo no tempo ndo depende mais da
condiggo de estabilidade de Courant, sendo escolhido em fungéo dos erros numéricos

decorrentes das discretizagdes.

2.3.1 Discretizagdo Temporal

Uma possibilidade de tornar o método FDTD incondicionalmente estavel seria
através da aplicacdo da regra trapezoidal para a solugdo da equagdo diferencial [12].

Neste caso, as equacdes (2.28) e (2.29) seriam aproximadas por

n+l n n+ n
2 AV D AV L AM™ - AM
2 At
S AMT LT AMT  AVTLLAVT L AVT-AV”
2 ' 2 .Y,

(2.42)

(2.43)

No entanto, a determinagdio de AV**/ em fungsio de AV” ¢ AI” ¢ implicita e
recai na obten¢@o da solucdo de um sistema de equagdes lineares de alta ordem a um
custo computacional elevado, e que portanto, ndo € vantajosa em relagdo ao método
FDTD condicionalmente estavel.

A técnica ADI segue 0 mesmo principio da regra trapezoidal, mas no lugar da

média dos somatorios, o préprio somatorio em si € dividido em duas parcelas cada



qual com os elementos de mesma orientagdo

- n+ n n oo AME - AM,
AVyzl—AVysl"‘AV;,,—Asz: l1 lAt \
AMn+l _AM,,
AV;;H _ AV:;"" + AV;.', - AV;; — R;]l ¥l At ¥
n+l n
AV - AVE + AV — AV = R} %A_IAM_A
n+l n n+l n
AM — AM™ + AM", - AM = -G AVy 2+AV,,7 Y\ - AV"
AV + AV AV AV
AM™ - AM™ 4 AM™, - AM™, = -G 6 ¥ _ o2y 6
2 At
n+l n n+l n
AM™' — AMT + AM™ — AM™, = -G AV 2+AVZ4 -\ - AV

Na figura 2.6 tem-se representados os elementos da equagdo (2.44.a)

Figura 2.6 — Elementos do somatorio de AV ao redor de AM da equagdo (2.44.a)
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(2.44.a)

(2.44.)

(2.44.¢)

(2.45.a)

(2.45.b)

(2.45.0)
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Na forma matricial
n+l n
SAV T AV - R-‘.AM——A—ti‘—M— (2.46)
A VB
n+l n n+l n
SAM™ + Y AM” = AV YAV AV +AV 2.47)
MB

v At
onde Xva, Zvs, 2Ma 2mp S30 matrizes esparsas que possuem dois elementos ndo
nulos por linha, um com valor —1 e outro com valor +1, e cujo objetivo é realizar o
somatorio através do produto matricial.

Utilizando a relacdo

A=(Q,, +>.. )AM=>" AM (2.48)

obtém-se equagdes recursivas para AV e Al na forma implicita.

At - - n+
[l+7GC LrACTY AR ]AV '=

At : " AKC-IAL
[ -~ 6C '-ACTY ARY ]AV - AIC'AL (2.49)

AI™ =AI"+)" ARY" AV™ 43" ARY" AV” (2.50)

Neste caso, a determinagdo de AV**’ em fungdo de AV” e Al” recai na obtengéo
da solu¢do de um sistema de equagdes lineares tridiagonal, cuja resolu¢do numérica
segue um algoritmo proprio a um baixo custo computacional.

A fim de garantir a estabilidade numérica faz-se necessaria a inversdo dos
indices »n e n+1 no primeiro membro das equagdes (2.44) e (2.45) a cada iteragdo, dai a
origem da sigla ADI Isto equivale & inversdo dos indices A e B nas equagdes (2.49) e

(2.50). Percebe-se neste caso que AV”" e AI” referem-se ao mesmo instante de tempo.
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2.3.2 Solugéo de Sistemas de Equagdes Tridiagonal

A regra utilizada para a enumeragdo dos ndés gera um sistema de equagdes
lineares com apenas trés coeficientes ndo nulos em cada equagdo de (2.49), sendo que
a matriz de coeficientes é esparsa, mas ndo apresenta necessariamente a forma
tridiagonal. E possivel utilizar a ordenagdo reversa de Cuthill-McKee [13], que realiza
diversas permutagées entre linhas e colunas de forma a ter os elementos ndo nulos
proximos da diagonal. Esta ¢ a ordenagdo Otima quando se utiliza 0 método LU de
resolugéo de equagdes lineares [9].

Na figura 2.7 tem-se uma demonstra¢do da ordenagdo. Séo apresentados os
graficos antes e depois da ordenacgdo. Estes graficos representam matrizes esparsas

onde os pontos s@o 0s elementos ndo nulos.

0 1} -
1000 1000 +
2000 mr
3000 3000 +
4000 4000 +
5000 5000 |
6000 6000
7000t 7000
0 1000 2000 300 4000 500 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
nz = 15536 nz = 15536

a) b)
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3430f
Y M Y
K< 1] T
; 343
380} X !
Y 3 i
380} " | 3440
':1, 1 [
3400 |
3445
3420f -‘=.. 3
Y .
3a40} : o 50}
3460 } . E’._ R
3 4 y 3455

3410 3420 3430 3440 3450 3460 3470 3480 3490
c) d)

Figura 2.7 — Aplicagdo da ordenagdo reversa de Cuthill-McKee. a) Antes da ordenagio.

3200 3250 3300 3350 3400 3450 3500 3550 3600

b) Apods a ordenagdo. c¢) Antes da ordenagdo ampliado. d) apds a ordenagdo ampliado.

Apos a ordenagdo, obtém-se um sistema de equagées tridiagonal do tipo

as,

a,

a;

an,n—l

a

nn |

a, a, 0 fx 1 b,

2.51)

Pode-se decompor a matriz de coeficientes A em duas matrizes L e U, sendo

que cada uma delas apresenta apenas duas diagonais ndo nulas, tal que

Os elementos da diagonal podem ser determinados por

1

011 (dl‘l.al’z)

1

= -1 - =
d, =a,-a,-d a,, ,i=23,.,n,onded, =a,

-

(2.52)

(2.53)
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O sistema AX = LUX = B é resolvido em duas etapas:

LY=B, (2.54)
UX=Y (2.55)

onde os valores de Y e X sdo obtidos através

b _bi-any)
yl—dlayi" d ,1

t

xn = y<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>